# prompt2model **Repository Path**: mirrors/prompt2model ## Basic Information - **Project Name**: prompt2model - **Description**: Prompt2Model 是一个采用自然语言任务描述(如 ChatGPT 等 LLM 使用的提示)来训练有利于部署的小型专用模型的系统 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/prompt2model - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2023-08-29 - **Last Updated**: 2025-12-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Prompt2Model - Generate Deployable Models from Instructions [![PyPI version](https://badge.fury.io/py/prompt2model.svg)](https://badge.fury.io/py/prompt2model) ![Github Actions CI tests](https://github.com/neulab/prompt2model/actions/workflows/ci.yml/badge.svg) [![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/) [![Discord](https://img.shields.io/discord/1144245269001678959)](https://discord.gg/UCy9csEmFc) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neulab/prompt2model/blob/main/prompt2model_demo.ipynb) `Prompt2Model` is a system that takes a natural language task description (like the prompts used for LLMs such as ChatGPT) to train a small special-purpose model that is conducive for deployment. prompt2model_teaser ## Quick Start ### Notebook You can run our demo of `Prompt2Model` through a notebook: - [Open Locally](./prompt2model_demo.ipynb) - [Open in Colab](https://colab.research.google.com/github/neulab/prompt2model/blob/main/prompt2model_demo.ipynb) ### Command Line You can also run through the command line. ```bash pip install prompt2model ``` `Prompt2Model` supports various platforms such as OpenAI, Anthropic, Huggingface, etc. using [LiteLLM](https://github.com/BerriAI/litellm). If you are using OpenAI models (such as the default `gpt-3.5-turbo`), please obtain an OpenAI API key on their [website](https://platform.openai.com/) then set the environment variable `OPENAI_API_KEY` to your API key by running the following command in your terminal: ```bash export OPENAI_API_KEY= ``` [List of all supported providers](https://docs.litellm.ai/docs/providers) You can then run ```bash python prompt2model_demo.py ``` to create a small model from a prompt, as shown in the demo video below. This script must be run on a device with an internet connection to access the OpenAI API. For best results, run this script on a device with a GPU for training your model. ## Demo ## Tips and Examples to Write a Good Prompt You can see the tips and examples to write a good prompt in [prompt_examples](./prompt_examples.md). ## Components The `prompt2model` package is composed of several components, each designed to fulfill a specific purpose. To gain a comprehensive understanding of how to utilize each component effectively, please consult the `readme.md` file situated in the directory of the respective component. These files can be found at `./prompt2model//readme.md`. They provide detailed information and instructions on customizing and maximizing the functionality of each component within the package. ## Contribution If you're interested in contributing to the `prompt2model` project, please - refer to [CONTRIBUTING.md](CONTRIBUTING.md) - open an [issue](https://github.com/neulab/prompt2model/issues) or submit a PR - join us on [discord](https://discord.gg/UCy9csEmFc) - or reach out to [@vijaytarian](https://twitter.com/vijaytarian) and [@Chenan3_Zhao](https://twitter.com/Chenan3_Zhao) on Twitter ## Cite We have [written a paper describing Prompt2Model in detail](https://arxiv.org/abs/2308.12261). If you use Prompt2Model in your research, please cite us! If you discuss or use the overall prompt2model framework, please reference ```bibtex @misc{prompt2model, title={Prompt2Model: Generating Deployable Models from Natural Language Instructions}, author={Vijay Viswanathan and Chenyang Zhao and Amanda Bertsch and Tongshuang Wu and Graham Neubig}, year={2023}, eprint={2308.12261}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` If you discuss or use our dataset retrieval and transformation tools, please reference ```bibtex @misc{prompt2modeldatatune, title={Better Synthetic Data by Retrieving and Transforming Existing Datasets}, author={Saumya Gandhi and Ritu Gala and Vijay Viswanathan and Tongshuang Wu and Graham Neubig}, year={2024}, eprint={2404.14361}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```