# mend **Repository Path**: quantumbolt/mend ## Basic Information - **Project Name**: mend - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-24 - **Last Updated**: 2021-11-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MEND: Model Editing Networks using Gradient Decomposition If you run into any issues with the code, you can open an issue and/or email me at `eric.mitchell@cs.stanford.edu` ## Setup ### Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a virtualenv ([pyenv](https://github.com/pyenv/pyenv) can help with this) and install the dependencies: $ python -m venv env $ source env/bin/activate (env) $ pip install -r requirements.txt ### Data You can download the data needed for this project from [this Google Drive link](https://drive.google.com/drive/folders/1jAqBE45jEKR-5pMkwxlVQ0V8eKxqWbxA?usp=sharing). Unzip each sub-directory into `mend/data` and you should be good to go. ## Running the code Run MEND training/evaluation for distilGPT-2 on the wikitext editing problem with: (env) $ python -m run +alg=mend +experiment=gen +model=distilgpt2 data.wiki_webtext=False Other valid algs include `efk` ([KnowledgeEditor](https://arxiv.org/abs/2104.08164)) and `enn` ([Editable Neural Networks](https://arxiv.org/abs/2004.00345)). Valid experiments include `fc` (FEVER fact checking) and `qa` (zsRE question-answering). Splits and rephrases for both come from [De Cao et. al](https://arxiv.org/abs/2104.08164). Check `config/model` for options for editable models (note that all models don't work for all experiments; GPT-style models only work with `gen`, seq2seq models only work with `qa`, and BERT only works with `fc`). Also note that in the paper, we sample locality data from different datasets depending on the model. By default, training will use [Natural Questions](https://ai.google.com/research/NaturalQuestions) data (not zsRE data) for computing drawdown in the `qa` experiment and [OpenWebText](https://skylion007.github.io/OpenWebTextCorpus/). For models such as the `distilgpt2` model we use (which was fine-tuned on wikitext) or the BART-base model, this behavior should be disabled with `data.wiki_webtext=False` or `data.zsre_nq=False`, respectively. ## Citing the paper If this code or paper was useful, please consider using the following citation: @article{mitchell2021fast, title={Fast Model Editing at Scale}, author={Mitchell, Eric and Lin, Charles and Bosselut, Antoine and Finn, Chelsea and Manning, Christopher D.}, year={2021}, journal={CoRR}, url={https://arxiv.org/pdf/2110.11309.pdf} }