diff --git a/.jenkins/check/config/filter_notebooklint.txt b/.jenkins/check/config/filter_notebooklint.txt new file mode 100644 index 0000000000000000000000000000000000000000..e1e001809d0197edd372c2bd68372af131652312 --- /dev/null +++ b/.jenkins/check/config/filter_notebooklint.txt @@ -0,0 +1,5 @@ +"docs/docs/mindchemistry/docs" +"docs/docs/mindearth/docs" +"docs/docs/mindflow/docs" +"docs/docs/mindquantum/docs" +"docs/tutorials/source_zh_cn" \ No newline at end of file diff --git a/.jenkins/check/config/filter_pylint.txt b/.jenkins/check/config/filter_pylint.txt index ee8519d7ffc77be8fb495941bb3503c80f049e5c..063af122931e8f0d736450cc9d4fa41dd9866da0 100644 --- a/.jenkins/check/config/filter_pylint.txt +++ b/.jenkins/check/config/filter_pylint.txt @@ -1,4 +1,4 @@ #tools "docs/tools/generate_html" "docs/tools/ci_pipeline_gate_APIView" -"docs/tools/link_detection/link_lint.py" \ No newline at end of file +"docs/tools/link_detection/link_lint.py" diff --git a/CONTRIBUTING_DOC.md b/CONTRIBUTING_DOC.md index 9b5d81614c654701a45af80966010ff140efbfb8..79bca4ba6b024f73ae7fc7cef2b0bed443ab88ee 100644 --- a/CONTRIBUTING_DOC.md +++ b/CONTRIBUTING_DOC.md @@ -8,7 +8,7 @@ This project supports contribution documents in markdown and reStructuredText fo ## Document -MindSpore docs repository provides [Document Writing Specifications](https://gitee.com/mindspore/docs/wikis/Document%20Writing%20Specifications?sort_id=3379825) for your reference. +MindSpore docs repository provides [Document Writing Specifications](https://atomgit.com/mindspore/docs/wikis/Document%20Writing%20Specifications?sort_id=3379825) for your reference. ### Updating or Adding a Document @@ -20,7 +20,7 @@ If you want to update an existing document, click `View source on Gitee` (as sho #### Adding a Document -If you need to add a document, create a markdown or reStructuredText file in a proper directory. For details about the directory structure of the MindSpore docs repository, see [README](https://gitee.com/mindspore/docs/blob/master/README.md#directory-structure-description). +If you need to add a document, create a markdown or reStructuredText file in a proper directory. For details about the directory structure of the MindSpore docs repository, see [README](https://atomgit.com/mindspore/docs/blob/master/README.md#directory-structure-description). 1. Create a document. @@ -33,7 +33,7 @@ If you need to add a document, create a markdown or reStructuredText file in a p After the writing is complete, add the new document to the web page directory. - Take a training tutorial as an example. Find the [index.rst](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/index.rst) file in the `source_en` directory. This file corresponds to the organization structure of the training tutorial web page. + Take a training tutorial as an example. Find the [index.rst](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/index.rst) file in the `source_en` directory. This file corresponds to the organization structure of the training tutorial web page. Add the new document to the corresponding category. You can also create a category before adding the document. Take **Implementing an Image Classification Application** as an example. Save the document in the `quick_start` directory and name it as `quick_start.md`. Add `quick_start/quick_start` to the Quick Start category, as shown below. @@ -81,7 +81,7 @@ Take **Quick Start for Beginners** as an example. The document link is < ## API -MindSpore docs repository provides [API Comment Specifications](https://gitee.com/mindspore/docs/wikis/MindSpore%20API%20Comment%20Specifications?sort_id=3379820) for your reference. +MindSpore docs repository provides [API Comment Specifications](https://atomgit.com/mindspore/docs/wikis/MindSpore%20API%20Comment%20Specifications?sort_id=3379820) for your reference. ### Updating or Adding an API @@ -112,7 +112,7 @@ If you want to add an API, check whether the API has been added to an existing m - `mindspore.ops`: [中文](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python/mindspore.ops.rst) | [English](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python_en/mindspore.ops.rst) - `mindspore.ops.primitive`: [中文](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python/mindspore.ops.primitive.rst) | [English](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python_en/mindspore.ops.primitive.rst) -- If the API does not belong to the existing module, add an API project file of the MindSpore docs repository. Please add modules to the [directory structure](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/index.rst) in alphabetical order. To add the API of the `mindspore.mindrecord` module, you need to create the [mindspore.mindrecord.rst](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python_en/mindspore.mindrecord.rst) file in the `docs/docs/api_python/source_en/mindspore` directory and add the file to the directory structure. +- If the API does not belong to the existing module, add an API project file of the MindSpore docs repository. Please add modules to the [directory structure](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/index.rst) in alphabetical order. To add the API of the `mindspore.mindrecord` module, you need to create the [mindspore.mindrecord.rst](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python_en/mindspore.mindrecord.rst) file in the `docs/docs/api_python/source_en/mindspore` directory and add the file to the directory structure. ```rst .. toctree:: @@ -161,7 +161,7 @@ By default, APIs of the latest version are displayed. To view the newly merged c The images in the document are mainly divided into program flowcharts, configuration flowcharts, functional structure diagrams and so on. -For specific image requirements and specifications, please refer to [Image Specifications](https://gitee.com/mindspore/docs/wikis/%E4%BD%9C%E5%9B%BE%E8%A7%84%E8%8C%83?sort_id=3498531) provided by MindSpore docs. +For specific image requirements and specifications, please refer to [Image Specifications](https://atomgit.com/mindspore/docs/wikis/%E4%BD%9C%E5%9B%BE%E8%A7%84%E8%8C%83?sort_id=3498531) provided by MindSpore docs. ### Updating or Adding an Image @@ -171,7 +171,7 @@ If you want to update an existing image or adding a new image, click ![View Sour ### Image Citation -The format of the image citation is: \!\[image name] (the path where the image is located). For details, please refer to [Markdown Image Citation Requirements](https://gitee.com/mindspore/docs/wikis/Document%20Writing%20Specifications?sort_id=3379825#image) and [Notebook Image Citation Requirements](https://gitee.com/mindspore/docs/wikis/Notebook%E5%86%99%E4%BD%9C%E8%A6%81%E6%B1%82?sort_id=3462614). +The format of the image citation is: \!\[image name] (the path where the image is located). For details, please refer to [Markdown Image Citation Requirements](https://atomgit.com/mindspore/docs/wikis/Document%20Writing%20Specifications?sort_id=3379825#image) and [Notebook Image Citation Requirements](https://atomgit.com/mindspore/docs/wikis/Notebook%E5%86%99%E4%BD%9C%E8%A6%81%E6%B1%82?sort_id=3462614). ### Confirming the Content diff --git a/CONTRIBUTING_DOC_CN.md b/CONTRIBUTING_DOC_CN.md index cd0ae0e36a229027b8effd6725ed340a3ece42a2..e7277f672b152d3fb7083b3096c4b26beecfb0c9 100644 --- a/CONTRIBUTING_DOC_CN.md +++ b/CONTRIBUTING_DOC_CN.md @@ -8,7 +8,7 @@ ## 文档 -MindSpore docs仓提供了[文档写作要求](https://gitee.com/mindspore/docs/wikis/文档写作要求?sort_id=3363974)供写作时参考。 +MindSpore docs仓提供了[文档写作要求](https://atomgit.com/mindspore/docs/wikis/文档写作要求?sort_id=3363974)供写作时参考。 ### 更新/新增文档 @@ -20,7 +20,7 @@ MindSpore docs仓提供了[文档写作要求](https://gitee.com/mindspore/docs/ #### 新增文档 -如果您需要新增文档,请在合适目录新建Markdown或reStructuredText文件,MindSpore docs仓目录结构说明可参考[README](https://gitee.com/mindspore/docs/blob/master/README_CN.md#目录结构说明)。 +如果您需要新增文档,请在合适目录新建Markdown或reStructuredText文件,MindSpore docs仓目录结构说明可参考[README](https://atomgit.com/mindspore/docs/blob/master/README_CN.md#目录结构说明)。 1. 新建文件 @@ -33,7 +33,7 @@ MindSpore docs仓提供了[文档写作要求](https://gitee.com/mindspore/docs/ 完成写作后,需在网页目录中添加新建的文件。 - 以训练教程为例,先在`source_zh_cn`目录下找到[index.rst](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/index.rst)文件,该文件即对应训练教程网页的组织结构。 + 以训练教程为例,先在`source_zh_cn`目录下找到[index.rst](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/index.rst)文件,该文件即对应训练教程网页的组织结构。 在对应的分类中添加新建的文件,也可新建分类后再添加。以《实现一个图片分类应用》文档为例,该文档存放在`quick_start`目录,命名为`quick_start.md`,需将`quick_start/quick_start`添加至“快速入门”分类下,如下所示。 @@ -81,7 +81,7 @@ PR合入后次日,即可在MindSpore官网中查看到新增内容,新增文 ## API -MindSpore docs仓提供了[API注释写作要求](https://gitee.com/mindspore/docs/wikis/API注释写作要求?sort_id=3364069)供写作时参考。 +MindSpore docs仓提供了[API注释写作要求](https://atomgit.com/mindspore/docs/wikis/API注释写作要求?sort_id=3364069)供写作时参考。 ### 更新/新增API @@ -112,7 +112,7 @@ MindSpore docs仓提供了[API注释写作要求](https://gitee.com/mindspore/do - `mindspore.ops`:[中文页面列表](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python/mindspore.ops.rst) | [英文页面列表](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python_en/mindspore.ops.rst) - `mindspore.ops.primitive`:[中文页面列表](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python/mindspore.ops.primitive.rst) | [英文页面列表](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python_en/mindspore.ops.primitive.rst) -- 如果不属于已有模块,需新增MindSpore docs仓的接口工程文件,并按字母序添加模块到[目录结构](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/index.rst)中。如需新增`mindspore.mindrecord`模块接口,需在`docs/docs/api_python/source_zh_cn/mindspore`目录下新增[mindspore.mindrecord.rst](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python/mindspore.mindrecord.rst)文件,并将其添加到目录结构中。同时,在`docs/docs/api_python/source_en/mindspore`目录下做相应修改,即可生成英文页面内容。 +- 如果不属于已有模块,需新增MindSpore docs仓的接口工程文件,并按字母序添加模块到[目录结构](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/index.rst)中。如需新增`mindspore.mindrecord`模块接口,需在`docs/docs/api_python/source_zh_cn/mindspore`目录下新增[mindspore.mindrecord.rst](https://gitee.com/mindspore/mindspore/blob/master/docs/api/api_python/mindspore.mindrecord.rst)文件,并将其添加到目录结构中。同时,在`docs/docs/api_python/source_en/mindspore`目录下做相应修改,即可生成英文页面内容。 ```rst .. toctree:: @@ -161,7 +161,7 @@ PR合入后次日,即可在MindSpore官网[Python API页面](https://www.minds 文档中的图片主要分为程序流程图、配置流程图和功能结构图等。 -具体的作图要求及规范,请参考MindSpore docs仓提供的[作图规范](https://gitee.com/mindspore/docs/wikis/%E4%BD%9C%E5%9B%BE%E8%A7%84%E8%8C%83?sort_id=3498531)。 +具体的作图要求及规范,请参考MindSpore docs仓提供的[作图规范](https://atomgit.com/mindspore/docs/wikis/%E4%BD%9C%E5%9B%BE%E8%A7%84%E8%8C%83?sort_id=3498531)。 ### 更新/新增图片 @@ -171,7 +171,7 @@ PR合入后次日,即可在MindSpore官网[Python API页面](https://www.minds ### 图片引用 -图片引用的格式为:\!\[图片名称](图片所在目录)。详情请参考[Markdown图片引用要求](https://gitee.com/mindspore/docs/wikis/%E6%96%87%E6%A1%A3%E5%86%99%E4%BD%9C%E8%A6%81%E6%B1%82?sort_id=3363974#%E5%9B%BE%E7%89%87)和[Notebook图片引用要求](https://gitee.com/mindspore/docs/wikis/Notebook%E5%86%99%E4%BD%9C%E8%A6%81%E6%B1%82?sort_id=3462614)。 +图片引用的格式为:\!\[图片名称](图片所在目录)。详情请参考[Markdown图片引用要求](https://atomgit.com/mindspore/docs/wikis/%E6%96%87%E6%A1%A3%E5%86%99%E4%BD%9C%E8%A6%81%E6%B1%82?sort_id=3363974#%E5%9B%BE%E7%89%87)和[Notebook图片引用要求](https://atomgit.com/mindspore/docs/wikis/Notebook%E5%86%99%E4%BD%9C%E8%A6%81%E6%B1%82?sort_id=3462614)。 ### 确认内容 diff --git a/README.md b/README.md index cee9190b243735f717461e69369c40ce5a7e9d54..ccc158b261c8a2da87efae6f3bc3fe851fb9701c 100644 --- a/README.md +++ b/README.md @@ -90,7 +90,7 @@ MindSpore tutorials and API documentation can be generated by the [Sphinx](https 2. Download code of the MindSpore Docs repository. ```bash - git clone https://gitee.com/mindspore/docs.git + git clone https://atomgit.com/mindspore/docs.git ``` 3. Go to the directory where the API is located, `docs/mindspore`, and install the dependency items in the requirements.txt file. @@ -157,7 +157,7 @@ MindSpore tutorials and API documentation can be generated by the [Sphinx](https └───mindspore-lite-*.*.*-linux-x64.tar.gz ``` -3. When [MindSpore Tutorials](https://gitee.com/mindspore/docs/tree/master/tutorials), [MindSpore Docs](https://gitee.com/mindspore/docs/tree/master/docs/mindspore), and [MindQuantum Docs](https://gitee.com/mindspore/docs/tree/master/docs/mindquantum/docs) are built, [pandoc](https://pandoc.org/) needs to be installed. For downloading and installing pandoc, refer to . +3. When [MindSpore Tutorials](https://atomgit.com/mindspore/docs/tree/master/tutorials), [MindSpore Docs](https://atomgit.com/mindspore/docs/tree/master/docs/mindspore), and [MindQuantum Docs](https://atomgit.com/mindspore/docs/tree/master/docs/mindquantum/docs) are built, [pandoc](https://pandoc.org/) needs to be installed. For downloading and installing pandoc, refer to . ## License diff --git a/README_CN.md b/README_CN.md index 1e27ba5d03e5e4c49f6cb6cf3202bbe40e54bd0f..e0a35974334b50f99a15c5bea1af43b49f437f61 100644 --- a/README_CN.md +++ b/README_CN.md @@ -90,7 +90,7 @@ MindSpore的教程和API文档均可由[Sphinx](https://www.sphinx-doc.org/en/ma 2. 下载MindSpore Docs仓代码。 ```bash - git clone https://gitee.com/mindspore/docs.git + git clone https://atomgit.com/mindspore/docs.git ``` 3. 进入API所在目录`docs/mindspore`,安装该目录下`requirements.txt`文件中的依赖项。 @@ -157,7 +157,7 @@ MindSpore的教程和API文档均可由[Sphinx](https://www.sphinx-doc.org/en/ma └───mindspore-lite-*.*.*-linux-x64.tar.gz ``` -3. 构建[MindSpore教程](https://gitee.com/mindspore/docs/tree/master/tutorials)、[MindSpore文档](https://gitee.com/mindspore/docs/tree/master/docs/mindspore)和[MindQuantum文档](https://gitee.com/mindspore/docs/tree/master/docs/mindquantum/docs)时还需安装[pandoc](https://pandoc.org/),下载和安装pandoc请参考。 +3. 构建[MindSpore教程](https://atomgit.com/mindspore/docs/tree/master/tutorials)、[MindSpore文档](https://atomgit.com/mindspore/docs/tree/master/docs/mindspore)和[MindQuantum文档](https://atomgit.com/mindspore/docs/tree/master/docs/mindquantum/docs)时还需安装[pandoc](https://pandoc.org/),下载和安装pandoc请参考。 ## 版权 diff --git a/docs/lite/api/source_en/api_cpp/mindspore_abstract.rst b/docs/lite/api/source_en/api_cpp/mindspore_abstract.rst index e3c772a92f8fddc93b17b99506e2daf3252caea6..78671dbffc636034306f45e8fabdd4d7d8a1f7d8 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_abstract.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_abstract.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__abstract: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_change.rst b/docs/lite/api/source_en/api_cpp/mindspore_change.rst index c4acb6a443b5dc3991c4cb83797b3d40c7f360e2..a0d819656434210a62811056def286c2dbd4784c 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_change.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_change.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__change: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_common.rst b/docs/lite/api/source_en/api_cpp/mindspore_common.rst index 2898a0a220b59ce3094dd1dd11a26cc341040f1b..a344f64960d255da70be0bed86f2a3759e4d7289 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_common.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_common.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__common: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_converter.rst b/docs/lite/api/source_en/api_cpp/mindspore_converter.rst index d2fdeeb879b0b5564f713765cead51a4841319cd..33089c8036fc9d439d12b9fdd0b90c2730f2d5f7 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_converter.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_converter.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs mindspore::converter diff --git a/docs/lite/api/source_en/api_cpp/mindspore_dataset.rst b/docs/lite/api/source_en/api_cpp/mindspore_dataset.rst index 9ddd35fbcf46a4f5b653590e07ddca47c997fced..1f484cc1fb70ac6184718e8d3a49e91227b13c80 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_dataset.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_dataset.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__dataset: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_dataset_transforms.rst b/docs/lite/api/source_en/api_cpp/mindspore_dataset_transforms.rst index d857ddb67762b09eabe7301789abf9a0daee45ad..68bef8c3458b90387870b4f74b40d2dc7798ce5e 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_dataset_transforms.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_dataset_transforms.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__dataset__transforms: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_id_generator.rst b/docs/lite/api/source_en/api_cpp/mindspore_id_generator.rst index 5175d2536949942b0fb8e5691559300571536627..572da4df8501c8f0c27fbdfddafbd682badfb6f2 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_id_generator.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_id_generator.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__id_generator: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_kernel.rst b/docs/lite/api/source_en/api_cpp/mindspore_kernel.rst index 63a42d093cdba37b96566d81a3646531239b3a2f..db6487991f9a2d86a2f5b3928a899c0390e6ae9d 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_kernel.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_kernel.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs mindspore::kernel diff --git a/docs/lite/api/source_en/api_cpp/mindspore_label_manage.rst b/docs/lite/api/source_en/api_cpp/mindspore_label_manage.rst index 896c83805f9913c2cdcc45c5246ba600af3225bb..4eb450f096ff75fb2b60f3b216b81897fa01a42e 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_label_manage.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_label_manage.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__label_manage: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_prim.rst b/docs/lite/api/source_en/api_cpp/mindspore_prim.rst index b3c97b4197e763ae2a68b5215a78dbb81f0f2c8f..c19f5e8ebd115380c5b922713841a1a39f33f9e2 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_prim.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_prim.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__prim: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_registry.rst b/docs/lite/api/source_en/api_cpp/mindspore_registry.rst index 46b7753e3952b289908c7d05c20f6a35767bde71..129fc5cc757c793aabe718204e3a062c36f6c8d2 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_registry.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_registry.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs diff --git a/docs/lite/api/source_en/api_cpp/mindspore_registry_opencl.rst b/docs/lite/api/source_en/api_cpp/mindspore_registry_opencl.rst index de2832c5178701b9b5a9f4d1f8add3117016aac7..efc52f989a0237117da6c15a8dc503147b50d639 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_registry_opencl.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_registry_opencl.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__registry__opencl: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_tensor.rst b/docs/lite/api/source_en/api_cpp/mindspore_tensor.rst index 3a75b1c5c558fe98fc6804d3db51b810537920a5..6e0197fcb38ab3a902b5d0464346256ef3b1823a 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_tensor.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_tensor.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__tensor: diff --git a/docs/lite/api/source_en/api_cpp/mindspore_utils.rst b/docs/lite/api/source_en/api_cpp/mindspore_utils.rst index 052a25ee066306125b1c8bdf615fe572c9593698..d9fe1dcd27a7bd26590838f36dbc24405cb03853 100644 --- a/docs/lite/api/source_en/api_cpp/mindspore_utils.rst +++ b/docs/lite/api/source_en/api_cpp/mindspore_utils.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__utils: diff --git a/docs/lite/api/source_en/api_java/ascend_device_info.md b/docs/lite/api/source_en/api_java/ascend_device_info.md index 50f307781e95cc463ce36719886c20f780c79888..496a489dcd1c9d64d8bd95f9e0a7b71cf73d59a1 100644 --- a/docs/lite/api/source_en/api_java/ascend_device_info.md +++ b/docs/lite/api/source_en/api_java/ascend_device_info.md @@ -1,6 +1,6 @@ # AscendDeviceInfo -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/ascend_device_info.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/ascend_device_info.md) ```java import com.mindspore.config.AscendDeviceInfo; diff --git a/docs/lite/api/source_en/api_java/class_list.md b/docs/lite/api/source_en/api_java/class_list.md index 03d1c1b3a48342ddb2f0b120315fc21b2afda6b3..a3884e6fdc4a93b83eee198b604268fdf9d12c84 100644 --- a/docs/lite/api/source_en/api_java/class_list.md +++ b/docs/lite/api/source_en/api_java/class_list.md @@ -1,6 +1,6 @@ # Class List -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/class_list.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/class_list.md) | Package | Class Name | Description | Supported At Cloud-side Inference | Supported At Device-side Inference | | ------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |--------|--------| diff --git a/docs/lite/api/source_en/api_java/graph.md b/docs/lite/api/source_en/api_java/graph.md index da57f9b8d31eca768e79032c802a7c7cd4d06fc6..8d2db15bf97a32145c7c19abef993c1da08244ec 100644 --- a/docs/lite/api/source_en/api_java/graph.md +++ b/docs/lite/api/source_en/api_java/graph.md @@ -1,6 +1,6 @@ # Graph -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/graph.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/graph.md) ```java import com.mindspore.Graph; diff --git a/docs/lite/api/source_en/api_java/model.md b/docs/lite/api/source_en/api_java/model.md index 17bf38699a1b2c1db9e6d936d8c23782d237110d..68612cdc17dd9e2238f50e5b13c248caaf84d113 100644 --- a/docs/lite/api/source_en/api_java/model.md +++ b/docs/lite/api/source_en/api_java/model.md @@ -1,6 +1,6 @@ # Model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/model.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/model.md) ```java import com.mindspore.model; diff --git a/docs/lite/api/source_en/api_java/model_parallel_runner.md b/docs/lite/api/source_en/api_java/model_parallel_runner.md index 1525eaf8bf9f70b5e0c30e9a3cfcf12a53d22987..51c7a5f4459b45617656175da9d59bc1790ba145 100644 --- a/docs/lite/api/source_en/api_java/model_parallel_runner.md +++ b/docs/lite/api/source_en/api_java/model_parallel_runner.md @@ -1,6 +1,6 @@ # ModelParallelRunner -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/model_parallel_runner.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/model_parallel_runner.md) ```java import com.mindspore.config.RunnerConfig; diff --git a/docs/lite/api/source_en/api_java/mscontext.md b/docs/lite/api/source_en/api_java/mscontext.md index 0316e5c2366b9b31be8155a926bd276a177b8a0d..f96559674f24da3fe5fd77d9ec16f93038f9bb5e 100644 --- a/docs/lite/api/source_en/api_java/mscontext.md +++ b/docs/lite/api/source_en/api_java/mscontext.md @@ -1,6 +1,6 @@ # MSContext -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/mscontext.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/mscontext.md) ```java import com.mindspore.config.MSContext; diff --git a/docs/lite/api/source_en/api_java/mstensor.md b/docs/lite/api/source_en/api_java/mstensor.md index 78f56d819bb1e4a8e7c4e21c2040966747bc9f5f..c4fa0504746f1192131ba7f86c48672bba1872ac 100644 --- a/docs/lite/api/source_en/api_java/mstensor.md +++ b/docs/lite/api/source_en/api_java/mstensor.md @@ -1,6 +1,6 @@ # MSTensor -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/mstensor.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/mstensor.md) ```java import com.mindspore.MSTensor; diff --git a/docs/lite/api/source_en/api_java/runner_config.md b/docs/lite/api/source_en/api_java/runner_config.md index e33b42c1399f329acfd7fc1b938d111bf9220a30..586b74afd742b3710ef8c9809bdf67ac03b6d017 100644 --- a/docs/lite/api/source_en/api_java/runner_config.md +++ b/docs/lite/api/source_en/api_java/runner_config.md @@ -1,6 +1,6 @@ # RunnerConfig -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/runner_config.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/runner_config.md) RunnerConfig defines the configuration parameters of MindSpore Lite concurrent inference. diff --git a/docs/lite/api/source_en/api_java/train_cfg.md b/docs/lite/api/source_en/api_java/train_cfg.md index e49bb33bf46090e5df110656b90be3afc3abc37c..8f5b87652d63523ef543d1f4ad77016675615a9c 100644 --- a/docs/lite/api/source_en/api_java/train_cfg.md +++ b/docs/lite/api/source_en/api_java/train_cfg.md @@ -1,6 +1,6 @@ # TrainCfg -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/train_cfg.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/train_cfg.md) ```java import com.mindspore.config.TrainCfg; diff --git a/docs/lite/api/source_en/api_java/version.md b/docs/lite/api/source_en/api_java/version.md index 99903c00f88851d726b3c6e050568927be42da82..73266fe12a1aa9d28105c15b4d62cf421bf9e3c4 100644 --- a/docs/lite/api/source_en/api_java/version.md +++ b/docs/lite/api/source_en/api_java/version.md @@ -1,6 +1,6 @@ # Version -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/version.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_en/api_java/version.md) ```java import com.mindspore.config.Version; diff --git a/docs/lite/api/source_en/conf.py b/docs/lite/api/source_en/conf.py index e2e4d44b01b80888746a3d6f0b9db8f6b4319a3e..5f02fd12ccdb559cc9c1e8a0fcaf2097eb3442b2 100644 --- a/docs/lite/api/source_en/conf.py +++ b/docs/lite/api/source_en/conf.py @@ -285,7 +285,7 @@ exhale_args = { # Fix broken Sphinx RTD Theme 'Edit on GitHub' links # Search for 'Edit on GitHub' on the FAQ: # http://exhale.readthedocs.io/en/latest/faq.html - "pageLevelConfigMeta": ":gitee_url: https://gitee.com/mindspore/docs", #页面元数据 + "pageLevelConfigMeta": ":gitee_url: https://atomgit.com/mindspore/docs", #页面元数据 ############################################################################ # Individual page layout example configuration. # ############################################################################ diff --git a/docs/lite/api/source_zh_cn/api_c/context_c.md b/docs/lite/api/source_zh_cn/api_c/context_c.md index d0039bfafabcb0a20fac70bbb186b6be65f84fb3..2c2a438380776f2affb06ebb2713a2d776d4f783 100644 --- a/docs/lite/api/source_zh_cn/api_c/context_c.md +++ b/docs/lite/api/source_zh_cn/api_c/context_c.md @@ -1,6 +1,6 @@ # context_c -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/context_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/context_c.md) ```c #include diff --git a/docs/lite/api/source_zh_cn/api_c/data_type_c.md b/docs/lite/api/source_zh_cn/api_c/data_type_c.md index d1a50e4925c3ff97196bd41b20c8800ddf28f027..d3e6f69085713dd6c4398ce1cd25ee79cbe5ae20 100644 --- a/docs/lite/api/source_zh_cn/api_c/data_type_c.md +++ b/docs/lite/api/source_zh_cn/api_c/data_type_c.md @@ -1,6 +1,6 @@ # data_type_c -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/data_type_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/data_type_c.md) ```C #include diff --git a/docs/lite/api/source_zh_cn/api_c/format_c.md b/docs/lite/api/source_zh_cn/api_c/format_c.md index 670dacb6180ae695929b295bf6f80dfc0eae917f..022545fd04bede22bd47f16eae6e933a2d573abe 100644 --- a/docs/lite/api/source_zh_cn/api_c/format_c.md +++ b/docs/lite/api/source_zh_cn/api_c/format_c.md @@ -1,6 +1,6 @@ # format_c -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/format_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/format_c.md) ```C #include diff --git a/docs/lite/api/source_zh_cn/api_c/model_c.md b/docs/lite/api/source_zh_cn/api_c/model_c.md index ded70bf32f608ac9adda11a73d48bd8edcae1706..548c8dd475ab4289881ae08a26e8cc94f5ff3bfb 100644 --- a/docs/lite/api/source_zh_cn/api_c/model_c.md +++ b/docs/lite/api/source_zh_cn/api_c/model_c.md @@ -1,6 +1,6 @@ # model_c -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/model_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/model_c.md) ```C #include diff --git a/docs/lite/api/source_zh_cn/api_c/status_c.md b/docs/lite/api/source_zh_cn/api_c/status_c.md index ead113225f816b1998206a000e3e2476d29e52f7..5df226a322e267d4c2238a4c5162f3fafd7efc2c 100644 --- a/docs/lite/api/source_zh_cn/api_c/status_c.md +++ b/docs/lite/api/source_zh_cn/api_c/status_c.md @@ -1,6 +1,6 @@ # status_c -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/status_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/status_c.md) ```C #include diff --git a/docs/lite/api/source_zh_cn/api_c/tensor_c.md b/docs/lite/api/source_zh_cn/api_c/tensor_c.md index fd178fc1bbbab4d7602d97bed0079e3273ae01e5..e5acd54c2839d663302a76f81f624455039177b4 100644 --- a/docs/lite/api/source_zh_cn/api_c/tensor_c.md +++ b/docs/lite/api/source_zh_cn/api_c/tensor_c.md @@ -1,6 +1,6 @@ # tensor_c -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/tensor_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/tensor_c.md) ```C #include diff --git a/docs/lite/api/source_zh_cn/api_c/types_c.md b/docs/lite/api/source_zh_cn/api_c/types_c.md index 6662928cc82dd17838c3fdefa6a9678244cd04d2..0e73ca8e05859cd244892cb91acefaf2608444a2 100644 --- a/docs/lite/api/source_zh_cn/api_c/types_c.md +++ b/docs/lite/api/source_zh_cn/api_c/types_c.md @@ -1,6 +1,6 @@ # types_c -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/types_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_c/types_c.md) ```C #include diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore.md b/docs/lite/api/source_zh_cn/api_cpp/mindspore.md index aec44f385345beecdd8cd35f4b55903a5b407286..0ccf45c5bf12c37f32ab05249c07521d7980a448 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore.md +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore.md @@ -1,6 +1,6 @@ # mindspore -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore.md) ## 接口汇总 diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_converter.md b/docs/lite/api/source_zh_cn/api_cpp/mindspore_converter.md index cb0952ca9b4640d8b64559a25d36b5154ee641f4..aac101823a35fde149bc80d25b162d5389955f3d 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_converter.md +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_converter.md @@ -1,6 +1,6 @@ # mindspore::converter -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_converter.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_converter.md) 以下描述了MindSpore Lite转换支持的模型类型及用户扩展所需的必要信息。 diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset.rst b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset.rst index 38ac07de214df6dee5266e72bd07a68008c56534..ff432602b4c97bebdd046a48b4c42278023b7669 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset.rst +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__dataset: diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_config.rst b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_config.rst index edce1ea186822007efff9faa2527a6d0c4175efa..ad9857e263d73a6204247946259b54a041f260dc 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_config.rst +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_config.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__dataset__config: diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_text.rst b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_text.rst index 91a751d5684faf89ada50f1ae9e319b8670f8c77..4686af407c0732e7e9646b64b56d4add4256a762 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_text.rst +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_text.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__dataset__text: diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_transforms.rst b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_transforms.rst index d7e28eae153e909843ed82941b76e46e9bb30fd3..6a9da22a7d1d2722fde5f428cc6de4de4d9bf1a9 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_transforms.rst +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_transforms.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__dataset__transforms: diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_vision.rst b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_vision.rst index d605a3066b7dc7b427f83d0698d7e512fa68ce1e..20fc8487e6595f98de061535af9e87f359a8158f 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_vision.rst +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_dataset_vision.rst @@ -1,4 +1,4 @@ -:gitee_url: https://gitee.com/mindspore/docs +:gitee_url: https://atomgit.com/mindspore/docs .. _namespace_mindspore__dataset__vision: diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_datatype.md b/docs/lite/api/source_zh_cn/api_cpp/mindspore_datatype.md index 0dd2a998981d32f1e6d0f837e29faf0a4c0e12a6..1495b939f6f48cedec2b7b25d89ca3653d0d68cd 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_datatype.md +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_datatype.md @@ -1,6 +1,6 @@ # DataType -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_datatype.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_datatype.md) 以下表格描述了MindSpore MSTensor保存的数据支持的类型。 diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_format.md b/docs/lite/api/source_zh_cn/api_cpp/mindspore_format.md index 95a410d325ddd0a983231b34275aa33d3d94ceac..75ff3047a9c641b5a0b2395d3a867ce4591653b0 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_format.md +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_format.md @@ -1,6 +1,6 @@ # mindspore::Format -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_format.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_format.md) 以下表格描述了MindSpore MSTensor保存的数据支持的排列格式。 diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_kernel.md b/docs/lite/api/source_zh_cn/api_cpp/mindspore_kernel.md index 58addde4a95c98c7434b31e97b1dee8a90b5c338..670afbb4a129fa48e386163ba9b30719818a79af 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_kernel.md +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_kernel.md @@ -1,6 +1,6 @@ # mindspore::kernel -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_kernel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_kernel.md) ## 接口汇总 diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry.md b/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry.md index 98355d75c0069e7233421ede6efd203199fc7e01..6e1a02f0cd73347ac885eb34844eb59e0de65d07 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry.md +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry.md @@ -1,6 +1,6 @@ # mindspore::registry -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry.md) ## 接口汇总 diff --git a/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry_opencl.md b/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry_opencl.md index 93675ddc55970faa9cd9cb7412b458c62b62befe..ef6eab741a5a7bacc8e19094a477dc5453f196e8 100644 --- a/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry_opencl.md +++ b/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry_opencl.md @@ -1,6 +1,6 @@ # mindspore::registry::opencl -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry_opencl.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_cpp/mindspore_registry_opencl.md) ## 接口汇总 diff --git a/docs/lite/api/source_zh_cn/api_java/ascend_device_info.md b/docs/lite/api/source_zh_cn/api_java/ascend_device_info.md index 79d9682f1e44741dda153ff478259e3abd6fa853..55ea736b0a492e4e7cbec4581c9cab44b117d926 100644 --- a/docs/lite/api/source_zh_cn/api_java/ascend_device_info.md +++ b/docs/lite/api/source_zh_cn/api_java/ascend_device_info.md @@ -1,6 +1,6 @@ # AscendDeviceInfo -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/ascend_device_info.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/ascend_device_info.md) ```java import com.mindspore.config.AscendDeviceInfo; diff --git a/docs/lite/api/source_zh_cn/api_java/class_list.md b/docs/lite/api/source_zh_cn/api_java/class_list.md index da822d9e965b13d787a0a67a2b64ca9d8548db6b..31d9952abdf438ecb10dce918c34b703b2cdadba 100644 --- a/docs/lite/api/source_zh_cn/api_java/class_list.md +++ b/docs/lite/api/source_zh_cn/api_java/class_list.md @@ -1,6 +1,6 @@ # 类列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/class_list.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/class_list.md) | 包 | 类 | 描述 | 云侧推理是否支持 | 端侧推理是否支持 | | ------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |--------|--------| diff --git a/docs/lite/api/source_zh_cn/api_java/graph.md b/docs/lite/api/source_zh_cn/api_java/graph.md index d8d6f5fbcf5fef2def1733023df3ae4256dbde2e..d2f9d79ec02102c5b2e467b9800ca152b6ce4142 100644 --- a/docs/lite/api/source_zh_cn/api_java/graph.md +++ b/docs/lite/api/source_zh_cn/api_java/graph.md @@ -1,6 +1,6 @@ # Graph -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/graph.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/graph.md) ```java import com.mindspore.Graph; diff --git a/docs/lite/api/source_zh_cn/api_java/model.md b/docs/lite/api/source_zh_cn/api_java/model.md index ac8e1911f7a606894247cff1fdc81b847359cafc..326087dadd0e49dba9839646493413864effdc21 100644 --- a/docs/lite/api/source_zh_cn/api_java/model.md +++ b/docs/lite/api/source_zh_cn/api_java/model.md @@ -1,6 +1,6 @@ # Model -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/model.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/model.md) ```java import com.mindspore.Model; diff --git a/docs/lite/api/source_zh_cn/api_java/model_parallel_runner.md b/docs/lite/api/source_zh_cn/api_java/model_parallel_runner.md index bcd344e353c845c4af7df1cec48dbe7cdc207d98..6a42496747be0509de30155a1892b883e542d056 100644 --- a/docs/lite/api/source_zh_cn/api_java/model_parallel_runner.md +++ b/docs/lite/api/source_zh_cn/api_java/model_parallel_runner.md @@ -1,6 +1,6 @@ # ModelParallelRunner -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/model_parallel_runner.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/model_parallel_runner.md) ```java import com.mindspore.config.RunnerConfig; diff --git a/docs/lite/api/source_zh_cn/api_java/mscontext.md b/docs/lite/api/source_zh_cn/api_java/mscontext.md index d6f056457ec7285f8b4fe3b1ccd34fd866a37d0c..4f5bb0c75baaeb678e706d86e92f4da06f3f3b4c 100644 --- a/docs/lite/api/source_zh_cn/api_java/mscontext.md +++ b/docs/lite/api/source_zh_cn/api_java/mscontext.md @@ -1,6 +1,6 @@ # MSContext -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/mscontext.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/mscontext.md) ```java import com.mindspore.config.MSContext; diff --git a/docs/lite/api/source_zh_cn/api_java/mstensor.md b/docs/lite/api/source_zh_cn/api_java/mstensor.md index c06b19a43b3e11adef0cc96be06e85845a29df1b..64f4c2da55dd5ca3cb3d175647ed50ad2bcbd8b7 100644 --- a/docs/lite/api/source_zh_cn/api_java/mstensor.md +++ b/docs/lite/api/source_zh_cn/api_java/mstensor.md @@ -1,6 +1,6 @@ # MSTensor -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/mstensor.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/mstensor.md) ```java import com.mindspore.MSTensor; diff --git a/docs/lite/api/source_zh_cn/api_java/runner_config.md b/docs/lite/api/source_zh_cn/api_java/runner_config.md index ef746234e8e17b9c473c14302df1fdfb84c77abd..ce53bc865d58a87d4743557acabfabc88c03e75b 100644 --- a/docs/lite/api/source_zh_cn/api_java/runner_config.md +++ b/docs/lite/api/source_zh_cn/api_java/runner_config.md @@ -1,6 +1,6 @@ # RunnerConfig -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/runner_config.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/runner_config.md) RunnerConfig定义了MindSpore Lite并发推理的配置参数。 diff --git a/docs/lite/api/source_zh_cn/api_java/train_cfg.md b/docs/lite/api/source_zh_cn/api_java/train_cfg.md index d45aeb0974c0cbff48a7ac9769ef03fba390d94c..69c0e454ca975996b419b0fe083f286e26f533c3 100644 --- a/docs/lite/api/source_zh_cn/api_java/train_cfg.md +++ b/docs/lite/api/source_zh_cn/api_java/train_cfg.md @@ -1,6 +1,6 @@ # TrainCfg -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/train_cfg.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/train_cfg.md) ```java import com.mindspore.config.TrainCfg; diff --git a/docs/lite/api/source_zh_cn/api_java/version.md b/docs/lite/api/source_zh_cn/api_java/version.md index b946310168c80511ddc945b82dfe3731aaf7266c..9075ba8aee46d40a5ec8dc27e4ac4f1269fdbfd5 100644 --- a/docs/lite/api/source_zh_cn/api_java/version.md +++ b/docs/lite/api/source_zh_cn/api_java/version.md @@ -1,6 +1,6 @@ # Version -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/version.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/api/source_zh_cn/api_java/version.md) ```java import com.mindspore.config.Version; diff --git a/docs/lite/api/source_zh_cn/conf.py b/docs/lite/api/source_zh_cn/conf.py index b5a3ddd795f4d01df2541742913f567cba716c40..8cc3140b1308e2b25d4afbf0c87a3347779c2eb0 100644 --- a/docs/lite/api/source_zh_cn/conf.py +++ b/docs/lite/api/source_zh_cn/conf.py @@ -425,7 +425,7 @@ exhale_args = { # Fix broken Sphinx RTD Theme 'Edit on GitHub' links # Search for 'Edit on GitHub' on the FAQ: # http://exhale.readthedocs.io/en/latest/faq.html - "pageLevelConfigMeta": ":gitee_url: https://gitee.com/mindspore/docs", + "pageLevelConfigMeta": ":gitee_url: https://atomgit.com/mindspore/docs", ############################################################################ # Individual page layout example configuration. # ############################################################################ diff --git a/docs/lite/docs/source_en/advanced/image_processing.md b/docs/lite/docs/source_en/advanced/image_processing.md index 3076e449d8d2c40a3b448b962013aeb604e76433..61ef87e9bf19d46c7c1c450bd2c3d2e8ca373b52 100644 --- a/docs/lite/docs/source_en/advanced/image_processing.md +++ b/docs/lite/docs/source_en/advanced/image_processing.md @@ -1,6 +1,6 @@ # Data Preprocessing -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/image_processing.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/image_processing.md) ## Overview diff --git a/docs/lite/docs/source_en/advanced/micro.md b/docs/lite/docs/source_en/advanced/micro.md index a4caaf5f0e9098b6f34cdb34eed28141fb37d186..19ee4af5934cbacf0394b30f30cc67f40b5dfffe 100644 --- a/docs/lite/docs/source_en/advanced/micro.md +++ b/docs/lite/docs/source_en/advanced/micro.md @@ -1,6 +1,6 @@ # Performing Inference or Training on MCU or Small Systems -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/micro.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/micro.md) ## Overview diff --git a/docs/lite/docs/source_en/advanced/quantization.md b/docs/lite/docs/source_en/advanced/quantization.md index 9bab130235bf92ebf0dc07e6152bb9d6acb7297f..e15738cd95e36f7bfbfe8b149950e28033cfe5f9 100644 --- a/docs/lite/docs/source_en/advanced/quantization.md +++ b/docs/lite/docs/source_en/advanced/quantization.md @@ -1,6 +1,6 @@ # Quantization -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/quantization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/quantization.md) ## Overview diff --git a/docs/lite/docs/source_en/advanced/third_party.rst b/docs/lite/docs/source_en/advanced/third_party.rst index 201cb6521fffecadec7eb744e06614693d40a8b6..7327b578783425bc2e6e30977ca292daa863b3ea 100644 --- a/docs/lite/docs/source_en/advanced/third_party.rst +++ b/docs/lite/docs/source_en/advanced/third_party.rst @@ -2,7 +2,7 @@ Third-party Access ================================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/advanced/third_party/ascend_info.md b/docs/lite/docs/source_en/advanced/third_party/ascend_info.md index 96f347ed29796ea10776b9d56c36ab8935b9e4b5..c8b778feac901d9cf45f91450b79089f78fdd156 100644 --- a/docs/lite/docs/source_en/advanced/third_party/ascend_info.md +++ b/docs/lite/docs/source_en/advanced/third_party/ascend_info.md @@ -1,6 +1,6 @@ # Integrated Ascend -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/ascend_info.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/ascend_info.md) > - The Ascend backend support in the device-side version will be deprecated. For related usage of the Ascend backend, please refer to the cloud-side inference version documentation. > - [Build Cloud-side MindSpore Lite](https://mindspore.cn/lite/docs/en/master/mindir/build.html) diff --git a/docs/lite/docs/source_en/advanced/third_party/asic.rst b/docs/lite/docs/source_en/advanced/third_party/asic.rst index c7fa33de49b6f9f87ccecafe693107b439471c05..22f23d353f02c783dfe1e8079e5554044b8cb066 100644 --- a/docs/lite/docs/source_en/advanced/third_party/asic.rst +++ b/docs/lite/docs/source_en/advanced/third_party/asic.rst @@ -2,7 +2,7 @@ Application Specific Integrated Circuit Integration Instructions ================================================================ .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/asic.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/asic.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/advanced/third_party/converter_register.md b/docs/lite/docs/source_en/advanced/third_party/converter_register.md index 1ce36840f955366bcc9cf8e990de6612c3d5e6c2..d80f2c30f8737df3719bade0b03a95dd575839f5 100644 --- a/docs/lite/docs/source_en/advanced/third_party/converter_register.md +++ b/docs/lite/docs/source_en/advanced/third_party/converter_register.md @@ -1,6 +1,6 @@ # Building Custom Operators Offline -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/converter_register.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/converter_register.md) ## Overview diff --git a/docs/lite/docs/source_en/advanced/third_party/delegate.md b/docs/lite/docs/source_en/advanced/third_party/delegate.md index d9c04df817b38c9c8b019a362c723337adc8cc53..e24ced621fdfb616ce7621ef6d486e58c55ea4ce 100644 --- a/docs/lite/docs/source_en/advanced/third_party/delegate.md +++ b/docs/lite/docs/source_en/advanced/third_party/delegate.md @@ -1,6 +1,6 @@ # Using Delegate to Support Third-party AI Framework (Device) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/delegate.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/delegate.md) ## Overview diff --git a/docs/lite/docs/source_en/advanced/third_party/dsp_info.md b/docs/lite/docs/source_en/advanced/third_party/dsp_info.md index acfdfd4aa8620170ef29d7338a4e875c28f384a3..2b51cc1f2d5ad732bdcd0eaa6f41e767ab0e854e 100644 --- a/docs/lite/docs/source_en/advanced/third_party/dsp_info.md +++ b/docs/lite/docs/source_en/advanced/third_party/dsp_info.md @@ -1,6 +1,6 @@ # DSP Integration Information -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/dsp_info.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/dsp_info.md) ## Steps diff --git a/docs/lite/docs/source_en/advanced/third_party/npu_info.md b/docs/lite/docs/source_en/advanced/third_party/npu_info.md index 78d231cb86c73284abd36c3bca9be13d2ae8c381..0f2da3c2af9b67c84b0a3cb886399bc7c1ecb858 100644 --- a/docs/lite/docs/source_en/advanced/third_party/npu_info.md +++ b/docs/lite/docs/source_en/advanced/third_party/npu_info.md @@ -1,6 +1,6 @@ # Kirin NPU Integration Information -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/npu_info.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/npu_info.md) ## Steps diff --git a/docs/lite/docs/source_en/advanced/third_party/register.rst b/docs/lite/docs/source_en/advanced/third_party/register.rst index 82fab65311e404e996c0b0958e9e623cc2144cd1..100875092bfd1b24b34cf1c179e1bd3c0b57ae3b 100644 --- a/docs/lite/docs/source_en/advanced/third_party/register.rst +++ b/docs/lite/docs/source_en/advanced/third_party/register.rst @@ -2,7 +2,7 @@ Custom Kernel =============== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/register.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/register.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/advanced/third_party/register_kernel.md b/docs/lite/docs/source_en/advanced/third_party/register_kernel.md index 9c67ce0e1a7b9436c5c78c0c98829bb5081cbed6..2ca4e6a638f95951c537ec6e8373a851ec99a92e 100644 --- a/docs/lite/docs/source_en/advanced/third_party/register_kernel.md +++ b/docs/lite/docs/source_en/advanced/third_party/register_kernel.md @@ -1,6 +1,6 @@ # Building Custom Operators Online -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/register_kernel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/register_kernel.md) ## Implementing Custom Operators diff --git a/docs/lite/docs/source_en/advanced/third_party/tensorrt_info.md b/docs/lite/docs/source_en/advanced/third_party/tensorrt_info.md index 22ac88ef893b5e89131d3abb59f23867eb645e8d..e4b36f320724301e0506b5ed18a747505212ae9b 100644 --- a/docs/lite/docs/source_en/advanced/third_party/tensorrt_info.md +++ b/docs/lite/docs/source_en/advanced/third_party/tensorrt_info.md @@ -1,6 +1,6 @@ # TensorRT Integration Information -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/tensorrt_info.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/advanced/third_party/tensorrt_info.md) ## Steps diff --git a/docs/lite/docs/source_en/build/build.md b/docs/lite/docs/source_en/build/build.md index ad36e873aeac15890016ad2aace5dc9b186ae957..1e21849a0d0ad9d23c8ae4e34b4237f013943dc1 100644 --- a/docs/lite/docs/source_en/build/build.md +++ b/docs/lite/docs/source_en/build/build.md @@ -1,6 +1,6 @@ # Building Device-side -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/build/build.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/build/build.md) This chapter introduces how to quickly compile MindSpore Lite, which includes the following modules: diff --git a/docs/lite/docs/source_en/converter/converter_tool.md b/docs/lite/docs/source_en/converter/converter_tool.md index 3f81d65d65a52f35e0c5ee61ef0cb6f685c4bca3..f1942f9ff8d4e062d9309cac3fb7b080a5d0d431 100644 --- a/docs/lite/docs/source_en/converter/converter_tool.md +++ b/docs/lite/docs/source_en/converter/converter_tool.md @@ -1,6 +1,6 @@ # Device-side Models Conversion -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/converter/converter_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/converter/converter_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/infer/device_infer_example.rst b/docs/lite/docs/source_en/infer/device_infer_example.rst index 10b7c39aaf76b1a7575ba4baeea7ddc5e7ef09f8..a290d8de6e32422106f668ade26e4278b8663e49 100644 --- a/docs/lite/docs/source_en/infer/device_infer_example.rst +++ b/docs/lite/docs/source_en/infer/device_infer_example.rst @@ -2,7 +2,7 @@ Device-side Model Inference Sample ==================================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/device_infer_example.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/device_infer_example.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/infer/image_segmentation.md b/docs/lite/docs/source_en/infer/image_segmentation.md index 4eac1029467faac997dceb728297367181faf1c6..91c3245c4abd393f7027a76fc5ed8c35d8d64872 100644 --- a/docs/lite/docs/source_en/infer/image_segmentation.md +++ b/docs/lite/docs/source_en/infer/image_segmentation.md @@ -1,6 +1,6 @@ # Android Application Development Based on Java Interface -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/image_segmentation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/image_segmentation.md) ## Overview diff --git a/docs/lite/docs/source_en/infer/quick_start.md b/docs/lite/docs/source_en/infer/quick_start.md index 4cd277525e04d4b28c8f7b50b3a57ca33c5e2267..3c32b676bb33faf3ec476769837c599ee8af0afe 100644 --- a/docs/lite/docs/source_en/infer/quick_start.md +++ b/docs/lite/docs/source_en/infer/quick_start.md @@ -1,6 +1,6 @@ # Android Application Development Based on JNI Interface -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start.md) ## Overview diff --git a/docs/lite/docs/source_en/infer/quick_start_c.md b/docs/lite/docs/source_en/infer/quick_start_c.md index 5d3bc2d3e41d3738da922edd2fa49f92d9627da8..c3333861603d0a0c1fae30b496ff6695be82e43b 100644 --- a/docs/lite/docs/source_en/infer/quick_start_c.md +++ b/docs/lite/docs/source_en/infer/quick_start_c.md @@ -1,6 +1,6 @@ # Experiencing C-language Simplified Inference Demo -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start_c.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start_c.md) ## Overview diff --git a/docs/lite/docs/source_en/infer/quick_start_cpp.md b/docs/lite/docs/source_en/infer/quick_start_cpp.md index 2860438da43f8752d0df3520090ba4538ab5cc18..c9acf7ad39fcff86bb4ffd2e0bb7f45311ffd40d 100644 --- a/docs/lite/docs/source_en/infer/quick_start_cpp.md +++ b/docs/lite/docs/source_en/infer/quick_start_cpp.md @@ -1,6 +1,6 @@ # Experiencing C++ Simplified Inference Demo -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start_cpp.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start_cpp.md) > MindSpore Lite has unified the inference API. If you want to continue to use the MindSpore Lite independent API for inference, you can refer to the [document](https://www.mindspore.cn/lite/docs/en/r1.3/quick_start/quick_start_cpp.html). diff --git a/docs/lite/docs/source_en/infer/quick_start_java.md b/docs/lite/docs/source_en/infer/quick_start_java.md index 4c5374cbc39f8f7800b427c930d72847eca2ce01..c10b8ca01dc3e3e5d1d6f910e3ebf1d3caa7fab6 100644 --- a/docs/lite/docs/source_en/infer/quick_start_java.md +++ b/docs/lite/docs/source_en/infer/quick_start_java.md @@ -1,6 +1,6 @@ # Experiencing Java Simplified Inference Demo -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start_java.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/quick_start_java.md) ## Overview diff --git a/docs/lite/docs/source_en/infer/runtime_cpp.md b/docs/lite/docs/source_en/infer/runtime_cpp.md index d233ba66341e3e5bbc95e57970f2e9dfcbb3d8cd..ce6acf196f958ce6176686ef932f6811127f9515 100644 --- a/docs/lite/docs/source_en/infer/runtime_cpp.md +++ b/docs/lite/docs/source_en/infer/runtime_cpp.md @@ -1,6 +1,6 @@ # Model Inference (C++) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/runtime_cpp.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/runtime_cpp.md) > MindSpore Lite has unified the inference API. If you want to continue to use the MindSpore Lite independent API for inference, you can refer to the [document](https://www.mindspore.cn/lite/docs/en/r1.3/use/runtime_cpp.html). diff --git a/docs/lite/docs/source_en/infer/runtime_java.md b/docs/lite/docs/source_en/infer/runtime_java.md index 7d99719b7c0a0ea723e0df51823700d69579799f..ebe1b4798d335a0384709eee48bd23e1ec4c98e1 100644 --- a/docs/lite/docs/source_en/infer/runtime_java.md +++ b/docs/lite/docs/source_en/infer/runtime_java.md @@ -1,6 +1,6 @@ # Model Inference (Java) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/runtime_java.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/infer/runtime_java.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/benchmark.rst b/docs/lite/docs/source_en/mindir/benchmark.rst index bcd735409df3c7dd3dd4342cc385dc0f38b9321c..301c9c4943ecd30d01b2afcdccf43dcde30f2de1 100644 --- a/docs/lite/docs/source_en/mindir/benchmark.rst +++ b/docs/lite/docs/source_en/mindir/benchmark.rst @@ -2,7 +2,7 @@ Benchmark Tool ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/benchmark.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/benchmark.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/mindir/benchmark_tool.md b/docs/lite/docs/source_en/mindir/benchmark_tool.md index 86f40d1597bb22797f05a061b3ff8a0fa9ebbebf..936cb977699e95184a03a59dea8b5082673579e2 100644 --- a/docs/lite/docs/source_en/mindir/benchmark_tool.md +++ b/docs/lite/docs/source_en/mindir/benchmark_tool.md @@ -1,6 +1,6 @@ # benchmark -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/benchmark_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/benchmark_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/build.md b/docs/lite/docs/source_en/mindir/build.md index 4672225258dcf80444c7de8edbe179dbbc6eb54e..178b2436abdfc7239c481207a4109cf480d0992a 100644 --- a/docs/lite/docs/source_en/mindir/build.md +++ b/docs/lite/docs/source_en/mindir/build.md @@ -1,6 +1,6 @@ # Building Cloud-side MindSpore Lite -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/build.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/build.md) This section describes how to quickly compile MindSpore Lite. diff --git a/docs/lite/docs/source_en/mindir/converter.rst b/docs/lite/docs/source_en/mindir/converter.rst index 1e28185071a3a1655d6b35c5969c67427e556ca1..d90c1cf0160c3583cd12992f2d204a5df498b139 100644 --- a/docs/lite/docs/source_en/mindir/converter.rst +++ b/docs/lite/docs/source_en/mindir/converter.rst @@ -2,7 +2,7 @@ Model Converter ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/mindir/converter_python.md b/docs/lite/docs/source_en/mindir/converter_python.md index d430b93136d536db9b2a0dde3c8d5ff316e73c41..09244c127b8e39b485e821890243c8060925a09a 100644 --- a/docs/lite/docs/source_en/mindir/converter_python.md +++ b/docs/lite/docs/source_en/mindir/converter_python.md @@ -1,6 +1,6 @@ # Using Python Interface to Perform Model Conversions -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter_python.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter_python.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/converter_tool.md b/docs/lite/docs/source_en/mindir/converter_tool.md index fcd4e4e2d83e67c276bff77169cce3f6f456a27d..588fa0a5502561cd56f15a2ffe3ed905b77de916 100644 --- a/docs/lite/docs/source_en/mindir/converter_tool.md +++ b/docs/lite/docs/source_en/mindir/converter_tool.md @@ -1,6 +1,6 @@ # Offline Conversion of Inference Models -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/converter_tool_ascend.md b/docs/lite/docs/source_en/mindir/converter_tool_ascend.md index 8594a6e69658e33a69e89f0ba78fe66341e5303c..e856975d298c335b73b214cbc6fdfa99b4138b4d 100644 --- a/docs/lite/docs/source_en/mindir/converter_tool_ascend.md +++ b/docs/lite/docs/source_en/mindir/converter_tool_ascend.md @@ -1,6 +1,6 @@ # Ascend Conversion Tool Description -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter_tool_ascend.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/converter_tool_ascend.md) ## Introduction diff --git a/docs/lite/docs/source_en/mindir/runtime.rst b/docs/lite/docs/source_en/mindir/runtime.rst index 08d2a8c8f0bed656aa32a7db86f4530e1d78f662..cea003c5747468333baf61e3232aad0b666bb2de 100644 --- a/docs/lite/docs/source_en/mindir/runtime.rst +++ b/docs/lite/docs/source_en/mindir/runtime.rst @@ -2,7 +2,7 @@ Performing Inference ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/mindir/runtime_cpp.md b/docs/lite/docs/source_en/mindir/runtime_cpp.md index 7c6340fc06c30e64f24c34622a3f8b57486f0cc4..c62cd8772d6e019c58b8105a45721a013901b384 100644 --- a/docs/lite/docs/source_en/mindir/runtime_cpp.md +++ b/docs/lite/docs/source_en/mindir/runtime_cpp.md @@ -1,6 +1,6 @@ # Using C++ Interface to Perform Cloud-side Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_cpp.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_cpp.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_distributed.rst b/docs/lite/docs/source_en/mindir/runtime_distributed.rst index ec5cb0bbbae963e00dfd13c5a2e0f3231a723434..20192f90f3a9e67d8b307486ea5636bc830bec80 100644 --- a/docs/lite/docs/source_en/mindir/runtime_distributed.rst +++ b/docs/lite/docs/source_en/mindir/runtime_distributed.rst @@ -2,7 +2,7 @@ Distributed Inference ====================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/mindir/runtime_distributed_cpp.md b/docs/lite/docs/source_en/mindir/runtime_distributed_cpp.md index 11c54752e7c8eb5054181a23f4de8e5fb46187ee..925546ca8298596fa4fe2e6f252b9df75bc5970c 100644 --- a/docs/lite/docs/source_en/mindir/runtime_distributed_cpp.md +++ b/docs/lite/docs/source_en/mindir/runtime_distributed_cpp.md @@ -1,6 +1,6 @@ # Performing Cloud-side Distributed Inference Using C++ Interface -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed_cpp.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed_cpp.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_distributed_multicard_python.md b/docs/lite/docs/source_en/mindir/runtime_distributed_multicard_python.md index 469e154c0bb56b112ec2129fbf44e0baa7f5bab7..af9a925b9310f48ed5ac84c7b5d5eba3da895619 100644 --- a/docs/lite/docs/source_en/mindir/runtime_distributed_multicard_python.md +++ b/docs/lite/docs/source_en/mindir/runtime_distributed_multicard_python.md @@ -1,6 +1,6 @@ # Performing Ascend Backend Multi-card/Multi-core Inference Using Python Interfaces -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed_multicard_python.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed_multicard_python.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_distributed_python.md b/docs/lite/docs/source_en/mindir/runtime_distributed_python.md index d281db22d45dcd7c78890359b347dcaace0e892f..66963c8125f634a0b043816759c0f49f203e83fa 100644 --- a/docs/lite/docs/source_en/mindir/runtime_distributed_python.md +++ b/docs/lite/docs/source_en/mindir/runtime_distributed_python.md @@ -1,6 +1,6 @@ # Performing Cloud-side Distributed Inference Using Python Interface -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed_python.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_distributed_python.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_java.md b/docs/lite/docs/source_en/mindir/runtime_java.md index ddffea42a971ccae6f535d16bcb928a68696bcc6..2df9b534be9d260be085592794ee07801d1e1d5d 100644 --- a/docs/lite/docs/source_en/mindir/runtime_java.md +++ b/docs/lite/docs/source_en/mindir/runtime_java.md @@ -1,6 +1,6 @@ # Using Java Interface to Perform Cloud-side Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_java.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_java.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_parallel.rst b/docs/lite/docs/source_en/mindir/runtime_parallel.rst index ab8c688beca3cf3c264d10bebc82606b4a21a314..03fdbec6eff25a420a0e9e9e874642b52e0f9aa1 100644 --- a/docs/lite/docs/source_en/mindir/runtime_parallel.rst +++ b/docs/lite/docs/source_en/mindir/runtime_parallel.rst @@ -2,7 +2,7 @@ Performing Concurrent Inference =============================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/mindir/runtime_parallel_cpp.md b/docs/lite/docs/source_en/mindir/runtime_parallel_cpp.md index 3539bec37b3b4fc3ffdeffb4c67fbb3335f93366..cbf4eb60fee9a419373bc65ca2e7796788bf7fea 100644 --- a/docs/lite/docs/source_en/mindir/runtime_parallel_cpp.md +++ b/docs/lite/docs/source_en/mindir/runtime_parallel_cpp.md @@ -1,6 +1,6 @@ # Using C++ Interface to Perform Concurrent Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel_cpp.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel_cpp.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_parallel_java.md b/docs/lite/docs/source_en/mindir/runtime_parallel_java.md index cedb1326f7522aa448ecda13dad81d596cfa0c2d..51a53af18181e8f167f2bdc5d7969fd995008af5 100644 --- a/docs/lite/docs/source_en/mindir/runtime_parallel_java.md +++ b/docs/lite/docs/source_en/mindir/runtime_parallel_java.md @@ -1,6 +1,6 @@ # Using Java Interface to Perform Concurrent Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel_java.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel_java.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_parallel_python.md b/docs/lite/docs/source_en/mindir/runtime_parallel_python.md index 44330c42aa843b2ff8c5b290c4889089014b1f4b..4d386596a0981e45c51c2c5aba5e667b726f671d 100644 --- a/docs/lite/docs/source_en/mindir/runtime_parallel_python.md +++ b/docs/lite/docs/source_en/mindir/runtime_parallel_python.md @@ -1,6 +1,6 @@ # Using Python Interface to Perform Concurrent Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel_python.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_parallel_python.md) ## Overview diff --git a/docs/lite/docs/source_en/mindir/runtime_python.md b/docs/lite/docs/source_en/mindir/runtime_python.md index 6432b1344238d15905cc3bcce2b10b9165836d9c..bff79ab343160eee2abc211c47d0f194c97e69d2 100644 --- a/docs/lite/docs/source_en/mindir/runtime_python.md +++ b/docs/lite/docs/source_en/mindir/runtime_python.md @@ -1,6 +1,6 @@ # Using Python Interface to Perform Cloud-side Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_python.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/mindir/runtime_python.md) ## Overview diff --git a/docs/lite/docs/source_en/quick_start/one_hour_introduction.md b/docs/lite/docs/source_en/quick_start/one_hour_introduction.md index e8c350cdf925f7eb9b956f92f777debd5aeba67e..4329bc073e88f5976019fb32ca7b756796ff09cb 100644 --- a/docs/lite/docs/source_en/quick_start/one_hour_introduction.md +++ b/docs/lite/docs/source_en/quick_start/one_hour_introduction.md @@ -1,6 +1,6 @@ # Quick Start to Device-side Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/quick_start/one_hour_introduction.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/quick_start/one_hour_introduction.md) ## Overview diff --git a/docs/lite/docs/source_en/reference/architecture_lite.md b/docs/lite/docs/source_en/reference/architecture_lite.md index 541ce6c34982b8fcb56a9ec1ba13f580147d1876..123e38bc16c3293e9cbc15782d913d3ea0070c22 100644 --- a/docs/lite/docs/source_en/reference/architecture_lite.md +++ b/docs/lite/docs/source_en/reference/architecture_lite.md @@ -1,6 +1,6 @@ # Overall Architecture (Lite) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/architecture_lite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/architecture_lite.md) MindSpore Lite is an ultra-fast, intelligent, and simplified AI engine that enables intelligent applications in all scenarios, provides E2E solutions for users, and helps users enable AI capabilities. diff --git a/docs/lite/docs/source_en/reference/environment_variable_support.md b/docs/lite/docs/source_en/reference/environment_variable_support.md index 6135bc5679c419be20e3cbb2533cf31a5c5a48fe..a1b6bc8c2c26372cbd5390a1f2cdacbc2553a3fc 100644 --- a/docs/lite/docs/source_en/reference/environment_variable_support.md +++ b/docs/lite/docs/source_en/reference/environment_variable_support.md @@ -1,6 +1,6 @@ # Description of Environment Variable Support -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/environment_variable_support.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/environment_variable_support.md) This document lists the environment variables supported by MindSpore Lite along with their meanings, and provides the available values and default settings for each environment variable. diff --git a/docs/lite/docs/source_en/reference/faq.md b/docs/lite/docs/source_en/reference/faq.md index 0e7ff3c240af9e0e0b8632e63f52cc839f135d67..61fce62c3ee4237fd12ee8eaa7094efbf32ca486 100644 --- a/docs/lite/docs/source_en/reference/faq.md +++ b/docs/lite/docs/source_en/reference/faq.md @@ -1,6 +1,6 @@ # Troubleshooting -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/faq.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/faq.md) ## Overview diff --git a/docs/lite/docs/source_en/reference/image_classification_lite.md b/docs/lite/docs/source_en/reference/image_classification_lite.md index a53d8b3e6a3c741145355c9ad26652fe1ded2c9b..32ee0f9b11a81f5afc3a38495b3f12885d3a2887 100644 --- a/docs/lite/docs/source_en/reference/image_classification_lite.md +++ b/docs/lite/docs/source_en/reference/image_classification_lite.md @@ -1,6 +1,6 @@ # Image Classification Model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/image_classification_lite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/image_classification_lite.md) ## Image Classification Introduction diff --git a/docs/lite/docs/source_en/reference/image_segmentation_lite.md b/docs/lite/docs/source_en/reference/image_segmentation_lite.md index fe75e761270a57d925843d58cb676acb8e5fc063..3275919b63f83d03257c9f009b2103c01dcb1ef2 100644 --- a/docs/lite/docs/source_en/reference/image_segmentation_lite.md +++ b/docs/lite/docs/source_en/reference/image_segmentation_lite.md @@ -1,6 +1,6 @@ # Image Segmentation Model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/image_segmentation_lite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/image_segmentation_lite.md) ## Image Segmentation Introduction diff --git a/docs/lite/docs/source_en/reference/log.md b/docs/lite/docs/source_en/reference/log.md index 3626016a4aa7c188c5a28b7b96143b4b82a0439c..b30161c70c16ddcf55b8caa91dfc677c9a1e62bd 100644 --- a/docs/lite/docs/source_en/reference/log.md +++ b/docs/lite/docs/source_en/reference/log.md @@ -1,6 +1,6 @@ # Log -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/log.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/log.md) ## Log-related Environment Variables diff --git a/docs/lite/docs/source_en/reference/model_lite.rst b/docs/lite/docs/source_en/reference/model_lite.rst index 37534a74372da669f65fbff5f85813000c78cb50..fb1df0014c7aef4b746b5ffdd018ee3a4f725b0d 100644 --- a/docs/lite/docs/source_en/reference/model_lite.rst +++ b/docs/lite/docs/source_en/reference/model_lite.rst @@ -2,7 +2,7 @@ Model List =================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/model_lite.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/model_lite.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/reference/object_detection_lite.md b/docs/lite/docs/source_en/reference/object_detection_lite.md index 560c043f905d31a21e77f91bf592d54d7b429e97..8dcb55f820ea06db71a190253206c396d5ea3a4e 100644 --- a/docs/lite/docs/source_en/reference/object_detection_lite.md +++ b/docs/lite/docs/source_en/reference/object_detection_lite.md @@ -1,6 +1,6 @@ # Object Detection Model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/object_detection_lite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/object_detection_lite.md) ## Object Detection Introduction diff --git a/docs/lite/docs/source_en/reference/operator_list_codegen.md b/docs/lite/docs/source_en/reference/operator_list_codegen.md index bc36a77be4c5b73371546fb6f4bc0291a952d4f8..f839ec3f9c618e7aafec65745555d56611a415bf 100644 --- a/docs/lite/docs/source_en/reference/operator_list_codegen.md +++ b/docs/lite/docs/source_en/reference/operator_list_codegen.md @@ -1,6 +1,6 @@ # Codegen Operator List -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_codegen.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_codegen.md) This article lists the operators supported by MindSpore Lite Codegen. diff --git a/docs/lite/docs/source_en/reference/operator_list_lite.md b/docs/lite/docs/source_en/reference/operator_list_lite.md index cb2b943d5a4bcd51b2042979c143fb586666a963..91aa3300d7a78e5ebbce59d871840d4c6d4bcfa6 100644 --- a/docs/lite/docs/source_en/reference/operator_list_lite.md +++ b/docs/lite/docs/source_en/reference/operator_list_lite.md @@ -1,6 +1,6 @@ # List of Hardware Backends Supported by MindSpore Lite -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite.md) | Operator Names | Operator Functions | CPU | Kirin NPU | GPU (Mali/Adreno) | Ascend | | ----------------------------------- | ------------------------------------------------------------ | --------------------------------------------------- | --------- | ----------------------- | ----------------------- | diff --git a/docs/lite/docs/source_en/reference/operator_list_lite_for_caffe.md b/docs/lite/docs/source_en/reference/operator_list_lite_for_caffe.md index 3aaff6542e43660d47d13d40a8f2d6ce1613dfff..c87f72e28133e661cae5eb6b7cd42fc4d746079a 100644 --- a/docs/lite/docs/source_en/reference/operator_list_lite_for_caffe.md +++ b/docs/lite/docs/source_en/reference/operator_list_lite_for_caffe.md @@ -1,6 +1,6 @@ # List of Caffe Operators Supported by MindSpore Lite -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_caffe.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_caffe.md) | MindSpore Lite Operator Names | Corresponding Caffe Operators | | ---------------------- | -------------------------------- | diff --git a/docs/lite/docs/source_en/reference/operator_list_lite_for_onnx.md b/docs/lite/docs/source_en/reference/operator_list_lite_for_onnx.md index 925921119ebe1b665495ebbff5d71a87e013e77a..d0ad4c117cfc6088a75c44b3e2de92ae5fd69c53 100644 --- a/docs/lite/docs/source_en/reference/operator_list_lite_for_onnx.md +++ b/docs/lite/docs/source_en/reference/operator_list_lite_for_onnx.md @@ -1,6 +1,6 @@ # List of ONNX Operators Supported by MindSpore Lite -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_onnx.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_onnx.md) > - None of the following operators support int64 type input. > - Currently, you can use the environment variable `export KEEP_ORIGIN_DTYPE=1` to preserve the data type as int64. Consider using this option when overflow occurs with the int32 data type. However, this is currently an experimental option and will be removed in future updates. diff --git a/docs/lite/docs/source_en/reference/operator_list_lite_for_tensorflow.md b/docs/lite/docs/source_en/reference/operator_list_lite_for_tensorflow.md index 3e898bbbd8b70868e9160ed78dab99e85ce39733..1959a5c8cdb2c752d6239b9da7ab39640b6d0d56 100644 --- a/docs/lite/docs/source_en/reference/operator_list_lite_for_tensorflow.md +++ b/docs/lite/docs/source_en/reference/operator_list_lite_for_tensorflow.md @@ -1,6 +1,6 @@ # List of TensorFlow Operators Supported by MindSpore Lite -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_tensorflow.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_tensorflow.md) | MindSpore Lite Operator Names | Corresponding TensorFlow Operators | | ---------------------- | ------------------------------------------------------------ | diff --git a/docs/lite/docs/source_en/reference/operator_list_lite_for_tflite.md b/docs/lite/docs/source_en/reference/operator_list_lite_for_tflite.md index 065e3f157f36fbb9c0f7a377fd7adbc2f9b00c7d..e5054b23d16aa4f8876e7defb30c74f7ca2f9cb9 100644 --- a/docs/lite/docs/source_en/reference/operator_list_lite_for_tflite.md +++ b/docs/lite/docs/source_en/reference/operator_list_lite_for_tflite.md @@ -1,6 +1,6 @@ # List of TensorFlow Lite Operators Supported by MindSpore Lite -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_tflite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operator_list_lite_for_tflite.md) | MindSpore Lite Operator Names | Corresponding TensorFlow Lite Operators | | ---------------------- | ------------------------------------------------------------ | diff --git a/docs/lite/docs/source_en/reference/operator_lite.rst b/docs/lite/docs/source_en/reference/operator_lite.rst index d46e23a4c07d33aa9e16922894e48d02137b0663..59b49427ef10e02261db3a1e476dcd827b8c8a99 100644 --- a/docs/lite/docs/source_en/reference/operator_lite.rst +++ b/docs/lite/docs/source_en/reference/operator_lite.rst @@ -2,7 +2,7 @@ Lite Operator Support ======================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operateor_list.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/operateor_list.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/reference/scene_detection_lite.md b/docs/lite/docs/source_en/reference/scene_detection_lite.md index 6388b4d08e360f61cc7131d1f3083f2a61f5a588..39ef33f25a5c512198b82bb70a0d0c0c8b0cae43 100644 --- a/docs/lite/docs/source_en/reference/scene_detection_lite.md +++ b/docs/lite/docs/source_en/reference/scene_detection_lite.md @@ -1,6 +1,6 @@ # Scene Detection Model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/scene_detection_lite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/scene_detection_lite.md) ## Scene Detection Introduction diff --git a/docs/lite/docs/source_en/reference/style_transfer_lite.md b/docs/lite/docs/source_en/reference/style_transfer_lite.md index 0801b7e2af54e9802e920e0a3328815aef39c3f1..f6ee55f3ae1457029baef298261724597f41ea85 100644 --- a/docs/lite/docs/source_en/reference/style_transfer_lite.md +++ b/docs/lite/docs/source_en/reference/style_transfer_lite.md @@ -1,6 +1,6 @@ # Style Transfer Model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/style_transfer_lite.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/reference/style_transfer_lite.md) ## Style Transfer Introduction diff --git a/docs/lite/docs/source_en/tools/benchmark.rst b/docs/lite/docs/source_en/tools/benchmark.rst index bf07643f5226b53bf933c19a40031b986d113639..68cdad7dbd6f96dd5e2c3a1687e7341358cd6fd0 100644 --- a/docs/lite/docs/source_en/tools/benchmark.rst +++ b/docs/lite/docs/source_en/tools/benchmark.rst @@ -2,7 +2,7 @@ Benchmark Tool ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/tools/benchmark_golden_data.md b/docs/lite/docs/source_en/tools/benchmark_golden_data.md index 624a2b529b7c1b66dc21cb681d61232ecb2902b3..620db49eb978a39d2617fbdd9e20f20819c397ae 100644 --- a/docs/lite/docs/source_en/tools/benchmark_golden_data.md +++ b/docs/lite/docs/source_en/tools/benchmark_golden_data.md @@ -1,6 +1,6 @@ # Benchmark Data Generation Tool -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark_golden_data.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark_golden_data.md) ## Overview @@ -10,7 +10,7 @@ This paper describes the usage of the mslite_gold benchmarking data generation t ## Instructions for Using the mslite_gold Tool -The developers first need to save the original model input data and the output data obtained from inference to a file in `.npz` format via the `savez()` command in `numpy`, and then convert the input data `input.npz` and the output data `output.npz` into `.bin` and `.out` files in binary format respectively by running [mslite_gold.py](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/golden/mslite_gold.py). +The developers first need to save the original model input data and the output data obtained from inference to a file in `.npz` format via the `savez()` command in `numpy`, and then convert the input data `input.npz` and the output data `output.npz` into `.bin` and `.out` files in binary format respectively by running [mslite_gold.py](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/golden/mslite_gold.py). ### Environmental Requirements @@ -56,7 +56,7 @@ The following is an example of generating benchmark data from an ONNX model to i 1. Randomly generate inputs, perform model inference, and then save the inputs and outputs in `.npz` format. - [onnx_demo.py sample code](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/golden/onnx_demo.py) supports random data generation based on ONNX models, or manually inputting data and performing inference to obtain output data. When inputting data manually, the input data path can be determined by the parameter `--inDataFile`. If the model is of dynamic shape type, the input size should be determined by the parameter `--inputShape`. Parameters `--inDataFile` and `--inputShape` are not required, and users can choose freely according to their own use of the scenario. The following is a basic example of the use of sample code: + [onnx_demo.py sample code](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/golden/onnx_demo.py) supports random data generation based on ONNX models, or manually inputting data and performing inference to obtain output data. When inputting data manually, the input data path can be determined by the parameter `--inDataFile`. If the model is of dynamic shape type, the input size should be determined by the parameter `--inputShape`. Parameters `--inDataFile` and `--inputShape` are not required, and users can choose freely according to their own use of the scenario. The following is a basic example of the use of sample code: ```bash python onnx_demo.py --modelFile "/path/to/model_example.onnx" --savePath "/path/to/data_example" diff --git a/docs/lite/docs/source_en/tools/benchmark_tool.md b/docs/lite/docs/source_en/tools/benchmark_tool.md index 766b0e5f13880c996acf7ef4556f800d1448f437..30331a898d52d29cdd4f40221de97656fe2627c9 100644 --- a/docs/lite/docs/source_en/tools/benchmark_tool.md +++ b/docs/lite/docs/source_en/tools/benchmark_tool.md @@ -1,6 +1,6 @@ # benchmark -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/tools/benchmark_train_tool.md b/docs/lite/docs/source_en/tools/benchmark_train_tool.md index 439e6ee76023d5f76f7656f72a4ee1351cbefac9..0c26f8aabec24ede7d39a9a747fdf698bafcd4e1 100644 --- a/docs/lite/docs/source_en/tools/benchmark_train_tool.md +++ b/docs/lite/docs/source_en/tools/benchmark_train_tool.md @@ -1,6 +1,6 @@ # benchmark_train -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark_train_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/benchmark_train_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/tools/cropper_tool.md b/docs/lite/docs/source_en/tools/cropper_tool.md index e2a2de9098738c7284d8506e333d713d95409f89..0a96542b9b60605dae9b69cd70955a9a6767e5f3 100644 --- a/docs/lite/docs/source_en/tools/cropper_tool.md +++ b/docs/lite/docs/source_en/tools/cropper_tool.md @@ -1,6 +1,6 @@ # Static Library Cropper Tool -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/cropper_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/cropper_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/tools/obfuscator_tool.md b/docs/lite/docs/source_en/tools/obfuscator_tool.md index c16918379953970df10356f5e1cd19a474de422a..92c886e6b3f17f51c00290d24541daf4a5cfc7a4 100644 --- a/docs/lite/docs/source_en/tools/obfuscator_tool.md +++ b/docs/lite/docs/source_en/tools/obfuscator_tool.md @@ -1,6 +1,6 @@ # Model Obfuscation Tool -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/obfuscator_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/obfuscator_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/tools/visual_tool.md b/docs/lite/docs/source_en/tools/visual_tool.md index 8c374377a483ceb0ca1ec3ffed1cdb53252ab643..87cc7de6abed9b671cea105266520464712b8b51 100644 --- a/docs/lite/docs/source_en/tools/visual_tool.md +++ b/docs/lite/docs/source_en/tools/visual_tool.md @@ -1,6 +1,6 @@ # Visualization Tool -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/visual_tool.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/tools/visual_tool.md) ## Overview diff --git a/docs/lite/docs/source_en/train/converter_train.md b/docs/lite/docs/source_en/train/converter_train.md index dcb4eda6812373b2a9ee26ad25e41f7bc36d89ae..a76b6bbcd3c8c9dcbd78626d2782c231638ba6e9 100644 --- a/docs/lite/docs/source_en/train/converter_train.md +++ b/docs/lite/docs/source_en/train/converter_train.md @@ -1,6 +1,6 @@ # Device-side Training Model Conversion -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/converter_train.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/converter_train.md) ## Overview diff --git a/docs/lite/docs/source_en/train/device_train_example.rst b/docs/lite/docs/source_en/train/device_train_example.rst index e48d98a2c66f693f87877939855eb4ce249839c4..341bb946084293993cb00cf92894b582f27b2987 100644 --- a/docs/lite/docs/source_en/train/device_train_example.rst +++ b/docs/lite/docs/source_en/train/device_train_example.rst @@ -2,7 +2,7 @@ Device-side Training Sample ============================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/device_train_example.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/device_train_example.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/train/runtime_train.rst b/docs/lite/docs/source_en/train/runtime_train.rst index f3f84ade38d0534fc68a6be86c5dc35b836cfd4b..9d4664a16effcf66c37bb34dbbe187526acda2db 100644 --- a/docs/lite/docs/source_en/train/runtime_train.rst +++ b/docs/lite/docs/source_en/train/runtime_train.rst @@ -2,7 +2,7 @@ Executing Model Training ================================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/runtime_train.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/runtime_train.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/lite/docs/source_en/train/runtime_train_cpp.md b/docs/lite/docs/source_en/train/runtime_train_cpp.md index d01df4201ff819643dace2e0392e740f4280dfbc..1652417c8e4e1af44da9f376b14a0b1e204d5fbf 100644 --- a/docs/lite/docs/source_en/train/runtime_train_cpp.md +++ b/docs/lite/docs/source_en/train/runtime_train_cpp.md @@ -1,6 +1,6 @@ # Device-side Training (C++) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/runtime_train_cpp.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/runtime_train_cpp.md) ## Overview diff --git a/docs/lite/docs/source_en/train/runtime_train_java.md b/docs/lite/docs/source_en/train/runtime_train_java.md index d1ea90a8fa6f32c5be3d81ccaa88b14b9d3fd66f..3aed49fde9b90b60973fe9e7667d32622af97c7e 100644 --- a/docs/lite/docs/source_en/train/runtime_train_java.md +++ b/docs/lite/docs/source_en/train/runtime_train_java.md @@ -1,6 +1,6 @@ # Device-side Training (Java) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/runtime_train_java.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/runtime_train_java.md) ## Overview diff --git a/docs/lite/docs/source_en/train/train_lenet.md b/docs/lite/docs/source_en/train/train_lenet.md index 5b27feccf80f63e5adf0c59c1975ef99a757d957..8a7f3525a417714a2cb34048d36e2ba50b762574 100644 --- a/docs/lite/docs/source_en/train/train_lenet.md +++ b/docs/lite/docs/source_en/train/train_lenet.md @@ -1,6 +1,6 @@ # C++ Interface Sample -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/train_lenet.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/train_lenet.md) > MindSpore Lite has unified the end-to-side cloud inference API. If you want to continue to use the MindSpore Lite independent API for training, you can refer to [here](https://www.mindspore.cn/lite/docs/en/r1.3/quick_start/train_lenet.html). @@ -57,7 +57,7 @@ The directory structure is as follows: ### Installing MindSpore -MindSpore can be installed by source code or using `pip`. Refer to [MindSpore installation guide](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip_en.md#) for more details. +MindSpore can be installed by source code or using `pip`. Refer to [MindSpore installation guide](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip_en.md#) for more details. ### Downloading and Installing MindSpore Lite diff --git a/docs/lite/docs/source_en/train/train_lenet_java.md b/docs/lite/docs/source_en/train/train_lenet_java.md index 05e3a669eadefb40f3795f8fa9f7af1431869ce5..d27558deb6bff06b4333bedd53f4bd510ee06013 100644 --- a/docs/lite/docs/source_en/train/train_lenet_java.md +++ b/docs/lite/docs/source_en/train/train_lenet_java.md @@ -1,6 +1,6 @@ # Java Interface Sample -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/train_lenet_java.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/train/train_lenet_java.md) ## Overview diff --git a/docs/lite/docs/source_en/use/downloads.md b/docs/lite/docs/source_en/use/downloads.md index 90ab5757518ead267c383b02df36084e8dc9d8fa..2c2bf5e09cc2905bf82a75ebc59ad752aef4b5fb 100644 --- a/docs/lite/docs/source_en/use/downloads.md +++ b/docs/lite/docs/source_en/use/downloads.md @@ -1,6 +1,6 @@ # Downloading MindSpore Lite -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_en/use/downloads.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_en/use/downloads.md) Welcome to MindSpore Lite. We provide functions such as model conversion, model inference, image processing, etc. that support multiple operating systems and hardware platforms. You can download the version package suitable for the local environment and use it directly. diff --git a/docs/lite/docs/source_zh_cn/advanced/image_processing.md b/docs/lite/docs/source_zh_cn/advanced/image_processing.md index 47fc3df4fdc92d9393d338753c3b6f54b19ca115..9fec183f4dfcbcd7b122617802f04137c3ab367e 100644 --- a/docs/lite/docs/source_zh_cn/advanced/image_processing.md +++ b/docs/lite/docs/source_zh_cn/advanced/image_processing.md @@ -1,6 +1,6 @@ # 数据预处理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/image_processing.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/image_processing.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/advanced/micro.md b/docs/lite/docs/source_zh_cn/advanced/micro.md index 9427dfa2b4160de0d9115b4847d6280c86059a04..58f17494c618184ec0828a1b9e6647a42bd4bc66 100644 --- a/docs/lite/docs/source_zh_cn/advanced/micro.md +++ b/docs/lite/docs/source_zh_cn/advanced/micro.md @@ -1,6 +1,6 @@ # 在MCU或小型系统上执行推理或训练 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/micro.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/micro.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/advanced/quantization.md b/docs/lite/docs/source_zh_cn/advanced/quantization.md index 5ca0b0f75a74e1ab6169a9342295b6f59a9c1ea4..0357c59e55b597dda238bf6bdc40f1f72be171a1 100644 --- a/docs/lite/docs/source_zh_cn/advanced/quantization.md +++ b/docs/lite/docs/source_zh_cn/advanced/quantization.md @@ -1,6 +1,6 @@ # 训练后量化 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/quantization.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/quantization.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party.rst b/docs/lite/docs/source_zh_cn/advanced/third_party.rst index 2a4597649e3139e8da15ce3db90cd8ed7e001a6b..0c84cf3c8d8f0dbe66922dcd2e3d4ee73f249170 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party.rst +++ b/docs/lite/docs/source_zh_cn/advanced/third_party.rst @@ -2,7 +2,7 @@ ================================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/ascend_info.md b/docs/lite/docs/source_zh_cn/advanced/third_party/ascend_info.md index 7a976d213650153429aafac4b4219b868830c756..48b3f63bf3b66b3ae140a1fd77f46bd5c5d716a1 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/ascend_info.md +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/ascend_info.md @@ -1,6 +1,6 @@ # 集成Ascend使用说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/ascend_info.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/ascend_info.md) > - 端侧推理集成Ascend后端版本将于后续弃用,Ascend后端相关使用请参考云侧推理版本文档。 > - [云侧推理版本编译](https://mindspore.cn/lite/docs/zh-CN/master/mindir/build.html) diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/asic.rst b/docs/lite/docs/source_zh_cn/advanced/third_party/asic.rst index a52807ddb7e44d482cdefeb872fd0f43102d7d61..11a420142f41d268c4cfdb044feb826216fb612a 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/asic.rst +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/asic.rst @@ -2,7 +2,7 @@ ================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/asic.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/asic.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/converter_register.md b/docs/lite/docs/source_zh_cn/advanced/third_party/converter_register.md index 84cf55457056cd58d429b43047781ba68a51775d..33ed7856bf00b47194f789cc25edbfc2b59efc6f 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/converter_register.md +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/converter_register.md @@ -1,6 +1,6 @@ # 离线构建自定义算子 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/converter_register.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/converter_register.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/delegate.md b/docs/lite/docs/source_zh_cn/advanced/third_party/delegate.md index 654c8ff2f263dd652a3af9016eee1076fdc55cbf..ff65230ab05c179116b0fd8464c2b0ede329d0e6 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/delegate.md +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/delegate.md @@ -1,6 +1,6 @@ # 使用Delegate支持第三方AI框架接入(端上) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/delegate.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/delegate.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/dsp_info.md b/docs/lite/docs/source_zh_cn/advanced/third_party/dsp_info.md index 1afe59216d5a519721a4bbcbe8d3f1f0d0ae19df..adbfe9a3da7184981bb88c837c7c1a56f236c991 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/dsp_info.md +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/dsp_info.md @@ -1,6 +1,6 @@ # 集成DSP使用说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/dsp_info.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/dsp_info.md) ## 使用步骤 diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/npu_info.md b/docs/lite/docs/source_zh_cn/advanced/third_party/npu_info.md index 86935547af2f831090e14cf9b91d8da180e97f0c..d32054d64c237df1cde44b5a87fdddb845c6cdcb 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/npu_info.md +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/npu_info.md @@ -1,6 +1,6 @@ # 集成Kirin NPU使用说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/npu_info.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/npu_info.md) ## 使用步骤 diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/register.rst b/docs/lite/docs/source_zh_cn/advanced/third_party/register.rst index abf61359bba1b2664ed62affafe32e99ad0699fe..c6c0392f9fb88de4ca5388a1c3fa942acca6d381 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/register.rst +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/register.rst @@ -2,7 +2,7 @@ ========== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/register.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/register.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/register_kernel.md b/docs/lite/docs/source_zh_cn/advanced/third_party/register_kernel.md index c07db28982764b2e1f7ff3f6f26afc6bf35d5633..8bc71d2a7326b100471b3230cda8bd8abb3536f5 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/register_kernel.md +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/register_kernel.md @@ -1,6 +1,6 @@ # 在线构建自定义算子 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/register_kernel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/register_kernel.md) ## 如何实现自定义算子 diff --git a/docs/lite/docs/source_zh_cn/advanced/third_party/tensorrt_info.md b/docs/lite/docs/source_zh_cn/advanced/third_party/tensorrt_info.md index 1a5fd2a61b8381402650699128964f6e6cb675f7..78c5b7e1a860e28b14d6e604df008b57cfb6d9aa 100644 --- a/docs/lite/docs/source_zh_cn/advanced/third_party/tensorrt_info.md +++ b/docs/lite/docs/source_zh_cn/advanced/third_party/tensorrt_info.md @@ -1,6 +1,6 @@ # 集成TensorRT使用说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/tensorrt_info.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/advanced/third_party/tensorrt_info.md) ## 使用步骤 diff --git a/docs/lite/docs/source_zh_cn/build/build.md b/docs/lite/docs/source_zh_cn/build/build.md index bd6b61002cff947c4e3a17393cb01964ce031a29..bac5f1b05c10a18a42ffac0c87fd680acb9c4226 100644 --- a/docs/lite/docs/source_zh_cn/build/build.md +++ b/docs/lite/docs/source_zh_cn/build/build.md @@ -1,6 +1,6 @@ # 端侧编译 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/build/build.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/build/build.md) 本章节介绍如何快速编译出MindSpore Lite。 diff --git a/docs/lite/docs/source_zh_cn/converter/converter_tool.md b/docs/lite/docs/source_zh_cn/converter/converter_tool.md index 33e966f376f8a153d6dae381023ab8c45f37c751..88fa540e75bcafd3069e6a46ff762ca2c7c719c0 100644 --- a/docs/lite/docs/source_zh_cn/converter/converter_tool.md +++ b/docs/lite/docs/source_zh_cn/converter/converter_tool.md @@ -1,6 +1,6 @@ # 端侧模型转换 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/converter/converter_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/converter/converter_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/infer/device_infer_example.rst b/docs/lite/docs/source_zh_cn/infer/device_infer_example.rst index 8b12e98966cc6b6d51ee9828fa71521be7813409..18acb214fb5985536f299ab09da95fff7c75abe0 100644 --- a/docs/lite/docs/source_zh_cn/infer/device_infer_example.rst +++ b/docs/lite/docs/source_zh_cn/infer/device_infer_example.rst @@ -2,7 +2,7 @@ =================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/device_infer_example.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/device_infer_example.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/infer/image_segmentation.md b/docs/lite/docs/source_zh_cn/infer/image_segmentation.md index 14e1a5096b6882dff3bc022057dba89818fed3cc..cc9e1b8ff6dd5b390ea413731185aa15271ab64f 100644 --- a/docs/lite/docs/source_zh_cn/infer/image_segmentation.md +++ b/docs/lite/docs/source_zh_cn/infer/image_segmentation.md @@ -1,6 +1,6 @@ # 基于Java接口的Android应用开发 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/image_segmentation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/image_segmentation.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/infer/quick_start.md b/docs/lite/docs/source_zh_cn/infer/quick_start.md index ccda482ca1b8c15648e2d4453e0bf5af00fbe268..ddac1e6a3eef0a2394a85eb7a4c8f442cdfed27b 100644 --- a/docs/lite/docs/source_zh_cn/infer/quick_start.md +++ b/docs/lite/docs/source_zh_cn/infer/quick_start.md @@ -1,6 +1,6 @@ # 基于JNI接口的Android应用开发 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/infer/quick_start_c.md b/docs/lite/docs/source_zh_cn/infer/quick_start_c.md index d52787853fee63288e7d6eb4365ccf23ace4a327..a6e5dd4b369a515d78ea05fdb053dc9d898dd580 100644 --- a/docs/lite/docs/source_zh_cn/infer/quick_start_c.md +++ b/docs/lite/docs/source_zh_cn/infer/quick_start_c.md @@ -1,6 +1,6 @@ # 体验C语言接口极简推理Demo -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start_c.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start_c.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/infer/quick_start_cpp.md b/docs/lite/docs/source_zh_cn/infer/quick_start_cpp.md index 1c7cf58215ce971b8731bf8e8e19f5b291f9c7ca..11703cf62ca1b911f921c6e13b80b79d37da2fce 100644 --- a/docs/lite/docs/source_zh_cn/infer/quick_start_cpp.md +++ b/docs/lite/docs/source_zh_cn/infer/quick_start_cpp.md @@ -1,6 +1,6 @@ # 体验C++极简推理Demo -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start_cpp.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start_cpp.md) > MindSpore Lite已经统一了端边云推理API,如您想继续使用MindSpore Lite独立API进行端侧推理,可以参考[此文档](https://www.mindspore.cn/lite/docs/zh-CN/master/infer/quick_start_cpp.html)。 diff --git a/docs/lite/docs/source_zh_cn/infer/quick_start_java.md b/docs/lite/docs/source_zh_cn/infer/quick_start_java.md index 0b714972162f7c3ea4d1c820034aa020ef19d918..2e874b751228ad8b5271a5130c68a045c5ca1979 100644 --- a/docs/lite/docs/source_zh_cn/infer/quick_start_java.md +++ b/docs/lite/docs/source_zh_cn/infer/quick_start_java.md @@ -1,6 +1,6 @@ # 体验Java极简推理Demo -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start_java.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/quick_start_java.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/infer/runtime_cpp.md b/docs/lite/docs/source_zh_cn/infer/runtime_cpp.md index c4e5bfd209e4c84292ee55c3d26c31edde0f2605..562e87a7a489c426d4ba089e86b46bc4b869191f 100644 --- a/docs/lite/docs/source_zh_cn/infer/runtime_cpp.md +++ b/docs/lite/docs/source_zh_cn/infer/runtime_cpp.md @@ -1,6 +1,6 @@ # 模型推理(C++接口) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/runtime_cpp.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/runtime_cpp.md) > MindSpore Lite已经统一了端边云推理API,如您想继续使用MindSpore Lite独立API进行端侧推理,可以参考[此文档](https://www.mindspore.cn/lite/docs/zh-CN/r1.3/use/runtime_cpp.html)。 diff --git a/docs/lite/docs/source_zh_cn/infer/runtime_java.md b/docs/lite/docs/source_zh_cn/infer/runtime_java.md index 150597fc377966ff59f03a0384985390414f1a56..c491836ceefb356f5c3ed09ce9de6a38917e7eb7 100644 --- a/docs/lite/docs/source_zh_cn/infer/runtime_java.md +++ b/docs/lite/docs/source_zh_cn/infer/runtime_java.md @@ -1,6 +1,6 @@ # 模型推理(Java接口) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/runtime_java.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/infer/runtime_java.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/benchmark.rst b/docs/lite/docs/source_zh_cn/mindir/benchmark.rst index e3ef8680969c6145412803d22709c5f3eeb27f00..d1374827bfcaf367a9bc22221d514f657ac6d655 100644 --- a/docs/lite/docs/source_zh_cn/mindir/benchmark.rst +++ b/docs/lite/docs/source_zh_cn/mindir/benchmark.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/benchmark.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/benchmark.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/mindir/benchmark_tool.md b/docs/lite/docs/source_zh_cn/mindir/benchmark_tool.md index 29de7d9d0307974179e629c8711cf76450e11aeb..1a9f3ef89bf6802157a7781575ec77f790db2309 100644 --- a/docs/lite/docs/source_zh_cn/mindir/benchmark_tool.md +++ b/docs/lite/docs/source_zh_cn/mindir/benchmark_tool.md @@ -1,6 +1,6 @@ # benchmark -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/benchmark_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/benchmark_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/build.md b/docs/lite/docs/source_zh_cn/mindir/build.md index b4f933627ac3b9f77209a38163b56f881091eef0..49d1ef2f4aca8ef8f412c9ee93047a9115388270 100644 --- a/docs/lite/docs/source_zh_cn/mindir/build.md +++ b/docs/lite/docs/source_zh_cn/mindir/build.md @@ -1,6 +1,6 @@ # 编译云侧MindSpore Lite -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/build.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/build.md) 本章节介绍如何快速编译出云侧MindSpore Lite。 diff --git a/docs/lite/docs/source_zh_cn/mindir/converter.rst b/docs/lite/docs/source_zh_cn/mindir/converter.rst index b69a30e659caf4223fbcc5e2f627f06c1c6c337c..9b8d3d02b70bd673c8c61d18b474a301a85d088b 100644 --- a/docs/lite/docs/source_zh_cn/mindir/converter.rst +++ b/docs/lite/docs/source_zh_cn/mindir/converter.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/mindir/converter_custom.md b/docs/lite/docs/source_zh_cn/mindir/converter_custom.md index d6e562be5de16df75c848cc40ef20c989e51bdf1..78847ac01225433b13208d3baea32c9e626bf459 100644 --- a/docs/lite/docs/source_zh_cn/mindir/converter_custom.md +++ b/docs/lite/docs/source_zh_cn/mindir/converter_custom.md @@ -1,6 +1,6 @@ # 三方ONNX模型对接自定义算子 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_custom.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_custom.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/converter_python.md b/docs/lite/docs/source_zh_cn/mindir/converter_python.md index 5c3e1f917ddef93cc00c0f787b89a3fe0d7a0f6a..9130faccdaffd5ae713d573361409182212342cb 100644 --- a/docs/lite/docs/source_zh_cn/mindir/converter_python.md +++ b/docs/lite/docs/source_zh_cn/mindir/converter_python.md @@ -1,6 +1,6 @@ # 使用Python接口模型转换 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_python.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_python.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/converter_tool.md b/docs/lite/docs/source_zh_cn/mindir/converter_tool.md index 68120cd981758d10ba6e254e5b9d1e1d51e33c97..462c6663632d488809769d564035f6b4d80423b3 100644 --- a/docs/lite/docs/source_zh_cn/mindir/converter_tool.md +++ b/docs/lite/docs/source_zh_cn/mindir/converter_tool.md @@ -1,6 +1,6 @@ # 推理模型离线转换 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/converter_tool_ascend.md b/docs/lite/docs/source_zh_cn/mindir/converter_tool_ascend.md index b184a7e3d7fcd0016b85aa86735285163ad4ea1a..0318e6c6b1d1fc2a0e30806dc1b184a01c3a14d0 100644 --- a/docs/lite/docs/source_zh_cn/mindir/converter_tool_ascend.md +++ b/docs/lite/docs/source_zh_cn/mindir/converter_tool_ascend.md @@ -1,6 +1,6 @@ # Ascend转换工具功能说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_tool_ascend.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/converter_tool_ascend.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime.rst b/docs/lite/docs/source_zh_cn/mindir/runtime.rst index 6a027fa8a7a607834bc92fb798a75755a9af1ffb..be6698ef97062274d7a4ab99ad5ad5d01762d953 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime.rst +++ b/docs/lite/docs/source_zh_cn/mindir/runtime.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_cpp.md b/docs/lite/docs/source_zh_cn/mindir/runtime_cpp.md index 9484ab31b93e12151d5ec031aeae46344e38b345..2925700aa13cc419378465861379c851e1cbf106 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_cpp.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_cpp.md @@ -1,6 +1,6 @@ # 使用C++接口执行云侧推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_cpp.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_cpp.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed.rst b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed.rst index 150acb5cbb27c4603d789f6ec3505a67c3264cd8..30abaea63b8930a2f55e2b18879a2873c07f268f 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed.rst +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_cpp.md b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_cpp.md index 6223e83b6b6fc2e54b66ab9b9b545cb227f9fc81..4a8c9ab0d9f4a89e64f8d6a49da9c62857463e65 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_cpp.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_cpp.md @@ -1,6 +1,6 @@ # 使用C++接口执行云侧分布式推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_cpp.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_cpp.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_multicard_python.md b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_multicard_python.md index f11109634ec531d558bfe0e4f59b25f7be4a32f8..c6852c571761c3f97a2cacccdb4b76d5afdbd374 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_multicard_python.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_multicard_python.md @@ -1,6 +1,6 @@ # 使用Python接口执行Ascend后端多卡/多芯推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_multicard_python.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_multicard_python.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_python.md b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_python.md index 5f3c6f7d828ce07508b4ea6555a0fc6f7a47005a..fdae216444f7d8acee3b06a321357a3465af59d3 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_python.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_python.md @@ -1,6 +1,6 @@ # 使用Python接口执行云侧分布式推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_python.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_distributed_python.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_java.md b/docs/lite/docs/source_zh_cn/mindir/runtime_java.md index ce162affd54b331ca55a0d0db7b44c32ec1090e6..4126216198c07bf3de33b0c8f58429978f6747fb 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_java.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_java.md @@ -1,6 +1,6 @@ # 使用Java接口执行云侧推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_java.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_java.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel.rst b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel.rst index 496fcdcb20ec6f4b569005de36fe423813710957..bc8888e7f4ad21463046b3cc408ebd3251277b37 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel.rst +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_cpp.md b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_cpp.md index 5e897cd10e18d37d763c98d5e9010b0aa85ca31b..d2634e6a09ad1d0a2549f1b8d268b3265aff040d 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_cpp.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_cpp.md @@ -1,6 +1,6 @@ # 使用C++接口执行并发推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_cpp.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_cpp.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_java.md b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_java.md index bd40cd903577921206794d7682d807e0d54295f5..2572eb45abdcb14b30d09f6823d7e8b35f2b2f41 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_java.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_java.md @@ -1,6 +1,6 @@ # 使用Java接口执行并发推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_java.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_java.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_python.md b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_python.md index e302a48614d5f7d2583aca9c9ea7e00002c7c7d6..846f9ac15effcc7c8df7dd0dcd79ec1d5e20822e 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_python.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_python.md @@ -1,6 +1,6 @@ # 使用Python接口执行并发推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_python.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_parallel_python.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/mindir/runtime_python.md b/docs/lite/docs/source_zh_cn/mindir/runtime_python.md index 0cd116ec2a0ade60d4116f0c78d8e04f1a844086..b4370506adaf77ee0258e1ffecba24490ce10415 100644 --- a/docs/lite/docs/source_zh_cn/mindir/runtime_python.md +++ b/docs/lite/docs/source_zh_cn/mindir/runtime_python.md @@ -1,6 +1,6 @@ # 使用Python接口执行云侧推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_python.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/mindir/runtime_python.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/quick_start/one_hour_introduction.md b/docs/lite/docs/source_zh_cn/quick_start/one_hour_introduction.md index fe2ece0ba91ba2dc8b466bbda3b7aadab61afc30..1cd18d0518d0402c6c0de6db47f43a9a0fb7a798 100644 --- a/docs/lite/docs/source_zh_cn/quick_start/one_hour_introduction.md +++ b/docs/lite/docs/source_zh_cn/quick_start/one_hour_introduction.md @@ -1,6 +1,6 @@ # 端侧推理快速入门 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/quick_start/one_hour_introduction.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/quick_start/one_hour_introduction.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/reference/architecture_lite.md b/docs/lite/docs/source_zh_cn/reference/architecture_lite.md index 6001584f4369cc678528f407eb36eef949336bdd..d703bc5784521d01466e224cfefac06d3f460b9a 100644 --- a/docs/lite/docs/source_zh_cn/reference/architecture_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/architecture_lite.md @@ -1,6 +1,6 @@ # 总体架构 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/architecture_lite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/architecture_lite.md) MindSpore Lite是一款极速、极智、极简的AI引擎,使能全场景智能应用,为用户提供端到端的解决方案,帮助用户使能AI能力。 diff --git a/docs/lite/docs/source_zh_cn/reference/environment_variable_support.md b/docs/lite/docs/source_zh_cn/reference/environment_variable_support.md index 74a7a15a3c99955a97e38f9fc001e98f9e90f29f..59949a1f39a94a2ca1854b4a19fe9b266856da8e 100644 --- a/docs/lite/docs/source_zh_cn/reference/environment_variable_support.md +++ b/docs/lite/docs/source_zh_cn/reference/environment_variable_support.md @@ -1,6 +1,6 @@ # 环境变量支持说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/environment_variable_support.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/environment_variable_support.md) 本文列举MindSpore Lite所支持的环境变量及其含义说明,并相应地给出了每个环境变量的可选取值和默认取值。 diff --git a/docs/lite/docs/source_zh_cn/reference/faq.md b/docs/lite/docs/source_zh_cn/reference/faq.md index 48c8869e6a6f92876d12f8c9ae2e2a6a25698b10..e0369c732aaea62ae884d0fb0e51cf73ff4014ec 100644 --- a/docs/lite/docs/source_zh_cn/reference/faq.md +++ b/docs/lite/docs/source_zh_cn/reference/faq.md @@ -1,6 +1,6 @@ # 问题定位指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/faq.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/faq.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/reference/image_classification_lite.md b/docs/lite/docs/source_zh_cn/reference/image_classification_lite.md index c5519533c9aceaff00827c98cfd1100b17f7159d..dbc2a5962841e107d8a3c266ea6d59c867a59daf 100644 --- a/docs/lite/docs/source_zh_cn/reference/image_classification_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/image_classification_lite.md @@ -1,6 +1,6 @@ # 图像分类模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/image_classification_lite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/image_classification_lite.md) ## 图像分类介绍 diff --git a/docs/lite/docs/source_zh_cn/reference/image_segmentation_lite.md b/docs/lite/docs/source_zh_cn/reference/image_segmentation_lite.md index e8c1a83d1b059ead3f36fb20e74f60a475d69263..1f82b8998900f03038f41d1699b4102a9e679c2a 100644 --- a/docs/lite/docs/source_zh_cn/reference/image_segmentation_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/image_segmentation_lite.md @@ -1,6 +1,6 @@ # 图像分割模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/image_segmentation_lite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/image_segmentation_lite.md) ## 图像分割介绍 diff --git a/docs/lite/docs/source_zh_cn/reference/log.md b/docs/lite/docs/source_zh_cn/reference/log.md index edacc1f82e18c2fc7a53e3c9e92f00dfe76eea5d..b4861a3d69608b1f7f1cdf7b69fd95d692b1b28a 100644 --- a/docs/lite/docs/source_zh_cn/reference/log.md +++ b/docs/lite/docs/source_zh_cn/reference/log.md @@ -1,6 +1,6 @@ # 日志 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/log.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/log.md) ## 常用的环境变量配置 diff --git a/docs/lite/docs/source_zh_cn/reference/model_lite.rst b/docs/lite/docs/source_zh_cn/reference/model_lite.rst index 055581b36b910155f32fc79aff747759b52b52e2..b64a6e0100a6dac7db67ced0840e818148393c60 100644 --- a/docs/lite/docs/source_zh_cn/reference/model_lite.rst +++ b/docs/lite/docs/source_zh_cn/reference/model_lite.rst @@ -2,7 +2,7 @@ =================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/model_lite.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/model_lite.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/reference/object_detection_lite.md b/docs/lite/docs/source_zh_cn/reference/object_detection_lite.md index d5096b22f6d84ae314d76abe0193d0b11818a1c7..1409772987958bcb96681232f561b51356d71192 100644 --- a/docs/lite/docs/source_zh_cn/reference/object_detection_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/object_detection_lite.md @@ -1,6 +1,6 @@ # 目标检测模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/object_detection_lite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/object_detection_lite.md) ## 目标检测介绍 diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_codegen.md b/docs/lite/docs/source_zh_cn/reference/operator_list_codegen.md index a7b5bcb46b634ec7f5d45e549f4d8738e8f13558..febc83a63d4298b9f358346d9d88504b40558704 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_list_codegen.md +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_codegen.md @@ -1,6 +1,6 @@ # Codegen算子支持 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_codegen.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_codegen.md) 本文列举MindSpore Lite Codegen支持的算子。 diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md index 2cf75f51254e26be8c93c7602830e99ec1739aaf..169fb228b9ba79fe14f56d2b2e64ec2d355785cb 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md @@ -1,6 +1,6 @@ # MindSpore Lite支持的硬件后端列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md) | 算子名称 | 算子功能 | CPU | Kirin NPU | GPU(Mali/Adreno) | Ascend | | ----------------------------------- | ------------------------------------------------------------ | --------------------------------------------------- | --------- | ----------------------- | ----------------------- | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md index 119c1539aa4d859e0bbfa4de8b1a5f342e692078..0d7eae69cdc5c57219cec8062882faaff168fa62 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md @@ -1,6 +1,6 @@ # MindSpore Lite支持的Caffe算子列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md) | MindSpore Lite算子名称 | 对应的Caffe算子 | | ---------------------- | -------------------------------- | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md index 78149a7ac1a00ce8af6c244c0015dacedb016c25..2ccd91777458f4bac98cf11639331d7a1e970672 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md @@ -1,6 +1,6 @@ # MindSpore Lite支持的ONNX算子列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md) > - 以下所有算子,均不支持int64类型输入。 > - 当前支持使用环境变量export KEEP_ORIGIN_DTYPE=1来保持数据类型为int64,当使用int32数据类型存在溢出时可以考虑使用该选项,但是目前仅为实验性选项,后续将移除。 diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md index 46225653f005a0080cf7649f6b3b4d89ccc77753..32edbd5826170979bf616f7dd327b3c1039d4dee 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md @@ -1,6 +1,6 @@ # MindSpore Lite支持的TensorFlow算子列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md) | MindSpore Lite算子名称 | 对应的TensorFlow算子 | | ---------------------- | ------------------------------------------------------------ | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md index 86c1cb4870e0b2cf75bb858dadd4bdba3b09540f..2a6eeff5773bc153ab6d20e332aa5aeabd56e1f4 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md @@ -1,6 +1,6 @@ # MindSpore Lite支持的TensorFlow Lite算子列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md) | MindSpore Lite算子名称 | 对应的TensorFlow Lite算子 | | ---------------------- | ------------------------------------------------------------ | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_lite.rst b/docs/lite/docs/source_zh_cn/reference/operator_lite.rst index 4e1156c23cd0421029143b9f160d4eaf20c76d94..ffa7b73f6d44cd0005c774b3e8af65efae526669 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_lite.rst +++ b/docs/lite/docs/source_zh_cn/reference/operator_lite.rst @@ -2,7 +2,7 @@ Lite算子支持 =================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/reference/scene_detection_lite.md b/docs/lite/docs/source_zh_cn/reference/scene_detection_lite.md index f23e182f5360e81bbdf7246e286f27f819215ca7..90b44bfdf3b0bac95ce0d91f43cd7ff2241ccaa2 100644 --- a/docs/lite/docs/source_zh_cn/reference/scene_detection_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/scene_detection_lite.md @@ -1,6 +1,6 @@ # 场景检测模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/scene_detection_lite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/scene_detection_lite.md) ## 场景检测介绍 diff --git a/docs/lite/docs/source_zh_cn/reference/style_transfer_lite.md b/docs/lite/docs/source_zh_cn/reference/style_transfer_lite.md index 723af7cff95e46b8367817e1a5f29f83153c31a3..28edc056a93269bcfe29df8486dfcb65ac362b60 100644 --- a/docs/lite/docs/source_zh_cn/reference/style_transfer_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/style_transfer_lite.md @@ -1,6 +1,6 @@ # 风格迁移模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/style_transfer_lite.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/style_transfer_lite.md) ## 风格迁移介绍 diff --git a/docs/lite/docs/source_zh_cn/tools/benchmark.rst b/docs/lite/docs/source_zh_cn/tools/benchmark.rst index c75e3a5fc595b99751dd562f4f14bbcdddba69f0..5d7c0eee52695d95669f8773dd01f069416d201f 100644 --- a/docs/lite/docs/source_zh_cn/tools/benchmark.rst +++ b/docs/lite/docs/source_zh_cn/tools/benchmark.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/tools/benchmark_golden_data.md b/docs/lite/docs/source_zh_cn/tools/benchmark_golden_data.md index 63e7da87cf7214b652ca1a66238a67b8eef91bc4..ad03b7eaf6ef8cb1cc7976dd55448133558a5e20 100644 --- a/docs/lite/docs/source_zh_cn/tools/benchmark_golden_data.md +++ b/docs/lite/docs/source_zh_cn/tools/benchmark_golden_data.md @@ -1,6 +1,6 @@ # 标杆数据生成工具 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark_golden_data.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark_golden_data.md) ## 概述 @@ -10,7 +10,7 @@ mslite_gold标杆数据生成工具,可基于原始模型输入数据`input.np ## mslite_gold工具使用说明 -开发者首先需要将原始模型输入数据和推理得到的输出数据,通过`numpy`中的`savez()`命令保存为`.npz`格式的文件,再通过运行[mslite_gold.py](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/golden/mslite_gold.py) 分别将输入数据`input.npz`和输出数据`output.npz`转化为`.bin`和`.out`的二进制格式文件。 +开发者首先需要将原始模型输入数据和推理得到的输出数据,通过`numpy`中的`savez()`命令保存为`.npz`格式的文件,再通过运行[mslite_gold.py](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/golden/mslite_gold.py) 分别将输入数据`input.npz`和输出数据`output.npz`转化为`.bin`和`.out`的二进制格式文件。 ### 环境要求 @@ -56,7 +56,7 @@ out_0 2 2 3 1. 随机生成输入,进行模型推理,再将输入输出保存为`.npz`格式。 - [onnx_demo.py示例代码](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/golden/onnx_demo.py) 支持基于ONNX模型随机生成数据,或手动输入数据,并执行推理获得输出数据。手动输入数据时,可以通过参数`--inDataFile`来确定输入数据路径。如果模型是动态shape类型,需通过参数`--inputShape`来确定输入尺寸。参数`--inDataFile`和`--inputShape`非必须,用户可以根据自身的使用场景来自由选用。下面是示例代码的基础使用示例: + [onnx_demo.py示例代码](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/golden/onnx_demo.py) 支持基于ONNX模型随机生成数据,或手动输入数据,并执行推理获得输出数据。手动输入数据时,可以通过参数`--inDataFile`来确定输入数据路径。如果模型是动态shape类型,需通过参数`--inputShape`来确定输入尺寸。参数`--inDataFile`和`--inputShape`非必须,用户可以根据自身的使用场景来自由选用。下面是示例代码的基础使用示例: ```bash python onnx_demo.py --modelFile "/path/to/model_example.onnx" --savePath "/path/to/data_example" diff --git a/docs/lite/docs/source_zh_cn/tools/benchmark_tool.md b/docs/lite/docs/source_zh_cn/tools/benchmark_tool.md index ee989a41a4ce9880b80099ae18a8df7d492cb2d3..f9b7170769be1586fcd5404ae29b6d0e105922f9 100644 --- a/docs/lite/docs/source_zh_cn/tools/benchmark_tool.md +++ b/docs/lite/docs/source_zh_cn/tools/benchmark_tool.md @@ -1,6 +1,6 @@ # benchmark -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/tools/benchmark_train_tool.md b/docs/lite/docs/source_zh_cn/tools/benchmark_train_tool.md index d897e9a8bf7c6d198b2fe0b8cb9132a4c0a98f92..cac589821e2cea9f690ac9104390bce9b5f30244 100644 --- a/docs/lite/docs/source_zh_cn/tools/benchmark_train_tool.md +++ b/docs/lite/docs/source_zh_cn/tools/benchmark_train_tool.md @@ -1,6 +1,6 @@ # benchmark_train -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark_train_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/benchmark_train_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/tools/cropper_tool.md b/docs/lite/docs/source_zh_cn/tools/cropper_tool.md index c470be3ab39448cbd0dd13bc8a7c25a23482c8a0..3a334089d131d190b3353c5742a3991638625ddf 100644 --- a/docs/lite/docs/source_zh_cn/tools/cropper_tool.md +++ b/docs/lite/docs/source_zh_cn/tools/cropper_tool.md @@ -1,6 +1,6 @@ # 静态库裁剪工具 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/cropper_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/cropper_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/tools/obfuscator_tool.md b/docs/lite/docs/source_zh_cn/tools/obfuscator_tool.md index bba03c7d5e9a77ce54c455529525a1160baf7630..3b1a6730a888670c90cfe1d1f2d2fc1e80e1b8ad 100644 --- a/docs/lite/docs/source_zh_cn/tools/obfuscator_tool.md +++ b/docs/lite/docs/source_zh_cn/tools/obfuscator_tool.md @@ -1,6 +1,6 @@ # 模型混淆工具 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/obfuscator_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/obfuscator_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/tools/visual_tool.md b/docs/lite/docs/source_zh_cn/tools/visual_tool.md index 1e7b710310ec7113fc595ad476eb415b48cec045..a3f03cec2722d85561a67bd67f0bb47e71cef8d1 100644 --- a/docs/lite/docs/source_zh_cn/tools/visual_tool.md +++ b/docs/lite/docs/source_zh_cn/tools/visual_tool.md @@ -1,6 +1,6 @@ # 可视化工具 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/visual_tool.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/tools/visual_tool.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/train/converter_train.md b/docs/lite/docs/source_zh_cn/train/converter_train.md index 1ea21f74f325378131ff045326a199159c3c34ff..c2eea2e05655d7caef3a4cecc5dd04d8e383f5bb 100644 --- a/docs/lite/docs/source_zh_cn/train/converter_train.md +++ b/docs/lite/docs/source_zh_cn/train/converter_train.md @@ -1,6 +1,6 @@ # 端侧训练模型转换 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/converter_train.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/converter_train.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/train/device_train_example.rst b/docs/lite/docs/source_zh_cn/train/device_train_example.rst index 84e5476e449b01e4e36b69fd3136c28e0dab33b3..04fbd4b561831fd4caf3870d11c8e782f2ce1936 100644 --- a/docs/lite/docs/source_zh_cn/train/device_train_example.rst +++ b/docs/lite/docs/source_zh_cn/train/device_train_example.rst @@ -2,7 +2,7 @@ =================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/device_train_example.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/device_train_example.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/train/runtime_train.rst b/docs/lite/docs/source_zh_cn/train/runtime_train.rst index 7a56f0d69b9d426eba7fb9a31197ba1f07aace68..46db45c3d93ff8a197be864ce06ed1c124c54e5b 100644 --- a/docs/lite/docs/source_zh_cn/train/runtime_train.rst +++ b/docs/lite/docs/source_zh_cn/train/runtime_train.rst @@ -2,7 +2,7 @@ ======================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/runtime_train.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/runtime_train.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/lite/docs/source_zh_cn/train/runtime_train_cpp.md b/docs/lite/docs/source_zh_cn/train/runtime_train_cpp.md index 4b5ec0c859b7209693948a469fd4c69a8de8166c..b7d98f75f0ef06d6a59e53ee45c6b997b3d97715 100644 --- a/docs/lite/docs/source_zh_cn/train/runtime_train_cpp.md +++ b/docs/lite/docs/source_zh_cn/train/runtime_train_cpp.md @@ -1,6 +1,6 @@ # 端侧训练(C++接口) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/runtime_train_cpp.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/runtime_train_cpp.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/train/runtime_train_java.md b/docs/lite/docs/source_zh_cn/train/runtime_train_java.md index b295cc9cc2300e093550f48cb85791519696739e..fbcf54237b02c8ad6ef003cc26e7191073a4e7d4 100644 --- a/docs/lite/docs/source_zh_cn/train/runtime_train_java.md +++ b/docs/lite/docs/source_zh_cn/train/runtime_train_java.md @@ -1,6 +1,6 @@ # 端侧训练(Java接口) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/runtime_train_java.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/runtime_train_java.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/train/train_lenet.md b/docs/lite/docs/source_zh_cn/train/train_lenet.md index f97b856f9d996d3bc84b1f3d9a7c616bf649c3f5..97cc441458746cf892c2091d3acde292cb23bc7d 100644 --- a/docs/lite/docs/source_zh_cn/train/train_lenet.md +++ b/docs/lite/docs/source_zh_cn/train/train_lenet.md @@ -1,6 +1,6 @@ # 基于C++接口实现端侧训练 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/train_lenet.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/train_lenet.md) > MindSpore Lite 已经统一端边云推理API,如您想继续使用MindSpore Lite独立API进行端侧训练,可以参考[此文档](https://www.mindspore.cn/lite/docs/zh-CN/r1.3/quick_start/train_lenet.html)。 @@ -57,7 +57,7 @@ ### 安装MindSpore -你可以通过`pip`或是源码的方式安装MindSpore,详见[MindSpore官网安装教程](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip.md#)。 +你可以通过`pip`或是源码的方式安装MindSpore,详见[MindSpore官网安装教程](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip.md#)。 ### 下载并安装MindSpore Lite diff --git a/docs/lite/docs/source_zh_cn/train/train_lenet_java.md b/docs/lite/docs/source_zh_cn/train/train_lenet_java.md index 44ccb319560055bd4aecb096552cd3c023d45d00..30ab53adeeb7f25a35408c2f1f8eb086a9406f55 100644 --- a/docs/lite/docs/source_zh_cn/train/train_lenet_java.md +++ b/docs/lite/docs/source_zh_cn/train/train_lenet_java.md @@ -1,6 +1,6 @@ # 基于Java接口实现端侧训练 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/train_lenet_java.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/train/train_lenet_java.md) ## 概述 diff --git a/docs/lite/docs/source_zh_cn/use/downloads.md b/docs/lite/docs/source_zh_cn/use/downloads.md index 8c1914a617af6318ba5f6ce1b5b0380e385dfb3c..241886217cde4a4101b34ab68184789684c4c6bd 100644 --- a/docs/lite/docs/source_zh_cn/use/downloads.md +++ b/docs/lite/docs/source_zh_cn/use/downloads.md @@ -1,6 +1,6 @@ # 下载MindSpore Lite -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/use/downloads.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/use/downloads.md) 欢迎使用MindSpore Lite,我们提供了支持多种操作系统和硬件平台的模型转换、模型推理、图像处理等功能,你可以下载适用于本地环境的版本包直接使用。 diff --git a/docs/mindarmour/docs/source_en/concept_drift_images.md b/docs/mindarmour/docs/source_en/concept_drift_images.md index 50e27fd523f1a98dbf33bbd3c96bd7c7e7225494..89a18af1b0ffe4e14d0e3ef2113eae3f2d1119ab 100644 --- a/docs/mindarmour/docs/source_en/concept_drift_images.md +++ b/docs/mindarmour/docs/source_en/concept_drift_images.md @@ -1,6 +1,6 @@ # Implementing the Concept Drift Detection Application of Image Data -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/concept_drift_images.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/concept_drift_images.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/concept_drift_time_series.md b/docs/mindarmour/docs/source_en/concept_drift_time_series.md index 2b4e8939436ca5934f93598f4c7dff8a204189f3..6f126617d57fbf3092085a48bac10c2f0b152e2d 100644 --- a/docs/mindarmour/docs/source_en/concept_drift_time_series.md +++ b/docs/mindarmour/docs/source_en/concept_drift_time_series.md @@ -1,6 +1,6 @@ # Implementing the Concept Drift Detection Application of Time Series Data -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/concept_drift_time_series.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/concept_drift_time_series.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/design.md b/docs/mindarmour/docs/source_en/design.md index bedc10e3e3455183f682b2a1079db811bdb88967..f14c7c507d958bb0549fe70b5fc5eda981b1a7ad 100644 --- a/docs/mindarmour/docs/source_en/design.md +++ b/docs/mindarmour/docs/source_en/design.md @@ -1,6 +1,6 @@ # Overall Security and Trustworthiness Design -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/design.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/design.md) ## Overall Architecture diff --git a/docs/mindarmour/docs/source_en/differential_privacy_design.md b/docs/mindarmour/docs/source_en/differential_privacy_design.md index a2a37a54afe4ef2aac305b63d12b0921786b984c..d132efaeb9c749e66f615eea6691049d1b4820d2 100644 --- a/docs/mindarmour/docs/source_en/differential_privacy_design.md +++ b/docs/mindarmour/docs/source_en/differential_privacy_design.md @@ -1,6 +1,6 @@ # Differential Privacy Design -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/differential_privacy_design.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/differential_privacy_design.md) ## Overall Design diff --git a/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md b/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md index 4ae2925c14b898b395e4d6518011aa41e5320f1d..57369f5adfb2edc08803310db24b5f139551141d 100644 --- a/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md +++ b/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md @@ -1,6 +1,6 @@ # Evaluating the Robustness of the OCR Model CNN-CTC -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/faq.md b/docs/mindarmour/docs/source_en/faq.md index d898cb7676dec7d14c472ed06c1f57e00330bc4b..e1290a3c9d083ea278aeffe02d3826c236ba933d 100644 --- a/docs/mindarmour/docs/source_en/faq.md +++ b/docs/mindarmour/docs/source_en/faq.md @@ -1,6 +1,6 @@ # FAQ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/faq.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/faq.md) **Q: What should I do when FastGradientSignMethod does not specify loss_fn, it reports an error: `Function construct_wrapper, the number of parameters of this function is 9, but the number of provided arguments is 10.`** diff --git a/docs/mindarmour/docs/source_en/fault_injection.md b/docs/mindarmour/docs/source_en/fault_injection.md index 04d701c839f816391460f4db96abb80b9eb12ea2..3b03a5e9e5fd64063fd89ac7fd6290f39dec3dae 100644 --- a/docs/mindarmour/docs/source_en/fault_injection.md +++ b/docs/mindarmour/docs/source_en/fault_injection.md @@ -1,6 +1,6 @@ # Implementing the Model Fault Injection and Evaluation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/fault_injection.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/fault_injection.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/fuzzer_design.md b/docs/mindarmour/docs/source_en/fuzzer_design.md index 9bbc52c1b976a4b4001fe8ffde544f4a84e027a8..2ddd9d0b3fa712237d905750c02eca1139e9269c 100644 --- a/docs/mindarmour/docs/source_en/fuzzer_design.md +++ b/docs/mindarmour/docs/source_en/fuzzer_design.md @@ -1,6 +1,6 @@ # AI Model Security Testing Design -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/fuzzer_design.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/fuzzer_design.md) ## Background diff --git a/docs/mindarmour/docs/source_en/improve_model_security_nad.md b/docs/mindarmour/docs/source_en/improve_model_security_nad.md index 2018a6d3f601a2d448f3d2130145313faf80ef4c..d0a40b92486cc3149163ae451e4eb478c9084282 100644 --- a/docs/mindarmour/docs/source_en/improve_model_security_nad.md +++ b/docs/mindarmour/docs/source_en/improve_model_security_nad.md @@ -1,6 +1,6 @@ # Improving Model Security with NAD Algorithm -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/improve_model_security_nad.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/improve_model_security_nad.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/mindarmour_install.md b/docs/mindarmour/docs/source_en/mindarmour_install.md index 782fc77b58ae556ac091a9fec8f11672e2bc6def..22a4cbefe27e17f342ce6841475afcca7384f5e7 100644 --- a/docs/mindarmour/docs/source_en/mindarmour_install.md +++ b/docs/mindarmour/docs/source_en/mindarmour_install.md @@ -1,6 +1,6 @@ # MindSpore Armour Installation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/mindarmour_install.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/mindarmour_install.md)   ## System Environment Information Confirmation diff --git a/docs/mindarmour/docs/source_en/model_encrypt_protection.md b/docs/mindarmour/docs/source_en/model_encrypt_protection.md index 4d7f41a360064d9d30d9ccd6e54d8764cafdb317..dfa847c437989822a3a623d6763e6fb67297da6a 100644 --- a/docs/mindarmour/docs/source_en/model_encrypt_protection.md +++ b/docs/mindarmour/docs/source_en/model_encrypt_protection.md @@ -1,6 +1,6 @@ # Model Encryption Protection -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/model_encrypt_protection.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/model_encrypt_protection.md)   ## Overview @@ -9,7 +9,7 @@ Currently, the encryption solution protects checkpoint and MindIR model files on The following uses an example to describe how to encrypt, export, decrypt, and load data. -> Download address of the complete sample code: +> Download address of the complete sample code: ## Safely Exporting a Checkpoint File diff --git a/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md b/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md index c669eb1d98f6dd984fbc8803d21534696c03f4a5..9de89e16e4f9d1d3e39ec6c6956261e0f8fc1171 100644 --- a/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md +++ b/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md @@ -1,6 +1,6 @@ # Protecting User Privacy with Differential Privacy Mechanism -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md b/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md index ba8c9c099fa3af87134ee3c5e6d71b580bb7d871..7befbdaa64607d959c33ef1ca55961b257de77dd 100644 --- a/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md +++ b/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md @@ -2,7 +2,7 @@ Translator: [翁炜华](https://gitee.com/weng-weihua) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/security_and_privacy.md b/docs/mindarmour/docs/source_en/security_and_privacy.md index cfdcc8ae3633c6323d2878baf2a310e4dc11b25a..bdb9f614113c4be2605ef8875e9b7fce9cbc8be2 100644 --- a/docs/mindarmour/docs/source_en/security_and_privacy.md +++ b/docs/mindarmour/docs/source_en/security_and_privacy.md @@ -1,6 +1,6 @@ # MindSpore Armour Module Introduction -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/security_and_privacy.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/security_and_privacy.md) ## Overview diff --git a/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md b/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md index c36ae1db7e665de28bea18213c373abe69227923..f8fbe1b319f02b4a75bf7c70b4a9b00f7c354002 100644 --- a/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md +++ b/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md @@ -1,6 +1,6 @@ # Testing Model Security Using Fuzz Testing -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md)   ## Overview diff --git a/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md b/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md index 49ca43f84b62c32542871f817f6f7389dc4bb676..eab5f500f3a963a200c5c357362b9552ec4430fd 100644 --- a/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md +++ b/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md @@ -1,6 +1,6 @@ # Using Membership Inference to Test Model Security -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md)   ## Overview diff --git a/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md b/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md index 2147687b6a9e2eef202bb1dd7d2803dfcde6b303..29d2a3a93d362ed3e98727ae5e4947e9518b8dc4 100644 --- a/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md +++ b/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md @@ -1,6 +1,6 @@ # 实现图像数据概念漂移检测应用 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md b/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md index 1858c07ef9680cca5ffb497ff041dc69175729dd..7473d132bab16b56cf9d4d555962870960a99334 100644 --- a/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md +++ b/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md @@ -1,6 +1,6 @@ # 实现时序数据概念漂移检测应用 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/design.md b/docs/mindarmour/docs/source_zh_cn/design.md index c9c78df886947a84f4cc0930d76abbfd79c4236d..33bf703e92d6d801345e8c4a6c74df3b74379543 100644 --- a/docs/mindarmour/docs/source_zh_cn/design.md +++ b/docs/mindarmour/docs/source_zh_cn/design.md @@ -1,6 +1,6 @@ # 安全可信总体设计 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/design.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/design.md) ## 总体架构 diff --git a/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md b/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md index db41c2969acb8a17872847f03a1022a697b943ba..6a91e80f0fab6108a03c94899e0f652f6587441c 100644 --- a/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md +++ b/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md @@ -1,6 +1,6 @@ # 差分隐私设计 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md) ## 总体设计 diff --git a/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md b/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md index 7dee92fcd741ade95bc2ce994f3a25ed2748111b..31a0b6243c693dc00c43e7c975797ae91c559a59 100644 --- a/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md +++ b/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md @@ -1,6 +1,6 @@ # 对OCR模型CNN-CTC的鲁棒性评测 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/faq.md b/docs/mindarmour/docs/source_zh_cn/faq.md index d28cd7194ad64f52165e56d151560ef922286f96..3b2aeea7e9c1b2e97eff1ce14a4814a5c494d8c1 100644 --- a/docs/mindarmour/docs/source_zh_cn/faq.md +++ b/docs/mindarmour/docs/source_zh_cn/faq.md @@ -1,6 +1,6 @@ # FAQ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/faq.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/faq.md) **Q: FastGradientSignMethod未指定loss_fn时报错`Function construct_wrapper, The number of parameters of this function is 9, but the number of provided arguments is 10.`怎么办?** diff --git a/docs/mindarmour/docs/source_zh_cn/fault_injection.md b/docs/mindarmour/docs/source_zh_cn/fault_injection.md index 1f27e6c21b887ba30e7d821679a63012ae734d3a..3351f77a093524f6cfbcbf6da8419920a6ca93f5 100644 --- a/docs/mindarmour/docs/source_zh_cn/fault_injection.md +++ b/docs/mindarmour/docs/source_zh_cn/fault_injection.md @@ -1,6 +1,6 @@ # 实现模型故障注入评估模型容错性 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/fault_injection.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/fault_injection.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md b/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md index 36909ad48dba0f0984a6d772d28a23928112ad71..6c868410c1ad73d9dc89b3a1888f0b843ce7d66c 100644 --- a/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md +++ b/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md @@ -1,6 +1,6 @@ # AI模型安全测试设计 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md) ## 背景 diff --git a/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md b/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md index 92d046de1473e1112df25f632ccbc24e391e8844..171e94b75642f1e7d8cfe2b4053eead9c92711d1 100644 --- a/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md +++ b/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md @@ -1,6 +1,6 @@ # 使用NAD算法提升模型安全性 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md b/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md index 70c947b3747c711c081b02dc942c82e5f9256e7e..5d5d98cd2428689a81bd7b371dac332619713eab 100644 --- a/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md +++ b/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md @@ -1,6 +1,6 @@ # 安装MindSpore Armour -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md)   ## 确认系统环境信息 diff --git a/docs/mindarmour/docs/source_zh_cn/model_encrypt_protection.md b/docs/mindarmour/docs/source_zh_cn/model_encrypt_protection.md index 089280a21c3d73007a56ce05189f759de130a1fd..9d77d987db71cf3a9d7a64febcfe33ab09642191 100644 --- a/docs/mindarmour/docs/source_zh_cn/model_encrypt_protection.md +++ b/docs/mindarmour/docs/source_zh_cn/model_encrypt_protection.md @@ -1,6 +1,6 @@ # 模型加密保护 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/model_encrypt_protection.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/model_encrypt_protection.md) ## 概述 @@ -9,7 +9,7 @@ MindSpore框架提供通过加密对模型文件进行保护的功能,使用 以下通过示例来介绍加密导出和解密加载的方法。 -> 你可以在这里下载完整的样例代码: +> 你可以在这里下载完整的样例代码: ## 安全导出CheckPoint文件 diff --git a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md index fa1ed475f523bf910c211d4e268661c97144342a..8f769f6e48dfb4dd5e3f2d0d89f4f6a3e7442ad1 100644 --- a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md +++ b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md @@ -1,6 +1,6 @@ # 应用差分隐私机制保护用户隐私 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md index 34187c732cf6250f30d6a9b0324ae6b81ec7d0aa..f2e8cd4449ed442c07818139a1e429ba742901d8 100644 --- a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md +++ b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md @@ -1,6 +1,6 @@ # 应用抑制隐私机制保护用户隐私 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/security_and_privacy.md b/docs/mindarmour/docs/source_zh_cn/security_and_privacy.md index 8008c5366c8a20ac9088aa018145801e881f780f..98d0884452afb8afee732db01f2ee643793265c0 100644 --- a/docs/mindarmour/docs/source_zh_cn/security_and_privacy.md +++ b/docs/mindarmour/docs/source_zh_cn/security_and_privacy.md @@ -1,6 +1,6 @@ # MindSpore Armour模块介绍 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/security_and_privacy.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/security_and_privacy.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md b/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md index 5c80aa5a82f23cdb2ede87aeba84c4c2ab2c8879..d1af704e570a45a1e44f3f796e7368c6a2c75e56 100644 --- a/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md +++ b/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md @@ -1,6 +1,6 @@ # 使用fuzz testing模块测试模型安全性 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md) ## 概述 diff --git a/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md b/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md index e705432944ff5dacd1eb6452104814e743170c7d..8c59536557da0e65e00c960eb4f11f3e01d79f2e 100644 --- a/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md +++ b/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md @@ -1,6 +1,6 @@ # 使用成员推理测试模型安全性 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md) ## 概述 diff --git a/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb b/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb index fe9e5dd360a285956e33b9fb7757296e7812c670..8a4dfceb22a2408f984ea09e49ba6262cd9823b5 100644 --- a/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb +++ b/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb @@ -11,7 +11,7 @@ "source": [ "# Quick Start\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/en/quick_start/mindspore_quick_start.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/en/quick_start/mindspore_quick_start.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/en/quick_start/mindspore_quick_start.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/en/quick_start/mindspore_quick_start.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb)\n" ] }, { diff --git a/docs/mindchemistry/docs/source_en/user/molecular_prediction.md b/docs/mindchemistry/docs/source_en/user/molecular_prediction.md index 59b7efe71dedc487c426b11136daeaa05f74d389..70744527ce8147c9fefa0a5319e814e9ea6749a1 100644 --- a/docs/mindchemistry/docs/source_en/user/molecular_prediction.md +++ b/docs/mindchemistry/docs/source_en/user/molecular_prediction.md @@ -1,6 +1,6 @@ # Molecular Prediction -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_en/user/molecular_prediction.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_en/user/molecular_prediction.md) Molecular property prediction, predicting various properties in different particle systems through deep learning networks. We integrated the NequIP model and Allegro model to construct a graph structure description based on the position and number of atoms in the molecular system. Using equivariant calculations and graph neural networks, we calculated the energy of the molecular system. Density Functional Theory Hamiltonian Prediction. We integrate the DeephE3nn model, an equivariant neural network based on E3, to predict a Hamiltonian by using the structure of atoms. diff --git a/docs/mindchemistry/docs/source_en/user/structure_generation.md b/docs/mindchemistry/docs/source_en/user/structure_generation.md index b3adf45cef6a3c0a7042d56aa5106e9f144c3a9e..d818956afe7e96a5329e9a1f93898116fb296043 100644 --- a/docs/mindchemistry/docs/source_en/user/structure_generation.md +++ b/docs/mindchemistry/docs/source_en/user/structure_generation.md @@ -1,6 +1,6 @@ # Structure Generation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_en/user/structure_generation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_en/user/structure_generation.md) Structure generation, which is a structure generation model based on deep learning to predict the structures of crystalline materials. DiffCSP integrates graph neural networks and equivalent diffusion models to jointly generate crystal lattices and atomic coordinates. It also leverages a periodic E(3)-equivalent denouncing model to better simulate the geometric properties of crystals. Compared with traditional methods based on density functional theory, DiffCSP significantly reduces computational costs and demonstrates excellent performance in crystal structure prediction tasks. diff --git a/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb b/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb index 13dadc5a95f718886e0f11f2555bb21a374aa733..118062effff500d531f23ec5e28e9dd3e5efc5bb 100644 --- a/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb +++ b/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb @@ -11,7 +11,7 @@ "source": [ "# 快速入门\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/zh_cn/quick_start/mindspore_quick_start.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/zh_cn/quick_start/mindspore_quick_start.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/zh_cn/quick_start/mindspore_quick_start.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindchemistry/zh_cn/quick_start/mindspore_quick_start.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb)\n" ] }, { diff --git a/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md b/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md index 62c874e801cacecd0cdccc29d56f797ebee2d7fd..e43ecf952779e791b87952c41869fa3c6c4b20cd 100644 --- a/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md +++ b/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md @@ -1,6 +1,6 @@ # 分子预测 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md) 分子性质预测,通过深度学习网络预测不同粒子体系中的各种性质. 我们集成了NequIP模型、Allegro模型,根据分子体系中各原子的位置与原子数信息构建图结构描述,基于等变计算与图神经网络,计算出分子体系能量。 密度泛函理论哈密顿量预测。我们集成了DeephE3nn模型,基于E3的等变神经网络,利用原子的结构去预测其的哈密顿量。 diff --git a/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md b/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md index b8c9918776f2661c0c1a0c752d732cd116015d4b..4d84814267ca10a788b6a9151fc44f0a87c885d6 100644 --- a/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md +++ b/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md @@ -1,6 +1,6 @@ # 结构生成 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md) 结构生成,通过深度学习的生成模型预测晶体材料的结构。我们集成了基于图神经网络和等变扩散模型的晶体生成模型 DiffCSP,它通过联合生成晶格和原子坐标来预测晶体结构,并利用周期性 E(3) 等变去噪模型来更好地模拟晶体的几何特性。它在计算成本上远低于传统的基于密度泛函理论的方法,且在晶体结构预测任务中表现出色。 diff --git a/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb b/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb index 718dd1f36e8458f5ae686f5c4bd12f36d34159ac..d8eb9e89d983205a2531e2dfa15b8b7691088009 100644 --- a/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb +++ b/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb @@ -7,7 +7,7 @@ "source": [ "# DEM-SRNet: Super-resolution Reconstruction of A 3 Arc-second Global DEM Dataset\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/dem-super-resolution/mindspore_DEM-SRNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/dem-super-resolution/mindspore_DEM-SRNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/dem-super-resolution/mindspore_DEM-SRNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/dem-super-resolution/mindspore_DEM-SRNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb b/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb index 24937b914bb754cf45c128093060e5a5399300a5..465acdfc39978d2b973caaa86d97fc97ebebb986 100644 --- a/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb @@ -10,7 +10,7 @@ "source": [ "# FourCastNet: Medium-range Global Weather Forecasting Based on FNO\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_FourCastNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_FourCastNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_FourCastNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_FourCastNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb b/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb index 862cb4f87c9d433d7eeec8fdfaca9fd7521a60b0..04fb11de98411c8933a741bd2908e2d79df4b700 100644 --- a/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb @@ -7,7 +7,7 @@ "source": [ "# FuXi: Medium-range Global Weather Forecasting Based on Cascade Architecture\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_fuxi.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_fuxi.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_fuxi.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_fuxi.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb b/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb index c68f910c2e91a36199a154b24e4f0914baad6b60..f3961d226c7be370068001c3df7de69c865796c9 100644 --- a/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb @@ -11,7 +11,7 @@ "source": [ "# GraphCast: Medium-range Global Weather Forecasting Based on GNN\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb b/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb index 8ce9fb7052940e11ddcd87695112789d56f8e50a..3a5ada8417369f6cfed119091f6a42d93d0cb96c 100644 --- a/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb @@ -7,7 +7,7 @@ "source": [ "# Medium-range precipitation forecasting based on GraphCast\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast_tp.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast_tp.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast_tp.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_graphcast_tp.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb b/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb index a9dab89ca29d4e657fdb965eaebe7844fe46787b..dbcfa65fea95416c50ba6a12484ff774ca2e97d3 100644 --- a/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb @@ -6,7 +6,7 @@ "source": [ "# ViT-KNO: Medium-range Global Weather Forecasting Based on Koopman\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_vit_kno.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_vit_kno.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_vit_kno.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/medium-range/mindspore_vit_kno.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_en/mindearth_install.md b/docs/mindearth/docs/source_en/mindearth_install.md index e77a25355cb9590f7c124032ad885034b6397812..01db26fd6c0c8cb7e2799696c390a89e0371c3ba 100644 --- a/docs/mindearth/docs/source_en/mindearth_install.md +++ b/docs/mindearth/docs/source_en/mindearth_install.md @@ -1,6 +1,6 @@ # MindSpore Earth Installation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/mindearth_install.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/mindearth_install.md)   ## System Environment Information Confirmation diff --git a/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb b/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb index 9c90f46a8a04b6490fa2719fe528b8a71a350d22..6ee7054472e50daa283ad809c7bc76839ee6e7be 100644 --- a/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb +++ b/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb @@ -7,7 +7,7 @@ "source": [ "# DGMR: Nowcasting Precipitation with Deep Generative Model\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_DgmrNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_DgmrNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_DgmrNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_DgmrNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb b/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb index 578b9cd411677a06ad2d413f0cf52630dfe0bc77..ac47b7b843504480428241419beaa3b915858172 100644 --- a/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb +++ b/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb @@ -8,7 +8,7 @@ "source": [ "# NowcastNet: Physics-based Generative Model for Extreme Precipitation Nowcasting\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_Nowcastnet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_Nowcastnet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_Nowcastnet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_Nowcastnet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb b/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb index bb03ab143d12cf707bbb28ba4b4bb2acee4a7f32..b2bb59476f5617161cd36eb53f0d1f5c507fbc2c 100644 --- a/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb +++ b/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb @@ -7,7 +7,7 @@ "source": [ "# PreDiff: Precipitation Nowcasting Based on Latent Diffusion Models\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_prediffnet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_prediffnet.py) [![ViewSource](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_prediffnet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/en/nowcasting/mindspore_prediffnet.py) [![ViewSource](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb b/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb index 37345ae4a6d6ef25f08d564f1e5d89c5ce1af96f..233568d8e4c273f4b5c14b542e8b1ed6c68e863c 100644 --- a/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb @@ -7,7 +7,7 @@ "source": [ "# DEM-SRNet: 全球3弧秒(90m)海陆高分辨率数字高程模型\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/dem-super-resolution/mindspore_DEM-SRNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/dem-super-resolution/mindspore_DEM-SRNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/dem-super-resolution/mindspore_DEM-SRNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/dem-super-resolution/mindspore_DEM-SRNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb index c0cc2d360069aab0b9eafdc365a96b5fa315ec98..06237b2c626b9f3f3443a2509e5a4d7ffdfe0252 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb @@ -10,7 +10,7 @@ "source": [ "# FourCastNet: 基于傅里叶神经算子的全球中期天气预报\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_FourCastNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_FourCastNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_FourCastNet.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_FourCastNet.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb index 33b4a34107366660006893eea3d3a07b4746960f..5a02da849f08f8a2b4816cb5cc8e78175a327ceb 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb @@ -7,7 +7,7 @@ "source": [ "# FuXi: 基于级联架构的全球中期天气预报\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_fuxi.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_fuxi.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_fuxi.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_fuxi.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb index 98f80f27fbc5f55de243aef240e320b340d3fa42..71b4b6131dffc9c7ae94ea708b874af7fdc08be6 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb @@ -11,7 +11,7 @@ "source": [ "# GraphCast: 基于图神经网络的全球中期天气预报\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb index b3cd80aa886ea064b0f359ef522d053d5a4f45c6..965d9635cd36aff84c1cc856f9f432a6ba2cbf16 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb @@ -7,7 +7,7 @@ "source": [ "# 基于GraphCast中期降水模块\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast_tp.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast_tp.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast_tp.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_graphcast_tp.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb index ae64506fad81ea47a8277470e45c8188b72cf3f4..1d8f6e1ec199238eaaf149ea21bf0dc8a57ae050 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb @@ -6,7 +6,7 @@ "source": [ "# ViT-KNO: 基于Koopman神经算子的全球中期天气预报\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_vit_kno.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_vit_kno.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_vit_kno.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/medium-range/mindspore_vit_kno.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/mindearth_install.md b/docs/mindearth/docs/source_zh_cn/mindearth_install.md index 7d639b1c9aef105c400f22907f2c441f7c026fd0..cf0ef2fddbdd610fd76c8580c4330ffa6653987b 100644 --- a/docs/mindearth/docs/source_zh_cn/mindearth_install.md +++ b/docs/mindearth/docs/source_zh_cn/mindearth_install.md @@ -1,6 +1,6 @@ # 安装MindSpore Earth -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/mindearth_install.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/mindearth_install.md)   ## 确认系统环境信息 diff --git a/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb b/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb index b60ccaee5a8bee81fc0966b2c264fcca172dd054..eb1459db90f4dc7adcb818f366608bceb19155a9 100644 --- a/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb @@ -7,7 +7,7 @@ "source": [ "# DGMR: 利用深度生成模型实现短临降水预报\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_DgmrNet.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_DgmrNet.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_DgmrNet.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_DgmrNet.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb b/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb index a4465c8cab394d31ac89d4d6d3d7205b2708804a..28741944656d8dfbbf45ada77e2cb8f173d3806a 100644 --- a/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb @@ -8,7 +8,7 @@ "source": [ "# NowcastNet: 融入物理机制的生成式短临降水预报模型\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_Nowcastnet.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_Nowcastnet.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_Nowcastnet.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_Nowcastnet.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb)\n" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb b/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb index bf441f9bf4220dcc053e037614c36c438da0ac4a..63dba816cc858e8c2aa6350b6d46ad12b10504cd 100644 --- a/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb @@ -7,7 +7,7 @@ "source": [ "# PreDiff: 基于潜在扩散模型的降水短时预报\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_prediffnet.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_prediffnet.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_prediffnet.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindearth/zh_cn/nowcasting/mindspore_prediffnet.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb)\n" ] }, { diff --git a/docs/mindelec/docs/source_en/AD_FDTD.rst b/docs/mindelec/docs/source_en/AD_FDTD.rst index b4c461fc8ad49864775021223e681e10a403b7c0..4283e0c46de45f78030fca084485fcecca06ea5a 100644 --- a/docs/mindelec/docs/source_en/AD_FDTD.rst +++ b/docs/mindelec/docs/source_en/AD_FDTD.rst @@ -2,7 +2,7 @@ Device-to-device differentiable FDTD method ============================================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/AD_FDTD.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/AD_FDTD.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/mindelec/docs/source_en/AD_FDTD_forward.md b/docs/mindelec/docs/source_en/AD_FDTD_forward.md index c51f5926284f6b9eceb11ca83d505ecdbfa04fc1..d18c0df4fa1b332db9db77148fc90b5e508de9c6 100644 --- a/docs/mindelec/docs/source_en/AD_FDTD_forward.md +++ b/docs/mindelec/docs/source_en/AD_FDTD_forward.md @@ -1,6 +1,6 @@ # S-parameter Simulation of Patch Antenna Based on Differentiable FDTD -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/AD_FDTD_forward.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/AD_FDTD_forward.md)   ## Overview diff --git a/docs/mindelec/docs/source_en/AD_FDTD_inverse.md b/docs/mindelec/docs/source_en/AD_FDTD_inverse.md index 25ec5eea758697752514c9edce8f7b0648972682..0a4e9c97e2db94c3b4f35ce70917a38f1980b581 100644 --- a/docs/mindelec/docs/source_en/AD_FDTD_inverse.md +++ b/docs/mindelec/docs/source_en/AD_FDTD_inverse.md @@ -1,6 +1,6 @@ # Device-to-device Differentiable FDTD for Solving Electromagnetic Inverse Scattering -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/AD_FDTD_inverse.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/AD_FDTD_inverse.md)   ## Overview diff --git a/docs/mindelec/docs/source_en/data_driven.rst b/docs/mindelec/docs/source_en/data_driven.rst index 4a11c7aa9637332967438d8999e9131bbef66f90..73434c5aa762dde3e9d471c684289d0dbf50d16e 100644 --- a/docs/mindelec/docs/source_en/data_driven.rst +++ b/docs/mindelec/docs/source_en/data_driven.rst @@ -2,7 +2,7 @@ Data Driven Deep Learning Method for Electromagnetic Simulation ================================================================ .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/data_driven.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/data_driven.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/mindelec/docs/source_en/incremental_learning.md b/docs/mindelec/docs/source_en/incremental_learning.md index e0b4517ac1ee41bb4b4f899fc951a31ea5a34bc9..927d11a48a1420f2e52a192669e26f25929467fe 100644 --- a/docs/mindelec/docs/source_en/incremental_learning.md +++ b/docs/mindelec/docs/source_en/incremental_learning.md @@ -1,6 +1,6 @@ # Incremental Training for Solving a Family of Maxwell's Equation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/incremental_learning.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/incremental_learning.md)   ## Overview diff --git a/docs/mindelec/docs/source_en/intro_and_install.md b/docs/mindelec/docs/source_en/intro_and_install.md index 2bb72dc23a5c2127c1dcfc02a3c5b9b2213b7bb4..0ee076614e60f222011bbc2b690f7eb6a9caa48f 100644 --- a/docs/mindelec/docs/source_en/intro_and_install.md +++ b/docs/mindelec/docs/source_en/intro_and_install.md @@ -1,6 +1,6 @@ # MindSpore Elec Introduction and Installation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/intro_and_install.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/intro_and_install.md)   ## MindSpore Elec Overview diff --git a/docs/mindelec/docs/source_en/parameterization.md b/docs/mindelec/docs/source_en/parameterization.md index a92b8eb5ee977c42ca1343ddd2c097c64ebb1312..64f853825ad49079fc23c27952080f065fdab36d 100644 --- a/docs/mindelec/docs/source_en/parameterization.md +++ b/docs/mindelec/docs/source_en/parameterization.md @@ -1,6 +1,6 @@ # AI Electromagnetic Simulation based on Parameterization Method -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/parameterization.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/parameterization.md)   ## Overview diff --git a/docs/mindelec/docs/source_en/physics_driven.rst b/docs/mindelec/docs/source_en/physics_driven.rst index 25134bd5fd08e2a48ac5f5ce6df6011005b5b4cb..7ead47f6cb5317153fbfeaf7561501124f1b38d9 100644 --- a/docs/mindelec/docs/source_en/physics_driven.rst +++ b/docs/mindelec/docs/source_en/physics_driven.rst @@ -2,7 +2,7 @@ Physics Informed Deep Learning Method for Electromagnetic Simulation ===================================================================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/physics_driven.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/physics_driven.rst :alt: View Source On Gitee .. toctree:: diff --git a/docs/mindelec/docs/source_en/point_cloud.md b/docs/mindelec/docs/source_en/point_cloud.md index e1d1c80ca4cb900aa419116cf22c6b809a351188..c9dc9296f717fd16533a0f0e6148733f2196a3fa 100644 --- a/docs/mindelec/docs/source_en/point_cloud.md +++ b/docs/mindelec/docs/source_en/point_cloud.md @@ -1,6 +1,6 @@ # AI Electromagnetic Simulation based on Point Cloud Method -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/point_cloud.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/point_cloud.md)   ## Overview diff --git a/docs/mindelec/docs/source_en/time_domain_maxwell.md b/docs/mindelec/docs/source_en/time_domain_maxwell.md index 3ab2f3a676a5c57015fa1087a486b56e3b43cf35..d0002fa4381fc9d01ab565e01fe1c59a53b99306 100644 --- a/docs/mindelec/docs/source_en/time_domain_maxwell.md +++ b/docs/mindelec/docs/source_en/time_domain_maxwell.md @@ -1,6 +1,6 @@ # AI Method for Solving Point Source Maxwell's Equations -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/time_domain_maxwell.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/time_domain_maxwell.md)   ## Overview diff --git a/docs/mindelec/docs/source_en/visualization.md b/docs/mindelec/docs/source_en/visualization.md index d8a66ba5120e2018963b6311a2727c9741ade2f0..6feb900549edb21a0cdf1ea8940e7ed35c8d9d3b 100644 --- a/docs/mindelec/docs/source_en/visualization.md +++ b/docs/mindelec/docs/source_en/visualization.md @@ -1,6 +1,6 @@ # Visualizing Electromagnetic Simulation Results -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/visualization.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_en/visualization.md)   ## Overview diff --git a/docs/mindelec/docs/source_zh_cn/AD_FDTD.rst b/docs/mindelec/docs/source_zh_cn/AD_FDTD.rst index 83686a1b5e0738c87d303b015e843fb42726eb74..c20b793a2b1796dfc972ae0ad970b3af3fbbaf51 100644 --- a/docs/mindelec/docs/source_zh_cn/AD_FDTD.rst +++ b/docs/mindelec/docs/source_zh_cn/AD_FDTD.rst @@ -2,7 +2,7 @@ ========================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/AD_FDTD.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/AD_FDTD.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md b/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md index ed12167834939c1d3f5327fdecc379b2e0be3b01..4461a68d1155accc463357e70b77eea2ae1a2ed0 100644 --- a/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md +++ b/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md @@ -1,6 +1,6 @@ # 基于可微分FDTD的贴片天线S参数仿真 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md)   ## 概述 diff --git a/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md b/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md index 76e9386c13e206feb37301867e2b4fd213553b7d..5d56e18810927bf6cef3ee3b5a7b4b1a32b734ac 100644 --- a/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md +++ b/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md @@ -1,6 +1,6 @@ # 端到端可微分FDTD求解电磁逆散射问题 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md)   ## 概述 diff --git a/docs/mindelec/docs/source_zh_cn/data_driven.rst b/docs/mindelec/docs/source_zh_cn/data_driven.rst index 0ef93310684382d234afa4d979dcce783cd211fb..f27e4212daa54868daec4859725c82100d9f7d54 100644 --- a/docs/mindelec/docs/source_zh_cn/data_driven.rst +++ b/docs/mindelec/docs/source_zh_cn/data_driven.rst @@ -2,7 +2,7 @@ ========================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/data_driven.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/data_driven.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/mindelec/docs/source_zh_cn/incremental_learning.md b/docs/mindelec/docs/source_zh_cn/incremental_learning.md index 7209289e4699046ee874df86818d452fbe41b71b..ce158d9a13330650d279822f2417e8f952bd9513 100644 --- a/docs/mindelec/docs/source_zh_cn/incremental_learning.md +++ b/docs/mindelec/docs/source_zh_cn/incremental_learning.md @@ -1,6 +1,6 @@ # 增量训练求解麦克斯韦方程族 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/incremental_learning.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/incremental_learning.md)   ## 概述 diff --git a/docs/mindelec/docs/source_zh_cn/intro_and_install.md b/docs/mindelec/docs/source_zh_cn/intro_and_install.md index f26627132f82419dd836c511175c2a6eb09d9f2e..41e0f0f88b416eb0b7d70b04ea045c12df99d8ac 100644 --- a/docs/mindelec/docs/source_zh_cn/intro_and_install.md +++ b/docs/mindelec/docs/source_zh_cn/intro_and_install.md @@ -1,6 +1,6 @@ # MindSpore Elec介绍和安装 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/intro_and_install.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/intro_and_install.md) ## MindSpore Elec介绍 diff --git a/docs/mindelec/docs/source_zh_cn/parameterization.md b/docs/mindelec/docs/source_zh_cn/parameterization.md index 28dd82c3525b13a4a1c435efc0a54d3c8c4740d9..dda2e5725b659be1b9ad5ff6a093781c47678b88 100644 --- a/docs/mindelec/docs/source_zh_cn/parameterization.md +++ b/docs/mindelec/docs/source_zh_cn/parameterization.md @@ -1,6 +1,6 @@ # 基于参数化方案的AI电磁仿真 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/parameterization.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/parameterization.md)   ## 概述 diff --git a/docs/mindelec/docs/source_zh_cn/physics_driven.rst b/docs/mindelec/docs/source_zh_cn/physics_driven.rst index 0de3f43071fc9b0ccce77cb60e922dce97bf0d65..2efd8b56338a4136b8279ab9a62e894021550323 100644 --- a/docs/mindelec/docs/source_zh_cn/physics_driven.rst +++ b/docs/mindelec/docs/source_zh_cn/physics_driven.rst @@ -2,7 +2,7 @@ ========================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/physics_driven.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/physics_driven.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/mindelec/docs/source_zh_cn/point_cloud.md b/docs/mindelec/docs/source_zh_cn/point_cloud.md index f9e842c2d29ff1372ba2f87c0357cc9f4a9e0742..3ec692059d9facb77df833b37718bb9a2dd080ed 100644 --- a/docs/mindelec/docs/source_zh_cn/point_cloud.md +++ b/docs/mindelec/docs/source_zh_cn/point_cloud.md @@ -1,6 +1,6 @@ # 基于点云方案的AI电磁仿真 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/point_cloud.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/point_cloud.md)   ## 概述 diff --git a/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md b/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md index 82d17536d87c33d112de61a92286cbb46dd71ede..28642fb7faa5e833f410f9d5da15e3247199aae2 100644 --- a/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md +++ b/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md @@ -1,6 +1,6 @@ # 点源时域麦克斯韦方程AI求解 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md)   ## 概述 diff --git a/docs/mindelec/docs/source_zh_cn/visualization.md b/docs/mindelec/docs/source_zh_cn/visualization.md index ed1c2b1373df1aba7abb9deddc4baf7bc0c8cd06..69cf3517daa4082486cd118f865b77592ea8bdfa 100644 --- a/docs/mindelec/docs/source_zh_cn/visualization.md +++ b/docs/mindelec/docs/source_zh_cn/visualization.md @@ -1,6 +1,6 @@ # 电磁仿真结果可视化 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/visualization.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindelec/docs/source_zh_cn/visualization.md)   ## 概述 diff --git a/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb b/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb index 235acef403bf7ecd215521082238e04266162181..87306a58964efe735711245504c7fd2d302c4d2b 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb @@ -7,7 +7,7 @@ "source": [ "# 2D acoustic problem\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_acoustic.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_acoustic.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_acoustic.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_acoustic.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb b/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb index 20adeefe98355a2dd938e43344f21b6b7d144997..558e3a4cbcfd41b394542e1bd524c1de6f5f8d70 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb @@ -7,7 +7,7 @@ "source": [ "# 2D Couette Flow\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_couette.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_couette.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_couette.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_couette.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class*.\n", "\n", diff --git a/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb b/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb index 345c3c7820a93e9c116c08952143ea2c920e0c85..10f2279178e4bad04d0fd4e70d753cadf2fd502d 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb @@ -6,7 +6,7 @@ "source": [ "# 1D Lax Tube\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_lax_tube.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_lax_tube.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_lax_tube.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_lax_tube.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class*.\n", "\n", diff --git a/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb b/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb index 8b06fa180a8f45db3fc7267ab83c1a66a452ec52..4310c307695594b8bd7d9f4fe88490b14fe6faf5 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb @@ -6,7 +6,7 @@ "source": [ "# 2D Riemann\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_riemann2d.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_riemann2d.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_riemann2d.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_riemann2d.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class*.\n", "\n", diff --git a/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb b/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb index 7e8f40d44445651cc5d5095d43b0690c41e85943..c98299d3e058df92bc5d71eb52e6c30b68b9061b 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb @@ -6,7 +6,7 @@ "source": [ "# 1D Sod Tube\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_sod_tube.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_sod_tube.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_sod_tube.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/cfd_solver/mindspore_sod_tube.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class*.\n", "\n", diff --git a/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb b/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb index 3f59f116e195d3e05e9e03ae7369b404ea04cb11..80ef44e30e19d0b2d86482ab77a038f2c0b32589 100644 --- a/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb @@ -12,7 +12,7 @@ "source": [ "# AI Industrial Flow Simulation Model (DongFang YuFeng)\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_steady.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_steady.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_steady.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_steady.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb)\n", "\n", "## Introduction\n", "\n", diff --git a/docs/mindflow/docs/source_en/data_driven/2D_unsteady.ipynb b/docs/mindflow/docs/source_en/data_driven/2D_unsteady.ipynb index a0258c1a722c3334152d7e52229c907dbaff19fd..58ffd2dc6268859750da431b54db085cff59865f 100644 --- a/docs/mindflow/docs/source_en/data_driven/2D_unsteady.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/2D_unsteady.ipynb @@ -10,7 +10,7 @@ "source": [ "# Multi-timestep Complicated Flow Field Prediction with Transonic Airfoil under Data Driven Mode(with Two Kinds of Backbones: FNO2D and UNET2D)\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_unsteady.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_unsteady.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/2D_unsteady.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_unsteady.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_2D_unsteady.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/2D_unsteady.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb b/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb index a6b03cf61e9460e57319be395b670a30081f9a55..fc2322682b8d77c5d31610ef0cc803aaf68ac5e6 100644 --- a/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb @@ -11,7 +11,7 @@ "source": [ "# FNO for 1D Burgers\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_FNO1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_FNO1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_FNO1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_FNO1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb b/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb index 4233a3bf32d2b46ddd604ee4ce90a6d280f83908..256a840952d23462d54cd34c8cc69aed759f40e6 100644 --- a/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb @@ -10,7 +10,7 @@ "source": [ "# KNO for 1D Burgers\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_KNO1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_KNO1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_KNO1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_KNO1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb b/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb index 96ce9ffe3a466c335add347e1ed7b95a0bdf4ee0..3ae29ab6ecee4eb5a646048d81d621031c5240c6 100644 --- a/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb @@ -10,7 +10,7 @@ "source": [ "# Solve Burgers' equation based on Spectral Neural Operator\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_SNO1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_SNO1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_SNO1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_burgers_SNO1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb b/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb index 2c931ed492091d46521a2c3cb3812c466b5a23fa..a8132b5d481d8d41e45a5d36aeaae5ac9035393a 100644 --- a/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb @@ -11,7 +11,7 @@ "source": [ "# Reduced order model for three-dimensional unsteady flow\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_flow_around_sphere.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_flow_around_sphere.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_flow_around_sphere.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_flow_around_sphere.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb index a55d8294721ad96991a7a60047aa5746e8b6fceb..89a55844a45dfca58169a24dfd856c26e3b4da8d 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb @@ -11,7 +11,7 @@ "source": [ "# FNO for 2D Navier-Stokes\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb index f16a175f0335041bf70ffae474724f161a29e93a..18fcb5033257c4cdad474b6c5b35ffebcf6cb985 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb @@ -11,7 +11,7 @@ "source": [ "# FNO for 3D Navier-Stokes\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO3D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO3D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO3D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_FNO3D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb index 76ee28ac09cea775d5b9ce7cc8a06488be5258fb..041c766a4190e3df631ceab9b1a4dcf730267dd0 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb @@ -10,7 +10,7 @@ "source": [ "# KNO for 2D Navier-Stokes\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_KNO2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_KNO2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_KNO2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_KNO2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb index c09ebc187e6d0201d4ebbbe4d4c74e90366f7309..9bf8241c106078623545d69a0cc73a70731ebcae 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb @@ -10,7 +10,7 @@ "source": [ "# Solve Navier-Stokes equation based on Spectral Neural Operator\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb index 6628245c1b7aa06c025ae8e90b6ecedd82b5b2ae..a30fdb9e0f1e0f5f176ced9b9278e653b460be5a 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb @@ -10,7 +10,7 @@ "source": [ "# Solve Navier-Stokes equation based on 3D Spectral Neural Operator\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO3D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO3D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO3D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_driven/mindspore_navier_stokes_SNO3D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb b/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb index 9116ec7e13e7a182440b890c5d7b1a97dca6a674..444f03f6e844a6220e65b3e571ca005e4d03cc0c 100644 --- a/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb +++ b/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb @@ -10,7 +10,7 @@ "source": [ "# PDE-Net for Convection-Diffusion Equation\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_pde_net.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_pde_net.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_pde_net.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_pde_net.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn2d.ipynb b/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn2d.ipynb index fdd8bac1ce08cc75a462306f80512311aa3433e7..b30f5079fda41e736d91c6e992bef6eba2555c88 100644 --- a/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn2d.ipynb +++ b/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn2d.ipynb @@ -10,7 +10,7 @@ "source": [ "# PeRCNN for 2D burgers Equation\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn2d.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn2d.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn2d.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn2d.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn2d.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn2d.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn3d.ipynb b/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn3d.ipynb index b37c50251d6ff3a3c8e3ae55e7c0d95596e28b41..7926b6e8810e87b17d2c9b6a9b5a2de2c666b72b 100644 --- a/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn3d.ipynb +++ b/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn3d.ipynb @@ -7,7 +7,7 @@ "source": [ "# PeRCNN for 3D Reaction-Diffusion Equation\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn3d.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn3d.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn3d.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn3d.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_percnn3d.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/percnn3d.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb b/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb index 17029174660017853b9afeb9da5f5da18c6d3232..5f04ed6130fabb908fdea527c178e6fe89dc3961 100644 --- a/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb +++ b/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb @@ -6,7 +6,7 @@ "source": [ "# PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_phympgn.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_phympgn.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_phympgn.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/data_mechanism_fusion/mindspore_phympgn.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb b/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb index c2c2ae83670cd6088ec35f8e3bc3cc90c6e91527..086f0f4764ffebf193318348961084f01eb204a0 100644 --- a/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb +++ b/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb @@ -7,7 +7,7 @@ "source": [ "# Solving PINNs Based on MindSpore Flow\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/features/mindspore_solve_pinns_by_mindflow.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/features/mindspore_solve_pinns_by_mindflow.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/features/mindspore_solve_pinns_by_mindflow.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/features/mindspore_solve_pinns_by_mindflow.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb)\n", "\n" ] }, diff --git a/docs/mindflow/docs/source_en/mindflow_install.md b/docs/mindflow/docs/source_en/mindflow_install.md index 0a06ce57351bb8632f7454ab20d45f20629fd8af..0e1f0e600120db3526e47e811aa1594db03f4097 100644 --- a/docs/mindflow/docs/source_en/mindflow_install.md +++ b/docs/mindflow/docs/source_en/mindflow_install.md @@ -1,6 +1,6 @@ # MindSpore Flow Installation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/mindflow_install.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/mindflow_install.md)   ## System Environment Information Confirmation diff --git a/docs/mindflow/docs/source_en/physics_driven/boltzmann.ipynb b/docs/mindflow/docs/source_en/physics_driven/boltzmann.ipynb index b7f257a01bdbf4af6f420f12c282c0888488d28b..46f27b579c76985aeeddc484f465eb0c1dd38013 100644 --- a/docs/mindflow/docs/source_en/physics_driven/boltzmann.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/boltzmann.ipynb @@ -6,7 +6,7 @@ "source": [ "# Neural Representation Method for Boltzmann Equation\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_boltzmann.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_boltzmann.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/boltzmann.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_boltzmann.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_boltzmann.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/boltzmann.ipynb)\n", "\n", "## Problem Description\n", "\n", diff --git a/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb b/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb index 983832feba47bbd22c7b55a57cabc3f88bbf948b..213d4c6defaa50802e31584188e1723db0bccbd7 100644 --- a/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb @@ -6,7 +6,7 @@ "source": [ "# 1D Burgers\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_burgers1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_burgers1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_burgers1D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_burgers1D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class, mindspore.jacrev*." ] diff --git a/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb b/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb index 63e569374708f2e0cb4824bcd001c20059ecdbd8..c7d0a34e316e58366d05159ffa5abaf84b1dae58 100644 --- a/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb @@ -7,7 +7,7 @@ "source": [ "# 2D stabilized Darcy Problem\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_darcy2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_darcy2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_darcy2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_darcy2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class, mindspore.jacrev*.\n", "\n", diff --git a/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb b/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb index b6c0edae6e316f480fabde799b3607936efc0e83..9d8542c41c19a49ad38027146b01a9d999acec83 100644 --- a/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb @@ -6,7 +6,7 @@ "source": [ "# PINNs for Kovasznay Flow\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_kovasznay.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_kovasznay.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_kovasznay.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_kovasznay.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb b/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb index e9f8d3d0f544b48b72e1d03e7523753345b31573..1d39bacab9b286543311f3af526f59e53db01417 100644 --- a/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb @@ -6,7 +6,7 @@ "source": [ "# 2D Cylinder Flow\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class, mindspore.jacrev*." ] diff --git a/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb b/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb index 56cb20df4d232f2ddc29a7c80b6f69b052d203b6..e39f6b401b963893684452304e25543afd4e478b 100644 --- a/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb @@ -7,7 +7,7 @@ "source": [ "# Inverse Navier-Stokes Problem\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes_inverse.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes_inverse.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes_inverse.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_navier_stokes_inverse.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class, mindspore.jacrev*." ] diff --git a/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb b/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb index 36d4e3e4bf677b548a1960317d7e43de71fc4e64..8fee5cd87fa5cfb2b67305f94a5bd94f3f4c7463 100644 --- a/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb @@ -6,7 +6,7 @@ "source": [ "# Raynold-averaged Navier-Stokes\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_periodic_hill.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_periodic_hill.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_periodic_hill.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_periodic_hill.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb b/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb index 4edded37c47dad107b43ab0f5edf1800e677ee79..e608e481c1195b92d1242efc92c941a9d05064a1 100644 --- a/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb @@ -6,7 +6,7 @@ "source": [ "# 2D & 3D Poisson\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_geometry.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_geometry.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_geometry.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_geometry.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb)\n", "\n", "This notebook requires MindSpore version >= 2.0.0 to support new APIs including: mindspore.jit, mindspore.jit_class, mindspore.jacrev." ] diff --git a/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb b/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb index eda000a64e6f1f64b468b6ad6d2729dd4d0799d1..ead938fd6d39332760e867f59ede74896bda272e 100644 --- a/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb @@ -6,7 +6,7 @@ "source": [ "# PINNs for Point Source Poisson\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_point_source.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_point_source.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb)\n" + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_point_source.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_poisson_point_source.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb b/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb index 5f9fff81583d9cde97ee83b1dc09a8d6d3cdec4f..f9414a1756eeacedabbe61c86b73a08189bf43b4 100644 --- a/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb @@ -7,7 +7,7 @@ "source": [ "# Two-dimensional Taylor Green Vortex\n", "\n", - "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_taylor_green2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_taylor_green2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb)\n", + "[![DownloadNotebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_taylor_green2D.ipynb) [![DownloadCode](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/en/physics_driven/mindspore_taylor_green2D.py) [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb)\n", "\n", "This notebook requires **MindSpore version >= 2.0.0** to support new APIs including: *mindspore.jit, mindspore.jit_class, mindspore.jacrev*." ] diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb index 6e2bef1bcacf24400cc3427f770d07a3ad4923e9..29fdd2d4d2bf2d8f883e67d2d87d8fbfa5eda443 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb @@ -7,7 +7,7 @@ "source": [ "# 二维声波问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_acoustic.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_acoustic.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_acoustic.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_acoustic.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb index 8685eec9dfc3b23d630ca3abcfbb7b83a946351f..d52085488bc2d28f90b84e5bf22d1ec39dfa000f 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb @@ -7,7 +7,7 @@ "source": [ "# 二维库埃特流\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_couette.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_couette.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_couette.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_couette.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class*。\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb index 9e416a58bf874377a4409dc740b567e39894cc98..6e8babcd8dff7facc17b149648bc40850b4cd4a5 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb @@ -6,7 +6,7 @@ "source": [ "# 一维Lax激波管\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_lax_tube.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_lax_tube.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_lax_tube.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_lax_tube.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class*。\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb index 7730f192bdc3482f63a441c320a0626540480a75..e349ab25e20927e5cbdf4b4a273057202db9ff1a 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb @@ -6,7 +6,7 @@ "source": [ "# 二维黎曼问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_riemann2d.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_riemann2d.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_riemann2d.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_riemann2d.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class*。\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb index eaa667ac2afdf8f5a0d6a892cd2497814a29eb8c..0769d3a564067070bc28f8a12b70b6faa14b3767 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb @@ -6,7 +6,7 @@ "source": [ "# 一维Sod激波管\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_sod_tube.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_sod_tube.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_sod_tube.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/cfd_solver/mindspore_sod_tube.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class*。\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb index b72e8e5d5d838445a43b12365ba2d11eefc0c4cd..8834372281900f8e8a2b3ecef75e10de5b8254f9 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb @@ -12,7 +12,7 @@ "source": [ "# AI工业流体仿真模型——东方御风\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_steady.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_steady.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_steady.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_steady.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/2D_unsteady.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/2D_unsteady.ipynb index 0807f25ae8d4d95107f2ece0233dd97309248560..8ce55ce4c161dc25473dadd462120a3a45d47735 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/2D_unsteady.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/2D_unsteady.ipynb @@ -10,7 +10,7 @@ "source": [ "# 数据驱动(FNO2D和UNET2D两种backbone)下跨声速翼型复杂流场的多时间步预测\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_unsteady.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_unsteady.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/2D_unsteady.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_unsteady.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_2D_unsteady.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/2D_unsteady.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb index 025efaccb1040e8d3aeb09acf409027395e02a30..c0e9b997a68ed0fb68d7ce0704da893a2a25ab14 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb @@ -11,7 +11,7 @@ "source": [ "# 基于FNO求解一维Burgers\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_FNO1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_FNO1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_FNO1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_FNO1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb index 01bac782edee9ed649c4eaa64e44b3a6e76c9f38..27cb6f77a96877a07043348a8cdf15fa640b1b50 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb @@ -10,7 +10,7 @@ "source": [ "# 基于KNO求解一维Burgers\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_KNO1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_KNO1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_KNO1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_KNO1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb index 292aa8709d24f84e13502ed5ed64ed0546729164..624ad3c988985f311ab6643882368c1c55f001c1 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb @@ -10,7 +10,7 @@ "source": [ "# 基于谱神经算子的伯格斯方程求解\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_SNO1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_SNO1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_SNO1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_burgers_SNO1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb index b6337e3c8b28ee06ca7dbc75971a8fd1ce314e98..8552a0d05085a983cea10bb5a95f986297a3e147 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb @@ -11,7 +11,7 @@ "source": [ "# ResUnet3D-三维非定常流场预测\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_flow_around_sphere.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_flow_around_sphere.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_flow_around_sphere.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_flow_around_sphere.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb index e21530732ed0ec4fd2ccefec8d81602fa95eb00d..22c2bed626fde9ea794d1d6e61a9f81a76436ff9 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb @@ -11,7 +11,7 @@ "source": [ "# 基于FNO求解二维Navier-Stokes\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb index d1f12f0bf99cb036c3aab8859ad47eb34fd69898..dc9301ebd749652678333f51c41d2c499d526af0 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb @@ -11,7 +11,7 @@ "source": [ "# 基于Fourier Neural Operator的Navier-Stokes equation求解\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO3D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO3D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO3D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_FNO3D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb)\n", "\n" ] }, diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb index 59c71b521382fd6e7634d080a85c37f4fa826c7e..7e0d3a5d11cf1ab0872d0dee74e467b37adf3011 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb @@ -10,7 +10,7 @@ "source": [ "# 基于KNO求解二维Navier-Stokes\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_KNO2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_KNO2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_KNO2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_KNO2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb index 9505756ac1e5805bafeb65a5666a1d5af6f35c4b..81e1998e05f56ef8d2375865d7f5d3e639f4ae22 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb @@ -10,7 +10,7 @@ "source": [ "# 基于二维谱神经算子的纳维斯托克斯方程求解\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb index 60abc8864c7362e21eda503a24c455f2cc0ae298..35ed1c68f45cdd0300a529107a3d8323c8ef9b0f 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb @@ -10,7 +10,7 @@ "source": [ "# 基于三维谱神经算子的纳维斯托克斯方程求解\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO3D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO3D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO3D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_driven/mindspore_navier_stokes_SNO3D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb index 780b60a92ab6471d554eb1edf3933122224f2e91..4c9ab45e839dc995c4b737e2dfefb0d01492a8f2 100644 --- a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb @@ -11,7 +11,7 @@ "source": [ "# PDE-Net求解对流扩散方程\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_pde_net.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_pde_net.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_pde_net.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_pde_net.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn2d.ipynb b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn2d.ipynb index 928a0f02809316cbd32466ab1d44fcf5757ba262..90a892349f41f8ed426407e80b0c48d2f681167e 100644 --- a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn2d.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn2d.ipynb @@ -10,7 +10,7 @@ "source": [ "# PeRCNN求解2D burgers方程\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn2d.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn2d.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn2d.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn2d.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn2d.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn2d.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn3d.ipynb b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn3d.ipynb index 109c86416655747f0b59b9ad2ba3c9f0ee5e0136..6ebbb8c3ea6e9097126402754ab657522e7b2988 100644 --- a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn3d.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn3d.ipynb @@ -7,7 +7,7 @@ "source": [ "# PeRCNN求解3D 反应扩散方程\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn3d.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn3d.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn3d.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn3d.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_percnn3d.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/percnn3d.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb index b67859894ce3cdb7539bcdbfd9a35b8f307493d4..1f09761139d8a3e91f8c9759d9394d3b5bff1ae0 100644 --- a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb @@ -6,7 +6,7 @@ "source": [ "# 用于时空PDE系统的物理编码消息传递图神经网络\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_phympgn.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_phympgn.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_phympgn.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/data_mechanism_fusion/mindspore_phympgn.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb b/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb index 8a9e74ea8fe292bebf7c2a68bbdc253592ee17a0..6bcd073cdad15c7eb9f15be05fb4151707f86f91 100644 --- a/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb +++ b/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb @@ -7,7 +7,7 @@ "source": [ "# 基于MindSpore Flow求解PINNs问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/features/mindspore_solve_pinns_by_mindflow.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/features/mindspore_solve_pinns_by_mindflow.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/features/mindspore_solve_pinns_by_mindflow.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/features/mindspore_solve_pinns_by_mindflow.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb)\n", "\n" ] }, diff --git a/docs/mindflow/docs/source_zh_cn/mindflow_install.md b/docs/mindflow/docs/source_zh_cn/mindflow_install.md index 1859dfa71a2b9e4bfb45ac9b557c371183cd8823..1b9cfdc717dacb3abba33d5b8ed28af3ef9445ba 100644 --- a/docs/mindflow/docs/source_zh_cn/mindflow_install.md +++ b/docs/mindflow/docs/source_zh_cn/mindflow_install.md @@ -1,6 +1,6 @@ # 安装MindSpore Flow -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/mindflow_install.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/mindflow_install.md)   ## 确认系统环境信息 diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/boltzmann.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/boltzmann.ipynb index dd75a758846a86db21f095d7a2a8b999f0cc45fb..ceedfbe54c990d5ef436ed069eac1b818d89f566 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/boltzmann.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/boltzmann.ipynb @@ -6,7 +6,7 @@ "source": [ "# 基于神经网络表示求解玻尔兹曼方程\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_boltzmann.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_boltzmann.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/boltzmann.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_boltzmann.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_boltzmann.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/boltzmann.ipynb)\n", "\n", "## 问题描述\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb index 3637a01c0666c3035de2e989746ca6f497f3d4af..f71d9278db9ee15561b5fc9d42e78da4c9a961b4 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb @@ -7,7 +7,7 @@ "source": [ "# 一维Burgers问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_burgers1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_burgers1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_burgers1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_burgers1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class,mindspore.jacrev*。" ] diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb index abe6130f99effbd45015ec10c3e9b0e0b8d00e49..780875bb658e3df14d4a9cfc6bcb76a9c5b28344 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb @@ -7,7 +7,7 @@ "source": [ "# 二维定常达西问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_darcy2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_darcy2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_darcy2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_darcy2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class,mindspore.jacrev*。\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb index 974b2b63b303941acb6c170b94ac020ead24b495..9de78d84069c3f1bc201555bfc2fbcc5b22e31be 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb @@ -6,7 +6,7 @@ "source": [ "# 使用PINNs求解Kovasznay流问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_kovasznay.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_kovasznay.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_kovasznay.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_kovasznay.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb index ea5fdbfeb605394e1d789c0fabe27c4c65d58348..5ff308b426cbbad25861bb9413184362200e5e98 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb @@ -6,7 +6,7 @@ "source": [ "# 二维圆柱绕流\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class,mindspore.jacrev*。" ] diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb index 19dad2358ce3b504bcd67fb6e090709a75049772..1e19e2a993981d294d6fcbfbc8bf8e5bf07bbfa1 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb @@ -7,7 +7,7 @@ "source": [ "# Navier-Stokes方程反问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes_inverse.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes_inverse.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes_inverse.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_navier_stokes_inverse.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class,mindspore.jacrev*。" ] diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb index f37b3d3afe8c13afc474f0e6435e9fb47c5998a3..d8dcae2719806ff8d0b214f3ba476a95162eadd7 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb @@ -6,7 +6,7 @@ "source": [ "# 雷诺平均Navier-Stokes方程求解周期山流动\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_periodic_hill.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_periodic_hill.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_periodic_hill.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_periodic_hill.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb index ad71edd69e03e631eb06c97dfc3534a23a55f78e..ee28dd983d9b9ca4ff2425c3cc9e15cefe32980f 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb @@ -6,7 +6,7 @@ "source": [ "# 二维&三维Poisson问题\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_geometry.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_geometry.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_geometry.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_geometry.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class,mindspore.jacrev*。" ] diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_point_source.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_point_source.ipynb index 295c0bc69f018a76bb5ee2d46f62bb3ec75be798..9dacc59a7ce79e3c40d1126b4804d6d5d26f156d 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_point_source.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_point_source.ipynb @@ -6,7 +6,7 @@ "source": [ "# 利用PINNs求解二维带点源泊松方程\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_point_source.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_point_source.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_point_source.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_point_source.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_poisson_point_source.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_point_source.ipynb)\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb index e27105091259e13bcc0a3e4bd2750e00bd446998..98506b1c1afb87658f82727ad179f1b7189e70f5 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb @@ -7,7 +7,7 @@ "source": [ "# 二维Taylor-Green涡流动\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_taylor_green2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_taylor_green2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_taylor_green2D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindflow/zh_cn/physics_driven/mindspore_taylor_green2D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb)\n", "\n", "本案例要求**MindSpore版本 >= 2.0.0**调用如下接口: *mindspore.jit,mindspore.jit_class,mindspore.jacrev*。" ] diff --git a/docs/mindformers/docs/source_en/advanced_development/accuracy_comparison.md b/docs/mindformers/docs/source_en/advanced_development/accuracy_comparison.md index 818ccc6a2893b9878102bee2ca181cb434ca3e78..34694fb05659603e2bcfafba310cd44a6c3c1bfd 100644 --- a/docs/mindformers/docs/source_en/advanced_development/accuracy_comparison.md +++ b/docs/mindformers/docs/source_en/advanced_development/accuracy_comparison.md @@ -1,6 +1,6 @@ # Comparing the Model Precision with that of Megatron-LM -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/accuracy_comparison.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/accuracy_comparison.md) ## 1. Overview @@ -45,7 +45,7 @@ This section describes the model-level precision consistency validation process ### 3.1 Configuration Alignment -The first step of the precision comparison process is to ensure that the two frameworks use **the same model configuration**. This section provides the configuration files of [Megatron-LM](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/accuracy_comparison/example.sh) and [MindSpore Transformers](https://gitee.com/mindspore/mindformers), which define the model structure, parallel policy, and key training hyperparameters. +The first step of the precision comparison process is to ensure that the two frameworks use **the same model configuration**. This section provides the configuration files of [Megatron-LM](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/accuracy_comparison/example.sh) and [MindSpore Transformers](https://gitee.com/mindspore/mindformers), which define the model structure, parallel policy, and key training hyperparameters. The configuration alignment aims to ensure that the two systems are as consistent as possible in the initial state, so that the forward output and gradient backpropagation can be compared. diff --git a/docs/mindformers/docs/source_en/advanced_development/dev_migration.md b/docs/mindformers/docs/source_en/advanced_development/dev_migration.md index 435a63ef9297aa4f357b63e71b171cb7bfde3935..630e8efc3e4c088ceccc1235de8ea383e5f77c35 100644 --- a/docs/mindformers/docs/source_en/advanced_development/dev_migration.md +++ b/docs/mindformers/docs/source_en/advanced_development/dev_migration.md @@ -1,6 +1,6 @@ # Development Migration -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/dev_migration.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/dev_migration.md) This document describes how to develop and build foundation models based on MindSpore Transformers and complete basic adaptation to start the training and inference processes. diff --git a/docs/mindformers/docs/source_en/advanced_development/inference_precision_comparison.md b/docs/mindformers/docs/source_en/advanced_development/inference_precision_comparison.md index 888ac80844e7d5b454254ef3e27497a2a9e8dce9..7a54a3c99eac2a2e7d069bd1786e7ce4591173b4 100644 --- a/docs/mindformers/docs/source_en/advanced_development/inference_precision_comparison.md +++ b/docs/mindformers/docs/source_en/advanced_development/inference_precision_comparison.md @@ -1,6 +1,6 @@ # Comparison of Reasoning Precision -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/inference_precision_comparison.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/inference_precision_comparison.md) ## Overview diff --git a/docs/mindformers/docs/source_en/advanced_development/performance_optimization.md b/docs/mindformers/docs/source_en/advanced_development/performance_optimization.md index 8437f6dc5b7272569670ba05fdea0144b95ce4e5..8c6fc5234a9add1fbdf94da90cdd9cc9ca9c0235 100644 --- a/docs/mindformers/docs/source_en/advanced_development/performance_optimization.md +++ b/docs/mindformers/docs/source_en/advanced_development/performance_optimization.md @@ -1,6 +1,6 @@ # Large Model Performance Optimization Guide -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/performance_optimization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/performance_optimization.md) ## Overview diff --git a/docs/mindformers/docs/source_en/advanced_development/precision_optimization.md b/docs/mindformers/docs/source_en/advanced_development/precision_optimization.md index 7cb4b2fab445b6ef2f1edf900502155efd7d61f7..a0fb77fc1d0cfd050158acd73515fcbc8ba18167 100644 --- a/docs/mindformers/docs/source_en/advanced_development/precision_optimization.md +++ b/docs/mindformers/docs/source_en/advanced_development/precision_optimization.md @@ -1,6 +1,6 @@ # Large Model Precision Optimization Guide -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/precision_optimization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/precision_optimization.md) ## Overview and Scenarios of Precision Issues diff --git a/docs/mindformers/docs/source_en/advanced_development/training_template_instruction.md b/docs/mindformers/docs/source_en/advanced_development/training_template_instruction.md index ee792e66259a2078004213fea978a82f58b827e1..0a7d5929b42c3ad0c2c26757e72daa08d9bbc333 100644 --- a/docs/mindformers/docs/source_en/advanced_development/training_template_instruction.md +++ b/docs/mindformers/docs/source_en/advanced_development/training_template_instruction.md @@ -1,6 +1,6 @@ # Training Configuration Template Instruction -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/training_template_instruction.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/training_template_instruction.md) ## Overview diff --git a/docs/mindformers/docs/source_en/advanced_development/weight_transfer.md b/docs/mindformers/docs/source_en/advanced_development/weight_transfer.md index 048d0769a6d7afe9ab613050ae66d45d3eb3894c..f85e21a33a7bc2bddd46c844e36aafdbe420ea55 100644 --- a/docs/mindformers/docs/source_en/advanced_development/weight_transfer.md +++ b/docs/mindformers/docs/source_en/advanced_development/weight_transfer.md @@ -1,6 +1,6 @@ # Weight Conversion Development Adaptation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/weight_transfer.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/weight_transfer.md) This document will guide developers on how to adapt the weight conversion functionality of new models to MindSpore Transformers during development, enabling users to convert Hugging Face weights into MindSpore Transformers weights through a unified automatic conversion process, thus initiating the inference workflow. diff --git a/docs/mindformers/docs/source_en/advanced_development/yaml_config_inference.md b/docs/mindformers/docs/source_en/advanced_development/yaml_config_inference.md index 0b7c4e63d586dca0f25d3f609f6eeea2561e98c7..df5920bee9c29f5d4ea5193c130eed441bab699a 100644 --- a/docs/mindformers/docs/source_en/advanced_development/yaml_config_inference.md +++ b/docs/mindformers/docs/source_en/advanced_development/yaml_config_inference.md @@ -1,6 +1,6 @@ # Guide to Using the Inference Configuration Template -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/yaml_config_inference.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/advanced_development/yaml_config_inference.md) ## Overview diff --git a/docs/mindformers/docs/source_en/contribution/mindformers_contribution.md b/docs/mindformers/docs/source_en/contribution/mindformers_contribution.md index 24ad52ad0087ec9f859cb37a99e5840fe3f1f191..d4569c36dc200ec103d3026406e989098e370967 100644 --- a/docs/mindformers/docs/source_en/contribution/mindformers_contribution.md +++ b/docs/mindformers/docs/source_en/contribution/mindformers_contribution.md @@ -1,6 +1,6 @@ # MindSpore Transformers Contribution Guidelines -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/contribution/mindformers_contribution.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/contribution/mindformers_contribution.md) ## Contributing Code to MindSpore Transformers diff --git a/docs/mindformers/docs/source_en/contribution/modelers_contribution.md b/docs/mindformers/docs/source_en/contribution/modelers_contribution.md index bf7b6585a578ce08be3301972c2ec4b24f32472d..ee27fef36e1e8e2f4fafd0d71ad714eefa84b917 100644 --- a/docs/mindformers/docs/source_en/contribution/modelers_contribution.md +++ b/docs/mindformers/docs/source_en/contribution/modelers_contribution.md @@ -1,6 +1,6 @@ # Modelers Contribution Guidelines -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/contribution/modelers_contribution.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/contribution/modelers_contribution.md) ## Upload a Model to the Modelers Community diff --git a/docs/mindformers/docs/source_en/env_variables.md b/docs/mindformers/docs/source_en/env_variables.md index 613c4bd1902344aac3fe864c0c9485f7e9c2b338..8bbdd4a8b3ab6eaf6bbfc5d6dc28856479eed72f 100644 --- a/docs/mindformers/docs/source_en/env_variables.md +++ b/docs/mindformers/docs/source_en/env_variables.md @@ -1,6 +1,6 @@ # Environment Variable Descriptions -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/env_variables.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/env_variables.md) The following environment variables are supported by MindSpore Transformers. diff --git a/docs/mindformers/docs/source_en/example/distilled/distilled.md b/docs/mindformers/docs/source_en/example/distilled/distilled.md index 59a02ec0e68513c9682dab857f66d23258ec946f..1e79eaf2d728bd0d042998bfbd59748eb5ee4335 100644 --- a/docs/mindformers/docs/source_en/example/distilled/distilled.md +++ b/docs/mindformers/docs/source_en/example/distilled/distilled.md @@ -1,6 +1,6 @@ # Practice Case of Using DeepSeek-R1 for Model Distillation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/example/distilled/distilled.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/example/distilled/distilled.md) This case uses OpenR1-Qwen-7B as an example to describe how to use DeepSeek-R1 to perform knowledge distillation and fine-tuning on the Qwen2.5-Math-7B model based on the MindSpore framework and MindSpore Transformers LLM suite, to improve its performance in mathematical inference tasks. This case covers the entire process from environment configuration, data generation, and preprocessing to model fine-tuning and inference testing. You can perform the following steps to learn how to use DeepSeek-R1 to generate inference data, filter out incorrect data, process datasets, and fine-tune the model to solve complex mathematical problems. @@ -16,7 +16,7 @@ For more information, see [DeepSeek-R1-Distill-Qwen-7B](https://hf-mirror.com/de For details, see [MindSpore Transformers Installation Guidelines](https://www.mindspore.cn/mindformers/docs/en/master/installation.html). -Copy the [distilled](https://gitee.com/mindspore/docs/tree/master/docs/mindformers/docs/source_zh_cn/example/distilled/distilled) folder of this case to the root directory of the MindSpore Transformers source code. +Copy the [distilled](https://atomgit.com/mindspore/docs/tree/master/docs/mindformers/docs/source_zh_cn/example/distilled/distilled) folder of this case to the root directory of the MindSpore Transformers source code. The final directory structure is as follows: diff --git a/docs/mindformers/docs/source_en/faq/feature_related.md b/docs/mindformers/docs/source_en/faq/feature_related.md index ce8c8dc44acf2b3893bc10d4d9558dfae5821391..688f1aa78200196f6b9ff94ec0e62b520149dcf4 100644 --- a/docs/mindformers/docs/source_en/faq/feature_related.md +++ b/docs/mindformers/docs/source_en/faq/feature_related.md @@ -1,6 +1,6 @@ # Feature-Related FAQ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/faq/feature_related.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/faq/feature_related.md) ## Q: What is the difference between the names MindSpore Transformers and MindFormers? diff --git a/docs/mindformers/docs/source_en/faq/model_related.md b/docs/mindformers/docs/source_en/faq/model_related.md index 07bc072e30283ffdd98dad4a4a61c3d70986bdce..cb4a0a2fd32cfee342237955b2cd990b53bf1e5e 100644 --- a/docs/mindformers/docs/source_en/faq/model_related.md +++ b/docs/mindformers/docs/source_en/faq/model_related.md @@ -1,6 +1,6 @@ # Model-Related FAQ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/faq/model_related.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/faq/model_related.md) ## Q: How to deal with network runtime error “Out of Memory” (`OOM`)? diff --git a/docs/mindformers/docs/source_en/feature/ckpt.md b/docs/mindformers/docs/source_en/feature/ckpt.md index 9758105f5f8f0052925d0f652d1ec7d32263f8f4..72aabbe554814adbdb139014273abaa6eb1e96a0 100644 --- a/docs/mindformers/docs/source_en/feature/ckpt.md +++ b/docs/mindformers/docs/source_en/feature/ckpt.md @@ -1,6 +1,6 @@ # Ckpt Weights -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/ckpt.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/ckpt.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/configuration.md b/docs/mindformers/docs/source_en/feature/configuration.md index ac03777f3fb53b8ec433c037a101c2984e92855d..943bc0c5276e80077f1acd51c86b51717b23e1bd 100644 --- a/docs/mindformers/docs/source_en/feature/configuration.md +++ b/docs/mindformers/docs/source_en/feature/configuration.md @@ -1,6 +1,6 @@ # Configuration File Descriptions -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/configuration.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/configuration.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/dataset.md b/docs/mindformers/docs/source_en/feature/dataset.md index 573d765707eca3fc0d7b17b6b5804efb6856df16..4fcb39d17b8415e901fd43adf1e4be39b4a6b09d 100644 --- a/docs/mindformers/docs/source_en/feature/dataset.md +++ b/docs/mindformers/docs/source_en/feature/dataset.md @@ -1,6 +1,6 @@ # Dataset -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/dataset.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/dataset.md) MindSpore Transformers currently supports multiple types of dataset loading methods, covering common open-source and custom scenarios. Specifically, it includes: diff --git a/docs/mindformers/docs/source_en/feature/high_availability.md b/docs/mindformers/docs/source_en/feature/high_availability.md index 8e40101bd2126bff1ea3e239ea910ebc7301b3a9..154551cf73b596248f67946474aa9f52bfad1dad 100644 --- a/docs/mindformers/docs/source_en/feature/high_availability.md +++ b/docs/mindformers/docs/source_en/feature/high_availability.md @@ -1,6 +1,6 @@ # Training High Availability -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/high_availability.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/high_availability.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/load_huggingface_config.md b/docs/mindformers/docs/source_en/feature/load_huggingface_config.md index aa66d6691f5dfaa9574c640cbba9055761728317..5d3bfb4ed1a0047c356b6871958231af12cdef37 100644 --- a/docs/mindformers/docs/source_en/feature/load_huggingface_config.md +++ b/docs/mindformers/docs/source_en/feature/load_huggingface_config.md @@ -1,6 +1,6 @@ # Loading Hugging Face Model Configuration -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/load_huggingface_config.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/load_huggingface_config.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/logging.md b/docs/mindformers/docs/source_en/feature/logging.md index f210f6ba9f4eca896b8289a4991b7a9157627148..165ab0431aeb52631bc04a6b3876aef542d6482d 100644 --- a/docs/mindformers/docs/source_en/feature/logging.md +++ b/docs/mindformers/docs/source_en/feature/logging.md @@ -1,6 +1,6 @@ # Logs -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/logging.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/logging.md) ## Logs Saving @@ -46,7 +46,7 @@ By default, MindSpore Transformers specifies the file output path as `./output` If you need to re-specify the output log folder, you can modify the configuration in yaml. -Taking [`DeepSeek-V3` pre-training yaml](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, the following configuration can be made: +Taking [`DeepSeek-V3` pre-training yaml](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, the following configuration can be made: ```yaml output_dir: './output' # path to save logs/checkpoint/strategy diff --git a/docs/mindformers/docs/source_en/feature/memory_optimization.md b/docs/mindformers/docs/source_en/feature/memory_optimization.md index 990105717e5d03c6f24ef17285b62f948a2bd014..673dc3a5d34d100dac55b75d6b3ff5868032619d 100644 --- a/docs/mindformers/docs/source_en/feature/memory_optimization.md +++ b/docs/mindformers/docs/source_en/feature/memory_optimization.md @@ -1,6 +1,6 @@ # Memory Optimization -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/memory_optimization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/memory_optimization.md) ## Recomputation @@ -14,7 +14,7 @@ Recomputation can significantly reduce activation memory usage during training b Users can enable recomputation by adding a `recompute_config` module to the YAML configuration file used for model training. -Taking the [DeepSeek-V3 pre-training's YAML file](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, it could be configured as follows: +Taking the [DeepSeek-V3 pre-training's YAML file](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, it could be configured as follows: ```yaml # recompute config diff --git a/docs/mindformers/docs/source_en/feature/monitor.md b/docs/mindformers/docs/source_en/feature/monitor.md index adc00e4e1f22532ca29461d43b6c4a4872b77f3b..38f8656cbee96f44b3c42b2588c988a1fb6df740 100644 --- a/docs/mindformers/docs/source_en/feature/monitor.md +++ b/docs/mindformers/docs/source_en/feature/monitor.md @@ -1,6 +1,6 @@ # Training Metrics Monitoring -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/monitor.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/monitor.md) MindSpore Transformers supports TensorBoard as a visualization tool for monitoring and analyzing various metrics and information during training. TensorBoard is a standalone visualization library that requires the user to manually install it, and it provides an interactive way to view loss, precision, learning rate, gradient distribution, and a variety of other things in training. After the user configures TensorBoard in the training `yaml` file, the event file is generated and updated in real time during the training of the large model, and the training data can be viewed via commands. diff --git a/docs/mindformers/docs/source_en/feature/other_training_features.md b/docs/mindformers/docs/source_en/feature/other_training_features.md index ae997249d69b0f3899feec7eda941f873c856eb1..c4b29508f3611d5643d318bb2ea86eeb54fdc9c9 100644 --- a/docs/mindformers/docs/source_en/feature/other_training_features.md +++ b/docs/mindformers/docs/source_en/feature/other_training_features.md @@ -1,6 +1,6 @@ # Other Training Features -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/other_training_features.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/other_training_features.md) During the large-scale training of deep learning models, challenges such as memory limitations, effective utilization of computational resources, and synchronization issues in distributed training are encountered. To address these challenges, training optimization algorithms are employed to enhance training efficiency, accelerate convergence, and improve the final model performance. diff --git a/docs/mindformers/docs/source_en/feature/parallel_training.md b/docs/mindformers/docs/source_en/feature/parallel_training.md index 160bac3de568a82063715ffa3621ed34d76047e7..c292fa75ebba9ee89dd0eea0f1c207b8b68e12f7 100644 --- a/docs/mindformers/docs/source_en/feature/parallel_training.md +++ b/docs/mindformers/docs/source_en/feature/parallel_training.md @@ -1,6 +1,6 @@ # Distributed Parallelism Training -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/parallel_training.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/parallel_training.md) ## Parallel Modes and Application Scenarios diff --git a/docs/mindformers/docs/source_en/feature/pma_fused_checkpoint.md b/docs/mindformers/docs/source_en/feature/pma_fused_checkpoint.md index be8feddaabc5bb46adbc110606234de81856e053..aa86fe292b5b34bba73ff01ba07f3cb6c23b0ba9 100644 --- a/docs/mindformers/docs/source_en/feature/pma_fused_checkpoint.md +++ b/docs/mindformers/docs/source_en/feature/pma_fused_checkpoint.md @@ -1,6 +1,6 @@ # Pre-trained Model Average Weight Consolidation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/pma_fused_checkpoint.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/pma_fused_checkpoint.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/quantization.md b/docs/mindformers/docs/source_en/feature/quantization.md index 27b4aba8c0e115147f698ff8b53f6fcbb7cc1498..0ddf2e5861ccfaa8cdd2b4c24761f032a5c9e0c7 100644 --- a/docs/mindformers/docs/source_en/feature/quantization.md +++ b/docs/mindformers/docs/source_en/feature/quantization.md @@ -1,6 +1,6 @@ # Quantization -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/quantization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/quantization.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/resume_training.md b/docs/mindformers/docs/source_en/feature/resume_training.md index 15d6da93f87596d6ad735fcca2f8cafad1ab6b9c..17ef35532307d75f8d69cdee9ed4fdfe0c38eefa 100644 --- a/docs/mindformers/docs/source_en/feature/resume_training.md +++ b/docs/mindformers/docs/source_en/feature/resume_training.md @@ -1,6 +1,6 @@ # Resumable Training After Breakpoint -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/resume_training.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/resume_training.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/safetensors.md b/docs/mindformers/docs/source_en/feature/safetensors.md index de08ae6a63ac2c9ef90cb23bb1c8b2c8feb387de..4ba5e74e91314ca5ac9cc128fdabe891ccface7e 100644 --- a/docs/mindformers/docs/source_en/feature/safetensors.md +++ b/docs/mindformers/docs/source_en/feature/safetensors.md @@ -1,6 +1,6 @@ # Safetensors Weights -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/safetensors.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/safetensors.md) ## Overview @@ -119,7 +119,7 @@ Users can control the weight saving behavior by modifying the configuration file Users can modify the fields under `CheckpointMonitor` in the `yaml` configuration file to control the weight saving behavior. -Taking [`DeepSeek-V3` pre-training yaml](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, the following configuration can be made: +Taking [`DeepSeek-V3` pre-training yaml](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, the following configuration can be made: ```yaml # callbacks diff --git a/docs/mindformers/docs/source_en/feature/skip_data_and_ckpt_health_monitor.md b/docs/mindformers/docs/source_en/feature/skip_data_and_ckpt_health_monitor.md index 9f266c9a3e5e68b078d692b458a27b3322005e65..6f1dfab3e2c7b8037dd26da9f65eb9361e792faa 100644 --- a/docs/mindformers/docs/source_en/feature/skip_data_and_ckpt_health_monitor.md +++ b/docs/mindformers/docs/source_en/feature/skip_data_and_ckpt_health_monitor.md @@ -1,6 +1,6 @@ # Data Skip And Checkpoint Health Monitor -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/skip_data_and_ckpt_health_monitor.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/skip_data_and_ckpt_health_monitor.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/start_tasks.md b/docs/mindformers/docs/source_en/feature/start_tasks.md index 3ebb7f160021a600d12a5f54454cf9ce970fefa9..851ef413e90a7671c209505fcf9f00daa5fbd780 100644 --- a/docs/mindformers/docs/source_en/feature/start_tasks.md +++ b/docs/mindformers/docs/source_en/feature/start_tasks.md @@ -1,6 +1,6 @@ # Start Tasks -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/start_tasks.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/start_tasks.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/tokenizer.md b/docs/mindformers/docs/source_en/feature/tokenizer.md index 34dbf6d8f15aaa1e00f7b2079e91c4034991d0f1..6adfdb93a217c445c1368e6c32f4ef2c21f53a47 100644 --- a/docs/mindformers/docs/source_en/feature/tokenizer.md +++ b/docs/mindformers/docs/source_en/feature/tokenizer.md @@ -1,6 +1,6 @@ # Using Tokenizer -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/tokenizer.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/tokenizer.md) ## Overview diff --git a/docs/mindformers/docs/source_en/feature/training_hyperparameters.md b/docs/mindformers/docs/source_en/feature/training_hyperparameters.md index 04c980f419e8afe1fd87cd946c412b7b246f36f8..6135d208396c979605eccdd02758ae0243d97a58 100644 --- a/docs/mindformers/docs/source_en/feature/training_hyperparameters.md +++ b/docs/mindformers/docs/source_en/feature/training_hyperparameters.md @@ -1,6 +1,6 @@ # Training Hyperparameters -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/training_hyperparameters.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/feature/training_hyperparameters.md) Hyperparameters significantly affect model performance, with different settings potentially leading to vastly different outcomes. @@ -22,7 +22,7 @@ Setting the learning rate too high can prevent the model from converging, while Users can utilize the learning rate by adding an `lr_schedule` module to the YAML configuration file used for model training. -Taking the [DeepSeek-V3 pre-training's YAML file](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, it could be configured as follows: +Taking the [DeepSeek-V3 pre-training's YAML file](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, it could be configured as follows: ```yaml # lr schedule @@ -124,7 +124,7 @@ Currently, MindSpore Transformers only supports the [AdamW optimizer](https://ww Users can use the optimizer by adding an `optimizer` module to the YAML configuration file for model training. -Taking the [DeepSeek-V3 pre-training's YAML file](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, it could be configured like this: +Taking the [DeepSeek-V3 pre-training's YAML file](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) as an example, it could be configured like this: ```yaml # optimizer diff --git a/docs/mindformers/docs/source_en/guide/deployment.md b/docs/mindformers/docs/source_en/guide/deployment.md index c1f4f3b7350595ca0db0a13322ed88572a2de511..99d73cf09b4e4df95e14b5e46e652214e5a0feb3 100644 --- a/docs/mindformers/docs/source_en/guide/deployment.md +++ b/docs/mindformers/docs/source_en/guide/deployment.md @@ -1,6 +1,6 @@ # Service Deployment -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/deployment.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/deployment.md) ## vLLM Service Deployment diff --git a/docs/mindformers/docs/source_en/guide/evaluation.md b/docs/mindformers/docs/source_en/guide/evaluation.md index b7cd5a84f23fd1875cb64fdcdd944f6466655078..04734f3237eca6b6795488d02c8635f452794f6d 100644 --- a/docs/mindformers/docs/source_en/guide/evaluation.md +++ b/docs/mindformers/docs/source_en/guide/evaluation.md @@ -1,6 +1,6 @@ # Evaluation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/evaluation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/evaluation.md) ## Overview diff --git a/docs/mindformers/docs/source_en/guide/inference.md b/docs/mindformers/docs/source_en/guide/inference.md index d44f833273fbee84ccd07762a5156a6872fcacc3..08e1b94a95d91ce28a8799595a83b5ff561a982f 100644 --- a/docs/mindformers/docs/source_en/guide/inference.md +++ b/docs/mindformers/docs/source_en/guide/inference.md @@ -1,6 +1,6 @@ # Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/inference.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/inference.md) ## Overview diff --git a/docs/mindformers/docs/source_en/guide/pre_training.md b/docs/mindformers/docs/source_en/guide/pre_training.md index e057c383d8f4737d41cd61bce44c2972b0e80b27..29542836fde251460f655d14ee99b9fc23ddc2ae 100644 --- a/docs/mindformers/docs/source_en/guide/pre_training.md +++ b/docs/mindformers/docs/source_en/guide/pre_training.md @@ -1,6 +1,6 @@ # Pretraining -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/pre_training.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/pre_training.md) ## Overview diff --git a/docs/mindformers/docs/source_en/guide/supervised_fine_tuning.md b/docs/mindformers/docs/source_en/guide/supervised_fine_tuning.md index aca9412866734c313f3fc918a57d5936569d2c04..175cc686564ec6da90d4f09bafc12220ad63e866 100644 --- a/docs/mindformers/docs/source_en/guide/supervised_fine_tuning.md +++ b/docs/mindformers/docs/source_en/guide/supervised_fine_tuning.md @@ -1,6 +1,6 @@ # Supervised Fine-Tuning (SFT) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/supervised_fine_tuning.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/guide/supervised_fine_tuning.md) ## Overview @@ -64,7 +64,7 @@ This guide uses [llm-wizard/alpaca-gpt4-data](https://huggingface.co/datasets/ll #### Single-NPU Training -First, prepare the configuration file. This guide provides a fine-tuning configuration file for the Qwen2.5-7B model, `finetune_qwen2_5_7b_8k_1p.yaml`, available for download from the [Gitee repository](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k_1p.yaml). +First, prepare the configuration file. This guide provides a fine-tuning configuration file for the Qwen2.5-7B model, `finetune_qwen2_5_7b_8k_1p.yaml`, available for download from the [Gitee repository](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k_1p.yaml). > Due to limited single-NPU memory, the `num_layers` in the configuration file is set to 4, used as an example only. @@ -104,7 +104,7 @@ run_mode: Running mode, train: training, finetune: fine-tuning, predict #### Single-Node Training -First, prepare the configuration file. This guide provides a fine-tuning configuration file for the Qwen2.5-7B model, `finetune_qwen2_5_7b_8k.yaml`, available for download from the [Gitee repository](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k.yaml). +First, prepare the configuration file. This guide provides a fine-tuning configuration file for the Qwen2.5-7B model, `finetune_qwen2_5_7b_8k.yaml`, available for download from the [Gitee repository](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k.yaml). Then, modify the parameters in the configuration file based on actual conditions, mainly including: diff --git a/docs/mindformers/docs/source_en/installation.md b/docs/mindformers/docs/source_en/installation.md index 72c4bcbc0d6b153147c7e331212a4e6cde21bdf8..ff8af29a809811942430e6b22408e566b30a9c50 100644 --- a/docs/mindformers/docs/source_en/installation.md +++ b/docs/mindformers/docs/source_en/installation.md @@ -1,6 +1,6 @@ # Installation Guidelines -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/installation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/installation.md) ## Confirming Version Matching Relationship diff --git a/docs/mindformers/docs/source_en/introduction/models.md b/docs/mindformers/docs/source_en/introduction/models.md index 898ebeb0931a64c6a4cae3cc831beae011d6c13d..adfd6436a4517b1d95e09b8d309eaa46427b37a7 100644 --- a/docs/mindformers/docs/source_en/introduction/models.md +++ b/docs/mindformers/docs/source_en/introduction/models.md @@ -1,6 +1,6 @@ # Models -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/introduction/models.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/introduction/models.md) The following table lists models supported by MindSpore Transformers. diff --git a/docs/mindformers/docs/source_en/introduction/overview.md b/docs/mindformers/docs/source_en/introduction/overview.md index d681e390bf3c1edd3ccfa253f5cf6b352304087d..f7c604885bea4bb4bbfa2d7d31456dc696a55453 100644 --- a/docs/mindformers/docs/source_en/introduction/overview.md +++ b/docs/mindformers/docs/source_en/introduction/overview.md @@ -1,6 +1,6 @@ # Overall Structure -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/introduction/overview.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_en/introduction/overview.md) ## Overview diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/accuracy_comparison.md b/docs/mindformers/docs/source_zh_cn/advanced_development/accuracy_comparison.md index 58b9bbec739598976d580f0f48c99274ba7fe123..7c66c7a8e9f48c018aabd5beb4fafca2da8a0b10 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/accuracy_comparison.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/accuracy_comparison.md @@ -1,6 +1,6 @@ # 与 Megatron-LM 比对训练精度 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/accuracy_comparison.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/accuracy_comparison.md) ## 1. 概述 @@ -45,7 +45,7 @@ Megatron-LM 是一个面向大规模训练任务的成熟框架,具备高度 ### 3.1 配置对齐 -精度对比流程的第一步是确保两个框架使用**完全一致的模型配置**。为此,本小节提供了 [Megatron-LM](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/accuracy_comparison/example.sh) 与 [MindSpore Transformers](https://gitee.com/mindspore/mindformers) 的对应配置文件,分别定义了模型结构、并行策略以及关键训练超参数。 +精度对比流程的第一步是确保两个框架使用**完全一致的模型配置**。为此,本小节提供了 [Megatron-LM](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/accuracy_comparison/example.sh) 与 [MindSpore Transformers](https://gitee.com/mindspore/mindformers) 的对应配置文件,分别定义了模型结构、并行策略以及关键训练超参数。 配置对齐的目标是保证两个系统在初始化状态下尽可能一致,从而使得后续的前向输出、梯度反向传播等比对具有可比性。 diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/dev_migration.md b/docs/mindformers/docs/source_zh_cn/advanced_development/dev_migration.md index 2e3ac6ad295731ad003c6cdf672012096115ed40..5c6bc3436731ea256e541663d17c34a483c101c8 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/dev_migration.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/dev_migration.md @@ -1,6 +1,6 @@ # 开发迁移 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/dev_migration.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/dev_migration.md) 本文档将指导用户如何基于MindSpore Transformers构建一个大模型,并完成最基本的适配,以拉起训练和推理流程。 diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/inference_precision_comparison.md b/docs/mindformers/docs/source_zh_cn/advanced_development/inference_precision_comparison.md index 897ef7aa4920171dc2ecee2c09985767a1b58ce5..bb35ec5c975d7a58174b0f438c5f9e605fd24f7a 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/inference_precision_comparison.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/inference_precision_comparison.md @@ -1,6 +1,6 @@ # 推理精度比对 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/infernece_precision_comparison.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/infernece_precision_comparison.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/performance_optimization.md b/docs/mindformers/docs/source_zh_cn/advanced_development/performance_optimization.md index 1c5485ff08c86220b8e4466e20e279e2b4886830..10c307a9d1b8d615d25f18e82c51f2fde2ec3f0c 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/performance_optimization.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/performance_optimization.md @@ -1,6 +1,6 @@ # 大模型性能调优指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/performance_optimization.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/performance_optimization.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/precision_optimization.md b/docs/mindformers/docs/source_zh_cn/advanced_development/precision_optimization.md index b18633024eae02a1735f696a7b5f2a653cfb32bb..1715cb0fcfb2d29516c0038e31474323ce1b27ce 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/precision_optimization.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/precision_optimization.md @@ -1,6 +1,6 @@ # 大模型精度调优指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/precision_optimization.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/precision_optimization.md) ## 精度问题概述和场景 diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/training_template_instruction.md b/docs/mindformers/docs/source_zh_cn/advanced_development/training_template_instruction.md index e7b90ccaca5db346475433b9c8f14382d842811c..483b99810817ec624480e720b8498704bb8fe77a 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/training_template_instruction.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/training_template_instruction.md @@ -1,6 +1,6 @@ # 训练配置模板使用说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/training_template_instruction.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/training_template_instruction.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/weight_transfer.md b/docs/mindformers/docs/source_zh_cn/advanced_development/weight_transfer.md index 334b0f9cd11e9cd79916db7344b2072710fd274b..9139138ffda4dc5538db404e29a9d84b35ca9cca 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/weight_transfer.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/weight_transfer.md @@ -1,6 +1,6 @@ # 权重转换开发适配 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/weight_transfer.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/weight_transfer.md) 本文档将指导开发者在开发适配模型时,如何将新模型适配MindSpore Transformers的权重转换功能,让使用者能够通过MindSpore Transformers统一的自动转换流程,将新模型的Hugging Face权重转换成MindSpore Transformers的权重,以拉起推理流程。 diff --git a/docs/mindformers/docs/source_zh_cn/advanced_development/yaml_config_inference.md b/docs/mindformers/docs/source_zh_cn/advanced_development/yaml_config_inference.md index bfc635019e248e8e08e9ea7b445bb2cd44ae3459..0cca5c4fc6161c01997567b13e636252c510e045 100644 --- a/docs/mindformers/docs/source_zh_cn/advanced_development/yaml_config_inference.md +++ b/docs/mindformers/docs/source_zh_cn/advanced_development/yaml_config_inference.md @@ -1,6 +1,6 @@ # 推理配置模板使用指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/yaml_config_inference.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/advanced_development/yaml_config_inference.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/contribution/mindformers_contribution.md b/docs/mindformers/docs/source_zh_cn/contribution/mindformers_contribution.md index 61c113943ae78ec2bf82dd92c856f0ac3f2c1019..5391874b2447ed6b2dc87507df2180ccc1bee081 100644 --- a/docs/mindformers/docs/source_zh_cn/contribution/mindformers_contribution.md +++ b/docs/mindformers/docs/source_zh_cn/contribution/mindformers_contribution.md @@ -1,6 +1,6 @@ # MindSpore Transformers贡献指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/contribution/mindformers_contribution.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/contribution/mindformers_contribution.md) ## 贡献代码至MindSpore Transformers diff --git a/docs/mindformers/docs/source_zh_cn/contribution/modelers_contribution.md b/docs/mindformers/docs/source_zh_cn/contribution/modelers_contribution.md index 13607b6a844d50ee319c4ab7411b8d7b722717c2..4538b6ee855e4ce88781b5c403c3e1351faadc77 100644 --- a/docs/mindformers/docs/source_zh_cn/contribution/modelers_contribution.md +++ b/docs/mindformers/docs/source_zh_cn/contribution/modelers_contribution.md @@ -1,6 +1,6 @@ # 魔乐社区贡献指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/contribution/modelers_contribution.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/contribution/modelers_contribution.md) ## 上传模型至魔乐社区 diff --git a/docs/mindformers/docs/source_zh_cn/env_variables.md b/docs/mindformers/docs/source_zh_cn/env_variables.md index 511572040fd530f2dfd9f5ac53d9a817185dd5ab..f94f485ce12c53a01684e88ecc8dcfc1c044ae61 100644 --- a/docs/mindformers/docs/source_zh_cn/env_variables.md +++ b/docs/mindformers/docs/source_zh_cn/env_variables.md @@ -1,6 +1,6 @@ # 环境变量说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/env_variables.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/env_variables.md) 以下是 MindSpore Transformers 支持的环境变量。 diff --git a/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron.md b/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron.md index 8e1dbbbe5b02e4ed98d99301809fa587ce91325b..9da35e264abac1cc1bec903ab3a7ccc871b35388 100644 --- a/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron.md +++ b/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron.md @@ -1,6 +1,6 @@ # 转换模型权重为Megatron模型权重的实践案例 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron.md) 本案例提供了一个将 [MindSpore Transformers](https://gitee.com/mindspore/mindformers) 库的模型权重(safetensors格式)转换为 [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) 库的模型权重格式的方法,以便后续进行精度比对或迁移训练。转换后的 Megatron-LM 权重为bf16类型。 @@ -14,7 +14,7 @@ git clone https://github.com/NVIDIA/Megatron-LM.git -b core_r0.12.0 ``` -2. 拷贝[转换脚本](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron/loader_core_mf.py)到 Megatron-LM/tools/checkpoint/ 目录下。 +2. 拷贝[转换脚本](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/convert_ckpt_to_megatron/convert_ckpt_to_megatron/loader_core_mf.py)到 Megatron-LM/tools/checkpoint/ 目录下。 ## 模型权重准备 diff --git a/docs/mindformers/docs/source_zh_cn/example/distilled/distilled.md b/docs/mindformers/docs/source_zh_cn/example/distilled/distilled.md index 535782dbd8c7892f19c9f29d60bea8f657bf3bc2..99f641942243e6aee14b4094e60b0d455dadfd48 100644 --- a/docs/mindformers/docs/source_zh_cn/example/distilled/distilled.md +++ b/docs/mindformers/docs/source_zh_cn/example/distilled/distilled.md @@ -1,6 +1,6 @@ # 使用DeepSeek-R1进行模型蒸馏的实践案例 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/distilled/distilled.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/distilled/distilled.md) 本案例参考OpenR1-Qwen-7B,旨在指导用户基于MindSpore框架和MindSpore Transformers大模型套件,使用DeepSeek-R1对Qwen2.5-Math-7B模型进行知识蒸馏和微调,以提升其在数学推理任务上的性能。案例涵盖了从环境配置、数据生成、预处理到模型微调和推理测试的完整流程。通过以下步骤,您可以了解如何利用DeepSeek-R1生成推理数据、过滤错误数据、处理数据集,并最终对模型进行微调以解决复杂的数学问题。 @@ -16,7 +16,7 @@ 安装方式请参考[MindSpore Transformers安装指南](https://www.mindspore.cn/mindformers/docs/zh-CN/master/installation.html)。 -并将本案例的[distilled](https://gitee.com/mindspore/docs/tree/master/docs/mindformers/docs/source_zh_cn/example/distilled/distilled)文件夹,复制到MindSpore Transformers源码根目录下。 +并将本案例的[distilled](https://atomgit.com/mindspore/docs/tree/master/docs/mindformers/docs/source_zh_cn/example/distilled/distilled)文件夹,复制到MindSpore Transformers源码根目录下。 最后得到的目录结构如下: diff --git a/docs/mindformers/docs/source_zh_cn/faq/feature_related.md b/docs/mindformers/docs/source_zh_cn/faq/feature_related.md index f699c5f68b8b695afbc78be84b3637f8e8482929..9958173e55d70a82f0fafa150868cbbd45c5e764 100644 --- a/docs/mindformers/docs/source_zh_cn/faq/feature_related.md +++ b/docs/mindformers/docs/source_zh_cn/faq/feature_related.md @@ -1,6 +1,6 @@ # 功能相关 FAQ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/faq/feature_related.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/faq/feature_related.md) ## Q: MindSpore Transformers和MindFormers两个名字的区别? diff --git a/docs/mindformers/docs/source_zh_cn/faq/model_related.md b/docs/mindformers/docs/source_zh_cn/faq/model_related.md index efc6d1c80f21cfc0f111df77ddffb9aa4a1cd9ca..3b113ff6f4bca3151e2a9c9dbaa7e64da21ad37b 100644 --- a/docs/mindformers/docs/source_zh_cn/faq/model_related.md +++ b/docs/mindformers/docs/source_zh_cn/faq/model_related.md @@ -1,6 +1,6 @@ # 模型相关 FAQ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/faq/model_related.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/faq/model_related.md) ## Q: 网络运行时报错“Out of Memory”(`OOM`),如何处理? diff --git a/docs/mindformers/docs/source_zh_cn/feature/ckpt.md b/docs/mindformers/docs/source_zh_cn/feature/ckpt.md index b5b88f30cc1da578f01bd067b9ae39abc7f88b86..8c068cbe75b9bcb058df65248dda093f95eee5e5 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/ckpt.md +++ b/docs/mindformers/docs/source_zh_cn/feature/ckpt.md @@ -1,6 +1,6 @@ # Ckpt权重 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/ckpt.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/ckpt.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/configuration.md b/docs/mindformers/docs/source_zh_cn/feature/configuration.md index 3cd5dccda279e9542031d651da8a79802c095070..d4f3e8068169a53069332276747f455b90903a1a 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/configuration.md +++ b/docs/mindformers/docs/source_zh_cn/feature/configuration.md @@ -1,6 +1,6 @@ # 配置文件说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/configuration.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/configuration.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/dataset.md b/docs/mindformers/docs/source_zh_cn/feature/dataset.md index fa74267946884dc51388a6c0df08793b1ffa245d..55cc64556ffd2eaa9a77aa51cdcfb5279de22614 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/dataset.md +++ b/docs/mindformers/docs/source_zh_cn/feature/dataset.md @@ -1,6 +1,6 @@ # 数据集 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/dataset.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/dataset.md) MindSpore Transformers目前支持多种类型的数据集加载方式,涵盖常用开源与自定义场景。具体包括: diff --git a/docs/mindformers/docs/source_zh_cn/feature/high_availability.md b/docs/mindformers/docs/source_zh_cn/feature/high_availability.md index c0a1750b036a558f0397af2e2e404f1bb751c715..487aa44cc09927535f9ed2687fe1a7930d7b2eeb 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/high_availability.md +++ b/docs/mindformers/docs/source_zh_cn/feature/high_availability.md @@ -1,6 +1,6 @@ # 训练高可用 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/high_availability.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/high_availability.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/load_huggingface_config.md b/docs/mindformers/docs/source_zh_cn/feature/load_huggingface_config.md index f5322fd197d1dc115e1f2775791ba658506b0e61..c14bd7f37187421fd3da3e8898ae2a88b9f2f3d1 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/load_huggingface_config.md +++ b/docs/mindformers/docs/source_zh_cn/feature/load_huggingface_config.md @@ -1,6 +1,6 @@ # 加载 Hugging Face 模型配置 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/load_huggingface_config.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/load_huggingface_config.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/logging.md b/docs/mindformers/docs/source_zh_cn/feature/logging.md index 6e93c22c4eaaa46c7922ab76c97512a4fe44e50f..560d078b4f759b51e07e38f5ec8423f5052b5781 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/logging.md +++ b/docs/mindformers/docs/source_zh_cn/feature/logging.md @@ -1,6 +1,6 @@ # 日志 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/logging.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/logging.md) ## 日志保存 @@ -46,7 +46,7 @@ MindSpore Transformers 默认会在训练的 yaml 文件中指定文件输出路 如果需要重新指定输出的日志文件夹,可以在 yaml 中修改配置。 -以 [`DeepSeek-V3` 预训练 yaml](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: +以 [`DeepSeek-V3` 预训练 yaml](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: ```yaml output_dir: './output' # path to save logs/checkpoint/strategy diff --git a/docs/mindformers/docs/source_zh_cn/feature/memory_optimization.md b/docs/mindformers/docs/source_zh_cn/feature/memory_optimization.md index 0d1523e31549f5c623935ab21224190cca954225..a0a61a79536abe885775930d0dc0d5cbe5dba9b8 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/memory_optimization.md +++ b/docs/mindformers/docs/source_zh_cn/feature/memory_optimization.md @@ -1,6 +1,6 @@ # 训练内存优化 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/memory_optimization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/memory_optimization.md) ## 重计算 @@ -14,7 +14,7 @@ 用户可通过在模型训练的 yaml 配置文件中新增 `recompute_config` 模块来使用重计算。 -以 [DeepSeek-V3 预训练 yaml](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: +以 [DeepSeek-V3 预训练 yaml](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: ```yaml # recompute config diff --git a/docs/mindformers/docs/source_zh_cn/feature/monitor.md b/docs/mindformers/docs/source_zh_cn/feature/monitor.md index 35b9cbf33e681bd7cf92715edf3af3338079764f..b34b8e4dc123e6b468236fdfa0d75c943c28fd9b 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/monitor.md +++ b/docs/mindformers/docs/source_zh_cn/feature/monitor.md @@ -1,6 +1,6 @@ # 训练指标监控 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/monitor.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/monitor.md) MindSpore Transformers 支持 TensorBoard 作为可视化工具,用于监控和分析训练过程中的各种指标和信息。TensorBoard 是一个独立的可视化库,需要用户手动安装,它提供了一种交互式的方式来查看训练中的损失、精度、学习率、梯度分布等多种内容。用户在训练`yaml`文件中配置 TensorBoard 后,在大模型训练过程中会实时生成并更新事件文件,可以通过命令查看训练数据。 diff --git a/docs/mindformers/docs/source_zh_cn/feature/other_training_features.md b/docs/mindformers/docs/source_zh_cn/feature/other_training_features.md index 4deb538d7c7833c490e923cad91c3d0db68c885a..d1b96c7b320923b14e58b57e77820bf654a9dd50 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/other_training_features.md +++ b/docs/mindformers/docs/source_zh_cn/feature/other_training_features.md @@ -1,6 +1,6 @@ # 其它训练特性 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/other_training_features.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/other_training_features.md) 在大规模的深度学习模型训练中,会遇到诸多挑战,如:内存限制、计算资源的有效利用、分布式训练中的同步问题等,需要使用训练优化算法来提高训练效率、加速收敛速度以及改善最终模型性能。 diff --git a/docs/mindformers/docs/source_zh_cn/feature/parallel_training.md b/docs/mindformers/docs/source_zh_cn/feature/parallel_training.md index 41fbc869e8dba092f5aba4bcb7a4d5fce24355f3..59e0a92cda51aed99dbf008b7a594300a438a0ff 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/parallel_training.md +++ b/docs/mindformers/docs/source_zh_cn/feature/parallel_training.md @@ -1,6 +1,6 @@ # 分布式并行训练 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/parallel_training.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/parallel_training.md) ## 并行模式与应用场景 diff --git a/docs/mindformers/docs/source_zh_cn/feature/pma_fused_checkpoint.md b/docs/mindformers/docs/source_zh_cn/feature/pma_fused_checkpoint.md index 0186f2ff835a688cd59358d059ae2d9e7e25e3fd..888e6c6c31a7ace7218bd8b045b20661f63da05b 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/pma_fused_checkpoint.md +++ b/docs/mindformers/docs/source_zh_cn/feature/pma_fused_checkpoint.md @@ -1,6 +1,6 @@ # Pre-trained Model Average 权重合并 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/pma_fused_checkpoint.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/pma_fused_checkpoint.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/quantization.md b/docs/mindformers/docs/source_zh_cn/feature/quantization.md index 183803239ac7f27bcad96202d9ed5a6137825ea7..4fc6dad2179e41a607534f92c94fe4b1a3e00da4 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/quantization.md +++ b/docs/mindformers/docs/source_zh_cn/feature/quantization.md @@ -1,6 +1,6 @@ # 量化 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/quantization.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/quantization.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/resume_training.md b/docs/mindformers/docs/source_zh_cn/feature/resume_training.md index 08108c9c6b1cb391828b451dbcab0a8e37485e9f..1972cea93c62b30b9d78e7837fd0cfd47495982c 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/resume_training.md +++ b/docs/mindformers/docs/source_zh_cn/feature/resume_training.md @@ -1,6 +1,6 @@ # 断点续训 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/resume_training.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/resume_training.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/safetensors.md b/docs/mindformers/docs/source_zh_cn/feature/safetensors.md index 95bc09dc1de7804ef54349a59eeac29831838f9e..2d4224413e9f0fd1048cd78f03d923e102fe76bf 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/safetensors.md +++ b/docs/mindformers/docs/source_zh_cn/feature/safetensors.md @@ -1,6 +1,6 @@ # Safetensors权重 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/safetensors.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/safetensors.md) ## 概述 @@ -120,7 +120,7 @@ output 用户可修改 `yaml` 配置文件中 `CheckpointMonitor` 下的字段来控制权重保存行为。 -以 [DeepSeek-V3 预训练 yaml](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: +以 [DeepSeek-V3 预训练 yaml](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: ```yaml # callbacks diff --git a/docs/mindformers/docs/source_zh_cn/feature/skip_data_and_ckpt_health_monitor.md b/docs/mindformers/docs/source_zh_cn/feature/skip_data_and_ckpt_health_monitor.md index 677e369138035fb2f70b9ef75bba8bc1a51e47bb..0d21aa1bb959b9c6a63695dc8aca69b2fbf06f43 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/skip_data_and_ckpt_health_monitor.md +++ b/docs/mindformers/docs/source_zh_cn/feature/skip_data_and_ckpt_health_monitor.md @@ -1,6 +1,6 @@ # 数据跳过和健康监测 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/skip_data_and_ckpt_health_monitor.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/skip_data_and_ckpt_health_monitor.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/start_tasks.md b/docs/mindformers/docs/source_zh_cn/feature/start_tasks.md index 82da03c0d8fa947d6652011daf670d24e3052a3f..b8e708e268ba86aea3fc0f1342919463bc90ed4b 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/start_tasks.md +++ b/docs/mindformers/docs/source_zh_cn/feature/start_tasks.md @@ -1,6 +1,6 @@ # 启动任务 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/start_tasks.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/start_tasks.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/tokenizer.md b/docs/mindformers/docs/source_zh_cn/feature/tokenizer.md index bf5dd27d93423e8dfaeb2bb89b4ed273d059c476..360a374cd028f3a53b9db6cca3fddfb2283b0ea5 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/tokenizer.md +++ b/docs/mindformers/docs/source_zh_cn/feature/tokenizer.md @@ -1,6 +1,6 @@ # 使用Tokenizer -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/tokenizer.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/tokenizer.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/feature/training_hyperparameters.md b/docs/mindformers/docs/source_zh_cn/feature/training_hyperparameters.md index fa6c7f89538011cd6d97346d71a50c5183280bd9..de284b7a08f71c9ea5bbb281b68f45cc623d6967 100644 --- a/docs/mindformers/docs/source_zh_cn/feature/training_hyperparameters.md +++ b/docs/mindformers/docs/source_zh_cn/feature/training_hyperparameters.md @@ -1,6 +1,6 @@ # 训练超参数 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/training_hyperparameters.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/feature/training_hyperparameters.md) 超参数对模型的性能有着重要影响,不同的超参数设置可能导致模型表现的巨大差异。参数的选择会影响到模型的训练速度、收敛性、容量和泛化能力等方面。且它们并非通过训练数据直接学习得到的,而是由开发者根据经验、实验或调优过程来确定的。 @@ -17,7 +17,7 @@ MindSpore Transformers 提供了如下几类超参数的配置方式。 **YAML 参数配置** 用户可通过在模型训练的 yaml 配置文件中新增 `lr_schedule` 模块来使用学习率。 -以 [`DeepSeek-V3` 预训练 yaml](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: +以 [`DeepSeek-V3` 预训练 yaml](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: ```yaml # lr schedule @@ -119,7 +119,7 @@ grouped_lr_schedule: 用户可通过在模型训练的 yaml 配置文件中新增 `optimizer` 模块来使用优化器。 -以 [DeepSeek-V3 预训练 yaml](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: +以 [DeepSeek-V3 预训练 yaml](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/deepseek3/pretrain_deepseek3_671b.yaml) 为例,可做如下配置: ```yaml # optimizer diff --git a/docs/mindformers/docs/source_zh_cn/guide/deployment.md b/docs/mindformers/docs/source_zh_cn/guide/deployment.md index de1d14a2eb1d2873ef9c31dda86eff584195f09a..eb22094c16c52b3df236c1f21195f4496c2b9373 100644 --- a/docs/mindformers/docs/source_zh_cn/guide/deployment.md +++ b/docs/mindformers/docs/source_zh_cn/guide/deployment.md @@ -1,6 +1,6 @@ # 服务化部署指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/deployment.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/deployment.md) ## vLLM服务化部署 diff --git a/docs/mindformers/docs/source_zh_cn/guide/evaluation.md b/docs/mindformers/docs/source_zh_cn/guide/evaluation.md index ac357e6b2170f8320115eb14fc09f23863dcece7..76b30ab672cd445795d89414593b7a1609bb3b79 100644 --- a/docs/mindformers/docs/source_zh_cn/guide/evaluation.md +++ b/docs/mindformers/docs/source_zh_cn/guide/evaluation.md @@ -1,6 +1,6 @@ # 评测指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/evaluation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/evaluation.md) ## 概览 diff --git a/docs/mindformers/docs/source_zh_cn/guide/inference.md b/docs/mindformers/docs/source_zh_cn/guide/inference.md index da743f1364b70a299b1f700f58af2621d72e83a6..c87e4d402a38b843f4bbee969ee6c288350066a5 100644 --- a/docs/mindformers/docs/source_zh_cn/guide/inference.md +++ b/docs/mindformers/docs/source_zh_cn/guide/inference.md @@ -1,6 +1,6 @@ # 推理指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/inference.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/inference.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/guide/llm_training.md b/docs/mindformers/docs/source_zh_cn/guide/llm_training.md index 78bb5b8c3a1a89bd60913faaa004d7b757b32987..422929a29a200c2bc82ef7c5b383857d12dbd62f 100644 --- a/docs/mindformers/docs/source_zh_cn/guide/llm_training.md +++ b/docs/mindformers/docs/source_zh_cn/guide/llm_training.md @@ -1,6 +1,6 @@ # 训练指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/llm_training.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/llm_training.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/guide/pre_training.md b/docs/mindformers/docs/source_zh_cn/guide/pre_training.md index f4e38f95c939e2810071fa1a468cb9e63f5ace9c..430b2562e6f8de3f15a67d49d66f5ca80863d624 100644 --- a/docs/mindformers/docs/source_zh_cn/guide/pre_training.md +++ b/docs/mindformers/docs/source_zh_cn/guide/pre_training.md @@ -1,6 +1,6 @@ # 预训练实践 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/pre_training.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/pre_training.md) ## 概述 diff --git a/docs/mindformers/docs/source_zh_cn/guide/supervised_fine_tuning.md b/docs/mindformers/docs/source_zh_cn/guide/supervised_fine_tuning.md index 8a9341fdb94c7d635c12ff7a16ee4982b4964df8..62e1477f252c574e7c063df2bd431eb0279e1ce2 100644 --- a/docs/mindformers/docs/source_zh_cn/guide/supervised_fine_tuning.md +++ b/docs/mindformers/docs/source_zh_cn/guide/supervised_fine_tuning.md @@ -1,6 +1,6 @@ # 监督微调实践 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/supervised_fine_tuning.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/guide/supervised_fine_tuning.md) ## 概述 @@ -64,7 +64,7 @@ MindSpore Transformers提供在线加载Hugging Face数据集的能力,详细 #### 单卡训练 -首先准备配置文件,本实践流程以Qwen2.5-7B模型为例,提供了一个微调配置文件`finetune_qwen2_5_7b_8k_1p.yaml`,可以在[gitee仓库](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k_1p.yaml)下载。 +首先准备配置文件,本实践流程以Qwen2.5-7B模型为例,提供了一个微调配置文件`finetune_qwen2_5_7b_8k_1p.yaml`,可以在[gitee仓库](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k_1p.yaml)下载。 > 由于单卡显存有限,配置文件中的`num_layers`被设置为了4,仅作为示例使用。 @@ -106,7 +106,7 @@ run_mode: 运行模式,train:训练,finetune:微调,predict #### 单机训练 -首先准备配置文件,本实践流程以Qwen2.5-7B模型为例,提供了一个微调配置文件`finetune_qwen2_5_7b_8k.yaml`,可以在[gitee仓库](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k.yaml)下载。 +首先准备配置文件,本实践流程以Qwen2.5-7B模型为例,提供了一个微调配置文件`finetune_qwen2_5_7b_8k.yaml`,可以在[gitee仓库](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/example/supervised_fine_tuning/finetune_qwen2_5_7b_8k.yaml)下载。 然后根据实际情况修改配置文件中的参数,主要包括: diff --git a/docs/mindformers/docs/source_zh_cn/installation.md b/docs/mindformers/docs/source_zh_cn/installation.md index 1954fe6e3e2ffddd2da6923edbb5aa85329f7a69..55dc88fdc6511286adccb1cf3cdd90ca896e9f85 100644 --- a/docs/mindformers/docs/source_zh_cn/installation.md +++ b/docs/mindformers/docs/source_zh_cn/installation.md @@ -1,6 +1,6 @@ # 安装指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/installation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/installation.md) ## 确认版本匹配关系 diff --git a/docs/mindformers/docs/source_zh_cn/introduction/models.md b/docs/mindformers/docs/source_zh_cn/introduction/models.md index 32ac27c0f313ded1f2ff9be4e8d87c286acb5558..cc18fa588710122e7df30a3b0e7ae75ea861d4a6 100644 --- a/docs/mindformers/docs/source_zh_cn/introduction/models.md +++ b/docs/mindformers/docs/source_zh_cn/introduction/models.md @@ -1,6 +1,6 @@ # 模型库 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/introduction/models.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/introduction/models.md) 当前MindSpore Transformers支持的模型列表如下: diff --git a/docs/mindformers/docs/source_zh_cn/introduction/overview.md b/docs/mindformers/docs/source_zh_cn/introduction/overview.md index bebf7dfc45b48798fb8140142d62e23fc666707b..a42b267db9dc1cb11d4d33805ded0dd9e5e529c4 100644 --- a/docs/mindformers/docs/source_zh_cn/introduction/overview.md +++ b/docs/mindformers/docs/source_zh_cn/introduction/overview.md @@ -1,6 +1,6 @@ # 整体架构 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/introduction/overview.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindformers/docs/source_zh_cn/introduction/overview.md) ## 概述 diff --git a/docs/mindquantum/docs/source_en/advanced/advanced.md b/docs/mindquantum/docs/source_en/advanced/advanced.md index 3560b5954cf8f633e4bd6cf6adfd346989e7b2f0..87630052b25ea3fad2e6fca72718ef6d19e2d107 100644 --- a/docs/mindquantum/docs/source_en/advanced/advanced.md +++ b/docs/mindquantum/docs/source_en/advanced/advanced.md @@ -1,6 +1,6 @@ # Advanced Tutorial Overview -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/advanced.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/advanced.md) Understand the design and usage of MindSpore Quantum for NISQ algorithms, particularly how to design variational quantum algorithms and collaborate with MindSpore to train hybrid quantum-classical algorithms. diff --git a/docs/mindquantum/docs/source_en/advanced/equivalence_checking_of_PQC.ipynb b/docs/mindquantum/docs/source_en/advanced/equivalence_checking_of_PQC.ipynb index 055cabb9fb7685024784fb858e314b6c331de488..cbd52706632292123f7cbc007c145c40a572931c 100644 --- a/docs/mindquantum/docs/source_en/advanced/equivalence_checking_of_PQC.ipynb +++ b/docs/mindquantum/docs/source_en/advanced/equivalence_checking_of_PQC.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_equivalence_checking_of_PQC.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_equivalence_checking_of_PQC.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/equivalence_checking_of_PQC.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/equivalence_checking_of_PQC.ipynb)\n", "\n", "## Introduction\n", "\n", diff --git a/docs/mindquantum/docs/source_en/advanced/get_gradient_of_PQC_with_mindquantum.ipynb b/docs/mindquantum/docs/source_en/advanced/get_gradient_of_PQC_with_mindquantum.ipynb index 4555de48f3a0890a5dae7117c882f6bea3451aed..afebfb14038f9ef754234e5fb24f8f5469698ccc 100644 --- a/docs/mindquantum/docs/source_en/advanced/get_gradient_of_PQC_with_mindquantum.ipynb +++ b/docs/mindquantum/docs/source_en/advanced/get_gradient_of_PQC_with_mindquantum.ipynb @@ -10,7 +10,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_get_gradient_of_PQC_with_mindquantum.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_get_gradient_of_PQC_with_mindquantum.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/get_gradient_of_PQC_with_mindquantum.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/get_gradient_of_PQC_with_mindquantum.ipynb)\n", "\n", "In MindSpore Quantum, we can obtain the gradient of a variable quantum circuit by the [get_expectation_with_grad](https://www.mindspore.cn/mindquantum/docs/en/master/simulator/mindquantum.simulator.Simulator.html#mindquantum.simulator.Simulator.get_expectation_with_grad) method of the [Simulator](https://www.mindspore.cn/mindquantum/docs/en/master/simulator/mindquantum.simulator.Simulator.html) class. In this tutorial, we will further introduce other functions of this method to help you achieve more advanced usage methods.\n", "\n", diff --git a/docs/mindquantum/docs/source_en/advanced/initial_experience_of_quantum_neural_network.ipynb b/docs/mindquantum/docs/source_en/advanced/initial_experience_of_quantum_neural_network.ipynb index d1ab3169f40c006e3e3b4c0f35a9f86e993dff9e..c67ad704d6a07089b173576ebd72d502241d9a12 100644 --- a/docs/mindquantum/docs/source_en/advanced/initial_experience_of_quantum_neural_network.ipynb +++ b/docs/mindquantum/docs/source_en/advanced/initial_experience_of_quantum_neural_network.ipynb @@ -10,7 +10,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_initial_experience_of_quantum_neural_network.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_initial_experience_of_quantum_neural_network.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/initial_experience_of_quantum_neural_network.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/initial_experience_of_quantum_neural_network.ipynb)\n", "\n", "## Structure of Quantum Neural Network\n", "\n", diff --git a/docs/mindquantum/docs/source_en/advanced/mqchem_tutorial.ipynb b/docs/mindquantum/docs/source_en/advanced/mqchem_tutorial.ipynb index 1f60d4b2c6147168265abb4f2494b6ad5cbe7bbc..88bcfdcb9a05fb48772e382de52c14dc5acda7b3 100644 --- a/docs/mindquantum/docs/source_en/advanced/mqchem_tutorial.ipynb +++ b/docs/mindquantum/docs/source_en/advanced/mqchem_tutorial.ipynb @@ -9,7 +9,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_mqchem_tutorial.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/advanced/mindspore_mqchem_tutorial.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/mqchem_tutorial.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/advanced/mqchem_tutorial.ipynb)\n", "\n", "## 1. Introduction\n", "\n", diff --git a/docs/mindquantum/docs/source_en/beginner/advanced_operations_of_quantum_circuit.ipynb b/docs/mindquantum/docs/source_en/beginner/advanced_operations_of_quantum_circuit.ipynb index 75ca62d460d921302700f707c24ef74558d43456..8a310269058e033bf75e29ae538aec18b522a5ff 100644 --- a/docs/mindquantum/docs/source_en/beginner/advanced_operations_of_quantum_circuit.ipynb +++ b/docs/mindquantum/docs/source_en/beginner/advanced_operations_of_quantum_circuit.ipynb @@ -10,7 +10,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_advanced_operations_of_quantum_circuit.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_advanced_operations_of_quantum_circuit.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/advanced_operations_of_quantum_circuit.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/advanced_operations_of_quantum_circuit.ipynb)\n", "\n", "In previous tutorial we introduced the basic usage of [quantum circuit](https://mindspore.cn/mindquantum/docs/en/master/beginner/parameterized_quantum_circuit.html#quantum-circuit). In this tutorial, we will introduce how to operator the circuit in high level.\n", "\n", diff --git a/docs/mindquantum/docs/source_en/beginner/beginner.md b/docs/mindquantum/docs/source_en/beginner/beginner.md index 8dc56e93492d0f52641874846a560ac79f831155..7aee30d04d9b59642023dbe76c20292a929866b3 100644 --- a/docs/mindquantum/docs/source_en/beginner/beginner.md +++ b/docs/mindquantum/docs/source_en/beginner/beginner.md @@ -1,6 +1,6 @@ # Beginner Tutorial Overview -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/beginner.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/beginner.md) Understand the basic components of MindSpore Quantum, including quantum gates, quantum circuits, hamiltonian, and the usage of quantum simulators. diff --git a/docs/mindquantum/docs/source_en/beginner/bloch_sphere.ipynb b/docs/mindquantum/docs/source_en/beginner/bloch_sphere.ipynb index 040e0ff9a59a68c4017dc3d5e9f911ec4178788f..39d88423285b8ba6970b036098682ea071ddf90e 100644 --- a/docs/mindquantum/docs/source_en/beginner/bloch_sphere.ipynb +++ b/docs/mindquantum/docs/source_en/beginner/bloch_sphere.ipynb @@ -9,7 +9,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_bloch_sphere.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_bloch_sphere.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/bloch_sphere.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/bloch_sphere.ipynb)\n", "\n", "## Single-qubit State\n", "\n", diff --git a/docs/mindquantum/docs/source_en/beginner/parameterized_quantum_circuit.ipynb b/docs/mindquantum/docs/source_en/beginner/parameterized_quantum_circuit.ipynb index b860806f02f687d8c2b913a6820011061dbb9043..0718d9d5a3189de535d6fcff09a2453bdffc9c98 100644 --- a/docs/mindquantum/docs/source_en/beginner/parameterized_quantum_circuit.ipynb +++ b/docs/mindquantum/docs/source_en/beginner/parameterized_quantum_circuit.ipynb @@ -10,7 +10,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_parameterized_quantum_circuit.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_parameterized_quantum_circuit.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/parameterized_quantum_circuit.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/parameterized_quantum_circuit.ipynb)\n", "\n", "## Summary\n", "\n", diff --git a/docs/mindquantum/docs/source_en/beginner/quantum_measurement.ipynb b/docs/mindquantum/docs/source_en/beginner/quantum_measurement.ipynb index 3743a0f4e0018704473bc862e8145b2ae2b74845..0cba861f3d6f65307ab9eeb6fd91d5ef91b81379 100644 --- a/docs/mindquantum/docs/source_en/beginner/quantum_measurement.ipynb +++ b/docs/mindquantum/docs/source_en/beginner/quantum_measurement.ipynb @@ -9,7 +9,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_quantum_measurement.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_quantum_measurement.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/quantum_measurement.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/quantum_measurement.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/beginner/quantum_simulator.ipynb b/docs/mindquantum/docs/source_en/beginner/quantum_simulator.ipynb index c11b80969e77de7e2f9b5a3f02b6931429646322..125b8609a23dcd6690f81fa4010f72694657c9c0 100644 --- a/docs/mindquantum/docs/source_en/beginner/quantum_simulator.ipynb +++ b/docs/mindquantum/docs/source_en/beginner/quantum_simulator.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_quantum_simulator.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/beginner/mindspore_quantum_simulator.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/quantum_simulator.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/beginner/quantum_simulator.ipynb)\n", "\n", "## Summary\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/case_library.md b/docs/mindquantum/docs/source_en/case_library/case_library.md index 76be0aa7771b73e9168405da6765e5b342dbdd4d..1d323adfbf93a0b5894b683045fcbfe777e40c6b 100644 --- a/docs/mindquantum/docs/source_en/case_library/case_library.md +++ b/docs/mindquantum/docs/source_en/case_library/case_library.md @@ -1,6 +1,6 @@ # Case Library -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/case_library.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/case_library.md) Comprehensive case tutorials in the field of universal quantum algorithms and variational quantum algorithms that can help you quickly get started in related research areas. diff --git a/docs/mindquantum/docs/source_en/case_library/classification_of_iris_by_qnn.ipynb b/docs/mindquantum/docs/source_en/case_library/classification_of_iris_by_qnn.ipynb index 0784aa63bdd5debd5d608a883ec52d7364230259..b10c1f9902f48ba8001d9bbb971144f41a9f7789 100644 --- a/docs/mindquantum/docs/source_en/case_library/classification_of_iris_by_qnn.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/classification_of_iris_by_qnn.ipynb @@ -10,7 +10,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_classification_of_iris_by_qnn.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_classification_of_iris_by_qnn.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/classification_of_iris_by_qnn.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/classification_of_iris_by_qnn.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/grover_search_algorithm.ipynb b/docs/mindquantum/docs/source_en/case_library/grover_search_algorithm.ipynb index 52fa5f761a02795d411dd714f3af9c00532739cc..b057108d45a34b3df02cbabab1507e1c7cdb93e5 100644 --- a/docs/mindquantum/docs/source_en/case_library/grover_search_algorithm.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/grover_search_algorithm.ipynb @@ -11,7 +11,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_grover_search_algorithm.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_grover_search_algorithm.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/grover_search_algorithm.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/grover_search_algorithm.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/hhl_algorithm.ipynb b/docs/mindquantum/docs/source_en/case_library/hhl_algorithm.ipynb index 1593a4722b3a46931f25e858b6a815ea4391a6ba..1f49175701bf269cd297be27c36f2235769fded3 100644 --- a/docs/mindquantum/docs/source_en/case_library/hhl_algorithm.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/hhl_algorithm.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_hhl_algorithm.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_hhl_algorithm.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/hhl_algorithm.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/hhl_algorithm.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/qnn_for_nlp.ipynb b/docs/mindquantum/docs/source_en/case_library/qnn_for_nlp.ipynb index 0d34bb3e133047165ef430f3826479a3b749a091..3295a7fb993a3505221c10c43a5f8491896dc5ed 100644 --- a/docs/mindquantum/docs/source_en/case_library/qnn_for_nlp.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/qnn_for_nlp.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_qnn_for_nlp.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_qnn_for_nlp.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/qnn_for_nlp.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/qnn_for_nlp.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/quantum_approximate_optimization_algorithm.ipynb b/docs/mindquantum/docs/source_en/case_library/quantum_approximate_optimization_algorithm.ipynb index 7a22c2d35a36f3b4ea6c26421db1e2f5c496ec0f..e1ba8ec259e4eb14e6682e02acc82a5c73065f57 100644 --- a/docs/mindquantum/docs/source_en/case_library/quantum_approximate_optimization_algorithm.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/quantum_approximate_optimization_algorithm.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_quantum_approximate_optimization_algorithm.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_quantum_approximate_optimization_algorithm.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/quantum_approximate_optimization_algorithm.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/quantum_approximate_optimization_algorithm.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/quantum_phase_estimation.ipynb b/docs/mindquantum/docs/source_en/case_library/quantum_phase_estimation.ipynb index 48966fb88f4d918b1fc4ceb7f58805d006a379fc..c99eaab0434da6b8498ea3e427de75688e7fa46e 100644 --- a/docs/mindquantum/docs/source_en/case_library/quantum_phase_estimation.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/quantum_phase_estimation.ipynb @@ -10,7 +10,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_quantum_phase_estimation.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_quantum_phase_estimation.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/quantum_phase_estimation.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/quantum_phase_estimation.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/shor_algorithm.ipynb b/docs/mindquantum/docs/source_en/case_library/shor_algorithm.ipynb index 35074ea11810a0657d4d4b6171a66367bca78447..c98b0795c59800566abed0aeea5f2a7343378718 100644 --- a/docs/mindquantum/docs/source_en/case_library/shor_algorithm.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/shor_algorithm.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_shor_algorithm.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_shor_algorithm.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/shor_algorithm.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/shor_algorithm.ipynb)\n", "\n", "## Introduction to Shor's Algorithm\n", "\n", diff --git a/docs/mindquantum/docs/source_en/case_library/vqe_for_quantum_chemistry.ipynb b/docs/mindquantum/docs/source_en/case_library/vqe_for_quantum_chemistry.ipynb index f33935130b5356a3cffc99e383bfa06efc954a3b..6ba7ac3f50f7e1cbf2e2faa5f30dd55a58a9a9f8 100644 --- a/docs/mindquantum/docs/source_en/case_library/vqe_for_quantum_chemistry.ipynb +++ b/docs/mindquantum/docs/source_en/case_library/vqe_for_quantum_chemistry.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_vqe_for_quantum_chemistry.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/case_library/mindspore_vqe_for_quantum_chemistry.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/vqe_for_quantum_chemistry.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/case_library/vqe_for_quantum_chemistry.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/middle_level/middle_level.md b/docs/mindquantum/docs/source_en/middle_level/middle_level.md index 87a0c5ab4a42d325005fa27115d6b5edad7f73eb..0156f29b2d84075f8960d6f863bcf3b1da20d899 100644 --- a/docs/mindquantum/docs/source_en/middle_level/middle_level.md +++ b/docs/mindquantum/docs/source_en/middle_level/middle_level.md @@ -1,6 +1,6 @@ # Middle Level Tutorial Overview -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/middle_level.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/middle_level.md) Understand the applications of MindSpore Quantum in noisy quantum simulation, quantum circuit compilation, qubit mapping, and other scenarios that are closer to real quantum chip environments. diff --git a/docs/mindquantum/docs/source_en/middle_level/noise.ipynb b/docs/mindquantum/docs/source_en/middle_level/noise.ipynb index 61822eec5a2e48714e2b9b1a35a4b96ebf221beb..18ca48735c4ef606e71edd330e4879b066a4e29c 100644 --- a/docs/mindquantum/docs/source_en/middle_level/noise.ipynb +++ b/docs/mindquantum/docs/source_en/middle_level/noise.ipynb @@ -9,7 +9,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/middle_level/mindspore_noise.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/middle_level/mindspore_noise.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/noise.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/noise.ipynb)\n", "\n", "## Overview\n", "\n", diff --git a/docs/mindquantum/docs/source_en/middle_level/noise_simulator.ipynb b/docs/mindquantum/docs/source_en/middle_level/noise_simulator.ipynb index 24de8b99e2c2d00d3611a74f621f88a15d9c0c10..b2005132768e6c3fa4e7fcc01ac7c022f15ef77a 100644 --- a/docs/mindquantum/docs/source_en/middle_level/noise_simulator.ipynb +++ b/docs/mindquantum/docs/source_en/middle_level/noise_simulator.ipynb @@ -8,7 +8,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/middle_level/mindspore_noise_simulator.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/middle_level/mindspore_noise_simulator.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/noise_simulator.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/noise_simulator.ipynb)\n", "\n", "MindQuantum contains a variety of noisy channels with which we can simulate real quantum chips. In MindQuantum, we define various [ChannelAdder](https://www.mindspore.cn/mindquantum/docs/en/master/core/circuit/mindquantum.core.circuit.ChannelAdderBase.html), and can selectively add noisy channels at different locations of the quantum line to complete the noisy quantum simulation sequentially. The following describes how to accomplish this task using MindQuantum.\n", "\n", diff --git a/docs/mindquantum/docs/source_en/middle_level/qubit_mapping.ipynb b/docs/mindquantum/docs/source_en/middle_level/qubit_mapping.ipynb index f93c26fc0c3e4567e05cae441bdd915c4e5a8479..9b7bfb40652d87a530b9b64b168dd2c36e4a7b5e 100644 --- a/docs/mindquantum/docs/source_en/middle_level/qubit_mapping.ipynb +++ b/docs/mindquantum/docs/source_en/middle_level/qubit_mapping.ipynb @@ -9,7 +9,7 @@ "\n", "[![Download Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/middle_level/mindspore_qubit_mapping.ipynb) \n", "[![Download Code](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code_en.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/en/middle_level/mindspore_qubit_mapping.py) \n", - "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/qubit_mapping.ipynb)\n", + "[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/middle_level/qubit_mapping.ipynb)\n", "\n", "When designing quantum circuits, users often design them based on their algorithmic requirements. However, current quantum chips often struggle to achieve coupling between all qubits. Therefore, when executing quantum circuits on quantum computing hardware, we need to rearrange the qubits used in the quantum algorithm or add some [SWAP](https://www.mindspore.cn/mindquantum/docs/en/master/core/gates/mindquantum.core.gates.SWAPGate.html) gates to coupe qubits that were originally uncoupled. This is known as qubit mapping algorithm.\n", "\n", diff --git a/docs/mindquantum/docs/source_en/mindquantum_install.md b/docs/mindquantum/docs/source_en/mindquantum_install.md index 243da8ac8282cb718bd191ab04955b577400fef6..5c3bb5cec2a757217f8355a8849c5377b67b5fad 100644 --- a/docs/mindquantum/docs/source_en/mindquantum_install.md +++ b/docs/mindquantum/docs/source_en/mindquantum_install.md @@ -1,6 +1,6 @@ # MindSpore Quantum Installation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/mindquantum_install.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/mindquantum_install.md) ## Confirming System Environment Information diff --git a/docs/mindquantum/docs/source_en/paper_with_code.md b/docs/mindquantum/docs/source_en/paper_with_code.md index 04659395bc4899f2c6051ba1aeb1d86d96df3080..46b3a18af44834eb63a74c46ab48ef39fc851b06 100644 --- a/docs/mindquantum/docs/source_en/paper_with_code.md +++ b/docs/mindquantum/docs/source_en/paper_with_code.md @@ -1,6 +1,6 @@ # Paper with Code -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/paper_with_code.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_en/paper_with_code.md) | Implementing | Paper | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | diff --git a/docs/mindquantum/docs/source_zh_cn/advanced/advanced.md b/docs/mindquantum/docs/source_zh_cn/advanced/advanced.md index 1bcaaf2491d2ffa2596549fa2f6ba7f5a554b57b..9332a375775880cbcbf6476665481327f87fe8dd 100644 --- a/docs/mindquantum/docs/source_zh_cn/advanced/advanced.md +++ b/docs/mindquantum/docs/source_zh_cn/advanced/advanced.md @@ -1,6 +1,6 @@ # 高级使用教程概述 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/advanced.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/advanced.md) 了解 MindSpore Quantum 针对 NISQ 算法的设计与使用,特别是如何设计变分量子算法以及与 MindSpore 协同完成量子-经典混合算法的训练。 diff --git a/docs/mindquantum/docs/source_zh_cn/advanced/equivalence_checking_of_PQC.ipynb b/docs/mindquantum/docs/source_zh_cn/advanced/equivalence_checking_of_PQC.ipynb index 93829360ba7a246e059b5238b0be0c629c4d1eea..80372187025467c92e989896b28ad0c909ee515b 100644 --- a/docs/mindquantum/docs/source_zh_cn/advanced/equivalence_checking_of_PQC.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/advanced/equivalence_checking_of_PQC.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_equivalence_checking_of_PQC.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_equivalence_checking_of_PQC.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/equivalence_checking_of_PQC.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/equivalence_checking_of_PQC.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/advanced/get_gradient_of_PQC_with_mindquantum.ipynb b/docs/mindquantum/docs/source_zh_cn/advanced/get_gradient_of_PQC_with_mindquantum.ipynb index a92e12ec78da850e0d4e5c25a89497cc53283aae..5c4fc7e83024a1a084f19d9aa28de775aa9ebe47 100644 --- a/docs/mindquantum/docs/source_zh_cn/advanced/get_gradient_of_PQC_with_mindquantum.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/advanced/get_gradient_of_PQC_with_mindquantum.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_get_gradient_of_PQC_with_mindquantum.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_get_gradient_of_PQC_with_mindquantum.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/get_gradient_of_PQC_with_mindquantum.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/get_gradient_of_PQC_with_mindquantum.ipynb)\n", "\n", "在MindSpore Quantum中,我们可以通过 [Simulator](https://www.mindspore.cn/mindquantum/docs/zh-CN/master/simulator/mindquantum.simulator.Simulator.html) 类的[get_expectation_with_grad](https://www.mindspore.cn/mindquantum/docs/zh-CN/master/simulator/mindquantum.simulator.Simulator.html#mindquantum.simulator.Simulator.get_expectation_with_grad) 方法来获得一个变分量子线路的梯度,在这篇教程中,我们将更进一步的介绍该方法的其他功能,帮助大家来实现更高级的使用方法。\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/advanced/initial_experience_of_quantum_neural_network.ipynb b/docs/mindquantum/docs/source_zh_cn/advanced/initial_experience_of_quantum_neural_network.ipynb index b34888cd9af3bf0f3d0725866a97f4df01fafac8..3c419864e3a6d2187bde0ce372f67aac95d3ad97 100644 --- a/docs/mindquantum/docs/source_zh_cn/advanced/initial_experience_of_quantum_neural_network.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/advanced/initial_experience_of_quantum_neural_network.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_initial_experience_of_quantum_neural_network.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_initial_experience_of_quantum_neural_network.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/initial_experience_of_quantum_neural_network.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/initial_experience_of_quantum_neural_network.ipynb)\n", "\n", "## 量子神经网络的结构\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/advanced/mqchem_tutorial.ipynb b/docs/mindquantum/docs/source_zh_cn/advanced/mqchem_tutorial.ipynb index 0595aaeea51d91ba1029d033441452d275d200e8..dc992b4ef0e93e3e476df158d7fcabff61f56645 100644 --- a/docs/mindquantum/docs/source_zh_cn/advanced/mqchem_tutorial.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/advanced/mqchem_tutorial.ipynb @@ -9,7 +9,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_mqchem_tutorial.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/advanced/mindspore_mqchem_tutorial.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/mqchem_tutorial.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/advanced/mqchem_tutorial.ipynb)\n", "\n", "## 1. 引言\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/beginner/advanced_operations_of_quantum_circuit.ipynb b/docs/mindquantum/docs/source_zh_cn/beginner/advanced_operations_of_quantum_circuit.ipynb index 837ec188b8e8940b3bc5fd59338a7b60fc9e1672..784f1a603ad89521cfa625c2902da7e4b857e756 100644 --- a/docs/mindquantum/docs/source_zh_cn/beginner/advanced_operations_of_quantum_circuit.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/beginner/advanced_operations_of_quantum_circuit.ipynb @@ -9,7 +9,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_advanced_operations_of_quantum_circuit.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_advanced_operations_of_quantum_circuit.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/advanced_operations_of_quantum_circuit.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/advanced_operations_of_quantum_circuit.ipynb)\n", "\n", "在前面变分量子线路操作指导中介绍了[量子线路](https://mindspore.cn/mindquantum/docs/zh-CN/master/beginner/parameterized_quantum_circuit.html#%E9%87%8F%E5%AD%90%E7%BA%BF%E8%B7%AF)的基本用法。接下来,我们将进一步探索MindSpore Quantum为量子线路定义的一些高阶操作的用法。\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/beginner/beginner.md b/docs/mindquantum/docs/source_zh_cn/beginner/beginner.md index b4106e81cde504f98bcdee24c41e2a54475e0b46..9e259677823d1d8e821367a030c0aa3aaaba4a8a 100644 --- a/docs/mindquantum/docs/source_zh_cn/beginner/beginner.md +++ b/docs/mindquantum/docs/source_zh_cn/beginner/beginner.md @@ -1,6 +1,6 @@ # 初级使用教程概述 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/beginner.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/beginner.md) 了解 MindSpore Quantum 的基本组成元素,包括量子门、量子线路、哈密顿量和量子模拟器的生成与使用。 diff --git a/docs/mindquantum/docs/source_zh_cn/beginner/bloch_sphere.ipynb b/docs/mindquantum/docs/source_zh_cn/beginner/bloch_sphere.ipynb index 1edf4430fa832be81a73b24071eac17b4a683781..7512f70010071602e4a9ce845fb99ec564f31560 100644 --- a/docs/mindquantum/docs/source_zh_cn/beginner/bloch_sphere.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/beginner/bloch_sphere.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_bloch_sphere.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_bloch_sphere.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/bloch_sphere.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/bloch_sphere.ipynb)\n", "\n", "## 单比特量子态\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/beginner/parameterized_quantum_circuit.ipynb b/docs/mindquantum/docs/source_zh_cn/beginner/parameterized_quantum_circuit.ipynb index 13c45f69e5e6f1e90ee066fa42ff4bb8c572e401..0bf8d92a425a669d43aa433b3683a5503c9be448 100644 --- a/docs/mindquantum/docs/source_zh_cn/beginner/parameterized_quantum_circuit.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/beginner/parameterized_quantum_circuit.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_parameterized_quantum_circuit.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_parameterized_quantum_circuit.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/parameterized_quantum_circuit.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/parameterized_quantum_circuit.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/beginner/quantum_measurement.ipynb b/docs/mindquantum/docs/source_zh_cn/beginner/quantum_measurement.ipynb index adb1fe257c752716c905306b14d51d06f257be91..f0ee4e95e02857a799cd587bdb7e4323e2c00fd3 100644 --- a/docs/mindquantum/docs/source_zh_cn/beginner/quantum_measurement.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/beginner/quantum_measurement.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_quantum_measurement.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_quantum_measurement.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/quantum_measurement.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/quantum_measurement.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/beginner/quantum_simulator.ipynb b/docs/mindquantum/docs/source_zh_cn/beginner/quantum_simulator.ipynb index b85d989eab08f21ee5708ba69bcec49d53f6ec13..4b7a82de17134083f5626bba403e06b8b071d9f6 100644 --- a/docs/mindquantum/docs/source_zh_cn/beginner/quantum_simulator.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/beginner/quantum_simulator.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_quantum_simulator.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/beginner/mindspore_quantum_simulator.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/quantum_simulator.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/beginner/quantum_simulator.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/case_library.md b/docs/mindquantum/docs/source_zh_cn/case_library/case_library.md index db14750535c077e2a490bfbdd8a470beb4cccb21..3a1086b2bd7cf629e21d0a4b595ad7f2897ee155 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/case_library.md +++ b/docs/mindquantum/docs/source_zh_cn/case_library/case_library.md @@ -1,6 +1,6 @@ # 案例库 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/case_library.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/case_library.md) 介绍 MindSpore Quantum 在通用量子算法与变分量子算法领域的完整案例教程,快速入门相关研究领域。 diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/classification_of_iris_by_qnn.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/classification_of_iris_by_qnn.ipynb index ad1c84e584289dfb61918c04a29f51ea04f73455..d72121780937136088f7a803fe9d139c94c2c124 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/classification_of_iris_by_qnn.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/classification_of_iris_by_qnn.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_classification_of_iris_by_qnn.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_classification_of_iris_by_qnn.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/classification_of_iris_by_qnn.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/classification_of_iris_by_qnn.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/grover_search_algorithm.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/grover_search_algorithm.ipynb index 41dc9cd1f12092170eceddf148164913d40ed4de..7c0c5df3df11b30d090168a3545fbdfc09a2ca79 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/grover_search_algorithm.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/grover_search_algorithm.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_grover_search_algorithm.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_grover_search_algorithm.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/grover_search_algorithm.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/grover_search_algorithm.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/hhl_algorithm.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/hhl_algorithm.ipynb index 625d1d9cc279d03d82fd4591a488b085a7232c3f..d6ad79aa4d5b1d5fe3cef46195397b6a914890e7 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/hhl_algorithm.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/hhl_algorithm.ipynb @@ -9,7 +9,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_hhl_algorithm.ipynb)\n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_hhl_algorithm.py)\n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/hhl_algorithm.ipynb)\n" + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/hhl_algorithm.ipynb)\n" ] }, { diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb index 405df6a7328abfb8b064eb33157d2aea9603ae02..b381a69833de9487f86df46b366cb6f1a48f62f3 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qaia_automatic_parameter_adjustment.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qaia_automatic_parameter_adjustment.py) \n", - "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb)\n" + "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb)\n" ] }, { diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_gpu_tutorial.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_gpu_tutorial.ipynb index 63756c7c4371cff7bc812a96d0d6093452dbb029..6f66dc5ba8416c3fdd64c1b09d4b9a26760458c5 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_gpu_tutorial.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_gpu_tutorial.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qaia_gpu_tutorial.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qaia_gpu_tutorial.py) \n", - "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qaia_gpu_tutorial.ipynb)\n" + "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qaia_gpu_tutorial.ipynb)\n" ] }, { diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_npu_tutorial.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_npu_tutorial.ipynb index a16db20b827156c23be8d522dc6df58184255639..62cd701be0d8f400780b9f630df9fc8e76435422 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_npu_tutorial.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_npu_tutorial.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qaia_npu_tutorial.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qaia_npu_tutorial.py) \n", - "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qaia_npu_tutorial.ipynb)\n" + "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qaia_npu_tutorial.ipynb)\n" ] }, { diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/qnn_for_nlp.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/qnn_for_nlp.ipynb index 6726ec4eb68b6ba4ed2976e497f9262667f08b17..cba2b7b7a5abced16b3cbea22b2b354e12d6a5d7 100755 --- a/docs/mindquantum/docs/source_zh_cn/case_library/qnn_for_nlp.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/qnn_for_nlp.ipynb @@ -6,7 +6,7 @@ "source": [ "# 量子神经网络在自然语言处理中的应用\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qnn_for_nlp.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qnn_for_nlp.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qnn_for_nlp.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qnn_for_nlp.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_qnn_for_nlp.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/qnn_for_nlp.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/quantum_annealing_inspired_algorithm.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/quantum_annealing_inspired_algorithm.ipynb index 5c90c16d547c692317b3af661b085f5ca7ec886f..9457f9cd6c88f6b473821171bc4d76ba1a3104d3 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/quantum_annealing_inspired_algorithm.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/quantum_annealing_inspired_algorithm.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_quantum_annealing_inspired_algorithm.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_quantum_annealing_inspired_algorithm.py) \n", - "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/quantum_annealing_inspired_algorithm.ipynb)\n" + "[![在Gitee上查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/quantum_annealing_inspired_algorithm.ipynb)\n" ] }, { diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/quantum_approximate_optimization_algorithm.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/quantum_approximate_optimization_algorithm.ipynb index 9ae5b8906ab063bda48776ce461c2dfab29d3f37..f670d0c58d0defa764ff9b753a1d42c543bd0619 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/quantum_approximate_optimization_algorithm.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/quantum_approximate_optimization_algorithm.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_quantum_approximate_optimization_algorithm.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_quantum_approximate_optimization_algorithm.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/quantum_approximate_optimization_algorithm.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/quantum_approximate_optimization_algorithm.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/quantum_phase_estimation.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/quantum_phase_estimation.ipynb index 190227df9c971bb583c490c9d3ff3582bd074e05..7dbe2076c4c53393fc71d203babb274a0f745d73 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/quantum_phase_estimation.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/quantum_phase_estimation.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_quantum_phase_estimation.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_quantum_phase_estimation.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/quantum_phase_estimation.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/quantum_phase_estimation.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/shor_algorithm.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/shor_algorithm.ipynb index 542be6f4d75d9a0f77f920f17dbd7c43fe0f47a0..4d4c92ac0b939337b555a649dfa1fdb68f19cdd8 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/shor_algorithm.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/shor_algorithm.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_shor_algorithm.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_shor_algorithm.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/shor_algorithm.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/shor_algorithm.ipynb)\n", "\n", "## Shor算法简介\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/vqe_for_quantum_chemistry.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/vqe_for_quantum_chemistry.ipynb index 64eec8e23151e45da1a802d3956ba399719612e9..478fc85d75d43235b9673071e8c2955f35d7ee23 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/vqe_for_quantum_chemistry.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/vqe_for_quantum_chemistry.ipynb @@ -7,7 +7,7 @@ "source": [ "# 在量子化学计算中应用量子变分求解器\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_vqe_for_quantum_chemistry.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_vqe_for_quantum_chemistry.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/vqe_for_quantum_chemistry.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_vqe_for_quantum_chemistry.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/case_library/mindspore_vqe_for_quantum_chemistry.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/case_library/vqe_for_quantum_chemistry.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/middle_level/middle_level.md b/docs/mindquantum/docs/source_zh_cn/middle_level/middle_level.md index 06dc468ebc6ae5d7b2e27ee160db6c0416052f29..dcf49dcc37a14c8658cf5219e5b1a44b5c596034 100644 --- a/docs/mindquantum/docs/source_zh_cn/middle_level/middle_level.md +++ b/docs/mindquantum/docs/source_zh_cn/middle_level/middle_level.md @@ -1,6 +1,6 @@ # 中级使用教程概述 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/middle_level.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/middle_level.md) 了解 MindSpore Quantum 在含噪声量子模拟、量子线路编译、比特映射等更贴近真实量子芯片场景的应用。 diff --git a/docs/mindquantum/docs/source_zh_cn/middle_level/noise.ipynb b/docs/mindquantum/docs/source_zh_cn/middle_level/noise.ipynb index 312432af9c619408d11ed069a70731873ac87093..f713c153746529a76f5e7ab9537c20fb56b450ad 100644 --- a/docs/mindquantum/docs/source_zh_cn/middle_level/noise.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/middle_level/noise.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/middle_level/mindspore_noise.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/middle_level/mindspore_noise.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/noise.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/noise.ipynb)\n", "\n", "## 概述\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/middle_level/noise_simulator.ipynb b/docs/mindquantum/docs/source_zh_cn/middle_level/noise_simulator.ipynb index eae07b812dbb4c8f8fa2dd56f50cfcce09007993..4e074ca4bd477598f45fa004a3a2cd5517a64641 100644 --- a/docs/mindquantum/docs/source_zh_cn/middle_level/noise_simulator.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/middle_level/noise_simulator.ipynb @@ -8,7 +8,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/middle_level/mindspore_noise_simulator.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/middle_level/mindspore_noise_simulator.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/noise_simulator.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/noise_simulator.ipynb)\n", "\n", "MindQuantum 中包含各种噪声信道,利用噪声信道我们可以对真实的量子芯片进行模拟。在 MindQuantum 中,我们定义了各种 [ChannelAdder](https://www.mindspore.cn/mindquantum/docs/zh-CN/master/core/circuit/mindquantum.core.circuit.ChannelAdderBase.html),可以有选择性的在量子线路的不同位置添加噪声信道,依次完成含噪声的量子模拟。下面介绍如何利用 MindQuantum 完成此任务。\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/middle_level/qubit_mapping.ipynb b/docs/mindquantum/docs/source_zh_cn/middle_level/qubit_mapping.ipynb index a1393c70916bc297c709c38aedbb3a641a108718..57bdbc3407c0bac408c086f9cfefe3b2f608eb28 100644 --- a/docs/mindquantum/docs/source_zh_cn/middle_level/qubit_mapping.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/middle_level/qubit_mapping.ipynb @@ -9,7 +9,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/middle_level/mindspore_qubit_mapping.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/mindquantum/zh_cn/middle_level/mindspore_qubit_mapping.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/qubit_mapping.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/middle_level/qubit_mapping.ipynb)\n", "\n", "用户在设计量子线路时往往是根据自己的算法需求来进行设计,但是现阶段的量子芯片难以实现所有比特之间都有耦合。因此,在量子计算硬件上执行量子线路时,我们需要通过一定的算法来将量子算法中所用到的比特进行重新排列,或者引入一些 [SWAP](https://www.mindspore.cn/mindquantum/docs/zh-CN/master/core/gates/mindquantum.core.gates.SWAPGate.html) 门,来将本来不能耦合的比特耦合起来。这也就是比特映射算法。\n", "\n", diff --git a/docs/mindquantum/docs/source_zh_cn/mindquantum_install.md b/docs/mindquantum/docs/source_zh_cn/mindquantum_install.md index 6029284073c83297ef9f113aaaac5f6be71a7b72..569e84a5b1a0175ddef7215e928bc251f6ee70c4 100644 --- a/docs/mindquantum/docs/source_zh_cn/mindquantum_install.md +++ b/docs/mindquantum/docs/source_zh_cn/mindquantum_install.md @@ -1,6 +1,6 @@ # 安装 MindSpore Quantum -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/mindquantum_install.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/mindquantum_install.md) ## 确认系统环境信息 diff --git a/docs/mindquantum/docs/source_zh_cn/paper_with_code.md b/docs/mindquantum/docs/source_zh_cn/paper_with_code.md index 437ea71307ae9ffb5d651ad05f2d50d05af87761..97ab9778e151d008360f60f2fccb2c0b849a5a0e 100644 --- a/docs/mindquantum/docs/source_zh_cn/paper_with_code.md +++ b/docs/mindquantum/docs/source_zh_cn/paper_with_code.md @@ -1,6 +1,6 @@ # 论文复现代码 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/paper_with_code.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindquantum/docs/source_zh_cn/paper_with_code.md) | 代码实现 | 论文 | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | diff --git a/docs/mindsponge/docs/source_en/intro/data_driven.md b/docs/mindsponge/docs/source_en/intro/data_driven.md index 8f78b1212b5ae4a37404dc1a728308fbe22eab03..22b8c9100f3545dcbff62ff9854b0ea431413d98 100644 --- a/docs/mindsponge/docs/source_en/intro/data_driven.md +++ b/docs/mindsponge/docs/source_en/intro/data_driven.md @@ -1,6 +1,6 @@ # Data Driven -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/intro/data_driven.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/intro/data_driven.md) The data-driven approach is based on existing physical, chemical and biological data, and applies machine learning methods to achieve molecular learning tasks. diff --git a/docs/mindsponge/docs/source_en/intro/physics_driven.md b/docs/mindsponge/docs/source_en/intro/physics_driven.md index cf31856f184bb979ab9b0c5d04b05b66b01ea1cc..7935e9c96f3d78d4fe25ca1de794eb925c79360c 100644 --- a/docs/mindsponge/docs/source_en/intro/physics_driven.md +++ b/docs/mindsponge/docs/source_en/intro/physics_driven.md @@ -1,6 +1,6 @@ # Physics Driven -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/intro/physics_driven.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/intro/physics_driven.md) Traditional molecular dynamics simulations mainly use physical knowledge to perform computational simulations of molecular systems. diff --git a/docs/mindsponge/docs/source_en/intro/physics_plus_data_driven.md b/docs/mindsponge/docs/source_en/intro/physics_plus_data_driven.md index dbdd9b5ae0e8b341b81c9c3aa1c30c91f697e8cb..c42c3a1a9164355904060d5b8d27fc8c750a221d 100644 --- a/docs/mindsponge/docs/source_en/intro/physics_plus_data_driven.md +++ b/docs/mindsponge/docs/source_en/intro/physics_plus_data_driven.md @@ -1,6 +1,6 @@ # Physics Data Fusion -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/intro/physics_plus_data_driven.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/intro/physics_plus_data_driven.md) The following table shows some of the most popular molecular dynamics simulation software. diff --git a/docs/mindsponge/docs/source_en/user/basic.md b/docs/mindsponge/docs/source_en/user/basic.md index 8f60fde38bdf147ecfdac739211657643395803e..31f7743f24f487d1cb437d72d01a5d79583ff111 100644 --- a/docs/mindsponge/docs/source_en/user/basic.md +++ b/docs/mindsponge/docs/source_en/user/basic.md @@ -1,6 +1,6 @@ # Molecular Foundation Model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/basic.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/basic.md) In fields such as biological computing and drug design, it is very expensive to label training data in most tasks, and the data sets available for model training are very small. Researchers in this field cannot develop more effective models due to limited data, resulting in poor model accuracy. Based on the theories of biochemistry and transfer learning, the molecular base model can get more accurate results on the target task by using only a small amount of data fine-tuning after pre-training on the relevant task with a large amount of data. MindSpore SPONGE provides a series of molecular foundation models and their checkpoint training based on large-scale data sets. Users can make fine-tuning directly based on these models according to their needs, enabling them to easily achieve high-precision model development. diff --git a/docs/mindsponge/docs/source_en/user/design.md b/docs/mindsponge/docs/source_en/user/design.md index dd2f72a62aef1f74002aa89b47528b2701ba23b4..f411b49e99c6d04ed6ebd1f13b232d0397b319f0 100644 --- a/docs/mindsponge/docs/source_en/user/design.md +++ b/docs/mindsponge/docs/source_en/user/design.md @@ -1,6 +1,6 @@ # Molecular Design -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/design.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/design.md) Molecular design is an important part of drug discovery. The vast chemical space covers every possible molecule, and some virtual screening libraries now contain more than billions of molecules, but these libraries also take up only a small fraction of the chemical space. Compared with virtual screening, molecular design searches the vast chemical space to generate new molecules, but traditional experimental exploration of such a large space takes a lot of time and resources. In recent years, advances in machine learning and AI have provided new computational ideas for molecular design. diff --git a/docs/mindsponge/docs/source_en/user/property_prediction.md b/docs/mindsponge/docs/source_en/user/property_prediction.md index 0f655a82e7dbf45b6a2b6e488e767fc768b13fa3..a9479afce60eb63c81e479ca786976c1ae4ea0dc 100644 --- a/docs/mindsponge/docs/source_en/user/property_prediction.md +++ b/docs/mindsponge/docs/source_en/user/property_prediction.md @@ -1,6 +1,6 @@ # Molecular Properties Prediction -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/property_prediction.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/property_prediction.md) Molecular property prediction is one of the most important tasks in the computer-aided drug discovery process and plays an important role in many downstream applications such as drug screening and drug design. Density Functional Theory (DFT) is mostly used in traditional molecular property prediction. Although DFT can accurately predict a variety of molecular properties, the calculation is very time-consuming, often requiring several hours to complete the property calculation of a single molecule. In addition, the number of candidate compounds is relatively large, so using traditional quantum chemistry methods to predict molecular properties needs to pay huge resources and time costs. Thanks to the rapid development of deep learning, more and more people begin to try to apply deep learning to the field of molecular property prediction. Its main purpose is to predict molecular physical and chemical properties through internal molecular information such as atomic coordinates and atomic numbers, so as to help people quickly find compounds that meet the predicted properties among a large number of candidate compounds, and speed up drug screening and drug design. diff --git a/docs/mindsponge/docs/source_en/user/simulation.md b/docs/mindsponge/docs/source_en/user/simulation.md index 09224fd601dd067ead9416cf18be73325be13f8f..eccced7e5154f43dd57c4557a794b8a3a58e68f0 100644 --- a/docs/mindsponge/docs/source_en/user/simulation.md +++ b/docs/mindsponge/docs/source_en/user/simulation.md @@ -1,6 +1,6 @@ # Molecular Simulation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/simulation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/simulation.md) MindSpore SPONGE has adopted a unique "AI-like" molecular simulation program architecture: diff --git a/docs/mindsponge/docs/source_en/user/structure_prediction.md b/docs/mindsponge/docs/source_en/user/structure_prediction.md index 25b7483bcdf702ca4e88dbea8c8bf777174aab7a..33c697267503ddf99e22e02ff346267b51232bef 100644 --- a/docs/mindsponge/docs/source_en/user/structure_prediction.md +++ b/docs/mindsponge/docs/source_en/user/structure_prediction.md @@ -1,6 +1,6 @@ # Molecular Structure Prediction -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/structure_prediction.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_en/user/structure_prediction.md) The acquisition of molecular structure, especially the structure of biomacromolecules (DNA, RNA and protein), is an important issue in the field of biopharmaceutical research and has a wide range of uses. The MindSpore SPONGE biological computing toolkit provides a series of calculation tools for molecular structure prediction, helping researchers to acquire high-precision molecular structure efficiently. diff --git a/docs/mindsponge/docs/source_zh_cn/intro/data_driven.md b/docs/mindsponge/docs/source_zh_cn/intro/data_driven.md index c10ddceeb6be2af2361f0cb6b2c12c78e65a6548..7ee81db49bff15e99e48365527a72ebbb2f22a56 100644 --- a/docs/mindsponge/docs/source_zh_cn/intro/data_driven.md +++ b/docs/mindsponge/docs/source_zh_cn/intro/data_driven.md @@ -1,6 +1,6 @@ # 数据驱动 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/intro/data_driven.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/intro/data_driven.md) 数据驱动的方法主要基于已有的各种物理、化学、生物数据,应用机器学习方法,实现分子学习任务。 diff --git a/docs/mindsponge/docs/source_zh_cn/intro/physics_driven.md b/docs/mindsponge/docs/source_zh_cn/intro/physics_driven.md index 6387bd9ddf9dff0a74a5fa062ec0a5173d76683e..4f7ee38e0cb8726c48527aade08b8d83e2ff4fb2 100644 --- a/docs/mindsponge/docs/source_zh_cn/intro/physics_driven.md +++ b/docs/mindsponge/docs/source_zh_cn/intro/physics_driven.md @@ -1,6 +1,6 @@ # 物理驱动 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/intro/physics_driven.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/intro/physics_driven.md) 传统的分子动力学模拟主要利用物理知识对分子体系进行计算模拟。 diff --git a/docs/mindsponge/docs/source_zh_cn/intro/physics_plus_data_driven.md b/docs/mindsponge/docs/source_zh_cn/intro/physics_plus_data_driven.md index 93d4b7cb45dacd0ee75ad2f6a390f9dfecb7861a..03230f1652435a6dfa6fafb5a66c3ea0dada4999 100644 --- a/docs/mindsponge/docs/source_zh_cn/intro/physics_plus_data_driven.md +++ b/docs/mindsponge/docs/source_zh_cn/intro/physics_plus_data_driven.md @@ -1,6 +1,6 @@ # 融合驱动 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/intro/physics_plus_data_driven.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/intro/physics_plus_data_driven.md) 如下表格中展示了部分当前较为流行的分子动力学模拟软件。 diff --git a/docs/mindsponge/docs/source_zh_cn/user/basic.md b/docs/mindsponge/docs/source_zh_cn/user/basic.md index 1f2a59b259f4b731edd82c92d192c616f7a564f0..850167b91c484e97b9a94cc7c699434eced25f79 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/basic.md +++ b/docs/mindsponge/docs/source_zh_cn/user/basic.md @@ -1,6 +1,6 @@ # 分子基础模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/basic.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/basic.md) 在生物计算、药物设计等领域,大多数任务中给训练数据打标签非常昂贵,可用于模型训练的数据集都非常小,该领域的研究者限于数据无法开发更有效的模型,导致模型精度不佳。基于生物化学与迁移学习的相关理论,分子基础模型在相关的有大量数据的任务上做预训练后,仅需使用少量数据微调即可在目标任务上得到更准确的结果。MindSpore SPONGE提供一系列分子基础模型以及这些模型在大规模数据集上训好的checkpoint,用户可以直接在这些模型基础上根据自己的需要做精调,轻松实现高精度的模型开发。 diff --git a/docs/mindsponge/docs/source_zh_cn/user/design.md b/docs/mindsponge/docs/source_zh_cn/user/design.md index c5513293b262f25973eb8669176e1a4605fe8671..702504a0c23754cb26783e21b8b9c21abe2c68ed 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/design.md +++ b/docs/mindsponge/docs/source_zh_cn/user/design.md @@ -1,6 +1,6 @@ # 分子设计 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/design.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/design.md) 分子设计是药物发现的重要组成部分。广阔的化学空间涵盖了所有可能的分子,目前有些虚拟筛选库已经包含超过数十亿个分子,但是这些库也只占化学空间的很小一部分。与虚拟筛选相比,分子设计从广阔的化学空间搜索生成新的分子,但是传统的实验探索如此大的空间需要花费大量的时间和资源。近年来由于机器学习和AI方法的进步,为分子设计提供了新的计算思路。 diff --git a/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md b/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md index 0432b04b36b45fa3fcc810821008dc0bac0af1d3..feaf5d61fff7008af2f845b7bc61c8f67790b870 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md +++ b/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md @@ -1,6 +1,6 @@ # 分子性质预测 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md) 分子性质预测是计算机辅助药物发现流程中最重要的任务之一,在许多下游应用(例如药物筛选,药物设计)中都发挥着重要作用。传统分子性质预测使用密度泛函理论(Density Functional Theory, DFT)进行计算居多,虽然DFT可以精准预测多种分子性质,然而计算非常耗时,往往需要数个小时才能完成单个分子的性质计算。此外候选化合物数量较为庞大,因此使用传统量子化学方法进行分子性质预测需要付出巨大的资源和时间成本。得益于深度学习的快速发展,越来越多的人们开始尝试将深度学习应用于分子性质预测这一领域。其主要目的是通过原子坐标、原子序数等分子内部信息,对分子物理、化学性质做出预测,从而帮助人们快速在大量候选化合物中找到符合预测性质的化合物,加快药物筛选和药物设计的速度。 diff --git a/docs/mindsponge/docs/source_zh_cn/user/simulation.md b/docs/mindsponge/docs/source_zh_cn/user/simulation.md index 28abda164eddff53bdc7cf799d4cfdc0626af70d..00c6b6f8dd26151417eb1c6f42f1fe0aa14a4d5c 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/simulation.md +++ b/docs/mindsponge/docs/source_zh_cn/user/simulation.md @@ -1,6 +1,6 @@ # 分子模拟 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/simulation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/simulation.md) MindSpore SPONGE采取了一种独一无二的“类AI”分子模拟程序架构: diff --git a/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md b/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md index 47dc486d7365c2fdfb2b75118b2aa560fce11004..e83e8b6e039674f0e436f2c3147e365a2fbe6877 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md +++ b/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md @@ -1,6 +1,6 @@ # 分子结构预测 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md) 获取分子结构,尤其是生物大分子(DNA、RNA、蛋白质)的结构,是生物制药领域研究的重要问题,其用途也十分广泛,MindSpore SPONGE生物计算工具包提供一系列分子结构预测的计算工具,帮助研究者高效获取高精度的分子结构。 diff --git a/docs/mindspore/source_en/api_python/bfloat16_support.md b/docs/mindspore/source_en/api_python/bfloat16_support.md index ce91e569904a5f85bd71ab38ab1c51182da28909..236f5b87b2a689dda36356dc18e9d6d73bf0b639 100644 --- a/docs/mindspore/source_en/api_python/bfloat16_support.md +++ b/docs/mindspore/source_en/api_python/bfloat16_support.md @@ -1,6 +1,6 @@ # bfloat16 Datatype Support Status -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/bfloat16_support.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/bfloat16_support.md) ## Overview diff --git a/docs/mindspore/source_en/api_python/dynamic_shape_func.md b/docs/mindspore/source_en/api_python/dynamic_shape_func.md index fe4a57cba41085595a3991e04069d014ad860f7e..3a7dad7355ac4afa6ffb2a111264d8a7084b0d70 100644 --- a/docs/mindspore/source_en/api_python/dynamic_shape_func.md +++ b/docs/mindspore/source_en/api_python/dynamic_shape_func.md @@ -1,6 +1,6 @@ # Dynamic Shape Support Status of functional Interface -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/dynamic_shape_func.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/dynamic_shape_func.md) > The following list provides functional interfaces that support dynamic shape functionality in GRAPH mode. However, some functional interfaces may have incomplete data type support. If you encounter such issues, you can resolve them by manually incorporating the [Cast](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.Cast.html) operator. > diff --git a/docs/mindspore/source_en/api_python/dynamic_shape_nn.md b/docs/mindspore/source_en/api_python/dynamic_shape_nn.md index bb20131cd9662ed090e6d587c38aca1b15714187..fd610e326418400cf679fe74749107369a9185fd 100644 --- a/docs/mindspore/source_en/api_python/dynamic_shape_nn.md +++ b/docs/mindspore/source_en/api_python/dynamic_shape_nn.md @@ -1,6 +1,6 @@ # Dynamic Shape Support Status of nn Interface -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/dynamic_shape_nn.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/dynamic_shape_nn.md) > The following list provides nn interfaces that support dynamic shape functionality in GRAPH mode. However, some nn interfaces may have incomplete data type support. If you encounter such issues, you can resolve them by manually incorporating the [Cast](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.Cast.html) operator. > diff --git a/docs/mindspore/source_en/api_python/dynamic_shape_primitive.md b/docs/mindspore/source_en/api_python/dynamic_shape_primitive.md index 6526a90c96e477af91d6bb9722747a5c0020c33f..f92b07c0db635dbf74da67a01753f1f86b57113d 100644 --- a/docs/mindspore/source_en/api_python/dynamic_shape_primitive.md +++ b/docs/mindspore/source_en/api_python/dynamic_shape_primitive.md @@ -1,6 +1,6 @@ # Dynamic Shape Support Status of primitive Interface -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/dynamic_shape_primitive.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/dynamic_shape_primitive.md) > The following list provides primitive interfaces that support dynamic shape functionality in GRAPH mode. However, some primitive interfaces may have incomplete data type support. If you encounter such issues, you can resolve them by manually incorporating the [Cast](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.Cast.html) operator. > diff --git a/docs/mindspore/source_en/api_python/env_var_list.rst b/docs/mindspore/source_en/api_python/env_var_list.rst index d88ee1b49fc9af3e5317bb8f7ee3ae7b9420f49b..8571bcde9970231c427c00e9342633e7372967fb 100644 --- a/docs/mindspore/source_en/api_python/env_var_list.rst +++ b/docs/mindspore/source_en/api_python/env_var_list.rst @@ -2,7 +2,7 @@ Environment Variables ===================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/env_var_list.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/env_var_list.rst :alt: View Source On Gitee MindSpore environment variables are as follows: diff --git a/docs/mindspore/source_en/api_python/operator_list_parallel.md b/docs/mindspore/source_en/api_python/operator_list_parallel.md index 34a973a7f61e9b964249a65576c21d268cc2e8ef..8e9045bdc6d8bebc8b851498807369488256b412 100644 --- a/docs/mindspore/source_en/api_python/operator_list_parallel.md +++ b/docs/mindspore/source_en/api_python/operator_list_parallel.md @@ -1,6 +1,6 @@ # Usage Constraints During Operator Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/operator_list_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/api_python/operator_list_parallel.md) | API name | constraints | Config layout constraints | | :----------------------------------------------------------- | :----------------------------------------------------------- | :----------------------------------------------------------- | diff --git a/docs/mindspore/source_en/faq/data_processing.md b/docs/mindspore/source_en/faq/data_processing.md index 6a2b535937c1b379bda3a51a16211060d12933a9..01541c2ec003df8a3fa21ca8f1405db0a65f792b 100644 --- a/docs/mindspore/source_en/faq/data_processing.md +++ b/docs/mindspore/source_en/faq/data_processing.md @@ -1,6 +1,6 @@ # Data Processing -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/data_processing.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/data_processing.md) ## Q: How do I offload data if I do not use high-level APIs? diff --git a/docs/mindspore/source_en/faq/distributed_parallel.md b/docs/mindspore/source_en/faq/distributed_parallel.md index 96da0e616df4054aaee91a3efbe70608b4230195..d3b7ac70bdd6dc9202a17821ee025937e6ee3a75 100644 --- a/docs/mindspore/source_en/faq/distributed_parallel.md +++ b/docs/mindspore/source_en/faq/distributed_parallel.md @@ -1,6 +1,6 @@ # Distributed Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/distributed_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/distributed_parallel.md) ## Q: What should I do if the error message `Init plugin so failed, ret = 1343225860` is displayed during the HCCL distributed training? diff --git a/docs/mindspore/source_en/faq/feature_advice.md b/docs/mindspore/source_en/faq/feature_advice.md index 4d4bd3d41c5710f88c3f868ad1f7cfd967f87b24..85c0c30b46f7042addcad5aa4bcacc633b257524 100644 --- a/docs/mindspore/source_en/faq/feature_advice.md +++ b/docs/mindspore/source_en/faq/feature_advice.md @@ -1,6 +1,6 @@ # Feature Advice -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/feature_advice.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/feature_advice.md) ## Q: Is the `input=np.random.uniform(...)` format fixed when the MindIR format is exported? diff --git a/docs/mindspore/source_en/faq/implement_problem.md b/docs/mindspore/source_en/faq/implement_problem.md index f529f4887621969e542c159a35ca46fb881cad90..694a656f095d48d97c900d1aa633b2d5a04b9f97 100644 --- a/docs/mindspore/source_en/faq/implement_problem.md +++ b/docs/mindspore/source_en/faq/implement_problem.md @@ -1,6 +1,6 @@ # Implement Problem -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/implement_problem.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/implement_problem.md) ## Q: How do I use MindSpore to implement multi-scale training? diff --git a/docs/mindspore/source_en/faq/inference.md b/docs/mindspore/source_en/faq/inference.md index 65c8385e6675ebe3765725ee5f987879df371b6e..e9b2ddf6bca0aad09481d070a05e835073044940 100644 --- a/docs/mindspore/source_en/faq/inference.md +++ b/docs/mindspore/source_en/faq/inference.md @@ -1,6 +1,6 @@ # Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/inference.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/inference.md) ## Q: In the previous version, Atlas 200/300/500 inference product inference is performed based on the MindSpore installation package. However, the MindSpore release package of the new version does not support Atlas 200/300/500 inference product inference. How do I use Atlas 200/300/500 inference product for inference? (Changes in the MindSpore Atlas 200/300/500 Inference Product Inference Release Package) diff --git a/docs/mindspore/source_en/faq/installation.md b/docs/mindspore/source_en/faq/installation.md index 7fec4b77cf4b595b9d30c632dc2d5d436aed0f19..856e0252d4e0a6566d246c519388ce0d7d2c078f 100644 --- a/docs/mindspore/source_en/faq/installation.md +++ b/docs/mindspore/source_en/faq/installation.md @@ -1,6 +1,6 @@ # Installation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/installation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/installation.md) ## Installing by Using Pip diff --git a/docs/mindspore/source_en/faq/network_compilation.md b/docs/mindspore/source_en/faq/network_compilation.md index 2c27b842d5b661748a3330868a9f396d234cd7eb..8fc19f01c578bcf6e6c679bf2d1cf0589c9b58d6 100644 --- a/docs/mindspore/source_en/faq/network_compilation.md +++ b/docs/mindspore/source_en/faq/network_compilation.md @@ -1,6 +1,6 @@ # Network Compilation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/network_compilation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/network_compilation.md) ## Q: What is the set of syntaxes supported by static graph mode? diff --git a/docs/mindspore/source_en/faq/operators_compile.md b/docs/mindspore/source_en/faq/operators_compile.md index f27a1e805f7a51701fbc9ec18cdd30f44f0e0fb2..3ff05e5fb61c77987775ee306e8521a95e303c7a 100644 --- a/docs/mindspore/source_en/faq/operators_compile.md +++ b/docs/mindspore/source_en/faq/operators_compile.md @@ -1,6 +1,6 @@ # Operators Compile -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/operators_compile.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/operators_compile.md) ## Q: When the `ops.concat` operator is used, the error message `Error:Input and (output + workspace) num should <=192!` is displayed, which indicates that the data volume is large. What can I do? diff --git a/docs/mindspore/source_en/faq/performance_tuning.md b/docs/mindspore/source_en/faq/performance_tuning.md index 854d66a9a62f3b46654d150d03ac202e45630f3c..92fbe1178b6fe80c2b93e694b44ce9f97e3045df 100644 --- a/docs/mindspore/source_en/faq/performance_tuning.md +++ b/docs/mindspore/source_en/faq/performance_tuning.md @@ -1,6 +1,6 @@ # Performance Tuning -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/performance_tuning.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/performance_tuning.md) ## Q: What can I do if the network performance is abnormal and weight initialization takes a long time during training after MindSpore is installed? diff --git a/docs/mindspore/source_en/faq/precision_tuning.md b/docs/mindspore/source_en/faq/precision_tuning.md index 3f4d4b852a86244e89ad3ec5becd2136fb10c915..f926938c98b56c1bb92b4fb448c6ee6b4a654b31 100644 --- a/docs/mindspore/source_en/faq/precision_tuning.md +++ b/docs/mindspore/source_en/faq/precision_tuning.md @@ -1,6 +1,6 @@ # Precision Tuning -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/precision_tuning.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/faq/precision_tuning.md) ## Q: Why is the loss value not converged or why does the accuracy not meet the requirement? How can I locate and optimize the loss value? diff --git a/docs/mindspore/source_en/features/amp.md b/docs/mindspore/source_en/features/amp.md index eca148c34da0516f5cfcd3beed7baf9923eb9592..a0b4c6e1e83f2b5fe27253923b8fc568ec2bf45e 100644 --- a/docs/mindspore/source_en/features/amp.md +++ b/docs/mindspore/source_en/features/amp.md @@ -1,6 +1,6 @@ # Automatic Mixed Precision -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/amp.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/amp.md) Mixed precision training refers to an operation policy in which different numerical precisions are used for different operations of a neural network during training. In neural network operations, some operations are insensitive to numerical precision. In this case, using lower precision can achieve a significant acceleration effect (such as conv and matmul). For operations with a large difference between the input and output values, higher precision is required to ensure the correctness of the results (such as log and softmax). diff --git a/docs/mindspore/source_en/features/compile/compilation_guide.md b/docs/mindspore/source_en/features/compile/compilation_guide.md index e39096ba976a757205fca819cb74e563400bc99e..fc5fb81aae5e947bc0cf1af083853e27d26471b6 100644 --- a/docs/mindspore/source_en/features/compile/compilation_guide.md +++ b/docs/mindspore/source_en/features/compile/compilation_guide.md @@ -1,6 +1,6 @@ # mindspore.jit Multi-Level Compilation Optimization -[![View Source](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/compile/compilation_guide.md) +[![View Source](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/compile/compilation_guide.md) ## MindSpore Compilation Architecture diff --git a/docs/mindspore/source_en/features/data_engine.md b/docs/mindspore/source_en/features/data_engine.md index de5a68d511d630eb9f0c04e92ce3e0492ce6fad4..16450565b16d135f30f49193a41e776f26f6a26a 100644 --- a/docs/mindspore/source_en/features/data_engine.md +++ b/docs/mindspore/source_en/features/data_engine.md @@ -1,6 +1,6 @@ # High Performance Data Processing Engine -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/data_engine.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/data_engine.md) ## Background Introduction diff --git a/docs/mindspore/source_en/features/mint.md b/docs/mindspore/source_en/features/mint.md index e540575049b19eeb5ca525e614a926ccd43697c3..768711609b76f5a943a427d28a73b191399de992 100644 --- a/docs/mindspore/source_en/features/mint.md +++ b/docs/mindspore/source_en/features/mint.md @@ -1,6 +1,6 @@ # Introduction to mint API -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/mint.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/mint.md) ## Overview diff --git a/docs/mindspore/source_en/features/overview.md b/docs/mindspore/source_en/features/overview.md index 593d38c6a1a5048b4bd2d255d03b88f1a329641d..911af484e70a80d836968b0d5e234e7d5836a5dc 100644 --- a/docs/mindspore/source_en/features/overview.md +++ b/docs/mindspore/source_en/features/overview.md @@ -1,6 +1,6 @@ # MindSpore Design Overview -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/overview.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/overview.md) ## Introduction diff --git a/docs/mindspore/source_en/features/parallel/auto_parallel.md b/docs/mindspore/source_en/features/parallel/auto_parallel.md index 2cf6f090dd4ddd249c5cdb8f65bdfedf33d07cd5..37c7f98e3479e9a2fcd53b5f1253d7e6e3dc929b 100644 --- a/docs/mindspore/source_en/features/parallel/auto_parallel.md +++ b/docs/mindspore/source_en/features/parallel/auto_parallel.md @@ -1,6 +1,6 @@ # Automatic Parallel Strategy Search -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/auto_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/auto_parallel.md) The auto-parallel mode allows the user to automatically build the cost model and find a parallel strategy with shorter training time without paying attention to the strategy configuration. Currently MindSpore supports the following two different auto-parallel schemes: diff --git a/docs/mindspore/source_en/features/parallel/data_parallel.md b/docs/mindspore/source_en/features/parallel/data_parallel.md index 3fa7ff6c141734c14f9bcb013cb215d6cfa01735..5d6b2af05cf2c28a252058f1520533434b44973e 100644 --- a/docs/mindspore/source_en/features/parallel/data_parallel.md +++ b/docs/mindspore/source_en/features/parallel/data_parallel.md @@ -1,6 +1,6 @@ # Data Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/data_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/data_parallel.md) ## Overview diff --git a/docs/mindspore/source_en/features/parallel/operator_parallel.md b/docs/mindspore/source_en/features/parallel/operator_parallel.md index 319968ea69500ced23b038f74ce158d5f66e837e..15d5a0909b2559be92dbcb70c05c1d48254533fa 100644 --- a/docs/mindspore/source_en/features/parallel/operator_parallel.md +++ b/docs/mindspore/source_en/features/parallel/operator_parallel.md @@ -1,6 +1,6 @@ # Operator-level Parallelism -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/operator_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/operator_parallel.md) ## Overview diff --git a/docs/mindspore/source_en/features/parallel/optimizer_parallel.md b/docs/mindspore/source_en/features/parallel/optimizer_parallel.md index 3d1fa968481fc683752f5ccdc8f57408104c73f4..d44fc18855c882eb34113861b30419fe659b83b6 100644 --- a/docs/mindspore/source_en/features/parallel/optimizer_parallel.md +++ b/docs/mindspore/source_en/features/parallel/optimizer_parallel.md @@ -1,6 +1,6 @@ # Optimizer Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/optimizer_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/optimizer_parallel.md) ## Overview diff --git a/docs/mindspore/source_en/features/parallel/pipeline_parallel.md b/docs/mindspore/source_en/features/parallel/pipeline_parallel.md index e70617c43cf40f30423a85799ebbdbcaae6dd25d..c54afcb54dabbabf7db3cc64136a6711df9ca45b 100644 --- a/docs/mindspore/source_en/features/parallel/pipeline_parallel.md +++ b/docs/mindspore/source_en/features/parallel/pipeline_parallel.md @@ -1,6 +1,6 @@ # Pipeline Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/pipeline_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/parallel/pipeline_parallel.md) ## Overview diff --git a/docs/mindspore/source_en/features/runtime/memory_manager.md b/docs/mindspore/source_en/features/runtime/memory_manager.md index c51fcf785cbd9ba3898c0f727feab7014c3a162e..e229bb96e62cfb763e2b4f849b68b7b395f6ce0f 100644 --- a/docs/mindspore/source_en/features/runtime/memory_manager.md +++ b/docs/mindspore/source_en/features/runtime/memory_manager.md @@ -1,6 +1,6 @@ # Memory Management -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/runtime/memory_manager.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/runtime/memory_manager.md) ## Overview diff --git a/docs/mindspore/source_en/features/runtime/multilevel_pipeline.md b/docs/mindspore/source_en/features/runtime/multilevel_pipeline.md index 252fd765a089b605229f9efa137792fbee0e2d29..65ae9a9ea4342cf156f580705220246b741ef059 100644 --- a/docs/mindspore/source_en/features/runtime/multilevel_pipeline.md +++ b/docs/mindspore/source_en/features/runtime/multilevel_pipeline.md @@ -1,6 +1,6 @@ # Multi-level Pipeline -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/runtime/multilevel_pipeline.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/runtime/multilevel_pipeline.md) ## Overview diff --git a/docs/mindspore/source_en/features/runtime/multistream_concurrency.md b/docs/mindspore/source_en/features/runtime/multistream_concurrency.md index db9291024e4305e603a7020cbf1859042f2f15b0..0f9770d7de5a80b386dd25d4a0a980ae63dfd10d 100644 --- a/docs/mindspore/source_en/features/runtime/multistream_concurrency.md +++ b/docs/mindspore/source_en/features/runtime/multistream_concurrency.md @@ -1,6 +1,6 @@ # Multi-stream Concurrency -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/runtime/multistream_concurrency.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/runtime/multistream_concurrency.md) ## Overview diff --git a/docs/mindspore/source_en/features/view.md b/docs/mindspore/source_en/features/view.md index 0b89eabd7352f051486aabafef4e488c9cd4e0c7..e900bd6b880266d2a3f5c4ef23e94387401ec9fc 100644 --- a/docs/mindspore/source_en/features/view.md +++ b/docs/mindspore/source_en/features/view.md @@ -1,6 +1,6 @@ # Tensor View Mechanism -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/view.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/features/view.md) ## Overview @@ -231,4 +231,4 @@ view failed: The tensor is not contiguous. You can call .contiguous() to get a c | **Core Purpose** | Efficiently access data from different "perspectives" | Save memory, calculate and update directly on the original data | For more information on the usage of view inplace features, please refer to the following document: -Reference [view inplace](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/compile/static_graph.md#view-and-in-place-operations) +Reference [view inplace](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/compile/static_graph.md#view-and-in-place-operations) diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_api_mapping.md b/docs/mindspore/source_en/note/api_mapping/pytorch_api_mapping.md index 39f45290bc1875ce8b84336edc710f3178446ccf..7e2098377a2bb1bec3ab7c952ce81a2cc70f1874 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_api_mapping.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_api_mapping.md @@ -1,6 +1,6 @@ # PyTorch and MindSpore API Mapping Table -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_api_mapping.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_api_mapping.md) Mapping between PyTorch APIs and MindSpore APIs, which is provided by the community. There may be differences in parameters, inputs, outputs, logic functions, and specific scenarios. For details, see the description of each API or the difference comparison provided. diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AGNEWS.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AGNEWS.md index e1f325d6ba60f5885400d38be54ff894d9cf5676..d6164ec59adb2a3378c6a7e4efc5b9c214d9f961 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AGNEWS.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AGNEWS.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.AG_NEWS -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AGNEWS.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AGNEWS.md) ## torchtext.datasets.AG_NEWS diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewFull.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewFull.md index 8d597f08788aab854ab91281fb4df581ac0e38bd..683fe2550546e2b923552275c8c1b95a9d827d2d 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewFull.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewFull.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.AmazonReviewFull -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewFull.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewFull.md) ## torchtext.datasets.AmazonReviewFull diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md index 61dc574aca6ed0a4ff38ea011617f00b948991e8..22dd626c4b6d9884d00c12be0a5ca8613a4c8b5b 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.AmazonReviewPolarity -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md) ## torchtext.datasets.AmazonReviewPolarity diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmplitudeToDB.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmplitudeToDB.md index 5275aad4e47e8e577ecf04ba3d2d032979725154..b6d2e650b39ad6d0ece7cb6072ec1cfed5df9c7a 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmplitudeToDB.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmplitudeToDB.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.AmplitudeToDB -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmplitudeToDB.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AmplitudeToDB.md) ## torchaudio.transforms.AmplitudeToDB diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR10.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR10.md index 41f957b4efeb9822785e4cf878835b2be3c9177f..e9ce531a19d561ab6a5ba5f97c5565a166532e16 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR10.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR10.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.CIFAR10 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR10.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR10.md) ## torchvision.datasets.CIFAR10 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR100.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR100.md index 0a1ce795d2433b332030d497f20077c463146d3b..1f763eb963d5125c816d9b87186d1b5a71c37ed6 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR100.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR100.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.CIFAR100 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR100.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CIFAR100.md) ## torchvision.datasets.CIFAR100 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CMUARCTIC.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CMUARCTIC.md index 5760172c9a4b82f939c0c2f590db349dd81713a1..7c1c4dea622cdbeb99b269392139bd2155086758 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CMUARCTIC.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CMUARCTIC.md @@ -1,6 +1,6 @@ # Differences with torchaudio.datasets.CMUARCTIC -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CMUARCTIC.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CMUARCTIC.md) ## torchaudio.datasets.CMUARCTIC diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CelebA.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CelebA.md index ad7f540aaa235450967e0d3d799f5d2b3fdebe8f..8168df77bbdc4d5dbc2e360318bd67b03fe4440e 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CelebA.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CelebA.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.CelebA -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CelebA.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CelebA.md) ## torchvision.datasets.CelebA diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Cityscapes.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Cityscapes.md index 83093409320479c4736b1feb23682cfbf4723c55..2496dc892ce89e9c4d91e9d2244f9b469d2d261f 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Cityscapes.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Cityscapes.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.Cityscapes -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Cityscapes.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Cityscapes.md) ## torchvision.datasets.Cityscapes diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md index 1501151182f79d0c833f1404f5fc961e3ed2a43c..9a690d539fb1785d7cc2aa0ccd9f673f31bd1b62 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.CoNLL2000Chunking -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md) ## torchtext.datasets.CoNLL2000Chunking diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CocoDataset.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CocoDataset.md index 34a3645022f350c2a37f2d6a6f64b366ac99f1cd..7f0aa93dd2d74308f0e19e0d6a3c190231fc8633 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CocoDataset.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CocoDataset.md @@ -1,6 +1,6 @@ # Differences with torch.torchvision.datasets.CocoDetection -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CocoDataset.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CocoDataset.md) ## torchvision.datasets.CocoDetection diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DBpedia.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DBpedia.md index df4cd656090cf62792b6322349d633b07c07eddc..62d7e02538085f457a9db2c47fe68039e019edc9 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DBpedia.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DBpedia.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.DBpedia -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DBpedia.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DBpedia.md) ## torchtext.datasets.DBpedia diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DataLoader.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DataLoader.md index c27b387a4118966d957550746194f9bb1896d9c0..469475cba72b2c814fc7808666b5d5387837312a 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DataLoader.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DataLoader.md @@ -1,6 +1,6 @@ # Differences with torch.utils.data.DataLoader -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DataLoader.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DataLoader.md) ## torch.utils.data.DataLoader diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DistributedSampler.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DistributedSampler.md index 324a220511ce2d62f65c7bca443ab76006a768d2..18409150fff12b354588440c490a1a8d144bf036 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DistributedSampler.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DistributedSampler.md @@ -1,6 +1,6 @@ # Differences with torch.utils.data.distributed.DistributedSampler -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DistributedSampler.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/DistributedSampler.md) ## torch.utils.data.distributed.DistributedSampler diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/FrequencyMasking.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/FrequencyMasking.md index 2f84cf2b66747a500ce8c0a74839e35ebfa81fa2..1a6e60d6c6ec38f3df3e1148e3a83ed640a8a5f4 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/FrequencyMasking.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/FrequencyMasking.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.FrequencyMasking -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/FrequencyMasking.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/FrequencyMasking.md) ## torchaudio.transforms.FrequencyMasking diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GTZAN.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GTZAN.md index ed7ba0c2a501b8b7ee2b3972a60ff90733f30481..0836975b4b8115baf9e9d040bdd95441b9f5d650 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GTZAN.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GTZAN.md @@ -1,6 +1,6 @@ # Differences with torchaudio.datasets.GTZAN -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GTZAN.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GTZAN.md) ## torchaudio.datasets.GTZAN diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GriffinLim.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GriffinLim.md index 89edc78765e42f86394b66b21ee39099e07b9422..61f211a86e34226c8f6bc82d2c9d148a5c510515 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GriffinLim.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GriffinLim.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.GriffinLim -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GriffinLim.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GriffinLim.md) ## torchaudio.transforms.GriffinLim diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IMDB.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IMDB.md index 89999f227183e3988e24829d03e5ab5d78aa4a57..ab6d0fa8ba4ac8a3c9878930ec2dbc13ccd4d0c6 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IMDB.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IMDB.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.IMDB -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IMDB.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IMDB.md) ## torchtext.datasets.IMDB diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2016.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2016.md index eb3170fbededece7da65f5e5024f68eab8413e84..2987a5337abb091364446695cbcd83b46048d5bf 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2016.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2016.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.IWSLT2016 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2016.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2016.md) ## torchtext.datasets.IWSLT2016 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2017.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2017.md index b6e1f8b9e77d85889e8b63c4b531ac38ced074ea..d0415150e408c312b22f3441350d02894e41948f 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2017.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2017.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.IWSLT2017 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2017.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/IWSLT2017.md) ## torchtext.datasets.IWSLT2017 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ImageFolder.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ImageFolder.md index c31a898181ec28050d1b2be1e8218fe24f19a0b5..b0dfa1381d67f17c14e80f5f5e6d28619e1d7b48 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ImageFolder.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ImageFolder.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.ImageFolder -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ImageFolder.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ImageFolder.md) ## torchvision.datasets.ImageFolder diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/InverseMelScale.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/InverseMelScale.md index 9ba4295dbb14dbada5836865295b98780a8fe074..5e629a81da8fd869da644f7b2ed9b3eadc2d3c93 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/InverseMelScale.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/InverseMelScale.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.InverseMelScale -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/InverseMelScale.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/InverseMelScale.md) ## torchaudio.transforms.InverseMelScale diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LIBRITTS.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LIBRITTS.md index ecb007459f7ca5658d65ecd72db5d8cbcda16fe4..746f275bf916657ecb5ca796c9919a8d53fd9e31 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LIBRITTS.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LIBRITTS.md @@ -1,6 +1,6 @@ # Differences with torchaudio.datasets.LIBRITTS -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LIBRITTS.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LIBRITTS.md) ## torchaudio.datasets.LIBRITTS diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LJSPEECH.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LJSPEECH.md index 44207629c4d335d55b14893db785d9958291e7ac..74f21f5bea1903937239f72c764c49d2407271e7 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LJSPEECH.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LJSPEECH.md @@ -1,6 +1,6 @@ # Differences with torchaudio.datasets.LJSPEECH -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LJSPEECH.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LJSPEECH.md) ## torchaudio.datasets.LJSPEECH diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Lookup.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Lookup.md index f5bbcc5621138f30b7d18257393c90e9c7be5162..2476ce13e84ba4138b6fbca444a59db487c6722d 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Lookup.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Lookup.md @@ -1,6 +1,6 @@ # Differences with torchtext.data.functional.numericalize_tokens_from_iterator -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Lookup.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Lookup.md) ## torchtext.data.functional.numericalize_tokens_from_iterator diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MNIST.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MNIST.md index 8c6b2b09a8c937a50bfc95a80aa7d4de0ca38efa..57ffe834e4b30741d705d81eec2205326b29cd21 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MNIST.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MNIST.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.MNIST -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MNIST.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MNIST.md) ## torchvision.datasets.MNIST diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelScale.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelScale.md index c846b24b313364631354a43f0632845df2712b07..c0d25b07e6118a2449992232414ae3db22d5535e 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelScale.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelScale.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.MelScale -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelScale.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelScale.md) ## torchaudio.transforms.MelScale diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelSpectrogram.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelSpectrogram.md index 29a084dc146b2750e519f9aab4cc05ceb84521ba..cc68ac01d2fce2114167f700fab5607e324b7119 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelSpectrogram.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelSpectrogram.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.MelSpectrogram -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelSpectrogram.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelSpectrogram.md) ## torchaudio.transforms.MelSpectrogram diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Ngram.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Ngram.md index aaf93acfa2bce145f0c73452a49a40ee6370d35f..d015f31c840f1bf00da1e8a058a23a7522bc5892 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Ngram.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Ngram.md @@ -1,6 +1,6 @@ # Differences with torchtext.data.utils.ngrams_iterator -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Ngram.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Ngram.md) ## torchtext.data.utils.ngrams_iterator diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Normalize.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Normalize.md index cd05ce225789a00de8c1da15b11062e6abd42d74..53d175733ba487659f4afaf37e80046bb44ec89a 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Normalize.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Normalize.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.Normalize -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Normalize.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Normalize.md) ## torchvision.transforms.Normalize diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/PennTreebank.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/PennTreebank.md index 389a8f7a690a2cf550f1f10f00866715225df94f..ecc286cbc45613785366ddb699729e53ae81f5a2 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/PennTreebank.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/PennTreebank.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.PennTreebank -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/PennTreebank.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/PennTreebank.md) ## torchtext.datasets.PennTreebank diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomAffine.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomAffine.md index 084126da9ddc1550320f593736791805a85cfd10..b6e552a59976d806925950e417e422084428c97e 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomAffine.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomAffine.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.RandomAffine -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomAffine.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomAffine.md) ## torchvision.transforms.RandomAffine diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomPerspective.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomPerspective.md index 6ebe67649620c96c04b662d246469b1c1b697ffa..2140c0973b902c8c9160043da9589449a50b4b87 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomPerspective.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomPerspective.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.RandomPerspective -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomPerspective.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomPerspective.md) ## torchvision.transforms.RandomPerspective diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomResizedCrop.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomResizedCrop.md index 66642a5ef682b4e5349e6a448129ee89bef41a9d..443c4b5432d57ddedff5f4122abab9bd5193dc4c 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomResizedCrop.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomResizedCrop.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.RandomResizedCrop -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomResizedCrop.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomResizedCrop.md) ## torchvision.transforms.RandomResizedCrop diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomRotation.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomRotation.md index 1cf35767a07821907a43db2c939ac7230ed75765..9e5c578501b07a094270b01e6ee076c9ecd1221f 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomRotation.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomRotation.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.RandomRotation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomRotation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomRotation.md) ## torchvision.transforms.RandomRotation diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomSampler.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomSampler.md index a18dd0542d4d1b1aa743da86902a983b3ee8feaf..ae3d56edd2171d4f5000f4a1475a6caa4bcb0a79 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomSampler.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomSampler.md @@ -1,6 +1,6 @@ # Differences with torch.utils.data.RandomSampler -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomSampler.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomSampler.md) ## torch.utils.data.RandomSampler diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RegexReplace.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RegexReplace.md index 16df240f985ab612ee5e7bec8852e94e7f4646b3..43892332bcbc6c6c53cb35eca9097956acaedb0e 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RegexReplace.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RegexReplace.md @@ -1,6 +1,6 @@ # Differences with torchtext.data.functional.custom_replace -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RegexReplace.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RegexReplace.md) ## torchtext.data.functional.custom_replace diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Resample.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Resample.md index 5562ea6fc93c2d012f9acdb11641e927acaf5bb2..fa73e6cc3563481f036748a11067348a9c76dca9 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Resample.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Resample.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.Resample -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Resample.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Resample.md) ## torchaudio.transforms.Resample diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md index 231e5cb0789c04571b5dfebdfa195da86eee7bcb..b2d73aadce962c4085b28ba0ed513e5b051fb355 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md @@ -1,6 +1,6 @@ # Differences with torchaudio.datasets.SPEECHCOMMANDS -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md) ## torchaudio.datasets.SPEECHCOMMANDS diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD1.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD1.md index b5564bfb0da9a25241db1a2bfa77de8cd74aff88..78f0c24ac557da31d6862e81b982c6f4f41a1e39 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD1.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD1.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.SQuAD1 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD1.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD1.md) ## torchtext.datasets.SQuAD1 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD2.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD2.md index dd41c3dbc2c4a6d1a145aea9d20034ad48f351fb..75834e57d1293e7f4b4742e3a462a8393ab42612 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD2.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD2.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.SQuAD2 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD2.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SQuAD2.md) ## torchtext.datasets.SQuAD2 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md index 23d3aaf2020a80d4faf97a9318dbe530814bf86b..fe697ecf108574cb3316f3dcde9fab3fee5babca 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md @@ -1,6 +1,6 @@ # Differences with torchtext.data.functional.sentencepiece_numericalizer -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) ## torchtext.data.functional.sentencepiece_numericalizer diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md index 84fb0b3d080bee748060912be59040fa254e46da..d1f535b7924c54547a5989145928a8f38c440ff7 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md @@ -1,6 +1,6 @@ # Differences with torchtext.data.functional.sentencepiece_tokenizer -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) ## torchtext.data.functional.sentencepiece_tokenizer diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SequentialSampler.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SequentialSampler.md index 24df99bc9a657d10b352e3f0b8674146870290e4..13e774774a47a9614f0df7b15c6b484ad1c23ed4 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SequentialSampler.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SequentialSampler.md @@ -1,6 +1,6 @@ # Differences with torch.utils.data.SequentialSampler -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SequentialSampler.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SequentialSampler.md) ## torch.utils.data.SequentialSampler diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SogouNews.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SogouNews.md index e0f7b305b0e1ec68970bd57826f69e2d2ad51516..583cfe3a486cbaca41ec7779adccae9d9c191332 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SogouNews.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SogouNews.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.SogouNews -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SogouNews.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SogouNews.md) ## torchtext.datasets.SogouNews diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SpectralCentroid.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SpectralCentroid.md index 31a14241ebc92e0681e722d8d1af6ef4c2d7677a..af82982ea4cc935005261bbafe575fb05ff43ac8 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SpectralCentroid.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SpectralCentroid.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.SpectralCentroid -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SpectralCentroid.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SpectralCentroid.md) ## torchaudio.transforms.SpectralCentroid diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Spectrogram.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Spectrogram.md index fc14ee69a6c3d1fad5d54b9a08e230bfee382982..810350af94f5e1d3b7ab51aff76f5437da75a8a3 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Spectrogram.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Spectrogram.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.Spectrogram -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Spectrogram.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Spectrogram.md) ## torchaudio.transforms.Spectrogram diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SubsetRandomSampler.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SubsetRandomSampler.md index 5bac945335e8cea14e2fe0998a579f30041aeee6..8158c46ad55bc0fa84040e9c26e98edf8bfc1484 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SubsetRandomSampler.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SubsetRandomSampler.md @@ -1,6 +1,6 @@ # Differences with torch.utils.data.SubsetRandomSampler -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SubsetRandomSampler.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SubsetRandomSampler.md) ## torch.utils.data.SubsetRandomSampler diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TEDLIUM.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TEDLIUM.md index b67ff746e29bb77e58a70211d27b472462679368..d293eae09bcc23cff33f212542ab4d2571fc1df3 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TEDLIUM.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TEDLIUM.md @@ -1,6 +1,6 @@ # Differences with torchaudio.datasets.TEDLIUM -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TEDLIUM.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TEDLIUM.md) ## torchaudio.datasets.TEDLIUM diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TimeMasking.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TimeMasking.md index 203fb7f5e1a780073d5cd590a98230cb3fae1c8f..9728df8cdea43056153201e484025e9247defd2e 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TimeMasking.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TimeMasking.md @@ -1,6 +1,6 @@ # Differences with torchaudio.transforms.TimeMasking -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TimeMasking.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TimeMasking.md) ## torchaudio.transforms.TimeMasking diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md index 49cb2183dd51c4c84396c15aa05c2e4a7b9fec07..1a6b6714e85e9b0750db417560c05dfe48145a5f 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.ToPILImage -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md) ## torchvision.transforms.ToPILImage diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToTensor.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToTensor.md index 40068608459c6d228781371af1d2a746f1c1888c..303bbadbb06a93e1afed9c31c9a7108231ba7f92 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToTensor.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToTensor.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.ToTensor -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToTensor.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToTensor.md) ## torchvision.transforms.ToTensor diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TypeCast.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TypeCast.md index 812cfcff9a06bb262ac1ee79f1cf7effe7ecd04a..e4ad17909a692c827ed2640b5c0fc55e9f213c2c 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TypeCast.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TypeCast.md @@ -1,6 +1,6 @@ # Differences with torchvision.transforms.ConvertImageDtype -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TypeCast.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TypeCast.md) ## torchvision.transforms.ConvertImageDtype diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/UDPOS.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/UDPOS.md index 8c7aa45623c0a6eae125f47ec49d42b9147c79fb..8457856c878bd7178172eab486784967023bf28c 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/UDPOS.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/UDPOS.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.UDPOS -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/UDPOS.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/UDPOS.md) ## torchtext.datasets.UDPOS diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCDetection.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCDetection.md index 0c7b70f090600bb1d68af044b993522002d2e845..e4b6bfc817b4ce98eea40434943c5c2887a522b2 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCDetection.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCDetection.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.VOCDetection -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCDetection.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCDetection.md) ## torchvision.datasets.VOCDetection diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCSegmentation.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCSegmentation.md index aa12c4d01b9fdc34df1787a621cfc75c7c9feec2..99223d2d594123f2bf8d7ccc0042acc3b26fecf7 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCSegmentation.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCSegmentation.md @@ -1,6 +1,6 @@ # Differences with torchvision.datasets.VOCSegmentation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCSegmentation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCSegmentation.md) ## torchvision.datasets.VOCSegmentation diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WeightedRandomSampler.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WeightedRandomSampler.md index 21de0964c0ffdb4bcbb31f092b3bad16c9bc06ba..9d42f5728f8715f377943808eecfd0ad67fbfca5 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WeightedRandomSampler.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WeightedRandomSampler.md @@ -1,6 +1,6 @@ # Differences with torch.utils.data.WeightedRandomSampler -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WeightedRandomSampler.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WeightedRandomSampler.md) ## torch.utils.data.WeightedRandomSampler diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md index 9530993e2d0feb657b334ca3c73b8cf44efca8b6..eab70367c6c75a947fd2e128d3db8151b657c93f 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md @@ -1,6 +1,6 @@ # Differences with torchtext.data.functional.simple_space_split -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md) ## torchtext.data.functional.simple_space_split diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText103.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText103.md index 7377273b6f55f61df80f028bfd39eadfba0bdac8..c10ec483d5c86c3c9ad66d9321e68007d1d2932a 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText103.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText103.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.WikiText103 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText103.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText103.md) ## torchtext.datasets.WikiText103 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText2.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText2.md index 0c525fc445ac47612caf048c6eb73a964e3ac220..bcdc41edc1fe6d2255436faab9f56f00fa09395a 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText2.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText2.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.WikiText2 -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText2.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WikiText2.md) ## torchtext.datasets.WikiText2 diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YESNO.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YESNO.md index 12f843742d5d0c81aba6b081e3396f52115fb09a..cc69e8a9937a01a2be29b9d5fdf2c09a0e2402fb 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YESNO.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YESNO.md @@ -1,6 +1,6 @@ # Differences with torchaudio.datasets.YESNO -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YESNO.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YESNO.md) ## torchaudio.datasets.YESNO diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YahooAnswers.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YahooAnswers.md index 2e53a315f1e60719b781e0f3f4aa5ab80eae5df7..bfe4d5d5da0d21bcd7aa3e3aeaf4d35188595249 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YahooAnswers.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YahooAnswers.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.YahooAnswers -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YahooAnswers.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YahooAnswers.md) ## torchtext.datasets.YahooAnswers diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewFull.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewFull.md index 75b43b50bd81d39db76405f78a2cd5abe90be190..a7b1c5dcbd8dd13e02ce79a8f08ba51e5f4f078e 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewFull.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewFull.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.YelpReviewFull -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewFull.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewFull.md) ## torchtext.datasets.YelpReviewFull diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewPolarity.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewPolarity.md index 4974b88b5907512c550294c975eb827490839315..07f074492b4922c76a92c903ddca74f47b2dfab3 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewPolarity.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewPolarity.md @@ -1,6 +1,6 @@ # Differences with torchtext.datasets.YelpReviewPolarity -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewPolarity.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/YelpReviewPolarity.md) ## torchtext.datasets.YelpReviewPolarity diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/checkpoint.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/checkpoint.md index ae019ffdee64a14c28a22fcbcb4cbbd34d9e045e..ed483744ec53ba96bd930fc2435a333003d6668d 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/checkpoint.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/checkpoint.md @@ -1,6 +1,6 @@ # Differences with torch.utils.checkpoint.checkpoint -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/checkpoint.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/checkpoint.md) ## torch.utils.checkpoint.checkpoint diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/deform_conv2d.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/deform_conv2d.md index ac917c040a45d0c65bffc295b6c6704968cfd413..86abaf5803d65e11a75165924b33b939cf47de4e 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/deform_conv2d.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/deform_conv2d.md @@ -1,6 +1,6 @@ # Differences with torchvision.ops.deform_conv2d -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/deform_conv2d.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/deform_conv2d.md) ## torchvision.ops.deform_conv2d diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/load_sp_model.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/load_sp_model.md index f021df0a89c81fe0e7e038ef12f6dbbc92e72f77..0b79afc5dbdbf3eabd269247f51e66897c34832f 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/load_sp_model.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/load_sp_model.md @@ -1,6 +1,6 @@ # Differences with torchtext.data.functional.load_sp_model -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/load_sp_model.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/load_sp_model.md) ## torchtext.data.functional.load_sp_model diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/nms.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/nms.md index 8e3246e523efe9e1190f36a6998b6a954fb4c01d..2887debf066a5b412440ffeaa214fda9212b93c8 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/nms.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/nms.md @@ -1,6 +1,6 @@ # Differences with torchvision.ops.nms -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/nms.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/nms.md) ## torchvision.ops.nms diff --git a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/roi_align.md b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/roi_align.md index 06201913c61c1f1cda5d1a3e7ba8b32bf668a633..18060e023592b3cd5d68e679a7023024b259a2fd 100644 --- a/docs/mindspore/source_en/note/api_mapping/pytorch_diff/roi_align.md +++ b/docs/mindspore/source_en/note/api_mapping/pytorch_diff/roi_align.md @@ -1,6 +1,6 @@ # Differences with torchvision.ops.roi_align -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/roi_align.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/roi_align.md) ## torchvision.ops.roi_align diff --git a/docs/mindspore/source_zh_cn/api_python/bfloat16_support.md b/docs/mindspore/source_zh_cn/api_python/bfloat16_support.md index 4b1a0bd0f97b93785ff3683add037e0d2e88af56..a23244372ddad385b7ce674e6171ada7c85dc627 100644 --- a/docs/mindspore/source_zh_cn/api_python/bfloat16_support.md +++ b/docs/mindspore/source_zh_cn/api_python/bfloat16_support.md @@ -1,6 +1,6 @@ # bfloat16 数据类型支持情况 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/bfloat16_support.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/bfloat16_support.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/api_python/dynamic_shape_func.md b/docs/mindspore/source_zh_cn/api_python/dynamic_shape_func.md index cc651f4106eab7d1f3a99fbe4dc2b5020ed68820..c972c0dd2051d45a091247faad103ed7808e252e 100644 --- a/docs/mindspore/source_zh_cn/api_python/dynamic_shape_func.md +++ b/docs/mindspore/source_zh_cn/api_python/dynamic_shape_func.md @@ -1,6 +1,6 @@ # functional接口动态shape支持情况 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/dynamic_shape_func.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/dynamic_shape_func.md) > 以下列表列举了GRAPH模式下支持动态shape功能的functional接口。其中部分functional接口可能会存在数据类型支持不全的问题,如遇到此类问题,可以通过主动插入[Cast](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Cast.html)算子解决。 > diff --git a/docs/mindspore/source_zh_cn/api_python/dynamic_shape_nn.md b/docs/mindspore/source_zh_cn/api_python/dynamic_shape_nn.md index 3ee5e668f0adad2bd35c68b4d0a4af1c259f6cb1..e68b773c6685384930e6934974fbfb47156ace66 100644 --- a/docs/mindspore/source_zh_cn/api_python/dynamic_shape_nn.md +++ b/docs/mindspore/source_zh_cn/api_python/dynamic_shape_nn.md @@ -1,6 +1,6 @@ # nn接口动态shape支持情况 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/dynamic_shape_nn.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/dynamic_shape_nn.md) > 以下列表列举了GRAPH模式下支持动态shape功能的nn接口。其中部分nn接口可能会存在数据类型支持不全的问题,如遇到此类问题,可以通过主动插入[Cast](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Cast.html)算子解决。 > diff --git a/docs/mindspore/source_zh_cn/api_python/dynamic_shape_primitive.md b/docs/mindspore/source_zh_cn/api_python/dynamic_shape_primitive.md index 9ee00e0e7e4b75a337acab153c3c2d951a0137b4..f03cea55beef3703d999b6964679a395dfd41113 100644 --- a/docs/mindspore/source_zh_cn/api_python/dynamic_shape_primitive.md +++ b/docs/mindspore/source_zh_cn/api_python/dynamic_shape_primitive.md @@ -1,6 +1,6 @@ # 算子动态shape支持情况 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/dynamic_shape_primitive.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/dynamic_shape_primitive.md) > 以下列表列举了GRAPH模式下支持动态shape功能的算子。其中部分算子可能会存在数据类型支持不全的问题,如遇到此类问题,可以通过主动插入[Cast](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Cast.html)算子解决。 > diff --git a/docs/mindspore/source_zh_cn/api_python/env_var_list.rst b/docs/mindspore/source_zh_cn/api_python/env_var_list.rst index 01b4557a4989da3b2f795c2e3391458b2c531be4..26819dd09d15c06bca0dcfea1c604ac7496a06bc 100644 --- a/docs/mindspore/source_zh_cn/api_python/env_var_list.rst +++ b/docs/mindspore/source_zh_cn/api_python/env_var_list.rst @@ -2,7 +2,7 @@ ======== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/env_var_list.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/env_var_list.rst :alt: 查看源文件 本文介绍MindSpore的环境变量。 diff --git a/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md b/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md index 9d7736c4931ec0cc224809c41fa42c4641a4986a..a413fdd99a544454639967a4ee78db37aed789d6 100644 --- a/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md +++ b/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md @@ -1,6 +1,6 @@ # 算子级并行使用约束 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md) | 操作名 | 约束 | Layout配置约束 | | :----------------------------------------------------------- | :----------------------------------------------------------- | :----------------------------------------------------------- | diff --git a/docs/mindspore/source_zh_cn/faq/data_processing.md b/docs/mindspore/source_zh_cn/faq/data_processing.md index f2bdaabd8121152edfd975d697825737f03d6794..6e8d14f9b030f4fca733bc5c7cef956bccb7ca9a 100644 --- a/docs/mindspore/source_zh_cn/faq/data_processing.md +++ b/docs/mindspore/source_zh_cn/faq/data_processing.md @@ -1,6 +1,6 @@ # 数据处理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/data_processing.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/data_processing.md) ## Q: 请问如果不使用高阶API,怎么实现数据下沉? diff --git a/docs/mindspore/source_zh_cn/faq/distributed_parallel.md b/docs/mindspore/source_zh_cn/faq/distributed_parallel.md index 8b2113e95adbd9755dcda49b9bbc742e19e69e02..cd54afd8682ec1fc72b18344a19674018378a77c 100644 --- a/docs/mindspore/source_zh_cn/faq/distributed_parallel.md +++ b/docs/mindspore/source_zh_cn/faq/distributed_parallel.md @@ -1,6 +1,6 @@ # 分布式并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/distributed_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/distributed_parallel.md) ## Q: 进行HCCL分布式训练出错:`Init plugin so failed, ret = 1343225860`,该如何处理? diff --git a/docs/mindspore/source_zh_cn/faq/feature_advice.md b/docs/mindspore/source_zh_cn/faq/feature_advice.md index 50c637159c00db912ecc023358b2eb2615b0385b..93bb88f0e411874cd23137877e8dd946eb825f8c 100644 --- a/docs/mindspore/source_zh_cn/faq/feature_advice.md +++ b/docs/mindspore/source_zh_cn/faq/feature_advice.md @@ -1,6 +1,6 @@ # 特性咨询 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/feature_advice.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/feature_advice.md) ## Q: 导出MindIR格式的时候,`input=np.random.uniform(...)`是不是固定格式? diff --git a/docs/mindspore/source_zh_cn/faq/implement_problem.md b/docs/mindspore/source_zh_cn/faq/implement_problem.md index 125a97e9a5770aa1544e88962c9ff3ee12d74d17..9248d3770f06d083d03e1f6964cc7011cdee1390 100644 --- a/docs/mindspore/source_zh_cn/faq/implement_problem.md +++ b/docs/mindspore/source_zh_cn/faq/implement_problem.md @@ -1,6 +1,6 @@ # 执行问题 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/implement_problem.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/implement_problem.md) ## Q: 请问使用MindSpore如何实现多尺度训练? diff --git a/docs/mindspore/source_zh_cn/faq/inference.md b/docs/mindspore/source_zh_cn/faq/inference.md index b39d3163610ccee090dd8150abdacc909fed4d7e..5c24c43c9ebff1476d8e81739b470f4cd9abbe1a 100644 --- a/docs/mindspore/source_zh_cn/faq/inference.md +++ b/docs/mindspore/source_zh_cn/faq/inference.md @@ -1,6 +1,6 @@ # 推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/inference.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/inference.md) ## Q: 原先基于MindSpore安装包进行Atlas 200/300/500推理产品推理,新版本MindSpore发布包不支持Atlas 200/300/500推理产品平台的推理?如何使用Atlas 200/300/500推理产品进行推理?(MindSpore Atlas 200/300/500推理产品推理功能发布包变更说明) diff --git a/docs/mindspore/source_zh_cn/faq/installation.md b/docs/mindspore/source_zh_cn/faq/installation.md index a17ea76b66f484a6e7a648bef864b584ead3814e..ee4f72b51d93585905012a82331a505a4602d4f9 100644 --- a/docs/mindspore/source_zh_cn/faq/installation.md +++ b/docs/mindspore/source_zh_cn/faq/installation.md @@ -1,6 +1,6 @@ # 安装 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/installation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/installation.md) ## Pip安装 diff --git a/docs/mindspore/source_zh_cn/faq/network_compilation.md b/docs/mindspore/source_zh_cn/faq/network_compilation.md index 679ca175111968796bac31f7c307cd3b94382245..eed313d6f00118496a748950f843e52868bbc77b 100644 --- a/docs/mindspore/source_zh_cn/faq/network_compilation.md +++ b/docs/mindspore/source_zh_cn/faq/network_compilation.md @@ -1,6 +1,6 @@ # 网络编译 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/network_compilation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/network_compilation.md) ## Q: 静态图模式支持的语法集合是什么? diff --git a/docs/mindspore/source_zh_cn/faq/operators_compile.md b/docs/mindspore/source_zh_cn/faq/operators_compile.md index 88ef186ab033ab4e1fafb769538a835e2d47e98c..798acaeb87389b31a67529ac5cdc33b2ef89ab4f 100644 --- a/docs/mindspore/source_zh_cn/faq/operators_compile.md +++ b/docs/mindspore/source_zh_cn/faq/operators_compile.md @@ -1,6 +1,6 @@ # 算子编译 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/operators_compile.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/operators_compile.md) ## Q: 在使用`ops.concat`算子时,因为数据规模有点大,导致报错`Error:Input and (output + workspace) num should <=192!`,可以怎么处理? diff --git a/docs/mindspore/source_zh_cn/faq/performance_tuning.md b/docs/mindspore/source_zh_cn/faq/performance_tuning.md index c24e22515669be2f86aae2bcc8a88823e7ed7e7e..098b4cf8e17d81096935654c2fb5feb59887761a 100644 --- a/docs/mindspore/source_zh_cn/faq/performance_tuning.md +++ b/docs/mindspore/source_zh_cn/faq/performance_tuning.md @@ -1,6 +1,6 @@ # 性能调优 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/performance_tuning.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/performance_tuning.md) ## Q: MindSpore安装完成,执行训练时发现网络性能异常,权重初始化耗时过长,怎么办? diff --git a/docs/mindspore/source_zh_cn/faq/precision_tuning.md b/docs/mindspore/source_zh_cn/faq/precision_tuning.md index 305db727ac0a134960352ba85f8a97eeaea1933f..7c61342721a0a869feac346fe721afbdbd9cb309 100644 --- a/docs/mindspore/source_zh_cn/faq/precision_tuning.md +++ b/docs/mindspore/source_zh_cn/faq/precision_tuning.md @@ -1,6 +1,6 @@ # 精度调优 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/precision_tuning.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/faq/precision_tuning.md) ## Q: 导致Loss值不收敛或者精度不达标的原因有哪些呢,应该怎样定位调优? diff --git a/docs/mindspore/source_zh_cn/features/amp.md b/docs/mindspore/source_zh_cn/features/amp.md index d1774fdb40ebcf39bcde108c671ce9bdfb45f621..49156fde2f2003c4306cda91e38395ed46fba047 100644 --- a/docs/mindspore/source_zh_cn/features/amp.md +++ b/docs/mindspore/source_zh_cn/features/amp.md @@ -1,6 +1,6 @@ # 自动混合精度 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/amp.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/amp.md) 混合精度(Mixed Precision)训练是指在训练时,对神经网络不同的运算采用不同的数值精度的运算策略。在神经网络运算中,部分运算对数值精度不敏感,此时使用较低精度可以达到明显的加速效果(如conv、matmul等);而部分运算由于输入和输出的数值差异大,通常需要保留较高精度以保证结果的正确性(如log、softmax等)。 diff --git a/docs/mindspore/source_zh_cn/features/compile/compilation_guide.md b/docs/mindspore/source_zh_cn/features/compile/compilation_guide.md index b2dc45fc150237e144339975de6d9039ec300f9c..fcca279e8875a746728c9b41c9ea2659c90597e3 100644 --- a/docs/mindspore/source_zh_cn/features/compile/compilation_guide.md +++ b/docs/mindspore/source_zh_cn/features/compile/compilation_guide.md @@ -1,6 +1,6 @@ # mindspore.jit 多级编译优化 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/compile/compilation_guide.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/compile/compilation_guide.md) ## MindSpore编译架构 diff --git a/docs/mindspore/source_zh_cn/features/data_engine.md b/docs/mindspore/source_zh_cn/features/data_engine.md index 07fc9d670d6216acf931149d747524b7f106ad91..be1f2f42c0b34636edab8ebbebc7d9b6b86fe96a 100644 --- a/docs/mindspore/source_zh_cn/features/data_engine.md +++ b/docs/mindspore/source_zh_cn/features/data_engine.md @@ -1,6 +1,6 @@ # 高性能数据处理引擎 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/data_engine.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/data_engine.md) ## 背景介绍 diff --git a/docs/mindspore/source_zh_cn/features/mint.md b/docs/mindspore/source_zh_cn/features/mint.md index a8aa8044c6eb5ddc20ee965feef9d8c93e2516d4..9c6601b347abee4df9427840732d7f74b6b8eb20 100644 --- a/docs/mindspore/source_zh_cn/features/mint.md +++ b/docs/mindspore/source_zh_cn/features/mint.md @@ -1,6 +1,6 @@ # mint API 介绍 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/mint.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/mint.md) ## 介绍 diff --git a/docs/mindspore/source_zh_cn/features/overview.md b/docs/mindspore/source_zh_cn/features/overview.md index 4f773ad7b2d5ef8c340c1b28b495b69ab6baf33a..7118fbfd375a8276b9dc68d57c05f00bec1b7c85 100644 --- a/docs/mindspore/source_zh_cn/features/overview.md +++ b/docs/mindspore/source_zh_cn/features/overview.md @@ -1,6 +1,6 @@ # MindSpore设计概览 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/overview.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/overview.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/parallel/auto_parallel.md b/docs/mindspore/source_zh_cn/features/parallel/auto_parallel.md index 43a4ba3798ae3685a0a7eb8ac839cbfba60f51ff..b90aba0376ab52c54a71d2064f926d808cb73d7a 100644 --- a/docs/mindspore/source_zh_cn/features/parallel/auto_parallel.md +++ b/docs/mindspore/source_zh_cn/features/parallel/auto_parallel.md @@ -1,6 +1,6 @@ # 自动并行策略搜索 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/auto_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/auto_parallel.md) 自动并行策略搜索模式能够让用户无需关心策略配置,自动地建立代价模型,找到训练时间较短的并行策略。当前MindSpore支持如下两种不同的自动并行策略搜索方案: diff --git a/docs/mindspore/source_zh_cn/features/parallel/data_parallel.md b/docs/mindspore/source_zh_cn/features/parallel/data_parallel.md index 26bdfeea1f0aecb8f54784fa95cb02a9a5122066..9d2b7ccfe08ff52ff4545f71f0c787178d1c20a7 100644 --- a/docs/mindspore/source_zh_cn/features/parallel/data_parallel.md +++ b/docs/mindspore/source_zh_cn/features/parallel/data_parallel.md @@ -1,6 +1,6 @@ # 数据并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/data_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/data_parallel.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/parallel/operator_parallel.md b/docs/mindspore/source_zh_cn/features/parallel/operator_parallel.md index c6a2254ebc081984aa5625994a10b586f3db523e..5760dd61edbb38f0a4309de2186dfeaa19f381f1 100644 --- a/docs/mindspore/source_zh_cn/features/parallel/operator_parallel.md +++ b/docs/mindspore/source_zh_cn/features/parallel/operator_parallel.md @@ -1,6 +1,6 @@ # 算子级并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/operator_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/operator_parallel.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/parallel/optimizer_parallel.md b/docs/mindspore/source_zh_cn/features/parallel/optimizer_parallel.md index d8f06aacd15453d613f21675b02da376befb607d..74bdd9f08baff90f36335c55c11e50b2ddf8e41b 100644 --- a/docs/mindspore/source_zh_cn/features/parallel/optimizer_parallel.md +++ b/docs/mindspore/source_zh_cn/features/parallel/optimizer_parallel.md @@ -1,6 +1,6 @@ # 优化器并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/optimizer_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/optimizer_parallel.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/parallel/pipeline_parallel.md b/docs/mindspore/source_zh_cn/features/parallel/pipeline_parallel.md index 7f842527105c1bd9680e1ba10f4ca7fbe19b79de..458c9b2126f1d926e6700535b0f539000b2fd2ac 100644 --- a/docs/mindspore/source_zh_cn/features/parallel/pipeline_parallel.md +++ b/docs/mindspore/source_zh_cn/features/parallel/pipeline_parallel.md @@ -1,6 +1,6 @@ # 流水线并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/pipeline_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/parallel/pipeline_parallel.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/runtime/memory_manager.md b/docs/mindspore/source_zh_cn/features/runtime/memory_manager.md index 6f7c2819824384cf4833c489d8d32efde86e82da..38f232333b505e16deae218e410e66caaa5d3bbf 100644 --- a/docs/mindspore/source_zh_cn/features/runtime/memory_manager.md +++ b/docs/mindspore/source_zh_cn/features/runtime/memory_manager.md @@ -1,6 +1,6 @@ # 内存管理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/runtime/memory_manager.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/runtime/memory_manager.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/runtime/multilevel_pipeline.md b/docs/mindspore/source_zh_cn/features/runtime/multilevel_pipeline.md index 18d43f0ac6bcd3ba3e59a153017ec873eb95a4e1..af8fb497c39f50b9d2d46408c449cd8020a7be6d 100644 --- a/docs/mindspore/source_zh_cn/features/runtime/multilevel_pipeline.md +++ b/docs/mindspore/source_zh_cn/features/runtime/multilevel_pipeline.md @@ -1,6 +1,6 @@ # 多级流水 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/runtime/multilevel_pipeline.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/runtime/multilevel_pipeline.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/runtime/multistream_concurrency.md b/docs/mindspore/source_zh_cn/features/runtime/multistream_concurrency.md index 252189912ac5173470ed0a7f964efd7bf40a83b8..55a88403c128a7de19014b4ff357f810da741d9f 100644 --- a/docs/mindspore/source_zh_cn/features/runtime/multistream_concurrency.md +++ b/docs/mindspore/source_zh_cn/features/runtime/multistream_concurrency.md @@ -1,6 +1,6 @@ # 多流并发 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/runtime/multistream_concurrency.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/runtime/multistream_concurrency.md) ## 概述 diff --git a/docs/mindspore/source_zh_cn/features/view.md b/docs/mindspore/source_zh_cn/features/view.md index 807bcf311f00b4816f9b573d9823a53740a95f57..b29681993bf44944e3f8f4139409cfdd2f44b457 100644 --- a/docs/mindspore/source_zh_cn/features/view.md +++ b/docs/mindspore/source_zh_cn/features/view.md @@ -1,6 +1,6 @@ # Tensor View 机制 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/view.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/features/view.md) ## 概述 @@ -231,4 +231,4 @@ view failed: The tensor is not contiguous. You can call .contiguous() to get a c | **核心目的** | 高效地以不同“视角”访问数据 | 节省内存,在原数据上直接计算和更新 | 关于更多view inplace特性的用法,请参考下面的文档: -参考[view inplace](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/static_graph.md#view%E5%92%8Cin-place%E5%8A%9F%E8%83%BD) +参考[view inplace](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/static_graph.md#view%E5%92%8Cin-place%E5%8A%9F%E8%83%BD) diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_api_mapping.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_api_mapping.md index 6cd8a20e5fc625efb60e009e9abd26b3c6ba8262..f2071b8113d6193b02e7ebc6013236207c2e967b 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_api_mapping.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_api_mapping.md @@ -1,6 +1,6 @@ # PyTorch与MindSpore API映射表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_api_mapping.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_api_mapping.md) 由社区提供的PyTorch APIs和MindSpore APIs之间的映射,可能在参数、输入、输出、逻辑功能和特定场景等方面存在差异,可详见各API描述或已提供的差异对比。 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AGNEWS.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AGNEWS.md index b185e23a4ad1d5d63969f8597512ce696e5775c8..7f1cb2f97882f04e2a70f5b43280ffb24d6b6377 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AGNEWS.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AGNEWS.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.AG_NEWS的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AGNEWS.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AGNEWS.md) ## torchtext.datasets.AG_NEWS diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewFull.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewFull.md index 6494c5892916905249a032fde39acf57306ddb73..f9952d01d77bd19217e11f445ea1ca7d7226897a 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewFull.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewFull.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.AmazonReviewFull的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewFull.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewFull.md) ## torchtext.datasets.AmazonReviewFull diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md index 862e45356cd5f045c26636c8ef13dc340e5b370d..f729768ab89842d413ed818743548b9bfda444e6 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.AmazonReviewPolarity的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmazonReviewPolarity.md) ## torchtext.datasets.AmazonReviewPolarity diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmplitudeToDB.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmplitudeToDB.md index cec6b55a46d8553bc5a6f91418810eb8887f69a2..3e0082c5c47f78d837349b57e7e91dfd9e2e95d5 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmplitudeToDB.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmplitudeToDB.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.AmplitudeToDB的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmplitudeToDB.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/AmplitudeToDB.md) ## torchaudio.transforms.AmplitudeToDB diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR10.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR10.md index f87429e9e4470cb0fe56788d69ee22127db07c3f..06e37d5d583dd2078aafda643acf5715b3c58962 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR10.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR10.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.CIFAR10的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR10.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR10.md) ## torchvision.datasets.CIFAR10 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR100.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR100.md index 2bf8b9acca4723546c18e85e9f6747e00bb88473..bc42434eabbb4d5a18f713af86e7b2b140128b37 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR100.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR100.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.CIFAR100的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR100.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CIFAR100.md) ## torchvision.datasets.CIFAR100 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CMUARCTIC.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CMUARCTIC.md index b0626a48a18fc5e2cda399bc8dcbd19c7d6b8837..334613a244b07b1516138b73928917a4c3319487 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CMUARCTIC.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CMUARCTIC.md @@ -1,6 +1,6 @@ # 比较与torchaudio.datasets.CMUARCTIC的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CMUARCTIC.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CMUARCTIC.md) ## torchaudio.datasets.CMUARCTIC diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CelebA.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CelebA.md index 504c3e2296725f49460fd6f4c40fb33f2d1d2f42..2f90dc41db807c5862229506aa002ecaac29bcd9 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CelebA.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CelebA.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.CelebA的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CelebA.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CelebA.md) ## torchvision.datasets.CelebA diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cityscapes.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cityscapes.md index e4cb0cf4cae0fcd114825d89c37cd8f3b0d7478c..b6eee4fd33800c9e42a499185099125959f4d134 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cityscapes.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cityscapes.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.Cityscapes的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cityscapes.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cityscapes.md) ## torchvision.datasets.Cityscapes diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md index 3ac7a72d6ff0392c7943bd5471cb94b75b9de7ff..03a4c835d37b293fb2cd9a34eda289e79f088c9c 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.CoNLL2000Chunking的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CoNLL2000Chunking.md) ## torchtext.datasets.CoNLL2000Chunking diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CocoDataset.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CocoDataset.md index 2958195fdd99aec6b50d0cd9f5f8e89cec42d1b0..221df69e7c057282b82f41a558f4958f2d67a225 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CocoDataset.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CocoDataset.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.CocoDetection的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CocoDataset.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/CocoDataset.md) ## torchvision.datasets.CocoDetection diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DBpedia.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DBpedia.md index 7e992d523335016e8d99c0577829cb3070d645c9..a30e6eba576418445ad7b17b14bba0215364b63e 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DBpedia.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DBpedia.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.DBpedia的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DBpedia.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DBpedia.md) ## torchtext.datasets.DBpedia diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DataLoader.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DataLoader.md index b9f01f267e2f54c2996c3d30a71a1a22649f6ac2..f6c806405bd47e01f282cd165beb7ffd0d1136d3 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DataLoader.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DataLoader.md @@ -1,6 +1,6 @@ # 比较与torch.utils.data.DataLoader的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DataLoader.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DataLoader.md) ## torch.utils.data.DataLoader diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DistributedSampler.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DistributedSampler.md index f54e81e7fa36ad84d56dd44feac4f71d74ea3191..d977964fafe551dc9a6063bdcad159dd5b907583 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DistributedSampler.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DistributedSampler.md @@ -1,6 +1,6 @@ # 比较与torch.utils.data.distributed.DistributedSampler的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DistributedSampler.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/DistributedSampler.md) ## torch.utils.data.distributed.DistributedSampler diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/FrequencyMasking.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/FrequencyMasking.md index cf3d5f8d8e8a5edcc4da1ed308383acb4fb614bb..49350f8d072a815be0198fc82c12600435884e00 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/FrequencyMasking.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/FrequencyMasking.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.FrequencyMasking的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/FrequencyMasking.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/FrequencyMasking.md) ## torchaudio.transforms.FrequencyMasking diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GTZAN.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GTZAN.md index 3c0303dda1296e1296f38ebb91a2baa22349f400..ee570e44503a6bcc60d43960e0ced4b95ad9a566 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GTZAN.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GTZAN.md @@ -1,6 +1,6 @@ # 比较与torchaudio.datasets.GTZAN的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GTZAN.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GTZAN.md) ## torchaudio.datasets.GTZAN diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GriffinLim.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GriffinLim.md index f150f8a75af178b73865509297bcd29a51733b30..a0c7f34178d09caf41e94897631048898cd4dff6 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GriffinLim.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GriffinLim.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.GriffinLim的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GriffinLim.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GriffinLim.md) ## torchaudio.transforms.GriffinLim diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IMDB.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IMDB.md index ca202c2ca304a3492c59e99926018e30b30e411f..c39bd62bac205ab3c6bf458eae71dfe2ac8cbf15 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IMDB.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IMDB.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.IMDB的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IMDB.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IMDB.md) ## torchtext.datasets.IMDB diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2016.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2016.md index aa3b1ab6f040b9e128bf724a1e7449cd48e16f9b..f263fb2d594a41230396f9fb8458820e6653b662 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2016.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2016.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.IWSLT2016的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2016.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2016.md) ## torchtext.datasets.IWSLT2016 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2017.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2017.md index 7d6f20e8cfc7bd0261e949bb91c800dc8dfd6bf4..abad943c43302c78fff451360bd5c9692775cc02 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2017.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2017.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.IWSLT2017的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2017.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/IWSLT2017.md) ## torchtext.datasets.IWSLT2017 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ImageFolder.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ImageFolder.md index 586143a8e707cc9e8f95841fe8f98f72133d08a9..c5199dc68e310664457daffbc11c76dc69d74303 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ImageFolder.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ImageFolder.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.ImageFolder的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ImageFolder.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ImageFolder.md) ## torchvision.datasets.ImageFolder diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/InverseMelScale.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/InverseMelScale.md index 3eb063de881bd86766fde58d4df0be086c760eda..2dbb64bbdc0182b1b67da86b11b7417b1513934c 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/InverseMelScale.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/InverseMelScale.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.InverseMelScale的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/InverseMelScale.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/InverseMelScale.md) ## torchaudio.transforms.InverseMelScale diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LIBRITTS.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LIBRITTS.md index 2f8333bcabf4753d781a82e0e8217dc6028cd68b..a880f49fc84103fa103d8f560770547a2822b546 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LIBRITTS.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LIBRITTS.md @@ -1,6 +1,6 @@ # 比较与torchaudio.datasets.LIBRITTS的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LIBRITTS.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LIBRITTS.md) ## torchaudio.datasets.LIBRITTS diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LJSPEECH.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LJSPEECH.md index 4787d07ece948423513a6bda4f6175e0c6c6c386..49198708688c7705fb1282553dc4271753315af7 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LJSPEECH.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LJSPEECH.md @@ -1,6 +1,6 @@ # 比较与torchaudio.datasets.LJSPEECH的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LJSPEECH.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/LJSPEECH.md) ## torchaudio.datasets.LJSPEECH diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Lookup.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Lookup.md index c2a2c09f7456fe2bba1e8ccddef88eee8592468d..e2c109d08a6dcad3f0273306df897a7a57321c66 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Lookup.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Lookup.md @@ -1,6 +1,6 @@ # 比较与torchtext.data.functional.numericalize_tokens_from_iterator的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Lookup.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Lookup.md) ## torchtext.data.functional.numericalize_tokens_from_iterator diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MNIST.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MNIST.md index d9705d1961ce4ce18e481fe24f7f92f409272a9c..5d619ae6991da8134e806b8f501523af93e2f332 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MNIST.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MNIST.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.MNIST的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MNIST.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MNIST.md) ## torchvision.datasets.MNIST diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelScale.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelScale.md index d4093caf005e346ea868e11aadfd9584153af807..0f5c4764d200c8eb1f5dd7ef066a4696f24d70b1 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelScale.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelScale.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.MelScale的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelScale.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelScale.md) ## torchaudio.transforms.MelScale diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelSpectrogram.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelSpectrogram.md index 840f9c5e453bc71f8a7200f3b88fa5e007fb704e..896b48f829b0a79ff7f063ee1857d41f85e05562 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelSpectrogram.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelSpectrogram.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.MelSpectrogram的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelSpectrogram.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/MelSpectrogram.md) ## torchaudio.transforms.MelSpectrogram diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Ngram.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Ngram.md index b352a7f2add9966f1de8985bc296c59dd0e63275..6c0a3e3d220100d887a0aecb713c37a2eff09ab7 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Ngram.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Ngram.md @@ -1,6 +1,6 @@ # 比较与torchtext.data.utils.ngrams_iterator的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Ngram.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Ngram.md) ## torchtext.data.utils.ngrams_iterator diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Normalize.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Normalize.md index 8ee90a06918af7ff6b92766dfc9a49e97e8f25ab..099e6d81db062a2b9b8440bea627a8bd37d236f1 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Normalize.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Normalize.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.Normalize的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Normalize.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Normalize.md) ## torchvision.transforms.Normalize diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/PennTreebank.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/PennTreebank.md index 56c3b92d209770d25c984ed9e82565482555fb31..cc5bb3f3ce7c544ecb09e099a16d63d18d503e86 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/PennTreebank.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/PennTreebank.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.PennTreebank的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/PennTreebank.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/PennTreebank.md) ## torchtext.datasets.PennTreebank diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomAffine.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomAffine.md index c29216abd3556100724c90a66ba56fe1299ee169..eab0da1ecd8bbc4c0521a48cd8e4f074e6aaaef7 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomAffine.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomAffine.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.RandomAffine的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomAffine.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomAffine.md) ## torchvision.transforms.RandomAffine diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomPerspective.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomPerspective.md index d14f73230d236aa27fc12702aa04e96cbb515d18..c6c426a383cfa5af2d1babff3645e63a805c1f2d 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomPerspective.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomPerspective.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.RandomPerspective的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomPerspective.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomPerspective.md) ## torchvision.transforms.RandomPerspective diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomResizedCrop.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomResizedCrop.md index 8f254e13ea4d9ae04a92ad317c88033a23d49987..3caa31a018a919ba069628a4244d4a39bbfd44eb 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomResizedCrop.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomResizedCrop.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.RandomResizedCrop的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomResizedCrop.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomResizedCrop.md) ## torchvision.transforms.RandomResizedCrop diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomRotation.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomRotation.md index 06eb112d31fc56744752c4e03b8c03536ca8ab3d..98439f887249a9be62d54ef6c57098aede6b86ec 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomRotation.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomRotation.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.RandomRotation的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomRotation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomRotation.md) ## torchvision.transforms.RandomRotation diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomSampler.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomSampler.md index 7a34531d1f03228c9b45f84a9f902931ac9bb8e1..bc43b56923e20368ae446da8feca436bb9fb3ff7 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomSampler.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomSampler.md @@ -1,6 +1,6 @@ # 比较与torch.utils.data.RandomSampler的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomSampler.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RandomSampler.md) ## torch.utils.data.RandomSampler diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RegexReplace.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RegexReplace.md index c8b795b7983e65e10b72ae1ae787d5066ad292ee..56f18eeee5a1ca06dff38cafadfee784f33dc2ea 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RegexReplace.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RegexReplace.md @@ -1,6 +1,6 @@ # 比较与torchtext.data.functional.custom_replace的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RegexReplace.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/RegexReplace.md) ## torchtext.data.functional.custom_replace diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Resample.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Resample.md index 3e93da0c50654920e3dbfcec212fdd8256273404..c202d6344606d353b94b4b41c28a5aef41793a72 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Resample.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Resample.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.Resample的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Resample.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Resample.md) ## torchaudio.transforms.Resample diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md index 531d3841922c9c011d4c4f379033f04567afc9ad..88a803b16b251489e60cd65e8abc69cba77ec34c 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md @@ -1,6 +1,6 @@ # 比较与torchaudio.datasets.SPEECHCOMMANDS的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SPEECHCOMMANDS.md) ## torchaudio.datasets.SPEECHCOMMANDS diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD1.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD1.md index 69ec418f99de5dcd0e64625d7e24e3b2d4c6670b..8c175f41ff440d5e3fb0fcb0da299fba6affa326 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD1.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD1.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.SQuAD1的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD1.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD1.md) ## torchtext.datasets.SQuAD1 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD2.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD2.md index 0c37d5d59886cd75b3ddebb9602779a21fb1d60c..38bb365935420681333445be5aaf0603aa84660a 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD2.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD2.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.SQuAD2的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD2.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SQuAD2.md) ## torchtext.datasets.SQuAD2 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md index 013c87a184494c94938d5194b0c83d37f8641123..7ad823ad9f86e7979f0f08eabbc55f9cfd31facd 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md @@ -1,6 +1,6 @@ # 比较与torchtext.data.functional.sentencepiece_numericalizer的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) ## torchtext.data.functional.sentencepiece_numericalizer diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md index 3d02c32b75f5ec82b0cc4812895b75b3e3b59630..06ae508a4385c1365e63f2bb7c75baffd3e42bb4 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md @@ -1,6 +1,6 @@ # 比较与torchtext.data.functional.sentencepiece_tokenizer的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_STRING.md) ## torchtext.data.functional.sentencepiece_tokenizer diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SequentialSampler.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SequentialSampler.md index e14d05601997b02ee31ac763402207816bb9c38b..73e212ef69884ed4938b87e05aa0637a83305537 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SequentialSampler.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SequentialSampler.md @@ -1,6 +1,6 @@ # 比较与torch.utils.data.SequentialSampler的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SequentialSampler.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SequentialSampler.md) ## torch.utils.data.SequentialSampler diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SogouNews.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SogouNews.md index feff6515f0e1df7dbfb309a945cf7d395bdbdc51..61cdb8f9f0202fcbf510d07674494e2c024b23b9 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SogouNews.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SogouNews.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.SogouNews的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SogouNews.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SogouNews.md) ## torchtext.datasets.SogouNews diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SpectralCentroid.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SpectralCentroid.md index 2e86c2b7242eeb811039a97ffa4b238693432b54..d5b933e4f56acb1743ca422a6728e1f7ae40de1d 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SpectralCentroid.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SpectralCentroid.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.SpectralCentroid的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SpectralCentroid.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SpectralCentroid.md) ## torchaudio.transforms.SpectralCentroid diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Spectrogram.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Spectrogram.md index d7d462376e7d47414ca47eb9f3eaece782d901db..b83b68d488c485b8540465eeac91a65d136ceaf2 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Spectrogram.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Spectrogram.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.Spectrogram的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Spectrogram.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Spectrogram.md) ## torchaudio.transforms.Spectrogram diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SubsetRandomSampler.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SubsetRandomSampler.md index 91ad676e2448b0f18b18fbd07db20a41972cbad7..d1b049193f18e99086219ec679b96a03d117e624 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SubsetRandomSampler.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SubsetRandomSampler.md @@ -1,6 +1,6 @@ # 比较与torch.utils.data.SubsetRandomSampler的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SubsetRandomSampler.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SubsetRandomSampler.md) ## torch.utils.data.SubsetRandomSampler diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TEDLIUM.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TEDLIUM.md index 3c11df009efed2b1bc3ef7317be97e284434be09..f2e076da13ad4c5ab299871f0da448008d9e84a2 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TEDLIUM.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TEDLIUM.md @@ -1,6 +1,6 @@ # 比较与torchaudio.datasets.TEDLIUM的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TEDLIUM.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TEDLIUM.md) ## torchaudio.datasets.TEDLIUM diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TimeMasking.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TimeMasking.md index b262e3e85aa322c52e5c1362f3207c19f3efd10f..82d733a68b70ed6df1e8edaf2fa30b2a3c5b849b 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TimeMasking.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TimeMasking.md @@ -1,6 +1,6 @@ # 比较与torchaudio.transforms.TimeMasking的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TimeMasking.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TimeMasking.md) ## torchaudio.transforms.TimeMasking diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToPIL.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToPIL.md index fbc3982dc7c94d814b902337bca73877d7a7a72b..36bc95a092d79dd19e04d430fb10455937f8e95d 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToPIL.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToPIL.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.ToPILImage的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToPIL.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToPIL.md) ## torchvision.transforms.ToPILImage diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToTensor.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToTensor.md index e2e6bfaf3569317630cbf64df48e376fc8a58f6f..a38267faf06b162cd2620efd2b14a2e6b3f21818 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToTensor.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToTensor.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.ToTensor的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToTensor.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/ToTensor.md) ## torchvision.transforms.ToTensor diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TypeCast.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TypeCast.md index cec95517c5d6beedf31f7dcad7942231158f9cfb..05255f60e3d6ce2e9f2a298c6a2bb6934a461e98 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TypeCast.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TypeCast.md @@ -1,6 +1,6 @@ # 比较与torchvision.transforms.ConvertImageDtype的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TypeCast.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/TypeCast.md) ## torchvision.transforms.ConvertImageDtype diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/UDPOS.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/UDPOS.md index bba3487a05ceea22904722d5873472638cd3800e..9dd835af178d57a1fb5ac1d22c0e3d8e79755f3c 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/UDPOS.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/UDPOS.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.UDPOS的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/UDPOS.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/UDPOS.md) ## torchtext.datasets.UDPOS diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCDetection.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCDetection.md index f90e409fb87ed2f73fdbec15307abeaf4539a73e..c0d939d1af2fdd7896f450e23a1b966d5303930a 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCDetection.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCDetection.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.VOCDetection的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCDetection.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCDetection.md) ## torchvision.datasets.VOCDetection diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCSegmentation.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCSegmentation.md index 927ce17119c4e52a5fb461b7fbab140f7be7f96f..56062f8b149a213d555e82c950d84314ff2623b3 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCSegmentation.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCSegmentation.md @@ -1,6 +1,6 @@ # 比较与torchvision.datasets.VOCSegmentation的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCSegmentation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/VOCSegmentation.md) ## torchvision.datasets.VOCSegmentation diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WeightedRandomSampler.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WeightedRandomSampler.md index 5019aa2ca516cb5591420e8d3936948f79cb11d0..8f79efe4136a927f479bdd2be898bb22886e2033 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WeightedRandomSampler.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WeightedRandomSampler.md @@ -1,6 +1,6 @@ # 比较与torch.utils.data.WeightedRandomSampler的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WeightedRandomSampler.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WeightedRandomSampler.md) ## torch.utils.data.WeightedRandomSampler diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md index 8fbf60246fd97d1ed36babf905f743a547a44f8a..0210e0af2860ca2271bf723cc1b277673e0c7881 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md @@ -1,6 +1,6 @@ # 比较与torchtext.data.functional.simple_space_split的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md) ## torchtext.data.functional.simple_space_split diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText103.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText103.md index f96ad6209c9327228f10d12e6f378c824a93602c..8f8cb892b2da557cef08e7dc81a2ce5d6e4225fc 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText103.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText103.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.WikiText103的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText103.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText103.md) ## torchtext.datasets.WikiText103 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText2.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText2.md index cae01e34938074b53f63a546def621346d8f2fb8..2e6c955228365066c68741dc587954f710e77a89 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText2.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText2.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.WikiText2的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText2.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/WikiText2.md) ## torchtext.datasets.WikiText2 diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YESNO.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YESNO.md index 9722bc7387a0e5686ce924ecf058ee42ece01ef0..97327fded22a93f01b77affa2d57a5e530820e0e 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YESNO.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YESNO.md @@ -1,6 +1,6 @@ # 比较与torchaudio.datasets.YESNO的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YESNO.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YESNO.md) ## torchaudio.datasets.YESNO diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YahooAnswers.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YahooAnswers.md index 3bdf5a294fd151d12e53886249e319d7f5ee9b70..7bee113574f273ba1465b28c517a4ebff083b022 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YahooAnswers.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YahooAnswers.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.YahooAnswers的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YahooAnswers.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YahooAnswers.md) ## torchtext.datasets.YahooAnswers diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewFull.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewFull.md index 3256ea4f43383e73c0b2a68bf442eb20e5198e1f..a4a248aaac60b953c6062491afbf5f32353ba65f 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewFull.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewFull.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.YelpReviewFull的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewFull.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewFull.md) ## torchtext.datasets.YelpReviewFull diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewPolarity.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewPolarity.md index 2bfacfeb7e94a97702414143b69e7e8c057e244e..3dc599bacba0cf00c10d3a09c178a147ac0cc240 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewPolarity.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewPolarity.md @@ -1,6 +1,6 @@ # 比较与torchtext.datasets.YelpReviewPolarity的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewPolarity.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/YelpReviewPolarity.md) ## torchtext.datasets.YelpReviewPolarity diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/checkpoint.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/checkpoint.md index dccd48b8fc888bcd17e81b834700f67be62bb106..b673b69eeb5c4ae78d2fe899ec14aeec045d9e41 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/checkpoint.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/checkpoint.md @@ -1,6 +1,6 @@ # 比较与torch.utils.checkpoint.checkpoint的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/checkpoint.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/checkpoint.md) ## torch.utils.checkpoint.checkpoint diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/deform_conv2d.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/deform_conv2d.md index 08ee6ac1ce4c666ec21a3cd55bca7b6d289adec9..b2f09008f6331ef203060c9a1869017cab98020a 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/deform_conv2d.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/deform_conv2d.md @@ -1,6 +1,6 @@ # 比较与torchvision.ops.deform_conv2d的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/deform_conv2d.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/deform_conv2d.md) ## torchvision.ops.deform_conv2d diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/load_sp_model.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/load_sp_model.md index f945968270439af9f06f6fd20510a86ba481910e..2da8dc99a1eea1614d25b447ea66a0eb5d7935ee 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/load_sp_model.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/load_sp_model.md @@ -1,6 +1,6 @@ # 比较与torchtext.data.functional.load_sp_model的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/load_sp_model.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/load_sp_model.md) ## torchtext.data.functional.load_sp_model diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/nms.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/nms.md index 06f88fef0105c0e6b0f6f6954572559a7b3bd7a1..20d14c7f561b911d15454d45c63af3a235970854 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/nms.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/nms.md @@ -1,6 +1,6 @@ # 比较与torchvision.ops.nms的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/nms.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/nms.md) ## torchvision.ops.nms diff --git a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/roi_align.md b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/roi_align.md index 9260e95da7e658663d452a3410028e4166446a99..ae88ea4e90bb1b0cb40ea83970ecbf3a1c86f6d6 100644 --- a/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/roi_align.md +++ b/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/roi_align.md @@ -1,6 +1,6 @@ # 比较与torchvision.ops.roi_align的差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/roi_align.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/roi_align.md) ## torchvision.ops.roi_align diff --git a/docs/mindstudio/docs/source_zh_cn/feature/performance.md b/docs/mindstudio/docs/source_zh_cn/feature/performance.md index 0cad64e91e46cf17a69c5f89e09903e876ec18f8..08bea291bca7813b25888ad43e43366bc88c3d28 100644 --- a/docs/mindstudio/docs/source_zh_cn/feature/performance.md +++ b/docs/mindstudio/docs/source_zh_cn/feature/performance.md @@ -1,6 +1,6 @@ # 性能调优 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/feature/performance.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/feature/performance.md) MindSpore框架和MindStudio Training Tools工具链提供了多个性能分析与优化工具。 MindSpore Profiler可以为用户提供算子执行时间分析、内存使用分析、AI Core指标分析、Timeline展示等功能,帮助用户分析性能瓶颈、优化训练效率。 diff --git a/docs/mindstudio/docs/source_zh_cn/feature/precision.md b/docs/mindstudio/docs/source_zh_cn/feature/precision.md index fd3dd4b24946744d472dd4903f6e0a9e3efb4c15..350a988f498d190d3e39c6866ef136eb9e6646c8 100644 --- a/docs/mindstudio/docs/source_zh_cn/feature/precision.md +++ b/docs/mindstudio/docs/source_zh_cn/feature/precision.md @@ -1,6 +1,6 @@ # 精度调试 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/feature/precision.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/feature/precision.md) msprobe 是 MindStudio Training Tools 工具链下精度调试部分的工具包。主要包括精度预检、溢出检测和精度比对等功能,目前适配 PyTorch 和 MindSpore 框架。msprobe提供多个子工具,侧重不同的训练场景,可以定位模型训练中的精度问题。 diff --git a/docs/mindstudio/docs/source_zh_cn/guide/get_start.md b/docs/mindstudio/docs/source_zh_cn/guide/get_start.md index 8d5b0efb3dd4b3837abb0fa0f0bc76ed4bde3f0f..25c39d1060060f71172ffb8db37367bf4e3c380c 100644 --- a/docs/mindstudio/docs/source_zh_cn/guide/get_start.md +++ b/docs/mindstudio/docs/source_zh_cn/guide/get_start.md @@ -1,6 +1,6 @@ # 全流程调试调优工具使用指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/guide/get_start.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/guide/get_start.md) 为方便开发者快速上手使用调试调优工具,[《开发工具快速入门》](https://www.hiascend.com/document/detail/zh/mindstudio/82RC1/msquickstart/atlasquick_train_0004.html)介绍了精度调试、性能调优过程中工具常用功能的用法,包含使用msprobe工具进行训练前配置检查、训练状态监控、精度数据采集和比对、精度预检,使用Profiler进行性能数据采集,使用msprof-analyze和MindStudio Insight工具进行性能分析等。 diff --git a/docs/mindstudio/docs/source_zh_cn/guide/large_model.md b/docs/mindstudio/docs/source_zh_cn/guide/large_model.md index fc2a2fde10f79da27c907db290b82fb1b34aa6c8..8896e12a53fa7503b554d6a8245672720ea632a6 100644 --- a/docs/mindstudio/docs/source_zh_cn/guide/large_model.md +++ b/docs/mindstudio/docs/source_zh_cn/guide/large_model.md @@ -1,6 +1,6 @@ # 大模型调试调优指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/guide/large_model.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/guide/large_model.md) ## 基于MindSpore TransFormers大模型套件的调试调优指南 diff --git a/docs/mindstudio/docs/source_zh_cn/overview.md b/docs/mindstudio/docs/source_zh_cn/overview.md index 89fe7c63a0d9359b1180b35e58e26acadd40ee35..01607b622ea453aabff266547c7fa92035d3e0f4 100644 --- a/docs/mindstudio/docs/source_zh_cn/overview.md +++ b/docs/mindstudio/docs/source_zh_cn/overview.md @@ -1,6 +1,6 @@ # 调试调优工具概览与安装说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/overview.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/overview.md) diff --git a/docs/mindstudio/docs/source_zh_cn/version/mindstudio_insight.md b/docs/mindstudio/docs/source_zh_cn/version/mindstudio_insight.md index 413d852ba6d9552bf4b0cc5b1c09dd16b2b65db9..5b5295c1042f211beb8885e6fbb78c07a0cf0fce 100644 --- a/docs/mindstudio/docs/source_zh_cn/version/mindstudio_insight.md +++ b/docs/mindstudio/docs/source_zh_cn/version/mindstudio_insight.md @@ -1,6 +1,6 @@ # MindStudio Insight与MindSpore版本配套 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/version/mindstudio_insight.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/mindstudio/docs/source_zh_cn/version/mindstudio_insight.md) MindStudio Insight可视化工具,需要与采集性能数据时使用的MindSpore版本配套。 当前最新MindStudio Insight版本为8.1RC1: diff --git a/docs/msadapter/docs/source_zh_cn/api.rst b/docs/msadapter/docs/source_zh_cn/api.rst index 21ac65550d65147a804db81c9f956da29974d160..5638399fec01323b93fb52d0d644d0b81e90ffc5 100644 --- a/docs/msadapter/docs/source_zh_cn/api.rst +++ b/docs/msadapter/docs/source_zh_cn/api.rst @@ -2,7 +2,7 @@ API说明 ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/api.rst + :target: https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/api.rst :alt: 查看源文件 .. toctree:: diff --git a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/constraints.md b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/constraints.md index a4b718d54f2138d4485d131b5aee77cf0d0461eb..bb7b06412c73f84f953dfee8940d2979d324639a 100755 --- a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/constraints.md +++ b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/constraints.md @@ -1,6 +1,6 @@ # MSAadpter机制性约束 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/constraints.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/constraints.md) 本文介绍MindSpore和PyTorch实现上的主要区别: diff --git a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/install.md b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/install.md index fd4522993c69b62f164698593b01249938de22a1..0e0f3ee5d1c12495562ddce5709af1bb0c30c366 100755 --- a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/install.md +++ b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/install.md @@ -1,6 +1,6 @@ # 安装 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/install.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/install.md) 在昇腾NPU设备上,完成[昇腾固件](https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/softwareinst/instg/instg_0003.html?Mode=PmIns&OS=Ubuntu&Software=cannToolKit)的安装后,执行以下步骤完成PyTorch、MindSpore和MSAdapter的安装: diff --git a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/llm.md b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/llm.md index 4d41af4e52d76b6038cce40bd162fb3f1b952ae0..07b2fa69c15aa22ae959cabc3aeb8a1344c0bed1 100755 --- a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/llm.md +++ b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/llm.md @@ -1,6 +1,6 @@ # 大模型开发与适配 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/llm.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/llm.md) 大模型训练是一种非常复杂的过程,涉及到分布式并行领域许多技术和挑战,当前Megatron已经成为业界主流的大模型加速库。为满足用户大模型代码更快在MindSpore上迁移使用,MSAdapter当前版本已经支持MindSpeed加速库,兼容Megatron生态。当前已经支持DeepSeek/Qwen等主流模型,未来MSAdapter持续演进,支持更多业界主流生态模型。 diff --git a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/quick_start.md b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/quick_start.md index fa53fcc1f527c279d2dc4d950a5241e4526b271e..ec834637f2176109daba0bf8705686a6619619de 100755 --- a/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/quick_start.md +++ b/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/quick_start.md @@ -1,6 +1,6 @@ # 快速入门 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/quick_start.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/msadapter_user_guide/quick_start.md) 本文将为用户提供快速指引,以一个MNIST手写数字识别任务的完整流程为例,说明如何使用MSAdapter。并将一个完整的PyTorch代码用例适配至MSAdapter。若用户想直接运行MSAdapter的例子,可参考[MSAdapter适配后代码](#msadapter适配后代码)。 diff --git a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_nn_functional.md b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_nn_functional.md index 9d32cee54981468bc1b2ea1b18bd9a1531999143..688d9237c92135268874e9793f0af259809faf0d 100644 --- a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_nn_functional.md +++ b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_nn_functional.md @@ -1,6 +1,6 @@ # torch.nn.functional -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_nn_functional.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_nn_functional.md) ## Convolution functions diff --git a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_optim.md b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_optim.md index ca9dcd09586b63618c79e773877f40efe3763337..558c5992bda8602da7855fdd0d9486f8ea18ea4b 100644 --- a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_optim.md +++ b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_optim.md @@ -1,6 +1,6 @@ # torch.optim -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_optim.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_optim.md) ## Base class diff --git a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_tensor.md b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_tensor.md index bbcc6e55bfeee5baf366714dacfcdb3ce2324e38..e62724cd9bea007cc211f49f7714f78f4a2c9778 100644 --- a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_tensor.md +++ b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_tensor.md @@ -1,6 +1,6 @@ # torch.Tensor -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_tensor.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_tensor.md) ## Tensor diff --git a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch.md b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch.md index 57ebb37c18a2e5255f47d2db9d30e92f4e319931..62d5141093b6810e3264787fcd9670453c103efb 100644 --- a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch.md +++ b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch.md @@ -1,6 +1,6 @@ # torch -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch.md) ## Tensor diff --git a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch_nn.md b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch_nn.md index 17eb1a5a012fbefdc425a8ea97ab8190e6073e39..42cd3c4c30b8d6ede5159873ff7e78a1a3bb93bd 100644 --- a/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch_nn.md +++ b/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch_nn.md @@ -1,6 +1,6 @@ # torch.nn -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch_nn.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/msadapter/docs/source_zh_cn/note/pytorch_api_supporting_torch_nn.md) ## Convolution Layers diff --git a/docs/sciai/docs/source_en/build_model_with_sciai.md b/docs/sciai/docs/source_en/build_model_with_sciai.md index b337f9f60d1404eb26a9219e4e1d834510399467..e1a306bfefc575bf19954b679d51f07f1064de20 100644 --- a/docs/sciai/docs/source_en/build_model_with_sciai.md +++ b/docs/sciai/docs/source_en/build_model_with_sciai.md @@ -1,6 +1,6 @@ # Building Neural Networks with SciAI -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/build_model_with_sciai.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/build_model_with_sciai.md)   SciAI base framework consists of several modules covering network setup, network training, validation and auxiliary functions. diff --git a/docs/sciai/docs/source_en/installation.md b/docs/sciai/docs/source_en/installation.md index 8120de79c0b9414f5471389e1b8d618a5abe2ef7..c8f8901e88d1092aeb464d87578b3b2bf9b1bbd1 100644 --- a/docs/sciai/docs/source_en/installation.md +++ b/docs/sciai/docs/source_en/installation.md @@ -1,6 +1,6 @@ # MindSpore SciAI Installation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/installation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/installation.md)    ## System Environment Information Confirmation diff --git a/docs/sciai/docs/source_en/launch_with_api.md b/docs/sciai/docs/source_en/launch_with_api.md index 23f1517c518a58774b4f6b8b1ce41c367597cca4..fb1e895778b8626024eada2a3dcfc1422ce79a52 100644 --- a/docs/sciai/docs/source_en/launch_with_api.md +++ b/docs/sciai/docs/source_en/launch_with_api.md @@ -1,6 +1,6 @@ # Launching Model with API -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/launch_with_api.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/launch_with_api.md)   MindSpore SciAI provides users with a high order interface `AutoModel`, with which the supported model in the model library can be instantiated with one line code. diff --git a/docs/sciai/docs/source_en/launch_with_scripts.md b/docs/sciai/docs/source_en/launch_with_scripts.md index 5fc05c2dd4ad884a1d7b674e70430cd32fd064a9..92e96cdf34af16d84994ed95022c5d956effe3c0 100644 --- a/docs/sciai/docs/source_en/launch_with_scripts.md +++ b/docs/sciai/docs/source_en/launch_with_scripts.md @@ -1,6 +1,6 @@ # Launching Model with Scripts -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/launch_with_scripts.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/launch_with_scripts.md)   The models in MindSpore SciAI provides users with scripts for training and evaluation. diff --git a/docs/sciai/docs/source_en/model_library.md b/docs/sciai/docs/source_en/model_library.md index b6f3ae4c1d41f151c73d508e8c7c6baf64052b66..73734d7beeda8e51777ff20c85c808b4a57cf98e 100644 --- a/docs/sciai/docs/source_en/model_library.md +++ b/docs/sciai/docs/source_en/model_library.md @@ -1,6 +1,6 @@ # Model Library -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/model_library.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_en/model_library.md)   SciAI model library provides a wide variety of models that are frequently used and cited in scientific computation. The following table summarizes the current available neural networks and their corresponding domains. diff --git a/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md b/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md index 64430a43424f02444451ce2a462c764ae6b56fe5..3e296ef516d769e6235e4533fa141621faca5bf7 100644 --- a/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md +++ b/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md @@ -1,6 +1,6 @@ # 使用SciAI构建神经网络 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md)   SciAI基础框架由若干基础模块构成,涵盖有神经网络搭建、训练、验证以及其他辅助函数等。 diff --git a/docs/sciai/docs/source_zh_cn/installation.md b/docs/sciai/docs/source_zh_cn/installation.md index 46e76ba6ede1d523259d72c54d911eacd4d1a96d..8ac403ef0e87c396773109f0cf9318efc014bf7b 100644 --- a/docs/sciai/docs/source_zh_cn/installation.md +++ b/docs/sciai/docs/source_zh_cn/installation.md @@ -1,6 +1,6 @@ # MindSpore SciAI安装 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/installation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/installation.md)    ## 确认系统环境信息 diff --git a/docs/sciai/docs/source_zh_cn/launch_with_api.md b/docs/sciai/docs/source_zh_cn/launch_with_api.md index ebb42da0866cf29c00911642ae3e08342d2bcad1..de4c98a9c5d722691aef48dbf4c3428e9fce79fd 100644 --- a/docs/sciai/docs/source_zh_cn/launch_with_api.md +++ b/docs/sciai/docs/source_zh_cn/launch_with_api.md @@ -1,6 +1,6 @@ # 调用API启动模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/launch_with_api.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/launch_with_api.md)   MindSpore SciAI为用户提供了高阶API接口`AutoModel`。借助`AutoModel`,用户可以通过一行代码完成模型的实例化。 diff --git a/docs/sciai/docs/source_zh_cn/launch_with_scripts.md b/docs/sciai/docs/source_zh_cn/launch_with_scripts.md index 18e14690515c0fd1ba4532b8b9ce79ce1d8640f0..a3aaf0449822e126a4be160c6d524f4be7b2d433 100644 --- a/docs/sciai/docs/source_zh_cn/launch_with_scripts.md +++ b/docs/sciai/docs/source_zh_cn/launch_with_scripts.md @@ -1,6 +1,6 @@ # 脚本启动模型 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/launch_with_scripts.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/launch_with_scripts.md)   MindSpore SciAI中的模型为用户提供了训练与评估的脚本文件。 diff --git a/docs/sciai/docs/source_zh_cn/model_library.md b/docs/sciai/docs/source_zh_cn/model_library.md index cb5f53052cd3c3d6332ad66f89d9c1c2458e2c69..51cbc4af3cf41ad302dbc54e8890060c7cd527c5 100644 --- a/docs/sciai/docs/source_zh_cn/model_library.md +++ b/docs/sciai/docs/source_zh_cn/model_library.md @@ -1,6 +1,6 @@ # 网络模型库 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/model_library.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/sciai/docs/source_zh_cn/model_library.md)   SciAI基础模型库提供了丰富的科学计算高频模型,下表中汇总了当前已实现的网络模型及其对应领域。 diff --git a/docs/vllm_mindspore/docs/source_en/developer_guide/contributing.md b/docs/vllm_mindspore/docs/source_en/developer_guide/contributing.md index f6e6140ef2500f0b8da1eace2c68cd2fa5ae437e..1508c485c3928431d9014d6b02bb19ebc4153567 100644 --- a/docs/vllm_mindspore/docs/source_en/developer_guide/contributing.md +++ b/docs/vllm_mindspore/docs/source_en/developer_guide/contributing.md @@ -1,6 +1,6 @@ # Contribution Guidelines -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/developer_guide/contributing.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/developer_guide/contributing.md) ## Contributor License Agreement diff --git a/docs/vllm_mindspore/docs/source_en/developer_guide/operations/custom_ops.md b/docs/vllm_mindspore/docs/source_en/developer_guide/operations/custom_ops.md index 8fc0acb7f57e67cadf2033a8231fb2b098533ce7..77b15bc4ae2b5eff7d1e9ef10b2ef4ec5f9fe664 100644 --- a/docs/vllm_mindspore/docs/source_en/developer_guide/operations/custom_ops.md +++ b/docs/vllm_mindspore/docs/source_en/developer_guide/operations/custom_ops.md @@ -1,6 +1,6 @@ # Custom Operator Integration -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/developer_guide/operations/custom_ops.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/developer_guide/operations/custom_ops.md) When the built-in operators do not meet your requirements, you can use MindSpore's custom operator functionality to integrate your operators. diff --git a/docs/vllm_mindspore/docs/source_en/faqs/faqs.md b/docs/vllm_mindspore/docs/source_en/faqs/faqs.md index 2f0b25d3a55a20b91a61e7420446030248e88d8a..a0e6bb242ec1dd3594f40700eeada628a944ddc4 100644 --- a/docs/vllm_mindspore/docs/source_en/faqs/faqs.md +++ b/docs/vllm_mindspore/docs/source_en/faqs/faqs.md @@ -1,6 +1,6 @@ # Frequently Asked Questions -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/faqs/faqs.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/faqs/faqs.md) ## Model-related Issues diff --git a/docs/vllm_mindspore/docs/source_en/general/security.md b/docs/vllm_mindspore/docs/source_en/general/security.md index b8744e4909be6423d4dc9cce4cbe0ff588c108be..43e5f5da9c809717d398c0cf06c0a88fb20d50dc 100644 --- a/docs/vllm_mindspore/docs/source_en/general/security.md +++ b/docs/vllm_mindspore/docs/source_en/general/security.md @@ -1,6 +1,6 @@ # Security -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/general/security.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/general/security.md) When enabling inference services using vLLM-MindSpore Plugin on Ascend, there may be some security-related issues due to the need for certain network ports for necessary functions such as service-oriented, node communication, and model execution. diff --git a/docs/vllm_mindspore/docs/source_en/getting_started/installation/installation.md b/docs/vllm_mindspore/docs/source_en/getting_started/installation/installation.md index 4a1787826cc9b961b220e52de257070b5fca0fe6..00b58162ffbe12c7712f710e86458209e9bc0ec4 100644 --- a/docs/vllm_mindspore/docs/source_en/getting_started/installation/installation.md +++ b/docs/vllm_mindspore/docs/source_en/getting_started/installation/installation.md @@ -1,6 +1,6 @@ # Installation Guide -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/installation/installation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/installation/installation.md) This document will introduce the [Version Matching](#version-compatibility) of vLLM-MindSpore Plugin, the installation steps for vLLM-MindSpore Plugin, and the [Quick Verification](#quick-verification) to verify whether the installation is successful. The installation steps provide two installation methods: diff --git a/docs/vllm_mindspore/docs/source_en/getting_started/quick_start/quick_start.md b/docs/vllm_mindspore/docs/source_en/getting_started/quick_start/quick_start.md index e5f85c0c0c806ffa7a7f00946b296446e8343c04..f285334d6968851c177e9ea37d37a05f95cc9f8c 100644 --- a/docs/vllm_mindspore/docs/source_en/getting_started/quick_start/quick_start.md +++ b/docs/vllm_mindspore/docs/source_en/getting_started/quick_start/quick_start.md @@ -1,6 +1,6 @@ # Quick Start -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/quick_start/quick_start.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/quick_start/quick_start.md) This document provides a quick guide to deploy vLLM-MindSpore Plugin by [docker](https://www.docker.com/), with the [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) model as an example. User can quickly experience the serving and inference abilities of vLLM-MindSpore Plugin by [offline inference](#offline-inference) and [online inference](#online-inference). For more information about installation, please refer to the [Installation Guide](../installation/installation.md). diff --git a/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md b/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md index 2cb0068da71a6d49f2df6a5f329ad2281bcdd251..602a3b4d8d2694be8337a6508421aec1f9ae1234 100644 --- a/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md +++ b/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md @@ -1,6 +1,6 @@ # Multi-machine Parallel Inference (DeepSeek R1) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md) This document describes the parallel inference startup process for the DeepSeek R1 671B W8A8 model. The DeepSeek R1 671B W8A8 model requires resources from multiple nodes to run the inference model. To ensure consistent execution configurations (including model configuration file paths, Python environment, etc.) across all nodes, it is recommended to use a Docker image to create containers and avoid execution discrepancies. Users can configure the environment by following the instructions in the [Docker Installation](#docker-installation) section below. diff --git a/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md b/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md index 8f1ef7d386d3943e9395489eb53442f52173385f..04532bfe1922b0965b7143c846fd45a42e102945 100644 --- a/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md +++ b/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md @@ -1,6 +1,6 @@ # Multi-Card Inference (Qwen2.5-32B) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md) This document introduces single-node multi-card inference process by vLLM-MindSpore Plugin. Taking the [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) model as an example, users can configure the environment through the [Docker Installation](#docker-installation) section or the [Installation Guide](../../installation/installation.md#installation-guide), and then [download the model weights](#downloading-model-weights). After [setting environment variables](#setting-environment-variables), users can perform [online inference](#online-inference) to experience single-node multi-card inference capabilities. diff --git a/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md b/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md index b40ed01c9002272aff8fb207f54c911f0fa493a6..7733537b4c6227d212f4ce0a6d6a33675bab5c88 100644 --- a/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md +++ b/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md @@ -1,6 +1,6 @@ # Single-Card Inference (Qwen2.5-7B) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md) This document introduces single NPU inference process by vLLM-MindSpore Plugin. Taking the [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) model as an example, user can configure the environment through the [Docker Installation](#docker-installation) or the [Installation Guide](../../installation/installation.md#installation-guide), and [downloading model weights](#downloading-model-weights). After [setting environment variables](#setting-environment-variables), user can perform [offline inference](#offline-inference) and [online inference](#online-inference) to experience single NPU inference abilities. diff --git a/docs/vllm_mindspore/docs/source_en/release_notes/release_notes.md b/docs/vllm_mindspore/docs/source_en/release_notes/release_notes.md index 938e52cc6aea9179f41304f909401680d73f80c5..aa4e943de592e147651e6cd213a24a1f3880438b 100644 --- a/docs/vllm_mindspore/docs/source_en/release_notes/release_notes.md +++ b/docs/vllm_mindspore/docs/source_en/release_notes/release_notes.md @@ -1,6 +1,6 @@ # Release Notes -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/release_notes/release_notes.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/release_notes/release_notes.md) ## vLLM-MindSpore Plugin 0.4.0 Release Notes diff --git a/docs/vllm_mindspore/docs/source_en/user_guide/environment_variables/environment_variables.md b/docs/vllm_mindspore/docs/source_en/user_guide/environment_variables/environment_variables.md index 6b41bb4cf5b9859f6f0eafb3cb58cd5299f2a1e4..0138e4d8cbac5f33ee348e3153961b1b2406b7a1 100644 --- a/docs/vllm_mindspore/docs/source_en/user_guide/environment_variables/environment_variables.md +++ b/docs/vllm_mindspore/docs/source_en/user_guide/environment_variables/environment_variables.md @@ -1,6 +1,6 @@ # Environment Variable List -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/environment_variables/environment_variables.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/environment_variables/environment_variables.md) | Environment Variable | Function | Type | Values | Description | |----------------------|----------|------|--------|-------------| diff --git a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/benchmark/benchmark.md b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/benchmark/benchmark.md index a3de87028fb0331f790c4a1dad1d04fcf75674ed..4efea6f9a66e8dfa19c296e82996ad0e23930f73 100644 --- a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/benchmark/benchmark.md +++ b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/benchmark/benchmark.md @@ -1,6 +1,6 @@ # Benchmark -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/benchmark/benchmark.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/benchmark/benchmark.md) The benchmark tool of vLLM-MindSpore Plugin is inherited from vLLM. You can refer to the [vLLM Benchmark](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md) documentation for more details. This document introduces [Online Benchmark](#online-benchmark) and [Offline Benchmark](#offline-benchmark). Users can follow the steps to conduct performance tests. diff --git a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/features_list/features_list.md b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/features_list/features_list.md index fbd675f79958f7ba12e6eacef3b15736240838d9..ede548132467756206fefd58e4b6ef69528ef4f4 100644 --- a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/features_list/features_list.md +++ b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/features_list/features_list.md @@ -1,6 +1,6 @@ # Supported Features List -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/features_list/features_list.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/features_list/features_list.md) The features supported by vLLM-MindSpore Plugin are consistent with the community version of vLLM. For feature descriptions and usage, please refer to the [vLLM Official Documentation](https://docs.vllm.ai/en/latest/). diff --git a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/parallel/parallel.md b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/parallel/parallel.md index 8fd380d3ff85fc2444d921e37c0f61bb73a5d827..16d3a61a27f9434884ac5bdf1ec4ec94ecf1ce02 100644 --- a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/parallel/parallel.md +++ b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/parallel/parallel.md @@ -1,6 +1,6 @@ # Parallel Inference Methods -[![View Source](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/parallel/parallel.md) +[![View Source](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/parallel/parallel.md) The vLLM-MindSpore plugin supports hybrid parallel inference configurations combining Tensor Parallelism (TP), Data Parallelism (DP), and Expert Parallelism (EP), and can be launched for multi-node multi-card setups using `Ray` or `multiprocess`. For applicable scenarios of different parallel strategies, refer to the [vLLM Official Documentation](https://docs.vllm.ai/en/latest/configuration/optimization.html#parallelism-strategies). The following sections will detail the usage scenarios, parameter configuration, and [Online Inference](#online-inference) for [Tensor Parallelism](#tensor-parallelism), [Data Parallelism](#data-parallelism), [Expert Parallelism](#expert-parallelism), and [Hybrid Parallelism](#hybrid-parallelism). diff --git a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/profiling/profiling.md b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/profiling/profiling.md index 5499334eae14af19bc649b9090ae63199e690dd1..688c6886a541483d1965a7fcd40964d51294b78e 100644 --- a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/profiling/profiling.md +++ b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/profiling/profiling.md @@ -1,6 +1,6 @@ # Profiling Methods -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/profiling/profiling.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/profiling/profiling.md) vLLM-MindSpore Plugin supports the `mindspore.Profiler` module to track the performance of workers in vLLM-MindSpore Plugin. User can follow the [Collecting Profiling Data](#collecting-profiling-data) section to gather data and then analyze it according to [Analyzing Profiling Data](#analyzing-profiling-data). Additionally, user can inspect the model's IR graph through [Graph Data Dump](#graph-data-dump) to analyze and debug the model structure. diff --git a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/quantization/quantization.md b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/quantization/quantization.md index dffc241ca45d509a45a64713e125837a17fb6a41..b6dd7193b4c696965b2462d291ee492f9c0c00a4 100644 --- a/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/quantization/quantization.md +++ b/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/quantization/quantization.md @@ -1,6 +1,6 @@ # Quantization Methods -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/quantization/quantization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_features/quantization/quantization.md) This document introduces model quantization and quantized inference methods. Quantization reduces inference resources with minor cost of precision, while improving inference performance to enable deployment on more devices. With the large scale of LLMs, post-training quantization has become the mainstream approach for model quantization. For details, refer to [Post-Training Quantization Introduction](https://gitee.com/mindspore/golden-stick/blob/master/mindspore_gs/ptq/README.md). diff --git a/docs/vllm_mindspore/docs/source_en/user_guide/supported_models/models_list/models_list.md b/docs/vllm_mindspore/docs/source_en/user_guide/supported_models/models_list/models_list.md index ac51ff63aafd7812211d9f37a41d25d9abb6bc9d..ed8fca53e9a8a5150cd13c62e9ba4fc189c72f46 100644 --- a/docs/vllm_mindspore/docs/source_en/user_guide/supported_models/models_list/models_list.md +++ b/docs/vllm_mindspore/docs/source_en/user_guide/supported_models/models_list/models_list.md @@ -1,6 +1,6 @@ # Supported Model List -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_models/models_list/models_list.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_en/user_guide/supported_models/models_list/models_list.md) | Model | Status | Backend Supported | Hardware Supported | Model Download Link | |-------| ---- | ---- | --------- | ---- | diff --git a/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/contributing.md b/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/contributing.md index 84831df3cef50b0c24a791f17b4bc0f4e8e1dc9e..f2c209cf1ed2e1126d114794aae0816f6150d5ab 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/contributing.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/contributing.md @@ -1,6 +1,6 @@ # 贡献指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/contributing.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/contributing.md) ## 贡献者许可协议 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/operations/custom_ops.md b/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/operations/custom_ops.md index b914f8f98925db610d57704a04dba175f01b2b1b..a895870896bed2493c9752463ba315e162f1f4bd 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/operations/custom_ops.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/operations/custom_ops.md @@ -1,6 +1,6 @@ # 自定义算子接入 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/operations/custom_ops.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/developer_guide/operations/custom_ops.md) 当内置算子不满足需求时,你可以利用MindSpore提供的自定义算子功能接入你的算子。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/faqs/faqs.md b/docs/vllm_mindspore/docs/source_zh_cn/faqs/faqs.md index 35ab04969c653fb95d60dd14881c033a1de4ef3b..9bc688e2bc3e79cb00fdb9e5d8b5dca2ab30ba67 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/faqs/faqs.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/faqs/faqs.md @@ -1,6 +1,6 @@ # 常见问题 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/faqs/faqs.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/faqs/faqs.md) ## 模型相关问题 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/general/security.md b/docs/vllm_mindspore/docs/source_zh_cn/general/security.md index b8e4fcecd4472929198a9b12bf51f3467b7e5e14..2a1031fbb0cf0ef70ab4a3c8e44b9384cb0cc9f4 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/general/security.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/general/security.md @@ -1,6 +1,6 @@ # 安全 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/general/security.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/general/security.md) 通过vLLM-MindSpore插件在 Ascend 上使能推理服务时,由于服务化、节点通信、模型执行等必要功能需要使用一些网络端口,因此会存在一些安全问题。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/installation/installation.md b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/installation/installation.md index 2ae612a32149e77f6fc3c85036c4a39e5f3f3897..0f3af188719a287ba9c94038350e128c9833933a 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/installation/installation.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/installation/installation.md @@ -1,6 +1,6 @@ # 安装指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/installation/installation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/installation/installation.md) 本文档将介绍vLLM-MindSpore插件的[版本配套](#版本配套)、安装步骤与[快速验证](#快速验证)用例,用于验证安装是否成功。其中安装步骤分为两种方式: diff --git a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/quick_start/quick_start.md b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/quick_start/quick_start.md index 34e038d07fbf25dcc33e742a94f9a75c4722d4c3..6986a78223eb72a0f548996c0712780f9f2dcac0 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/quick_start/quick_start.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/quick_start/quick_start.md @@ -1,6 +1,6 @@ # 快速体验 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/quick_start/quick_start.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/quick_start/quick_start.md) 本文档将为用户提供快速指引,以[Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)模型为例,使用[docker](https://www.docker.com/)的安装方式部署vLLM-MindSpore插件,并以[离线推理](#离线推理)与[在线推理](#在线推理)两种方式,快速体验vLLM-MindSpore插件的服务化与推理能力。如用户需要了解更多的安装方式,请参考[安装指南](../installation/installation.md)。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md index 45d37386d8383ec52a6ba3d7ef5c0e484ea35f4e..2a693ba78024f6534d6707ea7f6ed91275c09eb3 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md @@ -1,6 +1,6 @@ # 多机并行推理(DeepSeek R1) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/deepseek_parallel/deepseek_r1_671b_w8a8_dp4_tp4_ep4.md) 本文档介绍DeepSeek R1 671B W8A8并行推理启动流程。DeepSeek R1 671B W8A8模型需使用多个节点资源运行推理模型。为确保各个节点的执行配置(包括模型配置文件路径、Python环境等)一致,推荐通过 docker 镜像创建容器的方式避免执行差异。用户可通过以下[docker安装](#docker安装)章节进行环境配置。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md index 045f6529b0e20ee21b7cb1d22a0e15b30dac8e53..6a83f2c7a635bdd0271361a53573294a3a605084 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md @@ -1,6 +1,6 @@ # 多卡推理(Qwen2.5-32B) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_32b_multiNPU/qwen2.5_32b_multiNPU.md) 本文档将为用户介绍使用vLLM-MindSpore插件进行单节点多卡的推理流程。以[Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)模型为例,用户可通过以下[docker安装](#docker安装)章节或[安装指南](../../installation/installation.md#安装指南)章节进行环境配置,并[下载模型权重](#下载模型权重)。在[设置环境变量](#设置环境变量)之后,可进行[在线推理](#在线推理),以体验单节点多卡的推理功能。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md index b3d0f96b7406d2e40c1045bd0dcaaa22e4384f82..3244d87fdc479d1dba7b8fbfaec2c4224ad46aa6 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md @@ -1,6 +1,6 @@ # 单卡推理(Qwen2.5-7B) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/getting_started/tutorials/qwen2.5_7b_singleNPU/qwen2.5_7b_singleNPU.md) 本文档将介绍使用vLLM-MindSpore插件进行单卡推理的流程。以[Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)模型为例,用户可通过以下[docker安装](#docker安装)章节或[安装指南](../../installation/installation.md#安装指南)章节进行环境配置,并[下载模型权重](#下载模型权重)。在[设置环境变量](#设置环境变量)之后,可进行[离线推理](#离线推理)与[在线推理](#在线推理),体验单卡推理功能。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/release_notes/release_notes.md b/docs/vllm_mindspore/docs/source_zh_cn/release_notes/release_notes.md index f9e757a4cf1e6defb6f9000b1ac02228b96206e1..99a40875e50a89d8db4843404702a5e5666b320c 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/release_notes/release_notes.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/release_notes/release_notes.md @@ -1,6 +1,6 @@ # Release Notes -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/release_notes/release_notes.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/release_notes/release_notes.md) ## vLLM-MindSpore插件 0.4.0 Release Notes diff --git a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/environment_variables/environment_variables.md b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/environment_variables/environment_variables.md index b5d0a2b93418600f9d0519f42937b67df93fa4d8..af6ac00fc4e3dda3d96ec190c7df76f4b2c4fa79 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/environment_variables/environment_variables.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/environment_variables/environment_variables.md @@ -1,6 +1,6 @@ # 环境变量清单 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/environment_variables/environment_variables.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/environment_variables/environment_variables.md) | 环境变量 | 功能 | 类型 | 取值 | 说明 | | ------ | ------- | ------ | ------ | ------ | diff --git a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/benchmark/benchmark.md b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/benchmark/benchmark.md index 00de8a17ec5261a1f451d0d83306bb0c2f4f62d5..13349586cb0438c5f2f5097f6e6edd3c2dea9a89 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/benchmark/benchmark.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/benchmark/benchmark.md @@ -1,6 +1,6 @@ # 性能测试 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/benchmark/benchmark.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/benchmark/benchmark.md) vLLM-MindSpore插件的性能测试能力,继承自vLLM所提供的性能测试能力,详情可参考[vLLM Benchmark](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md)文档。该文档将介绍[在线性能测试](#在线性能测试)与[离线性能测试](#离线性能测试),用户可以根据所介绍步骤进行性能测试。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/features_list/features_list.md b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/features_list/features_list.md index b44801c81cc5ed79ed35c76af7f3cde01886ab3e..842516017b94ede86ab8f988e6bd686d14875a22 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/features_list/features_list.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/features_list/features_list.md @@ -1,6 +1,6 @@ # 特性支持列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/features_list/features_list.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/features_list/features_list.md) vLLM-MindSpore插件支持的特性功能与vLLM社区版本保持一致,特性描述和使用请参考[vLLM官方资料](https://docs.vllm.ai/en/latest/)。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/parallel/parallel.md b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/parallel/parallel.md index dd439c92b23147910425d9c0575407e972545fdb..271e45c3b42febaab5ce676536b2e9edcad60d47 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/parallel/parallel.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/parallel/parallel.md @@ -1,6 +1,6 @@ # 并行推理方法 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/parallel/parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/parallel/parallel.md) vLLM-MindSpore插件支持张量并行(TP)、数据并行(DP)、专家并行(EP)及其组合配置的混合并行推理,并可以使用`Ray`或者`multiprocess`进行多机多卡启动。不同并行策略的适用场景可参考[vLLM官方文档](https://docs.vllm.ai/en/latest/configuration/optimization.html#parallelism-strategies)。下面将展开介绍[张量并行](#张量并行)、[数据并行](#数据并行)、[专家并行](#专家并行)、[混合并行](#混合并行)的使用场景、参数配置与[在线推理](#在线推理)。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/profiling/profiling.md b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/profiling/profiling.md index 99b4e673fa80292b6d1fba9b4e09611470b26771..fa52fef5b2c9c08142e2a7d363169979f4a6d1dc 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/profiling/profiling.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/profiling/profiling.md @@ -1,6 +1,6 @@ # 调试方法 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/profiling/profiling.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/profiling/profiling.md) vLLM-MindSpore插件支持使用`mindspore.Profiler`模块,跟踪vLLM-MindSpore插件中worker的性能。用户可以根据[采集profiling数据](#采集profiling数据)章节完成数据采集,然后根据[分析profiling数据](#分析profiling数据)进行数据分析。另一方面,用户可以根据[图数据dump](#图数据dump)查看模型的IR图,从而进行模型结构的分析与调试。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/quantization/quantization.md b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/quantization/quantization.md index 794b383c0a31788c050dcfeec201cc61e538897e..c32c14ac677491887cbdd5a34ea6859de5b96778 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/quantization/quantization.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/quantization/quantization.md @@ -1,6 +1,6 @@ # 量化方法 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/quantization/quantization.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_features/quantization/quantization.md) 本文档将为用户介绍模型量化与量化推理的方法。量化方法通过牺牲部分模型精度的方式,达到降低模型部署时的资源需求的目的,并提升模型部署时的性能,从而允许模型被部署到更多的设备上。由于大语言模型的规模较大,出于成本考虑,训练后量化成为主流模型量化方案,具体可以参考[后量化技术简介](https://gitee.com/mindspore/golden-stick/blob/master/mindspore_gs/ptq/README_CN.md)。 diff --git a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_models/models_list/models_list.md b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_models/models_list/models_list.md index 35cc789066c89b36eb4f60684fa1126130acd20c..c7671e3401f309f12321b89fa7110eb0da2c7e04 100644 --- a/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_models/models_list/models_list.md +++ b/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_models/models_list/models_list.md @@ -1,6 +1,6 @@ # 模型支持列表 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_models/models_list/models_list.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/docs/vllm_mindspore/docs/source_zh_cn/user_guide/supported_models/models_list/models_list.md) | 模型 | 状态 | 支持后端 | 支持硬件 | 模型下载链接 | |------- | ---- | ---- | --------- | ---- | diff --git a/install/mindspore_ascend_install_conda.md b/install/mindspore_ascend_install_conda.md index 52fce29efa4a50c77edc60b1075a56ef4f77d226..d534ed5424c76e2a11de2ac0348f9e5174aecca9 100644 --- a/install/mindspore_ascend_install_conda.md +++ b/install/mindspore_ascend_install_conda.md @@ -15,7 +15,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_conda.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_conda.md) [Conda](https://docs.conda.io/en/latest/)是一个开源跨平台语言无关的包管理与环境管理系统,允许用户方便地安装不同版本的二进制软件包,以及该计算平台需要的所有库。 diff --git a/install/mindspore_ascend_install_conda_en.md b/install/mindspore_ascend_install_conda_en.md index b9f71b1bc56edf11b0d1aeeb35eb6aaa0b5359bb..30dda561660561538235524f3270d482a857dfea 100644 --- a/install/mindspore_ascend_install_conda_en.md +++ b/install/mindspore_ascend_install_conda_en.md @@ -15,7 +15,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_conda_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_conda_en.md) [Conda](https://docs.conda.io/en/latest/) is an open-source, cross-platform, language-agnostic package manager and environment management system. It allows users to easily install different versions of binary software packages and any required libraries appropriate for their computing platform. diff --git a/install/mindspore_ascend_install_docker.md b/install/mindspore_ascend_install_docker.md index 2e7eabd24e239384de2b3129d7e0ddb4db1bcd6a..8b43e715358e35b052e4afafe52f1eb45d3a2542 100644 --- a/install/mindspore_ascend_install_docker.md +++ b/install/mindspore_ascend_install_docker.md @@ -13,7 +13,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_docker.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_docker.md) [Docker](https://docs.docker.com/get-docker/)是一个开源的应用容器引擎,支持将开发者的应用和依赖包打包到一个轻量级、可移植的容器中。通过使用Docker,可以实现MindSpore的快速部署,并与系统环境隔离。 diff --git a/install/mindspore_ascend_install_docker_en.md b/install/mindspore_ascend_install_docker_en.md index 5f221a6956a33c32ffec61e896bf4fdc103e765e..5619f781669b3dc7749f79cafc238e7c95c02992 100644 --- a/install/mindspore_ascend_install_docker_en.md +++ b/install/mindspore_ascend_install_docker_en.md @@ -13,7 +13,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_docker_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_docker_en.md) [Docker](https://docs.docker.com/get-docker/) is an open source application container engine, and supports packaging developers' applications and dependency packages into a lightweight, portable container. By using Docker, MindSpore can be rapidly deployed and separated from the system environment. diff --git a/install/mindspore_ascend_install_pip.md b/install/mindspore_ascend_install_pip.md index e53a189ded16f8e8fe4b23eca758ea418d688615..5cb4964ade6b020ff3c73f1a8583735a158b12fb 100644 --- a/install/mindspore_ascend_install_pip.md +++ b/install/mindspore_ascend_install_pip.md @@ -14,7 +14,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_pip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_pip.md) 本文档介绍如何在Ascend环境的Linux系统上,使用pip方式快速安装MindSpore。 diff --git a/install/mindspore_ascend_install_pip_en.md b/install/mindspore_ascend_install_pip_en.md index 12b5dd5fefbd396ce371516682ad96c31661af0a..15c4cbd29e7817d82ac33d1de4a40b5df5c7ef44 100644 --- a/install/mindspore_ascend_install_pip_en.md +++ b/install/mindspore_ascend_install_pip_en.md @@ -14,7 +14,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_pip_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_pip_en.md) This document describes how to install MindSpore by pip on Linux in an Ascend environment. diff --git a/install/mindspore_ascend_install_source.md b/install/mindspore_ascend_install_source.md index de0d15537b556641128b5572654c07636bfd7d51..7c5ff668b5595e54e6e621cfacfd45b954accc73 100644 --- a/install/mindspore_ascend_install_source.md +++ b/install/mindspore_ascend_install_source.md @@ -20,7 +20,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_source.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_source.md) 本文档介绍如何在Ascend环境的Linux系统上,使用源码编译方式快速安装MindSpore。 diff --git a/install/mindspore_ascend_install_source_en.md b/install/mindspore_ascend_install_source_en.md index 918dba5095a88274d5e8e6a1f984fd907f3a20b0..a341aa29ba0482e353ce0e418391ffcfdc644a9c 100644 --- a/install/mindspore_ascend_install_source_en.md +++ b/install/mindspore_ascend_install_source_en.md @@ -20,7 +20,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_ascend_install_source_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_ascend_install_source_en.md) This document describes how to install MindSpore by compiling source code on Linux in an Ascend environment. diff --git a/install/mindspore_cpu_install_conda.md b/install/mindspore_cpu_install_conda.md index fad3a7c0629433108f886e8a8900cb61cabd2d01..f127ca65c9ace98984f38c0ac934f0ae6a928c31 100644 --- a/install/mindspore_cpu_install_conda.md +++ b/install/mindspore_cpu_install_conda.md @@ -13,7 +13,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda.md) [Conda](https://docs.conda.io/en/latest/)是一个开源跨平台语言无关的包管理与环境管理系统,允许用户方便地安装不同版本的二进制软件包,以及该计算平台需要的所有库。 diff --git a/install/mindspore_cpu_install_conda_en.md b/install/mindspore_cpu_install_conda_en.md index 0ff58e7fe9ef1396738fe8b6604d0475e6dc7020..dfb6a6cfbc218fafad953a14d6d04085a227b6d8 100644 --- a/install/mindspore_cpu_install_conda_en.md +++ b/install/mindspore_cpu_install_conda_en.md @@ -13,7 +13,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda_en.md) [Conda](https://docs.conda.io/en/latest/) is an open-source, cross-platform, language-agnostic package manager and environment management system. It allows users to easily install different versions of binary software packages and any required libraries appropriate for their computing platform. diff --git a/install/mindspore_cpu_install_docker.md b/install/mindspore_cpu_install_docker.md index 09941be653119b926444ce25a808a28607ae72b2..a3eda9f91143dcc2a7e427e1e77947b2e63a2da6 100644 --- a/install/mindspore_cpu_install_docker.md +++ b/install/mindspore_cpu_install_docker.md @@ -10,7 +10,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_docker.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_docker.md) [Docker](https://docs.docker.com/get-docker/)是一个开源的应用容器引擎,支持将开发者的应用和依赖包打包到一个轻量级、可移植的容器中。通过使用Docker,可以实现MindSpore的快速部署,并与系统环境隔离。 diff --git a/install/mindspore_cpu_install_docker_en.md b/install/mindspore_cpu_install_docker_en.md index 262f71a289bf41a264091ccc05cbb0051d532c8a..3075a65527a93e604995f398a3b6bc51ca7baeab 100644 --- a/install/mindspore_cpu_install_docker_en.md +++ b/install/mindspore_cpu_install_docker_en.md @@ -10,7 +10,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_docker_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_docker_en.md) [Docker](https://docs.docker.com/get-docker/) is an open source application container engine, and supports packaging developers' applications and dependency packages into a lightweight, portable container. By using Docker, MindSpore can be rapidly deployed and separated from the system environment. diff --git a/install/mindspore_cpu_install_nightly.md b/install/mindspore_cpu_install_nightly.md index de50f5017cd10a3393475eec52dffc8b4e8f3fcb..fe50a48939b62dd143dba80d1a3217fbb7a32bff 100644 --- a/install/mindspore_cpu_install_nightly.md +++ b/install/mindspore_cpu_install_nightly.md @@ -12,7 +12,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_nightly.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_nightly.md) MindSpore Nightly是包含当前最新功能与bugfix的预览版本,但是可能未经完整的测试与验证,希望体验最新功能或者问题修复的用户可以使用该版本。 diff --git a/install/mindspore_cpu_install_nightly_en.md b/install/mindspore_cpu_install_nightly_en.md index 29e8e226a664994883327e3e270a42748e001f30..71c9743f911848a32e7b2028b48cfe3e6cb5a5f6 100644 --- a/install/mindspore_cpu_install_nightly_en.md +++ b/install/mindspore_cpu_install_nightly_en.md @@ -12,7 +12,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_nightly_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_nightly_en.md) MindSpore Nightly is a preview version which includes latest features and bugfixes, not fully supported and tested. Install MindSpore Nightly version if you wish to try out the latest features or bug fixes can use this version. diff --git a/install/mindspore_cpu_install_pip.md b/install/mindspore_cpu_install_pip.md index bc89c09c4fc7bfab902e0afe55f085e742329225..ea21bf621e23b5e59e333210e5fd71887a504f31 100644 --- a/install/mindspore_cpu_install_pip.md +++ b/install/mindspore_cpu_install_pip.md @@ -12,7 +12,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip.md) 本文档介绍如何在CPU环境的Linux系统上,使用pip方式快速安装MindSpore。下面以Ubuntu 18.04为例说明MindSpore安装步骤。 diff --git a/install/mindspore_cpu_install_pip_en.md b/install/mindspore_cpu_install_pip_en.md index 7e74f9b586266b8fb4b9f1afd9891525e90aecaa..976405628e25027674bd43e5ac2856d8e059b1d9 100644 --- a/install/mindspore_cpu_install_pip_en.md +++ b/install/mindspore_cpu_install_pip_en.md @@ -12,7 +12,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_pip_en.md) This document describes how to install MindSpore by pip on Linux in a CPU environment. The following takes Ubuntu 18.04 as an example to describe how to install MindSpore. diff --git a/install/mindspore_cpu_install_source.md b/install/mindspore_cpu_install_source.md index 6e9b47b21782a47751264597d58b2b6653948654..bd1087eb32e2918fa4689712b5a1ba8e3ea7d9ee 100644 --- a/install/mindspore_cpu_install_source.md +++ b/install/mindspore_cpu_install_source.md @@ -17,7 +17,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_source.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_source.md) 本文档介绍如何在CPU环境的Linux系统上,使用源码编译方式快速安装MindSpore。下面以Ubuntu 18.04为例说明MindSpore编译安装步骤。 diff --git a/install/mindspore_cpu_install_source_en.md b/install/mindspore_cpu_install_source_en.md index 6f50d6c48f6df49febd6e212fd828b5fb5eeb26e..cedd542b7e45614275c583dc904a087de4f267f1 100644 --- a/install/mindspore_cpu_install_source_en.md +++ b/install/mindspore_cpu_install_source_en.md @@ -17,7 +17,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_source_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_source_en.md) This document describes how to install MindSpore by compiling source code on Linux system in the CPU environment. The following takes Ubuntu 18.04 as an example to describe how to compile and install MindSpore. diff --git a/install/mindspore_cpu_mac_install_conda.md b/install/mindspore_cpu_mac_install_conda.md index 123b534f73e2b7ff2798a4bb1305e9838c7afd15..c43c4269529fda0b94f3bace261040f1cafb8fa8 100644 --- a/install/mindspore_cpu_mac_install_conda.md +++ b/install/mindspore_cpu_mac_install_conda.md @@ -11,7 +11,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda.md) [Conda](https://docs.conda.io/en/latest/)是一个开源跨平台语言无关的包管理与环境管理系统,允许用户方便地安装不同版本的二进制软件包,以及该计算平台需要的所有库。 diff --git a/install/mindspore_cpu_mac_install_conda_en.md b/install/mindspore_cpu_mac_install_conda_en.md index ef683e3c2887764b379aec7eafd3041145d40bd0..ad5cb703d57df57be5f0dbe658c95e0e671875c9 100644 --- a/install/mindspore_cpu_mac_install_conda_en.md +++ b/install/mindspore_cpu_mac_install_conda_en.md @@ -11,7 +11,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_install_conda_en.md) [Conda](https://docs.conda.io/en/latest/) is an open-source, cross-platform, language-agnostic package manager and environment management system. It allows users to easily install different versions of binary software packages and any required libraries appropriate for their computing platform. diff --git a/install/mindspore_cpu_mac_install_nightly.md b/install/mindspore_cpu_mac_install_nightly.md index 993f5613572ba77ecdd096017ee3862c0ccd1dda..769b9f1f031513879a5167f9e9030b71215d453a 100644 --- a/install/mindspore_cpu_mac_install_nightly.md +++ b/install/mindspore_cpu_mac_install_nightly.md @@ -11,7 +11,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip.md) MindSpore Nightly是包含当前最新功能与bugfix的预览版本,但是可能未经完整的测试与验证,希望体验最新功能或者问题修复的用户可以使用该版本。 diff --git a/install/mindspore_cpu_mac_install_nightly_en.md b/install/mindspore_cpu_mac_install_nightly_en.md index b89a59430c0e2bdc9b8184ace6bd0bcfd0b3770b..01737962ae18206eeeaa49a2676220330435dca0 100644 --- a/install/mindspore_cpu_mac_install_nightly_en.md +++ b/install/mindspore_cpu_mac_install_nightly_en.md @@ -11,7 +11,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip_en.md) MindSpore Nightly is a preview version which includes latest features and bugfixes, not fully supported and tested. Install MindSpore Nightly version if you wish to try out the latest features or bug fixes can use this version. diff --git a/install/mindspore_cpu_mac_install_pip.md b/install/mindspore_cpu_mac_install_pip.md index e093f41ff0dec47186ce2334279c5be37e9f1681..113d1a93c4ec7baa24be2b88708cdb13e885c320 100644 --- a/install/mindspore_cpu_mac_install_pip.md +++ b/install/mindspore_cpu_mac_install_pip.md @@ -11,7 +11,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip.md) [Conda](https://docs.conda.io/en/latest/)是一个开源跨平台语言无关的包管理与环境管理系统,允许用户方便地安装不同版本的二进制软件包,以及该计算平台需要的所有库。推荐在MacOS上通过Conda使用MindSpore。 diff --git a/install/mindspore_cpu_mac_install_pip_en.md b/install/mindspore_cpu_mac_install_pip_en.md index 79a014f7bfa3c2f97c7a7b9b40f012281517afca..b6a3a3d586ed3254dd184382bbef817e24c542b7 100644 --- a/install/mindspore_cpu_mac_install_pip_en.md +++ b/install/mindspore_cpu_mac_install_pip_en.md @@ -11,7 +11,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_pip_en.md) [Conda](https://docs.conda.io/en/latest/) is an open-source, cross-platform, language-agnostic package manager and environment management system. It allows users to easily install different versions of binary software packages and any required libraries appropriate for their computing platform. diff --git a/install/mindspore_cpu_mac_install_source.md b/install/mindspore_cpu_mac_install_source.md index e88d1bc8f84b0d74a390a2fb976645169dec171e..e83ac2afa96a6d5a3385c98d881b9fcf56c1ee03 100644 --- a/install/mindspore_cpu_mac_install_source.md +++ b/install/mindspore_cpu_mac_install_source.md @@ -13,7 +13,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_source.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_source.md) [Conda](https://docs.conda.io/en/latest/)是一个开源跨平台语言无关的包管理与环境管理系统,允许用户方便地安装不同版本的二进制软件包,以及该计算平台需要的所有库。推荐在MacOS上通过Conda使用MindSpore。 diff --git a/install/mindspore_cpu_mac_install_source_en.md b/install/mindspore_cpu_mac_install_source_en.md index 20a77591b048d6a66b1d8af3110c6143191882ae..48be80a959c5308d24aec419279b2feca0866708 100644 --- a/install/mindspore_cpu_mac_install_source_en.md +++ b/install/mindspore_cpu_mac_install_source_en.md @@ -13,7 +13,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_source_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_mac_install_source_en.md) [Conda](https://docs.conda.io/en/latest/) is an open-source, cross-platform, language-agnostic package manager and environment management system. It allows users to easily install different versions of binary software packages and any required libraries appropriate for their computing platform. diff --git a/install/mindspore_cpu_win_install_conda.md b/install/mindspore_cpu_win_install_conda.md index 063ec764c560a3d1211535b5ba43f628ef5fdde7..df7b97dc618d9703a29a516eefd364da912e60c1 100644 --- a/install/mindspore_cpu_win_install_conda.md +++ b/install/mindspore_cpu_win_install_conda.md @@ -11,7 +11,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_conda.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_conda.md) [Conda](https://docs.conda.io/en/latest/)是一个开源跨平台语言无关的包管理与环境管理系统,允许用户方便地安装不同版本的二进制软件包,以及该计算平台需要的所有库。 diff --git a/install/mindspore_cpu_win_install_conda_en.md b/install/mindspore_cpu_win_install_conda_en.md index bc1a31ad9242fae2e0b15d0cd6498a55b9ef9d98..2c25109a1ccb4169be721cd43dd70edc7c3ebe95 100644 --- a/install/mindspore_cpu_win_install_conda_en.md +++ b/install/mindspore_cpu_win_install_conda_en.md @@ -11,7 +11,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_conda_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_conda_en.md) [Conda](https://docs.conda.io/en/latest/) is an open-source, cross-platform, language-agnostic package manager and environment management system. It allows users to easily install different versions of binary software packages and any required libraries appropriate for their computing platform. diff --git a/install/mindspore_cpu_win_install_nightly.md b/install/mindspore_cpu_win_install_nightly.md index a38dd9d5b593bd3fdec088389b30a6d974055ab7..eeb89476f712810cde1c5186c806b55e8072a530 100644 --- a/install/mindspore_cpu_win_install_nightly.md +++ b/install/mindspore_cpu_win_install_nightly.md @@ -10,7 +10,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_nightly.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_nightly.md) MindSpore Nightly是包含当前最新功能与bugfix的预览版本,但是可能未经完整的测试与验证,希望体验最新功能或者问题修复的用户可以使用该版本。 diff --git a/install/mindspore_cpu_win_install_nightly_en.md b/install/mindspore_cpu_win_install_nightly_en.md index c25aa7df31e26bd071b6c93826572a04f55ffca9..27c2c2b4ed95a3b3f68156879c85396305b2d56d 100644 --- a/install/mindspore_cpu_win_install_nightly_en.md +++ b/install/mindspore_cpu_win_install_nightly_en.md @@ -10,7 +10,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_nightly_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_nightly_en.md) MindSpore Nightly is a preview version which includes latest features and bugfixes, not fully supported and tested. Install MindSpore Nightly version if you wish to try out the latest changes on MindSpore. diff --git a/install/mindspore_cpu_win_install_pip.md b/install/mindspore_cpu_win_install_pip.md index 827cdffdfe6da2d33903439766a367ae973d2df3..27317b4896e4a3a381ade468496f85fd713650f5 100644 --- a/install/mindspore_cpu_win_install_pip.md +++ b/install/mindspore_cpu_win_install_pip.md @@ -10,7 +10,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_pip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_pip.md) 本文档介绍如何在CPU环境的Windows系统上,使用pip方式快速安装MindSpore。 diff --git a/install/mindspore_cpu_win_install_pip_en.md b/install/mindspore_cpu_win_install_pip_en.md index 16802974008a8c73c2b9e2999cd65d00aa430ba5..f76017866712d2fca881b69861264d8d68622421 100644 --- a/install/mindspore_cpu_win_install_pip_en.md +++ b/install/mindspore_cpu_win_install_pip_en.md @@ -10,7 +10,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_pip_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_pip_en.md) This document describes how to install MindSpore by pip on Windows in a CPU environment. diff --git a/install/mindspore_cpu_win_install_source.md b/install/mindspore_cpu_win_install_source.md index 92ffaaf98f0d2cb10df07c17c090274204a0bcc9..3fbd8880c64dc6a2367c8937f94594e68dc5a8f0 100644 --- a/install/mindspore_cpu_win_install_source.md +++ b/install/mindspore_cpu_win_install_source.md @@ -12,7 +12,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_source.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_source.md) 本文档介绍如何在CPU环境的Windows系统上,使用源码编译方法快速安装MindSpore。 @@ -25,7 +25,7 @@ - 确认安装Python(>=3.9.0)。可以从[Python官网](https://www.python.org/downloads/windows/)或者[华为云](https://repo.huaweicloud.com/python/)选择合适的版本进行安装。 - 确认安装[wheel 0.32.0及以上版本](https://pypi.org/project/wheel/)。 - 确认安装[PyYAML](https://pypi.org/project/pyyaml/) (>=6.0 并且 <= 6.0.2)。如果没有安装,可以使用 `pip install pyyaml` 命令安装。 -- 确认安装[MSYS2软件](https://www.msys2.org/)。详细请查看[Windows上安装MSYS2软件](https://gitee.com/mindspore/docs/blob/master/install/third_party/msys_software_install.md)。 +- 确认安装[MSYS2软件](https://www.msys2.org/)。详细请查看[Windows上安装MSYS2软件](https://atomgit.com/mindspore/docs/blob/master/install/third_party/msys_software_install.md)。 - 确认安装[Numpy](https://pypi.org/project/numpy/) (>=1.19.3 并且 <= 1.26.4)。如果没有安装,可以使用 `pip install numpy` 命令安装。 ## 从代码仓下载源码 diff --git a/install/mindspore_cpu_win_install_source_en.md b/install/mindspore_cpu_win_install_source_en.md index 8838070125ccc70c5a75173d741e6ba0d0e92743..1b65ac6638272c26805758ca8d3423b1aabc68b2 100644 --- a/install/mindspore_cpu_win_install_source_en.md +++ b/install/mindspore_cpu_win_install_source_en.md @@ -12,7 +12,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_source_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_cpu_win_install_source_en.md) This document describes how to install MindSpore by compiling source code on Windows system in a CPU environment. @@ -25,7 +25,7 @@ This document describes how to install MindSpore by compiling source code on Win - Ensure that you have Python(>=3.9.0) installed. If not installed, follow the links to [Python official website](https://www.python.org/downloads/windows/) or [Huawei Cloud](https://repo.huaweicloud.com/python/) to download and install Python. - Ensure that [wheel 0.32.0 and later](https://pypi.org/project/wheel/) is installed. - Ensure that [PyYAML](https://pypi.org/project/pyyaml/) (>=6.0 and <= 6.0.2) is installed. Use `pip install pyyaml` if it's not installed. -- Ensure that [MSYS2 software](https://www.msys2.org/) is installed. For details, please check [Installing MSYS2 Software on Windows](https://gitee.com/mindspore/docs/blob/master/install/third_party/msys_software_install_en.md). +- Ensure that [MSYS2 software](https://www.msys2.org/) is installed. For details, please check [Installing MSYS2 Software on Windows](https://atomgit.com/mindspore/docs/blob/master/install/third_party/msys_software_install_en.md). - Ensure that [Numpy](https://pypi.org/project/numpy/) (>=1.19.3 and <= 1.26.4) is installed. Use `pip install numpy` if it's not installed. ## Downloading Source Code from Code Repository diff --git a/install/mindspore_gpu_install_conda.md b/install/mindspore_gpu_install_conda.md index 6e7534b0363bec5961f129bbc51a88f0192d6f8a..360c1593d12a0deb0b587e57f3e28131a9f40a56 100644 --- a/install/mindspore_gpu_install_conda.md +++ b/install/mindspore_gpu_install_conda.md @@ -16,7 +16,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_conda.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_conda.md) [Conda](https://docs.conda.io/en/latest/)是一个开源跨平台语言无关的包管理与环境管理系统,允许用户方便地安装不同版本的二进制软件包,以及该计算平台需要的所有库。 diff --git a/install/mindspore_gpu_install_conda_en.md b/install/mindspore_gpu_install_conda_en.md index b59f37f22b6486ed6e267cee52d44c3f80f13387..bc9edff424f7b31af487bf5244b1535e74d2a914 100644 --- a/install/mindspore_gpu_install_conda_en.md +++ b/install/mindspore_gpu_install_conda_en.md @@ -16,7 +16,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_conda_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_conda_en.md) [Conda](https://docs.conda.io/en/latest/) is an open-source, cross-platform, language-agnostic package manager and environment management system. It allows users to easily install different versions of binary software packages and any required libraries appropriate for their computing platform. diff --git a/install/mindspore_gpu_install_nightly.md b/install/mindspore_gpu_install_nightly.md index 46f3268c7dc1abed236723b644b92d4db3d938e8..f095ef74de57e8f79773f67cd1b7f53fdc6faa7c 100644 --- a/install/mindspore_gpu_install_nightly.md +++ b/install/mindspore_gpu_install_nightly.md @@ -15,7 +15,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip.md) MindSpore Nightly是包含当前最新功能与bugfix的预览版本,但是可能未经完整的测试与验证,希望体验最新功能或者问题修复的用户可以使用该版本。 diff --git a/install/mindspore_gpu_install_nightly_en.md b/install/mindspore_gpu_install_nightly_en.md index d5515a16bbf72de95643b782e3dfe84f9a913b5c..54a524644eef19f04e3f86229126c5cde49c2411 100644 --- a/install/mindspore_gpu_install_nightly_en.md +++ b/install/mindspore_gpu_install_nightly_en.md @@ -15,7 +15,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip_en.md) MindSpore Nightly is a preview version which includes latest features and bugfixes, not fully supported and tested. Install MindSpore Nightly version if you wish to try out the latest changes on MindSpore. diff --git a/install/mindspore_gpu_install_pip.md b/install/mindspore_gpu_install_pip.md index 36549683ef8645228ea86fc6ee36e4d3e8999937..ba50c96993c3688aa8f929df6e6383657234649a 100644 --- a/install/mindspore_gpu_install_pip.md +++ b/install/mindspore_gpu_install_pip.md @@ -15,7 +15,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip.md) 本文档介绍如何在GPU环境的Linux系统上,使用pip方式快速安装MindSpore。下面以Ubuntu 18.04为例说明MindSpore安装步骤。 diff --git a/install/mindspore_gpu_install_pip_en.md b/install/mindspore_gpu_install_pip_en.md index 5ef5b8041140601aa524f6f99dba6c28037b0726..cda841e79a71beffd237fe8dd0d3d64eb9bfd3d4 100644 --- a/install/mindspore_gpu_install_pip_en.md +++ b/install/mindspore_gpu_install_pip_en.md @@ -15,7 +15,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip_en.md) This document describes how to install MindSpore by pip on Linux in a GPU environment. The following takes Ubuntu 18.04 as an example to describe how to install MindSpore. diff --git a/install/mindspore_gpu_install_source.md b/install/mindspore_gpu_install_source.md index d0bae32c7165e21c59b372b6f460401f46ca601a..3c1c84291eabd3a4c7dd82a83a4188b0d09b7e6d 100644 --- a/install/mindspore_gpu_install_source.md +++ b/install/mindspore_gpu_install_source.md @@ -20,7 +20,7 @@ -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_source.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_source.md) 本文档介绍如何在GPU环境的Linux系统上,使用源码编译方式快速安装MindSpore。下面以Ubuntu 18.04为例说明MindSpore编译安装步骤。 diff --git a/install/mindspore_gpu_install_source_en.md b/install/mindspore_gpu_install_source_en.md index 4b41db58800c6cf33ca584119c88bd80426bb642..4d76d09efe7740f8054e1a87b87f051bff7bc679 100644 --- a/install/mindspore_gpu_install_source_en.md +++ b/install/mindspore_gpu_install_source_en.md @@ -20,7 +20,7 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_source_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/mindspore_gpu_install_source_en.md) This document describes how to install MindSpore by compiling source code on Linux in a GPU environment. The following takes Ubuntu 18.04 as an example to describe how to install MindSpore. diff --git a/install/third_party/msys_software_install.md b/install/third_party/msys_software_install.md index c92d8ba20c8bf5ddf2810f487023c07c3933e0bb..5ebcb53fde885c56690454973818e7a795719912 100644 --- a/install/third_party/msys_software_install.md +++ b/install/third_party/msys_software_install.md @@ -1,6 +1,6 @@ # Windows上安装MSYS2软件 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/third_party/msys_software_install.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/third_party/msys_software_install.md) 本文档介绍如何在Windows系统上,安装MSYS2软件的步骤。 diff --git a/install/third_party/msys_software_install_en.md b/install/third_party/msys_software_install_en.md index 841d7e113523f6c5c4f16e2f855137dbbf4827b1..b2e60d74994a6f8e7344d750991084de93e6d66a 100644 --- a/install/third_party/msys_software_install_en.md +++ b/install/third_party/msys_software_install_en.md @@ -1,6 +1,6 @@ # Installing MSYS2 Software on Windows -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/install/third_party/msys_software_install_en.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/install/third_party/msys_software_install_en.md) This document describes the steps on how to install the MSYS2 software on a Windows system. diff --git a/install/third_party/third_party_cpu_install.md b/install/third_party/third_party_cpu_install.md index 8bad15e827a0cdb730ab5073392df155740c9877..16415b3e3ea01c593bcf78533ded76b0f3824d15 100644 --- a/install/third_party/third_party_cpu_install.md +++ b/install/third_party/third_party_cpu_install.md @@ -1,6 +1,6 @@ # 源码编译方式安装MindSpore CPU版本(含第三方依赖) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/install/third_party/third_party_cpu_install.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/install/third_party/third_party_cpu_install.md) 作者:[damon0626](https://gitee.com/damon0626) diff --git a/resource/release/release_list_en.md b/resource/release/release_list_en.md index 95577d36115685a378779ade0eb26274f3f9f161..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/resource/release/release_list_en.md +++ b/resource/release/release_list_en.md @@ -1,2036 +0,0 @@ -# Release List - - - -- [Release List](#release-list) - - [2.7.1](#271) - - [2.7.0](#270) - - [2.7.0-rc1](#270-rc1) - - [2.6.0](#260) - - [2.6.0-rc1](#260-rc1) - - [2.5.0](#250) - - [2.4.10](#2410) - - [2.4.1](#241) - - [2.4.0](#240) - - [2.3.1](#231) - - [2.3.0](#230) - - [2.3.0-rc2](#230-rc2) - - [2.3.0-rc1](#230-rc1) - - [2.2.14](#2214) - - [2.2.13](#2213) - - [2.2.12](#2212) - - [2.2.11](#2211) - - [2.2.10](#2210) - - [2.2.1](#221) - - [2.2.0](#220) - - [2.1.1](#211) - - [2.1.0](#210) - - [2.0.0](#200) - - [2.0.0-rc1](#200-rc1) - - [2.0.0-alpha](#200-alpha) - - [1.10.1](#1101) - - [1.10.0](#1100) - - [1.9.0](#190) - - [1.8.1](#181) - - [1.8.0](#180) - - [1.7.1](#171) - - [1.7.0](#170) - - [1.6.2](#162) - - [1.6.1](#161) - - [1.6.0](#160) - - [1.5.2](#152) - - [1.5.1](#151) - - [1.5.0](#150) - - [1.5.0-rc1](#150-rc1) - - [1.4.1](#141) - - [1.4.0](#140) - - [1.3.0](#130) - - [1.2.1](#121) - - [1.2.0-rc1](#120-rc1) - - [1.1.1](#111) - - [1.1.0](#110) - - [1.0.1](#101) - - [1.0.0](#100) - - [0.7.0-beta](#070-beta) - - [0.6.0-beta](#060-beta) - - [0.5.2-beta](#052-beta) - - [0.5.0-beta](#050-beta) - - [0.3.0-alpha](#030-alpha) - - [0.2.0-alpha](#020-alpha) - - [0.1.0-alpha](#010-alpha) - - - -[![View source on Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/resource/release/release_list_en.md) - -## 2.7.1 - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/aarch64/mindspore-2.7.1-cp39-cp39-linux_aarch64.whl) | 18edb25e37e4132fa45b6488ddd511d3f0c3e2753b38b949a84c608ff94ae541 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/aarch64/mindspore-2.7.1-cp310-cp310-linux_aarch64.whl) | 1026e960b8163ebd76be4f4d3a38fd99092e6cc8349e14837d87a8bd713d7bb2 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/aarch64/mindspore-2.7.1-cp311-cp311-linux_aarch64.whl) | 8aaf9c802143d1469178a8acf171f5f463c511df4e9a22a6869cf1d0ac28a6a0 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/x86_64/mindspore-2.7.1-cp39-cp39-linux_x86_64.whl) | 38e9f73dcd5f8487caaef71815deabbb6cfc6eb16a5eff121df6631870ef0128 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/x86_64/mindspore-2.7.1-cp310-cp310-linux_x86_64.whl) | 204ee8c41f50b18aea7c3e124e83ba220b1017bc951841a932826d55ee1ed798 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/x86_64/mindspore-2.7.1-cp311-cp311-linux_x86_64.whl) | 6f889480612e632d43c03a3cae9d48f33a8c2370172a536bed7abc0695be6433 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp39-cp39-win_amd64.whl) | 9fb28d430ab0c9542769e660e625e257234326b23a5618cb55291406a85bf3d4 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp310-cp310-win_amd64.whl) | bf297ed55889750caf9350970214783303b4622187a83fe01c4686a296293cb9 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp311-cp311-win_amd64.whl) | 20d577fe6448bda0093eb7d0efa61c52e976c0c97f05f13bea92294379d70046 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/aarch64/mindspore-2.7.1-cp39-cp39-macosx_11_0_arm64.whl) | 1fe3ff08ab2740352ef46ccfca18c456821944756f4a7f8423d549c977131a51 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/aarch64/mindspore-2.7.1-cp310-cp310-macosx_11_0_arm64.whl) | 9187bc0c655487ab708d9710a00549b08eff6c79166b031041752ebd1b52cb0c | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/aarch64/mindspore-2.7.1-cp311-cp311-macosx_11_0_arm64.whl) | 50f47cb4f70e0a596447167152298067b420c4d8a5b5ff3ad7e6b97cfb0461ba | -| | | MacOS-x64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp39-cp39-macosx_10_15_x86_64.whl) | 450108729596e1fd5b55b85f5a0fce52f66435b4e0f44e027ec445ae08d2c77f | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp310-cp310-macosx_10_15_x86_64.whl) | 1c2f22aca36a9eb0d2472fd81e4f78e4df87acfd3210043a271f42c42776ac00 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp311-cp311-macosx_10_15_x86_64.whl) | 18a11196c1282d219a7d408cc70931e3a8bc9504a1f112f78a85d24cb8eeef0d | - -**Ascend Supporting Software Package** - -| Installation guide | Community edition download link | -|--------|------------------| -| [Installation guide](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/83RC1/softwareinst/instg/instg_quick.html) | [CANN 8.3.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -## 2.7.0 - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/aarch64/mindspore-2.7.0-cp39-cp39-linux_aarch64.whl) | 74020e04d8553d71c9b93b259b3d3af9a54e935ca4b4799c8c806d36be607635 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/aarch64/mindspore-2.7.0-cp310-cp310-linux_aarch64.whl) | cf2cc43d73de86bc45878924c12f60865c0c06b43df76b28025ed6b27748ca0a | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/aarch64/mindspore-2.7.0-cp311-cp311-linux_aarch64.whl) | d4047ca0ff4bf1cce6fa6cc88044bdb598ce45f8b8fc9f51f9701dbc141aa8ff | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/x86_64/mindspore-2.7.0-cp39-cp39-linux_x86_64.whl) | 281ebbcd5cfe0a5e4330f1029f067a4bce46d6a03c748d35dde9123994240a32 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/x86_64/mindspore-2.7.0-cp310-cp310-linux_x86_64.whl) | 7b110af7a8321ebb331480d287b974490678be832c01d9f1036240d2099249c9 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/x86_64/mindspore-2.7.0-cp311-cp311-linux_x86_64.whl) | 0051ecfc36b682df2e113b3e43c442f856509f567945d077c5728cd8e45b1f53 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp39-cp39-win_amd64.whl) | 64f2f42b127239d203cf4b93ef07202f02b0a185cce3f158a1ae214a4a9fb946 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp310-cp310-win_amd64.whl) | d598ce9efb88072c1ec7d3ec7c94398486c6d6f718eb607858e2345d65789669 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp311-cp311-win_amd64.whl) | de9779f037f21a1c0af544835d009d3b5c1d2cb446bde4b37388f6f027038c3b | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/aarch64/mindspore-2.7.0-cp39-cp39-macosx_11_0_arm64.whl) | 2c187e2efd659f49afc87e6d42cc3c4ecf55c1fa4017480911a870e726bda8ba | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/aarch64/mindspore-2.7.0-cp310-cp310-macosx_11_0_arm64.whl) | 1d0084245aed44be2db4960b5252f7dbd4ba0932ffcd3d3df80b71859c3a9347 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/aarch64/mindspore-2.7.0-cp311-cp311-macosx_11_0_arm64.whl) | 6be3c63c9a65b0e5fa06794f95de86ee1d7d85e8733a507ec4bc2965f1f852b8 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp39-cp39-macosx_10_15_x86_64.whl) | 19a2062a033471b254c43ae48315507b2335281b507c3a8e464d83d5127b66e1 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp310-cp310-macosx_10_15_x86_64.whl) | c33d010511be62dd5b8240a7f6d012c211776d0df89b4d454134ad3d304634d1 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp311-cp311-macosx_10_15_x86_64.whl) | 78fca18ef9d06015a8bbf8674f0fc658403828df92e5d5fe71fae9f1984efe1a | - -**Ascend Supporting Software Package** - -| Installation guide | Community edition download link | -|--------|------------------| -| [Installation guide](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/82RC1/softwareinst/instg/instg_quick.html) | [CANN 8.2.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Installation | Tutorials | Document | API| -| --- | --- | --- | --- | -| [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.7.0/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.7.0/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.7.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.7.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.7.0/api_python/mindspore.html) | - -## 2.7.0-rc1 - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|---------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/aarch64/mindspore-2.7.0rc1-cp39-cp39-linux_aarch64.whl) | a25de0e2625ad8a5e8a8f8850b044e97db75e19530edf2b8e0d7b3ad29c9989e | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/aarch64/mindspore-2.7.0rc1-cp310-cp310-linux_aarch64.whl) | a570ab1d21c51f81123c09c7fa058431c00c88a412f16d8a9fb85b696978ab67 | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/aarch64/mindspore-2.7.0rc1-cp311-cp311-linux_aarch64.whl) | 589161272a19444921a2e904450e50e8330853c976694c50fd327cb61179243d | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/x86_64/mindspore-2.7.0rc1-cp39-cp39-linux_x86_64.whl) | 5587c5b0489d91964996e65208eb5f70669abfb5f128f5fe3963097ccec2d31d | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/x86_64/mindspore-2.7.0rc1-cp310-cp310-linux_x86_64.whl) | 373b12637e46ffcf5aa573fb9bc2390a41a62a6909bb8dfdf46447dc26b62d6e | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/x86_64/mindspore-2.7.0rc1-cp311-cp311-linux_x86_64.whl) | 9db48cc11afe32cb32906edd940058748976fa2225d779ef062e5b24056c0009 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp39-cp39-win_amd64.whl) | 89df451a3cd43f755355a6748a20d37d1486fca70245a625266dce70df78ef52 | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp310-cp310-win_amd64.whl) | 16d3d7d8f0938376cbdf2a51159af7459588d0bac8f8e3c637c9c7b327d7bfb3 | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp311-cp311-win_amd64.whl) | ffcbacff0e7d9f8246da75cf3e52f6ddebd03fd6e36e8f76efe3e9f3a1646be9 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/aarch64/mindspore-2.7.0rc1-cp39-cp39-macosx_11_0_arm64.whl) | 0572a4ce193e89b034b2b1b2aef35b06b9b496880b80ca81d8149e4db8d90659 | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/aarch64/mindspore-2.7.0rc1-cp310-cp310-macosx_11_0_arm64.whl) | 86c9e8a6dc2a881b45914c2edd9ebb768f12ae6bb5cd4aa44e3e624307278de0 | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/aarch64/mindspore-2.7.0rc1-cp311-cp311-macosx_11_0_arm64.whl) | 7dba0888b59b6e1d5f4106bbb13e745ddf2c9af2a68d97fdec023a0239bbc886 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp39-cp39-macosx_10_15_x86_64.whl) | 3e9ede2052e0eaac37431b5b1363dfe1e3d73859b590dad4999d9b954412a671 | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp310-cp310-macosx_10_15_x86_64.whl) | 1004271c43c0978b17b5288be701fb0a54cad3ad568e3199563a78337e653f3b | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp311-cp311-macosx_10_15_x86_64.whl) | aaf5a73505c853f72eb8d22cdcc9c85c781dfc644735cd1b4c0bdb4248c4b4cc | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.7.0rc1/use/downloads.html) | | - -**Ascend Supporting Software Package** - -| Installation guide | Community edition download link | -|--------|------------------| -| [Installation guide](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/82RC1/softwareinst/instg/instg_quick.html) | [CANN 8.2.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Installation | Tutorials | Document | API| -| --- | --- | --- | --- | -| [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.7.0rc1/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.7.0rc1/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.7.0rc1/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.7.0rc1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.7.0rc1/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.7.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.7.0rc1/index.html) | - -## 2.6.0 - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/aarch64/mindspore-2.6.0-cp39-cp39-linux_aarch64.whl) | f496de26a28ea6cd6e63dc86aeb2cf455fba3304658779d03cb7689e5f6a1aac | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/aarch64/mindspore-2.6.0-cp310-cp310-linux_aarch64.whl) | 1e1f844f65a3699146ba6a210d9df2a36906f43c3668d089d600f5041cb05d78 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/aarch64/mindspore-2.6.0-cp311-cp311-linux_aarch64.whl) | 14cb6b2b94598d38fa1be50dfed05597d23e479dbff9e52f906b9583259a61a9 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/x86_64/mindspore-2.6.0-cp39-cp39-linux_x86_64.whl) | fc99ac495ae308f27e44900e48abda91bf53695eedca160836ac452442b8f295 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/x86_64/mindspore-2.6.0-cp310-cp310-linux_x86_64.whl) | 9d6fb7f538d2c464a9037640c45c6cd3939948db759bfbb534f4b7dbc3f6d200 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/x86_64/mindspore-2.6.0-cp311-cp311-linux_x86_64.whl) | 55910e88e99bb842853bb026f0629f9176a8f911f0abc3200aea1e78ebd62c51 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp39-cp39-win_amd64.whl) | be64e97517c7544c299823632ac2d4c4a4e54a57313db9eae1e6a1683078ed01 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp310-cp310-win_amd64.whl) | 89d2cab829c9214b257e7df15eda8fed7e1281aa522535f3c6ff427e295c2d43 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp311-cp311-win_amd64.whl) | 0098505481ef46e2f517596b05a232c0104902cfc06f5e9997460bf477ea746f | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/aarch64/mindspore-2.6.0-cp39-cp39-macosx_11_0_arm64.whl) | 98a5f15558eecce21c1a657cf1d212dae7eaf511bff721c7ad1d048244c75474 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/aarch64/mindspore-2.6.0-cp310-cp310-macosx_11_0_arm64.whl) | cf7aa990e98e3b5c6ae1ed06744aa902f6809b6c04e81749902f5c7d21f36bf6 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/aarch64/mindspore-2.6.0-cp311-cp311-macosx_11_0_arm64.whl) | 64e15aa67bc7eb1156cc193c193b33ed2948b3ca6afed03cae5231484aa338f3 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp39-cp39-macosx_10_15_x86_64.whl) | 7121933bb8b29ea01c834366d2baee067f74cf5325cae1db3b1c43379e826020 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp310-cp310-macosx_10_15_x86_64.whl) | c63c06a14aaea2b7ade9b3cfafe3afd6f3d92fd4ccd0c1006928fe3c7e5efc87 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp311-cp311-macosx_10_15_x86_64.whl) | 9ff0a7286d7b648947aae7de982cba4b6971f5706610bf8bb1d345f17a611f83 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.6.0/use/downloads.html) | | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------|------------------| -| [Ascend Training Solution 25.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100472026) | [CANN 8.1.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Installation | Tutorials | Document | API| -| --- | --- | --- | --- | -| [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.6.0/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.6.0/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.6.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.6.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.6.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.6.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.6.0/index.html) | - -## 2.6.0-rc1 - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------|---------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/aarch64/mindspore-2.6.0rc1-cp39-cp39-linux_aarch64.whl) | 9fa471f435e825d286c24ae402de94ad1a70f56356006798faa7520a1ea180a4 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/aarch64/mindspore-2.6.0rc1-cp310-cp310-linux_aarch64.whl) | c79884124dd730081591cad807ebfeded2d8c7cda8003c856b34e5cb9280e2bb | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/aarch64/mindspore-2.6.0rc1-cp311-cp311-linux_aarch64.whl) | a6e84f4f9099fcb62015462e26ad3b4f2e316e309e5d573fb0f5a772cad268e0 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/x86_64/mindspore-2.6.0rc1-cp39-cp39-linux_x86_64.whl) | d69c4441df03585de2409e0e55617b491c36e2971bb2d9490ef100f1732c10da | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/x86_64/mindspore-2.6.0rc1-cp310-cp310-linux_x86_64.whl) | a27105052b2f6d016824e6c36350ee76e5d5c4a29d26553bf0c5d0a41ddcb7b3 | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/x86_64/mindspore-2.6.0rc1-cp311-cp311-linux_x86_64.whl) | af3a229e8265d580bf0fab180621c151e9c7110de89da1c98fb43c72d734c1db | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp39-cp39-win_amd64.whl) | ccb084cde9ab3cee08eaf18b6f247327ab62c77bab327c3201c92484c517ba82 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp310-cp310-win_amd64.whl) | 3d24c841ac95d1e510dcd11d23d1eb96a17ce921207b36fdeb492e6553d54c2f | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp311-cp311-win_amd64.whl) | 9d05412be5aa3021ba06364afff411494790437694674dfc48790337ef01b5c6 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/aarch64/mindspore-2.6.0rc1-cp39-cp39-macosx_11_0_arm64.whl) | 3a28509acd171fffda592d9f9a2e190a45fcb07ab9e9561be9e732e837c66859 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/aarch64/mindspore-2.6.0rc1-cp310-cp310-macosx_11_0_arm64.whl) | cdb2aad69d68747e1a9d3096194f4fc5aed98814c1e25e09178b1e73c0c0d8c9 | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/aarch64/mindspore-2.6.0rc1-cp311-cp311-macosx_11_0_arm64.whl) | cd3069d56d2b6af22a38ad35ba4ba58043408e3dd51f03445f46798a85aaea2a | -| | | MacOS-x64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp39-cp39-macosx_10_15_x86_64.whl) | 341f3b2a21f7c1220a7baab5c4f0e3fa3eccc3dfb1e3bf56c91ce86cced856d7 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp310-cp310-macosx_10_15_x86_64.whl) | e8b5774df5ea337e35c3c3e98445311f08d71f61231a2234eddc1344dbed9c7b | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp311-cp311-macosx_10_15_x86_64.whl) | 91d66953028f7da0275c9e410528755796a3b9ff982c125369bfbefbdde150b2 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.6.0rc1/use/downloads.html#2-6-0-rc1) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindFormers/any/mindformers-1.5.0-py3-none-any.whl) | ea76e820a852e05572728290aafb857cf290e20851e2e299f27ea93b68b65669 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------|------------------| -| [Ascend Training Solution 25.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100472026) | [CANN 8.1.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Installation | Tutorials | Document | API| -| --- | --- | --- | --- | -| [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.6.0rc1/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.6.0rc1/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.6.0rc1/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.6.0rc1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.6.0rc1/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/en/r1.5.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.6.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.6.0rc1/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/en/r1.5.0/mindformers.html) | - -## 2.5.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------|---------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp39-cp39-linux_aarch64.whl) | d484b1386289b4f4c05711da8edf2c438b0000f774e6bb3d1930f78d36a3a96e | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp310-cp310-linux_aarch64.whl) | 1116fd666a059f0480deccd6af04f5e9fe9c019fa88df24a51b0e0fe3c2e55da | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp311-cp311-linux_aarch64.whl) | ae26062f3918996138f7d51f658c552853f52c16a5ad1ad7006054a988234379 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp39-cp39-linux_x86_64.whl) | 3a616acfabd92744d8de370896e744e2584e977de55b56296ea455db138eda4f | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp310-cp310-linux_x86_64.whl) | 4171c24accd21aed5fce21bee3df2e6b570e07a9db9e3518dacb99eccf5a86b8 | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp311-cp311-linux_x86_64.whl) | bb8950840f92899891925b32bbcf4f2b38b011178eafe969ea2bf5894ea8af1c | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp39-cp39-win_amd64.whl) | eb7df41e178e7f05d6170efc5c3e17966969cfa08ac81f02aa0f60f42d9bee16 | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp310-cp310-win_amd64.whl) | 756ab1eda87bbeae2018f0e01536b625e27123a61912b3839988e41ccb5c2dbd | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp311-cp311-win_amd64.whl) | 256632eb40c0b6e61f8f7b1ed213dbbf0ea280a922ce5b47b4dd8fa91f7e929a | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/aarch64/mindspore-2.5.0-cp39-cp39-macosx_11_0_arm64.whl) | 87d460c8e640a72783c5a8b768783660a48e8616de6674bcab43b517e00de01e | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/aarch64/mindspore-2.5.0-cp310-cp310-macosx_11_0_arm64.whl) | 58e8851b81b94a9d03ad46a777e3252b484e54d53c513b34809c426ce6c4a3e0 | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/aarch64/mindspore-2.5.0-cp311-cp311-macosx_11_0_arm64.whl) | 20a5be17c6b718a95508bc5408e4d520a2bb54650286ffb29aacd22428277a60 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp39-cp39-macosx_10_15_x86_64.whl) | c452c870aff1b2365c7ec8eeb2c947f46c96c4f06e0e6247d8afdf3458f5c873 | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp310-cp310-macosx_10_15_x86_64.whl) | b3a68f36429460e83b1a753fc859aeae9bbc2e2dc0b530265d8bdd7589472b5f | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp311-cp311-macosx_10_15_x86_64.whl) | 7d48dba95fe67255eeb4f4c137af4bf7610d66d3834f56051131c838cea98ccd | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.5.0/use/downloads.html#2-5-0) | | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-1.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/GoldenStick/any/mindspore_gs-1.0.0-py3-none-any.whl) | 504bebc0c28015afca15f2db1c4bfdc0595765308cccb19608cc53e137f1dc57 | -| MindSpore
Quantum | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.10.0-cp39-cp39-linux_x86_64.whl) | d603addd7b572727a5449e446806cf7ae7bf33e62b037ca2652b03a5c9e8b945 | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.10.0-cp310-cp310-linux_x86_64.whl) | fa8709bf0378a11f6588a273e0c702350259827f76b3dda9bf3f999fe3c052c5 | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.10.0-cp311-cp311-linux_x86_64.whl) | f11cce2357ee27363ebf9bbcd9aa2a354ae284384af7ceb1ff4dc0936447ab9a | -| | CPU | Linux-aarch64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp39-cp39-linux_aarch64.whl) | 4f3ec187f7fad14dbbd9775a95b62aa59f4776fca41e6500574cedf0200a5036 | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp310-cp310-linux_aarch64.whl) | a35402211661ed6c2bc18ae71dc5650d5a2a4e84ed615a09d8126ec152fce295 | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp311-cp311-linux_aarch64.whl) | a1303ff2d05bbc5f8de93bd6f77d0368f23ca174ec819dc71cb146e8adfdf247 | -| | | Windows-x64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp39-cp39-win_amd64.whl) | 172d4fed4d0cc9abe358a3d132adc5211506b8f3a7b4db1d43c160086d679739 | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp310-cp310-win_amd64.whl) | 1cc8aa8f7208a023c44871c074e7367a8be91d3232e55a911db36f4ea44c01aa | -| | | MacOS-aarch64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp39-cp39-macosx_11_0_arm64.whl) | ae99804e67e2e7f78ae6d5f0b3decf95c514685ebf80191d113e03a4654619ea | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp310-cp310-macosx_11_0_arm64.whl) | 8b61cb09b2134bb976be3c42445542b4439980cf983b9a117d639e9048b296fc | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp311-cp311-macosx_11_0_arm64.whl) | 4d61ad71c2a3e0b8e23115da5ebc45f135a161fb68863074035f071f632173f2 | -| | | MacOS-x64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp39-cp39-macosx_10_15_x86_64.whl) | 29e51b5dbe4933d7d69efa9ed51227bfba793ba2bc2c59e59a9d126aa4f1f02e | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp310-cp310-macosx_10_15_x86_64.whl) | 7f61ac16ff3daea497004ea257c07468207a258ce1cd67a3ad2ca686cb2a5a5d | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp311-cp311-macosx_10_15_x86_64.whl) | 6bc4329e4772be52d944ccab0105ae93847a97e0c8bde1d04b67a81b116ca1b8 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindScience/mindflow/ascend/aarch64/mindflow_ascend-0.3.0-py3-none-any.whl) | a057c39652010488e933b4cb3402074f7a28209db024a555cf12f8155acc5f34 | -| MindScience
(MindSpore
Earth) | Ascend | Linux-aarch64 | Python3 | [mindearth_ascend-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindScience/mindearth/ascend/aarch64/mindearth_ascend-0.3.0-py3-none-any.whl) | 4d1b32a3c562a2c3cb49a5297965f37c2619f5db100baeef0c49a6b09b8135f6 | -| MindScience
(MindSpore
Chemistry) | Ascend | Linux-aarch64 | Python3 | [mindchemistry_ascend-0.2.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindScience/mindchemistry/ascend/aarch64/mindchemistry_ascend-0.2.0-cp39-cp39-linux_aarch64.whl) | fed64bcc6f8b37e315aea4ee246a2ac3517dc691ef85eb6234141d72f09dc616 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------|------------------| -|[Ascend Training Solution 24.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100441839) | [CANN 8.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Installation | Tutorials | Document | API| -| --- | --- | --- | --- | -| [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.5.0/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.5.0/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.5.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.5.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.5.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r1.0.0/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.10/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/en/r0.3/index.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/en/r0.3/index.html)
[MindSpore Chemistry](https://www.mindspore.cn/mindchemistry/docs/en/r0.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.5.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.5.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r1.0.0/mindspore_gs.quantization.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.10/overview.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/en/r0.3/mindflow.cell.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/en/r0.3/mindearth.cell.html)
[MindSpore Chemistry](https://www.mindspore.cn/mindchemistry/docs/en/r0.2/mindchemistry.cell.html) | - -## 2.4.10 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------|---------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/aarch64/mindspore-2.4.10-cp39-cp39-linux_aarch64.whl) | 74daa0703c215f1d01c8ba31c9c7b45d4c41dd7beab09e313cb9ebda24b6ef1a | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/aarch64/mindspore-2.4.10-cp310-cp310-linux_aarch64.whl) | dc744a3a05b97f7ca88b1f683794b3f99b3f74739c6ba597aa2daee8225e8809 | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/aarch64/mindspore-2.4.10-cp311-cp311-linux_aarch64.whl) | c37240d248d95eece2a0db03f856c70e38133b74852bb23389ab97d4e1496baf | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/x86_64/mindspore-2.4.10-cp39-cp39-linux_x86_64.whl) | 41548d653413376389ae5d606aeba25ba0bc3dff546833462249dfe2ea86d65c | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/x86_64/mindspore-2.4.10-cp310-cp310-linux_x86_64.whl) | 4d1082b81ee8db4f37de658b91b590f9bcda5f0ef30669a72dd18e61ef153686 | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/x86_64/mindspore-2.4.10-cp311-cp311-linux_x86_64.whl) | a1a146966f8103fbcbd60ac85697c2d10906fe5d5b4cf0df1cbc9929a3d59762 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp39-cp39-win_amd64.whl) | 0dfaaef3eaf0fdea3eab014ed15d9496845b7884edd69e3c5e8b822ba657ec75 | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp310-cp310-win_amd64.whl) | f09cb53ab60c9fb1403f9263ad4016154fa585ae0ff3e12fc271c7c65de1852b | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp311-cp311-win_amd64.whl) | e2b8f1ae7ff7325ff74746744ba79d28e07a78bc3958491afaba7e98ce640cca | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/aarch64/mindspore-2.4.10-cp39-cp39-macosx_11_0_arm64.whl) | d99736df3b8937cf98e792e0cf0c27a6aecf2093e351b51e5914adbdb4dd30d1 | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/aarch64/mindspore-2.4.10-cp310-cp310-macosx_11_0_arm64.whl) | 228ff7986f37e7c936845c5e8dc582b31016ca77be36c46244665918e94f913e | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/aarch64/mindspore-2.4.10-cp311-cp311-macosx_11_0_arm64.whl) | fe39652f7968508af7018c7d15ebf64dc69c32023fb54d0c440d496a46b6317f | -| | | MacOS-x64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp39-cp39-macosx_10_15_x86_64.whl) | 4d2d920381a692f5b797c1732c3c0420ac5ab26d2be16fa66e68cf8f0a182579 | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp310-cp310-macosx_10_15_x86_64.whl) | 10ece54f68a5d33df04a0f89a7a4ea09b7a5d61d9c39c0fca5003f02e90a6c68 | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp311-cp311-macosx_10_15_x86_64.whl) | 97e2b2cf8e4793aa7b069c1c82fa6a0ac5b67d44833a87a2f6384997c0b82860 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.4.10/use/downloads.html#2-4-10) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.3.2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindFormers/any/mindformers-1.3.2-py3-none-any.whl) | e3c96ac5b08b8f2cd34b89883dd49f4a250555c7b615251543ba76b44f16353e | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------|------------------| -|[Ascend Training Solution 24.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100441839) | [CANN 8.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Installation | Tutorials | Document | API| -| --- | --- | --- | --- | -| [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.4.10/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.4.10/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.4.10/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.4.10/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.4.10/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/en/r1.3.2/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.4.10/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.4.10/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/en/r1.3.2/mindformers.html) | - -## 2.4.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp39-cp39-linux_aarch64.whl) | b2d09ebc0f9e4e17f69f87eaddbb721281f94c21a386e38985af9fd0979c5f54 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp310-cp310-linux_aarch64.whl) | c9719b0935597d4e3f11fe9340c84b5484757bce212cd9609b191ad2e9bb465e | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp311-cp311-linux_aarch64.whl) | efdb70b743c9cd66e002134b357ccd3c6775252fbc340877a658dd9a896335f2 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/x86_64/mindspore-2.4.1-cp39-cp39-linux_x86_64.whl) | 2953f739b2dc7105ff4d6736fbec8d4203e4b72a8f19573418ec95edbdc74f26 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/x86_64/mindspore-2.4.1-cp310-cp310-linux_x86_64.whl) | ac4293ad8cffa48b15977f41f1575c158430eccb9f2387aa891153432ef1d0c6 | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/x86_64/mindspore-2.4.1-cp311-cp311-linux_x86_64.whl) | aac47cf56da6bad2c4b9654889a6b065fc80108df32427a6d76a1e56c9a8d685 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/aarch64/mindspore-2.4.1-cp39-cp39-macosx_11_0_arm64.whl) | 187d27e9dcf539546db5cd96ae68bceb8fe152c97106e24c44929ffdd85b2c18 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/aarch64/mindspore-2.4.1-cp310-cp310-macosx_11_0_arm64.whl) | a0627f5413f2c36cd97ab1562256f64ba4f04747ae6f71e386cc3712748e251a | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/aarch64/mindspore-2.4.1-cp311-cp311-macosx_11_0_arm64.whl) | c74343a50b68d4d461e930f4fef0b74c4cff1e3382087b7d6597d458ed6d0f65 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/x86_64/mindspore-2.4.1-cp39-cp39-macosx_10_15_x86_64.whl) | 8b19d60f02134e78918bdbba7327e8faee3f7531e020286b7a994bb40758cb01 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/x86_64/mindspore-2.4.1-cp310-cp310-macosx_10_15_x86_64.whl) | bf039bf8039b7e013d7db367958024ef55cd983e73df7a66a01f5269b8e99e17 | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/x86_64/mindspore-2.4.1-cp311-cp311-macosx_10_15_x86_64.whl) | e4913cda2c61dd22b943a75bf791aff4cd2370eff5f79ed405443ef30fcaa184 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.4.1/use/downloads.html#2-4-1) | | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------|------------------| -|[Ascend Training Solution 24.0.RC3](https://support.huawei.com/enterprise/zh/doc/EDOC1100433602) | [CANN 8.0.RC3.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.4.1/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.4.1/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.4.1/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.4.1/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.4.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.4.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.4.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.4.1/index.html) | - -## 2.4.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|------------------------------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp39-cp39-linux_aarch64.whl) | 0d0ed8235f9067fad4a231b449bec834b17e87c5f360724c4f2991239836bf3e | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp310-cp310-linux_aarch64.whl) | 005618e6753bd485054175099a91d6b44dd8be12f415b499e837c1fff6d8f038 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp311-cp311-linux_aarch64.whl) | 0b5c61e505c1f36556baf69b61c6ae7e61db96c6d3e289306254eed24d0fc0c1 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/x86_64/mindspore-2.4.0-cp39-cp39-linux_x86_64.whl) | 0b5c61e505c1f36556baf69b61c6ae7e61db96c6d3e289306254eed24d0fc0c1 | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/x86_64/mindspore-2.4.0-cp310-cp310-linux_x86_64.whl) | 5690c96b5641e184a849e96856dac9417c7dfa8b886fe245386dce84ac82b2c1 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/x86_64/mindspore-2.4.0-cp311-cp311-linux_x86_64.whl) | c69a343afb512e56bfa588b37269fbf1eeed9ec7c1ba107096a6ffeadc34fe6c | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp39-cp39-win_amd64.whl) | be53836ba52fd4f6edc2721bbe587f3d19d0a5d3debd1f13c18705801d2f9452 | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp310-cp310-win_amd64.whl) | 69f9dd86f3f66f3daeda0f1b886441098edb7dab3008625bf904ce829b2ee632 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp311-cp311-win_amd64.whl) | 8587a0495b8a64ed8bb3122d3c3c308044bea402001276ec74686b42c4cc1613 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/aarch64/mindspore-2.4.0-cp39-cp39-macosx_11_0_arm64.whl) | 4c50eaf3eee37b5e84c399bde768cb43dacd5dd9a8214a7d9c0ca413633136aa | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/aarch64/mindspore-2.4.0-cp310-cp310-macosx_11_0_arm64.whl) | 7e303f169e2a4db49ba07d4f55b273567a4c2a52c99f6ac6abc21d5063f3868f | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/aarch64/mindspore-2.4.0-cp311-cp311-macosx_11_0_arm64.whl) | 0916ef25c69f73405fae5b7a1c60761ff71c1a7887da1d03054d63d7886b1eca | -| | | MacOS-x64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp39-cp39-macosx_10_15_x86_64.whl) | c55ee021d7a46ca943d354eafb127987edd983413c4c6a891e29305ad84a4023 | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp310-cp310-macosx_10_15_x86_64.whl) | d218c4edc0aace63d30dad6a664ac518590f979c38a7ce76b7dcf13f956df594 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp311-cp311-macosx_10_15_x86_64.whl) | bca6bcb38b23838feb2baae59e4e140b6641d5af422d87a744b515848a7f5205 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.4.0/use/downloads.html#2-4-0) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindFormers/any/mindformers-1.3.0-py3-none-any.whl) | 6d9cd227bf788cad5649e2a8fa862dfd66ee4ffe3f6f20add0e818c2bc15cd34 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/GoldenStick/any/mindspore_gs-0.6.0-py3-none-any.whl) | 14961462194fb03117bb758af24bcf50bae2c0b8db982cd0cded26cd85e73fd0 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------|------------------| -|[Ascend Training Solution 24.0.RC3](https://support.huawei.com/enterprise/zh/doc/EDOC1100433602) | [CANN 8.0.RC3.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.4.0/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.4.0/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.4.0/beginner/quick_start.html)
[Practical Cases](https://www.mindspore.cn/tutorials/en/r2.4.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.4.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.4.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.6.0/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/en/r1.3.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.4.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.4.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.6.0/mindspore_gs.quantization.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/en/r1.3.0/mindformers.html) | - -## 2.3.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|------------------------------|--------|---------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.8 | [mindspore-2.3.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp38-cp38-linux_aarch64.whl) | 976854b9e0c2535541cacb6e1b0b887595fd7aaa03572670b148d1846b08d339 | -| | | | Python3.9 | [mindspore-2.3.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp39-cp39-linux_aarch64.whl) | 5fe6a476a7a718c413ac66db71ba93bfe2d6870e13ef90f10652a27170ed338e | -| | | | Python3.10 | [mindspore-2.3.1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp310-cp310-linux_aarch64.whl) | d9be757fa42b30e546920b5dffe76527f3f94e9aac88b262174ecd2a0f32c2e0 | -| | Ascend | Linux-x86_64 | Python3.8 | [mindspore-2.3.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp38-cp38-linux_x86_64.whl) | f7d19669517be1624d3475a6b22b54f2bc730b998eefd6020a9c9d6ef9d09dee | -| | | | Python3.9 | [mindspore-2.3.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp39-cp39-linux_x86_64.whl) | 291ce96deb150445dfb6648998276fa0389264c822abddce58bd93ef65fdd993 | -| | | | Python3.10 | [mindspore-2.3.1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp310-cp310-linux_x86_64.whl) | 568fc4a52e60f3087e9e0399fa9eed9ff0338bd08ecbcd9c101f2db39ee5fb01 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.3.1/use/downloads.html#2-3-1) | | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/GoldenStick/any/mindspore_gs-0.5.0-py3-none-any.whl) | eb1c37e35468fef1e4ff1237ab88b1d718acd47f65117ec532bdb04da9d5372b | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------|------------------| -| [Ascend Training Solution 24.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100397169) | [CANN 8.0.RC2.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.3.1/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.3.1/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.3.1/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.3.1/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.3.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.3.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.3.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.5.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.3.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.3.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.5.0/mindspore_gs.quantization.html) | - -## 2.3.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------|--------|---------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.8 | [mindspore-2.3.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/aarch64/mindspore-2.3.0-cp38-cp38-linux_aarch64.whl) | 7d1c1ff8bd66a24f677601386086e3077b211e9cf01e4e1788a1cde0f6efcb19 | -| | | | Python3.9 | [mindspore-2.3.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/aarch64/mindspore-2.3.0-cp39-cp39-linux_aarch64.whl) | fcd913d6f508afaa6b5fa0a8d3b76a17c28c93c63ad42f38cff266ca568cdb55 | -| | | | Python3.10 | [mindspore-2.3.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/aarch64/mindspore-2.3.0-cp310-cp310-linux_aarch64.whl) | df172210b02da99afef26ff11d2574902f5c84201d8db58c80c0ecca3bc79bd1 | -| | Ascend | Linux-x86_64 | Python3.8 | [mindspore-2.3.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/x86_64/mindspore-2.3.0-cp38-cp38-linux_x86_64.whl) | 58e21448de0a50f6e76bfc5d0a59873760f982b320d1d01d54430e693890bddd | -| | | | Python3.9 | [mindspore-2.3.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/x86_64/mindspore-2.3.0-cp39-cp39-linux_x86_64.whl) | 71bee84343e0ae17658584046c7727fb8c40f8e335af8e48140d208ed27be101 | -| | | | Python3.10 | [mindspore-2.3.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/x86_64/mindspore-2.3.0-cp310-cp310-linux_x86_64.whl) | 6bdb8b0d9b42975f5b31656d4983bf3ea7723f835a351b399c145a8f0d841b57 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.3.0/use/downloads.html#2-3-0) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindInsight/any/mindinsight-2.3.0-py3-none-any.whl) | 1f1ae7290a0f861e72875ec5080333d3b70ba7864fc51dbeffa62a6a3cf27538 | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindFormers/any/mindformers-1.2.0-py3-none-any.whl) | 03e6094248324c1e5d9616783f8a6fa6e7e319c83f246dcdd402889663860e02 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|--------------|------------------| -| [Ascend Training Solution 24.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100397169) | [CANN 8.0.RC2.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.3.0/RELEASE.html) |[Installation Guide](https://gitee.com/mindspore/docs/tree/r2.3.0/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.3.0/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.3.0/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.3.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.3.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.3.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.3/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.3.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.3.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.3/mindinsight.debugger.html) | - -## 2.3.0-rc2 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------|--------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore-2.3.0rc2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/aarch64/mindspore-2.3.0rc2-cp37-cp37m-linux_aarch64.whl) | e27677983fedf446e31d84bf790cf91111e0fe6bf5175338035f20bdf68d03a1 | -| | | | Python3.8 | [mindspore-2.3.0rc2-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/aarch64/mindspore-2.3.0rc2-cp38-cp38-linux_aarch64.whl) | 2232908bf89dfeda60d2929459c630d30b651628d8ac6ab6f57bcca61a0dfdef | -| | | | Python3.9 | [mindspore-2.3.0rc2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/aarch64/mindspore-2.3.0rc2-cp39-cp39-linux_aarch64.whl) | e8b3083003154ebab69af577bd9ea5b0e2fca7c31f5bd0dad21816aa5f4625db | -| | Ascend | Linux-x86_64 | Python3.7 | [mindspore-2.3.0rc2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/x86_64/mindspore-2.3.0rc2-cp37-cp37m-linux_x86_64.whl) | 02764018f2762846cd69b92c7cc6802fdbdd712e48968aa2311d72ce67de7793 | -| | | | Python3.8 | [mindspore-2.3.0rc2-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/x86_64/mindspore-2.3.0rc2-cp38-cp38-linux_x86_64.whl) | b1b2c6e53a007931cfac8f62fe0bc0cc92938f4885fbcdc38cd108f34691c84b | -| | | | Python3.9 | [mindspore-2.3.0rc2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/x86_64/mindspore-2.3.0rc2-cp39-cp39-linux_x86_64.whl) | 79f608abbd72042ad68a3727570c14d33bf4fc6fda566c7565c199bce35a1765 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.3.0rc2/use/downloads.html#2-3-0-rc2) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.3.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindInsight/any/mindinsight-2.3.0rc2-py3-none-any.whl) | f927eece46f7f6e9dc7be78759cdbf25a98c8cd0aa01ef42a2e28445959ab96d | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindFormers/any/mindformers-1.1.0-py3-none-any.whl) | b2dedb2bf4c15a91f89b92c4c60eba9cf7f162a56781e31783d66832cf00e801 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 24.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100373131) | [CANN 8.0.RC1.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.3.0rc2/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.3.0rc2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.3.0rc2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.3.0rc2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.3.0rc2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.3.0rc2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.3.0rc2/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.3.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.3.0rc2/index.html) | - -## 2.3.0-rc1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|------------------------------|--------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore-2.3.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/aarch64/mindspore-2.3.0rc1-cp37-cp37m-linux_aarch64.whl) | dbd0db0a06092658f347b95a3c072ca95f0a5f88fb61b1bed227784308c4e563 | -| | | | Python3.8 | [mindspore-2.3.0rc1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/aarch64/mindspore-2.3.0rc1-cp38-cp38-linux_aarch64.whl) | dd20986b759884a684252aa3f0169bfaa1ab9d68ac1b28c958df4c0348b05b17 | -| | | | Python3.9 | [mindspore-2.3.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/aarch64/mindspore-2.3.0rc1-cp39-cp39-linux_aarch64.whl) | 8511cf89e9471c3934aa93359805edf86f69f32e27ac1c83836b4ec932c46b54 | -| | Ascend | Linux-x86_64 | Python3.7 | [mindspore-2.3.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/x86_64/mindspore-2.3.0rc1-cp37-cp37m-linux_x86_64.whl) | 50d5124d8e9bbb7464568e73f2ebce96890fd3cf235f90100f692cc340d44e08 | -| | | | Python3.8 | [mindspore-2.3.0rc1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/x86_64/mindspore-2.3.0rc1-cp38-cp38-linux_x86_64.whl) | e804ffaf254d665a2f8266d06bb4d56ddde92a754b2927208677094c1507c07b | -| | | | Python3.9 | [mindspore-2.3.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/x86_64/mindspore-2.3.0rc1-cp39-cp39-linux_x86_64.whl) | 687a3697ad7893d1d512cdfbb91ca28e9a11e91f76cdf09717653fcd78840752 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.3.0rc1/use/downloads.html#2-3-0-rc1) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.3.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindInsight/any/mindinsight-2.3.0rc1-py3-none-any.whl) | dfa70a1bb42c29b846c5f1a4de06ee42620f812548b5e1dc8c1048651f4f50b7 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.4.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/GoldenStick/any/mindspore_gs-0.4.0-py3-none-any.whl) | 184e03720e20fc1209377941da6d098c87fc251a02bf63b5bc986cf89add21df | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindFormers/any/mindformers-1.1.0rc1-py3-none-any.whl) | c6398ee766d305694ec63e7fe3ed5dda774d40ad786e9799951797665697a03d | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 24.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100373131) | [CANN 8.0.RC1.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.3.0rc1/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.3.q1/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.3.0rc1/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.3.0rc1/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.3.0rc1/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.3.0rc1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.3.0rc1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.3/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.4/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.3.0rc1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.3/mindinsight.debugger.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.4/mindspore_gs.html) | - -## 2.2.14 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------|---------------------------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/aarch64/mindspore-2.2.14-cp37-cp37m-linux_aarch64.whl) | 5d724c69cf2e336212d54d5cd16673cad026a4fbc8be3beaa0caf4711ed21605 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/aarch64/mindspore-2.2.14-cp38-cp38-linux_aarch64.whl) | 01f67abb181b3bdbee0334252349a4f6e30d92ae52701a648af45eb99bb0daac | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/aarch64/mindspore-2.2.14-cp39-cp39-linux_aarch64.whl) | 2406f23f5b79676997490f0f05ecd42fb5606b8ce57a631a519dfb7e1524e8f4 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp37-cp37m-linux_x86_64.whl) | 3f197b6021ba803989aea8d74c4550be696677829fc75c0d5d0a90c753e8abb5 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp38-cp38-linux_x86_64.whl) | eac42952a2177f3da343b4945631799d81a58e4fbc250fcf1060137cef53121a | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp39-cp39-linux_x86_64.whl) | 66d1864ccb722c82c1fa176b6277d33301b700b326e4932a7fa30209ccce57c1 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp37-cp37m-win_amd64.whl) | 5caae75dcf6edd2896fc0a089cc98f5c0ce39c72015af71f074ac66135d51fd3 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp38-cp38-win_amd64.whl) | cab74a2bc831f93585b06625a153b20a5a00f5144af18d2180255fcc2a878d21 | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp39-cp39-win_amd64.whl) | c8fa2649d6a1e775e33e77290ecb30608f1c88f4feaa23d5b495df507289b337 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.14-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/aarch64/mindspore-2.2.14-cp38-cp38-macosx_11_0_arm64.whl) | fbfde384f8410d3ab816fa48f6fc63cb5419d8318c50aba4057a25a89d852519 | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/aarch64/mindspore-2.2.14-cp39-cp39-macosx_11_0_arm64.whl) | 665f86275cb174927886b7290d448c2c2ca6667e8d813c2872df5c2d9322fd26 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp37-cp37m-macosx_10_15_x86_64.whl) | 14822f4a5f43a37c464295c41ab93c1c50af3016cda40406e555dc500e639ad1 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp38-cp38-macosx_10_15_x86_64.whl) | eeececc0f1f73a8ca9fc824997f0cfd7e0048289a3469bf6e2374199be551033 | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp39-cp39-macosx_10_15_x86_64.whl) | 765da246aeadaf649074642394062201522c4cdae59559d185cceff4eeb71df9 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.2/use/downloads.html#2-2-14) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.0.2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindFormers/any/mindformers-1.0.2-py3-none-any.whl) | 064bfbe1184fe8000fcd8ce01f3a1a3e47537fe79578bb21f4a1b4acf8f65fd8 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.2/RELEASE.html#mindspore-2-2-14-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.2/index.html) | - -## 2.2.13 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|---------------------------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/aarch64/mindspore-2.2.13-cp37-cp37m-linux_aarch64.whl) | cace2c4d5ad1a69a57f5e6b9c9c869d0a837ccee73b1ab7b97fe51ce919836a5 | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/aarch64/mindspore-2.2.13-cp38-cp38-linux_aarch64.whl) | 31ecd30736a246919e247594c3de3f0f0b82e1a492d7624a4f02c37a298d469c | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/aarch64/mindspore-2.2.13-cp39-cp39-linux_aarch64.whl) | 9488065c8e398fdd5c99338804cbcd90de4eff497d89d1bd3cf031617c414354 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/x86_64/mindspore-2.2.13-cp37-cp37m-linux_x86_64.whl) | a90aff0e9ccd795a32fd09c447825ea31b46a35dfd7b24c7997a094e4b9ef20f | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/x86_64/mindspore-2.2.13-cp38-cp38-linux_x86_64.whl) | 698112c1c5fa3a00ae2f1abdca355aba46f723b5fe2ce7570cc1d861eb01f6f7 | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/x86_64/mindspore-2.2.13-cp39-cp39-linux_x86_64.whl) | 84094e7e7621616845ea9759657cc9b534a095ffbbc0df4744bc0a5c460d2b01 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp37-cp37m-win_amd64.whl) | a558fc6fbdc0ae4a46b8afa0d49034f58d0328afc802467cb5622142c82d46aa | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp38-cp38-win_amd64.whl) | 5cc098b66caa3fbd01704f5dd4b7e26293a2084f3a4f84584eced98eff8ef850 | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp39-cp39-win_amd64.whl) | 9a4acbc2d2f798ea3da627bd19ff362caa2fa0126dd2bcaf1bd48305aa25c0b7 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.13-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/aarch64/mindspore-2.2.13-cp38-cp38-macosx_11_0_arm64.whl) | f586daf1cb2efd78e04877d86a1b4cb73bc976d9ebd238195bf58242c4714d7d | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/aarch64/mindspore-2.2.13-cp39-cp39-macosx_11_0_arm64.whl) | 47dd0a845e8729707dae909076cdde3a429cc149a72ece8867e98064c7112964 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp37-cp37m-macosx_10_15_x86_64.whl) | b3d445b4869a19b554628abcd91b46fb6b644faecee98ee58d35b38def2be155 | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp38-cp38-macosx_10_15_x86_64.whl) | 8f4a37a5468c79bb4066c635492da4abaeaf5dc1fc8fcf1797abf43bd13aec69 | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp39-cp39-macosx_10_15_x86_64.whl) | 696af147e974d74da63f8a61273df6c7ae7a3f887cfc8eb827e88fa24a0afb35 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.2/use/downloads.html#2-2-13) | | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.2/RELEASE.html#mindspore-2-2-13-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.2/index.html) | - -## 2.2.12 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|---------------------------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/aarch64/mindspore-2.2.12-cp37-cp37m-linux_aarch64.whl) | ef67adb395d6d21800f47161d9caf251d077d115a7ac583da6b879cf519cbeaa | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/aarch64/mindspore-2.2.12-cp38-cp38-linux_aarch64.whl) | 4ebdf87f70eaceee6456400657dd0872a1d909beb9ef6421cbe28e7ea7974ff5 | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/aarch64/mindspore-2.2.12-cp39-cp39-linux_aarch64.whl) | 4f0099dee8ce60640e2df64c0ce0903ccdb51274dde6d62a21f3c3d146555324 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/x86_64/mindspore-2.2.12-cp37-cp37m-linux_x86_64.whl) | e958ccfd0737306a82b457f13e25e4039b20c475c98066ddc27eb644535c1ba5 | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/x86_64/mindspore-2.2.12-cp38-cp38-linux_x86_64.whl) | 817874020630876cc199af71ffca19dd7eb74da55e9735ee137fe9eda11df881 | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/x86_64/mindspore-2.2.12-cp39-cp39-linux_x86_64.whl) | 3235298b849b89e2c1d648f7f02561f510f71de16c7a0b59d7bd688dd15182e6 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp37-cp37m-win_amd64.whl) | ab57c82deacf308c0332349844752ab11c9ca6f1c3f3608ea75b60047771fcfb | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp38-cp38-win_amd64.whl) | e5d851838274533208ee4ea1e4bfed92ef868c7d214aee5711be6764111d2930 | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp39-cp39-win_amd64.whl) | 479ed220c79510a1ff7b2960de11b3c49574c9b77b1faccfc5caa741cb20d026 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.12-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/aarch64/mindspore-2.2.12-cp38-cp38-macosx_11_0_arm64.whl) | d56282093871657c89419d20ebbcaaad2036ce186e8dc8693ea91919961f75bc | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/aarch64/mindspore-2.2.12-cp39-cp39-macosx_11_0_arm64.whl) | 54fa47cff5059a04f8ff533bf62baeb6009de0a44a41ccf42d2f3fad692ba713 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp37-cp37m-macosx_10_15_x86_64.whl) | 4e6a25e62cb98197fa9807107a4c1789b1f178e65b5681c1da2001c9281297c2 | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp38-cp38-macosx_10_15_x86_64.whl) | c1b8588fea82ff884d9657b0e386043efc21a912eaef8ad0b97a589c33e35e1e | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp39-cp39-macosx_10_15_x86_64.whl) | 7b72dcc834f38e2459c0b0f1b89fccec9673569f46b5e01bc74495b6088e5557 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.2/use/downloads.html#2-2-12) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.0.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindFormers/any/mindformers-1.0.1-py3-none-any.whl) | 20c88c0c2e4d7dd82ee87e11e18640eaf177013a2c1b0d41be71bcbff7203741 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindflow/ascend/aarch64/mindflow_ascend-0.2.0-py3-none-any.whl) | 64f1d668a4006668a955a17b28a3f65474387fa56b8d58d989c11964fbf1302d | -| | GPU CUDA 10.1
GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindflow/gpu/x86_64/cuda-11.1/mindflow_gpu-0.2.0-py3-none-any.whl) | 2462d3af09183056351ed0d9daceda93e21831804998b1b2b8bac35d8e42cc00 | -| MindScience
(MindSpore
Earth) | Ascend | Linux-aarch64 | Python3 | [mindearth_ascend-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindearth/ascend/aarch64/mindearth_ascend-0.2.0-py3-none-any.whl) | 64efd2ee34b3c78f27d2b7a01de8ab226e8a4d6d1cb8356345bafad7d5bc90c9 | -| | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindearth_gpu-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindearth/gpu/x86_64/cuda-11.1/mindearth_gpu-0.2.0-py3-none-any.whl) | aa94dd1dbb57857bdf06e9b604bcb25721f0f81124ffd6b17c9a6fa4d73fc260 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -|[Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.2/RELEASE.html#mindspore-2-2-12-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.2/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/en/r0.2/index.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/en/r0.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.3.0rc1/index.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/en/r0.2/mindflow.cell.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/en/r0.2/mindearth.cell.html) | - -## 2.2.11 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------|---------------------------------------------------------------------|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/aarch64/mindspore-2.2.11-cp37-cp37m-linux_aarch64.whl) | f659a1b29531d4949f9479e2a3a7e4c4ef8cd89c3fa9532123c14248bac75ac3 | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/aarch64/mindspore-2.2.11-cp38-cp38-linux_aarch64.whl) | b6696b8273cb950b2d6ed36bda40f78f92abdb473f795fa6f49a4ab44edfb36f | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/aarch64/mindspore-2.2.11-cp39-cp39-linux_aarch64.whl) | c29f3abbf46b23360082913f8d0ba3755c15a4de6a13d16458ea3321be739fd7 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/x86_64/mindspore-2.2.11-cp37-cp37m-linux_x86_64.whl) | 3127d7180a56cce965a23c01a57e1ff486b4d76646cc282a07b7c9a60b775ce3 | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/x86_64/mindspore-2.2.11-cp38-cp38-linux_x86_64.whl) | d54c925e0a2003aa83e94baa8a376e43e5eae9ac674f6e0249efdbda8c4920ce | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/x86_64/mindspore-2.2.11-cp39-cp39-linux_x86_64.whl) | f2824bc0c14b3a2a2f5fbcaa2d3869e471857e2bf8813a2f2e6dc7b18e5a83d2 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp37-cp37m-win_amd64.whl) | 671cb5845412bd78c3d9e3953820f713f5983cc59a67c2ac332c7afa5b36b953 | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp38-cp38-win_amd64.whl) | d6d9dd0dbffa00a108b20d66b499f77e239364cc85aedd0e10e66f8cbc7f9fbb | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp39-cp39-win_amd64.whl) | 749a6cb8dfb2444c48c89e0232db7ed1dfe054365971c7498fdb93abd239c3b5 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.11-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/aarch64/mindspore-2.2.11-cp38-cp38-macosx_11_0_arm64.whl) | cf73f88dc40f5b333031f9a6d2fdb71de5f8a00a945e170ead4782902c2ac4a5 | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/aarch64/mindspore-2.2.11-cp39-cp39-macosx_11_0_arm64.whl) | 84d5a921ad5f53c7f75bae510b2891a7d9624d8a69be2a4d620baa7db6f53581 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp37-cp37m-macosx_10_15_x86_64.whl) | c1716836e82ca2de5785dd1d4d6bbc7fdc5f878fb0bb34929a2ca0ab7eeacadf | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp38-cp38-macosx_10_15_x86_64.whl) | 1f3ecbdf076b6ee488eeb42fedb403c9a9a7d75375d22e2ade1a5d767b6bf444 | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp39-cp39-macosx_10_15_x86_64.whl) | b3f467b46b378488e2e36f51a9fa524a9b6564d71db41bd214b67a86e914cab8 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.2/use/downloads.html#2-2-11) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindFormers/any/mindformers-1.0.0-py3-none-any.whl) | 851a1d4e8f2d5f6b7e4b3c4d195674d12aabf025b51dc3bfabe2bb5fe56a95a5 | -| MindSpore
Quantum | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindquantum-0.9.11-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.11-cp37-cp37m-linux_x86_64.whl) | 9908e43308bf2fcb4164ab5462562ec065ac6391f1d468af54a279e1a9f506b6 | -| | | | Python3.8 | [mindquantum-0.9.11-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.11-cp38-cp38-linux_x86_64.whl) | a936570c5fdc6b1472d45148aceb979335387d57f6456246a13acb1c5758d995 | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.11-cp39-cp39-linux_x86_64.whl) | a4dbadf6442e53b32b39f16cbc4d1f968e031872276393c692557c0e37f1777d | -| | CPU | Windows-x64 | Python3.7 | [mindquantum-0.9.11-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp37-cp37m-win_amd64.whl) | 2b502154ae78c79da0d8bb65f7b3bf0b27303ddc9e57d826a20c8af0726d22f6 | -| | | | Python3.8 | [mindquantum-0.9.11-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp38-cp38-win_amd64.whl) | c5bed187de40800ffbde1bf9e69c41b4bb2a50ceb428b26a7deaf520ed4d96fa | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp39-cp39-win_amd64.whl) | d9d3dabce342ef69b7f348052e770adf2e3e0bf820268fe4b80efa6f6ba97fb7 | -| | | MacOS-aarch64 | Python3.8 | [mindquantum-0.9.11-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/aarch64/mindquantum-0.9.11-cp38-cp38-macosx_11_0_arm64.whl) | 139b94bd376950fa3c0e2a2c21b23c8a58dcb4b6a4dcf824da55a337ea653e34 | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/aarch64/mindquantum-0.9.11-cp39-cp39-macosx_11_0_arm64.whl) | 1ff433337c1857442747e5c1fcf61f0fd6e67c5604b1ca3f3d41a9eef6ca83dd | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.9.11-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp37-cp37m-macosx_10_15_x86_64.whl) | 81d251ef1af9e8531e25d9b95ce175e31e041b6ec2d28e3034cde36dc284ccdc | -| | | | Python3.8 | [mindquantum-0.9.11-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp38-cp38-macosx_10_15_x86_64.whl) | 25a16c32be14199105512fd8a711b8c6510ecdc03fec4b24cc3e45ff34d5198c | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp39-cp39-macosx_10_15_x86_64.whl) | 69581bde442b18fd5f955b950945a2e141157d8edab558ae5de76939f8377b69 | -| MindSpore
Audio | | any | Python3 | [mindaudio-0.1.2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindsporeAudio/any/mindaudio-0.1.2-py3-none-any.whl) | caed9cd595852cd7b2928ff33e41fbb0b8047357c1b0b60b8958542542949919 | -| MindSpore
CV | | any | Python3 | [mindcv-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindsporeCV/any/mindcv-0.3.0-py3-none-any.whl) | 648d3e3ad1b07e195ad725d0b1e356b41406495a7896f4fc9676dd05f49a265d | -| MindSpore
OCR | | any | Python3 | [mindocr-0.3.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindOCR/any/mindocr-0.3.1-py3-none-any.whl) | 50d37f0970300fc9fbbd4009250cf44362fecd8c8c548a55b6e0976222c0a577 | -| MindSpore
Yolo | | any | Python3 | [mindyolo-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindYolo/any/mindyolo-0.3.0-py3-none-any.whl) | aca8bef2eed37039679ecea61c04379b68749c73bb35093cbe691c59db48b310 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.2/RELEASE.html#mindspore-2-2-11-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.2/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.9/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.2/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.9/overview.html) | - -## 2.2.10 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|----------------------|----------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/aarch64/mindspore-2.2.10-cp37-cp37m-linux_aarch64.whl) | 57f786d70d5c404ff068b8662a85bb8450626d9cf387abd85acfb0648b4c2978 | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/aarch64/mindspore-2.2.10-cp38-cp38-linux_aarch64.whl) | a04b442cb4f0518b708b7f59987fc1fac89ef1cf289654ab375d1416208ac6d4 | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/aarch64/mindspore-2.2.10-cp39-cp39-linux_aarch64.whl) | 016e3b8285dbb8b710d5f39a190dffb77bcfe1f0e64553ed36cbee429ac975f0 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/x86_64/mindspore-2.2.10-cp37-cp37m-linux_x86_64.whl) | e7bae41a1d05342af1afb4e0b3d91ad75f37c55c8c2b1e73c6dc2ebc519474cf | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/x86_64/mindspore-2.2.10-cp38-cp38-linux_x86_64.whl) | 7aa47ecbd96e7ba67d634b749b473a690f3138b35069ce5ec33580de84e293ed | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/x86_64/mindspore-2.2.10-cp39-cp39-linux_x86_64.whl) | 8978c22d868f97453f4e11b646b46dd287ffa2465872f67f6fcadc6e439090d8 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp37-cp37m-win_amd64.whl) | cfb18f5bff5feece6b3eec533ce7171bba2115912021db218e49fb904b0d29a1 | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp38-cp38-win_amd64.whl) | 0b800b90d57eb8513e3799d2b0742a9c2d8ad12a5cebf7ec7eed356497b4ceef | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp39-cp39-win_amd64.whl) | 791db7c7c97acf2ace4bb0d0326515070918dfe7d7c34d476b180d44edf1c21e | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.10-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/aarch64/mindspore-2.2.10-cp38-cp38-macosx_11_0_arm64.whl) | b170720069907e9b9775c24041e35dc4d0ba5a8d80f32bf6cef98ff9a031966c | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/aarch64/mindspore-2.2.10-cp39-cp39-macosx_11_0_arm64.whl) | 62fd584c5eb9d4cf9e2951d6b7ce255f5ebc54394d676ef1b8b64194d25c317f | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp37-cp37m-macosx_10_15_x86_64.whl) | 1ee4442ede9b483df2a05449e4af783fc8764eea5e3741d85e02daba3c192c35 | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp38-cp38-macosx_10_15_x86_64.whl) | 09bbb49dd37a5ea734ae376cae57f5bfa79beb4c1b0af9cfe71cea29da786c73 | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp39-cp39-macosx_10_15_x86_64.whl) | 729c80d36ef37098284d0cc0c56cfac157aa5da5b9db6fd5b3d6496112f6b657 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.2/use/downloads.html#2-2-10) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.2.10-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindInsight/any/mindinsight-2.2.10-py3-none-any.whl) | a744038c32601663c2c79335852f794d2d14e4deb2f3c1f87cd2fa6dc4ce3df8 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en#mindspore-2-2-10-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.2/mindinsight.debugger.html) | - -## 2.2.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|--------------------------------------|----------------------------------------------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/aarch64/mindspore-2.2.1-cp37-cp37m-linux_aarch64.whl) | 27c603de93942fd6bfe6dbff941edb2b863513d3c99a92dd2048c139c8fde336 | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/aarch64/mindspore-2.2.1-cp38-cp38-linux_aarch64.whl) | c3fff95468eb5eb9c80a73534791b83e4cf2a220c9f0bc65f910c1c1eb1eaa65 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/aarch64/mindspore-2.2.1-cp39-cp39-linux_aarch64.whl) | 7811d756f75b37bb8f48bfa5e00098f69b34842bfad495de2435cb56ff27fc04 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/x86_64/mindspore-2.2.1-cp37-cp37m-linux_x86_64.whl) | a0ff8db26424807df892483142aafb801a5a8f54b7c2dc4be6051d36372d570c | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/x86_64/mindspore-2.2.1-cp38-cp38-linux_x86_64.whl) | 90e302d20e535abace6096da18c5da264f4140c3786ec6febecf6001266837e2 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/x86_64/mindspore-2.2.1-cp39-cp39-linux_x86_64.whl) | ffdae413a8576053f62c3e1e346cb0af62e5f55ef0c12cdaa248703759c37463 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp37-cp37m-win_amd64.whl) | 41262d82563a1431ad3beea29341b337825faf3ce9a4086445e4afd37058af51 | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp38-cp38-win_amd64.whl) | 1d3fc9e15efd792b72059dbf5305026656cf00f1c9492b84e341fb82d585d112 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp39-cp39-win_amd64.whl) | 09608a4c3670b801ff3cf6cf932467310188e84eb72adc84471d2edeac1aafeb | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/aarch64/mindspore-2.2.1-cp38-cp38-macosx_11_0_arm64.whl) | 18a2629e9b8edbc402c240a66bc0c285edcc5c51ed3390936220bf1d68ad988c | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/aarch64/mindspore-2.2.1-cp39-cp39-macosx_11_0_arm64.whl) | 892bf466a51042e5c01ee7f5f744a312325af783f8c2993255370efa13e1cd24 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 020cbac4a8130bacc6cad4514401e7330e29be3905ff91b83314c96d4b59cffb | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp38-cp38-macosx_10_15_x86_64.whl) | c28e5649e34727050068e700d9f21ad177bfb63110cbbcb0a6f739a3d00cc631 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp39-cp39-macosx_10_15_x86_64.whl) | 1067c14842a443d17f9297af8480522d8102fdb22d7601d7a402581771c44df8 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.2/use/downloads.html#2-2-1) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.2.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindInsight/any/mindinsight-2.2.1-py3-none-any.whl) | dca7d57c66419cbfb436896bc156a1618e2bb55007f3dece1869ddb687e5928d | -| MindSpore
Transformers | | any | Python3 | [mindformers-0.8.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindFormers/any/mindformers-0.8.0-py3-none-any.whl) | 6f0c0dfe0ee1aed7b36bd72a249111178fdabe332b0a326949329bdab0a25fcf | -| MindScience
(MindSpore
SPONGE) | Ascend | any | Python3 | [mindsponge_ascend-1.0.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindScience/mindsponge/ascend/aarch64/mindsponge_ascend-1.0.0rc2-py3-none-any.whl) | 8a992dccb9dffac96f66bebf54ee4759706f8738abb4595e27bf47d220266b1c | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindScience/mindsponge/gpu/x86_64/cuda-10.1/mindsponge_gpu-1.0.0rc2-py3-none-any.whl) | 5f880cbcd44572a24b51957882aee770be118442958e108461df4b30c5b82e15 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindScience/mindsponge/gpu/x86_64/cuda-11.1/mindsponge_gpu-1.0.0rc2-py3-none-any.whl) | d8ec1d9b391c98bfb1189f0c36765966aacc9476b276c1af31d54e17ac6b4871 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.RC1.3.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.2/RELEASE.html#mindspore-2-2-1-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.2/index.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/en/r1.0.0-rc2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.2/mindinsight.debugger.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/en/r1.0.0-rc2/mindsponge.cell.html) | - -## 2.2.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-------------------------------------|----------------------------------------------------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp37-cp37m-linux_aarch64.whl) | efcab90ab5b8a911e436cbed054db4e2c086f1c619dd049c13c6fc74b15fc55d | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp38-cp38-linux_aarch64.whl) | 35d37191d5297241b5dfbb6be960e702e495184cd2a134f699c10d746e4cc2e7 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp39-cp39-linux_aarch64.whl) | a17386e2fea8bf9517497d5bd0c259473e6a2ce5c2163a9a78e5c04ccb9d6f67 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/x86_64/mindspore-2.2.0-cp37-cp37m-linux_x86_64.whl) | dbd8b21658cf3b80ebc3a03f0c438fc6f7f0d4775bd80e53c70850385550c5f6 | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/x86_64/mindspore-2.2.0-cp38-cp38-linux_x86_64.whl) | fffadfb38f64d8060233fcf978ac1dcfaeaa76e8e82d4f7c82eb21385e159179 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/x86_64/mindspore-2.2.0-cp39-cp39-linux_x86_64.whl) | e6e9fc2e467bbcb0a243cf5d98341148b8f781e4d3f073fba9d7753a816c735e | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp37-cp37m-win_amd64.whl) | 47ef9ab4adfe2f7275328a11f698a863e61408e1a1c9e5fa86fc10d364355352 | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp38-cp38-win_amd64.whl) | 8baf7c15091fb544eae50ac420858ec12029f3068b21e8d85df7362b2408e70b | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp39-cp39-win_amd64.whl) | e692089ed216ec51c110cce2b61ba7e0e2e96aad3441c3154caf3e85d463e468 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/aarch64/mindspore-2.2.0-cp38-cp38-macosx_11_0_arm64.whl) | 6511ca6eeb5a667cad5fbbc826d50f5f8485cb902928f1f2bddd4fe17f2e86c7 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/aarch64/mindspore-2.2.0-cp39-cp39-macosx_11_0_arm64.whl) | d25eb3cf1f4259e0b2198f0080a0cedbb2bb71439c70b1e62cbd58154ea2098c | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp37-cp37m-macosx_10_15_x86_64.whl) | d7a07eb9bdc588e1b74319c0deb455800bbee9d2b69dfac8ce073b00ec223c90 | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp38-cp38-macosx_10_15_x86_64.whl) | 9391977ba44fc518a4f4e08ad06c54762080e9db158dff79174dafa4a4ac9066 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp39-cp39-macosx_10_15_x86_64.whl) | cb93e0bfaf99346bf0db223e0a9128c5d0c50a8beb613f222e23319f3d575f14 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.2/use/downloads.html#2-2-0) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindInsight/any/mindinsight-2.2.0-py3-none-any.whl) | c0894a19637394f07b37b2e355c1b8c960171fe08c440be5e211a1eeec0a9d49 | -| MindSpore
Quantum | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindquantum-0.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.0-cp37-cp37m-linux_x86_64.whl) | 4bfc2829ac6d73f82bfc327c8696bf63be6c784d2567cdf9c019840e9d891d6c | -| | | | Python3.8 | [mindquantum-0.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.0-cp38-cp38-linux_x86_64.whl) | 37a51bbc82708e90b53a0ea98423ee390599c989f348cf3988dc7f747e62a515 | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.0-cp39-cp39-linux_x86_64.whl) | 7d2532907a01840dc2cbbea54a59ba440eb08133f2ab35eb08b3fd8c5d670da2 | -| | CPU | Windows-x64 | Python3.7 | [mindquantum-0.9.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp37-cp37m-win_amd64.whl) | 8cbe91c4fcdb79763707068ad6515a518723e6da11c4d9ba2f915faa894d2b2f | -| | | | Python3.8 | [mindquantum-0.9.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp38-cp38-win_amd64.whl) | e74e3abcb43ea9cc443b2db055ad0b6abd725afdc52f37e3988f43f2dbd53fa2 | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp39-cp39-win_amd64.whl) | 312af138e2d94e5a930096a4333aacd754be85937325672ac0aa26a55caf9242 | -| | | MacOS-aarch64 | Python3.8 | [mindquantum-0.9.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/aarch64/mindquantum-0.9.0-cp38-cp38-macosx_11_0_arm64.whl) | e1fda9023fe7acf920d379acff57e2248451c0fa3299e7209a176fc258a9f6de | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/aarch64/mindquantum-0.9.0-cp39-cp39-macosx_11_0_arm64.whl) | 32c79d2dbca57642c29f08a078546541f99eb87e4d361cb1a5e54686bc8eddd9 | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.9.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 76c933fd2f88e1309268e9eee82c60dadd804dcdf3988f6282bf4bbde354373d | -| | | | Python3.8 | [mindquantum-0.9.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp38-cp38-macosx_10_15_x86_64.whl) | b495dba8eda618861330144c67061e117a09e4183bb1fb65372632e68ea226f4 | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp39-cp39-macosx_10_15_x86_64.whl) | 9654ca0cd585dd1f5fc51292f88d37bc4a909ba5df694db0c738957f5aa78aaf | -| MindSpore SciAI | Ascend | Linux-aarch64 | Python3.7 | [sciai-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/sciai/ascend/aarch64/sciai-0.1.0-cp37-cp37m-linux_aarch64.whl) | d20733f0e5656c3c6787ce9f80b07f588231701b8b2e21ed642896da813e58cc | -| | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [sciai-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/sciai/gpu/x86_64/cuda-11.1/sciai-0.1.0-cp37-cp37m-linux_x86_64.whl) | 0cf4e094d3d4f6d8a360a29c119229d4a90b09e19014bb02138cac6cae6de10f | -| MindSpore Earth | Ascend | Linux-aarch64 | Python3.7 | [mindearth_ascend-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/mindearth/ascend/aarch64/mindearth_ascend-0.1.0-py3-none-any.whl) | c3ee178cb4ecd73d020629b5a4a77e151f8e53f391c9343d837d895e72d4e8ef | -| | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindearth_gpu-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/mindearth/gpu/x86_64/cuda-11.1/mindearth_gpu-0.1.0-py3-none-any.whl) | 9ef1fef58ed6e8455a473c468fd64377711be8fa5a9b2caab99a634e50d666bf | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|------------------| -| [Ascend Training Solution 23.0.RC3](https://support.huawei.com/enterprise/zh/doc/EDOC1100336282) | [CANN 7.0.RC1.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.2/RELEASE.html#mindspore-2-2-0-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.2/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.2/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.2/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.2/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.9/index.html)
[MindSpore SciAI](https://www.mindspore.cn/sciai/docs/en/r0.1/index.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/en/r0.1/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.2/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.9/overview.html)
[MindSpore SciAI](https://www.mindspore.cn/sciai/docs/en/r0.1/sciai.architecture.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/en/r0.1/mindearth.cell.html) | - -## 2.1.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|----------------------------|-----------------------------------------------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl) | d7046660c245448c7e99660950b87003e6d8d5de6965b2f03d7399721fe1334a | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp38-cp38-linux_aarch64.whl) | 0574b086e658ecaf4ae33727c1f45ef1f5cacd6a4b09341dbfd1f4b3f8a229d6 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp39-cp39-linux_aarch64.whl) | 8376c5f929307de6a44f1a5256e165fe17cb665063a7f2c6f0560a628cd2ef2b | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/x86_64/mindspore-2.1.1-cp37-cp37m-linux_x86_64.whl) | 49c5d83b5a34ffe71094f11ebf1e2a53ac631d0dd5590a80e13368636aa9d975 | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/x86_64/mindspore-2.1.1-cp38-cp38-linux_x86_64.whl) | c80aa2a03a81675ed7d0df0c758c13ce165be226365c43cfd923faa9ec3fcd6b | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/x86_64/mindspore-2.1.1-cp39-cp39-linux_x86_64.whl) | 08a0535cdf576c9231578d2773baf452f1ee6c6ca92b58cd11847ce5d2fa1763 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp37-cp37m-win_amd64.whl) | 599d5146fd84ee89082e55c08d1363060cec25fe64a8dedc8fc4a6a7d886a9a4 | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp38-cp38-win_amd64.whl) | c214800ae7c127b2e38f9b9780acc7aaf2f41b0285cbe18be4d914ec197130f8 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp39-cp39-win_amd64.whl) | 3fab4894e8c43dffecf550cba0a697d776eb6292e89d3dbc8ebe3881815de392 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.1.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/aarch64/mindspore-2.1.1-cp38-cp38-macosx_11_0_arm64.whl) | f74b5b4a1a16a29ef0c7659c828243103911f26cfb62dd8d0a1b4398e7545069 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/aarch64/mindspore-2.1.1-cp39-cp39-macosx_11_0_arm64.whl) | cd746fd89797566d4677060192024c4dfc5bd4df020cd03c25312004d3fdbf54 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 5b4ef78cc096e17307c0965f179d9e8f106db9b26e2b130cf69733ff36b43ed4 | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp38-cp38-macosx_10_15_x86_64.whl) | 50413f658dc457523eb7eb7a8e266d80bbe85707126223d60dee79933fa22f37 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp39-cp39-macosx_10_15_x86_64.whl) | fe4f4c7280a2fb9b987c36e86c901850ba90021d13f61e1b8d161c7b66d233c1 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.1/use/downloads.html#2-1-1) | | - -**Ascend Supporting Software Package** - -|Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|------------------|------------------| -|[Ascend Training Solution 23.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100348301) | [CANN 6.3.RC2.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.1/RELEASE.html#mindspore-2-1-1-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.1/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.1/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.1/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.1/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r2.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.1/index.html) | - -## 2.1.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/aarch64/mindspore-2.1.0-cp37-cp37m-linux_aarch64.whl) | 958e6539a53c9808e3eb7969274492f8cec05d358a60c612355127d55eeec411 | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/aarch64/mindspore-2.1.0-cp38-cp38-linux_aarch64.whl) | 1d1fab7fc3ddbd554a2e1183a04bdf7041d4f0485e129cb09cb2380b920ef5f9 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/aarch64/mindspore-2.1.0-cp39-cp39-linux_aarch64.whl) | 38dd80809cea46277d641d875f41cf6375a39ccd777bf319a882793294ef7808 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/x86_64/mindspore-2.1.0-cp37-cp37m-linux_x86_64.whl) | 3e09d61d6e5f8a03ad2a739d49bde57a69451a6df6fd33aa256d54d1d53a6cf7 | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/x86_64/mindspore-2.1.0-cp38-cp38-linux_x86_64.whl) | 3d92247bd48c03a9f7aa5fa871ab90bee1c4284be926ddcd1f219c123d7891cc | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/x86_64/mindspore-2.1.0-cp39-cp39-linux_x86_64.whl) | ce45b6e2daedb5a5d23b6fc61ad885edf7b076a8e631797995be6a5faea84b0f | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp37-cp37m-win_amd64.whl) | 11abfe931d8ae4f6aac4aa8b10a98409f8ed4db5173e367b22b20513482bf8fb | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp38-cp38-win_amd64.whl) | 15faf8c99b705b3caf0a6b92b79930d7752f11aa93d7baab13dbd26c1f8bce85 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp39-cp39-win_amd64.whl) | 24c539cbd31bf64c34dfcb4e61a7a9f5df9bfb5e87fd147421f0815d14c67828 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.1.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/aarch64/mindspore-2.1.0-cp38-cp38-macosx_11_0_arm64.whl) | b758d1bc3dd40472dd4ddffc0b0eac3f8a9ce37723453077229ebcc0855d1286 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/aarch64/mindspore-2.1.0-cp39-cp39-macosx_11_0_arm64.whl) | 9819c7329b5bb684fefa8e0fb8c84fb92132f4251ce6656df5befaed8307a602 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 4372282f805ea72daf0c4049d857f2ce7a0eef4bdf8991a80d66a452c51c4175 | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp38-cp38-macosx_10_15_x86_64.whl) | b6b1bb239217446a27d66be2f12626c0e7a7ab1c9d91e10b01279b63bf2cc308 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp39-cp39-macosx_10_15_x86_64.whl) | d06024bb33a8ecae1a2cbf47b715220432baa16a67f71ee0939bb5e5e5264492 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.1/use/downloads.html#2-1-0) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindInsight/any/mindinsight-2.1.0-py3-none-any.whl) | 2b4e4cb829da0ae8e55a2a1cb9f2305a27152b9c77cb61e84587ee2339c4b318 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0-py3-none-any.whl) | 1b2054d1bf286e70543d2671370697298a8a3410ac40ce94fc12ad21018b929e | -| | GPU CUDA 10.1
GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0-py3-none-any.whl) | a738061cf8e19dea706ccc9d57413c090cf1ab7e263840adf8f5cccff8ba41f4 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|-------------------| -| [Ascend Training Solution 23.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100348301) | [CANN 6.3.RC2.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.1/RELEASE.html#mindspore-2-1-0-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.1/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.1/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.1/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.1/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/en/r0.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.1/mindinsight.debugger.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/en/r0.1/mindflow.cell.html) | - -## 2.0.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/aarch64/mindspore-2.0.0-cp37-cp37m-linux_aarch64.whl) | ade2b70cd9cdf6aa7b2081ff386676a4bd0dde5a1a2c9931d3f354a0e916b1b8 | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/aarch64/mindspore-2.0.0-cp38-cp38-linux_aarch64.whl) | 27c405a2e798f018e583b2e5094adf81b07a7deb5f1f64602a45c910923884bd | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/aarch64/mindspore-2.0.0-cp39-cp39-linux_aarch64.whl) | 1398560ce3c70b19ba8f5fd3fd9b13a67bc5fc7ded35faa3cdcd4946dc9f204e | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/x86_64/mindspore-2.0.0-cp37-cp37m-linux_x86_64.whl) | 469f3615484ddc53383a8b6e8d7305fa6a9f68f5e7d1a05d408a796486ac169f | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/x86_64/mindspore-2.0.0-cp38-cp38-linux_x86_64.whl) | 77d17d39f4a7e28d440440d7e286cf3606ed7e3f4a25340049353752e07fbd7f | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/x86_64/mindspore-2.0.0-cp39-cp39-linux_x86_64.whl) | 02f7435e510666fe9d9dbb334a4a4821f5763af9f8ad415a9d6d4e760c1219a7 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp37-cp37m-win_amd64.whl) | 637d054b19c8a650a97c3ffe508e74c53ca324ca060c2ce49437a170001f32c5 | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp38-cp38-win_amd64.whl) | eb55c022401fc73e88a6ba5093c103e088d5d2f2f19dd5b7e8d931b6e578ae6f | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp39-cp39-win_amd64.whl) | d419860db22c18508119b281d7c476372b3d15283032892f9b1ac4f96369044b | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.0.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/aarch64/mindspore-2.0.0-cp38-cp38-macosx_11_0_arm64.whl) | 078fae7f13f5ce01219e5f47bf283546d63d17e6078e3fb6483ed4c1da0d7ea2 | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/aarch64/mindspore-2.0.0-cp39-cp39-macosx_11_0_arm64.whl) | 81b0ccd77f87380f5e3af9c1b3e2bdfff9a537de96c4e5c6a359fd5da0a4436e | -| | | MacOS-x64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp37-cp37m-macosx_10_15_x86_64.whl) | c059b7925f76d5687fa9c8d791ba01965dadd6f7896c4ebbec4e0e65808849b3 | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp38-cp38-macosx_10_15_x86_64.whl) | ded8a39197b90719df8e0f7aff59627a774275a6d9db345a7032d4c29a4790dc | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp39-cp39-macosx_10_15_x86_64.whl) | 640c9c0db1a8d14b7301c070d24fdfe819788dbb02f9f095e8b4a8ca4b53f983 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.0/use/downloads.html) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindInsight/any/mindinsight-2.0.0-py3-none-any.whl) | 809e210c39ff0e64b78689032fb4804d25629bebdc596f1f59d5b7eca84cfb49 | - -**Ascend Supporting Software Package** - -|Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|--------------------| -| [Ascend Training Solution 23.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100321901) | [CANN 6.3.RC1.alpha003](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.0/RELEASE.html#mindspore-2-0-0-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.0/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.0/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.0/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.0/mindinsight.debugger.html) | - -## 2.0.0-rc1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.0.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/aarch64/mindspore-2.0.0rc1-cp37-cp37m-linux_aarch64.whl) | d2cf94252743e54b76f74258bce030f0519fb0e06ed6ed91c205b19507349b31 | -| | | | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/aarch64/mindspore-2.0.0rc1-cp38-cp38-linux_aarch64.whl) | a30483a352ca39f772a1b74b3a4cd0f68bf9dea009ba928e460f647356d840fb | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/aarch64/mindspore-2.0.0rc1-cp39-cp39-linux_aarch64.whl) | a4ff5897dbab2a8a5c7d5ab2946f1dda2c211c73041eb97684990e09c126397d | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.0.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/x86_64/mindspore-2.0.0rc1-cp37-cp37m-linux_x86_64.whl) | c9d0c9b5af86639d50b8e5846d7176255b55f3f6c2714286fed54e9fe1d562fa | -| | | | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/x86_64/mindspore-2.0.0rc1-cp38-cp38-linux_x86_64.whl) | 4d628c609dc0e7a1650897979a1e2fb5f8ce0800070a5b7c237ae48713faa3aa | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/x86_64/mindspore-2.0.0rc1-cp39-cp39-linux_x86_64.whl) | 89d15c606c517e882dbdef7a9104cdb007b900cea28c9f7537feda308adb8539 | -| | CPU | MacOS-aarch64 | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/aarch64/mindspore-2.0.0rc1-cp38-cp38-macosx_11_0_arm64.whl) | 8115472e60755340e42505d5eb6d6ea598d6b488c6b5cbfb2e6766fb61df50f2 | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/aarch64/mindspore-2.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl) | 68b71ed79fb464724e2b95b25eae403ad739dcff32509166e28ea198b71f8573 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.0.0rc1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/x86_64/mindspore-2.0.0rc1-cp37-cp37m-macosx_10_15_x86_64.whl) | d0d4995169bf19cde43fa34c559011dd9b30b5943ed3081c787f16accbe4fb96 | -| | | | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/x86_64/mindspore-2.0.0rc1-cp38-cp38-macosx_10_15_x86_64.whl) | a0e73e833092d368d7ef3d61d0d7de22fb152a6501bb8a7cfbc942995c2f6ce9 | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/x86_64/mindspore-2.0.0rc1-cp39-cp39-macosx_10_15_x86_64.whl) | fca6d3134bb3b56392594d8d8928e13030758060022e543ded074511c7b8baed | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.0/use/downloads.html#r2-0-0-rc1) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindInsight/any/mindinsight-2.0.0rc1-py3-none-any.whl) | 8b1ed01371f751588e79dc315efd45925d91eb7cae031399cebb799e7e7e77c6 | -| MindSpore
Armour | | any | Python3 | [mindarmour-2.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindArmour/any/mindarmour-2.0.0-py3-none-any.whl) | 6371fdb5168ec11ed1f1fe33b0964234f39d077d7d169f1aa63ac46b4c5e3f1e | -| MindScience
(MindSpore
Elec) | Ascend | Linux-aarch64 | Python3.7 | [mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/aarch64/mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_aarch64.whl) | 50ec57b34d61542390fc4913157948a7a7bc6468f7ae47fa35e0e11a188eb2fb | -| | | Linux-x86_64 | Python3.7 | [mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/x86_64/mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_x86_64.whl) | 470518e928ec204a439d2394273c0062aff4c9aa4b2de5bf86e6198b2b08ed5b | -| MindScience
(MindSpore
SPONGE) | Ascend | any | Python3 | [mindsponge_ascend-1.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/ascend/aarch64/mindsponge_ascend-1.0.0rc1-py3-none-any.whl) | e0eea11bef082394281640493af69741fb3ae43668874f284846be350cb6aa80 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-10.1/mindsponge_gpu-1.0.0rc1-py3-none-any.whl) | 48529c84f12f66ac022f2fa7a766084c125769c5fd29bafd1a3eca37a66f2d45 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-11.1/mindsponge_gpu-1.0.0rc1-py3-none-any.whl) | 3c75c80da7973e410cbe937ca304734adf629603c8dd1cd92f546bd3a998d2c6 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/ascend/aarch64/mindflow_ascend-0.1.0rc1-py3-none-any.whl) | bb9e95f78861e54ba73876754948432adc39cc85bfb081ef6d58366a75421d92 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0rc1-py3-none-any.whl) | dc406e3897cf76e7d733cffc5f7e0fd975e6cbda91800ba7dbede282351956bc | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0rc1-py3-none-any.whl) | dc406e3897cf76e7d733cffc5f7e0fd975e6cbda91800ba7dbede282351956bc | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/GoldenStick/any/mindspore_gs-0.3.0-py3-none-any.whl) | dfdf23b4de403e5f3a192b3c78a96e0344c26141127ca8496c1273d67f4f2b80 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|---------------------------| -|[Ascend Training Solution 23.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100321901) | [CANN 6.3.RC1.alpha003](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.0/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.0/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.0/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.0/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.0/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r2.0/index.html)
[MindSpore Elec](https://mindspore.cn/mindelec/docs/en/r0.2/index.html)
[MindSpore SPONGE](https://mindspore.cn/mindsponge/docs/en/r1.0/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/en/r0.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.3/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.0/mindinsight.debugger.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r2.0/mindarmour.html)
[MindSpore Elec](https://www.mindspore.cn/mindelec/docs/en/r0.2/mindelec.architecture.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/en/r1.0/mindsponge.cell.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/en/r0.1/mindflow.cell.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.3/mindspore_gs.html) | - -## 2.0.0-alpha - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|--------------------------------|-----------------------------------------------------------------|---------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/aarch64/mindspore-2.0.0a0-cp37-cp37m-linux_aarch64.whl) | be9289576025ca65afe39584a6d038d5904aece903a2bac09a9bb28c70c7520b | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/aarch64/mindspore-2.0.0a0-cp38-cp38-linux_aarch64.whl) | 732d6ef45a7864d2e6cc50c7341331c25943b6133693b85fa383b2859e2a3b08 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/aarch64/mindspore-2.0.0a0-cp39-cp39-linux_aarch64.whl) | 620a98d248a65f311f2e0d0cc30998281a3c0a87f791764fc5e4629fb6344789 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/x86_64/mindspore-2.0.0a0-cp37-cp37m-linux_x86_64.whl) | 9a179d611ace70102668912407cc962db8f04c6717182361e0d050fbbe9105fd | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/x86_64/mindspore-2.0.0a0-cp38-cp38-linux_x86_64.whl) | 324a8f65dc1e6ccc38a9ba5b2fb528e8c50d3fa39691e518722a316f2f1d16ce | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/x86_64/mindspore-2.0.0a0-cp39-cp39-linux_x86_64.whl) | 26cd4471acb9984dc9160eb56ee6a1862accb7b7c6c6edf5aeb0f9069b29f39d | -| | GPU CUDA 11.1 | Windows-x64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/gpu/x86_64/cuda-11.1/mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl) | 8b2114090846779ae0653c65e82f437bc38ba05a6dee779a2540215663f68b2f | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/gpu/x86_64/cuda-11.1/mindspore-2.0.0a0-cp38-cp38-win_amd64.whl) | 00c7736b8b4ede16835d976bae49cd69690b05e4bd9c3d074408f23d908962a4 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/gpu/x86_64/cuda-11.1/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl) | dd18f77eabc68b3de37c7d8b4cdfbaf8e4d24d0d046258cb03d37501fc1abada | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl) | 330c212e21cb48872b9f9680399cd1824caf925f118ea301357c4f7c9f43b0da | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp38-cp38-win_amd64.whl) | 0a682e2f79c7f5f0efc506188fb55edd10643fcc078473498829dd6debbf3113 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl) | 08f00198da5cff4728f46513fc27e064faa57ccdbeb7dd1b56c1c05864aa9a40 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/aarch64/mindspore-2.0.0a0-cp38-cp38-macosx_11_0_arm64.whl) | 53833859955ed99f6616ddeb6db052ff3e2ea27b3f7721f80910520cfb7e3e2a | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/aarch64/mindspore-2.0.0a0-cp39-cp39-macosx_11_0_arm64.whl) | 669bccc21f6cb6a7cb11521a4ab2d8b08af87570c0da72f9aaf199d70fd1b47c | -| | | MacOS-x64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp37-cp37m-macosx_10_15_x86_64.whl) | 0237143cb3d6f4c2f0ec4ee1a43aa7a7e893b98b2ba4713270ece853c042c30f | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp38-cp38-macosx_10_15_x86_64.whl) | 91f4ea33f5a14ae7ed3ee365666200fb2560188861404641be9394b4a8e00993 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-macosx_10_15_x86_64.whl) | c58dfc9e3d7c73d59d6a62826b02a0e6dcb23710781ed289ddec2246af0b8d59 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r2.0.0-alpha/use/downloads.html) | | -| MindScience
(MindSpore Elec) | Ascend | Linux-aarch64 | Python3.7 | [mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/aarch64/mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_aarch64.whl) | 87b6b3fdc4fe3b22325a19c9a89351442268386bd992126ab144210e1af30174 | -| | | Linux-x86_64 | Python3.7 | [mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/x86_64/mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_x86_64.whl) | 7b7edca49c9476c521aee0cb71c9b4cd08483f954e483576ba7adf75e0f4a8f1 | -| MindScience
(MindSpore SPONGE) | Ascend | any | Python3 | [mindsponge_ascend-1.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindsponge_ascend-1.0.0a0-py3-none-any.whl) | 428b1d85ed1bed6fb9c2736912a7b08ee7b2a3435df7738b17d20644c1a13f69 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindsponge_gpu-1.0.0a0-py3-none-any.whl) | 8bacf3bf21d70dc2de3085af8db969e6eec027a7df5c9c0ae8c56b48fe5ce6d1 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindsponge_gpu-1.0.0a0-py3-none-any.whl) | 411ecbbf0ee228e808b032707f1a5286a7dd3a279b1cd9f7535a1040cd51abe7 | -| MindScience
(MindSpore Flow) | Ascend | Linux-aarch64 | Python3.7 | [mindflow_ascend-0.1.0a0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0a0-cp37-cp37m-linux_aarch64.whl) | fdfa069a596d890c5f15f0bd7d9be7b05488c2fdd3419557d6133674a0b038e8 | -| | | | Python3.8 | [mindflow_ascend-0.1.0a0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0a0-cp38-cp38-linux_aarch64.whl) | 927f33be5ca0ffdb8853371bdf44a8f2ac748a31268e41317d81b33e95b65559 | -| | | | Python3.9 | [mindflow_ascend-0.1.0a0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0a0-cp39-cp39-linux_aarch64.whl) | eea4c1ae79ab8792c2d3c7c6ad9bf6d3a9de95d00ee773ab2e9fc475d5748d29 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| | | | Python3.8 | [mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| | | | Python3.9 | [mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl) | 520037da8033d5ad7ea723ec063130283480d1d40bea90b85a1d57a84da3300c | -| | | | Python3.8 | [mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl) | 66e9861a1e9655355f095b67ea4d98d1b17f9107168878a5d979e5c64cdc3be0 | -| | | | Python3.9 | [mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| MindSpore Insight | | any | Python3 | [mindinsight-2.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindInsight/any/mindinsight-2.0.0a0-py3-none-any.whl) | de3e026da906f464d224a4e1f5f0960d78734e43a9880cda7e9d60ce35c1989e | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/GoldenStick/any/mindspore_gs-0.3.0-py3-none-any.whl) | 16d97e0419bd60e2059dd998082c881d04675f78ac9b551fc67db5c926830059 | -| MindSpore Quantum | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl) | 2231c39b6a1e915c75a4a5c9c3f952b67e7cd73d58b34b040d797a6f2ce9b5e2 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl) | 249bf687d152303f05f1280bdc4c84c9466c2ac50b0d2af4174884d129bbfb15 | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl) | c669077c9b254df5f2ac0d36e45fd0841d99c3e0671a810c8d6e2dde756e5349 | -| | CPU | Linux-x86_64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl) | b243e41305840444b57d75bd31ce35d769f234000f0bc3b564382a039c472dc4 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl) | 9e055c7c3505921ec7ebb4a8ebfd7a0552bddf53426fd5bbedb93bd3885b6e0f | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl) | 47cead74a3f57185757f9ea15c538d1a7099f6b027916e258bad88c5327e9776 | -| | | Windows-x64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp37-cp37m-win_amd64.whl) | d3881ba8adc6d28af14ad3d42507dd759f516d6d85d4fe4d06e135fa53f805d3 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp38-cp38-win_amd64.whl) | fcb769eb2997c34efe6dbe107aa640b5d26d463a44019a995ab24d0e4fe9c71a | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp39-cp39-win_amd64.whl) | 0b56a06e17b13d768d37b904133c2900e0889bb70e1e634f816a5775b68b153b | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 97a6d8b2e4ecdf9d628a43e4d5afcbb8e5421b99fc2bae4842ae7fd10a517d87 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl) | ef4f997ddaa7fffddf73b0b6a7163c0abc0ea9a8aee72277758f54874866a44e | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl) | dd543981da53b0763f2575da6ecb6df78e1dd8dfaa5dc80aa45199ec457d8dd2 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|---------------------------| -| [Ascend Data Center Solution 22.0.RC3] | [CANN 6.0.RC1.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r2.0.0-alpha/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r2.0.0-alpha/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r2.0.0-alpha/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r2.0.0-alpha/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r2.0.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.0.0-alpha/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r2.0.0-alpha/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.0.0-alpha/index.html)
[MindSpore Elec](https://mindspore.cn/mindelec/docs/en/r0.2/index.html)
[MindSpore SPONGE](https://mindspore.cn/mindsponge/docs/en/r1.0/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/en/r0.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.3/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.8/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r2.0.0-alpha/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r2.0.0-alpha/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r2.0.0-alpha/mindinsight.debugger.html)
[MindSpore Elec](https://www.mindspore.cn/mindelec/docs/en/r0.2/mindelec.architecture.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/en/r1.0/mindsponge.cell.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/en/r0.1/mindflow.cell.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.3/mindspore_gs.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.8/mindquantum.core.html) | - -## 1.10.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-------------|------------------------|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.10.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/aarch64/mindspore_ascend-1.10.1-cp37-cp37m-linux_aarch64.whl) | 8ec441b45edcecad89c4dd5f111994521b5dfdff2605aa0ca9f7014cbd7c6104 | -| | | | Python3.8 | [mindspore_ascend-1.10.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/aarch64/mindspore_ascend-1.10.1-cp38-cp38-linux_aarch64.whl) | 502612aca4bc7e7b63733cb9933f47fdc6be5d54c4ac89ec19f958907f9935a5 | -| | | | Python3.9 | [mindspore_ascend-1.10.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/aarch64/mindspore_ascend-1.10.1-cp39-cp39-linux_aarch64.whl) | 442482ff483da30496fd070d56f9c47a1686483537953d1b4bcb6eeb3a86d3a5 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/x86_64/mindspore_ascend-1.10.1-cp37-cp37m-linux_x86_64.whl) | e0557ecf019450e1acb5900e12095ace7674557cf86f13697a7c75654dcab773 | -| | | | Python3.8 | [mindspore_ascend-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/x86_64/mindspore_ascend-1.10.1-cp38-cp38-linux_x86_64.whl) | b5a7993780bb26d81c83f5eb2ea606bbecd6d171ed9f19381b881533f29dfff9 | -| | | | Python3.9 | [mindspore_ascend-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/x86_64/mindspore_ascend-1.10.1-cp39-cp39-linux_x86_64.whl) | b9e315c2d3c9e77fcc18cf2313719932dcf04a9173a8f8fc7b1ce85c60396267 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl) | 1dfd50214a2e3e9c42e3d9665d0d2d62a5abc54eaa250e5b6e918b53ec98b273 | -| | | | Python3.8 | [mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl) | ee55027a658cedf2d5dafaf200e69bac0519fb28565e571baf9b3657ecda88e0 | -| | | | Python3.9 | [mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl) | 5ca13e19e8064997bb8ffd7300d5e19c627771f0035adc37faaacc0a01a8cbe0 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl) | eae93d47b301f7786f407d1ae2d779444547d57706afd89e932ab643be88f7a6 | -| | | | Python3.8 | [mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl) | 3a64cc2a5142b7c1f3c6a1b4de19208c2645b56a74e6a91020004b1cd0a87b41 | -| | | | Python3.9 | [mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl) | 94d6ed784a4d048550251352c28957c8c0a995e4be1f12c86bf4c54cc187c6e3 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp37-cp37m-linux_aarch64.whl) | b0b08b83a7bad3208f8498b9e3ec00d19aee1990b9afe29fabf44b30c4f78c6b | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp38-cp38-linux_aarch64.whl) | 298c2fbab5cc7db6f27b368256db21653544b980d6cf7ab83c93748b6b0e012f | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp39-cp39-linux_aarch64.whl) | 16a16d3fb58a123e93862d2019d87b49b8b195373683f692b2ad42076431d91c | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp37-cp37m-linux_x86_64.whl) | fe9b2712423f7282c1fe8edfd9efa932c18be164dd8c14b045fd6b05eb96dcef | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp38-cp38-linux_x86_64.whl) | 4aceceb69a2eac7cb81a50dc30af63ae57a2f5b1dcfc56b19394c3cddf90d33e | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp39-cp39-linux_x86_64.whl) | 72c24c2de287adde257f272d42f9f4936fe93f1cd1c1c7eb9b25a0a0fccf918d | -| | | Windows-x64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp37-cp37m-win_amd64.whl) | afafd86a04012f0d89715bb459ea9a94488032c28ac964cb74067794030d061a | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp38-cp38-win_amd64.whl) | 11cf326f4ae53f8f71d024c04339bfbf9789350edc73740a7816be6fcdbf41ef | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp39-cp39-win_amd64.whl) | 6e2cc5091508a4758def126d3a600229a701536c879e1cbe14e3902809ac67e6 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.10.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp38-cp38-macosx_11_0_arm64.whl) | f474faaad9013552ceb87aaa139dc30df97e590ddac0a8d132e1b2b4514e5bbb | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp39-cp39-macosx_11_0_arm64.whl) | 27bd24d30762023eaab5122028c8daf1ba2a7f19a8099118fb71f5df1e0370c2 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 457db935fed6fa7eb89cb6244a81b1f04cec531694e3e74b6841a3491e8bbb4c | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp38-cp38-macosx_10_15_x86_64.whl) | 76417ff32e1fb6e34beed444a5415294cc697cb33d170b9cd82546ffc751d35c | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp39-cp39-macosx_10_15_x86_64.whl) | 84c95b10bc85fb033dd62df4acbbf8b4a7356fbcecbeb3acbd2bb9f74b75fc2d | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.10/use/downloads.html#1-10-1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.10.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindInsight/any/mindinsight-1.10.0-py3-none-any.whl) | 51793e1eb6b13b7c9971146a1ba23b51984cf4ef1566a9c6533882f51d8625e4 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|--------------------------| -| [Ascend Data Center Solution 22.0.0] | [CANN 6.0.1.alpha001](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r1.10/RELEASE.html#1-10-1-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.10/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.10/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r1.10/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r1.10/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.10/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.10/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.10/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r1.10/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.10/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.10/mindinsight.debugger.html) | - -## 1.10.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|--------------------------------|------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.10.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/aarch64/mindspore_ascend-1.10.0-cp37-cp37m-linux_aarch64.whl) | ca3a13fe19b4d5a31ae184ad51d7eb402584e82548af345926d008ebd894c05f | -| | | | Python3.8 | [mindspore_ascend-1.10.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/aarch64/mindspore_ascend-1.10.0-cp38-cp38-linux_aarch64.whl) | 19f96c6734c819c19e70b7b87086f5d66733bb5d325773b9ddbffc3fb2e2ea6f | -| | | | Python3.9 | [mindspore_ascend-1.10.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/aarch64/mindspore_ascend-1.10.0-cp39-cp39-linux_aarch64.whl) | d795ed41a5e5cb1cb356eaa64684f60c88fc8a583187832edfe1a68d6e84902c | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/x86_64/mindspore_ascend-1.10.0-cp37-cp37m-linux_x86_64.whl) | e222c100563368bb91f0c4d01fb41dcb366c49fc5b3dbb4e540db259e9bf0b6f | -| | | | Python3.8 | [mindspore_ascend-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/x86_64/mindspore_ascend-1.10.0-cp38-cp38-linux_x86_64.whl) | eafa664a3934077e6fb320c071166c4a7277a0bebf3ec34b890b3427237580d6 | -| | | | Python3.9 | [mindspore_ascend-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/x86_64/mindspore_ascend-1.10.0-cp39-cp39-linux_x86_64.whl) | cba0fa09d2008ffeb3dc7690009a5a8a1bfd415f4ee4dfab2fbf60654ab72ff4 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl) | 9ca3ed0bb5f256e2f4a3600c7009e5fb29cd2cd3762497e45e708eb729b0fddd | -| | | | Python3.8 | [mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl) | 82e3f647ff4c8edc9d37e9bb03fffaf591e2de921bd8165c061eb0817e4fd483 | -| | | | Python3.9 | [mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl) | 12a0a127819454334e3f45a511c43a5a8b4bf1c85237eaba04b1f52baa38b039 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl) | 9f20c86940eaac7c724fed1ebefc79ce215371e17d821cbee33663cb67d25ccf | -| | | | Python3.8 | [mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl) | 81e4392ed5669dd3a77f74c4dbfcec39ff570977e0ba3563d589e90c5c721227 | -| | | | Python3.9 | [mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl) | 1bd96e92cf9c3ef6758ed10085aa182ff6d5947a39a16ee12cba85970ae6fdcc | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp37-cp37m-linux_aarch64.whl) | 3ca54640474e0fa76bdc7c7b9120b77afde8a98b15cce0e5cd5d51cca3ae2f4e | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp38-cp38-linux_aarch64.whl) | aba92f1482169ac54d0f6b24005a913178aaa7ba348a02569e50d4b83baecf16 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp39-cp39-linux_aarch64.whl) | ce0ae267e9366e8bc417b9ad969a06d2d0dfb317fb14e0153b3df72df0b22644 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp37-cp37m-linux_x86_64.whl) | b8171cef1c0ec0be6d00e7c94e322056b6b6a6b70efe1fde7e7a1d39fa8b8a73 | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp38-cp38-linux_x86_64.whl) | 2fce2751cdcf3a8374e14408feb4a4849a9a9835ba749dc572cf166ceb925be9 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp39-cp39-linux_x86_64.whl) | cd199b65b7d5512d8d25f3ccce9f30bc9d82992925d84c07911154640e29f3ae | -| | | Windows-x64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp37-cp37m-win_amd64.whl) | bcd346d45473b2afbb541e4e539b202defc4e09bae345278a0cae421ba64079b | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp38-cp38-win_amd64.whl) | 124ecca91493d1fe774e8ea67f831f61af465a8c18ef5b8ee1a2f567960336a9 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp39-cp39-win_amd64.whl) | 5e631fc15727ee86e25c96dc51ec5887b88b29ee745fd83c4bb71d6c37a3f776 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.10.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp38-cp38-macosx_11_0_arm64.whl) | ae55930090af78bc1b60d5a17d955512d52eecf1566274f202533b94be640592 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp39-cp39-macosx_11_0_arm64.whl) | 885f8198932645785710c21d70d917346f2d568d4b7ae671577470680bc55688 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp37-cp37m-macosx_10_15_x86_64.whl) | ed0ed1a2fd64ad7512d112e05d9241c7ddddbf6a3f9fa5eb87da22134e59efe8 | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp38-cp38-macosx_10_15_x86_64.whl) | a0a9eb2570805cf2333294dfc78e79e8a569f993d79c6b6167e2e03aca41f7a9 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp39-cp39-macosx_10_15_x86_64.whl) | 35adc66b6b92002fc02de34da2758c29e6a200c6a91a0526132c98cc419c6508 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.10/use/downloads.html#1-10-0) | | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|---------------------------| -| [Ascend Data Center Solution 22.0.0] | [CANN 6.0.1.alpha001](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r1.10/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.10/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.10/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r1.10/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r1.10/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.10/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.10/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r1.10/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.10/index.html) | - -## 1.9.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|------------------------------|--------------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.9.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/aarch64/mindspore_ascend-1.9.0-cp37-cp37m-linux_aarch64.whl) | 13967c4f9eaf4f17e04d186ffb8aae73fecc9177877b777c20509ac1c5dd4542 | -| | | | Python3.8 | [mindspore_ascend-1.9.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/aarch64/mindspore_ascend-1.9.0-cp38-cp38-linux_aarch64.whl) | 89af0e686e66ac92f7feef4873c16691abee0af8bc862b3356dbfd829825c142 | -| | | | Python3.9 | [mindspore_ascend-1.9.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/aarch64/mindspore_ascend-1.9.0-cp39-cp39-linux_aarch64.whl) | dcf716ffda7ba8e4d310f5c6a104d121ff7e5747db403158d602538ed8a6bf39 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/x86_64/mindspore_ascend-1.9.0-cp37-cp37m-linux_x86_64.whl) | a4f6e6c8a470e1c0086d3d97b447d2dc639e8580e72c061da30b3f4f3b302295 | -| | | | Python3.8 | [mindspore_ascend-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/x86_64/mindspore_ascend-1.9.0-cp38-cp38-linux_x86_64.whl) | 0baea69ae73301fcd3125dd20fc073df6086354254adf85949449262be0b6177 | -| | | | Python3.9 | [mindspore_ascend-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/x86_64/mindspore_ascend-1.9.0-cp39-cp39-linux_x86_64.whl) | dab792aed38eeb3b3c09b8dafa78037f99f27aab8fb647d5ef6e70344545d0c6 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl) | e990ffb81ccc939553e256cd2845838a353471b60b72098ab33ff41f18dfbed6 | -| | | | Python3.8 | [mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl) | 3a07ce7aae036fef9cd22de5d5f68df8ac27bfaeaf29d50877ff1e4763acfa27 | -| | | | Python3.9 | [mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl) | 8d34d1a0037bcdcdbeea8e57c650cf9cc791b761f12921c6d60e859e21a9eef6 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl) | db5b20e66de2fcf8433cc3193aefdf0a9c88000225314dd42b47bb97fdfa9eb6 | -| | | | Python3.8 | [mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl) | 3d4767e8d3d7cdff64a9164b232f9baff550bf06668631935419e5c003f6c735 | -| | | | Python3.9 | [mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl) | 55438338c475980c44757ac1da8ebeb302d8adb47385ee90047c36664bc041c2 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp37-cp37m-linux_aarch64.whl) | e0aec18d84484a5d33bdb02562a1fda4be576b8227b78fe4f435fac270bb712e | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp38-cp38-linux_aarch64.whl) | ab136bc0e45649edf62527513a88928bebd951d41dee77671a7d996c2c86dbe2 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp39-cp39-linux_aarch64.whl) | 47979f4b2f3a6d5ff5189db2847176227fdc25511d5a01370fa43f08c669ea52 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp37-cp37m-linux_x86_64.whl) | 16ed2fb42d1197bcbee1e68bb23dc0b41256b8836c1134ac4d5b11356a02bd29 | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp38-cp38-linux_x86_64.whl) | 1818898034afbf4a9ba9ba771444f886e1802212545f4c76b2b63d7a65393ef7 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp39-cp39-linux_x86_64.whl) | 4db65466498eff474439100b1d09427401a44518c7db623ed8d9e403c8240f28 | -| | | Windows-x64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp37-cp37m-win_amd64.whl) | 6a361f64c1247ba569ea7ae94b5988c53b759073bbba13173244d6e27c995f31 | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp38-cp38-win_amd64.whl) | 63af8b2cf7a8f7daad7a6b87fcd62b08bd265a0e2d6ea1b0402443e9656ab8ee | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp39-cp39-win_amd64.whl) | 1236c3b510ecb2a3923821eca2d9b4e5b9c104fabd07900be9ca05724110abcc | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.9.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp38-cp38-macosx_11_0_arm64.whl) | 61fcad61b6851cf0f12e5b11f4d4399631cd8ada41cb6ef4562732440fa44763 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp39-cp39-macosx_11_0_arm64.whl) | 767756440939c1929d88b3eaa1724b21e6a44623635259bddfff9e97146991d3 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp37-cp37m-macosx_10_15_x86_64.whl) | c2bc1deee1dd5d0fc3ad3064584d8c48d6a1c9bf51409cf92d550d9ae0202afc | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp38-cp38-macosx_10_15_x86_64.whl) | 696febbb08a8e25014a51ad27ae93da1d495641438b7f60028658799927ada20 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp39-cp39-macosx_10_15_x86_64.whl) | 8cc642123d7d2d8e99e849ccc4f6cf3506cd006c55da78bd8225cbbb50868ed7 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.9/use/downloads.html) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.9.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindInsight/any/mindinsight-1.9.0-py3-none-any.whl) | d401ec851c34f8b0e86c1435c7a76989520c1dab274fcd82f0fd291a19881de1 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.9.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindArmour/any/mindarmour-1.9.1-py3-none-any.whl) | 9115ab2fbe2337616f1046efaff920bf043a80fb914d92377e38be30d74f6dbd | -| MindSpore Armour | | any | Python3 | [mindarmour-1.9.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindArmour/any/mindarmour-1.9.0-py3-none-any.whl) | b87adecf3d8df7060ff14ae948360583f1457af30d770a81641ef64ce2b97f01 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/GoldenStick/any/mindspore_gs-0.2.0-py3-none-any.whl) | 514e36666f0952135428ef039520bfac11b1637fd71db5f880b2682a0782bbe8 | -| MindSpore
Audio | | any | Python3 | [mindaudio-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindsporeAudio/any/mindaudio-0.1.0-py3-none-any.whl) | 453860e630586177cce0c8c05a45821a433621ba70165c277b4042a7392e2910 | -| MindSpore
CV | | any | Python3 | [mindcv-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindsporeCV/any/mindcv-0.2.0-py3-none-any.whl) | 66de071503aebc4f11e5aec52bce48e7ae2351158a6b9dd925d8b1b4771f5fdf | -| MindSpore
NLP | | any | Python3 | [mindnlp-0.1.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindsporeNLP/any/mindnlp-0.1.1-py3-none-any.whl) | 5e9481bc6c3cb90fb5f7d6ff1775e972be6c707b5ed39b60757a12ae2d0e2f2f | -| MindSpore
OCR | | any | Python3 | [mindocr-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindOCR/any/mindocr-0.1.0-py3-none-any.whl) | 1511799b235552ee2f7e7856107363d1e738251d55e0e63961821205ce93a377 | - -**Ascend Supporting Software Package** - -|Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|---------------------------| -| [Ascend Data Center Solution 22.0.RC3] | [CANN 6.0.RC1.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r1.9/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.9/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.9/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r1.9/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r1.9/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.9/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.9/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.9/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.2/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.9/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.9/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.9/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.9/mindinsight.debugger.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.2/mindspore_gs.quantization.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.9/mindarmour.html) | - -## 1.8.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|---------------|------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.8.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/aarch64/mindspore_ascend-1.8.1-cp37-cp37m-linux_aarch64.whl) | 30da12770c8cffd52feb8341505ad2a95ee48903503af13e346b8f5d671b075b | -| | | | Python3.8 | [mindspore_ascend-1.8.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/aarch64/mindspore_ascend-1.8.1-cp38-cp38-linux_aarch64.whl) | 5620050ae2d5e195e7176e8ed546130c2d95f4ea4cd7abf6ccdfd934f7ec7c4f | -| | | | Python3.9 | [mindspore_ascend-1.8.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/aarch64/mindspore_ascend-1.8.1-cp39-cp39-linux_aarch64.whl) | 022fc91ada8c30f8fcebb2e829fce3bc685757c1fb10e986728e04a00d4234e7 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/x86_64/mindspore_ascend-1.8.1-cp37-cp37m-linux_x86_64.whl) | cb7edd7533f6f6e19aa77aa0a8c414f109fed18220348d33dd381fc4c6e39d66 | -| | | | Python3.8 | [mindspore_ascend-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/x86_64/mindspore_ascend-1.8.1-cp38-cp38-linux_x86_64.whl) | 6016e16d6ae69707c42776187a687a0ded3298bb7936e3676c988021fe85cb7b | -| | | | Python3.9 | [mindspore_ascend-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/x86_64/mindspore_ascend-1.8.1-cp39-cp39-linux_x86_64.whl) | dbadd299314c1075d90425cb281dfbdbd49096a65f164a3ab9aad9c3886828f2 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl) | b6548f38c1b1c9265a99d65337ae981c2f88ba98798da020b8ffab6e200f0f2e | -| | | | Python3.8 | [mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl) | 8ede528d2c043e63733acebe21ae215521b9562da5e94279e95df819a5bad0f9 | -| | | | Python3.9 | [mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl) | 022b9a0931958688933787bebcebac82b03609c54c2f0fa7af1c3b62728d33f8 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl) | 43a8c373516448c53e18ca429084269906986489f1ccf595d99a7ee251d04603 | -| | | | Python3.8 | [mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl) | a19c20564ce68e9b5d961f5a65b49ec4893071f6a623933aa2a6d74d62319fd5 | -| | | | Python3.9 | [mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl) | 22daea9ddb5db45d2fbb29582fdb86b4518590366154214423359c86b6c89054 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp37-cp37m-linux_aarch64.whl) | 0abc470d463291c7995905c97ca9ca63588791232066090efae07c299fd51a82 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp38-cp38-linux_aarch64.whl) | 3e68aadfd41434d54b7a612d48fa1de173909311440b30b0656a13c7c4ec4be8 | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp39-cp39-linux_aarch64.whl) | d8e796f8286e2d8b187862d3c4be0db96159c622e3c92117f03e39b7d9ef5427 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp37-cp37m-linux_x86_64.whl) | 3f0977f8ff4e214b4a57998b18573d0e41b6c6109a4157a04e93c1f2d51c5215 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp38-cp38-linux_x86_64.whl) | 00d824dc4190fd54dfb31a33ac362ebcc859cb7e3f1e92ed614c3c752fbadc9f | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp39-cp39-linux_x86_64.whl) | d716aa3c4e006f61b471f1c409d4c6729e7705ba8ea2cb046333b8e32716c4da | -| | | Windows-x64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp37-cp37m-win_amd64.whl) | 211775059ce18e681125cffc555afe2d7ae3a6aad219ec2d27c441cb38187e80 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp38-cp38-win_amd64.whl) | d3355e39b5408d94ba779d245dcde1b11ee9b42f1f40a75d0548549e25ef5eb8 | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp39-cp39-win_amd64.whl) | 3f9b4f88a3666d80d5b3f0737ea13fd7d162fee92192e8979ba5538c88f65204 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.8.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp38-cp38-macosx_11_0_arm64.whl) | 4611acd045280aa7e68ee97167149359e2598535d47bec0da958b8f7171c8043 | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp39-cp39-macosx_11_0_arm64.whl) | 73ea32821ba86b02d1fd9f9dbd5d8b125cde3c1a2d0e7db7635e6e00421c29ae | -| | | MacOS-x64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 42494cebbfaf3855ce063bc800d077b74b89282ce7a0146b98fabe79013b6ef2 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp38-cp38-macosx_10_15_x86_64.whl) | 2b7c44eb52cc977e1c7d7b7910f66e0be66e4c5e17c5b4573db6534fc13e168f | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp39-cp39-macosx_10_15_x86_64.whl) | 349ed2acf44c134f6dca78df3f28c321fccd5a61dd05b3b16a83defe26057956 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.8/use/downloads.html#1-8-1) | | -| MindSpore Armour | | any | Python3 | [mindarmour-1.8.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindArmour/any/mindarmour-1.8.1-py3-none-any.whl) | 7a7d2e3972f3ef02726a929daf8a973d9366ad644b9f8ae2e74890735428d6b2 | -| MindSpore
Transformers | | any | Python3 | [mindformers-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindFormers/any/mindformers-0.3.0-py3-none-any.whl) | e9b3b43b7ba5fa020851cfeff0227f24f0199add5e5f30310e26abaaa5029ca7 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|----------------------------| -| [Ascend Data Center Solution 22.0.RC2] | [CANN 5.1.RC2.alpha008](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r1.8/RELEASE.html#1-8-1-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.8/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.8/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r1.8/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r1.8/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.8/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.8/index.html)| [MindSpore](https://www.mindspore.cn/docs/en/r1.8/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.8/mindarmour.html) | - -## 1.8.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|------------------------------|--------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.8.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/aarch64/mindspore_ascend-1.8.0-cp37-cp37m-linux_aarch64.whl) | 606978f9a82d8fccc04cde0fda8a57424977544365050374b6cd195efea93e11 | -| | | | Python3.8 | [mindspore_ascend-1.8.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/aarch64/mindspore_ascend-1.8.0-cp38-cp38-linux_aarch64.whl) | 2a3ae5116ad3a3da1cd00e7e5156abb9d3c207c762249934e0d1b7e2389cd632 | -| | | | Python3.9 | [mindspore_ascend-1.8.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/aarch64/mindspore_ascend-1.8.0-cp39-cp39-linux_aarch64.whl) | 35903646e1a3676b7c85eb37b85effd772d9350269174f46afa1642c084a815d | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/x86_64/mindspore_ascend-1.8.0-cp37-cp37m-linux_x86_64.whl) | eb899c4b5e439262b8587606802f82fb6dc3afa99bf788d1b258188cad6b9abe | -| | | | Python3.8 | [mindspore_ascend-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/x86_64/mindspore_ascend-1.8.0-cp38-cp38-linux_x86_64.whl) | 9d5354d899d81675bd2224f99262a74e22bb1713fc14678dd72c521a7fb997a9 | -| | | | Python3.9 | [mindspore_ascend-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/x86_64/mindspore_ascend-1.8.0-cp39-cp39-linux_x86_64.whl) | c08850d6eff9500ad872d83e922c4b2b04750085b65e32a8b83205f74034258d | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl) | 670892ef68b825a5b7ddf12c79e2a55c612a029b3d47f2aa8da12d9fb68f83bb | -| | | | Python3.8 | [mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl) | 7abda9c04031d3823443f00ba0256ee1e1768f5249e6633a0267ea645ef01cf5 | -| | | | Python3.9 | [mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl) | ac3a25953b09a353723619947136799a82b79a7dd7ae317a26daaca83e2f9dfd | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl) | cced15b6f15115ceef75193c1f6c7925decd0adc7e322e002ba4950881cece32 | -| | | | Python3.8 | [mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl) | 18e5b2bbaa503b7e773916fe525f1450459b2e0f93244fd86fddf274a4e94460 | -| | | | Python3.9 | [mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl) | 1f456fad4be97a7067f767abfafe92cf91ab0be3e51c8623a0c309eec7bc12dc | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp37-cp37m-linux_aarch64.whl) | 9740547f187966692443f68bb143f62b8d37bb0021e1dad2a9748b8f5929ee1a | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp38-cp38-linux_aarch64.whl) | e760dbd3720cad224c7226214bea2f3625bf2a0802742bf1d8d9decb69deccb4 | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp39-cp39-linux_aarch64.whl) | 97e675b181ed87e365ed9bfaee176146aeb6c7572cb07c7132d0ef08e5623e66 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp37-cp37m-linux_x86_64.whl) | d06e3f2f3b40f7e5494dd2a11485d0c1a8e896dca13f448bfb94dc74401b9969 | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp38-cp38-linux_x86_64.whl) | 9d9f22d16fc30348440a8321497db3cc97812244e6e0152baa03060c0c718071 | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp39-cp39-linux_x86_64.whl) | cba869b74bac2465a6a81eee77356ea693d252b6fb65a59551733288905d29a1 | -| | | Windows-x64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp37-cp37m-win_amd64.whl) | 27fd0480a8db2f50074723fdafdfcad40becf087185ac2cf0ae02d27947d2974 | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp38-cp38-win_amd64.whl) | c4fd8f0f62f7e7dd034fa1666e795a953e5c8d44ad7f3e379e44ac0037ca66eb | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp39-cp39-win_amd64.whl) | 44106d472fe35a27f72508341579eae3b3f180c0d329c36b6d943b84ac193a91 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.8.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp38-cp38-macosx_11_0_arm64.whl) | d72f102cc7093cf03c9614837bfe70840f3072ebfc5da4ade8b0ac987d1fe899 | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp39-cp39-macosx_11_0_arm64.whl) | 37dfe1d08592c8cc3120f5ba972afbc9a4f393f2748576a9e964a585c6f49fe6 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 73534fd8afed4d25cfed4d38b6cf87df61dbbf153eeec8f3e731b6f31c28d642 | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp38-cp38-macosx_10_15_x86_64.whl) | ca70b39be9c669dce3c396156c846c746843d8f979ff9a44b44ad11b6f0aa54e | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp39-cp39-macosx_10_15_x86_64.whl) | ea6f4418a0e489b91f6be1050fe4eaa476ebb445bcfa8d5e40d01772d7153ea3 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.8/use/downloads.html#1-8-0) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.8.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindInsight/any/mindinsight-1.8.0-py3-none-any.whl) | 64f8f85434ac2d5116955631928818ab452018239a52ea9355df0880d990118d | -| MindSpore Armour | | any | Python3 | [mindarmour-1.8.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindArmour/any/mindarmour-1.8.0-py3-none-any.whl) | 76206131b1ce21ae1f5185cd88858bc9697a7acb3c6c9306159686a609e39321 | -| MindSpore Quantum | | Linux-x86_64 | Python3.7 | [mindquantum-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp37-cp37m-linux_x86_64.whl) | e37a089ff0f3ba82213c532c19e63a613a34989543213921b612e683c6e839cf | -| | | | Python3.8 | [mindquantum-0.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp38-cp38-linux_x86_64.whl) | e4b9d38117f16ef3a3d24cd1d6404ba50dc4b128ddf0360247f7c1bee0c57ccf | -| | | | Python3.9 | [mindquantum-0.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp39-cp39-linux_x86_64.whl) | 3e5f19d024762bace873eb5e55cd71daf10799205438d3a9fb0fc34391ff1cd8 | -| | | Windows-x64 | Python3.7 | [mindquantum-0.7.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp37-cp37m-win_amd64.whl) | 3403802cfd9c3b0dee662f9c73781a6a7e2465101ec7517e25f5f1083eb3036d | -| | | | Python3.8 | [mindquantum-0.7.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp38-cp38-win_amd64.whl) | de043d45e6535d24da0fd6395f7795441314002a4bed5460bdb03662871d121d | -| | | | Python3.9 | [mindquantum-0.7.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp39-cp39-win_amd64.whl) | a25ca4dfec55ec6fd11007619ce74adc58ec451f9ec47631fd9612e1d1606dd9 | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.7.0-cp37-cp37m-macosx_10_13_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp37-cp37m-macosx_10_13_x86_64.whl) | 9115cfd8c1765d02133e6b9c545cab90d130d724ec436364e5b06a33ef30a8c1 | -| | | | Python3.8 | [mindquantum-0.7.0-cp38-cp38-macosx_10_13_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp38-cp38-macosx_10_13_x86_64.whl) | cab323b91c10a2c280468c7cef5121446e330851ff47a89fa0677a4a0f9eb0d8 | -| | | | Python3.9 | [mindquantum-0.7.0-cp39-cp39-macosx_10_13_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp39-cp39-macosx_10_13_x86_64.whl) | c4c55d1e53bc2713baea4b32f65ece9d83a9f63808bbb1d5b9c7f33bcbd78f12 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/GoldenStick/any/mindspore_gs-0.1.0-py3-none-any.whl) | 2ce684346bfeb24edaea111b66a851eaee1f43f208d568fe32210706686a28c2 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | Community edition download link (refer to commercial edition for instructions) | -|-------------|---------------------------| -|[Ascend Data Center Solution 22.0.RC2] | [CANN 5.1.RC2.alpha008](https://www.hiascend.com/developer/download/community/result?module=cann)
[firmware and driver](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r1.8/RELEASE.html) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.8/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.8/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r1.8/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r1.8/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.8/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.8/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.8/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.7/index.html)
[MindSpore Golden Stick](http://www.mindspore.cn/golden_stick/docs/en/r0.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.8/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.8/mindarmour.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.8/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.7/mindquantum.core.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/en/r0.1/mindspore_gs.html) | - -## 1.7.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.7.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/aarch64/mindspore_ascend-1.7.1-cp37-cp37m-linux_aarch64.whl) | 7bf6f08a3ecf852914d81852b04380601b16cb0e5cd5cd54d6de532a6e0969f9 | -| | | | Python3.8 | [mindspore_ascend-1.7.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/aarch64/mindspore_ascend-1.7.1-cp38-cp38-linux_aarch64.whl) | 7e3d26966f5b5691d7750a126e17b2e123fd7cc5b23c553728fd02f40fced606 | -| | | | Python3.9 | [mindspore_ascend-1.7.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/aarch64/mindspore_ascend-1.7.1-cp39-cp39-linux_aarch64.whl) | 29b1d69c1a380aeae5fa6a545f1882b39f0d7922ab11b6c6ce60167ffdcb9bf3 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/x86_64/mindspore_ascend-1.7.1-cp37-cp37m-linux_x86_64.whl) | 45bbe070ffab797b9fe1fe5b4b904ab8bea8cec431f86da644c6646f46aab315 | -| | | | Python3.8 | [mindspore_ascend-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/x86_64/mindspore_ascend-1.7.1-cp38-cp38-linux_x86_64.whl) | d1de00b47174c3d9b3d8109a541dc22a72142a255ddb9049621c2911be2f04a1 | -| | | | Python3.9 | [mindspore_ascend-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/x86_64/mindspore_ascend-1.7.1-cp39-cp39-linux_x86_64.whl) | 3519c98c050324176b9b618c65d0a6f74fd6a22b785e9fc928ba723aaeaadfb8 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl) | c768a6c519aef30a688aa1ce56c44ae7ac13e3c515e30ec3d8691a9e3d7b97f5 | -| | | | Python3.8 | [mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl) | 7628af142a11eb02ec444cce4eb1180aa15b18bbfc412967fc97c9a7cf09ec99 | -| | | | Python3.9 | [mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl) | 58dd8bc61c8d99ea91b4c919b3de838609f1f1c1b22734fa01ffd0f156f25360 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl) | 91de6f06555d10311cac0c2dcaf1399d71a3bc493adc6f06966c3752b668dc62 | -| | | | Python3.8 | [mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl) | cf41c1ff55629bbe8b43e07d13f5ab45485b5fc2d84ec87111445824760355e7 | -| | | | Python3.9 | [mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl) | add75b5bb218ce8b075e88e81d9ff54278a6fd0b8c3e3245bd5171940ca02f9f | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp37-cp37m-linux_aarch64.whl) | ba1e920a024f6ded59d745a999dbbf031971117a2cd3035a7689378a3d7f67ae | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp38-cp38-linux_aarch64.whl) | 374b04899f68392495ba27d9f49a8b385963ef5551c245a859cf58e4e4957e76 | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp39-cp39-linux_aarch64.whl) | 072c7e30846b9d2a690f59b07941f9a3d88bd211d3a3586e668a5553f5b55668 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp37-cp37m-linux_x86_64.whl) | bd82ba501c5a4fcadf0f9eba7dfce3fc2ac95be21b711a07fd00ae356078f15e | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp38-cp38-linux_x86_64.whl) | ff25c0d2dc4938072fc15060cf5f96e38380557dd38213a5f0111a7819fad891 | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp39-cp39-linux_x86_64.whl) | 8d685052a243548717ba91a78c76a476c7937f8ddec77ad4c12e5fcc52dd3315 | -| | | Windows-x64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp37-cp37m-win_amd64.whl) | 197780319acb373dc009d4d7234e9f46cb6b1c2bffc897421e4dfc708830be41 | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp38-cp38-win_amd64.whl) | 601780e3f5dc7bc8b74aa41bb763fc9ea857fdfeb60c32bec11eba8d007174bb | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp39-cp39-win_amd64.whl) | 14bbdb556c1c35dc6af5af96a2b73263aa59fcbcd6e1c2517bf4cf2284021ff1 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.7.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp38-cp38-macosx_11_0_arm64.whl) | 0b2ecdc0bc9aa1abf2302404d8ecefb3a37825a33c164a781ca9869c7025557f | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp39-cp39-macosx_11_0_arm64.whl) | 40da30084e9a642921a07c8445514c74a67c3e9d9aac03376d200c62e552d6d7 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 7e16be880b493355513d572795caf3ab1ad66aabf8a0fe3bab821634d5e9cbbb | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp38-cp38-macosx_10_15_x86_64.whl) | 0d0276c8b7bed56773e4a688c6eb204ad4affaf7575cab81c63adbdb101d807d | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp39-cp39-macosx_10_15_x86_64.whl) | e2046ffdc819db3fe37e7dcf6bbdccf43e7361d32fbdde392501471e3587207a | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|------------------| -| [Ascend Data Center Solution 22.0.RC1] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r1.7/RELEASE.html#mindspore-1-7-1-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.7/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.7/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r1.7/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r1.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.7/api_python/mindspore.html) | - -## 1.7.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -| ----------------------- | ----------------------- | --------------------------- | --------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/aarch64/mindspore_ascend-1.7.0-cp37-cp37m-linux_aarch64.whl) | 5aea9d9bbb7b600f8634ceb085367d6097db53efb4803e0a1a3334b6c9abe4f9 | -| | | | Python3.8 | [mindspore_ascend-1.7.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/aarch64/mindspore_ascend-1.7.0-cp38-cp38-linux_aarch64.whl) | a2a256abd5dc92de65d1acd89d15273639464d4ac9696a958988a4e0aab3f369 | -| | | | Python3.9 | [mindspore_ascend-1.7.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/aarch64/mindspore_ascend-1.7.0-cp39-cp39-linux_aarch64.whl) | e44909fd09115a85293affe8fed8947088a14210aaa4c7d1f4580e4ab385f599 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/x86_64/mindspore_ascend-1.7.0-cp37-cp37m-linux_x86_64.whl) | 27b0e6891d21f18d4322998599a7b61c19d76a22a6011ebc83d9f9fa78a970e7 | -| | | | Python3.8 | [mindspore_ascend-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/x86_64/mindspore_ascend-1.7.0-cp38-cp38-linux_x86_64.whl) | efc92e4e451175dd490350be37688b282dc06be7c823d6ee03a22e6e8bdb10fa | -| | | | Python3.9 | [mindspore_ascend-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/x86_64/mindspore_ascend-1.7.0-cp39-cp39-linux_x86_64.whl) | 610f0060dd5347ef0fe0e8ac24617e5ac75446deb5117b3e6675b505c9bbce23 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl) | 05fb6e01a207250f29c2fdd2d80fef5aa9c26910daeb0beb18b4cdd832490c3b | -| | | | Python3.8 | [mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl) | cc7f8ea86c6d557479fa45af95161daf33ab1572bbf1e0dc83e275f46b1fcf6b | -| | | | Python3.9 | [mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl) | 22a3c3442b1d1dd54e312b6862cf8931eb193c3714b78dd465175b1fc470f3b9 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl) | 8f69c383cc7c900ba2ba00ced8e4e686ce092ac60daecb0019bd0cc896011b36 | -| | | | Python3.8 | [mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl) | e12e0bd937baa66b5f29385aed73c5e543af3efe27e56c652941c61d16e28892 | -| | | | Python3.9 | [mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl) | 02fc0e64dd51ba3969be1e28699f53e9658d23a9dbfcd8104fd4585a6848ab60 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp37-cp37m-linux_aarch64.whl) | 8d02f680f66a9113b0e77d5918e704cfb0b6125249fd6c99254b7b352e94cfb4 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp38-cp38-linux_aarch64.whl) | 2ef61be92d5d31056cbf78c8318dbcb2b91ac53c39ef61fb73568f6399565626 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp39-cp39-linux_aarch64.whl) | ec12bafe2627223e9849fee107c7f70c88bb2f2679dab9a190b93cd0f7e5847b | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp37-cp37m-linux_x86_64.whl) | 0dbc51d26383989c5bace7857b08bde4aa299ff11a13de6dec9f0002156442a2 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp38-cp38-linux_x86_64.whl) | 089cda3e06f84e3e707463ea1b61320df8c2366399582186c15b112faa0b1524 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp39-cp39-linux_x86_64.whl) | 1d2f69293a36709ddee984e49bcaae79074c505fa47add3052af04a2b7fff807 | -| | | Windows-x64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp37-cp37m-win_amd64.whl) | 3cb2ab8e927ec14a82838452be4a185441108823a3d87236619985f739a89a65 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp38-cp38-win_amd64.whl) | 0bc86e6f3e474a789c3e7c52bc04a246403e1e58aad983b0c977e12dbbf91296 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp39-cp39-win_amd64.whl) | 37316955dd0a280090ac971c5a4727c1cefb8901ff78be194119d71e0305cdb3 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.7.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp38-cp38-macosx_11_0_arm64.whl) | e21b357d992d2067d6046c91452b70e377eded70413541c63c3fd76f2a25d5c6 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp39-cp39-macosx_11_0_arm64.whl) | b9ef28a82eba8be4ad160734ab41719b1a9342d10e4479559d80a297238f7a20 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp37-cp37m-macosx_10_15_x86_64.whl) | fda454c9845b3bece036eb79c6603f89df4ec4ec2c8746deec6af4cb51a57270 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp38-cp38-macosx_10_15_x86_64.whl) | d390ebb8f958ab2411a5205fea78cdb40400960409073e2dd2c33f8e59fd0c64 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp39-cp39-macosx_10_15_x86_64.whl) | c90c07fdda2e9b1e827777ea23d5096781f3bc7587e5b4e59e716e08457df575 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.7/use/downloads.html) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.7.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindInsight/any/mindinsight-1.7.0-py3-none-any.whl) | d40f85143996bb6c5c68ef73d9d9cc24b5e41e2d39874123b13550f0f1213fde | -| MindConverter | | any | Python3 | [mindconverter-1.7.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindInsight/any/mindconverter-1.7.0-py3-none-any.whl) | c03e2021569278efbbc43c48c95013f7d764f5126d2040c78ba72ec557b59940 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.7.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindArmour/any/mindarmour-1.7.0-py3-none-any.whl) | c80e796972b58dee91e69f4e4ea808cf6a53baea7ff102a5eafd5cb2b83e14ed | -| MindSpore Quantum | | Linux-x86_64 | Python3.7 | [mindquantum-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindQuantum/x86_64/mindquantum-0.6.0-cp37-cp37m-linux_x86_64.whl) | 1dfff9faa35ea57787d1a17a0d4a9372c89d2f456622b64ecabe351dbd9613d6 | -| | | Windows-x64 | Python3.7 | [mindquantum-0.6.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindQuantum/x86_64/mindquantum-0.6.0-cp37-cp37m-win_amd64.whl) | 9ffb1c72c126d7fe5657a22ab71f82734539bb413cc89bad358481c9b0c7f3b3 | -| | | | Python3.9 | [mindquantum-0.6.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindQuantum/x86_64/mindquantum-0.6.0-cp39-cp39-win_amd64.whl) | bce0780afbd0fd3c938f059cc32f30c68e60bc971090850dc32cc8d57a173b3d | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|------------------| -| [Ascend Data Center Solution 22.0.RC1] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/en/r1.7/RELEASE.html#mindspore-1-7-0-release-notes) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.7/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.7/index.html)
[Application](https://www.mindspore.cn/tutorials/application/en/r1.7/index.html)
[Experts](https://www.mindspore.cn/tutorials/experts/en/r1.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.7/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.7/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.7/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.7/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r1.7/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.7/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.7/mindarmour.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.7/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.6/mindquantum.core.html) | - -## 1.6.2 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -|-----------|-------------------------|---------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.6.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/aarch64/mindspore_ascend-1.6.2-cp37-cp37m-linux_aarch64.whl) | c84b9fa1d285a0fc4bba889091dbcddc45da725335bc76f595d30c5ab2db7ed4 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/aarch64/mindspore_ascend-1.6.2-cp39-cp39-linux_aarch64.whl) | 06c7afeaa6aaa59684f2b306500d947a46da83395f10205e54293522ce49a8fe | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/x86_64/mindspore_ascend-1.6.2-cp37-cp37m-linux_x86_64.whl) | bb1a251f964e9846a1fcde4190521ee5d47fbaf2b823315608b113c8c32ce9d4 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/x86_64/mindspore_ascend-1.6.2-cp39-cp39-linux_x86_64.whl) | fac077f6d8ad92767967415c4caf73818571a7d1449ce04718a13dcd67cf4ddc | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl) | 8235cc34107a2f0d12306363f5ce4d4db01a9afef9e0bca9f86eb289d54ce815 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl) | 6c42efbe0508bea80c74fad63a502824bfc00499f10c686cc029a16ecee9237b | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl) | 8235cc34107a2f0d12306363f5ce4d4db01a9afef9e0bca9f86eb289d54ce815 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl) | 6c42efbe0508bea80c74fad63a502824bfc00499f10c686cc029a16ecee9237b | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/aarch64/mindspore-1.6.2-cp37-cp37m-linux_aarch64.whl) | 4f9da5f9a8908852b72cb0de5fed0a0d6fb186101ab8579f8ce5608221a3b2ff | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/aarch64/mindspore-1.6.2-cp39-cp39-linux_aarch64.whl) | e8136bb6814d6c329508271816ff500f19195acbec0ef4405e280fa7daae656d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp37-cp37m-linux_x86_64.whl) | ffc733591d0bad3e8a0067a09fe0f7673c2bf82f9f45a88a007ac2efc94eafdf | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp39-cp39-linux_x86_64.whl) | 69db269e8fd3845eaff6a9b200fce21767071eac15e375cd8f1ec23e15a6a772 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp37-cp37m-win_amd64.whl) | c5d49ff29637151aa2a182f7d7ec685dcbed553ac40af1f556953c08d97a9d28 | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp39-cp39-win_amd64.whl) | 2b7234e1d7bd1e1c342cd34195c95775a329eb06897f2ee0c9b2b50d6f29f928 | -| | | MacOS-aarch64 | Python3.9.1 | [mindspore-1.6.2-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/aarch64/mindspore-1.6.2-cp39-cp39-macosx_11_0_arm64.whl) | 4e81c869c3397e0c03e8ff1a8d221a87789af97f8c9dcf127a5d956e116de57f | -| | | MacOS-x64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp37-cp37m-macosx_10_15_x86_64.whl) | ef68b6025c0076b556d362cf645d5502520e28fc9256b0ca302a1a6e7586d797 | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp39-cp39-macosx_10_15_x86_64.whl) | c69078bb761f79d4de7cd6f5ddde79cf3aa2cbeaceba415f1dfc5106c52bbaec | - -**Ascend Supporting Software Package** - -|Commercial edition Installation Guide | -|-------------------| -| [Ascend Data Center Solution 21.0.4] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.6/RELEASE.md#mindspore-162) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.6/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/en/r1.6/index.html) | - -## 1.6.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -| ----------------------- | ----------------------- | --------------------------- | --------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.6.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/aarch64/mindspore_ascend-1.6.1-cp37-cp37m-linux_aarch64.whl) | 8d8c52c839471dc8c0d7269f464f694ada7f4d7db7d2f96725737a8f54eeefd1 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/aarch64/mindspore_ascend-1.6.1-cp39-cp39-linux_aarch64.whl) | 567b9212c8220783c4fcd8417118246352abc7e13f7623142acf2031857d2858 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/x86_64/mindspore_ascend-1.6.1-cp37-cp37m-linux_x86_64.whl) | e244de58f343f3d541595f089142f4df7377ca9397e2593802be9fd636a83f1b | -| | | | Python3.9.0 | [mindspore_ascend-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/x86_64/mindspore_ascend-1.6.1-cp39-cp39-linux_x86_64.whl) | a1c488094759843816e90043bdf02dbe77cf51fb5a4b83ad39818cd4d88184b9 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl) | 3f045ce8dbeac3227f932f283288d4a6ca185fdfe633cee2576ad3dd3e7cee15 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl) | fa0db75762aecf0c11ce8fb31d802c79ac0f20a8d1696f4c577550d2029871fa | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl) | 864940ab2a0b5e2effac47ccceff47460b2221ba9195d89776806a4281ea635c | -| | | | Python3.9.0 | [mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl) | 8da024dee76c1f2e526ecb3a015213c00071454bcbb1e0d6cbea035fbf83656c | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/aarch64/mindspore-1.6.1-cp37-cp37m-linux_aarch64.whl) | e665f786f51d86968f6b2af64cf7ba7076c06c37c1171654e448aedf662b4b71 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/aarch64/mindspore-1.6.1-cp39-cp39-linux_aarch64.whl) | 23edb8fa904c772270cb4d3cecd7cd47cb5f05b4b5d605703ddeea61d95051db | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp37-cp37m-linux_x86_64.whl) | 4048168ae047da03ffa11b9d91944d7996351760ab3851e0658e8dbe179d0470 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp39-cp39-linux_x86_64.whl) | d907b44b5d7b17d006fa19517c853fed63ea19275994561a804c2ee0a9232f9a | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp37-cp37m-win_amd64.whl) | bd8c8fc7839f937f7ed34e1b05173295f86934fe02205b464804116f76660057 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp39-cp39-win_amd64.whl) | c9893e34f2ac93ee317aceb27acf70d7c759790353af74115c697d38e8d38e71 | -| | | MacOS-aarch64 | Python3.9.1 | [mindspore-1.6.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/aarch64/mindspore-1.6.1-cp39-cp39-macosx_11_0_arm64.whl) | ac4702e3ce4d65463941764e1f381405403a0e8099d9b61ec8e063fc26d3591a | -| | | MacOS-x64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp37-cp37m-macosx_10_15_x86_64.whl) | a5e8d0312ccb7a2177b9357d1eb59498ae65ac55f41b0170ed9cdd9ce7342961 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp39-cp39-macosx_10_15_x86_64.whl) | d5a4ba048e64d1912054bca1b2ac2f435904835cdf3a98ae24be88da8761e243 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.6/use/downloads.html#id1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.6.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindInsight/any/mindinsight-1.6.1-py3-none-any.whl) | e739183f62133b0347543858fba46f87c5d8abf52c02a29512d5862bb4a28b6f | -| MindConverter | | any | Python3 | [mindconverter-1.6.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindInsight/any/mindconverter-1.6.1-py3-none-any.whl) | eed7d847c96724c49f7ddea728482452c0d36fec6639c8f7a04d9f25aaaf8af5 | -| MindSpore Quantum | | Linux-x86_64 | Python3.7.5 | [mindquantum-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindQuantum/x86_64/mindquantum-0.5.0-cp37-cp37m-linux_x86_64.whl) | 7c5708426a94f3ed9361fa45fc54b150e070c1203e75a854d838ae30ccc32bd5 | -| | | Windows-x64 | Python3.7.5 | [mindquantum-0.5.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindQuantum/x86_64/mindquantum-0.5.0-cp37-cp37m-win_amd64.whl) | 05d829adab6f0451e52e1fb935dd08538c7b13a0be2fab91b6d73657754cea13 | -| | | | Python3.9.0 | [mindquantum-0.5.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindQuantum/x86_64/mindquantum-0.5.0-cp39-cp39-win_amd64.whl) | f1cfdb8dd61632c8c499968babacbe7398c0992d0230eed12d3e8471d1e72c89 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|------------------| -| [Ascend Data Center Solution 21.0.4] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.6/RELEASE.md#mindspore-161) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.6/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.6/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.5/index.html)| [MindSpore](https://www.mindspore.cn/docs/api/en/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.6/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.5/mindquantum.core.html)| - -## 1.6.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -| ----------------------- | ------------------------------ | --------------------------- | --------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/aarch64/mindspore_ascend-1.6.0-cp37-cp37m-linux_aarch64.whl) | 9db425ae9f8daa1eae7960e2b1b8efca63bbd0d8cf4fb0475dab2fe6c3963572 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/aarch64/mindspore_ascend-1.6.0-cp39-cp39-linux_aarch64.whl) | 2ce20877772744fe6a88c4828059b180bc848ff740158c0e25c13227a6b0862c | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/x86_64/mindspore_ascend-1.6.0-cp37-cp37m-linux_x86_64.whl) | 966f0411b497273415ed6779f15d5743c08ae2eb62cef5d291b1995251857ebb | -| | | | Python3.9.0 | [mindspore_ascend-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/x86_64/mindspore_ascend-1.6.0-cp39-cp39-linux_x86_64.whl) | 79b4cc68de6a3c70bf1bd03a538441d347bba619189822fde58ccae8145c949c | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl) | a961ca60c44b21c9b35767ef6f4ebfeb8105d91d7e51fe44c687c98ee7971961 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl) | 053f13c3b6575b111aa27dba5b58c8e258f8994bb07508982092769699c5740e | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl) | e76bcc715a41c21f2be2604018569a0b02ca3c43b23defbeb5ff3da27260ca80 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl) | 4719c951da345db6ce898dfa0ebc151cc2cb8af116dcbf0eab1202566af5aa6d | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/aarch64/mindspore-1.6.0-cp37-cp37m-linux_aarch64.whl) | 5dc6b9abe668d53960773d6e8ac4dc6f7016c15cce5c9480045c74a3e456e40f | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/aarch64/mindspore-1.6.0-cp39-cp39-linux_aarch64.whl) | 4a8f49587b30b6a0413edba85ebbae07600fc84f8a1fa48c42a2359402bfc852 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp37-cp37m-linux_x86_64.whl) | b4fe66629150c47397722057c32c806cd3eece5e158a93c62cac0bc03b464e3f | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp39-cp39-linux_x86_64.whl) | 87151059854e7388c6b5d6d56a7b75087f171efdcd84896c61d0e9088fcebcc0 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp37-cp37m-win_amd64.whl) | bff5df6a20f98235135693dbcc2928006e0bc080d65faa1bafe0193b67c05051 | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp39-cp39-win_amd64.whl) | 51bc1079f5e5f1fe75b9b1e1022756dd2628b39d8c4c2b872bc33e6e14ecf5bf | -| | | MacOS-aarch64 | Python3.9.1 | [mindspore-1.6.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/aarch64/mindspore-1.6.0-cp39-cp39-macosx_11_0_arm64.whl) | dead04b7b7d3168f0f5837d43ec18fb65c225d3834b3fce8fdc6e3e117218800 | -| | | MacOS-x64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp37-cp37m-macosx_10_15_x86_64.whl) | cafd82348d00a86673c72f74c3990861a0bae54080b19de29cd55767445729f7 | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp39-cp39-macosx_10_15_x86_64.whl) | c2c95d03deb197b7ee4bb7c1d94e2ead7d213d791c016083d23c9710749678ca | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.6/use/downloads.html#id2) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindInsight/any/mindinsight-1.6.0-py3-none-any.whl) | 8e8b002fa919e2da11cd2b1771233ae951e3eddd8fba0d346f18d8c881831ec9 | -| MindConverter | | any | Python3 | [mindconverter-1.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindInsight/any/mindconverter-1.6.0-py3-none-any.whl) | 5b720b6efd6dfe4c15056c1195297ae07d4ffeeb383bad53decdfa84f5d98526 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindArmour/any/mindarmour-1.6.0-py3-none-any.whl) | 1e26f0a4eb5ba79b3facbe9e3677bda1227cd5a642a3b697bfe99f33d3165ae8 | -| MindSpore Quantum | | Linux-x86_64 | Python3.7.5 | [mindquantum-0.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindQuantum/x86_64/mindquantum-0.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 2ee5346249ba7608bd67c3cbe2ab47177581389f6db783156c076d1f11251756 | -| | | Windows-x64 | Python3.7.5 | [mindquantum-0.5.0rc1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindQuantum/x86_64/mindquantum-0.5.0rc1-cp37-cp37m-win_amd64.whl) | ffb0cc9ff182f7f4df46db110712efc151c1ea4f79e5526d609e140490db8757 | -| | | | Python3.9.0 | [mindquantum-0.5.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindQuantum/x86_64/mindquantum-0.5.0rc1-cp39-cp39-win_amd64.whl) | 4043fbfd191c1fb96c6c709b4afa49accae48290e01e7260f5f585a23745ed80 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|-------------------| -| [Ascend Data Center Solution 21.0.4] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.6/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.6/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.6/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.5/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/en/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.6/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.5/mindquantum.core.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.6/mindarmour.html)| - -## 1.5.2 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/aarch64/mindspore_ascend-1.5.2-cp37-cp37m-linux_aarch64.whl) | e1c9fe1777ff0964c78448cab9451d59d1c03eec738d5f22be1f039dee351772 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/aarch64/mindspore_ascend-1.5.2-cp39-cp39-linux_aarch64.whl) | 812e9922dc906f5c6c65fb54ca718916ca34ee04984c80b59921b30b85f99b7e | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/x86_64/mindspore_ascend-1.5.2-cp37-cp37m-linux_x86_64.whl) | fe6f747f1a171abdd0b6436b9676d74b171ba8137bce5e5016eb0b06d6be0dff | -| | | | Python3.9.0 | [mindspore_ascend-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/x86_64/mindspore_ascend-1.5.2-cp39-cp39-linux_x86_64.whl) | d6e0f1e6456d52f85dcbcb881b7b06bd93a1a8d0d4297d0708d6b36d814c6e04 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl) | 2fbf009eb4733bb3b820322496d7f30099c0e73e89c3b22ec092eea9a4a64631 | -| | | | Python3.9.0 | [mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl) | 84a833fee65102d3147781bc7058070ec6d736f27d7511a2500f6f9b1ab58b6b | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl) | 3eed8946992faf57e83f978aa392813fa50ccc90bbbd6b51ebc556f99acf7839 | -| | | | Python3.9.0 | [mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl) | ad5cb00601ab897d4a7622486172167f357377fc2d25ffebc7c6f94f308ac65c | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/aarch64/mindspore-1.5.2-cp37-cp37m-linux_aarch64.whl) | 83de5fb24bbb00ce6588c11ae52fabb176b7e1babbd46e4452118583a6517477 | -| | | | Python3.9.0 | [mindspore-1.5.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/aarch64/mindspore-1.5.2-cp39-cp39-linux_aarch64.whl) | d44520b48029d41385b24b78cb9e734d18c3d2331d607069ebbd4f4e659a2e0d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/x86_64/mindspore-1.5.2-cp37-cp37m-linux_x86_64.whl) | b6b58413be3d3e828f781da47a348689c8d6e8fdbbc1b2cab476e3a974d894d6 | -| | | | Python3.9.0 | [mindspore-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/x86_64/mindspore-1.5.2-cp39-cp39-linux_x86_64.whl) | ff1ff15df8b3c56cb563e3cd039c6ef033efbd851c3ae2f2dd4abe48ee4c4636 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.5.2-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/x86_64/mindspore-1.5.2-cp37-cp37m-win_amd64.whl) | 0d87855997b9a4fb5ff38c445ea75257e5e216a3134aee9dad5cbf8230561067 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|----------------------| -|[Ascend Data Center Solution 21.0.3] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#mindspore-152) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.5/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/en/r1.5/index.html) | - -## 1.5.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.1-cp37-cp37m-linux_aarch64.whl) | ba835765693cba6fddc5f296867f417eb8ee6b0afea53f63018e9d041d0b5d36 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.1-cp39-cp39-linux_aarch64.whl) | 5ae3447971241915287bd773ef8c189ac5b5f67358a39a0ae85b57ba66bc346c | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.1-cp37-cp37m-linux_x86_64.whl) | 5416ed52a4b02b0bdc213fad2db5015a92d114e00f8fce25b88c4f965ce160ca | -| | | | Python3.9.0 | [mindspore_ascend-1.5.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.1-cp39-cp39-linux_x86_64.whl) | ea5bf47bdf9d33cac34c93bfa03221628e655b7936642993570ffd570ae5b69d | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#mindspore-151) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.5/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/en/r1.5/index.html) | - -## 1.5.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0-cp37-cp37m-linux_aarch64.whl) | e923540a625c780a2a311d013d7bcb184ff115675380222290528df3ceaa6263 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0-cp39-cp39-linux_aarch64.whl) | e313e3c2237556cd460b0796ca843faf98a3bb9afb9f9be0bc29232542a6c8d1 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0-cp37-cp37m-linux_x86_64.whl) | 8031b58133e5d7d73a04e705b3f810ae0dba900dce5df6ee35e906e93be21157 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0-cp39-cp39-linux_x86_64.whl) | 9b7b70a10eb3659b20dffee50b13a67b9cf66e4134d17b63fa7681cc5ff055f4 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl) | 64f534a606bb86a6b7546804ec157e4e7499dad0c888c71c5ba3fca3f6197c6b | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl) | a1b538bbd1c8c90692dad983b16b6f9e97ab0d7046039832a9c2e9b6f09e5e7c | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl) | 82ec52749175cebc72f2499979a6089514b42d192381db45632f54a53d3da47f | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl) | d4faa9ad97d262f8b687241fcc21032813e09c0d54ea3d3ba65005fcbf8c9498 | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/aarch64/mindspore-1.5.0-cp37-cp37m-linux_aarch64.whl) | d92e67e65f3e93cc69c9166b53d8d7ee1968bf4df3cdcdc71e7764e2301afe39 | -| | | | Python3.9.0 | [mindspore-1.5.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/aarch64/mindspore-1.5.0-cp39-cp39-linux_aarch64.whl) | 34ea9e2971bbc7770f95447b07b06d23c83a5fba85c755f6b9e68b08005865f6 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp37-cp37m-linux_x86_64.whl) | ee8fc2601b61f3a752aa5e40aadaa9e8b2cb202977297af0066d7c4132d59046 | -| | | | Python3.9.0 | [mindspore-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp39-cp39-linux_x86_64.whl) | 43553e547e5ef59d3f7b20c8b34ccdbb28982b3c67982bbb34be32217367d81c | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.5.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp37-cp37m-win_amd64.whl) | 00462be91e822aa2d70f10ee8d3961a14fcee7a7eed2ad78be4c05aa7149a53e | -| | | | Python3.9.0 | [mindspore-1.5.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp39-cp39-win_amd64.whl) | 2136ed01ba8059a8f5346aa8c448583408396bf9f0491708b379cea2c8c76bb2 | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.5/use/downloads.html#id1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindInsight/any/mindinsight-1.5.0-py3-none-any.whl) | eae763b28ef5bf01e75fbafeca43691e4a9aa7db659a7123ba909a3df348cdf8 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindArmour/any/mindarmour-1.5.0-py3-none-any.whl) | 2cc55d30125019d62533802470e43d3dc708e43b85c15043fc9208a650357b61 | -| MindSpore Quantum | | any | Python3 | [mindquantum-0.3.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindQuantum/any/mindquantum-0.3.1-py3-none-any.whl) | b0699fc7c3a109489895bbc46cdf650dd0e554b1478b3bd4887860980fc02b50 | -| MindScience (MindSpore Elec) | Ascend | Linux-aarch64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindScience/aarch64/mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_aarch64.whl) | 067192056a57d968c65ad7bd2101ecc2f07229d4f3e44973f0dde14781d1b6d8 | -| | | Linux-x86_64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindScience/x86_64/mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_x86_64.whl) | 8f8f36bd1a8d66ec5de962c77674c63ffd0333439b3bfbbe1e65eee75bbf3c7e | -| MindScience (MindSpore SPONGE) | GPU CUDA 10.1
GPU CUDA 11.1 | any | Python3 | [mindscience_mindsponge_gpu-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindScience/any/mindscience_mindsponge_gpu-0.1.0-py3-none-any.whl) | eccc97895ca9f09d52f44a337e1e82b854d28929abec1c8ec2b8f2b2ff219262 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|---------------------| -| [Ascend Data Center Solution 21.0.3] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.5/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.5/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.3/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/docs/en/r0.1/mindelec/intro_and_install.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/docs/en/r0.1/mindsponge/intro_and_install.html)| [MindSpore](https://www.mindspore.cn/docs/api/en/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.5/mindquantum.core.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/api/en/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/api/en/r0.1/mindelec.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/api/en/r0.1/mindsponge.html)| - -## 1.5.0-rc1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Python Version | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_aarch64.whl) | c1b7df9432ec802d2d3374f22c4137a353f1b6389916292de98960de04ea783a | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0rc1-cp39-cp39-linux_aarch64.whl) | 006d6533c7043b857748fa4fdc9177731a13ae071a955e730b18eb32a086020d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 0e6415255f2a72d131bdc17171b9d56acc09aba61ee4f8d322fadc8f28ebc284 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 44e8f1ed9b3ed587867c24853f07870e432652b10bf99d4bcc65652190961d14 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 090bd0adba0d4fe80a4d95b5d428a18b1815ceb98f27808598ea68b719fa186a | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 9b53abf8379d5327fc582164f6dbd005594c2fd3a0aef317c5abb95042c54500 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | e28342697967e5fb6dfb3556ab73652063d75aa036ec3f00f19304874099f4b3 | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 8838eb4d51b328ce8b62376055c4fe80f9f4aedb48a6cb49b29bc3410a0906a3 | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.5.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/aarch64/mindspore-1.5.0rc1-cp37-cp37m-linux_aarch64.whl) | b57496b0ab4ba760feda4c0a8c9213d6a2ddec07399fc78b5df24f12493aeff7 | -| | | | Python3.9.0 | [mindspore-1.5.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/aarch64/mindspore-1.5.0rc1-cp39-cp39-linux_aarch64.whl) | 8ddcd76598920dfad1329b96d200f5fd0c638bddfd7fc7a9354d37ecebc2089d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 0a86caa7fb42af6d29732f06b6568669279f83ba490f656a927fc4a5e2a56dc8 | -| | | | Python3.9.0 | [mindspore-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 9d18b6f4098bed313bbe70880ff6d5d044510c5b14bb1e45421b2ff90c5972e9 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.5.0rc1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp37-cp37m-win_amd64.whl) | 534e7dc9c3e3598a3d9a735fd7a7974d33e763780e1372ac47f29bdecaf1aa6c | -| | | | Python3.9.0 | [mindspore-1.5.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp39-cp39-win_amd64.whl) | 4860bd25473ca0dd9d0eb64846955631f6cd8ba44777864131e95ea8c9a6bdcc | -|MindSpore
Lite | | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.5/use/downloads.html#rc1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.5.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindInsight/any/mindinsight-1.5.0rc1-py3-none-any.whl) | befa0b4db49661f25356d31b99aa481d371bfe2e9f9026323cfebc5da8b0cdb0 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.5.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindArmour/any/mindarmour-1.5.0rc1-py3-none-any.whl) | 341240ec7b95287608a5d6e69347c42953651e643c758e0241dc259fac7c4056 | -| MindSpore Quantum | | any | Python3 | [mindquantum-0.3.1rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindQuantum/any/mindquantum-0.3.1rc1-py3-none-any.whl) | 33daf223b697797a74370eab3f5ae8b3798cdea6a2e08026ed2ca25d36af5cf5 | -| MindScience (MindSpore Elec) | Ascend | Linux-aarch64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindScience/aarch64/mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_aarch64.whl) | 3ad42c57e413abb1d6a9b8741c79e3a425b202cd8ab46c0b8044609800621671 | -| | | Linux-x86_64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindScience/x86_64/mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_x86_64.whl) | 5f3431c21faa525d7ac555921c1eba6ac99b4d81750e39cd2de99dae761505a9 | -| MindScience (MindSpore SPONGE) | GPU CUDA 10.1
GPU CUDA 11.1 | any | Python3 | [mindscience_mindsponge_gpu-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindScience/any/mindscience_mindsponge_gpu-0.1.0rc1-py3-none-any.whl) | b5f92468921812776b8cf66e675123df29cb23a5cfe40cc13b4f02a31f45cf22 | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.5/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.5/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.3/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/docs/en/r0.1/mindelec/intro_and_install.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/docs/en/r0.1/mindsponge/intro_and_install.html)| [MindSpore](https://www.mindspore.cn/docs/api/en/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/api/en/r0.3/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/api/en/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/api/en/r0.1/mindelec.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/api/en/r0.1/mindsponge.html)| - -## 1.4.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | [mindspore_ascend-1.4.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/ascend/aarch64/mindspore_ascend-1.4.1-cp37-cp37m-linux_aarch64.whl) | 3874d59f68c964b7bb0b33a7b431d0d1c0dbc745b67ca5d0f7d52f97d5ed6e1a | -| | | Linux-x86_64 | [mindspore_ascend-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/ascend/x86_64/mindspore_ascend-1.4.1-cp37-cp37m-linux_x86_64.whl) | a5f042b7f4e17c109d9b5f9abcf856d4a4fae7ca2835efe27137f4ff10040264 | -| | GPU CUDA 10.1 | Linux-x86_64 | [mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl) | 972c3b3c9c038809ccf5181f1b0a9b5eefb72ce6e202e948a3f03f4f370572e0 | -| | GPU CUDA 11.1 | Linux-x86_64 | [mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl) | a84ded7e294fe3a47eeceaeb90c4f246fa847e36defba536f44977f72a9a49f7 | -| | CPU | Linux-aarch64 | [mindspore-1.4.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/cpu/aarch64/mindspore-1.4.1-cp37-cp37m-linux_aarch64.whl) | 9cbaba4072563ad65afa75f59c12d38729fa7516c3dcdd3e9d4e4803d9c91d4c | -| | | Linux-x86_64 | [mindspore-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/cpu/x86_64/mindspore-1.4.1-cp37-cp37m-linux_x86_64.whl) | 44ada49089225b9f5866585ab5fa29ceabf0b5ac15c0ec400b6d314115616665 | -| | | Windows-x64 | [mindspore-1.4.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/cpu/x86_64/mindspore-1.4.1-cp37-cp37m-win_amd64.whl) | 81c633959e7fba28a57c2cd3ac67a9d1e032d5fb41cc3e0b284a335f74585ca7 | - -## 1.4.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | [mindspore_ascend-1.4.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/ascend/aarch64/mindspore_ascend-1.4.0-cp37-cp37m-linux_aarch64.whl) | cd2df0a469edb5c8edc3b2ca54d0450ba4948cee02953966adeb864921da2b8b | -| | | Linux-x86_64 | [mindspore_ascend-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/ascend/x86_64/mindspore_ascend-1.4.0-cp37-cp37m-linux_x86_64.whl) | e357b9377fc48a340caae3210cc5905675e83af4fd7d0069b8755bfcb35f0391 | -| | GPU CUDA 10.1 | Linux-x86_64 | [mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl) | c8a84c4ad83d7a75b1faa1d8f484868e9dfa3c084c8be3adcb3c61d245209281 | -| | GPU CUDA 11.1 | Linux-x86_64 | [mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl) | fccdbd38de203011f8e38cd4d7c502caf6b4104d0532e9a2a778466d26503289 | -| | CPU | Linux-aarch64 | [mindspore-1.4.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/cpu/aarch64/mindspore-1.4.0-cp37-cp37m-linux_aarch64.whl) | 8bdfb65666bf7c030adb51072644807084d62fb6e9ce56330346e8813ec055ed | -| | | Linux-x86_64 | [mindspore-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/cpu/x86_64/mindspore-1.4.0-cp37-cp37m-linux_x86_64.whl) | 7c5e9c909357b20c72ecd7cfc947ba053666e29bb5d77fa10d055d90bfd8124e | -| | | Windows-x64 | [mindspore-1.4.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/cpu/x86_64/mindspore-1.4.0-cp37-cp37m-win_amd64.whl) | 0f6b9cfdff96c3472220e16fdd3d6937ebc9a10349e3748e5d4cd848ba611288 | -| MindSpore Insight | | any | [mindinsight-1.4.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindInsight/any/mindinsight-1.4.0-py3-none-any.whl) | d723ba998e9561aa3ee721f2988224b2111cc6c79deaaea014eb827dd63309ee | -| MindSpore Armour | | any | [mindarmour-1.4.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindArmour/any/mindarmour-1.4.0-py3-none-any.whl) | ec7547646aa1dfa4aaa40d98c1ad57bf9e563dc7c5d67208348dead1ae5c4df2 | -| MindSpore Quantum | | any | [mindquantum-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindQuantum/any/mindquantum-0.3.0-py3-none-any.whl) | d5c47aa63d5e085dcb4aabac030eeb62e75e819d18b8ff85a402dbba052561e2 | - -## 1.3.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | [mindspore_ascend-1.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/ascend/aarch64/mindspore_ascend-1.3.0-cp37-cp37m-linux_aarch64.whl) | 1a86507f025b23952e77e65a71b1df899038eef1792214a5ff208ea5acd9a1d1 | -| | | Linux-x86_64 | [mindspore_ascend-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/ascend/x86_64/mindspore_ascend-1.3.0-cp37-cp37m-linux_x86_64.whl) | 6926563c1a94748bfbcc3c0e377ed755b1ceac1ca076353cdc5194cad92fa8a2 | -| | GPU CUDA 10.1 | Linux-x86_64 | [mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl) | 7433bde8c9af6299def5d538e48bedada3abe32e784c2459742b512cbf2711b9 | -| | GPU CUDA 11.1 | Linux-x86_64 | [mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl) | 591aacd1bc8e70d0b8844ab1fefb417bfa92223084802224553ddf12713eccd6 | -| | CPU | Linux-aarch64 | [mindspore-1.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/cpu/aarch64/mindspore-1.3.0-cp37-cp37m-linux_aarch64.whl) | 57dd06d0f3df5e07be236d3311aee8988d4fb7ba3663348da62451934917429c | -| | | Linux-x86_64 | [mindspore-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/cpu/x86_64/mindspore-1.3.0-cp37-cp37m-linux_x86_64.whl) | aa4cad883dcad7aaa0fa1d3522cd7acd0edac41fee001a18152228095b027b9e | -| | | Windows-x64 | [mindspore-1.3.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/cpu/x86_64/mindspore-1.3.0-cp37-cp37m-win_amd64.whl) | ee60d2dc7905caa5e279300b5aee37091ef8382db257b81036f682d4875e51da | -|MindSpore
Lite | | | [Installation Packages Links](https://www.mindspore.cn/lite/docs/en/r1.3/use/downloads.html) | | -| MindSpore Insight | | any | [mindinsight-1.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindInsight/any/mindinsight-1.3.0-py3-none-any.whl) | e66c503e99292b1cbce12379d8a94c79600895753bb469494c129d2194df3b00 | -| MindSpore Armour | | any | [mindarmour-1.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindArmour/any/mindarmour-1.3.0-py3-none-any.whl) | 174ef9439d29895420b4e0d16ed63b0b8f1aa287ae9f1970e221bdfce2f96b75 | -| MindSpore Quantum | | any | [mindquantum-0.2.0.20210713-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindQuantum/any/mindquantum-0.2.0.20210713-py3-none-any.whl) | dd6ed15e37f3fb5f226c0df081ab0aa5603b4de810f79aa7f897cd20d1e1612c | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|--------------------| -|[Ascend Data Center Solution 21.0.2] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.3/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.3/install) | [Quick Start](https://www.mindspore.cn/tutorials/en/r1.3/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/en/r1.3/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r1.3/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/en/r1.3/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/en/r0.2/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/en/r1.3/index.html)| [MindSpore](https://www.mindspore.cn/docs/api/en/r1.3/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/en/r1.3/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/api/en/r0.2/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/api/en/r1.3/index.html)| - -## 1.2.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl) | da571c24ef5139135db9cd4d83e19945941f2a7fbb1bda73c0dac4b8b55967c8 | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | da0478285ac4f93c26d7cea2f24bb1859f960f1653d9c9f03cf9cbdb0859b904 | -| | | EulerOS-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | 6eb8eae0f0b8c25ddc5205b1fbc16530543b13b586189687fd6a6ed3eed60d37 | -| | | CentOS-x86 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl) | a2711e4c0f5134ede07fa27634527f36a31a1585695bbddb75040bb78161ea56 | -| | | CentOS-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | 592ae11ce65ad5292e7b826065fe2925ac5152caec2923e8fb13f64a40cb87c1 | -| | | Kylin-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/kylin_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | 6eb8eae0f0b8c25ddc5205b1fbc16530543b13b586189687fd6a6ed3eed60d37 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.2.1-cp37-cp37m-linux_x86_64.whl) | 2733b2dd89380ba10f11cacc81fab493540fa9c68f7bb638accb81a125bcc5ff | -| | CPU | Ubuntu-x86 | [mindspore-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.1-cp37-cp37m-linux_x86_64.whl) | c21c8e6e92d5e96a3f803daa55cf6b3f23e4744c7e212802270a72f376d60860 | -| | | Ubuntu-aarch64 | [mindspore-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.2.1-cp37-cp37m-linux_aarch64.whl) | bfe97146c1f4643076a7e9eba7a3f2e9d37f6ed079983c7101a7b4a368d9813c | -| | | Windows-x64 | [mindspore-1.2.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/cpu/windows_x64/mindspore-1.2.1-cp37-cp37m-win_amd64.whl) | c4f5b2113d4369f436849e86f0d1dd3402e47060850fcd63beb41155da220a30 | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindArmour/x86_64/mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl) | 4e0759b5c12ae107167eef4f9d608dba4d4c9e3f30907541ca5038bdd3271342 | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindArmour/aarch64/mindarmour-1.2.1-cp37-cp37m-linux_aarch64.whl) | 114d63dc56ab164fa3db0cd8c6af11072bb09c44195d94c6c333a688aed89b09 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindArmour/x86_64/mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl) | 4e0759b5c12ae107167eef4f9d608dba4d4c9e3f30907541ca5038bdd3271342 | - -**Ascend Supporting Software Package** - -| Commercial edition Installation Guide | -|------------------------| -| [Ascend Data Center Solution 21.0.1.SPC001] | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.2/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.2/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/r1.2/index.html)
[Training](https://www.mindspore.cn/tutorial/training/en/r1.2/index.html)
[Inference](https://www.mindspore.cn/tutorial/inference/en/r1.2/index.html)
[Mobile&IoT](https://www.mindspore.cn/tutorial/lite/en/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/en/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/en/r1.2/index.html)| - -## 1.2.0-rc1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | CPU | Ubuntu-x86 | [mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | Windows-x64 | [mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/windows_x64/mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl) | [mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/windows_x64/mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl.sha256) | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/euleros_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/euleros_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/aarch64/mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/aarch64/mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| MindSpore Quantum | CPU | Ubuntu-x86 | [mindquantum-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindQuantum/ubuntu_x86/mindquantum-0.1.0-py3-none-any.whl) | [mindquantum-0.1.0-py3-none-any.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindQuantum/ubuntu_x86/mindquantum-0.1.0-py3-none-any.whl.sha256) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.2/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.2/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/r1.2/index.html)
[Training](https://www.mindspore.cn/tutorial/training/en/r1.2/index.html)
[Inference](https://www.mindspore.cn/tutorial/inference/en/r1.2/index.html)
[Mobile&IoT](https://www.mindspore.cn/tutorial/lite/en/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/en/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/en/r1.2/index.html)| - -## 1.1.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | CPU | Ubuntu-x86 | [mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_x86/mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_x86/mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | Windows-x64 | [mindspore-1.1.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/windows_x64/mindspore-1.1.1-cp37-cp37m-win_amd64.whl) | [mindspore-1.1.1-cp37-cp37m-win_amd64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/windows_x64/mindspore-1.1.1-cp37-cp37m-win_amd64.whl.sha256) | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/euleros_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/euleros_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/aarch64/mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/aarch64/mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.1/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.1/install) | [Training](https://www.mindspore.cn/tutorial/training/en/r1.1/index.html)
[Inference](https://www.mindspore.cn/tutorial/inference/en/r1.1/index.html)
[Mobile&IoT](https://www.mindspore.cn/tutorial/lite/en/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/en/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/en/r1.1/index.html)| - -## 1.1.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl) | 8dc45c9c6367a9b59a5893c896b3ebfd929544325c911f48f679b9203165d85d | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl) | b49124e793127ac9d55ba8e5df109a17aafb3f09bbc4a9f7bc228bfc5b652042 | -| | | EulerOS-aarch64 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl) | 1c03e7941a9e247fb0e64f9ba0adbcb4fde3e815cd00dc4bc79e6a81a29e0335 | -| | | CentOS-x86 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/centos_x86/mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl) | 3affe7f5dc4c7c649221d80bf8a41f54fe64028424c422d3513c11a6507f193f | -| | | CentOS-aarch64 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl) |051d2fe7fa1fa95e92da9841a1cdad113561da19a5e7f9abe30322ff44d68d2e | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.1.0-cp37-cp37m-linux_x86_64.whl) | 11386b0e156f033987f879e3b79f87e7cde0a6881063434f2c84a8564099e858 | -| | CPU | Ubuntu-x86 | [mindspore-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/cpu/ubuntu_x86/mindspore-1.1.0-cp37-cp37m-linux_x86_64.whl) | 1a1683e9c30650284f23001a1af0ae570ca854317ec52efc698ce7da604e31b0 | -| | | Ubuntu-aarch64 | [mindspore-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/cpu/ubuntu_aarch64/mindspore-1.1.0-cp37-cp37m-linux_aarch64.whl) | e1fa3cec68aef0e6619408f81d7e9e627704c1bfbf453ed90ee6d3b6c0c8c84f | -| | | Windows-x64 | [mindspore-1.1.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/cpu/windows_x64/mindspore-1.1.0-cp37-cp37m-win_amd64.whl) | ce3f1d4504fd8236113827d435c9aa691b0200e1ffeba3db391e678ad31a7df7 | -|MindSpore
Lite | | | [Installation Packages Links](https://www.mindspore.cn/tutorial/lite/en/r1.1/use/downloads.html) | | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl) | 85f4a38ecaf4d6799482e2a982609c46a49471325b47699c5b01b340549ab961 | -| | | Ubuntu-aarch64 | [mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl) | adb45fa766ff5ca4ef6cbe24335ca7e87c81e9293b60ffe00fec76533115ef4e | -| | | EulerOS-aarch64 | [mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/euleros_aarch64/mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl) | 78b9a728aecc01ead3687f9469d8af228917eab285f0770316bcc214b4ae3adc | -| | | CentOS-x86 | [mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/centos_x86/mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl) | a19a126ae1daa210c78aa256262303c9ad20f9cfe2404a5af840d325a471eb30 | -| | | CentOS-aarch64 | [mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/centos_aarch64/mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl) | f499aa428d754dc36da303f02b6531576e9e86158b213184c392f2302f13da2b | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl) | 85f4a38ecaf4d6799482e2a982609c46a49471325b47699c5b01b340549ab961 | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindArmour/x86_64/mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl) | 3d8b05437dca6d648073b85909508377b7cab05f9a6f52ee712592083d611770 | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindArmour/aarch64/mindarmour-1.1.0-cp37-cp37m-linux_aarch64.whl) | bc724697cf053672198be226193cd0467c5a7f2a700d26a024bcfb318724f34a | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindArmour/x86_64/mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl) | 3d8b05437dca6d648073b85909508377b7cab05f9a6f52ee712592083d611770 | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.1/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.1/install) | [Training](https://www.mindspore.cn/tutorial/training/en/r1.1/index.html)
[Inference](https://www.mindspore.cn/tutorial/inference/en/r1.1/index.html)
[Mobile&IoT](https://www.mindspore.cn/tutorial/lite/en/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/en/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/en/r1.1/index.html)| - -## 1.0.1 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl) | 23664e8ab2e0f2b1a523de96753e300d42f2438e61f7d173b17a637fd139e2d1 | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl) | 9584a9f893ccdb93a2581c034b51045e8882ab67ce203366a212f981c68ad602 | -| | | EulerOS-aarch64 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl) | a662f447e79604aec52224f9dca6c73e4127cb497250e82517e8d5d8b83332b0 | -| | | CentOS-x86 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl) | 3b1f9c871b34ffbfa45d7dc55355adc0e828dbc5fb27d380ffed203644ef9155 | -| | | CentOS-aarch64 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl) | e01d0c52c7cf5670368e9bac6f06f9627eb016d109a48fc77dd7debd135599c9 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.0.1-cp37-cp37m-linux_x86_64.whl) | 5c84995e9f9a3640c31df0e96f69a37fa765f4e332cd71d9347c4e8c6c1d31f1 | -| | CPU | Ubuntu-x86 | [mindspore-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/cpu/ubuntu_x86/mindspore-1.0.1-cp37-cp37m-linux_x86_64.whl) | d8e66d962f66c00d7590ef24093186c3265cca60c27ff423769a5ef48922f494 | -| | | Ubuntu-aarch64 | [mindspore-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.0.1-cp37-cp37m-linux_aarch64.whl) | 8a2c630550e4ff6c786b1a53635e075d0a6625605af7221275360a04cdc3db0d | -| | | Windows-x64 | [mindspore-1.0.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/cpu/windows_x64/mindspore-1.0.1-cp37-cp37m-win_amd64.whl) | f50e1de60d6777bb449802024b7ac2fd90f58fb191bfd69e56079f6dbc5fe1b3 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl) | a1f5beb078d521f40454235f9bfcec5036479ada74d2a51a233ccbce3544e7ab | -| | | Ubuntu-aarch64 | [mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl) | 057ad1daec0cf48ece5dd9174aa95498816e373b831818b6e885b24173bd9cf5 | -| | | EulerOS-aarch64 | [mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/euleros_aarch64/mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl) | e5551323f2f0a89a7eedd4eb508fffb9a71761bb1d70cc9f5f9e2e63a66af78d | -| | | CentOS-x86 | [mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/centos_x86/mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl) | 62a86fa5faa32ee196b78071940f674642278ae016c9662d1051461a0c003969 | -| | | CentOS-aarch64 | [mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/centos_aarch64/mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl) | f436c042b77e52d1f95dd0d104f24189cc7474660603561b196e49ca36b2eded | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl) | a1f5beb078d521f40454235f9bfcec5036479ada74d2a51a233ccbce3544e7ab | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindArmour/x86_64/mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl) | 5f6cee4c36e009bc7cf0cb65d8c5d9a01d87b00dd9e4c48fb9c836fdd4be38ab | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindArmour/aarch64/mindarmour-1.0.1-cp37-cp37m-linux_aarch64.whl) | 1bd8e174f9a83537f4a60371fa2a0effe78851c9181e2666d9e2f49cab25efce | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindArmour/x86_64/mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl) | 5f6cee4c36e009bc7cf0cb65d8c5d9a01d87b00dd9e4c48fb9c836fdd4be38ab | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.0/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.0/install) | [Training](https://www.mindspore.cn/tutorial/training/en/r1.0/index.html)
[Inference](https://www.mindspore.cn/tutorial/inference/en/r1.0/index.html)
[Mobile&IoT](https://www.mindspore.cn/tutorial/lite/en/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/en/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/en/r1.0/index.html)| - -## 1.0.0 - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl) | 4682be18cffdf86346bdb286ccd9e05f33be4138415dbc7db1650d029510ee44 | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl) | 6912fcc0488f3a8fa336d9680f506b5f0c97c5d82844d8fbfd9163bbcbe3140a | -| | | EulerOS-x86 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/euleros_x86/mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl) | 20fb5d35ccd7c1354084da48fa8e3cb93b6fa4843211be82a542dff775c39c0a | -| | | EulerOS-aarch64 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl) | b9700fc718e28026269f4639c7a963653a485c7213eed7d534ed26f89d98a44e | -| | | CentOS-x86 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/centos_x86/mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl) | 453d4ddb93e3e0ed79ac2ec16920994b387376682d07ba71f1e1387cccd57ded | -| | | CentOS-aarch64 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl) |f2066bfd3ffdeb458c6cdcdec2eb0c47c444336c7d983134638ae2de0cec0564 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.0.0-cp37-cp37m-linux_x86_64.whl) | af2b3b7744fdd475333a81e3dfadc81be2156e67e660477f92b584807b34cb70 | -| | CPU | Ubuntu-x86 | [mindspore-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/cpu/ubuntu_x86/mindspore-1.0.0-cp37-cp37m-linux_x86_64.whl) | a0a3c81b500d442d0324d82ed49808a32fb62c9e776fe614a863345965180f7c | -| | | Ubuntu-aarch64 | [mindspore-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/cpu/ubuntu_aarch64/mindspore-1.0.0-cp37-cp37m-linux_aarch64.whl) | eb3bf9d7a40a4f7bbb3ba566b8353ff8a2f89f2fae08d770af0f7d8b9f83d3ea | -| | | Windows-x64 | [mindspore-1.0.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/cpu/windows_x64/mindspore-1.0.0-cp37-cp37m-win_amd64.whl) | d30c89941939164fc1af8e406b202c1671a1309991a957a0f950b8c71775fcc9 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | dd951904ef10adbb93501c3cbafa6b4d34b1e8e5c4efe4fcaa7af49f0c081041 | -| | | Ubuntu-aarch64 | [mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl) | fc02c2ba823cc23eceb89c1c4f93e103502714ce5b4b7ea020c8d744220ae260 | -| | | EulerOS-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/euleros_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | 2df33884fe557e1073ac7bf18fef135dd2f0a90d8dfbc1a0fe6ab223fd959e9c | -| | | EulerOS-aarch64 | [mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/euleros_aarch64/mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl) | 27bbdb4354f43b696068cc926dfa4a967e5aa48e3f9276a9501df84966bd465e | -| | | CentOS-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/centos_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | 8eab8881dd585731dfdedaec16b456fe6e80242199efbdc5703e20382b59aeab | -| | | CentOS-aarch64 | [mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/centos_aarch64/mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl) | 3f76f2ff8c809b638136748348d5860b2ef6f6412ec37db2e02d00a7bc53c91f | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | dd951904ef10adbb93501c3cbafa6b4d34b1e8e5c4efe4fcaa7af49f0c081041 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86
CentOS x86_64 | [mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindArmour/x86_64/mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl) | a139ded76899e5901889fc4e578165ef78584a127f9c264830e4e2806c30cc82 | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS aarch64 | [mindarmour-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindArmour/aarch64/mindarmour-1.0.0-cp37-cp37m-linux_aarch64.whl) | e895ba5a0d207e0cb3e93acdfaaa399a63161443371ef68d626d29542e41d940 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindArmour/x86_64/mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl) | a139ded76899e5901889fc4e578165ef78584a127f9c264830e4e2806c30cc82 | -| MindSpore
Lite RT | CPU | Android-aarch32 | [mindspore-lite-1.0.0-runtime-arm32-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch32/mindspore-lite-1.0.0-runtime-arm32-cpu.tar.gz) |abb28cee1b8a439c51d05a7c4521dc3f76d05ae79db4be781c932ee5f0abc774 | -| | | Android-aarch64 | [mindspore-lite-1.0.0-runtime-arm64-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-runtime-arm64-cpu.tar.gz) |9ca80c1fff35008f8114b3524fc2d897dac1db247df873ea6560f3ddc548a7f3 | -| | GPU | Android-aarch64 | [mindspore-lite-1.0.0-runtime-arm64-gpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-runtime-arm64-gpu.tar.gz) |eae1c9856ae7f647ce52dae79f826412e07bb058e6cf9031d85ab0ca72e42156 | -| MindSpore
Lite Converter | CPU | Ubuntu-x86 | [mindspore-lite-1.0.0-converter-ubuntu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/ubuntu_x86/mindspore-lite-1.0.0-converter-ubuntu.tar.gz) |baaf3e1d88416da535432949810c80e76e4189b3567b952b9d99397fcda0cad8 | -| | | Windows-x86 | [mindspore-lite-1.0.0-converter-win-cpu.zip](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/windows_x86/mindspore-lite-1.0.0-converter-win-cpu.zip) |6eae6f46ebe98697cf0a36268159d74a95ddf743ee27ec6de2088d469c753960 | -| MindSpore
Lite Minddata | CPU | Android-aarch32 | [mindspore-lite-1.0.0-minddata-arm32-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch32/mindspore-lite-1.0.0-minddata-arm32-cpu.tar.gz) |d998c5eba81b254c057eae61aeacd72cee24ad75eb01be89321133e6e035a330 | -| | | Android-aarch64 | [mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) |9f6bd53663d029b7638274fca94e47efbfa33ff7dab5dbe1cf328379e3cbbc18 | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.0/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r1.0/install) | [Training](https://www.mindspore.cn/tutorial/training/en/r1.0/index.html)
[Inference](https://www.mindspore.cn/tutorial/inference/en/r1.0/index.html)
[Mobile&IoT](https://www.mindspore.cn/tutorial/lite/en/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/en/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/en/r1.0/index.html)| - -## 0.7.0-beta - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl) | 522b80e84de1b414d3800a27d01e40f75332000e5246b24cc1aea7d9e5566ce5 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl) | cbdb56a20860aaf1df4a8cbcc090da837ea2a5d115a173e79cd746f84263d73b | -| | | EulerOS-x86 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl) | a21f086d2467eafaffc6934030941f24043e85fbff4888e4fb7ce879e59e5094 | -| | | EulerOS-aarch64 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl) | b1fbe55d7a461b8aa37efec100b87bad4332be7ef954ab83c01bec5f0f5da1e8 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.7.0-cp37-cp37m-linux_x86_64.whl) | 128eab1c10574de140f3c1b6aaaf55b383cdea806dbc8de23966c8d4b4aafb55 | -| | CPU | Ubuntu-x86 | [mindspore-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.7.0-cp37-cp37m-linux_x86_64.whl) | 473de6725a344e3b6353121de66dd06c8012e7eba3af3b96cd5d8a476b3b6e64 | -| | | Ubuntu-aarch64 | [mindspore-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/cpu/ubuntu_aarch64/mindspore-0.7.0-cp37-cp37m-linux_aarch64.whl) | 6b187948994eeaa2b4817303be83c6ccea3597c2aad5355428d5eaeb273604bc | -| | | Windows-x64 | [mindspore-0.7.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/cpu/windows_x64/mindspore-0.7.0-cp37-cp37m-win_amd64.whl) | 396152fab16ce5fcb4106cf49e02989b2e19503896304b1b040932eaddfdf56f | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl) | 3f913d74643eab858bd86d1ea73eb05ee4d402f8164adfb439b6346425abfa19 | -| | | Ubuntu-aarch64 | [mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl) | 73fb86732a88803b0699b47bd48aaa108b4921d0c3411e465bee27c348a68c76 | -| | | EulerOS-x86 | [mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl) | bd84b6b3432d34b235bf8d49ce78e5e0dbaf4b692e75fe12a7600dc313d9124c | -| | | EulerOS-aarch64 | [mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl) | 4c48c96df6438b67fd7e36d96e251bf8e5a3dbcde13382edbaabfc03ae11e807 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl) | 3f913d74643eab858bd86d1ea73eb05ee4d402f8164adfb439b6346425abfa19 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindArmour/x86_64/mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl) | bd3725991f227dde57afb1d11baf694a6ae0591d68355de18465a05b161bab14 | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindArmour/aarch64/mindarmour-0.7.0-cp37-cp37m-linux_aarch64.whl) | 928754efcde8c2106e1af4fb883899d8f66aa864e0ac1ba7358a291792d898a2 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindArmour/x86_64/mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl) | bd3725991f227dde57afb1d11baf694a6ae0591d68355de18465a05b161bab14 | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.7/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r0.7/install) | [Training and Inference](https://www.mindspore.cn/tutorial/en/r0.7/index.html)
[Mobile&IoT](https://www.mindspore.cn/lite/tutorial/en/r0.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r0.7/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/en/r0.7/index.html) | [MindSpore](https://www.mindspore.cn/api/en/r0.7/index.html)
[MindSpore Lite](https://www.mindspore.cn/api/en/r0.7/index.html)| - -## 0.6.0-beta - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl) | afea66c19beff797b99bf06bc0ed897a83fdb510d62e03663cef55a68e0f278f | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl) | d81a8d2641688032daf829f30d514e11f77f3ef98fb35ee6c7370723158c0abc | -| | | EulerOS-x86 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl) | 3ce2a21cd9b8cf58101ec342c9753a226f5fbe315f3a40da521fdf1d46e9dbef | -| | | EulerOS-aarch64 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl) | 55716a59295b92f13509f483c073a2b67cce89cb3e53919400b5d428d986f9f5 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.6.0-cp37-cp37m-linux_x86_64.whl) | f477dc282d503283c59a06e26cfad785c2c2a1996082671e46b4405a6fa539b1 | -| | CPU | Ubuntu-x86 | [mindspore-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.6.0-cp37-cp37m-linux_x86_64.whl) | 8daf749b9d7cf269208b47561844d088a7d200e10816f9437fbcce24fb844495 | -| | | Windows-x64 | [mindspore-0.6.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/cpu/windows_x64/mindspore-0.6.0-cp37-cp37m-win_amd64.whl) | c7ed48fdb808d4f65ca68654323f2e990a7aa7a99ccf0f19bc8bcc23024102f7 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl) | 6a825a529339eba95799bfaef6876ef2aedb45f3f81933f41c64e99d9af5c3fd | -| | | Ubuntu-aarch64 | [mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl) | 165376a2ca5574568468d745101b16a7760f9cc0aa113372b57a31a35774fae7 | -| | | EulerOS-x86 | [mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl) | f02af4c6fa6ad88589ccc8c80134ad3ff9298379d3361839c1eb41350d2e12d8 | -| | | EulerOS-aarch64 | [mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl) | dcb4560a41342fd61e29a4f6718459b247ba0e21b3e075ca4075ed4f9fec4375 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl) | 6a825a529339eba95799bfaef6876ef2aedb45f3f81933f41c64e99d9af5c3fd | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindArmour/x86_64/mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl) | 18f245bdff972414010c9f53de402d790cdef9a74f94ac41e5b6341e778e93b3 | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindArmour/aarch64/mindarmour-0.6.0-cp37-cp37m-linux_aarch64.whl) | 8da35bbf7e909bdce7972f7cd11aa495de2c18b9334052e60609dadd82649922 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindArmour/x86_64/mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl) | 18f245bdff972414010c9f53de402d790cdef9a74f94ac41e5b6341e778e93b3 | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.6/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r0.6/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/r0.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r0.6/index.html) | [MindSpore](https://www.mindspore.cn/api/en/r0.6/index.html)| - -## 0.5.2-beta - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl) | ec4bdb6c96d9ffd2d1e465bd07ac4a8a9c0633512b4fffe9217590ad1a576ea6 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl) | 8bffe9ef96d99af7238db713cc1273a63762d95e1f2d758d53e20550e2c9b2a2 | -| | | EulerOS-x86 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl) | 396da09b61811ab9e5f72c6ad6d68bfd757384bb7923ac50bfed80672eafcf84 | -| | | EulerOS-aarch64 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl) | 71cb819be43d3d89cc6b5e62c4e4c988e52bcbad3b3b9e7d1ed9ecc469c7043c | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.5.2-cp37-cp37m-linux_x86_64.whl) | d424840777d4751cdf1a22a8e39453a96804545ebe3f0dfb67d3aabc10fa2bd2 | -| | CPU | Ubuntu-x86 | [mindspore-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.5.2-cp37-cp37m-linux_x86_64.whl) | ef4d85704bb2588bf3208b6d62b5282db9eb792f99e8b45f571094d2ae735213 | -| | | Windows-x64 | [mindspore-0.5.2-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/cpu/windows_x64/mindspore-0.5.2-cp37-cp37m-win_amd64.whl) | 023f255a81220210679a9872261e2fe4291cdebb157029506aa6773e59e070cd | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| | | Ubuntu-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 97f92b556f8e97e250f311f5d11caace4ac5686015b099b98462d9603e2c5724 | -| | | EulerOS-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 5fab87c3dfda57851a9981c7567200f0f0d856462b8dd521402b085830e6554f | -| | | EulerOS-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 7a157fb849f078fef6792353414737a8eccd98ba7a6fdd3c4ba3b497bc3f019f | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/aarch64/mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl) | 51d2dfd9e65d6d919da36c29fa9420b68c3fb71aa33b54ec35aa5d6bb011c1a8 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r0.5/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/api/en/r0.5/index.html)| - -## 0.5.0-beta - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl) | f20adcdb696316361e13fcd624d7188598b7248f77c7efc535cf193afc26f1c2 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl) | 6b79da1ff33bc27d92835ebc40f9238c6e05a0ebd0a3307035e726b2de0eeae6 | -| | | EulerOS-x86 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34193fbd8a1181d1420386b6fa31315ac0098243dfc8965ee26a3063fedd331d | -| | | EulerOS-aarch64 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl) | 9ac71a08c7da451a1d8030e14ab5b239c27b42991834e40ed68486301c5ce895 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.5.0-cp37-cp37m-linux_x86_64.whl) | 4afbd886c8b7f60bfe0745e74749c5409007ff36d2f65034942a6597c5b92227 | -| | CPU | Ubuntu-x86 | [mindspore-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.5.0-cp37-cp37m-linux_x86_64.whl) | eec9fe7dcee83314e8c2e24b654bdfe25f6538b5fec471460bc8fd9451ee85e6 | -| | | Windows-x64 | [mindspore-0.5.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/cpu/windows_x64/mindspore-0.5.0-cp37-cp37m-win_amd64.whl) | 86fb9a4d508dcd56776a34650dea6f98905b0d1272a89af9eb3c1b9d670d06b5 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| | | Ubuntu-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 97f92b556f8e97e250f311f5d11caace4ac5686015b099b98462d9603e2c5724 | -| | | EulerOS-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 5fab87c3dfda57851a9981c7567200f0f0d856462b8dd521402b085830e6554f | -| | | EulerOS-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 7a157fb849f078fef6792353414737a8eccd98ba7a6fdd3c4ba3b497bc3f019f | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/aarch64/mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl) | 51d2dfd9e65d6d919da36c29fa9420b68c3fb71aa33b54ec35aa5d6bb011c1a8 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r0.5/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/api/en/r0.5/index.html)| - -## 0.3.0-alpha - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl) | 7756a50ca3af82d06eaf456db4d062fa647a8352724ef85da6569426a6393918 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl) | 4f613b1466ba3eafb160ebca2f8086e63fdaeee9c07a5458b4476da4fce8f90a | -| | | EulerOS-x86 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/euleros_x86/mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl) | 93867f72c801affec1da901e734a6d329c6d1ae3cdec1297870b46a277aa64b8 | -| | | EulerOS-aarch64 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl) | ecd7f3e049034d20f722073ecb87d5d8108cfc218d2594ec9771e83db5222cf8 | -| | GPU CUDA 9.2 | Ubuntu-x86 | [mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/gpu/ubuntu_x86/cuda-9.2/mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl) | cd4890d3c24b47f48da48c8cc9efdf35e14f9b4a76ec66779bb24d601d2e0c25 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl) | 07e7263936e1c4805fb253d596ccbeb2fccab3a48929febce85ebb7609d82c4f | -| | CPU | Ubuntu-x86 | [mindspore-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/cpu/ubuntu_x86/mindspore-0.3.0-cp37-cp37m-linux_x86_64.whl) | 38b662673af0dfc89182f5b54261aa8694b8aefdbc1e5fa2d5e06377113e8a22 | -| | | Windows-x64 | [mindspore-0.3.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/cpu/windows_x64/mindspore-0.3.0-cp37-cp37m-win_amd64.whl) | ed6b1c04d08fcfe4ac913f4593da70f78741af8e9391dce7189106b67a1393c1 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/ubuntu_x86/mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl) | 40b0697fbafa3a08393cbeda2f6286caa299a3b758beb63c9ed68f621879ef49 | -| | | Ubuntu-aarch64 | [mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl) | 0005334bf15268e499d91d0a7e1bfb5abc4b5a0e10a3c4c0798da0283b28fe23 | -| | | EulerOS-x86 | [mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/euleros_x86/mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl) | e1ba11b37a0ce13c8f4f668a9479c0f97d922e4ce6128823e576c7d38298c86d | -| | | EulerOS-aarch64 | [mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/euleros_aarch64/mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl) | 8d03e1f57b39268b4ba89c25ca88934b1a00304839f454d7bfd4747269abb359 | -| | GPU CUDA 9.2
GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/ubuntu_x86/mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl) | 40b0697fbafa3a08393cbeda2f6286caa299a3b758beb63c9ed68f621879ef49 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindArmour/x86_64/mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl) | 7a2bd6174be9e5a47e8ae6bcdd592ecdafc6e53e6f1cd5f0261fcb8337b5b337 | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindArmour/aarch64/mindarmour-0.3.0-cp37-cp37m-linux_aarch64.whl) | 6d5f96cc004579d98664d018dca860d3b7f935df5b479f1192161f18a091d9c9 | -| | GPU CUDA 9.2
GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindArmour/x86_64/mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl) | 7a2bd6174be9e5a47e8ae6bcdd592ecdafc6e53e6f1cd5f0261fcb8337b5b337 | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.3/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r0.3/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/0.3.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/0.3.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/api/en/0.3.0-alpha/index.html)| - -## 0.2.0-alpha - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/ascend/x86_ubuntu/mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl) | aa1225665d05263b17bb7ec1d51dd4f933254c818bee126b6c5dac4513532a14 | -| | | EulerOS-x86 | [mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/ascend/x86_euleros/mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl) | eb9a1b2a0ba32d7f7264ae344833f90a8ba2042cddf1a6a719c1a38a7ea528ea | -| | | EulerOS-aarch64 | [mindspore_ascend-0.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/ascend/aarch64_euleros/mindspore_ascend-0.2.0-cp37-cp37m-linux_aarch64.whl) | 820fb17d63341c636018d4e930151d3d2fa7ac05d4a400286c1b1aeb4cc34c6f | -| | GPU CUDA 9.2 | Ubuntu-x86 | [mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/gpu/cuda-9.2/mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl) | b933f95551afc3de38ba06502ef68a5a2a50bebadcc9b92b870f8eb44f59f10a | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/gpu/cuda-10.1/mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl) | e7167bad4549002f9d14b0a015abbabf56334621cf746fa60bb67df0fadb22ec | -| | CPU | Ubuntu-x86 | [mindspore-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/cpu/x86_ubuntu/mindspore-0.2.0-cp37-cp37m-linux_x86_64.whl) | d6702dce9dad94d1e08bedc43540ac21422e8c49d919f7abd0bb7a3aa804476f | -| | | Windows-x64 | [mindspore-0.2.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/cpu/x64_windows/mindspore-0.2.0-cp37-cp37m-win_amd64.whl) | 77151d20fe450df3697853a5309308ecc482870fd2984753b82d3db9d326fdec | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/x86_ubuntu/mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl) | 2334e833f322e0f38e04e65819214b7582527364c1e0aca79bd080a720932ca4 | -| | | EulerOS-x86 | [mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/x86_euleros/mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl) | c6c3088a499967f2fe301ea910536fdf62dd4e38edb47e144726b9a4d4a17e50 | -| | | EulerOS-aarch64 | [mindinsight-0.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/aarch64_euleros/mindinsight-0.2.0-cp37-cp37m-linux_aarch64.whl) | 6e5e03b56988968ec36c556ece06d2e5aa68e80ff475374087998e0ff360a45a | -| | GPU CUDA 9.2
GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/x86_ubuntu/mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl) | 2334e833f322e0f38e04e65819214b7582527364c1e0aca79bd080a720932ca4 | -| MindSpore Armour | Ascend | Ubuntu-x86 | [mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/x86_64/mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl) | 4146790bc73a5846e92b943dfd3febb6c62052b217eeb45b6c48aa82b51e7cc3 | -| | | EulerOS-x86 | [mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/x86_64/mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl) | 4146790bc73a5846e92b943dfd3febb6c62052b217eeb45b6c48aa82b51e7cc3 | -| | | EulerOS-aarch64 | [mindarmour-0.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/aarch64/mindarmour-0.2.0-cp37-cp37m-linux_aarch64.whl) | 5d5e532b9c4e466d89cf503f07c2d530b42216a14f193f685b9a81e190c8db44 | -| | GPU CUDA 9.2
GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/x86_64/mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl) | 4146790bc73a5846e92b943dfd3febb6c62052b217eeb45b6c48aa82b51e7cc3 | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.2/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r0.2/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/0.2.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/0.2.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/api/en/0.2.0-alpha/index.html)| - -## 0.1.0-alpha - -**Downloads** - -| Module Name | Hardware Platform | Operating System | Download Links | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/ascend/ubuntu-x86/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | a76df4e96c4cb69b10580fcde2d4ef46b5d426be6d47a3d8fd379c97c3e66638 | -| | | EulerOS-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/ascend/euleros-x86/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | 45d4fcb37bf796b3208b7c1ca70dc0db1387a878ef27836d3d445f311c8c02e0 | -| | | EulerOS-aarch64 | [mindspore-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/ascend/euleros-aarch64/mindspore-0.1.0-cp37-cp37m-linux_aarch64.whl) | 7daba2d1739ce19d55695460dce5ef044b4d38baad4f5117056e5f77f49a12b4 | -| | GPU CUDA 9.2 | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/gpu/cuda-9.2/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | b6e5623135b57b8c262f3e32d97fbe1e20e8c19da185a7aba97b9dc98c7ecda1 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/gpu/cuda-10.1/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | 43711725cf7e071ca21b5ba25e90d6955789fe3495c62217e70869f52ae20c01 | -| | CPU | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/cpu/ubuntu-x86/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | 45c473a97a6cb227e4221117bfb1b3ebe3f2eab938e0b76d5117e6c3127b8e5c | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindInsight/ubuntu/x86_64/mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl) | 960b6f485ce545ccce98adfb4c62cdea216c9b7851ffdc0669827c53811c3e59 | -| | | EulerOS-x86 | [mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindInsight/euleros/x86_64/mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl) | 9f1ef04fec09e5b90be4a6223b3bf2943334746c1f5dac37207db4524b64942f | -| | | EulerOS-aarch64 | [mindinsight-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindInsight/euleros/aarch64/mindinsight-0.1.0-cp37-cp37m-linux_aarch64.whl) | d64207126542571057572f856010a5a8b3362ccd9e5b5c81da5b78b94face5fe | -| MindSpore Armour | Ascend | Ubuntu-x86 | [mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/x86_64/mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl) | 7796b6c114ee4962ce605da59a9bc47390c8910acbac318ecc0598829aad6e8c | -| | | EulerOS-x86 | [mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/x86_64/mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl) | 7796b6c114ee4962ce605da59a9bc47390c8910acbac318ecc0598829aad6e8c | -| | | EulerOS-aarch64 | [mindarmour-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/aarch64/mindarmour-0.1.0-cp37-cp37m-linux_aarch64.whl) | f354fcdbb3d8b4022fda5a6636e763f8091aca2167dc23e60b7f7b6d710523cb | -| | GPU CUDA 9.2
GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/x86_64/mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl) | 7796b6c114ee4962ce605da59a9bc47390c8910acbac318ecc0598829aad6e8c | - -**Related Documents** - -| Releasenotes and API Updates | Installation | Tutorials | Document | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.1/RELEASE.md#) | [Installation Guide](https://gitee.com/mindspore/docs/tree/r0.1/install) | [Quick Start](https://www.mindspore.cn/tutorial/en/0.1.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/en/0.1.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/api/en/0.1.0-alpha/index.html)| \ No newline at end of file diff --git a/resource/release/release_list_zh_cn.md b/resource/release/release_list_zh_cn.md index a28c128ca7da48d7c86d5d1b24c6523815d27351..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/resource/release/release_list_zh_cn.md +++ b/resource/release/release_list_zh_cn.md @@ -1,2036 +0,0 @@ -# 发布版本列表 - - - -- [发布版本列表](#发布版本列表) - - [2.7.1](#271) - - [2.7.0](#270) - - [2.7.0-rc1](#270-rc1) - - [2.6.0](#260) - - [2.6.0-rc1](#260-rc1) - - [2.5.0](#250) - - [2.4.10](#2410) - - [2.4.1](#241) - - [2.4.0](#240) - - [2.3.1](#231) - - [2.3.0](#230) - - [2.3.0-rc2](#230-rc2) - - [2.3.0-rc1](#230-rc1) - - [2.2.14](#2214) - - [2.2.13](#2213) - - [2.2.12](#2212) - - [2.2.11](#2211) - - [2.2.10](#2210) - - [2.2.1](#221) - - [2.2.0](#220) - - [2.1.1](#211) - - [2.1.0](#210) - - [2.0.0](#200) - - [2.0.0-rc1](#200-rc1) - - [2.0.0-alpha](#200-alpha) - - [1.10.1](#1101) - - [1.10.0](#1100) - - [1.9.0](#190) - - [1.8.1](#181) - - [1.8.0](#180) - - [1.7.1](#171) - - [1.7.0](#170) - - [1.6.2](#162) - - [1.6.1](#161) - - [1.6.0](#160) - - [1.5.2](#152) - - [1.5.1](#151) - - [1.5.0](#150) - - [1.5.0-rc1](#150-rc1) - - [1.4.1](#141) - - [1.4.0](#140) - - [1.3.0](#130) - - [1.2.1](#121) - - [1.2.0-rc1](#120-rc1) - - [1.1.1](#111) - - [1.1.0](#110) - - [1.0.1](#101) - - [1.0.0](#100) - - [0.7.0-beta](#070-beta) - - [0.6.0-beta](#060-beta) - - [0.5.2-beta](#052-beta) - - [0.5.0-beta](#050-beta) - - [0.3.0-alpha](#030-alpha) - - [0.2.0-alpha](#020-alpha) - - [0.1.0-alpha](#010-alpha) - - - -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/resource/release/release_list_zh_cn.md) - -## 2.7.1 - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/aarch64/mindspore-2.7.1-cp39-cp39-linux_aarch64.whl) | 18edb25e37e4132fa45b6488ddd511d3f0c3e2753b38b949a84c608ff94ae541 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/aarch64/mindspore-2.7.1-cp310-cp310-linux_aarch64.whl) | 1026e960b8163ebd76be4f4d3a38fd99092e6cc8349e14837d87a8bd713d7bb2 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/aarch64/mindspore-2.7.1-cp311-cp311-linux_aarch64.whl) | 8aaf9c802143d1469178a8acf171f5f463c511df4e9a22a6869cf1d0ac28a6a0 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/x86_64/mindspore-2.7.1-cp39-cp39-linux_x86_64.whl) | 38e9f73dcd5f8487caaef71815deabbb6cfc6eb16a5eff121df6631870ef0128 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/x86_64/mindspore-2.7.1-cp310-cp310-linux_x86_64.whl) | 204ee8c41f50b18aea7c3e124e83ba220b1017bc951841a932826d55ee1ed798 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/unified/x86_64/mindspore-2.7.1-cp311-cp311-linux_x86_64.whl) | 6f889480612e632d43c03a3cae9d48f33a8c2370172a536bed7abc0695be6433 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp39-cp39-win_amd64.whl) | 9fb28d430ab0c9542769e660e625e257234326b23a5618cb55291406a85bf3d4 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp310-cp310-win_amd64.whl) | bf297ed55889750caf9350970214783303b4622187a83fe01c4686a296293cb9 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp311-cp311-win_amd64.whl) | 20d577fe6448bda0093eb7d0efa61c52e976c0c97f05f13bea92294379d70046 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/aarch64/mindspore-2.7.1-cp39-cp39-macosx_11_0_arm64.whl) | 1fe3ff08ab2740352ef46ccfca18c456821944756f4a7f8423d549c977131a51 | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/aarch64/mindspore-2.7.1-cp310-cp310-macosx_11_0_arm64.whl) | 9187bc0c655487ab708d9710a00549b08eff6c79166b031041752ebd1b52cb0c | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/aarch64/mindspore-2.7.1-cp311-cp311-macosx_11_0_arm64.whl) | 50f47cb4f70e0a596447167152298067b420c4d8a5b5ff3ad7e6b97cfb0461ba | -| | | MacOS-x64 | Python3.9 | [mindspore-2.7.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp39-cp39-macosx_10_15_x86_64.whl) | 450108729596e1fd5b55b85f5a0fce52f66435b4e0f44e027ec445ae08d2c77f | -| | | | Python3.10 | [mindspore-2.7.1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp310-cp310-macosx_10_15_x86_64.whl) | 1c2f22aca36a9eb0d2472fd81e4f78e4df87acfd3210043a271f42c42776ac00 | -| | | | Python3.11 | [mindspore-2.7.1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.1/MindSpore/cpu/x86_64/mindspore-2.7.1-cp311-cp311-macosx_10_15_x86_64.whl) | 18a11196c1282d219a7d408cc70931e3a8bc9504a1f112f78a85d24cb8eeef0d | - -**Ascend配套软件包** - -| 安装指引 | 社区版下载地址 | -|--------|------------------| -| [安装指引文档](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/83RC1/softwareinst/instg/instg_quick.html) | [CANN 8.3.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -## 2.7.0 - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/aarch64/mindspore-2.7.0-cp39-cp39-linux_aarch64.whl) | 74020e04d8553d71c9b93b259b3d3af9a54e935ca4b4799c8c806d36be607635 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/aarch64/mindspore-2.7.0-cp310-cp310-linux_aarch64.whl) | cf2cc43d73de86bc45878924c12f60865c0c06b43df76b28025ed6b27748ca0a | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/aarch64/mindspore-2.7.0-cp311-cp311-linux_aarch64.whl) | d4047ca0ff4bf1cce6fa6cc88044bdb598ce45f8b8fc9f51f9701dbc141aa8ff | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/x86_64/mindspore-2.7.0-cp39-cp39-linux_x86_64.whl) | 281ebbcd5cfe0a5e4330f1029f067a4bce46d6a03c748d35dde9123994240a32 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/x86_64/mindspore-2.7.0-cp310-cp310-linux_x86_64.whl) | 7b110af7a8321ebb331480d287b974490678be832c01d9f1036240d2099249c9 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/unified/x86_64/mindspore-2.7.0-cp311-cp311-linux_x86_64.whl) | 0051ecfc36b682df2e113b3e43c442f856509f567945d077c5728cd8e45b1f53 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp39-cp39-win_amd64.whl) | 64f2f42b127239d203cf4b93ef07202f02b0a185cce3f158a1ae214a4a9fb946 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp310-cp310-win_amd64.whl) | d598ce9efb88072c1ec7d3ec7c94398486c6d6f718eb607858e2345d65789669 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp311-cp311-win_amd64.whl) | de9779f037f21a1c0af544835d009d3b5c1d2cb446bde4b37388f6f027038c3b | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/aarch64/mindspore-2.7.0-cp39-cp39-macosx_11_0_arm64.whl) | 2c187e2efd659f49afc87e6d42cc3c4ecf55c1fa4017480911a870e726bda8ba | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/aarch64/mindspore-2.7.0-cp310-cp310-macosx_11_0_arm64.whl) | 1d0084245aed44be2db4960b5252f7dbd4ba0932ffcd3d3df80b71859c3a9347 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/aarch64/mindspore-2.7.0-cp311-cp311-macosx_11_0_arm64.whl) | 6be3c63c9a65b0e5fa06794f95de86ee1d7d85e8733a507ec4bc2965f1f852b8 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.7.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp39-cp39-macosx_10_15_x86_64.whl) | 19a2062a033471b254c43ae48315507b2335281b507c3a8e464d83d5127b66e1 | -| | | | Python3.10 | [mindspore-2.7.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp310-cp310-macosx_10_15_x86_64.whl) | c33d010511be62dd5b8240a7f6d012c211776d0df89b4d454134ad3d304634d1 | -| | | | Python3.11 | [mindspore-2.7.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0/MindSpore/cpu/x86_64/mindspore-2.7.0-cp311-cp311-macosx_10_15_x86_64.whl) | 78fca18ef9d06015a8bbf8674f0fc658403828df92e5d5fe71fae9f1984efe1a | - -**Ascend配套软件包** - -| 安装指引 | 社区版下载地址 | -|--------|------------------| -| [安装指引文档](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/82RC1/softwareinst/instg/instg_quick.html) | [CANN 8.2.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | -| [安装指南](https://gitee.com/mindspore/docs/tree/r2.7.0/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.7.0/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.7.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.7.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.7.0/api_python/mindspore.html) | - -## 2.7.0-rc1 - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|---------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/aarch64/mindspore-2.7.0rc1-cp39-cp39-linux_aarch64.whl) | a25de0e2625ad8a5e8a8f8850b044e97db75e19530edf2b8e0d7b3ad29c9989e | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/aarch64/mindspore-2.7.0rc1-cp310-cp310-linux_aarch64.whl) | a570ab1d21c51f81123c09c7fa058431c00c88a412f16d8a9fb85b696978ab67 | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/aarch64/mindspore-2.7.0rc1-cp311-cp311-linux_aarch64.whl) | 589161272a19444921a2e904450e50e8330853c976694c50fd327cb61179243d | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/x86_64/mindspore-2.7.0rc1-cp39-cp39-linux_x86_64.whl) | 5587c5b0489d91964996e65208eb5f70669abfb5f128f5fe3963097ccec2d31d | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/x86_64/mindspore-2.7.0rc1-cp310-cp310-linux_x86_64.whl) | 373b12637e46ffcf5aa573fb9bc2390a41a62a6909bb8dfdf46447dc26b62d6e | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/unified/x86_64/mindspore-2.7.0rc1-cp311-cp311-linux_x86_64.whl) | 9db48cc11afe32cb32906edd940058748976fa2225d779ef062e5b24056c0009 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp39-cp39-win_amd64.whl) | 89df451a3cd43f755355a6748a20d37d1486fca70245a625266dce70df78ef52 | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp310-cp310-win_amd64.whl) | 16d3d7d8f0938376cbdf2a51159af7459588d0bac8f8e3c637c9c7b327d7bfb3 | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp311-cp311-win_amd64.whl) | ffcbacff0e7d9f8246da75cf3e52f6ddebd03fd6e36e8f76efe3e9f3a1646be9 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/aarch64/mindspore-2.7.0rc1-cp39-cp39-macosx_11_0_arm64.whl) | 0572a4ce193e89b034b2b1b2aef35b06b9b496880b80ca81d8149e4db8d90659 | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/aarch64/mindspore-2.7.0rc1-cp310-cp310-macosx_11_0_arm64.whl) | 86c9e8a6dc2a881b45914c2edd9ebb768f12ae6bb5cd4aa44e3e624307278de0 | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/aarch64/mindspore-2.7.0rc1-cp311-cp311-macosx_11_0_arm64.whl) | 7dba0888b59b6e1d5f4106bbb13e745ddf2c9af2a68d97fdec023a0239bbc886 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.7.0rc1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp39-cp39-macosx_10_15_x86_64.whl) | 3e9ede2052e0eaac37431b5b1363dfe1e3d73859b590dad4999d9b954412a671 | -| | | | Python3.10 | [mindspore-2.7.0rc1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp310-cp310-macosx_10_15_x86_64.whl) | 1004271c43c0978b17b5288be701fb0a54cad3ad568e3199563a78337e653f3b | -| | | | Python3.11 | [mindspore-2.7.0rc1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.7.0rc1/MindSpore/cpu/x86_64/mindspore-2.7.0rc1-cp311-cp311-macosx_10_15_x86_64.whl) | aaf5a73505c853f72eb8d22cdcc9c85c781dfc644735cd1b4c0bdb4248c4b4cc | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.7.0rc1/use/downloads.html) | | - -**Ascend配套软件包** - -| 安装指引 | 社区版下载地址 | -|--------|------------------| -| [安装指引文档](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/82RC1/softwareinst/instg/instg_quick.html) | [CANN 8.2.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | -| [安装指南](https://gitee.com/mindspore/docs/tree/r2.7.0rc1/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.7.0rc1/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.7.0rc1/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.7.0rc1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.7.0rc1/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.7.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.7.0rc1/index.html) | - -## 2.6.0 - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/aarch64/mindspore-2.6.0-cp39-cp39-linux_aarch64.whl) | f496de26a28ea6cd6e63dc86aeb2cf455fba3304658779d03cb7689e5f6a1aac | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/aarch64/mindspore-2.6.0-cp310-cp310-linux_aarch64.whl) | 1e1f844f65a3699146ba6a210d9df2a36906f43c3668d089d600f5041cb05d78 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/aarch64/mindspore-2.6.0-cp311-cp311-linux_aarch64.whl) | 14cb6b2b94598d38fa1be50dfed05597d23e479dbff9e52f906b9583259a61a9 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/x86_64/mindspore-2.6.0-cp39-cp39-linux_x86_64.whl) | fc99ac495ae308f27e44900e48abda91bf53695eedca160836ac452442b8f295 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/x86_64/mindspore-2.6.0-cp310-cp310-linux_x86_64.whl) | 9d6fb7f538d2c464a9037640c45c6cd3939948db759bfbb534f4b7dbc3f6d200 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/x86_64/mindspore-2.6.0-cp311-cp311-linux_x86_64.whl) | 55910e88e99bb842853bb026f0629f9176a8f911f0abc3200aea1e78ebd62c51 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp39-cp39-win_amd64.whl) | be64e97517c7544c299823632ac2d4c4a4e54a57313db9eae1e6a1683078ed01 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp310-cp310-win_amd64.whl) | 89d2cab829c9214b257e7df15eda8fed7e1281aa522535f3c6ff427e295c2d43 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp311-cp311-win_amd64.whl) | 0098505481ef46e2f517596b05a232c0104902cfc06f5e9997460bf477ea746f | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/aarch64/mindspore-2.6.0-cp39-cp39-macosx_11_0_arm64.whl) | 98a5f15558eecce21c1a657cf1d212dae7eaf511bff721c7ad1d048244c75474 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/aarch64/mindspore-2.6.0-cp310-cp310-macosx_11_0_arm64.whl) | cf7aa990e98e3b5c6ae1ed06744aa902f6809b6c04e81749902f5c7d21f36bf6 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/aarch64/mindspore-2.6.0-cp311-cp311-macosx_11_0_arm64.whl) | 64e15aa67bc7eb1156cc193c193b33ed2948b3ca6afed03cae5231484aa338f3 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.6.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp39-cp39-macosx_10_15_x86_64.whl) | 7121933bb8b29ea01c834366d2baee067f74cf5325cae1db3b1c43379e826020 | -| | | | Python3.10 | [mindspore-2.6.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp310-cp310-macosx_10_15_x86_64.whl) | c63c06a14aaea2b7ade9b3cfafe3afd6f3d92fd4ccd0c1006928fe3c7e5efc87 | -| | | | Python3.11 | [mindspore-2.6.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/cpu/x86_64/mindspore-2.6.0-cp311-cp311-macosx_10_15_x86_64.whl) | 9ff0a7286d7b648947aae7de982cba4b6971f5706610bf8bb1d345f17a611f83 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.6.0/use/downloads.html) | | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------|------------------| -| [Ascend Training Solution 25.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100472026) | [CANN 8.1.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | -| [安装指南](https://gitee.com/mindspore/docs/tree/r2.6.0/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.6.0/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.6.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.6.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.6.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.6.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.6.0/index.html) | - -## 2.6.0-rc1 - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------|---------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/aarch64/mindspore-2.6.0rc1-cp39-cp39-linux_aarch64.whl) | 9fa471f435e825d286c24ae402de94ad1a70f56356006798faa7520a1ea180a4 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/aarch64/mindspore-2.6.0rc1-cp310-cp310-linux_aarch64.whl) | c79884124dd730081591cad807ebfeded2d8c7cda8003c856b34e5cb9280e2bb | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/aarch64/mindspore-2.6.0rc1-cp311-cp311-linux_aarch64.whl) | a6e84f4f9099fcb62015462e26ad3b4f2e316e309e5d573fb0f5a772cad268e0 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/x86_64/mindspore-2.6.0rc1-cp39-cp39-linux_x86_64.whl) | d69c4441df03585de2409e0e55617b491c36e2971bb2d9490ef100f1732c10da | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/x86_64/mindspore-2.6.0rc1-cp310-cp310-linux_x86_64.whl) | a27105052b2f6d016824e6c36350ee76e5d5c4a29d26553bf0c5d0a41ddcb7b3 | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/unified/x86_64/mindspore-2.6.0rc1-cp311-cp311-linux_x86_64.whl) | af3a229e8265d580bf0fab180621c151e9c7110de89da1c98fb43c72d734c1db | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp39-cp39-win_amd64.whl) | ccb084cde9ab3cee08eaf18b6f247327ab62c77bab327c3201c92484c517ba82 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp310-cp310-win_amd64.whl) | 3d24c841ac95d1e510dcd11d23d1eb96a17ce921207b36fdeb492e6553d54c2f | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp311-cp311-win_amd64.whl) | 9d05412be5aa3021ba06364afff411494790437694674dfc48790337ef01b5c6 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/aarch64/mindspore-2.6.0rc1-cp39-cp39-macosx_11_0_arm64.whl) | 3a28509acd171fffda592d9f9a2e190a45fcb07ab9e9561be9e732e837c66859 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/aarch64/mindspore-2.6.0rc1-cp310-cp310-macosx_11_0_arm64.whl) | cdb2aad69d68747e1a9d3096194f4fc5aed98814c1e25e09178b1e73c0c0d8c9 | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/aarch64/mindspore-2.6.0rc1-cp311-cp311-macosx_11_0_arm64.whl) | cd3069d56d2b6af22a38ad35ba4ba58043408e3dd51f03445f46798a85aaea2a | -| | | MacOS-x64 | Python3.9 | [mindspore-2.6.0rc1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp39-cp39-macosx_10_15_x86_64.whl) | 341f3b2a21f7c1220a7baab5c4f0e3fa3eccc3dfb1e3bf56c91ce86cced856d7 | -| | | | Python3.10 | [mindspore-2.6.0rc1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp310-cp310-macosx_10_15_x86_64.whl) | e8b5774df5ea337e35c3c3e98445311f08d71f61231a2234eddc1344dbed9c7b | -| | | | Python3.11 | [mindspore-2.6.0rc1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindSpore/cpu/x86_64/mindspore-2.6.0rc1-cp311-cp311-macosx_10_15_x86_64.whl) | 91d66953028f7da0275c9e410528755796a3b9ff982c125369bfbefbdde150b2 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.6.0rc1/use/downloads.html#2-6-0-rc1) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0rc1/MindFormers/any/mindformers-1.5.0-py3-none-any.whl) | ea76e820a852e05572728290aafb857cf290e20851e2e299f27ea93b68b65669 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------|------------------| -| [Ascend Training Solution 25.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100472026) | [CANN 8.1.RC1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | -| [安装指南](https://gitee.com/mindspore/docs/tree/r2.6.0rc1/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.6.0rc1/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.6.0rc1/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.6.0rc1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.6.0rc1/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/zh-CN/r1.5.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.6.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.6.0rc1/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/zh-CN/r1.5.0/mindformers.html) | - -## 2.5.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|------------------------------|----------------------|---------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp39-cp39-linux_aarch64.whl) | d484b1386289b4f4c05711da8edf2c438b0000f774e6bb3d1930f78d36a3a96e | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp310-cp310-linux_aarch64.whl) | 1116fd666a059f0480deccd6af04f5e9fe9c019fa88df24a51b0e0fe3c2e55da | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp311-cp311-linux_aarch64.whl) | ae26062f3918996138f7d51f658c552853f52c16a5ad1ad7006054a988234379 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp39-cp39-linux_x86_64.whl) | 3a616acfabd92744d8de370896e744e2584e977de55b56296ea455db138eda4f | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp310-cp310-linux_x86_64.whl) | 4171c24accd21aed5fce21bee3df2e6b570e07a9db9e3518dacb99eccf5a86b8 | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp311-cp311-linux_x86_64.whl) | bb8950840f92899891925b32bbcf4f2b38b011178eafe969ea2bf5894ea8af1c | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp39-cp39-win_amd64.whl) | eb7df41e178e7f05d6170efc5c3e17966969cfa08ac81f02aa0f60f42d9bee16 | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp310-cp310-win_amd64.whl) | 756ab1eda87bbeae2018f0e01536b625e27123a61912b3839988e41ccb5c2dbd | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp311-cp311-win_amd64.whl) | 256632eb40c0b6e61f8f7b1ed213dbbf0ea280a922ce5b47b4dd8fa91f7e929a | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/aarch64/mindspore-2.5.0-cp39-cp39-macosx_11_0_arm64.whl) | 87d460c8e640a72783c5a8b768783660a48e8616de6674bcab43b517e00de01e | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/aarch64/mindspore-2.5.0-cp310-cp310-macosx_11_0_arm64.whl) | 58e8851b81b94a9d03ad46a777e3252b484e54d53c513b34809c426ce6c4a3e0 | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/aarch64/mindspore-2.5.0-cp311-cp311-macosx_11_0_arm64.whl) | 20a5be17c6b718a95508bc5408e4d520a2bb54650286ffb29aacd22428277a60 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.5.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp39-cp39-macosx_10_15_x86_64.whl) | c452c870aff1b2365c7ec8eeb2c947f46c96c4f06e0e6247d8afdf3458f5c873 | -| | | | Python3.10 | [mindspore-2.5.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp310-cp310-macosx_10_15_x86_64.whl) | b3a68f36429460e83b1a753fc859aeae9bbc2e2dc0b530265d8bdd7589472b5f | -| | | | Python3.11 | [mindspore-2.5.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/cpu/x86_64/mindspore-2.5.0-cp311-cp311-macosx_10_15_x86_64.whl) | 7d48dba95fe67255eeb4f4c137af4bf7610d66d3834f56051131c838cea98ccd | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.5.0/use/downloads.html##2-5-0) | | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-1.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/GoldenStick/any/mindspore_gs-1.0.0-py3-none-any.whl) | 504bebc0c28015afca15f2db1c4bfdc0595765308cccb19608cc53e137f1dc57 | -| MindSpore
Quantum | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.10.0-cp39-cp39-linux_x86_64.whl) | d603addd7b572727a5449e446806cf7ae7bf33e62b037ca2652b03a5c9e8b945 | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.10.0-cp310-cp310-linux_x86_64.whl) | fa8709bf0378a11f6588a273e0c702350259827f76b3dda9bf3f999fe3c052c5 | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.10.0-cp311-cp311-linux_x86_64.whl) | f11cce2357ee27363ebf9bbcd9aa2a354ae284384af7ceb1ff4dc0936447ab9a | -| | CPU | Linux-aarch64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp39-cp39-linux_aarch64.whl) | 4f3ec187f7fad14dbbd9775a95b62aa59f4776fca41e6500574cedf0200a5036 | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp310-cp310-linux_aarch64.whl) | a35402211661ed6c2bc18ae71dc5650d5a2a4e84ed615a09d8126ec152fce295 | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp311-cp311-linux_aarch64.whl) | a1303ff2d05bbc5f8de93bd6f77d0368f23ca174ec819dc71cb146e8adfdf247 | -| | | Windows-x64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp39-cp39-win_amd64.whl) | 172d4fed4d0cc9abe358a3d132adc5211506b8f3a7b4db1d43c160086d679739 | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp310-cp310-win_amd64.whl) | 1cc8aa8f7208a023c44871c074e7367a8be91d3232e55a911db36f4ea44c01aa | -| | | MacOS-aarch64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp39-cp39-macosx_11_0_arm64.whl) | ae99804e67e2e7f78ae6d5f0b3decf95c514685ebf80191d113e03a4654619ea | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp310-cp310-macosx_11_0_arm64.whl) | 8b61cb09b2134bb976be3c42445542b4439980cf983b9a117d639e9048b296fc | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/aarch64/mindquantum-0.10.0-cp311-cp311-macosx_11_0_arm64.whl) | 4d61ad71c2a3e0b8e23115da5ebc45f135a161fb68863074035f071f632173f2 | -| | | MacOS-x64 | Python3.9 | [mindquantum-0.10.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp39-cp39-macosx_10_15_x86_64.whl) | 29e51b5dbe4933d7d69efa9ed51227bfba793ba2bc2c59e59a9d126aa4f1f02e | -| | | | Python3.10 | [mindquantum-0.10.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp310-cp310-macosx_10_15_x86_64.whl) | 7f61ac16ff3daea497004ea257c07468207a258ce1cd67a3ad2ca686cb2a5a5d | -| | | | Python3.11 | [mindquantum-0.10.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindQuantum/x86_64/mindquantum-0.10.0-cp311-cp311-macosx_10_15_x86_64.whl) | 6bc4329e4772be52d944ccab0105ae93847a97e0c8bde1d04b67a81b116ca1b8 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindScience/mindflow/ascend/aarch64/mindflow_ascend-0.3.0-py3-none-any.whl) | a057c39652010488e933b4cb3402074f7a28209db024a555cf12f8155acc5f34 | -| MindScience
(MindSpore
Earth) | Ascend | Linux-aarch64 | Python3 | [mindearth_ascend-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindScience/mindearth/ascend/aarch64/mindearth_ascend-0.3.0-py3-none-any.whl) | 4d1b32a3c562a2c3cb49a5297965f37c2619f5db100baeef0c49a6b09b8135f6 | -| MindScience
(MindSpore
Chemistry) | Ascend | Linux-aarch64 | Python3 | [mindchemistry_ascend-0.2.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindScience/mindchemistry/ascend/aarch64/mindchemistry_ascend-0.2.0-cp39-cp39-linux_aarch64.whl) | fed64bcc6f8b37e315aea4ee246a2ac3517dc691ef85eb6234141d72f09dc616 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------|------------------| -|[Ascend Training Solution 24.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100441839) | [CANN 8.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | -| [安装指南](https://gitee.com/mindspore/docs/tree/r2.5.0/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.5.0/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.5.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.5.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.5.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r1.0.0/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/zh-CN/r0.3/index.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/zh-CN/r0.3/index.html)
[MindSpore Chemistry](https://www.mindspore.cn/mindchemistry/docs/zh-CN/r0.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.5.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.5.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r1.0.0/mindspore_gs.quantization.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/overview.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/zh-CN/r0.3/mindflow.cell.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/zh-CN/r0.3/mindearth.cell.html)
[MindSpore Chemistry](https://www.mindspore.cn/mindchemistry/docs/zh-CN/r0.2/mindchemistry.cell.html) | - -## 2.4.10 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------|---------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/aarch64/mindspore-2.4.10-cp39-cp39-linux_aarch64.whl) | 74daa0703c215f1d01c8ba31c9c7b45d4c41dd7beab09e313cb9ebda24b6ef1a | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/aarch64/mindspore-2.4.10-cp310-cp310-linux_aarch64.whl) | dc744a3a05b97f7ca88b1f683794b3f99b3f74739c6ba597aa2daee8225e8809 | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/aarch64/mindspore-2.4.10-cp311-cp311-linux_aarch64.whl) | c37240d248d95eece2a0db03f856c70e38133b74852bb23389ab97d4e1496baf | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/x86_64/mindspore-2.4.10-cp39-cp39-linux_x86_64.whl) | 41548d653413376389ae5d606aeba25ba0bc3dff546833462249dfe2ea86d65c | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/x86_64/mindspore-2.4.10-cp310-cp310-linux_x86_64.whl) | 4d1082b81ee8db4f37de658b91b590f9bcda5f0ef30669a72dd18e61ef153686 | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/unified/x86_64/mindspore-2.4.10-cp311-cp311-linux_x86_64.whl) | a1a146966f8103fbcbd60ac85697c2d10906fe5d5b4cf0df1cbc9929a3d59762 | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp39-cp39-win_amd64.whl) | 0dfaaef3eaf0fdea3eab014ed15d9496845b7884edd69e3c5e8b822ba657ec75 | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp310-cp310-win_amd64.whl) | f09cb53ab60c9fb1403f9263ad4016154fa585ae0ff3e12fc271c7c65de1852b | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp311-cp311-win_amd64.whl) | e2b8f1ae7ff7325ff74746744ba79d28e07a78bc3958491afaba7e98ce640cca | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/aarch64/mindspore-2.4.10-cp39-cp39-macosx_11_0_arm64.whl) | d99736df3b8937cf98e792e0cf0c27a6aecf2093e351b51e5914adbdb4dd30d1 | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/aarch64/mindspore-2.4.10-cp310-cp310-macosx_11_0_arm64.whl) | 228ff7986f37e7c936845c5e8dc582b31016ca77be36c46244665918e94f913e | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/aarch64/mindspore-2.4.10-cp311-cp311-macosx_11_0_arm64.whl) | fe39652f7968508af7018c7d15ebf64dc69c32023fb54d0c440d496a46b6317f | -| | | MacOS-x64 | Python3.9 | [mindspore-2.4.10-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp39-cp39-macosx_10_15_x86_64.whl) | 4d2d920381a692f5b797c1732c3c0420ac5ab26d2be16fa66e68cf8f0a182579 | -| | | | Python3.10 | [mindspore-2.4.10-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp310-cp310-macosx_10_15_x86_64.whl) | 10ece54f68a5d33df04a0f89a7a4ea09b7a5d61d9c39c0fca5003f02e90a6c68 | -| | | | Python3.11 | [mindspore-2.4.10-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindSpore/cpu/x86_64/mindspore-2.4.10-cp311-cp311-macosx_10_15_x86_64.whl) | 97e2b2cf8e4793aa7b069c1c82fa6a0ac5b67d44833a87a2f6384997c0b82860 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.4.10/use/downloads.html#2-4-10) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.3.2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.10/MindFormers/any/mindformers-1.3.2-py3-none-any.whl) | e3c96ac5b08b8f2cd34b89883dd49f4a250555c7b615251543ba76b44f16353e | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------|------------------| -|[Ascend Training Solution 24.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100441839) | [CANN 8.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | -| [安装指南](https://gitee.com/mindspore/docs/tree/r2.4.10/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.4.10/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.4.10/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.4.10/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.4.10/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/zh-CN/r1.3.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.4.10/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.4.10/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/zh-CN/r1.3.2/mindformers.html) | - -## 2.4.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp39-cp39-linux_aarch64.whl) | b2d09ebc0f9e4e17f69f87eaddbb721281f94c21a386e38985af9fd0979c5f54 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp310-cp310-linux_aarch64.whl) | c9719b0935597d4e3f11fe9340c84b5484757bce212cd9609b191ad2e9bb465e | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp311-cp311-linux_aarch64.whl) | efdb70b743c9cd66e002134b357ccd3c6775252fbc340877a658dd9a896335f2 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/x86_64/mindspore-2.4.1-cp39-cp39-linux_x86_64.whl) | 2953f739b2dc7105ff4d6736fbec8d4203e4b72a8f19573418ec95edbdc74f26 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/x86_64/mindspore-2.4.1-cp310-cp310-linux_x86_64.whl) | ac4293ad8cffa48b15977f41f1575c158430eccb9f2387aa891153432ef1d0c6 | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/x86_64/mindspore-2.4.1-cp311-cp311-linux_x86_64.whl) | aac47cf56da6bad2c4b9654889a6b065fc80108df32427a6d76a1e56c9a8d685 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/aarch64/mindspore-2.4.1-cp39-cp39-macosx_11_0_arm64.whl) | 187d27e9dcf539546db5cd96ae68bceb8fe152c97106e24c44929ffdd85b2c18 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/aarch64/mindspore-2.4.1-cp310-cp310-macosx_11_0_arm64.whl) | a0627f5413f2c36cd97ab1562256f64ba4f04747ae6f71e386cc3712748e251a | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/aarch64/mindspore-2.4.1-cp311-cp311-macosx_11_0_arm64.whl) | c74343a50b68d4d461e930f4fef0b74c4cff1e3382087b7d6597d458ed6d0f65 | -| | | MacOS-x64 | Python3.9 | [mindspore-2.4.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/x86_64/mindspore-2.4.1-cp39-cp39-macosx_10_15_x86_64.whl) | 8b19d60f02134e78918bdbba7327e8faee3f7531e020286b7a994bb40758cb01 | -| | | | Python3.10 | [mindspore-2.4.1-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/x86_64/mindspore-2.4.1-cp310-cp310-macosx_10_15_x86_64.whl) | bf039bf8039b7e013d7db367958024ef55cd983e73df7a66a01f5269b8e99e17 | -| | | | Python3.11 | [mindspore-2.4.1-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/cpu/x86_64/mindspore-2.4.1-cp311-cp311-macosx_10_15_x86_64.whl) | e4913cda2c61dd22b943a75bf791aff4cd2370eff5f79ed405443ef30fcaa184 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.4.1/use/downloads.html#2-4-1) | | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------|------------------| -|[Ascend Training Solution 24.0.RC3](https://support.huawei.com/enterprise/zh/doc/EDOC1100433602) | [CANN 8.0.RC3.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.4.1/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.4.1/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.4.1/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.4.1/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.4.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.4.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.4.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.4.1/index.html) | - -## 2.4.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|------------------------------|---------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp39-cp39-linux_aarch64.whl) | 0d0ed8235f9067fad4a231b449bec834b17e87c5f360724c4f2991239836bf3e | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp310-cp310-linux_aarch64.whl) | 005618e6753bd485054175099a91d6b44dd8be12f415b499e837c1fff6d8f038 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp311-cp311-linux_aarch64.whl) | 0b5c61e505c1f36556baf69b61c6ae7e61db96c6d3e289306254eed24d0fc0c1 | -| | Ascend
CPU | Linux-x86_64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/x86_64/mindspore-2.4.0-cp39-cp39-linux_x86_64.whl) | 0b5c61e505c1f36556baf69b61c6ae7e61db96c6d3e289306254eed24d0fc0c1 | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/x86_64/mindspore-2.4.0-cp310-cp310-linux_x86_64.whl) | 5690c96b5641e184a849e96856dac9417c7dfa8b886fe245386dce84ac82b2c1 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/x86_64/mindspore-2.4.0-cp311-cp311-linux_x86_64.whl) | c69a343afb512e56bfa588b37269fbf1eeed9ec7c1ba107096a6ffeadc34fe6c | -| | CPU | Windows-x64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp39-cp39-win_amd64.whl) | be53836ba52fd4f6edc2721bbe587f3d19d0a5d3debd1f13c18705801d2f9452 | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp310-cp310-win_amd64.whl) | 69f9dd86f3f66f3daeda0f1b886441098edb7dab3008625bf904ce829b2ee632 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp311-cp311-win_amd64.whl) | 8587a0495b8a64ed8bb3122d3c3c308044bea402001276ec74686b42c4cc1613 | -| | | MacOS-aarch64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/aarch64/mindspore-2.4.0-cp39-cp39-macosx_11_0_arm64.whl) | 4c50eaf3eee37b5e84c399bde768cb43dacd5dd9a8214a7d9c0ca413633136aa | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/aarch64/mindspore-2.4.0-cp310-cp310-macosx_11_0_arm64.whl) | 7e303f169e2a4db49ba07d4f55b273567a4c2a52c99f6ac6abc21d5063f3868f | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/aarch64/mindspore-2.4.0-cp311-cp311-macosx_11_0_arm64.whl) | 0916ef25c69f73405fae5b7a1c60761ff71c1a7887da1d03054d63d7886b1eca | -| | | MacOS-x64 | Python3.9 | [mindspore-2.4.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp39-cp39-macosx_10_15_x86_64.whl) | c55ee021d7a46ca943d354eafb127987edd983413c4c6a891e29305ad84a4023 | -| | | | Python3.10 | [mindspore-2.4.0-cp310-cp310-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp310-cp310-macosx_10_15_x86_64.whl) | d218c4edc0aace63d30dad6a664ac518590f979c38a7ce76b7dcf13f956df594 | -| | | | Python3.11 | [mindspore-2.4.0-cp311-cp311-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/cpu/x86_64/mindspore-2.4.0-cp311-cp311-macosx_10_15_x86_64.whl) | bca6bcb38b23838feb2baae59e4e140b6641d5af422d87a744b515848a7f5205 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.4.0/use/downloads.html#2-4-0) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindFormers/any/mindformers-1.3.0-py3-none-any.whl) | 6d9cd227bf788cad5649e2a8fa862dfd66ee4ffe3f6f20add0e818c2bc15cd34 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/GoldenStick/any/mindspore_gs-0.6.0-py3-none-any.whl) | 14961462194fb03117bb758af24bcf50bae2c0b8db982cd0cded26cd85e73fd0 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------|------------------| -|[Ascend Training Solution 24.0.RC3](https://support.huawei.com/enterprise/zh/doc/EDOC1100433602) | [CANN 8.0.RC3.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.4.0/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.4.0/install) | [快速上手](https://www.mindspore.cn/tutorials/zh-CN/r2.4.0/beginner/quick_start.html)
[实践案例](https://www.mindspore.cn/tutorials/zh-CN/r2.4.0/cv.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.4.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.4.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.6.0/index.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/zh-CN/r1.3.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.4.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.4.0/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.6.0/mindspore_gs.quantization.html)
[MindSpore Transformers](https://www.mindspore.cn/mindformers/docs/zh-CN/r1.3.0/mindformers.html) | - -## 2.3.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|------------------------------|--------|---------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.8 | [mindspore-2.3.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp38-cp38-linux_aarch64.whl) | 976854b9e0c2535541cacb6e1b0b887595fd7aaa03572670b148d1846b08d339 | -| | | | Python3.9 | [mindspore-2.3.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp39-cp39-linux_aarch64.whl) | 5fe6a476a7a718c413ac66db71ba93bfe2d6870e13ef90f10652a27170ed338e | -| | | | Python3.10 | [mindspore-2.3.1-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp310-cp310-linux_aarch64.whl) | d9be757fa42b30e546920b5dffe76527f3f94e9aac88b262174ecd2a0f32c2e0 | -| | Ascend | Linux-x86_64 | Python3.8 | [mindspore-2.3.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp38-cp38-linux_x86_64.whl) | f7d19669517be1624d3475a6b22b54f2bc730b998eefd6020a9c9d6ef9d09dee | -| | | | Python3.9 | [mindspore-2.3.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp39-cp39-linux_x86_64.whl) | 291ce96deb150445dfb6648998276fa0389264c822abddce58bd93ef65fdd993 | -| | | | Python3.10 | [mindspore-2.3.1-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp310-cp310-linux_x86_64.whl) | 568fc4a52e60f3087e9e0399fa9eed9ff0338bd08ecbcd9c101f2db39ee5fb01 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.1/use/downloads.html#2-3-1) | | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/GoldenStick/any/mindspore_gs-0.5.0-py3-none-any.whl) | eb1c37e35468fef1e4ff1237ab88b1d718acd47f65117ec532bdb04da9d5372b | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------|------------------| -| [Ascend Training Solution 24.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100397169) | [CANN 8.0.RC2.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.3.1/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.3.1/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.3.1/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.3.1/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.3.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.5.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.3.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.5.0/mindspore_gs.quantization.html) | - -## 2.3.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------|--------|---------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.8 | [mindspore-2.3.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/aarch64/mindspore-2.3.0-cp38-cp38-linux_aarch64.whl) | 7d1c1ff8bd66a24f677601386086e3077b211e9cf01e4e1788a1cde0f6efcb19 | -| | | | Python3.9 | [mindspore-2.3.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/aarch64/mindspore-2.3.0-cp39-cp39-linux_aarch64.whl) | fcd913d6f508afaa6b5fa0a8d3b76a17c28c93c63ad42f38cff266ca568cdb55 | -| | | | Python3.10 | [mindspore-2.3.0-cp310-cp310-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/aarch64/mindspore-2.3.0-cp310-cp310-linux_aarch64.whl) | df172210b02da99afef26ff11d2574902f5c84201d8db58c80c0ecca3bc79bd1 | -| | Ascend | Linux-x86_64 | Python3.8 | [mindspore-2.3.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/x86_64/mindspore-2.3.0-cp38-cp38-linux_x86_64.whl) | 58e21448de0a50f6e76bfc5d0a59873760f982b320d1d01d54430e693890bddd | -| | | | Python3.9 | [mindspore-2.3.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/x86_64/mindspore-2.3.0-cp39-cp39-linux_x86_64.whl) | 71bee84343e0ae17658584046c7727fb8c40f8e335af8e48140d208ed27be101 | -| | | | Python3.10 | [mindspore-2.3.0-cp310-cp310-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindSpore/unified/x86_64/mindspore-2.3.0-cp310-cp310-linux_x86_64.whl) | 6bdb8b0d9b42975f5b31656d4983bf3ea7723f835a351b399c145a8f0d841b57 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.0/use/downloads.html#2-3-0) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindInsight/any/mindinsight-2.3.0-py3-none-any.whl) | 1f1ae7290a0f861e72875ec5080333d3b70ba7864fc51dbeffa62a6a3cf27538 | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0/MindFormers/any/mindformers-1.2.0-py3-none-any.whl) | 03e6094248324c1e5d9616783f8a6fa6e7e319c83f246dcdd402889663860e02 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|--------------|------------------| -| [Ascend Training Solution 24.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100397169) | [CANN 8.0.RC2.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.3.0/RELEASE.html) |[安装指南](https://gitee.com/mindspore/docs/tree/r2.3.0/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.3.0/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.3.0/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.3.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.3/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.3.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.3/mindinsight.debugger.html) | - -## 2.3.0-rc2 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------|--------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore-2.3.0rc2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/aarch64/mindspore-2.3.0rc2-cp37-cp37m-linux_aarch64.whl) | e27677983fedf446e31d84bf790cf91111e0fe6bf5175338035f20bdf68d03a1 | -| | | | Python3.8 | [mindspore-2.3.0rc2-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/aarch64/mindspore-2.3.0rc2-cp38-cp38-linux_aarch64.whl) | 2232908bf89dfeda60d2929459c630d30b651628d8ac6ab6f57bcca61a0dfdef | -| | | | Python3.9 | [mindspore-2.3.0rc2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/aarch64/mindspore-2.3.0rc2-cp39-cp39-linux_aarch64.whl) | e8b3083003154ebab69af577bd9ea5b0e2fca7c31f5bd0dad21816aa5f4625db | -| | Ascend | Linux-x86_64 | Python3.7 | [mindspore-2.3.0rc2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/x86_64/mindspore-2.3.0rc2-cp37-cp37m-linux_x86_64.whl) | 02764018f2762846cd69b92c7cc6802fdbdd712e48968aa2311d72ce67de7793 | -| | | | Python3.8 | [mindspore-2.3.0rc2-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/x86_64/mindspore-2.3.0rc2-cp38-cp38-linux_x86_64.whl) | b1b2c6e53a007931cfac8f62fe0bc0cc92938f4885fbcdc38cd108f34691c84b | -| | | | Python3.9 | [mindspore-2.3.0rc2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindSpore/unified/x86_64/mindspore-2.3.0rc2-cp39-cp39-linux_x86_64.whl) | 79f608abbd72042ad68a3727570c14d33bf4fc6fda566c7565c199bce35a1765 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.0rc2/use/downloads.html#2-3-0-rc2) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.3.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindInsight/any/mindinsight-2.3.0rc2-py3-none-any.whl) | f927eece46f7f6e9dc7be78759cdbf25a98c8cd0aa01ef42a2e28445959ab96d | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc2/MindFormers/any/mindformers-1.1.0-py3-none-any.whl) | b2dedb2bf4c15a91f89b92c4c60eba9cf7f162a56781e31783d66832cf00e801 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 24.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100373131) | [CANN 8.0.RC1.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc2/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.3.0rc2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.3.0rc2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.3.0rc2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.3.0rc2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.0rc2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.3/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.3.0rc2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.3/mindinsight.debugger.html) | - -## 2.3.0-rc1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|------------------------------|--------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore-2.3.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/aarch64/mindspore-2.3.0rc1-cp37-cp37m-linux_aarch64.whl) | dbd0db0a06092658f347b95a3c072ca95f0a5f88fb61b1bed227784308c4e563 | -| | | | Python3.8 | [mindspore-2.3.0rc1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/aarch64/mindspore-2.3.0rc1-cp38-cp38-linux_aarch64.whl) | dd20986b759884a684252aa3f0169bfaa1ab9d68ac1b28c958df4c0348b05b17 | -| | | | Python3.9 | [mindspore-2.3.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/aarch64/mindspore-2.3.0rc1-cp39-cp39-linux_aarch64.whl) | 8511cf89e9471c3934aa93359805edf86f69f32e27ac1c83836b4ec932c46b54 | -| | Ascend | Linux-x86_64 | Python3.7 | [mindspore-2.3.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/x86_64/mindspore-2.3.0rc1-cp37-cp37m-linux_x86_64.whl) | 50d5124d8e9bbb7464568e73f2ebce96890fd3cf235f90100f692cc340d44e08 | -| | | | Python3.8 | [mindspore-2.3.0rc1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/x86_64/mindspore-2.3.0rc1-cp38-cp38-linux_x86_64.whl) | e804ffaf254d665a2f8266d06bb4d56ddde92a754b2927208677094c1507c07b | -| | | | Python3.9 | [mindspore-2.3.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindSpore/unified/x86_64/mindspore-2.3.0rc1-cp39-cp39-linux_x86_64.whl) | 687a3697ad7893d1d512cdfbb91ca28e9a11e91f76cdf09717653fcd78840752 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.0rc1/use/downloads.html#2-3-0-rc1) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.3.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindInsight/any/mindinsight-2.3.0rc1-py3-none-any.whl) | dfa70a1bb42c29b846c5f1a4de06ee42620f812548b5e1dc8c1048651f4f50b7 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.4.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/GoldenStick/any/mindspore_gs-0.4.0-py3-none-any.whl) | 184e03720e20fc1209377941da6d098c87fc251a02bf63b5bc986cf89add21df | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.0rc1/MindFormers/any/mindformers-1.1.0rc1-py3-none-any.whl) | c6398ee766d305694ec63e7fe3ed5dda774d40ad786e9799951797665697a03d | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 24.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100373131) | [CANN 8.0.RC1.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc1/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.3.q1/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.3.0rc1/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.3.0rc1/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.3.0rc1/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.0rc1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.3/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.4/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.3.0rc1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.3/mindinsight.debugger.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.4/mindspore_gs.html) | - -## 2.2.14 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------|---------------------------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/aarch64/mindspore-2.2.14-cp37-cp37m-linux_aarch64.whl) | 5d724c69cf2e336212d54d5cd16673cad026a4fbc8be3beaa0caf4711ed21605 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/aarch64/mindspore-2.2.14-cp38-cp38-linux_aarch64.whl) | 01f67abb181b3bdbee0334252349a4f6e30d92ae52701a648af45eb99bb0daac | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/aarch64/mindspore-2.2.14-cp39-cp39-linux_aarch64.whl) | 2406f23f5b79676997490f0f05ecd42fb5606b8ce57a631a519dfb7e1524e8f4 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp37-cp37m-linux_x86_64.whl) | 3f197b6021ba803989aea8d74c4550be696677829fc75c0d5d0a90c753e8abb5 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp38-cp38-linux_x86_64.whl) | eac42952a2177f3da343b4945631799d81a58e4fbc250fcf1060137cef53121a | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp39-cp39-linux_x86_64.whl) | 66d1864ccb722c82c1fa176b6277d33301b700b326e4932a7fa30209ccce57c1 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp37-cp37m-win_amd64.whl) | 5caae75dcf6edd2896fc0a089cc98f5c0ce39c72015af71f074ac66135d51fd3 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp38-cp38-win_amd64.whl) | cab74a2bc831f93585b06625a153b20a5a00f5144af18d2180255fcc2a878d21 | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp39-cp39-win_amd64.whl) | c8fa2649d6a1e775e33e77290ecb30608f1c88f4feaa23d5b495df507289b337 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.14-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/aarch64/mindspore-2.2.14-cp38-cp38-macosx_11_0_arm64.whl) | fbfde384f8410d3ab816fa48f6fc63cb5419d8318c50aba4057a25a89d852519 | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/aarch64/mindspore-2.2.14-cp39-cp39-macosx_11_0_arm64.whl) | 665f86275cb174927886b7290d448c2c2ca6667e8d813c2872df5c2d9322fd26 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.14-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp37-cp37m-macosx_10_15_x86_64.whl) | 14822f4a5f43a37c464295c41ab93c1c50af3016cda40406e555dc500e639ad1 | -| | | | Python3.8 | [mindspore-2.2.14-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp38-cp38-macosx_10_15_x86_64.whl) | eeececc0f1f73a8ca9fc824997f0cfd7e0048289a3469bf6e2374199be551033 | -| | | | Python3.9 | [mindspore-2.2.14-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/cpu/x86_64/mindspore-2.2.14-cp39-cp39-macosx_10_15_x86_64.whl) | 765da246aeadaf649074642394062201522c4cdae59559d185cceff4eeb71df9 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html#2-2-14) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.0.2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindFormers/any/mindformers-1.0.2-py3-none-any.whl) | 064bfbe1184fe8000fcd8ce01f3a1a3e47537fe79578bb21f4a1b4acf8f65fd8 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.2/RELEASE.html#mindspore-2-2-14-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.2/index.html) | - -## 2.2.13 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|---------------------------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/aarch64/mindspore-2.2.13-cp37-cp37m-linux_aarch64.whl) | cace2c4d5ad1a69a57f5e6b9c9c869d0a837ccee73b1ab7b97fe51ce919836a5 | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/aarch64/mindspore-2.2.13-cp38-cp38-linux_aarch64.whl) | 31ecd30736a246919e247594c3de3f0f0b82e1a492d7624a4f02c37a298d469c | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/aarch64/mindspore-2.2.13-cp39-cp39-linux_aarch64.whl) | 9488065c8e398fdd5c99338804cbcd90de4eff497d89d1bd3cf031617c414354 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/x86_64/mindspore-2.2.13-cp37-cp37m-linux_x86_64.whl) | a90aff0e9ccd795a32fd09c447825ea31b46a35dfd7b24c7997a094e4b9ef20f | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/x86_64/mindspore-2.2.13-cp38-cp38-linux_x86_64.whl) | 698112c1c5fa3a00ae2f1abdca355aba46f723b5fe2ce7570cc1d861eb01f6f7 | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/unified/x86_64/mindspore-2.2.13-cp39-cp39-linux_x86_64.whl) | 84094e7e7621616845ea9759657cc9b534a095ffbbc0df4744bc0a5c460d2b01 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp37-cp37m-win_amd64.whl) | a558fc6fbdc0ae4a46b8afa0d49034f58d0328afc802467cb5622142c82d46aa | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp38-cp38-win_amd64.whl) | 5cc098b66caa3fbd01704f5dd4b7e26293a2084f3a4f84584eced98eff8ef850 | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp39-cp39-win_amd64.whl) | 9a4acbc2d2f798ea3da627bd19ff362caa2fa0126dd2bcaf1bd48305aa25c0b7 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.13-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/aarch64/mindspore-2.2.13-cp38-cp38-macosx_11_0_arm64.whl) | f586daf1cb2efd78e04877d86a1b4cb73bc976d9ebd238195bf58242c4714d7d | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/aarch64/mindspore-2.2.13-cp39-cp39-macosx_11_0_arm64.whl) | 47dd0a845e8729707dae909076cdde3a429cc149a72ece8867e98064c7112964 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.13-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp37-cp37m-macosx_10_15_x86_64.whl) | b3d445b4869a19b554628abcd91b46fb6b644faecee98ee58d35b38def2be155 | -| | | | Python3.8 | [mindspore-2.2.13-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp38-cp38-macosx_10_15_x86_64.whl) | 8f4a37a5468c79bb4066c635492da4abaeaf5dc1fc8fcf1797abf43bd13aec69 | -| | | | Python3.9 | [mindspore-2.2.13-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.13/MindSpore/cpu/x86_64/mindspore-2.2.13-cp39-cp39-macosx_10_15_x86_64.whl) | 696af147e974d74da63f8a61273df6c7ae7a3f887cfc8eb827e88fa24a0afb35 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html#2-2-13) | | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.2/RELEASE.html#mindspore-2-2-13-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.2/index.html) | - -## 2.2.12 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|---------------------------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/aarch64/mindspore-2.2.12-cp37-cp37m-linux_aarch64.whl) | ef67adb395d6d21800f47161d9caf251d077d115a7ac583da6b879cf519cbeaa | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/aarch64/mindspore-2.2.12-cp38-cp38-linux_aarch64.whl) | 4ebdf87f70eaceee6456400657dd0872a1d909beb9ef6421cbe28e7ea7974ff5 | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/aarch64/mindspore-2.2.12-cp39-cp39-linux_aarch64.whl) | 4f0099dee8ce60640e2df64c0ce0903ccdb51274dde6d62a21f3c3d146555324 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/x86_64/mindspore-2.2.12-cp37-cp37m-linux_x86_64.whl) | e958ccfd0737306a82b457f13e25e4039b20c475c98066ddc27eb644535c1ba5 | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/x86_64/mindspore-2.2.12-cp38-cp38-linux_x86_64.whl) | 817874020630876cc199af71ffca19dd7eb74da55e9735ee137fe9eda11df881 | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/unified/x86_64/mindspore-2.2.12-cp39-cp39-linux_x86_64.whl) | 3235298b849b89e2c1d648f7f02561f510f71de16c7a0b59d7bd688dd15182e6 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp37-cp37m-win_amd64.whl) | ab57c82deacf308c0332349844752ab11c9ca6f1c3f3608ea75b60047771fcfb | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp38-cp38-win_amd64.whl) | e5d851838274533208ee4ea1e4bfed92ef868c7d214aee5711be6764111d2930 | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp39-cp39-win_amd64.whl) | 479ed220c79510a1ff7b2960de11b3c49574c9b77b1faccfc5caa741cb20d026 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.12-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/aarch64/mindspore-2.2.12-cp38-cp38-macosx_11_0_arm64.whl) | d56282093871657c89419d20ebbcaaad2036ce186e8dc8693ea91919961f75bc | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/aarch64/mindspore-2.2.12-cp39-cp39-macosx_11_0_arm64.whl) | 54fa47cff5059a04f8ff533bf62baeb6009de0a44a41ccf42d2f3fad692ba713 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.12-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp37-cp37m-macosx_10_15_x86_64.whl) | 4e6a25e62cb98197fa9807107a4c1789b1f178e65b5681c1da2001c9281297c2 | -| | | | Python3.8 | [mindspore-2.2.12-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp38-cp38-macosx_10_15_x86_64.whl) | c1b8588fea82ff884d9657b0e386043efc21a912eaef8ad0b97a589c33e35e1e | -| | | | Python3.9 | [mindspore-2.2.12-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindSpore/cpu/x86_64/mindspore-2.2.12-cp39-cp39-macosx_10_15_x86_64.whl) | 7b72dcc834f38e2459c0b0f1b89fccec9673569f46b5e01bc74495b6088e5557 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html#2-2-12) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.0.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindFormers/any/mindformers-1.0.1-py3-none-any.whl) | 20c88c0c2e4d7dd82ee87e11e18640eaf177013a2c1b0d41be71bcbff7203741 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindflow/ascend/aarch64/mindflow_ascend-0.2.0-py3-none-any.whl) | 64f1d668a4006668a955a17b28a3f65474387fa56b8d58d989c11964fbf1302d | -| | GPU CUDA 10.1
GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindflow/gpu/x86_64/cuda-11.1/mindflow_gpu-0.2.0-py3-none-any.whl) | 2462d3af09183056351ed0d9daceda93e21831804998b1b2b8bac35d8e42cc00 | -| MindScience
(MindSpore
Earth) | Ascend | Linux-aarch64 | Python3 | [mindearth_ascend-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindearth/ascend/aarch64/mindearth_ascend-0.2.0-py3-none-any.whl) | 64efd2ee34b3c78f27d2b7a01de8ab226e8a4d6d1cb8356345bafad7d5bc90c9 | -| | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindearth_gpu-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.12/MindScience/mindearth/gpu/x86_64/cuda-11.1/mindearth_gpu-0.2.0-py3-none-any.whl) | aa94dd1dbb57857bdf06e9b604bcb25721f0f81124ffd6b17c9a6fa4d73fc260 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -|[Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.2/RELEASE.html#mindspore-2-2-12-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/zh-CN/r0.2/index.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/zh-CN/r0.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.3.0rc1/index.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/zh-CN/r0.2/mindflow.cell.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/zh-CN/r0.2/mindearth.cell.html) | - -## 2.2.11 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------|---------------------------------------------------------------------|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/aarch64/mindspore-2.2.11-cp37-cp37m-linux_aarch64.whl) | f659a1b29531d4949f9479e2a3a7e4c4ef8cd89c3fa9532123c14248bac75ac3 | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/aarch64/mindspore-2.2.11-cp38-cp38-linux_aarch64.whl) | b6696b8273cb950b2d6ed36bda40f78f92abdb473f795fa6f49a4ab44edfb36f | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/aarch64/mindspore-2.2.11-cp39-cp39-linux_aarch64.whl) | c29f3abbf46b23360082913f8d0ba3755c15a4de6a13d16458ea3321be739fd7 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
GPU CUDA 11.6
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/x86_64/mindspore-2.2.11-cp37-cp37m-linux_x86_64.whl) | 3127d7180a56cce965a23c01a57e1ff486b4d76646cc282a07b7c9a60b775ce3 | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/x86_64/mindspore-2.2.11-cp38-cp38-linux_x86_64.whl) | d54c925e0a2003aa83e94baa8a376e43e5eae9ac674f6e0249efdbda8c4920ce | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/unified/x86_64/mindspore-2.2.11-cp39-cp39-linux_x86_64.whl) | f2824bc0c14b3a2a2f5fbcaa2d3869e471857e2bf8813a2f2e6dc7b18e5a83d2 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp37-cp37m-win_amd64.whl) | 671cb5845412bd78c3d9e3953820f713f5983cc59a67c2ac332c7afa5b36b953 | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp38-cp38-win_amd64.whl) | d6d9dd0dbffa00a108b20d66b499f77e239364cc85aedd0e10e66f8cbc7f9fbb | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp39-cp39-win_amd64.whl) | 749a6cb8dfb2444c48c89e0232db7ed1dfe054365971c7498fdb93abd239c3b5 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.11-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/aarch64/mindspore-2.2.11-cp38-cp38-macosx_11_0_arm64.whl) | cf73f88dc40f5b333031f9a6d2fdb71de5f8a00a945e170ead4782902c2ac4a5 | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/aarch64/mindspore-2.2.11-cp39-cp39-macosx_11_0_arm64.whl) | 84d5a921ad5f53c7f75bae510b2891a7d9624d8a69be2a4d620baa7db6f53581 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.11-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp37-cp37m-macosx_10_15_x86_64.whl) | c1716836e82ca2de5785dd1d4d6bbc7fdc5f878fb0bb34929a2ca0ab7eeacadf | -| | | | Python3.8 | [mindspore-2.2.11-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp38-cp38-macosx_10_15_x86_64.whl) | 1f3ecbdf076b6ee488eeb42fedb403c9a9a7d75375d22e2ade1a5d767b6bf444 | -| | | | Python3.9 | [mindspore-2.2.11-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindSpore/cpu/x86_64/mindspore-2.2.11-cp39-cp39-macosx_10_15_x86_64.whl) | b3f467b46b378488e2e36f51a9fa524a9b6564d71db41bd214b67a86e914cab8 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html#2-2-11) | | -| MindSpore
Transformers | | any | Python3 | [mindformers-1.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindFormers/any/mindformers-1.0.0-py3-none-any.whl) | 851a1d4e8f2d5f6b7e4b3c4d195674d12aabf025b51dc3bfabe2bb5fe56a95a5 | -| MindSpore
Quantum | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindquantum-0.9.11-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.11-cp37-cp37m-linux_x86_64.whl) | 9908e43308bf2fcb4164ab5462562ec065ac6391f1d468af54a279e1a9f506b6 | -| | | | Python3.8 | [mindquantum-0.9.11-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.11-cp38-cp38-linux_x86_64.whl) | a936570c5fdc6b1472d45148aceb979335387d57f6456246a13acb1c5758d995 | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.11-cp39-cp39-linux_x86_64.whl) | a4dbadf6442e53b32b39f16cbc4d1f968e031872276393c692557c0e37f1777d | -| | CPU | Windows-x64 | Python3.7 | [mindquantum-0.9.11-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp37-cp37m-win_amd64.whl) | 2b502154ae78c79da0d8bb65f7b3bf0b27303ddc9e57d826a20c8af0726d22f6 | -| | | | Python3.8 | [mindquantum-0.9.11-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp38-cp38-win_amd64.whl) | c5bed187de40800ffbde1bf9e69c41b4bb2a50ceb428b26a7deaf520ed4d96fa | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp39-cp39-win_amd64.whl) | d9d3dabce342ef69b7f348052e770adf2e3e0bf820268fe4b80efa6f6ba97fb7 | -| | | MacOS-aarch64 | Python3.8 | [mindquantum-0.9.11-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/aarch64/mindquantum-0.9.11-cp38-cp38-macosx_11_0_arm64.whl) | 139b94bd376950fa3c0e2a2c21b23c8a58dcb4b6a4dcf824da55a337ea653e34 | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/aarch64/mindquantum-0.9.11-cp39-cp39-macosx_11_0_arm64.whl) | 1ff433337c1857442747e5c1fcf61f0fd6e67c5604b1ca3f3d41a9eef6ca83dd | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.9.11-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp37-cp37m-macosx_10_15_x86_64.whl) | 81d251ef1af9e8531e25d9b95ce175e31e041b6ec2d28e3034cde36dc284ccdc | -| | | | Python3.8 | [mindquantum-0.9.11-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp38-cp38-macosx_10_15_x86_64.whl) | 25a16c32be14199105512fd8a711b8c6510ecdc03fec4b24cc3e45ff34d5198c | -| | | | Python3.9 | [mindquantum-0.9.11-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindQuantum/x86_64/mindquantum-0.9.11-cp39-cp39-macosx_10_15_x86_64.whl) | 69581bde442b18fd5f955b950945a2e141157d8edab558ae5de76939f8377b69 | -| MindSpore
Audio | | any | Python3 | [mindaudio-0.1.2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindsporeAudio/any/mindaudio-0.1.2-py3-none-any.whl) | caed9cd595852cd7b2928ff33e41fbb0b8047357c1b0b60b8958542542949919 | -| MindSpore
CV | | any | Python3 | [mindcv-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindsporeCV/any/mindcv-0.3.0-py3-none-any.whl) | 648d3e3ad1b07e195ad725d0b1e356b41406495a7896f4fc9676dd05f49a265d | -| MindSpore
OCR | | any | Python3 | [mindocr-0.3.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindOCR/any/mindocr-0.3.1-py3-none-any.whl) | 50d37f0970300fc9fbbd4009250cf44362fecd8c8c548a55b6e0976222c0a577 | -| MindSpore
Yolo | | any | Python3 | [mindyolo-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.11/MindYolo/any/mindyolo-0.3.0-py3-none-any.whl) | aca8bef2eed37039679ecea61c04379b68749c73bb35093cbe691c59db48b310 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.2/RELEASE.html#mindspore-2-2-11-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.9/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.2/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.9/overview.html) | - -## 2.2.10 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|----------------------|----------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/aarch64/mindspore-2.2.10-cp37-cp37m-linux_aarch64.whl) | 57f786d70d5c404ff068b8662a85bb8450626d9cf387abd85acfb0648b4c2978 | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/aarch64/mindspore-2.2.10-cp38-cp38-linux_aarch64.whl) | a04b442cb4f0518b708b7f59987fc1fac89ef1cf289654ab375d1416208ac6d4 | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/aarch64/mindspore-2.2.10-cp39-cp39-linux_aarch64.whl) | 016e3b8285dbb8b710d5f39a190dffb77bcfe1f0e64553ed36cbee429ac975f0 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/x86_64/mindspore-2.2.10-cp37-cp37m-linux_x86_64.whl) | e7bae41a1d05342af1afb4e0b3d91ad75f37c55c8c2b1e73c6dc2ebc519474cf | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/x86_64/mindspore-2.2.10-cp38-cp38-linux_x86_64.whl) | 7aa47ecbd96e7ba67d634b749b473a690f3138b35069ce5ec33580de84e293ed | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/unified/x86_64/mindspore-2.2.10-cp39-cp39-linux_x86_64.whl) | 8978c22d868f97453f4e11b646b46dd287ffa2465872f67f6fcadc6e439090d8 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp37-cp37m-win_amd64.whl) | cfb18f5bff5feece6b3eec533ce7171bba2115912021db218e49fb904b0d29a1 | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp38-cp38-win_amd64.whl) | 0b800b90d57eb8513e3799d2b0742a9c2d8ad12a5cebf7ec7eed356497b4ceef | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp39-cp39-win_amd64.whl) | 791db7c7c97acf2ace4bb0d0326515070918dfe7d7c34d476b180d44edf1c21e | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.10-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/aarch64/mindspore-2.2.10-cp38-cp38-macosx_11_0_arm64.whl) | b170720069907e9b9775c24041e35dc4d0ba5a8d80f32bf6cef98ff9a031966c | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/aarch64/mindspore-2.2.10-cp39-cp39-macosx_11_0_arm64.whl) | 62fd584c5eb9d4cf9e2951d6b7ce255f5ebc54394d676ef1b8b64194d25c317f | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.10-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp37-cp37m-macosx_10_15_x86_64.whl) | 1ee4442ede9b483df2a05449e4af783fc8764eea5e3741d85e02daba3c192c35 | -| | | | Python3.8 | [mindspore-2.2.10-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp38-cp38-macosx_10_15_x86_64.whl) | 09bbb49dd37a5ea734ae376cae57f5bfa79beb4c1b0af9cfe71cea29da786c73 | -| | | | Python3.9 | [mindspore-2.2.10-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindSpore/cpu/x86_64/mindspore-2.2.10-cp39-cp39-macosx_10_15_x86_64.whl) | 729c80d36ef37098284d0cc0c56cfac157aa5da5b9db6fd5b3d6496112f6b657 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html#2-2-10) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.2.10-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.10/MindInsight/any/mindinsight-2.2.10-py3-none-any.whl) | a744038c32601663c2c79335852f794d2d14e4deb2f3c1f87cd2fa6dc4ce3df8 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.0.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.2/RELEASE.html#mindspore-2-2-10-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.2/mindinsight.debugger.html) | - -## 2.2.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|--------------------------------------|----------------------------------------------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/aarch64/mindspore-2.2.1-cp37-cp37m-linux_aarch64.whl) | 27c603de93942fd6bfe6dbff941edb2b863513d3c99a92dd2048c139c8fde336 | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/aarch64/mindspore-2.2.1-cp38-cp38-linux_aarch64.whl) | c3fff95468eb5eb9c80a73534791b83e4cf2a220c9f0bc65f910c1c1eb1eaa65 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/aarch64/mindspore-2.2.1-cp39-cp39-linux_aarch64.whl) | 7811d756f75b37bb8f48bfa5e00098f69b34842bfad495de2435cb56ff27fc04 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/x86_64/mindspore-2.2.1-cp37-cp37m-linux_x86_64.whl) | a0ff8db26424807df892483142aafb801a5a8f54b7c2dc4be6051d36372d570c | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/x86_64/mindspore-2.2.1-cp38-cp38-linux_x86_64.whl) | 90e302d20e535abace6096da18c5da264f4140c3786ec6febecf6001266837e2 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/unified/x86_64/mindspore-2.2.1-cp39-cp39-linux_x86_64.whl) | ffdae413a8576053f62c3e1e346cb0af62e5f55ef0c12cdaa248703759c37463 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp37-cp37m-win_amd64.whl) | 41262d82563a1431ad3beea29341b337825faf3ce9a4086445e4afd37058af51 | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp38-cp38-win_amd64.whl) | 1d3fc9e15efd792b72059dbf5305026656cf00f1c9492b84e341fb82d585d112 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp39-cp39-win_amd64.whl) | 09608a4c3670b801ff3cf6cf932467310188e84eb72adc84471d2edeac1aafeb | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/aarch64/mindspore-2.2.1-cp38-cp38-macosx_11_0_arm64.whl) | 18a2629e9b8edbc402c240a66bc0c285edcc5c51ed3390936220bf1d68ad988c | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/aarch64/mindspore-2.2.1-cp39-cp39-macosx_11_0_arm64.whl) | 892bf466a51042e5c01ee7f5f744a312325af783f8c2993255370efa13e1cd24 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 020cbac4a8130bacc6cad4514401e7330e29be3905ff91b83314c96d4b59cffb | -| | | | Python3.8 | [mindspore-2.2.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp38-cp38-macosx_10_15_x86_64.whl) | c28e5649e34727050068e700d9f21ad177bfb63110cbbcb0a6f739a3d00cc631 | -| | | | Python3.9 | [mindspore-2.2.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindSpore/cpu/x86_64/mindspore-2.2.1-cp39-cp39-macosx_10_15_x86_64.whl) | 1067c14842a443d17f9297af8480522d8102fdb22d7601d7a402581771c44df8 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html#2-2-1) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.2.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindInsight/any/mindinsight-2.2.1-py3-none-any.whl) | dca7d57c66419cbfb436896bc156a1618e2bb55007f3dece1869ddb687e5928d | -| MindSpore
Transformers | | any | Python3 | [mindformers-0.8.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindFormers/any/mindformers-0.8.0-py3-none-any.whl) | 6f0c0dfe0ee1aed7b36bd72a249111178fdabe332b0a326949329bdab0a25fcf | -| MindScience
(MindSpore
SPONGE) | Ascend | any | Python3 | [mindsponge_ascend-1.0.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindScience/mindsponge/ascend/aarch64/mindsponge_ascend-1.0.0rc2-py3-none-any.whl) | 8a992dccb9dffac96f66bebf54ee4759706f8738abb4595e27bf47d220266b1c | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindScience/mindsponge/gpu/x86_64/cuda-10.1/mindsponge_gpu-1.0.0rc2-py3-none-any.whl) | 5f880cbcd44572a24b51957882aee770be118442958e108461df4b30c5b82e15 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc2-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.1/MindScience/mindsponge/gpu/x86_64/cuda-11.1/mindsponge_gpu-1.0.0rc2-py3-none-any.whl) | d8ec1d9b391c98bfb1189f0c36765966aacc9476b276c1af31d54e17ac6b4871 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 23.0.0](https://support.huawei.com/enterprise/zh/doc/EDOC1100351217) | [CANN 7.0.RC1.3.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.2/RELEASE.html#mindspore-2-2-1-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.2/index.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/zh-CN/r1.0.0-rc2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.2/mindinsight.debugger.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/zh-CN/r1.0.0-rc2/mindsponge.cell.html) | - -## 2.2.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-------------------------------------|----------------------------------------------------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp37-cp37m-linux_aarch64.whl) | efcab90ab5b8a911e436cbed054db4e2c086f1c619dd049c13c6fc74b15fc55d | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp38-cp38-linux_aarch64.whl) | 35d37191d5297241b5dfbb6be960e702e495184cd2a134f699c10d746e4cc2e7 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp39-cp39-linux_aarch64.whl) | a17386e2fea8bf9517497d5bd0c259473e6a2ce5c2163a9a78e5c04ccb9d6f67 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/x86_64/mindspore-2.2.0-cp37-cp37m-linux_x86_64.whl) | dbd8b21658cf3b80ebc3a03f0c438fc6f7f0d4775bd80e53c70850385550c5f6 | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/x86_64/mindspore-2.2.0-cp38-cp38-linux_x86_64.whl) | fffadfb38f64d8060233fcf978ac1dcfaeaa76e8e82d4f7c82eb21385e159179 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/x86_64/mindspore-2.2.0-cp39-cp39-linux_x86_64.whl) | e6e9fc2e467bbcb0a243cf5d98341148b8f781e4d3f073fba9d7753a816c735e | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp37-cp37m-win_amd64.whl) | 47ef9ab4adfe2f7275328a11f698a863e61408e1a1c9e5fa86fc10d364355352 | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp38-cp38-win_amd64.whl) | 8baf7c15091fb544eae50ac420858ec12029f3068b21e8d85df7362b2408e70b | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp39-cp39-win_amd64.whl) | e692089ed216ec51c110cce2b61ba7e0e2e96aad3441c3154caf3e85d463e468 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.2.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/aarch64/mindspore-2.2.0-cp38-cp38-macosx_11_0_arm64.whl) | 6511ca6eeb5a667cad5fbbc826d50f5f8485cb902928f1f2bddd4fe17f2e86c7 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/aarch64/mindspore-2.2.0-cp39-cp39-macosx_11_0_arm64.whl) | d25eb3cf1f4259e0b2198f0080a0cedbb2bb71439c70b1e62cbd58154ea2098c | -| | | MacOS-x64 | Python3.7 | [mindspore-2.2.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp37-cp37m-macosx_10_15_x86_64.whl) | d7a07eb9bdc588e1b74319c0deb455800bbee9d2b69dfac8ce073b00ec223c90 | -| | | | Python3.8 | [mindspore-2.2.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp38-cp38-macosx_10_15_x86_64.whl) | 9391977ba44fc518a4f4e08ad06c54762080e9db158dff79174dafa4a4ac9066 | -| | | | Python3.9 | [mindspore-2.2.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/cpu/x86_64/mindspore-2.2.0-cp39-cp39-macosx_10_15_x86_64.whl) | cb93e0bfaf99346bf0db223e0a9128c5d0c50a8beb613f222e23319f3d575f14 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html#2-2-0) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindInsight/any/mindinsight-2.2.0-py3-none-any.whl) | c0894a19637394f07b37b2e355c1b8c960171fe08c440be5e211a1eeec0a9d49 | -| MindSpore
Quantum | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindquantum-0.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.0-cp37-cp37m-linux_x86_64.whl) | 4bfc2829ac6d73f82bfc327c8696bf63be6c784d2567cdf9c019840e9d891d6c | -| | | | Python3.8 | [mindquantum-0.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.0-cp38-cp38-linux_x86_64.whl) | 37a51bbc82708e90b53a0ea98423ee390599c989f348cf3988dc7f747e62a515 | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.9.0-cp39-cp39-linux_x86_64.whl) | 7d2532907a01840dc2cbbea54a59ba440eb08133f2ab35eb08b3fd8c5d670da2 | -| | CPU | Windows-x64 | Python3.7 | [mindquantum-0.9.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp37-cp37m-win_amd64.whl) | 8cbe91c4fcdb79763707068ad6515a518723e6da11c4d9ba2f915faa894d2b2f | -| | | | Python3.8 | [mindquantum-0.9.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp38-cp38-win_amd64.whl) | e74e3abcb43ea9cc443b2db055ad0b6abd725afdc52f37e3988f43f2dbd53fa2 | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp39-cp39-win_amd64.whl) | 312af138e2d94e5a930096a4333aacd754be85937325672ac0aa26a55caf9242 | -| | | MacOS-aarch64 | Python3.8 | [mindquantum-0.9.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/aarch64/mindquantum-0.9.0-cp38-cp38-macosx_11_0_arm64.whl) | e1fda9023fe7acf920d379acff57e2248451c0fa3299e7209a176fc258a9f6de | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/aarch64/mindquantum-0.9.0-cp39-cp39-macosx_11_0_arm64.whl) | 32c79d2dbca57642c29f08a078546541f99eb87e4d361cb1a5e54686bc8eddd9 | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.9.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 76c933fd2f88e1309268e9eee82c60dadd804dcdf3988f6282bf4bbde354373d | -| | | | Python3.8 | [mindquantum-0.9.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp38-cp38-macosx_10_15_x86_64.whl) | b495dba8eda618861330144c67061e117a09e4183bb1fb65372632e68ea226f4 | -| | | | Python3.9 | [mindquantum-0.9.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindQuantum/x86_64/mindquantum-0.9.0-cp39-cp39-macosx_10_15_x86_64.whl) | 9654ca0cd585dd1f5fc51292f88d37bc4a909ba5df694db0c738957f5aa78aaf | -| MindSpore SciAI | Ascend | Linux-aarch64 | Python3.7 | [sciai-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/sciai/ascend/aarch64/sciai-0.1.0-cp37-cp37m-linux_aarch64.whl) | d20733f0e5656c3c6787ce9f80b07f588231701b8b2e21ed642896da813e58cc | -| | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [sciai-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/sciai/gpu/x86_64/cuda-11.1/sciai-0.1.0-cp37-cp37m-linux_x86_64.whl) | 0cf4e094d3d4f6d8a360a29c119229d4a90b09e19014bb02138cac6cae6de10f | -| MindSpore Earth | Ascend | Linux-aarch64 | Python3.7 | [mindearth_ascend-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/mindearth/ascend/aarch64/mindearth_ascend-0.1.0-py3-none-any.whl) | c3ee178cb4ecd73d020629b5a4a77e151f8e53f391c9343d837d895e72d4e8ef | -| | GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindearth_gpu-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindScience/mindearth/gpu/x86_64/cuda-11.1/mindearth_gpu-0.1.0-py3-none-any.whl) | 9ef1fef58ed6e8455a473c468fd64377711be8fa5a9b2caab99a634e50d666bf | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------| -| [Ascend Training Solution 23.0.RC3](https://support.huawei.com/enterprise/zh/doc/EDOC1100336282) | [CANN 7.0.RC1.beta1](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.2/RELEASE.html#mindspore-2-2-0-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.2/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.2/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.2/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.2/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.9/index.html)
[MindSpore SciAI](https://www.mindspore.cn/sciai/docs/zh-CN/r0.1/index.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/zh-CN/r0.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.2/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.2/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.2/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.9/overview.html)
[MindSpore SciAI](https://www.mindspore.cn/sciai/docs/zh-CN/r0.1/sciai.architecture.html)
[MindSpore Earth](https://www.mindspore.cn/mindearth/docs/zh-CN/r0.1/mindearth.cell.html) | - -## 2.1.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|----------------------------|-----------------------------------------------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl) | d7046660c245448c7e99660950b87003e6d8d5de6965b2f03d7399721fe1334a | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp38-cp38-linux_aarch64.whl) | 0574b086e658ecaf4ae33727c1f45ef1f5cacd6a4b09341dbfd1f4b3f8a229d6 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp39-cp39-linux_aarch64.whl) | 8376c5f929307de6a44f1a5256e165fe17cb665063a7f2c6f0560a628cd2ef2b | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/x86_64/mindspore-2.1.1-cp37-cp37m-linux_x86_64.whl) | 49c5d83b5a34ffe71094f11ebf1e2a53ac631d0dd5590a80e13368636aa9d975 | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/x86_64/mindspore-2.1.1-cp38-cp38-linux_x86_64.whl) | c80aa2a03a81675ed7d0df0c758c13ce165be226365c43cfd923faa9ec3fcd6b | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/x86_64/mindspore-2.1.1-cp39-cp39-linux_x86_64.whl) | 08a0535cdf576c9231578d2773baf452f1ee6c6ca92b58cd11847ce5d2fa1763 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp37-cp37m-win_amd64.whl) | 599d5146fd84ee89082e55c08d1363060cec25fe64a8dedc8fc4a6a7d886a9a4 | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp38-cp38-win_amd64.whl) | c214800ae7c127b2e38f9b9780acc7aaf2f41b0285cbe18be4d914ec197130f8 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp39-cp39-win_amd64.whl) | 3fab4894e8c43dffecf550cba0a697d776eb6292e89d3dbc8ebe3881815de392 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.1.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/aarch64/mindspore-2.1.1-cp38-cp38-macosx_11_0_arm64.whl) | f74b5b4a1a16a29ef0c7659c828243103911f26cfb62dd8d0a1b4398e7545069 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/aarch64/mindspore-2.1.1-cp39-cp39-macosx_11_0_arm64.whl) | cd746fd89797566d4677060192024c4dfc5bd4df020cd03c25312004d3fdbf54 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.1.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 5b4ef78cc096e17307c0965f179d9e8f106db9b26e2b130cf69733ff36b43ed4 | -| | | | Python3.8 | [mindspore-2.1.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp38-cp38-macosx_10_15_x86_64.whl) | 50413f658dc457523eb7eb7a8e266d80bbe85707126223d60dee79933fa22f37 | -| | | | Python3.9 | [mindspore-2.1.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/cpu/x86_64/mindspore-2.1.1-cp39-cp39-macosx_10_15_x86_64.whl) | fe4f4c7280a2fb9b987c36e86c901850ba90021d13f61e1b8d161c7b66d233c1 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.1/use/downloads.html#2-1-1) | | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|------------------|------------------| -| [Ascend Training Solution 23.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100348301) | [CANN 6.3.RC2.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.1/RELEASE.html#mindspore-2-1-1-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.1/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.1/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.1/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.1/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.1/index.html) | - -## 2.1.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/aarch64/mindspore-2.1.0-cp37-cp37m-linux_aarch64.whl) | 958e6539a53c9808e3eb7969274492f8cec05d358a60c612355127d55eeec411 | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/aarch64/mindspore-2.1.0-cp38-cp38-linux_aarch64.whl) | 1d1fab7fc3ddbd554a2e1183a04bdf7041d4f0485e129cb09cb2380b920ef5f9 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/aarch64/mindspore-2.1.0-cp39-cp39-linux_aarch64.whl) | 38dd80809cea46277d641d875f41cf6375a39ccd777bf319a882793294ef7808 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/x86_64/mindspore-2.1.0-cp37-cp37m-linux_x86_64.whl) | 3e09d61d6e5f8a03ad2a739d49bde57a69451a6df6fd33aa256d54d1d53a6cf7 | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/x86_64/mindspore-2.1.0-cp38-cp38-linux_x86_64.whl) | 3d92247bd48c03a9f7aa5fa871ab90bee1c4284be926ddcd1f219c123d7891cc | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/unified/x86_64/mindspore-2.1.0-cp39-cp39-linux_x86_64.whl) | ce45b6e2daedb5a5d23b6fc61ad885edf7b076a8e631797995be6a5faea84b0f | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp37-cp37m-win_amd64.whl) | 11abfe931d8ae4f6aac4aa8b10a98409f8ed4db5173e367b22b20513482bf8fb | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp38-cp38-win_amd64.whl) | 15faf8c99b705b3caf0a6b92b79930d7752f11aa93d7baab13dbd26c1f8bce85 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp39-cp39-win_amd64.whl) | 24c539cbd31bf64c34dfcb4e61a7a9f5df9bfb5e87fd147421f0815d14c67828 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.1.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/aarch64/mindspore-2.1.0-cp38-cp38-macosx_11_0_arm64.whl) | b758d1bc3dd40472dd4ddffc0b0eac3f8a9ce37723453077229ebcc0855d1286 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/aarch64/mindspore-2.1.0-cp39-cp39-macosx_11_0_arm64.whl) | 9819c7329b5bb684fefa8e0fb8c84fb92132f4251ce6656df5befaed8307a602 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.1.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 4372282f805ea72daf0c4049d857f2ce7a0eef4bdf8991a80d66a452c51c4175 | -| | | | Python3.8 | [mindspore-2.1.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp38-cp38-macosx_10_15_x86_64.whl) | b6b1bb239217446a27d66be2f12626c0e7a7ab1c9d91e10b01279b63bf2cc308 | -| | | | Python3.9 | [mindspore-2.1.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindSpore/cpu/x86_64/mindspore-2.1.0-cp39-cp39-macosx_10_15_x86_64.whl) | d06024bb33a8ecae1a2cbf47b715220432baa16a67f71ee0939bb5e5e5264492 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.1/use/downloads.html#2-1-0) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindInsight/any/mindinsight-2.1.0-py3-none-any.whl) | 2b4e4cb829da0ae8e55a2a1cb9f2305a27152b9c77cb61e84587ee2339c4b318 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0-py3-none-any.whl) | 1b2054d1bf286e70543d2671370697298a8a3410ac40ce94fc12ad21018b929e | -| | GPU CUDA 10.1
GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0-py3-none-any.whl) | a738061cf8e19dea706ccc9d57413c090cf1ab7e263840adf8f5cccff8ba41f4 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|---------------------------| -| [Ascend Training Solution 23.0.RC2](https://support.huawei.com/enterprise/zh/doc/EDOC1100348301) | [CANN 6.3.RC2.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.1/RELEASE.html#mindspore-2-1-0-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.1/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.1/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.1/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.1/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.1/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.1/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/zh-CN/r0.1/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.1/mindinsight.debugger.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/zh-CN/r0.1/mindflow.cell.html) | - -## 2.0.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/aarch64/mindspore-2.0.0-cp37-cp37m-linux_aarch64.whl) | ade2b70cd9cdf6aa7b2081ff386676a4bd0dde5a1a2c9931d3f354a0e916b1b8 | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/aarch64/mindspore-2.0.0-cp38-cp38-linux_aarch64.whl) | 27c405a2e798f018e583b2e5094adf81b07a7deb5f1f64602a45c910923884bd | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/aarch64/mindspore-2.0.0-cp39-cp39-linux_aarch64.whl) | 1398560ce3c70b19ba8f5fd3fd9b13a67bc5fc7ded35faa3cdcd4946dc9f204e | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/x86_64/mindspore-2.0.0-cp37-cp37m-linux_x86_64.whl) | 469f3615484ddc53383a8b6e8d7305fa6a9f68f5e7d1a05d408a796486ac169f | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/x86_64/mindspore-2.0.0-cp38-cp38-linux_x86_64.whl) | 77d17d39f4a7e28d440440d7e286cf3606ed7e3f4a25340049353752e07fbd7f | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/x86_64/mindspore-2.0.0-cp39-cp39-linux_x86_64.whl) | 02f7435e510666fe9d9dbb334a4a4821f5763af9f8ad415a9d6d4e760c1219a7 | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp37-cp37m-win_amd64.whl) | 637d054b19c8a650a97c3ffe508e74c53ca324ca060c2ce49437a170001f32c5 | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp38-cp38-win_amd64.whl) | eb55c022401fc73e88a6ba5093c103e088d5d2f2f19dd5b7e8d931b6e578ae6f | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp39-cp39-win_amd64.whl) | d419860db22c18508119b281d7c476372b3d15283032892f9b1ac4f96369044b | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.0.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/aarch64/mindspore-2.0.0-cp38-cp38-macosx_11_0_arm64.whl) | 078fae7f13f5ce01219e5f47bf283546d63d17e6078e3fb6483ed4c1da0d7ea2 | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/aarch64/mindspore-2.0.0-cp39-cp39-macosx_11_0_arm64.whl) | 81b0ccd77f87380f5e3af9c1b3e2bdfff9a537de96c4e5c6a359fd5da0a4436e | -| | | MacOS-x64 | Python3.7 | [mindspore-2.0.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp37-cp37m-macosx_10_15_x86_64.whl) | c059b7925f76d5687fa9c8d791ba01965dadd6f7896c4ebbec4e0e65808849b3 | -| | | | Python3.8 | [mindspore-2.0.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp38-cp38-macosx_10_15_x86_64.whl) | ded8a39197b90719df8e0f7aff59627a774275a6d9db345a7032d4c29a4790dc | -| | | | Python3.9 | [mindspore-2.0.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/cpu/x86_64/mindspore-2.0.0-cp39-cp39-macosx_10_15_x86_64.whl) | 640c9c0db1a8d14b7301c070d24fdfe819788dbb02f9f095e8b4a8ca4b53f983 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.0/use/downloads.html) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindInsight/any/mindinsight-2.0.0-py3-none-any.whl) | 809e210c39ff0e64b78689032fb4804d25629bebdc596f1f59d5b7eca84cfb49 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|---------------------------| -| [Ascend Training Solution 23.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100321901) | [CANN 6.3.RC1.alpha003](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.0/RELEASE.html#mindspore-2-0-0-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.0/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.0/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.0/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.0/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.0/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.0/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.0/mindinsight.debugger.html) | - -## 2.0.0-rc1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.0.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/aarch64/mindspore-2.0.0rc1-cp37-cp37m-linux_aarch64.whl) | d2cf94252743e54b76f74258bce030f0519fb0e06ed6ed91c205b19507349b31 | -| | | | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/aarch64/mindspore-2.0.0rc1-cp38-cp38-linux_aarch64.whl) | a30483a352ca39f772a1b74b3a4cd0f68bf9dea009ba928e460f647356d840fb | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/aarch64/mindspore-2.0.0rc1-cp39-cp39-linux_aarch64.whl) | a4ff5897dbab2a8a5c7d5ab2946f1dda2c211c73041eb97684990e09c126397d | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.0.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/x86_64/mindspore-2.0.0rc1-cp37-cp37m-linux_x86_64.whl) | c9d0c9b5af86639d50b8e5846d7176255b55f3f6c2714286fed54e9fe1d562fa | -| | | | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/x86_64/mindspore-2.0.0rc1-cp38-cp38-linux_x86_64.whl) | 4d628c609dc0e7a1650897979a1e2fb5f8ce0800070a5b7c237ae48713faa3aa | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/x86_64/mindspore-2.0.0rc1-cp39-cp39-linux_x86_64.whl) | 89d15c606c517e882dbdef7a9104cdb007b900cea28c9f7537feda308adb8539 | -| | CPU | MacOS-aarch64 | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/aarch64/mindspore-2.0.0rc1-cp38-cp38-macosx_11_0_arm64.whl) | 8115472e60755340e42505d5eb6d6ea598d6b488c6b5cbfb2e6766fb61df50f2 | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/aarch64/mindspore-2.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl) | 68b71ed79fb464724e2b95b25eae403ad739dcff32509166e28ea198b71f8573 | -| | | MacOS-x64 | Python3.7 | [mindspore-2.0.0rc1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/x86_64/mindspore-2.0.0rc1-cp37-cp37m-macosx_10_15_x86_64.whl) | d0d4995169bf19cde43fa34c559011dd9b30b5943ed3081c787f16accbe4fb96 | -| | | | Python3.8 | [mindspore-2.0.0rc1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/x86_64/mindspore-2.0.0rc1-cp38-cp38-macosx_10_15_x86_64.whl) | a0e73e833092d368d7ef3d61d0d7de22fb152a6501bb8a7cfbc942995c2f6ce9 | -| | | | Python3.9 | [mindspore-2.0.0rc1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/cpu/x86_64/mindspore-2.0.0rc1-cp39-cp39-macosx_10_15_x86_64.whl) | fca6d3134bb3b56392594d8d8928e13030758060022e543ded074511c7b8baed | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.0/use/downloads.html#r2-0-0-rc1) | | -| MindSpore
Insight | | any | Python3 | [mindinsight-2.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindInsight/any/mindinsight-2.0.0rc1-py3-none-any.whl) | 8b1ed01371f751588e79dc315efd45925d91eb7cae031399cebb799e7e7e77c6 | -| MindSpore
Armour | | any | Python3 | [mindarmour-2.0.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindArmour/any/mindarmour-2.0.0-py3-none-any.whl) | 6371fdb5168ec11ed1f1fe33b0964234f39d077d7d169f1aa63ac46b4c5e3f1e | -| MindScience
(MindSpore
Elec) | Ascend | Linux-aarch64 | Python3.7 | [mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/aarch64/mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_aarch64.whl) | 50ec57b34d61542390fc4913157948a7a7bc6468f7ae47fa35e0e11a188eb2fb | -| | | Linux-x86_64 | Python3.7 | [mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/x86_64/mindelec_ascend-0.2.0rc1-cp37-cp37m-linux_x86_64.whl) | 470518e928ec204a439d2394273c0062aff4c9aa4b2de5bf86e6198b2b08ed5b | -| MindScience
(MindSpore
SPONGE) | Ascend | any | Python3 | [mindsponge_ascend-1.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/ascend/aarch64/mindsponge_ascend-1.0.0rc1-py3-none-any.whl) | e0eea11bef082394281640493af69741fb3ae43668874f284846be350cb6aa80 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-10.1/mindsponge_gpu-1.0.0rc1-py3-none-any.whl) | 48529c84f12f66ac022f2fa7a766084c125769c5fd29bafd1a3eca37a66f2d45 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-11.1/mindsponge_gpu-1.0.0rc1-py3-none-any.whl) | 3c75c80da7973e410cbe937ca304734adf629603c8dd1cd92f546bd3a998d2c6 | -| MindScience
(MindSpore
Flow) | Ascend | any | Python3 | [mindflow_ascend-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/ascend/aarch64/mindflow_ascend-0.1.0rc1-py3-none-any.whl) | bb9e95f78861e54ba73876754948432adc39cc85bfb081ef6d58366a75421d92 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0rc1-py3-none-any.whl) | dc406e3897cf76e7d733cffc5f7e0fd975e6cbda91800ba7dbede282351956bc | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindflow_gpu-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0rc1-py3-none-any.whl) | dc406e3897cf76e7d733cffc5f7e0fd975e6cbda91800ba7dbede282351956bc | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/GoldenStick/any/mindspore_gs-0.3.0-py3-none-any.whl) | dfdf23b4de403e5f3a192b3c78a96e0344c26141127ca8496c1273d67f4f2b80 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|------------------------| -| [Ascend Training Solution 23.0.RC1](https://support.huawei.com/enterprise/zh/doc/EDOC1100321901) | [CANN 6.3.RC1.alpha003](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.0/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.0/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.0/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.0/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.0/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.0/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.0/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r2.0/index.html)
[MindSpore Elec](https://mindspore.cn/mindelec/docs/zh-CN/r0.2/index.html)
[MindSpore SPONGE](https://mindspore.cn/mindsponge/docs/zh-CN/r1.0/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/zh-CN/r0.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.3/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.1/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.1/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.0/mindinsight.debugger.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r2.0/mindarmour.html)
[MindSpore Elec](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/mindelec.architecture.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/zh-CN/r1.0/mindsponge.cell.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/zh-CN/r0.1/mindflow.cell.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.3/mindspore_gs.html) | - -## 2.0.0-alpha - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|--------------------------------|-----------------------------------------------------------------|---------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend
CPU | Linux-aarch64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/aarch64/mindspore-2.0.0a0-cp37-cp37m-linux_aarch64.whl) | be9289576025ca65afe39584a6d038d5904aece903a2bac09a9bb28c70c7520b | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/aarch64/mindspore-2.0.0a0-cp38-cp38-linux_aarch64.whl) | 732d6ef45a7864d2e6cc50c7341331c25943b6133693b85fa383b2859e2a3b08 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/aarch64/mindspore-2.0.0a0-cp39-cp39-linux_aarch64.whl) | 620a98d248a65f311f2e0d0cc30998281a3c0a87f791764fc5e4629fb6344789 | -| | Ascend
GPU CUDA 10.1
GPU CUDA 11.1
CPU | Linux-x86_64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/x86_64/mindspore-2.0.0a0-cp37-cp37m-linux_x86_64.whl) | 9a179d611ace70102668912407cc962db8f04c6717182361e0d050fbbe9105fd | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/x86_64/mindspore-2.0.0a0-cp38-cp38-linux_x86_64.whl) | 324a8f65dc1e6ccc38a9ba5b2fb528e8c50d3fa39691e518722a316f2f1d16ce | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/unified/x86_64/mindspore-2.0.0a0-cp39-cp39-linux_x86_64.whl) | 26cd4471acb9984dc9160eb56ee6a1862accb7b7c6c6edf5aeb0f9069b29f39d | -| | GPU CUDA 11.1 | Windows-x64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/gpu/x86_64/cuda-11.1/mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl) | 8b2114090846779ae0653c65e82f437bc38ba05a6dee779a2540215663f68b2f | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/gpu/x86_64/cuda-11.1/mindspore-2.0.0a0-cp38-cp38-win_amd64.whl) | 00c7736b8b4ede16835d976bae49cd69690b05e4bd9c3d074408f23d908962a4 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/gpu/x86_64/cuda-11.1/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl) | dd18f77eabc68b3de37c7d8b4cdfbaf8e4d24d0d046258cb03d37501fc1abada | -| | CPU | Windows-x64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp37-cp37m-win_amd64.whl) | 330c212e21cb48872b9f9680399cd1824caf925f118ea301357c4f7c9f43b0da | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp38-cp38-win_amd64.whl) | 0a682e2f79c7f5f0efc506188fb55edd10643fcc078473498829dd6debbf3113 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl) | 08f00198da5cff4728f46513fc27e064faa57ccdbeb7dd1b56c1c05864aa9a40 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/aarch64/mindspore-2.0.0a0-cp38-cp38-macosx_11_0_arm64.whl) | 53833859955ed99f6616ddeb6db052ff3e2ea27b3f7721f80910520cfb7e3e2a | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/aarch64/mindspore-2.0.0a0-cp39-cp39-macosx_11_0_arm64.whl) | 669bccc21f6cb6a7cb11521a4ab2d8b08af87570c0da72f9aaf199d70fd1b47c | -| | | MacOS-x64 | Python3.7 | [mindspore-2.0.0a0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp37-cp37m-macosx_10_15_x86_64.whl) | 0237143cb3d6f4c2f0ec4ee1a43aa7a7e893b98b2ba4713270ece853c042c30f | -| | | | Python3.8 | [mindspore-2.0.0a0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp38-cp38-macosx_10_15_x86_64.whl) | 91f4ea33f5a14ae7ed3ee365666200fb2560188861404641be9394b4a8e00993 | -| | | | Python3.9 | [mindspore-2.0.0a0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-macosx_10_15_x86_64.whl) | c58dfc9e3d7c73d59d6a62826b02a0e6dcb23710781ed289ddec2246af0b8d59 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r2.0.0-alpha/use/downloads.html) | | -| MindScience
(MindSpore Elec) | Ascend | Linux-aarch64 | Python3.7 | [mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/aarch64/mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_aarch64.whl) | 87b6b3fdc4fe3b22325a19c9a89351442268386bd992126ab144210e1af30174 | -| | | Linux-x86_64 | Python3.7 | [mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/x86_64/mindscience_mindelec_ascend-0.2.0a0-cp37-cp37m-linux_x86_64.whl) | 7b7edca49c9476c521aee0cb71c9b4cd08483f954e483576ba7adf75e0f4a8f1 | -| MindScience
(MindSpore SPONGE) | Ascend | any | Python3 | [mindsponge_ascend-1.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindsponge_ascend-1.0.0a0-py3-none-any.whl) | 428b1d85ed1bed6fb9c2736912a7b08ee7b2a3435df7738b17d20644c1a13f69 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindsponge_gpu-1.0.0a0-py3-none-any.whl) | 8bacf3bf21d70dc2de3085af8db969e6eec027a7df5c9c0ae8c56b48fe5ce6d1 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3 | [mindsponge_gpu-1.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindsponge_gpu-1.0.0a0-py3-none-any.whl) | 411ecbbf0ee228e808b032707f1a5286a7dd3a279b1cd9f7535a1040cd51abe7 | -| MindScience
(MindSpore Flow) | Ascend | Linux-aarch64 | Python3.7 | [mindflow_ascend-0.1.0a0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0a0-cp37-cp37m-linux_aarch64.whl) | fdfa069a596d890c5f15f0bd7d9be7b05488c2fdd3419557d6133674a0b038e8 | -| | | | Python3.8 | [mindflow_ascend-0.1.0a0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0a0-cp38-cp38-linux_aarch64.whl) | 927f33be5ca0ffdb8853371bdf44a8f2ac748a31268e41317d81b33e95b65559 | -| | | | Python3.9 | [mindflow_ascend-0.1.0a0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/ascend/aarch64/mindflow_ascend-0.1.0a0-cp39-cp39-linux_aarch64.whl) | eea4c1ae79ab8792c2d3c7c6ad9bf6d3a9de95d00ee773ab2e9fc475d5748d29 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| | | | Python3.8 | [mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| | | | Python3.9 | [mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-10.1/mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0a0-cp37-cp37m-linux_x86_64.whl) | 520037da8033d5ad7ea723ec063130283480d1d40bea90b85a1d57a84da3300c | -| | | | Python3.8 | [mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0a0-cp38-cp38-linux_x86_64.whl) | 66e9861a1e9655355f095b67ea4d98d1b17f9107168878a5d979e5c64cdc3be0 | -| | | | Python3.9 | [mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindScience/gpu/x86_64/cuda-11.1/mindflow_gpu-0.1.0a0-cp39-cp39-linux_x86_64.whl) | 2f4673ac48c6ec92789f187a552a77ec9d11d035c79a46a82ee630b23208572b | -| MindSpore Insight | | any | Python3 | [mindinsight-2.0.0a0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindInsight/any/mindinsight-2.0.0a0-py3-none-any.whl) | de3e026da906f464d224a4e1f5f0960d78734e43a9880cda7e9d60ce35c1989e | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/GoldenStick/any/mindspore_gs-0.3.0-py3-none-any.whl) | 16d97e0419bd60e2059dd998082c881d04675f78ac9b551fc67db5c926830059 | -| MindSpore Quantum | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl) | 2231c39b6a1e915c75a4a5c9c3f952b67e7cd73d58b34b040d797a6f2ce9b5e2 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl) | 249bf687d152303f05f1280bdc4c84c9466c2ac50b0d2af4174884d129bbfb15 | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/gpu/x86_64/cuda-11.1/mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl) | c669077c9b254df5f2ac0d36e45fd0841d99c3e0671a810c8d6e2dde756e5349 | -| | CPU | Linux-x86_64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp37-cp37m-linux_x86_64.whl) | b243e41305840444b57d75bd31ce35d769f234000f0bc3b564382a039c472dc4 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp38-cp38-linux_x86_64.whl) | 9e055c7c3505921ec7ebb4a8ebfd7a0552bddf53426fd5bbedb93bd3885b6e0f | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp39-cp39-linux_x86_64.whl) | 47cead74a3f57185757f9ea15c538d1a7099f6b027916e258bad88c5327e9776 | -| | | Windows-x64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp37-cp37m-win_amd64.whl) | d3881ba8adc6d28af14ad3d42507dd759f516d6d85d4fe4d06e135fa53f805d3 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp38-cp38-win_amd64.whl) | fcb769eb2997c34efe6dbe107aa640b5d26d463a44019a995ab24d0e4fe9c71a | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp39-cp39-win_amd64.whl) | 0b56a06e17b13d768d37b904133c2900e0889bb70e1e634f816a5775b68b153b | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 97a6d8b2e4ecdf9d628a43e4d5afcbb8e5421b99fc2bae4842ae7fd10a517d87 | -| | | | Python3.8 | [mindquantum-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl) | ef4f997ddaa7fffddf73b0b6a7163c0abc0ea9a8aee72277758f54874866a44e | -| | | | Python3.9 | [mindquantum-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindQuantum/x86_64/mindquantum-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl) | dd543981da53b0763f2575da6ecb6df78e1dd8dfaa5dc80aa45199ec457d8dd2 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|--------------------------| -| [Ascend Data Center Solution 22.0.RC3] | [CANN 6.0.RC1.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r2.0.0-alpha/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r2.0.0-alpha/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r2.0.0-alpha/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r2.0.0-alpha/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r2.0.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.0.0-alpha/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r2.0.0-alpha/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.0.0-alpha/index.html)
[MindSpore Elec](https://mindspore.cn/mindelec/docs/zh-CN/r0.2/index.html)
[MindSpore SPONGE](https://mindspore.cn/mindsponge/docs/zh-CN/r1.0/index.html)
[MindSpore Flow](https://mindspore.cn/mindflow/docs/zh-CN/r0.1/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.3/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.8/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r2.0.0-alpha/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r2.0.0-alpha/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r2.0.0-alpha/mindinsight.debugger.html)
[MindSpore Elec](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/mindelec.architecture.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindsponge/docs/zh-CN/r1.0/mindsponge.cell.html)
[MindSpore Flow](https://www.mindspore.cn/mindflow/docs/zh-CN/r0.1/mindflow.cell.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.3/mindspore_gs.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.8/mindquantum.core.html) | - -## 1.10.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-------------|------------------------|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.10.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/aarch64/mindspore_ascend-1.10.1-cp37-cp37m-linux_aarch64.whl) | 8ec441b45edcecad89c4dd5f111994521b5dfdff2605aa0ca9f7014cbd7c6104 | -| | | | Python3.8 | [mindspore_ascend-1.10.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/aarch64/mindspore_ascend-1.10.1-cp38-cp38-linux_aarch64.whl) | 502612aca4bc7e7b63733cb9933f47fdc6be5d54c4ac89ec19f958907f9935a5 | -| | | | Python3.9 | [mindspore_ascend-1.10.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/aarch64/mindspore_ascend-1.10.1-cp39-cp39-linux_aarch64.whl) | 442482ff483da30496fd070d56f9c47a1686483537953d1b4bcb6eeb3a86d3a5 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/x86_64/mindspore_ascend-1.10.1-cp37-cp37m-linux_x86_64.whl) | e0557ecf019450e1acb5900e12095ace7674557cf86f13697a7c75654dcab773 | -| | | | Python3.8 | [mindspore_ascend-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/x86_64/mindspore_ascend-1.10.1-cp38-cp38-linux_x86_64.whl) | b5a7993780bb26d81c83f5eb2ea606bbecd6d171ed9f19381b881533f29dfff9 | -| | | | Python3.9 | [mindspore_ascend-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/ascend/x86_64/mindspore_ascend-1.10.1-cp39-cp39-linux_x86_64.whl) | b9e315c2d3c9e77fcc18cf2313719932dcf04a9173a8f8fc7b1ce85c60396267 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl) | 1dfd50214a2e3e9c42e3d9665d0d2d62a5abc54eaa250e5b6e918b53ec98b273 | -| | | | Python3.8 | [mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl) | ee55027a658cedf2d5dafaf200e69bac0519fb28565e571baf9b3657ecda88e0 | -| | | | Python3.9 | [mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl) | 5ca13e19e8064997bb8ffd7300d5e19c627771f0035adc37faaacc0a01a8cbe0 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.1-cp37-cp37m-linux_x86_64.whl) | eae93d47b301f7786f407d1ae2d779444547d57706afd89e932ab643be88f7a6 | -| | | | Python3.8 | [mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.1-cp38-cp38-linux_x86_64.whl) | 3a64cc2a5142b7c1f3c6a1b4de19208c2645b56a74e6a91020004b1cd0a87b41 | -| | | | Python3.9 | [mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.1-cp39-cp39-linux_x86_64.whl) | 94d6ed784a4d048550251352c28957c8c0a995e4be1f12c86bf4c54cc187c6e3 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp37-cp37m-linux_aarch64.whl) | b0b08b83a7bad3208f8498b9e3ec00d19aee1990b9afe29fabf44b30c4f78c6b | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp38-cp38-linux_aarch64.whl) | 298c2fbab5cc7db6f27b368256db21653544b980d6cf7ab83c93748b6b0e012f | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp39-cp39-linux_aarch64.whl) | 16a16d3fb58a123e93862d2019d87b49b8b195373683f692b2ad42076431d91c | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp37-cp37m-linux_x86_64.whl) | fe9b2712423f7282c1fe8edfd9efa932c18be164dd8c14b045fd6b05eb96dcef | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp38-cp38-linux_x86_64.whl) | 4aceceb69a2eac7cb81a50dc30af63ae57a2f5b1dcfc56b19394c3cddf90d33e | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp39-cp39-linux_x86_64.whl) | 72c24c2de287adde257f272d42f9f4936fe93f1cd1c1c7eb9b25a0a0fccf918d | -| | | Windows-x64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp37-cp37m-win_amd64.whl) | afafd86a04012f0d89715bb459ea9a94488032c28ac964cb74067794030d061a | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp38-cp38-win_amd64.whl) | 11cf326f4ae53f8f71d024c04339bfbf9789350edc73740a7816be6fcdbf41ef | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp39-cp39-win_amd64.whl) | 6e2cc5091508a4758def126d3a600229a701536c879e1cbe14e3902809ac67e6 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.10.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp38-cp38-macosx_11_0_arm64.whl) | f474faaad9013552ceb87aaa139dc30df97e590ddac0a8d132e1b2b4514e5bbb | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/aarch64/mindspore-1.10.1-cp39-cp39-macosx_11_0_arm64.whl) | 27bd24d30762023eaab5122028c8daf1ba2a7f19a8099118fb71f5df1e0370c2 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.10.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 457db935fed6fa7eb89cb6244a81b1f04cec531694e3e74b6841a3491e8bbb4c | -| | | | Python3.8 | [mindspore-1.10.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp38-cp38-macosx_10_15_x86_64.whl) | 76417ff32e1fb6e34beed444a5415294cc697cb33d170b9cd82546ffc751d35c | -| | | | Python3.9 | [mindspore-1.10.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindSpore/cpu/x86_64/mindspore-1.10.1-cp39-cp39-macosx_10_15_x86_64.whl) | 84c95b10bc85fb033dd62df4acbbf8b4a7356fbcecbeb3acbd2bb9f74b75fc2d | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.10/use/downloads.html#1-10-1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.10.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.1/MindInsight/any/mindinsight-1.10.0-py3-none-any.whl) | 51793e1eb6b13b7c9971146a1ba23b51984cf4ef1566a9c6533882f51d8625e4 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|---------------------------| -| [Ascend Data Center Solution 22.0.0] | [CANN 6.0.1.alpha001](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r1.10/RELEASE.html#1-10-1-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.10/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.10/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r1.10/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r1.10/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.10/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.10/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.10/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.10/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.10/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.10/mindinsight.debugger.html) | - -## 1.10.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|--------------------------------|------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.10.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/aarch64/mindspore_ascend-1.10.0-cp37-cp37m-linux_aarch64.whl) | ca3a13fe19b4d5a31ae184ad51d7eb402584e82548af345926d008ebd894c05f | -| | | | Python3.8 | [mindspore_ascend-1.10.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/aarch64/mindspore_ascend-1.10.0-cp38-cp38-linux_aarch64.whl) | 19f96c6734c819c19e70b7b87086f5d66733bb5d325773b9ddbffc3fb2e2ea6f | -| | | | Python3.9 | [mindspore_ascend-1.10.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/aarch64/mindspore_ascend-1.10.0-cp39-cp39-linux_aarch64.whl) | d795ed41a5e5cb1cb356eaa64684f60c88fc8a583187832edfe1a68d6e84902c | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/x86_64/mindspore_ascend-1.10.0-cp37-cp37m-linux_x86_64.whl) | e222c100563368bb91f0c4d01fb41dcb366c49fc5b3dbb4e540db259e9bf0b6f | -| | | | Python3.8 | [mindspore_ascend-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/x86_64/mindspore_ascend-1.10.0-cp38-cp38-linux_x86_64.whl) | eafa664a3934077e6fb320c071166c4a7277a0bebf3ec34b890b3427237580d6 | -| | | | Python3.9 | [mindspore_ascend-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/ascend/x86_64/mindspore_ascend-1.10.0-cp39-cp39-linux_x86_64.whl) | cba0fa09d2008ffeb3dc7690009a5a8a1bfd415f4ee4dfab2fbf60654ab72ff4 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl) | 9ca3ed0bb5f256e2f4a3600c7009e5fb29cd2cd3762497e45e708eb729b0fddd | -| | | | Python3.8 | [mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl) | 82e3f647ff4c8edc9d37e9bb03fffaf591e2de921bd8165c061eb0817e4fd483 | -| | | | Python3.9 | [mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl) | 12a0a127819454334e3f45a511c43a5a8b4bf1c85237eaba04b1f52baa38b039 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.0-cp37-cp37m-linux_x86_64.whl) | 9f20c86940eaac7c724fed1ebefc79ce215371e17d821cbee33663cb67d25ccf | -| | | | Python3.8 | [mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.0-cp38-cp38-linux_x86_64.whl) | 81e4392ed5669dd3a77f74c4dbfcec39ff570977e0ba3563d589e90c5c721227 | -| | | | Python3.9 | [mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.10.0-cp39-cp39-linux_x86_64.whl) | 1bd96e92cf9c3ef6758ed10085aa182ff6d5947a39a16ee12cba85970ae6fdcc | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp37-cp37m-linux_aarch64.whl) | 3ca54640474e0fa76bdc7c7b9120b77afde8a98b15cce0e5cd5d51cca3ae2f4e | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp38-cp38-linux_aarch64.whl) | aba92f1482169ac54d0f6b24005a913178aaa7ba348a02569e50d4b83baecf16 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp39-cp39-linux_aarch64.whl) | ce0ae267e9366e8bc417b9ad969a06d2d0dfb317fb14e0153b3df72df0b22644 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp37-cp37m-linux_x86_64.whl) | b8171cef1c0ec0be6d00e7c94e322056b6b6a6b70efe1fde7e7a1d39fa8b8a73 | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp38-cp38-linux_x86_64.whl) | 2fce2751cdcf3a8374e14408feb4a4849a9a9835ba749dc572cf166ceb925be9 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp39-cp39-linux_x86_64.whl) | cd199b65b7d5512d8d25f3ccce9f30bc9d82992925d84c07911154640e29f3ae | -| | | Windows-x64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp37-cp37m-win_amd64.whl) | bcd346d45473b2afbb541e4e539b202defc4e09bae345278a0cae421ba64079b | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp38-cp38-win_amd64.whl) | 124ecca91493d1fe774e8ea67f831f61af465a8c18ef5b8ee1a2f567960336a9 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp39-cp39-win_amd64.whl) | 5e631fc15727ee86e25c96dc51ec5887b88b29ee745fd83c4bb71d6c37a3f776 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.10.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp38-cp38-macosx_11_0_arm64.whl) | ae55930090af78bc1b60d5a17d955512d52eecf1566274f202533b94be640592 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/aarch64/mindspore-1.10.0-cp39-cp39-macosx_11_0_arm64.whl) | 885f8198932645785710c21d70d917346f2d568d4b7ae671577470680bc55688 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.10.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp37-cp37m-macosx_10_15_x86_64.whl) | ed0ed1a2fd64ad7512d112e05d9241c7ddddbf6a3f9fa5eb87da22134e59efe8 | -| | | | Python3.8 | [mindspore-1.10.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp38-cp38-macosx_10_15_x86_64.whl) | a0a9eb2570805cf2333294dfc78e79e8a569f993d79c6b6167e2e03aca41f7a9 | -| | | | Python3.9 | [mindspore-1.10.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.10.0/MindSpore/cpu/x86_64/mindspore-1.10.0-cp39-cp39-macosx_10_15_x86_64.whl) | 35adc66b6b92002fc02de34da2758c29e6a200c6a91a0526132c98cc419c6508 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.10/use/downloads.html#1-10-0) | | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|--------------------------| -| [Ascend Data Center Solution 22.0.0] | [CANN 6.0.1.alpha001](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r1.10/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.10/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.10/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r1.10/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r1.10/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.10/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.10/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.10/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.10/index.html) | - -## 1.9.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|------------------------------|--------------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.9.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/aarch64/mindspore_ascend-1.9.0-cp37-cp37m-linux_aarch64.whl) | 13967c4f9eaf4f17e04d186ffb8aae73fecc9177877b777c20509ac1c5dd4542 | -| | | | Python3.8 | [mindspore_ascend-1.9.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/aarch64/mindspore_ascend-1.9.0-cp38-cp38-linux_aarch64.whl) | 89af0e686e66ac92f7feef4873c16691abee0af8bc862b3356dbfd829825c142 | -| | | | Python3.9 | [mindspore_ascend-1.9.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/aarch64/mindspore_ascend-1.9.0-cp39-cp39-linux_aarch64.whl) | dcf716ffda7ba8e4d310f5c6a104d121ff7e5747db403158d602538ed8a6bf39 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/x86_64/mindspore_ascend-1.9.0-cp37-cp37m-linux_x86_64.whl) | a4f6e6c8a470e1c0086d3d97b447d2dc639e8580e72c061da30b3f4f3b302295 | -| | | | Python3.8 | [mindspore_ascend-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/x86_64/mindspore_ascend-1.9.0-cp38-cp38-linux_x86_64.whl) | 0baea69ae73301fcd3125dd20fc073df6086354254adf85949449262be0b6177 | -| | | | Python3.9 | [mindspore_ascend-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/ascend/x86_64/mindspore_ascend-1.9.0-cp39-cp39-linux_x86_64.whl) | dab792aed38eeb3b3c09b8dafa78037f99f27aab8fb647d5ef6e70344545d0c6 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl) | e990ffb81ccc939553e256cd2845838a353471b60b72098ab33ff41f18dfbed6 | -| | | | Python3.8 | [mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl) | 3a07ce7aae036fef9cd22de5d5f68df8ac27bfaeaf29d50877ff1e4763acfa27 | -| | | | Python3.9 | [mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl) | 8d34d1a0037bcdcdbeea8e57c650cf9cc791b761f12921c6d60e859e21a9eef6 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.9.0-cp37-cp37m-linux_x86_64.whl) | db5b20e66de2fcf8433cc3193aefdf0a9c88000225314dd42b47bb97fdfa9eb6 | -| | | | Python3.8 | [mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.9.0-cp38-cp38-linux_x86_64.whl) | 3d4767e8d3d7cdff64a9164b232f9baff550bf06668631935419e5c003f6c735 | -| | | | Python3.9 | [mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.9.0-cp39-cp39-linux_x86_64.whl) | 55438338c475980c44757ac1da8ebeb302d8adb47385ee90047c36664bc041c2 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp37-cp37m-linux_aarch64.whl) | e0aec18d84484a5d33bdb02562a1fda4be576b8227b78fe4f435fac270bb712e | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp38-cp38-linux_aarch64.whl) | ab136bc0e45649edf62527513a88928bebd951d41dee77671a7d996c2c86dbe2 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp39-cp39-linux_aarch64.whl) | 47979f4b2f3a6d5ff5189db2847176227fdc25511d5a01370fa43f08c669ea52 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp37-cp37m-linux_x86_64.whl) | 16ed2fb42d1197bcbee1e68bb23dc0b41256b8836c1134ac4d5b11356a02bd29 | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp38-cp38-linux_x86_64.whl) | 1818898034afbf4a9ba9ba771444f886e1802212545f4c76b2b63d7a65393ef7 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp39-cp39-linux_x86_64.whl) | 4db65466498eff474439100b1d09427401a44518c7db623ed8d9e403c8240f28 | -| | | Windows-x64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp37-cp37m-win_amd64.whl) | 6a361f64c1247ba569ea7ae94b5988c53b759073bbba13173244d6e27c995f31 | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp38-cp38-win_amd64.whl) | 63af8b2cf7a8f7daad7a6b87fcd62b08bd265a0e2d6ea1b0402443e9656ab8ee | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp39-cp39-win_amd64.whl) | 1236c3b510ecb2a3923821eca2d9b4e5b9c104fabd07900be9ca05724110abcc | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.9.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp38-cp38-macosx_11_0_arm64.whl) | 61fcad61b6851cf0f12e5b11f4d4399631cd8ada41cb6ef4562732440fa44763 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/aarch64/mindspore-1.9.0-cp39-cp39-macosx_11_0_arm64.whl) | 767756440939c1929d88b3eaa1724b21e6a44623635259bddfff9e97146991d3 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.9.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp37-cp37m-macosx_10_15_x86_64.whl) | c2bc1deee1dd5d0fc3ad3064584d8c48d6a1c9bf51409cf92d550d9ae0202afc | -| | | | Python3.8 | [mindspore-1.9.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp38-cp38-macosx_10_15_x86_64.whl) | 696febbb08a8e25014a51ad27ae93da1d495641438b7f60028658799927ada20 | -| | | | Python3.9 | [mindspore-1.9.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindSpore/cpu/x86_64/mindspore-1.9.0-cp39-cp39-macosx_10_15_x86_64.whl) | 8cc642123d7d2d8e99e849ccc4f6cf3506cd006c55da78bd8225cbbb50868ed7 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.9/use/downloads.html) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.9.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindInsight/any/mindinsight-1.9.0-py3-none-any.whl) | d401ec851c34f8b0e86c1435c7a76989520c1dab274fcd82f0fd291a19881de1 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.9.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindArmour/any/mindarmour-1.9.1-py3-none-any.whl) | 9115ab2fbe2337616f1046efaff920bf043a80fb914d92377e38be30d74f6dbd | -| MindSpore Armour | | any | Python3 | [mindarmour-1.9.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/MindArmour/any/mindarmour-1.9.0-py3-none-any.whl) | b87adecf3d8df7060ff14ae948360583f1457af30d770a81641ef64ce2b97f01 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.9.0/GoldenStick/any/mindspore_gs-0.2.0-py3-none-any.whl) | 514e36666f0952135428ef039520bfac11b1637fd71db5f880b2682a0782bbe8 | -| MindSpore
Audio | | any | Python3 | [mindaudio-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindsporeAudio/any/mindaudio-0.1.0-py3-none-any.whl) | 453860e630586177cce0c8c05a45821a433621ba70165c277b4042a7392e2910 | -| MindSpore
CV | | any | Python3 | [mindcv-0.2.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindsporeCV/any/mindcv-0.2.0-py3-none-any.whl) | 66de071503aebc4f11e5aec52bce48e7ae2351158a6b9dd925d8b1b4771f5fdf | -| MindSpore
NLP | | any | Python3 | [mindnlp-0.1.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindsporeNLP/any/mindnlp-0.1.1-py3-none-any.whl) | 5e9481bc6c3cb90fb5f7d6ff1775e972be6c707b5ed39b60757a12ae2d0e2f2f | -| MindSpore
OCR | | any | Python3 | [mindocr-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindOCR/any/mindocr-0.1.0-py3-none-any.whl) | 1511799b235552ee2f7e7856107363d1e738251d55e0e63961821205ce93a377 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|---------------------------| -| [Ascend Data Center Solution 22.0.RC3] | [CANN 6.0.RC1.alpha005](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r1.9/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.9/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.9/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r1.9/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r1.9/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.9/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.9/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.9/index.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.2/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.9/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.9/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.9/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.9/mindinsight.debugger.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.2/mindspore_gs.quantization.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.9/mindarmour.html) | - -## 1.8.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|---------------|------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.8.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/aarch64/mindspore_ascend-1.8.1-cp37-cp37m-linux_aarch64.whl) | 30da12770c8cffd52feb8341505ad2a95ee48903503af13e346b8f5d671b075b | -| | | | Python3.8 | [mindspore_ascend-1.8.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/aarch64/mindspore_ascend-1.8.1-cp38-cp38-linux_aarch64.whl) | 5620050ae2d5e195e7176e8ed546130c2d95f4ea4cd7abf6ccdfd934f7ec7c4f | -| | | | Python3.9 | [mindspore_ascend-1.8.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/aarch64/mindspore_ascend-1.8.1-cp39-cp39-linux_aarch64.whl) | 022fc91ada8c30f8fcebb2e829fce3bc685757c1fb10e986728e04a00d4234e7 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/x86_64/mindspore_ascend-1.8.1-cp37-cp37m-linux_x86_64.whl) | cb7edd7533f6f6e19aa77aa0a8c414f109fed18220348d33dd381fc4c6e39d66 | -| | | | Python3.8 | [mindspore_ascend-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/x86_64/mindspore_ascend-1.8.1-cp38-cp38-linux_x86_64.whl) | 6016e16d6ae69707c42776187a687a0ded3298bb7936e3676c988021fe85cb7b | -| | | | Python3.9 | [mindspore_ascend-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/x86_64/mindspore_ascend-1.8.1-cp39-cp39-linux_x86_64.whl) | dbadd299314c1075d90425cb281dfbdbd49096a65f164a3ab9aad9c3886828f2 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl) | b6548f38c1b1c9265a99d65337ae981c2f88ba98798da020b8ffab6e200f0f2e | -| | | | Python3.8 | [mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl) | 8ede528d2c043e63733acebe21ae215521b9562da5e94279e95df819a5bad0f9 | -| | | | Python3.9 | [mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl) | 022b9a0931958688933787bebcebac82b03609c54c2f0fa7af1c3b62728d33f8 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl) | 43a8c373516448c53e18ca429084269906986489f1ccf595d99a7ee251d04603 | -| | | | Python3.8 | [mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp38-cp38-linux_x86_64.whl) | a19c20564ce68e9b5d961f5a65b49ec4893071f6a623933aa2a6d74d62319fd5 | -| | | | Python3.9 | [mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp39-cp39-linux_x86_64.whl) | 22daea9ddb5db45d2fbb29582fdb86b4518590366154214423359c86b6c89054 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp37-cp37m-linux_aarch64.whl) | 0abc470d463291c7995905c97ca9ca63588791232066090efae07c299fd51a82 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp38-cp38-linux_aarch64.whl) | 3e68aadfd41434d54b7a612d48fa1de173909311440b30b0656a13c7c4ec4be8 | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp39-cp39-linux_aarch64.whl) | d8e796f8286e2d8b187862d3c4be0db96159c622e3c92117f03e39b7d9ef5427 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp37-cp37m-linux_x86_64.whl) | 3f0977f8ff4e214b4a57998b18573d0e41b6c6109a4157a04e93c1f2d51c5215 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp38-cp38-linux_x86_64.whl) | 00d824dc4190fd54dfb31a33ac362ebcc859cb7e3f1e92ed614c3c752fbadc9f | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp39-cp39-linux_x86_64.whl) | d716aa3c4e006f61b471f1c409d4c6729e7705ba8ea2cb046333b8e32716c4da | -| | | Windows-x64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp37-cp37m-win_amd64.whl) | 211775059ce18e681125cffc555afe2d7ae3a6aad219ec2d27c441cb38187e80 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp38-cp38-win_amd64.whl) | d3355e39b5408d94ba779d245dcde1b11ee9b42f1f40a75d0548549e25ef5eb8 | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp39-cp39-win_amd64.whl) | 3f9b4f88a3666d80d5b3f0737ea13fd7d162fee92192e8979ba5538c88f65204 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.8.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp38-cp38-macosx_11_0_arm64.whl) | 4611acd045280aa7e68ee97167149359e2598535d47bec0da958b8f7171c8043 | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/aarch64/mindspore-1.8.1-cp39-cp39-macosx_11_0_arm64.whl) | 73ea32821ba86b02d1fd9f9dbd5d8b125cde3c1a2d0e7db7635e6e00421c29ae | -| | | MacOS-x64 | Python3.7 | [mindspore-1.8.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 42494cebbfaf3855ce063bc800d077b74b89282ce7a0146b98fabe79013b6ef2 | -| | | | Python3.8 | [mindspore-1.8.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp38-cp38-macosx_10_15_x86_64.whl) | 2b7c44eb52cc977e1c7d7b7910f66e0be66e4c5e17c5b4573db6534fc13e168f | -| | | | Python3.9 | [mindspore-1.8.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp39-cp39-macosx_10_15_x86_64.whl) | 349ed2acf44c134f6dca78df3f28c321fccd5a61dd05b3b16a83defe26057956 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.8/use/downloads.html#1-8-1) | | -| MindSpore Armour | | any | Python3 | [mindarmour-1.8.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindArmour/any/mindarmour-1.8.1-py3-none-any.whl) | 7a7d2e3972f3ef02726a929daf8a973d9366ad644b9f8ae2e74890735428d6b2 | -| MindSpore
Transformers | | any | Python3 | [mindformers-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindFormers/any/mindformers-0.3.0-py3-none-any.whl) | e9b3b43b7ba5fa020851cfeff0227f24f0199add5e5f30310e26abaaa5029ca7 | - -**Ascend配套软件包** - -|商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|----------------------------| -| [Ascend Data Center Solution 22.0.RC2] | [CANN 5.1.RC2.alpha008](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r1.8/RELEASE.html#1-8-1-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.8/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.8/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r1.8/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r1.8/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.8/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.8/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.8/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.8/mindarmour.html) | - -## 1.8.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|------------------------------|--------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.8.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/aarch64/mindspore_ascend-1.8.0-cp37-cp37m-linux_aarch64.whl) | 606978f9a82d8fccc04cde0fda8a57424977544365050374b6cd195efea93e11 | -| | | | Python3.8 | [mindspore_ascend-1.8.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/aarch64/mindspore_ascend-1.8.0-cp38-cp38-linux_aarch64.whl) | 2a3ae5116ad3a3da1cd00e7e5156abb9d3c207c762249934e0d1b7e2389cd632 | -| | | | Python3.9 | [mindspore_ascend-1.8.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/aarch64/mindspore_ascend-1.8.0-cp39-cp39-linux_aarch64.whl) | 35903646e1a3676b7c85eb37b85effd772d9350269174f46afa1642c084a815d | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/x86_64/mindspore_ascend-1.8.0-cp37-cp37m-linux_x86_64.whl) | eb899c4b5e439262b8587606802f82fb6dc3afa99bf788d1b258188cad6b9abe | -| | | | Python3.8 | [mindspore_ascend-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/x86_64/mindspore_ascend-1.8.0-cp38-cp38-linux_x86_64.whl) | 9d5354d899d81675bd2224f99262a74e22bb1713fc14678dd72c521a7fb997a9 | -| | | | Python3.9 | [mindspore_ascend-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/ascend/x86_64/mindspore_ascend-1.8.0-cp39-cp39-linux_x86_64.whl) | c08850d6eff9500ad872d83e922c4b2b04750085b65e32a8b83205f74034258d | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl) | 670892ef68b825a5b7ddf12c79e2a55c612a029b3d47f2aa8da12d9fb68f83bb | -| | | | Python3.8 | [mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl) | 7abda9c04031d3823443f00ba0256ee1e1768f5249e6633a0267ea645ef01cf5 | -| | | | Python3.9 | [mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl) | ac3a25953b09a353723619947136799a82b79a7dd7ae317a26daaca83e2f9dfd | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.0-cp37-cp37m-linux_x86_64.whl) | cced15b6f15115ceef75193c1f6c7925decd0adc7e322e002ba4950881cece32 | -| | | | Python3.8 | [mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.0-cp38-cp38-linux_x86_64.whl) | 18e5b2bbaa503b7e773916fe525f1450459b2e0f93244fd86fddf274a4e94460 | -| | | | Python3.9 | [mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.0-cp39-cp39-linux_x86_64.whl) | 1f456fad4be97a7067f767abfafe92cf91ab0be3e51c8623a0c309eec7bc12dc | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp37-cp37m-linux_aarch64.whl) | 9740547f187966692443f68bb143f62b8d37bb0021e1dad2a9748b8f5929ee1a | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp38-cp38-linux_aarch64.whl) | e760dbd3720cad224c7226214bea2f3625bf2a0802742bf1d8d9decb69deccb4 | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp39-cp39-linux_aarch64.whl) | 97e675b181ed87e365ed9bfaee176146aeb6c7572cb07c7132d0ef08e5623e66 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp37-cp37m-linux_x86_64.whl) | d06e3f2f3b40f7e5494dd2a11485d0c1a8e896dca13f448bfb94dc74401b9969 | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp38-cp38-linux_x86_64.whl) | 9d9f22d16fc30348440a8321497db3cc97812244e6e0152baa03060c0c718071 | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp39-cp39-linux_x86_64.whl) | cba869b74bac2465a6a81eee77356ea693d252b6fb65a59551733288905d29a1 | -| | | Windows-x64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp37-cp37m-win_amd64.whl) | 27fd0480a8db2f50074723fdafdfcad40becf087185ac2cf0ae02d27947d2974 | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp38-cp38-win_amd64.whl) | c4fd8f0f62f7e7dd034fa1666e795a953e5c8d44ad7f3e379e44ac0037ca66eb | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp39-cp39-win_amd64.whl) | 44106d472fe35a27f72508341579eae3b3f180c0d329c36b6d943b84ac193a91 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.8.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp38-cp38-macosx_11_0_arm64.whl) | d72f102cc7093cf03c9614837bfe70840f3072ebfc5da4ade8b0ac987d1fe899 | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/aarch64/mindspore-1.8.0-cp39-cp39-macosx_11_0_arm64.whl) | 37dfe1d08592c8cc3120f5ba972afbc9a4f393f2748576a9e964a585c6f49fe6 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.8.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp37-cp37m-macosx_10_15_x86_64.whl) | 73534fd8afed4d25cfed4d38b6cf87df61dbbf153eeec8f3e731b6f31c28d642 | -| | | | Python3.8 | [mindspore-1.8.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp38-cp38-macosx_10_15_x86_64.whl) | ca70b39be9c669dce3c396156c846c746843d8f979ff9a44b44ad11b6f0aa54e | -| | | | Python3.9 | [mindspore-1.8.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindSpore/cpu/x86_64/mindspore-1.8.0-cp39-cp39-macosx_10_15_x86_64.whl) | ea6f4418a0e489b91f6be1050fe4eaa476ebb445bcfa8d5e40d01772d7153ea3 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.8/use/downloads.html#1-8-0) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.8.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindInsight/any/mindinsight-1.8.0-py3-none-any.whl) | 64f8f85434ac2d5116955631928818ab452018239a52ea9355df0880d990118d | -| MindSpore Armour | | any | Python3 | [mindarmour-1.8.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindArmour/any/mindarmour-1.8.0-py3-none-any.whl) | 76206131b1ce21ae1f5185cd88858bc9697a7acb3c6c9306159686a609e39321 | -| MindSpore Quantum | | Linux-x86_64 | Python3.7 | [mindquantum-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp37-cp37m-linux_x86_64.whl) | e37a089ff0f3ba82213c532c19e63a613a34989543213921b612e683c6e839cf | -| | | | Python3.8 | [mindquantum-0.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp38-cp38-linux_x86_64.whl) | e4b9d38117f16ef3a3d24cd1d6404ba50dc4b128ddf0360247f7c1bee0c57ccf | -| | | | Python3.9 | [mindquantum-0.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp39-cp39-linux_x86_64.whl) | 3e5f19d024762bace873eb5e55cd71daf10799205438d3a9fb0fc34391ff1cd8 | -| | | Windows-x64 | Python3.7 | [mindquantum-0.7.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp37-cp37m-win_amd64.whl) | 3403802cfd9c3b0dee662f9c73781a6a7e2465101ec7517e25f5f1083eb3036d | -| | | | Python3.8 | [mindquantum-0.7.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp38-cp38-win_amd64.whl) | de043d45e6535d24da0fd6395f7795441314002a4bed5460bdb03662871d121d | -| | | | Python3.9 | [mindquantum-0.7.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp39-cp39-win_amd64.whl) | a25ca4dfec55ec6fd11007619ce74adc58ec451f9ec47631fd9612e1d1606dd9 | -| | | MacOS-x64 | Python3.7 | [mindquantum-0.7.0-cp37-cp37m-macosx_10_13_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp37-cp37m-macosx_10_13_x86_64.whl) | 9115cfd8c1765d02133e6b9c545cab90d130d724ec436364e5b06a33ef30a8c1 | -| | | | Python3.8 | [mindquantum-0.7.0-cp38-cp38-macosx_10_13_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp38-cp38-macosx_10_13_x86_64.whl) | cab323b91c10a2c280468c7cef5121446e330851ff47a89fa0677a4a0f9eb0d8 | -| | | | Python3.9 | [mindquantum-0.7.0-cp39-cp39-macosx_10_13_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/MindQuantum/x86_64/mindquantum-0.7.0-cp39-cp39-macosx_10_13_x86_64.whl) | c4c55d1e53bc2713baea4b32f65ece9d83a9f63808bbb1d5b9c7f33bcbd78f12 | -| MindSpore
Golden
Stick | | any | Python3 | [mindspore_gs-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.0/GoldenStick/any/mindspore_gs-0.1.0-py3-none-any.whl) | 2ce684346bfeb24edaea111b66a851eaee1f43f208d568fe32210706686a28c2 | - -**Ascend配套软件包** - -|商用版安装指引文档 | 社区版下载地址(安装参考商用版) | -|-------------|----------------------------| -| [Ascend Data Center Solution 22.0.RC2] | [CANN 5.1.RC2.alpha008](https://www.hiascend.com/developer/download/community/result?module=cann)
[固件与驱动](https://www.hiascend.com/hardware/firmware-drivers/community) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r1.8/RELEASE.html) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.8/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.8/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r1.8/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r1.8/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.8/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.8/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.8/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.7/index.html)
[MindSpore Golden Stick](http://www.mindspore.cn/golden_stick/docs/zh-CN/r0.1/index.html)| [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.8/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.8/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.8/mindarmour.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.8/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.7/mindquantum.core.html)
[MindSpore Golden Stick](https://www.mindspore.cn/golden_stick/docs/zh-CN/r0.1/mindspore_gs.html) | - -## 1.7.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.7.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/aarch64/mindspore_ascend-1.7.1-cp37-cp37m-linux_aarch64.whl) | 7bf6f08a3ecf852914d81852b04380601b16cb0e5cd5cd54d6de532a6e0969f9 | -| | | | Python3.8 | [mindspore_ascend-1.7.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/aarch64/mindspore_ascend-1.7.1-cp38-cp38-linux_aarch64.whl) | 7e3d26966f5b5691d7750a126e17b2e123fd7cc5b23c553728fd02f40fced606 | -| | | | Python3.9 | [mindspore_ascend-1.7.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/aarch64/mindspore_ascend-1.7.1-cp39-cp39-linux_aarch64.whl) | 29b1d69c1a380aeae5fa6a545f1882b39f0d7922ab11b6c6ce60167ffdcb9bf3 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/x86_64/mindspore_ascend-1.7.1-cp37-cp37m-linux_x86_64.whl) | 45bbe070ffab797b9fe1fe5b4b904ab8bea8cec431f86da644c6646f46aab315 | -| | | | Python3.8 | [mindspore_ascend-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/x86_64/mindspore_ascend-1.7.1-cp38-cp38-linux_x86_64.whl) | d1de00b47174c3d9b3d8109a541dc22a72142a255ddb9049621c2911be2f04a1 | -| | | | Python3.9 | [mindspore_ascend-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/ascend/x86_64/mindspore_ascend-1.7.1-cp39-cp39-linux_x86_64.whl) | 3519c98c050324176b9b618c65d0a6f74fd6a22b785e9fc928ba723aaeaadfb8 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl) | c768a6c519aef30a688aa1ce56c44ae7ac13e3c515e30ec3d8691a9e3d7b97f5 | -| | | | Python3.8 | [mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl) | 7628af142a11eb02ec444cce4eb1180aa15b18bbfc412967fc97c9a7cf09ec99 | -| | | | Python3.9 | [mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl) | 58dd8bc61c8d99ea91b4c919b3de838609f1f1c1b22734fa01ffd0f156f25360 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.1-cp37-cp37m-linux_x86_64.whl) | 91de6f06555d10311cac0c2dcaf1399d71a3bc493adc6f06966c3752b668dc62 | -| | | | Python3.8 | [mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.1-cp38-cp38-linux_x86_64.whl) | cf41c1ff55629bbe8b43e07d13f5ab45485b5fc2d84ec87111445824760355e7 | -| | | | Python3.9 | [mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.1-cp39-cp39-linux_x86_64.whl) | add75b5bb218ce8b075e88e81d9ff54278a6fd0b8c3e3245bd5171940ca02f9f | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp37-cp37m-linux_aarch64.whl) | ba1e920a024f6ded59d745a999dbbf031971117a2cd3035a7689378a3d7f67ae | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp38-cp38-linux_aarch64.whl) | 374b04899f68392495ba27d9f49a8b385963ef5551c245a859cf58e4e4957e76 | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp39-cp39-linux_aarch64.whl) | 072c7e30846b9d2a690f59b07941f9a3d88bd211d3a3586e668a5553f5b55668 | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp37-cp37m-linux_x86_64.whl) | bd82ba501c5a4fcadf0f9eba7dfce3fc2ac95be21b711a07fd00ae356078f15e | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp38-cp38-linux_x86_64.whl) | ff25c0d2dc4938072fc15060cf5f96e38380557dd38213a5f0111a7819fad891 | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp39-cp39-linux_x86_64.whl) | 8d685052a243548717ba91a78c76a476c7937f8ddec77ad4c12e5fcc52dd3315 | -| | | Windows-x64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp37-cp37m-win_amd64.whl) | 197780319acb373dc009d4d7234e9f46cb6b1c2bffc897421e4dfc708830be41 | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp38-cp38-win_amd64.whl) | 601780e3f5dc7bc8b74aa41bb763fc9ea857fdfeb60c32bec11eba8d007174bb | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp39-cp39-win_amd64.whl) | 14bbdb556c1c35dc6af5af96a2b73263aa59fcbcd6e1c2517bf4cf2284021ff1 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.7.1-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp38-cp38-macosx_11_0_arm64.whl) | 0b2ecdc0bc9aa1abf2302404d8ecefb3a37825a33c164a781ca9869c7025557f | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/aarch64/mindspore-1.7.1-cp39-cp39-macosx_11_0_arm64.whl) | 40da30084e9a642921a07c8445514c74a67c3e9d9aac03376d200c62e552d6d7 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.7.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp37-cp37m-macosx_10_15_x86_64.whl) | 7e16be880b493355513d572795caf3ab1ad66aabf8a0fe3bab821634d5e9cbbb | -| | | | Python3.8 | [mindspore-1.7.1-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp38-cp38-macosx_10_15_x86_64.whl) | 0d0276c8b7bed56773e4a688c6eb204ad4affaf7575cab81c63adbdb101d807d | -| | | | Python3.9 | [mindspore-1.7.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.1/MindSpore/cpu/x86_64/mindspore-1.7.1-cp39-cp39-macosx_10_15_x86_64.whl) | e2046ffdc819db3fe37e7dcf6bbdccf43e7361d32fbdde392501471e3587207a | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|-----------------------| -| [Ascend Data Center Solution 22.0.RC1] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r1.7/RELEASE.html#1-7-1-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.7/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.7/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r1.7/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r1.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.7/api_python/mindspore.html) | - -## 1.7.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -| ----------------------- | ----------------------- | --------------------------- | --------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -| MindSpore | Ascend | Linux-aarch64 | Python3.7 | [mindspore_ascend-1.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/aarch64/mindspore_ascend-1.7.0-cp37-cp37m-linux_aarch64.whl) | 5aea9d9bbb7b600f8634ceb085367d6097db53efb4803e0a1a3334b6c9abe4f9 | -| | | | Python3.8 | [mindspore_ascend-1.7.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/aarch64/mindspore_ascend-1.7.0-cp38-cp38-linux_aarch64.whl) | a2a256abd5dc92de65d1acd89d15273639464d4ac9696a958988a4e0aab3f369 | -| | | | Python3.9 | [mindspore_ascend-1.7.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/aarch64/mindspore_ascend-1.7.0-cp39-cp39-linux_aarch64.whl) | e44909fd09115a85293affe8fed8947088a14210aaa4c7d1f4580e4ab385f599 | -| | | Linux-x86_64 | Python3.7 | [mindspore_ascend-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/x86_64/mindspore_ascend-1.7.0-cp37-cp37m-linux_x86_64.whl) | 27b0e6891d21f18d4322998599a7b61c19d76a22a6011ebc83d9f9fa78a970e7 | -| | | | Python3.8 | [mindspore_ascend-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/x86_64/mindspore_ascend-1.7.0-cp38-cp38-linux_x86_64.whl) | efc92e4e451175dd490350be37688b282dc06be7c823d6ee03a22e6e8bdb10fa | -| | | | Python3.9 | [mindspore_ascend-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/ascend/x86_64/mindspore_ascend-1.7.0-cp39-cp39-linux_x86_64.whl) | 610f0060dd5347ef0fe0e8ac24617e5ac75446deb5117b3e6675b505c9bbce23 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl) | 05fb6e01a207250f29c2fdd2d80fef5aa9c26910daeb0beb18b4cdd832490c3b | -| | | | Python3.8 | [mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl) | cc7f8ea86c6d557479fa45af95161daf33ab1572bbf1e0dc83e275f46b1fcf6b | -| | | | Python3.9 | [mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl) | 22a3c3442b1d1dd54e312b6862cf8931eb193c3714b78dd465175b1fc470f3b9 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7 | [mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.0-cp37-cp37m-linux_x86_64.whl) | 8f69c383cc7c900ba2ba00ced8e4e686ce092ac60daecb0019bd0cc896011b36 | -| | | | Python3.8 | [mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.0-cp38-cp38-linux_x86_64.whl) | e12e0bd937baa66b5f29385aed73c5e543af3efe27e56c652941c61d16e28892 | -| | | | Python3.9 | [mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.7.0-cp39-cp39-linux_x86_64.whl) | 02fc0e64dd51ba3969be1e28699f53e9658d23a9dbfcd8104fd4585a6848ab60 | -| | CPU | Linux-aarch64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp37-cp37m-linux_aarch64.whl) | 8d02f680f66a9113b0e77d5918e704cfb0b6125249fd6c99254b7b352e94cfb4 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp38-cp38-linux_aarch64.whl) | 2ef61be92d5d31056cbf78c8318dbcb2b91ac53c39ef61fb73568f6399565626 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp39-cp39-linux_aarch64.whl) | ec12bafe2627223e9849fee107c7f70c88bb2f2679dab9a190b93cd0f7e5847b | -| | | Linux-x86_64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp37-cp37m-linux_x86_64.whl) | 0dbc51d26383989c5bace7857b08bde4aa299ff11a13de6dec9f0002156442a2 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp38-cp38-linux_x86_64.whl) | 089cda3e06f84e3e707463ea1b61320df8c2366399582186c15b112faa0b1524 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp39-cp39-linux_x86_64.whl) | 1d2f69293a36709ddee984e49bcaae79074c505fa47add3052af04a2b7fff807 | -| | | Windows-x64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp37-cp37m-win_amd64.whl) | 3cb2ab8e927ec14a82838452be4a185441108823a3d87236619985f739a89a65 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp38-cp38-win_amd64.whl) | 0bc86e6f3e474a789c3e7c52bc04a246403e1e58aad983b0c977e12dbbf91296 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp39-cp39-win_amd64.whl) | 37316955dd0a280090ac971c5a4727c1cefb8901ff78be194119d71e0305cdb3 | -| | | MacOS-aarch64 | Python3.8 | [mindspore-1.7.0-cp38-cp38-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp38-cp38-macosx_11_0_arm64.whl) | e21b357d992d2067d6046c91452b70e377eded70413541c63c3fd76f2a25d5c6 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/aarch64/mindspore-1.7.0-cp39-cp39-macosx_11_0_arm64.whl) | b9ef28a82eba8be4ad160734ab41719b1a9342d10e4479559d80a297238f7a20 | -| | | MacOS-x64 | Python3.7 | [mindspore-1.7.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp37-cp37m-macosx_10_15_x86_64.whl) | fda454c9845b3bece036eb79c6603f89df4ec4ec2c8746deec6af4cb51a57270 | -| | | | Python3.8 | [mindspore-1.7.0-cp38-cp38-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp38-cp38-macosx_10_15_x86_64.whl) | d390ebb8f958ab2411a5205fea78cdb40400960409073e2dd2c33f8e59fd0c64 | -| | | | Python3.9 | [mindspore-1.7.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindSpore/cpu/x86_64/mindspore-1.7.0-cp39-cp39-macosx_10_15_x86_64.whl) | c90c07fdda2e9b1e827777ea23d5096781f3bc7587e5b4e59e716e08457df575 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.7/use/downloads.html) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.7.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindInsight/any/mindinsight-1.7.0-py3-none-any.whl) | d40f85143996bb6c5c68ef73d9d9cc24b5e41e2d39874123b13550f0f1213fde | -| MindConverter | | any | Python3 | [mindconverter-1.7.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindInsight/any/mindconverter-1.7.0-py3-none-any.whl) | c03e2021569278efbbc43c48c95013f7d764f5126d2040c78ba72ec557b59940 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.7.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindArmour/any/mindarmour-1.7.0-py3-none-any.whl) | c80e796972b58dee91e69f4e4ea808cf6a53baea7ff102a5eafd5cb2b83e14ed | -| MindSpore Quantum | | Linux-x86_64 | Python3.7 | [mindquantum-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindQuantum/x86_64/mindquantum-0.6.0-cp37-cp37m-linux_x86_64.whl) | 1dfff9faa35ea57787d1a17a0d4a9372c89d2f456622b64ecabe351dbd9613d6 | -| | | Windows-x64 | Python3.7 | [mindquantum-0.6.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindQuantum/x86_64/mindquantum-0.6.0-cp37-cp37m-win_amd64.whl) | 9ffb1c72c126d7fe5657a22ab71f82734539bb413cc89bad358481c9b0c7f3b3 | -| | | | Python3.9 | [mindquantum-0.6.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.7.0/MindQuantum/x86_64/mindquantum-0.6.0-cp39-cp39-win_amd64.whl) | bce0780afbd0fd3c938f059cc32f30c68e60bc971090850dc32cc8d57a173b3d | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|---------------------| -| [Ascend Data Center Solution 22.0.RC1] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://www.mindspore.cn/docs/zh-CN/r1.7/RELEASE.html#mindspore-1-7-0-release-notes) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.7/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.7/index.html)
[应用实践](https://www.mindspore.cn/tutorials/application/zh-CN/r1.7/index.html)
[深度开发](https://www.mindspore.cn/tutorials/experts/zh-CN/r1.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.7/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.7/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.7/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.7/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r1.7/api_python/mindspore.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.7/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.7/mindarmour.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.7/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.6/mindquantum.core.html) | - -## 1.6.2 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -|-----------|-------------------------|---------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.6.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/aarch64/mindspore_ascend-1.6.2-cp37-cp37m-linux_aarch64.whl) | c84b9fa1d285a0fc4bba889091dbcddc45da725335bc76f595d30c5ab2db7ed4 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/aarch64/mindspore_ascend-1.6.2-cp39-cp39-linux_aarch64.whl) | 06c7afeaa6aaa59684f2b306500d947a46da83395f10205e54293522ce49a8fe | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/x86_64/mindspore_ascend-1.6.2-cp37-cp37m-linux_x86_64.whl) | bb1a251f964e9846a1fcde4190521ee5d47fbaf2b823315608b113c8c32ce9d4 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/ascend/x86_64/mindspore_ascend-1.6.2-cp39-cp39-linux_x86_64.whl) | fac077f6d8ad92767967415c4caf73818571a7d1449ce04718a13dcd67cf4ddc | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl) | 8235cc34107a2f0d12306363f5ce4d4db01a9afef9e0bca9f86eb289d54ce815 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl) | 6c42efbe0508bea80c74fad63a502824bfc00499f10c686cc029a16ecee9237b | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.2-cp37-cp37m-linux_x86_64.whl) | 8235cc34107a2f0d12306363f5ce4d4db01a9afef9e0bca9f86eb289d54ce815 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.2-cp39-cp39-linux_x86_64.whl) | 6c42efbe0508bea80c74fad63a502824bfc00499f10c686cc029a16ecee9237b | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/aarch64/mindspore-1.6.2-cp37-cp37m-linux_aarch64.whl) | 4f9da5f9a8908852b72cb0de5fed0a0d6fb186101ab8579f8ce5608221a3b2ff | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/aarch64/mindspore-1.6.2-cp39-cp39-linux_aarch64.whl) | e8136bb6814d6c329508271816ff500f19195acbec0ef4405e280fa7daae656d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp37-cp37m-linux_x86_64.whl) | ffc733591d0bad3e8a0067a09fe0f7673c2bf82f9f45a88a007ac2efc94eafdf | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp39-cp39-linux_x86_64.whl) | 69db269e8fd3845eaff6a9b200fce21767071eac15e375cd8f1ec23e15a6a772 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp37-cp37m-win_amd64.whl) | c5d49ff29637151aa2a182f7d7ec685dcbed553ac40af1f556953c08d97a9d28 | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp39-cp39-win_amd64.whl) | 2b7234e1d7bd1e1c342cd34195c95775a329eb06897f2ee0c9b2b50d6f29f928 | -| | | MacOS-aarch64 | Python3.9.1 | [mindspore-1.6.2-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/aarch64/mindspore-1.6.2-cp39-cp39-macosx_11_0_arm64.whl) | 4e81c869c3397e0c03e8ff1a8d221a87789af97f8c9dcf127a5d956e116de57f | -| | | MacOS-x64 | Python3.7.5 | [mindspore-1.6.2-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp37-cp37m-macosx_10_15_x86_64.whl) | ef68b6025c0076b556d362cf645d5502520e28fc9256b0ca302a1a6e7586d797 | -| | | | Python3.9.0 | [mindspore-1.6.2-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.2/MindSpore/cpu/x86_64/mindspore-1.6.2-cp39-cp39-macosx_10_15_x86_64.whl) | c69078bb761f79d4de7cd6f5ddde79cf3aa2cbeaceba415f1dfc5106c52bbaec | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|--------------------------| -| [Ascend Data Center Solution 21.0.4] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.6/RELEASE.md#mindspore-162) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.6/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.6/index.html) | - -## 1.6.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -| ----------------------- | ----------------------- | --------------------------- | --------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.6.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/aarch64/mindspore_ascend-1.6.1-cp37-cp37m-linux_aarch64.whl) | 8d8c52c839471dc8c0d7269f464f694ada7f4d7db7d2f96725737a8f54eeefd1 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/aarch64/mindspore_ascend-1.6.1-cp39-cp39-linux_aarch64.whl) | 567b9212c8220783c4fcd8417118246352abc7e13f7623142acf2031857d2858 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/x86_64/mindspore_ascend-1.6.1-cp37-cp37m-linux_x86_64.whl) | e244de58f343f3d541595f089142f4df7377ca9397e2593802be9fd636a83f1b | -| | | | Python3.9.0 | [mindspore_ascend-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/ascend/x86_64/mindspore_ascend-1.6.1-cp39-cp39-linux_x86_64.whl) | a1c488094759843816e90043bdf02dbe77cf51fb5a4b83ad39818cd4d88184b9 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl) | 3f045ce8dbeac3227f932f283288d4a6ca185fdfe633cee2576ad3dd3e7cee15 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl) | fa0db75762aecf0c11ce8fb31d802c79ac0f20a8d1696f4c577550d2029871fa | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.1-cp37-cp37m-linux_x86_64.whl) | 864940ab2a0b5e2effac47ccceff47460b2221ba9195d89776806a4281ea635c | -| | | | Python3.9.0 | [mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.1-cp39-cp39-linux_x86_64.whl) | 8da024dee76c1f2e526ecb3a015213c00071454bcbb1e0d6cbea035fbf83656c | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/aarch64/mindspore-1.6.1-cp37-cp37m-linux_aarch64.whl) | e665f786f51d86968f6b2af64cf7ba7076c06c37c1171654e448aedf662b4b71 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/aarch64/mindspore-1.6.1-cp39-cp39-linux_aarch64.whl) | 23edb8fa904c772270cb4d3cecd7cd47cb5f05b4b5d605703ddeea61d95051db | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp37-cp37m-linux_x86_64.whl) | 4048168ae047da03ffa11b9d91944d7996351760ab3851e0658e8dbe179d0470 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp39-cp39-linux_x86_64.whl) | d907b44b5d7b17d006fa19517c853fed63ea19275994561a804c2ee0a9232f9a | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp37-cp37m-win_amd64.whl) | bd8c8fc7839f937f7ed34e1b05173295f86934fe02205b464804116f76660057 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp39-cp39-win_amd64.whl) | c9893e34f2ac93ee317aceb27acf70d7c759790353af74115c697d38e8d38e71 | -| | | MacOS-aarch64 | Python3.9.1 | [mindspore-1.6.1-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/aarch64/mindspore-1.6.1-cp39-cp39-macosx_11_0_arm64.whl) | ac4702e3ce4d65463941764e1f381405403a0e8099d9b61ec8e063fc26d3591a | -| | | MacOS-x64 | Python3.7.5 | [mindspore-1.6.1-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp37-cp37m-macosx_10_15_x86_64.whl) | a5e8d0312ccb7a2177b9357d1eb59498ae65ac55f41b0170ed9cdd9ce7342961 | -| | | | Python3.9.0 | [mindspore-1.6.1-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindSpore/cpu/x86_64/mindspore-1.6.1-cp39-cp39-macosx_10_15_x86_64.whl) | d5a4ba048e64d1912054bca1b2ac2f435904835cdf3a98ae24be88da8761e243 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.6/use/downloads.html#id1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.6.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindInsight/any/mindinsight-1.6.1-py3-none-any.whl) | e739183f62133b0347543858fba46f87c5d8abf52c02a29512d5862bb4a28b6f | -| MindConverter | | any | Python3 | [mindconverter-1.6.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindInsight/any/mindconverter-1.6.1-py3-none-any.whl) | eed7d847c96724c49f7ddea728482452c0d36fec6639c8f7a04d9f25aaaf8af5 | -| MindSpore Quantum | | Linux-x86_64 | Python3.7.5 | [mindquantum-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindQuantum/x86_64/mindquantum-0.5.0-cp37-cp37m-linux_x86_64.whl) | 7c5708426a94f3ed9361fa45fc54b150e070c1203e75a854d838ae30ccc32bd5 | -| | | Windows-x64 | Python3.7.5 | [mindquantum-0.5.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindQuantum/x86_64/mindquantum-0.5.0-cp37-cp37m-win_amd64.whl) | 05d829adab6f0451e52e1fb935dd08538c7b13a0be2fab91b6d73657754cea13 | -| | | | Python3.9.0 | [mindquantum-0.5.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.1/MindQuantum/x86_64/mindquantum-0.5.0-cp39-cp39-win_amd64.whl) | f1cfdb8dd61632c8c499968babacbe7398c0992d0230eed12d3e8471d1e72c89 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|---------------------------| -| [Ascend Data Center Solution 21.0.4] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.6/RELEASE.md#mindspore-161) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.6/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.6/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.6/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.5/mindquantum.core.html)| - -## 1.6.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -| ----------------------- | ------------------------------ | --------------------------- | --------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/aarch64/mindspore_ascend-1.6.0-cp37-cp37m-linux_aarch64.whl) | 9db425ae9f8daa1eae7960e2b1b8efca63bbd0d8cf4fb0475dab2fe6c3963572 | -| | | | Python3.9.0 | [mindspore_ascend-1.6.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/aarch64/mindspore_ascend-1.6.0-cp39-cp39-linux_aarch64.whl) | 2ce20877772744fe6a88c4828059b180bc848ff740158c0e25c13227a6b0862c | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/x86_64/mindspore_ascend-1.6.0-cp37-cp37m-linux_x86_64.whl) | 966f0411b497273415ed6779f15d5743c08ae2eb62cef5d291b1995251857ebb | -| | | | Python3.9.0 | [mindspore_ascend-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/ascend/x86_64/mindspore_ascend-1.6.0-cp39-cp39-linux_x86_64.whl) | 79b4cc68de6a3c70bf1bd03a538441d347bba619189822fde58ccae8145c949c | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl) | a961ca60c44b21c9b35767ef6f4ebfeb8105d91d7e51fe44c687c98ee7971961 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl) | 053f13c3b6575b111aa27dba5b58c8e258f8994bb07508982092769699c5740e | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.0-cp37-cp37m-linux_x86_64.whl) | e76bcc715a41c21f2be2604018569a0b02ca3c43b23defbeb5ff3da27260ca80 | -| | | | Python3.9.0 | [mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.6.0-cp39-cp39-linux_x86_64.whl) | 4719c951da345db6ce898dfa0ebc151cc2cb8af116dcbf0eab1202566af5aa6d | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/aarch64/mindspore-1.6.0-cp37-cp37m-linux_aarch64.whl) | 5dc6b9abe668d53960773d6e8ac4dc6f7016c15cce5c9480045c74a3e456e40f | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/aarch64/mindspore-1.6.0-cp39-cp39-linux_aarch64.whl) | 4a8f49587b30b6a0413edba85ebbae07600fc84f8a1fa48c42a2359402bfc852 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp37-cp37m-linux_x86_64.whl) | b4fe66629150c47397722057c32c806cd3eece5e158a93c62cac0bc03b464e3f | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp39-cp39-linux_x86_64.whl) | 87151059854e7388c6b5d6d56a7b75087f171efdcd84896c61d0e9088fcebcc0 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp37-cp37m-win_amd64.whl) | bff5df6a20f98235135693dbcc2928006e0bc080d65faa1bafe0193b67c05051 | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp39-cp39-win_amd64.whl) | 51bc1079f5e5f1fe75b9b1e1022756dd2628b39d8c4c2b872bc33e6e14ecf5bf | -| | | MacOS-aarch64 | Python3.9.1 | [mindspore-1.6.0-cp39-cp39-macosx_11_0_arm64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/aarch64/mindspore-1.6.0-cp39-cp39-macosx_11_0_arm64.whl) | dead04b7b7d3168f0f5837d43ec18fb65c225d3834b3fce8fdc6e3e117218800 | -| | | MacOS-x64 | Python3.7.5 | [mindspore-1.6.0-cp37-cp37m-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp37-cp37m-macosx_10_15_x86_64.whl) | cafd82348d00a86673c72f74c3990861a0bae54080b19de29cd55767445729f7 | -| | | | Python3.9.0 | [mindspore-1.6.0-cp39-cp39-macosx_10_15_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindSpore/cpu/x86_64/mindspore-1.6.0-cp39-cp39-macosx_10_15_x86_64.whl) | c2c95d03deb197b7ee4bb7c1d94e2ead7d213d791c016083d23c9710749678ca | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.6/use/downloads.html#id2) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindInsight/any/mindinsight-1.6.0-py3-none-any.whl) | 8e8b002fa919e2da11cd2b1771233ae951e3eddd8fba0d346f18d8c881831ec9 | -| MindConverter | | any | Python3 | [mindconverter-1.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindInsight/any/mindconverter-1.6.0-py3-none-any.whl) | 5b720b6efd6dfe4c15056c1195297ae07d4ffeeb383bad53decdfa84f5d98526 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.6.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindArmour/any/mindarmour-1.6.0-py3-none-any.whl) | 1e26f0a4eb5ba79b3facbe9e3677bda1227cd5a642a3b697bfe99f33d3165ae8 | -| MindSpore Quantum | | Linux-x86_64 | Python3.7.5 | [mindquantum-0.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindQuantum/x86_64/mindquantum-0.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 2ee5346249ba7608bd67c3cbe2ab47177581389f6db783156c076d1f11251756 | -| | | Windows-x64 | Python3.7.5 | [mindquantum-0.5.0rc1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindQuantum/x86_64/mindquantum-0.5.0rc1-cp37-cp37m-win_amd64.whl) | ffb0cc9ff182f7f4df46db110712efc151c1ea4f79e5526d609e140490db8757 | -| | | | Python3.9.0 | [mindquantum-0.5.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.6.0/MindQuantum/x86_64/mindquantum-0.5.0rc1-cp39-cp39-win_amd64.whl) | 4043fbfd191c1fb96c6c709b4afa49accae48290e01e7260f5f585a23745ed80 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|--------------------------| -| [Ascend Data Center Solution 21.0.4] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.6/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.6/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.6/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.5/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.6/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.6/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.6/mindinsight.debugger.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.5/mindquantum.core.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.6/mindarmour.html)| - -## 1.5.2 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/aarch64/mindspore_ascend-1.5.2-cp37-cp37m-linux_aarch64.whl) | e1c9fe1777ff0964c78448cab9451d59d1c03eec738d5f22be1f039dee351772 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/aarch64/mindspore_ascend-1.5.2-cp39-cp39-linux_aarch64.whl) | 812e9922dc906f5c6c65fb54ca718916ca34ee04984c80b59921b30b85f99b7e | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/x86_64/mindspore_ascend-1.5.2-cp37-cp37m-linux_x86_64.whl) | fe6f747f1a171abdd0b6436b9676d74b171ba8137bce5e5016eb0b06d6be0dff | -| | | | Python3.9.0 | [mindspore_ascend-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/ascend/x86_64/mindspore_ascend-1.5.2-cp39-cp39-linux_x86_64.whl) | d6e0f1e6456d52f85dcbcb881b7b06bd93a1a8d0d4297d0708d6b36d814c6e04 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl) | 2fbf009eb4733bb3b820322496d7f30099c0e73e89c3b22ec092eea9a4a64631 | -| | | | Python3.9.0 | [mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl) | 84a833fee65102d3147781bc7058070ec6d736f27d7511a2500f6f9b1ab58b6b | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.2-cp37-cp37m-linux_x86_64.whl) | 3eed8946992faf57e83f978aa392813fa50ccc90bbbd6b51ebc556f99acf7839 | -| | | | Python3.9.0 | [mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.2-cp39-cp39-linux_x86_64.whl) | ad5cb00601ab897d4a7622486172167f357377fc2d25ffebc7c6f94f308ac65c | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/aarch64/mindspore-1.5.2-cp37-cp37m-linux_aarch64.whl) | 83de5fb24bbb00ce6588c11ae52fabb176b7e1babbd46e4452118583a6517477 | -| | | | Python3.9.0 | [mindspore-1.5.2-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/aarch64/mindspore-1.5.2-cp39-cp39-linux_aarch64.whl) | d44520b48029d41385b24b78cb9e734d18c3d2331d607069ebbd4f4e659a2e0d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/x86_64/mindspore-1.5.2-cp37-cp37m-linux_x86_64.whl) | b6b58413be3d3e828f781da47a348689c8d6e8fdbbc1b2cab476e3a974d894d6 | -| | | | Python3.9.0 | [mindspore-1.5.2-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/x86_64/mindspore-1.5.2-cp39-cp39-linux_x86_64.whl) | ff1ff15df8b3c56cb563e3cd039c6ef033efbd851c3ae2f2dd4abe48ee4c4636 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.5.2-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.2/MindSpore/cpu/x86_64/mindspore-1.5.2-cp37-cp37m-win_amd64.whl) | 0d87855997b9a4fb5ff38c445ea75257e5e216a3134aee9dad5cbf8230561067 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|------------------------| -|[Ascend Data Center Solution 21.0.3] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#mindspore-152) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.5/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.5/index.html) | - -## 1.5.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.1-cp37-cp37m-linux_aarch64.whl) | ba835765693cba6fddc5f296867f417eb8ee6b0afea53f63018e9d041d0b5d36 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.1-cp39-cp39-linux_aarch64.whl) | 5ae3447971241915287bd773ef8c189ac5b5f67358a39a0ae85b57ba66bc346c | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.1-cp37-cp37m-linux_x86_64.whl) | 5416ed52a4b02b0bdc213fad2db5015a92d114e00f8fce25b88c4f965ce160ca | -| | | | Python3.9.0 | [mindspore_ascend-1.5.1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.1-cp39-cp39-linux_x86_64.whl) | ea5bf47bdf9d33cac34c93bfa03221628e655b7936642993570ffd570ae5b69d | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#mindspore-151) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.5/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.5/index.html) | - -## 1.5.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0-cp37-cp37m-linux_aarch64.whl) | e923540a625c780a2a311d013d7bcb184ff115675380222290528df3ceaa6263 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0-cp39-cp39-linux_aarch64.whl) | e313e3c2237556cd460b0796ca843faf98a3bb9afb9f9be0bc29232542a6c8d1 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0-cp37-cp37m-linux_x86_64.whl) | 8031b58133e5d7d73a04e705b3f810ae0dba900dce5df6ee35e906e93be21157 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0-cp39-cp39-linux_x86_64.whl) | 9b7b70a10eb3659b20dffee50b13a67b9cf66e4134d17b63fa7681cc5ff055f4 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl) | 64f534a606bb86a6b7546804ec157e4e7499dad0c888c71c5ba3fca3f6197c6b | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl) | a1b538bbd1c8c90692dad983b16b6f9e97ab0d7046039832a9c2e9b6f09e5e7c | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0-cp37-cp37m-linux_x86_64.whl) | 82ec52749175cebc72f2499979a6089514b42d192381db45632f54a53d3da47f | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0-cp39-cp39-linux_x86_64.whl) | d4faa9ad97d262f8b687241fcc21032813e09c0d54ea3d3ba65005fcbf8c9498 | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/aarch64/mindspore-1.5.0-cp37-cp37m-linux_aarch64.whl) | d92e67e65f3e93cc69c9166b53d8d7ee1968bf4df3cdcdc71e7764e2301afe39 | -| | | | Python3.9.0 | [mindspore-1.5.0-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/aarch64/mindspore-1.5.0-cp39-cp39-linux_aarch64.whl) | 34ea9e2971bbc7770f95447b07b06d23c83a5fba85c755f6b9e68b08005865f6 | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp37-cp37m-linux_x86_64.whl) | ee8fc2601b61f3a752aa5e40aadaa9e8b2cb202977297af0066d7c4132d59046 | -| | | | Python3.9.0 | [mindspore-1.5.0-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp39-cp39-linux_x86_64.whl) | 43553e547e5ef59d3f7b20c8b34ccdbb28982b3c67982bbb34be32217367d81c | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.5.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp37-cp37m-win_amd64.whl) | 00462be91e822aa2d70f10ee8d3961a14fcee7a7eed2ad78be4c05aa7149a53e | -| | | | Python3.9.0 | [mindspore-1.5.0-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindSpore/cpu/x86_64/mindspore-1.5.0-cp39-cp39-win_amd64.whl) | 2136ed01ba8059a8f5346aa8c448583408396bf9f0491708b379cea2c8c76bb2 | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.5/use/downloads.html#id1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindInsight/any/mindinsight-1.5.0-py3-none-any.whl) | eae763b28ef5bf01e75fbafeca43691e4a9aa7db659a7123ba909a3df348cdf8 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.5.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindArmour/any/mindarmour-1.5.0-py3-none-any.whl) | 2cc55d30125019d62533802470e43d3dc708e43b85c15043fc9208a650357b61 | -| MindSpore Quantum | | any | Python3 | [mindquantum-0.3.1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindQuantum/any/mindquantum-0.3.1-py3-none-any.whl) | b0699fc7c3a109489895bbc46cdf650dd0e554b1478b3bd4887860980fc02b50 | -| MindScience (MindSpore Elec) | Ascend | Linux-aarch64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindScience/aarch64/mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_aarch64.whl) | 067192056a57d968c65ad7bd2101ecc2f07229d4f3e44973f0dde14781d1b6d8 | -| | | Linux-x86_64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindScience/x86_64/mindscience_mindelec_ascend-0.1.0-cp37-cp37m-linux_x86_64.whl) | 8f8f36bd1a8d66ec5de962c77674c63ffd0333439b3bfbbe1e65eee75bbf3c7e | -| MindScience (MindSpore SPONGE) | GPU CUDA 10.1
GPU CUDA 11.1 | any | Python3 | [mindscience_mindsponge_gpu-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0/MindScience/any/mindscience_mindsponge_gpu-0.1.0-py3-none-any.whl) | eccc97895ca9f09d52f44a337e1e82b854d28929abec1c8ec2b8f2b2ff219262 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|---------------------------| -| [Ascend Data Center Solution 21.0.3] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.5/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.5/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.3/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/docs/zh-CN/r0.1/mindelec/intro_and_install.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/docs/zh-CN/r0.1/mindsponge/intro_and_install.html)| [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.5/mindquantum.core.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/api/zh-CN/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/api/zh-CN/r0.1/mindelec.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/api/zh-CN/r0.1/mindsponge.html)| - -## 1.5.0-rc1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | Python版本 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | Python3.7.5 | [mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_aarch64.whl) | c1b7df9432ec802d2d3374f22c4137a353f1b6389916292de98960de04ea783a | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/aarch64/mindspore_ascend-1.5.0rc1-cp39-cp39-linux_aarch64.whl) | 006d6533c7043b857748fa4fdc9177731a13ae071a955e730b18eb32a086020d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 0e6415255f2a72d131bdc17171b9d56acc09aba61ee4f8d322fadc8f28ebc284 | -| | | | Python3.9.0 | [mindspore_ascend-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/ascend/x86_64/mindspore_ascend-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 44e8f1ed9b3ed587867c24853f07870e432652b10bf99d4bcc65652190961d14 | -| | GPU CUDA 10.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 090bd0adba0d4fe80a4d95b5d428a18b1815ceb98f27808598ea68b719fa186a | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 9b53abf8379d5327fc582164f6dbd005594c2fd3a0aef317c5abb95042c54500 | -| | GPU CUDA 11.1 | Linux-x86_64 | Python3.7.5 | [mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | e28342697967e5fb6dfb3556ab73652063d75aa036ec3f00f19304874099f4b3 | -| | | | Python3.9.0 | [mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 8838eb4d51b328ce8b62376055c4fe80f9f4aedb48a6cb49b29bc3410a0906a3 | -| | CPU | Linux-aarch64 | Python3.7.5 | [mindspore-1.5.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/aarch64/mindspore-1.5.0rc1-cp37-cp37m-linux_aarch64.whl) | b57496b0ab4ba760feda4c0a8c9213d6a2ddec07399fc78b5df24f12493aeff7 | -| | | | Python3.9.0 | [mindspore-1.5.0rc1-cp39-cp39-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/aarch64/mindspore-1.5.0rc1-cp39-cp39-linux_aarch64.whl) | 8ddcd76598920dfad1329b96d200f5fd0c638bddfd7fc7a9354d37ecebc2089d | -| | | Linux-x86_64 | Python3.7.5 | [mindspore-1.5.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp37-cp37m-linux_x86_64.whl) | 0a86caa7fb42af6d29732f06b6568669279f83ba490f656a927fc4a5e2a56dc8 | -| | | | Python3.9.0 | [mindspore-1.5.0rc1-cp39-cp39-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp39-cp39-linux_x86_64.whl) | 9d18b6f4098bed313bbe70880ff6d5d044510c5b14bb1e45421b2ff90c5972e9 | -| | | Windows-x64 | Python3.7.5 | [mindspore-1.5.0rc1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp37-cp37m-win_amd64.whl) | 534e7dc9c3e3598a3d9a735fd7a7974d33e763780e1372ac47f29bdecaf1aa6c | -| | | | Python3.9.0 | [mindspore-1.5.0rc1-cp39-cp39-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindSpore/cpu/x86_64/mindspore-1.5.0rc1-cp39-cp39-win_amd64.whl) | 4860bd25473ca0dd9d0eb64846955631f6cd8ba44777864131e95ea8c9a6bdcc | -|MindSpore
Lite | | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.5/use/downloads.html#rc1) | | -| MindSpore Insight | | any | Python3 | [mindinsight-1.5.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindInsight/any/mindinsight-1.5.0rc1-py3-none-any.whl) | befa0b4db49661f25356d31b99aa481d371bfe2e9f9026323cfebc5da8b0cdb0 | -| MindSpore Armour | | any | Python3 | [mindarmour-1.5.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindArmour/any/mindarmour-1.5.0rc1-py3-none-any.whl) | 341240ec7b95287608a5d6e69347c42953651e643c758e0241dc259fac7c4056 | -| MindSpore Quantum | | any | Python3 | [mindquantum-0.3.1rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindQuantum/any/mindquantum-0.3.1rc1-py3-none-any.whl) | 33daf223b697797a74370eab3f5ae8b3798cdea6a2e08026ed2ca25d36af5cf5 | -| MindScience (MindSpore Elec) | Ascend | Linux-aarch64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindScience/aarch64/mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_aarch64.whl) | 3ad42c57e413abb1d6a9b8741c79e3a425b202cd8ab46c0b8044609800621671 | -| | | Linux-x86_64 | Python3.7.5 | [mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindScience/x86_64/mindscience_mindelec_ascend-0.1.0rc1-cp37-cp37m-linux_x86_64.whl) | 5f3431c21faa525d7ac555921c1eba6ac99b4d81750e39cd2de99dae761505a9 | -| MindScience (MindSpore SPONGE) | GPU CUDA 10.1
GPU CUDA 11.1 | any | Python3 | [mindscience_mindsponge_gpu-0.1.0rc1-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.5.0-rc1/MindScience/any/mindscience_mindsponge_gpu-0.1.0rc1-py3-none-any.whl) | b5f92468921812776b8cf66e675123df29cb23a5cfe40cc13b4f02a31f45cf22 | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.5/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.5/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.5/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.3/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/docs/zh-CN/r0.1/mindelec/intro_and_install.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/docs/zh-CN/r0.1/mindsponge/intro_and_install.html)| [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.5/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.5/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/api/zh-CN/r0.3/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/api/zh-CN/r1.5/index.html)
[MindSpore Elec](https://www.mindspore.cn/mindscience/api/zh-CN/r0.1/mindelec.html)
[MindSpore SPONGE](https://www.mindspore.cn/mindscience/api/zh-CN/r0.1/mindsponge.html)| - -## 1.4.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | [mindspore_ascend-1.4.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/ascend/aarch64/mindspore_ascend-1.4.1-cp37-cp37m-linux_aarch64.whl) | 3874d59f68c964b7bb0b33a7b431d0d1c0dbc745b67ca5d0f7d52f97d5ed6e1a | -| | | Linux-x86_64 | [mindspore_ascend-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/ascend/x86_64/mindspore_ascend-1.4.1-cp37-cp37m-linux_x86_64.whl) | a5f042b7f4e17c109d9b5f9abcf856d4a4fae7ca2835efe27137f4ff10040264 | -| | GPU CUDA 10.1 | Linux-x86_64 | [mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl) | 972c3b3c9c038809ccf5181f1b0a9b5eefb72ce6e202e948a3f03f4f370572e0 | -| | GPU CUDA 11.1 | Linux-x86_64 | [mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.4.1-cp37-cp37m-linux_x86_64.whl) | a84ded7e294fe3a47eeceaeb90c4f246fa847e36defba536f44977f72a9a49f7 | -| | CPU | Linux-aarch64 | [mindspore-1.4.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/cpu/aarch64/mindspore-1.4.1-cp37-cp37m-linux_aarch64.whl) | 9cbaba4072563ad65afa75f59c12d38729fa7516c3dcdd3e9d4e4803d9c91d4c | -| | | Linux-x86_64 | [mindspore-1.4.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/cpu/x86_64/mindspore-1.4.1-cp37-cp37m-linux_x86_64.whl) | 44ada49089225b9f5866585ab5fa29ceabf0b5ac15c0ec400b6d314115616665 | -| | | Windows-x64 | [mindspore-1.4.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.1/MindSpore/cpu/x86_64/mindspore-1.4.1-cp37-cp37m-win_amd64.whl) | 81c633959e7fba28a57c2cd3ac67a9d1e032d5fb41cc3e0b284a335f74585ca7 | - -## 1.4.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | [mindspore_ascend-1.4.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/ascend/aarch64/mindspore_ascend-1.4.0-cp37-cp37m-linux_aarch64.whl) | cd2df0a469edb5c8edc3b2ca54d0450ba4948cee02953966adeb864921da2b8b | -| | | Linux-x86_64 | [mindspore_ascend-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/ascend/x86_64/mindspore_ascend-1.4.0-cp37-cp37m-linux_x86_64.whl) | e357b9377fc48a340caae3210cc5905675e83af4fd7d0069b8755bfcb35f0391 | -| | GPU CUDA 10.1 | Linux-x86_64 | [mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl) | c8a84c4ad83d7a75b1faa1d8f484868e9dfa3c084c8be3adcb3c61d245209281 | -| | GPU CUDA 11.1 | Linux-x86_64 | [mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl) | fccdbd38de203011f8e38cd4d7c502caf6b4104d0532e9a2a778466d26503289 | -| | CPU | Linux-aarch64 | [mindspore-1.4.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/cpu/aarch64/mindspore-1.4.0-cp37-cp37m-linux_aarch64.whl) | 8bdfb65666bf7c030adb51072644807084d62fb6e9ce56330346e8813ec055ed | -| | | Linux-x86_64 | [mindspore-1.4.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/cpu/x86_64/mindspore-1.4.0-cp37-cp37m-linux_x86_64.whl) | 7c5e9c909357b20c72ecd7cfc947ba053666e29bb5d77fa10d055d90bfd8124e | -| | | Windows-x64 | [mindspore-1.4.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindSpore/cpu/x86_64/mindspore-1.4.0-cp37-cp37m-win_amd64.whl) | 0f6b9cfdff96c3472220e16fdd3d6937ebc9a10349e3748e5d4cd848ba611288 | -| MindSpore Insight | | any | [mindinsight-1.4.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindInsight/any/mindinsight-1.4.0-py3-none-any.whl) | d723ba998e9561aa3ee721f2988224b2111cc6c79deaaea014eb827dd63309ee | -| MindSpore Armour | | any | [mindarmour-1.4.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindArmour/any/mindarmour-1.4.0-py3-none-any.whl) | ec7547646aa1dfa4aaa40d98c1ad57bf9e563dc7c5d67208348dead1ae5c4df2 | -| MindSpore Quantum | | any | [mindquantum-0.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.4.0/MindQuantum/any/mindquantum-0.3.0-py3-none-any.whl) | d5c47aa63d5e085dcb4aabac030eeb62e75e819d18b8ff85a402dbba052561e2 | - -## 1.3.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Linux-aarch64 | [mindspore_ascend-1.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/ascend/aarch64/mindspore_ascend-1.3.0-cp37-cp37m-linux_aarch64.whl) | 1a86507f025b23952e77e65a71b1df899038eef1792214a5ff208ea5acd9a1d1 | -| | | Linux-x86_64 | [mindspore_ascend-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/ascend/x86_64/mindspore_ascend-1.3.0-cp37-cp37m-linux_x86_64.whl) | 6926563c1a94748bfbcc3c0e377ed755b1ceac1ca076353cdc5194cad92fa8a2 | -| | GPU CUDA 10.1 | Linux-x86_64 | [mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/gpu/x86_64/cuda-10.1/mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl) | 7433bde8c9af6299def5d538e48bedada3abe32e784c2459742b512cbf2711b9 | -| | GPU CUDA 11.1 | Linux-x86_64 | [mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.3.0-cp37-cp37m-linux_x86_64.whl) | 591aacd1bc8e70d0b8844ab1fefb417bfa92223084802224553ddf12713eccd6 | -| | CPU | Linux-aarch64 | [mindspore-1.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/cpu/aarch64/mindspore-1.3.0-cp37-cp37m-linux_aarch64.whl) | 57dd06d0f3df5e07be236d3311aee8988d4fb7ba3663348da62451934917429c | -| | | Linux-x86_64 | [mindspore-1.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/cpu/x86_64/mindspore-1.3.0-cp37-cp37m-linux_x86_64.whl) | aa4cad883dcad7aaa0fa1d3522cd7acd0edac41fee001a18152228095b027b9e | -| | | Windows-x64 | [mindspore-1.3.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindSpore/cpu/x86_64/mindspore-1.3.0-cp37-cp37m-win_amd64.whl) | ee60d2dc7905caa5e279300b5aee37091ef8382db257b81036f682d4875e51da | -|MindSpore
Lite | | | [安装包汇总链接](https://www.mindspore.cn/lite/docs/zh-CN/r1.3/use/downloads.html) | | -| MindSpore Insight | | any | [mindinsight-1.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindInsight/any/mindinsight-1.3.0-py3-none-any.whl) | e66c503e99292b1cbce12379d8a94c79600895753bb469494c129d2194df3b00 | -| MindSpore Armour | | any | [mindarmour-1.3.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindArmour/any/mindarmour-1.3.0-py3-none-any.whl) | 174ef9439d29895420b4e0d16ed63b0b8f1aa287ae9f1970e221bdfce2f96b75 | -| MindSpore Quantum | | any | [mindquantum-0.2.0.20210713-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.3.0/MindQuantum/any/mindquantum-0.2.0.20210713-py3-none-any.whl) | dd6ed15e37f3fb5f226c0df081ab0aa5603b4de810f79aa7f897cd20d1e1612c | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|-------------------------| -|[Ascend Data Center Solution 21.0.2] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.3/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.3/install) | [初学入门](https://www.mindspore.cn/tutorials/zh-CN/r1.3/index.html) | [MindSpore](https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.3/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r1.3/index.html)
[MindSpore Insight](https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.3/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.2/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/docs/zh-CN/r1.3/index.html)| [MindSpore](https://www.mindspore.cn/docs/api/zh-CN/r1.3/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/api/zh-CN/r1.3/index.html)
[MindSpore Quantum](https://www.mindspore.cn/mindquantum/api/zh-CN/r0.2/index.html)
[MindSpore Armour](https://www.mindspore.cn/mindarmour/api/zh-CN/r1.3/index.html)| - -## 1.2.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl) | da571c24ef5139135db9cd4d83e19945941f2a7fbb1bda73c0dac4b8b55967c8 | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | da0478285ac4f93c26d7cea2f24bb1859f960f1653d9c9f03cf9cbdb0859b904 | -| | | EulerOS-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | 6eb8eae0f0b8c25ddc5205b1fbc16530543b13b586189687fd6a6ed3eed60d37 | -| | | CentOS-x86 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.2.1-cp37-cp37m-linux_x86_64.whl) | a2711e4c0f5134ede07fa27634527f36a31a1585695bbddb75040bb78161ea56 | -| | | CentOS-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | 592ae11ce65ad5292e7b826065fe2925ac5152caec2923e8fb13f64a40cb87c1 | -| | | Kylin-aarch64 | [mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/ascend/kylin_aarch64/mindspore_ascend-1.2.1-cp37-cp37m-linux_aarch64.whl) | 6eb8eae0f0b8c25ddc5205b1fbc16530543b13b586189687fd6a6ed3eed60d37 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.2.1-cp37-cp37m-linux_x86_64.whl) | 2733b2dd89380ba10f11cacc81fab493540fa9c68f7bb638accb81a125bcc5ff | -| | CPU | Ubuntu-x86 | [mindspore-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.1-cp37-cp37m-linux_x86_64.whl) | c21c8e6e92d5e96a3f803daa55cf6b3f23e4744c7e212802270a72f376d60860 | -| | | Ubuntu-aarch64 | [mindspore-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.2.1-cp37-cp37m-linux_aarch64.whl) | bfe97146c1f4643076a7e9eba7a3f2e9d37f6ed079983c7101a7b4a368d9813c | -| | | Windows-x64 | [mindspore-1.2.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindSpore/cpu/windows_x64/mindspore-1.2.1-cp37-cp37m-win_amd64.whl) | c4f5b2113d4369f436849e86f0d1dd3402e47060850fcd63beb41155da220a30 | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindArmour/x86_64/mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl) | 4e0759b5c12ae107167eef4f9d608dba4d4c9e3f30907541ca5038bdd3271342 | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.2.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindArmour/aarch64/mindarmour-1.2.1-cp37-cp37m-linux_aarch64.whl) | 114d63dc56ab164fa3db0cd8c6af11072bb09c44195d94c6c333a688aed89b09 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.1/MindArmour/x86_64/mindarmour-1.2.1-cp37-cp37m-linux_x86_64.whl) | 4e0759b5c12ae107167eef4f9d608dba4d4c9e3f30907541ca5038bdd3271342 | - -**Ascend配套软件包** - -| 商用版安装指引文档 | -|--------------------| -|[Ascend Data Center Solution 21.0.1.SPC001] | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.2/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.2/install) | [初学入门](https://www.mindspore.cn/tutorial/zh-CN/r1.2/index.html)
[训练](https://www.mindspore.cn/tutorial/training/zh-CN/r1.2/index.html)
[推理](https://www.mindspore.cn/tutorial/inference/zh-CN/r1.2/index.html)
[手机&IoT](https://www.mindspore.cn/tutorial/lite/zh-CN/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/zh-CN/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/zh-CN/r1.2/index.html)| - -## 1.2.0-rc1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_x86/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | CPU | Ubuntu-x86 | [mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | Windows-x64 | [mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/windows_x64/mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl) | [mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/windows_x64/mindspore-1.2.0rc1-cp37-cp37m-win_amd64.whl.sha256) | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/euleros_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/euleros_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/centos_aarch64/mindinsight-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindInsight/ascend/ubuntu_x86/mindinsight-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/aarch64/mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl) | [mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/aarch64/mindarmour-1.2.0rc1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindArmour/x86_64/mindarmour-1.2.0rc1-cp37-cp37m-linux_x86_64.whl.sha256) | -| MindSpore Quantum | CPU | Ubuntu-x86 | [mindquantum-0.1.0-py3-none-any.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindQuantum/ubuntu_x86/mindquantum-0.1.0-py3-none-any.whl) | [mindquantum-0.1.0-py3-none-any.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindQuantum/ubuntu_x86/mindquantum-0.1.0-py3-none-any.whl.sha256) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.2/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.2/install) | [初学入门](https://www.mindspore.cn/tutorial/zh-CN/r1.2/index.html)
[训练](https://www.mindspore.cn/tutorial/training/zh-CN/r1.2/index.html)
[推理](https://www.mindspore.cn/tutorial/inference/zh-CN/r1.2/index.html)
[手机&IoT](https://www.mindspore.cn/tutorial/lite/zh-CN/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/zh-CN/r1.2/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/zh-CN/r1.2/index.html)| - -## 1.1.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | CPU | Ubuntu-x86 | [mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_x86/mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_x86/mindspore-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | Windows-x64 | [mindspore-1.1.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/windows_x64/mindspore-1.1.1-cp37-cp37m-win_amd64.whl) | [mindspore-1.1.1-cp37-cp37m-win_amd64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindSpore/cpu/windows_x64/mindspore-1.1.1-cp37-cp37m-win_amd64.whl.sha256) | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64 | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | EulerOS-aarch64 | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/euleros_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/euleros_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | | CentOS-x86 | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | CentOS-aarch64 | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/centos_aarch64/mindinsight-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/aarch64/mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl) | [mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/aarch64/mindarmour-1.1.1-cp37-cp37m-linux_aarch64.whl.sha256) | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl) | [mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.1/MindArmour/x86_64/mindarmour-1.1.1-cp37-cp37m-linux_x86_64.whl.sha256) | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.1/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.1/install) | [训练](https://www.mindspore.cn/tutorial/training/zh-CN/r1.1/index.html)
[推理](https://www.mindspore.cn/tutorial/inference/zh-CN/r1.1/index.html)
[手机&IoT](https://www.mindspore.cn/tutorial/lite/zh-CN/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/zh-CN/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/zh-CN/r1.1/index.html)| - -## 1.1.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl) | 8dc45c9c6367a9b59a5893c896b3ebfd929544325c911f48f679b9203165d85d | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl) | b49124e793127ac9d55ba8e5df109a17aafb3f09bbc4a9f7bc228bfc5b652042 | -| | | EulerOS-aarch64 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl) | 1c03e7941a9e247fb0e64f9ba0adbcb4fde3e815cd00dc4bc79e6a81a29e0335 | -| | | CentOS-x86 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/centos_x86/mindspore_ascend-1.1.0-cp37-cp37m-linux_x86_64.whl) | 3affe7f5dc4c7c649221d80bf8a41f54fe64028424c422d3513c11a6507f193f | -| | | CentOS-aarch64 | [mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.1.0-cp37-cp37m-linux_aarch64.whl) |051d2fe7fa1fa95e92da9841a1cdad113561da19a5e7f9abe30322ff44d68d2e | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.1.0-cp37-cp37m-linux_x86_64.whl) | 11386b0e156f033987f879e3b79f87e7cde0a6881063434f2c84a8564099e858 | -| | CPU | Ubuntu-x86 | [mindspore-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/cpu/ubuntu_x86/mindspore-1.1.0-cp37-cp37m-linux_x86_64.whl) | 1a1683e9c30650284f23001a1af0ae570ca854317ec52efc698ce7da604e31b0 | -| | | Ubuntu-aarch64 | [mindspore-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/cpu/ubuntu_aarch64/mindspore-1.1.0-cp37-cp37m-linux_aarch64.whl) | e1fa3cec68aef0e6619408f81d7e9e627704c1bfbf453ed90ee6d3b6c0c8c84f | -| | | Windows-x64 | [mindspore-1.1.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindSpore/cpu/windows_x64/mindspore-1.1.0-cp37-cp37m-win_amd64.whl) | ce3f1d4504fd8236113827d435c9aa691b0200e1ffeba3db391e678ad31a7df7 | -|MindSpore
Lite | | | [安装包汇总链接](https://www.mindspore.cn/tutorial/lite/zh-CN/r1.1/use/downloads.html) | | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl) | 85f4a38ecaf4d6799482e2a982609c46a49471325b47699c5b01b340549ab961 | -| | | Ubuntu-aarch64 | [mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl) | adb45fa766ff5ca4ef6cbe24335ca7e87c81e9293b60ffe00fec76533115ef4e | -| | | EulerOS-aarch64 | [mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/euleros_aarch64/mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl) | 78b9a728aecc01ead3687f9469d8af228917eab285f0770316bcc214b4ae3adc | -| | | CentOS-x86 | [mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/centos_x86/mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl) | a19a126ae1daa210c78aa256262303c9ad20f9cfe2404a5af840d325a471eb30 | -| | | CentOS-aarch64 | [mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/centos_aarch64/mindinsight-1.1.0-cp37-cp37m-linux_aarch64.whl) | f499aa428d754dc36da303f02b6531576e9e86158b213184c392f2302f13da2b | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.1.0-cp37-cp37m-linux_x86_64.whl) | 85f4a38ecaf4d6799482e2a982609c46a49471325b47699c5b01b340549ab961 | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindArmour/x86_64/mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl) | 3d8b05437dca6d648073b85909508377b7cab05f9a6f52ee712592083d611770 | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindArmour/aarch64/mindarmour-1.1.0-cp37-cp37m-linux_aarch64.whl) | bc724697cf053672198be226193cd0467c5a7f2a700d26a024bcfb318724f34a | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.1.0/MindArmour/x86_64/mindarmour-1.1.0-cp37-cp37m-linux_x86_64.whl) | 3d8b05437dca6d648073b85909508377b7cab05f9a6f52ee712592083d611770 | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.1/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.1/install) | [训练](https://www.mindspore.cn/tutorial/training/zh-CN/r1.1/index.html)
[推理](https://www.mindspore.cn/tutorial/inference/zh-CN/r1.1/index.html)
[手机&IoT](https://www.mindspore.cn/tutorial/lite/zh-CN/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/zh-CN/r1.1/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/zh-CN/r1.1/index.html)| - -## 1.0.1 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl) | 23664e8ab2e0f2b1a523de96753e300d42f2438e61f7d173b17a637fd139e2d1 | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl) | 9584a9f893ccdb93a2581c034b51045e8882ab67ce203366a212f981c68ad602 | -| | | EulerOS-aarch64 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl) | a662f447e79604aec52224f9dca6c73e4127cb497250e82517e8d5d8b83332b0 | -| | | CentOS-x86 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/centos_x86/mindspore_ascend-1.0.1-cp37-cp37m-linux_x86_64.whl) | 3b1f9c871b34ffbfa45d7dc55355adc0e828dbc5fb27d380ffed203644ef9155 | -| | | CentOS-aarch64 | [mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.0.1-cp37-cp37m-linux_aarch64.whl) | e01d0c52c7cf5670368e9bac6f06f9627eb016d109a48fc77dd7debd135599c9 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.0.1-cp37-cp37m-linux_x86_64.whl) | 5c84995e9f9a3640c31df0e96f69a37fa765f4e332cd71d9347c4e8c6c1d31f1 | -| | CPU | Ubuntu-x86 | [mindspore-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/cpu/ubuntu_x86/mindspore-1.0.1-cp37-cp37m-linux_x86_64.whl) | d8e66d962f66c00d7590ef24093186c3265cca60c27ff423769a5ef48922f494 | -| | | Ubuntu-aarch64 | [mindspore-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/cpu/ubuntu_aarch64/mindspore-1.0.1-cp37-cp37m-linux_aarch64.whl) | 8a2c630550e4ff6c786b1a53635e075d0a6625605af7221275360a04cdc3db0d | -| | | Windows-x64 | [mindspore-1.0.1-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindSpore/cpu/windows_x64/mindspore-1.0.1-cp37-cp37m-win_amd64.whl) | f50e1de60d6777bb449802024b7ac2fd90f58fb191bfd69e56079f6dbc5fe1b3 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl) | a1f5beb078d521f40454235f9bfcec5036479ada74d2a51a233ccbce3544e7ab | -| | | Ubuntu-aarch64 | [mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl) | 057ad1daec0cf48ece5dd9174aa95498816e373b831818b6e885b24173bd9cf5 | -| | | EulerOS-aarch64 | [mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/euleros_aarch64/mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl) | e5551323f2f0a89a7eedd4eb508fffb9a71761bb1d70cc9f5f9e2e63a66af78d | -| | | CentOS-x86 | [mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/centos_x86/mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl) | 62a86fa5faa32ee196b78071940f674642278ae016c9662d1051461a0c003969 | -| | | CentOS-aarch64 | [mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/centos_aarch64/mindinsight-1.0.1-cp37-cp37m-linux_aarch64.whl) | f436c042b77e52d1f95dd0d104f24189cc7474660603561b196e49ca36b2eded | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.1-cp37-cp37m-linux_x86_64.whl) | a1f5beb078d521f40454235f9bfcec5036479ada74d2a51a233ccbce3544e7ab | -| MindSpore Armour | Ascend | Ubuntu-x86
CentOS-x86 | [mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindArmour/x86_64/mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl) | 5f6cee4c36e009bc7cf0cb65d8c5d9a01d87b00dd9e4c48fb9c836fdd4be38ab | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS-aarch64 | [mindarmour-1.0.1-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindArmour/aarch64/mindarmour-1.0.1-cp37-cp37m-linux_aarch64.whl) | 1bd8e174f9a83537f4a60371fa2a0effe78851c9181e2666d9e2f49cab25efce | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/MindArmour/x86_64/mindarmour-1.0.1-cp37-cp37m-linux_x86_64.whl) | 5f6cee4c36e009bc7cf0cb65d8c5d9a01d87b00dd9e4c48fb9c836fdd4be38ab | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.0/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.0/install) | [训练](https://www.mindspore.cn/tutorial/training/zh-CN/r1.0/index.html)
[推理](https://www.mindspore.cn/tutorial/inference/zh-CN/r1.0/index.html)
[手机&IoT](https://www.mindspore.cn/tutorial/lite/zh-CN/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/zh-CN/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/zh-CN/r1.0/index.html)| - -## 1.0.0 - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/ubuntu_x86/mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl) | 4682be18cffdf86346bdb286ccd9e05f33be4138415dbc7db1650d029510ee44 | -| | | Ubuntu-aarch64 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl) | 6912fcc0488f3a8fa336d9680f506b5f0c97c5d82844d8fbfd9163bbcbe3140a | -| | | EulerOS-x86 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/euleros_x86/mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl) | 20fb5d35ccd7c1354084da48fa8e3cb93b6fa4843211be82a542dff775c39c0a | -| | | EulerOS-aarch64 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/euleros_aarch64/mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl) | b9700fc718e28026269f4639c7a963653a485c7213eed7d534ed26f89d98a44e | -| | | CentOS-x86 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/centos_x86/mindspore_ascend-1.0.0-cp37-cp37m-linux_x86_64.whl) | 453d4ddb93e3e0ed79ac2ec16920994b387376682d07ba71f1e1387cccd57ded | -| | | CentOS-aarch64 | [mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/ascend/centos_aarch64/mindspore_ascend-1.0.0-cp37-cp37m-linux_aarch64.whl) |f2066bfd3ffdeb458c6cdcdec2eb0c47c444336c7d983134638ae2de0cec0564 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-1.0.0-cp37-cp37m-linux_x86_64.whl) | af2b3b7744fdd475333a81e3dfadc81be2156e67e660477f92b584807b34cb70 | -| | CPU | Ubuntu-x86 | [mindspore-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/cpu/ubuntu_x86/mindspore-1.0.0-cp37-cp37m-linux_x86_64.whl) | a0a3c81b500d442d0324d82ed49808a32fb62c9e776fe614a863345965180f7c | -| | | Ubuntu-aarch64 | [mindspore-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/cpu/ubuntu_aarch64/mindspore-1.0.0-cp37-cp37m-linux_aarch64.whl) | eb3bf9d7a40a4f7bbb3ba566b8353ff8a2f89f2fae08d770af0f7d8b9f83d3ea | -| | | Windows-x64 | [mindspore-1.0.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/cpu/windows_x64/mindspore-1.0.0-cp37-cp37m-win_amd64.whl) | d30c89941939164fc1af8e406b202c1671a1309991a957a0f950b8c71775fcc9 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | dd951904ef10adbb93501c3cbafa6b4d34b1e8e5c4efe4fcaa7af49f0c081041 | -| | | Ubuntu-aarch64 | [mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/ubuntu_aarch64/mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl) | fc02c2ba823cc23eceb89c1c4f93e103502714ce5b4b7ea020c8d744220ae260 | -| | | EulerOS-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/euleros_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | 2df33884fe557e1073ac7bf18fef135dd2f0a90d8dfbc1a0fe6ab223fd959e9c | -| | | EulerOS-aarch64 | [mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/euleros_aarch64/mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl) | 27bbdb4354f43b696068cc926dfa4a967e5aa48e3f9276a9501df84966bd465e | -| | | CentOS-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/centos_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | 8eab8881dd585731dfdedaec16b456fe6e80242199efbdc5703e20382b59aeab | -| | | CentOS-aarch64 | [mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/centos_aarch64/mindinsight-1.0.0-cp37-cp37m-linux_aarch64.whl) | 3f76f2ff8c809b638136748348d5860b2ef6f6412ec37db2e02d00a7bc53c91f | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindInsight/ascend/ubuntu_x86/mindinsight-1.0.0-cp37-cp37m-linux_x86_64.whl) | dd951904ef10adbb93501c3cbafa6b4d34b1e8e5c4efe4fcaa7af49f0c081041 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86
CentOS x86_64 | [mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindArmour/x86_64/mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl) | a139ded76899e5901889fc4e578165ef78584a127f9c264830e4e2806c30cc82 | -| | | Ubuntu-aarch64
EulerOS-aarch64
CentOS aarch64 | [mindarmour-1.0.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindArmour/aarch64/mindarmour-1.0.0-cp37-cp37m-linux_aarch64.whl) | e895ba5a0d207e0cb3e93acdfaaa399a63161443371ef68d626d29542e41d940 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindArmour/x86_64/mindarmour-1.0.0-cp37-cp37m-linux_x86_64.whl) | a139ded76899e5901889fc4e578165ef78584a127f9c264830e4e2806c30cc82 | -| MindSpore
Lite RT | CPU | Android-aarch32 | [mindspore-lite-1.0.0-runtime-arm32-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch32/mindspore-lite-1.0.0-runtime-arm32-cpu.tar.gz) |abb28cee1b8a439c51d05a7c4521dc3f76d05ae79db4be781c932ee5f0abc774 | -| | | Android-aarch64 | [mindspore-lite-1.0.0-runtime-arm64-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-runtime-arm64-cpu.tar.gz) |9ca80c1fff35008f8114b3524fc2d897dac1db247df873ea6560f3ddc548a7f3 | -| | GPU | Android-aarch64 | [mindspore-lite-1.0.0-runtime-arm64-gpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-runtime-arm64-gpu.tar.gz) |eae1c9856ae7f647ce52dae79f826412e07bb058e6cf9031d85ab0ca72e42156 | -| MindSpore
Lite Converter | CPU | Ubuntu-x86 | [mindspore-lite-1.0.0-converter-ubuntu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/ubuntu_x86/mindspore-lite-1.0.0-converter-ubuntu.tar.gz) |baaf3e1d88416da535432949810c80e76e4189b3567b952b9d99397fcda0cad8 | -| | | Windows-x86 | [mindspore-lite-1.0.0-converter-win-cpu.zip](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/windows_x86/mindspore-lite-1.0.0-converter-win-cpu.zip) |6eae6f46ebe98697cf0a36268159d74a95ddf743ee27ec6de2088d469c753960 | -| MindSpore
Lite Minddata | CPU | Android-aarch32 | [mindspore-lite-1.0.0-minddata-arm32-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch32/mindspore-lite-1.0.0-minddata-arm32-cpu.tar.gz) |d998c5eba81b254c057eae61aeacd72cee24ad75eb01be89321133e6e035a330 | -| | | Android-aarch64 | [mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) |9f6bd53663d029b7638274fca94e47efbfa33ff7dab5dbe1cf328379e3cbbc18 | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r1.0/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r1.0/install) | [训练](https://www.mindspore.cn/tutorial/training/zh-CN/r1.0/index.html)
[推理](https://www.mindspore.cn/tutorial/inference/zh-CN/r1.0/index.html)
[手机&IoT](https://www.mindspore.cn/tutorial/lite/zh-CN/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/programming_guide/zh-CN/r1.0/index.html) | [MindSpore](https://www.mindspore.cn/doc/api_python/zh-CN/r1.0/index.html)| - -## 0.7.0-beta - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl) | 522b80e84de1b414d3800a27d01e40f75332000e5246b24cc1aea7d9e5566ce5 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl) | cbdb56a20860aaf1df4a8cbcc090da837ea2a5d115a173e79cd746f84263d73b | -| | | EulerOS-x86 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.7.0-cp37-cp37m-linux_x86_64.whl) | a21f086d2467eafaffc6934030941f24043e85fbff4888e4fb7ce879e59e5094 | -| | | EulerOS-aarch64 | [mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.7.0-cp37-cp37m-linux_aarch64.whl) | b1fbe55d7a461b8aa37efec100b87bad4332be7ef954ab83c01bec5f0f5da1e8 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.7.0-cp37-cp37m-linux_x86_64.whl) | 128eab1c10574de140f3c1b6aaaf55b383cdea806dbc8de23966c8d4b4aafb55 | -| | CPU | Ubuntu-x86 | [mindspore-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.7.0-cp37-cp37m-linux_x86_64.whl) | 473de6725a344e3b6353121de66dd06c8012e7eba3af3b96cd5d8a476b3b6e64 | -| | | Ubuntu-aarch64 | [mindspore-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/cpu/ubuntu_aarch64/mindspore-0.7.0-cp37-cp37m-linux_aarch64.whl) | 6b187948994eeaa2b4817303be83c6ccea3597c2aad5355428d5eaeb273604bc | -| | | Windows-x64 | [mindspore-0.7.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindSpore/cpu/windows_x64/mindspore-0.7.0-cp37-cp37m-win_amd64.whl) | 396152fab16ce5fcb4106cf49e02989b2e19503896304b1b040932eaddfdf56f | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl) | 3f913d74643eab858bd86d1ea73eb05ee4d402f8164adfb439b6346425abfa19 | -| | | Ubuntu-aarch64 | [mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl) | 73fb86732a88803b0699b47bd48aaa108b4921d0c3411e465bee27c348a68c76 | -| | | EulerOS-x86 | [mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl) | bd84b6b3432d34b235bf8d49ce78e5e0dbaf4b692e75fe12a7600dc313d9124c | -| | | EulerOS-aarch64 | [mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.7.0-cp37-cp37m-linux_aarch64.whl) | 4c48c96df6438b67fd7e36d96e251bf8e5a3dbcde13382edbaabfc03ae11e807 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.7.0-cp37-cp37m-linux_x86_64.whl) | 3f913d74643eab858bd86d1ea73eb05ee4d402f8164adfb439b6346425abfa19 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindArmour/x86_64/mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl) | bd3725991f227dde57afb1d11baf694a6ae0591d68355de18465a05b161bab14 | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.7.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindArmour/aarch64/mindarmour-0.7.0-cp37-cp37m-linux_aarch64.whl) | 928754efcde8c2106e1af4fb883899d8f66aa864e0ac1ba7358a291792d898a2 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.7.0-beta/MindArmour/x86_64/mindarmour-0.7.0-cp37-cp37m-linux_x86_64.whl) | bd3725991f227dde57afb1d11baf694a6ae0591d68355de18465a05b161bab14 | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.7/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r0.7/install) | [训练及推理](https://www.mindspore.cn/tutorial/zh-CN/r0.7/index.html)
[手机&IoT](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r0.7/index.html)
[MindSpore Lite](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/index.html) | [MindSpore](https://www.mindspore.cn/api/zh-CN/r0.7/index.html)
[MindSpore Lite](https://www.mindspore.cn/api/zh-CN/r0.7/index.html)| - -## 0.6.0-beta - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl) | afea66c19beff797b99bf06bc0ed897a83fdb510d62e03663cef55a68e0f278f | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl) | d81a8d2641688032daf829f30d514e11f77f3ef98fb35ee6c7370723158c0abc | -| | | EulerOS-x86 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.6.0-cp37-cp37m-linux_x86_64.whl) | 3ce2a21cd9b8cf58101ec342c9753a226f5fbe315f3a40da521fdf1d46e9dbef | -| | | EulerOS-aarch64 | [mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.6.0-cp37-cp37m-linux_aarch64.whl) | 55716a59295b92f13509f483c073a2b67cce89cb3e53919400b5d428d986f9f5 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.6.0-cp37-cp37m-linux_x86_64.whl) | f477dc282d503283c59a06e26cfad785c2c2a1996082671e46b4405a6fa539b1 | -| | CPU | Ubuntu-x86 | [mindspore-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.6.0-cp37-cp37m-linux_x86_64.whl) | 8daf749b9d7cf269208b47561844d088a7d200e10816f9437fbcce24fb844495 | -| | | Windows-x64 | [mindspore-0.6.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindSpore/cpu/windows_x64/mindspore-0.6.0-cp37-cp37m-win_amd64.whl) | c7ed48fdb808d4f65ca68654323f2e990a7aa7a99ccf0f19bc8bcc23024102f7 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl) | 6a825a529339eba95799bfaef6876ef2aedb45f3f81933f41c64e99d9af5c3fd | -| | | Ubuntu-aarch64 | [mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl) | 165376a2ca5574568468d745101b16a7760f9cc0aa113372b57a31a35774fae7 | -| | | EulerOS-x86 | [mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl) | f02af4c6fa6ad88589ccc8c80134ad3ff9298379d3361839c1eb41350d2e12d8 | -| | | EulerOS-aarch64 | [mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.6.0-cp37-cp37m-linux_aarch64.whl) | dcb4560a41342fd61e29a4f6718459b247ba0e21b3e075ca4075ed4f9fec4375 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.6.0-cp37-cp37m-linux_x86_64.whl) | 6a825a529339eba95799bfaef6876ef2aedb45f3f81933f41c64e99d9af5c3fd | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindArmour/x86_64/mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl) | 18f245bdff972414010c9f53de402d790cdef9a74f94ac41e5b6341e778e93b3 | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.6.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindArmour/aarch64/mindarmour-0.6.0-cp37-cp37m-linux_aarch64.whl) | 8da35bbf7e909bdce7972f7cd11aa495de2c18b9334052e60609dadd82649922 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.6.0-beta/MindArmour/x86_64/mindarmour-0.6.0-cp37-cp37m-linux_x86_64.whl) | 18f245bdff972414010c9f53de402d790cdef9a74f94ac41e5b6341e778e93b3 | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.6/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r0.6/install) | [快速入门](https://www.mindspore.cn/tutorial/zh-CN/r0.6/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r0.6/index.html) | [MindSpore](https://www.mindspore.cn/api/zh-CN/r0.6/index.html)| - -## 0.5.2-beta - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl) | ec4bdb6c96d9ffd2d1e465bd07ac4a8a9c0633512b4fffe9217590ad1a576ea6 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl) | 8bffe9ef96d99af7238db713cc1273a63762d95e1f2d758d53e20550e2c9b2a2 | -| | | EulerOS-x86 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.5.2-cp37-cp37m-linux_x86_64.whl) | 396da09b61811ab9e5f72c6ad6d68bfd757384bb7923ac50bfed80672eafcf84 | -| | | EulerOS-aarch64 | [mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.5.2-cp37-cp37m-linux_aarch64.whl) | 71cb819be43d3d89cc6b5e62c4e4c988e52bcbad3b3b9e7d1ed9ecc469c7043c | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.5.2-cp37-cp37m-linux_x86_64.whl) | d424840777d4751cdf1a22a8e39453a96804545ebe3f0dfb67d3aabc10fa2bd2 | -| | CPU | Ubuntu-x86 | [mindspore-0.5.2-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.5.2-cp37-cp37m-linux_x86_64.whl) | ef4d85704bb2588bf3208b6d62b5282db9eb792f99e8b45f571094d2ae735213 | -| | | Windows-x64 | [mindspore-0.5.2-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.2-beta/MindSpore/cpu/windows_x64/mindspore-0.5.2-cp37-cp37m-win_amd64.whl) | 023f255a81220210679a9872261e2fe4291cdebb157029506aa6773e59e070cd | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| | | Ubuntu-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 97f92b556f8e97e250f311f5d11caace4ac5686015b099b98462d9603e2c5724 | -| | | EulerOS-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 5fab87c3dfda57851a9981c7567200f0f0d856462b8dd521402b085830e6554f | -| | | EulerOS-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 7a157fb849f078fef6792353414737a8eccd98ba7a6fdd3c4ba3b497bc3f019f | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/aarch64/mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl) | 51d2dfd9e65d6d919da36c29fa9420b68c3fb71aa33b54ec35aa5d6bb011c1a8 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r0.5/install) | [快速入门](https://www.mindspore.cn/tutorial/zh-CN/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/api/zh-CN/r0.5/index.html)| - -## 0.5.0-beta - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl) | f20adcdb696316361e13fcd624d7188598b7248f77c7efc535cf193afc26f1c2 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl) | 6b79da1ff33bc27d92835ebc40f9238c6e05a0ebd0a3307035e726b2de0eeae6 | -| | | EulerOS-x86 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/euleros_x86/mindspore_ascend-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34193fbd8a1181d1420386b6fa31315ac0098243dfc8965ee26a3063fedd331d | -| | | EulerOS-aarch64 | [mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.5.0-cp37-cp37m-linux_aarch64.whl) | 9ac71a08c7da451a1d8030e14ab5b239c27b42991834e40ed68486301c5ce895 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.5.0-cp37-cp37m-linux_x86_64.whl) | 4afbd886c8b7f60bfe0745e74749c5409007ff36d2f65034942a6597c5b92227 | -| | CPU | Ubuntu-x86 | [mindspore-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/cpu/ubuntu_x86/mindspore-0.5.0-cp37-cp37m-linux_x86_64.whl) | eec9fe7dcee83314e8c2e24b654bdfe25f6538b5fec471460bc8fd9451ee85e6 | -| | | Windows-x64 | [mindspore-0.5.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindSpore/cpu/windows_x64/mindspore-0.5.0-cp37-cp37m-win_amd64.whl) | 86fb9a4d508dcd56776a34650dea6f98905b0d1272a89af9eb3c1b9d670d06b5 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| | | Ubuntu-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 97f92b556f8e97e250f311f5d11caace4ac5686015b099b98462d9603e2c5724 | -| | | EulerOS-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 5fab87c3dfda57851a9981c7567200f0f0d856462b8dd521402b085830e6554f | -| | | EulerOS-aarch64 | [mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/euleros_aarch64/mindinsight-0.5.0-cp37-cp37m-linux_aarch64.whl) | 7a157fb849f078fef6792353414737a8eccd98ba7a6fdd3c4ba3b497bc3f019f | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindInsight/ascend/ubuntu_x86/mindinsight-0.5.0-cp37-cp37m-linux_x86_64.whl) | 34b3c1a5ffbf9fa5e46dc6f295abde0308b65d76fd18d4551103ca0e222e3651 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/aarch64/mindarmour-0.5.0-cp37-cp37m-linux_aarch64.whl) | 51d2dfd9e65d6d919da36c29fa9420b68c3fb71aa33b54ec35aa5d6bb011c1a8 | -| | GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.5.0-beta/MindArmour/x86_64/mindarmour-0.5.0-cp37-cp37m-linux_x86_64.whl) | 09aa2887b0acbe9b31d07fb8d740c0bceefd6b8751aebdddd533f752f7564efc | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r0.5/install) | [快速入门](https://www.mindspore.cn/tutorial/zh-CN/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/r0.5/index.html) | [MindSpore](https://www.mindspore.cn/api/zh-CN/r0.5/index.html)| - -## 0.3.0-alpha - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/ubuntu_x86/mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl) | 7756a50ca3af82d06eaf456db4d062fa647a8352724ef85da6569426a6393918 | -| | | Ubuntu-aarch64 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/ubuntu_aarch64/mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl) | 4f613b1466ba3eafb160ebca2f8086e63fdaeee9c07a5458b4476da4fce8f90a | -| | | EulerOS-x86 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/euleros_x86/mindspore_ascend-0.3.0-cp37-cp37m-linux_x86_64.whl) | 93867f72c801affec1da901e734a6d329c6d1ae3cdec1297870b46a277aa64b8 | -| | | EulerOS-aarch64 | [mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/ascend/euleros_aarch64/mindspore_ascend-0.3.0-cp37-cp37m-linux_aarch64.whl) | ecd7f3e049034d20f722073ecb87d5d8108cfc218d2594ec9771e83db5222cf8 | -| | GPU CUDA 9.2 | Ubuntu-x86 | [mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/gpu/ubuntu_x86/cuda-9.2/mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl) | cd4890d3c24b47f48da48c8cc9efdf35e14f9b4a76ec66779bb24d601d2e0c25 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/gpu/ubuntu_x86/cuda-10.1/mindspore_gpu-0.3.0-cp37-cp37m-linux_x86_64.whl) | 07e7263936e1c4805fb253d596ccbeb2fccab3a48929febce85ebb7609d82c4f | -| | CPU | Ubuntu-x86 | [mindspore-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/cpu/ubuntu_x86/mindspore-0.3.0-cp37-cp37m-linux_x86_64.whl) | 38b662673af0dfc89182f5b54261aa8694b8aefdbc1e5fa2d5e06377113e8a22 | -| | | Windows-x64 | [mindspore-0.3.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindSpore/cpu/windows_x64/mindspore-0.3.0-cp37-cp37m-win_amd64.whl) | ed6b1c04d08fcfe4ac913f4593da70f78741af8e9391dce7189106b67a1393c1 | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/ubuntu_x86/mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl) | 40b0697fbafa3a08393cbeda2f6286caa299a3b758beb63c9ed68f621879ef49 | -| | | Ubuntu-aarch64 | [mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/ubuntu_aarch64/mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl) | 0005334bf15268e499d91d0a7e1bfb5abc4b5a0e10a3c4c0798da0283b28fe23 | -| | | EulerOS-x86 | [mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/euleros_x86/mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl) | e1ba11b37a0ce13c8f4f668a9479c0f97d922e4ce6128823e576c7d38298c86d | -| | | EulerOS-aarch64 | [mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/euleros_aarch64/mindinsight-0.3.0-cp37-cp37m-linux_aarch64.whl) | 8d03e1f57b39268b4ba89c25ca88934b1a00304839f454d7bfd4747269abb359 | -| | GPU CUDA 9.2
GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindInsight/ascend/ubuntu_x86/mindinsight-0.3.0-cp37-cp37m-linux_x86_64.whl) | 40b0697fbafa3a08393cbeda2f6286caa299a3b758beb63c9ed68f621879ef49 | -| MindSpore Armour | Ascend | Ubuntu-x86
EulerOS-x86 | [mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindArmour/x86_64/mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl) | 7a2bd6174be9e5a47e8ae6bcdd592ecdafc6e53e6f1cd5f0261fcb8337b5b337 | -| | | Ubuntu-aarch64
EulerOS-aarch64 | [mindarmour-0.3.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindArmour/aarch64/mindarmour-0.3.0-cp37-cp37m-linux_aarch64.whl) | 6d5f96cc004579d98664d018dca860d3b7f935df5b479f1192161f18a091d9c9 | -| | GPU CUDA 9.2
GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.3.0-alpha/MindArmour/x86_64/mindarmour-0.3.0-cp37-cp37m-linux_x86_64.whl) | 7a2bd6174be9e5a47e8ae6bcdd592ecdafc6e53e6f1cd5f0261fcb8337b5b337 | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.3/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r0.3/install) | [快速入门](https://www.mindspore.cn/tutorial/zh-CN/0.3.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/0.3.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/api/zh-CN/0.3.0-alpha/index.html)| - -## 0.2.0-alpha - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/ascend/x86_ubuntu/mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl) | aa1225665d05263b17bb7ec1d51dd4f933254c818bee126b6c5dac4513532a14 | -| | | EulerOS-x86 | [mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/ascend/x86_euleros/mindspore_ascend-0.2.0-cp37-cp37m-linux_x86_64.whl) | eb9a1b2a0ba32d7f7264ae344833f90a8ba2042cddf1a6a719c1a38a7ea528ea | -| | | EulerOS-aarch64 | [mindspore_ascend-0.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/ascend/aarch64_euleros/mindspore_ascend-0.2.0-cp37-cp37m-linux_aarch64.whl) | 820fb17d63341c636018d4e930151d3d2fa7ac05d4a400286c1b1aeb4cc34c6f | -| | GPU CUDA 9.2 | Ubuntu-x86 | [mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/gpu/cuda-9.2/mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl) | b933f95551afc3de38ba06502ef68a5a2a50bebadcc9b92b870f8eb44f59f10a | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/gpu/cuda-10.1/mindspore_gpu-0.2.0-cp37-cp37m-linux_x86_64.whl) | e7167bad4549002f9d14b0a015abbabf56334621cf746fa60bb67df0fadb22ec | -| | CPU | Ubuntu-x86 | [mindspore-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/cpu/x86_ubuntu/mindspore-0.2.0-cp37-cp37m-linux_x86_64.whl) | d6702dce9dad94d1e08bedc43540ac21422e8c49d919f7abd0bb7a3aa804476f | -| | | Windows-x64 | [mindspore-0.2.0-cp37-cp37m-win_amd64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindSpore/cpu/x64_windows/mindspore-0.2.0-cp37-cp37m-win_amd64.whl) | 77151d20fe450df3697853a5309308ecc482870fd2984753b82d3db9d326fdec | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/x86_ubuntu/mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl) | 2334e833f322e0f38e04e65819214b7582527364c1e0aca79bd080a720932ca4 | -| | | EulerOS-x86 | [mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/x86_euleros/mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl) | c6c3088a499967f2fe301ea910536fdf62dd4e38edb47e144726b9a4d4a17e50 | -| | | EulerOS-aarch64 | [mindinsight-0.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/aarch64_euleros/mindinsight-0.2.0-cp37-cp37m-linux_aarch64.whl) | 6e5e03b56988968ec36c556ece06d2e5aa68e80ff475374087998e0ff360a45a | -| | GPU CUDA 9.2
GPU CUDA 10.1 | Ubuntu-x86 | [mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindInsight/x86_ubuntu/mindinsight-0.2.0-cp37-cp37m-linux_x86_64.whl) | 2334e833f322e0f38e04e65819214b7582527364c1e0aca79bd080a720932ca4 | -| MindSpore Armour | Ascend | Ubuntu-x86 | [mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/x86_64/mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl) | 4146790bc73a5846e92b943dfd3febb6c62052b217eeb45b6c48aa82b51e7cc3 | -| | | EulerOS-x86 | [mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/x86_64/mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl) | 4146790bc73a5846e92b943dfd3febb6c62052b217eeb45b6c48aa82b51e7cc3 | -| | | EulerOS-aarch64 | [mindarmour-0.2.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/aarch64/mindarmour-0.2.0-cp37-cp37m-linux_aarch64.whl) | 5d5e532b9c4e466d89cf503f07c2d530b42216a14f193f685b9a81e190c8db44 | -| | GPU CUDA 9.2
GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.2.0-alpha/MindArmour/x86_64/mindarmour-0.2.0-cp37-cp37m-linux_x86_64.whl) | 4146790bc73a5846e92b943dfd3febb6c62052b217eeb45b6c48aa82b51e7cc3 | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.2/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r0.2/install) | [快速入门](https://www.mindspore.cn/tutorial/zh-CN/0.2.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/0.2.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/api/zh-CN/0.2.0-alpha/index.html)| - -## 0.1.0-alpha - -**下载地址** - -| 组件 | 硬件平台 | 操作系统 | 链接 | SHA-256 | -| --- | --- | --- | --- | --- | -| MindSpore | Ascend | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/ascend/ubuntu-x86/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | a76df4e96c4cb69b10580fcde2d4ef46b5d426be6d47a3d8fd379c97c3e66638 | -| | | EulerOS-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/ascend/euleros-x86/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | 45d4fcb37bf796b3208b7c1ca70dc0db1387a878ef27836d3d445f311c8c02e0 | -| | | EulerOS-aarch64 | [mindspore-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/ascend/euleros-aarch64/mindspore-0.1.0-cp37-cp37m-linux_aarch64.whl) | 7daba2d1739ce19d55695460dce5ef044b4d38baad4f5117056e5f77f49a12b4 | -| | GPU CUDA 9.2 | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/gpu/cuda-9.2/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | b6e5623135b57b8c262f3e32d97fbe1e20e8c19da185a7aba97b9dc98c7ecda1 | -| | GPU CUDA 10.1 | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/gpu/cuda-10.1/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | 43711725cf7e071ca21b5ba25e90d6955789fe3495c62217e70869f52ae20c01 | -| | CPU | Ubuntu-x86 | [mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindSpore/cpu/ubuntu-x86/mindspore-0.1.0-cp37-cp37m-linux_x86_64.whl) | 45c473a97a6cb227e4221117bfb1b3ebe3f2eab938e0b76d5117e6c3127b8e5c | -| MindSpore Insight | Ascend | Ubuntu-x86 | [mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindInsight/ubuntu/x86_64/mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl) | 960b6f485ce545ccce98adfb4c62cdea216c9b7851ffdc0669827c53811c3e59 | -| | | EulerOS-x86 | [mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindInsight/euleros/x86_64/mindinsight-0.1.0-cp37-cp37m-linux_x86_64.whl) | 9f1ef04fec09e5b90be4a6223b3bf2943334746c1f5dac37207db4524b64942f | -| | | EulerOS-aarch64 | [mindinsight-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindInsight/euleros/aarch64/mindinsight-0.1.0-cp37-cp37m-linux_aarch64.whl) | d64207126542571057572f856010a5a8b3362ccd9e5b5c81da5b78b94face5fe | -| MindSpore Armour | Ascend | Ubuntu-x86 | [mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/x86_64/mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl) | 7796b6c114ee4962ce605da59a9bc47390c8910acbac318ecc0598829aad6e8c | -| | | EulerOS-x86 | [mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/x86_64/mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl) | 7796b6c114ee4962ce605da59a9bc47390c8910acbac318ecc0598829aad6e8c | -| | | EulerOS-aarch64 | [mindarmour-0.1.0-cp37-cp37m-linux_aarch64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/aarch64/mindarmour-0.1.0-cp37-cp37m-linux_aarch64.whl) | f354fcdbb3d8b4022fda5a6636e763f8091aca2167dc23e60b7f7b6d710523cb | -| | GPU CUDA 9.2
GPU CUDA 10.1
CPU | Ubuntu-x86 | [mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl](https://ms-release.obs.cn-north-4.myhuaweicloud.com/0.1.0-alpha/MindArmour/x86_64/mindarmour-0.1.0-cp37-cp37m-linux_x86_64.whl) | 7796b6c114ee4962ce605da59a9bc47390c8910acbac318ecc0598829aad6e8c | - -**配套资料** - -| 版本说明和接口变更 | 安装 | 教程 | 文档 | API| -| --- | --- | --- | --- | --- | -| [ReleaseNotes](https://gitee.com/mindspore/mindspore/blob/r0.1/RELEASE.md#) | [安装指南](https://gitee.com/mindspore/docs/tree/r0.1/install) | [快速入门](https://www.mindspore.cn/tutorial/zh-CN/0.1.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/docs/zh-CN/0.1.0-alpha/index.html) | [MindSpore](https://www.mindspore.cn/api/zh-CN/0.1.0-alpha/index.html)| \ No newline at end of file diff --git a/templates/api_mapping_no_diffs.md b/templates/api_mapping_no_diffs.md index 4f0409dba11aef9e02c67f3702d4dccb876fd973..9ee7d9afb79d108beca3835614e32e19a601fc0e 100644 --- a/templates/api_mapping_no_diffs.md +++ b/templates/api_mapping_no_diffs.md @@ -1,6 +1,6 @@ # 比较与torch.index_select的功能差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/templates/api_mapping_no_diffs.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/templates/api_mapping_no_diffs.md) ## torch.index_select diff --git a/templates/api_mapping_with_diffs.md b/templates/api_mapping_with_diffs.md index 3d1e1336859892fd56344a0752ab3c315fb3b493..7b75ea90fd09068cf44aa5a18dd083e9c68b60d3 100644 --- a/templates/api_mapping_with_diffs.md +++ b/templates/api_mapping_with_diffs.md @@ -1,6 +1,6 @@ # 比较与torch.where的功能差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/templates/api_mapping_with_diffs.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/templates/api_mapping_with_diffs.md) ## torch.where diff --git a/templates/api_mapping_with_diffs_template.md b/templates/api_mapping_with_diffs_template.md index 91a329441c3dde9ebac47a332f359e2c8193d601..2259a7761e7e9604bb9a59adeed45040c764be0d 100644 --- a/templates/api_mapping_with_diffs_template.md +++ b/templates/api_mapping_with_diffs_template.md @@ -1,6 +1,6 @@ # 比较与torch.torch_op的功能差异 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/templates/api_mapping_with_diffs_template.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/templates/api_mapping_with_diffs_template.md) ## torch.torch_op diff --git a/tools/ci_pipeline_gate_APIView/generate_pr_html.py b/tools/ci_pipeline_gate_APIView/generate_pr_html.py index 7e2da503c584d3d93cc5d737f41eeeacb7af1c77..76e5c7f90e648573fdb1baa600ef6924c65593ab 100644 --- a/tools/ci_pipeline_gate_APIView/generate_pr_html.py +++ b/tools/ci_pipeline_gate_APIView/generate_pr_html.py @@ -37,7 +37,7 @@ def update_repo(clone_branch, rp_dir_docs): # docs工程运行仓克隆更新 if not os.path.exists(rp_dir_docs): os.makedirs(rp_dir_docs, exist_ok=True) - Repo.clone_from("https://gitee.com/mindspore/docs.git", + Repo.clone_from("https://atomgit.com/mindspore/docs.git", rp_dir_docs, branch=clone_branch) else: # Repo(rp_dir).git.execute(["git","pull","origin","master"]) diff --git a/tools/link_detection/filter_linklint.txt b/tools/link_detection/filter_linklint.txt index 8f61d3a22bcb4580d29ed243f22125464ba8fafa..a9cf7b2ca37f1ef9994599ee0804abf22a39dd08 100644 --- a/tools/link_detection/filter_linklint.txt +++ b/tools/link_detection/filter_linklint.txt @@ -10,5 +10,5 @@ http://xxxx/v1/mindinsight/debugger/sessions/xxxx/update-watchpoint http://%s:%s%s http://localhost:5500/x/:add_common http://xxxx/v1/mindinsight/profile/memory-graphics -https://gitee.com/mindspore/docs/blob/xxx +https://atomgit.com/mindspore/docs/blob/xxx http://127.0.0.1:11202/scaleout diff --git a/tools/pic_detection/README_CN.md b/tools/pic_detection/README_CN.md index d01c8f6c7d926c407c5a902a58d6a9e750fefb64..141de1098a8a1d462044d591bf1340257a425f6c 100644 --- a/tools/pic_detection/README_CN.md +++ b/tools/pic_detection/README_CN.md @@ -11,7 +11,7 @@ 1. 打开Git Bash,下载MindSpore Docs仓代码。 ```bash - git clone https://gitee.com/mindspore/docs.git + git clone https://atomgit.com/mindspore/docs.git ``` 2. 进入`tools/pic_detection`目录。 diff --git a/tools/rst_lint/README_CN.md b/tools/rst_lint/README_CN.md index d927b5f2fae6ad9f44151d8ec82379254757ce80..e99cc990cc14bcd4f5caa3dffd72ef08b7b856ed 100644 --- a/tools/rst_lint/README_CN.md +++ b/tools/rst_lint/README_CN.md @@ -24,7 +24,7 @@ - `level`为错误级别,`WARNING`或者 `ERROR`; - `rst_file_path`为检测文档路径名; - `line_number`为错误所在行; -- `error_info`为详细[错误信息](https://gitee.com/mindspore/docs/blob/master/tools/rst_lint/RULES.md#)。 +- `error_info`为详细[错误信息](https://atomgit.com/mindspore/docs/blob/master/tools/rst_lint/RULES.md#)。 ## 示例 diff --git a/tutorials/source_en/beginner/accelerate_with_static_graph.md b/tutorials/source_en/beginner/accelerate_with_static_graph.md index 72317d7bc7ba48f0b1072d677bcef43989941aaa..dd2b14a91b8de54ca54095b4d2f1c0f363ac7d90 100644 --- a/tutorials/source_en/beginner/accelerate_with_static_graph.md +++ b/tutorials/source_en/beginner/accelerate_with_static_graph.md @@ -1,6 +1,6 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/accelerate_with_static_graph.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/accelerate_with_static_graph.md) -[Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/autograd.md) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || **Accelerating with Static Graphs** +[Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/autograd.md) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || **Accelerating with Static Graphs** # Accelerating with Static Graphs diff --git a/tutorials/source_en/beginner/autograd.md b/tutorials/source_en/beginner/autograd.md index 9f08c944accd401eb63def976a231b8424631e5b..3853c55454eb4bbe247d881db24bbb5723d9e959 100644 --- a/tutorials/source_en/beginner/autograd.md +++ b/tutorials/source_en/beginner/autograd.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/autograd.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/autograd.md) [Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || **Autograd** || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/beginner/dataset.md b/tutorials/source_en/beginner/dataset.md index e4c5d4ed0991adc6a999bf01a2cbe7cc9382fa4a..e2e477203980ac18ba538548500b19e37060af6b 100644 --- a/tutorials/source_en/beginner/dataset.md +++ b/tutorials/source_en/beginner/dataset.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/dataset.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/dataset.md) [Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || **Data Loading and Processing** || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/beginner/introduction.md b/tutorials/source_en/beginner/introduction.md index fba9f740f8031b93bb7132050d8b01f0a3177061..d2ca20de4685e5fcbdd2ae41e3d84302a9d8744e 100644 --- a/tutorials/source_en/beginner/introduction.md +++ b/tutorials/source_en/beginner/introduction.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/introduction.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/introduction.md) **Introduction** || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html#) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/beginner/model.md b/tutorials/source_en/beginner/model.md index 0f6a11d6ec79fcc75cda5dde31818ebc1e6e56a1..63059601b9d05d1771b5b7632be0064dd3d73391 100644 --- a/tutorials/source_en/beginner/model.md +++ b/tutorials/source_en/beginner/model.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/model.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/model.md) [Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || **Model** || [Autograd](https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/beginner/quick_start.md b/tutorials/source_en/beginner/quick_start.md index 268e8a6461130f30230cf1cf080c671f7d07381d..34ceb8447413369cb9c6a5b8596a2121d6e755a7 100644 --- a/tutorials/source_en/beginner/quick_start.md +++ b/tutorials/source_en/beginner/quick_start.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/quick_start.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/quick_start.md) [Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || **Quick Start** || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/beginner/save_load.md b/tutorials/source_en/beginner/save_load.md index 259b4e4f13fc30f1f9cee248bf3703c6b79b009c..c11c68367fb3bc36fb693e5edbbdc0d4eaf4dcb1 100644 --- a/tutorials/source_en/beginner/save_load.md +++ b/tutorials/source_en/beginner/save_load.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/save_load.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/save_load.md) [Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || **Save and Load** || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/beginner/tensor.md b/tutorials/source_en/beginner/tensor.md index f3ce742a49dc86b71fdecd409d88b0700df1e9f1..2de14b494def2e048092ab955d2b957a32d0a625 100644 --- a/tutorials/source_en/beginner/tensor.md +++ b/tutorials/source_en/beginner/tensor.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/tensor.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/tensor.md) [Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || **Tensor** || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html) || [Train](https://www.mindspore.cn/tutorials/en/master/beginner/train.html) || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/beginner/train.md b/tutorials/source_en/beginner/train.md index 125510f7d8d296ffc94acf08c37fb07343aa6208..a0380de344cacbd1db12633818326371029735cd 100644 --- a/tutorials/source_en/beginner/train.md +++ b/tutorials/source_en/beginner/train.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/beginner/train.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/beginner/train.md) [Introduction](https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html) || [Quick Start](https://www.mindspore.cn/tutorials/en/master/beginner/quick_start.html) || [Tensor](https://www.mindspore.cn/tutorials/en/master/beginner/tensor.html) || [Data Loading and Processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) || [Model](https://www.mindspore.cn/tutorials/en/master/beginner/model.html) || [Autograd](https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html) || **Train** || [Save and Load](https://www.mindspore.cn/tutorials/en/master/beginner/save_load.html) || [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html) diff --git a/tutorials/source_en/compile/fusion_pass.md b/tutorials/source_en/compile/fusion_pass.md index c476a53635fc5e08e979e714c3d8577c6ecc74ee..8c706477d7bc41fcd3a089722e2b4ca03eb34e28 100644 --- a/tutorials/source_en/compile/fusion_pass.md +++ b/tutorials/source_en/compile/fusion_pass.md @@ -1,6 +1,6 @@ # Custom Fusion Strategy -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/compile/fusion_pass.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/compile/fusion_pass.md) ## Overview diff --git a/tutorials/source_en/compile/operators.md b/tutorials/source_en/compile/operators.md index 9dd6bb53e02b267ad3f958574e12ba4a2b0c841c..504668b26c398a39189bac11d62459fe4cd4717b 100644 --- a/tutorials/source_en/compile/operators.md +++ b/tutorials/source_en/compile/operators.md @@ -1,6 +1,6 @@ # Graph Mode Syntax - Operators -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/compile/operators.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/compile/operators.md) Arithmetic operators and assignment operators support the `Number` and `Tensor` operations, as well as the `Tensor` operations of different `dtype`. diff --git a/tutorials/source_en/compile/python_builtin_functions.md b/tutorials/source_en/compile/python_builtin_functions.md index 58ced234669814125d2ceefc53af3cd13f916a26..11a41111f1cead95f2a421115f8f29367595e63e 100644 --- a/tutorials/source_en/compile/python_builtin_functions.md +++ b/tutorials/source_en/compile/python_builtin_functions.md @@ -1,6 +1,6 @@ # Graph Mode Syntax - Python Built-in Functions -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/compile/python_builtin_functions.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/compile/python_builtin_functions.md) Python built-in functions supported by the current static graph mode include: `int`, `float`, `bool`, `str`, `tuple`, `list`, `dict`, `getattr`, `hasattr`, `len`, `isinstance`, `all`, `any`, `round`, `max`, `min`, `sum`, `abs`, `map`, `zip` , `range`, `enumerate`, `super`, `pow`, `print`, `filter`, `type`. The use of built-in functions in graph mode is similar to the corresponding Python built-in functions. diff --git a/tutorials/source_en/compile/statements.md b/tutorials/source_en/compile/statements.md index 8a2a00ae23a3869959bac3aedb10217d87e71041..cea354e2ba82060a0954dc638a58261d7e2731b8 100644 --- a/tutorials/source_en/compile/statements.md +++ b/tutorials/source_en/compile/statements.md @@ -1,6 +1,6 @@ # Graph Mode Syntax - Python Statements -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/compile/statements.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/compile/statements.md) ## Simple Statements diff --git a/tutorials/source_en/compile/static_graph.md b/tutorials/source_en/compile/static_graph.md index d4e78836e46e4976bc1a37a61645b18f4dbaea40..081468b383fc93efc5fb7668970ac01dbba58010 100644 --- a/tutorials/source_en/compile/static_graph.md +++ b/tutorials/source_en/compile/static_graph.md @@ -1,6 +1,6 @@ # Introduction to Graph Mode Programming -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/compile/static_graph.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/compile/static_graph.md) ## Overview diff --git a/tutorials/source_en/compile/static_graph_expert_programming.md b/tutorials/source_en/compile/static_graph_expert_programming.md index 5d06e65b08bdc376a5e48004b53ccd3a3559a051..e010fbdca2a77cd584844015f792ae5bc904fa03 100644 --- a/tutorials/source_en/compile/static_graph_expert_programming.md +++ b/tutorials/source_en/compile/static_graph_expert_programming.md @@ -1,6 +1,6 @@ # Graph Mode - Programming Techniques -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/compile/static_graph_expert_programming.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/compile/static_graph_expert_programming.md) This chapter introduces some commonly used advanced programming techniques for static graph optimization, which can effectively improve the compilation efficiency as well as the execution efficiency of static graphs, and make the program run more stably. For a basic introduction to static graphs compilation, see [Accelerating with Static Graphs](https://www.mindspore.cn/tutorials/en/master/beginner/accelerate_with_static_graph.html). diff --git a/tutorials/source_en/custom_program/custom_backend.md b/tutorials/source_en/custom_program/custom_backend.md index d01365018240a4cc7e01be523c577126135cf9da..9f3336fc929b542b918052bd8a5e7ef4fc5c1aef 100644 --- a/tutorials/source_en/custom_program/custom_backend.md +++ b/tutorials/source_en/custom_program/custom_backend.md @@ -1,6 +1,6 @@ # Custom Backend -[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/custom_backend.md) +[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/custom_backend.md) ## Overview diff --git a/tutorials/source_en/custom_program/hook_program.md b/tutorials/source_en/custom_program/hook_program.md index eb14064c643b896a0e8120f9f340f85ed3f65f04..858fa4091c881b0d199a94ab68eb90f9f178f733 100644 --- a/tutorials/source_en/custom_program/hook_program.md +++ b/tutorials/source_en/custom_program/hook_program.md @@ -1,6 +1,6 @@ # Hook Programming -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/hook_program.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/hook_program.md) Debugging deep learning networks is a big task for every practitioner in the field of deep learning. Since the deep learning network hides the input and output data as well as the inverse gradient of the intermediate layer operators, only the gradient of the network input data (feature quantity and weight) is provided, resulting in the inability to accurately sense the data changes of the intermediate layer operators, which reduces the debugging efficiency. In order to facilitate users to debug the deep learning network accurately and quickly, MindSpore designs Hook function in dynamic graph mode. **Using Hook function can capture the input and output data of intermediate layer operators as well as the reverse gradient**. diff --git a/tutorials/source_en/custom_program/op_custom.rst b/tutorials/source_en/custom_program/op_custom.rst index 7de8da8e5debce167e19125a6435aa27fd0e9a7f..5afaa4d732a9e9a25ba6de15a51e98081c282028 100644 --- a/tutorials/source_en/custom_program/op_custom.rst +++ b/tutorials/source_en/custom_program/op_custom.rst @@ -2,7 +2,7 @@ Custom Operators ================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/op_custom.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/op_custom.rst :alt: View Source On Gitee .. toctree:: diff --git a/tutorials/source_en/custom_program/operation/cpp_api_for_custom_ops.md b/tutorials/source_en/custom_program/operation/cpp_api_for_custom_ops.md index 6735f3ddc7a20f45d939e870ab9182bb47210a1c..d24f5f1c5a8c2082e3d98f52e6070e68fb45e2a5 100644 --- a/tutorials/source_en/custom_program/operation/cpp_api_for_custom_ops.md +++ b/tutorials/source_en/custom_program/operation/cpp_api_for_custom_ops.md @@ -1,6 +1,6 @@ # C++ API Description for Custom Operators -[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/cpp_api_for_custom_ops.md) +[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/cpp_api_for_custom_ops.md) ## Overview diff --git a/tutorials/source_en/custom_program/operation/op_custom_adv.md b/tutorials/source_en/custom_program/operation/op_custom_adv.md index 331e746a55fde7afe60a2abc5e43f867e0d08883..11dd890a29e31ba83881496516e6ece60dab7234 100644 --- a/tutorials/source_en/custom_program/operation/op_custom_adv.md +++ b/tutorials/source_en/custom_program/operation/op_custom_adv.md @@ -1,6 +1,6 @@ # Advanced Usage of Custom Operators -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_adv.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_adv.md) ## Registering the Operator Information diff --git a/tutorials/source_en/custom_program/operation/op_custom_aot.md b/tutorials/source_en/custom_program/operation/op_custom_aot.md index 24f7d6d89b7b7203b99e2da453a12935cfcfd640..3e14d30b9af3491beb0cda03e22ab35442468bde 100644 --- a/tutorials/source_en/custom_program/operation/op_custom_aot.md +++ b/tutorials/source_en/custom_program/operation/op_custom_aot.md @@ -1,6 +1,6 @@ # AOT-Type Custom Operators(CPU/GPU) -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_aot.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_aot.md) ## Overview diff --git a/tutorials/source_en/custom_program/operation/op_custom_ascendc.md b/tutorials/source_en/custom_program/operation/op_custom_ascendc.md index 037909241fd052f1ed39d5fb575196f5020e910d..ccf7f7b7627df4bf01296ad1d2fa74371f93ea7e 100644 --- a/tutorials/source_en/custom_program/operation/op_custom_ascendc.md +++ b/tutorials/source_en/custom_program/operation/op_custom_ascendc.md @@ -1,6 +1,6 @@ # Custom Primitive AOT-Type Custom Operators(Ascend) -[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_ascendc.md) +[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_ascendc.md) ## Overview diff --git a/tutorials/source_en/custom_program/operation/op_custom_prim.rst b/tutorials/source_en/custom_program/operation/op_custom_prim.rst index a3bf9396570906a82a33bafa81aa252178d94001..81bcd0caee42d696df53524b890914b7d1854b07 100644 --- a/tutorials/source_en/custom_program/operation/op_custom_prim.rst +++ b/tutorials/source_en/custom_program/operation/op_custom_prim.rst @@ -2,7 +2,7 @@ Custom Primitive-Based Custom Operators ======================================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_prim.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_custom_prim.rst :alt: View Source On Gitee When built-in operators cannot meet requirements during network development, you can call the Python API `Custom `_ primitive defined in MindSpore to quickly create different types of custom operators for use. diff --git a/tutorials/source_en/custom_program/operation/op_customopbuilder.md b/tutorials/source_en/custom_program/operation/op_customopbuilder.md index 1f7bd0887e823f45ffd8288d404301b466bc0953..63f5541f0e5debaebf57c96c8bfd995ce39fe18e 100644 --- a/tutorials/source_en/custom_program/operation/op_customopbuilder.md +++ b/tutorials/source_en/custom_program/operation/op_customopbuilder.md @@ -1,6 +1,6 @@ # CustomOpBuilder-Based Custom Operators -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder.md) ## Overview diff --git a/tutorials/source_en/custom_program/operation/op_customopbuilder_aclnn.md b/tutorials/source_en/custom_program/operation/op_customopbuilder_aclnn.md index 33cb75e4cbbc253497986fc19be6b3f0f87ef66c..bd9a27a008ce37815afc9186babd68526df7853a 100644 --- a/tutorials/source_en/custom_program/operation/op_customopbuilder_aclnn.md +++ b/tutorials/source_en/custom_program/operation/op_customopbuilder_aclnn.md @@ -1,6 +1,6 @@ # CustomOpBuilder Integrates ACLNN Operators via AclnnOpRunner -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder_aclnn.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder_aclnn.md) ## Overview diff --git a/tutorials/source_en/custom_program/operation/op_customopbuilder_asdsip.md b/tutorials/source_en/custom_program/operation/op_customopbuilder_asdsip.md index 3c260fb3423d19eab4e31e559a9ce509cdd5dcdc..234e499cf483aaa87795d65ae9b4a7ce811294f5 100644 --- a/tutorials/source_en/custom_program/operation/op_customopbuilder_asdsip.md +++ b/tutorials/source_en/custom_program/operation/op_customopbuilder_asdsip.md @@ -1,6 +1,6 @@ # CustomOpBuilder: Integrating ASDSIP FFT Operators Using AsdSipFFTOpRunner -[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder.md) +[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder.md) ## Overview diff --git a/tutorials/source_en/custom_program/operation/op_customopbuilder_atb.md b/tutorials/source_en/custom_program/operation/op_customopbuilder_atb.md index 050fdeb6c1be12d49abccdef6c161a7d27267bcc..251a41bedc18c4b324c65775d503bbfba3d85f12 100644 --- a/tutorials/source_en/custom_program/operation/op_customopbuilder_atb.md +++ b/tutorials/source_en/custom_program/operation/op_customopbuilder_atb.md @@ -1,6 +1,6 @@ # CustomOpBuilder: Integrating ATB Operators Using AtbOpRunner -[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder_atb.md) +[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/custom_program/operation/op_customopbuilder_atb.md) ## Overview diff --git a/tutorials/source_en/cv/fcn8s.md b/tutorials/source_en/cv/fcn8s.md index 8614684deabec08f42c763d78a29c82d868e671e..fc4e7fc63e1afab103f45fbaf01098038d74a611 100644 --- a/tutorials/source_en/cv/fcn8s.md +++ b/tutorials/source_en/cv/fcn8s.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/cv/fcn8s.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/cv/fcn8s.md) # FCN for Image Semantic Segmentation diff --git a/tutorials/source_en/cv/resnet50.md b/tutorials/source_en/cv/resnet50.md index af75d654133b6d2c7143363bb42187dcff8d96fb..fc5647519ead1f61f458112fac32b59d97d9b6a6 100644 --- a/tutorials/source_en/cv/resnet50.md +++ b/tutorials/source_en/cv/resnet50.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/cv/resnet50.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/cv/resnet50.md) # ResNet-50 for Image Classification diff --git a/tutorials/source_en/cv/ssd.md b/tutorials/source_en/cv/ssd.md index 082667c4343e0f647fe74a83933e234462eb87f9..029ac4e30abd47c8e1192b6c3f8f52f1dfd048bf 100644 --- a/tutorials/source_en/cv/ssd.md +++ b/tutorials/source_en/cv/ssd.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/cv/ssd.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/cv/ssd.md) # SSD for Object Detection diff --git a/tutorials/source_en/cv/transfer_learning.md b/tutorials/source_en/cv/transfer_learning.md index 0797b25f5b149d50b1632a8f2a104d4a95be7f11..52d777ac5e1e9819e5d5fe2111be271ed8e75f0a 100644 --- a/tutorials/source_en/cv/transfer_learning.md +++ b/tutorials/source_en/cv/transfer_learning.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/cv/transfer_learning.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/cv/transfer_learning.md) # ResNet50 Transfer Learning diff --git a/tutorials/source_en/cv/vit.md b/tutorials/source_en/cv/vit.md index 3dcf3e6e8212e21a812ffb879b56e3a9db68f45e..5116bb955a8b49941ca8a1ef4ecca706c6121bef 100644 --- a/tutorials/source_en/cv/vit.md +++ b/tutorials/source_en/cv/vit.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/cv/vit.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/cv/vit.md) # Vision Transformer Image Classification diff --git a/tutorials/source_en/debug/dryrun.md b/tutorials/source_en/debug/dryrun.md index 2b424aa56f4d4e34f3c2ce258868d72ec37a9469..3df5c961b8c8ca2b32725f9cc23b27bac6d4ac11 100644 --- a/tutorials/source_en/debug/dryrun.md +++ b/tutorials/source_en/debug/dryrun.md @@ -1,6 +1,6 @@ # DryRun -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/dryrun.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/dryrun.md) ## Overview diff --git a/tutorials/source_en/debug/dump.md b/tutorials/source_en/debug/dump.md index 7dd78dc4ae3525a215d883d186180e9e9b04454e..1439d742f4e0c2655f3a7b4e5e8f7dc541f759da 100644 --- a/tutorials/source_en/debug/dump.md +++ b/tutorials/source_en/debug/dump.md @@ -1,6 +1,6 @@ # Using Dump in the Graph Mode -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/dump.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/dump.md) To analyze the training process, MindSpore provides the dump function to store the input and output data of operators during the training process. @@ -291,11 +291,11 @@ ms_execution_order_graph_{graph_id}.csv ### Data Analysis Sample -In order to better demonstrate the process of using dump to save and analyze data, we provide a set of [complete sample script](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/dump) , you only need to execute `bash dump_sync_dump.sh` for Ascend ms_backend dump. +In order to better demonstrate the process of using dump to save and analyze data, we provide a set of [complete sample script](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/dump) , you only need to execute `bash dump_sync_dump.sh` for Ascend ms_backend dump. After the graph corresponding to the script is saved to the disk through the Dump function, the final execution graph file `ms_output_trace_code_graph_{graph_id}.ir` will be generated. This file saves the stack information of each operator in the corresponding graph, and records the generation script corresponding to the operator. -Take [AlexNet script](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py) as an example: +Take [AlexNet script](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py) as an example: ```python ... @@ -638,11 +638,11 @@ This file stores the list of iterations in which the graph was executed. After t ### Data Analysis Sample -In order to better demonstrate the process of using dump to save and analyze data, we provide a set of [complete sample script](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/dump) , you only need to execute `bash dump_sync_dump.sh` for CPU/GPU dump. +In order to better demonstrate the process of using dump to save and analyze data, we provide a set of [complete sample script](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/dump) , you only need to execute `bash dump_sync_dump.sh` for CPU/GPU dump. After the graph corresponding to the script is saved to the disk through the Dump function, the final execution graph file `ms_output_trace_code_graph_{graph_id}.ir` will be generated. This file saves the stack information of each operator in the corresponding graph, and records the generation script corresponding to the operator. -Take [AlexNet script](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py) as an example: +Take [AlexNet script](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py) as an example: ```python ... diff --git a/tutorials/source_en/debug/error_analysis.rst b/tutorials/source_en/debug/error_analysis.rst index 170c7c73f58235ec42393280664a27aee606f9b4..6de3a1214bf15e06c1503e948855ac1e7867d984 100644 --- a/tutorials/source_en/debug/error_analysis.rst +++ b/tutorials/source_en/debug/error_analysis.rst @@ -2,7 +2,7 @@ Error Reporting Analysis ========================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis.rst :alt: View Source On Gitee .. toctree:: diff --git a/tutorials/source_en/debug/error_analysis/cann_error_cases.md b/tutorials/source_en/debug/error_analysis/cann_error_cases.md index a086449804cf708b85fcf680c3e46541ce453650..e34d2ac2d891e93cfbf73f31ae58805fc33c9cbf 100644 --- a/tutorials/source_en/debug/error_analysis/cann_error_cases.md +++ b/tutorials/source_en/debug/error_analysis/cann_error_cases.md @@ -1,6 +1,6 @@ # CANN Common Error Analysis -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/cann_error_cases.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/cann_error_cases.md)   This article focuses on the handling of common CANN errors by users. When encountering CANN errors, MindSpore logs may not be sufficient to analyze the related errors. You can print CANN logs to better analyze the errors by setting the following two environment variables: diff --git a/tutorials/source_en/debug/error_analysis/error_scenario_analysis.md b/tutorials/source_en/debug/error_analysis/error_scenario_analysis.md index 5f0ccbf26741d4f44f175657ea362ae80668d6ba..05be58c360a5519a104832d67ba4bc933f41c568 100644 --- a/tutorials/source_en/debug/error_analysis/error_scenario_analysis.md +++ b/tutorials/source_en/debug/error_analysis/error_scenario_analysis.md @@ -1,6 +1,6 @@ # Error Analysis -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/error_scenario_analysis.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/error_scenario_analysis.md)   As mentioned before, error analysis refers to analyzing and inferring possible error causes based on the obtained network and framework information (such as error messages and network code). diff --git a/tutorials/source_en/debug/error_analysis/minddata_debug.md b/tutorials/source_en/debug/error_analysis/minddata_debug.md index ae841e01097e13c1f8718b116ccb6c9ae7262aec..ef979cfd4d7b1beafe96142743183cdab285d335 100644 --- a/tutorials/source_en/debug/error_analysis/minddata_debug.md +++ b/tutorials/source_en/debug/error_analysis/minddata_debug.md @@ -1,6 +1,6 @@ # Data Processing Debugging Methods and Common Errors Analysis -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/minddata_debug.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/minddata_debug.md)   ## Data Processing Debugging Methods diff --git a/tutorials/source_en/debug/error_analysis/mindir.md b/tutorials/source_en/debug/error_analysis/mindir.md index e501a81a7357e91444aef2a1f59b0853a078679c..cb8e920d078c30bf16fed5b6bf5bb79c5087e1f5 100644 --- a/tutorials/source_en/debug/error_analysis/mindir.md +++ b/tutorials/source_en/debug/error_analysis/mindir.md @@ -1,6 +1,6 @@ # IR File Analysis -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/mindir.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/mindir.md) ## Overview diff --git a/tutorials/source_en/debug/error_analysis/mindrt_debug.md b/tutorials/source_en/debug/error_analysis/mindrt_debug.md index 75681a15263c15253ed6ed1c4095cccaf69d8306..aa2b1ee8b82029b87c0648e38bf2bf5ba5c5effa 100644 --- a/tutorials/source_en/debug/error_analysis/mindrt_debug.md +++ b/tutorials/source_en/debug/error_analysis/mindrt_debug.md @@ -1,6 +1,6 @@ # Network Construction and Training Error Analysis -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/mindrt_debug.md)   +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/error_analysis/mindrt_debug.md)   The following lists the common network construction and training errors in static graph mode. diff --git a/tutorials/source_en/debug/profiler.md b/tutorials/source_en/debug/profiler.md index 47013bf20bf52e7f53da10a2093ea5a2304f18f2..4f63db1cacb9ed6147ead852ca1cd904fda005cb 100644 --- a/tutorials/source_en/debug/profiler.md +++ b/tutorials/source_en/debug/profiler.md @@ -1,6 +1,6 @@ # Ascend Performance Tuning -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/profiler.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/profiler.md) ## Overview @@ -69,7 +69,7 @@ with mindspore.profiler.profile(activities=[ProfilerActivity.CPU, ProfilerActivi - schedule: After schedule is enabled, kernel_details.csv in disk drive data contains a column of Step ID information. According to the schedule configuration, skip_first skips 0 steps, wait 0 step, warmup 0 step. Based on the active value being 1, data collection starts from step 0 and continues for 1 step. Therefore, the Step ID is 0, indicating that the 0th step is being collected. - on_trace_ready: The disk loading path of profiler is specified through the tensorboard_trace_handler parameter of on_trace_ready. tensorboard_trace_handler will parse the performance data by default. If the user does not configure tensorboard_trace_handler, the data will be written to the '/data' folder in the same-level directory of the current script by default. The performance data can be parsed through the off-line parsing function. The off-line parsing function can be referred to [Method 4: Off-line Parsing](https://www.mindspore.cn/tutorials/en/master/debug/profiler.html#method-4-off-line-parsing). -For the complete case, refer to [custom for loop collection complete code example](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/for_loop_profiler.py). +For the complete case, refer to [custom for loop collection complete code example](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/for_loop_profiler.py). **The principle of configuring schedule parameters is as follows:** @@ -112,7 +112,7 @@ class StopAtStep(mindspore.Callback): self.profiler.stop() ``` -For the complete case, refer to [CallBack mode collection complete code example](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/call_back_profiler.py). +For the complete case, refer to [CallBack mode collection complete code example](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/call_back_profiler.py). ### Method 2: Dynamic Profiler Enabling @@ -168,7 +168,7 @@ for _ in range(STEP_NUM): At this point, the results include two folders: rank0_start2_stop5 and rank0_start8_stop10, representing the collection of steps 2-5 and 8-10 respectively. -For the complete case, refer to [dynamic profiler enabling method case](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/dynamic_profiler.py). +For the complete case, refer to [dynamic profiler enabling method case](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/dynamic_profiler.py). ### Method 3: Environment Variable Enabling @@ -222,7 +222,7 @@ mstx.mark("start") mstx.range_end(range_id) ``` -For the complete case, refer to [mstx lightweight marking method case](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/mstx_profiler.py). +For the complete case, refer to [mstx lightweight marking method case](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/mstx_profiler.py). ## Performance Data diff --git a/tutorials/source_en/debug/pynative.md b/tutorials/source_en/debug/pynative.md index 9c16fbfedf7c7b622e96e183d682f193288b33cb..79496397bc50f48e66c37fd6e2a8a020fe7f071e 100644 --- a/tutorials/source_en/debug/pynative.md +++ b/tutorials/source_en/debug/pynative.md @@ -1,6 +1,6 @@ # Dynamic Graph Debugging -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/pynative.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/pynative.md) ## Overview diff --git a/tutorials/source_en/debug/sdc.md b/tutorials/source_en/debug/sdc.md index 8da5d4f24b04cc163911f4140569ff3b123615e2..896c4468e08764dc72d633b438dc8bb61fc15d36 100644 --- a/tutorials/source_en/debug/sdc.md +++ b/tutorials/source_en/debug/sdc.md @@ -1,6 +1,6 @@ # Feature Value Detection -[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/debug/sdc.md) +[![View Source File](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/debug/sdc.md) ## Overview diff --git a/tutorials/source_en/generative/cyclegan.md b/tutorials/source_en/generative/cyclegan.md index 0d21267448eebd1128bb37d3220fac44fcff18a1..4a71fddfe9ef7f610924bc6e6d83fc1fc6f21a0d 100644 --- a/tutorials/source_en/generative/cyclegan.md +++ b/tutorials/source_en/generative/cyclegan.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/generative/cyclegan.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/generative/cyclegan.md) # CycleGAN for Image Style Migration diff --git a/tutorials/source_en/generative/dcgan.md b/tutorials/source_en/generative/dcgan.md index 8c970fd8682df0fa28588b112ebacce6bd8637e7..50d12d571c7cdde4405c4d2a1d6b30922362316e 100644 --- a/tutorials/source_en/generative/dcgan.md +++ b/tutorials/source_en/generative/dcgan.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/generative/dcgan.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/generative/dcgan.md) # Generating Cartoon Head Portrait via DCGAN diff --git a/tutorials/source_en/generative/diffusion.md b/tutorials/source_en/generative/diffusion.md index 9bda8e79ac1a2607e06b367ac7d83472fbe6b363..aa95314323ff4ff9c2595dc2ec60cf90fd6befc9 100644 --- a/tutorials/source_en/generative/diffusion.md +++ b/tutorials/source_en/generative/diffusion.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/generative/diffusion.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/generative/diffusion.md) # Diffusion Model diff --git a/tutorials/source_en/generative/gan.md b/tutorials/source_en/generative/gan.md index 03acedfd7b54f7e48758bb40b02696d6ca4d17ca..0fa1422c99b2049802597c29aad83283126c11b4 100644 --- a/tutorials/source_en/generative/gan.md +++ b/tutorials/source_en/generative/gan.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/generative/gan.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/generative/gan.md) # GAN for Image Generation diff --git a/tutorials/source_en/generative/pix2pix.md b/tutorials/source_en/generative/pix2pix.md index a294005b0b7e8eb28c12d1c0e9e43afcdfa24da4..23d7422bab0dd994ca4426e62211ed1481801c8e 100644 --- a/tutorials/source_en/generative/pix2pix.md +++ b/tutorials/source_en/generative/pix2pix.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/generative/pix2pix.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/generative/pix2pix.md) # Pix2Pix for Image Translation diff --git a/tutorials/source_en/model_infer/introduction.md b/tutorials/source_en/model_infer/introduction.md index 17978e0df9d653641d85ee1c89ddbcf8b2c92b12..92b7097df32aa6a25ea90ec5544fec5c36015890 100644 --- a/tutorials/source_en/model_infer/introduction.md +++ b/tutorials/source_en/model_infer/introduction.md @@ -1,6 +1,6 @@ # MindSpore Inference Overview -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/introduction.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/introduction.md) ## Context diff --git a/tutorials/source_en/model_infer/lite_infer/overview.md b/tutorials/source_en/model_infer/lite_infer/overview.md index 2fc0694c345dfa77ba6948f481a9508ffd4c261d..6951a4f9918320c83e97196ae34740bdcdadcde3 100644 --- a/tutorials/source_en/model_infer/lite_infer/overview.md +++ b/tutorials/source_en/model_infer/lite_infer/overview.md @@ -1,6 +1,6 @@ # MindSpore Lite Inference Overview -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/lite_infer/overview.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/lite_infer/overview.md) ## Background diff --git a/tutorials/source_en/model_infer/ms_infer/ms_infer_model_infer.rst b/tutorials/source_en/model_infer/ms_infer/ms_infer_model_infer.rst index c310c7b70e7f898906ae0be41699e1adc1027e8b..27b4999091ae87d526338d5847be4c70a541c5bc 100644 --- a/tutorials/source_en/model_infer/ms_infer/ms_infer_model_infer.rst +++ b/tutorials/source_en/model_infer/ms_infer/ms_infer_model_infer.rst @@ -2,7 +2,7 @@ MindSpore LLM Inference with Framework ========================================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_model_infer.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_model_infer.rst :alt: View Source On Gitee .. toctree:: @@ -379,7 +379,7 @@ Once the model is built, you can utilize the model object for text generation, e It can be seen that the model-inferred token IDs are translated to a human-readable statement. In actual verification, due to the randomness of **do_sample**, each inference is different, but the result logic is basically understandable. - For details about the complete end-to-end example, see `infer.py `_. + For details about the complete end-to-end example, see `infer.py `_. Model Parallelism ~~~~~~~~~~~~~~~~~~~~ diff --git a/tutorials/source_en/model_infer/ms_infer/ms_infer_model_serving_infer.md b/tutorials/source_en/model_infer/ms_infer/ms_infer_model_serving_infer.md index 7db227bbcdd6444937cb544a7f280d0d910afd41..13fa8571130dee962018e6d7db885951969c8630 100644 --- a/tutorials/source_en/model_infer/ms_infer/ms_infer_model_serving_infer.md +++ b/tutorials/source_en/model_infer/ms_infer/ms_infer_model_serving_infer.md @@ -1,7 +1,7 @@ # Service-oriented Model Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_model_serving_infer.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_model_serving_infer.md) ## Background diff --git a/tutorials/source_en/model_infer/ms_infer/ms_infer_network_develop.md b/tutorials/source_en/model_infer/ms_infer/ms_infer_network_develop.md index a2c2d1d7b7719390870c051ae8d1e64eb21b8eaa..467e69a18ae5e48f7e48d02b1a519f9cce2e69db 100644 --- a/tutorials/source_en/model_infer/ms_infer/ms_infer_network_develop.md +++ b/tutorials/source_en/model_infer/ms_infer/ms_infer_network_develop.md @@ -1,6 +1,6 @@ # Building an LLM Inference Network from Scratch -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_network_develop.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_network_develop.md) ## Model Development Modes @@ -26,7 +26,7 @@ The core layer of Qwen2 consists of the following parts: - **RmsNorm & Linear**: linearly normalizes the output of each layer to the same dimension as the model vocabulary after computation by the transformer structure and returns the probability distribution of each token. -You can use the MindSpore LLM to build a network for inference. The network can be assembled as required using operators provided by MindSpore. The following uses the Qwen2 model as an example to describe how to build a model. For details about the complete end-to-end example, see [qwen2.py](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/infer_code/qwen2/qwen2.py). +You can use the MindSpore LLM to build a network for inference. The network can be assembled as required using operators provided by MindSpore. The following uses the Qwen2 model as an example to describe how to build a model. For details about the complete end-to-end example, see [qwen2.py](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/infer_code/qwen2/qwen2.py). ### Basic Common Network Layer diff --git a/tutorials/source_en/model_infer/ms_infer/ms_infer_parallel_infer.md b/tutorials/source_en/model_infer/ms_infer/ms_infer_parallel_infer.md index 91f53fe100570319eab503a4b30db18810fd37c3..2b56afbf216512959a39c27f1161ad519bb7ae61 100644 --- a/tutorials/source_en/model_infer/ms_infer/ms_infer_parallel_infer.md +++ b/tutorials/source_en/model_infer/ms_infer/ms_infer_parallel_infer.md @@ -1,6 +1,6 @@ # Building a Parallel LLM Network -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_parallel_infer.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_parallel_infer.md) As model sizes continue to expand, the computing resources required by LLMs, particularly graphics memory, are growing exponentially. For example, the Qwen2-72B requires approximately 144 GB of graphics memory at half-precision (FP16). @@ -473,7 +473,7 @@ Based on the preceding analysis, TransformerModel can be modified to support par return hidden_state ``` -For details about the end-to-end LLM code project, see the [model_dev.py](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/infer_code/model_dev.py) script. Run the following command to verify the code: +For details about the end-to-end LLM code project, see the [model_dev.py](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/infer_code/model_dev.py) script. Run the following command to verify the code: ```shell msrun --worker_num 2 --local_worker_num 2 --master_port 8124 --log_dir msrun_log --join True --cluster_time_out 300 model_dev.py diff --git a/tutorials/source_en/model_infer/ms_infer/ms_infer_quantization.md b/tutorials/source_en/model_infer/ms_infer/ms_infer_quantization.md index 30a3674191bb8ec957271681bbd288d73de3d986..99eb1c27dee0eae2e4a9df88a4766f2d8b454a17 100644 --- a/tutorials/source_en/model_infer/ms_infer/ms_infer_quantization.md +++ b/tutorials/source_en/model_infer/ms_infer/ms_infer_quantization.md @@ -1,6 +1,6 @@ # Model Quantization -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_quantization.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_infer/ms_infer/ms_infer_quantization.md) ## Overview diff --git a/tutorials/source_en/model_migration/model_migration.md b/tutorials/source_en/model_migration/model_migration.md index 0cf86dffbb938f56dbd9353e2d1b3f25c874a081..45df6ec388711b687ab1785752a419f5f14ef4d8 100644 --- a/tutorials/source_en/model_migration/model_migration.md +++ b/tutorials/source_en/model_migration/model_migration.md @@ -1,6 +1,6 @@ # Model Migration -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/model_migration/model_migration.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/model_migration/model_migration.md) This chapter mainly gives a brief introduction to the dataset, model, and training and inference processes necessary for model migration scenarios to be built on MindSpore. It also shows the differences between MindSpore and PyTorch in terms of dataset packing, model building, and training process code. diff --git a/tutorials/source_en/nlp/sentiment_analysis.md b/tutorials/source_en/nlp/sentiment_analysis.md index 7b046196e696de89e3bed55664ad5c4257d8f616..3e9f0ea2b0e67b49fa33589ba4ba84ffc3720474 100644 --- a/tutorials/source_en/nlp/sentiment_analysis.md +++ b/tutorials/source_en/nlp/sentiment_analysis.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/nlp/sentiment_analysis.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/nlp/sentiment_analysis.md) # Sentiment Classification Implemented by RNN diff --git a/tutorials/source_en/nlp/sequence_labeling.md b/tutorials/source_en/nlp/sequence_labeling.md index 0bbee60a4b82f601da4eabb23dbbf1cf29234bc3..f67581029868407ae13b02a20c87216c02485a65 100644 --- a/tutorials/source_en/nlp/sequence_labeling.md +++ b/tutorials/source_en/nlp/sequence_labeling.md @@ -1,4 +1,4 @@ -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/nlp/sequence_labeling.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/nlp/sequence_labeling.md) # LSTM+CRF Sequence Labeling diff --git a/tutorials/source_en/orange_pi/dev_start.md b/tutorials/source_en/orange_pi/dev_start.md index e33c10bd8924744422f4caba3edd3e10581f512f..9b407c05e55829128454a7c23d5d3a742032fbec 100644 --- a/tutorials/source_en/orange_pi/dev_start.md +++ b/tutorials/source_en/orange_pi/dev_start.md @@ -1,6 +1,6 @@ # Quick Start -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/dev_start.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/dev_start.md) Since developers may perform custom model and case development in OrangePi AIpro (hereinafter: OrangePi Development Board), this chapter illustrates the development considerations in the OrangePi Development Board through a handwritten digit recognition case based on MindSpore. diff --git a/tutorials/source_en/orange_pi/environment_setup.md b/tutorials/source_en/orange_pi/environment_setup.md index 77d7fa7da1709e99f52791092e086d0d6008573e..d9b1091bfab862e15df15070bf83adaf7d2f5aaa 100644 --- a/tutorials/source_en/orange_pi/environment_setup.md +++ b/tutorials/source_en/orange_pi/environment_setup.md @@ -1,6 +1,6 @@ # Environment Setup Guide -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/environment_setup.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/environment_setup.md) This section describes how to burn an image on OrangePi AIpro, customize the installation of CANN and MindSpore, and configure the runtime environment. diff --git a/tutorials/source_en/orange_pi/model_infer.md b/tutorials/source_en/orange_pi/model_infer.md index 093c66a688922058201dbfa915fb52df4ad6f48e..7b4c48b6c1af856d34d33d38a6209b6e7dd11f58 100644 --- a/tutorials/source_en/orange_pi/model_infer.md +++ b/tutorials/source_en/orange_pi/model_infer.md @@ -1,6 +1,6 @@ # Model Online Inference -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/model_infer.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/model_infer.md) This section describes how to download the Ascend MindSpore online inference case on the OrangePi AIpro (hereafter: OrangePi development board) and launch the Jupyter Lab interface to perform inference. diff --git a/tutorials/source_en/orange_pi/overview.md b/tutorials/source_en/orange_pi/overview.md index b7fb69f78ac703a028432e8205549f6c4bbe7b3d..55aa9f3a81bb5a79681fb7b1c25951398093ecc4 100644 --- a/tutorials/source_en/orange_pi/overview.md +++ b/tutorials/source_en/orange_pi/overview.md @@ -1,6 +1,6 @@ # OrangePi AIpro Development -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/overview.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/overview.md) [OrangePi AIpro](http://www.orangepi.org/) adopts the route of Ascend AI technology, specifically 4-core 64-bit processor and AI processor, integrated graph processor. diff --git a/tutorials/source_en/parallel/comm_fusion.md b/tutorials/source_en/parallel/comm_fusion.md index ae41ee4d5d1b87b18992c57f6122f481dbabff76..eb5b77a0a1641b647a7a78ac266a06d3f320be8e 100644 --- a/tutorials/source_en/parallel/comm_fusion.md +++ b/tutorials/source_en/parallel/comm_fusion.md @@ -1,6 +1,6 @@ # Distributed Training Communication Fusion -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/comm_fusion.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/comm_fusion.md) ## Overview @@ -60,7 +60,7 @@ MindSpore provides two interfaces to enable communication fusion, each of which ### Sample Code Description -> You can download the full sample code here: [distributed_comm_fusion](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_comm_fusion). +> You can download the full sample code here: [distributed_comm_fusion](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_comm_fusion). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/data_parallel.md b/tutorials/source_en/parallel/data_parallel.md index cd2b08db96297228b5e689c0f35bd3faa21d4c14..f07f923558661aea51e6152b20747154cccb0cee 100644 --- a/tutorials/source_en/parallel/data_parallel.md +++ b/tutorials/source_en/parallel/data_parallel.md @@ -1,6 +1,6 @@ # Data Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/data_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/data_parallel.md) ## Overview @@ -10,7 +10,7 @@ The following is an illustration of data parallel operation using the Ascend sin ## Sample Code Description -> You can download the full sample code here: [distributed_data_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_data_parallel). +> You can download the full sample code here: [distributed_data_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_data_parallel). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/dataset_slice.md b/tutorials/source_en/parallel/dataset_slice.md index a878165f18e02ec4b15c759a1609a763368ac46b..c75482e21e6d32c0035acb21ad5963f3ec365b88 100644 --- a/tutorials/source_en/parallel/dataset_slice.md +++ b/tutorials/source_en/parallel/dataset_slice.md @@ -1,6 +1,6 @@ # Dataset Slicing -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/dataset_slice.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/dataset_slice.md) ## Overview @@ -22,7 +22,7 @@ When performing distributed training, taking image data as an example, when the ### Sample Code Description -> Download the full sample code here: [dataset_slice](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/dataset_slice). +> Download the full sample code here: [dataset_slice](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/dataset_slice). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/distributed_case.rst b/tutorials/source_en/parallel/distributed_case.rst index b055fbd86cbc5855501792b98e358c9630a2950c..57487382ce3de108771efd955db8af9b7ab1563c 100644 --- a/tutorials/source_en/parallel/distributed_case.rst +++ b/tutorials/source_en/parallel/distributed_case.rst @@ -2,7 +2,7 @@ Distributed High-Level Configuration Case ========================================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/distributed_case.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/distributed_case.rst :alt: View Source On Gitee .. toctree:: diff --git a/tutorials/source_en/parallel/distributed_gradient_accumulation.md b/tutorials/source_en/parallel/distributed_gradient_accumulation.md index 91cff64b855c71de6c45e3b0bceda779fade32dc..8c12fe54479838c2c064f3dd793deaf01c663950 100644 --- a/tutorials/source_en/parallel/distributed_gradient_accumulation.md +++ b/tutorials/source_en/parallel/distributed_gradient_accumulation.md @@ -1,6 +1,6 @@ # Gradient Accumulation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/distributed_gradient_accumulation.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/distributed_gradient_accumulation.md) ## Overview @@ -32,7 +32,7 @@ The following is an illustration of the gradient accumulation operation using As ### Example Code Description -> Download the complete example code: [distributed_gradient_accumulation](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_gradient_accumulation). +> Download the complete example code: [distributed_gradient_accumulation](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_gradient_accumulation). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/dynamic_cluster.md b/tutorials/source_en/parallel/dynamic_cluster.md index 71cb0dd8971c9e1d62a3b028bcc154133d9db805..97a7cbe1192eaec9a1e00442bdfc78ad001f4735 100644 --- a/tutorials/source_en/parallel/dynamic_cluster.md +++ b/tutorials/source_en/parallel/dynamic_cluster.md @@ -1,6 +1,6 @@ # Dynamic Cluster Startup -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/dynamic_cluster.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/dynamic_cluster.md) ## Overview @@ -173,7 +173,7 @@ The relevant environment variables: Dynamic cluster startup scripts are consistent across hardware platforms. The following is an example of how to write a startup script for Ascend: -> You can download the full sample code here: [startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method). +> You can download the full sample code here: [startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method). The directory structure is as follows: @@ -276,7 +276,7 @@ for epoch in range(10): #### Single-Machine Multi-Card -The content of the single-machine multi-card startup script [run_dynamic_cluster.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster.sh) is as follows. Taking the single-machine 8-card as an example: +The content of the single-machine multi-card startup script [run_dynamic_cluster.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster.sh) is as follows. Taking the single-machine 8-card as an example: ```bash EXEC_PATH=$(pwd) @@ -333,7 +333,7 @@ epoch: 0, step: 30, loss is 1.0437132 The startup script needs to be split in the multi-machine training scenario. The following is an example of performing 2-machine 8-card training, with each machine executing the startup 4 Worker: -The script [run_dynamic_cluster_1.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_1.sh) starts 1 `Scheduler` process and 4 `Worker` processes on node 1: +The script [run_dynamic_cluster_1.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_1.sh) starts 1 `Scheduler` process and 4 `Worker` processes on node 1: ```bash EXEC_PATH=$(pwd) @@ -368,7 +368,7 @@ export MS_ROLE=MS_SCHED # Set the startup process to the M python ./net.py > device/scheduler.log 2>&1 & # Start training script ``` -The script [run_dynamic_cluster_2.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_2.sh) starts `Worker5` to `Worker8` on node 2 (without executing Scheduler): +The script [run_dynamic_cluster_2.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_2.sh) starts `Worker5` to `Worker8` on node 2 (without executing Scheduler): ```bash EXEC_PATH=$(pwd) diff --git a/tutorials/source_en/parallel/high_dimension_tensor_parallel.md b/tutorials/source_en/parallel/high_dimension_tensor_parallel.md index 9887ad351aa3b17ca282eb5126e4ea8a9a6ee6f2..89174f44461533468552d124795974f82706dae8 100644 --- a/tutorials/source_en/parallel/high_dimension_tensor_parallel.md +++ b/tutorials/source_en/parallel/high_dimension_tensor_parallel.md @@ -1,6 +1,6 @@ # High Dimension Tensor Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/high_dimension_tensor_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/high_dimension_tensor_parallel.md) ## Overview @@ -69,7 +69,7 @@ The following is an illustration of 2D tensor parallel operation in an Ascend st ### Sample Code Description -> Download the full sample code: [high_dimension_tensor_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/high_dimension_tensor_parallel). +> Download the full sample code: [high_dimension_tensor_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/high_dimension_tensor_parallel). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/host_device_training.md b/tutorials/source_en/parallel/host_device_training.md index 997d8643c1134b776248970dfcb1369ddad05ca1..493cb43dc693e354322f4d1fba774752c2ef27b2 100644 --- a/tutorials/source_en/parallel/host_device_training.md +++ b/tutorials/source_en/parallel/host_device_training.md @@ -1,6 +1,6 @@ # Host&Device Heterogeneous -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/host_device_training.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/host_device_training.md) ## Overview @@ -34,7 +34,7 @@ The following is an illustration of Host&Device heterogeneous operation using As ### Sample Code Description -> Download the complete example code: [host_device](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/host_device). +> Download the complete example code: [host_device](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/host_device). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/mpirun.md b/tutorials/source_en/parallel/mpirun.md index 753f8735646d882a8c86ca79a0f1c5bdf8e1c61d..925c724e354ef36d184311f579d22cdbab479023 100644 --- a/tutorials/source_en/parallel/mpirun.md +++ b/tutorials/source_en/parallel/mpirun.md @@ -1,6 +1,6 @@ # mpirun Startup -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/mpirun.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/mpirun.md) ## Overview @@ -31,7 +31,7 @@ Related commands: The `mpirun` startup script is consistent across Ascend and GPU hardware platforms. Below is a demonstration of how to write a startup script using Ascend as an example: -> You can download the full sample code here: [startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method). +> You can download the full sample code here: [startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/msrun_launcher.md b/tutorials/source_en/parallel/msrun_launcher.md index 4db244eb8b38630ba7ec41f669aaeadf61ed3e10..6fe8a9830d2dbbf5951a32a32b0b2076dce4e700 100644 --- a/tutorials/source_en/parallel/msrun_launcher.md +++ b/tutorials/source_en/parallel/msrun_launcher.md @@ -1,6 +1,6 @@ # msrun Launching -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/msrun_launcher.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/msrun_launcher.md) ## Overview @@ -192,7 +192,7 @@ msrun is used as an encapsulation of the Dynamic Cluster startup method, and all The startup script is consistent across hardware platforms. The following is an example of how to write a startup script for Ascend: -> You can download the full sample code here: [startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method). +> You can download the full sample code here: [startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method). The directory structure is as follows: @@ -299,7 +299,7 @@ for epoch in range(10): The following is an example of performing a single-machine 8-card training session: -The script [msrun_single.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_single.sh) uses the msrun command to pull up 1 `Scheduler` process as well as 8 `Worker` processes on the current node (no need to set `master_addr`, defaults to `127.0.0.1`; no need to set `node_rank` for single-machine): +The script [msrun_single.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_single.sh) uses the msrun command to pull up 1 `Scheduler` process as well as 8 `Worker` processes on the current node (no need to set `master_addr`, defaults to `127.0.0.1`; no need to set `node_rank` for single-machine): ```bash EXEC_PATH=$(pwd) @@ -338,7 +338,7 @@ epoch: 0, step: 30, loss is 1.0437132 The following is an example of executing 2-machine, 8-card training, with each machine executing the startup of 4 Workers: -The script [msrun_1.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_1.sh) is executed on node 1 and uses the msrun command to pull up 1 `Scheduler` process and 4 `Worker` processes, configures `master_addr` as the IP address of node 1 (msrun automatically detects that the current node ip matches the `master_addr` and pulls up the `Scheduler` process). Set the current node to node 0 with `node_rank`: +The script [msrun_1.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_1.sh) is executed on node 1 and uses the msrun command to pull up 1 `Scheduler` process and 4 `Worker` processes, configures `master_addr` as the IP address of node 1 (msrun automatically detects that the current node ip matches the `master_addr` and pulls up the `Scheduler` process). Set the current node to node 0 with `node_rank`: ```bash EXEC_PATH=$(pwd) @@ -357,7 +357,7 @@ echo "start training" msrun --worker_num=8 --local_worker_num=4 --master_addr= --master_port=8118 --node_rank=0 --log_dir=msrun_log --join=True --cluster_time_out=300 net.py ``` -The script [msrun_2.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_2.sh) is executed on node 2 and uses the msrun command to pull up 4 `Worker` processes, configures `master_addr` as the IP address of node 1. Set the current node to node 0 with `node_rank`: +The script [msrun_2.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_2.sh) is executed on node 2 and uses the msrun command to pull up 4 `Worker` processes, configures `master_addr` as the IP address of node 1. Set the current node to node 0 with `node_rank`: ```bash EXEC_PATH=$(pwd) diff --git a/tutorials/source_en/parallel/multiple_copy.md b/tutorials/source_en/parallel/multiple_copy.md index 09236e288cb48b2f58bdd5c98220393cf3019aad..ad41176edc0b4fb2d4b2a928398c6437a94dd72b 100644 --- a/tutorials/source_en/parallel/multiple_copy.md +++ b/tutorials/source_en/parallel/multiple_copy.md @@ -1,6 +1,6 @@ # Multi-copy Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/multiple_copy.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/multiple_copy.md) ## Overview @@ -24,7 +24,7 @@ The following is an illustration of multi-copy parallel operation using an Ascen ### Example Code Description -> Download the complete example code: [multiple_copy](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/multiple_copy). +> Download the complete example code: [multiple_copy](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/multiple_copy). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/multiple_mixed.md b/tutorials/source_en/parallel/multiple_mixed.md index abd5ae93f5c85b48ee52b0bfbad9d0dfc6cdfcdb..7572bf50c7caf9825c20e91b3cf0f47b00983071 100644 --- a/tutorials/source_en/parallel/multiple_mixed.md +++ b/tutorials/source_en/parallel/multiple_mixed.md @@ -1,6 +1,6 @@ # Multi-dimensional Hybrid Parallel Case Based on Double Recursive Search -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/multiple_mixed.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/multiple_mixed.md) ## Overview @@ -12,7 +12,7 @@ The following is a multi-dimensional hybrid parallel case based on double recurs ### Example Code Description -> Download the complete example code: [multiple_mix](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/multiple_mix). +> Download the complete example code: [multiple_mix](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/multiple_mix). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/operator_parallel.md b/tutorials/source_en/parallel/operator_parallel.md index af1133689e52f8a1bc7807f0e9c4274768e25aab..21f1652f2330ae1ad288bf1c1451573f140c0b95 100644 --- a/tutorials/source_en/parallel/operator_parallel.md +++ b/tutorials/source_en/parallel/operator_parallel.md @@ -1,6 +1,6 @@ # Operator-level Parallelism -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/operator_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/operator_parallel.md) ## Overview @@ -16,7 +16,7 @@ The illustration of the ops operator parallel operation is based on the Ascend s #### Sample Code Description -> Download the complete sample code here: [distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). +> Download the complete sample code here: [distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). The directory structure is as follows: @@ -194,7 +194,7 @@ The illustration of the mint operator parallel operation is based on the Ascend #### Sample Code Description -> Download the complete sample code here: [distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). +> Download the complete sample code here: [distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). The directory structure is as follows: @@ -348,7 +348,7 @@ An illustration of higher-order ops operator parallel operations follows, using #### Sample Code Description -> Download the complete sample code here: [distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). +> Download the complete sample code here: [distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). The directory structure is as follows: @@ -470,7 +470,7 @@ An illustration of higher-order mint operator parallel operations follows, using #### Sample Code Description -> Download the complete sample code here: [distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). +> Download the complete sample code here: [distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/optimize_technique.rst b/tutorials/source_en/parallel/optimize_technique.rst index 00836a8b97e173bf77c0c0cafbf6e865b32f25af..656e25ce00c8c21d3b4a5d0eebb4b4d4832c47f2 100644 --- a/tutorials/source_en/parallel/optimize_technique.rst +++ b/tutorials/source_en/parallel/optimize_technique.rst @@ -2,7 +2,7 @@ Optimization Techniques ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/optimize_technique.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/optimize_technique.rst :alt: View Source On Gitee .. toctree:: diff --git a/tutorials/source_en/parallel/optimizer_parallel.md b/tutorials/source_en/parallel/optimizer_parallel.md index 798ddd41ddb3719fa7342e55ee2818d6c7cf5fb4..64560848af71140be0e9487508be012a0f08e8af 100644 --- a/tutorials/source_en/parallel/optimizer_parallel.md +++ b/tutorials/source_en/parallel/optimizer_parallel.md @@ -1,6 +1,6 @@ # Optimizer Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/optimizer_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/optimizer_parallel.md) ## Overview @@ -10,7 +10,7 @@ The following is an illustration of optimizer parallel operation using an Ascend ## Sample Code Description -> Download the full sample code: [distributed_optimizer_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_optimizer_parallel). +> Download the full sample code: [distributed_optimizer_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_optimizer_parallel). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/overview.md b/tutorials/source_en/parallel/overview.md index 85909d6d33ef1fdc03ea98698727f1d84157bd45..2509107b408accc3660b225b045d9bede9260007 100644 --- a/tutorials/source_en/parallel/overview.md +++ b/tutorials/source_en/parallel/overview.md @@ -1,6 +1,6 @@ # Distributed Parallelism Overview -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/overview.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/overview.md) In deep learning, as the size of the dataset and the number of parameters grows, the time and hardware resources required for training increase and eventually become a bottleneck that constrains training. Distributed parallel training, which reduces the need for hardware such as memory and computational performance, is an important optimization for performing training. In addition, distributed parallelism is important for large model training and inference, which provides powerful computational capabilities and performance advantages for handling large-scale data and complex models. diff --git a/tutorials/source_en/parallel/pipeline_parallel.md b/tutorials/source_en/parallel/pipeline_parallel.md index f6f1ee36f355b882da150f3de5c6e9bd44d536a9..0263467e792cb5df430d7c53239a2c537c58dbb9 100644 --- a/tutorials/source_en/parallel/pipeline_parallel.md +++ b/tutorials/source_en/parallel/pipeline_parallel.md @@ -1,6 +1,6 @@ # Pipeline Parallel -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/pipeline_parallel.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/pipeline_parallel.md) ## Overview @@ -12,7 +12,7 @@ The following is an illustration of pipeline parallel operation using Ascend or ### Sample Code Description -> Download the complete sample code: [distributed_pipeline_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel). +> Download the complete sample code: [distributed_pipeline_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel). The directory structure is as follows: @@ -256,7 +256,7 @@ The following is an illustration of pipeline parallel inference operation using ### Sample Code Description -> Download the complete sample code: [distributed_pipeline_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel). +> Download the complete sample code: [distributed_pipeline_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/rank_table.md b/tutorials/source_en/parallel/rank_table.md index afaaa14721f9d88e3593a92d78177ea3fdc055a5..31d91cf0a1803be24c67df8ce68d76f94f705bd5 100644 --- a/tutorials/source_en/parallel/rank_table.md +++ b/tutorials/source_en/parallel/rank_table.md @@ -1,6 +1,6 @@ # rank table Startup -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/rank_table.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/rank_table.md) ## Overview @@ -37,7 +37,7 @@ The parameter items that need to be modified according to the actual training en ## Operation Practice -> You can download the full sample code here: [startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method). +> You can download the full sample code here: [startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/recompute.md b/tutorials/source_en/parallel/recompute.md index 1c94e2570630c7accd4630ce2e5fdf4019c2338f..200b762348bdbf048ad2e75db865935e17f0ecf5 100644 --- a/tutorials/source_en/parallel/recompute.md +++ b/tutorials/source_en/parallel/recompute.md @@ -1,6 +1,6 @@ # Recomputation -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/recompute.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/recompute.md) ## Overview @@ -40,7 +40,7 @@ The following is an illustration of the recomputation operation using an Ascend ### Sample Code Description -> Download the complete sample code: [recompute](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/recompute). +> Download the complete sample code: [recompute](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/recompute). The directory structure is as follows: diff --git a/tutorials/source_en/parallel/split_technique.md b/tutorials/source_en/parallel/split_technique.md index 62229a3fa077bec685e84a895701dc468dce9555..3dbb0c9472ee39499305e5be748867a398deef4d 100644 --- a/tutorials/source_en/parallel/split_technique.md +++ b/tutorials/source_en/parallel/split_technique.md @@ -1,6 +1,6 @@ # Sharding Techniques -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/split_technique.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/split_technique.md) ## Overview diff --git a/tutorials/source_en/parallel/startup_method.rst b/tutorials/source_en/parallel/startup_method.rst index c76fbd934f6eab030f901109a66a672eab8bf9bb..cf9332f742cb844a58400c1029c216edf21ae5d8 100644 --- a/tutorials/source_en/parallel/startup_method.rst +++ b/tutorials/source_en/parallel/startup_method.rst @@ -2,7 +2,7 @@ Distributed Parallel Startup Methods ==================================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/startup_method.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/startup_method.rst :alt: View Source On Gitee .. toctree:: diff --git a/tutorials/source_en/parallel/strategy_select.md b/tutorials/source_en/parallel/strategy_select.md index 805a0d4a5952bdc88c40051b5327143acbc2acd7..2fb52fd028100462bd7b1d9e81fbc9fa351ed726 100644 --- a/tutorials/source_en/parallel/strategy_select.md +++ b/tutorials/source_en/parallel/strategy_select.md @@ -1,6 +1,6 @@ # Strategy Selection -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/parallel/strategy_select.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/parallel/strategy_select.md) ## Overview diff --git a/tutorials/source_en/train_availability/fault_recover.md b/tutorials/source_en/train_availability/fault_recover.md index 0110e27672ad382d425db060976545ee6a66c545..df90cd4a474b66b000bfdb942bf7941f000f00d5 100644 --- a/tutorials/source_en/train_availability/fault_recover.md +++ b/tutorials/source_en/train_availability/fault_recover.md @@ -1,6 +1,6 @@ # Fault Recovery -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/train_availability/fault_recover.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/train_availability/fault_recover.md) ## Overview diff --git a/tutorials/source_en/train_availability/graceful_exit.md b/tutorials/source_en/train_availability/graceful_exit.md index f3d6f7bd3c33f5dde57b8bec5f037911111745a7..95182d6f80bd470dd2db02da32d22d6af01ef40f 100644 --- a/tutorials/source_en/train_availability/graceful_exit.md +++ b/tutorials/source_en/train_availability/graceful_exit.md @@ -1,12 +1,12 @@ # Training Process Exit Gracefully -[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/train_availability/graceful_exit.md) +[![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source_en.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_en/train_availability/graceful_exit.md) ## Overview When there are suboptimal devices in the training cluster, saving checkpoint and exiting the cluster training process before the failure occurs can effectively prevent the loss of weight data when the cluster is damaged. This also avoids issues such as training data rollback and loading checkpoint rollback when training recovery, effectively preventing the waste of training resources. -> This document describes how to use the process graceful exit. In order to illustrate the specific usage, the example of detecting the exit configuration message at the first training step and terminating the training process early is used. You can get the full sample code here: [process_graceful_exit](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/graceful_exit/) . +> This document describes how to use the process graceful exit. In order to illustrate the specific usage, the example of detecting the exit configuration message at the first training step and terminating the training process early is used. You can get the full sample code here: [process_graceful_exit](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/graceful_exit/) . `graceful_exit.py` is the training code, `train.sh` is the `msrun` startup script, and `graceful_exit.json` is the graceful exit config json file. diff --git a/tutorials/source_zh_cn/beginner/accelerate_with_static_graph.ipynb b/tutorials/source_zh_cn/beginner/accelerate_with_static_graph.ipynb index 44f1e78f73008e7c6c3ad0ece6635185dfebbef2..01a9d68439b96269db7da0d2ae42219f830e8ec0 100644 --- a/tutorials/source_zh_cn/beginner/accelerate_with_static_graph.ipynb +++ b/tutorials/source_zh_cn/beginner/accelerate_with_static_graph.ipynb @@ -5,9 +5,9 @@ "id": "69a92ef2", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_accelerate_with_static_graph.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_accelerate_with_static_graph.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/accelerate_with_static_graph.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_accelerate_with_static_graph.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_accelerate_with_static_graph.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/accelerate_with_static_graph.ipynb)\n", "\n", - "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/autograd.ipynb) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || **Graph Mode加速** ||\n", + "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/autograd.ipynb) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || **Graph Mode加速** ||\n", "\n", "# Graph Mode加速\n", "\n", diff --git a/tutorials/source_zh_cn/beginner/autograd.ipynb b/tutorials/source_zh_cn/beginner/autograd.ipynb index d64ef996d09fcbca8142b5453cd839db3e8c0a40..04cd954ca5f01f4be64ba0f3862534c941ae3adb 100644 --- a/tutorials/source_zh_cn/beginner/autograd.ipynb +++ b/tutorials/source_zh_cn/beginner/autograd.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_autograd.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_autograd.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/autograd.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_autograd.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_autograd.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/autograd.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || **函数式自动微分** || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/beginner/dataset.ipynb b/tutorials/source_zh_cn/beginner/dataset.ipynb index 81252127c8dad060304045de1ea4a7612b069d43..58f4281489124210af3bfebbb0a88faaec092060 100644 --- a/tutorials/source_zh_cn/beginner/dataset.ipynb +++ b/tutorials/source_zh_cn/beginner/dataset.ipynb @@ -5,7 +5,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_dataset.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_dataset.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/dataset.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_dataset.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_dataset.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/dataset.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || **数据加载与处理** || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/beginner/introduction.ipynb b/tutorials/source_zh_cn/beginner/introduction.ipynb index d506a22f37fb291ea62eebad1c635b02bb5fdd25..9335569861232db6fabde22dead06086bc1a0d10 100644 --- a/tutorials/source_zh_cn/beginner/introduction.ipynb +++ b/tutorials/source_zh_cn/beginner/introduction.ipynb @@ -5,7 +5,7 @@ "id": "c55e51c5-4069-4134-8f68-7ea9a45f0038", "metadata": {}, "source": [ - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/introduction.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/introduction.ipynb)\n", "\n", "**基本介绍** || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html#) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/beginner/model.ipynb b/tutorials/source_zh_cn/beginner/model.ipynb index bc559fbeb17b4f8e74e7169d1c442612ab343e82..879c39e255e453d127af11784a99721e4be6a3fa 100644 --- a/tutorials/source_zh_cn/beginner/model.ipynb +++ b/tutorials/source_zh_cn/beginner/model.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_model.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_model.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/model.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_model.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_model.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/model.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || **网络构建** || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/beginner/quick_start.ipynb b/tutorials/source_zh_cn/beginner/quick_start.ipynb index d213d253b8ff08f095172cab763f009ea5c6781a..563f2ce2b439f062ace42114dc5750448a726062 100644 --- a/tutorials/source_zh_cn/beginner/quick_start.ipynb +++ b/tutorials/source_zh_cn/beginner/quick_start.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_quick_start.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_quick_start.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/quick_start.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_quick_start.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_quick_start.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/quick_start.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || **快速入门** || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/beginner/save_load.ipynb b/tutorials/source_zh_cn/beginner/save_load.ipynb index d31bb8eea8a04325c76f0574a7de5480a7867ed1..a052be1657cd89f471e10fdbe5b10873a7953864 100644 --- a/tutorials/source_zh_cn/beginner/save_load.ipynb +++ b/tutorials/source_zh_cn/beginner/save_load.ipynb @@ -6,7 +6,7 @@ "source": [ "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_save_load.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_save_load.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/save_load.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/save_load.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || **保存与加载** || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/beginner/tensor.ipynb b/tutorials/source_zh_cn/beginner/tensor.ipynb index f71f353b63724643879011f867deb59f4e65bd7f..ee8f9440c8d5b1b80bc83880675f0f45f8e86db4 100644 --- a/tutorials/source_zh_cn/beginner/tensor.ipynb +++ b/tutorials/source_zh_cn/beginner/tensor.ipynb @@ -5,7 +5,7 @@ "metadata": {}, "source": [ "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_tensor.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_tensor.py)\n", - " [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/tensor.ipynb)\n", + " [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/tensor.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || **张量 Tensor** || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/beginner/train.ipynb b/tutorials/source_zh_cn/beginner/train.ipynb index 414a7284ed187bed92701e7bdaaded819f3c4e76..a802dcc37e27846d629c441d21baa47fb8b382f4 100644 --- a/tutorials/source_zh_cn/beginner/train.ipynb +++ b/tutorials/source_zh_cn/beginner/train.ipynb @@ -8,7 +8,7 @@ } }, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_train.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_train.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/train.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_train.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/beginner/mindspore_train.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/beginner/train.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/tensor.html) || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/autograd.html) || **模型训练** || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html) ||" ] diff --git a/tutorials/source_zh_cn/compile/fusion_pass.md b/tutorials/source_zh_cn/compile/fusion_pass.md index 99f811583fbeba3e285b54353855ebb774a79db1..0cd0a4b472732b125a2546f4192bb186ff22d32b 100644 --- a/tutorials/source_zh_cn/compile/fusion_pass.md +++ b/tutorials/source_zh_cn/compile/fusion_pass.md @@ -1,6 +1,6 @@ # 自定义融合策略 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/fusion_pass.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/fusion_pass.md) ## 概述 diff --git a/tutorials/source_zh_cn/compile/operators.md b/tutorials/source_zh_cn/compile/operators.md index c6baaf4b87ff2947ffa5ee5167283df0aeb5d4c8..e483f0031f43b45f5aaf1b27cfd003eafd4a1cde 100644 --- a/tutorials/source_zh_cn/compile/operators.md +++ b/tutorials/source_zh_cn/compile/operators.md @@ -1,6 +1,6 @@ # 图模式语法-运算符 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/operators.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/operators.md) 算术运算符和赋值运算符支持`Number`和`Tensor`运算,也支持不同`dtype`的`Tensor`运算。 diff --git a/tutorials/source_zh_cn/compile/python_builtin_functions.ipynb b/tutorials/source_zh_cn/compile/python_builtin_functions.ipynb index 69a7d28e82df65cbd478d90aeff1f14f955e4acb..688c82d7f61ab156fe7291255b8ad914e785f87d 100644 --- a/tutorials/source_zh_cn/compile/python_builtin_functions.ipynb +++ b/tutorials/source_zh_cn/compile/python_builtin_functions.ipynb @@ -7,7 +7,7 @@ "source": [ "# 图模式语法-python内置函数\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_python_builtin_functions.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_python_builtin_functions.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/python_builtin_functions.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_python_builtin_functions.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_python_builtin_functions.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/python_builtin_functions.ipynb)\n", "\n", "当前静态图模式支持的Python内置函数包括:`int`、`float`、`bool`、`str`、`tuple`、`list`、`dict`、`getattr`、`hasattr`、`len`、`isinstance`、`all`、`any`、`round`、`max`、`min`、`sum`、`abs`、`map`、`zip`、`range`、`enumerate`、`super`、`pow`、`print`、`filter`、`type`。图模式下内置函数的使用方法与对应的Python内置函数类似。\n", "\n", diff --git a/tutorials/source_zh_cn/compile/statements.ipynb b/tutorials/source_zh_cn/compile/statements.ipynb index 5c479a551074c206c30211fdcb27633d77542445..6f0d4d34f5da8750a3c8ce4b20b88d38d0bf4dce 100644 --- a/tutorials/source_zh_cn/compile/statements.ipynb +++ b/tutorials/source_zh_cn/compile/statements.ipynb @@ -7,7 +7,7 @@ "source": [ "# 图模式语法-python语句\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_statements.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_statements.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/statements.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_statements.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_statements.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/statements.ipynb)\n", "\n", "## 简单语句\n", "\n", diff --git a/tutorials/source_zh_cn/compile/static_graph.md b/tutorials/source_zh_cn/compile/static_graph.md index dcbd9a8ef7132a55c6f6cffe8eb20f6c3db4e166..b0c3a94641b77c2ebeaae1726b4bd56faf83aa26 100644 --- a/tutorials/source_zh_cn/compile/static_graph.md +++ b/tutorials/source_zh_cn/compile/static_graph.md @@ -1,6 +1,6 @@ # 图模式编程介绍 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/static_graph.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/static_graph.md) ## 概述 diff --git a/tutorials/source_zh_cn/compile/static_graph_expert_programming.ipynb b/tutorials/source_zh_cn/compile/static_graph_expert_programming.ipynb index b6ea677d433b24c44539b954365e465865b73404..ab51b28b55d3dcca25b6b04af01aad2e2e3b4667 100644 --- a/tutorials/source_zh_cn/compile/static_graph_expert_programming.ipynb +++ b/tutorials/source_zh_cn/compile/static_graph_expert_programming.ipynb @@ -9,7 +9,7 @@ "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_static_graph_expert_programming.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_static_graph_expert_programming.py) \n", - "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/static_graph_expert_programming.ipynb)\n", + "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/static_graph_expert_programming.ipynb)\n", "\n", "本章介绍常用的静态图优化的高级编程技巧。这些技巧能够有效地提高静态图的编译效率、执行效率,并提升程序的稳定性。有关静态图编译的基础介绍,请见[Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/master/beginner/accelerate_with_static_graph.html)。\n", "\n", diff --git a/tutorials/source_zh_cn/custom_program/custom_backend.md b/tutorials/source_zh_cn/custom_program/custom_backend.md index 914efd35f1dc79efd9c58f7b4a8ea806e9b72035..5acbdcce18bfff784b2c5a161c13304ce0c19f82 100644 --- a/tutorials/source_zh_cn/custom_program/custom_backend.md +++ b/tutorials/source_zh_cn/custom_program/custom_backend.md @@ -1,6 +1,6 @@ # 自定义后端 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/custom_backend.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/custom_backend.md) ## 概述 diff --git a/tutorials/source_zh_cn/custom_program/hook_program.ipynb b/tutorials/source_zh_cn/custom_program/hook_program.ipynb index 18aa9d2aff30f508ea3b13200736bd9a604dbbde..d7a2eab24bc0236b631ba0e816a454ee570f094f 100644 --- a/tutorials/source_zh_cn/custom_program/hook_program.ipynb +++ b/tutorials/source_zh_cn/custom_program/hook_program.ipynb @@ -6,7 +6,7 @@ "source": [ "# Hook编程\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/mindspore_hook_program.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/mindspore_hook_program.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/hook_program.ipynb)\n" + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/mindspore_hook_program.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/mindspore_hook_program.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/hook_program.ipynb)\n" ] }, { diff --git a/tutorials/source_zh_cn/custom_program/op_custom.rst b/tutorials/source_zh_cn/custom_program/op_custom.rst index 5f72f03be93738642868d776c6de4ea72de3880f..90e0cd6f7f20e8c0b62e543015b60b182c894d6b 100644 --- a/tutorials/source_zh_cn/custom_program/op_custom.rst +++ b/tutorials/source_zh_cn/custom_program/op_custom.rst @@ -2,7 +2,7 @@ ============ .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/op_custom.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/op_custom.rst :alt: 查看源文件 .. toctree:: diff --git a/tutorials/source_zh_cn/custom_program/operation/cpp_api_for_custom_ops.md b/tutorials/source_zh_cn/custom_program/operation/cpp_api_for_custom_ops.md index 044e7bc5b414364c941953e23d2cd31ad3957997..ed6ddaaa413169c68488363f61a9af0c1ad62795 100644 --- a/tutorials/source_zh_cn/custom_program/operation/cpp_api_for_custom_ops.md +++ b/tutorials/source_zh_cn/custom_program/operation/cpp_api_for_custom_ops.md @@ -1,6 +1,6 @@ # 自定义算子的C++接口说明 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/cpp_api_for_custom_ops.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/cpp_api_for_custom_ops.md) ## 概述 diff --git a/tutorials/source_zh_cn/custom_program/operation/op_custom_adv.ipynb b/tutorials/source_zh_cn/custom_program/operation/op_custom_adv.ipynb index 3c30b9f735a3be3a0383fdde35dac142698f2b84..e5b87d601d388a81253bb97e2a302a4140e8aed8 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_custom_adv.ipynb +++ b/tutorials/source_zh_cn/custom_program/operation/op_custom_adv.ipynb @@ -7,7 +7,7 @@ "source": [ "# Custom原语自定义算子高级用法\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_adv.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_adv.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_adv.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_adv.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_adv.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_adv.ipynb)\n", "\n", "## 算子信息注册\n", "\n", diff --git a/tutorials/source_zh_cn/custom_program/operation/op_custom_aot.md b/tutorials/source_zh_cn/custom_program/operation/op_custom_aot.md index fac3d76c5eebc128d249f1b6668caee7004de02b..d76dbcfd65709f0be04f1eecf80eeb27faa69202 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_custom_aot.md +++ b/tutorials/source_zh_cn/custom_program/operation/op_custom_aot.md @@ -1,6 +1,6 @@ # Custom原语AOT类型自定义算子(CPU/GPU平台) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_aot.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_aot.md) ## 概述 diff --git a/tutorials/source_zh_cn/custom_program/operation/op_custom_ascendc.md b/tutorials/source_zh_cn/custom_program/operation/op_custom_ascendc.md index 3801a806369e9fc164c7dc721979c62c9e60f0ce..e7afff203817a3e845549140de2c9227a651173c 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_custom_ascendc.md +++ b/tutorials/source_zh_cn/custom_program/operation/op_custom_ascendc.md @@ -1,6 +1,6 @@ # Custom原语AOT类型自定义算子(Ascend平台) -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_ascendc.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_ascendc.md) ## 概述 diff --git a/tutorials/source_zh_cn/custom_program/operation/op_custom_prim.ipynb b/tutorials/source_zh_cn/custom_program/operation/op_custom_prim.ipynb index 6ae9e03cffe2635d906f7e6fba6d7828d61b98b0..9790561c1ca8187c817a5eb843d9a4ccdf22ce3f 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_custom_prim.ipynb +++ b/tutorials/source_zh_cn/custom_program/operation/op_custom_prim.ipynb @@ -7,7 +7,7 @@ "source": [ "# 基于Custom原语的自定义算子\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_prim.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_prim.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_prim.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_prim.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/custom_program/operation/mindspore_op_custom_prim.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_custom_prim.ipynb)\n", "\n", "当开发网络遇到内置算子不足以满足需求时,你可以利用MindSpore的Python API中的[Custom](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Custom.html#mindspore-ops-custom)原语方便快捷地进行不同类型自定义算子的定义和使用。\n", "\n", diff --git a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder.md b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder.md index 4cacc6c3d906da254822bb1b90321c82ae55490d..9e7f77369e5984db84892d8493a08c1c31175273 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder.md +++ b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder.md @@ -1,6 +1,6 @@ # 基于CustomOpBuilder的自定义算子 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder.md) ## 概述 diff --git a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_aclnn.md b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_aclnn.md index 27811dfc96b79df1ed32815d77f94136fd0a88ff..0562c4017367cc81f17bcf966eb71ce3adf5fc9f 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_aclnn.md +++ b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_aclnn.md @@ -1,6 +1,6 @@ # CustomOpBuilder 通过 AclnnOpRunner 接入 ACLNN 算子 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_aclnn.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_aclnn.md) ## 概述 diff --git a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_asdsip.md b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_asdsip.md index 069d410dc6ac4c074cddf3fb1cf3c54e2bbfa58f..df6b9a8537692902f0883847e4460ba2ace87b5f 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_asdsip.md +++ b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_asdsip.md @@ -1,6 +1,6 @@ # CustomOpBuilder通过AsdSipFFTOpRunner接入ASDSIP FFT算子 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_asdsip.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_asdsip.md) ## 概述 diff --git a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_atb.md b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_atb.md index d269c04d548914db4ad4826f587e0bfaadd8e09f..7211311875f4f83e723c9117f2f6cf350b2ba9e0 100644 --- a/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_atb.md +++ b/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_atb.md @@ -1,6 +1,6 @@ # CustomOpBuilder通过AtbOpRunner接入ATB算子 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_atb.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/custom_program/operation/op_customopbuilder_atb.md) ## 概述 diff --git a/tutorials/source_zh_cn/cv/fcn8s.ipynb b/tutorials/source_zh_cn/cv/fcn8s.ipynb index 37da60c542832c41c185fd739c15cdca71d66ba2..720a705d40ea121790ceb04001f7ef05627759e1 100644 --- a/tutorials/source_zh_cn/cv/fcn8s.ipynb +++ b/tutorials/source_zh_cn/cv/fcn8s.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_fcn8s.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_fcn8s.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/fcn8s.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_fcn8s.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_fcn8s.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/fcn8s.ipynb)\n", "\n", "# FCN图像语义分割\n", "\n", diff --git a/tutorials/source_zh_cn/cv/resnet50.ipynb b/tutorials/source_zh_cn/cv/resnet50.ipynb index a094e6ad65328592ad5ace2eb022fa545a02e16f..20ddfdffa130159f4fe7a74c3658cdc0f55b0dcb 100644 --- a/tutorials/source_zh_cn/cv/resnet50.ipynb +++ b/tutorials/source_zh_cn/cv/resnet50.ipynb @@ -5,7 +5,7 @@ "id": "fa7e3e52", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_resnet50.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_resnet50.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/resnet50.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_resnet50.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_resnet50.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/resnet50.ipynb)\n", "\n", "# ResNet50图像分类\n", "\n", diff --git a/tutorials/source_zh_cn/cv/ssd.ipynb b/tutorials/source_zh_cn/cv/ssd.ipynb index 178c4a0851dca7234e6ddd8ad6a178c019310b54..4787ad82e056a203b1a39b8e2830e994b766d702 100644 --- a/tutorials/source_zh_cn/cv/ssd.ipynb +++ b/tutorials/source_zh_cn/cv/ssd.ipynb @@ -9,7 +9,7 @@ } }, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_ssd.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_ssd.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/ssd.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_ssd.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_ssd.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/ssd.ipynb)\n", "\n", "# SSD目标检测\n", "\n" diff --git a/tutorials/source_zh_cn/cv/transfer_learning.ipynb b/tutorials/source_zh_cn/cv/transfer_learning.ipynb index bf42f0321969ff0b4993c84328ccf321b7da11bd..7c7e18e458fb15b148c26aae4df36d8c61a91324 100644 --- a/tutorials/source_zh_cn/cv/transfer_learning.ipynb +++ b/tutorials/source_zh_cn/cv/transfer_learning.ipynb @@ -5,7 +5,7 @@ "id": "21d983ad", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_transfer_learning.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_transfer_learning.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/transfer_learning.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_transfer_learning.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_transfer_learning.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/transfer_learning.ipynb)\n", "\n", "# ResNet50迁移学习\n", "\n", diff --git a/tutorials/source_zh_cn/cv/vit.ipynb b/tutorials/source_zh_cn/cv/vit.ipynb index 4c7d3f2f1c169bb0f5613445dc4ec244040bddf8..d76ce31fd740552f54836948755883ab2fe2193e 100644 --- a/tutorials/source_zh_cn/cv/vit.ipynb +++ b/tutorials/source_zh_cn/cv/vit.ipynb @@ -9,7 +9,7 @@ } }, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_vit.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_vit.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/vit.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_vit.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/cv/mindspore_vit.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/cv/vit.ipynb)\n", "\n", "# Vision Transformer图像分类\n", "\n", diff --git a/tutorials/source_zh_cn/debug/dryrun.md b/tutorials/source_zh_cn/debug/dryrun.md index 80ac3408f0135959823a06ee352362586e5ee8d5..36edded7415801937434f1a9657483ca2a339f9c 100644 --- a/tutorials/source_zh_cn/debug/dryrun.md +++ b/tutorials/source_zh_cn/debug/dryrun.md @@ -1,6 +1,6 @@ # DryRun -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/dryrun.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/dryrun.md) ## 概述 diff --git a/tutorials/source_zh_cn/debug/dump.md b/tutorials/source_zh_cn/debug/dump.md index a75ce5e4318a3948bcad4f24646828519f6f9e47..623322677f6fb4ea0012432e74d28e843dd8b702 100644 --- a/tutorials/source_zh_cn/debug/dump.md +++ b/tutorials/source_zh_cn/debug/dump.md @@ -1,6 +1,6 @@ # Dump功能调试 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/dump.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/dump.md) 为了对训练过程进行分析,MindSpore提供了Dump功能,用于保存训练过程中算子的输入和输出数据。 @@ -291,11 +291,11 @@ ms_execution_order_graph_{graph_id}.csv ### 数据分析样例 -为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套[完整样例脚本](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/dump) ,只需要执行 `bash run_sync_dump.sh`。 +为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套[完整样例脚本](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/dump) ,只需要执行 `bash run_sync_dump.sh`。 在通过Dump功能将脚本对应的图保存到磁盘上后,会产生最终执行图文件`ms_output_trace_code_graph_{graph_id}.ir`。该文件中保存了对应的图中每个算子的堆栈信息,记录了算子对应的生成脚本。 -以[AlexNet脚本](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py)为例: +以[AlexNet脚本](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py)为例: ```python ... @@ -638,11 +638,11 @@ ms_global_execution_order_graph_{graph_id}.csv ### 数据分析样例 -为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套[完整样例脚本](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/dump) ,CPU/GPU后端下Dump只需要执行 `bash run_sync_dump.sh`。 +为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套[完整样例脚本](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/dump) ,CPU/GPU后端下Dump只需要执行 `bash run_sync_dump.sh`。 在通过Dump功能将脚本对应的图保存到磁盘上后,会产生最终执行图文件`ms_output_trace_code_graph_{graph_id}.ir`。该文件中保存了对应的图中每个算子的堆栈信息,记录了算子对应的生成脚本。 -以[AlexNet脚本](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py)为例: +以[AlexNet脚本](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/dump/train_alexnet.py)为例: ```python ... diff --git a/tutorials/source_zh_cn/debug/error_analysis.rst b/tutorials/source_zh_cn/debug/error_analysis.rst index e820b528af4cff7930fe9b8e4fcae1c73b1b1486..955c057e11fbd6600a20b1781023d468dc15e533 100644 --- a/tutorials/source_zh_cn/debug/error_analysis.rst +++ b/tutorials/source_zh_cn/debug/error_analysis.rst @@ -2,7 +2,7 @@ ======== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis.rst :alt: 查看源文件 .. toctree:: diff --git a/tutorials/source_zh_cn/debug/error_analysis/cann_error_cases.md b/tutorials/source_zh_cn/debug/error_analysis/cann_error_cases.md index d22fb31a3d7473180d7d877e3511c3745c2cc032..e1aaaca9f6e4f05a8c6d6185e7629a679e22528c 100644 --- a/tutorials/source_zh_cn/debug/error_analysis/cann_error_cases.md +++ b/tutorials/source_zh_cn/debug/error_analysis/cann_error_cases.md @@ -1,6 +1,6 @@ # CANN常见错误分析 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/cann_error_cases.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/cann_error_cases.md)   本文主要介绍用户常见的CANN错误处理方法。在遇到CANN错误时,MindSpore的日志可能不足以分析相关错误,可以通过设置以下两个环境变量来打印CANN的日志以更好地分析错误: diff --git a/tutorials/source_zh_cn/debug/error_analysis/error_scenario_analysis.md b/tutorials/source_zh_cn/debug/error_analysis/error_scenario_analysis.md index 2518e66cda2b686ace772f1d5ae76700b1685763..5a470aa261addb799b65643a37301254f39377e8 100644 --- a/tutorials/source_zh_cn/debug/error_analysis/error_scenario_analysis.md +++ b/tutorials/source_zh_cn/debug/error_analysis/error_scenario_analysis.md @@ -1,6 +1,6 @@ # 错误分析 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/error_scenario_analysis.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/error_scenario_analysis.md)   如前文所述,错误分析是指基于网络、框架等信息(如错误信息、网络代码)进行原因分析,推断错误的可能原因。 diff --git a/tutorials/source_zh_cn/debug/error_analysis/minddata_debug.md b/tutorials/source_zh_cn/debug/error_analysis/minddata_debug.md index 91799e3a0150981c2a1d00630e29185954856cea..18f88d0f372908afc77be8fe466751a0ad7a6155 100644 --- a/tutorials/source_zh_cn/debug/error_analysis/minddata_debug.md +++ b/tutorials/source_zh_cn/debug/error_analysis/minddata_debug.md @@ -1,6 +1,6 @@ # 数据处理调试方法与常见问题分析 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/minddata_debug.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/minddata_debug.md)   ## 数据处理调试方法 diff --git a/tutorials/source_zh_cn/debug/error_analysis/mindir.md b/tutorials/source_zh_cn/debug/error_analysis/mindir.md index 95c2a37083ab992211b812a8ec8d3a9f33390d1e..83c580e0721cae076d1a266fd22ab7d20dfdb5c3 100644 --- a/tutorials/source_zh_cn/debug/error_analysis/mindir.md +++ b/tutorials/source_zh_cn/debug/error_analysis/mindir.md @@ -1,6 +1,6 @@ # IR文件分析 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/mindir.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/mindir.md) ## 概述 diff --git a/tutorials/source_zh_cn/debug/error_analysis/mindrt_debug.md b/tutorials/source_zh_cn/debug/error_analysis/mindrt_debug.md index 0abe5685c937a34b8962eb6245597e0893680e47..afabc141758419ff379630c1dce4eda9a7e463dc 100644 --- a/tutorials/source_zh_cn/debug/error_analysis/mindrt_debug.md +++ b/tutorials/source_zh_cn/debug/error_analysis/mindrt_debug.md @@ -1,6 +1,6 @@ # 网络构建与训练常见错误分析 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/mindrt_debug.md)   +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/error_analysis/mindrt_debug.md)   静态图模式下,网络构建与训练过程的常见报错类型如下所示: diff --git a/tutorials/source_zh_cn/debug/profiler.md b/tutorials/source_zh_cn/debug/profiler.md index b31ae6fb1290ff066abe0a025226aa84e57305c1..47d617b715d0aefde6f7606050a9c2c719ac4be8 100644 --- a/tutorials/source_zh_cn/debug/profiler.md +++ b/tutorials/source_zh_cn/debug/profiler.md @@ -1,6 +1,6 @@ # Ascend性能调优 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/profiler.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/profiler.md) ## 概述 @@ -69,7 +69,7 @@ with mindspore.profiler.profile(activities=[ProfilerActivity.CPU, ProfilerActivi - schedule:使能后,落盘数据中kernel_details.csv中包含了Step ID一列信息。根据样例中schedule的配置,skip_first跳过0个step,wait等待0个step,warmup预热0个step。根据active为1,则从第0个step开始采集,采集1个step。因此Step ID为0,表示采集的是第0个step。 - on_trace_ready:profiler的落盘路径是通过on_trace_ready的tensorboard_trace_handler参数指定的,tensorboard_trace_handler会默认解析性能数据,用户如果没有配置tensorboard_trace_handler,数据会默认落盘到当前脚本同级目录的'/data'文件夹下,可以通过离线解析功能解析性能数据,离线解析功能可参考[方式四:离线解析](https://www.mindspore.cn/tutorials/zh-CN/master/debug/profiler.html#%E6%96%B9%E5%BC%8F%E5%9B%9B-%E7%A6%BB%E7%BA%BF%E8%A7%A3%E6%9E%90)。 -完整案例参考[自定义for循环采集完整代码样例](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/for_loop_profiler.py)。 +完整案例参考[自定义for循环采集完整代码样例](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/for_loop_profiler.py)。 **schedule参数配置原理如下:** @@ -114,7 +114,7 @@ class StopAtStep(mindspore.Callback): self.profiler.stop() ``` -完整案例请参考[CallBack方式采集完整代码样例](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/call_back_profiler.py)。 +完整案例请参考[CallBack方式采集完整代码样例](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/call_back_profiler.py)。 ### 方式二:动态profiler使能 @@ -170,7 +170,7 @@ for _ in range(STEP_NUM): 此时生成的结果文件包含两个文件夹:rank0_start2_stop5以及rank0_start8_stop10,分别代表采集的step为2-5和8-10。 -完整案例请参考[动态Profiler使能方式案例](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/dynamic_profiler.py)。 +完整案例请参考[动态Profiler使能方式案例](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/dynamic_profiler.py)。 ### 方式三:环境变量使能 @@ -224,7 +224,7 @@ mstx.mark("start") mstx.range_end(range_id) ``` -完整案例请参考[mstx轻量化打点方式案例](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/profiler/mstx_profiler.py)。 +完整案例请参考[mstx轻量化打点方式案例](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/profiler/mstx_profiler.py)。 ## 性能数据 diff --git a/tutorials/source_zh_cn/debug/pynative.md b/tutorials/source_zh_cn/debug/pynative.md index 9365b3c3e2116d26ebc9234f167270c7ff290f1f..28a491d3e70e47cf2778561609cf4e42998098a1 100644 --- a/tutorials/source_zh_cn/debug/pynative.md +++ b/tutorials/source_zh_cn/debug/pynative.md @@ -1,6 +1,6 @@ # 动态图调试 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/pynative.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/pynative.md) ## 概述 diff --git a/tutorials/source_zh_cn/debug/sdc.md b/tutorials/source_zh_cn/debug/sdc.md index 8d2f71d3473e681425d548a2ad910aa73540e8c9..f19955b8678fc847df4fc8a6c728d38b2c820484 100644 --- a/tutorials/source_zh_cn/debug/sdc.md +++ b/tutorials/source_zh_cn/debug/sdc.md @@ -1,6 +1,6 @@ # 特征值检测 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/sdc.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/debug/sdc.md) ## 概述 diff --git a/tutorials/source_zh_cn/generative/cyclegan.ipynb b/tutorials/source_zh_cn/generative/cyclegan.ipynb index 205170758e50b1d9ffa4b6eae2ee85ec999a1545..0476e8c77f4b01569eccb5cae434e4cd27b2bf50 100644 --- a/tutorials/source_zh_cn/generative/cyclegan.ipynb +++ b/tutorials/source_zh_cn/generative/cyclegan.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_cyclegan.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_cyclegan.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/cyclegan.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_cyclegan.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_cyclegan.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/cyclegan.ipynb)\n", "\n", "# CycleGAN图像风格迁移互换\n", "\n", diff --git a/tutorials/source_zh_cn/generative/dcgan.ipynb b/tutorials/source_zh_cn/generative/dcgan.ipynb index 4476d52ceab72fb145433dcd52b98e39934b8f51..424af2426ddf2f77c099abc71e2622e92927dcb2 100644 --- a/tutorials/source_zh_cn/generative/dcgan.ipynb +++ b/tutorials/source_zh_cn/generative/dcgan.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_dcgan.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_dcgan.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/dcgan.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_dcgan.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_dcgan.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/dcgan.ipynb)\n", "\n", "# DCGAN生成漫画头像\n", "\n", @@ -158,465 +158,4 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFgAAAFcCAYAAAD8qgoUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAABWIAAAViAHE10CgAAEAAElEQVR4nOz9S5BtW5aeCX3ztdbaD3+c1z333nhmpDJTKlVJlIGqrMxkgAFlGBg9aNGgQ4suNGhiPAzaNGjSpYEZHapRLYxeKUuySilTIqUIZURG3Ii4956nu++912O+aYy5tp9QSQ3dcMAw28PM7Rw/x9339jXXmnOMf/z/P1SttXKJS1ziEpe4xCUucYlLXOISl7jEJS5xie8c+v/Xb+ASl7jEJS5xiUtc4hKXuMQlLnGJS1zi/9/jArBc4hKXuMQlLnGJS1ziEpe4xCUucYlL/J5xAVgucYlLXOISl7jEJS5xiUtc4hKXuMQlfs+4ACyXuMQlLnGJS1ziEpe4xCUucYlLXOISv2dcAJZLXOISl7jEJS5xiUtc4hKXuMQlLnGJ3zMuAMslLnGJS1ziEpe4xCUucYlLXOISl7jE7xkXgOUSl7jEJS5xiUtc4hKXuMQlLnGJS1zi94wLwHKJS1ziEpe4xCUucYlLXOISl7jEJS7xe8YFYLnEJS5xiUtc4hKXuMQlLnGJS1ziEpf4PeMCsFziEpe4xCUucYlLXOISl7jEJS5xiUv8nnEBWC5xiUtc4hKXuMQlLnGJS1ziEpe4xCV+z7gALJe4xCUucYlLXOISl7jEJS5xiUtc4hK/Z1wAlktc4hKXuMQlLnGJS1ziEpe4xCUucYnfM+x3/cbj//n/wseHOz4eH/jm4wd+8kd/xIvPPuPm9pZvfv01x4cD4+HED3/wQ5TWpJx48/EDX7/5mpgD/87f/mOu9tdY26GU4c/+7J9wPJ6IKfO3/tbf4sOH9xxPR15//pLPPnvJbr+l2/S43gGKWipUyLGQY2GZE3f3D0zzQqrwgx/9mOubaza7DZFCrZWSM/dv3nO6v+d0OPD2zRs+//xzNpuBGDyvP/uM7WZD1znev33Dm2+/4f7+jj/+4z8mpEDVcPvqGcfjibu7O37z69/w+tVrXrx4wYvnz7m7u+Pbr7/h4eGBq/0ev8zUWtlse378J39AN3TkUvBj5u03H3n7zQc+PIz89Oe/4O2HDyQqf+fv/rv84Ptf8pMffY/qT/jpxDKO/Mf/u//9kyx4Pv0/UCioCirUagCNxoEbUMZSlaHWSiqJVCLLMuHDAymPVA6YrlJVIuSJD/cfqMpgbY/rbolZyUdV4AzaGfreMtgBayxWWaiKUjS1KEjIeipFApKqVAVa3hypZmLJlJp59+4dH+4+8uHjR652V1ztr3j1+jUZSDkTQiKFwuB6hm6g6wdySeSSqVSMVWit0AoO9x85HA8cDg9cdRuevXjB1c01znZYbaBCSJlYYFwW7o5HPjzck6goY3j5+kt8jPglcP/xgJ88NVZMVhAKFKDA/+Z/+r96knUD+M//b9+wLAsxRrSWNcq5MPtw/hqlNdpYapVnJJWC0gCVkDzaaIzWWGuIKVJrpdZCCAFjNVA5HA7E6HHO8fqzzyBnqBXVXmNZFkII3D67JZdCqRWlNSF6Ygws3oMCpeQ7jvcn5nmm5syXX3yB0wZKJYSAcw7XdfR9j3aWSqUCFSilolBY5cg5syyew+HA6XRCa0Xf93z5vdcYozFGcftsz/XNHqUUx+OBX/72G+4OJx5OJ7TWbDc7dtstm83Asiwo4MsvXuPDzIcPb/npT/+S733/C/7wD3/C3/ybf8KP/t3bJ1m39//Pf4jbDLhtj9vvKMbI75czNWZUBVsVKlfkwmm00ZAVFNBJ/pTrUgEotcp1VwqlFbRrXZWsNbVic0VV+ZCbo70hrUDLM1fXf1eKqhUoKFpRNAQHVVfQYJ3FGi3PZUoQMmn0zPdH4scZlojyhS4r+v0OvRlI2wHTObTWaK2pVV6q3Y5QynrTokqlpEzygQRoY+ldDylRS6HmzHJ3R7/rsYMDB95mgsrMKrF9eUN3taO72sF+9yTr9n/9X/8vUASSH/nlz/6cw/s3LIcTy8MEVK6eX/Hlj77g3/n3/zYPx4m37z7ym1/+gu9/+ZIXz/Zse8jzAasU+90Vn3/5Y5ZUuDuO/OKr3/D9P/wjvv8Hf4Mf/eHfwg07EnA3H0kkdlc7Xr1+SUmJ4/HE4XhiniPPXnzO9uoW5fYou8N0G7rtXq5qhVoqNYa2x8M0nrBWo4DkIw+HB0opWGt48eozlFLknHn//j3b3Z5+s2HY78EoKopaIPtEmBf8NLG/GSi5QtV03R7jBrAWrAYUtSpKhaoURSmoFTKYClreFYeHO07HAx/fvWM5HSkhQMr8h/+D//6TrBvAmOWeV6rd9kX2L9daSrVITgCaWmSvSaVwPB758OEDf/qnf8p/8p/8p3z11a95eDiirMPYDuM6QswU5PqgINeK3Mlq/Ve0Umw2A33n6FzH9fUVV1d7hn7AWUs/bM57n7UWbQzGGrpuaPt6JoSAAmou+HlhmiZCCIQQmOeZkBIxJbnEOVFKppJJ3lNrASpKgTFgjGa3GUjBY7Xib//tP+G/89/+b/FHf+Nv8P0ffA9rrOzXqu0VFUopHMZR9mGl6Dr5fbTWVFUpVX5rrRXdE/Xq/o//p/85SiuU1qBAWyuvp9X53AkhsN/u2PQDvXNQKsYZtLUoazmNct6M48jV1RVdu8aHwwFrLc45ttstKaXzdUYZWQMjKXFte6bRcs+2bRetlJyfRuP9wjTNHMeJu8MBpQxGW4Zu4NXzl+y3e7bDVrZXDegKulJUoVJZkiflTK0VhSYvCT8u3H245+3bd3J2G8uL779ms9+y2W95/flLTCmEZeHtm7csAfphw82zZ9gBcvGUEjHKYHB0ZsPzqy/49/7kv8Lt1TMsHTUXNGC1RvX9k6zb/+z/8H+nt4qhUzzbOz5+eEMtmZefveD551+C6ZhD4atff41fFnJMbDrHOE0s0ZOo/PhHP2S73aBU4ePHd2gFfdfxxeevmeeJmCKfv/6cGBMV6LqONJ5Y7h84vXnHfhz5no18biPp9Ib07AXl5efYv/Mf8Y/+6ud8uL8jjkdeX73A6h5Fz2evbvn8y1e8eHXD5rrj/ft3vHv7jp/+85/xky//kJo19/cnfvnVr/n+j3/ET/7kD/n8J6+4P5w4PIzcfXvHfr8jRs+bN9/y7NkNz58/5+XLFwA83D9wOp0oqVATpJSZppklBzb7DS9fveTzV59hlaHEzDe/+Ya/+tlfcToe+cOf/ITPXr9is5Oa5HQ6Mc0T0zTxP/xv/t0nWTeA/8n/8j/ncDiwLAs3Nze4zoHW5JJxXYfW+ryRFtVyj1JQJaEprYh01KwpAciZHBfCfOAXP/0z3r9/yzRPvPj8S37yN/8uL17/gJtXP+S4LNSasaagysw8HpinAz5MmK7HuA7TDdw/nPA+kGPkj/7gx3TOoVAkepR2KGXR2mKURaFQtZJioKRAjp5lOlCTRxG52g1srjXDXrF5Afvra1y3wdot2u1QykF1jCeIsRJD4XA/kWKm5EpJoKNGV41RVo7dlk9p1+GsxhnNZoD59Ft0PbEbZv4bf/+PefVyw82N5Zl5mnX73/6n94TFk2OiU5bqC/Nx4utff80f/Ogn7PZ7uqGjUgk1EWumajBOozXUlICE1hpnLQ/3Jx7uZt69PfIP/sE/peu3bDYbuo3lb/zx93n+cs9mqzj+4sD7r37Db3/2z+h27/jij/6AL/74b7J7/Xf4+O3I6cNEen/P889e0u2v0PsrMgVdIjoHgkJyVg0xSe2SUuJ0OOKsxWqDNZaPH+64vbrl2fVzAKblSCwLyiVU3uBUz8ZuePv1L3m4f8fx+J4f//gnpDKQSw/dFVcvbui2DtUnyIllnDh8PHD35gFSwqrKly8HXr/suL2u7Icj/7X/6h/w+WfXPL8eoFbZS439TnSU7wywxBAIIRJDkiJNSfKfixRrOSWUVlhrKaWQU8YHOfi1UigUOWVqjdSaCCGQcjonFyklUoporcmlkFLG5iLAClBrQaHPRWZMkdz+XyFFdKs5JElp5UkMgdwOtdo2ipwzOWdijEQrhURK+fzvOWdKKZLIpEzNhZoLKSZCDMQYyTnL+6KSS2YJ/ly8TtOM9wHjLMZaam2vDxhtcMZitSUkzzRNspFOE4MBrY1scE8VVbUroqi1XZf2PhVFEjOlqBQqkrBVlSWhokrSXSW5CrmQ0Cg0RWlSLcRciVmB6ailUnIhpUIkC6CiNSgthUADIWiFXl4Lvlb11Zrl9ZQk+qW2nxcS2SVKyqjSHlbke1OMZGWotrTfq57vT20sRgElyzWoUCqkCrl9qEorSBUFTSJLoWAMShtKTpRcBFj45GN946VCe7Pne/WpIkRPpZxBkpQzUFEaSq5orTHGyPWscr9rLWtZaqEiz4zSSgr4WCUprxVjzPnZ896Tc8ZoewZyqHLPA+drmnNGaXkvKEniS5H7NWXZuJVS5/ebS8F7j+k3DeSxZ+Az54yy5gzKyG0q9ybI++s6R9/3Ata01y+lyGFRNdM00feOru/YbrfsdjvmEHg4ys8pORFjwtqIMQajNcvipUDoBq6vbzgcjnz48JEPHz7yI26fZN1c57DOYowUC1L6yIdSGl2lNKMBgVCo7ZlXDXCp5+96jPVa/Zc+V7Ljof7L33OO9UH75Geo9T0hZ4kzRv5iFMYY2bdrAXTbLyRJL0ZT2j2XUsHEhDaR7FpxZNrLtccktzpOffK665uqpZBSwphKUQ5dBCCqtYJWApZGMFZ+qGrvOsdMCZHiA/qJAJbN0OHnhRi85JdKodo51/U9+/2eF8+fY7QhhsA8jgx9R9c5jDVUEtoYnHOS7PQdIQdSzNSqUMqgtUVpKQ5NW8OSEqUkaNfYKIVTmiklSoqUmOisPJOqZMgJtH28yKXIRS0VcqJWLfdVyZQUpbCMihwCxtoGClTCslBLwVmL7h1Ka1RVVKpgclqxzDNGSyFJydSSUUUAQFkNhVaajOyj8r2Kxx0ajDECMvQ9xS+yr6P+9YvwHcPPyxnkNUpRi7xCQs46AYxV2w8NKE30gV9/9Wt+/vNf8I/+0X/B+/fvCTHiuo6qNHottltUajtDQWtN13Vs+h5nLZ1zDWDp6PuOq/2evu8kgbQW51rhojWKSs3SSFhmT0xRcosQ8MtCDFHur3lueZH8Xy6ZXOrvAiwtt6Ctacv90RqCX6BkjIK/+quf8/nnn5NzYbvd8vz5c6w11NLOjAbg1pa7gcJaAdOpaw5Gex6eLkopaKXlvGnFkryP+kke9pi7lZwll9AKTYJSWOZZrluM8n+5kMnyte08W3+vlBIxRpSuGDifd7VWKEXOJGj3tax+qZLTeB/wIRBDIOWM0QqjpPA3Rs6yT6+NRpFrJuVEzBGfQvt/uYg5ZWI7C6GdDUb/Tp5RayXX9vdSSDGjtSWEgLZG8rZSZD8uCXJknmcWvxCHiHXuvJc95cop5Py3xpBSljPEarphwFpHLJV5meV0q5Ijg0WTsTWhaoIwUW1FGYUzkp+WWpi9b40iaUzknNFK03cdx7cjfp6AIs0zrVAajNXEWihFmkPWGKx1VOtIbf01mZQk7w8x0dWuPTWKnAu5FpSS36mUQkwBv+5XWe69tU7JOaONIcRIjJFSCsaYM6A3+YnO9lAVwQcwlZIK87QQY8I4jXWG7W6LdVIz3T88cH1zhbHy+q7r6EohpvRk6wYC+sizLCA5Sp/3xvPjvuZlLa8tFUz7+qogRXnOFLKf5ZwIwQsQHDwxBWIK7e8RpSpGtWc7l1ZFKDSaFDOQUBic0zhjKVpqxXmcYJB9VZncwNiK1rXtfQpqIZcgtSUBbbLkp9qw3Q9c3fRsrhxXzzr6zQ6lLKkY4lJJOZFS5nAfyQlSqkyjp2ZpSqu6nnVILtRqE/m8UooAqKWAVnJ+ppS5vz8wDJVh2MH2aRCWUoqcb9pQcyV4AZ+1UvJ8t/s0qyJnlJLGWdvaKEVBlQYDKZOWjJ9m5uOBGia0Veii0VVyB0pFY8kxULPHqog1GaUStQRqFkArhYUYZ1LymNxB3bTGaXkE8NtBWtfGbSmUnMi1gpF/yzmRszT5VTWUksk5oXXGlEpVlZyS7Mu1kIKcmwVpyOcYiSGincL1tGaDxjmL6xy5FmpOhBgJEXwAqz3TNDPPHWnn6Kw9X+vvUod/d4ClvfkYYksypHOVUm5gSRa0v21OKWe8D5RS0UajKuSUZCMrnEEZlKaUTGqJoNZawI+U6Eqhtiq4tnZoKfIwxxgpWbqdSpvGVJAb7ZzM10oIUUCS86H1CKJ477Et+UspknImfQKyoOUQlM21kGMihihFfc7nAqeUwrIsOCuHtV8W5mXBDb0ka7T3XzkXmtYaiDBPM6dxZJwmhquNFM36iSBPQCqmNU389IAtAgzU3DbVAg1cKardtFQBO6p07Xwq5CoJdVWGWDIhV1IGZzsBHpIU/pECRl5DadXAj8cSqyIdz9rWi/YezgALUi+UXMkxkWIixySb3QqwFEghUpSlugwtCSnnNKa9XgaFhnaApFLPH2unEwUZAV0KCm0MyhhqzuT8u+BKLaXtWo+JWV3v1SeMlKJsqEaSffLK9+CxmDCmMRsEpNBKnp9aMiBsljURKfXxd3DOEaNsUN4LOOisBZQUyaVBlJ+AViklXN9jjCGXdH5tbTQlyqljjRUwwxhKe8YG12HbfZ9SOifL8uw2toN6BEYrBWscYOn77vx9kmAXqlENyPQMQ4fWiu1uy/X1ntkv6FZg1VqoVRKqruswWuO9Z7Pp6bue6+tbvv7619x9vOfduw/AT55k3VzXYZzDWCv36vn+lqRbK2lu5sbKq1SwK5uFx8Pok5+pziAav4OTrEXAek/Is/Wvuw/l56vHL3z8qrZfOm1adcbj4VK13FilolEYZQSQVorcQK8YI0ZrinNSaLTSWtVHYEnep/oEJKrt4C/tuVZUk84XSlVJvHPJlFSkqG83iSpQYqKESPXxO6zQvz76zuKnTIoepeonu2ZlGHqu9lc8u32GqhAXj59GNkOPc64VagnrHN0wsNtf4VwHRFIsVHTrvDmUtsI6aytQSpazLCdUVRjAoKg5U2Kkxojq1ywpU1NCufUmkT2cBvTWksi53QWlUlMityZDDl4aEVpjgOQXcgx01tCrDdo6lDaoVqBrDcsy0zsneI5JknhlBabdG0qDlmsldf4nAEv73GiFtQbnLIuiPf/5ydYNBGhfo7TzZgV5anstKeQVShdA8fDwwC//+pf887/8S/7yL/859w8PpFyw1pHPoL88bEqtpYQ8G9Za9vs9V7sdQ98z9H3bVzr6TgDfdd81Wsv9geRLsYH2KWemZcF7adoEHzidTlKUtM8FZJAzaAV4QJFSbNewNmBbTnrd6BdKFYLXst5UlmXiX/yLn6KV5ntffsl2u2MYBuQx1+1nS8OqFLk+n4IbvxMrKvtEIblR2/0buF+qFNalsSnPzbFS2n0t4Euhsswzi/ekGM95HtDOCkF5Sy7klCR3SxllpCNnzPq1kiOuYIRW+rzJlgb2+CW0oiaSU0HZCvZfAVhanrrutKUWYoz44AkloLRFKd3AEinOUwNYdGuElJJl3yu5MQeKfJ4zKUaUNgQf6PrH3LKQIUMlsiwL3ntCDAx2wGj9xHAmGKNw1mCdIeeA0grnLMMwYK3F+8C0LOf7agU+DAVHwtWATYuwNTE4rYUZVis+Rtb7es1XlIHOGqbxSJxGbK0YA9q0vcoZKvXcTDVGgI7qWmFVMxoBK0KUIquUKvuXUpRSiTnjlMG0JnEMkWUFWNr9l1rTptaCtVbqoga4WGuxTl4354wdJJ/yIWAHR06ZeZoJPtJbh7WO3XZL1zkq8PDwwLy8xDpLLllA+q5/coBF3j9npsoZeD7nD/IvtQGdtYG61ejGaqnEIvebrkBOxOhZlol5mQjRk3MkhAXvZ0KYoSZpdiKgjVYKozRGSe6YJPumHypOG6qxZGVYphmDwlkrTAZdUTpLEqCU5A2qNFClYIzCaGG2GF3ZXQ3s9lu2+57dsEHrjlQghsQ4RkIoeF85HgI5K0pRJC9gj8JgtEG1RlFZmxgaqC3H1KrVKaDlkCSlwv39id3WcHXVPxnAUlcwWitKjOdzYm2GQcunVJGjWQlzpVCRnnC7XqWQUyFMAX8cmR/usMVjq8PiUKWiSpJ6o2hS9JA9zmQ6UzH8KwBLnIlxIaalASyx7Z0CsKw551pPSGNacp7U9gWtlAAu7UMje3LJmaIyRsm5kHI677MpRWIMKO2oWFIW8Nv0GlfXPEbLM9lZao7kXAkpEpLCx4rVkXGameaeEDf0jS1VW2Px3za+M8AyzQvjPDMtS1s4eXHvPafTSI6RoRtwXYePssmPp5FawVp3/tqcCyFmpmkk50I/bM5dhZwTXdcRgyRLu+2GnFNjLABVkWJgmWemcWJZPCllut40xNpKok+FXMm1Mo8jKYSWLJQzWybGyPF0EqTKaI6nE+M04b1nmue2qSuSj+QYSSGwLAvLNJ27JUopSq3EJEXqzfU1ULl/OHB3d49xls1mQ0mtMKxC1R76gWEYOCwTx9OR/s7x8e6K51cD2gh19alCq25Fm4AiTe5zBdeKVhJQKGSqSuS6EGsgkoU6qAohw8EHQlHYxu6IIRFiIReFHWBePLXCBo1SZwyzAV4NEQaq0lRtyG3H1aWiS0HVxmhQqnXBLblqwhIJdSHonuQDSg8ih8mJOM9kDMoN4BL1k9ed51ka8hUUBpShYJhipPMB7SNDtUQtCXRVipgFVLJuwLkeHx67yMSCSgWzdjRSpsZCCUkooU/MYMk50nU9ztl22AmiW2s+Ay/WWkJLSJQSdk9MhVRkTbt24BtrW5chkHNhGAbmeeZ0Grn7cI91UhiXUrHattcPj53DUpjnma7vsc6QfMRai2rU0lOT5WitGYZOgDUFx+NRkomdYbvZEhrTq7TCvOs7rJUDwq9Aliooq3DOsd/vWZZHuvy8LBi7xVrN6Xgi5cjVsudH+x0//tGPcH3Hu4/vOR0nedaGnhiT0M21HNS73Y7d7prXr+FXv/qKb755xzxH/rv/o7/3JOs27Pcoa8AaakPb1yJiBVco7f5pQJYxpnXMG/ixohP/uqi1AY3yqVIrKqP4BIL79BtYJSSo9aiTz9Xala6gyyfoDtC0FBASNSRIBaMMaCf7BEqAr9mjc8EaK8+2q+AcGJGgUeV51NqcOy3yJmWPTksAnSlojLMNPATbdcxhIpXMJsu+qKhy+E4LqVRsBvPl779mACXO5DhR4oSthZoSJSdQlWfPrnn16gWfvXzFu49vGR8e8NPI5z/+AX3XtfY+bK+uuN5fsb+9xZiOUid8SCjlcHZD57ZQBUKpTcoagyd5TYkeg0KXhK0ZHSN5mkmqg/4KjXT6S8kYs5W1z1nWs2S5n8Ik+0Hr4ursqWFmmWbCdI1VO2zXsx863r9/zzROHD+858UXn7Hd79ns9xjtwCqq1dx9PBCtpe96jNIi+6kdKAPKih6FR6lMS/NYmUbUgrUaoxUlRb75+jecDkf8NPH3+O89zcIBQ99Jo6fthdY6rDEYo+QMRJK7nCqnceT+/oH/7D/7B/zZn/0ZP//FX/P+wwdQAqpLqr8CXxnby1lgrcP1Hdvdju1mw7Nnz9j0veQextD1DtMYfvrcUczE0ACUEBinidM4EnzAe9nPpCueSSU3IFmYKiV/wk5RCq3lWtdaiFGaV64VYwpJJkt9FF1qtQLkBb9E/vwv/pIP7+9xtscYx+efv+bZs1u5gBVqKxqsMY0dqSlFTlNtWqNm7XA/ZQ9oRWHPXU7IRcD5leEiDMZEbEykXDLSiBVJXQjhdxpe5yZZ+7ErCyg2UENbefa00pIZ5cZUbs8NunWAs/ys6D3jODK35lnOFWcV1li2W2EhKP0IsJR2v4UojJJpmaiqYlxBKSnClnHCTx6/eGEuW4vpOmGcNTlTzhFdCrkkUo6SQxew3UK/UWgtwFuplZoqqsKYTxxPR3bDnqvNdcvVpSH0VLHfD2x7hzOwjEeGoWO73fD8+XOKdYRx4uHhnlrVuWhSqtDrzNZmdiSeW49GsSSNch2+gM+V1MDRWmCcF3TNOGMxRB4+vqUsCy82O2E7WEPnHNpsONZKzAGXE65zDMMGUzNxisK8U4klRZbgWbwnpgy65bI5cxonNh1YI2DIOI0isUz5vL9XICRpKOx2Ox4ePsq+k5LIK7pOiteQ6F4MGFsIMWJ6R4gJH48cj0eGzrHfDNzeXnNze8P93QPv373jcHiFanLofrvDuo6bm+7J1g3g/v5A5xxdN6CUEQKkqnK+KvOYK9AanKuKQGsSSvLulKmpoKJnOd4xHz5yvH/D4fiexU+SEx7veP/2txjreP36e3Smp2pNLhqrLMX0JJsoSRFjIJqCMwPbzYaN7em1w08zui5YZ9nuyjm/z2is7rDO0tmO3bAXJmFn0ZTGwMhYqxpgBm+/HpmXO+Yl8nBcmOZEiJWUFH1/LTUCGoPGaDBKjjnd5NR1JYG1xsH57+3lnBlARVKwfPvmHmMVw3bLj589jSyPIgxireB0mpimkbhEAcobIz3GSKRgOouxApqlVguDhgTFZ8LxxOHNez7+9rd8+OqXfO+mww0Z080saUaHmbpsicrhDwdUHHm2q/Q7xaAj1Z8oeSLFI8EfmOc75qWDHvo0oJ2Dpooo51ygAu18S54QJgA622FUJaVAip4UF6zpz+dvyp6u2wsRw3uMEqZjDAt+HnGdRWlLCDNhdlgH5noLVJTR2L5j2A2UEknJM4fAtFSsk/3z4/2Jvtfsdz27zQbTGjTfJb4zwLIssin5GLG7jRRXSjE3rTClMrhBUN4GsEzThOsdtulc5XBL+CXgFy9AjVKEIIWcblqseZkE4Wp0T1WFxqZNQ5pjwi8LqaHQCqGDrTdfbZ0K72fmeZIuXjuwSusMyIEsFKJNHJiWGR8jqVRCSpScMVkLeyIkoo+ExUtnIARSbN1W5CD13lOqJJYhRh4ejvT9wH53JXq+RrMruWCdZdgMdLMjlcK8LDw8PBDCK6yq8JQSIdUyoQqKzFk9rhrgwtpFLw1ciaQSSDWQEHArVYXPlckXaRmgoVSWEEipQpXCOidJDLtUKFYQ1KRXLb4CNEoLuFK1IRmFLqCRDnUFKUjRgsAa0VrqogTI8Im0REzfnfe2GALZBAgR+o6qV4S9UELA1EqvnABcDcWNqeBjZvEJ1ynyyjyxwswRGl7GaotGozKkOci9GDImZkoDW1JI1BAb9aU83boBxiq6zuA6AbMEHctoLaClMRoo5Jx4pD4IdZJa0Aa6zghbikrwSyu+aIyyTPCBZV4YGKAK+m+NJmah065dNBQsfuGqJfM5Z5yTTjxqQKlKKYmcFbvNrnUoFOPxgA8LnbNcX12hVNcAG5GdrfR94wy2GAHmUm4MGWGw7Pd7AVnHyv39HUoVtN6z2+1IjRL99u1bnr9+STc4fvzjH/Czn/0V8zISoufly9cEH0iN+h5zodOOYdhzff2c4+nIN9++f7J1Uyu4sHY3VqZTRZgYuUKqZB9bAaXAdfIcKh79IirnomFlSoFQroFzN32Viq3sL6o6s7jOdUsDUoRp0MCVMxWmCTaW+PjFBulo50yOnhoKJPlQSLFnjCEqRYoJVSqmi1RrqSgKYHXf3jtnSenahVcK0TIbUKVALKQ8Yq92KKOlwLEGsqaWTEgR17YypzQlZFSJlCds7uXlhMkBRyYtM3HxpJBw1nJ9fcV+t8Uqw8c371kOR2wt7DcDtSZSKthBs72+Znt1hdtuSEs9P0dKGYzpMKYnl9XHQwCsHD3RV/x0ZGN7avAQPCpG0jiyFMXQ79BdAusoxrLpV1qwyBNLjOQQKH4kTBMlFzrnsKVgSqL4iTRPZKtxWtE7TadhSp6PH++JceTq9pbXX3xJd3WD1hVnwTlFWCb8dMIU2G0Lrt+g1SA+LFXJ+inhCNa24KXdv7qWR5quM8zzyNdf/5rffvVr/sdPt3R0Rvb9QsFohbP63LnPTRYg+8QHvn3zht/+9mv+9E//lF//+rd8vLtDG0tac0AQBlrrbu+vb9ltd2w2W4bthu1mQ9/3bDdbyTlaMb6C4CFGovd4vxDC0lgpUtgvfjk3mlKWXCm3/TAVYVHkUog503WdNNihFXdN6qrEI4kq0jlhBUp33lqDUvos5alrdxrD6Tjz9ddv+C/+7M95/vwF8+zpup5h6KXbpzR938tLtM7fGbhtDeP6CTvjqUM1iWmFM0BSa8V29ty1zDlL1xuRp/tPJNurPH1lW6qV0azUY2Ot5YG17atnN7P6Cc+3FAFvapXmWmN5eu+JIVJSFqm3s3R9d957c62onIXpVCq5JMZlFHA/RrSRPBYq3ifmyRNmuRf6rkcZoWPEJgtbPWNqyWf2TUqRUjV+8cQoxYTWCBNXiS9TzpnFLwIi5CiAGevaPU1stwO6ZkpJWKvp3JbNbosxlnERqYj3XmTWtXWyVWHjYGs1n1nYukxUnrhkuu0zijFkpakYchE9+bws7AcDNXL48I40j5hScEZhqLjBMgwGVzbczVG63CmhQBg2w4Y4J2Fj14qPgdl7psVzW0EZg3KOBBzHiZIUu8FStSJEz+l4YJlnal0lQAK+KAubzdAApEKMqd1Dcg+XUjBWmgLiDdika7XwcH9kO2y42u7Fw+b2hvHlSx4eHhinGW0tBYUdZ4ZhoO+fFmAJMdIPG7p+ADQ5ixyi75ywtuHcjJamqDrLidZ8xRrTWGEz0+Et0+E90/EdJZ8wOmJ0pZYRP31gOW3Jyx12eCagvGosGeUwtsd2G+I0kXOkpsy2H+i6jrq/4v37j2gjYDda45zCOM2m2whQrC1GG7om7YN4fk6FrRapRTwgU2h/5krwmhyssGdCRWeRnmitcZ1DV2GwqNyQlvo7GHA76GRDrFWRYsb1Fm0GXHeFDwcOh8jbt0f4yfWTrJvT0uBYFRPzslBz5Wp/Awpykfur6CoyH+TfUs6yN2lHzZB9wZ8Wwv0BTvcM8cCt6TF6plZFCBUVv0DFPVXvKWGm11EkVtueYgs1TKgYIHpKWAjLCe93mNCh0ywWbVQoSSwX1iuX5RmtJQozplR0qRRjKDGQUyDniNWGWqS5vYSZrUqoKlJgZzJWQ28NYR4xaoN1A8kn4rKQBoOuG0rb77TR2N5ivcN4Q8qFJSW6oOg7xeQzpzlyGhdSrWhVWxf03z6+M8AiuqUo0h1jxJQM8CGw+IBuhURpm03wQqe0nUUr6YSkJBIb6SQErHWtuxBbN0EotaJpzOdOd62SxKDEGDGG9hDFBI24az7RoeWciMGzND0gTT+5anpFXxlRCrpOpBLLInSrXAoxCn2pGC2bYmyHWwNWchTARhsRuK0Huuw9UlTN08w0zYQlnF939Y8xxuC6TiiMtRJiYBxHQojS+VZPl8AIsV/+9tjaXv8iVGApy6XYLTWTayI3kZBGk2ol5oqPBdtbAbyyUDlzqmgldCxBJotIaiqP0h941Ak2/5aiFVmtry2d2bVFUGgsF6UFhGsgR42Z5KOsZ6Oe5ZTIQVhGtRRRM1BJtZBTbNpImiRFPGVyKcSUiSlLU6e9NFVRW1ItCafBIPK2tARZ6yisFZULUillyJmaRef7lGGtxjqNtZrUWHe6sbm6zgLic5JzboW2/YTSXRvDRWOM0EKFvbJKe+T6rN3Vvu8brdJitCLCGWCprWu4ao2hPupBrUEbhdaQcz0nIroT6ZfWQmdfdbjiwyL3SCz5TB82yklxQCWmQikJYxTW9Wy3GyqFlCJ3d0emyWGd4eZm33xlxKzSbXuU1dzeXrPbbXm4P3CaZ549e97kQlUo+iE1gMCx2e2Z5oV5Pj3ZuqnVF4cGUlTEK2rV87Zkq6TUChdJyKsSRXj5pNBbD8qV+r4mb0LbLWCsYKjarPhaAzNkL2xEkXP3Tbd/OO8wZQVaKvjE6ryEks51LU2mkgrkimpdUqMUxUgxl0sUmVxMEKUIrIBya1X2u4dVrfXMVFNaPGkEFE/UTY9qSZg2DZCtilQKpulibZPBqSo05acKXSK6RFSOJO9JPlBToe87hr7HGUsKkcPdA3FZsEpyr1TkOmkz4IYNbhjQ1pJr881oe5swP40QkKpcaWoVnxRfCNPIsFHUGCkxQIykMkGBuD1hcgVrydbShw5tm2ilKGr0lOApyZPmUeS3rsMZh8qRGj15mSidA+cwXYczCqcgTCfuiidFz3YzcNv1zUi60neWZRpZlplRW6ySRLazBowYmNOkfrT7TkBT2tlYGrtC0VnxQQohcHd/93QLh+CZRtcV1xSGWHveQ5CGz+Fw5Fdf/Ypff/UbfvXVV/zyl7/i/nBk8UE62Q0oUloaINoIgHx7e8Nut2e7ERPAYRjO3irt4RaAozFoYorMzVdtWWYOx4PkECkTYvOEo31rk8OUNddpe2tKse3dBqVXJgqtEaUf/a5WUKII68NUfQYV1n27URvJKTGOM1/9+rf8/K/+mqHf8Nmrz3j56rmA5Vo1uYIgoFq3AoJHerdCPTKKnyBWCdbv7En1E8+vT37Hx6//hKXSmmFnbX+tLYdr1PnGJgprky0lkdSWgnC/krCvGit7bVJTisiifWjNOn8GPEopGNfhrBMDTrU2Nuq5kC8lE6JnnhdiW3OldHuvhegj0Qdyymg0nZPmUKI++gCueWNeGTmp+Rg2xncqjfVYz7+/UtLECyE0qYbcU2cp9hNF76z4HzQgcDN0DMNAqbU1Y6WhIWp38U1TqjJYxR7FrSnoslCSIk0RPVwJQ6uxiEutqCavUr1G5czhcAc5YJTGGoWp4DpDt1F0ucOELDVCjqhaMUqj2vrUxjYPMUqjODR2VGOMVxSLD1jdM/RyP6ScmZvcqqDRSqOtxc/xLD8AAbTEOuGR1SDND/Hd6oeBOQiQVmvhdBoFXAuJwTl2ux23tzdst9szy812HV0QOZh6UssAYZJa67CuO0u2lVbSzDx78yHSyk9Ao/UYF4l8RpVAiSNxuiPOd+TlDl0ndJPvKKVR+QTxCOEB5TZgBox2YjVgLNYN9MOWZfHkJHWa0YrOidS8cx2pSt0Zg9hBGGtpBGG0qijSuYmdc2aZl+YXGlnmmRwVNWtMGdCmo1YtfiTZQFbUlPEpys90CuWk5pCSs/mw1Me955xPtbyuAplKrRqlHdZtyWliXgr3d/PTrZtS0kzJmdBAJFUVruuab5UAKWuTTHpyTbVRKhhNjYnsA3FaqMtEVwK3XeEHLzt0p8Wz7MHTK8mFSkgQPZ3KPNtZ7MYx68oSPEQBxGpOAoxET0qekiOldq15L2A1ZW3urdYUkuOXmCWXzB0lR3IWJUu14i9WsgxCKIN4v6UYcKqI95U1RL/QdxFspsQsTab4yKBfzw9jjeRLRpNSISTpyccEIVZCyKJWaOupvuNm+d0lQn5mDsJg2WmD0pZcYZpmpmXGokkp4RcBNqZpYpkmhq10MVNIhEUOqmV5NBKsFDFjq0JNrVU67VprShKPD9ExG7CK4D3zNDOexO3eWqGUSxdJCjc/z5zGE8eHB/wyNruRcj7ochYD3tK6Ht4HTuPEvIh8YvaBnAT5T7Hgl8AyC5UzhdBMriJKu0Znb92r2ooGZZhOM6dhZBoXakQMQ7O8B2M1w9Cz3W6ZvMiSPt7dc5pm2PR0T8hgqcW0fnL7vK7VW23yAHXuvpUqzIFUIwUBK1IpgvjGwhIy224gFUUqidM8QVU40zUjuEQImS4mulxAyc9QTRwuKLgmaQFZIg1hXOkoVQ7BTCXrVQxgsMphioJYmMeFfjeAa6yZEEl1IRrHsN+IJlJBLG0aSZROt9Kie1YN5EoxNVM8OUDOaLSUuKB0Y4k4jLLM4ySFYC7yEK/mx23i0eoP8pTR946uE7+eEMA6DUqoxH3fk2IhjDM5BZTrUKq2zo88M33rrknHbGGeR5RSOLclBEHA1ylFa+LedU6okQizDFYPF03w/hPaunSmxeBTOtSVIPeVqnRD34wfN5SUCGFpEsBetKoAYSHXjI8LdnD0rfg7xURKAd103d3tFa6zQOX9+zfc3d2xLDMvXz7DdYaUAg8PD/ji2V/tefbiOd//8kv8vPDuzVs+9Ft22yusdSwhcTrN5ALb3YarqxvmxXMcn+4gRCmR+MAnvj1gqkKVSk1yX+aQm8mkFnaKblbTqynz2j1eZVqte5vPnc1CtaUxZuxj13pNhD75oCXgpTbI9fwf5fxnDbEBAs33oBntlpSaIVJFF4XKnJNXbwxhCdScwUeqFaNJSoWuk+k06vFNSTIiNHmlxUPIoMgx4WfPZrdtB6ORRMcaNEbM6LKm0wpnLLrmNr3r6SgsvU74HCh+Yj4eiEtAFcXVbsem7ykpc//hIx/fvEPbynbfk5aZrDLaaWzXY7sB3fUUowk54nMklihgcfMJy1nM8eoKEgePz5XjPeyME6BkWSjLQiqeaDxOd7idR3WO2jn6jZJOmzGQ5WekReRAfjwQfSAZg91fg18oy8RyuGewpq2LYd/31O2GN2Tev3nP4f4DOQZ6Z9nsd9i+4+p6x3h6IPqJ9+OIymIUZzuHbtJfagHdnXH7XHPzGmogX8mYWtgMAy9fveTdu7ds99snWzcAhXS1lZNmjl8mQogcx4l5XhhPEx8+3vFnf/aP+dWvvuI3v/2ab799I9wtpcE2Jpi19JsN18+e0Q8bhiYF6lyHNY6u6+haYyisRXeSptHxcN/8LxZOxwfG00n8QZZFLlNLeK2zZwaYbmC+AjDrY1bIORCjAhzaOGoVX7qcisgqTfsZWibx0cxOHw1TDbUgk8C0Jjc5UamV3/7mW/7xP/4LQojsdjv+3tW/3wA1Q9d1jVkoIGjV66So2qQET7psrJ4rFPE/UE3mtIIZq5+X1jJ5bL3JVmB+ZStIirH6CyTCsrDb7TAtvxEDxDaMQa0+b8K6BJGFmMaoXvfb6APjODWvMmGy5DYMYeOceO90QzOZraDFQ45UG7gycjwekDNRpAo5JkquhGkmhYAqMHQ9m2EgpETwC7FGbHvNGCNkAQlX38JStHToQxSPCBSrfwYoSkksfmFeZmIM1GFoCfLTrVvnDClkcolc3d6w32+x1rbJf0fGcZJ7JiUMVZpFSrG1mmvgOi2cDjPeFw4Pgf32GdmJBGWOC1orrAZXK5YOgufdr3+FrYltN9AbUal1vWGzdbhacD6iC+QYIGe0osmHxCC9FsU0jQy9ZthYUk4YK9YCWlmWELEmclUVxjlyKYzzwvF0ous3VKXQ1rLEQC6aKwQIiiEyN9Zgbp59WmvZVqzh6uaa07dvGpNR83D3wPXuitvrWwZn2O+vqK8VH+/uePPmLYuPaNvRDXtSqYzLAk9kwA9wdX3LpsmP5sXLvsea75pzLlsaK8q0ekTy3ExOC2qZKMuJNH4gn76ljO9Ry3v6ehC2klZ0LrM3E9t6RC9vqW6DHkB3PSmBsRbd9dw8yywhkMcjsZmmZmewdoOymuQLflrw7z2brWOz6VEJrFmgyvCU6CMxymTREKTRm1LmNM6kpaCK4WZ4wTCAsR3adhg0pWYMiru7B7quZzNs2PWbZs3TDMmrFdZtaf52GmlqNCZcKbXtRQZrOvr+Bo+wpBb/dI07i2p7hG8WGQudlUZ9Wpu7St53Rc6aVBIxBhlQogL15CnHkXR8wMWRV5vCdr/jv/4f/SG618w58U/+6ltyDwnPaTxSl5HBJT7b99BHPgSY54W6yHTJ2oCNFDy5+e/oIoyuUhI0q7bGqWn7fYYkjfEMlK6jJN8+AsXZxoiPBL9QkjBYcvBghLG63ziOxxNluIZuR42BHAzZW0gB1TmMgVwVptMYp1FWEefE7IXQ0TkIURGiZon1zDb//zrAEnMhpkIutaFBorcf50lMk5Q5y2eWJTAvXrSHWhz0UypnQ8RpHEkxiqlmEbaJNUJJFSMvMSwKIYk2UEHWGYPBz4vIDuZlvZ9wrkkLWmIwjkeOhwceHg4E79vmKuyM2gqYaZqaJ8Sqi57OJruhMXCcEa2895FllmJUOgvSVaimGT+KkxA1C2q+6bYE7wmLHMo1NLPc1llZi6qu65j8RMqJJQTGcaa3jn7zRJq9FnU1kCucpwIIpCCpSfvf8wGRUkuwaOhsaolFyo31VUQPPC/CXumk6FvmBe8j1jj6Tty6hXmkmmWE/JlLM5QVIkyTc2sxtkQ6LbnlXaqK97wuUFMlTjNq7tFVZBjJB3ysLGi2fk81rkkzhIWUYyQtkWHoqSmJ/MQHkgukTjrz6+QWuVbr7CRFZyybrqO6jtPx0NguQmmrjbkippMCtpT8tMaNu/1w1k93vSFnI11NJ8BJihEfZnLJ2MZYCS1pMNqw3WygilnbPE6kEGSEpbFEvwj1f5lk80KEHTlF+qFvzBNhvWw2QlNdDd1KyeLan4LIkPoN+6st4yhSwrp2rIzh+Ysb3r95h/cLMUWurvZUKsuyMGw6Fu9ZQmDxE31/i3OO4F0znY7E5Hn+7EUzu9W8fbtnHGV84fv373n58jl9v2GzCZzGo0zkKJn9Tia+jKeRb7/9lhcvMvv9Ncb2nMaRmGQkYddt2O1uuLl9yrVTzXm/JSmlGW9XxDBtZbBE6dAqrYg+yuhUrWSP/UT6Exd/BmqcE0ospbJ4T/aRbCO6KszQoxGGwToRQSnVplDI/riyQhQizam5np/1HCO5rNNJmjk1FWqGxlyhKmqszaRCumFGaXItxHFmcB2rN1UtTQOr9BnwhHXHobWAOHsaZR8I0yzeBoOj5HwGYXJKq0JOuqJFjJh5QmPp3hRKmFhOR3LzldHa0lmhEo+HkTv/kXma2e07nNE83L2n320Y7BathdotSqqKzwGfF0KeqWzkLNMVRZZrSsEAJQRCDcwk8v6KvHjiPBLGUyMECVOk8wum71GbDlSg3wwMmw2mGPLiyT5Q/Uwcj/hpIWvDRmn5v3Fitvdsu468GcR01ii2m55Xz5/xcLjjdH/Hv7y/Q1H57IsvePXlFxin2e8Gst/y/ps33H94Q/QzxhkGMcqhoLGqivRTnTkArVBN1BioJeGc4ovPXxHjH6DtE7bTgTSPwrINgXGaOZ0m5sUzzgvLEjkcTrx5847ffP0N98cTGTBd34xNDZvdnv1+z7DZiI/OzQ1dLyb1fWOaUhGteJRJP4f7B5ZlPk/P+PjhnTAdYhTGbIrUWuis+HRUKtMsQHMtiVSl4JLnUUEt5ylA1CJ7c+5kWo01YDSqFnIKUDLGWGyb0KaMPTMU1il35hOT0JwLzghIHWPir//6l6QUgMLnn7/i9etX3Nxe0fddK9gfAV7Uo0m1rOuTLh2rSnLFbkrJ58lxq+n/uk+qBvykJm8NYWWHSBNgPbO89yItbYy/4/F4lhy1Vz2zAo01zdRZS9HUmE/zPOMX36QSEJqk0xrLfrtj6OU5WoGzlYxTmn/MaTzx8HBgv99xdbUnlyi5VMyUxUMIWGPZ9T2unec5RGL2uM5RUkErc5504kMSOXNOLNNMSXtKVm3ctCEn2c8VXRspPXE4Hbm+umq/8dM1gGpJaA1957i+vpHfrxa+fvOO07QQQgYkL1dKbJRD9NgOtkbTx8BxiaQpESfJ80stLDGwFIUzUgx1zhFPR5QfsSmw6Ry9M1Ay/SA+E1WLRNIYkY/mWtE5CxhcFX1vxWEwFNIyE2aDnzqZArfdQlVY5/A+CeCqDbv9FYfpyHiaWZYApmtNASPM5wZ6USW3n2fPOimzNp/DnOXs2mx3gKZkAYLnUbzvxvHE9X5AWUW/cVw/u+WbN2/xfuH+cGB7dYNp5tZPGdfPbkVVUAtLCHSdwymHtVY8MJvFQ0kJY21TB2jxz8uejoApI1pNPNsEXn9vQ1z2+Nlzf1goCrSz3Nx+xsvnX3B9/ZwXz2FyiWgLqVNkY6laJPlbc8t2OpJKIMSJu/v3TPMR2/ccZ8/kPeMyw+GE0RWrFbvNRjw/rcUah23m8crIAHltjDCxkyf7sYGukc4WjG4+bqU0towhhIngZ4Ifudp3ODugMVAKPmmMdbi+p5SEVrInpeTRVJGZoQlRWBPOWlx3QwgnxvnwZOumUdQs7LfxdDorIUptgzeUMDRUKeja6uYkg1tKFWD/tDxQlyMdI/th4dXe8YOXL/lbP+gpDuasKOolH/yWu0kxno5sdOCqq9xuHAnNsWSUz9Q5o5PCFoNOSPOwiG2C61tzJUF1BZWhFeLSFCsJqyDkSKLivUwNqiVTi0hecxKQWVeIfiFnTQqeZGTe66Y3jA+BGheIMxtnUCVS40yeR7TeUFpd1znLbJohsnP45GFO7DaOxUPKhs5tCTFjDXTuu63RdwZYfErEnEgrvRXOY1hjTA0QeTQRi+0wkHF3Mg4w53I+ANckfvWQWE0ec5vkA4oQIlrJFAJjDNkkYvOMiN4Lnc25s+NwjpFUM8s0Mo0nxtOBmCKcUalVxyvvoet6fIyo8cS8yJjHzhihoyVB4HJu4/ka5fHTSURmNUZrU4ZKLlQtc7Rzyk1OlClxBVga9bMV8dqIHKW211lCEHfz/ukAlhVc+XSih/z7J5980iUXH5VPNvX20NQ2tosmAxFvGqHVKbOOsY5N+9imO9XVjf9Rv/nYVa+NMfIY62hESTcb5bUqrDI4DVYJCCOdG9nEU4hEVQjakGOEas+QkdDkCjlGirPCIipiXpljkxXl3LQ3j5NnQJg9Rmk6Y0nWUlOWBLYIvZiySoQEja3rvz1hiAxI1so5Te4suVSsc5QiTJuUQrtS8vuWkh+ndlh7BsbW7lu1MqElNWq1JPW1US3Fv6XtSWfduiS6zUC1gZi2Td5SCvqh4+pqL7dL8ziqZIx2bLcb+r4jp4T3M7lciSayuf5bZxm0mJzlknBYus4xzwJ2xRiwbvWRQRK5HFn8zOFw4Pp6z9Zu2e13hOKJKfHx4wfqrYyMf3b7jLu7E9M0U4ri5tYSokjDDocT2jj6YcN2u3/ClVPns4Q2KUjAlXqWB+WYWCU8OYvkzDRG2fp8fPJ4SlTZ59TKQmmAbQoRrRQDNKO6Rl+uCFS4skaV+DGcJ0C3P9U63atUVK7nTvFqgLs+p/I8NlykgS1a6ZasIVTOKCB1rRVyoRpNVesElNqYNCu/lnPBtN47MQRM7n+HZSfjotv3lCrATgWQn/1UoWsmx0BcFgG/ChithEETMtEnTqcjOa17BPhlwvbu/Hs1bz1yhpgTMUViDmjdt2ZBPRvwKSV7R4oRciDqKow870VL7BdiqlQMVRmK0pgcMbWnqkRJAZUTFkf2MlUp+YW0LMR5Bm3Iw4biAzUGlvHEMu6I+z2mH1C14Kzm+mrPfrthnkbuPn7g669+Baqy2Q3sb6/pnWW/HbijsIwHSkpsdleYYSesPmNIUaOsRVkB1VW7n0Covus+MwyO/dWWZ8+eRpe+xulwL4y82XMYR2IQurQ1llrFTPb9h4/CVPWBmAvaWDaDw3U9NzfPuL69YRgGumGgHwYpLsyjMXNtkoXpNDGNI+/evheD4iyMO7k3UmMytulFVUDGzdALkKI1y7K0CQhJOsTNLFxkc3U9jvBBDHtTtFi7OUuDUkri6VDEzHd9RjDmvF9XtU6FQxoqnwBfSivmZeb9+w/84he/4K//+hdYZ9jtNnTuMUUs1HPj4Xcw0VqbgfXTh+Qh9cyqfAR7mtKpvZHScsl1utxZKrWy/ZqccpUbxU+mTNVa0S0HK0Uad4omJW7TnWQQQmqTLFYWouRszsmkKGtWY/hVAih7VkwyNWjxy7npIuvWioYQyd5jqfTasO06YpsYlmNo4NwqE2oytyiNr1La9Y+r5N08sgNLoRSFrpWURY62msr/KyfKE6xTEY8TIyxVax3Re46nCe+TePOh2/2s0KpQizQ7lYLOdQy9ps8G6zTO9STTYSsU3yb8ZBkbW/OCCp6NFtCwt4beiT+b60TKaKqR95MVMXhqCC2fU3RGk0zFU9C1NEnmQlw8XZNGO9sxV6lZcq4Y21GLWCDMi8d0PcaoR3YVFR+SDFtIItlYmxXCHgAfEqiEthalDCtDO6XCsnjGUUDgrnNoI1PJjLXkRaRlPgQc6sklQv3QC4M7yH3uOvfIJjVGcorURk+v51oRwLgkj9Oejclsneb5zY5nP/geujwjp5dM4UuRyxjD/uo5V9vn9N0WY7Z84xUThdkUYZ5U8SJDK5QRU+0cMst8IsUZE3pCFVPdXArZZ1TJaCp5zsQ+4ZyjdwKIGFexzgAOlEOrdfBJprAQ/EJqUzBVdU1SpzBG2OF+WZjnhcPhA0pdM/SdeIFgKFVRqm3sWpDkSvLlWqSG8zlRMlhj2G4c0FHr0/nnrFPEYps650zX2ImyLygtnqKfyilXfy6oct3iDHFE14nbveKLlz0/+nLDzbaQbcXlyvMry0Jl8iKX3rrKfjBcDx1TMrhaUKk2q4SKLpxrIqmthOEvb1pqpFX+rlotWYsINGtuthRBarG11qy1tMluGUWhpkjJipKD7MMUeqvpnMKoDDliUJQUyEGRw0LtLaU1vbRRGKswjalaYiXWQvAV7zMhlObVUxvQw3cycv/OAMvsPT6IFi43nWtdNYpBNIpLkxwI6BJboqEeNcJJpBkhhCY1kG5BTgGtO6BKMZjk35fZYw1NisBZSz23ST5d3wujQClyCASt8DkwnlYGy9252K+tK1xLJhUZEx1TpC6VxS+M80TXdW0KkriCg8LHxLz4xshJ5CIA0DqaNDeaU0mFHDJm9S2JkpBHH6mxfkIvTTI2runWldZQhcI7zwvLsCH0TzuW7VwQCd5Kgzek41JBaKUNAMv5TF+v6yaShKWxAgolZ9ISiUvE9gblgJTJPpJ8IHmRFAi7x1JVM+BEGDTrRJV/9bhf5UpG6zPDRgOdtvSINMAiGv6iKjZX0uIJKHzlXJzpKk+GooFGOckDnzM6F/E4CIHsPTUmqm1p2ydSBlBYpXHaCCU8l7NMgtI8WFKW708yIlo98RQh15l1H0frlRYNxnX4JVJrblI1CzTgLyVs38mYQutIQRKz2MZTlrx6kYjZlICX6qyRpubzAfI7kxhal3UFB/u+43B4IJdEHx3Pnj3DOvFXiT5SikNby263ZX+1Y5lnTqcj19dXbLYbNpuB4zjSDz175/jtt98Qgow6H4aOcTQNjPXiDeB6uq7nxYsXsp41cXd3x7NnNwxDz7Pnz8hkPn78wLfffoufE7vdFa9efcb79w98/PjA8TCx2e6JKZ+12F98+SXDsGW/f0JwrNZHcKU0QKFAyygoMRN9QCvxFimlCCPrfMevTDMZ7yuzVgW0EVDTSFcJ8ItvE60SKldc12F7h+5c0wivkrHm2YA6A84ryCEhLDHR84gsQMAPzn4pVGHHZsrZJ2b9mbpAnoVRI2O3rYCXSTUZRisMVpq/kntbDHPbiMhaidHj0ka+TjXqf3tdlcUokWZ8rpQkZk+2bCWQwoKfHwEWXTW6avwSCTFwd/fQTIalmPN+Ydht5LmBVhBVsq34mAgxEKOnH7ZoXVBKRimTogBPKZFmT80LEWHXhVmm1YVlxsdCqZqQqhgfpgGTPIvXpGVDDZ5e98KgTJkwj4RpJM4zShlS37cJaIEpChtt3m3pdzvxs9HiWfT85obxeGB6eOCXf/Uzcg5stx3d8Af0VuP2G95axd3DPdN4wg1b+v0N3Vam9ARfsPRYo1pHby3qBEiqZFQtWKsYBstuPzzZugG8f/tN6wpPnKaFrt8ybHc8u33OsohJ6bdv3zLOniVEfEyYrufm5par62tevnzF9e2teEQhBaqY1q6jgWV/naeRt9++5eOHj3z9298iz5YwTHJM5wT8k1MWKAybHtf19Juew0ExjmJUWIUegjJy7pWmHbdGM6UgprnGshkGtBJzyRQCKRcgtcEA4jNhjSbGx+k4nVvbcA3trXKGDKojes/h8MDPf/5z/uIv/oLdbsvrz17R94+tu/zJGFtthFl3Ph7d0zx3Zz+mTz5fPVRUu5CPni9yVUt9POtikDzzDLycJZnlEZdujaP1561ftwIs1HVKkyJ6yU9XD4dS1ol3kpM569hutgz9OrmD5p0j70/YKwvTLB58ap1QuDawQiAvC3ke2Q07dp1jP3R8aL5OcVnIqrSmiPiFeS8fIWZyNqyyuxRlchiuMZUaOKWo5CxFsgyQKK28ekqAJdP3HZsmdS8VvI/c3R2YI8QCpVoMFa1KA6+yyCMtDNs9V71idoltmtlsd1SzYWPh4O+kWAP5QXlBR8/eStttsJbdZmC36+n7inWZ3nb0S8J5xcM8CahcKiVC3w8ko7EqyoSZGITJMo1sd1s0MrWn5FGuecxoZcm5ssyB43HCdgNdr0nNxJpSmRdPTpWqEotaHveMWkmlCFutKtBaZEpKGFKl1CalOnB1teP6+roZqV/j+p46jkzzwjR7Nsrivms7/d8QXdc1+VkgZRnWsfpUCONLGFifNmFjCETvKWmhsxP7ofJ6P/BHr2/4mz+6ZjdUOhvRA4RSSRWU2VCzIYXK4X5h+UYK26AKJclkUp8qVlyaJcdVFT8f8CCTaDZ7mUmnFDUqahYQtM6B2hWcc5QuE2zBuUI3mAaGOZTucAasTWSdWU4f6XqHNop+6Ft+IfK67a7D+yPTOPL2rQcWytUV1/s9io6KJqVAP9gGpEqeXEsh1wRV4ZcFYyogE5pgkPHRTxTxk9wghUi37VFKEXMShTm2sXc0VXHeR6uqaKNQNVPiBPGIrkdeP7f88IsdP/nhnl0/kpSswdVGsV0iHQmdFnYbzbOd5dl+A+MJR0bFCr6gYvPlKwJc5hioy0y/idLcK/lM3VbU5pvXasmGIZRcyTpSchLLhSZ1LTk1P6VCyUEmICUBaa3O6E6x3ziMLlCC1N1JgLgwb7B9B7ZSjXgLGSvG5NFoQhCp/jwnxjExT4kUCiU3NrXOWPNvL2P+vaYIhZhItUKjApdS5d8aGBFCxC9yMMksa6FSmZZMpyDTg+Z5Ph9sGpr+V5/Rt5pXsyKPs5XOWaxWzEGokX4SA8LtsKHvHJ21xOgJyXOaDhwfPjIeH/DziCm2jVmD3dWeXMR7I8RILpU4L5zGkdkvGCc0s3kJUsRYR0UxLgvTspBKkXF6rSCoVQ64ErOYUaaMMpVOdaiszuPaiG0aEjxqidtBb63QdkvJHA4netsxdE8rEQJa+1kh849Fm1OVaQnUakIsiUTKMm9+TWZyTJSQUKmADyQfWE4n8hRAd5hepvyk2RPGhUVPxCXSuQy9JNe5ilShKiMAndFkNKlUdLNTcCBFXFHUnKg+Qkg4NLu+o3Mdph9ErjPOmM7hT5MAEDFxM05sdgOqM1igavE9SDlDTqicBZFPmRoixQfI6cywOc+5R66VVuCMJmsNqTFzsoy6Tj6Ka/W8TpSiecw8ZSSUbjp9rdC6pyqFMV2bkiBL2ve9MDyU3EeueZ9Y3VPKQgoJPwdiTHSdoMQxeEqJKFXoe8t+t2G/39B1ormttZLiI9iplW5eMAHvZ65vX3E8PRCjJOqvPnuBsaJ1f/vmXQNBLL3refnyBafDkV9/9RV93/GZecWrVy84jEfEy0XhnMH7mVozt/trnDPknBnHI4fDgZvrG3a7HS9fvkAbRdc7/vqvf8H9/QNd5/js9Wc8u3lO8IFa33D38R6q4eam5/PPv+BwGLm/P3J/f+D69oZcCvcP9zx7IUXVk3pCpEdWkzQPCu1MRuVC9pHpeOL6+oa4zEzLgrvagxaKJ9aQYkI3ppCzDl0VKcuobNX39NaxG7aEaWH2E/cfRvK0sN1s2V1d0d066YTX5vxfhKlV1q4wzRNJuLKQEmJyLP3clFLrJEgBqVemS+XMioMmETKWquWQLzFSncUOfbMfFzBibfqcM7ZSmvxPoZwhOkM1sASP8wtDHJrZnHjXGD7xr2ld0YYKPtmyTdOBeZxYJk/yBYPDqQ5HR/KFeQkcThNYQ6Qwx0DKMlowhoUcJAlQSVGTZhoDp3HhNM10/S0lJ1JYKBW0EkPhMB7wpyM1R7ra48eJ6XDieH9gPp0IqZKKQtlEBaxf0M4RyczbgbAf2fZbnLboqgjHI/F0Is4LRlvysBFgf5mZFo/T4oUwbHq6Xlganda8fv4cYuD08QN/+bOfsoxHxuMBqzQvX96yGRxXg+GheKZl5P2br7l6/gJtNZveMk0nStk2O5OB1VtDGzljpXicsAb2u44XL66ebN0Afv3Xf8XV1TXPb674/ve/h3UbYiq8eX/HP/nH/4SvfvON7EsFNps92/0tn716ze76SvZPs7I9ACUmzsJiCGLwezpxOp149/Ytx+OReZqYTiPD0OOcQzUj/pV9QlkB8UKqYqb58uULvv+D7/Pnf/4X1Io0bXLBh0BIqe3jGmcsxXVi5pyEkdtZh3VOplw4R84iRTrlE9thg3MdXefonND8r6+v+A//g/+AH/7ghzx//pxxPDKPI8u8cDwcmE4nlmVimk58/c3X/Mt/+TN2uw1/5+/8e48mq6WI4Wj7HYBzAXn1w+892dqdzUF57NKGEGT8qBaGnFoNpmgsk5jOzbOS89kAUqZOInJLPpFqNqaqYgV1KkqLv5hMxJTXFq+ymRAiNbczsE0Rurq6Zrvdc311Td931NaYqu1nllpZQuS+gZDjeOT1Zy+x1p6Zhsl7sl/ocuLFZuBqt+Xadbw9najzjC0yLcRUjaqanBUxglixaEpu10Fl5mnBOoXrdGPgwgr8rgyWOcxkCvYTCdZThNGKzbBhv9tBVczTwjj6ZhopR2AusvMrLWNvc8ocR89dKBxuLMEMlL6gNgaceLPZIiwTlRNUGS5RakDXwKAqCei0pmtyFm0ipUqzqbOaPimWhwfxbUGkQ5uNePNF3SYuhZlwiBw/fmC73aG05WZ/zVvuiSEzzR7jBtAdIVU+fnxg2F9h+s25SZhTYp4mnLXUnAhtMipKN8PVwvF0IqTM7uq6NZILYUlobQkh8vBw4NmzW25urhg2Dtix2+05jjPLcWLxCe0y5mmHCFFqZvYTp+lIJbPZ9Gx3G1wvtZIAcwub7QZrFVpV/DKTk8fUyKALW+3ZG82Ng1t7YmMy1kTcMDT5jwXjKAGWKRIfJnQqqJhQuqP4yjInRp9k1L0q7HsNRTOFSMqJWiNmGChVn01kKZKbagq6VFQU4FHpQO7kmd3ogapK8zyzDP2ASoGlBg6Hj6TscYPFdv3Zi2m3c/jFEUPlw90b+gGsLdxc96iqxftkGun623YNCwpNrjIMQyt3Bucqhd1uizbdd55G868LP8k5NI4jxhgZ5d3UDjEnbNOXdn1PyjK4ZZom+s0g/qY+ouKCKhOGB148e871PuLUEVsDxlhQhq0Gkz0qZXSd2HWJq6HjetBMU0WnRJkzcVrIPkCKaDIqzhSvSbOj7K8wtmvy8HV6bWP/pyy+frlAlHEqCSUmtVmAYlGypCanDeS4UGMl+hG9d/RODPhrHvC+EuMkuW6IJDTLpOkHh+o30kdUFWc1m02PnwyqGnKKTGPkdPCcrgKnU6CzFmcK1O9GcvjuEqHG+MjqkcZZyc2tXEbHhTbdR0YSrhTHR/lMaqPmckznzqUx5kw9f0TmIyEm8TyxUHNBo4gNYInBk7MUmKs+d1kWYgp8fPjI8XjEN7+UFNK5w6EUeL+wLKHR4ARsOY2jAAtNr5ZDYDNsqChSOzSXEAWhfpQin8eACW0fcsxklaDo5hcgm2pNrQvWkFjdPkB8M2oVuYSPQZKt+HSopza6TRxRrCMCQVF1PYMrNJ1yzkkmOrViTGjOMrmploJRqo1tFaZKjRkVQSXIvrFa5kCwM2FecG7AdgNYyCgyWnSXrcBbTRBlogbnza6WQgnpPJVE5YLtDL11dF2POooZb/GR4qNMOUIRl0AXEjYWrJbO+cpLWI03dSnolX2S8plCXFefCmR9RVbRjD61jP+MqY1oLKqNTGxTDNJqLPi0DJaUAsY6TJvSZF2jkmsB5VC0EagO1UCy9euc69DaUFJtG/8nHhhanX9nKGx3A9fXO66utlir21QgudHXRBslYGAIgXmeMcYwDAPLUpjnEe9njNHc3F5zeDiijXTVUoqSxDqLsYZxOnEaNy2B7im1ME4j1lnZO7zHKd0Mbg0hKE6n45m+utlsuCk3QOWbb74Rc8nTyOk0SmeiG3hx+7wxVk74JdENW7kexvDx40cZJ9mmgNw/3ItxZfd0WUyNuXk+ieRMJDGcJTkyyl6owyjdOo/tTtUKbR+p/qUUzIrAG9MKikJRBWstQ99TUmIeR+bjSPFJRikbi+kc2gqNfZV35VIaqwY04o8iuljpGK5miaoB6LWI/M9izoVOc3ABVcXXoUlDspKRzTomTJNiou3jyOWV6g9nT5q6vqhWFCPeMbl1p41x6HbpXOvAqiZRKKzyIv1k3o2n8cQSvJwBzVxdKyl0QkgsIeFTxtiKLwnd9hl5UyK+10WhkiIthWWOLLM0HRSakhJx8eiYsUpMxf3piB8nakkMCsLkWaaZpbE0Y4ZcxPdGaYsJCWUtPnnC3FNCRO0zuZl0Fi/ThKr3ZJ0o3lNLQTeQeR5P3H/UXD27Ybvf47oeZy29NVwNAy+vr7kZBsKy8ObXv+bbr76iI2GfX7OxMtp5qYl5POKnkc1uh+Kqda8WktfY7nG6DiVCTaiaKMk3s1XNyxe3T7RqEp81U9p+GNj0Pbkq5hB4/+49796+Y55n9rs9g5IkUlvH1c2tjNm15mxQvrK2gg/M08jpdOTu40fmecLPM9M0sswTMYSmtxdpc8mNUm90Ay4/aVCkwvF05PrmGusc292OzTjSjb3I0ZrsI8WI0b1o/JXBmQ5KbCDLTN9XXDO4NTqRleRfsckCrdVNei3UamsNr1694Mc/+hEphTZ5IgjLuE1Y9H4m58jzF8/Pe7sU6YXgIz41en5p/k2f5D//n4h1Kt4q8RFZ1Aqu1POemHMml8fpjCtzZd1HPx3rvP7/Kr8spaALWC0SAmvEAD8kTwi+yWdLm4gZm/econc9fSf+Z6VNSpQTVLaAlCvzsjDNEz4GUHI2w5orJmpK6FzYGM3NZsPVMNApqDFCylge90aq2BWkWIhBaOzkJp9WMvAhJwe1P8uUUOvZLvdeyumxuHlCMHozrB4YwqY9jTOnccEvmVw0rZ3YgCwlnX1tiWnhIXp+uQSiHZiqYUqKfakkhC00dA6TKi5nXK30GjZodsoxZaCU5n8iTZH1bOu7jh0Gu8BgNAnINaGbybZrgzBqLqgU8eOJZRwx3YZNP6CVIYfCdJoZtjtqUeQCx+PMskT6jUyWSlkmho2T4na3E/uDJukS2bbIZM92B0o3Y391niYVQ2I8TZyOJ8LzW8pmg2ljv61z5CrNa5cy6Ql9xgCO45HTeGJeZpmQtx3YbAe0bp4YOVJqbhK42vaOBU3zxKTQGRgc7DrFoDO9TmiTcCajraYYQFeRXThF5xS9LnKWZI8tBqInzR6fErZEnFL0ncN0mhDBl0iJCxqLwUBjuKDEh2XTGZniF6M0DLMYrFZlcUPCdhnsVhp4bVjEvCwUKsN2y5WTKXFaiaR+GHr8ZuDj3Qcejg8oXWUceXdNKoqQsgxfMOoTqVCbRIqRvCWnBmAljP2UIfz7xzLPzOOEn6bfmSS3jnXXRgYHoBUp5PPks6EqdFH4KaJLwarC0MH1dcd2o7GNZaOqQeNQtVJjpMaIrp7BFTZ9ZegVnQHb7gFVMqoKEKpKoCRFCZU0a1J8hiGDdue67izxzo9eRSu4npMMfDjnhWW1IyjCZCGKtD55qMLWHHqDdzJAJ1GxKmN0ET+nZparjENpJ+d7lWauTCsWyfU8zcxTYDotTKdF5PcKGlr9bx2/15jmlBNFq/PmXUptVMpERZ1N5lawIuc2srcdfGvXISeZOW6bk/5K76TRLWP7OX5ZKFZDkTHM8ziL/8p66K308lplctEycXd3xziOzUy2sHj/KA+qQs2bFqHzpZzwzRQvtm696GcjzvUUIOWCD1FGEn9yeCsF0UdyzA0AkqlHiYRV9vGAzKU5vxdh7GgtQp22gMaYVsZXGXkdBFx6qtBay0Sg2ui2VZ8P4JW5AbS1EoClkKWw0Kp550hxbrQALCWK3p9YIFVIlbwk0pKISyAYj59mXDfg+g2qKrLSwhBR6zhBdZa4SXNfrGXXEYc5BGpIkDIkmZ7SW8em71GpiMSnVEoUPXpEE5dADgmTCuaMQTR5QtMIqlIFOU3NqLg2EKUqSl3bj7RiTgrZ1UMiZTGhq1WfvU1KSuKhUdX6rU8WMflzR7RWjXONLaBM68IJ6OE623wfxBTUNdYDGBmH3GR3pTxKMkSyIZvRfr/h+nbPfr/FmDZesG3gpSWxVLDWEYJnmuRrNpuBXCIPx3vG8cR+v+fq+ortbnveMGOKWC3stL7vpBs8nhgnkQeN08g0z1jnOAUxybZas99dYa3sD9M0YrTBGsswDFzpPUrBfr/He0H1H+4f2F/t6FzHi2cvOD5MHE8jd/HIl1/+AOc6XOe4v3/g5Wev2BhD13fcPzwwDD37/e7J1q2mNfFfDZMFAlClMUCKaGOVsdBGROayTtxqdGJ4BF6cFmNXK0layZmsNNbJ+OASxQB2mWfyIs+lcx39bofaDo3e/+k+LOZ8piowRuQ3qrbk5bF+qg0MqjkJmKcrVtszSKx0lVG91oFNBC1m1zFFXPMRUE3+sMYZTF9JMFWkiEVVquFstF1SwjgrumIANLnNUy8N/HzC5hAgiefiPSkXcpZOskK8bNYxfiFLEaRzQkXYb5vPQNP3G1FuEFJmmRLLFAlzkj0wZuKyoJTGItrj5XRgGSdUzQStZVrCtAhTc/GkIvtSUSKrUj6gjGHyM2HqqCHSVUV1ohcvS6D4QAmBog0lyHh5VQqGSlgmUolc3d1Sa2G73WGGAacV277jxfUVL673vP34kY9vvuXrr37F1WDZWeiMorcKqyqzn/DzieSv5SwriRwgKhi2w1nyVUtE1cdELPiFru+4un5KzyP44rPPJJfVGmcM4xyZTifeffuGh/sHcq7c3NxSTQfaorRj2GxAC3CXa0K1ZE9RmKeJw8MDdx8+8M233xCbb9xqBk3N2DYNEKqMci3l7H+kaDLbWggpcjgeuDndAorr6xuWxXOaZuZVwlGkMOtcB21qYmclMZQJjF4YwW10qTWWbDJlkTHASiGT3FpCmmLA+wXnDLc31/S9Ewp2y9tyjGe/rHE8EaP8fsfjib7vpQhscu7Vk81g0OZxqsiTxgqcrpKsWs+gutK6JciSpAu4sk46ka+Fx+//9PMVrMk5n8fqioRIoZQYWBslLFfvxbNEJrTVc85acsEoQ9/JaGattDA74XcaQzGKMe7K0LbWSle45HPeSxIW7a5z3O42bIeekioqJXSpWG2keGlswdWDJcZMDEWYfKqxCpovoGBPK1NQ/e61PBv7VuoT5iebfkPfDVhjmaaFcVyYxgUfMklpqlarG3lrpALGEiMcfWQ6fiTZnuwGwuaKkCupCkgxdA6jMk5pugQbo9lpyw4lX1PEcPgsZ0VGlPduYKs7OpVRWmMVZDQlCxvUqYpBmmW1QJhG5vFEXxV912O1JeTANM64bkupiloUp3FmXiKb+HgvhRgoKXK92SLk9ZYPVsjNhywXkdxLLiXNlJQKndNtMlXgdBpZlkDKFes0Xd+Lx16thBTpYm5+Nk8Xh+OBcTrh/cLV1Y7NdjgP1oiNlQmlWSqUVo95epvRVgrQzip6p9h0is5knBGAxZgCFpSuFFXQ1mAtdE4zmEpPxiaPrT0qRcriCT7QdTAYxd4ZbO9YyFTvmcMMusOqHq0qVcue6gxsOoXRCl+z+KskCGGhak1XEq5k3EZhjcJ1BtdZDscDKScOhwOb6z0OLSxca+iHnk3cUKqYYtdauNpfsb3uKFXMjWPyOGUegfQGbFay+Ou0fHtZoox8fsKmq5+X81Q62/Uy7EDRfE8zpjEcAVKSSWK5SG2jiiZPCVMKnYZtp7jaOzYbhTHyLCksunaonCnRU2JEExl62PSKvgdnKkY330bEy0qT0FWkmiVkFlNJYcQpqK5CFTZZrat/ZW0Nbx6ZnpQz2KJbHdj0l6JmQDxaRCJkMdrRdwZnwKjmS6gL1pRmphUpKaBtB6UT37xmIq8awKIwLEtkmQLL6JlOM/DoaPld4jsDLHV96aZjLU0rm3IhxECuqrFc0nlTf+wilLPje4zS6bHW4DpH1ztJ9tvIQjFajaQgHRejOko2lCSTf7z3UrzV2mjnhWWeGJeR0zxyf39H1c0ozohuTqGxpkkOppF59nLDLkubcy9a6JDEl2Hxge1mRyqF0zyzRE8qBdNouqYdnD5NKKXoug41NA+DlFHOysNXae7VnujD2dhSsbryS4GstKZoQwiReRKH8ScN1eZ2mAY4NCOhNlQQVWRjFXbPRNJBut9Vk3JmWTwxBvFWaAVXiQmVpVuf5sSCJ8yRuCS8WjgdR6p2FOVwu0q1ltomHawMnrPxF2J2FauAPDEG/GkkL14GledKZyzbYeDZ1Q071wvtfF5wtY1mDIllnumnBdM51K5HFYVuc+xTzOJHEsQ3JasgZkw1o3DUMwO53VeUM4IKFWs0KQaWeaarBpVBJUFkTcq/I5t4qpjnqRXpMulC60GMwCrCDqAybHr6Xhzwa6h0rsO5DmsdJRZCyAQvWvWVXj4MA+ogvgHDZuD7P/g+r1+/ZLMZqM2DxbYDpzysXcFKP/Tcv/nIaTwyjie2uwHI3N1r3rz5lpxf8vnnn/PZ61fMp0kmb80zyyyeSy9evODDhw9M08Qvfv5zfvSTP0AhQKs8d4sAqItHf27YDFuur684Hk+cTkdqrbx69RlaaYZh4LPPPuPbb79mHGd+9atf8fr1Z2y2W/a7a25vnzMvkfv7j7x//x5rLDfXNzw8HHn//h37qyuev3rBx/sPhLgQc3iydcs+kquYbNY2HlPTmBalUnNt57KWSSDOMYfAJmccnxYLmdg05KqNkB36ntwKLlvFl2gzDFxttpzmSFkC0yLsl931wvbmiv7mSg5e3YCWFegOAn5Zo8UQ02iUeZzoufpippiJKWCUoXMOpztEtCOyCGsdui/UzYY5hbb/F1IzkDRaS9ewaShUBZUF6KwhsgSPz8KOLEqmvMUgY7qV0W3E+yfAjELGsWueFNR88/4tp1PAh0xBy/6EJoXKlAJLCMRShGWTCllVrq93oJo5dM7oKGVXjJXp4JlPgWVKpFBZxoXT/RGjKip0lJoYHz4yHx+ggMuK0/7IeDgxnyameQHtQBkB++OJZhXHcTzhnGU5bBmUgc2Gzjry4inLjIoR12+wtcjZVTLPrq95GEceHh746T/7Z3zvhz/kxauXPL95jq2w0YYvX7zg46vPiMvC3YcPfPXTn9GXAPOBH3zvNdcb8XsJ957pcM92t4P4go01LCkwj57N1QbXdSgqMcyoHNBknIGPd3fE1KHdNU8JsTy/3rP41pzImW9++1t++dXX/NVPf4oC9tsdV9c3JGUpkhqSC3Bm5zlyY3DcffzAuzffcjwcODzc83B/J/mKs3S9o+stSjmcc/zoRz8khMCbb99wOp3amdGmgwEgflen04lxOlFK4e///b/P27dv+ec/+yn/4B/+Q+ZpISfpiq/eKfJcb9poSpGXRGOw0ZKceGx1DrxeyDERqjSRhk2PMZqYIv+vf/rnOKM4PHzke19+ISOIEdBBnnthcPR9R0rgfeCf/sU/5Uc/+jEvX77i2bPnhBQlT9Aa3diN6gkfOtXeU6kVVR+nHikl0h1rrRSrq5fe71DIc2MNGZxzZxbias6+slnWvz9OEKJ518jPzzlLLjgthJCa0WEleclltTJsNlv6XqaWiBxJ6nuFFPchyajZaZKx4H3vuLm9oVZZVz/PlBzoamHjLN9/9ozPb28Bzfv39zhg6zqGTpoW2vZo5YjtDI9RGDOqikl9pYqUyW8ouWXnSjW/gtz8TrIAZzVTKM3K92lC5DmGUmCaZoJPpFQATS6S21ndoZQ0U41RuGGg5p5lnnj79sisRuz+itsvn7EUAaqU1jijsBk6VdlazU1v2etKnz1JdUTTUfsNxhoqELMU49U5FJbb/Y67KaCAXd9xSBFbFb1u7B8rB0ecJw4f3jP4zNXtF+x3O6KH09Gz3VcpOG3PaVwYx4nNbos2llgKiw+keeH1i5fnq7qaT8cGsMw+ULVpZ7ejFpFSuettY/fL/bI0z0rXS87VdR2lyMQxZTq0fVrLgPcf3gpTrVY2uw3b7UYGC4wj03QiBC+DBZxmOs0cjwdCmBmsTBqSxo5h6BXOQqmBWrNMyOvXCbNW/AKtwXSKbujotcemQD49sHEv2NRKXwthXhjMwJVVbGrm2fUeHx3dQ+WruyPF9KheGAoFTyFSUsSowmboub3a0LvIafYcxhOHQ8DFE128YUtkO2yx1nB9c8PD4cQ4zXz97TcMVzv219cMmy2lCjtwW3fCzJ7Fz2ucZ3Az2jhQmuPpgV27ZlA+UQW0KWQIi22cFvrB4p7Iqwo4TzVLKbO/HjBOGm4hBGLOdLVHtyEts18YpwlrDVZbDJY8g6uWjXPsNo5hoxGCncLoHtQWXQZKmsm+QsoMRvHsuuf2umO3UWgd0ER0zRidsSbTmcJmUGAioSaSj+R0oApZVJQETaouvnz5rIqoK0iuc2NyyvsRUnVtLPAmAyyJkj2qdFhl6K2is0p8WnWhEOmsQVmNARmEoxzODeSyqgzkNYx2FF1IEWIo4rX0cDyD3PW7ONzy+0iEciG06T65lNa5z4SwEHxAFcVsPD5kYmr0zZrPYEnVihwLOVVKqhjjMFrGa8UsD2jJMk1knUazzJ7eWKouJJ1Z5pnQaE8y8tjjl5n7ezjOJ2a/EIOn3w2oUtsUI3Eel45MYJpmpnluI6eF4TIvC9pYzCKjn1MuLH7BztIRGucFnxIJiKW2w9SzhIVSEkZBVsL0WI3hjFbnSR4rlbU0yE4r0bA6rSgNnTZaE1IWhsAyf9dl+jfEegCbdjgjOH5pI1M1orv0cj2zTnTUNh0iNypqonMyOpAk00ZIheIzSQV8mUlLFKNbbfCnSaQsytLVSnUd1TiK8uhODFBt1zePhUpOlVQqub2P+TQSZ08JjcGCpjOOXb9l1w14M5PrwsY4mdSqpHNQYpTud+maUahcgfKJUe8qszhTkdfO+Kr1PoMsK9opBaiMIAvoarGIr5CutQ3LqN+ZVvZvihAiShsqGq0qfZ9By7rlNu3H9Q7bOWIuYMR81jihU6aSz/TulEFri7Mdne1QJeOMUDJfvrhmt3UYDfMyAwNGJxlVVsXwtFYto5nzjA8TH+++ZbP9AV3Xsdvsubu7p6YPkBUvXryi9mIsnUMiVZkIId4A18zzzMPhwPsPH9hst9i+w09SPCqlmeeF8TShMOz3A6CJuTAvnuNpbKMxC/vdnk2/IfrAx3cfqQWub294/vwFQ78ROZnWfHj/nqubG7rOst9vOR0fiMmz2XZQMtFHUvRPtm4rIAVrf40zgFdUERND1fYDLY0+H2Zqls64lpnv0NavpnwGJ7q+J1YEJMkJ25hGw3ZDGEdZ8xgYjw8ySj0uXJWMG3qMtSK/6nqyNkSU+ALkTImlXS9FNU1C2DqEpRaCnxsLo6NYMEomI5SiqVVTcCgr5pmqSdJ0jGANuhRK2wvXiUZy2IqEzKdALIlsQBlNUoklLeisMFUAGq10GwGsZNS1VuID9oTN9IfjyLIUQi6PfjhKEVIS08EYCBmKL9gVJMOJxDOLjCcFmSgzzpHj/ch09CQvxdoyeeZxbGZzrgEsJ5bTIgykajkdRsbjxHia8CFiOylOxMS6ktu55seZZAwqZU77B2wFM8h9QamNUafOk/u8D1xdXbHZbMgK3t/fc//hA6pU+mLYuk48f6rm2dU1L2+e8XA4cDweePfmDb1VPLveiUxv6Bm6SJhHltMBP52wfUeNieA9y3RC1Q3GGCiJGGZK8JS80DtFWCbe/vbIiz94urWLcWlnveJ4mnjz7Tu++fYt9w8ntjcvscOmAZ7AKtlb2VOl4JfA8XDgdDxy9+ED9/fiozFNY2OIdFgrMrmci7CWKrx4/pzFex7uHxjniSq1N3KeGGn2GIP3kXFaGKeZl69ecXV7w7Df8s3bt3z926/5+PEjZZUXKCXMihUEMRajLZ1xaKWI3mOMALZDG6tac8G3iSRFy9j0Dx/v+Mt/8c/5cPeBzz97ySrBDjGcARbnHJ3rWrOqMk/L2dx1s9uJjLEK6KlKaWft0zUSamPJynI0xt7KmDTmbNj46RQySm5Ag7yV3nUMw4btdksIMqBg/XnrGb92R4V9LAwhrTRUdTa1TU3uW+WApYSIqSIf6LpOvAe1oWhNzPH8fkOQBsbiA/40i4x4GBj6DTmvUzU9Kkc6bbjqB14/e8Gu6whLJI4jnVJ0mwF7dcN4uKNQqSkRvce3Ln9O/2/e/qvXtixNz8Se4aZZfpvjwmZGFKtowAa7yZYuJEAXuhKgX9H6h0JLEGSuGgKEFqkmm7ayKqsyIiPi2G2Wm2bYvvjG2ifJ5k1HbWhm7gyTJ07sveZaY47xfu/7vBml9FN8OXrZN0n9L1SzXY0pXMDMFw7YU6bhWS7bNVJVPM/s90cO55nDeWKYAxDFvWNFRE/ZEbFobSjWEZqWsFgSMah+Df2GpBu00jhdMCnREOlUYmNg01kWWqFDQQWPUQXXSINI4wytbmnsGl8sPhZsmpn2D4QMrHqBjaOJiFuzUwqnCs7PmPMRpR1lW1DtgmgjpzCwmmdyDNicGYZJmsOWI03TSpX2PDOej4R5wihV2SWFXBSpaGKC4CMgziRXOTQ5xSp8RaL3HI8nDocj/WKBdhZrG2FjOUsu4gCenvk8kKeRcikPMFKJrSkCsg3+aa+mtDz7Q5T3ujOW3ll6nWktOFvAFCL1+W6kvUeGgVKTbJFnd7/ouVoHhsnzOARMk2iM8DXO55GFAhsNjYqsb1rWC422nveP9+IIRlNKU3s2EjmPxKKxDl7cXrFsFuwfM0wnjuOJFGGYC1PQ+FVk0basulYYHGHm8Xjkcf8grnotQ3JjRCxZLpf4WdbBx4dHSjG03YK265mGCWc0bdNUwH51lOkCKpFzYJ5HhvOenFpK93zR8+nsCVMk+4zOGpUKOUf8NMreKCeMRsD63pNCoGsdlEzOgTAf2ajIxiluVi3LxtC4hDYZTCYrhS+ac3KMWLzSqCbTrVualQNnydaCVRiTWTQe33hi4zmpmae9Wczk2RNNwOtIdomnpbtWNIt7MtY4q8BlqY4gaaCtz4FcUBhK0ZQscXZdAgZLo2XYYV1BT9I01DiJ6VqdCXGA6CSKpBqJK6qIJkGJ5CyxTO8D42w4jQM+ZXIx/Nrg+a8WWEIGXwFiF7r+E48jJkhCEY91wiDTgosjIVCM9MDLuUHhrMFoKxvnkusNkFrWC7vFz4HUZZIRgSXM9SFY3RcpRXyYSefEeTwRUoBSMBc3Qs5SI6o1WqkK6KxT8lwIUSJC3nt5GCgBSSqUKLwK2WRNI3OIxJyZ66TiPI74eRIHhC7IMlNVuijtQKbKZSknUp0iSEuAxEmsVviSUUWqnX3NzM5++rW36X92PW1KuFj/q120/Mkfs6jvoUKIs4lojVTGBREVcspo6+SDkIo4OJLEIaRiS5G8MEqSj8zjJAuudkSloIkUa/EFlLUCV2wFvmQKxFwIKT89vKbzSJoDOURKSuiCqJZNy8K1jNYxo+mMJRSJWFGFvxwitk56VM395Rjr/yfUamU+x9ckrqXrq/N583jJWepaYUcpTzbQosUZoyhPltwSn1dgCTGjQ0KpVG3MGXQl8ddIibZGohTzLCCnzqGt9L2nEsVJkTMpFax2OONorBAtnFE0jWG76elaW2GAEyVPKOWxrrrQsiIleR1yCfh45nD8xOv0CmtaumaJHz5yCEdUVlzvbp8s7rFp8NMsFdnI5MsHjw+e/X4PRrFs7J8Q+MH7yDBMGNPQdZlS+TLTLHG+xtkqerknQOVwHlF6D8qwWK3rhFcs3cfDA4vVAusMi77l8fETKQem4YxGnCJSifpMV7VaaIUc1PXFEyVRj1i/skqgBbaYppmSPCrHGqORtpmcZVOmBAcrLSc21fYhmfwWDbZ1uNZSksQnQ0jkUaIPxloWeYVqO2zToLXFWOFE5SAxgZzqBFTL3y8mfz70lEyI/okrpZLB6JpVVRqyxByLaSR7n4usE1Hik/IR0Z8Fm/rz5VyBetETSahG3DSFzJRGbNK0xaGLrTyUal/JdRVT5VlrmsdxxnsIUcQbtKJoiCkyzjNTDPhSSL4IwFEpSrGUCp/MSZxyGc94njifRuYhkHwh+owfZ8ZhEB5JsuScGM4jfpxRBWbjGM7SPjKPs1QJVzvupdLwCbw5e7LSTKkwHs+suh6a9mnSD6CUkSaB2pqF0rRdR7GWjw8PDKcBWwxbt8AultLmkBPLdsFuteZ6s2V/OnI8HPjUOU7nL1itt3IotwYfZuZpYJ7OrHqHQuKw8zBIvMpJTlMAwBM5TTRWMY2e/cPjs903gBhmtJFD2vk88PC45/HxwOwT26bDuLbGUOt/lBKBrzLfhvOJh7sHTqcjh/1BpoV+ru5cYSvUOaUIFXUPtFgsca5huVryeNyLmF1kYFJqBZZS9mlgdDwecW3LZrelXy747b//S6ZRYpPTOBJTqJHQtjpdJfIE8kerJPKrqljQOEuKkZglWh1ESacoxeQ9v7x9y+P+kY/v39aNtgxxjJIoaVNrTk1tiZsmz3YnPJvN1Q6MrdWyM6Y6AFCF11fXz3LfLmf/UocVJdXNdimVKSA/b34K5GRIIvbo+nxvG2mzaavY9KfXk2gjfyFraBWsRCDmKdJ+qQUlltqYmDDG4Yy4l9ACwi8KQrnwBZOIJHMgzoHiM6YYtDLy+SueFCMpBmyMdIuGddexXa5ptSWkmTTPOK1o2oZ+teTd+YCvwProvYjgQZw1l5hPqS7AFIVfbipLrxRqxElchCU9Ee+gXPrT/+5XMYrgA/M0ykBkCgxzZA4ZpxNKZ0xWImriSMpIXEdpgjGEvqPoFhZrSr8i6RoHzdCS6FRioRMbBytnaLUiJnFQawqN1TRGGEjWOpzpSKH+8zpS5oEYqt8hZiKaqGzlh2UcmT4H4jygXCcQ5KYnu5kxIy06IWEzpBCYx5lpmDDK1KhCJEwTcZ4oxlJSIcRLiYMiJUX0Ep8oQfZvGuog+bPDaBxnhvPEMMz0S+GOCT9PnoMpR0J8vuEPQAkzKgZ0BZzb+r3FKk5SCta5p+HwJZFgjaE1FldKbecBZQtZQzYGZVuUaihKXPka2SOoorCNZdU3rLpIpz3KBawNKATJMI4yiF26jLPQtAZsw8JG4lykbly35KxIRRFLIOSBjGa1gLVpafOMf4Bw9oxpxHtFyA0ge/fVZknTOonUl8jpfEQ7i2stbSfPDpsNXd+jtThBhvNA4zppmnKOGGdS15FjJquC0rImFeozoiRS8kzjgFESZXquK0yJGAolKVSuYgZ16GuNVFiXTPIzOXhKdSpSjQ4pDLQ2sHJw1TtaUyTSZSJZgc+RMRVOUTFkxYwCE2mXFttZklEkY2UNJODUgFMjVg1oPIoGXRQE4WfmmIhOjBbUY2h5ElikRAFqU19KGNfUmO7nOKjMIGWQJ3PLgi4RpyLOZpyzaC0DD3Ki0UhMSEVKMuQkjZTZNAiVs2BUgRLRJWKVxPumEDj7iVAKqcig99cslb+ewVIUU5CaSZkcXHLXQaqNYmGYPQlFURqlJacWk7SOZNuQEuRsSFHT9wusblEYchZ7WVHg/SgbaaUYppl1H7FKOCveR8lSIRGGVBJzmCHNsjExSmBVuhDqQb1tGpQSK+F5GKqDZWDysULAkkBlZw/nAVD0fU8MYlGfxgGfktSzxcj96QgGfJhwWSIqRmd8HKA4MoYpZNqufapu9CHgUyDkhA/SVmS0Flv1Wez8tjUVeJuY5udUrP9EMiiJJ7pQNZvLfxN+ErjieBzIWvJuzonNLw6TCFeuI3mp6NJJ4bIGn4lxxqeRMM1kH4nKMB7O1d4aMeNEaRqSNZxjAqPRVizQnW1wSuMymJTJQUj743BCzwE1B8oswo0q0FnHbrkmDBOTPlKMozEGjOQxcwiEeaIJHSpJJViJgThMtflHNixohUqJkCRXr1U9sNXXDApWVyaGNsI0KZURlLMAwIqqHBeBNMnE4vmumDR42TA5p3E+YbPwgEJOJNllY5yimEJSkcW6Q9lMyDNznvDZE5JsIJerFYt+Ja0TGoxT9AvD9VVfAdCBlEZ8gJwDzkWcMeQE85xolwrbZvAzH+9+5JuvvmG9bNj2W0xynE5njg9Hbq5u6DuxU2/XG0iZ0+nEw8M9XddhjKXvez7d3zGnyDoElFbMwQuErGge9ydmnyk4XNMSaxY4l6Nk4Z1FU1h2S8LC877ItBrtWG2vsM7QdC273Zb9cY/3E0plFp1Dq0zyE6fDA9fX1/gokMrnuqyzcriqTTcXP4u4IwteJ2aTiCqSVQQVCcORPA2oRYt1FotU1AUfiU2Lso24RrTGNg6tFX6aiEUghrrVtNse5QrFCIclpcA0REoqEBIsEmZRsH2H0RbjFKrN1d1VaIOr8ZvCrGaiCqTiCWkilVCnupFExuhOvpxFKwMYcIpizkhWklpzrNDKUJQ4zXJ9WUqSf+88jwzzgGo0i82a1apl/3DH/uEeVEA1K4ztawWhWEeTKmSTng47z3X5uTBPmeALzjZSf2oUYwycppFzDAzIlLJJCo0heEfShmwMOVimORJSlKnu/Ynx6EleEabEcBpwxqCUAEhzThz3Z8bTJE4+DIf9kfP5zHCeUNrQuIKqfGCdSnUQJgiFmAPZR8b9AbW7okFzGkaCj2hlsLbFx8LgIycf2SpFv1rTO8fD4cR8HtmPjyyyRa39U61vq1uuNzfEXPjw8IlpnPj48Y6Pd3usW9K0LcvWCdR8PrM/PrC6WWGNtPeeHh/RpbBYyDozzWfmcU/OZ65WG05xZrx7eL4bB8TgcdqRC7z7IN/r/jSj2yWq6cA6GeAkGR5oDSF6jscj59OZu48febh/xPtZQLH1WB+JNRpjqiNV1UFRxucZ5xzL1Ypvym+4O+w5nM/MPtIbhzYOjaUgB+zDYeD3f/MD9/cPfP/9d3zzzTcc7u9xFkr27B8/4UMiJ0vbWEyWGu1F25FzqfZ8S7domOaJGAPWGoKWakmfC6fTCdd1UkOK4mF/5NPdPT//lOUknvNT9WXnHKvlkkXbygFynKVWFsOHj3f89O4jWKFWxOhxCqwWNtHf//7PnuW+Bbg8btEVyH6JUmsr7tqQoohKZKRZZoYc0UXcrZvlksVyhTWWBy+sPGPNE+eplGr7TnLQXXQ9zjQoNCnCPPnafCnxYZVBpYxJib7paJyjcw1o8FRWX0mUlCg+EkdPmRMmwdL2tE2PNZZ5mtFKhj5lnrEFbhdL3uyuWbcL4cD5QJ5nemNY9h2b7ZLlg5zKfBE34gWoT6Eunsj7sO6lvYfeWsgSl45BIrkliWvXKIehQT2XugIcpoHxsGc6ngklMyY4R5gLdCrQqEhfImO2KL2mNAuGsMfnxFwSU9/TbV/gljvKakc0DbZELIVV8Wy0Z60jrxeObadRRbEfJX5jbWJhNZ1JOAvaWqJyaDKdghcrxSdXuB8mTh8ngmqYUcyA2q3pYsTg+cIVzn5gGhpO5zMs1uRFYtT3nE8DTfIsUTzMkfk4MnQDvW2xSWFjocwz82mozk/HNGewjlQ0s1fEAKYkpsMg8VHk/CQDEzDaMo+RaYiM58CpnbFGIt65MrOETviMwx9AzQM2ZRqjWFpLa+R9M55H/BwwRqrfRWAOFfqeaI1laS32NNEp6BtNt7SoRQtdC+0S9EJYKWQyHpgpaIqKbFeG4zHR8YjpFrTtjG5mktKcpkwJkXaRmOKZfql5c9Xw6tqg7hP3p5loWmkUKvKK7Mc9bTuiWfLt7RWjXbM6DZjhzNvjzGkOnGIncaWS6VWkaQ3rdc84LzkcH4klkFVitVnJsJ9Mt2hpu5ZSYfvz+UijCrQWlSWy6b3wPS5NiTnPoDzKBKyN+PFAazK6f76K7fmUKcFItXRUmMuANwSMAUOENDOd9mQ/4TR0zlHSTPQDlAfWduS2gy82HQ0zqkzkcmbOioPX3I2Fn06ajx6OpWDtSLd5iV44jrngTc+YIufhntX5B8J5Io0Tqox0ZoEqhqP3lKCkoDVraXCtTDaI5OLJZaaUgFZZxLIQpEJbCTzXUtCpoDIY1TBO4hwmZhwzvXVsOjjMTXX1Z1SJbBpwTeZcBoienFpiKcTco7U4H3un8PVnX/ctKXuGMHPwirlARGN/pVTyd2CwKIGK5shpODP7qVKzCyHFal80YjeHp6y8HPBls5JIAqki43PgOA2Ux8zD4YNk/hqLsQ0f94+MY8Dogc5ZYuzoGlfbf2JtwtD4EGrjcGJZYU3L1YL3H94xDBJdWi13zLMc3I6nE4fDAR8Ctml4cf1ClFqteXw8iHW0tqM4a9AKgu+IyDRofzwSg2ccTtgyc7PsySRyEddJKZmiHFkrmjrtiEWmtCEEqfrynkbrp8NCqeBLo8TRU4qSaudnui5tS0pLYFjli6Ml11tUba7zwDQOjOcTPo3E0EvOtoITNQrdZ5m0zxGdClaZ2pQkNYY6F5yqbewpESeZwqoQyNYSjeYcAspZtLUM1tHbBqcMTVGoStIvdfFXKUu8IBd0KRjEOr3qFwxdT2sc2VrJrfYts5PWJ4HdBiG+e5k+DPsDfhLrnK+UdxMlq90qJWBRo/HVBSV7M/30PnZNg7EC+EwxkkiUcoHmyfRwmp530pCTTIDIWSqQYybnyOyDbMRzQRsI8TJh0E+sgILCBVt5SeKcaruGxaJjsVzIoUEZ2q5htVo+sV5y5V+UUlj0DU2rKGVmGo80vaPRHY3umYfI/d0dOWh6t6HvG87DgYf7B/5///xfsF6vWK/XvHr5UoCuiMg8DgM+yOfh8eGB4/lI8/CJzXZDmALRJ9KcmfPEPI1471ltdoAixsTHcaLrOhZ9z83VFmUMTdvSdR2PxxOH44FffvmFV69fopSIpavVknkWjtBmt6VtW6Z5Yn/Ys7vaVXvo840a1CWCVgrKaCGZo6DWi6aYnqawVCegKoXpfOJsNIurnQhbxjDHmTDPlJglJtBIdakyBmfsEydIU0hdS9GFbAvMCe0TySfm6hYax4nVtGSxWtI0DbZpaLUi6UIk4tNe1mmVmNUMTmB1rjM4syAHiQSWkCkEkpJsrS4OzSXKUKHdIaKMojQRFbK4Ci9LjypQGzWICWM03XrJ7Vdv0EtLdoVSAunsJYqhJeKnoDJtxB6L+o8dZ3/XKxWFT+JgcY2jGGlGmoJnipEpJuY64QBL4wzjGOhRRCON79MwM86Rx7tHxtNImKIchkJmOs8YNFpnjNWkFBmOA/PkqxZnOB5PkrP2EWeN1D5fuDi1rtphsBmphCwFmzQua2xW+HEmp4Kx8jqNPjD4wBQTuAZlHbZpef36S+7ff2Q8inODKdE2wv7QjUGpwna15vWL19wfHgghsL/fc7W5ojGOVdcT0gQ5MZ4eGf0tyjr6Zcfhlw+0RuPIdOsFRc34eOZ0+MjSGjqneXlz9Wz3DSAXTYiZYQ78+NPPPO5PhFRY767Q1oERqF0JM3OY8T5y9+mOw+Oe8/HE4WEvLp8iPLgM5BiJPrDdbujaDmcdJcmzNGeB0jtnefPFK7778+85DEd++OFH3r3/gJ8m2rYXKKw1FK0Zpok//vgjf/zhj2xXazbLJW/evOLvff8b5uHAz3/4a87DQE6BcTiwaBfCCnGa4XRCKUPb9nz95VccTweOpxMPD3uMyZgilaUpK/Cy6e97qaDVSqK3RlkUGQN0TrHbrHnz8gWb5YoPHz7xfvqAnz2//6vf8/btR/7l//jvsG1T3WMZq4qIaEbz3/yf/ptnuW9PYOHqso1e2nYa6xAMvvA8Li0SucYPpY0F1oue26sr2q5jnGds5TOValdPVchNoUKM0XXSK62PPnhxnqSESqWypxRKGzC5Nsw5aZrKWXhURQSnEhIlJFJItNahG4uyjmSQNXSe0WUme4/JsGwct1fXvHr5itV6y+H+UeC1IbLZXrHe7lgtN9KMmfOTs1jEklyjunBxHusqHpFLXVur0FYjS7EVt/fFrfwEjXmG68OHe/IgnLwYFafjyOkcCDFjmgajagMlsk5rrbHKMfjEPHoomr5bsFisWC56GmtwJdOiaebMsjXsGs1u0dIYTfKJkgIqFnEZqI6ehiYnbHV4oit8dd3y8uYKazuak4em5xwi+zlw9BGvMsEoTOtQIVNKpAwnWrOgRxqIgp9rMYIiRsP5nDDNzLIL1WGlICvmaaZkhbE10l00qShCkHugUn4SbZWStUWM7cKmhMg4jgznM91igbIS2+u7jljv84Uf8VzXPI1SoWstbeOgSIGD97M41StXJAaJ6/tppm3EtWi0JvoJrVpM5TGJK6QRaL+y0qCms8DNlQjT1oHrCk2raJtE10Z2i8zNKvPRjIRp4jQXWgKHuaUvHVd9z/e//ZK2OZJ+PPJxOKKNwWqDD5a5aE468+nTib//6hte7l7w7esvufrrt/zLv/6Zww/vOc6JaX+gjAvaYctqs6U1Hbv1junjHeNxJoUHXt68oW0lFtW2LU1r8V7Vs5thnibOpxO27ZinCYzBtQJJvzQuXoohSikM4yhV5u3zRYTmimpQtVVN9pjSJNf0jpJzZUkNpJwrZNsQJk+cPboUlk3LqlN0VpP8yBDOhHiPH2aCKQRl2fQvuN0oVr2mV4GrRcuqNdgU2a5aXr/YkXPhu++/Y38YuX848h/+6kfadc8QFPsxEoYBZRqU60hIgkQVRGxJSaI/CknCFHGWSKmFtMbl2siUYpQ4ZBDujiNL3GvRsV4tYD8Qosf7QT67zuIaGOIMNBSkBvopm64URVXQNVLlnZUi5MLoPbOP0tpl//8cESp8Btv6IDDbUrOtudZ/PjUGlfJEVk85E3OkZEVIgZA8PgdMMhivUVNhmCccFqekTm2MM2PwqJIY50ky+IhVO13iRAixmRjJJNq2pV8s6LoeH6JYZStTI6bEXAFk3k8UYLVacHNzhXWuglzHWtcl4F1rTCUlJxpj0Vbj44xzFmvFyr5Y9pQQmLPkFC8sEO3qJFhJ7WisHIxLk8fnM4Gq2A6FQnKLORfixdL6LFf5T7K3n6MzStXvJWdpFYiekgLRz3gNJUaMsvhxwqDxjQBIkw+QMk59rpk1RUnlqwKjJD6T82V646WhSAs0V19AbEHI41kJZ0SFgMoFU0ApJz33WTY98lUw2tA1LX0rXyqIYNCvlgwqM5RIVBJ9iDkRfcBPM8NpIMx1GqQUpvncqpKL/P6XSIQ0v9TDm/xXYF01apaq7fgz6b/aPp/1vkEpFcQIUC4WOQhBIJsCHzRSE/4EBRRwIUg1Mlw+n3KQNVa+UHIIE3tkKzGZMAvLJiVA07aOrjd1EziSo0XRYHQHOTKPnskNmGKxVhxEKSU+fvjI+XzidDzKwopU6Z3PJ0KUadwcA9M4kMeCOp9IKYoynxVEpDI9iIiasoi3ucDpfKafO2LwrFY9ttYaN12LOg94H9jv92y2a2mhsOKWkRp32Zhba9FB18aYRGMur9kz3becn94PJQnBXnJAF+v5JWdaKexF3uNhnpnHgXa5kGprIzHDEqU5QbpFKy8BVZvRxJCmlDhbkspoEgbh92iTKdmTcsT7wqBAqwKpRalcG80SmkBUnkQiqUwxCdNYgVpi6oNIKiNDkI0h1Xou0lShoEVgKcIAUVlYTSrJYcEUMdPqeihQWQ4Jxmhx7bTi/NFWYxvDdJKmnZwzqoIvqbA0au36Mw5lEfBpIeRSQX0yLZtjwKcssdJyMQJoSjH4ORNsIQbIseAnzzR6htNInMU9pLSmRAhzZFazNFdrEb+n0RO9tDR5LTGSGGQTX9Tl56wOlipQmXLZw0qtqUVJHjskwhwpRZGUtI/MIRJSJitN0Qa0QWnLarURXoRPzPsjZwbSbOmahjyDagyq0ezWW0LwnKaBeZxEvO4iXd/J8ENDjh4fZ5pGGs1KisR5JlpDWVqUipTi8fOJ4fyIpWW7fd4WIVPdOufzxN3DnnEOZDRduxBjcHU+hRgZxpHhPPDwcM/5eJJK7HmSTbLS1Ul6eT4k+r6n6zqsdiKiq0tzSaHpWq6ur3j9xRd8/9vfMo8Tp+OJ4/FMNg5VK9ZVrW09Ho+8++UXrndbVoueGGcWbcOL6y1fvX7Ju/fvOZ0Hop/JTSegZwWlBIl9JGnvsNsVjdPs9w8ondE1shdzghxQSTaIwi4y5OSRZ7806SkjQx6jpRJa1w2L1oZhGBl9Yj/ObHYb2rahsZopTGiSrB/PdF3aFi9Ok1gbIm1TRek/CTan8nl/CRKL6ZqGzjmcNYyjbNRVjXDF6kpJMT5FVIvKNbIjgzo/1/hqkvXImotTTuJKxkrDiNJSXf255cyTfaSEjDOORd9jbUNS4nIpKZF9IPkJnRKN1mwWCzbLFevlEte04g5Own9brVYsl0vathUBvYomKcQ6WCmf1z4uETVqHJ8n6G7OtWWpNnhe2DN/MvF8lut4OOOS1L6GOTAOZ6YxgW5qS2Ehl1j/1cKxs9qIqDXXSnMlQ4LWWpwWsK0picYUemdYtIquNehcKCohnUBgMbS6oVFOGt1KemImKCXPoEXTMDWBwQRMY8gUxiBO6KASnixQ3CLMIzXPODfT5EhnZE8bKgYiZUPwBT9l/CyfQYXEwFLIJJ1QqtR2VEMuWiJAMcn0PAQRycp/XJV9ia/FGJ9KQDrbS7y5aUiziDzlmfeVIYTKwJRWMhkQyvD3UupwaQ+K3stea9nXvUAmZY82LcYqlBbHrrFWRMk/gb4qZbjYL7VROJdpGkXXFLSLbNrM1QIWLnAcJV52njOnWbP2jpjh9mZHnBXnY+DxLIBTUOhsITrirDgeAsMU2C6WXL1c842feX965Je95nw8431g9iPnCI1zGNvQaIdTljlG5mFmHr2I2dbUkgiLNpoQ5hrTurhWHCEGmKVtTFsrZ4WSUfpzeck0TzTWMM/PyPaLsv7pyn15alz9kyr6WIf4ShuJgSv1tB+1StEYjdOSQEkhUkogBmFNiahsuVp2nH3CactCWRZO0xmJcHZOsWwtm2XLbrOQYpoUWXSGrmtQVtE3Xqq+Y6CkQI5GANaATulp0vanvEtJZKunv3d5/pZc2/iyJC+0lmSBxHzErRfDRIwT2jmsyQK8DTNF9XCJbtUGKnWJCPP5/CRnWEmyhCgNksX+urXy73yKKCDckhiEx0KNShURUsLTQfOzGGNmjcqB83zmPA8M8wiNooQs9b5UboqGqDKBxJwjKURO4yjZOKUISZo5spJNR8xZJkoGVusN6/UKZTXDJBW+TduSKqRpmiZOpxM+ePq+482rV3z5xRtSTjzsH7CmoLVCDC0CypEIjVQnKmMJqWOzWbFetGwXLa9fv2I4HtnnIlP5JNDK1vRkJYeJWBIhy1fK9aCEkhpkZSrgTX54o5zAiMLzWQIrG1PqwuqblHqoEzproeRICh5SRGex6oVSiLOHBMPjUT4cseBnXzkssOz6WhusKUm6131JqCKW6lzZEz4EOZAY6a1XuVofk7AiihIIsYkZiwDoTCnolFEpSYa4iOJptGbRtqz7Bbv1ikkp1ts1q+2GgcjDfGZIgVSrvsfTwHA6czwca5wtkxqH6nKFLskkQWVpBUl1Jq6BWKR6VfG5MlJrTUyXYu06JQt/AtJ7xitfCJ51Yp6zpkAVPGSqYY1M6S5tVo0T6C0onE9PkDIfZy5UQGkVSLSNoe9bur4l5ogLDmM1MUSscSwWHZtty2E/VEdYjyoNVq2AQAyJaTgT/Yw2hcYJd2W/v+d4OnBnDcP5LE6LnBmG0xPwOebMPA/MQSJM43hm2fW0rqXFSo1ijIyz53w6YVyDsY7JR+Z5wseZ7dWGRd+BMSxWS9xRKp+Hhwe2uw2L5ZKmbVitVuz3e0IIjOOIbRw2Wk7nE/M8S/Vp83yThkuVuTidwCCtY7pOSUkZQkLngs4FUwrOaKKfGc+Ffrmg6XqsNXStkwlsSqSi6JuOokwFNWrZWGtIGJxtSVZso7oobKNQSWH1SJwDOSTG8YTKnuRbyJ6mcUACIsUNFIQL0/QNTd+gjGyKy5ylCpzAnAKFSFERqzMXUL7OtVYVhdUCY9RPIsulPY36kKvCZYVtKp1JQWKGwY9khTgdY8CUmTYrYVpVBgtZGATPeNYjFyciSi4VBCxutZP3zCUTMiKwALJSNYxDYTIFbzPJS2PIeBo5H8+kkCArjLbkWJhHL04kp0RgiZHhNDLP1WWIR3F++pmyLpV5I/WiF6hnyQWbeeJhNVgBzA4TYQrCLCqa0zAzxIgHdNOAcRQlNe+LRU/cRXTWfNifGE5notaUrmfwI3bR0G4W3O6uKCXjjo4wBqbzSOjkoLjsGmZdmAnM8xnXtDSuxQJpHpmJhBVoHdE6EP2Ru48zN7vXvLr9+vluHNAttxzvHrh7OPLh0yOjTxTTYZuekGUKHEmchoGHhwce7u95vLsXMHqUw1upswhhV0RyEvfAZrOi6xZPDl0mOdiiYb1Z8+LVS7777jecDv8UcmY4nfjLx78i+oli5PBvjSYkabr7q7/6K0pOzOOZzaYh+ZHr7Yp/9k/+Ef/D/xD5+ZfAp+EkgopSEgFUkRyz8D6mE6/evOb2dsfbdz8ThwBKYtayqQVV3W2Xw22MGVIQLl1JNMUyDxOnw5HsE8MwknKi6XrmVEgFWud4+eoN2+2a1aJj//CBMI8k/3yHBhF2qliQRPCIKbFYLZ+mnpfDw1OFsxLhSBtFZy1OaxEbg0elRKklCGM6/Ufg3MuWJ8yeggx75mmUDX4VMPq+RaGeNvfaWZQVaHzKVZwJAeZJWg5zYXPzmpubG4x17M8noh8lD5oj83hmoRTLtuGL61tuNltW/RJjGkJKwlkyjt3VFYvNFtW2WGWeII8xigsxxyIRIHXh5mWE+SgcrlxBwSmLsHrhGIpoqGqr1TNGhB7O7BaWxmjOh0eO+xODVyy2L2q5gQy4shYRXitNY63w+c4TKCVuFBStdbRaYWNCJ0/fwKozrHtN2yjKHCWqpxKNMvS6YWF6OqWxpaBzrPDfcpkE0xpFo0HHmVb3RJ1pVIaQmUvkVLK0cSmLKxbnJ1w40ofE2ijOWuMj+AgpNwSvmafCOMpeVitHY3tyzCSdMbqQ5kgplqzyE6clFYFShyB7z0uNLqinPw8hMM8z8zTRL3uck6HQOE2VSfS8AkuMEVSR1IC1hCDMxGkaKy9Ok3PAz9KwGrw4WHQVzUIecc2GptVoU3CNCCzoi6AiC6lW1YWmNdZqmjbT95plD6YJ3CwLwSt+WiaGw5nBex7R3A+GbjDshpHv3rwQl3uBX96+ZcwZkqWhk6FjyDw+JH5++4nOKl7eLPjmtzse/ZajX+F/vOPdhxPns+I0ZqyCrl/RdCs625JiYZojp4M0wnaLlrZpcW2DcZoweFI2xChiiWtbsldkNClGbCMNTylVlIURl9gwjBJH7Ptnu285Xz7Pdd3M4lgTl1uu8GQ5P9pGPblphC2VaY3B6YQukeS9FBIQUUXz8vqK4q7xZouOa4Zx4hgzXUksdWJhNIpMZzOdTfQ207lEaAp9q1i2ivWqoUmGw5y4myMlycA+19p0BZAKJsuZStyC5bO4Un/NpW2oXIDnCJNFq4QzGUUiRs84nBnOB6bxSAgjtltjTUQT8dOZ3C6BSNGJorNMpahFE1VgMdah6l9NXkS+mCAX86t6hP5OAovSsrkdxolxHOXAeSG9Az5EfPCyidYC2BvmgVA8xhqG6czkpRLV2Q1t29EvWtZtR9s32MaQcmEYIwXN+eSZg2cODbHtyapW+nKZYGScc1zfXHP14hptDHf398RScG3Lar1m/7BnDl42WDlU58o133//G6yz3D/cc/fpPd6fMdaiTaLvNhiVMUqxXmxRTcMwzRzHI0pHXNuz3C5589UXPH78RAoB7UxVuyPFT7jgyLqQVCYkX90roswpZTD6AgUUPY0sC1LJCe+fd0F9GhHVdhJVEoUk3JGcIHlKmCFGTMmYnCmTTHiiz8zHkzzIJ0+uJwxVNCYoum4hNa0RipepDUaAuMqKC6iUTMkalTNt31aonWx6cwrEotBIXa/RFoOmeE8YJ/I4Y2ZPDp7sPeE8cN7vOT4+cHh4wI8jWkklt7eK6TwyhAlvZCKdQ0TlQpxm/CTvA6MUqmZcS8o1cpbJRktV7cVilJGIR9bkC3gpC20dCrpoTNIy2Z2jTKKf8fJe3DFKZ/qlRgUoJeEnzzx7tNE0pSWnLLZirZ7I/jEm9scj94933O/veDw8MIWXTH5gnDua1rC9WnHz8ppm0WKzwYeWpms4zSe01jSN5uXLJRAIYWKeZpI3JN8w+1neswasS8yTR+tE0xiCnwkxoJRi2Xa0jasZzCw1atqCKqw3HZP3zH4mZIFOqQxaizhqtGaeIvvHO7R1uK5jud6RS2byM8M4oqulsF0uWW7WxJI5jwMfP37kKkW2ux1N01YL+cR+v6fpGlzT0HQdx+ORnDOr1TNO1EMkX6pVQ8Rmg3K1JSEptE+E0yDZ2VJwWtFbaSdJ88zx8YHNRjggfdtIhXGdZIVxfJo+kS4wsDqf1AZjHE2b6kRWGmg64yp0LOLHkTCPeH9mGB9ZrRc0rYDesAHjNMY5cI7TNHK6n/j5j+/5w+9+4PHukcOnR8bTRC4FrTWLzYbr3UuuN7d89+p7emfoW4u1nTCRslTxqSybLlVE4BO2wIxPnqmMHB6OvBvek4LHKHBK0bRGGnDijLONOAqLsF2elrPnu2vEokhIM5FqW0KKzCkzBE9UkIzwN0JWpGzIxeGnSHQQHVJTH71k2ccZU+S9abWj+MycZqKZ6RYtIA1KU21tuWSUS8w0ztE4V39WEeG0Klz2CKpApy3GZBKKxhjmYcbPkfE84XMGaxkTqL5Dty2L5QLXLTBNj7YNBctivRMWRcwcPnwinEfu7h4Z5hO2dXTDgpe//ZKb3TWLfsHD4z1+mJiaM3m9omu1tHm0mpImcvZo1bNe9ZwfHzmePW3rsc7jjCf5A+8+HdExc7N5Hkjq070Dfnn/id/9/g/szxPKrXDdEm0bUvCMPnIeT/z+b3/P6XhgHAZKHRLV2p+nOIW1pk7MpPr4iy+/YLlaA4phnkjHAyEnjILj6cA8DvTO8r/5X/3X9NbQAI/vP3I6n2Xj1/a0rfBbhvPM3/z173AqsV22XG++ZtVo2mWLub1m+OZracaLPwnQu23Yrtd0tjCej/hp4Pe/+x0KuHn5gv/6v/6n/OXvfs/H+wfuHg5YI9PCHCOn0+EJYGs0lCTA5LZxtI0ml8j9wz1HdybEjGpaVNuis0wzTdfzzZ99z9//iz/nv/on/5g0nTnuH9jff3y2+6YQoKAAPTPzOBNzonESTwZxBAqENj+B0MU6msnBc97vUVozHY/EeYYs8ecUfR3OyVDG6Eu7iUEbKwDFIsM7pYV3c7u7YpwmZu/JbZEqVK2JKQoMt67tahyxudC2Ld99/RWL9ZopJj4d7xnGI/M8Ms8jzJ7d7opvbm/57suvWHdLSiwcxzOP+yPjONG0LVdXVzSrFb42phlEQPY+EEIixRpLSeIVLCWjc3UJ10azUjIpJrxPeC/ctVJd1c996WJwymCIPN69ZzoFsuppbQNZC2+rKJkAaVUdmQ3KF8oYaTpHh6JH0ZdMV0AXjy0zL9c91x2sG1jYTCwGsqXvG9YLWC0aNp3DqYDOEUpA2VQHd8Lt2XQdsYscnWXR2CfnwofhSIiJU47c+8DSOVptMQn8cGLymZ3NnDXMuXD2mZQa4qSYVeLYDDgyKhta15GDgORDkVh6UUYGjkGcU2SJDvlZ9gIlZ0o9SKrqRIg1Yj+PIyXvsNrQte3lA/InoszzXcaIWyOT8OOZ8zBIFXO/oJSM9yPjcMTPA6UE2saQ8sw0SwlC2xmazpLVXKcmF5+5+ZMRpar+BI0ylqaPLFYtu12Hdgm3MHTK8fB6weHxwPE4cvSWD6dAsSMUz59/+YqvXu54uex49/7ML3eeu6OnJA1qgauOkQ+f9iy7wotbw1dfXfOP//EbXr5Z8P2Pj/ybf/8LP/504OOHgeP9j5xNR7/aoVWHI5MoHO8/UXIgpRWb3Yq2aWmaVhoUg5dhkVKowdB0PY0xnM4njHNoU/c5RlUnuWGeR6yGcXw+gQX4PFCqTvMYpNSDJPusFGQooKACbsVBFecRF0ecLrRVHLnaLCQqbte4AnOOhHBCx44m7lnrkTfbjoWR0hBKZN1prlYNKbS82Pb0zqJzotWJRaOwWHbLhofziTxpomsoi16G6CgouT5zBXB7sWArJSYLVZ0pOWdpII4BafqcUWkm6YEkGEiGszQRGZNZ9JpXL5e8eb0ml5m3jxlrClkX+T21mB+KKgQyvmRSyTijoVgyicknZp9kGPErj+C/XmDRCpQiU5j9zOQ9jRXootIisKQUiSnhrDRnSDZNbLaN1jRWkxpLDJa2bei6lkXfoV2WWI4zhJRqPEesTSGKKyaBbBwQt4wqiqLAOMv2ekfb94QYOY0DaI1xFtM0jLM8LEMSkOZytWR3teP6esfxdCCEiXE6y5RIF4xVbHcr/DRRcsK1Ft1YfAqU2ibQtI7NdiPfc2Prl8OkTEqKOXqaEMAolFGi5Odq66xOjMtEQSJWFzaB0P8vFthnuXKq1ZRwqX4t9Y/yBpdJi0bU3UYLKTzmQEyQJk+cKjTNJzSm8mI0Tluctlhl0cxiW0d+W5VlA6SU2NEUiKpdqv0Lnqx1JKkeLbahGFW/7UKYJtI4oufAcDpxPhw47ff4SVR1P00SbaqZPqM0VktyO/kA2kKSaT71+7lYgS/T4Itd7SJBcZmSc7lPYjuV/6vatbNkVnXWkPUTsDPOzwsji1FqWXWGnGs3fFGkVIR5VB9il0uhhPFR5HMzzWP9Gpj9IDDiODH7EVSmaQxd30hsNgsDqWkbLg0ZWmWWK0t/1DhXKnxQoYoleFHMtYK+dwzHAa0zjdU4qymVPmpqJEUcF4rWSYONVElLi5EPplrbs1iAdaFtNMZY5uAY/CytLVEmISlJfjLmSMwRqy6tVI0wlRQMw0C/WLAI4QkOaa3leDrhOoepFaXTLKDK9Jw23FLfY7W9qkSp19bGYFAQM3HyUr+MCH221pWmkpnGgbZpoC24ppcoj5LYZbw87I3Up6qL3RJQCeEUGSe1e1lqyTVKXhdrsBomI+1uqETSiahlUxovD6ESOR89Hz4euPt04A+//4X3f/zAcBiYDiPRy4Q4U9hPiXHWjGOhs1uu10sSHW1rsCiYDcpOYrNRqsYmIylMpDgzR0/UwjRKOdEtO1prpN3AK9Ixkf2fWt357Ggrsp4815WzJheRV6VIJONzIhRpaipIXXmOhZwVOWtS/aM4+KLEU2dxqtjKizFGQxZHZ05Spa6q7bXUqGF1xtZJjcJq+9Q8Qc6gat1qbVhxWkmMycjaNHtPLIXTcKZoK9M0bWjaHrdY0K5W2KYDY4k1aqCNxXQ9q901aQqMRRFmL3yR2RNILI9nmr5h1S2Y21HEau8Js6fpWpxVmNYQS0JneT8v+47hITFPA8Mx060TKs8YFYj+zHjec3i8Y/Nsdw5mH9gfTtw/7CkojHVo60i5cB4G9icRmx/3e8I8iZ0fWdNRcmjNuQhsv1wOsfIM2O127K6vUdrw89v33N/fC85Ca3kWTRMlBFyr2S46Xl3veHm1pUTPMCXa1hBCIaiEInI83nP3acm7XzZcrzWNzlgyu0XPP/iz73l5+4rl+pZ/87vfE1NEKcVqs8ZZxWgUw3ng7tMdTdPy9//xP+J8nlDGchpmwuDFjl0boUoWiI+zABpdMlZLPPjJwZmtgLh13VcaA9oyp8Q4e0LONF3HzctrwnzD+fji2e6bRl5/pRQxFzkwFJn0ay3O1kx+cmOU+jkqMckzF+G3OK1Zdl2Ngko0Q1kB1CsUWVuMkqiWVhqUlrhTEV9Hax1d07Bbb+TfkRKpDm5Q9a99EFu9D2gfaZxj03bcXu+ISjNFj/dTdT5Fsvc0SrPuem42W5ZND6kwThPDMPF4ODCOA6pIY6MxUiNcjb8yhIrVJl+VEtGW6l6Sp+3L01eu3JkU/+OI0KXV87KX+btenWnROZLDSBgOkORnsJUPURA+V6mbKIW0QOossO4WTa8NnQKXKqcrzrgSWDQdnSu0psgaagvRGqxzNI3sDRpbUAQgoIh8LnDQoLJEj5yT1hslZ5TUyDMpFIgZjnPAGcvCKNZOcy6BMWf6uidOKRFSIWdN9IWgIn4yGFcwRdMYV7kShRIFKFxMouhLy6rEzy9tUxekwtP9rM+uHMV54C972YIMzJSqsZXniy8DqMpOucTefPB4P1deo7xPUpT4RclR9ihGBMs5nVFxEleAknbBEAIUg1aCT6Du8T/vpWU9Ms7iWkffN9XNqjBYXmw7li1onZg8nOdMOySWJpBioe0M623P118smWNkmifGSWp7DZbOtWgzk4A5zqQ80vea1y825OI4PU5knwnTkU/3R6I/Mw0B111hMFilmKcTbjS4RkNZVuOAkZheRWCUUqo7pAWl5DXLl/bLyz6s1HNvElE2Pt+Z4GmnXz/4n+OA1XJQeNpT6IoMUEoKHHKcsQQ6p+lb6DtoW0PjasohSsxNq4jTHssMamZpFVbJMAEDbWNoG0PTaBoLXaPpGk3rJLqqiqJzkljJyZPjTEkNl2bNS2MwWaDrJcnnVlEwWs4ISskZXwSkADGQwozVgaZVbLYrrm/W3Nys+TDvOQ9Sqd66wqLT5GJorKaW74m4osoTgiqTa7Nvln030i8UUyHGTEyFlODX4Il/9SdVGS21laUwTRPTNEHbPuWLC1J3FFKUzY0xT7+eUmidJXet5FtTpu86Fl3Hsu9JKtI6i20M2ctkXilqDfN/IrAoBB5JRhtN27dc3V7jupbxFDiezxhnpY7UGoZpYgoyFXGN4+pqx+3tDZvdmsfHO6ZpZJ4nscs5Tdc33NzueLi/Z54mmk42scJzFXBjv+i5vtk98SyMNbRtK21DPjGOgcl7eVJqydmWXGr71OWUoJ7sUDlXpoc2VcR6vquUKFwLBSVHSpJ6rJKlfaTUNiijCo2W2uPiGnwuNRMZRGQJgagCrWsxrsUZw6JpaV0rUyFkUlS3rcJZeWIHZNmwZjD155W6RwEnlyTVzunCbUmGEhJ+HAjnAe0Dp8OBQ9dxeHwg+JkcJAZUsmwgtFKYxtFGJxGGeZKHSMqYixRRp9/qSQD6fD/U5X91PelkoC6Wum4aLnWHJWdyKJSs0MUIZC4m0nMLLEniS1orBHBXWQIJUpTDgLBuSmXIFLwXPtIcA9MkAss8j3g/PYkr0yzwJ9sY2r4BLfE44yxd18q9qVn+5dKyWGraDs4+ijVbGaJPRC8P39Wi41HfY02hbc3TAZKScVZjtFQWG6tlcW4dbddI/Wc2xCyRpnkeSSFiSqFtFK5YUuk4nM/4JKKANfI6oKRCMCaxH+oKu3WNrD3DNLKYRkIIMp20Fuscs/esilSAtm3L6XSSw2l8PveRplB7daS9J0iVuzEVvpgycZrJIWK0uBIMte4wZ7lvjUMBpmnrgw+oAotG1a/L+/ciPmRMdUwYnYUNFaL8/K6p1dUa4yDmQMiB4grRyBQnKakADyHw87tH/vZv3/Hu7T1/+Ou3xFOCoFCxwZmeVCIxBs7nSFYTqRxZLu9RBoopNK1BjDSZVED5RDZa1m8VSXEkxZkYZsqioJ2m6Qy3L69prRVx5pw4zkeiD+Qn28pFYFGVYfNst42UjAgoJeGzVLL7lAiqkOuErmRThwZSxSl8D03JIrCE2lJWUsIZWwUWU1sExYqq6j27iLymWvgvjCerDY21Up95EYBzpsT8FAtyWhhLcgAtzPPM6AOH05l2scR0PW3X0S9WtKsV3XqDdR1FaQGB50KjDabRLHZXZB9RKKZxRM+WyU/4aaC9e+DFy1uW6xXrxRIoEr+cJxrlMAacMxI7zRFdMsvVgjsNwY8cH89YZyBPOJspeWY4H7j7+I6vnu/WcR5GHg977vd7cV/UWK+Pkcf9gU/3n3j74RfOw1E2c0piupdZcqzvo8vjOReJgUJht9vx6tUrtGvY/u2PvH379il6Mw0j0+lMGAZm72lK4Xa94utXLwjzgFaZftni54HgJeoznB+5+2j5qTNsmsTVqme77Hj5+jXfffMbQta8/vIDx9Hz6f6emAKb7ZZl3zJ2LX/88Y9VYOm4ub7lm28CRVnef3zkeL6TDbYGhWxi5cApzhyNxCpkM/s0N6MoRUIiJjhD0YZh9nx6eOTj3QOPxxO//fYNrb0mp1fPdt8ug6ZcBccUIwURGS9CCDWuk+vhIUWJX+iYQCt65+gXC/quYxonRuXRKYuzVssuO1V4p5THQlYgd19V6G/LdrXiarNlmqSeuyhxtGbkIBO9lyGDj5iYWC2WXK/W3Oy2fDoeCWFmmgdyDpAE4r2wjt1yxe3mmq4Rt2nwgcfDkf3xiJ8mVv2ivg7yBlTqs3Ce02cWgSoayE8HuouT5/Ln9cxSxRXhsOQ/Ofw9p9tv4Vp0nEjjmRJOWBqKTlhVJLohpuwn5oiEnA2mKFxRLI1laQwLpbDRo6JHl4mmBBaup7fQWhnQFCOMN20jTZtwjcLahFIisBQCqu5lVdagEs4YEc2cwxYBiBcrXUoTEEvhOM0sm5aFQwQWAlOJLEqCFElJDltEYRvpAmE2tHWtdsZhSFVkEcFPV4HlwmBTRSLk6YJOqIfgy1RVYLdykPTeP4lipgqMzx1fBp5YfNrop1KDJxAviIMgBoKfpHGsIhxCGEn+hEkjhUgmisASAxSLUQnT6SpOw4Uhoargq+sQrF90lHmmMYbOOl7vYNMbGpPxCc4+48ZElwPzlDArxW7R8NuvN5zGM6chsT8EQtKY4ui7Jd3CYhqDz5FhOtI1Lau+5ctrx92LFdMwcDgeOR7PwimZRpzTGNXitMPPCT8ZfGvI6VrWCm0paFISJ0QpEGOQ4YRSeD+RUqziZhWVoEJaq0DwjPvKy79H3kN1UF3jgPVXPIl3WmmskeP+k8CiPYuuZblQLBeapgFjFBflQamMUZnGRpye0WoWp2wdjqI0jTK41uCcwPqdKbRO0beazkmk8yKwlDiRwwSpl/gY4rDXsnmXGF2KAhivgyj9ZMyQaulYkwspzTiTWSwcL19e8eVXL3j18ob348/s90fm8YS1ka6V5ELXSCy3GDkXXab/pQjc4cJGbYyct1UdqMV0Ycn+utXy7+BgkYdNUYphmrjfP7Jdb7h5ccv793fMcyT4xON+z4sXN+y2a+4eDU2jWC0avnx5y939gSOKMHrJr3YtVlv6rmG9WeBax/uPn9iuNsS58O6XO87xTN/1mMZhY4NF8pjFFL749iu++uZrvvntt/zx5594+/4t7z994LvvvielxOl0QrcWS0Oz7Pgn3/+X/L3vvmPZ9zzsH3j78T2Ph0eUhrZzvPnyNV989SWr9ZpxHtFO892f/zn//T//F3y8uyfrzFe//Zqvf/Mtr7/5GoYz2hls17DZbVAuoofAeT7ig5eNutdyyMk81fpqJcAvKFXljAzzmd3NLYEAz9nSfJFriogtOQWZaiUv4oQqaJXpnKH0LY0qLJ3jzJlzgFOteE1zpKTAYtvR2UY2F7trurYHNKfjwLLtMMow1TYgUVTqQbOKAzqFWq1aQGlUEotbru0+qUhVVjoP+NOJMnvWTY8xAgu1VrPUHWm5YrveoFFcXV9zdXNLu1vTHPc0xwPjHJmDl987JFojTo1UIjkpSixkn8jxUjt+MW1SbY0XFVWYNFZJg1FjLSUkVECEq6IxsYqkz3nbgOP5BIC1VhouagRonmeOx6O4wNqWEDwF4bCs12vmMDPOM4+nPcNwIsYZY+B8fuThPqHKmfWmYbvuWS9lEoXSWKPYbVZMuy3TeOZwuOcvvvqWkgM5RfZtx93HiXkW99O7tz9T8obrq5Zvvn7DcT/x4f2e+4ee4zFKZGE80DpH17ZcbTfSaJED42HENkZaarRitV7TdVtKyXx6/57Zn8gVtLtaNZxGzzCP3N9/ol+s6PoFwzxhmoaixTWzWC6JMTIMA+/enzmeTiit2e62FKXo+p7NZoMPEZ0EjD1NEyEEHh4envXemQr1KzGT5kDC4myLidKUsLQN8/HIYtHSNpp5CDirBDqsLX4eifOMP4/srl6AFsZRSAkfR4KaRVRUugIENVYBQQ4qXYRWO7LTUrfoRwoF2ylc53CuYdHAKYyMYWb0AzkUjueJj58e+b/93/87Pn4c8BM0rNh1NzjToNF0TUthxucJZwpXL1/z6vVLfvMX30FlbP3t25+43axxzmHtkeX2GpxwmaYwMc4HlE5cXS15/c1L2k2LWzfkJK0b2UdMoyg6k5R8uFRlIEkG+TKNeL4rREVMipjgeB7JqQJnFdJMorSI5Kq6yHyiOBH8pFVmrm1VsiltGwH/Ka2fmAriWKpAOZtx1qK1APKsNbRNbfpqO2k+0UCpE0UvHI4cE846lDEoazklz/3+wPE8YG3L7vqG3dUN1zev0P0Ct1zSr7cCbdSIjd0o+dygaV3LAiVOl76HPyqmjx/YP95x/OsRVcA5x26zZZ4mCoXzcKYrvSCOo8cVg4kBsset1rLRVpHHuw8447A2cLXquG8NIQx8+vTuGe8c/O0ffuTnd++53z+imu3ThPHjx0/84YcfOA0nJj9jaqvOxcBOpg44xB2olLDTcpKDfMqyTrx885rNbsdPv/zMj3/8gcPhkZwiP//hD2ydZWsNrdYYCjd9y//xf/+/4+3HD9wd9nw67Xk4HHj3/h3/9t/8a4bTidMh8+l9xv35l3z/zXd8/83XvLjasVxfkXTL62+/5+qLL/jbH3/g3/+H/8A0PLLuX7LsWl68fMWPP/6RX97+wv/lv/1v+Qf/6B/z+uVL/v6fe7wPDONETJHp7MFZae3TmdvbG17e3vIXf/Y9pMTjwwM//fQT94cBrcFpKw1ZtQHR+8DvfvdXzPPIctHw3TdvuL3a0nbPyRUQWK0CHvcHca4YI3HbXGqDliHFLKioDOMwsbENV5sl/+i77/iLP/8Lur5nnGfu7/dMU6CEjHEOq0WEnMLMerVGK83heJRhWMxobVi1Hb/9+hu++fILzucjjbXy+bIKn6t7JkbCOIBPuFT49tUbvv3NN7x885qUIo/7Bx4e7vB+ZDqfKSHSFfgHv/mef/Db7/izr79h1fbM48jsPe1mx+PjI3Geubm6YhjODH5ippC8J0VPCoEwj2RfIEvM4k9Vkj9lyEkkKNa6aakzzilha4OduG+fL2qip5kw3EH4xD/7h7/h/QkOoeWcI0pbcgafEnaR0VbhnKEcA0vtsIsVv311w85pTBhJ+zOZma5X3K4dV51l2WkaXWCcMa4X56fR6H6EJjFzxKoZygTMmBq9F16OQTtL12turuDDpzuaheNqu+HF5sj8MDCMMx/vPFdtB02Hy55XK4dWilMILExhXyI5eHQQqTVExfHgsVn2kk7D9fVWmkXHkTiNIuhZSxhnSNXlud8LJycluqbBzzMKWVNDda1cOCvBiwOtcU4CN0rh9PM1HAIsFj3bzZrtesXsZw7HPadhQGmEmZFFSLj79B7nDOvlgpxmzvt7lH/g610DOtG0htevXrHarDF6gdJLKA7lFJhCLtJKVFAi6piWNi5Zb68YPn6ibzrabo1b9PzNu0fuBs99GAlz4RACRY384W8/siLz4tsd//Af3rK96fnyqz3/5//rv+b+IEyp9eoNv/nuDddX0C9nfn73M+PxxPk48vh+5t3HR+4OR4J/5MWNZhsUo58I6aO4K3KD0SumcyTnidVmRYgC8QdLyjWiXaebufI0x+PIerejW3Q4J2UTqbZFoeQ1HMfh2e5bCpFUkvCGUMzeC0T3MrypiYHlUloiSxGOpioJpzMNM+u1Y7szrHeaVEZSBJTGKY1rG9COPAwsl5Bbg7WyN4lASJmiG4HJdi1zDKC1VF9vOvoGTFHslo48HYnMoC3FNuga+SwxSX9tKiJiRg9F0dgGreXMFcLM8bDnfBYAvcuBdmG42nV8+dWCV2+uuL7ZslwtxBVdIlp51muLs2Ig2C4XnHXP2VqGGDG9oZCIWUwSsWRCSdiuJZ0nKJFcRJwmlycX4f/S61cLLK5phLVSJ8chBGKKdO2Stutw7QTnicnPxBQpSujSSksVUte1LLoOPwuQSuBNhZJAK4MxDc61LJYr5gDDEDDWysMjBiY/yzRUyaG9XbSstis2uzWudwzTmdGPuLahW/bEmBiDR7eW5aJhuVjyzXffsrvZCYju/YCvbBa04vr2luvbW9bbLedxxHUtTd+hnGMInikGbNdx9eIFm6trmr7nfDqQkJaIpm9RkxwEtDEySa+kZ4lWUP0PcoTPJTHPI7kIVBIrk91iCrp5vgehUokL3EyVjEYqe3MW0OkFgts4A43DUkjaUnwi2iC1oMoI1IlUYzgGZ4wQ/NsOUDhraV0jlrqcCUUAxKWyGoqSikFdVd5MJUOniM6VLJ1Sjb8k0jgQvUyilssF19dX3NzccHW1w3tPjpHlokcrw3K5ZLlY0C2XYulPUvPog+fSNtIYi7KFmBU+l1qvGCQ3m3J11FBbnS4guc/xC2OkhtZWRozVMmFz2TBnoXC3+nmtnCH4p1hSypGUdHV1BUIU6/g8e0LwXGoA26b9TH/3vjqW5CuGGT8bxrGw2aywVsl9V5Audr6S6gGkSAXcPNI4zdXVinmKGBtQakarwOl0om0SD/dX/PabbzBbB1nxww8SByxRVXFGNojOQNtYYoQxe8jpaYIZ5hNX2xf0/YrWwfv3nzgNM9Ps6RcNIWeG2TNOg0QbnGMpRMqn6SaIGLVYSLY0l8I0T3S+f4osGmvIJT1Nh4y1Yv18xknDxRirK+Mnh0g29cBQ1JNzIcwzqdE4JwA5XRlAwnOS9TGkgPcTujZ2KSWbapIAdNOl2UopYXVcxPo65VAZ3IUtUiqkOitU0ljrMF1D2xqIltPgeTzu+fn9A+8/HRiGArmla3usXWJyhQ8HSy7SuNatlyw3L+g219A1oIRMH0Y5DzklLU9t21KcHOxVp6FJoBK6a8T1UhLBj0zjSSYauSAJ6ct/LvR3WUdlYvS8kmaY81NDRAwVSl4SUo4m8GCFQLgv8cbL5LlQakQ2kEvEOrHoUp8BF6u1UqoC3QoWTdNIjEXVVq++a2mbBuesNDwphE+RMr5CuimFxrRoa8EaDn5mKonsDKvdln61ou0XuKal7ZeYboFxLROQlMDGi9Ioa5/gkKbrcFqxayym0di+JZbI+4/vOTw+slx0LL98jdHyHAhRYHoqaKnuJaFihBCgy7RdS9u3nB4nzoeBrs20DSwWLeMZhvH8rPfub378kbuHR+YQ6TuDD4Fhjnz8+JHzcMJ7L/ErLffxyRV0iV7CJQ/6NPUXV7QSUX/Rc7Xb8vLlLYtFjzOaEjz7u088Xm057x/Z3t6w7Hv6tsVaze3tjofjnr99+xO/vNdkf+bj9Ya9zuLSUonGwKJr2K6XXF9tyEreW8tFy5dfviKrxDidefdOhGhnLb/97jd0i5b7hwceDw88Pt7Tdj2rZcerF9ccjidOw4ipa7nAbWUKvega3rx6yarvOR2PrFdL/sPvf+DheJa6cGNFUESEjXGauLu75/d/8zf87q//mvjt13zx+iWdeZ6punEOdXGL+doYVw+UAmmUocKFMaBywSnDerHiertjt97SNS3OOmLMOC2V8SUHuqbDWHFHei81x6lAyRrvZ5TRrNdrXl9dc7XZ0tqGY4ifeQuX5SVncgjoCuFfNA3ffPElr25fsFwseHt6ZBqliSrMM34Y6IzjZrPjZrtjs1zTNz0aib0ak8EE+uWC0jVsd1sWfUdQpboYQm3HkMEGteZU15NbvuQBUE/RoBSTVEjH9LnLoFz4NqW6gp7Pw1KGgbYE2gZe7BoCkTIU5jFAccKDKdLCWZC1PsdEo+Q9fNs5ei0Nd0OY6JrCUjdsnKGvUSOlC5iGojoiMOaZuRhIhcM807Uy+DLaEkMdOBRdHYHiSF8sQOl9XYMTV+uOh8FyHGEeZqZhJrgZ3XT0zrBsYdVodn3LacqcbSJkgToXrSm5lcOsgkKkbxxBFVL0ZKmSk6rmKA1yKIm7X+D+T05o/acdWTydE2KMT87/izP3uSNCpjZNGmukhjh6UgwSQ0biTNM04OcRo1ooiRRnQJ5r2+st1y+u2V2vWawkxqS0Bm0o0u5Rq3AvsYxLO4xCWYttO4zrMLbBWcvGtry8WvL6esXffpAzZCiKaOH+cWJ/8syp0CwL253jlV/wxeslMY8kPCEcadoXZBJ3+wO//PBH7t5/5PHjI9Me7g8HztPAoAa6fo2zPW27ol2sOY9wf/QchwOFSPSFcdgTixFHkjKUPMvnKwaM/Yy9yCU/iZrGWC4fvMszPmep6H6+q/CnOx5hW6Ynga5U18VFsCaX2qTqIc7YJuJswphCLFGehdqCkmamaBwRRXEau2gpAbLyTEnEldMcSCTuh4n9ODP/8jMlKYbzyKdPHymqAbtE47BKGCc6VxePtkggtBYTlM9RplJ/FkE9pKeYlbylpE2z6Qxtb2gWwn3Ttka5Y6xNVhq07D2h0LUtJopHUasaW6wvXsryvZWaopBLPRUuXIZ4v+b61Z9U42rdoJIOiJgSKUtMp+s7UcyUZMFDjJRSsM6hENhl27pKxhaBJUWxr/sQ6WjRxuHantWmMIVCexqxrhEqes7M0YtNXCu0MyxWC1abJcv1AmM1wzzio2exXNAsOpQPuLmhXXYsl0uudzvefP2G1liG44lhGsTaphRd13Fze8tmu6VpOz49PgrIqG3JWotd3GhW6zW7m1uWmw2mcYScyCAHiL5D7WW6p7QcmgCxt6ckhx2lhbZdMjlHfJixTg46y3WP6y0OSxN+TfrrP3+pJ9oJXCoMVf1gQqwbKTloq2SlAYJMcJ7ZOKzSOK3JWkQxg5IvpWvOVT44zgpI7NJaE3LNnOaCcmCKWG11Fs6DQuzIqi5KVvHEbck1m6eLZHBXyyWb7YbtdsNyucQawzyOtE2D1lJp17QCMu2Dp5s7nDFPMQJVwBkn0zAjdd/UppfoQyVVi4slX0ZET9Zang5VVhucNjjjaLTBFo1OGl98ZV88s8CSgkz0iq5VyxLLCCHIwqIU3ntiDPJAL5llv5Qq5FDtdSmKb7gIUDjEmeABFmhkkptTwI8T4zAyjgPzPBD8SEozw3DGWMdms+CwP9H1haZNWJc5nwYOh8T93QPfffsty0WDVorVopMGjSwxLnHaR3FKNS3JQimGIN9IFVg81tyyWrYsFjLR8ylymkZct8I1Bq1hnieMdVjXPFmqL3lnECGs63vatiWmKI1nwWOrkGKMRLouk1JjrdS/5/Sfvwm/+vps5cwxkUOqcNYab8kQZ0/qLLRabOH1gaKcVB3HUIhBHtJWZ7Sq9e/8x9n6S2zShCx16eXyUJH3vq3v4Vgg+cQcowheDqHlG0PjLOEUuT8MvPv4wPE8Q+lxtqVpFzjXo5Op2WwoSmNsx2J1TbvYYtoFXiH8HWvqBrSAVsLHaRr5+0aeJdhELqG6yhLERB6lTUpiM2JHzUp4Oxdx5fPXpYvo+USWGIrAuFHCMSiJXIrA3euyIFXxFxZT5SDVrtmYU7UMJ3Hc1fv41FRW/1lzycArad5KxaKU2HXbxtE4qVtXF+5C5U7EFMlZquqNE4h4VIoheJLRONez2m3plkuarsNah2talHGkDGOKpKzFsWGER2BURoVAEzwNhb5tWd1cs/UT++Oet+/ecj6dOTzuef3qRW07UjJkSQkTEzpplI4QI/LmyLRdQ7foKDkxnc+oBL1r6dsWPwXO4Tk3nvDT27ccTmdiLhSlmWbP8TTy8PDAPPvPk8Wn5b3U2EWNHNbNVkGmgZfNrK7CWuMMi75ju92yWLQ4p/FD5LR/5LzfE8aRVd9xtVmzWi7ou5bdbsXVeY3PAowcN0u+eHVL7+S51DcOqxXOKJxTNG3DeYr4GMk0NI1mtZI48uHwkRQ8qSRe3LzAtZbVZsXh3x7kM6MVfeu4ud5hjawnJkeZiMcgg5+ccVqxXvS8evkCv9vSdS33p4E5y6EVXTe8dVAUU+R4OvLHn37iL3/3VzTOsNuuWbfPI7BoYyn1cxZjfGrDufAnioJSa+2rzQinLevliqvtjs1qLbWq2mKNOLuMMlCQiJBxT1yScZZI8TR5Ju/p+pbFYsntzS2r5QqrDCkKA0NrAe/mIp+9FAIOiSPtuiVfvHzNZrtDNYbT8cg4DvhZeDzZB7pVz8vrG643O1b9EmcbyfZqA8ZQVKFb9pgC682KruvQMTBG4V6kJIDHkushrx7aLhJJuYD7iggpT/b2J2YLQI1ZXf6Z/+SA9ne5yjjQtpFNC7drw2GKjCFjhoDK6Wm9zipTlDSBlHwRWAzXncPoQsgR70f6xrE0sGpM3QuKqBx8Zk6B41S4288Sw3Pgc2S5FE2/MUDINBqsBleEx6frwcwYCyhKimyWLauuoTWawzkwn0d826A2KxpbWDSw6jRXwXEYEkcXODDIupENpUgRhbz2icYaNJZgDSl42bea/JkNqJQ0DWVhC12qmp8iYZfXs3yuD1dGP8VQLlXKz3nZWj2uja57x0DKkbr6EVNgmgZC8DROIno5BSBjrWazXbG73rHZLWi6+ASw/zxWyp9xOJcIIlQXqsY0Dca1GNtgrGXpLLdXS17fLNn0D8yPkRyhYHjYDzwcRo6j58U1rFaOm7jgizdbTmPkNCb8/Ij3I6nMPO4/8cdfPvL+p7d8evsJfyicxhNznCjdzGYXWSwTi37B61cbDudILJHT+UyOhaQV03ikmE5an9DC4UGe7cpYEVdq3XCMUuzSKn2ZzlZ+lKqisX/Wewc8ncEvg0UZxqUnnpvW+mkIFWMU8SxFGltomoJ1hUxE25aiG1AdIRWmCGOOnDwM0ZPmmTQdQStGH3k4jYSiOBwHjseRHBIGTZgDHz99QJmOpo9EvcLpGjfNqTaqSQzosmZRz6BPn4EildPUz4cxqg5BtaztTqFMJuOZ48QwDYBmnEZQBddajC3iZkGLuJ4kEnpZN1V97S48nVKFv8vQTmuDNcIX/bWNa38nBotzjrZrqwVQpljaGHZXV4yjp7z/yOFw5PpqSy6Z5WpF9Ge0NXSrJdotyabh/f2Bh/2R+VDwqtBslzTLNVcvXrBV4Pkjh8nTbdZkn3FtRwZsa3D9Aus0X33zmjdfv2H3csc8jxzOjyQiX3/3NcvNinGa6JLn2813XF9fcXt7w5d/73sefnnL8Gnk0/0dPkU2Vzu+f/H3+Orbb0g5czyP+JS5fnXDcrXmPI2Y5YpN1/Ptd7/lq+++Y9k1RD8yx4hyhm614Pr2lo/3J2IRsrGzjpIzPowVHJhRKNrVmpwiKUCMM9/+9iuuX97y5W+/ZYqBu8d73n388Gtv03/mxnEJ71X4yKWSMpKz2LOMMrLZy0WI7UqRmkhsPK229LYBmynxMzD2ssAYLQ+wzjn5kFcQ1DzXaRRFpvJGSTtQimhlnhg06olJo3FGY6zD0AnEM0SsNlxfX9F3LcZKrOqyll+yyBfxoSAuAGcEvqtr9Mdpg21aYjGEoqW2MxXyHKuVs2DKBaBcs5SXaUP9PQyaRht613C92bLtNpisCUNgfJhERHTP5zwCmP1QJw2QSoCYCcEzzSMxeCiZcRwp+dIcFFn2S3yYmfzIeDqRvYck2WhFghRIEVT2hGlgODwSw5mPn+65f9jzy8/v+fj2LSVH+tZSmHj9xRtuXr5EK0vbwnqj0Xrir373C/efzvy+ZP7st7/l9nrHbrvgv/jHf8EPP/yRt2/fcvfpA8Y4tAokf8btOtbdghe3ax4ePkl8JcycxzNhPpJzS7dY8PV3X7B6PJJ/+IX7R3F6dX3D6e4gm8mY2Gx2UgtrLBh5PxhrWa1WLFcr9oc9p8pkWiz6J1EFLfBC6yrUdy4iOjzjdXEeqSIUd6MsFSSFQh7A5/MJ14AUBgjI1hiFbS39YkGMheE8M55HFDNWOzRWFn8tn9unB2nwxGlGxcp8KWC1xRkrDKGa69do4uTxcyJNZ9qwwPYtOMvf/OGP/Pvf/Z6//psfyEpxc3XFenHNbnFLz5I8FyYlOXWjDKZpcM2CmKUSeH535sWqw8b4ZFHXBZw2mAIhCezbNBZjNDkVpmmEw4hpCrrJYHJ1ilUy/5N7JddidFkvnm8W+/nKAVBGrNIVXvc5hPT5wG2rCyKXJG1OJFIulRcWxKmnJacseWKYxxlUdUP0rbhjsoLGyZRdy3umbdo6/Ur0fS/NJTHK2mQEbNsvlqyvrjiNI4/7PaMt3Lx6ydXVNX2zYLPcsWhXtN2KcUqM5wP7FPjgJ8aSmYBQN18heKbjkTZFelXYGsOLvsWWTLdcsuqX+GHi/t1HDi9vaVcdprVkW4sWlcFqS5wmlGkwTQcp0C9aNts1XdOQpweZpHXQdQ3zrDk/n3MagF8+3JGyxnULfIx8ujtw/3hkvz+CVTUXX4hBJmTi0tMSK6hiV6ntBdRabGvEcRrHM9PxwHRe0zWGm+2ah9WCXz6+ZzpB8iO9M3z79Zdslj2tNaQUaJoe5wqHmys+vP0JXl7zzZeveHx8YDyf8cOA0YX9cc8v79+jlOFuf2R/nvh0GPnj3QOnSeKe+/0j4/n01ND25s1rbl/ecHW95XgayLlgreXV7RXLzrHqHOdFy6cPHzlMZ9CaFDzzMHD34QMvrnesN0s2uzVRG5rlXzH/debjcSaVIC1h1qGQeOoffviB/8f/6//J8fhI2za8+q/+ybPct4hsrEOK+Jwo6rPw7ZwjXdr7UhEyaSwsXMPr25d8+9VXfP3VN/TLJUUpjPOs1lv2p5F8GpjHQMyBafb89NMvwtQIkeE84NY9L17c8Op1x2azo28a4dFkiUo54xjTxDSOzNNMHCder654vbvhm5dv+OLLL8BqjvPAL7+85e50ZH8+Mp5O7Lol377+gn/2j/4Lvrl9w2q5QruWmCayMWQMWRW2V1s6a7je7bBWcR5hCBd2ToQcsRqMtqAbClITnpMIuk8sllwqIFhcLKXG3kAO0+pJWXxGx9/pkVU383KheL2Bh2PkNBR0mkD1KF0qdkEYQCCcuqWzbFTHN+sOXxLnecb7I7f9LS/XDberlnA+ME0z43nir374wM/3no/7mb95dwItcM712nF91bJdNWyWDTfrBTfbK/q2ofiB7aqXfYFT9KuVDFGi52bbM/gNMXo+/PwLe6vZqAKvrmh7WDnDC9Xxte3EMewz8fGeKUZy0ZRi62sORUVaJwyficw8nHBNRy6K4Xxm9jJcJsmBVhy0Fd5cX8Yn2G0ptTklooqRYaY2OOuehrXPdTWttCgaYxjHoe4nA9pYFJngJ477R+ZpYNFZlC4EP6GRlsjVesFyvaRb9GhzBl9bQrVCmQa0APSNcShdq/5CJivAKeyqxy5XaOXQTcdi3fH9t7dElfnp05E43DPGjCmW3//hF3Q5Y5uR/8Nv/5ztwtF0mf/yn3xHv+r549tP/P7Hv+G//+cfmePA/eN7bndr5tISVM9PH35ims7ENJHswMdPj6xWW774IvFP/9n/mjeq4fpmy6eHf8XoxY1y2nc0i2tylmF4SpFQFD4YgcSnKCkNZOBnRytuYFX3ldbSNI4pxmcXWC4ylsqFnKTV7DJwlYiQOGe11uKgmQVe3GjF7c0119c9m22htRrbbwm5Y/KOx4cH3j088n5/4K/ffeTd+0/sP33i+OPfcrc/sD8PfDqciYm6J0lYDN+8ec31Zo1Oij/+/J7F8ordzdcsGgNBcZ4GcrtGJyvw9UscN1bxv4qQCmFKGqOE22gNxhlMY+mcYkoP3D2eieMBM/3MsukxuuMPd4l+4bi6kdiQJVASrFdbnAeDlLAkJH2DMsQQRbxppOxC2DkC8m2sqQOKX3d/fr2DxRhs42hTR9PKRk/U/UTX9/R9j3UOPwfGeeY8jrSNpWQLVhMVlMZC4yiNY0iRlAxNKRzGicdxoJknbl7esn31gnPKrH96z/HukawyPs3oIgyMbtGyvdrS9FKy9XB4wLWWq37H199+yewFJrhmzc2bW1arFYtFz+wnHo97Hk9HMhcmw5bbl6/QxjHFiSkm+uWGKRbGw5G3Hz5wDlHiStqyP5+JMaCiF/+HFleKWPeloadtHdYYQkyEOZBierJDqVKI0ZNLBBJffPWKL779mq+//w0zmRfHA7cPz0fpLyVVF4Yo7nU+9WQvKwjkyBr71BVuXUPuFqQu0GiLSpkSEiVmTKG6WHQF21bgl7OoCSgFZ8xnN0c9qEiTkKjBII0opIyqDUAahVFgFVilsc5RLpPsxtE4sRMqJRPdUuFvzumqOtoKh3Q0TUPrnDQESAEHCi2HoSq+iHdTJg0lladf9/TapIxO1cFSClZp+qYlLVd014arxQ5bDGlKhJPnfDwzDtOz3TeAkDzKlPpQjxXqOhOj0MuJ1dGhNH6W6uZ5EsHC+1kmKjmhSxYOTkrk6Ilz4nw88P49jOMebRX7/ZHjaeDu0yMlJxZdy9VuQ9NI3j6GiaaNbLaQi+V87Pjlp47DY+T+0yMf3r6nby27qwWv39xSSqSt9a1+HPDzwH4fca5I3OvqJX3/knEcGMYBpSJ+PvPwAMuyoSiDtrBc97y/eyQXKoPHkFJkHEf2j480rqmxNXFPFQrGGvrFgqHmX6dpqq1B9T15mSBpTdu25JyfFUam6thGU50ONcOf5lm41wWcsQQ/yIEpWELy6KLQGDIZ23c4ZVi6Fj/fC0A1RFbdWrL3RSaWRlUwaiO1vtlLfCz4gK0tQRpFKkJNzxpa4zDaSFXdEEghE7Xi/uGBkDzdsuXPrr/jxfVrlu0Glzu0t8xHDyEQQybmgg+Zu4c7hnKimSzNlLhq39AqTdFy8G6MY2EcrXGoEglF4KrZWLSy+GxonMI2Bd0AteXjwljRFcgn+IULzFnu4TMnhET8qk9WDVXEVWQyulRwsb6sBwVXralaF0qNzaSc6jTEYp2giHMueC25+rZrnqbsuSRMVlinam2mlTWqqke2ccSUySKNoq0VsbJtiUo6NJJSvHjzmqvbW9brLaZYlGnxGebDmZ8+3nF/OvPhfOJ9mDjGwDlGPIU5SLwwDANLBUurue0cXywX7LqeXduilCbOniEmjo97TCP1nLaRVharLW3TcRr3EDzaTzQx0DhHv+hZLJbS+JAiJWWsaWhay2L1vIeGohq0MaRieDwMHE4D53ESR0S16svHskY/1EUuk+ocVaNcMiRINE42S7EUDg8PfPrwDtsajMq8eXXD9PiKhx9/oMTANJzZ7+8JYSInSzGFnGcoGUNm3XV88+Y1sWQ22x0hBvb7R+4/3ZHmRIiFdx8f+HR34OPDA4fTyP1p5OQTU0xMwTMOIyEIePPjxw8oJe1GV1dXbHc7ccdqw/5xz2nRseoajp1jOj5yfkw4BY0R+Px4OnL38T2bsGW93fKbb78mKYVqGv67f/6v0DGTSVDM0/M2hsDbn9/yb/71v0UD/9tnElgubpmsBBh9YYXk2pil635AFepzOtM3HZvlms1qUxkjUoGtlREAe8wcjyN/+PHfEkJimj2//PJenGQxMY0zemW5utlx/3iHGka+uL7harViGifmecZHL/W7fibFgNOal9fXfPXiNd+8+ZKm6Tj5keNpYH84cDgdmeaJ3ra8vrrlzc1LXm6vWTYdBmn3CwUpD0iR8zTQOo1tLKhc2ys8MQmw1WppOHbGkLSqEcRcoyblaY0Q0+9lZZQ3eUoFahypaVr0U0Uqz6axdCWwdoVdB20+03KmQWFSQ3bpKWJVJMiKUuJU7p1l61quWsMYIkolzipy3Tk2VtOURBxnTocTn+72/H//xb/h92/PvN8H3h0hFtlrLhaO9bqwWTp2q4ZvXt/w5euR290Vt9trVhtBDqhcWO82TJM0KToTud4sSPGa39uGOHrOpzOn6Uy3aNDWsegM22C5ag3HznDoIZ5nplRIuXuaV5YciLU1ihw57A9kZXF9ZJ4mZi+iirOWQpJDY3V7X+C2lzYo6qAk1dY/KYKgTvOf18HinJMBRykMwyAu6JRorQUKKQaJcJaE0eCMNNFYJRXE0q5T3RNKVYeQBUz9mTJF54onyJcCGZLKFFMwrUX3Eu/X1qFbuLpu+cov+e6LFT/+/j2xBDSW4zDy/lHzw/uWwwDLXta5L7+4JSuDdoV/+7t/yS/v7lluVnzzm++wxrA/zDyOM0NKzLmQkkaXnpwU5xL5+acP3H2849WXX/H3vv+W//Hf/Y4P9yPzeGQaFmjbUVSLUTVmWYXglFN1kXuwDfM8oY1hsVhinUSCtb6IHIoYns8ZLa9jZSkVceXFGIkhyOuea1kFVVQtpQLBK3DXSzlGRqPajqg6jpPiw93I/+f//a/448cPvL1/4C/fveN4HPHnAe7vOEwTvhSitmjbUFSimIxzljff/IZvXr+mUYpf/vieYTgT8nteffnnNF4RjoEET9DuUodspTatlZyE71pjQZfz1+U19n5iKvA435PiHffpHfnU0ygHqeHD2LG7WvHiZslNe+a2b+ibBYvuGoMXMHjmyQWYUczzJOdE62gbYR0BWKNoG4uzpsYx/5dfv1pgabuW2bfkkuh7g9biFsglY53FVVU0+IAPnmEYadultA8ZTaCgnUW3DbppOE4Tp+CZKJyLZySwnwei1YwxQePot2v8OOGU2Geb1tJ0lrZrWax6jNPkEhnnkdVawJdXN9c8PBxAa1zX8OLVS9quwWjDOAwM00hIkW6xYLlcsV6t6BYLhmnmfi8wugQkVZhC4O2nj9w97nFNi+l6/t1f/k4shhr6EnC5oKLYx8QeLlN0hRys4qXpJhfKn3xQiypYZ7i63nHz4orVdklnFG7Z0G26X3ub/mdXKdJacRE5LuZ6xaX6D6Bm0+ugw2pN2whAtXG1iq7+DOri0c+F6IO4c1KuzRIzYZ7q5Ppzk0oqBV3K59aPmtEstZ4LqEAvgXoJ2EuTtZE/N6IqyrRY1VYBcZnUlJ1klBFbma28lKfvu1zMi5ITtdqQgZQhh/T0a8il2hsFclhSrdCuzUMXAUc3WUB4WMCxXa3JPjE/s8CSS6QUTSaKIFeUvM9yFHZPKgTvwTpCiMzTzDwHQhCR5ZLhLjWGJXnNusmcBoazxuhE2zUoCq21rJdLVN+yXHRcX+1o+w6NIvgZ0xa6HtbZcPtizYvbG1TWHB6PfPp0x2rdsNk2rFbXvHh5g7Wa6Xzk4e6OeRxIyTONJ4LvUGT6zpGzIwRpR9jvH3g8PWIP9yjtmEPi8fA/EfdnzZZl63ke9ox2dqvfffaZ1Z5zABAgABJmiGFJVjgs2dd2+B847D9m3/hKYYfDDgs2RYuQKBDgwemqr+xzt2uvbnaj8cWYa2dBNMPmwY7wjNiVVZVVmTvXnHOMb3zf+z5vzc3tDb0TIGyaJrgUYb1er6jKEVpZMpMTxGDnAGxu77hRe16UGFQRQz4rMDSOjUH195cAFSFtJsOmsQfc+a5HqHRY0ErSNkmd4Ia1IwTD3hcqjEZIjYnJguJ8gojntoQo7gCHQaQmi9UGaVKBJL1GOD/wkPzHqMgYiDIR5pWQKB/oG4fvHb2ISCUYT0ZgFKcnjzhanJCbEhpJc9Oy1lv6uqVt03vTO0e7c8TM4bUh2pR+YFUCMhqph9h3g0bi4mCxETKB+4RGSJOmgDqASp7tPW9AigTH81Leyd730vN0iZ/8/T/8EkOzWfz0n4eptiRZT7QSuJgOfkoJtBIJRMtHGbiSSYKt1IBSHf57m1nKskjsHzkcKENEG4k1ljzPUjP+bl0enp2Q5KzSpBhybSwekdayLGd+cMB4OqMoKmIHwSfL3fq24eXrN5zfrni/XvHBNaz6no3raYnJSugcvmuZaMkkM7iqIHM9OgQqpcizjF3T4rqOZrvDuTEmZMN7lg61WtnhYJcSKYLrEUpgjCEvCjqlETHxY5RRyQ5j77fB4kICB/so2G4b6rql69zd5y8ECTYc/NBpSf/fULOmv7/jsjjYW7SCZ7tZsd2saOsZ46rk4ekJ/XrNq8mIbrOhbXcsb2+StbK02LgfbASUSFagk8NDhFJM5jNCDCxHI3KTcX15i4+R5XrL7fKWq5slddvhhEIXI6wWuBBS5CYQdZoyex9o2xZtDKOqoigKxqMxVZ6zLgsKa8iU4PJdzlILrJZkRmG0xLuOpt5R5BliPOZgvqDzgS5E/vW//U16jv1Hi2ySRER2my1vX79Jn+F9XWJosJDUo3eeAlLjIIn19pJ3hpQKS5EVFFmBEJJ619D1PZu64fpqydXlDRcXl7x68z5ZLHvH5eU1DAfXpumINezamr7vKINkd3rGw6NDYvR0vkvMs5gGY1om1dnhbMHhwGtBCJq2Y7XZstntqOsaHwLT0YjTo2OOF4eMqzFaanzv6ZuOxjt2rmHX7Vht1yxGFQgzJIvt7SMRJRkmuQod0nvmIh8PtTHc9Ur2FsSkwkqx1nsbSlLRmbuG/31qWHIZqYygsgIdWww9GoEkWSQhsd2SLWaoP2LAKkWpDCMjEQG8IsUkZ5pcCYRzdHXDZrPj5uaW775/zTfvai42gWVX4MhQRlPkDnvVMKkU07Ghrh2rdc/RfMvTB5GimDEdpefeZIaAIQiNVpFxkREmgoPxFN+n5MKma3AxWUAyoyi0oDKScaYYFZJ17WlcYtkFLwkDrL/v22F4GKl3W1RWEYRO6S4u2SL2zzEk+4jWOjXFYmJ67e/JndWDfdMsrVu/72Hv33ftVU0xBto2AbH3a2Qc0m8SOyTtWynx3SF0vOOtiJ+8pwwJeykLMSnB98wbgmf/s5EASiQWUWaRKIRSoKGsNItZzpPTKYuxxjUOZRSbbeB2V/Pu+pbrZYNgH4pScRoFm3pFlkU66RmNS54+f8aH9xfUnWe53qQkxQAhKrRPh+m+E6z9juXNkuPTBxwsphwdTNnUAyC8TwmHQsnUIBLpPu3vj/OpblNK0/c9akhgYrD6Jrv34I+6xwrljqU5/Kp7Foz3fhgMDBal/fq5Xy8G3mlwJMZlcmRzu9ny/qLlu1cr/ru/+R1vrq+4WN3yw+UlXR+g92R1x84HgpKITFPYknFZUhU5ou8YLxZMDw45nc1odj3L5Za275hNJ6g2sum2tDCgGtL5ajA4sZ9zCJEwFR+/730KWqqL2+jYbld03RLlbjjMPV4XqCjZNQ1i5Ylhyzfhkt1kxGJ6wPGDM0De1cmKIfExJnh7PpwZ9mofMVgXrVbo/39YhA4OD2EowkejDHAJeBfBDJPg8Xg0xI21XN9cU45sOrhrRR09kyLHerDjEa8uzrldr+mDZ9usGc/GHBwt+NN/8mecPnxEnheMDuZoIJeKg9EIZUGqiLGS8aREKXC+o+tqnj5/wmgyY354lORApE7t/OwIYqBvGt6+umDX1kirefzsCfPJnBBSF/e7l6/47ocf+OHlS95++MByu2bXtjRExJBFn5cFf/mXM2bjkqPZmP/4z/6EWVmRS81uu0teb+/ROiMMncWuadnzPAT7SUTqDI8nFYdHC8aTEW1fI1VKU5ofzX7f2/TvXMF1f9+KE8OwBO6/BMmekBbX4BzYJFWviopxWXGh1B0sKEYIztM1Lcura9pdIqcvLy65ur6m6boENzY6LTQxIF2aRMuhWy/22ZBIgpapweEFGpG65IIE1pUfE5e0TIdC4uA/9im2NJUfQxckxjvyupX7AjncRbnuozmtNngG6F3viS59efkRRha9w/mATKpk1N2oLdL3Hat2SSYMhSqYjlMjcHVzb7ct3bvQ46PAh6RwICZVi3M9zid7FyQLU9M0bHfb9Bz2NV1fUzeDL7xPU7joOqJT+F5Qb9dMJhZrx5ydnZDnFUoaYpRs1ku0kpRFQdP2tN2WertllCmyImCzjPn0CCunvH11yde//Zbvf/iB1eac29U7/pP/5H/Oo0cPeHB6ymI25tWPP3J1cc6Hd6/pu5rtZslymVOOCup6x2a35na95O35e66WS642a9o2JUpFDJsm4r0CDIuDB6S2nSZ4sDqDAIXNUNYkmDJQFAVFWZBtM7b1DueSLNB7n6I6h7OD1BodAll+j03N4O/gY2kCHHDB0e12yDxDxIDR5k4503c9fWgxIUtQWKWSlEumZoyPnq5vqesuJRFJkzryMRJdwAlBJAzeZovKNDqz+MYRO0fswx33JXhP6DxexBSXHDs6PK0IPH58xvGjE4QxfPrpFyymB2Qqw+8CP/7uJe9efsD3TQIibx3trqNperKgkEJjjWYyKploTbvbUmhLoS2lsUlN5lL5pQIpIlhahBbkOaA6ehyBkCB8SqODTawRNVj62INt5V6HNzSt7+dKqpV0+PZxXz8OcdiD4kkJDSFN9YwmqW9kWoOcS7JhoTS2yNDWpAlS9CgtGY9HTKcTIAyJfGl9UVqS5zmT8YT1ep0KWClZr7c0XU/nHEhFUVZYm2NshvMBnecsxiPOHjxCZzlSKjoc25sdtzdrvv/uNX/3zXecr1Zc7DZ8cB0b79jFQAegBsVOcLSFJYSCeZmBMagsIysL5jrjvOsTrHa9Zdw0GGdRZEMKnUKb4XuKkbapsXVNVmQoJSnHY7plge96fO/JCoO1intOHmW761BGEKJkuUqQ165LEeVSRoQSSC0GlkC6/DBV2xdTydPuic4RdUyJGl3HanlNu9uigc+eP+WoKjkaVSxf/chvfvlLNtsVr9+85Ob2mrI0ZNleZxWREkZlzmw2RRmD1CkqXguNEprgLdfLJde3N/z6t9+y3m6wecZnn3/Js08+A6VYbXa8ev0G7xxSRMbjkhA8dV3zq1/9hhfPn/P06RM+/eQTfN9zc33Nh/fvuPpQcP3hHeubSySC6bhkXGYIERA+JanZCNOqpKzGTGcL/qv/518R/S34brCmpSOgUQrpI+9evuGH3311fzdOyDTsIOCCR4lh3RNiABgOirbI3f5e5SXjoqK0Bd5FXr56zfnFJa/fveNf/tVf8erNW968e8/tuk7vEpKucwm0jSBET99FLi+XXJwvef2rb/n86SO+fP6U58+fokqDN4Ku7zFaU2Q5p7NDnj56nFQpZcWyq7leLnl/fs7t7YZtU1MUBc8fP+UPv/wFpwfHjEcz3HbHarXhZr1i1TbcbJZs2w1ttyZ//JhcK5zXWJmk8XlmMEaSWU0vFJ0Q1E6k6OWQascQ9wf2j412LZMK+Q7ML9LwIMuy4TC9/7zv57aN88is0MzLCL7FCkcmk8LLR0+MSWHowjAQCo7oHVZLKmsZFToleqHpWsOsyDBK4Nqaze2am6tb3r+/5ndfv+TVrWDlMjpdIe0YJTL6RuFuO7Z1ZFP3XF2/4df8SGU1nzx5zHrd8OTBGQ9OF1S5JC8NeTUCGoo8pzAlP/vkU969ewW0bJqaLvZYlZFpRbGDSSZZlJrVJONmG9n0Pd61uD7S+4AWHU29xmiNUtA0W3S9A2XvVFUM+5VUSVlrTFJY71k/SqamGDDwPPo7MOjeAnbfV4KvR1xw1M0u2ZJE4jalAJOOtmkSZFSKO56IMKnxp4YmkVIqDXuSZnNIb8pSXR09dZrEIAFr8lS2KYXUGlNkaJJdCumoSomSJX/8B0/43W/fktsNfRxT+zWress3L1d89c1bPn36gNOTBeUo56wscLHhk+dnBFvw+Pkn/PGf/1P+D//7/yPvLy758e07CmkJMTV/BBmaxNBp+i3v3lzw8NGWqir42Ref0fSwrd+x7WqCaxBRDcMV2LP+nOvpuw6pGzJt8G0LgjRIH6xcYUAjJAXXPd6/IeUuNbfS9xO8H5oR+1j2vboqJq7V3YA14VCCFymSut/yr3/1mr/73Xv++pev+Zf/8r9n4zvaGOiCB52hpULKCmFTc6wjMhnN+IM/+RP+4Gc/48evfkOhBcIY/uhP/gRrCt6+Oeflyw88enjGcuep/TWr9WBrGgbdahickWnCkDpmbFJVQxyGjamG9q5n161Z3l7j3A2F2jE/fM7pwQNmoxP8t1cslx94+eolf/sv/pZHB3M+efY5/9P//AuGvi6+86j9Z+I99a5lNi9TGIYyZFYjpaEqJEUmMXo/uvsPXyx/7wbL7PSEXeipg0NYzaicogS0uzrBGXWkGGfcLAOt7xCtYNf1lIUBYdmtW65vXvH2/JK/+tu/49Xyis4HpNHUKOpNzbI/Z/2v/jvmi2+YzCacnJ7wZHrA4XTGo8MD2i4dHgM9qEjrWySSyeGM+cEBeVkhc8X0eJEks0qjlSV6hxcKoST5uCCrMoq8YLVa8/7ygq+/+Z5f/+5b3r674PziitttDUoTRE5HjxaK3kvqVctmfZ668Jlht4k8ODzkcDJlJDO2uwi9JhcaFT10PcH1uAjaWqTNQFl6n97aaVGg2pr++pL6vKElUI5HTBcz+Pz3vVP/gyu07J17giRrDEOqTOrMkjbkwTMrlIChsWFyQzEqESrJqwSKbtfRbTqW/Q3n378l0xopBOvbFX3XYYzh8PSE2XhMVILG99x2Na4PhNAjlQAl7yRse6ZL7D30gY9sdYlBkBlL6cHUDnG7w/XQbbf42y26dWQlZF5ivES2AdND3gnGaPI+UHc9XTccTG2SEHebNU1fp+/H9Wjv0c7Tdj2+7e/kmT5EWqAHohLU3tFGj9KRPERyIoUMCBUplOAew5+GewfCp2ZS3ySGg+vT/fOuBwROSZo+Uvc7du2W5eYG51u6vmGzuaXvGoJrwTcUZkxuEujq5OSYh49OOD495OzsBCEU0UfapgVR4Vyg7l0qBkJHCD2VHqFUMogFl/HJs5LpaIzNJL/7+tds2o7vXl3y5fk1h4sFVZ5zcHAAoacsNMFtub655Hp1w229RmU5y82Gy+Ut3795za7u6H1AqpwPl1d4l/zWde3S9xBr2h6szZL0WXqWa4sykaOTBVLIoYBOyg6Zaey4pA7dMHFy6b52fbKD6RyT50Szt67dz9W5FEsShBysQiB8oG9qTExg0JHJ2URF7ALNrqWLnmwsCULjhEyxk67BbbZcX75ht6nxXaQ0BpWVKJOniLnBOtaGGhd2aKvJRxY5MdALXCeI3Z4yr5DCpokpEaMimUnvKVZRPDxMcnQlmYxnGGnwXaTuWtREYxYWe5SRxQx51eJjh8BRHSgOjgtmhxnFRJAJ0NMsWQtlirj0XUPbdTgCxRBrnJISQLuBbyKg1QFlJDq3SHKwLUEEXAMi0wlwHPWQLOTx3N80PR3EI1Em5d/epuTjEDUvUwpC6LrUCFbJDqkICA/BRTBq0PZrpDbEKJDCU5SWalwxGo9o2zqlDXlACJTQyKjSlCkkhV4gsNnV9CGA1hTliGo6x2Y51mZpsJFlZGWJttldset6x9X1Necfrnhz/gEvJflkzGw84v35+5Tp4QNeiuHAr8hMxeF8ysP5jE8enPH52QkPphMeTCaI9Y62qambLXW/o2636MYgmhzvIHqJFJqimrKtd+y6FrVZQazQEsblmC4f0/ge127J/aBAvMf7BinloO5qui5ZQpz3uH2SSdrkAAawnkhT16FpJwBphml/SFYNRUreklJwcjDn6ekRL86OeTAZMY2BMQH5n/2Pif2O9eqW88sPXN9esziYMlMTgGShjRarNYkDmSxVfewRXhA8rNZr3p1f8P7yih2Cv/hP/zOePn/Ko0cP+eXf/pJvfvs7/u2//Tt+fPkG5z1KKk5ODnnxyQsePnzAf/Ff/C949epHrq+u+fWvf80nz59xMJ8xG494kxku3r9he7tkeXPNfDrh5PiIk5OT1JCWAte2FEoxLipym/Plsye47jvaJrFe9MAmIQac61BEquL+mtEGRe9JFhkiNkucv8pk5DJJ7p2IqQaRCVBuSWuA7+D84pq//Bf/LT+8fMWb9x/48dVrtrsNTd0hOo/RIaXl6YiSDoRAF5oupuFFFJLZOGc8G5NNRmxdh24juLRun84OmU9nPDw65eTomCoriBKuL29Yrm5Zr9fU6y1KSmb5iM+efcbBwSkmK9k0jovzJd98+x1ff/c9787PuVxeUXc1NhO8+fSch8eHPHtwyqfPHxFREBSlKQhYjIl0riMqSQyBjWsIQeKDIMRAoTNUVMgA+cASkEToWzKlKbOcqhoTY/p/EIkXch/XaLGkHE/JsoJ2W2G9xRKR2tNoT6s1ThVoZ7BdTtYqdrEjaIfLIRYGpR2Z0oyjQcQa4RU6gAiWZqdYrRR1PyPIAmkqdH5EL6d4rVFGkY0zHr445MXzQ8ZF4NV333L1/j1/9avvKUZHbJqA0IJnj0bkKqCkIwqD1jk2szx/8RBUy65Z46Smk2ZI2IEs7yjzlknWsTCSuVS0CLZtj7I6NdRDj+trcluQ54ZcSwwaHXIKO6b3W1zsaUJHLiRCarSWmEyn5Sc4gkxDgiAibtjPfAjUzY7EOEzW+fu8iqxARIFv+8GeD1JERByivtstrquxViOUIAhB53oqoVDKkBuT2G5CpUa/yRFYiIb1LnK72bHarbi+fk/f1MgoGJdTjs8mjOcVk3mFNzVaqLRvCZHSBTPD9CDj0dMZUQXW2x6djbi+aVkub/j2xw+UoznFRFHMSpSKzOdz/uwf/yOWmx3T2RjTtnTLW0TtyGOOpiSKZFkiODqfdnUpRrSdoOk8zvd8+uVTrjZbltuW5Q8b2jYgVcQHhRIWYkrBkjLBjPtWkOUZREHoI22zoSrNkJjqCTISZMDL8P/tdvz/fjmD1AETBbmSSS0WEmeq6yPOK4QoCL5l8FRStztEbIl0aZDXTahrya5x/Ot/8zv+9ndv+duvP3AdFNKMMApCtxksfY5V3SF1GpBbbZmPpjw6fcqnn/whrgncfHjFTd3S0HP86ABloG12HM0LBC2VAosi+JRWGL2DGJBSMCqLlGgrBNIKbKnQNoLo0OwoTY80PZvNCnYrgqvpNCyOX/Dis5/z7NEn1Pw13h2w2xzzl5ffc77qCG9uePjDObviiE4G2rCllJGmaVitV3hhwBQIm6OlQMUVhWo5O5ijVA/Cgfj9WiW/d4NlcXrCrmvofE+722CzgsxoJBLf9WijGE8q8jKj7TrqtmHXtNhM4z0sb1Zc3K54e3nFzXrNwcOzlJEtJT98/wN96HFdz4fLK1a7DaPbirpvyHpHqRXi5IjJfErdKFpXJxq11ujMMCksxbjCZDlSK4zQaeqhkmhxH1dXViXaKrquY7vd8sO717z/cMH7m0u8VtiqouwCO68Sj5IhVlXIoYMZaZ2nx9M2jq9+eMvNzZbFeMLJeIZsHDaKlAPvk+xTShKtRCmE0vgIVkmyzHIwnxH7lnrl2dQbolHkUiDK+ytgxN0MKl0pgWQAx8U7oSl7v6dUKR5PCpk2sSK/S5CSCtqmo2862m1D7PrhgAFdXaMiyDwnViOy+RylTYpuDoFORvrhpRch1bcyiQRTt1cK0AHfB4Lz5FaTaUNuM1Tv2V0v8ZuaWylpmpbNbsv69hZ8UnDAxyg46TyZECgfkC4gQyC3Fm0sShl2rqUOHX3wEBzR9YS2SzGHu5YQSPc8DFI2CVhFHwJRpKjh3EuyILAxEoTAKkl+z7J3cZcSkCZXyZuepKUp9UaggsMBzqe4vbrd4n1H7xKHJcTkc1YyUuaGotRkhaSscoqypChLtDWEwc/Ztg27uqNuWjabmsxoou8R0dFWOXmmUmKUtagDi84yoors+jW36xVt1/Lm3QeCDyxmU0aFYTabpoXb7chKw83tkvOra64+fOB6teVms+W2cUymhyzKCWU5pnHfsd3WSGEQqkWQkp965+7a4U27ZbVOVozNbkWlZkiRYFpRCpTV2DxD7fSdh11GiC4lG4iYpnwq6iHO834uH4apuEwQTWI/xNKDHw4rRkpkFMlG2DmCSNOFGBRCGrq6oWtqVufntM0WKSK2yChyjbUabRTGaryU+ODoek8vHFGDynRiEAWJCQaGuPQ4+CF8DEn5MSSyoSXCKLKDMVGmQ0dmTUpNYJhcFQozsuSznKzryH1LETvsKOfwZMLh6ZSD45LZoiLzkbbWdLc1dSuxSmOyKtmhiKlxqH4y1QgREVKDNw6yVxcDRqWpmBDDBh0kIg4/3qs5KF1SAjLJ9CNp5sWg/EkNZoFUklaKJOMXpEShfVM4poN7lCr9ODSKpVQURYG12SAP1zjf30n5lVRJutr2d89PmlQzRJJbimpMMZpg86QWkdpgswyb57QyQReDD9S7mtV6w3q3IwjB/PiIkTFMpOSH3YbNFmIX05puUhrReDLh+OSY04MFZw8ecnp8yOGoZFIWBKHIRwU6N3hSMZqSCcJgI0lRj9pm0LY472nqXVI8GE1uMrTJkNLQNhHfJxhn394v/K91PX0faVtHv0+jiYOf9c4JO6ToiX9XABz4qGbRUqOURsr0kCqVrAaFVhRSIKyByYjnTx/x2SfPeP/+Pev1mpvbG27XB8xmEwqrB2vqANMNyZ6bFJXpmVBSs6sbtnVDHyKPX3zK8y++4NHjh4yqihADdb1jubzh6uqKfpg0++jIBubd82cvGI8mBO9omgRlzScTprMprjni5OiIi8V71ssb8jxjMhlzdnKclKFKpbSGGLFSglUczGaM8hwrFXXs7iZ5yY6SJtpK3CMTog/D2hiIQpDlOeNRxWw8TrytGAbFRmpWByDTGX3jWF7f8u0PP/K7r77jx9evuby55fpmlSJzg09KWJlYSYnHnIp5RNKlhZD2iel0wmQ2pZyMcTHBWLVQjMuSh0enHMwXHC8OKIoSpSTOOa7Xt1wtb1je3mKNYT4/4OGDhxwdnWHzkl3bc31xzle//Yqvvv6Wb777nqura1bbDZ1rsZnEN47Lw0tur24wWlIWGZGA1ZZ8gHpLukF5KwbL1l4dJRIkVCiUkGRG411PEKlusFqTWUtmLKk9fL/Tn9E0kpcSrRWtM8gg0AS0EQQdCUoQlEJ6hfIG5VO6jFeRYCRkFq09VjqKYIcDHRBSGFnXSdpeI9QEm0/wcozKjxBijDAanSnKKmN+8oDTpw95eDomK0fk1YRfXf01P7w9R4hIWUQePfyMqARBeAQmBXYozexgymFzyHaXo0xAZwXKZmhjyYuOqpW0hWCSKUZGUilBF3wCyQ8KhbzIyQuLUhJjEjssBoguwc09ERc9PibVSEpG0XgfiHslt0xqn/THT8qEzvUf1697brAopdmnFhEH4LcAET3edTiXosIR+s5almxp6m7t3KtrhJD0vadta7bblq+/veDD1QVXyyvev3tFu92hkCzGB3z25QOevnjAF0WFVHpQrwgiGoRES6gm8PDRET5G3r2/phpNsLon+h2v351zdHzC4uCI00cnKB0oqxHPnjzm/Ooaa0uUd8jeo4PEYFDBpBQr4YnCY1SGtSWjaszx0QOmkymZNYwWE46PD1i8W6JftUgU+5uSkmbEXXLXXWrlUIMnpUWXrHF7johIQ5L7VNgSNSK6IXgjNYxiSBiA3iU+V/qeJZGkxPfeIbzDxW5Quffgej6cv+e7b1/y/mJJFwLzk7PEkgs9lx9Wdy4Hr5LqOIaAd4LNesu79xd8892PvP1wRbupmY8MaMlkPoYQWF3fMh0XtG2kys2gNxZDYl8K21BCkWeauld4IdBWkxUGpQQxenIb6WRPExqa3Yq+3tG5Bq97rpc151drinyJ61qm45LZ6DgFzXxYsukiF8sNyixwOg3iJAkK3LU9QlmksUnxLSRlLpmUmuN5iTVDHfh7vnO/d4PlwdOnaSJE4Nuvlqgso6oqyjzn6vISm1sODubcLm+5uLxivd6w3u4oixyjHLfLW75584arzYY2eP7on/w5KstpOser9x9wTepurTZblusl+lpyvbohLFco73j+8IzTJ0/Y7izb3QqpNbbMKUYlOs9QWTZkeu/hgqkwp/ODtEoxnS9ABpa3S776/jv+5te/5OZ2Td9Hjh8+YnoQWKxqxHevWG02NF2D8GmSwVDAuiESr+sDX/34llf6nCrLeHZ8ysPJgsNqTCgFYpCJGa2Q0iC0QUhF5zxlUTAejXh4dkpoazabltVuxXg6RZUFur8/4KaUQ1F592+GyDwGsnvCoacjghwOPgKkFmg0RVUORX2N947V8pbdasPmdkVsOswAuhXOURqL6R21vYGDBZkaU5VJut6IQCsCsU2yXSWT9UcFUCoBTCWCZldT9zUTkzMqSnKbQd1yuXyL65Llqveetu/ZtS23N7esb9fM1huicxRliZCCLKZGi3QOHaEscrKiRNmMXd9Q+5a+c0Tf49uWflfT1j3NpsGHNG2MUSQrkYyE0uK8RypBUWSUvcA6ge4iXkJuDVVZ3Nt9Az7KQweGhpT7A2i4a7Q4J0DH1GDxHbtmiw/93UZJ9CgRMVowrnJGk5yiNORFRpZnaJui0Nuupa1rbm9vuFxuWd5uuLy6wQgoM8O4TEX3dDJBVoaqtJTVmNHBlMXxHJlL3r0/5+27c779/geapqZtj/nk2QNm8ynz2YjprODo+ohvf/iBV+cf+PU3X3O52rHtAgdnj3ny6S948uQFi8kxLv4rPry/ZLdtQG7o+xbXtwjZJzp637DdCZompScdXR2jbYaVxd27pq3BFhZlNLH3OO8xSILbR0emFCytwcT7mzQ4H5O8UqSIRR8hDt7dPgaUFBghUHFgmchINILgBNFLlLCsb664ub7g1fffUljNpBozm8yZjkdImSGURhqNsIKAQXUpvcvrQGs9dpQSCLTWSGWSBJikGrsTiQnBEFORClAZkoxk760OIKPEFBpdarJJxuhwRO0dvXSITJDnFY+fHnN0suD4bMLJeAK7lpv1LcvzDa5p8Z1jPrcJ0knyBoufWA4J4Y7PFL2n6xOrRmYjUsqLGSL/FCLIvfvi3i+pueNkaSEGW8LwNdgLlZQ0KiUJqUFCndR46SgtpGYY+SSNhpBIZahGI+zABEoS7fR+J26UJkaodw3SqGF/6YdnOMcWBaPZjGo6w+YFJssoyhHaaoSWtKtbQgj0veP2dsVyvWLXtmTViONPP0VVFY3W/PL9O1YDh8uWOcg0hTs8OeHJ06c8Ozzk6dkZZ7MJ0yxxEvoQyEclWZXj/Q4XXIL59sOhGEAalAaUxAfPbrPGSokpSgqdoXUOwtC2kbx1dE1Pvd3e672r25a+D3RdoPeJhQN7qW+8s5YO55lUNMuPdrNkwUiHPKMtxmj6fmAKhB58j/Q9OjgKJdBljn70gD/+R3/AD9MR337/HReX58znU2bTMeXxUYKKh5CGCENh7qNLUGql0cayq2va3qFtxl/8R/+cT3/2BePxiN1mlRRTQ0xr8CGxpIInXKXUmM12x+nJKc+ePcMoyfr2hvV6zaQsmY7HWPmA9w/PuDp/z6vvv6PILLPJmKdPHhFjkrV3bUqjk0QypTmYThiXBbnWrEKbPjO5jx8dmDv3eFYPTbKOBR8QUjCqRixmC06PjmjrhqZv6YNP/Kyhiimygt2mZnWz4a//+m/41W9+x/vzyzu1qhQBoyDTkGuwOtU1A7qXCGiZ1GUxCg4PDzg4OmQyn7NcXhNDwGA4mR/y6dMXHM7njMqSzBi8dzSh58PVJW/ev+P88pLpZMbnn37OkyfPOHnwkOjg6vya//6Xv+S//hf/L77//kfevn1H36VkxcTWiFx/uGI6Lvj+aIYUnrPTYw4Ws4Enlqw2Yg87HexAd1lmQgxgf42RisJmtNHjkg6GPLMUeY61FiFVYrPc321jfmQpK41WhugMOgiMCGTWI9TgrxQ6NRODQfiBe6cE3ijIczQgLUTRItU+uCDSNoGmE/TOYotDKnWI1lPa7AAjKpQxZKWhHG2Ynz7i+PEz/vAfveD49CFHx4/47qtXfPP6LcvVBbDin/yT5xQqpXoKkQSG0krmh1O88GzrHZ1rKaoKmxmM0YxC4o7E3rIrDbNcszGSxnlwHRGBzjXT+Yw8k3jXorRMgM6up66hcz1O9RA8Nh1Tk+VNqTtGR5Ri36lPEM6YYsH7vh8YNunrPi8pFX3v6ftBTTCsicSA69tUa/keyO9qhcRVGWayEbxLyXlGaXarlouLJS9fr/g//9/+W169ecP7Dx/48YdvaDY7NJqTxQl/8Rdf8j/6Z3/Ck0cPqapySDckPSfD3mpKw6efPcNkmqZdMx7NmYw0RgW++vYV88UB88NDfq6/QJlApSWfPH9OkRX0fbLMWARWKDJhiUNjK2EJesbVhPn0mMdPnvPzL7/k8cMTJqOK+dkhDx9c8+79mjJbgjKklRv2u8hdr35ADySuEMTgcH07MFASsDEOzZV7vXVRDyyTMEBiO4JrCa6jb1tc14Pf82ISa9F7B76ncx277Y7l7ZZbv+E3v/6Kr776hhunKEZHnL74Et837FZLrt99B9KntM1CI13ip/mu5e3b97jwb/j+5Qe22xUni4KqPEbnGbNiRJEZ+l3NYlbSdjAZlShRD6pRMbBXAlpJikKzdZIgFKYwlFWGwCdMRSHY0eHbDZvVNc1uTet2RNHz1bevWa09r19e4ZtbDmZPODw45PHTp6y2kc5rrtY7xlOHF54gAiIEQp9Sl5TJMFmByTNMDMynOYfTjIenM4pMofS+hf0ffv3eDZbRYs7x0CH/6puvud3WWJvz9NETmi5FfPW6Y3F4RNs52rZns9pQZhZBiTYZB0fH5PM5UyJ/+md/Sucjb99/SLBAmU73Skn8AEGtN1vevH9HmWWcHB1x8vQBxXTK6HCGLTW2KlBZhi7zQdKTRhVCpA0FoUB6RGbQVqHxRCK9X/Hy1Qe0Kjk5mjKbLfjzv/hn1HXH+fk14v/6f+eH735geb1N55FAkoIJRacTUK+LIqlupKAh8PL6ghADvfBMDiZkzuGEAxza2MF6kzbW6WzEyekRZ2dHvHn5HXW7QxuFLTOEVnThHhNN9n/5qQd3/+SIPbk5/TspBVqpVIQqgRaKyaTi6OgAIlxdLGn7mrZvCDEwmU0ojUUjWF5c4kRg17a8/fABXeUs+iMOsxNmixnBaLyWjPtkdRFSkGmFGmKUc22wSlFvkwfXCIVre+rdhvdv3nJ9ec1uu6XZ7tJUWymE0ag8HUDyquLhsyc8ePSQyWyKVGlqaKREFTkH0yl5NUJneRoxqIjaCpoQabc7eh9YrRo2uxbvY4LLxsFCqwSuNtjoKIBMW7SPKZYNsEZTlYHZ9P5PfXdRjIOKZU+e/2mTZe9X/xgJF4gxPXu51RgkJmqyzJJlGTaztJ2jc4HOwc1qx+p2xWq54v3rt7x5d8Gubmj7DithPh1DnKC1JK8yKlXShxp6kWCmheazL59y/PCAR1cP+O7rH8iNofMNm2aD1iWZVYznU6TV7PqOh+cXfNH0HK1rVrWjRdDULVcXt/i6wHcGJUq0VIyrEnDE2LG6vQB6pEyJJCBxzrNcLqlGM3IfMXmOHFJOMptTZCWtrwm+H96HFO3t+i4pNGRqXt3XtV1vKbOCTBkyZfEiAfSCD7S+RWuFsSne3PkWV3coNPWmIbCh84bzi3O22yXCS54/eUFVVRhrcT144YjC0zRrNAqdafKFQauDBIRVCpvnKKWT+gNSUTco8bgrbPaVFcBHUCIiTd9SA0pQlhnjSYF3HW1TYrTk+HiW0odcpJoU5EWkzEVia7iIzcCFjtD3CB+Zz48guuSD7XvAE6Wnp8fnIIbYX+ciXgakjMlmIw1KBfrQEoIjBI3aT3H3f4Z7urRVwzsVUEIgghrAbGk9VEZhrKHterSUWJ2SqWS8O7YhpEUqC8oSSIpAoxSjyQSUoG4boutRUiGydICOEbxLcYvjYpqaZ8oiTCSr0mR2MjskH43RNsNkOSrP0jPsHFIk6KIYkkMWi0NGU7CjGeXpGcu24+35Ob3SFLMDDucH9BLG4zGz6Zgvnj7myeEhh2VJZnKsydEpLonJYsH06JDb7S3bzSVSpxIieo/rHK5L3m9hU6SiNorNzS2t1NgoKEYVQmcElVF7EOuWzXrH+np1b/cNYLXe4n3EudRojFEOj7YY0v0GXzw/2QJ/ksgAKSJYGEGmJbaUtF4Rm4B3HcJ7dAho5/Fdi/SOUZHzh3/wcw4O54wmFU1b07Y7dvUGqY7Z92yT8sngfaRrPTrL0dKnKanUyd48mfLnf/5PKScjECk555/9s3/OJ88/42df/gH/5f/p/8Jvf/cVP7x8id/saJqO5XLFZlfzv/5f/q94+vgRZw8e0e02bHc7lrdLzo4OeXB6wuXZCWWukdGB77BKMD+Yg4C+7zHWDpYFz2I+Y1SWWGMgRkLvicNAJAHl7/caRmGoKJAhUmU502rErBqxcj4pUZRCqnQfnXMoa/lw+YHry2t+ePkdWkumswlZ79isV0iRYkhz2aFVRMnEDgwigba9SwlsUkqMsRwdHpDZlAhS77acnp5yenLMl198yaPHDynzgugdXdNSNw3L9YrvX7/mcr0iaMWnv/gDnrx4weHhIV7Ccrvi1flbfv3tV3z39keuNzd0wuFVUqWEEEmYgwKlLbu245vvfqDve6RUjGczVO/xuyY9mj+BMqf9PwGdQxwaBlozHo/oupquT8qHIs8pigwp5ccl/h6vMp+iVYmQyS5SZopx8FR1TSUCQgZ6GREu2fD6EOmCpI2SJgp2ITDKTGIqhhJ8AoW6EBBap7q+KqkODpH5GTs5oesLbCzIs5zxqMBkJe0m483LHZPymnpds6k9usqIweAzwU235bptMWSUxQgrMoIQ9MFhTcF0vqCaTOn7FqnSQFKKSGYt4zIpoP1Bw806p4s17aal6zxaFVSjKdvac3F1zYeL1/z13/wdJjvA2DmrnYLMkI0yDu2UMktDH6k10hhi3+NjTClx6SYTEXQ+4Lyj6XuU1rgQuUf38t3VdR1NU+Ncj7VJTRJjvEvR2qcq7jlxbdvRZYLeBaSyhKhwPfSt46//+u/44YdLvvvumr/562+4ur1hvV3RdI4QweFZbdf8+Ooln109SUB+pRILin0zLgz7Wc/h8QxkpG1blssNB4dT8rLgzftLLi/P+frr3/Ef/bM/HprhgtFkymkQ7HYtq9sdVTkms0VSCYqMEFLQiFaWRTXn4fFD/vCLX/Dn/+iPODobMT2y+AgjmzGrKnKtiUYO3DXofMQF8Iihr5Ias0RB8Mna1bWpUaylSkoND3dlwT1dnh4pwoCCTIEjkojBE9stdFtkaLHG0vQ9jfdJEdZH2i6w6LqX/wABAABJREFUlVC3gVJLFrM5z588pNh0LJ3CihaZCeTIEmRSuGIU2IymbVLAiVVEnXFZ16zef0BLz+HRCF1W6KJgcTSD2QwjbFI5Cp9Ug7i0t0oAh9GQZ4Kq0mxaCMJjrEeLXUpI7RuK3LPbXXJ5/ZabzQoHYJK85JuXL3n7/pJRVvEnv/iMzns8keliztHJjt5ZqnGJUALnA03fsVpt2O0aXO8py4qqLCnyAuotZ2enPDgyPHlyijGJAxOGZNv/0Ov3brCYsmQ0nzF3HUdnD/BdS+0cxXjM4ckp6+Uty+tr8rygqkbsdg1d09M2HY3RlCPLydkpXis2MXJyekLdpUhnbTShV4NkP32Te4VF2/Vc3S759tVLPr++5FH1gOligcmSRF4ZBTItXkmWrVI0E6lwctHfHS6k0gilKKopZ2dPmB+c0LZ9Sl+pW9om3VxrYFIaRJsT6i69LDF58RsvEwQoeLqgqCaJ4N9ut1zXa5CR2XrCkVVA2gBTBzUV6RAGeb+idz2ta4kiMBpPqcYjyumYajb5fW/Tv3MJMYBsh2Jzn4iR0HLcFZ37xBMp75B/CAHGaqazCX3fs9vWKJMOdJKcs7MzKpsjQmCzuoUQCQKiFDR9R9N3uBDIiwJVFsg8Y6LF3XRRyz3YVmKlwghJV1RURcHy8prb1ZKr8wvevHrFbr2lazpc16cJRl5Q5RZrDW3bsN1taF1L1zUsDg+ZzKcQA5lNwMZRVVJWJSYv6V1H6+rkoW13uLaFEGl3Ne2uT0DNMHStZbIFdCKgRCAqidSKIRwLpSDENIW+T5vJ3f0bvmI68SZ5YozIQS5912jZf8UEVkzqAJFgnEgspLQva9HWsmtqLq+WbNuem5sb3r19z/XlNe9fv+PyaknvHXGIoj06mHFyuOD0+GBI5zEJpKoKpBVIkZIdhJ1gcotWCt87FBGbD83FQSqZ5RmHh0f87GdfMloccr1uuFnv+P7Ne7wLLK9vMRxQFTOCMyi2KX3ASrJMMZtU1PUtbZfi0okR73u22w1t06B1soIl5kjqQ2ut6WXaMKUYePbR44Nj/47eZxJiV7dkGGKmBiVLeqP2EYaQCn6lDaLrE4C487Tblr4XbLcpHWtazjg+XFCOJkRiYlzUKfauD4Hr1Q1eeEyhOTw5YHx4jDIF0lpklqUm5JAqwcBRAj5mEP+9/SN+LHaiYB/vDgIpI0VpuF16lreXfHh/QW5yqnLEwdEBB4czxpOK8ciSG0OInnKcY4vESokxfd4xDAupS82VGD0+9DgHUXi87+l9RGuNkQVSZhA6gotD2pLHa4+6k7t/jFW+j8uaFHEafEzpQCFNi4Mc0snE8CXloGARQ68qraJBaAQqNWcDOAJaCKKU9MElmLZ3RO9RSiXwt1QpIQnuJptGWrQRxN6TFyPycozNR2hboIxFaEsc4KBRKqyy+OhBwGQ0ATIcimy6QM9mNJstwhhskbOYTTGTCXY8oipzRkXOyWTMuCwps4wiG8j6SgyTaJDWoPMM3WeDXXQvhY94l1JassomPo4xKZWqaemkxmU5UaRGQkRT7zrqTUuzut/EtaZtk+LQD+kzg7R7n4zBQO1JiQEkqfcwltzbgtA+KakUZEVO0xmQgq5rUxzr0FhRQ7MmSMF4POIoHNL2DdfXN1SjEVJJfAh3UL8wNCpFFCg1JJcphVEmHcqVppotGI/HSK2HdQIQktF4wrNnn/DZZ59zc7vi/cXlYP2Etu159+4DP/zwI2We89mLp2QSrDG4vkcrSZ5ljEcVR4eHHBzMGY0r2q6h77vEOhmN8D4d1vs+NYHTfpIK+BDTCD1EjxBpb4n3aDdJaYDp97LKMMqHlIq8oN3s6GRKpzEq2bW8d3S+Y7vbst1tIAYODxdMXGDX9XSLKUVuGZUZtxev8V2N912a5MKQSqgTrFMprLVYozFGkWWG09NTPvnkBQ8enHFydko+pH5FEdn1HberW96fn7NpWnReMC4rnn/2Gaenp5RlRZCCLvRIqzk4OeDk4QkeTx9a+n1MqhdIFEfHJ0yqDCN6tnXLru0JQpAVBb3oUa0b1HEQY7JOgkLIBIlUMiV1FUXBdDrldnmT+HFCJMh7UaZY3aGPfr/T9AwhLEIYpNIY5bEqUEjIiXecr0DEx0gfI10UuKhwKILUYJJKUIcM0aWo+4jHVopsBMUIsvEGNT5AygmrjcTEkjLLGZUVQma0NXx4t6Wtv2Fz+47l9Rtut2t+9tlTjuYFRzPLxnnGXlDl47RmoxBohJJooZEhorUhpuB7iA4rBRiJKA1hXnK6G+Nkz1r0XF47+r5lve34u99+z3p7xfXNO5rQJc6L7KjblhgMQZV4P76D6se9dVSIdIAf0AFC7ZMtA/0Au7UqqSD9PYNuvfP0fVJ7BR8G61ka4PV9f2cdSqq/gHepmd62gqYx1HVLXffcSsf69oLf/Ppbzs933C4Du11HUzv6LiCQST1F4s2sNxvW6zW73Q6dGbTa1yB79XA6c1irmM1GPH/xhB9/fDOs6ZIvvviUzWbDarVkubxhPq/QyiB1RlGWSGkBy+HhEePRGGssRmd0Tdqn8Ip63XB9cc3Lb39kNlVcXo44OC355OefY6Qm0xajErrCC4EQbhiM/+QDHBSQ6VuOd02o4P1d3ZksRB8B6vdy36LDCAla4obflxAweLRvEX1NbHdoa1JMOimxiagIUdM6TdPDfDTi5z//BTG3fPv2kq/eXdEqEFIQvUh2Kq0Q1qDKiqD1wJIzBFFBViDznLIwiCLDa0lUkqwsyYRAOkG/g2rcMZmOkKomDEN1oQQ2U+SFpSwt2UYQBGSZQIkOpT25hEJrjPZEeoTRSCz7gJi2a4khvcfTxZzxdEo1rjg8OmRbB7reMJ1N2IkUYtI2HdvNjt71CAR5nmOzLJ2FXMfBYsHRUcZ0OkGrVNP9vlvc791gUUVOyQRP5PTRI96/fkUXIzLLWBwdJz/xtibLcqpqRNt0XNZX9F1P23bkleH45BQ9qtjFwOLggG3TsN5uMUYTtEKEBA4UMkmJQvT0IXCz3vD9mze8v77m6NEZxWSKzeRPprDJ955o3PrOOxdjxMeQ5PEqqR6UKRiN4OnTT1FacXFxybfffsvl+QVt23C7WiFFT1VoVJfjfSK4h5jSZKSSSC8JHgya8XzCaDzmvG+4bba44JjfXlNORlifIr6iSEWb0inFRClABLa7Db3vUUYyno0ZTcdU0zHlPTZY9iK1O9EKkY9Zy39fCCWHw0BS7KQiVWnBZDqm63tubm5T5J2zCGM5Pj1hlBfE3vHy++9xfQKvSquHrTISpSAvS/LJGFuV6CpPMueQilkjxH67Q0VweYe1mqsP59ze3vD+/D0fzs/xXeJYxBAwMZLlGUWeUY0rrm9X7FYblutbvO/ZbNecugfE4MkzSzkZMy4LyqrEFiXO99TtjqZrWbc7QtfjXKBrmhRb65MCMJBi9aSWeAkhdf5SxK3YWwTg4wZxv6Oi9HiLIQUg3ccYP/JyBMOhfWis7DdKNaiRYgCtJVqAFRqbGfTA09msanbdOQH47vsf+PG7H7n4cMnFuws2uxoEKKvINFwdzrk9OaRpt8wPZlTjknJSUmgQRqTYYaNQmaaoCibjKfVmS9c0ZBKU3D9zYDLL4mBBVpacPH7K9brh4mZN5/+GN2+XrLZrJoVjPJpjdYWMt8ToGI1yprOSvp9ydf2Om5sLrq4uEELgfU9db2mbhiwrktzch3Q4iOlAI6UkiJTOkt6LNCmKhKGxeH/3zTU9XjmiMijxMSVgH/MHIHUCXgoU0ZNAabsOmkjvWw6OJ0zGIw4fzGn9ju0uFSebXUPrPXXX8erDG3btFlsYnvknPB6NqKwlVwphTIpAHGqYeOeNgLtsPBj0x4NHNnxsxqZnaXiuJWR5UgOuN9dcXLxmPptTjTQHhyUPHizSRio8Kgp81JTjnKy0KfrSiQTWjumlij6ldgXpCcHh+oiPHi+SQlJiyVSJJCO4Da4LuN7jM59SvgZyU3of7u+dywz0w7pltQKfLJRepgj4fYR8eveHBosk1eRJ+IpA4qPAeQCPkKkZ27Qtvu8SnDpGyrzAiMSU8SHBN40xSKnQNkOaDN905OWIvBxhsgKpM4TWRKUJ+wI9CKyyuNAjJExHE5RxeGmwkwVxPGaLpBxVjKZT8tmM6ekJs9MTMq2wUjAJgZFSlMZQZFlSPg08miACUht0lmH6HGVMep+AOES+d12PFUVKhzCG4PYNFpWaoEKCNEShaeqaetPRru+ZwdKl3yc1WfzwqA8wdT9ItqNHGXGnc98fRvex5VrrZO2VgbzMqdsMqRVNvaPZbWh3G0LfIoO/S3Moioy5nCEU5HlOniXOjncOFdPanWIiGfgLMtkSlcYaw+nJCaooqWYLMmvTISumYn2z2eF9ZDqb8+DBYxYHP1KUFc6n5qfzgZvrW374/kfmkwlffvqCcjJBi3QYF0JgraWqKk5PTzg6PmIyGdN2LU3bYKwlL3J2W4d3nqbtqZsmNVqGBlGSxad3QhAJMdkY7uuKPvEMRIxkxjLKC8Z5SWEsmdI0QqbMOJUiUH3wtH1L2zf0rsMaw/RgQhCKXduhlGI2GTGfjvj137Zsbq+pdxvqOjVYBAyKGIXSmjyzaJViw6uqZDFf8Mmnn3B2dsakqjBqULFFRd02XC+XvPvwPlm9p1OOT094+uIFk/EYKSXb7RZPoBgVPH72mPVuhY89u3pNXQdclybgWmQcn5wwG5eEfktb39I5RxQKY3OUi4OaULKPYg7BJ8vh0GCRIsW7l0XJZDJJbI2QOB9lUVIWBUbroVb4qYT5H36FaIgYhLBpzVIRKwWZiOQklEAg0JKYX30IdEHQR4lDE2SCgQsBKmaAT8pkGcgrQTFW5GOJHa3I5guEnKB8Ty4KClNQ5iN8sHTNju12y6uX71lef892+56+3fL882c8fXRIoR21DzRBILMRSvZJiRVVSr0JOgUtaPC+gZjUDkoKhJHIqFDTgtN2hJcdF+2Kq5uWtom0vubN+Rs2uyvq9pqjwyn5yGKMwl3W+L5D9un+RdLAa2/5CZBsp0ohdDqbxJCUVZ1LFnhlswTsv2cFi3c+AU/bjhA9BE2UgRg8ru9xg3WImIYNvvf0nadroGlatrv05XrH21fv+fabV+xqSYxTujbi+8STE0IjVXq3AylAYburWW+2VOMRUmq0FINxD/YNFm0ko3FJXpRstztCEGid8/Oft3z11des17fc3FxTlooiTwOsFHqQIWTByckJ0+mEPLNYW6TBRp/sdrtVQ+yvof8WWHN8NubsyYxPvvgMLTRGGoxSBJVqNiH2Q3LuaqafCmfj0IB2ziVuWgh3TRfi76eC+PddEUdUFpTCDVYyEQKZiGT0aN8Q2i1yPB5UazIxRFFENL3XNB0YW/H5Z8ccPzrl+Lsfkb/8Hd++XxJkWpuEDInLl1n0aETssvRrKYsLGaYYkZVjJpMSVWqCSkMok2eU1mKFYX1VU016JrMRSl3uXdZIJciyhCjIC4M1gigiRQZa9lgtyJRhlEnKXGB0RBeWMHAMfWjxMe1HQcLB8RGzxYzJNOfg6IDeK7peU41H7DYJ+t/Wkd2uxokUM17kKSTDGIOxhsWi4uAgYzSq0mDpH9CK/r0bLMEIpMgoxIRnX36BsIput+P1h3MeHh2TjyfYvESqjOlkTmFLYh/xoaNrO9o+oxyPmBwdEqylrAqEksxmqausVYoJE8QUxzsod12INNFztduy8x6nFNFa2uDQOlmK0jW8BYPXej/VN6VNj3gEaXKUzimrnE8+/TneebYbx/n7K7795tth0tGy214T3RYtenKrcEIk8ODw60Qf8V4jKsvJyTHzgwVdu2X5oaNud7z58Aa9Lpgaw9hacjMizy0my7hd1dT1huvryHZ9zvxgxOJwzvGDE7LxGJXl9ztp2DdS7orKlCAU8XdNlGQVGiLYkCSjcoqJkwqKUcbEjZgfzpnMx+y0xLWOXjg6ehABOyrwu7S5TxZzDh6ecXR6wtnTJ5w8fIDKc4TVRKNwQwyX932KpY0gQqBrG9bbFRfnl3z1/ddA4OTBMUWRcX15xW6TDtF5npGPMmxpefrsMUdtw/XtLV998y1v3rzkzbvXnF994Nknn3CyOOXx00cUoynGZihrgQltt6Pra67XN9D3acLeOaSPRJckvDEEvBAEJVE2wyiJESZBlINP3dFdz3rnWG1rVvfMFYCPDZZUqIe7Rsv+n/dxfvvLe4/VEkXE0YMPmMwwHY8ZT0cgI6v1Lb/76htu1htu11vevv3A6npDs2txjceF1Eg0KEZ5Tgiaza7n8mrFxc2S6cGcw7PjFO+nZALreY9UBpVZdJAUIiMvFEYJdIyI6FOiVu/JVEZeVmRNT1Y0GJtxcrjg+mJLt+sREc5OTyFK5uMb+r5hPC04PJygTMeH9znv3im26w8DUqSl3l2x2yyxxlDkBVGlJi0hoI1GaUX0irsGQghJORLdcMC6x0ND4/HK4aVPaqdBXO+Hzl3oUyRpFHulnUJ4sNqisFgEpcjJsdAJLs8vWG3XrOodXiuulrdcLm/49uVLLpeXSCN5f7ulVWPOHkZOHpQU1X6bSFODFJ0JRqfP4K5Boe4qheRRvzNagxg+k0gghJZqpHnx2QNefHLKYj5nMT8gyzKK3GJ0mnThA0I5VAFmkibD1uf0riWJLOTwvjmCdOkp7VN7Ai3IsxFFNiXLZtAp2lXH9maXoL9Zh9Eagxkmsve7Upba00WHI5BbTfQCh6SGodBNa6jeA25JsX8MDVkCKQKbHifbO7Cm84Hzt+9TlKP3FFmOHEliJiBTyVyUafKioBpNyKsRJi8wXY8tR5isRBUZQUhSyLjE6AxI3DJpSGuSjogMNJKoNBQVsawwszHTB8fEKqMOAa81eZkT+x4dAhOlOJ5OmVpNIQQ+uLTuDWlIqsiwVUkULTbXaGPYW2+6vmWz3VCpGdpmZFkBEbp6h/KOrsrRSpBnhjzL2V5saDYdzeZ+Gyx116Kl/hhfnnCRgEprz6CginpgEYmheeZ9AierfNgqE/xxPpshRUtbX3F1cc5333zNSMLMGqazKXlZYlROEz15lnF6csZ0PCO4pNJyvUPrIVViiGyXEmxu6b3DKJhOSr6YfIrMCnReErs2Na+co93W/Kv/5q9YLm8BxfnFJav1DqUtUWiETHDa4Fq+/vobyszyRz//koc/+wwtIfQNznmMNUzncz777AseP3nGZDJJ09Yw1DQ+stluqbvA7bbl6+9+5OLmlrr3YCx7/kDE44d6IYZ7TIAKKWoeD7NyzLSsGNkc6SIZAgtI5+8sxK2INK5hMp8wqgq8jFTTBdJaAoonTx6zmE0YlZbtzVvevvYE37LbeQKSKGSyPw8qIjs0DI+ODvn0s0958OCMw4MDqqpCG3OnEPXB8fbDB16/e8vbD+eU1YTnzz/l+SefcHr2gK5p8a7HWstkMmE6GfHlF5/w+afP+Mv/qmC3vuHHH9fDwC3JJQ9Pjjg9OkDGnm9+90t6H6nbbvixZ9t2BAT9YBvZN1iGmDMgYo1hNKpYzBYpIbFzGGUZjyeMqvEANI0471OjL7sfle2ukfQ2I5iMqG2C6QdPSWQ0jNd8dDTR04eexjmaPtCZSO8jTYj0QiFVsoISNEIlVtxonjHuO0atIZoPZOOKXlX45S1t9GjhaQkoXRJ7hfeC1Uqw3ni8h6OTBS8+fczTR4cIV5NJi7YTvChwoseoxBICDcFAlMhA2oPCoOdWHakw9RgrWEwsfcw5Wuf87qtrbpaBnZO8u+nT0HbxgH/8F3/AqKxwfeDq+pbapcPcZLzAmKTk65xHdh1t7+lDJIj0TAYhiUT6oWHdtD22CPjIPeetQV3XSbXf9miTmpbRBbzvads6MVicH+pLT9f59GMPTevZ7DqWtzui3/L11y/xXjEZHzKqHvFf/zdf451EqQJlI65Ln2tuc+YHh1hbcH15y+LwIDHElATv74Y/+/GXHGY9Zw8OaZqetvX8/GefkBnBxfk55x/eMh4ZcqsYj8qhZBForfjk+XO+ffIjP3z3GilG3CLZCUO/67BqRCYrjLD0jSc4MCrHddDWgbr2OC8HUI9GDilkMXhCD1IopFRIqZEyxaKHEPB9Og8E5fHOE1xiW8r7BIKbgLSp8dd0Pa7vUNFxWGoW04KylOhuBWGRZmNRQBDEaAixoEex2cFq3bFZbjl5dIitShZHh/yXf/kvaZ3jdhupJhmhyBFVhT04xPgBvB8gt2Om0xmzyZRZaSlokJkZ3nhASkxhUVmDLRTFyKYm8d1DnAJeysySaQm+QUjIdE5uA2dHC04P55Q68url99yubqlVzbJxxLbHR8n8+JAqr5hVU56/eMaDRwvGleD6ZoQPkqZNLLz2cstuB3WTUXrQ1mCspSwN1pikItWGg4M5i3mqYWPsB7g4QPYffIt+7wZLH2MC9BWWg7MTpBKsl0uW789pnRsSViRSaxYHBxQ2w0jF67cv2ew2dF1PVY1YLA7QkxHFeIQymmkzYTaf0GUaETy+b4fix+N8apgIrUileIo+FSpJllCSmMifSaa9T5MZkntSyyy9qTEOB40QiSiqyZx2V2N0hhCK9WpFjD1COoiO3rX0rkOpPHUio0AqzUhrlPco78hnEz559oTDo0Oa22vC7Yq27xFdhyoLiiLnYLFgNDtE6ARqvLnu8L4DcvIyZzpN1qA4gPNUliON/X1v079zee9SiRRTqRSDG1gGLk0hh78Sk9om9an80MBOLA/nOxCBalQwmU9QWtHVLY1v6TYtoXdEK8l1lbyriznzkyOmRweU0wnSGqTVCJv8fVoZYtSoIFF3gMvkJkQnnoAtc2bjCVVRcnN1hdASda2IN2n63wfHerti22yRxjCZTzh5eMzF5RV127DZrukH8JTWKnlrJWiZ0n6KzFJYi0LQu8Q2Cb376J30aX9FipT24sKeqw0++bgZvNw+BDrvqe85GWPfWNnL/QQfmy13bJYQhtZi+vd932OUTge7rsNniWNRlAUxJFbJy7ev+dVvfs3NasN21+GdBK+wukLbdJAcT0acPDjhi8+fYQ0oGcgKODg4oRrNiEITUCCSTS8OtHnnXJIMWwVaoPbRkWHwN4eQ3kVBOiwrmZpswRNdQ1fvWF695/TggFE1pjyd07bbZBHSntFYY+ScSeWRrKnrmqbuWK93dLtbGmPpygqtkvQwWd/ksCkmy47TarCBJQhY+g7vD3IbGodXHV5oxChDDxPrNJFMRH7XdSiT7IwqKggJKq1J6+DmZknXbmn6LcvViqv1LefLG377w4+8v7zmernmarVm19ZkRU6UYx4+vqWq5hwcuJSuJdIaKXWKAI5hmLDsFStxmNIM33fcj8r2tmj5Ec6prWQ6q1DqIRAp8oKyKJBCoGSA2CNiP/yeIbEsRhk615RUNOddUnwh7w6xqT3boXuZfk5JtMiRThO2geZ6xfrils3NGtlB8PttPHAXo3eP0/RSB3SIeBHJM0nwgk4I+k4nH3YMqEEZsG/aJytFUuEZkdQJVhkqYynLDGs0VmnaprmTDFttyLICYyw2y9CZQmeGrMopxuMEbTeG3GqE1aAFcQBHRpFk5NINazUpvjZqMSgyIkoMkbYCiA5QoASfHR9RO0cXAo1zpGaR5LAqmGaGUissEZwjIod35+O031iD0hKpJEon+Gvb1sjNGu9CAqCaDK00sWvp+4amWSNMRIqAVoKmbthta7br+7UIOeeQOinUYvBJMSfTBG+IWIK7pgvDLCYk3luIEH1qBIcIwaXGrJAYpbi9veX8/ANvxxXXz55ic5sk7rIkupQcIYUitwVBeaIfGD5iUNDIpJqJeGJMCiapBLlWCGmJSoLwuHpNVlQo0v9/fXXD1998y+s377hdb7hZ3rLe7lIamhzatkKzXm+4vLrm/PwC//kLyqLAFhkheoy1TMYTjk6OEUrRe5+YcAPocnm7Zrlas2l6rm63/PjmDcvNhi4GhLUp7TMmy6wYVG3xHkfq+7QnJQWT0YRZNWZSlFTK0CnDDpksHPsB0DCIOzw+ZFyOOH34EFuOENoQpebo6AgtoW+3fEx/DClhY4AGG2PIbM54PObk5IRPX7zg0xfPefHsGbPFPCXk6XT48wPbbLPZsK1rpNYcHR1z9unPODg+YX5wgIwpwtRHQehSSodSkkwrqsxQaE2mBIWRRK0RwqJEyagqGY1KZHTkeYHNMpSxtF3PrmnZ1s2geBgULEMNLgd7kFaKLMsoi4osK1BSoaQkK1JKSlVWGLNfJ7lXj9CH6x25LslMgcwqxK5HiBbpPUZ4jHRo4UjAzZ4+dIgYkrqtT0qIMNZELZBao7AJ6OsFsQVpJMpIkB5bKjAZo1mB23ZE5QjGJytc9Phastu1hBApi5wvv3jAJ88f8vBkTrdbU8iKUTEi1xXWDhw20qFPSJn001ImO/2g3o5Cp+SjHoIYuBFWUxYFq1XNxUXLNmgOTp/y4NGc5y8O+PTFBEVgt9kxHlUYZyjGU+bzI2ymMVZjMouSakjlVIPKVA4KU5m4LCEOMOR7v21A4q841xOCg6iGdxqCT4d257rhnBAG1XhEkBpZXeu5vd1yfX2L71Z8+HCBEgYlTNp/okRJk2ySoqMajZmMKr785DP+9I8+57NPn3B0dIYkNbYGMMfAOov44NA6Q2iJkZLpYkrVB/ou4HtNZhTLsyNW6+u7hlDXtRiVD/uU5PHTx3z66Se8e3dJu4usx1PqTctm2ZCbMWVRMp2NGU0iZTEisyXGVAiREYIlioyIIQiT9l7ZDbag/cgqqcfkUJsnEPpgDRrWs+iTskWJ+5NGC+lABqJMQQoiQq4Vx6OSB0cTTF7gk9hksKVLYhCEIBFB0QVL3Qa22571esMxMxbjCpMZ/vP/yT9nudnw7uKCb77/itoUyNGM6bPPscUYH6BznvH0gHE1Is8yrt++pLmuadsaN7AhEQKpFXmZMZp4pnNPkVtkn6J5jLSMioJRWVBYS2bSPZtWJYvFmGePTnny8IRcOj578ZRN0yOmDee3GZt6xXZb8PDBQ3JTMLIlx4cHzKcjyjxydDRnPJ5RN4KbpaLrrmhbATHDGIu0BmFJFlGRQlW01uS5JssVWu1Hj/H3rit/fwULifIupWY0naCEwBrL5mZFkIOvUCYPeVVVHMxmuKbl8uqc1XpFP0x0irKkGE/QRZ6o8eMRk+mY3mqEd9TbJCf3QaT8ciRCpwIxkBgfCJm4DkoO02iGQ8FHI0xCLcifHJvS5updKnxMVhD7gLEZxmQ0TYuUDmtJhzN8YnQIS5RJWmTzDFNWGOeQbcNsMePs6JDj42PejMessozdriEXkkJrqqJgNp9TTac4H6ibFvDoQSY1mozIqyLF5BKRxiCNQZj7Y3mEgXuwt5WlpkliQcT9h5eiPPiodhnajcOiFwYrRZZbRpMKIQWtMRAinesTnM1qyrygLErGizmTgwXj+Yx8XCGMHr7SYi5FmiBKH8G7IeUoIqNBWYPJLaPZhNl8wbga4YOnvLpk1+xQdZ2gjgSarqHtOsrMUBYFi4MFddfi1yElXURPFBGlVUpAkAIlJdakyZU1BiWg9X7wRvv0Rw8i5elGhlhPYCjQCII9pTsMscFpU0zSznu/9j2v/Vf8qD8QP7EFSSFQQtK7nhhkSj4aVFxCQJYliN/NzTVv3rzm7bt3bOsO52FSHSQLQlAEEYlCsJge8OjsKZ998jNibOn7HSYLTKcHVNUEpTOESPEMUqbnd18MagFCJdbBPmp6H2UrpLxzVCXuc0QEjwgOXIdvd2yXF9Sba3KdZPdBOQiOdufJrSLTnsUs59PnZ2w3W9brLW/f9ETf4Noa17bIzBIH7grsm1UyWb6USqqM4aAv95nB93W5iG8dTnZQkRosUqc/v5AwFPxCKZKTVON9Ki6lABki7bam66EXDduuYb1tuL7d8LtvfuTdxQ3L1ZbaRXyIlJXk5qpjdduyW7f0dZemwlIhlPj4vOytP8NztLeb7e/OnsaUpLr7nxsO7UN6lrWzpDJUg3owDFYiP/woBYhAUBFdWrJgySloLtpkkRDpoBa8w8c+Ud4DyJAms1pm0Ev6rmdzsWJ3s6XdNIlpc7du7flR3Gv1WWpQIb3quRF4ldQOtVG0YRC9x7QP7j+bfdNEIrEqpUdZpci1ZlwkWKjWw4Y+RKqmdKnELDEmxxYWU1hslaHLEqlTdLaWiqjSuxzlx4UgBoZmypBEIdQQr53iIe8O9qQoRyMiUkjOxhVt72idY7laI2SKWZ1ZS6kVmZIDX4Q7Sx+Cj0k2OsFGxbCW+pBYBKLZEXxAS4mSekjOiukw1dXJZiFSelayDDva7v4ampBS1qJMdtwYwl2arYjybo+Lg+UtkpL1IDWrghcIfCqORNoju6bB9z0yipRe1/dpbR0+45QQEdOUMCbLnZaGiCKKkAYHg1pOSAFDekyMjkiqJ6TSRCmS3Dn0hA6wBoXEGg0xsl6v+eGHH7hZbXAh3FkGREwWMakTdHmz2XF1fUPvPFppyjLHdTvMUHONp1NCjDRtSyF1GiqEllA3rLZbrldb3l3ccH5zxaZt6WMkqpSkl965xA6J92wRCnf7l2Q6njAuK6osJdZlSmGlQg+WPD3YY6KIjMYjTg6O7mzfKA3KkOUZ9W7N+rZJh0gf7n59BsioNZaiKFjM5zx5/Jgnjx5xdnLK4cGCvKo+KkJFsnQ4H2jbDqEUZTWiHE349MUnlKMJWVGQwtcUgZ56s2F7e4uSEuF62s0G37UoEnhXiDTwsKZMh4w8IzpBWRbkeYGxls456rajabu0Gg/7apLZi7uDndaKPMsoyxI9xIorqcjzgiIvyLIshRbsG+r3uMddrxomVUeZe6YmRxibrIRCYgQkA1FAIoihx7kWFT3ROXwXaNuWGAsEAxvNGGSIqUhV4a7BEnFI4dAmUI00degwKmJKgdGKtk01aFs3aCWYjCueP33EyeGCg9mIzghyMSbTOVZZtLZJ3RaGMlfsU+AkiW+jIMj0fe0byX1qiEqlECh2dc9627GLntNqweLwjLNHD5gvBNL3GKGpqhLVG4pyxGg0xdgE+RT7CFghQOzThJKNWEiBDz6tSXD3H98zgiXZgJwbbIRqeN7Dnao8+EHdHvbWtIhEEbyn6xzr9Y7Npib0O3bbGilsajT4ZCuUwyApCkVmNfPZgk8//Zw/+sM/4eHZIePxPFmn91HIDHtVTIB5xMcBT1FmBA++j0RnsDopVl6+btO9iWk4ao1Ia2pQHCxmPHhwwtPHD7k4vyXTOU3hGGWB3I6TgqLM0FlNliXVpZSWGA0xaBAZAUMYIr0RHkTa9yF9uwkePQw8o/jYWBnWszsO2H3eOJEGB6kRlfYwKwSLwnI6LcBYNjHQDuEld0j3mCxCPkqarqFueupdi3CePNOYfMQvPn/B9eqWySjny09fcIsmFBNGDx4kgYBUuBCZzhcYpQnes3z/A8619K3D925olqdv1VhNXmSMxp4ss3cpVFZqyiKnzDO0FJih4T0qc44P5pwcHXB8MCeTjgenx1ytdsRxT3mjWO9uud1UnBweYoWl0Dnz2YSqtFjTM5+OiRPDtoa6ToxG74bENaVQSiF0+vu7NVQptJEYLVOwwj/w+r0bLD+JBUfnhjxUSKkw0kDTsPKRrMhBRrTRVGXJ2dkJP778nuubK7rOJTp1lzrIWZYNjYXA6ckRvuvAOT68f0vbNvRO4EVE6RRHaosiea9CwMeA1TYpMgZ/494GI+74IukQfzdsiWmipZRBRJ2sE9YyGo85PDrC/cqTG0lV5YBhs9qwkw01iStS5hmLs0NOzh5wu97w/vKK+WTEyWzK2XzGYVbQVmO6IJjnBafzCceHB5ydnYDOWd6u6LoarRWLwwUPHz/g5GRO51v64Ki7jgkpbQCT3duL6b0fXrPhWBIGZsed3FSAd8M01jF4Y9hHNysx/HsC2ioWh3PKqqJtO0Ln2W22NNuaIAMPHz5iPpszHc84fviAajphNJulCG1tEknU9SmabugWBPExRlpIQTmbcmw0apieud6xaWr6GGBQUIl9M01LvPAILcmKjMPTI9rQI61ivdmkaauWgzQsee6USo3ALDPkWYaSkuB6ej94KB14JwgugSqFTF18bxQ6yyhsTm5yet/RtY71tsYJSxcSIu0+r+g8mI8L9f5Lkg7tTioY4tiUTEDD7WYDMbE/tFCpkx4TI+Xtuzf88PIHfvjhO7brNePZAbPZIY/PXtBvA93Osb3ZoUzGweEhZ4cPyc2Iugn4XnJ2dsLB4oz5/IDxuMKaDIFKA1/SN6akGPz7qWEnhBgi7dJhVCuNx+O6Ht95+npDu7mFrkb5BtFv2Gxbvv1NTVWNGI/H9K7BuRrXb1Gq4fBowtHxjF98/gICrNcbfpsLXr1qILb0bY3uLUGb1GQZAG4+eIKUCUYsBNF39L3DCJDm/qSc0oHfdbQOmEaUNCiVng45yIGJcoAdGoyWuG1NH3pQAa0l0fd0wbFb1nQWugCtl3TBENUYlecUXhOCpMxKNMf4naZedqzObzmaH6S1Tktim6JLpfgfFNk/WRsFaePZFznpEO+Gw0myCiJTEQNhiAocMPl+eEZ1OtV64ahji6os0lvwCid8SmeRChEC0fW4kFg1IQ7SfanJ1Ihm3bO5ueHNd+/ZLbf4xuONSEDMPSRYQEDc9QHu41oUmlo6WheTal1ZlIlse5c4HlIQhEgco4EhJWJqbGopMAaMUlgpyYWgtCkGXUiFUlmSFQuFc8kmEJWBrESWOarMMOOMmAmCikQFDNGycUijUyoxXvbgSyJp6ql1UtbFAFHewVUFDjqPEKlZcyYlITN4o1h3Pag0vBBakauIkgEZhsONTEOK9FukRgwhSfqlJK3dviO2Ab8JxM6B1sio0crixTZBi9tt+gxCjxKpMRSQ6c9+j1f0gaBCSlkYAM2p8fWxubKHg8cQ8fjEZYqe3nuIkqoo0AgCLW9eviKEmtD3zEYjHj16xBc/+4IvfvFlegeEoO0ahMggCkIXBnitRmqRTm/DFDjtbemGueDvoN8hBmLviGFY2b0BY9A2YzGd8Nlnn3G9XPH9j6+5Wq4RpHjnEAQhCoRQZHkGvmPXdLx9f8521xAPJGVZsvUdNrMURU7XVXw4P6ftWvK8Zm0zhEhJeaum46vvf+TX33zPxeaW2iuc0MOarohREQLJIhTcwGq6n2vfMFJa8+jsAYvpjFGWo1pHqQ2TLGOWF6x3LUYKlEg1jR4avlU1Rg4NliA1b9684s2rl3z/7VdcnV/SNi1SasajMUJbpLZk5YjpdMLzp8/4s3/8Jzx++pT5wQKbZakhM4CQg4/DME+jTcbDx08AgVKa+WSGzUu0sckWKaHZbPjtL3/Jm5c/QvSURc7F+Tvefv8ttDUTq+l6jxCeo/mYo8WUSVVwc7Xh6OiQw8MFo/GITdOyrWt2TQNK4aO/S5q5G5YpSZEXzKZTDg9SyqMkAbLH1ZiqLMnsXgn9MZ78vq7zWwdyTeMEv3h6ihpPKVCMtj21t8Ro6WJaE71vaLYtuQzIrsZvPbulhdMxEkHwPlmXBpiyNBJbSPJS4/tbtqu3yOg5nEzpSkOeFUxHFb5WrFZbVpv3rNcf+ORpwWfP5/yjX3zOwaRiklukmCB9gcQk9aRQaRYgYCA2p0ap8D+Bv6fmh7QGETN834E09FFxedOwbQRdyMBOWG09r9/dgGqY5CdMi4zC5CwmMzaNJqsmjEZTlAHnOpp2i48K59M7lCwnCQargKbrcM6nZrxOAOH7vtqmoW+7NFwq7dD89cTg8K4nDEDopGwJRJfWNtf3bDct5+eOpj7CDs9g6z2CgAie4DqQAaFARYmWlrIY8/jRCx4/+oTFfJxs4yqFbeADoO7UD1rrYZCyVxEk9YzWihAhyzVKlXxinyamlk5DpFQNpOFCURrOHhzy2eePWd5ckeWQmZJnDx9idYnre1abG5BpaDybzujaSN8LfDAoNaEnw6NQmSRse6L0SQEYHNnwfSbV0zCcGmDdBBABgnME5+5S9+7jEnREXBpmOo/vehQ9B1nG2UjhFNA4+tgRg05JQ9IgpE3PtIRtvWO98dQ7Sb/dInEEq6iyAlkV2LMj/mf/8T/n1arhug1cOEFlFKPxhPF0ipCS8w8fePv6FT9+/StkW1POJnR1YlnGbEBLSMhLy3QuGI1yIj2+D2RSMRtVTKqMXbNGCSgzzWIy4rPnTziYjsi1JJeaxydHRCF5oiuW9TM2uzXXt9esb3cIJylUwdnpAk2N73cczidk2YjVxvH2zRrXNXiXEoQlabguZWrS7xlqRus7h4BKE0j+IZ3o3/tuSwkptyR17WxuMVpT2Jy4q5ERVpdXlGVBWQ1AUQnHhwdsNyvOVzfs1jt22x3jJBPAWs3iYM7/9n/3v6Hd1ayXS/7F/+Mv+fqbr7i+vkZ0MDlYUI5GTOdTiswOE1BgsGZAkpfe9Qrv2r379uFPj6Xpw/34U4pqVHF2dspkMqGsDIeHUx4/OmG2OOTDh3NurteMiorTo1P+6A/+kIePHnN9c8OrV6/p+47T+YxFnnFSVeiDObEoOCxGHBwlBcd4NOFmvaWua3a7HaNRxdHRIScnp0ymGZc3F3S9SxBXbcFmkP2He7/+fVeM++zxYYMV+wmk2msK0ucTPB8JXB4hdcqlR1CVBRFB2+7QVmOFSLYfJNODWfo1QuTk5JSyKAFJMZ+SjUbocQVDIReCJ8o0Bd3fkjuoUAgILzBFmsppk7Nbb1jfrjBFQTmZgJRU4zGZtYkm3baUo4rJbMpkNqNxHW3foTPLuJvz+PkzTs/OKKsSoZJsUSiBiilu1WQGqRWxTTT14D0xJMhvsi2RItmIuN5DSFJwQVJsRdL0IUhJHyK77n5bLHck8pjiLIe24XAvB3zWoKTZ/3fEiOs6ugB4aLuWnVasV2t+9Xd/x9sP77i+uubP//RPePTkOUdHD5gWh9x8uGV9veXmw5K667HGsFtv+O2vf43zDUoHvvzZc6aLAyaLQ6To0w3cd10jH6e5hOE1/P8gchXJlKYFKKM4mIzIlSL/J3/O58+es15vCV5RFmOsybDW0rY7nGvo+y3XN2/Ic8GoyjgaG4qixB2MGRlFpi65WvYsNzeIXKOKAiHTuxRCSCk0QiGEQimS3SQkDsM9slLRbn+AcvTbNiUGSYXWemg+SZQx9G0/HAI1hS1xXZqSG2XvGDu7piXYHGE0djTiyz/8Y358fcH7D0tub1oyU1BkOaFVfP+7l9xefODDq+8RMXL24hGLsyOC8wirhglM+Pu35KdnpeDTdG8/ieEn93DfeIlxAI6kfWjPHklAN4giJFiaUVBYZMjQPkl+ZRjWX+IAhHOgYpLta0uZjQlbx83ba96/vGR31RD9YB+MnuBcsnQNz7vcF8T3dM1Kg4gdxIixAqxBekneBVSXotuREHo3FKUJmJnUQCFFhxuB0klZsmk7fO9wUdC6SN97OhdonUdqizYZ5WjEQs2ZZooDMx7+/4BQydKVzlXD3/shVUToVJzKIa5V7o2ew7v49943GKjlySATARkZH1TD1C31ZZT3w/RxSEYSP52WM4A1FVIkfk7fJWgcUSMVuLpF5wIZZILuSklyUTpCTJNAneXockQ2VhS+uLf7BtzZJQMp6lPqmBToQhEGBkoYhjBSKaSQuMEaREgqqrZLqYOh6zBa8uDkhMcPj1ldviTLM3rvCCKiNCAkKsq7/QAh6buOIFMyiFb7vmMa+sQ9k18NypdhB9EiHTbSNCMiXEsUAm1Lnj97yvnlNb/53Ve8fP2Grnfp/gmBkhqtDVlR4pokINvudqw2G5qmSVPnGMithbLg5uaK3RDhXDctDx8+IisKkIpf/pu/5TfffM2vv/6OPlq8EHgE7g7SKBDSEEQYJv7314x2MRClQBvDYrFgXFYUSqMbR6kMIS9owpj3zS1GCLSAtt6mZCfnUgNQKaROg6nxeEpZVCipcc5jbU5uLdZYpEnwaFtUHBws+PSTz/jyy58znowxRYJI9313V0+6kFSANiuYzg2T2SJZA6TC2jw1JwVpz3OOdrPlzfc/8m//9t/Qdw1FbgmuZXVzjQ6RyljGuaGsJnz+5Qs+ffYQazShXfPi6c+pxhV5UfD6N7+lrus7m4gLnj74ZFEeGsxaSSbjZLk/OjxJTYAIQkjmswVFXqYh5JCaB/xE4f0Pvy53niasWLUt49k4JZEVYx7qEWwcog3sWs/YCrquI3YdUwlZqLFdj1trYn2IMEU62Azfn1SKfGRZaEXtJZMq8uHtb9nF7wnlAlMV9MWI0M2ob+Hm6pJmd87JgeCf/tnn/OkfP+UXn50xGxdkmqREFjJZ/7wfGCv7xsrHzyMAUg2DIAnpqJSGuDJAu+lZbh3fv75h3caUJto7zq8v2XUXbNaRP/tyzng2IysnzMez1KguCjxJGe1DSGpNYlp29lOpAUYaYqozg48opcl0hpIDDuEer+1miw/uJ6DWvfU2JuXiMKQOQ48jIohB4DpPCC0X57esV2fMJ5L5dMTLqzcIr7BlyWKWs+1a+ugRJsX1tjvHD9+/YWQKRlWG0YHnLx5wcDhmtiiReQmxJQ6I+Y/bV7pXd4k4ioQXyDRFru+S87TW6ZYO/yxtxtHJnM8/f8rb16/49quX3Fxf0KxqymyUEjhDx6OzBc+enPDi+SN82xOdQJGjZQFRp/3+Y5A8qYkj7zgsKSFJcmexcoEw8FdCn758vD9Vu6SHmPYy33tkgEwJJgZm1uNUikC/xuGROMTARdEIlTgqbRuo657dFtq6/X/z9qc/tmRZlh/2O5MNd/DZ3xgRGRkZOVXXwO6uFj+QEATwgwCJgAT9gYIA/R0CCAJki2SzQVUP1VVZmRmZGcObfLyDDWfSh33M7n1R1Q1UpDct4PH8+XO/btfOtPfaa6+FMhmVhKlYa8XFouVf/MmfcH274T/8/jv+5f/nf2A7jDSLBZdXF8Ku2+/oux0XjeYXP/slX376CT9++ZpV04o8AZmUeqxVNI3l4nQBacfQDVQqcn7aslpWbDZvaCu4OFvy6evnXJytWbUVtVOonHj54pJ60fDtfuT+N7+lf/zAuL3n4f0dy2rN+VnFb//m31HbkaZK/OSnn1DXC1TusSpgVMKoLPHRtITkAJ1DYFVs7NXRfJMuhR/W2vWDARalDojiDFRYg2mkz7VqalzlpKfcWtG7sFqsIJdLPjzcMw4ePyWhpXWhcpZPP/2Ubrvltnacnp9inS0UXHkUzmoWdSNBbZQJhhWAYHpS31f+FTBqov7BMUVySlKzhrqpOL885/ziAqVFqPP07IpXrwJ1s6Rd3HK2PuPF9TNef/IJlxcXaKWEQhwCp4uWWitWzsJyibaOy3bJycmapmlRKIZ+YBxGYkycnKxZrla0ixbUxMgRajmuImtDTJmnU2GR1FyVMVRKhLW0NtKeUejk89AeM34KQ2hC/VJOGCuUXbTYqTZ1Q13VLOqG07NznKvw3lMtG0xToazYz+UoDgTaGDlTyuDNPW9FOE8poZm32jH6gOk6lidrRj/SLEQRfNkuGP3I42bDYr1iebJmdbLGjAMnp6dgLSdKcfnsmpMzmU9SldIlcygLywgtc8bm5vetDkZLQDGen59PiqWTXymUscScRYNlfFoNlmPx2sntQpUkajp0cs6z1Z4uFZkQIhqojWUcO/p+YPO44cPNDY8PD8TgefH8muuLC87WK0yE2hhi5YhtK9Vqa0hxZLe5Bx1oVxV15aicxVojrKapwpDLfU3PaiIooWYq/t8DWSSbo7YG3daY55esFzXDMELWOCNuJkZbhqEjxoEYO94tR4yO1JXhpHU0rSO6zHCy4vllIMQt99sNfuzJVmiBGVv62AWUtYWSK8ELIoodn64qaxC730zC94NYVaOw1onFnBKAU/QY5DlZXYn3QowEH9CVwRqHNZltDIwluXvxyWu6YBiDIYyPLOsVtaux2rJ/3KPiHuKOd2/esr464/zZJRMozoTQT8fJ0eeHuV/W/ZwETnPx8HG8YKa/T/8lpaRdxWhwFpUsSlswkyZFaR2bqqpaqkFGi/tb/9ixv9uzv+9glJYiqXSF4pZVaMRHLLunuurKUPWKsThfaWvIRsBYrSUhT0mYCdPeaYrY6ASyTBhHSFn0gRJ0MbHtPd0Y6H2gCxFlK2xVsxp6ntdw5RSctJzULZXSWJVB57nF7vCw5wNPhkBR9I8mwPfQ6HVo84Jyg9PyxDhLDqnsy/LTqkyH6eSdL8VR0B2FveQDkQTZgXWkYSSbCqO1sDiUOD3FnEUnTRtM02LbJW5hqEJ4wpGT9yuWwoWplos9OXkWKk1FpHViQBrAKk1CWhdGlTEqobIIUJ+dn/PTn/2Mr81A27bMGgEYNFnAvjQI2KEdGgEkdGE2zdhkAVdyGRhpLZKC1Vy0KloxOQbQAaMU18+e8eLFCy4ur3BVRYjiZigCrU4cghYLBhLO2iKmG0S0sjj1GaOpqkrmZPn5ZrGgXa1IKO43W/7uq6/4w3ffcXv/gF1fkLFy61laoTTS2pl1gVueMFGPWYA/lKKpa+mPR4ocVmlqY1lWNZU2OK3EdaRUh1OKsuvM7nDStt40DcvFUoo9dYXVirquxeTA1TTLE549u+Lq6prT84viKuQOzDCEwQCAksROl759CcilnUQmXmFqFn2R/W7L48MDfuiJbU3lxBS4cY4hRZq24fx0zacvn3G6bDBasV42XF2eYauKmBL7rpN2tFIai8VdJhUGNwrqyrFer1mv1yyXS+5vhtKhqVktVwIoGTPrtf29Qscfee2jIg6JaEbePO5YLBacNA3r80vOXGDcD9xt9jQxoJK0C55YSx1gqSKMexgHCA59TGZTqsxZzbK1vLxcshnu6Hdber8lxSVxaAndDd1DYtzusHnH86sFX3x2wZefP+fydEllp4JwBpXKnlhiuwIbHp1uc+vfvAlqA8mSY0LXihHLbsjcPg74bMjWkAyE7PF+ZBgibWVZ1jW1qai0pXIG5Qw+jtisi+NjAbpTRo6LuYFXAOIoXzfaln20FLGe8BqGAa3F1VRi/DjB7x9Nk3ykKyJxr8zx3W7Pfrdj3YrAfY49SdeQB9bLiogn+ZLnZcU4BN58e0OjHMu2om005+cnrNYLyCUhz+IAx1Qsn1q35vFSJVaXr2ld3J+grH/kfEuRrCLtsuLy+oxXr6+4v7kljZ5aadpK2kKMqXn57ITnl2vOVg0fNgMqJgxa9vKoi8aVOrCO1ZEO4uxaW8YuF3bmbHM/2TU/3ZrTSqpZU8xvEBfWlVMsdMRrTWM0IIWZrHWxR56A4EQISRyhRiXOjD4WW+KAKbH95XLBbki8a2rcOJI2j6QwkhuDIXPi4LJd8ez8nH/y5Y/58evXXKxXwk4uBQCQAphzivXS0e0gjYHaJhatpqkgx45FazhZN5yfLWkqg7Wi1YgPLBcVicRDGIj9I+PujtRvUaHH2AZHZPdwh15kWmtZVBZjFUZlVPKoLMwqmTb5CCM4BLMzkDIf0BNm8L8zwKKzbPAS7yVyNmWyZXDSxuMqR7No0UYToidHT9s0rFcrnHGEYcQPIxpd/MKF0jyOA/tux26/k6QkecYwMoSRzeYRawxxfYLvOvwwEL0H5wrVR8qoU8B+OEQkktSow4OjBPaT8G3KNG3Fi5fP+PSzz7i5ec9+36F0xetPfsyLl5/x8PDAxckpJ6sTLs8v8eMIKbFatFycntI6Qx4GFlaxOFnhYuK0qmmX4h8+JbfD0KOU4vz8jNVyhXMVXfdAP3pwlqppUE1L0JqxH54MYFFKgCitRLKGabsypZonzY6SrORps9dzUDqOxX0hJ2KKAlaYDEb0a1YnJ5ysT3j27DnGSCI7DAO2bjHWFWwikSSbQtsCnhVu/4xvZENWXpgYqYicdR22bbl68ZzlekUYxRXn9OSEfdfx4cMHTs/OOL264PTsDLPf48m0pyfUyyUvXr9isVhI7/W0IU6Br0bswKepoSjaCupwwHB0AJazOqXM6L1QdrXBVhVj17Mfex532ycaNbliEY4SG2FZ8HqiJZYgN2exiAOxIwZpq9JZcbJYMuylovnh/Qe2j4/4ccAaxfnZKSpHHm8/sPmwRw0GvKbWCtOKGHFUA2P/SN0KkNY0BpMD+B6MiNWSQE2q/GoazCmjSFMGWHLDPD/rKYHXKlGZTL2qOWltEe3NiPiatNKEoIGanBvOVwFx/sm0xSFsJLEwitfPLvHB8ubDlr7bzT2eqpL5HGPC54BxlQhymnIwxnKvT3SZktzlmOl2Xen91NR1Qz8MpVtRqiJT7GtNRdIBHxP7rqddLnCLhmqReff+9zzsduxGz89/8adE7VCmIgfHSXuC1ZbYDxD3jF1gez/y9R++5urlNZ989gq1MPOhN627KQmfZrgcOkn0JaabOur7z9M+mvU0gEe94WVxFM2bpMWphipBthBFf0lNQQuy1jQaXRmadoE1hqEbuXmzYXu7Je4ia7eUxCUHfBilAhkLuFLEZZ8y9HSV9ONaL8GMcxqyo6qiAMwhEkMvpoeTLoQp4XpxXEg5EmLEe8+HzY7H0XM/jLzf7NmPgX0IbGMU8M9VLNdrPgk7Xo17dpXiy+VrltZSo6i1FtYKoLP+6P1mNQFhSZ65KnuZwK4Hluuks6MkgZ8YCZTEFJ0xegLUypLNx/NExlacSEY0o7SU9mLFqmOFNo7YDWAbVFVRG0enDR4jksS2QllHRUN9ck4TB6J+Yr0qJXaw8hFJ2Uh/fhagIYVAzEna2AvA57ShMQ5lMl2/Z0jyLCqnUEZx9fyaP//zP6dVPZUWwc5hGKidBQVj1zP0gcrWrJcn1NYcUcYl6c5lDWklQtqxMCIFCFNlLpezJkPK4oCgteb169e8u7nn1etPWC2XpJhEy84JuNI2C67Oz9hbWC8bnDFI91EkxhHvvYDiVXFyQOPqBZ9+/gVnF1d89/Yd//ZvfsX/+D/9K24eNvQhsVzEovcjG6NWWQSoy9lNTugnFIXwOUp8gLRsG6WEQRozOmcqDAtX0RpLbS2VEXA/xUCOUbQctJzryUsb3XK55urqGS9evobg0SpjrSugZsv67JJXL59x/ew5zWJJGEbZworLmeikGAxm1psxxmDUcfgsa54oSfkE/IZiKmCtuGWsFy2V0Vijub3xrBcLri/O+Mlnr1hYGfTr8zUny5YxBLbdjn23Q7STRWg6xMK+TGJSoLUSncPLK87OzlgsFrz95jvRQTKWs9NTqqrCGkNWujjIHTSInuLqsPgc8R5+/eEO2zS8Ond8evmC52tDftxym96xH7aokFEx8WJhqbWlCRo39jB0MDpp2U2mhGYKckSRaavMn/38E7KK/OHtB7568zWjd3RoYtKMHdhsOa0bfvrZFT//8RlffHrGugGTRijOYdJaUYprkxFGBqN0MS4ofR06Mdnyqqn4kqUQN6Q7HnvFzSaQXINdWJJxYindaNZLeHZxytlqiQ4KFUWENzrY+y2NrSHmorUtsUiOielEVFkJ2B1krJx1WOswyjy5jdDQ9VS1w9oC6mZpEWIC2svhHifzhygAVYqZPEa6cc/j/T2n7YrzE4PKAznuIXVcXCwYU88QxI2SCP1+5Le//pq7N3esVw2XF0t+8sUXPH+u0LomxyimAxlsJTGsKswRKVeVsSsgCkUzZi6YGynUTO6xKfY0jeby2Qm/+MXn6OD5cHFCnUWU2RlDVSk++dE1l8/WLKvEu36PCqPwlrTDRchZXFXFIEETlQDNunzMDp9QAKhYxlWeWY6JJ9wqsSbNraYpJmyGxijOakurpAW3Nlb2JQUYQ1ZGWCpWgw8EnxjHwDhALCwbAYxCAY8VOiZOlOK6rvny+pJni5qmbbh+dsniZMHF9QWXl+ecLpe8vnrG5fqUs3opIvEhlLZ8addyTnN25thuIr4fWC8VyzZTuUCKG87PllxfLrm4WOJMmt08c+ionSItDO3diN98YHx8D9FzUhlWDhoCjHsWpwvOlw2LShGCJ/uePPYQR1QWxz1VHMGmPJdSpJvBuwnmnGLc/MNYmj+8ISz7AqiApiBi835dAgadWS5bnDOkLFQipTJNXVFXNX4Y8f1Y1HvlNXzw/Pa3v+Hdm+94uL/j6tk1f/pnf8brTz/h7vGBs+VKxGLXJ3z26iVXp6e0VgSxJrB5vge+93lWEuDPQWVmtidGNrJ64Xj2+iVf/vynvP8fP/Bv/v3f8ubdLT/67FOuLy9YL1vGbuDtw7f87V/9e775w9dAYrlo+b/+X/7P2JQYcmS9bKmsxoVEHTPWGrqU2HYDXdej0CwXC9brE3JO7Hdbbu9usZWjWa05u7hi2O54//DIN2/f8X/89J//4KE6voxtpKFFiS8EBUBRliJKlSFmRLAUco5EL0yj0Qd2vWfXDeyHkWEcaVaVMAAyuLrBtjWmrYgGokooralWC6ytQWlETFtEzIxxKGMKcFAmjy7JeErSRlDuO/kAlcUsWs7Wa66NETMGH3DGMowDp8+kslc3Da6uaZ1FtQ0pZdpFy2K9xlgjFoXqsIhSTkyF4VQ0fJTS0jdqpf1HaU2MB4GxGGJBp8VKT2ep/A7B8+Hmlg+3t9xuHp5kzL5/TSJN8rg+3uAnq2ZjTNGYMQJElcd7dnrBojZcXSx5/vyMMfSEPPL5Z5+gsIxd4O7rGzbvt8QuUauGXdihak29rvnZl6958ckzXn3ynM9/9IzFUoMaRIBTRSaHquMlVwrpMyClQpLkOARy8ETvCeNApXVB+hPaGCwRVCTHEYroqcKic5TAR2fqs1NyHEnJF4A244ylubzCNQ3KrdlHw99984Z+2NMFT70sNpUZ/BixRKw1OCebb0baw57s8km0i7Si2+4wVuOaiqpUpFIBqytXC43US2Buimp91/U0ylDVDYuLhuHtb3jYP/Bhv+P/9MkzXn/2GeNfZt7+4QYdNH4/cPPmHW0dMDaiTcA2VjQ71DRPgrSxlPa8udX0eNucaVt5mnhF40QVt4WDiNsB4AMJdnIRHS9V5ToWAeMGFWt0XaNHLQku4ghilSE7eZ3ddseHN7fcfrVHDzVrt+akWjN0e7G2VAjNe1InTGmuZj3dsI0YJ3pO+3FEjYFsxF64qRtS6hmHkdpJpai2BmUzVhl01hhdkWJmGAc2j3t+//DIJia2KHZoRuvoreVmv2M7iiCz6rd8tbvj6sMbfnP3HrNqeHa65rSpOLGGCisaL1g0FpQlK0VEgKeUUnHzmodsDvoUpd1nRjVlr0tZ4fuD+5g2RgKQopMkLUEGoy0J0Q3pw8Bm+0BtPC4nzAij9+i6QbsG3+2JVY1DUWmLMxXBVmSnydUKqhptNaurgGkSq/Onc1cASvVfdLQiRfC2YIFTz3XygW63p6prKlehjMKVvT+QGcJIduBcxcbvud9tuN9u+MmXX6Jjh9ORh4dbhv2GOAbev/lAvx9p6oaz03NevXxN0yxwrhYxZCguE+LCU5oDyJOgnVIYjCR3pS0vxQIG9T26PeHq+pq/+C/+gn/37/4tv/vd77j5cMPF6Smr1YpF07BaOOgSp43m0xcXXJ+tWDYOlSKVlPHxIRGy5vL5a9CGpCv+5b/+K/76b37F//d//l/45u0tPiXQln7X4Roj2mVYdPKQQ9GLyqXd8SnXnLRouhAZhpEBQ5WgGj2mAOStrbm6uGTvB8bRc1I1OGtJMTH0A7VpUFaRlaWtWp5fP+d0seTTq8tSwRRR4ZQ1GIdrlziraBYNk5WqkpwN52qxzZ32vblKrSmyxZTI4UB0KX122kCzrKnbmnHIkrhrqNsWVzlW6yU//8lP+PFnn/FPvvwRIYng8fn6OdthpNtvebi/gyiOXGLKEGc7bQBrDacnJ/z4x5/z85/9jKurKxRivds0DZeXlzx/9oLqyChBI0yhpwRYUrUk14roEt887uDrN2y2A5VZsTy/pmoXtG3N+PiWNG5pYs9Vu+DZ6pRlXhCHG6wfyUMvZ4ARHa6M1PucyZytHP/Nf/1P+ef/9E/Y7Hve3t/zMAS23cjDtmPsAgZD5So+/+wlP369pDGdABlTxVpncvYoO4mqluQ9y3hOuUsmiJ6fTuJ2aCwxQTIaa2q67NgGC9Wai5cLLuo1i8tnnJxklrbjvO75/PUzFqpid7fD93v02oGNDPERo9aoKM5FuSTIOYorlCq6WdPRqykx3hFj+WmvAqACk8BtLiKzM9svJbz3hDEQ64QzmpylzWn0I+/fvWXd9ry8uuL1q0vIFXVV8d/+t/8Nv/7qa379uz/w//u3f00MmW707B8euMv3nK4X+P6KX//ma84vz3j+8pp66bC2JStLZpyZK1P71FTQIQSmarEyugC9WRiI0385QpAzsK7hyy9fc7mu6R/3OK+FmaIyVmfqhQYbSPsPqD5jhoHKe5oMg5pY4hpbJAES5WzVGlM+9MQsn2KpArqqA933yS5Dno0tok/oDDWKlVG0BLSCxhiSH0i0hcFihI2rhIQ/jIG+H+n7xDh63Ch73Ulj0Umhghg/XLULTn72M37yxS8JOWCsoq4NXoXihmWBTG1brK6wHgGbkwInBeGsFBa4OHfc3QSGrueTV89YtAGtIudnlk9//IIXLy85WVu0GmVslSKrAWsd69ryy198zutX/3d8HMnG0HeKHCw6Oi5XLc6OGOsheTQZS8SVdZ+JWHsoSKdUGEApyRo0kGMu65K5IPxDrx/eIsS8Jg/B3PwPCE1ZKVwt2izGmoJiFecWYyVxHwaC97KYI/jk2e42vH37htubD3z+ox/x6tUrLq4uedxtWdctJmeIkbZpqZwT1sVUDQemnWlmvB/KfIIMz2l7qdKiCq26VNG1uJU0bYOzFXd392ileby/Z71oaYzFDyMPN7e8e/uWRVvz7PqS5IdSeUq0jaPSYH1Aj6EkNZFxHBm9lyqWNTMFVJnMrttztr6gXS6pm5a7zY6bdzd884fvfugw/b1La1foUSJQN1cvC8VVaMWyWFOIJB/xpZXLhyBAyzDiR08Mxbqt0PiMNdhKnH/8hAhqg9OmCNkqoUFqLa4yQqEpCcABlc6Ic40qLA2F2JKaqqZqRZzTOYfVetbfycaw0JNlqCUbja4cdWlor5tG3DgmWnOpwE/nWKK0Z8UoIEtpVchJLIcJcifShyrU+GnDzEBIiWEc2Wy3PGw27MehPJenvY7db+Z2rTnoY94spC1PmDoZJRo1vWfVGJqm4eTklKurV2QViHnk7PIcjcUPke52SxU0oxupVc1JVeMWjvZswWeff8L1y0uun1/Stg5rQRUKIln2Io0qmZ2e51SenDtCkIOxACwqTE4CnmxNEcAtAmFEyAGVA8Sp/zWjhWJSrLZFrFnnaWyU5NpZ2g1P1itevnjGNze39LuOvvNgm9lNKSZhGEjSNQEe+UmDmBSiWMYCw+gZh0HaodpKWF6F7eCMaAmhwA8e56RVxtm6VFI11jlO1muW/ZbH0JMZOTm7oKqW1NritwP7xx2+q1m0DahIpMcrLzncpO+gVAGTpomFgOJqUn6X/fTjGTwlFCXQK20rklCoI0p9EWLRh/YfbS3Zgc4OHS3GWgh5tn8/PlCGvmfzuOXuwx27TWBlKlrXUGlHUAadj2jCpdr3ERD0RJePUVxGtGHne0bvITuaesXZySlWOzbpEWtEA8FZPdNPNQqtLCEnUkiEMUBSVFXD6WLJs+vn9Cge/cjDN3+ArvTBW8fgDJ3KbIKnS5kxQ0SXHvDyfue3nA9nXAk2KcPHDKxMweExuFIq4lMFd6q+lbnBlJCoJGHttOcgVUzvPftuj7Klzz0qkh9FBDVEOdeHgagMOoMpwqDZWVTVoKsGbSzt6QVVY1Dp6XTGAIw1RH9gQ8RcXMLygYGTUiJ4L22DxqJ0xgoCg9OaISXpU4+elCIPuw0fbm94+fkrHBUmj/RdTxo8cfT0+47gIx7oux39flfsOzVKNkpkNRzODaVNsTkurLDpLJyjEVkfIQRMSiwWCz777FO+/OIL+t2O/eMjGqi0onGa1kJ9ccqz6ws+e/mM02VLbXRhn0xxjmyvu36gGzxvbh/5N3/9t/zdb7/iD9+9ZwyZmAVM9UNAaY/NxXVBxVIwFsAqfxRP/fFXKPbDMWdCiEQTpShT9NoUYLVi3bYs64bGCeBpdIlfyvk8ORGSxRq1qWrM+XmBRQRgiWjQFlM1GKPQRlgvaF22sYQydn5NGZ+jFuqPrpKkZmkV0wpM5bi4vOTl61f0u21hTwiDzCjHcrng5cuXvHr5kkXlGLy0h2eliF7OibEfyh6qPmrvUYo51lksFlxdXXF9dcWibYklGa4qsUg/OT2VmCjD3MKknvaMy9pIAqcz3QgPnaeyHd/dPHBKzS4EfIh4P0pRJXriOFCvala2wmcnYskhkmNExSRgCGpunbFKs6wtzmlO1zVnF0t2Y6LrPdtuICdpiTZac/38irN1hdWhsNanNm5mYEk62005P8rOqIQFiEpzi1AuxZGkNFGB1pYxQcjQrk/47OQ19eqM1eUFWj3SKMdZVdHUGjXE2aUHpO0oxIFkWnQWPZVcgOxJ2PWwTxTAG1Vag+bM5ukGDkoSS+kYLvcw3dfRR4rShpdSROqv5bzPim7fMfYNzhquLk8JXgCsLz5/TVKKMUb+5le/IYyWlGXtSUFMXCe3245h8FBc3lSe3JQOrXlTojuHJxOKUTRP5LnlA2uw0JFFyFxiSqMjy9ZS5xo7JPCyHp3OoEZy1vhsUEmJk2WK6CzMIqPg4Mh3aA+a3YPm/440EZlu//BvT3WlDDqL1hjRo1JEFwDZKgmZKxAjkSxiswmF0hZlRLw9pIwvczllVYgcpaUpMuuwkRO1UlytV+JMqDPGZGGeGoqwsHS2qOABewCUypyS4UksGmhcpHaRy4sldSX56PnZgsuLNSfrFjHNK6wklYVNpqVgX5vM2XpBpgFjGRpN8hqCZemK+49O5BQk34gRqyd4Lh+t83l0JgJLAVwO0/6jloYfcP0RAEs5VDOHgE9R2pUU2SiSVtimwllHpSUg1kp6smvrCKNn6DvGsSOnE3KMjGPP0HfcfHjP2zff8enrV1xcXGCcow+B1hiG7Y6HmxvqcoAICTpx6JOakPljBEjNi1QxHZCT69CExMigphio65rzs3OePX/O27fvuPlwy+2HDzilqLQijiP7zYZut+Xy4pSL0yXDfoe2Bp2j2E5NSUxKYs6TIuMw4L04Nugs6O/jbotPI73ved62tMsV1tXcf/sdb799x7e/e0qARXwRKHaLakboinBkyiQvCWzwXtq4+pFQDsjoBWQJPoh4U0oFzRXqnKscrnKEIsgo4ZcTFwpU2cx10V7RpJTLRlqCzqm3Xx1yBTJgDK5pQGmi9yjnxOdeG8IwoMg41cgPaVXoewpXVNltVZWK+pSYyYGVUsHrk7Q8+RjmSpOrHChHMpCKLVuMAsSI69IB1Bi9Z9913N7fc/corV6melpnDElsSx+oNh8BLLps+tPGMAnEiWq5IqZM1/Us6yXWVSxXK7788guqSpMZiSScceSQ0X3kRNd0mx6bHKvLJc26ZnG24NWnL1mfr1idLIU6X0p9eRqwzKwpQgkMQ4jlEEiy4XnZ+FQIqBTJoXyQUSlLoKWEVaayWOJNCmsKAVdl8DKowl7IZU9KCpIienHLWi5aXr1ccPK733O/29N3O7A1Wsm+4VMkRC0Ww7q0XqVMzE+XNKQQ0MYWF6yRoRcNkrqtcM6SUsSPXkAYA+jM3nvpDbaGpmrKfFVYbbi+vmaPp8MzjFuqVnF+vsbGxObDA4qR5Yll0VbE7Ol9wCdPthTQLxfnEoP0Wx/SvqzyvBbVUVCjStAn8d9xH/gU9U1gB2QVAV3WYgEcnAU0JjtUcBhnUaMo4CsxPBaHnKTYb/c83j9y9/6etLecrKCpa2y2pTpUgIYJ6Dm6l6cMPscQqeqGWlvU3jN4j8qe5bLi4rzG2YoUPDmMGCNaAVoz6wwZpUUjISayj1S2ojk5pX32gk//7C94DIF32w1fd3u2j5qUPLZpqGqDWTTkuiZoS1SGhEFlsVhVU4RZ3m8iiQOQ4VBBV4dwbmKxzAyfAkaKRbp8TVtbvoeyzkoyqCRBnRlyOcs+6Uf2uy2mkvYZly0pBDCBHANjv2esGlwJNK1xOJVJdYWului6wSTH6rzC0NLY1ZONG0hlX7SHZV+PORKzuARNTy0nYYq5mEoLTwGijKYyBhVFYyWMkagTD4+PfPfmDf/iFz9h4WpMGtk9vidlT/QSwDpjxIkuBvq+wzqHdY66cgfAhGJtrIRRlFVJrkoHpZyTHCWEktzoGFi2NZ9/9gm//PnPebi54fbdW1JI1EaxsJp1bTh//oJPXr7gJ59+wumyoTZqbo0pcBkhwYfbe95+uOXNh1v+w99+xXfv3vH+5oHJqjUGUKMALAqNM07mxlTxy5mZFvRE11icN0JCKubGEbMiRk82MqMNcNI0rOqGhauo67qAP4VhMrPqIEZJkpTKVJVD5dI+rjUGQy5WxtZJATANI3qxkDaJmFDFrSzBPF4AE8MIKO5aUzVZRJWtE6fCly9ekkbP9vGB3WbD5uFOWpm0tOW+fP6C59fXGCXAEVEYsb60z4/jOCd1M1iqlTD+sqZ2jtVyxbPra66urnDW4ceRYfRi82ydtEtbK/N+ttE8tBk/xTXpKmWV8dmy9aB3I797d8vZqIhaMcRICMIO1SGw3+1hWVE7h801ZjrbC8gi4IOSua+kTU7lSKs1TWU5OV8ToyLEjA8Z1zTFmCDRnp0I8zVHrLIlzqTEhsJ6VCmjswGmoAkm8CkXIG7SvBIgUT6S1pKQas364oyXn/+I9dkl7emKzf1X1Cpx3lisSfgY6YaekBKaAh6mUcROsxYThVzGRSaZvGemBI95zs+stqfM0hGgTs3FsKkupuYWVFUYWSkGsW1OgYlio0rS13cDYz9ileb51SVDHxgGxetXlwRg8IHVcsWgtYAsqiHHRF231HXLbrtnHIpRQhK2g5oqQmq25WBqTVYZYbvnyCy2rw+FAsrzkrYPBSkQx5E0DhgV0TZjvCcpAVAMiRQ9JItWNSQlCXqKkGMBWNTBjpnvgSxz4ZaZRDAVNXIBzcXC+enWXMwSqyoihAEVB1QMqJxmtl+FEsAje8nvcjE3MNIp4LN8hCwtowKey1irMhd1XRFDhOwxLpB1cQVNEVeVVraU0NqR4yCFILuQISjgptKqjEdkUUNTJRZV5tnVispBTorr61OuLtas1w3WSJ6llGgBKY0U81SEGMTiHSBlHBTNC4WKHqmGl4KujxCj6NhlSpNZLmfhBOBK8SoXIF90j0rxr8SYeWrh/UdePxhgSX5C7zQHM3dAZaJOJKfRJ0uaxYI6K4yX/vtVvUSvE7vrc3axY7O54fbmLZefXcshh+LZ+QmfPLumv7vn//3//H/RnpyyODnh/MUL0r6ntpbzkxU//ZM/wTQN1JYQBrTJsze5bE6TRaXobShEmG2i4wr5jkMkg4j91bbmL//pP+NPf/kn/D/+bx1393dsdzs2mw1/+PYbvv7db7l7/4733/2Bk85xvl5yurTE/R2qaai14fnFGY8fbkXp31VEnRniyH7YYGtYni5ZnZ1Aq9iEHSFFXn72CZcvX+Fcy8P7Df/rf/ev+fabd3x4f/9Dh+nvXdn7gtJN/W1CT05hxA8T4pfY3ksgoHNJvBH67nYzMPpEzAqtHUQ9tY0L6UAZtKuo24VU47WmaVqMdoCSgy6VTWYSy8oCjwlYWAIlo/AxzpUoaw11a6mqhuR9WeBpBjZiaekwhYWgrZmFp0RbwBIKKp/ImELwVUoRkmeIA33oGXIg2nKkKRHkNFZjLKSgUCGiQqKphGUEcHv3gcc3H3i8f+Dd+xt2+4FoDLZ+WoBlUbdoNDlkGlsTlUVFhVEGZyoqW1NXjYBb0t/EyeUlo/d0W0/XRbomsNsP3D08YLS47zR1Q+MUFFGuq8UXhF98AUmhs8PqLH2bRpx+sBaVEiZM2g6KbCEdKQEnJfC3UqC1J/qRNHrwkTR4VKFN6pgxUeFwqFEORMkuMvOBWgQyVT461CdJe6WkXztrslXoyhJC4nH3SJ8HXLvks6vn/ORHb9juO969e8fWj7i6RRuLTwmdGnRuyFiauiZFLSy5J7riuCP4IihqNX7ck5RHWzBOGH4DijB6nLa0TYPfDQzbHTkGbGOolktcUORd4M//9M/5Mv2U290tN/2OfveOnUtcffKMeqlZXi44fX7GYm1JeHq/o24rzi7OyE4OqzTp+ZgSSCACX6JHBdOCVFLTl+v750sB0yegsQw8M7OirG+tNXXboBuDCxbVK1StSIO02hETve/xeFzliPtI2kZUn7k4WVM7RUhbjIbAKJpcMeGDwQfL4EUGSmk5Mp/K0yQSCUUUTZuKoQ/EYU/Uj5xevKBpW1arJW++/QPZj4SQca5CF1AleM8YPaFY854vVpxcveDZ5z/h9ec/4Tc373kYR5arNS9PVuAsy7NTmspwtlzw8uwUZxpyNGSvpG86yXuMJBJeBkpTEmclZ/EEppQPgUClJBKVORRDMmBVcVE4BKY5iGCvLmKQk5BeTEnYZClDzHQPPbZSqMoUerUkqs4pto834gxGQmuNq2qUbsjrBdXyEtOsMG5F1WqcWdBUTwuwrCpLGDJ98vjQ44ywUkTpSKGSaFqtl0vqusFWlUQDoSReVmGiRmcIUUCZh4d7fv+73zGM/yUXqzXL+qScodIGd/n8FTpPFU0jtvVVTdQwxjizH1CIiD3Snmry1JpaCj7TclKSuJMDhB1pD61rWF+c8l//5V+wNplXp0tu3r3n4uyUi7NTPnn1nE9evuDi7ITrq3MaYzBJwGaxEZWqwn6z5d/+1b/hb371G373zRu2nceHiEVJgFz2v+ADqF7AfGWoqnpusQoxS4/7E9o071DkMRLCjq+++h3t82fgHK7bYPSCShkqbTjXjterU/Rl5GEYqNsF9WIloEGMkAaUHrAqEVMglWR7vrKS+Z1BpYHsRbvFGA3BA8L2wQ+iFTeBEaUoJYDHcdCt56DcKYfyiZVr+Wd/+k/585/9E3Hy6zv220dymWNN5VhUFpcg9YPMm6QYfeL+fst23xOSwtUNISQMiuuLU9q25XG75+tv3/Dp88/56ec/5hdf/oKT5Qnj6NkNeza7HdcvnnNxcYFrarR1hS0lQPZTgmIAlYpUWWGSAXvCnkw3wN2HR/TXt1xeXPDZFz/i8sWPeP/uG969+46/unvgbHnJan3C6Rm4tsJYI+PX90XEPJc2rRIXaFtYJwJMWA2V0tKGIGqwYDVq6Av2p1AxY5SavQlMkiJDJpPycCRtUPIBhYiVR9Eqy1n0KWzR2NvsdpxcNLz67Jw/bB5w4QP+7pFwl9k/fsXFqxN+8uPX9GnHV29v+O3vb+nrM3Js0L6m1jWjB5VEA2ulHSbBSGZMiRRHlAqiLRRGsi8t7Uliqh8oB/EfvZTTJC2JtouKStUFSLQYHAYt7SgMxLBl6ItNshpIWlqt94+B+3d73v/uhv/qX/yclAKPux3d5g3Pry9pFv+Ef/W//Yq+M/hREQdNGHqsEYeZb775irfvXrN5/IJqvS7ElFxcBktRnKKFMeNhUf5NqgoHUCoyazdaNIwj+ID2kSoEnDIko4nWYuhQcYQ4oFEkLDnX7IfAYx94GHt6lxgzJOuo6zVKb4BAij0ohVEiQOzHHq0ydSWsMhTEqU1Gm6kU8mRX786plMLEPey/od9/xzZlHobP8KxR2VGNmedxZBh7trEmmSv2RLLuaZp7dg8JNSTe7xL9oFjYiM4DNiYR+jYWtIVa8rcY+gJUgjaQg4DaRhmwuhRWNZCgiCZDaYlVCmcUK5d4dbHgvIHXzy/wfsQ6y+X1z8VmW8tcn9MJBZiauahKRukalRQ5aGykCC8PogsXhcWDbchjQA+aNiuqMVONCRMzLmciDo+j6zTruhFdtLxhv+/o9sBJhXK2AHz/OwMscy/cVCWbaqBSQEZZg21qXMjoACSP2KFaKlexaGp670khMPQdOQWhwFvL9fU1/Y/2qARv3r0joNF1ReUc7fmCs5M1r58/5+LyiqZtAAFGUhFIm6r5lDv7qKiZ569+7/989E3WGtq2oXKOqq44Gwf6YeDk/JTrizM297c8fPiMuHtkVVku1kvOT9Y0xqJTZp+7kswLghkL7TXlzGq14tnzFzx79QK7cCgLrracXVzgQ2S7feDtt7fcvr1h/7CHJzSjEWr/AXkVel0W+9BhJAUBWR4eHqG4z1TGsO97un5ks+tplitSzGy2G0LS6KoShkgSJeqx92gbZgpbTAfB4ck+c5pBmakarWakd0oKJotYlTP5qIqqgFwsGbMSS0ddKNjGWmFuaFOovrIBqKlNiSyuEImZ6hdTYgyBsQgyzYyeIpinspFEVJhnZA0hBHa7LQMRf3fL49t37Dc7NpsdWZd7cE97Eiqt54+pRWgCOY0WCrcuQRQFVbfWoo0V5k+MDD7Q9QPb7Y5+6FkGC7UtFb+MNaBrSzRixUc2mFyUt7U873mjy0craC7PqpLn6TLPxCY6jgPJB3TMM03PZFX6Zida/DG4MvHKJlCF8ud0RJVd3iiUFgHEqDJZW5IKDCHS54jxgTx6tLE4V1HVFZuulxDTWFLW1E6ShkkkW6uDxs1TXH4c5kKv0uLWklSm6/a0JdO11pLHQ1W0co7kAyEl+X4fiX1g2PUs9yN1a7k6O8f6hnq1pKktzimqxkpbRIrUS4e2joWqqGt57zkncsgz+JXjQW9GIT3gzEeJKmP8HzlYCuHhI4BFg5pKbHPJVdhkKusiMFaqDaVdKXEQ0lWlcmWyxip3dMIgFYypBTsjoFo6aCKgKIH401xV0xITUlnThpQ8/TiyHW9JuqFplyyWK9an5/SbR8LQEVPG2gpjIYaekEZCabl0xtIoTZ0yS2u5Xq3pg+eTZ88YjEI1NadXl7S1ZeksJ67C7zv6EOkrT1gscOX56WlBKiUMvCzWwjkCtqas0qPxKe1g+bCq1DxMh7YVmBLxdBDRnSqnCXSKMi+HQL8fMEGjk2PVKJljbUPVOMbQMcQOn1tq3WBMhXIO1Z7g6jWmWWPrU6x1aNXgzNPaNJ8sFnT9np0SVoq2YpdtrSEYcZnIOVHXFafnZyyXKx5vbkVbi4x1FpMMJhoRwwW6fc/7d++5v3vg+mRJtV5xcnohrKXCnoijCIwrpTHGgjaEmTU5+ZWUKiwypWOabLVBHSe/WqGmSnrMiAi2nJ/PT9f86U+/4LJtuL+5Zb1sWa+WvHh2xXq5wFlJikLXg9PSblhpYrGn3W+3PNzec3dzx+ZhQ8CQjlolJop7KvT66D2jHjBiNyIirxlyEIHOp7qGYUQFjwbevXvP86qmXq+4rBtSaesxSHV2UdWcLldEpaiMxRbrcJGVEiAJLS5QqljOT9N8XhuAThNIXAD7I3A9z+eawJQTS3oWs1TliU2MliyFgyx9TSgUzlqsEoe8xllyEecWPztpeVXlPE9JrHmVFicjYyNaW0BYRBfnF4R4x2A9F2dnvHr5imfXz1gtVzL/orShW2tZrlas12usc0cx1bTemc+ap7hUjhInlfNiKrilCCZmQkbaxesG5WqitnRhZDcEdoNnWR+erujLTi4fZRyReDBlVfS2omgsWFvOBV0q3QVgzknOIc1Bn6ssvak7Sk3s9fJrJn6XjK2ZN0iVFDlKaxU64ZxhvV5ycT5wuqq5efeObtvT77Y4u+G0fU63P+Fx+8jDdsPjfk9AnG4kK5WYU6Ow2mK1Jke555gSKRYmVgzE4MmFHRf8gI4W9cQIS1VJ8iwuOcVMAIGbDEVXBApTJJKTaFlkEBa6cfR+YNd5Hh53KK1p6oqsEynuaaszTmzL60+e8eFmoNtHwgDDbsCohHWR0/OWdmFR2pNCh7YBpSeNTJjazedVW/KJ6eSaOCUzY2L6pqmdpzDaKY6G8uMWraWgTLAl7jeobBnDyJgSY074HItkgRGhYWsLY06jDZipFT9LK7jWWv59fsJH/lRP6ACVfCQZUCkQcqKLiY3P3A6RfYg0xlBbWKieCoeJDuwFMWuiEnaLD5k+J/Z9wvuyZZYdQslilpxoai/NCnTJ58qZN2vklLauiXDxUaFgWksKFk3FxfkJ47JhuVgwesmXnKtk8U9sPVViHHJZtGnmQqg0AW6SNyhEiF/pieELRfCTHOX8EvZliS+VOCqBEjy+kORjESaOMU3E+JIz/7Ax+iMAFnX4yMyOBVPVTBmDq2ucBTNGlBfumfRiO9q6wgQFpW0mRamyGGs4PT0lvn6NNZabu3u2XU9UivrkhLPFksvzcz59/Yqz83OquibnjLGm2NOKWrEEkxwOy/mknG45z+8COLKkhMlBRCjfGmMNi9wSYmS1XnK+XtLvNnQPLwnbeyqVWTrDSV1jcyZ7cYYQy2UJmFKhj5Izy8WS66trPvnkM3SriUS0VSyWC3abPXc3G/7w+2/Z3D/iOy8BwBNdHwlGqTIBi/ZI9LKhp9HT7Tuyj+gMo9Fsdnu6fmA/BJbrM1JO9PuRkAwulWQ1ZPwYGIYR09QlaVbEKD17CkqAOK2AybVnAn2mxVmuw9knCZXSxc63MJFIKKOx9cFjSQQapS0oqZKETdRhcwAHREVfFrJQTAODD3IfWmjUJEVWWrQksj4qCmf8sGfjI/iB/sM7trcfGPY9wxChXWKUmmyanu46VipXgrfrssFpU0S2pgCjHCj26DCIKTD6QD+M7PYd2/2e5dLS1g1RU+yKJRnJMPclqjS/JJMywDSXZxcmDsH5DOKVxx29CNnmIG5GE/HhkMrnoxaGeaYefVoCV4WMy5H97UQhJeciJCn2ubt+YON3qNHggqMbRmKWAMwHsQxUsdAaoSStk7aInnv6n+IKwZezW2GiksBDZegV1jhJxrTsA2Spc1hriwZQIiVP9Ik8eNhHhsc9tW1ZLBfoZY2qK0xl0TrjKk1KhugNrjbYSmNdXZxDirtFSkILhlnciwLWzQfnlEh8DHH8g8Pz8bjlo8w9z4Gt0sjhpkubXgl20KqsxTwnKypLsOe0PWwAU3A87RfzBChBy3SA/9CT8B+4mnbJdtcx+JGYiv16CGy6Edw9p2jaxZLFck0cR/w4MMZE7QTQRftZCM9ZQ1PVLIylztBkOG9bAud8dn1NpxWqrlhfXIh+F1CnhN/tiTERUibXNSgzV9APnVq5CCXL0pCQ5AhELwFCLuMzseEFfJ7AqnIelted9KmgMHOzJCQpJoIPjP3I0I2YoHEoUtJUdUvTtlRNxS6O+DQS8FSmRVcVpm5QzRJXLTFuhavXZFOjcOgn88mT62S14GErranWCsDgKot1uoBTspc5Zzk9PeHi8op+s6UbPQmx5DbRSE27xPhd1/Hh5pa7uwf6F8/QxrFcnjJtFTElujyQkpz5GUUsoLwyhTlT5jeliq4mujtlipf7SvMITd+TUYhjYfSBk7aievWSZ6en7B8fqZ2jqR3np2tyigQ/0u+3+BBQSRJ87SpJfEOk2+/ZbXfst3v8MIJrDutqupcpsE6JmANBjwQrrZVW25J4He7/Ka7Re0wQ2/Obm1vuT045qSqerS5E/6LsEQZN4yrWiwU+RWprMEfUfDkPorSbJjEy+Aicz+njPWOy8T702B7d1QRKfs9IQR09suISxdzuIftsitIaYrRCaYvTrbiJxEgOfqb0K6PIQYo4IUasdbhKKq3adBgDyhguLq64f9xTVyPXl5e8fPGSq6srmqZFKTXrI1VVRdu2LJZLrHMzO+3w/o/jsD/+ms6VqZ0jUfKbxKx7qLTGmUrcJLVlTIr94Nn3I36ZpuJ0SX4liTMKYQZNzaRzQFKEWFVk0iyaJQLUlOyVLx+rB0yDV4LKuTU2T3IB055Z4uMjTSt5XgnrLOv1kksfeXF9zuZmy3bYsb3/wMk6kbzoSu52O3Z9x34ciAiTU1hEqrQ/aGn1MqLtQs7EGIv+h4YUCqARSDEJCzhU5PS0zGjrjKQ8pV10AgGUmtrP9dEYiwZLzrHof2qSqRhiz673PGz2pJywzrEwDs+ANQFdK169vsbHW1A9g0mFdZ1ZtZbnL884O19gXCalTtawzuRcdCJLAXDeneYE7/jP4/Evf5b4nbmwU6o6SoBapUYxXVCenBQpW4iGMWR8TIQkoFc2kg8aK7p4WhvZ/0rcaLS0meiiAznH4fOlyjN8unFTwUs7WU74rAhR8Rgyt11gOwZMZaicYWED9dijs0MZcYVLZZ2GmBlSoh8jo8/EVHKfOUVT8vwKcKKyOnSFzjH7VBTXh3jxiD07fW8JVVg0Nfn0hBgjTSPFTWlxNnPhdn796eePK0JMkNX0e8qn5BJnlj08Hfbj4MfDa+dSdClEgxCF+CDE3JILzy2w89D9oOuPAFi+93vnHkbZSKq6YrVescgKdgPRSx++Sg6dak7aJR/29yQf6Hf7j1/RaJ69fsmL16/58mc/F9cZ62gWK4a+wxpDu2hkk81FlNU5nLZCbyVJUFR6VyTUKZuwhtmijQPuMg3+4YvTHZW+OzTWGJzWrIwin67h2QVh+wjBo+JI2u3QORNQDP1I3w/4MeBcJdodMREDLNs1V1cv+OSzH0NrSXHAh4Hd7pH/8Nd/yzd/+I6vf/uG7WNA5UoceJ7sKmADWfoSh5E0jiI8miLJe8ahx6IJCJIXBk+/DwxDJPiITsLSSR5GFYlpFB0Lu0cbi9aWxfJEAIbCy5QWHlWCj6lOl4ssirTxzFqVUwJflpFWJTTKsUx6SbCVMThzoO+mudJRQtPCGMopiyp9Fnq99JcndFaYrPBjoOtH9v0g7CtthRSZDiGZLmwLjdC5N5tHxu4R3+3w9zeofQ8pC3PFKJISkaWnvqZgIE3PoDBVKiv2m01diwuDsVjraJWmaWqGqqLrerp+QOExeuC3v/09YbxCc4k9X4GR9oopPklTdWCuApTOkXkmyR1NSPcxcUyVwDyFgO8H8EGCXYodr4zY0QLMzHHS8c4yHaTTnM2JIjQBKpFGTwSikhpfiJ67xw1/+3df8du3A0NyZLfiw/0D729v+XB/z6YfaBcrqsoihSIR2NbKYrSTYO7p8nTGArCopISOG0X/aAyeECJVVVNXLUYrcoiEFLHWUrcNxli6fcd+P5JCJgUY/wCn8ZyL5orVsxMCUcR6xx5rDbq1GFUhlrvChrHOiUhdsfmd9rscRYR1Cmh1ARiPcc7/5KXU3//7nDGq0psvVF+DkcBRCyA4AaUCPk9DrYq4mrRY5EAxfiv3ZYzoN3EABmaAZtICe6Lr4tkLhjfvGLcDd5stY9BEND4lvnv7gfttz64buLq8xDVL7OB53OzJUVG7ipihahYsF45Vu2a1vmB5esZqtURv7jlbLmlP1vDll7zfb9mOA7vthryDXKpgK1dxVlWc1w0LU+HKs01FhC4DyShQk70ioHJhnE2B8uE95Wl//ehB5aP/l3yxJKUGYTVZa6isoRt6tpsdd7f3PD7sCJWIDqdkOD27pj1dYBY1dzc3DCrjnSY0Fte2mGaFXZxi6xO0W6JoUKaWltGn5E4Dn756ya7bsdk9oivN2ckJbVVTZU233aKUzMmUIldXl/z8F78g7Hu+/v3vGYYO62T/NFn620OI3O8f6e4f+fVvfsuzy3MuCpt19CPj6Nl3Aw/bDcM4MvhRWGRVzaJZ8PzyitaZ4lAjjiHT2abQ83lHwV5U4UcbBVYphBrvRSA07LHKcN7WPFtfwfWF6COEQLfdsnl8JPiBFEfq2hGjZUwJ5ypSllbEzcOWoRuJIQEGraxU9JJo7Ghj0Ej7aZzcREaPVyNEOQ+NMcUK+ukWXQ4jYRRm89cPDzw/OeNkeUJ1cknsOnIW3SaXNFXVcO4czhmWbU1jjTgalWSVMOkzHIEr863mow+AqR1OkouP9v+jc+2oynKUYJTXS1nEWSfthhglxgoCtBpdigoqgc6EHElhRMWAIzPGwBADIWVWp6fYlKkGz83e05zUtMs1P/3yF9zd71Gm5uXLT/izP/1znr94RbtYkGIkhMA4jiyXS87OzjgtFs2TqPP87r/39z/2GkdfQCrZ07OixFkRW9gf2mjatqVua4wTg4fH7ZbbKnLWGk5WrTCPy89NbN0QAygtbc9atovpsUc1AVsalQsDJYuAquheUFCaSaR4GvujT6fydSqMcxS2aCdiDMpa0VVCQBZnDNfn55xfXPGjn/yct395x/t3N/zhq9/i/T0Xl0uevzjj9mHHvh/ohl40tIxCGV1+ZQSjsU4AlnHM5OSJaUR5YQMZoDIKXGFnBk+OpT3+CS9nLcELcy/FRNJyjhitZ0b4FIbFlPBlr0lokq0gt2zChve7nq/evuV+u8U1C+oaUD0pPqCd5i//8qdE9dfwzcj93cBPf/ljfvzpS375s89ZnzUslhVNa0B1SFtqIhFQkzUzk8iY+gcW6PcuPW2kuuQhZv5WlYRNS1QCLAc1i5GoVAGW3nvGMRK8OHYpKzGLs1ZirHK26iPmuEqqnBvyQYlPZv0V9Q+JY//wq/Z7yBURzT439KHFdyN/+6Hj1dWGHzl4dbrmKsCb7HHDA5pHFBatEhWWwQurcbf17PrAGGpQdZEDKl0DU9yFJUk5RURu9VSMLoVoRSlmf39/PCDSWitOTk9ZrdcAGOeoCwBG0YQTfbSJzS25wWQZDVN+YpjEiIRZL0C6yuljoJtMItD1e0KKhJSESY+0DRrApzD/rgQMITGGxFMQM3+4yO20w/09tF8AFmcdzWJBkxUpKsZOrNF00ChrWDQNtXGMCcZuEPZEjCQUtq5m8VVX1cjAWJxSormiBDwRYM1I0hzSAeFMihiCVApCwigNSpgNuEnU6nC/BcyeKxhT68V8dM7OJgkdE9kHCJ7k/VyJwI+yIWXRn9j3Pf3oRYCusQz7jr73BB/Zbvfcfrjj3bfvqNctY+zZdzu+/ub3/PpXv+X+5pHoE6fLE1LQeP90q1KcfyI5RaF7j8Umt+8Zu45+v2f7+MjucYNCY5SjcS1NrcnZst8/cvvhnpggekEGtUvYCK7qqJqWsEgSnLpCJTYWZYyAiuQJH5FkipK1a6lAzEwfjmxDp4pUyhK4pIhRUzuHLsrmxWZrSsYnFhOAgpijiDFlsVZOURgsOUM3DHT9QD+MsgGWvk+0KiwYmRPTl8VpJeL9wDjsib6nykkWrLVkZ4hGE56YwBKnAMp7EUrOEgxPly4tdqo8r5wSxhqqqsK5il2CEBI+QkiK24cty2XFel1zdr6SxApBfiddHHmWViBKycBLRcCUiLFsokVk8OAcBCFEfN8zdj02T5uNKsEXqCiOFELVPRqs4z8UHCEvJYkuLBY0SlVyX0qqxbvNlve3G37zu2/4u+92DFSY9oyIwmewdcOqalitTnBVXRIM0QaaD7+ZlfM0lzUlOCtgotXS85xzYhgGUsxoDBYrzz2m4tpicE7jXaYPOwIJKkW/GbH3e9xyy+XFGmXEMjXHgNhKKlwl4KJomWWIxSZZlcpciZh0CV/keRfwa3r//8m8qXzD9/f/8hBzmStZ5SJcffRcC9VzOntnC9QCxgYvYttGO4YQkIJdAboLwCLHoRyiKSVSEB2MpwxgmsWKxaqn7QLvH97T+Ug/ZnzMdN7Thw373jOMAbw4ydSAHjyDlyTapsIss5blomHV1ixriwkDBIPSieva4lTLvrLsfLEWVFADa1exMIaFFSq56KKkks8d9rI0iUpnhSahlFCUtZ5R66PrMF4zgKoOA5LmvbckIvrQghh8YL/d8XD3wOZhi1kviUuFrVqqdo1rllA5gtkSTEWwNblZYhYnuHaFbU/RrkEpCzEIzTnI+V2tXjzZ2L16+Zyv33xdtLoCbVuxXiyp0Dze32Gcpl007PYblIaLy3P++V/+c5yz/O53X/Hm3RtGVdgsRnQhcpae+j98/R1f/OiGly+es1ysuHt4pOt7Ysi8f3jkcfvI7f0dD/cPKATgfH39jFfXz7g6O+fF+QXNLMoqzzmXfS4jLSZqWjdlQpuURPc7C+CiFOD3hBF878kpEkNgv9kKKOMsujIimOwsRmwZCD7SdwM3t/fs9h3jGEhJCh9ZxIYoMi3CAClOY1MVO/ogay5GEZ62jso8XUU9+pFYNBMMhj4pvHK400sCj6QwEuJICr4cQZpGK2yKReBQ5n6Wxymbi6IE6NM+BBxqrTAVEo7OHoUIIgpYoAvFvbQ6Kjn3JlhS5Qzey3kWI0SPnpw4chFkz4kUp/iysFtyZBL9SEkhjRcK7Rx2sYKU8XpEm4r1yTnr80uGMSJaYStevnjN5eUVq+VSnl0Uh6+UEicnJzRNc4gHOIAqTyluO12DLw4wSZGsJZtpr59iLmkDtVVVhJ8NprKEGOiGnv1eE0IiVxLXpRRRpWUnSd8CkzmCthZl5CNOlXJBKz86i2b7ihLPl6FlYu6hFDpGKcYpSvFOPkL08u9WEkmt7aFAl5KcpxpszlydLljXjucXK7LqqWpNVWvutn8nIESZi0qLU5VxlkoraiusM6c0zmmsFS6fYHxypi2mhB2FL85LaXhaBotSlP0jErJGxEs0zmiMdRgjhhIhhjkGjT6QlCNhiKZBhYp98Nw+7rndbFitNIumwlURq3uM2XN9ecEvf/GKF68u8dHy8vyUy7MVF5cNTWsxNpIZGcZHLBpj5V4kftBM7OkJ8TRz3/U0skdnWc4l/hBwRZLyEr9mJBZJGmUcymSyLvo2oSIlyzBGfMwUcu98BlpjiqOTIqVS1Ci/O+U0t+UbY6RNED078IlI/NOBY2rsBXDSmjE7fLWm0wPv+szvb3dUteH0YkW7aln2gUUHLo00WkSnG1PT2wZ8xzB69l1mGDURS8wRaZMTgEobK7bZygKicSLCswJ4KaaY74hBryZmCzM4AuDqA2Fgbk+fqLSqpNrFOY9CinDOkQvYI219kx2mnJ9qmguFRadSJkSRqfDRs91vGUPE+wDDKGOHrG28FJNS1iLIHCK9jwwhs5jm0w+8fjiDZXog8BEgkcuf0lMlAkk4Lxa5Rh649OjVVNYRCYx9TxhGohcKtDZmRrC0MXOSrbI8kKmKP+s9qDIqUBDpXAI3cbpBGYwRQUflym0f81rnYsZRNXQ+ckvVPArAomKcD9IcpipFKoi53FcIkf2+Y/TSN6uNJcQ0V8o3jzvefPuOrCzVqmFMA12/582bb7h5d8uwH6l0S1u3BJXJ4elEWGKM0tcZI1ZlAVtiJISR4Ed839Hvdmw3jxhdUdmGyi4w2mGU9Ic+3m+kbTFEfBYKdFJa7JsHcVRQqI90QZSafOOZE4HpLzIcquRrh17mA41LBukwNuXwLEmG974EFrFUca10jmh1CC4oiVhKxJiZ2rFTgtEHxtHL4qOAPuXnBGSYY7JD8GX0YW6UHnqrlPTTGi2U3yes7MFkKayKo1MolWaZ96rQFa0pVTyAnKXKaB3OOZTWQoErBZvBB7b7nruHLZ8UYojEe6pQCAGVD8TqWQPGFEqfPqIPHto/QM3Vq3EY8f0gQV0RwMqT1Wee+qyZx2g+LNW0+so6nPPE6ZkWplrRohC6Y+R+s+Pthzu+efuBtzc90bRU0WGqGp8yaIMzjrppqaoGP/qiGVLue2ofe0L6tHVWKIeKA0igldBsg4CdIXi00fMcjyRMOeCkjUlEFFVS+D7QbQbcw54LX0xSDcXZqjBRzOSKUkDnQnc4DjNzlj5rvqfn8/GZ8vefQ/7+Z/n4ODggM3k6aOdvn9YLRy0p015evicJuywn0MoUa8hyhBe2ljK62M0WamcSoEHFf/B2f/ClncNWNa5uSGh89IwhEyKMIZHySD9GrLFYKCKLwjQwWvQXKkBHEeMO0ROTJ2dxIyIOmJRZag3O0BrF0onLm84ZkzIrV1FrhVO6aBfleR+a5srUBTElDVOScBxrTg9m0l+YB2WONyVQzOr4aFTzuT69VgyeYRjouo5hGInLBWCwrsHVS0y1IFpLUI5gKqKt0e0K3Swx9RLjGiiC5zmGg0vdMFI9f0KA5cUzTtYrKmfoQqKpKpbLlsY4nJMqZHSJcRSmSeUqvvjyC27v7tjud3zz9juxzM0i7prKI0wp8/7DDR8+3HJ798DlxSXbfc9ms2O37fjdm6+5e7jj5v6W+/sHVJaK9+PdPWPXk0bP1fpEgkUJmKZhEAA2UwpF84KQGDPn0qZ1GLyUMykk4jiUdhTRR3DOCZ3dKFxlMdagnRPtsBjohoGHx0e6fsTHVNbSdLjJPj4Bl1KtPCTk0h6QZZ1qiyn6Zk91peAJXoQ9o7Ns+5GHbmAfMmKiLSmrCiOVKpqmSqFSIsfA1CIuc1YdSG36aB8qz32OPo7y8mOK+1yNLYl75ujz6UAqe1r2vsSCsp9PNPVJmF2uwjwtJgOQ53gokqWlRilMVWOrhhAiymSWq1POzq9Yn13QDZGqaqibJc+evWC1WuOqWtq4SnwDsFwucc79g2DKcRz1VFcIAojNGnq6lFNUYRIn+RBnPDkDjRPXoRADflSEUmTV03xKJSaYtjw1gewHJqNg9uowhn+PWcS81x3G//BvU7VdijxpPvulflPOnGiYba1zFhCt6CoZMm1laVzNelmBDsJOSp4Yxb0x5pJ7GGZrbUr7tnXCANRawHApvqjyXDzO1DTGUlvLXbcl+VH0JJ7wUlBkAoLou2hhiyQnbpC6tJgDJX4O4s5lXGGhOgKWISo23chmu2cYakgGq8AyoHPHso68uF5yenaCqU5Y1YbWGaoajBUbXlQAYlljsnZEZYx5rzzqUSl/nz49rgodBTGTPk+ZSHkGWBRKBgWUFXHcbKV9LUR8lLgC1AySGD0VEqfa0uGMlF+lj/T7VGEFTyx79aTrLgWPclGef1YkXeF15mEY+O6+Y7VwXG9HzHopTn8mUaWEz4lUWrCtrtA4fAj0Y2YIEJMpTK4jHcpJlkFpaQQ6BljyIVumMFlmkOUIAJuWnTFmBrrGEIqL1TQwZe3msk+pI02VGbAR4Ep0/XJ5rRJzlpxCANNESOIGud13hKnVOgQBmpECZE6RFCMxSaveGDJDSPh4YPoe5yn/mOsHAyzTrz7M7ePJLRuJrSsBWyqppmRrSFphtGKxWrJaLAj9ju5hw+7hEVM7KrcsvVB5VpE2CalEhSC9igqUFRHOw+QuA5QgjpEwFKrpGMBYsA5VAXXNcSOtmpOOIvpYhCdy+ni5UhaoShFbxKii90XtOM/q9cMwsNlsuLu7I2dNUzfYqi4xr0Irw3ffvuXrb9+R/9f/jUAm6YjSmbqx+GGksjXtSUtbVXiieBY+0RW92ESnGIWmnxM5B/zQ4fuOse8Zuj3v3r7Fmoa2WaGVBNE5G4KH25sbEXNsF2StUCFjsqKqR/r9wNCJoKmqKzkQZyXwsva0EkG0SbGypA6z/1xGWrsOhhdIbHMATGRBRIL39L24COUsYqHOlSpJ5QriqT5iJ6UYBfgrlbpxHOkLrTurIjZXqklz0GuOEhWlaJoaX1Vk64jW4nLEKWlZylajrCabpw1ixuBJhYXQ9T3WmFkwWCklAtJVhbXyvhUisFfXDU2zwNW1VCmSWLwp7Xjc94Rv3/DTX/xEBLqMOCmoEgRKAjtV7Zy0+RVwRRmLqOJOTk0FQAFpdRlG+l3HfrNF17UEgkhFQojpUy6YD4cnB+aRKiDLlIccUpHy7VkTM4QMY0zcbvb86qs/8Ne/+jX/4dd/YJNb7MKwXmZ0iAKkxUDrZE02TYs1DgI461AUS+kChj7V1SwXjH4k5oS1xV1Ka0xORCuCy9F7fJTKiMqKkAJZGhNR1mFiTVaC6A/7kaQ6ksp88uMRs7LoSpGNWEBmRRGrNWgttnST7hAgbKOSPGMO1QXBxtTHNz8HLnLJEvgYWD/6UvkeWdNJSUUeEKHkmOf4Kcd4eJ3yWhlhY0SfECdISwx9wc4LiGdkjqImVvfhZ0Tj5alGDbI2aFuhXQ3a4sPI4ANDMGIjGzMxe8Z3N1TWUBtNqGtq67DGYLVhJNB7z+BHvIqcpR7vElcnDToBIVCVYgTGYaxokaQYSWMQvaIkwtApeAnU50rtgQqbSzuEyhltjxv5+N7nHB9qpbYwgakTmCItYqK9Iq8rLEEYh56+6+j7Tqj7KIx1NIs19fIM0y4YNfSqpdFLYnVKffIM1xRwxVRy7zGSx4Hu/pbt4wOb+3vOfvqnTzZ2f/rLX/Drr37NV7/7DZtuy3LRcHF+yun6hLffvmEcPcPg8eNI1/WMfuTnv/wlw+hRWvGr3/yGYSdMTWMsMYm7TkqJr7/5lt989TvOz0558eIl+27k5u6Bf/NX/57/6V//z9w/3jPEEaUE8K6s5d0339A/bghdz89+9COwtgSM0whMozGl/QcAUpVx1nMhCEBEMlGgdSp/KhbLWvZvJXGWq8qe7SxJGca452G75c2HGx73e4YYwVVgTKF5yxpDSQtaSmlmi07Ju0aCXu/Hef491ZXGAT8MRB9ZuAXfvP8AuuLT33/HRdNQa2jQaOkakeMHyNET/UAOATezg1QRp590Jf4TejHqaF0VUGUWTC2VWV2SDY72vCy0JmLfSSxY2mAnQFLDDAZPw5vKIIpOg2hudWPE5wzWUrcrsDUpDPgAn//4p1w8e0HVLPmrf/vXXF294PTsjC9/+nNxMlRFe2UcRcNDKc7OzqhLpXj62nTNBdEnLAANY4CkS4yrUNYKa6iwiFIUhkQ1FRisoW5qWQYqMw6B/b7Hao1dNZjCGImhMNXLs9dGFYBFBt+o8nz/gfeSjyoFM5BSwLcZeda68GMF/AkFrI9xkhmYisdaWmjKONpJgwMIOcpIG01CEWLC+8Ru7+mHgI8JZUFbjXGGqm7wyQsbwirRpySJhpoxRJMJKRPDSN0uWTcL1m3L3e6eMPbo4WlFbo0qOowhkJQiKi0umIbSzmvkzA2SH6UQCGFE67qMS0XSFWNQPG4GPry/5/mpI55ajFWFaZZwacn16QKqFcuzF/S7DcmP+LAjK4WrLc4aFnZBtoqsJRmek2cK+ysXxsL3DnvFtJMeAWyZUtjPZTHqGRdNGVS0qCjItYqgVIUKrjBToyTkWYAVabs3MxslU+bGZJBAEdk2RhhbSKxurZVWq1LIeqqrHz2uiiSd8GEEo4gYbveRX323ZwyAW/H803N2g0OjWEYkvo1QY6nNAq2EDLDpMrsBhqhZZEWeGCxaSU6jDRMzVk2bm1IzWC2DMK3FY1TzCPQC6fQqRQshpMueoAobemIFaSvdJlIwNOVcEqBblXGURFFi5qzURIcGlQk5MYbMvhv4cPfIEMCnTAqBmAIGcdLNIeCDZ/RSH9v7yH6MdGORcVGTqtQ/ft39URosHwEQH5c9Z7SZlMEaVO0wtWPcZxKREytCt30S283t7SP1YkG7WkPl5IBXEZ3AphLsRelJFueQ8otSngeJLBXoGGJhUkhVIWuhYIagcEhv5pzEfe89aSW6ASmlGXyR95lnunGKI0QvFpQzeJbx48jD/QM3H27YDwNN1aKtkwpoTOJQEJP0NcdMCJkxCeKtjFRAna2pdEUOkcY5LAbGJ+y5nJTAc0Crqvh+i3NQXVnMyYrKWW5vHri73fD+3QNv3mxomxXWOIbBE3yWQyT2ZGPABtTgxTWo9B8+3N2D0tQZTJVLKxelGmEKI0naTyZxMxRMLgtC7ZMNVcYoMFk2pxjww4AfR/qhZywVvAzUVcW0KJ2b3HFk/KxV6CTW3TZbAeNSAWpiIIgQh4ArRZx4Tk4U8tyIJBUwxZkhVxWmXdC6jC0izp2itO48ba+sHP4S1MY4VcmYq1RGi05QXdel1Urcoeq6ZX0Cj49bHm47Rp/wSTEEReoiwxDohlRssCvJZbMkwFqBigKGZSXgkbQGGZQtSPTsaGLmwFT6hYXm6rsRnxVRGaralXVVnuvMXpgORmn9maiFmWlbUwc0tNCKpsBKaXES2I+P3D723D727ANQV9i6xTUtw+gZvIj8rtcVWluUMlgj/drWyAHovT/q/3yay1aWRIIY0EZJZbHYp2brBGCJGe9jEVOW95SLHkLKGmMcGSWOTD4x+pFu6AmPAe2cAHp+INuEcmArLQD0vMMdIyBHn5fk4egLh01Rl9as4zagMq+Evjm9hProg6NETSc1U+J1SOIoFxKj7wRwSZne91gnbWi+G9BJQ8iMvdDOUwEzGtmFOQgR5uKaAVVwuCJu/VSX9ONG+mFkDLFo1YvBe8iliVEpfMrEMTCSiV72baF/1zirUTGy8R3v+weW2xvOdzf8tM6cXZyzNGux80ULkOIjccZHDkm2RhW9PjW3LirKkihC5SJYnslWwDn5aTNXydXETkAd9N6yhKTSSTE58E3uabk420rxIofAbvPA0G8JYZDA0hlM7bBNjV2u0IuVbAf1CdXyivb0BfXqGqOs3FMETSRHTx53DJt39A93dI93TzZuAOTEsm04O1nz+2+/xhjFYtHy6tVLvn3+DeM4cn/3gLOGse+4vfmAVppPPvmUEBN//au/49/89V8Rths0muVihVcd3u953Oy4ub3n/e0t+77nfrPhD19/zX//3/93ZA2vXrzgRz/+nGfPr2nqisZVnK8WXK5PuFyf0FRuYlbLVewsReg5S1uqKgy9MheykjZXETjWKCPtSlFlqCQB0ChsjCK8WFiUIO5qKUWi0Tx0O94/3HG7fWTnB7okxZ1DVTYfChpWl7btWOjwoLFyDiBirDEl+nF4smET610DRrHtBnZ7z7YLRP4Hfv7pZ7y4POeT60tslmp/bbWwwYwlK9H1sDlLEcdZ2epSms8zpsc+CUWjEJS56Dvo6XzT8+fHVPdjzafJ4VAhIIZOwjxTEyAAoJS0BjFX8o5IZsK6DSkxpgxVjbEVtlmyDxmfDVlVXF69QJmafe9R2vHi2TUXl1dUBVyZTAr2e9EyXCwW1HX9kRPe9+97+tpTXV03kJ3sF4uqkb2oAHGq/K4QBSA2zkrxtdLoymBcBpXYbnaonKispW6EfaOssA+yOmItFFHMqV15Yq5MbJmZHXnUMnSkg84sXKukKCpImAyK1gaMMNWm2ZKTsFamOB9T2KQqSQfFxLBQFm1qoMJQcfcwsOlGhhjE2c2K/bu1TgCnHNn3e3KAfb9n3+9ZXJ+xGfb4cQASlTO0tWO5aNGUlvD4n0HbLxexe6RtLefMrpP2KYxBG1tkhuVKMeKgtM3UjNmSosUny+3NnsernvAsUi9rlPcodtSxExa1V4ybt6isBSAtIswClArolX0p4U9sxwygS5tdWcr2e9lb0eJh0mEqBSSSLkGkFvbYBF9nJcX3ST07KzKW1BtitmQpf4NS6OKcBnk2aNBK4dwEnChhCurJVYfZNCGlRFVVDGZ40jUXXYvRDsgo31M5jVUQgubd1jDmzDbtud5sCGbBkBtUDJgxIa4WDqdrsm7oxi1jrBhixRAdmFQeaULFACaSVWE7Ttpupdh8SJKn/bSMyxSL5Ty336lcHBC1xCO2aeblOAU0Ci36Ls7NWJm0qk7/HcZdTWty2l9N0b5BXuth+8iHhz2PXSJkR8wK7wWMrtpIpRVGidPp6DLrk4Z979lsNbvek5B8cu6Q+UdeP5zBMh9Wx5P8+PM8i+xNmg3Z6EmoGl1JIliHkX3v2d090q5WLE5OqKua4pEyI4+Ti8G8eMrvmP+SOQAss81SsThkGvYpWThSo56+Lm/qqIZ0qEJMB6lkQgFiIMcAWWhGk7TAOI70fUfXdWTAVRVVJShvKpRbaYso/+WMypOtLpBE/lOhyDFhtUbpjNfHz/WPu3ISESCVEjGM+EG0V7puj8nSU1hVFU3TAFu6bmC3e2BcZCrXkFJmHEWITU+921HEOU3lGAfPOHq6Xc9iNWIr0WI5nitqQj2PxnFmh+WjUZ2CPSaqbSrJmgAHfhwZ+p4Y/ZwDpmRL73Oxfp2588wVJaMVtui9RBBhr6LBMTlQTYnHEb5SEhHZLHSheKq6oslLlllhyykeUyQUMO4przC1o2WhepPNPD+n52q0wVmLL73YAh4YXFUJ8IJiDJFu8Dxsdmg8ipHbuy1129AsLKayTHJvKSeIUsFRaIF4zfcC0bk6JE/q8NyKywS6GAFN1YdJSq6M/fwOy4Zcem7n4Gh+1bLbHot35rK3ZOh9YogQMJhqQXYNyjpQmhDjTPcUK0/ppc0qk/ShohdzfHIKtSrJjkKoorZU8EjqEBPosr8U7SkJKuT5ZxTWTmOd0EkTPEQCw3ZALypsZWaapQBERTcKfbAuLtTL4yd6DLbk8j0qI9WAifVV9s2ph38SU5yqe7ZUZybQY2qxzNN+l0uxI0axnB4D3g+YqNAJQgrUzqCyJHSKqjjWyJzIWZXz7XB4Sz+zPJ84vdWsZq2Ip7isrWTvzsxV8JyZ5xGqVMbz5ICRGWctGIXShqQsqIyPAR96dnh2eNr3J+RKYxqHrYwUEZTBTPv/EdA1t+mU9qi5ela+U5fzKU+gcIxIOa4AJWVdTu5jE6Y5j3w+/DnTco9KELqI5pIju+2GYehIyYs7T+1wTY1rG0zVQFVDVizW5yxOzlksz0BVRdC/BFlk2RtzQGdPZSLL+unOOBAtj8oaVou2FDATxiguLs559fIF3XbHd19/i9KG6Ee63ZacIk3bcHJyyvr0FGsrtDZUzvHq+TVpGIWFsn2g9yMPmw33jw/c39/x8HDHZvPAL375C370+Y/42c9/yrNn11TOyX3UFYtKPowtEfrssjUFjhzcGOcBmiKXfBAUpMx9hQS7rrBhKC0UuiSXWvaLrKT+5nNg2+153G2IOYlOhlHEqe2m2LOW1QulUDHrV8z7cZ41zT6O/57gmh3+Mj4JmzDv9vzu2+8wSrPr94ToqUPHbuk4X1UsbabS0o6eS+IneyXMVKw0sYXKJaIdzI4x0zmmp7NsSiTUTK5U5cfUlEzML6dmQPJjsBnIRzamBag8MJdUuT9A21IocDIaGZSpqFpLu1wzRsjRc3J6xtn5BSenpwIml3hk0l/RWlPXtbQEf4+18p8TYIkxElTEqMis1zznPWoeD2mRMWKD7qRFxjiwNhFCFHeyfqBuqvL8JnC/ROWTG8xUKZ/AlSOW9DS8am5XOLrR+RuYbu7w5bK/aiS/lOmjj5hNTNneUVwKiqLjgjB+x5jZ95GHbc++E3DeOAHetJGW4YAmRRGMtSEzhhEfxtImnAgpyN6uD2LSaoqDn3Dc5G0U1n6epA5kH/AhCe6oDNZVxXq4tOamUoBD/j1pJ63MybHZjmy3I30XRdQ+JzIeNQ4YV4FypDCgTSWMCK0P64XDupK/yxhKZKEkTkrMkytPSUMZxSlsOf6Zaf5M8c10uuWSbGQ9fV2TslgXx1l/5RC3TVbqMg3KfJuLSnwEruQ87Y2y3pyVVs2nZI1F7UhK8kgdvcgxKNnruujInSXdwSYPaCv7jM+ZMSoSBrdopb04KQYPnYchKMYohaSsigDNkQC7mtfA0fZXnvv0bOGjzHwGKg/P7bD3aK1n0ebvz2o9rTld/nUe5u8/w+MMv+R1MbHrAu9vt3y43TGMmqwrSKVdv7i3aSWkjZQiIQiL00dpERp9PFpqP2zN/VEAy6G/isOGdUAo5H9GDq2sFUlrqbhoMLWjWbY0ccR0Ox7e3eCqmna1olmfzK87BR3SIqC+nyNM4TYTdpLyobKSpw1AH2hchzcg/1PzbR9AFiiVwhI0zwI9OUMUu1kBWMKUW5KUousEXBnHAWMM7XJJeyRAlmIqughiEZYUGC2MHshYZTFZSUUyBoySe3dPCrCEomCXGMaBbrul3255vL/HqETtapbtkkW7wBpHDJn9viMnS1UlUlJ0/UhGiQhVknaupMA2Hj9G/ChCvsuzEdc0EvDk6ZhVRwwGEfMrGQyzNWjmoJSeCz3ro+A8E0PAj55x7D9arJNrwNQKpOaDeErRFVZNwp6yecTSk5dzBq0L4FJmR5kDUwAcS5JptaauHCotWNcNp9piEP2d0O8JY08/Pi3AMvpReu2TaDpkk2dtouNn4JxYD/ucyTGhjWiw1G0rok9jZLvreffujhg7Yuj4+pt3LNdr1mfnLJoVygigFWMgBmm/MGpqB1Kzsvi066q5wjSNn1TdjTZUrirCYMI+UkVMYNq8FMc/ag5byvFeMu+vU3IyBTqGrCwpRrZDwGcDtqVZnzOoCm3FzcUH2SyNsTjjZjvPIzwDkL7NGZx7omt6Xpo89+gaY1G6CB8CGY3W0vstOs6ZkUTMsgdUzsmziQLkhig0x93dHrOsMa3DVEYYdikRQ9F/UhMTqwQDU7CYmfe6A1henvt8CKajoLzY18VJ86i0h5iPqzbTKE66KEaJ+LgGSJE4ekLX48ee5DUmQiQK/TRLNVYX1kVOWqKfrOcK1jTueQJYUhZafqa83z+KlPnR1batuAEcARMClEtQqSgsuxIFZCXtaipEAVyUCF1nnfEpsA8jedejhy25tei2ol611LVDZ9HcUUpjtbAEZlXtaXCMmgWdNZNekEJn0DmXRDCJNpgWEF1U9fW8jBRHgo7l75TqoWCqch7lolkhxeIiEJojjw939N2enCJVU9EsW9rVgma1xLQtuWrQSXFx/ZLzi+es1hekqEm+OKvkKFCtCigClcuYpWNVL59s3AD82NM6y9lqSW0MOYp48PXVJV9++QX9fs+v/uZvAUMMnv1mg/cjzhjatqFtF8UNwtE0LX/x5/8FDtjdP/Dv//X/InpPj/e8ff+Gd+/ecn9/izHwL/7ZP+XnP/8ZX3zxOSerlVTiAFdCIYPEEFBimrlaXvrGjwOqNIGFwjgyrrhnpSSCoEqo2xor4D+FBU9JHkhHLD/F2HsedhtuH++lvaIUP0KQsVVTUsphzVP2LKUmzRhKESvKulXfX/t/3DWBuDFGYlbkbIje8+27d/R9z/ub99zdfaDB8+xkwbOzFa+vTjk3NY0THY8aQKmj9iZ9CNLna6IQqXlPQWkBVaaJrw4w45ScKSSeFcymxCQ5Y4qYrDBYjopHKQuQj5IRKqAIRcScLGvLOENEk5QhBEXKGlfX2EVFszghdAM6wPMXL7m4umSxWDC7dRRwZWqRljZh2QdnZ8V/AFx5Uj2IJACJUUXfYE6SJ10v2YMkPrHUdYWrK5wzOKeoK0X2PePg2W13nJyfyLPOQUDu4zhDy3jmKdnTamYu5qKgPwGDMzOrjB9waKuensW8x6qi66KplJE9UimUNcJqP2JGKEV5j9PKk9fxMbLrPDf3PR/u9mx2A8PoWSwTymSMVVSVZcyGlIU1PYbI6AfGMIJWRScvSlutVhijsUbE5+OU5DzhdShISiuoxNFa2qSUtGfUTcM4VkUfTfITUhTWvVYoW6NSA7Hi/mHg/n5guwlkr0EFcsikvkOrBq0DMccDYEUp36kDW2waj2OdgEkWJ+sJEIrMhTcmkE32pwmcVlN8N1mUHoOOJLKaXGfk50LIDD4z+iTGqqnEbnqKc6a5dZhfqsRWWh0AlKnINEF+zjlcKUQ91RW0EzHgHNFxxATRX0zZMOaWcXTsHwzvtgPWJKweqVUl68VZTIbgE8FDHjK7IbH3mSFqcZQrnF1Ic8w+hfnz2mOKKQ6xyjw757x5el7lrIiSg4qMwXEsMv1cycaT2NdPSWE+DOshLJqJJXJTORfr6SFxc7/n91/f8vW3D3TBokyLSlVpKxdhW60SRsv+5WMgIGYYY8r0IZQy8w9fb39ki5B4R5ujB3m41OELRoQ/g0oMOaKyZyTSLhoRXet6Hj/cY7WjbVdcv/4EUzmyyQQCKYhyvS0T9h8+0OXrxljqukVnxFWDVPrmTEkISzL/0UtMh85Bz2JGb44jFwM4hQqyIaQoAa9Q1jP90M0Wh8vVkrOzc+qqZb/rRUwvhiOrPgFanFL4mCElqV5moc3rnHFaYqzwhC2XH968EaExpckhMux7xmFgHEa2D/dYY1guVoDGmApjKoLfMwyBlALaOpStMdbRLpZobfAxMsaRYfDcP2wIKqMXNc3pCl0V+riVyqxCFSvgQl1nIv2XACBNGxOl17vMoTRtqjIHjJZWJKMtcWKKqNL7a53cp5Hd4GgmIqmsIidRlO77gWEcxXouZ6EaJ0VSEtxlDq1nKYbCAIK2bsmNgBcnZFbOYsnyjEbDyjecPaE4sTwCAYNyyvgQiqXulIwe2AR1Otgyxlyo3cZQLRpMXeGjx0dF72EcIt2+41/+q7+ij4kxK/7s/Lx0/WRMVaOKja884qO2k2m3Lei/5Hdy4GlETLatW/RqjckRM7VMTTl+jh8JalKYLjN4Oq9D+WL+COwq666uCB62/cDXbz5w87hn20cSNcbU5KwZup6h63Guoq0b2qqisgarZTMuGDBKZzKJmMJH7kx/7BVzlE16PhgEWDRKFRV10UswtUXcPTPj4BGxN6l4rZa1UHS7zBjcPA/3tzuadUvdVgK0EIsImfyyqd9f6jBzPHPUFiS0TSlUTEyuorXgSsUwg/fieBSCCBGKkKYpSegUfEyBRSrr3IgoeBYwOnd7Yjfgd3uGbiMBQdJySuopcEzlXg0GafHLWRJMtJr1f1DShudjIAc9V5rUD+iT/Y9dBiMB/+OOcRiJXqqzWutSmZu2pVzOAUMmEXIBgGNER4t2BlUZUtUwBtH9+O2370jasu16/uzLn3K2WLKoaqyrmNLszNFhUZLEqTWIAtQDAqIoSQKyliqjLaCLiulAb48adCzOKBKQTALkKE2YgcVJ4FSCyboymBQIo6fv95yerDCff8YYPM9fveL5q9ecPrumXqwxixPaesl125CVYewGHm8e0Rms1ZycLlDWzYBa1RgCShh/T3i9OD8jfPkTKmf4ze9+TR57tvc3+H7Lz376YwyZm7dv+Lu//Yo8eobdnn63JaLo+z0p+rJM5Iy/urjkkxcvOF8uWVjou0f6oedXv/oPjH2P1on/w1/+M/6r//Jf8OnLl6wXLZNdpLDKQiFJZJKGXbcnk6mqSqrWTGHG9J+a215lV6Lo80hw6IOnQNhoY5kD0JymhgUyFMetTEiJh+0j9w/3bLaPnJwsWC1b+jEQu7F8/xF9ftonitCooojH6sL6y6nsx4knFT5CT7rx2MqhdSUV1t7z2O2JOdH7kSqNfFNbThc1P/7kBV/8yPJMVazXi2kHJAK2qSElkhdNnLJiKAvr8DEldjM74uN/PiTWR/tmKhtAytiqKUDv1NMlxZucgiSJhSUQQ5znBIiSTswwAjEbJMo16HpJXS+o2hXGLXBJk43j9PyMpq4wRhND+EjXoa5rqsJUNcbMjkLfb535zyFyC4qYEmOI9ONIXVU4MyW4Ml9CDGJNbZjbg1TRJWkXFWEPKY5sHrdc7DrqupIinrEYY4X+r/UhwSvtkmpqU0bNbdPAkYbOFEswP3emZ3AMNHM0BwCtMvloThxfUw4/u1lqhXKGHBydH7h5GLh9HOgCZOuwtcU1BtdYqqaiUtKKM6aA7z1RQdYabaWVPqaip6VM0RV00vZHmgGip7pSMb3IRWcLqjk+8GGUtjvn0NoQUhQnMZfI0UMcMQRMW5P0Au8XfH3Tc3078mGrGFmI20/2hC5iXRY9GsqYlOK7VtKyPQGd01BlCY/k8ReQ9LAGY/k+KQTm4jBpTI3OR3vSrOGijv4/tcZOHQ4CKomURKLfS7E4hlxA0IMTkJpEludi4wTwTQxCPZ+jKBF1nbURnxCMrqolzip0GsXxSYFBoZTFmJqkZUxQLRoDWQSVJyZ5vx9IWZOUZUyWhy6wGzN+0kfJFMHuAGlEnHvyURfJBFhNe2gBXOZlVeLKstaUKq5LikN3C2WdlpNOxliVOJ8ClpYRUlO2yJHge/l+NGAlrtCKmEa++vor/vY37/nuzZZsr6mWa2ynSHspQJI8JidqaxhiZBgzvU80zjJGxWY/ENKKYzbxP/b6I0RuD2+N8iBKhP0xAonM7+LgJjGehmhAW4uzjkpb+scb+VFjefmTz6lPF+jGoesJSZ6S6+n35sNvz9Pvkt8tLSk1OVlUjmVPnhLBMkRH58s8kMdnzkfPdKLcR1IORNF8J+dIToGcpJqslNj0uqqmriOuUMy7rrAsFIdZUebTR5u8KpTvsqdbDUkradF+ouv2/XuMEutQUZEGZxzr1QnDThKJ2+4OTU0KCWccTlekqBhylDYmYwtgZanqltaKHkfQEVUplLaMPrDZ7rB1Rb1cstBWgLicSyCnigr11C5yCBDnxTWhw7l8Ry6BAmCcxVHTZBF4ymXeWVehS9VZEO+5IeuomkNJjlJx5ImiMJ1LaqOtoLLZMh2/UyyZY0YlqLQj2woD1AYgFiQ2s2gr6saxpnm6gUOU+oP3RB0Zx1Gq2UZcFGYGDrKhm4K4hxAFtFIKV1XYqkL7gUTGR1HM7sfIH75+S900+Jh48folJ2dLqrq0fphpJUwB2uHAmtdjcZ6YHvChXcmhmgbCWFqmBDTIZU1N+ioqf28HO0KrP9pH1RS0STA0+MDt/Y7v3t3xu6+/4cPdA5v9gE9iOSyCXgMxBJqqpqkrXBHH02S0SmU2JlCZmAMhhyLg+XSXVDimKovsY5Pt7ZwOlbY5rUXgy1TCzrBOY5wqNq0Zi6bSDq0U+4c9zf2ealnhLhvRxUEoj0WlVF672L4eaNXT/jlFq5LE+cnqM0bUWKrXWg7lCcBzzmFdYQF9jxY7DZ782liEHyP4kbDfMWz27Dc7UphcN+zRGX0Adz7O8mZkCpiYOKXtMkoQlEsV6ilbhPwwMBZwLvog8xo1t5fJPp1JcwvW4ZkqICuFnwRVciJpxCkka7xP3NzcoyJcLNfo5y8wa01dVTIXy/MUq0QB/ziqjAtB4XAviSTaGFOghwRbhomldUgip2Q+H9/yR08YJrKvLuuY6AnB07Y19vk1l/GC/ThwdnnFydk5VbvE1TXGVSRjGYInhAHvA2nsBbiLhhhrshbR4KwNyjlMrtBPLAh+cbJC6xdYq/j8k1d89+E9u80Db779mrOfnXBxdsIXP/oR3/3+O0xO+L7j/uaGpA2bxwfGoSdn0TOpnIWcaJqa62fP+NnPf87tzXd0+wdGP2CdYb085fqLSy7PT2griyrzewKp5l1MI6KmfiDGSBc8q9VK9oVy/uiyJg/uZrJ/pyLkl8jy7LKMcs5TISFL5XEqRpSsJCVxyXu4v8cPA1Yp2rpi0chHzorRS1IXj6r/MG0NaT5/xT1C9AamPE894ZpLSRXxaopgbJLzRmds4zCVJeoiRLjpudk8sh1HNmPi1cOWLz77hHrR0poaJuaIUpKcI+tgSqg+nunI2vjIJYhDiFkAk0OizpzMZ5Di3Ux3z6WVVx0SeqSV+qN9jMKKyxCxs6C2q1foeomtWmzVYqqa1hjqnAroUIpTkwNV2ZeBuV1zYrT85wdW5NLaljNcEWNhPqLm/cPoQ2JljJGE3ZoZHDHaYOqGFBRh7Ng8bEirBYu1FPGUPjjHTcyqqa1rbvgvCdj8iPX3i7HqI7F8aX0tSfrhKyVfUyXWkDkxv66aH7vs8nkCCWRPvd/sePPukd99/Z5hzGQl7cDaaSbDGuscdsoZjJU9u9hPi9YJxJwkNC5r0RgrDjbFjekpr5RiAUyLjIGa3IPERpsYITusdUQjrYEyl4SRWDlQriKoBj807MLALhj2qWKkwRTEVI2JJmSR90hH60BNTCPFQe/oEFsysUbIR8w8aUGWwmei6wZiEkCqbQ3KCSgiLelTzCUDmFQuYKs6jGHKhDHQd4ndNjCOAe8TIcq+y3R8FjBlbl9hCksl3gTm52jm1qdJ/HZyE3qaa+FqcXZNseQqwjxJ2ch4pogioHUo+YwmIg1twnT1QqjTmqi0CLv6yBjzXLgV96wg66TkwMLDPICXU7Py/DSmmD3/x/YcdQCgjuehHICHNa4k99NFd2zGHNL04nz8gWIcAn2fuLvf8+vffMc3bx54eEw0y2usajA+kHPHBHgbEs4ZhiGI66kPwohH04+emPLHe8o/8vojXYQOwl9TX/jh3/no7yjREkoa0Ipk9CyIWmnLuNnRdz1jCGw+3JB1pjYr3KKVQSr9xCrm741L2fwmkEUhdE1NmRTxUEkqN5bnoOdIh+BoEszgzfTlKWBJiZQCMQfZXJAKRY6BGD0oZnvqumow1pIT7Lv+6HdOKbt8moLUm7SZLImnIF6ogTpHzBMCLA+3t+QoVeJlu+B0vaapHM3qhN3DI2PveXx4wKqWMAastjhTMyaK1WwSvQTr0LaiWSxpFi3tcsFIZIg9gUBMmd2uQ1cVy7OR2tVF9IkCoMQirBgPC2QK5uaxOKpGZxE7m4IvbS2VVoL6j7ZoVYBxlVT0tNBKJ92BGdfK03gjlMAY8VHUwsW+WJEnsbs4MZ6YClIiHJoUTjmycUJqqiCPXfGOjzTVZJP5lJU9ef4hyGY5+lG0PFAF3Dg8twlFlx7tQ+I7aQINQ1/mLIQAo8+8eXtLTIluGPjTv/hTsIa1WdJYfUR5lgchz3BKqvl4cz1aR1qLgrquK6JKMteLxslhcfH3wMzDTjoNVT6AbbrwV5SwjLp9z/ubG/7wzRt+//W33O0Cuz4QssKiCu1TBHedMbR1XdB+CbH//8T915JlW5amh31TLbGFy5BHpyrdANpgbQR4QaPhhjd4Pj4QSFqzJboLVZX6yNCut1hqKl6MubZ7ZGWiuzK9mivNM+J4uNh7iTnH+McvdC7JAEqAv5QjIfnHBVgKsCJa3vt3apTQYlO5H5Uqq6qiFKGZlBXGiu3NfBMaNJWWgqvbdDR3e+pVzcofoysr7KsUmS1tDuBFMdC8L/Mz9xuirDwhJoIP4kqf46EwmN3xhbJssbPGP8tmmB/cZzNnbPZ6IgQYJ/x+x7jb0W93IrVM0qRZXWIw1fyQCdg0J3/8TlXLbKAukyslxVac/X0e77KNw8DYS7JaCgGZZJXIxjK1lMtyz8Sam9O5pIspiU9MTMLkVIDSxAi3N1umbuT8aM26bamriuVyiS6AzOG9F/bKYepTmiv94KnRmAOIEktRonMBX+emsRh35lK4iHdYLtSJMnhQh9tFQH6lMFrYLd6PLJdL6voE5yx3+45mvWZ1fIJrWqyrUUYmsGO3x3tP8B4VIfhIioYQV1KcaSVRrrZCqYR2j7tWHi8XLJcNbVvxoy8/5+buhmG/482rH/jZj37CetHy1eef8beLBkNm6jquLj6grGWz2zMMPTlHjFG0bYOxhqapOTk55ic//QnrVcXN9Xt2mw8s24az4xP+8md/xnrRYFQijyIlFmacgNS53BNZZ6boGaeJPEK9XGAxBcic9ygKwFIAApVFMkMmo1HKUsw7kMni/RYq+6s+AIIpZqZx5O7mluAnKmcFYKkqlnWNwbJTgdEHop8wDwCTxNxMzaDL705t5xvycY6cC581i6waQrlfMlUjyYBYwzhC14+MXcfVZs+2n7jZbGmbivOnT6jqWtg7CeZUrI9ZCB/BiMy09Kwfgiv3G9NcJ4rpvvoYXJHCrwBRAogplQoN/n6Pmz2xKGwgyp6dsjBATdVSNQsWq1NMvUSZCmUcyjncbD5v1Ud15EMfLGPuJQpy7jh8zfznw2bnMcEWAVjkXKeYDrR/XdaPw7RfIT4sTjwp5vOslKKqa4koDhPbzVbYc4sWPTMb9H0DS6mn5y0icz/8vu981cfXPD/8N/lbOny+wDTzFJ4CnBwGEvevU9h/+nCf5mLAGVLi6uaO1++u+O6H90xBQWUxjpL+JhILay0mOXQMaGOJBWAR9rVET8ckoeSUczoPzVROjw6wzP3PAWBBBhXWWVCWpBJKJZyrSSVlMZcGPhOxBoxzKN2ghpaByD4ZuuTwqiWVPixNCRMRo9MDKPzx5br/RDnvef787AOSylVLh0Y8xMgwDgQfMdpRVQusy2X9m6/v/fHxILuAAynhJ8/QBXbbUQCWkPHxHqSd173Dx4MXPveTv4+hcg+wmI+Mp//UY2EdOQWmpEk4otKIub0wxlSeZeLmcG8HFKGsOzl6KiOoX9KG3kua2RgiKHvfpB7Alfm8yyEVylxJ/o4flyrrDfOaow7n4kAqOLQNcy+R74G+nA4mwfIozmuY/N+hzntYKyYBWDabkYuLDb/95g1vP2wJsWV5eoLFoE0P9NwblGcqa1CjrJlTiGRVkVAMkz94c85C8H/q8adJhPLHi9J85sUo7yG4VKCW2f3bGXAaEy2uctTO4bKi70Z26Ybvf/01z1LgzCrqk6XEOyfkwVb8nodGcTgFZUFUSibqOcV7/xbEiGruPO5/zuFq3f+8Bx4gKcVCo5tIKUgiSFlwkxK02YdAN/T0w8g0RWEKaCOA0XYrE0WlhNY5F+iFeeCclSm1lhFnzpFkRAKijaGpHu+hjIMkHfX7nqZqePniOWenJzx7csaT06cQ4e56w+XFDcFrUjA4W5GjvBazXnJ0fMxyueL4+Iy6aQ+GZTkM5KTRBHTVMIZE3nXkdx/QLzTrtmVZNxT3KFIKGKPJKRJTPlAzD+BTjuR8T+uV6ZZEvypt0dpSGYeunHg+5CzRhOV2TEqhlDlcz1hSNnQWSUYs7Jd+HEQiRCbkTFKamA0+IowdGSkIuJIVNmtqU5GUl03TyuQtToEYOnFWx+G0e7Trdrh+pcmegqdOFSkb4OP4t3sfFkl7Sbnc9cZQNQ3VNDKNHVkZlKkwtiWEPe8vb+nGkf/t//Vv+O//5V/xxVef8+Of/giUv9/Y5j74d5BjuURSlBSTCpQxwiZzlhCk2RyHTmQsKlPNkdAH54AEH1E7y//l0qTMQ0fEVDSkzJt37/n1b7/l19++4vp2S7QLtK0Ly1SRYiCOE7UxrNqW0/Wa2rli2jm/p7m4iITomfzE5B9P3jVvsPOuIGlkIgOxxpTmRUsDlUQilJGa0igwDpIKhBQIfhIfF+1AK6H9X94RLRx/cYpbtChtgAAPzBszs7wkHc63mgsCrUtxrHC5Fp+a5KiqeV0Xsz1pqPSDQmj2aHkIiqqP1+csAEvsO8btlmm3Jww91szNSZnZ63RYc3MumHYohWzxZpp9tVAZbQswFcs8Jkrh9xDg+1OPu1vxG4nBk0LEZI0rMpwYipRBZZkoZyltjAJbiq+UFTknfEwkLxMSAc4q8JmYAt008Ktf/haLYRw8bduyXq4wRgptSjyhyKLkQ6EEQDmwhwRYmemzcGDPy7V7yA5T+qAr1ghYLZOj0hAxXzwpcOqmwlrNEAN91/Hs6TPW6xWuruDde+rVmuXRCYvVCZDww469n7jdXklEfCVGhl3X4bOiPlqxCKcYXYmZbh0Yuw1dH3j5aFcOiJ6qeLD8q//hv2e7u+PV2ze8efUdl+/ecLw65uXTJzw/O+PubsfN5Xt++8ufY5uWbhzZ3F2RY2C9aPnRV1/wf/2f/yeenT2hdRU/+vFXPHt2zG7zCW9ff01jFWdHR/z4qy/QYcKPPfiACsVDQWuU00QN2WhUU1MvWryGu82WVfA0xlBZR5g8hEROkkVitC3JDYjpq1xErLYohMUyK1UgH0yNVZZQWZUVYfTsNzsu3r7DKM2To2Pe1lccta2kOp023OwGbrc7Lm4m2ZNnIJ2ZYXpfBAtAYB74EjweONY0C2LK4jFTfCHQMoBCZ6JOjCrincU7x2AcQ4J0dcd+nFg2jvOnT1DGcHp6REQVMNQc1vlcVsD5WYIC0haG30fyIDg0Vxp9T/06AKoCFqbgDw29Vsi6W0y+0RoV5XuNRaRFORPDSIoCsGhb0yyOaJZr2vUp6MLAmRmkolQWRRJzQmGU+kZxmJQ/9LB5+Ln7a8c/+vtjHFVTi3/gfJ9EYRbMPguSIlR8CJXCOCMASxIGaYoJ24hcTufI7c2FGFMrOFu0wsyc5SNKlT0ilZpD6ulZ7iHXRZUm7mFbVBCxdL9vpYM0US64KI00cyLi/bmSQZb8rgIEJghFMhpzZNt1/Oab7/nm+1vef9gSc2HuGGneRJaQqJ3DG+kdJj/hy+/UxmGsBS1gec5KatYMxjpcVaOnRJil1o90HBQfKeO9SIBnDzFtHFornNO483N2W8dOb5l2I96OWG8Ywp718pjKLanCCd5nboPh7cZTnX6CGm+YumuGaUeVNVY7bLOQ+anOCKv5Hz10h8Y2pyi1k0qk5MnFs1IAMnlujRE/I6Ptvd1SAWgeXn5QwqYp8eg5cTAOniYvPehmz+ZuS985gq8wuhZA0Bmx/1FzL5k/Yo7PrxlmEOf+PrXW0i4WHB8/3uDuvLLshsQUFSHVZFWJPCb2ODxOBSo8Oo1k3ZBUQ9BHxLJOOYSMoFWFqWummOl9oBsnJq9x2qPwuGiFfX5ge80L4P3aMpMt5vc+f93sk3dIodNKUuLUPTj88JjGSZIzyVhrsLaku3Ff2imyDB/ml1E8+FJSTFPmzZsrfvHrV/z6N2/Ydg1Ve4pxZxLiYjNZbco9LxVTXTfoXoZofT8Sc0tImb4f8CERo8bpP+6Z+6MBlnulSznRzCyW+3+/770UFI08SmhM2WgwQvWKYRIaWozE0fP1r37LoDKjgvrsGF1c92VqyUcmT/eE53v5SE4Z7ydi8AQ/oJKY0RqlqOsVpkS0zgSJDEI9mxea+V2kIgtKnpwmUvQwU95jRMVI6Ef8ODB0HX3X0fUT3icW7VpirbJoKU3RxqeYBO1XkIvUyDiHqx3ayrA3kokF/VNGY6vqj71M/+ho6xbfBkgaozTTNLHb7alL0o9zNYvFEZdxT4iJnDWuaiVKtKqoTo84OjmlbZcslyvGybPve8bNiM8B21hJxigJDDEmbq9vWLqKvD7CHWtcSX0hI4Z9Xsy+lDGFmqYO11HN15R8AM6Uqg5UQZXB6KqYOSaRB5VLmMqGmnMmhwyplFNlwpxSYvSeyQeJRlVaNIlZSSET7i1XU8rkBA6Ns1IMT9qIdMoHUpAptZ8mwhAZrKV1jwuwpBiLH1FiGkYm6wqd/OCAIk2zlphOky1G60PhUduKpqoZbcXU96SSuBWCUCyNEXDv3/ybf8e22/IXV9ccn56yWldYp9FWmDIzjjknPgCYGSWHQ9Ej/2AOtPaQE+MkukenFVVdrvfhBz54+gpTZS5aH06appAYQ2DXDfzrf/vv+fW3b3j94YZugKoVxpsfB8jVQa9cu4q6Eo26s7YAeLlIX2ZQTyQnIjt5vI0wP2hwc5ZJl0qFyVOAWpQq1NtITIEpJBIJpRW2uveOyilgdDWnCmJSZtp17K4yd+9uWDtwqcY0Ndgy69HzGj3Xm/mwxImBdCp/B2MzxijIUlDkXJrvUgSq0rQfLsdM35UHVq5ZUvKLA4RdR9jvGG+uGTc70jjhyGSb8VmoyWhXJF8GpWpyMkL9zbM+uqwAeZYCSZSrnovlAhCo+bU+0nF7dcXYd6gUcRp5jdmQMJgkHg+aTE5ifqeRwu3eD0Chk8FqQzYGHRM6FulOSWTQOTJ2gQ/vrtBZs1qt+OIzS9s0BwNhbUSOiS7GuqoALOhS7On7KRAzzVrW1tF7wnyvGYOpKrAPfp7iALdR1tic0j0Djsw0DgQv8fCr5ZK6bjBVxdPnL7HtCtcsyAk2d7f008Cm27Ltb1ivV1R6jaFCqwmNLYa7DnRNzgrPgM8TPj9e1C+AJkH06BT47MVTfvT5p2iVubnbsFw0nJ0c09iW0/UR/WbPdt9xc3mJXSwYQmDsO6ZpxFUWqw3H6yPOz05Zti1aHXN3W2EdXF6+Igcv3lje048TJiV0SpjMITFM5xLZmSUBzjjH0hqqdoFxlqQgpCj+aFnuKzFmEJBRCLmRmQmrtS1TYAH65sRS/YAVCGIuPHYd2+tbtjd3nJw/YXl8xLpdUClFawxPzp/R1DtIicuLi0OqBoh84DBFlA277I9Suyj9uLR3pS2pNJYohbHqAODMBu9oI6Wx6C1QWjOmyE038PNvvqdZHfHl7Yaf/vRHfPbJ8wPbDe5ZxDPt+7BaKA5shXm1znNdmYKwRycxfE8xkWYvFQCthHmmZ9GBvt8jtYY4x/jOJT3SzCaIaLK2uOVaPALaFaqq5brOppCaQw7AYZaZZ1+DuccoYMND4GSuo/JHXPJ/lsM6K/4PyLVLZW3PWpGteDBmLYy4ShtaU+HaBh08MUcGEgtEMuy0otKaME3c3d5w/PwZGFtYILZ4hglArbUpckmKl8P9+fmoeSvnj5RJQe4jSXsM5VQpbGGKiPxd3deOKZFmhs4s0ys/LwP9fmLT7Xl1cc0vf/M97y4H7vYJ7RqMUxhbhqYJck4Yk6mtIibF6BRjuU+MVThb43SF1Q5FJijwKou1ginr/ePiK2htmfun+bwIS9+UZ9BSOUtlF+K9pg2bdMdi1bJYLlgsa5q2Ena1Nmz3njfvN/xD9Za//+0Fabhh3F/j/YbPfMsT3/C8UTh9X0+Y4n9H5kBFOswOmOVcFMPowxMsPoFO064WqCQDVWstc+La/EzkAqLO9cQMqigvz7XvJt5f3fHm/Z7v3+646ye6SRGiBERU2uGUw6GxgM6pGP2m0hNmymMvK8CDezGlhDGSmrtcrx7tulVVg55iwXBnlliWejPOgyhwxpC1eLRNhVkHSSKxkyaVAffgI/0Y6PrA0AVcimgXcQayDqA82sp9keb1iRlUVXIO1AxUSiInURJfQwhIfZGorT3AAqoMATNCNkghl+/XGGWlxsnqwDYR5olHZEoyxEoZUlT4CX71mzf84pev+PVv33C3DSTtqG0F1qKKgfP8emfg3GglSYMkwjQW6bqSwJIAMUqi8R+zy/0JAMsD1E7u/AdpHFKsyV5WigQojXO5xWe6lYKcQmmQM8TE9eU1zfkpzdkp0xixykij+5Cyl+WEzBMVeSALtTTlQ9b1NAwQRxQZqxQ2W5SrhXKv7QHpPPxckAevTAgyoYArEzlN8jBFyaJX3pP6kdD3jF3HNHl88IRMmbBGcg5UVjNNMoLIAZTRZKSRSkS01RKzqvO9NHG+abW+p1I+wuFszaJNMgHPWYyrQmS/22OtJSaFtbWAQBpQYhrsmiW2bamO16zWa1zdoCvLuN+z7zq6bo92mtYtcdowp8rEkJj8wN3NHTplGmtZLZYlVUZAgxCDNJ1wcP2/1zjOU6f7ibsyqjRaQh3WsxHtA62eDLof+Dkk7heC8jB77xnGER9CQcJ1mTrnAu4cXgIpzs24xhqLNZaoLQnFNEUBiXxgGgPaj0za4J1/tOsGSKEWpcCbxpFYN0QjIAqz/KoUXLPWWRsjqF3OGK2pXUVVAAZp2AU88n5mugS++fY7bCWU47/6F3+N0ucsVg2Vq4gPTFSzEume9NT5cHYPIxGtxCdAF8BFz7Ta2ZTUMqc5CAjxoFGcjW1VkUDNhSUw+si2G7i4vuUffvkbfnh7xc1uoFmdy32RIAUv0oiyWFdVVYxZRVqTZFUm5wc+I3nW9cqk7XEPVVD2gugXGuR8g4mHhkwnY5INKSuRfjAXC5QCrZziYk1AGD3jNrO/vKNa1milqExLcvEgqZIN5fcV2vPUTxgNs1+V+PsYAdEe6F/kb/fPVWa+3KkUSKVIipA9hK5n2nZMdx25n9ApiSGsKUkkSQlwV5hmWjfEZIQpmO8zVZj3hzIVFhlDYh7fi+EkjwqwbO/uCOOIRmikOZU1JnEvD9IaHec3LEXNPGVVWR1il8kZPUdbRmTSVsCR6APb2y2VNnw4v+Ds9AStNYu2vTfX0zP4XFhEUFKH1GEtLZcEjCmFssh6pskLWGVNsdCs7n8u5QImOAwpMsJOUOK90w8dfhKT0KaqRfZnLetmhXItylj8FNnuNuz2G25314xhR2MjamlRKqMIooXPCpQl44g5040wTjCGx5UIaaRZ0CTOT4757MVzkQrmjDOatq44PzrhZLnkxjq6uGfYd+icGGIkBC/TyXJfGSX+OKv1EmszKE/MI8vVGr/fkjP4acRM5XfM1fY84SsMsKwVATDWYExFY2T/ndduqwwokSNPk8c5KZrJ6l6GposuXRaM0tLL9F0Vv5SyADNNPcO+Y7/ZCJPPOtbLFcu6wWao0Dw5PkFbR7fvcAqZVhqD+ghQLUVXaUyEeSEAcNKPV59oKcwQHOVBAZ+FwaZTOrBPhOInz0bIiS5E3l7fsfr+FVPOtOslT56coZW7DxeYf9Fc85W9Z14D5d7h0NDBvCckgp8IQfaG6MNBToFWNItGQChVGLaUW70sU1LPyydyYWDGrElKg62wzRLbLDB1TTa2rCXcyzxLs6/1/ZT8AADk+fXOwPcDJGb+b7j/vvtT8GiHMbpIPRVx9Af2kSRdGbLRpALmOqWptRED4ikTUmZQQRiWKmOVgCxTCPS91PDOSuCCLtI3AdYlHlkSKvNHPckDlIz7e1fJflbYNTFGQvYc7m6tIVswMnQRbX5p/GeJAjDfSRkIOXG77bm42fD960vevL/iZhPpvaNpFgKuGnkNuQAsWgtg7yyFyZlLL2QwymGVxSqL1omoIepM1MLatFqLUfJjHgdTWakVUk4HXxZ5zAzGGRbLRvqrKCmWi7UMWVerBZW77ye8z9xtRl692/DbV3eE/o5hf8c03hLcGZNeszrPLNxshZDL8ELOsJop0vPzU7bVXPoh8syXyBQVPMYwr4KAAEP5wIa+Z1rIhY6QEjpFcojEMdJ1E+8vN7z+sOHVhy37KTIGMay3xmG1xWIktYeyzkZPmkGWnCQF6XDjfbTaoLTGVY7mEaFOZSsynayLmhIiIedFfo1GjF8rVAFYFBFNsc6IEZVrZka4j5nRJ4YxMg6JhoRLmewiygaUETsMZYUgkMrvmN+zmmUrh9r//toxsxGLf458g1QxgqvpYr8goLLWqgAsqgCb8r1zXz5DbBHDFDV+SnT7wDfffeC7V5e8eXfH4DWucSjjyEaGztrMMv2yL8sGh5GtRIybk3iNZpLwPpIi/ZHSrj8eYCmbRlYwE1fnKkFKQLkRBbRS6KhQ2SBJjUWyYLUsPirgnFx6pTRj1kxjott7UtDEUDYVncnKcdByZo/KAVUoZhKdKV8bouRYD/1I6HYQJgFGTiKLxYqqWWDVUjSfKLKZDbAkwYccAGGuxLAn+VFMgYJHDyPKB9To8dd3dPsd2/1OCrrKUhmDW9T0fU+cPKfHa666O3LQBC8GcT6O7MeOoEDVYFpLjIEAgqRXDbPuVD2ibi9hWZ894bwkqcRpwg8Dm7tbhmGUmOUxsj46ZYqKiOVofc5ieYRrWpK1qKoipMjdzRXv331gHMRE9OzJGdbIxDaMEzpJlnrygbev37C9vWPsR776/HOapsEaw+g9PgjAklLEIJu1M0LHyzkLGgsHicis6/uoXSzFe0rCEsoplbQizRxS+oDAym6/Y7PdcXt3x+BHYgKlxNRWwJUkBUOkeCgEVIjYytLUNZWrSZWwpG63G/b7PX7sSOOISh6dR5miPuKhcsbkDDnR7Xasl0sK0iibYWHmiDmjmHwZZ8jTRAwJoyOtqxmrWqQnSiis2swyAfFJiePEu7fvcZXj3/2b/8D/8D/+DS8+e8HzozUhRjBKZAtqnvCIs7wq+vzZE0ApXdJxahqVcVYadh0zNguyfqBzwqHozcU0TvAWhTIykZh9QjbXO354e8Wvv/6Wf/j1d+yHALritF1IgeAnVArECfHqqWpWqzV1VaNQGOtI3heQA2oriThz9HeYJLns8Q7LrBsmIxParA5SjZRTYawJwJJVJGVfaPhWAE8sSsvG4qwqhXamJoukYD9x98MFJinyLlCZRSlOEqgISuIn80znL2toqfllT4wSnatQ8rWpXAT9ux4P8ukSeSQoTyrsvqI7SSER9oHhZkvc7tH7wCI7UPL+dA1jmEhkqvacPBlytjjbigdOmAjB4yor+tuUZF2OCUKURrA00SFMqJgl7So8XgGzubkhFlf5vHAwKpJHZJ5YGmdRVkBCab4mfBI5gzFSjBElGcrnTDTm0KzZYhaudIY4MexGbvIN33/3Latlw8uXL1guPxMGhLbFdFCSHJh32DLh1kodaO9JiUwkIFPaHMRXI+aMQuKgNVkkF0qQunlSGONMmVcFAEr4qefq/XsskaU1NHUFzoGtcKsTxsLg67bXXNy8425zzc3dB9omc7bUWBbSkIdYJJoJlCNmSVB69eYaP+7JceJnj3blQEq2RKUVT46O+Kuf/pTj9Vr2nG7H2O9ZPnnJy5MTxpMt1gsbzE8jUwwYLdHoRmmGbuDi7TtO1ytOT9dkp1mdnVIvG3IMvP/+G2K/525zy3mzorIVdTGQ18XYcI5ENkYkHxLfLfv7zFSySuM8wobdd2yvt5ycndG0rQDDpVlUWc9uyQcwzKjSdMTC8lIZZRS721tuLi+4ufjAUdtyujriaH3CyXItQF+El6fnnJ2cgY/88O233PZ7AYAqGbLEUBhQWWKPyyyxmCve+5s9xlFVdYk8lvs+5yLFSzCOAaUsVWVw1qD1KIzAGDDKgDF0OfLd5S37kBi85+z0hBfnp5ytF7Na8gA+HAhClPOKAHOHOeGB/i5Nn2oc4AQ/jpEQy+BHKYIqkhxNSeCa26uy7isEvbaOECd8ygQs1A2mWWJWJ6h2Ic9WaSrvN8byqBawRxAV2WdTvCfs39/53A8MHrBX8kc/7zHhlaL8r2SgMwYxSg8hyD9UhlRZkbb4hAuZFoNeLgkmsfeB25R46jQ6ZUwOtFZYxGMIXF5csB4TixXUugGXS+ciwzVN8fQoQOABU3l4PGi2VY6CzfvEFMay5s0sX4mRFnCkRRktKTimOrBWjBE/nBQywzTx9feXfP/2gt9+/44P1z29h2QUjgi6wliH1omcTWEHjlRGEXTAKamftBIpvssOGw02aWylyU4x2cSgJurWkaLFxMcFWFJUMrRPWVKbVAnzSEFu26yIWWPrFS0GjEXXluOjI9aLFSerI4Z+IPtIa2qcWYiJ+23m59929Pue3bbn9uaa9/sFP9k4Fqdf8TQ3LI9q1m0NRpHlRRS8p0iP48wdmKv3qtSdRQKpCyADpX4qgIs25DLQljmb/KsykLqJPI2YBGkIjHvP9U3P3//6Fb/9/pZvX3fs4glDUMQEx6bCJo2LUAdNjcKkQBw7wmiIfgmx2EKUHnTGOLJSh/7NKEvziL6Mk7Z0MdD7nsoGdBKWac4ZdIVWjqxaEq0sGRHIIy5PGCJVylSqZTYuD1kzeU3Xw36TaCM0AcQjoaQIuQHtbAFJNGSNEncTyIqcZJg0D761Vrha01QG8V+MEjxzQI81OcnYB2PludZK6hNHedFBDHtVktdiIXlPzJoxaTZD5OZm4N3bDf/x715z8WHH7Z1C2yOUa8jO4lVAOYOpDLayxML4M8bgU6S2mlRphqlDpwmdLUopRq+YoqFx/60BFu4L7nvmihyy4D+wvcmFjk+ZUJQXP0/RtFZgkKx0BcvVirOzM548eYqrKhIB7z37cUfbrA8MgkM8dJqhMl2m1QatlrR1RWgq8rRAldx2axe4qsZUtcDHD9B9ocOWQiJHof6OE3EQcIUYSN7ju47YDfjNns3NNaOfiCFQWSvxx0oW+3kztNYwRY/PkWwsU44ElcEobOWom4a6aei74t+hNc46Sewwhj/OXuf3H9uux0yeqnI8OT9nuTomtStiUlzcfM/mbst+u+f8+Bln5ycsj8949vQTlLbEBHe7PWOKQlfOkfXRkuPjNc46jk6O0ZUha9j0W9KYUQYqZ9lu9/T7nqHrqV3F2dkp6/VaaGHFfFNyyDMmGRKO2hbZSYlwnUkFh9hB8kesKUWRWcQk8beqaK8LspyTRAVO48C79xdcXF1xeXFJP4gONiqhbYaUSFkK3hgDcfJM/UidoDKGRdNgnUwockr4kNlse6ahh+hxClTKsmE84uHHEe89MUbGcWQcx0M04+96sMxGoBJlrYlKir62bZimBXVVE6LoHbV+wADKMj28ubkjpoQx/18+XH7gJz/7iv/uX/4NL54/oW5qtILgR3J+yDySS3FAtwulW9cWoxuU1jQ+okJEp2KSXab6ClGWzD9EH+57JZrgIGZm3Tjxn/+Pv+OXv/mGv//Fb3j3/hJbLVgsG4xxDEMQdk8IoKGtatbrNWdnZywWQnGd76G5yHxoDOi9F/bIIzIhDrRuZlBDPhFS5OM6937cKQMcBcpgq4o4eAG3CjtI6SIRAUxWpJTpNx2X6gN914m06BzUQqGXCrdcoqwTUxdrODhnz8XM3ASU2l2esZmpIhPRwzAb0cAqNMpUkEtSVQSyYur2EsV8vSHsdqgpUFtFo2tyFvqxTxNGK6xOVEYJJTlmVEyoJIlTKgcMGk1Cq0TOgRBGQphK0pJExoYpM3pPHUW7+1hwdPCgdYPTFh81Bo9JkSYHXK1xtaFqBWzuukjXw5AyTmmcsTSVI42JQGQInuAKo7jsV0ZrrDVS1NIT0sTV7QfevmvReqKtFc+efUKjlzjrhLFShhBaFxO6w8BslhNopsPoXNM2Gecq2Y2tKdIxU4gkRWCbk3x/kmLaGYtOmeAn+t2G2+tbVm3N+vRYJBnWkbRm0+3Z955hHOj2d9zdXbHb3zJ0G47XZ1S2wmbHrpsY+0hQJd1AZUL0bHYbfvv1N4z9Hp0j/9P/8kgXDkhhYo4BJQSO1isZBuXMNHgao0lTjwqeRilO24Yvf/wlozXc9B0XV1cHU+wnZ6co4PLyA5vdNbp1OCdJZN2uZ/SZaUy82d2w/HRNXUkajDFSKGozsy5zASEVOaRSfFsyGR8j/RS4enXBzcU1+7sdRhl+VlXy87J9wIqhSOiSTHOVTOXJieRHlJG9MYbA5fUFN3fX9GPPixfPOTk5oqoraicShJQjWcPL5y9JWvPh5or//PO/x4dEyKMMKmZWYQhl/dJUWotEr4AKj3VYJ8EHpiQBlgAQYZxO/pCWI0cu+48urB4gJMbdnttp5Lt+zw+ffYobPmHxiXgHMSfizTilgqyksVcHllB6gFiU8IEyjKD0D8kk3L1ulYwwC1UZVBy+8AGoUQgUBBReaUxTUa9PsIs1LJeSgDgbuR6+aa5P7//8KBnowb/xO3//Lx6PCLIczELnexRBI5IggGirMdaJp1Cp3zWZqm2pnCJuB0nAMrLfpa3UB9YYbm9v8V6e23NrMSsZOOiQwYj0QAKb5nVPHYYCh/NSuhWlQFnpHSqtqW1VTFhFamqKJFNbB2hSyISY0C4RUpnyd1u23cBu3/Pu6oa/+8Vv+XC94Xo7YqqGReNQtkEZg3WWqqpQWoIxYhQWgHENzlpcSX3CFBaQ1TgnAKLRMiQ0OaNz5Hi1wKXIbno8fzg5OerAZI5RPFhMkUkLUCdgRrffE7zUnd2+Q2dNDorGLfFekZLB6AatWkiRECz7vWIaLH1vePt2S7f/hjdvbri57fniq1Nevjzjyx+9ZLFsWTQ1TVNjUilzlBKQ9fA0FGZYkTIdZEC5sKkPg1TKQyofMkCafYtkncwhMG47Xr36wNv3N/zymw/8f/71P3Bxk9j0De3RKTFpEsKQu/c7K91tYfmEWR6aU0kJksFFmlPEigGyLvKzj9evP+2I+Z5tlLOEGgjvopyxMkHTxdg+5SQs+JTKIG8eXJevSTD5whoLjmEMuOTROaBjRPtU2K8yZJfYaX3omSmqFLkm5b+VEq9HZIBNlj4/xlSY84VFrhLWFT87yZuWweBsEl5ma3hFnjQxVUxRsRkyv/r1W7799j2/+dVrvvv+mnFUTN5izFKMl1WFdTUmlDQuo5mltsZoYunRbdSMw8A0jYQIutIMo2eaNLH64+we/oSrfZ8i9Ie/RFCueZsRt3Pz8a89TBGkyc4K2kXL6uiIo+NjbFUxhYj3gc1mS86WpqpRFViTZXo3U34OG1qh/VuLoUaZVHRVEZQDV6LRHrwGlWfmSqEhRaGPESKEhIryuThNDH2H33dM2500c4X2bssDn5USj5YstHu0NO0RyM7cZ947S7VYSLxlyUifNc3WiPbbaMP/+Un+px3GVvgQmPyAUrcMTYtConpHn4jFcO3k7IzVyTnL4xNWJ8eARP6OMRCHkRAD1hiOjo+oqoq2liShkBNTmEjbyOhHtFFU6yUpJsLkuQuBi8tLmZwaSWYQl/RMpKysZXB+3zyIBm+uHR5GWx++KAt3atZA6zLdUIj5VfSBaZoYx5HddsPV1Q23txv2XU+IiWT0fXpALg7TSorKFAIpeKwR/47KOvGAqGpSTDjXoHUFypNVRhtdKF6PG/UbgkhHYpSY5hkMOJwT7pv3WZM5T0fl82KoXNcVVVWx23eF5jyf6Pl7DT4kdruON6/fkpWYv67WSyprOTk9ZrFaHOjp0teZg3KEYq44b2YUl3ztnHhA4MtCnzlwQAsTZ94UVDFUJYPKSiLUpsB+P/DmzXtevXrD6zdv8SFhKiUUyEzRTcqibbURWv9qRdu2OOc+0sbOIMsM2MUSUTzLhh7rKDLgGQcsU9QZhp7X0Jn6rR58lLXAGqY0yERpBlgocYFojBJJY/SJaT+gFewvb3FR4RYat3ZUoUI3GlUZaGTykI3cE9kU8EQZuXYcVKofs1YOY5l7OrZMazQ5i4lkGiPTfmDc7oj9BoIXEEiLF0UuUw/tYzHkTOicSNGTY0Rnh0oBQ5AC02SMLmtyimJaHIOwFbWTVIUsZs4hzlHpj3RkhcKglIMsumunYOmgLVHsdetkYjnBpDKVAqfEE6Mqg4OQMslI5G/MyOQ76UIgEaZEyhNZR3wc2HW3bDYVd3crjo6OscZRmbpEi0sqgNaieZC9UwljociI4iHeV9ZDJ6MrWVutJWlFKFOre98yiU/XWrwI4uTxw0C37cRwFC1UW2XKe4jsp8B+8IzTQD/1DFOH9wPkyKKuqcSdmWE/4CdFsqncv5mYI/04cHF5RbfdoNJjx6LDXBPkmKmtZbVc8Oz8nP22o3UVxIDJCUuiUsJ0mWqHri21s+IHYTRHqyVNXZFSYrPd4PeJtmkE+FCWrBwhKfbbHp8N2dSoqhEPNrndoRS+ad7HyvOUo7C+ovf0+46LiwuuPlyx3+xo60bSMWKgyu5gayWgWL5/o4fkhXho9FMKDFPHdrdh6HtyTqxWS2lgnC0JIWLQP8aJ1dERzxT86Mc/5psfvmez2zJ4kXpoU6LAc2FzlOJUGS3MqkeUMOsSV2uMOaSrzYzVEMULRSHPDWVSrPRMI5fBhk6QJk+/2bK/vaU7WjEerVjWNdoVcHlmYGpKc0ZJbSqNupzcAnLPIy51X3sc/NyK6Wkq7V25FvNPmPfllEW6PpvoYx2mbnDtAtO2MO9N82bx4PiD4MoDAOef08D2v+ZQD/9X3sPBpLhINtQhSaj49iTxF3Qmk7bqUJNLVHG5JkozeY/pOnTSLJcrapMxukbXjjl9bpYjyYvRh111/v9DtTjft4oC/ERyKh49ah5OFdamEmN62V0NPiUGH7nZ7rm+3XC33XN5t+Vms2PXjfiUC9tWUiyVvm+qlRYfljntcU6jM2XAPCupTflTl/XLqIxWst+ulw1MA9MMEj7SMd9HD0G9Oc2FglOE0oPFEMVr0IshqMLSLSZSgBAUOVuUciQUMRr6IRG9JkTHMGry3URKW9r2Ldv9LZfXt+y6gdOzY56cn3F+fkrbOuraYIyS9aysn2oeAoE8k7O06XAPlv8XtK3UKLNVRfHOzEmG5MPI7nbL+/eXvH5zxQ+v3vLu/TW7viaohiooYhIZolLmoJrI872WZ/asJ8ZwMG/WWh963fsTTKn7Pk6R/FOPGONHJrv3Pzkf6swZEJ/P0MHHruxF5FIHl/ozRQheBswpaVHLhEweIwlPtgPG1egEqlay9s9aIOZF+P6i3BuGK+5flCGpSMiRqZAQtC4SIK2FaWhU2ePS/bUuyV0xWMYA+yFyddfx6vUtr17f8ObtLZPXhGgkqpqEQpKwlHGolMvPN/esNa0g3nvOxRiYvCcGi1aWEKKwXf7I408AWH4/uDKfz4fHLL3WzlI1DSrIREIk87kgcYVMqRSr4zWn52ecPTnHNS3TfmQcJ96/vyBlTVgsUUDV2DJt1TI1iLIsx0PTnWXqYEzZtxRJGVLxdFApzvwx6edV2bBTIk8Rpgg+YGPRbfqI7zp2txvG3Z6w3UOM6LKITuX3ppxJ3gv4pmVjCTkJa6VxxBBRlSQHnZyfUReDNClkFEbpA7otMVqP1+wdnZ5zfXXF7e0tr968xWmDM4baVYwhUy/WnD9Z8uM/+zNcuwRXkZXBKINzhnVeSZKNlD2cnD+hXSxoFwu0MXR9x36/gxjpt1tAWASVcQwhst3u+O6HV/TTxBQiX33xuaC6Wh7WVCjU2pTNOAtWoShRxDOzQAnJLOVUtIBzPr0p32uFIYUhhUS/H7jbbNhsNlxeXnJ5c0k3jnSTJ1kxXZYYXTCpwIc5EydPmiaIgaZZ0DhHU1UCflnRZh4dn7PvB7SpidNA69wBrHvMYywMlpQSwzAcQJbfF784J9dUVYWxBh08KXuqytA0FW1bc7e5BxRmeZFSCudaUgoED5eXN+KtsNuRi2zqqx99ySe2pnJWprNaHTaxXLiI84IN8pxrrcFaqKqycAZSCtiZSTLXRlI9A6qk4WgMhtDvGIaJ3bbjzZv3vH17wfX1Blc1BeByhJCYfMD7CEi86nq95uTkhOVyeTg3858PgZSc8+F8KqWoHtFY2pjivXIwWtQHWuv8xg9FTrmXFXNKh8FVTnyKYhDwrpwiq4ojO5CUwQJ+iky7nru3F9QbqFvH4qih7h1qDSyNUIUqLdNcFQV0MfqBSaBUVbq0U+rhip7zIQWDskGjDGRJhPD7gf31hnF7TeW3VBiscRjjiiRCoZWTe8SMoGSalKeE8lqc7ZPHEqhspnJgdEYjsqmUPCl6kgat62JKnYr/VSTERP1I120GMxKGGDwqK2rrOK5ajk8WVI3FVoabXWLsMh2hxGkmjIq4AhJFG9EkRpWZMqioSKEUzgqqppL3phLZTvT9Hbd3imVrOT46xipDbWpqXVNZAd+VtQeAJRklbgRazGurrCWyMgRU5aQBJxFzJGoIqkgCVb5vXlPGKGFg6izMjH634+56g7UNrmoxriEqzRgDfQxsuokxgg8enybG0JPyROU0J+sjWteQp8zmesdAjV0upSDTEHxg33e8ff+Bu6sr4vi4JrdW60MxGUPCOs2yrrHnZ4yLJSpk1BSxOUtcavScLFrSaoGuLMumEkBNa06P1pyeHIPO+N3A7e0dYRXJK8350TG7ektgz9WmY8KSqha1WOGnHnJEp4TVB6tmcpLJWaL4xGhLmAK7zZYPFxfcXN/Q7TuWiwX7Ycfoj2iQPScjtVPWso7MxrOxTDGVSWSt8X7i5vaKze0N49BjtGa5XNDWtZiq1sJm8zly1+9oj5csz46xTc0vfvVL4qtAf72X50CJEaBWB46CTJiNpaprquaxnjhwzuGsAECTDzOeK/t8EBPyuUk/MBDn0UqWiX9tLLXKMHnG7Z7+bkO/XpKaGlU7eSZcXYY4GUkxmZMt1MEP4tCwcZ8YkkKUSf88VDPmsCZLMlyZkB98LeRHRJKw2JISiUXlqJZHmOUS3bTl9z/cCz4+HoIr/4jBwsd7/+/7+z/3oZXIumb/rhDF9F/qiyIZNvcDDaU0EXBVTYUmFCNONCjnZmGVvL+YGPuePCUaW4POVCphF5ZczFGzQqRzB5YB5dKViX4ZBiVdXLGMxqRZ5iZfrIrX1ZzIhqlk+KAyyTimaWQ7BF6/u+Tth0vudh1RWYaoiLqsyTkTg7CxV/UCa8UkVWnw4ySSrhzvGfzKFNaD7AeGPNt3CgCsBbA3JE5O1mg/0t8+7rW7l5Hlh58kxojV7jAnC0GAhJQghEQXBoKHuurQGHKEmAwZ2Zd9hO3eYzCk3KLUihgjXad5/WbL969fsVw5fv7Lb/j0s0/42U9/zE9+DM+fnXByuqZpHCEMVJUMYI1QLJn9Fw8JoQ8qlPl9qOKLIib+CmIghwmSZ9rt2d9tefv2Az+8ec+rt9e8/3DLbu8JeUm1OMIHCbxQ2hyukdIi4T541KR4SJz0YTqwk5XSWOvEW+sABM/A4+MBLNM0yjVJ6QG7prz/B0Cm1nPCVnlWspybGFUB/GUFJWmRiwUFiJwbJcOZ5BMkT0w7sbDwARuBhSu1o4AhAqjoQ8968EidcZesyLou/kcBnwKZiM4ZpRNKRWzxRJRnU3z2rLMoVZGxxLFmu+u5vNnyzetbfvv1Fe/e7djswDVnJIQRGtII2ZKUk8j7FA4+LHGOklcy+tBapN0pJ8ZxKAyY5gBiyT7xT792fzJf6dAmfNwvzMMjZs2r0oZq0eJMQk2OPG7EiC9HYk4kg0T8Vo4Xn33G8dOn1OsjtHUYV6GMYZomcXMPgb7vwENtFZXRaOcKkKKwqUwhCvIrTsVAViRlS6pJeTSLjONgvxsjeA99D9OImkbCfs80dEz9ntubC/yuI3tZ/GbjQaWQJB4f8DFATtRVi7KKIU54Erl2LI4WNMCuH9A+8PlPfsw0jIx9zxzPhlYiFVIGZ+yjUnAP7vva4KP4lXifmTzUzYLT0zM+/+wzFkcnBKUISjxjlDaoJBTe5aKmaSpOzQnHT59QtQ22qmRB0ZIK5dCMu47JT1hjqBcLnK3xVeb6bkM3eW42W4yxnJ6dsFwscI0jaElPkWSfKJHKgC236n1JNU/T53tf5C055pLoExn7iakfGYeR3e2Ofd/R9T2bzZa+8/iYyVm2NErcsQaMKkXMNBH6PUyJhTGcLBasm4bGiuZwlqq9/OQTqqZht92xub0R0E1r7CN65wCCrEaZgkzeM81ylt8pqu4TBtRBQuSDx3t/YLCs10vef1CHaarCFDfxRF3bEnuYGPrA5Ce++/Y1tze3fPv19/zZn/2EP//ZT/mzP/8xzz95wfpohS6R27KIIg20UmARc1CtUUlD7cQ7AA1JHSaSpmwKD6kTOUiiTz90XF/fsu16brcd795fc3PXMQUBFlK5hgfzXKWpXc3J6RmnZ2ccHx+jtT6YEs5/j1Fic5VSB9lVzpmmaTg6Onq066aNNAg5zXTm+4nIXLznLGS5FEUTrbUY8lpn0c4whYkpeGyhN84JWZVxEIVRkAAbReahh0x/19HFwE0OUL3CLmrssqU5O8YuG+yioj5ZYJcV2hlUrcEJi0FrVVIb1P1I7bDIC/2TKEWgyIJ6xl3H5uqGcXsNfs/aZSrr0NqRcUxJJntZK7yKKJtwlUOi2OWj1uB0JFpYtk5A9EzxePGQZUNO6MPkJKbEFCNjiEw+sXysCxcTIY0kIsZB6yT+/OzkhOOTNUorphjYeV8MOROVszgrxn0mTzijUFZRN46NH0WCowwxWIJP5DySs2G5XqJdjc8KbRLoACpwc/MBg7BK2qpB6Ua8W0xFnq+RlWuTlIReW12hVCRpQ46TJI/FCFlSN5xWaGMISs6d7MOCt+WU2G/33FxeMQ4dKcL5kzOWqyXKNdx0W3bDnt5PJGOxdVNMbhPR96jsaWvHyWqNwzDsej68u6RaP2HZFhCdiE8T3dhxcXnJ+9dv2N7cPdZVA8BPEjcshWcgB7mX28qxqmpiH9gPOwFYpGPApMSirolasV6tcM5graZuaurasVgtWJ+s6L4PNO2CpllyfPaUze2WcHHDqw+3/Pr7N+ynwCcvMsvix6b1nFgYmKPhU8jMCVykjB8ndpstw35PjhHnDItlTb2ocI1BnO5kXU9EWU+1FPTZ+zKFSJjKEMLErt/x5t0buqHHOsvR8bHEwNYNumpYrNeoyjFEz+t3b+mGgZeffMqLTz/l3ft3/PIXv+Drr7/m/bt3zEaqKgtTUSlhey7WK569fMFnn3/xaNdNG4OxFmOklppZVvCgESyNjFFa6iRjUMW7QTldpswCBDs0JgKDp7++xbUVpqlwLFFtVYY6YoiZCjiQy6RV1iU55hltwtw3KQ//IQQOfiuFmZmSAIndMDBMgf04sVifslguaZdHuKpF1Y3UfTkXadH98YeYKx99ze8dc/7jn/HPf8yUY6nQQggH4Nu5ee8t+4gp9ecYULaVZrSqSVbWNJ3BtQvi2IscFKkF/NSzufyADwN1t2KlJtx6jXIVylh0VXFo8gqdNs+GtFpqX63uHQUg40u6ibBJKnAVs8xoClmuWz/y/vqWdxdXvLu44vp2Q+8DMStUtaTzmSkbMI7aOGxWuCyyKK3lHjU2E72ANTKYuGf7WK3AZKwGVCBnL2abORYzawh+4vT8BDV27BePJzMBCN7LHpHvvYNUQTb9NBUJiWIcJ1IUJvjQC1hkTMC5Lc7WEr+sHa5eYEwQi9V6LYNsnxlDAZuSZj8aNpuRfLnl+9dX/If/9DWL9t+xXDScnq756stPefHyKZ9/+YKXz89YrRtWq5q2dVirMUbTNBJYYNSD1J4y4MMo8akKE+RIHAemoefizWteff+aq8tbtrtAoKZdPeH86ZJ24dnsHdutp1kq0CLx0taJ52C5PjFNkiybE95PjONAP/TEGHBU5XyZQ2DA3F0+9qO422/xfkKpkvw4AxLIf9ty3WaocpZ6yTqmymola/nMYkkJfMigWmFfOYuzRt5zjKRhYkob9H4gNQP1cUA3DdTy7OQsXn/J3ANfB1abMigEKHEmY6qEqTUoj9IJ48T/R5mMshoVJQYzZ/BB0Xew24x885tL/sN//nvefrji4m5DP2mCh2TW6FSTdSBpL/481slaUzxXtDFUlSsSKQFOUvKitKgMy+WCcRjpe0NW6yJlmqHe/4YAy2GN4uFf5FAHjtADJFmL34hWjTTh4z36nkGABaPQznL+/BnLoyORE+TDDyBnRdO01HWDyom+70gaktW0yxXKzrTo3z1mCrw6GD3mB6wVXTZjJTsiTBOMI0wTaZqYdnv6/Zah3+P3Pcl7+drSFForiGW27uAwn8m44oiPmvBksjU06xXGOry+I/QDJ0/O2Nzc4UMga3mPc2KAKgj3Y7bpXT8wjp4Qk2joMoUx4zg+OePsyRNOnzzFKENM8jAqK4Zzc1yrxJYpqrqhrh3GGZQtnhBGaI8WTfYJP3i6XYetGjAa4yr8NBL6AZ8Sr9++Y0bjjtxaUGDEoFDNUh2KDGW+jvlB0RGF/ZQL0jIOU0n0ifS7nm7XMfQDw25gDL5sqPOcoPyMVBzey//UbNI5TjB5TFI0pmJRVTTO4oyYt+pSMDTNgtVRBG3xMTLsOznZjwywzHTAeYqZCrr6u7KINF+3QsuVqbphytNBd1g39QFcyFk2hBSkCNKzIWqJLFZKMw6e63BLLsyG5GUxTxmif8qycTRNLYyWeTNRcu2SEoQ8F0ByTqfByPfrnMllojM38SlJUkXwkX4/MAwT0ySpM+MU8b4k0Dh7iJyNJaEHFE1ds1gsaJoG59wB5Z9pnDPAMmti5//OOWOtpW3bR7tus1xhjhgm368dpc47NDFCDpFCX8/TUS1+LTFHnJVJkbDU5f2qrCR9RCsiYvhXJYOJFdErgs/4LhB7RdhnQp+gslAb7KrGLmtMY3FthVtW4oNQWVxdZDxGoZ0MWdGl0zIKYiT5CWJmuNuwu93Q320xyeO0KdfTklRFVjVBSepWTNAHQ6ASwCVZ1Mw7zEAWWnBdGZzVhCj+OxDnUuVwLg8T7lQmzH8CnfMfHbnI/HSmbiy2Fr+s9dkC29RipN5HsnUoa8vmbWnrSsDVNJu5FT+BJPTzrC3RWiaEbq1UxLmKqrZUKmLNgC3pE01bYZwiEhjjSB4dUwKbNaapD+kA+aOd3KBMRmeRN2WVSVrJuqYlzWNmJs3AljWaFCJ+ivTbHSEEjLYsVhVNs0BpwzAFphCZQsJHYYUoIKdImAYUCWctq+USZyxh8uw3PfvtHtOelmmaKV4URSY09Gy2G66vLh/vupVrV2TgzCriXPBbsfQq8t3ypynAgXMVjTW0bVvWR1k/H0Zttk2LKYUbGIyt0VYYoLfbHYtly2q9hNwQjKIyCOimix+AMqW8RVJnyoBMowQwbYS6/PTJUxaLtgD1RfdPoe+recygyERQaWZf0207NtsNm+1WPImqima5QFcVygmDwy1abFOTleLm5pbbzR1Pnz/n+PiYv/zzP6e2lqPFkl+5is12K0b2KWFNGVDlzGq95OXLl/zlX/7Fo102dc9rP3wIDn3fBMx/Ctu3gCKqwBtGEQoMUmstmnslg5fQj+W+iFKzaFDZYpTjUI3OE1gZbd7XFiCxpBZIc+0401yyeOvMwEuSVLiQEsM4cXu3oZ88Y0g0R+eoqsI0LZiqSFH0P6qhf1cK9If+LiftYyDl/y8SITUnuEg9kZKMAWKRbYrngT7swSiJc85amJTZOLKxZNFb4ZqWUNrAnEd0luc2ThPDfkfSEbOyKOewlFon3fuIiS8YJXK8XM8y7JU9o1yrEkMjKaIiLM9Z41OmmyKbXcfF1S3fvnrLxfUN13dbfBIfnVzYfgEtNY6xaOUEJyuSkRmxEAbEzGK4511opUQKk0DrUveW2ncGNXNKRO+pK0tTy8djHiHIMDOXYdd8L6aHPnTldcuwI5NTJkZp1X2YmQ4CJqHu1eLCXlZleDxzczQpW6ZgiBEoPhy7XcDZns12YrePvH57w7v3t7x8ccbRUctq3XB2tmK5aFitWk7Pjqicw1pHXUk9q5USo+rZDJpMmAb2mzs219e8ffWai/eXbLYjyh1h7BJtIz5O+KCJyYByxKTmt3xYhwSkexBBjtRfIQQBqZJ8Th1OWdlhD8/G4x7TNBJTkPvLqEIoFtNfLeqm+9rzwFy5n0rnIkHnwTA4pcQUEgnxwZQdx6II6CxpjX6cxPjcF/VGkvUWXaR52qAedK0zsDmfmJxDAaEybgZilEKbXBQp8zeagzRoGCauLjs+vN/z9z9/w89/9Yrruy1DythqTcqamBVWFQNeJRHxM6SUycKeNpLKO0sLVbmmSmuMMjRtTUg9k/cSPlHu8/BHhif88QDLHwJzyuT8wSdkbTMaV1dYCRFn2Kh5DyOpDCXj3dQ1T1+8pDk6ErfiA3Ikk+nlckVTVZJ8s+8YkqcqSKFrFmhXUUYcJeu8vIyZfvlg49b53u4DkGmsn8jjQBoG0jgSx5HhbsN+e8c47Il+OGRyg0zDrZNkGbQhTBLTnCn540omzp4EVcPy9JiqauhTZMiZk6dPmApdOit1338dCgiNVX/oZP/Tj91uzzCMxJCo6waywmiZjp4/e86Tp085OXtCv9vjYxCwwzlhsETZwKyzOOdYrlZkZw4Lj9CW5wxzDQniFEXzvjrGNgZjK6LSTJOnG0Z+ePWqJAIo2mWDUYIU32dlyN+LvaM07DmJb8pMQ02zxhnu7rb4Udga3bZjt9kz9ANhDLIJaoUxFQpbAAIpxAWoKShvguwDYRjAe5yyLGvDsnK01lCZ+ZrIclpVFcv1GrSkIg1jkE3xkRfVeNg0pIiKJYpV4mzVoWF/CMQYLQvKQSdfFuOmaQ4AC0iBBFq05MpKE6uVRKijid4z9AN+9OQEQycSJYUmDJ5nT89Qp4qqsmWxLxbXSh2ATTEeN+KqnjLZJEm9+KiwBRAq+DQFptGz3/VMYyCGLMWPT/iYSVlhrchPtLbEKBueVhJxuywAi2gr4wFcUUodmvF58pEKM04kUo7FYvFo100VB/ucZ2W5fAh1s9xHOZe0P1k8ZnmQLgVLKEw/9AMwMEvyi0LLxMIYQpb3UGWH0pagpDFPfiAFRRgzY9fhiQQSwWbsssI1FdW6ZXm8lIl9W1MvG7QVk07bKHQFyoK2CWU1KQXiNJCmwP76hs31DXHwHC0aGitpGz47cnJEXTElg4+ZKUa2XRRn/lQRk8WW85CKWafRYLXFWI2YA4p+WpWpv5xLuaGV0sWgT9aDRzuypBQYk3FLR3tS0y5bVqcLxmAY+0wHRFuJp4JzNI1jtWiorCkR9PKM5hhxxmC1RduKgEXljJ+yACxaUzuHqaTIr1yFMYr1yUp8qhyMaWTogcHjWs3S1YVdaAv4VergKHRfbTLOVpAUKRp0VPhZf13M/7TSZdJl6YeBoe/ZbrfYrGjqhqOjlcSzp8DoJ0KGmAUCt0aiOVPwjH2PAdq65uRojVWabb/n9uaWfrdn+SQdZLDCIJX1qx8HttstNzfXj3fd5OLJRE+BtvcNeE7pMJUS/yCJ17TGAoqqqmk1LIrkdaZaBy8Gr03bslgs5BwU0oG2NbZqQVn2w8h237PrOrTKTAacztRWH9JvXFVxqIuULuCvoXI1i3ZB2zRUleOzTz9luVyWZI8ikyHJOnBo0nIBWKSgzwrutndc396w3W4xWuPqmmaxlFjcypGdw62WVIsWtOb65pbLy0s++fQzFosFf/nnf87Z+oiXZ0+wOfPDq1fc3N4yel8Mk2GKkePjYz777FP++m/++vEuW0m1mkseVRrjh35ZusiDRbokVUGZ0RIN+ChSoWz1vb9dVoTRo3JCpUiyRoh5uRK5ljJln8rll8vvFaCgvBZTbMVz2TcOoIokY+SCfKco4MoYIrt9z8XVJaOPJON4YjS6qjFNW1h4s8zhD9zFfwA4eZii+BBP+Ufgy//J8ZhAjJolToc0R7lHYwylGaX4L913fiGKtxPGkIwlapGIo6BaLAkqY3MksT8AaYTI1O2J2aNbjWsaFDIkxNq59C97ZHmfxW/nfpzLofEyxpXzUIavGUJK7EfP3W4o4Mprfvnb79h1PYMPLNfHZCOAQVKGiIDWzjpQDryk8DADLGWvn2Um81BFABZ9AFiMSmgVi39gLkEBmRwTcfI4a2hqR9v8cYabf+gIQUI6ckpFlj3PgWSRMeW1zoPf+xJGauaYIjoF8RjDEJF1KiWIWcImCt2/DLileY/ZMiUr4BKqSLwBldluL/nhhyu+//4Dz56esFrWLFcVn7x8wtnZMU+enPDZF+c0TUNd1azXRzR1jbOG2iEJs3hU9vT7LVcf3vP+9Vve/vCau82AT5b1ak1WLSENbPeBYcrEpNGuIiW5X2d2x0zQkvd1zxTJ5R6f/HQY0Mn5m8HPErRBOYePeIzjKMEsBcCLRfKryAeVjioyyJySeHTlmY0hr0hrLb15CXwJMTH6QMyWCEVhYtFZo4sqJE6emD1eewHPSjiMshqFk7UZ/cAfbn7FBfhIUwFURC0gL0X+DeYeBsgGsiMnzXbT8fqHG7759oL//W9/w2++e0fvI/VqzbqqSShCloFg1kakskqAJWF8JrQSby9ThqoFUy1Ai6hGFsuW7d2OKUyEKAOwEDMh/rcGWMqfB7CpUHCUVqQcD5thLpNj21ScPDlHTwNxrxkuRPIQUkRXlmw069MTnn7xI9pPXmDallzSDrSrMLaCLNN1axy6ztzd3vGLv/tbvvnVr3j25Al/8zf/HZ98+hn1cs3Z8+dCPw8ZrIMkKULkPAdxQAxirhcjeRyg7wVU6Ts2Hz7QbTf0+x1TP8y466FlnqdZi2UjOenGEmNkUOCUolmtqZuGMQR2Y080irOXz/iX//P/hTdv39HlRHSOT7/6iq4fub69o59GkkJMCHPGVQ2Vc0JhfqRj6EYUhrZd0TQtZLDasGhaPv/8S9ZHa1xVM9hJjPB0ibUNSZofozE6YZ3C1YZJCaIrzb8CUlEUaCpbY/WI7wN976mMRM66ZsEY9wxjz6u3H9Aoxq7DqczqeEXdVNRNhS2SHZ2QuNGcSppAYJoCPkSmyTMWA65hClx8uCpTR0uMCPNhDIRJGlSlNNZBjIocTdHmlns5ZbIPYk4cAmqYaICVc5wsl5y2DbU1uJwwFkKZwqacsU7TrhpOlWgA+35g6odHu25QwEgExFouF4zBs+s7njBr+iGmEo84iRRjsVjgmpqWzDSOhBDRSnO0PhaGgbxzAVWU3GfTGKkqMVmua01mJMdADIoJuPxwy+Z2zzfffM+/+df/npOTNT/76Vf8q3/1P/Lppy94/vwJp+cnWGvl+ukSXUeRL9SWbCKRiZjGgwF1LEaBOWVub++4ub6l7wZBsqualBJ3d1t2+57JJ5R2VPWCul1Q1Q37vsNYy7Jd8Nmnn3J8eoq2lmEYiDHSti1N0xykQCAA6TAM9H1P13Ws12tWqxXHx8ePdt3EjDiWRkqu4wxs1XXFOHp8Nwi9skwhtJYUMW0NAaFNUvyuxavJojCHCa0tzDElRA/SkDhanzNpz9Dd4VwjRcDoaZY1eRpIcSJHT38x0ilQVvOhFJ6RRLAJXSl0pamWCt0mVJWxTcY1quhuI34YaVzFom44WR2TYmY3BXyw3PZ7tsMd13vPm4tbbjc7NtsNapr44slTPn/yhL/+7EuObIuJiW23IaaMNZa2afAh0LYN7VLMVcmim6d4QlTOsV6vuL29JaVM5R7PD8K0Fc2iolo4zMrw9DORrY6m4fWra4acSXXF7m5P1rBY1jw5XrNqhTUVyGynwDB5UjcKq8iIabHXisqC95pxDIRpJFnFarnGNQ3GZfrJYxvL8bNjjk+foMyKn//yB968vWU3aL746mecPnnK2bMnWC1AibWKuqQZqKjROUIQ8NQmTSjFYUJAZK0tTltu9x1DN+DHiaqqOGpXNFVNU1f0/VbWOZ1pT47IvcH6kWWzYLfdMG737G/vWDaOo+Wap6dP8OPIzdUlb9+8xU8jViuaqqKpW8gKP3n2+z0311dsNrcMw/7RrhtAVduDNEopSepIOeMnj5aIAnTxFwtZmvIhJlzbYtua47NzAcKy+CkkJX5NlbMsFgv6fiKFxDhONE3D2fk5P/7pz/ji0xecHh+xPj2i295wdbul73b4Yc9i0bJYtJyenlLXNdZarNHYqsYszjj9ZImxa5TKVFXF519+ThgHYhJPK6XV/dNpRXYZlcJ7X+RQmWns+eH9O64uPtBNA89Ozlgv1hwtjjg9ewLtgklp6qM1q7MzqtWS12+/4ze//S0nJ6f87Ec/4dMnz3m+PuVHzz8ljZ7aVrx9/w4fpYANMdINI8+fP+fHP/qKf/EvHg9gUWWiilZFPpgPrDQBxGWgEUO6T67JMoFMCgYlMjijFElbjp895+T8nHXbkPs9OifymNhf3qJu7zC1pVmvUacnUNVk5xCzxWLIPbMMKXVCYQ5pjTS/IRD8hPJTYcckhmHkbrvl+m7DN9+/4t3lNc3qiJeff4VyNRhLUopQWEsl4xD4pwEk8DHx5Z/6vY96JAhTGSCUXx9iYLO5o11V5BznVgdVDO/vdjte8hTtWqKt6ZNi0BoWSxYE3KKhXi/Z7wb0FDE+oWLExEQeeu4uJ3Z9R7Nec3z2hOMnTzB1YWnVtTBjUxI5R+k4tS7eFMVzzCgj4HzOjBn8FLi+2/K3//BLfvmbb3h/ec27i2uUrambBc1iSTKSpKaMA+NISmRpShsBWbQp0/wkfQeJ5XLJFPb3Q+WUMUqzqGsaawhRwABhM2oq5xjHyDhEfJ2o1jXDOFDVjk8/e/Gol67rOlKRtR8YY1Aw6iTDby2gfAzyQTYH8MjHHlsJq22YPFlNZCX+ST5NYAyRyJQD1jZgLT4lfIZQXMBT1ihVodAMQ1X8FgPXl7e8/WELeMZpR9taXAV1rVifgLGaqqp4+fwTTo9OOD8/4S9+9iVtkzBMEHuu379hc3VLt9lzsjyR6GLl+OaHG3548xuubva8eb9jioaYNdMUcFXEGEnaqeoK5xzGSIpUTBJhLV46mmHoub294bx7TtW0WFezWq24ub4DMo1rOMDhj/hoTn6AHMhZXov3EzlGbNnvZGmMVJUj9IFxGghxQivpgSMaHzxOOarKEUPHMGS2+8RujKwaTeMqIhNGu8L7nzDGlEwmxbDZ0O22JKNpzk6olytM26LbBtsu0dYWP5bCHNAZpYYHLJUCSinkeVKVmE4HTYwNN9d7Pny44z/977/g3//Hn/Ptdx+42sKUtch/suF8dSzDtW4Q82vjUFYz3V1QG42yAZRHWY2uFLayDFNPTEFemlFYZzDOUtWWobsmhMB2uydz9juEkX/a8ScBLOrBn/f/8ADxL9NrVahbSmsUESYnDWEW6neIEdfULI7WHJ2foazQnhNKCulC9XSuJiehFop8IHF9ecM3X3/Lh9fvmIbA+3cXvPz8S5R1rI/WVE4Lfanc4JoiCSosFJWzGCANHePdLb7rmPY79nfX+GEg+xFbXOR1QfxmmpGrnNDpjUQrpxgxWuGMprYWazU+y9e36xXr02OOzs+4uL3Dtg2V99imRlcO7YRlEJU4+4eUilRTHVDlxzi898ICWiyo64YwBRSKummoqrowAWYDIEFfY5b4thRk0aSYgSmt7xFS7qmrIpsSA1ijLJ7AMExka1F1jXMNxngyIzEGdts9V0qzairOxxMWi5bloqE2ToqPBKEY3MUYCT4yFlPLyQfGkOiHkc2u4+rqlnaxZLVa07QLNBZrPWM/MU4T3ge6zZ4pBPHhUUbo2UnAM1uggIQGbagry7ppOGkbFs5itRRDhkxSpVHJCZTGWEW7ajjJJ1T7ns49LpVTaZF/yCXQh+LTe39gZszeK3DPyphTqbSWJKisReZVNw226+jTcJjiHFz0uQdfQijIvnYItVfjvZi13cY9wzARQwJlePPmOV9++Rl/+Vd/ztHJEcvVCh2RySQatEX8WQTlTsW/SBstcrw56WmzYxoncso4N0tLEv04EmS8gK0qtJV/84W5UNeOphXPBK0VKUYG7w+mtbNBMAhIOj8Ts1nwYrGgrh+vSZffKedWFXbWYS0qMpr5ugFlGqGLREQ029M0CvNIlzhCVSQWSaLuTPGXUmjxIcqZFDLepzKRaQheHP+NVqikaU2DUxblMyEqkgKVTKFzSyE8xSRj/wiRSPAT2UXUEMk2YAzYSouhqNHkZBiHSN8n+iFxdZe53A7c9ROX+5GLuy1d19Pv9ywVnNQj/SJgVYOmIhPwESR1Yr4PxazZuErkZLqXPSYKK4RZ51ykmdMjmqW2Z0e4WlO1jtPnp7QnJ0TtuNp0bAcP2dG2Lbv996gw0lSGJ0+OJU1OKVJSGFthbcBi0XnEUFIRrCp7mph3xyBsrRwVRjcYLY30MA0EArpWuEXNqDwXu2t+/qv3/Pz7d6yPT3n+yUvOnp9wfLLi7GTN8/URjTXUB55waSZchSvMTo3IK2OZMoZ+gpBwyuCWjtpVaGAaevw4oKw+GJDWdSU9cFYSH95PqIgAMlVDZR2b61t2u608a4oSPyp7pQ+BoR+4u71jt9swjh0p+Ue7bgA5FJZHoWc/rEnmdlYYISJhjEoRckI7i1suODt/QrNYoFB0/cDQjwQf0RiWiyUpwjgGYghYa2mahna5xFQNrl2yPD7j+OyM3eaOm+tL/v5v/xPvfv5ruq7j+PiEo6Mjlsslp6enrNZrkd1agzOOqrKkynHXT+Qo+1JlxAMtUcR0SsAVpTKjEaahnyYuL99zvbll9BNN3bBqlyzrlsZWOAwpCVDTNC2L1YGPTDgAAQAASURBVJpmuSQoePfhPd9//z3ffvMNa23p7rZcvH3H919/Tb/bU1vH2fk5Xd8zThMozVdffMnLFy9ZrdaPd90oIQF5ZjUqiU+eJ8mUvU/ng4EjWYkfkeLgQ5SVhqrCLZdU63Vh6yjwIzlMJD/JwDRlouqE/dB4Ul1jqwZtheqe1CxMlvpV59JaFK8HYa1EYopMo0TY3t5t5GOz5frmBh8irTbUbYN1TlhcFGZngcz0A2DivwSQ/CET3P/S8ac0Cv+lI6eZkS7vYyY5zNLbmcWSis/HLNWPWe5p1yykvkM8AlVVYVTGklgdH5H2PbmfyMGXWjORpkhSHRrFoB1tXVPFBbaVoap48+XCAi3smpQl3SuLvC4ZBU7iYzd3Oy6ub3n7/pJf/OZrfnjznm03MKZEa4uJrTFoU2TOxbhamLFSw2glU3mj7lkEYjtjiiEyck+XGksrCVbQuvQiReqntZH6RBlS1kwhExI01rJYPZrLGFBYRiXSeJZ4H+zWssiBchJmlnxkZnmTsIUiOfpybTU5+cKWgJQ8USViDhwSZmbvr0zhW0jap87i0ZGzKxIuGbCKkatYYz55coSrFFp7Li/f4aNHK023z9T2A8tly7u3b6ncyGphOD+usTkyjhNjSNxuRrb9wHaAi73m+rZju5/oBk/IWhJeSwVkdMZYhausqCm0SEVCkeXPzJaUEsF7xnEgxuLp8yDyTST4s+n6Y4KfhYdVhk65uKocJNSFbqTmxMo8y0w5MCJDmO7vOaPkPebEEDNj0nhlyNpKDYHmkM9VLqUVWighJMJ2J0Obvset1+SQMIWth3FFp5vFSw/uaYooyBqSJPKlYPCT5m4z8e13V3zz9Wt+8/UHbu4mhmDwOZGNgfJMiq+bEgDViuTWRAN6Nn2Y2TGlj5/3iiwesJDQVuFqizEOWzlUmvCTsJJikjrpjzn++A5wnsRy/2cBND/6GrkJdYlTLifRShZ1KPQynwRgaVcrVsfHqBKZO5uNKW2Kzk6QwJwUKckC1e0HLj5c8n7yxAh3d3t8MizXR8QQOVovaevZ5ZhD5JkGiIE0jaShx2/v2F1fMnUdfr9j3O0OFFBrZJOdtdrGie+IcQ5jZSE0qlBHlcJZQ2VFCmGSFG2L9ZLl0ZrFeo2pKmxT43zA1hWmcuh541Uc6NNpPomPGO3lfcA5x3q1wrqKUY3kREFoLUppMRKOSZB5JGY0RIlIVWVadIiLLa8tP+Bkai2eLtY4jLaoIN4oOIeLGVtVWFMiLlNg6Ee2wOV7g4oBv1yQVktCVWMQaYkPiRhicTHPjF58ZHxMDCGz3/fc3tyy2WzRpmK1NrSLJVZXWOdRaiQpgw8d+66XZq1EQqoMKio0CTsnMyiZoi+s5ahtOGobWmdRhRoujCZxfpcmRjbFunIovRJZziNet/m8HjwmSlP+0DtErkM+LOYxxgKwmPJ6DDH68u2apm6xzskGOjcjajYMuzfAjcU02piqLNa66KxhGALj6BlHT8pweXnF7d2Gpml59uIZZ08i60Z+jzFWPCmyPCuykR9WDkKI9P1At9vT7XtJ21IK6xw+Ce14GCcB/7TGlEV1BhusMdR1RdMI7TuX+3iapgNokpL8t4CAsvxNBdiZDW5nz5bHOmaARaiiWRqCB+dbaJFlM9RyTowpU1IyIXiJt3dFdpUpEXtFCpZBYIZ5lcoQYZoiKRfK6zShlBGWS8pUtqI2jjx4/OH1WCmklMg2dU7FCycRRpG7JC9Aa1AjximqRuSRukhFum1it4vs9pE3V4kP257NMHHdD9z1A34cCZPHVgY/JuIEzjToAu7EAEYVU20te4CeJ4PzvZkfmKcV0FykKoEwTY923RbnJ2gLrrEcPX0mU9YpcHW3p5+SGNhqwzDsqXOkbmuenB8zTp7BB4LPYCuMqaiyIYWMigGdPRhp2HI2hCnI+Z0iccpoLLoUBMM0MMWJpBN24cgVdHHk69c/sOt/oGpWPP/0Ez754jnPnp7xyYsn+GfPOFuvOGobaTRiLMlPMmLQKqNzub45k2MU0/ayJra2wqLIMTCNPcGPOF1hTI3W4JwVEHpKhCkQp4hGjKVrV2GUZrvd0vcdIXq0lSQza2XQEkNkGkZ22y39fk/wE/qxo0eLn4Aqe9g8OtS6AC7qgZ9V+Qg5o6yhahqOT09YLBbCkJwEnA9B0skWTcs4eLyX9dcZi3MVdV1Lc2gd9XLNyckR9WJF0padz/z8tz/w+vVr6rrm5OSUk5MTXrx8ydHxMYtFy2rRcnayYtHUNLXjrhuotMYZQ+MqOUdl+dR1Mc5VWaRb00Df7Xj17g37bo9KiWXd0tYtTdVQW2GEhgwmK5qqYblc0i4WYDSX11e8ev2Kb77+mpfrE24vLnn93fe8/uEVkYyrhCk2TRPBGNqm4fPPPuPZs2c0TfNo120GV+YPUxgt6kExfkhg0XPc7+z5UGSuc5NuHXbRYpcLSbAik3qIQ0J7jYoJlSOpH8l2J817DNgMZIe2Yp6aC9A7JwTNcqAUJlLwpDgy+pHdfs9ut+PDxSWb7Y7trmPXdWDF16pqCsAyT5cPt2UqNYX6qAH7fYyU38tS+efDTf6rj9/XN+ZZQhLvo06FxZkPIIMAvODqltT3SGaJTKelxgqsjlb4rAgJwjiSlUjicgrkaSQoxagtQ9PM2gLxSDL20HTN5yhnDp4MWWl8SqSsmGLk7cUF3716y+u3H/ju1Ruu7raEBFgn/kXWCshWUi9zkeTpwz6lMboM6pU0tgUjFH8QI8an83sXkKKAMMV+TqlUpB26pFPZksiTiRm0dTSPGIsOFC+/TH4AZIoMtxg0FPJBKhLs+V7Vs0ohJ2LpDSTOXZ4PAdR8Sd0qAMvc9BbATcJIZB/MxQwgl8AJhS5DJjAm05oFn37yKVWt8LHnw69e0XUDOYG1e6IPGKO4uPxA7XqeP1nzkx+/4Gy1YJgife/Z9Bsubz13+8T1VNFPiXFK+FDSbMtEKRFQOqOtMB60MaDFjiBEkeVrLeD8/P4FYIkf1XbiqVc65Mx9CuojHErNgE0utgCztx8HMOehD8ucJqgO5x1CEIN0YzS60igDERhSYsqWgCRvzamts1qKIlO3iLebypkwDPgQUOMoQKZPmDbgskI3pQc3qgDTCpWUDFzLaDsnh4+GcYT9LvDq7R2//fo9v/zlD7x6fc22S0QcSXkxeTfiv6isFs8ijbBUoiIenvnynh9gOejZTiEXgCVijMI5S9U4YU5O4td5SEP7bw6wzMd/aXGf+6e5CdBagAdrSTEU+nxgebTm5PyUk6dnKCsUylwedK0tlWs4PjrF6AqtHa52nByfUbmGsfNcfnhPjprdZmScFDc3G54+e8Jnn33CT37yGXVlJAbNVpgiXQrbW7aXF+xvr7l594Zxd4cKHpMTTskJt85SVVby6imJNotGFlkrTBajDQYlzazKVM5KsVUZvMpUbcWKiuXxEc1qCc5QLxco61isBXRpl0u0E7phzCUzQEO2hyfkUY7NZsf5+VPqukEry6Q8qIyz7oC6+hDph5GgIRrZ7JIPpBgheConhrUBifdMszM6SKyZrWjbJZVrMKYHIt2+xwNUFesnZ9S2pnVSqGoMOWQu3rynu7pm0dQcH61o6wZnLFZbQsxFc22oqrrolzVWWxqr2aeB3aZjHD1aG5bLFScnZ8Uc1VM1E80Y0OaWD5fXTP2EsZa6MdLkJymzF43DatA6Qas4a5YctQtOlwuOalfMvRI+B5KwG7FWivhUTH3qRYOtJHXiUY+DOF3O9UMG2MPYRsUDIEFrlm2FNZa6bun2g9B0leX4+JSu67m5vi2GkIU+e4hYmz1DZBJf19XhN2gty+IwdoQwMY4d++47vv7mO/7tv/uP/Nt//x959vQJn758wf/j//Z/58n5GUfrNUfrZfHnyaQpEadA9J7oPXc3N+y3W/p9JwkQzlFVFW3bsp8kLanve0LZ5DOKECPKRIx1rI9XHB8dsWgacg5stpuSymWpqoqcM+M4HtKDtNZ470sz2JNzZrlcSuT6IzbqMXAoXFDltef7833YABGjOFV2sHSIvdacnp2SQ2bsJuIQyaHcsloYgspITKY1uhgfJ4ZxkCajqYh7ST2zSpHDRNOuqIxFTZ5JmVI06WIMJtNxcctPhBjYjXt6NeKNhzajGg1BkYfEfn/NuJ8YuondXUfXaabgGNUxfVZMKEadmZIhR4tOiUXVsnQLVlXLaXtE2o/0YWSaIivrRCerLCFNVMV8VFmHcxuJr29a1suVNFNxLwat4/Sosrxnf/GzA3Bq1id898Nb3l/e8Pr9LavFMTEGbnfvIfQ0bcXxSctXP/uS3377A5sPO95uPe3ZOW5ZsWqX+JxIfU+aPOL8X5iAywW7JCaiu92eZqVprIBKm/2WdXfLejxi0b7g9JMznt0+R7X/wOtXb+nHd/zm7TuqnzuWi5qTdcsXp8f8zZ/9lJ99+SVfvXxJpWTf0qHo4bWSaEXrZI8Flk7kGOL9NjF2I9FPxGnEWKHSawRwEb0y9EOHHydySOIf0qywpmKcPBeXFwx+pF7W1HZJ0zqMhRw9wUeG/Z7tzQ39fos1itMnZ4923YCD7h2yROuWhojZyau8b0mcScQU8MGTAOMsp6cnPH3+lN12Lwb0CHN28p6mbmgaTwiyzuIUxlkWqxX9MLAfenyMYCzt0QlnyvLiy5/Q/PJruu/f8OtffQt8T9PUnJye4oNo2Z3VHB0taGtHUzkWruLpyQmr5ZJVu2C9XglrtrLUiwptQRlIaWIa9/iho7u94dnRCavFiuNmSVPX1HVD3bYCjJVvOq5azpbHnK4kwe/y+kqGFz7gN3v2N7dcvfvAbrfn+MkZzXLBZrfjw+UlWhtefPIJf/XXf81nn32Ge0SmZixSkgPjqHSeYg5aWMeo+8GWEbN6nTOmgEeKYjjqGsxyjVkfoVcLbFtD15C6PepOk8Ze2MuTZ7gZSFZDbVGrFa5ZopsFqpU6TUaeQRbzFCF6hv0dfhoZp4nLmw2Xl9dcX9/w7sMFIURizmRtqJ2jahoWiwVV5cT7DAqvSgD3P3T8PnPbP/Z4yG597EP2qbkymYcGIln2wR+GQJP3uMqUJDTHMAW6KXCyOiaOQYy/lUJVcn9bC0fnZ8SqIbYLJmMYp44pjkzJQ/TkLtMPgXG/p1ouaFYrjp+/pFqtsHUNdYZK7gmlNRaKZwNc32148+GCH96+43/7f/9rLm+37IeJKWZC1lhX0zZlAOoM2mnqxooHHAlnwBkZazijsIUBkpI0cKqY1jpnqaw9eLAUj000GauEVQMiJ1JGS6pfNGTlCMkxTBofFcrVLI4el2Eby/qGnlOPBByIIMMgOAxaUpx90sowDmSe4yWVRVjSxc8FRQgTWSdp5LXUrxmKZDqXp9kyOy1mNDkJM09pOadNVXN0fMTnXzzhf/1f/xdspbi9u+TX/89/YPQKcBydfsp2s6Hvdlx9957PPl3y+fKYr37650y7Ld9+80t+8Xe/YnPt8XlJNmvs+lMSFh8TU05M0Ze+wtIwokzAWrCVES84IGV1eO2mxLMnKJKSLafj+FGgAmVYbu291PBxD2HbxBjIsxeKVig1+8cJsJGV1JMwB2CI948PIk3XtaNpVziTSCaymwJdsozKEJwT2/CsBKTRBRwrHtFGKWo0IWX8MOG7kf1mB/UC1bSY5ZLq6ATbNrimpl7Vcu2jQtkaVE3KhmHSXFwOvHt/w2+/ecvf/fw7vvvuHW/eXpFxzMlHEcoAzgirTNviPydEDHTGpiRhHUlkgvOhZtKHQkDyFIStZDVNU3N0sma5XDDkiX4cmCYvTPD4x12dx9Uw/IEjzx+FmgwymQgpEqJINdbrFYv1irptD41kUUNIyoFznJ6eUdcyBbBac3p6zvNnL3j54hPuLm5o6yUnx6d8+cVXTDHw9s173r59y+3NJU+fnPL0ySlnR0cSRzuNXL99ze27N/R3twybG1oDtdU0rqaprFD+ZpNQLSwVm5VoPK0R8EMXxknOpCRyDKMsde0IRVLSrBYsnaZZLsTgs8QW1y3YylEvGprlokReaohC9soF3lYz3ewRjpOTE5arNXXdFuM+Md9yzuGDZ/Se3X7P5dUN2VlUU1O3S7IP5BBQIYhkKGdJNlECBkUyRH2gzllXYaoKYxzkSa57VMQp4YcJg2HZLIldh0qKHDNWaWxS4APjZk80g0h4kDSluTB2riJrQ1IKn2A/TtxstlxfXXN8/oR2saSqW1lErBWTrpBIU0BZw2p9xC7u5L0XaUVWQke0CRZNJZPDquGkblhWNQtnMESUlvizmekyKQjFu0RcxUV7HEIkTOHRrhsUGU26d+UXiYjQkzMU9kNhN8yxZLOkTVuaekHOd0SfmMZA5RoqVxfmkjrE8UEBV0oUpbUObTXGCsA0PxfkTB4moXBGj4tirKl04t27K7Z3e67eXXLmFnz52We8fPGcL7/4nLZpxLW8yDrGfqTf79nebvDTBEnkBnVV4+qKpm7YDVvGcWSz2QiTKQu1uq0rmraVJKfVCq0V3k/4ocdnTdUsWB+vMMbgvWccxwPDJ4QSOfjAo8VaS0qJ8RGlJrnYEymlJFZXSZqKJJfAYYUslVfOiRAnmAo93lqWx+fkCMFHfB/mUVyhWhe6M3PqhfzOkEeMSTgNWkvcpVaKpDxay7SnqcVoUSZT5uCDowCdJd5uCIHrzZZt3jKpidhkhuwJZJkxBkX0ijg5hv0KPxlicuBWBMR8LZHQ2mPQ1NpwtlzxdH3Ek9URLmeGcSSNIwaoXC1pJUDOGjDCrskIe0WJoW9bN2Rg6EdyCLIm+MeTmqw/+RKlDSFmvnt1wbdvNtzd7bE0LLRl6nbcfHjLqjWcnh9x/vIp7dkZw/dvuewmvv9ww8vFmtO6YbVa0u3u8HEgJFkvtVJYY3GLlhwNow+EOOGDp8oCKk3TyG635W5zzZnvOD1d8dnnL/jk82d8/fqSu37HfrdFT46b7Y6LK8i7ji9efkpWFmNrcpBBxtR1xRSvAAJriZpWKOoCNkbvCeOI7wdSkLhQp5ys0Unj/X3Bve92TJP4GbXtgqqqyTkLM6Xvsa5itV6iqjVN24hPEJGx7xj7HSoH/uLPf8bRYsHnn7x8tOsG0PfjQZKkjcPMjO0s9cRMqw5+IkYvhVby5CzPxfn5KV98+RmXF9fEFFBK9nc/jjTrI5qqITaZUVwZsc5xcnrCu7evGbs9fuyJfsJay3LZ8vz5C15+8gnv33/gzZt3xJiZfGAYBrp+X2j6icvLkmpUrslqsaCuKuqqKs25RJQ6C+ujBScnK378o88xKmIVvDw+47hZUFuHU8XktalRTSVJhqXxaTE8X5/wydk5p6s1m92O6+0dv/jmt0y7DhszeQp008igE3rr2PQ7pilwdnbO808+4cUnLzk6PcG4xzPd9CEUTf5D75N7VqUwWGYmlpjpByK6oNZV1FilcdbiTIWpapSrSNbJ9FRltNW4HAgdpGkk+4kqBQienDyERHQTuerRiwHtKqnLFIAALDlM9FcXdH3Hvu/4zesLbrd79n1PN44U+nbBT+7jQfWctJGTGEHO7zIrHsqs5V79PWyVh58/fOK/7tz+c0qEYiyIAfMAYQYupcYPKZBIjNOEtg3WCh2/Hyeqruf8yQkRYZEFIGuRx4AhaYWtK6oMVQzoLqOmzBQ8eNkHVUrkacLnTJwCKSnqoyOq1Yr2+ASLQVXFUydGfIx048T/8ctf8sO797x5f8Gby0ti1sKwdxaFpINqZxDFuBKw2Sgxmk7Fu1WlIg2KGGVF7VDMlinJLdbKUDmrYnperr8BjFEEJUxkEEl0XTf4oMm6ImKZEgwhEbIST8lHPtTBiqGwXLUpzDAxHpUyRd2XKnlWLGiIhTVWntkcQSuDsxaVtYAyIR2ogilnvI+kYpZeqg35MyvQCbkLAjlPnD054dPPzvibf/EFLz9rGcc9233HydkpykykZFmuzshUoCv23QZMDVY+dsM1t93I9W5i8gZbLdHuiCnWxBwOTPgIoCJaBzAebSLGZUzpkkUqkvFl2Ky11Fy61Fx93zOOo3ggUhjnUZj3OHWQkj3aMVPMyYToyTmWyOr5d+kCAgnLJqV4WJa0lvsuBvk+58BVFmfkXt5PE310jBiiEbuOPF9cpQ5KC1UkrAaFzeDQRJWZUEwxEfqRIUR2gyc7h65qXnzxFdrWKOOwesUUDP2QuLjq+e7VhrfvN3z7asv7W8/WG4JbUC9WxJjIwRODRIAfAmu0kUhmbTDaFX8sMNpB1uLpkor/EtK7qEOqF0WJITjNYmFo2oowWqIfBVjMgqn/McejAyy/65Sc7wfu919Tmo04Jywg7vxVK9GBh+8rPyurXBx+V1hbHSYXy9Wa8yfP+OSTT/n+t9+yXh9xdnrGZ59+zu1OYgqvrz/w7bffsbm7YXt3xvRMnPFz8NxdXNDd3RL6PY5Max1NZWkrR1XbIoNRKFMmeErihzHyka1mnvGnKPGJRokcw1hDtgKw1Iua1jrqpi7+LZa6pLjo4oXRLlqqphaZUAyFrjYTfx5vY1wfHR8ayXGcAImusq5i8oHJe7bbHft9B3WFQaFMRQ4yvTEldk9kRJGo7ynWh+4OMFbi07SRm1y0mUiE8hCEGWQr9GwyFsQAKeLxAaHt5jx3phhmt31V6J+iu5tSZjeMbLqe/W7Hi88+p21bSWooDtkqCQczK1DGUDctgx3IRVNqjMhNtFIYFK2taJ2lBlZVTVtZaldegaY0yEqApqJ5ZL4PsqQ8zEXiYx6zCRl51lPKgj8nCsyoeYzxwGTRZt40LVXVMKdWhBDFJ8eJmerDlIZD4k0WuqFzTs5jiQvV5fmLIZIxpCy+LCbrcg9kdvuBaZgY9z0/fPM9NYoKxenqiLgQR3wyTH3POPR0O/FcIYs0q64a6rqSia01hCjNyHa3E7Q+Z5TR1E0jH3WNMZoYg3i0hEC2NXMqEIjW2Hu553POhBiEEVM2xFlGFIJ8/hGvnFwzZh+nGVx5QPXNc4EqR0pR4pgV4HOJSp/vp5IwgICwAsSWJA2lyFmTSQL45lw2Fcm0MkpJhK9OaJNwlSaixWc4a3KYtdGZHGEKkW6auNt17NXIpKUguRt7fIaYDcYs0DSoXBdARVI5lGrl55TpnFYZqxMViaPFgpPViuPFAh0jaZrI3mOVwliL1uaQrqLKuQoz/RYBDJ21ZJR4niTxaErh8UDN6ugJU0j0u57v3t9xcdsTh8T5aonLET8N+G7DyfkRp2cnnDx9Cu2CLmtuhsDF3Z7jaWKdM1XtmJwiOUUOipTm6yHJanWTyFozhvGQUqCUJsWJaRzo9jumoaNpWk7P1pw/PaVpK5RVjP2EVoopZEaVmI4jxtW0yxVNuyT2Pd5HQihU7sIbVjmLNLnMEQmeNI2EoSOOYmytchQgL2iiV3iByohRvIxCkLSMqm7QRhOiZ+z2ZOR5Wq3XRN3i5sl9ofYblVkvW/7yL/6cZ2dn/PjLLx/tugHsdh1NXVHVDlvXpRib/3XuEtJHHynJFFBrODpe8+LFc1LKdHc7hIYtzeI8kKjqhA8FyDaW1XoNb0TSF/woklprcc5ycnLC2fk5J2dnaGNLQVwiPoOsS95P7OOEKn5gjXXc3W3QJV5S1g0B+Funefn8HJufU/34C3RWVAqO6pbWOJy2OGNwdYWpHTgroF5OEuOO4Xy15tnxKSer1f+Puf9asi1LszOxb8oltnRxdIiMiEwkKrMUuhtGNu94Q+MD0KyfkVe8plnf0Wi0RgugC4WqrEod6kiXWywxFS/+uf1EJapgQMK70cvMM06ciJPhvpeac/xjfINvrGGcZ67ub2Gc6bTDK0MsmUMOYKQVar3asliveP7qJYvVGqUNh+PItnmcmNDDsOAh0lEeBiun86eq+0+r08avugEyuCSV4xaDtx5r/QM7Qw4PumBiT0EYTqkkbIA6HSGHQraJPM7oOaKcq8wNUKrGg8LE7sN7doc9d/s979/fshtnpijitzan3kP5XkUUc9UdgLhxTiJSOcks6uHqfLhS/0BkKX/w+/LH/o+QEarvDE5rkzoDqEOgk6syxEhbajy7Dj3GSSIIGWTdW36weaoOCmU0xjtM25LyRNFJqlRzlEFQTNJ6kosMtwoMIeCOA8MU8MsZ07TopmOeJo7jyO3hwC9/8xveXN1wdXvHFCPGtWhjSUWjjZMIeR0oyVrqNIiSH1o4jiKiqJxRJj9ARE+DChBHnbB3Pp5DhcSLjD5FcrK4NpzDe4WZkMadIoy5OWZCLo/eTqkrq+vENDpVSudyEuXUD/Z19acqPPxVFWG/gZJ3RZaohrNOIpq5RlgyD1EyccFUQUV9FE8/juMzSiWMzZxf9rx4ueXTz8/pF4miAk2X+OrHX3FzMzFNmsvL5zh/j1KaqytfY6kN2jVkZciY+leLMg3KtORiqgNcYvDyLRTQCaUzxhSsESHixL2LIT0UFqBO+125Vk9pjFTtDuJO/gjpFtHjEeNdDx9XBf/XPYcMS/XDewOootjHyNBJWBDRJZOzxtgaySIxzDNTbAjFkXXlWp0ENi1cTBlQl4cK9VPkzVCRIEWJgyQkhnnPWGBCM6sF1vcY1+JaOE5wOCbevD/w3Zt73l8feH83sxthzJZkG1TbwzzXoa/6+ENUvpxSp9ZNK0zAjDSEKYUq5mEP+tBEZ/THr3T6zES7dE7ahvJUPn52f+Qp+uMFlj/YQJ74RXLHwQ9WM/VfOKlN6iEDFWIkpEhR0C+XdMsVtl98/KNKLGQUIY8vV2vE5SwPgX615fMvvuIv/6v/hq9/83s++fRzvvjix/z5n/0FUcHVzRV/+7d/zf/6b/4V/+64k4nZZ5+x6VsW3tIZWDnNpu+5WJ7TalWr0urPUIUU+falos9pRzKKbDTFGgFT1QosirS5eCdQJOstHkunYBVausUSbZw0CDiP9y2maVgsV2w2W5arFbfWkkNkjoGQk0SFzOM9UJ8+fcZyucIYK9M3pTGuwXc9wzBxOB65vb1nHIMo7DqQGFEloXPG5UTIGZ3EBYQ5KdeyiZTFjwg21rdY56X9Q2lKykzHEecazEIgwWQI8yyTQ1UISXLQKcyM4yRuDJRs3E+7Sm0EQIcmopgo8uJRmu3ZGavVuubhTw4g8xB01dZUccsyx4k4z7icMV7AohbFsmlZdi2dVqwaR2MMjTGUKNY/tCYoMCVjisKimE/7Y4UIFtag1SM+TAHvm1oxGqrjoOabk7ABxPanH+qGjTHCFPEeoxyLhYCiY8yEEDHW4r1YyFXNWJ6OU9Wztoqu1nnGU77ZiCgT41zlJYO2DcYZlMqkPDNOkagTxMT71+/YNB29dix9R9s24iJJCXImxUAIM05Ltr9vWvquwzqp6VXWcjzsub6+5u3bt3LdaoVvGlbrDd6L42GeZ6bhQEmJxjnWKwEmO+ce3CoS/VFiXZ4DNzc3hBBkM7hcPogrNzc3j3berLYV8lcb1azUnBtrBLRZ3UKnWthTzWXKhZSKMDpiRJeP51ap8tDIgLVkbcS0VLkMhUKJR0qO5JTxNsm0TCuUU1iX5F6wlmwhpkLKijxLpjbnzDQnbvd7rva3fLi9o/Sa5BVTMFzvE3OCrAyb9Za+PadxG3znCGP6eI0pqfRTTKgSMAW8Ujxbb3hxdsazzQamiTgcSdNIa2VjWJDrzXiPcR6MYRpGmZSiH5xXFHBG2qpKFIfBYx2le8K71+/4+vc3/P/+zd+xsJazvuNyu2a++Y4y39HqxIsXT3j1o8959tkXHGzH+wm+2wW+vz5wuR/YbgLGKowv2KAga8JBHEUybXd0vUJ7A3PdKZYslbJKEaaJ3d09u7sbFtuO7WbBJ5884+xizfXuyG46iItAKYxSXD57zief/YjPf/QVl9sz7j98gATBTiiE7+OdF4Hq9AyZRubDQaC2x4NwWyqQt4RCIJLzwOAk9pAz7Pc7SpIFSbdckEiMxyPX79/T9Qu2Z+ecnV9yvZtwTqItSoN3hrPNip/++Mf8+Z/8jKcX57x6/rjNGK9fv6HvOvquY7lZYbpGqsWRe+C0ObJGyd5ZF3KayWnGqMLlkwu++uoLrDH8av/3UkmeksRkAd/KNTkHWTwbqzk7PxeYdslM40iKkewzWlvOzs548fIVz1+/wziPDvLMLsiGipLJKTAPE1bLEGaxWnB7d8twnAi1scIADvjk8oz1oueLV6/4+Zc/Zn93QxyPdChczngLfdvRL3p814ATxpHOYIvA3F9dPGH/8sCLZ0/51fs3TEi18Nu7G3yW91oGyl0dKGnFZ1/+mB/95Mf86b/4S1zfcbvb8ebde/7lf/NfPcp5CzEhLWpGxAx4ECN+KD+ctmOqukRIoHPBJPBG0xlH3/Q0TYf1DcVamTYrU4GLK6xTmMEyk7FpQqcCUUS0UKYqFu/IWkvrT04oC4VMjBPf/vbXXN3ecn2/4z2OuSiy0nRdK8UOFRhvjFjXvW+qyKjr9Sdrho9ayUPx8g/+9+NR/mOW+eWf+PX/xseDqPLgyEGEo5yqaFIeWmYWRVyxxlnGaYAi77pS23wkyFDPrVYP+3CMwnSe3iywwcCkGOKOlAIxRbmHUIQCh/2B+f0HApqApttusW2Pa3tu7u65ur3lzfU1f/X2LTPSONUuVhjXEAscDiONa6qwpjHeStOIlUYdazRZFXKKlBgkPhNnijY1ainPTtnu1He+dcJEq9tyrSTea62u26OMtZqu66TVKIgYHnNmnAOHMXCcIkNI0D3euXPW1BF+deprK78uBS0qy4PAlHPdjD5ctxqVZSCiQeIYWWGVo/EdWltJKaSqYydAiQhWco1rlsqNqxdOIaN1wtrCcmX58qun/LOfPueLL85AXWHdyMUTz3/33/0/ePd+5OZmpmTPd99+y7fftnz/5ne03YKmX9D1KxarDavtOevtBbdhxjhpmtFFBksxCXdOnZwMuqBNxjqN8wbrnAwRY+J4HJnnSIyy0dfVQVGUIVaBJVYXnjzDxL1TSqn3/uOJoaeiFhFYBLxdyklc0WhjxTX1cF/+UKyWd6AIlJBiBTRrebIehgPHyTNGT0SGeBKxleeXKgqb6nURxclCOQVwZQAG8gxEG67v7nl3e8/3N3e8/Ve/wXcbmnaFckv2Q+Y4Zu53mWw6ppjZjZlDdEzKE20he0+IgVBAabneVBVUjJYBsDVeWmqNQWNpXE8goZVFY6Vx04hDFWfwFUEQSqxuFjnvzlkxIJw0DvXHtz/959U0Z1nI62oZOgE2H+6V2qP+QyVXFU3MihAyAc2kDIMxuPMNdrOARoOqVic+sgFEWdQPhjIZrbesnjzj5Y9/wlf/4i95+fITLj/9HH9+znKxoHvyFL/asH76hLubDxxurznLsO0869bQmkCjIo0pOAtW67oproKBEvv8g79YKTCQtSUZoSvnFMlpooRI4wqNyzgfyWUgmYaoG0JqQTVgFhTVYFyP05q+71FarNrr8zPaRQfeEobMcR4Z40wg0T7iPr3rVhQMwxjZ7weBj1pAWe52O3b7PXe7AYzFpAoyjBNCZhBHYEygU4YSH+Ii4ryBnCV/qqyT+knfyOdXqtUlKuIUyU1Ce0fjLGEWF4HywpEoJRPmxH5/JIZISqeHR11cKelol3o8g+pabNuyWq3Ynm3pFj3G1YhBvfi0AmMNymhp5XAaNQuYMyMMgdY6+oVns1yw6lqaUlh4h9cabwzZVzI6Qto2iPNF5YJRCpTU53rfY7TFPKZaDVgt103RM0R54TvdQbJ42+GdF2eNrbnaBI3raFyH1o6SA4vVilTgeDhIY067pO1WaHNNLgFqBXVIUUTDpGgbT0GTxgAlYSp09JiOpBRJOeG8ldYNnRnGAsrQdQ3nqyUvn73g2cVTLtbnLHwnEFOQprCcMFrjG8+ia3FGYJhd236s7LSO292Bdx+uePPmPRpL6xpcs8QpjyqGFAvDcCTME8Zo+lXLYrmgaT2lBKZxJswjKUrj0nA8cDgeubu/EwCns/jGs9/vubu/4+rq6tHOm4uRooRVpJTYj7V3YDUpJHF/aYMxjopSJBEJDoK3qIuOXZ7Rx8B0u2Ohe3I2zBR2nWewhmxlUmRSwSSFDw5TGlRO5CHR4Ku+LdP2oh1Je3zXgRpRqWCLZgpH2ahrxS4nbgJcBw2LS/qzBaZxBF3Qdi/g6aLxfgN4SshkxMEVk4gs2hWczlAmjBppCPS6cHl2xma1oW0WxDEyh0xIBWdtFe8kPubbFqUtMRd2hxGUo1s0rDbnGOvJOeG9l/agOk15rOOv/vp3/M3f/h2/+vVveP3ump9/+RlnZyusSxziPV0LT758yWdffsGTz79i+eQV/+Mvfs/fv7nn6+uBq2Pmdj+yOx4JeQJXMK1CKcP+GEhMZC010DpZfLKYIFMUbcRJtbANWjtyUtzf7dD+iNIdr1484ZOXT7jbDXy4PpBjZcV4z+WLTzh7+pzF9pw554fWrX65wuo6TXeyfZ7niThO7O+uRMAKM2UccapgFVhTIEaBiY+J3GowjpgV4zjg3QLlHAm4vr9jGu8ZS+Dlk2dstgKKvd0HrHU469HWsVwYnG9YL5f0rpEIzCPGTAB2x5kQCsMwszsccYsG2wiLqfcNJSTiNJCiRIRSDsR5olTr92q55JOXL0gxcnd1hTKGRCGUTMgJ7TzeWvw0kWaxLPdtR9d1UKMQKSdxKhnDerXkxfPnfPLJKzabNe/GqUakP7Zp1DA0y37BxfaMP/vzn/Ph5oqb2xu+ef0Nw3DEGM2ya/nTv/jn/J/+8i/5l3/+Z/z4s0+5+t5zd/WB/dU7ms36ob6877ratmaEBWVkEplyYXmx5ll8zpc/+hG//v57VC7c7nZo75ljYojCqipFYIYXZxf89E9+xj//+Z/y6vPPuNvvuL274/ru9tHO22nKfZpjl7pylGekLNaTEuEnKEVQSlrIrawtrRMelW0c/aKja6zAqFWmKNm8g0I7C91CGjJSIaWZpAoqB7QGnzIuyZM4hSxMs1KISTOTGWPg/WHmaozchMKspXq2UCi+YJ0MbJTW0rZWBztoR0a+irJ1ZlQw1a9c1Eeh4rR2OTlJf2h/+Ohl/Pj3/2AT8A+eg+UHf+J/m6Po9BALyiHg0BQccwyUqMlJpMF5ljhGQbPoFlwfjgzzyDjMeCXtSjFpyFI6oLISkaNkopKBg3LSENhbR2Ma5vHIeDwwp4BOIiLq4tnPmTBGrq/vefOLbwgo3GLJIUwc5pn7OTCZlmwdxUiDScSQFbiuup6sxBrESWkxxqOxlFODS04PEF8Jzcr7PGpxcStnpOEKGQTkDGUK6DZLXJiMdx6rDTFDmUbWTUtnNPEwEMIRkgJr2R8HdkPPcnpkB4uppD2l0NqhtK+ukjocUTL8MRZSnilqIuuMKg6Nw9Bi0CKUpfmj61SLkzammTlNNK0HJLlQUgZl67oo41QWTpgSx7kuDapk5jjWFtXCNAycbzyb9Qp/2TPbFzx7Bscxk2Jhu02slkeO90+4WGterBqeNBbdeq4XjruNZ1kKq97RWMuU4LcfMrejYqYjF43JCp01nbJI71qD0guMgpwn3r95zXSIlOixrAhlRJqqJHUwzQeGcU8M52glTVbTcGSzOnXZPV55gq7O/xwKOWicrUgG1YJuUMajjZe2uyz7JqtMdSgJyyQXIGXmYabVDU5ncgzoMZAPA/FgcXYDtiGrTKglFxRVHdYz2SR0ysKyLAaKNI/iWnHn2pZ4O3EYNe9vMn/7LoOLaDcyxyNhlnh60y5ZbRyhSHHGPO5QaaY1md4kQCKcOWdMVtisMBm80iQNwRiwWtqFlMK2DdN4JKYMOWNKwStFawxTULTOs+yWhAwURwyaOWgEtiwu3VyHKn8snPiPFljUSRX7gX3mD2tiT//eDx/u8s4QkFDWhmwsxUmdnunqZlydcDbV3sPJioX891RVuDW0qwXnL5/zkz/7U549fc6Tp8/xqxWu7VC+4SwVhpxo+hU3tsPf3tB4S+MN3oit1tYMJYoK/TPy0VSB5QSiVBVGJfnQWimFcDdySrROY51CW2EOZKUJGPYhc4jgZqkaK1icb+j6JcpIa0G3WNCvlrjGM1tNnAMhRYmbPOLzVBtHSoUQZoZxplVGWoJyYZwC4xSZY8Iod6pWQGkJAWUlSclUMqlIllUWBhatagyiWgWVtkKCt5aihSsjThTJJZYoD1lXp+9F1RwnRl5SRUl0KBViyqj80UartSyUispgTK0ObVksl9Wx4VBa4lt1BFbV6Wp9VEVebrpS3Cl4a+gaz2rR03etVP6VLCwWLfDQE5YuIVVtkdOUOWONZIqxDd53SNjocRc1XbOgJA1FrPbOepxrsbal8R1N4x8cELOeRbyoDRfGeGJC3CzWPNTkCRhKBJTTwk5VS6NW4JyprToKTZLOeFMtdHXC7pxlsVjQLzqon61rLGfrJc/OzjjbnLFerFh0vdS/1lYxpVRtxhHtsm+9xLRqrOc0zQox8u7DNe/eX3M8jljboF2Ls74+1KupNBWUFjB10/UYa1EU2UTFWaZNRZqVxuHI8XBgnkdW7QbrxGVyf3vPfr9nnB4PlmpKepjIndoBVI30xErwP0EcqUyMokE1Hrtw6O1a2i9yJoWEdiD3mEJ1HdkbZiNMKzVGTMjEUvDJkIoiI9fn6frXxhCNRVtLaRrGkIiImLaLiRgLIcP9HBnRFN/Stj3NokN5AzmxXngRyVNG64aUNbFIdrqoXFtaTm7ATC6B1kFvLBtvON9uWHQLrPVM00gIcj1aL9MI6v3unNiM5ZkV0cbimwbftDUnnikKQgyUnLGPCNz8n/71v+N3v/2ad+/esmgtq0XDsrcojlhb6NuOp0+fcvb8Bc36nFm3/N3v3vDtu3uudhNDhOMQGMaZKUzCYvOKXMyD4JZVwTYWh8Znh5ozWYnjpagiE5raxhbnRAoB5Rs26wXnZys2qx5nlDRMFIVRluVqQ9MvMN4TDgdyqQwII+6gkw18Gg+EeWYaB1mIzMKy0SWha81jIZOjJiGVhsoYcpTnf04JGuFXDdPEbrcj5wnnG5Zr4a4Yox/iosY6qMEJqzWttbTGYEtBP2K0CyDEQsmBOQTsPGHTjGusiMV+hlSYh5FxGpjmkTn8IJqFuBCXqyVnZ1sunlzgGldt8zJl1woBZjphSYndXyKLKcpEPab4YN12zrFeLTnbblmtlnz4cPXAXTnFKU62+8a3rDcbvvzyK15ML7i5u8E7zTevv0VrONuu+fLLL/jRjz7n1cuX9F3H2PfEQ8uuwsGbtqXpWpy14qQokE9mD1WIFGzr6ZY9Z9stm7ZnZzzHpMSx4aSlAYR31Hcdrz79jE8+/4wnz59hvOf27pYphIcI5mMcpZQqspze9h8ndKfYSKlfWckmIWkwxmKNZbtY0znLZrngfLum9Q5nzYmvKeUJNYuvnBV3TNNB04rbL461dSujVZJ5bJbzpICSZbMfYuIQIoeQOSbFnKSVRlgtVt6ndVrsfUPbtrRVLEaZGuP8OBk9cW4lFf0xHl493B8N4w8G8X+4ujgxMQqnNfcPj39qHfJ4avQpJo087rEYChlTDCVpclLECIkkjoHqYim5EOeZ/f7AOouWMIZEaWSTr4o4gDL5oYEGrSAbbLTS1qOh6IxNlhBFGEt4ik7EFEjhwM31jkNI2GVgUoW5FEYgO+F2qOraOF1jgq6Q56a1rroCJNqrtZFWnerYLlmi5iklyBIaT0Wcvjw0RhWM0jX2Kc8ZiT9lmcajRHRIkb4z6NYybxx3dwfmOREnxTCsGMeVxBIf8VDqNLhU1V1Vb7gahVdGI03X8k4XJ19GFyni4MQxrFeCMRbrHL7x9ZlZPxslvy4VAmuqAFOUgH4NWZiIxuCswdiCNqW2tVpQ0LqeRbeg79eMboVrYRGFCRbmS7Q6cHf1ik2TeXG5Zd04UuP45GKL+eIVIcDSb7G6Y78vDCmT7yPDACGIM8egMElhlRHRwjpiCsQ0Mx7uKCnK96kduUzCjFGZkiNhHpiGI2GOGOXRSpzSMYQaX3m8PYGmyL4oZcgarRxGeTEFnBhGWtUKZySFocxDvTYlI3BhSAmsNnglcSBbCnkOhHGksCUrRzKy19FK3ifo6onREZnGAxWGm1QG74WDYxpCVkxBMUyKIbWEbEkzTFO9ljQsTabPss4NMZDijCLhNXhdmOvu8OT8q6VUUlpzitHW2uYCGO9Q84mdVWrHnBQ9TLl8ZAKlQpgj4xQZxywi6EO7afnB13/68Z+3Gj29HP5AVIEfPNJPL4Yf/jOlsK4BbSnGQdPhVyts16OskU2ayidf4MPCg9OLp9SqZZXpNj3P/Ev+6/a/5fz8CcvFBu+XsmnRnm7jOcuGTMM8Qd7XVgSrMTZjVcaoVJXnWt/MaSQi2X+tNErnalktH50tOHJJIjbkTNOIG0RpATsmZZiy4eYws5sKqgkMx0TMGus7+uUGbSphfrlgc7alW3ZMeyuW7TATU+IxyUhKWcn0HycOxwllHL6VfOcwRcY5EpJ87ERRXHW1VKMLQUEouUIPIydTWKa6VEqdxBldyetSdUgSoITGQBTqeAoRbz2pNkplTounU/e6Fbt8rg/yaj/TNQ8tCxpL13X0qyWb7Rlt1+PqJj6nj1WcRShkJ4FVjElW8treGvrGs1p0nG3XrJY9nXO4mHC5YLUSYFd1aiVEZJpTRNcMo2s7tGuwbY/SnpIr+O0Rj+Vig8KilSWXROM9bdPTNh1du6RtPScI8DgOhDCjlcE3Ld55Yio479FGJmchRnKpWcVyAjkVSokidVlD1zc0zhESGD1XwcZhjZENrRV438XFBb6RiUTTNWwuNjy7OOPV5RMutGa7XrPsFnS+4VSv6ZyTSXpdQ3urHsaXzsk1EWPk/jjzu6+/49vv3jCMM4vtBtN0aNtWtVUeMFpbnPW0XcNyuRYIWf3/SFGI4ZTMPM0c9nv2+z0hzLRNIy6IeebN2zeEEP49sOB/zmGqvb8oJbBgI9OdlDNzjMSUpN4w5WoblleBW3SoswX2yTnq3Z6kxmoFReDaRuPO1oTGUJxiCjNpN6KGwJQDbbbYXHAU2WRUgaVUpV95S/CeOzszx0LKietxZJ4icyx8GAKTtpjlmna7RHtD0YU8T6yWS2KQivVcFPMPok5FQdGFojPGZDSJlAPL1rJtLU+WHU8uLlgu1hgsd8PIHCOqCLdDGYNKQsN3XsS/GCW/v1gI0Nj5BsFCRrGehxkouPJH0sj+keP//d//fxgORwyZ//a/+jFPty2bHhh2dAvN9nzDy68+5+Kzz5nthg+Hwv/8N7/l19++5/3NkTTDYQgcjxPDOLBxElEQgUWamrJWuMbhXSOL8BmmuActQqW2VmyvriXHQgoR6xJn256nlxsutktar5lmcSc5Y1lttjT9AmUdUxBGirWezkmbGKWQk1SrHw/DA98lhxlVMlYpVA6oItPZkCFWm76q10kU4A9KG1Ipwju7vaFtDevLMzbbDd56yALrdd5jra2bkUgOkTLPFbReNy+PduYgFs08CaRXW7BhxHpD11hm16AypHFmt7/jcNwzjHN1o8q0yhjNcrnk/OKcl5+8ou07WbgVAcV+5FNZsUfnAiXTLzrGUTFXrkqMDc4mnDWsVysuzs/YbDYPTWW5OjPzicOhNE3bcbY946f/7J/RL3v2+3vWbUtKE0Vlnj2/5E9+/s/58qsvePbsGXqa6NuO0C/Q1tD2Pf1SKpidFVt6yQWNkhm7yiQrjImm7zhbrTj3HffKsUuKyUo7gzGGHBKLrufi4pyf/dmf8eU/+2c8efGcUDK39/corVmfbR/tvJX8kf+lT3Z2qG1CJ0eqrBOSgqgKUYN1jm6x4NXnn7FpWtZdy7PtmkXX4J2VXX/luQmPrUYTrBKBpRcmS46jwLZV4lSza4kVIGkIBchFBJY5coyFMWuGWHDe4rUH48Upk0XI7PoFy9WSxXKJMZZcm47IPEQtTkt54CMslD8IBZVTEUvlJ/3gz5yOf+z3/tHPmR8MLR/h0Cd9pdqGSzFQCrZYiIoUCvOUKFm4RbkobF13TFPg+uaWtmsJGvbTRF41dZ1d15JGRCucgZBRMcOcpfHRakyjUUW4LCEkUC3GFQoTVu84HCZux1maeVpHtpbkHMo0UmVvLBhFrsLKqSHGOFf5Ubp+Gaw20piDlCSQRUCIc6SYWNtOZJiitKqusZO7X9UIySn+lutwUlFiQefEunP0XU9jMt+EI7dh5DiMHPcLhnFFeGQxmtMe9GGjJtB8lMZYjzYFV9ffJYlrIkVhESnzEayiasbGenFriaPZkAvEyuA5KYemDpnkP5xwqmBy5XloGZharzGtwbUS87PW07drlv2KRb/BuAWulW1KUeD9C9YrRR4/sLKRJ6sF265Fd57lZy/48fNLloslXnnyDG9e33M9F6IZuM+RnAs2gyvynnPa0TYtzlvm45EwHwjjjYivWt63pSiyLmSVIAem4cDxsCeM8kyOGMIcmKZR+KHeP9ppM7U/u+SMpgJejRMDgBZxRR5XIvKfBnwnHICcY3nrllJw2uJ1pmhLoxUlzExH2bpl50hKtnjeyp/XtUiDLEM38gnpUQtqmgZ0Q8YxJxhjYYyK7DeMs2acYZ4FrWGNwqVSh/2JECdSmnEGvDF4LeYUc9LbqwYgOoCIdcZoYY5V3qbxUs4hr45SQdQy4MkpE0MkzIEwBqZUCKWw36+ItSdB1yj+CUr+xxz/u7QI/XuHEotmzNLK3bY9Xb+mca1YAk9BIAXyFvoYO9I2gIook6AknAHTdNjmJUZ3oBxTgvv7wn4/cX19y+++/j231+/Y37zni8ZRmga9sLVNRFNKoJSZUgQQqatRXx6TVSks8tiUSsCE0Imj3GwFsjZVTBBLY7E9UTVMybA7Rt58OHKcGqx7y/vrO/rFhm6xroBZQ9M6zs+WNF44FjHMoh6mhFOPd5rmmDlMgf0wMc6JJitC1kwRxjkRIhRlT3oIhYJ3hqJEdT+5N1SGklJVvys4CCPnzGi00/iux3c9SjtSSqgiVYpFF8JxRqXMctkStGdWkTHM8oLTCt02dOsVvk74DVXsqhvzpMRCm5SiXa5ZrNesNlt808jU2zpymeUhXkFapS7kvfdMdYrrvGHZL9huBVR5eXFG7z1eK2xKmFnYFbZGK7KShYnXCpcSriSaAm61luvQ94xzZJ5kevqYxykDbIwix7oEe2j7kQeosQaUY56lLm6/37Nab+pEIT0sWlCaw+FAiom2FegxRSau0zjTdlLLvFisCTExh0hMgX7RoYBpmpmnIC/SrmWxWKC1opCwWrFsexrj0aWwWLT0i4Z+4Whb91Cx6b2Tn4G6YTF1MU1BeUUcMscw8d37K95c33A3jjSLJcpJ1EDcODLdOOVOvbc0rcdqK4uBnKQdJcnia5pm9vs9h+OBeZ4qiFkaVD58+MDhcMA5x2KxeLTzFqmXoNX4tpXJjrWEmJiGmRRl8T6FgNEaa6U5aHN2TvvsHC7WHO4SyQ4EpTiqQlSF0UBe9ailR3uDypHUHsnDRNyP3A+xJiulVUPVF03OiZAjqUyUY5DPYpxJY+QYj8LGmiJTAt91uL5Ft44pBVKQNoiuX6CmmeM4ElIiiHeFKUZCKqRCfRYmFAlL4enllifrBS/WazZ9T2sNOmbGwxGqWOe8FQsxYJuGpusYh4lxHMkx0Tae5XKBNZpUEkkVJhJ22dK0DReXF4923j5c37JuNc+2LT//fMvz5UxnZ2a9o3u55ez5Cxaff07cPOFvfvmG//F//Q1//avvuLk+Mk0FhyKMivFYOB5nnl42GKuYc6Jpl6A8GYk7NssG5w1dsewHmTqd3EbWerzroGgRfFKh9UueX655+XTN2aLh7XHAW8/5as3P/uRnPHv6jLbtUN0SpSw6JnyBEiPzPHE8Hri7uWM43DIOu1qfPEFOGO9o6p40B6kvLsZgvCNOMyFByJq+2zKOI8M8cX94T99bFosV27NzfCOQgFgKzaLDeEcxinkepdIzJnSMzIej4LXQ9F8+2qlDtT1pOJJSxiqBGE5T5DBNdHrAFmDO3N3vub/fc5wCYRZe0QkaaJRmvVzx1RdfkidxA3rXysClOnGaxovnMkRimFksOkpJHI8HjsNQ21I0znd471ksF1xcXGCrWFO/2+qSlQl6AorWnG3P+MlPvkIruGg6hrtb0JkfffEpf/HPf8aLywusM6QZuf5Z0+7O6C63dOu1bHAK4h5VBWU1qWQCoJ3lsDtwe3XFzeu32MPEOhtCu+S+c0xGEbRCd5avvviCH//kx/xf/+//N7748kustby/uWaYZ84vznn16pNHO285JkqS6aJGY7WpgoJm1kGm4BRSScwpMsVAKplV49lsN/z4ix/x6dOnrNqGTqvaVidDENSJQVDhs6bSMJqCLluS0hAiORROHKtKbqH6taUOPgTG40AaJ3QutL5h8j1DzBymzKgijbd4b2hNQzILsu4pyiKT1IwukZJVZalRN+E/cINz2ouKmPJPqSb/sYLKP/bnHvPwQbxpFB6KKwyGqWh0kgbHcRjJc2KaRFjEWIoxRFW4PtzzYrskG8Xd/Z7ZyiBNZ0spHqWry5xCCVm+xkgeAAwqG5zJKBWwOoB2xCIburZvpUkrQ3GO1C3I1pCsxjqNsqBMplgtM0INylSnmk4oFasQaijFkksVblOhVw2NElc4Y0TpKCDTWt1s6joz5YRuLCXC8bhnzglVjDC4nJc4uRK2y9lmyeXZOU/PtthSeNs4UnxHnu6Zdj376yV8unq0c6eM4+TURxeKqkw/DIYenUFFJc6yGVRImDQJKF9FMBPWy6Y2hYI2VcREU4qFOhS01lGSDLPRYPWEYkb4bEMdlonzIuQMxdF4EXDPnz3j4vmWxXaN0Z45GxLChQKgFLrFBtvseHd1i79YomzDol+yffUSnWZUCpQwE4eZicC8SJwvEpsu0NuJoAWEqpFBofWKpgVnDsT5NTF8T9feknKWKWsBa2YiiVgScw6E44HB3hOmI7RLtMkYV0h5IMSITY8pjmVSDoQ4iwHAZDCyLzi1eWYVJfqvIlpL5PPEowSH0QVKwOSIQhzrxjU4JyJgmBOHw4y3Hucb2m4FZUbVlielNSqnWmGf632iZA/YiLgSE0QDyluavmG+uafQYLVDO4hzxqJorMCjUy2fmOeI6Rqs77CuQenhQXAtWhyMmROkGZx1tG1TDSeFtvGM1sm9VcoPnnkSUzscB25u77g7HomAO7ast1u5l4voDzFG5jgzhwn4Twe5/xcTWIz3AlKqDg7b9CjXIs0ap6ecvD4K+cHmg5KLBaS/utSJhPEN0wjjOHN3d+T6JnA4zOx2A9+/O3JzdeBws+fLn5zTrFcsNh6TLWUqIr5V+jVFXua6iCVOmhaS1EAh7RulSPYSakuH0hjjq3lD+AYReQjM2RCLdHiPs+bmduJ+NzMMkRAyHdVa3HguLs9ZLjvuG0+0WtoI5pk4P95GfZzEsj6MgSS7PooyQikP6SEfW5RM0U8VybX5nFyV94eccLUTVp76RyVcC/Xdeg/GknJGpVKtdYVIFhipNeQki4xUTvqMwjZNrcqrjzztHqBx2kjEJZZMyBnTtpIzr2R6+ap0aV2VTiPij1LVjVIKShWMUfSdp+8a+q6hbTzOaIxSIqqUEyGb0/gIkJtbGYtVjt55bLdCOU/R7mSwxDzyKmYcB+Z5qs6mUL9/zeF4YH/YkUvCe0cIgcPhwOGwZ55nVisBwTrX1AW/tFxN00guuXJ0qv26uoisdfXfd0xBqOnWCsMgzIG5XpNd27NarVguVoDAnnMKtK5BowhTAArG6sppkbYfrTXWnKo4dT031AlxIRMZ48Td8cDXr9+yG0ciCtd12KYVV07X1kmHQ2uDtZamsXjvRISL4aHBAIRLM44Dx+OBGAMKcUwcDntAMc8Cu3VOrrXHOmKNTRmrMY2rbUwCTRN7Jw/W3IKAEo0zuK7HLxZk36C8B+fIzjFrzWwUg1HgFJPTzI0harFSZ6dJCoIX6q0xjmRqzBERb4dRKgWP+x3D4UicAnmKYhh0EmOxzmIbj/Gy4EglEXIiF1lQxJJJp1iTklyvCNFJ3CUlVqHO0viGT18947xvuWhbvDGolMlTJM5zrSyWezTV+nftRDjLORNCqAKaCH/KaEpMEl1RmW69ZLFacvb8yaOdt97A823Hj56vebLULGygsZF207N99QnLJ5/gNk/5u2/e829+8Vv+9b/7e25u94QgjiVnHGEuDMfIYT/jX55hs6aEiLZWWpu0TMBsa2kXDUU7gg6EIKC8ohwFWaQ2rpN4zjBhiqVxmmXnWS9art5PdM5ytlpxcX5O2zQyQbYWjNQsxzlw3B0Yjgf2+zuOx6PAk7Vk70FghCcRXdcYoTWOSGGeAmOJJG3JyjIeB272I4dpYJjvWSzPcd5Lo5B1xBDEmaSbumPMpDlA/f9WJTMOQ43YPO7D8tMvv2I87BkOe27vrhimAylHjM4SL0PccgVVaxjF2RbDyfEWHyqt+65jLnNtrpK4lq6xYWMMxQozIs2Zpmkkfns8SDX2PNdnrkcbTeM9q9WqxjYF1pdSPKUreIglOEdb6+zzPHO4v2fTdfSLli9evOJytaYxVsCKJQuDyVtS48jWSCxXnWqAPzovJdKcKSFw/eED7777jvffv8amzOVqzfnlE+56x10KHFPi4uySP/vTn/Pjn/yEzz7/gqI0h2Fgtz/QL3oW/YLGN4934jKQy4MwLK078v0bLc08MSZh4URpjMsKilFYZ1mvl7x8/pRV22JirNFe5FyXU/AGPkoMsgbFt+gUMe1ImmaZxlZXUkZAkLHCJMkZUiKOA9MUGLDEtiNKiBYiTDniImTTUkwHtqUoJ0tYautMkW1sqbHeGopHFXFqy/u48FFGUQ9RdVAP7tz/Ixw61fdLQap5kUZFU0ClQomJOAVmFZirmFmKvO9izuwOB44x4JVGl8SAtDt664HaRHcCbGnZSCqT5Lk1z5RxQKmI1bPESYylKYlmzjStALZ1SERrKU7ukayVRIzql9aFrGs8VxLvwri1dZJ9chUaed8VJJrmtMdqaS4q6bRfqf0yNQodcsQ3Dq0KoSTmnLGlYI3UNzvn8M7RNo7WWVpncApePr2gbzyt99wfZxyB/c174EePdu7UQ0Qfibqcqgu0hWxqnbSRUoc8oxNYEsZkrAXvQwX2F5QK8pkYsFoxzwPzNDBPIylOqCJrA+8LTicaD13jUaUwDjPDcSYzYo00SDadZ7FesViv6JYrMI4pZObhyM28I9YxeKr399s37/j2u9fkYYFJgSfLlssGGjKGRJFudoqKLNrIti9susLSJQ4kCgKLx5iHa8zamfWq4HTDQr8kHmbCEBgOE/fHyHGaOU7itih5JkxHjocd69UZxiiaxhDihE0Znx/vPZey1KDnkqTdSqnq6q2D77pnzmRQ+dQNgpjnhDWitaviQySmGbQ06TYt9L2nW1jGcWZo5Drt+k6EaRXROqCclRatnKC6kCmIc813ApeN0K9XnCfLbJf8drfnMCvGUDhOowzeUXhrJFKe8wN7E1SNVTpp1FKKUh0qp1jlaV+nzMeWJmOMrOWtFSd7/LgPOEF+Q4gcjwMhREIuFGVIMf/ARVkb0FIi/ZGusf8CAkvlEDjJJxrnWSzXmKZHm0Y2scU81DRLJOdkliwUAjITTnLpFE0qkIpnNwRu72a+/+7Ah6uRYYiMY+Lt1cTt1cThZkT9aU+73tCf9ZSgmO9n8iwVYvKERF6CuTxQmnWW35QJsJKHRAFVRKVWWqOto6hM1h601FvN2TJnQzHCjEilYXdIHIbEcYgMU2CZJc7iG8fF5Rmr1YKua5iskXaVeSbM86N9+uMYGYaZ4zgL4EgJATvkwhQlHytQqVNiTdpwTllJ8bA8fEwPF+tDnV4FehWtJTvpZUN5qmrTRRT+k+g5OZlYy7aMj5+nd5UZYPHW4W1Tp3wVcFejFUMMYIUncZr4anOqdq08n6p6nl54zgrgUauCttB1jq7ztK3DO4NRIi0ZpdDFouu1IC4YyXEnEBCwEbeDanuytoRcadRaYR9ZYRnHI+MozIBcsexKyURkt7sn50TXdczzyH6/Z7/fsdvtODs7p+sXrNZ9JWmLGCEP51wJ2vK9ykvSYJ3HOY9Shhiltcha4bFMk7TxKKXp+4VUd3Yrcqm1idnR+lYs6bVaTRuF9Za293XRIZvxelIqEC2RktzrqUSGeeB2v+Pr1285zIGsDb7psW2LazuarqOtldxGayaj6+RQNkIphmq/z5Qs3CERWI7iqKpuqP1h//BAf/78Bcboh4fxYxxZIVMda7FePtNcijy086l5S1UbvCIrhWkaTNdhuo5iHTgv07cqsEz151VWMzvN5A3JiRCaTZ1UNwqlHNm1ZK3qwj4TpoFjDhynkQ/7e+b9SA4RQmbhO5SyKFNoaDDOoa0hq1LZS/JSn3MSPhQiXmqQ1oE62a8UKharhs264Xzj+PTVM9bOsEDjtEJNiTTOpDngmlONryKWREZjnAWtREwNAWvk+pMKdmEpyTys0G2WrM+3bJ4+noNl6xWfnC/48vmG8w4WJuIduNWWixef4DYviG7FX/39L/k3f/Nr/ubvf8tud8Qh3CanFWEuHI+B/W7G2Q6HIblZoOBVYCm6YFtDs2jQTnMME1lPhDmBcoCFYmn9gsM8MIe5NtpB1zjWixZn7um842y94WyzxTsnFfS14SCVSJhmrm9uOezu2N3fkvKE1bm21ji5/xTkFEW4Lh9br2IMzPPEECdwHdlo7g473l/fcphGiplR+lKeG74REXwWoUi5TgSElCjzLO/QnNE5kcZB3CzlcZ+Vzz/9nPGw57C7Z0iRQwrMc8JmRTrFWk/vP8RJME4T8zwTQyBFqeMsBWFU2VIFFv8P2iBOFbylCpht2zDPE1prUm0uE7deh1YK7z3L5VJirKdGmY/LDtAiFIiQ2JBC4rjb8/7NaxbO8XSz5dMnT9m0PQolAguZaBTJabK3ZKPJNQYDEjnJFOYkm8BUIE1H3n//mtdff8PV6zd4ZTi7POfik1fcrlquhiP388QXn33BX/zFX/CjL77g2dNnvH77ht3+wDiMPLm4oF8sZCr6WIcQf6tzWN7BSomzwGiLqvDBOcs1mjhtihXKarq24fL8jE3fU8ZRoghUcGzOfGy4lTWLooC24BvICd0uyOMki+yUKSlSlK6bOAG5UiqLbp6Zh5EhK2a7JWpHRpNiIcSAtRnTQjEtylSBpbYtnqrBVX1iyq7+D6I75WOL5oPIUvj46xO36/8AMosq6uMgqshPkLKso8mFEjNxjkxlYhpnmU7LnyQX2A8jx3nCK4crhWPOOCXvS0mnCOdCBl0FZQvKFdkwToGMRZURnbW4IIzBpYBvROR33qLnKI2cTriAWYmgIOuPWr18Srrr6mI30hB2GrCpGkk6rVu0tljjsFpE2ZJlnSz+q1PMQBqoWtOCgpAzIUm7EkpjjVS5N97TN57GyrPdGnh+sWGz7Fkuer59855hnBl314967ooy8MA3EjCFUkUKP4rDYHHKoYnYotE5Y1XEGXCuohEEh0ZQEW9anClYnTkeB+bpSJiP5DRgq3bResOygVXvOds6yJ6r63tKmhjDjLEJ5xRt71msFvTLFU3fk1NmmCbubw988/Y9Ub5b5izx6ndvX/P6+3fEQ4MriefbFf35AlSgyROMe3QK2JLoHWy6wrYVgeWKQqI2KlXHr9YJ5wLbjeZi09O8+oy4GzjcH7n+cMt3bw5c3xVSisRsCXkmzgOH/R05B4x1eG8Ypz02FHJ5PF5VPtVfl1Jd3KfUR6miQ3W41yyi0nK/lBpRLFlL4YQxKAohDoCiaR1NA/3S0y894xwYRod1ng0tGGTNZww1yiDcxigumFIUqliK79HFYEJmud2Q/RK3gqfvv+fmfub+MHG4G1DI9+GskHxKSXU4WpuaqsAie1XNqVkMeNDJBS1Ra5gBbQxtRSOUcgLV5rpHlQFvrK1QAQi5gBEHa8m5iusispeUKg7jP/34319gqQ8mtCYpjXae9fZcPsSHTb28BUv9X7np5e9SlJelrkTvYZq5P068uzrw+vs9tzczx2PDcVAcDoUPV3uurifiZNHNlmha9HJFc75BRUNSkXzQzIc7iko4Sn1pyQJTl4zSSV4UCNjIPKje4vbQ1qKUJedIpCXh2SfPYFqSbek2a54t1lAaFI4+Z8ZgePvhns1Zh9egvWN5vuXs4oL77RXjhxumaWIcRqbh8apH7w8Dt7sjh8ORohVzBpdgmDPjnEix4JwhZ2kSUYgqeJqVZAIFLbZzXTDGVzVffTxndfLiGk/Tdfi2kYlzhXuVLJDWXODu5h7jFcoKeyXJbpOAtDopa3FNg/Mtp1OTYpTJb6lOEukXkxo/b1FWRilFCcdBF401RjYSSlRmrRLWKZqmYbXqWHSe1lu0yg8iEbmCkzQV6qwqtEw24Lbt5GuzJSpHyBDmiHYKqwv68eKWAAzDwDQNhDBBfRApnRlHz35/j1Lgva11xBKrOB4PvHv/DuMbFqszcSIpWTSgaoQmziJqZJnatm1L1/U47wkxM00TSisa2xFjYJwmjuNI0y5Yrbdstlsa74mxLm6wLNsWlSPESUBltmAdGCv3FiWTSuQhv3vKx1thkAzTyPvdHd++f8evv/mOsWhU26N9R79eY63HWsfFxbksYGLkcNhX4QzsYsGi75kmxRwmjsc99/d33N7eMU0TzvsKZyySiabQ9S3GasI8czweH+/ENQ7TtriuxXgvXIs5MB6G0zqblIu04hhNNoZ+s0YvF5S2pVgLTUNpG1LrGYohWkNsHO16AZ2lOA3eSP5Ua8I4kopBKYnLhQryVgWIWrLw48jdm/cwBnQGh2G1WGO1gVRQqYZe9cn6GSklQk6keUYV6DqpYU+zQMk04GzBO03b9Hz+oyc8vVjx7HLFs2WLjxE/B1o083BguNuR5hnbCytBVb6CthbftAKvS4mYM4vFEtt1Ak9TWfLPBoLKLC+39Gcb7Prx+it/9sLwp58u+OrTNRs70XWOfr3i8kc/Yeif89114t/+L3/N//P/9d/z5s0Nd3cHcokoKwtOheYwRm7vZ25uZihtbauaMf4g7zEHptPY3uEXDdY36PuBcEzc7UaePr0EtaCUjsXykvn+mmnec399T5oDXmu2qyWL5o6LzYbPXr5g2beoXJjGCT0FwjAw3N/z9utv+M0vf8nd7Q2H/R3Ldc9q2bJaNDSNwRrQ2og7jowyhtY1hCxT1zHB3RBIE0xx5Fe/f8fV7Y6sCpfPt6Cs2IubhpgL8zQzDRPniwuIiXAcwIBzjUBXp4k8SoOVVNk93vFXv/odm9WC9XLLn/+f/y8cjnfc3V3zu9/8kvdv31OmCabAGHOt41Xc7w/c7w/s9ke2U2QYJlLKGGXQReNcw7KX5pkClZuS6npE41uL84YYZ5rWo5QsvKdpwroRlABP+74XZxFKngUxyRQtyPChaztWyxVN0/H6zRvefPM1f/fv/pZPnl5y3i3Zug6GCdNI1W3xivvDkX2a6dYruuUS33ZVdHAyiJhn3t/cANL2d/3mmn/7P/yPfPf7bxl2e/78z/6Sr376J/zsX/432JfPGHJmypn1ckPfd2itud3tub+5YxoHOu958fQZxlrGYWDTPJKLpVRYc9HoCmVUSjarJ9joHCMzCZzBLTqmGJlS4DDI5LggdbemcbU+VDaNGihZwQNo8rRRrhEg01CaBbqPxFSIc4SYKhtOhCmtDd5pVr1i5T3jFAgpcTzek21L1o5pjtztDhjradstWbcU05NpKEWL0K1ShZ6Vh02C/qF+Uv9S6rrjVCjxg4/pB4f6937nP/azfqwjPYhDNemRU23RErdaSVlcLGEiTjM5RLqmofMdg+/ZTwfu90dMathYy/VhQJuOpu2xSLGB1sI90q4iAzLgNNkFsvbotKNEDRFUThhXaDrN+cWSvnPYYeSY5wpGr82nALoiK5yw/XL9Z5laT6vl3GejKdZSnCXaQMoZ5zSq92gSZRARKOVCyrCqm1pUJswzxggSIIOwYqwHL46YtvGYZcdm0UksLQzonHDW4VtN92RFZ2F/OLDbHx7vxAEZz8cVPBLH0hmnQGOwyuK0gxSZ8ohOd7TmjmVvaBaGppsxriVnLSD7rsE7jc0Jm0catQd7RNtE22jaxrJeen7yo5dcbjvONw1399d8853jm6bw3btIVkeKMixWF6zWC5arBd63zHd77m93vP3uLb/4X/8niTOnxPVuj9KWcZ4xwGGY+XCz5/evP5D396xtYqUji3ygUUn8GwW2beKiL2xcwqaZlEV4M77DNBLb7X2kbzPrZcPnrz6njDt2N7e8/b6w+d2R795m3rxPfLgp3N5PhKlwuHvPPLyk61f0ref2bpByjv4/PWbyTx0xQykWo6Ht+gcnMQiziNMg7w+EhYIwuXJJeCuRRXTkMHzgfLulX53T+sxy5ViuGkqaGWLEpQy2B6soJpCNNEydHHl4iZZJw5CqorUMThfbLf2556nquJkXfP/6hu/ffODtd79B6wbtNY2BEmfiNDFPEzmXh59FWSvV2saBmqrIoh4eAznnB7e6qc7HxWLBvmsJ88mZmkArjJPijxQTh8MR5VtiKaiQCXMmBhFYjLZ4q7F1OP/HHP9FHCwojbIe7TzOwmK1lhygtvXldxozlDp9kRegvIy6+sEEbnd3XN3suL49cLvL3N1lxlFTSsft3cx+P3G3m5hCpSQDgULSFtU0NIsNMBFaQ7CKtNsJ4LKS/0FY8JQTjUzJP6vgWx5sSrI5zNoTcITsmVVH8SusWbJynhg35GTJSZNMIKvC/X5kmAKmFfK2anvOLi65v7ji5rs3Nc4zMU6PJ7CEWF8AJ+GkskkKiG0dWYAkCroyU5RSaCWZysrYFh5KVRdPExf1QMuqApVROCdcDONlNKCKEmiYFpFlP+wwWiqHTdOgVBKR4+MZlzaZnOrnXx4m5yiqZVOjrcE2DuPMw9Q7n0oZlYg13lqCUuQQ8FZqzXrvWS472q7BN7bGE+uDSitUlu9ZoYgZmQxqLbm+rkO1Hcp5FBqdwaIEEqxKFeUe84h1QZ9JSapPc5Ys/zRNNM1UmymkKWeuQsHNzQ2+7diePWGcRuYYCFGiOwWBv+raqqSUiE7GyiZiGkdCCGKF95kQxM7uvWe73bJaren7BZqCVTKRM1oqXlMMxHlgterp+hbvbWVqyZk1RT1MWalOBJQiZ9gdj7z5cMW3b99xfTjguh7XG4zxtN1CIk/eg+LhZ41xpm0X9H3P06dP0Bbu7+8YpoHD4cD+cGAcR4kSVdjvfr9DYJWexaJ/AN9Oj3jP4S26cdjGo5QmxZkwyZfKFWhYCriPAovuO2g82VmCUQSjmI1m0Erq+RQko3C+wVlNMuLeKhmU0YwAOaK0wuAAof6fBKiQC3OImMMBH8Frw6JpeNH3kpUuIsYmJV7BkAOaLJM119C3sklO1jJNkwg4RXhFWovrMIaRcbhjGDLzAMFEWm3pjEDjxvs94/6A0XIvWuvkOVRr362t7rZaodEuOnG1GAABBmunUU7T2Q7Xuh9MqP/zj59+cc6rZwvO1571wrBYr7D9iv3k+MW3b/jFN1f8q7/5Pa/fXbMfRlLJKF2wTuGMgaQZQ+I4B3aHmfvdiF4olLJ1b6cwztD2EnezNVpznBLXtyNv39yx3r7EeIWLoJTD2galJ3a7a+5u90xjYLVY8umnL/nqqx/zl3/xc7zR5CTxnLg7cry55f76hu++f813b95yd3vDfn/PYt/Q9w1d5zCmsOwdXetYL1uatkNpQ1SK6/sbru7veX93yz5G5irIv31/wzDO2EbqR08RGlvjQSlEyBmvLWGYmIaEdhHVVwfAMBKnIO8P9biV9leHI1PO7KeZbZrAZFTb8fzzH3G+OWPeHThc36C8JyvNnArHaeZuv+dut+fJNFe3RGK3v2dhOwGYtgqjZJNEkdjcaY9srYciMaGuk5r5mBK5zPgo4ok2wgAzp3YfXcs7c6kOxJblcsV6vSbnzDfffM3rr79GK8WnL1/y9OISlTIf3r2nXXU0yx6zbrHO05UepzW+7chas59n7q6umEJgikGMv6EwHSZ+9Vd/w9W3b0jDzKtPXvHFz37KJz/+ivNXLyirJW11lDrbopUS99Pb96RhorGW8/NzKIXd7S1XH6549pfbRzlvJyzNac0hXiMlIMPqHMpZYq3ee4o1TMOBOUUO45Grm2v2hz2rpqF7cHicXCFVxOeHX9Q1p0X5Bl1p7yVFSgpARqtMMYo8T1Dk8dM5x/PLC/rlissE306QTEOxHmVb3n64ZT/MvH/9ln/7b/4dh/uBGAovnj9lvexZ9i3WNA8rJ1XtK6qchIpSF5c//P5Pb85/WCrxRwPZH9E0FmzGoCrstkh8lERRmRhnwjwyDQNzGJmHiXCcKcajs8YUTYmFu5sdeRjI3pD3Ow53LdPZkmdna5wVR7Bz0vaj1AmkaVDWob1FZQ2ThjFDmKSWNQsDbrVoWQ0TMelapy33nLIWja4VzK66T+Sj10qhrQPrKFnJnsU3mKZFzdKYF5yGzqFKRJVALlLpXcOHcpUVYfdIDFvWkzHlGm+TNZCxBuUcziiB4qcodK4oAPxWG56cLdgsPdPZ8vFOHFCyFVfQw7Um3EmjCyWOKBVxNtH3iXXf8vL5BWfbDc9erDm7WHD+ZIs2LTHCbh847jPjEDgeZ+7vElxsMGbLxdmS1bKhbx2rZcuTswarIjnsKUnx8vmatvEod+Bmn0km4WzB6YLOkTgc+f73v+PN77/nu1/9nve//AUlR1LO3NzdE5ChvTUO3y3puhWr7TO6tcekgRD37A5HAhmnEkYbNouGyzU82yR++/1MTIUQYY7ixNBa4y00rtC3movzHk9iPitcnMPTl1veXY28uxr47vXM67cDt3eR4+AI8wHrDK3v8MZSYuawe7zBXc4apSrT0DYPeyJtTBWmRZh9aGQ7OcUL4jwhokxBE4CJEO/IOFyz4uLJks26pet8rVEuTClyCDN9YzBWgVNQuaQPDy9qM1pS4ARyr3LCdwllW5xf8ec/7/n01Qvevrtlv7vm+maHQtHYQiwBcqDkGpGue4KTU9QY/eC2kr98dPvlXIgpUooR+K05VYUXxnmiywVT28C0EfhymFOtHxfI8sfPSoQVow2QSfGPS5H80QLLDx/qf9gg9B/8908OFmMkYqE0bd/XZhhV2R+nF4kSiaPUB2JRxFkxHAt3d5nX7/Zc3ey5vjsyzJZpssQo2fb9IbI/BIYhEmOWh2ndxBUNGINtW8hLjCmolJhCpKBIWSZXGshKFL6TjvJwMXGijlBhO4qsLFE5ZhzJduAWGL+kbTpiWJOiIcVCp9ZkDhzHmWGKtF4sglor1ttztufndMsV8fbAFEJtyHicI1Z1PddpzAP0VItSqAt1k1un1pS68a7m/3wSWSxKSUXzQ/b2tHipIovRqgL+BM5aokIVJZlT69BaYcIoFZ7O4BqDUrFGsLKYLJVkjXOutXYVQPjD761UUrtUdMnUXfgFRUQSwBSDM0Zq0nLCGk1jDYuupe872tZjnZGPwsiCrsq+9SxriTVpRdZGXrJNK9N0Y9A1LmaMwppMqguzRz1UfsgLpxSlKSmLuyvGUKM8qZ6HImT7GDkej+x2Ow6HPTEGUo7VtSIxO3HCUCNWWmqulaYUqcbNOVcCfiFUcK/3DavViq7r8M6T04ypNYbeKhSBUmNYq1VP13msN2IvLNWKVFnWIC8zitxHsWR2w8jV3R0fbu8YY6JtFhjr0EoiIs57vPekGAmzRJZKyThn6fuO8/NzrBf30Yerd8R04ipkzIO9EeZ5omk7nJOIyn6/r9GAxxPHijVoV2uRSyFFadDKMUmTRXVGFSXiXTYGvKc4S7aGqAtBK2atmE1FLupT9EicWVYrjDJkLVBwixInQlGYEuW6QRx5XiuCKkwl0cZIm6BVmrXWbGsEJ6EYxgHqCzonaZWxWtM1nsYJRFilxJyjcKpqvtoa89CcQJ5I0ZGCJ89KXrLWEoeR6TgwD6NcN8bWdit5MZ6alsIsi1ZlNL7r0FbLfa3Kg9lRGYX1Bm0UuTweRO6zV2dcbDv6zkkUrVkR6Xh/PfGLX77hr3/7mr/+299wtzuQanWmNrJYPoldIScRWUYR/HvraL15yOZro8Wh1zTCq1KGcUrc70feX93zoznjI8SsUdqhTYNSlvvdkf1uIMUi13pzyU9+8iVffPEpRhVKjKQKs72/v+fu9k6Abvc7cWns9gzzEX+wuEajSJyfrdhuliyWPdq1oDXTHHh3e+DdzS1vb64ZgSkUhilxtzuSc6EzUqdqjcMaizWGNM5iy62W23kYCUlhO4U3lc80TqQQJPphH1eMPoZIKiNjiEQiTe9wTtOvtyybjrnf45TB9wu082SlmGLkOE4chpFpCihrKRmmYUZbjbcNsYt47x6syOq0OVantgLZBHrvZXqYEillYowC1FTqgfH0Q86TLIShbVqWiyXL5YpSCtfX11xff8Aoxfn2jO16jbOG43AkmUK2iuW6xRkHrg4ACkxzYBonru/uCBUU35uW6f7I/YdbXv/ma4b7PdZ5Xn7yiuc/+pTzV89pN0ui9dg6eKEYQghMw8T+9g5KomlbNus1OSR2t/e8/f41/OVfPMp5K6XwDx691QuutaYx0m4kAoPGWgfKocNEyplpnrm5u2F/ODAtlzRNw+ntrU4LuCqynP4T0qRRqsBXUL6B2KLbFj23EEcUTp6fWcCmRimchvPNhm6RGLMm7QeidhTj8YstDsOH2z3fvvnAt7//lhQLxjZMIfHi+VOU9fSdoyIRHvAiP7ggOFl2pYzh3+etqLo2+g/9+j/0OT/mkazE7HUuKJWIOZBKQBsRIXMKxHkkhpk4zcQpQlfEXYxBZcXxMMAkzTEhzeSxxaTEwnp6b8EbnG4QbqCsM4uxFAvKG0gR1AxMQEAng02Frm1Y9i3LbmKaCseShWVFQTcfOX9aGZnG109a16pbcWwrMBbtPMY1aBchK6IF1RhUMhCV4AY4DWiFM6WKxAxOgGWNRBJPgwN5/ctQQZpRMqpEjMryjtUaY8A2nq4xpPyIzCNAwGunDXKp4iZolUgElDI4m1ivDIu+Y9k7Xr1yvPr0nMsna548PUfrljkUdvcz79/vub05cHN9z20PbePou4YXz85ZLRu6xrLoPZ2HMO65v51IucE3nkW/4nqnmNKBMYMzBdJMHI+MpfD+2295/8233Hz3LeX2g6w5ckTf78kZsvHY1RadxV3f9hu6zRIb9ujREqcDU0yknGmVfG/rheJ8nfDqFpULWZ3cIfKOdhqsLnirWPQNvZ8pq8xqDZsLy/nTxNObxPZ8Znt24P2Hge9fHzA6Qp6wusNpYe6Nh+HRzlpOSgbdWpzKwl7hB2kQ2Qfk/JGWKc2apwF1EKFFTWgVAIXSI8ZF1mcti4Wn8RZlpOQikRnDTINgLTD1vwmnHpGHxxZaSbQ9K5RT0u7jGpq24ZO25fwss14v+MXfPaVEqUjWKiK3TvjBffixwEOfBtunQ532mnVHXrKwPlUNXv5ggDGHuTK4LB85nsKxMVUUyg8CS40ZKV1THOLI+2OO/2wHy3+MuPIPjiK6bkQTlcZaS7tYSONE3ZjHKHwEqlpVMMRUmKbMu+9Hrq+PvH27493VPQkNZov3G5xvmWfF23c79vvEcAwVWDdDnkEHlJYHYCaBsdhugbUaqyU3Hw9H5vsdqRwEhlRqT/uJBg6ViJuqi0W+v4QimZaZhll1qO6M3KwoboXVS7JyYMC4gvIbDsfIMI/c3k90jcN7j1KBy+cvScPM3ftbfr/7e4YY2Y2Pd1PGXAi5EHNF2Bqhe1vncU1LZiKfgD41yqWsQH9LkfiHqtBFdbqzOE2bgLqksRKDxXtN13q0UxCh5IKyBtt4vPO4rqGYDCaDTaK+IvT+BtkoaqWk771mCmMMldMggkcpSYQwJzlsfaqkTQaVQGUl/e++ITqPAby19F3LZrvm/OJMMrpGk0uS2j9dwYWIRbmgiVkwPVkbuu2aYj3ZSAuIVgL1Uii0l9akPxaM9E8fBWsVuWh2+wmlC65o4GSPk1rVtm1wzlbAln+Iz9zeXT8INIfjjpBmUl0IpRIxRmGMwze+fs6yOTgJJ6UUhmHA+Zb1oufs7Iy2a9FaEecosODWsuoddzfvaVrLYrvl+bNLNuueprOgYrVsy8s857rI0FJfOcfMcY68u93x+sMtH273NN0Spa1Uivu2NkMVcowMw14cFDHgvWO17Dk/3/Dq1Qus1zivub65ous6xmkiF4H1xiAWX2M1bdugjWYYjoQw45ynbR9xSmSkNU07S4iReZoJc6AEWXhpa7G+YQCSsZSmITYN2Qm/KOrEpBWTgdkqnDUCrKy2SIOmfRACDQHDnCFMI8YEfFPddrX1bN00YDPYwou+pRxGGjJnGlYkDImoFIYgOfGcCfNR7JXG0TYWXZKwfm7vORwOhCJMoBgDq9WWxbqn7ddslp5la2kMqBDEERY16Tgy7Q+M+4FlrS9FCZveN60sEkqRjWTJuLah3y4x1siLUiHPgFJFRxIpTIyHxxM1/9mPX2EQ4cAtL7g6wtvbHf/LL9/y//13v+P372/4+sOtwCmVRitF2zqctygMM5GpJFwq3A8j19c7Fm5F5zu00ZW3YbC+xbULbLsgJtgNiXdXe377zTt+/CcjrluyUAblW2yKZPZ8//0V9/uJfrHhX/yLP+H88hMuLp/z9MkLch4I08Q8TOzubri9vuX+dscwzOQsQ4uM4f3trTRiqAQ68Zl6ie1aTLtGtSumEHl/t+ff/vob3l1fcbW/Z1aaVDQ5a0jyzAOFN47Ot3S+pTWOIe5JtQbx9vqG41hI2dIljdcisEz7AzFEnD159R/vyNpyjOIe2k8DbW9oWstm2XHedqxcy6pb8fzTz7nbDezGmTkXEcIOA/e7A8v1Ribb2nJ7dUsaEzobzq1DewNWmvO0AUomZ2lVMM7RtC3DMJByEqFtngXYXLIwoyq35AG8h2yyLs7OefLkCReXl2AUx1r72QCt9yxXSy4utlzdXzGmwHB/R7dd0VlHqy3DUPjw/gOHYWCYJpTStL5h3XW0M7z7/vf87u9+w/e//YbF2RlPPvmEn//L/5oXP/0J/XbLZEAKcWWokCjs73fcXF+zv7vj/OKC7XLFdrni6uqKd6/f8Ltf/ebRztvJsZYRp0hOCa0FWLg6OyOUzG481nrzBu8duzBTppExBr55/Zr3N9dsVyvWbSvcFU7GlZr1rccp0gJUHo+sHbAGvEN1LURpsEEXdHZonTG5YGLmydk5U8xMKbPeLBhCJqLpt2d8dn7J1f1Ah+XX373jl7c7vvv2Lb//5g0/+7Of89Of/XOev3zKwmu8BpMqU40TvaPyFXLBGVMHjHWg9/ADfVx/S234f5rI8phHsokYApSIKoVp3lNSpu0aitM4CymM5HkmjjNhnCBkGuXoTEuDZ9ztCSSSV/QlUsaAnjP6GDhfLtgsl7TPFqjeQ30PJGUoRoamNhhUtoCnhKGmlRV9D0/Pz5ijgruRfBDxN5cCrUengjB0lWwIAWVl80pRxHC6hgzOtTjXYbxwGCMRvTAYZWAuTMNASVLhXFIQF2mOlGhEfNIKo90JNYQxChLVOa1J8wS5xaAhxfp8zRClBlgZg9WPGzzQSLsVRXDq3ri6lh0p5R6tFW3X8Oz5mq++vOSrLy749NMFTy4WLBYeRcaYlpwN86S4vV1zf3fk9nbDMMysVwtWi571skVJILM2scI4JBq74umLFYchc3038euvb1gtLD4qels4XL/lSh04lIlv/+avmG72rNPMp+dLShqJSbPv1txOkX0qXMeB4d4wDRPFdCwuP6XTCROPHNqW6eZ7wvGOFKVFcrNwvLx0OL5FpUhWiVwMuUhzkgZMUbIWsI5u6TG6sMigbxW+b9icNTx53vHFl4Wb24m//+VbXr+5YRozpD26BEKYCeHx1ichZIy1WHsqhpG1tHPCqwRZaocka26jNcoocpqlWUhPpDKhTaRxgW6p8e2MtQPbc8eyd1hrcZ3ieJzJKI5hoEkaisVoEbgrkFTYRSch2Io4SZHBX28cxshQFKBrNc42/PSrV8zjgaure+bxnhAVpInGQZ6lKbjkJPsrY3DO4owhVafcKVKeKxsQeNi36mIeEg2H41Gemw/YCyfCr5L7XMQZaoPQSZQvWKsFC/tfSmA5HX8otPxTD3qpV1KMMWG9xzcNpvVIPVi9+FSRCtNj4Ls377m6uefu/si793dcvcuE4ICObrmgWyxp2yXK9hyPkfE4cbyfGPdCryZO6HikpANKH/AqY3UW3rsywgbBY5drtLbkbqRpeubba/K0J80HSIFcVbFSJ1Va16GHlrgMWIKyZNuh3BqzvCA3a9AdKVtyNYo4rcizwUSPzp7ruwPLZVVvvaffPuXyJXx5P/Lum7fEOXD7iDyIkCLxAW6qf/BlHiBJGbFHUp0h5YGxUqvaSu1/z4V8msRp6bV/8PcUaQNyVtP3Xixlui4SrIhn2lqW6y1FR4pKJDXLS7jac+cUmWNGpYzTUtFclGKao9Q060oQT5mYCwUjjBzrUVZys0RQCUwUWSi2LX3Xo1vHetlzdralWy2r+popCXQVW3RRTFVUSSUTlEIZi/Ge0jiZaNRzr1HVV3qqj5XN4mMeKc1CBCcBiZSifOX4UNcWwsRi2bFY9EzTmmEYiCkwTiPTPFYGhMUYuLm9I6ZATgmlMtZVoCC1TSoX2SyYhocFXyl0XcfZ2TmLfiEUfKNZr5e8eLJh2XsWrWbVJvrGcrFdcPn0DG81RiP553J6WJ0K0fXDpu92f8+b91f8/W++5d3VPYcxoHSP0vahKSjnxBiCVGZOE23bsNquePL0CU+eXHJ+foZ1msWiZztvePLkksWi5353T4zCRJiDVH5utmdooyglM88zi4VEjJbLxxNYfNtjnaj+0zgSplmiERmZnWmZQmSlUE2DXa+w2xW5cWRJmjDnyFwSycpmVp5FAhFWRtXGKqkG9tYQG49aeWzjWG47ssoo3WC15qLp0OM9HDzzticbhU6gdcS3imILOUdcU4gpoVLGNAL3M0ZTiNzf75iOA8PxiDaaVdfi+xa/7Hny4pL1dsliYVk2Bq/Ap8A6QZ8MPiru9wNhmMkh4X1X71mHsuKOUihSyEzTjHWOputR3oIxNRMfiFm+SIkyZcI0EdTjbSouzy7ZHSb2x8Drb2755Xd3fP3mjr/69Rt+8+aGwxzxWGKMGFNwTrPuFqSUCXFmDHNtjJAK7t1u5LhqScu2Lq411lu5J9slrl0Tx8RuyFzvZj7cTdzuBzaXBdW2JG3ANrh2yebsCZtzx/nFE372sz9jvX0CGGI8ctjdMQ8T8zByd3PLcDwSQsS5hr5fkirX5n7cMaeZRGK16tk+ecLFixcszy64Pxy5+nDDr371e3793QfujweGlAhGYbXBKCuRswJWWTrfse6WLFyLyYo4Bob9kdubez68P4Busc0C06wYhxEN0h6FxCHyI4vRRQvjRKlEIjGESCiJmAImwbbr2Z6dszl/Qrd6jXIfGIPUON8fB+53R7Aepy1dt+D27TV38Y4UE6Ek+s2CdtHR9A1kybnHWiPeNi2bzQZrLcfDwDhOTNNE0RI5cs6Kw0lBCALzOzky1ssl5+fnXD55QrdccHl5yXR7w82Ha969+Z6uc6wv17TnW3SY6v0p0OCcEsNuIISM1o7VqqO1HkIi7SZ+9Xe/43e//A1vvntDs1zxxc9/xmc//Qmf//xPWD65RHsvUYgkMESlFHNK3N7dcH17Tde1XFyes1qvSClydXXFzfUNh93u0c6b6zp0FCihU4b1asVqteL5s+dsLy+4urvlF7/+Fbs4y+ZHaxarNZMqxGni7dUHfv/9d/RNy7bv2TSNOCZzfnBPltrXcxIpKKpGQwpJS/QQZ8AbaCxa+7rhLqgQ0amAyayUZlFEnBmno2wds+I4H9n0Z5w356xcx2ax4tt31/zu7Vv+zThxdzzy9u6eT774nC8+ec7T8zXnjcVZI8MkZIBgqsOpPtrF+UBBq4/rLPj3RZY//PXDPfG/oeDS+URMM6nMeK1Yrhu882zPzrifJGqa54E0zYThyLg/cGg6VNE0tsUUx3GCKUbCMXIII5M7Eu6OuPMzjnrHe6X4/lffstxuWGxWnD99gtr2FKfAKqz2YDtUzhQX0SnjKCyxnJ/dMEcHeqBfJI4hcIiBW2INvYOpzWZJybpS1dYqlYqIfBhabXBK41QhKGkS7Z3Cdw4fe5ZazpM1licXW4zzKGMJKErKKI04fnOWIRwCGRdHY6HkJG7QnDHkqqZV57y1oAqPWHAIgDO6TvfBG48zBmMyugRMO3J53vDjLxf8+Z8+48dfPOXzzy7YLDTOFozOde0RpTjAZJZtxCpYdh1Nc07XtLSNx1pFSTPUn0/ZjlzOeBafUnTi91+/4e37W+6uPzAfxW3AsOO7X/wNh96wUjOL4cATb9m0C/xhgiRx2CFHrsfIzRQpdxPzNDLvD9zc3lH8gnbdsXCKrm+4do7j1RvG3Qco0LSa55c9T88XHFLh/jCjdHXKhyBOBiPx7uOoyUzAgRSP7HaGeU7EmInJYJ1ms3H87Gev2G4a7u8Hdvcj00FxnwP3w+Pt5eYw0ZhGEAtGxHCtlYRDnJK2xzSTy1Rd45qYDDEPxDyS9UjTWc7WLZ88f8LPfvqcy23HxbZhu13QLzqcd6QM7XEmRNl9jHEij4mMtDxJ5EZXjefkQFQkUTRwzgrfTclQvhTwFtZLx5/89DNSnPnm27f8/us3HKaJMA9QZrTKaMTZ4iw4p3G2DntTeXguKqgD4ShOmupQL6VIxM9ophQJ+RRht1Lkkgo5CTIjZ9BCvZa0htbYut8wphZE/BHHowgs6j+gpp9+/fDParAmZDDeY70DBala0Aswz5k5wO4w85vffMf3r6+4vtnz7v09x0OLd2tW65Z21dXNV0+hIYbENCXmKZDmQAkBU4K4V/KEYcYbMKp21pyo8EqhrMW0nUykiiKHmaQSiUiOYrE/RUWUOiksIkJQHQ4JWQAr36F9D7YhY0lZnSDxKAPaSEOGSZ7jOHMYIl2b8MphfEe32nD25DnNcsm42zOVx1M9UyVPf2xJUVW8rtaoartSCJPjH8Y4+CEAX8BfSQQzXU4b5fJwkykF1qhKGdcojdRgKSpkTGF9g3ENymQyM9OkSGEmzUKdLzGRQySrXGMdihgTuVb8Fl0hmCkj9eXyYtRK+BRoEVhUrZ5zTkS9xrb0y55uucR6L/V01a2krcQTJLJSSKUQsrhlrLeYRloyMGKj1qeYBxqVFUK8lwaExzxSjnxs1ZJKZAHJxY8OlpweKsq6rnuIEcUYmMJE0zmcNzhvmcNIiLOcTJU5tXXFFIWijSxgTX1YpRQxRuzvbdtKFbaSWMRy2bJeL1m2Fm8iet2zXjQ8Od/gmwqGLjWb9oND1YhaLuIQ2h8nrm723NwdCQmMaXDaU6pLilKIcyDHSE5ST9d4S9t6usbhnFi9h+GA0uKAGMeReZ5rvfRMSnLfG1edY4hVsJRC0zTCSHjEZgxXK8QLCGxrPsWDfhAxoN5HzmG6FtW1JCubsFIZRInq/mo9Ml1WhDRjkhEoJOKyQyus1dKK1TkWC0/UUnvpjKFzDa7RWKdYLFtCSJQgwEXtlESScqTYIs4upci9lcx4KkxxZJgOzGEilkDnW5res1j39NsVZ+crNtsVm1VLZ0DHQDns8VmYTgI8neuEQuFdg7ayEFW2CKAtFUoMxBDwbUvbd6harVnqPZlOefecKTEIO6H8cZOGf+wwyjNNEzf3E799e+QXX1/zzbsdX7+5YXeYSUVq0lVROKXxdfF9iqPFHMkKkhIBeJoj0xiZpkApGW2lilLq7Fu07Yh54jBE9kPkOCcO40wsoJ0nFeEANP2S5y8/wdqW7eacs7NznG+YpsA8DQyHA0N1B+3u7pmGiVBjpsaKoGOdk1hWkczZ9vyCs4tLVtszstZc3+94c3XFd++uuD0MMp1XhqwtGieLJWRx7YyldS2dq5ySBONx4rA/sr/fM8wa1yTabAjTzGQmDFBilGdkgZQe77wB8g7T6sENUFQmlsIUIlOIxBaMa/BtVxsAtcB8U2GOmWGesMNA61t626CUIoSZ3f09pjEklchkrBPYuyzy6nVjDG3bUoq4cec5MIeAMtLGpLUMdh6iuFmaTJy1LJYLlqsl/VIg4+fn5xzPzrgumaurK1bbFU/HF3SXa5Q3mCgMm5IyOSZKLnjrcUrhvEeFzHF/4O7tFV//5vdcX90QUuby5QtefvUlL778gvWTS0zXynM4FnGZ1U3+MBw5Hg9M88Rq0bPoe7xzzPPMbnfPsdZRP9ZRtEYZYaa1vuXs/JyL8ws+/exzVtsNxRjc119DbYgrueCcI1qJiw7zxIebWz5sb9g/e8aqaUSQOFkGlCxiKi2Ajx6W8hA9zIKLq1Hyj4tu7S0WhdLCWpKKb/nztkSUNqSsyPcDOkrr2fP1kv2zJ6SQePfhmpu7W15//z3FO2aj8V6aOOy6ZdG1OOtwRvh2KFU3Rh+1oNN3++Bk4R8XU/7BZ/q/g6vFxRGdJkqJLKyn87L+2KwXsE8cw8wxzpQUSKE2kg0j3rnK8bPkrAixEHNiGiZp+TlOrLKhQ9EoOHrDNATGwwRYmlIwnUN74WSbpFHJUUorzjwF2jiMaTG6wapA7524EnMgxRFTBU+QtsiIxOhN/fuSExqNo+ABVyReglYULdFzvCNaS+p7aQ1zDZvNObHAnAv34/zxevWeYZ5kgl6bIAVQysMiW53OU22ByRRIqjKI1GOixsSnpmTYY7Wtq5Fq5Grg/MLxyWcrPvt8xfMXPRfnDV7sZRLlr9dV7drC2kynFI13dG1D4+SaVrpA0mJgxoLxoDQNHanMpJy5v79nv9tRksM6DfPI8fo9zVHRN4WtUqysZq1qJW+RhtNOF7QX7uGVhuspkseR4/5ASFCMx/Sejkva/R0hzMzjAdKEMopFb9luWhaHgJ1qgUmOMmiyBms9SiuGWRFyfd5nQ0ieVDwZJ867EkFB3xvOzz2Nz7SusL+BMAT2PB6guFTGkaoOVK2K4A0cGAck2VPlMtfqd1ljpzKS1QR6xnlDt7CcX6749NMXLFtN61JtEnK4xpOVoRhHiIk51cgbwjWN6eERWQf0uooo6iGW+dAaCmhkb6QUOKN4crHm1YtLYoxcXd2wHwZxOZVQnSQRTcLqgjMKZzRWSdKAupc9Sc2lriNEZNGoItF8ZQ2x5MpDk8jlCf2Q6142lx+KQ7IvMVrKUarZ+I86/miB5Q9FlT/8/X/qOL2UYpbJrvOWkAJ5Cg8Mj91uZpzh5mbgX//rv+H3X7/n5mZgt090/UsuLtZsL1f4doOyHSl7UlIMQ+B4GJmOEyXM6DRjCZg0QZlpVGDhFU5lSDMlUjkihaI12AZai9YWnxLRSrtNmmSDo3JGFc0JwPYQYVKnBhxHcR2qWVKaBVl5UjGE+oJ8mJ1Yyd1nlTjsB+72AWNmafFoGprlmrNnL+k2W3GcPCJwM1YxIlb7aakLvBjjg8hy2lwqI40uGMipiNiQJb8Yk7wsxCFe824nAaYKaydb16Jr8M5w1OIEqSnVh4q1vutpWovSgWHwzOORoRSm/UScE2mORJXE4qY0oWSJKdWXzZQCLiSpbSzy0tPa0BhXG70LqEjSBt8G2n7JatGwXPR0ywW6cZw6z02tvj3B9Ko3l0xGWYtvPG3XyYa5VqCKmVlEloywMU7pwcc8Qpxrbl9aEVKKApCLAZd9jQhFid21LYuF/DqkSIyBYdhzdrai7Tz9siXEgXEcgEwmSg1lzpSpAhmVRK1OljlpUGhp246maaT+WBWMUWy3a7abJd5k0jhwvu3ZrhZcnK9k4lJytdlJE8BHXk/97LJhnCK3dwPv3t+zO0SsX7JaLxiSrnXPhTjPTMdjzTQXzp9d0nUdbeNJaWYaj6Ayc5zQ1nB9fcVvfvMbrq6uuLu/43A8YI1lsVjQLXq6ruE4TJQizRN932GMfdRNg2/FkZGTNLvM40SZEw1O7rEqOielMN5huh66jljrlgVqnICMbRyL9RKlDBHFMUw4LwsNY4yIZKagnIAY275lte4IRmq2vTH4XARuZmC9XjKMkcBEiBmsTELGPJNMot8saZYLtlpzc3fPbrfn6sMtx/lAyRntwC8c3aZlsenpNi3twtEtHGebFSZOpCEyhRmCosyQhsy4O5KmhFFW+Dq+pXhDsgVjLDkE0igCizaGdtmT6/eWSiaqQqwiIymSx0ky+H+klfMfO8ZB8eFm4nff3vE//O23/PrNjvf3Izd7yaVrpdCx4JU8a7x15DmSZvm+M0neKwaSKsxzZDhO7HdSNds5S9e3uLbFtguU7RhC4GY3c3+cmVLmfpyZskL5jrlonG9Y+54//bM11jQ462l8y6FW5x4PR3a399xd37K7vWd/e6BEKFEEUmFMaYwV1hKuQ3vFF1/9mJeffsZ2u2F32PO719/xzTev+f3rNxymSFKSuVa2RRuPVhabI42BzrUs2wV90+OMJ4fC7c0dN1e33FzfMkdLuxCn6HAYIIPTGkumdRJHDI/IGTsdWmtMnUYVIyKywH8TIRURx50HbUmZGgFVxALDPJHv70l9YrFt8d5xnEbu7u/IKjKnwBwD1lm6rqmTQyNoKa3xvqn11olpnDneH8hF2kNOWXKttXBaioifTdNwdn7GertmsVzgvOPVJ69gPPLb//l/4bvX32M6x5PPX/DFJ5d43Yr7MNW65piwxrHtFg9NCu+/ecOHb97w21/8kr/+q7/GdT3r8wt++i//a37yL/6CJ5++ojs7I2pNLhJZkEy6IqbE1dV79ocdOQW22zWLZQcK7m73XF9fsd/tiI/oPoo5Y7QS6/52y8tPPuHFs+d8+cWXWO8Z5kDbtKjhIOJqTOhGuFG6Cq5vrq9ZLxZ8+vT/z95/NFu2ZdmZ2LfUFkdd6e7Pn4rIiIyMlEBBWVGZoQgQDXZoZUbxB1j/gh0aOzTjD2CLTbJNGns0I9mpKgBVCVpmISMjMzLUi6dcXXXUFkuyMfc5118gCyTeu0CDPCPsxnO/fsU5e+291pxjjjnmc56fnWO0QqpIyH/V5I8x/U8KPuWoYikUsi5kU0RZbSRx0AjZbA4DgNAc4vu6arDWUoqie+gYNmswA+fLZ/zeBy9wSrPd7fjJl6+4v3nLNgwMRmFsYRh3xOslzy4vWcxmLGZzKm2PU4UkT5mMHg+vsBQMTKN+H2Px3yZT/j+pWp4KbvtAlQsWxXU752wxo21ntPOa6DUlFfphhFyI0TOOPZv9jrPVSgh1U5EwhKxJvhD3I13w7HPCbEYu6pplXbFsa/yY2ax71tuBy/1LmuWMZl5DC05nDAZiQ4mFkgoxakZvGEbF2EdMVdHaisbUVMWJf4vVjCVhs7R8+Qx1JWbkQrYompxocqLOYlg7d46q1izamaj6iqj76qqmrme4Zs5D13G/6xhv70hJ7inbzkjjIAnf5Jl3MCBVU6sOB41SlqEGseSpWl8kkX7S1esxqsIYi9UVZSq6NQvDxUXNRx8v+f0/eMYPfveMy2VN0wBBH33zUAgZkQopSctuVRmMdSiVUUoKg2qyE1DagpHCs0LU8zF4HtZbvv76Nev7BxaLSxqjYNiTNwmdLCvX8nEzp4ngxoEc4WB30yg515TT3Fh40wfK2LNbr9nue5ZnCxbaMDu7YjHspfVxv2Uc36BUom0Vz5/NuR0HbnwmqUDJIyUHmqahaTTawn7UlN6idYOzNdoucaZCJ4sPIz5u8d6jFZydKVYLx7NLy/5BMe4HHm7un2zVtIkoHUCLss1Yg3UKWxdcnSk+UspALB2qZBnLHEcyAXREGY+rG9qZ4ex8zscfv8Ti8f0aZyuMcxjnZLJhI+0zIRXiMFKS7DPBJ2IqMim02MnHUtbZqMeCPEmIRDV1RUh9v3B5OeN73/8A6yy3d/fs+56u2wNBvicHDJHKZKJRRKNxWhMQgiXFCBPhpbTGe0/VNiij0crimgrTV4SSGGOkShlXiTUGxIkUQ6YqTR+6HPzxDJWzOCcE+rfBv7cWoX/r1ylNUYaQM77b8dXXI+cXS6rJvPL84oxSKqp6pHILFD2lyNSZ+eKS1fklF9eXKGPwMTHGHqNrhl6qd2HsIXpMCugyYPHMGs3l2ZKrRcPcKZy4prz/yuQ/xkJtMcuMaRzVoiUPDWnoSEF8E3ROxwRaKaZJPIZiG4prybYhYBgSDLkQsqIyHCb84oCERiWLNjP2fYIyUClLrR1N1bJ48YJPf/RD3nxZcffu7VMtE95LIFayJDJ6cmQnM03zsBSkJ81YMeZU1sBkDCbBcBBToFRIqchBpBSVOkwRkoBGTVLJ+WxGXddYO4BOhJzQOaMLdL2nXcxlMslsTts0+LGjsxaVwFcjYfTYIsqVmCIhZmk5ypqkYBgTZgj0Q8SHjEviFSGGSFNVKouJmasDrm5xbYtpGnC1jMEt+WiYlXIkFqmMKyVVf+sqjGuo25a6bSi6IaGFLEwihxPZZxaiRxXyt6U9/1sQoz+O9xSz30CMmpTk4Y8pst93pJSo6xqlNc459n1PHHr0W81iIaOI68aQS8SHgRTFiyUGLwkBRQ4NLS1QYUoIrHU0y1pmyE/eIYv5nOfXF/zwh99j1Sp0Ghh3PR8+X7GcNyxmlRikIoTboXIr70FD1oSIeCXsIyk76vacT74/I2IYQuTL12/YPDwQxlHUTWHEKEXjKuZ1w6cff8KHH73kw08+xMfI3cMDP/nJX/D551/w5u1bvvjiS8ZxoABN03B5ccnZ2QpbVWx3O/m3IpORxnEgpcQ4Pl3CZ40RP4rRM+w7aeuJgHFSMVJWpnpZi6kbzKzFG0XWAAoHVFZTVw4WLZfPrnBVTdaaX799QzGIuW2lpTKWPalSPD+7YrWcc36+JNmJMAXKtqOpHG3lcLMFdhYZsmEb9ngfCUZRrOHZhx9w/uIZ8/MVHoX++jXlxrINA6EESkwYFLOrJZcvrrj+4Bmr63POV0sWdUWdMqEPFO/ROeOUxSF2S+O+R1PR1DPa2QKamuTAEyhJEcdIv91PPlEGZQ3FanwciSVOHukGazS6FIr3VErTuKczAPzsxvMXv3rHX/7yC/7yszve7QJDKIARE0AKumTaafKSVppd1zEGT8wZ3NQ2qeVZHfod+11mYz3UirZZcHZ+xeryimq2IGTH/XbgYd/ThYRyNX0ojMkQVc3s7DltXYuJcC7EMRIGT7fpGLpefH3GxMPtltdfv+P23Q379RadJSBXkwrNh5GYOpROLGdLzq4u+P0f/wlVXbHZ9/zkL37GX/31r7i/W7MfQdu5OPTHAqZQlCTiTWWYN7CcWVYLS1XLFKjdfuT1qxtu392y2+6YtRckHRnLwL2+xc9nNE3Fsqkph+pSfFoFy6xpju1HSic5dGXsFdaJiXfKcH5xxcXVM86vrtHzOfVshraGcRzp+p7gPfOqoWlrxr7D+5GH9ZohBbqxI6SR6+srIWxnDTmJVJ5SJmm0TAvquo7c9Yw+iJR+IpkPviyzuuXq+prnL1+yXJ3hqgprNR998hGNhs9+8Dt8+etfcL9+YLNeY5LsK8WKNNsqhakq6gw5RLrNjq8+/4q//LN/zeuvXvHm1WtU3fDhj36X7/3Bj/mH/6N/wuLFM2zb0JVCiXIe66JI2lJSZvAjX37+OSlF2qbmYrnEaE0/Dtw/3HN7e8NmtyU8ofro9//4D5k1DfNmxgfXz/jw+Qecrc5YLZb4lFgu5lxdXnGz2xCYAuOURHVKRU6Jm/WGSn/NwjU8PzvnYjGndeagr+XRLvaQyB70IAdj/ExWWdpxVSapBCphNVBZVFaYpLAJMSyPmaZqUUXMEj+6ek7XR4aQ2e83LNslH5/NST/+HXKl+eW7G7569TkDgf3uHV9cX/DV8ws+ePaMs+WKq/NzXl4/Z1Y1NFXNvGk4TBECUT2i3iNM/hYD3OPX/gfyYvnjy0sqY6md4+rsQto8jcFrxZpCnyMmB0qCEDz7sScah2tbIaZRBBRjkZZsn0ANib7v0Q89G2WYaU1tFKay2MbRni2p/uY3WGun4oiRaUN2et8JKIqcKz77zVesNzv2XYd2Glcb2nnF/+C//x9RtxUYxS54tsNAHyN9jkSlZNx8TLiq5fLyiqvLC1bLFTovsRSWjaW2DjOZ1xrr0NZhqpoeQwyRHZ3ELl0nPixNQ1KFWGQIQbZMEzctlZvU3u9d2zKRLlLkVeQkMcFTQdPjtMFphdOWnDKNM7z84Ix/+I9+xO/9+IK/83efU+ktMfas1x6Xz7G6QSuNjz0x68lXpkLZMiklHVY7mdJUNGSxCKBASYqEFcWaMqSsiVkRY6GkiCmZWimu2obvXVU8axUfuMSZ76mDxgZFtDOKNmKknzusNSgUz9qKX96vyd2Wcbdmv3nAXy0oaiGTvRdL5iVyngZu/Ya034EaeHbd8LYrLLYDD6WjqAFtImerOYvFAjfTuHmNNQusFl/OnJx4K4eEMndo21FpOF85Ls+XtHVNbRqW9cAvr+Bs/nRxpbJhGh8f0cXKtTYWSPhY8KHHxwdQnZx9Wp4xlFgMhNBzd9+T4wZb9vz9P/wB89aiksLaBqMrlLKADBDAKFSBtmpFYRyitBjnTMiJUAqugHVWvIaUFuVMTCQvk0hlxHqehqhAVc14+fKCxXJG1bRcPXvGL3/5G2IMvL15wOqMKoG+2zAOgeA95GkCKYiMBlGcaKPpxoEmzVFGS3zY1OjK0gfPfuhxVU3bzrBWct9SxCMtpYJK0zCcnDn4u9R1RVNL++C3wXdWsLz/53/b5w6b/IEl8jERQiQlj7UJY8+wTnr8jZVJNSL3t2hdY634eVT1TCp+tZGqg3SeoVQhxkgM0uN3GK+scqIysJo1PL9oaZzBqAIlQc6Tx4i4BJdpjLBWCoxFUYHJaOWBgtJGfGKitDPJgXxoEzIoIyxKfm9j9rmQiubQRaKUJDrIfULVtCityMVIotlHqBQz57i4fsbQdfRP6MGSUpq8NDh6P+ippcZomfKCglySECxHo+EpHDmYCUUxWRKTUpFFG/tN6eLB+dlah3OVmDEVjiZ2BfAx4kOQaTWI4a4qDaVdEJcR70ZiFVAJhnEgj6OUFCYz3VwgpCzX2h8mRiHJu9jkyW9SZpIAa5SxFDUJGkshlclzRmkoQpaUw0x1q6eNQYyArZFNXB19afQk7QSRw4m3DFmLJPIJcbxHpwk/789+V0BOmXGUscpVVdPaBq013o90Q0e2hYfNBU1THVuKchZ1izbT9KSiSFHWOBeR9CWmMeJqSlmKTMcwRjOft6zOliwWM5zy0r/YVMzamroSeV16rxtN3sh7AaFSU1uSqKKcazg7u6ReasaY2fU97uZO3m8ShY0CjFJYo1nMZ6xWC87OVpydrdh2e9S68PBwz83tDfcP95NKR1p16qZhPp+htSFNfiwHDwSlFMMwHKcvPRWUEud22Z+k/WoqlkqfvTGk6b4RM1xHmAJ/rSYDPqVEsmgtdVPhmgbMlNQ6UUkUA75EGXVnFbP5jHnbUjsnfeqTkigUcQ2yGCya1tZgEx0DJQlxMWvnXHxwzfzqnHoxQwVRs6yK9OH2qyVplFG8TdtQzWvcrMLNalxjMdZAjEKIxXBM8EmFHJL4VTiDcxXKVdJfbpDxqGXqjZ3Gg2sj3ktlGh+fKDKtxlmSFf8j6es1zOr2ydbti7sdX93ueXXXselkPLG0BORjXqa0koRda/E2iXkyklVHNZ8UzxM5jQSv8QPUixVtM2c2WzGbrdC2Io0ynjwVRTOb8+KlY3V2xXxxTtOuqJsFzlVoBWn0xOAJPhF8JIVMConoE0Mfjh99P1C8p+SIJqM1xCznrlawWMx5/uw55+dXPKzXvLvZ8MVXN9w/9HR9lhGeGJEhlzgpE8XEXBNxTlHXhbZVaCOePV0/sN3t6bqecfDMqkIOkag83XaPUQpDIVdOlIFHbefT4frqaprIUcTjyxRpg8yRubHMZwva2YwPP/qI23d3dPueXkFdN8SY2O52cnZpIVsaJ1PvQvBkrdDeoAaN2zmqylEo1E0lSgMOSe1BbD+Nko+RYfSSVL3XKllKoaoqzs5WXFxe0DQNSiliiMzmNfPVkucffsBXX/6amCJ+GFExS1utEi2GrR0qg+9Gbt/ecPvqDZ//7Fd8+avfsN3syKnw7KOXfPzDH/DJ7/2I2dUFuqnJRhNznlpSZA9MuUymgZGx72VcJUq8IijkFOm7nu12yzAM0r7wRPjBD39AU9W0dcNqtmC+XFLVNVobnFI0TcNqucQYIzPwJoLhccqLI+bMrut5/fYt9+s1tdVUdi73gnqcqPENHJZqGjGPKocBRo+xj+J4TpTJEFcqtEpaq4r49FWVQ+GwNlEGz5AjjYaLWcMH1xe82215dR/pd1s264bKKS7mDucswzDQ7XaoXDhfrDhfrJg3zXRfHV6P/K7jKTr929+mVvntaZ/vK1yeEp+sznDGUFnHspUR71lBVwqOjClZfIJyJsTA6APFBSm2FYnHpOSpiEXJeYgk3d04oqd4z2tQVqF7w857Kl3LuagUVYPEa1ZJLD55u6Ea7tc9XR/woYinIpmmsayamvm8wTjDPDUsZg1jTlIYVaKoCjnjqlaIvuWCunbYXHClsNQaW9Q3b59cKJNvoMkFJr+VHCM6JZw+FJgQFbCE0KI6swatJhsCsrQO5cmcWR2mXz1tXGl0ROuEVmKEapRj1lquLle8/PAZz57Nmc0MvveoYjDFQq5ANUxBBRBQU4sKuoiaxBhRq2TpWkgpE32W+DJmfBZvy2JAq4DWluVqxbNnz7lcXXOxXPHyvOVymTizkVnpmWkpNjkcYzKUpClZEYMnq4hlut9ypOQIMTD2HTkFjMwQl9bw2Yz27AzX1OA7dMnM547ZzFPVoH1Cq4RSCWe1kEXOYFw1tbRxzAEy0hqUJx8IazWrs4azM0tbGSqj+fDDJf1+xXY9f7J1K4Tpd0tBXGnJZQ8tyn7s8bFD6ygFIa1A5aPfpCqQUmQYeu5u7+i6gdq2OH3InR6V+Y+tPmLsLiabCquYCtOJyKFDheOQx0fVIBz7hKY4RH6mtFk3bcXz55cMXvK4z7/8mofNTkaF50jf7ej3gXGIlJQxhz14op4Pr+3QIqS1pmglpuVaTXmmF/sDDpNxD3ncY9fF+x9q6sCwFmz5dpYBTz5F6H1i5f0/H150LmII533A+0DOgRDz1PNViWnoxFmIslNhtPSm1pXF1Q2ucmirJNFXerpYSLIYvJArh5FjOVI5zXLW8vxKzDY1Mr1DKO6Dm3+RvjEOe5kCKySLUq2QMWggSUCREe3TNFpaadlQDol7SIkxSv+lBEGPfWqHUaMpZ9p2jp76MGOC3d5D1DRnDedXz+h2O7brh++6TEekiaUrheN0GKNkUo41dpqMJP16xr43SlI9TvFJSeSA3kugqJQSt+kszWp6yj4eCRZLVckITxBDoWl18EEO28EH2uiorca5CtqZTC+pA2EMlJApWosfQUxHD5xUMjFlQpAHM4RETgfdooKiJXhX+vg7lTFHciXkjM0Fa6a2r4NsO0n7lHViRllVIpdTRhhYpkSjqMfDVcgzgzVCIj115ehgMnu4ekKyHPoQpaXp4DeyXEowqrRi9APb3ZaheB4eLlgsZkAiFzHHTTlQu0qM/RCi5tDbmJkqD7lMjK/8OeWEdYb5YsZqtaSpa1T06AJVU1HXUk0C6YM+NMJMUYXcH0ibXUGUPylDXc+4sHOSbtgOA0WvMcaQk7Q/lSyb62EE+Gq1YLmcM5uJjN8MihQD6/UD2+1mIlfKsW1qNp/TNC0hiB/LOI5waIUC+r7/9yKlzjmTohx8wpBLlcoYI6NVlYwvN86hrCVSHkeMFlEgHN6zGBVXqKqiairCRK4kXRhzIJRI7Qxt29A2tfSIm+lxmNh6W5RM6MrQ2IpiE1bJ1C1nKqpFw7MPnmOXM6gsYz/QrmbgDPPFgth7xn6g2+7IKeDaCl0ZVCVO9Whp34nBU0IQAUHOlIk4yTGja2l5wTqUdWDEZPowij3FJD9Xa9lzp1abRJEKhXNkazlYQTrjmLdPF8B8frPhy/s9b9cjXShTAFUmokF+pzIGU1lSKsSciZmJMtDSgjm10ck94IlR4T0s6xe07YL5bMVstkTbith7NruOojTL1RnPXsy5fvaC1bmQLK5ZSBtKSgQ/MPQeP4zEMI0CDpngE76PhDETYyH4wLDfkcOIIuJqQ2GqhmpYLhe8eP6C1fKcr1/d8Ob1HV9/fcdmE0hRyVjUY4Al54Y2YK1CpYC1mqpOtDOFMoWQIruuZ7fv6HsxdCYXSkykMtInReUMlRVjxXwIUZ+YjP7gxQsmppxMIBkZSa+m8ZzLZsZiseR73/8e/b4nxsy7/Q5bN4QYeVivmU1+I6MfWcyXotyLgWI1OhjUqNjtNMYoCpnVaikqs2n6zvvtshLIDnT9eDS2PZwPQrBIS8zF5SVN2wDgvUctW5r5jBcffSD98FObpIoyBbEoSLZQVQ0aRdh0fP35l3z1y8/45U/+mjdfvUJpS7Nc8uH3vsenv/cjPvnRDzHzlmy1NJsWmVyjphbcmMTTK+ZMDAGrZPKeKlLdyyEy9D273Z5+HMQL4Ynww9/9XZy1WG3QSSaaHIh9YyxN3bBarbDaEpHx7akwGfUDVUWOiW4cefPuHXfrB5azhuWsxehJDfCNBHWqjkithEMAePwq9dg+VNRBPSJSZGPkbCxZEfuAUVJgMZXDNgpnJXkOQ8SVwryyfHB1wRc376g09GPP0Hf0fc0YPOvdlq7reOAepw3pMuK04dnl5dHPAKYt6N+BXPntIue/D3xyfi5FAKWpnCMDYYr1bckS45ZETvFoAE4MQl4AGDF5T8hwgKKlBRttGH3CSSQi0/O0ZG9qHKipsEXm4GAT2k4mxdaK0bWyaNuy3Y2EmEhFiXfbNLmsVjCzRirVwFzVRGBEEbXEiLEUXNUya+fMmhkAJiZcLswKqJgm4fYUK5mp1aAyYsAep5g7iXJbkkO5v3KR8dYKaXGxxkweEYfinRTqDs/Av8kMfndYm4VM0FN7nqmZtzVXl5c8f3bF2bnB2EQMA7Y0aGXRukUVIVhkPL1F6SK+KSrJ+hhJ1LNS5FLwqTCMkTBGxs4zJKZ5ronZzKCN5eLiio8//pjr1TMulkueLy2XZsMi72nGgcZAYyzONTBasjGUpCB1xBzFqDhF9HTPkRK+7ykpiAItSyxI09AuV7impgwWEwPzeUXbjlhXsKmgdRbSyUiibqyVaYdIGCtjfpli13IsJBqrODtrmS8stQVL4NnzBfvNgvXd0w1PKARymSYekUGJCbKQCQPe94TQoa2sq3T7y7kvRWF5ooIPrNcb+n5gOaunlnPJnQ7KgCnjQAa6TLm9hsrWxBKlqyMnQFrHSioyWGG6JnqasqgOBIvRKLQoSIrBGsP5+QJtGrr9wNXlOV+/fitjpXOi2+/o9x4/Fkp2aFWJUe1EeB8qXrlILqSMmVqS9NFM/ti9UYqQmNNQl8NmL7lNRh/NrZh8WBTuW1IlqvyHnOV2wgknnHDCCSeccMIJJ5xwwgknnPD/g3jigV8nnHDCCSeccMIJJ5xwwgknnHDCCf//hxPBcsIJJ5xwwgknnHDCCSeccMIJJ5zwHXEiWE444YQTTjjhhBNOOOGEE0444YQTviNOBMsJJ5xwwgknnHDCCSeccMIJJ5xwwnfEiWA54YQTTjjhhBNOOOGEE0444YQTTviOOBEsJ5xwwgknnHDCCSeccMIJJ5xwwgnfESeC5YQTTjjhhBNOOOGEE0444YQTTjjhO+JEsJxwwgknnHDCCSeccMIJJ5xwwgknfEecCJYTTjjhhBNOOOGEE0444YQTTjjhhO+IE8FywgknnHDCCSeccMIJJ5xwwgknnPAdcSJYTjjhhBNOOOGEE0444YQTTjjhhBO+I04EywknnHDCCSeccMIJJ5xwwgknnHDCd8SJYDnhhBNOOOGEE0444YQTTjjhhBNO+I44ESwnnHDCCSeccMIJJ5xwwgknnHDCCd8RJ4LlhBNOOOGEE0444YQTTjjhhBNOOOE74kSwnHDCCSeccMIJJ5xwwgknnHDCCSd8R5wIlhNOOOGEE0444YQTTjjhhBNOOOGE74gTwXLCCSeccMIJJ5xwwgknnHDCCSec8B1xIlhOOOGEE0444YQTTjjhhBNOOOGEE74jTgTLCSeccMIJJ5xwwgknnHDCCSeccMJ3xIlgOeGEE0444YQTTjjhhBNOOOGEE074jrDf9ht/8+vPWCwWtG1L5RwlJ1IKdN3++DVKaYyxaC08ToyRN2/esF6v6fcd3/+d7zNfLLDWklLCGIOxFhSg1PQzFDFGSikopSDLf7VRRMBYgzEGUmG73RK8p6lqjLUorUApjNbklIkhggJbOYwx+BCggEbjjCHHRKGQVSHLn0DJyymlkEsh50xlKnKI7Lc7tDXUdU0zm4E2lJwoKZFixFhLAYZxwFiL0RprLcYYSimUUo7v8YAYIxQwypBzPv772dXlt12qb+DNqxtCiOSUsdYSQgCgnTUslwus0aBAG8g5EWPg7u4GMljjOF9c4OoapRQpR2BaD61IJaIUx+uOynLdcgIsCoPCAIqcFSXD6DMxJmJMhODphj0+jHjf45zGOUtdVSzaFTEEUpT7ZLVaYq3F+8Bms0EpRdM0DMNwvG5N09C0LSjDZtMT4oirLOfnS1wFShUKCSiU8nitp29HKU0psibee0BR6QqrHWGMslbAfDFHWUWhyDVRcu8UCk01f5J1A/jP/5//BSEnQk5s93u63Y4SEjPrePH8msvLc569uObs2QXGaDQFxhF/+8D+9Vt+9V/8S14uztAxcn97QyyeWdtwtlxwfraS914yg/fc3t7Sdz0hpOlatqxWKxarJQ8PD9zf31PX7njvWmup6xrvPXd3t1RVRVNVtG3L5fU11lqU0sQYp2uc6fuR9XrNMAyMfqSuHGdnKxaLBfv9noeHB1LOvPzwJbPZDGMNSslznnKmKKjbFqcMBo0pCo2hoBiBZKDb7bl/845f/Is/Q+8H6lBY1C3BKqKB0GjqxYz5fM7V5QVX11e4usZUjuY/+18+ybr9x//j/xVWFYwuOJ24Om/59KMX/NP/5L/Hj3/4Kc4pvO9p2wprDdYZlqs5m/WWvhvIuRBQZAq5ZBaLBXVV44zli199RcwJjOH8+hmvvn5L3/U4a7k6WzJratqm4u7hnn0/0odIO2tZLZdYY1nfbfjiF58Tgmd2MeOHP/odwuBZ3z2w2W148cFzLi4uKDkRQpDnrG1BTXtizlAiTHuZNYfnRpEBjZKtXE3PFxqKotuPNPUMpSxffPkl1jpyTmx3az753idUlaOUTNu2FKXwIfKv/+KnWFNhbYW1LcMYyFmhtOVP//RP+eyzz/j888/5f/zf/vdPsm67L79iv+8IIXJ+cYmrGzmPfMTHyDh6+mGgaVvquqGuaqqqOl6blDPeewoFbQxoJc+Lev+3yOcOz5HWWo4/1PF8SCmRUoKUj5/TWpOSrMkwDJQCbduyWCxwVs6OkgtQQCmyUgRd8Kow+pFuu+fhi9csm5azxZKrZ1dkVYgp0Q8D2WiMtTR1g4vw8Potr3/1Oa9//muWszkX5+f86I9+n30YuX245yd//VMAVudnvPjoQz76/qdUixm6qSjAw+0924cN96/eocaCjmBC4eHVDf12T7/r+E//d//Zk6wbwBd//xOsc1hnwUKzcti5w17N8MuGoarYu5Y3qeHr9cDXDx1f3m7xGWIpxBQJsSNmT4gDISdygpQ0MStKmdYLJetV5N4+xCO2ssd1PazZtNpYa5k1DW3dsFgsmLctWilKLoR+ZOx7vB9JcYAUUCSsLhirMEbhrMIYOaOVhqrW1G2NrR3KWpRrMK6hmi1QtsaYCqUtX3z1hp/+9S/4m19+wZ//1Vt6NElX6PqMZbukdo7aWlROGMCUgi5FTu4i71MrKCqTyagKiioUBX/6s589ybr93//Z/4JROUbleCgVX96u2ew7+r7jeu54tprx6fUZSwX9bke/77GuJdcto1K82u+4uV/jfWQKJCklk1Oi+JHaaFpruFzMeH6x4mw+43K1xOoMJVFKAhR1O6euW/phYL3ZMI4jANeXFzR1jTOG+7sbtFZUVY2qZxStKKrgkyelgC6F2hocYNEYZdj2A2OGAOTK8cW7W+62HUM2vH73lm3Xsfc9dlFTL2c0qxm7YUMJnsYY/tHv/SEX2lH2A69+8WuGomgWC66fv+BMVVRaQ8589u41yx9+zNkPPuUH/8l/lw/+3p9Qn52RtCZHIBVUhnrhnmTd/k//xzfEEIjRM/Q75vMGa5TcwzkSo8d7j3MOayUn8DHK86ANTVMz5J6YAzF43r254927W+5v7/mf/qf/E5bnS7TTvL19x5/+y/+aX//y1/z6l5/xox/+HnVVE0PE+8DzFx/w/PkLfPLsuz0pBdqmom7nlKIYB09TVYz9wPbhgZ/+9K+4u79j3+9xreVh88DgexKJRdOilabkwtAPtHXNrG2YzedsNxuGfqCkwuL8ihcffMgf//GfcHtzw28+/w0//8XP8anw8ccf8+knn/Df+Uf/EKMz2/2Wn/zN3/DFb75m3s755KNPeNg8sN6s2Xcd11cvcLai5MzD/Tvut28YfU+MgT/5oxd8/5MZ3/90xv/6f/t/eJJ1A9i+fkNV19jp7EoK0KDNlIOVgp5i4nG3x+92xGGkbmpcW2FXM/a3D/TbPZv7Nckn5osF51dXzM8vybEQQmT3sGV7e4/vBgiJel6TiPR+z6/+5q/Yrm/p91vaSmFKwahCbS1GV2htsa6mmS3Q2lKy4t2rB/b7jmEcSTlRtw3WOVztpnhzevaDh+n1W6NQ2pExhGzQyk75i5YcQIGpHP/4n/xjZmcLki785G9+wvx8xeJsyQcfvGD/sCaMnhQCs8WCqmmxdUWkoJ1FW4t1DmUk/yspTWfx9Bqa9knW7V/8y59jFdhS0H7EjgN56Oge3rFd37Lv9qx3W956j/vwJdWnH7P9+CW3lcG3DRcffcK46Xnz1Wv+7E//X9zf3rBaLfjow5f8s//hPyN2njR6rlcrVosGpRPr3T2vbu7xIZKLYnv/QL1cUi9W3O1HfvrLz/j65pZ9yihnyargs4ccmFnLZdvwj//gx/zBRx/x6cUFdSkYLedIIGOxGKVxaHwf8VozaHgbO/7m1Ve8226IdcPZ8xcU07DpDW++vKPGclbX1FVie/eKzduv+OJf/XO+/lf/ipm1/JP/2f+cP/yn/5T6+hLf1oBCKznTEoWYk3yEkV/+4hdst3tizvzRH/8xTd2g0fxvZrN/5zX61gSLdUKE5CKJJAqUlgDjcDMp9U2BjPeeGOUAmy8WWFdhjMUYC1MgXnJBW30kWOTnvBeRTkGLVhoN8l+lGINHlYLVGucM5UDQABQoOVNSAisBLEqRC0LY6ILWmqyyJApFvrFIpCyEwXuvRSvICnLO5FiwzpFLeU8OJEm6LghNkwvZB3AO5/SUgEgALMnHN99joZBKQuvpfepvROTfCSEIKSAbivz+wwZzeC0wXYYCucAwjFhtMMrIxZy+TitFLhLEl4IkESAEw5R85ZzJKQMRSqaUSClCXOQM3idCSKQkCUsInpSEZNITIVVV1RSkquPnDuTH+0TV4c/f+DuHazj9zpSJMcr9K+/mSK4IWSRJ/OFn815C9PjzOSZRIPeBwRzvy6Iy8M3A+inQ7fZkBbFkUoyoIgG+LhC7nt5adpWjbh3OGHQpxIc1D198RffmHQ0K5SMxSLCjKgVWg7OkUiR4LoXoA2EYCd6jlCGESLKSRKcQp0Aq4pwD8pEwOax5CAGjNclaIUKAlDNCQTGlJPK05FJIOTEGDxTGEKhjpIAcUikxDEJQOhzG6mnNHgnPYrRce+SeTiWTciYVBSXjnGVxtiChUPuRkCMpCYvY1DXn5xcsVgvOzs6oZ3OMM0dS+CmgJr5RK0VT1zx79oznz5/T1BX7boezGq0zlZvjKos2mr4f6Pue0XsqVxF8QBlN29Y0dUXJhf2+Z7/fUc9a6qamH3pyymhlaOqKuq6wzlAo9GPAxwIY2qZGK0UKkf22Y7/rSCliZ5aSIOdCjJLU5zTtXymRUkZrWb1yYJ6VouRpHygFO5HK721sHEhYpRQULc+kMYeLwnyxIPhAygnrKva7PXnWMp/P8D6gjUFpxdXVFZv1jnEcqOv59DNln7i4uOTu7h7nqidbt74fKSisq9DacNwejxvloQigHzkTNe0pyN5ZDp/kcN//bffH4+dzzmilOXzn+yjqeDShtZCVOQtBrVBHItjomjztVVbrKbYsct4YsMbS1g1bo8kpEceR4APaGTmzlRISvhRJiNA4V7FcLOnPz6mtwzhLTImioFnM+P4Pf4CPAaU1Ywy8efeOet9Sz1ra+RyrLG3VsFWGzfqOsBsoXSDtR+LgwYfvtFa/jVdxlK3NgDM1y7qlbhvqumFUml0o3I17vu73vOsC6zEykolAygU/ekKMpBwJKZNKIRcle3+W6ymLIbuaHINJnh8KOTze8/Khp/8WQozs9x1+9IyjZ1zMqazDWSdFmKpCaUWOipwMlIgm46zGGIWx4JyQLXr6e87gh0Aiol1Bu8QYC9qNGFuhraNtK168uGYImS9vOt5uRrqQiHEgBIdRBasVlVZoQBUlpB6KrGTHztM9mMjkmEhFAtOnwphhINPnwD7I3h98QFGoK4c1mhgCXY7kXDDWgXH4mOlTputHUjqcDfIMqFKOpKVRGmssTV1TuQprrRDYMaC1xLXWVoBiHEfG0U+xjaVyDtDElMkxSgFRG4w2ODQxC6mqcsIUpgBeYY3ExL0PDCkRUEStSVqxHnpudhuCqhnJJANRgzaaUDJ5HBnGACGgTMGPkVw5NIbKNcSU0cg1wVkoUuxq2hY/ejbrNfd3d1z1PdVijtI1eiqCPV1UCSkFcomUkkg5klJEK43SGq0MORtKge1uh7UWV1XyPCCxQ+4zyUSUKlSV45OPP6KualSGn/zkL3j28gWL8xWb3Y6qmXFxec12veVheyeEprH03UhWhd4PXF1fUcikHLm7W9O0Pc7VOFczDAMxynn6/OULlNWoB83D7h7jLK1phWjLUjArOWOQRDmGiEL2UOccoUTGcWSz3fD67WuctXIPGYcPA0Pfs91u6PuOpnFoYzk/u+Ar/YphHLh/uKduGpyrgZHdvqNtMkZptJF9N5cMRbF+2LG/tBRWT7hyUhzTRuLXdMjnspzNh3ukTPtdOcT0pUzRHPL56bw5FqNzJsU0/VuWAnyO5JykKJPlc4WEKhlnzbTegaZSGApGKZq6wiiLUhalLdoaSoaYM5kEuqCNomiNNgptFUoL8YySBKaoTFHT68cgG7jsCDn76R7UUyFYiq59v8c2Bowix0iOUYiS417C43srWQ57efPHYtOxgH6MfJ8WebslKlkLkwMlekgebaBoSEYTK0e9WGDOztHtgpjBaYcxNVVR7LqBcd+Rh5FFVbOqWxauwR1y1+l1lymGs84JcZqAnFFOs+v33I8DupqhNTirISWJUwqYLHtwSYF+THx5+5qztqI1mo+XqymlVChlSEqTp/MmaE1AkQo4U7GarRhi4cu7O4ZYMM0C216xmM0oY6TfdxilUdZg5y315Tn24oyx6/nZX/+Ml3/373LW1ihnKFriT40ik6dzQp7rqmowdqTfdxL7FgXfMh/49gSLNRPBksjkiQRQqIkJlNj7m1v4OArBopSeKm0SuArBckiIhag5/v2gXJn+ro9kgMZMSQsU2TApEqAYQzrGP0KSlCRVDGP1FOzo6ednVBaiRiGPXilSleG9n1HkBbxXgSxSVcxSYZwiLAmip6pVLofHSk3VXz39HiXR8m8dcfK+5MBJOVG5Cm005gmTvZQSRksCmXKSm8xozLTBPhJdmZzlPe73eypbUbKQZPqwIUuaNV0kIScKmVIgJUlyc07klKeNCEnGshBQuRTCRLAckoOYA6UklFKY6RBzzlHiRAbp918rx8T+/T9/g2gpE4Fk9KQwkapv3dj3qvAHQvBwlWTxD/fe4SOnaaPmm/dkThlTzDHZy6pQivpvTai+LcZuIGvk56ckig2lsEAcRkal2BlFO6uojEbnTPfqLQ9ffM14d8+ZMuAjcRSCpapr2Ti0qCMOB2UIAT96oo/UjRVCxUmlK4ZACJEYhZWXjbdMayrrHUI4qtLydCgdVEWgj5W+A1ESU8b7AKUweo8PgQyiZgP6fsA1NcpoIV95JGZKykxM6/HnlZLJJR+VSMYaFmdLhpgJIRLGRClCyDRVzdnZGcuzlSi42mYK/J7uQNRKYa2mdobzsznPnz3n+vqaqqoYx5GSNW3rqCohRFCw3uwYvZdraEUFZoymaWqcswy9n6o3A81ihqsdm10nZJ/WVFVFXTmM0ZMqKRFTQRlLXTs04KMQLN2+p5BpQ3u8n1NKxOkZLqWQUp4CELn+Uh0COFz3w775SDYo9JFcUhxIcyHXzIFgAWbzGZu0pUSw1tH1A9polssF4+gxSmGs4eLiQt7zMD7+3IlkOT8/Z7lcioLkieC9x1iLte6oLDkk1QccCNxjoj2988OXHgiXb3zPUbmoj6//SOhO3/m33n2HL+Rw/ae1irJfHqq41j7ujweCq0wBk1SMNaaqcNaikhCqcfQ43aCMXNiYhGDJSdbcOcdivqBbLFElg1bEksFqmqrlw9Un9MNAPw7suj2b7ZbKe5rRo4pGF1FB2KLx3UD3sGF82FMlJdX0mP+2d/ytcUPGkDBYaq0IxtGaikZZ+pjYxsDbceTNLnDvC9uo8ChSlns9joGYIiknYs6kw5qUclSvPC7oIRiFnBK65GNgeoxVjCS+qiBqsBQYlWcYPDElmrqhqWvaqpnOK4tSGaUKFI1SGWM1RguhYpzGGiFZUJmY5PWOIWKqjHYJEwvKjRjnsK7GVTMuLs4IGV589Y4u3RN2njEFIVlUwWmFqupjYaGkA0E33X4qHwtAIXp8CkcV7FNgKIo+FboY2XWJYRgJMWAV1NZilSKGQAkjRhm0q8jKMvrAfgwMQ5j2KiHKyhTom6lYZYzBWUfTNFSVw2hRe6UQcFZT1RXWVYQQGf3IOEYhWa2jrhsKEEOkpCixq7ZYZXFoSJGSMjoX0HI2axRGW0KKDD7Qh0iyhqw0Y0489B23uy1UCa8K0SiCktebc6aMI8MwQoxoA8FHslEYDJWpCUoUoSlEiinHYt2saVj7gH9Yc/vuho+7jsYHjK0eY5onLNylHCTGI1NKIqaAVlaKBwr0FHN2fS+ESAg0TQNIHjyQqVpLVRmapuL6/JrKOsIw8vOf/zXrfsfls2cobXGu5uz8nOvrK7549QUpJZx1DL2nHwe2+x1VU6E05BTYbbf4MVA3MxbLc1HE54yymourS0KOhBK5297JnqgM5IQfRBlRYhI1cJbClhQSDDlbYszEGNjvd7x795aXL18KgeQcDAPjMLDbbun6PcYt0EZztjrDWsvQC8Hy0UefYG2F0Y591wFQOTsVE6tjIXez6djuGvrh6QhNAGPMe7mH5C2y78gecLxL8mPhtOT8WEl4v/AIx6KqxH4S+wuxko4xosqZnCOFSMkJ5yxtU+N0pqkVRoHVEu8YZQFDUQalDDEVUoloq2QfxKCKxlYW6wzWaYyVIkUpCoqZcoGCNnoq/GtykoKrxL3SgVEAQmLo99StQ1dWCJb0mMccUkDFVLjPafq8+i2yaSqHvKdQfdJ1G3ogTQRSJqcAJYAWkjYYRagc9vICdbYiNy0+g9EOZypMLIz7nnHfQUosKilELOsGW0TJqaZY+hDDWGuxRhO0FE2N0wz7jvU4slgpIGE0KCWCg5ILJiRInqISY8i8vn3LVduydI4Xs5nsDUrL636viJS0JhZISFy4nC3oQyKPb9iOd5jGs3o2p65avI/4cSDUFRiDmbW4ixXVxRldjPzm15/x7vVr9GLObNag6oqpjDARiiKuMNoK8W4sKSb5NIr8H5pgMc7IBjbJqpRWqKKmyl1GodCq4KwkZiklNpsNKSWqqubq+hl1XUmgjRCAWhusMVS1I8Z4lEY/Vj8LlZP2HqUVRUFIUapNXlQWh+BSlXJUO4RhJIWAH0aWbSMKiKlNJ4RI0Y9Jg5qCpVKYgqqCMwaVpUpYUjmSIOM4oJTGVRWSdOvpmkytPpJxo5Sm73pRZZyZ4zX87WdOa32sTA7DgDUW5dz0858GKSZMJRtqCP5Irjjnpt9/CKzAjyOb7Zpf/eozNIq2rtk+e86z6+fM5jOatpmS4CnYD4GY00RiyPodVSxZHracIU437iGYTVHInJgiIC1A7axluZpTVQ5nLX0QplkbfUyiDhL5wz1yqOgeiJYQAs20ITpnoEi1dxg087nIIfP0GjgGxNLC9L60+6DwCTmSVMao/Ei6TIoNbSUJVEZNbKw6HjhPhtGTySQF1mh5FopsYHoYGf1I2G3x63tMzjB6bn/5GbOYWWnLi/NLtus1435H3+1RM0PIiTEn6pzQKEpMDLuOYdcTY2TWtozDgDGGPEllh35gHEeauj6evkpNLQs+MvQj1lip7LmKlAsHMZs+JJPTFQ+TemU/9PSjBq0pCqq6IpGJJTHs9jSrBU4rMJasFTEn/OipqloIiIlkFQWRvCijNXkiZS6eX7MuhU3wpNyjjcFVFfN2xvlqxexshWtrCTpLOUpKnwJWK64uL3nx7JI//PHv8OxyyWrZ4qoK5zKLecP19RnzeYMPgb4fePfuhsViQdNWbLdb2sWSpm2onEOh2O/3vH37FldZ6sZiLWy3GzQVlXM4A5WTvaYfE7lIomSUpnKGHCJx7Ll9c8vQdbjKUmnZO0suBB8JPh6TlZwhhIQxEwmu9IFakQOoyEFUlPmmcuvItugp0BCCuWprxjGSQqCZz9kPPSpFjFIMQ8cwePphfE95BudnKzbrDSlmum6HcS0qg/cjZ2dLzs7OmM8XT7ZuMWecNlRVJYT8QaMoTK+cdflxL5C/l+lsOpAsj3TTv4lHovZQ+TooAg8B7/EyTvvRsSY27S8p5WOCWybJzDgOsj83khAeFKWiPpI10JXhcnHGuN0T+5F+s8Mag23qI1mjVCKFBqyRxGMxB6Pp+5ExR3CGetGgmwo7a5gFz+g9y76n33VHJdybL75i7EayT7TKcVHNqarI3bihf9jRuIp5+3StlAC78yUBTVTSqlb1IyZG1CYzpJ4hR/Y5sVaWUVkGLENRpBjJYyINgzR5TgF6TOmoBIJ0JE6U1qLYpBwTCpJCZSHuD2eHtfnYLm0UFPR0Bmb8ww6jO6wxOGOprMFZjbNaWoM0VNZSpr1NhCVqIqcLqMI4Cine9T2mDti6omojURUhCeuK2dxjjeP6ask/+Pt/hGk/46s397y76xiHjjF6VAxYzoRUVKI6UNOdL9y2qAKGMND5PWMQQvypsCkVu9Gz7Qfe3G/oR49SsFq2tE5jyIzDiM6Jtqlw9Yxdn7ndDaz7ni4mUlTHZ7XkqbiTMnNjaaqG+awVtaJzKFWk8Bc8uVTURRNiZrvr2O72KGNomxl1XVM3Ld1uSwyeEiOX52eiPFKGuigIhRITGYWpH9UbIRYGn9j7wLvNmupshZ21fPb2NZ/dv+Ptds3sHOq2IRjDdu9JyaKLpqjCZrvHZTCVYhwTuQKNo3YzSVC1EjVRjGQUWhlWqxW36xvu33b0f/XXfPLHf0A9n7NoasBAEeUhmH/bcvx/jVL8pAROoBIhDKhiaeo5KWa01cwWc+4e7nlYr+mHgaurK7SRdUo58PHyJefn51xennN1dsHl+TmXZ2f88//qv+TXX32Jq2r+wT/8j2kqUdPV3/se6+6e12/f8PnXXzCv5qSQSalwcytkx/n5ObP5irubB+LNBm1uePbyBbZyEqsVxeXVBe28RunM3d0Nw9ADMK9rsrEEFfBhpOREDIUQPUprrKtgEMVACAOvX3/N2dkKBSzmc/puIIwDm/U9727eoGyhnc1YLlc8u37Gq1ev+OqrLzlbnmOVYbVc8dkXvyGEgbpytHVF5VoohqFP7LvA51/e4MP2SdbsAGsrKYzDdP9Oqn1rDvw80+FGTlHi9JQk8Z7OrZLLRDYUiS0m0r7EeFQ95/RIspAiwScKkRxHlrOGVWvR6oy2kS4EO6lajHWoiWRJGXyIDJ2HokThFgKRRF3XWOtwtZW8S+5M9FRYkNKO/H/O4EMmjJ4YplbbXl6byolue0/dGlxp5LkKkRITKhd00dIaWoRsNSZhTAJnJzWL7M16YgqORfonTgheWlDWgQVlYRxh8JltyGxKZG1hW7U0H3+An83pK8uuwFLX1Koi73pu37xlt9lysVzRKM3VcsXz83MaJV0hcejxTUUulXQxGINWQAqkceDsbMU+jvhNx5e/WbPv5ToZClYBKaM3PbtXX6B1hFazHvf8eugJD7dcWM1H189pKokHR2vJ2oAx4OS+KxNpPJ/NeWYqfpQUf/brn3Nze8vb9cCH159SRUWlNWM3oBcWu1qizlesPv4IVRRvf/45f/4v/mu+v+/40ayhenaJMwY7kSwpyb1rraapW+qqRyVkLZVGmW9HlXxrgkUb9Y1qsT6qGNQxkBY5kSXGOBEmWQ6qumHWzqaKiFSjDzI1SeQek+T32VUQOZsosaSK5vuR3W7H0PUsZjORYxaRjRmtcdbQBTlAS0rCFBt5AFPOhBgo2lCQirnKwmwmpJVGKT3JgzKqSIJvtcYXISCMtcfXaY09VuxjjOIpozVV5fDBo7TITt2kBlCTFFy91wYk1eI0JbANxmip4Fb1t12qb67bRCblnEkpH6+vMXpip5kIMy19k9s9282eoe8wShHGkRjD0Y+jadtJ0q5ECTEx3Mfqd57aNSayRRKCOBGG041dDi05GWPkes3alqZp0QgppKbXbt67R0IIjOMoBIc+tAE9qlcOBJ0tGecM2ihSKIzjSExzIRQOjPx7Khil9CSH5NATcJRQlixJv7PukRyc3h9a5MCHtOop20wAamVwSggIUDg1SSnJ0i6UCprM+O6OsNsRNjuGtzdcnl1wNp9RZ7jZ7Ri6/RR4Tm1cU4+otAt4ut0e7/30fCSGwWNcRU6FYRinVq5IjLJexkoSKs+WkBzOSGtXVdc0TTslIhLQKGukSqIN1X6PHUaMdRQyISeG4GkW0tOuSsGnRFJQtEY5i7YOpQOlIK9NW7Q2pCKbekFkocYI4YVR2HmNW86w3ZzgA2QhZTQTOayRrz1KDp7uMPz9H/+Ii/MVy3nDu7dvsASMPuP51ZzZbMZs3lDV1dSO59nt9rStXLPD3jib2oCcM3T7nqHr8d7z8oMX1G1zTPYrK8GJM/LfkITACimLzL1yOKMYBk8YO7r9msoUZq1lMW/QCmJOjPFAlsqekBFCNJMJKVFbdwwaQoSURFHUtAcFn7RkKi0KPG3MVJmQxDTFQyVc9mBXOVJO7Hd7lLHElLm/X/P8+XO5D4OnamrmixkhRO7uHljUzbSHZipXsVjMub6+frJ1c3WNcRXa2KPhhZCD07MzVatSKegp0TUmY44Vq/dVinq6tf527y2QZDDFKPJVOO4v32g1ka+cvkNInQOxrCdV5na9FV8x7bCVEWIaIdfyQW6UCsv5HOUj3ejx/UBoW9TU8mAQlWEYPLmx2KmQYCrDuBsZes/r27dczz6irSw4jTEVbeVo2pZ5PWPsR8au5+7mjjgE4uBRcaQuGm0baBe8u9uiQkK5+GTrBtC0jdybKMbKsQMpsvQjYxqIJRN1IVWaqAuojJ6qkeRIygGtLSgJpvWRMJtIxWkJSoEykTiZR1JdUYjTYapyIRUwqRyfBzW5t6hJ2alUQhHRDLiJYLFWUxlRHNXOUFmJE4xGFDFK2jqVEn+5FDPRg08BNUZUP6KdEMymshKvVA3YmvNFww+/95LFYo61b3jz+n5SZnhyTqRkKFoIHaO0SLZVYvQjPoyMvqP3/bRHPB0bfRcU2yGx6wLbfkRTaCvLoqnQ0n8FgHU1WTv6BHe7nnU3sh0CXsleRAGjgKKP1cnZvGXeNrKXVhUlJ3yMxGGQuBHNGBJxCPSDJ8RCW9cYV6OMYxjl8yUlKW64Ws6Yoki9lzaelLGWqWXYUJTGh8CYMj4XPAqlDWjN6/WabRjpSySMWz68XKAbTT04Uon4kKRNLUVMkXg1hiQtUADaUFtDmcIvSXQzFE1trcQKPnDz6jXrtzecXV8zPzvH1PZIAD8VCgklYli0ZvJkZFKLlKOab3V+xhg8m+2Wn//ib7i4vGSxXNA0FdvtGmNguZjR9T39vmPf7/nok4/57LPfcH9/z1/+N/+aD168YLWYs2gtL69fYIohjYXN/U4KbjGyLpEcPOu7W64vniGaH4PvR16/eoWpHKZyLJwVpYS1fHB1Ra1gv9uxXT+QU6RYSfRNmAqDpTCGkcrVGKuwzky7ayb6nvv7W3IsVHVNSVPhx3ve3rxltpqjp3bT84tLUQaPAyX0GFfRWE1TaWL0dNFTksRXORWsdaRUs995vvDrJ107BUwHAymlqWQyeYFNUv4yfU1J0hpYUn7sgZ3i/JIl7k1JCidx9OQQ5OtzmgJqQBVymX5GCajkmdXSmuecoq60XHNrRDFhK5SRFqGMJoRE3QZZi3EgBE/MCVdVWOeoaic+m1rarOyjRJQSJffIqYhy3sv9En2k23cSx6MoaYTkUcWicpQKTznkS+/5dxxaqXN+vI5quh56OuM1R+/QJwwrWRApWVEihJhJ/YAfBja7jq4oQtuiL1ZsVy1rBds0EHLFRd0wn83Zrtd040ixhg8+/pju7o66qZjNGgyF6EeGbo+rDGHZYpwUVJumIgRH3/dUyvDh5TXLds5P/uKnvLu9Zd2PpHaJmykqn3C7wPkmoMuI2SYMGd/3vN2s+Utd8L/zu1xdXbNYXZIphJIJWYkXkHqMJyMFYzTnZxe8+OBD8v09X765453/motmwVWzYD8Egi4EE4gYZueXsB+5M1/z+U9/hraO57/zOzy7PCcpIySh0sBkDRHBKUetK5yRVvxSyrceB/StCRappkl/krxIYUskWdEin7SS+JTJs0EpxPyyaSShKoeeN6avlSQ5xHBMeg+GWIdg9FBhLpPywHt/ZDFLOSS16ihJLAXClBDmXKZ+fn0kdlJKqCLmkc5YaZkpGXKaFO3qmNCKz8OBjcyEMB6NJw8kiVQFpmA5SaXLuYqcMsGLIeGjAdNBDPX484Gpr16YYhsNUUWehl559F5JExEEB6HN4XWUKeDTjD6w3e7Z73vW9/ekGCgpoJVUSUMKrNJU7dIGbc2UdDC1B5WjUiVGaXtKKRIO0qsDiXGoyypRZdR1Ja0QR7LtMSF5XzmSUjoqnb7ZhiJIE2NeSkZr+1472WQaqQ5VLo4eEikVtJ5avVBHSf7hHixZDgdwKK3QRR83WJ0zBan6HaS6T4lqIleKkoPMFfFfkf7GJIHkmBg3D4ybLWGzhW1HvTynFddixn7Aj4NsGFNAlqKYHhcf8YNn6AdCFGl0jEKWSa6gpJKbJ1p5qoYbLbJrrQ0HPwqtp/70yWNJHckoIVYMkF1Gaan0iUKgEEvGx4g+qMyASXMIRqOdwzWNeAmpkRgjISVMTlJbnuSMuWSxu9WiLArOoBqHnTeonSWPkVTy0ZMnpoQuk6wxJXKIPI39H7x48QxnNCUnNusHLs9n5CRKi7qqqCo3KdfEc6Dve5rZ7NhiZSuHcxZnxQAshUApRbxllqIqCDFSVdVUARe/AG0UJWVCChQy1or/irOKPkdiGMnJ0zjNrHG0jXt8RnIiF4kXDva0B88qUXzJnnFol0iTF4goEUEhKiOdlfz9WFGaJLpaZPSoQkhBAiFnOfT6piQmyAcS4/Bs13VNO2sotxLwHPYDrZUYKl8+jRk4iCzVTPehmkiPg7rx4O8AYtadc5lkz+X4/uWqTf993F4f23zgSJocKoH5kJQrxd+mYnnck6affCCSQyRPpJcfPL4eCVWN02Z6xiRRll566YmuqwpfOUajp7bAEWUNunEYJYlpHAPZZVAG4xyuqcgKej/w+uYdzdU5dt5g2umc1qCMxcSCzgqVCkZL8QGdSOMIQciGWhkxT82Z/IQqCICFOahRFckavFb4DNuUGGMWvzWljve7LhmTEipHUolEEihRM5aijmeFXPt0WD1JrrS0FB7iiEM2+X7bVyGTy6RsMQdz3PdabKefXSZPk5A0NkIwWnxHkiEY8ZvTqmCnliOtwejp0M0arSo5F7P4hJikUUajghcisw4YFzH1kvNlS86F9UZMhschkZM+3OXy3CstgS7SptgFLyb00TPEyGOX/tNgHQo7n+h8xMfEzGmc0dRGo3M6PhfaVsSiGMfIpvd0PjGmQtZarvNB7VWE1LVK0TYNTd1Qu+qoeE3BSxXaNiQUY0hTK3sGbTGuAi2V83EYCEH8MaxtpKquNJQippcpTsmpYepblfuvQEyZMSS0q1HWkpQkEKZ2VKki6cRsXqO1ZvQLQoyM3lPIpABKNl9iChJbTWyGkT55iUUOvQvIXmG0QufC7mHN7v6Bbr0hDkKyKQ5x7VMhT4XVRwPuQ3wmEAJalEA11hnu7u/ISLvZcvWSvu+gZJy1jIPHjyPb/ZaLy0tu3t2wvl/z5uuvsEDxZzTXZyzqmrBY0K3O2T30pOwJKaLGiCZRQk+dM227nFp/CkPnKaN4Nai6oq2lXXLe1JTFAqeghFEGJhRpCy/aoYyW+CclcAWtNNXk4VNyJpXMfrfFaHf0NCxTEXe9eaAfB5oYcaZiNltwcREgepZNNV2zwqzW7PaJEBMePSnEiwyRSAbvYRyftkWInI/S4pJleIAo1x6X7khQTK0/5PweyVwm9aT4WJTJoyiFybtkImDkvCtoJYUaIS0iKkeqylDV0r7snMK6qeBujShYjEVpR9EGGzO2kvMieC/tkTlhncNYg6scrnLy/VoK1BR5DTmEqX2pCCkdopAkPtDUelLXF1SJUBKqSJxRiiQsaqKeRMFSxKMuyblvD9fi8MHjGV8O5MoTPnO2RCiKnIT8S51n7Ae67UB0GqoWvViys5qHELn3kdY5tJVOER88SRV07ZhdnNFv1mhrqOoKowolB4If2O01F+GMOjtQUDUN1ejF89AnlrOWs3bOu/mStb6njwEfPC4l6phZ+My5qqlROJXY9ZFQ9kTv+dJqKm0YxoGPTUVu5iSjCCUzvHf/qUMRXimquuLs7JxdTJibB/b7LZUvzKOilEAyhWgCqShc3VLNFtR1w/btLeuv39C/u0PFRFGGVBTZvLeuGWn7NNU0pGa6r7/lKfetCZYxhuNhF3PCYifDNUspajKyqqHIZIJxHKdK7JzZfD4FJXaSn4qZ3iGQfj9pbprmGGSmqQ+OIntC1/fs9z1dN8pxpoXt1MZgK/l5fhzZbffkmN4jaziaAIYYyUqRUpoko8JqBaz4bWjEq4SDIa0kBTlH+r7HpkQMYSLapKKkp5vCj17eQyuu0eM4cn9/z2LxWzL2KRJQkxnr4WuD98Ijl8JTCaidq6e2mnj4xUeYSX0hREhmu93x9u0N6/WOL7/4mv1uzf3NUpLEqytefPABH374EfP5nKaZYXKFBBXyk9NkkBljEQO4JIoImQqFEHJMSYZW1FXFarWknapMMokjkePU9zjdb4d74aBgOaiFDnJ9eEzKDuSHtRzlqKKoeq/1DDP1VxZSlN7cw0YoCdNjsvN+sme0VIfTRDrkiTU6GII9KV0NNEY/JmelUE0BewyROIyEoWfc7djf3JC7HjV6ZhhmylIbyziObLsd3dhjFjWkTPaBqAeisoTe0+86dts9ISWUNYwpgdZoI14UaDnwqmqSYzqLc2IMdfCgSLkI0ZjVNDxGFEEZ8CHg4ChJTUlaytKU8MQi6glbVdM0jpq6HyQYchY3aycFmMIPI0PXiS+QEcXcmORAB1BZCJyqadj3PaVxuPM5ershJplc1Xc9m+2eVFnmtZMe/35k3O25eqJ1e3Z1yRe/+TVv37xCE7C/8xFtI1NyqnryGCqw3+/ZbDZst1suL6+5f3jAe8/lsytJ9NXBFBDatuG5q1itFgzBk0rm2fU12RecNiyXM9S0d4UYULown1dcXiyoXCInTww9tSuctxVni5pV66gmkzjxyJEUMBckyZgCsBAfp4cZIxX1nEVGnXPEGjmIUwqyJ2qFMYcSwMHkVk0GvJm+HyaiSSYohTGIAi5JsmOMmip5kdmsBjLGQsx+mi5gyDGymLd8/3ufPNGqgbE1xlZiEjopI0mZGEXFk4uYX0qboag5jZWqnyTuevqYAs/DnnBUOQjPdNhsykSU5ulAF/PmScUykS754GV1+EiZ5ONR8VhbBzEx7jv2BRyaqqml9XFSmU5Zp7SRNA1V07DZbNh1HYHCwp1TGYdPnrHrSHVLqS2qrVicnWHu7xgeAj/7+d9QLRpQhWv3HFfX8vZ8QsUkyou6EZWWa4ndyN3D1/TrPXQjeRhxWpFTYpxk+U+Fj6NnpzV7bdhWhntrWGfDLo1kZSkKjLM4Y4/qPRWlEhpIBJvFTLxAyIcopTxWd5WsjTFi+JtVQUVPzn5aXmnvOPiwpSQkjhhJvh94TdXQo0JG9kSfAyogLUJKURmDncg4rcBp8XUyRlM58ZKqrGPeOPqxZ4we73tijlMcU6Dr0bbH2Ipq4TFuzmru+PjFGU5ptlvPdhPwienZl8pemNp++7GjHzpS8hQS4VAYeUKh5qutx3cBP4q3SFVZ2spQqckrb1JGKluz34/c7QZu9h1jLkRl5daeVG0lRTknjaGtHBerM2a1o64MIcjeH/yIUoVKSft3P/YMo6euG5r5DFfPJNn1Aw/3opqr24bF4oxcpFVLo9j2Mj1TGT0NA5DFTLFQMIwh87Ddcfnpx6TaMarC9fMXlNax7Ldsuns+/OCctmm4Omvpx5Gu79nu9rx59RpCQuuMTwNjGnCmBltQRqr9tXPSRqQUSouC2hlp+9zd3XLz6jVn19dcvnhBNV+hnXrSdZOinLxnY4wQTiUzhiAJ7kTZGWdYLhfEdMVf/c1P+c0Xv+Z+veQP/vBHvPn6C968fs1PfvJXfPLpp7hpoujZ+SUfvvyQHCJ/8Wd/jvKe4WGFjc9ZNjWXlaX+4Dlv7zfsU6DzA4rILI+oYc1u9xVjdUa9OGd5/REZGMaOftPjgfmsZd62XJydc7GYs6hFiXdzfyPPUvDUrsIdFNjeo0rCKM1y1tJ3HXEaWLHfbHDVjKpqscbiU8QHz83dLS/3O5r5ilK1zGYLzuZzfvTpS5ZVYLtZc3/3wG5XkX3PZoz0vkNZg7GaqjHkEXKylPzvPs3k34Yc49SafTyk+Ftj14koyVEm2h2qqdJCPClYDmdSlLwohyjkRBJvDmsUWUMqiZICFDFmrd2cWVvTtDXaKFxdYZxFVw6MfWzTMA5SpomZ1fnZRPRkDmHmwW9RCpzv3ZxJVDRl8oc5FNFKFN+kFCLd1hKDxIW73qNJaKbpYtP36qIwaBmYUDhOjS0pi9q+MLVLlW9eQ3UwQ39/GMp3Q2FEJYMuCnrPeN+x3+5Zr/eol1fYaklql9yNA6/2e+6HkR98eAFWkUls+x61aKRV5nzB+EUhW41rKowtUALed6y7Dc+eX9IuGopSzBdn5KjY3u/Zvltz/rLlww+umf/hH7PA8KuvvubzzZZZTMxT5jLB37v8kOet5aK1/PX957we99wMO768ecfd6zdcffAhf+fvBT780e+j5gui0uxynAp9mQowZeowKYarszOy0my7gVe/+Iqbhx1b/5pPP/5IOiN0JCdFsg7VtpxdXNL/5hXh67fsfv0l+j/6Y1Kj8UqTquk8L1JAVrbCNg1uarGmZGz6diqWb02w5IMnSc7kEMnGSmXamGlqi0ErhQ+BMMnNF8sls0VLVTlGPxx9P4w2R0Llfd+ObxIr0mN6nD4C3NzesdvvGYeRWdtOiYAWxhOR2u33Hbv9TgYEq5aSIikiUwFSJKcIk4yzdhV6avOodSFRyCpPlW5hbaUNSNQofddDP7CYL4k+YCeSCKSVabvbEWLg/OJCKove0/c9H330EdY+GvseJGfHB6cU4uQZYyZVx1PBGIv3IyH4I7FxULUcatVaKUIqlMkQ6ZNPvk9TVXS7NXUFFxeXzGdzjLYMo6egCCGzWJ2JzGpKyg4tQZJEZ2KeglYeezaNVjjrpC1o1rJYzKlr8ZEYh1GkdXA0mny/OnK4Zw4fOef33svjtcwHBprJh0Ap/BigSDuSyGpFeRJjQmuLMQfTykwpUwXYmKNkNwTpZ38kXvLR6FVaTZ7eNzwzkQcpQT9SfCSPHr/Z0G3X+L7H9x1q6Gm0oTWO1liMgpg8D+sH1vstYw7MskzoIeapd3xquQoeHyO2cmjrJHAwZmrxkBY3H2TCxjAOxGgIwR6Dqs16zeZhi9P2WLUYuh49ma1u93shTSdi9mGz5n69Zr3eULc1uc8oved6s0UfWsFi5H6zIRnN4uKCqqqp2xmz+UIUHs5hnKOZzQhRyMMwevFk0dNkM6vQjcOqlvpsRYmF3Hv6sefdzVsehi3V5h6dofhIGf2TESz/1b/8LwnjgNHwJ3/0e1xdX9LMZNSxnsx5Q0i8fv0GgOVyxWa7JcZ0JLOO03umGMi5mnbmQBf2OzlUweI7ISuuL1bs9j03d2u+/PIVKRVWsxqrzxl6z93tPXc3N1gVaG1NYwpOFSorShltLMZljLNCVlNAG0qS1gfZN+Q5ryoL+0Lw46QqmfQVJU977OPJpHU5VluNdjir2e925CTP5WLRctP307NsuL+/5+x8xXK1YBhHmikIW64WjGOiZKhdxW4caJr6ST1Y3icyjozr9OeD4lmmjunj/lMOsp+JVFHl8dvebw9675PSWjS1opapUs1EiOiJj8nq0F4lJK9CqtqHymHwXkzclWY5nzH0PQ99h9MKY87Rphblm4EifSXijt849KLF7zeEOBIGaPOKyjpyiGwG8Vsy09k+vzjjYnfJvt/z+W8+4/O//gVxs6dJsFgsyCnTdx27XSctVUozjJ7W1szqGnt5yd3dlt12y/bNDSknTGWx9dOdcQBnsaPSmsYYVFCMxTIWcCrjXEXRBq0dxIxKCZNEHpymcy+gCUWRioTZKU9meEqhKWgl16OqW8w0qUvI5YO6SYmqUE1KlpwnpasE6KJClLW00xmilQToIp8XY82k5TxOU2B+UNnVlfhv2ZRJxWAsk3lxzbJtmeVMG0a6cU+InhBHMenMmRQ8o7+jmJ2MnB4iKowQAykMDKNGmQIGIbyTxHA+HJSN8owfAs6nPOdu9z3Fe0iJuVHUzlBbLTL9w/h3ZenGxH3nudsN7GMiTZqgyspIpRKlbWrZVMzrikVTM2tqamcwCva7vSgUcqJyFh8zKQW6vqMURdUuqGcLlLFsHjZsN1uGruNidUE9m5OBxtWQE2MY8bqIIkRLhb5xlqI1+66XwkIWKfrV5SXRaQZVuPj0Q9b7B/bjlmG459nVJZWtyB9cS5EvZnrv+cu//ClDN5B9xMcdIS2IJqNtEo/6yXswDV58fozcj1ZrnDbokLj56hWrqyu+9+Pfg0OLYy5Y9zTpXjne9/L8pFwI48huu+Xi/AxXOezUbvPs+RUvXl7jGs2f//mf8erVK/6v/5f/Mx+9fElKma+/es2vf/Ubzi/OePHBc54//4DZfMkHH3zE7Ye3xN2G7v6GGzbE5RxXt9h6zicfP8fMLPoWhvVrUbXbwuVyRu0SmQd2rzbkak7tauZVRfCe1I3s+g3DdproYy1tW3HNiq43bLYbYpIJacoaohYTWEOirmoYFMFA0YY+ijK0ZEVdV2Qf8CnSjwPr3Y56vsfac2QATiTFgR//6EPa+iUpev75v7L82V/+ms/DLffbyJgCKiqyMogx/8Gc8+mQYhSljBYDaab9SKGOJIpsTFk8WkKEmI6KDqb4mzK1qgtLTPQjYRyngSFlUqykSaUXMcWjcoDsaaszKmeEMJ41YkZ78IOcJhsdz8aiKLpgMFOhXp5pDq1yh4/DzpTFJ5SsUMVgrBT/ismUZChR/tm6MrW2RRSyNsFLHlsmjw6sPapxhXCZrktKk6b0vRbg9zbG31bXPwmUtKsNQ+DLr2/46m7LOiT29Yzm/BnjbMF9sNwMgc5nNI4Pn7/AWUc3et5uN5jlEmUtXYiEIoRt09Y0zuGsQZG4v3tHN/Ys8xnaOnLWVK7l6uI5X7z7FbevbyjdyO9++iHLv+v4g08/5Se/+BVfv7oh9x1NHpjNLBdzy0fnc87PPuE+ddzHgc+6Db96uGP98Ff8519+ze/9g9dcfPQxq48+Rq+WUDI+R9b9fpptr7G6IWiNyZmPr5+Rbnbc799xf/MOFSPVxQI9l8lyIYN2NefPXnBf/YzQ7Xj3+WfkzQ60IbuanLXEckmqwFpVWNtQNTNRTqGnQvG/O759i1AWaehxGk8WhkdPlelDP3iY+sOV0jSzZjKX0iQfHkfllseRvofEGSSweJ90kV5OGUsVYqTre1EwhEiqDl4e8nTFJEar3ntyehwlm1M8KlikP0US/RijjL61Vpz63xuVGZIoalQuKKNIcfrZo0z5GPp+MlR9ZIDFKDCQ8+N7iSGw2+9IMR7VNLkkGS/2W/4hB5PWxxHFT4P3r7G15j11xmETkE0ix0wpCmMclxdXWK3wwzmVyywXS2azGYvlitl8LlJ6Y8mpSP/hJKhKKR8nkqTySIocXMql+mYnR/+K2UwmpGitJ0ItTUm6Ok4OOqzjQeX02xvXb1/Dcgx9yyOjTcH7aQqAOch55b3nKWkpxzNMHUe8vS/nzylT9OOUocfJNdI3W6bf85TYdDt0loQgr3eo3QD9QN7sGfdivpeDpzaKxllmVYU9BO4psd5u6f1IOmZ9IonT06MQo/R8xyyTaNCK4MNxDX3w9P3AMAyMXgg6awzOSRuQH3q6fUffdQyzVgyrnSOMo5AlpeCHUUJhowkp0fc9Q98zDgPKyPSSUgrb3W6q2BdpA9yIkqbbd6i6Pe4RZSLycs5TO4fI6eV5nYyjrbSv6VIwBVzb4KuOOAa6cSRstpjgsd7jtMFmGS33VNhvN1TOMpvNePbsiroWIvegXIlTj3LX9SzmC+azBV0/SLDs7JSvq0kNFsR3Zhp1mWLGj0EC8KwIo5fYQot8vutG9rtOEo/JnG4cPPuNVDs0EasyVhXUVIlJMcsI3oNxXSlCtDhHnJ6hgypFBBF5UhjnY/KvtcJMe1489EBPrZaUMpGlovpzTlGKBChNLZOPDt5Mfd8zm7fHdgutxMOnrivGsZMgR0+JqjXHyRRPiUMrzoFckb8egkq+SehOVT6m9zwVdd/7OlG6aK2PgelBnXJ0WJn2oGOANhE1x6kfhYnEeXxt6T1Jdtu2+OkZ7fZ76rYGI4TWISsuqogBrDPQOHIthQOy+KW5KZDMOROSVJIKBdfWtLMZ89kcmxXDw4aNdqwXZ7A6I4bAZr3hfrvDti31bIZyjoKhZDXtX2IkWJIk6yiDfqJE7wDXVvjp+pM9JWTxSMmgjSNjKcWSQ0RlJR+H4gCJrDQJQypaXvt04UWmXGBSsBzMbqHwOBExT8kmx3vk0II6RfoULTGSPnpqcRx9erA2AHmGmEyTZRuYrtPU6oySfSGkhIkJlzJ1VeGckC1Fa4wfUMrIlIzJkDeFTAoDIRfCEKdkKDAOA94blFVgFL5o8SnJh3vgvVPtG31vT4MxRVRJWArWSHuQ1WrSxSoyipBgPwY6H+ljIqKm9ZCkTLwgCkYr5k3DvK2ZNw2qZFKU9oRhGPEhkslkBanvySnhfZRpQVomUR4Ujvt9h9MGV9XTSN0DSSnXPjtDKhmMomkrohG1mc8JHxNZwXy5oG5q6qaiqQzV1Rmr8xYfz8jpjFldy7krORsxi/+YSlLMG/Y923f32FqBymSdplgroyjifaEVFovSYIyW6rRS7NYb1nd37DYbLlI6JtRPhZTScby892JomlKi23esFnOapqJtG5q2YjZvqRuH0oW3b16xWT/wm1//hpJkKEaKid12S/ADMYzTSOSaejbn+voF92GkDBvi4Bl0JKeApbBsKq7mjuJrbvaaEgtjyPSpMJsZaqNxJjGGHVoFjG5QyETBXBAyII8E66hSjdPQWk2pLOMYpY1AQS6i5lQUKpWpp5Y/8Sma/EVyoHIGH0XFe1BjjqMnpYwtmhQjQ+jYPdyyuF5yvmr48Q9ecne/oe8HHja3MnUTiFF8LqX97FunbX8r8uSVptDkSYnB4bjmsIe9b2T7qF5R5fHfj5vDpMRMk4IFM+VSUywhE0oTRWcUWSYGWYM1osjT1k5jlicZyqEzVl6MvKj3WuEOfy+/9cKPxM7hS/T0Q6aWTzWZSBeyDKkwkKaY5KBayTl+8zpwOKfV8Qw+XJdjnHBQmk5P56GN+qlNbnfbLbtuZNsNvHm45z4melejri+JixW9dazHRLePKGPFSHg2x2hN7z1djNi6QWnDuOsmckHjlMZpLapJo+mGjn4YGEI4xq7aOdp2jqtqhr7ndhj43osrLpcLFnUFIdIm2KEo+w7XKtxMUzUKGzUuV8yzwuiCDpG3Xcer2w1v//JndLcb9pue6uOPKG1FdIbIFOfHBCEdpwsVpZjPZ/RNzUbB3c072jjgxpbYJEoBqw3tfIZ2huRHdjdvUf0AyyW6VvhcUFkKITGLsXzRBls1U2u4qK6/Db49wZLSdC9N5Mh0QxltQR361MUjJZWCsYZ2NsNOprD5QG6QpeqT0nEUqPeeamoROCR3OefJNkIm//R9T9d1BB/EjyUmcirTpJrMGMSbZRgGDmqClCLJB1QRdcrxvZRMDJ7oKwwKXbmpX12CspTEXEyXgqoUMcoEk3EY6MeRfdcxjiPL46YjiUDwXoiTSY0TYmC9XovRbVXhKgc5H8mDECbvmelhPVyHp2Q/vQ+EINdaEmMZaabNNLIM2SNCiDBVys/Pl5yvVlACbSUmR1XdMJsvZNTvdI32XT9NwZDAQwygMjFFYknSlpGSyNONlr7XuRh9NnVN2zZy/+TC6Kfxj9O1PFyjA/EUYzxeL3jcaP8NguV90ks/TgfyfpxaHAzWOgmS8xSk2CJu4YeYv/ybDuApZ+z0uUOb3CHRt0parZ54P+XNw1scGhMT4e0d+naD3g9Ue08KI1CwBhbnK1aNyF6jH8W4NEZu7+/p/Yh2kjzpaZS0Vlqk8DExeE/IiXoK3oe+O47Q7vue7XbLMA6iSvPxOIEKFGPXsd1s6bqObt9ilMZZJ0qsydg2DIOcmVoC92Hf0U9EqbYGH4W0vH94OK6fNoYheEIInJ+do5ZnpNETfCSGhFIRY6NMBrIVNos8VWf5PdoabFVNm6Simrf0TUXuBvrNFpUiuq9ww8iibWmtw9qnm9xFySxmLc+uLnn27BnWyPNd17XsfaO01wxj5Py8YrU6Y9+NuKbGOof3kWoK4Pv9wHa3o27EGNf7jB8CYz/SdwMocE6k1f0Q6PaeYTfSrAwkGUfabQd26z3dpmNmE05lTJHKVBgjfgyMk5ljnEwDm1k7TdORGEVP5sa2KBIZO5EtQnjI822tpev6iQ8oR8IcwFo9qVgMbeMYBqn6te2cuqpIqciI1BDwPhxb+iShLbRtzWa9k/ZxLTSG1gpnn2YqBjz6LqE4+kCBhFiP09GmIOugokuJYszjFKFyCMKm825KonmPhCkT4XQI0A6KByF6j9n24xE/FSQeC3WFHCVJ9uPAcrmg227Zp8Ruu8E1jqJgVi3FtFBNXkUastPQOpjVxG6glMQ4jVlnSurHGKhyJFGwTc1sMWe1XLKoW9K2Zzu+4x2WuDxnHAdub295u9uyfHbFxYtnrK6uSXmEkEndDp0Clow1QsKjC9o+XbIHYK7PKcNI9J4xRsacCUVTsChdQXHErMmjVEKNcqAdWXmSSiSdiBFSUZR8UA6lycSQ43RAiezV8b4w2k5FoDj5dU30/qQYmJbraMCtjT5WgdPkZzKVA+TfrZmmN+ipYUe8NdzBxBEoKTCESAIwFlPX1JWjqRswlnEcMKZnHDtSSeSSyFnO1xACvuvwfWDsPd1+ZIwabEbZzFD01A6XKTofSdIyTYqUm/Dp1i7mhCkZVBYSwkiblEbB1DMfQmLTjex8YMiZMqmnpW0LIWtVoaocq+WCRdswqytSkmJcTol+GEhZCJY+REreT4Ucy7wWKfzgPbe3d9ze3xN84OXz59RNi6tqVE7koggTCUJTEVOgaDW1bQZGHxlJ7PsOW1VcP3+GqxzNcoE7m2OWM0y1QtuE08OjWWjKxCBK31Tg45cv6Lqe7WbDz/71TzE+gxffCOlKFqWnj0HaK3BYLa1DzhlqY9g/PHD37h03b9/xoffYukKZpyM1YxBSFqDrOmmoy5lx6Ek5Yq1htVpyfr6kaWuq2nF+vuT111/ycHvLn/+rP6Pbj6yWKz54/oIcA3c3O27evcFoePbBJywWl7z48BPC9o4h7lGxZ+wCMXpc9sxXV5hWM0sN+b5h4yP7EHitE+cXjvN5xcoV7t/cEdJAGnqMcxRjyUrTxcTQdxQUrjNcrFa0WtE0jj6OR8Icp/FRioZGRRojs5hiKQQFkUTKgbpyDEFBFAJ8HEbGQVraa1WRfGRYr/nFX7/C/PAlZ+1H/J3f/5T1Zsc4jPzy128gG1FA+Uxl7VTQeNq9MoY4Tc9E7sGpYPEN3lSMCuVMEpneY9HgoHKZ1BxkKYJHJVPZNEZe8vHf8kT2is+lNQbrLMbaaV+cDEcRQrkcp/Idpvjx+Ocje8JUhTi4ZRwU5EKcf+OKTapCKgsRIWOnPMhMPlccR0vnY+tbKQfPuan1fVKqHq/JIeA/CgYKSpdvSlmeEO/evONus+V+1/F6CHTzJepszup7H7NfLNmExO1uYL8JLC6WPFtec9bOGYNnTJGuJC7rFgXs+gdMFl9HhxAsjbPUztIPPdtuz2LoMcslVhm0M1RzS7tYcLdZ83B/z+3La7734QdcX11yNZ9zVjnezmq+2j9QzQ1mrlBtxm5HVhoWxrE0K17Uc97sOv7811/y8//mZ9z88mvmX7xj9Sd/QPXiGnd9Tn2xIhkp/gz7LX6M4m1lDbN5y3K1YDdv+eJnv6TZ72j2c+zLc6IpZGNQ8zmmqohjz+bVa/S+R6WENlqGdaDRyFhoKBRtJ4JFBuLkb/nMfXsqNDGpM/IU4Ml4OrRF/IBEeSIEB9NI0sfxy2qqeEr/upAqKUZCiNze3jBrWhkDC8cxvDKeV9qO9l1PDlJxPfSuq4kx9N6z73aMk7zZai3zvGPA+x5NRTEKpYRBlYqOJ5geTUargnJyWKtcjj3uqhRWszn9ZETppwrh5uGB25sb5vO5EDM5oybSJlMY+k7qDDGw26x59/Y12sBFc3VM5I7Tg/qeMHqZvpTi8Xo9FbquIwQZqaenJMhOB60kKmryt9kzDKO0zCiLawyKDLmn7yM+DKSiObdi0lk3jnY2x4c4rU8ngdxkZKyNFq+GqbLSNhWzpuHsbCkVNyPTK1SR9q1DsMFEAByUPAcVjPf+aKD2vhHkb5MrKcXJfM5OZpsHE+GEcwUObv+liHQxZnSQn+vcNyuX75tOHjxb5LppSiqUVKa1etoKwwG/+erX1NrgEuhX96y2I4sxs4waZUDXDj2vufzgOXXlsGjWfU+cJJ0PD/dSOTXm6AKfYmYYPX1MrHdbtrsd3TDQzpfknNitNyhj8XWk66UvPARRmfRxPKowwjAy9iN+8CQvRKaM6hM3eZIYRoXBi9eQ0aQUyCmgS8YaSSJsNpScGfp+MsuWe3Tc9RAyt6/ewSg/v9vuWb+7oWoq2vkMZyvqmYxaLqXQtjOp1BnDGZndbk+XeprFgn7eM3SebbjFoWitY1nPuVydS0LzhOtmNbx8+YLf+f6nlJypZ9LmApARn6j1wz2Xl1c07YyYM1XdoM3j5JoYoet6vvzyK2JMXFcVbVPx+s0DJWka2/LZ15/x7IMXaOvYj5mHu47dfU/sEu1lgymGMCTu3m0Z9wGdYOY0M2upjSFHiAHGPtBtdiQ/0C3nDPOWuq4Io6cfB4IfOVvM0fOWura0taXrZgy9p3Y1la2wVlNmc9ZraXWiiJRd9vyIq5yYxGXF2WohSpcYgcxiMQOlCXHP5bNnzNoWisJYx4FrrqtmGgUvz7nV0zSP8HRktEzGchj9PmE6PfPqkBjnR1Xbe55PxwlAyDl3HPtdsgRvj4U58eV4r+Ux58k4L6VpKtnjeOuDhUqaEkVFwWolxowxMPQ7FvOWi/MlbW159eoVb199TbOZ8VJ/TDVrYCKAkirgNLZqmfkVsSR8N3K3uZdqXy64qsLHSBc8JnrOqhl107BcLHh5/Zzx7gF8YPflW4K+kzM/eFbLlvOm5Xw2Q+XIbnOP33TEdw8Mt3fEXU8i4FqHacyTb5n1P/nHDF98ye3rN7y9XbMeFX02qNKQU0OICu8zaZzIQiOjqxORbBKYRAodKUdKmsj2LGRKIZN1kalapUilNmdijihtJt+0xwl5BwLicL6CEN6UIuurDgQNkyHiZNRvNLaqJFHWBoWQlHZqCbETKRfGIl4P0RNSIZRCOwaWS0Vdz7C2xlUtbDXej8QUqSsHyqO1jEBt25rV0uOqLW/utoSSSUp6/KWGXuTeJUuFF3kdhyLZk6F4KB5DYt60VBasyoChaEtImv0QudkOdDEyJCl6GV1QiGktMeKM+GPMKoNViRx6jJJEN8RAKIlQpN1xDJ44emZtw/XqjHYxx/vIenvLze0d5ELdzmhmM5lykWQM6SEutXVFUpnGNpja0Zyv2N0/MHpPUNClkYVxzM/mJBUxjWa+ahhsol7WVHWNzlr8IGIi+YgqATUpBaw2mFmLKfn/zdt/NVmSZVma2Heoql5mxFlEZGZEZrHuRldjBjI9jXkB+T14wk+bh3nCAx4hkBEAXU2qi2VVZgZ3ZuQSJYfiYZ97zaOqBSIdbQ1NsfRwd3Mzu1dVj5699trfoveeNJ8oOWI06PLkwF5yaCnJlpUaLmPNVhvCaeRwd8/H9+/FaVuFb2eeSWQZp4PsObTBGhGa+87yJ3/8FcsSqCWzHjpurrciBi2B/fGRwfd89uoNv/zil3z/4wfevn3P4eGRNy+u0c4wTwv/8S/+X7z8/I6Xn33JLz7/FdcvXzLbSLh7oHNrNJl8uMOFI1vn+MJbhttXfK2veD9G3i0R+25i3E78ixeGf/XVFTlWTlPiw7IQCCSl2XaeKcpoFnmhPMwYpeiUZq3amEqV7MFkaKDihLaFuWROMdIbT1bND+0MU9C4CJFKWiRVLS2B6i3WONxqwzd/+C3Hu+/57uu/4v/wf/4/8ss3G5b5C/7jX/6OHx8iY8rCJEJEHPLzjpuUlCk6oYuh5HxxVwJPa1OpxJRbI7ugy3mPXtsjTT3VfalxSVKR0ejixIXXnv0lJwnMUAXtFV3X4ayTUW/vm2tFX36tT09KnhwkPP3ZZfv/hCI9u9afjk9/fxY9qozi6opqjs2qziEWfMJolDS1M6hWkmXOSYIZldPF8Xs23OSUKCa10U99EaOf08UyjYmIoQwr3G3P7otfkK5vuNut+fYw8uEw8fbukWVJvLjyXPktumrGJfA4zWQ0veshFQ5TxmWNLwZfNQ5Y+Y7dsMYrw/7xAb/ZMLx8xSkFDApvNddffEaMMmr///i3/x8ejn/MV198zi9fveKf/+lX/ObzWw5fveT0zT/gUiST+Wz7gjpH8pzYhcJLpfjldsM/+9NX/O5mz/fTzO/eTvx+/EvG2xXL7QZeXeP6Du89Wz+gkwFlKKpynGboDG++/IL08cB+/8jhhw84r8lbhzOwsga7uyJ/zEwf7jm9/Yi9viKuB0I2AgRHnXteZKUxzl+Sq35uxuHPZ7DkNoOnJHpVQHFNaGkK5nnDeOYgoAS6mLJspM/CwVmImaeJ0+nE4/0DcbWwdC2DvJRW4ErnMMTINC9Mk4DxtNb0zl1y1lPJF75KbTN/NRUqEh+mrGmpJuexEeGxnOnXUSnAkhXCDMlZitRmk0shXEYnaoVlCRwe95L+4TsRWWolF0kCGsejmFuVuGgeHx/YXe24utpJ54zW4SzijIkxSpe0zRHH8HwJC7lRsuV9awtIk2jPiR21wDIHYsznekA2jkpTypmBEsnlRC3gu46u69hsN8KwcYa+7zBGNZJ8JiGYQEPFOyOOlb6j67x0v5UIdiUVcsyEEKUbbsylWDkLLGcHi8Byz+MG/zRx4+xuKU2N/pTVArnxYQrOyUJd6zmdqKC1jPqc1edLB/sssJSnFKbz9y6Uy7X6nF29p0MsciUUbIoMFdZo1s2eqp3FrgeGqzWqVtIi6TEpSAEQ50DtJUp8nhecdS0pphKpTMvCEpNAatt3DA1Sl3IS5TuEi8DCuWNfMrM1l8jss+CaYxMIQ5B+g0L4MUni5XKOqNIaD81uenY1LJM4Wowx4uaaZkiFcX/ker2l5ooqEIPct+TKaX8k5YTSijnMOGXxzUWzWm/IGXIolKyxfY8ZerT3Yo+tkJfItB9bjOrznb/r6x2bzYq+79rMvL4wHHISAPg4TXz+2StJPIqJkiu5JnQudMPANEaOx4XTuLBa9Q2uqhhPC7T3+vC45+WbN2htCTExn2bCuFBDaW4lmTU9HI6UmLAVHJXOSVJJaMJjiQliQpdETZESo8TJFoHBTdPMskSJKtUaqwwpSezhNAWBISuHcx3ed21zVbFWIwih0tzpwnHpOsfQe0IQ0Xu32+B8jzYdXbOwpixpVinKwLS1HbWKm3CZF0BRslj/n+tQze583mzW5lo5x1FqJaWnVkqSPRrcrzrZfCponb7SYsnPTYXz2KiWsdp2f5276yBss5wy1Z7dLfrifj4npAhgTxocRmsZ0yqFuEwYrem9wzX210Jh//GOddzgug7bdxjr5GdD4Z2j9x0qFsoice3nYj6k1ASwSNUCh/VDz3a3RY0Lud3DOTY4fcqUlJimEfX4gPaWeX8kHk7E/Z6yjJSSqAZ0p1FOP7vAkr76NeMUeDyM7PeBuSpS0tTcU6I+4wAoVZGzREMqZ0jGUrRB64wyC6REKUHi5antvS+t0CqU8+hrE9eMlfOk2/nNLX3CmLMLRvY7spdQlJzaGqculnjVRIvSWBa6VIpqDrBWRJT2oQFlhEFQqzBWpknOCUoEWmM0zjms64hZip9cwBgHypAKgGezdbwxnqQUYyhMqZIWSVEhlwvsn9qQv1k6tOYZn3WqBEwbW3S6YABVlew7iti5p1hYCiQ0GNWKImmWaVXwnWXlHLvVgNGVmiOxJKrSpJyIOYl7Mss4bDg354zBeU8qmeN0Yv94YJxGdtudsOH6nnlZhDWVc4MOV7QudDcd3XrA9h3TshCzJDnFkulWA37dozpDtxtwW49ZW3ynsNsO7Q2mWsjiXjEhY+YF22D8KQl3wior4WuXHJMGvJYrkoLwAvN5D9wcF533HOaZw8Mj7378kRQj3bm4fK7zRsTocxLMhtPhiAJ22zWPNRPDzPt379isB4HLzxPvP7xnmRLO9rx88Yr7hyPH45HxdGIcPN4ahq4j5pn9wx0xVZxxuFrQXUe2HbUWvIbBa8z8SJc83vV8vt4Ss0PrSMh7akrMc2Y/acIAg9YMKxisZSkQqiJqxagUUUOMFXJEV1qzpbQxFAXaoGXLQaqFTgNWRteUkiTESELrgtUV2xyQNSZqSJASWWV0BUvHvCg+5gO5HPju+69Rdst25bje9Hw8JHSSZ4BsZ2sTPJ/xOD/jWn1zcaSc90Dn52Ap/+RzzyPEchG0UddLg7OQQwAlTb2mwMjV2vbPSsmIufAgjTgG+ERg4fzrJ6M57XfnK4/6JLKoi/GmfPLz1+b6aX/ZxJXm10cpKdbBtBrgPPrfXIoX98y5TmhvT3v95Rxd3eph6bu0NalNXkjT73lPG+uN7M9qoe42LNdbTquO79PCH6YD+2XhWKOMgFvD4DtphiaZGnGuw1Th6uWYLz9f2220pmPHYD3TcWL/eCAkSV8tKEGi9B59e4UNr/j6b97B9z/wGKTR9mLVsxl61p+94uN8jzo8EscRt+5xfYeKlTQGwpzol0IH2NsbbqfAzXHGLUfeHxbuSua+BE4rz7FzHP2AKx6jHMZ5Uq0SLOAUL7/6nNVxxxwDYdcz2wpVwPX65ppcCmGceLs/0N3vYTUQtMeQ0MpglZZksxzJy0ycLDUaASf3/+V8v58vsCTZCGojD0AKAoRtm41zoVprRZ1Bk+osOkQ0+iKwnMeCjqcTD/f3zKcRBQ0mG1oMVmmjClLELWFBEl4kK31wnhQDuQF1z+KKFAYCyVVFXCW2a+Ca1hEqILDbNuOVWtMpNyv1uahXVW6o2LrztQ1LhxDY7/fM44RrKSvnBJyYIuN44lMxZ79/ZDwdSSHgWjrFebZxWRZCCGIZbmDf9IwRljmfAcLnReTcZX0ClJUir+mSCS/0tra10w1iltsYT8Y5Jyq0d20uHLrOYQyknDExQWkbMaPovZUo5k7AZ0rJYlyydDZSzMSQMNqilRaBpW1Mz+MqqQlvwH9WYDkfPx0Tag+Gs4WvxbVJLl1TLnPF5ELWmVJMI+1LQfMpJ0GElKfxpHPGfc6Zs77ynEU6gDMKnRLESJcLaxQbpRiAZGS0zW9XdLs1YZY45rNDIsVEChHtNDll5mnGWy+vuVSWmpjnhSVGAUC3NySmSDWakCLzMjO31CZxjRWyFcHGad2+T/zJtZtjIoWAUZIcIxwQ4TGUGH/60M4iBGg0yzSjTYv+TpEwzdSQGR8OpOsX0hWoIkKGmCUB4nAi1wwaETttT1XCIui6gegTyUdi1vhhwA2DCC25QlHEMTBGiV9U+nk6ewAvXtyyXq/atS6A1zP7KKbEsgTmeaEfeqiKZQ4Su4c4IYa14TAuHI4zU4hsrzYisGTFdFowtZCWwHg8QVFoZVhCZhpnwhyoqVysxaVUjvsDJUWsEoHFW40xStg7SQpknVpyWhaRRcvcShPDF5Y54l0S+Kk2xFgIS+J0mi58qdXQYb1sggU43DfhUzYbqq2Jwk7pxMmRCuvNCjErerGCpkJJsp7WmlFasd1uANWu5QWjeyks0s/tNfzT4zJ7XmWzdr7mz1yo8/+kkD4nFORPNp3ynp2FGYHl5ScHZxMPtdaU8BSXrlucsvy+JdPpM9z2vAadnxkytiKinUbXyjKPrPpB4m2tEZbBnDje3aFKYlivJW3ECgtJKU1nHdl36JAJ00haAlYbnNZMs4xjxpSoTcj1fc96uyU+noipYHKBxk+qyBjn8XhkURnXe+JpJJ0m4nhApYBSMhaknEY5Be5518r55WuO27fsuxVHdyQXRUJTixO+WEvCqIiLIZUKWVGdpWqDUqCNQulCpT3rOT8roVbdhLPSUvcywmEtl887c9VkPE5ffp/TuVnTopRBmCqAQrpyNCdTateK0ecNvoyn5qpRzR2jtHTgzo7NJQRyc3867+k6j/PCbFpioBKIueCsQ5uKVgWjLYO1+GFDKJXHcUaPgVBmeTwqKKG06qUJTVXQsto8o8BCxJJxumJVK06qllGrXAkZcRlURdHStKu0JloV9/Gqc6z7js2qQ+VIaSIxxl5GlZeUmFMkFhnF8ZdRUscSI8fxxMPhkRQyvvOstxucd4zTSEmRGpMwvYzCe8PqxYq+H7C958e7j9KIyEkK8PVAtx5Q3tDtVvhtj1lb1NqgVx7tLYoeXZRU7THj3ERuzbU6TlAURonD15zTyaoWF5U5swnF/ZsaRFSCKKBzjnjac9jveffunQil8KxNIGcrzkHnNbvdjpplL+CcovOGEBZ++P57dtstORemaeL92w8sc8Box6uXr/jhx3fM08RxPHA6HdHrFdv1wKr0HKejcHCc49X1Gm8s1a/IecQauOk08TjicsDlxIvNNWljsVozz4pcMylF9mPl0GX6leOq9+ycFTdbUcxVMSnNoitTSWR1XscLiSwuBi2insoifJKgM9IkXdJ5XZZGr1YZoypGIePKqUBKqFwoKjdyjidkK3yWeODbb7/m9We/ZvCOq01HZ0bGVuyXdu/p/wYjJ/XszMgFTBV94lxxt78TkeWne+haPoG6/pMPaUarNsJb1fmLnUVqgYU7Z+VztKa2ZqoILOIcUT/5qjSxm8vvL9fxJ43Ny5V9cZ1+ss+nghLotGrpcEobGUdCNcyBfhJYztZ3dPuccznRmrUpU6ys6ahPn8/tvRFr4qXOeq4jb9by3FGQr3eM6xV31vDNaeTbec8SE1UVNrrirGboPOfEw5zB2x5TjDR2okyTlCoivlGKwTl2/cDW9xxPM4fHA/MS6QbZV6dSSd7C9Q5TMnd/pzm9/8Dd8cTr3Q3dyxfcrj1X1zvizY6lLKRlRPeO3jh8VSQ3s5iZYBKOwtateDFUXvWJ8i7zdQp048JJz8zBMHlLMh2eFU57etvJs9NKA+H6i5cM4YoYIvucUHEmpUDWEfPiBdlawv7AD8cTq/sHbOfR/QpdZETIO0etYiBYlhFbIqaxSrn9/6PAMp1mfOexxrZoLlHsUk1UZBMQYmgOA9kghhAIbabfW0cuDRylFX3vmWeJfX31q1+x3Wzp+/5iHT9v2B4f7xnHEzHMnE5H5nkmhcRyPLLdrHDOYJwlRhk5uti1opDpl2nE9hbvxAZnrTyk4rRQ/CDzfkVJjrtW5FqYx4nQOnohRE7HkXGaL1bwGIWt8vj4iLcWs1IyQtOEmcfHR9abNd47hqHn3bu3dL2n6z2//urXF+Egxsh4PDJNM2dIbrRWXAHPdKTm8hEDz9lipzhHrlYNNZYLg8Vae7GnA6A0XTdI16SWS4E4TRMP+3ucd/jOM6wGKSgbSM1ai7YO23V03mCNfL/S4s9yzoRJbuIUJN/9enuL0UacFkVSbs7iypmf8umv8LSAPS1k0sUxRl+EGIl6bmlU5QlIeJ5tzWcosjt32ptTpc14q9axPotV5uyyKef4uU/m05/xuLaOcJipp4lNrgwh4yPorBhud7hX1wy/eoPa9cS0MKVISZn9wyNhXkhLRHlLVlJoe+svwLE5i8ASFtmcH8eRlGVsyCwLS0rEUvj4cE9JuXXnK9ZaSRxJGXIiBrnnw7JIGpebWcYRg4BSz/CzCizuN1oPAAEAAElEQVTzyDyOLOPIMk+yFjTL/P3DQxOrpPtbxohThnScMFXR9z3GaOISJFmjFPISyFagkfM08eHjB4ZpYrsEtJNksb4b6N0AyMjJ4eHA8d0dIUR80nRrh+0s1j8fg+XP/+WfI65bsc9qrQUKXeTnXEJEaYP3PQ8Pez5+uKfvBpTVVC3z3o+PI4fjTKnCKYipEELl+DjiqNQ4i3OgVGIqHKeZw+MjYZzExaMtJVXGaeHx8QPrmlg7TU/GGwVGxMFpmchpwVFQJGqYiOMRnQumxYKPp4n7xwOgsdZjbaVUQ1WW9+8fWEJmt0TcZy+ZpplxHHn77j1/9s/+RKKZS2F/PNJ3Du+cFAGdjAA+HPdYH5mXzGF/4A9/+BbnPMOwYr1eQy0Ya1ivoBbhMSzLgdvrjnkO7B+Pz3bezgKzMU/F8pMLLjUnirAezuuTfAS0AqtUc5gUqJmSFCnJGlaVfE3n3EXMu4xAVtmcF22x+mn2X2uNUUq6qEWcLBQBtxsNzmq8tYTTCd3E++uhx+TEEhbC4yNTSsT9kePdPe5qi99s8JsN112P6xJjyDykA/F4BOvo+p6yBKJWzP1CrAWcxa0Htq9eMB9HcZAqTZ0DYVmI08hcZvIYIY+8evMS7w2udqjRSsctC6AzmgzeYYfntbD8/d9/zduPjxxDpigrgnGuMM/oGLFZYqCKioSaCDUzzRpde5RxlFxROmBtFCdLTK3eUNCgt1IgnQWVFg1cyqUW8M6QVBWHz9mh2YR5OZdAGzXRCJeFZimvrYsWluZkKuCsxShF0QqlMsoqtNVtA+guex25bivzPHN395F+6FmtB4Efp8gSI+P+gLESY1/R5JJRVkZxP3vzgu54wuwPLCWgl4LWFZn2PQviiDOnzes/1+F1ZjCwMgpTU3NryDHOgWNSHBdxr1QlnJpaE9SMUgULrFeetXdoEuNxj6pF7kXT1s6cCTkxJ+HWGO/ZrFcM6wEM3H98kMjynDHW0K8GhpVE4z48PpCWgDcGpwXKrZRFFZgOJ9J+z48/fE9qAqr1DrxB9w6/G+huVrjrHnPVwVpTOkd0DlSHqxqdKzpkUB4dEs4EcjKovGBURCeDKsLTKjHLNa1kTYo5SSJK0rgWb1oB77wkdTZ4bKGSVSES8XTPct5+9dUrTqcTsPCnf/YlxiR+/OEH/uN/+gv+7E/+GTEUvv7DH/j2m2/Zbq/YbLbEIIWMrppff/kVD3d3qJIZj3uOp5kUI8sy8eVXv2A9HjkcDvz2L/9X9l98ydX1Dbcvfkl491tinNG28vpmQ54X4nyk3P+BX66v+OK645ed59sHxxgz8ynwXVlIs8HsOt6sB3Z9h1KWacospTLrwkFlzNoLr85bxjCypExse76o5Rk85XoZI1k5LQBv0QpkBNJUeissSZszNhUczT2nNLl26O6WY/jIYT/yzQ/f4/wG57ZcrTt26545V6ZlphjVHBXPCwRvmTiUIvUKWqHzU9T4WVh52lOry549pQjZtNGh3BqpArA3RhGWBWUUTgPWgKpPP74CZTSu685DiCKqgDhKGvD5J+IKrXF5rl0udQmX/bt0k55CSqjmqYnXXlQ9d5Z1azIUUMZRlaFU2YeKo8Zckrl0A56K2nwWyEV4U9k0F11r9NYnBsx/q+NrU1HXV+T1mrlb8U1Y+OF04nfHPY9xpNSEVYmNVjiXWHlJsEtLIi2JjV9jiybEyhTFzXcqmamKS2U7rLBX8KdffMm//f3vuXv7gXfvPvLqF2+wzlOAxWjGfiBcK67+9H/D+9/9ng8fP/Lh//Z/53//m1/yZ1+85n/7Z1+C99jNBpMzs26pT0rRX4m7r+ZKTIrxGDBzxkyW//H2S34RJ74OR+aHb/hxUuyTZRoM2ggsP6fAicRkFbPTdMrSF43PClcsHoOzPfnK4f/lv8DmSBcT32iN/v49+sd7OuukUdUE81wCuURimi8NLEqF/+v/5b/4HP3sXU1YZpwxKI/ERarCGQCElgL0025irTKrfBn5OSezgNjXs4BFZbPdNeiRad1euWj7vqekDU5rrNJshhXLsjBPM0tYeP/2LTEGbl7cSlRuSyrQnGG6iRhmcuypjQFglUapwpwEGmaUxngjLpy2gVqWRZKItCbFRAiRnITE3rXiPsfEeDwxDgNKw7IsDeokGx3vPbVUnLXMy8I4jtzf3/H69es2elNIMTLPs1irkVhba+2z2t7zJWZRta6ndNSVUhdYcFgi4zg1kUXAb2JTr6CMWIUVoISPkVJqUcjt3yORod47KcA7j3cG6ySOWWsaE6cQVSEFiT0ejyfmaUYV6FyPtUbGNWqVkbB5Zl6EqyMz7FzI4GcY5NlBAvLfJiSUXrBescxjG2MJWOtlnCx9snFWMi6jam1zygVVpXOo4GIVvKQkte6lcZLPjhLxSvwf+tmnhNbGYYqixMI6gU8VVxV+8PSvbvCvb+lf3XAgEavM5JdlpsyReVoERqrl/hRhv17ux+MycZonlrBI91NJEtccFpwCm5yM3yiFsQbTRDejtTBdagWl5YFknTyXcxFHWQhEZ8WeGBMCImvrwVkIrQI7c96jjWZqVu2K3DNad6gCNRVOj0fiuKCN4vDwgDNG3B+lXKj2OSTmOqGVZhgGluOpxW+71pFVuKFne3vNePdImiNLWqgpXyzXz3U4Y1rCmoxieGcbW6NyPI2kFOm6jlJgmgL7/Qlz2+OMuMfmJTBOkWXJQr4vEst7Oo0siwD1apxxRsZESi4NAL5Qc8AhRXiMC1m1gtwWnAFrFa4zFCfsqBQXas54o8WuXmTGuKTYNjaaEDKH/RFvHbvtlpQKShuc80zLnro/Uqm8en0DKEJIfLx74PWbI5vNCt8ZHh8fKJs1am1wRq4bhRJGxOOelIU9czyc6LqMVp6+a+JGLSxzxBiHVpZpmcXxk5/XwfKPj7P7SNWn0TgAo00TbQXAHoMkVmGtdN7Pa4kSx01agqwfzlN9uTjgFAiDIUvqXjG1ORfkuegbk0w1B9S5MaeVXGOSuAKhZJYpkQBvtAhoWpNzopxGltNEUhUzTaxu2vnegg0Zn8BmSMtM1VHSLoJsuuMiY6NOG0zf0d/ssB/XZApOW+gWVHCUzrAETVAF5TW3t9f0SqNSZuoc4/2BZZ4Zl5moMtrUZ3ewvP36a5bHPTZDpxxLTW10IhJKY6sIsAKtMroWUshQE1VLFKUloXRFW2kgUcTqX1BS4J6jOy9iunAIzvt+pc7cFZ46vi3G/PJUac6wy2a/8okrShx6lELSBUNBGRn1OzsyRXhTnCE/1pq2SZTiJ6aKjhUTwBq5xpyV8b1paQmP1uE6gYDHlGTctw5kKqdxQhVJfVJOkcSg2BxVWlLo0vOtldZkemsZjMFUha4GlCVpxylVTqUylUKh7Q3bKIPWwqkZnLhjlVKyN1wWnFEXyHnKmdCadqVA1RplHH4YwFqO08zd4wNhCRQK69UK1xm0hRAWljCRY8Qoj7PubCThtASm/Z4xTJzGieo0tnOs+hXKgFt5rl/f0l2tcbsVdrciuwrOUbWlYsltjEH5dh04g3KG5XQkq4pcsS1d7DLCkJspQBx+ZKQ4bgKutRpvDSUllmlif/9InCMkZGz/mY6XL2/Y7x+4u7vnu+++RWvFMAxM08TXX39DTgWjDT/88I79fuRqN3J19YJSFKUatPHcXL/gdBx5+8NbYhLoe84Ld3d3rHvDy6seV9bM8wOPH2dSSdwkjUdzf5q5ue7wfWVlIE4nTIooHJuVp6uWx8VzP2ac0aSq2IfCtssUJWMUIcyUrHAYXu56VOcFJ+A0m/VGEhZTpmbdEp4KhyVzypo5SWpVOc3tfGiwGuctPhdCiKicIUVqCCRlqdqBMfhhi4s7Urnn7vHEzf7A0CtyTpATqiR0KRQtI6XKPN95A1DKNoatCN+CS0gXEHs9G1ra3vfSzMxZmm2pXMbbxMVRJZpSK3KVBDJVDRYZJ7YNKaqUOFieYPLNpafOQpK5CNjAxbspP/M/ehGy/fxk11Z/+mvb87WU5/bolP9pVWWEh/Ofy3cySsvHxc1y9uXUhgMQEZMio0C1uVTVuQFyFnH+G2ks+WogWsOUM99/uOOxVMaUSOMEccaUhC8ZVw2dgd7bFmZv0FiMMpBFWMsU5rJwDCOPxwPpdifNbe+4vd5hycTDxP0333G93cIKotIsxlKsw60U1y9eMt4dSWPix4cf+X//3R/48PEjYTrwzz67wRUNxvNxDtR+je56Om1QJkGVcAS96ShzZj4Gxn0kTgVUZGMc3fGIzRnnC26j0b5QraOYSkYRkYZvToIpsjljUCRdWVQidZpcHcUq6ix7HY+MmAsuAxKFUhdqlRniuCzy/PuZ5+hnCywpLJSuky7auaOhZExINcEgtwJJRNB6sUCflXWxf8oGo6TGTCkV66zMPPG0mZQ5YkvvvcCVUsZuLGFZmLqRDx/vCGHmdDzgOsuwGlqXXWZzzxuZ1GC6Z/ukaTY0qnAjqsng2q1XpYiWkR353LPTJJcsfJB2w1FrSy2asE54FGeL+dmFIxwCiwoLYVnY7/dM00jnOxSKHCMxyt/VIq6P1Hgkz3WcwcT1k7EakQ0UGbElxxiZThMxVrR2DdLUOnSoy1y5ZNULsFRiLk1LNlDC4NDnBUpJx8dqvNEXMaZWmRVeloUwL4zjJGwI3dKNLmwWGR1alkXGJ2ID17aN3mWjSnOknN2MRQoebSAlRQhTG2MJWOMaJyj9VJk/jw/Vp1nLiy2/2efOM6ECiis/WURre2/O4w/PeQzKyDWZKl0GW8BqjV/19Ndb/PUWtxmo4+Ey2lZSvKRdZWQTgFIXRtLZwXOcT0xhIebUErBaxLgSQeY8CmuMkdnhxik5C3W1XUequTPEVioP7JwiOSZACkxjjDyk2rhEafGfpsU627ZJ1jlREcif15aaCmmJlJBIrSs8nyayszLSl4THUlVtLIvmXmtpRcY4nMtEqUpAK/zQCbgwRmoMzI3Lk8rzgaVTilhnMNrirBGgbyu8lmVBqcpqtSamzLJEliWSc8U2b34IkkgRY2m8GGGPTHmWqNEcIAa80ejWiVoWUffJCa0qtUZyWloumjzMjFUYq9DOgNOS8pIESGhANjqS3y2g4jaiUkrldJpZ9S2Vo5NRPm2tRHTWirG6iWmaXOBwGDkcJqx1OC+isXce5xKmP8eeyv27jBMF6QxLelC6xFuWWjBVeC9aSXJIDKnxlHLjRDzPcY6vPxey4kprLI029nN2/4kLupJTJAbdGByqPUfaU7CKQJhjotRKieniBtPNWlwa70s1uHFsnCylJNb7SeR5WnaM1qhznG3b05WU5Dw6i6oZQ8GUQo3iUAs5C/eoOSZ6LDUWdMzYAvMcqSQiljQHahNYUsoYbzDe4bdrzGZAZ5lfro2/1TnNsChMjVQDu92WlbOYUpi1wmrF6ahZDpGQJLWtPjODZbz7SAkZVyBiCU3oihRCDWQCkNBKxkq0QGRE1FCZXB3aFExFzkUbwanIc0W1cbAiVfplLayfWNLPnexaRfSUCdnmoGx1g1w2511/vbiVzmw76dFUYZMpEVi1Aez5mScXwnlc1RorxZ0qxFxkZCRpQpDroxQRxZ3rOU4nlpAhZ6qRoqhQ8P3A0HsqlYfeC0chyTqR2rc0xsjo4aUseZ7D6IIzis4YbNFobanKErVlJDFRCLTUh1rRBYqSJpAxis67S8MqLEFGlE2LHK9V1vaWOEkVnok1TkYZVeU0TxynCYpwC7reo42i1ESMEylHco0UDGiBdxbgNC88Hg+c5hGsaqlHXM6V6y3Dbo1fN/ZX16FMoWpDVQKyrm1cXaNQnUTTKAPZQDaVrCVpSqsG0zT60hCo0FwFAlCu1MtaIftsKDEzn2bykqmpYurzFeqbzRqqRMf+w9//Ay9fvgSEaffjj28xSqKWp3khRoG2Or+RNVbLurpeb7naXrFZbXjYC4y5lMTj/pHerNitPZvbFT98eOQ4zTxWQ9eJg+oRiFXRG0NvLKmMUI+oqrFmQx4cvbHo6qUZpwpzKpxyIauIVYlYFrSyWKtZbzpwLcrayGhQzlr4YVXSrFKFIRYOoTDGgrOZZZmpsZBqpTTIsLHyXNbUBi7O5LY2aq3QvkO7FcqsOJ4mDseJkiUQpOQIJUtMeauz6jPebwAoI4EUTSCp5dw8qG3PK6yqos5pPupSW8k4sbgD1YXd0lxVqlLIwpIrBlslndUq05hwtPqhuUWUujxPP3WsPO3O5f/UeY1Vn/yt+sTs8pM1qf5E4KifPjjb59SGLrgIL23N12iMkmbiT90y55G8JrDUp/82tOdFjZd/cmGzfCJOPceRvGGMif0UuL8fGZUh1YKLCRcWVImNsTfQay1mgPaya5GHk6A8EqlGQl44ng58uPvI9Nmby3nZbFZ0WlHniYdvvyV8/gt0NZS+l/hkrVDGsFpt2Gyvmfczd/Uj39zfkeaRa1154y07b3AYDjHirEyPDNoLO05lgkmMFh5r4cNSeK8KD7VwymCrZojSjB9yxLhAQTMjYS3yvyf5qyLPT40ScZJEUpqiKtVARtzeFUkR0uYpgU4CoOV5bbXGWPuz0yl/voNlnijD0EjSuT0kuNyguWRy69aUkslJSapIm/+stWAwIrDExOlhz3Q6CSfCWioQsxRHtW1khDdkMMpgtWW32hCdp/eO3ntWmzXKau4/vKdeX9N1AsrKtaBqRtXMMo/EZYUfOrF8GQ1ahJIcosz1DnLvliqWudNpZOh6tIGlwXhjjC2e9umYp4nT8YRC0nrOjJkapUCppeB910SUmfuPH3n4+JGbmxucdczTiTAvzJOMJG23V2gTUS2J6TmO2gDDSluGTtJ7zg4WazyJQlwSdx/v0cox9Ft0NTJaVBMZUaRrswdbK1Y+6xxD16C1zpBSQiMdtaEb6J2XorwkiQhFoLrLEhmPp0tUb2c9znn6vpdzkMX1NE+LjLA0sStF6b4ZpVqk9lllh9wgTiBFnlKZHCvzeGA8zUxTZOhX1Cw8nfMCqLU8QHORh0NHjy6IJR9DzYhLS2mUEfAmKtMrkZ5yzeScUOcN0LOdNTlWylCTIoaCWSpWGfwwsPn8Fd3ra9RuIOu2ua9VkqxSZIozp7iwKBl5qlQhh++PwjlKiYc4ktumbbNaMfS9OJyMwXhL13ds1ivhI+XaInnldaMFskuVzS5GS0ejiGiZQiRaKV5SBGsBVS+gYrFsF7SV79N3nnHuWWIgpkRcYkuacnSq43q9w2hNzZn7VJjiREyBh4cHMFII1JQk9g8gRtI4onxPQXGMCwUBTs8pcppnDodH4v0RFTLOWDr3fCNCP/74PS9ub+hvrnBWYTVoJaliMQb6vmO32/Hxfs84LwJ1TRWPpiA8GeEdSbStNx01Vo7Tgfk00xFwRDa9wZCpcWFJ8itlQRuoeSFHS80RbyreaVyHjBl0muo0zIUcZmpcUDmzGjp0LSzTyP7+gdpvAE2thv3DEa8t4/U1210ntYZT4ngqBess948nMBZlLKcp8f79AWMl5tcYLTDOBN2rnnPaStf3nO4lbtp3HZvNjnkWMXq328k4hdbMc0QpseyeeVHiEHg+gcV1/sL/sko2W0WDVeLuqbk0Z995DEgE/KWxNTTlYkXWSpwoNQtEOKVM9IHURShIUohSxBCISwQU1opAmnMilyTAXyQKuLTxWmM0nZNi2LXY3t57Us3kJXA8HqhZeCOWQo0FMvQowjwz3RXm04nl457eDxjl8BimORJDZNlPTCUIR8s4whRw1mG8o7ve4V9cEY0iBXExGm9Zb1cMbJnCRKqR25stK+ewSlE2PcO642H/yPK+MB0eKb6S3fOCG12cccVSlCFkcdhFVTlZeDSBwoytgQ0Ki2ZAMVWYYiYVRapG7hutpShDXLpFSXMoJUnE0DrhnJO1EtmzoIRLYtpae8bSDl2Pc5KScTqOFxH4DF1UVGTURV+SiCgtRUzsMxQjnfFioRoRO+W51Mouqy+CnLHSpMo5soyJZTzhbI+xHevVhv0pE9LI3f0Baw84b+gHh+86+lXPeuiZTgdMiXhVKUmj1hbvPJv1to0jJWHKPNOhtYwsDtbRRYeqPRnDEc0DkZlCNpWOii0FlQCtcca0Jo5nWTIpLIyHE2vv0c6D9dLIiUWgsUUafEYbtsMK53vmZeL944GliMvBOMt6O1BJTNOB6fhIIaAMVCPurGIVQVUe9o+M80gqiVe3L/CdQRvFkma2t9f4XYdeGfz1BrXqqcahrSJlYTU43XYwCqqFbKs0+mxFbdsQx1iIOmJswtQqe9a5UIvCtvjwXDI1SEpkrUoAlinhtSMphY6KPGXqUlA9Z4Lrf/XhXS+cs1D5n//n/4X/6X/6n7i+uaFfbfi7v/1LjHK8ef05Nze3fPh4z9v337Ekw+2LFwyrgVwjXb/j9jbz1a+OzH+7Zw6BTOXDx/f4PLAqK/6737zmWo28vTvxlz9+zcebz4mdA7/l7XHGbSrXK8166FjmI0uYmE9HboZbrrcrPr++5YfDkTknllr4GCtqmVE1sfaGF1cD62HF0PXidjgL6WS0VRhnGLoV2nqqtgRlGQuMsfA4RlQKfNiPpDEStaGoRFKVhDT6nFNYIORAbmlkRWmUW2G6a/aniQ93M+NgmIO4TmuJOK1JtZKSsH2e81DGk4I41q3V1JKoJfEkUmiyspKwhqFWjdMKYqbqiHIisujS0LJt3atK+CCpRGoEp52MFGIw6cyik7209Q7dglBA3vcz0+TJtvLJrwokK/npqP+Z352nhur5/835dxVFRpkW4VyNrKdamqhWa9kHaovXMlYv0dEZGlQ7JHG5USFlTUgBqweUUaRZmCIgo0QSPQ3PdsMBxzDxw48f+XB34BQMUTmc83yxHXi3H0lR+HyvfnnNte9ZOcdcKikk5iUSncGEwLJMzPOB6fjAd9OB+nDPb25e8vJmx6q3bG433G467n8c+eb/+b/yq91r7K9/w+qXv+IxV2KO1JJYKc/r29fY4vnwfiIow0M88fvfv+XFOPHLNy/4xeevmbMhPM48Pmb01S2dqqQS+JDv+Ptpz9sp8N0h8+6DYh4zcYnoVPnMrPlyo9kOVxxRPKTAt+lE0ANee9ZFEY4juoitUOMwVZ6priyoU0EZGd02Vbh1FUP1EJKE1tgWmKMR3eLN56+5ur3i6vbmZ52jny2wLGkRC39TBOuF2twe+kVo9cYamVfLhTAvAn/SGovGVPnztESm04llnslZ5thNU45Aupq5OVxiXMgpoqj03kJJxCrq8OAd/apn8NIF1wpxujSFLVcnHJhlwS0LdlhJJ1nLeEwsEevspYOUYybMCzXLBttqI9DIWrFag/dSVDZHhrhbAiE4amlgO6UuUDtjNH3fE8JMzvK5Hz9+aCJEzziNpBRIKbKEmXVdU3IkhZ97lv7pkWqWzuoZKtVU47PSGnPmNM/cPzxgTEepVmKTObuQnhKVKA2sqBXWOW5f3AK12aAV3lmcdwx9j2kWLKqiZhoAOHE8nDidJPJaaUM/rBm6AecH0jnVKWam8SSx1831kIIUHgk5t7ZWrJMlTcbTMspY2tkkp0BqI2oCYM0oxFVRS7kknZzp5yWrVsw11deoizhfi2ruybPt+6eKeT3bvj+hmz/HocZADZLykzqD310xXF2x+vwFdrumek8ulS5WbCyUkNiHhUOYmXPEdJ6QEyUEwjTTGyewy1a0uc5hvWMYuuYgq3gv7hBTCjpEfDnT40XIqme/u5X7SEl7U1R8pQQ4nRJpiZikIGTQiYJ0GKOG5AzJa/LaYa9WrFYr2N+RZmG6pCSusrOboOSMbufJWbnXqoI5LkxhRhdxkGljJBGnCMcAFUFp+Xmaw0cBw2qgbNbMS8L3Srorz1jv1ZZoVlLCGi1jH6UyLpMs6saxXm/58d0fCDFhvRfnlTIY5ZgOj9RYUBnh3hRDCpFpf+L0uEf7irVttnuZidORnAukGUumsx5VkTQpEoP3OCtJWdoZlDUtsh3iYSLFGVUz62EglUpcZg6HBzollH1nDIfDgb1R3H28Y3e1AqXwTpx4KRbmMfLw8cjN7Uoi55fK2+8f0NgW0b7jdJw4TDNX24KxoJVltdpx/xClY1Yq6/WKaVo4Hk+cjiPGCtQ8NkdUrbXFycuG0Nrns0JYbYhJbNCpIDBWhPvwSZOtnWSoWdw3UavGy5DyWhst45Jac6aIx7CwLA43WUobvRPOi4jOtVaMSbjspeseC6sh4JyTZ1aVTo0C2RRjxI7uLNQMSVMUhHkmxyjXjbI4Y9GqyvoYWppNLhyOC5PtMdqB0hIn2rgjMTdQ4RLQqcgor1IoZ+m3GxHLp4UpBgzgfUfvLG7aMy4n4ulE6juMs1hv2L3YoXrDZBKPdQGjyc+nZwKwwrGkQpgTUwhMpTKpzGQqk1ZQNaUakhjA0QUGFJUn3liJhVhFyFZ4lCoYkymkxpurqLjIWnnpasaWhOYAD8VQSWgV2Ww2bDYrtDeUHxLTtFAzWOOEEWYU2p5dLZBzE+WKAF7bdp1qPjXLi4uynIHrSZyk4rT0DTourrWuPR9VraBhWPfECod54XB4BAq+0xituCo71ts1n716iVWagz+xzImvvvw1n735nN/85o/ou55apQP6XMfWOwZjhBtlpOhJVMYwc1omUqmIJ9acG+V44+ido7dieZ/GiRwWyPUSs15yZRwnliiRqkvO2H7A9z3DMBBzYg4i6FPBW896WLPqBlSD78/jItB9azDeE9sYbSmZw3ikaoEKO+/AQLUKMxiuXt6ye/WS1e0NZhio3lEbn07XfOmYK9Ve0Pk5moFSZPTkPJbxScfeGCNAzpZSBlz2MNBGwHVFIXuYUiTVZTozBdMA/nkKvsNhIsZCSpXff/0trvt3vHnzmtevXuP7geNh5Le/+wdevnqDdo71bsO3P3zHfjyyWa+52q1wSsbIX75+w/v71zzs7zmNe3KB6TTxWEaO68jnq44X3RajE+/mRAxwXy0/eosPAe8S/RaGYc3AinGGsFRqXXDK8HrjOGXDMWemcKTWgNaV9WaN3q3xmw1XuxvCOBHnhWUa6ayM9Vpt0KpiHWgjxZirMBTYblYcj7eg4RgeiXR4rYi6nVdTqLpSdGkcvELOkvSYtaPqFblecf9QeXw88eFuzykshFLIxpCLIlee1aUJPLm225hLrU8QcC7PU3W5386BDqWN5Or85MLUWmFUaU4dETAVMmIY0gypEkogkUTILomYI64mqFaaErXVk1UL6qHxEs9qiWyr/5Fz5R8fZ0c14gD81PUjQnZBNQOAEovOJ4ysKgEb1qKsaw4r+WKqMf6kQSxCC7pcAlBoH5eSoH7606lndbX/9V/9JU737FzPVbel295gVmv0dsV/nEbuw0eOxyMuZrxWOO94DJmoKtVo/LACDaUoWDIuFObjI9989z1/+8Ub8j/7E17/4g1q23H76pa779/xt7/7C97/u7/GLpp1f4PuHCgZMdJV0/UbNlea69dveJj2lBgwJdMFg9snMEc6CzlGppT5Zn+PqpExjvz+4Tv+5vGOh1g4Zo93X7AyKzbDmjf9hpcry7ZzbLs1+5j5uMz87vTIb/cnTizMxjINPbNSBAXUGV8UJme6aSTXTCiRKQVi32OGDtMPrNdbum7A+571asPVZkstmf3+kS9//SXb6y3r7X854Bb+a1KEqhhxKvw0AQsuc/JiW22Qslob3FJs5lbkdpk5j5EUIzW34r89MPTlYSE3tXR1ZJthGm9Aqxb/22y+VoEZuvZ1xBJqlBThmtqs5tI5t+eLv/2SW/F+XnBSlPEK2aCoS5EinUNhBvzjxekMYi1tbkvEDLFBGgzOCTUb5P0ZxxPjeLokCIlaXp8Wu/bxXEetlaplTlBSEmiLVOOKtHnRJQY6rJzh86pQP/mgnfhaUS3px3ddcytFrLW4zuOcFaGs5Mu/q0Us/vOyMM9BOkponOtwrse6DqVNS2uSIjun0GZDpWDPMZKLdJBreSJmyFopG04tCDva7EETzuSccBZSWgKE5h9DLNs5VU9/ztmlefm8Fr/3ySJ6toif74XnPGqUpAS0wvQd/npHd7PD7tYo70DLTLzNoFsxvuTElCNLThjlqamlKMSIpbm3tIwJOGOlgLPmIhpZKzZklTM1JSzC1asVUhM2RJwDbdtIhbWolChICkbKGZMSqggEriax7IUQxWJoW1Rrb7HrHr9ZSbJCo8+r+vRAU7WlcJyLVdUenVXSQHIpUJSke2QBr9Usdn6lZTNMbeNJSdab1WpFWS+kw4iv59n/5ztvzrl2zZUL8wiqcJoQfoDWmmWRe0Fr0x7QGooiLC2Kuo1d6qopsch4VFjauJ/CGyt2/xioKWNoKQatIC8pkyt0zmJNEnirFf6JNgZn1SXeHgp955ljJKdCnGfMEKmI0yLHyDxNMuY4Tti+w2pJZ0upsNTI6TBydTWI1VZb9g8HVquO437Hqt9QiiKGzDguDIO8B8Z5tLHkKCKAs+IOKLkQQsKj0FrWWbknJZ75PDJonhG4eU5VkLVcCejs7BLWIsJJg0HOp4wlLNL9sJbeS0FrrRXODMjIFZ+wiRoI/jxiQj2DSiXJjLYRL7mwzLNcP9ZyeeBSxTFnZHOrNBd7t4yoKFI9d2HBatvYDJBKS2gqkZyBpCg6U5qTpmZxU5AypIJKApa7zGAqhes7cTEoTThNkqzSYO5VZzDynnQaDAWcxnQGrzqGtMY9eFkr3TODG7WwwkJKLCmRqhQncluLIFVqpShhIQGXER5rNLVK7GotNLFCSG7iM2hiRxWwqEmJ2kCKtQi8F4x4YxQSc0+m7zu2V1uubnbEmHh42LN/PFGUwhqN7UQky1EaBLpFeJ+dmXLpteKmfPKsOneMgdhSh8CglGmMAKBmhI1aQRW0KThn6HtP33v2+0JKgZIrx8Me5wy+c6w3a+J2g9WapU988fkbfvnLL/j1V79ku9te9lnPdaytp1PiKFZKxpZTLSxZGiqFsxtM7kkNkpbVRJmaooyRpiznUltoI5WxiSupyP5SmHAebQ0xS+OltM6mxJZ7vLGksJCWIM8LY0AbqjbM+RzV3VxuVphzhacibdisWF3vGK62mPUAzlxSSZSSEYnz6CWKC7dBoYVj0ZJMLpJaS67UqPY+fLItq0/1nG7pJ1rXxhfQ0BKUYpCR9RZL8yzH2x8/cDxMLaGk8u7te0oubLc7+mHFNEXu7vcY/0jnO4wV2PV+/8g0jcSw5mq7wypFvxrYXl0TUmSaJ3FNx4WFwOn+kdf9LZu+59cvHOW+MqZCrIljzDymzCZlXijoh47OWbqNZzwGYoJUDX1RpCyQ+DkolLZYK7dJLFkEDQXKOZxW2M6yXnWtGYWAYKuRQQQtz3SvZAT4+mbF4zyzOsxMVWOQERPT2LRKt9GZKuNeNcv6XZShqJ7KmmmWpsw4JULOxJrJIlNQPz3Jz3SIUCB4AFlbZO8kiUJnXh8/UTJqlUYm+UmUOEsh56tSAbo1GmtNhCiiYcihhaHoFnMvTl57bvhqLXHNuoVPqKdpoPP3qfA0P/T/Q2Q5j1yeX8L5n13+7XkdTS31trS9uz5HNPPJmn9GR/z0Q0ajGvbgk5Sl83l6zvXx0+NqtWbl1/R2ja4D65sbTDcwG8W1tQSlWHIWflZz6aeaCTkScmTQEklcCtRYsbFSY4Jl5uH9jzx+dsP6dsV6t2K93XKz23FtO8zDCd4/wPsH9PUa5Q3VKpZcKEqjnWd7fc34foVaJtJpxmZDXwybKoywVDOJTM4jIS4c55FpWlBLpk8ai+Fm1bHtBrZu4HUPN71l0xlW3rG1ho0BS8KEzD4m9qFypyKPunCksOSMw+JDxj8cmcYjIS6EvGC+/IzuasX6dsNue83Qren8wLDasupXhLAwLgv9ek2/WtH3/c86Rz9fYNHigihSA8ghTWxxHrQ4y7PqSWN7GKVFCCnCYyghEpeFHAOKire2FVNSLKWcMUphjZD7dduMaKOgyrJjdMVqKCmQoqZfDRgtaRVZy/x0sVpsmZd0n0BXCoXcAISQcmpzn5kcMvM4Mh4P7aF23uQuaKVwxlKUvL7cCp9UJEIYaCJKbYkhIqoUCqkYfGdRWhgY43jisN+TYmQcj1RKE45kHr/kLNFwz3SIu0Rffi7VFJbSHrY5Z5bm0tHG4L1vaT+XU4zR8tqMEarUWXAyxsjX1xpvNc77NkKEpDK0mzznwjwvHE8j07iIxdd51qstXbfGGEMuMDcHg8A6k4g0OZGDXC+lgum6i1J9eY2y7eHCTGjVsjGtK+ZUc5+I6BNjxNZ23ZXS2CONUaKFOXKO6fw0pUiEGE3JP52KvSyuz+xgqVlcYspb+hdXrD57wXB9hb3ekGwDkBUwRV1GeKYUGFNkSYmuRSRL+hGoM7xYKXQt7T7TbVRKXGJd5wgxQhJp1CCSf6EJTLWJLLXSGYOxFmUtcTyRU2TJwjAyygqMMQr/J9bEtCxECsUZ9KZDb3rc1Yp+t6Fb9czjSAoSlX0WbRWwtE45n3AQakv8Oj+M61lEaRb2kiPKaEp1WK1Yggh1Riuub64wpTLf73FV02lLZ5+vpb7dbMRZgFwO4lQoTKdTu2/k98scAIPxIgqWokixsoxRZu1jJIUFXRR5iZz2e1QOmOpxymCcx1Qk8SQEHE1wpkKRTncqVdJ7DFhbJabOejCOzhVqTtSaULqwXg+oCUoJzMtCDgtFt1GPlJlPI3cfPvD4+par21ts16GVIYVAKJEHa3jxYoeqhvWw5nc/foe1hpvra26uNxcn2P39Aa23dJ1rThpHjJF5mqVoMcJ4iSFijaYkzTw9jU0K9DdeIqOf68gxXkR3g7ps7qAJLFqJ5tKKzJIS8zihqoCZ+1ZsFWfpjYLOy6gqUsyGYLCLEwuxNlAVqihSFM7XWdhWWkS4cTjKqFLfNrJnR1eRlBT59EJYJmHvaEU/dJQcCaXI+FbnMc4xmI48TTKCGxNaOVknSyZEKWh0VTgrgqNJBR0kvlulQk2Voipu6MEoSudJ84KOGa003TBgO40fDMd3P+KEUE3M4Hdr9GAZ2NDfDeRcntV5BJCMYS6ZU1yY4kJGoPYma0y18p4XRTENaF8yyRhJtUAg+pLKhTzjcxWuVc2y52mtohojVC3XntLUmsDoJk5VjLJgxPHb9T0vXtzyz//ln+KHnm+++Z6Hw28JNcv1su5Zr3sO+yMhiQNPJYnprlXEMQPSyEkRYxXWtbSMVkzEnChF/o2zDgliF1h2SBVLplSxwHvnqUpzdbXh4eEjOS3EELj/+BGtwHvLy9sb1NWO9WoANF/+6nPevHnF1fWK29ur9ox/vnN32w24rLAZCuIci7WwROFHgYjJtcg+xirN2jl66zBAmE6kOaIo+L7DaUcpEl29BIllTlQwlq7vJXIU2fvlLM8XEVc61v2ARbHMgWWaKVHGWKvWLBWmsJBbcbrtLF0v7pV5WShe0a0s65c37N68ZHhxjWopRbVx0DSIcKfkV9U2y9pUVIvhrvoTgaXI810XhS7SsFM8RcuWVnUqpS58PFsbN82IkzynxLJIQs8FBPQMx1/+h79q60bl5uoFDw/3LMvCze0LtldXhFT54d0Hvvv+e25ubri9vWV3teXt23ccT0fe/gh/8kd/xG63oe8cL168IsbE4/5AChGKIQW4f3fPl9uO285x/fkW5xc+nCLvDiOnWPi4FKwrvCpw1Xdstht221v2x8xpjjweZsIScUvA58xgPd4brNOkeWbPiRQKRntW6xWb7RXX1ztevLyS/UwbVx2Po4CQ84zqPFiNtoqb11sOOXMzJe4/GnTJmCqirbUKbRVVFzIQi+xSta0kbSlmRaUyLzMpTIxLJeRErJlYIJ0ZgM98pJxlLL7tWXMqaCONb2P7Jhx/Us+1kfzcGHu6uUfP4oqp8t9KQc2xAWEVoch6GlMisFCUJ9dECAtVgcsJmyOm6zG+PV9LkUAF9aSi1Keexj8SV/5RW7M+8azqJ5+rzo6Y1uTPOZGCfJTmxlH6PK4ka36qku6XS7rwVqSx2wSVs7P7Iq60B8cn4spzn7n/0//wr1FJUaNiOWTW1y+ISvH1x/dcGcVsDaMClYXHVmoh1sJpHjmOE8N1Jhep14lgQqFXhtXQcXr/A3dvt3RbS3/1G3a7K754/QV//uUfs06a4eOB8rtvMV++Rt9sqJuBxyVIwpnSvHjzmvHuB+oyMX74iM2WnV3xxXpHv6pk7Yk1cH964OMhoUrlardj29+gi8XVgZfr1/S+l4ZgWTAEbIpYFbHWsB4Mt/01v3QDd4eRt/sjvz2NfE+g1sA8n/B2YFgq6vt7Dt98xxRGDjrz8rMrXtzu+OzPfsNuuMarDqM9yvYsMbKEhWNKjDHgloi1AYb/8prgZz8Zc+XycNFaXwpwgBgXUooXZTO3rk4KEeO9FL6fuFfCMkP7OsZa6QSGgCLKfKr3GCohBpZpopaM94YlzNScsErUYJVlIXZ2QCv5+UJeULq2ERWNTw5Fc9M0KKLEAn8K5BUbXgiBeV6kGBpH5nricL8nRQE+noF1paXJuFZE5ZIxRV+6hs5J/HSpmZjNJ11ZAbzuD3vmeb4oqOcHagihdRufkRquuACDrXUXmGJtQklKhXmZGYYV19fX3L64fRJO2jiJaxsqrQWm55ylawkXxgpx3zVAWKG0kY4GoE2Z4zhxPI6cpgmUYbVa0/cDfT8gUM9MDIFpHKUASAlXE6pmNIkpLtSS0FoEIOlCCciuZkk4OkfB1ZIpMZNUocaIKkWKpZzb6y7CE/IOVGMJkKkNlFdal4pPCrdznOqZ3XK254pSL0Vjrc//IMQous2K9Xrgsy+/ZHdzTbfqKd7K62sLemkLfi6FaVkIOZGpwsqxFp1bkowxAjCuoCk4rfBaY6wi5oRS4LuecMqkXESUEIUA0Cgr3ytRWcKC7gym6xi6gVIDeW7vPYWYBB6VQiJRWGpiiZFqFLZz2PUK5YVxkWompEUSo+YZU80FKu06LyJmytSYiEugmIpWVoj/VrhKtdZLJHQ8p4AlEVWc9yJWLAvaeHGwLPLnDiNF7DOKmi+vbyg1NwBpvThoTqcTV9c3aG05HhZiaCBMXRjWnRRSORHmQJgmlmli3B94/+OW+7sPfPfNH6glY5MhTxqrKlFZ8J7Y5vK9lnTEFBOpyAP1+spLZ85UlO3Q1mG8Z01L9CFTamDoLWEBciSlQlpmiqkSuZgjKRaWk2I8HOm6gQHLul9zuD8wTiNWFx7v9ljruL265q8Of8PBWfYfH/m47bBOCtP9/kDf99RqMFbA1Ms8M46R3q8aaM4yz7MAtDNY14TAmJsYM9F3Pd4/T+wonKHJsnZZYxrMGdmoaXURFqnidMkhsYwTukgBl11HTAG8JRsRCnVJGDI5zYQAdjHkBonVGLSy5NTiMmtpMGTpnB4eLL3zeGulqC1VBFUUzmhqyYwn6dR4p/FOY00Hbf4/xMCUJpTVDMOalVYwzZQlCLuomf08Gtt7aqpQCh6FKRWWQDoIe80OHdpaXN+D0USFiC0qiNOOih967Mrw8e03dFWL+AcoV8EZVv2a69sdYVok5v0Zj6kUxpwYU2TKgVQLqSh0AhMUOUkaV3JWhNimh8sGvGJNoXOVrKR0SMVB0ZSqSCW0BIkMRUOIWFUZbCeCWykkggiUSlNKZZwKp/2Jw+OR1WrDv/k3/yNffvWWrDL/8A+/I7W46I0G7w0le3KEkqTJVHMlFBGErZORs5ILMQob7VzRVM7x4pBKoBZ96T4rzSXaW+WKc8IZsc6zTCce7g13d3fkXDgdT1itudps6PqeTd/ju46cA9N8ZJpO9MNn9KtBuDLPdFwpD80BkkpmrompFGIJWCPNoLNzuXOGlfFsnEelTI6JMAZsVVjr6V1PzrKezNNCyuL2Udrg1z1+1WE7SyYLUNaCNoqVH1j3PYPzpDkSpkCcgyRpNeFnSTMzEhnvvWO9XaPb+Ecgs9pec/XZS37xZ3/C9S8+p7vewGaA0thRLR3xXDfKrSH7xUuZ2BqTZ4CoqvUyvqqqbq5IcTOFlAmpoI2IZ2dg6Nm2a41ApkspLEEAss95/NV/+Gt2V9d0Xc8ff/VH/Me//A/cfXjg3//bf88f/fGf4nzPl199xd/+9d9w9/EDp+OBz7/4Fa9fvuRqs+Xbb//Ab3/7N2w2az7/7A3WGq6vrij5C7795vfUkFhS4X6KfP9hQmnLn7y65l98pthP8O4x88PDQgX2M7w9aFZDousyN72XLrXyrItFv3tH/XhPuLvjN1/9CTfXO/q+4+PDB47HA7Fk5qwx2jOsN9g3b3CvXzBYzU7B5nRimWZySlgUWSmWlDmeJmb7wE3VfFEd76dKPEZCrfTG0FmLs00Qrbmdt4KpBTAosyKUQkyVEBNL1TKGVqFQWnjA8+8ry2VSQL52yZkUIMyBzktEfG1Nc+BSB5ydLuUcY9uehed13qg25aYKWStp3ihFNYXqK0tZUFOiFhEqMRqMoWpNv97QDys2V1f0wxprfUuu/Klb5afeEPV08/znXCNF1r7SIL4lzIQgXMd5nHn4cM9ymolTRG0dxo2YWDiNJ6qq2BzJNTWw7Rl8/5PvDvzU7X4xGPw3OF5YL9MGy8J4PAkLzWhUOvAv/vRLfrG84se713x790hMkUIlUJhyZMoLoQYMXliO2mOwXDnPS1vxx4+cfvd3fAgnfnH7iuv1FesvHet/nShv9xhjceOB03cTobxEm5eSMFcKWlu2V2uuXr8kLCPhhx+5H0fGMKB0YrP1JKtIWtF9ccMr9QaKgdlR3wfy40x8OFHiTJlnyiJ1mrUVbatw0Foi6JUfeDXcUF68YE7w2Y/f89d3P/KH/YmrGLl1Ay+vt/zxL/6Iwx//MX/48J5/+8PXPAL3dx/Z/86w7W7QyULVZG1JWjSLFCNv339gPJ1Y9x1c/9l/8Tn6+Q6W8wjF5UJ+ukFzSuT0NGpTmsIeU8ZZufDOowPpDMNtqRopZ6ZxlAcQ8hCxgK0I/K8pIDklQi3yd8aQlcIqQUHYVhxVJZ0crG7zqAafIkWrCwG7Vlk8pCPC5QG0NDdKSpFcKnOaKDFzOo3QIK/q8l7I63DOtg2LpXQ9xpgWm9gy1CvNLtjScZTkxJ8jh2uVhUs34eYp2vH57lCxpZ4j/nTblLXxC878koR1jq7v6YdBenXqkySNeqZiixXVGIv3XpgWWux1WuuLVVYhok4uhRgT0zjJqFaqdIOj8z2d7zHKEpOMi4VlIUeJi1MlQY1iN6SgVJG+TTvXkhJg2qVx3q5UQBTzkis5ii2/5EKtWjaZTRnPMcr116jahYLOqtn9zs+NigA+2zL6yZ/X+k8Tg+rFw/iMhzX0mxWD9Wyvr/CrAe0sWUPiyZYor0DkwtyuLW00zjm8a+DOkJoDRaKNjVZYbS6FpFKy2ez6jskZSaMoGW0s2krMmwJqSnLNVLGyelWxvUdZRbXC24k1o1IkVTkPRlUiAju21oB3+M6LkKfa4nZm5VRhlChj0NY2SPTYODwNbnp2rLQ1SbWxinoWcVt6GSqhQsBYd7n/Q1rwfiWJEUOHmuX1hGcs+CTKXBI3tFLUFqGaYmoClyKGJFGwLXVE0wCFUcTGeT6yTBPTeGI6jczjyDKPdN4IxLJAUprj/QOpapZY6JYDvdXEdc+mW4P2WKVxGpy18sAyDpSsT85ZcTC1zo1CZsRTChjdC/hOGazROKPJRRyI0/HIMKyxtmPwPbpW8rKwjIXT4cgwbATwaTVpWXi4v+P25Yph1WOdJYbEeJpRKNZbhwIZCZoXvHkaMcohk23B6NIKJfm8ksTp5p1/VgeLRjXzYuXJJ604J3QopdqIUL3Yg8/JQFpn0jSTYkBnRxkWihcRRCy7RcYZQiAsszgdkG4zpcp9lRPZ2Mv3mseRZZroncNrLdbkImJdqqBVEVdnG5fVuqKNwneGUi1usaSlEHIk5jbu0Bhhx3EkNxE8LJG6JHRROO3xXY8ymrwE0rxQU0KXlohjDLrKvLrzTsC/uYrIbc0lpaoaJQBuo8htNM1UxarvMbkS8/Js5w2QkZAkIm7MiYIiFy2NxaKgNnhsGwMqtXX9c0bYNlVs/VaBMqiqJCI9axGaz2MgigtQnAqqiBstkZsbUAT3vnPkJMD8w37kTz7/HN97/sX9n3Ac94zjREyyWVZInPuc0ieMx3PynoLLc6fV3+VpxERSg2T1T0nGVM6YrKoUpRXo5xQ5hYzD7LYbcgyM4+kyRhmWhfE0Yo2FJqJM44TzR07jqT0PDN1qeLbz5rNgDNrEGqkUYpGI7TMLQVMk7cUZOuexWtbPvCzUFLFaN2i0QOtTFufeuTlgrMF1DmUUVQPmKd1JKVmvrbEYbWQ0KOeWFmjkuVMLk6okZ9De4tYD3UrEp1wKyllW11u2L25Z3VxJ86DvqNZSY/5kW9DWlctJ/qR8PG8wmsBCQYSVcqbvNHGlinPzLMSJi0p2aqU1QeVbyN6yUp9GZ//zgxU/61imyFGNpL6yWW8Z+hXHw4G7Dx/Z7W7Y7a5ZrTeshp7xdOK4f2Q/rFkNa6xRXG13hHAkLCMf3r9lNQwoBde7LcerHWEvIywz8BA0q6lyWmbWPuG6SL8r2AynWIkFYoTTXNhPiVNIrHYr+n6LsSv0YWK4Bt+v+OUvf93cpZVVTrj1Rlg665Wc181AtB0PsZDnhRQWjvt9wxIoOmPpVit8v+J2d80pwZQN18GwWR8YZ8WsWjO2jQdfEiZrpuZEqnIfUjWhQKwQUUTOaAMJXlANhv2MxiPgp1qEbiNrNZe2/24jPpeEoKfEu/O/PQsK6pMPrSQtznlNcZpsFEkjQN+U8LGjd4reGjpvJcFUWpnMKUoakwLjBTGgEMDw2aH1yU//0xfT1uP6k79RUCUtU5omUbh4oXEZo9Sr54CLXCrTsqCnGZMrSwiSdFgvvsX2VS934pOz9ZM3VZ1rkXqOVv/JZ/xXH6uuwyRQqTAMBgitST+Tk0KT6L1trJkqAnHJhLZXT+05p1BY46g5s+4tX1z3vOjWJGPQh5Hl+/esd2/ouhW7z94wzRGTM4NNbONCHj3hYPF2QyxndELC954y9GRvOZTAPkwcw8iVURSXqa5Ap3BKoZNBT0qAtiFAjkSypP4g05ISdKcwRmF6i+46umFF77bUogkJviw3YBO73vDD0VFSoUsLJZx4ebsjOsV7kwjdwKQMc6poVbC5oKui2EJWlarBOEPfd3Rdh/c/r4nwXyGw1PZRLkUmtO7+OXJZifKUGyk9xkTxbVY4JWKWj1wzyshITIiZ+PhIbcW/NxZCElv6FGTzXSshJIqqaO/pnCVrhdMS2WaNafyMFoOmBIxonWVOkZjLxdLdKD8Xh0aphXmemXIkxOUylxuWSGxRwYpyoYuLACPFoLEC6XLekXNmtVo1gaVFDteKaT9frZqiikQK5kKqCTBYZdH6PG7T3uxnVEDP1naxkMqDvbYuiFb1wmCxVtIEuq67zCX+5GdpPj3daNveSqyccWLblTWtAjIyZLURaPASZDMZM1QBY3auw1sv4NTGXFnmhRLjJf2JKhvPM2/HaCVf1zb7axu7eFqmy8W6l6kSy5UiJVUqBkoRAJxWpJSE8m3aNU1toOYnGfpiS4TLBkaKenmdAr5UPxHPxRX0jIezrPqBq2HNerfFWYvSkEnNTSYOqFzlNYCInUpxEcGGrpMZfxsvSryuFW8cVhucsa2bLSkUq3XPae8oNZNiwVuDsR6tPardN6Xx5WMtZA22c8JUiIpiINRMzgGdEjWCpZC0jPZY12G8p+s7nJVEq7Mj7BznbqxFO4v1nm4YiMdJ4r1DEDFGKXQb5chngSVnKpqSCiXKhvI8a+z7AbIwSWJcWNkebQz9MLDMMq4X4zPG/TZHGlUElpxFHT8LLFTVUrGEJyVhEucEiEwIC/MkAkuYZ8KyEONCyQveDZLMVQoVy8NxYpwzp2NgVQ6svGbernBXr7Fe4uaM1pJm5ADjJCJRG7xyWCfpF3LNN1ZIDJjVgMSVZJyWblxIiRojp8c9fbfCu55112OUoiTpCh0f9+hqud6tWfcdMUbuPrzn9Zud3MMoSqqcDhO1Vob11UVgWeaFocsXPtCyBHLMlLPAYhCuTHMy1b5cxPXnOW+qBbw0i/RlQW7dYa2e1miqbOJiooYonceTFNU5J3LvyAaKqpATpoqLLC0zyzjibQ/IKCxVRKMUZpKRsSetNcs4Mp9O9NYxON8KexF1Ik/CitNt5l8VjK34TlOx9LFjv4yEFJnDQm87UkrM88Tbjx+Yl4UlBKbjSJ0leWS3vuL1689aKo0lzjM1yky3URL5W4wmGyvOsFQEZC1WSfAW03WSjGJoySsIMwbNuu/RIaPm+GznDURgCVFYYqkkqmoCfKlc0nlaMUPlsoEvOV86nYLbUCIiYdDFQsqoKBHPFTBGobNY4g1Qq257g5bqJIn1bGpHypnTYeT9uzv+1X/351y/2JHVn/P+41u+/+5HPr6/ZzzNrHxP5zzLlMStoWsbRy6XpkgptTWNz6KJuKtSrsRcGrBR0tes1uLqw174WapAjQlTFZ317DZrUowcj0dic+imkDgdR4ZhRZcFFH44HkFpdlcnQkwNTP98AotNpf2MkkwXKcKgyFm4CLToTaNwzuI7iy6VEgJxmcXR5wRIqpQiJknsyo0Xpm2LGO88GOmuO2dQRWMaPFg4ZBZQUoCdnx1ICECssBhQrsOsevqrrRSSc4IMfj2we/mCq9cv6a936NWA6kRgKTm2gkxOxKUddI5jP3e8S3nafzTHkSoSPfrU9Gn6S4baQgNQjtpGSc48lJ806Nr+POf8rGw/iuZ0mJinwOs3L9ms1hyc5+OHD7x7+5acJUFzu1kTppHj6cTHdz9Sb1+yXm94eXvD/pCZpiPv3//IdrPharvjarfjxc0ND7kw5UqoHQ854Gf4eBjZXGd2tnC7qfRVcTfC41wpGU5T4d4nrsfA4Du67Q7bb6F/x6Yb2PUdX3zxC06nE6fTCbvZsNlu6FYrhqsdUUMoiUMMfPjwyOGw5/j4wMPDRzZ9x9B1rLueV6/fcHW94tWrVzwcZkK2zNGx28wcDnDUMsKpPwFoa0SULSlSiBjtUNWJg6VWItIwUcbJniAGKdjbnvY5j0sDQUlsOVWev2eBRRqStSHv1FNj9nwdFj65bs+jQtKw6/qO6g3ZKIo1JMBkSyqFlTMMzrLyHVWL4zrmRByPIlIncbF7P6C1xdmCUqY1NhQXx9cn1/enAof8gWqulXKZjKgpQk7Cqsul7bfkNSklTLp5CSgzo5O4wFdlff7C7XnxT75jq40+EYB+ovLUy7l/rmPdS8qpopJKxzEK062UmekwMudCDiLiKeSZG0oi1MSC7BnEPaXwxjHHyHrr+fLVLf/85Zq7u0ceT4HlD29Z/eYaN+zoX79kuXuHDQsrm7nNC3k6MD/CsPNUHKlACAu2c7hVTxw8j/OehzjysOx5iUPZTPGVqBKuWlSqpENmvLsjjws1JJJXpOaC8i3KXpJpHXrdYzdrht0V3m/IWeFC5hfmls3G8Yvjjm8+9Hz37h3jOPG4BK6+/GNuuit+0SvemkzyK5LpyaoTGLqyWG+JTmKaHYXd1ZbtSpraP+f42QKLRkkNm0FjOENbaxGAbMrpMkNXEKtrzCKKFC35LbGcAU6FahTTOPPx8ZH3+z2H08S0BMiF2/WWXT9ws96wHnqomRhnjCq8vNoxXO1YNeu0NwZvFFUbYkksJQlk0MkGcOgSOopVXrcB69oI/NpqqioscRY7rtGsNytJQwmSE39zVRvsSu6c0roruWSmaWSaJ5YQ+Hj3nmlaMQwDOUe63su4j3ZY7aQjogtdNzSRCrmAtECAzuM7WplnFViMVfS9Z1h1VAoli0iWkwBNQ4js9wesFfK8FH4S9VjafLc0ghRGKVbrNa5zpJJJObKyfSsSKt4alDqzTSrH05Fvv/0WZQzDasNqs2O93lCrEvFqmhnHYxvfihil0GRUjdQ4sWRJ0PGux3qHdT27qytiU51rLVgtKTC5ImMZVQjmS5hk04xsonIK1AYeyyxoa7DayfVaizCGWpewltbp+uREPAGRBY6lG0OhFPXEACmFZ2yos9pu2Axr1qsVysksuHBqPXE+EZOo8a4UgQ57jzJOANDWSXfOWBGstBSNqQg8VUbGNF3nKL3CVIf3lt3VNeM0wdGQTyPaWob1mq5fcywF5zQU+R62d9iVp9+tWMUtysJ8KEy1oHNCZ4XFEmMgqUSm0HmHXw2s1mvWNzt2ux3rrmNzc8OyZJSe8d0G5ztcN9CvN+zvHoiqEqoUcgUFVRFjG/czRVKmrAIrIx7itKmgIqVfX5wGQsuXglHif2eIueUuPM8hG5WMNuJQiCE22HZBKyOsnDEQ54T3Aip2ypJDIowz4TRTQ8QrxXB1xevbFzidmE8bfvOb1zJ2UuH25g13+8BxzEzHhJ7eMY+P7Pd3/Lu/+AucX7Pb7njxr38NnQFjxMJbNVo7nBvYrDdMxwPzSeO8ZbvbUIC7w4RzvYhBQdFpiQiupVCWifnwyGgsm+0rbjcb0nTg8fEt+w8P6Gi56q/4/OVL7u4/8PB4x93bDapUsZW7Faf9yDwueKepWVFSYTyO9Ham5ioF5ygCS1INMqgVOSZUVczjxNANsHu+xbK0MTvpggvoWRmNtlqSY3JbI7QU4dZYNAisOCYOS8IbTZw0D9PIvOkwnUV1BqsKS5Ln08e3P+KNx7kBU8WtqVOiTCMxF5T3WNdhnWPZHznmyso41NktkivTeMIaReetxIDnJkyTcRqUg+gUjylwGE/cv72jpsLd3R3v37/nt9/8juN4kkSmOVCnzLpf8cVnX0D+c65fvGRnlPAbQqDGhCruwgvTWmNdR3GV4pIIrUZhWoe/1kTRFeOcdPKNxqAZuh7lIko9r4NlaVGUSxCxQGsRUSwV3VwfVTT+ti+urKwV51wtpEx7Fou4a4xD50oJCRe9MLySxpBZDZ7eWlbG8PgYJHEKQ04LXefoeot3hv0psEwnvv6Hb/ju22/56o9+wX//3/9LnK/89X/6O/79X/wnvv6771BZ4Z2MUhsNxmvWQy8NnZyIaSFEgWVWZP0/i8epnF1WhZQX6rKIY6Naau1w1je3pyIngfJqFqwxrIae7XbD4+OjrI2Vi7usVo0fBqwD6xNTSFScxMsOV8923nSoFCPjd2MOPJxOnFISN1QVAbL3PTfrraSalcx+fySMIyUmrLGs1gPWWnIpHMajcPVUkbE2Z7CdY3e7Y4wLSieuX7zk/sM9oPDes95sSCnzcX9PmiZKTRQLWRVK5+jWA9evblm/esFqu2Y1dBx+//fgoN9t+NP/3b/i9R99xfbVC9YvX0BnqFZDySjnxHnWXF7njwpPAPScL8UaDb5/vhZjzpRYyEkYUarBmsd54TRF1sZSjWGcFxGDcsYaJ935LKyneZ6l0HzGjeX11Q3vPnzg490dD493eOt49eIFdx/f8fH9Ow7HA3f3d3z26hVXuxWdKXz3/Q+E+cR6tebNq5dcb3q2g+HgNOPxxP08Md7fcbXbUHY7tDYc9484a9El8fu3e679lm5lue4qu83CL/vKGOHrI8xL4u1jxD9mtuPEUj/wOP/Azc2W3fUNNze3/PjhR051IXSwevkFbrMG5zhVxbff/8C3333P3/3tb/n97/6BME/kGNC1oJHxzcF7Pnv9GS9evuDLX/2Sr37zG4wRwfJ2o3hwkYc6CzhfecDLHpGCLgniLGPtTuz32QWmMLKUCZxBVYspFa/EpURzbj7nEXMSgQQR9zWCLzjtD/T9BmWcsH/QaG3R2rKkJ0ZYmAKD0RglTCBrLFpXrDF0wwq8pViFKj2nOUCNrHwlLQuxyP2+Wq2RVl3l5s1rlhRIJaO0sPvONRrmCaNLFUfW2bktBhFpfsh/C+hZhBRpsuUlyIitdxjXNQdgYekSORrKIPa5/f2Rimm4goxzgiJIIcj92eogRxN7amU8nei2G7xqxfgzG9j/yTFYwpI5lJH79MiHhzvGsFCMYpoCf/jmB/7tf/grupef86s//efoLPH1KSdiyZxypjcO68SkUHVmILIm8gvX8+uXW9KV5nfHzOntB8IuYF9ck18PpMeJcrzn1y9fsa2VYd5Ts8b2V8xuxVIUa7PCr6/I11c8/njPY46MKaOjxhYrTRoKKijSMfD4/pFvfvyBJSSqsRhWzYVe8LmyW/esTMfaWDbdQLde093uoO9bCA7sXntWxxWvTlve3K3401+85HF/4vsfPvLNt7/nfS68M5Zf/pv/gRev3jBf3TKoLRvb0VmL7uDHx+8Z5yN5Hnn14oZdv6LT7medop8tsBjrOCccnFkUoGRcJknCi9W2cUjExpiLLPgpZ5IrF0BuKJm7x3t+ePeOb77/ge8/3jOFREgZVRXvfMdgHVvfcbPb0neOzlu2qx6LQqXEyrUEFG0kEUa3h5KWje/ZwWKNkcSEc1eyORGEfaBBN3J9TqDAWkNqqQxQhTHS1EgNKOtlYai5dfyHBq8d27/JPNzfy2LTCT39YmMvFefcUxJNbelESrooqgkuz3mn6lYYnb/PxUKbMih9cQHIHGhkDrPMYNYCJV/GcFSWjk6IkVIzJmlJnCnlYom7GAlrZZ4m5mkk5UjvPV3Xsep7rBZRJ4VAmCdqXCBHdJHioJQEOWLqgti2xbVSjXAjjDHNsZEbV6qd15yhRPGVqWb5bg8ndf685uCgAbxKS5s5D02er+nLIs4nUc31bNP+5AMun/ffYnX13rf4ZNrPpwUAq9qITkrkGDBFxALnzmM3oIyAyars2cCcR7jaa9EKrEF3DrtymBrQ3mLXK7r1hiVm6jhfKOF+GHCdp1iNoVCtoeqK6Txm8KyudlQqMUVqNc3pozDNPphVRluF946uc/jBs9pt2Fxfse4HgffuR0ICM6xQ1qG7DrvqyFa1jkibQ1dwBjmKU79CLo3/Ix8GLU6zKlyWnJ4Shs5pMSlKuoLVmu5ZWR5NQNXNlVIk6jwnEYhqrsQlUlKhakkWoBRKjMR5IU2LFNMVvFbkJYjN1mhWvSUtCXKmXzn8knGxsJDZbAZWg6JfWYboyVls8MfjAdOt0K4DL+T+qsQRNgw9XedltIHKZrfG+o4P+2/F0aEViowzct2FsPDwfuTwuOf9j28ZVi94/+Edj/t7jqd7jveBx7tHTvsTj493HE97lunI2++/l3SiJXF185ockLjghxGrDarqi8uIUtsYVcRZS9FGmEJWy/m7nMfSQNDPc8zLckkoSzmjS8G0EQPVeCypPiWYqQZjD0UK8RiLiPZGUefKPFbcyuM2Papz6CrjPePDA8vuFt1XSFEi0VOmzKEVwYAyONuRp4U5w9KfgEqJQaDGMZFzJZWEUgnTKbSHGgIhLEzTzId3e95//YHTYWY+BpZx5u7hjg/3d7x9/wNLDMIqKhW1iEhxdB2Hh3tc39HtNs2tmS5R6WINFycL1lCtCHdFqZYGYfDdQA4ThYwzDmu8bMJLbeOwUjw+5xEWAbamKFy2pn9/kkbBJdoYWtdVaXGbKWFQdbaXlJeLJV3atFopKSY01FhwxrDqe15dX0GRzW2Iwk3qe9XcoD2pVpZY2e/v+fabbxhWltefXfHVV19ScyXNkeOHE8sUiCG2+O6C7Qw3VztQMM8z+/1eRhiTJHF47xDvm5wPraEocbCUUshVU4oFJ/e4LpZadUtlFMi70tJVH3rP4329RMHO00LXB4zzdMM5/cagtWd3dctqtUWr5zt3NRbQDowiZQHc5iruDVMUnbIMrkO3CPUQInGZKSmhqtxvRVVizYQYmM9wXKPoXU+/7ulWHcoqdustvu8Y1p4P73J7zYp5WSAncdAaEfJLLRjfsX6xo7/asn55y+rlNcZZUJXiFcOwZndzxfXnrxiuNti13Oe5CUYgsbWim1QoqqWKncc/mtCiJfGn5kKNqbGQpEkVQxJhtzlnU6mSiJNknPZsesmlNpj9pyJKS0H5ZNzjuY71ek13PKCOivcf3rFdeWpJ3FxtuT+ciMvEw31m5Q29M/SdYb121LywzInTQVNLjzGazeCxpYgTPmXCNFNzQOmMcjJ+t+TMOMNpUszOwWDobaEzlcEpJiz7Ygja8rif+P7bH9lcbRl2O7qVR+nKcTlhe8PKregQR9LjeOJ+f+Dv/uH3/MM//J6PHx/48OGO0/4g4Goqq75ju1rhWwJXwnAcIz+8u+f1L75ivVpxfbtiNSisTWhSu2ccWnlqNajSZuGiQPiNNk24L2QVSASUqpf9puGcdlafteEqx9l9Le6ws0uqJGEmyjh4Qxc0MV3Sr2QzqUobl62yPy40l4uxKOMoSpNLFbFiFpgsEWoSvswyZ6wv6AYBltAMK+NRxrbm3xk6e17AAd0cNa3d/enknbhMamNatsQtDZ3zGN32jUW1fb/kZ9QqjCelNaaJ1jlnSpL9h0Zf3pvz/SMN2OYsOgs99afjQ89/vuR4mE7sw8gxzQQV0R5MrsynI3//V7/l97//jm9/+we+0CvScaROCz4WzJJRSyIvmTQgY569I6mMRdMDPlsG3aO857MrxbclcRwfmfqCdlC8IqhELYGd85jOUxS8y4GHrMnW4nqPNh3Deosylpgr85jJo4zAGmUoOjI9jpzuR959eOCvf/yR+3FmLNIwdFmhQ6KGic/fvODlix1qt0IfA+gJP0xybr1psH0Bg+u+Y+uvGFa9rPOq55AMp0WCdtTmimFzg1vf4vKAa0lfVhfC6URaTnRO45qRQP/M9fLnO1hMS7poF5Zum5DcYm9l/MBcik/pvpzn3Aq5FqoSMWMOC+8+vOfb77/jd3/4mu/vHgkVChprHI9K49H0SnO727BZr7jarYEbsTjFSOos681KLuzLhkgEC9eggNoYjDWYzGWGmlYoK9U6skoKi1JLG4FRAhmjXESYi4iglIgKyDy5bfZ7FPRdx7JMLMvCaTpxPBwkuajrcc63wlBLN6/NrdUKRpmL0HLe8D3roYXHcZ6/L82BkXNG69LEHnFoxBQJUVKR5Pkvqm0qpfXIVIuWFUDiatU/xd96g6JZ2LMkMoVFkj+8d3Te413jLTQWQQ4L5IAuArSlBEqK1BwwNrWFXYlrwjq0c5exHOBin5Q8ekkcktcsyUxnQKXYG8/cBBkVOlPSSyn/2Q5B/XRBPVv//vE9V58Elp/OiT7PYZ0TcHCVgl01W7GkUxVSc4+5LH9unZWHtqIVPUj0SNUoq89OeHHMG8AZtHfY1YBKE8pZTN/jhgEzLhQMGQVGxnWs95TaeC2dI+SI8lZSjrZrYg7o6URNUFNFJTF1pto4N1bjvMN1Dusl0nLYbuj7FX69xvQ9aknooRP2i/fozlOMpjTLqdHSdTmnLdBsqhS5x3MTzbRqsbpZ+C6lgSNFXKmtUG9cBWOeFZaakszAmjbLnHNunCqJyqzqEztu+yDL6EteImWJaFUwCiyKtEjXqzOavnNMcSbljPMG6zXWViiJfiNMkmHtWdcV4xgI89lG2j0BW89ARC3MHd95jDUUCpvVhn7QGPO9QCa1Er4HpSV6zZzGIxkNyuL7A6fTiWmZZP2rmWVcCFOg1kKMEyUGHu/vMMpSs8LoNRWDsZrj48hms5YLpcqIFFU1N10Wscqc80RoYlS7kM9jfc90hBgvXeXc0qp0E3m1aaMal40ViOYj2R4lV3JaJN1LQdWFwIwNnq6uWNtrKeorjPs9y+GALQpCFPdJytQQZeOnxVJrnXStYyoshxPKKHIO1BjFoUUmpopShU5LzHkqgePDAw8Pj3z/h7f88If3jPuZ6bAwTyOPhwOPx0fG0+NljXPKYqJCV81yPDIe9wzTVkZmS2rjJxnTuoaqyga2GkOxWoQvJWMKEnnbMadALRWtLdZIMhQ1UZvl3DxzilAIIlLkmBrPDX4qep+dq09bYYWIPUplYg542hiYeDD5dPRUy9VHKSK29N5zfbUlzhmjT+z3Au/PyWF0z2Y3kAA1RqbpwI8//MDuasWfjL/ixcuX5JBZjjN/+Jvv+fjhjuPhKPBVMtZarm42eO85nUZSiSz34syo1WDtOV2kFR/tFZWaKCWiqsShau0w2WG08PHOalNOGSXbATovriQq5FqYlkC/BHyXOYewngei1usr+m7dHMzPdJTWAdCaWBFuV614DF4ZvLb0tgOUCCwtgVLXjFGgrRKXdEnMKRCKNMq0tvihY73b0K97qqtc314xrHusc5IcmaWBNIVF4u5LwlqIulKVwq8925fXbG6vWL+4we82xJL5//L2X0+WZfeVJvhtdeRVrj1USiQAAiSrKaqmaFUzXVb/cZu1zcPYjE1ZV/ewu1hkkQCYSJ0ZGdLDxdVHbTUP+1yPJGteCPPpAwukQiLc/Z6zz97rt9a3+r5FlIbyeMr8/ITZ2RHZpETmJhHG04lrvI9Slfph+v6+8vyne4yY3mnOEweX1rT7mL1HhrRHTALL+O737yOMkTSVP1Tv/ncr4v1h4eHWSpMbsiJDZ5rdfoOMBZkWTOqSfdfSDpau3bPdLJGTirrMmVQZzb7B2YFmLxBMKIqcuk4Q7aGXDHHAWwvBoaRHm0AUDhcDg4VdJ2gLiYsZWlmUiOQIjlWJ8Jq9l+xby827W5xzyXGtBUhP7zuUkYhME6KgdZ43797xw4tX/PXf/C0//PCCpumxPqLR44BPIE3JvJxQzacsZpN0YFOazidofFFPKPKcohQYFZDCoUSOEhqBShHzpIIlEP9gCVqjM4VS6fvzWCTJRUkcmWxirGyPDzdESJdklEXGOHMSDVL8NjEPkWkgK0dxQtzX28s0DIlpgx3u245ARUk7pGe09471bkfbdHjrESG5T5WAVms6a8nLjKwwZEogTUIpKJNiy/elAzHyk6Lm8aj3TwM791DZOLKxxjNhGgKkBjnv0vPVD5ZhsHT9wL7pEUGMmAaThnDBE0YCuhx/HbYY6c1xOEfG+9/z8EvE91/TT6NCDzV8XTV79n1L5we8CAgZEdHR7zZcP/+Rq+evWL6+4uTRJ9hdg296jIuo3iKagdAMxCxF6rNc04qAxKfBh0/FAlIZFmXBu/0ddC391iGFJ6oUknW2p8wMdaFxUeJ7j3cDbbDoLENIQ1lPkDojBoHtIq4VxFyTmFaW7XXL8m7L9WrHD8sVbzY77jrH4y6j8pJs8HT7OwYpsUZTHi8Qux6BJC+bkaFkEIUi6EjUklhoikyjTEFlSug13981FMaSaU0op8h8gjY1RD3G7wIiBvrdFmcb5kfzMUVx4On8y68/eFejtUm1p6Tpnh5rke1gUwOQEJAlBkQIkWGwNE3HZBLunS8I6G3P63ev+T/+63/h1du3vL29o5MGkZWoomBWTQlCYQOEYaDdrJDbFeZG8ovwIcPRghADV2/vUGWOmVSU8ifwWCkxRZFAe1Kg8hyFJVifFpHRnCKlTC0kQqBIhxkf0zQ52AGjD+4YnSIsY341Vaz6UYQZtx9CMp/VeJenCdLJMcvliu16xa11nJ9fUpYleV4Q+24E6Y3tMz4iZXKwpOuh3RDxnzQTeZ+gttY5tC4QUmOyHOvCGH+xyUUz1jm7cHAlhDTlblJOXMmU/xd4QhiYiioZsmOg3e+4u71msI56UjKfz6nKEqMVXdPi+44wdMg4IHw/Qqh6cB34gRgteVWm2kplkJlGZTmobPQIhbE5h5GQ9x4kqSLJFg4jeFdgx80jwad2oECalpM2WZKUOYWfulTSzy7es4cSf0X4+7PdODV6uAX0v7u0xDpP79Ph4N5x5cK9gNlbi05c2yTIjGKa0Dr9eZGnjYLvafcJPBtjwGaCWObISU02n8DQ4pTE5hnUE2iHsRUlUIZAIQSiyJBRowXIMsNaCEYxCJgez+mjQ2w3YCPBWsLgR3HVIwyU04p8WmKqHJUb8mmNqguCNvg8x+U5Lnf4IsNkOSLLCbnBG43PE5RLqBzhXOJPyJSbP6yFB1iusy4VWsb0ObshTcaC99ixJl64QJkXDFWFkSlO+FDXMNi0SYkytfk4y9APtE2Ld4mtYAebviaZ2pGC84R+IPQ90lq0chglyUSk3++QeBazKceLI25sj3eWvMqZuCTgbJQlKwq0lugAmUhslEHB6dmCySw1aOy8BUbXlhRU04rJbMJkNsH6gDSGPC+5eHyJDRrnkpt5u17S73fEoSf0DWU9oawriqLmdD5LzSn9DkR6zGwP09mcwbZpEmJ3bNd37LZ7lrctVT0jLwvqSYE98gxDagxq93u0ygA5xroCXiWBMYGAE6RZjsK3G4YH+9ys9yPnSGKHAWHt+D5J0LPBWjpIQpBPn6tWOgnHqsdu+7RsaklWKHzfM9iOdmioJmn9Nwju3rxjndf4SYuSGWHfQjug+oAyESEdUQy42Kb3hHCsws1YPx8IDPihxbuBzg8sqpKo00ZwdXfLl7//R57/8Jzf/bffs7lKz2OGpp7UoCVTLZnO5+9dmV4gfRJio/fYZkfX7Nj3DX302JAaqTKSQCQRCKURRUGMcfwMxja8KDB5MVZxCkxWkpsSZLLwN84ShUCWxYN9bgBdN9B3A0NvUyxEHcCS7+H0aV1P4mvKEI2TWSkY3EApkqSS4GBxzOv7FD8c0t5AY4heEkMasPz8Fx+xulvx3Xff8+bdDVkJs6OCx08uObkIbHYtX3z9PS9ffg/0HB/X/Ju/+jeczo/RP/uM9t8OvHj5irdv3vDdd9+w3W7wMTI/mvDBBx/QtC3ljyXrf/h94muM654/OOO8RWmPDyP7J1hklCAi1g0IkQ54UmqM0klMGVseBVAWOdPpBNm0dN3AvmkwWY4yGTPvcb1Ftz37fYtSKTrFAwosRmdEk+EV7Jyl84EQBYXKWeSTxGsThl3f0bQtbdMgvSOXaaCQVRleJP5OYxu8CmhjKOqSZ598wOx4Rl7mbJoVn3z2IVVdstmsISaYuB2SgBaiI0SL8FBMCybTmounlzz56ANmx0dMT47YtHvuVkvazY7F03MuHl1wdnnB4ukj0BpMgu8rlQY6PiTRPA2e3sfTk6skiezEsYWlHwjtgG86xLjf8C6VBOgRuhxjgtja0cEiZJr4K6VxLjnFfQzEQwEA6XAeok971ge82n5PlivmR1PqdyXdbs2AZzapWExL8kHRtB3ruyt8k+MmFUfHC7TwNE3L3d01Xdcym0yY5IrSSCqTQ13Sth2D92RuQIsIzqNjQKC5W3fkUrCYVEwmc4xMz/nRfEFFRuPharWlbRp8WIFSPK5yFhdnnJ4d8e7qirbp2Tc9r66W/M//j/8nX3z7HW/ulgSdgcqQqsRHcc+WbETL4llN/egZv/rjP0KR4jBlnvOrv/xLJlVJtJbpLKMoBJkKFJlAj4ydBFUdI/fO0TcdUkl0JjE6okRARJcGMzGMx3jeD0QfXGCBw1AwiaXJ2TG4gb7riMix8U8mB7NUaKnGwoiRiTRCel0QNL0j2oAYLK+/+4Z3Nzfc3N3y6tUbfJ/ElVLnuODHSL5ndjLh7OKE80enfPjZB1w+uWQ2nwIpqimkIEaPCPI+BoR4fzb66ZD1/u8fxI5x2BnH1tb9ZkfbtOx3LTd3K3a7hs12R9tacpUzLSd88uEnycXjk3CkReJjqvAe+JteJ2PJxT0vKd6fDdNXcRi2PvyZ4M3qDqJHkMpF9stbNjc37N/ecFZUbIuaH61ne3vH5vqW/fUdlcnRyx3x6obBFujPppRGEirDRkNvHatNQ3ck6WyK9ZoyR+HQtoGbLUJJtLUoZViv1hilOJnU/LzMKBVUrWe9W2FNOl4dXZwTXi9QPhBchu0ymg2E3cCP797www8/st7uGJDcBMmbIfLD7Za3q1fMYkbtBcvlK970PY+3e7qs5KPFlEUPLioWUpFNS4woyGvoRMQDqs7JvYDe4H3DPkiYzbl49ozV4gSnK9wg2W1bZD4OJts9/m6JFI7ji3OyKFD31td/+fUHCyxCqXtF1foEa40R+t7iXXIbRB+IUqTcfO8Skd2mMXaRFfT9nrZpuXr7ls1mQ9t1qc1GG8gzKNICmxVlahHa7emaJllnneW3z7+jD8/I64LLJ48JxrAdeurgsWM2XmXpQC5UElhMIVPFdBgtwiKBTlN5w3hQHR0Q0afFTAJllqGUYRjGznch0OoARlPo0VlwMNAopZLqJeUI4s3Ybnfc3N6yXN4y9DVVXaGzjGRmE6mpR6dsvwhhVD4f9uFMMF/GdoPkXHEuKbp+tNcfKPpihOndcyPHjag0BsYMaqoFFBgtmdQTskyRaYmWcmwD6lId1nqDNhnzoyOqqkDJxEGxQwfRppeKCPhgCb4j2BYZB7QMSAlVmSFNBtJgo0DpBLbtnR85MqNNL4TRup5ElUOzlBSMlZsxfbZBEIVEEJHm/XotZQISyzFCFUn76wOw+Z/Ggg7snPfOmTDajFND0QN7A6XEe5tql0eXWGpxkpgswzpHpGWwLuWElURqlXLfmUkOkCpP7xzbEWyPI+JFpBXQKUFv0jRm6xPA+fVmS9f2rNqeq6ZJ0Qed0UnFvm3wAlASk0mcSNV8A5F6PmewFlMv0UNk3+3owoCzA0JDnmUUJ3PyeU02rTBVQVFVBCHZ9z2rrmc9WPZuwPcdxlqKoad3jptmS3ADSivKskD0KRfrQ8TdtzSMTWIhAdsONmtxmMyMmfQksAzkUjOrp9htg3fpRfxQV9N0aAVElRqKBkvf9fRtn6bH6NRyFOMINx2IzhFH72rEomUgM5KylDjbokykKAtMViJUThA9QQjKaYUXgvzmlrw2ZEYABmSFtZa2sajRqaILQ9d1BCI+BoyMZHlGVmQoY9h3e2Z+RmkmnJ6dcn23wQfP0dGM9bTCKpC+QJ8t8FEQ0SxmE5AGH8G0CmWSU2e/sZSZJNM5xkw5VjltHxisxGhFrg1aKIbWspVbYnRIRBK/8rFuODA6zUbxU4bRTcg9Z6drmwf73DyppSxKkeKtziFVcmXqgyvyUA0/WpHVuPmMShOkJDiLj56gIrlSRCNRmaHQycUXo8CEwP7uDrdrKbIau2uInUVaUtsQnoDDhY4sz5FK0e92SBlRWpIXCqkVrQsMfYeZTVndLVmvbvndb/+OH777lrvrG/a3a6ogyKSikBIVbFoHvUBEhQhpQmekxoxA1HZwhK7H2QHnLZ4wCtphhHImUQalwEB0Bp9lqJB4DwlepUGOLUm6QKiMODZjdNahhKCsqgf73AA6a1Nswqd7JaiAkCkqqJRAB4n3CQSaWvREipqKdIgIcO9OSpB3kdaNweF7h3dj+5pJfIuu67lbrvj00484PplhCrDsCQRWqy3OBS4fXfAk0xQTw9W7O5p2y1dffM3F6SPqqkISeXR5xuXFKW33GX/9v2u+/Or3WDsw2IZqUlBNSqIQvHr1js2mZeg8fT8AqaFqGHoyUpSvzEp6x71LtY/9GKOMCbpPhlYKo8T7uJSAk+NjqqqnaXpulyustWy2G/RtjtIZPkZ2uy37fUNeVJgsJ38gfUyZgiCgD55t3xOERBvDpKiZZMmh7FpLYzvafqD3ASMFudEIo3HC38OaG9uRVyXlpGa2mHP59BGm0AgNul5QzyqUEuyb7djqZukaS6cTHw+V9oZVPac4mTI5X3D0+IR6OkEaQbPcErHMFhVPPnzM4viYydECUebjZiKxbuLY6iSEQKo0dIoh4myCtAfvsCPbiEMUNAqUiyNMWuPCgHVpOBnFwbQXx2hY2qdonaFNWrvDODjzJMt8stcGwiEW8ZOh+0Ncr169IC+Sa+V4MWXnW3zX4JodKkZMCGQStBFkOETf0K0DWmnqMk+zLqHou47rt6+o84wsK8jzKiEBSPuW3nQIJ1HeI11kCIFtO/D2bk+Zn1KXGUVuUHmGjII8RE6O5jS2xMXAdt/SDz1d16L2G16/es1u17Fc7vjPf/23vPzxDV3n0VmN0xmYAplVSJUhRudpg2PlIrsoOfnwE04XU3KjUUKQzeb3sdCqyCmNpDAwkYbKSJSMRNsTRger84HBDqhBo61OnLbRNdnbIflmRBJSuYc8P6zb7+DMPLj4D2c5O1i6rkeMlbhSqBEyK+8jRcT0qCBSbM37yHKzY9/t2Hd7fvPFP3J9e8tqvWZzu6EgI5OG2pQMwdH7gW5o0S8Vp+dHnF+d0ro+sbsyQ14V986ZQyzofrMef+LOEiJB32G8sQ9794BQia017Bturm94+eIlNzd3XL9bcnVzw3bXsNk1ECSTcsrp4pTTRQK7WxuQUaKFSQLL6OIWozszOe4OX8LorDk4WhH/9Fz+wMcBpTTBOvxgsZsVx0XJ0w8+5uJXf86LV3f8zW8+5/XNhkEphmGg2e7oQsPu+UvuvnuO4zvMbsfpxSmnRwXlbEE/NLza9uy04fr6hnd3d2y/7Gl9h9CS+WLBdDZLri1d0K4bul1Hl+85r+b4QiKE57vtijsPQeaoMiM/OcP0loCk97C+W7Nulnz+41d0NmCRdF5zu+7YbHu8jQzCsbae7RBohGS/3PHGeq6t448uTjmb15wd13zGR5xenHBSFBirEAq8iMggGSxsOs/3yw1LndHWU+J8QdRZGmKGjkJLNGmQ9Oq7z+lubpjPa06rGn0ohdF/WJLkD35S0z0kRjuiJ6BI5Gd3f1AHRjvWaHcffwXnUUIlu7xz9F1q6xFCYDKDnk7weQF5QcxzYpGn/GnX0on0w4shsNvuWGw3nLcNHz99jMgznABLxI0ighASYfQ4oUobYOUC0iXAqxzrocPBuh+T8p828umPRukUM1IaN7xX/pUca9cEIGTa5I9PkRoP5wgwSpNnOTEEmiYR1Lu+RUiolLo/zKevJdWk/VPB7AGfzANHYRSE3BgP8uG9nVRK9ROBYXRvJANLEliEQgqVqn0VGK0ojKYoSzKVxCpiZOg6mmbPbrOh73uUMRRlkRgqI/fF2Z7gLQSLCOmP+AHhB4z0aTOcSfJcI7QmSI0dUjwmHiz64w0Z4yEqEEaBanxxxFEcuU8ORVxIn5lQCjXa/8WoJB1qUdP/bRzFlXHR/omN97//lV5W/9Sw+HCXlBIXA9Z5rBsbc5Aoo8lidh/nstZiYprGSq2I4+YzKpX+KEAUGfSGGNM93xFogqMYW2NWbUtnB/TtkqHpWG02vN1s8N1A4wPbYWDwLjUOaUWBT2coLRm8x5QFeVViihItA1E2DNHTuiFlajOFmVVkdUlWFWRFjjEZLgR2bcumadl0Ldu2pXXJtpgpxS4vud2uUUFQ6ZxaKaIaqwVjcmS9RyYcmp4OMaCxVWq0U8cQU8OE82CSzT8BkB3WPlyriT00BMn0e1vrksjS90n8keE+Ux9JDTKJK+KJ0QEeIQNaR/Jc0bZ9mqb3gpvbFTd3a7a7NfXVO1ReMPQDvWuJskQag9EGqXKyTCFlsqMrpTCZRrkU9gsxucBSe5RCGUXbtwmAJyWT2ZTVtsX5NOWe1CV99GBhPpvQdpZucBRGgdS4CJnV5MXIbHQBKUJqj1E5Jpco5emGOAqFoyMlxgRvFGkq2LoBo1NLV4iHz3A8aIxRzftpUghjM9zDXM4HTIwJ4T5GHQ+NIodNn1LqnnMgx6y3GFujxCGKGEgw0dGpKCPIEFOyfRQ77H5PaAcoPL4biINHeFJUQASi9EThEotICIZ+IMiIiBKR5yn55x1919L1Hdc3N7x5+YJvvvqWd2/e0u32GBuphKGQklxKwBGiIEaJDCL9ipJcCDIhsQJ8cCkKNA4jojiEZUbr9f012seVRCqNEGG0kcvxEJgq2IVMm/QYkuPPHmJD+cNF8oBxfYwJZi9ietfH5NNQUqZ3txTp3hzXbReTYyWO09gYRos+o4PAJ9Bk8KNlcRyKhOAZ3MBuv0Nnium8xGTPuF29Y7ne0FvLar3l/Mkli+MZv6g+QRnFftezvF3xw7fPOT5aMJvWFEXGZFKBOOLd9Yes1jest2sQkbLKk6BRlByffE/f39Dudjg8QoR7/p0yKsFxlUbFBJ5EiPGQNAJwXY9X6f2tlE4OznHDUpUlWhu0MgmWOoqLu902tb4ZQ9u1bHdbsrwgzz354mE+tyglNnp67+itA6kxOiM3eQJ/e4/tewY3YH0qSEgsPIXQCkegdz29S2JgMSmZHc04Oj1mcjQjpJECVbWgrHKcs/RDRwijozmmSKnSEpUpYgai0KgqI5sWZJMCXRhcSM6/PE/AxcX5CZP5jHxSkwBVJNevEIeyEw7tdtb2qRmu2xOCS/eTs6nZEFLUFXk/8JFC3kdLD3seEQ9tgQdnSkx8P62RSo9R/SSGCv0e0PhTKOhD7ivXqyXT2ZSyzJnWJXGfMfgBbJ94jAQykYaehojyjtB3qKJEKYMx+ehmcPRtj/L92H4SKappio0ITR4LhNEI75GDJwpL72HVOtaDRBQZShWpFVKkNXZaGjIf6N3Avt9jraNpGgYRuV2uuL3bcPVuyXfPX9AFMGVNEaGNCkyOKidIXaTYph3wrmPvIjsbMNWUk0ePmZQFIkayqkTGFC8zSpMpSa5TDCkzAiECvR+I45DM+5BAxM7jbIKoKyHHeJBPQ8BkJhyRJ2MU+gGvwx734GIRY6blp22HsUj7BgH3Asv4L3PI68aQ8AGb3Z7b1R03q1u+/u4HVutNioLtLbUqKGWG0JEeT+d6dn1D3Dqst9hgKWYFl08umS8WmDy/H1pH4k8M/eN9fP8KGvfrh6/p/t0bESqJRfvdnndXV3z/3fe8evWGN29uub67Y9d0NE2f4MT1nHY3sNnsyEw2hvokEpW4W+O7/cCj+en4+xAFiv/k2fopLiA+5COXGoRC+urKrOB4MmNRVjw7vaQoj7nZtlw++ZI3IQ322n1D13n2r6/Y/vAj/eC4LnJ084yT8hPyyRS3Ddz2HVsB79o9P1y/5ce3r9BGUFclygbm0mCyDC0VnY/YztLtO0wMzI1kEHBkBjZhhw2BWEyRsxm0Pc4FOiLbrmG127AbOoIu6BHcbFo2+57gSU62akK/62jswE4pogusmp7mzQ226zmbFlysKoqTKbIumfoTsqjQQSAJRC/ZdZabbuB1N9BWFW4yhbpiiHFEBUTyoiD2Dc3yjtfffIOUA/lRag/SUiUdQf6f7GAZnCMfD5tuPKAGP2ZinUUKkzheIaTceN/jB4vrB2w/jH3kHomgKAqqqmQgokJN/fRD9hHaKIhZRifTdHI79PQxdWMjkzn65fqO7LXhX//Zv8JMSnSVY6WATI0oBkE0BqESJEki0D5ifKp61kYjAyMwbcD51IDkvbs/LJd1Tm40UiSeS7JAj81Do9qMiClbSTzgDBjG3HmhDUoIJlWFvrzg9du3tH3Hat3hY6CuJ2QjADdxV8VPxgsPGzlRWiO1RiiJC57BWQaXsv7W+bShFGnjj0zgPE/6nA5WN5NlaCUwKkGAijyjLnLqqsKoREjv2x3LuyXbzYq72xuQBqU0ZVUTY7Ir267DdnuCS9VpfmiJwx78gMJSZoq80ORFhioNQRocijDEezeN/+f5x+DBW6KzRIbxXgnJwu/B2kjbRVxQCOmQOuJjYvwok+7hOKqVP2X0HAZ88fDX48FdCO65NT+tKxfj5vshL6MUdpx8dUNH4TJEpsirkpBJnHNsRJr6K5Wn2vAiJ2SGoDSexC1By+Q8cAO9CAzB0rse2Wzp1woxtHz/9i27puHtZkff9qxXa65ev8U2LaXJKLMcqdV99np2NGc6n3DkZlSTCp3l5HVNOZ0gW0tQgsYNbFxLraeUdUZ+MiVf1BR1SVHXKKXYbPdc3y65urvjze0ty+U6VWV2HQqodU633FLnFcfzBWU1JZloUvzLudF6nbz94+Auvhd4vUdYe89bcdamjLc0aK1om5bdbks3PJyDxQ4WJwMxeqxNVYFd19E2Lc5atEwZ0Og8XgScSPnk4G1iKCgP0qOMoZwYmr5hs9uw2a753bdfcHN3w77ZMf3qK2bHCzJjoO2ZzzUmXzCpajJTUVU79oUmRI9QYmxXS8J4GNe8KMQ9G+dm9Y526AkSJvMZ1XoPdJhMM59P2AXL/m7HfFIj2GOHgRiGUegC7wa0gjyTZDpjebtHkOrCtbRMSkWewXLdEbwDlZOXGVqHVI8rJcu7Pd6E0a7rcS5tRqVIcL2DWPZTUfShrqZrEldLKXxgbO1JnKODg0NrPboCRYpcqLHmcoTjJqDeexE4WIcNLtUtmyzZ6uuau+sl/bDHZwN+EMli7VJUIQZJiColMXxakYO1oDxSKrwT+DjQNXtWqzus6/nmq6/54btv+eGHlwgfyWTBcVUw94EsBjSew/E0AopIJjVGaEqhUcLQx4ATntJoisxgjCbKJK6Efzb+Pmx2xSg6SZmccAiVnksEQRwavyQhpGchIJAmI68nD/rZDc7jxirjMLrWkBKkRimFChElPUMcxu8lMT2S2KKADO/EGPmF4CJ+CNjeJzjp+I6POFyI9FawbTyb3R0nZ8/45a/+lKgCX339Pd8/f8nnn39FfVQzP53yV//+L3n67AnPv3/D3//XL/nf/pe/5uzslA8/eMpHH1/igyIvc/7sL/6UwTW8uXqLD57pfMLJyTlFMeX7b1+xXXdcvb5DiiT8OW9xrkebDDEe0qTQFHlGWZcUVY3tB2yXnKV5dhBedHqGxnrffHQPFHmF9ZFt29DZJCBJ1SG0Yt80vH3zGjtYqmrC0ZMPHuRz64Kj8Zad6+kGRz2tKMqKMi+gCwxtx2a3ZjARN8p8jogwGlkYrO1obZ8aSHLNyeU555fnnD+6pJhU7PZrbHB89PQDisKw263phlQRL5VMTSHSUS1qqkWFVRZVZ4RMoOoMryM9PV3fUNYZVV0zP1owf3yehgl5PsK3R9FVCoTQ947XZrtluVqyWi9ZbZYIINOKo+mU+XRCWRRM8hLpQVhH7B1BDUkAtKniOcWhU2FEOEzqI0itU1ugUgz9kBytEVLD6PsD8f1/HtDCsl+viLbH1xVnRxN0N2VQEHrFcrtF4NESgoNsFHCJAd/3OBlQqkzrRhRk3uL6Bmc7um7PQgRUbiiMpConI+41xddD1zLEwLKXvNl6Yi4xdYbSEpEpjDFUswUCcN7StDuarufd25Y2Bt6sVnz1/Y/88PIty+A4e/ohuqpZNQPX6z3IjLyeIVWKKkXRYvKC/RC52TRsO890ccLZyYJMSfCW0DX0Q4dCkSvNJNPoSUVQkiF6+mEgOHDO0TuH9QHtPIP1FHmeXHZRJA7QKMpHJfCk9VU+MBDc+eQSj+MhUoxDgDg6fI1JB9Gf9Cukd+0oYPjoCSK9iwcbeHe74vnLl/zw4jlff/sDwQWSXy6DkBhJzrokGkUBKLyzbDdNan6NA+ePL5jMp9Sz8b0wmkPSRtvfD/iRBxZKfD9kJdwP12LwYAXNdse7qyu++PwL/svf/Fe+/fYH3l0v2TU91gV8gEwXTKsZ27s9b/7kivl0lurc5QHEbtLwWYyF23IUmg5Cyz0n5p/9gB94X3K4VOvRQlBlNb/45FOOypxMCHznOH9U8OG+4Vf/l79g+/0rvJas1yua2z13X37D3W9/j8Lz/Paa/uefcDzT1IsTughvm5ZXruN1t+XF6pr/9b/87yymM05mM/zdnomN6MWCyXyOCYqhsaz9lvikZ1opVCX5pJfcrlas7YAXJf5oiq0L2sGyDj0739LHgccfPWXpIuvbLf/w/CtuVzvmizm//tnHHJ/P+e7Hl3z93Qs2WwVZCVKzbDpe33xHrTxnE4M8neLmEyYfPeVUZqjokT5gneDH1ZLvlxu+JMCjS+LxEa6uWa63iKDIRMaRzrh++Za3333DV//lb/jjf/PHLGZT5kdzZJbepbiY7Pn/wusPf1LbDl1UmAjCO7yVOGexbsCFgAwxRXFcZOgtbdsmUSWEFJ0JAd87Mql5dvmI7yYz8qJClBXzj3/Oj3dL3qzX7HrHbbMmOIdBYrVOiqIEKTwDsNo33KzWLOYzppM5Rmn6zqVpQGbGjZUYD2IqQc1ykJ0d88upHsw5mw5gBDKjk3AU0yT1MJ0rqwLrerxLzA51yDGPLgc1KptKCLyU+HiArYoEIhx6To4WtNbSDT2ddWhnQanUsHJosnlgYeVwKWWSeCKSAOVdSLEKD0FYpIvUumDwPSqmWukgD4tIRHpPmWWJa+Ick7qiyMYDN3IkcgdWyw231zfstyt83zE9OSE3E/o2YkJD6HfQ7hC7JbFv8G7AuQ4pQakEstWVxuQKU2pkprFRE4MGZRhERSDHyUgXG2J0RDokK0TcIOIO4fcEH0f1P0OQus4zo1EhI4pk4e1bm35vnVpmZJQ4LC4b0HlilwQRR7BzYguEIIkj8Mq5ACLVdQspEIrUXvTAV+gGsB4xtt50TUeMkTLTSegwqQq87Xtklqo+qzLHZwanJM57yFWa7gTD5s5yu99xfXvLcrnCffsNXggGLVnu9wzOpc/fJYFi6HryKMiVplAKreUIYUiTqXqSc3Z6zL75jD/59R9hTMbxyRnt3RadV4g8I3SSxcURZ8/OOb48ppwVqCxDaMOX333Pf/vdF/zdbz7nN7/5mt22YRgS4wfrUEChBcp6cqkoVcbF9IhHR6dcLI65mC7ufzbBjQBLBTJIepsO5957lEvVb7gAPqQ4kPP0+4bdZkMMgUlePtjn1oeAG3qUFeybga4LDH2k7xJV38hDrM3hfKQnMtiAHSJ+LMKSwiGlxWSe1faGL7/+js+//IZsWuBFoHcdz//+b9LBD8iAv//Nh3z49Cm/+Ozn/PoXf0wQnslRTVSkvL7USdw5OLNCgvdUZc75xTk3t+/wKDySItMsjqZkmaJves4fn5JlkX2zRKjI6emC09MTlutdOoR7gdsFuj4wm+U8fnSKc2/purQcqjZS1xpVSGT0bJsN3TCgxSLxPEb3BHG898Qwtp7E5CIQpChX29E1HYv5gizLqcr6wT637WZLpgxG6dTqRMQ7RXA+AUZ9GKeNcmz5GKGFMbEPvEtNJC46us7S9Bs8DhRE4bFdx2Q2JTOCTEPoHXa3IzhNDGKMRKUNaRQBXWmiS60qqIAqBDIHkaVJrTTJTn5z+471bs3gHceXl2DTtFduO3KpyANkMYAxRCUJUhFRKC/QIaCjQwqBiYJCSU4Wc8rFnGpa/3RMhwB0InbiIAkPJEebDJEoJF4IhM5S04yPaCcI+wHnBmxriUKByaB4WAZLcA6CTzDmcaJ8ELlkDKlWfrTDJ8Bpcrn40eYeR2HGjc4r55LbzbkRdivSoMcjkCFiraTrLNd3S04vjsmqjH/3H/6Ky2dPOPviG/7m7/6Or775mvX+Fl04PvrgU379x79gNj3lb//Lb9nv93z+xecI3fCz+mcsLhbMiyM+uP2YfFLS7lumsxNmi3Pmx2f86s/+nNZGmq5j+W6b+ExaEUyBICBc2mQ+eXLBRz/7mF/86o949OQxb9+84dXLl/z93/4d3a5l13eI2pHlBZnRaJMjhCTKJJ5fmHNm1jJ4j48RqRO0sK4nLNdrirKmnswe7HO7UgOrvmU9tAgBZZ6T54aWgWW/px8SQDEEATE1BxV5PoKoI13naLwgSE1eVZjLE8LJjE0h+PbHr+mGDq0Vs/4pufNs1x1vli1bZ7E6oqaaxemCD372IU8+fsLW7bi6u2Lf7/nuzfesuxWTumZaTzg7OmMynVHPZsiihiInGpOg4Wocu4vRAeUttuu4u7lmv9ti2z3TomBeT6nLgklRYorUrqWUSou+0ggZEHKPHRxd06cShJAGCEqle25w4wjM5Hip6AL01ie+IAI11t5Hn0QkrdNU9iF3KOfnj2iaLdvNGq0sUQvktERmgieVwLUN+82aLgRCUMSgKJXBmIiUnhC2OJ9aZZxUxKIeXXCBvrlG9AqvFU6nulyjFVlmEKVM7VEx0A6Ou/UW73tOXEk5KaimKUa8OJqhMkMQsPMD1+sVL67e8eOLL7hZbkBp/t1//I/8/H/4H1B5yedff8f/+3/5X1kuVyzXdxT55N65kWUG2+65vb7ib3/zt3z00QVZYTibzwk21WjjY3LiCEFdFtSzKZsu0vcDwxCwPg04U/TUIq1KMaFBEl1yYMs4rl2jE0qIVJOcuEcPd1kXETo5+g6NgkGAi45+SIKq7jKUniSkguDeOZ7kjIANgcEHdr3jzbslV+/WrO4asliijcBIgfExifvRIkVisVTGMJ0dEwogE8hSMTs9RmQlfRBpoBrT+ymFdgOH0hQps4NlZZQZU5lA5FBUkRyXru3Z3m64evGOb//xe15//Yb16yXGQ2UlPghAQ9BkVsDes1/tUcJQREE5rxOeQCl8DNgIAxKLIooDIFUk7sQoYHoiTsTx64loAfdVYg90fXj+hMW0ZFrlTE1E+rGOWknyacXZsyf8+s//Fd+FyKAiL2/ewNbhbIuRnkmeM9zdcfuV528Lwa/+/b9GBotTkb/53d/T3d0x2IFf/8mfUhY1thv42999SbtveXJxwUdPn3F+eo5UEmUE22bLtIwUOuPPLk9xasfLNvByewvK0GjHdRi4cI6ji1MePT5ikJ7/9N9+w8vXr9i6lj//t3/Bzz/5hH/16z9iP2yZnR2jj+bot3sopkRpaPd77N1bXLPmXbvity/eoE6PmTx7RLWYU4gMEQOv79b87vU1P+xadhfHhOMZrZJs7pZ03lEbg1GB/cs3LL/+nO2PLzgqDR8++4BHj54QSQ21zjmsdZD/y2PMf7DAEgYLPjUJEJJDILkE/D0I1Hk3wkAPrA93354Rxl5yLSWL6Yzj+Zw6RNRkSjlbcLVrIW7xPjFeYoA8z0dicIp/JHtuoLOWpm0JYRQ44iGql9p4ONi2R7VRKoUyEWXSRvZgsUxtSMkyW9Zl6gt3yS56cOWFGLAj0FAJKDLNPXZ/tHRqKYjOjz0DSQlObBGPiBGtFXny2hHoEVISxknZIZITRobIfa7vga6D/fR9miZtLPEx2fgDZFIncJVIduqoJFKK9LOJkVyrZNkkkhuVgMDOcbfqUtax73nz8gU3b18ydHsKLTATh2wGotqjhzX0G+g3xH4DYUBEjxYBpVMlW5YpTK5RuUYanfLMURGiBpkRYjr4vc/KewQOfEtwO4TdYGjROkHfEvRR4pVMEyUyIjmBHNyYY/YH99HBRp5iUIcD6D3c1v8kIhcFPkRESDGLKGLaVI0L60Netutx/ZCqG32qG7ZSILsOJbJ7AdONVdsIKIqCQclxWhBohx4bAterJa+u33G7WnG7XLLabBm8Z4iBVgo679LUPo7VdOP9gTaUZU41mTCbVIRosd6ybbfs25Zsu2G9XbFvG2ZVTVFX2P1AvZhx7Cyy1Jw9PuP04pTpYoouU6a1d5YXr17z9Xc/8PuvvuPl22sGm7LqWimEt+m+y0sk0DvP0O6RLpJLTaVHoHQ8NELFg6/03lFwuNeD9+DHTQyJReTwKVY2xgjNoUr9Aa7BJ1q9FJHBuvvK6oP4nBt3L6V6n5hC1oV00AuMzyKE4NjtV7x49Zyrm2vawfLk8adsuy39+pZ1syOG9H2oGBHfB9bbHdt9S55VnB4fMZtMUvxvrNA1alToicSQhGCjNZNJTVFWSK3TgV5CUeakw4IjVxnWTpguZgzeYrKUfTddOlQrJ1BGYf2AC5qs0BydztisBjbLAULECCgySZxK+t7SDxHXZRTlJO1XfEo7ex8Y+iE9hz+FTMeAc4lpQ2TkET3cdK9rOlxtR7hpen6CdbjeJhKJ8yP8NN7fZ/dRT5Gis/1+j+0b+mHPrl2O7iEY/MBuv2V2NOdotsDbARHS5jy4kCI1pIjNqBGMsZoAIsXKRKZRuULmkuBAKJHA8wLyumR+dsKpzmBw0PTwbsmk6dG2Rw4tQiVhNIr0DEqRgG4KUlxBKvI8Y340p5hN0WUBY5zsUHEvGF2c44ZbCvm+2YskQCuVhiLRR2ybRGLrLW5wCWCoNfGBW4S8czDyxoQAlYppUhyNiBJgxvdaHIcC3vn0PhkhhYmxNUZpR27Twa0oZESogM4Su+ZgqV+vt2y2W3rbc/H4EU/sJUP03O1WdLbBx8jr168piwlFPqWqc559+IRm32CHDqVTnSgqNbPU05ppM0vrsEiOIKUzTs/OePzkEXfvrtndfZH2QzGtERKRBhVCMp9MOZ4tODk65uLslNykavft3S0/fv+C/W6X4rs6ua9k9GOTUlojisqgQk4q0pBkVUVVTzk5PWM6m1FPJlT1w4majQq0OPrgyHKDUpIQA/u+pbVdihGQhiCHtkCtUlOXj5HBR5wQaSgkBQ0BfM++C7zaLdluNnjn6PAUyjC0HS9evWW33ZCrjOOjCZcfPeXppx/w7NNndKJjcjNhs9/gYop9oARRCnSek5UleVWDHomOUqYDMQcIZop6emdxbkArSV3XlFWB0ZoqLyi0IVNqjNQJfBxjGOOi4nygHwb6rv9JyxwQxX0zZ0AgtSYKiQuRwQVESA6axN3hJ2vkWDP/YJ8aVJNZij71DdvdjixPMTVtJHVuEDqjlgXLVUvvJDYIjIBSRDIZMCrQCUkfJfso8Voi8Ig4IOOQqoJjcn0c4h9SChLWXoBIA9629YjQk+kAMglK7X7HZFaRmZJqNkUR6KSi2nVolVPkFSIr+fhnn/Lsww9xUvLNy9dp/e4b+rYnWEtmEmw/evDe0vUtb9+9ZrXd0Pb92JyW1g1vHV2XXLB5liVGUJeGp9YFnFcjhNqNAm+6P7zXyXUxxsAO9wDI+7VViQds7WIsshp/l4PAEsdzhw/u/mtLX9foEOawB05/Zb2nGwb2Tcd+19I3A8FCIXO0SGB8yYARoGUkkxEtNOVsyvHlJdX5jJhLYi4pFhVHZ+eUk1lyZIkUc7yPCI2/a/rTw9krjGLmAR49NqXFQNe03F7f8ur5a65fXzNsO5QVFDJxcxJGRROlplQ5pckJPj13LoTxHUli4cQwnj4hjM1JMG75x2csfRWRIBKi5X41GPejDyWznB+fURWaMpfI0CAOMVwAqcjKgtnxMfl0gpWw6vbI3uF0RFVZShM4i2/23D5/ztWzU+q6oBDw7noN+xbpI+dnl0znx+y2e7776gfebRuEWaHzkuOzS+qqoCw1NrrUvBYNJ1nBhxOBlAPtpmMfBiKeQXgGLRKXVEG7W7Pf7hi6jqPjBb/61S/55IMPOb844+0qcPLogidKcaNusRS4IBGmpHUDVoC1PTebhqvlhnd3axoXU2NqlLxat9wOsBWGoZqwc5HWWhrnqXJF5i3Kttjrl7C+IXctTx9fcH5+xmw+RwiF84F917HZ7WHxf6LA4roenEOEkPKEIrXLJPt0IqYPg00PRlIMsMPA0Kf8qXMW7zxKKo5mcy7PznFCoqdT7GRKpm7uc9pCJvhTVtaYTCVuhOtT1rhtsT7QdAkYOda53L9ItDajsCITkDBGpJboqDF5xtDZRFo/1DArRVlkHB0vsM7R95ZhZMqEkIBy+67F2QEtRKqCUgloqpRE6DSBGLp+XCTTNC0cRBORvgat0stYGHNPCBdSpspgecgX/rN+9we4BCnMGYO4r7H1PoBLU1IRBEYqtEgLuVQqwXy1uN+UlnlGriVaCTKjcCHSdC0/vnnHvmnYbnd8//UXbO6ukMHx6PQIX20prCTbD7B5g7ZrtNtS654yS4KKzjN0niCQWZ4nEOcIZ/ViVLJFcrAEFD7IcaPvIThkHIh2T+h3xGFLlXkqrTGFgbzEB4PzqSZUiJIoSgIF0iYRz4WAkOl7yjNDMU6UYhQ4H8eNUjrUJUhcAtMEH/Ba3NvkD4vxgwYugW7XMDTdmAX2BGFxRMIOdEwOEz9O1xOfRTCpa/YxTUqicyy3G9b7Hd+9fMU3P75g3TTs2pbBelxMk+hWgJcjeDlGtDAcqnK90kyPT/ng2RM+eHyBtT1Nt+f19Uuur9/hQmDfNqy3a8o8YzKp6XYtJ49OmSwmHLdHPPv4MUdnC+YnC4JwNP3Afr/n2+c/8s33P/LDi9csd0N67qVMhz+gyDMW52cI19PvGrr1lnW7Z7LdMDEF/eCAgBqDD4fqUjGmyA4gYm/Tphf/vl4+xhQnyPMcESLZA25iemdpug5ioLcOEQQRiRsiXTuQZ44s0yNULQE0h8GneuuQMr9KCKzteHu14nef/5Z9B5PFMX/1P/6PfP3DV/TffI7MdQLgBY/rel5eXXF1c8v3P/6IMYY/+9M/4ejkF+mZksmVl2U5B79cCB4hJMYosqxmvligM5PWRxEoqyxVwnqH0ZLIjGG44ObFK6RSCZBbGoaQBGlTanZNj+4jLnrOL0+JccXybkvwDokkN4pymrNrBrxrGXYQpzlEyWCHBKd2Dhv8/SHdC58szTGOP6tkhRfjfx7q6vYtbmZhZAA5n8DnfdsRVRKAvE3vsYOgJ1V67ygt8cFzt7pjs16yXt+wb1dEPEh4e3PF7HjO4viIn338ETkG6SU4hbekyZhK68vh3vU+TUYRgaACMleo0pDVGe1+IGqSLZ6Ck0cXLC4uWBwdw+AImz3t96/QV9e47YZhnbg+hy28hAR7JzUI+ZDek1Vdc3Z+hjo5wtVVagHzPsXJoh/rO8dNZEgbSaHU+Odp8620ARLsfr/eY5RIk8DgkCZDGkM0DyuwpLja2Jin0j0tpbxfu5GpalSlG2nkDbi0KR5t5iH6tG8nAb+TZjO+k0VEKsgLlezDPgkzy7slt7dLNtsNT/OnnD8+pZhWZHXB67evWW2WvHpzRdc75vNjLs6e8sf/6pcIJMF5bm5forMsOaBEwOQZRVkytOlg1g+OwToWR3OePXtKv9/z/Otv8EO6D93QobMCLRVGSWbVlDIrUstFCJydHHE8r9EhpDXihWW33aX4F4mvk0mVmAMH6LVKkGKdpQ37bLbg7PyCZx98wNHRCfPZ4sE+t9ZEWhwWT1WViDFq3e07hmG4b580kVFID2lfR6p07kPEKYVTJGFraNg2nmgFV92Wq9u33L675j/99f+HOivIpEY5MAEuz095fDLlkz/5OR9/9hFPPnyELAUfdB+y7/asNis2qzV+cMgg0UWOKUvyesIg088oilT+IMYIThqEJLi7d5bppCYvS/KiTIcta1Mds03DvCAgyogWCukjwgW6wdG2HU3TJLfxWHMLMrmqRgiz1BlRSKwP9NZjZGJGxMOgAZHYeSOc+yHXynoyo2t3tM2W9WZJPSvIc4XWUOSKqiwopwrhPdsO2kFioqOKgVpEplmk0So1fTjFoFPzkYiCDE+mDUaltq5D/C/GSKlTwYSUyYHeeI/rIlomdlkMHiEjeZUjy4LJdIo2hi5KjnYdpydnKXouJR998inHp6esm5Z26OiGjr5vGNqGMHRQVmhR42XyKFgvuLp+y2q7punbRKVSiZdj+4H9bg8RiizHKEkIQxpA2oD1CmvTeckHh3MCayXWmlHgTSuzGIWWpBQn9qGWDwy5jeNe6f42EfeskxDs6C4fRlbiuK+9j+UnQck6R9u2bDdbmm2H6z06KmpVpFbWmNyxmYJMCopMIU3B+fkZn/3qj3jyq58hKoPPBIN2nF2cMF/MEsT/voWCsVE6wacT2PbwNR9kjZiwAM6Dg+gj2/WG1z++4uvPv+bdy3fENlCrgsrkdNg08EITlabKp8zqdLgO6Q4iytFFyji8u/90GPfF8TBT5cCEO4xXD6LVfcTpAQ9zj8+e4ENLCC3eR7SRSAxRR4ITCGMoJlOySU3bO3ZDA3bAFgp9PKGcHcHQ07QN61cv+P43iosnFzy5vOTu5o7cRSqdc3pyycXTD9ns9vzD51+z8g633tHHt3zyyz9iPimZHtcM7W1KcQTBFMOn85LSpKjn821KE3gRGYzGGY0LgeW7JbvVBhEiP/v0U/7yL/6Mk8URMTgGCfXFGc/Oz3kZnrPeOLo2IFRNsC6lMOzA3a7n6nrNmze3bFuLK3IGB1/fbliS0eUVnZnwbtNjY9rzP6pKsn6L3N5hX/9Asb8jy+H8F5/x6PEj6vkCITW9G7jbbHh1dQUfPv4Xf0Z/8JPauz7FX8aH0tlUz+y9v7dwOe/RIk1pm6ajbZPDIY68lna/R+CZT0s++/RTGufpomCtc9xg2W229CIynU0pypK6rJObhADRkQXPeVnxaDrlow8/ZjY7Qqkc7x1KmXvg12Eik0hMNm2sjMbknrYdGJwlEsnLgjLPWcynVJOKrh8INLx99ZrNdkfT9nQ20HsLh42ITG1CQkSMVhACUZvUiGT9/dRAyLFfPiYbslACoxRCCdxoPwe4H7mJtFy8r/l6mEtLlQjQkfetCNaBA6eTWquMQWcKpcUYW09chgSj9wQTcRqQkX3Xsm971ruOr56/5G614e5uxe//8fe0myW5FnzUOi70MTrfJDvh9XMup5oni4KjkwllaSgyhc4MpixQJkPnJvFxlAaR4kEOjUeNi9WA8BZlHRMc4IjW4q1EUKO0QQdH3yqsy8hFBSJDosmVQaicKHTa0CiBtAk8GRSoXICO9L4blfx07yQ1Px0w4qHfexQQo0/b04cWVX563b67IXSJLG+Pe6J1SCOJbqCQqYFGyxRhGLqeDkWel6nWmsB6dccX33zLi6srvnv1imXb0XuPDSPkbNwgBinHikmJQoMPI3F7YDdYnJLk0wnPPv2EstQYI1EG+qFlv9twe/WW11evqaqcR08u2e3XFPM8VRmWnzI/nZFVhqg9Lia+w1zlTOZHmKLCC43IFEKmzWoXHUYKVJFzfHHKk9MF++Wa69dv2b9dUUxrsrqk6ds0+RURLQKRJMD5cSIdYjoku74fReCRw+JcWhPGzacY4cEPdTXtwH7fEoNjs9lRZgbnYqrEW63JMkNdH6d4V9uy2+65OHuCiiO4MqQI4/L2ln/4zd+xXC35+LNf85f/9j9wenbGFz98wXq3IWqBzrI0wTYaqpLoHDvb85//j/8N63u0Ufzrv/gzVJZYTEVmGLxLoqAEnaXNNwiefvA0HfSixboeLQ0m18yPZ3RtR1YULI6P+fwffkvXWxzQec+Pb664Xq64ultye3eFFIG//q9T6nKSpn+DR7WWx5cLLh8d8bOff8IHTyes15bn367o9gaVF2idJXek9Tg3Mo+kTPETn+q+IxFjzBjbA+cern7Utz2u7XBtDz7Q7fcJaNq2TI/meOfYbXeoIMGm6Z4yBpNn+CxHaMm+bWn2+1T/rhRt37Frd7y6fkP2OqOuC+7evuLDi2cs6gWlTnn/QHLAeASpZVcxuCHFi2RqfcqNQtUFxfGEPnbEvSKUipPHT1NtdlUxnS5QDmg63M/e8e4ffsvq5UvuXgSG/TZNxENq9JGjOhyEhCIjn86YffCMs6fP8Ispm0Kz7weavqPou8S5UCMALpDEIxESd0KrdE+R7NNDN7Bd77jdbamKtL6raUlRTTBFDerhatEhwRZT052krkqKrIQo2LkWDu1r2lCXxSgsBNquQesxUhxJLpwYk/vUBbwDZ1OjlFDp/z9imUxqZBQ0mz3L9R0vXxk+/33N048fUdYVRyc1f378p/za/wn7ruPFi+fc3L5NMYep5ulnj8hNSfSSx80jIhYXBl69fM6PP/7A7fWS7bJjtXXo7EekMmglqIuCjz54wtNnF7x59YrdpqEuFJlUKQotFOvrNe+yK4wxRNsym5dUdcZHzy5488FjbNeyXN7S9oYMUhuUtciYXJyTzHB0csbR8Skffvopp+eXVPWEoqo5Oj7FmMSOe6hru02OGu/DfRW6GxztvhudUYc91NiGqJMbY4hpndwysPcDaEVZFXzwy59x+eFjji+PWe62XL19w8vnz/m//0//M8vVFj9YNALlI2qR83EumVyeki8mhEzhsOR1STYpqGcTTs/O8S45C4usRGU5gwhoo0ew6ihb/AQCGoVEmRytshHyPJ5ejRkZRZZm03J1d5scpt4xn0yZFiUTU7JrOnbNQNuNkbqR6SRIrCEfQGlDWVWEGBiGnr4bUGWBHCuaPTHxtYzGmAytD87Fh7l0ZijK5G5quzXCWaT0CCnZtXt0LjmalfyqfsJ63bJeNWxXK1Tf4QcPomA2mzDLSs5UQesTF64bPNGPX6sUoDIUSThCHRqSRgeBSIcnqaDvWvbbCMGS5Zrl7S02RoJUnDx9xrye8dGHH/MXf+l4c7firml48fI1/+3Lb3mzXPL3X/6eveuJRoFRqanFDQxkzE8u8CKB1293e/ZdR29dcqHDfaPYbrtHREme5Wx2W/atpe0DdggMQTFYy2BbYvQ4D8PAKLB4RoP7uPMU9278Q3vdg14xpJf/QWz/CUeLGIg+8RHdUCDFoYQjDbpDSGeIvh2w+4bYD1RG02cZZDmBiIoBObbKaRnRUpBLiVA5drC8eXvFUAoeffIhjy6fMX90TDUpyQtDNp5BDswvIQRRKkI8sC/hoAaFMUKc/komuTgmaP7QdfRtk5w0RQ7GkMlUXOKjIAiFrqdMF0ccX1xQzaeYMkfnmrzIKcuCPDMcAHMyBNQInhbEkcsCYmyqFCT3mJQP94z980sAWmqiKiDzxNATY0jnNSmRmUdkGU4ZXKGxSN4u1/jHZ8wuTjg/PuN1CPDmNVzfsvr8C3j3DvH4ml989AumpqTUBd5rsmrGyfyEP/8P/5HN7S3tZs3tZsk+F+iTCUdPz2hvI/rQHOhgbjS60hSPc8qXr7nd7di2LWtVMJUZShgGNKcnj5lfaH7+l/+aj58+prMDX//4ki9u3rE2hq0p0OcnaFpk7KHrePrsE5R/jF2fc/PNb1m+WfHNf/uKR6eXxKqkQfJN23LdC9Y+cre9xec5k6rkbDrl+GaDXr9Dr2+ojWF9NCdUBU/+h19RnB9DVdIryTc/vOT1uyveXF/Bv/3Lf/Fn9Ac/qT6kg4uPKXd+yBMeIhYHCJIYb/o4WmsTTNamA5tzo1iSqMHKOoQNuLyirkrKsqDzFlPkZGWOzjOUUQTvcNZzdHLCB+cX/Ozigscnp0wnNZnR9MN+VDUTEGo0TaV33sECFxPwNX15Kc6kZXK5ZCZLC/W40CilyIqSqAzCRYZ2lyJOQqTs+ag0KylxCGwAF8bGhHECyb2t7NC/kCZoEkbhIn2Vzo8OhMMmcKyRfqhLqxT/EYeJvj+0IowODClQRqNMEn9SHEsix1rmTKeaQx8dfWe5ur5htWm4Xe/59tVblpsdy9WWF7dbwmCpi4wjrxBNhxhSQ8329SvcUUUuFlxMc+qyQKmc3OQonY/CWHIeHWoIfTT4oMa8ZEyxohDR0aJDD8ESg08CWOvpm57ddkvn0iGF/BaTF2idk2Ul09kxJi/RWY6NKfubioUOuef0c4/jZ3uw/wPvYbbjxxJCsuMmC2H6rP//wc/ZrjZI5ymUxvUDBInwiiA8eSiRUpKbBFT21tHHDj0didnW0ez3rDcbtrvdWHGZ6sydYIxNKQKpBQZlxppJSRSRLJMU8wV5CFTTGXlVc3xywtHRhKrKyAuFkIF2v+XqZE60PVILfHSU01SvqZVispiSTwpUJvGCVEMoFblX5EWB1Do5urQiCoWUijovKWRgcTTn5PSIi7MzhqpmmuVszISFqZjlNUYrZEyMGqJPMOd7IHG6zw8NZ/GwPokUO/H4VOMd0nOn9cPlnNu2pxssBMd2t0fNpuleE5J909J2fbKbkhwszb6hbzuMTFNt6xxt17Hd7bi5vcHkGYvjIy4fX1LWJUKCx1NOq3uyvS6SMOaGgaGJ7IaW2/WK6+Ut1aQmK4oUkRQJFxClSOKSkvfrZVmXIyjxMJ4ZVy6dLAtBRGx09M7y5XffsPvNnn3fcb3ZsN7v2XYdbb9HEMlfGoq8GPlbHtM73l5POHu7oLV7Li8/pMhqzk5rWu/wrocoxnahw28/rleAlwmulypnR2u9P1TWPswVB0ccfGr0iQHbdqn9o5WUVZXy831Pp1qkDym6d5g2qiRUl1WJVifU1SUudtxt7ri6ueLq5gpEoO873r56SeklzAfMsSErc4RIjRqO1LykZHq/Hg6YNjqiFsmxUmboukA1CQY+OztmfnRMXU/J8wrhIrQDQWi2b97Qdg3ZboMLiQPjhrQWSCHQQo4RWoOe1MzOT6nmM7oqBwK27xjGGlzrLUqLZE0eI7uC97EhpCAQcT6mQ3LTsr5ZEucTKjGl0BkmL5DGJFHnAS8pE7zVKE1VFRRZnhyxzhGjTcIVkTw3uJgGHJt9Sxjt+cEHok9rUXCpnYyYNvu5ViA8jK10eV6QKT3GRDt2uz1vXr/l7nbJiZLUs2lygqDJyoLBOrLCoJTg5OyIvNAJ0i3Ss7fZ79juV9zcvqPtW4RSTI+OycqS5Fpw2GHA9Q3Ce2ZHNauloW8FyoWRpZRA9X3T0Wz37FZr7EmFryQESVZmTGc101mNJ4BM7ByTZTBWI2dFwWQ25fT8nPPLRzz94ANmR8fkeYnJcrI8H2H4D/eu2+334wQ/rYXBJzHBmAyjdBrcjWuSEHJsE0wuwc479n6gFz5Fg8fmH1UagpacXJ5g48Bmt8briJMOLz1KalrvuG23fPv2R37//ddY7fFZJMsFRZFhMk1ZVmRFdSgqTPw9pVHaILV6/8of93KppTAdktO6lb6voU+Q89vlktt3N2xWK9Y3K65ub8bD+sDRZMbRZMbZdE7ZR9a3SzYHJlmI93EEFwJRqJFLYuhtn5xYfhwSiFQE4EYmolCJQai0etDDn40emRmKqmTW1hhaTPDk4zPSycius5xPDGeLjEUeWaqWrk2sqi4GtGvJdKTOBaUBGyRDnjEMgt4LbJR4DGP/GlH4pINKMYpO74e71lqaxuNDalvrCez6ntYHrNRkVY0yOY8fP6U4OmXRtjy/vuX6x1e8fPOG9XZPVk1HJ2GG3TX4osCXFcXJSRKWSXDwiLyP2YQQaNqGu9tbZJQoZYgi0qy3WBdTW2cMWBdS3M0nYYYYcCGBqg/xSyUEcnSvKqnQY5upeWC3H8EjUPeaoBiFAaVlgs/jiH7Au1TZLDm0xSWnolABLSWZ1swmNRenJxgimZDoOEmwXmsZdhtE8CiRGiEdkq7teHd1RZ9H5pdnZFnGdDrFFAY9uuRTdNkDghDFGL8R9w5/Dm7lw977fmsuwEdUFGRSUWYZhTYM0hO9IFMJXCuUQZUVp0+fMTs+5ej8nLNHFzjhCTIijUQpmYD1MbXRyRCRkeSUkUAYR3JjRD2JLmMr04F3JB72VHD76lXaqutIUaf21kP0W6rkpPc4MAIpDUrn9HlOPDYoKbHTBfL8DNX3sF7im4bmesmNdcxUzTA/Zj5ZkNWTZCpQAisj5fERusjICo0XYuSsaap6inTuPiKlRKSUihNh+PBoTq4Eb6NjcD1dzOlUTixLZmdnyDzn4uyULNd0fkhiZZ5a82JZg5EovyOXLY0TPD4/oRABP83pfviWfrnlxe47vr48Rx8vsGXO9a7l9d7SoJGzE04XBTMdOep2nK62FL3DoGhCZHq0QBwvKI+PcFlG6z03+z0/Xr/jbrVi33Z/0Gf0h9c0iyQW+OBHvo8fDycpg36/KT4I+eND4KzDDvaewSJJ8aG6qsA6/OCgmjCbTplNJzTdPsG/8hyZGYSWhOgZgqeezbh88piPP/yY86KkVgIVPL1t7q1uQqn7A0P6usdDMmkhSYmZNBE5vG7Shn3kqWhNlucEpVEutUD4bs8QEsG9GRLISggIMrXUO+kZbMrrqgNhmnQ8SVnmMbpAejGkfysJMc69b6lI0KnIAw7Txwxnin4c8rxpiinuf2Zpuq1GYSciCWiR2DJ5nurv3JBaBV6+fcP13YZ3yx3Pr1asdz2rXcPVPjktfK7Zi5xoPTiHHRpub+8opeNkktNZDyi0zjG6QOkccVDPBaMLQeLR+KjGWtHEixDBo+KAiT0i9Phg8a1ls2y4vVvz+u0tm7anc55BRMqqoiwLJpMJFxcddV1TTWp0liF0qjI2MrmR0oc2xtsOds37FfIwQUr/LIxRsMPfHVGPPDSDZbvZkCFQJsf1PXiFyCRBp42nFILMGJRU+N7SDYHZfEZwPX3fp4N736XqXaXSiy8my7yQSVyJyDRN1lkSWEY7ZlHXXJwcU4TA8dkZk9mMo9MTLs+PmU1L8kKSZZJhaDle1Fy9ekGWa6zvqaaT9KxLQTmr0LlC6EhAYKQGGTEusT+ESJsVoQwRiTQZi8WCSQZnZwvOz884Pz0lzmac1BNWqiIfBGXU5EajbQJsCx8SbHi0kh8qEUOI989UHEWz4N/XXh6y3eYBp0RN29EPFqJns9tTlRUxilFg6WjaHj/WvjrrkyDT9pAZYkjsKoaBtuvYd8k9MVssODo5JpuU5FVBURWcXp7TtS0+pJ81ISC7JMDZfcd+aNk0e8q6xhR5qhhmrKoXSVgF7u2/WZEjnUzuC8no0BrXUhlxwdH0Ldtuz5fffs2XX3zFut3TBMcQAg6Q2djINUSM1Ag8REvhPG/e5Ry9qbG+5y9VzsXZE05PZry+7bDW4r1ACZ0OgAfrrU8NNl7G+2pVOU6FvU8NTQ92WUccLHEELbu2p2v32Og5Pj1O6/ng6GhQUSB8YpNEAClRxlBNasxswrOnFwRpeXvzBmEk226LH9vTVjc33JFh+si8WJBlk9RIEEPaUApFDBofUzQgxiQIogUy1+gywww5ep+hq4zZ6RFHJ6fU0zkCneKfxYD3oI/mZPsjqmafWvNIsOAhWtTYJGGMRhY5alIzOTsln02wWsLQ4Vxyqg59z+AseaaR8fAei6PIEsa66nEdDBE3ePp2YL3cUBpDUU/IsgKd5Qil8Q9s/NNGkWlNbjLqqiA3OdFHgk2g68EnF1BmzH1efrtvRr7MQZRldHomRgukKbIyCudFspY7yExGXRYYFdlsBrqu5erqmnfvbsnrgmpWoTMJQiON4eTklLIukDoynZUoLdJzHjz7tuF2ueRuecXN8h22D0iTMT06IcoM7wKh67Hes9s32KZhOquoJhntXhL2jjjWuxJ1EgD3e/brDUO3IDgDwWCMZDqrqad1ek/JxKbTmSFEjc4y8rKknkw5Pj3l/PKSi0ePyKvkDpXKMEqfD/q5dX2Hkomb5pxDkA42psjQQo0O6cTAQCbmkAc6Z2lsTxsSY0BqgSwyZKYYomPb7Tmdn6ByjcgkDoeTgaAiaIl1kbtuy9evnnPx5eeQC0ylWcxqYqwQsqQoKzJtYHxHhfH+RiqkGp2s4/N/4Kkw7od9dDiXYMvb7Y675R1ff/UVX335NW9eveHudsXNckXTdXR9z7yecDpb8OT4jF89+hC72tFt9/SDQyNR48/dh4BQmiwbWyj7HjdGJiG9Yw516C6ODmZjxnKGh/vsWtenfUJRIicTYjOggiMLAhsE/RBYi4HzqWI+kZR1Ti1LljvBth1YNT3ONgjpmJeRTGcEKXEiox0M+wE6JxkoCVGPpwk7dtUCMj2vB2eqDY4QBgbb0dqOJljKtmXbDwxSMz85ZXFyzvHpGbWQLKxlGwVd/ztW6w1db6mmC0w5ReR7vFwiqxJ5NKe+vEiMthCw2y1ijFATwfs0yLq9vcUojYgSFz1N02K9JjW8e5wXieUYDl1Y6e97nxz+aec7iitComVaz4zRZNnDQm7FKAjc3w2jKKDUOISKnugHgu2JGpAaqRRSjVNJJdLZIDPIac2ji3MyITAICq0Iw4Dre1YhEPoOQkArTZDQDZbm7pa+FHzcdRiTUZbVCN1Ns4oofIK+j0PqiBijdOJ+rxLj4TtIe3FGNyYhohAUxjApCsosI3ZDil9KSWZyTFlRH53w2S9/zuz0jOnxCYuLc3bdns72aDM2z4m0q1cxdTuISGL5RYFQIzMzBoiJh3WfPrj/wcb3zrYHuN4+f47JFFmhWRzVlJMCnRtkNrrcRMQGCxpUnmOKGl9WqIkBk2GLGnV5ie4HxNUV4WZHP+xY7RteygJ3aQlRUJ0s6HyHCCnqPT86Qsxq3LQijOtLiCI56Lo2xSIlaAmZhJmSPDmaIxU433Nzd8MQHJ3OCFXJVJ5SVBXHR4tR+E38vrqekk2m+MmMqheYkFGqHWsbOD9ZUClJyBUvTMn6+oa3qxtePPmB6vEZYj5hazvW2warc86OKh5VMIuOettzvmuoRETrnB96QXV8hHl8iZrN2CvJqht4cXvLy9tb2v2eMLg/6DP6g08RRVUgjMIfbuvxRpcy9bgfrJLv4aBhFBA8Qz8wdGkTLUlslvlkjqklRZR09YzHjy941+0Z1ndkk5HijGA39LR9S9PsuNvvaJwDo8gnFTr4FBvJ89RAMYonBwUxvfzSQux84G69IsSYbN3G4LoOa1NOUpksWc+1YTJrWb654vX1Db/79ju+ffGctm0xSjLJcrSQKAFVXVHnOWWWU2cZJ/MFdVlRlxWz6TS10Oi0OIWY7J0xhgSdFAI/AmKdc0ncyfIHfQnCvT6QFvHBE6wnOg8iEZOFlMjMoDKDUqBkIJeSwgiKXDEpJHd3d2zXG95d3/Di+Q+8W++52Q3svGHIS6LIcPMdDo+pK9r5KfOLc8pcYuJA3N9wcjzl5PKUyfyIenZEVdfpgJ2ZNBEbFwiEhKgIwaQGZh8BC75DBkuGo9RJuGl3a774+hu+eX7FD69uebO2WGVwUmEliHCDxCNxHE9KilxTVwX//t/9FUenJ0xnMwpZj0iXBFYeycPpPiaOIGebfn4jpyTGERQsHzhk+c+u5fKWicnRZaBtGooySyCmNtVuGmMwSqGRNG1L3/TUp8fYrsf3PbmSfPDsMcePzvjQB7568YKb9ZblZs/gQUqN0BmirPGZIch0OCrzkidPn/GXf/qnfHx+zqwwLKqCp08/4NHFEdM6w/k9MVrKQjCtnnA0zVNde3QcHS3S5jJGdC7wyibej4JM61S/23fsVg377UDbgSgnmLxkOp3yy1//kienUx6dzfjFRxecVhn0PcN2zxuviesO1XpKlSHdKHp5iyJV+Trr6bqBwY1sGi2555OJtC44l6IouckosyzVgj7Qtdk1xOBQInK72jCdzjBSIXXG3XpDVhSc7ZqxISBN53bbPXJao2SC088mE07FOR9/8gle5kxnNVVdcPbkkn//f/t3fPjLD/Da8o9f/J6XL1/y/Q/fJ3dHZcjrjN3VDbPTYy6fPSGryuRUESCVJpMjlG18/u/vYe/QOlURp32CGOHYgSAiy82K337+O/5f//k/cfPuml27Y+sGMBkiS+t1PMSnMwkibQxl9Lh+R68lG+v4h8+/ZLUe+OiDj/l3f/V/xRhBP3ia7Y7Z/BTbD/jBooQeoY7JceVH+KizHikSsLzrHlBg6Qbsdk+vDNPJBLqBfrPjbrNkPp1STtJ6v15vkFGMjTrJCaDzDF0WVLMZpdEcn54yP50wPZkhMsXtfkm32xC6llJrhs2a29ZSxQIZMsxkhsqrVEYSPcEN4BQiS/eH0pKsysmqHFVoRCPRpaGcVyxOj6hmU7KyAqGJLtIjWAbHJtcUTx/z5JOPefHbf2T59i3r61vifo9UBqMz6mKCyguqRxdMn14iyhII4BJXzNmBrm3o2gaVacwYE5IcBgfpHlGkRj08KXISE/fBmJKymFDXCwapGFygty0XD/fJcXl+ghknvqXOyXUOMeX/g7OI3tJaj0SlWnOlWZcNbdvfRwa9T/DkA/RWKYHW494m6HRwbR3BOsqF5tOPP+abrx27/Z43r2/4u//6jwzOY/KcclqnSbVU1HXJdDZBKoHOJLbv2O93bFY7/vEfv6Dpduz7Ha+uXmF0QVnOMBPY77cJ5A88/eApzWbN5vYGoRyzxRTbN2yGFeLgRZQBwkCzXfHuTU9RWbT5gOksZzqfcnJ+ztHNBoRmsB45WHRnKSfJ2al1QSSxV4pqwmQ6TxEikYoDfEif9kPuUWbTOeN5EykUZV6mpjOhcdbdC/AH4KQNMblXnKUPDrQgyICNjm5oub55x+32js53DHFgvV5y/e6KzX6JdYkLMRAJJrL3A83NLb/96vM0AIiWj589QTy6SEOpANV0Nrbe6ST0xLG1JIx74JiciQeRzo9unK4fWK83XN/c8PLFj7z48Ue++eZbvvzqG67eXLFd71NHSpo38sa9o9IZ3xc1w6dbZioj94LeBuTIEyJEfEz18HlVJUfLYMf2mjTCdj4wxEjnHYOMKK3GiJDiIdMLP/zwPedHx8yrGp1Psc0W6SylBi0yfLDs9y03y4ZsoplNNB99eEy567nZ9bR3e+x2TT80rG7vKLIcldeoasbx/JLTYoowE3y+YN9buq6n3a0Idk/0A871I2/0wL9ILhasx7UbNn1PttlRdz3XTcf06ITjszs++/WfUJ2dMZmdM3v6hOvVDqFztr/9nJMnHxKyjH0I3O53TE6POb4855ef/hy/3WHXW/avXzOrplQmVeQud1tub655++YNR8fH7FdbmmaLtYEhOHpPclrZSGtjck+TXE4iJo5laj0DECiRnCuZ0ZR5RpYX5A/YcAhATA5NSRwHPyNLTJKanGKK37tujJ2YMjm9lRgprgMuegIek2mePn3EYl5zcX6U4uxdR7fbg3ds7pbYwRKlZn6yIA8e3+3GaG1OXhQpeSBF2voTxjpk7t0r6VwgksA5GtrvN3QH6K2H6EJKSUSo8oKj2Yy72SS5aSLJkV/k1PMZZ08f8ef/5i+pj4+QRcHk+JjNfkfT7YnCk2WKAxPn4GJRISJCAvFLL1ExRYQYXdJC/hTv8PBng6+/+MfEowHKXPOzn3/Kyfkp07MTvLDJcdu2CQSuFaqqmV8+oR0CQmecPHlGripkWbNbrml3W2h2hK7n+upNKlbKIzO7IGrHdDbns08/4OziMUYoYt/Tvn3Ndjtwd7fn2cUMIUHE5JoJMUXdlDAs6hyVH1FNcr5jwPaWu3aFqBRHp5cczRacnZ2QGUlV5Ty5PGeR5diiwmYFGxdZn/Qs13u+VIJ3+xVyGMjbHoqKcnbMRGV8fPaUclZDqcm055PLS7LphJOzE+p+S9lHJj5yeTRjPbTcuoD84BnFZx+iL85pi5pX75a8uL7h9z98z3K/J1g3inb/8usPH9MKcd8OdHB8QKqO8z+JSIgxaiNG4NbBvtfumzGSAtb7ZKE1WXIQFDmLxYyLi1O6KiPkBg/s2h7nOoIGkRu23Z53t9f8+KrmWMBxkZNLgdASEWTaDIwP6vhF4wP0Q08/WEII5EVOnmWIENgN/ciOceSyYLCeXdPw/fMf+fK7H/jx7Vu+fvWa2+0a5z2Z0uxkh5YSoySFHchUaiDJhKS8uiLXGXVR8Ojyktlsxmw+ZzaZpZ9LfM/wCN7TdT22H5J7Ret7q/VDaiyRNI27b6s4tGCIQ/WZQCiBNimepCXkUpAHj+4s/b7j9vlzbu5ueXN9S7vaEi0YpSizkqKaMZEZWyHphpaiyMhOjzl6dEGdSTLfkX/yEb98csYff/CYp3VOLQV6VM3T5g0OLTxJmZYIL5P9xyfrvIgWKSxGOzIijd3z5uoFv/v6S354u+HVqmcvFzhTELIckWdkMiD8QOy29LsGubFkInB6fsZHNjVaLI7O0CpDyRyNQSaDLz46rIuphtzZ5HRIYasUEUqi8ehZOdz/DzuWHaxlEJLBDbRdi84kKsAwBIYuOakKbVKMyweGrmOzWqHKjFldEwpFZmcMUhDyHCcE8tVb2tbiY0TnBSovoaoZlMTLZDEuioq8qFA6Z9/1ZBJckVGUOVlm0CY5i4QgNQ5pDfMaN/R45ygyjddqrPkUYx58ZBiE5LRgbGoxKqcqp8jJESoryMsJgYwoNCYrOD455XJeYfdbtjGQZ0k8I3r6pqUCZJTJshlTA4u3jmGw2OBIfqlRJBjhbNE6cAFpPZO8SgezB4ws7NsWJQVaiXvHSm4MUmfs91u2+4bNbp8cNaPlvBt6KleAiljrMFnJ5ewRJ6dzvnvxlrOzU+bzKWWZcX5+iqwEg+y53tyx6xuy67fE4PFW4ghkVcnx2QmPn/4E1DW2McQoDs7a9//oALFL3rpRQA+Hfy3FJvOMqq7RmeHk4oyTyzO+eP49QRmi1GihIXNjxEWBN8iYWleCDIRMo8qSZ88+pll3PH/1lsVXX3J2/jMQgq7rqGt/HzVNeefRdRSSezKEFPNKIlBySD7UJVwg9AO27fDKoEJEB0FoB5bvbgj+mOOLs8SwEpKoDhMreU/xN3mGdZZXV1fURyWT6ZSnH37Ai3evuHsr6GJgqgzS9WRIXLPHdQ0mL8jKChsC0Q04HMEK8Cm7XBYFeZFhcj1Oz8fNjFZIIxPDKEvuPwTIwpAtJpSnx8T9ns4FHn/2GUen5+yWK65vb7E+tehoafBSoY5m5McLvEkwTR8i0UV8/37zVtRlipPKtG7L8duPPgmdh0lswuce4KnJASFHAH0IgcE93OcG8MGzR7jBEqxHR0mm01oQtKIuc4QUBDGw6wecUAREigWKHh+Tly+ME9AQHPWkQI1RmGEYUCIJ0sRIt2/o6oxMnfLB0yesN1ve3dzx/IeXlJOSvC6Yn84oJhO00Wm0F1MzBgGGzrG6vePVy9fsmg2bds+m2fHmbokQGcbsuW0sbWdRUlEVBafnx0xPjlgcTfnh64HpbEK337G5WZIXBoNBCwEyNTY2u543by0i8/ShI69ntN2Aj4IoNP3g8bHHxz1BFgy+oR0AU9N1qVEOqdOHOzYRHlgi8QE3KMfzBW3bYwdLkZUUWYEUGu/HaewYxZZCYcc1YHAuTbalJJC+Xzt07LZrXv34AxbHerdi220JPg0jCi3IiuQDMUqRSYPWGUVZ88GzpxzNFyihEAFyk1MXNVmRo6SGKJLrF8ZigrHRaFwypUjtWd4Hur5ntUyx3NV6DSKijWE6n6EyRdu1rDcbunYAZZIzQGrsYGn7DtUF1qsdppwgpbl/VRLjCP8OabKuNc4F3ODxg0fnCSwdSTGiIQSsgEJIhDZIpR+UwXL9+g3KgTyCo6wm5FNijHTtlskstY8NDtqmYx0l2mtK6wlCM6lyPqom6HCCDAn42ztPEIaoSor5nGp2Sj45wszP6XxMBRTtHtducH2DbXe4dg22Q/oeHfvkcCHtzarFgnI6Y3p6zuT0lHIyp5ovMHmeYOJSUGY5P//ZJ9jBc7vc4ycLep3htOLpp59x9uwxF08f87NHT2heXdFevWMzeOqswgRJaDvCMFAVOY8eXyCCodvuGfo+DZeDwPpI5wK9CwxjGZQfI0KMn5WMh+P4WM08tuOpUQDPsoflVRGSwCI4WDNIa7mMgEfEFEuLVhOkIsjUuBPleMbSCi9SE6ME6kVFMTHMjyZcv36DkQapJ5x/8JjJfIZzyd2v64JN27BbWvIyp5pUTOdTlE6R05SISHwTxrjUwe0zbgTGH1u8X4MEAhFH68voYsmyjPlizuXjS/abPVpK2l1DrnNkXlCNTr7JYkpRV3ilMEXGVE8pJwVSBqqyTG1l3kEI7xuewiGP9B6HQQyj++Z9TfP7vdX4v3uA69Nf/SKxFvcNr398zpvXbxmGgSglrY7YpkUMHjl4TBBInbM4MmR9wJici8dPybxH9C3bxxe41z/i/UDY9+B7YrRE4RAquZhmVcHPP/sMmZX0fc/2bs3d68iq6ajXO548OUFKN0KZR/AvSfMSIrXPzuuCy5NjVqsN+6ZDKMnR0ZTj+Zwyz9BSUuc58uSEVmk6peikwmRpD9oNA15LrvYr7G6PaVpaGTl9dMHHRz/nz//8X5GVgmgCn+oeWWVIncQv0/v7Aoxdv2MlPOvSUH74mDg/opWGu/WGH77/gaubW9rVahQ+03P6h1x/eIuQdWPtsofxeU8bb/lPBIGkRKYF4tDi45yj67rk7ho3WFKpMZpi6I2inlQsFnO2RmKNovOeLgToAS3RhcF6x2a/5fbulv3xMVOjyJS5F1jEWNUHB7lnzGc6l9wzUqbWEATBOprthkgCF4UI/TCw2e54/eYtP756zYurK26Wa3p8sqcBw2DRIoFuuxgSlEoIdEwHOS0ltcnovOeoabgIHpOX5NrcNxjEkOILfdfjrE0/OKXHhzjVLT7kdXBcpJz5KLDIcYIN6UCkFSqmCJeOAdEni6DdLdm9ec3m9pb19S1SGQpVEIsMshJzvCCWE7Yxst5v0EZRHE2ZHc+pNeheMnl0weOnj3jy7DELEZFdh3Dj9y3GaNDYwhNjmpoLHxGjwBLxyYkiPFp6ZAxY23K3vuXN7Q1X247bQWCnBpcVxLzC1BUmlwg/ELaCdtvD0NG5nqvra46Pjjk9OU2UfanR0qBiYugcaqCd96nKM/j/7ucZDx334vBf70XGh7pCTOBo6xxd11JPCmRUeOdww0DIMnSuyEb7b3CObr+nKjOyskCoHHyJNxoznXJ1u2K773h3s2TwgTwvMFVNKKt7KJ5QqRpZKMNgHTe3dwg3YVIkiLTSh2lDRN7HBKCsDFZH3CDSmiAT6+NQaZ5eOZ4Y1Fi3mQBZRVYwqWfI6RFyZDR0nWMYAqCopzPmi5pORPr1GiVJDAXvcX0AY1AxCXUKlaodrcO61BbmpUDEgIvvq+ODs8hDrSUCGcUfrFj//7o6a8m0AqnohoHmsPYpxWAdbdez3e4pC5PWSq3pB4t1jkNNcYwwqaecXz7Di4zzszPqqkJLCSIQgqOzHdZZggjILB3gpE4uglB2TOYzjo+P0wT+Jw5D4ntxJR74ATFyaI5K46PE2Dg4FJSSZFnGZDrh/PLiPir63fXrdGAVGqJB5AJhQGlJdAbhDTgFcsArCFnO+ZMPeb77ntW24fsXP1LPnhD9WLvtXYqpCZGy6T95uXh/2ISl7zFCavN5oEv6QBjFBKczZAAdBdF6NsslJjMcn57eD6fu3zQivfN0lmGKgm5vuV0l+39eZhyfnPDo8ROkt2xjoGo6RA/KCYT3GMBIgVESFR0heggiVTl7AVGR54YsN2hjRlbWe+FLapn+njo4qAUy02TTmuJ4QUdkt1xzMZ+jTU5e1YSioLFDYgJEUEKRHc3I5tMkjo7Pj4iR6Dx+sAxtRzgwesbnfvz2x/vpJwJLTL8k6p5dIZROwn5MMaWHvC7OTtlvt7T7FuGSHRwRMUpQ5JoQI70P+HbAxYCNMh04x818IL7nsURPXZdoJSAG1m5AxkPLmsL1A92+wfY9J8dH5HmB93C7WfPu6ob5yykf/uwJx0ZTGY3UgB/b/HxkaAc2qzXXV2/wIdD0Hav9jtttQ4w9UnWseot1AaMNs3rCbuiYzScc1Quu375mMpvR7vYpppHnZFIjfcDHIbGCbGS16pF54jUtji7ZNYG2GxCkyFMUEWkDPgqEB1xIzTYxfYpJWBmjLweB5TA9fqCrLiu8DQTryU1OpjNSe5i/75OVcnze44EFmADSRqSIOM7jbRLc17e3dK5jub1jvVuODqRIqWWCRyMw2hBVRlZUzGYzHl9ecrRYUOY5mTLkOiPPcrRJjtGIuG8yOQzBwsG98pP3fgiRvrfc3d1xt1xyfXtLkRu6vmOwA4PtGYaOwfa4EDAmQ8rUbGXD2JDmHMPgsMrhtRq5dKldc3Cp9QopkVLj/r+8/devZdmW5of9pltu++PDpb+2XDs22QQISCQovYmSHvQuQP+gAPFFrxJAoprN6u7q6upbt7Juushwx263zHR6GGvvE1lVFFC3DrkSJzIj4kTG3nuuNecY3/iMj8dEM5HoHTxYJCEwZgGhtLFiIP+E67a9X7MpJlSmZHF+hioaUhjo2gcWCqzRFMYSusg2B1TwTGKimk6ZNAXnixOmdQVZ0faB+32PT5qoHNPVBZPFKfV0iVueMlWGmDJh6GDYE4cW325p19f4/YbYbjGpw+iIMYqyLpiuTmgWC+ZnF0xPz3F1g6snFHUt3mNK2Gkvri4ZWs93r9/zuoskpXFFweknn3P1xSc8/+QFF6sTHvqE6zxMbii1RcdM7jw6JaZNzdXlBZvbFoVi8H4MN80j4yoypDF8TIllQEKGGjEd8mkeN1OlzdELUo//fsrrAK6o0Tz5wASCjCGiiGgSOfbkWJBSNebeAzoLI1hDVDK0mtQVpbKk2vH9Dz0pBrJKuElJrSV1U2sjA4nYk/XYhGvxdjn+/R8Z2x7q6qNM/2gY81Hx8njwHH5hPJtF/lzWFZNZQ7ufis+esURtwGrxk4sBHQZSEoDHOoN1Guc0hbNitusf5crwEWvt8Ncf/HOMPlb/x5efDx6NT3NdffYJ3W7P5v6BN28lLjzlRDOb4mtH6gdUH1BDQIeMRTObTjBFwrqKxWpJ2D3g75dMTpbs5zORQO83EAMpeTJRzr0QcUrx6uqSbYhsdoq2bfFasfOe9X5PGplPGo1K8ZHRevAFNIrGOk4Wc6kbhIrIdFIzndQUVvotbRy2FLKFk1uMAJRWhpRJZTa+Y7dfw8OaWmcWFyf87Gdf8sWXn6CNJ6uBWHj0mHrpH9ao6Ekx4zNch8CucnSTmnKxZI9hu215e7/m/Y9vuH9Yk/2ALUphSv2eyV2/N8Byf3dHVRRMqho9nZBG3b/Vln6UVYiLssE5NxqiKWJKDH5gu9tRlQ6QYieliFFgrVDTpk3JajmnrS3eGfYxEBRs/Q5sRiWLyxDiwGa/wYeeSCAbOyKgeXzehKKZUyIlyUQPQWhni+WcqijlgQDa7RqV5eDq9h33D2veffjAN999x/vbGzZ9TzGd0synkpIQI7uHNcEHhhjx+x6twGpFYQ1WgU3QxsC7v/oNdVVxulrxX/wzxeXZOauZ3GgxJHzvWd89ABnnLKYS8OXw/3uyS0sEp0qBFLKwQsbhS4gRrMZpS1k71JBQwZPanv39DWF9z/DhR+L1NawfyNc3PP/iK/JsiW/mvNc1kxdX2OUZ9dmCtzfviUROL5acnEwofI9vPVfPzjk/WVJXFfhONus8HhqjeZX4zqQRDILUizZV5QgqoF3GiuKKfr9n26+5290TCk2cVsTSMZyuaG1DsDX1bM755Sk1kfjwgXzXYLo9bmjpfWLwiehBRYPNDpMdJAM6jcCGeAeFEEeZEqPcTNIltDGjW6h61J48McCirCEpoUTfbzfMVwsMkmrRdz11KbGTTV1RFbJBxbbFsaIuxBE9hJ7kLOV0zucvP6HrAvd3O7LaUS9WlLMFvqjw3Z6UojSJZU0/eL777gfefPPX/PLzl9TulyijyErkIqhIUgGlIoaALhSFkYShFKKYFhtN1I8+HiOEJg27NkzqCScnZzx7NlCef4qPir4f+P7b10zsFa+enTKdzqmmFWloMU6L+ZrvSH1HDo6MTNMrV4vON0X8MIgppJbGYAieIY5eR96TO49NisI4og+ErAjp6dbNpyjMnqzY9T039w809YBB4XNmu295+/49z59dkpVGW8tu39LUNbmQuMCH+zXTqeP87IL/8uwZ9WTJpKlp+5Z/92d/xp/++3/Njw9veHPzgXYYKOpSktdmUxpb8HbfM51NWCwXWGOkAB8//0dTRsbCQR01xIdiQqFHrFoMy511zGZTnj1/xn/3f/2/8MOPr/n2+29ZvvmG1id8UAwDuJlFFYlsIiqVxKEg9BatE9vdjuwjy6tPuL/tufvwnt9+8w3T+Uvm03Oqek7fDcQozZyxRuLSszTtPkiqV1mUYtj9dEsGgE4Jv9+z94EqS/NWADbDzdv3pJSZL1dUhTRGWilCDFIUG4mbn66WZBK3tx94/eYtZxennFyc8M//xX/Gh6tLbl//wIe/+E+EHoyHRTPh6vyMYr4gFI793mPG9Yj9HtUn7ERTNwVNU1NVpXw2ylC4gqYWRgkmS8FLENO7wjA9WXLy8hlv/cAPf/MNmwCNtlTG0FycQvRifE1kOl2wOrtgcnnGw+DxIyDplMGkTO49+/s1y9MToUXzSIIe7YSk6UwJo42YAka5b2xZYMsCPRatOQ6E7mkZLC+eXXBtkEjJfsBpyFHhLFSlJStF0IrrzY6uG9j3Ec+hXimIwUssdxajlbOzhZixa/g2DvRtIPqE1RWxb9nc3vHt15n//F/9Z1ycn/Hq1Uv+7M//I/tdy1/+xV8xXVT87Fc/4+rFFYsTSY/JSRH6wN31DR/evOHt29c8//xz2psP/Hhzx/tdL/e0Uli/x7oCFy271PP12x8oJyXL0yVXL16hkzD3vvv6G05O5pTaEPY7ttstmUhWma6N/Pi648PNHbd3A84t2O2GkSVjRco0nbFYnlFWE1w5YXFyStXMMLYiRo2xYxrjCCU89TNntZUheoTKulHqMsI6idHvZ4wYzgJihAyz+RxTOezujnDXEbxH94rctlgCE8SIUenRJ8XKsM8aQ93U9MlS1RUn8xlfffop5yenLKdTThcLmrLBasch0wXEn0K4reILZYxEyEvTII1DjJF213J7c8v333/Pb7/+Lff3t3R9S9vuub5+x377gLNA0iwXM7S2dO1A1AZrFKUqqFxFTjLMa0wxPmMS162txTiRLO3v1wQfsVqifEXiboXBScIrTTJGvl/bJwVYUjdwf31H8rCYLanKKSjYb2/oh57p1HK2WPL23Z71dsuHvufqVPGq1pw0U37x+SdcPH9FLifcBsOHfSQr8YtR1hIwRKUZlMj5S6WxecZq1lAXjsYZ9vfvuXn3mtv3P5L7LbNJwWRSszpdMVkuKScz6sUKO5mOHnOOYYhEp4lWEaPn1dWZyJxczf/z//OndLs9GsXl5SVXl5ecn58xK0s6ZxgUTK3D+ojuJN1kXlbMLs45n9T8m7/8HX4EyGICHwVc2QyBPhkCInNBi68kMYE1cn4gkdpioizJT9pZtBvrzCe8NIcoifH/m8ehYYpYFQWoIkEeIHmIAQqNMiOIpxO50KSYCUNPbRwpR/q059t337JZrxn6gcJVWFMAmuATbbtn1+642z7QlIn3dx94d/2es+qSsiywxohD8sEMy4x82r+Do4zAC6N/Iok8etlkrVjvN7y7/cD3735kM+zQtaU0DX07cL9ZQ9+yJTL/83/LdHlCPZuj6wIzprxOpzU4jcoy5IkpHofRmQRK/Cq1UaScIEeKYjIy8g+c9scz8qmuxacvmXjPdL/DF5m//vM/Z3PzFldY5hcXJO9Rmw42PalsyW3PyYsrKp8xtqCpKoZZg19OmJ4uSK+e8RA7bre3hLBnGFri0DMtSuK2pb9dEzd7HrotbYzkSqPmJa0fuG239GHAWSRiniwMcrTUtEqIm0orTlYrSltyMmsZ9h2rumJiDVaD0Vp6UcDn0TxZQe7Fh5BhgODRVjPEgfdvf+Dn0wlXn13wJ//qj3n+ckUIW0LYiV/ddkva7gn3a+J6oPXQRcutgn65wFyes2l7Xn//hrc3t/zlt9+x7z2gqFxBzhFdV5jm95Pl/f4mtyFIElBMUgAakQkcdPw5j07CTozTbHEAUsRochh6iVyOCu0zvR8wqaS0mto5JlXBrC6Z4lGThkmWaLzr67f0fU/ftVwsV8yahtV8znQykQeSPBYBh/QXCU9LKRK8RymoyhJtHc4dqHaKsiyZzxeEMWp613fcr9fc3K9ZXlwx6TxbDLqoYFrhU2K32bBPipTlpohGEEyVEkVMZO/ROdMYQ+x71m3Hw3bLtJ7SfzFgX1maomS/b9lvd4TBU1UyNTFK48aoxadksEj0rRS/OQm4QhpxgXzAB8ToMIeeHHrau3vCzXvy5p5iu2alEkVpsYsJV+crirNLWJ3xr79/h/Y7XKz4ky+u+PmnK4nyJlL0G0zXUqSeT84uOZtVVCaRu04ODGMhJRL6CPmm0ZQ0xUQa2hGMzrgSXGGxGiCQyVSTmhefvOCLNqM3EecN8cWX3EZDqyxlPaOZT6lSABe4uJhRDh2229O+/yDyJidJRs4VxzQbSZ8JhOCJ6TCtlWnEAUX/2ET5p+yVp2UelUUhzU3OrPc72mHAlgVECF3AF544SZROfIAq5/DDwLDbo8oCZWeUtiBZmW5enZ2z2w3cPexZ969ppgua5SlueYLdPrDtOwYfmE8m1NaRYyD4gaJ0LJdzyloSpZKKBMbDV0UCgdKNDDKlIEuBL2lQGfQYsakMKlm0Aec0zWTObLpgMduzOruiHTyb9Zrrfs+zyzNevXzOyckKYzwxJfq+p923DF0L3lNXU3JIxKSoyhqlNTEE2l6iL8GA0XRdNzbnEZWSMNCsoXQFatyb/O/pGv73XUMIR1aWsob1fs8QI01Vo6zD58zddstlvhSDZ1OQVGLwEQkfNKzX90zuNO1ux7NXn1PUM4xzRBUprcFp2G83rO/v2A89ZZhQVIUc8CqzWMyYTicih8zINAV+Mg06FAGHnz3e1WNZcPDZUrKOZVFxfnHFxdUzVmenTJYLzn/2KbcPW95f3/Kv//W/JZZ7so3gLJoS1WuyTnjt8X2iRxNySVXPqOsd2917fPTijWUL1uudyPVsNTa8+fgK48HXx9rRnFhTuqejT6sQGIaBqDoqo8UjKiVKa4mD5+H2ju9+9zs++eILUkwS1RmimHJaxzD0VFVNnEyom4b9vqVthb307MUrplXJatIwvH3HfjcQtx37/Z4YA66wTE/m3Oeeft8ROk9ROFIayKmgbCqKusIWBZCw1tJUDdaVo9G1Gs0JIzkGNDLoaBYTZmdLFs/OsJuWYiy0qumMpRFJfciJppEoXl0XDH1HRMyEZSABykf6zZ7cR3QcQeVxiHGAutRh0pciKXiJkbeWsnp87SoNwkrs/JOtG4i+XgY8SJE+FuHWKpQHbWSY45yDvTAJAg5rLEYb9oMXQ9kon6HVJcvFCavFFBUS79/d8HC/JvkBTcT3iR9fX/O7r7/h088/4cuffUU9nfDu+gPX97d88/UPoC27fceXX1km0xNyNrRdxw8/fM/N7Q05JRbzBdZ9IGaJxpQYrYwyck8UxlEWBd3QjWlDO56/eIFLGQbPcjHn4uKUylpiV7PbO/Z9y67rWA89MSl8G/jh2x8h3xGToS6nuMmE6XzB2cUlv/z1HzFdrKgnc4qy4fT8nPl8hQAMBwbLR2feEzbqJgl7RsWEyQo7Mp+UsvQY8XqIWYAYJX5LRVFwfnbGZDahvDOEYU/bt0CmyuK3N3jPsigJacCHQCDTTBsmk4bT0zN2HUxmS56//JQ/+MUvODs5YdpMxJB5Poey/Ml9dAAnhNT3SGE7pGfmKKEJTVlytlpxd/2Bbrflr//qL9ls13R9i1ZCp19OS6b1iuXJOd5H3r+75uLZFSWOGkelLSpKw2tKS4zCwB58jy5mx1plvV5DCFglAAvKEDLsh4GgFEEpGQSOddVTrtvp6Ql9SGz3W16/fc3V+Zy6NDRnz7lf/0jeDjgDp6tLymLOerNns9tyf9dR6A3v53ekckV5MsFdPOflZye4QoC/7KALmT5m+jjWZCEQu5ayrmjqiuVsyvykoZg4XG159/obmrMlq5MlVy9eYMpSZPemIGmLnHYZU7jRzydjDGSjWE4r/vCXX3DTdfzm9Rv+449vMNfvYKKJuufa92xfvyZt1rw8nbOsLCUBv10TQ4vvW/brNbfXN2w2G7pBTKljMoQEQ0iErIijfDNnuVeOwSAjU9Ao8fUyWoFKUieVhmb2tB4sJj9KXozS4jWYRym+ChhEhp+yIkdPCMNobiu1m7EZVxaE2ONjJiqRlng1sPEPXO9u2G525KzRI8ASo/iYxBQJJrIPLd+9+Y7mP/xbvvRfcXV1yWI+pRhTwlQWgPXAskGNP5cpnUjNj8iLsAsjmSFGfnj/jr/69m/4j7/9j2wf1oTeE3zEd5Hee+pmhpvPcIWjaSqmk4Y0DJKkp52kDWmN0vKXJZVJKhF1BqPJ42sMeZQ0aYRFqh73yTzShA/9w1Ncg8oEB2FScPLlJ5xs7rl7/YbfffstXxjH7XbL777+mtjuCV1LbHdMDMLGK2soDcWsws4rqA12VmPnE4r5lBqxFZhWFZerE56fnrKqa9Zv3/Dd9VsefM9ORYrSUDtDYzU2htGUGWy2qCxeXQZFzOk4eFbKMm9mzMqGMBmoigrnJIU053D0bX33/j2DMcSiwjVzqpyokqfsHqjWNyy6LdOJ4z//+Sf8+rNLTk8LvOsJxpNMQO06yuhRKhPrgru9ZxsDN95jmhm+3XP/3fd88/o9v/3uNW8f1twYxeLqiqquqYyjqRtmqxXL87Pfa41+b4BFqJtKqJujLvbwc2X0OMZCGgYr1C/xPcjj16Pj9+EALMeYZ2cUtXNMS8ckWHRZUGlBSE+mM0yMdMBqOmMxmTCtRHJjx/Qiie/6CI0ljZOoMabYjhTl8QFQGdCaqq7wWotmMgHKYIuSZjpDu4KkNOGQVhEjXcwEZchWjw96FAf/HEf1ZxBDpJHKrmLCD563Hz6wWqw4XZzg5pq+6+m7bqSb6iNN9DAVfTRKeoJLy3vOo+P6USIwrkcaGy9jxMA4eY/f7Uj7PbprcdFjDZjCEErLstBUpUFXloVJ7HZ3DHlg0lhcoUlE2m6L3nW4GJkaxaouqK1CJU/KgaxFzpCP6zZSbOHo85NHQENpJZo6eyieR8ZCVXN6esqzZ55uOhB6Ba8uKIJilzXG1VRaYXtPtpnzkxMq36O2BduuY9o0VGWJMaPkZWyIMxJHHkIYmweO63EwssvjZ/ZxatZTs1cAnHWoIJOOrh8YRkZNzhD6SBgCwQesdTjrcMbSdy1926H2HcV0gnWWND6r06rhZLnk6vyS7z5scHVNWQjQmJ1lMnTsu45lMx2n1i1OK+qqYD6bUJYSaZ1SQPL6Rk5K/iiVS6tx4jIejEni60YHMw60T2PAFQ5rFUZldPao0KFiR+US5ydzzk4WlFVBjuIZE1MSMMR7TJKkm5STUBWtkckQmTBK/g40zRAC0QdyFv26NQanrQC0I5su+qdr+CQmM0IEZ80IuIgvSdYyxepDoA+jPMM6dCXPQYwJYxwhZobes91sxfNpTM5xxlAVYoBXjrHUwXvibsumLlA5UTayt1VV9RP99uEOHWuUj66f3Mjjf6dHdsthzaxEl1ZNw2nbsvOehbvizYcPYC1F5fDWkCxQWvR43OQciTqjCoVKBqULnC2oq4rVas502lDWFVpbhhDkcyIQYhJNuj5iPYBIBjJC2XfmCSMscxJgIGX6/R4qYTsW1qGBoeu4u7nh2ctXoJTEx8YklNjRN+aYRFeV+BDxXuSgdTNFRU8eOibzOWq+p4+K/Wag7Tvq6GlKSzWt8L4ntANOKdBWzKGrAltIPKxC7pmyUlhEave4gx4WNwMGVxiaWcPJ5SmqammsoylLmtmM7OR+jDlR2BJjnVC/UxzTpgzOZpJP5JDx+57kI8Qs073DxzZu4SLFFhZLCkEYcc6OAxfxm2CUouThaSVCfT8c9+yUBfiRWiCSsjBTlMripfIRhVsD6UAtPziORkUYEjmIP81iPqffd8ShY7fpGbmMdG3gw/sPTGcTXrx8wdXlJUVdUU8b1u2GoY9sHvZs1ltcMRVZR/Ts2z0pZepmynS2pJ7OqaYzFlUjcegEfN5RFI7KlUyrCUXlUFbSNJr5nMlsymQ6oazEy2BalehUsogTdt2eh+0Wvd7iI4QE+xZJNlOKyXTO7PSMxeqE82fPefHqUxarM5rZHG1K6mZC1dQynOEAMHCkfj/lWWdQxxhincW55+AVIs1fOibmqdHdRytNVZZMJhNWacHDwwRFImZPOU5PS6AsHD5lvE4kbziZT5nPZ5yuFqj7jsVsyvOLS05XKxbzBU1d44xBOUvW4/seGbYjme8Ro0gHFuD4iSiZxpZVxXKxYDqZYBQM7Z5uv6HrW8oCCiPyo9PllNm0pu8jbVVxNj+hyBbrpUFRSdIe1ei9EkfDdmcMSmtCSHRdN6YMjtP/UZbSe38gKo+NvgAs6m/t+v+Yq2pKYjvQD5H7h1smdUZR0RQVva7Y+Y7rh55PL5dMpiW2mPFwl9j3mZuHjubDmrRsmU8iq6JiujyhqEqK0pJsxoaEDRnnk9TYMZA6SX20VYEuHUU1Y+pXDKHlw80bKEtUWVJOpyg3pj+NdeZRzzgm0aicMejRfF8xn1R8+eoZyigB5fot5vY9kQ4fB8zugSINzMsZw/6Bh7ClIxB9x9B17Dcbtpstfd8LoBcTMeux5ua4J+cR2NDk0dD8EexwRo+MfoVSGes001nD+eXpk60bMLJXRqnLKLMR/8ODPEgkQmRFTEEkPymhzRjnnA3Wypc2SLITCWUTZWMpaouLFsnSEDmbVZa6GOttq3HThvnJAiz4OBCjl7pS28dyZPzMDkRbdZByH0CW4+cqe4bSGowmKohWQWFITtP1kT70tMOA9xFd19iqYDqdMG0a6rIE71HGiM2DUcdyNWWJW4+jNuJwgOQxKECPAys9Gtz+VC57JLQ8yZVyFImgM5SzGYvzc/pdy/U3r3n/4T03uz377ZblYsbaaPadGN66WuqRZEDXBbap0HUlDG9nKZua03rGcjZnXtVUxnAym7Ca1qgwkPuOdrvmw37N6WLOtCppXINNCZ0OFiEHoZsaM0sk1lqjiCixx1CKwmhhVGtQ47Q/50wKkfX9DZsh0KGpVhdsB0/3sKa/e4da37AgcPnsgj/8/BWvLk9oKkPQgazz6P163I4JCnYEdirQazGsV0Mve9a7a7bvPrDd7VGX52RtwTqcKzmdLzg9OeH0f2uAZTGVJIzoZbMvqgIzpvWI0W06NurWSPPiY6BIlpTTaIonjBcfEl3XUvsalROFUkxLx6qp2YQBXRbgHItmxrDdsJ7NaHc7Xq1OuJpMWTUTKmNwI1qWkIVkXNg0usVbo9G2BC2kuATjgyinT13XFFYmWP3gmS0WRFewjpmkDPshsPaRtgNPJoQkTBhtcNaOpotjTGL0MtQLkT4Eoboizd27Dzcsp+9ZNDMqZdltd/SdpMCMo30Bgawcnk84aABrSFEOlZgSOY0pTyoTkrBvIGONls1kGPDbLbbvcNHTqIBxhsoYcjRM8RSxQ/sd5zayuX7Nzb4lbN4zWUxAZbYPd8xsRTOZ8Wx1ymlpqXIkDj2jxRdJM9oP6WMjHkdaegyenDzKCl3UFBpdSHqBCmJON5vMsKbiIRXk+x26CxRfXHKSDbuoCEkx3NwQuj3Rb3h2+opyGAgqccIVF6dL5pMabTJZR5JWRKUFYMnCYJEwCYkROxyOIpk4FO9/u9R8WpCldpVo6mOg7wb6bmAoA0prfPYMztPv/WiEVmKtw/cPsNkRjaE4WWCVG5MgNMU4Xfvs08T3NxvaJN4RJ/M588UcHwNt11FoRb/b8bDfMKksJ7MJ5ydzmqZEp5YcBkhR4kYRgz/voxi7ajHdJCopQqMUDoBMh8cDUVuDs6AYCP6B7e0P7HbyXJwuLC9fnHB5ucQWmthmIpkAtH1PDmI8FlJAImKVUFYzBJUZUgAtzQg5Eb0/ThiroqDUlkLLc69yIoTxzzzRFRGPmRQzRTb4FMgeSWgqHGr0kdnu9xAztiioZxNi1xNDT1WUKC8RrTcfrvFtS+FqtBFQZVo3rGYzLk5PeXv7gU275eH+jrbf0y9PaJ45TpqGyWRCXVcfk1b4e8vsQ2PMx3dwPvqbSPEwTtYcGFswW6y4zJmdjWz7gbK+pajEEE9Zg6pKNAXGJozLZKOJvaOMFVVZUzjLYtbw6uWXfPbpS2DOZmMIKROCx3tIWWOdxMNqBdoIUKf1x74wTxdhqcjiPRIC+60mp4i2lrooKKxj27fcfLhmt91ii1L2sSisB50SamSbKWWo64a23TL4yNAHlC0opjMmvmd2fk7tYWfv2e7ecLO5R7czJvaSxcWSNuwZtgOFNrgCXG2pZzW2cmhnyRHKuqHIGfQI3CGA+UHWpXIm+h5jYL6cUnzxCXo/4JApqasqcFYkpFHS5cRQU56rPDJDrdPHpL1h15J6DyFhknCtDqbkaIQ9mhPERwZLWRa4usSWhchs20weIrl9WgbL3f0Du33L4MXYWo1NgfcDPniRmkXQSvaj0lpIamR1jg2+kvs8K83mfs9DuWNSVcynM9Jpj9Wet3FNCFIL5JB5/fotGakl/vf/xy84v7rgq/wzvn//ltZ3eA83d2vq6ZLClXK+ZaiaGbOTMxbnz1jdbTgfAjNjyCoyhI773QeqqmDaNJzOlsx1zWQxxU1KitmEYtpQTGpc6ahnDYvFjHlTMJ3X7NuO24c1P/z4niEkhiHz4XrH/dqDLji5vOD5Z1+wPD3n9PIZLz/7jMVSYr7R4tchzDqZ9h+92jiYOj/dujltRkBB4lANevwHCm1IMTLEiDLItHSMR9ZaQJbz8oz15g5roO221NbilCUXkhiYcPhYYJXnxeU5y5Mls9mM7fYt86bm0xcvmE+nlOP9qQonzWb0aCvlsuJxii7XoRbQx+GL0VInWFdSGM31+xWzSUVTOcIg0eZGRyaVYdqUnC+nFKXDG0NezXl1+QztIWwHuBsgRklFSYngPYMfJKnLidyt7XvafYctK4ra4YwjZPDes287yQcA+nCIi5Y676kuU1iKLOfy7d17nNoRujnl5QtMvWK/vePu7VtOFwsuzk95Pp/x3XeZu/sb7m53PHDDfrXm2aJjkhVFVVE2Fa60JCPsdZUyJiScVticMXFG27YopfBkXF3SnKzIOmG//xu8UnQpE0dfM0nIGz10xgY8HvZopBk6pkLlwM8/veR8NeHqpOHP/vzPCW/XDNdQNCULZHI/1T3vfvwb3rYteb8jBY/vevpdx/puzb7t6H1gSImQ1DjoyWMggDDsjc4CjKMwSYayRkFVFhSFFdNylagbx+WzM37+q5892boBGNIj2/BwZaGMmJwwRHQO41DWE/CkECmsQiuLU5HSWJI1BKsxZqyLC8XV8zPKxrHdt/ioUK7CupJJM+dksWTSNExnE+rVnGJSUTQVzaTBOEVKEZXH1LYRzNQ5j/3dkZx7nO2pI8gickANmDIxOVlw+ckLOgI31ze8f/ue+7t7NjHgc0RVjsXZiouLc+azpQy0QkDHiAGclv0n5oRPHp8jgUQcGcnKaNTo45K1qDnMCBrw0fZ44LI82ZUC2mjpZ4uCs2fPSV3ga/6C//TXv6WNEa01P/vsU37XD2z2W1LfUS+WlE2J1xk9qXHzGeViwT5GotY08zmfPz9n2lQs5lOM7zlfTLk4XdIPA6u65vruhg/ffgvLKacvXrBYzSmisMH1yOiRN53F8z8dunIhQYQkpIOiMGM9mYUBjyInSU3cXF/z7Y/veHf7wOTikmAtD23L+2/+grTe8+L0jP/2n/0J/+KPfsFs0VBWhpZ+TL+1WONQ2uPxPKTAh9CxJxPKAqcyruuwD1vqtqeIidI5ps+e4auSbC1V0/DpixdcXJ5xfvG/McBSWgdjUonveopy1KGbjHUWpUSn5kqH8wFtDft2h1bi2q4Lhy1KjEGiBPc7mrZChTkqBBptmDuHGXrcIBP5yXzO7Oe/kgLPe9humWvDiSuptcMkQYDR4wampAmXtF0x2sXaI3NDa/FmyUkmV9o6YY+YggqoU2bqAx/2HdPFgvL+gX6zo80Z5Sz1bE7tSqzWWK3HScJACAPdbkuXIIaW6CM2ZnQS1DWEzHaz48P7G2ZFPQJAY9MyPpzGmtF867GxeZJLKzG4zQKohHFIlzMygfWgPBgj2keVIsp7ChKlyjiVKKyiMAqtCpaVxpoAueOfffaMF6czbvctuSqpm5KytNSfnFKohsqVTKqGhkD2PSn24hegBWAJh90oywQ4xihrPfRYV0GpoNRQWTBjs0eBbRaoKlE1mV8VU6ivCbcPxELcvwdr6X1kHwyYkrI645evLrFdT186Fp+ULOZLJrMZRWUINhJ0FoAlREIS/5WYD4atmpwDoEdWi6SxqHxIQnq65fr4Op2veHi4Z9cODH1gt2kpdEkzmUk8o+ppqz0nkyl1NWHSTLm9vaXbbBmiZ3K2wFUa4zRWK7KKnMwnlM2Umzbwu9fvuL7fcP36B6q6oXAFJ86wXd/T3d3w8PZHCh2ojZgEqiBrmOIAWRgaQlixpCz3dEoKPRpcq6yIwwBxNL3VjwWp1gkfd+y373j48DXvf/wb/OBx1vDZZ684nxnmlZKUACXJQNvNjs16Sx0SjbFolTGFxlpDNtD7QJ8Cw+GF5UwKiUJLUoNRWoCVLMVbRiYC2lkK/XQ0XCnG5b5oh2E0HxS3e5Mydrxf3t/eMC0bZtWEZjbDa0PuFY5AVU2pqsh+t2PzsMGamsZU5D5xdXLKzz79gq9/+Jpffvkznr94zjdvfqCcTlgtlrw8v+LZZMXFxSVlWaGiPjLX/hbt6hF8yYeh0TiNIguAnuVeFyBYkmFS1nzz7Wv+p3/7P/Pvvv1PfPf6e25ur1k/3FEsS2xT4lCcns4prMaoyHooeMg91TDl1YsTnhWvKPIlV1cz7jYVm50ai1/Y7nb0feT87HKMzM1YV0iktQKlkniAKSRy94kuM06hU4bNZg05UZQltqqwWjLEYkysHx44OT9nPl+wWW/ZbXeEtqU8TNtSpKwbfJAI4PuHDQ+bLU1lqOZzLj55iZ2u6M/WuGLGne9YDzuWqeP0xUsGFfBpYPvwwHxxxuJyxfR0ga4KYZ2QcfVEClGtwOaRtizrZIxILqL38r0FFCdTmESUD2IKmgZSHEgBQkikLpCTIisnKWlKYazDOKGA46OYRO9a4r7H1pUwV5VCmXQEyVPOxL4bzdtFelQ2NaYsxVhw6AldT26fMF4buN9s6XYdQ+9RScysg/fsdjuGkElZk7JB5YDTUDlDDtD3geQlDcMYx4G7v3m4ozA9zjzw5VeXfH4yR+sZHz7M+Prr77m72chzkeD+Zstf/oe/4uLqFZ/9/CueffYp/+zLrxj8XlLoVKSsZxhjmdgpn37xK/p+AKVYTC/47FXCTBbsUk9RGJKKbP2GuhmN/7KCzcDZYsHJfI6zEvdsxq/Jcsb84pTlcspkWrPIiouQ+epXmb4PbDct//bf/Yb4wwd02fAn//Kf88//i/+K1ck5VTPDVQLe6jENLI/T/sxPe7CfUOCe6JqWNRtT0NFhssLkR8cXq7REfSdGyrl4MQ39wHq9pqgLlqczlos5WifUOrCczyjKBcZe8MXPPpHkIJN52D1wfnFKOTLLnJtx9ewz/uQP/4DFailgijbQlDIwI5PVYd8cAbjjp3L4PB7Zt48fVIZx4JaGgeWkpimWpNSQU89ivmA1X/Hlpz+jqqYYXaBVwbBJPHy456a9Zt3tMV7qi6HvGfqemAK2EDbYECMP61uU0jgnjBjnHF0c2Pctd9s1ffZ47UhtT+c9fnxPT3W9v/6R6WzJYtngtCcFz+b+HhsVi9kM7RrKxQV//eaWde+5PO948dXPWXnPpu95c7vmt+/uucnf0pqSddcxnc9ppjOK2qGcRTlHM5tijMaQcUnOVB8CnfeUSePKkvnpKV/96tc83N3Sp8im7ZiNrB6lDTmOE25j8KF/5EyPxXBOiRg9+/UNYbtl0t/zy7kjDiIXz+1OmBtGYxiYTR3VfEljL7ABfNuzv9/x52/W6NEUOWRh0gmYkzBjxIrOkhGiU8bkiFMaazROa0qr0UrONW0VX371CX/0T37NP/0X/+zJ1g0OpUk+msjnMRzEaj2CPgnigEoKpQJZHVhQQFIU2lAbRzaOoAzFyBworOW/+a//K5ISEKBopkRdoIzDFg1qZDQYraE0pNGK0VorhtVZjf5eP71P9eFXxjQtDrXMR9+alUI7R+Ucv/4nf8yXv/4F3dDR9x3v3n/g5vqWH777kQ9vrqldxRcvP+fs7JTCFKQh4TuPsgUmiSEvRtIUZRgW5YuMKR3WGIyz8j0j2IKV93zkbv/dt/GPviplBTiNmT56CqtZnCz4xZ/8If/j//A/UEwmfPnVz6k++Qyub+mub9i8e8disaTRELKcubZquHz2it/4jMIwW6z49c9/xdRqSqNQ+w2NySwnFWkywU4aVpOapTOEdsen8xVXsyXJB/q+RyuxbEBnctbHYWYOgZQCxgizOuVE7PuR6CDsY4X4tdkY+eTijA9v3nD7+lv+zf/0PxKd4AYn8wl//M//kK9evuKf/uJnnJ1MMaUmm0zqerr7LbFtse2A6iPJZ4IuqZenOAzZlPhcYu0etOHHzYbz5gVKa27nJdPJjNPFil++fMmXr54zb2rq4veze/j9+dQ5E0Ik5UTfDzRjEab141QhRzG+NVZjrDAi8igTAk1RVlgDwYtEyA+eFCOWTKEVpTaovmfnB2zbMSkbFmVJMJouJjZdjykrysoIcjbexR97CchrMo/TlsPvHM/B8fsPRklKy2RUaxxi1GmcpBtp6zBlSek0uiiYNDMKY6VHSVk8ZazBRCsGUYCqa6pFJu52xK4j7FtJ/kjCrIk+jLo9kVGZI9VOCueDAfCTXUpSRzLjhv/RP4exdooRtCQgKWcJRmheIsnJgEDG1uoRaBEjwFmhYd4wrQu8VuK+XViaspBUHm0wOaFzGv0o1PjZ56O85JFQd/DrkUK+LBW60ELzM2PzkEEpizZKmAs6MSlKmeS2WzZvvidMpgRr2bUdZj8wUYarkzmnkwrrLENMNNpQNyWuGE3wdCYLGkYmjilPQdg1Whq8nMcmIuujROinz8f4wxPKu+qyZq+3AlzETNcNdOVAU4lPzdAN7DY7TiYzrBVjaWutpBQMA/vNhmYikzldluKJYDSlNSynNbVT5KHlzbdfU1cNVVkxbWr6fs+w26B8S0w9+/tb7j68ZffwgrrUWDNa1Y4SP2NAocV4dDQItlgxvQoQB5HnhCxFohSusFpO+eKzF3Tdnv2uZ7/dQc5cnExweSD3O1LfkqULxGZFbRyFCgKuxiimcGPx07aezvcMfpBDUgb8lEUpVPQMKgj1OukMWmOtI+skEdVPdKUUSRpUHpvyLLIzrRMxy5RGZ03X9zjtKK14fxSFxZiasN+O6VYKaxx9KzTkuvKgMrN6wsXJKXVRsX64I/QDy8kMW1aomLm7ueVnZy+oyxL9UZMgT5vm7579x7Lg7/n52GwdPAjG21v2L3Fi7wc/sp/2pE7htCI5S9ftGMa9YrJawLyiCRPOTqZYd4aLA03tuN8cUrkEHPch0PXijSV/l6JS5ZimIElDUsNJZOpTXdrIfRS1JEEcmuDCObRS49+nqJuG2WzGYrFAoQhtS+w6hr6Xoizn4xk0DJ71esP93R36bE5TOk6urojc4rA885p4/wE3KfE6YWrH9HTG4E+5ub9GFQbXlOjSkc0oq9RqBJsEYInKi8GtEoamGY3/yAGV5X7PYwS1ikn8HXIiItt7GBIqSHGU9PhMWyMeBimNcmAEmOk8sfdi0DgCLBkFYzJEzpngJTpXoSirElcWaGsISSSzcQhk/7QSIaWMMOmixL7iPWHoaduWMHp6KCO1ijUaZzRDHFPQgMI4qdtTJmRP3VhOzho++fSEr35+TtMUGKM5uxAvpHdv7nn745b9dksMmYf7HX/9178DV6DLkk+XC4qipKhKAglblJJIozWL1QldOxB8ojQVF8szTFHw9uEDqEgiUBUzXKHJwRO6DhMSlVI0xqJCIHuJMJ4tF0xPFkxXS5rVFGMNKitcVjhdsr7fstv23N3fse9bjNLcru8ZgicpMG6Mz9ZG9uWPZbvHo0wdKgaO1PcnmioUhcUaLcx7RG2glBon1mr0v1cC/kWROkcSQzvQtx0pNnL2WYfVhrquWSwnzOYVL16+kM9QR5p9w2TaYJ0lpszz54rzy0umy6U0S1reexxroTzKlA7H+mP9cdgdD4lr8jo5TN1TkqGb98TgmTQVEwzaSPLhyXzJ6eqUF8+uKMsJzlY42/C7v/xW5Nl9hx8GVNZkDN6L+XJSWTyhjCX6yG63Z2IMzhhp+IwhhkQfAvt+wGuIJoE/+MnFsQ5/mivnQIw9MUi6XBrkjNvv1pRmDH1wjv0+c7dr0U6zvLqkXJzgbAGrnr6X+Pjvvv0On2EyXzCZLzhZzpmt5kwXUyxRYqnHet04M/oGSq2stca4gsXZmfi0dXvafqAKCWUFkDtoAnNOMmQd0yG7vWfftfS+Z9e3DP2eOPTooeO8FhmSzgLOYMTI3FUFTVnhtKXAYIMi7AZqCpyRIc7h9Mw5CVNGQdJyx4glXcYg0fCFluGlNQqrJJnRGCirgufPL1mdLDH2aZ61w6WUPp71eazFlc4iAVJqNOhH7u3xsx9NNoU5qkWl4LQRVllOR6xxPqnBWpR1lPMlSTuysmTlOFjTkiE7JQCLEuNpYjqapx+2lsPz9beZ4vL/yMdfP/q0jRKdoq7QpcXFgkmaYquS+cmS2XLJ1eUtJhlOZyfyPGXGwbJ4xOhjWzKekWNqWcwS7mCNERbLKEkXXYqY/36cKPa/xmWVsGpTiqS2ZWj3qBy5eHHJ6dUlyjqmszmhD8xMwbPJnG63Jz7c4+sS7U6ICVQ2TOs5k2aGi4nzwvLpq8+os8eEnpwGKqNwRhGyYlY4WC4oPvmE2Pcs5zNmVU3fd+gsqUN1Lo62DjkfEugOn+MAyOeb4phghaQzKiUyfRUTTWE5W854dXWODz3Zaoqm5uUnr/iDz7/i2dk5y0WDcTJkI0WUH8hdR2w7dERIH85S25JsG4akGJJiv/esu47r/Zbb3NFVBZQF1bzi9OyEy9UpV1dnNHVJYRVWSYrpP3iNft/FjUmy6AnQdd045RJtk7WanAXhNMcixo4bzSONqywrnFX0KuD7rRweQQyVCq2ptIa+5/7hHuUKFvWE5ckZOgS6/Z7hYQ0LTTkTr5KDTiOP6PAxjnQEQbLsqqN2+ADDSKOsDyI7paTw0oasR4PZA4JpLWXdYOsCW1U0jRjexSDeF2iDtRaVnUidmgmNMZw1Ex7evWN3d8cm3FAaK+BFFj2pdkaKCqNEo+5Enx5H08AYn06uoJQeTZqkMEnIRpEQUy0QWZOyI5OmKBicEdApAnqcHqmxARlTn3IOOJNxrmSuavoUMOPhUIz7TsoSn4jVGAsYKxOBY4s3Ou7C0cU8JaGZW6eF7eI0UTOmvAigxwHlzojhZwqodsNmfUuaNARjWG+2nNYzFosTPj9bsaoLrHNEpchDxBVWIr20UCMPmzNJUNcUAyg7bhAjJDU2qulAATqidvKDyulxY3mCq3IlVllUklOma3ta15FmiRQyQx7YsCGfX2CtFc8N5+iCxH9v7+/Q0xJttfhJjIeA0ZlJaSh1hGHLm78RgKWualbzBdZpVPJMbKbfd+zvr7n+8Xu2N59QnS8oXEFOMs1HZXG/RxgIwUd8DmDAYiBEQjfgvacdWoq6RBcOnOPq4hT1R7/k5dUF24cN97e3dG2LNpoy9aT9htQuyEkm7yWaedmguj12CKgQhBo4ouH90NP1Hd0wUFeV+HcoTV2UcnDGRN/vyUFiPnVZ4gonEoknHDeknIgR1EgpTTmLIVoS47tRFcjgM4MZ6G3Pbr9jslxS1yUP7QdA6LiVqxi6nmHfEesBlGZeTbhcnXMyXfLD6x/p93tOz1Zka+i7jtuba6Z/MqEqSvGYyPmYbpj0gbj6cdny2Do9+g2pUXapEJr14y2vssSrnpycYMYp45B73r79jtxaQs4ElbnXkZQGYhr4g6tXlIvEQk05P50ymQuYvt0IgHaQmqTxnBkGuWfE1FaAFEmLi4SQR/bkaKz8RNfh7DJG6MrDIACLLt1I4NEYDMvVitXJCYvlEmM0w25PbHu2mw05JYyG0ok56DAM9GHg+sMHytpQ10tWz5+zbgMqKa7qGfv3ilAZogVKw/R0jjKZv/zNX6AKja0dymnSyK7IWl4jSn6eFASS+BAqyDqhVETlAFEilv2+I+07aWKVTN5SVqQEaYiYNJ7XMaBHbxtlSnIMDEaeb4LEWMdukOmvExleQijtco9kvPcSzamU7ElHgCXiDwCNf8LYLsC6kqx2hJTx/UAaPGEYRFKYlRgzGodzBucS1if0ENFZfECMLYk5EYIn58RsUfHi1Qm//qNP+MM/ek5RGJTSrNeBqlnw+vwO437kx+9+pGv3dK3nt3/1NRFRR87PVizOVlSzBlfUgkJnTYqK2XyJtT39fqDQjsvFCfPZlDDs2XdbYlY0riDHQN95+vWWMheUGRpjYBgIfQ8pcnp5wfLshNnpisliKs/MyJyt3YSHuy273Y4ffviejVcYH/nmu2/56s2PKFugXcXEFmgMSo9n24gi/DQ76CCLOewaT/PcVaURRo4aNfv5I3kAAq5oJftCTgqisJB9OzDsOkIfRPJmHc5aprMpZ+enXFyd8Oz5FegR2K8L0AJIVtbx8tWS5dkV1WwiTYESECn6ATVGoX8cBDCa0ByHeBmR4x38B2D8npTwfY8fekiB6aShKDVlaen7HafLFecn57x88QLnaqwpsbrmN3/2V+y3O4n/9r0YfRtDHwI+RTCaypWgzdHHZ9VMKJzBaalhfYq0fmDfeXxhSTrLc+AHYgiSePJEl9WJ6Dt6oKmnEm7gB7p2x94AdYWb1ASlWXc94S6w2mx5dnbF4vyCZTPl/dvvWd/d8Pr1j7QhUU/nNPMFry4veKkyk9qh4iCejkqTdBZpsRFWbvKDWMJbx3x1Ioy1taHteyYhoGMxhvRI7R+igMchBPq2Z7Nec7d5YNft2XU7TA44BY1SLCcNlbGU2lKWpQz5jEI3TlihKGKfsIMiuAEbzZjWN9aRo5xcKfGYzEpO0TgyVwwZR6YyisKOrEOdRtmrYTarePniitmsZrvfPNm6AdLfKDXWPHJWaJ1QVomnxiHCHinktdLjTFSkRYfIY2skCUaPnjaKjBv/mDISJJC0IaHxMaKtG7eSJN6KSoBMoyV5Mo9D+/Ehk6rkWKIchgYc63DSRxHKHzPJtXx/VhlTWOarBc18ynK1or18Ru4TNlpMlF4gxyg+UOP+QwJiljTRIAPDgy+ZchZlDMqZMbpajz4zGnWgP/7E4+Hp6hONQscM3uM3W9r1Azknzq7Oef7pK7yXIIL13ZrGlrycLnn37g3x5obWKGbzCUPUqKSY1FNWizPqquHFrOSrL77EthvS9oHd5pbKGCyZSKTSUM+mPJtNMVlLDRYHbm9FmomzqBRBRQ4OQxhhFmuVySk8SikPktycJdFWH81uKLTi2fkpRmdOTmYoY6ibCV/97CteXFzRVBXKADrKfRsj2g/yFTzGVEKKUJYCR5UM7RC57wY2uw3v1g98+3DNj2HP0Fjy1DE/mfHyxSXPTs+4PF9RxozJGR0j8A9nR//eAEtAoV2FNpp92zMMXoz3nMhLUhKTIqMizihKZylMiTMlWhV0naeuJzRNST84Pnxo6UJk1/dUSj5wS2RuLX/13Xfc3t/z7rd/xenZOcZYcso8f/aMxbRkOq9JxRgLyUFbOp6ESoruR4nhTz0HjFLjlHH8cwo+IqGB1nit2YSBdeihaqimM0xRgDHs9/04UW5ZrZYyDbOOspjxh19+xaeXV/zi8gXf/Pl/4Jvf/Ib/uP8zSjJzZ6k0pNCSXUm2DgowpXhW5JzZbHZ0+5a2bX/fZfp7LiseFQaCyXibCFmixuIQ0EmMtbLVaO3QdYVeTcD0sI/oTiRY2SiU1ajlClVJTKAycTQOVNSjlEYffXH8cfMZx06QJYpOoGvQRMgHnXEgh3aM1aypp404diswOeOOcHYiG6FNKKdQSfPrX33FF19+yq7rRf8aIv0QmTQzJs2UxXyFUY4eT+sspm5AG6I2qFEygo8EPxB2PfSeYgTqMhBzwCcBpw4otUUOA2sUMQSZwP3DAc//v1foW3LwElWdMrvtDo3mZHUKORJCYtd3tLs9Rmlm0yllUVCFkjR0XL95RxgnW3U5wSpHGoJI2t7+Dn3/mlm45RcXFc+ePWd1csr51RWnywV15agKg8qe2axkuWho9B7dZ7KyGJ3RKY0Gt5mDHv3gixR2G7rW029a2u2evu/Ztx22KinqinI2ZT6dcPrFZ5iffykN4BCOSVLGOIxzuBDY7/botqNMmSUWosZ4KIzCFAatHQpD8onQB0LvSbaQ4tM5qrJkaLsjoNuUFWVRUhYVXdvRti37/f7J1s0yBnwmKQJyFu+ZiCLmgMqiyRcD03EqmQeqWjOblGTfoGOiNEBfMDMTXIDu9o56MaMqLFf1Bf+P/+7/zndvX3PzcMP72w+4umQ2m3F2esrLiwsmVY2KYgbLyPQQL28zFiaRA9ySVALtOBhJqhRHjyQ5BwVbyeicUMPAatrw8tklXeg4eX7K/GrC9Ye/4eHmnvYuo13BbRl59uoZX/z8Z1RqytnZghfzU5azAraBrgvcrRMxVbJ9J4/vPSplnFH4vhWJnimwSmGKglxYptOaqqkEgH1KFzkOAwNhFcbs6Xwi7WTmUpQFxtU8e/Wc+WpFURQ0Q8/ZckmZwPSem5sP+OBRzlAag0qBru/59re/pe02rHeXfPnV59zlwD60FEB1MYPGYk9qfBEwlaawDWefXcLEso89+9BjszCSMBqfIiPxkqgFVMlKGIohe3QKqKEjbjtCNzDsO5xxxJwZUhTQVdAawIh3WVTEkKXJtRrrLMGJT0ZQ4pelOg/tgM4wIEklIadjkZ1TpGv3xOhRSjGZz3FNA87S9wP7XYvvh6deNlwhaUVDP7C72+J7TwwRlBNj9RzJccAVDhcsdpBn06hibJwN00mBDx3Xw1bONWMpXE1T1thKjE+nFj6rGs4+fcGLr77g9e/ecHdzx82HD7x984bX3/2O25t3tLt7vvjVz7n65AWXn70aWSIaowx1rYlDoI0bvL+mrBZUk5pfffFzbh6uedjc8eHmR2LwVMayPHvOyWzB+ckJs1nN/nbDbrvH+8wf/ME/YXm2pJpNKGdz8tATh0DqI/d3a968fsv3337H+uGBZCsSirfffMf/+7//f/Hik8/4xa//mC9//odMFyfUkzmubNBmNCY3Y/WUD9y3g4my7PdPcZ1dWtYPhn5nMFkaCC3uiFSVw6fEMAykWKFzQZEDLu/QbSA87NlVG6qmoJwsmTUlf/TrP2B1Pmcyr1isFmQjI7V6eU5GZONVM6Eqa2GBDe04gR7Z2NpCGIQt8xGL5bD/HUb1aQSfM5B8j1USMevbPeu7a3IcuLq8YDMpqaqSelIzn8/49JNPOTu7YDU7I/nMbr3jzXdv+e53P3Dz9oZ2s8cnCRVQ1rLd7sRnpapgtuRm19Hu96QQaXRi6hKTOrKznjfbO765veN+0LJXREPOift379m+OiWqKVA9ybqhAso4tM0ok3ETR44Q9gO70JK6ADrijKHznm275+Hf/CUv7nqefbLhl//0T/jqZ79Cq8zQ7dlsNzIIUIput+WHb77h9uYtn/38M07OT6kaWS9rLSmNg8HRAzLkhClKismM3gfeffhAUTdkZWick3SZfmDf7rl+94F2t2foe9Ca2WLOxeUl0/kUFTwmZYqUqUFA4BAx1pBGTzevEjEI6BiVwtWOoWt56Dfs+5YQ/CMjQmWshtpK3xFSYkiRwkCZFSWKRieMEmClmU8o6oLJfMb5i2es5hNubt7zb/7DvfRLhAABAABJREFUn/Hf/u+eTibUUVFqK0NQOqyTZDRlDCZW6FCgygnDFlIuyWhKHdEMxASb7HB1hck1eQ3JDxg8Rkdc7+WMskCIaFeAEk+nY/utEMYK4y7SxzGrTD9uK+MwJx3nQAo9mukSEtH3+F6AwxAixhhcWVJOG3Lv0WQKMkPfYQxYk3F15KSeo4OGFm6+fyAOGRUVoY/koFHJQrIyKE2QgyIOwmp3TtM0DT4n+pxwRYmtJrJn6gqSgOgHh1z1pGaakIiQPLnruP/xLbd3dyhrmExm1FWDxpO6gbtvfiSVFWo65Q/PLvi23bF+85Z0skRPTtG6oCoafvGrXzONAy9mJb/6oz8mfnhH+/4d+7KiVgYdBswYla0zIuH0gX23Y7Nfc339huXJkqKYEmN/9M/Ko0xOiZMtMclA74CdiYFy5GAzQBbpXKUzz0/nXJ7O+Sd/9CusLTHaQdJHllNScr+pHNE5MjOO2WqFWoEyDpUNecj4+xblE9u25+F2zb/7+mt+17e8zoF2fsLJqxcsLy948dXnrJZLpq6kVGD6SOiDsJebf/he+XsDLJPp/OiQ7ENH3w8Ug2NaVRiliEqNx86BAiR0W60MxliMsdJE54L5bE7brVFas93tOYlB9KRacb5c8uzsDGJks93SlyWz+ZzVasWrqytOlkuqsvjJpPXgv3Kgjh2hT3WYtTyCLLLI0qh/HLeXP/oq6oLZcsFiu2WDxTT1MZYao9GFxVGK9m6kuZWlYzafcrJacn66or84Y/PuLZWzTF3BrGlo6lqYECJGRBlNP0g6TAqZvushg7VP5yug85i4cWylhL2CGn8tQQpZIiqVFmlUUYA1ZGvEjd2MCLHVqMKhCie/rw6TcMY1H12exp+NBKHjBvlIoVPjhPxQusjk1cm4YfSieZyri8To8eeHfSsraQcLK1TFQimCi8SUiV5hC5HMuJwJSWKXY05iFDXqRLUWp3cyJB+IgycnmXb60fBRKObqKA36iZo5y30uOm31VHUnAOuHO/zQCyioFN4PdJ0AAlXhICcG37Nbr5k29Rh/VlC4gSF6YhfZP2ww1kpyhBkTSVLgctpQfPKCVxcrjLGcXz5jsVyxOjunLgucVTirMEY8eMpCSzQbARXS4/2TkemFFolQypF217Hf7Oh3HX4rDZX3nq4f0H1LGGpyzsyrEussTklD670nZlk/qzQ2aYqU0MrgMWwTuDEWwyVFpSSakiQFVBjEjO0QeWhGr6QUEzFEMSM1hqKsMMbgg2ez3dK2e/ZPCGqKMGjcd0bE/kAxZ1xLrTQxRcqyYLlcYGKU6L8QKIoSnRKGgA8Jpa1MnLJI6FSSxLFZM+XT56+4ODvjkxcvUVZMX5umZlKWx4na4V7NSg69I9MvZUjhSNlMo178uHdmeQ/CRhuFA1kYfM4aZpMJOif8focyiT/+gz9ge7+n7wNDSJTzgvOrM56/eMbuvefZcs5Xl88xPtEPiSFkfDZkpBHIMY8pSoa6qogxUJYNVSXpA0Llh5yjvMQxYeyprpDkvStjMUUhaWZZ5ELaiKmmnTWUTS3mu0qx3+7puo4cE/P5nGHo6fZb+naHVQLIFtoS+sDu9oEbMlPn6PqeoCFEj56VFMsJzeWS5mQmBnt9wcsvPhHWn4XWd9S5weZR/npk7uSRnqzROUsEsk8kL6yv5Ec5TsxoJxInoywwmp2PZpKSWKIprEUPEoctX+MIY/QwOCRk5ZSO/MMIkjIRAtmPUdcpgxHzdmOlYM0+kkfD6adMNAEo6xrXdpjR/ymn0XwYRRoliT4EsrYopbG2QKnAoX1OyTOdTMZJd0H0W3y3I/YDOpd0u4Ftt+eH9zc8tANdn+g7BWVm9WzF2bNTPvvyU7quE9ZS3/Hmh+/Z7Tfs2y2nl2c0k4aqrvFdx/rhPW/evGG3/8Dly89Ynl1SOsdyPqeqHNNJObIgEiSYVDXO1YDBh4R1FbP5kqtnV7ja4coCYwuUj+z3W27fXvPjb77h7Q+vef/2HVprJtMp08UJVy8/I1rRxV9/eEdZzznpBlanmdVpOYIr8vcqdUgcGfeF8Z57qmu6bJjMG6pJiwoKowSE0iYTsniH6bFZUVmj8sj0DYE4Gow6Jz5/s8mEk9WK5XJGOXEUZQHOgFYUSpOzRimDdVIXSHn40XvLWqLO00dmvlokEn8bbHlk9B13V/lRKVxRsFws+eTTz/BhoKxK6qZmOptycX7JfL6kLCesP9yz3/d8eH/DbtfifZAqylpizvQhEJWiKArZj5AkqBQSlSvEfNuJv5nPXjxYwkDIapzEZwiJ3WZDu9/hw9P5HrX9jkVV0zQ1i/mSttsQhoiqClLX0fmevAnMmxpjSqwpScDd9S0xRDSZz7/4nNPzUy4vn/HyxSdoq1Amo1QEHbFOMWlqrNHjxDuOUlLZx9KYJpfIAsqXFfVkSlnX7HYtZEVRVmx3O9quo207UshMpnMWS5FUl7X411hnwUR0iugght8KAY8whoM3mTEjQJBH5scor5M9JIhsISfx8xq/3JEsL+d+ocVesIKRBa6p65KrqwuG6CnrimnT0Hcd2+2W+/v1k60b8JNhS8oiyY8xgo/orCU6nUN9L2lMegRac05jmo7YGihtHhnlKY1feawtRj/JEbBNY5MNYxeQD93AsUXgY87cT6/8+KNmBDcluMP7gRSF0crIghGPGWQ6pJD1y1GYnYwEmBzHB1lSTTWHBDM9yqREkphHlMcYgzJqHBCP0w09fgYCQ0g/OtbFP6Xg/OOvw36VUqTdt9zf3Um9pAx511NGRamh7jxt64n7gcYVXBaWqSmJu4HBBvFJyZnF6QmTNNDUhmo+Iw4deejwvkVZO/IVpIY5xGb3fs/9/TXXdx/Y7TcsFxOsQtKFD4QFpUTrmZE99UBgyFn8qfIBI5A1HZeTQsv+n0bjYCEliedlClFqYJ8PPKHH9froIz7IzIwr2PcDN9sd/+n1D3x9e8NdUcBsystXn3D58gWrsxNOJnMq6ySNLQa2mw0PN/fcfLiBF/9wo9vfG2Bpmgkpi3lc2wf6oafyBVo3EjUM48bzeAQdzPKslUmy9zJVqqqG6WRCTH6cTkTQ0hSt5nOen1+iYuYH/5rKWuZNw9XZGVfnp9RljbOHxuERQDk8sEezsSPgcgRDgWPoIMffHH89w1FKU1Qls+Wc5b4lhoSqSiKKoQ8id0F8QLTV46ganLNYK2yQwlmmTc2kriicHPzTpqGuyo92FXn9vZcDM/TS2FdlRVM3v+8y/Z1Lo4/MiwPAkZHPaQzHIUVJdnIWmaoXBVhLHiMLDwBLtgqsTFaw/0tpRx9FZh/pfvojpOVxzR5fo0yG7Djl09Ycd2DZrA5AWD4+TMfaZpw86ayxzpCNkU3RGbIadZJjbG86SEGUOmontdbH6PEUIjFIPJ02hhSC0NozYIvjZ3dQCB0ZUlkOkqw+flf/+Gu32RCj6Ia1UqN0oqdrWwprJEnHe7abDVXhqCdiVGusFVfzBP2uxVjHfr6mqitMIbTOs1nDybxBWcV0NmN5cspkOmO2XMohRUKrhHVKCgkiVmd0ilLokGVdx6NJ7qNEGAK7hy3bhw3dZkdqB/G0SYk4DMQg4ENRFlLMpIhOcpfGMS45h4h2EtPpQsSgKBPYIWJ6jw6ZIikKZYgoidXtRLueYkSN4IoZJUIpHqRnGXto+ICu79i1e/quY3jCmGa51PHHg0QS1HFSKlK3RFkWLOYzVAwoxWjAWKBTRqeBmPpHra+W40YOJIWzjtViyVItSAiDQZ6ZEfQacZI0NhAZRiqrPDtaa1JIHx1WiUf/hcOOOXogPEKmpByxRtPUJYtJw7bbQEp8+vwl3TLQdZ5d2zFZ1CyWU1ZFg0obrqZzXp2coXwiDIlhgJDNaEB6aPiFgqytPFfOOcoxTr0oC6F4Hymn6lgsPsWVEgJWGKGdZ9SYqhNRRYGrSqbL5dFThJjpdq1E+PpAVddMplNIkWG3Fd19lmQtYiBsW3Y5c1eVqBxQzhB1pFg0VCczpucrqsVEWE+l5erVczZtS1SakISmrEmjjFU2b1kRjc5GqNMxQgBCJkdJ45Dpn+yr2lqUVoQYpGgZi2M1fo/SFrIk8MQDiKLE90U5K+lzOZFGoDuNDU5OSfZRP57pSGOinexFCUUO4o+SYxgblqe7yrLGub0w3w4MLemS5MTPEnebTCKP57dSBgijvNlTVRrrCnKuUbkj9Hu63Z5+H9m0LbebB3737Wvu2w4fwZqG2WTBbDLlZLFiWjfs1lvWDw/cPdzRtTvi9YB1maLIqDTHqUC7fWCzfs/9w1s6v6Wez6hnU2w1k9SlwjKpS4ZepJ6+85RFgbMlZEkFLKsG50pWZ2dyvluNsQXQs991vHv7nr/8y9/wcHPDdr3FGsukqTk9WfHVF5+zGSJJW2IM7LYb6mbOZNodqf7HYZV6HKA8JbByuJrFhGY+pZ62xAdpQI1WGI3E1moZxGjEehsE7I0pjlLtgRjFD6MsCpqmoWkaitpinUUXVpoFY8UbAAFZZHtLjyDJeLArkgwLAGHtjMOVQ1P6ePBzrCwPdQ6yL5dlyWK54iUySCurkqqqqJqG2XROWdYo5Rj8DZv1jusPN7T7Du9lxi9y8UwgoowVg2/rjvI3FRK1dVTFGM9MYgiRzg8MIYzuHgeSYmK/3dLu94Shf7J164eWTMI5y3K1QD8EOp0IeNnXfSAOPXVRUI6AViLS7faEvoOhpVIamxXPL19weX5FOSkoKk1UIivNOVDXJdbY0RsjPXqGjDLHPJ7rJDFCL5uGZjJlt9lChumkY313zzCIl03hKibzOc1kQlXXRw+vGALKHkAcL+p4LQO8rLU0hkSMyeJxlTMqhZGBOkbVSjcuXh5jayD+p5ImpJWAQk5lSq0oFTiVJJ2oqbi6OOX24QFTFpRVeRymDf3TGoIrxSiJg5QyIYoUJg/yhJmkMXE0nT8IBfPBh1B2bqU1Shs5M5LU6Jk0hog8Ai2HgfdhsH1sCcYv/dicjfjKYwV9fMrG5y0fyv9xuHIEWWIkp4w9nGdGjYCs+okxrjCJ45iOpOT95FHYoz/yUVH6cVCfODKrrLWjka30CIdoaAFYDiM1xaExOtgKPFVXcPDBSjnTdT3b9Ya+6zERKlVQaEdFZuIzaRho9wN2NmO5nFJj2bSeXHqikoFWPZ9S5QFXKHRdQlNjJw1qXZDNAbhIj+umoQ8t6909d3fXoLJ4sIDULChBYbR+/MxHT63DOj7WkT99Z4rRA1QrqTdGO41DhZMPE/YkvZBWGjV6meaR5HCc+CTISnPftry5v+e3b9/wbujIkwnVfMWrF59ydXnJfDGjdk7u8JTIfeT25pYff3zL96/fAP/lP3iN/hEMlgl3d3c8PDxwv76jqgqqqjim9RjjMHF0Ck6BGAdCHNBakh6aqqbdt2idaBrNcrEcv6cnes+BbjkpS37985/z5Wefs2v3NFPZCCeTiRhSjlM6OGSQ6wMc+dHD/NNbWnS0slCHgYNCFkGMZSWaNyIPTDObcH51Qe8s0wibENi1Lfv+HmUFCBBUXuE0OC1T3jdvfoB2xzQEttdv2bcbCme4OD9l0tRUhRvlORIXNwwBhcIaw2y+4Gx1QlM3VNUT0TjHdzrCX6OWUjYe+aiE9JtToh1GLbNz2GpCLBtUGMAcDKyyUIatAWvACa1c5QNo8wiegGzAjElLhxSVv+tPcthZZapelKJvPGhtZI0ev1Nx0I0etrLD46dGfbU7Is/EESNVSmJzx03eGjN6czxOgUXmkiRVCfEmyD7jQyYyagrz4Z46bNocQdkYMtGI/8xTXsN2h7Z21JhrvBd/ivVmQ+UsOidi77n5cEPlCpqqomkatu0elTXzZsp2GOjXW25ev8EZRT2rqaYV57Oa6XxCM21oZlNhVOmE9hv80MmUOke8yaMpc6auHSqKe3pSjOi9RWvL0AV2u5b1w4bb63vCviP1HpsRs1alwFpcXVBPambzhqYwMq0KEZUyVkWyTgTfCxsmREKMxNbTvr9m8+M72LaUUdFYix2nj8EPbLdb9tsdIQRK46ismKJqFNF7Mbm14gDfdR1DP7DZbPDBY8qC+eTpQE34GIAbPS/GQ0ErMzYR0FQF83nNajVj3ky5/3DNsN9RFoXgfwlyigStoJDPjsKgCi2ywhEQyYdKIH9EwVVyIKd0cDwSQEwrdZwYqKQwIZGDGDKKQZjEemdjjkBpRh/QB9mnTUKpzLQp+D/91/81//O//zN+eP09t9/fgpHpq4qRux9+5ObrDhsC/7f/w/+ZX18+4/lkRuwi3daz2wWGpOiDNAgCJmraYY/vBy4urphMJjRNI4bEzoHKhCFgrCWrLD4pT3RpW3CYaGtnx2YTmVZaQz2bcv78imLSSDrcMJA6z7Bp8W2HaiomTU3hNM4oNvc3hKEnx8QER0lBmR2m9RTTEjcpKFcN1cUCN69wyxpTWPABZRUXnz5j0vYMKZKagoycrUa7I4vOoNDJHCMrk5fpoQKwYCuLKRIFSYBFLXtx6Hq87/AxoVHUdY3B4IdEv+9JDowuSEYTKkOYFJimwleOwSjCQWquhLWWo0d1PWnbsttsSAZcVeGm41nmA7odSF1P6MWE+ymvarrAbfZY5yRJbpQcpOBRxpBTZoiZYfCjNK/AVZk+7IihJ4QtOe2ZTyZ88uIVH95/T+q3fPv119isaKNn43vety2bGMnWMV/UqNmCUJasc+SLLz6lNBoVA7vNAzkOMkTye8L+lnt/z35X8u7De3xMLJclxaShG3a8ff+GyWIADCkJtb3vBsgKayzL+RznCpTRmLLm5KJAa005nYIWGaA2lu39lm7Tcv3jNe/efWBoW2KKuEJqNasNy/mCX33+M4p6irIl5XRFUU8pqilVVTyyo/JHB93/StfJy2c8bCJdq3i/uZXpP4oCub9KwKXEMBqGojJJR4KKeAI+DChVi1l9jgxDTwg1pbJoI0bcIid2MAoRSEpYcB81d8CRscX43OvDNPaj68AItIxg7Cil0mNjZp2kX05mcy5fvpQzyNrxdUjCRvaR1Hl+/P5Hvv7rv+Gvf/M1m82W0AVU1DhVkKK8htlsxqQRn5j1dkt/v6bRjuV0waSsUGTa3nPb7yR9beixboq2BqUySWc+fHjP7Ydr9g9buHyadcsZNustzm74l//iOelqxXZ9y9d//ZfYiSX0mdBG1tstTnsKV3Fy2lA6MDmwffsjf7HZ8OPf/A0ffnzHn/yrf8mzV5dcvjxnsqhQppLXfzDZVkrG1gewFplSD0OPDyKXLLTCFRXPXrzim6+/Zr/b88O337Fdr5nN51xdXHB29YKkBNAPMcoNkDMkMQ5HW5JxHByI5Mwz6Dx6WqVBznMyOgYgSR1kNJaE0xlnwSVwGUJWlMZgwgjaGVApUKiMNYrSKJaLCWfnKz55fkXve6IRb8fNriVFmE3mT7Nox0vYiiopUtQErxg6RWgV/RDQEUzIhEFSdIzVqDJKuMUYTnEIMzmAkWmUiIbgscGijXjkYaVWQDP6Zh5HvH+rYwDU34UijjtP/sh0X2nxtNIGlCFmGPwAxlANHlfIOa4Sx6/DpD3nPDKa5d85KTnvtX581JX8Wo4RHwIxJpwzItNTiNmx0mjjMFb8M9VxKKX+1nb5dHtnGz1ZZYLVtFFqXr9rOaHk2ekCGxT9es9LU/GgFQ/ec/ftD7BZUp6c0ExW/Jh37I0mqIiurQztnGITPUonegvb7BlyGuu4TCaMrBLNJrfsUkeP59nJGZOqptCGHCPJ6GPFeASolProMxjrx/zxr+WPfoxjUaGP90FWB5BPzNtNUpgs+3jSGa/UuL/K566Sw/vI++2G//5P/5T/9O4df/VwT/WrX3D68jOuXnzKr3/1S5y2GMCoAEOkbTtubu/5//7pn/Lu7p67/e/HaP+9AZZvvv2W3XZL27Uonej6jn0r3grWWvJoEDcMnhhGI1mjkPSaKHTNPNDtd/zw3ZqTsyVlabBOs12vKcsS6wo0iqZwVIVj2lTYQsxJnZH87DiaD2n0ESwR/zF5QI5xpEeyw+OEThZe/aRxB457bD4YBRrFdNqwShGTFIX3KKP4cH3NZrtGa01ROur5jElTUjuD7lva/Ya7FLibzQjtFuc0z54/4+R0RY6RIQQwhsKIUdby9Iz5bEZVVtRlhVGaYRie1INFH/1lDi7XPKKyWT6ZhGLwiU4ntMooW6DKCh0bCI8JRDGHj1BIAVHGMDMio+wG2fRkSnSwyXtEePk7W6iskVIci/8DpSwfBkPHQkceNUYKoHAYD0XgYalH5FQByowocmQkqQBQFoVMHpREsgqCH4kxywEbM0MfyWi0sSht8HlE7dUBSR8R7PH/kdJj0spTXaXWI3aYjp93ypntfse0rnBKgY883N1TFZJyUU8m2PUDWmsqWxDH9xV2ex4+fCAME3KeYk2kUwEVO0qTx4ZdEVvx48g5EnMkmyNwjFeBXDiRcBkxk0pB0fqeu/stu33HbrfHdxEVNUa5kZ2ETJ0sNLOG6XzO8mSJbYpxw83ErsdaoYDnYLHKiId38AzbHcN2S9jtRgd+uZO7tiWqjNea6AM5JoxSlEVBYa2AfOM9zigbGAZPP5ruhpwpqlo8N54w7lempOMEbAQYtTKoLKwiNU53zk5OWMwn1I1jOpuy32yIfsCVBaGPJGXQxnG/b3GTitmkRjmJBVRaiX0GH9Etj8lcch0mTo/A5tg4aCNMB++JXUvse6IfRFJVV+iyBO04Pq8pH4sjFOJ9kgBd8Mc//xkvTs/YbLdsty232zXb/Zb15hbdd9QZ5qbgT569ZGUsdrdn6C1DB94bonIi34ti7u39gEKmwM4ZSRkprOz5WiSZ2ggw7kMkPmHimnFOZFgxytRSj2CqLKmwBCqHKgyxi/h+kDSXIKk1fp/k95U0voPvhQnXtTgfKKIawcGSejqlXNaUZzP0rCQXmhADvvM4wCmFNopqUuCUIlSl+GSNsLhW5riT6iCTuCydnkg5tZUvFwQgUkl08En2un2KDEqRncXZEqUKQhfY3K9JPoAp0EoRnCGUlhAsSjt8ofGWUU/PMYUhDAH2LWGzoW33qNJh6wJVyFAkhwiDFxZbDAJ6P+HVTBdUzYay3NAZQ+EsyWqGEEmBkcEIQ4hkHUBbjCuwpcemAd9Htrs1i4Xl4uKSSRXo9i23N7cUxRvcfE4sS267Ne93LVF7VmrGQ17jrKE0muef77lYzlhMJ1SNYre+Zb/bM7QbTOEwrqRuSq5evBB/I2Vx1QyfLSlbvJf0uhiF0VqYisKV1E1DWTbCmFWZZj4XEEArdOFIyR9HDU5bSltSlzVZKfoQGfoBZQyuG9jvOx7u13w1nbM4ucDVM5SrxqQPK6syaubJCWtGOaFE5DCOM55oJgvRWYr5lOnpiptvN7hoJc0xy3NdAYWCTsp8EoGkIrY0VE1JPSnJBAafUG3PMHSk6NGqHoMMxgM7HgDiQ50y7onj3/N33tCB5TqCLjnH46BIKSWeQ4dPwxwOyYSxjphEMmuKQuqEcdCEUgxdi9/3tPdb3r+95vrDLbt9i9GWrCEF8SBTSuOMYzKZopA0sv1mh02ZaeE4nUypipI+tGy7jrvdhs57IdQbyCrK/aE1Dw8PbO7X7NdP5zOWs6XvA3d39/y7P/sz/uSPf8Ynnzzj4rTh22++Zn1/z+Y+4bcHs9DAdrsmyoyAwmpIA5v7G37zF39O6zsuX1zx/NPnfP7zZ8wWU5pJQz1tCCN1QZNHf9YDn0oq0ZSh71pS4SispWoaFosFDzFyf33N6ckJi/mc2XRKGrww6w5Dn8cZn4Q3oMbIe2HnHXvEBCTxKTycieNTwkFYqxEWeFloyhQZ0ng6OyeJ0GPDYq3BmCyMYBU5OZlxcXGCNZnlag5VxcnlOcEIcN400ydbNwCVI8LNMWgMKpeQIzkHFPHIVokxQDYkJSCnpMSOARDY8Z0fVkGehhhluJJjxKSISgllhFN1lPbzaCZwfE1wHOD8lCHGkcFyWHeR5xiMc9gMhY8Mqkepkb0eZYitUBIScVjJ/HEPosZ47kwKY42kOAam5FGG6L2Xd2cttizphoGstUhfD4a3xoxo7OFVP4I5OT/WY//Yq8uRlAM73/Pu7oZ+GGhswSfnzyjajOo8VR85dRWlstRmIHdb7m/u8e1AOVty+rymNJoPoR9lhYE9mTe315jNA3HzwLZvhbWbFQ5NyIGoEj4HdFMyOVuCVcyaKWVVoowiJsahq3yU+iBDH1f344zKY0iVzkcw++P7QB3MuJX0rcKGdRzMmWPWJDRBOYI1KC3j9hQyQxt42Hb81dtr3mlNfnbBJ7/8gsUvfsbq9JLl8hQKCTFQOVPExP31LW/evuff/6ff8Ls3b9gbhZ/9fiSH3xtgubu7OzrsT5paItH6nv2+Zb6YStGOGo0khTJszKG5F6p3jBHvezabNUVpIIuLete2UtxbO8Zhjs2RcqgR/Zf4sEPIqFDLDu7uOY1Gjmo88D7mkvHRg/x37vU8/pmPv0GKiqYqmKWJRKqGgI+BsnSjbi8BdtRK10zKgqwzqm1xWpyTtcrUdcXV1QV1UdG3PSFGrCuo64bJbMbJyRmL+YyqKCldQdd2RzPQp7o+9j15lAnlo6zlgLqGlBmCbPpOG7Qr0WUFyktpk4JoNbPEbZGzbC6yK/0EcFBjEZM/Yq4cV+LjidDYXB/++yA5yTn/L3iZHF4/h8X/W79/QEMPENBhip+IKYs5Wpb7TGmJCw6Dx/sgUbMhkrMg4lEQwrFRMdIUH97FEdATurE0N/DTreIffzmtCQiNUz5SSf0YgtDwlTHYlOi6jvV6jS0sZxenWCtmcDEmCrRQ+kNi2LVoI71zWWg0AZU8XWlxVYGxoiVWRuQiinA06lIoaTyjIWtGnwMIIbHf9Wwe9rTdQD9EclQYzKMWFvHQUdaIwe2kppxUqFJMhPPomaORxjDnjM5aHO2TknSpGEhh9EwYD1ofI9EHopG/yxnR1RfuQJ0+3APyucVxgt0Pg8gXx0g3pc2Trp0kXzweMqNt7KjS1UIdNor5bMJ0WlM3pUgOD9NOW5C9SGfIis2+ZRbn6LJEOUbT2oyY1B6mBQdwZaSlHp+zw38fqxvRRseI7zpS35OGnjgWDspqlBMwiCNACgdu7wHOVBqsMpwvVyybOYMP7PYDH+5v2OzWPDzMMW3LJGuW2nFeVriUoRvwvax3SEYOyxyEEh8kPc0Vkgiijg79ijQOG7UWLXSGI+vsqS5ljNCdkfQnghJmXJLpjbJShUcyeQSDkg9HwCz6IDJKIwVY2dRoBMBVfRDJzugYLEa6jsI5ATZTJvVRZF7GjDHjGTtO4ZXVItNBPCkO5+Ah3eE4HVJm9KkRGZqymqM3mtYwSAPvgWxEt+6KCrz4/3RtB0nkdWYsaDBK/LiMATs2IGQMch6rlEjeE7uesG8J3lPUBbZwKCt05KOcIwTSKN15yquazCiqBluUaGOwB/8lY8hJjxG6eQTDpYFAW4w1I7NH0Q0S8e6c4eR0yb2Cdt+z7wLNzIApWfeR23ZgINKXLWUQQ+bKad4/PFBXjkntMCR8GvCxJ5EoK0dR15TNBGdKUBa0w7iadkgMHgE4kjCKrFZURS3Dl2qCtSVqNHk0ZfnIQtNaQIJxsKTRFLZgMpmyWK1AKfa7PSEmslKEmOj6AWsKympCOZmRtSMkiIeo9I+O1YzcWodOc3w6nmz5Pqwf2AdPMnJ/66yxjAwRlMTYKom6HbIA/4mEcYayLpjOJ5JQqCMxDnTtnqGfiez88HoToJJ00OP7eXz9j2eEUsJ4/duslcNg7jH9UB2lVIwA9kE+mbX4Y2EM2jpSSkKujpkUI7ttS7vZsv5wx4f319ze3LHftePgUPp2wUhlf7DWMgwDQz/g+4FGaRrrmFYl2hq8T+yGns1+jz+8ZwVZJZJSGJXZbbdsNxvaze6JVk32lxgTQ9fz4+sf+PKLK87PZjz/8jNy3nNdGzSBh9CRfSaNiVgqKXDiK5NJ+NAx3N/yw7ffsNtt2GzuyXnPxdU5q7MTTrVI0rXV2GMdOXI2UxwHf4nBD1gjz7x2lqIoRGqrNdPplGYykR4keEnDMY9eZPCIuWUOA7o83ijSEzzWmiOYdmCParln0mhSYQ2UVlE5RR/GnVdrlD7IbzPOavFyGYGH2bxhtZpRVY6zy1N0M2F6uuJ634sk4qmp0TkdQQyFQasCrSJKebTOaCNsFGN6kb0r8exIKR09NPIoh+Kjp+IgqVUxQ0rolI5hIofn49CXHa2L/r6N5MB6+El5P55vh3pn9Iu0GVxZkjNYZ0cvwBEvOQy2FKSD1InDugsAknIafVoO7FV5J2lMdA0hiP+YlnMi9sMoDbLCEjuAK4c94/iafzrseooraQgp0vme69tb8SIsayZVQ1pvYAjokKitPQLBm6Gl7VpS3GFuH5icnIGGTU5sfY/Hsw+J+/UDrt2R+442DJIc+3FVnDORjCkL6skEBRTGCTtUyeArS9E79n5jz6nG9cwjePXxEPpxWv2Tv0cd137cYRVHiSZKLAECCq/AayN7c4YQMu2QufeZ6wz59JRJU7J8dsbik5dMJ3PqqiFpkR+lEEnblnevf+T773/kd998yyYHfFGRqt8PKvm9AZbtdst0OmU2m3B2ccJ6c89uv+fm5obptBkfQkXXdsQoUY3OWmnojKKqSkLMhNiz2++5u4WcZji7wA8dpbOo0olpVBYXbqWRhzgBSh5kkSQ9PoA5ZeIgzBDxN9CP9/XfvufHP/Z3hxV6NNQR8KDQmnldkY1l4hzTlCmcYbtZs1s/kHOmqQvOVgvOFnNmdUFuCuoUWVU1n7644jZGVFNTPbviww/vJNEAmC6XnF9dslydcHp+foyLzjGy3e64v19zf//w+y7T37kOEh5p9D7Oah8jGbUYuIU00AfZNKeuwJQNWmeSjeQwEOOAz0ESI2LCGGlQD4ZOWlx7UcqAtke08cBK4e8tXPjo1+T78rix6eLgw/JYzKnDYh7ogjkfH96fgiuH5ziTcsbHRAgQs7BrrHGS3JJgGDo2u5b9vqVth3H/Fwo5yo7vR6jVKUmBq8bmWeQehqMXy9/3/v4RV1OW7AdPyEGabyNsohgjfd9hXIEzhjAM3FzfsGt3LE6WFGVFU0/ody0Oee3ZaLwP7Dc7Ot9jVCYMFWEoGeLAYrWgntTUTQOj/4nJApBq9cjEUMqhsCjl8H1mt++5vnng/mFHyvL7WY9CLiXgSkg9WYMtLW4+wc1rdFMI2UnJ5qizlcSbBKYqyQGRsCSN27bowsl7IOOVMJmign6kTZZlzWw2Q6Fw1srkYjyoszJ0Q0/b93RDLwCOFtd5lKKPkdA9nT7dGj1apiiMUuO/NVZLtGFRaCa15XQ15/xsyelqzs2HDZmMGw0N8+CIyeNj5vr+gfn5EsoCXaixWEswRhuOG+Eoj5NnWFl7BDXVkRUGhEgiMLR7Hq6vKUgQPDkOsn7RQjC4svioHpK1l0cvMQQvkcZaC9vCaipVMHMLltMpPnT47op4d4/e9Zhtj9rtyDaSVGK/T/hQE5Oh68UzIMRM2/ZUVS1+BVVF27akw7N+ePiVmGD7GAQ0e1oixGhqKXH1IXgOE25TWVRpCDrT9R2p6+jbHb7vyVG8GmKMDH0vTJfCMVssCa6ky4r9ejuaaCts3+GGBtN7wqYjeyUBBCZjS4MrFNZpwKOcmLY6RG+M0mOsUzzKGQ7jwKwkUSiOk3sN2KwwSSLCyYqoowCuWuOspTCOia1pdxva/Z5u6HHVDOcE/Bl8wiKNi9FGvI1GfwEzFt06JMK+w292DOst0ct+ZcsC4ySeuRs6trsdQ5Apu3G/dyny917z0wvub+9x5a3IlbWhsI7CaPoIDIm99xgtAHoYPRWUFvNkXTi6YWC737Pebvjs1SVGF4RgKZsVbrJiqAre7Qfed559Gngbb7DWUFrNtLS8+OZbiaRMnrD+QLu7J6aeZjFhdn5JM1tQNXOyrkTOqsXXy3oIETKa0IvZs8FQWvGusE7MWlMOxBykxzucjUpD+v+x9p9NlmVZeib2bHXEVe4e7qEyM1KURHfXANUACAwBwoCxMZux+TBjRprRSP4W/g3+G5BGAQMHbDHdje6q6qpKnZEhXPtVR2zFD2uf65FVxRlatp8yr4qIcnH97nP2XutdrwjFe0c+ZnXDs6dP+fk/+6dc39xwe3fH29eXRK9QpsZHQ4gihUXbAirow8RRHUooSU5R5Zi9hxEe7pz7D3/55zRxhuksg/esjEhia4Hu6I2mNYZ9znQhkOJAMsJgma1anr3/mKoyDOOeq5u33Nxc084rZsuG+nhxAJTRk99K+cFTc53frS5+p9Y4/G9p65NUFwcAWyPMHjVNrOVztavIWhPR4qMTopy9+57r8wvWV9dcfPWKT3/zGW+/fcPN1Q15yBBBJ4l0dq6mqmpygt12x36/I3rPsl6ymjUsGhnq7UPguttzvdngU5Yoew0Bfyh8r2+uuDq/5PrtxYOtW84ZU9Cr6+trfvub31BX8C//5T/h8eOWV6++4de/1HyevqVfB8ZuZPA9OSliEAC5rSzWaYzVbG+v2d7e8PLLL3j76ks+/vEPePHxh/wwQnu0pJo1tKYRs1uEa+79iB9H4jgSvJfERCBmGfDWdcWz5885Oj6mqhyZzBg82cuQoqqKV51WJXI+QBYT0aykNpH7ZJqoA5iDkiFbeW6ShWgi6IC1mbbWrHRN6JFz1xgB+LRIa6pGIWokBcpw8mTJ0w9OWR4d8eHZE9RswVC1nH/6FeMYJab7Aa+cAuBKv+QwpsFaRTJa5ExZ4nS97YXFPBmNpkiKYgaaoyqDy3hoklGaGCU+lxgxMYqfX0r3b9/0ZE3tQLlH/9Ds+3cvpY1I7EgoZTDOoI1Fa0flahnSVxU5BFAyIDIlaUp2E1uGphqlZI1TKvutseX3lPoppUgIXhi1ijL8qvBxi7UiNzeuEoBhav4nyv0hDv1hAZbKGMYY2W+3fPXFl7w4eUJVNQxjYOx7zBip0ThjaEqAx2ndkH1gFyPx9TnN6oTq0QoWht9u7uhjT1SRy6pmkSPWD3R+wJMIKqNjulcWqCym2nNwtoJ+ICiNRWHrybflXsXwLlNQiITTostHnurSd5g+kxLwANypRNKZUUPWEVRiO0a8MgTl2CdF8IoQYOwze5/Zm5ruvQ948ZMfo+Yt7miOqmQQkVMQuWkM+N2ei7//nL/+87/m1cUlr/Y73I8+wM9r+ur7rdH3rmr++I//mKapcc4SkshY+kHiGM+ePKaqKrRx9H5PGAN9P6J0pqosbeNwtSWPBmMNzlWi7zKiaxtGSSWytme+tIcTXW5sXRa4gMnlYY+xRMTGyNB3aGOx1tG27QGdPVzqd/58eKjzAY1WWWFywhSzJL/d4ceR+ekZi/mMR/MFz08e8eMPXuD9SCZzdnKEzREdPZB4cXrKSTtjqSvMoxOGzY5uvRXTutkpTTPj7NlT6vkcV9ViIqUSYfRs79acn5+z34vs6qGu/M7/phTLBFgTJvNGFNo40JaQArkYKeZsQFc426KdQ0XZTHY+EU2iteqgOz7IeiaAxYhPx2GK/v8H8CBLmw4N1cQXUfAO/a5UMZNrOfDu9P5dcGWS1oSYCUE+0EYMEFGkAD4kNpuO9d2OfS+Nt7ENRju0rYjFcFMpAznKvYgC0kGZpJUSeVHQqPphmwZtwFYGp2EIEWMLMhwRSYVJZCOo/TAM9GHg6vYG6yzNrBXK8mFDk8PHm8wYI3fbnmwc2ULyGtUFRuWhgqat0VbjiiGqLpu1MRayImXFfhvYbDr2+5H1ZsTHEvNtKmIey4QnYZUmG4euDe2jJdXxCjNvic6QdZkkp4Rp3TsmVYocEmSNVjXhas1oYE9ksAqLQSvLOASyMRjjxAzV1Yd7IoVYzLcVu2HPOHj86GVNixdFyElo+SkW8OyhrnszW2lIJWauqRxtZVktGs7OFnzw4hmnj46oG8PN3RWzZoGbzwn9IIBSMuy7yG7oON129D4xb9z986CmPaxEHmqRqUnNU56RjDRf6v51CTU2MgZP3VZknUhBo4wjWSvPrzYcHLzL1B8lYHntHJBlOpUkPcsU7az1CfoRtntYd6g+oMeEsZo+RLrQc7PLdKZliIquCxKv7SPjOHJ6elqeUdjvd6QchTWoyrSpFDHaGqxWwjR5oMtVjpilaFSlRtBZoyvDyZMzZmcnVPOG7X5N3o+EoWfwAyGOpCQmyaZIT+pZw3w+p3cOP3pyVTOqxJAi2/MLLvdrZouGx08ecfz4hHoh3ki1qe+nqrUlWw1WGt2cIkrlIvs8LA1RZ6IqMj4k1YfD6inRoQcgyD1ureP4pBEtc0hsbtbs1htSSCxPTtC2QVU1ZKgSzIzFOvEKa4yj1haTMzYisrw+kLd7wmbHuNmRQyxAohjO7oeebbdnPezJTqaKk9H0g61ds5ChQNWUWOgaHSOzuqLFYLuRPm/xowIMBsvoI4qAIuGsgxzZbvd8/vlXLNuGnDVVs2Jx9JT2+DFj42hWx8waJ2kzlaXrtzLJbA23u1u+PTfkocONI/OmZr444emz95k/OsHWdWGLaDQWgxNJstOYSoDmttbijxB1WciJdp9JMq0iq3if+BVL1HpOJD/ihx7rNKePT3j03hPGkOj6kS+/fMX5mxsUNc8++CH1bIUy5YyzBmPEo20aU0zDjXecD6YZ9INe//Ev/oIFK5Z5ybN0wpgkmloARhl2VVbhEpiy54hUXIxQZ4uaH/zgI8ax49PPPOdvXmNsZr5sOXp6epDm5CyJXeKvJAO1g6T33XLxd3/B6ZfOUj/FGIklulcVgMtWApSVWdMhUc/3Pd1uz/X1DdfXN+y2e/abLd16x+35JXe3d2w3W/qupzGNmNNjaGczKlthtWG73bDdbBjHEWcN81lL2zaoyrLLA9djz/luy5CFsSKvVeo8kbkkdrsdt7e3XJ5fPdi6/et//XPevHrL1cUV3X7g9es35OSxNvFv/t2f8pM/+hE//Ucf8zd/8bd888Vr3nxzzuXrQA6ZEBX7PhOVp06KmVMsV0c0rQx4zp6dsJgvUEpYZa1a3bNyk/ju9ENHDkXOmTPH8wVWKXIMnF9d0m02WKM4Pj0BC2P25KjY+4FxGMkpcXpyLKkwSos0dAIQtRb2/cTUZhr2KjHzVJTgB0AXsxUH1kHtFNEp2pypdSbqDJVBM7HmEraC2bKindfUDTz78Iz3P3nG+x99hF4eMWjLjU886U5Z7EfG4YGnCFlkPikGrF2glBh9hxhI2klqpQHnFDqLJC/r0nnlhNEQwoj3I5BFSqQSxgqrVKeEKdOPHCMqTQkzU/38zgP3h563af8pb/HUY+SJ7aDL0CgLgKUqLQk/FIhUm3cYvFKXZHTBgYRHbHQZzidJl3S24Z6RBjEGQhBjeawha0PMiogkltm6lpj3d0z28zvGe/k7m8rDXDon8jDiNzt251csH7/gqJ2x2+/Z7LdUWXPUzBjHgckfqrKGZeUwI2w2a7rffgpnx5z98H36quLN7R0Xl2+4jtAerZhXltt+ZPQjISdmdS1DFCUDlUjCGkvV1GQ7UhmL1sLk0caWZ0lhtSvnktQu0jAlUOZg46FyLml1SmTo0+0wvYcZiInQj7y+u2E7DuxixDcNybXkasZg52RVk6gIzhFnc5Kz2LaWGb+Wc8MOXhxHs+fy+oIvf/sl3375Db/687/jbjeSmxnL9z8gz05JRjGm77d+37uqefz4MUopUgrcXlyz3W4Zxh5jNH0nWnORJURG7+nHAZTQtqqmom4cOXtQsO97uiHQtg2gmM3naK0JUSh/VpnS1Kn7m35CWN6hvoOgzLqwV1BT1Cgovqv5OwCnv1clSMOucwkazhD3e+7Oz7na7zmzFceNxJ5KVrbGB4n8rYwmD52wPlbHnC5XLKuaaoyMWhNKY3q0WtE0M9p2wWK5xFS1IJ8o/DDS7fes12u6riPGeGgwHuKKJRJLzILuk0VAUH6UvE9amQJwyDp4hK47YHAlisygCGSCDFtwE8BCmaQhYNhkcHu4/gDAcijkMgf6oVD25HWaA6WvfIvpi/L936cNLR++VS76PlnvFHNJHBDEW2uLs47oEz4mBh/p+xEfs0zzCkgk5sealKV41WqSQHG/0ZcXIw3rfaTpQ17WWTRe9qViMqUKuDMZmMYkfMgMhBC5Xa85OlpJY29sSfwReYyzVfHwyKSsGSMYn0WKEyD7hB0DeXQ4JUi4Kxuo1jIDCCHhfWCzHdhsB4YhECPI1mKYYhQP75BKKGfFGX+xwLUtupIJ3zQZyUoVIzvEVyTJIUkSMKdPnj5FRgXRakJWjEDQispVErdYNZjisxKj+OeQxMjMj15SDWI6FMGxyKZikSvoB2zUTZG1TB8CsGicNTS1Yz5reXR8xMnxEXXtiDGQcsBVltpVhHEQZ3ql8V4kYLd3O25u17SLx0WVOk3XOKjl3nk87icC8jcpFJUqZuBgtKGZtQJ8J4PyArRKRLuTZ+A7muXpG8tTea9pnp5SBTlhU0LF6UMKGm0U2cAYM/uY8drS+0TvA9FHcsjEIAl1dS0AQyyF87sP/IGMXKbPVovc6qEua01JHpBJI1qhnMY1NatHx7THR7i2xvuROIpvTUIkC0lljNIoI5M1W1W4tiGEgG5q8bQikHRiiD1+1+FjoHKWum3RxuEaygMgrELlhOUlSrHyXk+slfLOJJXxKgkAQ9n75Dtwv3rqMBqShB0N2pHGgPeB7XYnhn9ATolqojBEMcw1SLSoVkb2BG1KbGNGx4wJkdyNhH3PuOtIIQpjyzq0kvMk5oSuHLPVsqRMPOxm6WMGYzF1g64aee9iwNQNla2JeqAZA13yxe/CEcOAeA5IQ0pUjIPn6uqW65s11jbEaKVgdDVuPufps6cwbukI6NZyfQuV1pzMFzTzikRk13Uc2Yq6XbGYL2maFUa1qOwAK8MIDDmb+wJdQS6vY5IUyvE2GdKXT5pGfDmKl1qK6CzU/TD25BSwRmFmDWa+AGPxSaGqBVVzQfCa5fEprpmhjCRlvcvsSO8MKt697u+rd0/lf/h1fnXDPnt65Xm0WBENTNHISiF7p9YHJmA5pQnBMwwdfb9jNqtZrhq6/jkX1+f0fc/V1RVP+/dxNChnyWpK1hH5w+S5cAhJmJ6WiTErBYac96nUET4cIm11SYYhS0Le1GxJHVQmskmkcX4cGYeBoe+4vb7h7vKGq29fs7lbMwwjSiuapsVph9OOuqpRWSR7u92WcRwgw7xtaect1bxBtw6lIW0c3hniKM+kRgmzRMnekJDzY7PecHlx+WDr9m/+zT/n17/6ez77TPPFZ9/gQ8/1zQ2//OWv+eiTM374wxd8/PF7/Owf/xHL+YJZXbFbb+g2nugFZFEjwhjQHuNGMBZbR9l3jUZbXc5SAEkBC2kkRH8wrndajNutgtD3jENPt90IkGYqTCVm6JMcSDuDjiIj0VP6z7s9BqCyQqciR5+KuneHsu+kWcqfI6hIUYZhNVRK4Ug4lclWvk3M8nxZC4tFw6PHRzQzw9HJkvnRjOPHR8R6hkHRj5HTsyMWQyQ+nAq2/BIloSWlgwG/7AMS6JAnAF+JUbI8D+n+/KUkzElEzP1bVGqDSfmRUkRFATB0ioXV/jsvBX7n39T9Nzt8Ur5vAeHQT9z3M2oy0GHypoKp15ueaY3WFpFmTrU83CfaTDus1EqpvG7g4MOYQJgz1mGrShL53ultDrvm1JOU1/dQl0nA4Em7/jDM8PMe6gW5NvgIOwKkgKU47GhN7cTDbowDfrslGQVXLcsTwzZmbkbP3fkFp0azXC4gS7JUTEnYOcUCwmZxRNHaYJQlW4edAkNQ5f2VHVqVQJVD4zbVFCpzMHaUBoESEXa/5lOtU56/nCANAT+M9CEQspgzp2QYnJMgj6ixixPMvJWo+KZCq4zJCRcDetvjuy3dds3Lz37LZ3//KS+/ecXrb1+jj84klW++ZKRCJ4TZ/T2u7w2wnJ6e0vcdm+2a169fc3NzS4xe6H27Pa6qmS9mEpk6jHRdfzCDbdqa2bwlJTFJvb65YbddUznHhx++4PTsjL7r8GGURrC6j5M8TGgP0xXuwRKtMNrSaC1TntL8CoUTDqZI6v4LD/hpnhSRgiyrDEYZbIJhs+HNF1/w6voGrSyPlivmrsZWNYuTE0KOhBjYrm+JOWO04sXjJ6zqmiqDokx2Ea3pydkJTd1SuQZdV2UKJeDEer9nc3fHzc014ziKOWlTf99l+r0r5IRRRVOq5UMV6YY46WvECb1Qu1LEp2LxgCYnS+sMVldYW5H8nphN0WuLCl+mRAYxWTTvyIL+Z15YWcxUNuqUYjFHlv9o3H2hw7vH33e//t2/ytZP2TiLeWrKhJixxuFcja0ahiHSDYFuGOkGT8qmePjoe2+WciBqpNHSWR+8QtOEyJPKv+VyoDxs01C1FV0OpJBQVqGzKlIEicoThk4s4IuBmLi6vqZqauZNS103hK4vwGXEmppq1pBbR+cHQrJ0Hmwy5KCIYybvB7zR1Blm2mKqCq0NCU2KiX3v6fYDt3dbum4UcEVZjBLVfBLzGgoWRVYZ7RyubZmtlrh2hnaapISNUHJvBCQSC5iDXwtRMfaRTd+xCyOjgtQ4Rq/EyMwoqlnDrJkzq2coIHjPMPS4xuH7kbEbGftBIuJjFKp9FIvNkJPsIcaWKeTDXNba8ggIwOKcpnKaqtLMZhXHRwuePTnj7OSEEEY2m63EuzeWyjl2O6GkZgyDT6w3HRfnN7z8+i1Pnz0uz9u9aaMUNML+AjFVvPdhKYeVute2KiQm++T0FK2i7OPBoYystdJFV6s0uTT8qgCIKnP4ObK3TiVKRuWASwmbs6QoaAPWoqxm0CO99+xyJjct+5vIvpOI+hRE6+x9kChEOGig7x/8e1ABXSRYxjwoGG2tSB5VygxWSdyjsjSrBSdPzmiOV9A4rq5vCENHHPsCrpSpptWYYpjsmhrXtvgY0bMWM59JU0yUpJ6xI8SByu2Yr3qMq6naRJwjTYAxYCuSSffmcRNcNoHSyETJEw7yBIUq/hVlu9dTJK2SVBXk3kxZ0Q8d++2OzWbHzLYkMrv9niPTYJRFEVCxQALFY80ZJ6BrRkC0kNBjJO0GxrUwNpNOGCVm7kqVuE+tqZdzGu0IfU+/fzjDTYDdMIJx1LMlpplD3UjyVdXQLJYkNzAfE7vhDuMqjGsYuo6RgCaU6RaMQ+TiYsub82vaZo4xM+bHPUYr5ssFP/3RDzga7+hUoFpWfPvKYhWcLhactUdUXuTRzfKYo6NTjo+OcaaFIHuoxmK1Lc2MwirHFASQcyzPlsFkW4AxDsk1WbSpTN2BKAIDBnmGh24nxbU1GFeh2xrTtCjXsDh5RtOesd8H6uoY18zQroaSqDKdoJMB4YHdW17DpAK4ByIeZt3udh2Dz3gyvfOkFlC6xMlnrFYHgMUgdvkGCOPAfrfh6vocZRKPHp3Qzn5E+o2nGztev/qWT378AzIIyKJL6Zvva8KDRGiSGR/MwMsn5PvBSQjCsJv2JWtMMeaO+H2kappDpHxKscSTIo0+CJM0J64vLnn11Te8+vwbbq5viCHSNi1HRytq11DpChWh24l3wt3dLTkmmqbm+PiI5XJJuxCZbdXMMP0dbOZkP6BCwky9jJkED4mu77m+uuHlN68eZtGA/93/9r/hzz445ujEcXX1Gt9HtrsNv/r7K86ezEAlfvjDj/jTf/pznp495uRoyZeffcWwXzP0Cas1flT4mNgPPd14y6wb6OLI0dMlIUeU1dSNQ6ni4TIkhnEPOaI0VLaicrIfjbst+7tbdtsNfhyYL+ZUrvQQSqGcsOcro9FOTN5dZUpSlMAKudwfpMJcnLrjfOBGk1QspW0uHsgRCKjsJcJZZ6zK1ApqMqGY+2cFPmV8ilhnODmZ8+LFU9qF4+R0yWzZsDiZ0xUGwKw2PNenxKjFfOMBL1WilO9Zu/I8F/FN+YCD3IP731+Y4TIIzzmVwfaEbWQ5t8pzlGJElRQ3HUKxDnh38Mrhaw+SPTgYyysoNUCpW6w+4J7TJ2Xyd/aiTAFYJjZJOfuU1hgqlLJMukcBg9ThHlAlJCCV/i4UgMU6W1ILSxJl3VA1M7R1pUZ69+fzneHWQ5rcuphR3Ui82xFvd9y+ecvK1jx78hS7avGD524YUdnjIlRZs6gaUhbGcYyeNAwM68TwMrCYPecow1pZrl+94WldceLkmQgxSrLjBE6hMYdI60w2GaoCVOUsdUCRMGspMA5ACXkCmjSZ0jtNcvYUi4dqiVvnHZ9NEKsQZXHKUuOolYKopVdJgRg9V5e3XHcjx584WrPA1BpMpskZnTJ1TPirDZtvX/Lmm6/56//xf+TTL77i4naNn684+/CY5vFj1HxFCgLgN3/YBPR/8freAMvd3R2vXr/izZtXfPXV1zJtbWqUtuz3PbPZyGKxQmEYBs9ut8dWluVqxdHJMXVds9/vyRnGMfL27RVkjXU1/9V//W9ZHs2ARIhepg2TNGNCASfB3uSOVBoYoYRVYnTGdGimA2Mjl0IEOBjj3qcPxQlqFfp0krjYI+tYouFuzZ//+3/P5vyCp8/f49nz99DWMAZPN/Yk73n66ISzo8c8mi8gSEpCt9ljsmYxX9AcP2I+W0CWBzEbYcAMPrDZbLm9uqbb7el7MbadkjQe6hrziFOgdUFNtNAUIZNSkPcwWYmAVAaUgxDwWROzZoiWlB2N1thK5DA6Z0KSxnjyKDlw6ica4H1v94evaU1k1CJ7oS4FDRRvGNlGzbsQeeYPTz8PyBlMWHJKmWl/rusZ1rYoVXG72dMNkcEncpSm1jpxfI9ZH6bFqWzeegJfSsGU05S9lKcel4lR8pDX7GjOJvTEPmBsjcmIBIQgTA0SkUiKYmBplOX65gZtDEeLJavZnM3oSTEWmVSk1Y5mccystvTDyBg8d1sxz6uUIblEv95j9z1us2c5H7HGopVm6EeGrsePnnEIgMEU5tL9UV0AzhQhR4zW4qsxm1PVDcZWIm3IQYzQVNFAk4r5pGzMPiXGwbO73dGHiG1bTp895aaLpG1PGBKr1ZLl8QmrxYqz5QkXb88lsYwah2a33nJ7e8Pd7S0BiuZTwBtlNM5ZuVX1wxYwbVsfmGJKR9pZRVNVVBaOVg3vv3fGn/zRj2kbx5u3V1xcXvDo7Jj5fIZWVsAh7yUuPDn2u8Dnn77k8uKaZ0+fcvb0iNmyBmTKkpOAw1BAHWOJYfzOI6jz/TNZBj2yV1qDdQZLTZTQXzh8TF+tZL/NAioe3q1pklQM/pRKkAdUHDEpYVxN1FJYDmaBbxLBwDjWDGlHInOyXPL61TndTqSRKSVMYUMaI9TtGMOB7q4OpnVluv2A6U9N6/AxSNKMQqjdztKcLDl+cka7XBCV4vbimv0w0O23hDTex7ROyUNaidHtvMZaaHJg3O4lcSgl7Kxl129AZep2wWp5xmKxpG5mjEmjlcXYCuVqEnKWaSZzccRQN0YCCZ8jg/FoBRZNowv4URpJrXNpJjVirgQ5RS7fvGV3u8V3I5VrGUNis9nx7Vev+eEPWmatxTlLGiXzwZSiu6or6qYR7zAUOURCJ+DKuOsZ+xGvEt1mx+5uw2y9ZblcsThaMfiB3c0dOjlaHjYWPamK9ugMbSv6oWfTdexub9j4gUo7TGtYnmSu1xuc0zS1YZg7ckC8jBQCsyRDiDVvXm9YLDOrpWKzPme1XjI/rfnnP/sx58OGbRwY8Lx3NEPlRGsMbog0GGbK8XR1RFMrUuoY9pFmthTqfcFGJUVoMoTPB9VfeVeZah01tX5KKNZyCwRyDqgcMSqSfM/Yb9ltb6m11GX1fEYPEvsaEs38jJOnj2n3kW6XSUoMOpUToOBg5HlgpE67xwQyvONt9kDgilwVIWqGmOnHQGiQqanREhZgLdZZ7JhlWpoVOmbS6BmHjs3+hu32lqOjGavVgg8+eI8xiLHwOAzCFrYVVSvm9llrklZFgiyz+jyhuAdQGt4d6aQUCd4Ti6G2KQ1ELAlNd5sN89WipD0Jwy1nkRevFjO2t7eM+y2f//2v+OK3n3Lx+px+29HWDdWi4mhxxKJZoLMhxcz67o79ZsfQdVirmC3mzNsZ81mLnhnco5blh885e/8Jm1XL6+R5vV6TwliST0ZibcFpbC1N7Wa/4+XLhwNYPvjgmNn8T/lHf/ScFx895q/+8jd8/dVbvvrqFX/zt7/m6uqWV9+c83/43//3nBwt+Sc//xl/9ze/oO9/y667YT8OGNOUFBZLv+m52W1R16/ZhS23+ztu9rfg4PmL91kerZjNZ9RGzH/bypFCIHQdm65jc32FH0d0zpytVsxWC4wrqViVvAcJsJWmdhUmg81AisWjR2Mm39ak7pkQSgu+oZOA6Ujtp8vAIo0duZcPqyENHcP6jhA0LjlmusI7iCphtCTILRc1zx4f8+Hzxzx6eszx4yPaucLnHUlbrHEc1TW1q8lZF8j8Aa+MMJtDIOeI0kUCpRNZBxmuIMyFnCZWSyIlXeq7IpUr/itam0NtoEp6DwlSiBC8gC5FCg7wDo3+/iW948MBU6kyAfvTi07fGYwDHIqRjIR2JPk91OQxAKDfFTrK2sYimxYbitIUljomB48fR0Lw4pnjGqyrUcbRLpY07ZyqqlHOCeO+MF7fGQEdfqeH3Cp1TORdR1rvMP3A28+/ortds/cDy6dnNLMZ7aLlWJ/gxoQbE0tTQ04MQ49/00uQRxwZ1iPjq8zJquX0ow8Zjx6xrB1h26EzbNYb7to5p6dPRNkQs4Qj5ISqNMpYcmVL6EsudcY761oYRTnlw6w9I2Ejh4FZEla8JNSV718K1IlVhYaZbfm4OiLmzICiRzMk2IXEb86vmCeFt4bVzGFdQiEMY7XtGNYb+vMr4lfnvP3sS17+9jNe/se/Zh8D1XzG2c9+jH3+DLU6wistaYfh+5v7fe8n9bPPP+fq6pLbuxuMMaxWK2bzlnY+gzJVz5nSqGtCkGmkqxyVqzBazECDTwx9wPvMetPx+vUlV5d3nDw6YtbWYlZbUj1SVkUjyQEVOUxL9TRJKdOcd32oDrS23yE6TE14WUy5ARJEmdSl8saumoYfvXiBRvFXv/wVrz79lNvXb7l+8i3LoyPqtqGZtzw9PeXJfMlxM6PK4H0ij5E0RpqqFVlASdqZZkTee/Z9z77vub29Zbvd4IexsCKEFurDwwEskSg+GGRK5S0FnZH3IGUxoZKCoJiZGoNSTgzJFFL0J0WdFDGbAlxoUpS0JNmP1UGmJVO2+yLxD12HMqZ8/eTnor5T5MBEt1Plz/dw8R8CWdTh/5GH06B1xlpx9s9ZEX1i6D0xQM4arevDLXH4QWr6eqGqypR8KkJBq1wYA5OLuvxHImMf7jCsZg12Wx2SbmzWQu1U6WBXTBYgKU/PRxZTPGKmPj4hUuQGGsZhxAwjLiTa4wXaeawf6UKHH8QsVlVaGFakEmWGeJlkRfDCpkmxGKoemgDxAJHzr/w9BdHrogsDUFJiQowlDUCXtm1C+tXhlsk5Cx2wG9jtdjjnODo6ZqZr2I7szR1xN9As5syPRX7ncySqJElF1rK7XbPd7dhtd/gQRLphJNpPOSfJKArRHceHjfutquowEdFGY6xCaUkNOD095uz0iNWqZbfdsNvtGceRJ8+XZX/0aCvPmEQIgqYmhUC3Dfz6V58R40e898FjqsaglRNZHpTkDJhomvcPWdF/53uzW4WSQzLH+/lU6d8PEsLpy8kHKc7Ejk4T4E1ZeBLgyWmA7KX4RJgL2Vj2Hrqs6ZPiZrcnKY2txDg1+BHvhYVhyjoJ/VimZTFFcfAvqQRGSTJNKnKwh7qE4aFQSRKDNBWmqXDzOaaqMcahcsZiUDETfBSGiqLcT+8Ay0phnaPWGh8i3XyG7wdyCDRVS9SKFD05GPrOU7WBKilM3aIqSzYWn4u/1VSoTYwessiGcpCZY9ZiTIg0nyYXEdcB/S03gtL4fmTYdexvt/jdQBolcLnbD3T7gZTBWCd66qxIvkxsS5KEMRbrJN1PQGyR4I1dz9gPhNFLDmvKpbgS/6GkQXtZb9c0uNn8wdYNYHX6lBQGfHfEMA6st1uGmFlfXbL3UgQmpUR2oDNaR+atY+gMYVBEoyAZIgZUxXrjQQ0i18CTxi2pW7M0GpYLZt5xeXdD5Vpi8MS+x6bMvK44ahtmjcZoz4FnlF3xKnIIFyMfzFfRRWJQmjaVM0UHOi3boaZRJHL2kEPxI4kMw56xFz88U4mxsHEGk8BHyERi8lS1K+d6ICZPCAOVKz9TTTLffGD+TixQskjFKGyOmME23y/G8nevFItvVFYMY2TwkbGKRCUBCcqWFC0lfnEGjYqQQySOntH39MOO0fcsTcvJyTEhBVIWXx0xZ3+nnlAcpu5QTu97DdY7nzbtb4X+rsSDSCld9gmN0emwXxltCuMhS8qZxNax22zYb+7od2tap3l0tIDRs9M1yWd5HpyVRLKQCWNkt9sy9B0xBNqmYrmYs1wsWK3mNMuW+eNjzj55j6MffcLbNLK6vsB99VIWJiaRMqVAzkWGniLbfYfK1w+yZgDWwHLZovQZ/6t/+U+omwVPnr+iamZcnl9yfbPhl7/4DX/+8V/x0x9/xLMnJzz/4Clffvktl5e3bNd7XC71Xspk7cnKQwzsdp2kLe16kfF6TwpBTPDJMAbGEMjeE8aRNAwCmDiHNYZ502Dfka5nNCmJZMrokvBXGvY4yJ7lR48zDcbUWNuUM1WSraRdUCQtTd9Ui6ocyV1H3G0Jm10xiM2oGKmVIRQJUkgjtYN2OZeUR51YzRpsTjw+XtHMG+rKkNIo1mcZUsjUqkj40sNqhA7Si4MvRkLpSFZewBSl5cRXByo7OU1niDw6MQaC9/gQCnBSJETlrFBTxHlM5BDJwYNxBybDuwDL71byU+82FSWTVHgaar4rYPxufyf16IHV8jsuBWpiSiO1Q55sCQ6D0QIkpygfEyNHa0mcNJbWVbiqumfilNf5+13JfV/wUFeKiXEYGfcdFZoqQd73XHz9DRc3V7imppnNeO/oEc5nzBhZmoqj1YqqqlieHqEXCZcT2kS2Osu6dIpV27JoKmprUCnQ7zo2662kSeqpnhDUKhUwKYZw8MNBKWG7KCWssQJw5QMrMEGRaeVckqgorKGpXSQfeppcyBMma3TWZKMO69inxCYF1jEQKsvi0Qm10QK67vek3Y60H3B3a/Rmh7pZM9xc4/Y7XI48efIUFSP7+YzZ2RN8NSNjyVGSMaP5/rDY9+7+vvjyC7puTwgjs1nL8fGx0PCaipyL0WdMWCvRaDlLNLNzTrwktJao2DEyDIGUNF03cnFxy5s3V1R1Q9vOcJU9PFBTdN7hoSlXnt7pqREuwOW7Jb/6A439OzjNoXAgJZEbxCwu/DGxrBt++OIFs6bl7ZtzvvjmGzbnl3RXVzx9/pzTJ49Z1c94vjrmZLagtRV+GGAM5DGikqJtm2KUVZgU5UHu/ch2t2O737Fe39F3HTlEmaTkTIj+YU1uVSaVCZlo+QVoEVaGQPY5CSsDg5iZYuVgSYYQFT5nKdYS5GyKpEcAFqUL6m/UgY45PSVKTZO36d2/X8DDepYF0UZofId9saz7VNRJE05ByqeFzvff+juIWgFrtEJbSdJQSl7vMHrG3pOUk2JJW2K+/zlZTQwa2ZCN0Vhr5P0pQJ5WxWm+bBSgZNL+wG7vVVtja1cmMQaTMtkospZiUx3el/tDRaHoup4UIsumld9NCxwz9iO6H3DDyMpJjGoVK8LGE8NIGBIpVGQnXkYpJ1KI9+B+zIVBoO/Tk6bIv3zvoSPmi6GYoBrRTo8jwzBQjTUKh7MGzX3s4kHbBcW4eqDvOoZhYNY0WDdDz4/w6w6TFb3d0y6XtEcLnKnY325JGpQ1xRxwy267oyvMMGPEWNM6h6ocWStiTuQSG5sPzu//8EtAZilOJG0LlE5YB08en3B6ekTTGN683spapcRiMWO77fFxRBXJY/DyYVVDzCPBJ3776y+Yz1qWixmnZwu0dqDMoShgmkyX2azcIOm7u2cBElWZTB3ia/P0zObDo5SRZ+4e5Jy+9h2wW45byJ6YRlQOGFUox1qRtWW9Gdgnyz4orjcdbbWgckKH98NI9MUk1tjivVUCvpNoga1WBdiVP+cggKaKDzcj0kakgBPIbK3Bti3VYoG2TiIfk3iEqSyA1pgiDl3203u2JKpIxZwjotjOZ3LEaEM1a0SiNg7gA/ttj6kq3HLOzFiytiSlCVEaAqMK5Tap+4JE3mBIAn7ZnLEZTFJCUCyfk7NMiaaZwrgb2d9s6e/2ZB9lsJAU+03H0I1Cga5qKYSiACy6AOgJxKfHVWQjnl0hJrz3DH0vUbI+oCvHgVZs5OyHjE7i/eOMpnUPJ4MFSREiBcLQMYaRq5tbdqPn5m7NLiQxCEwZYwTsBAFYusowOkOwmpwl+S5Hza7rMTYwn3tUDqRhT9yvqWLgUVtTG83u5haFYwie7banahxzZzhqK+oKSB5UAJ1JeUBlia5VOGEYHYgjAaU9yqQyzaNM0eWMniReAr5EUPKaFMIaG4c9fthDEvNV44ShZ5Qq/iyZEEecq9HaED3E0BN8xlWTuWBpKPO0Cwu7Rk9nY8yyV5aG6eEAFmnectaMPjD6gA8SKY1RJe7YoFSSARDFUDskUvDE6On7jnHsgCNWR8vD2YV1cv+pe6Dou/3OO4xZ7s/S7wAy5Z03JTFxkiWmmDFG/DTqusZZWwYxJcknQgye/XZNt9sQho7VvKE/PsIkhUtOhhoJNJphHPFDwHcjXbcToD1B29TM5zMWixmLeUt7vGD55ISzj9/n9CefcLa9Y/Xya+rFnNyN5MELeJCF2Ziy+JLte2GePtTlxx5rFEdHC/7kZz+hblc8fvoMpRr+5i//jrvrG16+fMNf/NlfotKAsz8SluaqxdSKPuxIysn9pSKYSC7+Ed1+ZLvt2a47hv3AsOsYXUWqWoySfT9GL2kxUT5qa6mswVlLXVVEZH/MpqRlFUBTa7mnValdxr6j3+7Z322Z1yuadoGdO1RdMdG1khIT8cwEWEepQ1Mk7zviZodfbxCHJRHVVM7JfpKhT56mqjk9WfKDj18Q+p0YZYeRk8UM09boygorjcIGiZ7Kyp4d48M16SADM4mrL6k5xUMmMbFXrBThU5hEnk5/eR8V0yDYE0KQ1CAlqTPAwZ4BhUiRYiTHIINcpQ+eG+9KQaYK453jk3vAo7BfCvP+8AkKDsk90/eYpnRT+XPoB+REklpd2GeT3G9izhxYNGmq64Wdg568JS31rMVUbkK9pfY5yKTf/V1+/8//0CvFxND1dPs9VVa0ymB9Yvv2grs3EnVv64ru2XNczOiQmGvHhx+84NGjU+rlHHVkcIDBM45b+mFg7AfmJ6fM6oZ5U6NTpNsPbO+2BC9yPoo3FgqSkoCUvvfStykZlVojtbfVRiwAkCG3Ouy7WYC3whLLKkJhXk+lKjmXJZ2cyBQ5aaIS58GexG0M3ATPrR/xtWPetNi6QinFsN4Quw7uttS3N9iux+16dtsNi+Q5amtefPwhavTc1TWcnBFMQ0ryrBotjNKk1R9ehP+F63sDLClFTk6OmM1ajo6OsM6IeaESVkbf9+x2O5RSVFXNfL6QCMOqKgUWrNei9w4+s1o+IuXIdjvw13/9S5mcuYrHT09lSnMASESzJTWGPODTwyjIY/y9x/K7B6c6NAS/e+U4eaVA9gGdxdOFlDhqGprn7/F/+h/+B9b7Pb48kEcnJ9SzlqptaesaFRNhu2d7t2YYPFoZTo/PiDkcGt8YA/0w0vU9l3fXrLdbumEolEZ5vcFH6qaWTekBdXtoyKbUcQZy8WHRVmGzEZaQzhz8WDTFB8HK5q5achoIOdAHT6UrEoHRR4bBU2W5qbQ18gMOb/S0Gf4+tvvdf+fwNUoVxafSpAk5Z+oR8zvgSv797zF9K63KQyv6W43GoRkHT9+P7PZiGpY15NI0hKiKcW8um2lRPVmFrR2uFmPcFGNBcUXP6APEJHTTlBTpgbWyprZoZ6SZihmr5ZmLCONHFRndlAqVUpLY5hTxwXN+cclqucRoAwT6YSBudqTKUT0SgLRtGtrqlG7c4bMnhZE8BDCKstcwdWdaieHgtN+mBD5E+mEQoKCsjzEKVeL5dlvwt5AbR7Ve8v4nH3J0vOJkuSAmcaWfXPo1ko603+7oJ+BhNuPILTBJo8ZEfvE+J0dH+G6g1jXEzHbX8eb6LS+evkcaA7fnl7w5f4vvR6qmYrVakZUg8Ulr+hiE8mjE7yhGieR7sHUzhQmmM9ZpFIG60rz/3hk/+OR9TlYr1jc71ncbqqpmsVyijPjSxBwIMTGOY5FkBUiuTG09/Sbx93/3GZeXl/xv/u2/YD6vcE6qDWMqQJz7hQEihYYuXjBASaCKB1CpaioBDnIB0koxcg8WZIj3Du8TsJJ4tzGJ5OTphy3kEaWCHLDOELOkB/36s5f4akV0M/qYOZnPqLDcvbmUie0wQBbPKtF2S5MUUiipPrrovjPW2gPw0j8gGI1GIpYxVHWNbSqq5YLl2SnG1bKvpITLGpuF1ZWy+BzkrCg2JSTKXlKL9HLZ1uxPHhGVIfYDatYwtxV5GAm3G+7e3LC5vePq5pLF/hnmqEEvatrlnFldUVuLzWVCbjRUGmOUTASpxNg0ZUluyFEeTpQUhbYmx4wfPMP1Hbsb+WA9EH0khYSP0PcjGc3y6ARbNZANIUZ6HzBOqNrJWlJdyYfWhNGzHwY22x27zZahH0gps2hb2ralaVuqpoEkDIBZ1RC2HZvrNd+u1/yzHz19uLVDg67QjeH4+Ud8lBTzR2fYquX6zUuG7Zow9HJfp0D0gcVqybx1pFBhjeVuG/B9Yt+BdQvGqNhsRnabjtW2Z9x0rF+dc/z+U04XLauPPuJXv/w78nbLPMNPnn1AbZSk3YSIqx2msijnyj6ewfrSNBRp5ZhQNqGVANUpKsgWzYxDDALSqGQlzVBlhdmbYyL0G8b9muhHifet3cGXyBpxMssx48NAUtICGp0Ztuek3qB9S9tKUkQIgd2+ExND42hmc5xx5JgJ/cju9pbtesP27o6f/df//cMsW1JlaKMlZTorkjaYRlIgjE8YV2EtVMZRawfZklXAak3bVnTjnrvNHU3tePreezhjiDlhqhqcBSPJFbEkwKQIVv//KAr/wKWUOnhDHaJ7kWGUtU72UFu8B3KGINGurnEcreaocMrMKi7fXvDy0y+5eP0t65uepm5p65bVakVXjQz7nn2CK98zaxrm7YzTRyfiORNGfBh579kZZx+/x8knz1Enc6qzIxbPHrM8ecR4vSaGiFUKjwzWlFa4upLm8gHnP//h//F/5wc//gHP3n+OsRU/+elP+OiTn/Bf/ON/yf/0n/6GLz79nN/+6hf8+rf/mfOLL/jLv37EH//RP2aMHtMYvOqIyUCyRdUhbA8VFS+/ueXmas+Xn77kzcuX/ORHH/LBB+/z05/+CU/OjqgqizVQGyN+Va5C5yR1x7trqjTKOnwqjbLRpByKx0gmDyOXF9esL6+5e3vF05NnHB0FqlxjTE2qNEHDoJFBgRI/KpO03ERjJNxsGM6v2b2+YHtxgxojy6rh+Owx153Hjp5xGKkWM06Wc44XM7yKJD8w3N4Rtltmx7JPjkSIQ2lYDS7JsIX6Ia3ci6eTkpo/p4BSEVQgM0jVPk3uDAKsqjJ8LDKfmAJ+7BmHjn7owfcoPEYlFrMWpUoCpdHyM6InDiPWBtnPviPJnno6mNjqh/83i9kshW3idzsZglhhImuri09n+Q6Zg33Au52BhBDJOE8SCz3dvhNwCPFeo3jK5CJ7MlpkyjYqrHUY6zDOUc/a+znu9M2B+4po+vl/uD/5h1x+9FxfXfPm2zfEXc+j+SOOFyvsrOGLy1dcre+4WL9k/eWX5BBRMXO8WHLx5ltOHj3i+OkzPvjZz2hOVjinOf/qhu3Nmpv1lquLK37ykx+xOn7Bh09+yK/+/rdc3Wz48uuXfPjBe9S1K+ElijQG+q7jN5/+mvOrS0Y/8uzZU56cPWG5XHK8OqZq20OCmy5efqkwnWJhV08+4xQQ7d13TE2foDXZWvYpsPYDr/dbvtrv6JUh2oaaltAFxrs17LewXmO7PW2/4zR6mhBpvOc2DTw6O+KTZ4/5xas7rE+8sY7z2VxCHUB6KDWQdCDx/Vhj3xtgWSzmtG1N09QYKywG79PB+EspxWolKRCz2Yz9fi83sJL4P4Vm3/Xs9gMhQOWaEnnnubq84/MvviHkTLuY0zaV0Cwn9HQq9CcE88BoyVLY3j+RlPW6vw7n6O80+FOTPrFYcjpMdOPoDwanq/mMtm0KMUIJBddaebjHEd+P+MFjkmLezFDKEGKSIjsmRj+yWd+x33d0+z2bbsPoPTkmaq3EHFRD0on5fI4P/vcmKP+Qy2b5EFrkVCAIzdXmMuEAKCZ/Kpeo5fL51oKKhaWhFEknAiPkgEvy4OSsqdDFIE/arwkAUe+CIe8g4eogY5hc+6e27btrpqbXdljb7z6G3/0zKAw5a2ISQlJKkJNmsx/o+sTQJ5SZiWlrmdwrZEosgLgwGZTKWGNxxhbKr7AEKMBGSuJ9EkKkqtw7r+3hrqgyMUdCFCMoWxgfkwRABssao500w0lJak8p9GJKdOMoB4Ux4p3jPdv1hubulspqGqexRkm0GZDqLI0AQiF1piDJOh/kQSS5n3LKovnu9+y3G5FwkKnr6oBkG+dQjUHPKpr5jKauqWyF0Q41UV+zeCD54BnHge3dhqwNTlmhtScOQMxsMcNZSxw9YYjcXd3Sjz31rCFr2Pcdby8v8CGgjcZZe3A3l+mJ0MxTioyDRHOjfn9q+Q+5tFaHOsJoqK3jaDnn/fee0cxqYo7sdjvmi/nBiT+MHl2mAF3weB/w3hNCRGHJMeLHjMqO68sNd+s76tryRz/7MWdnx9SVuGRMd4bWRvZJdSg/DlOENE2VUiSOUjiFEEgRjJNCQjvLwcVqmqqXb5Emf4YCvuUwpWX04EcIEZ1AZc351TXfvLnBuCOG7BijYnV8grEa3w+s13eMoydN08ViZi7SEivbRhJmpKS3ZWJJvNHaYL7npOEPXUpbYQho0FWNW8xpj45YHp8cIsoLo3qSgxfGm+xj1hZQOkmSXsoZZw1G1zTLpXi7aI1rG2yVwXnGPrBdXzHuOu5ur1nvdujjFrNqaU9XzJqG2lpaDLWxwlBoHLm1ZKtIBkwBig0Z827SXs7gB0lN24+cf3uO33WkboAhkb08zyGCduKPVM3moB3BwzBGQszgNBhLrh3JaaKRAr0Lnm4cZQo2ekISiVrdtszmC2azuRi6gvhVdD2bmzvevH7Ny5ff8s/+u3/1YGsX8pQMYXDNnNOn71G3M5ytuH3ymG59S3dzyZsvP2W/vsX3OyBT1ZY2VmQd6aOk5FVREWNi8IG7zcg3315IclkAuzgiWcsqrKgWNe+dnRKPVqicqJQUnzFG2nmLNjXG1aimluhzZQgEyFH4PdaQo3hVpZAO07ocEzGC1rUkWLhimo08zyp5SCMp9Ow31/hxh0oZW7UYq1F2OuyLKjhB8CMxbjCqoq1aagU5jYR9x3otBfNuu+Xlq1eAoa4b3vvgBW09ww+eq/NLXn/zkrvrG+5ubh4MYMm5+Cxlzxh6fBoIuSHmct5pkehKQnXGGkhYQpY0mApLa2us0vT9Hu97nG4kJMEZ0bIcaP7TsC3JhGWa0Kd7ieSUNjN1ANPM/l1vllw8O0hZQPQy5VaKgwG4nGmRum1p2obaGfabG3zYo01idbLkyelTFosly8UR3379mn6/Z7ffMGsb2rqlbip8DPQ5ohrH8ftPee+nP+TxJx9Snz0iV5b5Ys7Z6SnP3n/K/vKSbrsm+UhSIpNKUe63TCY93FbJF198hq0Nyhoev/8CpTR17Xj6bMnP//RnvP/sjI8+OOWz3y7Z7W4Yxz1v356z73pylsl2yIFMFOlONhJPni0ZxdAndOr58tdf4lLEZs0f/+RnNFVL3QhIqBGJulZZniNdBmxF3lOod/Lc5PuUnGlEkJSmni9YRrDZMJ+tqOctuhKvqqgTQSmiQQZ+SGhChfhhsO/pLq7ZX9zQX9+RR48rEsjGORqfGFKkCkAc6Dd3XHz7DTOrsWSM1Vy/eoOuFPPkUasaZa3U39nw9s1r9vuOfd/z8//2Hz/c4ulJ8i6DMJMzhozokUVWJimOh1lLkRjL4DrFIvcOoYRTjJBGFIHtbktW0GpFbSWoovBGyKlENmdZl3sQ4l2vEkUKkeg9vh8Y9p1I3rwnxRFXVbi6plnMsVWFshltp9TKe6XD1BkYNU2YZUgZdgPDtmO/7VBZYYyTejK9O7It+0Q50ycZ4CF1qthTKK2+0498R2r4sK0AALe3t1xfX3N9fS2hDX7EhMhJVZFOHnFcVxzVjm0vfnbBe5xKxLFnu75j1/Wso2dx9ojT95+yamdSw2jNoDV7P3C9XbM4OaZdLthud/z6889YLFtOjo+YzxqRCZdUzDCOfPX5F7x6/Qqt4b2n73F68ojnT55y9uQJs+WC2XLB0WqFnSKtp6EtSvbonA8M6ndQq1JbaaJS9ESu+g13fcflfsvgA0lZCAIJ1Fljk5awjgjKJ3TXU+dImzMtmWo+Y4dBR/BrkQ93VcU+DIRGvLlUzOgcUdmj8vcb3H1vgKVtG6rKoo0mpkAo+vfR+zIhl5tuyqt3zpU4O10a0sy+69h3HSFmaufQiIP9ftvz5s0lWStefPwhZ6ePaBsrB+E0wSmpI/eeHmWDKODLQUZSFki+6B6cOTzAk6HOhHhOGuN3vmeKXg5VramspjbF58AY4dMUGlkaAqEfiGPE2hpjKzKabhiJWVgEXd9xe7em3+/p+45h7MlkjIJKSyMqEbGKuhYGyzA+nAeLTQmbJt2pHDyqOD1bO1EFZQMUMIwCsOQCsojGXyFNqkyVRZPaZyWbFxajzD1Q8o6kS6JhCzqcI2QlE/MCvDHFGk7bW2kIJ2ryoTOcpDvvADWHlKjpU3SJmMuaGBQxirY7Jdj1I8OQ8VFROUNKiphVMbsudOpy/2Qlk3JXKG9GGbK2ZBVJKqKVIWaRxMVw76b14AALmVi0sipL/KJWSswSJ6yR0mge7vXyO5f3boxejNmMAFkhBmK3p9ts8G1Lqit0a7FGZD/JCJAp8ox7EEfe6yDeK6WxFB1ykmchejFNBhTSHFfOUc9nqHmFWdQ0xyuapsGVIuJwxGaJwBz7gWHoCaPHVhZrtSSWJGkulMrUjciLgq/o1J6IeK+0yzkhRXbdnrvN+r4BN0bUK+Uum1g203QkpljSyB6QfaTvU8yMyjS1Y7mY8/jxmeyfOTCGkaquiqwKchRfHaM0KUb8OIrRbUoi2UuKGARg6fYbhrsNv/315xydrNBGc/boiMrK+oN4B02FZD4AJBOltXxehhRiAQuDsHCNOdBjZd8sHdr0LwrSZKibJXEnxUT2nuRHoW2HRIqKbtdxebPh1fkNzdlTMo6sLIvVEoJn9AP73Z4QipN8kdqkNDFydMG/xddgjIGUMj4Iq9GYhzW5VVP8cAblHFU7o5nPaRZz8YEIIjPJ8R1a8fSWa1XOxhLvWNYOrbFVTTVrcf1AzAlbN7gMaEOsKmGCdSP9sMWPHrVp4Khl13VUdYWzjhZNayyVtbi2Ri8aqDTZaVzlcEaAUmNVod+VF+chDoFxN3B7eSvMiqQwUYm8KoqM1ZgKXTfUswVZWZlS+lRsXxTZaFRtyVaTDMSUGGNg8J5xHPFRGjq0pmoa6ralbhpUhugjfhjo1lvurm64enPJ+cs3D7Zusg4FYFcK4yrmy2Nc1WCUYblY0G9u2d2c4PsdKQXGYU8m4SpLkyt8GrEu46IALH0nhnxdjFxd71DmlpAUZr5A1ZZ+6Dg6W+C0onZOYnXHsZjjKbRpUKZBmZqsHZjSBBSgOBdz25w9OQX596iISZOSJoYg5AvEQ0x+t4QiQBxJsScNe/rtHcn3WGWxE+uwSLo4PPZZkJYUUXhqW5NyZuwH9rs1d1fXbNd3rO/u+Pqrb8ho6rol7DY0dcvYj5y/veDbr75hfXPL5u7uAVdO3JoSgZAGYhqJyReDefE+MEZjTPF7UxmnHSmPEAAPFoMGMab0I6ayUpOawvj6jqnm5GdU6pMsg4JcCn1yJmuZukqSGzIEmkydixwWppomo1R1kHEBRV4hn2udFamhUYTYU1Wa5XKGq4559uwps2aBMZIk5f3I0Hc0rsEVWf0QPD5HGqs4eu8xjz54zvLpGWbekrSmqWqOl0tOzx7xejlDNw6f/IF9qJKcz4e43Qe6QvRstztubu84ff6CjND9rVE8e37Gau44WVmOjwLnb19xdXlOt9e07Zx25jHuljBmYi4JWiQ09lBfRA9jStwMGy6WLY+OjxnHEWNtkbolkdSUwRxkYWuLa6mcdMogvmPTSTZxMMsiaUM9n0vimXbM3IyqnqFqRzYyMIwkMYSe+gzK0DAEctexu7qhu70j7PbigWUtykiN5qymilrMb3Mi+4Fxt2Exn+OMxN5uLi+pWkuKnsrPJV5eaXJSvPr0C66vb7i9vePn/+3DrV0ukbkqqyIxlXQuFROYiMIcpKj5MMAog0cUKitiiGI+X7z6BMjzdP2AdRXGOqo636ehi+stOWl0FoBnar+ma/pJ0Utf1W937NdbfGH7OyeyVYUjN4pkCjtCa7JOBxnsVPnIimlUFllKHhLjdmTY9Ay7UczkjdT34eBzI69WymeFMebgK2LM9Mv8DuCa7/ud/G6vmeX9eqjr6uqS65sb1pu1hKGMI9GPuAyP2pbWalpnuFxrdlrTaUVlRdIWxp5h37FLnvnmDlTk5L3nLGczsJZ1SkQyd7sdm/1epHUK3ly85eLqOc4Z5vOmMNlVqe8run3Hxdtz7m6uGe/27E/PyNsOv+9YHC2ZHx/h9x3OOZHo1078qozULdZKom4uz5gwjaSO8ikyxsTdOHK5uWM99GyHXhhSSmFypE2RJiuqpLFRib/mviNud5jaYpXCAW1dkyJsQkCnLJYFZMY0ElQN2mBzxMRAjiPZd99rjb43wNLUjpgiXd8xboOgg8Yyn885OztjsVgwXyxlKhoTPkS0seLJYiy7/Z4355dcXN0yhkQVQGeDoiKEkbdvbrjZ7GjnC37+T/4Lnj15zKwWhFK4jRPAUtBQ8oG5EkPAD8L8qFwtTVUWz29yPsStqXfAlSkglmla4TTZB3IIciYXP4kQepyuUBTWTgwEH4lDgD6hlaU2DmUcIULvR27WGzb7HX3fse92jPstOid0zliQ2EEt3uBN7aiblna+YL3b0/UyTX6oqxoDFaIdbkzFaDwpKkKZlqcMOcjm4Iw0tEZbZKuIgDjiG6VRxuGzJmdLzpJyEpUhKtmEnBbTPYgHZsjkpRCCbAYkMKpCa/HmOVDBTGSSgCklka8TkiyLV9DzVDYxRZl2l6kyqqyRHE6jz2QsMStGDze7npwt1s4YSleU1b36XBzLlUwuCrDRWEdlLBaDtS19yKQocqhxFKPmYfAcGyMeQ4fYu4e5ohJjNhRUxlBhJEnbGGlKiSSTBFnHYbIhE+nHHjK4tqEbe3wY8DmijSGojA+wubhmZh210dTVEu0Arcg5loQQOYhzlH9X2uDsfcEiPaV4+6RZTdIzMUxWsJjXLGZHzGcrFqePqE7m2GWDPW6RzELxr9BKQ0zkkNher0V7niJtO8NaAWBNSLjip6NMhsqQnUZXmn6AZl5TO8dRveKLX33K1c0V+35P01QYMR1iHEZikmjraNTB3kAmE6oUyg+4dkW26xQ4FEftjMcnJ3zw/nO87yFnqsYRx0hTN9RVQz8ELBBSJPTCetvtdgI+5Vx2QAOxQqcW/MjXX5wTwl/y4qP3+Ff/+l9wdrrEGgVZ5B6TgS2H/U9AgApNNokcDN6PGK2pqqYUVJPmuBjbZhCQRmhLuZim6iQSGZUSeRhJQw/jIAkfEUaf+Jtffsp6DwNLYqjITU0zazh5tOL27Vv2+y3b9Y4UstxXCqyxBDyyD5hDzDqlDIwp0/cDrjI446jrhwNYrKrJOmAQg/ZmuWR2tKJZzDEBcvAit/DhXsNNkoLeapQ1xG6U4kdB8AGFxjU1djmn9h60oq1qFIlgFMFq8V/pKhg19mpg2Hv62x1vL64ITgoP4xOLJCyWWVNTHy2gNuTaUM9b2llL3da4RSVG8QpMAjskQjfSbzrWNxvaqsY1LSY7iFF8W4xlpzXGzZgdneK9wvuMH2OJKy0sgrYhW0NQ4KOn9wP92NP1vZhFKzCVoT1e0S4WuKom9gPbzZrNesPlxSVfffoFN+dX9JfbB1s34FD4ynkhfkutbajrOadPnpHGjthtaNuW3/xtRT92+JSYzRuaWUUfr7F9xqVMi0itvIcYDLf7yOblJS/Pr/nq/JwnX3zG8dkRzz885fTRiWjUc2I+n3F2dsrp48cszp4TAY88CyqLx48zRZ6SMikMjL4jjmLimRIMIROzImKZNSNNM0PbaVjhIY/g96R+y7jfsL85pzIVrpIYeGVKh6EhhoSPiZBhsVjgtMUmhRlGQuwY1pe8+voL/vrP/oK762u67ZbohaWZ0Pzyz/8/DGMo4R+a5IOAiw95zimNUhGlPJEtPs0IuRZzcO2wJhWwQcAhsqeuGoIfSb1nd7nBb3vycgRt8H6P9oADrcuepmTgIIOxMqRAlwazMIZ8IARP8CLv0SX9TllhQhjKEFFJHemHjhBLnRMqXDPDmKp4lIm/QIpT3Sr+EaujOT/+8Sf4oGjmj5m1S3bbPV9+9jVff/MV66s7xn5kvpiRQqSPkZFEqDTLecWzP/kR8w+fYU+WRBIuw9JZzmYznj9/zNePj7m8vWSbRmKIoKTeNNGLMe8DRtr/u//q33G3KT5n+1GAoHFLt+t4cnbCfGlYLZ/w4YcNfvhjxmFkcwd/9Vef8Ytffs6biz1+LZHKY/BUpshDUrFHV/bAzr29XvPtqzd8/vUXvPjRC9qqyOdAUkwA5TSxnOFGy1CFd1jSQqPIAh4U7yJdNbhjB6sEjxJGOZQ2THHC0nLeD2l1GYzqGKDvGW9uef3552zO35KHgdOTE/pdh+9HwjDQGEusHbUHW1uO5i1PT445nc/JMZDCwObtW7rNrZipL1rsvCWj6DvPX/3Ff+bNqzecvz3n//h//r882NpNIhyVBXyvnBE/HJ9QOqGNyAtjTjLcUopAOjwX1lpGPzJ6MeWdqhMA7wNdNwCapm1xtgxC40gaFYqItlqGru8wxUAGbSpDGHqG3Z7dzR37uw1D1+HHkQ8+/JhZu6Ju59TVgqwLAJoTKfnDAEgbI5L+kAW8DJo8ZsImcPt6TbeV9LzHp2eQIIzTQN1irAN17ylatw0hCYBX1a4A5Iop9i3ldBjaHRgsv+f19DDX3/znv+aLrz/n4vYSryPrfku9UazamuWyYdY0nC5mHM9qbtdr7rZbPBlTO/GOsortzQ23Nzds3rzhj//Vf8mjDz/g+UcvuImBi5tbrm5vub67Y97OySmy7Tb83d//gmHoeHp2xiSfatqGT37wA75++Q39fscX2z3vHT/iyeqEI+3YX1yyvjgn5MRYPEiNtTx97xmL1ZLZfM7x6SOePHuGtvagXrSFcTh2ntvNHbebDd9cXHDT7wkKXF1ztFixcBVL19ImhxkBnxi2PV9++Q3r63PwOx598Jzc1GAt2tWE/cAYE0+ev4d7+xYfB4Ie8Bh00lgfqX1gXK8JN1ffa42+N8Bye3uNLsZ/s9mck0ePit7qhPlijlJCq91sxYtkGAKr1Qpb1YSYePP6W24ur+l2O7SSGNZc2AVZWYyCHDRfff4tbdWy22z55JMPsTMr6b9oXDFeyjlhrJjS5JQJw8h+vwcg1IF525RDNJMolDd135gfaF5GS3OFENYmxFZrdZhmDOPAEENpLhT7riNFUNngsPihw/tEPwT6mCV+uevphl5yx1NAR5E/xHFg6HbMmoZZ27B6tGSxWGGrCm0t291WUPoHPAhTCHKDGY0zFZX1kkyX5HfSZbNQaJwSN3xjzD1jJJrD5xmtwWRimSqHBCGIW3qI0gQbJcaGKsV3kNxcaPXikh8VGJUgaA4mfkaKECXagpJAIZMjMVKSNdSmJFZRVI+xTOwRx+kYFD4qQhDavMRh90RPiee1hS4K7/KdpD5XRUJS3g87Tc+EwaG1pGAoLX9OOYqEo5joef9wPh4AWYOxlqpyzHWLi8UA2gS6LIbMMQS0spATKkWayqJshU+BECLWWWJODOOASVYiKrXibn2LsooxeXSraZe1SFuSgogUZJXB+0hIFB8O+fmlbBFpmzKouqa2Sg5anVFO0RzPWB4vWT1ekueOXClGM4KK4nWUFapLhK5j3O8Z9xu0gsoZXC2MGhJkP0IukjajyUUionVitmqJITDuPPt9z/nNJVd3N+z6PQmHywaTdSGtCcCSkyIXQ+bKOpq2pipm3A91iTGpKgPUzLNnT3n/+TOcMfioMFaiIr94/RWPTk5ZzFcCzvZ7uq5jv5d46f12oFKtRHIH+UjJoKnRakYePW9fbtmtv8HvFf/sX/wRp49XHB235BLdLXVAmfAV2ZimjLmNGI8LBd5gnSYqmSbm4isyPRf3c5lCeRNXXGK3JvV35HGH8567mw1XVxu++PKC1zca1T6mWr3PRjuOT5asHs2Ajt3tLZuLNeNdQEWLzpGkUplcC6BnrWUM4SAJss4Vg235GL2/B2Af4NLWSkQfhnZWMV9I9Kq1BhWEZSCy1uJhQz5Mt0RunKVwJpOCltStJPtDM2uJ/YgW+h+uEoAjWfA5EXPGKMPcOCojXkfJGQYLIwnvB8aUMTmThgzbQNh5hhxZVzsWJyva1YKqvzcfDONIWzXCbsAwPz7jZHnE8XxJuNuzu9swDqN4hGh5f+u6oRs6iVPUBu00ylq0tSwWS6yx5Jjww8Cw3dFvtvS7LbEU23VdsTxekIhs1nfcbdd0+46x7+k2W8J2Tx485oEj7YWxdX9NJFWlLMa0mMpilePo9H1Wp6+YH71mf/eKprbMqppn1QnoG9bbHrbDIcYz5+KjmUW/f3klVOv2zQXnb9/w3rPHLJcLVssFR5+cYFQDyTH2PdEogoZglDA8lYZikBpHSYOIfS9Sk0K9j1E06qqy6MpIqpsBiJSDGxUS/WbLfn1L2HcsjhoqZzGTZYuSgtZHTcYVJl9dzrVICiPr63Nev/yaT3/1d9xevMLve/I4kvqRlCgSWy1yZ0Gjy30vjLWHuqY0PCHZib9DiCI/wIIuNck0lNJKDGeNNoQ8sr5bc3t9zWxmOalWDNutRJZbC2MAJzIWbUp6iBAkRHKai826NqAjGRijSLzImW4chNWmhfE7ARRKSVM5JQ26kvwCIhnKkwE+iXEcSo3geO/5h+RnGqUcxi356//pb/n8s6/4xd/+itdfv8YmxcwJ6yv4SMwJrzPNasXq+Jgnz5/Tzue4qpbfL0PTNhyfHLM6OebFhy/EeNt7wp0nRC8m1lH2J6Merq587/2POBk8Q0h0fWL04H352bET9pUe0GZH3SaaxnJycsrtumO975kfLbne9gzB0w0aGofVFmcMKXmSUeTCBum85+3FFf/x//2fWJ0e8/EPPuKDF88xTpNKIsxE2tMTc6dgrcpMzKRS3xVmptwE5WRUCipLmvqEcg7lcg45BaSIThHnB/ztDdtXr3j1n/8z65tLdA6sljNmdY1OiS4n/BhwxlKjcCmwqhxHTc2qrgndDsJIjp5GJcJ6w7jODNeGaj4na40PifeWc44+eM4HJ0cPtm4wsVLk3p0q4AlEP4zPSr2bmXo0Du9diF4kKsFLGml5PzWKyllyDIxdx26zYc4cRcYoRdZJzrxxRCHeSBLHroSpXQCcqq3Kc66Yt42weceRqtWYOqNdQpkkDLWJxZ4nfpJCJ4XKBXwZYXe3pdt0bK/W3F3eQEy0TYM1FSF6xtGDNejCrDg0ibqMX6eeEQ5/eIdP/zvM9Xf//JD8Ffiz//Sf6C5vGPodiYgnMibPfr9D5bHUzo7jqqJerZjXFdf7ncjcVEajOGpbvA+sb9f84s/+nKNX33L2g485+uhDFlVNXTfs9vuipsgcnZ7w+ddfcbe5YwwD//znf0pTDKAbV/GTH/yIZdXwdLHi46fPebQ84mS1Yj/0bHthk//q00+5uLygHwd++sd/zI9++lPapj2wtSep1eg9m60Y797c3LDd7RnGERszL+aPqJua+WxGbRwO8cFLu4Ht5Yb15Q2f/e0vuLt6i9OJTz56yrxtsJUlKljnka4xeNfydn/LsHLCXGstRkW0H3HrjnhxzZOm4dnTF99rjb43wJJzoq4aQZ4enXDy6JTFfMFivsRaSwgRP/bsdz19P5Jipp3NUdoyDIHXr9+yWW8Yul50xro4jSaFsbY43ms2m47Xr8/JiN/CydMTqsZi7eEOl9v2HlhG50lpeXix5f+c6F6/c5sfpl2qTGvLSFurSSUk6Ttlehx8lI04Z8Z+lAmuyvR9x+3tlt22I2YNxhES7MaREEOZikeZRnQd/W5Ht12jjo9oqoqqqnC1xFoPw0AMAaM1rp1932X6vSuWKcvkESDGTTLZmvxY3uFwHBqWCdzI2Hs6odIielMJlCWmSEhKPqKwZJSmFHK+gCdZYreNwSQrPri5pMck+V55agInJoFKxNIgKi2xrFOyyO/KgvI9R5+UlBjleTELHGNiGAJdN4IysqmjD19/f5uUpu4eaSkHjsbokhCCKkWW/F1rc4h5k3ssP7hEiMI4sM7RmArrDTkmknF4Lb4VxIRyHBpeg6LSMsGOubyHZf0zokUmSxzwdrcjG8XspiWbI5pZhXbTATIdFbqwIUpTXmqUg6WXUmCcMEFUuTdMQlcW2zrszBFrTbAQlGymFMla8INMAodeJGHWoJwpEeyZg16DdyUqCUyhKdYGWzn8EBliz2a/Y9fvGYLHkMnZ4LLBYQr4J/dodoURYw1V5VgsFqyWqwdctmKCqBRN7Tg+WonRbkqSqKbEET54fwASjTHi+zCOdF1P13WMo6duW6Ep50iMsXjGSDyzSpZ+1xH9nq/Va07PlozjGUqfsVi195BIkSVM/1Dy2UoRVcyglWHy2U/Tm33YO+8JtxMrjSQJTNF3hGFH6LcMuy03l7dcnN/x6tUlqXmBVi1B1VTzOe1iRtvWjJtbdnd7tnd7xiGhrZOmMIXi46Mw1khDE4Lsw0mYWqBKepkWj6GSEvUg66bVAZRyTUPV1Liq0P/LvjOBOylFcpJ4cgkZKAk/BQAKw0gYB0IBZpxz1HUFTY3vh/KzwOeAz8WHwJrS0JVYWDQhl0NbOSprqHRFW89o6zJZCyO1rpirGTPV4qgZ08CQRlIUQC5bh3IVVmeqZkE9W6EHRb8fUSGDcVirSgKg3IcxiY+YNJOy9zd1jVGSSpJ8IPYDoe8JfU+KHm0MutIYpxl9jx87bi6vDpr6PIwoHzApUz2kJE9Wj/uyd9rXFQd5h5bo7fnylKNHTzl6/JTt9o0kXzh4tDxmjB7tMjH14i0XOQDSIPXAOCYx/+0HQhjAR45WS/zpyJOzZ7Rtj6v2JKdRjUXV01S0zOiyEsA0BonmHb34pEBpBAWwsyVqWRtFiaySjxjJo8fvOsbdHh0TVimsuT+/EhTmlyIri1IOrdwhXSaEkaurCy7evubi7Ru67YY8enKI4INsvUmRoxjppgwxSNx4jA8bjW7yvacY+T41LKVUzmEZ7JhiUnloogpNf4qLjUFSSpIfCUNP6BxVvUBpS9bpABRP8fEJkRzBNMQxaGcxUeTgOed7w3w11ZHlRWcOz6mAL4Yp7XIKZUgpEqIM1VLOWFfRHp2KP1xU9D28fvWWb755yeXFNeMwYm1DZauS8iJgVlaSSte0M2aLhfhjlYHPZPjdzlra2YyTs1P2+47z83N2+w0h+sOgUIiwD1eftO0SU0WcT9xsBsgWYzRN0wjQpwJKjWgbC5iVqStYrWqOj2e0rdS9knJWSVjAQSoQyTrK4K9Epvb9yNfffMsvfvErxjhiK83pkxOMEzlsVqnI25UMYUtNWXbtQ337nf2BfO/uJ62I1EgHa4LStMeMThEdI3YcuDp/y/Xrb7l8+4qcA8YqXPEJspXGRcvoveB2yP5da02VM4wD+/UdRiWcBlsVH6ZynmT2sldlWDhLvZixbKoHW7fpl/9OLV32SXOINC+wy9QXUWrb0nDFFEhJQjy0mnox6SKckcTNFANj3+OcOTBTSxpE2cf0YaBZJuVS32lZT1NZqlQL09873FhhnZCLlJ16kHvkQ01jv5zJYmtFDuD7ke3djt3djt3dlqEfxR/QCEgg+2SS5Ect5y/37wDf8WSa/nt6yRNQV65D/V8YLO9WTg9xffvyW8zg0X6UQAgyISd8jgxDIkVNSp5GtTilmNc1gUSfMz5nxpBk4BgULmc21zeMZPbBs+w63GqFaVuSkfrLVo7ZYsF+HOjfviHFyCcffczpyTFtXeOM5fT4GB0iebfn0WLJsp0xm7Xii6MSw9BTW8usbanqitVywXKxYDGXgA1SYhwGBi8hMOMYBKQNHlPYvpV2LGZL6qqiqWusEp8e3w9cvznn/Os3XH77lpdffM68scyO5hzN59TOCrtUZZJSjDGzS4mb0OMrLcNrBeN+R971xIs1p9HwYTXjB0en32uN/kEeLE+ePObxk8c8ffqMpmmlWYmSIjQOoqe/vLhmu+1ISXN8dIZSjvVmy69/8yk3VzcMndzgVXbFt8NQUaO0Ba0YfM83r95yu90QUuBn1R9zfLLEzmuZ9JRir/BWUVnc5WmksJBiXVgrgmwWt7dy5alp03DwX7EasmSiKVUKoJSISTbdfhwJIRB9xFC8KlLg5ctv+fyLr7m4uOH40Rknp09wdU0XJC5RKdmghmHg9uaWm+sr+u2GyllWq6VEfjnLMIxcXV0CmdlsxvIBmz3vA1VxaHbOUTnR/I8hlgZLmiugJO5KeocpWfZGu+mtlon2NK1JmZDF00QHhfVlEqTudYuaiFYBZSpMcYPONoonRlLk+M5EJUsqVM6JrCI+ide7QpN1yUOHQ1yyrOsU8WXISAqBHzOjz3hv6PqRfe/pOl+KLSdJP4pDsZQnRK009AVzAq1EO23NgVFkij+FsYXKFiYt9jsI9wNeMji01K5iVrVCbo0RXWdC7xm9TPdNLpLylNFRpE1WWXzyjFqKK1dVpJgOhanKsN9u2fd7ovIE9R7H+Yjjk2Xx/8t4L5M3kNjPjEUrkXXFHMsUTyYJ2loBy4hAkLV2mlxpooVgMl5Lwg6AIhH6LbHvSaOnqipUZclGE1HEKIWZ1fJaU9H8KiWsHmvEPyhbTVSwD55Nt2Pb76UAywmy+DhN0jdtLaqyorHWioQAHkdHK1588P0Q6z90SSMg8qnj1YqzR484Wi7x48jR8YIwjtzd3IrxcEHvldaHxm293bLr9kSfWc5lWirpQp6YhRFhtUVjIGj60fOqOyfRcXH+jBB/wj/6k0/Epy5HUh7Lc67BKmmklEZjqCt3eMVE0NqhlBX9eQHjSEjMbDED1miJSO17Qr+n36/Zb265fPOWV9/ecnHVcXnV8+EfPcW7FXsf+eTZKavjBmsTV9c7Lt+uub7Y4H2idhUZdYj8rWpHVVXCUvQSpz0GT1vNhOmowNUV/diz3+8ebN0OxZ3WzGbiIeImA2sloGJMxbMmSQKDViVK2ShUcb/NfmQcEv1ux9h1xBhxzkDbYFJinwLCYo/sx44he9AZXTtGpfEafClqVVRYZWhczcq2LJoZj1bHtLOWECPDMLKaLyURbNZQNRVD9PRx5GbcMyhQViQzoRvBtmRTY+uIrnpUzGSjaWYNtmnFDyamwlwQdwxVJsLzpiUh03XGQNztidsdYbcnxxFcBRVEFei2N+y6ntvLG2pTSyPtIy5mGiTd4yEvhbAqM+Vu1uXcnzZmZVGmYnH8nCfv3zH4Pa/e/oY+9zjgkxcfUrWaxZUl5y19tydHAX1TsmKKXprscYiMYySEQL/esZy37K43nK5OCaOn6/as4orl2YqmnlFXWkx4KUbhPhG8+IWk0RcTyALim5JW0baHZyCTxBA8BAiiMR/XG/xmS+2KHl0BKpO1AOtjjPhoMc5hbYNWFSBgZT90fPXVF3zz5RdcvHmN3+7QMQqrKApDRCtFyMKYiSHT+Ug/jvgQGR8QYKmyQLoaAS9DEgArFAas1qp4oZWQ1cKe00o8EZyzMgQBdEooHwi7Pfsx0DYrUA60u59wK4FYYumUJF5dWLLOGYyreLfBnKzgJobKNHmYmkNllCTZGAWkAhBDSp5h6Bj3PRpN2y5ZNnP2u571es+3L1/xy1/8mq+//Iax81SmpqkamqqlUqawpGW/reqWZragaRdoY8nTxD8ltDO0ixnNfMbZkyeQ4e72lqurC4ahFxA4cTCTfKjLugpMllotdNR1hXM1bXOM1RsMHpSnrjIxhHJ+r2nbxNGRZd6KF4NSlUi5ki7AV0Tpwhg3GYzFVo6U4c23b/l//T//A6/evKQfd/zzf/GnHD9aMVs0kL140wEqJ6Iq3nXl9U5MhHd7gXs4JRNJpSYQM2CjQKWMigkdIy4nTAqovuPlb37F+Vdfsbl8w9msotYGlYVRqWtNZSo2Q4c2ScyvDTSAGgZ211dcXZ6zaGuOljMxpi5DXussQwjCZjSGyipy5UA/LMAypbpqXd4BmQZhrGUyss0pCdgwDWWy+KlkJYlkMQfEpkFMicUb0FBbK71SjIzdHqVEDm6tw9lG3tMkTBYBcMQjZBpWxpJ8pazCNJK+poPDhBHNgLEZZSNZ+7J6YglgrEiXU8ykkEljIvSJ3V3Pzfktm9utnH8JXO2oXCvD2CAS5LrUh9rYe/YjqoCnvAO0fPfKE/h0+Id3QJf8kCHNcP7mDXPjmKGpFAKukIgm0/sRHzLjqPBhkAFR23B2ckwfE10IbPZ7kh9BKZZ1TdftuX31hq9fvmT9l39F+/iUxeMz3v/RDzh9+pjl8TGPHp+Btbz69hW/+uWv+JM/+RN+qn7I+0+fUlvHyWJFkxWmH6AQBBKZunL4WDGbNXz44Qt+1PyY2XzO+x9/yMnpKbP5HDeb0fU9u92W65trNrsdxkjy4mqxoqkbYZnrCpu0sDxTBKPY9h23t9f8zd/8FZ/+3d/z5utvcSHzr/7FP+XjD9/j9PiIuqAdUYGuKvabPeebDW92G8bFDNdamhjo35wzXt6Qv73kZ//0f81Pzp7zycnj77VG3xtg+eTjD5kv5sznraSm5ET0mRASfTdwc3PHq1dv+PWvfkM9m3N69pjHj9/jq2++4auvvuGrVxe0puLR0YyVq2kDKJ9RPmFzJCpNNI6hWRJsxg/w6W++QUXFs2ePefHiGY/OFmLGrynNt1xaQ11V4g8wpT1wP4FX09+LB4s01WKgJoOTLA+8FZ+RnMQPQWfZjOq2JYVEHDzb6zuuLs559eotv/78Cza7jozh/Q8/JmdpEDKaYRCU0WjF5eU111dXrO9uWC1mzJdLVkdHtO2MfhjZbLdc3lzz0Ucf07YzXFV/32X6vWsMkbpMvq11VFUtRWKZRk3eI+KwLsUNZpoSaSjyE2EtgDIOnTXJanyfDtNdpbVoIpXIcJwW1EH8W/L9ZFZbDiYYqTh8Z+nishIab9bp3lCqXLl44kiBpctkUgm4koW90u89+z4weJGu7HaBfojEoDGLGShDzCAmXvfznKxSSQMpkw6FTKbMPWMl51yYKwLGGGOK/lcc1UVK9L0frz94yfstB29TN+hitd0oQd93u47NVkzARJKiIWQpFrWhshCzL8+DwlmHcRZbVeyiZ9Nt6fZ7Ls89UUXutnfsxzPalTi0a+ewrjjvZ4PGEvK9ARjTR0IMB8t94KqGqmmwTY0nindIoXoP40Doevzdlqbz1BjqpiYboc9npUg+QpaJFLqAakoKXmNlLCTATqKaW0JuqPY9T3/wHsePj1CDJ97sYO9RfWTp5uJibjRBK4KQaEhojlcrjo+OWK2WD7hwwnBQxvHixfssF3OaqpKpXcps77a8/Polp8enWOOEsrnZ03U9/TByc7OWZ1MZtNXYWmGDQXsYQieFpJHi2zqLjhDDyN3VyKfDa87Pb+j7gRcfPubJ8yOss+QcpXilAKF5YrIIyy5nUMlyaEpToc8z9ahORkIxkP2ecbuhX99y9epzbq/fstttCD7TLE540jzDripy3TKbzzg5Pub9p0v86Nnf9WwuBtbXA7t9oKos0cjkOitF1/XYylG1tSRQjYPIgcaRdj5HWU1OUQBDikzoga4MYDTGGprFgnbW4qpS3Copvn0KjL4n+IEYRpyGujIlxQlqp8lRMfaRtNuT9h2p73GLJbm25FxjY48v3kgpjsTgiTEQidC0BKcYrWIoxo+NdizdjLltaVyLqRYybYoJO460XtO/umW974gpMD87pjpZ8PjZU3Y6EZRMusYh0YfArh9YzFrcuMQrxd36jtXREcZWkgbkQ4ksLN5PdU3bzqispe93hP2e8eYWf3NHuFuTNmvmteX46QmP3n/C/Kjh7vUt+80anQOtrdEhM3Y9ab+D0aMf0vOoXAe2HnJkyd2rJxoOZHDNEY+efkg2kc+++RvO3/yWodvQ656PfvqcD8MZH//gmDffXHB1uePy7ZaXrzbsu0Dvs5xxQQAG4zSnJwuOlzNOj2csGsuycawakQO0laPSGh2SsA3Rsg+W+4zayd4apSg3pkK3Lbqu0c1MKPSHSTzk4In7HeuLtwybNWocmTctliQebzLAJaYCjmOxusaZFmcsw37P5uaWbz7/jE9/+xnXb94wdAPDrsMATmmccvgxElJg7yN9BJ9ALOcUAYmufairKkMSU2qymBI+JUJOwuSxhto6amOwiKk2xevLGkPb1szbmUjhEMAmj5Ew7OlubnA+YmIs57hl0o4IO0X8uOTN1cWo2qKKqbsqgIp4t5RQhcMk2xyOv6zKRJ9UPBkiMQQg0zQtFoNKmqurDb/+1W/54vMv+au/+ls+/+xLhv3ArJoRY4CoxK7FWLSKUoM4SztfMFsscXUrA8QyyFLGSKLKLLE6PiJ4j3WWk+Njtrs1L7/+hu3dLTkLwPEdR9EHuDa7Ndt9x2IxE+mSrdFKPNVy8qToCXkQOgEJ6KnrxGphefp4xdfLW4ZBEdPEigykHKgaUDmisqJ2DbYwnq2r8dsdrz//kj/ze07bmg8+eMrp6RGKSFM7AdyMwSqHKuyjCVTLQYxvJ5xFJXlupsFBzOUsyRmnFSZldEzoMRE2a9Y313z1d3/DzcuvYL/leFaJsXwKxBSEzaHlVkomgwGnDSeLGS2JmkilDddxZOgjGxVpG4crww9DpjFZPH/qij5GiYc2D/jAlUsXU3YQ8MBojTFOrAMQzyIzsVcQsN2W99KnKAB8SsSkCT5RGU1TOyqrqYwtbPJEGDr6FEVamg2mriXVFJgCLcCikSAGXdnCss6oKIMfGyMpGlSSfkyXNDCJLZX6NA5ilJ/Fa5fN9Z7N1Y7dTYfvPcpLQlVTVTR1gzU1XTdI2h8K7SqMrdDGyWChhA9orQ8Ayx+8/meeqTIKfrCrQoOX/bE1hpAlpWogk6xGFzaL7z02jNihwzU1GMfMWharRwyuZ7ffM9z0LOsKmxx1StiYOH/5hm8+/5K/+7tfUB0tqRcz5idHXFycs12v2a83/Pv/6/+N4b/cUf/855ytjnDakl3Ncrlg7Dsgkyw4W7FsHfNHx7z4yY9pZi1109LM52XfVOQY0EBTVRyvjljOFzgnQO0kgVRZYZXgDaOXnuVvf/tLfvvZp/zqV7/im7//nLz3LEzDf/Ov/jU//PEnnK2W6Bzk/QLGGEXJMAR6n7BzsTQJ2z23X7zGX1xxqiz/+KMf8G9ffMwjU1Fffz+PuO/dAZ6dnRJjYBx6Nps72mYmdOKQ2KzXXF5e8vLlS66ur3niaqq6YRw8wzCSMfzgRz/hUdMyU5p5SvTfnhM3e2Lvid0WHyqCd+TcoGpDsprkE1evrkm9JPag3me+rGlmMsHOSqbzuew/0808ReWVkuaeXXAYQEiTKMoQjTIiHcEUqlrUZdJf9oCQScEzbvfsbtdsrm9ZX17TbbYoJQ1i5cQcKUWZthqjiTnjh8B+L3T/nCe6Z0vdtqAU+050ZrP5jOVqhTGGEB6u+Ewp38cRq6JfNhLbK42rOkSjTjKod12xhRo/uecjNEIjh1NCknhCFN8TGzU6GmxyGCMVrlaxwBbluZrOilxWLE9GuBwORIqUY1qtyfcjQzEflnUR8zpJHYkR+jHRDQnvQdniw5IUSpXou8k9Xd1TRSeUWRJmJgGEKuqxe9r1u8OPCbEWmi6EENDaCSj0gJe8RUJfdnWFSlIMoDKzOCPDwWxMFY14zBldfjmrNJWyRCV+GjklTJZJw6w1JCKYTB882+2GqBK6tixyxNV1Kd4UWudi2SHuibm8ugNpMityLI7xShheWss0QN5zaTpjlGjk0PfEMMo9ZixKWZLSpY0o6TEplKkb9wVvUSnlklKlLVStIeNYni547wfvE7sBGxLd62vGmx3hbk/ljYBPqsiEyILRGcPxakVTVfjx+8Wy/cF1yxFnFE1TcXK0oq4qrDFYbdl3WzabLXe3d5ydnEmxkDNd19H3A30/0heTOK3FTd1ai60MtrL4OKBdVSiYcn8k5BlM0eF7w/rG84u//g3b9S37/VM+/OQJyk50V12AzEmXW0a0ORdApSRxMe2gJSkqi7t6HPZcnb+ku7uhW98ybG7QKTGrZwSnUW6FCg0Njk5b6nnFyemcWa1Zd4Fh23N7uWYcvKjaTFnPUrx1w8AszcWAuMiEYtHn5umZ1KpIhizt7OHklAlhEiknbvfaTswtEPlCAYJKIpoiYdQkNUhi9JpHcvKoOBK7jth15GFALeZoq9CVwdSWfhS/iZzCocjXSuQoyWqJYM4JqyWRa+YaalUdGgdbt5AzUVtsjqy3HeuLK2LymFmNPZpTtS1dHg8G66ZyJDK9H2jrSowVYwPbjfhmKY0ffZEHyb5oK0fd1DR1LfKUfiDu94TNjrSTj9jtSSYQY09MA11/R99tGPstDotECktcpIpBIkHtw/lBALJHH84U3jlx5JrON2Uc9WzJ6tFjnr7/EevdObtNz+X6imfPj1i0S1Yry2Lecnq54/h4g3YXXN/sWW979oMnKzEQrRvN8/f+v8T9V49lWZqmiT1LbnGESdfhEZmRkZlVlSW6q7p7MA2QxABDAryZf8C7+YUEmgJkA9OgmmmVlSVSi/AIl6aO3mopXqx1zD2rqymyDeQGLNzjmPkxsy3W+r73e8UZl2cnXJ6c8OhiwcmyZT5raG2FTQrpJYwU36OjMXj2GcumcsWQMwmksihbI7QlyRz5ncrzeZS/hL5j2K7BjWgimlKzlLj3UPZ7UvbcUEgUghQCh+2Ou+trXn39ivVqTdf1OJ9juhMU4DoPzXyITCExRYmLMMWES4VdKB5un9Ml8yNbx+RUv3gcgR2lcrp4sAiBSHnN+ihvLuKPsrYr0v1+Pex3RCGxUmKbGkweAChxjEk4xtAfhy2f+C+UojHjgJGjelogysBOlVutsKrTsbLMcphj0gYBpiEydgOvXr3lV7/6Hb/59e94/c1bpsGTosC7gBKyeJDowiBSCBGRUqGNRRtb2NnHn+1Yo0iU0dlQ1FqatuXJ5WOePn1KdzgQ3MQwHPLK/oDXbdft8GHKe3CtUBqkiugClkP+MY97CmSZl1YSazUnp3OWy4Zd59n1Eykez65EUhL1ELQ2rzulEMDEhBgnpvWW8faOMGsQRuFdz6AlTiu0tWhTIZVB2AphDEc+9JENIlJCRF/AlcLmEJmtJ1PM95iPMHl8N7L98J7t1Qd2798ihp4qhpy8mFyRQOWfORdKAmM1QiZkhJm16BTQKQMRjbWEMsyMRJLUCCEKuJHK7559S4SQhd/1cMeRpf17t0NJFk1J3bP/8nORyo2f90ZUkR+mLOOfpoh3kUoqjM5MdQGg8nB58pHkA2M3IJXFpHQvtT8mlaJKhDrcKxOyZ17KvYkqdWVQ93Kd7KMos91ElNnQe3SMhwHhYNw5fB8JA4igUCk/40rq+9Rb5zzexwKkFHlQqbmOZC8h83PIEWQRHwkqUDqUT/qB/FrieNoe8jBCo0Xm7R99TIdpYt0dmFcGKwVG5mTeEGJmlYaE1DlwhhqcK4l/ZEmyDhETEwtb0Y0j/Tjy7uoGt16DNehZTT8O93X73//933OxXHI2X3DyZ3+OFAJjbZEv5nAUZVSWQxeWnyq9hC5JQrGwlRKphC4UuWBM2S9MZj+c++sc4PrujuvbG3777e/4D3//13z9zSteff2KuOt4efGUl08/48XnL5jNZ2ijUT5mBmrK6ZTaVlQ1WCfoVh9Yjz2boSest1xKw3dPzvln3/2KcxTtGLDDHza4+8MBlkfn3N7est3umKYJcQ7WVEwusFrd8uH9O7795lv2uwOPnwqaps3xxIOjqlv+6p//VzxpW5oY0bstr3c9/eCYwoHdbo8aDK6yxBhQs5ZoLVFrNu+39Oue3d0O29Y8enaGNIss0RApG1Klo3FKynSzdOyKP0FWKHQu8pfFUnFJIbJGWhZmS0pE4fPmDkjncZPH7Tu213dsr+/Y3a3ptnuSjzTzGbPFIsdSRwrNv2fWzgg+cNgfOHRdYTnkiUPVNNg6a+h3hwMhRM4vLlieLJkmR9/v/tDL9J8cWc98BFqLUWsBWIIvOmcpix9JXtyK1WQhAh3brLyQqLKJCKmISEJxGVdB4oJEBIWJCi109mshv7dMxermWAAlSixXCTYTlOhK7ul4x4Xs2O4dAZdYFsvjYMl7mFyiHxPDkAtGDcQoSMV/Q6BIQiILsybfEKXAun/n48+XTT8/1lnH1bJQSovJX/53Au89uvh5POSRiu+NULnhEzGb6OUozgxejNPEuB4JqcQHlmZKkgEWIWWOCEySwY/5PYBZ0yC1QE8St1vTHzrG4IhGMkafo1brmkWSaFOhdMAYipxMZL+X46aYsim0SPm6yaSQQhe5SWEYuXQfQ5n8mAn3KkeGIxQRRSiYf6VN0f8HUgiZuimOQFyeFCYRkRaszCwPaTS2/RwRIibA7uQD+3d3dB9W+NvuKI2/n3ALLdF1zfnpKUorDvsHTDVJAWsrFrOG05MltTWZxi4E+92B7XrHZrMtRW8+h9nctqfvB8ZhzDGhUhKCx1YGYzW2Nrgw5Xg7pbNJbRDEJPFRQmpIQeGGwE/+wy+4vb1mu11zfr6kmVcYqxDafAQURf6geLSIGLlPaOZ4y0dSnEhxIowHxt2Kd7/9Ofv1LdNhx8xaTk7PqeoZU1QMLAiTRniJlIZmWXN+OafSkKaJfnvg9sMdbjrSwI8Aeb7XcyJNvuZ5Q1b4GJjcVJqhXJx5H9BWMW/mD3bZQopIldPNjLVInQuuI8CSUiQUA0tRRCNKJqTIySuTHwkhs1LwE6HriN2B2HcIThAKpJGo2hD3MUdDRo8BEAIt80RdSAFaQshsGqsNbd2ifTHZRmBMlYEmqVFhZBwmtndroggs/BOSkqi6gimzkyTZgT9ME70bmacZqjLY1OTzXMy/3TDeF0AIMHVF09S0dZU9d/ocgeg3O8JuT9jvCd2BoEf63nLoatJW0HVr3DRQ13NiGEguswpEaUy0fli2X4Hoy61b/MRKTXCUC8cEWhlsM2OuL/nsO19xffct/bThw901P+Rz2uUJJ+0ZZ2dLdquOR4/3GNvy9t0tVzdrPtysyDH2kbqJfP6dRzx/9IjL01MeXZ7SzObUbU1lakTSpEkSgszSyNK/I0NuoLQkSQ0xR4lKaRG6AqUJZAN+cZwEBU8cBvwhM8esiFiVoyqJR3aCJPhUmgN5L/URMRKcY3N7x/s3b/ndr3/Ddr1j7CeCi/iYd/6YyBPQArq4KJhSBljGGJlSkWU+4HUzSX0c5sC9FM+TCwaVBEYrjFIFQKEovLNfR7wHlFLxaUnZx04qtoddBpOlRM8ahBEg85pyDDfIg51SbyRx3+jne+k4wc9d1e+1ucUAHHEEYcrdJ9JHyZcQDJNns95xe73mZz//NT/96a/45utvuLla5euDwo2eymY6vDUWjUZJj0ox7/3GYmyF0prwSRMnkAiV5X/1rEUZg7GRF5+/5LOXL+m6Q07m8+M9A/ehjs1uXcBXg65kTnkSAq1z2AUx5prveG8niRQaLQOVtZydLzg9n7HeT3DXQdIFgNRZdolEo5hXNX4cSD5vTJWQVCGi+hF3uyLMZ2AV037DSP4ZVF1hmxZlK3TToGYzosjgoDQZkE8xIoLHqOwHl1IkJlcuZk6AipMjjY5pveX21desP7ynv72mlqBFQoscIpEBGTIrr8jG6tpkc+MEtTUEN6EIVBpmbU3vXAYp4IhEEVz2nRApM7VUocOk+MCDu9/zHPx4v0upsg2AUHkg+UkPJQQIlffr4BNTiHgXkD7iXARrqYwtIRcZHI1RQXJ4nzLAInWpG2UZRpr8rY/eY5DXOQrIGiGpxDEyWpQBXyznJBZwJXrwU2LYOzZ3e7QThD6SRoEMWfaU6S+5gRelJ3E+4HxOihJSIYpLeB6UcG9ynCPOy5D5H8Im93PoT18XPOwqmQ8rDIoiX0sJ5z2HMCF2O4RckGxJZg0i79XeI6dIkp6gJGmc2EdHHzxBRpQymaWVEnNb42a5t3pzfcNmPWWzZgXo0unExN/9/U9Z1C2LquWPv/wqG8lWFXNxgvE1lH2tauossYScaphTAEos+5FAkNlISqmsrIjklLoCiiQhCTHRDT2/+fZbfvGbX/H/+I//Iz/56U+4vV2x2+z4zqNHPP3sGT/6kx/x/MUzGiFzWq9UBDdSpnJoW2OSxjjJan/garNi1x9op4GXl0/4k2cv+Off/yHyzS2299TTH0Zy+MNjmmvLxaNz5ssZ2+2e9WbFNOVIrvfvrri9u2WaBv78z/+c5599ztnpGT/76U8xtmY+m/P89Iw2BBgOjHcrllbSzAzTZEnrkeQ8xICQNseSVoKh1vRVwxgSm83Ev/33P+XFy8e8/OIJX335AlPlQnQioHOCLao4ikMqG5+8z9mOQuBldo4IMZuqSgRKJBSpmM0JfAK/PeD2HbsP12xv7hj7AT9MVPWMRTNnPHW4JJidndGenlLVDYdxhJRYtjPGccrMnutrhn4g+EzPb9sWpQ0uBN5d3+BjYr5Y8p0vvos2lmH0TA8Y0zxOnsl5pskjhENrTWXz5Ce4DTGlIsUQ2TNDqEwzDsVwUun7tSIlGN2UM9CriqEfSCniAZ0UPipw4MNAP3RYHaiqRFMfqbnZ90WU+FyCxPsyQS+NRS6GY54SHcWQ98VN/q8WEIJgcpHdfqLvPcMYCckgVIWSmnGKJFSOCi/TwDzCzA/6cXoVU8wGdyWlIMQRLS3zRYvWsqSDQN6A8iIaC6tASnA+MY5jThoR9YNdt3zCj2lNgSAFtjGoSqKDpAoZGQ5C0LmJcZwYvUcJQQgSo1L2+PACJTRW16yHwOQS49BjzmfMZie0comsLXeHNYOfWN+uSCFR1QNVUzN2I7Igz/VsVii4Gq00ta2zVw8yl0NCosgbX0yWmCriJOnGiXGa2HcHkB6jFZUxWCEgKqYoCeg8u0kC7yIyGUQyQCLE7MOTPaiPPi/lFOmAUpK2qajPamQU6Ci4WM7ZnZ2wW8y5FW/ptwdcP4HP/kJGGU4Wc+Ztdk1f3d092GVTwOPzM7747Dmnyzm1tRATm82Od28/cPXhmv2uy1HUIsd7D8PI6m7F7fUdbpqQZaoWU06TEFpiast+26NMyvd1fYKLPaSAaSKjMyRhmFlL8iuuvh3o1r/j7u2KP/2LH/LyO8+5fPYoq32UAJlw4mMDoUXKUjcUwkdS9AQ3Mu7W3Lz5hs3NFasPbzipBc8Xc5ZPHiOTZnQJ5wVCVtxsetajYOVqvvenP+Li8oKz0znbmxuu313x7tVbbj58ICSFkBqhNEKqInGQ7PY7LsMFtrIYq+9NPp3PPljaGLTWDH5EmoaqerhnLoqEqTS2bTB1Zgkdu6okIcpIFJ6U5/goAkZKJA6ihzQipMOYhKoV0h1I3Y6435LcKcLk57dSFeagsZViVlUsF0tU71BjoO9GxiQYpULZivnihFk757Q9RXRZHimCwLiINJpoK+xFzfK7L2BeIbTg/Huf0T45g5llmvZZ0y8VxtqcXjOOdIc9lbZIKTk5OUUlQXAeFRLcS2A07aKlnVdUlYKhx603uNUdab1iuL6mv7uh390h28jYaQ57CWbEGqhODI2WTIcxR8X7A9rGnNhQPSzAAkcD5lyE/97rIuYkOlnYLcJSmSVffPXnuDBxcnLGL/7+/8qrb9eEaPnB909ZPJ0xv4xcvvRcvvyMN9/e8Ob1NT/+D3/H+/eOcRypjeKzz57y8sVTTpczFAKjHDJlM1+ivjfX1iYXKMmk3MRLBUqTpASpSChQNUlqQpLZkFCK+0n7+OGK/YfXdNdvqbotTaWw0kAwJSUtm80HpTKIQIVWChEdbhq5efeOX/7kr/nmd7/h6ps3+GEiTgk/QUgSH2NOZCyxziEKfBJMJS1wyrY7hWHycIdJWSISE3iR/YA8sNlvOcxPWNYt8/k8g4yVpW0qdtMATZYbBx8y+0cojDHMZk2W9JLfq3cDm+uBzWHP7NE51XJGe36SJYYpmw0LJUBkFsGUYmZg5lsna/7jpxyCY00SOJpqxnHKNi8ckwQFm9WGb1+95pc/f8Wvfv5bfvvrV6zv9uw3B6Z+LJ7HASWynNcU/4q2ssQxYLUCJRik5Oz8nLPLC4Q1aKsIIoOzRwZL1dR89vlL3r59x37oSFLw3/wv/1u++sFX/F/+zb/hx//+32Y2S3i4unK2nHHcpGIMSOkQsqQocSD6Hd7tczILhpQUKVYQElrVXD464bMvLun9xDdvXwMNWmqsslipMQIMEhMTrdUkHRnGgToKqskjN45X/+Gvmb55xerylPmiwQWPT0VWow3SWHTbsnj0CC8kY0zYxRm1rTBao4NH+IAfB7a3V9xdvyf4EUmgEoDzxMkRxxEVPDIG5mRLA1lYK8KPGCGplML5fC9pqZhVmi6FzEpJDpVCjqB2A6eLOW1M+JgggFCgpaRtZhwT+1yR40WhQT3s4I4CRB0/nM+Gte1iwW57yCa7xtzL3I4GzlFEApHtMLAdJrr1nmmz48XZCcbOsXbOrBEoFTJLTwqqqmZyka7zHDZbuv0Os7OcXV5g2hbd1IjgwRowJVWo1OMcWboF7ExeItAIDDFo+s4z9p79LvdmyQfwMPUe6RUGizE1IXpCciTv7kMrEgkfijRaKVRlEdaStGEcekBneVDJovU+MgwD9XyWT2FhrcjiI3PvwyIKuCLE/dc81DH2E7U2GKkJMfc3IUT8vid4z7KuYT5HCEmVFCZpdMpDs+Aj/dRzNW4ZiajKsqgtkok4TmglOJkv8qAMwTerG24Pe24Pe3zIDL4kBNfXt/yHH/+E7XrLsyeP+ad/8ee8eP4Ma2foaDN4Jz9hJJH/P5ZTluf8xfOzDAWOwst0lHulyGG3483b97x+847/+7/9d/ztL3/Gu6sPvLt6S7fb0CjF54sF/92//J/zF9//Ed97/jknVFhyL5+IBKXxQuCk5Kdv3/LjN+/5j+8+8LNuj1rOmM/PeewDz84ueHRywsJYXAIbE/YP3OT+4KrGx+wzUdUV58YwTZ6hH0l3K5yfEBLOzk94+fIFCXj35jWvfvc7zs/OSScjH5SinTx6GJCbDS2Cylp8U+PaGj8EovfocUIaR1CGPqS8q4ccYeh3nts3V4S+ZyYVj59dMls2GK0yfZkjTbPMsWQqztzcUwSPt/yxlZdFUiFDIo4ONwxcv/vA/nbFtNsT93026ENibIu2NXUL85hQ8yWL83PqxYJNP2bQBmiblturG7bbLWM/EkPxOxE5CzynETi6oefs9JTl8gRlMn07piOn4mGOacqRat57jDEFHcz0VWNMRmtDKEhtXjB8yMWD4Ej14X7NOP6ZEydlYfSlMuktk7CQ40qT94gU0EKCjgiZsgyrXIUjTex4TVShJSJkTrcogNcRYyclUkgElxkrwxDp+4DzOY4SWeXHK0kQJaYWiSwRbKlQUj6VQsUYIclM0ZfZ1V6WWEZxlAiR7jejLBs6Iv55EptiIviAcw9XwABZ1lKm5p6A1QYlNEZY8GCloE2BheuJ2x3jfo+LgRgclYeZUsiYWw4VE7XUBOEYgmc/DrRVpvKdnJ0QdaKbBgbvwEeSC0Tl8EIinMMpSQwTSulsMqstzg5oZVBSZ3PGMk2TItENAX1wdJuRoc9RlSkGtIVoCutXaxIagSZFnRtuASEGpCimdLI8E3ktBmmKosXnIldk7XwCPCnL05XAziua8yXCRdxhyF8jDozbDmM1dV0xn89z2oOfmNzDSYSMhHlhr1iTC3fvPZvNlrvVhkM3ZHBFaVwIDNOBrjvQHQ54N/Ho0SNMmfDnSOrsK2WtZegnkkiEFAoAIEFGlLTZQLNAUEJaBInkJevbiV/83ddcf7jj5fee8eTFBe2ypVk0WJlZXqSETAKCx/uRYbdl2O9xQ4fvdrjDjkYJmotLWp2otMYIDSlHmTtgP0TWe0cvauanZyxOltRNhQD2qx2rqztWN3elITwyCSVCmuwTkEbGMSewgcAYUwyzi5bWTWhraNqGwY8fabsPdByTfGxtUUaXqQtl/4iFCRaI0ZGig+SRQpWYb0VSBqEUwoPwuSgVYSQOB9I0gEoImdM2rDVUtaWqKowekdHDYSD1PXib9fvnF8zPT2hnC6xuSX4gjYE0DEybLXJWI9qa0FQsP3/C7NkFyiqa8wWyrfA6R1XeF3+lUZRC0u0OBD1hpMYqhRtHfIioYkJojMY2ltmizkkXeKbDFlfuBbffMew2uOGAkpGT0wWLsznz04Z6XiHRGXRNhh4YUyD1Oje1CKJ82LXyY74MH4eMKZVpbWGuCe7RgYSirk549uwrtNSMhz0hTWz2iev1yKOLFqMleqY5FQuSUtim4m61oh8P7HaCuqlpFw2mMUQVmfoOh0KPB4JzSN0iZAUYpNVgFNIqogyZvWcKC5eY73EtOSYeCkDERHQj037L9W9/TX/9lrC54+lpgxUyF88hkjKXiuATVLYMGSpUErh+oNvs+PqXv+DNb3/H3fv3GS3xeS+N4SgJCvgQcCGDKyGBTwqfZP57JIMwn5QED3HIcEwqK9I/IfAkxpC9BmKRFJhjoh9FtlAezBgy6ySlowREFTZyQhuJkfl3dGHEdTukDMRKIdMsm55LnX3dROZPHo1Sj+8vEMXbJzfUxKMX3H0Vk69VEnif2K32rFZr3r19z69+8Wu++fo9b779wO31HeMQCg1ek1xmZAiZxxOqSJdy0p3AJYGIYKyhaipsU5UJe8E1OEqZCw3fZDNYoRX9NHJyfkZMga9++AN+9auf44IjDg8HjRltilQ3N6jW5IFTiiMiepQgM0+jQGTDMySZ2VxJxbwyXC5rbueGRjvAoFFoAVpkgMVKSVtZjMrT+GGc0NJSacHMKKQb8YcDvZFoERljZoXkeGcPyiGGiX5wbPueu90Opw3Pnz7j0cUlZ02D9B7fd/RX1xzevSO6ASMSdVtnBlGKmUVLkXEqMuMzBlJwRbKRIIRswJ7yMyJlwujMcyRm80+p8ucrozGFUZNSLF6H2YNuCj4/A9oSTIOuW2zzgP5wQCzJnaJ4mdyz/oQqniPyk6HqPe+fECNTDHQucBgC3RBwY8otWnkOcwpfyKwTmfdTg8LaDEKEFInTRLfdYb3HeIedNfn8JgNGZ9aelCR1TJQ8dgGqJOXA2HvGQ2QcAyFvxRmsilkuKI/SXREzkz4eZbiFl5aOlsoBQWaviOJtdPQYFKVfEIXt84+nhBZ2xyes+I+ferjaBOB6s2VeN7S2ZqYtxgh0yhLu/ehIIYdc6HqGMlmWPrmUzZsFTMDoA5OI2JTHlPViTnNxyRd/8iOurld8uLplPY6MgDEVISR2fiCkfM94F7lbbfid+oZ/99d/zfL8lGrW8ujiLIPUZNnPvQDzGF4SC+fuPnXt6LFZ7ClCZN8fuL294+rqil/8/Bd8881r3r17z89++Wve3Fxz6PYMw4G5VHzn8il/9uWX/Fff/xM+u3zChWmwIa/fkPCAl5KRxCEGbvZbNtPApATnzx5DbZEk/N0KaRQued7cvOfFvMEqi+ymP+ga/ReMjVKJjM2xgyEmhn5kchO2zhP/tm05OVlwdX3Hu3fvuLu9wSpFJQV30TMMjtp5Fs5TCYk0hlhXTG3D4Hrc5FDDiK0cGIdJlskHYsiUNJci+2liOnRczpfM6jZP0VtLYOJeByALrQyygWn+8fMRSqBXzJO6FBLeJ9zomA4d/XbPh69fsbtb4w8DNYLlbIG2Bq0tUSp0VTOTimU7Y3Z6iqoqVm/ecgzdSDGy2+047PbZ9DbFDPRI7mMwjyaz7WzObD4vk4CsB4wPWME454rWMBRAIX2kZRlLAsI03VegUmY/DfgIatz/vfzlSNnLzvmlHCneCKn8k+QCQjpc9HgpkQGkKbk/x2q3bEaJXKAc6bqyoL/iExouMZZ40IgbI9MY6PvAOAoSVW4oZZVT4IqvSvbtyGZeogAmCVE0wsVr5hNNxPF7S3UEUsrve/yc/BRgAchyqxBcRpIfGGDR998vFRaDKAk6GWBJStJKwdxPDDGwnwbGcSTFQAqCOhlUZi0jUsQIhcITY6QbB3SsMNLSzFuCiOjBILoue7j4SHKeKGWx4RaMwRfjX4VSBmcqlDZoXaFsVcAXg0ia6jASdc/msGMaJ0iJxhhk8cvxMeIbmSO4yQZosgR856Aoc7zwBBxHFYlUOt8HMRNJRSlOIiIbIxY2lqkNZtkiQmK+PTBNHhci9AO6MlR1TdO2WfYRwoNO94xWzNqG5WKG1YqUEuPo2Kx3bNY7hsGhtUVpg/eeQ9fR9z0pRiprOX10iZIyf+7QZSp4Np9hGkaUslkqIiVyyAWslDnZKUoIxUxTCAVJMXQTb7694e7ujsCAtRGRTrEyoa3K2vFiaOenCT+MHFY3HDYrXN+TpoFKQGMN81mLLlPdGFI2PRZZ474fOvZDIjWas/Nz2sUMYw3RR7brA9vVlt16X9aVTwEWjYgZRHPO4Xy+R3Mk6cciy7ucTqC1vi+EPtJNH+aQ+tio/P4U5mhemeOyHSl5pAgoJbBW0lQaYSW6JoOaQXHYDgg/4fs9fuyROlPBhVIZwDAmswxCgGGE7R7Vj2gRia2hWS5oTpdUsxkqaMJ2IEZPHCaG3Q4lI6qWCGVpHp3k1KPGZOmYSPjoPjaBKSEL7TwIydAfiNIRlaFqZ/RDAUGFQMacvNW0Fc2sRklBDI7hsGXq9rhuz7TfMXZ7oh+prOL8YsnifEG7bNGNweoaKQ14lSm7IsttAQYfHzSJBj4CLL9H4RbH/ytAS8pM1nxSJEbPODt7jtWW4bDn+uprRu9Y7xyzZaLVAmUlTfG/MJXhsw9P+XD1jiQCs1lLPa/RtSIKx+D2ucBNkjg5tJ6hZJXXMmNyDHBtiaIkz1hTjL0VSSSkzMkcSRyBhIA7dOyvb3j/9W/xqxv0eEAvn6NTZln4mEhkue4UBFYapKrQqkK4xNgf2Nzd8O1vf83N27fsV6vMTnOR6CPeByYXcMGVhCDwKXurhZiyVAkIMXsvZDXOw9UnMmZgRBzlrOQErTEGXAxZ+iryvnc0nPx4meU9yBIC97T+JPO+IZXEKKAMQMLY4WTE1zqn01U1spL3vg+QUIUtkEoNcZRwSkFO3CI3a9nfPi9iMXqci3Rdz4c3V3zzzbd8+80bfvHzX3F7vWG93tN1Q2afIdEyg0hHYEYJkZPIiucMSiJjkfVZja0ttrJZG1Du9aMB+RFkFlKibTax78aBJ48vUVrx5fe/4uzy4l5i+VCHVhksTSKhtcJoiRCR4KfCDAejTFaJRwmxeMbEhEpggaXVLCtJq3IqmySiyQCLFgkrFbXWVBU4r2AXUDJlfzOtUbEktvUD08wypYAXCYFCpVzfRx/pRs/NesWbDx+46Q4cvlgxvvgM8fgxVUoFsN4QNltwA8iEEQmtcqN+LxMv60huFiOkkL8mkcFrWUT2Kf/dGJV/9RjRlBhkmTBa5TANoRjdmP1XEESlGULAI0nGYk7OqJantCfnD3bdgAz8Z6S91N6Uwam6T825B1jybw3iYzrZ4CKDi4wOQpB4n6PHjz6PBR0Gcr+jlMTo7LXkvMNNjqHrCDGUYRrZ+DbmfSodB0chFKPvzGSJPhK9wDuY+ogbE8ElxNEkmeLRdA+kFAsEQvHXiUX2n4okrDiNiRxacZSxpPvfW9x7w93vJGVAzfG8/L871Q942Vb7A66YjotWUSmFkbl2C+NIChMyJGaywkiD1gpPzPeXhCl5pphN703KSo3ZbMbJk6f86T//S37z61cEqbnb7QlFmjhMDr8NGfgjMYVcr364jvzNz37GF9/7LqcX55yenWZwWBwzNOP9EC33nflPeZRiFo8dHzzOeYZh5P2HK7755ht+99vf8T/9u3/H629ec3Nzy9X1HZ2bSESshMuLC77/7DP++Q9+xB89e8nCtlRSE6csA4sCkhQEJbMRcIgM0RMUqNpyenbGJCJ+HOn7jil6umngw/qGF0+/RGr4B4LQ/4+PPxhgmS/m94hcSDHHJ7U19axheXpK3410+4Gvf/stX3/9LW/ffODxxSOWswqrEmk8kPoJi+S8ntFOHiE1UdfEk3PieMfYT3SbOxYaah041w3eT4RxYNPvCY1CL2agJV//+luCi2xWe15+7yV2ZhBKExgJIeSHTOZptgyB5D0pBEySpAC+n9jfrTlsdmxuVrz/9g377Y6+66h0xdnpGWeLE85PTknk6MrdOLHfH6gWc5aPH/P0s5ccxontoWPykdlsyWG358f/8cfsd7tMX6UgxeTiIITE4Dw2RM4vHzM/OcXUNT5EtM7Ur/3h4aJHx2mi73u01jkKtxiGGqVomybTYqcp671l1m3jpzJZSxmt/6Rwzf2rQMkc2HRkwkl1NKUr6cUuEsLEFHvUCKkSUAlUpZHWZuAjCbIt0seYYVKJSk7ykzF3JE4jwXmG3rHZ9QxjZHCSIOfoSqN1g1RtoTs6nBvztS8sE2lyI54Q91q/j8hbMTpTeUMwRmGMKJHCha0iKElBH80ZpcxZ6uPoS9LJwyWaANS1YdbWyBhyQ2ckyhY5U2Wwi5aFNKTa4K1iMrB/f0UfQvbqmBRK53jn4GI5HxopA91wgAME6Tk7O+Xk/IxFOmG2P7DebvDBMw4j1tockSnLVMMnkvcMfmCf9iSpEKbKsatKIbTCtDNuux5jLd5NVFZnH5L5HIUmOpiGhPcKawRWqzKNy6Z+QpkSqZ0KPVHmyEadMs0eQTbuyJHsogCGIkWyeavGVRK1UNkHZIy0SII1jDHRmJp2tmC+XDA6h1DyQWnvZ4s5l2cnPDo/pa4q1qsNd6sN795dc3uzQSrB+cUJTdtyd3vL+7fvGIeBL7/8ktOTcxbzU96+fctmvSHGwNnZWZFiCb787ksEAu8jV1fXSD1yOOT73bMnCsEULT56XFBorzGmQkmLSJ79asP162/pV++51YLz+RJTWEheeMahw7kegqNWgnktsLMWXbStIqR8DQtDfjcMeGnovORq0+FEy3xxzrOXLzg9neNHz3Z94O23N6zuDgyDuwd6Y8pMD8FH1pgLI33fs9/vUDp7kCiVmRjH+Eel8tfGGBmnP2zS8I8dSWRTV1NXuaO6L6FyExWCw/mRcTpAmqiMYDGznMwrZrOGxhpqYZAhkXrP17sdvt+yu4uI2yUmnqDSPJu+aYVWmq7rWP3md3C1xq4OzHRFNCDEghdffo6f1QQhmdYDw7An7DvSbkAwghwRtUdXgbOFRc00Zl7o5CFAV1IyYsKQMNYyRZAhsu9v8SkRlKYVin69ZpymrKJsKppqxtnZgtnpDNcf6LsdHz58y3Rzx7has739QHAddaM5fXTGd7/3GfVphZ5pXPToqqy7subkZE4YA+PlyIe3N6w2W+7WD+czlo9/AK7cl8nl5XQE1I8vSaCibs5p6gWnZ+d88+qnbLdX9MMNh16itMTWAqUzuGhmc74/vuBm+5r5jeL87JzzpzPqWjAcOrphDaNDuEjPikrXKGlJSTH5QJISZStQKmvCm5a2nZf1ThP0FmlqhMp09W6/5e7DW779xc94/ZO/pUme00qz3cw50efYShHQuKhI0YBukLpFmxqjKvr9hg+vX/P1L37JL//mr3HdQJg80zTR9QOjcwzTSDdOTD5Lk6eYJUMRRRS6bMGigCzHSNIHBFiA7JwiQGkmIp137KeBzo0sQpOlBtZibDaeJpJlhSr7NoxTpB88wxSJWiNN3s+NlugksTHBMOLcRNxN7McDpuuw8yXVyRnYWABpnRvfY81zdAFNH/GcbF+RiMmRQiRMjtubW968ecebN2/59//+x7x9+571astqtUUKTUpZ+ipV3kMzBJBBkqNfjJGyfAgQChXyubFtxXwxo523eTpVbnGVKE55+TUhJVVdoyvL7fqOr37wPZ4+vuDs4ozf/e7X/PpXv+L1t9882HXTggz4yAxCKpFj671zpCkhksrDkyhyAx8FznWM+z3DekV3dU3abqnHkUdW0QVfGIERqxS1jFgBlQicLmpchLsNpOQgKaxR1KZIbFNENg221hij0HWFTQaiyOanKTGFwKY78B///m/41c9/SqU1f/WjH/HFkyecNi0tiZNZhYoKnTyVIhuYS9BG4VPCx0hIuR4RQqMz6SybjiJASlzKDCerZa5tUyRWHhmKTNOU+1hqEIp+6vEpg6pOCNZCE7XFLE754p/8JYsnT2kuLh/suh0PqRRaq3sPo6NnkCzpLdlu5ON6qo2k945uchymyJgsQbXoyoDIGUmRj/5uIoXy3GikFFhrMFrinKSPnn7s8W5k6A6MXUc9azF1ha3rj54sKvtwRHKq0bYL+KhJyaDlHKMqtJBMyRHICVQhTcQwQIgZsBGqmAUnTEwYA8okhAhZ0kZOpjRVZq1SasFspa3IZtapDHT+8bVP3H/uHx5H2uTDHKtpZBc8djhw0x84aWe01rKwWT6ZYoQQqcYBrzWuqqCySKsJIrHuJ8aUwWxpK4YYmbcNZ5+/4Lv/5C+YP33O+YvP6ENisdly0XWcn13w45/+LZv9jsFNSKVyL3zo+Z/+448xs5rVbsvF5SWXy1OslkSf2YCZdJRlVrL0k85F+rGn63tub+949fo17z984NWrV/zy17/h+vqG29tbrj5cMw4j3mUShLaGuqo5a1v+2//6f8Zffv8H/NPvfcWprDAeZMoWHD7mhNAgBcJYlICaxHe/8x2mmxXj7Yp9P7Db79huVtz9/BdcTBPxyTPal99hrQLY7Dn3hxx/MMAilCrMgITQmlBuKGUVZ5dnLF1kGhxCSOq65uz0lHEMNNZSKYWNkbbSNGgqoxBTyJnXTdYfu5ApPeuhI447fJ84ESc8P2uZeYXeR96HCWkktrK0izmb3Z7u1cS27/niq89oFzXCkAGWmDWTyY2EcSJME64bcIcR30+M245x3+HHiWmcaL1ivrxEnRuqWZvjwqTkzvvS6AUGN2FnC+rTMxbnl0Sp6ceOw36gtS2/+/oV11fXrFbrbFAVs5eJ0qowILJJnNKapmk5O7/A2jonOJDNwZzzjOPDNeo+BoZpQvU9s9ksUxUzrxNrDDFGKmNx0ZdUklTcaAu7IxR2SqHMZZPVhJIJrSWBbKIrZUJpUcxIc3qB8MDoCM7jbUJWAlVrbBOQxoK0SJGlO5KUx2THqaMPhWEUCM7hxgE3OfpuYugmXFQgaoyussQAiYs5VQghsZXObCtjMbZBGFOQcMHgPMIJhMt06AJr5yZPg9YlwUSK+4L8aNwlJffNnRC5sTfGIgT37vkPdRgtaGqDCJYwDcjk0TKhjMjyECEIRMyy4UxeoGcVXgq2qzVTN7B3E1roXCxTUrFkjtHTBMLkGPseN5+V6ZehOVngdW5mU6GNpxTRUtFWdQZayGlUkxBEqYhaMwkI0eOdJ+0Cpu+x2mQWh6lp2op6Zgr7gAJa5kLVhVCSj/Ikx/lIpWqMPsYuBqLIMimdQgbDdDbSDSERAwghM5sCSRQ5hUEZhWwUfj7DtQ1T0zEaxTgODDESleLk7DQbeS5nD3bdHj+64GQxzxJI79ntM2385nZFN0y0bY21DSToDgfWdyva+ZLzs1Pm8wW3t3dsN2v6oUMpMBoqqzFaYytdpqqJpj2jnTnWG5kNyPcTzgV61yOqBhcCfpgIaJ6czDm7sJw/ghfPLmhMYtzdEXarfK6kQepAIyKtSiirjwNiYoq5CCxUfjc6JhcZxsjtduJud2C183z9YctnX33J2dkpF+dLtIJ9P3FztePN+zX73pW4dg/eZ+ZNAJnEPX2UCOOQk+rOH51nrbxWTM5lLXXIIIs1GUTabrcPdt2kygaFUskCsHxksKQUCMnjwoT3I0Zmb6nlrKFpDMYKpIoQHclHQt+zv7miD5FUNcTHS2aVoK4Uwqg8sVYZRM6SqIStDIvnT2i+ekH9g89QJzO8lhDy1HYMnqnv2KxXCOWol4pGL8szNDBNHfqQvcxCCIRpwhZWVyMEldF040QIgXltsSI3d8J70jjiuo5uHLl4+Zy2tsxmNSFO7Lstm/UNN3cfCJs1fr/HuY7F2ZzFyYxHz885uZijakDnIk+SgbTRe2Q0CKmo54bLJ2fYWUW1aB7suuXj98GV9MnL9wbvKqfK3cs67ieRIEzNo6cvOT0/I4TnNPWIUgNCdwR5IAqPFxNqMXDyTGDmDZ89u2S+BJUcYxwRwd+bUzZaUmuQTHT7A5vbW8Ycb4epG2zVUjUzpmZOLD4kPmqa2RKhK1yE65trtne3rN6/pRUGKxUxwW9eX/FMV5zYFtPWBGFyQkfVopTJOSyT5/bdB96/+ob3r75h3O1JPuB9yKDKMDC6icG5TBv3ARdi2UMpTlfhfvKY4D5Z6iEBlo9XLScHjcGj/EQ3jQzeMUVPTBGlZE4TMgYZpjwNQRJ9oh8c/eSYUiRqhVcBHxwaXaQKgrbSBCWI3uOmAb/fZuaKENh2gdAWDBACQiiKrWUxtC5JajHLXAme6B39vmO33vH3f/dzfvubr3nz5j2//Plv2e06gk/oVGXT0PKLGpnlDalIxUWKGFmSdbRCq+wDl2K6l2HXTUXd1JnBIsmfO16FEO99UADqtqGdtaxXa0Y3EUjYWcNXf/TD/G/lA163mJ9vYt4fQoqZOevzedcoZBKEfmLsDvSHA3e3W7a7gf2uR/jAy8dPscny4fU1375Z4X1CyEitoZbQGsHJrOJ8mQ3U26ZGeJ+Bz0pnn67KYpqap19+gb04Qc/bHAUcNCJAmrIIpHMDX3Z7Lr77kl//6le8/fZb/uZXv6Qfel48esT3P3vB4rRFRkeceqYY0TIbLGMM0Xti8AQvMxuPVJq6wmJK2fPn2COlMpADQbIleKAY16Oyp5wQ0J7Pud1s2Q0HhnHk8vMvWT5+xuXn32Xx2Rfo2QxvLPbBrlwGBFQZSuV48SzfUCWxLsZIoKQYyQx/Gm2Ik2N0nsMUEKbBNpZag9CCnM6kQeT3ixyZ4aEMwfJ6q7XKiXRkk1Y/TfTeE6YJbS22tghtyqBNEkWu6UOCTR9IwiJVw8lyTtvk3slNjm4/MgRH77b4bpPjtWNCRYEShixfUQhhIOUwkph8Bsu0xFibz4eQxzlvAUNlYWVQJMKF8VN6pKM/439ePvRwh5OZpT16R38IHPxIrTWtsVzWNa1QtAiiG+hHxU5m8Ch68Cmw2a9RkEMklGE7jcwF6FkLVnP69AmibvnTfc83v33F+m7FYnnKZrXh5vaWu+2K1WGLSImJxL7r+Nmvfk0Ugi+/+z3+5V/+Mx6dnWG0wQdHPw7su47VZsN2s2W323F1dcXV7S2r9Zp3795zdX3Ldr9js91yt14x9FkmPowThIhIoBE8Wp7y2bNn/NWf/oj/+i/+jJcXFyyWC5RLRJeIMSCEzumEIrNjUgItBI2SiK4nrjb4DzeMqw3DYce43TC9u+J1iiylZPbnf8EmjhnYs39YffKHS4SKQRwF2TxKK6QSKGUwBqqq4tHoUVIxa1tub7e5kA4BObncwB77WVk0mVJSo5mWgTEEuNEMYUJOHcH3LKoFsqqZ8Gy3OepYpkTwnn13IKwDu/0OZQWLszm2lbjxgPAO6RzCTTlmxuWoZ38YCIPDHbKxrkyJWljamUHVNbquUE3FRGJMgb7PCHMQCacU8/mcZrGgmc8zshpzJFa377m7uuXu+o5pclTa3p+vYyKDFNn13dqcJNQ0DVpnk0eA4DwhZMnCQx2JvJhMhXpvlCZIRSw6e60zVd1P4ZPLW4CFwiA5KnqyVOZIwctSiKPr+se4u0yD1wgIkKZI8o4YEiEkfHCZNmojQoPQ9p6Kn7LzWy4fJkfyPhdE48g0DTnNaXREH4GcHqOkJolMkY6FboyQGKMxVY431NZkQ8FCNbSlQU0pIVy+IY8AkiqURqWO/iv5OOowj0BZSvL+88YYYsw014c8pMxTuKAVY9cRizRBKYGyiiizZl83hlrOwCgeTROQ2AuB6wb66Ikpu4PrlLWRSkg0gug8bkhM44Btcqxh1VR4RWaOTY6x64tUK/vZqJSLBl2o2EGpTCfUuciLREYfM6jpIvO6+cj+sQqtM+sEcUxMIY/qUrn/Yp4URT/ifKDCUltZZGkB8NmEtbjJ52ZAQLwPFSagcMj8/lrgKktoKkJd4Y1m6kamEBC7LbqpCYIcm/5Ax/npCbOmxSjFOI7s9zkpbb/vcgS7UFhb40NgHEaGYeDi0ZPCMBPs9zuGaSAEj9bZld8YSVNrtBGQIjEGqjoymwtClAwjjCGnqvmQ8NHjXSS6gI+e8zRD2orlact8uaBWDuUtHPpCzQUlixnofUGRmyoXElNIRQYH+33HoXccOs9+VLy7PnC7HbjbT3xv1nJyumDWVngfOex7bm+37A5jNrQWqujYPSmJzIqBe4BTIHBuous6HqlH6LJGjYVlF2IoflKaMOZp/EMdUqlPwJVP2/Qylzs+4ymgJHmKWhmMzlHmSWTj9GPiy7jf0k0eb3uq/Qa5nCNnDUIbKixGadqmpZnNwEHdBOYvnzD/4hn1Z08ZaoNM2c9KuAyCeDcy+gmlIkolrMog5Th0jBL0aDPjL0aCd6hxBJ+IaWKKMOx29NsdeFdiXyOHw4Fus6Hve0bnMVJmXxmrGaee/WHLZrvm0O0J3Q7GHiVhebrg5HzBycUJptYIHUgyoVMCUSRVRfqlBCiraRc1aJk9SR7wuPctE+kfvH48PrIRxf3XFvRFJASWtj0jNQ2kOVLuSeyIQBADCE/AQ+WYnyrqpubJszmVTcQxN5bZZDFBFEgZkXHK8crjBre/ZRonEgrpl0Q/EaPD+5HJRZxP+KgJ+z1JKA6D4+rDFf3+gD8cWNoKRTaevtvsMZue0E6cnRXGn7YoU2UJZYAwjKyvb1hf37C7vSP5WLzgPJNzDG5knDyj97m+SalMinMsbOJI5Y73ktt4lEr8g3P8X3J8CnIFEi5mOvroPS6EnIKY0j1LUev8jKZjokiIdN3I/jDQDSOe/Pj6IlOQKevytZbZrjJJ8InJTYShY1Iqp9xUERnJDZgyGcARIgMr5Bjs6B3ROaIb2dyuWN+uubm65Zc/+xmvvn7L9dUdq5s1bso+K9YawrF2EsfGlmwwrkBEsvfK/YcoxuaJY2y7tQZTaZRR5Xyl+zN3H19EPj/WWmxV4b3HeYePkdpann/2GT64Yhj6MEeKU14VhYBP1kUZQw4oCNlYs9v17Ldb9ts167sto0sEn2jqmsvzxyhhefroETfXe8byiBoNVoJV0FaaRVvjkqSta8bukHsHldcoZTTKWhbn5zRPH2FP5ghrUV4jQoIxyx4XRE6iR57OMfMWWVf8j+/e8WZ1B1rx7MUzLs4uqJQAP+L6LpclCLyU+HHEIfAxpx/mK1CejeKDEVQ26Awp4mJAI4uk2mYcrNTQZQZIkqAwxC4zO5zUtJePOH3+grMXLzGLE5I2OV3zAY9U7hdZgLkjz+K+tiUnZYrSrKXCbDkOxaYAUleoSmCVQOIQ0hQPvfBJ3VzWinvJPiV2XWJiTvKKQWRZcILoHH4aizdSZqghMsgSEPgpS12UlsTgECLmWrhSBKfwUwIxEWKXgdB7V1WLwAI1eZURZAJ7BCFzD2tUua6Cf7hXHGt/Sk909IDKfd3xE8fPP+il+v3rVpgyKUZ8CoQUGJVkdA5FYlSaSUpCCExC0JGDA4JIhBjoxp4TU6MS9M7TJ0/UCjNrkcVHrkVy9uQx2+2elAQKzedPXjDTFbXWTONICiM+5XX66uYWYy0/+du/5WJ+wvbyEU1V0Q8du8Oeu+2G65tbVqsVm82Gd+/e8eH6hvV6zdXVNdvdgXEacxqqm+79WmICqzRWak6qhi9fvOR73/mCv/jjH/Hy2XNO62zijvdQvKAQFK/FvDRKch+rfCAeOtQwUTuP3OyJmzV+sybuOw7rNUPfU89aphQYiDR/YHnyX1TVyGL6F0kgUwEPshRECok2hkdPzjk7O8O99Fx9uOX26pr9esO42eKmkSlJvPIYnWn+Mmlaa0lSEaWivrvibnXFNO5Y7W45e3rJqa3RynCz2dMNjok916sN+7Fj8g5B5PWb3zJbNizPZrjdFoYRMUzMraWta+qqYl7PqZTBKMv8ZEFTN2hr0ZXBSxhSoI+eQ/G0GBP4RUs3jqRksMpw+vQJJ8sz2tkJq/UGpSxaGn76t3/H1YfbnChjq7LoUujt6T4euWkaFosly+USbQ1SG4TIBlCjG5h8wIcHfEqFwofIODqmyWG0QXqPk5KqNhidi8W+aGdTynpEH7NniywJ2HkBjvdLj5SCuq4QIuHcUWaTQRYlQCMRURIdQI7ES84z9IHUTwRjUKZG1y1CK5KURBE5CkJDl1lH0U9M01DkARGCwAiNEoYoLakwNNIRXCGbiVV1hbVV9nEw5qPJccpTobxnRaZJfTS0LQwWpdRHKdA96sS9n4u1mmn6OM8zxuBcZn085CGJaAlGCfowMXR7jJIsFktsa0lK45GMAqISoAXfP/0+i/mc66tr3n7zhn2XqdZNFNRJI5EIJamiZBgycLW1GjWrUYuG+ekSNa+YppGh67B1BS4ifASfTVdJAl02fqkUyhja0wXJaIKUrNc7pm4iucjUT/jRE5uQwa1mhjYVUlXlRopIFVF4pMjA1eQFN1drhmGkcyOX80UGpmU2ss3GWRI3RrSucmT1J4V6SoIhpvvIi2ANcdYiliOxbeg3O1LxZOmdY7GYszxZPth1e/bkMSfLOVor7m6uubm+5ebmju12D0JhTEXbzukOPcOYY3FPT07w3jEMK3b7LT44lJbMmwprJVUlaRsNBPr+QN/v2XdrpnFAScfpqcZTo4wnErl6v8MNkuglEKmXitmp5fLpV+g6YKxmMXvCeHeX/ZJ8LrCOsed955lENgsbIvQTHDrPZnvg+uaG27sdq+1Iu/yc1+/X7LqB5fmMxy8uefriEY01vLvZcf32jm+/fsc0pRybLnIxg8ieM0KG0nwczc8E4zix3+/RKk+7ppJAlVIi+sA4DCzOT/DRk7qHWyttXSH10fOlzOyPXUlh9MXgs2ZcSiqbE9mkTJA8ISRSgDRN+G7HuN3SjxODsaj1GhZzYm0Zp8jF/Iymqvn8s5fMdyPhMKASXPzgc6pnF8jHJ4wqYp0nTJ7+doNb74jjgJlb7KMlalkzSYcIjsNqIN4KorL3jMkYIxwGpq5nu92zvV6x2+3o+47T81N8M4MkeP/tW3abLUkIqsWc2hqqyiAlrFa3XH94z93VO4bhgOv2aO95dNry9OVT5mdz2tOaIHokrrDs8pReiIjWMpuep0gkYGrDwmraxcMxxvIh7veOcsGgAMNZVy8++rWn0uggEJgsRyXLQ3MR3oCqSBiSEAR6YnI5oaRyLB/XmNjw/Nkp1kWGcSR0jtCH3NAFmIwH4SGOTPsVyu+oYkRgOVW5MTEyQRqYXJbuWNPQ3W3oDhN3V2vu7rYYoTlpFjxenDA6x37o2O0T49s1q2j44bMvWNQtumlRpkYKjZ8mutWG97/7hps379jfrWm0Ze8co3Pshp7dkGuNEBPILAdCilKUlgFCPinlXOXBytHY9KGPCKQYCT6zWPuQ2SsuZpAl+7DkpCDlFVGpPDCJibvbDRiPmgeeT0+ptSRphRc5GU2khM6/CspItDSkKTD2Hf0wMvUO3czQdYtuA6pqMsNWyFInJFLyjIcd09DT7Xf85N/9e95885a3bz7wtz/5BUMXmKaEH0AKm6fmMfvkyOJhSowYbVA6Gwfj86DCKIVWebCT55g5CVNLia0rbGXR5li6HyuwPErIdRkoCXVdUVUVk5sYhgE3jdSV5bs/+D5PXjzjT/7sTx/seoWpJwqRrwHZpFKkiFURfMQNjmnX8e6b12zXKw77HVrVzE/OOTlrObkQPH30BYuzHe+u13z95hrRTVCkN0ZApQWL2nCxXOAJnJ2ccjX02QMlJWxVYaxFVxXVckF9foo5WeCFQkWVQyunLKTSWlFbxeyL55x98TnPfvhDfvbqW169ecPt5Dj74nO++5d/wdnFGbPasr29Yeg6pn5g6AYOccvkARGwJTJckxtBSa4NgwQXAz54Dvs9WuckpLatc4oYOQpaiiNYKXBE1LJlNp9zfvqU51/9ESePn1OfPiLKosH/A/0g/nNHKkxmqSWMR4ZfLnKlVMUDMiCk/AiMyMzu8BFCynYDViuaIJHTPnvxmQqhQvaLK7V44mgaW4YPpRKvjEYh0ELSx0BwE9OYcLGw2KVEKYO2FqE1aI3SbR4uecdhv0VLRWpamqZmNreQDEMHYfColHMpcb4kKoScWEiWLoUYSSLmMDeTU5NQ6h4MSqKAh2RWfioD2X8sgkT8J6/cn+kHXSu1yFIpirekDxEXAlMMTH6gVoqZNiyloRl77EGTgs+yNiGoa0slDCGO3A0D4myOaGrmFxeoumEaJ7roGGRidnJKCoLQTfzln/wZh/2e9x/e0x860n7FNHU4Idju90zffMP/9l/9K379tz/nfHnCsm1Zbdesd1tuNxu2+z3jOOb0wr7Pa5Pz95YKsTzPQmXp5NELZ9HMOJ+f8KMvv8+//Kt/xndffsZ3X76gEhGdPOM4IAJZvl4SpwIQUpazNlLjvaPf7ZhuVixj4ovFCb+Z3nB9c4e7u0X5AM6jgPmsJU2RKBPp/x8AS0yxGDxRIHlAkKf9ZdohlcTUGmMNT+0TTs8XDPuOzdUV/fsrZD/QOY9GIIPIefPJYSvJyemcL777Etsoum7Parvl7vaW+fyUWXXCZ+aC16sVd5t3rFyHUxFhFCdnC6bX75hwbFTEdyOVqphVc9qnj3AoRFJIJQjKUGmLaBq81MQQcLuBSYLXgqgEXmXDKYSg0ZpmeYYxllkzZzlbIIWm60cO/cjXr77h9bev2e47Hj16gkCw3m4Zuy7P0qXERYeUirquOTk5YT6f0TQNVV0Vn5Z476wcY85nf6gjxZgjqika0hjwUTF6j/bZtNRUFjMqkos5Ox2BjLlZyAZSWXwcQ0JoMhOQTHEPSueH4ziBLptHyCgLUWXNvw4RnRIyesQUiWokqYloh7ywaZnft9xXw36C6BDRY9OIjSE31sIy6RlTrOl8S1BF/6kNkYA2mYaomzzNkUoX8zyZU5oKYKSkQKtcsImC0ifylExKVTr1kGMGlYDkc5OPJMVS4pREAWkMWkqietiNUBsFTYUUAj9MdEOP95HKznk0W2KsQViLVpax8TiXGRFPPn/B+ZPHPH/5GVcfPrBbb9jd3LLv+uyhMUBVGYzQ+CQZ1x07fUf0gbpuaOYNlc0JJ+Mw5Omn83SbPcootDK07YK2qhBGkyrD4sklSSkmHzlsB1B5vejHwPXdhm1/YLXbMmv3VFVLXS9o5zOqxmArRTJHA0WBoEEYj5sO7Dcb1KyiarIfAii0tGhZo5oaoUyOja4UM1vnpAWpcMEzuRxJ6+QOpoCMMHvaY7Ul9QNpmBBSMhJY9/sHu26PHp1jjKLvD9zcXHN9c8XdaouPOflHG007a9jvtkx9ZpAkF1lt7+iHiegctbHUleX0dJGN9GRinAYmv2fst/jxQCMnTuaWlCr2fc3dTU/oE26Atj1h0go3wTh2vPlwyxQ6XnzW8qd/8hROLFiJunzCNDj6/cjqZsc0RMYpsd979v3EoR+53R64vtuz2/Wst3v6cchpOLqmOkRWW4Gp5/z5X/5TPvvOCxanc6bR8f7NDb/6xdf8zY9/SlM3qJIuEEgIJZFACK4MHhTWVIzTgRgDzuXX6zKRXa3WSCAGx+GwY3m2yAVe84dpZf+x42R5TlW1GbATHyfGMkXkMKC7DtMfeDKrsSlQ6ZwSJGOeqsuUiINjWG+5/uZblA+czGacnp+RZhVjPxDf37KsHDG0qLpl8fkL5HJGLBHr7ek8Fwsk9HrP/uqO4W7D+O6OhkB7MuNyOcOfzemt4OA6XIoYXdHqGouE9QG/33O4umb68AG/3zHtNgzrLTIJZtpwOn6GlhvGYaL7xa8Z/IQ+WdKeLmiWNVEnVoctN1+/pn/zDnFzQ7vb44LHtIrl52dUzxt0q8GkEtag8lqVfC4ChUCLxCQmYvJMhDzx1BrzwE3D748P0z/yWr6a93+kT14TCpIpAyNFCkUeIkUGH/BEIUBH5ienzCuNDgmNwu8dU+/wfWDcOqTL7xkFRJ3NQJenC+ZNQ3KQvMboGcY0VGZGMgqj9oyMNMs53d3IQSZYKSpTYzAsZcPC1wiX6J0EL9luepw9gGqp21NscwJC43xgs1nz7vUrvv76N6xur5n6QwZdhpHDODK4gI+CmI6mHh/NPUJKhESh+Zd9MX1y0h7Yg6UXMMnMEkg6g8GkyBhTMdvNRr6yeMjVjcUGRe8dPmT29IcPd6z6DZt44OkPP+fsckkzr2mkyObwKRKjL5P2gFCRWkh0EBgHw+YWt1uB1lTzJbZpMFWNqetyb2QWWXd7y363Z3W35qd//Xe8eX3N9dWaw8oRvCYGBUGQpCKHmni0zoJpI1Q2cC3sy5HMJhIyT4ltYcH55Agy4WTCK4EwmrpuaaomF1bHuhtyvPT9YxRoK8VJa6hFRLiJOE0kn2UQtp0h64djaSqtkekIYorMyPCRaduzudvQ7Q7s1zvi6GnbMy4unnN5+RTbNEQkt3dbmvmMUxRf/fD7/Piv/w7JDh/AVoIZilllWLRzLs4uEFbyxdiz366RMRISaFuhKos0FZ4sJYkIPKCKGWmS+R6OJaFqkoL27Jzv/MDyv/nv/3v+zb/+13z79Sv+bz/+Wy6efcYf/1HFH//x5zx+/BlhHHHjQN/3HDZrhv2Wbr0i+gmK0Xv2YymxwkmQQiA5h5BrfBhJCoy2oAuDXchCkMz15hAizeNzThenPP3ij2gvnmGaBWhNjJmlJVD/ry/G/7eHFPdxyMYYRMpBItEffVOOqVwqm3BT5IJ2Do2FfkFw+f4NcsJaiWkTonJEIrlNNuRRvMx2eSIgYh60ihQILmJEyqCiMQQVs6m2yGtQoW9j2xZtLcpYDk4wDDFL/PyWg0/4pictl9RzQ9W2LC/OibFDugGVHDUCEbNvkw8eL3a4KOh9AmsRtUI0FaEMeX2IuHKOhITox7y/CfEJcJTveYUiFdQ+/V5U8z9kvz7M8S9efof1bsf+cMh+OHiSEth5ixtHhhhx08TgJ2o50CjFom5o6zqvnZUlJskQEgOBRdOwuLjk8cuXJG1wY8AlibINp481Td2SBs8XT54RnOPm5oq3qxum3/2C27eHnNxEYuonvnn1mvW7G6zSKCkZJ8fkXZF259F3SqmA5fen6SNcXGbrQiS0kjx/8pw//+M/4QdffMk//5M/4/LkhNoadPB5oBVDHrb5QBQaLXQx0czvLMky7BA9Yeh5dn6O6noOqxXrm9d0+1v8tIfgsEhaaVjUNfv9HUIq7B9YnvzhAMuRTltOyHGRT5+epZjdqUWBPW1li8GRRqvEQSTCdgfrLa4PJVxQ5AdPCrTUtLMZJ6cnSC057Nas1luC05wtW+qgqUdJfYjU3mOqnGk+i+BCyAZYPtCNHmErqC1R1jhhiWicTxgfsCowhoQWGTnzQFIyf2hBEMepgKKuG5StMMbSNnOMsqQIk/Nsdwdu7lZc395lSlNVYXS+ideTIyt9UnZ4N5qqqmjqJhuH6rJolrolxpJmUiixD3WEkBdNWcxsJ1MSOAQY7zMbRGXDRef9fQElCr1ORHH/Mx6vMelj1HPQx3jsjH5LIUgyZbBBZcAqj2tyJLZOIEKOOyS4jF7KfN5Rn2gaJ5AEso2fz87f5E0yCU1IBoImpZxAk5IkCV+Q+RIXXJIHkDKbhJYHOD/w2cBMSfFJrZ1dsD86Yaf7CVFOX8qnpwCs+edMkNOEJNUDb4RCS4zIiTFpiqzHDePk2O72LPsRWdhYRiowAikUMQaMrUhNom5qVGOYbxdUi5r99Q1xHEmTO7oKQ4gkH3C7A4OS9Is1VilMZdC2RgtJ8AFvPKPzaGUw2lIvl5mabjSqrjg7OycA+37ASI00iiRTmaZ5XMgMpBRq3CiZRoXz0PqaNtWcNC2yFEnTKBinHP8XMbggkSFTu7XWKLugsjOUbIppr8TYbCAplQKlEcFns2ZTZXDNJ0iStB9JyhaGm8v3gFL3FOyHOJqmIfiJoesyY6Drs5E0KcfzVhZrDF23I4SIMZa+HxiGiWnKDInFck5TVzS1JUafI84leOeRCqxVNKqh0hVuiqzuNowHzzREgtcgszlklInIyDBNbHY9X796z+VFQ4wLlkvDrJ2zmfZ8uNvx+psVh4On7wPb7cS+m+gHz/YwsjtM9P1E10eStNRNS21mdLuIx7JoZzx/+Zy6bUhA141cfVjx4f0dVx/uePLkksoKlDyGPuYJl4Bi+5TXE3n0f4oha2i1wdoqry2F0jyOAzFk8LqxDwew1G2LsiUOVX7CiIgBfGaKqOixlcnNkgwl8jKnF6gIoe8Zdjt2d3cYJbGzGdX5Ofuqwg0j427k4DtGX2HPIuZ0SX12kr0eil+KHwZ83zNd39C/eU93u8avtiyaGbZtUQqG6PO6h+TgJ8LkGeJA5zTibkvYbJnevYObK2S3Rx92VIcOaWtMM2fZTwQ34Q8d4naFkGBmLbO2RlmNi4F+t+dws8KvdsjtgJkCtjJU84r6bIacFWBUeHTMZU0uziNHPULhjhBFBrd9nBAEZHrgtfK+pP3437xG571J3Be/n8RwQkkXygVyNuH4KP08/kWwQKQBIUasmWGEQPmAmoovnReEEeIEMimUyrLbykaMCWhpwATilHB9YuqPZtEp+2iohDJQ1YJUKaJV1CJLRWwSNElhgsSgMdKgpMGamrqeUzULtKlz+o3UTMPIZrPmw9V77u5u6Q/7XHQPQ2ZTTYHcRx3NG2Vh9yRCBB/y0OAIrtz7EcD9BPch6xMnwYmEI1PfSaGkI8WPYI/gPsHSlmHQUBpcKbPsOiTYHgZ+8+oNZ4cty9OWl08fU5VJtC5MJnn0W9MKXfSpKYZMuZ884RAYxz1Oa3RVA6ow5yL79Yb97sButeHm6o672w27bU9wghQUKaly3xfpRWEGHF/RyOzNlwQyB78jkMVGRXw8xypPqZKSKGswpf78dFKe7nPH8x8iJozMhvFWSUTMHnbZ9C+b26sHVOWJdByqJkgRP434YaTb7DhsD7jRoaRmcXpC285oZjMWJ+coYwgRmj5gjKVpJU+ePuH09IRpdHSHAWPACklVGaqqYjabY1rLo8ePmC3mhGEs3hkaaSzS2JKmJTLrqAzM8onPks8k5T3bRhnLbLHk+z/8IVfvPiCF5qd/87e8evOBZnHK+dMXfPHZZxjbolqPmo+Y2ZypP1AvT/DTmGWbMWCkRAqVfY9CaSJDwC43BNdBChgrSHEkJU9IAVV6AoRCS83s9IL29IL55WNk3YLJcnakJHFs6h/uSOII1IlsFC3yvpNi4qi1EEKitMn3joBAxDaKKnh0NSFSV95ixGhQNmUPMo7hEfKe7XZM6hEyHf1i8/2bLxemMLeUzL1AOEY0VyYb7BeAJfSJ4AbC6AhhYIzg3YQLE41vCniqqGctaUzgAoqc4CSRhJhl1DHkRD2ps/8KSkIBWDJmWM4PqaRbHZ/NnCB2lB6JdHz9+Pey94i8H/2nAP9/2fGXX3yPzWHP9nBgNRy43m/Zu4lBJqr5HKs1jbW0UWZLjsnTKk2lLFpoZJSFsQjaWp4+fcbl48fMl0sm79l1HZv9AaSkalsUitnJkosnj4nOE0lUTYMunqEypdy3pkTvA76f8t0qSuLcvYFy+rinwr1ViCwsFaN0Nvo2hrqumLUzvvv5F/zwy6/44tlzLk9OqY1Cpoh3DqnymqpkYQ8jCgMy5AShss7HGEgxoaTkZNFyU5jfF5eZpb/tOt69fotWGiUVldRs+pGQFKn+/3FM80ccpdxU4kgDPiItFHAl5Ri7lE0DtTLoSjNbtpzMavq7FWsiU9iASPlkhYhCI6KgKs2asYZhGLi+WTPsE8q3yNEwmxTn3pKCJQgNStMI8mIrQenEdTKkeoGcnxKqOcEUdLKYruoEM22pyfo7qTRVU2UNXvGDUFJmk875Em0qtLZYU2d6WcimcNe3d1xf33G32qCkRiqDrRou6xn9Yc8wJGJ0KG2oqpq2zb4rOZlFEUNmSKSY8D7gpong3X/GMOkPO7z3uQlIiX7oUUrex5MZp/MERRdDWF8KgxCyU38Smbt7T5fj91jY2uh7+VMiN6pHpDIZSTSKoLOZrCgAyzF8N6VEDAEfIkGQaVnio+xGqzlaZLmRUanwT/JkKKKQKRc0KWpiUsXcNpbfR6CMKY1S/p2UVmTgMxYpzzE5SGRqP3BvdCvlvQ/Nx4HR0WMmM7akFPdrbWbzmAdt0iHf08ZoVC2xsma37el2Pav1mpOTHaCQwuRoWZE3i1hV92yodjlj9viEYRy42Kx597uv6e7WDKsN492mTCECyIDfdowhsFWKVhnMcslsOSfUhikGxuBwIk+NrK1pTk6JAaQ21G3DxaNLhnHCh0SlLNTFhHC/z8kxoycFMMoTvGMcBw6dZzEFopBcPn2K1gYfIrv9mkM3MU4RXc1ANYSUSD6hq4Z6dsl8fpojUCneOapcLK1Aa0wKiFijQsDUTX5+bY2NAr04QU0eE/KXK62yg/wDHU1Tsb7r2G53rNfZ28J7B1KxWLbMFw3Gam4/7EkR6qZls8l+DwiBsZJHj86oK1tkQxNSFUaTA6sqKmFYGI1Ohp3v2dy+Yb8dGQZBSIaYmkyVTBGfBkiernf84hffcnbaMEyep+kCrxre3O342W9X/Ozv3rDe9Ox3E5vNyDBEfBAkNEpVJDQxzZidtKh2gaoaVqsVy9MZy/MLPvv8OdpoxtGxXvV8+80H3r6+5uZ6w3w2Q8wsVSU/mYgLdEmnEgi0zFMHQd64U0oYbaksSKmz0R6RoR8IzmGrilnTPth1q+ZzklGl2Pq43qXgSX6C4JAEbKMz+VlA0BFVQBYZI/1+z2G1ZnN3x8X5M05OT1g+ecz7uma9XjFe7ZhuR047sM/G3DydViShSX7CrzaMd2uG2zX71+/YfvuG7m5FGgbmz54hRcSMhqkLNKqhrltwjml9YLMbSLuIvNkgNlvS9TX1YYOZeio3YNxEJRR1K1iMgf2uZ1jv0JsdZlbTSMXZ6QnSaLppYrXbsru6Ra12mP1AJSLN+Yz6fM7sfI6os6zTB49Osnj3CChmgKSPxXU2gszRnkRBCoL5g1254/Fx3xS/91L69JU8aU6/T9+OSaClyUZ52eSBRAbwJSOJEZkmjFxitEThEC6hCIigCCPgJVpZKtPQNBVNC9YklHKkfsJ1Hj9M7HZ7tIRm1HkYMZuQKqBkpDKSaCQ1OVrYpkDlEjqAQVHpvP7Ozy45efyU5fIcrW0BIBXrw4qbm2u+/fYVt7fXpH1PGkZ2uwMH5+h9wgdZJu95cpiHO5EpRJwLBCisV3G0YcvJe6TCYn44M3cnySkvKeSBVPSIlHDB49PRKjMnUpnKUk0VVWXogsP7iDSS2XJBqhNTnPjJ3/2M2bLm7HLJrJqxqC2NVhir0aWBE3hQGikV1miMSjg34aaJ7rDNppuFNROiIMVcI3T9RNcN7DZ7bm83bLc9XechWlLKkqBP70Mhi1ltGVgpIXMsdeLeI0KQyLZPogyRUh4SRJXj3KuKqqmxVfWfeqiIIwicv6eSIifwGI2IMYMAiSxBV5/Gzj/AET/+GZzjsNkx7DP4FAZHZSpOzy55/PgZtsrAdV72s2l3XbdoY1Da8vz5cx4/vmToOtzQYzVUWlHVBlvXzBZL2pOWZzpyenFOt9lCygwHZS2qqjIwWIAB8Ulak+BYtGVj2RTz4FRXhpcvPuev/upfMGsWvPv2Pb/95g0eRbs85+Lxc2Ztg25UflbPAyl4pm6fpeshkKLDKJXBppg9Z3J2kMCNB1x/wLuByXX0+zWTG/DTQCKhlEZpw3y+5PTxE2Yn59jTM3zSWa4HOaYz5VTOhzS5vTeDkSBUjken7LfH1kPKfO8JndnlUSRmMtHLQHMYCDGinEdJMJXAWHINdm9uK/JA6xOlg0jFWaJ4DUFeU7Qqa5EQCK1JxiCsQTY1dj7LqaPaggr4MeD6CT8NDONEPAjCVqK3Fc2sYr5saBcLnIq4biLF7GNnVU4Jk06Ah0lGklRgVB4Ga30vIRJK3K93KRXz1OPaF/x9dHROgc7AiiwdSv7NP4X6H+74b370TxjcxMGNvN2s+NnrV7y5u+a3Nx84v7jk7Pycp48ecWpqhrsN/e2a1Pc51Seke/mLNob58oQ/+sEf8cXL7zCfLTiMA9d3t1xf32GlyUbs2rI4P+P0yWP8OLEf+7wnUKLlUwarEpEgBKF4UAohjmONrGzgYwCIyOgLQkgqrXh+8ZjT+YLlbMZsNufi/JxHl5d85/PPOZ0taG1FmEYOY/H6JBCUpCmDSm1UTgQvgTIhRlIZsvvJ5RCX2tIuF7i333K7uuYHf/w91HLJrh/4H/5P/wMiZu9NIzXTvsO5SDD1H3SN/ou6iPvm+sgWhY91S5kExRRygYUAYTiaJE0hok/mLJqK+emS4f01w3pPt97R7xw2RLSnnBxDXc959vQlb19fsd2PbG9/y5k9IYyO1gUGF+jSRIqC5uyUxekcVQmCTmz7hGvOiMvH3ElBPZ9TzbLsYXJj1o7OZ1l+obNBp/MOEQI6wvnpOW1TY3RGzbQ0SKGRSXAYJvZdz3qz4d27Dwz9iEbT9wM3N7e0zcDl5SPOLy7YrCXX1x9YnM6ZtXOWy1OqKvvJ3MtQQkblDoeOFCJSCMwDSk300SArxpyYpLIuuDIWN00oKamspbY1wXmcHBknl+moMaO2MR4TaPJbpeJHYIy6NxyLRXuTimmlkEcGy0ckO98u4hNEOAMVQnxclo+HKShkTiU6Gk8qEKpoxiXeRTwhs1cKUmqkxiiNEALv/b10SSt1/w1iyEyde6D6E9RIiI+RsfeIdNl1jhIopRJaB1IKuCnkh7hKPKBPav6+uiHKnJbTNpZl5wlyxer6jq+//Zazfcezp4Kzi3OMyilJtTK4kP0CJhK2tTRnZzz+8hkvv3rJYbVmd3XD3ddZm3/Y7tjvNoQUYIq493fcdY5+PmM6PWHx9BKlFVokZBBUVU01n0FrcVPAWkNzuqSZz3Ax38u1qXBTZiA8ffSYyZ0wTSP7w47+MBEqRdPkyM1hmEjrA7c3He28JQGHbkBZy9lyydPnzzi5mCFkIuLxwaOUxUWNbebcsyAEIGMGfiEznZRCaqhtjVEWX89wqkJsDygfqKWkhCKRHlCxIAR0XcfN9S1v3r6nHyeU1Tx6dMk//ct/ymI2z8k5SaFNjawEwzQhRJZuvXjxhLOLlpQim1XPMB2wGHRVs1yeE8YBP43crid2qzs2mz3XqwNffv+P2HWRV292JHlGNbMkIdltK1x/R4p7+tGx2TtOB4GQF/zv/w8/4f37FVc3Wz7cRg4HxTBUpLggFCM+oRXh3mhPMDu9JKTIXTexGvZ85+lTvvfDL7i4OCWGkf32wDevbvmbv/4Vb1+vkLRcv98wLisWi4rTk4aJwNE6WRWgRZkMpGYWmWC72XPx+CnzRUvbLnBxIhExVrHb7ZhFmM8ezjuHmSXKbKQXZPlZYsymmQScSrhGEY7pCyliZGRWDCtl17O9umZ/e0twjvnpgsXZkvlixnKaGG+2jF+/Y/uz16zf3MGTJ4S375GXcyKBaerp3l7h1jv8doe7vqO/uWU6HJAp0vUDfjkjXc3o5hp7fkJ7cUbT9Uxvrhje3xFuDiyGQOMitZ9oVJ7yUzUM2tK0c9q6xfiA2+3pdzuSVFTLBYtH5zx+8RzvHfv9lrsPH9jf3lEdBmTwmHnF5ZPHzB4voalI0kGKiPRxQpVSnl4Fn+XEIpZEmpC9uqZhILpIcJEnD3flyvFxigifwirpH3zNx5/1yESUSmWwIWWmm5QWITRaWCRHVodCBIf0CuF78CNpAt9H+u2AjAptLEpZ9oeRbvRoE5m1CpMUQYKXkW2fGzRziNjWcrKsaVuD6xyH2x3jbY8NeSLv+oG79TtiNKizBaen51xOlic//Irz775kcXmKk4LgPUI63r/6lm9//Rte/eq3bO+2iNGRJse2G+gjjEmQXeuyQX8MiXHKhrL5I3301RBHwmpm+saCtjzkACjgQSW0BKmBmM22QxoZp57RDbjks+FhVdHGljY0HILLHlEqcnl5SnNWYc80X3/4Dbd3V9zcvUe6wIvHT3hyccHnz19Q15n9RWHGFggtp87pCisNUluGMSfbhSQwNieQJKFJaqBza/bTjnUf6ENeC3RVIYImRUFypbYgz+qMKPVOEsSjGT+RkVim95l5Ku6lICobhooAUtLM59TzGaap//NEhnIj50FexXKxRCRB9GXQmZ3XHrThSx76oafvB/abNWGaUAhOzy5ZNnPqqqausieQkAZQ98CcQNLOl2S2mKRuFF9++UVO+ux7lBFUKicFmUWDnjXUp0uenbZ8/t0vubu6YtjsSEajmpp6sSgeGjo3zSKz0FOZkmd/v9IYJoEIpUiI8PL558yrOY1u+T//63/Nmzcf+Ff/u/8jSld876vv8uLFc+rGEKIgomF2SnOqgEQMrriMiLyfh5Rr1SSo4zF1KuL9xNRlmZ6fxnz/KZUDJmYzTF0jrQVVQ8pJYS5ERPIfAaOHPARFOiVJfKyZQJBL7ewH1M5moAVJ5tjbmUiMybOoRobOIXBoPLWKGAEiRqQIhRGTPll/y7cVMpfw5fUUM/NKyJSBFyFAG0zbIOsK3baItspAk1Q5sKRSpErgxikzolPKUqpxYlIjY+WRTR6S6KaFSeLLPddYRVNVyCihge2kCUIhRMoSQqWKV6YqaWL5B1XakFSW71F8SD/2vQVQCB/JBjE9NOcoH5+pGq9rwkzwncsnLKuKn1c1Hz68Z/P2PWKYOK8a/tn/4l+wNDXaRw4fbun2B8ZxzJ51CkxTsTw/48vvfsVpO+Ow3rJKgV//9je8efeeP/nhn5Bs9jXRy5b6YsnUDaQbQxcmPBGUIsSS6FkAu49DqZyEFu+HK3BUwKSUw6/ndcVXn33Of/e/+l/z2bPnXJ6d03UHun6g63vev37LL1abbMB/2KNkAaoJnC9mXJyc8OTsgi9fvGQ5m9NWDdY2TCEzbQCQClVJVFPxfrPmbr/DpchXP/gB7eUFY0p4BL/9+W9olnMQgnHX4RyI2R9m0/GHAywlaQK4B1fyfXb/aH48xJF+S2YlCEgqFwyZJFlTPTpH1g2qaRn1jnhwTL0nKV/ciyVzW/H47JSd7NiMO7b7uyxpiBEhI0pCkJIgBaPVWQ8+t8xpCfUZNBdsd9lYkihpbIuRBkRCCYNCI5NEBIFGUVc1rbWctov7FJmIR0tVDDgFbvLstns+fLhhs97jXURry2JRlQhEx2a7o6kqmnZG07T30yWjM39DlDMnj1TSmBiHITMPSCXe7WGO7OuSUyWmyRUjP4HWR/aJorI5SjpLhQyTmD4S3ELIP6f8eI1ToYZBjnZDQwiifJ9ciKmy8GTz2LzbpU9WJoFACXnv+nw/XBHHucPvf/UR4UmySLkSRJmNE0kZTc7J9QItsglZKKh8hPtY5UxX+1iIH6+GhJwYUIx+//PnU5S4ZokojJtswFsowg+4tIq6xYdIDl/R2JNTFtKArqhVhapqXAx0+8O9Ma+xFivLdRGRmCIiZTDItpaU5mRBamR2Mmfa9/TbHWEaCd7jfU77Mii0T4jOIU12a7eILAUIOSXI+4iS+p4uKQIQIstZzT7tcc7RNgvatsV5i1SZqZWEw8eOFHJKVBwCt6s79sMBISXd1NEsWhaLBcuzBe28zTGThJwmE7M2vx9GjKmyb07RNyPy5EGQk4dS+ZCmwjZgTiJRKNI44b1D6XzzPWQR413gsM8MFu8D83nL8vSE7/3wS54+PUekDB7ElJkZUili7DE2U+CXp0sQMI4ju/0+g5Ayg5d10zAlSCEbG9+s37NabcBqnn/+hCgqTh8P/PTnG/bdxDA6pHTENOWJpixFVUmgWN3t2O9GYtAYM0eIgRQ9YLKunpSnuSqnWiid7283TvRdR23h6ZNTnj+/RIjE0I+sV3vevL7m9mbHOESMbRmnPYeuR0rPxfkMrXS+SsXgmwRK6Hw+RK74Npst55ePqWYz5os5290dISWstQz9Aas1YvZwqKY3xTtDQBTHaVyA6Ms5iQglCFYw+YQPkZpAXaaX465jv9ow9QPNrKFatui2QmiB2XuqfqTe9fR3a4IwDN1AGg6kRYVPHjf1jDd30I/QT4hDh97vYRoz5XW7ZnIdYdiyv0ukD4Z1U9EojdoOLHcDTT8yHxOVT9m3qgRmBiWIOk/rohCMbmRwI5OfwGia0yWzizPq0yXXXcdhvaW/2xD6TIdHgGlrqlmDbeoi1czr+tETOOaxX47fJMunhEolajPhXMRNnuRSSYJ7uOMf4a783kp8b+R4D6hzDwp9Sl8WuVgpxJf8+wjRIFkgk4e4QYQpy169ww8eP/lsYGokyIiPjmkc0SkShaBKOZo+ktNtpLWESTCF7L3kPUQvCKPD9w5cpLEW3SR6PzH1I5tuj6wFoha0p6fMz89oTpa4kqyVXMJPnrurD2xv7xj3h9zcOY8fHZNPZP6VwCeJC6EwSAPTFAglLSiWc5XgPj0o7/fH6MuHBViamSKIzGINKktaLAmtM6AeUsh3sDJoY6hSTTM16K5D+gmHR1nJfDnjyefntOeKftjT93uGruP16zfcfrjlw7s7Lh5dsDxZcHq2pLUSIxJRfJo2ItDCYJVEiUSSiiR1BkaEIuDpHWz7if0QGIIgUjw4RPZNOjJWsiQoy4LuAZaUG9gABJGZKznZMEuVSPI+sY/yvrauUVWFsJpQLGoEHFNi871dgIQsozK07Szv/58cIoFK4sHKk+16xzRNOOeQ0lDPaipjmDctjTkOETXHqizXcCUC9who3t9HiWfPnrC5u+Xm/TticBgjUUYga42oNaqpaKuWR8+fIoRghUTWFXY+Z3Z6StXOEErlWo8cLZxTCkvNKI6MFnk/T5MoKltzenrGV199n1ffvOZ3r77m9es3/ORv/g4XPAnB5198dj9cA/LAkWyQfRwNJoBPmA8ohZCKHE3cIPWMGLLHISncp2urysIxHjjK+zAGKXMFnEgPyhgDuJ8slsL3yLc4Gu8KCVJLpFF5SCoSSgtsgKZKLKo8uEohUaV4b9itRJaDilT+vL/d8vf7COJkSc4xdE8edSVSIqsa1TaIyiKaKkdKFRmjrCx2VlMHzzSOkDwpJoyV1K3CNtnLSJBycAaWlMAFRyJhRUQagRWaVFncKAlUoC0xeWJUHGPVP9b5xYMpxY/svbJWJD72xPeytHQUnz78oYuyIpSk1svlkmcX5zy9OOeb2xsO+y1v377hzds3VM9fcn52yUxY/DgSg8+SGZmVB03TMBOaYb3j1fg7fnn7nldv3tENE/WfWULwudcdO4KWBCtxJntHTSSilAipihw4lucpjzs1eXuMpI+Dc/Gx12qblovzC7735VecnJwSE7y/vubq7oZdd2Dfdxz2e5zzxJjQlc33S4pEP/Fhd2Dbj1zfbbm923Jxcsb58oQnT55R1XVhowuOUEtKkd++ecNqt0MrTWsq9qs1nQ989vwFyUWeXT5GaVW8dyTyD9RTPmw2InwyJjo6LOcbHCHvdXZHmnCSkLRACo05O0HVDbqdkZLFyT0h9iTl8sP0/2TvP5pk27I7T+y31VEuQty4ceVT+VIgkUA1gGJZoYgi2aS1sTnhtDnkgGbsz8FPwI/AGcWkJ21sY7NptGKbdaFLoABUIZEAUj5xdUgXR23Fwd7HI14WqpuVL2Ac9Pk/ixc3PNzD/Zyt1vqvtf4rQqEU58fHlEiG7Y7N7U3aIpVClxpTaFRhCELRS4kqC8zRmmX9GGGOiOqIvh3BQewd1bGBQh8MBhVSCYqMkVIb1vWSo8WSpirxfsQHC5kIECLX8HUDtzcb3r+/YLvdJ4OgqKjrhtvNFmstt9sti+acum5YrY+wbshiqToRDdMGL+613RpHTFEkguUhUznzYg8hEQHjkNr4apU6TSipGAtLrRMJpLU5EBAHIiUf4PcolmRME3Nnqek9JnIiTwqRnVchM+kmJvl0IIl+xSld8WDspjk0scCCqZ42RyKUBC1T1yARUi/7kIx8GWNSd5cpAh4O18BBiPf+2ZJX36F1+HS9k/OZnn93zemxvPmquzRH5x3OKZwzDzhuIKoFdhhwLpWSmaN10mGoV0gX0UhcDEmxXqY0ar1YokqFUoIoYjKkbcQNoEuDqQqaoxUqQDg5IgwWt2nxXY/rB4a2TYeXFCihEINLkQktKRQo6xG9Sw16fIrq4lzuMhQQPrJelgS3p8NRV6msx4eIUJHtdoMLDhscIVh8/nxXN1eoXW6VJyPHj45ZHi1YrCpMVSaCgQjSMI4OZx1dPzC1fEbm+nZElhaYDvu0zUupERrUgkRaKcm496kbp1ZIrfjNkgL/bYzDyH63Z7vZIhc87IYAAQAASURBVKXk5PSYZ8+f8lu/9R0WyxX7XY+/skw142Tj3BSaqi5pFku6bkPXd2x3W05PTtB60pop8NYhlUeXmk03sO161qdrnn/8mHqx5mUnuLz5C8Kbjq7fEulxvid6i5R1fstAxNO1LXZ0KJH0XrpW0MuBEFRei6k1LDGlrqeuMA7bD9iuY700PDs/4tmTE2IIdPuB68stX3/5ju2mxzlFYWqGfkvfj2jtDnoKU7vKED2gkUqjVUES1BZsbm9TPXuhWa8X7PfXRA+lMez2W2xlMmH4MPCabKCTTYOAwKdIpM+GsUrPszEyeI8mdWLxo2Pc7tjfbrCjpV6vKdYNqilAghpHim6kbHuK7Q6CxO5b3PYGVwpsSASL22zRPmICaOcxbkSHkNoat1u8VYy9ovU9vbdY73hyfMKagmVUrG2kcRHtU0lm50PqboHEGZNaiQqwtqcbBwbvEKVhcXbC4uwEs6zZv71mf7Ohv9nAMCJILZarVUNRV+gyCYrfhQpIYuohtfK2zmFj6maFDER5R7B451O2z0PnT9+lSP6tDx+coHTw/q2dhoWESUPjkNMYFEJWyLggGRJrROzAW6LfpUjqmHJCVJFIdxsGfBhTJoyQyTEm4kXEyYhpKgKRsU9E0zgGxj7ZAK53SB+pywpTpy58u/3IdmwJvUSMmkenL6lO1phlwxAS+RW8ZWwHrt69Z3t1het6RIhY6+h7y+gDTkickNgIg03dTrxzWJdjfiIRBncEC4f7kBuy3d2XB8LRSYnL/w0hlSabCEZGYm6NneaRQpmCQgSqssIYjRiTDSC1oF6UPHn6mGflMV23Y7O54ac//hnXl1e86Ua++OItLz7+hMdPn/CpbggrSaUjpUpBmcS7JXnOQukU4dcm5boIgRWK0W/ZDY6b/cBu8FifpC6lUN+I1kuRKAUt7ssHp6AAiEQ4CtKZJichYZEjkplsITnopqpQpQGj8SLekSuQM4MjU0K+VCoTLE0qM8o2mJgEXx9w4PbbFh/SjKiqhtViQVWW1GWJImvRBCDneBBTxkTqKEYqTQmTA+R58vQxV+8f8WrVpA4xWqCMRFYaKoOsS8yi5OzZsxTHtg5dVFSrJYuTI8rlAqF1FroFcuZQIrCmcF226SanGIHWgsViwYuXL/nBb/2Q0Xm+/OoVP/mrv0ZIgSkKTs8e0TRpzsWY2kxLkv06+T2pZe9dtpcQMhMsEiE12kwi2qToCPlLTHZsyvyLiNxBR+OjP2SLPygOzDIHYzgN153m4CEwqrJukZYUJlIXknUpEUUqm9MhUsq0XuU9cmX683f78aSSJQ5l+8hUWpXmrkQonbJWqhKMgdKkYCo526U0mKaiCp6+3UEYiSFSVJLlokBXBlVmnyIaolL4mHWyosMJT6FJvo8qGaXAixJ0ScxByBhFCvJOfgs5cCySHRl8ylj/phiAuPMpDkQSD7tRQi5CSu/jAhw1NU9OT3j59ClvN9fsu5Y3b17z05//jHXV8PT0MeuTEzQxnWhT1j6gEITBc7m/4Ktuyx//7C/prWexXNMUBd45ur7ltt0xEHBK4LRgJOKyGyeVIrh4EKhNu1YiGWQ8zHDcdG8kKCTr1ZrHj8/5+JNPiUJyeXPDu3fv+fryLfuxZ/AWgaBpljTLJevTM8pc9uiGjpv377npeq43V3y4uOZ0dczZ8SlDVJw/OaeRC5RSWCHxeKxz/PTLr9gNXRL7VYbX796zGQY++f73KbTh0foYrTVCKYTWqXPVb4DfmGC5i/d/8xFIDFGM6aaK+7NrqsVOL00Ge1IHJOllFJiy5LheM57uGa823IavGdsdcgiUIbAuKprjI9ZK8df9FpRA1yXN6SMoarzS3ETH7d6B0SwfH3GkTwiDYtht2by7oe07RpEY69XJGmE0+3GAaNFVyWK95OzxIxZ1RVkUtPsdAUcUMWdZSKyLtPueX/38C96+fc/luwvwKY2uXjQcHR9Rr3fsNls+vHnPft+xqCs++ugTXr/9Gq0LhEhlKt45vLXIwuC8S5FlIiKmtrxV8XBaHianTcYYEnHhPXaATvTp0A13Cw9IbQSlxsWcgofMLKXMB2fa7MIkXKvk4aBxbtqvRWoBp5N4qCwUOqZNSfjplMnTQtwx6CL6vOGCVCan6AkQuY2z0kRTEE06SK2wWJKwEhF0EBgUhdSJORM6bY651llAdhIV3qf0zWSw5EMmBqy1aCsPGS+HzfPel5SpU1HwqVTI2pGui3gPq+MHVBZYHuN0jx0tfVFglgYZoFpb2A+EfqDd9+jRYxAYYRm3O4xRqEJRLmt0qcFKgrMIV2K0wtQVVVEy9gO2HwmrBWJ0SBeQ1ieV9tEyjgP7riOOHtFbdAiI1oPpkFVBITWmjkS5xZdb6DqK4GkeLakXgX4ocLGnaiq0rlkfr7m81mzbWza7G6SpqJqKsizY7nf0OY1RV5JH58dEsULoQ7oGCEVRaqTyWONo24522KO9Zrk4QvicjSQzMRZTdljwkXGwRDsS+w4lBNEYfFVyvbtNhoWWrB5o2N69fs+H9xdsN1vOHp3wB7/3u3z06XOePD9ltxvphccoqKqCru1p93tW64bzJ+ccHR9BFNzebLi6vubmdsf5+TNOHp1wcrLm/cVVKhVxI9/5/HMub29pu5ZPv/spn3znnKoyxCg4Pf+H/Ju/+AX/+s//hj/5F18zdvucwrtkuSqpGoEN1/i4wcdIiJKyXNA04Jxhv3eJXI2gKBAhooVhYWr6TUcYA7Uq+cFnj/nk+RlnRzW277i+2PD1Vx/48Y9/gRA1SiYxY10U6ApUKcAEykYRHUTrcAwEpTCVYrFcM4w91g7s97e0uwuOjgxPztZcXxq6IWSnRuK9ox8ervtTfzAMk5Eoo0cEj3AWbS1lrh1ukalrBaADxH5g3HZs336gbfeoomT9yVPUk2NiXeJVgL4ltlvYbzBxpIw9lY8UYyS6RDJ5axmtS60lrcP2XaqIzF2nqA1WBHZjj9pco8cR4Vz6O2h0VBivUD45ijLX+UetGLVEr1ZQ1IxScr3fcTN27AmUjx/z5Aefs/7oGfuh4+rde/YfrhG3LQ2C9aLi5GjB009fUh1VBEXqJDX2yOjRMXUO8zbttXq1QMkComewHWPXJ5FwFE3RYJROe/SD4teDEt+0bu/0K5Kw6DcM4elfgoNwoSDpsqTzTyOo84gfQWyJccA7GO2Ap0NVYyrFkKnd+LKuMaXKGXKe0Y146YjGc3y+pt8FdjcjNzdbLj6MbLcBYfcsKWlUSVUuGVyPEZJCCLZRMa40rAyn3/sIfbbGlpLOdpho6Pctb794zdsvfsXthw+4rsONli53AuuCYBSpQ0YfYBhSRDOEya2Sh5nvid8gV+J9cuWBnYY/+MOPGVxHbztudleM3QBjpLagioGoBqxwBCmQ0lBIQVM2FMqglUYbSQge70aC7Tl/coQ6XeCfnHBsKm6vd1xf7/jZL17xyy++4usPl1zsWj7/5JTTo5rTdcVJtUDH1DmRITmJMUK0AlmURCHxPvD6wzVfv/3Aq/dXtA5iVCkLGtBSJL04IVERlIhoAVqEVBYUcyZ3dk6iShkVUaRModSqNJXzEO4c87IscyZB7skyZRnkuTzN3uSY6yTgulincvOcrRx9snOEfji7sm6OqOqKqipTKclEMoRkMybWD0DfIxYEKW1hIlnURL/w9NlT9ptbri/e8rO/+uukc1cI5KJArCrEqkZXJS8++4Tlek2zXNFvdpSnJ5THRzTHa3xZ4GXKArlbxYm0Srct98bKBOs4jBhdILRClwW///f/gLPzxxw/OuW/+C/+7/zpn/4pX3z5K6SE3/rB93ly/pjCGPw4JjJOa6TQRBw+upRIrchBRXLpuriXrZd1/ZA5O0Ljo8uC0plIycSGyi3TQ+7m+aDIAancO/wbpGkgB0k9uOCSNqaWyEJTiTRuZ0uNaRU2Cry36BgQ3hOsB5O97UwF3I0DhyCpzEHKQ4eUe06tKFLWSlSKKETWXEwZpVF6qBWFKFmONa6IEDxVoSkXCl1pikWNKCp8SGVWQ+vwQwGuYwx7fBhzqZJGFCnrqqwbyjplWzmXJA9E9mVH69AuywUoQdd1lAgKIVGZNLt3Yx9+g7wHacAFi3MRWRgWRvH05Jg/+oPf593VB75+946r2z1/9qf/im6z5frykv/oj/5DTFmipCRam3T8fMB2A1999RV/8cUv+Gd/85f8+NWXfPd7P+C3f/t3UB5679jagTe7W963G0xMNnUjNFWQaJ9yYxW5tbf3eR6lrB4d01kaiQidQjFSSBZFzWcff8rLZ89xzvP/+W/+KbfbDdt2j1xWnJw/5vnzT/kH/+Af8PFHn/Do9IzV8hidpS1kCNy+f8fNhwsuXr/lJ//qz3n/6i2v/uYX/MXf/Jzf+sEP+Oijj/j+D39AvV4wDi3vby7443/1r3jx0Ut+63d+xNnJCe8ur+itQ0rBj370I46Wq9SkxpiUyaJ+sySHb9FFKJezMBGg8d7XdDTnJXVgcacuLQJPUhtOTG9IRItIHWcQGiNrZClx44DtW2xw7HcthSlQpqQyBc35CbJUVKua0yfPcF4xjIHxeku7HfFjT+8uMLUnDhG7G/HX74l2ICrBVkm0PadYLyibguZoQb1asjxZ06waQgzsfEfPmITslMEIibPQdh3v3l3w/u17Ntcb/OhZ1AuqZkHdNJR1k8RyixIZBO12gyBQVZrlcoUpikOpTvCJCfXe4dxICD53FUoHqNYPV66gcipmaiN2p5MyjiOm0EgrGUeFHe09kdpMotzrGHQYawFTnDcRa/KQ1ZEO2VQ2MxERQcosMJsPeREQIaTNVcqDHgt5dh3M3imtJIme5C5Piqg0UeXuKNITo4NcuyzRyENc9V4GSo6uTmVOMj8u8kFwqJ0MAeci3ilCCInRvP/x8nkgZWpRrXX6sqPFOZsZ+ocjWJbnTylzH3upFFroVNI4WMKmxe1b7O2O4d0lQ9cT+wExWowSaC0xlUkq6VomkmvZoKoKXZfIskwRnLJI0QLrET4gfUSOJdqOqGFAlgY3pjT4vh/wg8f3Hrfr8UIylh2bwVMKnTpBuKTLoqs1VSi4vL5BF0nk2RRLgnQUC0PRaIapLXS9YH2ypus7+qGnHXfsdjvM5RVFUXJ0/BhTVCgtU7YSiaOtypJhGPDOs9vtKIQ56PYM3qbMorzGXN/hrYVxwEiRp1fACkHbd7S3Hd99oHGTwPF6hRDPOHt8ypMnjzhaLVBSkJtrkYRcHSE4EJ7lckFZFkDk5uYG6yxNU/P5d77D2eMztJZsNlvevXmHtX1KoS4ELz59gfeB8yfn1LVBm3RdZ48Lvvf9J0gZ+Olf/5xh3xOspDBVGh8jCNHio82OZHKyiqKkaQzdsMPbnPopNEZLSlNQFhX9fpdKIrTk45fPWTYVIqYI/OWHay4/3NDtLUKs8DEyjD7PxXTyjs4xdD14QVMucWLEoXE4pC6QzgMOJQL77TW7W8PLjz9m1dREH/BjoCoWEATbTf9Ao5b3hhztkURUTFlxeI+0Dm09yoMIkkk9Rg0jdtMyXG/Y3txivU/dy1YNvjY4I4jB0W23jF0y8KpVSVHrNIY4xLTPSkFhNIGYupqIiDQaXerUulkCMQmn40YKAsooxDiA9Ahhki6WCIQANgQ6D50MtFaxVIYRGOzIddfSEYhNyfFHz1g9fYxc1lzc3uD6Eek8FYLGGJZVRbNoqJY1XgRGbxnsSPQteId0FmlTSYNSGu8DPgQ8ASFlKpMVKSPOCMOdW/qQ+IYpf5et8s0H8lMnU/AOE0mfWyDevX56eRQQNULUCFETRU2QJV5FogmoOmC0wBiJ1qkbglCAyGd+sATpiDpSGk30gbHzKKlw44h3I7iBpq7AGLxUWC2JdUmhNE1RYtYN4uyY5dMTYm3wMqRSguDo93su3r5he3NFv9vh+oG+HxmcYwiRMQiGGBhjYPAR63wu551uWrrWO2HZ7CuIu34Y9+/zQ+H7v3OGDQOj69nsS9rbPXZvcdeeso+oMiILgaqKdMIHz8I2LOoFrXM4AkM30O322L5DsUpddJTm05dP6B49omsdz1+85KYb6ayjd46vXn/N5aXkdFXz5PgRC13SqIJaFogoCSGRiPtxy24cudy3/Pznv+L9zS1tPzI1QgwiZfOqENEhEIOnwqcqCAQptyU5H156yGL+QsZkq4hcBkIi8wISMtkiJns55Cy66BI5eBibnDVxb1yEUOiiIIwOmQN6ObniQUfu5Ow8lyWnbj6JqEs2VgCI90rDs8hHRGa2LnWJu8skjhSV4dHZCZ995xNef/Gr1KpXS2RTIEoNuVGFqRuWpwIhFTcXl9RNgyhLhCkgl/GLgw04ZQQlSGLyN2IyP7URIJKGn9KSuik5f3rO74Tf5le/+jmvX3/N1eUF/+Kf/bdIPNGPvHjxEiV17qKkiD6kEi+hD2PrY0jEgxCoqLN96SF3qPTeZX8oBZ3vMqGT/piIAe9GpJi0SR7WaZ8yuafMlcPXtOvFVO7pfeo2KaNGpMMHowLHywL2BYPXDFailUvFh/FOt2R6n2/MuonYUSL7k8m+l1qDNgilk8B8tvdDFiee0mpElGgBkUC9rHBYoo1IPLpInSSlFqAS+SGFRhrwnSZYg7A+rbFMZgkp0IXGVCWyKsFLZEyaZUFCDCG1GR4SLygMuazWU1rPar0+XJ9U8uAl5YtNJeoPOHQ+2kzCgoiBIkaWSB6XDT/66BMqFD/tvyD0A2+//prYjxwv1nz88iXLxYLNzTU3N9e02z37q1s+XF7x5uaKD1cXiH3L+P6G3dF7Lr56hTk7QSqFC4Hb6xuW0lA4aKKmiooiqty5yx9K/RJZDDamcsSpC+uBWBSC1XKN8IL9zZ4vtl9yu9sjy4oXT57w+Y9+i+cvnvP0+TM+/fgTFosluijxAUbvUvMVa/FCUC+XPHnxgkIYLl684+r9Be/fvObtxQW3+x27seOHv/NDtt2en/78C95fXdN6T+s9arGgWjR8+vgRJ+fnnD8+pzElond3+9NvOHDfkmA55BpwR64E7m9pU36pmHb1vIimTTYQ06YiBKiQ08QjUmmEkdT9Me31Dd5Z+mGg00ndVxQFxdkJulHURw31+RF963HbEXUt0EMk9iNh2OLLgHAR2VvKdk/0I15GxqsL7HFFsdA09YKj4yXVekl9tEAYxWgdvR+xMhmuKve4t/1I1/XcXF+zvd0xtAP4SFlUlLmFnjZFaimqC6SH/faWcRzph4GqqtAqsXzeuax1kfQunHPEENAqZZlIKZIg6wMhRTHShLE2HFqdTp0DvPf5s7iDtkicJtih3CePI/f+efgxW2gTeZvZGZnTX1M5jUpZCITDfDjUBxzoECDrZty9R36OjKQe5yqJ58oUCYkiayQIz6StMjnYgXhozXkoW8o/T8+bDprpCmNIgr6TlgxML4kTqwj3yCOlJVonod8QPPGBdQWaR4+SsZuDQRKJCJFoHaFscdUeJRXDzZax7RiHgbDv0KR6WK3J9YQCZTTFaolpasyyQa8WWTldpQgZAqGTzaa0QDqFNDo5TIPF9yMmSIZhwFpHdBYRwQ2OvfPpQKtLRJXWgaw0Bs3NfocuTOoAUTUshUNXGl1KbrctRpdoZXh0esZoLf3YcXktGAfLdrOhKEqMWVCF1LZRymnOCLSQjFEk7aN2jxX6MP7tMOC8xXuLtUOqQ7U29b03Cq0kqpAEAaP37LruwcatMIbj42OaRcXp2TGLRYUx6QDOMUViJldCNkrKokjGKhHnRoxR1FXJcnlEWZaMY8dut6FvewIWpTWowNHpGoFiuVoipEMIj5CBupGcn69w1rNe12yuWsbg0SZpGUglcSGRdwGVjd8k8FaUEaVanEtRCoHMxrRAykD0FqJDK83jsxPqsoDgGfuB66sNt9c7xtETAqn1a4gYoZJKv4p4oB0GoosoVWJkEpCz0aJ0gZQWgUJLQd/u2W9vKM1nLKqSsbfsO0thSnxwtPvfrJ3e3wYxESskw1aRRVpDQDiPciGVtgRByKn83nrsrmO82dFudsQIqjCopiIWBkfEDT39ZovtO0J0lIsSXWqUEElML4YkcSkl0mhcDESfdK+0VujCILXEEfHBp9aRMXXDqIxGxxQtVyrZ+SHraYwh0nlBR6CPkUoIrPPYwbIde5wx6NWC9dNzyuM1o9HcXF3j7YgKgQJBYwqaqqSqS6KCzvb0oafzHdH1SG+R3lOLOmUzZh2ECCBEalms0lmqpURGhYwSda9U9GFxn1G5M3nvE+Xx/rl2+IXIr7r/u8PJkBxFJEKURFmBqkHVRC2hEMhaUFaaojAYk4guyJkJPhBHRxSOKCNKRZRKvoNRChdI2T824GtJkIoRsFIQS42pKqqmRq0XyNMV5bpmlAJHTOfskLKdNjfX9Ps9Q9dhR8sw5tIgwEUYfcT6iAvh0I455ts0lTn46Q4cjv07Xau7G/hwY3f+ssJ5gXWCZTvSrWHYjOzViPvgCMoSpEcYiRIpS6saS5qyph5GWjswdgN92zF0PTKm0hwpBcvjJatlikqfncN1O3Dbtrz58IHb2y1dH7gODukFfVEzmApnarRQBA/btuN617Hpet7vtlzf3LDf9ziX1lfSrfFJ4yhrNKiYW7dDLjHITR+yhxZzaFwqUPmsQnJXkpB1SkS2k4L3uatjdmCZyn2SvXNfh+XgsCoNKpVvi+zYxMzEPNTI1YuU7ykEiVjIn2niUJIvIImTATMRLKTn46YMYRAEtFGsjpY8ffaU5WrBfuiJSqCq1FEGrQhSIouCSiQb2XmfzsEiiaBmMzQRV7mN9MRA5fgfE50FoLRMpY1EhNDpM6wXvJTP+f73P8faju3mhl/8/KecPz6hrgrOHp3RFElXkXDXEU/IXEaSx8QHnzV2kq+TZBKmWgp3CEQqIQ7dnUSYcm+y7spkoz7QmB1wyMwWd3Y2eZ7kvTGJWntkDsyG6NLQyUhTKcZSIUpNNBIppoCrJ7n/94m/X3vf3DJb5E6XCJEFik0KpB40c9L3KdA6leuIKJBRUpQGOeqkneItWqeseSkFUYlE1qgSIRVOBMIYQXVYGwkxZemJrL0njcrZXSIn9kxdQgXOe4JLsg1KS8ZxyOSqoKrqRIhJicxEkODA0R/0XB4KIQswJb3DgMkzeS01nz1+Shwd3WbDzW5Pv93yZhj5yV/9hGHsWa/XXF1e8P7de/a3W7rrDfvNnt45lHccRUOxt7irLTfvLjg7WqVSKqC93aJVhbGRCk0pNBqFmFKr8n6V+6LgBVnbVhzGLJ0zkrKoCNbT7zs6H1BNxfHjM15+51P+g9//A54+PufRyQmLRYMPETtadllDJnqfstBHiwB0VXB8doYQqXR+tAOvvv6S7fUO+0vP+tEx23bPL7/4ipv9ns0w0FrL0fljvvej3+b06IijoyOOVyt0kHSb61xh8U2v9N8HvzHBklxjceBMpqKLiadKJS7cT2pBhJAFvUQubc7O/SR/IyJRJYZfaIUoJPXHJ5xpye7smK/5KV+2ASUjVVkivvcJemmQS8OtEWzChn3bsqPH+EgxRNS2ozaOqioom5LH1Qlb27H3I7fDnkJHlsc1T77znPWTR4hC4wRsho4Rm9puFoYQJS4KRIjsd3s2N7dsrm7xg4UIWmlKXWCUQankqJbGIKuGZVlze33J7c01X331iu//4LspWj5a2n1LWWqQIW24JDY1Za1IQjB4/3BN2VQW60lZKxZjCpQSjOOIdx6vwqFV43RY+FxnOA1mEgzNtpaYiOi7dsbEeOgGlAY+omRufyZSv3lCEp1Fi5wjO33CqYI4cticU9g8v1kEmdJlpdQIqdPnUDFHH3y6jzIJUEqtcv2xT10PviEQlsif1NZXYrTCOZmEV2PaWEOImXTyFEVxmMxqUg8nfSytU65MKJLoprUW5x42l3P97CWTavno3EE1XcWIPB4I+5ZxtcL1Hheh7Xp2wzUMI1gLrk/PRWCUom4aZFkgqxJzckSxaDCLimK9zG2tE2GklEIqSVEUiHqBsA5GT1w5uu2evuvY7Pbc9D37wXK13/Nhv+XoyRmPP36J0BW6ECjlWB4dU5QLVNGgippVaVjENSt3jNZX7PeOvvM01ZqnT9cICa/fLnj95ms2N1t22w47SI6OTjk6CiyWq5w5lYjBOEZsZ7m8uCI6d5if/TCk1HGf9TN8MnSlCCiVIlaq1OgyOf7alA82bo/PHnF+fkoUgcHucXagbcGYdYqiBccwdFjbAQGlJc5aovdoVXB2dkRZPYIIw2C5uHjLfr+ja1vOzh7T9VuCGHFhSLXsKJyLtHuLUqlzSdF4qqrg0dmaZ88ec3vZsfUdVVVS1RVSG7re4ZwmhAJBRfAFSmnKIlJVKhMwA863CNUQYk/bB3y4yWugyYanIVjL5btL3nz9jg/vrhh7z26/BVmiTYENllJpZKGRxYL9cE237djtAo+fHCELjRk7jpsjnI2o0VFpaDc7bqQH23F6tEJESd9do0TJMAS22+HBxk3HdECqKeIbYiKGvUVYi3QOfRDwk5hg2HaezeUt27cX3F7ecPLoMavVMYv1EbIo6Dct+7cX3Lx6Q9hskcHTrBokaZ+Jw5CcQqXzukutqF1wOCWoqhJT1whj2I8dvbVY61L2pNEsjEHFSK0NpVIM1jNmkdkhwLb3tFLSakNhHft9z+1my+3Qc/LijJOXH3H+g+8QFxW7sePy8hKGPpX6acVxXbFeLqjqkuubK97u37N3HRSBAkelFauizARcanVZlBqdurQnceSYRT+FQiGRUSD+zgiWCfeJlrt/TfkY//aj902qqfRikggmGflSI2SNEGsQHtwO0ayQcaQwjuVRTVmY5PwNLnfJgDhCEGPqmAN43+NdwNmRRVMyOrBOJvFAXTAIwWB7nAjIskAvVpR1jVpVyGWFKVU6r0LERxi7nmG7Y39zw9B1DH1P1/fsx4ExgBOSAcFgU5cgFxPJkpyoXKJy757ckStT5F3cEVEPPGzFsiUMWxj2mHJHc1YQVwVbJfnVu2u2veS2O+V48SQRV0LTuIJ1U9Nby9YHtptbdBG4ubhNpoAQSQ8CT2kkZaGphaY+Knkclrz4+JSu+yTZddfX3Ly7YO+2mChYqDI5BD7QD47bbqDzgdZ7FnXN4CObbgDvkp1EwBRVSpQQ4ETExkRZB1J7VCeSDSxUOmukTNp3JRojFFooTFmkMkqTssxkfu7YtcRxQDpLmQOahJi6lhS5/IY7+xwkSpuU7aNyRm8mHx4SgdRxRUiR7Hnpsy5fJovSk7IJlwOsQKI/4sH+T48kva/F0ZonAj767FO+fP2K1lvK5QJVlYiiIKWEuUTKVxWrEHDeEzNxjE4abkkP4ht5LCnzT8QsVj6RriqLx0OISROtqBSn1TH/6B//IfWyQOrAv/hnf8y//JPI7eaKZ8+e8fT8BVWRyoNyj+1UwhVHhIxoGRHCooVKJV8xkUgxenzwSSA2FeJlZdDkF0kFCp8D0SF1YPo72CaTKyZytz6VCKCsVzERd0oKEjsWECJ3hBMy7esFlKUkloJoBGF0qVTfW1xp7rLIxT07XuYIgJLpu1R5PSjQJhNk8kDAfEOb6ECLhVRSJlN5dd9KnEwamVImXUTy3wwTWSQVRd0gKonvLb4bcDbiAmglcoJTIj3JAVelE9Hpo6fLWd1aGqqqou9GRmsZnUdJnTOzDcqonAY5kVVT+dXDpbAorcAnwh7nMCEe/PHfefqSF6sTPj17wp//9V/z5sN7Ptxc88//+T/lT//Nn6K0xjuXJAaE5kQvWMuC56tjls0KGwKDALm1XH/5mqeffEK5WnCia/avL9G64lgYGlVQ6gKlVMqADEmtTooUEErefH4sa5CpCFEIlNAQBMN+oHCS1WrF9/7gD/j0h9/nh7//93h59gS3a+lvN/zqV6+43m9p7YDTgqLQSWdSJBFd148Mu5bd9Q1+sATnWT95xCgs11eX/PyrX3K537DZt3zx6hVX+xYXHO9vb7jqWwYp0U3Dd3/rhyzLBrvr2FxcEa1HLxTmN/QHvkXhs/jGJi1yRkASRs/CUQeHNm30U9pZJKXmqZjSqiUqbTDREXGE6BC4xOZXNea8oS4EKz9y89VbRptaEJpyASZdRRSRvlbYowrxXHB0KqlGKMeACS5FW7VIKvNiQW1WHL94xOMffIfV88eszo/BCEY3sh96ejuii5KqSGnoWqTJ3O527K5ucPuOddVQGEM/Wno3IqSgKguqqk4tnaVAC4ERJednj/HOcX19yX6/Z7la0NQ1N7cbhIw4ZwnOUpbFIRPCGJ1rNx9wUeYuHSGX+hitUVLhhc98QypZSqUXMkVRczTC+4AIacO5a1+csiLuNv67SKE4lHUmxvkQoVBTZknOzJlU2oQ6RDXSU+8Ov0PeJGlzFkrnMpmkuK7waBlx3hKCIohUOhRlfj53bZjvJzkLkciGqVuQkhIv/KF8ChLJYq0lhJxVIGSmZOO9DTNlhpSlIcbAOErG0T3YuAEEnTqt+OC52bWJNPAeFUkiltYhi4Lli2fIokBXDft+YH9xibOOwkVqIZNIc4Dheg+0yZl4c4MsC1RZoNcNZlGjq4JiVbOoSgqjkSbVuQsEQivUqsA0FQvvqfoe07aUfYffbfkw7HFaoBcVMdfsqkKz8AusC7g40hiRHMjcTeHR6RlK7tlset69+RJBil6dnRyzubkg2JG+77h6/5Z+u2N3fcPR+hSp00HonGUYRobBMux6trtbXBZ91CZ9bkmqi5f5p+ADLnpcSLX2OItUkvX65MHGbb1qCCIw2p7Xb9+z2UqqqmLoegpTMnQ9duz59LMXKY2/H1kuFxytVyyXDaYQ7Not+7bl5mbLm7dvKMuS46Mjnj97yuW1YN9vcG5AyhIRA91+x2pREgK07UD0ad2W0nC8bDhe18jgKYzP7ec1+50j2gXSG6Qq87J0SBV4dGxYL2ukalgfrSkLRaElRSEYu5OUCl8UnB5rRLB0e8vudkDGAolmHPtsQHmE8cgi17XKkuXyCYXp6bilawMXHwa6VjAOhpNPSgodCToQ/QBBMnaON69esT4+Yb3SfLgYkWpEq0BhHi7br4ggw1SmOHWHSE62jR4ZAjqkaFYhFUJoWi+xraXbdAy3HavHFcdmwSIYhuuW8c0Ftz/7iv7L95Sto3QRpVOzVhlDOgtjEuJuraePnv3Q0/YdvU+ZBrWLyNGzH5KDLCg4Xi4ohEiCoBEKITEIghSosibokCKlnrSXSkXrPLfOcuM9+vEpJ59/wtmnn1KfnfJ+6Nnst3jvqLXCqIDAYYeO7daz8xuuL3fsRU8wkaZoKIqCUqd2o9oUSTdLKpxIEb3kf0RkUhkn+JB9Kpk6mvwd4hD6ifKwZ/+tjWqzqG2ytMPdQ9yl5k8kS+pAUqLUOjkhOMrjW1S1IIwrikaRGm9EouhTpqGzaO0pihLhBX4M9F2Hc0lgU+kCbNJZUEuDrmpiFHS2I0qR15wmeofd7vHWsX99gVksKUxBiDDuBvyuw+57xr6nH1MpzIhiENAD+9HiQirT9iEmwVFSeYsPuSzoQKxANkTSHZs0Mw6ing+Hj7/zgv3umu3mkldfXaBkIg6WK41QlmHsuGlvObcdTVVQVQUExaIxLKyhGApuL7e0dkPzK81v//7noGqMSXaUFgElAyifpP9kYlHrYs1Rs+RsfYo9e0YcRnw/cPXuA7dXt+x3bRIHjhGMYblc8uj5E570lrPrDT/+q19iO4v3juiT3aBJjuvCFBgjqIzEqIA0ElUajp89Y3F0RFXVlKJg2HaM7Ui/HVDBIIU6tBcmQHCO7uaG9uKC/mRJU+tUzpud09SFjYPJFLMjI5RCRInUKpdkkB3dhxu3P//xX/Lk/JyTR6dUdcEh1XYSe2WyBadsNnIWWHIKk+ir524+SWRZUq/X/Nbv/i6uMLy7uiSrEwJ3UfAp2lc0DcI6XPA4HxJBHX9tlcfJwjz05Dlkj0w2qDhk/2QtrBA4fnTED374fapacXX1hs3tLT/5qx/z//gvG/7oj/4XPHv+CcdH5zgX6fc9XddTVIaqNGglGTrL5vYCO44oJGfnj5J+nLnLmk52eSohPCy5kCZAaioRDq3jH+6UA60MIufSKiHRUqUsJJkChMluTlk0SX9xSsnIdXHRUZSCWGt8k1pYE1ItQz+OyYeQyQaUOVgqlPxGXDVlmCjQOumh5KwVVGYqSfchNznP2TU2ZZeKRBpKrZHaEIMEqUm6E5KDBtBE8iBAGlS9opQVYgz4IWfuTtkV5PMh7/mRRMghItokLaS6aXA2MDqP85FhHBhHmzqyCijr4qDBFaLjoTuuuTCJKwvwqbRYk5wcqSKyqijOn1JqzauLc159eM/fvPqKwVlc9JysjzkxDaflko8XZzxfnLAoaqqioh1Slt6NHXj/459xdnbO8bNnfFSfcPXmPZf+mr3UqEWFWtXERYnveqIT4FM5NV4csu1T5lXiBUqpUcZQlCV1UXF+csazJ0/54e/+Ds9+77eRy5rXN9e8/foNtRcsUBydHnP6/AmyKhCVQenUc1fmwILrB/q25erDBdubDdvbW96+fs2tG9l4iy0Uf/31V2x2Oy43t4TCcHrymKdPn/A//sM/5Ld/9Dt89PHHVKrg4s1bdlc3vH31KpVnE+m8/Y3G6DcmWKZs2bvpl53WX58/U/nH9CNpsU7p15OrI8gdSGLOYMnPRQRkIdGrgubJMWW3xe1b+mFMbTRzR4IYYEQRtEE3QFmgvKR0EeNGiAEvPD4KZGUolxWnn71k/ewxzckRuijo7EA/DrRdh1Aag0wtvEhiq3Z0bC6v6bc74uBoyoqyKpHDgBt7pASjFWWhk0GZzzAlk/jtomkwpqRre+qmRmvDYPd07YAQgmIqQ5K5fbNI6uFF8XDR9APJkSe8kvqQpXC/RnLSKznU+IbUUUdmBnlKm0vdc3J6YSZX7tcaHv6O/OZ7k7sNTTWyh9mRtX3SAZwNuLvJcHiOyK0MBTKn76dkmIkvDeT0zENK4b35d/iKB/ZeKZWdJZkZ/Lt7FmM4ZPGkDTP98q46HcgEjlQCY/Q37vVDIeSxCFEw5M40drSIkHhGFSLaBwopiXWNOVpTnBzTdj3BOqz3SZUmiuTQ5HaiIgJjxLeOoAd8O+KaFlkVDNsK35RUpcGVFdWiOdRaqyKRLkRDUSiaUuPHkr7W7HeSclmjCp0F/QJCgjKCfd8BnkUck9hzTC0J66bC+ZQ63HV79vtrlHYsVgvqSmNHTfAjAosd9+y8xQ5dErySMmvmeLxLuhx2HLDe4kWkiAVaKkzOspJMybdTK0WIOU1eR/Gbalr97eMWXQpdC0+IjmFMhlS1r6BOad9aK46PV7lkw1OYEqWT9k/fW/a7Hbv9nt1+SxQRrTVVVdHUFW1fYUOHc46qrhAh0nZ7ap2uNXhFt7VUdaKzl01FU2mGQiClQ0sJQTJ0gDeIqJERgnC5Ek9wfLKiWRzRLAqOT47wbqQsNKtlhR06xt4iQkyRrJDKTuwY0apM7L9IpRCoiFSp00eIEecjxiypyiP6IomEBucZu0grOvbbXVJUUuk+SSXwLnLx4ZLleo0xgqIUBCxSOoqHS/a7E2mfkulyi+9AxE9ONzkwF0UKGERBsAE3OnzvMEFSBIkeAtv9nu7tFe3rC/zljsoLFCpF/UiGq4q5qxWBQXi20bIfBvY2OcTROkY5oryiGy0hpnJSrQo0Mq1/kragDCBQKXtQhCx6G7Ei6YIM3uOkgLpkcX7G4uljmsenUBq66xuGvkdLiVEgpcUHRzeOjGIgWtjJPaERqCI5EcZojNJonYThphKHyHTm3ysd5pumwkM66f8u3M+v5eDaTWTL3bN+/cNMr5scwjg9JiQRQxBVur5ipFw+QZuCMJaowhGjxfkxZS9kok4IhdEVwkissbh9Kt+oKoOUBXZI2l+mMVRlCT7Q9l3SPVDpLLX7niEE7L7n5uv3VOuBom6omiVyDIjB44YxdVjzqT20lworIkMMDFnX4754Ldz9+74fMJEqh9uTPeRDrf0DOg1Hx2eJ8BWR92++TEKzBJQSqSU6nn7sGF0PYoUpJd5GiiJiTCKRh3GkDQNvLy652uxQlWahE9ErhAZS5pQg5mSDZAdFIShEQZAGXw440zPsW6x1IAXSjCjnQSlMaVgv6pRJLSRnR0tc3OI7S+8GpNJJI0RqvM5lCiaTaIVAV1AvBMuFoq4L6lixtwHpIlbZ1IEr+uSsqlRnE72nvb1l8+ED26OGxaJENw2yqBBVnTq2TCXRU5yL5HwKFXKmgLjvrz4Yx3Jxec1iuWJ1lMpC4lT+fVhf4o7QvDMVD6SdVJKQPe4YY8qyAWRR8OjJU57sd1CXObNBHObkQVdPCHRRpA6TQd05dN/4lPHw85RhH8ixsvz7aV+4KyFKn7MoDI8enUD4iO9+/jl/8zd/zc31DX/5lz/mybNPQJUs1o+5uNlyc73h6vKG0mhOj49Z1hXt5obXr1/R9x1NXSNFwdHJmtXpgvv5ct9YSxORiThkhsf4t/hY3xJS5L5ZmchRQhKkOASkpnHiQK5kcirGQ/awVAKlFcpogpbIoFECkox2CkvEEIgydXKcegjFTAhMfaonu/6OFIEpE0scfAVxcDXlHeWS/IIs5JwIltQIIR/eedrlshohQZUp8IdHeYfzkkP7i8QgTzxbJgVjfq1A5C6dZVmCTF0zrfV4P+Kco+hLdKHv5uffxQEnZbJZ81jkGYSIEeWhAJZGc74+QgDGaFo7cL3bMjpHrRRLU7A2JUdlxaPFmkVRU5qCxpSJsO1aXm9bLr98jR091XrN7eUVdhiTzp6MyFJTVAVykLnDa57Hh8jEnc+lEJRSU5qKulrwaH3Mi+cv+OjFS55//DFBKzbtnsvtLeuoKOsVzWLJ8fEJxXGDqktCFjKPIQkpCx8IJiCNQRZFzsqv0E1NuVpROItsd7T2itZZvJScP33Oy5cv+OTjT/jeD36L8ydPqJuGvuu5urhke3XDdrtLGeZawm/YaOY3JlhkvF+dPG1MKao/sa9CijTBp91epJo9IRILK3K5hkQRxXTkiUy+pJr36F1KJ6okR89WPAmnXF4I+ncdfRiJ0RDQhAjOm2Q0aLBNiZfpQNXO4d2ItwMDDn12THV+yulvf87i6Cix5wF2mx27vmc/9jw+e0wlNIUXEBXjODDcbnn101+hx0ClK1ZHK5brJZtxwHd7lJYURqUWUlLltNt00CyaBeujY05OTtlstiyWi5RSiaTrekLwNHVJURZIpYgaYkw161X1cHz1VMsr8kahtcYYjfcFIYa7NMGJdZa5TWOMSRg2M8ZKZr0RBUrJQ4JJOpAm0VCRy4fu13emjUsgUs1qJlBSXXDaXBFJRV1EleaUiIRM1InMYseYnEIpUgq/FmSx0kAUqe455AyWmMuVxN32+c0vKdH536MxKc00Z6dMGUTOpRbCWk9EVDwczEKQS6jSbDaZYDPFw3bGCFn9PnrP2Fl2N6lMxA0uaTOQomaFS5085KJh8eI5Y4CoNcNbT5+1MAQSHVV6vkwR5DhGwuCJXYu93eMVeC3YVpqyMtRNw9HjR1TLhrKpkgK8SUJkFAXVskytsf0Rqj3CNBW61Fg3UHifnE8Gdu0lIajccSuVvjgZKIuSoihYrRq+/OoLNrt3WL9htf6E1cIgRUlhAmVpGAdHu99x+eFrlEhOpJSpra8USU5Q5JTbEAPWjUhtQJjUPScbLVLoqfFnvi/gRo8dHi77aN/eJkJBeMqmTNo4ITAMI1oZpIT1esFi1VCVFVob9rsB21s2my379pbdfsswDnTjwNnZGU3dUNcNWqWsORcqhnFkuUzrbL+9SS0Ti5qyqLm+uIGTQN2UnB4tWNaK1niUshipEEGx3wSiN/lg9CAGTKFolhXf+95zfvDDFzw6W7NYGD68/0DTVDx98phxcNxeb9ne7FBCMrQjfW/xTlBWC5pmQVGaVBAhA0IFhJKMo00po7JmtXyMcDX7uEWKnugGdtc73povOTpasFxUjN1AVUm8h69fveP8+VOKqmC5Mmx2HUoFqofqrc0duTLFVKd6YisjXk4OH9nAy6ZeEESX1pHvHXIE1Ue4Hdh88ZrNl6/Z/+IN5fsNqNR+0ip7F1nVmt45uuDZBsdltLTe0nlHDJF922KGkULKXNcvWZQqtdEmGbYVIG3qeITSYDIZXpKEFKUCo7nyDsqC5dGax59/yvHLF9RnjxglbHdbhq5jWVbI0OMJjK6nvb1FdBFKgV9BtVqmaF5ZUhWGQmmM1GhlMgEhUtlmSKnexLQe75xBdejU85D47ye3J5dGpH1isgUPjmn89RQOkq7A9FAa9SCS4Y/QSC2o1oHgTgj2huhusd0GO2xgTELBwgdk0NTlkiAcvevY02GMoayWIGpGkzrwrR8dsywKwmjp+z3RC5QSydG+vmXXW4YAX42aYrGkWa/59LufY8aItuDagaG3ibTWhqBSRHkfIn2MuTW2yIGOu7Kg6Uz7W32Ce9kRfxdew2r1nKpYUuqaV9UvsfsWn1t/aqNxMtKOLZ1tidJSVBDHEVM4jPFIA4N37IY945uRL99fEuuS87qhqJbJdpgCSdFBTGUGMYZkT4T0O6E0sip5/OwJx2enOOvou5Hrm1v6cWR0niaXG2kl+f7HzxHyDe7iiuvbLapcUBQlVaEYhWcUEScFUXmitEQxMroruj6A6wiuod2N9G3S9yMUgEIIR1nXae45z/X7d7z+xS9QYaSWkcWjM8zREYUpku2tUjvnkMdWSJnKLkT+ruXkbz6kdA7b7T4FPX0S1L6zsjhMkyl54EBckOV+RczipamLZfQRqVXquEPk6Mk5n5eGR9sXtM6CUAd9v0mDLcaI0km3Q2fnOJUjffNN7y9vYkRGefh1COLQLUQJiSM54ib7K0fLFYvS8I/+4R/ihoGf7P+Sv/g3/5p6eUpv4fmnP+BvfvElX3zxii9++TVxCHz/08949viczdUlP/nJX9J1LU+fPSG4kk8+Kzg+fUpSIRuBgRD69BFEJOT2tMmNUkTrDvvmQyJ1ZBG5q2BqRJEy2kh292TrhgB57yZ6yBk3LkwEZOq+FMcCg6RUBbiWGDwuxiSATqJPlErudpxoHJF1Vu6LNqcJctCkUdMZO5G8QiJEJvJi8tMiU8dQQxSGJCSYm2fERNameSBAGqQpUvaoHXJ2VSZkpqjuFJydbrmcyIM0DkVRpL3CBrzvGIcRGyz7/R5Tp0xgrfRB/0dMAeQHgDIlLqamDhAxKp+v3hFsEmhVwFopiuNjTtZLVqsFX717y9XNDf2uo3ABKR2u6wkLh9ceHwNFYTg5OkLXFdcfUleeV69e05yfcb25pW1bunaPaRKRtFosuNnfMuSxdiFpbKZ1ms5ajaSUmkZXrOolx+sTvvvRZ/ze3/s9nj5/Tn1+yr/48qe8u7nkanPL/+RHv8fZozO+8+Ij1mcnOC2wItDZgbbtU+nrfp8E4seBruvYXt8yDiNeCE6ePEFVNdV6zbbvkBdX6BhY1hX/4B/+IT/4wff5zmefcXpyjDEFo/fcvHvP+69f02122K6jNhpRaopV/RuN0bfyANOUyeTKpGCeCcnJMBUHJjBnE+TFqu/zy7l9c9r8JAJ9WFSQRBoVgULDybJChTUywtV2RMiUtu6dYBA9wTiaY8nZaoGJgXG3ZXO1JwpPLCVyfUr99IzF+SnmaE3QknbouX5/yWa3RRrN0XpFoQ0mG4thHPjwi6/44me/4J/+V/+ER0dnPH7ylO/8dsOj80eMMtL5kbJM9bQT06vgwKSXRUlTL1gu19zeblIZQ29TW7fgcTbQdSNlWWJ0gdZFchoPbY8fDlOUI4a0vWmlqasa5x1Gp85HRhumEoqQJfKnEVFK5BKmAqFCYq+nDJh7m7/MLeZEmB5OWTAp1SQLQUWXD9esOZMtO3k/2CHAa1KpURRon4mYKMAnPSwjBKWRGB9TGqkEzGRQiMN1fyOT5d45lUp/BGVZJC2PGPE+Ke/HKLCjy+l/Cm30vQhMnsKHzSQeyqfUA4oTw3TAgBCala4YqcBbtn2PVymqPhLpgk/6ERL02SPWWlMcrXnvYfvuA3KwjMBRWSYaIoKwqbeXjAEZBMZLQozY4PG2x3eWobPsPLhVh13WlNZSrBfopkbVDaNI3bBCBFManLfc3Fyy1EfYCHLn2I037PdbQLPbXXJ6ckxRVhhj2NxskqhqIXn+4oQPF+9pux2XV4rVuqGqF0gxcLSqKUyJFJpXX7/l6uqa7eYWP8JisaYsarSpWTQlhkDnR2xv8dbifSRETcjlb9qYpDvgAzb4pEeSa8kfCs8/Pj9M18fPHx/WnZGp5tu5QNePvHn3jl27x5iCJ2ePETGJpl5daZDQxAXPmpqiKqdgCsrAYtkgDdxsbxFojFEcHdUM+x19uwUUgcB22zOMimYhWR9rrK949vyE0Vu2VwNffvWWi6s3gKJZ1pw/WfPZd57z8SfP+d3f/S6LlUYqR9dtWR8FyiKgtWdoUwZf3/cYtWC7G9nveoQAozVSSpwfQacIU8oAM0jAW/jFT3/FqlyyrCpkPdDtbxn6G7rugq/6X7I9WXB0vKKpFsjimOgL+m7ky68+cPLohNOzp1xc/w3WuYNo90NhSnH1IqUIexGwAmzSNERFQZVaGSCcYNiPdNuBdj/QD46bmy1KfWCwga//+me0766w725YtB5Lx04OuV4/nRlSCHbO0sbAVkRuKkEvYBQRbx2qtegQqWRKZTdK0RaOUpWsdMFSGRY6z4+QtCMiEqEl2ihKpQhKMCjFiGdxdsrx82e8+P73KI+PcUqw221xfY+OcNwsuLy5oW239O0W5XtKDJUpODs7pXq0QNU6n/Wk+yBSG1pE2s+VLpAmBxOjT4Y6qU7b6NyR4u+4ROi/G1M8FaZgUXp4eiwb9ocIqmWi6yHiKZC5c51QCimPkeYUP17i+3f0Y8DvO4roU0WzBKNz1y7pkaLPRnwE46mKCmMajh+fUsSIbVv0jaTddHRdi+2u2Lzb45zEe8WXb35G5wO6LLn9+oKTR6dc31yzv9qmDJYoiNJgVWQQjj6CkxoZIyIkDaGQO+tNnMv07QGTU/5/guQJZXUEcs3T89dcvH7NvtvhHZiyoVeB/bZlP2zxoqdoPMKNlLVD9x6nLE4H9uPI1dWOP//5F3SmQKxO0E2FDgLlI9K7XMYSCHik9xipKU1JWTcpOuotgySV9DhF1JFlrClGjbWOVVNgygqlS/7nf/Q/4uwXX3D0xVdc/NmPcRK8glhodl0LIVBKQWWSc+qt4827G6KTCKcwXYOkAAqELFkuHmGKAl1UeO9zwwEF48j+wwcu8KihZfn8GUfPnnGuFLGsUFWFLNQ3BTVFEvwUWXhzsrWD4MFKTf7oj/5x6ixWlXifHD5Byo6QhMN5Je4tr0juKiqSyKjPmi1KKzxkfY4SIQMn5+csz87o3chyscAonRxdP5V+JzImkUq5OUO+UCHu+pdkFxt5eEQgSCUdyW6f8jZSy2gESKHxdiCGpIPyw8+/h93sOS5XuF3k6599jev+BKPOuN4Erq/29FtNvxn5569+SnR/RRhS04iqWrKvKv74v/5r/uLPv+bp85+yfFTz6PyIsyfHPH1xkjI88QihaHc7gkuFUYu6yXb2Aw1axkQ+xJC0xA5ZIXHy7+Cu4iBmQjI50S6kEmshUqTf1CW4mkIGSgMMAu9Hgnc4a1NWlkuUkihSNpIIEuEDKonl5JIfcRghso4SkjR5/TSKfUo0mX4USY8xCkkUVSJYMIio7hn74Y48iSnDRciYEl4CCJmC9fdS8HMGSs5WPxDP6SzQWufsnZg5+ZiaPsSYNC19QOtMyjwwIf38+59z+f49N5dXdH5HqdLMdaTPH3wgWIdEYGKkjoEX62OW2rA5PuXi/SW7i1u22xvGzZ5d33O0Pubo+ARdGKJSeAOn56dcX7zn4voDN1/+ksXZcQouKYd3kdoYnqyPuL25YuNd2jvzrVbZ11/XC5qyoikbGl3x5OQxz8+f8Y9+9/c5PnlE2/f8yb/857x3LetHJ/zjH/2IP/rd3+OkWlAozbvrS95efeDy9pq3H97T7vcHncLgHSH43KglHhICnLU467DW8ujpMz6Tiu12y7bd8b3vfJfzx+cURUnvHBebDW3X0273hGEEEVFNwa9ev6aTAZYFv/MbjNFvXiJ0v5jyEP1Js/2bNWyHFzDVOSZFb3nPgEmvOxwJQqcJQtocRfAQAtI7Cq2pq4r1KnJ5e0Hfdzg3AiWFMdSLkmVjWKwapLO0tqcnJGNYa5pFQ71IUVUlFH0/0O73XF1epjpqKZE+sbRTvb3rB27fX3D51Wt2H65YqJrxeMA6x+J4xdqOHLcdRWHSxhBCUnnPaXbRJ+dbCokxJVobQOJ9pCwN3qc66CGn9FZVOKS6CWRSgX8gxBDvMkriVCIjkdIkllFpjNZJEE2Iw8SN0wGZ0+OkzGVF6u5AO5AX906A6fCbhvmw0Yh7pmxOETw0ZRYQwtT1J6clSp2eFwTR36UKTtGIKatGyjyPZPqc5HKf+8miQsS7/VaQ3oNEZk2CrtIn1fC7ls0xlwndZ37Sm08cYorO5pZvD0yKTfdVhFSO0BQVQ1mnjhFywAafzg0lQU9CbdlgrkrUasnq6RMUErfdYTctu9EyxJRKaLzAhFSiYOR0L9P1iRDApc4Xdt8mdyR4opIpe0UpiqZOjrOAGAPWjoze4WKgXDUUVUFRFNSyIoSI84Jx7Nm3ewSKulqglDm0Kq5qw2JRIoTj9vaSulRoJWhqQ1lKCpNE+47XNW7sCdZytb+l3YEvHEdHBTHITHxFjFaYmBp3G6FQU1cBP8VQUss/P3pQYLR5sHEzhUqOusjCXnkPlDlHW4jUtrMoC/ZtR9v1KCFpqgajDIvVEl3mIkqj6EebSc8U1a1UBRJud3uCj6AEq1WD7ToCEa0Vnsjo9/R7R9UoXn78lEfnx5w9OqEfeq5vt9xsr1gfV6zWKx4/ecQnnz/hxYtznjx9xPFxhS4i3luC65AizYGhH9htWtr9wDh4ZKkYhsA4ekyhqJuKxaKhaRoGn+uqEZC77gQXuL68xpY9GrDtlqG9QsmBRycFx2c1zaKgrMG7EevbZIiLkqurlkhBtViluuv8Nx8K8d4e5UXMrTSTHKHPQQVHJAqVdq4IbrDYYcQOjoCg65KIbO8D+6sNbt8jbUTHlK/pfUgFsTlK6q1lay2diLRa0AtNL2CIkdE6jE/lPyJKpIj4AETLzW6PMxavS5YLTRlFKgfMZGEUIsl8hpgy+1RKqa9WCxYnR9RHKzAaGwL7riOGiBapFfc4jvR9TzcOHJeGZtmwWNXUVclUujB12ZMiEbMhZ+QopbNGWlqHIuZuGJC7aeQz4t7+/HeBXy9juX9G3blfHOyU3AclRx7j4TUyTpHW7ELGyXGbSqEWqQwlSqT2aNNjTAdyh8h7jVICIWOOvub7ZS1+bAnOo9YLqmVNsaiQ44CwImUC+pG27WlvemwXEFSoqOlu9myHAaTkK22Io2fft9jeEnxM3S9Eqtn3URBEavGdhCrvgltJMuPe2Xi4d9/8WUz36e+AfBEsQGiUDCybMzZmQycdwQ8olTqKOe9xzpL0oTxSOqT2yEmV2qTr7Zzlw+2Gx/uOzgtMc4T2AuECDAPR9sSY0uyjd6mrYxxJrronBoePSaw1CZBGyioR2AKRu0NplNE8O3/EdddzO4w09c/Z+iTMiUrdTwIe6z39aNHRI6PDKw9eILzGeJOI0Kns7L4gZs4wIgRESBpGwlrsbsfm8hJZVazP92nnUxphQsrw5S4KP32P4k6B7iGH7/j0NOvqgY93Jf7f+LrnDiTcFen5XP4y2ZchJII2dT4KiCCQIVCbpBkI9/5WDnZN9unBjZju2733m5ZzEJNWpDjM/4P+EjInOohDoFhOvxOaRb3g2flT+k3HLx5/xc9+9Yavf/mKP+a/ZX3yMdYq3ADRFgxtYOwsfggsmwZ0A7bh4uoNlx92vH93zdnzY57cntL1Iyenx4hKpIwVbxFR4K2n2+0olUEUAi0eNjP6fvnRN8qqDvcuTiZ7+n2+hzGTMiHe6aAoU+CNQebyYlGVSCcJ3iGVSo0Z8q1OmeKQ2JZMeeUuPFOmTirXmmwGILc+D8HjwoCaNAVJTS+iTKX0aY/OmVsHx+TuOrLnA6hD11qZibiQM1S+MVlFLg399YyWe/dQ5vNPCJGdfU/w/vD7f+tF3xLV8RG1HRm8Y9u3qQNljEThU2llzF15Q0Tm1vGGSK0UoqoQJ8cYD+22o920vLm94Mb2LMaWctEgtCIKyRAC19tbrvZb3uy3LGJP2VRUVUEVNIJIYwqOmwU2JH0X69Jn0EJSS8PZ8QmLOmVoSys4Pznlo/MnPD19xGW756Ld8v72ikefveTFRy/5/ne/y/HxEX4Y+XB7xc+/+CWXN9ds2x37rsVbC8FnYtDnvSwmn494KPt3weG8xQXHarUEATakbOApq+jy+oZ93zGOI87l7FoSgfjLV1/x6uIdX7x7xf/6P/lP/r3H6Fus1L99ew5x4vfub3b3tPoPTdazerhIYkrpaZGUyZAXYgxIkuqwCDEpJUtFXVT4pcb7d9ze7NluR0y54unTpzTLJYtVQbOoieNAt9swiEiUYIyhaGqapmFR1egouN613NzccHl9xdnRCSoAYzpsg0497G3fc/v+gqvX7/C7juhcXuCe1aLhKAS6YaBQJrUFi4HoHVrmKK0PKc01CowuKIoSKRLBorXBh9RarO9Ty1sXUupjiDl2Jh8wEyLeMffTZiNJpUgiJm0How1a6jx5s0r1PbJMHjI0ZCYy7gzWb+xJ4t6GzJ3hyjTWcJeSLe9x5XF6XjjMnKS4mTcpKZJhcvj0iXFXQibNiJwJk4Sy7hcFcfiMd/x4IkhkvoZJz0OIu6+YI3yHbkoHRuXXDPdsoCZDIT7suJFdx5juaVPU2KqB0TOYjjD2iZBUCqFlKuELaf56o6GpOH7xjNoUtBfXXLVfc7Pdoaf2qxhKISlF0h/Rk9ZMrr2NMYLz2LZP5GfwRKMQpUEUGuNT2UdK4PKMXUdvR2wILMdjjGpYLmpKJFW9oO8ttzcD280OLUqWi2PKsqJtdwxDz/GiYrmqQTjevnnL6fGCuqpo6oKiSLoQSkbWqxrvEpP9/u0FfTsyFpb1+hjnkgMcYqA2FSZKTBQYNNLlGmwfEFl5XkhF2/dgoJAPR7AIdaf8cPe/O+89OV2SxaJmu99zc3vLfrPn8dkZR+sjjo5OOC0XBDyDHWg/XOFDQCEwpUZHneuXE1lLiKyXDZvrSyKCZmEYXGC727Nrt1TNCZ997yOUMjR1xZ/+2Z9zdXvFZn/Dk6cf8fLjF3z+vY/5/vc/5uiooWmKvMZTVGYcujQHnKfbddxe79hvB8Y+UCjFOARG61kuC5ZLw2q9YLVa4ncWF3J0NZf4BR+4ubmh5QZFQLqOYK84OdY8f3bMd37wCKE9zjs+fOjo+pYYIsvlMVdXHc4r1sePiNFwqBl/KEwt6kkUrIvh7ovUvcuRNo/Uzk/ge8vYW6y1ICXtMBI3W9i1tNs9arAUSLQkkR2kaB5SEQJ0ztE6R69gEBonJSNJM6OzlipnSviYDEFPIEbH1W7PqEe8sZyUDZPKkFE617dHXAzYGLBBEJWkWNRUqwX1aknZNAwR7DCwb1sIEWM0pdaMQ08/dPRuoDo6YX20YrVeIIykc0MiB+slWiZxwpCjZ8qkrBkkuOgJWcRSiqk8L0WZo+Cga/X/D9w/uabzKZKEJu/rVExnWepJM3llApG7nkyr/CAYaQKm6IllD/omtdWN5Ci0AxwxZhH1MbWOj8XI+qihXNSY2uDDCCpiSoV1I/v9lturLcbVlCbZEXZvGdoeGxyvxpFFWdHHgO1T5yIfwImA9WmuRZm0XAg+0Uj+14Id3DmnIhvo3/BTp3Ldv4shiwuICik8TXVKod+jREfwI1qXKBkJIRnMMWc3C5GJFhMRRhK1IKjIYD1X2x237UAfJNX6FO0EcXQEWnyUBDuQxEOTmKl1A84N2aEKWO+SfRYdkUhRGrRUFLog+KzJpgSPjtc86wau+5FFU9F2Puk0SZkcleCx0dL2HUXwGAKqAqk0GkFVGGLQxJhLM2LAR4/KwZoYIjH6rLcm0AiiHdnd3KAWS7r9PrVRLUqUn8qVVZ7N9xoEcDfWD0mwLJYr7Dgkx+ceUsaD4L7OyFTiMU2fIEi25sSUSIn3Ie0JUoKWhDEQIpRlgcjZVt/cMkR2fn+dDZyc67uHJpLl4KmESU9kOkFk+rdItnzwHk3arwQCNJyfPMY9c3z05CU/+5s3vH31ll/98or/4O//h1TVCZIGGct0cV7i7Qh+gQwLhF+wvXJsuxvG0PJyd86+7Rit43vf/w5GGpSB6GLS6HKBzfUtR6sVWqZuUg8JOdUDhpBTmqbA5TdnyUEL5h4hE6ZxE4CSSQfDJF8CGdCmAqNSS12XMr98CDgPzrnccSoeAgBRZF8kv81dVnzOSHJpPLyzDK6j0AapDUIXSKmSJACASOQAEzkj7rzQO8ov/16Q9hGZyo0OQdRpfohpb7zT/ElTKM+b6e5M2S4iSQakDJbUMEMKwUFf8oFQrFc03mKjw12+T+dH8Ohsm0hytRTxQMziHSYEhFaUJ8cYobnSt1xvd2w2V4h2g9ld0RwfH0oLbYhc7XZc7/e8u77CxJ7V8YrHj88QeIwQ1MZwslrS+o4+DPRBIIkYIVmYkicnj2gWi9Q+eTPw+OSUl4/PebRe8/PXX/P19QduYsfvf/oJ3/3ud/neZ59TAR82t7x6/4Y/+8t/Qzd0hBCoqopSq9SGW8AhDy+TWD6kwBXAMPZY7+iHnqZeEkJkt0+dT511EOHDhwsGb4mA0eXh7PPO8rMvfslmtyES+T/+BmMk4kMqlM2YMWPGjBkzZsyYMWPGjBkzZvwPEA9fxzBjxowZM2bMmDFjxowZM2bMmPE/MMwEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S+jf9IX/p//Df4pzDucc7b4jRoEQEq0Nhano+5Hr6xuGYcSYEqOL9HxvicEDHoAYIzFG+r7He0+MkefPn1NVFVprxnHEWkvfD1xdXaF1iYswjJ53F5fs2p6ut7gI1nmCDwA0heJ4teDl83NePjunKjRGCAigpERIBUDfD3Rdx4fLC7q2Z7lc8vz5c+qmRiqNEBIXAm/fvmWz2TAMlqZpWK1WPHn6BF0U7NuW6+trfvzjH2OdJcSIUgpjDFprqqYGAYMd2Xd7hmGAkK7b2hEBSCHQSqG0RNy7z0pKtFb853/68990qL6J618RBEQBMT8kEBDj4SkifwIRSE8EYvoBBAgvIAgiglFJnBA4QERQPqBCpIiA9QQXsNYRQiR4jxst0abxCjGCC+krRlACtAYlUdqA1ggpEFKAlgil07gFkEEgkAhlAIEX4ESkCw4hBFLmzx05XKgIaW4EAYj0+YkC5UEGDwSCiDiVLztfu0iXne9DukPE9MP0OwFEIlGkN4v5aZ98/+OHGTfg/ON/SBgN0RYwlhDztePzalJIUaBEleaSUggjiSLiQ2AcR5wbkUpQlgVaS7x3WDvi7YgQAqUUdd3gXCD4iHORmO+bFBKlTL536Rqtc/iYfo+USCnRWqO1RkiJVInDDTEQQmB0Duc9kYgyCm00Sku00Ugp8MHjvGccBwQCJQQGDc4TvCOMHcQeKR1FCf/4f/b7/O7f+z4fffyUfXvFZnPNbnvL+zdv+Ku/+glDP6CU4cWLT5GqwPnIT3/6M46P15wcH/HRR08g+nTdTc3z5y8oqxqlC/73/9v/zYOMW+gvCDGm+ca01AQqqryk0lwG8CLiRdodg4wgIlKCFHkehggEBAFJABwihsP6FXlO4wXEQPSe4EaCH7HOYZ3HDeBGj7eeMI64cQdhIPqWYFtEdEgChUx/NsaIcyB1CULhvOLqpuPqdse7D9d8+dUFVzc7bjct+26k7z3WgnOagMQjsEIyANuu42a/JyKompqyKikKhRQCKUCJSHA7RByRWJpCsC5LjuuaT15+wvL0lPr4mOr8CWcvXlKvVtTLBadPTvF4Bj/yjz757EHG7br7byiIFDGguz1idwtjD64HAqPzdNbilEGWC3S5oF6eIKsFQmmwjqFrcXZgHFvAIwAlBYtFjTQGlCK4QNv2BA+mKBG6woeAHTrobqgLRVVosJ5u2zN0jnYUrE/PMEWBUB6pRmIY8H4ACqQ2SCmxPmKdBympF0ukVhDTmrZDB6R/bzbXlFWDMobeRfq2RcRAVSjWywYZI8E7+t1AYWpMUaOqNSIoNrc7fvKvfwyu5fhkxUefvKQ6P8NpjQW6EKnKBqMKdASGETeMjG2LFCAVSCUpP/pfPsi4Ady2PUpItJQUGkQYccOO3fuv+PlP/gVje4UKLTIOuMHiBku/7RiGAR88SoMxGq0NZVkhpSIE8C5wc7OlKmuKoqQoCkDgnKfrOqrCICXEGPDeH2wapEBIiRACIUTaD2I8nMGjcwyjp2uhbgxVoygqT4w94JFREZ2BaJCxBATBj8QwoowDGXK4TDNaj7WecXSURU1ZVtR1w8nxIyDivOPm5hrnLMPQc3t7jS7T/itEpGv3jP2It46qqimKghgFm13Lth0ISEzZcPToMc+fv+STTz/jh//x/+5Bxu0/+/r/erhHAGVZAJH9fs+f/Kt/yTiONIuG09NT6rqmrmtevHiJ0gIhIy5YXAgIoVCqpLMR68E5wc1Nxy/++he8+tXXXL16SxUFJoCyjuHqgtNmwWfPnvP05BFHyyXrxYLTxZrLD5e8e/eeP/03f8EvXr9iN/RYrfB1gWhK1LKiPj1GVkVa08ZQlEU6gxEQHFIIjDYIZDrHnEXGQFWUaK2JQlM3C3RRoI2h7wdiiBAFMUK3bxnajv52S3u9wQ8WHWF1tIYYGYeBsevp8HQyMiwUQSarRNiAth4RIiIG/GjxzuGt45//Z//yQcbtr/6ff0nXD3TDwK5r+XB1QT/0SAXBWby1jMNI17VYa3EuEEl2gY8h2c0eiBB9JHqXzi/ubLYYY7I1QjyYqwIIISTfgpDWmBR4a9nv91hrKY1h1ayyTSLAKIZxpO0HmmLBommoywqjNSEGEIJCafp9h7MW5yxnj064ef+eq7dvqQfH7/3gB3zno4/4zotnnJUnFKYkmhJfSIQRyEJglEOokA5uAC+JQeBG6Lc90Qaii7z66g2CiBICsAzdAChOz55RLmpMo6nXClGA0hqlC8R//HsPMm4Af/C/+k95/+Y1m5sbjo/POTp7gaoX9CoQJIgYUSFiXEBIQZTgVSDgiTEgI1y8e43tenSAZ09foouaoEuCkkQZiDIAHikVAoXyaSyCiHgRQMXJ4aAEVBQE59nebnj97h0+RprVkifPnlGUJp1jShOkuPNlsm2uUCAESEmUgsnykiIiSTZVjJEQA29fvyZ4x2rRcHRyjCoKhDY4BAiZ/g6A90gipVLJls1fH95eIoTEFAWPzk7xwhFlRFUGrRtCFHTDgAo93fUHdhdv+Nn/5f/8IOPW/+q/5Jc/ec3P/uIr/vP/2z+h3/RE76gq+OSTxzw6W3N+dszV2/dsb7b0+5HnT15iY6Rarvj9f/SHPP/4I7bDnj/7qz/jn/7Ff83R+YrPf/gZv/d7f59hZ+m3PX7fo7DUlebJ+Qnd7SXBDwjhePrdjxido+0HbofA8vSE5mjN+vEaH/fEOBLjyM3lJUNrGVrLFz/7wPOXn/Hk+UccnT5CCYEgEENHED2oiCySVxVCsk/GsccFhw8eHwJIhZKKQhkkFTJU+NHw//6v/jn/5P/1x/zZn/yYi1dXfPbsCd/95Dn/0f/09xivW0Jrib3n0foYWZRYIfnTn33JX/78C169v+R6u09zUUak9Hjbg/cQAv/s6vrfe4x+Y4LFOUcIIRngkB0rQ1XVaFXgXEApSVEUKKURQuCcQ0oJWhB8SIYHdyQLgBACrXV6HuT3iISQDBaESz65c3gfSL5FJASSEx/TRhVjzI6aza9Ni9fI5PhppZBaIYQkEimKgq7tsc6yb/fowmCkQst02BdlSVlVyXhxjn4Y2O/3VDERBzI7l0LckRUhBHze/KWWQMzOv0wHR7gjNWK+D+lmioPTPv2dh4LPB9adY5epgRgP5wDEO0eNiCdOnhYiRkQQECLCRZTzxMER+xG72dPtW8Z9y/7iimG7x3YjdrBEFwg+4J1nGHt8jISYSQ8fk0EaI0ErUAqpVN6cBUFLqAynT885fvyIo9NH2NEDgqJsWB0fo8sSUxaECEFECMlRDcQDySJI9zcKiFISQyQGkYYhRtJW7AkuEyvZ6Y2HuzJt1XmuTof8PQIGkZ6V/n2fKnuAsfMhf+aIiAJJIomEEIiYDgQhJFKITIJEYvD4mOahD4nYSGToZMROTn88zGEpZb4Xd+vygPSnEULgQ0RIgQzJYfh1HC5f5LkmJUqm9RburRERIHiPUskpVDEmozNE0jKZDkiBNAUETyQQguPy8op3795TlAJjAlVZosQRwVpWqyVlUVLXDd/97ucIaei6kVdff83pyQlPzs/46KOPkvNK2lO6rsOODlNUDzZu01iRLuewtkSc5lCEmPanPHRIefc7GdN4T6N1mG95PR5eHxLBHEPEu0D0jugd3o6MY4d3Ae8j3kF0yZD1dkQECzERNTGmtS+FvNtbo8D7yL7t6EfHth15+2HDZtdxs+3Ytj0eSdEs0PWKorV0nWV72+HdiEcQpUzOph+QcSQIgUSjpaapSkJIhxjBo6VCxgIZFVoIpChBViBLpCoR0uBdQCAojGG5bNLKlJJCFQ82btOYxPzZYt4niNOZlXdKpVFKo7RBSJXGzUei80Sf9r3o02BPjmMy9QQigLMu3XOZ1lUMgeA9IYTkoMVI9IFoHW60jNbhgk7nhBJ5R4+HiRNCWitIjYiBENPncM5T6HQWRwIxv1eMAVOWRMA5jxSJ8Eq3IN3nyXhFTGSpR5GIA6kUZVnSuT2jtbRtixyGNPe1RpDfR3iIaU8V2WFywSFC2kPKhxu5tI/lawghIAEfArvdlhDc4X5JJjsjEbsTySxEWqnpdxEh4oFsvG+vHOZBtlGmKTJBZFvk3wVB2t9iiITgiRFClIQgDnNtuob0/OSIxCAONpHUASlkJm7I6/fuixjxzjGOYyLW3Mhuu2W0A8PQs9lsqOsqEUpGJQc3RLwPuNFBnOwaIH/OIQ70Xcdms+H9+/f88IHGTYhMJucASdoPJXVds1ysuPW3bDdbTk5O8T4Fb/p+oKoLlMhrCkmMMDpPiBLnPG1neff2LdfXV7TtLs2/kE5qZRT1osHHyNsP7zmqG0qtKZVCLFacHh1RKsPYj5ii5P3tNe9ub9haR+wFQUlCP2TiMmKURvgcjNICpTSQ1qlSEiEUUkSw493ZGCPBWpASU5YEqYgxZKIuoAEvJUVdMA5FOgRGj4REIpoCG6CInkoEdiGkMzYHuuTowftEuPtsuz+cWcm+bemHgWEcGYYeO444Z5FREHIg1vnpeyIeA+Lg6IYQCPm8SfufI06BAzlNvZhsmIO9lW3XEPDE5B/EgAgi37t48AMGN+JjQCqJJKZAbIS+79Fy2gVKfMiBX5WCwaNL17NrC4RRHJ2eILYtFJogIoGIjQ7hNcm6FsgcbCYqYhQg48FmQoBQEWlEOheJlE0BIRzii0WdT3pjMfUyEQpS3jsf/DeCsN8W3X6PHQdC9KDA4YmkoGhUMu35pICPlGltxnwGxBhy0EDipSQ4d0ccZ/LcB0+wjhgdoigRUhGEQKQ4bVoXyHRuxpDtxhRIcmEk4JMdnwOYUaT7e5jf093I30IahTQ3pv+L6ae7dS+lpCwKhj6w3+1ZrdeJ5yHZ/ocA9GTz5vma9lcFCKqqxPm0Tp236FKhS8Py6AitK0bvCQrc0CFqgVqZBxu3sbVcvLng6198TWxH5GiRAhpjqBcNSM3ltuX11TVjOxCd593NJXWzotaG1fqU7W7gzYcLfvHzL6nLJWePnvLs6UdoXbO1I7t9z3jbcrKoUMEQukC364hxpCgF0QW6dmCz3RNMhRISo2QipKTEBei7gcuLDUoaymoJ4pK3b99wu93xwx/9iKauMSoR0WJaKw6iUhDDwVeQyXFLpq71+OgZhMWoiJagEHz68ik/+O5ntNct16+u2W/3fHh/yS9++RXPT54iS83Q72mHHh0jUWmaqqCpSqrSEG99nl+Tjab4d5/e//34jQmWKTITY0yZK8ZQmJKmaYhBorVFKYWUmrRDJoNAqUSexCCBu01wMkKmCPhEsEyGSwg5GoTHh3ggWHzemEN2PGMkbQg+ERt9P6TnyfR5daEPJIcxJmWoeJ+jCBFrLdvdjqpuEFIjpUqv05qiKBCyxTpLP/Ts2xahFD6Ew9+cHNfpcwufDDedo8GTAztFtA+EzCGilRawEOKwif53GWj/voiEg7M2PXL4lg9cMWVuTIkak4EfAmIcCS4QR4/vBuy2xW077O2e4cMN+9tb9jcbrl6/prvZYdsRPzikIxn53rHp2+y8J3Z8yqDprcUrmVhpICiJlwJnBKxrPv3t7xO++xmli2x3e8Zs/J0/f0GzWlGuVsTCkFabBJ2yNw6ZA9NX3pdjIBuy5IvPDuu0ieYxinAv4+eeVXKPWDmQLWJ6F8E9xupB4H0ijogkh32aP8hsqMlkaEuZDgMSceGiP6yhtF6T0Zpe+831d590+ebOkh6P+TlCSoj+jqi5N0d/fb6mMzDNOaXShiViyORXIHgI2RmS2cKOOVIQRST4iIw5g0ZrYtDJAAuWm6tb3r19j1aB49Oao3VDVZYcHx+zWq6wpWW5WvPJJx8Bms2upWlqTo6POH98xotnz1g0FdZari6v+OrVa4SQFOXDESzTaE13MX2/twYzkRIzkSmnxzKXJ0KehTGZDWmOhntfnhhSpop3juBTdDI4i3cWb5ORGDIh7b1ARJkMUecQYkyMSwgH4hVE3l+To9V2ns22Zdv2XN7sePvhln1n6cZAN0RQhrIu0UWNNgNKdSmzMZ8TQmpwFhEtSqRsMYlBYagKgXcpO8AHh5YKFSUyarSQKFkhZQOyRKgSgcZbRwwBKaAsS7xP0UujH45gmUis5PWGvEenMcncH1GkLDqpDdokgiUtvJDIlUwsx5DWXRrcHB2LyYjzLhn1iRSQ2OAJ3icS++DY+hQFtolg8ZmwRIqDk5//CDEIEAohVIoSxkRopgCFvLs6IYkxjU9RFIyjJwSPNiYRoSGTS5ngnGZsjImsNTEQJUitKOuKrgWbI8dFP6TAitZIkYiagAOhv8E7p8+UjacHhFLyQEQG71Mk3Xt22w3BJwdFiLsx9j4kIiWTy3dkmLhHrNwnUiaC+I5oCTkrNcUl7rMs5ABGInXu77UxT6iDYxkiwSeCJU4cT85iEBMBe28MnHeoAEqIlGXjs/2AREmFINld1lrGYUhZhOPIfrdjGBPBst/tIEZCWQAl0UPwkeAiNtpEyE/zOibbyvuRoevZbjaZQHgYyAOBz8EGFEJQliWr5ZJ233K9u8Y5jzFp3LquR+sUlInZsQoBbPC4AMMwst3uef/uHZvbG4a+O5CMAZBKYZYLQttxdXvNdndKoSSVTufMqlmwrhpEACEli/cN1jnG7S3j6AhywO87YojIAKKoQGc7Qoj8udL8UFIi8xHrvT2cqhKIzoFSaCBKmQOGaf9XMaIEmEJT1AVk4kXGSCEVZanxUmGDYwgO4y1BJMcvBpEJ35jIM5KNgHq4Nde2LYMdM8EyMFqLtQ6NzLZ6JlgyyeJ9ICKyDZBt/GkNhYD3NgVYiIgoCXm0vL+zv5ITHA6ZLS74ZNseHO1E3lgPo7X4GFFBJrLKp/18GHu0SmSslAKXCRbvJDF4rLf048Cu21NpTb1eprPGKLyEINM8A4eMOjtlMpEHyPR5VM4uOxAsAWnkIdhV1hUEjyRgSkElFFEInHfoUqILjVQyJVSQz/wHRN/usXZMRLzMGSXRp0DlvSBjEHcBoBQ4cIToD1lDUohMNmRbRiRimuCJzuKDTZnpIhJlzkqaxjLmcGEUQMr6iQR8sITokh1+jyTJm2oyzP+taXygUg42/+Hfk6kaI0IojDY4MdJ2O7xz6MkGEhz8BpgCidlnybasFJKyLGEccSERckZqjClomgXGVBjn6MOA8yBKiVo8HMGyud7x7tV73n75GvoR7QLGSBZlSVlWWATXmz1vrrdE79BR4OMtT5oVpqqpmhXvPlzy7u0lr75+x6NPjlg1J6yaE8Yx0rYj222P3fUcVw3Ca+ze0e96hHRoXeDHQLfvud3sqY9KlFBoqRAh2WMEQd9Zrq93LJo1i6ZBm4qLiwvs+/c8efIYefYIUZYobLIXvUAGRSxlsrNigJhPtSjQXjAOKbHBx4gwAqHT+n32+ITPP3nJ7nLPX/7JXzEOI5eXN/z8i9ecrJ5QCY0XinYYKGJEGkNVGOqqoCpMojxjOnuDEER0mnu/oX3yG5+MdvSHqV5VFevVmqpqqKqG7WaH1obFYom1Duc8zvkcGUoOmZIq+YrZuIk5Gq51mqCQjC9rHeNo89eIMQrrI31vGfqecXRY67H+XqaHkAyjhei51ZK+GxCxSD6394ldRqQ0M5HSk40xxBDY9z27tiUgWf9/efuvZ1uy/L4T+yyXmdsdd2357q5uNAwJcMgZkiInZiYYMXrQoyL0rP9Bf5geFIrQUMGZ0YQokiIBEk0QDbQpe+vWdcduk2ZZPfxW7nMb5DCExpEScbpQdc3ZZ2futX7ra09OWK1WRxXK/JqGQaTEOWdiSqK2yBlrLXFmB4rYMgpQvK83iiMQM5/yjTHC3h4ZMeoH/P0b+oAH9ZR/Y0Eqs4pGG1EkoDDKgE+yyqCwUyTsB+K+Z3p3xfjyDft3V7z99gWvv/iW6WZLuj3QDFHYQQWnJydcdGsWbsGmOWO57Egx0g8Db0LGOINrHSnDerXGaMPVzTWjgmGauL69YbHq8CozqoQ9O+HHZ+f84NkzVuuOb9695ftffsH/9H/7Zzx5/JzzR0949sHHfPKTH3P65AnrRxc0z0+FabAGrCMZsWDEnClZ1wOIJsRc2RJhOk2RD3KWz/XRUvWe4Ih7GOJ+CZ8BF1VmKOJhL3l+jAy7xhxtWvKdjNAFRkDB+Qo5EWOklHQP9NdNUoYaGdRFvq4BPZ8l3/thq9apqrm0rgNaqsypqZJ3OG6uuWSxcqn7bzoPm1YrUklVBlyOIJBzllkBpLVCO0tJkGKQw4cCZ7QoGEik5Lm+viX85YGXL7/myeM1Hz5/zKNHZ3z44XOePHlMCIHlcsXFxQVKWdq25eL8lGdPH/Pxh8/54aefME0T79695eWLF/zZz/4DKWdc83B8emS+H3K37hUB3GNZ7z1cImWt+FwREGoGP+T3ChgiyopI8hMxeMZxR4qBnCMli3JFDsj198rMQ5nqkI3CaI0fe0oRVt/Zlpwyk4/0g2d/6Nkfer5/fUk/BrExTAmfNKk0oBW201jb4lxH063oukC36BlDj9rLIaZpO1wvA4A1il0/oSMQEg0LdKPIVjEOYNEYLFY7Fl1L13a4bkHSS0J26Kig9xxu72icZX2yIihwXUOnH+6wZwFTCqoefFWV7GcUUypEIBuLbVpst8R2K5TtIBWIieIDOcQKshSMqeu/0mgjg1ZOGe8jrio9tdb4YaTkKkm2DaYIYHbY9ez2B6aQsYsGZTVYQwoCoIiKwZG1IquZ3EjEJOCVtZlC3YPJaG3lc1QUi65jmvbEkGidYtE0pBAIXr6cFcuh0UYOQTGQUsTYFtNaTi5OuLt5xTAOXF5G7OkJK2fp2kbUI34io2iaDo0MQ8aA98J4Zv2wAAvUwzozGFkIfuLy7Rssoq7VWcAtHzzeT+RScNZitCLE9B4IzRGASanIHlcPz8LkFmJMlUEvFRApf2UPh/nk9x+pWmbUPxemaUKphFIGaxzO6bruCpGlZqRfQUoRHwLaKFzj0Nqgs7DgWmUUAqxPkyfGBFl+nhAD+33PNI14PzGOnpIUscuobEQZGcRGGInYkDHGoazYc3PK+BjoDwdiSOy3+4e7Z8zn0MqWy4+KVopnz54xjiPffvuCq8sbnj9rOdusub3eAppVAdsZUlFisURxe7fn8vKG16/f8e3X35CmQCkZYxA1Ryn4VHhycU5sW66Gnp//6pf86OOPWTjH7uaW1bnhpFvx+Qcf8vT8grc31zw5O+ePf/7nXO7uuNkeOIwT7cmG9mRDtsLSa6XRTd1nEbOLNbquvBpVZyXIOGPIKaCSwqaEQWyiCXF7TilSwkSKkbPNmtx2XA9vIEwsnOPDR48wOTMdBsZDT9HpyNpnG8k2UJJYSxerFbZrcO3DgdHb/VbAlRgYp4lhPBBzpKhGFMsxCkAcA7GSjlT1eKnzdT4CjAIIzuCjkg/yPRADdS/U1aYi61+MAerzorQWADInUU5ohclRVI5HgKIwDH0FKyOofASjS10LfAoMYST1mVW3YNW26M6SWktuHbQt/RCxwKJxEKqtIWZ01LjWoJwhEio7r0AbbNeiTKKowMnFKSVGSvIUtadZGLTVhGhQTlGMRukGbRSUSMn+we4bwLDfEvxIKYmsElmnam1S92qUkiUmQCuKKvixx8cJyJhFK79eQb8QM6pkjMpApmRPDqMARk0re5+uBEUBlBbFSV0SM5lSIjFNeD+Qo6coI79SuL9HHP+C/8RP9R4Qw3/8/86/6qzDG0NOiWE4gNG01lG04X62r/OYps7c818iwG8pVV2aJnJ2pCwk/WYjBMdi0dKPGm0dTbv8m92s967/5Z/9c379p1/w+utXNFEUd4tFy5OLC8YQub7r+ebtW65ue0iJhsIHZ4bfefqY559+TEiRL778mq++fcFhl3mmTtjdJv7y5y+YQiGMgeQTSzTpRJN04e7mlv3NjnZh2bQbDteBd28PfH99xyeLx6AXWLcCIiTI3hD6hpu3kbQpnCwcn376Y65ubvj+u6/4V39c+MM/+EOePn7M0inGw4C2FrdcYU47cTBU8t+kgkkFfKYMmRTlpoa7A4ED2li67pyf/ug5p8sFh9sd/+9/9e+4vLrm8BffYpvHPD+/4Ml6RX97SeMnmsbRGMeiMSxbizOGKZfqClKAg2L5DWL9r3H9DRQs8+KnadsFi8WKpmlJKdFXn6W1lhDikSFfLLqjrMwYQw4iN01RFlZnLE3THQ8bORX8JAv2OE54H1C6I0YZSr2PxJCOQMb8Acr10BYQduNw6FGl0DWOsUzEEPFGfJgoJTkS1dcVs/yZ5vZWDp8pCdJe5iyR6q3OmWGaaMfxyMoba9DRoFKq0ut60IwRUZSp9wAWKsBS7Rh5PqBmQcuUDBUPqV4B5LAg5CnKaIoXq5JJWQ7mGYgBrvYcbrbsr7bcfPGC7Zsrhtsd6XZP8+4GPU7onPhEa3JZkBvD+XrBbtgzlchHn30qUvNisNmhozBJ2+tbmsYQS2aKE0+fPif5RPAeZx37safkxMlyyenJmkkleh354A9+wrNPnrA8a0BPfPTsjEX6hP73fsJ0NZLe3HD3/R3h1y9Riw697DAfnLH+4CnLRxecf/Qhi6cX6GWDcZbIPWtSENb3CG4BpSiRapd75Hx+LgVpZz4Bz1EtR0uHKA54UFwMIBcjUkplUNoekdaCFsYaQ9U4gKrSW6qssv5cWquqohJm84ikVHuB0u8x3O/rLN5jG45bl67vWWXaZylfqlL7Wbli3G8uM0opTNGUIhkwBbGuxOjrMCVgzpyjk7U+ssYpg60/QymOaTiQYk+/L4z7G+J4IIeJTz/+iIvzc7z3KG3o+z1aWWLwPH/+hPPzU1brJU3TsN/t2O/2XL674tWrV8SUaB4QYElaaJNSmXqt1W+CLBVsFevXfLPfU6fEKOtmFjVEDJ4cU7UApSOrlUMSiW4SQE0XYUBzLqQQK8Ci0JijWkKsWC0pCwB88JHb2wOXlze8u74hxERIiUPv8T4RUyFEjTGt+GCVwuDQxmK0lQOeUjTOsjlZoo3QQcvlitWmYxhF+Xd5JdJhXQKOTGvFoqJioiR5TiW/akXTLbFdR0ATC9hU0CT2N9dolVmsWpqTjWQc5Ic7qDsNupSadVMtNUqRiiagyUqjGodpl+imQ9lGQM6Y5KAQM6Qs60FWKGNqjpGFIof2mOI9cKq0qHiCR5WCtQZrDHny+GFkt9vTD5PYsZwM7hhFCnWvUMKOK+tAO7Iy8sqzIiYIUyJPEe0s2jQYinjpcxG2tT4TJUacMRhXKNEQxkl+zq7FNQ7vRUUaQgAb0EazPj9huVpy2AUO+z2H/Q677HDLhUiFKyMdoNqoCs4ZvFeVkHhYVlbNZrwiYG2eRuLQE8JI60QNoBSM00QKAapK9WizOSpSq4WoqmUFaBGSYrY5yZ4t6p/yVxb92b6Zckab3yROjnu7quuyEVVgDBmvDM4VtLJYa6rtWR3tg3WXEuvPBG3X4RAlQ85i9crZM44DwzAxjRNdu6JtG7FhGnO/vqaMTx5dNF63OGdFYVw0Kcq6k3RAV/xIFQUZko/4PB4VWA9x6WrN0iiM0gJKagGdN6sVF2fnPH38hMs372h0w7JZoo1hvz0wTp5205FRpAw+ZL786huuLm+4vrxFo3BdiymAjyhjUDGRfGQIE21jef7Rh7z4xa94+eoV4dBz/gd/xGAdbc6cLE8ojcWcn9H+3u/RtR1fv37JFy+/4/vtDWoK5P1AdA1aK1nPjUY3GmU01ljJM1M1W6xtKUEAH2VVBc0jOUw0rkUVRY4ZYzXLRYumcP32HTYrGm1YP33KcH1LmgZur97x0fljHq03tMsT9BhIWRQGSYv912jJ+WtXC0zbYJoHZNMPO1HXVYClnwb5PCgYgyeFIPbwIACLZCXOCpRMDGIJEsKn4JMoTkopGKMqKCU2v3Q8XCtRXdRhOlTCBmSuDjEQkpAzShd0qYp0Ve3VpRBSgEnOIdbOao1CSAmXnCi/UsCPouiIRNQ08eLqLalknj15xonr0GiGMGC1xWSNSppUDGSDikaeASVWsRTz0VrZtAalC6RMyY3MYDajrMatFkyDJdSDZGPtPYP3gNfYH8gpHmfDGdASzCPXb5cxFHQla3y/I6SINgq9dKhZRZsTMQcBs7D1niX5SmLtLvN+ejy0aWblmSysGXKkpED2Iyqnah2vz0GpjCfzn/9fvxT/K2N4XbuttTTWopWm3x9QxuK6Jaj5s1FQJYlIXGmKEVCQqiI21mKdJRcrDg1nsY1j8CONb3HOsWhaFqrDKSj64ebKn/3Jn7N7vcWPEy2ak80Jq43kqL253fFmv+PN3Z7DWFAJWq354fqM00cXLFYtv/ziL/jq2694e30DxvLyu7d88/33+OIJWdHajkW75MOzc86bJWXpKP0d486jkyFvDN9/c8277Z79mFB2jW7WqGZJVgOqGEig4opw6OiTYttFPv7sMZ98+hlRRX795ZcsFudMY+HzTz8i58RwiPR3N9jeszndsN4sUTqBP4BPuKyEEAiFOGXyGETtzoi3gaIcpyeOv/+P/ja7aeAXv/iaX/7qO/78V19z9/RA+vA5K6VIITKFgHIdRkHnHJ21TGMQlwwC1JZcWfbf4vqtAZbZ/6YV6Doc5lIYxpF+kE333grD0UaUkpKFt+7J4vVN1T4jkq1UlSizcmRm0WLK2CRDTqygDIhU62gFeV89UGXR0zjRWIszWgAdXTNTQgCl6qArkqaCwofAYehFKj0Hqyp1tEXJQiFyaB8CpohPXWtzDLIDfgN1TymjjDp6pe+DWCV0MHMf3nXMvnjPbvSQVwUEZUBUEnxWfKEETx4CaTvgv33D7vU12zdXbL96xeH6Dr/rKfuRcrOl04rN2YZu3VGKo2THWbvAUJiInJ6eEEOixIKKGj9OIkn2k6gDtPzorm2YRpErx5KZ/EQG1qsV1mgRZiwszz96yuZ8hWkVSUWWa4d6tOHzH3zMq8O3oiraj/i9J2lNdJp8tWL/9orFxTnj5Y6Tz57Tnq1pzjaY5QqMk03PaOb8m1zu8y5yUaQyY5fyIbs/E9+jMfLs1Vs+S8HL/E4/4H0rSoAUbVDVXjDLTKnqk1lOTv21+xemjoeC+YvjcWD+tXqgeO83/aYy7l5yObNEKteDJ/NmJt8z1UHyfZn3fIkMVCSlx6iBUkgpoks96Gld80Xey4uZDzP159Fa13XAE3wkx55FozndrFClcLo5qc9cYLfbHdn3x48esdmsaBpHSsJgT9Mktr/DgRgToQkPdt+UKiK3rWthnpn1uj7c5/ZkdMnynkYZMkiJEj05xyrNT0TvJaOjhm8ZXf3MMZNjqoo4SQwU60GZ40TmO0dOAr6lXOhHL+G3OXOz7Xn37obvX7/jZnuQ9c9oYtKECDFlQig0zFk9umZs1eG0DlmQaZqGmCR3a7lc4FrLom1YNI4cPcM4knPGKUVr6xprLYGM0mAs2NZhW4duHZFSLaEJowrh0DM6w7g/0G02WG2wD2hXMGq2Zr1375jZcXmB2nWYphNWTglwPttVZx+RygJVaqXR2qK1lfybmk1wBDILYvGKUYArJWoCHxJjL/tqCIli5pC/ahGi1Ewb0UgpY8FYYf2UIhclZIUPxCmilcG0Dl0SWgurm1JBaYMxEoysTbWyWkv0E6mukdoY0LKnhRTQOaKNo1kt6JYLpuHAYSdhlotJGHfdOJGJp0xkwhqLVgqj5auUe6vNQ12yvM2WNwjTSBhHSb6Z72sFKEoRi68xVsiakphzqmbbr5A25TgDzGB1miXxs9Ksrqh/VcHymxZMjgfB+fcJ6KExRta5FBPBK5zV9bmR939eno+f+ZIJUV4b5X1bTQ0V94FpmhjGkWkaa5C+AH3HBLYsORWBRLQJo4wsH1lUnLkklCroomrwqpzxUgjHTLCHunQ9QCpVj12VaFIKmqZhvVpxfnbG9y/fsNvu2G/2nJ9f4MfA6D1jjqQshQeHwfP29Tvutnv6Q09bD1N2zmpRiaIVsf78nWtYbza4pmHfH4jDgP/JTyVg0Vl0t6TRGtM1OHfG+NGHKArTOLLtd4wxk4aJ2AxoJ1l/qbFiITT6aLuTn1PWvBDD8b5K+GYmRk/XtehCPdgpnLUo5+jQuJDEwtR06KYh+8DUH0iLFa5dcWpbFp0TcF4VcmMwTtRn1hiaVYduHKZ9OIClH/sKsERRslRFmHYGH/wxVDekICDlDLAclQ+hBoeKTcinWJUKGVsEbNPUEPwyWyLvARbF/WdT1mpT81oyWovaK5d8XKd1XatTJUChMHlX8xE5fv8YI7EkyckyUHTBlsjVdgup8PLdJe7xc7RtMCrV/VuJikpZCgaNRZlGlBkKYi4Syqzk864yoIsw5QbQCYxGN0uUV6So8Cmjq8q/KM0DJo0RvUfC9O19rayaCTZ5b3UpGISgLTkSppGcE8oZWVPnufeYn5PqXENV+eXfUOrP++m8983zo9CFomoii81Z7CZyZNBVXa6LEqKYCraoGZzhnhTkvVn1uET95ppsjcwMRimmYRSlbEpyf+osO4P174PndfVmzuwyxjAVLzOxMeQYxXJkLJ1p6GilyyM/3Hzy3bdv0EPBJCEtmq7Fti0+ZW52e272B/ZDYIoKm8Fpw+b0jKZrCTnw7YtvuNvfUVTh0dNH3Byuub275eruGp8Uy27DZrGhS4br9ZIyNpipp0yJxhWCL7y5uuJ2HJk0aO1QxoDWpAIqK3IxKFpKdIyHwvZmwH2+4NHj5wxx4uc//zVvX13jWPLB4+cY3ZKAQz+Q/JYUQSXFqrWQmpoBFmWeTVkAai+zcEyRTEC3C6xp+eD5BZ999pztrufLL95wfXOHU5p10/Dh2RpbiyJsEaumswbnDGr01dKsj6T7XzkI/X99/fYWoZoobTKElDkMI6UUbm+33N3tjuggABU9N85irFhi/DSSKcSc8DHIkGENrm3wQf49Jfm10U+M3h8tQyFkYgjiMTYOiyLOYThVamtVEUuQtQzjiLMGaxSUfMxBAY6SMx882hjxMRfYHwa0cYJoNsL65IqexywLhq5+U5tlA5WhVMmUUO4HqUyhpIjh3iIl65cMdeUIrNRcm5yh2qmA4+HlIa6sNVnVDqdUMMqgciFve6av39J/95a7X33L63/3C4Z3t4Rtz8XmlCfLNa1ZSVL6WtOtWp5+/hFjzoTDSLzrCUPAth26lRyVKQZSSJhsuby7ZhwmstNMKWAXLW7d4UtiNxzY7feEAjeHHctFx6MnH/Hq1QvcpuXk/BFPP3wM64ZoAlhpt7Enmh/+4Y/o316z1JZu45h2npwhUbi7nbj87i95FTzZdqw/fcrmw6c8/90f8fEf/D7dyRluvSG2ikAmMueCVBCgFFKpwEauvNo8RNcNvqiKx8+H5HLv3HxgfIWMBWXRukHlOpzk2XQiAEspFQisHlZ5GapaVf/qC5LndA7zVcpKVsa8mxVQphytd3XeO/5Ro/S9hHQGQfgrKpb3DhBQFVpzjozWmKJR9X6J6s1gVZWiFwGPjFWIabeQckTnIp5pYzDFkALkHBmiZ79s6Pc9KUSePXnKMI5cXl3x+tX3aK1pmpbPPvuERddhreH65pp+GPBRDpqZXNHwh7usSccgyxn0yIgUOiHZRiUnUTvEjEoZpiibR4qkMNVhsYIX7/mcdVUtKSBGf/RS68oQyXoCSjsBDov4pId+YpoC/TByu9vRjyPbw8D3r2+5vLrj7dUd65NzTk/PWa7WoCGpgM+eXd/TNBFrZI1vlWxUWilSiUzTVJWLDqs7jDE0tmW9XEHJxBhYti23d7cM08iisSzbRp67nNmPA0pnbJNxXcEuQDcQCcTsKQkabfD9wGQUw27PBz9YsFqu5LU+1H2bg/xyEiIgy3rgiyIbi2lamuWKpluAdqSshHkTJApTxGJUioT4WS2hvkY7QkyMozTkOefEupUy0zhQYpC9EEcJiXE/cHezY7/rwVicbWkbhzKKouVZ0lVnUwo414lFAVODEQ0xFaZ+oLEdRVmWC4dWBVN/vsGPAlA1mrA7UIzYxxZNx3YYSCHKWt4uIEoI7xRGVHSisNisOTk7xfcHbt5GDtsti82K5cmKRXuCVpmcpbXGNB3OSNOYNaqu1w+nggBwBnKQz1Uuhf3ujmF/x6ptMGVCVetcTBIw7JxF0+Jr84hzwgCoKl+X7KL3WoEUwvRWv8IRcC/3Z4j/1PU+wHLMnatKDedg2S2I0Yv9ZwgCBiRIpoi33RS0USirq4KwHG3SKWVcfY6iDwyHnsNuzzCMeB/Y3m0x2tB1HUYbIcaQQ3/wcqBpdEQjKhhy/d5ZQi9JCervJxd8mDA2/aZ39m942eqmlF0ti11Sy+cHo1ivNnzw/AP+7Gc/5+byBoPl+dOPGA9b9mPPcHPLMHr2fc+7q1t22wOoaj23lsY5Gq3RxhDHiWw0jW1IgycXhWs6njx7xsuvvuL1u7dMcSLEiRgdKY5icRD6hQ/OzzAUGqO5urnizd0dd/2OmLOoxLQiWIW2oqgwTlTZRhVMUSyskzkXwUqjhlgyQ5xY2VNp/wugS8JpBCDanBK2B5hGmgTPNmdMw8Dd9TVvX36PXp+y3JzxdHNO1y1xjcNsOrDmOJe4tsG0DvOQFqHdlpAioRIWwzQKCWIV4zQSozQX+eAF3J8FazXnKcZArVMgJySUtlqYLbLeWyVzfki5rhYyzzMDLHEOwS2YImoJaxSrRcduvyPGgnaFWMrR/leUNE/lEOkHeU5Q0uoVTKxAsqyPmURWmXXT8vr6mjdv37G/6/nf/Xf/HR8/fsKygxxqQ2gqKGXRqkHjhMwoE7mSYU3XYK0RZbsGrSpJYZxYcZQG1WFcIZfI4MdjjlcmPyjAklKsgHc52uNVBmXkc2hKwZWMq86AFDz+sEcZhVEOkwoWJQBMqa2FOQiqoZQEEJd8VC7NuYuRqupVtemniIXN5kKOkeCl3VJAF0myM1lhi8yNEbHrzquPgCm/kdLymwTj/HvVMU0M65x8Roxhe9hh247kowQNl/f+HsRZcExlLKJizEXUSMpZ4jBIvK6yWKuJPtOozGLZsmFJiJrYTw92315/f8dJs+HErSh2SW47Rq24urvlu8srbkfPEAolKxprWHQNn372CTknXteWTbva8OyTZ/zO3/o9/uTP/jX9NzeM7+4YB8W09/R2QE8FlzKPNgvWJrHpFC4U+jHwq19/SXSG7vwUY4qA1kXCoUuCmJBiAhyH3cCwf8Pv/53f58njT1kuT/n5n3zJm29u2V8mnjz6kB/95Ec01qMOnnffvuT2xRWXiyW/9/s/pW3XoBccwi25DOQyEfMoJEFIpCEyjKBcRjtPs+j46acf0iTFzYst3377kndv3hGHgeYnn7NuHa0z+BzJKIx1dF2L2veVLNGElFCY34hd+OtcfwMFiyBUKEVIGb/bEXzg7nZ3BEhyXchmBkYZSevWWdeWhP5YJ7haLbG2wVqH5EDMclxh3kIIItGqkKRzliebJ2QglcKuH+4rYWOktZrOOTarBSUIap5qk0NKkqiujZ7xGEChjUVbC9pItdY4YpqGjZ2DbgSwmUPjUk6s1itU1jWQE/nw1oyVMluXKos2q1mgqgW0qHn0nNRd5FBcinjD9ftgzANdJlYGDCg+sf3yO3bfvuLdn/6S/PVbzMHTDBFzveX5YsPJs4+5+Og5xljCFHj9629x5xuazRJ3esLNm3eUDLpZ8O56z/piw/J8jTItpUykkkgadmNPKYXlyRK9bFmdnbBYL/n+m5dMMRIovLy95OzigvVyiU8Ti5MliycbTj95QvNoRVxpks2k4iXUaKFwFws2j0+I2dLugO1Iaxq6puPDpWU8e8wQEzf7nrffvGX/7Wu+/PMv+PJ//Nesnj3l/JOP+fDv/AGLp49ozlaMVhFVkc00F0gaVTTVmU5Ocl9VVR6A5LrMqsX/HwhXjpc1C4xq0cXOu59sxnkOiiugMqrW0ElTyPtMaj4CgapKmGX3ELBCmwqwUGWQaLQu98AlVa0zP+c15ft9e6KkO9wH1/1mGPZsB5C/y2qD0YqUIyUUYgoScFykcWZmN5Sx6AI5CqMk8v5SZeSuskMJsmfYj2zv9uzudlK53C7Y7Q784he/IlNYb9b8vf/y78kQ2A989+p7nHFk4PGzZzz94ANijA+awaKzVGSWnMVPnCUbIcYo9ZSVNU9TgBgpMcEYMPXn10qUd7kkUbJkAa+0UqJUmC2FpsEpUxkjsU/GGPE+MfYDYQqEKbI/DOz2B/phYLs7sDscGENkDJnbrefQB0ZvMaPFNnLPtbP4kJm8ZpjEUmCtpW1gClGsGAra1glw4DOlWFK2pAJ9H2ibDmMVzjZcnINzjqGuC01jq1qgJZaJrMC4gnMZayLWSLg2EYpKKNWhSiL5wH63E3VgY8A+4GKJWLSYq8yjqIiKNpimxXUdrluiraOUqoJLRf5MSVUEpkTirixNtxAfPbK+xyCs7nq5QiukNnfoscigS5JnIoyBsfdMvWd9sWJ9smF9skL8+ArnHH7yzHuYVa6uDxJk3LgFnsDd9paFW9C0C7EyBWootmEKHtO0cqBXmjAFstY0TW1ASQU/eZbtAmsl2H0/TpjUorOjIXJysma8W6KU4rA7sNjtWZ0eWK2WuKocidFLja51WNXhrFgFc/7P3ojf6pJ5oFCmgWF3xzQc2CwXhHEvVoPoJefTir3S+1znhEzbOrG8aVMBYoNS8rmV5xRADv+R2tRUlVcCLM/3Xv78MEkQK8h/10ZsUkcGNMtw2rWJZDQxBkY/MA6BGDLGaZaLBdYWlC5CWBkBrve7ibYdayA/UBTeB4Zhou97xtGLvVrtcM7V1zAraaX9MY2BNEX2YS+KCWdwrmUKIpfOZZ5b6rxURPmSQoL4cJkQVcAj969I/pFSkhdkgMZYVt2SpxePubnd8v233/ODT66F8c+a63c37A49w+AZ+hGDMNTOyh6isrx/zhiwhoLCWF3XWs1hGHCrJcvzU2Ly3A4HzpYLFt7w7tpjnaNkiCExhoLN8NHZGf/kv/wHfPn6e168e8fXV9eU3YGYE85qaBxog7IJp7QonmPGNpYOTVYFE6tFncKYAtFKyKKyCj1mTFFYZehWKxIGfESnTDwMNKXw7PQclSKpZN4cbkg5sslLVmrJpmhWzQrrGpxzQhg6Kyq4B7p2w0HUlSnhQ2D0oxAarRN1cgxCrAZfFX6I2jbnGmobKYSaa1iYfCTmTCyZrlqGS7XvxVJICPFlqnJiJhIy0i6So0Ir+Rx/9OwJ34w9h2EglIxq61G8KPTcWoKsTTnJgBwpgvTMs3tKTNNELLWNSQEq8/Wrb/k//9//rzx//Iiffv4DfvzZpyyXHY11hCkSpi3RR8pU2CxWLJuOTbeSHLGcSNUqFKsF1WhDTQJEZwMmEXTg1l9y+2qLbh3NcsnZg905oGozhaBL5HIPW9hSAZYsz3oMmTJFlI8Yp7BWY2OmUWKFHpAZLafMTLfNdvE5o0oVOXimrMhViZfqG60LoqivSk5SYg7dz6nOlUV+3xx8KlqTWWUygyeVPFRzH2a93lO4qCKNs7a24KXbG8LkidMkNsJ5LZpV1lW6J69mftfmeVhyzqb9iFMNbbskTZ4IUALowBi3bLdXD3bXlFqCWpD0gtAsuPKR4Edeba+53A+MKZEQkuTpxRmfPnvCxcmad69fcnt9xTRu+ckf/pTHHz1ndW5p1vD0k8esHm24u068/u6a28s9JVxhC/SnK56frzB2gZ6g3A18/fINi7M1z0432KZFYUgRxiGQg4ZksW7Jan3O9fWBN29es+8Tj5annK1W/L0/+K/5f7z5V7x9ecs//3/+Gaa94PHjCz58/hPGd4F337/i1dVr9lcjH3/2IeePTujajhR25CmShgkXG2w05GRQPuKHCV/2+DLhVMOHj075x3/vjyij5/r6htvrW7745iUXZ2ecbjZ0bUMqYptu2rYGkUcM4kxRmtoC/Ne//gZ6pSqyLcI8e++ZJpF9U6XEckiqXuhqOdD1aY0x1QDcWOsRZ1XJff1grF52qXXLdRgwdMsVjx53PP3gQ4xzFAX7YRTAhCKeNKNxxtA5y5vvvjseaop674Cn5p9htszIsCkBWfUAFKKEv9bD9GwBKlU+mHJG53wEd+4VKup4sLx/v+4Pmsd3cbYLVXN1fo/lnn/vfxSW9ze4lJeNI/tA/+aKy3//K3Zfv6L/6hUnfaYrhq5tiK5nfXrC+fOndI/PRD2w75lKZLNZ05yuMU1bm21EfdSXzKrtcKsNKUeMkTrVu/5ARPyJZtHSXZyyWC5p6sHAh8CUJP1+fbphs1yiyJjO0p6sWD0+o7SaYpS0fCZBxosBtXBsHp3ivab4AW3F39xUk323XrFWGpTGH3aMIUAf8GmHHxPv7g4EH1h//JzF80d0HzxGrxYSils9pCKjFtiBMitcqISlMMiztCPfizge/DK6QTLw9W98i8KM9cxbyfyqynubwvz8zp/FGdRXVX1ybw+aPxOCO2pQs192FkZW+KX+Pah7ZrbULe592XypNiIo97kvx2dewsSMisRCZbTm97PUF1kPLjVeJiOSVRRobVE4DIlMIGfwU2S37Qle8p1iTNze3R3flVQS4zSx3e949eY1p5szjDacXVzwg89/KLWY7uHk03Ecq78+k8O9vSfHIF9ZhpoUvKhXavtYKXU9VJY5hHlGhItCgkGzvMcKRYyIui/V9bgerLz39IcDfgz4ybPbD+wPA8M0cugHDsOIT5mYFCFLWLJrW1COmBRTyLRGYUyDdQpjJbAuF7F2mqoMFMVXYZoCMRYZoIsoWxSRkIr436sc2TUNuWS8nzBaGqJQ0AYn8nKjsBqcFta3kNFZAA9yQisJkDwMA9vDDhaOYIDu9GFu3FzP/F7uVqFILXPTYpoWbR3Mz3tKko0TAiqmejgUtZWyFmOtHBTIR6BRAt+1WGhipMSIbazgRCkRxgk/esIUoRjatmO5WGKdFWUNYj1IMaOUkeGg2lrnwdRo8ZgnH/HDSBhGmEL93FZJcz3kSFOXERsaBaUkfFesCxHKPHQIOZBSJKUAOeAah2sbrLVVveirnU0C53UNtk5JpPTZGbFOGH0EHx7sOqpMoNTQZ1UyTeMgGlQSVZ+1YrekGHxl0HlvDz/+37y+zaqw9yxBc4ZMqepYYww6q6OCt5TC6Cc53M4Ax3tAszEGVMbMwH09hOSQiSVVhashuUQypn7fuc5U7DDTFLDGi1JCm9pclWvBQJT8i3GsjTuWY/NUAT1rMqrtK8aAdfdZDIUKstc5aFb9kqGQSQ+Iaeo5+LTM8DqoXA83RVSTjXUsF0turrfsdweu3l2xWK9JqjD2E1M/EXyEVHOM1AygyJ4ldhN5n4pREqott4BYpCGmWS1Y+DV9GBmjZwiW4D2Na6p1TxRmzloWxmK7DoyAUnfDxDYG0uApU8Ckgk5IKLxR9y1wuWC1dAipXKpVOeOz2DuVVhLGTMYg2WO2ceggBQQ2FtQUKFnWGues5G7lzG044MfEoCN5ZdGrFmUdrrWotkFZ86AAyziNAlrmWWUeavaSkAgxBnJJNROFCq5Q9/u6tighEea/J2ZRiycth3Gt1JFQjchncT5PyD6oRIGKqNltkXats5M1t+sVpSTuhpGSba2olwfXaY2ZLa6lFlRQmMsw6odeyKJQ8MZgEGAmlMj3V284+APRJEYCi26Bs45pmJgOI3EMLHD8zic/pDm1sk/4Qpmz5Gx9PdWqWWokgZxKCqhEJPDi7QuGnMjW8Ef8bx/s3s3KoVLfuzK3BdU511RAQ+fqXkpgUegCJhd0zjRaE7WqbamJuWL7vnGHupfOZF1dV48tQPNALevKHHac579Di1VR1MUyR6h5RmXWMMnrnTN2jsOp3FhZQ2Zldv1+YreU+AqUloBlH2Sfq398JtfFVjjPxXO7qBCCqroToo/4wdOapVQJm0QMgZgDk+/Z93cPdt/aboU2LcVYvFKMg2dIE9f9yJQLUdAklouWx+fnPH/yBD+ObG9u2W3v2GyWnF9scK3i1dtvCXlkfbbmyYcf8vrFnpurkZC3DGNgt+vpjOFivSIWxxgVYT9yvT1wvmzJSmGdBK2TFP6Q8FPAKsW6a1gsl+QCN9std9uJzUbTrpY8f/YDnjz6ht0u8OKbN3z95fcoHJ9/9imPzp4w3Y0cbnq+f/GWmAq7Xc9HH55hAxA0eNknc9CUqMTWGmSWnuIB1xQaLE8vznh2cU72gbfjxO3dnlwMPmpOTxTWaBIa5xqaxhJSYkqlOlLuyfS/7vXbAyxKVBo5Z8ZxlJq20TOOE9Y6rFJHNmgeJkMIv4EejtPE5L0kinMv4QohiKeqgi9p/qBpTdu1PHr0mE8++wF/9F/8FyzWa2zjGMNUAYpMv9tLe3UShvPf/Mt/we31NYf97ujzLCCBUnVKkTDTmv9gTAVQUlWq5GNI2GwvUkpJGnqMMlDNlp76NWOmxwWgnliPXuz338o6CWp9nzFREEWCmr2FD3UNiTKM+O2Ot3/yF3z3//q3jK+vONUNH338A1aLJUYbQk5snj9h88lzQmdIQ8AP0KeJR2cfsDg7RbuGHJHNUlsGoynLJW59yv7qHa3tSD5xeX0lcsKFQ6871s8uaLKmDJ4QEv3k6b2nGMPZ4wtOlwvCdksokfZsxfqDxwSnyEYedDMHsRpF6TTnHzxhiJbtnUc1IoUtKhFDYnN+ynKxIBiF8p7kA9YYvNa82x14+fINL379NctPnnHy6Qf86B/9XZYfPsOerKFbHp8paY5Q9y0HSnIsjvdTVl3er3Z7aKTF2haVNaTZejMDG/MTI4NbqS9otggxgyyVCVJGHR8ppQQ0RBmKEovRnMpf4Fi1dr+blSNQ8X7L41ERg7o/VFJVW7VaUWkluSFKBmldXw9FH+srSxEZ9YwXF11DRhWgC9rKwW6Gj6yxKN3U+JkCOeDHzPXVjtvbHSlH9vuem5vbYyPUzfaO3W7H9dU137x4wYfPE+fnFzx++pi/vfwjAMmaeKBr2u7qQJ3J3kMNrZW8DV+HhkzJoapy6v3JiZIVWUp5OeJZNWfnWL1bBwA/Jfp+YBhGdrsDfT/UWl/PWG0Cfgrs+pFpCviQmEJmSoqUDDlrjOvorKEtRtbvovEh4xpF23VY1+JjZLu9Y/Lit++65qjC8TESvKgFRQosm1QsilWQqsA510Qpi7ENKiR0zU9xzlWWU5ofGq1oNVhdyLpgc0InLQpEZwg50+/3vHn3lr4EFqHn988fBmAplUErFRCTbDAtTHDXYdtWGuSKZGYkH8hjoPggLUL146+txrVOQmlVDT2tVcFGa4yC4APJe3SOtK7FoMgxMOx7xsNImBLWNCwXG9bLDUYpfBKbizGWHCRXTFlT24iq9lyB1Q6LgZAZ9z1d05D3B/TKiapUSYOe956iNRvXEKZRmta0xllHiF4CT5Pwq7OqKgSPsYaSOkxjcW1L17ZMU08KQfJb/CQrY4mQAzFmVI4kZ3B2gbNGPsMPedVcFYCSIpqCM7AwFhUMPosno7QNJWsJdR0KM5J7r/BQR/LnHmSpAemzdXK2khVpJ2qcWD+apjkqeacY6BYLnHMCZtWZKKVU81VkLU8xkGMShZNPddmQWcC5gDGKUqqith7AQogM/QRFmpnathObMcKq5pp5MY0j/aHHaI1ztu5fcJy9inzflCI5O5ljFPVQiwC/6j4z574e/OHkRxIEWm0fyh6zxlIUgFGhaWzLoluhiuawH/ju25c8evYM2zaEPhBGYdAtWlSSSh0BFqkRFTWL1Qao0fBG3tGSCxhDt16hVWbvR3o/sNAQ77Ys2o5F23GyPGHZdmjToK3jrO1YdCtONme8u93x1ZvX7AdP7j32DGwGQq0uncPLS8JWFVLOsk6WolFJQpcNVSVKkp9BK0wDBINWikVjMD4yHXqG/sDi4gxj5QR5e9iy6yfaNJAWBrNZUHBCQHVSn54fcI+TUFt5pmMQK5DWmhA8IfqqYMmEGOq4IkGV7wMsSkt2xxwmLUBLqSHcMNO1oQIs1PupC5AKWYl9JioBxis8wsVmw/j4AqUKd/2BnANZKXKth2xsWxVOYk2RKICMNpZZZSMtOTWDTOpLMBpUa9nu79heHbjsb/nm3SuslYPmNHimXU/xkY9OHvH49IKLk1Ny8IQg6gmsoVgn3jijSUSKsShl5TziQKmMsokvX37By+tLLvcH/o/8nx7s3pUSRR2kqkW61iurUo5nS1F/ZUwGlzRNtcubUtAp0mpFtobGarHJvqf+Mbo2gldiRADjGQKZbTf3oMc8A+Za/KENKF3IBFKpRn5dJ9Fq2znWL7+nUJEfjiNIzHGtm0FsISW0NjRNK616qTCNk5Aras7f0vegSrlXrJQZgKsztdZWlIJlYNGsyTGTQmQcJyY/chgP3O1vHuy+rddnqBoRMObEtu/Z+5Fr74lWg5E15fRkzfOnT/j4+QfcXH7PzdUN3g98/ns/5ux8zS4c+Pf/4Y8pneGjZz/ghz/6KeTXfP3VW3KpeVaHkYVxhAtFoqUPhWE4cL090F6ckI2RJkTtKEkz3nn6g6drFWcrx2q9omjFzd2Wd5c7zs+esVmsePb0B/zgs+/Z7z2/+Df/kv/ws79EF8ePPvwhz59+igqG7BV//O/+hKubO07O1jj1ezxeKJpsUMES+kiKmpSkmqrEQvGZMnjipFCq43y54dNnTyk+sr/bc7vtGSbYHhIha1arDmsUTdOyXHSyBoweV/e/PIfG/jWvv4GC5T5dfxx7+n4kxnhkcMTmU46L7gywzGfOkgvj5BknUb74GOnHsSLL4r2MMeFDrACLfEhzyazWS370ox/wwx99xmK9krpfSl2YI8NhT4mJ6APjoefRozP81LPfbwm1mq+gxCNvZJMVZg6UMZhqCYoxMowjy2mqdh1hWG3jMCniY2AYBpTW2MYdW1iO6pX3Dth/FWA5IuN1FVJQQ3ZrY8qc8/LA9ZXT5Y7x9o7+zSXXf/prPlZrFh+c0m1WnH/2ETEn7m5uWHzyAe75Y8qzC4w2JH9NirL4rZ8+pVtvGHYHijL46NnnQPv4guWjC9xyxas//TNOuo4QJw77HeuzDe60o3t+ytQo9u92TK9viTFze9gzJs+nn37MarPANRYdHX2c0CcdzZNT8sIIuFLkvimtSYAns3j+iBygvNuyKYa4H9n1I75EsvYslks2Tz4k68x0uyNue376gx/xg1z48aHn1999z9uv3vLul9/w4l//O5Y/+oizH37KT//rf8T6+QeU2jpkXEsoYhOSUGek8QTJIppBTjXf44e9dRjbkauM/ZhjMitRhE6UZ2kO/TouDrLpaKPQ1h6DqKQVpaYmaivPXrXnxKqksrM8l/q5VNVAVA8wM+BYatL68ZGfFStJgAQwshmUGQQqSCFvZRyUHORyPbwoLc1cZIg5yzBjhMGMo6jKNEpS7WOmpIw0DWdu6PnLv/iK211PKoG73TVv312BKWz7Lf/0n/4PxJjoh4Hvvvuely9fc3p6ytNnT1mtl/Xnfbirv7y8V58Ej6pSWV1EkaGVyNazulcdzURPATQGY1vA1FBayU+R9TOQswyLIcLQT4zDxN3tntFLUJ/kp2hiavDZsiuKQIMn0qcRHypgh+JsdYo1DUrZGvgbiCHQDwOr9Zqu61htVhJkuN3SD0O1VWoyil0/EOtBnDIcQWmTLK0fsUnueYpBWK1i8UnRZYvWLcvFAhXloFlKZK0bWu1ojKUSu6JiAWlBK4X9bscXX37Bye6ckycX8PnvPMyN8xPJR6IPwrBqLT7d5RLTtjIQ50ScPGnyJO8pgz+Gro050S4WNLpDdVaGNgQYi1W1Y60wmtNhT5xGHJIfkGNi2A30+z0lFjrbgbUs2wWtaygxkmrtqG00ofcSiGoFJM01qFtjpJ3PCMiiUiYPE9Pdjk6voLNoq3DW1ODCwmopFiAJr1a4piWXQoiRmJPUKCpbD1Aj6MIqLdCupVl0bDZrdr4n+onxsGM8LGjbRuTYCqYwkoPsuWsrCprfUoH7n79KoZRE8BNGSVZGazVJCnLIGkzXUoohJg37hNYWq8FoK0RRbRZKKdXmHc1yuWSxWNB1ndzPqmAJQVcLhpNtvc4BOSX8NB2Dao0xooqqB8sZsAkh4KdBVHch48eAtYVkNNYpRp3RKtF2YlGa869SKvSDzF9WZwmpLdSw2ix5EMgam0JkGiYBF2qWioAxQiKEEBgmg24UOtfyACVrU0bJAamo92JXHnaTy3PWmZKnNyWQ/ANTZzCDtS1nZxesN9c4d8PXX39HP0bWJycoDEyZEoMAGErhdIvTVtbCJJYuY2seEgWnQDkFJh8Dwdv1Atdotlc3jOmMYlecnJ+yXixZdUvOVmfY4gAjMxCGi80J7WLF/+bvaNxf/Ae+u3rL1d2BcdXTFkVrLKbVguFR8DlIHorWxMljnMaVTBPATp7GthjTMCjJbRDBhcI0Fq0zpML6ZEVrFaZEHFWN4Qy2PcUnUY283V6xSyPL1Zrzi0dsTs9wTuz4f/BA962vdccz8CgKFsM0jtUiJGrvEILk2RVRTs1nhJgiOk8UEjFlJi9ZKzEXDPkYOD7GxKAh1GclKVubZSArTVSZoBLaIiq5aEhjz+/88AecnW54c/OOXZooyqC1qxYUh7WKzrYMhwMx1Ry2LAHkuoiNxOcZ9MkC6gBohVmv6whlud72+EmyGXPKNNrSKsub6yve3d1ycXpGu4SltvKah4BpMlhNMUBTJN3dOFwjDSZOw2rR0S5b4k3mpt8+0F2Tyyot+t+cmHLEkKo94n5RVkphoqdJkY7MQRt8KRBlDemsRjnFoDJ+GsAvUSmhktjrrdIkH8QWGxOmlec5Vym4YBa6BsBHCddOBQcYlSl4SjpQGCk0QHOkFY+IR1WVUGY1i5J8m1r1m2uOiuigZB7LNQjauBkcyEzDQPYTyhqK1hRj5yEbKLJ/VHWkSvLaTVEsu5ZpnBhzwPsOgyJOiZu319y9u2V32RMOD3ffFq5l8hPeT4wxshsjQ0xEWlIJ8twsHR8+f8zpZklJkRdff0fbNjx++oS/9Xf+Lt+9e8nLy5e8ffeKf/RP/hs++cGPefr8Y/78Zy9wVrFeNLSphVjwfWTYFWDBFCbe3B7Y+sgFUIyREPgpkcbE7as77m5uOTk949PnH/Po8Smrkw6fI3/273/NunnMWfOUVsNPf/pD2hZevXnByy++Qo+BU9PxD/7hf8WHn/yAs/PH5KL405/9jF/+2Rd8//UL/qvf+zEfPjrj6cmSkA54H5mmREyKPCbUpLB9A0qRiifEK56uF4SLc+6uDxzCDh8U43ZiDJecrDuWi4bVyrLebFBG4/MdJUGoBMpvc/32GSyZIws7jNLUUUrBOScPfslHz5ygkvOJYWaVyjE0bl6UU0p474+Bssev2WpTGaWmcWJTaR1d1+AWLRipUs5ZQoXy6AnTRG80m5M1t7cLrLOMQdqICog16a9U0wpAZNFGkyiSih4CTSO1liCgjLWSEu9DwAZPm9p7hYB+z8IxK9Tq/7zfCCQM//yLHNky9V4rzUM3CIV+YLrbMd3uWbqO1drQaYtZdui2Az+RMyxOT9GrNaF1WCy+Wrq60xP0+RmxcWwvryoCr0gxsTo/oxhFPwxMU2AbIjF7lNMUp8lOkQwM+z3+7o7pbks/ymBorOH5owtyCkxTQKuEXTS4VYddd0yNqfk9ksuu9OxnT+gOzGpBc7qijIU8eTCKtl3gc4Aw8eH5R/h316R+YMwRjGK5WmI3a8nvSYl2m7i7GYlfvmZ3O/AXu4kP/+hvsXn+jNMPngGBiMylM5syawbn5qH7MIECD3vrUNjKDggAVz9JcjjPs0iysmSzOvI9wEOqed+3nMmmJAPfzGJy/KpaM+YcoPK+lJN7iby42+bclPIbz2yphxwJWq2V5LJASL1n0feNZFoyXQRkmV+eVCjq+pqPXmzEjmKV1B+q+RCQM8Errq8PhPKarCLDtMeHWK01hRcvviXmLOqpYSBnxTR5xmlkuVzU7/FwrGzxg7wvuUgF+tEKcJ9roJBchTQzOJVFk3C4TDr0hFA4DIHttqpRfCSmgjGNWKWUZZoC05QYp8QUREqLMSSVCakwReiDJqRCyJYpO0JOUgtsNMvVGmccpSgOhwMlC6AYpSuSpnEs12dcXV8TU2SYRkKp+TKlMMQszSyV9TNFMox0yezGCWczRmlyjHLvgBAhZaBoGtOQXSOfrwSN1rRa09SKxBRzPZAmtBKlgFEK3w/EcYV+wCyPnEJVYUjKvHUO27QY50SNVSSkPYSJHCaK9+AnAfxyrutDqcCjEAb39pJS7QqKOA4kP1FikMrILAF/Y78neAlzXy5acrV/UIpYkUqEbCg6k31tw0nqyLoKiaCPqihRdWaS90x9T7O0aCvKUKO1MMMpMoVJbI8lM03T0YqVU2aaPE21syoEdEEV/DRK6542LDqpZp6BBT+NtE6IC61KtesWxhFav8A2Dco8LMIyQ6Qly8Cfg6ekSCyeGDxxEvuSqTYeVX9GVK1PbVqaRiqL5+yoWa1qraXrWtq2JeeMtYYQKihQFXvHnLaqcu0Ph6PibLbozAAL1PrZ2mg0r++lHjJkqK8hnsmQUqx/xxzGrVE1LTOEWNdhfQzmm5WOzjZiwSnlmG93nMuQdTomTwiOmAJpbqHRHBVzlfwVAK8CcOW3bFj4T1051/1ptg7M82Kt7g0+0veTKOSUwRjH3d0dq8OAdS2LxYJG26pIEUOtKWIpVcdQX0WOBacNzkKrRCFT6p5WVBbw1lmKkWbLxjlaxMaorRW1lu1QCDFBlgwzXeCjDxSXhz3FOe6+/gJ/GFDW0q6XpCxWH60Nktmj5NnXRSzuubL9MWKUpTGaYPTxmUpFy5838vkzjYLkWHQNF6sVbWOxzuBVlCw5DdoZ3HKBa1ts15A1JA36AfOqYvRHMjXPz7LONbtKGj5StRQKwFLbz6oVJOVEUQlIFfC7Jx87a1k7Q6Mh7Q4EUw/MpYbElwqwlEJUiUhCU7BkYpgY+j2ffPIBWSVON2v621sBSarSdv5atA1+6EW9UZVn8wg1Ky2O55HaRJVVJikBPCOiak4KitVghRXKaIYQuDnsuD3sebw6JVZljooZRaQksb+XlCk6ok0kFQnIRWd00Tjb0nULlsvVg903AIOrCh0NqaBytQQpCZHNWtYJlwJdjpjiuSMRSyaiCECnCq3KrHViFyImTqgUUbRoZdFKQGdRgkZR5Wp9JOtKUWSticqAcSQMqijWRWxHWWXGNEIYKG3HMQtFXuh9tfQ8+Ob5zFXEmkQGVYmZOm9pRMGitMYYh7WOnCLZB1KYMLqtxQcK6VACrWTyV6XIPr/3FO8pMZDCgegHCpld3AspojQxQ78bmMY9KT9cyC1FwuZDlDNTiJmYkXtWCqZxbBYrNssF0Q9cXY2EFHl0+pRHz57hFktevbvkarvl0eMnfPrpDzg7O5csrpsb8jjQqsK60TAkVExMYyRmzZhhO3jEiWlQWLLPhEMkx8T23Y672zssApg1raHrWrrW8e0XX/OTD39E/+RDbFdYd5anj6UR9vLNay7fvuUvf/4X/O7v/JiTzYpF1/LxRx+wvblGpcgvf/mX/HmGu2dPyT/6lM6JvSeRJBh5CqQxkidRhqaSySngUCxdy9nmhPZuIvpMTjAOHkrC+5GiFvI8VAA6kup++v93gEUsNN4HhlEQaqUUri5Ms/wVZvCvMtPMA2CtQKue7HlhjjEeg2Tnr/ezTCSAzUlwnjNYZ2haJ4sZVc/GgtyP+MFiyGxO1lIT6hw5SxjXPOwYY+4Pb0pJhaW1NUMmE2LEV5vQ/DqMmX+PJkQJ4BWQQJLA53T/946ZR7m4SEHvh8kZgDqqH+piXyr7df97HuaKo8gW/aHndL2hSwqnDCxalLGUEsix0F6cwHKBtxZTGqYpMk2R5cU5+nRDyJm7ccAZDVbu+fp0RcgBvzuIFzF7sgqY1kJnyI0m6cLu+g5/t8Vvd+yHnlQynWt5dLJhmw5MMdIosMsWt2qxq5axEcRf54Kt8slCXfAqwNKergnXA8pIOFy7WrDPieInVoslfdfhrSOVRMiRtnMsNyc82u7QPtCFTHcT2V327K4OfPn198TB88Hv/oRN1+HWa0FqtSZq6mCpOGbF1sfvPXjswe6b/HWVnU4cgZxZXlkFkyLFr+qVozJq5gd0lb7f/wJzXbhihuWV5ABVfOj9TCFhZPPRRvR+Lelv5gTJSPIbOSzV1nLkAbIwu+oIyEjAG7lmVBQBVwSHyGSlayOKSDJLbRkCg9JWBiDRsRNjYbcb6cNIUZHIVO0dhewTr9+8Ic3y9qJJ4cA4jBwOO2GfZ/PxQ922KEn4VDabko8qp3ntmQeCXHMAfEyEkggpcphG+oOn7wO3dwN3tyMhiJLJ2IauW9C2HW3TEnzCRwFTQhKFklaGUGCMiTHCIUCMSjJXiiPlgFZy4FitVjhjSTX/Ktf2nBLSEUC/uLjg/PycyXvudrtKYomc2+dMrFXNiixBfVneTzNMNK5gjYOYJFsFaaTLtRbWakNnGlKRautGaxoULfKzeImfrk1JUlfbaEOYAipkGh5O9p5TFAVPrE0zTYNtW5QVRqvkJABMmChhQgWPqm0PABhbWyLq4TVKwOMcGq2VVEH7URgzcpLnL0WSnxiHnhiFWW3dikCW3Ih8/xwVBSUksk9yMKwfyftg6nxsYNAFUbCEgO970tQKc6+tVMgWUYBOvjLmRVqNmqY5yvWnyaOtwTiLopBjkOfUT2S9lOahblEr0fMRYCnLDq2k0pMsVpQQI8FPoME+sEVIzexFyfhxkJaSGPBlJEyTvK5xpF0uQf2VecUYrHW0bYu1tQ0mhGNg7Zyl4pw9WnwEWxF2m1q/PX+FqgArFahpmqZ+1u8BloIcPo7ZBaVIFoFCDhNJ1MKp1n9mJ3kEFFFTGuOwxtRcnCRr+gy0I2u8c5Kno5jDxvORuBJ+twIs0RJTJ3YFXeSrFHLkOMcUgKOl9CEBljlAuNqsKymVUpLg2mFiv+sZRiGClLYMowTadu3EZrmmNQ6nQNdsCV3fT61rkFfdQ7UxOK1oFETKMeMh18wvjAHraKyjcQ2NMigrfodiDXbRiZWjaEqS+nWtNI9tx8eHniEmfvH1V0yHCd00lFRD8rWqB7tSLelCchgjtLhRihITSieccTitCKkqtClYXZutShaFYDKo1nGxWrJoGhpn8ERyKyCRXbSY1aLagkQdYZzDPmCLUDyGtZfjbK+1hDWnOuOnGtBOUrWauFrYqmKdCrAcH7Jq9+iahs2yY2G1KLWqcjEdlZ4FnRWplCMpUVQmlkiImsNhS9c6TtSK05M1b25vRB2uMrZajDTQtQ17o+sMLsqw41Vt//I9SlX/CgCR6hwlrTbSKmPahqJhbiCbQuR6v+V6tyM+U/gsmUs6SUZZSTJ+5SilENpYrO6wWpG1rL3GONpmwWq9ebD7BmCKQwYQjYqgZ3uvQlpHs5jCmxxYFU+DZ0FkTyGhiUpjlOznG5OZRo8JEwQPiw1aOYyuZFqWoP6CZKjN62ApioQma0MyVua9otkUWGtFUpnbFFBhgLiqgEklo2cSA94jFBEFY84U6t6oCtSGJq1KJWPKEVS3xknTUYgkP9Y9rhHgiXktlXy8nCsQc3VHPPSkoafQ4/MgQcs7y7rZAJYhFHLR+NGT0/hg963kRKqZWZOfCEmRkZD6ksEpy2axZtE6pvHAbrcHrVifnXHy6BFTyry+umJIIz/63c/4+ONPAcvlmzu2by9JhwNtjqytIigBqWNI+ARjzOwHLzNmlpD45Au+D4QhsL3cc3d7R+sacphwRrPsGtZdx8uvvuHy89fsPr5hce5oVonTk5Yfffohf/pvDfu7W371y1/w9s3fx+onnG5WPH50xg8/+4QcPP/23/wxvxy/ZXs30HQrPnp2XvNUlcxrPhCnRJpUnV8zKXt0NrTWcrrZ0DZbphQIKRF8JMUJ7xXKJFZrKQEwzspnNJeqevrrX781wCL1gIFhGBmHCessxvzn/7pcQ47mzXrynsl78TTO9cZKagHnoKuUkyBQx4NcwTrNctXRdg22dShnoQTuMycUyoB1mq5r2GxWLJctzkmVZUhiO9LGgDLYUr83wia4psE6R8oCHPkQCCnisoUs8lJXMm3bsj8cmLyE+25OTmqWxD04AjOSOof9yuag1P0+QrkHYLRWFGUeXLkyXwYo1aLw6NkT+qtbvFKcfPQYpS3hsOeu7zm5OCe0lpAKq6g4XO45XO95/uNPUdrh+wOHuz1rClFFgvbkNPDq27dsX11TBo9eGHRrcUvNycePaBYdRWduX70hXo+kIXC937LcLFmvloT+gF4WooahRJrTE9TZEnW6RC8tKsuiqKOWkDPkgJJdAZ9pHp+y//VLChlrNSkEjNIYn9i+eM2ZanDdih7L1eUl6mTF5skJi/CYSQWKznQh8tOTczzwy8s3/OKf/nNe/Is/4c8/+YD//v/wv+fk4484uTjnOmQ8ghajxLoxSz/KzL48sOw9RohxVqvAPaqqa1bPe0gP8k+tdLWuKVH9aPl3QDYaDZIcXG19RWpTc5FnUTafCryUcmQxVZGhSoZ7XUOo7wHD+UsppLmhBqcBzPryQiZXZU1jbX3fUj08Vq+uoGoyNGVhedTcDlLrHq1yWNOIPSJBzpFhyKgUwUSyCiiLbLQ5MvhUlWLix48pUSj0h0JK/r3372GunOeUAg3OMGuNSinC5GUBnPa3B/b9QD+MpCKM7Rg817s7tncTh0Ngd+cZx8rOWsfF4wVRyechUxjHyDQGxliIQZ4HnTL7MNB7T+8D2zGQ6sHIVCZOK+gaw5PzNUZpyW9JiTEVYgKnEN+7tWzOTvnok49Aw/awJeXMYRyZxrGKNRQpa1DNcQDOWTHtJhqXaV3BkWlUwlLAB7yfSK2TMMfWkI0V0FpnNBGVJJMg1Tr0mCd0adE4ltYRimGFY6Merv1pGkZSkKyUtlvgFgt001KUIWUBX8I0SsZI9KgYIIriA2OwiwXWaSAxjgd8SLWRpWCMqEpKStzdXNFqaKww1uM0MA494zjgypLGNSyXS6YQMMpAEcZdGUQZM04UH1G6oFMNg8ySHSOZL7keMqEx0rwRp4kwDhST0cVJaGMp5BTZe89isaRk2A8HHl08Otpdxn7AOYsxBucskxe1TPITxXgJtVutWXYdvnj8OHDY7zhdL1HOCuimMiWJva3vO1oSjRI5+MNeopYZ+54wTeRpJExbhv2OadgxDLu6HmZi0ozjQE4cw2l1tQnN65o0cnmk9codrUPjODKOI8MwMAw95ghQ5qOCJVa17qzSnf38ab5H6r0wSFVTSGQ5FHyyqhRjjPI9nHw+BEwxnKw3dF3D0F8TY0brdATXVVVZdl0nihyt8N5Xhc0M8EiNtk8jxRdcbGlyJ+y1nnMwCilTZfa2Nnk89B3T9XsIsDsOA+M4sr3bcnl5y3a75+ZmyzQmxkGsHijDoR+xtufZ46dsFktSmBjHXa2Slayjoi2VO5A3uVoOrZU8lqwiocRK3AhApazDaY0zltPNCaOfKMZSnCO3LdJ4B8U2TFEsLIdq3fRTJEckH7B1LA8jy66VvDAQoFJrnBZFrjGGoBLFQERCxHVOrJRlLImpZIpWRwVKiQmjLEZBo2CRMicolsaSnUMtG9SiwW5WLM5PcYslbrUmOgvWoh4wyH2cBt7f+ueQ2xAayfRJQQ6vdTNUWaHRVTkhCoOYI0ekoX6pUmid4/H5GSeLjquba8YaQNo0MrNUHBlTqICfBgIqQQiely+/482bV2ANy65Bp4ROYJVFKyPqA2/o2o7lYkECpiBtf6WU955zySTyxxBoA1pmQFVVfWkejrQCi5ANBdpO8+3l9zhn+L0f/4SYIk1RdE6T8yTEUoEQRBmC0QRlaFRmLJE3/TU32x198A/clAc6NDXM06AnhZ4S2iVoDUEJ4dXmyDL1nJeJNZ439CjlSNoSrUWryMoUzpaa1E/4cCD1e9TqMUq1aKsxdiHOheApZUThmONocxEFUKrAo1GapsCjBJ80LdlkXk2ZN/st2bSkbk3SRuzRWlFwzPlZRlGJBrF2pDDhWiuB5goUScJ7tSbkRMrysxvjSHhynBj6A6btMK3YbUUhXCBPTLdXTNs7hqsrtt98z7TbEfoDti2YFpTKTP3IhlMsC5ResTk9x5VE8Q8HsPhxh596pjAQciBkRyiWTMOiXbBu1py0K8rg2d1s2d/d8smHn9KtTziEyL/6n/8nduPIB59+yD/4x/8Njx8958VXL/nFv/9LXvz5L5hu9pgp4lbglMO6Fm2UgNzjyP5uIkwaskOrDu8V+xzpdyNvL/dcvnsHZO7eXeIWHWfG8dnFM375r7/m21/9isfLFfzuU5bjhDKRTz55xO/+/g/51a+/4ouvfsn/8i/+Z/7O3/4DfvrjH3L79pLNsuV3Pv8B/+1//Y/5Nz/7C/7i29f8/NtX/MO/94d89OSC5+drdCqEJOr03SGQQ6GkCLkn2xajNCfrNaebDTH3xDjiqw0+hkRIA9teKtS1VqSSUKrQuN/uM/dbAyz94UDf9wzDSPD+6FUGjsNFPDIpYjGYib1cFDHXYfNYjKGqpxJhekshVg9mLiLoKigJ0esWLJbLKtWuypWCMA7zh0tbTKNolOHx8w84DJ79EHh7vUXXbIL3CHiOQbNKWhiMsSgVKKQjap1KltwEJcypsZJ4H1NiClHaarSpcl1VQZPCfNIuCM6izDykCHNU49VQgJmNGWpW5OijRuEhrrvrW6yxnJ6ew6ECTc7gNgvK3UCeJkqIKOsEsQ8eRsW43Ul4cNOQdwfCzQ3jzS3aKZLJ4DTniyU9mn2IYBWbJ2eoVnE7XHH65BylDPvrHWaKhJzwOlFaxfnjMy5OT9jfbTl59pzgCld319h1A+uWsmhQrZX7mqDYKtes6HPWBTYd7nxDHz0qR6wGnydMu0DrzLtXL/lwcSIS+RAZt3tW+4HoE9pZlLMUKwob5wydtXxyds5Nv2W3H4jffs8f/1/+B57+5Mc8+cnnnPz4R8LsGkvS9aBc1JG9FgXSg902AKIPleWcacRZwHqvUhGFmBzY5YESwE+yUgQokdmlIvJ6TuLX9bNY81FUVbnUEFqpf5YDoeI9hlhXNr8gfn1moKm+6Ir6l9lgV78/paBIGKWxRtO4hpCigA2qkNV9kC3AMdOoSA7LTJrmoo4BeKp+dufXoer7UHQ5KljEO1vDyYqo8FQNXCu5SKji+wvDQ1xGQkRTkQNKSEWaP3xgGjwhRPwUuHx7xTBM+JBou04+IzFwu+s5DIlpKozeElMFh5LBJwdTIeVAQVWLUGAYpCpZKY22mWHyjDEwhUgISYBBufmQE0Yrlo3ldL0AENZRgy+FUOT+JaXAaJqm4dHFGdPYc3l5SipgtltIVXmjhJGKeZZyS+B5LImUNCVHkpI8H6sKOkoooo9iS2idwWiLUqaC4JpcZdhzErIqRfzzWmONsMgqFPIY/3N34q91TRWIM86gZ+WKFr9E8Z48TeSxx6SIygmlstghkYFNiikk8HcKUZjPSjA0rkFnaQ2K40S37DBVHTf2E34M6Gzo2iVN00lbURKygRQJeaIxDRSIwaPe++yT8jGYFy0ByboeEp0Tm05OibubO/RoUZ2huMzYS1jm7m7LarVBoZimSV5XDUktpWCb2oYUkgArOeOtJZml+O1bR+sa0hSJPpLGRI4SSKisIRtRAIYc8eOARqpAH/4S9VxOE+QJsidFCdWPKRNiIdWgzZiS1KmWgspSSR28rzJ0xThODMPI0A+kJtE2rdg8cqmtKZHg5Z8zYDoreaVhKh/zqLTWFQcvFcmuzzRlFljUvA2EVS6KEvNReRF9JoXaRFaD1tu2Y7FYMA47ZoeFnAtnezUsV520GCnFdCsKkFTB9HkNjaWgUzmSYUpJBoUuHG1LEixZPZwUeMD5xMdSw7gn9oc9t7d37A8H7m5vubvbM40CXCjlKvBksK4lxsw4jITJs2yFfSxJ1Kqqvv8Y7tXBKZNjpBiNbeRzkUjoHKU6Fjnc56pqtqZhudzgi7xHd4ce1a5BWUKG2/0NN7c7rrd7Xr655Bdff833797y9uYabwuhUXRjz8ac13ss4dROG1pljoG7SQHHPC4xJ7RGk7QiKJhSxJpG8qBMptEGY4285pwgR3Qy8kyFiLK6ZmEIyKqR5qLfIFoe4Ip1757xhXlOmSt7U40EyFlUdqrW2s8ZLLm2e0prjeQFKWYyJ7NaLnh0dsJ62XIYBmnZy/MIJOue0UZmcyoBoY0w58uOZ8+fsj47pTs95dXVDTd3O7xPgCEmef1GFbquIZbENk6yfmdFVqq2cxVsVQ9mOzeOFVlvmZW35djCAwI+q5Rx2nK1u6V1ji9fv+B3Pv4UpSzj6CVTsE46fRgJJZEjHEpmqWEkcTf0XN/tOUwj6QHtywDa2SOBXaKsf7rcR8+qUlAl0OJZElipSFuiZDwpRVCGmDLkxEJDhyemkWnco6qtsmBR2tYZSAKeS5HTji5y8skoYpmJJ8lJsSqzVlkMCs7Qx8A49sTDlrhYEaOcGVUIEh2AJqGOa3PKkUO/o+sc3aKh6ZwksCglWZtKDtDOKJwtBJUIeSKkwJTlHictJAlhIuzfcvfya4bra4a3l0yXt6QQKCWj2wYdxa7WHgynpePEnnKxfMbCr4kpMfqHswj1vmcIPVMcmXIkqVrUkmHZdiyblgbN7vqO6D2d6zi/eCRqqrfv+Mtf/pLf/ds/4ZOPP+WDpx9yuB24/O4tr794ge0nlsbQLgw6jkRVKHnCx4FxGPCTJ08Zk2qdeNL0Q2BShd3uwO12z+12x3LpONzecpI2LAs8WS9pyVy+fsWvlkuefuBIasI1BYrjow8u2B/ueP3uNb/41S9pGofWmk5pUeqGyI8//zEv3t7Rx5d8+/IVP/v5l9x+sGP66BmfnJ2QiiWSmWIijNLWqbNnTBNRO5RZ8MGTRyhlySlxOx1kr1SKlDPeCxhsrVjZpVjlt7tHvzXAMk0T0ziJxLeU44A3e4tzmr1LUomHvs93kOrlUtk8YS2ENVf1oJrrwsuRMaGCLNY22KbBOYcyRoCIAhwzw5VIao8yTMfm7ILTRwfOru9qret7NFGdLmZwSCnxuWtdB3vmQ8J9nkzFYjj2u2c5MMmhVECW+QA3V3vJv6v6n+//Wzl+VV/+zG4zH4ZrEOkDXf2hZ2NbFouGvL0Vz6fRaGdJ3pPHCeVrAGWWAToeEtP+wDSM4q3fH0h3W3LfExdi/7HW0qKwKaFSQDeOdtXBQpEDrE7WpJC5GS9RXiwE0WTcpmVzccJmvWb/6i1P1ktMC7G/qQyMg9airJPQKsNRsni8jRrUssWdLPEpYorItjFQTCaVQDgMjFraMGJO9PueYdfjD4NUzdVblDQoq3CN5Xyz4tRa0ug53O15+/NfEcdAnDx6uaB59Ai9WkIjTNY8XFTikfyA0mkQxqq8BxQcWZUyQyvV/lMtN+L4ma1BlWVR8mwVJYdrlUWyfBSd3D99VRZbn/UizLgkysuwRk7CoisrzFp9XnWZHcuzlqcGt/L+KF6gZPGZa0XrrAzwSli68J7FQVV2HYAsK4ocQqqFpX6CTGUddVXiHMU8R+WNvG/zzzEffPR8qinCqhXEHvFQV8iFECW0b4qJYQpMPkpF8n44Viq/fvUOPyVyhpOTU1LJ+JTY9oHRQ4iKkDSpSLtGVhqfRJmTc0QbmHzA+8DoE2GSJHydYPCRMSammImz9FmJ9FHVRp6usawXHalIkG5WECj4CmikCrw5ZzjZrBhON5ydbpi8HBxTiITt7ri+SuO0SLdjArRCZ7EEyY0UG5CZgZkYa3uDeNdNkbrhomvY3KwMnNfrekBVqlaDx0wY/IPdt5jAOrEJqMbV2ggoOZK9p/gJxkmGv1yfciv7FOpeyZhLIsY6WBXxt1uctElNnlItSChDzDBNkRQKVjc0boGxjaDyWouSKyVC8rRIRXQMobZy6QoqRkqKlJiEdCjzOmDq/ifMXn8YIICaNG5lSUEabPw04Wr99DR5xnEUdjVG8Xx7T2ycKGRCbcSaJlI3obXDOEXjLN5rUoASRLGai5IcHQ1JSSlonEbEKPjQKbfzmiZqGYpUSZdcGwqrMisluacp1gN3kbyTGOLR5qCUwk9evryHovA+0DRRFKmp5kjERIxJ5p3jqzimWx1BL5HfqyPjf1zbKMf8p1zXcDlo6jqriOoix1Jfb6nLqNTKt22H1o6SteSmMGPd8v3arqFpWu6/2zyPQVZVWq5E5TtncitmgEVJlfBxWayht0eQ5WGu/WFk6Hv6vufm9prr6xv2+z273Y5x8FW9abC1nEBrg3WWFGIFZjzrbonWhmwtJckelHNVcWldwRMhE9AFoyzOakwxEDRpbtnLqmYNiQTe2hZ0TwiRaRhpJmk16X3k5ZsrXr+95O3VNV9/94ovv3/J9X5HnwKxgJpG+nGoeThyT7TWWGVqjpg+7p0yysrarIsczmdldK5qbgU4Y3BGqs6jgiLyTSgZlZDa0qBF+pqSNLvkfP90PiComWaZ5gywZNm3xRb0HpCSc50hypE0yTNZVmar/BEuBiXtdF3j2KyXrJcd10HyPah7OMh8cgzdV6BKlJOH0bjGcXJ2wpPnz1icX/D4T38mdtmwRWvZ63OSg3bXOkKOsK+EkqD6UpldJKx1Dg+WwIP3yKT541FH/XkUExoVDn7kcnfLl99/ywfPn6K7Fbqx1UErP/8YAmP0pKqcKaFjKJHbvudud2DIHtoHXiud2KszGV1tXrJnyGlEl4zJkUZFOpVYlEKjKmVWCrGAr61PThUaldBpIvlezgK6kf3QWHIJxKoMkmIROYdZrUhFoXM5Wh8LGXTGkVmgwCjehkj2I2E4UNpO2qAK2FwwWd6XBGRjawxExA+jZN+FCGVZG2E1VucKwMpHTusEKpII+BSxpWbwaA1pIk97xtt39G+/Z7i6Zry8IR/G2vYkcRU6gwrQeMNjfcYz+5RP289ozIJQEqN5uPlkCCNTmpiSx5dC1gKTKQWta2iMqP6H4YDVikXXsViu2PY9b28vubm54XRzwtNHTzhdnvDym5fcvr7i7tU7upg5c46Vs/R9zyGFms81Mk0TYfKUkDFZS6tjVEyTrDH7w8C+Hzj0A/2hp9/uWVuHK4mTztFZ2N5e8d0Ly+3dRxiXWGSFVg2nm46LszUnmyVv3rxlszllsVjx6bMPSMOAyoXTzSmnp6csLm/wMfPdq0uIhQbDSdNhkiIjs5SPiRQiOiX6aaLYhF40nK4WDMNEf2g47DVkKU2Zx4a5ZCfnxJz389tcvzXAEiZPDIGSC13bSTif0tUfLvkA9QwlbEyWY1tMmRizDOVFg7YoDD5mjJWgrzp+k5EhqChD0UqQSedQxsqwPzPlpaLxtdZL6kZk2EQV3OqUZrWlWZ0gJ3QZVBLSU64Rvx9GhhlhT+8HjqS0ZAKUTGMkNGfujFdafm30XtzuqkoHlRVWuTag6KquAZhPrcdysiItIDPTBLJImPk1PCBDNMXIxnYYDNN2gH5ClUweR9L1LVzf4XY9dhhQTKR+y+3LgcPdDWHoYRoZ93vizQ2LlGhMg+5a9HpB//aa8eaO0Pd0y1OijhStUUvHYrNiuD1wuN6S+4kpe8am8OHnH/HkyQVdsbz5amT16Iy0MrC7xJ1ssOsVetlibCdMVN2UlZIgM00hNXKotiMEA0lntFFsnp5xdXNDGD3Pzh5zeXfFuBsZKdxc73DdW05Wpyw2LeYwonwgW5hsxrTQdQ3LhSEkRRPkOb978ZJfvHzBty9f8Dv/8O/z7PPP6Z48wStpydHZyKvS8pw86BXjkelQM8tZuD+MKhlLcgVdyDVT6KheAbSmaEPGonSWYLn8XgCIyhI8VkecBFjEzuBqfovOAUqUUDZb5J+6ISX5bJmSadSsMpo/zeYecKQe7Am0yrG0ilXj0CEyaYUuBU+SDICS0WgM3IevWVOtWQVPqBip1PkaqzDFHFO/M5WNVUlep1LkFIVFQ1pW5gwY8dAjG/9vmRr+n7qutnv6YWIYJm63e+7u9hwOI7v9gX6QwMZcCrc3O5QyONuAWVKUMDpTtEw5EwpMBWKRA7mNmv000ZiIM5mMZxoiYcr0Y2YKMriWmOl9YoqSy+ITospQ0pRmY8biOFkt2Zys8bGwHQIoCd31JZNDxtdmn0VjaZZrSjjn7tlTvn9zxfnJCcu25c2bt+SiUVlJOO57APmik+FGwlM9WSPVy2imVBhjwWcoSvKtKEijgnUUbcQGpQZKCpK/UgGMECPRaIZhZHu3f7D7VrBgW2haUiMWNHIijQdKv0eNE83kJRwxZ3zJeCsgu1IaiyIXsbmSA1Ckua4ommRqBfOARVd2T9MfJsYho1PDpu1YdCcUYwkUdNsQkLaiMfRs1ktKTgx9j3MbjJHwVLynhIkcItlpdBbZfEbhY65ZRpZp3JJ8hAlO7IrOGLrNmtP1Cq3F9uh9rCG4Evx6d3sj7HRM2FxQoQLqzhOnHcq1ONuyWnTEIZBiAW+IXjEFyI2VpgmV0AZiP1BCwcSHBaPlJDtXQw+o3KPyAElCN0PITJMiZXnPgs/kMImFwRhiWJBCItVgRFEVeVLITMkTfZSsstZhtEVjiCETQ8Jqi6126axqFbfWEu4bA2QhC3SpUHbNAiiloJ0iT2KXEAtJK4BNjugEKmVIhTgmsny4SDFgjaXrlrhmTUqh5lokCYA0sv53S1G5HMemCmzFrFCmQTUR04mCrRRNCWCNgiJrdxKUTNYUXYi1LFc9IAH0xRdfcne3Zbfbcn1zRd8Px2ycxrU4J3ZQsKJcRfbp3TQxjgO73Z7zkxXWOXJ2NYizhmLnclRzGlPQMVSrgGQ95aLJRqMNFCPWE9125KKZfGEYM2MsDCHhfcJf3XC3P/Dq8pKf/epLXr99x9XNHVf7vQSxWo1adKTsGXLgdr8lFV+BzkKjldiPtEFZS1Hi/rBaI9Go0uZijKilTdbS7JREmbhuFiytk2aokslV+ZJKosRI0Ql0hskSg8eEhrnaW5GrSuBhrhjzzD0CkEnoompLFgI+ZMgl1ue+2nyP5Eu1DiFqBl0UWgkYFNNE22jOT5Y8e3zKdZCiglRBR1UnBF20WEg1pFgwWQD8kBKmcZxcnPHk5ITPf+8nDBSu+gOgIQqIU1Jis15ILtVlxChXX6fYeLVWOK0k36boY5PhTG5R6ryui9iqURirUKrgU0EZxdWw45/98b/ALBw//eFP+L0f/gR/O0o9dAwMMXE97PAxctI4UJG7ceCrN295c32HcYrT9mEzWPIq4idPjJmMIZSIRQLqXU40ydOmgZXNrI1hrQwLZ7BRQONpnDikxKJmo7U6YfNAHG6xeUSpDmU11jn6MJF9JGdFk1XFEosQW8JWg4KoIllFfBMBT4dmjeIuZ5hGera4R08wrgNtaEOim0R11+tEzLGqmgtL45h2I3fv9oTzjF006NYyxYzGY8jYnMn5QFEDSU0c/CieCWvRFqbdNf76Ff1XP6d/8Q1pP2CGgC6a3LTohWN1dkq49agAF+mMP9z8ET85+4y/9fwnLOxaWh79w33m7vzAGD0+Z4p2pAKKTGs1nbHYDH4/kKY95+ennJ5uUFrx3Xff8fLtK9bdmk+efsiH509pk+Xdly+5/OIFhxdveGYsH52dcr5e8u72hi8v7xjHPanZMR72hJBQodBkhRXpI36KTFPgbtuz60f6/ci+O3D39poLq7F+YG0SF+uG79++5fb2mhdff4pmSdxYTCnYnDhfdnz2/Dlff/lz/uIvvuHycuSf/Len5P4AfuLuakdrLI9Ozzg/OePy6pYvXrzh8nKLnzIfPn7C2XINtiGrQCrgA/iYKdlj1Q5rl5w2mny2Yhp7dqO0zprOYltNzoFh2EmjVQoCTv8W129vEep7QaOVqkFwgrDHql55vy2hJAnjmz3JKeX3wq+kd36aRmblvjFzGNLc1XIPMWijMVb8qnOmhPgfzX36uJJQouP3R0loVNPg2hb0QeT3NfsllozLGSrqGWOVc88qEgRcSWUOlhOYSyupqJ0ZVR9CRdLltZXia5hWVce8z99XtcB9kO8cTueOu1Su9NLD8Qxw8uQCN2TKbiTdbuHQo3JD2h3YXt8wbHekKVBudig8ajhw/fI1092OMkXYjuyvrxgPB5GBx4gpGWs0N9c37PodgcAnHz/htkzECGdPL2ialj7tGXaDPOiNxp04Pv7Jp3RYUj9R1gZ9skCtG5rTDappUM5hbUNyzVHRYFSGWrsoOR0CbNhVwTaO6dCTYuTx6Yrh6g27ccfZyTlXuyvG24EwRqah5+7dJa9cwwcfPGa62eJ3B0oq7A89GcX5xSm2dZhRo3ziwjWctS2TUfzqF1/xxRC4/OJbPv+H/4DF82fYdilgH1rYvoe+3gOYjlQYVPCyHLlSAV1AQIMK+Jmq6NGmthZYIFZVRxEJfx27hZCv720uKG1olGZpHEudyD4Q457gIDoIVqPsstIA1ZaSJ6TrJ9z7klVGYdE5o0rCFsniWFg4WRo629KPmf1Y6P1YDwkKg8UUZn3O0eJTTKledQlotBZMFAWT05LZEouqyerlaO1OFahRMpYx9zFVG3Vlxh7uwPenP/tLhnFkHD27w8ihH/A+EqLUURvraJqObrmBWh8ZiiUmGQ59gClkQi74mEk1CDIrzeQV2RSCqSGzPhNCpg+JEJGf3yvGBDFpYi6EBI0VXjbFJO+Da9mcnLFab9A+YJu9SNmLMPtZQwoTMUyk6Otmnugaw3C4k/BPo1i2Fn+YiLFg7KKGmIvN09TGtpzl58o5k1Sh07L5+ZyJaIrrRN1QVY0Wg9NOpO0lC4CZZEiTmSwRkvimlXm4kFvXtFLVa6ww5qVIa94wkPsBmzKtFeXV/HEMMdI4YZat0ozDWBm7e+WCUYrkA34YGftB6nNjImbPYZxIGYxxuHZNt1pXQFQsj4FQ9x6F9xMlC3AqllVQOpPGgehHUkwU3VCKIZeETwGtpXq4W3QUG9n3d/SHPWNzn2vWLbq6D2ZGPRFiEhtf0zK1zbHJCBB1WExMfY/WmkVXsEvLcrlg6gPTEEg16DXGiGk1VmuSMRRj8L7HZ0VQDxtyW6qFrCQBIqSFRfbYEKIoVFKqattMDPIaZ2vM++2GSkl43jR5hmHEWss0ibVvsdDVTix2qnEcJVejWnGo4c8hii0p5ULbgbJUNdT965X1Vx8Vs9JYJHY5Q0OmFzse8pzNlafzTOSahs3pCXd3N8RQ7U7GYClYa9mcnLBar+WwaF9QfKhKGfn+1jo26zU55RpQGutzP6sS5iNxRfbnP6sfbq/7+c9/QQhSHDD5saqFjQTNVluW1oacJAxWqULXdRx2B+Lk2e/2pPgI1bS0tpGcMGTfk71MgrWbGkw8270bY4hJbDbGmONmkKxl1w+YdEvXLPE6M4bM3e7Ai199xZvra15eXvLl67ds+4EI/Oh3f5eLTz5EN47L6yvevH3NNA30/Z4SPMY0OCdZKZ3WtEphNGStiCC9RGUOp64zb/2CLOolU7BmyTAeSENPigFj1kKmIKpqUqJERYpRGrNCwIaIbeR9UA8Y5C4KEJk/1DzXAtp7lLmfaSkSsAwZ7eqcVC0vSs8kTI0KULLnSxizrEGfffop3x96dj4wpQRBFEZWO+KsvKBgTIut9mNrhDC1zrE+OeWHn3/O25s7fv31C6FusswGuWROTje0saN9aahiNXgvOF1I10ws0gbY0NTPcDmK6Ocg/jwzYRpyijRdQ86F7WHkf/w3/5JffvsNX756ye98/DlL21Bi5F/9h3/Ply++4m6/5/TsGevzC4JSXPYHphTpnCXF8GD3DSA3gRy8KC2TkFOl5uS4FGimHtff0ZkeVTIhZ1L0qNxilERBYA3GtCz1EhM25D6xnQLR96hujXENqlGEKdQswQjG1bdHbEi2LoZF1YB8lSh5wirNQllWxfCBM6RSOISRq9tb7OkZbrli0TZ04mTH6ky2QtSnAmZ1Sn+753C3Y7/taYyhcWKvDVEKL3ROjNMkdtsYSeMIPqBTImePv73Fv31HevMGu9uhg2Q1TUgmqFs22KJxacEyL/ndxe/yt8/+Lh8tntD0C/oUKBiMfsDcI2PxyJlb6YYcFLpoTAFSIAf5DC7bjtVySdO1vHr3lreX7+iHnh/95DPOV0uaFBnevub226/xl+9YpciPP3jKh+enrBctJU9cDQNxzPiS8P1AiNI21epGQpK9IoyF0Rf6KbMfI/0YOewnbq5uebbqyCHQxswHiyWjHbjrIy/+8mtW9iPy+RKVA1OKxCFysjzl5OScd9c73lx+ycKd0pWCiZ5wd8UYE9thYLi9ZRgG9gVuh5Hyxdd8ctfz7PScR80Sq4ysP1ry63IupEGabRsFp4uGR6drtNX0PpC04nRzwmrVsdl0jP0d03Bg6n+7fu3fGmCZW4OMMcd0feC+xuy9jVvsLxyHlpJz/RALEKNUbWRIAqrIHF1le9yfI2XPE1BDmffAlfe+Zolh/RMAVUbqaLuOpm3FB14KIXiU1rjqBVVGAqnSDGrIaY7ZKnEPGs2vR5hKaq1yjEmGT+6rcOX3v3foLe+9vOOvz5WJVGuTugdelHpPQvw3v9r1EvP/4e2/nizLsjNP7LflEVe5DJWqKlGFAtDd1tNjNmMUZrQx4xgf+Mr3MT7whf8iH0ijdVM2eroBFKoAFEplVmRmCA8XV51ztuLD2ud6JIAmZxI+PGaeEenh4t4j9l7rW58Y9+RxIu72lONAJjM97Dg+bBn2B+IYmLYHsgpwHDjcPxCHUZIMDhPH/Z5pPOKtZswThoI2sNvtGcJItoXN8zNubr4llMzzyzOMs4IkxkixBtMa1LLl7PocDrKw0RroLLrzuL6naDGwU9qKtwZZACwt8hZdCjoJi0h5DT5iGideKjnTbVbozsFRFsCkM1OJhBiYwsT+uOfu9gPn647hcGAcBlLKHI8jShk2m1UtcLUwkWJm2VtoG74d3zG8fsP744TfbHhWCovzS7r+jFKbvI8Btac4yszplv/7//q1j8RtmagzR4eruWybwcPqHTNLcsr8uitNsygpYJSmM5qVNcQIgcxRFbTOKF0YlUQmowxm1kkVUfYXLaCkgI+6MkSq3hqF1YrWGxa9w2wjMYEpsWqTNUaYooLRKFX9eAVUzRhmz5Ski9A8c8KUTFbyOxTiWTJjJgV5rihaWGcnYKqcUlieEtV88/YDwyiG3sMQGcaaSobQl42yaOtxjaUUQ8EQsxGH86RIRZOyOnlSlZIrOy8zRvGgsUUo4lPMTDFzjJFUhCYZUmGqPycXYe5lZK2MqeCVRltP2y3wTSOSID3Tn+e0EUgxiGRwGjBOzFNbbyQaVGustbx6+Yz83Xvi9kDM8bTGlyxAtXdSZMTxKH5IOZO1IuRESIlYCqVO/4sRE+OiHEVbyS9NVmjjyFpdKmtxGidynQQ/1WGtSBGM1ui6f8UwMY0jpcpyjDUilaFO8vNj/LIqhTiJJHG2PBIJmzTsYZqIU8A2DSlEIonhOEACpyq7U9u6z5UTI5S6Z8YYKVkSYsTrrKBUJoWJPE3iFVBZlDlHiipob3FdS7vsUK4whoG83zENgcY5cCK1ExCnNjgVQBKvJIcRmpf83irVClPAhoCzEtHtvRdfNi1O/rnKY0zdG7USJt2UMpFapD/1Udeg076dy6n2yHOCjpxOKbySGGsnHtML5d8l1ng2rC2lnAAj4JTOlnNmmia89+Qi98HMFBF/K3mPKWVki5DzOC+9Ii+Yv0fYvNporDF45zgORxn2ZKk1Yh1WzdIIay39YsHDw32V0UrCkDIGbQ1t19H3vdQ6usosT7C6mPs2bUOcJrRSNd2R7+0R82Bo9toq6ml3ue12X8F9qYl0HaZZ5zDWiZxTSSOhqgzUGCvnOhfG4yiR8tnLs6tqjWisSBCKTMyNkvcx74ZGK4pW6Ao6nNLqrCVlxZSFXfcwDOwOB95/uOOrb77j2w/veX1zw9vdjiEmTNvSXp2xenGFaTyTg2Ma2d7D/l7WDdtYeuNprcErJe27EomtsEWrcLycOM4ny5RSm9+CoqTIfrulHI+okrFGjBmp31tyHdDFmowSJEJ1Tqgq/wzq+z8+Huvijz+XKoP78Z/mTbjKtVQ+DYYUj7V0ma8Dsl9LKl3h2fU1q6+/ptnu0ONRpM5CTWWWFWlAKXcanZQ66ilKmJtXz55xfnlB33ekQzg9AbkkSRstDu8dMcySi3r/MwNBhUL6XilW4CTrUxVkmfcmlCJShA1mNNkZ3u+2JPUtxUoKVmcbVEr88re/5tv3b9gPAx+GSLPbgvckYyQ1iXwypn6qI+WBQqjnQOK0Y8qomLDjEcY9dtzRLSOegiHjNfgCnko0dQ5jFd4m2rDgEI/0Y+B+PFLyCKpBWU0p4scVQ6T4ciq91AyM1est+0vBqILXBU+myYWNNuwKnJG5Peyh8RRrUE0nCgSthFFohPlvEANrugRT4nA4okJCp4w3jbCRsnhbFS1rLzmjQkTFhAqyh4btjrjdwv6ADTUVq0rVtdUiqQ0FHz0rVny2+ILL5hmNWbKPA3fjlqwUmKcDWI4ZIiIVN0rqBF0MRhsBLlMiq4LrZaiC0tzcvGe3lyTdi7MzYZqPI9P9A8PtHeVwpNOay82azWpB31hWi5ZF21S5oyQHllQvXZXIxikRx0SYHj+mMTEcJx4eDhz24pukQmLTeDbOE0ncf/ue7dUaFxXGFIY4coyZHDXWeMKUuf+w5fe//ZaVNficiA8fSCUzxECZIhqEPRwy394+ULJlHBJ5dcbaOrxCnMyDqUOXTFES0GEV9M4yek9BMeSM1ZZFv+TTVy+w5gVhPDAefxgz+p8FsDjnJOa4Ah2FuUiphlVanzblE1W/FjgiL8qYmQGjFFRQJSslLJjK/jD15zyadcoUY94EhddfF7UqQFCnpRms93R9z3qzoV8tsHeOouA4DMScscHirUfX+M05+UJphTa6bgTSkOZU2QNIs6i1kQl6gTBFlNenggfk5+R5oS3/ID1IvuJUyM1gFVAd2MOpOHyqwy961Ps9cT8w3d2jU0TlyP7Ne/Y3d4z3R+KQOHx4IOtEGQ8M9/ekccIUQ9gP7PZbUg64fsE0RazKaKvE5TxNmE5z/cUzfvXwmkji+pPnqMYRVWbIibZv8WuDvug4e3HJ/t0tw/GAXjhUZ9F9Q7tZk7Uhz8bBzgqlteRaEQFFaLTaWqFO+4hdtOi9g6Q4e3HN6v05SWUun19w++17ht3ILh445JFpKOQHxfV+zW6/Y3/Yo5RlGiJ5ShwXC6x2aGMIKTAd9pwvl2zaji8XG/7+7gNvb274+uGGPxn2vPzxT/jsj/4MGkepfg1PeuSPChX1CKGcjgreSX/0EchY792kZkOxCrZoRcmqWhGJuZmqDeI8rZQ4XIfXml4bVlgillEbkonYBkwDIUuaRVEKrWz1T8ok4hxdhXic2BOAUbKwvay1NI3l+fUGZyPD8IAhYJUhF41OBSKP3gVKgdcSK25S1UMnAhmtIoZUTdrq+mEc1miyLiRTPvJcgVyjr2eqspqbiCdksNzc7k6MFdCkLBJCax3Wt/impWl7jBXfjxgVUzaEjDBOihGD2CLeVZLIJM/CcYqkbHHWEJJmDIUpJHbTiDKdNAcJQhIZisgXa8RlFo+XzluMa+gWa3zbYlOQInJOpqpgW5pGpuOB4/4B03k0kUXreXl9idEKZy0vnl1jf/5L0leveXi/PU3ChGYdadsV5+cb0jQwHEVSkRGt7DBFxhDJysm0NmsZm1uLsqaSwyLoTNECyNQRNIfjEZvSU+JiNN6hrK5+VJk4jkzDkfF4QIWI8w5tbZUCKuYIdFMLO1IkjgMxR6yTAkcBymim45FpEIN4Yz3jMDGlxG53wKsOqwQQixVUlQQvTuCAVoZpCgJAWofWCmNAq0IYD+IRkzMpDJSsCXlCOUO76ulXSxabNf3QchyO3N/fM+0DwQSC1kRvxPA0zjHUE95anNG0TSNJd7mgrUbX4co4jLi2IbpAignfNPKea8OX56FKEuBJq+rHkgWsneLTAixqXuMyJ0+B7w955gbucRCSa1MP+SRLmffeUyJQBVmmaTolCumaAJNzZhiE4dJ13SmNSPyvhBGSqymutf5UC4hPT42qrVT5VGpTbcQHaLHqGcMDqVQPo8qKCUm+RxuL856ls/DmO2J9H0UJwK6MoVss6BcrAWWMJhWZ8KLEb843nrOzNcPhIIaxU6gCT3XyojtJvsu8+zzlEyeQh9heaIxWWCf7g/MeoyvtB4W2GpUlblX8SYRpMxyPhGEidy3WW0kR1AIgh+ocrHOVcJSCyhkzy1B1wVlVvTVkn1SuQZcGXIvyHd9+8zVvb97z5u17vn7zlu/ubvn27gN7qyne0i5byqZnai2udSyuz7gsAWMgHHbkYaRZdpy1LSvn8KjKADYkpQlKYQuYUkTGNPtkqVKTpCJaLj/jeOT23XfYmNi4Fu8dtkrlBT/KkBRlisQxoP1ErrJ+lWfG1NNduY+Hh6fAi5xrPMXskaJOrK25rhYOiuxLUrOrR1aLkmcvxImUE5+++oyr353z/mHL3W4Ub64kdbl2BnNivlg0AYrIVlJJRBJJZ15++oJXf3jJ9fUFb373LfM9nHKUiFYDi2XLWFPFtNIUZcjI8MZadTJ8NlrimWUAkR9Ztqoyb+bBsxJ/P4zGrHriMPJhOnL767/lP/z8L6r8q3B//45m0WG953DcE49HXNuxvrpCGYmBnsLTGaUCjMc7iKo+Q40w8aeRqI+4+1ua6RYX79mcN6yVwiTFpvGsRs2hAvGuafDe0VnNiswU4MM+cH98IIc1qWvQXujBOUbG40jpl8wBIJRSWcVQED8cqxWdUXQGOhIuBs59T1SGqWi+3d8z6kLIE+HiCoVHKUPCiAEv1RO0KFzbsiqa+9tbVAioaWLTnhO1I5TIEEbMtkGNR8gFFzJ2jOjjSBoGwu098e4BcxjQUQZ3CShWJOvOOvI+0Iwrzjnjp9c/Y+HOmErim3jLH+K3TDmSnvCRu49RBtDK4rA4I8O6xjZyVlMmlYizfZX8Jl5/85r9fkvTN1yszyhTZLrfMYwTw80taphY+YbLszNWiwZnYbNZsX44cEgDh2MWj7ci7MFUREZ83I9Mh0gMiXhMpCETjpGDHrj58MDtxQpPIQ0j533Hvu9hH7n/+g23yxVql2nXPQ/TwDEl9rmgkkUFRdxH/vDbb1k7T280C12IcSSWhNeazntJ8wuRd/d7hkPi9sOW4WzHpxcXnC16Fk1DGSdKkn0xx4k5aKYxmmXToLUlD6P4uVjPq1ef8NOffILRmRR/WPrTDwZYrLV47/Hei/FplmlkjJFUabWPC005FSilTmApmabxNE3D2dnZ6etkmjSPkREX4agfQQht6mRnNpLltLDP8acwT7oVVhvW6/VpCvTZ518wThNTjBynSTYlKzdnrAg0Gpy3ZAXKyDTOOYfRGmb0WKnT5KogNOM5ms5oUzeUOtmqCQJzmpLS/3TzprUkdMyGpFKQ5ScFWHJBKF539xzut7TOUMjE796zf3fHsB+JAQ63O5RKhHHP4X7LNA5Y7Thst4zTSHGF0gkrBQfaKB6mPblRtJcL8mWHWjc4lVk921CyZtSFo0qszta0lx7/oqe7XJFKZIgj9ArdO9qzJRf5FbeHvaSHMBsHazGqU5lSCyRdFNpatMvoxkriUN+gisWsO5rzBW0ZaNaeq1dXqKw43I+YrSPlyMPhnjdv33AcjozjhLYteSqkKfH+zXtCDlSup5ibpRGXA6/6nu1uyzQNPHy44Zf/13/Ld7/6Hfv/cscX/+a/pvQ9o31iM7KZwTEXMXxc3j6St6FiKkZX6Z7+aKOfWV5UvXCVvNWHSNV+Ws3ADBmlJowpeG9YrVdoGkJesX3/B6wBazLeZg7TREARMgRlwUgToY04cVMSmgxKfGoSEDBEbcBanj2/pJSJ/f6O9oOGCDFnSsqY+VqjiSmTE1AMOE1OmpJhSBlbasKQzljdYK2hbRxq6chOIi5DiVLxlAowfdTgzGwY9YTF53J1xTAExhBEq56lIddGY22L8x1Nt8JlxXGMBALHIVVZQRH2Ck6ilasmX2kpTKcwoZRDKUvKhmGqLBYyXeegGNSYicMMlMhrSqWAuNxgnKXpWpbrFd2iZ0wB5+dYw1I31IQqEWcLq2XD1WaF1pr0/Jof//hLhuOBMA2s1ue0i56Lq0vif/+XpCJeHiEVlr3ljz5/wb/4F/+Svzlb8dtf/z1vv/uGMEVsMaSoCdOBUhJay/4yhQlthLXmrIbkpGiO42kSb52XmL38WNA+xWEr2F1yYjqOHPY7xuNAnCY65zC2+moZfTI59VaA4DSNDLsjYTgIeCkiflJ25Az3t/dMQxDwPRcxjU+SrJesJWlH0J4h5krdDoxhxxT2FBXoV46UCkYrmqaRCWB12EvDkTSNpJIJvhHDtxLRraVdL2lWK/RyCdbQrc5ZbQ883N1y3ItExliFb5uTcW5JWYw9x1HkuxVo6HwnwJ7Rp+FJyZmYIotmgXEWbQVIKWSZfIUiGvwpUiaRAA4hUtKeT57sytWjmmsmcVs+1SAhRDFUTtVMP4mh3ThKGoQ1UsfEmLB2NsyvbFUEjJ5CEEp5lKREYy3GWsZpwgwD7TjgssfUAthax3EYSSlxHCasbSRdoyhSlsQ0aS2oAx5AiZeFsoXVqme7c8RxYpwCGIkHjhFiyhhrabqebvaoK7UeK+JHZhvPcr2i6VqmMWCcF3+5uS/WmsWi5/nz5+y3W96/v2EYJjGpnqVUBSKPYtT/KQ6tff0NBaUtzjthklUZeinSTAsrUbrptm1Z9gtUzIy7I4fdkVXf0ax7JiMG7EYjNV6Ue9QaYeg5JHXGG0W2Rj6UyNeysiRv2G8jt/cf+O3Xb/nNV7/mOA4Y2xC0pXhPaVuaRYdedNhFx6/ffcM3cc/mbMMfffIpz42mVVC296TtA/3VGc/XGzZ9Qx6GGrcscbMxgysyeDQqY1ShlIiSeTmqRDEkzYFhCOy3W5bG0i1XeKsr67MOODOSnhSCJJ45V021U5XXP52cUo7Kwj4NeebPyd0tTGBNnkEgJSbFSgvoVWb6qJqBFwFZ8lSj0Mcj5xdnXD+75M3DPV+9ucEYLYyLGPCuP70OQ8aohFF16KITViesipxvOj59cclPv/iU97/9AyjwRmLa287i+4b1ZsnhYWSKpUotZK3XGjnPSvxw1Jhx2kuaYUoIwVbMihO1xqhsolCtBzQK3frZyxjTOdIo5vSNO6dpW6x1ZOVojbAYpxhpnMROp/Hpon4BwvYeg0PTkIxnGAdKM7JcLGjVyNoEnnvFp1dLFkVRxswn48R9FD/NMB1JyTAWzQHNhbGct55Plp53cUecHgiTsII6Y5mmzLgdmTagjLAgXa1LFHIfeK3onePZas1lb1jGiXTY4hOcuRac4S4r3oYt99uByStYbFC2I2lT1zRJIZREGDC94+zVFfcf3rO929E3sLjcYJwh2MqWVwatLCYU8VjZDcTdluH2gXC/x48JVwwgAx/TtLSuZ2kW2EnxSfOCH7df8OriBeMUuS33fNW+5Rt3w5BDBcSf6LAOlLC4x8Bpr1VWwJSsNc41WNMyHAMPhz0fbt5jGseq7+msZ3w48uEwssuRMiW6rmfZLnGbDTRaKkQj/SwpMR0nXLMkoQllYsyB3TBwf7/jcLMTxtpupA0FNSUGFfnu/Q3Pr87olEINIwbNRePxXUv7MDF9dcPtXaB9+ZI7BXfDxPvtPfEwsVEev1jjaHHF0ruOLz//jOP4wJQGjuXIqkzcDQNmd+DuYZSI5jjwVXjPOE6cr5a8enZN7zzaWHQKxOFAKlEku8ZAI1LwKRXiOHJ3c8Pf//2v+PInL3n2/IqLix/me/TPAljmD5gnQDXnvq6yM1BQ/qGZVgVRZHLtWa1WlJLrZEiKnBnt1nUTmJkcWqvTxvpI7YfviSJOMazyy4y1NL6h73v6ZS8LmLMoo6UJNVqoqHn+kVoYN0pDTKfNXWl1EofO9KjH91NOxbLEtNX3Xyc/eU6q0aeXeUL5P/67sHNmpo4+gVNPdaQCcYpMh4FxGLCuE4nS/Z5pfyQcAzEZhv2AVpE4SspJSglVFIf9jqKyxP95TRkLyoB1iikHmoWj2yzJzqBbJ41u74ljpphC1oVm2eJWnmbZYhceM/WoY0e0kK3CtA3LC8uHaZDrULIUuXMyjKJO5gqq6mtFnaJJVqEai1WW4g2lMeA1UWf8ssX2njFNrM+WMoWsustYKd/eIfdGUTxst2QPOUnhEEpmSoEYJ5besbSGhVY0KZDu7jkWy9fuF9CfsfjkFe2L6ye7boBM3Oa/61nWA/8kzKIeJ0ZKOLPUU1e/av5TUU7PUS2QstzbWpWqLopy/k2iWa7puxVKZ745fKBYMQxsWkMTFIdYeCiJqBVaOZTRNG2i5IlcMoYs06BaTA4FxqJIRtO2DctFx3rR0XrLlIPQ+UotuJTBKnVi25AKys7rgEzDcwVvMrk2Pg7XdNhlD96QjdynJcskrSQxIxaPpUypVOQTCvUEh/M9qUwUbVEmo1M+NTXWe6xrcK6RtIlUKCESS2LKiZgzKda0tRoFro3BGjFnPIyBnBRJG1IypKRIqU4ObU1uC8LwOXErVDqBcd6JX0a/6Ok6AaRMBeYoVVqSAtZpln3L2XrJ1fmGZevFiBbDlMAbxTBo+r7j01cvKEpxv9sRgkQU7w4D2liuz1e8fHZBHD5l2t0S9nfs7m9ROVGiIU5HyJO44xhDPE0FZzYjJxBlvvVVnfrHECpw9DSHNAkiV0jTRDgeCcMogJ+Xc5RKqb4+WfyoGgvV02M87MlTkH9XgDESWV0U0zDV9ASLVlbWMgXeW9p2RdOtaZcrnHeEOKKmSBoTIUxkIl12MgnWqsqUCqWaVqcYxCunSoOYDa4NaGdQtvqXWY9ve/rFmsN2T0qRcZR0K+28sFO0oRRNiplxjDhnToDFibWjHtcikeEkiYe3sq+WymIpOZ8kGlS5jlKKlAvH9LS+AifFYx3olI9STGSfntkp35f/5ixGobHK11IWtlCpN4Ts+aUOk0SiMw98jLHiK5dF8qR0lvNQWZgpV81/SFU3r0/SoEpUqmzCeUXP5BIpKuMaKybLo/wMo3SVHcn5U0ZjvcO33cl4PyRp6MxHEmnrHCGmytatLMXaEDvnWC4WlJRw9uEkDxLZtPghFeb0o48A/Secyoo5rQAExiqsrWy2uvErVJWuSe0l0jWDc2IsfAxRpHchYKhNPQJwOqspNep8TrozCItF153QaFXBDk1Whqg0H+633H3YcdyPfNgeyCXTag/Og2/QTYNZLLDLHrtowVpM42i6ltV6CQVS27D0Hh0irggtvfGWKUht6JQAD04pYa+oWepSKEXEIfMaUVIghkLMCW8Nrfd0XYPRNeWvyjGFfCgDihLT6WPO5n5K6bmaCzM4sWPVR+ACSnyj6qoxB2rWfV1SDXPRwppUc43/mKkZQqgAr0zUz87WGFsDIHKhGAk+EGCmoIl4Db0znC06GlUwKaJToNOaq9WSH718zn+ylliS3E0lYY2iax0XFxs+fHdHVGLSOzNw5P4rdE2DxTIM1SeyvletxbhVFzEzpz4/MiZ8FENJASCDEtN6qMxc60XqkbQwdOf6tsBjkld8WokQYxIZvpZY8jkt1VjwBDqdWDnFum9ok3ierVXkTCUeSuL9dCDnllAcI+J5sfAN113L6hjZxZExjjjf0GhHQcDsmDImg6tynpl5XYzsKUZpVq5ls/Csk2OYDuxDxOWJZba8NE6AhBB42N1RfAPWkXRDmH1+tCUAToPTCrNuMaMj70d2tx/wjUV3DdbNkkOR22hE+pumkTgciJNID1WRQI2EsICda2hsS6dbbNSc9+dc9BdYbznYgSMHtuaBB//AVCLxCfGVR1WHEnZUXc9TicRcBDxXTgCYYWA3bJnCxHrR0DVewg92ByIZNU0cBvEZKxm+vn3P2aKlawyq67Fdh3EjMR5R8UjUpobEFMYwstvu2X24x1mDGiY6Ck5BTpntYeRhCExFoQ4Tasr4AmtjcE3DcAzEfGDb7Ni3DcdQmEbQsbAyhnXbYrOHys7pXIdzhqmM2LQjT1tiSozWMqrpBAeMpXA3HMkKnG+57Du8VlilyVrCLZSSutKicAZ6bzmkTBgH3r75jt/8+jfkMmHdJzz/AdfoBwMszjlxdLf2o8Ll0RQOvg8gfCx1KRXVNlrTNA3r9YoYI8MwVBNcWbCFImrRWp2mT7oaJT5uDR+DLfLHDMDMvhJayc9p246umv2Ymb5cxa3aGNDUZl1XWWcEXacnxkj6Ah+n+sz04o8LtJkV/Vh8ytfItE4Xzayhn3/GqUBFCgIxNTN1wvW0FNxcFGGKTMeR4zDi1x2FQnjYMe0HpjGRsBx3BzSJNAnAElKk5MJuv6UsM9Y7VGPIh4wy4JwhEFguVizO12Sr0Y1H2YJpjdCaTQEL7arFLz3tosEsGmEnjEcmW0hG0P1F31I+vCVVWuxMs1a1sCuVyWFqqaVUAa2JtkBrcdaSnQavKV4zqoBbenRrOUxHXl2/YjgcubtNkBIpigeQMko09KmwvbvDL1qZdAJTzowhMI0Dl37F0lmWRrNMhRhGwrv3vH6YOLiOF3Hi04v1k1479b2/qUpx+/j+qF4D6pEpVSXrJ00zdcL06K74+PPm/y+VKWOUGOMaHQWkMY523XN2vqHtHKs3XxHziDVwufB0Ee5T5LibmIo0yMo5ln0hBkhhEg2ushQNUYuO9FggakPjvTTxqwV969hPI6VUs0btMIiLf8z5pDFVWaGqb0kuSgxBlTBfxPjTY5uObrFGeUdxGpsCklhZRD+a5wmtAMQzJfupDutbvDIoY9Ehn+4npcWDxXmPqybOOoSa0JEIRSQAKchFK3NUvXF4p7EG9vlITppETcFI1fMiJ7SrOnAVKEworNAgqZM2JUyF9WbJer2g61us1ZJacUo9ieQc8b5js1lydXnOs6sLVA51rXToKVKiF+NiY3j14jnL1RIoHIeJ/WHg5sMdh3Hk+eWK5xcrFvYzjvfvGLc3fL3/gMoRoiZNB0oc0NlirSLWya2ei1QltHnx9jpB3QBMIRCGp5vuKUr1PEgiDzoOxHEUvwtjUFoRiwByOcsa4ltPChNxnBj2+7pOiQeAKqX66WhiCDjT4KzHaI/RYDUi1Vqe0y829OsLSYYeNakEYRqmJE13RlLCEJPVVBLiTSOu92maiClRUkQZV62XigDjpi4KxuG7JYvVxP2He8ZpT5wm8u5Iu1jjjMjKQBNioRwntO5ISYDImVEnfgPVsymLCSdaoazBOHtiZ1Cy2Cdl5Pktst/GkgjT0zYNQpJ99PIoVWYlr70we7997JU2D0mSElbIbEorvhAViK6eaznL14SUaKw8V8Y6AWmVDDJUEn+qSieUvTcVpmp4q7Scl3p2BMzIc6sv/DJVFEUlXFPrARRTyMK4KPMHYmbrHU3bSINWZGKeC2hjadqWpuvQxqKmKOwr/ej3YrTGe8dy0RNDxDoP1LWkgoJplk9+RJ0Un5enu27ON9XnJlcPJPHxEc+L6rlSpXgUKBqcsXjrcMaSk/jgpBBR1PjXCjK4VglxsWR0FhmfAXRJ6CIsK1NrwKxFslNQvLu945vX7xiHSFZZQhZQAq6kFhM72vUat1qIRHndc355weXlBWebDdNxJFrHyjnceMQDrTF4WyOhIzI40AqrlCSNIQmJSklDOzMrtYYQAypkcrH0bcOy7ei7Vpr7/FFtOQ9gUoIKruQYa9x2eVIjfl3Bwu8dSoY1pcbxnoaO/6D2FT8mTc5VQqKBMgNpwhyZwsRhHCiqcH6+4fLyAu8tsTJ1lAW07GtaFXSOdNaw7jzPNxs6wIYJPQ047bnoWn78/DlL7zmkkfr0YTR0ref59SVfudcMKgoAWQQgKaJZYtG1NMYzfbiXmqbIaxdgTEniYb1HFWLULmauAijlWMRH0GtcUxMglUGXwhhjNbnWp/MlbX3G5IJ6Sp0JoIJ4KGorv0eWuYJzBcdEqyJrr1h1LS5kYgisFZyXwkNOuHFPiitCsQxosJ6+SfgUORvuCXEghCO+3dBaR1aJ/RgJIWF9OTFFs5LnWeT1whJa2pbz5YoVI/t05Hh7i8sTOmleGSMs/5jYbRMsFmTvya5lqAMppTLJynqcUfimwY8dJY88vH1H23navMKtFugMuhiKsihlyCkRpoEw7IhhFLN6LAotIHxJLJuWznV0qsNGy7m/5GJxJYa+ZmQwe/bmnr27J6hM4QlZYymjtfS3GNDVgy2mkVjXbGEpKvaHkduHB1KKeO9oG0+cJrZjQoVIOh652w8SxhAmHuKBZ+cbLjYrLtdn2H6BaY/ENFHikWhE4VFMYZwmtvdb7t/fsu5aVI50gFeaUBLb48T9IXHMBbUd6Y+BNhZ6rbnse97cDdxPR+7tlv1GMZEBgyuF3lj6VuOSI+HQ1mGSolmtaHWHDoqpjAQzErTmqBUBWUuT0WxDTVkqFlM0feNobSVuFAAB17UqWA2L1pKnyBADb9+84S/+4i85DDtQmZ/+gEv0gwEW7/3JL2QGPkiw3+9ZrlYn9sV8zCBCilKIWmPxzrFaLPnsk0958+YNOSaCsWSdZHECulaM2VJKvHn7Bu8bvG+wznGKHaoa4pMR4OmXIp83Gm/EKPXFJ5/w5u1b3r1/L5rwkk+vz6h5miWSH6UU3jkWfU/fWKySXPVYizQKp3SCuTjLWTwF8jyGmvXXKWGQ5kW019/3VilF0otW6zVN49nvxbU4xnjSgz/JoTRpykyHiTEmQuPAaIbtUT43JUYSx+0AaWAadoRcGHNmJHO7v8MuWnzj8GcLytFge8di2RNdoTtbc/bsBbk4tPEUJbSyw/2O6ThgrUJ7Q9M4usaTGoPqN2iTOTSKySlK52nX55g3HcVpQpqwpcggtvoYpNpgaWXQKZ6c4HfTkUXv2Vyc4zrP6mwNRJq+wSpLt94SbWJxtUQfNPuy53AfmUomakXWGeUKRmUUhTRKHKcqrvrsBMbDEdsu2XjHtW942B2JGZKBCfjVv//3vH//ju/evOW/+9//F0937erEGC33i+B46rRQnOhRSqaj+gQgwmNFLF4oEm0uE69SpIAQVsds/FewqtA1mk5FOpOxJtIsPOdXZ1yeb/gXtz/m9u1r0jjwSd9wMA03PhKDYbg/Equs56LvISlS0Gz3R/ZhIGVDUo7RwKgVY5Ggo3XbkDYrLlYt+2EnjDYUJquK1heJoFQaksEWIwUxjlwCRVmyEjmXzUqkYsriTYu2jmIN2rQScZqre25O6MpeMeVpGwaAzXrFOAamEJiCNG6lAlvWaJyra6mSQqeoBC5W49NMwqCqkR9ZY5XDG4t3mjjcENKIVhnrWqY0EfMEZaJvxLBznAb2uwcUDlM8OQYat2DR9zy7vOTLV8/4/OU1F+cLvK/GrqambFRfgovzFS+eX/Ls+pyuaxj2EyBeBq5pMdbRLxfErOic5fzijE9ePmMKmXEKPOwPvH37juVyxeXS8XzzDBN/yrOl5W8Wmt39LTlFOiZM2GGTonMFVKhR4wqTCyUHUo7i1YU0oWmaQGmGYeLm7u7Jrttu90COYtqqgHCQdLLzq6sqn5KJ7DSNdeJuyVMij5E0TITjSNt3ItlA0ZgGhSKGiDMN3rU41wKatlnSOI9drOjPXuD7Dc1yA4zkbcalI65xtKkVKdUx0nQtxjYopfGtk+dDSWqIVhprlMgelSGh8U0nJsBzSoqx+OUGdMNmN7I/3nMcttzvb2j2gV41dP2KkA9MYaIcI8Y1aMRIL+bZvD5zGAa6aZJpa1G03YGiCq5rCGGSmFkjYHgcR9IYUBiariemgfEwPdl1m4+ZgVEpj2JJkTLjOBJTFh8UiVarxqFy5JzZbndcXQlDJYSIMRZjxANE4rBhmgL7/eFkgLtYLFiaJb7x9H3PdnuQtcsojG1AWVKa2O5GjD3SdZm288zrdilZome1RRnDw8MDq+USbZb0qw5lRdITAqBSnXprFqslXd/jnOM4DhTNicXinGe13vDsxUvafiFAbk1fzCgwRti9jebs7JyrqyuUsrx794GsNA/7A8Y6stZMWeofrRTe2+oF9LSLpVEWZVU9F7F+rrJV6p6nVMGgTuwyqxEdftOIgfQwMh2PlBhxSoDSmBM6RZwuGKfQJeOMwhuFoUAKqJywCECREEDO2IZYZH/Cd1ASWSuOEVQjcfXnneeTn37J8vKc/mzD6sUlF5dndM7RHCfebPfo45GNcZwtPOfO01TzWVIUU3ajsUrhlcJJgYimYCrtWZMr80R0YSoWOtey2pyxblp636KKmEmXFGdnCzHazlCmSBon4mEkx4hxjqekHpkKsMxAJo82Z3X9rMbfM0aZFSFOGO3RXpPGyCy3hyK1iarDSqXZTyN3+y0hJ549u2afEpeX53x4d0csUbwcnSEUiej1uvDjT1/xo2fX/Nknz1lhSLdb7mPh7e0Hbt7f8e6bd6zbVjxqcmKz7Gmcpu88X37xGT//D3/DXo9iwh5SHTYZ0jCy9J5NvyIsJ95uBxLCvjqxU5LcoyBri0pFmCKmCPuxMvlMkohggKIVaaqhDVpD44hBoroba7FUcPqJl8qGBpUdKlqMr4mNaYLhFjXe0rrERbugMR6bhaVzoS3P1JFjHlmHyH28IETPnTUE37LShTMd+JHWpOFIyPe4/hmdb4m+EHcP7O73aCz9phfwW0M21bTaemzwqGmia5asmwWtK2A142Fi3Af8dKQxlitn0YeBN6+/Zt/fw8sfYboVA4njMGIXnRjYKs2UIv7yjEXfkKaR2w+3NLsj5/EF7WjJyTEWR9QwEVB5z274QIg7YhYWsi6+wuKJZbtioRf0qcPlFQt3TdOe82BGjusDk9mS4i3GPgh4pJ/OhN8fRowvaJ/xztO6jCWTw8QUFUH3xNJzfxz5sN1zc78lG0uz7PGLltu7WxgTcQwcD0f+8OY9UReMtyyL5eb2nuZhx4vLgHKWsllQejimHQWP8R2rrkOlwv5uy/1379CrHusUzop3WEiZwzFzexuxIZPvA4uHLc8orJTmRd/SZsPNlHjY31NMxjaWdSO1fU+iKwkfDzTtGmzmw7e/Z8UzTGfpjWUXEn0Uc7DkPPcpsS+ZYCBrR86Kd/dbpjGy7BrOFj1nfVuhsggpnky0W2so2mBCJB4Tv/j5L/jm9Wt++cu/5b/9P/wf/0dfox98tWdj2/mYqbcfe698zMwATowShdAFnbN4L9q8jx3Q59QCYwzLxYJ+0RNCqF+ja5Ndpxjza1CVulonz3PTKP/GaVq2Wq3oFwvatv3oZ81IM6efp7Wu1EaF02Ji5HRhMuIpoOZfXQvKUvKjplvPv1QKuxOzYJY5zdKiOj+aJ2wCpEg8Y9d17Pf7J/dgKWo2NYUA6LZFGc2YUk0tScQC03GghCNhPIrOsmQKmUMYWKgW7RxutUDdN6hFh14tUKsFo7XcjZH977/hd9+8JavI+jdf0emWIYNdLKH1TAUYAmPKqL7BrhbY1RLtHNpZTN/RbVbY1pNyxBXx7hB6qUbNG3EpQpcxDhKzAAEAAElEQVQuEIeRcRo5uzjn7PkVtnH4rqGbWpplLxRAb8GA7y3adYS44u7mnqk6buvWsL7cQCjc3NxC1eprNCUrUiiEkMhGYWqCSl80R5JouXVhPSWmtze8y796susGwp6iPl+5zPHdj8/cPCUWfXqpjKwyf3MtUMXSX5XCbOSqi3pM/soSb2yNorWG817TaU2jwVlNVIlsCq6x/OiTlyzinuP9HYsc6bsV3rQMyXM3Bg5BpGWWjrZtUI1hGkd2o4CG2YmfUjaaVJ8n7w3L3rPsGpZdQ8oZqzrCXty/Uxy/h6CKPd7MFhMNrSgQNLECSaYoosCbgCWpTNZSzM1JG/Jczmkw6mmnskaTnaYgUhCbZSKulcJag3OOpnEElXGjRuss6S+IVbtCn1hxpdQiO4nhXQ5J5DQaSAmnFG3r6VdX/OyPPkcZxd3uga9++zXH3cB4DOgcWfeG8/Oezz655tNX1zy/OmPZe6wuWF3wxrBY9Kynka5vefXyBS+eX3NxfoakWsh0NxWRZWWtyFmArRRH8emYBkqVgGgK52cb2rbFGk3jDM8vL/Aqs+kd29sPDIcdx/2O3mkcEVNGrApYrXBW5vqpvv88Jw5pU71HDCEmdrsfFqf3Tx0pTpBk+h3DBDFW2UFd0yvFW5sK8GdJNUupQJRrU1KV2dU9qGTIsWCsRxuP1g6MpxiPcg2+6TG+QzsvRbbSFANZ1/SIui9qbdHaobWY584R5JKvJEwu8V4SuHQ2ZJ87n1LkdRRl0L6lXZ9xyIEUAkm3PIyFoBPZwCEqcjaV4m+pTiFEGYSTM0whEqYgHmnKMkVJ5zDOkLEYLbG6uhQxGS3lxBbV1qHdU8c0z3/hRN+fWSopzQMUWUdP5rb/oFaZJULU4UeqjZBvGpy1GGOYpunkQZdLwWmL9w3L1ZopSGT6OEVSVqc0vJjkc9oY2evMY2M6vwxRQCYBW1WdZhtdTaolyl28phRN24gJrDXESRxSZuDLO0fXdSyXq8dQAlWja2vdo5Wiazu6rsU5YdPN5sWpMoFyLsSYakkjgyiRg8+GsE903XI5MQXmpDPqcAU41Y5GCRN43gOjs3gn95kkVkXIWZghFEgRVQRIp0pVrSoiG9Bz2lzBVgbkzBqQ+Z0AgS9ffE6/6Binke/eveX2sGNSCdMYlosl1xdXbK4vWVxscEbBGDjc3HL77RvY7lg3Hc+6lnXb4xH/rBgCOUasb5FUC43Twi6a5ZoYI1PWGEUWm2QO3lqRYrSuke8pj/6G6iOWka7MMtKjTxIzC/SJDjX/QlWvWS1xdWUQzWuf0pWxogopF8F6+Qc9g/o+C0cb8TbaHvaEFOmWS87Pzjg/P+PudovOmaZxWG1RY0SVzMtnV3zx+Y94eXXO7e6et3/xV0wpciyJMURKghwK664jjhMhBp4/u6TtGpy3bM5X+L4BdyAcUx3mymKnQ6HB0DvPatnxYRgJUWTz8j7nkA9LqfW/VpKgI+e+PDKLmdOX5H7LJdV1qPYK9fzmIr6DWWv5PU95ZE79jEaRUyCGI9NxwqQR3xj6RsBorcBZ6I3m3Fn2LnKWJrZJzuGQPKFYlLJ02vKy8dwnGHJkDCMKAapQhbAfSK7FLB5lkonqeaWt+DEpg9JOmna1JIeJ0YyMasTuJlQpuFT4UlvUGHgfHniff499+SlN25KMRSeDwYpfD4psLLppWVxesg83jCFyf3MnCVui5RWT9xxQMZDjnpIGKEHWvVmeqBWda/DaYJKmd0u6ZoVreiabmOxAMhNewdJ5RhLDP7TL+GccV03LVCTZ0HqLVxFdCjkOlGRIyRFioIwjh2liCAnVWmytMe6OA3EXJOlnd+BeWVbnGy5eXNN6zc3bt3z34ZavPjxwsTnDas3i2TU3H+6BQltVH65YWgzj4cjeFGyjibqAtVI7DYXhIeMClB2Uh8DSKUYHeFi3HmUTz6eRnHYcR5iSwhJQRRjUOUVa3eOd+FIxbCnFYVvLUluU8+Qm4jKYQWq1OAWMr2wkXTjESD7WuSqK1mgarbD5MV0ul4ApCUeh844xWva7ga+++u4HXaN/NsAyf8wRy4/eI3KoOmGfQYJZc6mVxGB65/DOneJwVZ3kSBEgxmv9oj8Z7M1y8kdZw+kTwPdqJD42Yyu1Ee37nr7rxBiwvpbveaGURzaLUGiFLu+MxWmRMqhKsf/YD0Z603zSotdfOmMAdfN7pCbX3yYeB+UfADBas1gsuL29rVGJTwmwAEZTjCYAqm3QRjPmLCyOnCVOeRgoYZTNpyRCyWQyxzDSAcpZ/GpB6RqCsxy1ZvSWm2li+HDLeHvLb19/R1IRFp7nmyuGhwPHAkcqAyUVIhrXeHzuccsFxsr0TjWebr3CNUomWRWYmwcEM9BAdXIvKROOA7lkfN+yvDxDO4t1kkDg+448ZbQ34KBZWJpsyGnFu3Qr9D+jBGC5WosZ468hjWI8qdCCkKYi9HEjTBznLA2akQgqS8MI3D0ceDj8sIfyP3eoj4C5WScrny+PJ+aU/DKnzZSP4okfAc7T5l3U4/fO92cR+UhjNWedYensKb4yEIhEMIVXzy4xD+/YxQETA83C4tuWyfa8vr2jbCcO04Quia5pccZzd3eHYpIpl8pigKlk40MVvNPk1rHoHKu+AaAxS7Zhzzgkphgq0DbfDFkaWJRMZos+ASy5gqyxaGLRAsUoQyqKrIo0n1qYP6pkAe7Uo87/qQ5rJTlI3jMnqrvWGj/fo04aWGsUWiPeGdTrylyvluo/k2pRJJRioxVWC+PEO0O38Dx/vuInn3+KbS274xYTR969ueHu/T1Bay7WHdeXaz59ecXL5xdcbZZ0rcVU9/7GWc7P1mLgWgqfffqK58+u2WxWzBLHWaIQC8SYmabIw+7IMByYxoHhsMPUZLZSFE3bknMmToHWGlarBV1juT5bsX+4ZXd/z5tv/iATVp3ROWBJWJ1xut7rCNMoZ2ECZQ1azwayIkl6qiPFUE2fE9PxWCfN0uxUlFKiXa3EIqoKrMz+QCXlaqoByswsiiojNQ5jhOWHaVCuRfkG23Ro36KsrQ10nQSrmuilhUputMhSlDLMiTnibyDaa2Ucyhi5x9UMsFSQljoUyOKHpJzBdQvS/R1DUuyj4nB3xB8ShwB32wGtCo2zTEnSsoueJWvykeaUnZjQOjLFQKZgrCGXhDHyTKkZXKmNvVYGbSy2aZ7suv2Tx0fr2yxl1idZUJU2o057i66pQLkmGab69wJVGi0mx1M1tp/BG5TCOs9iueRwnIip+vYUXU0XLSFOhJDQJmJ9qpP7+bXok2dbnkOUdTnJhgX4MCjlRGJgFE3XVVDEAvHkL5NTxi+8GBf2CwFV6nDKaHtqbLVSdE1D27Q4Z3HWCVunDmNIM9hUMOax3im5UHQRNuQTHTnmeq/oGgFOXW84lXpGKayeRwrCaPXG4Gosc0nVaySL5EP6uSwsRTk5QglXci/bynLRSqGMAPOlgjhGG5q2Zb1R/OjHX3Jxec5uv2NMmbvhIClGNSShbzrW3YLed0zDnnF7YPvuA8fbe/pSuNyccb3sWbUtplATugIlibRSkpM0VhuUFRBMaw3KolOSq1WBEVM0jbG0ztNYK/Xq7H94uuERAKwCLKUC04KafR9QfJJDPVbmj4NPObfUvU9XKZTsZdULTIvsbt5756pdza9fG8YY2R+PTDFw1niWKwFZvrKvyUkLu08ZCMKSuz4/Z7Veoazjt9+84dvvXrPdb9mGgcVixapbsunXrNqeqRmYrOLq4kyAGmdYtB7XNShniExSS1XkUydwRdFqw2rRYO9rg2bqM1GAPDNYHgGWlGNlvs8slVmiJ+9WUfuPOuwVmRG1J0pkbVBGU8zTmhOferN6O+Q0EUMmDAVdIl5bWj8DLAploDGatTOce8N6ApMCU4yMWYILChavDJfWclky25L4EAa5LbRIsNMwko8TKiSUq2sg1URbGdCWogxFW4w1eNtCXNIqx6QcTFtMKPhUSMYyhIkyDtyNIywXUJY0bUeetAw0ipP9SimwjnZzxnB3IOyO7LZ7AcSyrGeZRE4BdKYk8YWjRECT1ZyKVeu3IoODznY0rheZowkEM4FNdMZTmp59DqTwdPXJdd9xfzywjxOtEufBUhIpTZTsyCUSUiBNijFEppRplMHYBm092/2Ow/bI4TBxux8w5wv81XMufvxjyjRweH/P6+2Ruw83fJrgYrPi/PKCst2hssLV9cpludZxmDi6gkETba4m2oY0wLTLEBUcFfGYOGbNoDS5KfSNwXrFcxMZw4GHGNilRLFGJMeVlWZUZGEzS2fZx4FQAsW0LK2j+IapZGwumJTQKZFDEnGLERb/lAs5JHKZ8MZSmjrMR0NJUsOViC4Jo6A1Dm89hynwcNj+oGv0gwGWj7XLgPh01GLjkd7B6WvmrxOWijT4bdPQdS1937FY9IzjwH5vH9FUrdls1iwWCw6HA9bWAmHmDs4f/0PGzUqSKNarFevVimXfixP4qeQ8vVpAWCsGBUrjrRP6tkI0hpXSq1Q1+zXipj277ZtSTj+p/vLqCSgb/BzhDNUrsB7z5733XF1dcXt7i1KKaXq6h7I4jVl22M2KAxnVtSjvODjDoAsB2YR3+wdMjpQYGMrEmCNJFcw0ssoZ4xvW18+Ib77i64cHfvfwwM8/3PDmV7/mYT+Q0CSVyCryf/oP/4EGR6sdK9fzX/1Z4Gc/+4KfXL+kP7+kvThHHff4izOUEyo1WnN2dUVMA9MYWJ4YRvMZnf9bhG56HHl4/57zyzMunl+zfnYJSaJKcynoxQI9RmzboFvN2bMVFkPrHX/H14QCSoNfOzafbCCC+0XDFEdiqpOyIlO1SJUytR4zNXhlyTmQckLngWduSZMcbnraScOp9Ji5t4+0K7l/VamBR6k2XgJizGerUP+96ptFdiIbq05SBJUaI+SAlbV8frbk4twTSuT+MHCMe3aHWw4Hzx89P2dxuObBRL75/dcsfWG17Ni8uuAhHPnqdeL1d7ekaU/rFqwWCz70d/hDwKYk04r5ldWi11uF7SybdUcqZ5yvC+vunG/Kt9ze7vgwHERXX6SBjbFUY2iZ0CexosBkLeCAEjf+iEQjK+WI1TRwpiMXpSmnmMjvA65PcXTeSVNgFFPMc62J1Yau83XNlOvrlFjRppgoEZmopCC+KSVjVUAj0XKLznJ1uaRki0YkDMt1w9lFzx/99BU/+/JTFqsWZeDFZsWv/+43/O43X6OU5vMf/ZgXr17x4x/9iItlx6Ix9A4UicYbLi43/Bf/+l+SlMY3DX/8o894vm7pnCalIBwGZcjacvsw8P79B96+fcdvv/qau7tbtg8P3L57g7FGro8xXF8/4/rqipcvX/DTL3/Mqm9ZLNbYRc/LZ1cMxz191/L+u28I4yjNLeJHUF1MSCkSohRzQ8gUXdAqoo2rhqxPd93G8SDtW8zsHx6wWuOsO3l7CLCna0y8GGmWHCghU2IWuYMSCRtK2CMZaXyta3F+gfc9xi9RTYduWsxqhVosZfpTFbDYgrKFprUY5WS9GxIaiy4WsHI/18o8YGh8J4VeSqgir8OZgrUN2jgpXrUwgDKKo9K8vn3g9199yx+++5bv3nxHypFl39G2lkU1OP7ZT75g1Teseo+yHuNbbDPifVclwJGkAof9HtM0uGp0rk1liubqp1M7C2MsvrUk8z8BwHJK/plBAQFKQpT0AG2EFTSb1SplsEYAkrPzczExTklkVRVUAKo5v6QA7fc7YowwgzCl4JuG84tLcjbkfMPxGACFtR5rM8MwSaJQyVhnMFbYOymLV4DgcoVMouiIMhnrNG3b0TQj1g0o48Ts2hs2Z+e0XYepngQhBMIkzft6teby/JKry6s6Ra+3lDEnSZlznvV6zWq5pGkauuUC3wpLNcf5/KTaDJo6yJcoVWPMyUPhKY5xGGgaJylmSsBMua0VM1vVaUNjtURu1ouSjMYbg0VVv5EAMeC8Ai0Rua7KbrLKeKCxisaq+n2yxmStcVom8EoZ1u2aP/3TPyUXz4+//DM2mzXDMHB2ccXmVxfc7e/ZTQf2N/e8U5awP3L1/Irt7Qf2d7ds//ANG9fyxfU1//qnP8GPRzKyhh3CQVKnah1ZtOwJjXcY53HWI2ylmlZZIAwjOmaMMnhtabTFolCpgu5lropgTu+haHKMEKKYbidhgz7l8cg4gRNSgJx7pRU1EEgA4lpHTVMU0BipveQu0iewS+h+gLYMYeBhv+d+t+X85UvWqyWffvKKn//ybzkOAyEGXpxv6JUiDIaz5Yr/15//OV+//gN/9Zd/Tdf3bM43fPrjT/mTP/1XXG/OOW+X3H37Dqshpolnlxtc41DO0K86mvUCs3gg3k+oKUicd4a2NNgJXMhcrnsWtw7hm2ZSBQOVMfNbFkNfrcSIfB4gV+l2UXUfrRUJpcqAKKe4bgGjMtlZkjJMxT3ptZsNlIXxnIjTgQyMRYyCF03Dql9htZOUKgtd61iMmlWEC6to4kSYJkZfOGbHRCYrz7rAS6NICsbxjqOW6F9nQI0jaX9getjiLpdyD1WbB2qyZLSeqMUXxSuP71cUvyAtEn2zYH9/4LAf6UKhXS54lhJ2f+Q3f/gNsV/gLy4JzRJcB65neXYhbPyioVlw9vIlw/2Ou+9uGA9iYI0SllEJsoaoYQ/hgEoj4EhFmJfGKawHxkiaBjrr6a0kPwUbwCSazvPp8jMmn7kbD7zb/7BG/Z86/vST5/z2u9e8uT+waDQhZ0KW4YYyFhBg/Hg8MtZ6yuDROEpxjEHx+uaB7WHigObf/Oxf8clPPuf685f86uc/5/V+5De3W+63B7Zv3/EiZ/7Ns2uazQY1RkwprI3HYjHFUMaRox4pScGiDhSKpewCkxnQyuGiZgiKrSm0MXNQhY3PrK1icbZgfQy8GUb+sNtyMyhSkZSkYgohHbDF8LMXn/Lm5p7dNLHbJ+y6xzWOvGh4S8apQqMUcTuiJ/HVNM5hnEOVQsiZ292elDpKp7DeQKIOxBJaC+geAG86svPix/oDjn82wDIfMUZiijjn6uI40ze/fxgtjUzS1fFba5xztG178nWZgQalJIKv73vRuBuRFKiTPOn7r6EOOx4dyvnoP3W9n4ujru3EUBZZ0k0tzh+LKFd9LCyt9XjjapE/M02Equ2sI9iMDjJVzSmTTT6xWT6OXBSg5ZHJ88hE4HtMIAGWNiyXy5O571MdwSjMZoG/PmNwGtV12K5FXa4Z37wXEEVrxjRhckTnKKZ9QCwQiiImOI6Bt3d3/NVvfsO3H2643e3ZmQXtJz9i3S345JPP+eXf/DXv3r1hOj5QsiFlTRg0//1vvmKrMkdveLYbsJcK3XasXjynGEPMGW8M/WrFOCiGIZLidLoeczNKZQ2ZUgiHgd3tHS9evGB5tiKpTBpHmSy1C7m+ppo8Othcr3A42c6dl2m1KSzOF/TnHWlKmFaoZUllIpL5nkohlELQBdVYXNvgTYOtW2ycjli3oHquPemhTs9VeSxkCig9s1JgpumiSjVRzGRULdzn79MyYSmcjNdOtFQlyQpeFZZO8XLd8fz5mmMK6IcHbrYH4rBl3FrUueV85ejzhuPDLcaDcpnlUvPTL5/TtYXGBo7HLVZnmsay6Bc0fsCngZRFruJVpnPQ+kJvFRjNqrOk2BAjXCx7pnWPmgLT7sC+yhN0FoaKUhpVo3xLSMRYICmMs5RiiFkxTYlkMlplIo++SzJ2gkcQaqarPh3I4oypQJ/+SCYI1oA3YlxYFGht8MZitSVHmeamCDlEtFY03nG23vDHf/Qpl+dnbFZLfv+719zf7xmHwGq14er6jIvLFZ9/8Yzz1RLnNZD58tWnbFzPly8+wzaOzfkZi9WK9WZFazTegNOFkiNNYzg7W/LTdimaY+vYLBu0TsQkoOsYE/fbHd+8u+f//Zd/x9t377n9cMfdbs+hbujjcHwEQpXiD+8eaNuvWXQtX37+K778/DM+ffWcH3/6gs5bci2gmn5NUXth0Slh1M3JVmK4WdNYUiZnUDoQEVmFesLo0TCNAgTERBgGmn6J1YY4TSjt5LlR4j+gKvU3hlg/Zq8jkbGh3KmRLjZBsqAdSnus79Btj2padNOTjQNtKLagkiQBxTQH5EoqjZlTupSTildJFHohk61HNz22aZn2B3LR6CITfpU1FAEbdWPYH47cb7f86ve/4z/+8m/51a9/yx+++Y6HhweMUZydrXn54oqH48Tbmzt80/DsYkU4W7JZ9qRq2Bprqo5GE1QkDUd6b2l9Sy4RXZlZuk6BSxI/D9VqjLO07onBaD2zdmoan1Kn9VJS4Uplnc7pf9L0GGtpu5br62dMk8Roh/C4kKckDKS2SmqGYTixYFISE2IxIs44L6ySAoxjPHkvFSCkBAGGccR60NXAdja4zRRJyKjmxcZpfOuxzpIzwoApQF33jseBu7s73n73lvdv33H34Y4YJxkMGUMKkcN+D2iGw5HD4UCYJkoqtK5lvVqzXCzxztE0jdQ/6FNaUkxJ/GFIlbBSqiG2sDif6jju9xjV44zCOH06IwaRsVYovPrlSbOqipjDzgk8JUTKFFAp4ZRMrW0RtkrlE+BUximF1xpnDJYkTJyUSVXGgrG4xnN9vcH5NZ+8eiUgj9ZcX13x37z8XxFLZIwj7+/vJcWp8azP1kz9muPqnHdJ8+nVOa8uL/jsxXPef/1bShYwJwUlaxhzrVyfbSXBCsZUyQlS56SYiFOkV4bWeFojxu86yy5fcmU4Ut/nRzKbOeUzRfH2Mvkj06EnOOakLWHa5VMNjpolQTJcnM16QRr7nBNZiS1UrICZZrYXkNeeaiLMMUTe3tzw6kcTvl3w6uVLfNOgdtIYe6MZw8TDhw/8u3/373hzd8shTLz68kt+9OUfcfX8GS8/e8Wf/OyPuVytOW86dl9/yx+++i0P21suLs5ExrpZYpYd3bIXibouGD0P2SRlhliwRfHJ82u+ediR9Za74ySysiRMlizz2UeGl3pk7sydR+Gx9pdvnM235StsPV8RxLjTWZJqn+7CAcklUDIcV0zCAo6FdJiwC4vTlkZ7HAajC1hDs+mxccTliVWwrLQilCzrDJrY9rjeYeId5ykSSuFdOjBpTdCaVgtjPkxHtts7zs5bKPokCUTLTZGsISqxBXBGkrKSS8SmsHKepulY7EfMdmDYHxlT5jOnCSnybrflzf09+ewZ+CWpWVCypu16tHdSE3uHWbY0l0umPAibpmRMyugpo0rAjRVkrsbuWSE3rLNMBGzR+GxYecdCawH5KmPT+5azq2cErVEPdxwP757sum3awqqBfaNY9A37McigP8vgKxdZv1OYUDHiUqHPGn0IRHvgeL9nGCeK0WyuLnnxxadcvnpBf3bGMUcOOTCUSFSwmyZutg/8/ttveb5e4mJGbQfcFGm0rYa2UUIZpkK2GpMVLmsJvToMKJvR2pCNZSRzAFTrsS7QOuiWju7ZFVfTkvV2wS/fbtkeM8OY0VYzToHD/kA+HrloHJ3W6ClASgxGTHUbb2mjFdVBhByBHIljBOOqn5+kiR5iIB0TMTlaI6QKVWo6YClUswUsBv8DKe1PsjMqpU7ggm8eC9zvy2Hk67QR1kiKUQoao0Vm0TY0jRQQH39927Z0XSteDlYc5Wcq4SOC8kjFm+UQj5uH/JvE3QmQ4p2XCdRpuiXUxTL/DArOWIwVzbR37ntTmlIeGTbz9Hz2m5lj6R5ZOxXRLv/UBZrpGI9SppyFMrlYLFgsFkzTxDg+Ie3dgFs02LMFqXHgHLrx2LMlySqyBosiG0STRhK9LBCBUOAwjtzc3zN+9RW//fZb3m637HPh1U/+lM35M87Or/jjP/5jbncD+yFxGCMlG9Hs58Kbux3+zQ3NZsG/fn9H+/Iat2zYPL8mG03IIotyviHmCR3E0Xum936PsaQUeYzEYeS423N5tsG3LTFHDrsd4ziSQiSMQSj8Spzbu1WPU5bxEFDOkSeFNop+3eMXjmgUtpGs+6xKZfqX6kYui6ykicgG5JIVymuKmBYQEPxpjxNQxwnAFMzlI17pfOOfuKZ1asLMCi6VckqlD4vA4GOei1EFp6E1irPWcbHsOaTAPo487HfkcGTaa8q0pPOKZtVxfr7mqAxJZ7RJPLtakfNAGB/46usHmZ4bRds0NM7iRsUUI6bMAIum9dBaebY7pxgsRBSd0yxby9haOqeZQq60b6FzUqy8di0aZpULBWENqMocSHVIQ71+J4BWPaaezYvHU182qw1Jpxr/WS8PVL8TKhAmVGirq1dMkkYwx0yOCduIbOrlsws+//QFlxdnbNYrjNF8eH/H4TByeXnFxeUZm82C66sNXaNr4o7ifLWh0y3X6wtsa/Bti/VOPgCrMgYxjnXO0GsDi56shRnidUKlQWpA4DAMvL254e/+/iv+6hd/w4fbe3b7A1PMTCESsxTTH5t9H+MOrXYYVdjvjxyHkeM4slktudisMBis7zC+QU2BpCZylTTkGtUdM4RUiFWqlxWoGEnVE0Y/4TQ910lvCZK+Yap0NIWA8eY0bGPeRoqYnqeYyDGdtPXigSJ02YIYmWo0Ocv7IRZUyCidUGMkMaFmyVhO1W9J5DYWI4knhurDYuvPlhloRgml2jVY31J2Q/UBUJVRM/sEFMYw8ebde75+/Zqf/+3f8je//i2//f3XvH1/RwhB9uMm4tolJU8c9g98/fpbwngghoHzVYtTmRCE4ZCiIZJQOhGnkbYsZQ+N+mSarCoSXGpqlymgrQwqnvKYWa5SL1RWLQJ4fS/RcG4+i+y7uppOr9YbttsHAVnmWMMK0uSccc7RdT1aG0IIAqzERD4O7Pd7ttst4yiJNtMUGIZJgIqcT0wapSrzNxpJs1GmTodkHcrlce3WWtWm25yAIcHSFc45SsmEKTAcB+IUoBRa37BZb1h0PcYYUhCwJsXINIzklDHasOh78abr+xqLPJ3qmZyrbLhGy88DKFU9QmxNO3yqYxoHYuPIjcMq82hsi0hdZtmrns9P/XdDNVEtRVJzUhL5pBLwxVLBPeQ2MAqc1jgt5rJzILDWs1y1fp02+HZB161Z9AuGQZjU69WKqxdXKKuIOfDu/a2APVrRdg2jaxi0xV8f+eKT51xtVqw2K26/szIwK+IhFetryoXqJVYlqtqcJMECsAggmULCKI8ztu4V1fOkgobMNRLzx2NwA0mufU7plPr1VMfHsvePR6tKPZ7LGdSUz1Pfd5J0TaPEI2buGYrUzAJFyVsJKXFzd8s4TTSLFWdnZ7RV4i5m5IlpHNhtH/jD3TvuhgHlPJ988SU/+vInvPrsU1598Rlf/OhzNn3PyjqWGMZpj21guVqyWPQ0XYdynq5p8M7Ls6Dyafiiamy9KoXrsw2XZ2v2IfJwHKUeVZye21OfojTzFOzUF8xfcar/Z4miPF/MAKKqjB6ZplUp4BMeXp5ziGgCJRs563nC4vHa4rWTmGiFSOk7h24dZnI0g6VVCl/gkAvHXBiNo7QO11j6KbFKmXWK7AnsMTQaQsnEOHEYDqzSBDi0qqCqAlX9+Ur1ErPGoknMTFBjHEZZrG+I2rKlMGm4JLOLijRObIeRw3ZH9pk4RIJuqueGojSGbDWqdbhlQ77NkrIVY2VZZgFbQsGk6mOEJJpJAwhDjNhoaHOmaxyN0rgibCRlQDtH06+xytIeM149nUdcYyO9h0Vr8M6ynxICQVvAyZ8FSkronLFF5FQcR5IyxN2BHAOm6zi7WHPx7Jyz8zX9spPBskQIgCqEOHE8Km7vbvns8oy+gnDmGLAlYckYKyLbKSfyFLFZAtOztpicUDkKT0sbApkJKFahbcF5cL2hP2vxuaMsGt5NhsyREEfIhRAiQxkZx4G+7dDWEI1Emo+l0ORCUyp7xWiSt4QSSTMpIkVh+ZZC1ML6jYgfVFCWRiuc0tWXrQ7slKTNuR+Y/vTDn9TCic0BVA+W/Ki5/ye+RSmFdU78AiiyQVdGyXq9YhiO9A8dN+9zZbcoVssF6/UarTV912KM/YjBcnop82/46LXV6eFHC78CmVA1DX3XiVs1nPLPrXnUUjfO4ZpW/DvahsZbclYYY6j+anLyq9u5sAokqSCnQkql6vlmU9/60k5FweM5UqfirU5ptGa1XnNxcXlKMXiqIzkEfX52htosSEZRrKF7eUXpLHkAlaVpjodMiBIpG+sDkYF494Fx9443v/pP/NXtG1YvXvL5v/gz/pv/9n/H8xefcnX5jB//6As+fLtlesg8fLcVmjqKQmbMW75+c8s2jvzxX/8t/SdXvDr7lC/+5KcM7+85xMAiJoz3WOtwzhNTQmehu8/RkUoJiyjuHxjut+zut/zoxQtsYzgOA3/4w2u2728oIaIiLEpHTAm/aPHnS1yx+H3E9A1lsigHly+uaJcNI5mua8DWyC9NRTURD40CRhmKdvS6YVFGVA5MRIpTxKI4mKdt1fWMntdjLli0Uo+ce6rzkBI2ykxqEXlQIWcBG5VWPNr8i4a48BhV2OjCwikuesdl19BlwzAtuDMf0NOW8WFHOnb49Zpm3fLJZ5/w9c2RfUmM047L59c0zTmtn9jdfUvrwZpM3zb03nI0YqRs05GFjlz0lrNeszSJrAsLmzmUiZIymoFlYwid56GxDGlizFnoqkVXTxKD0pWWWxQOg64eF+J1YU8f6mOT6o/EgdTms56yJzuctcQYJfmiFk4zg8XofKKAG+OEhouBZKSxnxJpHFhsFrx8dsm/+rOf8vln1yyXMkE/P1uyfTgyTYlnz55XY0QwtuBMrutPwbuOtV+jzqGoiayzpI2Y2twVJK7UKLSTRh46Yo2XlUhAhVEGozxv333F3/zd3/Nv/x//gb/9+j0xCxtINlRPMRplfdX7S1kSVN3kpsCvvvqG97f3/O7rb+i6jn/xxz9hs1pimp5iPUkbpqxIylWmh6R4DSFyHANTKqfpLyRwwlRontDLI8dMnibyKA2rMxqrYT8ONL2vQzbzPbnsPCFOMQm7hkeJVCpiBnsYRjrXcpwSx3Ak7iPJOLAe2i2h9fi+YXHWsXSRVFNG2uUCmxUkGVJYLzIObTSxREql3mvrMU2LbXoSDwKiFlVN4g1kkRr84etv+L/9+Z/zf//zP+eXv/4Nr799z8P2iLKd+JT5BW5xxpd/8q+I456333zFf/yLf8/1+YJXz86xJfDsYo0mMY2RqQI3pe5jJWecd+TsMbWpFW+aQo7CiFA1Tv3JPVjUDLJU+eA8lEF91OjJ+ieTddl3jRbT6fXZRorkw4HdblfBF7mOUwhY51gsl1hnOQzC2Jqmif3Njv1+T4gRYxru7rbc3T5wPIQT0JOzyMRCyQwj+MHgvXg1zeb9qsqQ54G/UsL01cZUmacwepumZbVa0/jm5BW3WgoTZbNZ89Of/JT1eoX3rt6j8vPG44BGYtqfP3/Gs+fPOFuvaJoGrY+kLJ5KIVYgs9YsMlTQNN7Qde4U6f5Ux3g8EFpPih6NlytWZphSfAa0XLTqsFwqWC0+VJpCTpGSBIS3tbmPCjEoLfPXC3PFG02jNRSRICoDU8m1yE4fDfk6ck5MFbzabNZcX1xinBTkL8+eA3IfhThx8+4NI4pnX7Y8e3ZO34iHn2lbmBIpRYYchDFcUyatc9WIemY1aOakzBAj0zhJAmdjaKzDKyN7IHIeZo+1E0vkBGxkclKSvjdNxBhwKVJyRP1TF+EHHFrruvcW5svziC3M8jqpreUtSbpWTomE+BpBFIAIw+wFp6kNNoopZb5+/Q0P2y3rswsuL87ZrJbc3dyw3285HLfcb++4uXvP3f6BqDSt7Wh9xx99/kf89E/+hB//yU85vzrHW43JGVvgOuxpl47zizM2qxWua4mmcN4vWbctFgGCEiJNjqUwhgAp8+n1JV9sd4yp8ObmjtkTqCiRQs6DHG0MKlbz6ZxwpfYeKGwxEjddZZ7FKIoRIIMoyYZGSdaw1Rqjn9YQnKWmTFmemzKhkkHngiHRKc/CtCxch00IO19nSm8pS4/KDX6a6CZFq2BUmvsp8tB5Dk3DpnW4PLAogefackgjx2hZGcOBQEgjaSycTwdcu8CZBqj3SFFVKmtRxmKtAsSqQNx2Fc432FXBnK2I9z3uYcf43QcohkWbaJoFf7s9sD8GRg7E/UQZRpqzM+zFmtIJkGNVQ9ATIe5gGGl0LxLKXDDRYJKkbM6g1yyVuN9NMBraqdD2DQ65r0oJqEZTekPqOnJyYI5Yuie7bFYfWS4Mo+kZrCYUxZg0SXUU06G0A6pPHwIWNSHC3QNxP5Du7jA50J4v+PSTSz55ecH51RrXOZpGoU0CRowKEEZCHrm/Lfjmj1m3PdZ7hsN7OE7kGDlbnjHkwjFF7g5HvOlwxtL2ll5pSg6MMUoanhLGU9YB3WRsb/BnHn+5xFuLT1fc6zX69QdSvGUYtgxjYBsSb/cHPlkJAeGs6fDbA+yOHA5HFruJQCSrTGiEFKCz+C+yDxASMUNuLXjpGfYp0UxBPJWsxc6JxLmgM+Kx8wM7gn8WwDKj1VOITFEKwRnjExf+VKU3EnlrjZaT5xyt8zgvkXzZwvpqwyEe8bdetO2l4BT0jWfZtZSc6LpOmChk6QiqYzpFjM2UkqSCXAuoUlvGR1RdShdjLNZKpjY5k5WqPhtiRmWc6Oq7vqVf9EzThHOzI3jd83LGVMRXl4AmkhAWg5QAkVIClIhVpSYNFMKU0J1M1mR3M7PwSKiUWkydinJcXb0kJc3hEH7wZfpHR0ro1mMuN5x/8SlDTJTDAb/u0cuGPEzoSbNan3EsijhMFBUkpackQgQVFMUo+rbj4uIZP/s3/xX/i//N/5Zvv93z9u0vKPEXbPyKX//17zjejthk0UiEnVaQy4gqmeMx8n/5P/9b+uszTON59ZNPuYlCykJLMoe2Dtd0DGNEuVjFm1ZAMRntcPfhjpIVP/7xT7G+ZXd3x837t/zVX/8dOWS8dWDuadKBh4cDql8xRNFaKqdpFp6+dPiF5dknz2gWnnE8YnvR4iqdCFOBYaQUKd5arAAWKqNbh5+kIdyWRCgDe6UI6ml1zgAqz0QLiwi3ajKG+oiiMU8B4HESWSnCMVf2ZcponUUeRxGj0FwtxkqmcY7GgJmO5P0OpaDNmbZE0nHLbnvgu9eFtD2nbXqG3LKLI/uUCelIsywsWs9PfnTFu28vKNpTdMZ3nq7zNEdDigMLJpYmc95qll2HS4khBkgTzmRMY7hY9Sx0y7Lt0Sh2X3/H4TjKpCFrdMl1E1HiEq9Ei+p0ASsmpMbY/4y3yseI1UefeUoflrlLqP7zWukKVlSjT13lTaaaTmawERa2QbmG9nzJ558859NPnvPJiwueXV3gvUVbSc4585ZcFNZLylCkECIMx4itHlIkMDqhdQEz1QZFQJH5vslUPbySRANFRiOTVGscuozCuQwD07AnhgltHG2/5BiyMEuyrua3GpKpPhRCbUcVrBYTTY3mdjcS4jt+8avfcnX1HGNbctI8HALbY+AYcm0yHMY1hClyjJnDFJlyYUpCw9YJjNUo5TD26ejTOsE0RsIw4a2jGENSmlgKLs8T4yIFcgyEcSBOI6WkmrYgyREAzrfcD4mHY+J2O/H+w+8YjonjELnbDowhk4oC6yi9Y7lZcP38nE/Pe55teq7WHY0TbyqsRq80ynuhUaMpQSI9Y4h0bo1VHWBR1ovnCAmnZR9MYWJ/OPLzv/4Ff/WXv+AXv/gVt8eBYj3N2jNFTfYto7LcHAPr55/iVMK3DQ8f3nDeWy7Pl2yWKxrXkMLINGWiKWidJHlBKWnME3TdEpUCOUWmEohKk5TEBKsMtmiaHzgh+s8fCUxBGSXAqnIYPN40mGJEa11NUGsPKwCtkl39CPSXl6hO1rV4lJ/VeEsZR8aHB47W0VvHQ0yM48h+GMRXyXnWTc+rzz/ncAzc3W/5u1/9mrv7B4ZhQitLyZI6NR4y0RpscWhaQOFyQ1EZl3t06tF5QePWGL1FFUWKA0UZLvolL59f8MmLZ2zONmitCSnwxfhjcsqcbc5YLM5wrsVah7eOXBLTmIQhoaHrPV988ZKr6wvaxgsYoQ37kPlwGJkmIAl135JYtZ6udXS9B1fNwp/wqsU4EeNETmGGmP4BKVOGAboy5FTJWC3gkS7I86c0CA+l7oFgjEIViQI2WuOdSOac0VhryGH25AIyaKsxtsEbT2sbvHHE4yigTN+x2axoKhtbfJZUHWIk4hi5WKxRi6V4vHiFIpHiyKQLuxx4GA8iu9UKtBZ5nbU15Yg6wQO0ZgqJ4ziyPw7ElEkhkXSkxHliXcEVVcTULydQSdKelEIZJ9J1II8jKUhD9D0DwCc4BFiQvxdBl1FzJLyqTJQMRYkUSmlp6kV6IVLWk8zxI/a3LaAxlFh4990HHu73TC8i/WrJ2cWK9zcth53ixacvxSzeadr7O95+uOM4Bn7zd79i/F+PNE3L+cUVyhkx6TYZ4yzr8w2NL/SLHuvEL03FzHm/YtMtaa1jCEEYFwjwkIsEXay7ns9ePGM3Tfzi739HyAJEWqNJUQnwVd1jVU10y2ku4mZmo0YpiYlNCrJSoMSIOmDINU1QIxHpxj4tg6XzC1IWZhNlouQK8RZFb3t6u6TTHa4cSWTxw1AWtV7jrKcLBXc3oVOm5Mh9mHgfLW+z4fx8TaNH0n7gWc4MSeqgB6O5c4GYMlMYGYYdurPYzknvVB96qyxgKNqjOk3RCqWECZFDIQvvixwzrT9juV5wvljwze+/5X574Ob9HXd3W7YJjiiKbXj//jWu71l98pzF9Tm+a2itZWUdg/PEKRFSkBQjPDG3JDxJTSgV0UXLrRoU5SB7HMXiGktxSQxuXWT5/Jx8YUhOgPWm6zi/uHiy6+atZbFcMjSFuwkGpRm1ZqImFxqFsZq9gr2CURfaXLhShk5bNoBtHYtVwyeXC16cL1lvlmjrWfgOb6x4lGZolaVBEY4D2/sHnq02/OTPvuSr8W/YvfvAcXvk5UVH7xdMORJv3jNMYs6se8PFsidOkf3+wD4nnBJw2yqLVjLsGxgJKRCUYsRz/uIF9M84ezbx9tvv+PDdtxz2W3593KHNBZed4nzlubxc04yJ5W7g+FtQD3ek44GJTKAQKvXM+pakE+MY2A8DKouHnfGW/ZiwOXMsio1r8Fbqa63FTkGl/38DLFTKWuGkT0tFJop6lsvA4+Jf5PNGy4ZmtUU7IwkM1tCvepaHFYvVsiKEyJRGaRovDIZ+sagToGq6NsehUSqjpDxO5ZnpkR+xWiqsnov4UaQiEyKZiER0EoaKVZZOK6x3tF0LqtC0DaUkSblR1VsXifvTKtfWzjJLMpRStI3HYPG6ULJmClEkQHnu32QhnfMfZO4gto5KW5arDYfjyGq9++GX6R9dNSXT5cazvr7ieL8jTCPL5yvaRcewHSgh4r0jWAE6CrFOI5Sgx0Df9px/cs1+2vPpZ5/x6Rdf8NXXf8Hrr7/hw9s72tjw4dv3HLbjyVhJfFNyjUwrOG+5uLzCGivGj76hXa4AaSJK3aCNb2AaKkiQ0WYuJsSfIoQJZTTd2Ya3337D669/z9e//x1//Td/T45gteP1Nzd0qiONI9uHgT9894FN21HGSNQZu/D0Zx2L8zXGZXCaaDLdqkOrxHE3MY0DMqXKqCLTMoVGWSNMJsQfYiqZWAJPDa9I2ShXUWhT872e68SoqvhVOd2j83Na5unyvOHrjCI/al7LhMpRnoNS8FbTNZbWanw1qls2lrO+4Rg1JSb2+y2ddaSiCNYRlZAKpxgZh3saL7Tzq8sVh8kwRoX3mqYxUuBaWDjF0kNvobEaXaQA7juP0halHZfnGwYXscpwOI4sbm7ZpYhOAVWEqqtP2uU60asFr+Lx81Sm2Qk7Oa2Zj2CK+kefeYJDPf5FnwyG52unTtdzBqEbZ2mtQ1tD03ieXa8kSvn6gvWyp2sbtDVS0KvElCNTCLy7u2GahEY+jZk8TLKWNQ1d07BadazXHcu1qjGR6vHlzd1ImYvBqp1HV7ZYlXlkRSqBrvVcX1/yk5/+hIP5lg8Pe7aHEZsNUyjEXIhZZE8agzKKksUoMxcl61wq4uX0/gMf7u5ZLRa03jDGxDBFDsOE9w22KFLRxCw+UPIhhoK5KDG6LcIsK0+YaJJCIIUoa1PTgdLiw1TNTGe/AK20JHWkRIoCJGSpugQ4U5qQ4DdffcN3N3d8+/6er779wDAmxqnwsJ+YgjA6itLgDYtlw+XFks/OFvzsi0/42Y8+o311jfUKZTW6cejGCmsoKQhWGJsZWt/iXIPWFmMdMQnNt2iR8g7jxN39Pa9ff8v721sO44RyDVpnVCpkXYjGMqLYTZExFXzrWa7PeP78BWed5mrdsVlvaK1mSNUrqNJqJbGkrjVZ/MwK8v+pCFg/Sy7n2FL91ItlBZyl0DSomiBmlMgqhAWS5d6fpb2zJEFpsjEslkuwBre9x+x2WOfwzhPGeEoJefn8BUVb7MMd080NKgac8/RdJ2b6S8VyteI4jZSvX1PuHkjpsfbICaYxY5TUEs5pWSOKRdNAdpRkyUnir7U2whpxlvV6yfXVBZv1mq5tQSuWmxVXz5+RU2G5WIFxFCUDm4StdY/CNy3nlxdcXpxx/eyKpnE1UrdwHEbGGEn1ubdW0WjNee+5Ol/jvaHoxMMo3hdZlf8fF+N/+JFiJMckTSjMZZw8X0WSXCTNJZ8+tK5pQChJ2FHi0aK1qjVnZdnUbVMrBFgx+uT3J3CyqmwhAduMEXZ12zSSoqIU3rf4RpIvVSnChgRMZV1QwGsLunowWDBGpJKxSAM9ZRkizCbvucDxOLDYrAXtU9UXrb6eYRwZholpDOSYGeLIkAypFT+comSqXnR9nr7nc8Jp3ytlft7yP0gceprjVPHXgQ61JimUWqrMciWRd8n2U6qUNH/v51RBGqrMiV+yZux3A/vDwDgFujNL1zV4b0k50q8W9N3nXF9fcfPwwF/98m/55tu3HIeBN2/f8O7mPTFnnHayFpZCyAnjLR0dTSseH6oUdM70ztM5L34/ZR6DSsmutcZqidU+Wy7YLBY0zlYmZ60F5ysw9yYV7ZN9ar42c69UKttovuGrDw019aa+BqXk/n7Ko0mOKRVizgLmUP2risbisMpKAmO9Mqn6ZxwU8meIhHESsKQMONexj4H7yVB6j2kcTTAspsKF1YzFsDQZZyQ2PZfENI00MVYZf5X6QTUBVhJV3nqyqoN0IsmISwZFEwvcjXve3u/4+7c3/PrtG94+7Hm/O3AcByaliVr8HacxYMpAvoEYjjRdJ8P7KWKzkuQiA9kYKIZkHKmC71YlYU0XjYoKxmqIW/uCRCSaQOkUq8sV6qpB9T1pmMG0pztyAdu0NF4Tp6EOFwEtFjHWaqy3RKsZrOaYNQcyEWHwXS8WnLWFftXzbNGy6RtWfYu2LevlmmW/pG86DocJq43cd6UwDCNozfmza46f3ZNz5C6OJF/YXK7YeAcLz7t3twyHkTxkXCf9NKZld3ePOJwI2cE40E68MAOKQ0jcjgfeDyMPe7gfMrdT4EMKHMLI+2lPvGk4jwcuhx19s6IoR1CGs82aI5mkFIfdAyZnUlY160OL5YNJpKxP+0pMEZ0SJRVCUUxK6lStMs54jFXfsy75H3P8YICl1KYtl9ngdjbrKh8tCoh+vEg5pao5nzWWru3IBoyXB3B5tmEMgfO7W0GHU4GcUKXQeA9aszk742EYJAkghBPf9RSNPKP+H/ETZyS0lCy6b8QgcZyCyF+ioMmqsg2MMTTZsygiJ2q6FjR0i46SE9Y79FGTczrFOc0pF48+OAVjNOvlks4ZWgPjEDkcR1KscXszCDTrbIsY4qYiD7g2jvWmJ8TE8Tj+0Mv0jw6NpmhN8ZaLVy/4+ru/ghh4+dNPWKxXlPs9cTfgrMKIhoGcRAOu0egiTeD5Zs1P/uWfwf6BL370BVfPriEnvv7d7/m7n/896mDpVItFYUuHUr4WsgGlHM4pVusF//X//H/Gi1cvsd6DsvRnGyk7nK1mUlY2MifbVc6pLvYSMxrHgVyS5MA3C/7mb3/Fz//yL/ibX/6Sr16/l0YzgdWWVbumc45163j5y9/z4vycTdNxJOBXntWzDYurc1Lck51mUIHVxYbGBXJIhF31OSgZlXW9zSRibm5WE+LmHXOglKeTdgEnsKD+z4myOA/5FGJsK5rduZyRxpOMoDP5I3BlBlhypKQBVae6OkPXOJZ9y7JvWDaWbDS20YzTinv27POe/XCg63qKayg2Uawg1ikcGY6FRSdeRi9fbLi5j9zvM2M2dI2lby1dY7noLeetZm0zjZbJYWkcF+dr0B7nOi43Vzx8OGC14TgGNm8XbGPATQPDXHRTQ8VqMXeSAJ3+FBh7pirLiVGn8zqfU4ERP9LrP8Ehy5SqVHdd/6wNaF0rxQyv4I1h0bWs+pambdhsFvzJn/yY58/OWa96VsuepmnIBcYYGWLkdvvA7f0tv/vdV+x3A8fDxO5hJO4mnLYs2pbLiw2ff/GSL754xeLsokodNWSNMrMDj67AAKDE86GU+jUUrLKoIj43lxdn+MU5V5/9MUf3n/jq9RvM+zsyjt1uYDhKkol4awiLIEzDqWCmRp+nUnj77oY3725YLhY8v75gionjMLI7HFhqi03SgIcs62NGianqR9PBXP/tKcMxxmEkhggF2rYFJd4ZU4y0EtclRum6mvOlfDK5TVGslLva4G6Pkf/nf/wr/u73r/nN67f86g/viMWQlSVhJDkml+o1VWisYtkYnreG/+V/+a/hEHh+dk6jNdYpXCv7ZsGQp4LSTrxZsmaxXGEaT9EK4zzESRocrYgpcjgeeHdzw1evX3O/26N8Q785I4wT4xhIY2BUhgjEEPiw3dG4FYvFgi8+/4xNo7hYeK4vLykxkKdIjGL+OhttfgzoWuMEDEtSvs/LUEpi4F5SevJpujh/Sj2g9WyMr1HKCiCmkEa0gkG5mn4WFEVrsI7+bI2bWha7B47brUgsQqQcJwya5v/D2n/9WJZsaZ7Yz+RWR7sMlRkp6mbdEreqWjeHQ/YAQ/CJBAgMCfD/mxc+ESAJkG/EDDBoVvd0dZe+OmUo10dvYYIPZud43OomH7J8F+KmV7hHhPu2vc3W+tYntOXLn/yUyekd726v2fqf062XmKKgaRrqpqaoas60xo7q3Ci8Yb3c0YWUIuRDpG0HYpBELzHTJOESQaBEQfAa10v6LiKlRhuDsYZm1HB2uuDZ82dMJ1NQgigik/kcpMH7gJKWHnEk+rY+eQm1Q6AaT3g2rbm4OOXi+SWu3SYj1RBYrTf0vUMqjRGaWmvGZcnvvXjG84s5iMDt6p7N2136M0+YaR8PAEuOWU5beJZPHIZkIftmeQ8+JYglxUAyszVCYaVKSZAyDax0TnU5nI2F0RgtUeqjczWKBHqIJOlIPjsVo6amLGqcl4nlYHUyPfXHUNn8zSdAoLSWGJLPCsGliHaSd0+QgiF42mE4wP94H1muNkxPTxOLUaoMlqYadrPest/uafcdYQjs9hs2JjCMkhw5tXfuCBrmaWJOhTkg5/kcyrIqDiDVU11SHIFKMnB6ABCOVy5DYgampEyScWJMaV3Z1yL4ZJJ7iJbGu1RfR9isW9arXfIc05K6qTBWM7iOsql4/eIVZyenLLc7gtL0PvDDDx/41W9+zezinD/51/+SxbgEKfHOs+97tFYUJgEsCAE+ILynNgWltslg2TtCNsuWSmBN8r1QEaZNw3w8oikKusElXvFHZpCCeExTElGkxyJmEn7ukUIMHASvkAcagM/rd/BkEcTEQn3Cq+zM0WfMfTSgUyhU0KigkTHVAJ7APg48eFgOnvuu5Xq9YbPu2HnN1khM1bDtJLf7wDDRmNJSeMvItcQiSX6+b3sK7ZOJrxd0XUvVDQgHSiWQGWLyPxQQtUJUJVIGFJIgJHgHUeIdtO3AN9dX/PL7d/zbX/yW7+7WbF2kj4odEl9YhJVEFfEMuOgYbge2NzcUtmQ8mqC0TbI0qTNia9P5aguc0kSpkFGhokZElVj0+xx/Lj3ODwx0DLonjhXzyznFZYOsx/TrwKbeplS9J7o6H5BVSaErhvshAcRCoGTEaLBGUpSGoVXsgmITJZVP5sJGSZ6fzKGEej7lbFJz0hQ0TY0oRlycnnN2cs5ifkrYdhgEmoDEse86opLMz0+xUTDEgVW3Zqc6XlxMOTk95cQ9I/7tz7m7vmNzv0EUgVIV1E3Bh+UNITgCGmMMujSYShObhk4oVvuO729W/Pp2x3IL613k6v6e5fqW7X5D1235xi1pSsu8aZiVY6ajObPJKZPFnGAN2lpuVkusj8nU3keiTsMTr5NdRVAQZMIvbEjm6UIqeu9wMYUUlEZS2TSg/DHXPwJgSRuD955u6JMr/qH3O0xGD+jsQY+dafrJ3FahrKYoK6pqRNNMGDrHdHaCsRW+7xmiYNd1RCRlWXN+cU5/fZ307CGA0YisgT/Qtf/zqfShyUwI7f1qxdXdHVc3d6y3+2Qkmb/HkN3/Ywhc39/y4e6Wk5M58/mMqJKOu+2HRyOu/LNIqdBCMcSADBGNZDqq+erLTzmbTWi04oe377m6uyMIEg0wRnwMCJ+AGSFzYyc5bnC2tJRVSdU8nW5vN6zwUWOVZPbijB9+bnHbAaUtzg90w56hW+HCDi8GohLoIFBeoPIUJgzpEK9rw7/+s3/C9PXnFJViNCqpihIrKxAFwhuS63pDCCbPJAaQAkeHl5pPfvKaV1+9ZnaxAKFQZZG+ToIUOq9fpB5PQCSTPkHysnBhYHl/w/xiytD23Hy44q9//vfcrDaMzp7z3/7x/4q+FzgHQxD83V//HVe3t7y9fuD67v/DfFSzGI+I25bf/+T3OPv914S6xG0dTmgGBafPFmzvttzf3uCjzya3ibKI8MeM9Sh8ZqwYYh+wQTB5Wh4E6Qj+aDaVDZs4cmXy8Zw/JZEHPCUl7ngei6oYkBlkIQyI4FJqVAyUwNmk4tnZjPOLc+YjjdTJh2Y+ldzMNHd3BavlA4xGqMmY8XxOLQV9CLRDixI9TWWpysAnrxZUdUt136Fk5KFUtKXidFTw5bM5r88nfDq1zIxHFIrSNrzQLwENUSMG8K4jhoHaGk5nY7bDwP2+ZdUPR8M+qZJPwiFp71CcSxFQB2khIPN9OxQzj1dikTzhQDbf6zRlSXZZ8XFal2o5ZEzeJiEEjJZMmpKvvviU6WzCYjHhiy+fZ/+pBMYOfeB+veXd9TV//p/+gu/e/cCHmxtu7x4IQ2qyY7AoF7OWOmB05MsvP+UP/uAL6uk/ZzofUZVl0sHLw70SSZqHJEbBEBxBZN+YvEcqpahHNZfVhHmwLHzB/7ZZsNkPbHY9v/32HX/zNz/n+x/eMtwu8X2HDx7nerQixeBKie9hNp0xrizRdXx4/5bKSk5mDc655Gex3VLXIwbniF2XvajSnvvIkEwg+uBTwpF/wqZht9shYvLQaZqGfhgYhj5FSHuXTe/yEsd4NB4NmQXhkKy6xPT6/nbNv/v73/Kbd9e8e9gSpidEWxC1BVskmQqB6AbMfmBalLycTNGbFfebnr//5ddcXpzy6rOXLIoSpQqUtjmW3T1OQWVEWoFUJPmiTI3M4RIqAexOCMxswuvZH/CqrCgvL/n7r7/h27fvWH73hvFoihEK0Tv6oSP4kqLWFJMRjfLUVmIEyRY5Orzr8EHhvUC51KgGl1gaSulMdPe4fUiR9r7H+4hzHd4XTw5Gpx9WgJQobdL0UEgQ6bwWQWY2RwIVDml9MvuxBCK2LCmqktPzc/y+ZSMNBMnuYcf9eoe0S342XvBieoKdn/J2teHBGKgs9/2ead8yKkwyiRzVPPv0Oao0fP3bb+h9RwgD0QV2fU8QA9IEXDS46HDRIY3Cec+23XNzf8u+74lCUlQNi4tz5mdnTGYLTFUzZFavI3Cz2nC/WrFcbVlv94m5ow1N1WC1xCjBiy+/ZDoumY5H9B6kNBA9MTq67ZZ50/AHr18TWsfYWmZ1zZevXlAYwWa34cO2JQwghcGqJ/SEGHzyPep7ZMgspCxhlOrA+EjTRoYeBodRFhnSaXZW1IzKkoltaFSZnmEiLg64LMkRAgqjE8gigZDl7dmLL8Rk/muKVHtNZhOaeopzoI1BiDTocb5PgLnUZOggAUEp8zMP9TxRCvquY3n/QLvtEEFSmyq9I0PPMHS8ubljfH5GURVIZZHS4B10u577t3cMg6MIBiVL2s0taxnozxxB6Wxk/lgFpEdfQH7mRR6MBZKUIsWn/IM/8ARX6gky4H1gseQa+fD5gymxiCnR00tJ8J7eueQ/E7OBs0qDh4gkyiS9H6Jn2/V8uL7l/OaOl5+/ZnFyyngyxkXHycUpn3zxKZ+++oQBEFXBi89e89//9/8X2q5luXzg/u6O2ekCbdKZNvgBI1NUOUIQhj6Bdn6gNppRYamNZa0UXiRJeD8cZKCJOTuta+bjEdOmZtft6JzH+48YxCKZ5Eop0z3x/jiMztAbjydZiqvWMWJiSnSUCHSUaS+NT5RM8tFVdwoRLUjB3rXokIzTRZTsNy2bzY71viVUkTvf88Fv+LsPN3z79pbruzV3d3u23rKXFevCU45nXHU72puOk43gRR1ZWEVVF6igwCg+p+SHzZI+BjoMu21PWTqGEqbTBuNAR4/QMGhHbxyxVihTI2SBkAEnerrtwPp+y3/425/zmw/3fHe35kOE+1FNh8ALnZkLEq8lcaRBGyQK00ZORY11EJdbdv2KWBSIpoayhqoiSsGwgbiVCKdQncXGEnGoTUlMRoNO0jINQTt2YY0ZFMHD2IwJKuKVp1dPF1jy4DxWWtAN7f4Ktx+IbY9wPWWhqMYFdtqw39/RRk0rC3Z7x7Lb0hWan375EyYjRXE6oRjXnFhDUVXI6YJ/89/8t5yfX/Inf/gz/l//j/87N2/f4IeWk+mIi1fPWDw/Z3Sx4Cd/9BMmz6aMzmp++O5r4kzRvJzwB599xuLVGd99/T1/+xd/zYcPV1ycnPPpi0+4dw9sbm9pXU/fWOTJGDWyuFJxdXvP2/sV398+sJE1LMYUJwX3uyXf37fc7VfsfYda79Ebgb1RTIShUgUj2/Dp+TMuT0+YTSb88z/6I/72l79Nkc77HbLWKC1RhWbX7lIrJCSFVuggsFFgZFpHHz1713F7s6YuCqZ186PW6B8BsIjjhjo4lxBoKY5F75EOFw5TY5ETd5KuSWuDMBZtCpQ2VHVDCJHTsx1l3dCl8Hh6l5IRrLHMFyfcbXYoZfDuQLB8RHgP82iZjeSOg2rAe8d+v+OXv/o1X3/zLT+8f8fdcpmQ5iNlUWRPBInoB+LDkl3fcXV3x/hDg9WK/WaDzcZkIheuiYaqcC5N05UQ1GXJ+fyEy9M5pRIs12vWuy1ay4zuRz7afw+EmyRnkEk7V1QFRZ1+PdXl9TXdoHFBUWqIFbh95Or9Nf3eQRBYaxmGDu8HIsm4UQmwSjC47OUxdOzaDa8vTqkXc6S1jEZjrG6QsULLEeqg5UQShc0r4UD0xCgIUSfgymiUSYZMx9NXkjMxsm+OThT4NPHIzCgEpiwwTZn08eOSn/7ZH7PfDXgncW3BqJlTliNsVeEGx9e//BVvVitWm46+d6y2O0rheD5s6eKQooz9wT8iMp41Cd2Xqdk8iMGCSMZ4CTF+pMdKBAwDRkT0E0bGpitPWY/MjPy2fQQIHD48GDqKLD1Jt/XAWIHoQ+YsHP6gR0aHjoHaKKYjy3RUYUuLsQKtBFFFoqkIcQZK0kUJZUO0JdW4YTZuQCt89BBajIykiHlDxAJ7dl1LURrK0jIZ1zw/W/DibM7lbERdaJyI9CJ5TWx3Ld1+oF3uuX3/QLtzdB3JGFMknXNisKUJUP7Bs+Y+GVUdQk+PxW+mJh8ZP8dJk+C/eCOfYtXCgRYsjwS7tAeE3w19CAEloLKGcT1hNp8wmTZUVmJ1Yky1vePbH77j7Ydrvnnzlt9+95bb5YqHbc+mC4igEGhE0PgYkj8NkbIsEdYSpKIPOT5eiNRwR5/3v5gnvjJLbbJ3Vcz+Pvm5i1JipCEEnWOlBdvNincfbrm9vma3XuG7FhVDMrUNPoF3ArTSWCXogqcpCxazKVZ4xqOGsrDE6HHDwDAMSe7kksl3JPkUDM59FIWb1sxn7bdzh7PmaS7vk4fYYSBA3x8ZJmmLysapIbMjg8/P3wF0Nby5uuX9w5ZfvrnloYs4O8YsRtjzZwRj8VpBqfEy+zcMHcV6YFaNeXZyyakSjEVAGsn17YqzZ8kFAKGJWZYQDyDrQRKjJUKnRlIbjXapcdFaIbVGFwW2qakXU4Q2xPGY8vkzmmFPLRwj33N59pxaWUzvmS+mLBZTLkYFXuwwfk+lPErEDPlmioTPHUCmwIeQp/whyYNl3osOca2RiI8+AcdP7FflY05lIdURqbnLn8wDoEOdksm2wCEZUOYzWGOMZjqf0+/2yYcIid+lBr8PguW+QzUNsqwZzc/YdXuG4Lherxmv10RrGRcF0mhmJwuUMQzOobViu97QbluGtgMdCTLQuS4lMsWU3jfgaF3H3fIBISWqsJxeXvD8xUtmJ6cUdYNQBuc8m7bjh6v3/MXf/C3vrq65urtnve/SXicVdVlRGs24rvjjr75kOp9QVA1Sl5lNMBCHwHg05tUzyel4zv5hzbQoGJclF/Mpu90a3w/sNjskmrKsKcfTJ1u3MDh8P+D7IUnNM9rtgz/GLKeU6LSvyZhOFpmb+UXdUJeWkS1RyMzW4FEqJMBIkcCVbPAdCTifzvAoZZIH6cQWqqoKYyRKp3t4ONKTxPIQkgDR+1wDBGL0HHIHDzIY7zxd20EAqwuEknQh+fWFwfOwXnP7sKTxTRqKOAiDp9v3bFd76rJmXI/wwXJ7u0Z4jvHZB8/CKDkOByIgDjGGPiRAKoM/wud31T0dqHlI/nn8jfx9CBLoHeEgcj5ESYcj01ziYkBHdXwnwyGJk3TeeJ9S2bz3PCzXPDwsU2R1VR1Z5sZqbGlTzaIUn3z6iq7v+f2vfo+mmSbJvkj1Q6JFBIahJ5o0jMJ7Yt9D9ouySmKz/PsQPR1FTtY8MFJCwGrFqK44O1lw/bDHQUowe2xPEs9JCmRILJ1UsxxGPEfxVBoUpR2egggyDRllVOk8hyeXCO3cjkFFgsqMsJC8LIWPLLcbPqxLvlk+UA09N2HL+2HLb5c7vt/sudv37KTAS8OgNL0R7GPIJZfn+2VLU4+YjGpM16E6QT1EXlWGT61B9JG+G9iIga4d2LYDk1ECwEUUoCO9dAwmEBsLluMmEHRgiDuGXaScLpjFgmVRo0JPEJ4gFWhL2A5E0vBNnUwQRZb7bXo+GV8y8RLu17x9d8XGe/bdPg0OlUghF8oTdaqVEqsuTSudiAQV6aNnEIHgItJFlIvQO+Lg8UMaFq03OzabFe3u6eweYlkSdIEXBj+Q0gh9QBHRRqAKgSglorJoLbCDJQ4rWj+wdy22EsxnBdW0QBQCI3waukrJZDbj5PSM09Mz6romIuhdYt7tXU8vPLLWNCdjLj9/gRMtaiyYvVhQnFSUJxXn4QJZK4L0fP+LbxiXDWZiuPz0nHeio1+vCKMCZmPEtEZWhpGpOZ2c4k5aqmhZDoKbbc8yOFYxsAFaRJLoigRC9kSMCxS9Y5CCfew5H/acTxYsxg3SR679hl3o8UEiJPjY4yOIKNCiwsqUgqVJdZLKgQ3JF1HQ/sgk338kgyXRHodhSNOfQyEDHDj6H6fmSKUzwJJNZk2BMWkSV1QNUhn6zlGPJvghNa8uNwNSG2azBdXNHVqnguJAWhGkyZzIG/YhrSaSDpwQI0Pfs1mv+ftf/ILffvstbz9c8bDZIA4mSTGiVTpUi0KnlIpdy2q/JwSfNlujmDc181GFMup4iEiR0gfkwcQSqIuC+XTCyXyOJdDUFUVhUUoyxKOTRtZmigywiDx0S/KcoiwoqhJbPi3A4rzKhC+LHEHcRt6/e0+/79Foyqpm6Nus3SdFlBqVdcWp4XJ+YN9tmcwmFJMRgy0YjaYUZoxiRKEnEFxKjUAhsXlg4hFiyHTRBFbEbPQGknjQznMo3nOygkwHuCDrYWNECIltGnRpEFJQz0f82b/65/hB0XeCv/rzX/P85WvOTi+YL6b84m//htXNNe9+Ixhcmposd1uaoudm88DdZknb9qghEr2EmGRMw64jCJ9b9AywZPACASpPn8kyMeEGrIqYpz4J/2HX//+HavEItPAI3pGKLhEDOJ8jmhMUE4NHRYfBJ6+VUcF4VKYGTYNOcQVUyuDFBK8L7vaBqBVOW3RRMJtNKeoSaTSEFlxHdC1BGUI0xGi4X0fquqBuSwRjnp0tuDxbcDobUxaGnQ8EB/uh5+b+juXdmocP92xuN/gelKjwQ/JeUfIAWDw2bNk7LkdeHkCUBB4cTQw5hHJ+jFZ9dHfjf+Fe/yOuFNueQJbkIZWAlZB9GFJdlVh+SiRT3vliymw2phmVGAWSQO8Cm82On//iN3z9/Rt+8/0bVn1H6x29V3gKlC4QGKI3RJH0zQLPeHHCeLagHk8hsxjiIdXkwH6IHwMs4oh1HoyPH6PAkymvEhKFwPUtV+/f8atf/IabuzXLuzv63Q7pQ0r+Cj75FcWIIVKo5CDfFJbFdMJ8XHFxdsJ00iCIODcc422d8wjliCTTVOcS+OKCJ8TkgiSCx4WYi/CnW7cQY4pwzSBLDCFHnD5C+zIf9sEnHzIg7+cKj+L7d9f89t0tf/f9NS0FajyiNiX1y08YtMIpgS/AS4+PDjG0lJVjXM04u/iUn56fEjcrwuaB1bqlGyIhasTB/C/6YzMiU7QZUicPK0FM7++g09qq3DgWBeV4TDWf4rXCjUbIxQi9mlK4PaMwcPnJa+ZFTd1Hzs5POF9MuBxXdH5NbEGHNnuPJaNRkZ+f9J8sS/HpvhACyPjR1zwaij5S45+WNpZODvIznqj9AXKTlCXMJI8ccYxzzgBLTguSWmOKkvFU4LohxVwHSegEu+2OgOR2taFUhtYLZDUimILdtuPhbkU1mxNtgSxLrCmYLubUoxEH4Pvh/p7l3QObVTa4V4E+DEnLHwNBJhZA53vu16sUo1xYzsaXPHv5itl8jilLUJrBB9bbPd98/5b/+Ld/xzdv3vD25pZNP6RKSAisMlTWcDKdMF9Mef78GVFZhEzT66TJdcwmM2b1FFxk9f6KSVkwsoamMLTbJX3XsdnskEXDqJkxPb18snWLGWBxw5DBsWzMHAJKHYASEvM3pjQ2QwIYpBScjBqK0tDYIp1tB8ZEPhOMFFgtKbRGZ68HFw9hZ4IoQGmD0jZJhOoKbSRCRvQxmCAxRlRmXOBTchF5r0zyoMyWlKleOURjSySlLSlUyabdEaXC6YHNrmW53hCkxJYFIgR85+l2A/1uYN6ULMYLnNyxNddI3+NcwPmQ02oOIwOOR9fRqyYm86qDCW88ACxPqad8vDX/2bDQH4DvLMNKcvjkS3PYSX306YwhAbE+D2YP/YTPNXr0nuVqxcP9kr4fKKuSsiqSoadV2ZxYgtZcXp4TI/zsj/+IzaZjVFXJ88MPRJnujR96kBIZFbgAQ0d0A4SQmC1K5jXkuEeFHF17AIyNUoyqivOzU371zTsGASATs+hQV4gk+xEy+agk1nzIty6LxeIjgKgFFCL1TDEmwDjGiIriyQGWjd8TM5MVBmRUyCDBB+52W96sNNOHktoJ7mLLlev4MAiuguRBKlxTIlSDl5ZeWXY6/11R86F3fFJUiNkctd/AsqcCnivN51VB6DzLTcd+SGby212Ld4IYDvs29MLTGwi1hSIN36IQBCtwvSTUkfnFc/ykZ796oIpbpA0IYxC2ZLjaEL1ASIN9+QxRJGC0eFjz+YsvuIgaeXWLaXd82Gy47rrkbyIFUUOQPtGKpDg+AUFEBgmDihTB04mIGwJiiKgeZBeSv+O+Z2d2rJYPbLdr2t36ydZN1COCKfFBp5/PR1SIyc9LR4QBClB1kmjhQG5aun7P3u8J2lGPNc3EEEuBEg4OfXM+A5XSKKmOqXLb/Z71fkfrB0Sh0U3B6cszbCNQI6jqNGxVE828WFBOS8pRiTEShkAhDc/Gl+z6JfeiJU5KwmICswmqKZkvFIWHxkHTer69WXH99oqlG9iE5P0z5MFfMl6PeCIyOGTwdMtb+pCivyulGdcFFonfD7i2Y/Ax708uvX9RoEVBgcAi0SG9z0IrjClRRuP7gdD/uKCZfxTbLMluIl1OEUpu7mkjFPFAmw65MU7+JkYbSlsyHs+QVUnVjBG6QKgCWxWMTwSnz16AMIR+QNsaF1NTW4+nTKYzirJKni+DS5CGSkZ2HKetaS6ftu5It9txfXXFN99+y1/+1V/zsFqz6wdkUaKVRQiZi1SIWhO0oSdSFQXNqOb0/Izd+gHX7gnRgzQgJCE6pEisHKMUXguUSEKAymhKrSiVxMbIZNQk/4RS022741RYHCjcMlFckemQDwSkSTIqXTydbm9fvMGaGqU17z8smf5eSTO1fP8//hrt90yaksuzM3548z1Dn+6JFgdTR7AqMmoqmvGIsq5ohx4doSgbzs+eczJ/wXS0pXRjdut39HGHCx5ITYGQBlsoZFlRVRJlGoSyGWA5LhqCw8MZckEuOTCUBAojNMpGhDUIBoyUTGzBZPaMu3cbvvvVe/6v/7f/J+cnz5lPF5SF4Vd/99dcv7smxkQd9EAQhs61/Pnf/C3fX73nZLrgs5MLQu+ZThbUkzGrhw1D9NmkSqUGQkUODvGHRl4SMCJgY4+NhoonPgk54pbpID789b9DvEjWy3mEnormzKBIdy5/fa4q01d7onAY0VGqwOl8xulJxWxegBHJDwdP8B1t7+miwMWSWExp/UDfeX64umLb72lGNePJhMmkSqwjZTFKcn4+YzSZM1CxDzCeTej7lpevnnM2b6hqgxOwajve3j7w7/7yr/jVL37L+7cfePhwR+ENpaoZN3O8GbHPZ57WBq80Qco0lMo3Q2STuNQ8gVRpIz6gsiFPWSTyeN8OiOkBpn2qK4TsNxESKOTzvuhDwPvkXUFMBo/41GyVRlGXhro0GA3dMHB188Bf/92v+X//D3/OzWrDdvCU8xkuKnyMmLLGuYj3aaWTes0jhefF68/4gz/5KX/0h18yP1FonZpQRwKyhVRImUzSQoi4MCCVTtGxQuF7n7TjQqJtgXMQs5/Wbr3ih29/y9/+1V8wDLDf9AxdeueNUsk4XFeEMFAoQ60tUSlmTcXLizP+1T//E04XE5SE5fKO7WbDarVhu23ZdT2lSAdfMuBs2bV72q4FZUEkfe3gIv2QDFSfbt3CkQ3lvcf7kPwB/MEjIlmSp8YiHs1dhxDYdY4PyxVff/+B9w97sGMuT56xFob7KHHNHIdjj6ONXWJxSEHQAqUMu6hY9oH5s084KQx1cCw/fIu2Y0LUIMxj9xFS7LoyKWIwqogQaeKqjEopKeFQGgqUtdSzKdQlb26u+f7d95jugZv9jpV2cDrm+VeveTVZcOIVXz275LI0nChYrUo6vyH0EfyQhgoyx2oiyfmiyaPKk6Kuhx5kYjMF1z+aAAuJDwMuODxP2OwBhx0ZUhJdKtbzL5lBfXFgqdjE2tQDRmuMfkyxE0pjS8VoMkMKg1ElhIK6dwwu8Osfrlh/+4777ZZfv/met29+w363pO92/P0PH/jy88/5vc+/4I/+8A+ZNxMmM8NkdsLs5JSHuzvev33Luzdv2e929F2PMMmQVwIqDxGMtWz7DtvUjEYjLi4uObl8RlEUCJN+ts2+5+ZhxQ/Xd9xudqy6gR2wNyp7vwi2PrDzPf12w7//u78nInhYbqj/dERhEygYbcHZ+Tlu29Kvt/QiYOKATNM0trs16+2aXec4fXbB+avXPHv9+dMtm49p8tsNyZsnAyzOD1htUiqUFIjeowUYqSilQImI0BJ7MkFZTdmUGCWQRkLwOJcAtaauGFUVSgiGricm6gpKFUebsqKaUFVjqnrEaDxCK5U+8zsmldnwNIOFB3D1wMqSMjNmlKLdrNltt2w2G5p6RFEXCC24vr1BGYuoBNNFAr9tVROBXTsQ+oD3ktP5BZ88+4TzxSm3b95xJS2D7+ncwBA0OidCJXAlsemkJGnRSYCAcx6HwJGScIISYJ+urgQyGyz5jAgp0TIlp2w2+6OsPmYJVojQ9X1imkpBGAI+OKSQGKmSxIh0RnWDSyB9rkHff7hmNnvL6n5JXVVMJ2NGkwZbGnQeBBI9VWl59eIZ/+f/43/Hf/j3/4mud3z3q19Rl4bpdExVWGQ/5AQ/R4gd+A7hMwg1+JRypg1KGcjpQTEkj0VtFVpLjFGMxw2fvf6Uv/jrX9IPHgIomWKdw6GiUHmcNZCHLAdA+nFYHDPAZKSgNgprCnyIbPo+e8s9fU0ZgsANCawLITJko1ulND+4Le3G0X5w/MHoJWZ+xvNxjVKS7voDfr+nn07Z94Gh92z3PWE2p87WDaPqJa/+4DO+enFKcZ3kp/v7Nf124J9czplbg+w64n7LanNNFwa2iwZTJLP/LYZNLNiLiliOodFIk3zIet+ih5JGCH46O2PpBePNmt9eTugqwWpU0k2mfPjuA77zSKF59mc/w+93iPWa5vt3/Mt/+i/4QpUU37/hi7Hgh+tbvr1b8au9xWlJpwJWBNqclhYEuFQ14WTAScEQAr2H3T7gWo1oDWolWf/2Bn9/hx9d0UfJtt+y6ZZPtm6LZy/Z7DWblUd5QylSHUyMuLCnDwYZCmZ1yVhUxGjYrXbgdqzdhq83b3leN9QLSXFeIEtJEIFu3/Jv/91/5C/+/M/5+V//NR/evmfoB3wI3K3XzFYPbPs9qtRE7akXDfWiYHRWEUVAKFCVwcSCetFw+vyMixfn7Fdb9uttkgQWPfr7gngxwz0/xZ+eUJ2cYEzFKComg6D9+gNf3+65uV9zdbNisxsYnEQqgxc+j+ADbWbdCASDH2hX91xvVyx3K17NT5nZmk/OJ8SrK1S3Z+g6ZqWiy3u16fc0pmEkJTYIVACjLc18xhA8Q9vRbfc/ao1+NMDy6JmZ9O9H36wIKqZD8WB0J3KhIBBobSjKkslkRjkdM52fYGzJatvR9z0PD/c8rHZs9j0ixHQopLECddMwmc7R1qC1RhzL2zxFzF4MQh2xfASCrt2zWa94uL/nk9evOesGNtsd7RBwg2cYHJvtLqX8CEGfAaGmKGmmc15++prl7TXb5ZKwXSOVziZ5CWUVh1/kIW+MGCnReaO0UjGbjnnYTVKiQNcSXdLsf0wNTN/xwalcUjUNHth3T2dyu4vb1FJKzdp/YH7ynFpKFuNIrz0jLLNRzXYyxj1s2Ox2yTxUZcrjMCBlRVkWLM5OUFYjtEQYQTVpGE8XTOfnlG7Evv2A6/ucMpC4fTEIpk3S3FW1wNgSKdRx+vMRB+roJH584gRHxkHMk9JD1HY63ANoy3rb8+bNHTfXa+6vvsHId2hl2D880O08hCpRPUVkEIEoStad493Nmv/h3/57dj/9KWfjMc9ePcfYpC+PPmAwaBJFU2T3flREaomUydtDRY/KBal4YluBw4RIIEj7qDj8Bkc+akxgXUyuagQycyJ7gIgDYOVDMo8TAREcMXQo6ShKyeKkZjwpKWqLE5H1fk8YOtrdlnf3K253Hbf7nh+WSwIOJQOLRvP84pzTkznPn0dsobFGoJXC58hUbQS2EMxnDUVh0Rl4GTcWbSEqzXrX8+7DPb/+zfd8+8M7Hu4eUFHw4vIZ89GC+eSMu83AsN5Bv04+Cj4mECn/zEn3rY9U/6MOSmRZTpYKpdsZ8308MEzyY/aUAEuWMPkQkowy04N9CPTDkJpjKXJMYkqfIOTJf4DgBTc3D3z/w3t++euvuVutaYeIUAUhmAyQRHyfmXGH6NTMcIoCdu0eF5I0wRiNVuk5Pmji01RdZiZQBphEROAT+0EkNkBA4SOgNEIYZEyJUEqADJ6RsehC00Vodz04SRSKoAJ1XdIUFeO6woaBi/mMy5MZZydT5pMRwQ8s7zy7zZbddkfbdUkupFROfvO44LNnRlrPpG+XR1sB/4QIy4GWfpABHWNyQkypCX1PDCHp1XP0qFSS4CPtruXN9+9YrXZIWfDJs88I85dsVclKGLZlxe1+xf1uRbu9QUqJUZaiLqiDoNYjVNVQTWdcnCw4r0vuRwUnpxOquiYBvek++JDgZyEFQqm0L4kIUmAKQ/AlMYK1FUobolSMbcHs5AS1fmB73yL2W7yWVNMR8/OSsikYXMfVhzvMxSkmSIQfGFUG5TROKIxRQEArmVksH+1BmRIWM7tHZLmYc44QkmwsREAdIuSfGmDJDFMpkTpJUaMUoDMYS5ZOyhTxbbQ+RqZLmWNklU4T5OCT2botKUaRctyzf1jzsFrxi6+/TUBGCGycZ4di6xXbLjBc3dOFb3nY9Gg74idffM7F6QlVPeXFq5qz82c8f/4Jyy/u2O/3dO0eLeUx/cbHmPzdtKaqR5RlRVU3jKdT6qrO7LP0Dg8RorKcXT7n5eefI8YjxN0dbx7u6ILHi5iMX2PEFiWLZ5dEbbhfb/jrv/85z5+fMhrVNFVFqQq6IeDElrKwGJNo1dt+z/VqyUPbokcjPv3q93n++vd49ukXT7ZqpbHJnFZIgkuF88GsVSudkn9Iz5WSgkIqtJCI2EN0lFZQjAqKkUWb5JmBCAgJpbXUdUFVFskb5VBzHdmFKgFqRUMznjGZJjNwKQ8m9qmOzSSNY8128NODxLAx1nKQpvroeVgvWW3X9N5xOk0+K1FGlFAoFFZbLs8vefXqE5TR3N7ds1+1EATGFlw+e8HF+TMWkynbqztETCxI5wLe+Rztm7amA2NFSpOkisDgQgYXBV4q+hDovEP5gacKtY+5BklMY3H0QyvLkrYdMuM8geSHmsRlAO0AREWfBh8H4Rbx8HdmxmlI78NqteL6+prrqxvqRcliPuP1p59wdnZC3ZSpDhSpSNNGcXq64Ke/9wX39w/crVds7+/QfoCywO92RGkQWuNcm5MUQ57rZWlTpqHkLRUhVHoWtQYlEUpS1hWXzy5oRjW7bsB3DplURxz84dJgR/5urXYo38iDOiGzJDXJk0pVMLiA6P2RbcdTgyxBplY1RhAqW5kKWgl9cEQPttvys2bCyxevOX3+godJBW+/wazveWvTfjr0A2K7pTx7RhUVZe/xDyt8VBAM8/ECNW/ZRsF6uOVUKwZnWS9K7q7XvPMDd/sWt18QyhnBFPSqYe0LVoNlF4uU9mMCSEcRNUY0xKbGhIpaV9D2/NQIfnv3HteU2IsLuulJ8rqTmsnzZwwfrtDO8eLkhM8uzvhUacTmjuGkoaTDKrj/ENlrzVZ6rJD0IXsDETLfKNUZMjPsfYRd7+gdRGco+or9zQ1tN7BvNuj5GOd29O3uyZZt1kxpt3uG3R4d05AsKMngHXHoEH2LHnpqL1PyoCoo6ga/k7Sh5/36jqUZmIwk9bxEVkmq3Hct33/7Hb/85a/4+S9+web+jq7v0z4nQFmD0pIg0pQzbTORclQkZqqMaJNMgAkCFIwvZlTTmmE/xbmBF/0OPakpRlPExYJ4soDTE2LUhAHiPjBEaPuBdtfhHUgMWkaicEgZ8jAZoieBurmS3ZEYoGL7gAuOs3LE5+Mz5qMqefrshqQiCZ4+RETssbrOgTSGzkdC7/C9Zzab4AtHZ36cD+qPlwjFdLC4EHDOHeGMEJN+MH1NAlnER42L1pqiKGmaMeP5Cc14QkRwdXPHar3m+uqKDzf3tNsdhdJ0g6cdHIOLTIqSZjRGqmRcx2FKffiGDnKk3ymyk4fI0A9453n56hVd71httvzw5h3b7Z7dbk/c7nNDmg7vxCpRSG2p6hHtdsfQdgxdmw59kQ7b4/cgEyUwE03RKgEsUiQJSVWVNE1F3VSoB4UI7hjxd6AfHmLgUtMApiwoiTSTyY9dpv/sGuLAEDuiH2jDGtE4rJfUNlFwayGprWUyaVjvOmIMufBUCBlTLFmMaK1oxjWm0EiTzJ2K2lI0NVUzpg4TxLXE4xIdMzqE0CilGE0niGpPUQa0KZJrPnDQSxypphwwlYzeHXmoIiF8mYr5sYlNRLHe9Fx9WLHdOPptR3QCgcb65FEB5RH9DNEThaV3sN45/vZXv+F0Oka/esnnlxcorZI0YPBoNFokCp5QBzSR5HcgxeNBmbpi4OmNGw8U0iiO/XM2gzvQg/NXiCSfOExFHkGWmL8m6W0RIUm54oAykaJQzGaJUaI0tK5nt9vS7basHlZ8/faaq/WOq+2e97sVSIfW8NCY7OURGI8nzOdTlEpRwyI7zgoFxgpmk5KmLqnKgsm0oiwkSgaCVGzbnuu7JW/eXXF9+8B+t2Nez5guTrk4veR88Rz/9palA1a7vA89xrBB+vfEITnkQOvO72YCVx4PyMMxGQ+3JR4Alqdr1A8ASwJWZIZ4Qi6SHUpJnFN5opVp0wdPmQjeCx6WW66u73j79gObXYuXFm0MCINA5hCHLvG8RHLKjwfvGQm7/Za+75IUTBYomSQl8R8CErmQTPtqQMQcN0zMMotUKCZteEq7sNZQGJ2o91JiKkupFNqD69N7q6JgWo1oqpK6sFgxZjEZMZ80jOqCsjQMnSe6gb7r6LseNySPAZX9to7gCtlA8RDFkBvNEB9NFp/iOsqNMqvncMaIzDbyzqX7p3g8B0SSEg39wMPdA8FFqqbm8uIZw/SCsakZq4qNLRAPFkfk6v4DWgqq0nC2mKJEoBEVuizRZc1oNudsPsWGnmaksWU6f5KRZPrelEwFllDyd55dpRXGFhDTJPYYP2sko/EYY23yTPIOO2owTc18MsNoidvuGZb3qOjRIRk/Ki3wKkmQlBKEkACBdF9ykRMPr1tm9aQugxgCPrNX0tT2wBg7THmf8kr+TEJIlNHp2RUkHb1IbDeOTYXIDNgEpiU/iZjvZ272hEJog7aRqDT7wbPa7bheLqGqCdaiaoM3BZ007Lxg2PYElgxe8sVnS1699AQM2lbU9RhBZD474fT0jK5r6bp98l/IIEuI5FhmlQYRUqGMxZYlgrTu3qcmG6UwZcni7IKzy1s6JdkI+NBt6V0iVWtrUD4mOefJCUVV40Lk7fsP1NMKXRWMrcFqidP6eO9SqE1k3/c87HfsvMdOxpy/+pSLV59y8vzlk61aaQu0MSghUxJSECATUK+VOsboEpPHmZUmrXRM564xgrJUmFKjjEiTzgywFIVJ4LKWhM7lejGtekQRpUYoiylqqmpM3Ux+p8Y7UMYE4hBA94glflSaJL84TwghmduuV+zaFqEU9WiELS0en4xViSAV8+mC05NThJS07cBmuQMv0NJyMjplOlswquokS4Jj8lVizWVJXvoEkD538Aj0kWN6l4uJYTdkY9mnAliAR8ZoFIiYfKusSVKrEMENj4PYGCH4iJBJzKe1wofDmjzuu4f3UXy0v+53e5YPS+5ubxmdvGI2nfLpJ6+YzSYUpeXRLyzV8XVdcnlxigLu7+9w7Y599AxrgW/3RAtYCMOQzrtjrfkRkJH/ShnTs6KURmmd9hMlsdYyX1jqusKut/S9TxIikWQIx/P0IHk/PkBHuC4DOAnkVTlG3BqTe43uI1zmaQEWEVXypcEjdDLTDSJ5WwQZENFRDR3RWGbjOa8vXtJdzLmxkv39B266B/ZaoYLH9JbmfE4zCOp1h9nuk4Su91RFTRiNkW7AbVZYL3FesVuUvNmvcbuOwTtCe5eGAsLiVMkuGDZes/OaE1sijSOKgEEjtEEGhYwlRTmh7z2f9j3z3ZpOKTplGJ1NCdn/s7aWgKQUis9ncy7HDScInJUsKomrDW1XMLEOoTROpNh1mXvbx0htkSX2acgfiOzdkDwqnUK7grCJ9KFj7wbKWuF8ixueblg+qRpuYktohwywyMSCFYl4XgpBHaFyHiFCGgCXJWslGLzjvt2wU4G+lDC2iEIRCQx9x/3dXQIxb24I3Y7ohyTllVCWBUVhOZTWUSSuqDEpTzeKeARaD5uiHZWpnx0lQsPp/hmUFiUUYj4hzhripCY4QeySFDDIJAsfeocIEolGihQTfqTyIwnZ61PElNbQZ2A7OofaRYQLXJiG2paMKdg5y3bYJ7A3hCxhB60UlSoZdi3RB1w/UJgCaUvq4sftlD8aYPFA7wOdc+z7IU/0k/GW1QaIqZjyPmnYRaJZa2Oo68REubh8AdZwc7fkP/zV3/Dtt9/zzdff8PUvfsW0qTlbzLm6fcDUV3ghmV9eMJ7OkAfX73w4CvGR/8oBsYDjZi2JjOqSy4sznpVjVusN76+u0dbgN1v2Xcdqs6EoqlR8RdDG0vaO2/sHvvn+B/brFW6/xzqP0wqlktYz0KboNqmQKp8cguS3ohVCwOA6tJFUdcl4MkJ9kNCnZkAJyZCn2SFPQRGJdqZsQSEV1fDj9F//xUtq2s0AG4cXHqdcYpJudzRSU0uDFnBxesJ+CKzans2Do9CWIAWaFt/3+L5DCqgnBboWeN1hRxJdKXSpGdkp0iq89LmpdVSV5uR0wSc/ec7O3eDNmrKu0DYfVBEeXT8zcHIwcv34TIk+aQQBH10edKR4666Fm6s93329ZNiWCC+RKKKTCK9IBL+CQAf0CHpiqEAYXBj45v0Np99+Tdlo/qt/9idwv8W3HW6zo3Ip+syKkCQWURCiQFmddfsSslleECFJUp7wEmQDZ5Fe3JApt8eY8vRF6d4lkjkcihkEIaqcWJXYBrHvCMIhY5cOUWuYTmouL0+whaAbtjxsHrh5+477mwfev7/l6x/uuN23PHQdd3GLLiJVqXh+Ms5TYMXZ/IT44jnE5OWhtOIQZjmaFBSlRaCoy5JRo9ApH40eyfVyy9ffv+fbHz6wXK2JERbTkunJGZcvPuHzT75kG37L7RCQD2tEO4DUxOxJkdgEIk+f1RFoiTIVDeHAXjkCKf+5GOgpfTwAXBiSmadIDj4+OHxw6TBzKdnC5AbPO5cYP6SJi5CGfoCbmw1v39/yw7srtnuHKg1KKspyRO8SrV6TUojA0w578B6hk+fAw901y/s7tpst0CRW2kEjfni9YloHASgh0miACNnwFqmIMU1zUjJSikUeNQ2zyYjFdETY90xmUwpd0u48m2WHc6CE5YsvvyT4gd12ydnZCRcnM06mDQYHrsV1e9pdin4NpPdrGJJnkww+w0XxaKYeQipYDw1+DHli+ESX0AmwOK5L9hMxSid5qvOow5T1I0lajMnUMgyOk+mU+uSCVy9ecS9HDMUYV02J0yl1VSBj4O/+8j9QnTacnyz413/0T7l/c4fYB0qnkEYjjcVUNafPXyCUQ0iHoEuSpfxuK2NTnL2SOJHvUxQgNabQiCAQUeF9TIkpwjOuasZlxdgWUBTMz84Yn8yYjEaIqyVxu2VEoPYDRRCYMOC6PdF3EAZCyAMEIYguSdsk4ugnFL1PJsfeZ7wj4LoOP7j0vRPyeZcM5Z7yOkj+hJQUZU2K9gby1Dnkwcuu3ad7I8QjYBZI01ihkMokUgAHeZHiZrnmzdUVH27vOHnxki9/9icUkzFv7m65bnfc9wPdZkeUkn3U7AYBpsGUU2w1zTVGqkukLCgqiSkqaj8GBlRm0RwYukJIUAoyiJ4CBRJrVmpF7zyj6QRVN5SD4/uHG5auo9gukxfCQUItMxChJSfnZzybnWBD5O7NO6LSSGvRZYkYIsIYpDEpRUNAiJ6HYeDeDXTGMH32issvvmR6+RI1froB0GI+T6yjrH1HJhlQPaopjUZGD32PloLSWGpdwr5PDYSOaA2mBFsIbKlo+30641RMzTeRvh9QQh6BiRTLWiCkISpLVc+oR3PqZn4E4B8LkMfaElLdgZRoYx/PDS3TMzT0XN/d8vb9O4zRXDw7Z3KyQEpB33fMZnPWqxXBBxazE8b1mKIqqesxWpXs1juG1nHx8jmT0QwdSQ3o0VQ7MepEiEgvCNFzIDi0bZe97RRCGdrB0cVA1yego28dYtPyVCunlMqgt0iGuzH9njaG0WiM3Leshw0iA2feJeAhxYGDMeWxdg/RZ+ZrYucppY5YR3QDbdeyenjgu2++4fVPXvLi+TOms4rT0xPKwoI6jCpT6hwRqsoyHpXMmoKKwPLDW67evuHZdAImElRBjEOSLgJRWpQ2SG1yUttjM42QFKbAFhWiMIjCYKqK6ahkfjJntdmz2/WJxRPIQAuIKI8gUWL3JemwNTqx/GMazBqdZJ1KiWTgO0TEdo/UIORxDPtkl8VmMCvS+4EYHEGExIoykb0M3PuB5W6PHOBUVsxOn7M3IGrDX/7lN7SVJowrTl+dczmdUq86mqHj01FN2fd0d/eIywXNbEJhJZqO7f09ttBMJjNE7Tm93/Kr1Z5fP3yLry2DNfSmZhVL7rzlqhNcygKlFVokCXLILImIIShJUWi+PLvgD77/AbNZ8c2vvmHyySWURRosfH/D9G7FswD/m88/45XRNPs9q26P6vYUrmcsAiNr8NoyCEOhK5S0OJkYmwnIlIiY+togoMez7LbsncN7ie0aRFvgxZ697OmWD7joCP7pernLZsqHeI9qW0oRaUViileF4cVsznwyZVSN2d/c0LVrgnZMa0OrJa4LrLqWnVZ0VYEbNQir8J2j268Z2g0xDggFnpTCBgFjNM8uLzg/PaU+xNGHPFGJIeMe6Z0L2eMEIUEndq0oLAVwpl/RXJyya3vMdIyvSnqb2AhBgAgSVRUIrQGJxiDjAFEmxh6QEgGTzDF6STYRwhEZCHgFCg/9nvHVNV9cvKA2Fc+mlvX1e4LvMzE5pcNGpWmmEzoE7TCwXq84D+dM5nOmP5Lk8KMBlt45+qGn6/t04EeR6Pq5OD5ch8kiSIwyWG0pi4rF/IQf3rzj/d0tf//11/xP//N/4Orqlof7B1SAyWTGdHHBycUzymaENBakYjSeoJTEGIuUyQAqhPCRH0VqDI6bmPdURcHZySmj8ZhoKu7ul8QYKLRmv92yWa0Y+h6tLUqLZDgXI33f44PjF7/8FSoErBCcVBYpdJ4yxWPqkMwxzqlHEck3RSbHcQhIranqipPTU8rv39C2PcF3iT4f8pYpD+kLOZBBG6SxjI9JJ//4S3pPu93j1wOzyRzpDcOmxz04pnrCqBhRVBWRlqouGI8b2vUGqwwoSSE1pdIYIQh9lwbZ2hNlS9kI0D1e9pw+O2P69oxdt2GzW+ERNIuGL//4M/73/91/zXdXv+TN7a9p5iXK6uO04KgxPYAskNkYeZJ+pG5kQzRUkkTEpCXdrz33Vy1Xb/cYeYofEo1fIdCyIMaAChLiEiUipYw4UaCNRUpPN+y4ur3izYeadlhz89137FYPvLo4Qdw5FAKrA1ZLhiDxSiZzNZWKGaLF+RSnqfXTpgiJA0vlkbCT79Xh9z5K8coTZHHooOMjQ+o4CfGOGHuIA5Oy5nQ+4dn5nMVsQtutWG+3vL/5lvdvbrm/23H1Ycvbuz1bF9jHQGs8TV1QjEe8fP05X756zavTM14sLhipFMkXh8hgUrHkiJjaUpUKjaTQEqncsRBsPfRIBjROWJywECI+Gnw0oErKZoosKqK2eASDDwR1YFgkeaAUAlRqJIRWIFVikMiY2QghO/o8bVP3/+vad12680rggqP3faJMe08IqWhTSiXwzKcV3LctbdcjbcngBatdy77z2KrhT37/c8azE5rpCevtwNX1A3d3S/Z+jxv2ED02m/rqmLwcZIjEocN3+6RlDweFuzi6Gx3a0kNRKo6oS0iFjFDpN5UheW0IRAxUhaYpLZVVfPvdWwyBYjpnPh0zH00hasDS7TasVnfc3r6najyTSWQykbx6NUebR7C0KCoKW7IRfdonI2ivcaTph/f+mCJ2AFZCpvCmtIynuYwxCJHp+NncFoAQcIPD9cmM12SzZaVUlntJSmM4nc0wk3PG5y95/vISf99y221Z73dUhaTWMKsKTD/QCMVJNeLLZ6/oJue4fU/c9kznDbaUxDggw5CnoAGkSI2KzwwhmQBFDrHxZKJRNggXQoAXSKEwUoFWfPHsJbfrFZt2x50KLLShUYbSe5a3t6jtwIumZhQDdugRbo/v90Sf2FFRQD8M9L1HCXVMVZKk5JAY0jN+kCSGYWDo2tTEhMw88uCDwPO0e2UgAe5CaNA6eV0oRTv0SVftfZIkL5fgIXSe/XZL1BZTJ3lGDBCDABRFWUGUdO3A+6srqvGYz0/O6JWhnk0RVUkZB0Jp6bVmn0HeTgjaEBl8QGSZkTyYAoscPaySWXEkIMJw2OUzU/bA0DwA6R/Hk6dKy1aWaDWxH7i63vCwemC1XjK4DqMTyCaMYjGdon1kXje8fHbBT16+ZmwKNpfPmJ1PaZoymdm7xCqISJCWITraIfJ+tUVNZixGUz79/T9m/uw51WSaarMnuuqqyjW5BOfRUWNFqjuU88RhwLUtjS0pjMUqzX7YIkMCF8raIozExYFhs0aWktKm1B7vAsFoUIro0/OR/HgMg0++GlU14vzyJdV4ilRFAgBjPCbfCCGOrBfy/y9UOlDTuZvWbrPdslotef/hA9V4xHQy4eLyEp0lxwbB+fklQ+cYeodWljBEVGU4P52jVMn93QMPtw8040liLfU+hz6Io0H5x15rh9roKISNEHwywe67JHc00tC/X7L7sKQdes7/5f/pSdYtRSxnmVRMIApCYIsCW9ZomyT4ondHdm0IPnlaucB+32J1Goj4EFBaHQuZGHLCp5QIpWhG6X6O6vQujasRpydjqiqtV0i86QTiuGQ6KrxjUlm++uwTurbl5uGO+zff8yeX/4xaCOgSmCdIjBRlCkxlMWWBPAY85JAHLVHWIK3FpwQApEn+khcXZ6yWm5Ry5AVOHqq21JwnbzSNcz5LyxJjVeSBh1ICbZKvi7KKatQg+oBarhFaEKUnPDEzuhZ1qgFiJMQh+UxGh3ABZ5KVwa7rePPuWz7M5zxMGkajwEsbGJTkTwf46w8f2FtJs1kzsR+Y9HDewb969hknwTESIY02mwpTG3QNlKC2G9R+z+/rBdPFmGdbR3PX88Aet71DThY4rdhGwYftno0HiaKQJdFJEBqkTtKrYLBIXjQF/80nn/P67opf3rzj+v6GoBN7fraJXGrD82rEz07mjIKDvkVGUMKgpEHKCFoTTQECTDFG2hKhdwRFfv8EPu8Fg/B0omfp1yy7Heu2Y1aOII4IsWc3rFldXSE1FObpzrnTesRUKyo8Rnj2YUCIyGwy4/devOZsOqUpSm7fL3m32bIeVlTPTtLcVSt6NPtoaUWJMzVIWHcbrm9X3N2/R4iB2WJE+WzO/d0Vru+oS8tXX37OZ5+8ZNI0SdJ6YPYJdcSiD8E2SMmjIT+Z3aoo6gZpS5Qb0IVBaJmAcKlRRqNqTTOfMD6ZMjqZsjg9ITyAb5OsR4bMsEQzZNAzZvloMin3WBMpURgMgTG3q55xqZmOZ5yVDtntiEPH0rVsfMCGwPNRw7iwyN2Wzd0t7+8+UM8aFs9Of9Qa/XgGSwxJHuQfY9fS+X/QtaavO9CqiDFpC6XK4ITk7u6e9x+uub654+27K+7uH9ht91SmoHfZ3T2KLNUxGFvkQlaiD9Np4Eirzx+nj46tJsak4tOWBYPQ7NuOqigxOumrvXOJcuuTYZ/SqZjxORmi7TqslEStiUWi5Av5u1IEmZ2tESQjNp208P4ge5FJmzsajTM4pI73SBz+TxyYB+LY0GijKX6c/Ou/eBkPbd8z9B3zxRR6h1u3hJ2nMAVFWaELi4oObQ3WGrRMxmNCSCwKHSXSR3zbcYgtEyJiSoXQDs+ezu1oxiPm3YIgPF1Q2Fpi6oATG8oxnJgRRa2RWhwxguOVaZ4xN3v5RmV63oEPmww4j59E0O0c2/XAdu2wekI3bAi+T9P6qPOfrxC0SCI6JoZVaSXaRmgNUkRCGHDDnvXDLWFoOZlPWG/uESH3MFIiRaKKap0ANiElMSoC6V5F8cRT2cy6O/y44sDBON6iw13Mz36WM4gYEwX0ALIch3CBFM/saUrLfDLiZDalqQt22xvWmzselnfcrVfcrzvuty2rdqCL0IuIV0mWYGzBdLbg4uKSy5NTFtMZVuoEukaBj9mAViRmmIkCIwRWJR+cKAVBJDaEtJZqNKKZTOkGj+9dQq1DdtIXhwScgxl0+pkOoFFah5hJPI8NymFzf/RjOaTkHCGFx0fvcAuf6Gr7DqWTlt+FtG/64DO9G6T0DD55WYS8V7Z9TzcMqMExeGi7Hh8CRVlxcXHOaHZCUY3Z7W4OrRAyp9wIkkZVCtBSpr3LOVzfMXRdQm9zFPrxGeLw8fFpO96jdH9yvC7pOSccCS8U1jAe1cxnE96aBHgSfZomFwaBRUTDer0CepT2KO2RMv1ChmPDLrXG2CJJQBE455HKZ1bfgPMOFw6x3InOTJY6JfLb0y2clPII4HvnOMQzA8nzy6VIaW1Mgutk9v8RAi0lo6KgGjVMxg3zSU29G7hr9+y2e+R+jMBTV4aL8xPOTk85nS+YNCM6Zejkjs71KBOR8tFHIt1bMi0tfZzYkzo35AlMCfkcTl46if2Q9oS09CrArKy4mEx5OZvjNw/I9Q4XA0OhYb2h8JKz0QLrXAbo2mRSm9lXgZhis51DSX2U6wrIz3bygyAmyq93A94NOVWL9A4HslToiffKmGUcQiKVxliL0jr7xWXxXIwp5tYfGlHPMPRpsOJCVluIzGRJEbL94Bi8YzyeUE9mrHyk8wP9zrPa79i5ni46BgkYlRO70hQQmQ1ao+QYH5av5ONGKkYPLE4hs3z20NTH4wDi0UMq+aNpkSj6Pjj6rsM7R2EMJ7MpjohUipPZDB0Cs6pJpvtNw6SoKGKkaorkpURiRASfGtSIxsdI7wVbF2jmC8Ynl5y/eEVRj5D6kJv6NJdWyTsnqViTsakKAelS08fgkD6mFCApIEScc5gYEUqgC5sSmFwg4KiaUZJ5iUNtmiLofQCfpaHBRxAaW1RMZnOqaozWBRzM4vNw53eer49/6qNPSJra9sPAZrdlu9viY2QymTCeTijr+sgQlFozGk+oqoau7fAu0rY9ZeWxtmQyEcQoIUqKskRpgx/C8fk9vP7hMJCLBw5YkqIm8mp6zgefgIzgUk27vXpg8KmufcorecPJ9HyHRKWRUmJtiQ+RsqpwfofS6e5573ExEoNjGBw6DxkOSV/pBivEIZJbgBSSojA0Tc14PE57rVKMR01mfaV+I/k8pUllis91aAKj0uJ2G6yIjAtLqSQqkuojKUFl9qspMNZkiZzMPhM5FMAoTGEwpU0A3WHgJQXT6YTRqMIoQZd9+Y5n6MGrUSbT5ESWy71LZh6lskUgdUqDs1VBlCGzcSHI+OQSoVpViREVHQ6BPPQs0WX2XrKCuF/d8XB3xermHe66pKotp0PL70eDGyQbHzAPO0rdspCW57rmZWWpPRQMID3CJiaJKGYUbgelRm00unKozmPHnm3p+G4jeAiR6FpcbOiCZ9127AZH6RVWKaKwIC1R6iz7TudPLSWfzGeUKtBozzUtXqb7P1OSM11yVo1Y1CUmBlz0WVX/KK33QhKUIUqJLCqEtWB0Slvyx9wnQkiMK8fALuzYuh071zGJU0S0iGiJQbHZ79EmphSkJ7oaa7FSoKLHqNSDCSEoTEFla0Zlw6SqmI1q7tsW2o6+2wHpWd/1jl0PnVPEaIlR0Hct6/Udm/UtMfbUteXy8oyiiAxdS201L59fcna6oLAmDTPzcPfoe3ZQHQAf2xUczjEhkgIkSp0AJ/U4zEu+aMnXshzXzE4XPHv5jE8/+xR+EMS7QLveILORvkAhQ2LnIyRaSspCUFgoLNRKM5Il0+IE92GFGwTaG8ayZi8jWxEJDOxDYOsdLYGiLilEQK0V6+2a5XbFpv1x8do/erUHn/TxzvsjoBJIJlZH48Q8/UseEDEl7ogkG9jvOz5c3XD/sMLYKk9LDMrC4COrXcvtw5Kb+3vG83FuvCYQEhiiP4pQEZnyHw+ToYzGHhqHpGNMqONqn+ilRkvKDB6oTNH3bkggkCjw/qC1iwzegRDonPqRAJWkzU7pGz7F0RGRSiCNQhqJJ+CiA9ILbIuCyWSKtRlgyVpMlU31olQgVGa1pMJOa0upnvCl9IrN0OPdjumowL3ZMtyuCFtHeVZRjGrUqEA5hy4N2hqMEhQqfY8FCh0EdJ5utSEOyYxYCoktDcp6HEu+f/dzpvOGZvQKZdPDaxrPcv+G//HPP3DxyZTnn59RNgZpsm7vo0n67wIGhwI8dweQJ/ApevGQ5SGEZLfZsln1bNeBul7ghxRvCw4fBTEqotAIhvynBjSCcV1QjwRmX3K6KJmPK0K3Y7u6RUTH+fmMzbu7FIWmU0FlsnGzPxzEOiVohCxTCeppmwZ/uC+HA138g70s366DRj35rYQczRyROco4ZDrqAWBReBbjKc9P57y8OGXaFNxfLVk93NC2O7b9wMZ5Nh7aKBhiAj9BoYTG6oLJeMqLZ894eXbGxWRCHIbkcyAkfY4nFgJsoVHeo0REq4gX8hh7HaSknow5f/6cl59+ipKa7WqNROCdZxgGuqHDBZc8TD4a4KV/QiKMOk55s/Mw5IMwqgxmPiJS6ZE6wAvHqlmkRvaJrtVmS9M0WKsSOJCTg3xOcRJOol2SSxx0odu2Zdd1CNvSDonR4mNgNB4xn8+xZYkLA/e3V3TbFuEHdF5fIkjnMUZTak1tNX23o9+1tNtdSsBRBwnC4Xp89z5CVY5gtRCpCY2kRub4OQl1VXB+fsJnn33C/fV1AmOzGZnQHiU8EokuPJOZpZksqEdw8XzO/GSEKdUxBtFWFbas0NoSEQyDy8WlwHnH4AYGN6TGmBR7iQjHWGD/hAyWSGqYXGY74HNyUB4kBO8Z+j6lm8SIykapAtBCMCkKqsIwrQ3TkWEyUshVy2bzAbcy6NGI0dTyp//8T5nNJpyenVCUJf2wx4c9+/YB7/dAk84Yq49Gu4kZQjLKNEX+t+VHbWAGU4XKQG9esAHAI2RgZCQvmjG7k3M26xXX37/hIXRUo5LxLjCvZ3wynlD0PSL2+H6DG7okMSJNX7tuYOgd1tgUjZ7/7RCTzwrZTM7HHjd0DH2fmr2YTfJDHqKIpzvjDmuX9sokJy7rhqKq6IYhTY2FQOSpphSC6BN93/WOdt/Stz3RRYiHPWRgGDzb3R5tDdWooZmOuL9fcX1zzbJvebu852Z9z3rY43RA1QopFKLIyU4yJy5FED7tzYm1dZgAZrlVlEn6cfhhRAKsDh8faNgf+9bIDN4EPM4PSAEnsxmT+fjQ6zKpa1SIjIqKUVWiJUgRqApLZZK/iXQOXCS0DrdzEA0uRPqo6DGcv/qMs+evePHpZ2hbQEwsJPlEgTRGpjYWIrgB7QzKCeI+EqJDxYhG0hiLduC6lqHt0FYjtUHaku1ujScgC83UFAQiXd9jbQFC46NMEr6YEt2Gvmc8HjGZLXj56lNsUROFSjh0ZjWIj+71AaxJH+azQ4oj8LnZbLi/T8bFzXjE2cUFdV0htU0yHilR0jCdzpkv1jgXuL255WG5QZmCkwB1NUJLS102FLJAehhiS9/1uakjM+uSGaQQESNSXHSMDlXl5KwIQ+/BCVzr2Nyt6a52ad+QTzdNP3i+SCFRKGTwR7aPLSxRSMYTz2bbpghsLQne00nJMLQMXc/gQhpWaZ0AUCFT5LyIKJ/SDlGSsiwZj8eJEaR1tgwwB5fftFY+gcLECH0P/QBDknhK13I6aZh+8dkx4ltEENogjEYYgyorbNTYwqJ0eg4InoijaizNpKYaVaDl8ZwAz+nJjNl0hLUS2frc9GaoKwNxMrMMEXlQkIHCxGIBKRMTVxeGqqkQKmC0TuCKjET1tGy/hRkjhsQw7POuk7xjPM4nZYIjcru84/rmLTdvG16PQBjDLML/ghGfNrDyHevNDlUEzsYNLyczLmXEmJRIJK1PmeqFRRYVdSEx2y1+vUTs9lRtz7h3TJ7V/N1Vy3fLgd9uHhgmNe1gWW53rDd7alNRaQOyAlsk43IRCYODkJ6Ty8WEs0XNTz67YBs6hsyWapyhEYpCaozVhL4lak/UEbQiCMkQoBcSpy3eWEQ9QlQV7C3eqMOkL0VJ+wywxJ41S5bDknW/4ZJnaF+gfYkKlm7X0cuB0D0dOFaVFiUDxA5rwPQpE1QJk0sVibElFxenLH3HQ79h9XCdvI6k5Ga5Zbka2G0hDhbhBf1+x8Pte5Z374l+x7gxfPnlJ1ycj3F9Rynh9774lOcXZxQHawcZMoiiyBPdvBWKPCA/0FoO/FaZz7pIIRWeAWJAHYb1RJCRZjbm1Refgqko6zHVX5ToXws2m7vEd/UQBkEQiaWO1JTWMK0Lxo2lrjSVtcyrMZ9ffMa3y78kdIHYRiaxYhc9qzgQpWbnPaJvudtveDk6p1I19ajiw/0Vb95/jyx+3Lr9eIBlGOiHgcG5w4lPhNRAhJAmNVmmc6DChZylvVlt+c2vv8b7yHx+wuV8zv/0F3/Jw3pP3+8xUvHDm7fcXt9we33Nv/yX/5SuH/izP/vTVGwfEB3icfITvUuFJ8nU8R9OiMggzGg8zhu84d/8r/9rPv3kNTc3d1zf3PPzX/6KzW7H4HxOkEiTXmMMIuToNo58E1LiR0LODgZ6VVMymoxRVjPg6XxPlMlERypJURQolQ43lQ9xLTUojUdiTJGlSgapLcpWj/KnJ7iKLZghLbwmsnn/QP92hfEGWzWYUYMal4i9T4dMUWG1oc7GcwWSWlWUUdMud4TtQOxC8kztd0Rxz8Ab/v7XP2cxntBUJYszw0QrOr/m3Ycf+PV3b/lfVv+Sn/6zF2gVH6ODf+c6zF+yKdhHXV9qI/OLGhWHWW0Igture3abDoFGqGRi632fTFRjT0ARokGKAqkCWgek3LNYVHzyyZSffvUnfPX6GSejkpHrMSqCERRFyW5wGKmpCkNZVoQQkXR0QqK1QGuBCjllQKR3/imvNAUFlEh/d8ggCZ5HcYdEZkmIDDFNP4JPqUaQp2LgoySKgNUwLSQvzys+uWz45KJhYiKliIxtyfT1V2AekGrJcnON3rg8cxEJvFrv2RZL1nf39N2ewICwJL8RKdAmFc2CSGqJD9K6x4YhmWUPCGW5uDhBW0ug4+tfzbi/uiFuB07mJWUJg98htEcXkrKx6G2BlyZNfoXNBXEa6wWhiehMU0zfwQH8lTxidcdn78hc+Ri1+sdf98s1QqX3uR982gtjAqO9G1KamJRI1WTjSs96t6PZb0FL+hBBBKzVjEY169UDy7dv+HB1Q99F+j6ZyA37bYorzUCkNoJxWXF5fsJ8+orfe/0ZJ7MTjLKpuZKpME7g1H8+oT389whxZg8b8Ik6T2r8msrw+eefMJ2O+Pz1Z/gh7cVKarS0uQmLKZ5dBpRyVDVUTUXVlNi6ZBgEDhLILBXIBMT7kFgDPnq88AnAD5HgAlF4RJRIPN6TWUFPCbCk98t76LoO6ePxHIHky7LbbpGkhBOjU7qdlhKjJNPKEhlQvsWInucvZ2yM41a0bErP6KxkfHrOz/6rf5o8VLSmLgrQDtetWMYdzm0Y+pK+UxQIhOsTaCF9AuZVYswIqT763tLZKyEB9nkFJYDViJDYTtJFXo5njIzhZDTi25u3rNoN9aTkdT3nsprw6eQU27WIPhC9ILSOgCeotDu3XUffOwpbcUzSy3rsjHoRvcO7nqHN5sU+JGmcTAYhSlqsrZ9s3T6+hBDYomQ6m+H26/Q8S4kxhsKqFMMbFQwBt2vZOwgusN+0uLYnDg5hNEPf0w999pErqJuG8WRC4zy//PVb3j3c8+B7qknJablg5hsumgllEIyV5eRsQtWYNL0fBoRI0mFEOPpLkIvRA3ApHhHfBAqLx+fyAEOkZt/jIgQCTdNQVwV1ZfEicjqZoHSSicXBMakazmZznp3OGVcFpUpm2UL04AZCNyA3kfZhw+p2nTyXJHgKxtMLvvjJH7F4/oLR4gypNESJesL6RJMNEqVM8rsYMSnTFysFlTVM6opGGbr9nv1mi4gRa8t0JkeJkGltJ4sprvd0fce+7RjKQAht8gUjUcyNKZienvHZZ18ynswp6hqlDSEPAh99TR4ZYI/rQFqHmIDdwSX20HJ5j9aa2XzGYjGjKJNvBFKgRJHA2QjaVJycPUfbhl3nWW32uHCHLWuev3hJWdZYXaKiot/tk6zt4F8UEzA5hKPHNkPfIUWKTO/3PUFlCRSC7X7Pbrnn4eaBZ/NLRuMJ8/H0ydbtII9ECoSP6KhRUiUPFW2xwlBVSa4UQ0ruGjcjbGvoOsOOwBASG04LUMYcmXnESBrDPJK7pNJMphPqpkErzdD1FFomEMR7lB+IvYc+oFpP3PdE54gxxe7aukDVRUosMgqMhkIjC5uAOlMhXY5jBjQOKZJfyh+8esnLy3Pms3H+uVOtGvzAyXzCfDqiLg2r1XBcDy+SX1UkoyiKfJIGgszJgaS0PqUExihsXVKPa6R2VIUhyIAX4A+101NdXiJjGpbJqLPHV4psFu4A5sLtcsN3Hz7wG2P5o7MZpTDUQvGlqvhsco7TkcF2UAtsWVAWFZYu1fiFSE2qIhnOlmOKqqE49Qjfw3aJXq8w6w1FbxifVXy2A/PLtzy4NW49sC8CN28bqnjCxJ4gC4nPILUw8jhwjAGCSgP9UihqUR3ZnioIREjvLCqkfbaMSOtRBqROe8+gwBlNKArEaEJsasK+IFqJ6D3Spx4qBocQHVFEtuKW6/575vuar/iMYieY+gIvFmyGOdv+ntb9OCbEf+mKVoCNSOORwtEUlsEFVusd//5vf8580nB+NmM0H3FyOgMr+Z//8j8d2nW6PvDwYc/q3Z7+tqeSnpkyvD6d8tnlgt/s19wv73n48JZPXj9nsZhxOp3y6acvmC4mCCNBxiOrPgiVZPg81iHH4XgGWZIZbWJKSlJqGP4AQKaSIBIZgqMaVbz+/BMun7/k2YuXeBzO9/zw/bfErs1Dh8y4jEnKJhXEzuPkgCgt88UpLy6f8dVPf8b+2yvChyW2jZResguKlTA0TcUOz8a1fPf+B0alZTEZ89WXn7P6qzvevfuer7//9Y9aox8NsLhMDXbeP1KncyRjkgQdYpMOviLpZg7Ose9ahod7bFFS1hWmbjIiGLM0JzAEkLHn7v6em7s77h8e6PqBsjCpIAkfkzQ/agc+KoBTnxSOFKZUdEas0YzHY37y5e8xHS+4u13yw9v33N+vCB+uuLm9A3lApSPCZI6EOPRgj0ZTB5d5AK0VVVnSNHUywI0pVlSKgMlVk/xIooAQ+Iz0y5zjrVSKZUwxcCYh809ICdR90qRpaaCPxJVDrAKWEmVLZFkiqhLpe7QpsLZACUWhDVoqDIK6KKlMifQCvxsIXcheKD2Lk4rXXyyYFSWNrakKQz3SBKPwNAx+jFALfvLVZ1ycnx4nvqlSzP9FHH0EUl1zqGgeQZYIj6kVIkkFvIPbm3v2ux1SCrTNxsPCJ+MuIIp0cCupMUVJWQqaxvPJp+d89ZMz/vAnz7icjigJ9LcbrFFEm4xlu5ANNpVOsjUZUSFNjqU8/EqaWyESM+kpr0A8MkEQCcSIB8fsbAqcQJR0h0QMyek8M1ZEpuJ/POUurGQ2KTidFcwaTVNAZQSLyYSiLLDzOQ87w2YTqOwDtVV4UuHmEFgNhVRYLREqEKXHy4GgffZBTd+DEonOB/HoPn6U90DWNwfqUsOs4cvXz6llYHk6I2x6nl8+Yz5bMJmVVLXBFMlUOJnGKUROtZFKJaf/6IjxkZooRY40DeF3Xid5PAQOz1/86NfTXLt9R9M7ChcejUkjafroElVYak0RkgGvj5HdfpckNVJgq5rxpCEIqMYOaSRu6Nisl1TlGKMSkBZdTxBpmq2NYlzVTJoR47phOi5oqjoZ6h3gyuMU9uPro6cjPt6SEEPapxJFCnE0o05F6KipUUrRVKPEkAmJ7n/Y02OIGAtCeIR0WJuYMAf6dYbLkwQMQQjgXL4/RGQAVJZteo/3IT9byUsm+ET1D0/IYPn4Sn4n4fGexURx77ue3nTIUiZg3JijH5eRks71uKHFDXvGkzGL+Zjz3ZTlcgkMGBNpxiVInRoKKdAyJtaP71H41FyIBE/GzAhJzNvD9Pxxon6Uwx3crBGPs4aDzxXZ/F0KSmWYlTVxfkKhYTPsEVbwqpoyUwXWJwkh4cBICb/T6HsXCD5gtCGHJh7/jfSMPZr+uiFJAUKOvz4AQUobrH3KPJPDz5pOaakUtqqxVU3MyUAyqLxfp6hcQUoCGWIyuRy6Dt9ngEVrtNRUZcVkOmU0GqG0JgLz+YyTxZwOj9ttOLeLxEoRnpkp0L2njJK6LlAKYnQJdCKkKfHBujnrDELI44RcbBzeP3EcYoWcNhaOvhDpLExJUpPxiMuzU6SEwQ+Mp6M0MSdihGRSNywmMyZ1jZESSfajOpgSDwO+D/Rty267BVXgjMRrSTmaMpqd0oxnKJUkfE+IrQBQFUUG3RM/R8WICunMqK2hKUrGZQWDw3Udfdce+KsQBWnepyEqhj5wt7xPflZ9R1k3SKmRylBVDZPxmPFkwuX5JZPpjLKqj1KwgyQrpsM04yrxkKyb34GYvyY8+p14j9aasiyw1lJXdUoZFOl9PLAGE9NQUJQ1oyA4Pb/k/vYGRGS12jIaranKCmOK5K0UU4DEIS6VPOsdfEweW0SED6jsR+dJRvsBiReSbdfTugGsxdQN0hbJu+CJruSPcpAnqgQCCIFzLr9jab9J8p1kXouQlGWF1orBdeB6QvR0g6M4pIQijtHcInicD2iT7m9ZlZRVgbH6aENASPdB9j4lRfWeuB8SgyXLAJUQCJ1qbqRGWANWE41GWIvQBrRB9CH763hUcFgtGdclr18+52Q2pS6KbDad9poQHFVpqcqC0lpE3HAQrhx3I/FRHcfHJW+OiFfJu09rRVkUlGVB9BItE8NXComST8v2c1EkVre24DQhN8SphszyUgH7YeBu2/J+uWK1bTFWYJRERI+SHhNIqVQxDfWUd4+mpYCUNg+SFEKYBGzJLIEtTfJ+bEawHtC+xNSCPxzgzXpH7yNyaGnXW9pxw9AFigqEikgZiTiEyLWlVMjDcYhEHaq8kBQGAZeHFLk+TpZkqMwwFBk0CELipUbYIpkZW03U6XsWUZAyTQLQE0WgY816uGXZXdN1a2yI4BS918z2NXLoEEP/ZOsmS4MqNbrQWKvofcDFQOcCV5s1y2HHdbtksW4QgBt6DLmuCxEZJMurFXdvblm/e6AQoELPoir4s5/+hFnTcHP3QD0dcTqfcno65/nFBfWoxhh9fJYPo/Dw8aAAsmQ4SwY/wgMeN9FUIxxVCPLA5UwDwt71rFcty/st79695fb2is16eTT4jtEjo8BIdazYpQsMbU8bHEWlkUZTjmrG8zEXF6e4QVDd7GHfU0tJTYpD7/A4Am23Y/lwh8VTnSy4PD1FiMj7u/2PWqN/FINlGIYc0Zwq8RgCwXmij0ca66HUCjGxW9qhQ+73+J3j8vVrivGEaIrUePiQzXJDMgiVin2XjOgelg+0XUdR6KPeNYb40ULlQj4X84eIumPCytEjw6O0om5qvvziSy7PX3J/t6Kpv+EXv/iah/sNXfcBU2T38Lx0MkcFGi2PTWw8cPoyiGSNYVTXTEYjtFbEGHDBoaRIqRwHfWneaJHgYkgMDpHuk9JpEmptircrjIUnbNRVpzDRYpUj7DziwaHWkUI0SFsnKlxVIvsOUxQUtkALRWEsRimMlDRlRVWU6CAZ1h2mdegoEQqev1zwp3/2Gr6SqYgVEaF7otFoaymrirOLGWcvLzh9fnYswh/bvPSzipheskdLhcdDKtso5qXP9z9EnAt8eH/FZrNByEhRaVId6AkhbYJSgynq5CheaZrG8vxFxVc//YSf/cEzvnw+Qu863GbLbtdSlRYfPL739D6BaKh0+KtUMacCQhy8hSBFoj39QZhhFI7edsET8ClmlXSYHMGDmJpgGUQuovMMOx4KvCSDKUvNYlZwtqiYNpLGBGqrOD85o48COz/heulZLlvG5QeGyhKlzBF2A8pGJlXFuC4xBqJy9LIHmeQk8RDZiEblfSDts5kNEVMhJoVAESitxKoC++qS08ayW2+J+4HpZE5RNth6QvO2oCgVUh2YFcmLJ5lPWwRZkxldbk7yZp8rZ5mlW0cmGh8/f/Gj/32aa9d2tMNA5T2DS3r+ECKD93TO4UJEqIHahyPAvN9vMUtLEHDR1JyeLBiNJ/Qh8rDaciPADx3FZIoWIEJA4rO8VlFaw3w6ZTYe0RQlhTEpmeBguvfRIUf+6Y/ePP8QZMnswwQAkGLT8/cq8tioqixlWbKYnRxjno3Wx2joNI3vifT42CNFAp+9jzgXCRkACyTWivORwXnk4BN1VIHSMAyOwXmcS+xCIdM03/vkoRX80033HuOqE006+uymK0CrA8DS0VuDzUaahyjkZHZLZm7s6XdbmheGs/mYF67n17dX4FrwLcG1oAwxKJyQxKFFDR3G9SmxTEWUTE11sq/M7JUD0CzyWSgOUoX0kj2ev6n5iEIcvZjS/qowKlGKi/GU6aiiDT1713KuS8rBI1ZbiC4Z22Zz21QOiSzJSnG0SilE+Gh6JQ5PVWYieZ8Yr/2Adz7tITE9q9pYbPWERmN57SDfCq0xZQJYhNIIqROjTIS8b0hkTF5t2keCAN91+LbDDwOyqrDGIEdjrC1ZnFwjtSaGwPn5KZ8NLUVTIq7eM1cN6CQjLbwg7lv0EBjVVWaMDQkMOaSZ5fL00B/KeDDnzQBLlgYd2AHJzDTmFKLDVDyxy7SUzCcjPn35gnFT0XZ7mqbOWFNkUjc0ZcWobpiUNWLw6XkIJNDOeRgG/OBp9zvW2zXCOBAVwlY00wXVdI6tJ4eT6FEO/kTN+njU4NyAGwaClAlgiRErBeOypCkrmqJiub6h2+3p93vqokp7fhAMAwRUkv487Pjhh3fs9nv6wTGazijrmqpqKKoJk/mC87NzXrx8SWlrhNREIVOMeD4zQgzpDBO/ezKI/F5FDt5mmQ1IpK6qFNdrDdqY7FZ0aCc+mrTHiDEFo7Hh+YvUqO+2W7bbPfd39/hJYDLRFLokhIgbHPuuI/lay+yvkv3ViOjM4FYxZqZDany8Emz6JJMoRg12MiJIzfoJE00OMk4hUlPhvAcEbnBZ/p43hSgyKzD9auqakpJ9t4NB0vcd3X6HLjnYhKFk2lsiAu8dZVnQjBrKqqSuKxLJZUj7dUhnk+gdoh+InSPsO+Tgk+l2CCgjEUomE/yigMIkkEUrorJElcAGYQbIAIuMntqUnIzHfPHpJ5xORlRViczGvMkzyFEUhqoqqMoiAxQxRzsHgkh7c4yP/ckBXMlWFSkhRyuM1pRFQVWUxEFghEzPkdTEJx7ceQClERTEYPGhg5hY98TDQEbQes/9ruPdcs3dumU8KSmlJDiXqvEQ0cplACLvaXVxNPLVJC8ZKTN/XlkwkmAFQpbo0Zi66xDXD9heUjpFOVkwvbrjbr1ltVzTb/e0245u77CLg0l4SMAZJMBeaQIqgdZRJq8O8dGcWsoEdEsPQeQUx48BFjLAkuQnorA5LSo17EKlulrlAX4adPb0QrFyNzy0U7a7W07tFCskbq2ZxxHSuwQ6PdElsw+QrSxF0bNrXZIERtj1HUPb4+9bJleSkdHU2lAZjfep/tRCsHx/x/X4PXevP1DKgaLRzArDf/VnP+Pzly+5vl9ys35gfrFgvpjz4tlFMpPWaVh68BHyB+AQDgU36lD7554jhSJ8NPCJ2aNIiuSrKDNwIhLjcr/f8vbNW7757ff88he/5de//Hvev39D8A6fJmoIwArzuKf6gPOO4EDvFcJIiqagGhU8f3aG6yNid8vQD2wQjJWiMtnGIERc1/Jwd412HWOreXF+gZSk/elHXD+6A1xuVgx9Ogi1SNR/FSC0Pa3cIaqSpmkwxhKIOAEPfcf25hqllihV8cXPfsbpxSVBWWppKISmFwovkpHXEBx9NFw93PPh7pYBz+A6hJbZgyX+zphV/g6ocljszDARJH2ylaloEYrx7JT95pbN/Q3/8d//nB++vef+zuFdhccneqBOaQ3TccXFYsqf/tFX7LZbnBvSRLPXSRbfO56fnvP5s5c8uzhFCEfsPYMSVKMxuqxpe8d6t2bvBrrocUKgSptQ3phK5+lkzNnJgsvFglFZUWiTorCe6Gp3IGNBEQLu+w36XYe4DSgvEHWFnE7QZ1NKFPXW0Y5WmCqhy4Uy1IVJrBDvETvP7dfv8JM582fPsVbzJ3/yU3721WdIR57KBYJowaRDWBmTtK7WIIwhypydnhYLdXwkE43vdwOUEiIa8ZlS6SCukFiCA7d1fPfNN1xd3bLves7mL1g9KNqdYugiplZcvLjgn/yLf8H7929od3cQVvzv/g//hi8+qbmcS6xbIWTyKBiXhk+eP2N5veb9t/e4waErTVXWDCIgrUYoDUJhTYXRHQwtXkQcgiE8NYPlyD0ASId2zEAGQLY7Vbn4StO3gBQBJYGQHdARGGUoTdIqnswbzqdjpmVJrQ21KWCq6RB0GhbThhcXp3T7jg/NHZEUD6oKRTO2LE5G/OSz10xnY0yh8TgEnkcIw3DIA/6YP4OQeBlzzlZEEDCkVIaitozlDD9t8H2gKEegCgZh0WWBtCYDrYkdI6VO5sMqJLBGpfuT/tlc6AiR0k7EQRsqcg7Hx3c1o1dPCLHsh5a2a9l3HUM3oJQgeM+u7+j7HiEk/f+Xtz/rkSzLsjSx70x3kFFnVTNzc/dwDw+PyMyozIzKqkKDQBXRTXZXgyBAPvAn8B8Q/E3kG0GABAi+kOyq6q7urMysyswYMiJ8MHe3UUcZ73AGPuxzRcQisgpoT+0+DjU3E1URFbnnnnP2XnvttRLYqsvCjYLC3727pd12TGZHfPD8A8qqRmnD22vRBbp994bQbjmenzK+mHA5n0nFUEFdFpweSd/s21dfcv3Wo1XLbOp4/uGpWMjvPnfeL3clteFK7INAYQsx3ES7KqokqBmESbntIYvi+K4n+oakAsZEIg2Rnpj6LFSrScrgqppN29N4ockv11tW246mB1Oo3CgoQnvrbU/biRWiAAoSsPoAPiYxQHmseVssqOsxtqiIKGw5IoXIar1k5ERnIHaB7UbsNa3WYB2mqnAjj/Ka+5t71oslt9++4uTZJ3w8Oeby4zOK3vDd3Q0Pv/oN64cVpirovefd27dsv/uGmbV8dnzMcYqUoSPFRjQJKgU4RDvpYH8xO3RM7mmVW0jQogOgkTkedDtzE7MiyfpJYHXJWDt6XaJ9S1ARPVHEphUNlRhJHThlIUL30OK8wiVDF1pcLnaGFMRePCrWXeTE1axurrm/X9G1LVqLpWvve0Z1TTWbMjo6eryJA2wWxhSGo4WixozmTI6fcHNzh0qWsjAilp8iKI9yUCmLsgZLQ2yXxGYMtWhgWGXQVcGf/ezP2HYdXRBXjCdHx6w3G3779Vd88/pbOt+jjGI+njIbT5iPJzy9uGBSldBnG+sdtCuaFZCXjRn0n+Kuqi1ATJSAcgCM0aiAOP6khBV9TqKP/JPPfizPyW2hohefdpVcANPKvZHpxaK74j1937INW95sXvPFzW/ZRsMnf/QnPP34Cc8+/yOqySlJV5CdFpVKyBt5nLPuyfkZq+WK9WpF0ltqrRg5w3w65Xg2RaXI5uGBL3/zBd22RSXF5ccX1OUYtOHt7QNv3rxhtVmz2a65vb8TcfWy4AefzTk5P+bJ06d88umnPH36jNl0SllVUnjIjMcQOrTOiXPyiHCEPgCeh9nLbDslbpG2LHFlicns1UG4UefnyrNz23Nup0MptDHMpzNGn9Q0zYb7h7vsYCn3SUrQ+8C26Vgs1wQ0xhV4DMump0DcagqVMClIYcUbolVEo/AGNk1HijA7HnMXtvRdpO08//xRZg20NTvBS21s1rCJdF2f7xONsZairmi24qK33jaUVUVd15xdPGG5XrFptgTj2LQthU9U2bo1RU+KHldozi9PePrsnKPjEVXl5KwPCnwWZY0J3wVC25O6XnQbVUJZjTEO5QzaWrRzxKpAOYOyFjWqJPlUBl3XhK3H60BQwhq9fHLJ5z/6lKPzU2ZHUyaTmno+FW2UJOuvcJrJuOb45BhjvkN3ER0TUVtMEnF+q2zWXgFrRQ8oRAGuC11gU0FJxczOmTvRbjsejWnbjqEd/jGH1gqNxaQSoyd0KhCSRqcOv2MBa/qkuWs93yxXfP3ulrkdU7sx2lpaG0ku4lRkFJWcC0rjrQKXTR9g4DoACqULEZI1FlWAKhO6DozdMf22p+4TR8px8cFTFpuGb9++Y71c08aOd6s7bCwpcTils1MiZLgZhyUqKS1GZUUfCISxokzes3rwI1RoqYsZxhQY47GFwoF4aaSELUpG9YRYT2ldjS0MJkXoIir1EHuSDvTOchdu+K5x/N3rv2F0/Iccl3Oe2jNSiJy4Oe3k6tHmrQsdzhqmZc19WEuRpbCMz45RytN2W5r1gna7oltvWfgFV0dznlxcMaunpN6w2TbcvnrFz//6r7DlDzk9n3N0MuHZ8Ywnp3O8tqx1wk5rbFkyzhIWKkkuMbRzigbpPk81ZHBrMJFQoLPmaBJ3CmSzyGs7eSmoa9krY0o8PNzyy1/8Df/df/Pf85f/9i+4v1+w2bQQPU5LcU9HsLnohFI4ZzG6xDrNeDTm2YdP+eDjK6bjRJgo1NxRnI3YpC1KVyhn2TrHuy2sGnE7VJsFm2bLt6s1J0+vqJ3l848++V5z9P1dhEIUS+ZBdI8o1UefKcCZGi76KwJZ9b4nBLA2MRqNKIqSqqpJ2jKbThmPRrRdT9t1wIBmyfParhdrU9KeBXJw4O1YLPxOLXoHWw6pRH6eksAi9D3rzZqXr16xWq8JMQjlUCEuF0Qqrbk6O+HDp1c8eXLJq1ev2KyzE4gSto4zhtl4xHw0YlbX9GEjFDTI7hLQe896s6btO0HZUpTe+X3PBJPJhPl8znQ2k5BFZLwfbfi2pbCGIlaEVw+omxa18PS+JTpFqgoY1+hNjakLrDVo57B1hTNO3JFyYu99YH3/QLVYkLZbVLKSmlojh1roARFRVTvSjkD10i4SJBEfKq07OXbyzwyixYe1o0F/xeYSR0ClgPcd6+WCV69/w9t373i47xmXivm8YFRdslgsGc3HfPr5x/wv/sUf87d/k+ibEaXZ8smHJxxPApYOHSPJe0LXsVqsiZ2n6zybbUMKIuZrjThmGDO4jCSMNljj5CBJQoH1j1hNh1xNH1qEDlkG7EO+oSVm9x01iKfJ82KKB68HRuusHSFOKNEHSdKNpTAGCsvV5RlVPWI6nXPzbCkOq9rg6oLxxDGZVzx7dsFoJG0iwnY4cFz5PYaI/DuipUKYq90izhshKqxSWGelh9wkVBYgGw78nD8cvHa+Cln7RREJwROTwgcwUWzTVX7uYSfhriqZ8h+PKHA7fP4QE33v6XzAYogh0vaerhd2R0g9bdsL00uJKO92uyXEyOL+jouLc+rSMhpP6PuWo9mY6ajk6xcvqZxjVJXMpjUpiXuQMxpnRQSV2YjZfMTZ+SmT6fg9ltNg9Xp4HXaFiPyHym0IO+eStKfOyxqVQ1Gl/dwOzBetk1z3oToEEEVwXATPRdh7tVrw9u0tv/3tV7x6/Y6HhxU+CHBiEJcMdMR7+Qpeyf5qROg2ZnHgGB9vzXVtR9961mbLydEZZOc6a11OkCQZ7vuepmnEUUxVGOdwdYUKCb12eA3r7VpAEQWVNTw/O8UqeHN3x9e//KW0EnkR8Z14z2Q+42w8YVaVVM5Iv3Lw0n6kNfv1NEyY2p93QwKeWxIGfZ1Dm999ATXJGSbTlOd613RB1IqkE1EnAUNTxClpr4m+E8ZUbnEFaSOzWtGFrJUTEyEO7JUuM27EYc1HcGWNLUZo97gtQoNvknzwzBwwjrKeYlwNSdwIq6oi+RYfI8o6qsJgXYkzmtj3+K6jjHKP51fBGk3hnBRgcrVNFyUfnJ5SEHei+JPRmHFVMaprJkVJoTJ1Pe5TdXX4Fg/3nYMtc9cmu6dzsjsC8rk6PFUPFvRK5Ury8LO5VWF4jRB3zBYGVlMWQ+/ahqbdsO02xGIiFOujI0aTKdq6nTueFOQluNU8jsrter2l6zrRynBW2DbjEfPplL7pWK+W3N28o922jOsR8+mco/kxnU+sVg3fvXzL6zdvadoGSEynJ0znYvP56ec/5OrpE84vznny7CmT6RTrip1b1HDNhYKecjI27HGH1/99EXQD4kDCkEyogayBTNM+fkm7clJmlLFfl85ZtB6htbTWOOsorIi3ivhyy2bT0vmIA/ooutsBSfB7lTAJLIpCGZLXRA9d8vTrHp8Sy2rDukyUkwmjs+NHmTOQGDdD7rJHhUhI0tbkvc/MMcNkOseYLW3bCQgfJY8YjcaEBMpYklLE1cPuvk05LtAqUY1Lzs9PODs/oSzF8XFYTCGJg1JKSVqkcq6gnUUneV/GOdnHrYAsFFaEba3ofmmjQWWWiJFij7KKyXzKsw+f8dmPPqOejqkmY8pxhS4caQC1ophvVGXBdDLGaLNzEVI55tBIS0PUhojsjwo5C7WV7xXK4qKBNrG+XdI1HaUyuHIkbY2PLHLbek/QSTSCbAmxIGaGwD78Fu7iNgTu25a36zUL33OcEoVOJCO6YCSPihrtozCnvUEFi4oGlaTQJmeAAC2iF6ezGHsG6MYVtogkH0i9Z2Qsti5x45L7xQKMxlYFURkilogV9m6Kw0aa29NFFNgTspkIuKgg/+wOfNcFmBrlRmibshRCwASN8Upa/coJ1FN0ORZQFI9KgZR6kgavE8H0rNOa23TPb5dfc2SOaEae4/EZAUdI5aMWgLq2p7IlR5M518WSchRJ1uKuLvj48hxrFPQtr379K+7fvGJzd8t4NOZ4OuPy+Jyn589pgxfGZaVFV7Vt8K3DVT22LnBlgSkdalSgjLD75IYWwCoetLIO7Y8q3+c6vXeMMXRuKCV5/a7dWmtQhpSCaOsN17XviH1H8B0gRSKtIzr2EGMO1cXVSRlpsxdLsISxhrOzOc+enPPk4phRAfqkxrQT6ghv1reMtGJeWX7y7Bk/MIrWe5Zvbtm8vsNvpaVwfXsv7Db3/aCS7w+w7PqgUi6ACsQSfNhtcoNlc4yZJJmrqyiLcyIUWtc1GMf52RmL5RofEncP94TQy2Gksp2b93gffg+8PZxAYDdphz3p+Ruy9tLerSZ5T4yR3vc8LB7ofAcqUVYuF3QTRiWmVcGzy3M+fv6M87NT7u/uaBs5wBPZDtVopuMR01HNqCrZNg1exWwtpyBF+r5jvZYqnrRWRQEaFCIOphTT6ZT50RGTyVQCpV0S+TgjeU+pHabXrN9s0HctbCI9HdEqUmmhLlHjCl06jBXWic1WgTofRsoajLP4psGv18T1Cm0mDAJuKQVSaFDRS5KVhJ6+F/nS0rSnTV6Yaogkd7Oqhsrde6DaMON297jCk2JH36/QeoO2K4xt6P01k9EZ4/GYpBWTkwmnF3OefXjEanWMTgWzKnB5WuHSGu078J7QdnRNS7ttMVG0Mpqmk6BcG6wRIGmgvoq9tyQ+kqCI3lB4ZIBF51aaAZ6Q4Fn+G87BnavQQZIsIpg5eUoZsDNyb4n+j9nZhocg1rOqtBijKZzh5GTOeDrl6PiUxaIREXUU5aikHjuqkWV6VFCVoLUwGd4XkB2As98FOyWZew8WzQIlioQx8t6SSoSc5JNEnyNGRYpCQdwvdWkZGdq0QgwZ7IIUzQ5skkswqEQc3nPDBeQxlxzaGKF4+0DvpTIdQ6L3Mf87EZOm7YRObawmRmgb2SdWiwWh7zDAqCoY1yWTUcVkXLFZPbAZj5mOR9STqVRhtMIaqAqL0Y6jo5rLq3Ounpwzn0/5Pffw94pih0DYgbNX2gMr7wk+DmD1e4B3vo4pZoAFac/LPbYoAdeUMqRkCUHzsFjx+vU7fvvbr3n9+h3rdUsICTHLyUmgTviQCF5EJdOgPaDjzn0ppccEWHqabUdKisnoJAsWarFwVfvPHbLLkDEtdSF95rYshI4+KvAetl1DHzps9GgcZ9Op9ISHwK/++t+zXC2JMTIe1cynE05GY04nE0ZlSWEEYPFDUJgDld9Jt/M0DSDsIA4+sLGyoFyUdsGBZp4beDl4Afl+BtaGYDXm/VeANUkIQgj5PM1nHEOCZcTOOSc8IXj6vqPvu/yec9tQUhTlCFfUaPO4AMt+V9w/orWlrMcYV0ulykA5muAbLUmgdRRlRVGUWGsJ3uP7nhTCDlAb9gdr5PVEGyJRas3pdEqhFD5K0aAuS5yzFNbJHB60COwuNnuwJaV88d8DVw72qPQf2auS2v81HoDFaZ/cMTiq7C9H/vVpZ2c77L1d29C2DV3f4uoZ9ahmMp1SVPUOSDhkcwwlj8cYq9UqJ9OaqqwZ1yNG1QinLcv1PYu7B26v79DKMB5NOTk+xVrHYrXi/mHBu5s77h9WhBip64rzsydcPXvCsw+f88kPP+Xk/JT50Zz50TzT3CH2Q1y5u4jkjjtpfSPlhOxgd3wveVD5uuymY3/nqT2kMtyPKQmomQ4BL9i5Czlr3ku8U88OxF2tN/RdL8lu68VdSEkbkCXhFBTIuYnPWla9p996+hhYFhvRiJnUHH349JFmLSdJSYAepQzgBWAN4sJmctvbeDLO4rUNbdPtDDCsKymrSMqaHW3XkoLP+J8k68rAaFxxdnbM2ekxztkMdO1VEWPKsZdKuzhTKWEtaGMwhTDGB+EN7bLIrTE7ZzG0FFjVDmCBo9Mjrp4+4cOPP0TFnnJc4+pSXitkbrESHaTSFYxHI2HH6WzxfXA8GmUwSst9FvdFWAsZYHEUOHSX2D6sCT5QmRJjHcaI89ljji6EXcHDGItCNIz2LLu0O1fbGFn2nuttw9J7miSuPUl5NAGdPCZqNBYVooAtwaCCg2D3e5jyArJkACog7qlJS26hyoQKgbTZYKym0JrR0ZhyWtIGTw8kZUnKkbCQ9cn2WoMyohZRYAlHEjZfd8lFkAK3KcBWGWCRIoijw0aFCWCx1MUIVU2JxZigPcMJ41FEpQSgMp5tbDFhxTfNa05XF3TJ4G1NU0CTNNv4eHO3XTUYJSB04RzVBExdM//gKZ99/jmjokR1HWm5JjQtfttQFjWjsuZ4OuOzH/wAXVia1HHb3GCd5KIx661Jy5qmKl12WFL0od+xI1FJnJQgExKG3ZA9uHKwvyUloLKJslZSfp7SZkDrJSdPAuzFviP0LcH3FFXBJI0FhFYCvqko7XcgDDRtLaKdryhKw9XlKU8uT7k4nVOHnuq4wvmeKkWWbw1TU5Amhqc/eIoej/EJbo7e8sZ8x+p+yXrVsM06s7H9fifc9wZYuq7PTJXcGiy+cYR8OMmFk+p4iIHQ93jfU1UTXFFwdnHF6dkZF5eX1OMp//l/8Z/z8Zdf8eVXL/jX/+bfsNoss92glj79nTCeVObgf1wgPeTqNgI5Ce66DeNpydHJlHpaUE8dqiwZ40ixpdCRkdX88PkV/+Kf/hmffvIxMUa++eZbodjnbE3rhC0sz64uODudM5vU+P6BGAIq5g0q9GzXS16/fMlqucT33S4tjjFitGU8nfL8w494/tHHHF1coF2BGtTZH2mMjGLUGvR94PaXd1S3Pcpr/BxaF+gLDaMRyrfousa4knIyppxORRfmZMbk8pjZk1POf/wRb2yL2mxYffkVR3/wE4IRYShsIPYRFXuUlw7MZI00fKpIUh7IbV16QLQPRkyiWptFLJUVMGaQRcppgmzuIVKVlmcfnPB/+j//H/nil1/zm198xV/8219xd/MNbaMo6mP62PLl1xv+r/+XV/zL//Wf8uzinPMZuOYe3W5JbcP25oGH128I24bxqMaZiuWDZ7PtASXBSVmik8Jmi0rfdjngUiKimm+4x2ztArBqD5bszuwMYOx0Fg6CjWFvE+vEnHQpCSaFek6uMEfQmpCEitxstxTOCqUPzXg0YmoKzk8dnVd4Ef7GFJayEp2bpBpQnbz+LgxV+/f2HjiWGQ4o4o5CmAGYGEle+lqtFts2EdPs8ECkoO8j3kOMBqUGwWGFNgrrFNZmQrfKdazoScnKoS9mj3kPGaopw+aZ2F3cRxzz+TFow3rbooGuF/DNB+izMlhMkWbbycFkDcFH0avoWzYPD6zu75mMKqbTmtIq5pOKi7M5RgUWd2+J/ZZ4ccnx8Zy6GjOfT3lydcnZ6QlPri64vDrHWEDFnW7J79ON3wdKdoyVOPx70IPQGG124LpYg8rrGGN2AIzvff6diT71+NBjrDCT+m0EVQAFTRv57Rff8pd/+XP+f//qf2C1ECvP8WSG6T3KR0geZZB5T1rIqDGLYSYRsPZZAPexRtcl3ry9ZbXc4OyM6XTKeDTm5GRO16+IwcsdpET0fbvdkrxBRcAq7LSk9lNC07HqGt5ev2ZGZHR0RuUcT89OOJlOSOsV0XtK57g4P0NHT1U5ptOxONgh4vFSOFK7YETGPs1LmX2y51rInB5aSifvMVpTFE4S/oPEO6WDZkMtAJiKYjs/gCIqM/g0mrZt6XqPD3uNCaUNxjii35BCB6mla5ds2yWbboNV4JWmTwYfDJPpOfX4FG0mjzZvu7EDHgxgsbZkNj+hnsxoEGHE2dkFfbNBLQqaPlDUNWVR4lxF03cUmw3jpkHXQnOXfd1L8gtEPxQBBPys3TGDtoqshbwDDtbauWq7Y5bsCgfDXP4nxiH2OQAk/M7f8/cPfyTxn2jgyT8QO09oekLbS3C5WNGsG4opTOox89kcVxT8Pjr7uOPV67ecn51ycnzM6WyKSSK4+92Lb1jdC6thPj3m6vwSZwtSgr/9+a949faGh+WGdYDJVISIL6+u+KOf/pQPPnzOhx9/yMXVVbYVzUBZHM4eA8ojvIeANYfRZZJkQ/3HruI+qTgs5oX3AOf3wed0+FhmlqokMa1o2khxISPTKANNs+X29o4X374kNT1OG7abnlE9wlmLc5pCR2qjGWmDUgYTFfhI3EbCumfTNay6nh9+8hHPP/8RP/6znz3SrImW0o7ZyF4rC63pvMfmtuXReERVjZj6wJvXb9HGEpOi6XpsUVG7AowlRdhuVjTrFQGPJuKc4vR0zscff8jzD59hrNzhu+hCSwtOVAqstP+ZJMQKjZG5twasFWDEZHAlOzylGLMuuLBfokokDcpo/vAP/pAffv5DLp9d4tuGuhQ9wuh9nn+123HrsuTo6IiyrjCdxLGDRtYQXaiQMCTRwIpS73JKM1IlJ9WU43pKnQxmGyi1ZXJyBda9d40fa/QqULgCYzV0PoMU8kYLga2IBKJOwsbU8HK74V275cw3lNGifYsjMLKRKlppnUm96Kd5DZ2BzkE9OHO1KCV6eSlZdCqJFCRd0uX8TpuIKxwpdSikm2BejfFK49GoNMZqm1nxHmVCFr2XOHlwR5SGJAE1o0pom4a6LThHKiviaIaujjAOjFbUBKqkaCJ0HkbFFDPqSaMTttYTdAN0BGWIWlrxkotsVUfvN8RwQ7v5LUfNPafLay6ff4ApnNx3jzR+/euvMT5ibUEwMDk5YvLsKT/9X/5z/vCHf0S32PDiV7+hXYMzE45Prkipp9s2tOsVNnVcXJzi5jVx9gPUKGBs1nwbj9Clg0IhvVJSRHaVg67Dd56+7aUgXxSowmHLYqeFotMePI5K2K+748oiHVpJyT+0FlZLkBZHHSHFwHb1wLu3r3j1+lvOn1zw/NkH1GXFd199QbNaEzrRew1RrLWbEHl7e8d4XHFxccI/+2c/40c/fM7V2Ry3eqD88ARVa6L2XHXnnM9HpLMjik+eEq0TDa/nH7P6bMnqYc319QPfvr3mm9ev+frb777XHP0DWoT2FRXvIyl4jDZUWovtnzb4GPZisxl8qeua4+Njrq6u8mZbMp5M+Ec//UfM58eMJ1P+4i/+gr5vMVqJknZZUrhi7zjzu3lBHoeVoN/fhGTCQx+kX1QrtIbxtOb4bMbl1TEv3rwgNFu6vsWkjsmo5Gg85uPLU66OZhzVNfebDSmrxWstr2m1pig100ktVWMl1sNl4bCFpdCaputYL5fcXl+T8oFjnCEkQdNdUXBxccn55RVHJ6cYV0gPYQIVpSL9GGMUDfrtlviyYbIo2PYdqrKc/PgZVIaQAQuc3fXwjidTdFWgy5L5R884fnJMMR+xTj1HTy9plOfdt18z+cFH6OkUV5R0KkB0YBLaJ1RyEsgkzS5QGarAKoLSsjlGuVeSD4R2K61GJMy4QNkSpZ2woZLPlaaByhgx2nB5dsbkH0355KNP+dM/+VNu3z1wd7vg629e8atf/wYfbgm95+rCcjKLuLRAhSV+s6ZbrFi8eUvqGoxKgCDV223H67fXKCVtQEYZUh/wTUfoevptR+gF6ex9yAVmARwfcxglyK8iB4BDS1XS7Bw9pXGUfQ+MyomXyhS73HePME18CHQ+0AVp8UPrzPwIQMgCvhGtA0pralcQkiYmRVBgzF5oVOucYCkYtDgSQxB0CLLk9xWlvWO3UpNYHca+R6lINCo7pETZiJPC95H1qmW9bmkaT8qAq1RfBoBFghcfB4clMu3QSloU1S5R1SihK3JYdXxE+grw9NkHXN/csFisKG0lVMgYCEGT3eUJRLa6xaCwBRL8RwGAQtfjm5Z+2xDahsppLk6P+NGnH3P3T/6YsqwZjSecn51zfDJnMhlzfDRnPp9RVyX1qELZQFRpB2SmvJEO++kgVA5Dvp0y4ynlSyI6W2moeB9W0Yf7HQGcB8q7zi5XKWW2Xu5V9yESklRrU3Lc3j3w7XfXfPPdO27ulqRkKLQIOPYxYZRCK0uMHu+hDwKtkiSIiimijMnuFI8ocqsd1lZYlwhB0XeR3krLoDEitq51gBRy37+nT52IMmpN1IpqUhMLR2h7bh7e5Z50y3R+QgyRSkU+/+ADUtejgco5lC0xhcU5K2wwdLYvlLUbs6bBkKGnpA+0qvQOPCTPY4wC6HVdR/Q9zlqsNSgzALNxz7yTl0QlUf9XDICZtHBaW0rbnQ9sty1t10oy1feYwcFLqdyqFVEq0GxXdN0WHzxoYWcF5bDljPH0nMLNCd49UpOJjBD2jU46sxCMK5nMjpjMj/G9Z728I9mKclqgy4pNF+QzOMt4NJEYxge26zWmrHYMRaNkDlJurxn2thhFB2DnoBT8fhoYTr10sAPm/+8IKgmF+R3gJAemwzpE7dbcbp8amC8H43d3sKT2Qq07SGAA5ENEBUn6UhdZPSxZP6zYLjfY0Ypmu6VvO6rcSiROZ8gZqVR2Wnmc8fT5R4yqClcWbJuexe0Nq4cH7t695ez4hLosKZzju5dvabYN7bZlvdoQlaaeTLk4u6AsCgFYLi+ZTCfEGLi9vWM6m+GqEmMt2qh8TUTHSQRq5Z59L3TUWZQ1OxlxUOwazjZhCpkDnEviwn1JYRCcHp4x3CHZgSYlwQCHNqXhDcSY3REjy9Wam/sHHlZrQtujIywXW3HhLCxF6ZjXJRNXMHUFyvcUSXQRSVLISFHcvK4ur7g4P2cyfTxQ01hLyA6iojMr90Y9GtP7QEjCukEZjDMY65gfHRMyQKG1Q2uLAkaVzXuPIvQ9sd9gS8N8PuJnP/sTnjy5YDSu37vJlRyXKCOC+lopbJJKuk4ZDlUKZSXeTkaD1lDY/ZxqpCVZCWvGhx5XWC6fXPCTP/gRl08uJJ53pRRwUkIZnWuAKYt6Stw/m06p6gqz7Ul9oA8Rk89UlaSVTylwaFyfqAvHpKj54OSCy9kJ83rMyBQ4nV0vXZH1/vSjxye20CgCBI/xPZUxWF2QgqdAdF/6FERBTcEmRd6sl7xdL7jajrgcT9GhwWQNPWmzikTtSbFH9RL7qxKiB1LE06NpZW1EC6Fih3pYu29LtUqYMBmQ1kpjk0LHfD6JpJFcF50nMSZUHLpFFMns16lOKucLOfk3imQtqqwwZY1zGwoFRewoUodLFqJFqwJnx5SjYzZ2QXJR8rJYEXTAqkBvDLiSmArWleaanq1pWZUN8SQwHldUo+LR5u2v/vrveHpxwXhUszEJPbJU85qLizP6Tcu7b9/wd3/1K5bXK1LQODvi9t03uLbF+o6bd084uppQFQX16RgmCXQkqUC0WnQzbQKXY2QlHRerm1u6bYtve4r5DDeKMieZCa+UErFpNbTpJYKKu5KeGToakslOqzkmT2JUEZXkddooqrqkGlfc3F5zfDxnPKn5gz/6ibjaGkdhCq6v73n55i1fffsd4aZjOjvhg+dP+Ok/+gmXV2dMRw5NwzZ1KB1wU8fZZ89hVhOPxqwrQ+ulgD6f15zN53Rt4Px+jfryazZ0vH64/l5z9L0BFjk85KDwWSfEak01GjGeTrO9MBmh34MsZVkym804vzxnPJlQVhWFszy5usR7z2K5oCwcZeFwUTGqa8Z1zaiqMjXuP725/Mex3ZwIJFG4VklaCcRRqOT88pjJtGDbKXzwOBWZjsT14fnFGSeTEbWz3A9W1JmpoJRYf5XWUpWFWMop6e+2TtpoNNA2W9arFcvFQ04+xCUpBKn6VlXF2fkFx6enTKaz3BqhdvoHjzX0JhCvt4RXG2yjSUWBmteUl3OiiQTfQ99LIK/kwKnqSvrvjMIdTahPj1G1YdU3XMzH+H5Dv1yxfbinKkpMWaKLAlSN8gbVR1SQuUs6CyNlhHkvu5IT8BQgRGLf4ZutCPupiC4VaCsbtaj9SECURB1+QN3roqA6qjieHnF5dsLi/p77+ztmJwrtFnRty9nxiNlYUVmPahrot/hmRb9ZErut9I7m5HK9bVmutyyXG8ZqLo41ZK2SVnr0fdYH+t0K+uPWGcj9vEPEvgvdDlbEoe7J8A7eD+cVAy4aiUnou23X0wdRudfWIolRkv5mDUplirxS6Fy9jqg8N7k6kIMHmVqddQaGCT54P0NSuHs3A9ItiXsMPcF3aKKIzeWaj1KaGKDtPKvVls2mo22DVNXJYIkGpSWRVzqi/J4KuhO+HpTMh2unDt7be399vCDm7OKCxWqNDw9oRMA7hkjI+jAxRlSEVntK4/FaZ6AxC7j2wj7ouw7fddSTEfPZhGdPLvnpH/2EsqoZjcbM5nOm0zGjUcVkOqEqC4wR+8yUmWCJtLu3ZQr2iRYHX78LUKuDoC7F9H6Ml28qpaTau0sGlYBjSQ3louwU5KUlyihHTJa7+zXXNwtu75Zsmx7nDCEpwoBRanl2jOIwFLPv4zClqMyizHTzxxrGlpTlCO9FPDoE6LrAarVhMnE4rTIdPu2o7D0dMYMvyQrFtlCOUinadsNmvaQeT5hNZ6ILAJxOJ6RWen5VTGAlEdBa0fvMeHhvGQ3rKAsQ5r10vyfoHbgy3McpIfdcEAei/VUa7oN0ALKpHMQL4LqHBnK7W4jSr931uVLtCTHuLG5j1kyQfTpmcKUXQBdNTBq0w1VTynqOMjVdmy0+H2vkIqXe7TcabRzVaMxkdsR6vaa7vyVgKOsR5WjCaL1Fx0hhtOiNZPvHtm0ZxwBJqMyD7kMkoRn2lyjA4yAsy8EOsouD8j8PE8NhP1f72TsEx4ZpHFrzBFcZXiAdwDUHrzck6Qc/N/w5NE4NP7JzCIuJFBKxD2yWa7brLe22wW23dI2ccSkElN0rigzNL+oREz5TlCSl6b3cq/eLNavFirb1JAwhKDa+4/r2nnbT0HU9Cs1oOmEyn3P1/APGoxGTyYSz0zOqqgQSi8UD22Yj4ux2iCPT7lxIaQ+w5NL3wTXmAABTB6DZHpTeX+XDuVd7UeJ0OFP7U3u/XaV9h/ThNxL0bc9yteLu/p5t25F6uc8aH9imiO0MrrV47+kKj3cBVUCtLaXSWBJ9SvgMzk7GY3E5+p66An/fUNoIqDToLyrZK8qqoveeLLCCKwdxes1oNKJpWmHnZdaNFD4MRRnxXUdX1rTdiqoacXJ6zOef/4ijkyOKwu0u1g5vRIkmlzKQhbv1MAcoUJokwbkAZ1q/zyg4BC/y2VVVJVdPLrl6csl0JpbnBgMZTFLqIP7Kc+yMpa4rXFWgrSEq8HmtDNLyg0aFjTAuHPNyzNF4ysX0mHk1ZmxLylzQEwH/wf1MbOYfcyQdZc8OAZugxOAoSDpgYiCmILtcBrF64L7dcrdd8dCsiWqMTUFAo2iy/om050SkAGFipj3HSIoqC+J7dPKAF00NlbIrmlgkJKQ1HKPQSebTKHEFMioLqKYcy4g/c56D3Aaf5DrbLLA75H+C40SUkRWfjEZZi3FWHF9TwMQWHR06OUjClNamlPZS64jWolNCRYfFkXQgWkNyJZgadE2bDEknetcxm3riyBOqx1tzX3z7ElWUnFlDo8RpDWsoi4Lt/Yq7Nze8fvGK2EpOkoD1tuUh9oys4vr2LU+2zxiFCSOnoLZEE7M9dS5umiS1zRzj6JTo2xbfNITWk2oPRRAQLOSmfz0Iuae8V+aYkiwjosSRkqjZ4WOQY8gsDq4jVV1xcnbCs2dPWG2+pukbVpslk/EpblRSFhV1UbPYbNBOEZWnLAynJ3OePr3i6bMnTCdjSpvAOVZR2geTEWKFmY1Jk5oH39B1HSRNMZkwncyIUePGY663K17dvaMcfz9g7HvPdkxZGz0pQhBhoLIec/XkGc8/eEYInvu7O/rs+z0g9ePRiPPzMz797DPOLy8YjwVFPz2es92sOJlPGVUFxBqlFWenJ9JzeXLCqK52lbb9+E9CKu8F+4qsbuyF8lm4gqQSo5Hjk88+5KuXX2Bc4OamZ2ZHfPr0CT/+8Dn/+A9+xMnJEcpogvcE35OCR5Npfs4yrmvqyuGcVNLrqsKWBqwIlt3e3HL97h23N7dYV0oAnt9nWVbMj4754Wef8fTZBxwdn5C0Qduhv+3xApjwzRb/xQP+6xU0CfvBMebpnHRW47ctYbOGhxU4SXiT1UxHIxKRNnT0I4c5nRN1ZPnmhmd1weSooD+2vPnit5yhOapqqqMZKlQQehFD9DkATQlVQLISxMRd7z4oRCgs+Z6w3eI3WxIBbRLWO0ymdiqCVMdVzAyXKFTYxpM2ieQFwa5MpDwxnJ8d8/kfnfFf/9c/E6G8+yVT56HZkpoOVhv86oGwXTCbaLomEbzCe8PX377h21fv2DQ9U2f24ErTEbuOvmlpm1ZEHPue3kuP4lAJecyh4TAHlqpjPOjjHiLnKOJe4ky1k9STQ3QAV0KPx7NtEou19HMnbbFlhUGszI3Vcg/rPvdFZss+nTDKEuQNyLrSen+w5eRvvzTT/s0d5vUgFYghEfc9oWvo2y0JMKpEO4e2DoU4Qd3eL3n77o6b2yWrdUdIZp9U6MyY0xFsjzb5Hkkw0K9lz9c74GewUjxMQn4nPfoHjw9/8DHvbu949eaabdcxYBAhSrtQ9EIhthgKbXAoiJ6u95ACbdOx2WzZbDY0zZb58ZTyeM58PubjH3xEmSu+cl2lcpCUtK2AMFf2Oil7dqwEHHuwRR+IoQ5isYOw8k5va5jR4TkMqiBpd33TYGVsrVg0poQyorviQ6QPCSiIVHRe89U373j5+o7ruzUhWQmgskZHSGS9FZlHH1TWZcnvQUnVUnr9Y/7MjzNGoxnp2FJXHVo5YtKsty3XN+/4+OMnjMclpREHqxQEsGy3TcYopHffliOcMYyqgmXX02wWPNwYzo5PpDqpDMbkyiqQCPgUcuuOxqjsvDX0uKr9vZkY2Gl7bsSgSbTTZ9KSsEQV0Ch8Fp6VfCPrHw1AamSHWCmGMzsDOEOLkDZ0Tce2aaVFqOtFdDjEbEkrFtsC5IkdcdNu8N6Lda6HZCyFGzM5uqSYnBFTwWLRMHu0mctAQm5X1vke1tZRT+ecX33Apmn55uVLNh5m9ZzjoxleGXy7xaTE0WyWnVwim6ZhHgLaDEWVwYxJWghiFq0dtEw02aSJPVNuV4LNgciw/72/zSiGFZVyIjCsqxQj2tqDgsteLJXDJC+P34uK8g+kuP+VKWtABO9RIRL6QLtpub+5Z3m/YLNao8cbtusN7bYh9gFT7nPQSNxV8h9ru3z17h2lcZTWMa0qVpuWzsP86Jy2DdzdLri5vqbvPXU9YjSeMxlPOHtyxenFOR999gnnp2dMxmMmozHr1Yp31295+/YtV8tz0Q1zwn6IMeR9TcQ5d61A2Wkuo7Y78c0cobyn8ZDRrywUvQdmdhbqB5OxB7UPJiSD3okozM8DkEUhMcRqueTN6zd8991LaaXRDm0kOdnGSGo8abthuVozso6JLViOpsxHNeOyoC4sD/R0KlA6i3UKoxMqPp5Ns7EFPiRiDPgQ0Vbitboecb9cEiIobTmq67xnQTUeoYzB917OZJWLcCnhbE09kgJas3jHyekJn332Q/7sn/0TrBGXwuRbsXjN11hrKX4lrUGLjo8wRhI7Nu0BuBL1waIAhmLwAIAoBSfHc376h3/A5eUZpbM7cFUAVQGThiJQCh4wWGsZjUZU4xEUS3qV8CLpD4BVitI4dB8wPvHs4oyr41PO58ecjGeoENE+YTQUVgTFlYhcCMPusejsebSpRfU9KgQKZSlwoMVVrveJLkCf+gywKDqleLta893DPZfzmkaf7NiHfQBvjOjYFI6kwRJIyWNjJyCLt6Sg5fqlgFYSp+isyWJCoA0Br4Jo6Rg5d1wyqKDRSVq9B8BkaE8e1lVS+fokIGhsytZ5+QgleZQKYHL8qkBbcCbiVIcNa7S/F2a2VUABypF0SXQ1fVngfYs2HktJocBSQOUI1RhdTZmdPCN5Rx8167Dm+HhL7yJL1o82b3/zzbdsS8dV7FkAdR/Ybnv8uuX2m2u++/IFr158y0gXrJuG1XbFtg/cJ49ZrvjN199w9uFT7LRi9HSOPRqRnCEUwojNXGdh+Kn8gI9StLNS7LZaY9HC3AxDISjtQ369jzvJBfGAdCxoLY6Du0RJyTxrJeLx5xcX/OnP/oTTswtc+a958e23/PKLX/H125q6HFG6gsqV3F7f8nC/4GGx5OmTC378+Q/5Rz/9A55cXmKdR8UOVIH3irbNTpQWqlGJ9ZGbm3uarsNay9nRKXpcYG3BbFJy1V/x6uEts29H32uOvj+DJQ6BuhLfamsZTSZ8+qPP+Oj5cxYP92w2G1zb0DaaNAQeWuGsZTabYo1CJenfT6Ej+o7kW0oDlA7nLBfHR3z4wQc8u7oEHzDK7lmaKfG7Z/twPg0Cu0CmuufYRunhBxBifqSqLX/8x3/A5Kji7u6Wxf0dRd9xOZ3yZD7jajbHFk7UtttGPodiZ0vqrKGuC4pM6y6cQ5sZujC0oefm+h3fvHjJu3e3pDicooLWhdBLa0nv2Ww24rSU/b29B2XUTkDwMUb1RtHdadhqmqniyX/2Y9yTOcvre9S7JWEDqpzB2GG6gE2KShu2XY/3YMYjorNE5UlWs354oLiac/L0ivtixXr1QPvFF1z96CdQFGBKcD3EFkWQ+YbMXlGQdTF2OKYGbTWudPRdVhMwCu1slusP2T1GbsKUPKlvSW1PbDpU44XqHJHrqIQBQwsqRWwITFRAbTvoPTTwcHNPt1oSmg0xOQo3x5iSjdf87d/+O15985YQNaOqxiqN7ztC29GHQLsV14PGdzShp42enohOIaPzjzyGQC/J2huqYSojxjF4cDnhSkDSWUA597WqvDZSkISwjyzXiodNQ9MnonJUzmGLQizPrBIbQiXUQWGIeHJhAWU1QliR4Iok+ilam9272wWaDIm9VAmV2QeiCbJAba4i5n7qoDRJFay2keu7Lb/5+g0v39xxv9jQ+Yi2WdTVKorSYm3EOI0rHCRPiIYYFUXhUNqhdMF+25M9YEhPhqRnaC54rPH02RVffHlMVddcv3sgZZKTUoq+D4Reekm3scuq6JHKQOuF1r1ct6zWLdNNS9P0bLdbbCE0d1dYEp6u2/ePKy32rkr44Xm7C/n2Gfae/QdWmaouYnZhB7CEECQx1VoYiX/PkCp23nUHMGVgLAapjCUNSpucjoFk8yOW68DNzYpf/+Y73ry7Z7luSdqKaFwS95lBe0vc6iCl3GKSqxEohU6KmDxt14pQ+SMNax1FVRGTZrsWkKvrGh7ur7EmcnZ+xOXVCXVdEAh0oafZClMx+MB4MmI81yhjCREm1RgShM2G1c0N49GUqqxBi8OVcJqlpQUj62IQjhORX8PhgSfVHk1USq5zlLY/p4odo0JaIDTWWsqyxBhxPzOHbR2/l+QjyWUSJpVQ/BPKGFLQbDYti4elFCTTUJtCKqtK0QdP37WQRliTuF+sCSESk2EbFEUxopiccPb0I9AFzSawXG4fbd7+3g+mNCqLXM5Ozpjc3WGKEQ/rjlMs1fSYS1exWT6Q+o5RXaDbhr7raNs2rwePTjnB0RmzjBloSVEYp1oqrWqYp8MMezdx+uCf6uDnBtRZkinfNvhezkurDai4a1PaoTQHsZA8muciJ7Hi1nDwe4PsNbuyRiK3OwnDyXeed2/fsVlv0ErTtx7fZ4OB/bPyutOAVLgfK+Vbrhqml0fMZzPu377l7fUtzWpNM5kSuo7Nes3D4oGPP/oBl1dXXFxc8cGzZzx9/ozjs2OmJxMmo7HokhhL6TTbzQPXKtA3G0LfEkOPyrqK2kjOR4QYEiG3pzpX4LQYgOrMiGBo38pzpQ7acA/vNTlDhmulENeS3Io12G5nwUcOn7VTx81tvEn20PvbO96+fsPb168FxNMZRFAabXM7S5/YhkTne1bJc7vcMKpKRqOKp5en3Il9GaYuaYn0oSOF9pFmDawr6HwQkUoixjqsc4CccT6mrJkie1bKwLnWFudE9CZz9XaXw9qC0XhKPZlSTSYUoxGmKEg+EL206ZssYjsAxrsMwGR23wFYJfGlFivYw7VzqCuUZA0ZFKUz6JkIyJfOYFVe1zmZ2LV3RZnbGERzxlhNURWMpmNM6YhatD+iGqBwEU89rqd8cHLOD86fMrEFtXfYdY+2Orda6N0yH3RAf6+F7RHGtm8okjgYOVuTkkZHTV1YtjHgoyaKV5W0V2nFom/59mHNybs7bu83jMYGZQtImhRLSBWkEQKxQyCgUocKCQKo3klR1AjIYrQHelRqUTHilM5uihBNMSRvOVYCHQNavZ++Di6kIkshcFaI8nc9MJ2JKC0uUUmT2e8eFTpUv4FuReoXKL+WWCQUAroibXZdgEYrOidsqRKDSQ6dNCbVmDSltMc8u3rO/eqe9WbDcnmHLy/pRxNUUT7avM0+ecrsw6dMTs9ZvYJ2C/dvl3zzdy9Yv71ns3mgGmtKFPfrhvuHO5StaVXkobe8uG2Z/fxbNq3Cjiacls8wx6U4bRVppzYQQ4eypbC3kmV6ckTyEQJEo1HW7XWMhq1wYLHk2oLLLVshgt1VigcnXrWLQQfOutGWs6NzpvURzy4/YDY94le/+TXfvvyOr168YLvesGw2LFOirmo+/uQDjqZzfvzDz/n0h5/y/KPnmHFB9IHUJXQHo/ERaR24v9vyxa+/on43ZXQ64836nno6ZnZc4+ZjmBZQFNikmXUzzp8c8/TZ6feao38Ag4VdQB0TaCMAy/OPPuLq8gJrDfW339JsN7IJ5uve9z1t2xBCDxmgkBf0WCKVMzx/dkUiMRrVfPLJD3j6wVOeP/+AsiwkcRiCFjW8B3LSJi+1qxQMIIs62GDJz939P+GM4vhoyg/Nx2w256xXC/R2y9w5jouSUYKIpomevm2Jvhdhx+AFXKkqprndyRXiHGCwbPuW5WrDdy/f8O7mluVqnTdHBUoOgN4HaBoWywXfffcd19fXTKZzxrMZg8jZYyp5+NdbwronKUX5ZM74w1P0vOb+q1ek+zU+FKS2IdoI3ososPfC+rGyAJquJRVQTsZs1htUN2bsSuoZbJYdzWbD+uaB8vgIU5VgCqIZBGuHMDDPRw7+dkUhhbBUnBF7MBLaarHRG9hLQ4CT5zgmQchJPSn2sop9zPYxuULbZ4WBENB9IHU9qRNQpt22IrCkCoyuCL5ks0l8/fUb3l0vWK1aUlQUeXPs207syLPLRIiRPga6FOhSJBBJSdE/oqMJHAIAh/c4O8eI3c8dJLtZ8guUFuOmXNUd1kCIidYHNq2nC4mIFqqksWK3qIb+S0APLSADVV3atUAS+khubXkv8DyIYxjesvxuledG5fej9NBaZ8V1wDhQBX20rLc9t4stL1/f8rDcsm3Fgllp6fm1VuMKi3UB4xLWalIZMDGRkji/aFX+HsCikkjnDvHW/xQAy3haMZmOqUcjen+T+5DJAGsUl9QIvY90XcAojaksPihiVKybnk3TsW172t6z2WwpU0FROmzh9rlWPtgGZwU1tH3svoY/8244JHM7eT52bTeHAIs8nt77+zAOY70dpJ2v5c4yOTs/JSW6OwlLSo67uyXffnvNy1fXLFdNdlTSA1FfGA/ZKjJFUFFnTdaUAZZ9ouLj77fo/UOHcRYXEjHAdt3RdR3bbcNmvebu7o6qMlxcHDFUT0124rq/vWfx8EBZOE7OLynrEaqoGOGEbutg87BAZ92Lsh7t2siT2M4dgCgHrSXDRO/mathfsjbOkJRltyAy82FwapAWWyuMGaV387Wbw90v0gzlk12xIqPi223LerNhvd7Q933Wa0q5717JXuhblMoC1THSdx1dH7KmjmZcTxnNTpidnJOSputbNs3jJXv5Yu2v03A5c4WsqkeMJjOm82Pa3uMjaFdRW3GASp28fx2itGx50VDQNouyq/c1Nna/UOWOqvS+k8Uu9BhAzfyzO+bdIdAyvOeY6FthRQKYqnofwDxgfh48a/fIbmYPNrahjVOqilpsmXPFPkZpRdxst6zXW3of9u4O/P7XIO6cEbZHG7P5Ea4sCTHy7vqGxWJJ37SUrqR0jnoyw1U1H3/6KU+ffcDl5RVXT55wdn7CZDamHIlrk1aiA7CzySWxXq0o7+9BwXg2kVahYU9TihATTdPhe79zuLSuYDg/2bGHOFw0783BvrCXdiEqUZJvcchIYK3YEe9EWvN5nediAFdiiPRtx93tLff3dyyWi8zQlDmNSeDtiCLmwmEEfIIuBtquZasSerWiSwmnDF5pOh/wwUsx5pGGtla0jpQBgrQSazsYU+3i3gEc3DFYldjIp909yu6eE8Fsiy0Kmqbj9u6B29t7Rg6MkrbakOLu3DN6aDEarv8ejN7dBeqwNf1gDe2PyDytCWfNzgXU6OHM3H0YeWaOvYYQaVhj1lnKupK4KMV9DpRAR8V8NOFsPOPJ/JS5KamwuKBQDMyb33ljg1bh/wQjRE9QJlvOa1LQoo9BgVKZvbGLmQRs7PDcbVvePKx4dfvAkT3CKYc2Do1BRy3IpQ4ZpxeAQkeNCiIDkEKSn0lSwBPlU4+K4tCWkkaJToGwJwcm4A4P2+vn5QpdBpWzDlhSmaWkd5dQK00i7vONKNoz9B2x3RK7BnppUU9RuhWUUgKiRXEMDEqABTGGUBAyIBoshpLCVFRljds+YHSgsAFtepJp6fTjbZaf/8kf8dGzDzmZHROT5vrNDdtFw4vffIUJiRB6JvMRzWpJn3r64ClsmfcIw7YzvHp9D9pSziako5qJOpbiQmmEwRN/R7BbgalKUkhZuBmSNhm4FMfB4d49XFLSqif7m0mS+6YMZu6TGBhAZpUUThl0YXHa8enHH1FWjsvLM46P59zd3Oa2nsDx/JijoyPOTs745MMfcHJ+xvx4DllbixBRPuFshbYFXYT7zZaNSmxUpFWekbW4ukKPK6gtOGHolJOSyXzM8cnR95qj7w+wZI2AmK1QrSuYzY/40Y8+Zz6boBTMjuZsN2u2a+ltiyHRbNasFgs2y4WALJSy8cQeZ2A+rvnTn/4B9ajm6GjOZz/6EccnR8yORLwxxRZyUjcIh0l1c7Cw3Af2g6WkjGHW03vP1Yjl4rh2zI+ekmKg6xrCak3pA6UPsFzTtuKa1GzXdI1UtmLyVFXBbDbh5PSE0XhMVZa4XIF89/qBV29v+Pmvf8ub63vW20ZQem1JSCW263qafsm27Yj6F3z55ZfUkykfTye7fSTFBI8kJLf++p4YPaoyzH7yhPr5MQHwN2v89QN9LAhtS2ciqfeYmPCbBpTCKEuRFA+rFXZaMjs7YfGwQB9NmCXL6Kig7Rc0i4bbl6851iW1cqiikJ5KJUmfZqgIacQOLh9OubVGKQWlxamRVBNy32zSe2BmxzqQ8BBUQHRZBGRJPqA6NajB5kqetBSlriN2PaHr6JsNfdOLNZ6rsUxY3CVevrznv/u3P+fd9RrfRFwSwWWVoNluif0U3/f4Tio2XQo0KdCmQE/abdCPOQZNkwQZyNiH1Ls2FyU9x0L/hhAt2g5V7AyHJCVVhFz5bvvIuvG0fSIkjXW1CO2bnAgMSYXWJDwhX1Pt5LBSKKGuKrLA5YE4KgiDKEdQirhbe2pICsVqaxeYyLcN2tYkVdC2hrtVw+vrNV+8eM39ckvTBSJaUHUrAEtZGoxTGJuwhUJbvWPxKD2SliNdQBoopPleZE/9T8N1/l3VyH/AGE0KZvMps/kRvf8S36XsvqYJPpFyq1cfIxoRNXXO0kdN8Iqw6VisG6ablk3TYZcrxrmFsqgSRkk7oSRPcnOkbHUndqC7pqCcx0UJWvL72zHk8t6YMojhvRdR5N3YwTD5x3cyj79Df5cRcz9CSpLAxaRIOKDEB8fLl3f84pdf8tVXr1isGhGvze8lkghEei+OLSJ6KMF6jOBj3L2+BvoY8DEI5fSRhisKUtKkqNBmgw+erpXWmLu7WyaTkhhithEVxzytDO/evOPF1y/wTcvTDz7g6PiU4/NLdLLYqsaWFWt9T+ojofNobbBFgTZDy07+UErlxE7vE+V9Rp7ZRtLFLBil3MAxduzUmTLIkpAgX2vLYOOcUsjLckj603vMJulKyhTsLJT5sFjy8LBguViKQGUUcKkoHElB7wUAtDkhCb2nbVra1tP0EIxlNDvj6OwJx+dPaFto2o7N9vGo08AOiN8lXAOQqA1lXTM7OuL88gm3t+/oA6AFsHRFQexa/GZB6nzuQY90fY9xDmdzyJQOWCDvgSN7nY6DjPFg7uA9BsthJX14rQgpRrluXZuvb8HvKdAdgm2HCf3w2GAwkL8vtubkNa1AD8w1WfNN13H/sGS93eJDxGT9B5VFmwcr4sdsCfrd8fz5h/Rty3Kx4MWLb1jdPWCAfhy4vLxiMpkwGk/405/9KU+fPuX8/ILJbEZRGhE4N5IUJO8JbYvvO1II6AR3t7f0vmezWfO8/JhS1yird3GiD5HNpmHx8MBkPCFGmB9VDOh1zOeWbHWy3+ndvL4vGD4UPVICOk/q5f30vsdUJXZUkfJ6H0BwPbxUBrAGZ7KXr17y7t1bFosFxums4yltJyoa0Z5SOrPOMnihFW2KbNqWzc0tU2cYO0MboO09feeJ3ePFJ8Y6tBHgCO1zgcYOssGgVGa1qswo36nQyJXUkI+s3bpQUYOyOFtye7fgi+T54rdf8sHVGdNxidOIM1dOurXL+i5KsQuQDsZOr+p33/zwwO4Mk32zsCKGq1Vm6w4xFuQYK8df+XGjpKimtME5Rz0SYewYIoUtUD2YmCiS5tnpBVeTI57MTqjaRIG0DsWksuBxPosFDoAcUyrFHlR4pBFiTzAQtCYZRQpD26kUuARgcRlEMiQ0LYbrTcsLHvjVy7ecjcdYW6NtQYkR8LbvZB1oR7LyOVTU4E3uJUokB8REJKCRFquUFDrm+yM4ks9CtUbyADWwBwcH7CTTLZOks9tk1tgZ2mejrEmtc7EnST6gfBBwpdnQr1aEzZbUdWglWpuh77FoaXv10k6ZUGInrSwhdIILBeE9GVXhTI0zBToFnIpMKk1he6B5VIbtv/iv/guenD5hXIywqaBZ/Hvu3l7zi3//tzy7uqBwmpOLI36zuqahwxtw2mYNHEdIFd++uuduueG+2ZCOaj5Q8HQ2oRyV0mqv484NNx9N6LKQ2D3m9h6lSYO+0Q68RIRrGXxfFSjDsITSkMcMoFmOwWWyQOqeIkrstOX5kydcXZ6x7Vr+6Cc/5s2b13Rti9KJs7MzZrMZx0fHzKZzKc6phEdAZNUHVJ9w2oGytDHRxMh2u2WjAtXJDDcaUc6m2MmIVBekDLC4ScXkaMrZ+f/MDBa5DrLZay2icMenZ3z0yadoFWnalqunT/BtI372IbBaPNBsNtxev+X1y2/44NkTKmcgRkK/YVJpPn52wdF/8c+xzlKUJScnJxgnFlAgkx1T3lT7jITGKA4ru8Dz/Q1o2NTJyOZQMZfvIToqQGwbYgyoEHBW7DYDYExBHz1t52m3W1QKWAVBKebzGfOjI2bzGfV0yqis0Giu72/45tU1X3zzmm/f3rHatGJnqS1KFwIFxEDbewIKQiS8ecPPf/63uKLg6PiIs/MLSYJJ8Egk3LTuSBcl9pM5z/7ln6CPaprXC0Yb2GCJSrOhR6sCgyb5xO3bG6rplNI6auV48e6Oyhxx8o9+xO0v/5p20dC+XcPTI+YXF0zPDd1a0SzW9NuOUZxhpwqsE0T5oAhgMzVMLHuDHFBKxIeVLvaHmhYXGZlhcYUgBRIa68pMOQUTNZgK5RLYAF0PvSdtG/A9BI8KLdp3+KYlbrZcnlyxfthwf7Pkr//yP/DVF++4uVlx+7DG+4BNmkoZaleRfGDdNKSL8x193JNYh5516NgkT4eIKD+uSfO+phxhJ5Q6BPpGDcFJPoh398s+yAYIoSeGTrRxdKIPkaZLLNcdy41n3SaUKcRKzQj4YZ3OLTsan3N1qcpIxVoE7IbYcADAhnQhZYG/ffXlvUIRGVhLop8h7YY1WleEWNIHy/0m8eLVit98fc0vfv2S20XDxovDjOqhSBqlndBoc4VPaYu1TjbypNCqwiiH1vKYyui5VmQl1SFpUAdfjzSU5fjkjCdPnxHiX9F0PaEPEJK4H+Wvzif6vmfbeDxaqOk4uu2a797cgrXMT45wtcOFSB/k1AshEGJAZ0FbEZuVuZOKWt7rdnNzGNoq0kGb1ACkaSPtVlrr3Jbwu0DLALJkIOW9kV1W8kJXSmG0o+0SypQYM+Zv/vZr/tW/+gv+/M//hlevbuh6WeMRYQEkJRCLD+LQoZXF6XwGpJABmwH8k4qINko0gx5pGAc2KULUlKOCE3vCfDbh9HRKXWnmsxFd29FoRVVUOFNQupLjo1NWiw3fvviOF1+/4u2be+avb7l8suD4+JSTswtm1RE0njZtWZgl5XSCqyqKWtwUVL64aaCK66xRcCDEqNknz/tPfSA0PVDYh1s7J9aCbetcJTkQTk0qJ4cHcxvEQSVE0Va5u1uwWm1o+57CWorCif6SVpjC0nRblqt7Lk6nRB/Yrrb4FoI3oBzl6IzTq485uvgAXY25uX7HqllKP/xjjqHam4GVNCTASlrexpMpz559wGa7ofeJh8Wa09NTtKlQhaZZr7jftvRdi1GKIil67zFNQ1mUw4XPv2Pf6DiAx+9XuVVmHaiD+Rv+nX9m2G72/Sr0vbCmlFLS3uVsFgj9ez+wzNkBkHr4raSU0Lp1Vk0S/ry0NmRXsPW24dtXr1lut+Iqp43Mr8v6ZzmAHnAdTcb0HjHfq6zjxW9+y5dffMH1u2suT0+5ODvnxz/6nJ/97GdcXFxwcnbK/OSYoiiwzgJqx5iCAD4S2kCzbnPFXBG7iK0s201D5yOT42OOjKU0BoxFp0hdjyhswWw6wxqLtQVi4pA1hYzCk3afead8lCKlkvY9FRNpm91RQoRNz/rdNQ+3t7x5/YpVu+Xio+c8+eRj6idnJCuFI5XkfN0NI23Z725u+PO/+Hd8+eIrFusHtHagPCgtbBikRR9rRYE0ZWZLFN0sBbjg6AKYLlH0Hd2iwS8b4ubx2vKMK3CltAJ1vcc6cWuStmV2IKEakt4dlqGEGZstktVu6WS2iVZU4xn31y95uLvl//Z//3/xL/6zP+OTj55xcXqUCyrSmh9CFPFYK+tNjnUBPuQV8745JIGHI9/EMgMScReFHaoHmbmSmYE7Wg7Dh0Cw6Mgg0qk1TMqa2joKIGx7ymiZFiUfnT3lk+MLJsqh1sLYEAHeiCqcJPA51g1pAAPkPN+Duo85WkL09PRsgyEGi8HhkqJLnQB5SuGMxWewIWC47XvCesN/8813uNmcz5TjR9WU4+SpQk+FOHvGUBJDQQwK+oAyHu07KUDGiEoKPVxfREx8JyjNEO3nCNIMouLAUMhLCbVjHctzYhRWzK5AlNtSehJR9ZA8JnTovsUvliy/+paHl28Jm45JNcV3D3gFUStKbfGhRbUNYb0m9dnKWhu015igsRF6bSirmnI8ISkjjrUpMR2NKI3cS6p/vHPuv/pf/UsqW6B8Yl6M0J3nN3/7S774m5+TTuYUoynleMybv3ngQXnStKY0I0wTKDAUtuJ2ecPr1Tv+9u0XvLYNn7/9ET9dLvn8H3/GeFZTVFbywCTAl1iLyBxEOABUEmowwMvHWdLkWNtIXE8ShlvaEyR0Bvd3gHUuFsWkZF3ErHWUO15Klfjg4pyzoxmJiHVyRmkjpgApNgwFoth06HWDWnekVcP1mzfc3Nyw6rZ88ONPsVWBqwuKoynz82Mmx3NUVaNKcexSSmHHNdXRlNnFyfeao3+YTXNGpl3hODk95fLqiuOzM8j2r5+ufkihlVjrGelhRGna7ZZXL79j8XBHXTqcsegYcFph6gLDVAJ8Zylspiv7Hr9Zk5TYPYfoib1HJ4WVjPz33uMg0DhUsZLKgU5KDDx0lcUvdRZmFFVqUMqQSFIRNY42SDVgvVwSvUdrhXMFZ6ennJ+dcnp+TlnVKGNpm57ffPGCL198x3dvrtl2IhQVkyQqPoqFbO8DEaGmxujpHh748osvGI3HXF5dMpvPKKsqV5gfJ3HwJdTPZ4x/com9KEldJDUdvYeTTz+hPJoRxrUkn1raRdrNFmcLXFli+oDebmFcENqOyfExWlmWb+44Oj5i1a7ZtD0hGKbzE1yh6DcrcA5dKpSTAHOnzbGLRyNt2wlgl5Xgg/cCHmiVq3c6r1qNwMZCIwULFnSpUalA6QhdhNgwsFZQAVIPoYOuYbNYsF1vWC82vOsCb1/e8O71HV99cc319YbNpid4sUnU2lCYUpD2IFXjFALee3rf41OgCT3b0NOlkM2dD4LdRxrD8ZpDefktB+1wA4iR8gaWlDyS4hD8HwYXkoSHEGm7xGrTsW56mtYPtbT8CfLhlcHJv+9sTwhrbJCLUGRWxK5lQQBRoZXvW/lkJ97rxUQ0ISRCilhnCamg6TXXDytevLzjuzf3rLaeNqTMYEg4A9ZqAYF2Sb8SG+DhfefrJeJ6aVcBGoCdoaVm+GyPO2vQd4mqHnN8coIrKlbLlrbz4BPOWJJWRJXEeRzoY0I3HufEfroLcLtYY4pbpi9fgfFsmjFNN2YyGaON2rNXsj2m0UbuFxV3rSQDnIIa2k4GtXe1+/xS0dZoLM7t99BdS+gBME0aruH+MWHTSrCUYsiBjbhGaKPxUdpMfv6L3/Lb33zDq1c3eI+wnlA7oChzqfN7zp3rOXhVKu2SQoYaiQJlNFb9g2oG74350ZTNuoUkbC5XF1BZ6towGTuqUn7XIWu8cCVXT57hyhHlZM79zQPBB7xPrO9XhCayediiVEE5mVKMR3RRUcRE4QNjYykLm4VZEzsGy27hpf3/huWYDh4byke7vw+tYvt9gDQUGQR8ECAuU6fzpqwQdlvX93SdtEPGELFWgEtrLMZarJN2jBAjfejpQk8XPM6JIHbfeXwfITlcMWF++pTjsysm8xOUMYQUsIVhdjR+tHkDiGoADQdVkuEeEie0sqyYzeacn11ijWO1XHN8dIK2Bq0LXDUGu8C3Hc12uzt9jdICsBwwY4e9XuVFsVeVSvv5yLEP5E142L+H11FDsiAtV8EHfB8IWVTwfeD3EL7OU68OGTXs/rZvvU3v/94UDvMR+uBZbbe8u7sVrTmkpawej6lGI4qq2jFY2P3mgz39kcY3X35Jt91yMpvx/B//jOdPn3Fxfs7HH33MD37wMdP5nMl0giuF8aW0AA2DjnfoPGHb4rue0HtMEo0mFRV1UWPKAlsV2RJYkn2tjYiVGrEZNVqiDdEFEMFbwaPibuMbSAQqJXRKxLYB70l9IG47QteTWk9YtzT39/TLBWm9JcUOFTwqhayhG3MBQAsgomTP971ntVrx5s0bvv3mG1bLBaSI1hk4T+KCyUDTR2cCm9wHcUhoUm7LTCJuHVXENz2x71GPKAiulFxHk/cFaRcSAww5chTWugzkwg4QzOfH+0XRzOvJDCBjC6yr6NstX3z5DZenxyTvqYuC2XyMMQKmGOfAKKLav8rBG8xuQzlySuzYkgf53f4QG8DSgaZCjluGgHV4p/k9JnK7UgZANVA7R20sNYau85yOR5yOj3gyOWIUNTaK8wqY/J7VXos+KVJUuYChdnpPfw//5h88Aj1ktx/tDVAQVaCJsI0butQSdDwgUsrGEZRmGwMv11t+8eodfVAUpsCejNAOCp1ERzYEdNZ+GoS7JESI4AOx69HGi4i3zfHJ4DaqB7Y7u7bMQYdGZWvmlFRuA5W4QyexchbR90EmQhK+3vcYIjp5TN8RHh7obu7o7u4xXuYjBPAxaw+mhEoBfEfsGvpmK8BQyopBMaEjmKSJSmOzuHMXgjgeKoMpSlCW4BO+ebw1N6unEmfbyOXVGT/68Sc4PN39DVVhSMGzWUeW64Y+gq0qxtWUEJbi7Eog6kgTe26aNb/46isak/AaquMRT56dc3wyw1XFHkTXKrcdZzvu4SSQG3WvGcfQJZJjQtjFi8IkVVltRQ0S0TAstQyspsw0SuL7noGZSIwJp6XoZPIXiV3BmbwGTR+g9YRNw+r+npvbW/rQc3p5zvzyDFs5dOHQo5JyMqIcVVhXopVoR0mLqaYejzi5OPtec/T9RW7TPiB3znF+fs7Vkysm8zkgF1pHT6EVhbEiY5oCy9Wa4HtevfqO5cMd88kYOxqLKKgGpQ02lShj0MZgUhQnikz/VpUjJqHshq7DaYtxDq31Hs1UB5ObKYO75HDYVAfthygVCBWS9KbnirdShqii1Ha1FZ2KbcN6tSQGj9VKrJXPTrm4uODs7JyirAg+sm4a/u63X/HVN6+4WSzooqKPcjMZbeiD2ON2PmS0OuFDoOlaXrz4mqquePrsKT/8/DPRc3lEW7Y4M5QfzZl8fg4zQ3i1pd909CiOf/RD7HREiyct1iij0c7h247QtMRth2o9btWiFhua+wXTk1OaTcPi3T3zq56Hd9dc3z9gJyNmR3OKyrBtN+gW0PnwHaxNh9QuScLUe4/SSm5Ko+l7L0UzY7KbXhaakwmUedUaAVjke4KSRsBD8FmTBZSOJHpU7Ih9Q7t4YHW/4v52wavv7vjm69e8fXXH4qGnD5oQ8+sirVGlK4mSCcqvj3EHsIQoAEsTPD1pD7A8dqFBqYOAeR8dC0NkyPISMNgXC32YIRnVegewDCBLiJHOB1bblvW2ZdP0ov2Rcqt+TgKGtIEhEOCgnSENgQD77ob8NhORFPodSKO03idxWcRNCm8SlvQh0IWE04Y+WlYtvL7Z8OK7G169eaDpoB/OaRLGgCs0RTHcU3JdIgqNkcrHLhmV65PS7tMAUaonQ07KwZt/pLHdeoqi4ujomLoecZse6DuxrpTKpQhZpzhc58SmDZQojAGfFA/LNZGAqzSRjuPlmM1mxrMnV3mPkL5pRMYkr7GdwlU+2NI+EVR77YABZDncM3VOsofH4tCSkwag7hDsS+9dspRCTuZzwj44NmlLs/G8vV7y87/9NS++fsXNzZKqnuY2FPYA2CCsPIBAwu9lsLdMiSxmtwfRtTHYvwdo/75jfjRDq5WIKVpw1gpTMlqOZhVGJ1IWsh4CgcIVXFxeMTs5Y3x2zovfvmD1sKBdbWlWLc2iZaEeqKsZ46OWcjalCAoXApUP6KoWxqbSmfSQK9S7Kmy+6IM3KbnSlw6vde4J3yX2B/OcpJ1JKQFOxUJbZ4BluD8EXAkx0PYdXd+LplUSAMkVBb7vsFYcMwA5z/qO3neEFHCuQAG+8/RdRNmCsphycvaU+fElo8mRlHkNlLWjsI9q0kxMceceJK2VaQccKW1wRclkMuXi/JK2adiutoQ+7rSnXDXGlDVp27Bu2l3Lk8v71wBQDtd2x/BSA89wmJ9h1nJRQQ2gSmaSHezjMoSdFXzE+7yOskj5+1XavSDoHt48AD85BFfkDzWwV4aMcgB9FHR9z2qz5vr+PjNt98YF1aimKMX58GBjZ2htecyOhXevXjKdTLh8/gE/+ewznj/7gNPjE87Oz5nMprhCdKdiioINDplniqTgaTZbutWG5D0qQmGcKExFqMuaejqmGI8oXJE1ZjKAmcEjoxTGOFLWiNCixA7IPa5NBtQGS+6UUCHS3T8Qti2p6zFdJKy3xKanXzd0zZbQbrExUjiLteIcpgdAJIIyShL0JHFo6D3LxZLXr17x9u0b+qahtBrnTCZQKHQcEheZlMGifneGZTBjCAEiEFXCdwKwEB+RNab0TjPFGLsTY9610WSh7R23dcAfh8TqAGCRgoCsoZik/ciVNV2z5eWrt/zdr79Ex8jV+RmjcS3FmIjs/Voq7AzXALUT2vz9ezXK3jqAZUO7wkGewAD+xINVegDC5FOOwZZ2+JbWirpw1NpSodFBcV5NuZocc1lPMZsOHbJrptWEHJMJ+KN2kisxn+fsABb2rpGPNKLyOU7yqCBssIi0vDdpS0dPUGEwYMrW49Iy1wHvth2/enVD1yXGRcFxfYnVBbXVmJBQIaFDEoAlDltkDuJ8IPaeZHrASXHUwq6gN7Snq+FzDzdOGqiuMk0ZDFOA3jk7yboPSngXSUWCb7BGYWPEdC3N7R3dzQ1+scTmmNf7gE979pCKntQ3xG5L32xFs2Xgp0cyAweMlvPQWEPne3xSJGVRxYiIxfuernk85y6nrVwLDcenMz797EMK5bn/7gXtStxNV13PdtuhjKGsRkznM1brLanfovCgE0EnNsHz9avXNDHQ+sD50zMMkrsf2YIBNVQpM7W0xuRYK8ah/SszU3Kv4xDfk0HIQUw9ZcY2SmWTobTLl4acIhlJDGI+unVC7N9jItCjCyOGEPkxWR5RBJCzmLTtPH7b0q/W3N3fstysqEY1Fx885fzDZ+iyAKeJRkthxRqMLRAx87STHSnrmqOz/5lbhIwRcUVjNFVV89EPfsCHP/hBTl4iVVlyfn6O5Bc+QwAA7cpJREFUU4pRUTKfTHhyccrr1295WCy5vX7H7bu3zMcjxoXBZI0MlZI4Y6REiD3dthE03ErFQWoOEjgZYzOVU4IiQUZzAnUAsuxAlfz3gYIoSansbDsZ3iR9X8YUeK2JRlp0Nq1nsdqwWa0pnGVU1MxO5jz74BlnJ6cczWZED2/eXfP1N9/yq99+yUPT0kYFtib2cijHCH3bEmLMFRFh6Gitqeua5WrJN99+w1/+5b/jn/6zP6MsLPXo8ap79R9fUPx4jv6wJrqOu5sblvdL9NUJ9ief4MY1cb3A/+pLrFZYayiNIW5bOpbY2xHHMdHdrnn153/NJ/+Hf0lr19zfPFD9m7/jr/7yL/nNdy949mefc3Y6YTb/kPnZCG9LsNlPPiUBO1JuYdBi9zUe1TK7KUEfSE1P1BBsQrvRjomk4zCnAqokA0nHTKNPoHr5fkikPoAK8qQYCG1Hu9hQJce6jayvF/z5v/53NJuE7xUpWgaZzZgCKhmcqZjUYvlYFY66Kum6jrbraPuePgXWfcs29KJnw45N/bhjEPHaRVD7k1euqSTAwhyQBDslCCFKD6rW2eln6MVXWSBUcb/c8Pb6jqNRzQcXRyRVUStLUWli0r/DihWwJuYqgpxtacd4Tynm3ylK/+vVPSG7wTjnDhTyNbaohI5nLUk76csA1q3mfrHl7c2Wv/r51/ztb77j3c0DPU68vzSgE66yFJWlKLN2izLyhSEkk8GfhEdcZ0y+YrJ5ysYeDir3v8PReJTx1dcvODo6ZX50xIfPP+T1y2uapsckICiUCmgMShVgNGhD10a65LG5b7bNNntv373k1782HM/HPLk64er8jKvLC2azKUnEceRQCoHBsExptdPTef9j5cBlCIR3X1lbK2S9HKVIKdJ3vTCV8r5wuMfuQr4haFYRY7WIKcZI6OB+seWvf/4l//q//Rv++3/7H7i92xKjQfrR8ppVioFJkZLeBdlEjS7EHSqlRO87lJFKCEaLw4tGnGweaUymNVorjNbc398T+7jTM+n7HpyisHIYhxDoU49VFaZwlNWIq7NzRkenLK/vePvVd9x8/YpCW6bjKWndsolLNuuO9vYBezRnfHaMKmvKskYVJq+rg3a7nEMPABkxs+mSgCx60GGIw16YwbHg5f31AgYZa3HK5YR5SDCGF5e/NtuGdrNms9qglVhum5zoO1sQy5qheVXskCOL5QNd31FVJeNRTb/dsl03NBvP+GzK7OQJV09+QDU9QRU1XYhMj6ZoFSns4+6WIQ1MPL2rmuskbMTBSnU8mWKV5fbmluViwcPtPfPzU6qiwlQj5ifnaGNp25bVZpUtwCPHx0e8t5gGZkgaDqfhi4OfG/brA9RDqfdfRwHK5cqZonAFzjlc4ajrescKOBz/0VRryA/VHmjRSu3Fd5XKumaRvvfc3t/x7vaWm/t7dFGAMZiyYDSbUtQ12jkGBs5BKvyfeAPfb/xv/8v/kqdPn3Jxfs7RfIZRetdeYp3oL8TodxiRxImevmlZLxb85m/+ltj1zEcTfvDhx0I4D4HYd1ijqKqSelxTjke4/HoC6u73fqtBRbUDcAdXqCoizic+ENqW2PU06zWb+wde/eKX9MsN9J6L2QlH46m4SSpFMGBqi6tGXFyecvTknOpojFIRcwCbFUkSRhUi3XLDu29e8eu//gVlUJyeXzDOFsdt39N7T9d6VptA1yX6XlrbyXtyUIqgpb1p1WwIGIIGpxLrfksTW6J+TIAFKYhaR1FUGYTax+JGGwFd0xB/5zFM5A6u26m2ZFA/YZSjLKfEOrC4fsdXX33L5uGBdr3if/e//99w+fSCqigyW0YSTsFW1PuEk/S7vxMB5vK+p7TatXUP7KLde1PD6h1ArLQzfUoaMBqjHCFr2xXGMa/GFAHMpufDo3N+ePaU03pGsY3Q5mq7gmi0xDQpUmpZ/8pHrI7gNTFFAmJIYHROTh9x9C4nk1ER6TFaoXXAp4YVW4KORKsZjUu0stIOs+gJ0ZNIrA18tVhzu97y6vodm+Zz/vD5B/zh8+ecGCdgRptwNoD2oAyhAVtIi7a2iJh48MS+I2FQbjj3jLBVM/qkdrOQaHK3GShMYmcVrH02T1GKaCBZsWM2KTIuErrvoGloX79i+fUL+nc3qMWSIkY2MdD0LV2KJA3GJjQd7XbBZnVPs1mR8LlVKRG0sF20VqjCYioHznC33bKNmsKNKatTQipYNy1394+nNdZ3vcSOOmKUZ34ypnlyzNmTU37+737O7fU9d/crJhSMJjOOTk949uwZX283rELLNvVSaFBTzrTmrtvy5rs7bt8tIXpuX13z0z/6nD/5sz/GzUboQph9A3uElGjbFqUEbFEKcWZNAFn0P7OQZNUYgtISi+eiok4cCJGzW1MAOC1sEm1QVgpbKq/JUBgCSNE7mWwyoLEpoX2EzuOv11x/8YL7m1veLW749PPPmZ2eMD45onHgyhJXVtlxdChIScs8CSnoOYspC1T9/dyfvj+DhYQxBlcUzI6OuHjyhNPzC9EaMhZdKAqlmCdIIVHYgpP5nKqecn1zy/XdHaEPUnFoWlHsRi52iKLcrLUIPymjs0NezJ9bU7oCZWTDEUq5Bj30Sg5K+zAIzu2qOWmAgnMwaXQOWkWYdugLM9ZKf7I3hL5n0zYs1iuW2w3VuKaeTDg+PWMynaILx6br+e2vv+Crr7/hm2++43a1xtZjqsoSu4DqPAGhloWM5GmlcOispyHsjWax4CZFfmMUL7/5hrIoKKzF2vr7TtV74+k//4xw7vAWCA5MiTsynPz0KeZyjqpK3NTRffkdve0IVsN0xHa1pWs21G1HZRVx27H6+iXxZkldVRyfXvH1//PP6a+XXNQT/vQnP2JsE/3qlpBGmOkJSlfSN6kgkUUWk0dnKrzSZBvJAH1PZQ0YuclRQzgvML4eaO85yNq76nhS6MC3pK4F35PyV+g6UhbvK0aWkzOFxvL06ivevFmwWDSQEdqYqWxWGSprmdQj+sVa2t1cie9F8LJpW5rY5a8+m9n9bk3/kUZOhCMiGLpH86OwsA7AFjI1MqqsBZZADf2MUXpQpdRiiVqz3nS8eXdLQeR87PDPTjg6GTO1NU4rsJLMSjvGvhI6wBFDpXWYon3lLEplu+9FzyGUOxZTUpqYLMZprNEEJfZ5ISrulh0vvlvwzasHvvzmmrtlx7pLdFEcE5SOGK0onaaw8nydE8aEJkWNUpaU1N5thgymDOs/pRxED5v6Ian48TKH716+piwqZtMZV08uqKqCRKDz4uiklVT89NCArqXLNZGINpFslGJjpqGu1oG+XbJZNfz7v/wV8Q8V7sOKyaRG6ZTZCSLejUokHYlm3yqkkoT1amhZ2EW8Qr8cHISi9wKiZOHpEL1oYEWpvoqwcV6XQ9A6AIv5ZVPU0vqVLH/zy1/z53/xc/77f/cfuL69pW0VKVlxMUi57qgNoiGjiVGAPJUSRI9RgdKJ6GRROZLJgIJWGC9inObvd5P+XqOaz7GjCeV4wqbr2K634iDWtlTjEulkkl3JxyiglA4SaDmDN4nJdMTIWk5HE75WlnbdErvAer2h1JbCFdRFhXEFFkO36fCtxykL7sDlJFdJtRaGZfKi0RGzPagxFqMNxrg8Z/Ks2Pc0zZa+7+m8pywrUAljDXpXT85JRArCFO09zWpF2zT4EJlOJjhA+Y5VswEVqWqHVUlaJftA4xui91htqMYjUJq286y2DUk7JvMTTs6umB2dYW3JwEScTCZoFTCP7ZARgcEaNVfRxG1FPicI0FSNR8yCtKU1Xcck+B3AWtZjaZMpSu7eviJ0La0P+KiwxsjesaOzZMBEJ4YWS1kSwzXW758Jh+DKYVDpxTXP6oLZfCaJnTaigZI/x26BHe5ROaiV18773S5wzX/u1AczWh4ioe9YLO95/eYlb9+9YbF8wJYlhXMU9Yjx7Jh6PKWoRjuAf8Dh9mqGj3fW/fEf/SFVUYpeR5C9UDRj0g4QV0pamnzX0/Ud682Ku9s77q6v+dWvfsXp7AinDCkGacMOXoCOXoAYWzjq2RStxPXGK2m/VfkaibZgPk/1/lqlvufmzTvu3t3w+uuv2T4s6FZr+tWaY2U5Hk+ZjybMbYH12ZrZaFSlcUXNuJ4y/eCCej6DwkpijuivqMFkMURC77n+7hXvvv2OuzdvOJtOmYwqxqOasqrELh3RRHpYtKzXDQ+LDXeLBb33O2c6aTeSEoIn0pHYxphbmSNeP968qSFhykyVEIIAJDEKKGAMRg3gdzr4cz9SDhr2LacpH9MJnVln2pZ4DKsm8NW3b/jv/oe/4rMffcIf/PQnlHWxX3mp3+mED7d8+nuWzO7EH/DPODyq8oQcPGHndLKvRiiVW2KVMKqCD5ho0CpRKcvc1VxOjvn06kOmtkJ3Abo9k0aApCD3iZICmMnMjBQi6KzkmhmcApg+LqqpyxGpk5hQpJPl/O1ReJ2IxqCKAjeeCODfC/NHDUx0rWiBBZG4XvM/fPkN91vP/Sby0w8/5HxaMastJiZUUFKB7BJse8SAQJOstEpjtGgvqoBSHvAoZff7TWLnEtTnXEDYLXoHhO76rDIoZpIn9T3EHh17wsOS/mHB6uuv8be3pNUKmg3dtqXteprk2URPyMBZ22/ZbBdsNgtC7EBJaxA6S1kphdeKorBoV6C0Y9s0RO3QRUlZjgm+p2s61uvlo82bMSYXNRPEgPctqMjR2YzJ0ZiHxZJts6HShnk14nw25/T0hNfTMQ+Le1ax39/TPZhUioaSV3zxxUsKZWiXK8ajEc8+/Zjp8RFFVWakUeLTdik6TlobqrIWoCW3WA55AFGEn00Gf+PhkbHDCjPQmVTOM2BgnKKlxXPIcYxS9HY4i7Ln57AmY09se+J6y+LNNc3DCg08//hj5k+uqKYT9GREUWjpfLEOZbTkL0M+ozWkSIw9XQwoa7Or7//48b0BFqXEmtEWjvFUHDLGk2kGOsxuc6/HiXgUMGgmdU3XR0l8stBV3/X0XY/L1UilkAp8rjxprcBKoJ0yMq1yMj5oDwxK7oKAqbzI9ig2w00IObjKN5Xes1mGBkPpDct0WmNQRhNSYNs2rJstXfCMCkc5GslFN4am72jbNb/66ku+/OoFr1+/pU2J8XiCtgXtYg3aiCp1FIBlsH/TGHqEXqWUxrcNmxS51pp3b15zenbK8dGccvR9Z+r9MfvJOevk6TTEVqPdiOJIU19doo5HopXSWdR0RGoDsfW4qxOaV+/wTYfvW9HM6QP9w4L+9R3p9ASH4+23r0F5Ts6mfPTskmQCYbsg4dFWEEClDdEMB4WG6LM4GJnmJ0wTgsdaI+Uka3aCSqQBwBiaKdKuNWygCeM76Fvoe1L+6raN9HpG0fewVjHOVLWnz67YNoHNthMmfAYnVJJev9JYSufoMgXOGifBWu/pfE+TetrY0ycvIniQF+sjgyyZBjmEAMM1YPh/bn1RaTjA07Bt7cGomK8vIhCc0ESl2Dae2/sFLvV8OyspbYTUY2qorcImh3YCBEi1j71N2zAvufl5aC0ZvtJ7wNAgopl21GUtJSCiMvRBse0T725XfPP6hhff3fHmZsmqjbRB4fMBKww2ReEMzhhsZn6kIaJKColg83saaMdKbL0h5YNiCMkO5yrxmFP35vVbri7OOT6acXZ2QlUXaA1t8NKjq0SkVAqme3AMhgpgFLAha6OkztNuO1aLLb/8+ZccTU6YjY8Z1SOGWgH5IEo6EVUgai8ASxxiSZU/psptImlPzU4CxsRBeDBK4KzY21kPdSR1aLO9A1rkLhBaqKHrEw+bhl/86it+8euv+PLr79hsQKkSYyxJC8NK8rXhxNXCbtFqFzQbomAO1mAKA1kgMgJWO4wla/E8ztBlRekSxjlOLk5ZPixoN1vajaKoCjF2S7J3Ry+928SAIaLyNRV3kxHlaML2bsnybsHqYcNm3aL6Dh08E1dQljVlUWGTBKApkIPNfE+gGCq7Cqnae98TfCD4gDWRZBwkhTZuB7YG3xP6Tn42BGIqGCr1Q9uYYDGyL6TQ49uGrmnwfY/SmqIeY1LAbwJd6CkNlM5iU8haFwHfC8DiipJRVeN9pO09Te9RbkI5mjCazKjqiVhwIvdTWZZoPCo9ruPacCuq/Dn39ZUhgZMecpcBoUTi/uFBYsL8feekuDEuK3zXslkt6DZrupDAKOxAgc5jt9cxnGWDPssQnRwMdZjcyU8lJK5CieNKVddSuM1FpjTYng87+oDtDC94+OHZxzzyUG47GCC1KPet7zuWqweub95x/3BL2zWYqkIXBa4eUY4nuGqELYp8/qh9UL77LY+35i7PzojZuCDGgMLs9sT3PmWKO5ePtmnYrFcslws2mw3TekTbdazWa0yEtm3FAXKzxVUlRV/lM0qSWtFpGKBG+TxCkM1A/MCqSJHNcsn169f85ue/5OH1a/ymQfee6UefUE2OmFcjaut27XhJgSkr9LikmFWMj+eYugSrdw5eu7atlIje02+2vP3uJbdvXtM8PHA0qpmMa0Z1xWQ2wRbS3hQSTKqG5WpL6SyRjm3T0rYdsRWgMGmFNklamlOkCZ7G93RRhEofbWSwYRBFDyHsYrPBwl4PgOTQ1rE75/avsYM9cpyg83mktEJbSViDgq2Hm4cNv/jVF2Asl0+ecvXkXKQJ2OOQu3Wfr3XO1NmtjgPAcgf75PjpvTa//Y23B1dSRBOJuygrfwvR5TEBpq7mdDznYnYCm0DygejjQLxgtxYHNkaSVkwVteRBQX6n2sUr7LRjHmvYYkKI62xpK0hfROGVIWrESck5bD0Se172bFOQeLBXEtv13vPb2zu6qOiCZjSaEfUJyjowYINCB0h9gjagtEc5T4x91grSWEoUvYBM+AwM5ws0tJlkcOO9K6GGVmJZr0NsrENH6ltS1xCbhu7mlu72ju2bN7BYwnYDTUPftXQhiCNojAQFaEXXN2y2a5p2Q4x+RxzfxdhKQBblrOjIKCOMMmPQ1mFtgW9afNfStY8oLG2MxGxZnD4EYViOJyPqSY0tDSH2FNoxLkpmozHz2YxiVEFhWXcdJVJ4kNYaEXYNwM3tihfuFSYEPvzgGWU9QSuHO60Q6rXc5/22o21agvfMZkeMplOKctDNSbslPTgXapTEpQdn1JA1MPw/n3m7YDMOZ6nZ5fTCvs/dLELTl6+UiF1Pv96yeVgQgseVJWdPnjA6nmPqGlU5bCEuZ9Immu+dnEMOLXkpKPHvsJbKfT+o5HsDLLawuNJRjkrmpydCIy0KlJWDOOYD0LoR1SRhtGUyGrPedKAKjo4vcEbTt5G+89jpBK1F7FXbwc88SdZhJcAwthTLQPV7hoUydj3C6eBrPxQJ5TuZOJ17og+q8rLtGoyVRF9rETfsfcdyu2LZrKBwlNMJ9XxGNZ3y8uaGxXLJ25sb/vVf/QW3t/e0bc/Tq4+4+vAjlLIsNl8QlaaPUVwBUqSyltJaigx0qCRJVh8CdB3des03X3/N8dExp8cnTI4uv+9UvTfCM025meDWju3rSFGfMTqeUF89ox3XYsHbGEY//AjOV7DY8OTyhPCXf83i65fcrZbockKKkfEmcf3f/pz++Jj1qOZmu+D86SlXH51TjaBJG1IbscGzXW8xkxnV+SVpMiUYEWITallmFaBBZTqfAWUVyersZb9PHEWQS6jxYhWW6bG9J67XqG2D2raotiNuG9rlkruXrxgVBaW16MoRs5q3m1h+9k//EE9k3W5prhvwWpLKpJm6kpG12BRZhQBKUxhHs93Ses/W99yHDevY0TAI3Br5LOlxqZyazP5JadezK+KxMddH86GShCKZm4by9dO5sBlRKaCUtPGABeVY+i2xX7JZPWD7Nd16wf3tCdvwhIv+nNF0xHg6xtSD9SLyOw456DkI1koArJgC2hgm0zlxFHILSw5klSYpR+XGKFMABR7H3XrNy+sFf/nzF/zmyxtevVnx5q5j7TW9KjILTCrIVaEZlwVV4SiMJRlLj4QjCjms2VXxenbUfSWH5CAL/J57Q77FHjOE+fXf/ZpnTy95cnXJRx8/5eR0RjlyPKyX2GQJWHHEA7SWuQR2LYVyyRwkQ4oWQ6RvoN30/H/+v/+edqvZrgKnR2dUI4Wx4hYljjoeH7eZDq6EpRfMAX17+MDiwqENGdi2WTxwLy42UN6N0ey9TFJuMZIERKVMt88RY/CGt2/v+Dd/+Uv+H//v/5YX377letFQqopRZan+/7z955NtWXreif2W2+74dNffqq72aIANwpAaiCFNSArpk/Rdf6W+jYJSBCVRQw6HQxAggDbV1eWvTX/ctsvow1r7ZN5qzERMIUe7IuvWzUpzzjZrve/zPqbIkJXCtiNgJwhoQtB4dPyZOIQCgyXXHmHAlJqQZTgRJTCFLMlzQ1E8HIXF9iODR3Hy5JRqVtLUe7a3twjvyY2hKiu89ey3NfWuoe0GRGdRTqELg5aRWYKSPHp+ynw5Y3e751e//j19s6OTsHz6hLPjY+bHx0xWyyijtAKh4jmWSiJ0NHEbJQ3e2XvwKXiXDNm9IKuqyDRyEajOjCIzEi9lbFKURiriNXOWEFwEi+yA73uam9toEKo1xXRKtjym3d6wbnaoXFLmisoI+n0DdHi/p9nf4HpBpg2ZzLi+uaWuG5yQlPMFuqqQeY5QabhClPgKbALiHrJNBzmuS6l3HQs27/nQ00wJdGEoZMXCSFSmcePUXcAoOZwuT5A6p1Y5N/uOGYqqzNBKxqI7hJjkJiQxGv0PIJW0hY2gSqSwHwy307+FSqhzCNG4HQ4F4EERCvGZPIznOTQ7Yvx63GEdObSaLn1d2iKC93R9zZv33/DmzVes15eYXKIyRTapKJZH6OkcVVaILL/HAk6vR4weCA+3WjbbTfQ60jpJ0yIQFj1LxOFXKSnJswxjNMYYcpOxmM6Y5CXddk/btfzDr37Fspqyub3l5uaaEAJKa+aLJVqZ5FOVxOHhDhgLkHyKYt3hRSDIgNCSLDcIPDfXV3z12WeUUnE2X3B6csJquWBSVZEIIQJegcg105MlYlrCrECXJcFofDKI9KlZ11KAdfRty+bygr/7H/4Dr7/+Gtqa40enzGYTqklJNS2RWkdprwuUqmI5yzk+nrI4rbhdb1ivN7x/c83gA9aDKCR930cwbejYtB37zjP47MGu29goRUWAiBG8wWMHi5I6Mr4YgZU7cGU0iY1AV5LqEgE2DsOYKFUVWpNP53R1je092hh+/dkrNvuevvf8X/7P/ycWizJKJZHpGQlRzpw2dXEYqHBgq4xHcPHrRQL0ZPhuF5G66sQYHgMUpIzMT+d8lK16ie8Dfj9wVMyRx4HCK3pn8dZjwyinTmfEB6QNSB+iB4mEIAOBsbaVUUYdNY7Jd/Dhjsn0jNZfMgwOSQc+AiwDBi9zpMyRsqIoF3FPCU1abiKb0gVPLx1CBHSueDVYbi4u+fp6zXXb8c9+8BE/ff6Enz4+ZmkUuVPoLiSWigNj8a7HuYC3DrxGumguG++Y2Bv4EKvcKH+L9hQHllaI6bKxZ3RI4aKvp7fQtLDd4Tdbtm/e0lxfM2y2+NtbfFMT2g6/29P7QGMDuxDY2kCPwkvFdrdns9uwq7d4ekYKhhgT35CgFFmeo2QCAaxDFxKdZDVD12K7mjDsHu7CieRF6AM61WAQLTaySY6pcmSukU5R5RmLsmK1nDNfTDFVxuXmimVREqQkCE0gAUJZhvUbLq93uKalyv579o3lk5/8hF/+xRJT6GRZ5fG149vPv+b1q1c8f/Gcj3/8I47PztCFIqDueY7J6C0kRgPikWmdnq57YOuo1onPmvxgnwshMObrSCHRSao0AtR4T9/s2W9u2TY7JicLJqslixdPEdMKjCYktYxQdwbK0QwJYky4i6RFov9TBI6/3x73vQGWSZWTlxXT+YzjoxXz+YyyKO6PVA4nVxVFdGrPMkw1oewtT5ZL7NAjCOz7nqNMRxDFa4S3h4IoRJQj6sXlPWQrlWOHBiEdBzTsMPW7+/wdW+Uesj1+t4xeDRFrkVFrGwLWO9qhZbPfcrvd0fSWtnfcbvbUw9e8vXjP9c0NF1dXvHl/SfBQVTN++Wd/xosXH9M2PW/evef85iLGqTqHCh4SvT7LDHmWRVaBCAxDwAVL0zS8/uZbTk9OefToMY9f/uj7XqoPDu8kShQIkbO+3FNOKoRWkEU2gA3QB4/60RnSHSOsRdcdz37+iOXXb3n7b/4Tde0xjeV0csT1333NTr9iNyn42f/6l0xPK8qZ4fef/gPHz44pZhXW1VE36lqabot59BwmFaIs8EpxJ52VKJkhsxARbzlOBCPbSaYNNzibJrseFRx0HaHrCXWL2O0JbYurG7bvz9ldX+O6juW0pDR5jBQVIvq2iGhgPD+a87Of/5iqnPP/+bd/zXbf4x0YMk6XCypl6PYb8lwiNXRh4Hq/Zuc7GmFZDy1NiBRcK5Ou8EGu1odHlFClxWQ02EsDIS98YhP4RA33qRBIgH4quqMpp4vU1oguRKNVmeOUwEpH4+F2X6MuoHUdu+2O1fGCk7MjlqdHEaVXEqlUlHCIe14HxGZpGBLbQagoCdAjYq0Osa+9V9iQIUJO8BnvLrZ8+faSL16d87e/+Yr3Fw3bvaMjw2sVDfqGgMCRSciMpsgycqXIpMIGmaRTMgI/gtTIROAiXph7bAnCYbm6U4GmVKEPsdl/0vH69Svevz/nxYsXzOYLTk5POD454vpmQwjgvMMRaezSeaTw6RoJhJeQ/DJCiGktQgh6L+m8YL/Z89e//h23dU0xn/Czn37E8dGcshB0TTSM81LT7yzaSIyOQE0EqnVqL0KS7kVgfOxNpbiThQUfkowpfUeapkfKZowYjYMEdwC5XYBX377h7371e/6b/+bf8OXXr9jWA0FIpJYcnaw4PjmBTPPm/ALrRwmoSv5aBkuHFyLqoQuTGG0CU0YJjSMQBqiqnKOjFY9OTx/sur374svIdjOaqirJjaKYz5iXBdvtJu4dRlFMJhTzOUsbWK+37HY7+r5j6Huc8BipKVVONS/J84yyKvnB0HKz3rFvO968/gaZa2yatpg8ufHLDIJNU8yYsIQPCBnQKkNmmqBTDKqIxuxSaEJEyVLcdmRAiZFijkzXXiTKuSBYSd93dG30daidIZ/OyYqCyXyCc5amrllvNszmC0oNGk+z31MPjl07sOstWTZBaUlvGwbbMZ1POK2mTI6esjg5YjKdoLT+DutCHJr+hzwO8MYofxulViH65YgkZxgn7CbLYlMv79axkO51pKAoqyjp1ZL3b14dGBar1fIQ9e5TQ5e+++4tjn87oB/3irVw/9XG9Wd8rSLJj0ZmjEjFZEh1hBgj1A8NV4imivKO2XgH3cT3gXUEGxBK0dQbrq+u+fL3n/Pm3Vv2+z06yyimU6aLJcujI07Ozigm0wSMfQilHAgHDwiwZEahEyNRqTQRHgdnzqa9SiS/JYkSCqUUeWZYzeecHR1j65Zms+Pq/TlX7865uLjg/dt3iCB48vw5mcmiF48P0WdKKbRQh/d3d+7i32I0chwCHT9+TFGUnBwd8/Yv/gy7r6HrqY5WuNxQy5SmpyUYjZyVyMUUNS0RVYHQJk2MRaxrR6ZnEDjr2K1v+f3vPuWrzz+j3W6ZZIpCQWEERSbJjcCrAwcNXUhMrih8hqkUq3nFdjkj84Lr9Y5tkxgtfsBjkRrWbc126Gke8Lp9mALE4RmyzqL1+GwJDiQsRnDljoV890E8/+lnOhfrcqkkeVHS7utoxBwk3sPFxRX/6a//Mz/4+Bk/+MFzHj85oSiiGfAhQW9Mokl1yhi7HBwRyE57X7zmI5IZ90YxNm9Bfni/p/46er/HCTte0O0H6tst7169w7aWXOfsbjeoEEWZh3lOYlzIkZmRpimH7Lw0qY+Yjmfw4XBeH/LIV2dY77B2ANvHGjGADJogMnQoyfWU0kwZ6BikBaUJIQ6tvIw1ZxCBPsQ90aHokPx3r17x9eaWv/n6S/7yRx/xJz/8iGcnxzzJjsi8ICRQZfQ283jqbo/SDi1zjBSxHgoqSo2VwqvYE5hohZICAiJ7I4JgFoYO37TY7Q53foW7WTPcrNmdn9Pvdriuhb7D2Z4wDHg7YIXGesngApgKVInzGdvbNUM3gPdEq8/kdWhByOh3qJSmKgxaOLAdGkuRFRgtsbZjX+/prY1x6g903A7RD09IifMgs5iC4xzs64bODpgi49HijMePTjlaLTBa8ujRGU1bc/HmLb3zSCHJp1N2+47BBdxgEShq7wi+5zeffcNugFevL2nawB/9818wX8woyoz58oiieocLgVdv3lDMpwijOX78CKljdPJdUmhE9oNQhBCScsEhD9J1Iqg6fu0YDQcgI5skGv7re8wXou/LYPFdR73esdtu2Xc1blFSPD+lWC0YKo3OdVSlHMyREw87BBDqACtYH0F10GRmjJf+ftfoe1/tqiwoki50Oq3I8ywmCiQ/oohSxyJOKI0wyWyPWC9mVUUhKoK3eNvHTUdIRl+ckSYURpTpHooV65R7EMk96cRhunJ/WnQ4xOH7wuEnxUbs8JXjpEjEB2lwlrpt2DdNlAhZT9109D5g15bX795yu9lws17TDQNVOWWxWvLy4495dPaE9XpLlmcHeqRLNKbgY+iukhKtFU5HLwKRkCDvHLe3t6xv1+y2D6fbE6RJuFBInSNMATrHCtCjPEoryHWckAaHXhYUhUTMcqY3t8gvrxFXe/QgEe/WCCJL5cmPXlCcFMjcc/P2S/q6QUkoqhIpeoLv8LbFmQKGOcLNkNMq0uu4h+gjknb+7iG4n/py2NW8h2GANjJWwq7GrzcM+6iLHnY7xDCgCeTGRMSbNJUnHFQkOlMsVnNOa0tV5rSdBefJkJRaowP0XUueFwgNVjga19H6gRZHk9KDXLqPgriTMT3kcQ/jTQXCBxc23lcipOs2ToAS0Hl4HuI3SSEP7vcuBILUCAXSBHReoHWOEJqhtezXe5RI5n8CsrLAFBmmLFA60fUSOBnSwzQ+X0KAVNHtPBYHCu+SgaDXeFEQ0PRW8vr9hm9eXfHVN+e8u7hluw+0g8QlGUi6aghSU5S8V5SM+ls5rsnASLuPLyM2mPLgTTBep7vrlU7r4ec/5LHZrLm9vWWz2bBaHbNczlkul2it6bokzQkuTb89XjgIEWSWQWFdBEJ8SGEuAgYv6IJkcJ4317cMBM7+9u9xwvPy+SOePj5ioSu0TAZg1idwJK6nMV2NcaFOjBYgOQSKUZqT6POe8fvFvRHD3fRhpPFKGZLaxNM2PdeXN7x7d863375mt28YvEDoSNFcruY8fnzKoAQ32w3brbiTRBwa4JQmoAUyN6hcIzNNrjNknhEEZE5TFjknJytefvT8wa6brWucklglUc6STwq00WTGUBQ5zse0FS9T0kWhKYXASgiNiulrLtLFHTFBZIzTXh3Po7GhCHRDzeb2OiZtZBnlbEZpZ0gtUToACTAZn98QqfhCxaFDSOl30Tha4WSazAeHkAYpXPze8fm8B3D4IHBe0HaepvPYQUA2wVQz8jLH5Dnd9pKh67DDQF4UqODwrqdznqZ3NL2nd4KsUGlQEcG86axisVpRzGYURZFMSu8BBtw9dw/dOBx8HO4PfMLItgqHv983xTfGpL3hD1+P1Dom6QQPQtIPA00jmM9dAsNUTAUb39AB2In/+sMVZQRRuLeO3zX1iFG2MhamESDzPjKDrbXRq0EplBwp12l4gIQDyB7vl3G/iFpzj7OW7WbD9dUVFxeX7OuGwQd0VlCUEybTKPterFaYPI/s4O9MpsYV4LvN9T/lyIyJ67mUqJG5mmQT+HF9lncMZJIvuFYYKcmkwumMTEhc00Y2y2xGt2xwzmGH6N1yaGjTWscIpoV7j8fhUolYgIfIDtNKU2Y501lFt9tj9zVFSJIxZKx5tURkGj2vkFWByHOESfGfo3RslAchwHvaes/t9RWvvvmKZrdBuIHM5FE+5weC67E2ghSBmKAhpEYIidKKidIYVZJrid0fHYaP+75FCh9ZESFQ9y3N0NM9YIrQd6OWx+fHOUeeq2QuzQeyoPjfqVlNzdWHIMvd50R6joyJ4RoxFt6hEXT9wOXVDb/97e8QMmByzePHx0T5Svy+eF1Ts+fvvBoJ330GE/qRDFvuT9gPHx+ApGka4UNkNnhJWzfcXNyy39T41keMfLBIae7Wn3v1SUgsnUSrjYyeEKIsOBno+ZRC+kF4xwMdqpyiigkqr3DN9s6fO2hkMCgyMlmiZY4TKUpca1yQkSwdxpCFtMYIyYDEBcHQW4b1lm3foTNJUIJN02Cd43Q1pfQ5mQkwGLyReC2xDoSIDAjE2DGmJ0VEdjLEBCbpfZKExa/z3uJcR9jv8Ns99voW+/o97naL22xxN7f4viPYAe8GrBui52OIPHAf0qxb5figsUOg3Ud7AeFiSMIodQ8jmylZVmRGIdLeqHFkSqBkiN5dTYt3MV3voY5t16NUQKtAKVQMiRAGawNN08cUVqVZrJYsjpbMljN8cBwfrejalv8iBIN1cTijDEEMiQQSkEpj8TTOcrGpcd+8pek85XTF/PSIJz5wao7QeUk1nTNbLNnVW3pn6WwfsciRxC9S75K2oztbA+62yvQxluKjzcdY0Iexz4dkA8KdFYILuMExdD373Z526HFKUBwvMUcz1HxCKDReJcDy/vNz30dMJuahiMqWAxj7T+gJvjfAMp/PKcqS2WzKfDalyHOUigXAAYE6vHAFOg7f923Hpqk5IXB8vEJLQd/GzR3vMVrdFf/cbX5/sO2NUx7uGs9DFOl96vvhy9P3S/nBqRrPrxg1WAJGE1wbHJ3tudmuudluWO/2tIPjar3FBc+u3nG1vqHtezrrEUqzODri2YuXfPLjHzGpZiAVJo9UVinA9ZHa7fXYdMaEBm9MnCzdo0re3txwc3PNZr35vpfpDw4VKpxXOATzR6eQL6EoaHxgIkiO/ZqAxYY49VBlAWaGWZS8fHTC+v/99/SfvmFoXlOYDBE8ZZ7x8icv0U+n+Mzhwpr2ZoNvGmYvn4LriLIeSb37FjlbopYr9MunqCyLTKVwdz2d9+hkoiUSaBaj1gJCOoIdYOhh3yD2LexbxGbHcHnF9uqKer2mmpQczSdkmYnpMSE2fjbFP4+6aiTkZcZsMWG1mtE3Q/TaEQbjo6Fk1zRMp1PQEis9e9+z9wN7b9l5x4DAIdM2OW6YD3vcaX393eJyABQO2zUhxFg6cUA7494/FtkCGRd+51LEmsOpHGkMeaVZLOesjhYsS4ORjtBZdtdbuv2e7eaW6XLGbDlndXKEzCFog/OxWUPIZL41Ngckz4XxNSqCMAQ0QhSEkNP2gdu649efvebTL77li2/fcXG9x8uKIDMcEutCkjSlCDYhybTGKHXwkBDeIxPVO+a/JcMREVkhUsS1SUjxQSJSuMd9PzQM4eGu33q95eLigvPzcz755Ecx0v7RI7LsM+q6w9lYUEhpEdIRVbA9UkSzvOBcmqmFSPsOjsEHOqEYpOH9ruZqv+XqX9/w/vqKX/z0R/zVv/jn/HS6xGQ5Bo8WGcF6cB5hxmI3mdq6FDVMbCSVkCmOWMTJUgioNHUgjAbi4tCkOJ9EH0KQ6YyhG+hby/W7S87fXHB5fs16W9N7j1cGk2WUZc6jJ6d8/MlLamt58/4dUgtGGO1grhskQgmEkagqx8xKTJbhvSGfFAc2lcDz4uUT/uRPfvZg1y0nJr4N3rJt99h2QlYWlNOKvMhxwdM5R2P7mLiWK8rVHFHm5E3H/nYbp2XeY3G49DolntXxFKEhqwzvLtbcXp2z2Wy4vrlhdXrK0ekJEks1qxB5hpIGpe5t8yEyfcRh4pr+FJIgVWxEg0wa5QGRCtDDepAaHWuhG+C2drQ9IAzL1QnVcobJFEhLs9nR1w0yBMo8ix4tvWXfDOzagX3vGFC4BB5JFZhMK45PFhydHOFVicxV9ExT47497tmpdH7gTPt/DEwZ/34/ZfA+m0WOAIb3kZ1HaugDMekuy5ACympCW+/Z7WsWdUM+jcydUX55//15Ie6A3Hs1zCGKNUAatROCjxIhxq+/BwT5kbliGYYBZy1aawzRpG+MWx79qT6IdB7BBAvjFL7b7Xn7+g3ffP0N7969p+0j06CYzKnmCxZHx5ycPeL09BF5WSaAT9y/cocb8SEBliLL7ozHnScM7rCbamEQqFi0+zuwJ4RkqOpi+kpwHq0NR6sjplnJk9NHbJ7d8uvf/JauaditNxz3Q3pP6Szpuz0AxnpxdHmL1wspEVlMyimLjHw5Iww9vuvotlvoB/AhylVl9GRQ0xJZFgitQWlGMzkhBCGxBkUIuGHg5vI9r7/+kk9/9fcI10evIx0ItmVoQYiB3iqCiveUJ6B1hkhMn8wU5KVink+Y6TxKZ41iXW8jCc6BtTFVaNc11EP/YNftPlh5//xZ66LBrVIJn4j3sg/xXId0b44T7dH7KxZr8f/5Qw0IJt0fznvqtmNeajyepuv4b//9f2DX7AgisFotI6CrYvroiNgIJAwdo5xVKHEgPkilGLMFx+EC459jTTCyXFLjEIKMg75xeXWS3XrP669e021bXO2h4+B5NiaujT4PERAd2WjxvpbpGfMhMAaaOEQ0lf+AsfYwhypnmMkCN7R02xsUMX0Rp5EhRxMZLErkgCUIjSpLAh0+SISNCT3xiOuOCzD4gMsKrLds9g2b33/O26sLXhwt+eUPPuZPf/IDTk+XHMk5xVTfqeozj9AmshuEO7R/kRkWh3ZeBHA23js+yqqDjT4rXb2hv7piuFkznF8xvHqPqBtE28MwRJ+6kMIX3IBAoKUhBJ3qoRB7Mido+576dkeoO7S15Aps8DgCo5unjEsDRaYiU8w5jHDkBpTw9O2edrcj4JkUD5cIe7HZYDJJnin0pMCRYYOm7wL7XUPbxqTFxdkRx09POTo55mp9zbPHj5kWJf9GGpouGt3q3MS6IYTopZjnOKFxYaBr92xfX3J5s2PTDBSLKT9vOqpqwuJowdHpI5z3fPv2G2SeRdNwo2KCk4j9xR2jFDKR7vAQiGEn6fnyxAStsVnAx4GNjKwvIaNELAQfTYYTuIL1uG6g2zesb27xwqOqgpOXT8lmE0SeITKDT2iPvPdaImgXvfyCSCEYKt3/SuC9PfRa3+ep+94Ay0fPnqKMoagqlpMpZWYwMr70Q9JBWihEmnw4qWisY9t2XO62zI5XkYZcldi+TX4rKurCx0U1oaIjgn2/aLjj94c/WKCFuCuixmYvNgbyAACNNEvuvUYI+JRi1A0dt5s1X337Dd++fs2rd+/Y7waqaUMgsO8arPegMqrJhB/9+Ef8+Mc/4cc/+jF/9Is/RkrFdDbnL/7yL1jOpnz79Vd89umn7La3cRLmY+SfGSMwO2KUpnN4IVnf3PL29Ru+/Pzz73uZ/uAQLfTrlr7pqFan2OkEn+fxQfAgRzTauailHVlJyhBKQ1CG5V/9Kf3ZY24HhWl66otz1jeXnP/dpyyzTyg+OmLxyUv8m0vcdsf5m9fMCk2mFVoayiCxV1e42zV2v0edHKFmUyhLvInu+kGDxaN89FQSKu2CwRG6BvZ7Qt0Qbjb0VzcM2z397RZfNxTasFgdxSmSAGFjRLAT6X5UChniQhpslERc3l5xdX3LX/1X/5LbN7dsLrdcvbpEhoD1AZXllPMZrRu4vNly0e7Y9D07N9CHgJcyIfipif9wLPJAx8hOSTF0CUQRRANQ0v9zAqImNU7IR6lelC6llCxEksLECXbnPIOV2AFc51EhUEjJRGvyqkJnApWDt5b9zS373Q2bzQ2T2YKymlLNVmgz6p/jOfb4NKVP/biQOCQOEzcDci4udrx7d83vv3zNf/7b3/HucsP1psEFg1DRkd16Rm97tNIYrzBKoqUgkwpNnGQgPS6Ie0h3ipE9nKeIu4TAaJdFOPwrnWE/UpYf8roJLi6u+Prrb/izP/tznjx9zGa9Yzabsl53seDCAyoVkulaQmQYuCGlrMTXbAfLYB02BLzKEUoxBMe7bc+/+9vf8Ltv3vL3n33Fn/7RT/n42VN+8vELXj57hMlAKh8LDO8RMkSqvVQxySzVkGMKkXf+rnkSd+/lcK4+QKrjueu7nv1mR72t6W8bGAJGZkync5YlkGWYomCuNY+envDyoyfs25bf/b6iyBQ6LcNSCrI8ZzKZgPYoLZieLHj86JSyLLnZbXj20XPyMo+04v2Wj3/whB/98NmDXbUnP/gI1zXYtmG9vaWut2z2t7gryCcTiklFNZ+TZWXa5+PzVswmVLM5i8UJt5fndPWOod7RhgYjQWcC3/fMVgXTRcXZ48fsa8tu3/H2/RW//+x36DxjdXrE0xfPOXv8iJNHZyxPj9B5htQ6Nh8pGWu8k8dJ6CD7RB3mLplqxAxD9DASSJq2Y7sf2DUDXmZUy2Pyako5naEygQg9vq3Z3Vxhmz2FEoR+oNnt2e227Oqe3gmCzDDllJPHxxwvJpwcTZnOcsrJlKyYsK8VqjTowhzSjb5LgvqDAcoDHCOQ8o8d92uCgxn3P8J6uVsgUiWjM05OH7G+uabebTm/vGHlPEWZk6k0EODumRGQJJzppyS0RYk7A9wwxKQbay1Cu8PU7rvvxVmH8y5FpUeJ5vhBkuklpyUOmUXecxCUD1FO1jYtn/76N/z6N//Aq1ff0LQ9Uufk0wWrk0e8+OSHPP/4hzz/6BPOnj4hK4v/0fP7kOBK/KH+MJsICezy3jN4h8ehtEYLg/cC6x2Ds7RNQ9/1cXDiYsKH9Ek+kCLljTHkWY5AYIcB27boezHvo6fNCAJ4QmLTRdrm6Knj/TiIE4gig0IjpiXl0SL6wDl/KOCDIO7FWc5Ik/d9aqaFxCMQCeAetlt+/bd/w2f/8A+8//pLzqYluRJkwiFdB4PDyw7nFV6GaD4qBdaqJNfVZEOB0TlG5Tw6WVIUktVqQu97vjl/z2ZfMwwDTduwr2v29cMZbsJ4P8SG1zmf0ow8WkcPlsPXpD/vYMT03/fup5GBOy4QfgRwhEBnBUNvadqGaTmHIOh7z4aW//TX/4XfffZ7Pvvsc37xi5/z4uVznj5+zNA0rG+u+eaLL1B2YDGbcnK8YnI0R1cFIsv48KFTh3WTtF+OxGnG1+ZDYsNIFAKlDOevL7h+dcnN22vkIJE+SmeD81HGDZFJ5Me1hvSz0k0vxIGsH5Ksc+zgXfqah2ZGIwt0NcO4luHCxJo/CHwvUSZH5RVZMQWdE2yPV4ZiOqMPPTY4hO0wLjbHPliEMQghY2hBkDiVMUiNDy3t5Q1fX17xm8+/4O9+94gfvnzCH//8R/wz8QumR3MKN0EvJ0jrkdIhjCdGO0fYS4ZRUiViXd8PhL5n2G1pr69otxu215fY9RqaFtU0mH2L7AfoB9q6jtdDxLjhfkhYmZHYoLDe45ylUIbbuqbdNdjrKyoatLAY56itZwCQEqsja1RojTaGboh9XZUZNAE/dLSbhqFtkqzx4SRC/+7f/XecnB1ztFxyVRRUztPvHJsOfNCEIHHOInLJ4vERTz9+ybv/dEHTd0il+cu//Bf8+re/52azo+5t3KPCmCKZgVagNAMWGXr2+4HNF9/i/p//li+/fcvN7Y6/+lf/gryY8uzjHzI9OyKrMrIyByUTAHVvox/3wxFwScMHL3TcE6XAWxfBjMBhbhQBtqSuIIIWIiJ4Mf3Kefq6Y3u7xTpPMZ9QLaeURyuClomNwuH3IwTYcPfDheSu4gZxnzEsI5j6fYO7vvfVXi0XhKRdNsagRNw05H0Km4hUvqQ8ROoMaeID7JWgGXpEJzFakRkDQuBEiBrxewDIiOiKkaZ67zjMUQ7IeIwYlcmv5b6mely57pgq4wm9B+CE5F4vFNYONPWeq6tLbtZrNtsdfS8wpUeoKGnKiowsz6imU37681/wox/+kJcvX5IVBRLJdDrlxUcvENYivefq/Xv6Zp90gwHnXYyYVRrjNUpJXCoMh6Fnv9txdXX5fS/THxzueo+97rGtREwC0ihEnhFjCdN5946h65CaZKyqDzd9kAK9mDAczRiOJqyzQJ0FXO95/3efIk8qzLIiq6bYcovoO4LX4AVugKA8ygSkGwjdALfXWDfAfoc5OyFUBcGo+GAEH2UfaVMTticMPW6zwd7c4rZ73HpD2NaErkcOPUYpjFZonWI0udvM/GFzF3FjTB5o6+2WtusQUvD49ASzF5gWunzLZtNgnUdkik3bsOtqNvWO3dDReh/BlcSCEIdJi0+g4ANvhPfu2bFAib8zHCYuEVyMmzghjAbchwUKiEwWn6ZyRC8OiEWrtzD0PcJ7MimZFyVFZdC5QGbQh46BHofF9i3tXsY0hyDJimg8p4xBCQMqFgbjFBcgSIUPisHBpm549facb759z6e//5rLqy37fc9gBUGZA7JMiOaPgijzEUTdrUrRbyrE9yS8R4fI/wB/+L1ehHvXhtFf8g7B/i7AcqACP9RlU+z3NVdX17Rty2I+4yxpYt+/u2UYbJpsjYVmei0iGb2FKB2UqSnDxaZJuCjHQcbz5JzjZt/S+5so32h7Xr0+5+L8mtuffMLJyYLlasJ8nkVQipTSxj0dvB/FBlFGNn4+LsBxojs2GSIkO2Eho/xzGGj2NfvNjm7XIRxJdx6p84vVAlUWZFXBXEpWJ0tWR3PUVlKVhiLXGKMwWpOXGdW0pFyWoANSw+xozuJkyaQsIQu8eP6YLM9Y79ZMKs3x0Zz5LH+w6xaCRRmFlAUlE9wefN9FCmzX4CWgNDlxUqqVjoa06XQpY5jMZ2gN+9Bjm91dI6eSfjoIpFKEEGU9y9mU3sbCtWv2vH/7GoiJfXmVU6VEjvTAM07Z79CKkLyq5D0bsnvT+ZCkuoOjbxzeghKSvJzEON5qijQ5IfQE68D2uK6BoUMFy9A2dE1L13YIIcnyEmVyTG6Zz2fMFxXzxYSi1CgtI5suRLN4rSOzzTM2WuLec/bwAMsfXs+7Z3qUAt3/fx/Kg8RhjSWEu8JMCLKipJxM8N5xe32N2u2xzjGfTqOMknuzn7thWfwQh5ET4zUL3kfwZBiwQ5eISOIDJiDEz2mp41qeom/vmDYcgOE73CrcARYuYBOzbLPZ8s03rzh/f8Fms0MqgzQFWTlhtjrm0dPnnD15ytHZI7KiTPKO+KxHa6vAd07fgx297Q8+ad6NYfV3xqMhxAaoc46u7+KEud4z9APeeVQQHwAsmZA0TcN6u+Hq+iqySjLD9HxGMZ9hygJTleg8u9Pnp3cbH2JxR0YVdxV/IDAapYdUoyIVQgdG/6/x/vFi9ClL+/JY1IcAzjHUDW+/+YZvP/+c63dvKZVglmdUmSLXgrLMMIVB5xpyncAVIpMlXWufWIZKyGRTZSlzxXJe8fHzx7RDC8HRNjV+GOjbjvYBARbvx+Fmkk+M+yjc+d7dY7nEOswf9tp/zI+Fw5D17j0GRATZtKZtkmeXiL5S1ln2dccwDPzq15/SNB3v313yyz/5BavZLBrPdpbN1RX9ZodrGla+Z3ZyTGk0CdW4967uA613vQLhO+BiAjDtMHD59oLN5RrXWHwjoAcseJtqigSK80Es/XjPjUtM/L0eH+8/kWRnMmm0H3ipDGH8HQqvY1KjCAJvBEJLvBZ4FesqJ2Xc84oKYVuUt/T1NvqAjdfSuchITy7BcXAj6FBIYr0Y+oGvLi4JCsoq53S14nhbM1/NmLljxGyKKIk+ZEYiZHrKBgcuEKzD7jtc0+Kahv72huH2lqHeI7Yb5H4bzWvbKO8Jg4vf2w8xLlxE03fl4p8+aAYPvfP0zpLhMK4jsw1HGRxNJmQqYLuGi01N42Id5IVGygylC4TMiX5nUOQFwQWGoafe7/B9D0rg5MPVlW9fv6GtG7bLLavZgpnSuLph1wcc0UzeB4/1FlNkzI8XLE6PcK3DhoGjkzOWyxt6J2i32wjyJaWADR6RAjC8Lgkhsjn61vLVq3ex981zHj17zJOnj1gdR9aj1AJpkgfioZaNz4ok+grdyX0Eo3NOfPREDGEICVsZ/cxEHBgE72KflYYFDI7QW4a2p286nPXkeUlZTSgnU5TJsHeeAQdQh3sSoLtxyMhmlOMrSn8fGaHf7/j+AMtqyZDyrXWiro3TcdLLC4BLhpJKiBj1VRSYskAYTT30WAKZUhwfLQnEmC+d+HNj83goSYS8d83SdOre4hzBlQiwhDA2D1H2QvqeA5U2jK9ybLJClA74uOmhBEPfsd9tuby44Ob2lu2uRsgCoRTKaDJgMpsymc84Ojnhn/3yT3nx4jknxyfpfEjKquSjly+Z6gxhLW+++or11WV6b5HOqkwszJ3XKK1QCal3Q89+t+Xq8uL7XqY/ONz5LfZywDUGVhb1WEIRXbulUBAcIQT6pkEZgQ4KpfOE1CfQINP4KqOd5lzljjCVaJ3z7m9/Q/n0mMnZEdXPTnFGo3JDISqGzuJ8wCLI84D0LjaP21v63RZfFohMEpgRypygMoR3cWrgAsJaQl3j6z32/JLm/JJhu8Ntd2gf0FKSa0NeFUlWljaqOy1IZLGkvwabGhEPV1fXDHagKAqO5guGYs+gM0pjuOhvsQJMUXKZkjQ29Z4exSAkTkqCV6nZHDPZR7eQhwZY7j/s4TBhOXjXjE1vuEtZGidxpCmqSt/nXWRMSBSIjOjN43HW03fRST5TksWkpJoWcaKdRWPaLigG39MHz9A1DNbS2UBeOUwen28jC7QwaHOXOhRBUo3zknZwXNxs+OLrV3z+xRs+/f1XbHaO1gqcU3iVgdBp4/fIVP+IRA+UqdlQSFQA6UP0L2Fcuz0WgU+L84HaS5y0jHVKvG6jUDQa4B6oHA90KKXZ7xuurm7Y7facnJzx+PEZZ2fHfP7Fa5rWxulU2uDSxY7UaDxS9pHZIRRSgPIB5VIscBinXNG/pXaebt+yaRrOL6/5/fwVX339isurW37y44/50Q9fYLIVpZBkQiRPTUWUk7lD0Sghgpyke+jQrEdQmATqjUa4zjraumV9u6bZ1LjWkVGixhQdITg+OSafTymnFRMCp6crVkdzAo5JlVEWhjzX5CajmpTMlzOmpzOC8qBheXbE6mTFtCpQWeCjF0+RWuJetxT5lJOjGdPq4SZEXbtDZxkq11RZTD6jkfS1j7HHTcC6wCQIympKoTOUUAzW40JAasNkNiUzAu9btv02psQRCMoRvIjPqpfkmUGJAnmqmC2m7Jqam82am6tLtFZkecbiaEmW5WidaO9JYzICuQcnjuAY5z2HkOswNooebwf6uqFvPEIWlHlFMVuSTWeovIzPau/wtkcMHfQNcmhRWOp6T9802MGS5Tm5jtNKgmexnDGdF1TTPJICgsf1HdYbCglKS0Yz+bHIOkh2Hnqt/M5xn80y3uMjE+R+sySTabcfwVdGGCtBDAJMnlNNZwC8P78gbPcM1pFnBcLESYTEH+oVxvf6wSsSh3U7BI93ce1tXZekVBIdQmxOEzPYGINMcotRpneAzg4N6rjapmQ+7+Om5wJd3bLZ7Lm8uOKrL7/m4vKaum3Jywkir5gsVqwePebpy485e/aC5ekZcoxnTmi0OOxq4d47ebijHzq0imuG8y4lB4m0zsRzNVhP3TbUTfTGq+s6+pEE0MqAdQjnEdZT6YzNfsfl1RVv3r6hGwb6oUeowGy1pJpNmS4XlLMpKs9QmQEVkz8CIhkwpjjnewO+IEYhcEjSXeLXCO7VwPdhz/Q3mWR8QkRWQz9Qb7Z8+dvf8s1nn7G/vuR4UrGqCqZlxrTIWCwn6MKgMoOsMrwWSU4Rja+ts/TDgB8CIihA4W1PpgTzScYPP3rKvt7i3RAp9H3P0DQ024dLNIk1dzgAlf7AJB/ld+IAqIx/jqwUnxgcox/L2JDdMUjGOj9+ypgMmxlcSKxrJWMUrvUEF9lgn332Je/enHN2+iXSC375iz8iE4LClFxtW/rtnm6/wymPrgqK+YQxseRw9f5gSboDXMcPkZgsrnd0u4F337xjfbHBd56+djG80MXGzXuXajKfgNZ0VxxMQOPvuA+wHEIak+/JfVD1oY7RpDcIQVACO3oeSYGQAZc+BhGHVihNnlco3zN4S3stcYmiJ0S6F6KQO/kmxfcwKIlOPjQqwLvdHnEBpZY8LecMJyvs8QLjA+WpQ849CIWsBGgXr0/nCN2Arzv6qyjBtfs97dUVoa5h6MmGAdfV2L5jaFsGa5E2ygcZLPogB5Vor7FEgKX1jtZbeteTYyhdx9R3VFPNy8cLCiPZrm+xbY9obTSExaB0jjIVyAKERSrIi4ra7emblnq7xfcDSBEVDw90XF9cs9/UXJ7fcHryiGlRIp2l6R1ORrP74D390KGMZLKc8+jFM95/e86wa5kvjzg6OqUbYNN29MHGfdh7nHexJ5AasvLQj/Zdzev3V9RtR921PP/4JU4KitmE49UyssZFBFrH/TOW3+4Q136f0WkT/h/lOQKUJFrxB1TwqYJJQxkPwYK3DjWIKB/tHe12z9B2MWBmOmMym1FMJtGfKsYgpBoXYl0tkt5MQRj3+viPIhzMrg8Ay71d73/u8b2r0afPn9O0Lda6SAHUOmoYnT8sGCP9PO0p9IPj7OkT8lnJtt6zOjnFGM1uvWa9b5Ie2ZMbRa4VRka34JAWJulC2vzGizZ6LMRCzQ4D1lr6oUcnFsNoXHegAicUOOIs0bIIfHQ2shFc8UPP4Bou3r7hi88+4+vPv2B7fU2wPdOjFWdnjyiqCuccv/yzf86zF895/vIFv/jFLzA6LiBRty2ZVJoffPQxTxaxqdleXLG9uWa/22KHHqMig0cpSRA5VWVRfU/d9fR9z/XVJc4O3/cy/cGhrvfoby3DleR8+yXL4wX5JCdOWhRBapyKqR10A3QDajbHBofHozQMm4abd9d8+vsvefqnP2GxLJjNMj77v/073v3qS27fX/On/9f/IzYM4AKm8ZTTGU4JOuFxvkMIC8ol/aTC7xre/PvXzF6+IDs+Int8gjIqaqrbnu7VG7qLK/qbNf52g/GBQoDJNNKYGLk1buRpSupGd2rSBIQ4NfLWkwtDV+/Z3dywu91zevqY5fyE7WbH7fU1Nxfn3J6/w+SxSd+6LTf7DZ219MJjCXgZTevGGX1gTMKUeDzDAzcNBx2gGGveNDEQAp8MwUa9/0FClAqaeCTNcXqmCAohJFoYpDC4EI0rb+ueDgF5zmKxYDbJUDrgpY2pT7LESUfje5rB0XtPP7TUu4BoDarJEXtDXhbkkxJhNNrkKJ1hveTycs2b92v+5u+/4L/8wxecn6+5vNqh9IxA1JMPIkPILDYaqsPZGOXnbY9SoHX0YNFCoBPAIlWUS0UyecCjEpM3fAi2eZdY+BFRV9z5IQTrDjTnhzqOTx6hlcA7uDh/z+PHS45PCj76+Dl//6vP2Nctve3BjUBUnIIKH81Jc6mTpEegtKQUBi1EZC/iUdqgc0MxP8L6IRm9DbTe8ma35fzTDd+8O+cnX73kj779hP/9v/olR7OcaWkoq4y8KOPP0BotIg1XhcDgviOVSmk28bzpBNQ56npPs9tT7/bstzXChZgAEgxFVrBarvjxDz/h0R/9nOlqyXQ+JbMtHz9/wvFiSt/umE5yprOc2aKiKqasjo94/Pwp09MFve9xDLz86DnzMqM0muOjF7x4fgoiYIcdq+Wc06Mjigd06b/qakK3R0rJfDZjdnbCXApWTctms6GuW+p9y21zQVvuKasJi/kReVEhTYaVxD0om1BVT5lOFO1+S7Pd0vV9AqhC9JQZAkYqjos5T8uKwQf2bcOvf/c7qqrCSInrBm6vbhC3W4QxTKYz8qKIbMm7SgaNizJbK8DkccDqPLbtGeodwTmEh9lshi6W6HKJLFZYqUlJ2WgJfujYX76Ddo90HVJ4bq9vQBlm8yUvP/kh+7rGOocxksx0ZAWIJGEWUiG1om8sQcS43eihfFjA0mT7DvR46OO7Xiz/2P8fDyHuDNDFwSQhvt7R8iMOwxRZUaG04cc/Mbx794btfs9m8zWPFjnTKmM6LRGZxDqHDR6Z/FsOxrU+NiFCSkxVYcpY2M6YjMhv8mf4w/fygdHld96X8AGwsRJlgK7HpynfF599xRdffMO3377hy29e44Unn8x5+vwJq0dPefnJj/jln/8lk+kyMldMYoMlxgWMa9P4gkRseh5yn1MiykpDBMGlToCS0dhhYHADTddjncdkhlWZ8+zFs5hUIyO40O1rurqlXm+j2T2BzlvqrubNP/wt7X9qmS/nrI6OWCyXPHn6hOOnZ0zmM6r5lOlsHpmYSqN1jjI5WmeUxRST5Sk2WkbGtAjfMeT/8BiLc+8j+CUTWCbwGB84f/2Wb373Kf/+X/9r+osLjjPNTx+d8YPHp0yLjCKTDL7HikCQgrIsozeABOstQSqEyKJsAk1MmoNt3VK3A70NZJnhT37yMYtJSbvdsmtb6tsNm8vbh7tucJBzEQLDMBz8V4RMgFUCXXwY5fzjn/H7w73Px0+k5jxwOH8QgUZrckBQty2FMRRZTggO7wQuxaZfXm24vt5w/v6CV/+r1/z4k4/5ox//kMcnpwxdQ9vuKY9ysjH9VIxjYTj4tyXbgbgmRFDLO4twDuGjpxmDZ3u15rO//5zrt5cMO0doQYfYqwghUNLgVRygCEVkMkEC5EbAZBydRfmnD4Fu6Oitpes6fNtFPxv9sACLNhLXeYIb4jBKxiRAj8Ari80Gej1QSocLFusshTFk+TRKNcyEwe8ZEoAfEAm0CWC7w8IZpKcTliADmckJSjFYxf62ZfPmmnLbI883tO+umDw+ojheUj59RHl6jDIG7zx+12A3Nf3tFvduTWg7Qt8j7YD0A8FZrOtphxbrYh2knUAOHjUEKmGQNvoeBQlGGRySOsDG9excS+f3PC4zynLgFI+ZZfzso2MW8wnd8Ix5/hVfXm74/eWWHo02E7LJgp4Mb5IcUBU02zX7bUuzrQm9A6NR5uHqkz//5S/54stvePPmnFevbpjP5hRZRikdNq8gL7EBNldX3Fxest/u+OHP/4hidsz563O+6r7k5NFTgjT03rFpb2n6jrrvWDcOZyODUOmCoCTeCzpb0w4DdX/N1eYWKwL/8ts/51/+iz/nr/7qL5jNp2SFQSZgYwRcI6M2PWMyghrJPiV5vwgGfHoeouWBDwMaGX0VW4vvAwwgBkEYBMF6XG9p6xYvBOVkxvJshZnkyNJE2DuxLwNE5tJ4MyZZUHzGEziYmKrSH8aKMbThwOr4n39876udlxUeiRhsnLO6OBX3iZr5gTHRqHeWkiyLBX0z9GiTYbKMorJIIXF2wDpHt6spjKYwhqrIkUofJj1jlNkHk3ziIqa1iSiZVkgpkv5W3ytI7gwtBSQn+sAh9sg5fN8x1FHTO+xqaHtyJLlUFMYwm1QsF9FhPy8KfvDxxzx++oRHj55gdH7YQMdDEFABMqmY5AUnyyXL2RQ/9NQuJQEQX4KUKckgBDIfNx7bD9T7+vtepj84hsue/qKju4JQNlA75BDN9byL1bVGIDubUigkwVm8t3jh0UYxbGu69Y62blk+/TGr5ysmpxM+sYarN2/Yb9b85m/+hicfnTIrTaz3ugFhJJmGMEQJirir1JDAVEn2r9/Q3NwyXW9RSEQ3IOoWv74lNDW66xE+oEXU7Ol0X5ESFVxC/A/ElRAORoIh/bcMgr7vaZqGuml5dHzGtJihHFxcXnGzvmHX7hA68IMfviCUhhrHb3/3GdebLe2+T+17nGxlQsSCkLv3c9dEPNwhSSbSPiTGRoJSxmcspKUpsb6iu3s0f0WCxKeIMoX1PUHY9H0CHwas93Tesw+KRuZ0qsCbLKaZqICUCpeKBGQg0xlSB/IAvYfBx2Qi13e4YaDvB3zbI7ICaSxBDuw6+OLVFV+/veK3n73h23cb6triZUFmTDTKDT7Fy4bI2EBF+ZILhN6T54oclRJyotzCSwcyIIRP0XADniwafY6L5zh1SvfbnSdNekueyF7z90Gpf/pxenaCIFBVOdvdLgKrWnH26JjZrOR2vaXphgh6JTZNHOQla9sg8SFF7AqFzhRoSXBR/zs/WjBZzKgWJZvdLV3XYm2HlhKNxARBt9txe7vm/PyCZtfQiCi565uaPG/RxqDzHGMMRsZEDmFUkmdGv4Nxcj3GSnrrEsuvpq0b+r4HIVFGoVGoEI1oj0+O+PnPf8bZT39CNZ9SVAVyv+N4MacqMvJcM52VzJcT5puKqpiwPJrz6PExs7Mlg+9xwXJ2siITgVwrjo+XTKsCIeHJ2QllVVIVBR+uvv+0Q09nuGSk13iPGGwE7vOc6XSB0QVG1tS7Gtd21L0lCwoZwAAyzw6yWYymnEzQSsYGoQ/4weOtoHc2FSGeIAWGPMpBtCbPMozSSCHITIbJIoOy9x7b98nHy5JlBqlkBDGGHiEUSIVzMibeuVjMhpChVUzaMNMlMpsis5gSM+6pEuKQoWto6x14x9D3dH1HEIZqumS6OmK2PCXIW4a+RauAUh6pPF5I1KhoFqSo79gwqAMTCh7a2PZ/7PguyHIfoLj/udGYPxJjU0M1TnKBA70/kCbKhmIyZbZcIaRic7vmdrtnGDpCcJSLWUyGkjqCSD5OrUepnyAOflBpShaSZ8NYAx5eQPylkbU0ztbGsvFePRNA4ZPZbhwa+a6jbzqaXc3l+TkXF5fcrDdM5gsmqwXzowUvfvCCo0dPOXv6nOnRCUoZhMlAKdLWkUgE36kyw5gE8XDXMSsiqDMyu+Uh8SwCdEpoCinJ1RhFLiKzQ2mkSHJXD1rHptvN55SzCbP5jL5r+d2nv+X1q1dsbm/wtqfZb+mbLRcXrzFFRlbkzOZz8ryIBuGmoCgrsrykKmdMJlOyPCfLM5SJjGOpFSbPkToyjKRWB8aKkDLR3eO/hIAwDLiu4+bNOZ//l7/j609/y3C75ulyyclswpPFglWRxRSSEFNS8JHhFLoupqmNYI6PLCedjI4DMb0lVDlSCrre0vaOea45W0z5wbOn/O7LN7i2ZX97+2DXLRrmj545DmfdwX8l7mEje+W+z8o9aZCHMdXw8DWJHTISWUKIz6iUCq002mR0bY9CMK1KuhZCkAipo4Gw9Azec7tr+M//8CveXVxwcXXJn/7iZyxnE06Ol2SzmAwVm75wV7KF0cI0fYj4/IaxsBwZgRa6fcfuZsvV+ytc4xAWZFBIqeOzLcTBky6I6HsW7kXQ3rlLpF8+AhKRMo6QMd2lHwZCGM3+H+6Ise4O6R3aRqP9IKIcyGNBWISwBB8/cC5JwDVeZ4gsj1/nFGF0gQoKgUI6GdnvRPqBFEPyahE4hpjsJSTtpqb1gnbwqBAHr+2mZrvZU55fxSGqANFbRDsg6g65aVC9BWsJQ4fzFh8sfRiw3uJDHJY566N5sJAEraPXtwcrPD7L8EphJWybPYPtKDOYV4rSCuoAs6rgrAhMtGNQmqfHc3a949t1HdMDs5wsr+i9JIS4LrW9pdnXdHVNsJE1o4R80Prkpz/7CSiD1xm//+IN/c2aXGuOpiUiK5FFBVnJetvw/vyaN6/f8dOTpyyPTvHBcHO5p6sdqGicfbHO2dU7sv0OHzo6B0NSgwxuwPcOP4QDeNa2A29ev+ezT79gkpc8OTnh2bPHLJdziiJDpjAFEaKdhkjAm5QRNCEIDJKQ+gYfAOEgOIIbEN7G59963K5DOYlwAnoRk7lcZBBrqRC5QVcFpqyQmU6SuoASI0CS9vZUzyanzMQ85F6qWDRaEsFzSDuKDeT3ukbfG2ApygkeCbKP2ERyXz4cae8/FDLEE2uyjNzm5H2RJgSGvKgOJ6DvLdtdzWA0QxYj+zKjI2BCRLIBpBwlQjBOwka3cs0/ZnIbT+wYv8YHN3paOK3FdR39bkfbxBx15QMTk1NlOd4L5rMpy8WMo6MV8+WSR6enHC9XzKpppHz6O/QdAOcIg0W4QKY1i9mMxXRGs9/Td03U7I/raiqqfQhY7+l7i0vo9UMd9tbSb3r6fSB3IPoAfUBk8UYWMkkqegvCR02xdYRgCcJDEHSbPd2mxjvP7PSE6dNTyqczsumC8NsJ9osvefPtl8xXJYWYo22Ii6ITqAzc0EffLhE9CMabfGIM26sbhl1N3gdc5xFNh6hbxNAgREBJki/CHfVUSEmQMT0jRiXH0tMfCsCQXKdDcqqGvuvo+wEX4GRxhPKaoRm4vbhmt9/Su55qUfL8B08ws5JGDFytLxhCT9M3uMEhU/SvBvSh/UwTvkNV9XCHDNHcK4Sod40IbIoVE3ERA5XYKfF9S+8YPWEkRL8OHw2opHBpcOMJXmGFpPeSOmTUoqCTBU5pggqgIgDo5fhMSbSKjIoMgfaefogL3uBivLm3jqGzeOWwoqf3kvPNwO+/es/Xb6/58psrLm47fFBkWYE0Buktwnmk9PH8hnsAi40La2YkJkTwQMhYSAXpIiNKuLTuSHRIZl9IcPYAtklxZwIpg4jGaQlgEdZxR01+mOPoaIUgYIyKEou+p6oqjo9XzGYVZWnY7RusjZRIQlqzkkcHIvpzIKN0QJpYvBAkUmqOTlYcPzphvpry7kKy32+xNqfMCwplKJXh3edfMAwDu+2OoekZjGDwkkE4XDtEgKUYMCYj0xpvNIYi0RBhTDqBuKY75xj6gbZpaeqGoRtw1sf1VxqU0MigMGXGQiz4ZL7g9KOX5JMSkynCpmAxm1LkhizTTOcV89WU2WZClVcsj6acnK5Ynq1wxGLpZLVA2J5MSU6OVxSZQSrB8dEKrSS5MQ963fLJjGHosXZgcJamH8h8iOe1LDHKxOZ58HRNh21aWrmNTYWI7Fp0lLkJGf1KYmOQU+96hmbA9Q7behyxqAwItO0JIiYBGWNQKS0o0xlZHgEW37V466KxrrUIn6GNjgaDwwBKENB0PtA6weAkzmcYBUIJTJ6hyylCFyDNgaEwlvneDgeKdfAeOzi6dkDnEybLExYnjyhmK9ohgvAqDEg1INWo477bYaMMhztfhu8ui/dAg4c6vmtY+13D2+8yV/4xg9sQOKhjEsKS/jM1PkKh84LJbAFImqaj3e3xLuoCvNbkeY7JskRNS7RpeXeeoyGUPAwDOHxe3DXk4VBMfSCLvvti0vqePuc9eEuwA7Zt6OsmGhNvt7RtS0Dw6OlzTp49YXV2zJOXz1menjFfHZFNprG3TIzQ0dPrcFbusQu+ex4f4jCZOfyeMU0ironx9ygpo0l9nh9kUkGNZ1MgpUKZyMYTRYlwjslswmIxp2t2bLa3rG+vuWp2MQ0Lz054mv1tTC1Tgul0RlGWZHmBMjllWZFnBWU5ZTqdUxQFVVUdrm2WZxSTCTrPo8yoyEhGOnE4qMRhCOR9wNY17WbL688+44tf/Yo3X3yOHiyPV0seL+ccTysqJZA4sI4gAzJ4nAu4PiaDSAE67Q8qNSog8EKgpCRIE4d7EvwwUGnBqip48eiUb1+d44ee3eb2wa7bHbgSP5yPza26Z25753v0IZASDvKf0ZslgrFj0/MhYyru7UoptDL0bYvVMao6JGQyercBUhOCo+4tn3/zivOrK67XMQXxk49eMD1ZUs5yhBkZWiM4MD5fo/Hs4VWnIQjx/k8AS72u2d7s2N1sCYNEOIUKKk7MRw/IBNLGFMw7lspdDIjksApKcUAYjYn3uPMe69xBVvWQh5Ax/Ux4h/IOGXz0+BE+JcC41PjaNICKw0WkxikDJoNgCUpGYMqHA2NBe5Fk3TE9TwmPGmvm4CITt3fYpqOXii6AUTHhUuwa2O1pb9YoY5A6spW1C5jBke8dwnqEddihxQeLxTEIhxf+rrH2UeYXZAKNRIgR0kLgS0MQEusG2r4B6ZkWhtNSkw2KBsXp0YTjHDLl6ILmaJIzLTO0FLGHzXJ0VtL7WBeLIOj6jm7fYJsW6S1G5qnufLjjybOn7AdHC3z55pLd7Z7WQyElpc6QxQRZVGzbgYvLW16/fs+P/1hQVjMWXjM7uabb9Uilo79TFsg2GUorrN2xq3tEb2n7AW973BANZaOcLD4tTd1xdX7Nq69e8/qr15QywziJWc0RhTwkwgkVa4C7QXeEFSPXJQZwxHvbEVyPH5o4HLYxxdRtGhQGGRS+j+W8R+CERBc5uiwxkwkyLyARVeKw6O4+uBtMxD9Hy+j47/QspkHXoYu8x177Psf3BliOHz8l2+zYbnes1xu8i29H63u3UCDpZqPuUGrJZFJhTESf8ywn0wYlDRAwukcEye+vPkeG6AFxXebMJxVVUTCfVkDUz8UBbzSkOein1WimJT74/MGsLpmN3UE+ESHHWmgbXL2n3Wy4ubiia1poWlZ5yYuTU/qmY9f1PHvxhBdPH7E8OmG+OMJIydC0bK9vqNfbu0ItjKZPPiKYziN94OTomCePn9D3LX3fYArDKO1VQh5kTD6AHRzO2geVK3CtGazGTRWnf/wDfJ7TtQ6dgCqHpfeWvndk3qKkwIYGbwRoCN3A7bfv2V/eMlnMWDw9I1/NGLSAlzOePPpjTv/5R1T/ccHFN6+5ubzik8ePKZsWVfcI3yFzkJlBagMo8AEZoqfG4yePCULivaLf7JCdiwBNiIAKShAUMW1KSdCaYHQ0qhIxiXIEFw7XPgSCjwZ4wQXsYLldrzFZxunzp+hO0Nzs2Jzf8u6Lrxm8Y3o648c/+zFnL05RuWLwDp39BZ/+7ks+/fQrvnl1lcwsA1n6laNCO4xSpAfeCCOVNCLKieIQ63YpsCKalIyTTIGILCFro5wjYYvWiYgYC0mRBeS4WgWJFwVWFOxDwcZXbEJFrwyd6Akibo5BJZYKIforRYExGonWIhbmQWEtDM7TD57Li1veXG55e7Xlt29u+epyz/lu4O0m0FBg8rhBydwj7YASXczUCQrpJcpKKpulGGZLYQOF8+jgCTrgtcdLi9Q9hAGCR3qB9gEhDASNHwbGpVUrGQHYNERSzt8BLG70sXm463b26Aijo3/Ken3LdtuQ5xOePD3j2fMz6nZPOzTUtcP5eP/E+McAQaCEjtHKOvolqVyjFBhpQMHTZye8/PgFP/jRx/z2dznr9Q1aS5aTGavpnNPFir+dlgz1DiNA9A49BIyMJnbKQXCWpt2xtjYx/yTlZBIlKHlGkRqa4D297dlvt7GI6Drs0COFjA3JwdBRMAwBXWjmVcV8vmL14gk6M3Gtm5TMqhytBHlpePTslDYMtLajMlMePz7m5ctHPHr5BK0lUgQWWuOHHq0Ep0dzlIrNRDGfRUNMHxj6HsqHoeHO5sdYO9D3HbvtLXXb0IQO2ztmZYyLLoqSSTFhv9mx22zZb3e0fYvOM2anKyazGVmRo/MCaQqkLtBZ4PGLSTRn63p2NxuaTU3XdjRNzbCL920QBmMig9One8Eog8kMRqlEw7fYvqHuaowS0TA+qwha0A+Cb2937JwkqIz5YsnJIsMYiVIipqegwcd1dSyGgER/d7jBMViBCwYyzcsf/IzF46dMVscIo8mdQNQZvtugtUepAYTlDkKIzNLgYRgcyof0e+74fiOG8f+v438qXYgEkN/Jc0aflPh/I+NklCkHCI7ZbBGb8KLg/WvH5uaSN198jfj8Sx6dnfHo8SMWq1WyegZpxJ0v3Ij4j82AFN8B5sffHw6f/y44dPfSo/k1fYfvavrdmt3NNW3TU9cD88mUjz+e8HFW8uf/6n/L7OwEM6kQZYZQJko5DuhPGkiJOwnHvVP0v9gFE/pOK08gFvTO44YBF1IqnBDR48gYlNYoVFwz0xmWcoyU9wihMQSk8ByfnXB8esTp2TGrWcm0LJmUJcerBVoJhIhNr04+F0JJ+sFihz222XJ98Y5rQElFnuWUKeAhMxnlZEo+nZJVFflsiikKdJZh8vin0IogFdvtluvzC86/fc1/+3//f3Dz5g2i7/jjH7zkB0/OOJ6UTFXANRu8Hwh4vLp7PtumptQSqXIyk6HimPMepyl2/kaBrgylkeiuY9sNyEyiHp3y1XJO8Jard28f7LqNDJZRBjR6smRZlthZd+boow/LCMZE4PXOo8UnL7TRDy3NkRmZIyIBaVmW0+420QOuH9DKYF2UJkmtQMbfue9bskzTbHd8+zd/w2++/D1/8sc/41/9V/+C/8P/7q+YyDImgAlFcLF+GP1+4p0Yz67zDu88Wuq433RAA998/ir5WjhUr+KU3Y3A4AGdif4UYYRov1PT38MtR//bselTENd7bXDOHaTvD3dYJC4CHj4+Sd4HhmAR0iK9RQeHcD3CDUjn0EIRiB6cQSq81gnklWAHpAsoZ6mEQIYBhWWuNYU2ZApyJTkWJUd5ztPZBG0kdd/i+gapV+TOozuL6ixu2xC0RGkd24VUe/rOo6xHJVmnF8nbRobEyokMZZ1labYq2AmLLEtkniGKMspf2p76/S15BouqYrGcMxWKqarwy4IfvDxDE1PKrrc9vt1ju5rB9qhZgSkqTFaybR15niEE9PsdfrdBN3sqLBmjperDDRJ63/P0B8+YPzlj5+Bv/8Pfcvv+ipvza8zRjKxcsnj0EZfvv+XLt9eQfc4v/3JPMZ0hTU55dMSxF8yOVxztj5GFZnp7w3R9Q26uubq45fpmw/rqks7H9VclNpoQAqNzfvTJj3l8ckyVTbh4fUUZcuymgyeWoipQY92qIsgYFTsBKXSSmUtwUc2QBY9t19h+T+i2scvoLaG3sOtAFwRhsFbSK0XIMuRsxvRohZyUiLIgKIFPKZzS30GX434SEElWk44wDsV9An4ceMtd7rpPgM33u27f3+T2+AypcxCamxSPZN0YEnh3HLCi4COQYBRK5WljlASXFjAhUDqjmAgeP36K8JEhgOsZrGO33+NsT1lOIo1d61Sk3JVn3qcJ8Ei9G6VJicHCqJMdG6gQwHpCb/F1TbveUK9vaW5usL1DDpap1pzOl6xnG7KsZTWfoHAMzY6N92zXa7TOMCY/IOwQC38t4sVVIlBqjet72npPkZlI/U7TybHTkyrqwkwIWKPRWiU64ANWM61h8nhOcTLHf7zCzQqClNh2QEkXjdNCYFAG+niDZzogtAEH3fUtzbsrfNNy9PwMuZoiSoOiJwSLFT0+g5Mfv2SxWjBsdpxfXaPWt1TCscokxjpwGRQFMpsk87gofyA3iKKknM5Ri5qwr/G7PX63id4QRDZFpLJIBpUM48Z7LU0KR7pXSJN3IcB1Hba3dG1LWeaR1qsU+92O6/cXbN5eMy1KVs/OmJ7MmT9eESYSKyE4xerslB/JgmrxiHX939M0A8MQMAhcGA5V+IA/MCUe8rCdiw7t9+6JIASO6DkTN3OJukfZHs1LCdFpHykSu6fF+xbho3ZVSIEIkc47BMWm9axbS+cdTgasjFN272P0pBsZYVIktlhAeAHB4138b4NEqVjkCbej3Q9cX264vu3ZtAHrCsgqUAaHwtODGIjW+wYpIuiWaQ00kebpQiwCQnxfNlhCsERXnAH8kIAYEdN3SCwpO0ZbQ9BxWhWIyUP4SHvEJ/lxGM/lwxxBWuarBdNqwvu3b1JhAsfHR3zyyUfRpNBbdtuW3sIwCPp+QIjokUOIBqFKRwaYMB5jFFmWUeSG6URT5ZKnp0ts94ztdgZ4Xj55ynI+Zz6Zsr56x/X5O2y9R4QINhqhUDJKrQJEsz6R5D+Dp93X2K6n1ZpaqVQMx+mkHWyKlw7kOjvQ+EfX9Qg4Cqy37NqW9W5DdrpgYhZUZUmRVWQmemAVVcbp6RFOeJwfmGVTzs4e8/LZI1anK4zRGAGFdeAsUkJhTDIjGxupOB1035PK+Y8dKkTpgS4ypIM6SOzQ03cDeyDTcR3XmaKaV+gsUsLbtqYfara3A8H3FP2EahrQeRmnq0KgM43SFVnpyLKKbrKna1r2uy3NxjH0gaEfYomdBilSqig5khJNBOyMAis9w9DiB0/XB3a3DZ0o2VnNP7zZUqsJ2XTBy+KMrIrM0yAChUiNvpRYondDnPVFin8/OLrB0wwBVEU2m7J68VPy+RGiKOltizNTgrFx4qTzQyrVYW8OEqUznA8wRAbQoYGO1Q3wsJM9+BCEgD9kqXzX9Pa7kqE4tUomvEnSM7JMQkjG+ZFbHP1ltGEynbI6PQXhqZsd1+/PcfYd++2eZ4+fsJzPKMsCgoJ8LPR89NQIsUHQQd47P995H94ns794jx9eA4CNbAe6HlfvGOotu/U17XYbPfsRUfYynZAvjjh6/hI1qUArehnQKprZRg+xu3Po7+1jH57TO9bBQx7RKyueZ28dvrd45/A+1paegPVx0pgJiVAGO1i6bmAYHN6Lg0w7BI/t28jEahrOry/oho68yHj+6JhZWVBkhkmeRzYIcR8zWh2Yxe3Q30lUxB3NXyIQg42Ntt1jr/fY9SU7pXFaEVSU6AltQMb4185a3l1ccHl+ztW7c9589TUzYzheTFgspwjhcK7D4bGuQ8qA1hIno19EkAJpdGwiZNyHR7aTkjKZRUZTe6GITFA8c6MQSqCFwMvA2XzKzb7j9t27B7tuztkDS8UmeRAI8jxKvry/B6qEOxPcMIJm8AGjBe8/KHvFPeZGSDW2GZNHnafv+wjEB5X2pXSVRGS6+BDTHqXOWO/3/PrTz7jdrhl8zx//4ud8/NELJlUR6wbEYcAy+sUI1MHQ3TeOMEBfD7z9/SvefnPB5moHTiNDBPyU0Ah/15/4FFp7YKTdM7P/4H0e3mAy2xSxP9JKo5WNRrn2YQEW5VxMLiWCx/FcBQgSOdZE1iNctA2QSbo9uJh+5lM9KolDL+l7tHNkLjCXmvlEMcsqHs8nTLUkl5JMaSYESqOZFVkcYtoB6yzrvqYKltwaSuegE6i02YnsLhlSuSSnFvH+i4lLHMJNEEkCnhmCUgitMJMCPasQRcYgFU0dh4ezo4rTxwuUFkglcF2PqQwmy3j60Qvs7or9Zsv1zZr1ZsN23zCgyKczsqJC6zj00ASE62k2V1TtBuMa5jraLLihxQ4Pt9PlpcFaR1CeT378kvpmwzuTcfn5a/brBpMpytkZYb3jau/wry748ps3PPvoJfmkQhWGwUCvA94ojs4ek1dTyskc5wRN3bPd7vDJmyfKfC1KKbLMMJ1OePbsOf/sF7/gj37yY85WS4yIRrFXl2usvYhAooBqNiHLNCaPQNzIcmaAoe5wbYerd4h+i/Idynfg+6QOEGgvcaJlEIpWKMTRMsaHL6eIKofcpKH7XY9/8FYNh5vhA3giCfAZJUGxCXAEkf5+MGYkDi6+x/G9AZZqMsMHET1X9NuYEGPdH3zdd/13lRJImdCrRMcbixslJUJnrFZHhzfsupqhrQnO0g8WKduI4hpDQXyY7nST40yfkfF8oJHeTdTGrwtJvjNEnfJuT7Pd0u72DHVDcCBt3MQXZcVqOkXlhvm0QnhH3zZ03UDTxEZI6ej3MCLsWisSsR8lovxFEAhuQEmJScbAI12QwzkQBKUwJk5SIODcwxUxfe+Q0wnqyQnDLMMrooO7DfjBgYq54VIXoGLE4IDEoBDOM9w0dDdb6B2Lo0fI0iBSNmUQNnpgaEE5nVDJjK6q6PxA324RgyUfBibeolWcVnHApdJUU2lklqGmE4xSOCNBeLzr0qabtHHpdUZAKF3rQyWUABZ/B7J473F9jx+ijrQoJnFz7ns2t2uapsULWJ0ec/rklPJoipobvCJR4iTBaGRRossKtAEVG3QpQDpx0I2nAeB3scZ/8uFdOFDs7sxsIzIfmfeRnjj+MxpfHrZyEWUmhDipjI9Y/JlSpOSLeDvQdAN129H7AUdApwU2gjnpfCREWohEM/UCXEjx18n/O2i0Tj4ezlE3LW070PcRGJNSR7dvGafqccAzxoBKpIhm1UGK5DnjEssrcOgvUq+ikq5TBIF0MprX3pukh1TsiCRTECOzjXAoZEai7kNeOpMJptOSxXxOs98eUkDKquTps8fs2yZGf88bui7EJnm3h8RoQ0hMrpBKIDWE4Mgzw6QqWE4rVvOKSaFZVDnPz05oZhOsG3j+/En0JZGSbF6g9wbn4lYZy08ZY64TI1AR0Og0CY+JDC5EiaBF4JJXyOhPMUbFRklMWmfTpD3+PIEPnrqpeXt7y/z2OSLXlLMoDw1xecNkhsViFidQzjLPZxwdnXBytKCalDF6XULWDQivETJ2fTHsYCy874PoD3PYzqGURElNbkp8ZhmQuL7Fu4ATDuscKvlA5EpR2QT29Q7bN7S1ipRqqREimjbHRBKTTIsDMlHeTZHF6+uiP1I/2Livu8BgPfcXFCEEWgmCUAgvI3ubEP0PBkFjB25by6v3a3bKY2qNmLX4oJgXkrmBeRY9W4SMcrGUb4SRDt92tN1AO3hQMcJ3sjyhWJ4higleaqwLBFUQdI5DgzQI4SH0ydiSWKQrHdkHaaotQogKihB7aREe9LL9o8c/Bqj8of/Kh4yQu+9JAH5adyFNmu/VFkJKtMmYzObRYLqt2W939F3P1eU1ygbC6TFuPmMyK2Ocs4l+K0JEwGuUF3/Qf3G3pSXU4A/fW3pWGQZCXdPvtnT1Nqak9D1RZGnItEFWFeVsTlZNIMtiCl5wSZIWD3n3WzkIjw7SoLjHPjCu8sGbDSEk1orFD0OUXgefZCCJYi5l/Lx1NG3Lft/Q9RZP9CqKS5GnbXcMbUtX71lvN3HqbBSLxYxpkZNrRSYEWo5rf8CYJNseI7VFlGYqYzDKRE8vF3BNwPU+yhKcx7khMjcbx+BJe6VkcJ6269nVDa/P33Nzdc36do0bOrJJQTmJrLKAS8aPHi9c9FTKFEoKnEweErkhaIWXApv2rTHJ14eUziFTSl6I0o8MT+ZdZOFaz6IsqPcdN7vtw122A3MlyjuC9xGc1vqwRt8lCH2YJhQ/RseDOyDlwHFL3iuED/0UdJIG+RDo7YAxMUFyrMUkIsVWa9xYuUjFMHRc365pu5b//F/+gaKsKKsJL589wTA+13e1wfjPuP4662m2DZuLW77+8jW311uGeiALOSKo+HEv+iCkOkxwvxpL9/pYa4w17P2vSr8yMnZkBNdTz/SQh/Y+RjMLotTej5WgRHgZ6znn4pAqDTOkID1/SdIdHCo4sjCQe0shApWCo1xwXGWsyoIn8wmVlGRSYqQiE6CUxBiJVyNnIFDbPp6HEL0rhYusR5UktMjINHMiA6IBuZNReoWKrFxBSDWlRBcFIjeQG8xyhpzkBCNxgwUX0CiWesq8mkDwWDewxZFlBdUkpow1bk9b1zhnqZuOprc4qcjKCdrkSCExUiKDA9sRmg1TBqYGTktD3w/01tO5P+yRv+9hMo3CoxwsVlOePjuFpmP76pyui8MZk00wxYKu2XOza/n6zXuq1RGrPEPnhmAk3ki8VuSTKUEofJAo8y6C2W4gstSTXXeIoQpZnlFVFdpkLFYrnrx4weOTE4a2YWga9us1613NMPSARyhFCPlhoxdKxaGsFXTbhna9Yff+PbnfU0jP1IC1TZRDKo3SGR6LlQqbF2SZQpU5aloSMh0BNDnaJCSAMikj4nHPMD5weMruAM04YR1ZYwePJDGCMN+vnfveAMt0Nj8sTN988xoXoBtsjNRVcVEY1wEZ+567NydAasUoZxQyyeQALSWPzs7uNnnX0+zWdG1Ns9ux3UYZjlaKxWJBURbkeR6No0aUW8DBe0WOGtBx8RJEEx0LtsPudnS7Dbfvz2m2G/q6wbdDNDBNjeJqMuPp2RlLb1kcH3Gz2dHWDV3nuN3sAYXWOZkpDs1tJjXODrHwsY5MQaYVmdEEF1BSkWmDI5oEj8asUimMjJPrPs8QPURR9MMcV7sbpsUz8uMFOxyqbRLNTyPaHpVp8tyQV0dgBvxkoAFE0Kiup7toaC9vkVnG6elxzDwfKVRiQKu4odnaYvKcfFox/+gR7z+bUr95w9tvv+XZ4ChkBFikCilFMhVuieYbfIy3RRvIDCIzhymGx9+BKG5EItO9RZQDBX+no3PBUe9rbN1ihGQ6mZAZTbNv2VxvePXVV8ynK85++JLHT58gjCdoj80GLBofNF5lnF+v+f03r/n8s6+5qhuU1MjCIGwAl5KeQkoUEH9AAv0nHyGICBaNkxyRCvTRijQEVJAoMcZ4ykMkWlwdYlcjZPwanEQ4HWU4IhmzBU+wA/vdls1G0wwZ3hv8AXhPXiBSIAwx916CMkSfGwd+ANtDCBLnJSEPeA1WBNqhw9oe7xRSVygVMAoyKZjkBQ09vR2wg0J5lSJqFUMekhyiJ88NMhfoQpHrKJNBihTvHlk4EoWQJUJoEIqgNUnYFM+FjNR8CTGBKIByMhp0e3FvYf6nH6vVlMVywtFyTpFpJtMJSscpwI9+/AlZmSENtF1PP0DbOt5fXDAMPT548qpgtpiiVNQK79Y3TIqCo+WSl2dnGKUp84K5ljx68RykoOk75mdH7LuG1xfvuLC3bGSHLKIiZGzilFCH5C2tIihCiNNPGwV3RGM9FxuetFCXZYHWmizLDiPuQ0znWI5KiRCe3X7Nb3/3G8LxnE+ko1rNMMpgXaRk5mXOiTpivpjx7OyMiZlSlRWT+RynotRS+cgClMQX3vp7LK5I3yL6cJkHu27r82uKoiDPM7LCYKo5Pi+xXU1v27i2OEcnkldKoZlnK3Qhaest9faKbr9laDps5/FOo01MZ5Emi3G8QkKWUWSKwueUlaHKA+ubBms39De76IdCG5s471A+MrBGNYlRErTCC4GXCq0m7LZQDz2vLmvOB4czPV+vBWczzbJUnE01j2Z5NIoWij5EdptSMCs9ur3F7fbUjefk6CnL4zNWj59BdYSVChcCVld4U+H7FouOIKtw4KI30Oh5JpWisx6GIUYjx5sF7v/50Gj0AZC49+O/+9/iO1/7wX9/95NjMyTu/RAikJRYLQjFZLagnJQcnxwxn8x49cWXvP3qG3719bdcnZ1yenLEy4+fM/MLdJFBrpFFdgeWO9Jqnn7z4ZkazWbvXsPoQeesxXcNrm7ori6pb68Y2ho/NOgxXlgKTGZQeY7OMuxgwRi8FKDzxIAcm8r084nXzo9+Ginq8n8pbCWegECwFjdY+qaLKS0hHPyJQpJQqyDwnaVpBt6+fxcnyoPDFBVFEZN+Ap6m2dE1e5rdltuba3rbo4yMzYkSCGKTOO6RSsDgIMGVOGzyPNHkWlJkKrJYLNGQ3SiEz5HS4AIM3rNtWtrO0ltH1/es11u6zY719S3N9TViGJhqyfLRM6pMU+SaztYMwdCjMXiUAZkrVJWh8nxE9NBFjpMSKwROxlepBCkxA7yMCZAKItXd9tC1yK5FNgNhN3BcFmzUFt80D3bZrLV4H5saa6NXiBIRBBkZLYeP4A9eIqMv02jMH9K/7kxuR9CFQ+0niHuLyTKEUjg3UHcd02kVfepUZDDpFJuNNFgE1gWcG1DEGrytB/6///4/Yl2g7XrOjo6jv5kiJvipZPgNWOdiKpsFZwNffvEN33z6Fb/5H37FNJtSqQqtc2SQcdB6KJjuDWvGGYQggkbcAcsHPO/+OjjOfkQCipTGSYcSkoc88pCk9VJiVVwT4vmPPmrCBcJgGfouspOJ6YtYS+h6ssGh3EDmOyrfcSwDq1xzXOY8WU45npQsioJlliGsixJsKUDrmIYlY30YlMQPkm3XxyGEkOTeRdAsgAiOYCOAiAx4nepSAUGr2IfIkR2qUJkmK3Py+QQ9KTHTkvJ4yeBj0mx3c0NeCLKyZDlZEgafIs81a9cxXS2Zr44QZU7QCge01rJrB2ob8LqgmCwxpgQvyRT4rsXVW9TuhmcTxeNJwYvVjKZpqduefdM/2HWrcoWTBq8CTdvy4uUTKqnZvbvm68++xdoeqUrm88ds5S1Nu+M//uo36MWMH+aaclKiJwXS2+i/6TXKC8zg2bYdV5s1l+ubeL5VYr47T5kbqknJbDHn/Paaq/2WmsDqxTO8HejaFnF+wWXbsB8GvLU8mc3Iq5IsNyAFRVaS6ZzMavbrmu2+5qvPP+dIOY6nBYujGfQtXkms1shS0YuAU6BnOfnJHH0yRx5N6dODKsRdLzgOBYQcJacjWMKh5ogBN/6w3kSig49DIu5GshGs8d+LZfu9AZYsM2QmmtA+efIYbSSD7RmcxWjNwRwuLRqHIFsh7j6dJpixfBCHr/pgBxcSXUxAZYisQFcFTb1lt7nm9tv3LGZTVosF89k06uqUitRQoSKaJQChEvUPVEjOVLalvblle3VJs75le3mN71pwyY9kzOBWAq09x0cLFkqTVQturxr6Xct+11FvOkIQSD2Q6TYmcGhDlpdkKIRXsUjoLZ5AL3uGwaKcpjIT9sM+Tq9EiPFvgJACozOqvEKhwLff9zL9wXF7sSa3MK1mqPkKGQTOB/ZDj/EC0Q+EwWKqCRgZY3m9QwsNg6W52rNb1xRLTTmbY12g2/XYbo8sHXkm0VJRTAx9vYNBkOcrHn38I+zxI4ZHz+h/8yusAOlzAhG9DkQqYnAeP/iYPNT2+K7DDR0ihKRhTEBMcnMf89RHWN0PQ6IYy2gQ3DRYa5FSMZktMUpjtOHtN69pt3ts0/Ojn/6cYlqRlTnBRJALCZ6eICu2O8/bd9f8m//Xv2W32UGA/81//S9YLedoBG++ec2vf/U7bm63hISzCB5+KuslOKI/DcEgiQk5Ojh86KOsLliUj1IvL0OM7XURcNG6SCuQRKIxIerTjQCDSGy6AHKgqXfs9pp6P6ebSFSaBvjkeyMzhcok2qiYMiS5c/z3AtHHqbvrHa4XqKqkmJSRIqh6sB7FQAgdEtAyZ1qWhGCpO0trLcL16GBAS2TmobO0fk+pp4QMVGHIizIx4gyaIa4pXsAgUaKIk04hQfYE4fAigiz+XiJITBoSSC+R91M4Huj4+OVzyqIiyxTLZ4/J85wsy9BacPb4CFWALqHvh+hLpDS317dsd1uGYUDnGcvjFZkxCO/Z39xS6ox5OeHJycnBdO7saEUxrQhKshl6vnr/li/fvebvv/iMV5srvO8pM7gZak5DgRAZOtHHA1F6JUZTW5Mc29MhBXifMxoSKiWRSqGUjsVS2qC8t5H9IkAZjRee2nac79f0X33GWlp22vOLlx8zyQy5lmiVMSsyhAflAoXIIniJwAZP8DESMwSSHHBEDMfYPeKfD5xKs726oM9zsixnWpXR1FkKcmkwiXWAGKP9BMIJpFZU8zlZGdN69pdrXNvj6kt873F5RSgrxPEKpw3BCEKwhDBErXs+UK1KeiHRrWD7vmW977B7ONp0vJxVrDLQvo0jPx8NvLUTKaIUuqHHkeFVzp6KnVrSMuF2W3G+7slpmNAxk8OBjdCTI41EaygLS2VbymBZqAn58iWT7BTy05TOZkE4FA1BuMhEC9EjSaQkl+hDBTYItMlxQ8ANPcF24AekEPhwN+X1gUNY6cMc4q6OSEDEnfblf+J7xF1hdSCokKqTg/RY3u1BhyMlOOGQKLTKOD55jO08EsNtVhK8ZXu7ZX1+jmIgrwpUlZOLKSJN4wVZNPQO8WciI9PP+4ALPjWOAsKQwAcLbUuzXtNuN+yvzxH1FjX0lN6S6WiWbAl4JDY0WLvncnNNLo4xZWSIHY4AIbjD86yVxt8z4xy74A8xqgeEXKwjDGla7pNEQqRYZAQimdgKpaI/ih2QUjGbzZHaMF2sYqKWFAgJQ99Gv7u6Zr1YcFFNWF+es91ssVpRKEGV3aVOIgPODrHQllCUGaYwaGPICh0Hec4y+IHe1cmzK6Y3JeyXqVFUSqX1SvJstaTvBpq6Zb3e0ntPD7Qy0A1NYqw5bpsNnVV0RpFrQRWiL47Jssh6loJB6UO6DFIRQmQZ+jAghEzyDRGDHsZBFHFwqZXEKEEmA7NCcTovH+yyuRTw4H2MaJZSHRI8o+ltBIfvgysjG3IET0ZwZbzHRuzVjz4sCXQ5WOVKjSkKutbRdg1CHKUEwQTKyzh6ct5HsAWNF4YhxFq7Dx7t4Nd/9ynr8xsyJ/nzX/6CJ2dHlHli+44jPyHohoHdbc1f/9u/5m/+3d/w/uv3LOWS1VFFoSuM14fX6lVcl8fnY2Tyh39kCbr/DElGBk/8vfEeil+jpcIbHQeMD3hIHYekXoS43nh9AIx9kDgLfdMjDz2VxAVL2+zpdzuqwfHYZBxNSp7MCz45W3A8yTiZaBbKI61DOIfyMHTRmH0QjmCI9aSMa6cUHhU8vvcMfqB1MMHEBB4ZDU2jWW68x12wCCIbW+YamWlkZsimJdVqTjYpyacV+XyCzHRkzEtwXYvCM52UyKpCq2hG7nqHbCWhgcXREdVqiZlXNLaht5a292w2A7f7jv0QcGP8eGLK51rTuRbXbyiGPR/PFrxcTnixqrBDTtt7mv7hrt0MTwhRhlwrj5rliCfH/PRP/4TtZuDmYs3lu1tOH50xKVZInfPt+ws+/fpbQp7xJ7/4WUwQkiLaAATHxfqGb7/+mr/77LdcXr1jO+xwwuJcIBDTZnvXMwQPWmGlYtP1vF+v+fL9OU3b0DQ1t9eX5IsZp0/PeHx2zHI+w2iFVgJsrBMIkqbueRMavu1u+WJ7wYtJRq4y9GpKLovRuoWQwDImFfrJE+TpEaGa0CmBk5o4loipsuM64v0dy/1DADOZMUPa5xw+SYNCYrJEWwWHYvRk/H573PcGWJROsUsYVkdLQoiUcest0kXpxh1Bf9yY0/QUYiINsZgX4V5RA3d6JxGXJoRC6pjUEkJP3wuc61lfX+CbHaHZEboFxXSKLnOkzkBnh0n7SHMV3uPaBtfUDPua3eUlu+trut0O23ZIF9HV0dF4lB8oJch03OyG1tLuOppdR1tbujrRuKWlF2CS/EcUjkKXGKnRIfHf8FFP3AeElaigUUFFSqdMGw0+Tv2kJDPZHSvngY4++KhFzA1WCpSIUqZgJDhLGCxd3xO8jxOvsfATEudhu2toXIgMCJ2BTFGkytHXHTJ4ZAYyk4g6GtT5tsMUFWoWAYlwcUnY1/TWUYYRF4z0M4KP0wPn8EMf3au9w0iR3MlTItC4ZQUO07foyi4OkxFnQ9LgRrdvaQzWB7q6ZbAeZTLKrGS6WqAKg8hk1MrKFOUVFLfrljdvN3z6uzfs9x3zxYKz0yN++MOnTKsCGQKlduw3t2RG8u7iJrKWuCsQHuoIxMQgl5gacVoSk4LiIuBirGPw+AQoxmY3UnZ98IfnUQqFQsaPEKciUsg4BQ8eO/R0fU/XDVhf4NLzjYwxlFIbpFYxylfJSM+8F2EoREComAZkrKOoSspp1GEqSZx0YxH/v/b+7MmWLDvvA397dPczxHTHnGoAqgooFEhADZEykdYyWbfM+kmPrRf9p20mo9pabWxRINkkQYKFGhJZOd0xhjP5sKd+WNtPRFYVSDEzmi86qyyy7o17b8SJ4+577/WtbyCglcEZT+sso6nyQSWx4FkniVtz4j+CzRSH0ECtHOKsUVhlsMqKTCkrirIYCcutVI1M1qoun6oCc7O0ygjIkjVK1XhyHo81dn5+Vn2aPMtVV31PBJTqWs/52YqQnjJOE9Z7rHM8u1qz3++ZwoQyhtXFmbAkUIxXFzTKsvANF2dn4iOVMtY7Qk4MceLN9o5ffPE5v/76S379+hUHE4FIKoohB5kE6uqVoYWpNyevMU9BlTSRCvGHMkU/WIvUve9K3cFUfQarh6ncF0aTtWIi836/hbevSa3nar3mxeUF2i1wxmIKmKxotMYVEXeR54i8Qp3Rin9IuZ8CfpNRoB6VCHH97i1N09A2LWlY0VqLNdLsUX10lAbtNNlKjCze1vfV4Jsl0Y+kOFCmibzfQYjkFMidQakGtAOT0QSUjmBFRhMt9Epz0CtugmHXR379ZsCtA3jDuc00ZWY1iNeAVqqaUReR4hpNwhDxjLkhjp4xZFxK7GJhk0KVT8KoFNpptIXGjyxTYKkyl05zeRUJumdUGy5frrAdWFdwWiY+RRXM7E+hhGI+U/5RuprpZkpJ5BwEFCj2eD4o1TvqMesbIr86Bf59n6+fvO981G//4fxvZM/5JmiuvsGMyamQUyDFiRRGwLBYnnH1JKLGwLi9RZeALoXU90w5wHiglIT2Dcp5CQmorLv57CLfJEOp3BYFpEyKI3ka2N9es7+7ZdzvidOATwGbEz4nfFICKutUI+0VWEXIkTKNZGUwWtgc3xy1c9xLBXRR3wCbZir1b71p373mo19lP1DXF6UqcF9liaV+3mjNarVGGYdxnna1lrNpBce8t3ShITYNJgT6m1v25obb3YGoIVhFaR3ZGZzReCuNnjYK4zRNK6bSEsks59h5IDZPdSmyZmrqpF0rUqiAQ107m8bRaUWnlDBQtOauBLYHwzgeKMOe/XAgBA1tA7rBIfajsi8L0CaAk2JOJpNha7qXkM1T16OnQAWpjEEZYQNYDcvW8+Ry/WiXTdgpHMEU59zRbDhXMOXIWvm9HxyBliO4Uj9mcOWIvygAYTMZK5GsU4gCROgqjS5ZYru1yGDn+1g9SBrSSox1d9ueV7zlX//rf8vZoiOHwPc/+QBbfW8Khf1h4M3X7/nys6/5X//Zv+DLT79k2ky8eP4hXjXYImePeQ+ce5yHsvH5TPiNOcD8CJWHcoW656LqrldXH62OwNVjluz7FbPTSiKu5+aniLF9mgJRK7AO4xtJW0kZX+CyW/BH5w0frFs+ulrzvZdnnC0MZy0s00geQwVNYWxGphjoc2BSEOd7WleGjlMEk9C5CJ2vvrYja3p+oQqRAzmDtha/6rCLDtM2+PMl3dUFbtniFi120aCM9Jo5R1RxGFVoyqKew7RIlhHvQB01S9/RtB5rFHkMhDEyDoFdH+hDZkqQ3SwdpV6vDGlEx5HWFC694YnXXOhCNIrgDaN5vGtncsYXCdnwGpIp+MZy+fSSq2dPmIbIftPTH0ayzhRlGAO8eXfLYvWa7330MSWLCb3zjm3YcbO54cvXX/Pu9ob92BMQueIM6mlVCGliGA/s9lva/ZLNbs/NZsu7mztCisQUMF3L6uyMs/WK5ZNLXOPFR6eyRFKGEDKvD3u+Ouz4ejhwQ+KJ1QzeELxnsVzJe1oSo47osw5zvkRfLmDhKF5kzVkWxSPzcwYzH85Tjmld81Q1z0CKDBLUHOdMXdvrdS0zKvote7nvCLCAUpanT5/SDwPCGgsiGdBGNPpHt/z6IpMcyISRrDjCH/NBpSBRYLXJnX/AUp27VF08cxjZvHvDoBX7pmG4OeP86RXLszO6qytBvirymeu0qcREuLulv7ujv7vj/devCLs9ZQrYkqtnA5UBkateHoyTRjSkwuZ2x93Nju22ZwqK4RBJM+0xByxFkoXagbPunIVf4pqVuGuTJHllAqJCZ4OhJrzogtGWkCZKEaDAOXeMbn6syp3HdI6mdcQSMVZjnWPRNQx3G/rxwH57x+3+jvXFOeuz84rka2KBm33PYByNb4jaYXyHthrrOnZf3qGlBaLxCmMVaciE2w36aYPxDfaJY/H9P+Dw5deMb9+zyAatq6ygRsTpkiBMAoZNIzEFxA+z1MShUnXrqoIyM900101dqGwpZZxrJSpQQSiFfhy4fn9DZx1nZxdcnp0RjSOaTNL3GrxcFCG2/OaLt/z83/+Gv/zLv+YP/vAj/uzPfsrPfvYj1m2mpBFi5On6A1SaOFs37A9b4j5SkmiNH7NKEau0pDUUjU1K3q9coKRqXppq1lB1rM8SXVxSIqQJqy1WgTUOEy2GiEEmXBhL1oZRFaYUGKeRfphEmoDFadnMjHMY78BZ8d8xuvrrygGi+tuhDTgHnYL1xcT5ZqDtGqxT6DGjygRlxGpL68XwbLCiczem1HRiiQp3raFEg2m0xCo6DcZgjKNxFm8KHkmbImuK9ag4G0aKEVjSgaTl0JIrpFvQUGrkMRqYQCW0io923c7Ozo6R9G3bVANkhdPCllqvFhj3jHEaxNDVy9RmmlNickK3Daa+N2WI2KJxSmOtJYVcTUkjN7sN77cbfv7VF/xv/+7f8cX1O768u6F7eYYqcugfSyTrjDIKPae+KeQgqipTSlMnVvJ8aX2EyoEZA1dHgEU8DxR6BkXmhtvI5CgZxW4a2Lx5xde7DU8vL9FO0ywarG5kCqQq4FuZMxkBnuehg8gIRSqQ73VvPARXHhPU/PqrL2malq5tGddndNaLkZ2S6bgxCusMtnMVdNSYxqCcBaMxfsliMZGyIoyRdJAGuIQD+IRVK4xuMa0mI/5VxkIoiYMq3KTCRp3zdnK83QykT/fobkHSCnMpz5fX4nOkrMixSImGhC9KvI8KxGyYsmOMnjCBCQU7TfTV3yIlGLDgFcpkrM4sCnTArQoodc3X7w88f3vLn5jvcXHlWa0MC1+BVQ3RVFZT0UQqaKL1cZ2mArAxjfhSo+MxcARXHhmNrvXQU+XvdlZSD/5uPVw9AFp+B1SZv9YDM8WcMmEKhEHSAafxgFaOpl3y5HmDy5lbVSjjnoV3lHFkHPaMKTCNA65dYLslzaJgvMQDa2Pr0OW+4dSI71cOE2G/Zdzc8v7V5wy7GgJgDK5kPJk2FyyJpDTZZElPa0TWWoxiGAZiBK89tr33g5PnWdZOkQd9E0g5atfrrx+zlKomtUphnZP3eT7f5nphlCbHhFYK7z3L1RnaezCWUhuluTFT2aF8QrUt9CNvXQOpsL3b0JdEYyAuGkJrab2DrmG5kOjlpnM0XYu2AhTPZvoohbJinikMMoU2Dlcjk00qDGEgp0iKUQaEaFqt8a1HNQ00nqYEXAP7PWynPZvDvnLyCq7x+AIjQKrswDqNPPo4oSuYIOwkVQFAOb/IWqkokuLhxOQTI95NZ6sOVw1oH6NSEoahMFmyeFcZ/U1ZUJWXfpO9UlODZjBlBll4cN/zEGQpR9AlK4XxHjVUgGUeimpNTrFKwDTBGvHbyPPXE6BCaZG/hZi52xz43/7y/4tThn7X8+zqKW02YETa/Pr1NX/1b3/Ov/rnf8X/43/6f3Kuz3i+fMbF6orWtDIUiLm2MYWjF+Q3npX555h3LHV8P9T8F5i/hnrAoKvTeKWEyaUeF2ApJaJVlrCXh+tdEVE1KZHGiRAn/HKFb1qIGZcLnbb8+MlT/uuPr/je5YoPn5xz8bTDuYg1I814gKmIR1jUjGFgCCPb8cDd0DMlSZazSPx6UYWDi6QpYEoWb6T5w0hCmCAaGd1YTONxbcvq6pz2/Ay7XODO17jLM5HvN2I8f0yuigLAKSspVEbNDXmWBKmkUI3hrF2ivZMz0zQxHSb2u4mbfWAXCkNWpAd9t6GgckCFARsHLhvNk0ZzaQvrMhEzIq19RAmzTglXxKy+0TCUiDGF86slH3z8gmkIvH9zw+3tHcoZVKPBeV6/viEl+N4Hn3C+dnjboBeF3/Sf8eb9az7/6nNutnekNFF0IacENZWplEyIkf1enmms4d27a969u+X8yQ2+cTSt5+mzl1xdndG1DbbxFKOJpUhAR1FMobDvA796/Y5f3tzw5rDn0FiGZcvQteyd5/z8CaUEYhzY5R3tRUdztaKcd+B1HZjO8tn5acpH/A0tfoO5FBTi4QXiEUme+7PaCaiH3isgm46hxBll+Xb1rZ/UY16Q0awvz9A7S4yRKQaatkHbuWHhG8kuFYw8DpbvQZUMqXZnxkEQ47bD/sDN5pbdfs/d5pY03JCHHelwS94d5E0cIrthRB1G0tkONSXaswnbLFBtQocicZPDyJu//RX9ZsOw3zNstpiUpcE0Rh62Igf7Wd+urWbhHGmMxDHw+vUN76839ENCm5aUFSmLmVkuhhgDY5oYD4mpUyzaRFhonKnBN6ZQimh6rfa4NJKr+Z8xoHQ1BVMybVfaot3jTff++H/4v3D2448x5wZjJ3IeSclgWLJYG7JyqKBZXVyC0mzTQOtbcIbFs0v+5P/63/DJn/8FGEPoOgFZhJLAWfeMNFwThj3ds07Mn2KhHHrG23eoRYdZr/E//JimRmoTJixyGI86SfLL2JNjIISRmCNFZaLKGF3AgokI22bWa0cxt1NKUyxobTDeY9uWlLOkUB324DTGO55/9D0WymB1IZvCpDOpCGNCa01Kju0m8Iu/fs///D/9Uyjw53/6E/6b//a/5OKypVskyANKBdARZRI/+qMXPH2x4vLZiv/5f/lLbu/2DMMju7DEgtLibl0opGr66ki4kjAkcTEnEkAOopX2lkjkFEBZMeQyrtqQiCmssx7TdeAappCY4sh+2LHpt0xpRcZVoz8rLIumIRkkAWM+BCAHplgQ7aO1WO1orebimWIf4PLqjOXthiEkplRQLrPycNFazjtPCJ6l9zhdZSEpiS/EeUdjJw69lxjvCuVZ53A645CmwuBQyoFuZbEswu5JRcj7iUJADAMRkZV42cwTd+2qzOHxBAvL9TnGGJmUoCDGOkmThsloTeNbSUcrVN5NYdE2oBqiKkwKmWIaRSiG/Tgx9COHaWK3O7Db7Xl/fcvnr77i9fU1n77+mq9ubhhyInnNsvH4ZOhyoekamsUC33XihVXmw5vETworAQG5s4KckQAq/Q0gZT4BWmOpYnli1sz68hIyy27J+fkll0+fcRcGtpsd0+0d/69/+S+42dzxo08+4cff+z5nTcdCW1wp4qVT97VU6jTNaFJKx+/z24KS/Pumg9+1nCeWQj+OaHaoxQLlG5x3lBgIU2bcJ/KdTLy1M3SrDtN26KZFLVa47gpNQxgT/XgLIaJLwO7AmIQn4vVCwESlGXPm7ZD5203g37w+8NX+A+7UU4bW8bfXPflXmlebie33DT9+seaiMXS6oPSEMgVtCqa/w8QRm0GHAzb2uNKQSoQ+UkJBTQadfG3aNUp3NbhDWjWjRX4yxonX1wP7MXKznwjO8+RJx9MnHX/vj15gfIeLA70eUUaYgznWA7C1GOMIuWCsoWTNVKUrII3i0aH8P3N9A3j5rV8fmRrq4Z/NR7gHoF69R6cwEUOg7wdh56DlfTENaZpIMaOMxTlHTkZAsFajlMWlzLTfsttuCBlWZ2e07YKm7WgXK1SVw2jjBcgeB+L2js3rrzlsbxl2W9K4paspFiZHmpTwuWChGu9rSjZgLM40WLdkvVyz20+kceSgthi9wjgx0p4p1nJME6nEEWSZ5ULzJPD48UjlFMpZORvmdJQCg6boQkqREFI1/TR4o+VwXBkbcyaNgNi6GoIl0jDyxaef8ekvfskXn35K6QNKJ4KGQ040ZonyvqZjnOEbh28sxhsyM/tCXofWGu8duGroXu2gTBFrLx0ySk9HRglF/Fxy/Vm0MmhjOWsbfHfBsG65rmbxcRqJQEDRp0zpR/qYsE2D9Q6jvTTzxaBryst8rxaDvNYsEi9t5YuWDDkUSrLYybJgSaeMnLMfqcTgVj5iTCJXMoaY0oMIZ2HLPQRYZmZLptQ+Qb6eDMzue5tS8pEgOwM1gMinrCMjHpDaikR/iuEI/s2yV6UVxogXywzeRBKqQIyZcLvln/6v/5xf/c2v+ff/5uc8e/mUYhWHPPKv//3f8MVvvub1l6/p94Hnz9dcXj5h6Tt8Vtj6vNx71ak6DHhQaoZO6s90/NPqb6EQ9nz90yMbu1STV5QYB5vHO5sA3H3+C6ZxTxh2+GE/Q3WgDWOSYUrMgNG4xmLKAo+m6xZcdC3/4KOn/J8/uuLlwtM6zWQhGU02Fr9YYltJV0J5MpBKZhpH8UcKI8M40Pc9KSRijDS2YUoiHl1aS+MdujZntvHCWvGG9uqM7mxFu1qyenqFXa9QbYPqfE2VkfMSWoskvGSR1+dG5Fspo8IkTJkcUK2RwZ6HhowKPYyB8f2G/t2Ou5uBV33mNkGvDNhGGvicSCVhckCHPV5N/OiDp3x41vK00ax1IVm5N/IjXjplOxQBncea9lSNhq3mxQcXhHHg7uaGn//8bymjwkxi9GvIHNzEl5+9ory8YtFZtMrsN3dsN9fstteS6pMDkMAgDPn6gGqdSClzOCTi+JQ0RUqA8+UFT59dsD5bsD7zOC9DKKMrG6koStFcbw6ME2z3Iz//1RvebRLRn/PBT/8+Z63FdC0Ht2CfpRfpYyG/uEQ/vUBfrDGtgyoNq6586CJBHZZ4PwRUsw9s9W5KQV7/vGdlkZ+XGIUBo8BYQy5W+piY2e4OFTwufHD+n36NvjXAMssyFOVo2Ki1kuSJECFVTL1AjjX2cRyIKdQNIB8Nro6O8TGRQqKfRmKIhBDY7rbcbjccDge2uy1luMHmkZZAUzJutWLVWDwaNQyMOXETA355h/Et1nciV46JOAb2b98RemFGmBhxKEn9zalGSxaUShilwNQpYWMpY6iGZbsaCQgqZ2JWFMw9D1DLKT8XxRgjpR9IYUPjNM4aGm+kQVEWbzwxWKYo+i9bp30JMWYVR/hvHgC/a63+3ieYqyVpBc6qmoKToBwoxqDbQnvegK+Hlgx9v8FS8DjMmeN8+UzShSwUI+aKBUVJijJmMVcLCeUb8VEIQgsveaKUwOQ8rD3+yRJ1G+t7J6kmClDVVE/nhC2l3kfzwS7LZGiK5JAIMVLqZi5RtqaavwqrotQklna5EDq/MljtxbgLkc8ce7Uizv83Nwdefbnhr//NZ3Rtw7NnZ/zsZ9/n6omnacCoWGmBuibggHaF87OWH/7gJe+uf8QXX7zhy6/ePtp1Ayi1GVFGGphSfdd1CdgSMUQcIgXJiAmfwZJVNXgtM2+jNhHqvlmwzuOaFnyDyj2pZEKSBivmVI11K7VWm3poESBwZtDl2gxnjUzYtCSUKCtMhfX5iqsn51xd35IyDJPCdJZVZzlfWJat5TBaWmfRpUgEZk4onWk7h0Emi6kUUlEo7XDWYRHfGZ0y4n+mJHI6pyOdRmtVP2/kXi0VYMn1cMNMEKzSxkcEWLQxdQKqiVlAAg3EEtFa0tRm1potCskbS4I5U+hzYB8DUy6EUtjsRza7PbebLe83W263W7a7PTe3d7y7ueFuu+X1zTW7cQSrca5BxcyqaXnWtpyvz2m7Dtv4Kt+oYIk1EgdakEZKy7S4VCnMfL+UeggUp/56Kpw53kcWiUTPWu9pFwvWZ+eU60DIE4cx8puvX2OU4TAMKKX56MkzLhcrtGnFeLceOmONYp5lSMdT9nEiUb818z34eM3eiw8+JIwjcZoYx5FhshilWDgrHiJQkxQmkiqSqJUiDBHVREz2rLxFuRa7XKL6LTmOxDDieihWkrGUd9A2RKXYjJkvbiKf3xS+2lreDS1DOWe0C6Dn1a5nIuBMQuXCi7Xm+dKybgxWTyg1gslV6pZRYUDHCV0CpiRyKJigMcmi0/y+GpRuZB1X4j1GCRQMRWuGlCmDJipoX01stoHbmwNP1i2Xi0liPtNITKCo/k+lilu0hgzWGigyMU5ZDoKqTovUPDF6xPrtPfMoEfo9wMo3WS6/85XuP6u+yYIppTCFyDQK02xuwFHSvIWUiSERQkQpLYbQpREwswhEPDvSzczP8fo1kzJoY7C+xXhhrukqF07jQNhvSfstxJEmTWiVcSoJoJLBI+CK4YEksihQ8lmtDF3bkbJhmhJhGtnvFU3jaRfdN6jVwgCeV8b5szC3gfWp+0+6Nv+hynXIheK4tzA3MdUstdT1qighrmtJIwAyKU5MowBecZpEmjdNhMOBLz79Wzbvb8ljojEWnTO6FKwydE3LcrFgvVrRNE2VGd3vjwpQZY7M4x7JVRynniXzICa5+krEuk7W91CYHQWtM0YlGmfQuqVcXkLJjMNICgFlDLEUhhAwpWCLwuaCz6C8sNOMrUEM81VJDwAvVSWcKIoD0yq8MnTKoBrZP8sjuh7FmjCXjilz8p6lOjwU+VCps9ZyxFJy5Q8cpWhyubkn7Es9ZH/M+yUVANVaQK9pmmhMK9LleiadpWY6RpGecw9sHBk/876WFdv9QJ6uSUNi9cVXJA2HPPHFu3dsbrYc+kjjlyzaJYtmgVUiCyPX82S9d5W695MsUPfV+pofvnHqXuZaSvUUnEGlB7fZ8RM89koJT+KAsgpWC7K31cdGkbXmuh/ZDSOb/YGiLLEEkTY6I8k8JRJVpCDJP1YZwAprTlu8UtVPrbLLtEQZ+9bRLD0xBqYw0h96pmliGkf2RtMfDmIs6g2qFYamtga7WuA7j1+0LJ5e4VcL/KLDnq/QXQveURorprdaSWCm0fU8XIfbBVQu6JDr+VCsBLSTgARVMgwT6TAQ9wOH93cctj37Q2A3ZgKWoh3auXrfCkhHmjAl0lp4+uSMxUrjbEGRsBiycZRHBDWLNiiTMdlilUYXidLOseAbxWLVcP5kzWLVMU6RlAtpCETjmA6R2/cbnl9eoDvLorWEaWA47BkOOyCLhA4NOaJ0ZfYnYac1TcN6fc6f/vSP+elPfsyPfvA9Pnj6hLPzJd3C03oNhOpDJP19jIUwFcZ+YrcLbLY9nW14fvWckifWNuJDTy6K/X7kjj2ZQLKK1fkFqutIzhK12BuIk6QoFlQNrFDHPfV+ry6qQK4ep6WqFIqClFE5HwkgucDUj4xTYgqJcQrsD2NNy/x2UMm355qpmd4nkhjnLVpBzEXAkiJeGSVlwjgxDRO73ZYwDpKuE4MwD5L4koQpEKfINE7c3N7QjyPDOHK33bDb76sfxICeblmYzGVr+eDqEt8tWBuH08jXGEb2mw22vUVbj7GeEhU5ZnJIxOFAiRGVkhxEqkZTldkluEhzYRVYhTIK5y05Z8ZpZLvdE6ZEjApyEqr67NQvYClioqMkqi8FxmFH4wyNd8TscVaac6cdDkdMo1AAbW18S+Uc6Nr4HGVW373anzyn6EzWBWsKOiE/R5koyqG9ojtvmGIW488Em92WoBXKNmSf6VbnZAxpnMAIOhxLIY4ZhojJkTIkVOsl9m04SMpOTuQ0kZ3GLQ326YIy7gQ4mKdDM9spZ0wpGEQelrNQo0mJFCbCMNWHVqY7xhrxR7BWYtuovZhWKGPoGicPX5WalTEIok1h9kKmQJwUr19t+OzTt3z6yy/56Z+84Ec/fslPf/Yh1iETygoealXj+DSoHOhaxwcvn/Knf/ITGt8wjuOjXTfgwVSxkFVCEaFENPfgiiNSCKKmQmGUyEEk2o565H4wotUaVcRIr2lbim9Q40gmEXNijOEIsMxg1Xy/VwLpEWBJ84F4Prwpffxz3zhWZwuePrvk2c0dAPt9xCwalkvP+cKxbA2HwdJ5K5OcnMg5oUyhXXisbmm7ht0hVVDN0/gGn8HGiJ0itijEU0U8auR9SxQM1RJNfCLQkOX+zlSTaT1jBPobManfuWYAUnGvMQdUSTgtJpRFz59XUBQxZcaSGFNiMw7c9gcO08QhRN5td7y7veP1+2u+vr4WgGV/YH/Y0w8CBmz2OxQKrxxNARMiq9UZz8+vOD87o110GG9r/1goukq9jgdbYWXIyUQfrSAyhZyqzlxJgtRMRawp2XWcKludrobfy+UaboSaOoTEq7fXxJjY7Pc415BSIVwm3EpYSbaCJ7Eald07Nc3/nZuWemQuD//scerFhx+x22zYbzbc9T0hBKKR62WVeDVAEZC3JBKFMQSSjZQmYVnQXCxxxmK7Dt04UhpIcYBBEIgCsFiRbcekDDd95PP3mc9vFG/2HXdTR2JFcWeU0vF+vOUQ9qg0YnJmfwXqhaXpLMoWKH19szLkQIkTKgR0iVV6CTopTHEycUeDMmjtazNeDydzNL02TDmRAoSsMe8zNzcDN9eJl5cd6gPF0o3ENDJFsCaD1qS6n85+PNaKFC/lRM5RjNMROnq9ex7tuj2s/zBT5e/4Mx5gz/M09xtAizR4KReRBYVASrk2dYZcRM5WkoArMSRJB/QeXTxaBXTOGFUNGykkDY7C7eZazjFJ1izbNKKRdw0lCWgwDQdao2itFpNoC1YVNImcwZXygOov+2cqusIuFqUsjW/JWJQe2d7tSPs9OSW889X7RK6LOoKa5fjjzxKcuog97pU7MkUqWDqfh4pMt3OZfaLkdaSSq4eEgC1hDNy+v6Xf79hvtqggZ8Jxv+fLv/0Nh7sNOmW8F1moVQVnHIuuY7VaslqLGeO8pqmj94wMgI4wU1H396yaXXrycb/TVmOyIQUZYql6PYyVpC5lisgy5hjS8zO0EtlWfziQcpLxSUrVyB5syuRU6qAAnNLVjL1ejzR7CSAJZbq+dqswrcHZwsK1mCYTYiGmxwPGUo4iD6ogz/yeiWToHn+fxTP5+HuB7r4hhZtvhfmjPPBomVkd81+oQJKxlilM5MajbSPg+3HtEdDgnp02M+lrWuBxLVBMIRP7PdvrLaaxRDKHEhkQ81WVDYt2xaJZ0rpWzoFZGvZZrkD1gVHqwc/8O0PSbw657kGVGaGZf33/hhz9ah4ZYfnEKZq2xXsnqXJGH2Wfn99ueXV7yzBuGYFQIuRI8ZachKG0DT37yTG6xNI0uGKFWaA0vg41UQLWFytpdVo7Gt3KGTwlhqFnHAbGfpB71yliDJjOoRcNxlts62kv1rSrBd16xfLJFaZrMa2HrgFvJU3PakqVrRcNypj7a3OcBgIlQZDUp6IMuhgZ6CmIY0/Y7hjvdmzf37HfjOwPE/spi6mq8RJIUAEZRYEUcLqwcJYnT89ZtAmvEzpHjGspjw2wKJG6GSPyfVOALIx+Y6Bbes6vzllfrmHT0w+BOASCjYz7idv3W6aPI7poFm3DNA4M/Z6+3x3Xq1IEYFf3NyjeOc7Pzvjow4/4i//iz/nZz/6EH//hD3nx9JKmtVivMQZSivVBz8QpMI6RcYgMfWS32XPYDlwsV5xfnYPK6LDFXL8hjyO7ccAncK1gC4uzM1LryMaRlMYIn0t8ASn3Pq7qeHHlDMP9zp1SOoKsoKkbNTnep5/tdgObXc84BYYpMUaJ624X/5kBFlmnMiqL4amxjlI00xhJQ2AaRg67HW9fveGw3TP0PTkl2aJKoUwjcYp1IiHTiRgj0zRxd3fHbr9nf9hzs7kj5ozSCt9Ynq/XnLWai9Zw5h0LoEkJi0KlhC4SX8kwgJqkWcoSv0qGJovGUQTHuVKLqDIXOWCmUrDOUIyi2IIxmSn07PZbDvs9MWly0sQpYvxCZEoKYQhoLawXYzFFo7KiTIUxRkKeGELE6UJjNd5oWtsRh4EcAqVPFBNJRMY0MqhQTekeD2BRC+qqH4lhoISAShmbQWmPNxZnG5ITjFAVxUKd0fcDw34PytBPRaaeKBwrxpg5HA68e/eOZtizINB0kXzekrUnqU6OqVHBfsJ1LXrlUc2SMC3J+4AKGacMKQjtVhdwKYkfT5SIvNhPpH4g9MNxMoI2MINhTlOMIJGJUpMEHsrUkP+oKAydXJOJlDQUOWq++qLn//NPf8Wbr2/46ONn/KN//Pd4+XLJsiukLLIkGVnMTAkFxaCSqeMHxfc++ITLsyf85Ec/erTrBrKAGBJaJRIBUyaMimg10eiALxGvIkpFGqOYjGH0EJ1oP4NpmUIh50AEWm9xKBpdWF9d4ZdrsrGYfS9vmNbElAgxESvNN6aErgyjea86HgFqN1Xq6Vx8dSQ9QBvLcun5yY++j/eO6+sNm9sDUQl1vmtbLpeKGB37sWPdtexTxGpovOHicoXJLSpHvnh1x3J5xmJ1xrOnT1mpQJNG2GwxaYUuHbqcYQqoElDlQLFLokXMxpRDZWGv2ARKJYqGUM1dgaOE5zEqTRPGWvGjygiDqk4D4jRVxk9m2/fcTpEwRW7HidvDge3hwPv3N7x+/47toWfb92zGiZvdjnd3d1z3ByKZrBRd21A0JCOv3StNh2aVFYs+8vTK8/HqnCdnQoGfGRTy/cV3RWiVch2zRmJcayMF94fiXDW5SkNSpU6dFbrSK+XIYYlTIiol05asSFNk2PckYxind7y/uePd9R2ffu8rvv/iJX/2wx/xhx98j3W3oHGSymCSGJzbSneYcZUyn9wfGqQ+4uFzeX6JdQ1N25FjpgWs0ccb3qDEsLjpxEQ6Z6YwEYaRcEiMk8HEkW5haTtwC0sOhbgfRKqTFTk7wlKxx3JTLL+4jvzi1YKv3nf0YU2ylyTVkpVCKUdI55S84MttZOgLX75R3GygdA1Xq8Sq8dipIZbMFBNxksFCyRHI6KjRxQrQOPun1oagUGS9TQXtLcYYlC2MOaGLJmXHYVjSR81hs+cv/9mv2X4fnl1GrpYTRkHbGNquYZoO0ljmJCbWTmjiw1QI4wDKYV2Lwv7/CVr5u+veN+jvAl9AmsRvmigfgZYCYYqEEJmmACgxXq0DpylGDv1InpKkmRiL9y2TMfKzZlnDnRZac0ri4xZz4oNlx2BhHDP7fiDvejIwISw8o2BJwSdolKbRBm91PYsBGExNtpLZKdR0WQHIjcVYkR25RpMVDFPPYTcQdwIGXVxeSLNlNCnM3D7upxAzlHl0AXzESmKqKQCWnAlTZa2oOhAoWh1ZUlmJWXchM/UDn/7qU/7lX/4l79++ZdjuueyWEBNxGBhuNxglqXkmCUjaOMvlasXV+Tnr9ZKubVFKAJ1SRM+vmf26hPk4A4JqnpXO94tR9e8bfPFYpYR+nqIMR0rBNw7txa8Jq5iKGNQ653jy7AkpJvpDz/ub6yNwV5QixHq/jSNxHPDWEpoW3/rK3NV1+CK+g7oUcpSpdS6gvcM1Grs06DFjQmaaHs9nLASRDZRcjvcXCmIQ38GjyS0c5UFwDxrIr7mXoh1//7vfS4Y48uusFMpKmtBuf2DRtpwbi9JiYqsri8caK/dTUjXmWLz8LFlMXetgQxlhJEMiZkhK1stWFUpJaOD54owLv2BhnAyLlRNHeOTsLy1eJsw/13EJmT1yjjfN8XF6CDIX5H0U2ev9exWO+93j1v/4D/+ehEAYA2hcIz/PqBJ/9foNf/3Vl4zjHZ/e7ZhyQyyBYA1Ra9SU+M2793xm9+i+g9WKp66htS3WerQ6iAdKNWFVNsswxyq0k+uktKZTZ8KAipH17RWbzR3TNGKdoztb4Rcd7dkSv15hGoduvDBWnAVnwPsa+1yNga2tw54HQNWMGFc2GSbJv9dA1pgcyONIvBu5/tXn9Dd3DJs9u5uRVxt4u81sQoJugTJO5D4lHgFQlSaeXJ3x0YXn+z/+Q152haXJ2Jzozi4wzQLlHy+5S9YeMfpuvcdpjU6QxoDC0nYtz54/4+Pv7dne9ey2A198/hVhnNiEyG9C4OXzK1qvOT97yt3dHXebWw77bd0PZaBasiFVtqu1ju9//w/44z/+I/7xP/pH/Hf/3f+NJ0+esV6vcY0XAuf8fBYt6Xc5M4yRcQz0w8gXb15DUvjW8/EPP6JbrcgpcvvqK7ZDT8qZcRqY9Mjq/JzL55d0XUfwjmwdqBaFF++5ouZ27AjWyrWuw+cMYtTsYEJ+Ji1DpZQCYUzc3twyDBP9YeTt21vevb9BGcvFk+dcPnvOcnXGYvXtDMG/vcltrhT+lEljYhpGht2Bd69es7+5IwwTcQpMh4EYohjlZJlIqFJQMUIIR9RJlapyVop4OJD6A4SJlbe0bUu36Li8POfZuWPpFQuTUdPE0jd1QxGTJlUURs+LmrzlWmVpthGtpTQG0kg8NEmVA5VMA7QMOGTqrwoxjIShJ04DadTEbMlZgnTmm+iILtemROQUGuUVKWhKTnLoTYHiJIHFG4vRTpgGOdI0DdZ6jPLksGNKkSmEb3uZfqdEs6sBSzGNTLV0ovSTTD9SIucemYfJCmWtYtkZcmPIyhDKdJSMlLgTk7cS63RSE5Pl5v1E1znMskF1hrTdoHPGZYPJFuUUpVHo83Mie8oQhfBlFKrST3IMxDwS4kQ8DJQxQJCEHGFIFFCKGKvURwV52LQ474uJmfwMqii0tmQKUWW0rYelXDBk8mQZ7hJ//a++ZHM3sVit+fv/4MdcPl/jFwZ0Ot4bR2fzLLIokSpUXFSJf8Gy83h//mjXDUCbTFGRkgNGjRgdcTqz9Ioz4+m0pdUZ7xTFWbJzxPaM0a4YabgbNLfbnhjEoMo0FmccrTe06zW2WxCVQVknekYrOUOCYsvBKFcTu6PxlZaDSanP3nHKUokySkuKkzIKjeXZk3NyCFwsO7Zne0JSotFOkTLtUClhERBShSjAaxihFJxzXFxc8Pb9iMIQQ8Zay9IblhgxPgwtOrfo0gqbpVihbmsqwKKJyqGSwShFowooiW0OGrKuMrVH7NTnRk3VaN+ixfyvHwYxSbQa7Qy73ZZXt3e8vt3w+c2G292B3aFne7dls90xxUAohYhiN0zspsyUIWQ50KUyosWenTgFjEoUo/BKsbaelbEsZt8CTY1lpHqNSlgd94M/Seq4/ylkTUMARl0TfGRKqgWoLrJexmp4GCn0aeIQBnb9gXEYiSGhkiKnQtSFIUXeXW/J8TPev7+l3w5s9xMvnlzx4skTzlYtrhRKzCKj1LJB5ofT1/lm44gDPUpd324rpdTQLpZ0StNokU2UMFVWHULNLwWdwSpDYxS6aELf099MxMGQzy3eKJrGobuGfJhIGsqoGXaaV4fEV6Hw794n3tyt2OyW9NuOaBW2haZFPCgmKNEwxZa7qZDuAlM44FYDHz8vfPjMspw67sbAZkhMuSHjQDmZJNoaSa4VBklC0lbMT+UN9HijcI1C6UImctgfyEkxJcP1+x6bA7aM7N98xnAz8MGzzI9/4Hj5fIE2Ha2S2MSckYm7rY1OkRjZnAMpTZIoZL7JTXqs+g8xV/7jf1f2tnmq/ZC9UkphHEdJV6uyIGtnzXakHwemEAgxYea1pAjwaJ2jOCv3co7knEQalGVvMUoYGa0WFpfOhRBmeaYcK4zWeGswFIyq5ooxVbk11ai/NrJKkVQmqkIkE1PEVtAg50hBoa2iW3eAIgyB/W6HNYbFoqNrZcJsrK6JRvP78rhSvN8uYS0gMtP6v1JKTaurICvC0tBKM00j7999xZtXr/nn/+wv+fo3nzP1Ax6N3m+xRWEyNPpeOuWVYtm2dK1ntegk4SInYpzEDFjNzFa5D8RQX1cL0tqTMd8WD01KKzPCGHIu2MqoFRpHlubQyaTdaPEOKEWebW3kZ246z2paMoyjSIZSqpJboGTGcSRME9M00kSP8w7fNrReUuZUnhv5IwR0ZKYVjTS3SlfvrMeplARgoUiSpqqsFIlmrszHPHuf/L6Pe3DlGxKZB4ymuea9aZbVGmNofMO+P8jgDUQmVOQ90DV5yuR6Hp9bsQKmbngzGCnMKEUStQgFsEVBLOikcVnzrFmzNBabC1OYGLUia/EvEqZE5YFq9Y0XPc/3jm1g/ZmPPjQly/tYTYEFHEsirSoy3HpA1Xy0+kE3xy8LW0ETKRmiydwtLLtVy29WHV/udwx1CBMytMbim5ZVu0I3mqQiu8OOdrshq8zCafRSy4DYaomidwZlFNkUSo1oxogRrQZ08axai71ckFLCeIdftJjGY7oG3bZi1mwtpfVgDBjx+ytG2DFKKfncDK4UibyWgVuCnCQpsj60OWfyMDHc7Olv79i/u+Hu7Q1lkujzxdkZepxIfWDSE0lbSQJDkvFIsh50VvPJyyf86OMrfviHP+R5W2i0DBn86gLtWnCPZyydiwCkSskeZK2kvkrimzzfTes5Pz8XyXwxnJ+v2W62jGOPLpHXr19hTESpnuv3N7LX54zShlk2A5quW7Nerfj444/5r/7hf8kf//Qn/J/+iz/n+fNntF2LMVDKdEzpmum5JStyVIAlhIndbiCEifOzMy7Oz3nydIlGMfWSiNS5BhYrTGNYnllWT89ZPTmTIU3xlOIpeFTxUHQdcMt1pKgKeiGKlDLJupsNZINVjpwKIWSub6/p+16M3nPGGktUlu0YeHu7pWkXPP14yfmT5/iuw9hvxzz61iusTjO9JpGnyLjZsbu5492Xr9i8vSZNAZWKLGDwjQ1IgXh/zJrRByQDQUFEL+4VrJYLzs5WrFZLnjx9wtMLR2vBEQi7HV5VJ3XkIaLSIkulsKrKUBG6cj0kHCmdM7HhwaJVpz8zDbUOTeVAFCdKmkhBibu+0mLEVlS9KedNbW7RVI0wFlg7JUghSeIAYErBtRaFmGrmHLHUrHBnaQhkBSE+XmSsmt9kJTpVZQtFJaKBI9W/ZJRKR2W1ttXIFk3G1PdBJDwl9qhisSXjnMEmj0Kz2w/YZNC6wywa8oCYDOWMznLMwWrUYoWaIDORk2hpZ31PQqQSk40k644giTIOVRks80FS3LNkMqOMQtWAihmsRiGAmhJT1lw1e0WBTjDuM5t3E59/ek0plvOrMz750Qe0a4N2s7t0EZBQjqYCLFSkt9RmVQOlZLzXePV4dEC5eBFVApoJbxOtNXTOcd4YrhrFwig6W1g0Nb7He0JzxoGOfbSU20kmq/U6GO9w3uJbj18uMI0ctI338rwYSSqgHpbmuMVSP0Cu0xHtprLT8oMMenRtNOQwf77qyJdrOqtZGk2IYhI5DD3DOGBVwmlJMhHKeyGGQIkJ2zjOz87x7g5VNHGMqFJovGNprUjWsMcIdFtTSkpKZBUxSmG0wuAlplopGpWPAItRkOuhfs4fepTLpiVWNJVCrKy/GCc2hy3KiXyq0y2HQ8/rm1t++foNv3h3w3bfMwwTw/bAYRxIOYMRrXAfI0PKRCEciC9NnMRsL0ZhVChhECnAa0OjDY3SAlJI5yeHQK3q85EFmITK5pubtQdAy/xQzYB0XUu1UhUk15L2UydwQ5zYjz37sWcMEykmYXplYcHEnDkwEkJkfxjQxWBcw3bomUriY/2E1hkarWhqA2IqOD73xeW3Dq2PVVMskhiEqQlOBguUFMhJTPJ0mfcZWfNNBdd1BlJkOvSUrLHO0yw11lloPGE3ERKooDj0ilch8cUAn19r7vYLhmFBnloZtDXQmIJqYFKKpA25OIYAMRbGMXP2KpKUsPgui+V6l7g9KBItRcvEx2g5fBkkjcKaIpIFpzGdF1WzUrTGYhtFJjPGkX4IpFQoCab9hCsBmwO3t9fYuKVMipdPnnB12ZES5Dx7GFUfHsURiDW6yF6aAikGjLHSwD5yw/6fArD87ufvZSGqyt2kEZKPcZwIQSQRDxP+YqySoJgoGZQ1dU2Uhu/hc1ZKQnyxJDlvbsCOgx5jyMaic534I0cjqzVeG4zKx69NyUez4JnNUerzm5TIjcWoVaRss+kqSqGNwjWOEqDEwpAGxr6XdbKmMIofiT4CmfU7MZ+lHrMe3gWqplDN7Co9e3rVPVzOVJF3b9/ym0//li8//5zPfvULwuEgaT6+JQ1BIsS1pTUiQTZAYzSLxrPoGtrGoSnVPzBgtLtnOMlhUFbAusbNP36F3OoKWV99eXgNxRMOyvGcoLw7pvnI8E/LvVWp7UornLN0XQtIgkdO0gzquu7J5zIpBhIRlz1FgdUKtOxraHVck+Yhovi21WGIkqTPx6o5LYiCJL1wf17IFSDLdd/4bZAF+Ob/z8fxBzfDNyU0D2+SGl3sHDElYhKwwhhz9OsSw12NSaYml8p7L1fkaHlZPQ/l/k6m7me5bpEJXNF0ynHRLOiURedCTJFJCTPNKkOqxra5Dv/mUJKHP+sM7kgDKr41GXl/YkrHxKVU5OunUs2DUzy+P49ZV0oYsJlCUqBqPHJShefe8L7zPF8t8O8Uk1JHTyejLY0rLJsl7aJgTSYHYR+Y0WGnBntmwBuKM2AN2tV73xSKFuNtpeXPZgmXXzhMauU6eidpPs4K26QRdlQxhuIc6BpIUMGaOcp6tlWY3X6OEpJcKFkOTSUlcoikYSLuDuzvdvS3e/Z3B2JIeGOx3mDMErvfw6EnmYGiDBlFrGupQkjtnTc8f3LJxx++5PnL55z7glWy1tvFOdjmcY2l67pAvd+tdVjjxJMoCbDorLDDxybSNJHVasF+vyOlyDRlbm5uMCahOHB3u2UYJMVW6xlcATAsFmc8e/aCn/3pn/EXf/EP+cMf/ZAf/sEfsFwtq2eP7DsiyxGGWKkWNzEWseUcE0M/YYxhtV5webViuXCMhwHigI6Rxjh02+GMZXHpaC/W+PWCrIz4+BRLLlbYK3UvUuVeTJeLrjNwkUiTEiUZcnLkYAghM/QjX3/9jn4cCCnRLZcsmwalISjLdgpMOhDQiFOvI33Lfe7bS4RiRIcAIZHHwHh9y+7te3av3pF2A6pGb1lNTey4XzwVYJTG4uvbkshEOZgDrdVCMXOaZ08uWSxamsbTLRrOlharBYV0yUujnSsAoaUxylTnL1XE+LJqLTUKZ+fouJn0yXEjnacjZv49shFpJdM+Q8SrwGYciEkOodMgshmFxrVezDTV3Jbeb2TWGnI2TLXxj2Fi348oylEfHeNA7Ed0MVjv6RYrbG7xafq2l+l3KteETAWgHXiR2FjbEbOkIIhRaq62+AAJlTIkg8LgG43NVEPbPTo7Wu346OUVesykPvC3n3/OImka09I9vcSbc+J2y3R3QzM69Ixatx59sSS3E+PugE5yoNUZRqUobYO9vGQJklwSE2W3Jw+DLI5TIMZJ9O4xE0KRKHBdJSr1mlptoGRZmLuGPvboIqZxui98+strfvnXN3z12R1/8g//iB/88UvWH67JeiSQKTjASdoVUJQ9tuGlRLBRUPESsCYfJQOPWZkDOg84HflgveLDl095cnnGB88vuOocnVMsnWbRiv9JRrMtnusDvN8llLlhu9uSkmzkpm3xy5bFekl3eYZ2LSYrFuszSjhgbaHOSMmliB48S+SzygVbG/uSC3peSnKmBPECUFrSIJSWxk0pzcXSo0PHQhe6PFEQ6UGIjrudIauB/ZhojehXQ4HQ94z9yNVqzYcff8Snv77h0AcOmy1TP+AuGtarhhQC/ZTIoSYraQfZkpBFmawhasBhssFkha1rR9Zz/oSph/pHbBzaljFGxhC463e1ad3z5u3XLLuGy7MzXurn7PY9X7+/5W9eveHXtzs5mOYCzrCLEheJkRjzKUfGJCzBVCPnSkpEMjpXPwgjIEYoMi03Clpr8FrWZTMPGow6HmjlcamNDQ8ASu6b0DlaU2jv943G8S/Wf6St4faw5e32hre7O3ZjzxgiJYGK9XtVZd2QM7EM/PrNW277gav1ig+eXPH3f/wHfPD0iheXFzw5W5FRNU5SPZg+5t86wD5OPXv+EePhwLDfMYyZpjFiRLrvUWHCAo3W1ahYIHUDEp9IotWwSRNxSAzbgXV7hlEW51r2DKSgmbLiPYq/2WQ+GyyfD+fk3RLGFa1qCaHHTQk3FdYXlthaplDY3oyE4Ek4Mmf8+u0dN/3EV+8j319b3r6beHUdKP4pTl2g1JpilpRYsKrgreJstaBpLa4xuM6KcVwBPUVhdOVEHjPOe0l1ixPkgMojxAFCYNhPjAeHtWtgQYyWYUg0jZeNJst9M/voeAdjmIiTYjhYls5ISs6jXjmpv8vQ9j9mGq+UqgxIeVU5Z6ZpqpKgiWGYJPGrfsSYqpltkKl4jRk2Wu4XYQwZxjAS+j26TGQTawR6lWkkAaetMmJRXn1bjdLSWFOHREVRYhZbpMpSKJgqa6jDg3rgTLqQiHVeobC6g9STpr2kRCkj+5e2mE7XiGHEB2S/J4WJ9XqJc9Wkm3k6Ob+f5rHxFVlBlD4az2tj0Trj6ie00igrU+/t7Q1vX73in/yTf8Jnv/4127tbLlYLvv+9D+msR6fMtBEGS6ONGNuHgKZwtvCcrzu6rsF7Q05B0olsxLdWhgtK2vCHTf3ROPHBenc865UCJRGDyGuVAmVtNYusi6tzFCsIR8yB2YhVg5gwKoUzhtWiFalXToRxuI+prUlyKUbGaWQaAiZMTJW12DUNrfdo75hNbEVyMqf2SMuplBbj6UesnAUGdM6TciaVQKwm8zNbo+QKST2QvvwOk6Uem34nHnz+vbr/cxngWJx1pFxNp6dA5xpyDJCLJO9YL/HRWp4nisYoacaKDL+ZgbCsJezA1LXLF7Axs1YNF37Bi8UZThlUlr11rzSOTKNtHU7ImTMqjga4OcajrF0BOaZvTAMkKUzTti11MkUumSklYpbAjzgPFR/5XOmGLWgrMedKY9T914/eMpwtefP8ir/88hVBGcZiaI2nU5qVNlydOz74qOMDD4sxMO0zQx6JwxbfPBUWu7dyrjCGYqBYUM7L822sgI6Ko2G0pM9oSQ9EiVTZaOkXnJh+U5mSHOUs8t6rmhA5N/kU7s1MQ5GeNQbieOBwvWHc7tlf33C43VGmiCqGZx99xKLxtN4DC74cX+PHW4ofKUgPGWNAkTEoLHDeWT56fsX3P3rJ1dNLrIqiCjAGbAvKPWrEdgzT8V6zxuKbhqaNeDeQEhhV8FbXdNwMJXFxcc7d7S3DQeRs79+/Y7t9x5dfZl6/fsd+P4AyRz+9jMLYlhcvP+FPfvan/Pf//f+df/AXf4+LixVNa5imoQ7m6mVQAIlclZFxyvSHid1+YLvpOewmPvrgJc9fXHF2viDHkbv3rzhcb8m7iU5rbNPi2pbLj85ZrFpU28hZL3uIcp5HCcBCqVYRMxPiKAnKlKmnjEHiwSfDbpvYbA+8efuen//yb/DLBWdXl1x+9Izzp88oStFtesbPvmA/Tvzt6zeo9TnL5ZK2bfmE/3SZ0Le+2qXvmfO7xu2eu7fvuXv9lsPNHT6LBY1RCq3FgAx1r10/AhcznUtDzPJG6Zx4erlmsWxYLTuuLtY03mCtxlqNdqnSH71sNONEmiaJOq4XWIaslSBp4OjrqStTUwmKX/LcgCNgTN1UUxF6L1oo8FZpnl5eyBQva758vWXfZ8bgGJN8PbTFenvcjDUKp2QRN/Vn1Lo6dFtHGDRhHBlTYhoDUwySOpQLRmXayWAXDuMcjXo83Z6il+uXISclD7zV0ugYMSWO44idJvE2ceLGTTHiJK2lwUFXFD7BbDhnLxOlaGKwNKmh2JEU95DO0F0DaSIcNPvDgcau8M1KUGnlUT7StEtMvm/aFlzVA1c9byUxuS1hgiiys5QiLknTX1ImTTOlspByBVmKHJRsPZAqrcXwMcvUbvebLV+8f8vn7zZ88tPv8Sf/9R/xyY+fc/6yw6QRYqAEYX6UmbkVqO9Hlo88iflXiqgkN6Iqj3uAuTh3XC2XPFk3/OFHT/jooxdcXZ3z/NkFK6/wptDqQmtlHJqLZjMZ3m0z683EYUq8u3lLLj3bPuE6RXvmWV2tMEvPGDK7KUgsJNWDSFuUdSjrJJo7JlRFuRerhTCbdJ1gKTnuJ8SxO9UJQdM0KANKWZxSLL3BtRazcEwhCkvFKox2FG3RbsEXd4np1Xs2h540jITDSB4jthjOugUl7JnCRL/bMo6euNRgCspktE6QAnG8Zxxp47BodNGU7NAV6aaIee/90VlYO4/pwfJqd2A/Htj0Oz579zXv9tdsD1u2d9e8vLjkB/ED1utLlu0FXXODsw2UnRwRtCKaTGlFphURaWUqowB7KaDTPC1IFKrUB1BOExtDag3BFIqm0qWFafHQnqguyPVwV32JapNXF8jjOySRmjVqF6G5zwQvXaSxjFlMFN/v7ni9uebdsGGXJ4YsE36TnLQoCUqOJK8JQOp7Ipltv+PdzTvevP2aD55e8eHzp/zsj37Ci6snnC+XLE2D1xpKzdLK9cU+YsN3+eITdtfX5AiHPlKmiCNjQ+SsaXBG2FkaapKFoOd5GihxwpbIpBx9geEwcXt7oLEGb1rM+hkhL+njgl+9G/hq7HiflvTlKRqPpmDyhAoQc2YaI9knVpcNem3wJnHYBOIIRMPd0HIY4d115DfxLVMohGxo1h+yWDxH+zXWrzFamFpWFZwrKCWIe1biqK+zgC9DkDTAOMaaCjhiSo8pGzrT09oDzz9csloqrp44jO0kiSgrhj7h7JxGkQnDhO9ajFN4o4kxE/PEOGwwjZbYd2eB1aNdu/+9qUG//fmHfzaNU/WFC0zTVONmC4vFUjwLlESHT+MkfhnVLE8GSNIoyw0O2hh2Y89+e4eyE22jRIZCEv1+KZAlwvSh1cKRScP8LM5Nv/x/np9NGcrXva7aFZcESnzpTEoM+5EQRcrRv/kItVyA9yjvRULRelpt2R8M4zAy9HtKkYl627aYan4rr8fW7yGAzmPtdOVIDZFhnNGyjyoFcar+RuPAbz77jC9+8xu+/Pxz3nz1NUsFF0+uuLxY0ToxcFY5C3snBIaYuFytabqO1jsuL85oWyf+JaaAlaZOEt+YKc/Hs8MMEuR7M7d6fY5vurAPpkAZA9YYjDZC2a9+JEpDduYI2mS0AA3U50/NoJnI2r3V5K4hhJYpBlKOKKMwVhITtdOEaSKnzHQYyFMkdoHUdWJUWr+L+CekKhtQMoAqCXg86XmYRC5njMQkzwmhqtwDfnJV0+/Ig+AhyFL/XvldgIX5nS/3TBZVB6NKizhOgKeJs8WCmCEXMZiWAWeVURgrzE6lUEkfewZKJuZ8HxBA3VIyLE3LuVty0azEV7FO7LMqRFUwWTNFTVUokIGYYwVO66zSGIzWwoR0wjSYwViOQ1599LZTRXwaTTFYaxnrehTvqQWPUs5bstL1bhHvCgM4NCsUV87w4fqMc9uxj548WbriaJHz5mrlODtfct5ZVrkwBsjaULwjegvWop2v0jgtzK5Gy+e0QRl7NNjPsngKo0WLWa0yMvAqWpOMJtV/o5R4cFSO6T38Wyrrek6py8KsSePEsNmSxoEUJqZ+x7TfU0LE+obLlwsZhitDR8aWhE6FaXQEZYlYjOskAS5MqJLxFkxKYn9gHd3Cslg5lOcou8JaihVwJSvzaGtlCEkAJa0wjUhQnfcYZ9FjxGpF4zTWiHlvGCdWZ+csV0vGsSeFA+M4cTiM9P0dN7cbximijacQRSKuLM6vWCyvaNtzpqlwu5vQTeS8sSRrKs1LFByl9l1TzAx9ZOgD282BN6/fYozm7HzNhy9f0CwtRWUOw45h3DNMO8o4CtDYNLjlgvbiDOUNQSuscmISWBSmSNs5g0BKq/vzZy6UEMlhIvYHxv3IMMBmH3j1Zsvb61u++Po1u6Hn5eqCxcUzFlcvUN2CkAKT9exR7PqB8OoVq6fPydqgvP9W1+jbw2kzVS1npr7nsNvS73bkEKpMp1IjH6yYZf53VFCiPhEKVdF/QdkWned8tWC97lh1FucqE8YUis4VrNCoYgk5QTZCg5wXygeTlnnOIJrNauqo5ICSq0ayzOibnqcV9yZ4CjHRWS1a0uUZMSSMbdjsIts93O0KsQhbwDViylhqvLFVdZ+mHClrsy+LHFwKKU1MpTCmxJCkYbdJ4zNQ9NGX5tEqjrJBFPn6sgspSTExGZLE2ZVxooRCnhSq8YhNnkIzwUyfTJBDAhxKO4wJEsXmFOunDY0taB1IqUdpK+lFKjONIya0uAzKOZS4zqGtR1etsoAqM81PqH3CP0+oxlLqolaKePvMshU95WMkoK4GbwWJerYy7qYg8rMSNWmAm9st230kkvnxTz7g5Q+ecfnBE9xSo6KDMJGDlf+vvkNFR4hRkJ+IPPFJQa73TZ2SPGY9f3rGR09WfHC15kcfP+XFyyecna+5vDqjNRmrMp6E11kavaywkyObTFYjl2ct66VnPxoOY8I6aDrLYt1hW8c+jPTTSB8DC6vJlaaelUwREoqSMgRprtuuFdNPJdM3jDB6rFYkpYT6mjMlGQq6+iAZvFFob6HzqCzvuy4ZGk1Sjqw1zy4OvLm5o+8LaRyJ40QYJ9IUWXjPaCXOcjgcGIYlU/C0VqOtIusCIZKivA9KFTnIZA1KzG1Vmdcc5i7maGbII7MhPn/1iu14YDPu+M3NG97ub9gNO/rDFpRi3a05jBOLpmPRLmh9I7TH2mgoW8HoUhH66n+jdY0URFa7+V6X5a869luh1mat6oY5+8FUY9O5YZpP97PHgRJPlVkiQX2HpHKd7pcHk1sBs8r8vcmMMXJ32HM3HDikiVBpxxlh3OSiKyAnBnhouY9MUIQIw1CYhj2HYc+m32Hbht0w8PT8gpfnT1i3HdYIHTiVymJ8xKXS+QXO91jXUipYqrTBtRrfepzRWAWzXAo1+45IJLHKGWMcJgE5M/SZ0mhU43CrM2JZoaaWzZtAHx1T6ShqRVZzulOmFE2ZCjEWps1E14KxhmULJMVkFXHQjDtLSJYhOoapsrBsy2J5iVueY/wC6xqMmW13MloluVZFmBSqrqNhCiJNmyLDYSQOI3nqIe7xese6DZwv4OWTJ3TdivXa0C2XktiHRBOnJM+RVjVNwOcKfoonIbkwlUCMPahEwWK+3Rnm99b/HonQbwMqsx8CQEr52NBMkyTOgfg9eCcvNOdCCOFeFlTkmZkxgrlxUvXcMYVJaMkqE7MmGpEJzwAl85T/eGip99Y8oSsPrFVLZZTUs8xsTF2qz93MElCqoEvGpITqEwlL0I7+/VtMukAvl3jnhHVrNShDzg0lJzEBDIGhHyi50LYt2lk5e6nZ8LW+tkeqI7OhriekJGzQmNhv7jjsdmyur/n0l7/g7es33Lx/h5kCbedovcNrMEXAwhIDJU2okqTZaCzrZcey67i4WElaSU0gUl5hnMG6KlmrTW6ez5PH1KD7/9aTLDPgkqtRcapSjmLBOFfvNWSIVdlIeQauj8BYPgLYM4SmjcI6Q9O4ChSlKr2VvdQbJ3LTEqXxrveqMYY2thgzH2yRyaKqXhTVI+sx97ic5+dJZN45z15sD7k+D4GU++/9u2DLPcA4vx/3bcQMot9/1eN+pkWqH0OQNMkgA0t5TQatxbh7btZl2GakEa/fRysZMFCEfWKKnBs739L5jrbpBESthsalwhIlFyiS+DTLoWKO4gmpFLpKN4wx8qFtHXJUVtKDR2je5mcGm+zVihzrs/DItLHs3PF6HQ8SSu4zpwoLa7jsOs58x23yhGRoskR+L01h3Xg672kaK8lwC0c2luQsuhVJrPJeWCxWGPPKi9cf2lQfldn8TcmvjZbUIUkgqWeTORlICzsay+zSNHt+1MXvHrCqD1hKsq8d9gfiOJJjFJK+b9G+YLXCey+gqNK4OKKmSZr1pMjaUrQVSVKah8vioaWAojLagnUaI4uQ7K1aV4DFkI++lo903epNIqdqYUlqY47PvKryTudqbHnJWG1om5a2bdmOOyiJaZrYbnfiRxLTkQEkcKHFWE8uir6f+OrVG56+eIYyiqazuFZTtEgcS8lig5EK45TZ7Xv6w8h2d2CaJs7OllxenLFatKAzIY1M4wgloZR4CGbt0L6hXcleM7Ori5Hh1TwUndPSZuIK82A+BPIwkcaRYTew343sD5n3txPvbw+8v91xfbcjKuinzGFMbPYjhyhy9tvDcJQGae9pug7ftbjm23nnfHuJkLMQMyUUdrstu82Gw35/9DpR8wZVMgIxVJutUm95gWjlPF8XpFwjHNcrz2rpWHUGqyZ0lfOIR4I8NEYbjDfo7EQHP89tyhzHBfMuWVSp0wdVXaYf/L1jQ3LfcJS62tXHFlLhbLFg0XhWi4aL84HNLnJ9E/nsqw37ITHGwmLRkFI1qor5OAGWiYQ0OAmZDjstZk1DD+MAh5yZ8r2mPyVFiXWtn22SH6HKrq/aZpmwUA8DOU0UI74ZRkMeJ0KYCDnSXp6RY6iHriyGXkrjMMS+oJRQ9swioFoxXXv5UQeTIueJMN1gTEvKA5mJMPTYsaUNAeU7lKladYUciASfFF15nsEV8Q0px8hIJXKfebpHfa9bLcBG0XWON6OcGhsNuSQCo0x4Rke4VXz2q79it59YXDj+/B//mA9/+ILuYsWkCio7VAro0IjfUAykMKFcTwlZJEuTgsnJ9xW3JyECPB4bEIA//tFH/OGHT/nei0t+8MEFy7MFTdfQLhoMUeLgSsAim0dJWhJOTEFpw7PbjicXLYfRcruLeF9YLD3nlyu0a3i/2bMdDuymAeeXFOfIzjEqxVgKPsvPK4Z2iW6cAJn4TWHANBZtLY11kBG6bo6kaUR5EVSpkvFGEsFatSAPB8aUUHnCNQbftnSLBR+/m/j6zXt22w2hPzAeeoZdz2GzZdU0hHYkTj27uzs2m4bdyrI6WxFckiSpFIhR3FS0EXBFnvvZK0QSpHKpk6wikpM5vSKlx0tY+Bf/5l+xiyP7OHKdD2zywJgkZtzebrhsNmy2B55dPeF8ueJssUTVCPGiwDiNVUbWrCAHcZM0yRuCyuhKk1WqTrSVeDgoX932G0+x1ciuzODS7CvAfX90P0KVtVooNLWJuwes5Uhh6rr2AFxBjM+zVqQE277n/W7L9WHPIUeCeI2Blkm9rpO4pOTvFwOKxJAVsUpUpjGzHQ+8vrvm5rDjw+fP+eDpM/7+j3/KR0+fs+4WdG0jE7jyIPHkEUpli1YN1nY4v2DRWRaN4bxzeJXRSgCuHEX7H1MmUOUBFdBTpsVqj42eYRhJWVhhTz/8AG3OGQZP/9krol5CXmFYk3QmmgwmY1RLDuIjtHu3x+ieZbIsni5w5w1TMBw2iuEwkmNDQmMsOOexTcfy/AXGS+qBMvM6KSaKJc8+OqYeGDNxnOhvN+wOgWGM7PuJNO5QcYdJtyy6Dc+vPJ+8WPDnf/9jrE8YW7CNwZtCiQPTOJIClQlQyHEi+yAgui54b9BJpC5xOhDTAEHT+o8f79r9BxgsR48MJQ0OyH0dpolUqfzjKKwVkRND0zR472maBmcd4zgyTROHw6GCK994fOT7UY6mmjFmxjgxxJGEISpFpGBKPh4O51cyx37qCpKIvGP+mvegCnVCmuqfUGTNlxeQUUQ0El1foqIZI2MohClx99nf4oYXtFdPWazOZFpfm5gFDVoVjFHs9wf2+x2HQ896vWa5XqF9nS6n+57osaokSZQslZUaKrjeb7d8/fnnvH71ii8+/ZS3X32Fs4aubThfLBC/1kI87CWdJGVCPxDHA631rJcL1usFV5cXXJytWK8WEjZQhMFlGouqRpyoevRAzq6z9KAoKEkatvns+JBkkSnEnAgxknUhK42fEc0HUkw5E2d5PubDaqo0ayUNi/xSYa2m7TypRFIWAEUBylqaxuMaTSAwpEKoUaP9MNG0kab1WC37Wp6TjCpjagbzHqvE0FfAA5glxaWmIPGNm+T3M1fuf38kaMwd1IN/B1TQ5gFso2QAYYwhl8w4ic9DNCLjMdqQtcWYLMwzrWUYVw+785nSKC0+Nohpr0vgi6bVhlUj0czedUwl0ShTveXm150JMVd2UP2ZFFhjMdbSdQu8FYDHqAcujfM6BUeG2mxfYCpQUJREHmPFv009MoNltI2EDOSENxXkVJlcjWcX1vJsteJZe8bdaAnRs4yGC2+5sobn7YKVafBagUo06yWl8WRnUa0B64SR0ni0q9pkK9HIRYtsSFkZlGitQQtrvijp1QR8qdHL9ffKGKhybkX1iJqZf+XBDVQUpSRiKgxjYHvoieOIAs7PV6zXC5yzmGr8TC6UmOCwo4wDZRhJY6E4R7FWXmuIqJRQIaBTBOSZVV7Jh1PSWWsN2lKMIxkrQ8pHHLpmWZ4q6KAraDfbnAMKrDO0bYtzVvqrUlguFsRpxe31KzBiF9D3A+M4UkrCGI02DTlrwGK057Af+PrVa/75P/+XWG8Zw8hi2fG0XQqwkjNTnISdGgrDPnF9fcdh19MfBprGcXV5xkcfPqP1liH0pHEi9CNOKbLVTGpCOUOzsFxcnUm/nqFosXhQptRrnIB0VL/MoAslofuesN8zHfZsbntutgN3u8jXbzN9UuzHzFB7geu7nvTFGw7ZUKxljIHPX70iacvqcsnH3/uEj3/wfdbLJd7/Z45phrqohInXb15zu90whpHGOUAx4/Ezyj+bi840clVq81uEYp5LIpEoOvHkyTnrpaP1CpNHjIoYBd5pQhGjLlXAYtDWYItMYGIuwrMopZq2yyKs8hFKIWtNVuXe1VzJi1IKYqE6wM9sE3noSi51ECzTq7PVmikadgfLen3NzXZgs5swvhMzqpjo+5HQR3KSaZNxksUeSsY4T6GQSgve4ktg0oWpT0xpJA8RbSesNTSNx7tH1O2VrnpkZHIeKClAjOgwMZWAMrKpL5oWr4UFcnj1hsaL0W2OQYCZUgg5YlUri0g2THFP3mcwGu/XGHeGsR3WwDgOTP3AcDgQ9gPoLSjNSjt009wbvxlDyROkgXTYUYaB3I/EMcihKyd5oGpjWDRilKVkEVZKTHCLqZrSmjxg0BQt5lRBBYzxbN8ceP3vr/nlX33K1UcdP/rJB/zwLz4B25GMbAg5KlQ2aG8gZFSM2OihUZTJUEKQhVcniXMhQh7kdfJ4TTrAf/tf/RkvLxc8Pe+4WjuUV/Ke6YjKAa2SHM5nh3RVaLVm2UCIlqu158WTFbthwxevR5oGlkvL+qwD2+LvJEIyasRMbNGhV0uitUxKM9UH1hYoMXF7e4u2so8UU2hyg/Ue54UeP9P2+r4X5o9LNF5iMLWBpnGcrzuGPtMPE7Yx4BsWLHn5ZM0HT844HPZ8/WbPuN2z8xu2y1sa7Vk4y2A0d7c3vL+2rJaGj55fUUxPIkgEt2mgQrsxhKMxllbix5PJwgKprO+SEzHW1KpHTO56/eYrRqMYNdwxcRNGphyxCm76gTe3d3z99i0/fPIR3cJzeb7AW+iruaUxFms8uU6Mnej5KFkzHYJI/bKSDb82j8ZpaQobuSZZKWIpTLmaW9YpaEZuoaLnOchcMrEtVVgrePV8nNTCrpgPziXDHHCgICjFoWS+urnhq9tr3u02jCXXBAuN8pY8yYhQKZlmUYGXQhHTdxSpmoinlAhTJl2/53ro+c37d7y6ueWPvv9DXjx5xkcvXnC+anFG4x4mN3zX0g0oh8LRdksur85Ytg5LIE8HkpD8CRmmBKFkxigGlMSCnjLWt2As3miGYQfWodol/vIFfvGUGBuavxnRdy2lN5SxMBXEALB1tKnBYnBJodOOw/WBqU+MceL82Ypls6C59KQpMg0DaSq4fEXTdrTtAucX2MaIxN5Arma1JULJihSlKdtuhC4dh55y2LMfMlMspJBROWDzHlPueHEVePk08uJZ4qMPJhbrNdo3ZOUJ/cS425H6kalP4GTfTCGSxpGsLbpxGN/IQdVo+iypejE+rq8A/N3MlSOoUoSBEmMkpiQRuDFVFkudaBqJkdd6ngIWrq9vqsmtsFYkopkaGy5bk30I8CjFdr/Bty1Xz55ysTYsVcKlidIfCCnOwkRMEeNb5kOkaOjkLJPvz1G62CPAQgWGS5lBD2mkNQFbBnQqmKR4qi2bcGA/Br76678ifPkV7dPnfBIT67MrvG9pfIO2nrZrcF7YHPv9gWkK3N1tCLGI1r9pcd5Jks8jEjX/8n/5f4vfzRQY+wPDfs/Y9/SbHbvbW+I0QQw8Xa9pnKXxEjlOHaIVBeFwkIYxRNbLjkXbcbZc8fzZJavlkq5rsd5Igk89oasHkoRYigzlZlYacxMsB/pSZM1L3Bu2ahTKGmzboLTBoKWxl5tBPOHUDK5UGVkF5UqZo4OlckkIaiBGol5BooBW5BjFey4VlHY0rsHXxqofR2L1Idn1B6CAszjAFD2nLFBJ4I/qMxZCwFYA4XcSgoCZ6PRNUOeb4EqegcTfI889fh35V8fPz4CjVpK8lVNhGiYU4kshht7myKZxVmQpIotF2PCmAq9TxiSRB/uoWWrPwjWct0t8lNPcPo4U5yklYrNGpVLBCWE2W2PED8M5usUC55y8DmPQx1nuPdArjLN7wGV+WabU3umIuymUthiv8PpxJ3d9cRLGoRNJRZR1wjRXmaRAY1lZz5PlOa972MQGXzQdirWCtdG0jcN1mmwSYWFQrUW3DcZ7GdRZR/GOZCqQayQyXlgquqb+6OpdZI/vkUbdAyy6Qge6GqlqeTYzMqTRde8/shwoMkhqGlotw7tmtaSkCDUdzTkjOEh9GEuug91GofrK/j2MFCvskNZ7VqkwjCObECEnrDc0zuOXLW7ZYrtGfh6snB+UJxUre8gjGktHilgW5IKtAK1WBq1MfZYsxjq891hrUKpw2O9ovYOzNd57SrU9iGOQc1xlUDq7IGdDKYacFJeXV3zve9/jj3/6E2KcuLu94fr9NWcXDblEpjCy73eEKTKNkc3tnuvrO8iwXCz40z/9CavVksaJyiMMkdAHfNZsdzuG/Zam0Tx9ecnZ+Rm2MYQ8A2TiJagq8Kip6yO6At0ZnQIMI+y2pLs7xu2Wu5sD1/vEdlQEOi5fvqTc3fF6O3LY7Biv99zsAv/2F5/xfnvHYRrQ3vLTn/2E7//g+/zZn/0pbedRpvZ13wIu+dZPasrS7IYki/mUorAzjNCk78nkdTtRkJXiiPke6aWzRwbyNxUYO+uTC9ZUql51zX8YwSxsMoWyFl8UpHxEgZOaN79cwfNybBJko5PXQ3X7pm5iak79kVZMHvoioI0qCa0C3nlBwXEsOicZ3y7SdB5JSU3kmCmjIKdieFcRUqWw3sn3ygVHxnUtLgVUFJPZou4TC0ouqPx4G6FaXFYz1oTKIyWMlDihR42NGkpGp0w4CJpZSsYoLXTLIIkQcldnSpnIGigOlMg9dHWSVmWgJAsu1cSeFU5rvG1wCzm8aqWIY0Tj0MVijCVrSWdSJUMcKeMAw4Cp9EjmBJt5XGjrnaaFRqitOJJjDNla1AywlOq/UcAYB8Wwudnx+a8/Q5N4+sFLPvmjj1HnnpyEzleMphRZ3HOlzakjXaap1G8DWUMIwgbSubIJjjf1o9X3P3rJWatYNWBtFmoeMvHRDw7lhXrQLwJ1asTwqvGG1aJh0ToMCe80zmm8EzlJ03qaztf30KK9o1kuaZZLfCtNWh5F9hPrdFHVeEnXSpOccyHVtCdQ1WcJZpfxlESKQGWKOKOhcWjVoJwmGUnbWTaeVdewahtpVopM+XJMWJuxCrzRjCGwP+zZbFvig4hDXZIc/GeAICthbyCU3XuvpHlDzuSciMNADBMhjI923bRV1bAuM5AZUmbKBW8UQ0ocwsTmsCOUiHeGs8WCtnGMY5LDfp1saoQ5ZnUReq3XuGaSc3Ouk+8KEltn8M5hrYCPuYhPSUrz5lSlQsffVTnig4ls0kcbcEo9yNwD5hyp9DOQPmtio4IxZ97vd2yHgSFGeaZ1lRYZhTZyXyql5RBjC9nOgKEcmiXeVgzU0IqpFPYxkPsD9v07jLFs9nvGaeR7HzzjbLlg1baPdt0oCmscvmlxvqmHo8ogqCBzqqB+MfVgCOQYiURyzHTOoHEU5UBFrO9olxdChXUNRnfYphV6L0pkl9qQtbwvySiMUZQsh80cMhMRNhO+mSTC0imaRsjSQRVMaqq8qaNQ5aBVOqKysIxiiEz9RAyZMCYOu5FwmEhjgDEyjYqYZGJvSxFpphpoXcLqSMkHxvEt7UqWYOUaVPQk69HKkmIU42gt62CO4uminUhAldbClkTVhvXxLhvwO/Kf3/71HKsstOhYI5frXj0nMtSGUWtzz0xNiSlM5FTuzfIfsGGcMlitcc5SrKTLxZTp+15Ai+aKs7WmjT1q1MRpIIW5ydToXNfxko9MFpg5wCI9lrdrPrsceS9yPq4g+BFkKRGVMiqBS4W2CIv2MA70NzeMRbF4/YaSFcvlGqPEJ0ch0oWmaeQ8ZyaGIbA/HBgnMYRdrlZYZ7DG8Fh9wy///c+JMcr9EyRpKkdJ+gjjiMoZpzWNs3hrcLoGCtSoyOIUlCR+U8aw7EQStFouWSwXNK0ARzP1ZgZNKgHofh2b39P5cwiIMqMFvytFrx5Mtq6kBRnOic5yDk4jK2EmzefXUuZfy9e+fwwEkSiq+t5ZWc8n56r0hGN0PUXk1CKFmZmEiRgCthRhTESRNJcYJOWPx2UeTdNE07RVXlBZELNbbX3/ZtbM/cfMzHrABDr+7PP7W35XzjQjNvXtn+VBRhlKCYQogy1T5RJaGQGXcxbjaaXlfVMc5UGqFJzRqCDgRmM8582SzjV0rhHZF3K6CiWRQxZflYjsUSgBY72ncZ7WebqmE9md1vev+bd+wvl3qsx5fdxLl5nBF2k0RS50Dwg9VuUyR1pDdVir+3iW1EJlMEUimb0rWOPq+q0wptBYGSArr8EpkcF6DV6Dt5Jo6RzZ+aOPozb3scrFiDSRaq4v05YZbKogcv0wM5NMQVH6CJQVlHgAHkEs6RsBYZM6izGaxggbVPrCXM+nRewR6l6ZMyKfpTKG3Lxfaby2tCbTWls94CT5y3iHa1uM82hr0cowRyMLFWA2nX5EgCXH4zAgpVTPt/N7eP++6eqHVkphGHqWi0X1SDOMY08YZchQKPWaajSWLBMxmqbj6dNnvHj5kmdPn/L+5g3b3Ybdfss4PiWXyBgS05QZhkC/73nz7i1jP7BcLHn+/IrVaoH3llKkP44hk0KmxMrKztB2HYvlkqZrxafnQeBESRVkBIqSlFvpfoShVFJAxZEyHChDTx5GpiGT8bi249nFc2haTD+B8fhuhfMNxlnu+oFxCMSUefrsgg8//IgXL1/Qth6tRIpvv+Uz960BljxPFmPi0B/kYisEVaw3tq4PwDGvR82ArHhUVD/tIxUeNTdjuU6UC8YpmcrWplHXyFOox/5ZS1nkCKLqQnz8ylnkJjKRKPfaWmRqO/9lpUSmVJQszAU5/BtVndhzREzBJpTxaG2xRvTkld1G1zpy0QQrxn6hTogVHB2xjTYSO1afZGegGTumFDBTQ8yBOU5vBlge7FPfucz5U4RUnKCMpHEPYaQcBvQ0QphgHJh2uzpxVvjWM/YHcgz4tqn6N9ncQx4Qjwu5lYwSzxpCIMeDMDyI2HZJcZ6uNdjuDO0KykAcw9HUEW/I1ShSpQRhQsUR4sgcylXIdcIDqshCkiWyRh5AL4asxVpiNc/SSsu0KAFFY7UnB8Xm+o7Pfvkrutby8vsv+eiPf0DoNCoIaJIriFNq+4mlotKqouOyAGF1NYQFdKjSinmLeLz66OUzbO4xZQCmKnMrtbmW90aOAOnBKTFJo0qm8ZrloqFrLFplYWRZg6lmxr71tJ1oH5UzaO9p12sW6zVto3FEphgpeRKjxP0eSGgLHS0Y8V0xuZrK2tlUrgItVD+GuTlJE0YrGu/wriOSGYtC5czCe1Ztw6JtsLX5nBkxZGm6vdX0Q6bf92w2W8YQSDlVgEXLQUSLP5IKtemqk+J7pEwuV06FNAXCYSSEQRJTHqmahWc/jIQpMVEYcxE2kFLYXOhDYNvvCSXgvOFs2dE1nm2YZGIp0DKoUk2zhY2AszTtxJQKJWaJDc4CsDhrcdZjjQVdI6JzJsYq1XwwM6t8PTmkz5NGNcvr1INGY34C5dfyeNSD84P1NSgYcuJ6v2M3jowp3ydJVa8nY9X9NM8ZjANlFcXKM6e0PHO2bvpKK4pWhFIoMfDm7pYQJm7ubhmGA41XKK7ovqUZ2e8rncFbT26XeNeQC4QkPiJKa3IW75dUiqzt1mK1YZomIooxFUw2kmalHOgG16xYri6JSmO1RSmPcV6ua5knl0JpV8aRdCZVE1phaUKeCv3dhHUjXZpYnnU0R9PUjAoO5xusb0i5oJNcVFWlXDkmwjSx2x4IQxKn/z6QBmkcCJk4GYlbnlXuJaHKhLMJyo4YAtutxa/kYO38ssZEWrSyIhVLReSJSLRsihGXxR8DlSuYUUHPRzYE/4+Z3KYkqT+73Y4QAjlnvPd473HO0bZdlTuIpjwEkQyN4yg/l2DER88WpRTWe7zWNM7RdA1ZwZQmUgn0Q89F13HeLjlbKOxo5NrudD0mViZvSuKB9lAmVPXm+RivAtQo1TKbtwi1ogLJ9SmdBykpoWLBhExbKYe7Upj2e0JW+Ndv6tChiOzEWWan17ZppHEcPdN0x+5wAKWZQsK6hlI0yn9HKvSD+sXPfy6SKeQs0TphztoCvvpXOC1pkLamRlqFyECtAjcnIEvE+rLrWHULVqsli67FNx5jNfPoD+TgLuLCcjRkzVrde/XNnyML+xqOAPM9R10dAXC0mU1WZr9Nac4rVbJeLcQ/od6bfDOtCDhK25UWo0qso3EeFWRyXVImVYEYRVwTcjWxLimTQiTkCrBMwlTOYTwOFB4T1ZzldDM7bPb0UHoeqJY6Vf8mu+UeQPn9X3cGYH7PJ6kthfxSyTkv5kIsiQIYa+UsWuZ/NgOm+riXlSpxVQqZ8oeELYqVb7hYrPHGYVD0xOr/AaFI30NM2ACNEvDLtRKJ2/mWRdPSWEdSYvof0+9x35iRgPlHnH+sCijN0N3MbDFKHffRx6yCuf/eOYEp9cyhqtmsrQBLg3UZY+8BFm0U3mmRxXgNrYZGU7wGJ0OC4p2YvDongKFSKOsrs0tVg9t7YKCU2VnlfvwzD4T0DFYqsT2cpXtQ574ojBIwtBRpJVHq6IkoKbKprqVJBudk0HO8thJvOCPeVSqBclFYaUrjlaazltZYGmNljdUK4yy+bbHePQBYBFwpxWKUDHVRj7fPpRyOPoMpJmRcIe+jOjp1C8CitEiox35i0bYYI35A0xgYq0k7iO+TczWdqcjXWSyWPH/xnA8+eMnlxQVfvfqM7U6xO+wYxolUEuOUiEkxjpHd4cDbd28wWnN2vuLDj17iG+ngUs6MUyLMAEvIEEXmvlgs6ZZLfNuijcQyZyXS9hRzZXHJHYuugFiN3S55kmTD4SCqh3EiTAXlWrrlJc8+/APebDZgNmAcy9WCtuuw3nF76GmaDkvDJx9/wg9++AOeP7+SO6piDt5/u+umymNnW57qVKc61alOdapTnepUpzrVqU51qlP9H6weUT17qlOd6lSnOtWpTnWqU53qVKc61alO9X/MOgEspzrVqU51qlOd6lSnOtWpTnWqU53qVN+xTgDLqU51qlOd6lSnOtWpTnWqU53qVKc61XesE8ByqlOd6lSnOtWpTnWqU53qVKc61alO9R3rBLCc6lSnOtWpTnWqU53qVKc61alOdapTfcc6ASynOtWpTnWqU53qVKc61alOdapTnepU37FOAMupTnWqU53qVKc61alOdapTnepUpzrVd6wTwHKqU53qVKc61alOdapTnepUpzrVqU71HesEsJzqVKc61alOdapTnepUpzrVqU51qlN9xzoBLKc61alOdapTnepUpzrVqU51qlOd6lTfsU4Ay6lOdapTnepUpzrVqU51qlOd6lSnOtV3rBPAcqpTnepUpzrVqU51qlOd6lSnOtWpTvUd6wSwnOpUpzrVqU51qlOd6lSnOtWpTnWqU33H+v8B6dDv3RxzXEoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "def plot_data(data):\n", - " # 可视化部分训练数据\n", - " plt.figure(figsize=(10, 3), dpi=140)\n", - " for i, image in enumerate(data[0][:30], 1):\n", - " plt.subplot(3, 10, i)\n", - " plt.axis(\"off\")\n", - " plt.imshow(image.transpose(1, 2, 0))\n", - " plt.show()\n", - "\n", - "sample_data = next(dataset.create_tuple_iterator(output_numpy=True))\n", - "plot_data(sample_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 构造网络\n", - "\n", - "当处理完数据后,就可以来进行网络的搭建了。按照DCGAN论文中的描述,所有模型权重均应从`mean`为0,`sigma`为0.02的正态分布中随机初始化。\n", - "\n", - "### 生成器\n", - "\n", - "生成器`G`的功能是将隐向量`z`映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。在实践场景中,该功能是通过一系列`Conv2dTranspose`转置卷积层来完成的,每个层都与`BatchNorm2d`层和`ReLu`激活层配对,输出数据会经过`tanh`函数,使其返回`[-1,1]`的数据范围内。\n", - "\n", - "DCGAN论文生成图像如下所示:\n", - "\n", - "![dcgangenerator](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/cv/images/dcgan.png)\n", - "\n", - "> 图片来源:[Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks](https://arxiv.org/pdf/1511.06434.pdf).\n", - "\n", - "我们通过输入部分中设置的`nz`、`ngf`和`nc`来影响代码中的生成器结构。`nz`是隐向量`z`的长度,`ngf`与通过生成器传播的特征图大小有关,`nc`是输出图像中的通道数。\n", - "\n", - "以下是生成器的代码实现:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import mindspore as ms\n", - "from mindspore import nn, ops\n", - "from mindspore.common.initializer import Normal\n", - "\n", - "weight_init = Normal(mean=0, sigma=0.02)\n", - "gamma_init = Normal(mean=1, sigma=0.02)\n", - "\n", - "class Generator(nn.Cell):\n", - " \"\"\"DCGAN网络生成器\"\"\"\n", - "\n", - " def __init__(self):\n", - " super(Generator, self).__init__()\n", - " self.generator = nn.SequentialCell(\n", - " nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),\n", - " nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),\n", - " nn.ReLU(),\n", - " nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),\n", - " nn.ReLU(),\n", - " nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),\n", - " nn.ReLU(),\n", - " nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.BatchNorm2d(ngf, gamma_init=gamma_init),\n", - " nn.ReLU(),\n", - " nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.Tanh()\n", - " )\n", - "\n", - " def construct(self, x):\n", - " return self.generator(x)\n", - "\n", - "generator = Generator()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 判别器\n", - "\n", - "如前所述,判别器`D`是一个二分类网络模型,输出判定该图像为真实图的概率。通过一系列的`Conv2d`、`BatchNorm2d`和`LeakyReLU`层对其进行处理,最后通过`Sigmoid`激活函数得到最终概率。\n", - "\n", - "DCGAN论文提到,使用卷积而不是通过池化来进行下采样是一个好方法,因为它可以让网络学习自己的池化特征。\n", - "\n", - "判别器的代码实现如下:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "class Discriminator(nn.Cell):\n", - " \"\"\"DCGAN网络判别器\"\"\"\n", - "\n", - " def __init__(self):\n", - " super(Discriminator, self).__init__()\n", - " self.discriminator = nn.SequentialCell(\n", - " nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.LeakyReLU(0.2),\n", - " nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),\n", - " nn.LeakyReLU(0.2),\n", - " nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),\n", - " nn.LeakyReLU(0.2),\n", - " nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),\n", - " nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),\n", - " nn.LeakyReLU(0.2),\n", - " nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),\n", - " )\n", - " self.adv_layer = nn.Sigmoid()\n", - "\n", - " def construct(self, x):\n", - " out = self.discriminator(x)\n", - " out = out.reshape(out.shape[0], -1)\n", - " return self.adv_layer(out)\n", - "\n", - "discriminator = Discriminator()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 模型训练\n", - "\n", - "### 损失函数\n", - "\n", - "当定义了`D`和`G`后,接下来将使用MindSpore中定义的二进制交叉熵损失函数[BCELoss](https://www.mindspore.cn/docs/zh-CN/master/api_python/nn/mindspore.nn.BCELoss.html)。" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# 定义损失函数\n", - "adversarial_loss = nn.BCELoss(reduction='mean')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 优化器\n", - "\n", - "这里设置了两个单独的优化器,一个用于`D`,另一个用于`G`。这两个都是`lr = 0.0002`和`beta1 = 0.5`的Adam优化器。" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# 为生成器和判别器设置优化器\n", - "optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)\n", - "optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)\n", - "optimizer_G.update_parameters_name('optim_g.')\n", - "optimizer_D.update_parameters_name('optim_d.')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 训练模型\n", - "\n", - "训练分为两个主要部分:训练判别器和训练生成器。\n", - "\n", - "- 训练判别器\n", - "\n", - " 训练判别器的目的是最大程度地提高判别图像真伪的概率。按照Goodfellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化$log D(x) + log(1 - D(G(z)))$的值。\n", - "\n", - "- 训练生成器\n", - "\n", - " 如DCGAN论文所述,我们希望通过最小化$log(1 - D(G(z)))$来训练生成器,以产生更好的虚假图像。\n", - "\n", - "在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计,将`fixed_noise`批量推送到生成器中,以直观地跟踪`G`的训练进度。\n", - "\n", - "下面实现模型训练正向逻辑:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def generator_forward(real_imgs, valid):\n", - " # 将噪声采样为发生器的输入\n", - " z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))\n", - "\n", - " # 生成一批图像\n", - " gen_imgs = generator(z)\n", - "\n", - " # 损失衡量发生器绕过判别器的能力\n", - " g_loss = adversarial_loss(discriminator(gen_imgs), valid)\n", - "\n", - " return g_loss, gen_imgs\n", - "\n", - "def discriminator_forward(real_imgs, gen_imgs, valid, fake):\n", - " # 衡量鉴别器从生成的样本中对真实样本进行分类的能力\n", - " real_loss = adversarial_loss(discriminator(real_imgs), valid)\n", - " fake_loss = adversarial_loss(discriminator(gen_imgs), fake)\n", - " d_loss = (real_loss + fake_loss) / 2\n", - " return d_loss\n", - "\n", - "grad_generator_fn = ms.value_and_grad(generator_forward, None,\n", - " optimizer_G.parameters,\n", - " has_aux=True)\n", - "grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,\n", - " optimizer_D.parameters)\n", - "\n", - "@ms.jit\n", - "def train_step(imgs):\n", - " valid = ops.ones((imgs.shape[0], 1), mindspore.float32)\n", - " fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)\n", - "\n", - " (g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)\n", - " optimizer_G(g_grads)\n", - " d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)\n", - " optimizer_D(d_grads)\n", - "\n", - " return g_loss, d_loss, gen_imgs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "循环训练网络,每经过50次迭代,就收集生成器和判别器的损失,以便于后面绘制训练过程中损失函数的图像。" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1/10][ 1/549] Loss_D: 0.8013 Loss_G: 0.5065\n", - "[ 1/10][101/549] Loss_D: 0.1116 Loss_G:13.0030\n", - "[ 1/10][201/549] Loss_D: 0.1037 Loss_G: 2.5631\n", - "...\n", - "[ 1/10][401/549] Loss_D: 0.6240 Loss_G: 0.5548\n", - "[ 1/10][501/549] Loss_D: 0.3345 Loss_G: 1.6001\n", - "[ 1/10][549/549] Loss_D: 0.4250 Loss_G: 1.1978\n", - "...\n", - "[10/10][501/549] Loss_D: 0.2898 Loss_G: 1.5352\n", - "[10/10][549/549] Loss_D: 0.2120 Loss_G: 3.1816\n" - ] - } - ], - "source": [ - "import mindspore\n", - "\n", - "G_losses = []\n", - "D_losses = []\n", - "image_list = []\n", - "\n", - "total = dataset.get_dataset_size()\n", - "iterator = dataset.create_tuple_iterator(num_epochs=num_epochs)\n", - "for epoch in range(num_epochs):\n", - " generator.set_train()\n", - " discriminator.set_train()\n", - " # 为每轮训练读入数据\n", - " for i, (imgs, ) in enumerate(iterator):\n", - " g_loss, d_loss, gen_imgs = train_step(imgs)\n", - " if i % 100 == 0 or i == total - 1:\n", - " # 输出训练记录\n", - " print('[%2d/%d][%3d/%d] Loss_D:%7.4f Loss_G:%7.4f' % (\n", - " epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy()))\n", - " D_losses.append(d_loss.asnumpy())\n", - " G_losses.append(g_loss.asnumpy())\n", - "\n", - " # 每个epoch结束后,使用生成器生成一组图片\n", - " generator.set_train(False)\n", - " fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))\n", - " img = generator(fixed_noise)\n", - " image_list.append(img.transpose(0, 2, 3, 1).asnumpy())\n", - "\n", - " # 保存网络模型参数为ckpt文件\n", - " mindspore.save_checkpoint(generator, \"./generator.ckpt\")\n", - " mindspore.save_checkpoint(discriminator, \"./discriminator.ckpt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 结果展示\n", - "\n", - "运行下面代码,描绘`D`和`G`损失与训练迭代的关系图:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAHWCAYAAACi1sL/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsLElEQVR4nOzdd3wT5R8H8E+6W7rYZZS9ZC9BNjJkI0sR+Qk4QBFQREURBVyguFAExAWCIiIIIntvBEH2Btl7lRYKXXl+fxxJL/uSXHKX9vN+vfpKc7ncPbn5fO9ZBiGEABEREREREQEAgrROABERERERkZ4wSCIiIiIiIpJhkERERERERCTDIImIiIiIiEiGQRIREREREZEMgyQiIiIiIiIZBklEREREREQyDJKIiIiIiIhkGCQRERERERHJMEgiItKJdevWwWAwYN26daove8yYMTAYDKov15lTp07BYDBg+vTpqi3Tl9uI9MsXx5KeeHN+Tp8+HQaDAadOnVI3UUS5HIMkohzg5MmTGDx4MCpUqICoqChERUWhcuXKGDRoEPbu3at18lS1ZMkSjBkzRutkaMqUKTL9RUREoGjRomjTpg2++uorpKSkaJ3EgJaamooxY8b4NRAzBX9z58712zo9kduOvVKlSln8Xkd/OTV4I8rNDEIIoXUiiMhzixYtQs+ePRESEoLevXujRo0aCAoKwuHDh/HHH3/g9OnTOHnyJEqWLKl1UlUxePBgTJo0CTnx0rVu3To8/PDDWLt2LZo3b+5wvunTp+Ppp5/Ge++9h9KlSyMjIwOXLl3CunXrsHLlSpQoUQILFy5E9erVzd/JzMxEZmYmIiIi/PBLJEIIpKWlITQ0FMHBwaos02g0Ij09HWFhYQgK8s1zvmvXrqFgwYIYPXq03wJy077//fff0aNHD7+s0xOeHHtq8MWxpMSCBQtw+/Zt8/slS5bg119/xRdffIECBQqYpzds2BBlypTxeD3enJ9ZWVnIyMhAeHi430uLiXKyEK0TQESeO3HiBJ544gmULFkSq1evRpEiRSw+//jjjzF58mSfZSbVcOfOHeTJk0fTNJgy3v4MINTQrl071K1b1/x+xIgRWLNmDTp27IjOnTvj0KFDiIyMBACEhIQgJMQ/l/zMzEwYjUaEhYWpvk2DgoICbj+Z6OFYV4s7x543fHksKdGlSxeL95cuXcKvv/6KLl26oFSpUg6/5+6+9ub8DA4O9mvgSJRb6DfnREQujR8/Hnfu3MG0adNsAiRAuvG+9NJLSExMtJh++PBh9OjRA/ny5UNERATq1q2LhQsXWsxjqlazefNmDBs2DAULFkSePHnQtWtXXL161WZdS5cuRZMmTZAnTx7ExMSgQ4cOOHDggMU8/fr1Q3R0NE6cOIH27dsjJiYGvXv3BgBs3LgRjz32GEqUKIHw8HAkJibilVdewd27dy2+P2nSJACwqOpicufOHbz66qtITExEeHg4KlasiE8//dSm1MlgMGDw4MH45ZdfUKVKFYSHh2PZsmUOt/Off/6JDh06oGjRoggPD0fZsmXx/vvvIysry2K+5s2bo2rVqjh48CAefvhhREVFoVixYhg/frzNMs+dO4cuXbogT548KFSoEF555RWkpaU5TINSLVq0wDvvvIPTp0/j559/Nk+31+Zh5cqVaNy4MeLj4xEdHY2KFSvirbfespjn3r17GDNmDCpUqICIiAgUKVIE3bp1w4kTJwBktxX59NNPMWHCBJQtWxbh4eE4ePCg3XYkpmPgzJkz6NixI6Kjo1GsWDHzft23bx9atGiBPHnyoGTJkpg1a5ZFeuy1SVK63dPT0zFq1CjUqVMHcXFxyJMnD5o0aYK1a9ea5zl16hQKFiwIAHj33XfNx5i8RGnNmjXmYz0+Ph6PPvooDh06ZLEu0/Y+ePAgnnzySeTNmxeNGzd2tusU+e+///DYY48hX758iIqKwkMPPYTFixfbzDdx4kRUqVIFUVFRyJs3L+rWrWuxLVNSUjB06FCUKlUK4eHhKFSoEFq3bo1///3X47Q5OvaaN29ut2S0X79+FoGGp8fS+fPn0aVLF0RHR6NgwYJ47bXXbM7N69ev46mnnkJsbCzi4+PRt29f7NmzR5Wqct5e1wD756fpOrVgwQJUrVoV4eHhqFKlis21yl6bpFKlSqFjx47YtGkT6tWrh4iICJQpUwYzZsywSf/evXvRrFkzREZGonjx4vjggw8wbdo0tnOiXI8lSUQBbNGiRShXrhzq16+v+DsHDhxAo0aNUKxYMbz55pvIkycP5syZgy5dumDevHno2rWrxfxDhgxB3rx5MXr0aJw6dQoTJkzA4MGD8dtvv5nnmTlzJvr27Ys2bdrg448/RmpqKqZMmYLGjRtj165dFhmhzMxMtGnTBo0bN8ann36KqKgoAMDvv/+O1NRUDBw4EPnz58f27dsxceJEnDt3Dr///jsA4Pnnn8eFCxewcuVKzJw50yKdQgh07twZa9euxbPPPouaNWti+fLleP3113H+/Hl88cUXFvOvWbMGc+bMweDBg1GgQAGnT4WnT5+O6OhoDBs2DNHR0VizZg1GjRqF5ORkfPLJJxbz3rx5E23btkW3bt3w+OOPY+7cuXjjjTdQrVo1tGvXDgBw9+5dtGzZEmfOnMFLL72EokWLYubMmVizZo2ynejCU089hbfeegsrVqxA//797c5z4MABdOzYEdWrV8d7772H8PBwHD9+HJs3bzbPk5WVhY4dO2L16tV44okn8PLLLyMlJQUrV67E/v37UbZsWfO806ZNw7179zBgwACEh4cjX758MBqNdtedlZWFdu3aoWnTphg/fjx++eUXDB48GHny5MHIkSPRu3dvdOvWDd988w369OmDBg0aoHTp0k5/s5LtnpycjO+//x69evVC//79kZKSgh9++AFt2rTB9u3bUbNmTRQsWBBTpkzBwIED0bVrV3Tr1g0AzNXHVq1ahXbt2qFMmTIYM2YM7t69i4kTJ6JRo0b4999/bY6jxx57DOXLl8fYsWO9riJ6+fJlNGzYEKmpqXjppZeQP39+/PTTT+jcuTPmzp1rPne/++47vPTSS+jRowdefvll3Lt3D3v37sW2bdvw5JNPAgBeeOEFzJ07F4MHD0blypVx/fp1bNq0CYcOHULt2rU9TqOSY88Vd4+lNm3aoH79+vj000+xatUqfPbZZyhbtiwGDhwIQCop7tSpE7Zv346BAweiUqVK+PPPP9G3b1+Pf6c1b65rzmzatAl//PEHXnzxRcTExOCrr75C9+7dcebMGeTPn9/pd48fP44ePXrg2WefRd++ffHjjz+iX79+qFOnDqpUqQIAOH/+PB5++GEYDAaMGDECefLkwffff4/w8HDvNwpRoBNEFJBu3bolAIguXbrYfHbz5k1x9epV819qaqr5s5YtW4pq1aqJe/fumacZjUbRsGFDUb58efO0adOmCQCiVatWwmg0mqe/8sorIjg4WCQlJQkhhEhJSRHx8fGif//+Fmm4dOmSiIuLs5jet29fAUC8+eabNmmWp9Fk3LhxwmAwiNOnT5unDRo0SNi7dC1YsEAAEB988IHF9B49egiDwSCOHz9ungZABAUFiQMHDtgsxx57aXv++edFVFSUxXZs1qyZACBmzJhhnpaWliYSEhJE9+7dzdMmTJggAIg5c+aYp925c0eUK1dOABBr1651mh7Tvvnnn38czhMXFydq1aplfj969GiL7fbFF18IAOLq1asOl/Hjjz8KAOLzzz+3+cx0TJw8eVIAELGxseLKlSsW85g+mzZtmnma6RgYO3asedrNmzdFZGSkMBgMYvbs2ebphw8fFgDE6NGjzdPWrl1rs42UbvfMzEyRlpZmkcabN2+KwoULi2eeecY87erVqzbrNalZs6YoVKiQuH79unnanj17RFBQkOjTp495mml79+rVy2YZ9ph+1++//+5wnqFDhwoAYuPGjeZpKSkponTp0qJUqVIiKytLCCHEo48+KqpUqeJ0fXFxcWLQoEGK0ibnybHXrFkz0axZM5v5+vbtK0qWLGl+7+mx9N5771nMW6tWLVGnTh3z+3nz5gkAYsKECeZpWVlZokWLFjbLdOWTTz4RAMTJkydt0uHNdc36/BRCuk6FhYVZXLv27NkjAIiJEyeap5n2iTxNJUuWFADEhg0bzNOuXLkiwsPDxauvvmqeNmTIEGEwGMSuXbvM065fvy7y5ctns0yi3IbV7YgCVHJyMgAgOjra5rPmzZujYMGC5j9TVaYbN25gzZo1ePzxx5GSkoJr167h2rVruH79Otq0aYNjx47h/PnzFssaMGCARTWQJk2aICsrC6dPnwYgVdlKSkpCr169zMu7du0agoODUb9+fYuqTCamJ7xy8vYLd+7cwbVr19CwYUMIIbBr1y6X22PJkiUIDg7GSy+9ZDH91VdfhRACS5cutZjerFkzVK5c2eVyrdNm2m5NmjRBamoqDh8+bDFvdHQ0/ve//5nfh4WFoV69evjvv/8s0lqkSBGLBvpRUVEYMGCAovQoER0d7bSnsfj4eABSVUJHT+nnzZuHAgUKYMiQITafWVcN6t69u7mamhLPPfecRVoqVqyIPHny4PHHHzdPr1ixIuLj4y22nSNKtntwcDDCwsIASKULN27cQGZmJurWrauomtnFixexe/du9OvXD/ny5TNPr169Olq3bo0lS5bYfOeFF15wuVyllixZgnr16llU24uOjsaAAQNw6tQpHDx4EIC0Pc+dO4d//vnH4bLi4+Oxbds2XLhwQbX0ydPkTS937h5L1tu4SZMmFvt92bJlCA0NtSjZCgoKwqBBgzxOoz2+uK61atXKosS2evXqiI2NVXROVK5cGU2aNDG/L1iwICpWrGizbRo0aICaNWuap+XLl89cXZAoN2OQRBSgYmJiAMCi5yWTqVOnYuXKlRbtAgCp+oUQAu+8845FEGXqyQsArly5YvGdEiVKWLzPmzcvAKl6EwAcO3YMgNQewXqZK1assFleSEgIihcvbpPmM2fOmDOfprYFzZo1AwDcunXL5fY4ffo0ihYtat4uJg888ID5czlX1bfkDhw4gK5duyIuLg6xsbEoWLCgOUNunbbixYvbBBB58+Y1by9TWsqVK2czX8WKFRWnyZXbt2/bbAu5nj17olGjRnjuuedQuHBhPPHEE5gzZ45FwHTixAlUrFhRUYNyd7ZnRESETSY4Li7O7raLi4uz2HaOKNnuAPDTTz+hevXqiIiIQP78+VGwYEEsXrxY8TEG2N9PDzzwAK5du4Y7d+5YTHdnuyhZv6N1y9P3xhtvIDo6GvXq1UP58uUxaNAgi2qUgNSecf/+/UhMTES9evUwZswYRRlvJVwde654eyzZO9+KFClirgJnUq5cOY/TaM1X1zXr6y9g/7j29Luma5E1NbcNUaBimySiABUXF4ciRYpg//79Np+Z2ihZN7o1ZYBfe+01tGnTxu5yrW+OjnpNEvfbV5iWOXPmTCQkJNjMZ53BDg8Pt+ltLysrC61bt8aNGzfwxhtvoFKlSsiTJw/Onz+Pfv36OSzp8IbSnreSkpLQrFkzxMbG4r333kPZsmURERGBf//9F2+88YZN2lxtL384d+4cbt265TSjExkZiQ0bNmDt2rVYvHgxli1bht9++w0tWrTAihUr3O4ty52ezBwt25ttp+S7P//8M/r164cuXbrg9ddfR6FChRAcHIxx48aZO6JQmxo9vLnrgQcewJEjR7Bo0SIsW7YM8+bNw+TJkzFq1Ci8++67AIDHH38cTZo0wfz587FixQp88skn+Pjjj/HHH3+Y23B5wt6xZzAY7O5D684VTNQ4lvzNV9c1X58TROQYgySiANahQwd8//332L59O+rVq+dyftM4HqGhoWjVqpUqaTBVBSlUqJDHy9y3bx+OHj2Kn376CX369DFPX7lypc28jsYBKVmyJFatWoWUlBSLp9im6nCejhO1bt06XL9+HX/88QeaNm1qnn7y5EmPlmdKy/79+yGEsPg9R44c8XiZcqZOLRwFwiZBQUFo2bIlWrZsic8//xxjx47FyJEjsXbtWnM1n23btiEjIwOhoaGqpE1Lc+fORZkyZfDHH39YbHdTKaqJs2MMsL+fDh8+jAIFCvi0i++SJUs6XLc8fQCQJ08e9OzZEz179kR6ejq6deuGDz/8ECNGjDB3pV2kSBG8+OKLePHFF3HlyhXUrl0bH374oVdBkr1jL2/evHZLqaxLd32lZMmSWLt2LVJTUy1Kk44fP+7T9bpzXdNKyZIl7W4HX28bokDA6nZEAWz48OGIiorCM888g8uXL9t8bv3EsFChQmjevDmmTp2Kixcv2sxvr2tvV9q0aYPY2FiMHTsWGRkZHi3T9MRTnl4hBL788kubeU2Z0KSkJIvp7du3R1ZWFr7++muL6V988QUMBoPHGT97aUtPT8fkyZM9Wp4prRcuXMDcuXPN01JTU/Htt996vEyTNWvW4P3330fp0qWdtiu4ceOGzTRTuwRTV+Tdu3fHtWvXbLYpEJhPo+3ty23btmHr1q0W85ky0tbHWJEiRVCzZk389NNPFp/t378fK1asQPv27X2T8Pvat2+P7du3W6T3zp07+Pbbb1GqVClzG7vr169bfC8sLAyVK1eGEAIZGRnIysqyqepVqFAhFC1a1Ktu6B0de2XLlsXhw4ctrgV79uyxqQLoK23atEFGRga+++478zSj0Whuq+kr7lzXtNKmTRts3boVu3fvNk+7ceMGfvnlF+0SRaQTLEkiCmDly5fHrFmz0KtXL1SsWBG9e/dGjRo1IITAyZMnMWvWLAQFBVnUlZ80aRIaN26MatWqoX///ihTpgwuX76MrVu34ty5c9izZ49baYiNjcWUKVPw1FNPoXbt2njiiSdQsGBBnDlzBosXL0ajRo3sZrLlKlWqhLJly+K1117D+fPnERsbi3nz5tmtd1+nTh0AwEsvvYQ2bdogODgYTzzxBDp16oSHH34YI0eOxKlTp1CjRg2sWLECf/75J4YOHWrR+NkdDRs2RN68edG3b1+89NJLMBgMmDlzpldBQv/+/fH111+jT58+2LlzJ4oUKYKZM2fatJlwZenSpTh8+DAyMzNx+fJlrFmzBitXrkTJkiWxcOFCp4Nvvvfee9iwYQM6dOiAkiVL4sqVK5g8eTKKFy9u7higT58+mDFjBoYNG4bt27ejSZMmuHPnDlatWoUXX3wRjz76qMfbQAsdO3bEH3/8ga5du6JDhw44efIkvvnmG1SuXNmibV9kZCQqV66M3377DRUqVEC+fPlQtWpVVK1aFZ988gnatWuHBg0a4NlnnzV3AR4XF2cxlpKn5s2bZ9MZCAD07dsXb775Jn799Ve0a9cOL730EvLly4effvoJJ0+exLx588zVvR555BEkJCSgUaNGKFy4MA4dOoSvv/4aHTp0QExMDJKSklC8eHH06NEDNWrUQHR0NFatWoV//vkHn332maJ0unPsPfPMM/j888/Rpk0bPPvss7hy5Qq++eYbVKlSxdwBjS916dIF9erVw6uvvorjx4+jUqVKWLhwoflBgaOSQ2+5c13TyvDhw/Hzzz+jdevWGDJkiLkL8BIlSuDGjRs+2zZEAcGPPekRkY8cP35cDBw4UJQrV05ERESIyMhIUalSJfHCCy+I3bt328x/4sQJ0adPH5GQkCBCQ0NFsWLFRMeOHcXcuXPN8zjq6tdeF8ym6W3atBFxcXEiIiJClC1bVvTr10/s2LHDPE/fvn1Fnjx57P6GgwcPilatWono6GhRoEAB0b9/f3N3t/IuejMzM8WQIUNEwYIFhcFgsOg2NyUlRbzyyiuiaNGiIjQ0VJQvX1588sknFl2YCyF1retO98ebN28WDz30kIiMjBRFixYVw4cPF8uXL7fbFbW9rpetuzoWQojTp0+Lzp07i6ioKFGgQAHx8ssvi2XLlrnVBbjpLywsTCQkJIjWrVuLL7/8UiQnJ9t8x7qL4dWrV4tHH31UFC1aVISFhYmiRYuKXr16iaNHj1p8LzU1VYwcOVKULl1ahIaGioSEBNGjRw9x4sQJIUR218yffPKJzTodddts7xhwtO1KliwpOnToYH7vqAtwJdvdaDSKsWPHipIlS4rw8HBRq1YtsWjRIrv7Z8uWLaJOnToiLCzMpjvwVatWiUaNGonIyEgRGxsrOnXqJA4ePGjxfdP2dtbFupzpdzn6M3X7feLECdGjRw8RHx8vIiIiRL169cSiRYssljV16lTRtGlTkT9/fhEeHi7Kli0rXn/9dXHr1i0hhNQ9+uuvvy5q1KghYmJiRJ48eUSNGjXE5MmTXabTk2NPCCF+/vlnUaZMGREWFiZq1qwpli9f7rALcG+PJXvdaV+9elU8+eSTIiYmRsTFxYl+/fqJzZs3CwAW3c674qgLcG+va466ALd3nSpZsqTo27ev+b2jLsDl542Jve7Yd+3aJZo0aSLCw8NF8eLFxbhx48RXX30lAIhLly453hhEOZxBiACsM0FERETkhQULFqBr167YtGkTGjVqpHVydGXo0KGYOnUqbt++rZvOMYj8jW2SiIiIKEe7e/euxfusrCxMnDgRsbGxqF27tkap0gfrbXP9+nXMnDkTjRs3ZoBEuRrbJBEREVGONmTIENy9excNGjRAWloa/vjjD2zZsgVjx47VpJt2PWnQoAGaN2+OBx54AJcvX8YPP/yA5ORkvPPOO1onjUhTrG5HREREOdqsWbPw2Wef4fjx47h37x7KlSuHgQMHYvDgwVonTXNvvfUW5s6di3PnzsFgMKB27doYPXq0asNEEAUqBklEREREREQybJNEREREREQkwyCJiIiIiIhIJsd33GA0GnHhwgXExMRwUDQiIiIiolxMCIGUlBQULVrUPAi3PTk+SLpw4QISExO1TgYREREREenE2bNnUbx4cYef5/ggKSYmBoC0IWJjYzVODRERERERaSU5ORmJiYnmGMGRHB8kmarYxcbGMkgiIiIiIiKXzXDYcQMREREREZEMgyQiIiIiIiIZBklEREREREQyOb5NEhERERFRbieEQGZmJrKysrROik8FBwcjJCTE66F/GCQREREREeVg6enpuHjxIlJTU7VOil9ERUWhSJEiCAsL83gZDJKIiIiIiHIoo9GIkydPIjg4GEWLFkVYWJjXpSx6JYRAeno6rl69ipMnT6J8+fJOB4x1hkESEREREVEOlZ6eDqPRiMTERERFRWmdHJ+LjIxEaGgoTp8+jfT0dERERHi0HHbcQERERESUw3laohKI1PituWdrERERERERKcAgiYiIiIiISIZBEhERERERkQyDJCIiIiIi0qVLly7h5ZdfRrly5RAREYHChQujUaNGmDJlik+7NGfvdkREREREpDv//fcfGjVqhPj4eIwdOxbVqlVDeHg49u3bh2+//RbFihVD586dfbJuBkka++8/4JlngFu3gNBQYMcO4O23gbt3gVOngKlTgXz5tE4lEREREeUUQgBajSsbFQUoHabpxRdfREhICHbs2IE8efKYp5cpUwaPPvoohBA+SiWDJM198gmwfr3ltPffz/6/Xj3g9df9myYiIiIiyrlSU4HoaG3Wffs2IIt3HLp+/TpWrFiBsWPHWgRIcr4cFJdtkjR286b02qED8N13QGKi5efLlvk/TUREREREWjp+/DiEEKhYsaLF9AIFCiA6OhrR0dF44403fLZ+liRpLCtLem3XDnjuOSAzExg4MPvz06e1SRcRERER5UxRUVKJjlbr9sb27dthNBrRu3dvpKWlqZMoOxgkacxolF6Dg6XXyEjLz+/e9W96iIiIiChnMxiUVXnTUrly5WAwGHDkyBGL6WXKlAEARFpnmlXG6nYaWbtW6pjBFCQF3d8TERGW8zFIIiIiIqLcJn/+/GjdujW+/vpr3Llzx+/rZ5CkgR07gBYtgNKlXQdJ9+75N21ERERERHowefJkZGZmom7duvjtt99w6NAhHDlyBD///DMOHz6MYFNVLB9gdTsN7NqV/b+pTZIpSAoLs5w3I8M/aSIiIiIi0pOyZcti165dGDt2LEaMGIFz584hPDwclStXxmuvvYYXX3zRZ+tmkKQBeZeL1m2SrHsy9GH370REREREulakSBFMnDgREydO9Ot6Wd1OA/IqddbV7RgkERERERFpi0GSBuSB0PLl0qspSAqy2iMMkoiIiIiI/ItBkgbsBT4sSSIiIiIi0gcGSTrhKEgiIiIiIiL/YpCkE6aOG6yr2wEsTSIiIiIi8icGSTrhrCSJQRIRERERkf8wSNKAvUCIQRIRERERkT4wSNIJU3DE6nZERERERNpikKQTLEkiIiIiItIHBkk6wyCJiIiIiEhbDJJ0htXtiIiIiIiAfv36wWAwwGAwIDQ0FIULF0br1q3x448/wmg0+nTdDJJ0hiVJRERERESStm3b4uLFizh16hSWLl2Khx9+GC+//DI6duyIzMxMn603xGdLJo8wSCIiIiIinxICyErVZt3BUfYzvA6Eh4cjISEBAFCsWDHUrl0bDz30EFq2bInp06fjueee80kyGSTpDKvbEREREZFPZaUCc6K1Wffjt4GQPF4tokWLFqhRowb++OMPnwVJrG6nMyxJIiIiIiJyrlKlSjh16pTPls+SJJ1hkEREREREPhUcJZXoaLVuFQghYHCj2p67GCTpDKvbEREREZFPGQxeV3nT2qFDh1C6dGmfLZ/V7TTgLOhlSRIRERERkWNr1qzBvn370L17d5+tgyVJOmEKjhgkERERERFJ0tLScOnSJWRlZeHy5ctYtmwZxo0bh44dO6JPnz4+Wy+DJA04C3pY3Y6IiIiISLJs2TIUKVIEISEhyJs3L2rUqIGvvvoKffv2RZC9jLNKGCRpwNkAwSxJIiIiIiICpk+fjunTp2uybrZJ0oCzoIdBEhERERGRtjQNksaNG4cHH3wQMTExKFSoELp06YIjR45YzNO8eXMYDAaLvxdeeEGjFKuD1e2IiIiIiPRL0yBp/fr1GDRoEP7++2+sXLkSGRkZeOSRR3Dnzh2L+fr374+LFy+a/8aPH69RitXBkiQiIiIiIv3StE3SsmXLLN5Pnz4dhQoVws6dO9G0aVPz9KioKCQkJPg7eT7jbtDDIImIiIiIyH901Sbp1q1bAIB8+fJZTP/ll19QoEABVK1aFSNGjEBqaqrDZaSlpSE5OdniT28YJBERERGRP4lclKFU47fqpnc7o9GIoUOHolGjRqhatap5+pNPPomSJUuiaNGi2Lt3L9544w0cOXIEf/zxh93ljBs3Du+++66/ku0RVrcjIiIiIn8IDQ0FAKSmpiIyMlLj1PiHqUDF9Ns9oZsgadCgQdi/fz82bdpkMX3AgAHm/6tVq4YiRYqgZcuWOHHiBMqWLWuznBEjRmDYsGHm98nJyUhMTPRdwj3AkiQiIiIi8ofg4GDEx8fjypUrAKRmLAZ7T+VzACEEUlNTceXKFcTHxyM4ONjjZekiSBo8eDAWLVqEDRs2oHjx4k7nrV+/PgDg+PHjdoOk8PBwhIeH+ySdvuTsWGWQRERERESeMrXtNwVKOV18fLzX/RloGiQJITBkyBDMnz8f69atQ+nSpV1+Z/fu3QCAIkWK+Dh12mB1OyIiIiJSk8FgQJEiRVCoUCFkZGRonRyfCg0N9aoEyUTTIGnQoEGYNWsW/vzzT8TExODSpUsAgLi4OERGRuLEiROYNWsW2rdvj/z582Pv3r145ZVX0LRpU1SvXl3LpPsVgyQiIiIi8lZwcLAqAURuoGmQNGXKFADSgLFy06ZNQ79+/RAWFoZVq1ZhwoQJuHPnDhITE9G9e3e8/fbbGqRWOwySiIiIiIj8R/Pqds4kJiZi/fr1fkqNPuTQdnRERERERAFDV+MkERERERERaY1BEhERERERkQyDJJ1hdTsiIiIiIm0xSNIAB5MlIiIiItIvBklEREREREQyDJJ0wlTNjtXtiIiIiIi0xSCJiIiIiIhIhkESERERERGRDIMknbFX3W7tWv+ng4iIiIgot2KQFAD69tU6BUREREREuQeDJCIiIiIiIhkGSTrD3u2IiIiIiLTFIEkDHByWiIiIiEi/GCQRERERERHJMEjSGVa3IyIiIiLSFoMkIiIiIiIiGQZJOsESJCIiIiIifWCQpDMMloiIiIiItMUgiYiIiIiISIZBEhERERERkQyDJJ1hdTsiIiIiIm0xSCIiIiIiIpJhkKQBIbROAREREREROcIgSWdY3Y6IiIiISFsMkoiIiIiIiGQYJOkMS5KIiIiIiLTFIEknGBwREREREekDgyQiIiIiIiIZBkk6wxIlIiIiIiJtMUgiIiIiIiKSYZBEREREREQkwyBJA84Gk2V1OyIiIiIibTFIIiIiIiIikmGQREREREREJMMgSWdY3Y6IiIiISFsMkoiIiIiIiGQYJOkES5CIiIiIiPSBQZLOMFgiIiIiItIWgyQiIiIiIiIZBklEREREREQyDJJ0htXtiIiIiIi0xSBJA0JonQIiIiIiInKEQRIREREREZEMgySdYXU7IiIiIiJtMUgiIiIiIiKSYZBEREREREQkwyBJJ0zV7FjdjoiIiIhIWwySiIiIiIiIZBgkERERERERyTBI0hlWtyMiIiIi0haDJA1wMFkiIiIiIv1ikERERERERCSjaZA0btw4PPjgg4iJiUGhQoXQpUsXHDlyxGKee/fuYdCgQcifPz+io6PRvXt3XL58WaMU+x6r2xERERERaUvTIGn9+vUYNGgQ/v77b6xcuRIZGRl45JFHcOfOHfM8r7zyCv766y/8/vvvWL9+PS5cuIBu3bppmGoiIiIiIsrJQrRc+bJlyyzeT58+HYUKFcLOnTvRtGlT3Lp1Cz/88ANmzZqFFi1aAACmTZuGBx54AH///TceeughLZJNREREREQ5mK7aJN26dQsAkC9fPgDAzp07kZGRgVatWpnnqVSpEkqUKIGtW7faXUZaWhqSk5Mt/gIJq9sREREREWlLN0GS0WjE0KFD0ahRI1StWhUAcOnSJYSFhSE+Pt5i3sKFC+PSpUt2lzNu3DjExcWZ/xITE32ddFUwOCIiIiIi0gfdBEmDBg3C/v37MXv2bK+WM2LECNy6dcv8d/bsWZVSSEREREREuYGmbZJMBg8ejEWLFmHDhg0oXry4eXpCQgLS09ORlJRkUZp0+fJlJCQk2F1WeHg4wsPDfZ1kn2GJEhERERGRtjQtSRJCYPDgwZg/fz7WrFmD0qVLW3xep04dhIaGYvXq1eZpR44cwZkzZ9CgQQN/J5eIiIiIiHIBTUuSBg0ahFmzZuHPP/9ETEyMuZ1RXFwcIiMjERcXh2effRbDhg1Dvnz5EBsbiyFDhqBBgwYB3bOdEFqngIiIiIiIHNE0SJoyZQoAoHnz5hbTp02bhn79+gEAvvjiCwQFBaF79+5IS0tDmzZtMHnyZD+n1H9Y3Y6IiIiISFuaBklCQZFKREQEJk2ahEmTJvkhRURERERElNvppnc7IiIiIiIiPWCQpDOsbkdEREREpC0GSURERERERDIMknTCVQnSJ5/4Jx1ERERERLkdgySdcRQsDR8OrFvn16QQEREREeVKDJICyMMPa50CIiIiIqKcj0GSBpz1fM6OG4iIiIiItMUgiYiIiIiISIZBEhERERERkQyDJJ1hdTsiIiIiIm0xSCIiIiIiIpJhkERERERERCTDIElnWN2OiIiIiEhbDJJ0gsEREREREZE+MEgiIiIiIiKSYZCkAQ4mS0RERESkXwySiIiIiIiIZBgkERERERERyTBI0hlWtyMiIiIi0haDJCIiIiIiIhkGSURERERERDIMknSG1e2IiIiIiLTFIImIiIiIiEiGQZJOsASJiIiIiEgfGCTpDIMlIiIiIiJtMUjSgBBap4CIiIiIiBxhkERERERERCTDIElnWN2OiIiIiEhbDJKIiIiIiIhkGCQRERERERHJMEjSGVa3IyIiIiLSFoMkIiIiIiIiGQZJREREREREMgySdIbV7YiIiIiItMUgSQP2BpNlcEREREREpA8MkoiIiIiIiGQYJOkMS5SIiIiIiLTFIImIiIiIiEiGQRIRERHpkr02vERE/sAgSWdY3Y6IiAgYOhQoWxa4dUvrlBBRbsQgiYiIiHTnyy+BkyeB77/XOiVElBsxSCIiIiIiIpJhkKQzrG5HRESUje2SiEgLDJKIiIiIiIhkGCRpwN5TMZYgERERERHpA4MknWGwRERElI3V7YhICwySiIiIiIiIZBgkERERERERyTBIIiIiIiIikmGQREREREREJMMgiYiIiHSLHTcQkRYYJBEREREREcloGiRt2LABnTp1QtGiRWEwGLBgwQKLz/v16weDwWDx17ZtW20SS0REREREuYKmQdKdO3dQo0YNTJo0yeE8bdu2xcWLF81/v/76qx9T6BusOkBEREREpF8hWq68Xbt2aNeundN5wsPDkZCQ4KcUaYeDyBIRERER6YPu2yStW7cOhQoVQsWKFTFw4EBcv37d6fxpaWlITk62+CMiIqLAxNoXRKQFXQdJbdu2xYwZM7B69Wp8/PHHWL9+Pdq1a4esrCyH3xk3bhzi4uLMf4mJiX5MMRERERERBTpNq9u58sQTT5j/r1atGqpXr46yZcti3bp1aNmypd3vjBgxAsOGDTO/T05OZqBERERERESK6bokyVqZMmVQoEABHD9+3OE84eHhiI2NtfgjIiIiIiJSKqCCpHPnzuH69esoUqSI1kkhIiIiIqIcyqPqdmfPnoXBYEDx4sUBANu3b8esWbNQuXJlDBgwQPFybt++bVEqdPLkSezevRv58uVDvnz58O6776J79+5ISEjAiRMnMHz4cJQrVw5t2rTxJNlEREREREQueVSS9OSTT2Lt2rUAgEuXLqF169bYvn07Ro4ciffee0/xcnbs2IFatWqhVq1aAIBhw4ahVq1aGDVqFIKDg7F371507twZFSpUwLPPPos6depg48aNCA8P9yTZurF7t+ffXbFCtWQQERHpHnu3IyIteFSStH//ftSrVw8AMGfOHFStWhWbN2/GihUr8MILL2DUqFGKltO8eXMIJ1e/5cuXe5I83ZsyxfPvtmnDGwYRERERkS95VJKUkZFhLs1ZtWoVOnfuDACoVKkSLl68qF7qiIiIKFfjg0Ei0oJHQVKVKlXwzTffYOPGjVi5ciXatm0LALhw4QLy58+vagJzC4NB6xQQERERERHgYZD08ccfY+rUqWjevDl69eqFGjVqAAAWLlxoroZHRERE5C0+RCQiLXjUJql58+a4du0akpOTkTdvXvP0AQMGICoqSrXEERERBZJbt4BNm4BHHgFCQ7VOTc7A6nZEpAWPSpLu3r2LtLQ0c4B0+vRpTJgwAUeOHEGhQoVUTSAREVGgaNkS6NgReP99rVNCRETe8ChIevTRRzFjxgwAQFJSEurXr4/PPvsMXbp0wRRvum4jIiIKYDt3Sq8zZ2qbDiIi8o5HQdK///6LJk2aAADmzp2LwoUL4/Tp05gxYwa++uorVRNIREREuRer2xGRFjwKklJTUxETEwMAWLFiBbp164agoCA89NBDOH36tKoJJO+dOwcMGgQcPqx1SoiIcgdm7ImIAptHQVK5cuWwYMECnD17FsuXL8cjjzwCALhy5QpiY2NVTSB5r3t3YPJk4MEHtU4JERFR7rBnD/DzzwyYiQKVR0HSqFGj8Nprr6FUqVKoV68eGjRoAEAqVapVq5aqCSTv7dghvd6+rW06iIhysrS07P9TU7VLB+lDzZrAU08BK1ZonRIi8oRHXYD36NEDjRs3xsWLF81jJAFAy5Yt0bVrV9USR0REFCjkgdGtW9qlg/Rl716gTRutU0FE7vIoSAKAhIQEJCQk4Ny5cwCA4sWLcyBZL/hysDwOxEdERIEq0KurBXr6iXIrj6rbGY1GvPfee4iLi0PJkiVRsmRJxMfH4/3334fRaFQ7jURERAGFGWMiosDmUUnSyJEj8cMPP+Cjjz5Co0aNAACbNm3CmDFjcO/ePXz44YeqJpKIiEjv5KX2DJLUw21JRFrwKEj66aef8P3336Nz587madWrV0exYsXw4osvMkgiIiIiIqKA5VF1uxs3bqBSpUo20ytVqoQbN254nSgiIiIigO1qSb9mzAAqVgSOHNE6JeQLHgVJNWrUwNdff20z/euvv0b16tW9ThSpizcYIiIKVIFe3S7Q00+O9e0LHD0KPPec1ikhX/Cout348ePRoUMHrFq1yjxG0tatW3H27FksWbJE1QQSEREFGmaMiXKPe/e0TgH5gkclSc2aNcPRo0fRtWtXJCUlISkpCd26dcOBAwcwc+ZMtdNIRESke+y4gYgo5/B4nKSiRYvadNCwZ88e/PDDD/j222+9ThgRERERA04i0oJHJUlERERERMRAPqdikKQT7FyBiIgo5wmkDHRWltYpINIPBkm5AAMwIsotZs0CBg7UPrMXSBljIgDYuBHIkweYMkXrlAQe5rNyJrfaJHXr1s3p50lJSd6khShHS08Hjh0DKlfmBZXIV3r3ll4bN87+31/YcQMFsiefBNLSgBdflB40EOV2bpUkxcXFOf0rWbIk+vTp46u0ks7cuAEMGwbs2aN1SgJD585A1arS4HNE5FvXrvl/nQyMfCPQt2ugp59c4z7OmdwqSZo2bZqv0kEBaMgQqWrLF1/wAqHE8uXS61dfSQPQEZHvaH1NYmmxembPBg4cAKZNA6KitE4NEeUWbJNEHtu9W+sUBCajUesUEJEvsLqdbxw6BMyZA0yYoHVKcjYG9kSWGCTlArzw6QuDJCIi9129qnUKiOxjPitnYpBEHrO+KHzwAVC9OsD+O5zTutctIvINZpR8i6VzRORPDJIC0OLFWqfAvnfeAfbtY5UIV1iSRJQzMRNP9vC4yPm4j3MmBkkB6LvvtE6BcxkZWqdAO0Yj0L49MGCA83mIyLeYaaHc5vRp4Omngb17Pfs+S0IDw82bvL75C4MknchJF6fcfPLu3g0sXeo8kGWQRJQz5aTrOAWe7t2B6dOB2rW1Tgn5yo4dQL58QJcuWqckd2CQFIDcDUJ44/YfJe2NGCQRkR4E2gMtb9KblCT1kpeT7dsnvbLdq//5K5/15ZfS68KF/llfbscgKQDp5cbG4MszvIERkdbefhtITATOn9c6Jf5RuDBQubLnVdGInNFLvozUxSCJSEVKAkeWJBH5HjMtzn34oRQgFS8OzJypdWp8Lz1del292v/r9texyAeXROpikBSA9H7z13v6tMYgiShnCtRrX58+WqfAfwJ1H/kDgyz94z7yLwZJAYgX+cBmHSSdOgW8+CJw/LgmySHKkXidVN+2bUDbtsCBA1qnhIjI90K0TgC5Tw8dNwgBpKU5/owcsw6S2rUDDh8G/vwz97QPIKLA89BD0uuhQ1J30/6mxr2F9yfyBZbw5EwsSQpAerjI9+wJHDumdSr0R8mF0rrjhsOHpdcLFxx/Jy1NH/udKFAw0+I7Z85onQLXUlOBYcOAjRu1TgnbJOUGvD/nTAySyCO//+74M16onXN3+9y8CcTEAC1a+CY9RDkRMy05jzv7dNw44IsvgKZNfZeenIb3bv3jPvIvBkmkOmZOnHN3+yxaBGRkAOvW+SQ5RKQSXvv04+hRrVNA5B+3bmmdgpyLQZJOuPN0gDdiIiLntLhO8tqsf9xHlJP89hsQHw+MGaN1SnImBkkBaNs29+Zn8az/KNnWeuh4g4jUN2mS1ikgE143KTcYMEB6ffddbdOxdSuweLG2afAFBkkB6OZNz7/bujVHHPcXtZ5Y8mZPFBgYJPlWoJYCseMGUote93HDhkDHjtr0eulLDJJygbt3s/9ftQpo1sy36wvUGxkREVGgkt/rPaHXDDg5prd9du6c1ilQF4OkXCgpSesU5A4MFom0w/OP7OFxEfjS0oD27YFPP9U6JZTTMUgi1eXmmxDbJBERaY/XzZzrl1+ApUuB11/XOiWU0zFIIvIRtkki0g7PG/KWEMDLLwMTJmidEpK7c0frFFBuwSCJSEW+yJgxs0fkvtxcop1TebpPt2/37Hs7dwJffQW88opn3zcJlGOR9xr/ungR+OAD6VUp633EfeZbDJKIfCRQboxEpA5mWPRJ3iOsO9fllBT105LTnDsntQ3yZ1vnnHKede4MvPOO1Csc6RODpBygTx+p+8WsLP+s7+ef/bMef5k3D+jQAbh2zT/rY/BE5Hv+PM+EkBqT89zWD3lGmvvFd5o2ldoGPfec1ikJPDt2SK///qttOtSU0841Bkk5wMyZ0kBeW7f6Z31PPeX880A7SXr0AJYsAUaMUHe5bJNElG39euCBB4B167ROifq6dQOiooDLl7VOCamJ117XTp6UXpcv1zYdRL7AIEkn1LgYG43eLyM3u3TJ+2WwTRIFkp07gU2bXM+nRil18+bA4cPAww97vyy9WbBAuv7yGuxbgfYALtB4c69RY98IAZw65f1ycjK9t0nSW3q8pWmQtGHDBnTq1AlFixaFwWDAggULLD4XQmDUqFEoUqQIIiMj0apVKxw7dkybxFKOp0ZGUK2b+IwZwIYN6iyLyB4hgLp1gSZNgBs3HM/XqxdQrBiQnOy/tBGpSX5d1iLQ8mSdly9LVTgDhRrbdfBgoHRpYNIk5/PltIy4VmbPBp55BkhP1zol+qVpkHTnzh3UqFEDkxycEePHj8dXX32Fb775Btu2bUOePHnQpk0b3Lt3z88ppdwgM1Pd5Xl60/j3X6BvX6BZM3XTQyQnL/W4etXxfLNnSxm2efN8nyY1sdQhdwvkjPR//wEJCUDlylqnxDNCABs3ut+Zw+TJ0utbb6mepBzLm+O8Vy9g2jTg++/VS09Ou+6GaLnydu3aoV27dnY/E0JgwoQJePvtt/Hoo48CAGbMmIHChQtjwYIFeOKJJ/yZVJ9z98ASQr83gUA9SdSoKqNkn9y4Ady+DURH2//cVMfbnWUSeUPJORuo5zWRpyVJWl17//xTev3vP23W7420NOC114CvvwZKlvSs+lwgXmsCMc0mzh6S5Xa6bZN08uRJXLp0Ca1atTJPi4uLQ/369bHVSQ8FaWlpSE5OtvjLLQL5JNUDtXsHdLY/8uVTvhwGSeQLPK7I2pUrUnfOV65onRL7eI/Tv8cekwIkADh9Wtu0OBOox5IvrtuBui38QbdB0qX7regLFy5sMb1w4cLmz+wZN24c4uLizH+JiYk+TadWeFCrT40gSekFLCND+TJyW2b27l11OtEg53gNIWtdu0rdOXfponVKcjetrvlqdNzw11/qpMUZb7fPvXtAtWrqdlseiPvMF86eldqU3bmjdUrUodsgyVMjRozArVu3zH9nz57VOkmKMMOiPX+WJJFjZcsCRYrYVjsk3+GxSgCwZYv06q/hJPROrQwozy99WbgQOHAA+OEHrVOS8zz5pNQBx5tvap0Sdeg2SEpISAAAXLYaeOLy5cvmz+wJDw9HbGysxV9OZO+iq5cLsV7S4S5/DcZLzl28KL2uWKFtOshSoJ3XgZZePcvKAo4c0ToV7nE0mCyPC8f0Uirh633EY8CSL7ZHTrl/6zZIKl26NBISErB69WrztOTkZGzbtg0NGjTQMGU5w4cfut/zTE6nl5KknFbd7swZYORI4MIF977HG5n/BMq2vnkTSE3VOhXKbdyodQrU8dRTQKVKWqci9wjEa76a15BAuR7JBWKayTVNg6Tbt29j9+7d2L17NwCps4bdu3fjzJkzMBgMGDp0KD744AMsXLgQ+/btQ58+fVC0aFF0YYVpr0uS3n5bKhKlbP5sk6T1Mv2pdWtg7Fj12jksWwa0asVBB70VaDf1lBSpw5O4OK1Toty+fVqnQB2//qp1CiSBdsySbwT6PdEbpiqxJnrdFjnlXNW0C/AdO3bgYdnw68OGDQMA9O3bF9OnT8fw4cNx584dDBgwAElJSWjcuDGWLVuGiIgIrZKco+SUp5x6lVMuEt46elR6/ecfdZZnGjXgmWeANWvUWaZSmZlAiKZXzdzr4EHpVe3xzHyJ1wB9+OQT1/Ps2gV89x0wejRg6i/KXgb0yBHpGKxSRd00UmDzR7CyYwdw+LDv10PZNL3dN2/eHMLJXcRgMOC9997De++958dUBQY1br68gXtu7Fip5Omdd7ROSe7l7x7wLl8GypSRuridPt2/69aDQLte6CG9ekhDbiXPtK5f73r+2rWl13PnpIb99mRmZlc7TElxPNadtdxwHKj5G1NTpR7oPH0efuiQdH+uWlXZuqKiPFuPvzsX2rzZN8t1te+uXQN+/10afDY+Xtky9VrC5S7dtknKbXLSRTRQf4vSdKekSG1sRo0Crl/3fnnWclqbJE/p7Tj65hvphvrTT8q/c/CgFFTt3++7dHkq0Bqz59bzIJBkZACFCgGlS6szOLcWnFWRTEvL/t/Ztd9bahzrgXBOOyIEkDevZ8dQRgZQubLUxbeSbqgLFHB/HSZlymT/H8jb25VOnYAXX5TaJiqVU7YHg6QApefe7XI6eXWf9HTLz9gmST054Xhu3hyYOxdo2lTrlASGu3e1TgF5Y9o04OpVqb3gb7+pv3w9XRPcSYue0h0o7t1zPJ6gs3vivXvZ/9+44Xo9rq45mzcDx465Xo5W/JE/+Ptv6XXRIt+vS28YJOmEuxdRNXp44oXbe862IbdvzuLJzejqVen15k1106IFXx/P+/ZJ1V7UHOBRa1pfA4xGqZOT3r39sz7T8Q5Ig0o6s24dsHOnT5Njlzv7xFmpvtb71hdy6wM5R44dAxo3BipU0DolpBUGSQHq3Xe9X0ZOvMj7A28ktiVoWuDxqx49bMuPPpJeHQ3wmNvOu3PnsscM89S+fcDq1cCsWeqkyRWl++jSJeDhh4G6dd1bvjcBjpbcTYue0q6UL64h3i7T2++7U03633+9W5eWfLHvAvEYtodBUoDavt12mh4yOoB+0qGEvM6z2un2ZHmrV9t+T28Xmz/+AMLDgalTtU4JecPd49Pe/H/8od9BA/VwHfI0DampQGIiULSod0MT6LVd0Pnz2q1bi+MiUNbpzb1GCKndZm52+7bWKdAPPVx/1cAgSSfcPaD0evMLNNZjDrhL7YCmVSvbntM8Webp0+oPjmvSvbv0+sILvlm+XuktWPWHEyccf3bxonQstGmjzrr8uX39df30NKMg743Nm1LbnHbM+uP3ONtn9ta/dav0p6ZA3G8ZGcDAgeou09F2ULp9/L0d5R17eOvWLWDCBNeDsAfisRJIGCQFKDVu8v6M9OfPl8aV2LvXP+tLS5PGFHD1Gx01DHVG6UXJ0+1r3f2suxfBhQuBUqWARx/1bP2BIqc8qdKrDRuAcuUcf37tmv/SoqZFi4CYGKlLW1/z9Bh94gnly9DreaDH6lfuctUG6e5doGFD6c9ZO2G97qOcLpC3+3PPAa+8AjRr5nw+vQZJek2XuxgkBShHJ39WljR4p94uDt26ZXeH7A+PPgo8+CDw5ZfO51O7Ia4eLgxffCG9Ll7sm+X76zfq7RjOyext65kznX9Hy2PdVacAznTqJGVoH39cvfSoLTlZ2XwTJ0pdbjvrttpk2jTfn1PW19MjR7Q7jz09Pt15CCavXqWku2nSBz3cp10x9SR3/Ljv15UTHmj4CoOkAGWvJEkI6elDxYrApEn+T5M8HY6kpPgnDcuXS68TJ/p2Pezdzne4/XxLjTZJni7LHncyLi+/7HoePRw/7qRh0ybpzx0vvSSV6A0YYP9z+TZ95pnsbrmvXHFvPZ4YMUIaeHXkSN+vyx2elswJ4fwYdbeanjNajZMUCMED4H11O6XbJlC2h7f0cK3UKwZJAcpeexMhstuzvP++62XkpBMjOVkaMd36d+eEsSzcLe2yvrAbjVLbK7Ualep1O/labrlhmrjze/1xTMjT486xLIQUVH3yifLvTJiQ/aDFG0q3y507QJMm0p91Wz8ly1Ba/XrHDunVF+NRCQHMnm07fdw422mBei5ZD8Ds66rX5B2te8fzRqCeIzkNg6QAFaj11H1l8mRg1y5g1Cjfr8vfN0ZvqwR++y3QqJHU5a61jAypp0RfdfLgS7ntGLd28qRUpXTOHO+X5e1TZ38HSe6sb88e4KuvgOHDlfXEt3691BagbVv30+gpedBn3WukmkGSL82fr7zNqafHi7+Ps5w+LpLe+Wqb+yoA0eIYYTDlWwySdCK39G7nq4uIp73KqH2B0eMFa9o06dX0FFnu6aeB+vWB0aP9myYlAukYNxr9f4Ps2VPapz17etYBiT9lZlq+f+UV23l8VXIlbyuipCe+M2cs32dlSVXVvvtO+Trd5e11w9H28Of1aNs2/61LCX9fi9WsjqrH+4jWjh6VSiXdKUVmdTtLf/0FrFzpn3UdO6b/+5ISDJIClKsMZG576uXtxdBT1sv39/rscefC/ssv0qtpIE89UdLuxJ8cbdesLKBWLaBlS/+mR/7U3pOqlNZVh6xZ/15vMoHffmv5fsIE5/O7ouQ8uH5devW2Pci8edKDBkftfpxRIzNmr7qap+vx5fXJne3saeZTjfSrVYrlTnU7Ldy7p96yUlKAdu2AH39Ub5lKyLdvxYrAW28Bb7zhv9ocWga3ah9b164BnTsDjzxiW3PEV9eFr7/2zXL9iUFSgFLjoDaNc6KHQVT1QO2nS3qpbqckvYG6z/zJ0XY8fFgKWNau1Ud6tFi/q+Nn5051163keDX18uitmzdtpx07pqyHPTWuKWPHuv6+0lJXvZznekmHuzxNtxbn6vffK5930SKpS/yLF7OnyTtZGjECWLYMePZZ9dKnhL3tvXmz8+8o2dY5qbqdUvLrmL9qaeitdNkTIVongCRqV7dTurw//pAyMHXrurd+T2l1EUlPB/7+G3joISAsLHt6IFS3Y714+/S4LfT+dNlbf/4JLFkitfFx57hUI+Pi6XngzWCsgBQQySUlARUquJ8OZ3xV3U5vMjKAFi0CpyqtO8ec3no6vXVL2XxZWVK3+NZMaf74Y217y3WXmttab9dye+nRWxpzGpYkBSh7F4Lduz1bltr1RvXUeNGUlhdflAZlGzxY3fV6c2M8dcr9dg72lpmcLI347s12D5RMlpxe0qxWEJuUBJQvD7z5ptdJUoW96nZdukhV5yZP9v36nHFnOw8b5vgze728Wafjs88s358+rXzd/mr7oIc2SUrWtWKF1M35li2ereOHH5wP2upueuxxp+qir7avfLmejglm+h1CAD/9BPz7r/35XAWserkeOWKvpFcrvq5up9Y9b/Fi/90/jUbvH1RpiUFSgLJ3YRs+3LNl+TOzqVXG9ocfpFdnQYm/x3qpWFFZOwdXy6xbVxrx3dT9rnWmndXtAsPkydLAgR9/rGx+b4Mzb/b5hQvqLcsT7qxv1y7Hnynd1p7y13a5elXqlU/vvZ5ad+ABuJ8md7pyt8fTbXDlija98nXr5vl3ASkw7dcPqFPHu+Vowd52s76nWbdvVHK/sz4O1Tov1q4Fnn9e+WDQWunaVWpraeLt73cUqAohDWuQN696Q5D4G4OkAMWOG9ThyZMftRpJe/J0xd4yTdWBfv3V9rMDB9xfR27gyWCavg42vemGvUULqTTRU+6m2zqjokZ1Oy0cPOj+d3zxW4K8vBNfvAg0by5Vn9YzNbadde+DanPUBbirEhVf3XPt9UqqhCk9+/d7932986QTAut2fmr91scek0ra33lHneVZU/Pas2qVessqVMjxZ1u2SKW/69ertz5/YpAUoHJyvVtPOPoN7lSN0SulmVF7nwVyMbevTJ0KFC6s3o1Mrep23pyHe/ZIpYlq8tdgsqNGAa+95t539NJLm1olN2pdgxcudL5cvWw3b2jVg6ipt0Q5+W92VmLpbQ+LnjD9jpxwf3fFaJSCSaVNB6wfHqp9TJ044f0ylFa308P+tVdCDEgl3CaBEnRbY5AUoLQqSVLy5NXZaO7+OFH8WdStp8a6SqomkNQ+DQA++ED9Zau1z5U8LVezHYuSdMvnUeuYSksD3n9favdjXYXPmr86MNEiSFKL3tJjTY12Fv4OPOXrdXbO9Orl/LvkPkf3NOv3Y8ZIA2s//bRva4dotTxn9Hx/93ePr77AIEkn1O7dzleU9Jjz/ffKe9bxBU87orDeB1euSO1EkpIcf+frr32TeXTE3aBs1y71OuYIlB6pfMXRvvXFPv/9d/WXqSZn1e3WrQP+9z/Lp4iOtpH8mJIPCO3oyaS99XnDejl//WXbm501+W8xjTOmdPl6oca5vG+f98swOXYMKFvWdjwte7zdpp5WDXX1PVfHrFKOOqawDtJcUWM7ffqpd8vwBXsP/kxjif3yi//bZ/qT9e92VnppzV5wSa4xSApQrg7wmzeV9wLkC2vW+Hd9juqRu/M9623avj0waJDU6FVOPt+nnzoewdrf3QPbq17Rv7/nddpffFH6/YDU6LJUKdttoSUhpIzJDz+4ztjK+TKQ1aq6nSO//CJ17CGvdnr2LHDnjvfpcXTuPPywtN5XXvF8HaGhtgGIL0qS5MtZu1YabHH0aOXfd7d3SiXp8Ib19nS0fb/80vt1Va9uOWCpN8fvoEHAf/9Jjd5d8XVJkqOHXq6qOqlRq+D4cSBPHmDgQNvPOnWSOl9Q2nZRjep2r7/u+XdN1O5R1hf0+ABQSamrpz0fWi/LHwFToAZlDJIClJKTukcP36fDxDo9jk4IX50ozm4Ex497tkzTAJh//ul8Pk+Xr2fXrwNTpkglaTdvAr/9Jl2Qf/pJ65RlE0JK43PPZY9bozW9VbP43/+k49gU7B47BpQoAZQs6f765Blia/Z+93//ubd869/zv/+5tz5vbd+ubD49j1umtLqdGkES4H7VZkcZP3kpoivOqnNbL9ed6e4uzxdP5qdMcfzZ4sVSycGePcqW5W0HQ2od296MsaS0GrDexhnT23UB0L5anh63iRIMknTCF9Xtli71LC3OODrRvHmi4WtqZOxPn3bcGNPRvvDFRcFfbaDkVUf0+JTNZNMm+9ONRsdVPj29Wfizup3aTJnZZcuk1+vX3X+S+Oqrnq9f7Z4Blc7rTu+OvmjLYP15crLUA53SjH5Oo8Y5dOOGOmlxxFl1O2fnTKBmAgONL7Z7oOw7Xw0mGyi/XwsMkgKUmhlXNU4Q65u+kmWmpfnn5HTWQF/pBaZUKaBcOanamV5vjr7szUirQMDZtjUagTlz7H/Wvj0QHw8cPuyTZDmkVnU7Jcvxdp9cuuT58g0GdUpUfD3gp7P2hIDlWCFKuDu+ivXn3btLfy+95N5yPBUIvdv5qj2u2ulR0omAnpjSltN6OD1wwHm1UjXbJGn5AExJdTtvjj+1qgrndAyS/OzyZXWWYzo59HKRdlYVR86U3tOngYgI4Kmnsj+bOBFYssT591evlhr4Wvfx76+nKfYylkpuqmrvd2efBULJhhpOnbJ8X7EiMHOm9P/y5dKraRBhNQTyoLxCSNUm5ZlzNavBqJGBtLd9jx61Xw1u2zb3lu2K0ahsnKknnrD9njtM160ff3Tve2rRa7Uif3U37y53Mt/epOv0aen7ixfb/1wenCttrC+E9BDJ0/Gd9HAt81ca9Hpe5CSBuk0YJPmZo9573D2A1DzgPO3oQE5pkGTy9dfSq6lx9rZtUgauQwfH3zl7FmjVSmrr0Lq1+2l0RWn9Z2vnzwMffST15uVoGd50S+5uxw05iTu/6ehRoE8f199XO4h0lJFSo1fBW7eA8uWB4cO9X9Ybb1i+97bhrtqDydpbRsWKQP36wLlztstQc1DR778HFixwPZ91yZMvM86eysqSnhIfOqS/ByZ6qBrkTZskT6s7G41SsG+vxkWVKlJNhaFDgSNH7H9f/tT/ueeUp7dnT2XzOvp+IFCjCroefuu1a5b5BHt5Bn+WDJOEQRK5daI5usm5O+q1fDmpqVImyJV333U9j/Wy3ZnX0yBp/HhgxAjbG5JadaXVvNB7Wp9faSa3a1dprAq1BPJNwPQgQCn5Nn79dem3T50qdQzyySfep8e6TZ0agY0znp5P9thrD6ikR0Oly582Tdl8gG9KF9Q8zqdNAwYMACpXVm+ZSnjzcOr8effm9yVHvyMtzXIA6ps3lT9omDRJCvatHwL+/nv22INffeX4+zmxcyA1+aq6nac8WV7BgkBcnPvf08ODB72swxcYJAWoQDrg7JUyyU/sPHmAixddL8fZb/bXhcJZ0OKPgdO83e9XrqiTDnuOHZOexk+frp/OHnx9nly7Ztk5gHx9e/d6t+x//3Xe3a+7VZTUfgp57Zp6ywKc/x6tMsauuJMufw3J4KwqotaZQXvbOTXVvS78la5T7X26ZYtlIPPCC8qXefu29Gp9j1BzrClP6TkvoaStkBr5AqXbIDk5O6jNiSZNArp0ca+3yZyOQZKfqVX9QW9tkhz57jsgMjL7vSm948dbzvfrr66XpeVAre7MY29eb27Y/qpu17Nn9vg51stSkgYl43fIBxhVwhfHt5rHUcGCQLdu2e/V2OcmKSnefV/OF9tRPmaWJ6VS7jZC1kvVMfmDBqUlSadOSQ+DHPGmOq41T8eM04qzEhR7fHEsOxoI1tn2s34I4m2VVU85SruSB485hacDALs7X7lyUvVIJe0X/UHtc2HwYGnIEz0N9aE1BkkBSm/BkaMMz4AB/k+LloOFKnny5av1e1t6M2eOd9W65L/xqafsp6d+fen19deVDdqpp+Pc1x03uHuMuDv/6tWOP/Ok7Za8/YQnHTdYl8pq1S7TnapegGVnM0qvB656kho61L00eMqXJUmeXuPcLd32RZukqVOz//e0EwktrlUrV0oDL9sbXym3ZnR9Wd3O9JDP1diJgdrhhImaD+hM9HQvdweDJD/z9omH1pTeQA4c8HzsJE8CDTXGvlESZKxZozwYUatNkppcLc+UYfE2qJs1S7qBWzt5Ump/9umnwHvv+b57Wk87bnj3XalzEHn6/P1U3tfXBL1dc7Qq9bh40b11y4Mqtbqj3rhR+frd4c9qr0q2oV7bT8irUPnzvPB2ezz+uPT64oueL8PR73U0ffBgZbUG1OBt7Q5f1cLQU4ctapxT8qrTZIlBEvnEu+8CJUrYTldy8Rg82P31uXOhcPREXWnapk9Xvi5/8uWF2ZMLsakevjV5fWdXmThfPDVWYswYqbvmuXM9X5+vS4b0NMq8p9Xt/Fny5gtqtY9Rc4BU+bpMXeH7irvnh5Jql674ok2SfN7Tp6XeDt3ly+uv9bKrVfNdYO1onSaTJkkdTmjJuk2Sv6rb5VTTptkOqUESBkkBKlDaJFlTkt7Jk32bhlatvPu+0huEWm2SnL2395lWx4TSjgH0OiaKPe52ba91eh3x5Mmnt/tJ7aetvgqK3Gn3Z++7Sj73V0BnnR5TG0NHn3vrrbek16FDpZJhNTnq1MDZbzh0SJ0BpPv3l15d7Tetqtvt3w80barOstwtSQJ82wGQJ6y7Vjf58ENl13A9XbfVTktGhrLhEkqX9l0afLVMf2CQ5GdqVbfTS0Y40NftbdehrkybBnzzjXfLcKfKwOnT9qu5yedxtQy1qN0RhlrUqJrpy/WYeLNtTpwAKlVyvixf7+t//gmMXpJyUpDkal2+qL57/jzw5ZfK5ndnOzjqzMLRb7h7V+r2/IEHnFfj9faBgJyjwV+duXwZaNhQqpGQm8fAU8LR73bWZkb+ne++Az7+2PP1eMqb5blzrb561fUx1KwZULIksH6952lSQ6AewwySyMalS/6rc+yIEMDu3cobEPqzrruzKmLyZaSlAc88Awwc6HmdX3dLknzVUYYn7Q300iZryRIp8/TPP9J7T0pIkpOB115TPr/1/85cvCg98XT36ayz3zFokOOBKU388RR86VLpVUl1u0C8iapR9cu6tEcrnm5/X7crtObo+puUlP2/u9vU0/uHJ+MXvfWW1DuaO+PJ+eLc6NoVaNTI8b1eSa0FrSxalP2/q7Ts2uV6ee7WevBn1UpnlHRDb+qJ78cfPUtPbscgyc9271ZnOb46STdtAooUAdq1883ylaZ74kSgVi2gQoXsab5+6qa0kbMps+1KRkb2//7ICAnhOhibN8/1Mqx5GjA72p7W+zE1FdizxzelHUJIAzgeOmQ7kKMSpjYXX3yhfH0mSm9KHToAb78NfP6542W5y1H1E0fLt9eNsDsZx+PHgevXna/DmrvHlR7aIFlT2qbOWdqVDH/gDn+M+aQmPbRJ8pQn20xeQqbVMb11qzSm3ZYtjruzlgedasvMlHqIc3dICBNn2+2XX9xfnrtVDv0dJGkdlOZmDJL8TK0Gj7duSSfO22+rszyTSZOkV0dVtvx1UX/5Zen10iVl81+44Nl6/PV7/JVxcbWeUaOcf37okO16e/TwLP1Kq9s1aQLUrOk6gPOEPA2ejEWzbJn06qgTCmfrU0rJk053uVuq16iRe8u3Xl7DhkCBAu4t44cfLN+7e4ypVZ3z+eelIN0TalRfVTMDZDA4HydJ7dIBX7Yr82cG1VG6fHF/kHd2oVWQ9NFH2f87elhhugfb4+0+mDBBGrS0Th3vlmMvLUOGOP9cyTJc+fRT53kvb7eP6b6TkwRqoMcgKYC9+qrlxU5Lajzx98aECd59X400OFuePztu8MaGDbbTlPai5GnHDf/+K73a6zXQnxkiQAqkrDMNrVtLXdqrxdHgj+5y55jats12mi+2rXyAWfk67KV18WLlafDlDdadar3WlAZJQU7utEr2o7N2hu6kR+3vKv3O8uXSYNVq9OJnKr179VXg4YfdHwjWnd+px9JLNShpi7tjh+Pve3s+mh6IuRomxF8Za3er2wFSFWlfpcW6Jo+z7cB2bb7FICmAKakCdPOm79PhL47aNViXNnl6MdDrRUTpRdBoVO+m7s5y5s2zPzCso+2Zmmp/HntVl9TcJ2lpwObNjj+/eBGIiwPq1bOcvmpVdtsaV1yld8MGICxM2bnrLJOya5fzc1vJ/nOVYfXkWHJnAEvr/e1q2+kxw+qvql+PPOLd9020usa1bSsNVj18uO1nnqRp1Sqpeuq6dVIAZjTq4/rtbkclesjgalGlzNrevcpL693lbknSnDlAYiKwfbtv1+nud4VwXrrnih6vn4GAQZJO+OqCpEYJi5xWPXadOWO/a9e+faU2VGpQu6MBX3RcoFVGwNF+b9ZMqo733ntSxkXOWY889vjit1kvs3Fjx/MuWCC9mkq21FiftaefluYZNsz1st580/70q1eB2rXdT5u1OXO8X4Yrem787Q+m3+isOrAvMy++rm7nrnPn1FlO69bZ/9+9C9SoobwdrTullydOuLesAgV806Oj2vtGSUmSs4coaqZnxQpp/1Wvrvw77vRK626Q1LOndJzWr+95e0G1g6R79xyP76iHQDsQ1u8pBkm6JhAXleTVEuSdB+hBcrL98TQcNR4FpLYLjrqwnDnTdpqn1SkC9SQ2EcL/T4vk1fMuX7ZNjysnT2b/7+uSJFf82UOiN5QM+ufJb7l7V6oCp6TTB6X++stxeoRQp0qqlpR29jJlim/TIefPjht88SDIXbt3S+MG7d3r+TLsbbOtW4HHH3dvObdvAwcPep4Ob3g6PpRW+93kt9+kV/m9QM31eNMmafZs79fvLntpKVHC8sEA+Q+DJB37ccAzSPouL5pW8ryDez1mPOxVzXLmuefsT9+/3/u0yPkyg+tpLz6O0rR9u21PiWqm3183p2efzf7fF0GSvbZEvjwnTp/23bJNfJX+554DOnaUuq1Xaz0//QTs3Gn/M3er2+mR0iDJGbX357ffZv/vzjb1x/Z31jZLS/b2waxZrr/n7TZTc9+3aaNsvp07s0vNAe2DJF/nUYSQeu11VtVaT9cee2lRoy2fHvOCgUCnl6zcx96J8XSz6QCAt7t84PFy9XpTUkO1auouz5cdN8iDAW+XefOmVBWgVi3Lp2++LElSstx337V87ygDKd8u8ou/ve3vaYN6kzVrbKf58mbx4IPK5z1zBhg71jfp8OSpuilTqPbTU0edXliXJLmix5u8GlV91HTpkvOOQdROz717yjPnarH+Db4aXkHvGWdrZ84oW1bduu4vWytq9Ex3547Ug2rjxo5LyX157/f1d+2VwOmRno8zZ3JwFpoA9TMWesyoWNOy4wZHy/Ck+2lHy5MPOuqqzry7yzbxV9UzeSBlL6hy1WW5mvx9bDdqBIwc6f73lKTT3phFWnJU3c7VPFrzNghScg6o+bu9eajg6fXv2DHP1+nNek3stbt1t+2VkuNT6bLcoXTf+/Lc8HdJUkoK8Pff2e+d/bZKlewHNu5sD/m911FArUaJsFr0FEwIYX/bXLsm3bvcOfe9aeurJQZJOZweMx65ha86IpDvU/lTel9Wt/PlOEnO5vekfv8Hnhe8+pVajditqXUcqHXtUNp7lp4yByZKgiBn83z0kf3PffVbrbt6d2cb63H7+8Pq1fZ7m9TyYZs/lumPZdvz6aeW751dZ65elQaddUYP7eLUpEXbYkfpaN5cGsNQ7vvvpQ6Ixo51rwOhjz9WM3X+wyBJJ3x1kvrrZNPTRcYdjjpuUFp1wddcXTCHDrV8r8Zgjf/8o04jUXeDJLXaJL3zjvPP5dtoxgzg+HHb6XrmKp2bNvknHe5wtG8D9bphIoR0vjjjqu2kXo47f+wLvfxWuVatPP+ut+MUBkrPZNbOn5fGtVPak9/q1dKgzbdv2w5d4M8ec5U+sPGW1m3V0tKkcZzkA5W7WwXbaJQ6Ztq3z3J6//7AokXS/77qtl1PQrROAPmWmjclvTzhcEWN3u3KlPFvOtzh631gPU6Qp7QKktzRt6/n63E0Ur0j/sroeFq101fWrVM2ULCzcaHsza+Et9tcSUmSqwcq9qoLCSEdP8HBnqdNbVplxN3NuPornbklaPTkd375pfT633/K5jcFonFx7v9mNQMOb44pNTpPUEKN4+7TT4G335b+THzVdi+nY0mSTmjZ4F6Jb74BChUC9uxRZ3lak188TOQXJ3czwCZDhthfnqfcrZKkp+NIyQ3JVZsk6++psU0d/RZ3f+P777s3/5Il7s0P2E+Tq3RqMaCwM/YCJMB2X7rb9Xjr1o57zjOxN9yAO5QESa+84tmy4+KkHir92d7Ek/Pn1i110gLoY0gKpdvAH0GS0iBDr9Xt3L2mLVxoWzIh741RKbW7uVeyDdy5lnizTSdP9v6aYN3zLXmOQZJO6K043drAgVJjvX79tE6JOj780LbXLTX2wbp16i7PHmcXUHcyIb4+5tRokySf1rmzbf1otZw4AQwYoHz+v/+27c3PFXnVB6Xkv//AActOOxzRw9NpJdQIeuvWdb4MRwMwKuUqfWlpnnfvf+eO1HmHP3nSJql3b9+kRe+8PTbPnnU9z/ffe7cONfizJ7YjR4C1a937zpNPOv9cjU4XlPyOpCTv16OEo0HE/U3veVJ/YZCUwynJMDk6GVau9N+FQU1KT27rHsD0Vi/Z3jJcZXL0dGFTcvNyp7rdokXeDRjpTJcu7s3/00+OP7twwf70d97x7nyqWhUoXDhwgiBX3M3cODq2ly71Pi2esh5A2V2pqcr354oVngdkSjjavosX+26dngiE6nbjx0sDgAYCb36no2udP/mrTZIn2+n776Vx59ytmZJTrvE5AYOkHM6bk+2RR6TxBXKq9HRl9ZU9pcby1q8HRoywnOZon9665V69Y0/bbqm5fC3aJNn7LUePer8Mkzp1HH+mRr12Z2Nu7dkjZbzV4I9BHpX69VfHn/mydNvdKoD2qLUd27SRAmVvTJ8OlCpl/zO9tUnSerne9G73xhverdva5Mn2p6vxENOb7XTpkvfr9yd/BUmmefv3B6ZNA+bOVf5dQB9Bkp4euGpJ10HSmDFjYDAYLP4qVaqkdbJ8wlcHpJLBZJ2dkK56Zgpk1j3zmPbB6NHqLF+Nfdqpk223vo4cOyZVZ1AiKcm9qmu+CpLkgZGr6nZqUbONhT2+zjg4G2+iZk2gRw/frl8t7pR8fved4560fFm6Yq9raGtK2i2pRUl1S1frPn1a2byBnElydr3SU5sk8p4a7XRNyxg/3vv02ONuMOttkOTPHgNzOl0HSQBQpUoVXLx40fy3SY/92+qYksEqc9oJofT33Ltn/3veNvZ2Nx3uLlONp0xffWXbJssZT7r6dPT75UGKq5IkvfLXkz49PFH0FXf3t7P2duvXA//7n/oBk5J2Jenp6q5TTf5sb6InalwnA/n3O+Kop8VAI+8wwp2HFI6uD6Z5nJUAzpypLG1KmbrRVtPXX6u3rEA8LnxB912Ah4SEICEhQetk+FygH5B6Sr9enhTqaZtYUzq+hclzz7m/jn/+AZ54wnb6oEHZ/8vravurJEkNOTl4MVHjabwzaraha95celV7VPfc0g00YPtbjUZlNRG8NW2a5fv0dCAszPfrdUWv1x5vTJ1qOy3Qf6er9MvbTQ0cCGzebDvPvXu21dp9mSbA8j5ozdMHL0OGAPXre/Zda4F+XKhF90HSsWPHULRoUURERKBBgwYYN24cSjhpEZmWloY0WQ4wWW+DhuiQXm7SavnrL8++p8c2SfaWGSj7y1HnBvKb1rVr2f9rGSSpXRqQQ2sFq8oX+/bQIXWXF2htLqx506j93j0gOlrd9NiTmWn5/uBBqdqoo7Qr6bxFjQ4FPD0+3X0A5U/2qn2p0e5OS65KpOUdNG3ZYn+eWrXUS4/WfvzR9dAIakpJ8d+6tKDr6nb169fH9OnTsWzZMkyZMgUnT55EkyZNkOJkr4wbNw5xcXHmv8TERD+mODDltCcG7ozdIA84rG/W3tLrdn3rLa1TYJ8Qthdc0zZ0t2MFX3MVqCptGxao1AjU3T0/tDifPBnbyl16eejx+eeW72NigIkT/Z8ONardOhvDzNc1DZ5/3rPv+YO9bSsf2y8n0uK6oWSdrgah9tQ33ygff8sZpdtN7U5K9EbXQVK7du3w2GOPoXr16mjTpg2WLFmCpKQkzJkzx+F3RowYgVu3bpn/ziqpVE65ljyDovYTNb2WJI0bp05afKFGDfvT58/3bzpcUbPut14FUnW7QKaX0qoPPrCd9tJL/k/HjRveD4aZnu782JozB+je3flTcE+PTT13dmQvSHKnR1Q9crWftGjr6u3QAIFkyhStU+Bbuq9uJxcfH48KFSrg+PHjDucJDw9HeHi4H1PlewYDcxLu0EvGSy/psEcvT6/lhABOnrScFkidOfiCVlVhqlQBmjXz7Tr0fH740+uve/Y9645n7AnEbdy6tfTqrDTIFWe1AoQAevaU/q9QwfF8eq4256mcmHn/7jvnn2txD9HLgw9vBOK1wxd0XZJk7fbt2zhx4gSKFCmidVJylHPnnH8eaCeL0g4QA+13megxwFGDs5tZoO4rb02YoM16Dx4EZszw7TrUGkw2t/rf/7ROgW952rYUkIIkJdfJH35w/JmTCisB6/vvtU5B7uBJb7CkT7oOkl577TWsX78ep06dwpYtW9C1a1cEBwejV69eWidNdc4yAEL4Nldsrwcyud69XS9DTxkYeWcAWvJVdbvcJLf9Xmta9jvj6yew7la3C9RjQckwDO4wbYd589Rdrt54s7+ddRcv58sxtkg9gV4CFmjXrnPnAi/NvqLrIOncuXPo1asXKlasiMcffxz58+fH33//jYIFC2qdtFzF2Wj3gc6XFwJfLVuNkiQ99khjb3vl9up2OVluuQmvWqXu8vzZc1WgyszMPcdXbhCIo8B89ZXWKfDcV1/p52Gz1nTdJmn27NlaJ4EU4g3Jlp5LkrTotcoVe7/twAHgmWeA8uX9nx7yLVa388yNG8rn3bjRd+nwNW8eBjlrk/T3354vl0ipl1/O/j8Qq8jv26d1CvRB1yVJuQkzADmPnkuS9Hi8OUrTtGnqDxJK3tGid7uc3ouSUm3aKK9qt3atb9OiV1lZjq+TgRw4EpF/6bokiQKHHjPdSgRadbsOHaS/nMjZ9po713/pIImvuwA/eBAYP175/LNmeb/OnKJHD61ToG+Bej8iIn1hkEQWPB3gTI9tXFzx9Y10/Xr1l7l7t/djiOgVMzb6kprq+3V8+qnv10GBaft2z7/LMbhITy5etHyvtGMRLfH8kbC6nU7o5YD09OT11ejRvnTqlG+XP3asb5ef0+jlHCCiwMZrCenJu+9m///nn0BYmHZpIfcwSAoA/hhM1mj0buDKQLwpvfGGb9PtjyfxOcnRo1qngJRir4OkZ0IAixZpnQoiW126aJ0CZQIxT+cLDJJ0wrr+f90y//h1/S1aAFFRwPXrfl2t5qwze4HYCw2Rv+mxd0Qik/Pnbas4EQHAihXarDcQqtjJ8UGYhEGSTsij9sYVN+Kf9+vJPvN9zt3Ufua//3y+Kl3hhYCIKGdhgESOtGmjzXrDwoCnntJm3Z5gL5ASBkk61K7GUq2T4LZALZqdOlXrFBAREVFO9/PPWqdAuc8+0zoF+sAgSYf80QZJbYEaJE2frnUKiIiIiEhvGCTpRKAGGSYjRmidAiIiIiIidTBI8qO9e5XNZ0DgRUz37mmdAiIiIiIidTBI8qPz55XNZ13dLhCr3xERERERBSoGSToR6NXtiIiIiIhyCgZJOmRdcuSPLsCJiIiIiEjCIEmHrNskSUETi5qIiIiIKPCcOgVcuaJ1KtzDICkAtKq6GqtGtAIDJSIiIiJ9eLrZjzg5oRQeKHZQ66ToXunSQJ8+WqfCPQySdMheRw0tq65B9RJ70aD8Fg1SRERERERyPw54FqUKnsZ3z/XXOikBISjAoo4QrROQmygtZnTUm92ecTUBAHXf/gc7T9ZVKVVERERE5KnQ4AytkxAQAi1ICrDkBrZ+/Rx/5k7vdg0rsDSJiIiIiAIHgyTymqvBZANxsFkiIiKinIi9ECvDIIk8Ii9JcjV4LAeXJSIiIqJAYgiwWJJBUgBiSRIRERERBZJr17ROgXsYJOkQgyAiIsrtShQ4jeaV12qdDCKXBAKsiEQjmzZpnQL3sHc7nWB1OyIiomynvywFAGg4ZjO2HmuobWKIKNdhSZIOMUgiIiKSNCi/VeskEDnFjhtyJgZJOhQfz97tiIiIAGZAibIJtKq6EoViL2udkFyBQZIOBQc7/5wlSURElFswSCK989cx+vhDc7ByxCM4+lkFv6wvt2OQpEMux0likEREpEtd6/6BPeOqo3KxA1onJcdgo3jSO38do51q/QUAiItK9sv6cjsGSX7UqJGy+Vz1I8/qdkRE+vTHK91RvcQ+zBr0pNZJIZmQ4Azkjw6w/oeJrPAhuX8xSPKjECd9CVr0bseSJCKigBYTmaJ1EnIMNaoy7R5bE9emFkSpgidVSJFywUGZfl0faSMQq4QGGbIQH3VT62ToGoMkPzIalc3HIIiIKLAFYqZJr9SoylSl+EEAwKN1/vR6WUpNf74vrn5TkCVYpEvr32mGm9/lQ9nCx71eVumC/6F6iT0qpEpfGCT5kdIgyRUGUURE+mYUvL2qRc2A05/7pW/TGcibJwn9mk732zopZ1Mz/9e44mYAQK8Gv3q9rP8mlMWecTVzXK97vIr7kbMgya3BZHXTJkmgTukdCA+9p3VCiMhjermeOFepktYpcA9LkvTJ3f3SrsYSPFhmu1fr9Gdgpof7cYGYq/jw8bdUKaEIFO4cV82b+y4dnsgyuuhS2Q1lCv2n2rL0gEGSH9kLkmqX2oluD86zmBYobZIGtpqCHR88iL9e7aR1UsiKHm6UpH9/vdYRm0c3gsGgUjG3Dzlr06lHDJK8Ix8KQ6uSpNIF/8OS4R2w/f36Xq3TX8dCl7rzcW96JAa1/tov63Nk2vNP461Hx+Gf9x/UNB32PPGE/J02eak1azz/ri8eknsfJGWnKdMYYBdqFxgk+ZG9IGnnh3Uxb2gPxBv/zZ7oqnc7HwRJVau6/53Bj0gX4tbVVqmcGvLGg2W24970SHz0xBtaJ4V0LMiQhY61FqNhha0on3BM6+S4FBRgdyt2W+2dVq2y/1dzWxqNyg+kUgVPqbNOP5Uk/TakJwDg635D/LI+RxqW3wIAyJsnSdN02PPBB9JrtcS9uDKlEF5sPUmV5bpzjLrqwdj5d/UXJIUGZyhe1urVXq3K7wLsthPYnFW3ixFHzP+7LEnywZOEHTscf9a5s/3pQQHw9DkQ1C/3N3Z+UBtNKm2w+3n+6GvYMqYBBrSYqmh543sNBwC80Wm8amkkz0mlNPoo/ZULDsoy/x8IpR6BVpJUqegR1zP52PDhWqfAfdOnAx9+CDwoK4Rw9/j8/XfHn7mTIVQrQ+qvIEkv9+T0zDCtk+DSd8/1R8HYa5jUb7Aqy/PXNdQXQZK3pT+hIdlBUtNKG7Dw1U5IzH/GZj4hgBYtvFqV3zFI8iO1erfzxUkSFAQ8/7z9z2bNUn11JLPhnaaoXXoXNrzTDO8/9rZN1ae3u3yABuX/xtRnX1C0PL1UxySp2uPRTytgzkuPa50UG/IgKRA6GWjb1p25A+ccqFnTs+9t2eLdeoODMlEw9op3C/GBvn2Bt94CihfPnhYbmaxaz1nuPPFXK+jwVwY6JDjL9Ux+kJEVqnUSHDKV4qhxn3zr0Q/N/zd7YAN6NXSdWZo2zevVqs7eg4NatZR/X16SNOGpV9Cp9iL80P9ZNZKmOf3fGXMQtXq3a1xxk1vz54u+jicb/oKI0LtO5/vqK9tpL7wA5MkjfdawYfb0AS2mWjwp7dFDSUoCJ+PijdbVVuChclsVzx8mewrzdpcP8Xj9ORaf54m4o0Kq1Nv2QYYs1Cu7DaHB6aotM6f6pNfrKJdwAo/Vn6t1UmxoUZJUIOaqx98NU/hw+qs+Q3Dii7KIidTHiPQff+z884oV3V9m6dJAXJzr+ayr9VSvnh2UrR35MK5MKYxqiXvdT4CKHJUQ9uuX/f9HT4zAnnE1HZa2u0Ne3a5nT8fzxcQEXkmSXvizJMnThwxqdFbw4eNvW7yfNai30/lHjrQ8rvXC3rZwp+ReHiSZVCyifUm6GnLXmauxLCcPeYQsE+uqOt0j1VaiYYXNite7bHhb/DLof/j8f8MczhMcbJsJ2bYNmDhR+n/IEGDzZqB/f+m9dalGs2bO0/BU4xm4PLkw6pXdpjjdgahkgVNY8WYbbH23ocN5QoPTnQ4wWLLAaYv37l7MrW/slYsdwPmvi+GFllPcWo4j7z/2Dra99xC+7/+cKsuzJyYy2WVQr4Ui8RcQFpKmeP4hbbRtQO1MUFD2Uxt3g6Q//nB/fUPbfoGr3xTCl31ecv/LCrVqJW3zMoVOok/jGV4vL29e1/PExzv/3BdV3h56CChRwvV8wupW8sknwK5d0v9NKkkP2/o2/cnud7dtA1JTgTsqPKPJk8fxZ456LbSXSetce6H5nuRMSIh0nX2j00eoUXK3xWfygKVsWcfLKFHCs5KkF+7fGl980f469WbRouz/SxU8iSXD26F55bWKvlu7tv3pnj50aVppPVaNaIlKRQ+5nLdv0+moW+YffPGF8/kcpVHNHt1cqVVLOhdN7aEAYOFCz5blr44bBgxQ/n17QVKJAmd1WVLtLv2euTmQmoPJtqyivPXbg2WlBkf/a/Sz3c/37bPfKLpePdsblbwKhFyDBs7TMGNgXxSKu4pfXnT+pEVNIcEZbmVo1VDT6oZsLX/0NZybWBwr3nzE4TzyzCsAZGa5V1/Y+sb+3XP9UTTvRUx55kUH33DPW4+OAwD0aTJTleVZi45IQfL3cbg4qYhPlu+pB4odxIVJxfDvhw7uugEm2CArSXKzYbyzTK8jXzwlPaR5qY2CXK4djjpuePJJ4JtvgEceAWbPzp6uRmP/Ky7u8U2bel99Jl8+9+YfMkR6eBUd7Xpe65Ik66AJAF5t/7ndh1f16gGRkUBUlHvps2e7kx60HTVitzc9IytUUeDavj3wSrsv8NETI7B7bC3kCb9t/kx+XNjbHpZpcD9DOmWKtFx5zQxHGfKGjp+lua2Tgk5mmzSxnSbfzr8O7oV2NZZh7UjnDUf++guYN895W2Z7ypd3/vn6d5qjZdU1mDe0u9P5WlZZhenPP41/3q/ncp2hspp/tWoBpUpJ/7sbuDpqjuBIyZLOP1eyv+zxV8cNSh7CmIQE23/o68+Bm32FQZIfqVXdDrCsKqNUWIi8epTAQ+W2ol2NJW71bOfohlanjlRaNOelx5yWAPivxyeB/74og6vfFPRrtbBKFZyv67H6v6NQ3FW0qOL4SZ11kCO/gL2grFmShQgddAfuTrBavYRU/Sc+zy2X80r71j/VOHs+9BsAoErxg35Zn695U93OVeZSKVcZCTlH156PP5YyMMuXWwYORmMQrnpeuw+A6yonLVsCjz7q3Tree0/5vOPGSZnv/Pntf964seV7pb1obR3j4imXlypXloJZe9zp6Ssj03lbl5AQKXANCwNql87uMfbS5ATz/889F4Qi95+/OBuvpmFD10/tX3vNZZIB+KY6a40aUiALANWqAX8qyI+OGmU7Tb79yxRUNsZNmTJAt27u99L2yiuW78+eBQoWtJ2vaPwFi/cJCZafV03cr3id8jTu2JH9sMVeYPDmm7bfr11qJ0oUOI1vvlG8SgDAQdltwtF2iolMRu9GP3tVNbhGyd3Y91FVdKi1yPXMMvK2z9bbortVjNrsgXX498Nadh+mhIbaL0kCAqNDIFcYJPmRPEgKDspEzZK7sie4MZgsYJmR7lJ3Pga2mmx3vgceyP4/PDQdj1Rbjqeb/YhLkxOw9d2GWDK8A5B6TvFvcHZRnDGwLx6rPxcvtHR8NbmXEeFguUb8/GJvvNbhE8VpcSYkOBOJ+c8hNjIFpQudBCC8ag+hVMEC8n1nux8dPXGRCw7KQqfaC1E+4SgAy55npkwBvnZRg8v6+PEkoFZTv6bTkPZTBB6/H2Q4s3at6youecJvo1zhYygYewVJ38Xj4PjKiApXXieoQfkt+O+L0uhY6y/F3wEc3wiU800w16TSBvw5rDNKFjjl1vf8cVxMnw4UKmT/s4cfBj77zPt1OArYsozBKFDA++W7WreSjKK8EfSePcD330v/L14MxWkUwn4mTi483PJ9TIyyZQcFSRsxMf8ZfNxruE3PVHnz3ED3enMdPuzo1ct2WvPKa3Hk0wp4rvM6AMDPP2dX15ZzJ6Ptqheu27eBddLqLK4j0bJ2naVLB+HkSeD6dZiDJXs++8y6VN/2QAt1ErPJf5ep1KJNG8fzuKq2aU0IYMkS4KefpE48rLdjkMH2/G7QQOo1MCRESsvmzZbfk/dS5mrd7ihcWHpt0wa4cUOqirhvn1QzxV6pdFR4KiLDUs3vz5+3/NzRtatAAdtgXN52T14aLQ8MRo4EKlSwrRpbptAJ7PywLk5/WcpmXY5qzxgMRjRvbvmAxdFDjZkDn8LPLz6Fnwf+zzzt9m3782Yv33Lj//VqJ1RNPIBFr3Wy+e3OSr9CZFX+rc+rt96SHiA88IAUMK17+2HUKrUbK0e0tmm7vnmz43tjgZhriItKcv6DdI5Bkh/Jg6RJ/QZh11j71XaUBEnyi8T8V7ph8tODUMFOQ7l6VqXRy99six8HPIvCcbJ6JHcvulyfiavicgCIdzI2QlqGdBcPDU5Hz4dmo1i+cwgLSUOb6svRu9EsfPJk9lVqROexeL2jZTfW8VE38XzLbywuoNY6dLC8QQYZjJjYdwiuflMIna2Kf1u3ysLyNx/B1/0Guf5hZgLzhnaD+MWA2qV2WnxSunT2vrOX2VdSx7111ZVY+Oqj5mpdbrdJsrqZKwnMfGna888AAH4b8oTT+b78Eqhf3/422iZ7gPXjgGdw7PMKmPtyD0SF38UDxQ7j73cfUpyeFW8+gtKFTuGv1xz0be+AsyDp6WY/4jGrDjes+ap73g3vNEPnOn9h5sCnAEilDdaZZXvk1xD5NeeBB4DMTOelPEozSd27A5cv289Mdutm2Q7S3hNlk9GjHWem5b/VXsbUEw0rbEapgic9/r61hQuloHD+fKnzhGefle4H7ds7/17VxH2IjkhRvJ4nrE4x63amrvbb0uHtMLzjJ1j8egeL6atGtMLclx/Dsjfa4q/XOprbjMTESCVbs2bZtv1YO7IFKhQ5hu96PgxA2jf2Ot+wvkeZ2Nvf7/UYDQCYKhsNQR6Ahoe77r3MiGCEh0vVHIOdXFpjYoCej8naCttZnnVgM9NBDWSjCMLy5cCCBcDu3dIx8JfVMxohgLp1ze/wesfxeLiy41FHIyKkzHefPvarXtoLePLkka6laWnAsmVSaVmE7Lml0gdB7gZJJ09KgU6ZMlI7v0mTssdm/OEH6VXewUlYSAbOf10MgMDFi7ZVbatWdnxPsy4FadcOeOopYMKE7Glly1peHz74ADhyxLYNYt0y9usTjh4NrFxpf/3BQVno0sVy2vvv25/30TpSw6TOdbIPBldVmeX39zffBPJHXze///ln4NdfgUOHgFOnpIeqjsiPD+s8hhDSuXrgADBX1udQbGQKhsiG4AoKko5ZR8H1R0+MQNJ30kZ11PZQ7xgk+ZE8SHq+5bcO51PyYC07g5N9wsRbRewREcCnnypYmEF5Jvyxx1zPM6j1JLSvudhuEbKpJGnFm49g9pBeODcxEVemFEJC3CWL+fJHX8PYniMxvtcbFvXJb36XD988MxCp0xxfSZ56CujXdLr5fZDBiMGPSAPG/TmsCwrfX1ePHkCXRpvwSLWVGNR6MgwGo7KG2lFJ6PbgfADSYMByBsiCsyDbTLGSANh0YTY9/bS+gLl68ipfx48DnsYDdhrBJia6TAY+7f0qPnlSYX0SFRiN0m+zfnpr3XvR4w9Jg6A0rbTRPK2aG9Uvoj3sLdBRsFk073n8OOBZzHmpJ0zno70bqDvBqrOOPRwpU+g/rF4t3TjXr7f8TD4wZ/Y6ZEGS7DpSrpyUeTQYBLrXm4sdH9TB0uFtoaQkbJLVuIyu23y4XCQAYMwY23kjI6Unv/KSKvk8Sh8uWJ8LDxQ7iM2jG+PkhDLKEqdA8eLAmjWwyDzJ0/rdd7bfaV55LfZ9VB17xtVQ3D4gLEzq+c7eOgDX+8NUldT6fKpdWqr18HDldehYazH+HCbVMezdG+ZMk5J9aW8eh/coYf+hQgQuo2vX7PcbNkhPvpcssZzP8UOJ7EQ88ICUia5SxdGsjh96PfWUZcbvww+B/2UXCFjcC4Qw4JFHpHtyjRpSaWLHjpbbQwjpdwBSW47xvd7AmpEtAdhmssuXl0ppnXEU8EjX2Oz3TZu6/o5crVqWNVQMBqPNAwXr+1xkJFC0qP3ltWghBW3WpTh58yQhLCTdbiDrqCTJVLL7wWMjzfeukiWBGTOAl1/Onq9lS6BeGfsN5davB156CTh+HChX2n71+UaNHAczhe53ViAvSapc2f68nuhad775/zfesLyvGAzSg5JKlaTfLT++ihWzXI68JMn6Wmm6hjg6p3/8UXo1VfF0ddxMf74vArV3YwZJfpQdJNkeLJY3L+UlSSNHZJ/EBWMtq5MZDMq6ibUNkhyvX8mo9wVirmPx6x1xY2o+5I++hsGPZDfULhR7BS2rrELzytm5uLioZDxU7m/z+79e64giebNLt8JD3e98Qd77nvUFdcGwLgCAOXOAsODs9lPdH5yHVatcL9tZlQTrEixrSnqmsagmEq08SDL1+hQlK2V7utl0c1UaOUc3LJN80dfxavvP8VqHzzwuLh8/3ra4/5lm0mPDiNC7NlV3TOdAkfjsff/C80b8/TcU2TiqsU1Joad+eqEPfhvyOOTngvymYqpv/lC5rXijU/YjUNO+sxeUKA2Sejf6GanTotCptnvdHwWHCPNAffXrA7/Jajc2bmyb0ZIHo4nFjdi0Scr0mp7Sd6k5C3Nffgx1Sv+LtjWWo0QB28EBrcl79JKzPmbf6/GOy3msde4s9R5ZKPYyAKnnNevutZ0HSfbPvTNWP+vBMv84TYe8xMtVFSmlpVHyTKeJaSiAMoVOKmggLxAXlQQhpJ7vTKyv16b7wbvveleqaeqBU74uV6VilgQm9h2Mt7u8j9hY+1UODcL++WJAFgoWlEpMP/1UukZ++KEU7FjOZ39/C1m2x2CQgqv9+4E6pXfgh/7PIEF2/ZEvwzrjP2OGVGshMlJ6P8y681hjdvqrVLF/45SXbsyenV2SUanoYYv55NWo2rcHjh61f8zItWyejojQu+hSdz5aVlll8bvkgoKkQMdgMCI81HX73Z07LUvgvnzqZZycUMbce2qR+AsoW1hZ2yYTR937hwZn2Jxjw4ZZt6eExf/B4jZGdhmL1zp8hvHvXbbbZjAxz06HbV6bNpVqNZQtCzxQ0f32zOe/Lo6YoNMICgJOnwaOHVNe7VUub54beKPTRyie76x5WvKJDRb389BQy/uSMwYDMOOzjXjwfnAoD2xM18pz56T0OupMxni/jdHTTwMZGdmBftXizh9S9m06A0+22uh0Hr1ikORHW4YXR8aMEHztYoRnd6rbFS2c3Sh/0WudUCj2MvKE30b7mouVN5Y3ZD/yKFXwJC5OKoK3uzgoH3ZDSHAW1r/TDBP7Znf5W6HIMax6q7XNvPljsouMO9ZajH0fVTe/t1dqBkhdgNpjndmqUdJyEMKHym0zzxdsyL7AJOY/iwoVHP4cO+mxVKIELJ48NmlsNPewZ6qLr7RNksmUKUClByzrC8urLj3zDNDzodmY2HcwDJC+V6Ok43FPTPXU69eX3g9sNRniFwPELwb89EIfcycX8k4+PG278sILsGns+sOA5zB1SjpufJsP5yYWh3yfmm528rEmypU1WlShcaZxxc34c1gXt+v2WwsPvYc+TWbi8Yd+t8isyIPjBx6QSge2vtvQorc2Z9sqJCgThWIv4/v+z6Ku3Yy4wLD2n+HnF59CWEgGFr76qE3PYt9aFUCHyzrlsM4UPm41fu3bb0vVMcxplbVZWLxYoFEj6XNTO43XnnJc1UcI20ypPaanrdZPg9/p+oHbVXaqlr+BU1+WxuUpCQ7nkW+Dtu2klb79NlC28HFcmpyA4R0/xrJltt9buVIKfubPBxo1dB5ALF8uPZWNiLB9CGDdLizKSbVguUaNgM8/l6prXb4sVcWS3wecVUUEgN9ffgxJ3+XFg+V2YdIkqY3FwYPS9SExUcqEvv56djuKd0bY3htef11RUgFIPW7WrCmVppiMHClVp3LGdB5XLnYQgx+ZhPcfk3oSWLFCqvq1QT4MkoMgCfdLaN58E3j1VcfrsleSf/8Tu1N3fPAgnmk+Dd88k/2AzaJmgJ2HXsHBUrAuhGW1Nem72edX9x7211mnjpTZTE+XzqdmzYA3Bx5Gvugb5nkqFD2JMmWyq5Ep7Sxi1NsZOLfgJcx/pRtWvdUaFyc5eDImBDa80xS7x9a0mOyoOpn1tdg0zMGHj48EAFyYZFlkkTfPDXjq/NkMu1V1rdtbmUqwf/0VCEb2sf36a8LuveOVGnaeYtkREmQ/SHI1Zlu5MKm2Q4kSUsm8u95+W6pW/tETI7BmZAskJwPJyUBM+i6bee09BJUznaPvvZ2EpxKaYvv79RFkyLLIi5g6WChWzHl6jbIHT/KSshkD+7r8TYNf9LZNrzbc61uYvBIclImQ4CwMam3byYLFEysFpQ0JhbIwZgzQpOE94Fj2dHkGYsLyVwEoqG8nu4rMHP4+EuIv37952T7tdZfSnsCcPQ0pEn8R/35YGyl3LR/HTH/+afy0oZ9sioC9yoozB/axXV9wBoBQBBuyT9yRj36IPHmGoV49qcvaWqX+Rd48N7HmgFTlISr8DkKDM2zS2u3Beahd6l+su/KGxU3126mZMCypDINBYG3MCVRKfR3D2mcP6hAXlYTE/GdhzfpmLCDLYRqz8OSTwfjqK6m04pVXgMSNUqvp1bfrAHjaZnlyWT+HoMl7G/Dhh03w33/A5F7ZbbH6NJkJowjCvrPVsPFwdl+xVYvvx4bD9gfCqlN6B3afrok1I1vg8IVKWHvwYfw6+EnUfGsXgJp2vxMTdBKRYfcQGXYPYSHpSM+UGpU0bmx7Aw4zpACQHmvlCb+N1HTX/RFfvJj9dBcAJoxPwr1/x6H/w9/hpRl2Rky2Iu8NsEj8Rfx3pQzSM8Nt9vv+/QAWW373yUazzMekdTuBkOBMfN//OXSqvQjPNv8Rht5WQc1Dc/BZb8sc0L49Gdj97fPI+0BLPPy0FDyWKZNdUnVvevYPFXba4AQZsu6Xykp99z/5ZHaVoEIFsjMA0XlsM4DFigpA9kC4WN7z5gbM60NT8Mgj0diyPgkZWaFITcuuezJjhtROom/f7JIMew32Aeve4wTqld2O8NA0vN3lAxwO+xAd661FNE4CYjKQnN3msmNH+8uTZ0ybNpNW/v77QK3bw1E47go+7vUm8MhwJOY/i7PXE7Ftm3TAtWolBScGAzBth+W2eOghmEszr1+XnrKes+rrZsMG4NYtoNSlMRbTa9W0uq5d3wHsfx+oNR6ItRxFVt7zV8cOApt37LP/I63Wu3Ej0KPUPABA5aAvgbzT8cGb/wGRxYDgcJw+bXteGYRtkDR+PIBZLlcpCQoxj7dkEh4uBWb/a/o7GpTPHkzbKAzmsMQ0hERMpKydlRColbAKm9/9AKjxHYD7T6ocBEn16ih7uu/wPuriiUvFIkfMpbDBskzy2rUCjZoAraqulKpzb48F6n4NBDmo1imyj8XgYMfPo+XngOH63xjX2LJHgCOflAGu/4M5c+ri+nXXAbN5WchA/qTvXc9ozEDjirbjLpquMWEhaSgUewXnbjivo+2oUyYp+HJdCm1PXLT9fW0dJL34onSNCQ0Fls6Xf8f+vs4TmqRo/dZB0htvAIcP2+9K3Vn6lBg2DOZqpO+/D2T9LLVTKp9wHDBlfayOXWcdh5hMny71aliu8HXgftOnwnGXLWoeBRmMUocnwghk3QVC7NclzBLBHgcNUdH+G2BYTQyS/CjNwUXEmpKSpArls9DrBeDAdsfdOz/X7BsYDAqCJNnFvGFDAZxyPrt1ZwrSMryrb5rHSe9ke8bVdPjZ9an5UGjgFVQochTrRjbHJ4tfR6Sw09WSlV4NfgXQ536wJMkfcwMwSBminTuBukfrAADm/P0YIsPuokPNxQgKEqgxYrfFsuYN7SF9f2s0ggzZQWqZIleAQqcAAE+0vYjIiC8svmdq0GjN+smQUchOU5GBqKhg7LVTWBQffAjTvnXdlejGUU2BaCF1PWzVXKnf/YElU+5l5/DXv9McTy4S+GfNMVxNsbxD//zi/zB05gQ0rbQRTSttxIAWUuOK3WNrIdnBMSEvvZs6ajFaP9MNp05JDbjT7ll+p1nRrwGMQmjmRVyaXB4bDjeFK9ZPdF+u1QUotv5+ep+ymX/oUGDsWOCf7ZlYvCQE+fNkZyDXjGwJo9GADYY/cXqj5ZMwe1VZ5YH7xI8tu2Qqn3AM9WVdqLatsRTL9rTDkjnH0S7Dfo8oZQwzUKbmNADTAEhBUsuWUgPwQ7stq9fa6/lry5iGqF9uO2acWwmgFQwiC2+9FYytW4H3hqUDpsNFCCArDbi6GSjYCAgOt2kTsmVMI/P/TQp/iX37X0HSd3lxLz0cvWafRMeuMQCi8dRTUjsDeZXOjz4CMN9icQhBKlq2jMKALhtQsXw69v57G9OfyW5s8kjwJuDW/eqwN58DZA8gevWy/0BEnrE2P1zISkNnedXFQ5/izFfDcTW0HQrWy27IYsp/VK1itCi0XrkiC1+MOYSG7aogXz77mS5zpmnWTxbTP37nJIAa2ROWPyi9Jh8GOjkZkf7oRDSqsMXx57L1NmmC7ODGEARc2QSsagLkexBo8zcM6x8FIgsD9WUZ5izvhgXINNrJnQkjwg+NxO8vf2QxOcsYYg6SXnpJqs5TJER2bN29CKy9P27c5p5Au/vRl9F+kFS8iLIgyVFJkr2HCXJFi4ej0v1S2FBD9nZq+JARSxeloe2t+2k9DqBQU+D6PwAEUMfy+i6/rwpnlXbunJUC54ovAWfn2Z/nzBwEpd9AwfQkAI/bn8dKZITCJ/fC2XwCfw57FG1rLMe87d0wcs6HAOy3wM8U9vM3JQrYPghUTJa2DrUWYWjbCdhq/NHiHiJdp4LMAUNokOwBgHA/WJELMVg+TPjoIwcz2nA/P/TuGIHomOzrS7Dd49fy+uOqRAsAgk7/gnJnfgLyZSfeurTv95cfB2oeANa9BlxcCnQ5D0TZljy6OnecEUEKehPSIQZJfpSWqd5BUid2MnCiNoJEY4fzZBpDlI3OLLuQBAW5rtc0vtcbthOzlFUrcaR1NQWNgezIF30To3t+iSoljqFQ3FV88uRwbIGTYdTvm/b80wD6WF5s7zMY7meUpB64zR0FmDgK2qon7sFNyFqRy7pWj9z0sMs02VO6VCbOHJWXJGUAwfdvRtd3ADHZZeNByEK/6sOAE8qWXbOGsAmSTGIiLPshrZhvM2Z9bnusVSp6BMvesF/vKgiZsHeJMUBWVz/+LxQr1i27UanVcVStpJSRjE1dheiIO2hfc6mDXyNzZRNufNsJp6+VxIbIf4Ar6x3OmrplBCJqvATDzT1oeqkrmnbrjfTMEOC07HcECTRHZ8B1fAYAWPrXHQB50LdMV0BW0+Tvdy2fEC8d3h5nmwgk/tsKcJRPkfc8Ketv+tFHgbh7+yErOLHbUUH9clL9865l3wH2rAeOTsSHz34FjGyBrWtlGYDLq4HDe4AT3wHlXgDqTXHYcB4AgjJuom2jI8AxICIsDfP73L+hbn4CqPkxihUpKgVd959Iykv2TB4In47QoGcx9TGplHJzdHPLGbJk461lpVuk54keqQBsn3YaZJmq2JuzATwO/PsKQoJlG2q31EK8YMZSIDMVCLEsnaxbJwuQtQGKPvg83qnzAxDxOID7RQxXNgLGdCBBKmXGvveB87bt4Yqd6ArUugGEWT0QSTlqM6+F/R5WdzYEAyfuB0M3/gGS9gIX7o+fUu+77EjQyyApLuI6kLQPiKt6/8lzFHByJnDQNheZmRUKU0gVEQF899E/yLp9GTAVXsi/c0dW4uCoup3xfpCUmQpk3gYi7PcxX6igZ716xsRn5zxDDPLtJNCyWTIgbyqYfAg4cj84qjYaCIuXzS7rGMXoeOxAbO4JXNsKnP4VqOCgKr4hCFgr6z/80CdAna+Ago7Ht6pY5BjgJA43MzoOOn8c8Aza1lgOAOhe7w88Um0FAPu9LRqCI3Dk12HyZxneM2afz4tek0ZfbRLUAEsOZlfJrltyI3C7BLB3FPDAa2jaKBxYcf9DL4OksGCrfI0wSsdcaKzT72UJ90tNoqMyALj6nps9sQDA1vtVB/a6yH8urZm9vU/PAh6wrddphINSUwWEGx2E6QnbJPlRupMgSX6oKx5RedtzKHWum8OPM7JCLTINjlcuu5D8N83FvA7Slm6/EaQ/vNPxNXSrnt0nbJU41433TU9pgqyDpDtngZ2vIGJJYbfTUauuZfU9rG6e/f/t424vDwAanQnFgwl/ZE+4/g9weg6wpo30VHp5ffNHAgAur1O24DtnYdigvAvs0Q0dB+OORIdeB27aFnmFGrIzDA/mny5dmO8fP4ZMy5Iww/1jM18BBfUKTFY1Qd48SahZcg8Gla3rdNbIkx/BsKAosK6dlHE88QPCTk91+h0AQEaylHG3o20hqaGE4YbzDgAAIPHGO8Cd045nkJ9v8/IDx78Fdg4DZhnQPKuFxaxZ1iVJsu/GpP0NHPgAyLgF/N0XWJCISKPsCe+OwVKABADHTQ3JnOd27Pb8dHo2sLAsMDsUmBOdfV04u8Bm1vq1k4B7l83va1a6bDOPWXCYRZAUNDfabkZfHoDHJc8Hbv8HHHPSD+7x+7/5xr/Atv7A3csWVfYAACfu91F8Zo70YOLeFWBVU2BNK+Dy/QB83yjghuVwAGbJx+xPlxNCyuSdvh+EZVlVh9v/gf3v3b0I3Nyd/d4QZJGxxF1Zr6Hy6/xtOw3rLzpohOLIkurAuvbA3HzAzleAv/vZnS1DXup0/R9geT0Eb5bdt+TBsDztDkqSYLy/bf4sAfxRGLgnK1E99ydwTqpTVLuao9oJzu+vhntXgEwpTSFBsmPszDyECquS+kx5JtpqubLtnXjlJTh07X7VxMzbQJCD65z8WrO5J3Bjh3TNSj4CrGlt97pvWNfW8TodLVtuz0g83Wy6xaSYSMeD+OQJu4kKxi8cfm4h8y5w6DMg2cXDgm39gcMTLCaFGy8gMfZAdprCk4D1nYBTPwNrWiEsWLbPHATaIkpB964HPkL7xHdlXxLA+s7A73HOr9kAssT9vN7uEcDyh6yOEwdWNQVWNbO/P0zXcuuqoncv2M7rSKqLKo/yc89BPi88wvNAx+DkoZueMUjyp2BlJUmKSn/ui0xz3uYnaLvrBnU45yCoyLRzk5HfkOXSb7pej5/E3ZihbMY7ZxEfZtW44M8SwJEJQNo1t9cbeX0hggwKglI3lYuXDRK0pqV0k7x0/1GZ7Il07cjPgdsKi5H+LJH9hNlXTs0EltawmdwpxnIMFswOA+bGA2fnI3TNg5afnfkNuHUY8RGeDQQcnOK4Ewuv/B4H/ObgfD6uIMgyOeAg82tyR9Y7WvpNYPvz2U+urZQpeEwKUI7eb8V8YKzTRddM6e74w8trnT+lFJnA2bmOPzO5ulEqcdjY1Wa2yNC7Fpn4PCFOriG3T8EmE/pbJLCiIWCUZf6NVuffPRfHzb9Dpe9v6CqVwMxPkAJGR5Y/CByQlXzsG6O8n/NLjjvCwIGxUunR5ieAY1OBTKun9XsdtA9d0QhYKhsoCEGWJQPnZHUc5efiZjtjlpmqvLnj4jIpaDkyweEshuBQqYTovxnAhSW2M1hkzhz8bzF/unQ8pN3v7Of6/etjehKwoQuwoTOQeRchsJ+hD0uzKl7JumdZapp6RsqsAigWIQt8/+4L/GXVql2+rReWBTZ2zz4e5G2SjCnA0clS7YKU41I675wBblv1fpjhIAjJslMSlXEL2NQTuLQKWO1ZTQWb3yDn6Pqx4yXLc+6+mHAn529WmnQumn7f/veBXa9JgbYQ0sM063MXkEq4/33FZnLVBFkbqsy7wK37QVPaNcsHDEuqSUHHtW3AheXmByuGIgqO9T0jLN8LI3DhfiPUkzOdnvctYgdL6z34kXR8nnFwrZS7vg24skF68HDe6jxZWAZY9IDlQw9A2vdKKQnUzO7/NmOWxfYMzroFbHpcqtK77z0pPY4eZlgxXNvgeiYdYnU7P6pcNRxQktdTOHaIKwVjrklPdl3Z/z5Q/T3bk35DN6DhTCDk/lPb8HyOgwfz0+cA8mcJtLZfU8MzGcmoG+O6Y4BcY5f97rKCsxz0drSxm/1Df7GLvm71aJZKJ/GNf92b//Z/UiY/+Shw1ItjcXUL558f+VLZcrb8T8rM2XPgAyBU1hnLvUv25wOATT2AFnYyBNe2SsFqp+NStSvrjNYKBYMMz3ZyGzxpZ3RQeZCadlUqVXTGmCGVAG636gpvQSLQfi8QEgvsfTt7+j8vwK7tA6U2MPlqS50+GDMsg2gASD4oZbRMMmWZ61sHpYxi0TZSul0xZjgu2XBDnpgwYEUDx0+9LUqPZP/be0gHSNt7paxk++9+UsBUvIvlPA4CjiKX3wKO5AEuLAUazJCCzLuW7Qdx4x/gyibUjHcwOqzJddkDrPSbwNk/pCAotrxtKcaOQdKfybk/gWir7gAdPABxeH9NkffatNZ5WgHgzDwgpiwQGietv2gHxx1POHJ0IlCsk3S+yaqUW7QFsra4SvYDvMZzgYPjpP+NacDattJDv3LPO/7+LcuHwRFB8muKVQnFVlm708w7UnWzM/erzMdWAjoess3rXNkAHBgntcc8Ox8IslPtTX4d2/uO02qKALJL5oHs0k8lLq+W/uTunJJerR+qWZfe3vgX2P4CULAhcHMPUPa57M/cqc2y9x2put2y2rbn4Znfs7fnvtHS/lQg/MBrQA0n3VHqlEEIL1vc+8GkSZPwySef4NKlS6hRowYmTpyIeo6G6baSnJyMuLg43Lp1C7GxzuuR+tzqlsBl+08Tt+BnNHxSqme7bFRvtK2ktJshlVR7Fzi/0HGVESIiLdX/Edj2jPN5YspbZhwDQXCk/ZICZ9rvBYLCgUUVXc9rrdzz7pV2Fn5YWQZcLQ+8Bvz3E1BvKrDRcXVyp6qOBva/63o+X4hKBFK96KzA3yKL2QaJOVmrjVIAc1JhjRM1RRYFWq0HIotIVSWX1fF/GpRq9JtUa0Vt7fYAeau7ns/HlMYGug+SfvvtN/Tp0wfffPMN6tevjwkTJuD333/HkSNHUKiQ62IAXQVJa9tLPYfYsRUz0OBJ6QnIuve7onnZBX5MGBERERGRj/VMk9qZakhpbKD7Nkmff/45+vfvj6effhqVK1fGN998g6ioKPz4449aJ819Tp5wlkN2cXquDZAK2R+Lh6zkra11CoiIiOi+LUcd9zRIMnW+1DxAcoeug6T09HTs3LkTrUyjmgEICgpCq1atsHXrVrvfSUtLQ3JyssWfbiQ4HuW5ILZI9XbnxNh8tu14PUT0u4v6o/7Gj+uexjeH/gKeFMBD06QqF3Kh8e6lqfVmqV6yScWXpfr97mi6EHh4heW0HknAE+nAw1L3ochTUqqGUHHo/XTGAT1uAk9kAq03AY+nAq3WSe+fyJC6Qo0qDnQ6Jk3rdkXqbja6DFD/B6DLWaDlWqDg/brppoEZrXutCYkBHvkb6HEDKCobgbJAQ+m1plWXtQWbAA9+A5TqbTk92qrBbuPfgebLgF5ZQPMlUl1nmYP5/wA6HpWqfdhxpvhMKe1h+aRtDiAL4Zh3+TeIh2YC8dWknqpqfowzjTLQ+av12HT9NeCxFKDdTmm9Twqg+gdARIJUZaLZX9K2evyOlN6QPFLVlbY7pXkbzpL2x5Mi+6/bZSk4TWgt1elvs136fi9j9vYq8RjQXjawZevNQEwFoNoYILE7UOVtKT2PJUvLrPGhNF/zpdL7Rr9lb8MnBdDsfocRobFA/oek8VwAqZvkJwWQt6b0Pq4y0GI10GIl0FnWG1d0Wakb9HpTgaqjgNJ9gBrjsj/PU1LadgBQczzQ865Uhz7hEamqRdeL0rHX+YR0voTGS581XSitv5dR+nv8NtDtqlTNq+sl6Rg1KXy/6+eQaKD7NaDDQaDM09J+aL5U2pZh+bLnrzkeqDRMOn5L95XO3fb7AMP99jC1J1geIPWmAk3mS9u+/IvZ0yu/IaXRen5XXPXmVHmE1N6lwhBpP+UplZ02R+QDDhbrJB0P9jh6+JHopOMIJWp/7rD7Z7Ng14MPkwNV3nI9TyB26xteAHj0NFB+kOt5cxo/nw/zDo+U7mUVhni+kLgq7udr3FXC+2pl7/29Bd8cWyPd19vtkfI15Ry0L8yNirSV7l0VnfT0qEdCx86fPy8AiC1btlhMf/3110W9evXsfmf06NECUtccFn+3bt3yR5Kdy0gV4he4/Vcw9rIAhKhQQQhAiFOnZMs0GoU4NVuIJTWFSE8RIi1JiMNfCvHPYCHOLZbmOfK1MP5eQIi/nxPij2JC7HhZWva/w12n+fYpIQ5+KsSds0LsGS3EyV+EuHtZmp56SfpNJueXCLG2vRB3zlsuIz3F8r3R6MHGc4MxS4iUk0Jc2WL72Z1z0udyaTeFOPiZbbrNyzMKkZUpRHqyd2k/8ZO03f+baTk9854Qx78X4vYZy98gS2eWVZL9wmgUIl123pxdKMT5ZZ4tK/WC5bYzbVOTlP+y15WVLh1f1jJuS/M5knRA2kemea9ssd3X1lx9bi3znmW6XUlPFiIrQ/n81/8VIvmYsnmNRiEurhIi9aLltKxMIe5ekc7He9dsv3NusRDHpkrn7qV10vXC0XGdlSHtF9P+yLgtnS8mV/8W4uyflt/JuCOly/RdkzvnhEg5YTlv6gUh7l4V4tYR6f3JX6Xz4/iP9o8BISyXaZJ5N3u/nPxViD/LCZF8/H56UoXY2k9aZsYd6dqw/0MhLqyQtl3GbWlbpd0U4uQs6fdk3LZc/qnfhDgzT4grm6Rj4PBEIeYnStfQ03OFODNfOreX1s2+dl/ZlL3+tBvZ19HrO6V0yF3bLsS5v4RY10mILX2k4/LsQmnayV+EuLFbtn1Thbh1VIjTv0vHyrGpUnpP/CT9pltHpf2ZliTNv6mXlJ5lD0nXuMy7Qhz6QogNPYT4PZ8Qa9pJ55wQ0ufru0r7Twhp+q3DQtw+LcS+94XYPlCIX0OF2PmqdB8wMRqldN27Jm2rrU9L2/boN9J1LStTSmPmPWk7bnpSiBPThDjwkbSOpINSGhdXszwnz/0lxC+G7G169e/768sS4r8Z0j42GqX3mWlC3NwrxLFvpfdZmdnf2/i4dPydmm17/malS+fp0SlCzC8uxP5xQlxae/+4SpPOl/3jpPUc/lKItR2k32dazv5x0jrk56HJyV+EWN5Q2u+HJwpxY5fVujOk7Wa6RtzYlZ3mi6uF2NhTiFUPS9vnznlpX98+Le3Dm3ul4+ifwdLvu75DiM3/k46b5GNC3Lt+fx2Z0vJN2zXlhLT9r2yR7nuZ92Tb4Za07oUV7l//k4XYNuD+8VNPOg6Tj0nb5fwyKe3/zbi/76pL22d+CWFc300cXrtcpKXZbhJhzJKOqTvnpGPj9Bwh9rwjxKU10r77NUw6xjb/T/qt8mNszztCnF0gvV9SW1pvyglpO+wcJsShCdLvSDkhzZd0UPre5Q3SuXXvWvY1POO2EJufEmLHK9nXv7Qb0nG5qIoQF5ZL12PTPUUIaZte3pC977Mypf0vPz+tmc4tucw06dp356wQc+Kl69WVTdK2vLFbStuFFVKe69o/0ja7ulXaj5c3CHFgvDRf5j0hdo2QtsM/L0nb1GZ7G6Vr2pUt0vlz7Dtp/i19pLzg5v9J+z0rXTpeD3xs+ZvNvyPz/nl+2/Z+kXlPZF7cJIyZ94/j26elfWw0Ste7w1+6f6/1sVu3bimKDXTdJunChQsoVqwYtmzZggYNsosyhw8fjvXr12Pbtm0230lLS0NaWnZPIsnJyUhMTNRHmyQTYZR6a8m8I/V6Ehwl9ewUHCX1kBOSByKqBAzJh4BCTZB0rxAMBiAqCkhJAfLlc70KIiLSgGzQ3xzJmAkEadAxrlbrJaIcR2mbJF1fcQoUKIDg4GBcvmw5yODly5eRkJBg9zvh4eEID1c2HpFmDEFAfFXnswBAfGUAQHxE9nQGSEREOpaTAyRAu0CFARIR+Zmu2ySFhYWhTp06WL06u894o9GI1atXW5QsERERERERqUX3j2aGDRuGvn37om7duqhXrx4mTJiAO3fu4Omnn9Y6aURERERElAPpPkjq2bMnrl69ilGjRuHSpUuoWbMmli1bhsKFC2udNCIiIiIiyoF03XGDGnQ1mCwREREREWkmxwwmS0RERERE5E8MkoiIiIiIiGQYJBEREREREckwSCIiIiIiIpJhkERERERERCTDIImIiIiIiEiGQRIREREREZEMgyQiIiIiIiIZBklEREREREQyDJKIiIiIiIhkQrROgK8JIQAAycnJGqeEiIiIiIi0ZIoJTDGCIzk+SEpJSQEAJCYmapwSIiIiIiLSg5SUFMTFxTn83CBchVEBzmg04sKFC4iJiYHBYNA0LcnJyUhMTMTZs2cRGxuraVrI/7j/icdA7sb9TzwGcjfuf30QQiAlJQVFixZFUJDjlkc5viQpKCgIxYsX1zoZFmJjY3ly5GLc/8RjIHfj/iceA7kb97/2nJUgmbDjBiIiIiIiIhkGSURERERERDIMkvwoPDwco0ePRnh4uNZJIQ1w/xOPgdyN+594DORu3P+BJcd33EBEREREROQOliQRERERERHJMEgiIiIiIiKSYZBEREREREQkwyCJiIiIiIhIhkGSH02aNAmlSpVCREQE6tevj+3bt2udJHLThg0b0KlTJxQtWhQGgwELFiyw+FwIgVGjRqFIkSKIjIxEq1atcOzYMYt5bty4gd69eyM2Nhbx8fF49tlncfv2bYt59u7diyZNmiAiIgKJiYkYP368r38aKTBu3Dg8+OCDiImJQaFChdClSxccOXLEYp579+5h0KBByJ8/P6Kjo9G9e3dcvnzZYp4zZ86gQ4cOiIqKQqFChfD6668jMzPTYp5169ahdu3aCA8PR7ly5TB9+nRf/zxSYMqUKahevbp5MMgGDRpg6dKl5s+5/3OXjz76CAaDAUOHDjVP4zGQc40ZMwYGg8Hir1KlSubPue9zGEF+MXv2bBEWFiZ+/PFHceDAAdG/f38RHx8vLl++rHXSyA1LliwRI0eOFH/88YcAIObPn2/x+UcffSTi4uLEggULxJ49e0Tnzp1F6dKlxd27d83ztG3bVtSoUUP8/fffYuPGjaJcuXKiV69e5s9v3bolChcuLHr37i32798vfv31VxEZGSmmTp3qr59JDrRp00ZMmzZN7N+/X+zevVu0b99elChRQty+fds8zwsvvCASExPF6tWrxY4dO8RDDz0kGjZsaP48MzNTVK1aVbRq1Urs2rVLLFmyRBQoUECMGDHCPM9///0noqKixLBhw8TBgwfFxIkTRXBwsFi2bJlffy/ZWrhwoVi8eLE4evSoOHLkiHjrrbdEaGio2L9/vxCC+z832b59uyhVqpSoXr26ePnll83TeQzkXKNHjxZVqlQRFy9eNP9dvXrV/Dn3fc7CIMlP6tWrJwYNGmR+n5WVJYoWLSrGjRunYarIG9ZBktFoFAkJCeKTTz4xT0tKShLh4eHi119/FUIIcfDgQQFA/PPPP+Z5li5dKgwGgzh//rwQQojJkyeLvHnzirS0NPM8b7zxhqhYsaKPfxG568qVKwKAWL9+vRBC2t+hoaHi999/N89z6NAhAUBs3bpVCCEF2kFBQeLSpUvmeaZMmSJiY2PN+3z48OGiSpUqFuvq2bOnaNOmja9/Enkgb9684vvvv+f+z0VSUlJE+fLlxcqVK0WzZs3MQRKPgZxt9OjRokaNGnY/477PeVjdzg/S09Oxc+dOtGrVyjwtKCgIrVq1wtatWzVMGanp5MmTuHTpksV+jouLQ/369c37eevWrYiPj0fdunXN87Rq1QpBQUHYtm2beZ6mTZsiLCzMPE+bNm1w5MgR3Lx500+/hpS4desWACBfvnwAgJ07dyIjI8PiGKhUqRJKlChhcQxUq1YNhQsXNs/Tpk0bJCcn48CBA+Z55MswzcPrhb5kZWVh9uzZuHPnDho0aMD9n4sMGjQIHTp0sNlPPAZyvmPHjqFo0aIoU6YMevfujTNnzgDgvs+JGCT5wbVr15CVlWVxUgBA4cKFcenSJY1SRWoz7Utn+/nSpUsoVKiQxechISHIly+fxTz2liFfB2nPaDRi6NChaNSoEapWrQpA2j9hYWGIj4+3mNf6GHC1fx3Nk5ycjLt37/ri55Ab9u3bh+joaISHh+OFF17A/PnzUblyZe7/XGL27Nn4999/MW7cOJvPeAzkbPXr18f06dOxbNkyTJkyBSdPnkSTJk2QkpLCfZ8DhWidACKiQDRo0CDs378fmzZt0jop5GcVK1bE7t27cevWLcydOxd9+/bF+vXrtU4W+cHZs2fx8ssvY+XKlYiIiNA6OeRn7dq1M/9fvXp11K9fHyVLlsScOXMQGRmpYcrIF1iS5AcFChRAcHCwTQ8nly9fRkJCgkapIrWZ9qWz/ZyQkIArV65YfJ6ZmYkbN25YzGNvGfJ1kLYGDx6MRYsWYe3atShevLh5ekJCAtLT05GUlGQxv/Ux4Gr/OponNjaWN2IdCAsLQ7ly5VCnTh2MGzcONWrUwJdffsn9nwvs3LkTV65cQe3atRESEoKQkBCsX78eX331FUJCQlC4cGEeA7lIfHw8KlSogOPHj/P8z4EYJPlBWFgY6tSpg9WrV5unGY1GrF69Gg0aNNAwZaSm0qVLIyEhwWI/JycnY9u2beb93KBBAyQlJWHnzp3medasWQOj0Yj69eub59mwYQMyMjLM86xcuRIVK1ZE3rx5/fRryB4hBAYPHoz58+djzZo1KF26tMXnderUQWhoqMUxcOTIEZw5c8biGNi3b59FsLxy5UrExsaicuXK5nnkyzDNw+uFPhmNRqSlpXH/5wItW7bEvn37sHv3bvNf3bp10bt3b/P/PAZyj9u3b+PEiRMoUqQIz/+cSOueI3KL2bNni/DwcDF9+nRx8OBBMWDAABEfH2/RwwnpX0pKiti1a5fYtWuXACA+//xzsWvXLnH69GkhhNQFeHx8vPjzzz/F3r17xaOPPmq3C/BatWqJbdu2iU2bNony5ctbdAGelJQkChcuLJ566imxf/9+MXv2bBEVFcUuwHVg4MCBIi4uTqxbt86iC9jU1FTzPC+88IIoUaKEWLNmjdixY4do0KCBaNCggflzUxewjzzyiNi9e7dYtmyZKFiwoN0uYF9//XVx6ND/27m3kKi6P4zjz6SNZ9FUzE6KZiVCalQ3ZQc1siOZgoR0hAzKRDFKKDvYRQVBZHaALpqEMgmsoIuKajLMgiJHjcJM1CCMKAlSOrvei3iHMf/05p9ypL4fGNC9117rt/eam4e9Zj0xR48eZQvYIaK4uNjU1NSYtrY209jYaIqLi43FYjHXrl0zxjD/fyPX3e2M4TvwJysqKjK3bt0ybW1t5s6dOyYtLc2EhoaaV69eGWOY+z8NIWkQHTlyxIwbN85YrVYzffp0c+/ePXeXhAGy2+1GUr/P6tWrjTHftgEvKSkx4eHhxsvLy6Smpprm5uY+fbx588asWLHC+Pv7m8DAQLN27Vrz7t27Pm0aGhrMzJkzjZeXlxk9erTZv3//YN0ifuB/zb0kc+rUKWeb9+/fm40bN5rg4GDj6+trMjIyTGdnZ59+2tvbzYIFC4yPj48JDQ01RUVF5vPnz33a2O12k5iYaKxWq4mOju4zBtxn3bp1JjIy0litVhMWFmZSU1OdAckY5v9v9H1I4jvw58rOzjYRERHGarWa0aNHm+zsbPPs2TPneeb+z2Ixxhj3vMMCAAAAgKGH3yQBAAAAgAtCEgAAAAC4ICQBAAAAgAtCEgAAAAC4ICQBAAAAgAtCEgAAAAC4ICQBAAAAgAtCEgAAAAC4ICQBAAbNnDlzVFBQ4O4y+rBYLLp48aK7ywAADCEWY4xxdxEAgL9DV1eXhg8froCAAEVFRamgoGDQQtPu3bt18eJFORyOPsdfvnyp4OBgeXl5DUodAIChz9PdBQAA/h4jRoz45X1++vRJVqv1/75+5MiRv7AaAMCfgOV2AIBB8+9yuzlz5qijo0OFhYWyWCyyWCzONrW1tUpOTpaPj4/Gjh2r/Px89fT0OM9HRUVp7969WrVqlQIDA5WbmytJ2rZtmyZMmCBfX19FR0erpKREnz9/liTZbDbt2bNHDQ0NzvFsNpuk/svtmpqalJKSIh8fH4WEhCg3N1fd3d3O82vWrNGyZct08OBBRUREKCQkRJs2bXKOJUnHjh1TbGysvL29FR4erqysrN/xOAEAvwkhCQAw6KqrqzVmzBiVlpaqs7NTnZ2dkqTW1lalp6crMzNTjY2NqqqqUm1trfLy8vpcf/DgQSUkJKi+vl4lJSWSpICAANlsNj1+/FiHDx/WyZMndejQIUlSdna2ioqKFB8f7xwvOzu7X109PT2aP3++goODdf/+fZ0/f17Xr1/vN77dbldra6vsdrtOnz4tm83mDF0PHjxQfn6+SktL1dzcrCtXrmjWrFm/+hECAH4jltsBAAbdiBEj5OHhoYCAgD7L3fbt26ecnBzn75RiY2NVVlam2bNn6/jx4/L29pYkpaSkqKioqE+fO3bscP4dFRWlLVu26Ny5c9q6dat8fHzk7+8vT0/PHy6vO3v2rD58+KCKigr5+flJksrLy7VkyRIdOHBA4eHhkqTg4GCVl5fLw8NDkyZN0qJFi3Tjxg2tX79ez58/l5+fnxYvXqyAgABFRkYqKSnplzw3AMDgICQBAIaMhoYGNTY26syZM85jxhj19vaqra1NcXFxkqSpU6f2u7aqqkplZWVqbW1Vd3e3vnz5osDAwAGN/+TJEyUkJDgDkiTNmDFDvb29am5udoak+Ph4eXh4ONtERESoqalJkjRv3jxFRkYqOjpa6enpSk9PV0ZGhnx9fQdUCwDAfVhuBwAYMrq7u7VhwwY5HA7np6GhQS0tLYqJiXG2cw0xknT37l3l5ORo4cKFunz5surr67V9+3Z9+vTpt9Q5fPjwPv9bLBb19vZK+rbs7+HDh6qsrFRERIR27typhIQEvX379rfUAgD49XiTBABwC6vVqq9fv/Y5NmXKFD1+/Fjjx48fUF91dXWKjIzU9u3bncc6Ojr+c7zvxcXFyWazqaenxxnE7ty5o2HDhmnixIk/XY+np6fS0tKUlpamXbt2KSgoSDdv3tTy5csHcFcAAHfhTRIAwC2ioqJ0+/ZtvXjxQq9fv5b0bYe6uro65eXlyeFwqKWlRZcuXeq3ccL3YmNj9fz5c507d06tra0qKyvThQsX+o3X1tYmh8Oh169f6+PHj/36ycnJkbe3t1avXq1Hjx7Jbrdr8+bNWrlypXOp3X+5fPmyysrK5HA41NHRoYqKCvX29g4oZAEA3IuQBABwi9LSUrW3tysmJkZhYWGSpMmTJ6umpkZPnz5VcnKykpKStHPnTo0aNeqHfS1dulSFhYXKy8tTYmKi6urqnLve/SszM1Pp6emaO3euwsLCVFlZ2a8fX19fXb16VV1dXZo2bZqysrKUmpqq8vLyn76voKAgVVdXKyUlRXFxcTpx4oQqKysVHx//030AANzLYowx7i4CAAAAAIYK3iQBAAAAgAtCEgAAAAC4ICQBAAAAgAtCEgAAAAC4ICQBAAAAgAtCEgAAAAC4ICQBAAAAgAtCEgAAAAC4ICQBAAAAgAtCEgAAAAC4ICQBAAAAgIt/AEQFcWnZ9Yu3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(10, 5))\n", - "plt.title(\"Generator and Discriminator Loss During Training\")\n", - "plt.plot(G_losses, label=\"G\", color='blue')\n", - "plt.plot(D_losses, label=\"D\", color='orange')\n", - "plt.xlabel(\"iterations\")\n", - "plt.ylabel(\"Loss\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "可视化训练过程中通过隐向量`fixed_noise`生成的图像。" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import matplotlib.animation as animation\n", - "\n", - "def showGif(image_list):\n", - " show_list = []\n", - " fig = plt.figure(figsize=(8, 3), dpi=120)\n", - " for epoch in range(len(image_list)):\n", - " images = []\n", - " for i in range(3):\n", - " row = np.concatenate((image_list[epoch][i * 8:(i + 1) * 8]), axis=1)\n", - " images.append(row)\n", - " img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)\n", - " plt.axis(\"off\")\n", - " show_list.append([plt.imshow(img)])\n", - "\n", - " ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)\n", - " ani.save('./dcgan.gif', writer='pillow', fps=1)\n", - "\n", - "showGif(image_list)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![dcgan](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/cv/images/dcgan.gif)\n", - "\n", - "从上面的图像可以看出,随着训练次数的增多,图像质量也越来越好。如果增大训练周期数,当`num_epochs`达到50以上时,生成的动漫头像图片与数据集中的较为相似。下面我们通过加载生成器网络模型参数文件来生成图像,代码如下:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAEtCAYAAACWDq/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOz9ya5kWZamiX1rd6eR7jaqampm3kWTEVlZmQUSBOpF+BRVNaohH4QT8hH4JJxkVSIzIpvoPNzd3Eyb24nIaXa7ODjXneSMMQgQCNwfuAaFwhQqemSftVfz//8SVVXe8IY3vOENb3jDG97whjf8i4P5//cHeMMb3vCGN7zhDW94wxve8M+Dt2T/DW94wxve8IY3vOENb/gXirdk/w1veMMb3vCGN7zhDW/4F4q3ZP8Nb3jDG97whje84Q1v+BeKt2T/DW94wxve8IY3vOENb/gXirdk/w1veMMb3vCGN7zhDW/4F4q3ZP8Nb3jDG97whje84Q1v+BeKt2T/DW94wxve8IY3vOENb/gXirdk/w1veMMb3vCGN7zhDW/4F4q3ZP8Nb3jDG97whje84Q1v+BeKt2T/DW94wxve8IY3vOENb/gXCvdP/QP/j//1f8YYMEZwUmm9A++wNnCtmVIKEgvFC10IjKEH31GXlZoS6hTRSqNxJSFrprVGto0+7PBhIPQjOxvQYGnO0oxFvQcMuibmNKGt4BWWtFBipCyRWFbG/ciwH+lud8R5Yl4mvswP3N/c03cj3gzE8zPPlzNfz88cDjeMuxv6/sCAMC0XUlyQZSLVjFNhj0ddZbffc3d/x/DujjKvrJcrn86f2B/u2R9uuX3/HSZXcl55Xs5gHdYPhG7P3o2oFkpN1BQRa7DG0jFwvrxQteJ3nt39O7ow0tmeVOE//e//G//xP/x7nuIn+r3gRke63WO8Uo2y1katZ+aSOOfMJU6cl8J1Kdz3nn58j+8PNF9Y1oTQ2A+K8Q7vIHj4+tMLps1Yu5L8wGk/MnQdKRmGukBJzHHm609feX7OfH1qfDw2ukNHdxi4ubvD+CNiOmAlWocxhp13lGdLSSspv/Dlmhi6jsMwYuLIGifWNHO5RDovGJQ4FXprQIUKfHN3Q/Adxniu1zPTNJNT5rQbsMVS18rL0xM/Pj6BMewOO0iGmho5Zl6erxgRjDG4rme0HieOJpZaC02gGkctCTD03Y7/6f/8v+D6AXWGzsNUYU6Jh6ev/PT0QowZadDtR4LzdM5hxGFVMaqU2hDTUCBpQ1tFjGCD5TjuseIxOMZhoInSABcgxkIpmZQjGIv3ll3vWddErQVtmQqMY8cwdux3J5Z1YY4rT9OFw74jWIfD8vD4yMtl4vky4YNCEVpWUsnk1NCmjMGwzDNalSCWmAvOWvoQEBdIORFT5Lpc2Y0DvQ84saQlssbIy3whDB6AVhStlVob2hqDD4ixGLGMJrCkFUQYuh5xPc5agrfYTjgOO/b9yEQiBDBOiK5jjReWuPL1OjPNE0WhWoezhtKgKgzB4bsO7z39YEiloQIuCM4GEEVbZXkq9CEwdB1zblzXC/M6cX66Yi0IjVIrnRdQpZTGgCIoqmCksWilChz3I+/ff2S/27PvO5aXhhGh6w3dceQwduw7z/l5xpqCs43OO05DoLcWp7Bcn8g5kkrlm48f6IcDodsxXSce5hfmkjjd3vLx5nt23Q4a/Pj0xJQja424HOi6nr4fCDbQBYP3greGwXdoEx7PE91oCD7Qhx2D89SiXF8m/q//y/+Fnz7/yDRfONiGeXeL2Q24EHhcZ9Y1kqaFh7gQUyNlxe1GUIuIY7y94/7+jt1+j9/d4EwDEZoYXDPUBC0aPt7dEHNmSYnUIjlt8b4T5Xx9JtcM0tBg6HD0ONaYsNYgBp5KhFrwznL3/pb9OBCsx+H5y19+5Hi3Z39/4Oa4I6dMjpE+ntFWMCi9gVorpRTyEsnGsjseuX//jsO7e7QVaok8z4/0Q88w7Hh3+AglMi1XfvfwCbxgbMDKQJknPn965NOPD/zmd79mqQsAd+4W7EA/jrz75p7Thw9463EIfdfxbui47S2X9SdOp3vG/S1uf0esiSUnHucZXxtNhIxhWp44rwtzKvzF3fecTt8w7o50wbKWRi6FFBcKjtYqJWd+/+MTRhveCSZ0qDQUJSVF00zJiXVNUCIpZaY10omAcRjjuT3s6IeR4D3SCkUbxloOux22GaRVpCauKYFRxICjw1KhFJ4fnlkvF5blyuP5AZs9tVlicwzDAN7RrEHaQnNKGAP//V/+KYP3OEDywo9fv1K10o0dnT9ic4N15Td/81uefvjC+fGFc1s4+RO9H3C7kZvbW/r9QLgdsa1hOoMdPd2HX2D6Add13O4HXi6Jh6cX/tNf/RX//q9/zfPTQp4VdQMiFoMl9D296+isp1UIzmK9xQyezncY58A5UiwsS2SZI9+9v6VoJdVMXCeu04WSEr4JS5oBJTjL0iJWhaAWGyzObLHmOV7wzuCd4Hv4k599w7ubE9/cvaPVhYfpyu/PLxyOHZ0bsOp5/vyV3/74wOPTmen8wFwmBGUwHc1ZjvsdH25vGW/2pBJZ8sJZIv/9X/6Kn338hvv9Hb//8oXfff7Kf/gvv6brlfene/7k3S/45c+/xWBoVYnlBUyjC4Gff/wVT1PBWsu793tubm7pQiA4Bw0e/vd/z+N/+N+wptF7g3OGGjxxWlnWxON0JT6eKa2QbeO+3yNiQQ3MGRMMvrPcHna42wHjLSYrJSjGOjo3IKHHKdimJFexYjHGIt2ILJGWM7Gs9MZjrEGdRa+RRkOtMg4j9rhDvGP6/MTj5SulFcbdid3NHUZBl8jD+RGcwXQBOx6QVChr4vHzV6bnM5fzhd9++RGTLIiFznJ3855w2OF2PdeXmaks4OHf/Zs/pwsBSuH66Qt/8w+/prTMuOu4vb3Hpka9LPz1X/0X5scL6bpSjfB+fM/Y7zB9h8NiO48/9TjxhGNHuBn4X/9v//d/vmSfeUKdoF4IvaP5nuY85EIukVYbXgExaFNaLuAMIooToVpDjZFcE9kkeuuwzmOtoE2orZJbwo8HNDiqE+Y50QCMYKUh3iJFsakwTU/kNdLWQnVgs8EmoBoaFTGQWyGmiCC0HlwIuK5DOse6zFQ1xNLwwxG1FpwhzTOPyxNOBdedkMHjcyQuMzZ3SFOcMZRSSGtkdZFKoQs9Yg1eIvEaaW2hirCzPWoMIh4TE6WsVIHgAorQWqOsE1p3GOnouw6pW+Hw8vSVM18Jw4gzO3LwlHollshzSfg2E7WyolyXC89L5JwyOzfSyTvEWEqZmPKCkcaODnEOlUpKK09tYpDI3hTYebJENM0858K70nDaiK5SS2JJha8R7guMxtD3nlKuNGOAQk/B9FuAHIzj2RVKKagUmlVyTSxTo9VKScuW8JAxDWiFc57IxeOMw7hAqQkxYCiUulJqotRMKgbNSi2N3BqCUGtjmSNagCxoUhTBiCUYi8VgMAgGLxYbQBHAckkrTRutJNJaEF+wzuBVsBhojTwtpBSptRGa4I3FG4NVQVURbVvCLwZtjdIqtWYsivOWYDxBDYKAgtHtcwvQYqXmTCmZVhLiAtIMAUME0EqrGWMM1IIWQ2sF1QJa0JppxaACxlmCs3Te0jmDtEwuhZwqpVRQwRrD4B3RKLUUamtYKwQn9M6gztAqZBoW/eOPeU2ADeCNYGujAdoa5IywNQI6a2hsl1kteSu4xOBQqA2DIAZqaSyL2QqRsOKNx1lPsQM1RdZl4rJcyfNMMxa6kVa37zy3RodDvMXgMK1SS6ZqAxQ/OLQpNWViTgQj2OAwWEosrFNkXlZGL1gjiGyno2oj18IgijFbUQ6VFhO5NfxuYDCO3jhME1JMWCP0nafzAScGrY21ZEavGIEKSNv+U6igGdGK0FjjtF1swROcxQFaM8uy0E4FY4U+9Bx3CZmVcllY1yutFZCG7S2qCg1WzQRnt+LTOlpaKFqpztK5gSKKOOHycuZ8vbLkmbtxS2LEeWqrLHEhxkjLiVobrW2VVVmuQEBsD21731IuxGvE2q1Q7LqBFAslQU2CVJBqoBjSkilVt+JQKtr8diacElujAoUGYrF2Ox9p2u4NcYYgHdIsuSpTXLEYgutwYaTkQiqVosoxeEoGaRXXGqVkNCdaXlHXUUsipZVcE95s55hayeuKQdBTYxj2NBHM5ZFpOqMSMb4wYrf7Y+goaeV5fSK3wjAMeB/IpjC9nBkPO3y/I/gBZ7fvsywRzAtj/47TfqQeD+jliVQK1a6M6ijGsVpLfHjmvJ651IzUdzhncF3AtURrGW2VDoMaS2uKlspSEr0xDOLBOlKcySWRAF8TplUEtvNpDM4KUssWFY3BsI36ReT1MwuiAgVUFGsMwQZiU1rLUArVZLy3WOsIfY+uC3lRYrzStR2VQFWHKGiDJtBKoqogaWsGiLM4Zxh3HQ/rlZRWqJEsEcHg3JZsO2/wNJY00TeHbQbb7alzpBqB0dN5jxWzvXNrxY1KPwg3Q0dKiqjy8vmBl5dn1rkwlIHiLKYZjIKpgtCgFUxzGNqWABpH04Y0RZpQr0pZlbwqkgEErQZdoa6NkiuuKVrYGj1WtrPfFDA4cVgAbbQMiIIASWirbj9Z2Q87llJxdiKtC6Y34Axd8LjgEG9AC9f5BRRcOCHSoXU7EyUWYo4sceVlvbBcIzVXvLP0faDvAt4Y8nVm0gsP9onv3t8SwoAxBk0r13RhcpZv7r6hVIMCGldyXgnO0Nme4hRpBZ1ntKs4P9DZQPKOmAttXSkxUmOkiYK1kLemb1PFxkIznuYEjYmyglWPl0AVAw3qkgHBGo8xFmMVckOL0lzGqSIiGOMxVZFWaa0irSFmizuaC5oLGDCvd5GWRl7zdr9ah/OBELrtcyrUmnDO4cee4XSg5cwSZ9Y0UWYwzhPcgNKorVBzZFpnrnEBJ6wxY53BGnBDj+k8GgslF+Z1JhSDaVvNIzRMK6wxk8xMUEcnHZgKAjobxAsuWbqU/kmp+z852Z9fHnH7HcHuUe7QoCiN+JhJLiHW0ds9OazQgGxwJwfF0sSShivrSyStEb2pGNljvEN3jfi7iPaCCZ53EqgWIpXnn2b0KNjOMtIxHHeY1jDnhTUKy0uhvsyY7z11gZyUm3GPsz3GO6q/8PD5Qu8L99/e0BHoO8fuAJ/+9jP4C77PDLcOt+uwduRpSjw+ZlwTxiHhf2bQOVLPT7wLA73tMHSY/sjly8r69YnD+1+w2+/pO+G06/jN738kU5DjzL7t6Y8jw26krsKkhqKFuERc59AsLM+N4SQ0B+IVby2Pz0/811//Hf0Hjz3eEnVHkwtfvzyzpJU8FiRWJChmp1xfrmTTcJ2lmjsYOmRU0udCbpnmDV81cCue63ni9z/8hmQX1IJ1lj8/Vv7x6ZFlmXln9vxNe8ap8p058mVWLhk64DzAcddzHI98fj4jtqA+83nMvKsjvlZ+fT3TCJSmpDKwOzbSJfL4vNINhhILtSjjydEuaSsKhsb0lPChMR6EeVrwIWM6R7xm1DVkUJavZ0oQWoNaDHZ0aKrUSwFrMcVgimMcK4GAF48ZLXa1oNBCJtQeYyx0hpKgqeJcx0SiasA2S1kdZy5c0sTzWtEg+C7QmT3+4LHVIsmSfSEUj8eQ95F63RLZzIowgg3YnUdWg1qoncIilKFQfMFeHcUVqi3YxWH3SghC0IDZRexksZOnfFNoVSkrzKcVI9s5MTeW+JworlHvHKMdMXuL3Rnyc+JsZhZZ0MdGOPV0Q6BvHaZFqknIuWFvBGO3tL70DbA46el3iiShlErqwLuO3ljqWKhXUK0QwDDgAtgArvUUUZoqsni6UTHW4lpH9lDVQLWkkrmsF2o7w+CI3LCzltKe+XS+8Hy58pSfcToQgqc/WMpVEAviofdHhoPDj0I5KysJteDNDrs3lKUQnwu5z5Qw0mxP1hdiycTYcMHgugEfLLarWzdSG9JHhhywoSI+Mz+uQMM7w/v3H7m7v8Ubx/x5ItqV0A3Y4YbdjUOXxnTO2L7Q24GdC7hDZd8GOmNgSEwvHSqKOS5cv7zQCtBZRg74ocdJ5uXXnznvP9ANR05+4MO7wHAeaRfhST6TlxmWwvEvjlg1SBNS2KYSXpTh1PHyZcWWhusrtUBToajyH88/cU0zxhi82+GvC3WZeawr56eFktuWl/x/IgMhYLod+31PFljXlfl6xY0jh/3At/ue89eJrKDOMjtDKitRZ1K1iKlYA5iRwW7TAGt7LCsaC3Ut1O5KcR1WAodgcP2efhzY35w4P1635NhB2R9pu4HqC7/57ZmhV3ajsOuOmHHGtky4CM42ooIswPtG1cz1cWG8mfFh65q54Dn/7olLOXPYfYMfPK0opa389jcXLMJpvxCbJ4wdP/v5N3x9fMePf3vh5Tkxi3LaKVkyP/wQmXHc7CLvdrcc7/Y86AsvOvFd9yv48JHsT2hsPM6VaVF0dXyioLWisfCffv+V5VqxteP68Y4DAy0ZHqfEPC2U1qDzlBZZpsjL45UvS+TU7wh+h/GZ81Nkvi7ILrEvFifQHRvdNOBDQI+G8KnSgtL2GfKBYhRcwRYDoYFCvjbscZvWWg0Mu0aeDGlx1LFtyaux3H+452wMFUv3nGCqKEpzhdwsIFRTuRjIJeHnwm9/fOTbj99gDwN0jtAdiMXwOEeGWllKRFLCSaDtepZ9x+X3ih0VPTT60Pg6Rfxa2S2V+9sd/cHT2Y70XulcwDCyto4fv/7A3/zmt/w///4ry3lC1JPGkV3v0CKUBFkboRmMeNyoUJTcKjlOpKq40PBWmdZCLJXmhdV2VF3ILZFxbCU8tDAQnKIoUS2igogD0yO+0Np2f6nNZNsjLrDrO748LawR1AZ+8d17gu+4HTw/PTWCGDonrL3n/naHlcxfL8rL72ZSrkx3HR93QvOF6iEMhtV5Eo4fnx/o/u7vmKeF4/94x2j2fDwKf/nnkU+/+URVeLg+8/XlzHffdtzfHzB+z9OPkfVc+Pz1AdntMCbwaQHmiBXPYBviIK4L5+szgx4Z+gFHz7pcefp84TpNLCw4At4LYRTaVVAjW+GpDnWgVpnOBStCGC39sadJpa1KfsnIncH0PaEbUX8lX5S6NJCFsQWc8YSDYB4FpdFswUYLXab6QnwSrK6YwUFxGB+oqfL1Hx5Rt6MPQl8NGgItNuoMRQErBOe5/5M/IfQ9xRrsp888ffoJdZFhbOxaxGWDSuOSMw9xIs6R/j/9Pb/85S+52e/p2kgYDsRmeLlGpuvEoJahGW6PdzyvSkkNnTKVTGkL3dGQS0fOilmFcs5IbThv/3mTfVGDVYcTi/iCrobSlEjcEh/jac5SZsVaAW/xdaCQadLQZ0teG6Uofulh8Kg6ZFISEWLFPRfirtEWoTYFp+jaKKlycY1TF/DiwHV4u2M2iStX+idooaFdIS0NDZaqBr8GrvNEMQudP+P2N4Bn5Iaxnym1Qmxc5pWdCwgONSNiFpo2ZoXdi0WcIK6yThE3BILr2ZU9L/pCrJnr50dO4Yh1O3pz5HB6YYkLOVYWn7FR8dYgnUNWi+bKkis2O6QK1ii6JqqLJLsivafmSk3gun7rhObIw+8TX65nilZ6u2fnKk0ryzVRCoQwcOgO/MWH7xEZWSd4jhnrDgx0HGXHw5czzy8XHl4utFQJgzLsYXrZMQjsdh17u+PdkpC2ktyF74+N+z1MPxf+Ym8ZOoO3Qn860Nx71O6Aiad54SVeeHk6k9sBI4bOQK09LSmqjXSueOPoXMAWz3P8yhIrVc022qsBzj0lWGy2uGYJrsdmT06FS7rQVn1tFXl83GNLo0jDFbYy2Rk8HtMEo2Cv9o+dRdsczSmYthXNtVJLpVWlZyRoQJogdaEuhbIqIo2D7rHG4ULAJgOvXa5d7hk7S+cNMQrn9EJLmbH19PsB7wIheVprmCZ0xWBGsBlaEppm3CKY5qi2EvJ2xltQxtQTVVhDwV8taiqrXbCPBhs8wQZu04HH+pWYIprAhg6vjn3ds4aJHAs1V2JfGU2Hr55cC774rfvuV8wq27sWCmH2WAzOOnwetqldqdhoMA4Ey1AGViLSFJO37qvDYKtBFGwx2AYqDVc9FotxjS5tQUql0KaEsz2D7zGjsHcQamF+bqS4FTYhjQzDNr40MVBapBPHTjx3Nz2iBp2UtU3c2B3eB3b7gTRX0pLJJXKUAwff04mhnQWTlE6Eg7mhc/b13WqUnPBiOYQbDkNFYyZfGs/Tyv1wy+3+jr84fiTNhmldefj6GR+OHEzPne/Qs+M6nZmuL+z7HW4fCL6HWPFd2LrubWBxE7IWzFPgmiZkSnRPjXbwdHVgzJWvfGV+eGHRgfr9HZ30tB6OtyvdPz4Qc+YskffX7XXBKG1SZt/wtuGbRdgoW23OZJtpsnXmdq+NRAMMNJYEa2ukFLfCQ8G/5vd/hDnS7XaMN3uOp3tSq5QKrtsTvMGr4fqSyCVjJTBojy9KTYJJlsEVDAERQYyipke1IbUi9bVwdxXfOlwBJ5kbe8Ou73HesZxXLi8P0ITD/j1HbzClcX4ovLz8hG8HOn8i7Dp8E4xmXFgoa9gSzV1DE6ACQ0RjxViD8x27NHCVF6Imrj8+Mn7oKIDLO97tV1qtWIQ1JnZ+R+f23O/vuRkv5MWTVZEpYIxF60x8mFgWmKNgHNw4YR8OtFulyUydhWsTtLxgrWLHHYflmZnIs0t83A/Uux1+d8uffHtD58OWQkqk7ztaVWpKfH6+8Hw+8/D0xELPIIXcJzg31rSS6sx+DVtnUQQfHaoF05Rd6pF9QVXRZYsBPm9d534YKKXSWqPajJ0NaoXilU56jEswNlgVekUDeBvoe08+dOzfHajDREqNlgz9XsHKa/PHo6/v5aeffqLzHtGKtyOhH9g7gx89+Rypc6G0iARL74W9h34YGI6WfhRssXgtmKro7JAQaVSyabwfPtD3A95b6vLC5eHK5WEhxBVkD+Jw2rbpVa3UUqAE3FEYdgZHYNEVrY1QRpw10ISyKNRMUOgl0KHkZmjV0Yh0arHNY2phqY3aKpQVbxzeG3wo+OopNaMtsWOgcwHnHVSllpXUKtPnnnzoEaf03cj9TSI4RajcWKU77TC2cfNJ+d3eo3OlzA+82PstCe+vjOuAbcrYhGHxfPnxgTxHvv/wgbvDLajhtruhHCPLvBDnwrpeaPUOb3qOwx3DmFl15mkq7LXgPSQfWbuOXizJeGQMaBVcCwS3ndVWIvlSyGlFSyFIhwmCCMgMWjLWBKz1uL3ZppOLklvC1YDFYX2AHNFSqFLwSwdWaV1DFg9ExDVM8jRrqCrYxYNkaIJdPUUSmg1UR7MVyRlEMN7Tx5FUK3N6Yvj0RO0HSghUyVvBphDPV3LwhGHgndzgh5H+dOL04R0//PD7jZr47ImnjJbtnnMOhmbQWfjd8gkrlvXmhtvTkTHsMc3T6YqUGS2FNUeGfqR0V9Q58ivzotSCTo5qKpRGWwtGDZGGaf9f0fmfIdk3FjFmo+mwjZpabRRVxLiN66VQU0M7wTiPlUClog3q3KhZaQ2kOWgGrbL9GRVoIKkRUwGRrYOx3cTU0kgx0/c7TAgE39H3O65+pqiQ10ZrgkpjjZnG9hlNdZQCpRXO5yvWdDjrsQT6fiTGlZIL0xKxoeCsw7oR52camViVsG5FRwuwLBFvRizgWqC1rUM5Xa7ENeK7Hu96hnGk0SjrzBoTwRc6rzjnMdYhUkilIFhQQcRuXduUScuCM1BroyCoc6jZCqtpXplTRo0wqsMbR9GE5ISXQBf2HPpb3u1vmK7KEhNrgqPrCDIQWmCeV67zyhorLkPoLQdn6Zpw2O/Y9Z6dfc8uOGq58siF4V1PtZa1c/zKV2gDRT1m3KHuHcgeTZaXdSIukeuUqGSCcQQvqAraLIijZiV4uz3rFrbkvBmMOoxajFooFg0O1GGaxbH9P60KtRla2ubCVg22ekxTxCimbR1DEJxahG18K1m2lwfdEkTR7aIzutFK9JViIm6j4ugWqHOqlNRe6UD99pmN3Ualr1Scznh67+iCkK55K9JqpTc9nfM4u/0bmm4vqMVgjVAyaGlgwarFqNCor2Nli7Ubl1RtIxsDRVHXaEYpsW7nWAy9dIDQaiPmRGcsVixOPH3Xk5ZCNoVsIk4cXjzVKF4sKpYqghb54zMRBSt/oLZ4qm5cay268XVlG7M6U5EmFK2IClYtVi3olsBpVdRs35O82gGIypZpAloUazc6hg3grEWAvDRaFQSLN5bOdlsRXszGrbWBPvSMoSOnSiqZpsoQOno/MNiOdb5SY6NVGLue3gQcQlnq9vdi6G2HF0C3OEZVnDfsXc/gFuLUiFNGc+N4c+Dj6R33/YGfns7Ey8o8rdz7O0bTsfeB85xZp8Q0r5z8cXseWKhKcIEhdFjjOJuA0QQxU6pQChvPvQrSLEYduSnLvDB3Myllum6g8z37/Z7OBdaYWUoix0qwDmvtRjcr27m06Ot7wDaVSRmMRUvDAYGNouacp2YlFUWrQ7RiMXigoKhYxAbCcM/huONw2tH3A6S80bm6juC3cxPnTGtK7yyj25LuWEAzWG8w4hARkP933NNWNwFGa6B1u2FVQQyD69iHDnGGy3wlp4i3gV3Xses3asU8zcQ0o3XAY7HK1q0XCF1FmyBqXilyimK2yZBuP0a3OAGGqrDME3FdXzuOnpvdnlLrRnG6nlEVnATuDvfcn87EpLSk1AxiN5JbTYUkkdnMcPbsDgNmGGi9pRml1sQaE9iGc45OemwJFAqijXc3d5j9Ld3pnrvTgVYsKStiBO89TZS6RK7nC0/nC4/TTBg6VJXWKjkWcqk0FKMGUcGoYJpsVD8RHBY8tNKopdHM9vsWi7cOKhSgyut3gqJWsWo2GoY4iBslb5vQWLo+UHTgkA5Er5i5UC8NPxjEOBRPMT05RkpKXOaZl+sF11mGncV4Sx96ApapwFozKSpUxTpL13Xb+R/tNo1rgN1oifY1PtY10Wxj8FuTRURZl5XpvDCfV0wVnOk2uhhC00ZtjdYqTireKp1XWqy0VqhNcWKxxqAqpLjpkpxxdM7TidCaIMX8MbYrFtFMLUqpdUt2u4CTjYqssdDIKJXOekbfYZ1hySvUQilCThF0y0dG3+PHHRaPUY846MXhvOHd/Q13l4i4C/X6QkqFNSbmGEmlYAz01rH3A+f5hRc98+Pnn3BiN32gCxx3e0yFul5Z14WcC4LhuDtxOM1EAzFVhlJxAk2UUjI5J3KMWG/QBgb7ysPfKNx1ydv9puCM3cKRAnWjQ1kxGx/dCi23bZqGovqHVsSmNaulUZviK2httNq2EIFgrEGwqG7hAwwi5jX0CfoaWqiCuu0oS9umEZYt12hFSfOKvNKfxOpGP3cb7TxppciWp/p+YDgeuH1/jwxhoxCmSioN4xuiijFCMI6C43m68vj4hLaKcRbB0vkOO1rISowza0vsTGDsenQYmN2CtkatdStUXqdstEYtSpLI9nb+/45/erLvO1pwFG9oKZDZqtCWt86cAu0aiaXQB0cfDti9g0Voc2UpV3J+rfCDwa6VZhqpVzQFalBK35jPE9VBNWBrT3WVXBJPPz2D9dzf3PLh7gPvP1ZyTDz/8MRqJjR2mGpp0wtDHjDGoU5RetYSeXn5wnle2O8OHI8ndocb8BNlnvnyfCGpZd/v2B/ekQTW65X14Yr3kVg9unTIfqFVT+0gm8aaHdOqtPXC4ekLYpSb/bcc9+/BehaJvPz0gqjFDx13/YlsGtVW1ueJ0gvg0Hwgi0FSos3P9LGy1kLcOa5e8T7gfSDVn2h5EznuRkNXwsYPtJUPp3vuT/e8v3nHWEce4hde5jOsA370OAxlrmR9okoEjty8V/7k/Yk/fX/DjW98+Pgz7m++4Wf2W87lJ+LySHn4RH7X49kzxhse+PtNubo4lne/Yid3mOr54ar4yydoysTAPlg8dtNQuITB4M1A7SI1C7Eo421mNwwEZyk1057YmPV9w0mP9RbpDPZr2SrcoIwMrC5RsyKTYsLGvfcqlK4iGSQrwW/ceqtCbokaC6Up1SumDTRr0E6wuSM4i3ih2EyzhmYVnS1LqeTWcOaIjhuzNWTH1WSCCYwmMLzrGavFpcpLOrOmQsPAvdv0ByJkV7DZIr2FnRCyYWmFVRN7Dsheaa1QPify0OiC5TQeqUPDvwgyJR66FxwBp55pKJhSNj7jKOzCgZmVCzNybbgu4Pc9t/6WZhzJw/M/TrSdx40DJ7vjizxRtGIultq1TdTUHGuvuCzYYqidYkugVWEJCckb/57OMtod0WWyW2lTRQLgBE8g2rQJz2clHzINR2g9ZRCMGlw2SFdovaMMIMERXQ+qzPmMkRHve+gzofQ0VSKVMRzp9x3jPjC0jrk8MuUFR4ffb2JdXeC8XEixEOrI7t1A3wJmhWt8IWVF1VPHhm0GzZW1LvS2Zwgd4yiYZ2V6PvPl8Svd7sj797d8/P4e6wPn6zPPL2dKHtnf9ZzuB/bDjh9e/o5pWSjJ0B8t3oGpFesbd7sbTvsDMiiXLw9kSRQ/4coJ40bqIKRpZTWJ1RTa3PN4jGg5c/f4zHDYE0LH/e6eu4+3zL+JPHx+5un7mY6Bvd9R+xk9F1pOxMPWPa8ok20wzXgcdcmUTUmCmA69eUd7PEPJdOMJc3mGphgbWEvCdDf4wwe+/+5b7u8OHHaBl/XrNmkJ28UKQkmRMk047ej3A8f7A33znOvEkjPWDvjOYCzYYkEzqg0VQaRga0bWTG5nauhp3chpx0apEVjWM9KN7G4OfP8XR27eHTlfn7mef0BsTzf29DuhLhN0EILldveO8d3KMi2Y3zVamGjeY/wN7hAwomiN5JBo2lGLcPErh/UZZx0uNN4P34MoVVcuLzNQEVf55c//FdnAuPf87X/8LUs/40wPjGhvWA3kZSH8UDB/dke4GfjQbsh+h3QCl0fczc8IfmRflBwCzDP6cmH3Z99zDAdObse427FOF0pZscM9Jm3FwhXh8eWJh0viIe34xTtHCAbbhK/TC7UajOxpQ0NWoDRKV9gzIhaab/gnZZHKHCqjvyUcOkLvcc2SbERVcaWHXUV0awyJTwTn6eWAD9skSFQI1hJubukPe3y34/ly4PpyRfQFs9vjQocPAWdG6qi0s7Jmy4/LM9M5YQ+Gd6c9fd/h+xs6e8tTeGCShv7dM7gd/n3Pz+tKKfOmeTGRbndP6DrG0UEspLhSY6R0FbVKK8rDU+HLlxeeHi9kTtD9oUDw1Bw3So14hn3PrusZpePT8sSalWYc9mToQ7dRM+eZpg47eMZj4NAF4hqJMROro1hL8w1XLTVN5NZQF/Bhm5bZBV4un9HgMH3g5uTYjyNi4Jy/bn9fEPQu090NDJ3n1jT6b35GMA7T4NP0wJg9NTfcx4H9f/yR3/3wif/8m79BpkLKladp5e6bzPAqOv5F+MDn3yvzMvNff/oNRYXb4y03tzfc397S+YBa4eE6826+ktrKL37+PfZGuLs885tff0L6BL7Ddgeqt0SUa87sz2ZL6r2lCORVaE0pccImj2+WNhbMFZTt/h1l96pVMtgZ5ppJrSK1o2DJrbFeIktZqQlYPX4PVSt1TpRQsRIw3tH6hrlsU8w8CMH2SIAWKnUyJMpGteW4nQmnkDJVMhilqzuah9Qi7SmiHzoGP9L7gbmtXOZIXiqn7xKn04n3xwP0Hf/lP/+aql9IZWWKDQ0VHSuuOrrdiDpHWipfLs88xQvTtHL74Zb9MHKzv0HryOVyprRnQnEMd/ccu571PHN9jGQyelNxMiLeIJ3SvkbWVJg1/vMm+6HrtwSsetZ8YVWlAi5sPOnalCUlmrKJr4LFJUOJmWldmKaCka0KbxclBaUhlIlN9Y0jFM+lzZSp0IDT0SCpwlqJMfH8wxd8arT7O47jjvl04Pluz+NzpUijScRMgVqFaiDGrdoOYpFouFxnytzQuXG4OWArhCbka+Hx8sjST4y//Jbj0ONr4SsT0wTWNKzLpGfLohUrlZQSkOlC49ACNReWeSY8vOD7jmAtY+14SFcePn9lvU6c/u1f0DmP7faUsbLEQmsJ6xZMGhBrUGtIdUJao8djFyhhRmvGlgM7WTDayM+RReLmyFACPz/ccG9vOJWBH14eefr0wuU8Y5owVSF3ZetAzwOnWOg08X+6+8jPbu747nDDMDjed0dupOPYwzHdUt2efPjI3fFmo09VeJ4dL93M82XFr2emeeY6K4+PXzg/reS5cooFvj7RrKGMHXbtt251FUzK1Aa5CfNskM7S24FeOq7d1hHRJ0M7VGqGMikYA3Gjz6g0bFSk6FYIVLM1i71gq6NKpUolzxXjFBGDzQ0pQFXatUFXMQlMdFvSURumGWxz2CQULUyXM6YKHT2dc2gGVWVpBa9CHwxDb7mRQMoLL/OV9WVBSiU4S58s2hlaNUhtWNnO2hANq2RqLthUcYeGzVCKEluiu4IaTzsWDtKhxvHsQK4GXEV9I5wNq02spuLiJvIZxOJyx9oauhRkXcn3Do0FsyqpNdbnhZAM73/+nm9UmcXzEDdHD6kKkjCT2aZlTdAFjCjBCiYJVSutKXZRJIBtDZ+US85bJ6I0xtMe2xoFZWHdnrMCfcEni2qlaKPFiFiPLQJzIrZ1c/TJFq91675GQySCCE4NxyGwN4GheM7zM3FZ0dLoR8VfQF3lWlaYLKEZBmc55Y5UKpd1RVbo6ybQkqmy6jYVoFkOx8DJBG5ax+PyibKskCrf3DnuveeApT5ecEXYu8BxqHz0B27MSNc20WHIiisFe1Wkb0jYCrfjsONmd0BNwxmhFSFdHWHYhOBmEuZeySu0BXDKmB3dYnhYr3Q/PbIbR/pdz53seJKOVhsPf/MDpz9z3I49d65nCpGUCvGawRScCF12WF+pwKoJ1Uqi0Br4p4VdctgmxHRh0hnVylAMA0dOQ8/7+5F95xjKgr1eKeeVWCq5QVO/0XJao0TL7W7gqB19tLykM0tc0VIJtaFFqA1Sy6RlE5abVjDrjNSIrQtpXsj2SvaGi3OMWgniOKljPzbenxz/+v09tyJkNXQm8NEJx1oxS8LLKw3IO3aHA132GAMv8oRcDbYTOr/RRRk9Gjy2DoidwDX8aoluez7L9crwoaPzAUNgZ0fW58TjywP/9n/4c36V3uNz5gf7mbYKxTZMlyhXKLXRSiUpvL8fuImBw88q+9diWG8/4ijU9MQ1L6THhWIs/tDx0SqDr3ifSM8T1zUyx8h6mXmJjcsl8vC7Rx4fM6qGD95xqB5XldwiUgu+KlahWwz6OjzxGHxo+AZmrURpmGJwzWF93uiDVojaKEnQAl4bfdxil6LkKeFsRryl82yFoxiaVPZjh3Mdh1Pg9jzyfJqwuw5rImoqjYSujs4MlEG5f2cRs+JNZDlfOMsm9u+dI4TKofdIOPE7FvbHxru+spjI8uCIi3AulWF6hMUizw5TKsUobfDoVak5s6aF3/6Xv+b3P3zi+XlmV4VkXsX7LKQ5obVimjL2gTpfeIkXpusEzeFcT9+UlFZiasxr4eQ9YzN0zXCer8zrvAloY6aUlVQTNS7EtOCMcPKWG5RWIzHOxGmBFVy01J3H1IZlE0Tv2sJ9Z/nz7+/49uYWExzZVO5GT/ABYxzBQ6sGRPg43PGru4/8/sdP/OyvPf/t776wtoR0jZQKzjXECl078s0dlLqirbKuK0/1mfwUeXe/R1phsHXTeP3DI79bfs+/+eX3vN8dGIyl7iIvJdFKofcXds3RtY2NMZlG0YpDcFnIeWLNmbgqxiqOjbpb6utUV8H0DdsaLMoSYUorqdZtqlJ6WhJWLaS8TY/6TuibwxQhaSGXzDgEnLHURWlV0KYwNWS3TaZNNiwCJTbSXHGnDBEoQg2esgiaoNsJvQmoVrKslB8j5qZg7wo2FUibU97Xv/+B/i9/xngzcBdO/NmffUdwwg+/f6CQKMlQz0LzHa0Iphj6Y8CkRk2NTw+PTOcLN6c98t177u6PjLWjLQNPX545DYZuFzjeHEizkqOyTivjziLNoEsjrQtqBdo/zTn/n5zsW2sxxgGWVFYKSjOGYLaOZ22VWArNb+NCVaWWLSle1oU1ZYbQIWbjV7W2WRQ2ti9KEVQsKa3baB5lVwu1Qq3QcmVqE8PcEZeFMA703ch+v+MyR1peqbmSo2KcYhzQBCcOY8EFh9ZIK8o8r4QugApGPV4NayqgUHJlCCMECN200S2qAJU1NrpU8WkblWprm5OB7RA2Ks4aE9a7rYMpPVJgySu5ZZZ1ph9GfBjpd4VYFkpdqSnS24D1G620toqo4l7Ztblt9oAKBOMQaZTaXp8eWAmMpsc2S1oqTw8vXJ4uzFNEfUdxGWmCZ3MH2g/ges8vb77hpvPYWmlr3S5aVTBHPBBMoOtO3PQnnGzjllYXUnBMFmT9SroY5ksjnSdcFnb07HxjkZXaGpoy4ixWFacOg6dopdRKLhlvO4xx9F1HKYbENharpVIMCIpzZqPkvAZFEYuYbbSNbnoSIwLGgkBjG72Xoohpm+MPG92gZcVsM2BEwKhi6utEQbdxXWkQa6HhEWPw4knaaFo3B4E/WtBuZz3lyDRPrOuKt34bZ26af5DXkSN2owjJH9x0tu/PvbrVNNmcZKoWSs2UXBAzYK3BOoMxm/NPK9soFeo2Mi28PhuLtQHvKq00ci6klNEKohanQsqJJVlqU/puwCDknJmvy/aZqJTWXn13ZPu3buQHnPeIKK0prTS0bQ5Hzji83dwBVNvWNQsBK4ZSy/YdwR/depqCVn11PFCkNXJptFZoraJiMK/uOKCoFIwRvBN677Ai1FJZl5mcEgpbIapbR6nW/MfP4Z2nNoi5bImnbvQlw0YT1FeKgrHQOYc3FqmNFhPSKp0zfHt/4t3pyGm3Y05nhr7brERFuD0cGYeN0yut4pSNrlI3DUNnHbuhp++2pLHSsNbi3EZjC8YhWErb5s3KRqi3bLQXxG5OUzFircUHR2c7OhvwYjhPF67zxBpXxvHmlVJjKGuilgpGUGfBbclao23uKoBDMALWbEVbyytVC2K29+04HLi52XN/7KgoJUWSrtSYNt54M5tbhrwWZmLwLmDEUXNjWrY4rgLGOIpCaY1SlVwzWjKmZHxKkFc0zbQ04wdLFzo+nAZu3aZfMeOJb+47Pnxzzy8/fuQ4jsxx5hAsNyawM56gWwwJneA7j3cdooq36ytlwGDUENRumpz2ei6t3SgsIoh4BEFrJceMpoyxgT6MnIYDUmdyaXQucLe/odxk7k5HligbFVW3bnIrhZIyi2wizeA8vgWkWdQYWnObK1vJlLWiVTHOMvg9nXWYCiUXXs6PPF4mrvNCWVaeF5imwsvjmVzB+cBxGAkmbLGrbdY3poHTbYpmBZwBb4VgzWZ1iVKkYv9wFtRg2Sg/tW0xTmBzHBNwr+ek/sH3VhUfeozbkn2xlhA6us4xuh2dj5jQETGU9ExToaklWEuVRsiBm5sOIWEEgvXQlJo3B6jNWtMRWuB8F9nvK2PfOJiRiz9zeVm4fL6imtHaQC2tVDQYxG26oJIry5z4/ddnztNETBlrOwyWSqWqbo5mtSFVKTmztIpqIcWENyPiABFSzaTWaNKwziLG0toWT1PJmxaismlkWqNR8d7QOcMueKRtFqWaE4ZK5wPjMHCz33PcdRgj3OiO++HIxw83/PK777g97akoc0kM1tF3Pd5vVNJUQYzhdOzo+wO3hz1BCo2Rp+mZSzoj1oHZbGyNtwx2BPWogu06jBjikpjXGYvQ4RjFkZeVp6dH4hrphg43Oj7cLZTnZ3JJtLI56El7tVy2W9wysrndlbo5ozVVjAj6SqtFt2cpRra7uilat3id0vZ8vQ+ApSGknGkNrDEbxdNsdJ1WKlnaqy2yYSMm5o3KIxudR4FmhPoab0pRWm4bnRjZKGBiNjqXMfjQoTS0FdI6U+JKXgWLx2smtbxZs+eVgZ5xf+Sbb78hxsr5mlEKuVaMVDrfUBrIpl0NXU+tjZgSU1yQq9K/eO7e3dB1PewbZ/tEbAVRZdwdGQ+FaPOrk1D9A/N1u5Xl9WX8J+Cfnuybzbu0Oke6Qg76aqvpWL0l1socI34caEbJKRNd4bpMXK8XJl3oQg/GEweDiQVoaO+oU6N6JTtDvRRWMtk29nPcRkZi0Fh5CQmzOJ6/PvDuZ7+i7/bcnm55iYn2VKlT5bIqXa+bmKRz9K0hdoDTnvHyxBxXrilhX650fo8zA8e+J9WZpI35mjjdf4Mf9hxPmefLREuFGisvXcWsCevMtgcg68a3H45Y04M6plLo17IlQ36Pq5ZLm3mWmYeHJ95/e2C3P7K/tazZkHPl+pRx0lA1iDSs38QszggaAotxNITWRcY6AMJqFnKq9M5x7DYP3stSmFPi97/7xMP1ylwq/e6O5goqBts5TjcHbodbvh16fvH+W67rjzw8/5ZyXTifHDeHA8N8QzhkfNcz2I80CajssXpDkycgY9rCup5ZXzzxSah54dbvuO8tO2v57DPTOnGdHzGsdHQM4hnGI2maWZn56hdaBW0Gtx8ZxWBcIstKTQX1jeoNhwJqBLzim1K8QR2Y2mhu4+Xb5pDgoTVaU5I0qJVWwNmwFcNmK0B9ZbPvskpYtyQfJ4goCWUCFmvAgBMhtIFFEqWC1IJ2DYximnDVyGW68vK0BdnT8I7ge1KwWNmKDQ2Cjx61jrUzdPOmF6gBgnhqsJvqX4TkC1EScVrJ7w/QWfrOc0Zoy2ZrOO2UURuuNSaT6ZNHjKUOHXtTWFPkzEqYE1XB2sDOGF7qSsqF++vE/f07Drsdfe/5/PhEXFbyEpkkY5viWiO5hhSDEYvZj4SSKKlwWRKmGcT47UIwjbVVsm4caTeMyA5MENaUQTe+vewCUhpmUWqwqFXQwkWFP2QlSsGu/cbft0pQxYfNy37wnqSVc4nM15liMyZYnBuoYZv6sFRaSBjTY9zAU8vEuDBPM2oqVgYsgVknXNu+H3bK0HusCEteKWskSKM79vybv/xTvvv2Z+x2N/zUwZ1RUm6cxgPvvv+4iQDLCixbJ93uUTzB9xx2I/fvT/RDj3UeUELoGIaOo6ywdmSxzLYx1Axh43z2xVFCIHeBrjkWzUhZCbPDhYExDBxsx9/Xr5zmZ3ZPe05339APDu8ztTVeHtpWYe03mrVaaK82iwOO0QTk4OE609rKmmcaShc8++OOP//5z9kdDvhdz+9+SkzpwlomjFa0BYwEWhBqaRgDoXeYYSAbS86R58tCe7VLJoxUTZSWKFkpJKomSA3Kgs4XyuUF9TM379/z/c/e83/817/cJnoiNNvxp3/yC969f883335HqROFmevZciwnxq5n7HqOpxN+EELncKZDnWL9toNi6A3WeXp61Pot8WgN00EQS9JA7Qe83cT0RSv5mhB7Yre75fv3md34wpxXPJ67/UcCe/7Vn3ziN58euc6JkqFapYqQaTRjkNFijwFzuSEai6JMT4nCimZFziPmfU/X79m5e8Qr8QzLU+I/f/2RH3/7E+fnM7Y3xEtPKUKRhD2c2O8OvDvdUS2IqVATQsG1bR+BsYHRKMGC6YSBAChFCj5Gim04o3TiMcajxqFlBlsRYwh4bBCcUXoKaxV45VcHu98olHbrlvtupBsG+v5Ev5voxoVgDnw9e7Q4DB3sMrt4INXK++Me73eIVGL+wvQQMU3ItfBh9x6zt7QPFaMDEHGmcfpww9fv/5Gvnz/x8jWiNmKNo5cDyV4wvcPtdhCEuBaeL5H/8rhyXleKNkK420relqnNIm67IzTBOS60tKIlYqzghx1iPdnCmhNFG9JZpO8pzjErxLm8NjQaYju0JdQY/NgxBEvvHHs/Mj2+UNeKxkbXCx8/3PDhw3s+fPcdXb9pDcfJ8t/9q5/x7cd3/OL7n4FEpssVniOewD4c2O+OHI+JqG3bLbPfc3/v+PnHn/Ptt99wvPmv/MMPv+XvfvsPLLl/dUhrVKu47PFmINzcse+2yccDFx6vF3YycOOO9IPlWlYels98+fLML77/OafDnvBnnvZ3jaeXM9dlpu4t1WzaN9qm77LW0IyjqqU02cSz5bW51YHJeUv0e49phgYUY6j5SkqJ2JT96MAFmrXkOKEhYKzDm0DrPFoymirFtddGrUVCgFhRqTSvm5tYs6+xqVBaIdG2CUBvwAiuNky3ial5ctjDESuNzgrXPJHKinmq7O5+xs5WtGYe3cwcr+zSnrv7j/z8z/4UfMeclR9+9zvm2lht4Rst4BqVhsxKfzpgnGU3z3y+PvCUJ9JPkV/8/E84jnsO48CXh5+YXq5MS+HD6RtUDesyk5aGMQ0xm+9/lwwEi4zhnzfZX0vGrhExjWrLFqgQ5NbgV0hNIDi6ZtFSueaJkDwpRWJL2wjlxiC9xa+NqWaoQsCRTEPWhE1KckBRXK48ywvuuoko6ujplkR7mfjHH36N9T3iDP44Mj72LP5CsYn25StXadS6wwfH/Eq36cUynk6YKaDxma9fvzLIxGB7Vrt1yCmVnz79ni44ui7gxgF3KSSUZAvuZWHWTYh1GHdE3QJH9+UzZfw5wQq2rCyvlWRZMuwc5kWQp8RvP/+OMOzw1mP7A8Opkkk8xcI1faXSI2ZP6MB7x3534loVTesmCHUBc9iEp25xhN7hm6cuHf/t+XdcL5HpmklroWSLU48LiYM5sPcjN+HAoXfsfaVrmd/9+LdM0yem6yfyrLTJ4/YrPy5/w3050A090yXym98+s2TlWhxeZnIWYhKKHDjc9Bz2Hd+aD0Q28U6aX/j6/IzTlZve45PDIjjJjNdE31uG3Q6bOy7LTE2R+Lgg3uPE0KlhKVd8EjyO1QmuWaRtftw2KUYFCQHTNu934wwuK9oErCPkRtNC1rZ1VozdFmy1CilDUWzafPDlVbE3r5V1SaxlpbNm4wUaS/Mr4yLkCot5pRGFQnELfBHiNBPbSs/AGITRNYZVaJ1gjMUTwFdMUexzpQyVTg1ddWiXcMVDVswQ2EnDVOUpPbF/GGg0XHAc5oGLzKwm4h+ENniKN4ymo7AiReheGsPNgLcGV+E8X9DUaLltnUMctTR+++NvsarcHDf9Sl0rL63xmK6Ea8b4130JSVjrQm6Voz3S7/otACPEuL52sx2h77CtkFvlGl84mEofevrjgTBFSq00mwmr28T3veOUHc5uSYZP63YxWYsQSEPFVOUULa53eGvpjCWlK3FKpCmimumsJxBwLtKlADiiD+zLgVoacz1jXjZxtBPlaHugIhq5aT1m90r1sgODJlyBssL3tzt2x3tO70782z/7FTd3H3HdiNMFsZBS4VAdO+eoWpnilV4MfoSDg9EaDkNg2A8c/QFRqC3TdGuadLbjICeWY96+mxflxVV2/Q5vAqn/ifB0Rlclf3/Ax0wqjc8xE8rWeR4OO24/P7O8vPCjNXx7+obxuMO5juMoXNYzMS7k64SaWxwekcr/+PE9l2siN6FLjxiTGMbCz06ew4dfcTrd8PH+BtvdsqaVy/QE6zNMMxIzrdthpCKm4qQh9tVr3Q6s8QXN0FbFORAbENPRSsZVg2kBoVCqx7RCMDN+UsgFwsr3f3rL//AX3/Pf/dmv+PZf/zlpWSgtk3bKL25HDoeeftcxnR84OOXDuOd+ANsEK3ZbyBQCzjkyhVYaVMH5gTGZraC0C1xhTRXtHL4fsIPDscL1hXp7j3GOo++pbSYtD0Qj9LuBW2sZl8T55Qv97oB64XRzx+lJ0fXKi5wJxVKaRcVDrdz4Ix+PH3msz5jLBS2Rq8BgoR93jN/dMVqLtR5xlvX5E19eLnx6fOHzf/5rvl5WrrFwxEJ3S3A9exswo8e5TFweaNpDp0hXMKVhTcJb5SQj42C3Yq9mYrlsdMZsSFWhGToEdSuaNzF5VosVgzcbR99Uv+3K6B1d3WJNrYmSZrzfitjgoLW4WQT6gPGGftdzIwa3S9TqUA2YIJxaomjZnIhcj4iwLwYfv1JzRpeMuRdC12Gt4f67E9P1YZviHQ27l1tELfX/ILT1gm2eTm9Zzp5qKjpYrHqmZebh/Ey9PrB5IwRcqIzVkbWw1ESJiZbWjWLzmc2hzQn7/Q3GgZEKU8KmunWBXUDzQl4MLUHxK9p0S15l5tgbxAyY4Ck2IzUS5088Xs9QE50r/OLPf86vvvuG797fM767p9ZM08rp25Ffff+Ou5sjboQ6RbwmBlvo2guGgNqePvRITZRWSesV63YYJxwPe371i18RRk93gJ9+c2UtmdQKmuB5egbNfNc5jvc/wxlLr55//Ol3rOVCtZlvvnvHIVlyqfz2N3/LuPPY/lv6sOPu/XvoLPOXiZfyQicjndlj9NVtUaBOF2pZUPLmWOe3SVC4CjVswlm7Vi5t2iagWGLdrMGrKqbPSCuQLdIsrhqsaVS34uZNXK8e7FIpfiKahku7raMvBhcN2SVssZjsiFUpUSFVroczZnHY7FnuTtgwEBDMvtDyvDFFvvuG0zJzvX7hcf6EaiE6T/MGc4lcX54IvePm3Tv2N3vex3dcXy58ffgRPa/oZWV+t+UwvhqeamQ3B3w/sLv9hgZcpitfrxe+fP6B8O1H3r9/x8+++55fr/+Nh5dHQgA7ODpzQFKmaERLxkfouh6xirZ/ZoGu6qs63wiSQLzZumo2UNwmdrAVsK9i3aRkkyg5U2KlWIVXR59MpOQK1mCo8OqQkm1By7a5Ug2Q4HX9ArYJVbbtbstL5HJ9wftAa4oLnq7vGdLAy/zCuiwoW4AusW6OP8x0Xb/5sXYd5sWQKdS2UldlTSu5FdIiPJ8vDH2PyYDZrJpchVIXcm64uZK7jdtYG5zjlXcx0nUB2Tl4XUoiduNKCoaicHmMnG9n+mHmIB3Oe7phYOiO1DpTaKQYscFhrafbDzz5KxuBZ1s+EkK3bYasC2WpUDItzzy9TKxTJi0VTUITu417ZFtEoWzOBO2yiQCnlmj1QlqeyetE7y05wiyZc5iY45mqynWFTy8Ta2rEKtwcHViPiuc4dgQLFt00Cy0RS2KdF9YcoTYG6+k6jylgK/iwbR0FwXpwyVHbRqsIZavWXXC43CNsbglEXjcTbZQUNRvlyqm8Lt4yWLWo2VxILGZb9qUWbfJHlb8o23IqtiVUVbYFaUYsGEPTbbFbrJFR/PaWvC5dUrudS1sEsa/jSDUkNhcSqkF8xQSHCY5qN2ebjcfA5jJkoL5afiICweKt30bhKH51NFtQAYqQdaOKaVbUWawGvMJqE9RXt6rBYNWDKMU05HX06ftAnwOxJsqr05B3IFrJufIyX8BsGx6Nd/iup08Ds4lbJ74JPgRqLZSy8b077bBiCX3YnCxKI9eKVQHZplLaGmtJqIGdGRHnMFYQEaoCAkYszgesdRizzV6N2D8uUaIJhUZ1FfvqU12aomVbWNZk+31rXz+79Yh9pQjFbXxb2zbxUdkocZbX761u68wkbOeB2jYHhua2X5fMzf7A7d2R+w/vOJ7uCd3w6uBhMbpRJQpsLi9s/PMxGIJ4dmEkdB1dH+iDxwUP2I1XapQgnt736N5tl9e6spaZPFeq37aT2uJJrmDbSlszzW/LiUyEZrfxdYdHraUkZbkkntcr4i1912GdowsDtSmzzsQ1ba4hDe5vdmjb/MJ7a3k/7PBjx/uP95xuv6fvR4be89NL4romnqeFuK6bdax9dWOzHjV+K6AF5JXGWbZAi4jQWbvR6jDIq9e6sLnzbBZprwLzMuM10XvLz7+54fvvvuHDt9+zH3dkaygtErtK13e44BG2XQJjsNweB0a/Q5rHEDZ7Y7tRZcq67QtQzGaHGHTbw2EDURo1b/QZ1w+bBzgdq4lY2RxYaheocyK3yuIWglhyLqwlEy8rRT2YzUVM7Gb3KzWQVakoTS0VwFrEGUouBNlcp3bW0YWeEHYE14EqMWXmy8yPv/09X74+8/DwzHKdKbEiRcAPm1vZq51wXVdaqRTxmFCxVfBFQRPOdnTW4vw2vWi1sqYJWfPmzCOGFrf7V9zW1ECFVutWrNlKtULDgt+26TpjMcEiEpAsm31uSejaSAbQjlYBG+nM1iTphwGVG0qF2gxGGkaF0iy1ptcN45Y+DMjhRM3bVEpRmlbkdeFDw5BVWJeMdR3j/si7bwpp2qFJkNRBWSlaaN5QtbLElcs8k9aN5mOtRazfFkO1PzjEtW2hom7OYcZsG9dxDqwDa7cz9AfKlyiNbTN3Q3F/oO3o5lzlvWCMvtJ7VlpZWZeVuC4Eo/jgGfuecRwZdrtte6/8gfKxLSnMreFSxltDPwSsUby3iBiaZmo1pLRuvPiSCX3b7qeq7HYDN+WGd/k98bJZBK850ztDWWbWNfF8PvNtaoSh53Q6cfv8jORtR804jvTDuOUXc+Q6TYzLlXsfGPqOXd0xXvfE12dnUsFZvznFaSOWhOS60Xz8q/lIU/BbY1dRCo0SFTEFkcK8VkoDnMP3u801rCo1Kti2ue8VQxs2aplp26K3Vl+3twfdDPEbFKOYIqgBYxRdoTWhGkGypZqNvhaKEIZuox76PXiDBMcw7NjdnWhE2kvCDg4vG+28FohLZp3itqi1bQsP7+/vub+95bk8c00Tdc0Yv9kM0yzldQnkoJYQdnSxEWrishSmtXAToe9PdOGINS9c1xWfAyYbmjXQPK9cbaxamrRXyu8/Y7IvCNXoq1+pgZ1BeoeTnuYzahuuCOo3JnlLUMJKShsvsdywca2xLLJtc6NZ0rhtrKtBKV3BPinNN5oT+sWS+0Z1ik+Q7Zbs53PhfHnGm4AtDjN4duMeqY2n6xPLsmwLCmQTcGwrrSOncMJYg9/19KZnbplUI3JuzOVKrAVRz8PTC7su0ecO3QvWBXwJrC1icsO1wnIo1NVQq+Fxf+Xb60wfesxpxGS3CUlDoytbcpGNYfqceX43EXYXhjZid46+33Ec3nFuX9GYyGvEhx3WB4bTSNYzNRucWPa3AyaNxLwS88r8NRJzJrbIem5Qtk2AJIv22/KhZnqqMay1ME0zuj4iLWFSYZAJkxdsixw+9pTimZbGs5348vB7ns5nfvw68fePkDeWAR9/ccQOAd/3/Ot3f8I4epxvpOmFx7aw1ExaE/O60mPZSU+3c9gomEWQXSPH7XwwZLwL2Gqo0pC0bTT1vYOyo5Rt47AuSnXtNWl2qN14wq7JtgNBDTY7si3btmUVijWvybahkDGvPN0t17fbxj4Pwdo/ZKBAoZBIRIbsNk9fC7Z5Zh+pKC5ZxOu2ya9asl9RBFMd2hckeMQHYlC6snEVmwFbPdVViisMs9KCoGHbQphCRZziz47VvS4cyp5kN4/dsjRyL1g6evVc+gRRkazUgyHUjmbqts05t+0CHwLHtONFhGgaZvHbFIOKpsjDtO2I6FrAnzxh6NnXIz/5J1xpmAz9aUtEUjJcdGZXRqyzuCEwKCwpMacVl7dCphkBNSwlEqk47dFuWyjjm+dqKrZBqBbpLNZYrGyFnNHN9lQ6CNEj2lhChQi1KZmCi4aKoB34JSDeYfqtq5yDpdRGuSixZLQJvnm0r9ii2CrbhV7dpgcIjTZnoGBcpdU9rTZMW7g7fMuHu3vevf/AeHz3artXyEnJayLmTLUeyQtGC5TMfnB0ZmQXTph9Rz94Ou8wwaJq0GbANgbp0Q6kU7rSU3niklfq10gZCyZYfNws2CqRel2phx6jBhMNnARrLKF5SrCQhXRtfFmeN6vPoox3Izt/oKrlLIV4SWgxWOs43YxMy7S5pnUDt+9uuP3wjp//u3/H4HaUUrlcr3z9x3/ky/nKw7RwnRPWOWzYNrSq68B0NBswKE0buayobravPmzbTxuvO5dbQGVr2rTYaGlFaqQp5HLBm8QhBH718Y4PH79j/+F7MHazLFShSUZ8j1qHloQzwn4IOLNH8t0ftTHOvC6uQ6mTor1Q1WCLh14R12PNgcojdS1ogXpbcK0nqHD1Kw7oRChDoHytpNy4hpVdUaZceImZ5aFSZMZ6iyahSqNZQczAauJrQujIFrJRism0VDFdT+cse+Mh3CC2Q6JhLpHzdOXTwwN/9Vf/wPOPjyyPFw4feloGj8P0d5u2KG/L7GauqAkYs6O7XwnVQBTQFS89nQ2Yjm3PQoy8rM+42eGc4EZwi0E7IFgcI1lfNzwvULqMNkOrHdpv8cRjaMOmO7Kto9pISSu6CudWKHlP1ytNPNZujYLQ92AtpWw6JM0R1VdOfUrUnHDW0u8PjLd32zQ8ZrQ1co5UgbQWUoFcDNO0cLzZ0R86gjjmcybNmXhJDGlHaYXioNTItE6cpytpBcRgrAXbUWWzvK3YPzYFmgqm2zZmO+M36pn3NBto5nVLtYKWQtGwWTu6TXhetJG1YUyHdaBklkviqmdqjehaSDHShY7BjHSmw7ke8T0xbg0JRCkUppSwa0K8YdwHbG+BgZK2JmmtidoK07RyWVeepyvjrhB8IFhD1wf27cht/obpvhLmmRgjUjryeSJPC58eHvjVNwuHMHJzuqXsr8S8Uuy2PdqFgIpheX5gul55vrxwMx7pQ2Dfdhx3d/y4zGgDHxPWDFuyXRtrW+mSwalB9hZZN8/4OiQ4b7tWq63UKKgpVFOYpkIJgveBfrhDrKHWRp6V2hekWUK2cGi4KpgE1W1WxS0b2kGRRZFaia5hY49aoQ4Nlm1jdO0MNgWST2Aqhwj2rsOGjj7cUbqC6TxD6Nl/c4+g2Gxwtx0mVtpayAbWpbJcMsu8YLLQ2cD9+w989823tNyY5pk6JczeYbzDNk9quolOE3g/MATlqJVLEl6mys01E/yRsbtjDFeenz/j80ZL9sbi6V4nGg0mQxPIov+8yT7B4dTQsnANFVsdki1JIiVt3uK5y5jFU1xk9RV5ydRW0B6G7NDWSKVQngtzzBuPPMF+57DZYJLlOZ0xaVNUT6YSVodTIRvFXRu0SraZ8z98phlDNobT6YjvPMfdiRvZc8mZpWTMJW6XRSrMn174kgKh73DOgrV0qjgMk8nbw20NcY14nlBXWH3kJhwJweM6R4w7cq2cc0Y/b+IikYZ8jnwxD+Rc+ShCvhkxophasHtHvxiG2LjKhfnhJ64t8fWdMKQO42B3sshl45LavWDEcRhGvtmdeHl54SwTzcCQ3vNwfebx8Znf/t0ncmmoWkQdpm1bXU2xqFeMdEhz5DTz0+f1VRCZcTbiyoxbzzyUxrFTbkdDjh8odeWSXvj7v/09D5fGeVEer2wetcDSYP0803eGoQedfovxZnMREk+UiGhlXyGkyhCEflRu2x7nCnKILHmitc03P1wcobNUK6xThVC3yyBaXrM8ZBWWmiBtiaTz0NLW6C9BsWkT2DXfkLSJYovdBKp/0Oy2ZCn6B599xaFI3RLx9Fop27rJFvu2cUxVI2bxmLKNEc2SKCUzl8xu6lhYmfWy8dmN0O08LQqskLVgk0f9Nmlwk0FdweSKr5mJQsDQ4YhhxomjA+YB3LItoypdRM8ra668xBWdFeMN6oShWpLCWhvypPhh6zi7s/Js5s2f3ljEQZcNtVkubF04VAmdYX65Ml0Sv43wrXmHtYLzgYFAaoVFI33qccaCdZiHwrUu5K4x6vYO+Sz41Divy7akyBqGzpCjUmPm7C4Mtcd7h3SWIW0OXslUNCrj0LHvB3zbOKStNkwciDnScoRlYXn1TjbRQKto3SwzCYbRjQxmwATZKICx8BIn8tRw1uI7ISRHaVC00WVLrpmlFK5PM6IZ7y1Hu2dtzwzGMnZ77m5P3Nzesj+caOsTzzlyniceP/2OT6WixvLnndk2aWrFtJX94Q7fFK8TKV7IQcneoWtD/bLJrLLQ3XhIgmmGmQXRSlvhZV2wTzvs6nDDwDgndKn8UJ74pildFzBD4DD1KA2zdww/CdVWilkpn1740leu/Y538YQfA3vrsAykm7rtkEjKnYW6U3amcSrC++9/zvjhHp6/8FeX/8Dz55nLf438h7aQtzSa359ndkPPiCFYx/+Ltv/qsSRL0zWx51vSzLZwER4iI7NUV1cfNX1mhiQIUN/xV5MXJEEQMwDPHPb0ETPd1XWquqsqRUS4+xYmlvp4sXbWXPdFJeBIINLDc+/tZrY+8b7PGwwY21ALW0mkXNiWwpvHY8+VEMOSbnxoQGzhdZ5Z00JbP2N0xpSZtJ7ZojCGyHHvuX/zDZ7M8vnX/MGsPJQeqHf9+A3fjCtTUHI7YfIZZx1x/w6Zz+ScOwFHHSz0KbVL6Noj7MvU8KVbvk0omLmxrhvbWrDfH4jO4aKyLsrqL2Tjuzaeuet+T0KLb1mXQlkSLVTWTTstqiyktZLXSs49P4HGLRvFdCzt88o0Lew1EvCk6Z785czr9Y/8/fkHXv6+8O35wq+XT8y/+S0bG800fvLre/x+ZJgM91yYUVKr5JQ4TcLkI29DQl8bKRhssMRhQmqlLK+c0yc0GUopXPKVXQay9JAhmW5DEoXWqW005ZIKmiFYg8YFuwq0QvIV8X2T6mJDbSFlYV0q3376zN3DK+MucM0TtTwx7PaMhzusCrXMrNsVS7ghJSBQuc4vZCAbMCFirMWHgbmeyHMjrcoP8yttW6BsVAN7PEKkWYt3MyIrUmfkYSS3wlobly+Jy8vCdr4ytDNbPfbGyC60kqlpIeUz22Uhp5VWNnbHe+I0MU4jzQygQq31Bi4o3RyaBDXXTnDTxtJqBzAYg2riDy8nzsuZ+eV7mm8E2zjahkwjZojYyUEcWVPh+csz35M5qMNZw3Wn/GyZGYMS2AjuHhMi6gJGz1Rp1CK0MjBfCtc1k+qJ06cTxkR2uzucn3qGgyopL32TOAwc0pHT8JmLMcy//o4/3v0eauUn+gE3eCoJ3RY2rVjTswb00dLSlfmT5TnsadZStDGNkQ9FUdOlXeTbtL40/KYghWIEt/TsiE7fWju9q/VwqFK2jtI34O5GhskzHUYe3g5sqTJfC3O5IKeITjAcDXKyXeNvBNZG8SvJVGTphvLagFOj2RWaYFZhkwUtjVCUZK7kXGginNyC3XaEENgd77im72lcuRiDaCHsDeIC6nvmU1bBfXcl+26y/fRPShwfsDbgsDw8HHj9MvKDwlo2zBwwzmGsRy+VtjQW2zdZeStsduOQEnlNnJbE0YMMYA+O+fflhiJpDDVwF3sGD6vQBelK6qECf8Zivzaat1RraWsP2cA2aqpkGlmUqko2BaN9xSPGUukrnuyVqhWplSRKqv2Dd8H0VY8TqjHU19o5+w78JtSpr/qd9jVNaxVSIftI3RJpWzkFOLojMUTMMPb49VJ6UqiNPcjKB9K69cM5WFquIA7jDDEqtcUe5kRBracaAzmTRHHG4lxEQ6CWHsSVTWO6BRtt6ljXwnXeeFlX3MXig8f4AcOCOA8hIvOVnGHJyrRcIYBXi0cwbkBrRUp3uItCNI5pNzGnwmYam8ycLidezmdec2KIEx7X9ezFgnGIt5SaeiKq6WFjuZVuOCsrIawMJJwTBlWsg+K7RkBbpYqQXMQfYT8JMjr8EFDjSFgMG7iIuIEillR6mI/YQtHujR9sYIgG5/pWw44Fcp8wXVNBnGcYLc5O5GZYSuNkbyFMQFODaR3TmA3kVujsJoEaqKKIBaeF5tqNZ+9ovlGrUuicZTrgpuMoWke7tRtdQkyXjGjr7vlqDZoLVZRsLa7VTu0RxRZh1UpqFa2VrW39Gi+NcPA9FCILyRSCKtIM1RusmJ4Z5hpau4wliSK5UR1kaYyNbvxSxaBk2190aJbN9Bj3VgrZK8FGrDhK9EDtYSiu3ogEhs1bbO7vp1DZqQPnIfTvSDciiylQraGJktPMebsyhEgwHrubMLLQUiZR8GIQ69AYgUZtma310CMbI7YptibaLSrGVUM1tsuken42AgQ8Gg20hhQlSUFMLypynGgyoyVTTabUQiqVhdppMdLVUDRDs1CdEr2B2LMSWjMsNXMtHVNYbSfKOBeo0ulEWjoesValVuW6reyjxVqDEdjtJo7DyP3ujrv3j8TjDrWG8/mFz88nPp8u/HG+cMqF6D1tNyGtUvtRiTUZqT2Nd2v9UnXe9Fh4TNclikOcR4BWQbZO9di0samSTaXZSjSezXuyFsJWOMWVSCGkRIwDnSWl/b5tQIG5CnVLVECS59HfprAuImmj3p65mMTOBcIYGHePiB84Xzd+9/3f8zd//IFl7km2Viea6dcMoW8RSjCEoL3w0E5QmtNGaRX1ih0i0KEDm+qN9tJNczll0pbIqaDpCnXG1I2HGDk+TNx/c0e8v6MaZVmvuFnJDwOMIxMGaz3GdnJYjhN6C4vSDC1DU8FaQ22C1i7Xqjhqy6Rtg6Hr+Qc3cnYzKgklY3xliBFwvNaJWgyVSimFfOnbB6LH7zNpbWybUlKl3Ogf5+vCZV2Z10zO3IoiJZXGqpWst4CrS+SqjVO78PxPM7/9x9/z+++e+R//7hPD3YGtKufrxmU2iJ/wwXENjlEMpgjXVLnWnr9yzSvVdhrWYhq+VDbtEtjJOdZsKFVopuGUnp3QGs6G24YmILVLLUxwOLE9RItGKhnjen6CxWLEdkJR6zQTqV3GW6pHa0O0YQiUFTY6VegiF0pRKoHRW7YlM58zqqk/j8Tgtr59abVyrmeMXzFYbLOsubClxJoSy7n/f414diFS1saiG+sp4zZFs0HM0EMpi97CE1sneplIcV2CJwolQ66VVAo5V3ItnTxkLcNhR9gN2Bgg9zNIm9BsN1v+SO1S7YGdlUpuGWsFi5A3uJxnLttKjRavPUzKja7L6qaIu5soRphzRefCklbcGPHBwQXcxwEfdwQTQHyXG22VPGfUdCx31U7DCQTU3uGkA5LKtoGELjXFU20gpQXNibvBMow7xnhgk9g3A6crL+MVTYVaIBVDXhLNRsRGBhmxdaItjh/++KlDUozBO4cY38/TGea6YUvtuMswIKUgCs0rde3P2yzdhKzSaJabPNX00D4y1g29PnKGvBTWUrmWzGh8l1GrodouA6K1vhWnU926VE46qcYImhuKoTmDUaVa7dLH1ZK0kEzFpZWDQvSB3X2kXhPaMts1Y3ed9mcIXTpbV5wpvSnKhe2aWCaFcsaFiBv27KY903QkDkeu5xdqaHgBUwypNdRoP79sVxBoU7YMW27knGlhR5VAI5DVU0qXnhoXadgbnMRQL7k/m8yfWcajpVK977r5RtdHm9YffKann1VVkNyRX1V64U3HcCZ308e1Rjb0wulmrFCtIIbmehJosx0xJLlj4cQZHL3BaLVCStTdLR3yciXvHeMwMPl+0SiXng7YajduWo+PkZoLjQpYWi6Y4DEuEEOmVEAsrUjv6oxQy0aW/gC3LkCI1DX1Ttb2B5sTg7ZATpVlyZzWjUkt497io8dgepcXPKYKtQqpQNkWSI5GwIsHE7o5pdDXqa11VvIYsS3QNDHXC6fLidP1yqKwCwPBeEKlF3zOoVjq1lCnIJWWPI1ODVhSQuyKtw0bLHtTsUH71SBrx2QZgxl3TEEY1XBYImHa0awnSaClE5sYkng0GdZcWFrBSKFVCGIo1uG8w1ntRbFPlLqR6sqalX00DKOHOHCdO1a0GgHpi39VMNXQVMiiZC00Ol3EVdvlItIn6MZ0vb3jJiHLvRhR01evIj3d8sdJgupt3NhrLygVRTs2rWSKVYp0TGQ12iUmRdlaX9naWtlawVbFFYjeIKm7/JN03bJtt2mP6X/enKK5ewc2o4TWNd9I6xhA203CglKldJykWrLckkxrpQyKN9wMwx6pnYbV/A1hK0J2PZeitkaTwtAsaizGd1RjNuWWFgvqLKqNVhLXtIAx+BCw44itXYeeNONMQKyF6EEbqv39j2bA+oAXIWyXvrFTJddOisD0iraiNOkPUILpNJ5a+qT71niZEKFstJZp0ov9UhtJlNH0NTemIdWhRmg3HKkEQYNQKywlM+eNNSVsFMRFrPMk6FpkhGJua/vbsyGEgXEIOGs4Hnc87o+8vXvL4ekeHwMKnC+vvHx65vPzmW9blyKYFntyeGsofdgRSV2DnpVC9yPE4G/o0V7wi/iOxNPekEnrz9Ks2mUUUqm2EKyn4ci1YXLhUje2mhk2w+7psSNLValOMUnQCmsTyDezXFrZhx3BWbAByZkija1lxFR2ocsI7NtHCsLzy4m//Ydf8x9+P6Mu8NWHNxzryKrK2hI2BEzwtGAx7saRr5WmmTUnVFofbsSAFqVshaKdKCZGb2nGvVFuqqzbitYFawo/Hx948/TIm5+/Jex3qJ7JeWNadui7HbrbMal2LbV0j4AG15GLW7mlbwqKxTrX1/tNkdLpQ1WFnBOyH4m+U5KMi92oK4LxjSE6jLGEvKPl3JvrspHnRG2WWgcOoVKyklJPXM6iVBqXy8K89rCbmh1Mtn/WtbG2PgBRBK6Ra7twXq789h+e+f/+T3/Hr3/7hb/99xd+/n/+htENuJNhLo7IQPAjaUp4dZRquebGXCpzKbyWRMgWbzyrLdjcyKXQTMGPBlZLyYbqLaPpDZdXwTmHD71J123DuO67s72KpdIorXQ8KRZrHGJcBxho7c/OqrQi1OqBjBHB24FWCzVB3RxLW6lVUDvhdoFtziznTKorLgw4FzC5UWal5MolXzoCFYPDkVNgq5mlLuRzAO+w3mLbjrwWUk0sL5mBhlEDLlK3tTeVtdzuNosVT7VDb7SbUkp/fx0P2c8dQbHOMR13xBiwrmM8m3Lb0DRKawgN43rqsN4+q6wVT/czbqnjWmtt+LuRuGWi7d4pHwK7w8BwN6EirEW7x2WuJK+IV/wmuDDghx3ext5UFEVLpqy5m92dpUnGtp4dZO2BaAxbyZyvr4jt+RlGHGo8uVzJy4rZC0McGIY9zQ0sS+Z8mnkeLoxaKaWSs5C3hA5giHjTUEZqdnz+/oVTbRjruT8eCcexF/Rr5UpizBmvYFyAJtAqzWmXSdVGNQYrFbnNPIrWLvFTMJoxKEWEirKVypoLaykMpg/bBEOz3YslrdKc6YjbBlUMzinYm60vdbmv+u5tMRaqF8zcfZOrNnzeKE0R6xgPI6tU8nwlXc8Mk+0vUh3W7nC24uxGGAPXktjWzLo0TL7QxoK6yDRMTNOBOB2p7TMqithbajX9IwFF3E0urJCSknKlloI632WREinGsZaMtIb3QhWhmU4frLre0Lh/5mL/mtd+Y1m6NmrOaFZOB4Ek2CrdlHHuU4fsLVMaOvd28NjnTBn6BH/IjnPrWs94bZShB4H4TakObDPYVbi0C24GbwPqIJwSZbvRfc5z57waC9+eKHKgiBI3vWnqlKjKPrgucSiWRaXHJ1+V1BI78UzWMw+BCSX4RtbAFBxiLKu1uGI64mmK7LeRFDbWtmErmF3Xpu7P7qbrzSx/fOHbN4k7U3gbQUdPnC3HBulocZox68w2DbRlBa2Uo9BSBm2Ib5iWSNvC+XIhuxmzbkje+Pac+f7TiW2tvLEfeBombIW2NDY2ojFEE7mYPlkqVbupOgnSLIP1TDVy0MI9iY/3O6wtvSk4K9Zbove8n+4wwYI6SoxsJlNVGIuSx4nJRKpEnt1Cni1lc0jLWBkRraTrTF0jzhf2w0r645naFlQ33rif8H48sp8GPs+VrbxgW2GfJ0oq5AzbVig2kbdK2QpVwZQ+yZOoeFW0waYQNotxShkzLkMG1Akm214kWsXlngmhVrBVu8GlKiy9EahSQSvnZaNoA03IzkNqNJOZWYkzOFWya+TzStKKMcrd9a4fchXMVdBxQ9Sy0xF/11n8PsNmFyQ3dpsym8zQPKEoeZfYtRFpls8W3I/d+y6znydqbh2RdwZ2lTYUHjbPTKXaypANuIRU2M3CZipSG36F63AmSmCnlu0wImdIZePM3JGjYpHJYValSWZ1C1PuDXgNllB7867ATpVqhAr4VEluwWI4NIPuRkoq1FQ5r6/Y6rF47DgwSsAbi/pESB15yGhpc8LWPvW1LSM5Q6nkWZjLTGmVu+yRoTP3XTGsOmOTY4cn3DvGPOA0sJoL+Xmjrf3QiTIRJSCSGZMhNSEZ0Ishbxday/zi8SO/+umecWc5l4Vv9hMfnt7w9U9/wc6vlAZLLpxeTiQFiSP7zydWMYhv5PYJSXuMFqZ2JV1HimSaLTwdf8nj8Q13hweQ1kOFrCNaj5WCKRWzCJiMrQ1/FWRb0TnRTMPuPHevgZArr+WKvgizVv7QZg4/HDDesVqIs6ABzADh0iihUzF2SyXtEqhFtkxxiVobLWfe7L6i7Ro4S4yJv/393/Obb5/59u9e+NnPP/DVu0f+7Tdf8Y+fLP/03Sde//A9T7sPRNc56VI957L0iVXbYbVijWf0h67JzooplYONZOPIYhGZmUbLbhw4yMx/GQ1s8G6r/G//N/81v/x64pfvKsrCUBOjsxz+T3+Nzw1q4dqu1Pn3lOkI8R1xW9nWwjJnSrsCAW/6UIJ5QdPKrC/oGnougBWkNnCCfQj4FHDBkbPBZYt/6IOZ+/XAl/SZlDLtRZnthvOBXaQb4duCX2dmbVyXSirK9flCuvYJpvgN0wZMqUhdacuKLIrPnsUv1O9eOP3xe/7f/+6/8J/+/d/wuggPv/xv+W++eodW4bu08d3vXrCHe4zf89Xwpm9umjKbQlKLGojBdbuzbjT9jF4HXGyEodFeLBoaZnDcjwfGKXRD72XD2YKj4FIkB4cxPXW3hkJdWvf7+D4RtVTMkLCtm/UJgmtQbaFOGZtHmrEYL+xzQX1BbEPMRlZBc8VcTozxSNaVVa7M+cq+FYINVLuxcWGtifli8M3hnCEMBrE7xCjBBaav9xjTp8Jb22hb14eXmCmuF/atWaiFWldyXZFVKVuj5oJrG1v21NpAVmIz2FYwJjG3itaCqPDOH/HeoQKfS6a0RNOKrjuaJNQopRmsnDGtp6C3tpKzYS2Q51ee3hz42fGBn32MfHda2OYZPb/y1dNPudsHjjtBZEdumaKJGO8YjDAZy/5pYLcPhNHCGKj5itZMqwU7JcSHbjC/ZmgrhoYbLIsGWoFthZKXHtXrKp7Ktlw4v77Sjt8QvGW/jzztI2nOfNpOrK+V3WgJogymoR/vsUEYRsPu8S2lVuYl8/I58bsfPqMW3n28I85HrLNYQ+fDrwshJyRDNZkmilwCS1tIWpHNYEeP1N64JJP70LZWGGA5fWZZLzwdJi7XjW3bcDZhtgTekI1g04SanoBrtkbxBfWZoUX8MPbG7GXBuIxpDTMLLgpkg7nCvGu0L5kyr3wqjeNlZjrs8ft7fPUUOjY0XTdqS1RfOLqIyJFmHI/pmbxkVp35fPktm5+IeWIshru7J6Z95O5h4NtvlSlajtGz7QsyJypCK5VghlsDCtvnb0kD5Hf3hL0wlImhHcl/LMylQDI4bcx17f6ZFUT6rrzU9Oct9muqJLP1EIVNyHtFnDImSzH5ZrCkc89FcM0je3BXwRdhdrfwkAomgK0KdDe1vwUcFV9xqWKiw3pDvHo0dIOTXW5FmoGYLS6Cbkooylm72ceUzDg44qtQk8JYmYaAtUK1ify89bVPMPjau3iJhnB1FJcx1nKUCb8f0AZyLhTbV0EiphdGs8VkSzoo1ntCCCRTula0wioVe8msPnM9FPzcV4A6WuxrIA+wSGVYCzVaWrUMC7TQNZNma4h1FBWW1riUxCVVrlvlwgU2wdWAHwxRB2iZjZmdGYnDQIiRfK1UzR1TScTZjDZomyPsG/tgeYr3POwb1EStCTNsNB/AR6YxUKtFG7BLxNLJEsVXrptjNYZkwZg9JlSMNOqcwW59Haw7Ttdnmmy0S8IvBRMcfrfnL3/+nofHO7y3fHr+LeXqKcmgmmlZKLWxtUqrNwMVfR1oLDhnOLiRKqV3uHODoYHtq0tCxVZLxJNt7rr8Bs3cGp5bmFPTbuRrTnrQlzGIt4hWqmskGr5Z1Lcu9ymOMiRaadgsXMt2k1l5amjU1MO61paJKlSxlEkZTA/7KkExq6VZ7WvEWZBBIFp2focb+2FklkZ2DTXCIJE29Kmwmw1Xl/HSw0/WseCupuslBxhtd+wv44a5SA8lcY3YuhEZC6F5kk8IjmEdSLFrAylCHipWK6H0OHM2sElIvuGM73SjmDAJUMiuJ3E2o90snSzOSr+XysimhdwKkpQ8NsQoHkcewDTBFgs+gLOIE7JTShJyhlUXpPaQH43gWm/aEgVTLOIt6i2OQJGOrs0rbDWRNNOaQWyXdDjx1FhgU9pWOc/PaGl4Y7l7jBwPB6KD63zmeHjgcHxgGAZC8JRtJaWFi7lj0SupNjY7oLaCcdTtQJYVq5URi60bhoBw4P7hnt004qzlsl1wTDgfaNGg6kk18bKdaZtjq4bilLzAdqhkX4juyHZI4Artk5BjLyZ1sVxMxWWlLoVXuzLZiWAi2672aXZVXtvGPvdgMTNY8g+V3JTahHp4IF8LeWt8t1357R9OfPdlZvz4U/71z/6ajx+e+PjNPb/94T9iXeD48BXOT0yHCT94Pr+8oK2beIx1Nwlcb5gz0pGFg+mUqdK3ZZsx6LJg6kaZHOGa2bvAX/7iG/7qq7f89Jt7PnwzsJUFb78ihh37wwdUSqf1XBcwj7Q60VKCotSS0HxFuceNgTAELN3EmNOKvhh06hM2j+fMRqAi4nH7gJwcmgxm54njnhgjbpoxL4Ip0kOd1nvc4AkPO4LzvLYTr+mCaQ/ghEJmSYWtrSTVTgQKdEN6GnBDphi4lMTzeeXzJfPdJXH+/AO7r/6Cu+GBn3z9K776+sgP3//Ay8vvGPaPPL655937O968feB8vbCsG8pE9Q20diRh2HqI1TDiJeMFAjCEyjjuGIY9h8NENAFqI40Nr6F7baJlrJbiDNU1RB3NZJppSO6yzmwENbFfs+YWOhi68dhUT4sKVaACsaLa5TItCq4ZhMZWV9IyUUvfPq6nhXhwtOjZhQPBbz2oaylgC1Ut22qQmLkBlbFD37o0VbYl09JGWza2eWZRsEYwTvClUnLX1RutXbbaGikZaitdTCiB0jZy3ljmzOvlC1McuLt7YHoz4Y2lpsqaLmQ8KoK3oDigIVrIWByKNRWTG2ld2VKhOMfdfuDx8cC7D49c13/Ct4F4nPjqqweO+4HD5Hk5r6i67i1rlmwt2VnsYDF+RG1gawmXK5ba0ZP2HhNjN8i3hid3QlodaK7LqUVq3zaW7ocbQ0Bz4/I68/rVQgye42HP4fHI+iVTc2UNW0+op2/m73+457i7xwTLEEeKAQ2ZaX9BnxuXLVG/E+7f98FFbIZFGsPWt3ar6RJRUaENFZM9TixMDdOEWjO5Jkxy2Ggx0aMVXsvCxsaWW/cWGrpRMPRz2UmguP4zbBbKQJdE4mCwSOnp7dUmXO5nrowN99rN89U1XHb0466yfH/h+pOl4+Stx0+R2gp13cAW8ubZNmU3GEz2BBnYPQxM7YiUgpkCde0JzcU4DodHnLNMYyAn0H3f6BziiHhhKwWbwY6dXhlkx0u5EC8r988Lw7+ceBSDFcsfPn5Fmr9lyxuqjWJcv0+NQa5dUvZnl/HUqqTaU00pjqZgFLTKrYBqHcHkfswLtR1PyA0VRl9/au0BCNK0A1AMULXjlKTzta3S14PqUFVKK0jWHm2PYJtgpGtCnd6MH7WgpeCl411dBdMUby3eGaKzN1Sj0JztJB/TX6MXR/AOK4bBDLjobxgxYTO3RLbaizDoa/MKIF1LasXD1te1jR7RnNfCtvVpsyAYZzHquiOd2uVK5abRz60jpLTr0IwIpcKaK7Mm5qWwbJWNhNWIM7a/n+popdBqvelRI977jkmTckNcWgwVi2CLEDHsnedx3HHnUycetAZmo1gB54i2m8vUgJVMuGHkMo1t7QV0bbeHoLGo6Ygs1UxRQ62WkiuFSnag18IgnsFOvH/zxLTfde14a0g2mAxON3LumQqldE1fbUqr2jMdpGsjg3iK0ZsOtcudfozPU7l5BOjUFqFrTws9hKNLL2/6uRuBR7UHWomxcNO092u1LwZE9Yb7uiXjlUZOpcuGrOto2NpzFWqptKZdumY7KuwmNe8YSPqUN4h05KezRBex3nZPwu0+QAQrDrF9S9WPzi7zsbeCShpdI45ibujavsrs8pg/adwBpH+PYP6Xn216CqHU/rOb3pJxuf3s0rXxaMdmdtRovxcqrW/IUJppaO2fqYjBmcAm/bAtpVL1lgxL3wr2Fp++zhTT5TUoOTdy6lIWo13XXkyBdPudSO3eFAzGmRvuUbsvYO1a41ILgsOarlc3ajrCs1ZqLszLTBDHGD2HXWSKA04aDsNu2rGbdsQh4E1FbmauxkDVRG0rpRqMBYPDtIGSz0DreEUtOLEEmThMO2IIGDHk2rB/oj31a7LVjvplG0m5kmvtW6zb5xWcx4rDNou7DUIApBo27RKEtiYSlVEEYxwa6OmRTVlzT2BuvpvHW73J1BSyGVnayrxufFoLz9dCwvLum4/8/Jtf8Pbxnt1o0JrxxnC/P+AIxDBinOO7okjr1J0mlnp7vjft2mroxCvrDLY0TK3UZqAkpCQ0N/xaOd55fvHxLT/78MiHd488PO25ri84f8DHIyHuKGyoabgtIGYPBOp2hdpRv7UmRN7gQsCPAaUXFCUndGvIaLAGvPHktlC086mtN4jIn5JrvQ94H3HBYLWfXXYweD/ioyfsAjYLVRtrLQzSU0DF3Agjt9RZc7vMjenEJIuhtMZ1SXw5zXw5rTxfE7Upbz58zd3De3714T1ugB9qY7meuHv6mjf3R949Htjvdsxpo6VMU98bTQzOCCE0xuAZ44inMGD6V6jshoFxnBjGiC8O1UqxFt8M3hl8FGyybBa2H29qbnK52ml/XSrZNwmYXsBhFegMdOz2J0+UGkWaQ8SBbVixHaXd+nVYS4FWyMtGGSJNR7zvZ1VJtmu5Tff2ldIQlxAs4Puz43bvFNWOhSyFJW2ULDjTbQCkvpmgQL2BQLaUyWtDpaLSUaIpLazLlct8YVlnphiYppFpP2Bqhx6kkslqe3Ci3FJLlZtW/3Ym1Aq5UreNnBLGHxijYz8GphhwKDjDw/2Rx8c9+3FgDJ7nOSGtP5sqldKE0rrU11qPYMhlQWrt5DgniBv6f3eGFhym9BOhNemnlVREOgbZNIsVR7CGVhvLkrlcFuK0Z4wDh92e8nqmaoear1ui1ETTldPrhWXpSdrOeST08ND9fsJ5S10qr6cz8Tj2Aqs6ZlEON4xtkYIrtp9Ht3PJIIhttHTz7uTalRvG4aKnLFDbQimVkrvfohf70tGwxvRrQbr3y9xQ1qK2F/tW0NRuEsGKNNPPTVsxt7NP0e5RoZ/B22VlnRdSSj17x/fX4kMgS+pIWyrVaicNieJGQ/CeRlew1DlTFWre0Jax0vDeoPV2JIjhsNt3guOWaFuvX6x04tNSC5dl5Xy+Itaw2+0QEe4en/g0nshL6/WJ7QjOaqXL4bUHf/5z/vlnF/u5CbqAbH2l6GeHKUo5VtpcabmSqbjFI9Eh0WCXbpwqzhBOlm3oZq5tXoB+CIbFcOGMk17ENwSXDL5aNBiYN1qrbGJguRWaNsPcWesaPeMpI1slbzNaEqY2PIZpdpjUkAr+Yvr68Ef+abQENYQE7hg56oQCs0l4cX31e+/xK5itcTVX0pLYtkQiczhH2tgoXvGrh2Dh5jNQq9Q5U749s95FHMJBI5dDw6sQNkUmi5l76mEZNvyFfpXEBrmxzYnX543n1wuveWFtFezIw3Ei+sCokZxmylrQOTLuhk5J2RyfpHZyUoW1bbRUkVyZNPNwPfB+CPz0PnKXHJvCbBuXsyPuDEJBUmYaexFh5gPVz7TaKKtwvnXPbja8ysK6CWsWUq3Ys0MLZJv5erjn7c7w8T6Spm95evB8/Hjgr/7qZ6TryvnlxBR33IczNmfM2bLdcHgt227ULIWSKjSQ1fYJe2ywClI6LUGuBsmFTRdMEWrumnVyL2wxYIuhSe0a4tYbUFEL2VAH4cdqqlSD5IarSvaJqAPWQq4rbquklDhvC+3aOdQ5JOpzIm+ZVCtmU0zMmLxhrgP1WDFqCSuc0xlbK1GF4TASbSSWQAiCLVCTUmxlWBwYpdkNf+2ce/XK/gLWFLJbcKsBbTQK5gRp6A3BkCpXozgVhmwptsLWOvqViq4KSUkmdwoHAg7iZjCtkduGzV3i1IzgL0obC8Uahs2SpXOlzdJoY+ktSC1cl75WNCKd8V8NmitJElNSrBccSiyOQmVzGeZM00BpXVM9ny+s24Z1Iz72Jl/PlaUsoD1LgdAIWYhY6liR2WAabPOFdF5owO4Y2dUBi6PUQj0ntnXhtM4sr4XdznC3M7wZH9iLx9jG7v6Rh9HzsAscj3v09QWvlmgGnsqFooa5WfS7E+7ugXjcsfOB9bvWW5VJKMPANEXeHD2Pw57BxD6dImDtRjCV2DxJupbTXKHOr2zPJy4/XFnXK/U8YQfFvzdMV4vg4TDRsrLVQhsUc9l60nfbOCyOGAzWC4fbwVur4j4VtnHFG2UskeFoIRXquXD+DD9cLjzPz1x//xl3f+AnTwf+9//mL3n70yf0vPHyt/+Zdnnmvgl7N9HsG+Zt5XQ9cTln9vsd4j0vVchrwSDEZohTxKjSUkKq9mTLLePmuRtVJTOcXomt8H438H/4i4n/6n/9U3a7Pa4p7nDElYytmcQZ/ZKQreCmJ8bokdbYTgslp+7RKMKbfSN6h7dDN8WujbRlbJiJ7GhiqJNDzhmGBdUzkldEVvCJsLZuJPbK2BrTMCBiKU4JxwsxwmSFulRMdXhGdDjj/A7wHA47ns8rmgrRVMy1m/xbLJhTYXte+fxPZ/7u5fcs//SZ5bRy+Kt/xb99/443+yNxP/Dbv/1PXP/x99Sc+es3gXfv77h/+5Y1XbuUcFOMWdFmEasMEY5+ZO8Nx1CJq2EXHPvRY01gGkbiYHu6e0nUrVJXwYWNiCVUgxkj2rT7L1gwqWFT7anD9IKtyQaboMGiY7iFJzXUbFipHchRlVI90Res60OlOO0pTVnzTCkX2rYgy4mcZ+qlZ7S4+z07J7gYqTaybolaClUX2Aq1OFqLFAzD3mMDoDNGek5HrYKvC23LlJeCYG/Me2G7Kq+fVz5/e2J5/gHrRzCW2q788MP3nOZnXtfvcOyZQuTtfuR9OPLleuK6zixbfw4KhS1YhqF7vfIGIhtSa5cNLVe2tJJq5uvJcmcrI4ntu99zXZ6JxvLRHnh/f4dRSJeZ85p7CFwTSkrY2dG2SHg6ErTi8sZ6vSBjpDlP9o5o1j5QVNcbMhcRDIOeuayZmgoYmE8b1sAUBVIh1cYlVz7/h+85/MqyO458nN6gD411TUixzGWmzhe2+cQf7/Ycvozcfxp59/UHjOspwF999Z7f/fDMtm28fPk9+r0njQNp8Jy2ymHdqFWQpd0MsQa3+j6EaxU9d+rMtiXWpXKYApMLBAaebW9QTKlsy9pNrLVhpRHUYBVq2/AzmOA77r02rFWcqdhbnkZrip0tYkv3s70q6hXZwCZIJmNyxq6JqyzMX17Y7g9gK6ZUQhDkzY6yWqwpePdKWZR1vpDyTBkaNp6ILkFzlOpoIqhmtLzQyozWjcE15LLSdGF8fMObbc+iiZP05pCSUZdpZeG0KH94tZxeX7l/+4b9/oHDt0/sn15pWNzaOuREoayVy3wmlUT6c4dqrctMjpEiAXNjCKuDMQubFbaibHmj7gPWGnxVSoCkt048FlxJOG1kD7p1fWkKGTNvlOAxw4CoUA2sruFS56U3q9itIGMPZSmXyjb2bs23yjYoIp344kNgtF3f1OyGbgsSB9xhR2xXkijFW+Lq8DEQJs/kBRM8iuAujjZ5qipyXbmE0sM/5sJsK0lqp5iMkFrG54TZR0LtQU3JKm5pNLWs3mFTw3iDCZ74OcDoYYgEaznVTC6V8VwwhwGjFUkFiYG1ZF5eXvluu/bprbPsn0beHd/irWfdFr7/dCW3BEGoLrAGi9jOl8UXxDXsxTHE7pUQD++/HvnwZuLdux1Te+WaKrIpD37g2gKbWHSwpFYQqew/QEyOXJQ2VsxcEVvA546YsmC0sW0JPxVGEZ7inve7R97tAx+eBg6/+q/5+JN3fP2z94zuJ5yWT7TjJ96eA/v9wvN55rx9RtczlUSzCWmuJzd6IS8Lqy9U241pYizFKlut4Bqezk9H+rSk1opKP7QshnYLlxHpRj8nrofvRIuxhkrf2rScWKSwSGZnHda2jofNlpnK1hp5SawtE8QTmmU2ldQ6+akEpRpHFsfFVbz0oBaioqdGMkqJwoMP2MFhB8fexx7JXhMpJ8pQsWKwxbIFoSSwtbEMBSeKJMPsG8VWWuvkJpeFJoYU+vYGC9VCrAGc0AyYdabZ3Kflc2P1PS1ydJBdubH9HYtrlKKINDaf0dwwxVJCf8hKhU0aQRXjPGYcOLgrqVRybQT16M5hhwo1g1eKKFot5jAQmuLW1CPXkzKvVz7VhUSlObATeBuppbHI3OVAAs4KXkc208guE5PQXKMIrFVYtP8Oo7G02DDa0CRcdCNpRlQZj4Gf/ORr/uKrr/jXf/lLHg4elcp0euHx4zcdv+cjp+DI60rZEisWyZa4GVIU3r/b8/b+juN+z+lu38kfu5EhwN3DG57efMXu/j3Omb7tXPv0OzeHTXC6zny5nPhy+UI6ZX748sr3n1+5kHm7V+wDSMto6JuXMAurKLZaDmWkTZa8VdKSaHcGCR6jniXcMgtq5aUsHNZMdIE0CTp3PK3dKb97/pbv/vGF19eN8cMH3r7/KR9+8o6f/zc/w50in8onfucMU3jAO8e4H7nMjjV7rqYw7MHuR6qJ5JcTa1GcN5hJuoGwNkof7ZNNQ63hzbs3vBsHHgbLu7uC6L/ip9/c8df/l3/F26//EizkPGNeXm4hioI7TaxSqHvPw5v3xGFP2xLYlVQi4hu7qAy7R/xuh42BdHmmuUoLFbk2CA5FSetCMzPaBiTVHqCmBjGKebTgb1Nl55BdxEeLQdGt4YeA2+1I8w+oq1hX0ZPgHyJhCOwPrwxT33BZY2BynWq2KToomytcNbO+RPT+G8a3jn+xv+dnHx/Ze0851/67Owz89P0D775+z+H+gHjLa27MNrHZTOQeF8H6hrPK7lG4i47HEAl7wy569kNk2u+JYY9zkWwrF30FMoNpeNs3FXE/gEjHJWZDXTuH3gwWWVZMBBNbl89MFg0OEwLigbV2gou3YJfuUzDdXGsxOBMRczP0lkZNGUMgyhvG/APoQhJHmze8jTD6PtCwljxn2qzYww5cx2zjwWGwzXHX7ihhI5XElkfydcM2x2AjUhL2Zjh+Pl94eX3l8/nEEiOTcwRjewPvQzevywfevv2Kn//0K371y5/gDgNtXdiKsK4zxtz30D8KYHvi79Blotq62RhXOQyBd9Oe//av/5L3H9+z2w80PXMtjeADX//yJ7x9+8SaEgkl/fG7frbhMdlSbCYrhNHgx5EweGKFsBuxwWKDYJp2gpL3NK6MLuByJc8B7Ax24epmQqhd4nYVogzEBPYy8234nv0XT9kOLE27B9JDtoV6UYp3tLsJWwoUpdxIV7sw4UKkhMTP3j9B3jg9P+P2B+wtPZzgadxC4dQyiCUYiwSPXWo30RoPZUVQ/OQY4oQbR2SIyPKKtYI4R3T9TKyt0srGcOyBnMFYONxgJ01oweLxXSoYHe26dcjLQdGr9oVTEOpSqLZRI9QrZHFkH4hmY7aNkxTWLaEy0KyjtQ0/GmrpW93p6RGXPpPyK9XCYXekpspyFS7DZ6oajHiCWg525I2/J+ZENhfOasnXB0wIROfZzyurpw8WXoXD/VtiMOyHQG2Zkjcc8OTvme8e2FXYLhkr4J1l9JHaFszah5t/1mJ/S4kqrmuq7I1E0frKpdXuvE614qS7jwtd/lC1SwRU9U+oq2pucgEDoKS09TflQ6eXoD09zwp6QybWVvHeQTO3dW1fmxoEZw1opebUZTlGUGdAlJYTzVj86HvoioAYi3EG7z3BR4IXXOwaPV0bzfl+wRnBCv0110xufcsgIlgnVC2UkhnMcFs79occpktKVCHlRvCm4z+du63rHBhDzT19r9SKbxW09YROGillLvPSJ+a+J63uhh37cUQQ5uXSm6vWiDYipk+ylR93/nSCgFEsDSOKs42Hu8DDcWA/RXx1VONoEpimPW3rz9di+wbFGGGI7oa1apTcMNIQKsKNQdxMn8LSEC/dsDz6nrbo+yHy9LOf8e6n3/D08SNtHdlMIZTM/uEtcr6wZI/4C8oCWlCVjq2UfnNk07V3QiXlhAvxNlW6TetFKKb0lMHa3epd0NNlNFZufF7tr9XcJv7Q02b1RozJuVKlUqVB0Bu5pxddrfTE2D9JdUxfD9Yb2aVq69IA2m2d2MuWvj5WquZ+aTTBe4txHfsYvO2kIZTaCsaYTh65rci7qqdLeBqVqqXrt1X/9A1VS39v1SC3hYZKn7QrfTIgCMZYrDFsraGtS6X6NXv76TeJiLabz0SglIJoRY35k5znR4ypAs44/BAxOSOpIlU7KccYxAnGdCxa0wr00DTnHIGGbqWbsTWDKtYYgnM4kS7ruyVUGkMPyNPaw9Fqn+C127Oitv47EekJmCKdU6ztJvfIBWrluBv48PTITz5+4MP7J6YBmhbUwm5/IA4DRgwlJ2rOkEqfLtQMrRCccpwix92IdQ7ju1cixAG3s0zHI9P9HXHc9eu4Joy1nWTWKlky1/OZ6/nEfL2yXhdeT6+8nl5QV3HOEgbfGxxVPIJ6y9YUZ6Wb4sTSWr/2XQg91RYQNf1zokGtpJZI1ZOr702H6bjZZS3MqbGq5TgMvH37lo8fv+bp6T1JC8P1Qhw9T0/3t6yCwFYNmhM5a49sdx5VQy6Vpl0CZ2O4kbS69K7e0KrD4Pn4dOCbuyNvDoG3byrTYPjw4Z6nb75hmHZdR10KUjdEar+AS0Glp/bGcY+1gZYbanqKpBiPixY3Dp3mZB3phtbFmBstrp8vje0ma6zQ8k3+U3Fe8NGiUimtU4VsdD25sihxVwkhdL+FdEmHN1ClEZzBBsc4RKYpdESvFZLtCF1juCWqdiiEtYG4Hxj2I48P73j7dkdEmPPMNAmPx8hOHjjsHMFKJ3Cl9ZYyq3inOA/W9ef4NA7sBsfOd4jENDimKbDbTTfJVUBaxdgLxvZS3N6kg9a5jgPV7qGrpnbqjgqY/j6sE7CNbsIwPY3ddCmPeOmYk9uXF8Xq7e/ZW2mhDUtDNSO9XO+pvgaESilr/x3e0t27XKZ0ySFdZogF57t8xRhBjUNsx9M6Z28wBe1hfNzUPhaWa2KbE3nNfbjjDN4aHPBwv+Owc4ju+eqrj3z1/om74xFjbQ/v2xolV3zo8sMfkaNKf7taM9q6z81L5X6/483THb/4xQee3j0RR8+ahPmyEZzn8fGO3TT0ZGBtkCqYLjVBoGihNgiu+4yMs9jgEecQ1yWLBhAfEOcgW5w1iBrEZbbapWqiDW9vkkVVUI9T6HdlZV5mrELJ9ZYk30/IdgtoEm7PbOnnpNDTnqP3PcTuMLI/jgw7jx98r2fUMkiXeZZSqKXjQfvzqCMmf0Qdt9YQoTdQrg/sOp5HO8DBgphbfWGUECzB37xgwk0GfdvCa/fidLqNuSVlK8Zbuq67v6fWOv2x04mVop3F2IP3Grll1m2BEChaWWvuAGkLZgi4aUL9hin975iYqWul1cyyviKVrkgx9MRj54hGEG1ozWzLjN3tMdZgvcGaTtBTKtEHhugYhnh7ZlaaFLw1jHEgDWNPGpaK8T0wbdpNXT4o6z+rdv9nF/uXNRFqwNVG2Vfcor3AuBd47mEJWyscczfUVAuyVqoKxVn8BdKQ+h25NQgGIwaf4DUtDK0R1dN8QEpDUqHtApxX2lZINTO4oevivaUtPeJZvWdYFc2VRa64tOKNIQwjtihlnpHa2FuPd52sE5qn7pTBOwYczkcmFxCjpN3GKIbSlM1YhhtCbdGF+nJFGjjj2VtH08JaV3bbhHiPNjBrQQ6uPwfXxmwqxjtG69CDJWCJYinWQC6oUZLdCGvXays9LnteFr5cVhyW0UUmt+PJvWfnLFtauT5fKJeEs55pt8eK4pvB1h5LbquitVHsldAswVT2sfL1fuTdbmAfHXrt/OLoLTYe2ejYu7yEHvRkI/c8svlXrCZkgaANmysshVwXchooxREQggvE4JhGy6k+Y1bh8Lrj4ef3HN89MYyPpGHDz0JsjsPHt1x/U8hyRQfX25TSkxtD7A8jaWCH7qGopbLUjemW8pVzxW4gTtjaSmhd/kFTbLH9d2AavjlUhCL9oS1y0/lnxQy+07CksaRGKw3fKs73AwhpFNmQpcGaSa1gaz8ICxlzLd3AQCNgUdloDYarRfelrxcTrDoTizCWAfeVx5rOYrZ7i70qUnqxf9AJI4YaK0NStqpstjEuhmYKs8xwMV09KhCrJbMhVYhroA3dS+OSdpNUEVyBZD3TTU/8ak/YpNiqiG1EdbRbjoO9QKMXTaEatrrQSmXcQI4jViyxGjIZKYJNPQsi2koymdfr601r7nDD0I3tNJIuxKtHgsMPln2CS25crwUvtW8DvWFn91TdKC3hltYzFdT0gDhZGdJIKB4dFHKXZWldeuqgClGkJzi2StUFe8lI2kBXPn54y19+/YF/+bOPfPXNO9p2oZSEjY792LdtVCW9fKJdMnZVYnmhlplcZz4E5V0cOIah+4uMwxk4eMt0/5b7x0f2bw7EIZDWgtZGNIGaXjoa0VZevv0Dp8/PrF+uvM5f+PzlMz/88IUPb544mH6fn+rCtAmh3ortuW/mxoeI2SzXtTGnzGN8QJxQbOZuceTYr4ld6debKY14bhC7P8KUhksD9gH8W+VpUP7il/f8/F+85f3uyOuQIZyRl4Hl/QN1bZRrbw7s5zP6JbP76h2rKDlnlqVipQdfhXi8SQALXAvVLQz7PXd3B/5Xf/HI4/s3HA6R+2nm4d2RNw9Hpv1dT4fcznD+A9I6jtOgXH3BFcHpRAweaqVSKL7htg1xA26YcAePiKFWuJZCVQ8SaLFvp6gF1ZloBG8KzVxY0wkxK9PomGyktY1cF2grIQ6INaSijG9NT7FsHU0Z1LAXRz6uTLuG85b7w5Gnu5VlnLFh44eXBK1hguJrYMITquPwbuRhijwcJr766VvuRkVr5kWFXz3BMk2U8oZgN2q+kEvGvL4Qct+OHI5XaL43HHHjbnjgbrIchwovlcnCLnhGt8NPDvFCmSPWut6Qa8T4BWNr995ID3azrZDHFckRkww4Q7CeYC0tbEg1yA13bBBkABNBVu25LgZ2RsGuiO0NVGt9EDdaBbv1Z3eFcb8nekNUIZUzzu0w0nXq5AZaYEzYVMA7ZJg4jhPqGs3UmyRJMN7hj4ayJkwuN4Sv9jyOVjidE2muuA2OqowRYhBGhA8fPhKDMLnK47uf4m2fGNci5GtmPa3kTRhcIdBfu8uKxWCCoZRnWk7oVjkG+ObxyC9/+Q3/+q8+sHtzjw2O9Srsp4BVw/0wQfTMr4X68opNEKZGGDNfVMglUVpjsNKbUdswg1DZAIsYjx8s2D5c0io331ZDx4ShYFLDJQjSSC6xspEvHueUw27E1x3rsrJta5dYinZQXTM00yBX/LVhvgo3nLLrQYamNzgiHncMDFvgYQ4MUbA2gAnspBKcIW+pXxMSUNOQZkllY8uZvGTqzbflsR2jqYqmSjUwWI+z0GSm1u6dPEyeSQxOQG3BJQFnuzLymql3DTP0sLx8mxzvTETGFXIP20qtdNN2gcUn8nWj5MTFFY6tB4m9XD4zHiJbLTzPC0jGesXtBbOr+G2PqyNhBFoibysrXzBXj6gSuAFncsX7wjRNSDL4VTlfXzlYgw2R5sAXxWgl25XQYIyR6e6IwaK5dW+YWTDRY+JIkwV1CWuVUSA+vGH1r8wm/3mL/ZIbMlWYCqF52gQ6GqJGTu6Fohlzhfamy1YGGUi7jJkbLimXQXGtjxzTUInVYcRSBsE89wtg85Vp7fzoNsCknlcvbKWRXgvbqHjv2YV7kr2iVbGpdclPNfgNODZCdhgVaujGt2Ya42CZiiM7IQ+Wnd0hUVAvMHcdswRhL0fM0ZC2xHBaWELnRLMoOfTCaDCRcT+Rt4aIgZ0nZIda0DvFa0CskAdFPvf3UqPhwD3sBYIlbpZnpx1Lu3ryo8HmgrtmtsFyzYVzSehD5e4wsD/ucfeVtTbO68yX9RNbasgIMlVsjIiznQ2/+I5jlIq/Ova7wiEo74eJp7eeYVCueSZYoRaHKEwPgbx9hA1Ynknngi/AODNsE9Isazzhvnhyg9eY2PKOHCw5GOZtwtnGXCt/93nlnsbdx7d881/9Gw4P/4LqRj6tV/7xb/6Of/ztb/ju+2/5/Hrif/7N7/jh5cLrevOF2L4CbOpoLlFDoS0ObEb0RiUx/XMfcCRbaBYQT/XdWCr1NoGyHaHaKROmT4SpFBxqhRYU5zq7W27dfok3IgCeavsWSjbPFmdya5hFyI4+fVdPikqdGy336yMYS7OG9VA4SDfYpliRZCgGlkkJxcFkkJ0jyMRsT2QqnIVyNIQY2OGpe4vOFXuxvMaF0AxuM1yHjN0MthnKqLg5glO2AYZFaDRm29iVCFapttI+NZoXzBh4KI9c2oWbY5M11L6Cr54lrpAUkw0tguR+GC9jxdU+FcrS0KWx2YVTXtive3x0uGAJbmSRTNOK1wEzdKmUx3J1Ca+VYe4UiuosOhiyBUMA50khUzZlEygHRbYAIlQPvoxo9JTBIJuSXSWbRipCiYoEwbjQczpu7+1SzjgLd3HHT3/yFR8/fsPT268wxlHVAZXgCqijFqgl4Rkheqyt5PKO3e4LYh27wzu++ulHhmFifs0MhzO7ceDrrz4S3xzYHd8w7p5oAtqko0ivn0gviZYKal748v0rz6cLL/nKde2BpmYP09s74uNE2Af0S8JOAY9jPAvn+2ewhtHvOZmV7dTIJ9jew0jAS2R5UPzcyRSX0HjMfbM2h4Y5V0zwYB36ds/9ec8bP/Jv/69/zc9+9UvuH+85U/n0D19YL+De/gq/Ni7bmW/PX/hPv/7MFxrzm248vqyZczHoNGBiTwc1xjCvlZITpS083B9592bH+7d3PP7iaw7eMwZL2O96rpJ1nfayZKgWNz6wHx8paim1yw8kCnYcMKFxPSXWlKnquXv6gB8idjfi7BtKK1Td2OnI4q8UDC490aKFKgzuSL1r+OFAtRMqF8YYGQbHcD+xXla2pVCb5256xHhPemqUTSh5YdlOmArj6PFxR6lPHB7vidPI/fHA/iny5Xzh208n5uvvqFrxzbE7DuzfjBzeT3yTPA9vHrh7OPD0duz0kktmOT+DBIyviJ35fMpkWcjimKXBXonB4ocjW71iTOMYR9688eytwWVBJyHuA/vDjvg04fwBxbPmZ6IZsB7MPhHlDd5bGAVz6ueDhoaUO5rJqC/sxTFOljh6LDt0FIzr5l8zCq2M1LSnhpmYG0EMJiZqO6JiwVXi1qUU2Vtku0OlYEIieIdGg0RLXSJm3w3kflVmV2jVoOuRdRBca/ilwpPB2xGDQfYXPBteCxwNZrmjpQ1pGyYnNCulGtI6oyTcCPvhLSEKzgnWGcadZxccxyFwKpm2FVqB13nlD19OfFo3rHQ9obqxww6s7fKyvJJT99RZVf7iX/ycv/rXv+Av/uonPHz4qn+vKkO4I8iC1n4uLPOZ7bpineXpqd8zaj3p9TN+GNjf7Ti8PYDxHXRhLfth6BKeQYA9fYvb+mdI7sbe9R5rnplC5e008pIq57NyfQUXDXdx4u14x4uBek4dIrILyOpRheIzg+yYnXKZMvkkoB5/HIlxxIWOqHUq/PzDR/bTHusnltYHtmapZNfvCRcj2Sx9M62W6iustgMt7JXt2nqTMVTs1ol66itlbTQPGgw1ecLRErxhUsuw8yiWvII8Bnw1mCykAzi3xzJQB+BFkQbt3hHlDrWJ5K+0T5CksYyCpkjeFZKt8HtPMpFFAvNngXEgBMM3dweWQVlLYSuF89rQLaGlElOHPrQ24vx7xFzIJCqOfQqIDYx3joeHI5drIhVIayPdNbxV4uJYI5g1EtYdl7CBRGI7cPf4yHF3o0G1Ql16Vk/Tikme4Ax6cNxdPVNwjNPuz1vs30zQWORPlB1pfc1fU6WWHrqhBcR3o54pfRVfaf3wu8VLa+tIQ2NMF1vcnPgtdwmE1huZJt7WME37ur42nLGEEMh1vVF4Wk9oa908ZFKPc7euy0CKrtASJWWGcX9bByrO2k4HEaXUhBaDtZYpjuChVcEY7asjbdQyg014J4wBYjQd/1bp8psOfvlTnpBIp7RA/2zqVvGxF2UineygpZNGskn41WF+JA9op2fU1k2NQRzeOGw1zJeZy/nKOq/9s3AGbwzedkJRa7VjLEuh1QymYk1mCpYP93sOIRBNX5O32ldtSl+1WesIwWJX3x+ORpDqOhmEHvRQWqMU6WEz9JVh1U62AEerjct8Jew9DDseH77G+wPLsnJ6/cT/8D/9R/74m9/y6fsf+MP5zHc/vHBZM5uJ+BAxYjt9RnotqipY21NSqaZra1PBqMEZS+nJGtTaaTZSwbQuvVLpX3+SkvHjv2/PTpU/fV+H4XTSkkoPdzNV+vc0/fHFdHmUdiqONQatt9Vpq/2B0ypNC9Lcn2LV5Zbs6BBs4yax6lK4WjMpJ2rNeP+jY19w1qIIuSmpFdrWujRCBLlRZ0QsrslNI9tfV62djFVrQ0PlR35Ol//0B673FptuE/xWaUm6XugmQaL1yY+W218HyPqnZOdWO7mnlE5XwFgGDcSeztaDlWoj2UwInVyCKJIzjUqiJ532+6PTPYx0bWrLPYW2lna7pm6ytD9hgm6UIys/vmRa6/hXa27JuSI0bV2akRfCOHC3H3hzdyB6Q2uJtSiaF1rLaFRaW2+En4p3puMDBFrbUJOR2Li72zNMI846ajnjjTANkcPhiN8fCCGAlo6MLYmSNpZlRnJGS+nxW6XHpksTaskoDRst9/c79sPIYD3VCNF7BhvwatjNoScp10paMyX3e9EVMLZTYZxCaZVSK7YKRTIlCW3tkjgj3cSWU6EKuKjc+YHoIqhwPV/47uU7ttMJn1a+bPDycuHL64lTWqmhS/Rq7cmiKKgVpt3ILkacOHJdaDUBiTf7iafjgYfdxDbPMBiSGuRViMNATo6azrTW0Jb7g9MPkBvaClkS3k+4EFAMtWZqSVAKPgyEYcSEsZOgaqXVepPA9TCoMHRZScXggyf4fh3WutHayhC6kdWZALpCzZiaicFj44QzyildyCWxrv06MUbxtm9tQzTE0RGHyExmq5XSPmNa6UWZczhtuFt6bZDKZBo7A95KBz2sV87zM9tyYt0W1pqZl41mHM0FULkFLlqUhGqXux6GwGQdQYC64bhR50LAeddDhWpFtWAtneghPYjOuP68qHIjaCH9zJWK2Mo4OYbgCD8OQbQiWMT0hNJ+0xUwGbEVcT3A0dSe16KmYEz3TxnjMKXLKZRGGCPV3ULGpKfvSrtFCeRCK/XHx9UtqVbQUhDjboSnW9AhvV4wt2BP0YKJBmpFS2FNqfPpm9IzI6U3Cw1SSQgZqRtnMWhzSHM8v1bmee73llh+ZLcUqXgjN9lqRtuGsmFc4c3djofHPfu7kZJWsnQflcwr1/kKtRFzY81C3RZczQxjREXI2j1oj9PEwyESo0frRkkbTTbsbsT6G22mdJmjSJfT9vNL0baidQVNt7R3+odXV2iOEB27w8TraekykVoxxd2Ms4Ik6VtTNUgVlryxppWcNuyPsi3pUtcYArtx5OFwICwZNd0vN9cb3cpaXO61UA/QMzcCWKPUHmZWRaHAYezS2JobuSVa63Lt3DJB+yBtHCI+emoRihS09N1AJ+f1Gk5Nl+XgfqTQ9UToHrhn2DSzVmVrHYf9Y9im3/kuERIobUPJOD+yHybUK9v1wrbM5JZhq1AaixFcK2gtrGth2TZyLRiBZVmwxvQmPwSYM7VWmmvUUrA533q1bnw30klJtVRqLVAqlu5LE9OplJW+gbMIVhWXa5e8WcXZ+s+q3f/5xb7tyrtYLcULplokCWvayEvtrHHb0AQSBBkN5qy0UskUyJCl6yIlCbLr8gvXLGp70aFLIQcLuT8EUswdM1d6em5NFTUOOzrsq6fmzFYKqoaqiSIZcx3Y3YELFoqhSkaLkueVu49POAVdM+K6xhqURWdctgQbGB6nnv5mFXzDb5atFVI7IVoJg2XaK8MobOtCKQVNd5ghgDHYqhjXSUFtazRbKSlTL5bxsOupp7WxSEbXimpllQvhHHHRIdFhSulIyapMSyBWj1eLvVhOXy68nF7Zzpn7Y9dsDuIItn9mdSuoLtRlpeSEHRPGVKYw8tN3R+7MgNUuQcm5F/uNzHIpMDa8ddACLlq8GGQZsbH1BmZrrCyUHJEt0GzHEdYqUCpSjmiG5XxivnsD457H49cIgecvP/Drv/81//d/9//h/F++4/zDK3+3LQQdMNbT9o7DLWFOm2Bs7Y1IFZwXajKoGqCQ5g2rFuc9brG01h8I9YZtdfSHh7lJXbQqVW/M/ltRbFSQbCix/w6kdtypVHPj7ecbmrWj3EwGU7tW37au1fPOoFuh1kLRisugtgcYmc1RdwXb+uQq1RXXHHEbe4x9FWRT1nxlXRdy3og7CCo97TIIpsJyky6ZuVFjpoW+nsbYXh9l2/0KTXEZLjXTSp9sF7/1QBxVColWesPiXMOtHdVWmsK1ayZrUDSXTjLVTkD6kWwqi1JCT6LV1PWPuRa2XCjuetOeRgZnaanScmGxvaE3nr5FyY1mYHP0JilHtHlscVjXMFR09r3Yzw3dANNxg9IMmIqoxVRFvMEloeUKbcPaRrBKjJ12n7SS2hW2hd0+8vZu4un+iGFjvn6iEvDXGYAWRmo+g0DVSvBQpBtsc/rCJldKgLvDgA+BVpW0PBNF2YXA/nDATkeUSkmvpGbI25W8zlwvM/uSbp4ccCbjRYkaOo7SKGEMfPX2yJtxx04iKRr2PjKFSJgsr0vgmlfmOrO8LtQt4WwhLoKdFPGVYYOXmrrccTNsumK0sEPxjweMFepWmb+cWUeoHobzjCyJ7Cyn77/nN89/z/rDFw7fzfwmB9Y1keaZGfDiiWo5p04TctILgfv9yC5EfIFc+5TVSeYn90eejvfs4sSXf/oj+ij4CNtasfErBlcpU6X4hohFCGTvaGWmlSuLzMS4x8dIabYXPHmFvOJ8wIYJ40ZyWqh56x4Lq0hxWOOJu24crWLJkyPgkNrI7YVWr4TdwO5+hyNiWjdF27YQgsXHgdrgS/6OdTkxv54wdcEY27HGbsP7ShwM+2HPfs3Elyvr+oovHXk8RIUtIcuGXjdwCyGPDHmACuVyZn79wqfzD2wvf2RZN865UtMVCRMSJ5y1iN5B9eRygrzireN+OjDhsaVQUiIaJYjF+YiIo9V08xalLttxSq4WO1ScbTcIRkPV3HTbK0jBGmUadwwxYp3rwVqlgL2lgKt0jwsJZOsdJn0T7+SC0DrtzuwRsRgXcflKKb349scRyZlaSsdrNgPNUg2UNVFTQVvDJosY11NDt5VmFBsdRroPqrRCWhPaVkQ3TCvYaUSTQt24LBtlK9hccbIiLvb7vFROdQZNvJRECRFvd3iz5/R6Ybte6cidzrFtLbFKYZAO1W41IW2myZUWMo+HkcM+4gfD6+fvWGOjtoz97swP1zOuNQYfmBHK0gipEscjOW3ktKBx4c3dgY/3A4Oz1O2CppuU4+kJYy1NDNpO/Bg/q1JvjrmKtM/UfKKUTJH+TG5sGPNKLRNhMuzf7DDfd7RlLRk/ux50qoLMPw7IBL8ZLuXCZT4xn84dbyxdC4/tRbZzhrspMKRKdYZyMLTTTHOCGiFUUM1k1Z7irH0IVjclc0uTzooJfQjWUmVtC2SPCqwsxKIgjt3dhA1DbyztRr1umOiQwd6SjXNHcKtDRrl1jAY7GlqymMUxS2LOjS0b9GCoLWO0sXvy7AfDYCvVXjB4QhyY3tyxlUQ9v3A5P/dzN3W1QHOFsFzRbWW+LlzLBkZ6/sZZ8S70cyr4Xo+kSt03Wtq6ytcpJnW8q3HAUqhhI+WZNC/obkCCUGtiLjNzutLWgiVjK4SiSHTQFqSe/7zF/pYT1glt5wiqrKav9DlvLEByghbDEjLeFGKpXDzMpbAsG8vYYC5dK3Y/oB6aa2wOTGtgDDkK7bqySP9FPl0NiUb13Th7NRulNXQuXNvWGb5Lxu49mlrn7t4ZjBdCEFow8OpoEmn7A9Z4Us1cJTEWj50GzOTQtR/m1ivOwoIlYSk3VrAzhqfpnjwNPNxP3B0mchmwbaO1TF0DmzbEKclazLkDH/JgMBUSDbGNR/Ho5Mha2X5/YjU97CpehbR3BOvw1bLZzuE3OcMv9shOaKbwmU98vr5w2Rb8/QD7QN0J5ZBQK6iFItC+X9n8iRR6YmAcR/YPO+6+fmCwhnRaOb+8MuwfWBJcUsE1Zb84jIyUaNFyRW1hPqzcF8H4CkdD+rzSQsGFQngduaI07zi8fWJcPHpd+LTB/RdYngv/pZz5h3/37/nv/n//Pf+P/+7/xa//h99SazcgjsXBXcBMO45P96zzRqEQhsZWPMZKD+6phjAB2rg+p27kUYshU7wgzWCr3DD6ncZjbJ/nCELxhtLqjUkM0VrEWTSaPk2W3szqtpFi50yP0VACODGELbDdHlB2TRRbMNYQjGeW3JOKS0X3psvHquESYO8F9bBZZZCIi4FyN2BaYhWhWGF8ubC2RHEwHSbMPjD4yNFNLFG7ByU35jETNeCz5bJr7EXwN3lLXD1NlDU0uKWwVq8MWcgKVRSvlSJ9y8aSWUomldwnb95g1RI2z+p702gbaACWPmGfXWOsHbOYnWJLoDmLBEOZF+atkCTjd0c0+M7pnmeuRkk1si8j7LtZtb0kzrbStopmx7rvTPhgDa1ttGwoxpMHh2mdId1sIdoBO9zwa2sm2f7VSus6xyEy7CLWNmoFmStZHH7YcdzfkVPl5fmV7fWMKSOZS98G/mFg9+6eaRjwLrIoLGVlWVYu80SzBj8YhrdvKTfyVGqBdx9/ypt3bxnfvOOaE9u8kq5XlpxZzhfm0yuvv/89Q5iIIRJ3gd1gyU0pIXE9R97vBp6OgX/zl3/B/u7Qmc+6482HR2IcyMvK5YfK65LJ18qshc0qJRrSEaJCK8LLsVK3bm4r94q7WFQt1yg8EBHruISN/9s//Pc8bnt+9vg1v/8/NtLzifbdM//pP/8N/+P/89ecLq+0/YZcuox6E4MLb9BDIB0CsSXmU0Grcogj+92OKVpsuXD9PvUcj/2Ru6dHsmS+f/4Df/iH39DWmVZXNvPKv/y7X/Evf/6ex//d10zyU8rk2A4NU0HqCBrZuT3D/pEwDn1wsTqEew4PXxGPT2AdpSjbSdgqpKrYKj0vxUem4jC7gVI3arkgA5Assky8fTdy3N+x390hofbmdLX4+2/whwPiLNfLle9+98q8XqhSGVeHGywmOvwKQUaCnZCWuKZnXubPvHw+sZ9GojGEZrjKhcv8hW8//wHndsxvLDF6ttdnvv2nz3z+4YXzH1ZOuZFropUZWyPORew0dHTlcKGFjXwR/KTEvePuuCfsDXJVdAP79ivc/gEzjCwp0059k1yDQ73HOsvOCWMYsM6iTljmHzrH3HpiaTAIGg3HMGB8wKhg1kYZJ/AeYyKlKXWDdlU2G3rzVQtt7UFGxjikjmwl9Vm6icgc+uRYajc3N0OrDntp8DCi1qHzytoMKRnMRShvR4L0pPRmHYLFVkPVke35mdPnZ/74wzN8unSz8tER5kxtiSUl/svf/z2vy0yhwNdHghQ0FU7PM+flC7nM1DZzvz8yjUfimDm/bJy3zFoa+6F1qUxtGFfIVoCGb5nvLs+0rTBKZJng9z888+3nK3/8/g8cikBO/PH8O/TaOA4j+f0Td9MbNHq2MSK2YMThzZ5f3Bt+/s0HPry7R0slpYIznrC/x5iBWmBbZsqpYoLBBCFfZraaSdvK/N0LK5UtZ+brlWYjYQsc8z3zEGiykGVjtWeW67Vn/xyVnXTOvU5CvVqaeOoxwnmjLEpqhjF4gvXQLOeXM6+Xhct15vRyJXqHyYpce/5PulzIr89cszIGjzeK2ky+dBUAPmJL6sMQl7sBHYMqbK9X6t7jfOB+cZgHSzhE4puJ0gI1V9IlI2+PfaLflEvITOqJ1VBHSxsMDkF2hhgi1ADBUv62kFohDRZbBtx+ZPIj9yYSjsd+Hs8r0ga0eLZl42//87/jb/727/iP//E3RAIlL9S8UuaZ6/wd2jL7uGfnI+N+z+HdEwcLd7sHjuMDjY0Wu4G7LAvzzQMx5ITfB2IRJvUsd3uG3UAcLGEfGY8D+3Hg/ae3/MPzb7h8/4WyFtJ6RZ0QdxGuFTEG74Y/b7Ff6C5tq10D3QN4GsmZ23bd9PCg0iepmdYnGE3ZtKFbozbthBd6yBRiaKnj80xTzFZYb4EYVSubTVD7IdAMaCmUUrmysiyZlhpaGpL7BFZid7SHsafJtlwxHsRqR/IZIafKNm+EQ8DbAe8dw34ilwVtGbUNKwZnGk1WgmlIaJjoGN4emMaRIUS2ZtDqSU4RVlo1ferYHM0oiMU311dHtXex3PeUtFqVUtqtMleSKYS1UBFKFKi1k3SssJeR0QacWM6vV9ZloZZCHAai9QziGNQibcU0i+ZOlqglU8logMPxDW8eH3h79xa7LBQzo2ys52sn0BSLRliGjPEbDYd3A95UAg3MfKMkeJzz2GQwxWBd4yHueZoOfPzqA9fPG5eauaTG1+++4cPuHUNt/If/+Z/4h//8j/zhN98RtdMgrDHgAjEeCW4iyp5sK0hFVBFJ9DgNQXzD0jXyRm7yrQbeBuqPK0DNWGyX27Qb+k0KPWPKdEpO1x70QC/6hBKpfcpAoyp9gq/avRCVmxSo4ppQVUi2/zm07h0oCn+S63TDU2uVkPrr0NbVJ9YbrAhmU1Jt5K0XpPNhRavi1MAYseL7RsUpLhlMNagx+OK6/Ms0wmYwsZManNq+paoQkyHf5EaCspF6Qd0qwfWtbK2Npc6QU5eW1IY2D9JIpt9PGKF1DUuXItGwWW+kor5p75+l4kqPNOirrEptfTon9UYoKpVGodiEXXvAD1IxJXc5WLbE6ojO4FRI5X+hGfnaw1SA/lnaG6Wm3cgRWXqKcN04SGSygdE7Ss7klDgtL/jSiwYjjZquVGtpwSL7gJkztWauuqJ2AG8oQdDzFUpGtDDcCyEc8dPENO7Z1hVjlbB3HB6OTPsdiJC2jW2d2dYzuVlqSrSc8LURAoSBjjoNjpK7Zja/adxPE/7+nqe7B0zoZJIweAY/4G2ktMR6WknLhrEWXw0eQxHB1RtxTAp+rl3SJkpQT6Kz3/0r6NQwKK7BffU8HY68e/fIXVlIz99xer3wh1//LZd5oaSFcDqRq+JNZLITx4d72s6SnfCSGk0TTRq7Ycfd4BmioSbHlk9EF3kz3SMm8/L8ypcfPvH86fcMxhIcHIMj3lfcvSJDpO5tN4UaoVrBeoMRhzU7fJy654Zrx0EGTxh2GOuoqn2iqTNV+z2M6dtnJwY3tlvYUyeABLEQpE8oR0+IIzYESq09E6Z5bLCIuYWezSspz9SyAYVK65LOVvF3ETt05n0pjTQn6rLi6kqsngFhAErNuNKQahjvJ6J3uFZZL4Xr+QvL/IxWRUrugWN1w02eYRRCNGzAWjKlVlJN7MyRKQTGcUBuxCwT+vsVenJq2VaUinrF+4GqHr3J3MQrYuk0mBC6lAMDYyLEERMiwzj0cLSmEDLhFj6pIuS6UliodqEIOM0YLVSniGz8/2n7j57Lsj0/E3uW3+6Y14bJjDTX12UVq0kWpJZa3dBME80b/fEEfQBNBGnSFCA1IDWLZJMsVtWtqmvSh3vtcdssq8E6eTnuwU0ggEREIN+T55y991rr//s9DxKCjOhSEKXGEFVT74E5U0kqnIVk7Tm+SyVtlVilQckmyjwTlEAqQZMjUjuUM4hQ8Ckyec9y8hB9lXDtE04rCoEUA/MYIAsaa1jbc+47pboQO5PJLJUQE1NAhRmfF1JcKCESnDy/1IoTNSIiyYSSWfwJUyRN0wKecdoRYmLaf4cxA7oUXJ6YbCKbghQLckt1jZzljcnUt3ezuuLqesOwbihlQpiCsgrT23NMp5aSixwpwlEwFDw5T6R8IstjnagSEcmj5flZ0Nd+Wsk1SiySroREkZBLIIpA0ZWolEQkpUCeQi32VuoBSukqICXjg2ccT0zTCHEm4c7Bg0gWMz4sTNNCLopsK+yhhEQWGWRGZYHQIHJB5Yw21dSWc2JJHqZc08sXGaUl2hhM05OmGjvNOlIWTzK121l8oPSpikjJCK3+SN9TjYFYkD4SVY2Ri1igq7JCYQ3DpkdoiVYZbcEIqsPDL+z3M4f9keP+mTEYhApAxE+B3f7EPI+8zzPbrWNbEmLYoBuJ8TNKHsm5oIXBqXqvkYBK526mD5QUwCTKuJC0JJSE0gJtDLZp0BuJaguogB9HbDjVDts0V69AU+Vrf9LFfqbmu2SWlV0aYjV6aYXI52yzEBVTlOpIScSalw6lVOFCDf1jMnVnWSAvgSTqw1z4yJIKYQnkmPBdREaQKdcplo/EnAglMJ8yJdafqxaDbgu6rdEK1zY0XV9Zvk4ilKDRdTMSUsKfZsq6QcmC0xoxtOTDBKVyfa2UhCCQMtLZSjAx1nH1co0WFoFBk5DFsejCdPTnHKtCZUFxFRmniyIDxHqKian8WpkEISZEqLlAryJpiSQhCKZmsiEjlGCgoVENAsH0POOXmVwKjWxohKQVmi5LdFrO0apCjDNxqiVJZQvbzcDN1RU3qxtG/4FFKKRKLLsTwStK0oSGSl+QgiwHjLE0suByRuoJmQQag1UWUwQyKoyFi3XPdnPDL1684rfLe/Jeso6SL2++5NOL1/RZ8NU/fsP3v3/P7v2RN8Omngwoxak41s0Ka1qgYZSnStmOCSFDze+X+lpVloii0UIRcqqfO1W0k3ImlVhNpaWcc5+J+uWpQqaSq3yDUjGeACrVaUghUrIglzN5IdVFQl39F4oINbpTRCX81CwQWaTz3600HgLkc9RF+R/DqKVKPrSsGbyl4OO5x+ETU28gKnSWSGfRWVf7tAIzgYwShMIGQ9aV5229qrpxobGleihKBh0Ehwwl19fvhSeHgAiRrq+0o0jhkCdIHhlztRUjyTIRVUBlSdGKrEXdPJ67DjpU6Rei3lSzrIt9FQtJ1r6ILOfMf6y/UinIeC5F54BY6vtWo1C115CzoEsKVyQKCKFQcoSSsFGS9H+pDZQSUSVjsyAKCVFQlkxMHisUnTI0UnP0C36e2c/PXDPQSInWBcKEbCzKOvRVncKEJXOQHtUmZJtJJlGeR0TOKAHDlUY3W9puS98MhOARStCuHP12hevbumEfR5bpiPcjSbSUFJAx0klB0ypsW+8FrdYUbarp8UZhV5cM2xds+hUheXz0aHe+zrCcAkzPI4tf6LcDLmhCbdCgo6ToTBIZN6azKbTgkmUqB3IspEWQXpzNmqnwSq159eIFn37xkosS+LD7wOOHj9x9+1tCucSoyCZM7E2md5rLruXq5TWLTJyyZzdPpFLjmH1zyapRWCOYoiaEI8YqroYOyszjwz3ff/sD6fgee3lF0654fbXi6rOe1acdZrOm3Lp6bxkLsxG1EGgVRa/rgqPUrop0EqkMtquY4RI8McwE5rPNvF6buki0UKiufrcho6SpxAsjoBMI1aFtg1CGHAKyUWhjMaoaP0PMjMeJlBfIAXm2jeZczdp2u0J3EqEyYYyEyZMmjy0RmyrusJGFJSd0qcblbjvgnK7OjN3I6fjEPO9BZPS5X5VzoBkEfS9xjWIs4H3Nsic50egNg7V0jQNfc9zSqYpe5BxXHCeEK4hWYZRCFENJ9ZkiTb2fUQTCWYQv1XrfZIzVtQvRNmSfKCmSZMGcN09FCkJY6mLfjKRSMKqgSyYajxBzjTzqjF00FF0X1q1BxFJlk4UzHleAFRRZEcD1GVnLrdkmyuQpSlKcYZU8Qg2oxiLKwpITsw+E2ZNLQKVE8QLbaZSskcoUaievM4qttcypdhiECnUxnQxNMRRTjdhCVuFbSTNETzANUkeUUmhRn3eFzJwTKS10pmG9dmgZKxlvPlHiPaUTKG25SpIHnaqQba0wLyxGGnQQCKFr70ALuqsrLq5XdI3idNwhnUW1At2ZikJOoW421UyRFb2MCOQykctIsXPtoMSEpCByBFXITSEdAyEGQkiIZChSUhSwBJI6HyZqRZLVRJ1Hz9hMBHwljSlVUdIlEVJFVPplguxJsRrfIwmkr38+xxprPSObS0j1MIyMOUdXZAIZC85pyIIUI0sOyDnVWKCuh2LaGozrmKdT/W/pTPYzpRiK1ZQYKatMcXVDJGXNwYsi0I2lxIIYF5KBEkAmgXTij9/x/rIn+YASBdsqrASRE4tfOB4987QQw0QcPa4VKANJSEIqjHPkaX9gUgvJOdZzpHWOKQVkOJJLQQuLUxrpKj5ZZciqRqxzDBSTKI8T0Qh8DKByXey7Fn2psCuFdoLoZ0yaKDETvSI2Gak0lD/xYt+5ltwJ5iYiTnCKM1nCZVmRWw9LQY8QN3WR6orh1HpULpgxMzYBHQ1GakqnaaIklcJkCzK7Wh5yBn03cwqeKXtW84YoEiVHypSYlxOkhMmSJUZSEBAVRUjW7YCzPe2lxjmwOiE3luv0GRhL93JNnsDHhX08cCU+QSlbS31LoKGeGr24/ZKsJcM4o0NPiB5pCqYVtOsbhCyUEgk7cI1FqoUYBVqFynkXTRWyKEGQgnKUZCMpQmBTW+fuyVP2kdxHihSo0OC3oErE3EdoE4tPhFyYL6EzEuEz98ePzD6hjcY2ma5oVlKw7QqbRRPwHOWRcn/Ep0A2ght9yS9e3fKzT64Yekt8mGmUZd3/lKxPvN9PPB1n5nlEqQaVLO6ysOSIkTBcGjrxmnk5Ec1H3DeGTmdiJ2jKS25evGR7cYUqDXdvv2f39MQXv/wL/vK//gmf3F4jOs3f/c1f8+7dR4RqGWZVT5us5noFdmhQxkB4Qk4jSxk56hOyXWNNwdnANHt6mWmVYG3W+G6hFImh45j3hJxB1tyfzLWMpVSiMQpnTS1BL5BiJggPyZA10BdMMigkSkmc1UQV8bJGYDCplvGSITQziYyZJIsqFAkKRWqhzILsC7PztDQIqcnrepIqUmbSc73hWknoM3kOzNoTdOZiusGbOiVoxkrpMcbQlIFl5XGjop81z13EYDEYlk3CFo3JiqVLtKEhl8I0BOzBMpfAJCN9dgiroK1WQSnORIrNhkkcSaOnzFWqJbJEJkVqMrootJektqB8tTYurUdHCQWCykgUSWWiioixIk2TrtnuYOoULx0KpQnkUpBeE1cZmUHPkmIdTrW4rqNsEkVacoa53BOzIAtF7CImmCqlIrOmp3ENppPEt4lx3HOYT+jY1I6Jk5gAT/tHTvuJdun52Z9/wc9++obP37zm+fHE7c0Lrq8vadotfntCEPllEly9uUEUmA8zz63A6hmXI7H5HLcZsH2Dkxb/8AHvC233JXbYohpLzIW753cVC5h6MAvFR3SC7eWGzXCD0ZLD+BFxiJhQWFnJevNz7PWa5qYaZCdf0bcb+wbTdqSYeb4/8u3xAynDl2lLGXIdU58Kc1Nocu3zHIcFtc+oIggXCXV0IAvLpeDwdMI0kaxh87Of8PLVG16/+ZzyxRs+/H/+Z7774QP75gteiMyq06xfviF+3PHJT3/Jz/7F/4am2/DN3QN/eP+B+d3/Qok1o3qxUWgCaY7Mzw9c5i3X/ZbtiwY/PbN7+Ia7j1+xWm+4uXrNTz9/w5//73/F7Re3XN5ccvHpa0q2+BhYhhN6eiTqHq/WNYZZCsTEtCyIcoNRHdI6MoIlLRymR/KyAhNQLuBmhbYOZRzWtCQ+UvwMI8gbA7oDuYYVCDREBTag/AqyRPd14rLMJ+6Ob4lHDaJBdYFyf8KbQkFx3bymWEUkMR2eyfFEznCYr2i2BV0iaQGrDbk1jGvD1Bkm68gCPjx/y36WLMmh9D0qCRwW18JPrr7ErBzZSY5fHznmJwSBS3PLy5dbbi7r5jWZUHuyaYNed0gnyXiCHnHyCs1AUqFCBrLCdAqletCQdUAdFcoEkk0YXmMHg201TTH4xtdJ9dSje4lWEiMkkDGyoxVrhAzYFlQptMcZOgVS4iYIcianhJoyY9RkCchE9gGhBChDnA3JFnJe8KeFSc2ElJGT4aQmxJgwj6C3A8NWVSKPjSxj5HTwLCIw7Wspv18X2qcJVGLWkf6qI1HQThJXA+FpVwEIw5br3mPNiqF9jSyZ1bBltbpG/uYPvAuFpyWg8qmKlqgdJq/bulmaTty+eMOnt1f82RdvePWzV7z79gP7w4Gbn/85r9pLBmehmflJTKwu1rz51U9JsyWEyOwX1OGJ4jpEO7B+saZvGlSJxBMItgjZVTJNzvhwZFw+oMMN0iWEGcHPhMkTAqCuUXmmSE+yM+MhczhFng4LT/HA8enE8enEGEdMFkgcs404WSej2Qi0sCgTKMPC/DHwuPd88B6KBCERpaCz4qJfY4Th3Zxp+gaWSDkG2tQwJ8OkJcumVJ9BkiQVMKm6jVjP9E+QpCKvHS+2W+boiWUh7xKxD0gtMGbArAfMqq6hpKsyUR178hqi9/j9wn61oNMFJjhmvWCXhDYWe9nh+g05eVQ8IWeNsiC2lu36JXJrML3mQg/EfkYiWKU1tm+qjePxwPu3v+P5cUdcOlALSlgsktA8MVyscW3DZojY5HCT42m/w7lPEEZX50+ERWWKg0u9Jtt6wNVGwyQgJ0WbLLIXJO8Zv9+xH09gBMN24HX3GS9fv2UZqy0+Pms64LZtUMcDQksqf/RPuNjX1tbTxzlX2VP0CCUJztexeUiEknFzJoqIlwukSpUpCvKUSSrWUegiKK5O9ZQvtTgh64RgSXMtW6VIDCOCGkOISySHGZErv9o2CrStDOCNQfUS585jn1QQKPqrK3QTK41FZh73zxzGI14IkppZoiBPC2KO9OueYd3TNpbsaixoWHfsgybniI+ecXekUGkruyUj40j2nv0poFTddSkHnTYQMzkmjscjyio6KiWnhELykVxqaVkogVIZNdUyzJQTes6kHEEWGq/xyeO9J0y+5kElyCXjBkGTFd1kEGlCTwvNaaKNhdO+LkivPk1spWYQBhnqjVaVCTeNzP5IPo2EZ8+sLWYeMSJj55bFF4zR5K6l6S0qVZvozWWLiZIOQzaSjYNOBIS/56opXF2v+N99+YY3L7e4ktj97nuWPNKaiCuJd9MRMxts1Gf6z3Nl8p6O6PkAKTCKQH+ZSFmwZEE7LTS6o9Etw7bnuNvhl0gUHmSprhd1jpLlKlMig2gURmqWZSaHWCVm0pCUqHx2rwiiioBkLkhdy3rFZ7LwKG8QSZKJ1VoXEpFUc+4hMesqt8i5tufFLKCpM2vlBV5FVJLnKFGqs2wPkz6RRalyFPNfvuMhRFRpyMTzdy6QmKkJE42TGqNkjRFJQQLUrM6njhmWhMcTUqT4jOzrJIkkmVIt4AEoHDp4VMxAIi81/oHMMAuSqN0GOUlS7eBBktRJvED98X1O5BiJIVZZWBHkDnSS5Fz7NiXW6VWSETH+KNwDQsQYhbEdRUWyn/HLQlpSJWf8KLQ5n1rqrBAmoWLBeMlzHPHLQlwCSp5PUFJ9IIg5IXyNRtyuNvSiJZ9EFaWlhTQfia5y+Y21rG62tM6S40I0E20jiU1DkdBqiXIZJQLJ116ObQTbLmHwZJ/ws2ecZ3QGJ2KldMWJkmZMGxHikRwW/OFbrFXVXmkLF8NUS/lFMD09koxAWUOzElA88zTz4ekjHFN9aGaP9KLKkIxAHGpsIomEypkUCxmJGWWFF5WCnQRLN9eeTIKboWWzMdgusfvt1zzcfWS/f8A9fST1a5LX2G9PXL1+xcvrC25XlmwNcj7i798zjiMGg0bDEonTEasV1+stZXXAacUyzTzcf+TxYc9pCYjHZ35nvuYUR7ptS3+5YrP1ZL+vSMMkKBG8cUgNSi2EUlClCv2K1tgSMHJBREUqEh8CU4hY9uiSUTmTE2BTFTLlE2n54XxyPxBlQZuCs1C0RsZCzJX/LXRECQEpE7LE+4W8CFzvEdEjQiCoQI6COCZQEVXqSTRFo0SHVSNrl+i8wlIPhJzQmCLrhDsunJ4emVJid5jQZQExMwaPjBNWC5phy2pwSC3wISDzhA4FWxQXa8lKGVppqvhNmGpI7yIyTfV7mBZCCVh5QJwjsPU4XZKNQSoPIpOzB6vIpZAROC1QGiSFJM/UEFnQNmMkZ3pcQSqLEglTEsqCpk4h1aVGyjpFKQrM3BNCYtEBWerEIqbAks6CLg3apUpoiQmfImWqrpxSAk2oUslxCdi3j4TtNVyBlorGmXqA4xUxLqQcMRlOuaDOEqeL7QVeJ1CJ9HQi+khOCTePVcQWBZxm1ts168YxNJLeKZwIyHCeLst6HOuVwJyqLNRqyOOMiSMiHfn2b7/ibn/P8+kJsXxg3na0ztEXw+tf/5TmcqBxMDNSZKEhEy9ctYGbgLPhPHVOZAmmiVjja3oiZUKILB5yvIMUKAROD/4MQwj4+ZkxLkSfSQfBh71nmiLzFNmXwH6eOCwTYa6EIWEUKlVijTYaJTWjSCgSJmUOMhL3E+n7Iz54rBFnMZ5jjr46WUzE5UxWIAZDRtKsG1zfVupaKVWSmKgrXzLSVyqUlLLKMgmIHDG5YF1iipEwSTKh9kDPzxcKKJHRpj4XwpKYlsSiwA8jTTHIlIlzJMRMjh4hYu30Kbh4vWaMgaglbSeRuqBlwXWVG6dFoZMJKwI+ZJbpRDpK0pxIYWReEkb1WNuxVZKDdSxlQsUjjekwrkWLlqFf4VqNsIVgZ1LIiCTQQwskBALZGHRM53RLogmBJXomn3n+7Vv8q89QnyqarufV9TVpd2D5eEf0CpdqrFUWhdYK1do/7WJfaVUXU6Ew+ZmYIiorYoqEULP0sVTLatARbwIl5jqaExXVB6CyqjhHo4GMjdUkKs+YJ198XeimTM5LpcAU0FoipUVkgSkB0ToolhIdftVge0vTGoxxGGuxbctwc02/ioQYOPmJOUz4EupVa2oGWWaF0Zp+s2Z1sUJrxUK1ci7JcwxLXVRMI8d0JJeaQT6WhM0BQuC493WEbCw2g2n7MxknMC8LBo21um4UUrWxFlEgVTuc0AURajY8EBHlvHgTtXTmk+e0jKQUaY3DKonI1eZopcBmSYkLzDPq6NGhbh6EFFw7y9YO9HpAywZlB4wNODXiC5UPvySWWCAFdBKo5CD8iGazOG1RydJpx+U2o72mSwbpDF2jsLrmOT+5GGi15S9/+gm3l2vGpz37u48UmWkbiTaa5xjRCipVTCLLVMvV+z3Zj6SU8QX6ISCsRhtFWyItilY5hlWHH0dCiAQCRZZqUdYCYjXC5lKQVRnKj1r4GBMpZTIGWURFu6UagSFXnKNSipw1qdQIFOm82KBm2UusNj6yIMdMCJXYU8Gwpd7bSr1JiShqRCYDnD9nBCLVZr8sFRGpVEDnTCKBDEhlkTIhZN2gFALYjEFitMQqWTO1ZxqKSNU2Wzc4uVIPciSHXBsPRUBWhOzPJCIoSdVTzagqYSNWH0BWdcRfZCHLVMfOssZ2ShYUdcabISilXqMlZGI6m21LxWlKzlZNWX+Ps+Ct+AyqRoByykgrscZSlGCKR/wyE0PCnq27pFInlgKUUGdcaY0e+LhUykeONI2mtYbGGJQEJyWt0iSnWXcDCs10XJjMwjgecCqBy1jZIqzDDD1KFUj14aJ0tXUmLXCqdn6gfoeEkhip6RqQJZF8ZDod8b6qzbU9xw5FfSAaJ4ETKR4Ih3ukukCKShpxTUTpSCmRxR+RdoV0Da6RxBSYppH750eKjyhj6oQzV1O3VKLSviSgCu5cUBeigK8LUSFqB8XnQE6VDd5biXNQhOfp7SNPz8+cpgNN2KN0j5WafsncvLjl6vqCoTccQyZMJ8bdM2FZ0FZiRak4vOAxpuFisyJfrmhctb/e3z+zP43MIcI8E+8Kc4q8vLrm5a/e0G9aLi+q+C4lTYoW7xROgBSJVJsiNUogDYqEEgFiJBVJCBEfMi6H6ogQEiEyQhWkzCBOpGlH8hl0Tz6/H8bWzzaLSBKRjESqBKLiamORxOghg3UJiJQpEEUtjpWYyWmpfZHztSWEQ0tHp6HJGiUSQiScdlhlUEIgSs3d5mVh9J5BJKQqTGSkqKbeYdXjrKydlbggS0BmMGhWVtFpR6OqKItsETIibYT044FWIIpILnNdZOSzEVUo0KbiGc8HC6gatSlCYo2s17moVBWBQoiMJldUdSkVJZgFKhcEseKYhUFJjXIWlWpZN5ZqI0dAFBnNAiJSciLlCkwQoqBtIS31oCWeMdQVWxLQGXxMeO85Pe3x00TOEYnEWYNzFpFrN4foWYLAWIEu9cDn4mLFbCIRD/cHoFLBGjJONygFukTWfceqa2idptEKKwtGRAoJSay5fWNwgFO6YhVZ6K1ClcyH7z7wsDxw8Dv0PrGfG5qm4VZv+cT+GtO1SFWgBGQpaCGQjcIoQaMrf13kVO2ySqFNQesaC81nW3sMINIRciSnyHG/ILQgZ89xf8d+nFimxLwTvB0jOQtkkSxSVxloqhhIKc7G2qSRWqOMwghV7xelStCQkJdEfF6Y5wVp6+LSWINSlf6mqEhTKQTFKayUdeo5dHUDnEON1hRZI2NkRDwfxkmBkbJGk3JGAdYUTkskLOdNgKjxVKRASIlUAmWqCT0Gz+w9i9aEsJDSghS2RmIL5DP2VkiQWrK+WSHHhTlmrDnvM6XENnWCp2Wh0WBUwS+B4EdElKgMIkdikBRhMKZlkJZ4pkehI8Y6tDVoaVj1K1yvkTYzH57J502NMKZO1oSsG6xSCJJ6bZXzdzxPPL+7ZzlOCKqN/epii7+85EPbMZ0UOifwZxSnVOfv4Z9wsY8szKoQdWGMnqRBK8kwZ06iKu9FjhyUp2SJnCTRSuacCDHhG1A+oRKY9YbLqxVKC1zwWNuwhMwcM0k+EmQmyUSRYMyKrmm5uXVIuUZpgbUL44Pk5D37PLFpBm6uBq63PdfthssXK9ZXGy4+/YLkIXjPeNrx/W6knU4IGWmvrhnaDV3TsbqQbLbXWO047p95++0dP/zwnv/8N7/haXzieBo57EaW0pJkIKmA0JVja7SmzQ1KFazRDP2a6cUNjelQoqFoKE4TO1cPWqSkKAPOUWSsZcelEDsJqaBniJ2qb3nKnPqZeXdiHI/kNqLaLcpacBndFPSQEevA8i4Qicwi4Q8Rn6DrG/7ZL/6cz17/K168fM3m0lHaK6bLE82bA/NvviWlD4zhI2NMKG0R3Zqr1aeofqRtFMOLLVbryrzVkpdm4fqsoJZxoF9dYZqBKQV+/ZNfsF5t+cmbL2hLz1fB8303c3ExsB96vHb8era8uGnYDI78rLk7fcfh+YH5+cgPwB9F0Apue8en2zUPPrAZBoamQWRFdIpTkOxSgKZg0BjVklXlHEPGbCzJwigyhxIYiURRT7CEqqXAZAs2VjKAVAIrBaGRJDRF6zoBAFywBBWJuXociglkBNkLUi8oSqO0Ibtcrc5FMgpFpyrXGg0bPyC1AWdZr2p2VirBSvQEbSlWYC4njF6jpcKpRH4amVUgCY91ClsMRmhCq1FU7rJXGTtrEpKxi8R9xitPNJ7gNVo7pFTYcmKcIz4myiI4xMScEn6KJF1jOTIpvK0FZZUzxYJJBookGGjOm5YsEzLUwnBxIJYZXxJLDmzGgBt6bNOxUYIlJMigsyB3dZMqfWaxAicKisRoIgcROZXALBaEqBizk/I4NFpTi35esRBJ4oQfJ3KaMKbwySdv+PzLN1ysV6yMxHWZ5cWGfPqUbnvL0R/YP7/n49tHPrxpuL5Z86uHv8B9NhNaSztJ1JChtLC84nD6liw90mZs71DFQjb4eMSoFUpqTLchesE8zjzfPZMnj7Ad2q1pOgfuBHmmFI1M71mOC9O7FeUiVd70rIm3DsWAKZfIl2tsu8G4Hqcsp4dHHu6e+MMPD5z0RGvBL4WdqWVUSWayHrUIxCLYrwurqHGyMOkFcap5/lMXaUdNaQTBwSSf2O8dOSveL0d+eHpmnj2f/+SnvGk/4cXtJZ/92TXXr39Oc7lGrjue/923vN2f+G5JKCYKLQmJJ2BNx3YYePNmw82FBh9J08K98uzyyCke2QNX+wGTM//58SvG//mKnzweGZvXfC5/TpYw6YUcCrSVquR0jyylTo5yogJYNTFrUsykpVLZND2NqbhI2y6gZWXA58T8sGaePGWY0dGQsiIYh2u2ICaynDHCIH2hlEQsJ9K8UPxE6ybEURNzNUObOYEF2szzD4/o1RphHCkBQSNjg2FDu26xMqHTgtmuaK6uaS5XrNsLphiY5Ak1CHRaI2JLKz2LWmhWlvXrNdkvnJaRw3KilAZjJ6QWrNsbNu0t637Lqm8Iu1PdUJTCPAMqgg7MY8JFhWk7rNtQOg9KoFSHdoaUagG25IRSmkZLGgZQBozCiHr6KM7PoiwgpMA0nng6PGNzZkCyWt0iNgXlCiUNZLknhYXxQ+R59wPTnJi95eKlRbsNjW1Q8YEoFUUYtGqhFaAi8vgEbYI5UU6C2WpiEogx8KE78OK04/Jxj2x6nGvp+4Gm2bHsEyEE/EZjgqQ4hW4tX76+ISZBCImH1R3mMJFjpNVXXLRdxfP2iYv1LUprYim01jL0K5ZtQLcK5Rps17F9ccvL6zWN1sgkcWtogsadJP/u8O/5+H7P4f5A/KVj9W3Hpr2g+T++pG0/Q8kLTjkR3wkimdAkCB7VW7TpaNQGREQQ6d0lzq0x2lSUeBwrfCRnmLu6yCzg3B0pGpZZ8PbdkW//0zs+fLjn9/ffUIZrLl+85NPPP6cd1sxLQrmZ1PsqrwqCoCUb06CcBV3IxeGJnFSgLwPRttx1mrt391yXG/rVgLMNrUlMxXPcRczWAvUAV7SWtl8jXt/gsaTDnjSPRBEQx0LJEtEqOi8oNlO6wvj8jHINqjW0xvJxOVaXTBJYt6Xpr3CrHq9q1LvxgfG0ME07jsvIwSysR89gYbhakXRCKYhKkoVAK0vTXbJ9ccBMJ+ZlpkxguhbbtAytoug6JV/J2uGa/RN+2bFdefadZXRXCG252m643HbImAlPGZUlrtGcjnuIgb4pfPbqln49gIZ/9/EtaSNAGI4RTGMxStPTEHWdVupnDf0lKh0xpyN/mO7583lPXDxtu+Xy9hUlFvbfPfKbt+/x+8w6VrGoxFGDPX/Cxf4SC2UOZFFz5jrViMBJTYRlqbwCVVhHSSYzlRnpNSElghbIuYo8kkzIFBBKgq6j09NyYvYBnwquMyBackwYq1mtW1Z9T9c3mK6rYokQeTaBIBYkM+3VwNULw+urjrbfsL29YlivME4hZazt8CJoLzLZSbrS4rpAMyT6QbK62CA1zPOet1//hn/43Xu++vZ7/uPf/gdmb2sMQxU61yGNRVhD0qYyUqeJ43LAtgLrLCFnVAEnLRpNlpGuRIqC+8MTWjtSLmAlYqGSYFSi7ApZ5Mo/DhklFI1tyE8BPy54H+hKS2Mk1pz9BFKSiiDOqhaXxsjpMXA3QU7QKcXliyu6iwHTdwjRUNzIaffED19/y99+/JoPhz2HeGIfWlRTcK6wxETXDtBoYihkJRHaofsLLvEEv5BjoGssxlm0bVDNhqa7oLUdHZ5pOpIPX7HZ/R2vNydeZEPjOn79F/8dF5sOawUPT4/sftA8fGj5J+XZf3/klBLJwV++0ry4WnO5eckrH5DakIvkw8ORaZqIwdMaBcLVU3yq9VVYA0aiXYMvhTEEDiGSZZVQSWkQuSD8+cSh0ZSzEC0VhfABFTNyXYvUAohixiz15DcpMChKyYQyY+amCjGcRlIFQcFn5KMgIFFNld9kJRDKo+SMEhbtBKaR6H6qTH1laGSH7ZpKJFCJxQiSiWQWDqcZo2OdYIRz4UqAzYIkPSUlnC9ICuocgTmFPU2uVJcEzDExzZ7xeGA8BYJPhOgRmDrGVwk5QxaZLMAURaRG70yQ0FRKhUyyRqhiQvtMFOI8ji4cpyNIQeMarG0oyVfWskjII0glEUbickTlepiXdwtyXDBLRBWHUbWkaycQbUYJjROGJGb8XMijZMoJITVDY/jy1Q2fXl/Rdg0pHWv8THiS93zzzbccxgcOpweScLQ7CKZhvJ7onMNqQS4HylhH55Px+PSBEBdI0HW5Ti1Ele0ZUdAiUvIBH2Cajiz+I30raJuCaj2mrfFCkq2SoWDIqkH/qiMfnvFp4dh4tkYgG4/oC31xSONBK2b/xNP8yDE+crGOLCcHUnEsI5xMPSCQIL0kpEDOGbuzFCeIRmBniRcT2UfkhwytxilHIwyvh+oDmI/3iId/5LafsJcd/9UXn/LZT/+SzeWW7dZh15fkBP7uyOP9A08fPnL8eI+2a4Q2aAkuJ4zLuF7R9xtucsskJx7iEzHvkG2mvehxUfKzL3/KJ5+85stfbLl8seF6K9AfJt5dfV9JWdETNi3XLtEoiZADOReiqGSKUhJZKJYkWOYjS5zARIRbEK1B2joFQAeEDBAV+YUgPE8s9++ZG00vV1xubojhE5j9mfCh0VJQVGYKC6JkipjR2iO7EZk84riQBolJgjIlvnn7He16hWsHXPfyLKwSDD10ImNK9X3IHFhbx3ZzgbcJlh1iOdLLjtXa1Cjh84DUO7QV5BA5LkfGaWKalsqpR2AaxeWtYdUJWlUQJaDsDKKWLYNKiBAgeLINiFahBovqqf0OIRA2gfrxtFVX0hZ1ylaaWG3jQlCURdZWI8kFljkzTiO7/RPjPBOIZC1ozLZatjN4PPPuI/vnJ77+5h1vP3zH5CGJNf/cvmGz3tI1A0LMkKrjxGtPEo6swawUeq50l1hG0n0h+kDQguGYGe+eeGcsF1c3KKtohhYrNehEngPlMVI2bSW/hMwXL685ENkvR5avRi5vHI3tuegbVqttnVaEGWEcz7sD798/8Pb9Ow7jjiI8qlmhdME5uLld8fJmTds6VGMYZsFpP/Ew7cAe6T+H7rMVv779jNdvfsnNi9f85Bcv2N68rBjYNPN0k0jLUgucMqOswbmMJJxLtxErPYKRXOrmY/F39eRaRbIJGLPC6Q7VXvG8OzA+H/j273/H33z7Le/vd3y827H5xYZBpeqAWDX0ucfHhQ8PCz7OlCwYysC5RlsL3XIhLxPlccKuO9a2YeMFv//2B3woXF8Frl5dEHIiyUJpJad8AGqss8h6au2aARkr5lKg0SfwZqGkXCfEjan0m5SYw4SOGYShGIHMCRUiUR4pZYIcqgk5BsbpyG7/wPvHI8dlZsTjD4JDd8K2FndsyUqCkZUAlxaQlqLBrl09NKYQ1A6pDDLZuiEouVKj9EIikMQJoUc6E2jsiGv2/Kr7kourDe3QcNqfmJjx6Uj2nqgKsrWo6y0XtzeYRjH6IzFGtBwwqmNWoKKGbAiNQPpKuQoyoqbqj5oEvDw6eFw4PDwibYO2muFiw+3nt3z4vsWLGTMVXGkxRqG1/9Mu9gvnbPLZNsrZbFntpOkcZTiPAjlP5M43FM6/V6MH54Z3SOSY2B2fedrvauZKCGQBo2qhtcYwqqjisAvI5IFMGk88zfUGrZxkWDestgOrizWuX9NuBlzfoYwikypFKClW6xZjFelslzONRDf1Ru3jxPH0zHc/fMf7j0/cPz6wP+zweY2yFmcNWFuFYefcZ0UIQFRnAySCWCLTMhOKrzEdU6Mi0ggOhxHTJOBsrs0/Wl2riTiLStaQJISozNiSKrklx4w2GqMVSlVjcKKQzgumlKhIz1x/TxtoWkXbDOQC87wQx5nff/8NP3z3Pb//zdf89ukdx2lmmiPBSpTSyKx46PcUsUYqgY+FlFuU1mitGbIh6Spu6Zo12nYo43Bdh2k0WmVSODCPT+TlA0N55tNLjZQdfb/l1z/7gqazlblLQC4bcprpH9bcLqWOHV3mJ6+uudzc0LfXLNOJOQeOi+cwjyzRE8lY5eqJVKkkCiGhIMhFEmU92Qkx4ktlQEuq2bH+nTNiU8pzXv1HozN1rJnlH42RmbO5VVCRj8iKRvsxKiEluuqYqQgeqmQs5XpKjjgbIOvn4pzFthLbKkxjwGik1BgUxpiKH9SKdjDVDBwSgkO9HKRE5Ep2Kecrs+Lk6kVthCQJQaYQ4kJJBS8CS5zZHSfGeWaZR86T1D9es/I8wifls2gNlKDGaX6UkJ2xdT/K6Dj/mRDyDDcVhFiNwFJKtGpqVvRsyC65UAqVyX0erUspyUukxFrerVhWSCXXHev55ymp8KWiQ0mJkgVaGdqm5Wq7Zd13KCV5Hj3HUxXDzE8HTv6Z0/TMtDzjNhv6IzTWsA8j3dKiZo04PBFL7cwsOZHSiVJCLakVoFSqhBI14iRKIoWzjTZNKBHp2gZnDdqoKk0p1TRb+xSShIV+OHclzvEoVxepUkt0EiAypUR8mKq9UWaGwWCjIWaJz4mMqoxqJPAj8Cn/FwpVOYvySiGn2nVKIoGsGNvWuOpE8B7hT1wMls12zaefvOTFZy/rSZ4qLKIwzZ7904F394/cP+3ZHxf01QapDFrqs7lboc+xgL7tapzNG5QztJsVdlhxKRq++MWXfPrpJ3z6psO0Vex2OByZTcQoWa3eRderR6h6jVHjdUUECtU6noonZY+QCWMk0lUEZimp2rBThBQQQZKlo+gGqUZiiPhYudtiWRDeI4KniEhSgiwKqQRUCQg8RkMR1cquRDW+51SjefcPT9jZ064jL+zLWiJsNMa6+hnms73cS4yErrF4lip/K4G+c3SDISeBGiUm1812oZK6fEzEnNBC0hiH6RouLq7oux5nXUVXnhMFSUgwnLtLpUZinQWjKfpsqIdq1T3HGqVRaEvtxFBAVeSolAIpat+jnPP8sZzRjKnmxHOO5FCf2zl4YljYLROHuw88Pz3xzffv+fB4x5IFWQ+srww3c2C7CvTao2WFISyKunjMCmMqHCEtkkiuNt1ULaEiw3wY2d0/Y11LSRIta+Zca02UotLuQiIpyCkz9I5YBLNQbAfLZlgxdB0X66EiHUPk9Jx43B95//6er77+ng8Pd/iwUERB5oTOFS/sjKGxpnZtdL0fhpw4xYCwir7vsI3l9YvXfPbzL7h5/Qm3Ly+Q1lJSwE+eU5gQecESUAqUFEip6n3lx1/CU7Ihi0wkUdKMIKBlFXxKDdJI0pR5ePrId99/wz/+4Xu+/njH82lmKoKtc+i2Qg+atmUeJySSefGEWPsBwnCOZp7XZOfnWEkZrR1aaVSBu3ePNMohhKC/6Im5kKVEWlNt3rmQk6gQCqkxxlJkJv8oRFOFjD73vwpSKZQUaFEI4fxMlRFRZO0jqZqSEGRSDPh54Xn3zPPjIw93j9wdpiqBLAUPHE8T2jgGOyOVAiXwsfbekJoia+wquVyjtH5BKV2vDyHqVqXwR1GcJNFoRe8UXavoesXF0NI6gSAwHh6Z5wM+jISYKFohG4seeob1BmkKHk/yFbFclK7rs/PzuN6vz8jRUrGUpUhykuQomPcTh7tn9LCuNCLbsL6+4uL2hlkIzC5il4Ay1Tb/v+af/9WLfaMls0lEkVBH6puoJVZaSusRCWyoEiEhFSpbchfRo6SJiskVTLJILJPMPD3sOZ72/Pbtb3m4G1FW064aVsGijUIZSQyF5+OOh6c7Hr77yGIWQonMS6K9+YLbF9d8vn3B680rLi9e0F1d0/cXNJ1G25opr3x4cCnx+e1nLGlhITFNBt00FKtY5h2Ph0fev//AX//dP5GyJiG4Wr1isg3aDbTtmtg4koAsCtYFms0tRkoIHpdkZXnrgMiKKUbGtGBPijkFphK4sFfoVUAqSXmOdawnoXjDYibEEpGnSOkFpSi6riN3UE4VH6U3CuMsQgkmjszJYnOipVAWhbAKc6HYvgO2iubaYtKaxw8Hnj48c7z/nv/L//P/xm9+/8jvvyrIAZSquNKbLz37Dzs+KsuH5ZmfX77i5VVFC166S1pjcU2mKR2iC6ASMn+GsvWzckox52emOOOnmeXue/L0kfWF46+al6jVS+z2c15ev2Rh5jAd2N15dtZyXK8w8oY/+xdblPGoMvEXf/l/oBM9ehE8lO95N37PIdzx3Xyq9mGjsU1XM/URchZgA8ucWObISVZbXw6FohxKOASqMrmVRmooTSFagxT1RtRaiZeCbIAoyU1ld6toSM1CSQI3aSYbEamKvBg0ZlGYkDmaBZsdWiiEk3SuoTEaVKaRtUtiVg1X11tM49DO0LaGEMR5o7ZQvEKjsVLRNS2tXHPZbNgMI/MU8UvgoCeY62LuKGdk0SghSV1mfTTI6AmykKbMMR8Yo+f+3SO7/Q4fI02/om0arDFYHMlU5jJSE+1CXqCEUu2mpW6Qsk04xFmqBfhK2QiuIE6qdm50Hdsew8xMRGZF0gWkRCaLdxmNxGRFaCS6MXSd4jEHkihkIXFDNRvnnJjMQieqmTrbgjyoWl6WgS5axCBZXQxcX7zA2YZ5HLn/6oF//OY/8OH+gbv3J4pvKmZOZraMzOnEU5gxV7cc80L37OgajckBLSRGOra6cruV0MiwRQqLUpImC/ZMxByZj4aJGSkEF8MVDA0KiyyWEjJpjsQlM2dPOBTCYsnTK7rVLTpnpM+06xc0esDGjqSO9f87JOap4FTLqi9sLi6xKZPnQgqS2Is6wVoUcajmZ5k14ybgokVnQWgTTIpUFHM7wUNk8ZllU7iSkmWeWU4jtr/g+mbDze0t11/8Ga7fUKTklCbe3X/gfjfx4f7Ev/2nr/nN+wPvRsmXLx1K9Whjca2mEStMtqQyIS8uEC4hS8v6+iesbaHrLT99dctP3/w5l9srdHvi+PSOp+nEW/FAuBdcXW759NMXXOiGRl4gyw2lSGwRqBJJcibENRTJVBZW2qGVwjpDI7eInIlTJKZQCR85kJfC8nyL5JrNp58h7o5QWuZwiZ4Vkrmia0Vh8eDPHSmBR6lCYw3H2ZJyhs5jHjSnUtgT+PAPz8xXE+4msl0l7MrRyBXi/oqT+ICYR9R8ROWWmAOqhXgcKdQNytULh5Irpmkkqm9RxaEklEYSnzsidYE3pJZ+6Bmurvj81b9EOYOUdWKQ5xNR2LqZ0Q2uKzidMaGgTEOSFkaLEAEhCyIolGgRSmONwmbPkj0+B1TanLsO4IpgoW6c8tKQWFBasbUdU5qZ9pnd3nP3/vd8//4PvPvwHV/94Xfc7Y6MY6QcLDhBshBbmObMy6tbXl9d8eefDPSrNbZpCaeRrCNKGzamZ32xQklJ2AXicIRjRh8T44VBPC3E3Y5iHWu5RizgVobBDog2keSRMHmylMQoKDbBFDGx8OVnb7i9uGI1rGi2G6bdxOPDE4+7mX/zb/6W3377Hf/07beMs0crizGWXorq6ZGONEJYMsGP7A87lBGMOzg8gV29pG8tF0PPy1/9hOubN6y7G4oWnA4T43Rgt//I41c7+k5zfdPQqYwpBkJLyaBK7XNMZSLGFpkhlrk+ryQIJkLpENkQfeDth+/4//6//zX/y3/4z/yP//E7gPqMfvOS25vP6mt4+Tmrdsvp7sC0n3k6fETLBms6Qlex4EopsgKVLFIa8lqjgyFLyclk7v/hAyFHdkys1it03yKlpdU9h5IJUyQdFnq1wiSN0pLQWuzkKIBfCfrJkktiMiNuAkQi24Q6NBQpiLJiWttmIPeaq/YThGiYl8Dzh4/8/Ve/4f27Rz58uyd1EpsMthjGi4Xlg+W008j2wLb0JCdIrefiWGiRqMHhSle9FUOHur9A2Ii2hUYIogikUkiTpbiMk44X7SVP20fGBUIe0LbhkA8cHx75h7/598SmIUsDQeK6a1y/olv3rK8ukQJiEYS9JA2BYmZWec3UZ5LOdNHiTSRJh4g9uZcwR+QYeCsjP7x/5OLvf8Brx8X1Nc45Ll9+zmd/9q8Yr++IHx/Jd99RkqRk96dd7LuuQ5aIToFnFUi+YqmKGUk5UVuJgnJKBO0pKiOWQgyZrAQumMq4ZybuZp5V5DiOnMZEOU2EEeI4UaRBK4eSBpEicwgs3nN83vNcPGPJTKXwyn3H5qVlc/0lw+db+o2jaxPF7EF2FGARCqUiaE/QE5urhnlRnJaAykeSjOTskKbHL5KSHL/+5c8YY+F49KyHKw6jqCIHq3jwGa0kWirWasuri0sap3m3/wEVR0SGklqM1OfRf8aLBeEL6qQIZUJMiYxkCXMtzanKVNazJqVCMNX2Z7RkPTSUUChasXSaTq04zRM+e1JcUC9X9VToZIliImMQCPrVllZq+oPm//Vv/icu3rxEScP07sR//Lbj49FDdyTbiidTjeG078iySqOev3pgwxpnHRe7FrXRWG0xgGkSWViKKOj4TJGSWAQlJI7LEbJnICD1EdPB6vKG3N5QYiEvD/zum/87z99HHu89/35+RB/3jPOJP8h7/hv5GRs7IJ1Ejfcs5ZFjgOSfORwCj88KcfDofF6Ee0+iog+D8DwvB3KiCjOSRhuLtgoZ6k2VJIiLRp99EWURLLJGU4yWrNZryqmeFPlwRJdaQBMy18IWmdKAy5JEIomIC6YKM7SkKwYlavm4dw4pRe1peIUnIoREu8g0JrIRZGEQc+H5+cg0e0qOiNWRxhku2h6jF4zW6LZl3WiaacLPAp4DXkZCFLTCUlQg+gUxHgh6wZlEEwUlHRlPI/Nx4u7+iWUuCGVYX67qg1FqtGkoqZBLPXEoQdQic07kEYQVaFUocyI2qZaqPSTqiZROmUnECv2ItaBaQq7FdTNijEYphVAKu9STUi8LYi7IrgqPehpyOSJLoI09x/nEskzEcUQYVwVuo2aOHi0ERlqGFz3a1dLi4/0dj3vLPE483t3z/i4Txo5Pmo6PbkRnSSMULzc/pVVVdPR3337F7eOKzrXYruPTfsF1BbWSvLj5Ate0qKaha0ptuYpYA1I+VUdBPtK3BikMGotoO0oI5GXH5CemfcJPiWwCefFI4OLVhs3mGukcqdV0TiKkBhQlNkQysUQGPDEHtKgLWB0UMiZC8YgpkYqmoNF7TUyJXDKrscE0GiEVYp/rVMtHypKZc8BPhZQCt8cdTR7RNnKhWzbDJc443v/uP+D7DlE0ZtYsm1ccp8C4n3i729M0ki/bLZv2hpxrb+Cw94Ruoiwt2g9stytyTmib+fMX1wRjwBi6Zebth9/y7u4PNM8jc6MQ5YQbf+CfmpGfy1/y0xef0He3tK7BqVjfE5HIIkIsEHdoodgYRwwnpNQ40+B375jGZ8bTidP7lv5aY1uBmhPd5Yv6QF6t6D+pjHIhPTlolFghFaATwp8wYUZMkVBq4TyEhaSeiGkiHmegZToGxueJu7QnTQ2ryUEjsUh6Y7m41Ow+QPaQkCRV5UNqWbD+ASc82mo29pLD6ZnxcMfj03uaojHFknCE83d823RsVreYtqftV5CeUWaDUIYyC5JuycuMnA8k4SmxxgZn2zHOJ4p/5OlxjxEt2mrsRnC9ucI6izQSrasZmqwonM4cdxDUk9tCQSlPoyAg8UnjyobT8zuen97yN7/9A9999cCHt8/88P4BKwtCCIIIbOhgloQ7wTfz18wvDqRl5Oef/XOGrsOtemyB3eGZOE9MIrP4QsoR10tOp6keyujCcNLMfscpP5F+N1GuXiGFRRwinZOwSMYjpFCLx0JIXChsu8JqkHzSXrF+8RrTNPjDjuf8yGl+YP/4wN1hx2lZUMLQtRqpJFJrZFAUXQgp8BwP9M+AluyK5MUhoAmUq8CX7TXuckOzGeAQ+dv93zKHjL337AeJFIFt2POgRj5V17wKn2HcGq0Eikr9KaUebMSYQB1QQuKsQFlLxqBLh85PhDwzLZG7797z3f2et8eFBvBbx+bmhn/5k3+B3LxgvbnhzcUVMxGfduyO78jHiHDnHtZDoHQCkTVqLoTgKWHB+UBYLYgcsHPC28DD/UfGMNLbFW07VBmWEWyKRfQOse0RwiH3LaLrEXHHpBNeB+KUoXhKDohpRlhXJ8MLeHGgzIJ4gqgjXbLIrHm8e4sZFPM0IJLih/eJ485gSscPP7xFKUHTWAZ5xU4vnJYn8tcRv33N0HaYcORFt0LqiJML2VXPjpKS5uJAotKoUkwUmZBKYJwnqoxoJebFBZ/aX2PWb+n7b/mbr/6Or373nrc/PPKHjxMXLiGE4MHPvGlvaOnp1DUlGRbhOUXPmJ8xzwP65OhuGvLTTKGw6zwpFJY5MwtPqw2hUYwtDHczh9UdXzeF6R9OxC9/wmp7gdOabmWQqcOHgNv+jBhrKuZPutgXskqjSqmUlh/HxyLGGu0RtWUccqrN+lzIRRBLJotS84Kp8rdPfqHEE8fxyGmcK3oLEDmjbcHmOu4RIRNiIsWCFIq0aIrIaAcXqxsutrdsr65w7QbrOrRxIC1g6s/2sdI7isQoR3GChMTkM+mhKPKZWGCkoXM9r159ypQKp9Fj9Y7mOTLFxJQija7jXK0UjVmxubiiawxP6Zk4B0oICOpCUsk6zlLaI2UdvaeYSDIjKPgYyLKWS0uu05CqGpSkklASGi2YVUaoGrU0jSAcPD7OUGopRanzSC6XOipSBtM5iIXxFPj7f/yB4XlEKs24jzw9z3hh4eUNRmeUE2AlMtYCMaKgikIZV7P4wqGkQ6u2LjxltRvnUo3HUea6Q46euCx1Q+gUzrSYVpKlIbuew+M9D4/v+O3XJ374mHi/y/xhlBh5IhfPFFtmaXHCIhfBdKr4ruALT7PnefKcZn8e7EuKkERVSDVxxxQWvPcUIZHGYLVCKYMUVcxTcqGIgogCcV58Sv1jwr2O2ZrGMieLChbvJ0SuVBXQFCEoopIkhJB19Jpqga3ScQpK8kcJTRaZaR6rjfY8YtSzQc+WaTzR7AZs26FS5mk3Ms0LMXn0oOk7x+16oO9WdE1D37WoVldVttFoYwj+XHyVGlUyMUuykkQnKCgolqiqUIysKJkaZZKWTKVwFHFGeZYaD0IqslRkEYlkFLle60IQqflpIc7vlpBkqUBV+gFnYc4fAz6lGkR/jAZIqSqCt1SrY8qRGCtJpMiamMmiko9iiHgfiCme+wNnWRcFqTTaWozRCFnIJbPfHRHaME8Tu3kih0JjW64v1jRiIqWAKJnL7YAhAImpKH6MIkovaS9XDL3GrRzd6hJj25qZFs05alfjUslXAk9JCe3s+TUEZPQsxxPT046H/ZHxlAgLNK5Hioixijb3ZOkQqkGpBlSkZEmKEh8yPgVi8gQ/sSyBZYkEXxfzhUxOuQoI6/wdUUQ1x5byx6hkKoX4I4YzVxlizpKSCov3iBzQUiCkQWjHHDLL4ci8/8CoDNr0bNsb2uGWmAoxQSgC2Vis67DWEpZAjIGUPPM8E4JHCcGwHsgqcTmuOFysCKJGNfx8YnleCAmWcUTvL2gMbFYt18MVV6tPWK2ucGaDpkUkVZGvFELKTEvExlKJScqwLKcaDxML3//2N7z94T13dztUuObN56+5ut6wvlA0pgHdEopmSoAISBGZdxUJWGQiiYCTlXwTPCxjJHhfsY7zSFwWlhAgSuYQmMO58GpbdNNTFKQiOVfciV7gvSRHCarGCmSKODSoUkk6wDyOnA4HjvOEcCtAoLJEa4PRDc5auq6tm12h8NNEKJKEZJk83zy+Jywjxi94bQkl4UtCqS15HgnjxNPdkVxkzQBfdfz6y8J6M9ANPX2XybJyZ2Q5G24lpJzJ9aKvBnNhiKLGd3Ms7PdHvn/3nr/7hw/cPZzY72fGo0NdWGxraE1D02gIApErovh0Stw/jnz9wwNeWq6k4aZvyUkSfOJEqN2dUqEF2hpK4kxskeQY8MvCeGzpmhNaRXIOGKkw2qK1Q6RAKglSwBpJ03cI17LuV7R9D0JyGD3Hxz3PTzvuj0fmeSHFUid4WiGUQKh6HeUkCL5weB555yNSSUKBtZUkIjpFHsSRZl8wfuYuHnh/7zkeAywe0Wy5WDt+9trS91uGfkszrDFmQApVKWqFSjBMiWWqcTtNpdBU2WONMcVpwfvMNAUOp4UQG5S5YPMpuKsbXr58zee/+CmpGXhxc8XlesMpzjjjQNZoXCoQMswhk5BkoWrHLClyqesTWQRWVbKZEgEfM9Np4f7jA6qdUI2m6QQXboW1Ci1U7atYg+4cxXd4M1HkXCewMUCpoq96YHY2JqdAKZpSFJJELongMw93jxTr0O2RkAUfno6IBKv1CnFw1e+bEp3UhJCYU8aeGtZDQsSIOkT2x1N9Pa6txEMpQUmMsZBzfV1khFCVJCVNPVBQFZoxDAP7pkELwf7+ibv7Zz48HhlDJRFJZZn1QGg7SttiXIMsFYddlsI0RYpINDIjsyQmWZ8doRqb05kYZRtH2zSEtkEpzTwvPD0+EaVAmgE/BYbtmpzqay3KABJBrKawP+ViP6eMV4JZaUCSVDzLciC05/eUwixiLTL5iG90vVGQSK2EKEm58LiMzLsnTscju+cdSdQ8sIoFaYBSv3gq1ZiQsZZGKaYUaXWhuRb8sy//ip998RkvXn1Co68x2mGMRckOKSoqbJlmEBolGxrT4eWIKhIdAyl1CGEoZ5Nv1zgsGnP5klAUp3mm23yk/Tjx+DwTn0Y2Td1sCFFwzZb1iyuGztL7ex7zRCwFQ0YGWeM51tAIi1SWbBzR5x9pkPjgSVqShaQNAjFo8CCXSFIRBXRkTk0kzfUkTWwiYVf11LoRKAeqASESJSVKUaAVbmU4Pk2cdjMfvj2hmw8kIzgYAUfg5S3iV7+gI1B0oKhAM0biMZMiXK46NpfXrC8u6PsOrTu0WWO7FYYZmSMxBqQ/kUuopJo5k3ysY+Z2RW8t0Sws/Qmi4un0kb/7+j/xb//Hmb+Vie+Lpnz3OeKzBddpXp0+5UFapgTyMTFojfGFPGV+LzL3p5HDfCQ7Qw6CpGoUBBaWOXBYZvLioTHQWBpnkRhE0cQYKKoabTXn/L7WyEZB1ggSQgm6VjMKhyiONKlzTj8jpSGpTBECQwZztkl7ySKrWEaWUglJySKL5BQX9qeRTKoW2FMkFoUXCqmOtLav4p9QOEyJOQRCONC2PetVy6sXPTc3r7kcOq6HjuH2it4orDAo3VDwkAVGW5yiRo+6hJCRxkp6qzg+W4xVONvQNydithTp8EmStUZLhRECZwRSGJSwZOpnGytCp5oslWIRESvr91dJgS6GLCRZgQxLzWojzvtVWdFpOZCKqgQCNNFpRIwwek5EVn4h+ZlFJRYJXlU53RIDPiSWkkkaosksOqCkxDiH61qUzng/E0Lg8X6PU4Y5Ljx4TysLm83AJ1/+hK0SPMU9T/HAq3VDzh0lS65TS3PjaKxj5dd88tkLLi+2bFeXtEM92CBJdJQV0VgqP385RbKPNFlRzmr4lE7gA7u3D9x9/Z5v3x4ZSyALxa35Be7W0w4NVm4QTURFD6Ol3QayV4STYh92LMtMiAtCPLLfK/YHzzSF88g5kT2cdH1AmpzJTqCyQBXF4gSKhMyJWdRFTC4QGwF7Q4yZQO0BaOmQ0jJJyePzgXHZ8/HD75gmyerqBZ//xYbPZaEoSRIaYRpoOxgGjFZEnykxkcPC8SiY5gFjCtsXF3SHBjFnnsOemPaEcOCr5Yn8ZBhn+MNm5MXbNRdXA91/dc1/s/krXr++5fr1Ndqu0VlTFkHQHhAsvrA7epqiEbqQROR4ej5jCTP/+l//a/79v/2G3//ukZ//s5/xv338b/n5zzs+/2SgVQM5Gva7Ax8eRtAe0y0cvlmYwwlfToQ882JrWLUGIQbmx5kYRpKeCU8jyxKYkoD5xCkmRiK9bdHbF6wuXoEqzBGWJMizYJoV46yYg0LGiXmp98tOrgmqQizmNLJ73vP8dGC/BOzg0MZRpKJtVjRd/dWKyCI1ocDxceLkT4ze83Q68Ndf/xNTmDAS5tlwl/c8lCOvllum8cQ0LswfJfv4jLSSm5tXxP9O8ObT17x42SJLoFhFVgodNZlSRYMpk4s899yqfKmURCCznGbevv/If/qnP/Dv/t0zcR2RDWy4oblZ01/1bJotJk/kJeFPiYLHB8G7u5n/37//B35ySnz+haD/3BC8wS+CcYxYJ5Cp4gXdaoVSM5GZrDXsMunkOfWZ4XjC6oVQPEYYnGlZ1oXyNBLzRCLQDZbuYoNtG9rBoaXFj57908L9t4+8//jAN/sdfvYVtyst0nYg64lvlhmSZDnB0w8H3rUeU+DCK5pfXNFEsIfEf7Tf4N4KdCj8Pr9j/7eCcS+Yvkh8Of2cn335CZ/9xef8s+1n3N6sGF71iKSQIVFCIuFJVOz1aecJokVnhUyaaCr2NUfP8WFiHjPHMbLzCatvub5sMH828ZOrX/Pq5Uu+/GdvcAFuh4Gby0vWS2C7uqZpL8j2I4sQxCwIpRConzsWSnbkYglKY7Olsy2rzYCeJ3YFfBDcff+eY28RTjN0jp+9cgxZQRDQgbOaZtMiFse0n0FNJOnr85iM3NSIs9QFmgLvfbWIW4ctgSnM7GPi9M3C3c6TreFQEk9ScnV5xctPrxmmI0/jkX2cuW4V83MghILYGC5LgZRIY+bu4YDULe2qQeS5TjqloxGKIg2+LKSSsKZFa4uWDaUsZDyJhdZUXPXplHj45sjdQ+BhqR2rU5EI1aKvvoCba+TlCtM7FJAWEEc47UAMmaQSRAhCkkRGRwg6n6EalmboUQVszBwbwRg86f3Mh70kToLr6z0XX37KSgfwgpANTLFCC8qfOLN/nD0+Z0LOBC1RSVe8GTPaK6SUJCOwcyJTmEpGPteibVEGswgmUXdW7inwdNwzLiOFzGvTVG60LHSqoHI9HUdm2lWPtoYcPRe/WtGvBj7Z3vDFX/1zbq633K4HshirtEFrVOsgLOAjcprQrUYqQ7EN4hhQPqCXDDcQciIk8Iuqeb1B4JqWafakIlhbw6xHogv4YWF1+RJSJMeFZyZWveJyPbC9umR6+pZlPqEmy8Kp2tmyJDtdBURhZDdLuhjQ0oComxkonNQB8+zqyb4IyLCQ80IQM/KQUNSNg5oMKddCTZc0rQdbqgupiBmVNGaxaNVh5wQnzwn4xPUYrXEZnm5f029e8jJ+SXkhEf6eMt7xsB/BP+NUYX35S97cfMbnN1suLyzDZkvTtihrkamaEEuemVd75iSJSaCVxmmHkQGhdyTdInJDGzXfvf8Db+/u+OE4Ev5Pn/Mv5RX/tbzkyX7BNmRIhYeYeXX3N4TjPe+POz5ojequyd014x92nE6Bo1ckqiXToJDHajxcpoV8nKFt2G7WXF1uKVPDKUXmHGm0RcRwLkRJRPZkHwmzRjURIQtSaoS0uBLosuIoK/s5pYyXR0yWCAU4aLJkkQGvPWoPwqlatIyGmD0xRA4fZu7nB5YUCFkxFEsokinDfrpHmQ3KruhNIGdbJ1Ey4HzgaYzsDo98/d07rrY9r263fF4+Ydv39NYRZk0hIzXYHGnaOr0SvqFRsTKJdcS/Hri6Mkyz4nIwPM2Kgxc8Bl8RXkngQqIzHUoCMmInhSgapS1GKZxTNYYzSVQpiFLqe28zLhaUF5ysQhaJQpBKQsaMyAKhJQ6FRYD02KkWi6MVdHOdCs5hQUwzzDP4hZQtKS0I4RnQDEJgikJGTbILVhTaKAgpkg++Ekz6hNpeoUzDdlqx/dmal5eX/OqTz8it5er5A8fHd4Qxo+SMtAp184I3N1tWQ0ezWvHl52/ohh7lGkyqjoNcAtmeKDhE1ogMThWKLdiOuhhJgRJGlllyf/yB76ZvOHQvGJpLGt2whJnxY+Tp44mPq98w/8dvmUXk1Drk85GdFDwpQTPtmIUn6cTL3tH0l4DmcDpwOk2EDFFp3Kz/OAVRh0o0Ewr6Yz1YCSVRPMQ0k2NC7iWqKVUytwja1QVCakIq3H33LW/v79mNB5Z04LOf/wVvvvwJf/HzX4C55vnxHd9/8y0KaJKkWySNcgQ9M8kT7x+f6DavKK5hc3OBaxuEMfSq8OnynnnS+GLp2pHwV5+hNxf8n1cG1d+wHjZ8dnmFWW3pjGaQgjkFUHOdfpaWFCMpRjQJ0xmEzEzhxGl/z+k48fg88X/9f/w1o2/ZvP6c//5/+B/YbD7FuoHjdwtTe+Dx8Wv+01//G96RoCRsjvzjhwNjeMKnHVku/NknGz69XvHqaosIMybOdOF4lvsoUla0tsXnwBI8zVXL9XbNyrY8v7/jtCtVBhcDURZyishxYa8i82mhTB69lchxwR89Dx8izw8fWOaJy+YNN32PEQIZCkLOyKRQi0D1Db22xCT4+qvf8MOHwIe7J/7w9W/4n373TNGOq6tLjm3Hwg7Pnn/UjkFkXBEEWlQvGbYt61/8AnN9hdi0lFUhWUAGMjOpUxQsFE3MGREzShR0J/ChUEKmeMHuGLjbeT6eIp//q1+jdfWZjJsNrz4ZWK0cPQ3T8QOxBBSwxCP3Hx/5+P6Of7ydOMpCKYE3zYqJiRAXlsMRnfL54EFjpEI7gxSQdxFlQPYCPU+MJTGj8DNkFnIJpF3CyXqooCIMw0B7tUL1BjnOBJ8JMdCsBLe/+JS5hc3dN3yVI0EkpK3mV3LtfyVbJ6jKSHZ+oZOJfmjYvr7iTesojeP0WvPmb7/lYRzZLQu3x5mrv/zndNev+IutYvPqM17f3vIvfvI5m5sLWlNoZSAsnlxOZBZgQJaCyZJBF0xXkK4WdMVyIiaPDzOn8B1Tu2JZbfhl91Ne/PKXBKHpbIsermiMYWsK9x+eaYogJ48wllXjuOlaVjRVrJUSvZTYk0fJhqI1qsmoU0DsF9zPNhWyUSTu4gK7OxLGmbvjxOmubv6fO0e4W7i82HDz4gI1K66Dp8Wi+gCDJB9hfhsJ/oAShdU0INqIDAU5JqIKxLgj+QPKSMwuo06ek114nGeCkngtufjZr3l19YbPr3/O46lBPHzA7h4YP7Y8LQtRF142V6z6KzpnOMQjPmVGf+K43NHbs/OiTLAuMCWELwgkOhS0SIjVRF4Wog+kxfP0MOH9keFS8pf//X/LF+8fOT0vHJsvcWyRek3YvqBdPmJzZLo/MfqJSCDawnbdYb3GPBfUkOh9habM0qONqWbkruBExq0dTbelOxw5zILHOXK6+z3H54HNdsOXpyOfvHwBIXD4+BHtR5QuSPsnXuynmPAlspBqhlIKhJKIWMeTiEowKapUuAn132WuI8EoS41PFCrmzCe8T5VwsurI3jMfRx5SwpVEUzROa5gdjZTYoaXZrtleX/Hyzef0F5e4YY1pO7x/pghNFo5UBCGEGisRiURDKaqKrEKVBmmtKNJxHo5DrIVKITVO9+Sm0lZy23NqR5LsUX3LsL0kLB4/z0g1cXOz5XpzweP0zIO0LLkSDSrmUaKRBA8penJJJN/jiWRZqrTK1Am8SgpvEjJnpC9EIf5o0As2QKziKCkErWgwStA1svYCYkTgcbmKJJRU+EWzl7UFvmoctxdXCG3YPR2RTYPdrFm9uuW0PDEdEuPTxPT0ERqB6Hu6247+csVqu2azcRi7AqmIJaGTrNQZIRCsECKCSKQQUDKDlhQ6ij4TV5RBioht16yvf8pfvPlz1t1LGnvJTt+wwVBC5t3TDuMOPL6TxMdnntig5wZOmf2c8Kl+p6xaUUjkXG3Dy36pkZbiGNaXbDYbNsOa/XyqptF8Jp8Ief4m11FaEZmsM1pohBQorXBWYbPGRoN4UKTizxETU+VdUqCLrFz6WAk8SWeUrPDPLGrICFHLqmRxlmolzLpDSkPJ8BAninHVl9Ct0FgoAkkPKhNVYpSgXS3qpZw5no5oJCIKcqw215Iz0QLC1AiNiWhvUAmkLmyGCzarhpQMKQji44wfA04XSgJRCqkI5nmpURxTBV0IWeNPSpxjBYacwllwJylKIISupzVCYKIBWSk7KqvzFKSgSu1DFFG5KkmfEydZIbVBqEovmlkIpYpRhAKtNCVnhAyYs5Qol3odYCqVwgSNL6Iidc2qkmAETFPH5rbh9e01Lz99wZQ8MjSUk6GwYIc1ZhgYXr7g5cUlfd9iOku33mBdQ1ESkSKFSCoRsiMLWfGhoUbYAEqu5cUSM2UuLPFITCDUlu3lLa3rEUXx/tv7WhpEoJ4nvnv7xOPxgfvxGXxkKpKxSJwaCWkBkfl4e8vNtae1DWWJTCXUeJ4yYBUk6kZUpvP0qhaYCTXq49NSpTwFksmoIqvgTEmmUeFj4OQ97/Yz3z0f6xSzW9Osrxi2l7T9mvvHPQ/Pj3x4eqwbSymRSpFEje3FVGpsLovKkV63NK1DpkDjFVKAFRGlE/nqJd3rTxiub/nk8gLR9jSu47Jb17H9+WQupqmOxLMhlkSMsd7LS6ZkQ4yR/eGRxw9PPD4+8e7DA/tFcf36M37167/kza9/zTRLxqVw9AZx9Hx4mvn7p8Ah3NXrPhu+vXtg9ntC3FHyR8Rpy/27ju83msuS6VVmZQtXFy9r1E9BSoJYKvK0NyucsSgtYM4cpgMxZgbl8CKzSIhCkpbKIk9kYijEJRHmQFyOlGLRSjEYSaccMidSnmrMUEukkSihGb3n+bjwt3/4wHc/PPLx4ZGv3n7H8wL90NO+/oTcNuTQ48OqPo91i5ANTedoGsX2auD281dcvnhFf9FApxGqygARGWjr9ZkTJQQ0dYpJachlqTGyIgCBGS4YXv2My+YLpFLkDM9t5urVlqGx6FApWouciGJCtRY5AcfAaTry4TCyPeyZfWEsmcVH4mHGmSohsqI6R+S5uJqkxwiNw1V+2wRkyZQLOpyJdjajlhoXVM4gW4swBoQ5S8agSIVZX9KKhmY4od2GnN7W75bWFFnjvOJsBtdaYa2p8bvWMfQN1xeOy9srihS4EHhqFMOSUbrQ//qXbL/8OZe3r/nV7YpmveFis+XyxQ1uaDEioZLHLwuZOhWN6UzMiomkcsVuZokvHp1LpR9mTxZrtFmhmoHBtgy2oWjH0KwQrkMJgUsLjx+fK0WpaKRU5KyIsZLgpBIVPa3+S3yxiIzRGmkUWZ8PaUq1hPe2YXQLJ78w7SZmIchCssyJvl3RzIFpH1CZurbTEmEtQjoEjqIlZdFVcqWrDFGSESr/8eBMGnBHVdUYqmBNc6bWCJZYGFrDZtNzcXPB8PTA/U7zuCRaeWCxFtW12H5D017QNjVeZboWYZvq1zwHh7LMCNEgZUTIQBwjqeWMZO/rPU3UiGSWGe16+s1rfrbtma9nlrEQ+k/p1AZUy6g70pPhqZZ0wwABAABJREFU8PzA/cePSAGNMQxNQ6N7ZMkIUyqVR4BMIEONIQokRVq0k4hUUFESZMZIiZOGg4LH5wPHaSFbgUqCRkqij3BKFAuKH9cyf6LFfomZIAOLiJigqapDiZKmRkEAGSHrjESiiiKahPACFQVep4qb0pIkE4uHGAVdZ1CXG+bHHYfjA78fEwMTayHYDD2xaPoi2F51dE1Pv91y+fkrdL9GNQOq6SjxQBGWTEOJicl7YpgRIhKLRiZNyh7pgSJRTlP8QBY1wqJFdWFLbbGlQ+iMoaC7zK7foTrHyna4bst4XJhOlqF1vHxxxc32kt3hmd/JlmMxSCMR0p6xggKOuY7Qsycv4GUgqoSZFVnlitFMitRmZMiYAMlIQixEHwmNhyLR5wtkJVuK1nR9PT0tRAQTfRZn7J/hWPcvBAVXfcvt9RVRGP5p5zFtQ3e1Zv35DYf/fM/hYebx4wGObxGvbrF9S3/r6C562u3q/0/bnyzbkm3pedg3a3df1S5PHRG3vjcTNxMXiQQIgCBpkoE0k9igqaeH0KPoUWSgyUymDtUgRclogiSATGR1M/MWEXHixCl3sQovZjXUmCsC6qKRYbZb55zYvny5zznmGP///Wwve5xat3TfeqDL5+pNa3TdodQJ9NQiovtKNQbhEmWnhqV0LYVvtbvlVr/gsy/+lOHiGXa45JA8u/UayZXnv3/LuxCZi8BvvuRe3WJGhXpYuF9qOxQpS7BbUjkw15lTTSyPC4LFrTfc3Dzncrth23fsP9yjKpiq29qmGmKzIfoUYjS45sHQphX7nTfMxuEkQDXNQHUufsU3pKathqILShscluQzAKoKxVVsPSfmhZa0WmtFu8r6ySXKdyxovl0q1np819HtnmDO2M6SC0k9oHQkGYe7KPiuwxrPOI14PKY047os5wXbSzOZ61YoG+PagbsUdv01oe/R1jONcBffsy+ZzjrykqlFyNWQxhGMRhWHd+1eaXGgC9Y4gvPk2ozm5zhbtLINKWvAjfbsy1F45YiqsfV1alkAopuvoXgaPaZo8LZtEFqY9UISQUShncKb0JJ3TcVbh9LCktvvVz0or3Gxhc9Updh0OzarFVUJ47jw8nbDi+fXPH15y/2n9+SDIXpLFyL97RXD9VNunj/jYnOFDwHlBd+v0Na27xxDFWkZA3lNVs0wm+dErgUESgwUMyO5wqyI6YRUR+iesbt5gbKeac68f/iaOgztALjP/MW7I6/ffMs3X/4VDB6JBqKBiwTTjBXF/keO6SRcDD09lnktuGDY+EDqLcwCS2XyuWl8xZB9QaWKlMIiM6qYMy2pYheLcga8cHyE+3nmbjzx5nHim8NEyoWXmyv63Q3D7hLbrbh/+A0fPr3j/cMnnN22TBRrSCqTalvTcoloAW8dm01HN3ToJHRBmnlbRZzL1OsXPHvylOvbZzx79vnZCGlwLlCKbtNSIkkyhg4tgVhP5BhJMVGrQPGkOfF494EPb+95++1bfv/6G7Tb8IOf/oJ/8p/+c57+5Md8+dV7Dp+OvPWOelj49pT5TbJwPJDFMKstn8aFFBMlVfRyz1f7zHvjGOyeH1nFRe/Y3K5Zdy/o1g6xQo2m+R+MYmNXONuQsmrWnNJIqpVge5IqRCUkbZDU6LFFhDi1ALs0R0o+YfSK4BW2m+lxzRCfF9QU0IPFdB6rPIfDntcf7/m3f/2Wb779io+Pd3zzeIe7fsL25TUvfvmH7A3o45F42NMd7wnhFmd3hKpYd1uubje8+OIJt89fMAya6ia0GKrkVsRLRz0jTeuSUL5gVOODFzmdD7gabTSrqyfc/mjFzfoVWTuWVDDqHddPbum9p4zHZlBWeyoJ022wSWFjorz/lo9jZHOciVUxLsIyFupjxF4HRFvQHfiKSgpdK9UIVjk6UewZ0bMgWTHawjDb5hsMFT3T6pFgoLdnea4lKQeqgNX47S09B8L6hO6uKCW3g4wJzeulQCmN5Nh8ecHS95Z+tWa76XiyC1y9vIFlof90z5u1Qy2anXNc/9M/5kdPf8zTq6e8+PwpCsUQelYXV+cmSEZpQ5F7Kl3DmtYjOTbZZNKFVC2SDVFOKGn+CakJZW8JrseGHu8uqV2HDh2r1QZjHVIrdZlBn1HntAyHFGGcaZNrZ9Di0K5FyQqCUgVrPdobJFRY2gOrLKxc4CE4WDTzOBOtIaORmFieCUsUln1qVJ+OJon1BqN7jOpQwcAUGrXBFVRS7X2xlVAt1kMJiqg01oEJCt+vcAJTEaaY2XSey4ue66c7Nm87kla8nyLbbsFsnuK317j1Ft/t6HoNYaFbb7C9o9qW/YIqVFXREtA6orVqnqM+U7RQy655DrVQtEKswg5bNu6K559dstxqcrHYzRWrboPCcVgyD++Fr79e+Pbtb3EagnXU0NObFVVPTWJtoVpQWTBZMPaM/dQO2xv01LIOqi4EYzBWc9d57t/ekx8PjDqzTo6LVU/fGezY9s82hv97LPYTYLOhr5BQ6NxMiaIF5ragJUmYWTCujbrVrM9s1Iosqrm5Dcy5EjrH7e0Nf/yH/4gvXl3xZ3/1Z/x337xGgAMwijAfjnyaTphHRXit+NE/+Qe4viLzNavrHpcz6WMkX3SIyqjlnkUW4mEhLwWlNavtvnUtY0I71wyeYvH9gq65ddCdAZpMoQ+PhFjIWjArx3o7sKoVp+DD4R49JkKpvHj5ktvdmlWvcSGxqSeqzoSr59TDQs1CTsIhRmouIMI0H/DFYYwlZ4M3vjF9h0Q9ARSyz5jSGO01C5uDImrTpgV7zXbTY3XHykiT+2SoUbMdDCttcKL4y/SRUfZkl/n89jmnes9hjKi7A//sX/4rfvbTn/EPnj3n//jv/prp7iN8/RvYDDw3gedOs06RkMDlgFI3YBd0Tfh0Dv6qQskKpe7RacHmwmw9xB6Dwq0XVPVAo4YU/xOudgeG1cQYRsbDW/L9A6/nNT/bVK6D4w9utrzce64uLklf/Ii/e/N3vL478c3DwpPssX6FDytubw2HR0s9QtzfIRlunl7xyz/6B/zhH/0TluWBu09f8XoUVIoYhM7syCU1XvRSgNKK/yUQ16WZuAG0w5aMqwqvF1iApEFnbG7mseTAjEItlaRbkFVVkUmByQrRjcXsSkXbileejdnxy5c/w203LNZzOK04jEIRy8XVJe/2R6YlsjYKM13jfGS9O7ALsO0D29VASRGRhTxVpsOJUi2iDOFR018l+mDZOI1ZdUSvmKdELwllFZlMqCMsR2Q+sK4Z31+1ZNxjZAq+GcCroiyFIpVKJaSBte4YnMMuiRMjVCFEh/ZgRaGK5RgMpjRPhHKCbQ3qxlcubVNBRezc+P8RQeYFCSukGsJJUZdMrZWAw/aNv10lcBkcuQglFlAnesmsc+a+RpZlppaMciPGBgbnGS4v+PzpZzy93HLlKo/jRzZ5oguWvHvG7cWKbQ/UIxwVJQ6w3SHpobmt6znQJy+kknDyvjG8c+G0FMpcMCojw0fkGBvbPWgqG1bbQrcS/HXP4W5kOY2U1RVPvUJq4e/UyMPbj6R9ZLf9HLGOpU7MyxHuwW9fsbu45Z//6BfkEinLxJTvCXVg2DlWVw6SZ5HEbAr+aMAWiosMR8OcEiXn9kySmrnrJETXcjrUUnl/ULz/MPLh7hMfXr+lSKT3jgujuLp4wm59S8iet+/veHj/AT59gosBuyl0oaCw7OWBKB+I/j2h+xGb3nOzvqTrPdSRUBae+sChXDKXnmfxRLn7ivv8SFeFcPuMvu9Zm0iq0jwiMTFTcHnf1pM0Mx4WypLZ1R4xR6bTI3dfHlgWz6KuSb3nn/8U/lf/9Cf85//ZP2StFauwZdsZ7P4Df55GPsQDdblH1BO60HHZrXh3EGQneK94Nv8RRj1Ql0+c/ubf8VpnPnYQlgOvvvgF2m8JqzU1KyCgVSaHEZ8nwklzGkdWGeJSme9e46eCXiqSI/t1QMQQHwqzeUAOCRWFbnjCE58ptRBTYD48kOPCsixsQqXnkkt1waQqb9595G9+/Rv+7t/+G95JYiwZYuZf/el/wx/96k/5h3/6K/71X/yau+NrllOk9z9kvb3C+MBfvn/LF3niUtZ8EX7AbnBYF1lSxoQBkWaKFXmkpoWSEilaKArjCnp1xKQFjyBdx3B9yY8MXG/BPHnKN9984M03n/iwH3l6HVE0iWCtiVShlEA8zewPB+4OD4g4rvNTXpUf0HUDHz5+Ynw4EOYZIz1WK5zO2KIxzqG3lnqnKP0DIhP+MSPnaaQ+ZSCjUsLOU/MPimBzaOv2OoOurAyUbkBpi6+VflB8enQY7ol5gqzobXfOKagtQ+OUMauF0GtWneI2aK67Fbv1U16FyphHMo/8YXfFww8uiYPnH626tt6XmfBpT91dYDy4fERbCzmR54mkC1omVI5ImpmnTEoFrQPkAyJATohxFCxJD1xccu48t/yGOWqUCJda8Ks1JQunw8h6GPBASCMfHiZOnx6Jjwv6scchGK0YAFMKOlVMspic6IqwqY7H9EicR+xUsZ91TZ593gKXY/MNdt5iPhxJCR6NsM1QqmnfiS6EXtOvPfrDCjETKWZObxNm1VERbK7YXuNNy2gZu4VNBIzG9jMPx4VcKhtleBGu+Xz3gi9evOKvfveRS/stmwwP0vOkOrZVYRByXKihZ3PxOZe7QrARu4y4YWjp20tE9Qc8M0oKyWryoZDigjz9hM4JXTVFBY5lIfSGy8uOMlwQx0em/Z7jA7y8mNn4wJX0pPdHbkfNH15/hl8mdJyx88Sz3hJPHWqCdHxoIYwCpWrMoTaPV4hcDGuKgbkK20+avNbELWzfKY69o0ywfBi5t5/g2CM2oJzQ+Y6g/d9vsV9TImpIWnHOjGnd/NRMCEIraJOuZwyfaienejaPWtuMfdrR9Rsun+24ffKUP/7ln3BzNRB2G2y/5fevf0M5KmTRdGtBjoq8ZPb1kU33kk14yWrzlEv3lOA8VhuEjKmN0KLkTLXRNI25bto/tEYZez4UCXVKLcHNCNpmvvM8SGxMYlUETWHAURQoa7nqB2bb0oKf3dyyXW/ovOfJ5prPf/xT9pePGDNwMHuWmJljRu33LVynaEqqJCOIrlgUott1UoHQGhAmts5+pVJSoqxbMqlWgh00g+uwGpSOzKc7sNAHC1VRjCA1MR8ecSqxWVsub3b0fc9yVfFXB/6r/+KP+OEXP+bZ1S3/+/gn/O7Ha9588wrrEi+fP+Xp7Q0/evWKFzdP2Kw3eGsxRZCqENq1Uxt1yMyOoi3oipYJbQPKWgwN7dikVZZu+5RqN8i0IFxyUplTmZnejexnRbfq2V3sKERimZkOEw85MVWFqoE7nbleGbp1Rxd6HvInluVEzmCfbXnyix/wj//FP+dye83rDzOP95nDskfEoo0Ho5DcxtDKQcnnqZQ3ZKkoAasBSY037TVmaOE1FEFjybqidXtx2n0GI5Zo8/fhNNWBFk0twmQKQsE4Q9is2F7vuLi5xW92zPR8vJu4P0QeYqGQUUazqEwfNNb3+OC52XmuB8u2M+TliMsKsmB9IE0LtUSKdxh6vLGEc6Kx9xbvLTpmRHty1Wx2PZ89v2bYDEwp0XU3lArH0yPTlFG10UDGlJiXiZwXupVlCJ7OOaZgMWIas94rnDKIhmJUM7EiVC0tFVc16YMSAUOT/IlCQtPFmlSYFcS4MB33HPNIloRWiqoLq1WPNYpqCtpBXRJVL2hlKVoza+E0H1nqjKJhQtehY70aYFW4vd1xebVjvdvw/MUPWS5viMvUgp68xzsPdg3aoqxDK42qDTygUCjdOplURZ01pdJCZeLYArC0xxTdJABatURMPFoXSlH0/QV154hYnuwVskSOp5nH+4XaDfgthKLbqNlEkr5gWAkvXnzGq2cv+dkf/JDjwz2H4wPvP0UkKFRoAUvjOVis1EzWghOPFJhVJdczuccrVGrPe7G5JWWqSibjlsQUK0uGaldoY3ErT3+7I1x1SA8P8cCHhw98Op3YF8NVw361IBkv5DshZ8Eky24IXOx6hs0a4zw+rFitr7h49YJVSpSaQRZkGMD3LKV9/9VV8AZrDNQWPFinQloKJRXSmfAlkvC9Q2ehLsI8ge02XN/s6NcG+9Of8A9++Uue3ly1LqfcMac9X80jj8c9yzSirMGHDq08USy+u0KM4J2i2xl6vUONa/K3bzgePzHnyEYb8mqH2dwwbC+xXSF1J+LjSFoqk04Uc2KaZqbxxJISKhXiIiypsiB0mw4dNInMPFu0Cy0EzFlCZym1kOcDKUWyyhTRWAYqjlGE+4c7vvn6K77+6ncc04yuinUIrF/e8Ks//Tk/+flnXN4MOLcibG9Z68CFMcx0zFmh/Ja7krnP7WCjsQRt6DpLcA6VhZIzshSUatPoKieK8tSzsdG65qUrRrjZdEi1FNVzvbvi0+PMMpxY1Ne82Xeslh5ThRpAV0OXPPcPE0u0aL2m2JHu8prN01u6zZbt5gJdhKrBuh5ne4JfEzYBUypqScQ5IUdNjbrhG8/ELmqFrBtVbQioJaKsQK+Z0oiaHV4CWVuM9i0UUilsVRTl+YSjOlCiGolHXAtDUxXjWkioUordasX15cDTm4HnNzuePLui5Fsur55xfH5g0YrqLE+vr9F2i3YDvmv7YNDn9aQqKi2QjwIlA8lQa0epR6qquC6gtG/UQ60hdBgpLZsoGbS2GGVJpaLijMqZ7BrEQolgdOWi85gKXhlcNsiiyTNYUyhJQ9UkaR36ohXanJsqOMR4WApSLWItVmm87+n6NUM3kEoi5cKSM8lZijHU0gLaxJxRzPTofsBtF7r1mvHTA2lRKEsjDJpK7QpqbKx/ZTVaIn0QcKZJkJ1tE4dauboauLxes7ta86s/+jl+CFw+f8r9HEENdGHN85unZFsZpTKIYJTHa0tnffNwSoGqUSMo3aONQ8knqtUU66D2oPyZtqdx/RqrPMb0OLPF2IyYTDndE00mh4G116xCoq4qumj8UpoMd6qUecHagjcaHTPVN8kWUpGudeR1Ubj1Gh8cRmVSmRpQYalE6QhDRUximROPaWkZVN0alxd0rZjvmpN/X8V+yZlsNckqrGkdTKR18Op3mCgRqmm1qxSadvesjEdLw1Y6x3q348UPr3j+6gU/+cVPWfeGYb1lu73m+d860p2mnhzmWiifDPOY+ba+5dWzH/Ps5hWXV8/Y9ddn7muBZcE2sTRKHErNaF2xrnHSNQ2p1ZIC1dlIKC1RUGuUHpvUQypkoWbTElklEzBkpajGsOlXhM5QTeF6t6MPAWcMF8OG5y9fsR62yFTRpTRM5JQ4zwabJrII+pxuiWohLqKa4ZYWFow560JFKqVksglooRX7nWHTDRitWGohHiLagOrOL7aqQGGZTu0UHzyri56r1RW6c2zWl/zTf/QjXjz7jKHb8l/qn/Lrlx1/+/4KVw68un3Jk4tbnu+u6a3Ce423pm20CKIKQgbVFjFdzlxvXTHMaOvR1mNUj2iNKINoi19dkOlIshDsBaPaU3VETyeSEaIU8BPT9Mjp+Mi4P3JImVgUSixHG7nqDX7jccYSa2RJMyJw8fIJL3/2Q/7wj37Jcjjxdm8ZS2yR3GZoAVemYSFRzcwo38XDOkWtLQUXDVJzW+S1wnSudatTRaHIZ7Sh4RwxrxRaNKLVeRQuyFkLXwWizlRVcFYR1p5uFbi83HL15Cn4Fa/f7fnm/Z53v3+PMV3TqeuZ3itWXrMOlqvVioseVqFQWKAWJAnGOdQ8IRKbN0RrnLE453BWY/E4bxGbETxFNBfXWz7zgYspsZ9nrLkilcLDUBiPGcltPF5P9lygZYaVpwuOYF3LLjDtRmmrsFVTNW3T0G0zQwSVaPdZa5RueQhKnV8vrdCqLXYYSDkyHQtznkAEpw1VC6tVTxcsxWaW6UQ5B2kZEyhKsVCZ4kyuC1a3jSQ4y3rVYZ1idzmw3q7o1htuUCx5IpaZgG6oSjSqrsmqNIyiaixhUWds6Xe5o6KoqWHrSm3IOOcc1pzReZTWYLABT0Drlio5dGuq1hRjuLmvvP8QOcXItJ9QzuL7AZcD0RSyEqIWtreWz37wY376+We8+uIF913AflR82r9DhYL1hmAdpxyp360NCoy0iUqSev5sFSyo3LoIRStUaci7ijDFRCyVIgblerQ3uFWgu95hV45qKw/zkcfTkdOSiBiUbT8YjYQWrJhKRbJmterYbHpC36GtxfqObtiyfnaDKm1qNs0TuIFqHJOSdjg+p6trZdH6nGRdajOXx0KmNS6USvjQoVJqe0o1mD5wuV7z3F9x89kln//gC3abdUvfrjPj9MjrTx84PhzJ4wmtNcZ7pFpiAmNXDZVrFPZmw0qt0MFw311yOOxRNbdnsR8wqx39+garIpOAXSL5cSGqRvhKcSYtJ1JqD0pOllgKU61se4e2ilQzMTtcH1DeYawl2J5yBgjIdEBUy1swdBSxTKlwf3fPx3fvuHv/nkrGiqMPHS8/f8aPfv6S56+uCL3GGIfr1wRj6Z1mHBUTwnZ1gcRTo8L5hukNRhNswJpCreaMtjxHrmtNkQeMMg0zbBxWLFUXUslses+UNTOe2/WG9XaN33RYH3lc9qScuHE9ogrKCNYalth+jzUDJQz4ix3D7SWu7xmGFTUmppowLjTkaBjohxU6J1BTk4eodvDW3qMkNTJdrq0oVgqlLboUjBd0aBk2bunRykFQWN0AHMYZTCxUpdmXitgzVc0aVDbniSYoW6mqIAhDF9jtOi4ve24uBnbXN1itubou7NMIolAYTNejSwBlqUGaTE2r/5BQK2dJqLRGUS1Qq22yGyXY0Kh9SrW9SdnQ9vzawiCVclQ0qYyonFAUau6QlFEKjKlsg2vNqUILfExCjRWjK/XsH8u1pcdXBdVIw8aKoSrb1n/RLSkXhbee3g8M3cCYTmSpLCk175XRKKUx1pwlvgUrBuU9Zujww4CIIacmI0o1Y6xg3NkXwHk/rongGslNiSZYjSjBKWG7dqzXnm7w/PQnn+HWPevbaz69f+AUPaICL252fJo/kXVLG3bK4I2jcz3aVKjt/0sUlHdnxLkgxrQf8agzOr4q8EHj8Gg94MyAdTPGzejyALNFRGG1p/cZ1QuhOFzJrYG4ZFTJhE7ogkKNmeo9VbXfqdw5FbwotAsYC7p2+BxYHlPLWRKD8x1oyyJwqhlfC5dGEXLDKqf898zZP+UMRWGThk2HK23RXkw+v0BC9Yq16UEKtWa6BSJQjKZDoUPFDJXu0vP5Z5/x9Plz+m1HR+XZq0uuP1/z489nMD3GDWxqIHcXiPHYuuAvLuiHnt161eRlaUGWE4t3aCKKhRg11rbOeS8VYyJo1Yo+LYAgAmW7IDWgiqUWi+TUUIFmIaXGAidVbF+RvCBpYtwoOhcYfMfKCSUeSBSy23PVJfoe5howO89Bg144v9WCqYrqIlYsvhqUV7iqMEUoYcHtTQt58TDUiqqVuRSGByEFRe00vQxcXF+hVeHDuwfyMVKVw5QOuko6JdJ+pgy08B8bEXeiPt9yeXvFP376R7y43bIbNEElnm4EmU9s0wcO+YJfPN/x8vYG1z8lLweUFLwzaHUilUzJgkoJLY0QVHYJiU2Pp3WgU4HOOOgEnS0iGjJY49GrGULC+DVPFs3TPvD5H1/Q7b/CTO94eP2Ob/4f/yNvv3nH/t09aoqkJBwKWAPGWWwIlLLnscwcamHnLf+7f/Jf8atf/TF/9PQ5X82/46vTEfvte/oY8J0h6IoVQZtKkcJSKsamZmRaHLoTjLM4Z3k8xlboxoWgpXWSqRQ1Y6Z2IEi94KuhImQXCQskXcmmYqulukzVGX/MLBqsq2z7GUn3BH3N051hG3ZYJ0SXeLlf6NyOzjo2fmZloFeZDTO7TtPryJBPWAUxLCw2Iocep9rBeasd3he0SahZMeeEsQZrA911QLktmDW7F9d8EWGJifv7Dzw+NH37hd3wwMxxnjjMIyZXOgNh5Xl5cYUPBqmF7rGc+frQYxHfNhW9CFkbHApfhOwWfFRIVWSnzt59oegFd3IYb9FDh14y45S4n0f8VKAD21ls6bm9vmbVOebTid9/+sQyRcpicEEgZzgsiBUMBSOV2Y2cwsymX3O1vqb3jmAV1gp+G7Cp0Kdm6lYURFWyMfhYm53DFEQekapbMF1JKMlYVVi6e/IIJQpaV4KApZK7iKmaKpCWjAkB1zdSwnDpGTLsVpo4Kt799i+Z3nyD249sPn7DUiCHHc4ZtqFntVlx9WrLZz96xmefP2W7tpSjZRk1xi5cmWvWdo0PCndXmMdIXmYMPfiMKKEbNcWAGIUphqMaqaUSRo1sFR6DJMXbY6IUR/Ar2C7k6ghhxe72Ej15ppTZH+9JZc3gFp6vEhe9P2NfYVkKizoxuj17N6Jud9jrHdoIjWNYUIOwqp6cErUk+rVQfYfogU4E7QTNRFwmMAMlVXJMeF2JbiLLyLyvuFrotGElnqPek32m316wjHB9/ZQf/uynfPGj2zOK1cJhT5qP3H/7mi//9X+L272kas8QM4+xp+gKqjCPiuwMJgSuPvsh/vQNJj7y6ZCZSkbZCqLIfsL0wnq9QZZj809k4Xh8DbxAhxVOHrmwlVgrS5yZFIQcCaeJrm4gZuIoqE0rbHTWrC9eMHSVHBfy1DOniMuCUxuyqZS5oj4Vvv3qkfm+0kXP51vHx2JYXXb89MVLhj5Qq3B6GHHMyOM7jp8+Ul/9iN3O8TwEvrDPuV4vvLwMvLrtuFkZvDNgFDWVM0dfUYaJlDQpCouYRtmyGWzCKktKlbzMJFfZXMHmuufiIvAnesWN3aFeP2cZH1DLxDBtuL/7SMpCIrDuH6hVKOJYvGW4XbG73FJLJjMjdiGsVVuDB8tw4xjoyCiii9hqsV4wq8qqbpjLiZoLNiuMO5/CT5kwOJyteBRySMzDRNaVdUyo9YDtHF3wzDWjVcR+/PJMEPN04trkLifICyVH5jIyiSWZRLfxrLaeflXpehrHXXX41PIgBDBWyNpTxVLjiHIJoyO1FEQCkhMSJ6wpRD+SmYhHh9bNk7C2Pdo2/5eXRv5qWRIOuchQDJI9khoowVAxy56kYwuYK5qwcizLxOl4YIwjKt0zlANmcZSygCRC6jHTAtaRJJBVbPSesVA3bdK9zAtRK5y2bKzn8vKK46kwlcjECfZ73NCxvujpMJQlsq8zQbf8g2IE53sYImUeqYfEQSp4R+8HipnIY6TERGlxFDgFeZVhHNFU+vXAWh5x8Z68HFhfXvOsdEhZ4VeBJ9uB3TCg9IZvPipSPHEZKhd9pfMG5x2GqeVBKYX4IzlZcmprfFcNXhTVTBBd4+SnSqc7dKfRXQbrWPc9Ou9YH4QLH+nNgqt37Epl53t4sqKokWWZWaYjX1z2GN06+B854mOjp0Wj6IqiGM2xh+VwjzOglebCb5ndI0mN5HGPCh0uBK5sR64npjjz+O4j6+sLahXS8fj3W+yTKyWA8hWXpY1dNajiKK405UxU6N35FI0ilhkbKzo3XrZTDoNjNpkpJo7jiH34hNmuCW5g5XbI9WdICSg6/KbHy7rFNPcK1/dY73DBkfKEsjRiSC3UEloibTqilWltcpcRWbWTcaj4ohFTKaZipl3r0Lo2jk66BTZpdUW3zlAKNWTUshBzYMlbnAsEbenQlDiTxkxKkfmwh9IMZwyK49KRJHGaRmQuLQaq03gX0F0zJrpiEavAKpwEylCgVmxRxGCIVYgxoS/baMopS7iyDF0PpQVynU4CvrBcJTodUCtBe0e9CyylURSmuxPPP09sbWGngfpIqZqsBoxd6LxhO+x4ttpwc3FB6LbNKa8tICidELMGFpQc0fEsPfIaOW1BZhQJF0ENFbGQ00A1NPJRNbg+4eIaVzcY61sHgI5ODpR8Rc2OMt5RxeKc52odeN+v6JdMv2QutgOXFz39Ch7vZ4qq7G4u+cf/yT/nV//sT/ji88+ow8A3+3u+vD/w9WMi2rmlEAbbGPRKAxqVpAUZaaHYhS70dL1lvQnkGimqmcLMbIkszXAulhwSCrBZUXqBajDSsfQJMmhR5CAYLArIvUKNlpzgbhw5nX0cQ9exW3m6oePVkwt+8GxLPDR2u2MhsOBUptOJNB0JIqyxaJMwqUfTUbqFThRUg+oqKN/C5DpDJwrjNabXGLXmO+STqQHrNc4GqghKTQRvcSpjtWG9BHbLmuBGaioogfVlhy6QE7iVRo0eFEgnGLEU1UysdmrR69UIOoVmZhbwCapRVAVKDNGDs4peLKYbqMuhdYr6QmcC3nZ0O8t6vWYIlqWOxLk22pKrODeggqcai3s0ZDFUrXCpxyuHt4618/hOo5yQa0EkIdIkhtZmqnSAw2rd/Du1UMtEYWikMJ2ROCP1/O+WFZoFZxJ+0uhQqUojU0/WGUUrpFWnwHQo3SElkaeZaX/k7bvf8vrdN7y7/0AVg123kCTlA2F3w6FojlXz4slTnl9f8OSip/eW/aCxK8/17hn9bU9YDahuxWgemank0r57bSxiHKkDkzWqQlQFFZsJb+4zfXUYZ8HDtETyef0gBJRElG9Beg/xiF7gePdISmMjQQ0DuEBVliKaKAWZFJwMkhWXoeei7zGdpdZMlkxWBWUNRhV0tVR5inO+TQGLNMpRMRQ9oKTpGnRZCJKhOqSuceaevkJAgSnUxVFzoPYDz26vuH32lItnl9h+3ShMS+Sr377n3/w//2/8mz/7t/zF6Q0/6nYYt2GutAmw6clmQ9UzogNKD1yvNZI7jq5jWkeMWhNWA+vngdy/ZLJXnJRi6wZ8cPjOYLcvUP0AFkwOBA8mV7QNyIePKA9hvWXlPFopFpr5sut6+mFFuArE1Pa/b+8+8PhhAcm4kKljT7QzooR3jxNHEeIQqPYGvcyI8ZxKx6f5BPFEZza8vN1yVIm8clzfrHh1c8ntasWFGJ6vFLdrx+XK4Z1rCda5pZBrVXEGKFtmORHrgkmVZBOzaKYZTLBYq1j5yqgKSzXEYkhpgaXSV8svnm+ZFliOM4evR/ogKCNIjmyfPWE+RORx4nZ4yfXVitWmsl9mFqlo57her+i2gdB1VLVmVjQMZoKoI7iAC9tmTMznaWqv0YQWkhRaCq42GoLl/bJnOHlWpuf6ZosPPdZ5lLFQYT8Kf/W2yY2thkxtkg48ikrJilobWSC4QG98M1C6TFH17EGqKC1NUmuaZ8cog5aGqMyyUIpCqgc7o0pE1QVFQolFyxrrZmxtlL1qC0UCWrfpmVUeDG1aXHdUpVFWGJSjuIrSGus3WK+bvDQLeS6wGOrJ08nI2ji2NqDVw5lKYyCYRspRnEPmDMoZpNe4pKgFFqmY1DIWcIaAw4eAix0cHQer2WiNy4YwDHCcmU8TUXXYpSE2h8s16+GGOhUm+UiNTQFSQ8XOA8VNVJ2R95boFpKtmMnRd46QBXuAu7v3DB/ecPH2W55dPGG33mCea7ZJ6EKH0475mNiJpmjN5VoI5465MvF7Kl1VgpSzJIdEr8GEijhLSn3bn7Sit4YyOEq11MVRVMQsij57hts1K6ObBl9lalFIbuGsp0lhlWI9wNX2AlGZXAthH3HOoV3HID31QjOmmfrxyP12xFfBxYLum/y8I6A8SC6AwjqPk45goHQgKSPaUP1/XPn+H1/sc56aGdVO0wY4J2mKasa7FnsoGG3w1rXRZqqti6pbR11EyERiSSwxMi0jlR6lFc4G+tUVJVsQj1sFSnRoaUQXYx3a2LMsJqOUYM7JYjULmYLRjQrSRPuVMwCyYQJpcpqqBS0GVGlIRaNJ9azp1h7nddMCa0fVgsoCWeO04JXC68ayjfNImmfqsmCNRQUNWhCtiaUwLhO1NB66si3tz5izxKEd4pscBk1RqWnii1CEloJZcnPNi8GIYK3GaE0pmlSkdU+MEKURY3AWVKYoRazNzb9MR0yJdBRWFlQZkWSpJqPqEaczK++42rQiw2goMrekNgpVMloaMlVL6+6qM7VAiWnjN1UxZzkHSrcuhE7ts4lBWYXOBqMdWpWGSNNNFyomIHoGVTHOE7qezaayrpbTPNPZme2qZ9UHOm94lIwbPJvdDb/6k1/xxRefs73YMdXEN3cf+PD4wHFc2oHENOqO6DOMx3w3+f3uM5TWWWlZZKScEdNGrpaGjUQJLbH3uxFs6+ZqpTDGfh9oVktteEVUK2qcRltNlcrpdGIa95Q0YXRlM3i63nGxDfQrxcOHA/NxQi2ClkyjXlf244SrGacE7XTzTRSwdsQ4jaqqybhUG6liBC8W7TQ6GMjqLE0STO7AtUXNO0/fZVTNSAyUInhbCK6F55AFLZrQe/LS5BPO6pZsiVAMkGnPqzp3x1Fnk5uh6LZZf08Dloa8LUjDLFZBmRawl3JGBzCmSZG6zhN8wDrTkntToZQCvo2VrWux9kaaPAhA5Yqu4JSiDw5jddP21ojIDDWfU4I5a+Q0kFuXn9wSdulAaNKomttETgqqtvwArWkbsZKWA1kNmP8goyI0M7pUQy4LcZmYTkfu7t9xPNwzTwcsPc4plLW4IRBWgZiEMVee7tbcbHt2K4+W3CYXQXOx2+F2od17pVkkkWpGKmd0YtP4igVKW1G+U3QKILqi5DupWluXRPj+3xnV5FkpVg7ThBKYp6kF0QHa+SbHwyCiqLkgsaJSwVLZdIF112GsodZErQu1xrbGyZn6QUBr9X36cq6loR1rmwYoyWipWAVFWQoaqwRvFF6btuZIQ1H6znJ9c8nl9Y5hO6C0JpbEaTrx7Zs3/PbL3/C717/jKDASCRS06dDOUqynmgFxrbOpTI82lqg1oxaKnhi2azYXgSfP1uhuS1SWY1pYoVtatlVNX23OyfCisM6ijFAzrVtnLKvNQO8tCiGljKIVs8N6RRg8D3cLh9PI+7s75v2I1kKnNVp74hIpZA7zTFQK8eHMwW9yG8Eyz3NL6HaW9cpwmzoSK64vHK82nqvB40rmKmh2DiA3fGhNjOnESjlQtX0vYpAqVMkYpRDaFDSnivbt73hrmVVtMj0qp2VPiiM6J67XlskYDqnyWB/PhW2jjnTDDl/B5sztdmDdB4ypnOYTU5rxVDbrNWHrMdY1aIC0909yYZGMnFN1lWnSLxEaOrR89w5kNNI8Vgj3j4/QreiGVug75zG2SXiFMx2pVAINt4k+F/dGt/1Kt2TqWhKq5oaZUG06LBLPacOqoTo1Ld5e1PkQ0A46tSakKlAGpSNKcvM7KcEoTaVNHlVthBal2+7B2TNkVKslipGGU1VyRmWa8zWCcb5lHSjBSKt/VG2oR4fQOUPf+4a8RFCqkee+X5NL86tppVBWwVKppVDyWedDWypbEK1Bo1FFU84GR6MbxrzWQp5mjGlSFlME0xl8N+BDz7hAXdQ5Ob3ilKNIbKm+WYi6EFVjFPmzjMeMlfHxE/u7txzuvuVJ/gOCN1izoquN7pZzIaZHVDxg64JVzZeiaqXKjMK11dCAFIfWBW3AewtWWi0rFiGCMlhjwRkkakqGkiYkV4wo3BDw2uCUYIhIn6mpkrMGSWil8d6y3g7kGokxYgEtDe6y7leMXWUpC2WOTJOh5IbjtSYgpWG9tRJyyd8n3gfROFrNghTku1rkP+K//+hiXweHNwYrmkUKJjX9rWhBR0VJlbkkupPFryzGdZQZpnlhSTN+5VhqRVJkyJlSZioRsQWnK9Ym8BNr2ZKNomhFyJUHeSDGTDmCud4SvANjyOmxGeXMimodigVTZ6yeUCvbkuFyRpuIRlCxIKanSCXFjLJTQ4FikGDaLalg3YS1BoVBdEdUBZciLkWijzg94LSnyEJJe2oecV7juxU1a45jJpU3jMuex9MdRWWMNjht6HyLVFcFYk0MSaNVQXxEj02LG5WgRkFiotZK92iQVW20gUfF3CWWtPD4WFFOIWjmvSXfanSGPBkmvzDOlZSEKb+lTM9wOXG5suh5QlQGV9HjB7oyomzCmRUqnyhTJKLx0tjoixj6ekSXhE1LKxTQSDUoPWFlwZiCuexx2mGrwZhIXU6gNEX1lOpBLVh95CgGXz26GB7nzDpOWDVRrjLrmzWLc0w7zYvTA2U6sPSFlRNWtmfQGzrzhuc/es7nn/+E/81/8s+4vH7OIY78/s2X/H9//ee8ff1bhuMnUn/ZjDbSyFFVCoYKSlPNgq6akF0z8MSFfLIcj6WNr4kMg2Y5tsCwSsbqCmffghpBe4cNhhANc5kY80y375B1W0TWtkN2mThOLB/uOLwYOJ0uyPMX+MsN1oCrwtNxIrsD6CPq+MAoLSPCzkfk9AbRBkKP6TY4nUBFVjqjVh0KB6XiVEaLQkewmy2682AN83hHVlCVxuaBFC1VKUwpWBLeCMV7Ui84l/C+tu6PtihtsdrxmCYiE0NRmCFQgSVmjstMLrVRo866cVsURVdMUUiGJAUd20Gg6oI5gViInSC5NLRiKVzOFr/WBGu4ZodTjlqFeVEkJqokTOoYrju8sqgiPISMqRVFIqZ3kJ/h1TXr3aphA0sE2UNNDSNqQtNnsgBj29Bo9eaSBSMP37UCQNu26Raw9oScD92yVUhthz5cxMUJbVs0u+5X5LiQ4geOi2UZT+z3D7z+8B592rPKJ0YfWaWK95buckVKB4xph52f31heXXVst4793QeyOmG7wqsXW2y3ZS6ZT6cHlnGixAVdCixNl6ophGib5lgqdoGkMobCMFVkaCZdlXQz0olrfhOZ2PhAVx0fPu0pboO3Cp2ahE4Xy0o8NanmK0IwD5US94h65KJL3F52XGx7jDJQHiEe0PGAsKMUTa4FbfdtkxKNiGIugpPCQEY51dZga3FqgBrRJZER/CrgrEdVQ/CwWVWem8LzmxXrixX94KnzxN3pkbf3H/j13/6/+erhwF42fLG+4NBXoq885QkfdhuK8c08Pk2ge0rneTP2+LKQ5R6Od1z9wa/47IvP+NU/+DGbwTKnR15PDwTtOcxH9kR2+gM5KWLW6Elhrzu0rugycnUxsHKem35gXnlUqYz3Ezc3HVe7gYurC3JY8eb+K96/fs3f/fZ3rHLFWcece8yFg0MmPQinekKsx4UNSQ5k52Hj2QWL3i9M3HO0j+RVz/Ow8GIlyAV0+Z5yf89DLayloHpLkguurGXJR+6Wj7zcvsKHHu081AldFywJu+lRacLkgq4j5IYZNsYg4rANms+Xh4+UYyRPGaUjZrxDHj9wd/qa5f1CMT3l4hazeHolXKyFP3iyYWsty5j4dPrIcf+eTXBsLl7hdxtEKmk8MceM5IVSF45zIuhE6DIsmlMt1AKmOFIZKXHGnGb0NqATyD7y7Z9/Rect7vmKzWrAeo8yTTddTWW7rvzDHxS+/CuHSMCEwHKqOCMYqxiSo+QTcVwY71fIco2WvplK8x6kwUC0vTirdCvwCTG2+QAVLDmCVFZ6whrOnSbf1iYb0bKgSgEXWmYJFqsLWlUosdVPNB+y0adzga4wg6HkNq31bsGYli+AMuAVJlS6EDEm0l0o1s86zN8pAoBUuizYkrGxoKNHLwmbMl2GyZyoacGdMkWrRt1LhakupDFRp4yuhYulsEGwKzCSGceJ6X7PNROpVmIFVT12ULiVo35osJaYKvNdImwUcRFOR2EvM9NUWoNoHemUxrgKF5Hl299w9JlPT3peHn/OsLul69coModPH3h8+Miv3/6G8O6AFwX+ls5bhJkqB9zmBQTbJqp6wUhEmYq+2VBTQonC6QjTEbRDd5ZcDUVmqkROp4yu3ZmU5NC+STt1rbDqyFmQWDHTQq0JcmbzaiAdPNPjhNJH5BgxtXL1xWeYOTJOlXl6YPXQqHSxFFaFdjikBb7GmNv0NWaG4AgFhqVibju0aTXA32uxr6SSraV4A3Ol2GawMEmhwjmc4zhzSBPE1sVWXUClGRLkKIzLQjSFGraozxrJh73huE4Yq+n1GrMSdDaUDB/jO8q9YRkLX/OG/tPIOnTc3vR0dkV1higVSWfGdDYo2aCkFWYVTZmaIUdcgNL0WxWLmQzVG6rT6JiwYgGLifrsiteNIW432JobxrGAURotimUfKY9CTQ6/WWO0I0nmNJ745vUnXn97x9v7PRhNFzyuswgKcabdzyVRTCXriouV7BW6KOwiLLaSpVKkMl/b1rGwmQ9+pBzuyTERSRQn5FBJ25mlaKwFWcM6eOrVwlIKj1PTTHtdMbailj1VDNEKHVctgIUJUyzT40gtoMOGRbdo54rGicPogDIeRUJrMOe9XVmPWMFph6iG4ErHCmGHchbtXOuORoebPJIyd4eR+TRRHkbm+Q5fZjq1Inc9IorQQV16FhWZVM/lz37AenNFsB1++Alf3P6QH3/+E9bPX3DIidef7vj3v/2Sv/izv+Tx/p6qLbedxlqL1g46h5wMRWViXyizbfMUA2WcoBdcP+CCoEKgaseiD5QyNXNvCRRvEMmonMglY4zFaUvqQC0acmVZJzwBoxxxDU4Lxlv82vCbr75iu73hi5fvuby4RtvQaDjjkfhmz+nDPW+Pr9kkS6gFVUd86dFeEbUgS4YIKlm0WtEH3xCuVWOyQSlNtQ6tAhRDniA9QDGGYg3j8cicoVaFA6rW1FpgmfEajFKYavGhwzuLt4aiDMvRUIqhfBcLnhKnOpHnQlaQXSMWyTmrxWZD1EKxFYmFotv74oqheKFKIR8y0VeWGKFk0uWAtxa8Ia0UGWnhNqbyUGYSiSFYlDUUaykiVGOpnUGkMp7A2oFuWBM6S63Sui5J0KsLtG73J1WQKVJToWpFrZFaK4ihzmcTf9Co3Dr2WnnUGMlGI1qasd9AzYKcCrbbYbzH+YFlrsyHyLKPRKP48HHPu7cfKV8/8PAwcjxEPIZTJ4xpwrx/y/vDBKZnu7nk6tklIVhqzIyzhtJjrcNuAqd55jRljo+Vh7iQa8QY6EJBW4M1gdhZ9NSM/6lvI3HRiqkrhNSa/lULZclYq9HeQhyYVCYXqI8z/c1IEpj3R5ZpBOnQNlC1Zq5t2ihryBUomounG66uBtaDb5OtRZDao03X8gfkTL4aFaq3Z1N2oypppamlaaaRlg+glcEkTY0Gp9d4N2CtIS4Ly5ihOG7Wn9GtN4jRHI9H/vb1l/zmm2/49W9/y//pX/+3fHrzkSlGDp9dU3/zBO0Vr599JBWo2lMxyDsFTzvKtufbwzv0WJDlAp78iu6Ln2Fvb9hPGw77TJxOzKcHfnP6hByP6NOJ53XmYrWh7zrwmhQNuQjjcSIVzdhFPjmhPkRwCtt7rsMOVhtqF9gf7/nqzXtev7sniqZfuZYd0RV0FQotCbncT03bbRYOsdKvOq43W54/f8JqIzzKA393f+CL/ENs5+DGo/aKf//mNe8+fGL3ZuJ/WT8y9Jqfrm754sdrBt/hZeDhxYF+U+iGHhkzVItRPb3zDWRRIU0JdJuKKGso88gYI+MSOf4+8+evv+HN+0/c7j2/2f+O95/ueP8Xe075LYLH8oi+fUq/2bC93PLkxSWdreTjkbQ4gnvGatVjhgtyatjffHDEEpkPM+P9PePDXaOXiG4G3bKgykw1Bru0ab1aeVSJCELWwpvDO64Or0gn30h6UlG5tIP6VFkmw5tpx7E+UGNGzYXSrRDXzLxOAukQmWbh42kmmQxWo9SKms5NFuNbFotAqYKKmhpsCxxsqvA2UcsKseY8TZYmu1s0NdEOUc6itaWIpZYEymLDGmmBJyg4r+9N7oOUlvZOIx4q4860s9Lqm1HIdxWVHUTXMjx0OcMHLAmDqGa2R4OuAaXO3p+HmWkR9rWgcsZj8coT54bLDNXRzT1mvUK7gJ0NKWXG+cR+fGR18ZLpdE+cJ8Q48uHAOC9MxuFyJDuoW1on3FfMWmNOim6tqF6wSTHsVninMfOC2XRMyyP//n/6H7h8+ktuPjuxvb0mVc2b17/m7euvefhf7ngzfYuz8Mf3r+iv1/TnemuqI2bdYYcOZo1xPcaBtZ6ERYpAtFh/BdahQ2ikm6xRi2Otz3k0S237lspYC3Y9IHlC54xeMuqg0crhgqFLgWwTSRYOHw4M1zew8hgRPp7e8el0T1kUiy4NQ7pkyqYQDwvLNJFKReeG/9aumedz0NSVZXm8J0eDWru/32K/4TTOP6adXhsAR9roCHUmz0DrgArWGKwz2GJBaaxXeO/pux4fHM7ZNkasZ5eLNlirGxHjLAPQ1mI82Nw0oaUmarXNTU5FlzZdgNK6rtq1B78WkNwIFarpOETOoROqJcqJakhA5LvctvOo/0xugSbxwWpU1zqeWrfFg7KgVEVbhQt9G33OhdNx5NPdHfv9npwyrm8jbK10C3c4v8JCI1LU2pB4tcj5PgiqnLvIxoBxaGNQ1jLFhcesKTGz5PQf5Cmq6WBVBZGCNQqvm4xJEBKJVCNKNwxew6gotDG4RlFuaX1pIteCdcN/YM/zHfWgdeaaqKEx1KtVGOcbVlVpynk0KBq09mjlGgo1Z7QIRtX25ylSl5k8n8hxREsi2g6sRQVLNZXaK4Jecb1e8cPPfkjnAyKKi1L47PnnvHryCmstj3ePfPvtW37zm7/lcPdIWhLO+zbi9C39FWPatKgIhYroZk6z1iA5YShoKfT9gOkcRVekLNjFkUtBpJzlShplvkvFbQg4fdaSVBrnua3OtMNA75HQ/v7h9Mh+3PP+w7dMp8/oelDa0gfHauXJU+BYLf2k8BlCEZRxaKcwutGtoDVwrPKtELQGkvqeJmC0QynTaA/1rCtVtn0HilZAZ6GoglSHSJNVGNXoONUJvQ4E7/DWMC0J3SxOGN2MukUqOWVKzYjWaGyTun0nqVENBfcdhYJzRxjV5DtSKyUXiirtGgGnGknI+pZU3LrPjVpRamlTLa0apUJrVG2HC4VBI5hg0K7dG2VsM9SXxoVuJrcmN+NMrKlSGgmjnC+vnlk1oltVLNJIESJgGkVMnUPySq7tz03Fug5jPUo1k1pNM6VM5AxxWsjLQmcq296gi0WLo/pEsZmkTwSXuNhd8OrFU55e7eg6R60VlRKdDRQTUBqmOXEaZ07TRE3tvoiSltx8ls+JnNdexRlh2pLMrRic1aDPhygUWhuMbvSXlHN7dl1ukqks7MeRXCrWqEZ1chqhknM+P98aYzWd1k2TajQ1p/M7Ys5rXUSJaj4I6jnzsUl3NE3vjD4/I3x/6Q1968C7FdaH9uwvDT9nxRBWG7TWLPPE4fDI6zd/y2++/IZf//Yrvv7qNWVpEr78cA97BXZh0jPsUsOt2gH9/Bm7F9esn6z5WB8bfEAMXH/OsL0m+IHpWJmPe+J4JB33LPMn1OmImUYWtUBoaa8haJJpz7x3GkJA60qOE2Mc8ese5zq6foP1oR3AjiPjYU+cRjrlMc0zi6lQSU1ukxuHv6jaNMXBsN5subi84vJ6g+8FXwqDrayDpesc1htqhtugqJ2wWTlODqxEpvmBOjYqk7geSUuTc2YLks/SyrbXIO09FmmSL6mClEqaF3KayEszJMZ5JMYTySm0a/r+sgvoyZKzMOeJnYtcbhwvb6/44mKH1ERJiSyFvl+xHtZoa1vg2JKIy0zKkThOxNOJcjpR0Yg+J51TzlNW0yS7qKbXz/nMtCwM4Qld6HEhNIlJzmcJWdt7rbYM3vOxKmJOVKmYatGYpn8PDjUpCpnj8UhMqdH7RHPW5LaCWdR5D2+M/u8KpQbXU+d9v9U1362BSuu2jjkahc02bakU1d4frRvC+vw+aDjLElvDgtrqBIWgzLlWAc6LPlUyWUWUOUuMzk1Dpe33QZ/qXMiJlnP90H5TAbJUYmn3RCmaKsGYFgalFMYCpaArWGNainuBmDWFBogY51M7zEwTJbWpcz1/fq3alL3lSjcioVIKrTW297guEIIm9BoVHFOOnOKB/cfX9L3F24I4j5PEEAzbTcdBHIqELCeYz75MGTA5Y3KFcr5X1jRUq7HoMy5bodCua34ObdEltvtj2/6izNmfGnNzEqO/v+dte2sKC2MMOIOaNKUUYooUXVHeYJxBdGUcR5Z5QWmNpEotbR9V0prlomqT3Upp63ktZwS7Is+ZlHLDeJq/Z81+VQqbBSOV3GlMaSmJRZdG46mC8pbeOZy1YDSDVdTOIdqjHfTrwLBe8eTZFburNf3O4zaKToExQulqk8hYhajCNhrma48tgR8dnrJfT1irCEGo3dxwf1WBtoiJYBJGeaS0jp8qEVwFbZqe7lx4aAS9yUhp04CqKqaWhgXs5HwSPuOgdIKuoG1BqXBGWlW0WrDrAsbS7Qbm04GUJx7uPvH+3TccDiesGHpj6M60kqwztpgWb6+lTSOkMIeCG1u0cjGCTbkVkd5jU0foPCpY5oeJ2CVyzoxjw41a0bioySEhUSC1Is9UjVUWc5k4MbFPJ4TY9PG6xWkXH3FF43TPcZkR9diYsvaqRd5XyCqjz/ewYrG6PeiqCmwKRg9o3beCYx4RCmrVFlSFaZ2NElFqwvYzKkFn25jxwRywbkSROVpBW40Sy2Ij5bJy7W94uX7Bv/zDP2I/jTycToSk+fmzH/DZzUt0jHz71bf8zV/8Ff/u//Xfk8eZQTs2usd2A77rCM6DKBarWoDa3GQ6VkNnHKbLaCOoGrnePcH1lqIWvMzEsWUqzDzgl64R4FxjNWtdSURcDYCQVaVPCllVsJUgBrPyoA2mOEo8MNcTX379a375s5+irxXDauDFzTWr4Di96Hn6bWW6PyLzhF1g+U5niSYWjdiE6ipd7Jp2XSvsUqEv6GDovEdrQ66JmibM6qzVFIVZ9RiTWoCRjEiieQCsbhhEV9GhcmU2OO/RxpDGT1QWipqxdc1cIill0lxIMmOro8uW+czUbxjehFkUKjUtpmnuXMQW1NQK96ILKsbzjNqwiZ5+09P1ocmC1Hkyl0GXRtjoCWgHVsAWEAMWgzea1fMOQqSqCNoj5dh0mKHFs3/HzKdmqp6pdqHWoU0ja21j2dCKKskaa5tnR0mhbBZ09qjqwGuIqXkANgXnWqqogpYcmg8oeyTHipHIoISbZx1rtWaeHPd43Hxk0om77sSLm4Gf/Pwlv/xH/4ifPnvClBKHaSTkkdVw3cxfh3uOn0buD3seTneYRbXpoq0E7TAGlC6E6Jlo0ARfDZOZ0SJsosdv2vYeY8FYh9MerxyT0JJdjVBXmbhALYn7/YEkCu8s3WCRYMg1k5dEVTQ9brGEqaBp+MA8jwSv/0MhkfWZ9lKp/YzyBoXFCAgRDWijKappgdt9LOhQMK6y8pdYpZCSYdQMV2uscXi/oubE4+GR3398y5d/9z/xd7+/5+9+d4/eT8ilRqxCvt6DPLbN66OGH/wK1s9g+xL/X/+X/Py24ydd4X/8zcjDPjEpIb74KZdrzxrh8OnIp4evYF4Ic+XaTSQ5kTli6pHeX7BdaXa7wFEbYoW1GVj6Dfl4JL6/52F+5Hr1lPXmKReXV4QQoFSOH0/kwz12Gbk2a5AjPgsuKWJ3IsdmtiwBatIgltWV4fbFS569es6TVxv0unJdDVt3weZmw04ZtiLMQfOD9RXpB4FjGeD+HfO8531+4FlwuN4yXwidTlhpzzJhRotH4akWdCko1dYxpaUd8nNm3h8o9QFdH1nsyGWXCTuLe9Zxc/+Mx+MOPj9gfu84jTPvc+YPnnu+ePWEH3/xM/709oqP4wP30yOpHFlvn7Db7bAaxjmxjEfG+SMyQz4dKdMj9fFE7RTSGdRc8KYVUCRH9bGhFYvHkChxAVn48ZMf8ezZMzY3KyTPxCwoZQjOor1lu3L87MrxTfUsdWHRR/pFYU1AOY/uArpX1Bh5/PSR02lmWRK1ZsQ1gyuqItV87xmQoZ6TTR0kMErQRtAeiqKtQefmCl1BQsXpoWnzRZC0YINuB3FjmuyY2rDWa4WullJbh781HDLKqzP6GVRuuORqF9LqBLpDuQImMSfBB0UIhs42HTm1nKU/TRWhk5BdAy6UtBCloNF4A5uhY7+fWvaQz8j+AJcXDSUriVocua4QpVhK4jSfiB+O9NZALnSV1niqGhst2bbAwpSWNm1MGq0d/YsVfgiE3rDbeepJWiI9mtP9b9m7hC8n/M2OZxcDT69+yPunJ1596Yn7A3meCSahrSb3tjGdGuMUvakNYqEbZEJlQZmK6Q1WnwNABUxJKFcxXiExYxWI0yzHiAkF7aQR93IDT4gW1HXbo5UY5KCY5oXjaUR2Gj84fLBkU1geZsop4XuLGmsLPmRBzw2nboJG14VFBKFN7KuOlFiJ95VlozHI/18j9u+p2NdZqD5TQ6FLnmylPcTZUkKhRoU9aWrXOsbeOMQpQh4w1aHWjpvbCy4udzx79RnbYYsVQzqMzOsLnA6obJhtbuO8XCjDDX21aFFIP2DmQ3tovCMuEZF2k2udqGIRGVAmtYS4Io2jy2UzEbuEGiswU8yIGi9bkAkJPzVsqDKKmgZUX9pmHxXaZFAOZNvwciU341Bc0O4SrVeUCoe7E2+/fsef//Wf8frjgaqE9UU7qapgKVZjkqU4RaUiByFuStNu58A8FEwS/CiUoFpQmVLU28aapyjul0+s666l1PZtL1MO3FrRZ012kUnPjGOkhooLll3/nOsnV1zcrnFSkXqgsEObF42brlpXU6dHlN6g1UDXdxgMqiqCE5wbEFWoMqEW3YxSRqA+Q3mDdgq9SFuEcVhu0K4VmuRCfvwKYUDpp1x2J0qy5BoIccZ2t6DAL49MYyaPB2Sa+cFP/yXXT5/z8ulzfnD5hL/+8rfkSfjBj3/Bk8++IKxWvN/P/J//u/8r//7P/me++vXXuAtLtwusdjt2uwtWYUVwnlGO5NlC0cQ806uOdd9z/SSgT7rVnL7DXhm6dQ+qY4wR3R3RUWFlQ/EJLWCjoXTgfWAdVmSvMKeAJMt0VVvabOioG1jNHaIraRdZH58j2vJhnvnL3/0ln6dXPHvylJuLW1ZdC6MpboNdKUrXU/UOeTxSYkFKxQ+FwpqqLGwLplqMKGSbMGmLIcDgoAolRZZ4Aq7ANeOuWuTcbXLYcg19bt3vMbecA/FY1rhdhy0t0fbT6ZHjCMsSkFVmOVTmmDmUEYsH5zC9IsyGYirFtQTLGDJFF+xeU+2Z2qUssjEtNnyujE6opcl65ltLZ11L42VpBn9j6LeOHB3FVuJaYWxHMZrFF9R7h/HQ94Yn3eeYbku2BvJElgUpirQMBLNga0IXWOqeEgOlDGS7YGbdTLlBIymAreAbHlF0M2sTr1FeGnljVtQ+oopHxw16fe6UZUBGjAoos2XwM6rrGbaZy/AcPvsBRRRLmYj7PXOKHGrhZ//iv+D5yx/x7NnndM5w+vprxuOJ1D9HO8OyJN7cRX7/8Vv2p5GUFdIpOtXRa4ceGpvcmcDiCvoA5MpkM7r4VgxsFXpsVCTxGmU6sm5mXzG2GSBzoZ9X1NygA8f3j7ihw3vNbreC1cDdw8R0HEl2AtNB2PKN33M8HImPR8r1mpQCRWUyE8RIloWqK0o/QVQBKtYEKgmjNbV21JoBwVSNUpFKRzEbQnBtEkWhdoVOPcGZgA2KvMws8wN3b3/L0P+CP3k58ovVnr/SA2HVU4bA77eev/y//IbDN9/A8nfw+mv41We4f/Wf8X/4z3/KZ4OhSxPf/v53TK++oD5T+P0Dn19b6vTAu/hbVNdzYQMvu8xmmUh6QozmJ89+zu3ljs3QEVgjZLrgsVcvGWvlWA2TPZEe7+Azi326pmxWLMoi88TDw1vmQ0EWRQgzPraOqe0KfbQcZWY0I/nhgDjBdY6b61f8/Jef89nLW55sdrybv0TrFZfD57wYPNaAloyfJ/zlU2wI2KL5eN9zOD7Q7XsuP/sBVIPsJ2bnUAociWyuEZNBF2zViE/NXLNcUbqKRrBJmOp7Kh3GfcEvPxPy9Q8pS0IC5D/oGTP88M2BD89+z36/5/408cv/9F/w2dUTXm0u2VlF/P2JchLk9idcXm7oe0fOio8f37G/33O6P3G5ETie8A+JjVdc9is2XY+ohD4aUhLmMCGPzTzstgr1TphFiFbzZRdZqcJVgrHCHE8oZbjx1/gA24snvHj1p/zhL+C333zDb9+8ZfIJR0enPbqzmLijas+9PvHpQ+LD5cjl5ydWpx2uqyhf8MW0Rq/RaH1DMa1JaHIjX7WJYgA7I7XJbqqaqPRU1s2vIhpVK9oKxl23XCDdpqmqzihmSJfnZPaCzqapE7RBWIEuTcmAbtNW6bD6FXWYUbr5bZKacXaA0FM3Ad17tHeI0/jQfIyLTnTvAlIMYwG76JZr0zsux8QUE+jKdJxZ1oFkQfYz3W0HWjHrSuw7xslyetSotcGrAZczLp3I7zJqpZBLxUW/JQwGtVTevM+4naXfGHb9FdefD6wHx3ZRTJd3zFNHd98R3EKcX/PpwwcGueTiyS8Yts958WTLQ07Mq0B6eETfrpoyZIYYWgPBmYVYrtr0ySp0MS2/AQf1FlzrrqtUkPotWl2i9S3WLO2kpjR4g+tXDZRhInVsE5OiKyldUHWhqJnxMDFJInphKAN+3aE3lhpnTubI4iJe9ZhQKGOhnBL5ItNjCW7gU6857U9MUyZ6w8Zagtf0F5ry8EBZQAb991vsK924No2wcHZoCy2OOLeTf64FkzW1tA6eUYrgHMFa3KbnYrNht1rRWyHHmZQhmsJNnJE4tmS2uTCXQqxCnzqqtHGZrkKsGa0Fr4QSRxSaohziBaSiJCOlxcRLKU2PSwLaKLhmoaiFIgmrpu+7d7WqRs1RCmWWNg5UClHuPFuuaGKTAORmoFTetlAEU8ilto7++/e8/fCpxXZbg9cWow1aWrBNqQlVdAvNVUIttXkIdGljnVxJIpCbIRet8NWfXeuZZUr0JrcxELqF3IgmLU3XXVKhxNoe9tQILYOq9LXgc4Kcmk62VrRKEGOTBJQWcKQIGJ2RNCGlo9nYzwwjyZgSge572ofVqnU4EGrzaJ5VXEvbxGtFYiWLoEmYOmLKEUpCasYFS+c5SwQK/TCwtobt0LO53nF1ueNmu4EyfT9q3jgDpbB/eOTXv/5rfvs3f82HN28oqbIOa0LY4MOKzg544zFK4xaDLqByxcwQBk2vDSscU5lapoJu4VFd8KCFlTcE7ZiUQ0xhqUIp9YyEE6Qp0+hDoO89IXhyrC2kRRmcWJTRiKqYqKmuoDTkLLx9875p8pbIxjpymojjSDweKSWiVMWqSpKEbjN1qjEY1X7EtG69cCaqONUCREo6ez2aT8Wos+QkC6W0dFVUow99N0at6ixtQmGo6CrklFmWSIzlnNZaKLMwzjNTXJoUwzTcmDlfhxKFrm2sKblQcyHXDFk1DJ/S7ZrlPK4s9XvpntcNUSgi6LFyns5Tc5NDKS3Y7Kj1vO6k1qkzqmK1ZTV4OmtwCqQWctNZoVVEkmoygAolt+JRKZqGVwQR1fTlZ5kTOQMGEZqk5jxlEGkkico5DMpkEKhFQeL7sbcziSIROcsatA4Ea1EaIo7aX5JEGI3m1e0Fl7uePmjy8ZE0H8lxJlRFHCOPxxNv3r5lvz+yxIxVofHItWlBSjTvCSLo1BJ0S2n3VimNUQorpq15Z8kgtnmTRAy1tMRjEaHGREmlBVotCWs8qiqscU2bXDJLnKkxY4rG47DFcTqeOBwPXMQLXDAgCWr6XjIpqlFHhILU0kJ7zmQJV2ckR0Q5quopZ12zVQIqkXIixcRSK52O5+9AiMeRNI5ITOyksNgR72deBo9bXaAvNnz++ZrVP7F8fHbB/K3jd2XF5fMbfvY88ANbUB/e8fHtaz7+5q+5Xt2yMj3L/T2naWY63HP35dtW5ErloSTsuCfokcEXNibi9dTkmNGg+pY+a2uEVMnzzHI8gtU47+l9h9GKEhPxNDGdJqwkgs6YXDC5UaqMaodKIwlXI0EXijUQHE92gZuVY+sN5EQcTzhbCPYRM1s0GimVmBO6LihrOc0jx7ePzHFBdQ5bKyVF8nh/PvCuyL3DnEkv7ec7CWubate6tPe0NKqdEXBScJKwyPf0pJXWDFZgMGxvbjmuNzykhR/sBq46Ta8T+eFAPh2ocWY3ZNyykNPM+2nPu2/eMO1H5JRZosJOEzoV1r2nNxavIceCqaXRnE4JtSwtJHH2lDhRakIUqLmgc6ON5SmRcm2kmLOXL3jD7fWaq8tr7g5H1o/3zEtqEtNK8y7pvgEwBO6nmQ+PB55+2pN3TzDWoKmNUqWaoNMaOUtzBVRDnKLlrChINKKbbanZCEYAk86TG6GYiiehqIikJr08rzYiU7s2KZRMI+lpUGpph2GpTa5jVAs/dJV5rs27Mk0oDMZ4nO3wtke7szRYtQlFI2xqlIWaCnm/sJ9PrHzFOEPfdwx9xzQtBKcICoyqiDlr2K3B2BawiWokonKYUNsmaZOUqSVRlko8jdira3oF1QvbzRrxFacNw2DplKVTjn7V0RLtMwRwaYQ0ER81aTpgi0PNhxaMeTghcaG43GiDpZDmBadaym8+m5+/l2cbi6rniQgzNc9t7U9CjhnMjDEHJE2QPBSHdhpjBa0yKZ8aKU61pOxKJpdMLJkxLuQkqGqaeTpl6jwzaoGU0DljXKEuiRKbSmPej6jQoVE4rdqzVSNxqeRqycpSoqOOE6ooMH/Pmn1lNRaDqYZIC4kShFJbOEJOmUUSNilyah8+4DGdw1rL6mLNxWbNpg/4OjOfIkkLcxD0PILTLCZR9wt7LSxa8bT2RK2povGLYgwVZ4U+Q4lHlLJU17Wob1XQNZNypJR6Lvgrok7UXCl1RgpkVSg2IebQ8GBFUUS14kOBshlJFdG2SRzakQLDSK6VnBdyzpihx6mKYuKUhPfv3/Dtt9/w/tMDnTV45+lo7ntdFZTKUmc0Do1pBMAkLQ3TZ9TcSBpVCzq18qsaRUiBk0ROaSFNlbLKaGWRqpuBA8VyAj1kmAvl2GgikoCqGCQS5gk3zUhaqHloPH9G8jw25nzVLKni3IxTQl5qM/8o33TjElGyIGVBVGibuCiszq1krNLuITQ8VHmk1kxNQpnrme6zoGVCxSMqCjqD6TydXZAaOanIerWC9Y7iLC8ve9YrR2c1x8e31DxhFQwsLMc9n+4e+b//D/89X/7N37B/fMR6R99f0XUbglsT9IDWbWrhjhpiRXLFTZpupeiVZpUs+2km1ooVw8p29D6ALeTO0JvApDuUW1gOrWAuVHSsFFOoq8I6dGzWPad5ZDxF1LaN8/rUE72mlIo5GbI/j8aL8O3XH1HHBdkfeLYbSMuReBqZHw6UYHBW0SlhkaVpzZWjaI81tqFXxcBZp60w2FAwRpCoSFqTRRDtsDa3RN8EKTcJhlLgXFuYpFayhpQbEs5R0dEzLwuneSTFlk5bayIeCsfTiSUlVFE4155kmxWR9qzpKmRpFIEaM6kmdFENhaYVRgy1VLIkJLViWRnDSrpG7JGCPQKl6STTJDjfyDh+CZTC2dTUvDQai1WW1UqzMrrlX4iQhebD0AVyS54UVIt316Uh9KZKaTYCasqto18FFSsSfDsIVEHr2Ir62u5h/g41akcomlra+1IRrE54lSglNgNabyjGsrYZayrRVsJqS/Edyypw0ys6HVHlxPzpDfH0QMkTfa487CMfPz3w5esvOU0zRmm6ADY7rLZN0lJdUyKRMVGIua27JEH1BYtmKJZH9qSayUtBrIHS1g8pgqutYVBiIi+FEgslZWRunUijLDVCXhaW5YTJGlMUVixd6jg8HrnfP/B0umIVHLpmVMrfGwIF1fjkKVFKbdkIUkEVUFNbk8xAtYGkFZaKU5EkwhwXljm1cEF9bJhCEaZPB/JhwlfFrn5gz4iYiedSqD6w2mz44+dXPP1fX/Ptu8/4+Ge3PCyGn/z0Gf/b28ztfOD3f/tX/O3//P/h9Z//mhfPf8jtcMnX7/d8iN9yeHzg028/0MtCJpNI2GPk6Y1h+8yx4gFTCzUnci7U4UnbO+ZH4gTz4yPj/R1q2xH6npXvsaK+z14YjzPBZIxpxaguDZdoEsgmo2Uh1Miqo4XQdY7nF4Zrr1hRyfNEOk7YkPD9BzjO1GSpUXNUzae25Mibxw9MX2Wq7vE//wwzjpTlRDy+o4s7SjBENmxVQShkKRT1nS9LUGak5JFaFTp7tO4xpdLlE6WekNkhyVJUz26eUJJIduLZxZaFCx5M5YVe8PkIOTG9/pr58YESF3bpSNxnjsvC19/+ljfffIQ5sy6a5WQRKQQpbE1PbxSWRD1FVI1IyeSHhJUjoqHWwDKP7d1Ujn4SfCyYEkmHmYpFhyZfybUSvOLZk8DN5Q33xz03p/e8/eauad6rYLPHa8HZ5je8myeGhweefftA+izhnYIKEsxZyy+NklLOjUOlKap51JRe2jXjqMq1xHHVrLJFpXOCrZCN0NWxrTUqYWqH0JqByL7VMqVSi0b0OcGeE7k2CbUIVGPAVYyLpENkP534dDqgdcswCbanNyuMdRhrMFUjZ814pwx4kCWR7kbeH++50olVN9APG1bdwNzNdD2sEYKSVqS7hrIMvm/SXSuISsx3R+p6QKikaaGUSJxhuhPUT58TnMVkw5PbiWM8gYLVShEy+GwJl2u4qyhO0B9wU6ROlTwVDh8rdjnB44bqK/X/R9t/LVt2pVma2DflElsc4e5QgYjMyKysyuyu7ibZNF7R+AB8YV6QRpqxSXZVW1dVV8rIEIiAAy6O+xFbLTHlz4u5EUXeMWkWMPMLwADH8bX3mvMXY3xjvqFIT9wYTJiuw7OJwdxQsiPKgFfXhourQUZMm3KqIzXMzRNXNDkotF0Ql5F1RfIWZIPaDI2cJom6XijSk1RlloKWREqFEBKXuFKjYJNFO4F1pYgw2QW1JmwqGJvIUyClSM6J6emEuqnY3mLQzYuiMjHMRLGkakm1R80Lphrsv6zW/5cX+6YWktEEr/AJsm5GMRM1yrnWHZbIKgWdIn5ecJuRwSpMRwtyiploCtbeshsVSjuCjGzvvmHsdhg1Mm2f2YSMT0LoNJw1qijSFnrd4bXGOsUo+0bL8dKK2xioIZGro6aIFEFwpNNKTZElrwgRMzrsrkcuIN6As03vpiyqaiQosnPN0KKuBJ9cyDFRbIfWW7qtYE2PxEKaFw7vfuSffvOBtz8+0WvFMOzBeaJvuNJsWgGSnjN65xCvsMVQTCv21Zpg19J07SLkzjQybqk8jwvrZWEtgfU2M1uFtwbVg1k8q6m89DNPlwi1oFwmTgntCtprlNsyDFv6foOyHmfucOYWZ19j9opSMipn9kNGlwFVPbiuUUm0w7gRq5pBS+c7qm/pyCVnSqjQ9eDbF1uSUHNmvZxICeawcLwcKJLZOI3yhs59idoUZCMM1YFcCPNMOWqmvic5w9ArquvIoshL5hgdVY+4zvFs4Z//7lf8+ndv+T//p/+FPM902z133/4S12uM69HWsYwJlQTWwqKOTMtMWiNqrNirYWqWM+tpQhvH2Dve/GzHsN1fo+IVXyuFf+j58Z2lji+UvKDiwqRXcgYzeX7+Fzd8ZTX9tuftyzO9GdDVM3nDaBzOVdIA9rjHa0XvDM4nDqmSPp14892P3Pa3dPaG/b0mJY0xBj9atupNmxhIYtAKVZrZVzxYqc381Tv8ClRIuoX7tGyZHh8tWZq2sDNTuwyUgpQ4XyIxRSRlomoJ014rymCpNVKykFQix8S6RB7ihXVZm5lt0HRuQFlDtAo1FbJqYXVMQqyFQKaEQLGmxZ9nC4Mm50S4zJx1IqvWvMx7hYttE7fs4bIG1AqnMCHKobyi3LRJ/2wgjqBOpmnKu47O7hk2r+g2Nyir0alvDUMB2Q40rU5p28lFQYSi1JV+IVjnsNKm5MXSLkFRlKqQYyY7Tba0Cbrt0aJgbSStUislVzq3xVSwVdh6h9xk6jazTUub2NV2UavRgfPs3Ugpmfn5iHxOPJ9nUjIYveGiCt89PPH9wxNPqdBvHYPpGM2exSSs1VhryJ3gikKS4mxW6hSRnCmDsPU3dJ1DbzT+UzM4xl6T54TyrrHhZWwr6RqQ1RLmlpJtdY/bOgqF8/FM7gaWVSjR0N1kyqSQ4lgHz3I8M39+4XI4sfMbtPeYrseUSiWDCCb0rVC00hBsopr2VBVkKmQjhBpJl4TVGtM0LcSYiFkhacsSW4ChjoXzvOJL4c98h9Ov+OVXf8W43TP/90dsP2CGkeHNF/wle5YQ+fi//8D/8SIkr2FreXU4k73F/fIb/ubLL3jz1ZcoPP/p//F7nqbAUQJmszCqDS4UujnwZz/b8eXrW754vWN3eySeKmsqXG6BqU1q5VZxevvI4XniUDv6umW/2/Pqm1v6bsPxsjKl2hLI9Ra8QekJG1aUrlQPoipJeZIxjPul8d9VxYjBs2E0G263CuHP2G9v+MXX3+KKJS5nlulAeYkIiZKF14dvcH+zw9/dsL3/ls7NhPOKPr0mv3b4TY+nI84CvsM61cyv2qBqRcVArZsrc76yYwAKFrjd/QK5z+3nDR7TV1QVtkfNyT4hc2R4gafzkS2Rfd2ilOOr+68w1tGPW3787omnTycePx4Ya2S0ljuzR0ygL8KmWtzGYFNCTYH58sJ6CM13VTKdViitmhlcaZx3+LuB/t++4eZuj4s9p67iTTOtC9A7z/3tK/7ir/6G/d0tr/5+ZP13hefTrzFDj+k9zlqMMlTpqW4lXArPjzO/uXvhLz9dKG9es7m7wRlFM/aDStfQOHNl2SvXoCUVFCPCNVQqt2dZKmg3kokUCmXqCBKJuZIXRbIL2iiMViQFynRgHK5XlKvdvabCPF1IuQ1OlpqI50h4Wnn/9pH3H048nBP9zQbbjSgzUGzHxm4xTlN1omZHzpWEYswbkoVHWfnxVx+If/Y1r77s+PM7z5svbug6Q40rZmPYjLsW1qcst692GC+8+eoLLvOJpRQu88zxtOBLoiiBGpkJTPXI7rDn7vU37O7+jG82Aw/vPzHPTaZob0b6zUjvNNyBmg3q0KM1BLWQZUXOK9Pnik6RL+7+1/C6Q2zHZh7pXwkSHV6NzBuhYPAXx1IMbuOxvUV1DmVtG0rMF0QNrZFKBYtFrxY1d/T2Nar3aOsQt0OrQF0XwseV7DSXsPB0/AjSzlNjFTUr9FgxRObfHFCdw+jK+rSy1BcqYFdYrioBLfDMxHTOuLMj5gHRF8QYllLR69o8dN7jTKEfBsbbuz9tsS9KQQEdBazGSKUKZFNQtTTTgGuylSqVKS6o44m6dRRx2HzCU6AKbtih3ZZuGNn2e4Zhg+86tLZscncNsIlNajJ0UA3KCsYonG2paI38cKV8SEJUoOiVEhUlzEhpiaeVuYV45Qh1phqHciOJipIRVXuqbim3ADiFmKtZViBJABLGFHC3NAK/Ai3EMrHGE8flhKoznSkMfnPVwnPNUpXrh9qoODZdM1atQeUC0tbvZqKZFwVoMlYKlukQKFUAS6dHioIoFZM1GI+oSk6FNVfKlClTAlXZiaJH432bhlELRQLYgrKluRyNR+UrMSDTmN2Kxpw1jeyitW4puup6SJVIyoFUAka1abWSHpOEXCIlz0h44vOcuZyOnB8/UjrFq+1Iv9vihw3mikIUgRozRSfOHpLMVNFoZXHK4PSAM4mdqcxGM5fKP/zj3/Kf//Z7fnz3CbOu+P0d/TDSdx36J9SmKOoKtURKCoRLulJ1mtYo5UxYUzPaSpv4qJLYdB2uNxRVGQfN7e1ILYGX+TPzk0aSIaIx2pJz4jSfWC8L3jpu97dc1kypjcyjJkEGMK6RH1J3wRRQpZFjSogsa+bz8YLRHRjBeIfRjfVsOosztnlEkiLFCPZKNan2uoIVdCmIvUpSsiZLY66gNMUkRCy62IbTM80vEpmJNRJqohKJuSDGkq3H1SaxkppIa+A8nzlNF2JoMe3WGJxyjaJQBRtVE8pdKRGpRiS26W6ShM4VLZWiNWq5ymR0M/qL1oh26KlircVaixPDJbYwujA1OYk2Bls7sghlFWosLDXjcwvWyTZTVaHUTEyBSsAY0NYgtgXHqEoz19tGO1CB1iHVtkmTThp1qhoKlVJTI3/ZSMFSi4ba5AFVCUXF5tUtzSynbYe27bdAt4h0ozXaOpzKIIqYWxKyqIyoeN0gZkSB15VoNUvKPLz/yKfPj5xOF7ZXGaQ3FqUrfTFY3SQVtjRiQ6mCXkoLY6HgqkHISFXoxWKsxiuQojDWYrXBqvZ9UOIaeUULIbTz2fY9zg2gLWvJTeooEakBjaWoRjobJvj0/Mj988AvTveUV3dtE6UbBYmfjIA2o7RHY3BFUUu7M6oU5rISYiJMiaVe2DjL4D1V35LzSkmJRCWXQM6FJWZ0PqHVQtdnel/ot4LfGTpzi3Yd2hhMPhHCilomust33FZFTRo1GQYb+Nld4c3wiswWlRKXlwt6fWJYnyjpQrCWkcq4dezvNnzx5cD+fsDddoiKxG1hrZDQpFJgXllC5OnlwDyt2FxY44xSiqEfKKqQ6kqua5P1jDMFTT57sl6bBGvJJAkEWhqEGh1dVWhvMH2mqtjyQvTIq9cbtpsd/WZEVU3VK75q9LLitMHSo/p7uje32M0G1ztUriRX0PuK1olShTVlnNIYGVHVU0WQmtFUjG7PvOQmw6gktG6Xk7jWJButcc6jdaDmzOwqdTqj6oyxiY1e2faGba9RbBDTUURz+fDI44/vef78gl4WNp2n1xarKzabVqC7giyFmAOEhTwlUr7K9FSTzZChRgU5ITpBgm/2rxjGjugiebngxn2jlFFAK6w33Nxu0eoLvv7yiW++3PNPFlTJSIgoZ7GmFfG1WNYycZ7g8HDk0/MRMwz43Ybc920bL5lCQNQ1gK5e6TMAViHKkEshpsxcjpjaQsCU2qNyQkqmaAHVKDVnm5D50NCYnaHrR7TZo+ymnfvkJh6pgahWMhlSImRYloXzdOTHx08cLkdKWhG9Q5mmsOi1u5LJ2pldCIhkbIHcOZSuKKk8XJ5RnzuUMry5v6UWQWtDvx8wUtAixJJYQ8QYx3Z3AwMMtx0305b4eUM8PhKWBebQZE4iyFL4/Hyk2h6xhuF+zyZn7NxhBo2QG0Qi+T+WqcJCWtp3UJuEltyCTqtGvxrw93co15E2Gj9C9oaMpeSZmFeWdeK+F3TZo/JAuspYqRFtzsTYtnSEhVIrWlvEBIzftYBKa8gSyfORtMwsamU5nzjOZ55Oz4zeY5NHK0spibpWmIWqKvF4QhlLqIJd2juX9YQpvuE8dSGGTCwJVRVVWZIu4BTea7wUOl0ZqtB5Rd8Jvc9/+mJfFQFKm+SW9mUWLah8TWnU5lrsC0uKcDkjaqBSsCq0CTHQ72ay7BicY3vT4d110uQ0NntEEnC9hPuGhTICyjbJqTagaHpkJS3oSFRsvypIbpIVKFQVqDpRSChZUDlRUm3oK0wzv6raDg6krbmv+i4RIcsZpUrDK7mKwWAqlJpI6cK6HrmsJyyJ3kLohoYE1e0hZ9rPqKuQVaHmjGCQ3jZUZm3SIrU0ZGU1Cl3aUVGVYz6nhha8UjSqUg17WVtIh5KCJMUlCWEppEvGbASrFVtpWxAlgpRCrqFN1mxuB6NtJi3N1fNg5Jow6zDao694MUybilRbqWsml0jMC94WtGqyJJWFUs6kfKGmA8/TwuX0zPr8jrwzbNwtstVgUsOLKd1wWTGSJbG4iqmxIb50xSmPJWJUpJeIzpF1uvAP//B3/OM//Z7D84W987j9LV0/tCh47dDKUEVRQiXX5viPS7qiKAVVFblUYkyY2NCASgRqpnNNmyeqMHpN3g9UCewvhsvZUqIlaoMzjpxDS4G8zGxvd2zGDTd94JJXQq4QhGpbcdzpNiFSUpu8qjNkgZIKj6eFYZhQDkbXt1AvC2JUC+7KjfGeS0LphojV4Y+tKaoUxKaGAYsaUalNk7ShNtknqrZUX6Eikol1JUkiS6ZSKDVgdFvhUzNSIjkFlmnhNLViv2SNHzqssXSqJROqWtFFEWnJz5RKKqnFfadCkXK9UJpfxWTa90wrbKVFfxuHXgSzsQ21iGEOKyln4lrQxmO1RRdPQaixUufCUgpjbmF+UTK5JnJJxBioOmCMRlmF2NbgaQRdodoMZNRqGvJMBFVoqYRKWupllSZDqwnlcluTV4OWitTSLmUdyUU10oOUhrVz+pp0LPxkodJKYbWiQkPulfb/rwi1KJRqU2xvKiopUkx8eP/A08uRNSRuNh3WebRq6Yo2XT1AKExRzXshBbVezzAtWPkpQbgiazMxWtU0qtZZjG6o3P+vYt+2VbQCXNfjbIeolmPS/YRhrOl6XjZ8Zh8Uz8cXPr8MzJcXSl4xXEPZlEGXilIZMRmtHVfXF6k20kiWylxWljWwrCsX84JUj1IDpetRJbYiU68NSUnhQmLPjLERYwpdD7YXlKv03qN0S61leaFchDIfMee3DF6jq8ZXi9l47vYj3e2eVb3h5ccfmacTZXrELge6NDMawwjcbDyvb2+5/WrE3RjKBuZnx8UqFqUo0bGUSgqZcj7x+eVEDa14WmJAELzzBEmUGkEy4zBi8oVUM5wrQbVk43VZWcpENJrkDGpj8cpgu2ZGL5LJNSM4tvsbxnHT8hLQmGpxyWD6Qm88ne0xm1v6zS3a+tbApgImI5uCri2ZuuaEsQ0Lq6tp/g0VQRVE5SbtqYlaAqjc/jlCMRmveqy2LZ22qJa7YQpKVoya6LqFG63ZbGFzY/HVE8Uxz5nDhweeP3zkeDgx2EznRjpt0ariq8YaAVtJSySllRrXRo5KlSyNqVcko0qlBGl+NFUhwavxFj04sk3IZUYzYnSl4bkNxio2Y9vQ3d/e8uZ+gzPS5GskUAZt2t1Qk2XKGebK8enEx8cD3XbD7n5PvxuvJX0hk1qDq9qgRSQjGsQYRJsrcjiwljOW3JQkyuFLRpdCtQllDFUV1rxi00vz8lnbEI62Q9n+SmLJiGQyK8UUSsnouhJDZV4uHM4H3j8/cZourYj1DmUs2ho6bdrG4So/qjRcqRGL6WyrJ1ThZbngX4447TlPK7baNpUePHpeqbkyrxGzJnzn2PQ9MmTGXU+531Hvbvh0+UTIKyqk5nFrk0peDhdU5zGDpf/mFf2d4LY91sxX/14ihtw8b1UoNZDWFZRgrGB0RVeFqgZuLG67Q7se3SesMg2VSYVDJtVALrFlbEjXyEFZqDRpMiYQ60pNKypNVOUQ46iuYju5bmmaR7RMR8I8M9fENH3mMl24zBcsPQUH1VJSRK5sfjSkaWq0ss5jQm73oV0wVVNVIUnzYsYYKaVge09SFZyh7yxdKXgFrlZGr+k99L7yL/nr/w8ZD6w+kZ3iLnmKAzEaVwZitzQO6SUjO64FsWE1EZmFuCbcDlJKnM8TT9PMfAzcv7nnTa3shi2jaDwGZzo6l5r+Xm1RctWnVUWVFSmGmvZUdcZWMGLIakblDpNGnD/iokdqYZUTkm7QGoa7mSHfgs2UPqDDHcZ6TG/hUil2Qawm5y+Qvk24bdY45TB2j7evsL1vBuVSmD+94/D5wuFx5vT5hCqOzg30u0xZLdUoii/4bElWSBa8GshWsZjK9pIprqCMwpaOtE9IyMg5EUdYtIahZ9mvdNXhtEHtKpYOlCbZiiyNG6x8pZwcdYxIV0ifhfOm4oxGgkfMgJgeSbYd4DTTm5U2uTdeM7JS2YC+xfU9RjqUyLVBeIWmYt2My117AdWKKT9vOC4lKDJlmVoAjvoSOb9jI3e8/vYWu72wGV/jN19h7aZ94XNmWR+ZZ8scHH194W77BjtYZFuw+TV1Eo7nFx4+PvD//Mff8J9+8wf+49/9ipozznv8m1d09FjTo9xANkI0zdakZGlmwygEf7k2pI16obSnaFjsRF4EC3ig+IzopvHeDTtGP3Kzv8G4Deg/8PJyZDj0hDqxTpZwXvmUzrB03EjH8MUet25YY+ExLrTU94rohJYNSUcWt1LOnjlDKhn5w5l5hdubwJfjjm5j6TyMK7hR0eHZKo/bgkRDTZoyLNgI1MqqI3retoulXxnTAEYoTlDrDVULoguyJNa6sKTE/NwTbUaJYZ87Tk7T6YFRbgkxcXqeefz4wu9++J7TaSVlYfO6x2qHNZbiwRVNUYrYFfSpklUhqEzNhmwzWVXsalqDqKFqR+p004GvGju2oLvaecIbi88WEc3iCvY6pc5DQa8dWE3qhUE8eZOJQ6b+U+V4k5E+c3zQPN1mlFkZCpht8yxEvceojFHtgsBn6rJputdxxp6uk/EhIusd1SrqmOlCo2zgwMQvqa5N481SyeaMYND1NW47owW6YlE3glI9mhHMiiwRqZEsF3LaNhOzuqDriBApZabyFVpGVO64LIEf337m9z888be/PbJ2GTNa/HZHVanRPKIljqWdk0UTXUXn1pAv+xW3eAzAVtH5LUrDJAvpOVE1RKPQxlKMohrVUjp1gmIwRRFqxqJwMlAGj3MWJ5rttuPw1KGSZ9EFbwas70lDJB4L0/PCp+XMN9NCva6cN87g0aiiianHWoVRGSUQ40xOQN6wxhmysKmaak5YblByj1ktDgFTMXnBDF9gvOGVnbi9/wpVj9T8GVm21KLJU2D69AA2NkO46dAlsTWK3Zd/jd4urRkMhbysuH5Aa8367kc+fHzi+88Hng4f0d6Q7Ug2CfwWuh2YG54XIUhlvmTOP14IF0GUZ/uvdqQJTpeZ79++EF4ObHrPq9sbJFSK0pi+TZ9HPdIN99Q/7zl9Hjn7A9P6I+HZcVoqT8cj58uF4oDecVu+oXu9x++3bO09S+g5XBSDz8hGWjGoEr72WAa68Y5Xl2sQlhnwvkeJIofAZX6h1JGcB1QUemcRm6i2Yss3bSClKj4WFjtdteKvMf6Cdx1D2RPqAzltyGlLqYVQ1iYTrAnRG0QcrgaG3c9gO4Mccf0rnBlxeqDqxOXtE5/+8Mh/+p/fcg5PKF0Ztq+hVy3uIlmCj6SQUafMpT8jp0C9JC5lRWIL1KhbYZoUqgZQMy7T8l0qhF2T9BjruPtiwzje0HUD6A5oUsgcMrbrcP0G5+9wY0+doIgnq4xyfdtq94H8wZNi5Ad7ov/3v+F4CiRv+N9s7zF9D95TRKFpSGtnWrOrtEWbLVYVjI34TpMvzyRGiupxl9IGTRR8SMj2FUZ5XtuM/9kXSFnIeca4LzC6a5km1LaxFqC+xrHgTMWOd3x+/BWHzxM/fl/5wx8eeDwsrHh668A6qrOELex0y0mKgKoeZQoMmv44sNjIaiI2KV7SQpyeufndJ/r7HUor0qQ4S8GcF/pD4gtxfPuLjruvRnJnGYPmjdrwxbBnSIaj/MhZ/Ug+XXOKNjA/z2RnmXrH9ljw+6/p73o2OlLiZ0I4c3p+wIyKFAvLukX5jBePFw83z0g0rEdhPZQWXtlDVELQHSkpylrYAmM3I4OjN3+FttI8W0siu2PDq5cvqfoDxmkGtmRzQat7rHqDUp4cMikuvJw/s3zKhHNgmp8xgKuKOxew6zeUtJLDEfUyUU2k+sDGWBY/UWpBzQ2+IlXjgiPpwjTNPJ/PPMZDC/1D03UbunHfJKq3I5xWsgSezcy+c4w3e/av3vxpi33lXVv3VSFy1UNLC2O6NvxU0+h11hqcc5Dayq2qBE6jdSZHWHLmx2y4hJZO93rokZuZUkbs5gZQKGNwZaWq2oyI0hMlNSoMRzCR5nB3LcRCZ3AtkbNYoVSNqs2FrVSbaHXDgOhKvRpJlA1AoFp/DbACbS5gLcZYjLV0dodRFq8KZvBIllZEOtV4rK5NAKvWoD2utEMUEVQScs3XVX/bHOjUMKZJCipWjG76cLVWSmrkVSlgtaX3Q6PqGKgodPBUdyUArJpYKzU3GkEonhwzKRRqCfhFSJL55D7zzZc9tztLVK+JktB1hXygmISyW4wZoQwYWVHqiSoDmhuqGFaJDPXcpgAmY73G6A5rrihUFIhCpEP1t1iz0k2R9d5BsWy0R9++xiuNZWVZP6EWT02WRWVUSngpbDqPt23KHlfFGh9YYuC8zPzDP/+Of/rNb/nuhw9YU+iGDZ0f2HSNmqCtRXxGZ0MtiZgTckkUyc1AvqpmgKsGU8dGDooQqyHmTK2RdZmQUNBuxZpMZw3Rapwy3N923G0dabUsk0bObapgnGE5ThyqJ1fQdI0YoxRb68m6GRz90mNMpaZKvAiVxDIV4lJxXaQejkxp5rJZ2EfHdvDcjyuD9NANuH5s4VgUtG6yClxDhtYqGLe0PDtVsMPQZHZOITWRayaVxBQTSw7EkhBbsKo2k6/VWOVbxoFNpGXmdD7x+XjgfF6QqvDGYtOVM4/GlnbptC2aEEokl0QpLRRHfgrWstdmtDbSjQrq2ig2E6gfHH6744YNxl6pMGtp50LJJCktP6Qq6gXiJpNzM/8Gn5u2PmWSWUj5TM5Q3YAbPNZonMxIiSAWwVJzRen4x2dTPdQilFwxqtG92jnWSFdaW4xdUfq6FfIaZTqUErwI+hogZZVD9batx2ugyIUqbbNREKwJbSOjC9o4Kt2VbiZNElIKD+/f84ePn/n+5Yj3qf3/lUFJwcmVxa0TtrRXrihguRKCpOCvKCylNaPqWwiZVGxULDVRaL4p4w1KWtZHUPFKF2upvJt+i7YGpxV1rS3J1ZVm9B89t7cDNZYmkdIZlQPHMHGYNev5RFqe8ENG9QG6b0C1fBNXj4gocm3Dhzkkaq4tKdpeA+60o3M7nFaoPDHHiO16nHGIvWXQCl0zWVc6LQgDub5C8oHKTKlr8wkszY7dDbkV/lVQ04W8rNQ6Q57AvKKkiZRGfnx75OnHT1w+PjJPR3RylAxrbUnK5+nA2/mE/5hIvSF6Q3hpEzl0YvvbdxxnYVkj83nG0iPZ4VfFaoUlt/Ney5nOrEhXEbMlHC/MurKmmUOIvEyRh5eFOUxtmeoc4zaiUyHGyjKvWDtjnSNq17IEqEgKRFnBWjo7wnaLTitKDkSZMMsNIcNzODLK3CgxPmG7O6rzraFlppTcEpKx5KKvgUoLXla0MthuQNQ9OlQMTSpX6oDUjlTBE9BKEJewWqGlA/Z0XqFNAQKXD4+8/eEdb394oKwHbAFtPbUqJGqKgkAmTDN5DaRl5XI4Y3NFF2FJhVKgioKXii8FUxOagi2FUgsyV1yo9JuMM7Dtb/Cdxzh7ZcJLk604TUzgreNmP3I7bDmVSMqKmho+3GpDrYVqhLBG5neRh7LHvn3Adpovbu65ud8w7jq6frhmXlynrteJsNaN/qe0YJzFb/a4cg1PQvD0aDWQrdAZjUZwtm1PKz2lbto7IBmR2ELQjEUrwZTcNrgJaowsCQ6XEw+f3/Lh4T3rWlsNhMbS/ETmIqSu0bJqiMT5gjaKvhuatywpfNQkCi63Tf7bp2e2S6T3HZvBYVeLMS0Z2mqFN47BDKz6AnZBfMB6TX/nmWdLfimozlFSZV0DOEO8rCzvnni7+8SX3nO7cWAUmRZcZv2IKKiyourMdLiQ/Nj8jHFDWgszj1z+9n/g7s1f4ff35P3IVneUUllS4v72DaY3DeJSXighk3WhVE2qGa0rnXrE1HOr9/wNyg6orFHpTEyfCAfLOmkuSlq2klvRKuO0RusO5J6SX0jhwno6kebQsg8o9KOmhIqURFAV6wximmb64fKJ45w4XjLv69rABcoiZuIbu2fnHDrkRhQUcKqgOwu9p/R/YvSmNrpNjajk2lLRfir2Ea7s17bUUgqM0ehsWuKmFEpWFFXbZDknaj4QcwsDOr96haEgZAY3XHWDGkOhStOeFjGk0qYPIgFoGtuWnmtRKqOQq76dxkXEt1RorajaojvfLm0M+iphaPhLS8Vc03QTYACFdgbjHOaq6xaBkgsxJkIqpNRWjClmUml0D4UBEnKVNmRpMoBaa8M70dIoi266Ny0Nn6iquj5HgQpGWzqryapNTauiMZJ/IotUIUqTApSoSNVQiiFn08ghEZYqfFITj4cDu73nOJ/Ry4BSBicKRWnPzvXNCFlbMEdJFaU6qjhizni9NlkTTXqBcW0iydqajaJIKbOKphaDrbmldprGVzd2hLwS1xPz+oCOI6oMROdx13RdZ3oMmlKEWDLr5YmXeeLz6cQ/v/09Pzy85+V0YDvesxl2dL7HO9cSPo2mmCYjKTVTckCWQlGZojKSm5lcXek1tbS/r0mTtCLVJnNSVTA0BJ5RLQXROsPYWTaDZ+gdxms0uiXKOktKhTmsVGsYXUuvFVFY03CLRjm87tGusoSmq4w6E3IlJ2G2FdbIUiOnsHITHbdjj6lNhkStOK0R2wI19LX5FfWTPAYc5b+EV5vWKKM1VZocJ8bIvEZCuWLraoRrOFpRhVIaWjWWhdPpwsvxxPPxRFgTznUNfylNLnDNhkSQ5jEptZFecqJcfylzfX8MSFUtofFKt6m1nR+5ZjptGPqBznlKzW1wUIUlhobt1KYlH0prKnIt5FIouVJsIStINROJhBQIqSNR6MzYzqsrFhgUIvqay3GNrVcgFkBBNlcpHyCmvWvXxErNT4jO9ucVse2/19J071qjjW1hLSUhJZDSQknNIFyxja6gBcGirGtOnmqoORNzYVorb99/5P3TgcdpwViPteaPKDt9fd5cZZBQG/450fj1UlB/LPbBKNvQl7U2WhDNEFigNRn1vyTbilRqLcQS2eh25jmrWdeWmJtqRmPovGMcPEsI7d3QGsmVJS/MYWZdFvJyoawGtSqkj41BjsJIIBd1hTRUUipIFbykZpZ3YIzC6y2mViiZOM+EqhHnKdZjbcPRGmsaox/fZFnq6ToBnVrQUmjfOaMLonSTjaVInldKmijxQBocJUXWxfDu7SeeP75wej4TY2ro1qpYBFJYWUrmlBIqJOg7VD9QoycZAV04rWcOUyWl2mIafI8Tx5QNq64kaRJUKxl0RayimiaFyrWw5sQpRQ4hcFwiSwoowKbKEhZYNygXmXyTSBU0426mu/EoqXjnqFKg9mjbk3GYckGVmTw13PCaDVNY6HzBuJZ+bJwBaxFt0LSU2SyFoiHTUruNKxjA6LYRMnqLygGtZ9aSkOpb816u31MtYAxOXQOGpN2zJSZCjHx898APP3zg3fvPqBgxtsPoDhHdpJc0dO9pjYRlIawL07rSaY3TilAglUbMoVR6CkYKpgqqRHIpqAU6ZejN1cDvO7Rr6bsipRnxpKKNQYJglKHvBrbDljXNZErLm2qnPFUZqlZNa71mlpg4HC68e/vA73/4gS/TK16VG8bXvqV7i0LIpCqNkKZik/5JGwJpM6AkoCSRMVfEpqZikJIbZli338vgrmbpeD1bMzV1iGs0tpIDpRpyLIRp5vFl5vPTgU+PHzicTiBtO2d1C7hTRaih1RNIRdaG2XXeYACxGl81UkybRheoqXJcZkrW5F7onEXlFvxlnUdp1ZoT76n2eg/rirEWt3WY0ZFV49vnArFW0JoUEzUX3j9+wt3vcNuerrfEoqBanBmwBjAVZWCdGmkx4XGlJ6aFVFamH39gXTRu90LZv+LNZgAFocJuv4fSQlaRhVorRdVrLVmxuqJsQNfaZFvWom0POSJpJkwvzAfPOjlC39OLoM31HacpBUoRpDxDnMlxJsWIMuZKvQMbrw4LSSijm3QxBD7MBy5rZU6aA4pCk3uhDbHrKb4nLQln2hnqFFRTyEqRfvKD/P/4179cxoMQvSZohZ4SmXYJq8g1KEqjMiRdMVKQnNGbHhUDkhMJ8EUhaFbgcnridJo5RcUvb14RZ9hcDJ4DSnsEy+g68uzIRSiukFaNRZO9RjoHVrcoe9VMViyBWIQalmsHv4XSik5RipL19QPdwmUmlkSo7QAsqXHljS2UPGI6j9s7JI/Xl2xl+XxkXmameeLx04HjwwOnlyc+PwYOL1NrXsaeskJEEbSgS25tjAhqzSRvwBiGWsjXn8sV0BuLi6DXyqQq3jt2XnMcAmto0zu3j6i8baQQHwhLS2ErPrKuDU6urtH2xwjnBS4HoP/I03xkyjP/Kv0b3tzdUW9v0O5L7HjAjQln7slZkFzIqbJ2JyqWdXGYXqG1R+ioLlHLiMo7YCWfE+sceDh94jhfEAI3m0iehKQyq79we56Q+YV0fmR6WNjebRi2O5T+poWhaQ3DiEhlrQvP6wsPv//Ad89P/NPTZ/797/6ZcEkY3XH/xZ/T92OL6iaTx4ZPLMGyqoVYI7lkjFopVdrLWBNGKlYJTldYW/GJFygeqx2DHfEby3a8RSlNSiuqVHTJqNyx294ypUK3nEjJYVZNiY48ataaieuR4IVeNmjlWQZNXzVD33Pz5oawNu78aT5AaEm42mly8RxzJseV0+kjvRr4Yrel/Kyw2d2y7xKX7kJ3+4at0fTKMuuOGto0Loll1BptGhI4r+WqFXWszzOnU+B8iUzL9F/W2CETnQMqNk085YSKFTtXfj0/8v7hM58fX0i2tJRWN5J9o1SIVaQefPBUVVhsIORIKpFSExaNchaMQqdIlcbgb3LaSsqJsASCL43NPQ7EO0M6J0rImE4Rzi2CXfdN268MiBNiLqy6sAyVesxcvJC95eWcGCbQfWY/H+h3r+l8h9GCqEzNgVgjxm5QSaEz4Pp20CvB2hEd29lUtUVKQ+WBR+ZAlpYhkuNCvRabXhuSd80X4FoDWedAPl84TDPGKIyxaH2H0bFBkFyH21iqCCkUjg+PPD5fePfpxP/pP/8zqbZp0aa7g96jvMYYTfUFVTR2tcy+oKUlfhcj2KLQGMIguBjRqrL6hJ6hUFhNIklD/RalKDFQvUVZRT1ZlG0FR5jbZee7nt54lnAmxQSTYE2H1z1eRw7dzK52ODHEvicsZ6Y1c54S4RSwKmCyx6nPaL9Bmx4JQ5O05co5XiB2GBziHKNxiKlUVejXG1RZkHUmv898UDNFTbhO4+46tmOHG3aIN0gJkAusI2UplGDQOULuaSmmBmNu2+p+f+H06/csD4n1YWAZK4/lgYf5hb/7D79hYsNKT6HnEFeWmlnJrM8X5hA4x5UA7Ps7bkbPZq8ppSdmxdkJeqi4QTO6jhI0wRperKWrEW08rjeMyw2L0SS9UJaV47zyvCZesuVjPnPIZw5pJRFQ0rCE7x4/sllhM2byObDqE9o98v1v3/PVX/8FP/vqjn/91S11Hejshc6dkRVMiOi4UmZh6RcihrRs4NsRO+zo+ltwpRHoxGNyocSFNUdqWsle0TuHVVuKa6ZQpU3LiKkOVR1l6nC+bcB1aJkMxml6PdC5QC2ZGBLr4cLh85GH90/8X//u7/j89oH1ZeHr3S/Y7bZ0g8M4TdpmYq7Uk/CwBNYlkNfQMJa6ZUsspjVgtRbwmpqaF06ysJwvKK3YqI7dF6/Y3d7jXYezrg3IipCy4G3TrBclGFPQ9Oi85+buK87yxKRmRGrbpGrX2O3S4X1l86XnZt+Ra+Htx2ce/y//N779xc/581/8nP/D/+q/ot/uMN5Qy4GYO7y16K1t9yaJzEoKzZOipcdEzzkfCGUmJ0seVjpj8bJnHiYoCp0sJR1IM+SgYFjRfgNo1umZkDzLtPL8+RP/r3/3j/zw9j3vv//IZdXY3oL3mK5DiaVkzdkUdvGnZwAshiqWjKMXje8cXVcwz4qQLavR7KtiNRlI9HPBdg6rPTb0ZGPQG8fmfsBlz3JIRCW4MdNt9phxx9oN1OVzSy7fQKozC461ep7/8I9cLLzEwl/9/EviyWJrjx4r202P9h4rkdN3j8SQkPXIl19tUHokh57plPg4fU8s35POb/jX//ZLxu0rjPsSrZ5h3KCGHdvbjmo7qtbIOhF0pBiF9tsmWb4iyAVFPWfy88rhdzMrM1E7sF9Thx7nN7x6c0NYPlDCkXA542aPzh6MJeYTrrsW+iHT9Y6qKnWaqL3w+Xzh7379wHe04YtWhiRforTHeM+rV/f0X75Gac16rlifUUqx0ZZz/h1lmigv5k9b7IeSKYsADa2nK6jaJteEptuuRuPFXIN2Kn0WirZU3xj9SiuqVFwWklZNixoOvMxnVK+oPvD4nOk2A13f0dsBvVOYCipmgk/NoOot1WSqMo3UQ6HYgPQBgkJ3tq1OS8VsmyGwVhCJV9JIpPgTpWoQg9ZQTEB0uyDLCMplqANiDClNhOMTn+eV8+MTp09PfPfDiXB+JCwTz6tmritVwETHWlNDFBZhrQVdNbZCIGKiQWtDdQ6dQSlNcRm7ACVTTcXmhHZtOmsWhRNN0RpdehqyX0hrRwwzJSlqMA2mHiwSemBqzOAonCf4+3+GT58DKb3D6Y781YwRwd0WHCMujXSbiNcO4z2l766GvkJWieogS2bNE/uo2tdHGZb1E5elMk2By8Mf+HS5kGtkHQMvtsdSuSmJH8KKkRnHjH29Z3y1Z7/ZM8+FPJ8oSSgirOvKFCaejy/8u9/+I78/HPnhPKOlY39zT9dtud+PeD+itW7GHcmEmggyUaOgUkSnQFwTSrcBtpEOauvgpTasXBVFjZoqmagyhEhvO6xroT+uZFLI1JzQfmY7dtyvGya/Y+gMl3rhIgGXBwqKqgQVIJurue3FoHc93hn245bVVE5LxNkt07xgVYfymmorZWkXXVSCqYE5aT6vZ5JUkjeEwbBTkaXr8L5pLxuctbQQucGhrG4BbaVSkpCCMMuB5BR6Y9iOG3JpBtDjdCSupuUGxAtPl4U1JkJMfDhdOC8L1VSc6TBOY63glMYafQ0P0hQdobSV+Upp2NcsKJPxYtBiKc4i2VKrkCSgq8VSEdP8CkoElEadC7oqxDhEhGQiVSpdcmCFa8YSUYcWGpUK2SoUQi2Fg4p0ywE7Re5XzVe6YrzBe09dLw2NVyqU0FjSvskCtfKQm3FRNqWNxQWU1ddcoUzuJnIUcpGGJF0LYoS0MRTdY5SB2prDnCeyucBG41wzuVYjlBiQWkmqssxCyIVTiPz2/W/58fnC2+eFpBS677B+wI2KXl+fdSfNJ6Qq2Qf6fJXxKcGkeiV4CN1kUNdtkrrUFhYnbSvQeUOp1+mzbXsC8k9QA6FoKDbinWboHZux4/H83JKlq8VbQzCAJOLzhH7VYb0jLJpVZdYUKIeVFBaWeUHyW6z5K7rdHW7c44cR8KgC2wXCoNDaMDhLVq7BHUpLci4kUo2oW407T9i0YLXD+Xvs2GM3Azo1vn1MC8XPpLgSVaLzFmVAk6j+gup0a3BrMzfO5SM/vvyWH34UHp6PfHo+8+GQcRuN6hRJDcgi5FB4mSOXdUbEYPQrfvnFDcbuQI+cwgyq0cpszlhncD9ptaWZXGMsBBKpNJRrKRHyjKxnzi8L0/GBZT6QtaVkQZTBjiPnS6CmiKoT8SUS8pZ1tcTDzMv5SLXC7mc73J1j5wqnjSfIETMVTC64zrH3hWEw5HtFJ2BEk6tg9qB6oXQJl9vZkaRJiwKJSG6BWYVGlBv+GJOIylBqaPruDWjb8h68ag2j101O0wIqc8NV58gP3/+Wt+8f+f0Pj3z/+wfCpWIY6XaOznucdmgRyiQsKXFYTsxJI6aDUVHWlVVB0gXRlmAMWQQTQaQFZ0mu5EQrqNeJ3vf4vtHZlLRE8RaQl8AMDctdCylljIWb247dF19iXy6U4wvBO9SmYo1gVqHIQlGBznk2+y1ShSksfPzwTAiF+Tzxsy92/OwXP2fvd9dtaME41e7TK8TEhIxWsaW1IsxmJJyfCfORYwp01SBdx9qtuKcnUlhYw4qRCN09arxn4xzJLoSUeXp+z7kaDk9HfviHf+Y3f/iR49OFnCpjN2Jdh9cOyQXlYqvZYiHm3NS3FIqOjQ40O+ymQ2tNrzz1TrVAsrXd/51zKHWV3h4j0QfWzcrtx4H47RuMeKo+U1wguYU1tBwB7RV2MzJHjVyDpqpAiZUYVy6d4F4O4B7Ym56Xxx9xtsBffMX9/bd09ZZiLeUXPzI9FeKpUi+VjQXrNXU7NiN/jJzNiZdPcFkmys2Z5QHoHYw9t5v/CtF7UB2DLtiUcVWQcSHViK4KExzL/EwNC4WV/DPDRvfcmIGkB9TlCXIkxRWZPsF8ocwXsqtcwsIlrtitxhXBrkK3hTxXUhaME3744ZHvT4Hvgbofeb3Z8cXmlmK/ZdzdMWz3bG/fYOxEuhx45CNbgcEa6thhHzTZBE7b5z9tsV9Lc26Xn9baPyUvckVgCWilMei2tleqyXmu8Q9a/UQQaet9Xdt0NZfA+XzB+mY07Z0n0+QXY9ch9nqAF4uuERCq0k3L/8f1fENRFdUQOLq6qyQm/hGD18wYCqml4ZFQiDFXmsx1+q8Vom1LKFOaXCtLOHN5eeHl4wc+Hs8cP33i8Okzv3t7RKUVpFL8SCmlkWsQlFJtVX9NE/3pz81P/6zSQm1QLdtBNemAXIlY1yy+9jNSr89SN7mPtOdaUZTaLnGRK6pI0RiDvqcBEQt5KcwzHFTlw4eFd68fMVoz+J6d1/ic8XalGoV0tzhtG5EI3UbmpiBGt0NcZ5RYai3kkphSYIqFKaxMYeV0ObGmhXmtnPTKaBSdg2V6wTlB947d7Q3DdofzA+nlRAqRWpr5OpeZ03Ti4+MjPzyeeFwWllzxZks/bhnGLUPfY7xrWrGciTn/UWJRa0FaV9d+dq3aOlQJYBrRqWk02meBanKNhq/hJy2MqPYZatVkM9oa+t6zGQb2w7aRdsgNM6kMWgwVrrKL63tRrhISAd85vDcc14Vu7Hk8KLxtaYfVa2o2UAxKOarKxJq4zAFbBckGSYashTU1xKjqPb1orABSyFikwRYbnaJkUs6k0tbqtrOookklEFNkWa4855zJYeZymZhji0SfY0tbVUq3pEhjmiTGqhZkpXVT81wlZ1Lr/8evpm9FtUeptSOr9h2uNOmM0tcpYW2MbKVVw4VKe0dESXsPtKAszQ9CI261sNja5BC6oUczhUsMdFPFmcpxsyGmfE2gbg0zfzx7SluVKgNVtUGBBmVK8+z8VNgofX0LC0Vd/1UEKS2XQmolJRDTvnsaTY5Li6vXDus7nB2wxrGUQs61yf9UYA2JOUQe5wtvPx/5eJl5Dk3SoLv2y/YNU6mVaummNFKXkqs6kevzV4K0U6R9X69hO6VUcqlX6Y9q5B3+CApp/7GSn+w27fPSCms1zjbJhJD/mMLrO4tWLW9kjWtrbJ1GR0eOwrokjtOF6XBuqMZupre317MQrBsaf1w1TKNQUNpgvW9GxiLoAjXnlkhcDG4oqNjOSKUjoKhVkUvGxkQOgRwWCoasLVXnJsGq6VrIAV1pn3m2LKHwPEXevyy8OwUeH888v8ys2qO1x9oejUPhkFIpa6LS4fzAtr/jzesvSMkwByEmjXNNyodSjUhjdDNkOnsNP2rZ7eV6NqWSiSkTU/PFhFzJaIxz2G7AdQnfFey6UkQjuenHY8oYHdCimS4LWWVCl3h4/sS463gz3YIVdM7oFDGicL7H+A7deVQFXQWdC9imGa46Ay0ZO5aCOE9WLdBR6UbkgkIuQlbNA1Gl+VxEt+24UaZ9R0Wja+ZaPSK0BPsQA6fTie9/fOTtx0d+fHzhcsmIWDrfNaS2d4i11JpJUQhJWJNQraEx+BRlDdfk5CYNrlq3kLxr+rW+ZqKgXQuoBLRtqGFMk5qJtPRZpfU1IbhdESjBOcu43XB3f0ffDS1kklYLKNtkeuUnophRbDabBu8IhsPpmePxRFWZX//+LXroEaO43+7QtqKtaj+DrlAagarWtT0nUaSyUnIixci6HFi7bXtJZabOF8J8ZJoP+G6D9xXvNMoapmXicL7ww/sXDjHx8vTCD28/8Pj4QpgLuhp832Osw9IkffVK2UFauCBKUXVtpL3ruarkJ1ywoadjiYVc29kltWm1qzRZScqCWiLTpAkxNWKZ0Y1EpBRFFbLRVGtxfQfGw1XKrKtgKXhdkFhY15XLcmG6nHi5nDBWuJkXxPc47+icpX9+zSE8cp4myJFqO7x1VGVReYdWKypfENXw0pmJtFZSFXK1nC/ftk2g7TDVQgnoCikoEgFTNa5CXk4tUykLejO0QQOWUheqJKREqgptA1lWSl6oylJU4zlaMVgtOC10o2FNibq29/9wWTkshcl03G6/4O7VK7589QpRX7K/e8Nmf48ddpT0xFIiRyuM44ahc7jBoU8jyq5Q/sToTZUKyUZWleiCp/qmQ6XYho0ScLkV203r2qgdJrWNYe4qJjeXet1o/EuhFmGVxOePT419ripdgiUu+Lhl429bqpi1LfgmJaoosoygWsFeq6KoSC2OWobWwWaLKEMxMzmObbI/rJhiqXUl1RX0Hco6tG2bCCW1cVv7G3RtTO1ZVj58/MD7t+/5/T//gXfvPvPy8pmX42c+fHhiP9yx2+746mcenZseXzsYZCQRWVlQ54r4tuq3wZN1oqqMDQrpW3OhlCVvBFkFtRRWf70oKsS+UFMjECifsWlEiaJ2AVkaZx9boQ7QB/CC0q8wdUbFlSwXhgVMhg/fw3D/wJwCrMIvui39EOh8IamJXA1eNmx8S/sTVXESELVBG+jUgrUb4nxhChceoyXMiXXOHPTAy3zhMF84qBF3fOF+5xi+3eHXM9q+wvbf8OU3P2PUHayZ4/sfKOUNynjM7ZnpsvLj4yN/+4ff8P6xkruR/dbh8wa/tXTbjm7cI11tKLnFEEqhgWk6Mpf2nVAWYwLKtOwGbUNLf0aha6VKo60oJ+g64LRj7DxRZSwVRKGVxdqEKEvKdwybmVrhbs7N3H3UIJ6pC7iskaKJnUZnjRSIXUKviZRakuqr3Q2rSXwIL/ztW9iajLYV77coXdFW6Ocbin4hlszlcUXuAkm1NetjWdnZwNZtsLeevRnojUH1ihANtiqyzZAqOWViWsnrFj1Y3GCQF2E5HzkcT5wehaTP1NJSCc9hYg2VFACvsNVhxFI7g3YO5Rxl07Z2SiuyrejqKLoSTG4hVakQc8SLI/WC8oq+jqQ296eIw3iLZJBsULpincV6xTQkZG7heQy1Na5aU7egj4qqCtFFerXBdBXVC3pxZJepunA4nIirJk6Rm7Lh/GcLY7dhsFd5IfpayGdqHUH1iMqQFVSNcooat+BADxm9qutgI1PihlJi01wmT2JteSPHRqUyKkOBtS5oM2Lcns1+i8cgpTKfPxCPihwgMjMfZ54vZ94ePvGr72aCq9TBMg4bam9Rvce5HdknKoJZNatZQMDWjjQUVBL0qghdy9swokh7GJJDV1j1giRL1ULpM93FIkojRkAWislUDVqba0MAvRrw3mAN2NAMlUZ7RmfY7XtOj5q4JM7MBFXotcZ1PeWoOcaV37185G9+t2G40dTbglt/R0kXpKxgXmGGjDIW5zqUrK0Rc1usji3rolpinJHcUY1j7A+I3FJjRyifSblDTQqWJ2yu5HhmDSfE3bYL31nqVAiXF2qMZPsNvTZo20ys7z+98N37lX94N3CMgWXqCNXi9g538wY33KBiZsoWnRa8VPRwx/5mx9dv7njz9de8fH5iPT+SVoUzjWKmtb9qojUiDt3bxgAPjsLaci1KYAqFJQhxFcoyE+yePPSM6czu9ZeI7ZGk2wAnRUqODV+toBAIfkDGkRIDhw8X/uH971l7YXd3z5vdF1jb8KPpMmPGHtTInbpBPA2bOT2RpQdxSEkUFKusXPLCUL+mUNs5pDzZJBKF+VxZ7dqCznRPVQmlRqgbnM/YYtC5ksIZUbtWKOqFXIXz+cz3f/ie//h3TzyeTxzDSqwDdjCoTU/e3hJHjShQs3BOmTWApA1qGzACJlYyB1RqQxs70oZzShFIGPE4o+l7IG1QxWG9o3hDNT8V9u38aK3vFqManrhKyzPpNxv295Y///mRt7+/Qfcj2WqK8xTv23ZPLLEksHB3/4rd2CFEDk8vfA6PPD08s/zfM1Mu/HWI7P7yr+l2HmMtRRsKkapL01yvCzFZcrEQJ3KmacinhUt/Q86aTlZiCiynE5eXT2y++m/puGEwO0QrPnz4nu/efuR/+fszz08fOR+PvDw88/h8xNAxdjcM4wYjTaJXrh6fpEFs27yiIOuC8R0YSA4IFeUFMyh2amDuElEFcg7kkrDVt+d/qzGhwjlx3q3McSGWFfE91C26rBgbWG1P7EaG7cB03FBFoVOgywrvhXGsrB9PkANrPbMsnznnQi0K93Dk34rh9v4Nu/2f8/Xphcfwjzytv6XWI7P6Em823HUWXUZ8v7AfIpvNV9hek7sVH2GOK6eaePlwIncnxGlE7zB9wluDWyvBzzjjcEaTlxdC8MS8ZbsbMcVScmGd35GjhVzo67Hh2HUlsyL5Bo2j8x3+s6J7VehuFHu347REoswcLyuPa+YoDro7fvbqv+GbP/uSL3/+Gjtb7l59zWZ/x5RXZK7MaeHUV25/+TNu+459Xlntl+h4wqXLn7bYF62wSdMVRcot4hsFRSplza3DdhqfNcYolAG3quvcSbBRqKq0DnvWbdqoFDYo5tMZUzMmBJ6+AB8Cw7pw1gOb2y1+6JvOzXcYVenUCiqjr8aWRHNWG9O+lKFISx4tGdU1/ayWSjWaqppp1KuM7hy6c0ho/NkCLZALTVxXjo+f+fe/+ns+vn3Pw3c/8rsfPhDmQAyJ+ZzYfm3o3cB+uCFKapOQYsBUXG3biKAWSE2GkGpoVBIgoXDpauixGb0ocq0EX1G5SR2qUnSTJbnGbHeHHcWqpllcFVISBAXTCEPFicGVjlgqat2gosOqwCVl5ihcFjD/M8y3Jy5f/5aXx5nXX91y/8WeejtzMwqb4Zn+7h3evKGojhOVb8bK0A30/aaZuaSwSKSbP3CaT7xcZh7fnTmchVQ9X28rebPltuu5lx3nUdhue77ZK/aDRU4X4uGCFo8pL6hi4OWGd+8+8bsPD/z2u2c6v2GjNlh26HtL76+yCFXRF42+fsbpuQWs3QyG0Q6EPLOmFbU6tGsms6H6P5q6pV7tjkWRgyHoSlKFpDPr09KeqSvcqp7qHMZYNioyp+uWyhgkOTSO3kfyYihKI9qwVwPZpSbXOs2c5EJ3MejnzGZrubUbXvt7brqBHBOXCPsvFTWBZIUdO9xxjyuZaAL5w0IwhtV3EByhm7l4Q3d0TH5D73vG7UB3U+k7i3ONCIVr25/etDFwiZlPLy98fHjk8HJiPZzJZW2TPRGmcEW5aYPJrQCsFqz0VIFUC34yRN948qpCllaQSEhNr59aoyF9pFM9nVLkNLeCuCosingRYoqsaab2ClFXCsukqdKm1yY1M2bOCT0ZihVqrnCCfDMhuWGA/cZjo0dSw4/KMWFj5tM48vz4wkY7dtaTl+dmwFLNXG5YULKSYyavLXNh0ZFeR4zWEDUJR6pNTmKp1JKvDVSLrDe6oscFUpPkiXE4t8W5Du89xnekeWWdZi6nmfB0JEwz53Xh3fPKYYk8hoQfery2baOzsxjjGgXEZny+rvlcoY+60X30is+aUitZF3xUQEFpuKkD2Gbcd9GjbbNx1cVd5U+FGBvDW9amYV7CmWVdqKXgbYeIp2Kog/Bqv8dqy9hZ1sOZNUxECbiLRy0KvEIrTxkV85p4/A9HPpgj41HgXWD/1/cULkzhB25nwd46dN9T5Q3nTmGd5Z4Lyne0itQRTEGZBa9X5vKMxIIsGQkW/BMlG3IQkBZyU0Sz4UgltoL4cKBoA7Ynrx+ZnzaEIHx+f+J/+vsf+PHDMz8cL0yiMXaHu+3wwx3G3qBVhy6VrWkgB9lZus3Aqzev+ObnP6OEF56XibDMbKXgxKKrRekEtckfOg0qNYJL1gUJQrok1sPKkg6QAjrDqbtlzAeKRKZoKQ+FeK7MF4sZHTpWzFqIStN5T+cGwJLywhITS1rpfr3wdH7iV/Nvefr2wOv7HXc3I+tgcOGFejix3o50cSQXeJQLffwDo9ni3J68CLFmFsn4+Q/EnIlFCHEk5oRVCtU3ZKt0A2k7sGqNr5HOtpTuMmXSklljoC9zW472HS+fDrx9+4n/+Le/5/HhHceQOVdBzAajtmjZUIonnqFQqRXmBcCw3XnsOHI8vfD58MjT04Gt69h0HcYMzUCrFCWr9k4koUwWn6TJHotBlkz0Z6qpjNU3ua9VOB3aprBWoKKNx/vCpk9osWy2G+7u90yfAnVJFEXzevWQLxV5u8D/VtPfbRk3Hf870/Gr337H7354y/c//Ij+HwOffvyedA788i+/4dXdlu52BDm37VVqeRtOrXSqsOSChIiEgpVbtpLoaF4KUwy4G+qd5d4Lg02oujJ9PvPw7sgPb1/4/te/4cPHZ1IIeFXp3YbOjoz9FkJHMS14tJwjxQreWkbTUVyb8KtUsTphjcYbS9QrHk2fOkpv6BbFWishTWzSBmsztqyYaFr6t1uxi2I9zkxPF+QWbJ7xNfF0DHgUXmvOoTDRkZNQT4qeCR0bjtaaHn1skuGTj8T0BFZIogghU6tlHG4Zv9nyVf6SVWX+p+f3vGJih/Aknv3SYVbNPN2Q+hM2VboYqcVjDfROcX74D4SYyEm41DuGfst202O/HLD9Ful2lHFgLh5lKr05kS4n5pOwngufn47cjorRa6zzrPPCfJk5PS/UeGa5LMznhZgVezw+9/i/8Hhjccrh7MDSC1Z1/KvbV9z81Rt679EvF07OYs4/Qn6iv92xvjxhzxOv//IrhrAg5xMvy5lXpWBv7jDffv2nLfZrTmQpJJGGuKJ1zVzlPIVGrKm0QBklQlVNV4tA1Y0y0xoHaWu6K9WhlkJYExcT2HQTMWdyFC7+QCmCHwt911j11io6pxGxFIEqrWCxtWIqxAQpNQlFqs2UokS1JFEKVRwVg3YdSjpq8uRcCbkl3K3nFy5T4ng88eO77/nH3/yO09ML09OJecqkWCkJMB3Werzv6LotloYui7USl9BkBleKhkLayj3n9kwUKArXmI+23nIGJX9USDSCT6lkVSlXOU/RlVJNS/P86dCS0oKylEG0ompFLY381cbxG8wmgsssObJUWLKwhMz5NGOHDul6BjcyquZnLoth1k0Pf0mJVTSuKpzumcqF0/GFl6dH8vGFOGXqXFnCjLOO0Q98+8WWGi0b79js2sRqfzuyv9vj3Ja1rqwhENcVHQURQ3Jt4nmYJ9ZcGMYOZ3uM9Whr0N42jXu9yiskk2IBB84YtsPAtFaKanPcKhUtGitNflJrMy6juabcatCGLM0HoowlS8HlRp3Jrk3UQSg5gTQpUyqZTKXWirT6tsl+dAUjWLkWf51nmS+UnAj1arLpet7c3vHm7hXny0RKgTU2ShBGo7xFdRZSkxhVFSko8tX3UZKQSiWH1pwsbiHXwq3rmnbW91jrUGIRYyEqUhJyyszLyrKshDVQYiYh5Nou/IIgqtEnflqDCkLVPynDhPRHUVkTmqlrsI0yFt+1JE3peja9Yb+9wXvPYi/I0gzfkirWdFdTUsKNHmub5CHpK5ZWK7RVqEUjVRF1C4zCgrIKnGl6T5FGFDEKyUKJBW0bsm0KCy+niZvNypubhNQOdG1yfKXbGSTSDGsqtkiZ0n5flEJ0awZLhVrU1VgKNbcLSRvX5C7akOqVTmQbX1trh1aWvFYuh4nTy4FPH5+Ij0fWZeWUE8+XyFSFrC2dGRBjqdd0Y+NMo80o1abwgBFBXPuO6GrIP8lwagF+IkM1nxKltHPGVpS0D09bDal5iIqGHCNSdWviYvojrch3I8b1bULuCrt9mwx64ykpE9aVdV2b7KkxWsC2zU9NkWMOPJ4ubKPGWyEnjYkGExp1SNJA0ZaoAylYpAhBFFZco4IJ5CToqtBi0KVvngKr8dXhdN/W7muietfkPYAbTKNvVUvUCyEVSiqYS+Hy+Mz5EvjwcOT948RhrYjrqdJCCsV7GDYo40EsyrQC0HnY3MBmO7Lbb9gMHS9zAklYVVDOXglM+o8Bik0t9l9kbrpYtLn61JQ0JGdnEenpSiLGii+O7dhhts+odcUsBjeMEBxVeyQIVlsaQN7i3IgvkNKZtGSm08zT0wu26xrVTUF3s0F7hektih3ZKDIFFV2To6SCpjTZXmlUrFIrZIVKinm+kCt4bcGBlEYJqVmRUThnMNY2Qt41mCuviZrzdVgmHD8/8/L5iZfnY0PDYtqmXTuKa16eLJpARUsbdFRncFYxjD1RArEU5rgSSmFwTeoqmOudqsBATtez8yfZrLZ417Wz60pFq7rx7huRqzT/y09eIXV9f0SzsZ6N82y8Y7ErVdr5KLa2jQWKUBJLCCitubm7ZeNGpjkyT5HHh/e8PE84/8Rv3v4W3RdKecPt+FULp6wVqYIqBnMdgDia/AMLsrVse4N3mopD0cL2JDXMtK6OPBcePj7zwx8+8sMfHjg+z4SlUooGr3Det8Rx7UmiG3ZWAbXdARTBdE1qphWgr2+RaoMXAOMt3dhRdTNft4CwxB8FxkUa2lw18qFGKNKwyy63plSUhWRYLoXplJkn4ZwzWXKTxaKamqKCFkWJmXVdmdNC5wasa+9RLO07ZbueV6//FUvuWNXA62qoi3Aphq274WIC6IDSwlozNgumKJJkainolIklNGpirKzrQt7eYuIWGe9AWvBrNhmlHQbBKSgoIgtFAnE9U7VDqmtI8mUmLBdSmFqy89qewRwW+u2GYgzaKbRzmK7DbXd8/Ysv+GZ7zxe/+AX7v/wbjFR0mNGxMDpH710LCt06fO1R5zt2LjNKz3hzS59fcLcd9vX2X1S7/4uL/RxXgqmsSjBSKCi0qBZ/rtsq+Ce0kaGixFAtqNIK/6IFU7hKUMCk0rSx3iJRiKlQ18Tm+YSZR5aLcK9fmGeNGyvbm0gxjq7z9PsB0V3T6tfcdN1VYatiii2OvdZKoW8TS2PIxmH1guAoOJTvqNmRo2FNF06nlek8c/j4jnfvXnj/8Im///2v+PjhE+SC0yC1aweEyThr8cNA14/04w5800AGMjW0CPvqa7t8mw8YOVeKa4JmQyUrhaK2VDynMCh8VUy6IQprqax9bu2TUoiPEIbmGteqYcRUgn4BvaVci9xaC8o0HKO4W/puRfLCaYokC2Vozz0WOM6Z9Rj52aZD+hFdtpjwmrNaWPLMfJxYtccXh5PESzjw+eGBT+8eSPMJvexgtsQ0sdu+4u72jr/6859jimvdnKv41XB3d8PNF6/R2pHkwJwSy+WMWh1FDOe+8DgfOeeF6sF2I6br0Z1pKEEPpa/IrBETSTUT1ozZwtA79v2eeFoJWjdtpk6ND41GWQ1Zt2LPVkqAqjTaWXJoqEjXdRQjSLWoaAjWoaumFiFGQy2WUmHNkaQjWQo5CKuA0gVTK9EmhtK1fIYbsPOE1MysmyRjM/Z8+4Xjz778lo/dZ56nF05TpOs01rc/p9qYRn8NDmMqmgqqop2grvkAa01MacZqTQK+7Pds3BZtN3jfNlRKKpREDpkYhHkNhBDJMUOGYg1JCblUqlGtOKyGohvOtdIOdSUCRcimXj0MjZPvRLeD0Ss6VRBasftm6Njs9ljvOIUX1PPCOgeCrAx+g6kdVEN3N+J9R8mJZcxYpXFaozbAxVJLYXYVnTLGg9s0ckjjT9XWxIlCCuTnDj94tINpnfl4uLDfzPz8VcaZW5QpKJNRRV/9HKC0Q8yBWhMkQy0Na5uNxZAa+7u0s6lGS0kKWHHDiLcejyXl2pLFVdNrK2VADMsh8fzxyKePD3z/9h3peSKmzMEZFgrFO/Q4MKgdyWhWLehS0F6jvMKumugLINikKD0o0ehgSTY3nX2piFMYsThlUaNrKbq5JXWb1IrNOmrMMZOVRmg0EzGGqjUpZHJtGST95oauGzFekWxgd7vFFI3OjlIK87xwuVzAgzLtsy6+YH1HyIGDDrw/nrgLPfuxJ1ZNV3pM3aJNh66vqHUg6At1affBirQNhq5N4xsEVy0ajSsGcROYjHEdgx0gVZZ0RroOUaVRUvY7wrwg6ULsEufziXBK6BP8/odPPB5PPFzOvD8pKpZud0fIHqxqK/1tj4hrB7QHssf0ms3OcLPfsduNeNe0t0hmcELGg3dUYwmSMU6htUKqBq/bZ5XB4dCdRnno4x15J6ht5VYCa9R4Am9s5ndfPOFtYNAzAwZZpQUyTpk1GVJVWGUYxzuM6ajxhVQL07pwPD7j9ZacK0tN/HL8hm4zsL3t8eE1oTtAnhmCooolRU1dCi9lIcTcJuO9RxWPyjBNLy1B3Q+Y6ii1Q0xHTYpaNWiHYaBW3bDSAnkOlKSQIsQceHr3ieePn5mPZ5R1GOVQxVOspnSW3GvilYijpCJZobcO11s2447z88qcE3MKZC0UYxHrKdq0ZyyqAZfSdXBmFSo2/X0/jq1RrqYhgk2H1s0DUFKj97VBSmlFvBh0suy7kb3r2VjHc18oSohAcaWdy8qw2MzxcqEK3N/f4V+5NvwLhd/8579nmeHhMPOP3/0TRWdKjvzii1cM3YjUTK0BXSw2G2yhEb+swmnLZttxs+lxxlCrIfkLNiZcSLjeIdkQzpnvvn/g1//0B3733UdOlyYl1QaSqfTeobVDtKWItGK/XrcwqVKB6gtOKbxpKduIoYqmKAMiuK6jv91A1BjbISo0N5huA8tSFKWpnBv2W1eKzlSdcPUVohaKWvGl4/wcef68cjlVnuICstL7gk4Kj8bSaGuXHFhzZkqeV7uvGfoO42Kj3FGxfc83X/33MHxB2d3xX69bfvP4mcMc+Xr4OR/SH0gycVszi5gWhpotQRZKTXAlwJXafEfnlyeIK73coXY7xDYaWNIJ23msMrR0AkfonqFfUDJD2CDFECVzuZyY5zMlnogXyCKIKUzpiY0V6tijDCjvMMPA8Mrz39z9a26//SV/+d/9t/TDG57TiU/zJ3YfjvTGMhjHKxmYv4qsI4xT4eY+cD9u+Wb7DcfL73Bb2z6fP2Wxf4xXEgZC9QYVr2N6b3C5GWOCatOKZnoT+gKZJo01q5AkIVTMRaN6jzYKX9uDdqIZQiH2CbWeyXnheFa4nDGT53J2aK/pBkcJG9x40zYDtf1MQavm2je6UUakhUudTQu+wTrsHDC+4e8iiVADS4h8+tV3fDhOfH458P0//z0/fHrhcJo4HS5o7em8o+8sOwyhOJacmOOC6RS20wxeMEOPiCbETN5fkEsgnmI7l7Sl0565O+OuYTqhVtzatNrJGrpzC+7BCX5NiHYEKurZtilN58nT2OgDRSiraRMf5WjOxQWJFoKHNVBMOxy1jqxqBGVw/YwMHbl3rFjePwl6PmLPJ+a60vcd969es/vmFX1YiWHhYhSDD4gcOE2B5eE75HShz2fk5fccVs8UDLclctM79r1B50cWoyEmzGFmuNkz9JZu9JRSUXFBXS64VDmdn1hS5WJ7jj88EeZAXwacRKwYTNV0nUeUgayoTJQTxCVyvHzmz3ffcO+2vBkssRRUzuhcEOOw17CVQW3a1sNposCgIqUqYjZ0qqKcpR86huIpNRJVxK4W3Y9oo3DDyjpfv8fK0PkNeRBku9IfIcRCotBryzq05k4tkX7rGbeOkUTOE9Z13PSGX77ZMC8HPr9UlvoBe+lwYlFOsWGDUSvwwrYOaJVBB0bpwFWqK9hzQTmwRnDTQowXQrKMc08QfzWIK1YVKbaiveA6z9iPSCzMNcBaG8VCBJs1mUpghvVqVNaqoXJroAoMh57qc7ucvOF2bBK2zr3iZidob7HO8sZr3HiHdp4c9jy/nJkuC9NxQg1vUFWQuJJuNMdoOMwLdsl0NwNu7DCpeYBymEnPGTUYRj+w0TtOLBAUPml079E4CkIaZ45T5CLCsy9s3r1j0Jpv7264edUSZ60oRAWcN9cpvG0x5wqqXqguIEpT8HSphc5AJQ9Tm/oXhbGKJnSJLGYlRVoadFX4m1tKiZSUePl04uH7t3x894HnxwNLWigKtLnFjQPee6zuqT5iqmVTLHV0zVMoIP3KPrcCJfeVDS0fJPuCOVtWERZXW1aGqxibua0dqVNkm1CzMHcJpYQhdbiNp8sFv8B0uWDxWOOINWH7LTc3e/7NX7yBrFinC5+Xd+y+/hZvPcZqPr8ceDmfuISVrrunKoiSKbNCdQMSA/Nx5dcceWUnvvAd93/+wrd2uHptbunuN9AN6NARNglRBWMCF2MwSejWCnZtRm8lqFuNPWasVMZdBTOTXKOHxJcTputx+x3LeWFNM3OaePrugc+XicM08/jxMx9eTpwuifOxUO0GbVq4Wt+NYExrWugQMlkSZdHkNKOd5na359svbhk6j1EFnwOdFHoNoS5QoOKRXNvk2FZwC7K2TYnRLbXZK02nPNNmwpSME9h83aNHxRwsZ9nzX3ffcrzbcvjqFfPnF/K6kpfA5fOIDpAyoCPWN0xzN+zJtaN3lm2B79/9E+EB9B96+q9f8Qv9b7jffIl7s4HkqWVlvb+g12dimTmUlfDjIwlF0YacEqe5Ms2F9eXIdnuLkR0hOZIdKLlDThHlDfi2VRelkDXCJeJSYjo+kaaZ9ZT5/Pu3zIeFbTFMZUZKy1IZ1YCrGh0V1Z1RUVFy5pRO/Gz3hk3f4Ufh8v0z0+WFGCY6NyBASBGKoZaMNOMP2kZqFMLFoHNBayHXhMuaTCCojCsFbXrQGu0ahrbUhjo2boe2CrcFvTMUpQgrLNli1YzIQj0IVQpVZ6QE3j78yM///A3b4f9N25/sWpal6XbYmPWqdnFKM3M3LyIyIiuC5KUISYTUUkOPqKZeRIB6UosCoVuQN/NmZmQUXpjZqXa1qlmqMbdHUk02AgEHAoFwh9s5e6815/9/3xiau9tHljlwmkbe/d2OdcmUAMefZi68cCotLx8/8/j+A1LU7bLVAaFiHcopXX0DMSDTRDSWbCpVrYwzogisVJBWUtbVVfCP/8zhp8+sxyM9hiIMZEnxgGxIulCYwWvqbrCQjSHGGVLGKgFNU7cjpRDtisqQz4nQSYQEZxyrKRhbaGQiS0UKmVV5ZCdJb4JUElF43FQoK6ggWdIrfnkiridcm+h2K3Keef088/T7V1SGfTfg44xOlfoklUJphyiK+Vz4XI60suPxqz3WZGzNjGK2cGs3lPYrfi9O/LvFwZIYjx9Jvy/ES8/27jPN9EJOhYNUlKcjdT2tWMqR4qFEcCaiLiO5CC67z9i8ItstYuORTY8YWszGorSlKTuIEr8bUf7M6idOb5G3txeO88zbtJDiwpoTc07oPCLKHaoYluVMzgHjHA/7B37z3/8PPHz8hnfffs2sOs5jy+mkme4e2GpolcQnTVks4TJw2Bj2nHFWobvI/WeN6DVy8xeWaoWQKKrGIDSaogAh6qRWrhQKqtT1GldBQdECkUAlQZQ19pBLZWY7RBU9aIHM9UOWTV3JFxlJJTJdFkRISF0RX6UTWGeI5xW7XaraPRdKV6U/oiiSqbbUUmr5txSJNteKXhLEkJjHkfHtzPEy8nY88s///h/58eWN58OJL59+IoYqoykpV+GEtmhtkBKUL5hcMEbRNI6ua2k3XS0FZ4HUinbqCCYiTM3ro+okvTFdJX+UjBwj6X9FOvD6ulJLkqwqESAA0YGxFmEcRWWK0JWGYRN1p19A+nrw19cVp+yuJBIB0iIoqKwp9h7ZZ5JWTNrQtg7twDS13DWnwHle2c0eckKLQu8kSmhyCPj1Qj6/odcLHSPFWDYhYORCloWd8TRyZr28EWXBCkXfGIZ9i+saQLOevzAfL8znBZ/XmrPMGR9XpnVljoGkDVnXolVxBaslRecqJiqw5IW1LGgpaHtL09kqoyASS53qKFlQQqKFRF/BQpTqEchCEoElr3S7nm7b8nh/V7GMqkZorHVoXWMtS7DEvNTL7i9RtCKhGKTLaBIpFlaZ0bEeVhbtyYsg+sJ5nonritEG6yxf324Yl1uKyDzPCTVGpI/EsCJkRCmJsi2kK6MeDU0lragsoasbICMktjGICMVncvEoLyiyTl/8OTEtK+O04M/XKV6RxKTwJRBKqup4+YugSxBljd8VRF3B16wcRa44bTDS0rUNN7c7WtfhTM/D1oEqCFnYdw3abmv+fN/SuJF5XrjczCyxQwpoZKZ0kt89n3lezuQu43Q1xmZbaqlaabJbwUO0kaAjJlYUZ5YFITRZCbICGzv0BkTMpNnzeV7Ynk786emN3CgGZ+i0RinI4krgEhpjmlrgUyBkucK0qhujWqEh5xYlcz1Up7oWT7EQLpk5eZQUtNri40pYI+tl4scff+DT52deX88sIZKxlWAy1BV7UZpkBUJoihI1TysV6AKqYJNFuvr1tUWjbJ1IWgRTCpgV8lLAFbSWWGOwW4daJasXnNWMRFOkIMgEsSCkQlqLD5F0pWS07cCw33Jzs2W32fH2dmBdF5aTZ7nxddskDaXkOtGLkqjBi9rBSFIQMERhScZwXip0Q2t4O8y02zN623CzfoWKEmM1Tl8jNBJkzRpSgwsBmQpCCpBgg0cZgxSZLATTJTLOKy/HE65IcvKEcuL00xOX0xuXwyvP//An3i4T47IyTyteSkI2JKFBOrI0IDRCXXM3UiBEPXiVnFmKR1pJ01g2Q0/X9yghiCGwzgHvAzEFYlHXIVOuGMeYKeJKipHlzxQ6pRTCCIopsJRqltcK5zqC3pNmz+WcEK1Fp4YmrvhGEaOoGzata7TTSKTVeF03R9rtKEstnc4q0W9uGAaNvW2xXd06JKUxxSBVqsbnlFm4ENJKWBJeRrjGHJdQCNNEHmesX2nxmLSyHi4wgG0ErW3JTaXfxLWwrkfC60g4jKzTG8vLmTjNhLCQpwV8oIhcn5NC/Nv3S0QQoZZeS6CIir+0nUZYwRQiZz8ye0+MEmkFSUg81SRPqjSenGv5PolMlpHWaEyjabu+isuu0RStr6QkIcnFEFMixkTwEecquUcbR9dbjKtxuuIgmvo5KdoTUWRM/bl6ICu0cfS24eF2z/j1ex7vvuZwOLIuC2XJzGHmcDny05+ecG1DZxsMGlShJAlZIHJA5kTJiYInTLJGTlXBpKvIi4A/JqZ55O3tzKdPx+q0yKJ6DrhuMBBc2eHkUjf84nrGuvISaybTirrREJIoEhJDoSYSxKKIuZC0wGaNdRbdWvK04CsuDSs1sYEcC8XXKJbPgTUvyNBihGBjNfnGcuvfccmJ4ednkpHENbL69XpGqc9ckXVFpGpF8LJiWFNiOQVewshdGgllxcgdzmV2FP7u4a9ZwoXgA5PeYNcL6ylh5hURA6zV7bQKyKKQRUaVFuUqAlNP9V1QZGA+Tui+R4uECYnYLhQaSrK10ykCCo2xClJHRDKHN8YpMK0BLyJrkfgS8MVjjUZ3Et3DnCJJCUzX0D88cPN4Q7/fUKTG+0TKII1jMyhafRXBRY3uK1K0EwYdThBrTM4MDarVKGf/sof9GCv1pQ4xxNWUJhBSk+VKKfVdJVRBKIGQiqQr9ksBXubrh7DmUdsrNgsDytdsY9KZ6CNZV5TcfFkpwSOExAVN2IDWmiADdhyxBWyEfNeiokVmQ+nBifrHG2Wk+FpcNAVkUfg1Mk4Tf/znP/H56QufvjzxH//DP/Dj52cO5wvj6nkYtnTW0jiN1hqtDUo5UAEZFZqMM5rWWtq2oek75CwouSClwukWo9fK6/6FkqQlje1IqsqHRIwknUklV4KMAZVARUGSklgEoUByEmUNQluKChRhKOL6B59/YYj5esDX18uW6Wr4XwiKcigCukREdqh+IkuYiuF+12OsxNmCdCtLDBzHmdvTGacFSiUaXRFo0Xvi5RnmCyZeEExk26CCp0srOSh6HZDMzJdMERndDWz2A5vbHtc05CyYj2/Mp1poWdNKKIUIhOJZciBQ4wlJGzCSYgtZi/rDEZWUs+aZtaw0RtP1DtNYoq9yq5Cp/QwZ0FKipULpjCiFkkDkim1MohZz72523Nxs+fBwQ1aZIqs70bkWpSWpFBKWlCZiTvXzWwoUiSgG6UItU2VYZX3xZzKr8ZQoWJbI2+XMMk8452i6lg+3AzEnrFN0J8XydsBfLlwOHkQ1BjpaipzrRLloilXIVBOrsoNmNTgUTatRSUBI5BxqeUpBUoX1lJjmhfN0YT15/JoIKROSZCURr+ShKKr9ORVBNKWWt4qsn81rd2TNAVMUWkuGTcfN3T1N0+K04367JZdALoF+GNCqR2tD021p3cy6Vkzr6zFjlGDTKbTRPC0/kF6P5LaArnGYrBNSaKTUZJdhpjLVZaQRHcUkgogQNFnV1bRRXWWlh4yfF9584tNl5ofnA+2ug77BNAXcNZolNKpItK4GyKIKuShSScCCuqI3s5CQLMiIMgnjr1nVmFlOmVUuGKNphcNHz+WycPpy5scff+bl+cD5NBOsQOkWaSyqsxAMSSq8FpikybqQTL56Bmp+V2cDNiGloA+G1JbKdM8GXyZSruQu7xJGuUqB2DnSQZBiJqiCzoYsCl4ntKdie7UmxF8iPZm+2XGz33B7u6Hrer68fmHxC+sYWeYVVzRW6yvSVlxz8YVVXLGI18N+ko5sG+YpolS9CLwcJtTmSO4Nj6cZ1QWEyhXMoGzFGipbpXUmIrXCzIJSVPVFlFAP5KpaU08Hz+E48fPzibubHUtYeTtd+C//4Xccvnzm8vLC8dMLl8tEiAmtW4bbPUra63OxqRhmUQ9c4ppRFsQqKSyFtaxsXEPbtQzDgLEtOQbWMDMvntVHQkok8W8lz8psr8+WLBXF1cGSLFzjhOU6FY4oa7GNpR1aJl2Y1ES6vJCMpJhqJUXXGNaSA0FKkhYV79v3Vc6DQnWC/HYiJs9aMo+br9i8G9h+NdC2HUlJ5pRhThhdpxMpaXzSLN7jx8BKQpeCyldb8jwh5gtNFnREdPL404jR9f3TWUlormCEOTIfD8SXmXiYmKdX1ueJuK4UPSF9RKaEkOW6fRYIVWpXTyQEgZgb1rIiiLRWYlpJUXC5rJyXkTmEGlcVhSQgiiuyW0jK1TJSiqLITNYRqRpM62i7jiR/QdKC0bb2KJAkFCmHiiX2dZP+y2S57RyuM+hGgRckZeqlUAQShiINwhpEEogskVLTasvNfsPq73l/95GcCqdcCItnyQvH6czPPzxz89hDPzDojmIjIilElHU7ccVFBwJx1ghR33kGUxGyKXB+8bwdT3x5eubp5cJljXgkWRtcVrWHgLxGMQUlQ5LX7mRtTdZMvqybGXk97GcpkFgSHi8Ccin18y0LLQbbOHTriHkhl9qrylITbamK2kXgc2FJnsWPaKUwFJw10Lbs8yOnENlsfw+tIcbI4j3KWIQq9awSFe6Xw36sw9vkI/PrwpfLifvlxJombLEYLRi04q/Thrc8cvYLfk3otGduPf7zwjKv5HimlEhQCk/tk7ayR9uCFhnjE8qsIBPzeaYvEVnSNaGyUFIiB10x8rkax6UWJNkQqYf4aYksORFtYfEaXzxJRLQzmF6jOlE/w1KgjeP27o5+NyCdZVozh3El5PoZ74xCGYNQBicUzhlU39NLwzq3+PGMf3vBbFpMozDNX/iw74EmaSwCLxKqVPHMHFeiT7WrazLymovLqmDmqqjPpSI4fQyknNFJw+Z6qAqaolIl0ISI16CTRAlJKBEdqohBWfDHSJKJ0GZYJXOumm/1Vu23oNBdZeSnUpjiimksbd9x83hLZzXnaeHTy4n/6X/89/z45Quf397qqn2JKOX4cHND37Y1k68lre1orMY5TYxUI6dMbDGYmBE+oqNid+PIGU6nGSkDskR0yJhGoEpGLAHdG0xWRK85M1GWXFnxNuDGquUO1OFHKXWaoE4NYhAVqXkZyC4Tc2AZE+S1athiD72Akmtj1AFlAOlQTb1BagRbMjbcYExCt54/PR3Z9IrdzpLDjubsUeFnRJj5sPuatnWkfmE3/QBxpuSJTiaibAjJ4uTPXJoTQUf2wwdSlsSLR4Uj3HRshw33t7e0/TeUtOIvX3h7+hPnyxOjP/F6DshkyELgVeD+tsV6wcDAsSyI4LBLhxoKejHIXFjyhLwkmiDZ392y54Eyw/PbC8ulNmadLGhl6HXCaQ9S1A+8VvTbPev5iazg8d3AN+8a9MZit4rl6YLbCdpBMLSPJGVYU0KWU30Y64zodbXuukwzBOIBQpEkCXrUrMUT00pYTrx5jxwFl+lnhjDz9Vfv+Sg+8HD3AdPsubnV3Pz+zI/e8uo1OXrWOKNEonOSJUzIIrBY5EUjdESoRCcMfd/QSEcvGrSqZKZwOONbSZKKUGCdTszzzDjPjHHibbkwrTMiLyQRySohAa309SUcaY2p98ecQRtyrtPMS4iobOjdhvff3HM3WGwjkG1msIWoBUFJOjFhB4Vx0ESH292QU+TudOZ255FC4oxmoqA/aXKW9EeL3hSETOixFjZLCYhzBKvQgDta2nuH9hG1SE4lkGZ9zZt6OtXhrGXrNPEwoxbN4TLxx9/9gfCwQ9zf0MaOzgmKzUQ91w6AgOgkJvrq8chLLXFf+ejGXchXj4iSjpQEMS7M4YlkTT1MbBpyECzjkePphfMU8EhK41DCYFuHNIoywqoqotdNktis6CywXpK0xwWNTpLETLNonNY0OwtCEXNiLSsq1g5UVAmZBNIUtC4M2XCQgSQKzVKxpDIV+iRYTCbHRJhilYP5leQzThoa+YCTDcd05vP6xMW/kcXENC+0ytIay8vrE6tYkDvFPAtOS2aRlZ5UXI/IgrRA3sRa+jxH/qd/+cL+y4W7f3llfQl89189c//VOx7uPiLuGlRWmLIQVKymal/quyHOyLASwoH185lwCXjX8PzjG4c58FIETSw8f574x9898f/8f/8nSlwxJAYlSWZAOk3bb1GuR0hVtw2luXLgM4R6+JSq0KWGlDwxFzbZ8tju2A5b9m7P+emFyzxxHC+c5wNBFKTrccWw5kyIC14W2tRcrcoaHSGUwJInUl5Z3s7Mn55Z1B8Z9AeceyBqQfIz6/TC5+VfWVePT56FxHI68/TyE1/eviCyJNBTVMu2GKYQKRQaBT9/HpnnAzG/cdaRv979lm/815Q3y8/zF571Fy458Ng6jJVcXOHGz6zrmdf5mfy8IkudDA/+AHlFi8LD5h06GoovJH9ALBnVVZmfCAY/LayXN+bziTzNhHXk9HpAriMireS0onpotGU7KZ7Ty5/Rqr1ziFKQvhDCK/6yoKSgedwhJs3kPT98euL4PJKCR+vKeVdX/0bKkEQClatwLq0YMlpr9luD6SSpzSwvb8htQbmC7e9BGTIg00ROE6l4ggnVai8q8EMqwf13d/xq/oaf/x8XQikEl7DGoDbVqWBWw6YLGDmxjmfKRyhLRprE9397S5JHDIE1KvQkicfI1D3z+cfM1G3YuA3NoLHSoKXCdCAs1esweZSKtV/WWJQcSBHSpDgvP/Pj8zN/+OmVsxKsRRFiQvrEWOq7rrO2XmQlCF1laFJU2IBIAittffZ6B60mF41aoKS1MvRD4lJm1mmEo8e9v6MdO5yeWMSMHR0mZXCFJoAPiUteSIeV05+eee4j7Veere6wqmHWkeAvpDSRXOT2bsOpKE7PgSx93YZRGLYbsmyxxWBL5vjDzFnOXLYL79wfOEyGn3cPaHeHdS1GNagGNrNBJ88P4oWNs+hux9N+Zj8/E1LiHEcomhIMKRnEDWgkFjCPGf10Qk4B38xc/vgzabuQ7hRr2KPbidA+YeKWMs9EP7P4jPAnvD/xvL5xbiK+WNADshzBJ3LKbPctVjSU0ZDHiSUUVGtRQuJ9YXw58fL8J/6/8UwTBTfZ0L7ruVOCQQqy82ynDVZYpG2Qpxd0XEhmYXOzrVP9v/RkX6RAcppgFCIksqg3ShHqZFpcjS1JFEopiARRQ7nGAKIW4GssIZvrSk7V/4+K4kqSkWgBQiukrVQRUCAkGjBKoFF02YIBYq6r8+LBS0oQTG9TfTCUxGlZ8NOCspbN+zu2fcvhcuHHzy/8y+8+cx5n5kUgiqNvGpSQdNZhm/Z6+y1g1FW4cy3FivpnTVcKgJKSbugwVuODZ2VhnBeWFMmtQc2GIiVRFXRMSK0QWlXTKVdDYUiUTiGpToJVVDHOEgNTk1CyIGXFGhbhrqXj669RZNCxRnpirju8xcNmgRYSDc41CBmZkmenI1YWgtBImZitIinFPrYkXzPfUxE8pWecVpgIjbtgZKGlqWZgXVAqk8YNgzZkl2n7LWF2yAXSFGnknlbvULqlxIg/jUxPr4yfL4ynhcVHcJKCQUhD67boAGWqt/OU6lcz6eufU9doVp4EQhmM1tztHjFtw7oGQigUoeuUVkqEqKKmEq93H+qkqTES3yqcdexvHtm9v8E2PV2zJZtyLX4bQhb4FJmXwOnNs4Rqwks5garhAxUNwVpIAZUi2RTkXCgBZqgTLgQLip8+/4SQEmM3bDeRlGoB9BgKl0vkcvIc/AVdQo0tCY21DTqXmuO2tdCuZYPsHEZZnDR1chkTMcA4R0SYiFkyezh8XjjHwOgTr29nDuOZ2S/1gmkKRQoUhagzKVXD6hoDxmqMNVhhWHUilUxcBWo7YHYbnN6SCsSgsbR4C3ERpCBZ7UKJiWAyoxmR8wC5kH0C31JEZi2JkDPJJ1LOLBuJbOrBVdiEWC3SNOTeImIkm0xqEgrFIjOLKcQlUnQ1j8ZV43W1P7vW0mlH6xSl1awZ3s4LOT8zmD37IdE1DdI41ngi5oRPgr2tabssG/K6VrFRBr1Wl0WRgDGkGElJkopF2B7hWrLWTKeJcQxMYyGbFuXAFkW4xlaQkkWJq8wnk21GZU3WEDRYIUBVApJaFaVRFKfRUrFeyRd5hdwqpFA4oQiqYKyhcQ2qc4jLmZw93sQ65VOCaAUqFBLV6OrTCykaohiInSI2dcsQxkBYJRlN6ixS1s7TukCZAuFSaTxsHSFmiAlhIUlJMRoz6KtYrdJjVhk5rjPxrfCvv//EJRS2f3hl2P8Rhg2uMewGSdfd1pJlSYQ5I/xEWSaOTwfWsBBSxtPyxx/emCOUfkNpVr4cTvzhh8+s3mGlRRlIKmFkRiuB0R1CO7gK3JQxEKGsmaSrTAhF3Rpere+it7hhg3CO0S88v42M85nLeqoQCOvo2g6lOk7nmTSv+LBSnUECqy2YUs3oq0Uqz5QnXuZXxlNGfwO5LejjxKeXEy/HiXzReCaiiBSROVO4FMVYDHmeSKpCDsKiKdqgtcY0lu37PeKSeBvPTIvn59ML6cmh/3gh6oVEIL4U3EOqUc0iuXURpyVWWYamHsg7Zcle0bUb+sYy7DekVZFXKJOhsVucHZBKki4r/nlieRpr9GlKiOU6+PNQkqB0LcYlFBVT+wvuOAsDtvbaYkrkNZMVKKOQpmUhMIWZ+bLULaOobH3IhFS3KADTshD9Qo4Ls7+gEWx0Q5M1O93QtQNrCbjcorOtkZ+YiTkzXSIhQvKQfabC2SRGaW7agYd2w323odnAstSLsb7RSNvQS8Vd22DbFqEcuRT8vBDDSsoRUaBrOpat5+IXZOfQbYMwjnnREFeiWFDnjhZNIzWm1zXuFCNpLWRVkEbUbLkYGafA62Hi598d+fTpwqcvI8+HBR8TSEHi3ybC0dTPBqJO8ilVIFiEwkpNppq4VwSuVBiCbDRidBTqJjhPS91ca0HfWdqmQWuHnxJ6m2sKIyuKFZAtKjdEGXibXvjDp2f6g0NvLbqxaLnlD58/8/n5henTSokCaxRqmzmc59rdlJKmRJIMNZKZJMZpyIH5cOR/+dfAl/DMH/2/8H/5Pyb2j/e0+57zpFnjhWWeOPy08jY+MU1HlreR5TTBWgh+i1cTqxWEohhUB1pVAtF6Rgy6vqf8yjkW/OwJxwPeOPTFYqyFZSbPR9J85vw2IccDfr2QFoFQDcooSm9QbytaZEgS2W4IUjCFhdPpQtA3uH4gN45p8Yyr5+enI8slsujEZDNuPHNQhUEKNrpn2oLRCr0K0tMrwl8wZLz26CSuYtC/5GH/io9M8oqSvBrXZLqu4GXNyBXqYZ+cr9nf+p//v38/+cvloNopNfWigKqYTCnltTxVV/uyyHoQFhKDxCGqRbcIRCrkWE1seSlMMZNVIuTIeVw4Pr1SpKQbPZtdy9vpzA+fnnh5ORFjfdBr6bBGYZSk1QZl3HXNm2qTX1TmtaAe7oVSrKnUw5fWtF1bEXl+ZQkrfvXVQmo00urrGq1U5qNU1/VgfXzlUm/2hTpl0FSiacpXzGLlk1Z0mc6QxBV7Kq9/UZFHl2tuv0jAU4OQipIcsnEobSBlWpfQRRCSRAlLkoK5KErUJK3xUrEuMKoLQWSaSVNuA8pqjGpYRUTqevlIrkMrRzECd7O9Yr4iSWk6u6ExA1JVNF+4jCxvJ5bLSlgTIRWKEmAsynVsNnusX5EUop8pCSgZoWRF/cm6Ls+xoJTF2Zb9Zo/UhrwEfIgIoet6sAjEFbuVckJpXY2GFlwnSMbStAPvHx7Y3bZoZSvvXIkaLZANsQi8jyxrYF5DvUdd85BSylryFAqUQciClFUyJ6kX2oLGifoZlkUzjSOX08h08hV5mAU5FEIqpADZ14uEEql+YwQYZzA5oWPldkthUEKjTYM1leGrhIZUD+txpromomReBMsUWFPGh8KyrKzryhpWckwVPaq4RmFkpQulSJYVdWobjSm6ZvyzQmtDt+3ptz3WtCBmBBJVbO2HZ0ihZkxLCcioSQRMdJUiRETSQUnk5K+H5kTOpXYztLwSUqqxWBqDzK4WZRVVeHW1SEcpiDkgdEVlZjQBjZEG2VSEXuckuhXEJXCZPGGd8KYWvkWSSGsZ15E1BnyQtBuLsQZhLCIFSs7kLBEFQNXnktYUapQLqdG2RZiGLCTL4lmWwOoTKIcyNSKV1TWeJCVJinohp+a6Ra7IQCSVa16ZxchSY5BCKZRQFBGukapcs/9OQVYUMtYarLV1c0AlcWVVkLHm4VESHQvxSgVLZSLSI6TA9RbZKLICHzxKWqxpiSaiVaHklTAH0jwTlhm/LKjNjpCqGVzqa0RDK1RjKD5ezeqCSGTNGdbAl+cTixc0n4/YbQG7o+0sD7eG25vvUEaCiPgxwXIhLyOnLzPBRbwojJPnD1+OZGHZ6z3HJfF6WXl+G5E0GK2wViJFRKmIViCkRUhzfUYKpNEVHRtqL+eXEnqpeRuklJhGo129IEx+4XSeGZeJOY6EnGmdYdj0uGaPz4I5VklStT0LlFZg6sVKekWREHJgDAt+1fisWIE0r1ymkWlZUcnWd4OqONmiJUlrgjT4Eqv8jYiPHtc0qKZB9S2bnEnWc6Ih+MRxHsnnJ+IfF46cmMMMf5Lw1YRqEl3Q3G4LN8OWx9079NcNVl1fH0LTuIHN0NHtNsyHlRgzRmuc7TGmqWLXNZAuC+EwUwywFkQsyAw5pDrk0w5tIyrHq6m3VCqasmhr/g2LHTxa19+LspY1V3/Asi5/fr+VX5DTOUFJiBKZ1oV1nQhh5rJesFKhWl3xogq0NVeXjkWJrka0cs3pex/rpTnVZ1XOBSUFWisG17JxHRvboK2EOZJTIRYQUtE0mvtmQ6MVUlliTKzrwrquhBDQUtF2Le3qyZeCcAqMJkvJshbyuhLSDDoTlSUrg0wG4SeIkRLtn2OGpRR8GDmeFp6ezzx9ufD8OvF6WjiNKyHXQU2CanFWqiJGTT1r5PyL6rbipaXQNQGb65AyFYlCYYyq35GcKNTOYUZQVO2tWGtRShNDrkNcUc88RVzxgklRtGCcR55fzixyA4tCdIYmrjw9feHtcCLPCVXAWYWUkqdDBahIJaovQ1iK1FA0xhiImTSvfHmaeFu/8Gn6F271r3n81Qe2X98S4i1JrEQfOD8XvkxvjPOB8uZZ5qUCOqJmpeAlRCErylbbetj3MzSaEiIx1Ih6WAKRC9HeoNSK1paUFGW5kJYT03FCXo6EMOGFpGgNunZphLEoCqIYdDuQkMzeMy0LolU40SCahmX1nMfI23kkHAW5Sax9YJ4zXmRmKSnOEdWKNRJ5SsS3CzovdXu++D/3yv6ih33pGnQGuRbQEtZCidW01xSLRJAFyFhAJLIKmDXjSyGSEb6QSqSUTLcqZCuRWWFWARpMEZhIxf3lggoZ0UR0kegkKFrhYsaojDILKjaVX9yAXCXRBqJN7KaGxVSrZAmJuRPEGOF84ZAvnKcJv05YlWiMQUnz582EAAwRnT1K1cNcIzSSjGChTaoempXk5TzTtz3b7Y7B9SznI+tp5vTTkRRXdMr0WeGNhZAgFLzJuJwqZ7c1lKmyZn2JNGN98GEUZg2IZMhZM3hH3wwoZXkNkSiXmkIrLcSqjibM8PNncHvob6Dz4A3MGpqRYr7CWc0HDTfeYERE6sh46ervRCQuOdK4gHY1MrVRnkZl9D1s3w24riG5lvbzgZwVSTjEby05tUBL2/Qc4gFUxm0N7X6g7VuclCzHI358Zk5PlFYjlgbpC9N5ZHi/o79/5PG7X/O0HpimCTdJvF5weWCXWhwVgRhDYVlP3MhHbtpb3t1veTtE5uPM6fxGk92VPL6QQiSFA7FMlO0tH/aa7SDRtwKX7+hu79n91a+4vYy8LiNP8ZlOtnS2wzb1ARhiIOSAHBLyJJFJoYqikYalhSAC7WfHqiTRapQvZJVxNvNh3SEfN1glGaRFRM+j2nKXHfF8wsdCWhPvrUZtNvQB9vnCc/4ZJTxSQt93mFRQPrCcC7IJiCazSXdsNj2N0eQxkM1IWSPlTbJuoHA9KN5m7ATtJNnuHLmd0R6W84jPtXsgS6Qki5YJ2UU+3N6x7Xu61nFKnvW1xpRu9w/8/eMt9/cb3B3olLCu0A6KHZHRLZTtgponlg6EmXmMltWcKQVMnmHfoVNCT56RM56lTtVPmv7WYpQh+kqoskZwO2+4SEFDwxA7hJPoRdFEzet6QUSL0IZkJX5WmGwobctuu+G2Udx3kuPyynmcOa4X0gZcX5FqBs/iryQXFbhTG5TtUK2ksZIcCzkllM0oHKJoDAI5rUhbsPeKth9QUpNCYj6tzH5hEQsqGYo2IKvUerWJJDJNMEwiIpOgmQRrM9EkR+tb5FbVDV+MBLkyxIY2GESnUD4icyFZTxccCYtvBE1KtE6hXUFOmZhqmXHIllHOUBR2bmh7g46CEhSCFtPds735iv/dh/eI1pFUQpSJj+8fKGEgToJNSYh5JJ4nXqYvTMtI9Jl1esTbWlkkGHZNrhdO0VHUQkyFsiakM5XWpB2XKIhPR4zM2H0kmBca7fA/9Uy/KThjsdfLdU5nCgs8POKKhKnwu0+ekhp22z1/8+5vOJ/PyLEFuePdbsVqh9GW6N8oBHKu7gYbQAqB1BIdNYiIaCOmqD+XGGXUZFkPilvXoQvE1XM8nhmXI9N8YVoXkvS4wXHz+MD97j1JSxYVSeMzoSSiyMgm1n6NyHi1EMuKjpImDQx/I7nbdHRacwwru+aMESuXboM/XPDKkCx8e7dnDQuHMBJaQ5EdWfTI1OIePrDdbHlsLVMzUYwlxJnp1aNDpg0e0ViWV1iOkXgS9OpCdiufRaFcHPKdZfOusNvsuHEtW22w4o3Ndsd2c0d/e0M4/UARE+5dYWhNLVWXXHHZrBR3RseOYuoQLFxOeE4IXRhkT9lpTFkQn0akzOzahofNDaoxPM2e6TKS5wOb4R1b1dBs4HRauFxGzvmM0821ZRo4rZFK+F+4cGZaJtaw4pMnrkekdXjbc+sSzsys8sCge/qux3QOkSM5RnIKaDsRvSSR8SVXeVijcM6C0RhXJYoq9jStouTA+BZojccMPbu7j9x2HuMMp9eRt92B4+nE6XTi4WEPog71fv4i8cEzBjhEgR8XdEwYH2k70Pc9+gYiES5HmFZCMeyHG3RbYRTnT6+8vpz5+fnID/HAk1g46EgoKx5FQqCZian2EWTJFHMt/ukFGRQyS2TWIHqkqrQimTUpSJKqmXyaBUYoYybqOszNoiA3LdpptBZkl4i+ECxkmxET5CWyxBliJr9l/JpIXx3QS0VXH8cDXZwRTUR+3ZJ+yKTUIPWet39+5hhmZpk4DhcUW6zucFtFFxTaNNx0mePPrxx/CPzL7z3/t//x/87D393x4b/+im++/z/xYfeeXg28vbxxnF6Z/IlpGVHHCZ8mRjkxjBnLDqc0sffEZEnFoYYN+QAlSEqTatyKlaO1yM0CrakT19cThAs5XFjjE3H8GZ8m3jaaJjvE2pPKLd5pZNPQKcv+rmU9nLmcLnXAJQJCFTbdhudl5TyNHP0rs3EMWnGjJOuQsbmgRWH8ADfW0SI4tyf0NiFVwW81KSz4dWGNf+HJfmNasg4gI9pLfPa1tCEUWIVUCiPklSgBXNfMxIKKhSCuJa+iCLZOPyWCYsHliuFEC5hqQTdbsLpH6bpVIBR0p7Ba4YwjqoxeNY13pF5hsVAki8uYlFmDZOpW7NwhYiKaQloiYfKVNS2qXAu4ls8qJWcsEbdGlKjT25gMSskq87JV+KKLZugzd7tb7naPqMYxfQocTyOH6UCJdfpPK3GzwgsINtNgUVqQREJ7RZCVmZ2EZGkEVglcrqt/gcWZDh4dNBuyUoTxM0lUxjTmAtmAz3A51Kx+cwEXYbNBthOyKcjhkd+863jnNDdesRU/UbLBpx1bszBlw1ygN5GuN/TDlq82O26cpJERnY8wNGSpwWeSlrXUrwW5/W0lHSAQoeA2Ad12KHFHd3ePsQ1KGtLhE35e8KMlLWfOx4njaabZPfCr3/437N+9R+567D++BzsRmidcc4/ut+TOIJTDp5E1rVjRMbwf2N4M9F3Pv/78e57HA6dY2FqByQayQJWZ/eaem1bx8eaedx87hm1D2wyo7QY37Ol3XxHsF9zbG9vTyKJByFxFZ6GwxlinmGWLaAIqC+yU8DojsqTTlvP2iJsEZlUsItCVTZ3yPxSaSBVt+Jlbu6UbdrQ3PescOUwzx2VBaMf+RtE1hmMXUG8CrTIPNz2tVuR5wV/OOARN19L2Pbv7B3qh0LmwhIj0AzQFbQVaW2JW5CwZ6DF9wvoVLxc4apzpKPuB8VQqBlV4knI0Nz279zvuho9YCSIH8h9+wg0d8sbycPsVv/nNe4ZdR9IG5e5x2tHqgcZ5lJ9wYcHta6lUFI0dFHqVdRCht0jZkstap/9nkFmiOkV+VCRjkEKxqBklDc5J8l0gfE51A9UpbpoN2iwEnVFvldQkXaFRPVlJigGTDLaFZjB0fY8oK/MlsY6FJQlGD3qBVoFqK1FIxZGEI0SDXCVgkbW4gMBWfj6C4hMxnK+ivjuKssRcCFPi9XTkcvEE7/A6UiKUIFhkRGWLVJLYFuQFSsnMjafVLaaxSKdpomIhElXGpg45WGjq5ibIiVQEtmworg5a1CJJrcSZDYPtkU4gvgA+s+oI0YIS+Kag1trbKVcaje473MMN29/8imU8IFPA7d9x71psCcg44MZXyroSlpmcJf85vTD5iRQXcl1FoXMV/mlRaFXC+4q9SiURoySofBUnVeFPYzSd0axqRpKY14D88RkrLRbLahJCGYS5BeVYs2FcM7+7nHj/1bc07+5RH/acfgqcs2C5eEy3R7trBj9qYo6UXIhBgM1oITBJEnW+bt0cxV4n0rEQZKibY6konSEJ8DFyWiZWFEEZkpZk3+Dagdt3t/zXf/Mb7K6aqv/jf/5HuiGQZSEbC07C6jCpI+K5mMzPauJW7RmMQhlBXhfoP6CawiYnzmnFRY8ksf3+rzC7HZvHG378aUvQjmJaZPNId/NA61q2QqPbF9q9Zn+74fR0YNc17NqOL9OEu9nQtw2qydjtgHaR9yLw/t077h9v+Oqbe+76nlZLjBHcDX/Ndren7TpkqSZvoRRd84C72WCsQxbJOh8J00KZJMGciNOMH0cu4UJneqyzyMEiJkHyhSU3PHz996huQHU9J7+QDxdiWjCup3vo2d727IeBT89HTsGzaIeVEZEcJWZkWolCEn/xD0hbS/Le03/9Ffvdhm9uH3EbQ+MMvRsYdUbIjCsZUzIhr8ScKGxAeqQsqGLQ2qKNw1hLUalSwITh4eMWcTDIeWERR8aLYD84vvvult8+vOf+dsPt3UCZV3IMNUkQLM4NbIfIvr/h+Hbgy2Xi08uBXd+xbQw3rcNuLFH1RDFgdQs3Lbmd8S8Tb7Oq1CqjGLPhHDVvo+RPP3iOq+fiI8E05BDJOeMRiJyBWCluKSCFRChXy8xZ19hNKciiqg/EKpyxGG0oUqBlQ7Chgi2muiHIjWHTVDu77SznYyDerigRQGvCULepatR4J3kNE/70ha92PRu9w7UasZtp2dMJzZ1MTJcDKgnuXcvDf/sdv//xM7//9MzxJXHXrvQ2cLPZsS0ZGxVy3jB8jOyXC/vRc8hQ/MTnHz/zJv49493CY/eeqASp6Skl4U8XVGuZz57Dz4l/+nRk10ce9oXoHsldAuWRa8E6UEpRLg1eLfgQWC8T6KkO9ZbCykJJKyIvdKJgW4lcwR1GziGAFdjtBmV3NBvHsLGUFUo+UVREpx39zZbdXY+UgsvlwOm0ME2KpgdnBEJJTPAMbsum3XIz9DQJWBfk8ozb3uAaRTdAeXshLhfWZfzLHvaV0iBzJQKkq/SpZKSsL8JfLHaiXL01V15yDeBVQkmpPbdqt8vXDE+pgCgpr9gpcXXOFoFSGqkqnpK1IJREGY0xjiJXVFQYZRFGIKlZ0YRHeEi58rS1ruWcJCLeR4KPlJjrepz675ljqoKukihkYoqUa4RIyVRxSsKgkFeyqGToeoahp+9ahBCsq2eeFpbF40p9uf9iJRWlZvPFtTRTREGLmtHPohYBI5Wxnapmq+JGpQPXIXSVZORYrr85AeT6g/SVuiAATUSVGSlalFRoLegbyaMp3OvCTRIMqiEXyRxbYgqV2Z8LKUcgo0XBNALbNDiVsXiUk8gcycta195SVmKSrujAUiDNoRo1tcaqAdO4+mWKkRBmYqhZy3UdWdeFFDP72zse3n3g5t17FgedtbS2oe93NMMdOEtB4n0ghEROhc51VXaz7UEK5nVm9jO5FLK8dinQOGUY2o7bnePd7Q0Pdzv6XYezPWo3YFyP1ZZDjkhRMKoamWPOiJQqWjCVGttBI0VCSIkQipKrLdMojTFjzTtK0BQslccu2oKeEuX6z+ibjq5xGCMZx5Hz+cRpmnG2qeKqnFBF4VSLtYJNN+CkxCdBUh4suKaj6za0XYfwmZxjjWnopn62pKjWVwTx2imRsqBQaGVwziF0oekNnamUHSEy2XUMd1vuvr5n0z5Q/EqYRvqufvaatuObr95xf3eH6xxrLignMMpUoZMoaOUQiPqglxqRZKUZpRrrKzJDSiTvq8U3RgQCY2o+sqLx6rOj0nhq5nyWBoGiJIGWGicsnQs0tiFKDUVU26EsaFlQFJQoGClx2hCNIhiDN5aQEj7CGgoqJqzWKC1pREEKUWOJuSCVuVaFClJey1A5E9dAzJksQCkDpRBCZJwWzvPCEhI512dYSvlKxgFFxYpKmapnoGIysLp2T7RWCP9vz1qjDNromgnN9coBEiX1dY2baswtC5RQaGlA1kxzfcZW+EGhRitjzjW+kAtStwybDXe3G5qmI69nMpHWGforEtlqiw4GIQpJCb6+2/MyRw5R8iYVpeT6rMwFcrVx/tIfiSIRCPWZkLl+DlWNJQlFCQadVqTIwMLyGsmqAdWxdgJpFbIIokmMY+Z8yUxZst3dstvfIhrLaQmc58CyJtqtQ0rIIpJRpAQpUXtVIlXMthB1+CLr70GIauHOOZNSwSmN1AahJSlnQkmkXyyrV0kfCIyy9G3Ph6/fcVwWng6nGn272lHLNTaF/EV6eH0v1tpZfd+UGsHQpqGoQkgz1jg0ElUSeqMJIlJ0RKyRVRmibhDdntwYpIAYPc5pervBDAMHbWlk7XEIecHpa666SzStwVnY2sLHd++5u9vyuNnSG4NRAmMl/eaWth8wzpAuE0VU82fT9RhrkIq6xV9m4jqT1oUYzvjzip9mUs4YY3Ftg3KGZS4obTH9wObhAZqGqDRffnhjnWeS9+w3e7bbln7TgCgsYWWNoSKUczUq5yxIWVyz1hqhJUZc339LYNP3bPuO3ur6zpYW3VSRZowRqQRJ64oQLjWCQrnGQa+0JKlq+VaUhDGStjHsdxtChEzhIgzjJaK05ma74eOHD2y3Da6XLPNMSJE1Jciy9hgArR0lK4IPzMWjs8EUQ+8MWToiGl8UKitQjqgLqwiUWBAloULmbQo8XQKfj5Evx5UpedacyEJfv3+lxuVSqtCQUgexKmu0U0gpEOVajKyFI4S4mrq1Qel6+JdCg1DVnRETMVaylFIabTXK6Bq1vEZFKzZTUET9+aSSqpmYTPEREWrvACUrVcYYtM0MjUP7wk4obt/vKMuJ+SyYLwW3RNzqaUvElYgtEVUKzjpamWilR6XArCXzmjk8HfkSXkm9xegGkTNpVTAb0BqRDNJbUjCEpPFZskQYQ0CSwCc2WiGyhUylWsXCZY2EcUF5iTGJRUyU4FE50HQZrSRaSTYhMft6ZoueGjXOmoJjvCyEJZN9wRVL41pc46okcpyZJk9cI9qVGif0Ah0FzioaITEhIqMkh0hJHkmHLBmRIut0IfiVmPL/prP7/+bDfpEKlTQyZeYwkUKoLyZtrhgpSdKgQs3IZbUik7yWtjIlpevtGsSkCabaOEWWpAZ0VthkKn+61B9C0QWNqtKHkgCFVBrXG/IUa6mj06gsEBqQmThXPJ5A4KJl0TMpg1gyp2lh9rW85pQkhoSPAe8XpEooVRiUJoSAiDVuE4XDCkvTZDZC1eyghP391+z2A02nSGvELxPrNLOeEk2XK74v15ubjBIVEt56VLKoIuqh6eIJMeIJ2IskOgWuUGLNaw9Nj8o9l3nCxwXOAjN4CvXiwjjDJcGpxTaBTSoMl4wzM0LtaJotv2kuNJOhmyVbZnbmDiEkkcDTJAmxIqCeF8lGj0SbmcTKnnco47D7jl5PMB1Y/Ces+sAqHV4mWvEnfLSkoGHMBGvQprBpz8hiK8LMh2pv9W+k8Jnj+EKM0LiBb3/1PR++fmRzd8OZyKOb8Z3FPP49u/uWl8vCz28jL/ELBoNTloeHDd/uP9B2HW/+xGVZiH6lJVJEj88ZsUZubc+dsXxoG96933C/u6HZDJRNRyeg5MA6P+N//meCgDLskStkHQk5o1UiJQFZY2QgRIGIEq8EzAolQFsYTpZZZFaV6ZJDm4JSBRMyb+uEDwGTNe/uNtz0FhNW3j5/4eV44HAZsbMgaFUPF+OFsJE0UtNmSSs1SmqiVqxF0VjH4BwuaWa/EENESkPXWAwKKQSv54nJR+aQSXhiifgYWEYPNtNaxbuuRT8KlNZo1SDu7un7hl3XEoxlfF44L57773fsimPXDHz7N480zoEWOFmQqZCKJzITDwnRSHRj6AvQXtF3S2ZSmZQCYp6Y14XldGF6OTB3IDUMpmMfWpIKpJJo1oYoPSBQUXG2MyJJymsh3GacMtypLadbuJwzYS4oMdJKQYvCyBlmi7KFdkiMcySHQs6KOWl8FEQfGZeFohucUbR9R5cXjExYuWDq2KearoMnl0SMgcvpDS8y2Qo6VkKsD/DPz6+8jR5iRFNgpaLZ1hVpDK6rFEkbJIuovQ6TDX1jMVqjkuRcZnICjaXpDW0xqKhZREKmmjcXqsAiWQOEUjCLpPSZUgLG13x6Fgo1OkpTn3Ny0sxyJWTPusw0/SPff3jPb75+oH/ziFg15/t4ZJ5mUorokIjRY3OhQ/DNx3tWazDbLf/87JhkYU2emdpvMMLQiT1dY7nkI69rAFW7HiEY2q7DlEhZE+NlYSMUTiaMOnAuBeG2tL0mGIsuEyVPTHrgy++PnA6Fbvctf/vuntvbPScv+PSHT3z+9Mp5TXynqgE0eMmSBWGV1eaqC3KNaBEJJtInhXEC3ShkhpASISUIgmZrMY1DF8WaA74kjDE4tdZyqVIsMmJRbBn46v0Hzr7w5TwiHYhQwNfYl1skKeTq/JgTm+T4aHZoGTFhhaxB9Qyyfi+f1xUjJKVY9ApdM1Nag6Hl9puvOEfHjCaazJ/mN07LwtP5xPf79zzutnx9u+FLU5jOZ8ZTLWh3a8ItmUsMDIthEA27Yc+vNvfctj2b7NCq+lucc2yHjsYaFLCMF/ya0UrhNlUOloPHzwvreWIdD6zLG6fDET8mYijI3tEMin6j0U3L7GbaXcv74Y6Hxz1ThKfzyg//5T9zOF8Awbcfvubb3Q26c/x4euGyjITkcVrwsmTC4knLhAlgW4VpDGrfskktwgfOwvKgM61fiC+feDu/IP/qW27/5mvsVMh6xqeJaGVF6AqJwoNfSD7UPkTJ9XslIYXEMCjeP7Z8+OEdKoNtYD0Vkg80nWPvbvn6/R3GiuqFsZLxkDmcVvZd4TS+8XY+kbLAiD2dWTH2wlB6nN4g3J6kNqxZINaZFV+N16FwwdKWhRICsxf87oc3/vDTiX/+45GX84lIqkPCAqmo6vRJGb/ECvsokaa1uA5aIVCNq34JoZGhQxhXnQKqoKytw4QimRGICGqFcxpZLwu8JaJSVURqDf1GoaJAzYK81KHKEiOLWIjTwr4z/Krf45KnmxMmJqLvcO8TwmVCK3kwkjIW5BF+/U2H+7qhwZD+Z8/+LdKkGdP8TFkqtEHqzN7vwFjWbU8vDpyalqMd+PRTy09fDnwyC7tNx1502CiRpy3WrOhSsIPhVt1QTAuuR4iF47RwzoW7UJCyoYgGRyKOC9MaeIuJ4+WMbhdsq4jSU8YZExI3Dx3WaBpp2RoDecO59JwXgzQXlkkSYsPh7YJaIzZLHvaSVna40jCeF17fAufjTBoXzgmEaWh0T+McRkRUOfE2RbZqh5SSIB3p+AnPjDcj8V9/QGz2yHfv/7KHfZ09C55VeFa/1EmylGgUSdWik0qw6ojOCp0Eq061/BEzWdb2u0BUTB8RIQTZSlQC6RSyd/ReE0XtBUhhsX2PkYpkR5pNvSWZvqP0HSoEzBLq5H5NpBDRraYJASkjYQcI0MoT1EI5jiAVyjokBiUy1iR0LyEVFIKu1wxqg1ESrT1ad/StY7txDPYGSkKKzP7bX/HVd99wf3eDVJqkLF4KchOZcxV81WWDJFlBUJBOC/bG1ReJNSijiCXC4vF93UQYYBaCFFKVTjWBy7qwhpVkLoi0qVuRsEIQMDjU45a/+fo9HwzcasGXrmXTOIam5273Pd9s9jgFYzizQWOFQ9Mx3L7x4+XMdD6yPP8TP8UNYRF8q34LfUu0lrR2pN2M1h9o1r/j9eWf8NkTZUaIO7A7inGsmzOaDqVsNRaqlpgjq1+4nJ9YRk8KO/b7W95/v6e/f+Djf/d/YHf/Dm0M5nygPPw1Vr7wuIwU1bBOX3i+nDmkyGansTtNe/uOqTNMBH5+fuPl/MYSIsbeIlWD0BHVavY3e/pHi72xOHXPMa1c5oU+WeJmRReLXLb8dEgkYWhii9t0qKZBaHWdyAWETzAavBQElSp3dyjoJNFekq1BhIgRmdIUWmExSlEsvGtBbgRm0/Hr336HlZa4ZsoaWQ8j57cDSli8rxNJaRLDxiKlYRYClTXzKjmfC1kFxtmj5IoXoa7TU8D1hqIcBcOaBGE5s8wjp3liehsZc2QpCStWerunHVr6R4OOrpbumpV22NC0Dt0abLxFbDWqcexyz92uZxg6uu4dUYz4dWX8shD1yLrAdBFId6axHV3To+8KKveQJPP6gp8gpZVUXmDtGA+e16c35O0DOhc6W4hbQ4kFEiSzohZTy61dwVw0QScuzcLoV5qhQw8tH7TjtJ0Z18B4KTRdS+MMyiQWEfFKoNue29uPiMuRIA6MYWFMArEIOtkhu/pMUlOL2DQoqRHZErynSEUWEh0jwUv8KhhDIqoWoQzFGcKUmZeF4xhI4iooC4qTyHghyEphtg4pDUIqMJK9q6Zk0StaZShaVVLZlGoJ2Soa25NaQ1LAFEg6QZG42HCxkZDq8GO2GRtXxFQPZlJJrFEsfaB4VWkcG4OZCkVJ5CD52//+e/72m9/wzbuvOSyvHH5I4DP90JPPgWWdeUkHuqlgNTROcTPsub/pEH3GfS35clk4LIHnpW5nMBpzI/j4+C1+nrl9O/Dz6ci8ROYQ2GjDpr+nlZL5/MJ0WolJ06sd+6woi+QSJiYR2dxsaZsNg7uhfDOw/dbw4du/5fGvv6Jkyevvn/iHp4XT5JE2MymDoJaXo7ckVpKK5CQhB5IAsqBpa6RHFksQkYAkCoVuBdI4kI6RQkqCLBR2Y0hpwCMIIWD1wObujtvvP7C/2/FdTozTwnff/jdYkbFGQxLEXlGEw/ieaCa272/56m9+jVUdgUIsGRkCaYmUZGiV4mI9RSV0Lxjsjj73PMQHnqc33s6Z45R5XT1/Ze8IJnPsX/j1N9/x8faWv7q95/P+hT/96ff8cf4d9+ZEaS3CaqQyOJXoesPDxxvevX9gv+nYdQ6tMqoR6E7R6gGlNVCLmHrfYU2DarZVQBhWwrwwjs/Mx5H1JXA6g24sdqPp3w3oJhNE4e144Q+f3hilIu432Gz58cuR//Kvn/iPly8MruFxu2f4q2/wm55Livz4OvI2zoQk0HaLdQbdNiAH7oQjWYPQiodseJ1fCW7hcej56u9b7voN77nnP/3hP6BvblHlhvZmg3EOKRXKttWAmxJxScRUEdkypCsk5NrVK4Ku6bm5vePv/jaifpfQp57tO8nr/ob3t1vuHrZsdgNtUz9zvVGIUnAi8eXlC3u9pd93YARNU/GSxt3Tqy2RzMzK//yHJ7pO0LaKxm8I5UwMC8sx8s33dxjlmI+RP/585MenVw7TEVSPEjVWGEXANBGR6/apWJBFYpShHyyubXFtV+EFRZOzRhmHVn3dRoqAMB3CVGKdwBGz4bIKOFsSlrXTpCXWOGW7od+9pxSBtJqwCGIvycKhxJagJ3Zf7fj+uxt6bjjNM5d55jCe6F4Nu7LhN+++oftbh0qBrVA4fWb4uuObb79j2P0T8RzJSyZ9Hhl6TSMLzAv2ncO2DTfthqH/msVaZm243VnmUyAtkjZ/YLtzKJHxekL10GHY+IH/1x/+IxdfcbB/+91fsaGhKQIrjtXPICVWW4oQ5PNEvCwczzNcJvQi2akOfCCliS8vHrUtbHVLJ+44nz7znCaezIFd+UgTwTSCOSVkUbSy5avdVyR3z1x6/GHi9fjE+ZzIiyNMhYtZSHbltmtwokUXgz0XpuEMunoT1K2hMR0dv+KPzYzROwYe/rKHfaDSTWKglIKSlYVfsWmVgJJF3SYncn3Q5itpJue6ni9UQ2LJpJSIuU5Zkriu1YpA2Wp0q7zY6/RRmyo9aBq0MwgjUeY6fROC5DNFJ3KpptgkE0IJrBYYIyu3P6l/W9uJWow1pmKppBbXywv0rWbT7GispnUZJS1d69huGpzeIykoBbv7PZttj+tcBWzIaniVUlZqRq7s0SIlItec+xJX2hSxxmCcQ0+m8ttLooSIUAZ57ShUuEvBTwtcTXtSUCUcMZOCBFEwraa72/HxZuDOZHqZWGLkppXsNoYP+57HYUAriVklTgqMcDj6KsHxC5TEEgrMCW0jS1REaSjGIItGyA3CQOkL6Q08Hi89ffMO4TqE7K6hgXqoKbqypmOcWMdX5uVMlqLaNDePDA8PDHePbPY3GFfjH0ppmkbTtw4tFOdxIS4eP80gEpIBrVqkkPilkmMuUy0EIhTOWrRsECS0sDBsCRrGJPjDcaLMZ4wt7LeRrcg40+PElRaEqpQpoa75bHlNpkmEzER1pXhUBSRKVEJTEQVipapIKtXBaY1RlYzgbMY6Tbvf0fddxdF6DwS0KDipkApyqJfSJMv1wJiZZk/0kekyc548be+ICZaYKGskhHrAyUti0nXtGVcYp5lpnpmniXE+s1SsOE0vMI3BNRYtBKFkIKGjR2kwRlYtt3PodktbDFJsakHPWpKAZVmZppm3aSYzsqyFyySwcSREQSwKccmIJChJEuJEmKmfX1sNoliDdJZQPKXoGmeL1MuxrOqbrGscRRaJ0g5EJKtSvRsxo6LA2oYWQZaexS8IUaMrSqlatLMatEI5h/IWaQxJBJYMMmVc1qQYCBSWkFitIIsEySPERJGSohROBGJSJKA4ixAapCSQWFJijZFYErlcn2MiVWqTkJTrqjxREKWgETXXbMRVPJiBWqRDSqSstK9Sz131mUsdkABkXfPv1fpbSWc+eeYgUV4jhEAZjU66xgJKQgZ57R9VwdxX+0c23RWluKzklKAUYipECr4U5hgpSNYsmEIhXDxT0SxopGtpiyGqwJQX1hwISBapMV1fI5ZC8UZhyhNrqFljdgbrWkSJSGZsSbQukeZqsEUmmk6x2Tbc3AyodofoGqI0vHu3p7GayyVwPEzE8QzBY5Qm5lR/JrmaVYtU9fV2FYFlIJRMvoqHMtSoW6nRKCFVHRblQvE1ZyqkxAjDahLS18+Vdg1t1zEMHdpq+qHj5mbDh4dbLsdTzeiQKKHUSSlVGmmNo2v72hFLlfCiZJVSilIQWdVDmJJYJWmMrhEQJemzr58vIlknXLNFGsN71fPNh694GDbsu57xdKJvoDOR7dVJo7LAKkvSC7aBxoCTGSMSUgSccZjGYFuLttUWm1OhKI1WpsZfc6heiWXGjyfCvBBjvdhq67CDwW0MpnHkPBO853CY+fL5idC0dP2GaR45no88H17xIeB2d2xv72m6luAT4zQzjhMhZ3JRaCG4ub1BuoJuCu832/rpLwK3CtRZkPLMbqP5/rstt5s9d+YdZ3lCtx2b/Q5rqvG+YrLruaOmhhORGr9IolJrSr7SA0stcxuj6DrHZtewikoq2m1W+rb5cySx+qmqvdxahZYQw4ize7Rt2OYNvp1YF09YAycC47pwmC+MKLarZusdezdUnHOEIBQ+azKSKSTOa2TOhaAUWuk/R6OFKGBqIZe41kNLUShladoqFtPOVFrXNdJaRRP13VZ9uxqukeFS/wt4iZLmGp3WLKnK5pSoaN91LVA0uSrsyb4gc41gO2XonMXhYKqpjzKvRFNLuUpoHh7fY1VhkJBOmWwq2vPb0yPT68J6WlmeX2lSweRCThFZCkqAkZK+2WBbR2MNUQoWL0lF0Ok6cZey4BrwYWKZV8aD59PzC7NMqM6QS0I1BqMcJUfm7MmlYIshGEfQES99lUiWREkJdCVNSQR+CVxyJAnJ2cOn08wriWMT2clKPUIogmyQRl3JWhvWqPFLYhrPTNPKumTKolgSBJXwJqGKoNESkwvjKFASVCPR7vrrcwqlW6xrkVpRSvrLHvYzgrLWg4ZUEoNCCwWioHPNciUtEdepU8wJEa5fKknlGCuBELXVH01CqIKJgmQrKkoFYKPQqdQPtcsoIzBag+lwrsEYATqjRFOzlErAupB0riWV2dT/rYCRAmUSOmWsFygtURXYTk4e5xytszjdo9qCMbARknazoWsdd50lKehay3ZoKQwYqTFGs70ZGDYG7QRhLQgVUCphhaUQETEhYyY5jUoJnQSXPDGEns5Ymr7Dnmb8NWrRzgEpLFjQpVSngJTE1wXTgjGCjMXkQEmZ4DXogussD/sdv3YNWtdYxc3zMzc3HXfbht8+XF+yGDqjCU4ghcFkR4wzsSTScuYyNcxeUHLkefbsyoZBaZRNSHYInUn7CfFaiHlhVgF9K8G2SLY1K6wCRSayXPC+4Oc3luMfmJYTpusY9gPbj9/Q7z7Q9ndY0yCvRlopDVszk0xhDbccj/9CPFyI5wnbSJricGJDjpH1dWb1gfGyUIrFaEnXmEodEKBVYW0HTn4mzDP/4fSZNp7pXOHxuz3fpo7tpjDsNmyHnqkkVhf+bB8s8pfLaWU9+yaS19o/KVJiUv3CRRVqXyJmlIBeWZpWYq3GyoZusLS9Zbe/wRnFmgIxryBXukZTNj2CxKw0SypcZEW2rnPgHGfWt5VlWVj8TNtuiEWw5EhZAmvMpAjr7Ek6IxPkMXM+V5HWNM1McaSg0fJaROskugU1r7ykhUJkGxJCR6yD3inUxqCERYkdtB1lqpeOMR44vz5zusx8nlfkfGGJiUuCfvFMfcISmUPCpyM5CxrpiaFyz7etgc5iVE9fbvi8vBJFhywOc86oVtUHGZLZrqSUkavE2LaKc2QhlID2AZ0ybDqsNuQSOHczImZIBa0b+qHDdY4sBMnKChDQhiQNU4YUM9siiF5CyAQWDAVKxvuIYq6TFavYNJoiHSiN2Q6IBCkn5rAw+sSSVpCRzNVErCJyrXjdojQiCYKIZJkxuWrXtVI1vihjncoFDUajhEQVSVAB6ysyMsmCjtXEGm1Aj5pQJNlIVEqsaSXFhBsdRUqUsdi5MKqFnDPmVNCDQRdwRfDYfI3GMS4T+emEygF0wS8Ls0p4XQiLIFtNThDmwo9vR4JsCKol7m7QrmVjMksa+TIemLPkGC0Jh2saBmUZSua4KPxl5HCZSQ8C17YMtkFuFywrGznx++c3VCl0RrB71/Ph/cD93ZbU3HIfMkUY7K5Dx8B6Gnn+dKK5vNSYpR4owVOKhWxqR0Ha2mtIZ+S1nOgJpKxIXD0wXlQDtlDIYkm54KNHrhLV1lyuFBJhZqQquCKwm57N0DO0LQiJ6xy7m57vP2z4L+eJZY0gVrgYRMnVTgtYNA7LWS+QE5qElpnkPFFFSpZY45AUGq1wpqJyS5K0ZqDtVrL1bErCPg60/Y77puVmc4sTAh0XEGesOrF1F5IRWJWwQFMEBxcrQSV59HpGaI9Xms3wjtZ1tO2AbgU51O+PsBYrK2wjrGfSLPCnM8vbM2lcaza8zWy6HXbv0L0GEuEcmE4jXz698uOffsBs7+nvfs0lHDgeXzmdj7QB7nYPvHv/Ha02vH45cToemcexijeVoFGFd9++o9u2dBvHV9/f0Y8ROQV+nCP3rw4lJ7bfGX57e8vQ7zCbe9rWE4xEbLc0QldvjyqIEq540Uw2nrBmgshEWU3YOSVyqSbuIjJCJKQy7G4d0RaOr4K2a9BGM55nltWjzRWVq+vfk3Mg5RO0A0Y17Ocb3kxiOXvePo1cljcOp4nntwv244bH0COyZHt7JdOpKu0MGHwUHHNmouC1IfcDKmZyrM4iWTJYSREJNS31EI/BCEvTDejWIo2kjJacoBRJ0U1FfkuwqUGWWqSPRZBLhJjRiyQ11cbtpGG8XvRUqaZgPwpyMWSZyedEjuH6eZaYaLDektVMXM6kyxF7mcmDJwjDysr7Dx9pncNSGOcj3s7IjeSby0fOnWc+XPDLqToecgJKfY5qWeOn2tK0LalzBO8JXQGp2AhH0LJ2c6zi9ccf+fzzF/7h9z/zz+OfkPuO4fGWMJ/I/QY6g586xqWgQiRG6iBDKmZRkMhfSqXXLppGCUteVo7PIwe/cgqJf/WZySqSkvy2ddjWIZSGcEsygmQVgZ7TXFHi52nkcgmsMzDPXKKiEJAiEIvGIRA+87Jo9ibTaIG9hXcqIwzkTWHXNQQBgUdY6j8AAQAASURBVMtf9rAfUiLqGsdpvEGqOhUR0lJsZePbIithJlGLlTr8WTecTUEIC1KRLGjqBDXZQpGa3GryraIXHcLUQ/6+e6DbtFirERFcb9FKUxE+oFLC+kRwLWrcsC4Juy00IRCi5ziNzMIR5ILVFzaXAbWuzDmSU+XgRm1wxqCFqqVMmwhJkovFbu7YtD390LLZd9WcqjVGK8ymQ5qGmCTLfKEkjdUN2/sBf6xEl6QK1ktmJYlWIdeGiCJKwS46tJagJT5qpq1A2prTzqZSIYqKyBuPMA6hJC0zhQ3RF/AnpNvT7eB+l4mbhsZKts7wX/27f8e7x/fsdne07bfYKy+8pMIpf+Hz5cw/PB344cefeDrNPNOx2U28vWV++jzy//lP/8Q8Zt4/bHl8VChpaXWHEvfsv/8fcH5kE1fU5u/r7yLVqX0Qa701x8KSDmTVI28+cmsajH2gGT7S331E2g6vDLMI9LGWEE9rpLhfIfszWU28RcGxwEVlSrvBmoxmJI0J3axEnTjlTGkNRTrW9oZSGnxOLCnw8vLC5e2J5fiGmma+/7tveNzv0b7lh0+e/tXzsT9w293SWsddsyHLTBCBAthoqqlRQJd6RjmCFPTJsNq6doyXwmQCrTS0NOitpnctzhiyg6Gtk59I4jIG5nHheDxRzuCkRG40ObREV9f7/XrNvkuJQcNG0rgW6e/R266SrGbJZBfKlMgh4eXKHBsUkFVAFwMykK2gKbtKtlKFy8uZNUxICzFHcszcPux597//e/b7jzRdh+patNygVEbIxHyJfHl65vh24u0p8vT2M4fxzOfTheO0EpMgZ40PR4QqKA2EwM5t2PUDH7+q+VbjNIfUsWsXdE4I5WjFHU6D6qDcC1S4FjO7TL/2tbzYZTZP9bDsu4gLCtFp0kagJqCRmM7xsfm+Dg6EpBeOtQQO64g8K4wQJCkxfU93gXnJXJbCv8xfaJSAFJgvb8ipYi9Tjny1b9GdQXWGbTegdMQZy/t9SyiZdc0cXz3HcWaZZoLPJB0RKCyOaRuwk8CGQpAJ7QXKSNRO0JgeZRWlAY0hykIg0b4aUgs4hSoNsa8lfH2RTC4ikNjkGPtImSTaayaX0FEhkmLZZ1g1lMTYJMJJE0pktAv9ksmlbl7CeqD8qCFLjOpZ/ExIgdOUOL+tTOPC+bwwc6jxjdUj20eyKlc8YeCu3dMYh3u84X7ZMfmJz+cT//5PL2xaTdfUuN2j3NC0I4efv/BlrKbfX93do4Y6GEkkluNn3t/3/P3fPHJ/t8fsNsi2ZRwDbuMQWrO6wvHgeRsvHKYveCfRBTZkrDAkkcn4mrP1dfscpUF0oIWkUW31nShDEZbUeEoEkmIpnhwtBo0eChutkVLgpYdgyMWx9pH77R16d8O6dXXCqgTSOoT5mrwP+HHi6BWNkxihMcUiykxSAs9KzqmKjIxE6EgJdxUdzchtFmQ8UXuiHEBFTBPo0HRkArAmW7Px1vJgXHUcpJk1HAjjE62f+SA0j4+VOES2rGP1eGSRaXee3ArYWNzNwOPXHzFti3QWnVy9oHPGBkNpfUVTniXrciKeJ9IhQBtwrqctW4IrBB8YjxNv8gtiifjgeWHh9u//Dre7o3m/5/NnySWNLHpg+M3XDB+/wdxs+f08c4ojE56oO7bDgO17dg8P3Dx+hds63NbQ64a5n1mNoo2Gr//P37HfW/ZCknpBjjAf4fav/1s6ZxnaGqPJopZypdBomRFZkfMOuKCkYJAa3RrQihzrULKzPWLQeKk5ZoPJKz0rMg10jSTfOo7TQhaJJisGpXh3e0erNVOckSkR1gtv84nDyxeen0/88PTKaVqJwpA2LT5G1JrIS8Yu8Li/xQn44YdX/vlPP7BcFsJY5V/WNGx0Jse6dRGpoEJHiTMxebztcEVUaIEeWCaBjorG9RRdASMi1gFePahb0iAwrUGKTAhrleg5Q9xrbs0dbrclbiw2SGZVWJTk6cUwK3DGEm1PlIHsJWKGLBomP/L2+oa3FukVO71n/aYH0WNLzwXNByzaOmQryV//GpETtmR28kQ3J+ISGL//Dfn5mXB6Y3z9kVksdbtCw2Aj28bR97foEpmFJyqB1C1JRmL2eHFm3kmcueG3tzv+/uP/FVylnT3c7skhcFhmDk8Tzz/+TDxPtDP0zYKRgkE4hK0CJJUFUqUaP14ntD5VT82aOAVw777FbHf4mx36/rdIsUHkjl+97zmnkTFM/Ke3QDm9IVRGW0sQjmQ0ybdcpsQSFnyCpT8zj4reO6SIfP3xO776sGHTLEilahTRJ7Zf/ZqSq3zvL3rYT6W2u3XWV7ts/QshKrqy9rEp8X9Foki5co6FRGVFlpKSJURJEgKVqDdWc6XyZIV0EmUVxkmclVgj0LpOYupqXaKVqlEd5PWXkxGpckqTSBhjkdnQaEUfJUlmLlHUdnmKyLXGhFLypLRCcCQnsUYikORwQYnMPDo2uw7dKprWQq5TOaU0WQtiWskxs/gL8ir0UKtF65WSKi0lI6668CoCKilDFmhnkKoagnMWVSWcVP355BofETnQFEEmUJJAoUgyQEwQVkpJ5NmR1qFKTaxEOvv/o+0/lmzZsixLbKxNVfUwo5c85v7cPVhWZWZllaCBHjr4BUDQwzfgG/Az+IMSQARoVEiVCKQkpTIrknoGcfLIZWZ2mKpujsa2CKCJaETDW+7P371m56juvdacY/Du9j27/Vv8dMBpTYkFmqCVZs4Tp3Xh6fnKH56+cLpemZeVNo+wBkiZTz9+4Ae7Jc0r69kyXRP77cA4DRyGEcyEMiMKRSGTabRauLZMq4ltrpTaJ57KaezuDqMHtI6EdMKI9A0L+pVwA8oYptEyz5o5VC5hZSmVYjybYULwxKSpKWNb63QnGogFcVRRXFIj1R5JWAOsqyW2CX07UfwdRR24iKPJlVCFL3Nhv5tofgPTvl9MXwVnCt3XlEWQVjCtUXj9NeUetUkpv0qRutzJWIs2CqVfBXS1EgvUUKhrYL5eWeYzSjpZBulrW/9KVxFr0Cic0kzWIuPUrZ9JqNZAfaWt1Eamx0NK7jEkoctisoKqFUpbxGRSWVljoK6FVUeIDSmJ6XbDsBvYDlvMMIIylJhJann9/8r88HLhw+9+4vnTM59PCy8vX7gsgec5cw2Z2hQVzZL6P6OkoUpiHRqXORJrYbOd2EyO21ypm24wHqyjeY1ODV8arvTvCE2wyXfajNQ+gfIG1RRSNc70eIWpmoXWpSe8Ukhqz+AGIFxLF9vNJ6y0LsgqlWuqpFRIoRDXKxIqaQ2cXl4YcyfMJNUvUcNuwOeGJqIthFxxRjHnSIyBtCxc1isxRlKtfTWu+pNVlUrTryt/OhHJGMF7j7EWZRRFg1amgwdKJUufwqmqqBokNxDI0lBVvwoIC6p2KVdVAkl1wovpxvIqfTVfQifyQC+PZtUjACk18qcr6ZXwc9AQS4/tzOuJ8+XCGldCFdbqaRjETTDegtlQ9MR6sbRccS7DaPB+hxFLC40P58jLsuBd4716SyqGqgYQz4enF+J1ZcCyEYVzDS+Rs1m4tQNKW/R2xFqFIlFlfSWZKUJpLNeF5frCGo/oeMVkjdIecqC12mliLfYvZ+FVgtZjCcZ4Kp5aLaWZ1+dGF3mVLKC6uE/Vv5eZCbrpTldpGd0yw9YzOsfAK52kNUQp7h+3uJ8crUaK9LJwE43S/cMgVVC5YiThlEeJoTWNa4pKxhQwg6e0/i41SnfOOQ1pHqGiWsW01L0f4sjGoDK0FCnLhTY/Y9IVLRk1WFRT1Jx5ni/sLFRjMKVAnFHVM44eN45o/xqFLZFGAgrKqk6iyRXWQFlWWopUXTFu7GzyuHCeAzE0Yq5cnGNndwy3wt3hAcwO7ERTI7HMJD1QN3tubt4hdse1WEwIrNIoFsbBEpVDu4FWFT/EM5s5cWgjUQotXKgpsDjHt9M9h/2B3eRRNlNiIZLYTg7vPMMw9Q1siyAFMaYfegUU9TWF8Cq9Qmi1S9BqKygj2MHQVos2gtVd+JmaojSDtIFaKin0Lc0wjb0T6Ay3k2e5HMl5wbeMLuBQ7AbL8yWRRUGz5KBJRrG6wvG68rjf47ynDpHYnrikwNN8YjAjuSpK7RsoVH39M9IdLbWiOiG6dw4qZC04q7CvBnZaj5jmqrBG98/4awwQBFWEnCKtRqypDLuB0TtGcd0g37qQSkZLmRslGVpznQRE6X3EDgHC5kapK1Zb1GgQ05HF2hRqvLz+M50+NO7vCGkhxhUZt/y96n68baQQujOgVcpypCgFxbF+OTGIZ9Qjqhq8FJRklvhzJ2U04ZobtYLdbti/O/D23a8JSrO0iiFwTTNziGR2qM03qHYlpWde4olBwcEatEjH9SqBuKJrPy7n4CnWE3XjpcDWv6HZPUFt+BQVVlU0GVs8zyHzPGfWL2eavuJc43Gn0XqkoclSuOQrpXSKYsoDqXmydbi9wm4mvN9ixgGd1+7CEfCHG7qe8p/4sF9fD+Om2Vcp4StKTejEgtZLujX3PH56tZMpLWgNWnd1NaIgmX4rq6AjrxlV1ckQG4VxGj901rY1gtbqFWnXD/xm0N1EKR0DVWtBtYJWUFJFu54TG50n5UJuEXsSjNN9ghigSiXFlZwigUAsmtEbLCNZJYyqzFdP0feIA+sMAmjVox1JGjkt5BhY49xzz86gtaeaSK2FnBJNFELDVMitXwJUU6ixH/YF3f/uyUDWlCav9tiCapGhQsyJrCoKR1aBliLEhRYTdfCUeIOuV4yx2HHD4+4NanxA7AZdOrarFIVVA09x4MtV8/y08MfnZ8K80ELGzLeoVFE5cfzwhR/NhuU0c/7oGZcT93eOmwePO/yK6nppqpW1T4BKJcbKc5qhJkxNlLKgyCgjKHeDqgXakWUBXw2OCYtFad0fVs4yTRr90jheIi/XmaU0mhuZhg1KRlJy5BIoAK+3WxFPE0tpwimV/lmosF41rW5g8NRvNujNA8pMzMqwNf3ne8pCVgPZbUjTFqmCLq1bTFVDioYCrUR06S/gahp1frXu1YJRnatXtUKbjqlD9Z5KzH1KkFIlX2bW+cJ6vXRbZ+t23WIrQ+muSBGDqQqvLNtpZJym14hBISyVXAu5Vcj9AJfV6yXRKqBA6ofIVjXGOGrJ5BBZlhnJhhJBamVqhc3dlt39DVu3obqBWgthmVklUVMjrIl/9+PPfPpPf+Tl42c+lgvpdCVGuGbXs42iKbqypIyUHnsyClIJXGLiEgKHmztuNiOSM3FtbHYDh5uxx9tCYwgNn+gvXGmY5Eiy0OjTleoNKjdMtuhRcMqiq+EoUJNGkkE51RGyDYJU0trwRKKELjVpPbR7DZYWMmXNPJ8upOfAcgk8PZ94sIpmGsFWdFNsqrARy41/PTymQi2VlzCTc8CHxGmdySn3CCKm40VVRZVKNf0trKtC24r1islPWNcz/1XRvxtFdcqT4h8uNY1uwG00kjR07f2conOPK7VKUSChe02aakgWqhKyElpQvcNQO0GqDopcCylk2seFRfqWdhQh6oElV56/vHAuK0UqzWqKjBjdjZZ294ZsPUkcl/NAiBXlIg7Fm9sNSg3oVfHl8oGSrygWhuFAzYZYDE0NfPj4M0+l4Jvnrm4YJxjsysnMXNXEmgqrKHSJuJLJLVKLQZpwacLp/MLl/My6nDFhRlePqEZLc7dH14KwUkv7BxCEVr6XE91IrarjmKvtaEwildaLvM2isKgCogxKgSnmVV7Y+eXDxjE5x6bZ15w3aKV4+2bLoFw3RtvXYY3qZu3WNFIUpgA643WPbGQUrmVKaxgFbvSU1oc9TquONRQhFwe1G6clz8QSqdUT3NQ7LmGlXWdkOWLzFSWJwQ+oWihELvKM9Tuqs+TUkLBg2p5pHDHedfu4CKVcqDXQJCNOUWZFXiqyLLBmKBVx4NpESoGYzrzMM7kYcrMEtef+9pZpu2F7OyJzYw7weW6EZIh6pG7h9vCWZkbOWeOjImuFDJqtclxlpGGJIfO76xdu04Y8F4JYNuGCKytP7zw4xWaYGO43bCXSUmK1gUmDWA9uQFJFVASVUGZLo2+2VYuY2qk2DH14UssrllYqygoG3Rnyil5ibo1rBpv7obPVRg6BEhaS0aTaI3p7p8gtosrKVhqjcuzchN43fjpCKQaqgzBQHZTcOM8rtWi0mlCbjHhP0vA5n7lVmlYsORmsU9RWKC2DehWV1sZGoDRFaprYhPJKb2uDIadu05XaUFlBM4gY1CuatyFIVeQYIEe8Kgw7y2bwbJQnNiFWIYnCbD3tUqjRdLdPzYChSt+K6CoMKFoKuKHjNoUBUQExCeKl40LFIGpi2ilkPVKoyKAooT/b3BAo44CulcFMxOeRUjKtNS6fjqxiGewAZoepAdrKcf6Eme5ARuamEAzDfs/0m1/y3c0vOKbGp2VFP/+BlCJryuDumR7ekzcLsf4XXp5+IpfC1vSxmRPBt0aOCYUia08Kgmw8zRrmBjJ9RTUTSzX8eAVtYwe4zcLPV82XsyJ8CehhYTvB3bjFG4dWQpTAWi4oUUzGQ9ujzAYzjQxvPW6a0Hak2oYNAVUrWVXs/tCRvv/UBl1bMtE2kiha7AdwRLBVE60ADZULiUIphRobsRuF+4vK9JIszZBHS7IasRrtNKlZqrbIaNn5kWHy+MmxMTv0MILRZJNQY8/pGuNwO0crmRYDJY2v3O5MHSOl9g+Icbab2RxMB+FmzegG0irPX2ZSaoQsxHamcoPRE7s3j7zZvGMaHMM2o9obWtnS2KAYQXVL6nJaSZc+WTB6xI07RuBGAp+OjSjCMlls6cW9VBq+WYZpwu8nRCrGv1r7WscrZtOzvjFDWiI5F5Y7yP0eTZIzy6woIUI6YR/f8fb7r/hX/92v+Ve/+op3uxseNgdu376lZkVOsC6BqgKXlvhDjvzxS+IPz5r/tN7xskwENG2q/HpckCBI3GCK5zJfOc4LfzcPLNXz3fGeXx8fuL79SMgDMY/s72YahliFP8QLXz49I2HlK1N4d9iy8YbR9cJhC5m2RvJZsXvnkN2AKAduRItixHPWG37MP/Ofn/6Wf//jiVUV2A3U3YHqO05PxwNR1s4WVmOf7mTDNRqMhmwsRQluB4N/xzhOvH/zwMO9ZRShfQxUvUGksWua56GvN23sk+OmDVUUBdUz2LXQToogitwUTjRtI53jLp7F7hik4YV+6MyQE8w0ck6ENfD8fMbNGVUzWoSNdhjX5XPli6UOGuUKm6BIg2YcRh53D4wPe9IauZ4uPNsVmQUJjeMYumacQraZqdg+WXbgL6kX0ZxQomNQe3AT999uUXaHnybef7/n8fE7tjdbpjcDz58z8yVxvUROx8hLufJpfuH//t//v/nh5y9cr4H9OLF/axkG23OdsqUZS7YGn8fuHmjCThmq7dPJGM98PgXOS+GaKuMI2+fE4VPE33hUc0zKEXYGFRK6ZPIY0FdDE02cKu0cEA/mYNjKFr2ZYBzZvqxcaOTWqHHkogsrhSUmdNVMWiNGsz4/EfNKKpESGwRNXuHLU6TUBVrB+j3T/T3ed2fHYGaUNbQy0OTAEhtLTvzdlw+8PF0oITE1EN+JNTutsZuGJEWLhuumYWLFlNZ55doxTSM3j7foWsjSECW0RSi6kiZBRw1OwApGBuLwOsm7ZPJUkSaY6Di52FXzqdL2Ct0MRlmSd9Q1IVKQA7h5ophG2GdMNqS2surEJb4Q50ZFUX5xQyuJUks/nLMhqUbSDa8MWnWOtb99IDdLbobdzcTLqf8+n2tlzQ7vFJs3luXQ4MVQnyr//nRk05Mf6MmQ9cT1fOUv/91/xP2be8bDwM1vLL/e/DmXzci/W2H/lx+4uXXsbxyjspzuDcnBzx+O/K8/HPn445nlw0q5e4fJFRMS12slvk67MhmrVGeIuwk7bjGvgwmdMtIsyEh2a+fxK7A2o8xAM46oE4PxveCqwXx0NByrchysZ7/bMD3sMd4zATGCnx453N9wDpXPT5llZ6nOw+QhWsx2YNjtoB5eLxlgKbSkccUwWd2niAJVjWzoBUm0ppTEaQ2cl8BxTjh/g1KG09w4zi/IsuAvjY089oujb4we2klIRXF/P1KGiexGgttz8+Zb7t5+y/3jn2L9RG6ZFCPxQ6NaQzUDTJqwJnJV+LzF7vdQEnW+cnl+IqbKetFI3TM9HNA3O4Zxw9fffsfhcEC7gZ+ORy6fTxx/94kfny1rPbDf3KHfvaXoTK4ZU+85OM9oIqOpnJfEyyXxw/OVdobwzcj5a8+fD9+w/95zuPf8hXnk7uuJaWMZgkJtGs4J95Ph2hZqzrRc+qG97noHq3lqapTUyC8aaQNWgWuajMK0PoAcrO9FXTJaKeIysM4CY6JJIGnDJSvm1WKNMIkiPV0J6cK6nrl+WHAXzT6N1FH4l798ICTFMTamu8oPTyd++PLMg3lge+vZHAy7yXM0I7OGG7/j6eENuhk2R8WnckLKikvCtQy0VwvwUmY2zbMd9sjbgfdpi9cWJs0kW/y4xW33/Pxy5hITMRT8pdG8oVpHkIIXjzMFtw+0ny0ZRzSJsY5Mmy3T4x4xFoKCnBG7Z/uwYpWnqQEmgeIRO6L1F4bDxP52YIdH+wGsZjGF8KypaOx4Q1EGrGPc3bIbBlpupDXzR/kvkFfOceHL50CQHXXr0HcWtZtet57C8PyRpBrP52e205UyN9rcuKW/M/Xg+dbcoN//Ge/ffs1/9d1fYDeaz08Xfv7pyN8sGx70S48ri8IqSwmZ48ET/8sVvVxYgDeyYteMiYVxa1lDIjSNe/eOtH1gnG7ZHb7laDzHuXL6FPjDAumUCTHzrx+eqJ9PyHlh3N7yi+3EzVbwhx3vbgbK3PBL4188PJCNpnqHfbzl7u6Ou5sbvnn7wPuvt4xWOP945PPnHtncV4V8m7Cmu2f/SQ/7Wmt07odoMboroqQTLFQRamtdG176ZL+QkSyItX1agu03aik9CkSP7tQiNJsRamfbjg7nLc4a7FZhRteB3AtQO09BfO1tZ6WpTSM5ocYKvmGqJ66VkiIlVoyvjFWzSyP1fodzgtUNp2ZyGSlViHlmt7/jZn/gV+8f2e/u8dbgTMRuFH4E7dqr5CZTU2aZr0AAWxHjMaZhpaGroG3Gtop/FezUXGlrwUwGqxSmCBmgGgSDcX0NZ0ovKqva0NL9vu7a+f9JNWLLEGakNHA3fLeb+HY3cbfd8dX9e+53t+ynLa4a5twdAqksrM1wiYpPTwsf5sKlKLwZEfsVU3rG1xNTLqgUe7E4GZRKFANq53nYPrKd9kSn4BqZ68JcE6wTuBuScqwh8bKskFZurXA1Gmste2d4mY9ITr1Zv59wzmABkxutZIoIOUZOHz7y5Y+f+PjjicyKMR7ndigsuSlaFbzrBbtaGqWt5GpoBRRdQOGkIqbCsGXaTOy2W97cPXJnMroEnvWZjS4MzmHHHYNu5AZPJVNyJy201ihSybn0/9iIiQqq7qSp9BqR8I2dGnEarNReLFKZJg2bDUtauSwrn58ubOqCe43ojFPDVI00IfkF1/r0rzlQqWFNQ7mCLUJtGqUMA57FdBa9TposGjSYLFT6dNknYTKamnXHRZqI2Q2IGXl8v0X8hN9OfPPdG27uHrHeoVqilkwMV5bTE6XsWZeV8/HC0xypVLwFYztpaDAWbwcGY0EZKhZtO74M0TgtUDW0RplGjDIYLYhqhJBRonBeE4LgReEwqFNFVI9QmCKsslJrw8yGWnWPARYHA1AVatU48UxNSCIUCy32KVMIiUkblGg0CskOCRFiRceKqhXbhEc7EKXLe7zf8Hi7ZfAeY32XHOlO5lC+ozqpmtCHnF3gZgoOi1MKPwgGyLqQbGRTNdoqlAWpinFUTKPCN/NaqOufsdUsSFW4asm2i8VUVWSbIHTfSDOC1J7fjzrggiZlTVQFmwV0o6hMvVaoGq09k1LM9kqtFZ8M3vsujyGD2jPbSGwZFWYqGtXA+0apFqE/o4sd0XbAuwmrtmgxWKVJhy1b05ClcD1HolRka/D3d9w0WIxiVoKPtftPGvg1IWpDGDQzXxgmzX7v+Xq84c33N9zvNDeSyOOCHYXt6Bi2B0pLXJ6v/PCfP/H88UeuX87k0JjaFZUrOfQpa2sOwaFURMzrqrxUpupRxdOi0KoBrRBdIWpa7SKkpocuz3qNS6nX95pSpr9n1owLhXEaercL9SrRAYXCNajZUqvB2thzdEmQ3BDV6U1CH1RIn7UiFYwrtFoZqqW9RhI1Gut1j/qI6dwUVbEm43cdCVoRYgjUpZPUdDujKjjjcOMGe17JzDQdGEsvEGbVc9s3N1t2hy3OuS53S5kaVqq7IKZf7nLMtNBjYXanMcZD0dSSaKEiuuEOmjfTV+j9AKPHthFvR5wdcH6LrGfysXH5VIklY/zEYXfAass1ZmIu3G0qW6WZlGWjAy1HSll40Fce3v2CN+9v+fpxw7fv97y533K3n3jwB8bxlf3fMoMGq00n46yNIIWoEgMeZfoFilYpOVNKAZcw7VXeJ40SMsUL2C6hyqlSU6UlQZmCthWJBp0jNVdOx0Dc9HiLMd0cXZZEua54t6J3nlo8qqwwbUCPfO0Hpnt49+mFx58tWSbu7kcOtyNq2qJ8F5VeW+XdrUflkafDnu3xREu9BKvyBSMeJRqzrmwfPLubgXdv7rkZ3zJqy0Ch+N4JDK2hLwN6aUgoBHEM0IuntZdzW2s0UTQTkBixCQ63W7z31KIIVnFdC8sVvBiamjDaYnUjzX0zoF+lg0orlKmUVjCDoLylZUPeXMFkpFZSyORY+nPdO6qBLIIZDtitxzaDCkfKPJGjJqfM4G8xJTOUlVXvMDpiJWNPCYkrlUKze/xUkZ1GHx7Yf/ct9/dvubvbIa2wqpVRK97dW87hwJI32BZ7UsAEZHzmYzGkUHFlxRdhzBFXF3ayYzWNlcZJOYzZ4NwtbvcNMTRmIqgrTidqHqkY6trIdYcoz9AqU9HssvAWzUNSIIXttnJdBpIR8gAXDfeD5nHn2e23eLHoXGiqYn1Gm9o3hSGSUiXIP/FkXymFSqBKQ5x0UonwD5bc1iql1de1WKVQkFdFs1IaEUOV3Ok90h+U0l7z/tJAKgqw3uGdxTvTD8eDRbA9k147llKMoLTQRIExKBXB9HhNi46cAqRu/TNW8E2zmTy0CSsF0yLjtEG1AcGR0pVpd2C33/Pu8Ra/2WKNwZFpg8Z6ECvghBYaORfCuqBNRRuh6YaSiqFiq+CsUKqiZUWoBXKlpYZ1FqMUqklvytcehVK2m3l7bvnvXbv9YqNi7CQ51ag5IOWKEosZ3vDt3YFvbvbcb3Y8HB7Ybw+MfkKtK60mcs1kClk8oTTOl8o1Q8EwuS3D8IinsEsLm7Kia0Vqg9r9CdVo1MZyu71jnDZkr5GsWGvjSmKq0MSQxBEzLLkiFbK2RGMo2qCUIYQrGkGbAbedcN5hRZBSqLlQaKxx5fj0zPHzC8enBVTFOsfgdkj/AYASnK3URC+elUCuHaFnJHdXggarG9VaxtGx2w7c7HbsywK18KIz42CYRo/f7xhVJrbEXCo5V5Sq9HRno+RCKZlqKzp1UkxB0VIFAWWFjfZYDVoqYVmRVxKUQhFi5jxHXs4z2kVQXWTS9aJd5oLN2NxNsEULknquVOl+6VON/pCnIrrQEFTq36eOm6z90tkqJgnedcSgLoIyDTMM+M0tbx634D1+u+HN4yPjYY+IEOfSo2xhZVkXit4SQ2K+rqy5oLXCD32iP2iL0xZjDM53O2OruvOcdUdVGgWS+2FI3ID1fSUuUkhJKPQDesvl9TtfUWsB37+/5vV50KSiU4+1iPr7zk+3TEtRGLF46YezrCs6SicSJQH6hkyh0E1jiqIlIBa09O7LxlmiGgDByYbb/cg4jDg74qxGdEUpsIPFFFCJnjnl1apquwXbaYW3gmkNUYVqKmMyKC2Ighoa3im874QTtEIBLRdW1ZBGJ5tpS3vFD1fpB47WGjhBWuvRDlWwxdKaIivdA7u6diJILIBCKYPVgpgZKYJOBm8cVTei8mA25CZd4hYDiO2mcCOYojtCFCjaIdajhxGlR7Q2NKupm6knIExFHQNlTZTBgNuzzQ2xjWgyPs+Y1iNNNghWeUansHph2Hgebjd8d/vIm6/33LrGbV056cBmb9gfRuz+wPXlC2VeefnxmfXlhXJeUaUxpRVSJoVKSzPCpv9mTBce9gNNp44pXEdKdg87TTVaeu1FtY48hR570nTQhCjpcVNTkdcoxzQOeGcx9P+u0aM8PVNoQSzGQi5CK73rg1h6kQOa7tsZeUUqd2Gk4LMmlg4FgD5UE+nf4W6R11ijGbaeVEzfRi8ZSZ0yZ6Wg0TjjGVVGaugYaFsY6kDRhqSELIXNZsM4TSiroVRaTtQUwfXSPFhaSZCBJpipo5dba90TkfuQzYyWzd0blNcUo8mL6Rdk67HWI1GTr7C89Mz8OG0YdndoXXuvKFUOd5ZtMYy1MbVCSCuNiBorm69u+frdDd8/7Ln9dsP7/Z77aYseRmxJtJJZKDitO3379eAdqeSWEfG9R6XpmOqc+mHf1t5/qb3nV1Km9Yc3TV7z+7nSckMp0BZk1ajScdrXHInRknSPIDURWqlILjhbcd4hTWNjBTdhxi3TzYFhp7g9eG52imtp3N9tuLndkIYDJVwJKfDRZgY1onLij7sFuyhSKJSyUFViMppBO7bVsrkbODxO/NmbB4abt4zGc5MTJ6s4h8yXS0Api6p9W1rQ/P9cNXubR6BKo+mMSMa0xu4w4Zyj5n4viLERQ0M1jZa+QRQFJb8iTbWAGFDSB2wUlBeMV9TaHQ7o1m3WqVJyj9mKtq9RV41yE2bTQQo2bdCmkq8LJVywww7XMi72zbcxM06t6LySSVRbqV7hBo3dOqaHPW/fvGV7c8e08zAHBq0YjfDmYWBYRy6hMYQrTQaSNsjkoQhxzazhjDSHrgumXRnL1HtoIiyiceOOtrsj7h5ZJTGHBWUa01hp4gi1l/KbGJR2TCqwaY1dbdxnuI3d0bSfhLVZou6x0U+qcDto7jaeaeOxIuhaUboyTB2dbKxHLbn7l1r+pz3st1QoJpNtZls9zfSHnmAoRFrp6MxEoVKpCDIqtLP9QeAVa+gHJjN6tBlQRlOtUJSjOEfdGLbjxHbvGSfH4G/Q3vZ/fyw0Mso4WjlQfZ9+myaMU6Zgqc2idUSWglFC9IVa9yhXkP2JqXmWFtgqj+x/zcbvGe2GVCIxZzAa93iHyiPKWIado5WENp4sE21pxNB7rCFmbN1Qs8GqGS4FEyobD4xvuNrEKa+YzyuJyOwbm3KDGgaKV5hz6x94I2SZkKmXdqvyFG2Ja2QNkWV/ptCV32n+GbN9ZJj23B88/81/+9/w6198xa9/8YY3b77DW4cSqMZjJKNVpo6/wKwZR0AdGu/WI9HvmMeBfZjhFDHnxH37Pc3c0OqEtAVxb8lecdpfkP0BdjsYBD3cYkPGhUbZ/ylLTszryoUd2i3YJtjhG0o6EWtliRW5BobdV+xvf8Nm+5Zp6uv1c1mo0ZBL5cP5iT9cCh9CJUjCTu8YdhuGw0TKFiUJLYW74YFL/ZlcA+fzgtILTY+s+p6Qzjg7Im6DtAvb6YbH2wM3e9goT1sLhxlufv0rdpstt9qiqiJcTsTzkVNcsaahtWWoiiYRpGLYEHxEpOGj5tKuGBwb2TE8ODwKnRupBJzaUYGrXDl/zJyfFk6nZ949fss4KCafcUuGIdFsZVc3pE13RLgzXOyMWIOLlrYrrxg/CGOiRYtNHtkGzElQLVPcig4DSjLFXCFWVIlYmRmmN0x3Bzb3e+7fvaOoipkGtg9fgVZ94iWOL5+feLpGjvoeUzTPq+L5AjataLPDWc/NrWa0upuhySTRiDY0BSV4qu6f5dIcMoESGIuj2kRzms20pViDrQaTLamtlFwJLHBvmKpHo4guYKujaaEdwHxxFKksQ8TlPWwUdcros6fYjqjd1Ru8K9i1EJMhcyUUQ0wePxQGFCKWFp4Q9ohy6CljZU9Ds0rh9v6WcfIYp7gZtuQcSDVweHzEXFbUZSG0TFkiVQkbv2UYFiZpbDNEe2XAMOgdYWrY1+nuxc9YfYO1G+pe8MUitRAkosuOZivZF/RiWFUmS2GXJpJfgMKwQthkRBRj2RJvKmYxDBd49pe+ksdRbhtchBphtQHSgNhG3kCLHq0Vbgttt6Bfs7fXUqnLFQH85o6qVEeIovuL3FiyHrF7hzIOjMN7S3MeO2pujOF0jSgPTjTj3Ts0GgkL1wu45YiLV4Ld8KAz29Ez3f0pshEe3t/zL/7VP2O0ns0kHLaNd8cTb757x/27N5SXRi0ae67s05WlvGNgIZnf96hYDYR8pOSJrDPVzozjhpAypWQ24z3u4DHOoaomr4Emiqgc1a60apGqUCqAsjRjYBdxTqNUYW5XcpGO6/TC/eHAbjv1vljqBKWlFZ6TsLsdOOQNL58qVed+2PETcVWEVlmJGPFd4lQrSlZQe5ootARcor8zdSGXQ387q77p9k4h2uPbLwilo3jLUnF2ZdB7duUBc/hb/PXYzbHTJ5zeU+ot/l4RLgNJKfRdwbobRE8U9dr7IVEk4sbveywyR8q60JSg7IBubwn5ibpmOGa8VujxAbt/h7rf04wnoXiWmelww+bmQGiVOmxJ+sI1Fb797i9w+wmzHTinlbSuSE3884fvSC8fKJcn6pcTN+sLd/sd7hd/zvtvvuH2/R13X98yDpbtMOGGEac0TUOtgmcF5/sGpArNjkjImGsi7nqmnKqgVWoJtNIw/hYlGajU0gmBVQk0Q6KSWiOWRq4ZVbdYKsMUuKwDpSWaDlyzY0Qx2cJoPHbnCcZzPb5hnLqrxLVH2mSQaYM+vGH3qPku3/HP03vC04I5bNDbkXQW5hIJOfAnlzNf6oGH3Qv1S+QP0bGmRDq9kL96y9txz7vphje//gtU1hi/4e7PfkNLI4Pz3N9OvPzxyI+nlRdZqfkJ5TxuZ/HngGhDcQ7GiJ8UWhXmtCLKogaLTJGbzRavFCVGbDY43TADHC8VPyiwsBhPvqlI7T/3XBTFVuqgMPtblPTUhh5WNuo9xVrKttMXVa0gkVw7YSYbqAOMxqG3jjLdMF0/s74ceQofeHw3sdEDQ/Gch7+CxaCjYvz2CjxQGVgUqO179OaR8WC5ubth3O2wk6XoxiY43tSR7d2vWELmcg387o/PGFnJWbFzv+K3f/k/8uF44qcPv+ctK2clWK0xwxG2O8p2j7aNr/7lX+C+/jNO3LErDf/hyKU0bv7ke9Zn2P+ceCGgyh+x5YWb3Td8Yz/zjZrZv0Tu2zPWe4p7pLlIysKaDbvxwuPNwO3DA2bXI6gqN25cY7z9dac/6oi5JMLLM9enT/+0h32jHbZE1GsjXFqPMuRWKOlVTiGZVhq0zuYh9uGGUoqiDFYrWqXnyIxCaYexjslqfK3oecFqwQ+OYTsw6khTidoEryF7h2iF5gK19a2BsX1iXhotL1zXpRdDdEF5y6QbtVbmBXYyEjewREWNC1pfUJLxeK4Oqm34dAUVMcphZUPdaozKmHzhskbitZCWjBiFHypOJ3JYcSr1tf0w4lkZrgV9VnxRmVErqhmZXYCSaCEgymHEMCjP3hhaEoxW4Buq9iyhQXBXRVyv1BTYCuzdicMEX20f+HZovBs1h80WV1dUKSAQ1yvXmphF8OHCae2TWn06sraGaY13ZuXFWFwzbLLh4L6ihEStCzkmWl0IyVCDJh/+jnXdYLYT4ndUO2H8hja/8OU48+k4c/zjJ64ERq941z5xSi8sKuFcxb4ZmLbCzp5xao+JgsoZbTbE5YnrsvDx4yfWDz/SjidM8TyMO9ADtXocFWc3eG+YjOY4R8LLjHo643e3mMGiXSU4YZLILlUWN3HfIrfpglw8JS1QI8PthrsSmda5H14oLFw5m0i6BKiVNiRQ5rVcrpAScDmSc6WU1xKPAm8yvhgkF3IqiNaQEyVmTscry5eZMhfGYcNu8njdaKnTV3RRqKz6y2eOXT6H/H1tGS0rKmp0BWMarjnQta91U8GpBlbT9IaNyug1wxJxtWKNQo8To4v4KeFcwceVuvPoQcF6JishLIHzh8+sakHrym0o/LzMXF+eCF9e2Gy2HNyGwRhiW6ghIrpTBZyCWjMpdX16bo1S6CKQV4GeMholYJvClUYJfbJRdWKeZ8ZmMGKxJ1BWoazBZt8T2LnQjgVtOq5MozFVMKli14rxlqAUGcHVDLmhW0OPhmsY8AjbVlCpMRVhxNB2e4iVGi/kWbCm0qxj3Xlu9IqjvsaEGsaDmoShrCx1wdQFv6wMWiPGcT8JUhpDKzgFzpgOuSBg02tERClGbRldxeuIzfHvNTY0rRhNI9ZKS/V1S6MxaIyBmvsszvkepRDVQQcmN2KroBteeZxotDRMhqY0ojW2VIxOnUIUKkZXYkvkuFLWheXywmm9YOYVNVq099hUOJdEEcE7TZEJZzTjqPsE0yiwmpBNlwvVinaVfQGrNP4ycG8yp1S4Lo37a8HN4INwI1+Y1oZPjfHTZ+rtARcr5f4/IW9vsMUzJIe6cwyyok6fOL+srL/9ifzHT7iSeOdOxLoyr43t00pJmcVY2vpCKIacHa7BbPcUoxkBWkFyosXEmvsWyeXGnBe80Qym24yVNugmMDeqiogqqJBo1xd8mtmoys3eMo66RyrrypwSa5i5Hetr9NSwI5IEJgrbFjnGRA2JtkQyoRckxdCsRdr6KkhcoHR5WlIKV+ZOtlMNqb3MrcWgUmDJCyUuqGWh1ApScbpSYqWGQlsbWu/RsmJKRM6pTyrNAMpi8jMqKJgrJTZaSyitMZyJKZFDpM4R1YZOq2sz16cjbZ6x88LwcMBai7MzVTz1mlFZcbMdMTlQrhdCheVvfiR/embaCt+OQjGw1Ez4+Yl3Hsabkb2aeUpfKOeP2J9/YvfdjuFGM8kTu80dOxzDyRHtQFmFQiQODlXltaBeMekKKBICMdBYKb5Q1kzVkaYqklSXXWrQ9YSkBFlQyaL8CFRyXomlkZbEMic+LgnJDZsL4RIwIaMBrRxOF6iREAJNmf7MkgG/fkFypjWDnt5SrUEkIusHtBkZnWV0jjz1Ajht5bmeMeeZGjPVad7qgj9kwm8cj8vAVW25bhLWX9iNwm4DD3EDtwfswfDWJ4JXKFWZSuHl0GEPd8eEsityyci5EZphEsFRkaXQTABJ/Z1xOaLzwjBUtluFnTTNQlhmznPiuka2gyGIJjeNi5GYAp1PWYgh0XJDIxCviPTYthk9NT1TcyIvBczXgO+X2nTsl6uacQZmpalFOIwrp6Ro3vGw2zOoLU4JnsJ5Tdi1MlbDzn1Hy1dqnlHLAvUOmqdME+X4kSIJLXvKZe2l9b3FrS88ny68vFyZf/uF6d2AsfC2ZX7x7Q031xvyB88bErqWTsBZCmO22Dww/vLAXTpjlg+ovSX8+Mx4DewfKw+XT/x0brxcE/efr1AjBsvXlzOTSzgiN8szwyy4qWH3nyimx16rNkzDA5scGC8fqeYGVbuZ2egBF6+YBEo1bOqd2E6S+ic87PcZfvevKenr5y4N7Mi/2nfQtNrNdKX0DKKgu1VVDCJdllByR7+h9KvAR/p6LQnWaJx1WDtgCORXdKVoqMb1F2opHUmoFGhQ2tJq7IW22jezxinEjgwGWhVEBqxRlOLZ5IH5y4+UUmi5H+ydNlSlUK0gWIwIRgnVGFSjZwrXSImFmivaeKxRWNWogPYWZxXO9L+/rh2Bd3VXKh2dF2JESufdN+k/H90UqjZaVkjuxmFpiporeY1dnlELBhjtlrsJ7ncDv7y9491+w91mYnIjuXaKCgjXdeGaC+dcUdczx2vlfAmsYaGaES0w6MreejbThn3bc1OE9fiJEI/E2CdUWhRh9aTLGa0qCkusiSqCGMt5vnB8WXh5njmfFqLphKV5nQnHGW0yy0HYDo9477G6owNbTeQmpOJ4OR55OZ348MMnTqczMUSscez8SDGeiO1rTOcZBg8lEpZEWCK6CaM4nDisFrbOsvWK3aSYR8+kG7qsyJqoJYGq+GGilUQOgkpCsX3So4wih9RRsg3apFBiAIEWkVfOcZPObhaR/uAKjZL6eq0oocX+Z5tPkfgardhMW5yzqJophR4xEUE3oERU6KgxcRrRFqMsvMa/pAlKg22ml9Bb6i883Y2rShucgMpdGuQGYfSWYRS8XjDeYJRGS0dTSoV1uXY/xLxyOZ0of39Bb5n5GliXlZQS+92OgxuwonheA61laK3nlmul1b6exbVXw6OQXUFV1aMIRlCtP8jXNSFZo5WAo1u1S4/mlaUfVLEagyHXV1dHBj31C71WHfkoucv57KBA+iGtxoQugqvSJSzZYqiYVrFVs9WWG6vQosmXC6kGwtLQKoM1eGcZdMO+RriMbn297wy1RMgFKRUjldFZlNIMtuOAnTS8aRjngY6elSS9tqAEMQ5jpNuvc49zQGdgK0qHSpVOFVNK9wgJQO2xJuct4ky/QeVMx242imsM4l/t5XRylChEgW6GVBKttB6nUhU6e4Z5mbleZpZ16ZchOrmslkaJmaJes7gir1lcRVb94oJSKDS1tH8wwRojWARbFZIKkhq6CLfGYJXFVs0UZqa1YmPBpBUtHj1cuHz4kckIHLZoKwxmg6RISJH540J6PiLzzN55mg1EabiLsPFCs46tWFqZCUVITboMzyqiUeQSIeS+IcqQyt9bbXsM0+p+MVKmx7IarR+aS+228tDQtf/vdsPEfjcwDhalFKlkcuyuCu81m1ezZ80Rhen29Jpp9EFTyRmJdIO0AVGWlgK1xF4q7Y01StOkkqF1lC+tUpVQm6LklZJKP1i1/gqXVvtnLjdaEZpotN73R1YryJoxgwXtKHWgxpWyztR5Q82FqhQYDTVSY6KERM6VRt+mp5RYThHWjhgeN4cue6SRc6XmBkVjtSGESEiN69J4eTqxziveGgYrJOm4SJ0T273lsNNoCdR1pq0LXhcOmw3D6HBqZcgJVxK6RkK0rGqBlvF5g9H9M14RYgv9+1MV1ERtFTGafHnNF0jFiAH3ehHPsX8QyisWFaGUxhIzqVSWS+R8iRwvGXsphKUwn18HCVrwYjoWspSOs54sSnmMJHTL/4AoZZOQOkKu1HZ9jclpjNUUbWg5kMOKrFdUnDGlInbPoCq2WeL7A2+Pb5hvPOfrlnL9AfcqHLsxDUaHmQZGW7Ht763QkWaEqgq1RWiFkrtpXVn7Gjvrn+9aMk269JMUkZoxTeO8xnlDtYbzcWZZMyEUjOkiP6oQ1kQpuXdfpJByJrceOpaqEKtR1qDcxHV9Ys0za4a2TyC1Az1yP9fV2npsDtujjQJWW8QO+E3GmglNQdqMqgqrHaOzTNM9NXyitEYqBRFNbUJcGut87dhPHHFeqK/P1Xk5M58uLM9XwnJmKgbjLd7BN28feJjPqPOFbbgQ5mfW+RkXG9MoncS1fwQKJV3xKSF5wanK/X5ALoES+yVTx5XRK0Y3sK8LQ224BkOr+OpxRXBxpeFRo0a2BvFbpFaYLyi76RQwADQpX6mtdnlZd9iinftHnd3/8QXdHDrWT1usdAlQZ+ZDrn3dCYpUKjFDLJWNGUF1JrvGEVsg10alr/90E4ZiKUmR7EBmy7DZMNg9vm2o6UTD9Yehi6gyUQusecGpESxgC5JHcmikmNHlhsHNyFDQdoeiT2u3TrBj6pKJpfH7eSF8CeRrQ76ubMsNrXqiCuzKI0PzmEEhYSDVlWs90c4TShLWFazaYiWjWmaoivF+jzV9OnfVH3FmRatIbDAlmGPjdI6oMiDZU3Q/NJEaz6eVcTP08rJEZDBcr1c+/PwTdjA8fLfl/m7Dt/qewy80bx7f8F9/87/lT//8V2wONxh94HNMmNzQ0fD7kDmfE6dr4LdPXzDXiSVXft9WvvI7nNYkMveHAzdvJu7Gr3j/lPjxt3/Fl+XvYP2C3Crs4FDxnuN6pcnIpj5y3Sh09LAa/uPLZ65PjXUR0r3DLQMGxbFVeFbEw0i+33MzfM/oekktXy3BQJTI5+Mz//Z3P/DzT194/u3P/PV1ISrN7sajt1uU8ohogkm4/Yj1muefTjwf+4Tv5vGB+2GPsw5xhrvxht0bz+a9R4UNT5J5lsRhNuS7DcrCdvb8XXvCtsKbaJlvYXAjX09b0jEQskZFx27vsMpBhTUWShJSKyQfMXUg1UZYKvbSGd+lpdeHSmK+Ro5fGm1wDFvHxhpEa2KupAT6ZsIqOlLrlChiQTcmp2jbHShLXgxiDVX3EuYgmvXaiHNB6REZukp8NBZ7rbTsqcOOzdeWm3Hi4HaU+oVWBmgDaq8oyRCPcAxH2tGwxsRzK6jLSCiBL8w8/xw5LRAmx7fbB0SEHAtqzShvsFbYWMdlLaQqpCpkCbQmVIRrrYx2wltDNWCDIi2Zp/nCrZ+YnGFTNLubLeq8UuaZy7BFTwqnDVYbUhRKFrL2jNahvUP5gZfrQqVL1IyVfnHIwvNTphkHWhDb2DVLy5mUCls1sN8rHvaKhzLy8uUTF3UixEq7AxkHrL5BeYs2A4NscI+tO0SK4sPyTFxBosXeOe6zfT3MBZwdmFxju4VJDeS4EsOCOIvyDayQ2Xb+fTXkNCEq9+5JM1zSQiyKXDXiwRpNE0WaEwGDM4rdfocyhpozMV/J1mFMAQpaWeZrJIQCdaS9BihV0Ty9BEoteO/YUlCi8X7gD8ePHJ8zuWhu/tkjWwakaJ5SJYZIIhNL5vYGmqJLbWwvjKpmOAyWy1JYIkzWErSglOCGzA8vgbpUBjvw1buRzSeD/pj54TmyXZaOQ91GbvLXtFPib37/A9OnR3Z/ruCXA5vrluvlyHU9Ef91JR0E/37LbzYHnsszy/OJ8Xll/DPLqCxTtfz1J0OZFSUYPjiFYuBYhL8+PTEEi7iRNFmmAkWEoHuvoVpN9JqD7feoWDOpJLbVoJWgamM/HhjHiTePb3n31RsO+y1WWc4h0FbBJAebDd/cVZZj4C9PCzs3USSTXQDvKFoItaCuB8zeoY3BNsM1JULUhDDCWKgYqCPnHDHKYpVhbalfoDOc5owqHlUsbhJ0FkxaifOxezico/kdtoyUNJLTmbomzP4GcSNxGVmeuj265leMq3GItiwU0mpIQYg6kaunpUq+rJw+g9YW/WbibnwHZGpeySdHGBtpUMRF+BKuLEtl/ZvEfzhHUtVMbeTFGVRRqKAp7zfsbwYeJ0XIn8hPEbUqbv/FdzwM78EVrvYJfq9p3wv1q4Y+KT7FhWgvfHMdMI+158Jnx5M7okJjehloNxXtLJMdeI4vxEVDMbg3A7bY/jvOjRK6aVomoWXNJTVCjcip8Pm08vm0cvrDytMpcQmVa9Jsto1pUnhjyFEoVYMZMH5AN08Jlnz2qOoRq6iH0CN1Skg2MQaH2hrEC3oxXMKReT7CT4LeCGZj2W1vwUZudge+3nxN+tW3lNNK/HDlr/76/0n70NBny/R+wtp7WjvwYiuHeU9rms/mSporL2vir/OVvBguJXJWka+1J9XMXBqORFK+o6WlUkQhekDcFjsMbMcR0RP/5XpmPkK6aJI2TE2IsfB3zwu7qaBtL/muNbICizi8fI2+9fitRerIb3/+geO5Iux5+M7T3AR1z3MKGBy6OUqbcc1DgY9zYFtHtM/kNw4bLawLYb3i/A3TfWN7a9gfviNe74nXMy2CfrejDBteLrd8PheGsHL4tHCdIlYcqmn+w8sz5Y+V9AzxPbibiWFw5Fb4l3/yzzHf/xLzv/9XPPwR/uav/gf+87/9f3D3Y2H60xuGP/sWc/8v+LfjhTlnvv9Zsz7uGZvln4U9/y8+cvkU2c1w/Hbi3WbgG6sp64npWphaxXz1wG4zYFomrzOD2mMet6jvD+jwyJdSOZ8Kt1FIh9a7Uz83Pl2PqJTYVc3ttxNmY7s47p/ysB9LR2o2CkUq4n1XipMYB0MVobaKnyZyLpRUub2/Z7+bGMaBazbUs9BSQVuDd50ygIko53BTZTzULg4ig44opWmuT8hsGV9fmhUJjeISgmCbUEyk1UQjk8yKr4IRh9hKWgJFEtU2nDiUgTo19jf3hG0gtcJm2NOspypFzBrZKIzrE9I0NHKocKm0u4Ctgq6apgs5zsQcKZvC5ByiuigFXRCXkW1kHweGohgKnK4joh1K9TXMWgtEzTRqxHS1twqZphSqZbw1jHc7/mT/wPd3t7z57g3v3j9w9/aB97/5mvvbR/y4QVkPoZGsIht4Uw1qKMTUYD1zVJFIZXs8o8WwlszxeiSVwiYpfFFEKnZw7O5ume4E7/fIMFG2Gz4tQh089l6QORCUYlaZ9uUFEYsdFe8yKF/wqrBbI/mdYbsduDcTetQoq1EiZBcoSyWvhfWYOf3H/8SnHz7yh2OkLTPWONjecJ5faHiqOJCZ4+JowOcPP1JCZm8Gfqk8O6fxg2GYBu7e7Xg4bLg/TKxK8eVy5RIL033lwRmsKE5DZTkmKpnlsPJQEkPrm6Q5XJGp4VyjrYroChWIEmCrMKWiVyhTIYc+wT+Zgk8RUzKLNszxwpICYayMNaJqI9XCp9Opl+FyYvGOpDoCVtWF5hTaapTuh/4kkTld0LmisoYKc9Ncwtxzr23A990Y16jwaUEkUXcJZwfspJF9w8SpYzCdYrATemtQtRKeXpiHgebgLigu7xycCuunhBwCe5UYZhgGmM9n0rJgTOTGFrzRaF0JYUVbw2Y3dKqWMRSlOa8ru3HL4A2UmTlVlhCYry+MAoNyjNaiYyOnmRQXVHV9HdvqaxwogcAwOByqC6NSIZQINAzgSyUqQ6xwXI806zCi2C6VUBo5RfKy4EdLrQ6XHXVIuI1iqz3uLUxuQFtLHhuxdMSn3jv2VvdCKxl9CchU0UPldhVyruSUWc9HjO8GbF00zSQwXXTjDmCVxyhLcZ45rKSWCH5lkC7ua7qxlpWlNEIDkwrNGIoI1/ncIQRiqaF7AlqrtFdniaoaV/qUMOrMqgqJiimVlitr7T+rXPq2aVN7fErHiHKC2nb52XA+k32hisbm1C2hUqmqMJiAqjOygDEjpV7IwCXcEE4LOQttc8MkK7o10iKsX14wKTKoyL6sjOaKmha+8iv7XWU3ON7c3MCUSCpxQ0D96QnzzrNJnnxzpHz5Qnl5Jn6vmFCoCmdW6l//QDodue5nHozF2UKzmd1JKDtD9R5XPD9XQ14L4/VEUg6RKz41LmJpTbqJfRqprdFCo1WLSgUpBWmFxcw0W7Eqc3czcfuw56vvD4jXVF1ostJaJioorvDuwbGmge088fXXO65JUGTGHMhyhrwSQkF2C07ocSvbpUSiK2rbsM3SRJN0j+NkgSwFtawEhFQrNa29J9MqPkRqhbCcWU6fiOsTu9ZrmMvQEFWpXsMvMna3xw07tNPkOFM5sxqHjapvPYyiXC+stRKldcQjlVIyJT4THxKDaAZraNuGaoLKlrJLmKBQWYhDIP/wxHyJfHSGB3OhDoZ84zHxSMIQBst+OdLslXNq8Ol3nMwT423jzfaB3TcWbQf2daA+eKaDZ+8G4lYYsiZXKO8CW+uwWpP3kWGuFFNZ3yaGsAKeqkdSKGTXUchWQFwnX6gm2Lu+AVNNdWjAmkhL4KU2LvFMWmfWbeX0fOJljrw0xzehMGpNGwaezsJiK4urfDPf4AxAwm4nigo0K4jZg1c9wshA2WSUjZgsFB2QGtA1k75pbJTHGoOygRTnPn0fu3iu7h3JVH6V/4TyS404z/39G5rfkZXhJa7kLehSuF8L15wQteLjTBgiaj0xhplLXsjJYlvfBktNOBVpeaHUC/vNyPs3I6HOSOocfeU6mAJXeLhZmZNinSMcXwjVoENA5iPx+APrfMtcN6zuiFk9Uh1qt7BxI2rXaLvMME44YzBqxVShtERqBd0ySptO9zEdnaxiQl0TJUTacqFdn4hyxhVDWzxp/0xrBWUc9k8q4+07ZDww+oFrCiSVuPgzbo3IOFHGkcOT4efxxDHPjHNCXc+0FerxE/P6hY1kbmzDfjXwVfkF4/i/o7ov7N//OeObX1G/vSV9KFyKoL5d+WdzJmjDdYB/9teFH29WPny9MIUT29Jx4vvzD5g6o2xlOw24d7UDIq4a823D3Qy4m1vEatLLil4Sef+Ei32IdR4b5z/+nlIj5/2A/rzByxaz3//THvYfbnfUkqklIzWTneriDzEk2+kOpQjVFOxr73vQEVsVJlRsg70UsGC2mtGA0v12uZeRTe366Oc//sDy/AUzdptZsf3fo0Mjy6vdtEJ1FikNFQsMfeUJjTJqTCro1jPN1Nxzskr1HHCt5FrJcembCqPIORHzSq6ZuGbaesaIJlVYKZ3KEjNltEhqkBvh70kiIpjBs5bI2iprilAC1QrWbtirgVQaQy58I4+Isl1IVmE3r9zeGu4PQrMWA7haCF7z/tffMDeF3W/4zf2Br2533L675fb2hmG7wW/3fHg5Uj49EdbIj59+Zi2NVAW1rJxi5rQEPvz0iavuUhV1WlhGTymZuM6cjSI5w8VqdEmE5xfifCGbGXsBUTNl+MKX85U2jrjLSj1Goras2vDy6UT2HUrdlhWcIZmOVlRby9wKP6bC85qYBsfoHGaaYK3kNfPleEUuL+zaytsRTG1UlclyxepC0/3gkdcLOXRrpTcROTgGrXjvBCRhGgxVMaQZdS6kZeFcFtIcIFVCyARxFKUJtucbzTiyGYT70sVtQuVvz8/kOCNhYF7OFKv7BTNn1lapFUiNbLtFs9bC0lZcKZhaSUWRzUoaMlk3Qm1kaa/orEaNQkuap9GgVf+OaOcorX+uTcsQFzKVJQX0tb6KluCcK9cQWHKmSsC2hrRGFWGUjLE9JvDRaI5UTA4YSo8RxIy6ZrIVciss1zOLWWgV9JK5GEWIkVVl7G0na7ShEkcwg2PKCpe3+Fd/xVyF5AzaGuzg0MoiprPBXTRspwFvXf+e1Cu0ht/1yVYbhDwotBa2k+4H/6GytZHRNLTtfo6mFMoVFDMd56OQbQYpaCls1YxYRxXN9m1DbKepjLWSGpSiKMmyNZY7L4y+YIeM8rZfbi348krM8QGTXw8HU8TVRlWd/HW7bSStuxDw/GpozpAmj7MGT0WVRFARsQqzdfjNBtNUl6ap0kubtdLsBRU71762wsaC95osinK9kihkqbid4P2W0TYGcybkbqnGwOAmpPa+QMyByayILzhrcQitwmCF7XAAMTg3sZdCq40YM+p/8xvmNVFr493GgutDjpoLqbX+Z6sBf79HuRGxI2aw5JJ7TNIXTqGLoabJoErrxmMa1weDqYZBJr4fZmwYUPOW+BvL4ITRKe4GS3GKTCOWyvCbB+72W8aNQU0VyQ5jdkwbi48VlSsuZax9x7wcmGvkjQJte0xs+uqe5h3NO0oS3jThGCtf/3JHNLtupa0LV6HHvpTDT1ukLVAXRAq6aTQOoya2bsGoDLWwmQYOd3se392gh0xtp34gq7WTSbzC6UpIDSUDtf6SOWtsK0w1MufA23d75hSQAKrlTgAJwhJm5rjw+fLCy/ORmAuZRoqJqg1VGew1sZRCzIV0XWB4vdDmytoypBm1HrGtMrXMWDPpUjvNQxopJfT5R7g6EpW4nBHvsMcb7CoUYynOYFMmKUUqjevnM0trNCpjyTQz4ptwXhsl/8RmsGwHj9nuqSmT18LTufHp00eO15VPTTNcV4pRLMqzbYZmux00r59ZaFhXuZEZuclghA/lid9/ekJbzegGjEv49Qvuk+dUIil0mk6eRu70hBXFKglJBe0t5rBnHyvGjyg/Mf/wE6lEGoVqwIwWTLd94yy0RsuJZQ2c55XTvDJnQ7mulDWwcZ43OrPfwIMeebCBjetDglFZbG3otXF9+kR8fXeEciLnTgGsYf3/xvVQFONQaCwa5RQ5Z1IpJN9JTUUE7T21lB4hVZqV1mNcZDa3W5KWHi20ETFHtBLGksm69P5COHJvE+wD/hvhbudZT5Z0UbRScdKwojB6y2SvKLrYK377jt1mw9uHe96+1RjXoRS5rtzuhTU0VC1cYmQJhcvXFjttkOaQVDlfvuLrW0XIK3W50oLiZISa6fI+V2gm8TR/YFUL5/qMsQO5Cqk00jp3OWMTzuuKKQadG04iaAG/0rjQrDCbwotZCZyRQdO8EIbGMT/BcqE1RYyFLIqYHOp0pXlL8464BppeUUOAeOGar8QKtR4RNRNr6mhoq1GHhvz6PXVzYJnuKKOmmM+o4cxQFQyfseuMRlHF8+u7xINvHB9BnpfujhDY3yc2amBnII6FD5trpxhNwnCv8VPD20h2meCv5BYRZ8ilEUviy/zCmQ9U3TBuw1NbGErEpX/c2V1a+8dpuP6v/4f/I3mNpBBZ15lrW4gUajac6krKhRIyQWZ07bhLvMZl3XNlQ+bWbtgMA5vHqU+mamUlcTfuscqjcbBGokpkqRjt+4uwVsplJrUFYzS7cYuyA2mNrNcZtzeMuy3DZkLvLGW+UHOgusrhcMNgR5yMXD//yBIW5pq5efs1fjzg3ESLM6eXLyzzhRIjUhQtZOr5ypyvWDcwbW4wNxvCEliWlad25P7mjv3ultu7ryAHljDz6fjE7ds3bPf3HPZv8UqRw0pKK0oJWju0aHSqXK5PVCpuu6O5oaveYyAqz8Nv/oyHX/0pZTUo37m+m2YpGpZ15ePPn/if/t3/xE9/+AMf//oP/M//9l+zzJEce47PiOqdgKzJVnVLbRae0ukfsnFudFgMpglzuWK0AVFcakRFKDGxXI8sa8FPI/uHG8o5oV7tnxMaNw5oqwmnhWJhGD3fPLzjcHMDtRGvK8/lymG/4eH2hofDHQOgS+Z4+sRusHhr8EbDcSbGlUu88nDzFuUdxWpefnrmVK4kybzZ3jNub1CiSccLn+KVqgTnBqqx1LWQrpGfPv+IUhqjDdpaPK5nZnfCL37zG+7fv+P9d79g43vebw6F/9v/8D9zLI1VKdRoyDSaAuUVl/NCbtCsY7cb2Yye7TgQQ+15RQSDMAwarQVyI6rO7Xe6MVlFCZU41849pxfslC1cn689Px8TrUZotSNma7/YSmmcw/n182NQg3/lvUNRlZ13jH5kP91ilCe0wlID0yS0UElr4cvpSu1qUbwXam7kVAghcQkrm9HzeLPjdrPnsgZOy8pzvvL2fs9hmjBMPB1njpeZn5+f0WNhEsO+DQx+wBuNf8VQeqOxSiFF8Ve//wOndUUNBp001hgG79iL5i/Gyp8NhbquKC9oL7idoY1bqjKkVFnDCaFgTcPt9z1vm6C0le04dUnd7T3GbgAh5StKOq6z53cbNa+UtmK0RY0jGEtcG2k+0lJAt4Q42wtReiIv1/47UOC2B8wwIiIcn38ktb51cM4jxRGXK5eXD3y6PDHuDxxu37Af39LySs0LeT1TSqDWTMuZ+ekD63piiUfevv8eN+4wbuDTp99xDM+kFvn6/ffst79Ai2O+/MwPn54IAnq75W76Fo2CUrg8fSa2TBXhMDwyDiNaK1JO7N+/Y9wcmIY7SrlSItRV4PzlH7ogbqcwqiGv0sNwnsnrQglXhgGM9yg/QLK989IKk7eocYtyHmU96/ULJfW/nx62gIfmaXUF6f0UmTa0ZmilkZczhKWja73DMHUbek4YJSjvUM6hB09cjtQcUFZhh00/OMVGXI40EqiC2dyhlO2XwTyjVUWkUaVBEUpaiJdPlHpBuQk33WHclmX+yHL9yLqecNMt1t8wuG9I4USIK9dlpW13GDPi9URLKyXM1DRTtTD6G5yZutAsL2AUbn+DtTev2eiVvBieL0deridU8dipYkwXrl0JfHr5zP/6V/+Gv/xf/kdO80s3sFaNKI/IgFuEeV5Y10i6rmwet0ybgdthy+d2xVjhMFm+u/8FtQXWdOH3xy/sH2+ZNhvKqXFdzsRlJR+vxLritGHvtrQlsubMWiuPu1vsOFKo/Oe//RuOLWIHw6/ev+HXj38OpXI6fuLvPjzzzft7/uT7b/jNV/81azhyuZz48IdnPr985rIszHNEt0Ikc5HAd2/estnvcNPIDz/9yKVeEQv/7W9+w+P2DVIaf/zpb/g3/+VvUEbz1VePvBu+IoWV6+XE7373IylGaq0opbmzO6wSzuXM7f6Bw90Db7/7BY/jHu83ODux+fE/ET98ID4/schHxsOA3kzUm0c0tpOc0hOnH3/gMs9cQmCqOzZemEbN41f37O7f4rd77Lgl5QtQMdbihi1lVaQLwNwRrcpQnCetUGImL0fK9QVpBWMs4dQ3ky1n9rd7zG6P3mxRW08pC0Jh3Iy4cd9dLnMjt9dn4mQZbr8hxkKKkZRfsDqhTUN5j1c7Ws6E8yeaRPSww+we8cOesDyzLs/kUlF+wtgtW/ctOb6Q4soSAubmFmNGrAxIuEBeIQcyqbP9UUhMxPDS0cqHR8zmDbRGTSu5bPibf/8f+Nt//+9Y8pmlrQRWVjuzv3uH9UNHEsiK0g3jhM1uR4mKtBY+Pf9MaRGksd3t2e/uGd3AYAUlQ39+GM247mh5ppYZ4zxud0Cc53Ja+fLlj8T1jCd1+6xYdLWcT58pOUGrTLcP2HECrXk6faTXGwVnNBJG1nnh5eUzx7zy8PDI+zdfs7EH8noixwuqLtjJ4a1np3dcTp/I6UppM19/+yds94+M0y2fPvyWY7gSSuFwuGfj3tIKPH3+Pb//+WeyUgyHA/eb93jt8dowSCOkQK6FzTjAsnI+PvMffvtXNHdADxNut2OsjXG4Ydw88H/6P/9f/v8+u/+jJ/v56ZkQF1IMqBIw2pIR1uXCnAMxZnKIyNAJHK0Vcs7/wGfdqC3eaIxqtCWjdEOrTvZQsZFbILbAXnms3VCMZj6fWWomp4xcZoIuOG1oaSFsLrSYMSmj5I6aAnFNuIPDDwrdPGlsjOOANRpkZn+3Qa+KtF6p6UyyQrOFwSpkMp1fn2eeL0/kJWGiIgOmVaQGUoCwrqzzzBzObP2WNCRiuaCaUFqlvGaygrZclMFsDlTdG8a2NOJ6ItbCqDbklKk1oQnYww5rPX6YSDXhWiLNK/NQeOMP7OyEWE8OM7MkPsmJ8OVnXj7/xG9PP2MuCUkzqQbGdez8W23YectahNyg1MakJ2rrfPvw0qlCxlqc2lJzIpXI9TwjOVNy4RISe++xShPXDCnQtOkl5kEBjVL6gzjGQBJFyp2lDFCUQFLENXM+XXBuJAromllKYYyCSpFrnrFLpzr1gnKiGaGpXo6yCWpphDWDnbG6y5zG18lXuEaSRHIopCWRomAVVCkslytBe7S2qNnxZfwZowp3d453t38K1qBj5PNT4FwD1TbucBi/o2IIpyvLZSbXnlVM7Q0pN2IpLHNitDBaYZQbXE60UjheIkhA6V4UxytarBAru6kz6ktVXI5PzOcr87LScqBqg9GKwele8G3dvHswjqYbqK54d4CIYLBMemBQA/vikcHiimBCQ2IkvK6pyVdGs8FphzWNS7yQciDnhTEpBlvQNeOlb7uaVSyX3E2wo+Jhmmiv5a7jk6LGfsBbcsS0yKBHnBlwRqixb7lEFCpm9JqocaE0gzEeleFLDlznQPUrST1z5w9sxlvUm/ekuHKNF57iEXtJiLVEM5E//0wiUVThvT/g/Q47Dph4ITEjyrDRI8Vaaink5cI5PjOZ3mGo46YThGriWme86aXlkCtT6VHAtZyxTfXCcRFaPvWyo3Ucdjec1yPp1TprbMTQ2JSBlwyiAiWfWJm6gVu2RNcoSyGsVz4vf6ClmZhWwhrI9YJBURR4B/HlzGk9c/P4hq0NDMPIzfA1LzXBMhOuZz6GH9iOO7bDljoM1OVIDFf+MP/E1w+/ZjPekpSDfIFSaKqx93fkAdYhcf3bz0R1AV940N9Rpx1VCXJ+5il+oeXEBk0RS11X5HykOItXBqcMVQ8QT/2y6ASdOzc+SyW+fKEIFKN53H1LtYaiIMwvZN3jE6PRzK1Byfg5MKsXDAbXLKkoTIqIaJI3aA1aDFkaZZ1pdHGjUb1cWo1CWupwAgUb67pzoCVYz8QWaCWhVCKWQs1XJCSajWhTGdzA8fpTp700cJs3DOYO7TOreSGnyJoTF7kwiSGUhZgCU87MBGId2NoHllJ6kX55AV1xdmJ0e1ZT4FSIpwv6MfJmd8fNuCXpET78R35en/jrp98RTqdOdpp2jMOAVQMGx8KFVhy6QR4buqtG8DcDw9NMDolzy4T7xJvbW26mr5h/+j1ZRa7zlfM1M4lmsBvCOLC3mVoW5uVIiCs1CGRLvAXrBKM0wzjw4+/OZLWw3Rre3z0z2pHpdo//+Aw5E8LK3I64wXDr73CjQ/8xwsfAH58+9u8NAkZIUkg1QVYseeHl6Qu5RH5+e4/xnsE47LTBOU0uhet54UVecM0yuB3D/pZyPROXC+eXT5h9Y9ADcdU81SdyS4xe8dWv/jkbbxlsgw8/EC+/JcpHfn37NfLL76nbDcv5iRf1Ql0jwzXwYSrML4nL3135X+aFP9nBr+8d9fs3KLWgaiaUF3Z6QownjwNqWQjryjXMPEwHZHNDdRPr0ycuy5W4BIbjSrAFyRHz9JFLOeGb5SA7tvffoHSm8YGzLdy6HZPdI/df0S5fCPHKS7jwxu9xm7eYN99Qy8q1XTjnC3sKWfUNrX3+I23ao5VisCtJb0A3WvzMVfd0wuQmXuKZuJ5QMeDHWzbbe0ptpHCEVohpZlELe2WpWlGaIPNMkBNKwVYfCAglr3D+O/RYcO6AHw7EZtCshNMHjvkLxga8E9pwR4wXLunMcwv8YrfBmoHmBmIthLqytBXUCff6811ZIX4BveHd/j1Nbwg5cVnOxLrwMO15GL8m+IGQFuZw4WM6oXXFOctagLjQ5EJWmdFUBCEVWONnrtqAtUzek+hplJgKMV/IBIxvbIYtShvmsHBZCyMVpzSLcZQ1kNYrZ/MRuy600jsPSzhhUodF3O4eiKUQ4pGX5Ygb9ox+y+Pjt5xz4rScuc6fqaVwM91hN/cweJwWdAks7YTV/Z2wrMKXl7/GDo678sjdw/dMHgZ7/Ued3f/Rh/3j8ZmYErVWRteNmdLq64210Ert8gWjOvWg9sOWxfTinVddwlU7oaCpLhxpAnHNdJeTgtHRjKZqmNf0WlKqjMqhde4oRNUn12INsgE1epTqwjzdLMYalAiRSlwrWfUm+AaLMhVjC8tS/j+0/cezJUmWnwl+yo1c8og/dw+apBJVhQLQAKZnZtcyIrOcf3mWs5heQCACXo2qrMyIjAhnj1xiTHkv9GXte5ES4uIhLh4efu2aqame8zvf12xsIqMkrcWrbVNZJdUiP1G06EEVpAiqKmRVSBSpFKbzDEWjhz29sJQkqEqxTpGSN7JcGETfqprWon0hEJp4LDYxQq2QloIaKkIJtNJUkVuUo0QUXbPUaUMVgktMnLaNOF84r5HZJ0SMr8NCGRXAmoH6GjH68w9VW2zEaEXOEFMjIyEEKI1S9TXm1L5X8UoM0UqhrEWqRiUqtRlA5T9TRUBIQTUaqTMYRUiRLQa0bDZI61Qb5lkjS1gB2TarRrdrm2D1CbY/xypgW2OjNMnG6FVaI2UhLIFiNMkKdrXH9JYSEnGKJAIpNVqS6RW6KFQVDXlHmxlAFZbrwnSeWeaNmivGSozWXNaVRQSkkhQx0G7RQlqb1KwKXuVXkVQlOUqEau1RVxXYSCmQS8KnBUpGG4WwGrk2y3TWoKokyUwSkXUOhBwpMqOFRNr2HXXSUlzLmqpcqV0D9JTSRCiyaBQS7SQyA6kSu0yXTRMM2YKIAqhN6FMqrlP0ncEKwWoWRASxVZQDqWu7jjKCrFitMKMm50xYA2Uv6LXl0Hfc3PXMUyaXiBcRFxXCdbhRM2jBmgshJrbzTCEiTW2D8UZQZSOnrDGx5IklXLEjKNWj7Ygymm1KhDUQtoCRps25aEtZX3GoWjDu3mLHm9a6j9srM12jVUcCYvBs54UtebpxROmhVfTniPeBXCOitHvCWIsOohUoaqKGSpGFoiBMFbTBao3RFmUsqRbiHBCHHoRCSovpHKXAfN0odkYDWnfYYU8tiZoCUji8XygJhJHEOWJMxnQCq3q07SAsPH94ZDd+g7Ew6oHj8QEhr4TlzOY9qmpsMXR930gqKeBDYdlWpOioVrEGj/Sq2SW1QAmJEpl5PlFVxFSDkF2jJuXMevXkkFAVtHFkJSgxUdbaDsOqx5iOajR5biSZlAuKAWiFjvnpStIChg5xMCAEqUYupwXRK7QxdKJDqia1IhfSa+VNlfbc1yipWaFc13plQlBqoi5tfqbYxkUXzU5F2ipFV6oBKSRF1kaziYIqoGaBTBakp6RC8B7ZRVQVGNVh7Ehaa7PS3vHqfxHstGA+zY2CUzwp5yaENArha3vOc26OGdE2t9sW6LsMsuGmdXOwkcg4ZTG2R5ueUCsfXl7405dPnE8fSaWgjKbfdYxyh1IOIRXh6pEmNNlkVAgD2gislJgO8paI1w1hBOM4cne8Y7c+8nRaWZYVJQ1jNzYe/K2mI7OsZ75Uz/rl0uR7VqJLpncG4yx3x1t+2Z24rguPHydO91fqALYa1KgosrCuK/M6gxnotOP2/g1+ubJtM0VU5mlFGInrXYvf1IR4lWiiJZnC44cvHLoROR7opON4c2RdV/IaWbVHakUvLHdvbtASZMnMtknfKtCPihQj0QemdSbOG9WOSGP49PEH0npGKUn95hZlenJRvFxm5rqSQ4Q14K+Z+SXzfK5s18ymBNutQFRHnCPVJ2qwlF0TUaU5sHy5sG6eNUZuzRtEhFQ9T58eWbaNEiKslWxBxEC6bkhAuw4z3mC6EepCLgG1GeztLXa8o6iBZX1imwpxq8jbe3R/g9SO5Tzht0AMAeE6hCgNXbNp1OCa2bYOiM404/viQSeUdBjt0DmwvFwpeWN/TEhjkVpiRWR5mchkim7o5FYj1M2arCK1tACI0gqyom4FkZs0UisDQpOjZ7o84+1K1a24KztJmD2+NDeT1ndYN6B2HSoWqm2SQNYR1XWgNX6NVFEQSuLMwCYUedsI5w2779DW0Y83RFmYryfOlwulbjgU0nTo3tLHRBWJoAI6ZLANWuDXGZRBqopRO6qEkhJli8RaKKIihEN3mpwK82mhdgmrHcIYjFPo3MzSqRTi1qSutZNMz1eU7LBuz8iAVhaE4vzziZ19QO8HOt0z7A/MMTJ9PrHtTshqGNXI8XjTiJJJM5VKWQO1CPp9Tz43T0Q8bIiYmzOq/IUNus+nJ3JpxjTjjlTpG4IqVUgFWQRCGoyt6CpQUaKMxFWLUwZrgVfdvCxQqkZUQa6ZsKZmw7WGojqKLEQC0xqJRIQU7OyIUwGtBNIYtDIoq1BaUcdWyaNWTO3Rtlndss/Mi28XRynszlGlQBu4vFwxZBwJpUFog1IQa6MikBU1JeQgqChiAFMMShSUyBQE55eJdSro/QPKGapUSOVYTokQNoJcOQpPZzRucKhYECI1geqWWiYNSZzBHhs2UMmGuksUokjc1BElO1CamgtPm+d5WqiXC09rZvaVLhbi0KML2Kiwbk+tG5AoNOxfFc0SKDVAJVWJkM1GLLRGmUwqr9ZGKdpcgSx0tEEYqTQGScSgZEGr9vKTUiB1Kzm1nwRb2NBB0+mOQfVYp0g+s62Bab0iZddMnztL3QopF3wAs4G0UMfKMnmMAGsEWmi0tahS8SePNxpbFaOW6NFSpCReK7mu5JwpudLtDTIoRBQYDSYapBBUm1nmlet55XoN5JAwrgmdLstKcAkrbJMJWUEVpV0r2+hRqmiSiWQpm1BtkHTV0AmNd5G4VVJI+LxA1CQBQgbqBTACRo0oiiwCW12Z5khUiapBF4foK1YpXOlIskCVqKgIvYcVaoTaZUQ0SKFQTlGnSqqJTQa62CHaBCtifbV36uZucINm3Fm6YDjnCbl51Abqtp2U85ZZaYc0oxT26EhzZpk9XhY67ZC9ILxfyT8kllLweEKMCCNwx2bFTKGy+sjl05UyJpSt1KwoTlFQ+KLxubL4hZkTff8VUt8g3C0S2NbAOgdyrIh+QLsObSxR9Fjdqo/j7a/Qo0NqQYwVhWwYXzVS00xYI9PzzKYS2WmkGsmq4LfcDuOuAAYlJdopbIJcIqkWsk8Uk8kyE6+hvYxcG+bVtiPE1KqxQ49CAY6uH5gugfm6kforrjbz8O5w24ohMWPVkWW7kopE7Az+2jwUcq9wekfX7dF+4fMfPnK8/x1dn9mPHXc3XyEYOT8V4nZhSx4TZt58/zUiJYpPjYm+btQy0ZuOeQOhHPsoqbrFyRSKeb1glcWpkaoHaskkH7iemrW6fcaeKgMlS/KmcDc9xhwx3UjSG8FX0pZaNMntqAJSzly+XCjW0I6bmlIzMUdOTzPuxtINhaIMykqQCkohhQK5dfqKKZTUUJPdaNvaJASlZPIcqAiEsCBt87iISJgLdA3h19CgTehYo2q85iyoQSP6jew96RyxNwktHUoa+v6Wy/MZHyI5gbQWrS2q70iTIaYzNS2kOaIGjekdcpWUAqWKtgHrLKXCtiVchNoad2ipEKodcju9Q+kdVXWE9Zl/+vSJ3//8E9PLJzKGrnOM+54x7F/fg6INSBuBUBUVJNIIjAVXJWYQeB+JpwvGKMZxz83xDbu159NTYZ427g4dx92Bu/HAm9sdais8vXxm3S68XD8h+oLea0wpDMYy7A7E+8KfLp9Yvix8/mHiy9cnyJUbsUONiqQK87xwOk+ITmBHze3NA3m7sm4tCrpcV2QvsW8NOSVSig3dLRS6t/gU+PLjB+6Ot1hhuWPH/f0brucL15/PBBVwnUN1mrdv7zG5IkLi7LuGdxSC8aiZHxPJFy7zwnKe2Hd76Do+/PRPDFGxH28Iwz1kwxYiHx7PiNj47mv2pE+J61PhaQI9Ccq9JmgL2bEtE7Jm7M6RnIJS2baJ5x8+42O7j+PBgsr4MvPzjx8gNQFiFQ7tQcZAuHqsGXDdLXb3Dt2N5JAQOeD8iB2+xhzv2NbCcqmsU6UUh9p9jRh21CqZT541eCIJXI/CUymI1GPlAaMHjLCoPlKnhW0KmE6g+w5n9tgU8NcLfvbcvU8wtMJmJyLndSHXhHSJGAp2NJjOkItFyrb5rhm0afjSMEtEMsiikEiMNkS/cT49Ud4oBEMjMNpKeNyIKaGPAmP2dMMOu7dwjmijMJ1CzRIxCqoupMuMFhqjHVbvmbMnbBn/vNLtR7Qdsf0tJb1wvi48PZ3pdxIt+laM2QvGrQFevPb4ZQMVqNpzedowFowzWNuRVYKcSVMg9c26rkSHtIV4zfjLhLzv2Q3NJN51CrVBTQ0j731qRbQRLl8mtBwYdxFpNUp1CCwvf/gTx9sF5w6Mes+4v+F0XZmeIjl5dLYcxR7z/YA1BRETIUq2+ExNsL/dwT8ZUkzE4CnrRtE91f6FN/uyWLQ07dQnN+paqUmglKAvjiQKSRTU1E7BlYItHdIICpl6ai8dDLhkMZ0ml0p43pjmFad79uzAQNoqfiks64yRPcZY5KggCIyAXkkO929QugIbi7f4vFBkxEiFlV2rWIcz5+VKTgWJwxkwtqNztwx3lZolJUS8lnSibaqjfsH1FSkM2Wwk33LbwgaKz0gkzjqO5xs+zydO+YT4hx/Rv/qOYRw4yCOzm5t6+2XibEcwFit6hDEoaZEUVip4007ofYTY7IBJZpCJO7XjOHxD3hmsApESy5qpl4+o5YRWd7j5Qnm+8PSpMH+eyEJR9YjHoyPorEg6wmumXNRK3poWXEqJqQpDo9SkIMhxo5ZCLztq3SgiIaRAX2c649jtDmS1oqVD4yCvmAxaaVznuPqtEUCUJ54VUmeUS9g4UNJGiAvzTyfkboBh4A23pLxRApRFM9WMCgLzZFmrx9XmcDDaoaLBRsm5ePiykXTh5Y3iIAacMJSdZDcHLnViTgvDZWwb3Qq7OJBkGzqTZ0HRhXReib98YvrmQgWSltTZYoth1xneWEnMjgDYIbG/7FAS3A7mJaFdwQ2Zb9Qdx52it4KXp8iX9REfAjdxhxk0KEmZJFO+0mXHIfaYd4p1EoRri6/1YUALjRoqKoOs7VByjAeEy4g+sp0NU5qJIjBe9tixR1uL8Ya1XKlrxPwYkN8WVJKYxVFUxMyKbjF4JrpgGeNIP1oOp5kcE/M4sV8HhIFoM/FDwuwt3djxdRh45oWQIv6PE92bA/tuoE/fsR0CPAXKUyWYhTDvKYOkuzviYhuyushEPZmmZ+8j7qKbpl2t1HPCOcvN7objtw/s7kack8xPgWl6xKfMrnvPm4d3CCWIKaCHyO5wy+H2DcfbO3KupBQo2dOP77Buh9U95+sVPy9M/sww3rY2sbKkyRN9JEaPwhBEpSjocEibm6diMfgaqHOFkyAPKzF5bChI12FzIdRE7BNcZpRUaKXo6xuiOrHaF6ZfntA3II6a/e4rlD1iR0k3L8T+C35KlEeN3CXUumGeN4bdnlv1FVkYfkj/kV/++E+UJdH/9YHd7p77/R7764F/+vH3zNvGi184Xg2UAe0ybp6ZNogx0OuN4XhgwCBFpmZPVYYq4a57QB407q7HysC2ZsqyItJnnLt7vVYdMjW+tjp2jLs7OjeilSFePWG5ktLGcHiHtgdSSvBqGFZFYbwmZwih4LeCEpXqE7HA5FY6MbQuVhdIcyJX0QaiXwTCRJSruLJHSocUGrVkgpiopSBniThIapaIRRDNGc2fccYKkZqnQPSCulVSKa/PYEdOhWQ3cqzQ9WgzMGyFrY94tbJ+/IX+/QExOrTec3NTEXMmnGeWujAEh2OgmpfmkoiaKA16k2hRUbJQ00KOiiwt1Thu+nv03ch4t2PQghpXrp896eMHxOMZt31FNYFO9IzbHbZzyKyoK3whUSZJXTVTXriRI70aGd/cUj+dCRfJFGD/ZeD4cMOhe4N+vqFfnkgxsEsHDuy41Ue+6r6hqIW8FMb8RODvkReDni3Lt7CdA4NM/OqrrzlfNsx14L+e/4mf/suPzHc3PLz7hlINuSp8Tbx8+G9896v35G+/5vv6N9wcvmd9a/n26898+PBMWCrhR830XaGmRF0kvRt5yIY+7Phx+hN/+C8/M9969N/8Dff5gZ064o63yLTQ4TDGseOOaAreJuzyQigSqQQ3qs1tpdlz+vyFH+MPrVseHtjVDvt1j/16z43d+Py48Hi5cv3l97j7X2GV5k2Z+WN/ZrhJ/K0U6N/c8Fdf3/L13ZG4gZQK6wzj/T2D2bGtE6dffuLDz78H4ej29wi14i+C63nh8vSZXu4xumPYV1JeEXlDa4/++msO9wfuHjqS9lASSinu/+pvGccbSin89OX/4NPP/wOK5ubrv6Nzlhoz83nmp8//E2lH+uEG091S6kwtC3ofUNqilEOZjnwurdtTZwb1gHMPdPaG7hIx8hOejennL9wN3yJFh0yW3WiJqRIrhJSRq0Qni+gEItpmi5YFOTd7encjUSUhgqfIFaE1VVSQEme7Fo0sK5c/KbZS0abnwTxw6B7oVI+MmqBOuNrRF40eL/hlxfuNWBXf6K95Y9/RmTfU88/4yXMNC9/6I0PeAx3nD4F4zqhNMfS3dMZihMYExW4HCDCpEtSP5GshzoUYJUM5shP3HMdvyOcTy/XMyxKp1w5rHd0wEr8E1m1h2wL7ZNnuKhbJbtu9Fh86qIWoM2wR81MlWkHYKv60Ib46MpTCPkVyX5mennA4br/7mn19z11XuH/7gQ8//sh5knxIPb+6JrrdgB4k8rxxDZFpznA+4Myebbly+fszP371Izf3Ezf3d3/Zzb6WusVrtERUR6UNVWjhULrpqMkSKVuVTSOR+tWkmWh5YxQCTXVt+jqlTEgJUQ3aWMxoUFWSoyeEDV0NUgukbcZerRRd77h5c8dwcyTlxLYK5ulMEK3dHLKg+kwuhcuyMi1tdqDWgNKZ3a4y7g1dN5AL5CxYQ2ntHanod/cIvRDXDX9VbMVTgYyiaKA0GVg3WPq1p+bAkmbmaUIKGPYDne6IORFKYnq5tquhDWN3i+kSRTRhVpKVUproy9SKTAm5CFCRXGtrWYtGIsm1iTNCsYTkyJvH5B5XHF0BrzukqKAqwjeTca4AhipFewJe5WetQqZQRqO1QUvN4hdiyqRckY1/CrliYqB3HbvOcDMYrrOn5kTZKsKAUhrnHNY6bEnN/qst8KrETgU3gBEGRE+pG94HSLW1tqREqEa2yFuhjY1Xcm2VA0VBxEwuUKmoYoiyEERgnWb6wWKNY6cdWXrWsFJSJsmElQatFMIotE9NHCQLJUiiL8w+8fLlRM4VMTi60VJ3BbW3FN2RJKRaEDjoEhKBrYqVzGg63u1uubvZM0iQKTGlF0IslCpR+2aHLcBWImSF7Ax6Z5BFEFJmSQGypRpFVRKZoFhQWjJoh3QamRIEONe5tVmLQgwKrTVaNEQka6vMl75AruSa2aqnzy1+UrtE+VjJdyCM4q7fs96vpJp4enzBu4zRGisdwTSzRYmVYmit2iIILjeBSZaITnE73lI9bEtgeb5wHRLXGPmd7eHQJEXdjz2LzmQKFEUxAoGAqtog5uCQu4pyA2hHqZK4ncipQ0hFv99h3UCtjaC1O75jdzgy7o8IaSlhIoaVkCxOaArgt5Xz9cTLdeFlVrhbR1WSnCPX5cSyJXxS9E4QttBIGFqyNwNSRVLNbOdITqlx61NHKqqZwlMg19CEPXUgykIqqQ3Fdw7jeoYKi5hY1pWSnznevWNvHa7bc3v/wPnLL1AKCzNB9ARhSbKSU0Jqgestg7xhS5Hn9cTh8QOmG7C6Zz/e8ebNlfz4yPT0whIXeqsZzYHbunI9b1AyW4kMtRILhFxZy4YQzYuSe4nqLFJ3FCD5K2mbyHXAqFa9yz6QRW3CoG7EDAPQqGXX6xemOVLQdEq3XPu6cbleuS6CblT0RuL90lCx20zMmlortUSuZw8KOtNmTbS7kLdI3AKlZCgahaUrGZ0ikkxICz4JalU4m8m5vXsyGbKlKEkRuc2TmVeBmRiQJiJo/pVIbPNE7KnaNsVYiS3jXB0pVaa0YObHlv/vOpzbMdaMzwunz2e0CFhrcXpstBUBImSEbTbMSkcRmlQK3q/I0qJEsmtd31gKJSXm+QvnOXNZBSEnpFQoqZFW4kQ7lEWVkFuixEDKsfHEb1rURmeBiAURwGyO4bDDWYuKFSU2etdRd7fsdh0+BRbvUVLw/u1b9oNFq8Q//rf/TiC1dxodFUORCmd7vn7zhrwFPt3+jJCCdd14/PiZ/f0bjOkxUpPSxufHEwnJ19+eOAyO+9s7/va3/4J/+McfOXFhq54tZLSraAkqNsCA6xxjHfAhc7pe+fzTJ96+ucNozf14Q6kaKTWyCDqjudsf0DXzeHlmepyIMZJkQWGpWsAgeH6e0PoZUSH3IIUmB8fqBpanR/y2ofZf08tbtAR6jbssjG8sw3cH3rz9lvv7nm7UlOcLqD24DtsfSTWy+Y1lWQi5px9GdocDskjCdGZ6ema7CLpdRphEjRKtJWYY6Q9H3P07hptb1HCLDxNZWHB7lLklVcG6Tnz844+8rIquO/AwHJoTYp14efzMy0tmdwv9XlJjJsuKEBpj79DdDqksORS2MLP5jPc7hB1BKnJppMF5lVxmjeyu3M8vbbZFQed2KKMRaeH69IREYIxCqwEpBbVGWDPotu+pdaQqRaoJ1glZZUOyG0O0Eqk1CNWohKrDmIHdzQEjDKIISs04vUO/iiWXl2fCtuLjhi1HbLdHW9e6jdPE5RqYZgPdQJGasHk+P/3EefGkYpDG8IqzoOs6joc9iIqJK48/idZZqoFUd6AHlOkpvrBtbQh/mgVukGgExcO8rSyzZ10K8sZj1w2lLG43MJodpgMtIuePT23foKCkjjVqppgJ60oqLcs/z4azz2i/8TAvmF3P2O+5H9/xyX1g2TyPn544LRNDPzL2A7v9gU/8TMieIBKoHnSmKMHLtJCFJhX5l93sK6lJSlCVQFQNNKSlRiFlaAtbBiGbOtkIjZQVmUFm0drmtWEnMbLh61Il5vbQGm2wfdvsl5QIMbSMvAKhKpSKNpp+7Dje32KPB9YtsPrC4j+TtUFqQyyQtmZ2mxbP7EvLcecVWQsFie2aEEPUls3d1oBWGWkV43hEOUN0FpUhh0rKUIWiSBp5RQqsswymoybwNbItC0YputFhpW0W4eKZThNIg7SO93cP6M5SZMZLQamQqiAVRawFlRKqVqSMr4zsiqrtRm4GvESuhpQNcQmIqNFJYVPBKEshImoAH5u9UUio5p+/w/bnlAZGFRKlNUq3jWKIgZQS+ZU3XVooFeEDw83AYTDcjZYSNFtIhBSwrmv6dGuw2mFtRNWKtW0IWKS22S8UlJIts1wjYWmfr+tX3LjDaoN0kuwlubacejNKClKtiJAbArOCroagPVlktnXFpz3GOTrnCMphzhpyJaaANQqtDNUJRBCIKkgSaiqkkFm3yPnpDAhsGul3lrKrmNFQlCXLQCkVUQzK1HZwzS3nPRrHw3jk9nZELoHgM4tf2mCyVKhBIYMi50IsGVl0y1aOhhoEMSd8jsjsoHt9rrygOBDK0Ose2Svq6klLJOREyY2xTtfmRhSSIFNDMUoBXbMzp5rweWMQtg2nS01ZKzk1ROKhG1hv93jvUVERRUah0cKSTCVTyamS3asFWwpqV8mlRa6UUhy6PXFInIaJ0y8XliVyXTxOWdShnfJHM7LKiVxKi1OYVxhdavM2srOIvjaEJoqUIcYVaodSjm7oGqu+LSwMu3uG3Y6uH5vMLwVi3EhJUaqklEraVi7XM+dpY94UqDZflFNiWs6sAUpusbPkA5naML/qBqUlhpUSMzF7ssyItG/SwFrIMZByIJdMrY4iV0iJ7D2qa99vZzWxeJbLxrZELvOZwbyldwMHe8d+f0tKkbVsxNKReB1AzQkhQVvNaG5INTP5iefnz9y8eYceLZ3bcTzecr5MpJi5LhOduWHoB7I5kNaE94ktecKf8X4xI9jaobloqgWh22Yq50IOE9nPVPp2D9XS4i4GrDZYN6I7R/GtlXydnlhXgdSOiiR6z7bOXOcry1qQnaBoid9W5vXCZZ0QdUTURM2JeJ3Qg0GLAeVGjBUUnwk+EOoKZUQLQyyJFAMSQcwbIb2uu6pQSosXZBLkDmiD+Ck0N4tSEo1DatMw0SXjayRVRWKgytd7oiSKyG2jWyqpBOb1BaE03eGezhzoyIx5R4qJID0hGwazBx1BZPC1rc2iUmvL6uZaWrGqNNIXpkUoU25ozXk5sayV1beOldN9I7RpiUGTRJOmiS2SQyDFQA0CbRzGOnSViFxQSWCTZTzusdY2qhErnbNIaRl6iZ9jO3jGyMPtHXc3I84V9rs7LvOVokEqC9oilMWajvvbG+K28XDXs4lCzoXL84nucECYDmsUSxQ8nybmkPnl82fGX33Lfn/gr77/NXe3dyw+sPgVHxP2z0CB1KzMxhhG2RNKYH7d8OzGnn2/59ANJNVoYTUJZIXd0GMUHC8HttNGXhOJhKgKJaH2cLksSHlCSDh0gk5qKJage2Ju2OT+8J4u9QgKQQk6daS/3XP79Tu+G/4KM7bOktBXqh4oZkAoR1gWtm1jXQKVAeP27PYHyAI/zSwvT6RFULuCKIkaNMY2Ut1wuGM43mGHA8IMxOmZbHukGqjC4ePKNM08fnrC1zv0uEe7npQryzzz8vSZ+VJwuxYCSD6RbUUpjbED2jbBUgwrm5/xvpBCh/jzYT4HYvZsAZZNYvzKslyQWiCcw9kDqkqqjIQtoJXCdhprOpRKlFpgSZTX+ZOaX5+dnCgxoopsEWptyVoRpWoIzJRw2uHsjnG/a3HH0ooavd5hbZvBq1tqm/0U2Jk3GDsitSV4zzRPTLNn23QrCIm23jyePrFuBiV6pFaUWKmAsYbdeAeyIDyQGskxikgVPUL2TVgZMtvmWdbAugrM2NDKMRQWv7EsEb8U9C7i1q1BMILHDjsG59DKU4oiZYFylewtPknWmAl+I+VIrLAGwxJhiIltW7D7AWc7jsM92jqW1XO+nnk5vfDmcI9Rjt1ujzYKqAQRqcKA7qgqsyweprm9v/6Sm31IqCTbRqos0EZukKqgvaBGSKUiUxugMwrU1jLHkYKcQXctsK9miacQE5RkGbWgF5I+Kqpuhr/qK9SVuhpyzARXGB9GxjeOu3tL9/0966W9xH4MD3QGBitIRZA8eC/wi0bI3PTil8JlupCWRJ4rt++OVNpw6DYVymUiOcfh1/cchaR2lk06arH44InZU5baTrdCIbdM3xe0U4ickbkQl43t0wVxM1J9RJxXphRISyadN37z7Vtcr3FmhGNlfZmIxVP1AouhGEl2mRA26hrQc8beFvTrLK20HXc1krYLf3z8zPTzRy6/PPL0ccLJRErtkFP8FWUUwmiUUBShqEI0WUqbq0XJjBE9MQZWPzNvV1TJqJLxMVHDSsmRWCJ/WzPvO83b9ze8F4rPW+Jzynz9xkE/IrSj2zTdeEA4xX7XsaTCclk4fzpx/lzoB0c3WEzQTCESQkD8/Mzxtx3DoWev98zR47fI4iNKJoSXiKzYRKFGIIF0mj5bUsrMMWI/nRE3lf6bnl50dNKhheb5wwvcZ7SB3luSUO0lXiyLPJPDhP+omXefkMrjOPLu+IZiKlpAlwOmaGLRzGXDZUNIkVN8YWcVt0Lz0Pc8iIHP25mX02fyc6LTAm0kh8VyrS0HKWZJbwTHbHiz9VwIlAB2VVip0F6ChKAqQ7IMxtIZy75YXoLnw3IhPrVBPO00wyKpDoIEeVaQC6pI9pNmOQTWdSOeN9KtZbCarlqsg/zpRAgC+f4bvt3doW8Lf3zjWJ8TosvUm8ShGEQviVoiHjMlZ4SCB98TB0UpEvWlIct2dDyUPdfhQn72zJcn5r8J3O0HRnfDb3/zDfmPn3i+XpjyCZczylqEg+3q0UUwKocME/maydIQ1Mh+1yhRrkjSuhBFpWjY99Drgi6BbZ6Y5pnNe6yA6jdCjFyuJy7XlRxXDrZwSAYdwGvPdVqRFYxSmG1kjZWYPD4tvNsd6K1jr294tp/wl8q8BvYPF0gGQk/Ubcg8xoB1iV4MZGnwRrCdNjDN4Gs9TFtm8Z4//fd/YP+vDd3DPWN3y9v334N0TItk5kIKkng1pBtHWitlSezv9+QQYBW8qBc+/OMf2O5mHr75BpslnbB00vCn//QH+r/7Fbe/ec/b7hax15zyxJcvL3QiYLiyM4miHUlbstTYUDEuotJKOl0bFahWjl0bVstFEoql2ITba/peYzNc54nzyzOfP8+MWtKZilhKqxwvG/NpgXTCZsUYNT5unOeZ03zl7aFikqSmxDov5MdE2Y8c3rxhpwzIyJpnvlwW+iGzl5niR6Jpm+ctFKQKbWA/arJuWNxYM4gJGRUiG6Jw4DNatQ6Ji5qSDSF7np8jQkW6viLiLUUYohBsiwANdgQre9ZlI6VnhOh595XDSM0oDxhrmS8ry8vK8XcWUypSQNI9y+ZBRNywYYuCKki5sIlK8QYRDWbM5PmEP5+4XBNHKblD8stzpL/vcdmwizuKzog5oi6RGALb08qybNS9YygjR3Wk31tUlTgh6HaS7/Zv2duBkCLnx0znNMedJOcCPuGXhY/h9/wvv/0t+8MNRiv+zb/5Hf/0wwc+fjljd219Hocj++MDYVKMJvLd998Q5sTkA8/rwvLTRP/GsnvXk5NgunrOjyv/6f/7v3Pz//l/8e1vvuLrb+757dfviPPG7583tt2GrhK9Sng4otaM3CrdvqPzHTVXTj7wy+8/cne7or/7imO/I4TCmgN/+odfuP/qwHjT8bu33yOvmtPzxPpU0LYgakHFwpoWznOBL4FvZM/tVzsOX42Mk2A8focaN97HLzytj4RLQP3TSv/dPQ+HHd/ZHtmtsCTyGjifO4y8YvSFp+UCS2SeVtar5mDgRrXZJD9dWS8b/lzYlYi8SnJQpAHsrs1+DJ1m6IG6ki6e53XChYUuzUzrHfHLzOV5oriv+UpoDsZgtsTy6Ynn0wsfH2f64lHTQHoMnPcrZhD0o6HfDegkCT4wXS48fZqoVFyXkHOl9KV1waPCucR+F9jVG/IWWcVMnVf6rwdUVYg4oJViuU74eWL8zdeYKqEYkm17oEpEumfU2iMEUAo+B3JNWDMgNkkQEU8gBMXdseN22HEn7kkiEH3Cr4nbhz19cegoWSNs50JOcPvbkX0a0Ivmkq6czleSX7mxijfiBlccPm+cXzacLQy9RgZNDYFaMtF7rHFoKSElnNOcFsOyOfpeIn0lnQtzn1nPknCSECP27MAYzraynpuPJNVEPgnWvrkT0g8rv7l9y3F/0+YQupHVF+KcsUOlxEx+jlxvItvS5gWG28id7jjWAa8yy2kl50R3cHyl3vBZvvBcZ37///+P3GrLm4c9+/HAV+++pUbF09//iawWYMXMFbkz5JI5zZe/7Ga/lkRWlioVWjZqikCgokJIi9ASUyPCVJSUKCHboFIqiJKb0AJaZd8ZWDdKDkTpKdJRrKCMipojGU/CI4pFmB7Td7x5f+Dtr99z/+bA7u0tZvcAasVXwVe1bZakEuhiqTeVWCLirKnBU1OmHAs+PEMphOTZ1g0lHaJotF/ZqifXwHLp6W6PmGGHs56UDMs0sU0XMqK9cIAyatyskNlQ9jsGazHGIIwh+0QKmYhCxoSXCzkWLs9nbt+9oxsHxjvNxTdBz3bdCAOIUlG5mTSLkVQnkEW90h6AnHjJkucoyGvipXhWHenHwqtJiFIimdS477WiKhTZ2sklFzK1YeKKJItCygkfW1u8ikZMkiS0dQx25Ku7I//b//Nv+ebdex7efMPkZ5aQWGPGHDqUbJGd4BNrbWSKwXaECufzlQ/3v3B+PLdOR41UY1A6oFLkKj3ndUUazWG/Z8ShXUDMK2mZKVWShUSmRKZSlEAnSdG6RamSYK0ZGTaG84Qd9xjT01tLtJXJr9RzRTy8wUiBKYJSBSpLQBJFZZtWuqHH7DKd1fhBUEZIRr4OQVW6rSPIRBQBkQt6VG0ASgrWGjhdJx6/vHBKLxz0HUpqJlkpkZZjGyuKnmIsixWUKVNFRrhKVweSqhRRcCUjuzakrItiVc0omE4bXgQ62aNExywrrlQ0leIqIhqqkMydbIKcFFjFisgHpGiD7DvTkyzMKpB8YLw7cNgfedjd87E+NyrSBi+7zE7CoCRpyNSrgiSYnOHG9Cgp8TpRVkkqEq8VvXJ453nSCz9/fmS3+57b/YFf/+orfIzIj4XzT1e2g2zdL63JvUaMCruTSHEP2lCNRJORQiO0Q7pDs2eritGgpCVHyCG0Sts64/2GMztiyKSauV4m1m0lh0RXNckakhTUELnOMw5LrzSYHi0WsoisNeDXDY1GmQ7b7zEhI3Mme0hZEouio1CEIFcJQSD3O5SrGNtxuTwRUyCFRBEaIwVWJJ7LmZfLE65zDMMD+9uvSNWwBkH46Y/ULPFFsReV2gkECrda8r4H2WZtthKY/cTuckKLA4MaOdiBj90TL+uZ4bnn269/xe2dw5iOuCXm5YISmmMHpUvIalBGY3c9xg4oLJGNKnyLvVRNrJkEZAraWoRsbHy/RdZ5Yb5emOYz3XCETr9i5zzLtrDEheADsUK0lhwj1/nK0+WFg+lAd5BbxKVE3z7/uqD1DmVB9yvx2WOjpmRBKa7FEGsmY1oHWUjKK5lMlESOEV00YKlC85rWp9C6BSkpYpLklPCxoLLCKkMqFpEBkVtXxSdqLNTjiEmNdHL1K3c+oKVBy5GuODaxsIqV+Toz7AaMs0inkEWTcmGaVjqnEEqSaoTSAAbCKhQaXy1b0aS8MmeYhSY4Q+46cqfJrm2EUy1sMpHWwLpt+BR5099w/3DD8W6PqImx6xneaA59xze/+Q5rDfN25d39AMqhteMgO66cqCmRO8HiV7o8stt/xf/yL/9X+uFHhuPPFBKD2zP0B/Zdj3h7Q8Yj/9Qz3FhMCDhj+LieOc0nynPk4G7oy8YaIn+cP/P1z39A9JJ/9bu/4+/+5l+ilGONhdNy4VIhSvg69qAk1Qq4VLAGpVTDmsrMJczYpy8c9/+CvhNYFNew8DJPLNHz5u4rvkuS/eHM86cTYV2hCuxoqFljZMvz93cj+/E7juY76k2Hm3wrXpnIsAjcWCn/qvDu5lt2e003VrbPiml+ZprPPD9+4bhXqMEizYF1XRryuSpG53DdCGZgO18ISyPrdKZHuw7Z2faMDQek0WSfufx8waeVaTvzh9OFuzc3vHl4QH3YuFxXpiWg2WF7h+pGQlHEkJjXjXleOOpbBD2paKgKZQzKGCgKnxr4YpsX1s2jpabTloIhxUIpAR8jRNDFoHYHjHUIIZnDRlo8RndYtaNTPUtpVLswb5jOIJVBmEBNkpwKZS7I12BzLaEVFCs4rVi7Dp8VvkbkrnA4HjkebtC7nutlZqueoCLzPEMvMNISQmYrmSIKO9uDVqw58/nxhcfnC8TCrd2j9gNIQZwy13VGKYdRI3eHd4iyoUyl2zuE0Aih0Hpk6G8Yt4TPiRIllFcT87ISgifFiNoU4dioenmLZJcRVWKLZS0CmyslFZJQlNzcHVrt0GJAq0CWCRkKHjiZzO56bdQ9BPJcMW932MORUQ0kmck5oSLQD+h5xZWNz/rCh+sHbj/d8NvDv+fm9i0pCh5Pnh9/+YH14nEi0QUFwrTExl9ysy+leN00CoRqucjXgDVSKmStoDJCVYQQIFpsRPCqekc2GZMSCKXar9VMJb8OeDSEY8mBWhOQGkrPtcGJ48Mdtw/vON4f6G53KLcjS0mXN+62SqJQhcCkDuEKsQaSKsTLRM0VITVhbZkqvwTC5nFKo4VGpkwuiVwj8+XKYXfAWkvnDMOuQi6tcpgLSjTWsXWGuElykUhj6PserRVVCtIaSDFTcoHSDLzFw+V8YXf3hl4a7Dhi+41tDY15WzKqiEY8UoCSSK3ay6tCqYWaCyFnQs7EENlKJImMsRByaYPQtJmA1tgCUZs0B3j9HmqbA6g0ykVJLULAK24TgVaS3hruDjv+xe9+zd/9+3/NV+++4vb4jildX2NRlTw4ZNHUDNd1aXn5UjDCkJXmcNw1e2yKLPPK5gO1yldcJ0SRmf2G2yy7/Q7tWjQgxUJalsY6r7TrL6AAtba/vxACrSu+ZnyMTNPM/rXVZ6wFLfEpUtfKWDJGNdmVKO0erBRiCnjvCd5jQ0DrnqQha0AL2ghERSqJz4kqGkDJWonWAij4EJjnlWmaiNkDFSEkqVREbThAZRUiKbIQhNK+RwH/3LZvwaqCFqBNs8tSIOZCjInkE1UUpJBooQmv5LX2JMuGT0QQAZUKpaQWcSgFgUQJTe9c2+iLTIgeKRXOdhyGPac4E0IixkyK0Oemlhev91/OEAoYadBKkkQmldoswhmcMiSZiCrx+eWF79f33B80b+5ueLm/sKyeP/z8mVgKslaEUEinMZ3A9AapXLPkaoESCqM7hHZgO7IsLRqoBbVWUozk1OIQKTazJlZQSiWmzLZtxBhesV/toJxfEcExeLRUFFGpVSCkAinJpeK3Dascwgxo0zBvKvjWBk5tXiHlRnppfNjW5dO6YWGn5UyOC94vkB3UigRCClynM/t+T3kQuG7PuM/c3HqePn2kUsil0m5riTQaJTVCNzO1fH1OQ9hYpiu7bkAh6bQDmZnXiZfTmW/eK7p+QAjJYZx5XE/4GFvnQ5tGmKlgnUNpjUC2Fr2QCKkQQlFz+06zqBgpQQhyKdTQDkPbshJiaDl0qaiA3zzbtjUpTM5t1khCTpHwOnuVUyKVRC2vA7Mx4zfY1olht2vXU0lyyeSa2ppUSsNd8uf3CIj6GqMU4nU9a88YRTSUpyw0EYUgpUQqlfwaJYy5zSrVIl9jmW3Dkqsk50qOmZJBoKiI9nnihtSyvfyVRQhIJbKucyN4mYaulFpSC2zB41NAtWM4shaEFE3yRrvPYs6kmFqutwKydRyFUlQJNdW2tr4aj0NM5Fq4GXfcHHeMg2O5rE1ON/Z88/DA8f4ItRDyws3eUWWHkh031WGGnpQjGMW2LXjvsd0t799/xxwKW8q8XJ/orMOaJjis+4Fx27VNoTZoLbECPnw+s/o2XL+/2aOqQAs4xYWfP39kv9/zr/7q3/DV+6+YV89PHx85//FKCIEqBTkmhDbtBVqaJ0SpRm1b88waPafzmZwSzjps32E2w3SdmdeVr95/z+3dLVoptikQ/YYooJRseG+p0Eqwv79j3N/h3C1Jb2ircViS6XGHPVVr6p3g1n2L0RElr1yuK/Nl4TqdWU5nRtm1PckAOeTmkqGhqCWCnCp+WUg+UHPBGIu2tiE2hx5hXXs+1pltXZm3C5ftiefZ0w+WnBN5TW19LxWjDVK2rlBOlVIaajPFZnUVKChtrZdKI6Wh5ErwsWE5t9bZl6Zt0GuVTcIVN1JKiEqjIVmNUhJEgxsk32IqSrcotUqSVAph8yhjkEpRpaQK2d6/qaG+BZmSQ7NN1/ZuEtq0PUUtaKvZ7VuER1tDKJlQIpHEum0YZRFWUYp4je4KOttQwD4Enl4uXOaVTmj00Azt9XUvlXJGCoE1hqHrUVKjNI1MV2tbFzA429O5js4vhNTeubVUco7EFMkpQ26Ha1FavLc9ry02nWMhm7Y2t/mHSs61+XrQSGlBSGRpRvI1RKZpRVnT9myhNnmgVlhlidW3eHMBqV5jvcowi8DL9YXPj5/41W+bb+NwU7i9OyOlIeVKqRsqdAgtqUr9X9q7/1/e7I/HkRwFpTTTZQ1N0rTqiC0tTxmsRpc24JlFQkX1ys8X6NT44c5IbCisFWoR6E2idgUdM3pOBOWRZJyAMmZ2d5bDmwN337zl9u09h5uR7jhSnMXMG30U3H57iygRUQuZPVJAzgFlCx+3S6vyWcvO3OPFwrKdmNcFJQWKVskSPpGXzIf4M53RiHJP9/YNu74gcqLUFfW4ULSkasWuSlY1UVKkmyPdXY9zFuEDH8OJMEfqXAmdRoaKjp4PX35i/3BDfxgwwxF7WDBlofjAFhvWSUiDVgktYJCOqAo1eHKMxAz7fOaST5zT3IyRKRAihLSQaqSKhBS8vhCbyluVTK2VUjK1KoSoCJVh8UBuhtJa2oZfVmxnuL/d89137/j3/+9/x7/6v/8/uHlzj9gP7D9+JEtJdQZnDFus+JAZXy6s24UUPTlFaj8y7ixHqxHTxofPH9j8iTqn16wsuKyZ1wVBYbCG3c0eoQ1WOmZZqSVTQ8K/irYEgqgrOrXPl3qLWRdiWvklrLwTlVLBHkYOzzvOy5k1TtycrnQ3Nxir0RUwlRg8589XusGiJo3oDNrcYVJCT4lubAtroRJ3G/1zQRcIvWYnuvbvaYWLYLlOzNvMToxYwNSImro2sKRUs2yKhTCDWQRyFFjR8IHGJdRqqEWRRhilwwjZePcnqFsmmcKwWJyTWF0YVke2gAEtOrwKiJQxXyTx2HCDQ5RkGREpYTCMhz1sV2SCFz9znAMyCY7HkfvzHad65lm8MLyMyFLJUjC4PQsbPm3sf1ngtzdobdjFii8rYot0pwq2x1RFqoE/fPyJ7+4fuHU7Ht4e+fbt98Rk+PvPP3F+OlELVLfj1vQcess4WrxaEaqgkIjuBtVLpG0D5D74FjsTst0/ucmucogI5CupSyJEpeaM3zw1NAtx1WBioNaMrwlLQZuItJ4Ur2TZDgRmk0zTGUHloAzCaLTtMDayyhe2dEZea1vcVdvge72S44RRO7rhQDc9c12fOG9f0M+WZCxZGoapcv78iCrwcP8VbjzS9zfc38LTux9Yz1fyvLFtNxg54mpHts8oX9v6dHPAbJ4yr3xJT+QuEWJBG81utVzDC9u28Kt3v2J/e0/XH3j4LrL+8kSqns/hB966r6EohFQ405FFIrNAfEbikEahXEa8pPbyExJKaR6FuiKCZFsn1mWhSo3eWczOoDJcz1cupwt+XYm6kEVA+Jm1tvfAoARKeuK2EmNizStyysx+5TEtvBGGmCs+JzwJLWY8hXX5TDLHlicXgVI3KJLiK0lbakmInKiurfsiFaprwjZqZmVGJE3wicVXUhZIA6Ur+G1pGxcqqnQkBBEPT58wN43+JP3Etp4oJiCEpjuOmLmDy5mrecJpi6mWqntEC6QT0sJz+pGu9vSMZA1GdCgMQkKOV+LyQlgErkTGEhm9YsyCPkmsNyz5StkScoa5ZHzKKCS/ef8N725uEKLyw+MTUWTeH9/wd7/6a5wVxFhQsnI7Onpr0cD05RcO/YCWOzo9cHr6RA6BEituv+fN4Q1p5xGuMI5gVbO8m6GnO4zc3vU8X5+QrmN//Jrhh2eu04nn04XDZjD7DrvrsDHyx3/4ieoL/+5v/4bj7Ru+Dw1J+PHzZ6bThXy+cO3vOAwGKzVVCuyWW57/3Y74srGtK5frwvcff8G8/4rjm7fcLpHHp2eep2d+tb5nNxyxyrE9BtbpQtoSYm4xJKMVoxD87q/+LewcUV1Rn36PMQfMYBmtpf/b32LciKmVkBzx9IXt85mPT39ke3kkXM9N+mkTSlZEvyIzmCpxSCgTcYrUtc2kpC0gk0T3mbGz9MOO7u7Y5nK2iWX+wOfTRvCelDzxfo/qDX2nMQfYK40xlWIS+eUZ7y1KGLKewHu6okHMqNxhPQhj0MUgg2SpC/Hq8UtgC5JcNMJZ7G0PObEuC9N8IYaMdAJnBH1aoQRqFei0kuOZJDOiBvSg0d6QVslqL81XVCVZGrLcyDoS5UTOW5vFTAW0JOZALDDEypIismYO3HN7d8/x9gaFIpdC9q0yftUXejqGvANlMMmigP5whKzYLis//PSB83VBH46MhwMytFmpkBOHrue40+x3GWkWertroBEqfpuIsqF/u84y2p6gR6bdCSszKmXWlMlraQJOPPa0gbVkJ+g2wxoTW1oxLxKUo+w1vXWEVFh8oFMbhYpAY0SHu/WE6cr6fOVD1Rz3TXQ268g2fyFNmvrmK8S0InIGXRm2gleW7bhnCAvPn7/w30rib//63zLs3rC7dbx/u3H3zT1reeH5lz8h1D2mFpRIf9nNfm8cqy6UWjBZklSlSkWXDbPz1Fhhq69T8m2IN9nYxFRFIQeN6Qd01xNMIl1fK946odQOrCL2kTwFChE6wcHe0h32mLEjJ4lPr/GR0KquuTiku+HueACtQQjiGgjrjF8rIjtqNKQts4aVu90Re+jo+xH78oI0GqEVwwVqAR8CeUp8efxMDB7lFWbf4cYRgeBavlC2QokCRoebD8QqmMTETchoq9A3e3aXwNZtbC7SXwVeJDZZePlh5vPdC9KNvC091nWM+xvC9g3T8kiJibxGpNJtOFUWfKqQgSLRKZLyQEoD2mfEVhsbPUbmUFu1RILQFqFUQ84p0zoytSCy4s+/KQuF0gL1SpjJJbUNgZBYM7Lb33G4feD27h459lRjUdVi7x8QyiC1Q9keHQPOb0gBZtb4deV0uUIsWKnp7u/5l//2b7n9cOTmlwOXy8rLy8o0eUKObWHLgkc/kb6AkgoU9MORUj2letIlUWRFyIKjI3UVIQoqKjYFKVXKVFn2EV0lJlZ0r9DekHNl1pE+RZRUSCMxqgenCJ3nelqQukMMEbsreBXwYkNEix0VUgnc0rGMEwTJEJp4Q0mF8IKgIzVLlO9IbxTK9ijds+kKsc1JJB2wySKtIg4Zt7ZKfe0kpnSsfSFRW97XtNaR2gSpS+hJMYae0zgz9h292zPpTM1tYjnagKwGVGHrMmOSbRiwN+xKT2cdZjD0m2WxlqQqearUh2anUVeF2luMGhjOhdV5rMjUUKm7gsmWEivnfuWrLbQKpUn0ODYTqXuJnixVS7KSlOfE58vE7vzMYHrGw8BX4i3/evo7/nfxP1h8Jl5Whl1PfGWQF6Ebzck51O0NyhyoSpNEwc8bsUY2WZCLBBERIiCmxmUXzuDEA2tqZmv/ODEtE0ZaxnokWoGlon0BK9F06NwTXGlt25RYteJ6EVAKso+UFZRy9AeFDnuqjPhaUNcJPQwUDGw3eFOxpeDQ3B7fkUMlXwXhbsF6KBEWI1mfMyc/8/PDR94GsLZnONzz/uFvOdsPXO1n0jWi9wZlLWO6Y6ovpJI4XEfMfoessnkTRoUIBb1V9KGnvmS2z4E/ffkT3yDYjwfGYcebm/dsaSWIyLqsiNrRoamqNNFRSpgNzNAqchSHsFcoATV70s4Si0YuDl9PrGdPPGXsaOndG6y5YY2e+fHCdJmYReZG3mHkSNAFM2f6zpDMjrIqLnFmDSvh6kkmMxfwv0h8fkSiyGsbGh36Hb0Z8BvE+QpAlgEXe5RWyINnl91rB0+hY4cwCmEk0heCagOl5aypfW5Vz+eAsBprD+zcOwIT4bqR1sh4ZxGrQaw9127iZpmRdiAOPWEGNQjsYBhlh+sM7DTz2eK6jOg3dsuAHhRWDxh5R6USUoZ4YSd2CCfItrKVzBrAR4keJV4bVq0JfaRoTVWaokFFQ5GZ4jL9IumUwA6a92/fo7RhWmaevpyhS8TbCLZVXqWsdAZ+/fV3VBylCEZnCXOLkBYh+OkfPmOGK0/fRWzouPiNMHR8W99j945u17MfO9xw4Oh68q//jv/wj/+BbU2IeeXmMCBqYkYgD32Lk2jF3dixbSvT9cJ//eEf+dXt91Ak3/32N/zflgt//PEH/vTTL4TrSlAK2Vmc7Ck6kRTUKTa6DB1m1WxZEjYQk+Du5g2HD09cp4U/ff7C7asHxd0O3OU3bOuMDytlyiShCbZD3Y7NFxMz6u037PfvsN0R0x0QdaCkyOZfePz5jzx9+JnPf/qR53/4CUPEqMLdwbA/3NHvdk3qGBMyBrJYWL0mqoDSgXwNlFoQPWh3A0NPNPD88YlVrKQQyJfK+TS1++9wy9fffsPN+1+jb74mRU0MAj8npqcrJhqcc6jcwCcCidACyYGqHMlCuXpWI0jCUK6aJU6E1VMuGWl7rLun098ScmA5r8yPF1IfkJtGCUO4K5S0IpSGsSOvhoxEaYlDsRpJdoL5alGuNNu0F6ALFUUNNxS7UYsnR0+ZLSkUIpXoCrJoRmV5+N177u7fshtGlrSQlsLmN4JeMfme1AuSiKjHDVELcnQM8sjj8szL6cTTj88E51G7W/b6SO4Uwhc6BHe3O/buSCeOFNl8QVJWitVczitCRJSV1CXjhOaw22HCiDSNHPT48YUv589c5g0RDfEmoRXoIFhkmy0ol0IcNUYbhmJItZK8IAdJGQU2WDIFebAc3Rsu5QtzCKRHT1KJ6gzis+NyF+n9ym9nj9x15GCIQdPd9PQ5Ea6RyWjyS2GeV/744QPf3mp6O3Jzf89ff/c7jIRFrHz44RmjLf0w/GU3+8aY12iAQAbgNSEphfznSE7O+Z+z/IXXdopomxdpTMMyyZZnDDk11CON+S7ka+skpUaL0fJVlFKptJdT/HOMJbYKhJAC0w2ocURq0/5O5UqJkigFUhrMa/tkm1ayGzFGY/uefvVUDVUKlMxt2BhBKeCvE1OuXOqOvblFySaPUEpSX8VRqFexl9AkH9jWtf2e3qCVRimNzPnVNNzy8ptfmc9X5ssF392BqRit6fsBHzSyNIgUopFFcsqNZEO7jkJKRK2QImXbyCGTYiGm1DBQgGp5qCYpexVpZf6M4Wykm/ZP+/X237TrUGuTb4VaW3yq61G6I+dAzh6BxQ0jUtmGy9Sm4efIOKcppSPXil1XQojt4GANN7d7YvKkHDDmhRReT9U5IV7nEYL3TFVhlEYbxWAdpVZiTsT8Gv9BYqSg5tLuKRSF1mGKMeC3jSo0qkiUkq8EIEHOmZgyRma0ageKIjSytjaqDwHvA/Yo0aIRIGqKiCyQtIl+akb+2UpcIKeMD4H6SkawrmsteaHboljbvVRKo9toLEo010GKmSoaui/XQpGtziiRiNJa3DnlZjOUCqsdRmWs7jDaUetGDoVSWsRIVdWuY828JoKQVbQoiaxoDVYpVBTkXPCbf426vN71VSKqbll5GVp8KhVqqMgskVVRSyH4iH7tdtTyKl82kiJbt0hWjSyGbYmczjMnu7K73dEZx5ube4Z+T6krIv3zeH8zjeqKdRbXDah+B6JJimLxlBRJOeBlRnmJVAmpIqrUV/KKbWSZLeHXjek6sWyesTOY0SFp14Ga0VJDabEYKdWfl7CGFo2JzQfcslBjosqKVAKrO6KsFNrBoBFP2jXJcSPpQM0RazqGbsd+ODClthamkCmxkHxCioXT0xcG2TOMlc4cGIcDIU5s/kKcIjkXRDYoDDkkUomEvKF6257/Uqg5U1/vR1ErohZqykynZ2ZzaEPPeqAzrs3h5MqfeV6S2qoaNSJqRMkWCUDqlketuf0opeVOc25xyBpaFVxretNjtEUKRVwD67yyLZ6owO4HtLSNylbKa7yrsl03ljCz+ZW6tWc6x0KZEvpRY1SHqg5763DGoZUl5BUCTUmvIrZYQFBSafE0JZBStxhPLdT6Gtl5jVslnxGqPd85lWafFY0yEvLMtq2s5wnjjo0SU02LetW1Pd9KkbSnZAvCYbVu4h7Z1oMUAzGsJFaUkVTRDNji9Xupr2vrnzuqorRZL60URpl2v4VAAYzUaKmRVVByu3dyyggBnbF0XYfWjusaOF1npmWiMxYpFX3n2v+ThJKZcejIRTf6jD6y1IJfm6Nl2WZqWPEyY2LPVgteFN4cLM4YOmtaNMJ1WBTfvH3Hf/lBss6eEC5o09bzGA3Sqrb2SAVCo2QjC/308y+43DH2LYP+9uEtp/OFj1+eiCGSfaYq2tpdmhU5p0brErlF9UIMhBhJMWGMwyqNRnB5viKcojMd2mqscZScCTlSVW3zNAikkCASVSe6bmA43GL6G6iW9bqwXa9cP3/ml59+4unjB55+/sz6cmJnJabXdMJh/zx3+EqdScETgsfIFgWtpYFEBAKpFEIpYo34EPHnhTgUSs7UXNi0xroePR453L7HjTegHavfWLc2gH1dNm7t0BKCxHafV4HWFolsUb60ElYBW0vNK19IJVNqiyl3ncbaHik1a7iwTBPT+UIpcFAjTtuGrE0eUTMYTc6BlCQqK5QQrSAmJPHPRERfMElRiP/8fmmhgWZDL3+OICIgFTptMF3H7f4Go5pHqNRKTpEU2tC57BQ1VbKPkAtWWqzqKLkyzSuXy8QyzSAEBsO+P6CkBhFQIrPrOzqj0KKtf82n1/C3MQVKScjU4uNKSqwxUCVZZFKJDRN8XVh9YtQdr8NB7edUKSmRYkR3zRGjqoBQKKkBKySCzhmQhao0ne3ZbI9UDr+t+DViUVjhKL6Q1kBNEc3QooBUtH4VVyqFRhPjSogrz58+cag76q4irOb2eMtleWB/fsOTvZAQpPoXzuy70SCzxKZMJCGiRBTIMlF9JMeATwmrHFIUisiU10qzNq3djoYsMnFNrCEQQiKXirhtc4z4SkqZKhRCalL2ECbEBtt2YIsZHTzbsqLsDZ0bGN2O3DmUkMhSCCajdEUbkL1lN/aUZeb0+MLVKIZxZBgG+n3X8mWpsAraxi6BNpBOM/PF83Ft9sJ+6DDWQGztk6IVtiq00SgtyF8Cz+KZkBLaGIqpEEGslaokhIoIES831tMz02fLebjBDR1SVnY7RbwqqjNo1xTvNWfy7KHPGJq4JziHqQvSn1jOz6xbwIdE9H/OZzfDMapSpaTI5pOMqZJraXn+CrKI18xebUZg2sYp17Z4nNKVvzYt0x2LZrs8onXA9YJ9/y1I83qICRQVETpjDfhq0KJyiIanj1eKKBRtsdpxcxxR6gEjAv664a8bl3OBHSALZclcREELzSgth7d3beMaEls+I7Nt9lqVqUtqOfXeNCtzisx5ojtDcR3KOgwSowVJg1gbZ3urir5KlBGYLCleUlQmZU9YZwbTeMXCJ2KZGvtawZxm5OKh5uaLmDVb2XimcmSP23Xs3+4Jq6QWRcwFmTSxtoxfuYK515gCcipcYmjK8SJY7IbILbIhhg6xtG5AzIExGgwGs+85esuodjjboeZ2OEkRus0ie4kElBeknpY99pXVruyqwWKwvcS+NL/Di3lhudxhlKMOEn4W4CtZgM0GkVpXqbxATSCBYVZMdiPkSr9pttzyh04ogi3IqNCxZcLjNXAWF/7AM99XhTGa2/0N790NV6HJKlFWja1tZkb3kWFom33R3RD8lRRXop8I28KWM6tIuBgxr4e+6jTGDRjbg/L4deF6ufLp5YnzFnB3gnHXY6Ok0vj5rlpy9mw1cOAOjKLkgrlGgtyQMWCeAlVpqgRExY1d20gWQclQQwIhUCoSlplQM2vn6LoDw+go9YA4eebNE/GkSyCLQE0bTz9XjNAck+dWVZzT9F3P7EZm9REdOkQ2oCrxsrL6hXiQ3Atw1qKdIHsoqZJFQi4eLSN0ke3DI8/JkraNwj3aVXolUUmgdy0CJnWGJaHqhmRtXgnVUVCUfKb6iRoLRWtUSCQ5U1moJWAHiZADpVisklA8/rRwnWbmaaNUTfduxEmHnCpFZLrqUMXwx+UfmaYTKUR02SG2RIwbl+2F9MOJbrylP7zlXg8YXTB6Y9pWSmjXPJnM0awYqSlBUvIOISxSOmCF3GZHYjCkUkk5s9b1tbsSSSajUsHUjNEVkuS6XHh5/oBNlt3OYp3GXDKLviL8hg4b0diW788G02t6ZRiL4uomCJl8jSx9G6oWGoyMqKKQUiI7DQZqyZQ1oUxhcAIxGF4YWU5Xrs8nWAWjsQzSYILmJW+ExeOnSHaFgT37fo9PhY8fLzyfv3DaTtwfv6ZzO97f3CKiR5QVJT1CgikrErD7I7Jmal04P26EzrNeFp7/xweuaFQROKHY/bvf0AuNkxWrFU4Z+t7y/XffYP5TJpQLfjuBOKCtoqsGrSpay7YxnEAPDZH7h7//n4SQeLh/y7dvvub27oGbmxND94npcqWsFVFfN48rFAr+tiC20gap5co6nVnGkakc2XmBthk7FK4/vxCGiHUdezdinUbj0HElm9y8LiWhloAcV/TgOcoH9HgA07N9+ZnPH/+J80+PvPznR/775ZHtfCa/nPDbjCmWveywQWJenQ0xW9Z1Yp4XpmlldwChFVVIIhIpDE4aqsxclwuL3zh/WXHf3aKNRHeZdLij7/cMh3sOb36Nc4qaV57jie1yZT55PsbK24Oh7xVVtko4RWLdDlUicdtYI2CP7LTAxUKVCSUaklzcKvpuwPWOqmempzPPp888Pn9E+yO33x7Z3w7E7PF5oSYJqSfqgMgO5TeEHrDC0BXLVT2RVk9IhiQtOYYGlVAJXQxIQ+kVMTZstJISN2XszYHhcMvX+gFCxueVlDKprKRtIy8F941A+kLygdIJDuwZ5Mi0zTx+OvH4+YUlXOn9nk72PNw9MGDxdQKxcdPtsCqh5BVVDii5R2sDGLKcCH4hXxLatGfTRJA2smyRbd74+fkzL08rNWvu3vbouT2/2YBeBTUmfJ3RXlNyopRCdy3UGCg1oGvl+NBhFwgeOitxpg0Mf8mP6GuPjJLD/YDxG/K8sZWNYRvJuRJZ0alijaI7WuolEeqVLU08/89/pMua5XZhZ0f2ux1v7t7x1dP3nN6dSTGj6l84s291xXQDBc16uZBkJoaEvwauHhIKPQpQug1V1gq2cXClFqQB1pLwvjKlxJwDSSRET3vpGkGyrfqdBw2doUbDFg01dQxvblBqaOISZ9iZNzjnkL1GCIsoFUpGh4HrtrGuEh01YnMUb0loHj8/MRxWjtywNx22a8SLvAVCEKQsEEtBDztEKfiXJ16OHZkjN+xIwpJTgBSxd5Z9GaFmPp1HwhJYmDkfZsSSSRlCr9ChopUiO4d4vnK+JurzhrG/0D+8bYIRYVHdkbjObKeJpDKxVlRncHpoFaJcSNvK85fMl8+J6TSzVk+QCanawyOVQirdqv9KNdlMFVTZKswp57ZzE43Og1GEmijZIywU36rRLmvu3j1w8+4tNTiiOyK6e3b2PdLugFbZyDE1s3JVrHJFphXhM3EVkCrrNvPl6Qt3D+/QwK3t0Q+/YbsI/BI5XTeqj4QI2SlYF4RSrD287yxadkjbkbePFJtBFdJc2WQGXdilRHaSkhVigakXpJhwqYAziFlBgakWnGiV/aAzNjd8ah0t9bwRl8QyenY5gWmHuboavApQK3nKXAgICvskuZQJkXvGpOludhjvYVp4MhN7HLpqgoYSSqsmjInO3lIELLkZ/ZKIVFkwiyWYilKSd0i89G3zHwXLIClF06cOcUxtSLBqTiEQU27D1F1AiR0IxWQz+9gqGkln1JoRRwXGcdTwstMUubGeZpZYsUCZE4tbiaWgU8fVgbIKayDZBElSs+Gzzbzx7bArjhkZNRXDZgxWl0a80WBOljlpwpK5/uFnhJPc3h447EbeffUV5uXC+Twxd5HqXrsvvKPWxiqO5xOXLy+sy8zVz6Bli6FJha6NH461jWfdWZJRzKcrP338zM+fH/mwJrKu1MGyO96QlMKvnmX2XHKAOWKqpt6P9H1F68QUFevzRDSCqixifqb0FjkO3A+3iBBZvOf5ema3tzhtsXRc1pnL5inLJ979qkfSGOz16FDlCVFOnLcBf1nIm2ApHR8//cQSFnLX8XZ/S9ffc9gpzlwQziCdptsMxWh8FITLgrKWLhv6SdJ/80DNK/iVIGvjbvvAst8hT094PzGHmdvj0IZI7Z48RUKsiD6hKGi9B7l/7bJCCplwKqyhVY2ElsylokLEpMJwd4vKCzmvXEWgnydEKPz84QOPp5UlJOQOOi3RShIETM8zyRWCSCyfJjYKWQi08Fy2zLquXC8ntv4r7HLBTid8b3h/d0QMHS8/ZX58/MB1ndk5y/D+G8S+UTmmy0rVC0VV1DPQKWonETEQlSZXkCFT3IGQV+b1I8t+h1KatwWWJXNaCl/Wyt3Dyq3r6bXj6ge2zVNyRumM/vyxCZLsAyVHspJk1yO/TCQp8RpKvMBmUUrRKY1Uh3b42CJRJKxpMAfnLHndEYXnefvCT09nPp43xE6TRkfqNUIk8qsnYWLlul6RO4NwmmmZmZ6euZxPPM+Fb3rD7jgy3N5hsMzbxrQIuuNA2BZyFezuvodgKemFp8Nnwg+B6eqZYmY6/8yGIGlH+K+Jb371LfFrwc0QGN6MDMOOm8Oef/nd/0o4/yf+w//8z3zz/kCvDfQCdde1oebosWNHkJlI4ZIN+Q//B9P1iawk//LhN7x/+xWfv7ry90//mSwz2ILcDOc0U0XFlUx2glQq8Zpaljll/HLl8PYGURXVwxQrPL8gleC833PfH9FaIHYWPUEWlawkQWz06x69vSW8G9meZq7nT/zX//j/48f/+IEtFcTDgPIDB+1Q97c4ndjZzOAq7qhRslLDykrg0+nEtK1sBJCNGFOk4XqeKH2i6oA/Jz6dPEtMdAdJWm+wwtHfBu7dr3HHDvlg2YwmrWfqcubLnzYeS2DKkRADWd2D6qkRnkpkSx4fVpYXCLoVAw/fQNICKSWuWtRubLAK79mGrqUsni/8+MMvfP5y5rIm3h8jw37H8fiGZ//C+XEl5A2GzO7i6YY9+aGnV54sCkUr+JIIgyY7gRIrxbUqt13B3zQOPAGizIhYsAnk9w+4YcTt94S9JmwbOScW6flpXljjhjapFfdMJSgIqyfcCvIuc/5y4tP5kY/TC+c1070xDLcjD+/vMNby8pz48HliyRmCwmQD6gYpOyqaNRWuT4kYoSiLCmeygKoVN+yZ1guXNfH7P33Gkxm6PXYYKPZ1+DZG4q7tg0RULFYgrMbtHHq/x+0H+v3I7vaB8+mZrRQmGbgvGlENUVg+XjLdKDj2lm/LPZduIzvD6dPC+u7/pO1Pem3LsjQ7bMxV7uIUt3iVlV5FZqQyRUqAIIISoZ6gP6qOfoDabFCAABGUAIJMBMXMjAyPwqpn7957qr33qtVYx1xqKhvhgAMGc3N//u47Z++15vy+MQxSCvWSqLuBVjNt3dDPFrOCXAu/bJn2D3/P+fTG/ttveHCe3ej59puv+enzz1zVSqT88x72rbWgNFUUyYKKXbqUasAo1ZvFvlsOa8qUnDHaYLXCGtVlWa3+ZW2X739tUch9o95So6ly1wUpxIHfjUzHHdN+19nJo2OYJ9w4oq2C1mgl3TfyrWeha0ZqxorgnMI5jSjFFhbkKjjj8A8K7S3WWOxgcTdNVtIvIM1B6+uWuEaSj5SxU1RKLZ20oATvHWka8NYRt0BImfW6Ian10i+tryyroJtQdSWFje1y5XqYUNuKMkL1DqyC3JF+ud7txMagje7otJLZlo24XsnbQsq/reMzrRaQTl5Rv3F4OoCHKn1136RTNrrBtFJKxDaPAppSCJqsAtoJuw+feP/hmaenY2dt7w746YAeelastUqrd/C9CO2+TtOtYmgYU6mqEHNiuVyxGAbvGZxj3s/sjhO784B3mnXr8YWS+hRMIT3+pDTKdHVUN/X26QG1UWum5UbMhqZ7pKSoRi2ZRKekaLF/6S2Qe/Shtd5rqNLX7L/ZZlNOmG0lhtQ3VS1DLn2yWCshbigaRiuc18S0ko0h14JqqgtxlEZluZOQSuf/FlAIWnquUDfBFLoBki64IvfegjeW0Xu22sit0wLsZvv/vnUo1f8650xdulFaKQEUovqv46oi1y5U02gyCUXDi0YPFqMa1MgSu/WUrEgpkW53mZpSmKJRpbPHWxNEd3qRK5pCJeqCjqZTplrr4iBtEAqq0b0TTVECvMWF03ll8CNPo2E0jtE5gtOsJXbCinQCDUDNfUu1LeceyWpgtaFK16yJbihNR/taB6rH3S5h4bp1DGCjMfqBwfs7xaLzxmOK/XCSE0gvAxujaK2hpJDa1gu+OUKOSAZbHcoaWoqkkgg5sKfdn2lCLomcAyUK+9MFowVawVlPGgbcNODcjUV3sdoarsRUKNYy3s682z/RQ8FCMQ20QmuNdrrTbpoQUsQtgaozqcEhbR2DLJ0UZRSgBSmdpLQp4HJh9D1yaLTuF6O0IVpAe5RoML2E20ql5ERqoccuVTdgryH0SKFSGGOpxpJ1hFgJbaNumeW2UnKXKzqlu6hH92layIlUC6n2KI3VPaKHVFrbaC0gqrKVGylUYiv42xf2o+BU5WW7cNuu94mrIcUjJVukjqSQqJEej6uCKrYLBrVGWt9yVokoSn8vmE7HQfrGs90pcqIaLSeUBmN1t3y3SCuFGiKLirh44VCW/jmhV2qyq4gUqJmaO2UODCih1tSZZq31l3nruGklpi8qU+LXl3OnNrXCpOe+qaqN2spfvvsxJJrRNBSlwJozSwisIVJKZTfM3ZSrpAvI7nGOHBO1pb5dUArnB4ZxZB4dyhYyfeu0bBupKaqB2xr49cuviCp89/79vfjuUdZyfPfI/LRDDY31vDAYxeCEyXpiS+RaoHTTOLUTjdYQuLmN2/lKeydY55h3I3YUvFd4Z9ClIa2jCFOMGNuFm4VGWlfiOLHlTi1S2mCsI6fXHqMomrZlNpNwTdFFOlBpqFox4tB+QJkRKZXL2698/ulnfvqP/4FzAOU8D4OjOgUtoFpgdJ55J8wjOCOUupFKZkt9+99KQ2qj3quZIj3KVBrErXC63UhNY/zA8Tij9g47WeadYTruGWbLODTW9YzcvlBvJ1bVUcajGNAJJYGGplZNTRt53VgvG4SCUt2iPR/2iNco1f+8vbUopSiUDsYolZoS65pIuXPeFIK2GuUMKllquz8HV1jCDazBl4xYi9DLuqL6O76lQqFHrwQ6fz7eLdW1R9RyzWQas/dYP6Ctp38cKiUXyv0zooqg6ZHQViq0ijiHYGhZONUby7IR10hMkWmYGMcJ413frpZCSQlVANNopmGtRRuLiFDjehePZmrVxJioCmgNmR1BGte8saYVpR1aNKp/cKC2TtCjk+2qgsFr5mlkv5vxuwHnTH8+a41VqsPkY0Ym7oRDRS6ZmjtxZzxOZFE0I8RSyLetE7pKvvcMBLEa0/rAFlOJy42LVhQlcDkxP7yjIWgtjN6Qao90/af86z89xmM9TbrhVDtQlwopkyUyuRnrHH40hK2xpULOCWsHvDY4q9FZUVWj0H8YTXrOyzWLtj1X29YKumJQ2GpoM+zf73h4/8zh4dAtkrNnf9hhJw81QwqU1HrGX6DoTGND2oZVnnln2DaDMop4zVA2bDE91jBYBrGY0TFYS9UbF5PRRXXuuDHkrXPJi1RazuSWqNIRgm50TIzsnONzCOSUWU4b1VS0CAZN8wZpFVsb1UHergSBy8Meuy19NT9rcB0jJ1VRbwGRilEWZVQ/UOTA7XIjr6+UeKZUQdfcsU8598y0NDSN3OQv2e1m6z3j2377W/3LVjeGrDG6oUUDvkcZRuG7f/17vvvuK7769IR/chwen5kPD6ix/8xbjdQaESJVaZpu6BLRrWJVYxj6ZDm0SLje+PJyY/90RD4+cXh4ZP84sb/OjN6whEzKCbl/2QwVlXJnjBuFEXoBCoVTumP/tkTOhVX13FurlWzAxkCylmKFfevoUmU1rFvHd1aQDNVVWm2w1W6rLAF1U8ga/rLpqCRa0pSWWfKNKQ8M3jDuHfF6pmpNrgkVG7opjLK4YEEVKgkbbXc/KEE3i6iKLsKQGzEGSgaqopnAUXkOdWCeJuq1UEviVlbsdUBbjR0dQ3FsdSOEFbmCcYJyCqkWMYJpMCfNpa798CWaqBNaGrNo2AmWCnHjmpaeiTQQ40Z6TRTTkB0Mm8ZIj6+J7hdxYxtu02QKMYFbIEiklIYvlsX0LKcqILNBR03Z4G3ZOL30daS803gxDEYxDsL5WlC1dROwb1AyNVXiNRHWN3Kt+OEJ7xy5ZVpeaaahdMNqQXvXrYcp94Nh6NsOq4XHecdunGhGoZqi1krMEbZCLpFmO0rQmG57NBLIslFbxuYbJUdsBlsiGEUmEvKNkFd0qzit8EM/ECzbjVup7H/9FT86zGiYxwN29PgyMZlXTg5yDCy3X4kYorZM5xfKx++7+VUS0SSQniuvY+8DSVMsKeDOK9EI1RTexRMihmw0rjaa7ehPmzK1CDEVuC1sB0+zYHVFpKFzooYE/gl8v8RRtr59ipGoFkQbrLJYO9Kub/3nN41YYyi2l9vVqRLYiFtkvW3QElaESfkuFTMKozSxZtKayTGTauFoJ6w23NSCVhvWbAyDIpRTz9hv8Hb9gcMAhsLn9IVYbkjZui25Xki1H/ZbLJQs5CyUWbANbFGowSNhpZVANgHbYn8mDiO6BYQKxvSoi2543ZAt9X/GaRweLQu1VNQSudmIT2dyOaFkQEtjkEKdQRORWiG7TjeTSrNQ6g0lHQPZarzjqTv7u5bEFm788OMrOS0MqvCoJ3SVzvkvhUwi5UjaEjKO/RkehFvOXGNkTQkaHMcDk5/IrZBLJtONvmFLiAloZ0Ay1lmmceRhHnC7Rn0L3G5vrFvvFhiV2B4bnz//SFh+5a9/9ydqqX14Zy2Hr48cPu+Yngynf3ehzAb3znGUgaANQfdD5Vor1IzkTEzCdi2sL1fC9wXRwjw7hoNimi270ZNb5VUKOXcBkd0PiDJUDel8ZhsGlodHQoqItbh5IqeF2ixSNbJWtiFRm8ZG+pClFXQRrEyY/QSjRZ3OvPz49/z457/n17//M+X9H9kd9nxz3PO6FlJdqfGGUw/sppHjwVG3xFo2tpxZ19Z7ilWjYwdd9MaRxU+edMuEa+J0XbD7J+bDA19/+EB4UpjBcDAe9/XIrGAugb97+UI5/0rZrmz77zk0i06NL7mgZOl4yTah441yCSyfI80nDvuJ3X7k8d0zoWzk2svBzii0tkRJ5JczrVaS/JY4lj6YaP38I06hF/OXi6q6KW5lQTXLkYDSM4qCKivaV6QFWu7URNHQTCWZSIoZLQqLorZEKpFIZTIWaz1aOVro79haGywFXzqoxRbTzyMxI01h5hHdDGyKF7mwXTfSLRJj4Dge2E97xJiOAC4ZasYlQVwFV3FD94dQKi0uYBKtdgzpGiJVGtoWePYsUjiXlURgz8zQHFIrNkvHjbaKippWFcXBfrI8HHY8PzzgZsE7g9IKRUWLQueG3AL1uYESpKj7mbR3u/ynGbaO4Y4UymlFpKJ0RkofGCtvUJeAaKE5qJc3LlqIWqFe33jcPVNbp0sOgxALlPDPfNgfxpFQGjEW8tnQcsBax1eHP+DnfrMqCf7x8g+93IBj2ju88RhtiKbSG7GNZBOyarTRDI8j03hEpLDFG/Y64v2IGybc9JEPn77j4esP7N69o0qXPSm9p/SOGmRFSBdq8Wix0BrrJbKcA/PeMD88kdE8vp3YTjfQjTgWtlvhZldQFbuCmwxNT6jaiDZTUqG9NYIuRCm0VGAS0i+RcAmEbxPPx2f2HHmNb7z+TWCLmc0WJArZNtKYmZPpcEurGE4DcRQSkeHlzOlhpDrNoAfqbCF5JCR0mlA4xCpqg5hh3RK38y9crrCshlI2pBhaVqQcEdF3Sn6vhvXimkDV98JuP/TX1gvQTSlSi6TQoFZ2vvHu6+94/+3X/B/+N/8Vf/2v/8TT0wFjGn46ImYEeoel5I2ULkidQTIlB65xxaiGMhpt3uPcFatv6Kq5lhPh1LhlYXd8j28De7VnPAz4MFCaUHTD3nqhbbUJaunEG2Mpi8IdLIf9yKA9P50D13UlXlfqwVO0YMzIaiMmZ3wA2YNXliqe07iS6VOkOCacGhEntIPAPwa2XFlK4kPYWGzgpgNt0zS59Sl9dujHztY3obFsN7zW+OxQO4VcFSXDZ7WyLwMDljIU6ta/O2oq+GLJLbOawPq2dJqVUxzrEZ48HBwGwy2vLHGjbob41DBKsNXwS7sRbpltqWwu9m6MsjDSmcVSWdSG/FppqpJGeGfecTg+ML+fSb/eyKaRrDAvA3YQCpm3l4VfygmlHId0gH2FqqnJEPcVL73oebUrblOo2th0QG39MhOPBfNiSVLZfGPKE3mCYAvlpfFPlyvMA39YAsPRI5vj8rmxIqSiyCLkrKhLIofALXyh6XcY7/BHhdqghMhtW9irZ3ga0aNnqI63Ejlvketnw+ka2WJhVDt2j+/ZP7zn6J+46JWYG+kG4gRfHxjUhDtMuNqQlnB7wzF8ommwO8P6T1cijXanHmmxqGb4+e9/5GF6YJxH3g8fmHYHtjVw+vKZl+OIKxNuHdBfub7aLgr3aBnjgSaWNED+snLdzvyQXvjrFDtr3Dh+/PEF+WrA73e8333Dy3pmaYlffjgTP1UokN4Crx9ujOKxUePfTZiro4RCmjdU7MWtMPRNGUWhBkd7jX2rZyptkC6WiRV5TWx1JZRKio8wdi50jYmtZHydgD3lQ+80yQbndsNdLPEc+fXySrxV7DTgHvc8mEdEDEtL5NcN5QU3aHbyzP6ww4+G/bZibKPUPbYKq6IfbuPKW4Evy0qqlnDK/PJ6JoWVbw8HMiOxWrbzDR8aYhVMFpveYweDmRQ2VJYUiClgbg71SXAKHsXy9+FXbNzTisJ6T4tCPCXyd2B3M+N4RB6vyFlBVNTZcP1Ssa4ftA8lYrxgHgfkhyPV3MhqY4hCdbV7Mc4aN+q+6QsawfQLuYG1Jn7+5cI//N0Lv779QCqW5nak491p0SDpiskOaxP+mDmeD1xLIBmNqxaLhmK43AZuxlHsyCgHog+wJOo1MrzzrO1IYUCGHbpErIPpQXOcnjnNiXl/o66OJI3iYciKoDWva+Pf/vf/gW//+K95fP+eeTzyn/3+Pye+Bf7Dwz/y+emf+OV84e/+9sz7pz/03HdRRLkBDlEWPSZqgGUt/P2vv/Ltjz+TW0RUY7k0OGp2TyPP3z2xqIX8+ZW318i4rxjrmYf3LDZiLwn/51fkq284+Jk2vWN6t+f8+UYKqeOIGdHe0maFfr33AQdFnmdInrTCl5eFf/8//Ud+/uWV9If/I396/prjPDLvFS//9P9Ecsax593zwMN+x+A8X8IP3E6wLMJbXQnXRlMG+7DDT+/RTlN1JZwK59crp0sA/cSD/Yan/Qc+/P6P5CbowbJ7mmmlm7XjnEmfTyz6I2n8hlkfKCZTfGRXCsa+pwqsy4lwbuSlIDXy7vA7nr/9xPN37xnNyHW7EmLk2B6Qxx6pqbfCz9cvmOp5kMfeF4uKtlrc04izE6Z4bm0hLZoaDOIb7fxEnfYUb6lhY90uvG0nytWghoTSBR0beaq0qpDFUR4SOkG5Cq1l4pIJufA6JOYSGYIBbpg2Upsi24V0StSWMQ+WsXmcc2hv2H/xvJrI2hLyYli3xHWLvP6Sicajxj374Ym3+kaIjetLZvfO9jh3OaDmfZfttY1sI1vdsdaVyJWwZIoX1Cjo6vF6wJuRfNLoDwo/aebBU1yjxoa+NM7lRm0wqSNPX73j4bhncp5Lu0GVnpf3hpTgbQv8efvC/PKR8xJZUiC9Cuu7xjI0zOq4uUJqFX9RuHd9E7RdK/pBUzaNugo3D6p5fJx5GSPzy426Cq/HmY/nBeUU7AeuVyFsFpH/tOP7f/Jhnyq0kmglAplhcgzG9niH78a3y3Kj1YaWztSflO1T4yZQOxUll9rb9yIYbRhMFyG1UiCBdQN27CvwaRKmWTGOgqqZYgtNFRQbrSlohVozMUeUFrQGVVOPrZRKWiJucFgreGeZ93ugYpqi5v6fh1apVdNqJwTo0fVoUcsk13rzvlRyi5SUyCUTS2R9OVN3D/hp4nA8Mh/eaNetP/xyRO722mxdP/A1ul2YhuRKzIl424jWkcYR1ooqBRkEnTtTvuVKlkreFvJ6I8U+jRp0QXIkLWuXerRO22itc+Z7PEL6v7lDNqqgtKGGu+hBwGTB6d5WN7uBp73l40Hz/G7HPA4462gOlBQUiW5KK+TWSA28ZGgZaRlpvSQnrWFNw5SC14bdwyO3z4FSKjnciOuNRkZZ1QuPUjtjXdS90AYt9s1QLtLXXlru9IOMm3fYWydXxByQ2CU4CkHnTusIJZK2OxZNCypIj/q0hq0Ata/XM2RVya1QU+8rqCjoQo+RxELP/YCNDsmNLS60tSGu1x9UVNA69cgGDaVQTEKKgSZoFC5brlugtUJOBW8sqgotaZw2DMXgkrARCKdECRWLYm6u8+uhZ1mXSFhTx9yqHpfQ2VK1IKX1klvtK22ThdH176hTBj06JjMwKMem3pBaUNIwXlCvFXImq25gbLrRdEOSopaGtIYr0klFCCzwW0XIZ+FWM600dBWMs/coWesxqkuj+MztFiFmXKtMB7itArkQr4HKK22rnUBhLPM0oOyAMsIST8SQKUkwk+CUuV9ADC0FSkhs+UarCS0wjiPP05G9n/vnJmSk9guR0h7tNd45dO0xJURj7YQbAqWVHt8SQTVBJ7lLUAqqZVpOlNtK2wX0szBqy2QH4jCRA7QcKCoTFgv3qCJFUFqwXuO9Ru3oZLIlkdKKUkLJkVoT8XIl2An1zSO7ccfD7oHjwxWnfS8vspGuC8ZWRHkGcSRHj67lTmZqYpCkKCX1lfeSQfV1e02BvARqKL3gGxJVQKHwTlEVXeiUK6b2HLpSFdWTT53EsUC83ViXhbKtKAWDNRzdHW3XMmXdmN2M9h4xmjo1ptFhrOJ2U4gMaKMYdGUeB/J9iFTzyuQ8XguDRFzKtK2ivYGt0SSTc8M608lk2YD5zQiuya30A0lVoAuWHv0z3jJeNCY00l2WJWS8gV3tXgulwDXBedcvPAhKAzlSLifU/J7RDtS6Y3NfkJJQpeGM7RhcFEoVXOqRQ6N1366WLnSrClJcSPFKW8Bj0CL4ZPvPtggUIeRALRVdLKJ6ZEWqYcmJNUVyyQxW82BmdmbsW/HYI1fKG2LtNnkthZJCX+VisUw9QmMrrmXGqQuUSu7T6nrtEYg398r158+E53fIwzPTsOOr54/853/9J/77K2T3I7L8yrZ9YbtEwhqJY6Fy3y4DqkxINkiuvLz+TFWVJV4pMdBCQiU4TAce5idul8K1vVLW0uVDxqJyJdbMGzfCpU9MzOCw4hBZe8S1dECIVMEUTTGVWis1NcJbIJjAFiPnv/+Z3Bzjwzvef/zA8+EdtlbK6YX1umBiYHffTJkmtNx7iGGLhJhYcwYxGNtZ68oOXTaXC9sGsVma13z/8QPvvv+aw/Mzk3GEQeEmy8PeY6aJUiJbuBBdV66NVTCDUK6Bsm7krVFcoNXGeorktdCKQvTIPM3sxz07v78XxlVHcTuwItBUp9WF+5ZbbbQaUTWhauXRHxnsgNIKu2W8MoiGKoIbG85adO6UO1UVtlma2lCloFrrPcDYQDeUBbb+vkEqLVVyLoSU4ZxQY6eY6QWskZ4u38BI33D7NKCaQReDTbb345KQY2WLC+t6I6eA9ZYPw4FHN6O0oi4BLYVx1KjBoLXgXaGmldh6pDICypUuSQ2FLWda6z/v8JCod6Tp08OBg94x1bFP4y+RElM/Dy6RWhtWWfZ2z2hHnHWYElFUpKU+fS0FSWAWzXa9sd5ubJeV1lKHAWRoVlBVcE0x7SbS/exbakPdOsQFo3DFd5GiE8bS0wQhbbgvV/JjQBdL2zJuUlRRlPTPPNnvMptCqxntGm6csX5kmvfUJtzqwmvqohujhVEUg7JUFJ3q1igpk3Il574K09rgzNg/EKX/5v084ncT/jCy3yvmnWEYNKqVfmJWBWkbNNPzaSUTc8aJ7muR2s2F1EJaYy8Bqoa3ht3hQE2lI+xyomyZVCvN93y1oLrZMwutCs33eEKthVQiJfU8WCazvJ1InwLjYWa/P7A/7ClNEVIj5ITkik1Cfqhoem4O0yNK3dpWyGsg+41UA3prKKmIV+ioEYGa+0s5hZW0LZQMTlW8yrQUu8gmhHtKvx/yuhm0Wz7lrlWupf99ZXp5V7WG1mBFc/SOw85Tn2Y+Ps98/Tzy9G7H5D1WG4KVvtoj92xdK9QGuSlGVfpa856Fb7VPqKwtWDo2jsdHXk43Sl6pOZC20LGTrktImyqgKkY0zXbSSI13u19WGENn5raOItWmT86kddSbDj2zKIDKilwK8f5n3w2hoHI/7LfGX1B9VJDaKKp2tGaulNKdBhIb5S5zQjWUaejYjblLWKhbg1k6djTdPysiuNAvoKUmlCiUUyg0rnquW4BaaLkL3nTUtKoZlGEsGhPhllfCuWPXxtkwVAuiunnwmklrR5fVRI9MiOoPgtq/X3XpvxdFQ2XF6B2DdXhlKVNhcgOT8byq/hIwpmFG6ZMbMslEtFJUX6mmIrkbVKVWbAJtpF9sVjBDR5SSema4ptrJL4OhlX7xVMYgt0ZxmdsSaangaOwOiltVqFIJl42SFygK0Cg3Mk8995kR3kLPL5faNytWWZx4kkBNXXEe8w1qxmphdiOP056dH0F1eo5CsH68Gwsb3mnU/fPQ0FgzYt0bpEpNlSINVUGljjMVGoZOrqrbRl03RCqD9kx+Is2Jmg0pZ5IEwup7V6DVTjPSYJRi8gN6b6lNodZMjCtaqx7Dq5m0LGz6TPumMvmJh/nI4/OVkmErKwjk20oeBT1qBnFgC00ypG5qRBmkQK2ZmiKyDijXP/O1FPKyUdjILWKUouken/BOUxDi3Uitqu3GaZXRBVLtWzeWyrbcWNcrLUWM6abxg5/BNGpNtBDYz3vMsEMZR92vjKOj9UcfSg+IVjgX2e921KrZYmNbT+zcwKQtOyfMIuiqcMWhsyChwVppDxqp/fvT0b8dhZrp00eaRkzGiqKKRlnDkBUmVVLaSHFDJOOdYpahIzOl4pvCeUtVjVQq2jSkRur1htp9YDAeRePVdmSgrqoXb1t/9mEaNveOjjLdMEzpJs6qKiWv5LxCEGxvI/UBQZP+3Am9o1Fy67n0ntYFNLcUWXOkSGEeDY9uz86OPeu75XtcyRJEoySipJBj6ihfMRg14b3gTcNSGGaLWoS0qt6BWjdaCCzTmeXXL2yvb8gfhMHOfHh6z3/2L//ELz9n1FSYbxsigRwvxC0gg8fphSYF1SxKDWgFHs31+oo4obSMkYyuFV1g9jPH6ZHLmPhZ3ihr7Z4ar5GiybVyYSNeN4x3KKuxzd1tzw3TFKqnfjFZk02mpv5MCKeFLIFbuHH76YS4I4fHkT99+wGGB8LbhZe/P7PcVnY1Mw6WUQ+oJpSUCNdIjLEP5GLDWIVyjsHvEOMotZFjI2ahuQm/c/z+T9/x9KfvGA5H6q3RDophNhz2lvH9A+F6o32+UbxlNpUDmjI4wlsmLoFcDaRMvW8haxagu1nm/Z7dtGd0O2Lqg06Fxth2j9J0g7OOvYeT9dJ7jDVjVONhOOKd74f91PDGApoggpsK1mpUvveXmsaKI3FCFdBVYZzpZ7YGxjdKUF1kpyr8Zi4PGbkWlGvdELAKZtcHRW3rkRVpBluGfhqqGpUNxSjqDepSucW1A1pKYto5PsxHHnwvILeYsArmvaOOHqsqziZa2giF3g1qDWUyovr7KNQKCVoqbCnRKjhleXw8sM87xjogCepSKCETt0R4ixhnsXvLzh4Y3YS3DltcT/PXDFui1oqUht002+3Kel3YritVZQy941Ztw4Ru0J53M+fbQo3SBxa/XfCtwm8O1Q9kDFFzk0qskfR2JeXQCYBLxk8doJyl/fMe9pOO1DSgZM/73zvG3WPPZwm8vi20DYpz7PYPSO2HvbabOvosRzZCX6fnRjE9f60GQ5oba479YXiw/O4P3zM/H5mOOx4fjuzffY+bD7Qho2KfANdqqVdFzIU1BVgMzSmq0zh5QoefkC2QbCafO7/3cHyPloGUMilnbj++UZyhOI3JG9X2go+cGjJ7tDX4NbL6RFSRuEbq0BXPShVO3Lgsr7irYTy+4/37FW1P/Hw9sf4SKLqgj4a5lb6GGQR16dZXvMMqIavOtC9rhLGTfVQs+HmP8raXbmLmuiquq0UDl6Xx67nwy9vKz2Ej1YwTQWrPWCtjewnNaIrStNJLm7XRb9O6dAGWFh6/eeBf/el7/hd/9TsOXx35+NVXPH/4xLff/WuUV52UkCPazoh2qGaJVKgWUwYa9xdrzaT01iNbojGlcXj4GuM39Lbx9e8d55dXbqcLZnxCtzfMsOCeKvomvYQ6OWrqk++NzLZtzPPEOO2Z5gnrLOI8YQvEJkSlWEqhtYKtYItQdZ94qFAJJXQ8XiokrREjiIHsGqaBUoo2CPZNaKLIVri9vHGxhZtOfRqqI0bBXnZk3xGf1+3KYjaCLhQ02yBEKillbnZllgnFwM0UJhTaQDoWrj9vVMngKk/zDua+fXkYDsis2STz9vKF13JCY5janusIbD0ScYonanaUMnCtoaM2Fci+s9lDhF/zxlxaPx4o+Pj+iXfvHjk+HYhL4+HjxKlO/PTziJ882mrKl8BNn2nVY+qeq804o/BGMz4U2qmRUuVqE++a7j3yKTP6PaFVrmXllgJKNexoGZpnMZXcwIvlbDa0WMKWGR93pBuYU2T+YGmcuW5X4vKA24+YyfV89fCEaEMMN15DYk2pUyKao2hP1ANbOHNJG6dtI7wUqA5jNeNhxj3PqMGSYmJTGTV7duOEm2ZUuvdpxgNbfKGWgBsM6jz3+FLcuK1ntIzU1otmu/ER0xzP09+Q1MqlXEjryuHpE2Z6wM6vbK1yeT1xez1xfdJoEq1GFp/QQeOV5+n9V5wvJy5h5TWuxOuJcThimYlr5moXrDIsLz+itGc6PvD+Q+Ftu5HfGvKi2PSARmFzRj4M2IuFAuVo8Mp0SEbOlFgpVmjjgM4ZbRUyKOJyJTdNURP6cKCoRhOFkT3VNlK+cV2+cKVSGRhQFOtY6oW3deGX9Jlw2oi3RB12zOPE9O6I/TR3JwaNOjk+fPeBYT6ijcP8XcNMltQiJ7nyKBPSBnSujHXHmjdCOGMXYfIzz7sHPv3pTzzbf8vl+sp+/4H37z8x+JmoDGnJNNNoRrBmwI0zZnaU6xtNhJaAs9DcQKaxxoWTXtH1Srq+0W4NJRqzt/hvZsTnbuh9mCEslFZYBHIRcvMkc6RK6UAHN+LiA1kHZAA/e0LuokW5KczxiHGmD0j8QDGaojLaCGtSXILQxkg9KUKFoBITmmag6kJaG0U32thga/RCAtQK0zhivUEGx/H3HxnfPVDFYIZn2t33MO/2LLeFUgraHKjtjKjKPM7M/27POO7w76cuzbOFZhMxasw44aYdh5JZ48I5rLRamYYnnh8r9fuM/z8988vLv+TX11eObceqvxDVFR8mdN6Ia+aXH2GVF4ooquw4Pk5M4wFjJuR85rB7ZHfYsfeKT88fSMnwd3/3K9VakkBZM3IwqNy3JBsJHwp1yxgzMesVawNqNL1gqTV6r3EnTVWFpDNv+QvhB8P1i2f99K94fvrA4enIu796ZvmnM68l8m+3QM6J/egY3j1hn46EdWG9LqyyEXKlVIXfTX2LujPwwRFK4bYF3m4r7Wnm62+/4/n73/G//i/+Cwb7jqY0r/zIcLI4Df65Mco3RPtG2Efe//ItD08jDw8z+/yRH9zfcF2/MJmZZzeT1kKbrlxOFakZrzJf/Yu/4vD+iWE/kj//hB76YdmIpVpNLo0tJTYuqFxxm0WfOp1PP2h237/D7j0g1N0BVCcK1rxRFyjawzgR1wvNVJRplC+NtjPIZBnmgVwyJTf0BWQ/UHOirDf0YEk5cTqdeVUKj+ClEXZ9U5ZK5aQ23iSiB4151FwrPXo7KPLSe3PZJMopI2pg2h/5fpjZ/+Fr3IcHkMI0PRAfKrV59Ki4Xt6IW8Oo96zySsiBVDJ5gboKRIg1E2o3Cm3nwGwPvHsQJj/hdhqjQXJhNXCLjTUkrmHl427Hd+++5ruP3/Dh3YHd7IhXhWRFXiBOmVuM3IisY0C9Ns5r4BILeRzRHx7xXz+Rzgvu6YCfJia740taWdbE9SXgfnekBYGUUB8FEzT6pLnuDZwKNcOvEji9npj3M2o2tH8sIBr1MP7zHvY1FmsV2jamQRi8YGxf/VhrsE5hTSMInfxC+UtsJ5XWM5/SJ8qeThJRDezWqK5HRHTVaGsZ55H9475/wI8T2rmenfW1c2V1ZsuV2iKSE9Y0RCeqKuSYEVMxViO1kspCbQ2jGtpqOqFTaD4DQouaZDxGdZLN6i9YekSjOY0phZoKi9kot24Q1sPIoCxhWzjfTuz8yLAbGFPCvN0o0vPh+grBJZT2ODHge5FSMsRRGGuEZikaVN1AdUy+yF0BXzsis9YbuZzJTahEclm5rAsl9eKpMkPPk5u+ji7cJ7ANmqp/kerUWkAJVsPOKw77mafnRz59/ZGPv/+a548fOTw94/cTJSdKzV28Q4V258fkgBBQOoJUMrrjt1RBSUGkUU1BPJChrYVYGoyKwRv0qDF1xA17Du6B67AgBWzVRFF3ikRlS1fWaBmy4vHdE0Y0WhQlJhq9zBbCilUaZVxn4pduz0ytdLJTg6ZhFHUn14AuQlWZlgWuvdhtW+t6+S2QI2hp/aGnFcYKw66jTVMsbKlgXSeaJApsjRIqKVVU0MiQEQmYaGDo0aEYKy/LK64JBzswPY0ocSgxPBwMccvclsTr5wsxK7w1lFaQSyc9XNeASpbuDcnYa6PYSHEGr8e+9cqJ8hKpQ8PuHPvdxIdPRx6OE6O1xAajmTiOB47PFkulhdxfokWRWyGVK+3msfSVoohlkyupRtwNZNdJR6YYjBNKaJhLgWsE61CjRXthSAapcDUK20CksJTAIOAGODw5kqqYTZFDhTmBaKTpLliy3QPR+bAZoaIQokRK6+WmFCtlSbQ10oaEy2Ctwg0GLwqpmTVFCBkRh9YO2yxmahgnfQVdFdIsk/ds/koNG8uycrtExmaRoZJqZyvnsqKnAd0KLSxc11fE71G6m7PbCtj+M6qtgRgqgpURM2asVoxGsyqFAVzNLOlMbIFUYJo9Oz8yiuHl+oYbDigs827P5bZ2vN6h52qzeJI1PMhAc41SC2MGZbuMzKRM0onUNup6RY0TSoOiUiKIA2Mr1I1Wu0Vc70ClXt4PJXX6hqq9/K0trTbCFlk/b7SS0K6y1wY36B6TLI0ovRvTWsXqAWcGjHPs3+2oGlRVPJePaAUlrqxvX7ieTh0bGRa0m9CqIURavTI5i5n2PB9mvNUYRSdlaKE0oWVBD50WpZqmNNUt4FVTdIQSe6ykNfYJ1Lryev2Jl9sbkDjOI7th14WHcUVletw0VdbzCTUolKu0spLjHn1Hi44HTwqFro78jfaVuwMk30CP/ZnUGilXYq13N0HsbpJkMfq+aVyFEjKpdJleVhVSQ6KwpEpRgpbGqgtlAKsUh8mz94JTkZLO5FyprcukwnIFnTAOtnxDcsGg8faB4/GRx9MLD58dv16v3ficG8vyhmqWZDxpnAjnN8Lrr5TtRjMCKtFkwzQ4ThbvJ3b+gdr2AEy7B+q2EJaV+cOZy/lIjIWYhf3DiDEd2/jV0yf2447DvEOkMo3Cw87wcT8Sau1kHiLD0glcUSnillDW05RisLBa0yfQ1fZnRClwKxgl+NaJKEObSMcCvnD0C08fBw7vDuwnTxg1Ihvm/E847xgHhzdAyJRbIF422k3TKFTdkRbNKJRReD120V2FUCrzPPPu/Se+/e73zLuHDg0Q2C0T7f2E0TDo2L+HdcPFytPjjuPBcZgcKq4cnGZoM/vHJ3yAUAq7sZHDDa8H9DRweNwzjgNaGZp0IISqiqJS30DWimoBc0lQIsWuVH1hdIr94Bm06RGn+ttZQKAqCIZhb/CTQ6ohrBtpibS10nxFqZ5K0NajS6VJog25C+LaXWxZErd149frwu+uK+xBK8/ADj8YSkuE80KIkVEmBiaaNdA0KiiCCDU02lJYVUQoWK2QeWSUgqSV23Ihxiu5XCks1JZw+4rxHjeDqUfGPDKZgUtMXFok3iqSehE418zr9RVlhJIDj/sdOz2iq2a7RdotUG4r29uNWSY+PTzyx+8/8OmwZ7QeUHilaXnruPltpMQNUyo7LLdy5RqurLcrs7EMgOTEa114bmOPtSpNDIWUKzL2BnVNiVwzc53Q3iI7w64olqGbfsu6cYorOfRIuJi+Yablf+bDvrY09VseX7Cmr6d7Iqfdd+L1Lx+qJh1Tmes9R1x77EDpe8JaC0YUpgrcM9dGGfwwMM4T037HeDhipqFnzdeGUgUl/UPYpB8CDIARlG40KoXQIypGo2K3tNbWEX9aFFV6YkCsvh+kG5SOXRPVOu7sN7Om6gWkWns0p9ZebtXWYrUhxsyyrswl4VxXXVvpD6paKjV1S7Cv/dcXa5CqEIEiPRYi93a/3EOxInTkXfstg99X450Qo6kUUkuscevYuyZ/wax1o6F0tv7dddBUv2RJa/3VJKCV4K1mt9vx8HDk8fmZ9x8/8fDuHdP+QHOanDtJQt/lQo1u1Ww1Qcuoe4SnSu24VN0zriIdTyZOo6Pu+FBrcXYADWZ0mFiwemByO8ZhpOWKKb1grJWgTOnZ35aokjk+HLo+vMLpdOqra2nklMg6o1E0r+/Eof77rKXn2lEKq7rpuVtI+2W0tW7iVEoQum14jYkmd5Tl3fxs6OjWGu4Rj0yfronpU8TcX5g59Xx2o3/2+1lVqEDOlet6Y6qGg/cM1qHNhDGO/Q7O25WyJc5vG+I8VvdjRI2QYmWNubOmqSAFUjf51dYv2lIitSTSEtBDj1UcDzMPT3umecBoTasNpx3TMLLbj914meq92d//f+caIPd/VkR1DjuFXGM/wNM3IiIOazUlZkiVEiqiADEoK5iqKapnyKUAUvvlRTWMFfyg8cWgWscKii79YKka2nQCVYWOua0NakN0l4211mi1W4hz6BdxLGj6ZdfbbjnljkxtsWKsYK3FaYsdFNr332/NABqnHYPxbKpnXtNasLb/eaecqdIopI4jpHVa0nJjNEN/dom624QtZnYo0zdMoHt52o9YLTjTD/qmgWmVkCLpjq6bBsvkHc5YLtvCQXcKjjcDiv7sMoOjpkzOmpQrWizaZLQrGCpoS6F/vxMdK1tKQMnY6RH96dURnAZa65ZrEXouviRKrcSYaKPqL3NtUdpQSiNuPdNqDRinMFp3cZBWOBFuJVNaoamG0Q6jLcZ0kkpqiVYa07DDaiGJIqszW15IMVG3ipst2nTihbTcY2hKcZw8SkPrR2u06tZtlEZ5g2jV45b33Dv3WB2tIrWha8NXIGWW5cYtvXEwnv14YPAD8XqjxIg0jRRouZHCxjTtESvUlsmpYEtDG4Udh448LrlfSO/vviKFWgNU0wEL92d4bg1TKjWnjjyko6C1qqjSqKlQWsd1IgpK6Vno1IcVygiFinKCt4aneWDnNVZ6NKjWfjE3YsnphgydipRrQpWClm4pnucH9vOB4zByyjdy6ZHXFHpksYmhKEPYNsLtQtpuqHlEdMNYzeBGRGe8wDAMSDJoPPPzO9JyZRtvbM4gyrItkS0kxmHor9FaOY5zj0XobnIdBsNhN/DhccfPpxtbSh3TmOh2ViOkVHCmR34H1wV9pXSgZLu/a2oqKKswraMUjXKoOaKHyt4K+yfP/DhirSaXSAorLGdGP+K87T/ynEkh9K5X7vGvpjqmWZQgWmONJxWhSqJi2D888vT+I88fv8INO6rtnTaDQ02+O4YSxFoBcGI5HDz7nWMaDInCaDUDnt3sKSn1M43SOCeocWB4eGTYTxhn+8iucQdx3BGytSNBpXZxXKsVbEVsYvQjh9HjrO2fw1Kg9ViJFkGphp8dxnkaQlh7B6rmiljdYRtWY6xHp3D/zgGtX3S1NKiZkBOnrXcaaYJWDm9GrFNIWNjWlbRlBiU45dHGoaU//2uDkhol9miziPTh8TxhpFFj4HY5UwnUGlGSQWXc5PDTiPEKlR1NeUalYT5TQuCqBdMUkhutFJZtw3kFLfMwzezNRI1wO12oW6RtiRYKD0+PfHh+4utP7znOM6IVpfbeVkmRVIUYFkgJXRqTdpzaiVgCua7sxiNO9ZjTNUWOrd4D1opa+5lAeQu19R5jrigxaOsw3iIBogg5QwkLawpIFFwrf3n+qfbPHOOx44DU1jPhZegTciqxaq7nK+fXC6cviVu59UObWMwu3184hewVqto+obOJqTlG53GzZWLCDBp/tHz1zTfsPzwzPT4yTJ9Ad4W2SL3faAylTmjOaJMR76iq0kovemi1MSmP1gPLLCy/ZnIFGQQXezE4zYJbP1DUQlCB4RXK7FCDZbw9EsYrqWXUJoQJCgoVDHlfsJvgsqIOhpgEufX8+qBG9oOwe7dD/9kTyGSf2SV6wdJp/G1H3DWqFXbRULWhaYOLDnNUqJRRl4hMI000sSW2nEnZUuuEtStBDEtTLNxImL6RMBqkexBQGvr5DegUjUajCZimQEVEG7ADn776xFfffsunb77l6cMn/HREmZEYEzn1Q731iiq25+t/Kx6L3P8cRrRKKBPRux3a9Pz6tjjMYNmpmZ15ZH7cWGIhpMr86CnXjC3C/DjzcHnCiadIwp6EpDJx1Mx2zzTsmA8zU/G4sR+sUq4MacOtDpIhDhlRXWXfVIKm0EmTjWC1xWhFcbFnSdEkU3F4qmlEl1AvhmYa2SvWEGmjQg2Kg93RhhXjBe9GLtJfjro6yqBR1uGZSU4IubJtldvckXUijnSoKAwiiqIy5Usm+sa6C8ybxr932MeRRzvwut44nTc+vy3sPjS0tiQ1cPKZFHN/GM6Qlsq2Jd7kyoPxGG8Y9o3lHLhtN1458a+Of8U3n5745g/PPD2+x/pe+GlbL0K70XKcvkeGgZRWwi1x85lcFVYEfcjUSYF1VFdRWZAk3I6JJzSDsvDg2LmJkitxTGxVsFawUyNpT9pVghP0myXkG0Ot7EUzzAPpBu0ktP1IMY5sFEoZlPe4ecA+CjjfC//hTLnSL69zxtQZxJJ0oy4bIUeWVqlxT9I3rFEc3Yx1mhwK6a2SNEzO8OwG3PMMaqCiuNQX4q3jE+vocPLA5GD3sDL+uy/UsXGWSLwp/KxQtnFoA5tNbA1efll58KpjgjeFnzXi3+HzO+aHRn3bqGkjHjR2e+75eN/wBXwTxFpaGNCjwfrMk3bY2aMGx+nHiB/ul/INzGiweWC8FtbhDYkJ+7JR/qRwdcaokfVhYQqeVhpxZ5GLx1RDGTUqJIwfMMOEeejT46IakkFNDTUqjD2S1S+EtLG9LMjXA2iHs0+0wRG2wu11ZRkLR3tAacdmAk9YJuPwh5HbP2WyCGWUXgwfDOId7fxIaV9IqVDWivJ9SDHY9/BssEPEXwr1wTAc3zHtH/C+MRpDWxeG2RK2vplspvUpv+9SPDt8oJlMaIG21G5nloJPexoaWsKvjWo1gkXWmWFaOU4T73cH3OS5ni5sW8YPBrsKPgmydwzyjIhjsUJYFvRgkElj1HvaztDqirlootl6uv68o77rm0NJG+J2ffggmaCE06lweqm4vYFlILcIU7lfiBtZZ4YwdUKSBNwq1F3neu9uGv00ctxZ/sXxHe/2M6P1xEWhdh1r69F4pzjniRAcfgITMpaKmMZ+9z3Pz5nL9TOv/5Qp5sqqVnQZKbOjTgNS95w1vLSN66+/Mrnv8P6JT59G9o+RX89f+OX1Z5bPL5TcDctxc6zbhS1Flm0gXE+EtbKsvSMg98O+KoHrYliTZX8UHh4fmaaHngf/hx95eT3z5bURfUWFhr01Ao2jccx24PDuidslU9JC8I0mmqSENBYOySJWI4OQZ41ZLLtqefqXf2T/4Rk7TJxC4c//7s/88Lc/cgkDz588ylgWDLpcWMrC2gJ1Z2ibprZC8oFB+R7fephJbzPOD8zzzP/yv/zf8eFPf83xq+8Q4wmXMyFEttZtslopknawjRgzMn88sG8GNzqs0xh5oe2ulK0gZeVtCVwuibdLZJgd8/OB/dfvsfMDlUxMKzX0LhBSUXlPBkqrSBTU40ArA7paxilzfJh5+vDEcDgQL4EUMqk5JusZfMM8bUzuA1DYyoXlZQUdEQtev8M9KIa9YRpGots6ZfBiaNMFtoSsAawQW+WaE3EvaKcYrWJ+N+Cz4XK98iWfWL9kRhoyCg/2gBo1RRf8f2i8UVlUQ580beexo+Xr6QNVDZzPgfz5J6avH7F4Hscjaj8h84AeJlTboVpES8MOR+oEOXiu+8Dsu1yulYxEjxst1jW+3wfcbmBbEq8/nLhIRRvDu+mRP/2v/shf/6u/5nd/+hc9ynxdqUtgOf2C3gxVWzZ/Ra0Fj2beT/jXmWFMjK7wfjwyHybEWJYvlduDZhgNh7Uy7Cey1bTLRJ5upFUIV9i+FZzZcTDwOp+YXgy6wsuQabdMVYUwQT5XxBlkP/3zHvZraogpaAveC2YcqMqwXq/c1jPX24nb9cQiGW8Ng2+dHdy6VdeKpdlOX1GtYQbBT4bdPCHLgrGKYRqZdiN+P6EnT44v1HafIN8adVL9v5veSHVBmsXogeJ62U/nSi0R/zigvFBuV9z+QtsSeS1kVSi1oUNlt7Pk6smlEcwCsU8EzeyQTchb5Vw34qopGjCBtm0Y49GDZ/IjKWRKWbm+fWG/e0bZvootEqg5wq31MV6WTm0ZNLZ0SceZhWmrNGfIsmAWg9INvYNCJCwrly83kg0MNmN3mst1ZLmduZy+sF1vzLr0G/p9wpFLz3aKtnelspBrwrTeR2g6MlqDNVDKlXX5TE4XlKoUqcTwBvGVa0uYrNHKUrRD2trJRy2iVTckFypaLTQKTSp6Hvt0LReMWdApgDOY3Z6WR/RywSyXLn5RG9lEjNXsZoNumlva8M5QsUSrMSzkWLldEs8fvsMPvay6fxr5claoBvPOQhMkVbJKvUBa6dOHUlDWYaxDoakVUiu4TVFt6VuLVNlaggItaHKumNVgkqFNCVM1pmiSrqxrZF0DMW/swx6LxjghL4GQA6El3NnS9o2qCyYr/MGilFC3QjYbQ1MMwTG8M8yzxYsjUzlfb5xOb7T0SjpBY8AfCm1pUBIyVTyGLd+4hhOn5Y1375+YvcOsmtPbF66nL+zTyh+/f+Dr797z/OmZJiup0EUf+oY2FeeE43HrNKocqGNkuCm2Uij6istHtPQybn2rpJwokniMjunJMTiPio7ztvHr6cbnz7cuBgsevSrsQXUKilROg2LcLDoIv17P+FcYR83H309IqLhLIbxemSfF7B7Z749o/0AKke165Xy+soQbqUWqEvTHhlOCr6C8MGrDVDWn+ELRGTUodg+WwQ9s+UppZyQ3rJkYDj1mFMKVLW4sXMkqoBBSybih4DLITeOPE1FDuRauyxvNDFin2H/1TDm9kHIm2ht1e6MYR3VQU8TbPqFTrnYEYO1Tp2GwWA3khPEWz8g+WUR66b60wv7TEXs3Qd7GSN1WUiyImfFbJcTCYiIuKXRrVBNR14K1Hpn6gT61TC4ZWSuNSKsauTTk0SO2IiTKomgSUKYw7Q/IcAQ30upCuJ0J64XIxhgcTgnDTtO2SCFQXMIFS5VEbIkSN47fPvLwvGd0A7X9I6oVXHPYqRfUq6409Su5XSmq/7rN9Kje/lBYt4ZRjoMzXCfIFNZwQw+e8eGAnidKDujUaDFSbgH3+A49DuAHSl064aJloiT60FczPhgMmVQTxUZ2fqK1hpYNZwzjPDEfj90AbhzGRtotoWzDZs20WKq5UrODdSB7Q4meunnGvcWslhwSxSSICnKl2YV0iZhxpk0GaialyJo1ThTPzwPhuwdeTm98zr9S4sbOztixQxPUWhGbITdaFIyrhNRIS+M0f+a9GTnuPN9/MzM7g24rNf1MfhPEH5HhwM1HlC5M4hC1Q2zfQMYMw84w3UYmf2R4+IJ5K8ilYueAloivmodPhtGDboGUf6WWI9oe8Idn8rqQX3/i9eUnTuc34mkl3hK38o+ktzMpJRajkbiRSyUU4bpOQIcWLLeAMcLQYAkHRPo25d3TE6+/LGSTuaoLKveLXWyJ/HKjjQ+ovWPOB/TwCivopYGuqKzwK1SboTRkaaw/vHWyzSQc6+9xrW8h3374e/7p87/n15e/g9MXzmqPHi1+tGwyU0QQ7ygbVNupc9cY2L3bMz3uOD6/Jy2/Mj96hg87vvr+T+yePmLdyOXzz7yGF9btRnmJrLoXZKecWSePUyOjzKgHjysVQ+YWztTribYuCAPbvaB6vp758PGv2R+fmHYPpHgj10zKkdwyMWVECnrKaCk0CsVGBjMT60KsbzA1xoeRx6dHtPK0stJSwKnE4fDYL/ItEeKFuK1st4VKvEsgNXpX8P4+RDPSUcslkfgCS0TVgvaNFrsjRdXGMVj2dmQed0xlYg1Xrrcbl9eIcQ2vBbsqhgeHAHEtbDqQY6SsgcWeMd5xPHi++d0BpxXX9cSPrz/zx+kP7OYZN02oeejyrOWV1/yGDgZnHIfnh14Cv8frzDgyKo3OGXwgt4Ruwodvd0jxXOqCHwK7pTEc93z4lx/56vvf8TB71u0VJYayXUjblaoz0xDxRmF0xg2JYiCLRrszlsCEZn9oGJdpKqLsmRYv1OiQhxm3ZnyNNBfJSxe1KS+YxZCUQ0bPsDgWSSQF8+K4+gvhsuGCwc4WozW21H/ew35nufd1lrI9xlALrLeF27Jw2za2HMkaPKC1QommqfsaQyuaatR7ntw4g/UW40wv5dxztcr3fFApjRyuPT5RG/mWqNmjpeFrIEtHrjUS1fguOGkVgS4UaQ2T3T1z3jet5e6/A/DeojpWhlUvf7GqGqPR2qJE9xu07jzxKrULnZzGDQ43DJR8o+RCSokmnbiQWsdzllJQXW0KdFaOkr7eoUEpiVrd3exaoJm+nFN93ZZTJGwbqILRqseOWuZyuXE5X6ml3X/Gd7xm6xerKvTsvvR4lNT2FxRio2Gt7g+IHFluG+vaRU3XyxUtfT233VXczTZInmZ+26zUO8FEOuqrdtqN3OkT9b5SVAi6ayk7Mq0YYl5RW7sLjhKxJrRWeKdpXvcthVc0FM56qA0rCqndgmydoonGOdtttUqjnaHE0ukvpYG+E4hUj8+IyD12IuSc+6XxvlqX+zr0N6tuk0ZJHUfZ7gjCjpsVSmrkwr1/kqilo1xEQc7dEBpTvhvLuLORBOW6oKpk1X/t++dATE+ICXf7b+lxs9QCtuberZA7LlEaYsA0odZCiIEtRaxVjN5SSyGFLiU77mY+fnjg8XnPMA2UknrkpeS7hKUgFJxuhJL7SrsFpJsg7n+29ELab7jTO8pTK402PSpGhuUWud0iy5ru1JD/ry0YAa17jEepjrW9LqEjHZVlNztuqscgbpcrPs4obTFuoIkhLFdul4Vl2dhKIpOhCMbo/v1U+i636ZnaGBdk7MblYdeRnblm1vWCsUOPP6nGlgO324VtuxF0IYWtx+BujqFmcop9i6LuxMLaBWhDcTixTMc9a9ho29ZpUaWAFCoQS2Z0Dm8NGCgm9HihWJwxuPvCzRiLrTB05V6Pe6EYxxFpjpIEK90UXXpoD1rtIhcaaNsFTvfvvJZu3S3aEfNCrrl/plul5wm72K1/3iopRJrKPQ5jPc04Gop0J3vF1C8NtvS1cScw3fPUJd7jmbFHHXVj3I2MuxFlNDmuNC1oPd6jWJVUAiFeyXT0XaVQkkLXipTU452q2z2N7Rf6XAq1gvEe6xzh2lDSiTNKK4x3iHNUbXq2VRoFaPr+flIKa3WP9+S+2XTO0mpF1Ux1I95NWD90glgPSvXvtFZ3QaOGnGlZU3Ol2m4CraXgtKVpR9OZLD36xx3X/BuJSu7xx9+irYjCj45pP6K19J9Fbb2rojuyuMcKG+r+2mgt9zhfVcSqGdzMcTfy/NyjUDVubOcXshpJkyGhWJ3CoTCqe21aK5TWn11KgTMG72bs7LEh4lOGUkEpxtHy8DAwjR6rNaVs1JqBTtaKeeXHX37if/yb/5nbeWU73Qi3jcuSCecuI6uTw9T+RCiiubwYoHS0bEjMuwP7Q+XhcINoMMoi9R4F0xqvDFUJTfW3dYyJ2vq7bhpm9N2AXO/ve9Xu9JfWqHfk9uXlC2oWjBrRptPKYop8+eUzp7c3bstCqR0CEVSlWBCjabVQjVC6o4lcITbB7Cf8cYedJ5puWOsYjw/43Z6GcLve+PGf/pGXyyvX5cLyeuJyi0hNzHoj798xDnv245GRJ7xKmBZYw4q6BXTqFJvaDGIcbhyYHx8Y93u08cQYe0Ki3kOq/dWOttK/+zWDVIxT5CrEmHGzZ9zvGPf7DnvKmZJ738xNIyjLFhphXQjrSlg3EEGMRoxB64xxFm3dXYbatzM1RTAVkd6VKXLHmpWGMRZjDdr0d24MkW0LhFy7b8L2KCZaOp2x1k5yo9KkkFpg8BPzvhMBm1ROtzP/8MOfGWRit58ZZo+sA1ICtIwMBrU2vB3IUlG3QAqJVg3GOByCshotdyqaFQ7DQFk1aTV4YzjsRg7HR779/hO7xz1aC9t6ozVNuJ6ItytrC0ymO2jS2rfltXXs6WA0OzWglTCNDqX6eSOnjRIjOd6t2DFQUkRyj5Y3FKLVHQHdY+6IppCogNaGHCPQOlZ66pZw89uh8v/Pf/0nH/av4YyOO1waKe8nShaWW+DnH37l8+cLb9eVRSpG382lxmEGj8T7b24SWpRupnW1IzangWo1VYRaJ2r5QHWWdSuUbSFubxAGSm6s5TMt9ofcfs4Y847OS79isvnLQQs3YmTtxblhRIcLEitYT9neOuFv1Oz0iGhHaQ59WcBr8IKvQjvsKAr8y4n6YHoBZqvEyePmif08o8cDYQmUGCnKkqmEFjjXM+sWSaXhvKE5TfVCcWBuQjSarMFuqecSlSAR1MOESC//ZXqeN6SVkZGmNUUrYnrlpx9f+eWXK0pbku6mcN06BqqJ6hl9pXtevTWk9BjovSKAHQSdG/WW+OUFfvmy8PnXn/lyWbFWYbVlNu9J44oZMyOOabJo3dfgpeWeZ0R3Dr3p0hgt9Z7tB6LHDjOiDVosogKtaUrW0BTXJXG6rl2q5g26eJrSaBVQYlBmh8Q9ZnRd924F5YSCQreeg9bOU7wnlQVTG5IaMpreeWiVrKR3NWqjDQZiprZGMg1X74fZSeGWSFaNSMcaNqv7BkaEZBpooRRoSlOUsOXIrS7E2rF2oVbCmojXQBorAzNUw+YqGI0xHV1GgiSam3fkpbLaSLaKXTUYrTDWcFUN6xPZZ5ISoqo9e1w0yteOgF0rsQrzbuLwMLK0Li47jI+8/90j3/7+O/x+ZKOyranHA2pm2QqhrOQY0cGAquQcuF7PRBOoYqCMbFaxN4K2UEhoEaQ5tr29FyMLC5nrOXC5RrZUQBma16hRMFiiEYoIVnmu442tVM6ngDIOr0em5tjNG5e0cPn1J+zHrwjiKNaxxcjLrxfe3s6critLa70rRMVZjxkGZHSk28ZaV25qYbveGHd77OzZHR/JUrguFz7/9CuHD79jTY11W/l8fuX08kJYAuPugcv5TC0Z/5aYaySmwLpG3pYbaucYnSOnRmsGY0aO445SNZfTmS8//kh8stSqIS5cdGc4O+m0raA3qlrRo+vxCqXJ1pBN7Dhi3xiDgDJUa5lMIbaeW7VrQ0ZHNZpUIpvPlATD1ZL3lpoShEQaGpNqOBR5P8O60HKmTYJ+k37RGgy6Crr1Dsbl+oryI9buqO5IFEVOifT5zG1LLCnfs/fdJq1bo2ghbonltBLGKy0qrFj8hz27xwPjbqLaxnpeUbsd4/SI0pqQVq5x5fXLG1rvaOKI+Uq+KVoM6HBF1NhFhyYxmneoWnpcJxnUzmGUUEO/9IhTmHnG7Pdkpdi4I3GVBgcyObyzGNXRdtV1mhJVMGNHkprgcdPMOO4wdiLkSIuCZAeD6/hVE0mDQl8NTQxxttRMt2xKYaqW7CdEadqyge+lR31W8ODRbsAZQ9WCsmCkYUeNHkfED+AirQqlWoI3ZHeHSeSMlZ5Vrx7eTgtxKmAFkubDYc83H97z/tMntAjXlys//e3P5N2fcIcFnxZM/YpZewYzou1EWgOZjOiIXfu2cpqP2Hlm1gXZQ/jJo/aO3XHm+/eP+Kdnpv2OEmrv8BSh5I0ff/ob/uv/23/D//n/8n9l3BxbuxHzin3NnAExhg/HB1oz90uZIV6uf7mY5+XKh+9+x4evvsFmzc1veN0P5GsNNAt7N7IOlbY0aiwsqlKlYJXgDw+9E1cKm8kMpXZowawYFog0Ipl/+Ok/cvSfOC6PhP/qAUmVt9ON//ff/sjpp8jtJizTgC83UmlURsanI/n8Ri4L+VAJt0zIleQnpq8+MH18pu0cQSrOzxwevqVYw+nlC18+v/D/+G//75z/duH0duJv1d+w/b8UQsb97sZ79b9n/LRj/oPl29d/wzglnA2YNxhMYjCNBwxi9kxPhvlZePrT78FYtthYrgmximYU1fT3u1GCtwN6HFCqoZug5m5FZrEcnx45vPvI9PSOVAMhbqRU2T9/hTscCSVzWV54/elCioGqCjs791L6qPAhY6c9avKUsBJUJrRCfRP45PuGNcPqtj54KJX0NFIHoanMZiPX5cp1uRFcY3CWvBOuYyTWQpbGTWe2kClDpalG+Skx7ScePjzy/tN7vrxt/PnnH/jv/rv/kS//PiM2U81K2e8wOuON5uPzH0mXHxi94fu/+jc8zwM0A3nEmoB4TTUVfSr4QTPPhsdxYlGBuGh2+oGnP37i+f07fvfdV7zoxLZtlNeVKIXX1y9cb2dULfijpVnH8uJZW6BURS2aD/4DR6PYvGb0lVoM65JYvgTWXWGwmQsnPl/O5C0zRk1+sDRlUSoTxkSLPTK77TR1vQ/djpb2ch9iPxn2WNCG4uw/72Hf6R3j4cC4n/G2cn49c3m5cL7+Cq3gjGZythd4FSiVsNGjWpc5qc0QTER0450Zeff+gB8srWSiq7gDPLxXtJYJ5cxWMuHtJ+zu0Nn3l43tUElaiKqxjJ3g4rOitpXqhWqBYu7FModLmuG9oa6ZthSWa6OETNsS7nePqKKQAOlxj6Q7E/VgcFETKZ2hu2iaqdQJnuY9x8OecZqJqcJYQCISV8Ktcblc+PLDzzS9YkThmqBbRcU+Xa+2YGPvWJ6l4FNB5cymAjZcESMo2yhxuU9hZqZhIC5vLMsrf/6P/4iUE8eh8DQ/8nb5qUuslCFTEFKfFuf+oUAEbRui+q9fmhBTb3ZrK1T1A+fLnh9+2DF9OvOoB+wwkZ4MQxJ0M32qqg9UY0gi2NDHCk0EmendgLvYg5IQVdDHgihHzZm4Xbi8ncklYb2wlYQ1lckW4nLFtBNKbdAKvkWU0chcOH59gNnSJs++KUIqlFqZB3Bedx58jLTYqQB6rHhdyQKtaVSVvt3QYEsj0svOboM81C6AujSS9HKTjQVRignPrk49ihH7A19UpC2gQhdLDeWO7EqRvMKyRUIt2DhTbaNIZtwcKvfDulSFOxqGpJhOjZsUtvWGSSuHjx8ZnGfSjrFFdAJdG84HHtiTVSZI6xnYHNnMyv/227/m33z7De+f9vztTxdye+F5N/Nf/qs/cNyNZAU1BrZ67X0OgHajpEDOgexOpE2TwkpOEVsdpSmSKuwWgxsNJitIjqojDMJz2NNEcy2Ft9PK7RZY14LeJswIpjmkGJSp+GqQbNAGRudoNZH1Sl0zam6Mg8Jm8Najpwc+fv2BeRqhFG7nK9fzZ9bbDZN6LEx0xTZBjwprDaZZbjUSLyvlbSGqK9/vPvLNwxO74xOvpy+EsrC0L3yI7yhXy4tJ/Lx+IayvlByJ+T3IQlGVF3VjzW+c0saf15V1eWHkiLEG9U2j2UwlY6Y9u6oQJWzpF4xsSHNkZeB6BueptqLIDIPHyh5KwuqMkJHQ8HpCi8dTcDu6JAWD14a6RVLdcO98J1Tk2lny14ouGv+8J91LYlmE9pJoD5U2g9lqH+SLwkbFpreOxP2cidaBquim0ebAsN8zHHcIke1tIYTYs+3isDKQKvgSu0RnHrrjwlaizZiX31CScEQwk6dYYTm/EsYrAxXz9sp2+cKtBi7hSiw/Ydyhmx/PZ97aG6m9odKP/DqPHGTPV/UZO7xnGh2Dn3DDAa8EWwvZJobHXi5WesA5T86JsC340aCMR7Rj3O+QsiI1ENvao5+x4oe5l+492EdQ+wOzHzE4Ys7IJCgD2+VKa6CLxS8WM0sXF4VC1pocEnbZkOcdOhZUbjSraDdFy5V6KLiYaMGSh05VU+zQds+gLIPzWO/YosaNFWUKc1GQE9IyvkKZ1B1ooPjJKAYF3mgeP3mev/I8f5w5Pr7ndn7j2k681l95eX1eVHShAAEAAElEQVTFXHeMrw98/69n2iHCtLBJw6pwpwIJZkp9AxwNw2yJ1VMLjL+DqhXD6HAfR4YBxqnhjgpkoyRDzok//+OJ6+XE7K/s7dc8uru47lHxLq+dwqQsqyhEO6wb2e1nttOV28uJYCs5FdqSqS1xuv5MTZU1wMu6dZKU14wKmlWkUSM5orXCTR2HbSaLspr6EgnEPvFsAoNC18xQEhNHjt98xdMfvmZXAqdL5PrTZy5//h+QVBgrDLeAqwk/VaaDwo0eHRxys+QvidVm8iR89elbvvmrf8lunonbylu+8WSfOB4e2ZY3/sPf/Uf+p//53/E//Lf/NdN8QA2K45eV0zcLjc60//wvfuTT4yPfHZ6ZP2aOo2H2Dve7Z3ZhwebYo4T0ocI4v2eaDqwhsN7eSPWMLiNGBvy4x4aCJWFmjbQu/tTe45eEHj3T0fLuuz/yeHjGuR239Yrea8Z5wA0OhYKtkj9HtuUNSsWbET8atFId7fusMVMvvwcUea2UVMiHwlAtRumO0gy3DrlwlsNqsMXTmiOeFmopWNE814lIwBbNGAxbDb0vtBZuplJjl0DWp8aHdyPfvXvi0/vveV1/4lozfz79wM9/9wtZQXaCP7zn2+eJ94eR+gbzu4oZZja1gvOgG2WomKh7usII7uvM4D2THxjnJ1p+JYyF3Sfhw8cnDk9PDMeZ+MMPXNczW7xiB4O0gJMEu41zgRWhDq+4aPB2wI8eYydkcjA61p9vVDEd8f2Hr7AWUrjwZd14+/lnlDFM7z4w5L5PjFbjr5qtKapT7NaBpazECnbzXNWVmArmx8r6bo+VhvnnLuhq51HOIcaSs7BtK9u2UIpCVO1fSGPvDHeDVRalhZbVvSHeMMogVvC7kd08Y4ziuiwYN+OnA9PhAKIJYeO63diWwKC77ttoxV1USLbqTi/gLqyqnVTTFNzRb0JFW8GNI7lBSDdyTqQ7flIbS5OMqhmnDFX3JrjWjqJSjwM1g1VC05pqHOO8ww9Tb+XHFaMd4gQ/DaCl59FzQWnbJ+taKPd1VZHaF/e6x3haaeRSyaV1SZJIz7ynCvnOJ7IaZQytCjlV1vWKURrvPN475CT/P4SUBnKnwdRCvWMsUbrTa+gT7d8iKK0KzlmM1T3+oizGT/hpj/d7BgtaKdAG0Z0eIfRkANIvEE38XeBFR6Ddp/uI6SKMVsgxsCxvHbWlHNAJELpWVM6YwSJOMRrBmKVThezA4eEI8wx+Qm+5b2dyQyn3F2JHSz2WgxKU6y8BlUGXOxZMqx750R3zWlu7x7GEKtJlFaFfXAqNqkCsoHyPrGwxUFvFlU6PkAaSe/NZSS9nZio5ZtJWsMN9xUrPk/aoEH0y3bo8J0ohLBviu1XVKM1gDd5o6lY6usxpxsljMNStU3ku20ooGWUMH79+5PFhYvCabVnYjxPvnh75+PUzfvLEsHBdzoxScK0bDUUaRsBqRXUDptQe97o3ufu9SKFM//Pt3ZOMqI4tFaspBcKWeD3daKVv6bS9LxVFUUS644EuMRPdA2Sofugfxv55axUMglKGZi14R5VGTIGX189clo01ZmrL1JTR9PiLdwPaGhoQb4l12dhiwOmZ+XBkOuwwWrOFrceq1MC432HHEdGakgsifc1slIOhoVpBRKOcQ+vGFBVXdwbdyTlNLEWpjsfVimEcaBSm5RmtVY9t1EpVqa+ja49sKbgbrDshprZKLoEa+/TN2E41Eq06NKoZlGSMUlg9kXWmltqFTPT4ircTlUKOQKjkjndAN03U6W6p6+QiheloSN0oIZBpNGfBjDRrKUYTU2Zdr4QY8XbqYJlSyUuCpwGtLcZ6Wom01FGnSEXLPX4x6H6hLoUQN0pSiDHY0SJK/0Vy5PwebWeUaOq+MYVCchWZNnZ1pF99FEMtKKVRbsB6h6ahC5hBU/QIzXTTpO4G9FwDg+p/tkqDKfeJWBMofQJcc4YoiMmItigzYv3Un6v0vJZg7s/PSK49rtM/9w5EUwVyyBTXt4NaGZRO/aCbW/++KIHqENuftTVEpCnEgnUOZTQlQ9o6aQyj+7PbyR1p11BKMWlPlUJSmVF7tEkMTnO0e3bzgWne4azjrVa22rhpi1YO6ybssMPasdNTTD8ci0+o2jCqRxyV6+ZWYw3j6DFWY+xIsQ0/Wvzg8ZPDjRZtPEil1kDJmcvLF7Zr5P9D23/1WpZl6ZXgWHqLo642czPXHhGZkclMFqvQRTbAemmgXvpf9M9soBsoVFY3WWSRSTIzI0O4R7gwde2qI7Zash/WjejneogHg7k7DG4XR6w915zfHKOkDqk0SmgEiuIErZX1eSw1OdeJlbEOp8wz4SiQQsF0Dt1rjHHENDCnhf2h+jKkMWxXG5TT6KSqMEpSf1bXIF0lZylhQI2kkgk5sRDRyfwpgphtg+h7dL9GWMe8PDKOB0KxWL1gjALb0EtYb9Zsz89RTlXfShJ1r1BZmrbj8vUnrM8u0FJxOJyIqaOIFoxmnmdub9/zw4/f8TBONP2Ovm0xN5eEEilGsO4s4eKKpm1ZnOI4n1CuR+mOvnU4AyYo/Gkgqwbhetx6hTSGOE1M84gsqh7QstQIh7YYpTCmr5/XEMhTQpW6p6a6nm61xVhHKRCXBYFBWoNu6rTLLwuHp0fmU0ZJsKruFlb0t8Capn5HRG24FFHIUpJoar2AqNP0Uh8eWUqiqjVNWELdlckFIRTOGeIYEKkarU2Rz4HqRJlrE65IidMd3XpNt1nhTEMiMIaF/bgwnUaylJUUKI88yYhcPKkpRNmCdozRIxuHshaXM8tprmWYVri+xzmLsxZtmorGNY623bI+39JvV+jGcpoGjkNFha5qvxRjNEU3aK0r0t1pnKqYaOtWKAvCWoRyVUiJQWfBqp9JRVESzH5m8R5FrQmFpFLvQiG1BVEkGk1QvpZRCYoRlCzJojCXzDTFiot2f/TX/5mKfdFZijbEohjHzGkcGZeJwgqhD6gisdGBSlhtcbJFWqpKPEmCSVjZYIzDXXZs2g2lFPZloW0u6Nc39LsbsnQM456Hxz3jkFj5QNso3NaRQqXEhk7D4kgFvCiYAiVqUlEgJ2Sspj7ZGpplQ0qKYRlZwoIvCdHautgrp3r7zoKga17NiBYvPJCxUWCcQBiH0D3ttsfpZw55mTFqhVWC1cUZyzIj9VANr2ZFLoWkBT5kVBNRMtLRk2wgqQj7jE+VUJMnhTAGciKNub49QiFsxT+mpAmLIMUBa1qado1u7iFrKBnlJFHJmlmEao6tXuKKztM176uDrFmynClRsG4v6Nc73LrH2XPavv77yl6iLEhVkGSkdjUjmDNJ5oo/FVBKA6Iy9kUCVKbkQokNmPSnPPlpfEDmFU40CJeQof5SMeMutjhrWC2WeDpU5j6O9uwluu2R2jLzAGGEGEHUsa9SsophRAEjUU0Dru5naJ+JqqBVXdzJOv5RvkxQuT5EtCA1UAZForDoQpaVJJLWEhMVftmTUqCPXc0pyno5yKJm0zthSDpSfMKfAu46YHEIBNmFWvABUWXUpEkyc7KR+eEEG0EyFls0nTU0RuGPmfKqoFea1WbLQiGVgN8XPpweWVKiaVquv9ixOmtQKXE4PPHl2Q1fvPqEi8+usH3DMj1x+3TLudvSF4mzda/C6dq5kaaliJG28XVxXqU6fSgK2Rcw9YLq1VL9BlIRVsAhMY2ej09PbPUOlMB0CrwgC0lQkIUhmkJQ9aD3OWJk4bxds77osI0hhIKVql7stWTWMMcIKfD2w4/Mo6vRKeXJU8BIg2taWrdBG4tPkfDgOQ0nhjCx0i/ozq9ozrZICsfhyDxnjLpk/eIlTdfUzu7TI8pUlG9j1qSVR1BogmFYG/SU6AU87D1aahqjyLkjSk3UAgk0vUNazWb+jBBO1WAdPdlEiqRmvNOCSNUHIEQhe1nH3HkgngpIidKaEvrq1rCRMtVcptYKO20QeiTmhbjMJJ3RwtDJHt9MiBOUIeFlgiLRWZNtNR3LlKGX6FOD1AWxTsRpRqRcLeG2J6hK8EhD5DgciDHizAVJVGNjeJwRn16gdUtjWpKI5CERHzycJ2xqsaojriwyZ/CBJSyk0SFXK9zlBt2ukD5RkqfvPkepavBkN9M8XZDkRN59wuW7ljlNjPKEiQmyJokObQwqR5QQuF7ipxU5S4Su+xdJBHxZEKKr+wiynimpykWQqafkEzl40iERmwktDHRbtOkrDvbZglmNeRqhJkIMhBQoVqByT6EQtCccPNpZIgVVDFJ7pBaUJSNMQkiBPLWwq8CCNI6UpBC2FtGyUcxT4bSvy85Z1p2o0j/7PgRgFBu5IhnPYie2qqe4CddIzuQF6+6Ctt9W7HMoDNlwNFs+aa9pVxvazZauu8Rah9WGxnUEUZA50hZTsZBa0zhwxlY7uQGjXlD6iG2hNRWS0XQdSq7+VOzHOXK6/YnxKRKWK0onCF5SCkgbcbrBaIuxtsYQJCgncapiet1Koj92rC42uKsq2jqVQJpnDocTT+FI03ZsNltkazA+0qSFJAXGOPqmQ7aSRjVYaZGdIJbCTF1qtlGDEmA1y1qRmo5iemK3YfA/cJwOhPYVnfsRVTRFbTlrWi6vr7l68SmTCTWj7yE3kcbtaDaXvPzma9a7C/y0MCyZEi7IrAi6sD8OvHv7E3/4w7ccRYtWZ2z7Hc1LuJI99Ap1A+n9C0Y8j+bA6faOUUv8que8UPcfZSYfCsWuMc0Gs+4oWhFSYBgPrOxNXfLSGT1msJXm4/SWZfqInwb844RYB4xe07jX2HZdEd8h4OcJY3couUK3PfEwMwwDtx9/JOwdtpXYLlMWSTYFKQot61q8i0BZPMVkSIoc188Ct4QY4/POkSAJyeAKU/A0w8TUR0iqkvJWlmk/V5uzEXQ4Frkw6IQ6ZHxXiEbQyx3t2TnN2QYjJT6dmPzEaYIug342apNnHh8D09NAWC/MywUhtmw/W1D9iq5rUNlXPwnUz3x7RdNVWpVOCqxGuY5V84r11TnteoWShofhicN+InqwrcQoiVYNWWj6zYqmaVGyxaSMLBohGtAzJRpKMNimkLJDREnrFqYEvgSWMLCQ0Snj5wxOkmImDwm/jeiiaLJgbAZ0Ah0gdAmZNEUWRlew+0DpFFVd/2cs9i0OWTLRn3h4d8fR18ULZzPTDHnOxNlXVrKUaFlI+5m6jyopXqM2GdcWtsJUYYXSdLsz4t0BPw2M+xN3Pz3wYdxzd3ri8ccf0KuGpm25Wu3Q5ztsC6uHgaJbWrNi3ZyRhaAroY5By5E0J2RRqG6H62t2Wz/6qnqeoRwLUzxSwoKcRrJNiLAgAghnUMsRl0fW60hqe2wDbTOyEh3ZTxxzopwnujlhhWRzKbl/E9FCsD07ozOGeQgMp8gwRnIKMCva80T2VfgUhUGeElF6/NlE2muUoW64EytKKqj6MApHRDzi9Jrd1jIdBXkJGBGfu4eSKgmCnBJRzBgswti6TZ8rozrrKuSIPjGNA7oowkFyeJOBgce0EE/3iFdHmnKBdT123aNVpOSFnAdE6chIioRGTQgqrz79kScrC7o5sQynSqpZZu7fBpx7YrM5kaaJZTiScmF12XPeVeawvTao+A1FaXIjaI0Ak0lyYro9oVpNs2rQTx6RB7If0CJhlKFVllZIVBTMqeBLQi6ArYtDaY61Q5oLdhFVNOYFKhQGakYYD6qxqGKRczXaxiETfWLMA8bUSUISmfJxYbQnHraPrLsNbQtulVF7SWwWSIk1HcEFYk7ksRCahE2ZdorcmSMualZT5vj6kSg9tpG8vOrYdCt2pkGrVHnfMqDcTL9pWPeZlS18ttvgUiSHhc9vtvyrT1/y6uaajXWMjwdOTwdO40g3jJTWMhnNfIq4lUabjBz2SB8wObPuVwz7hUCVLa2yxMZIEjNmchirsEaxWgwfpwOHZcRGoMxIYbHCMYtMGhQxSg5mQYpCyIGD9+jQ0OnKB1djwppMv1Yo07D0jiwtbvAs/o4leg53R7o2Y42q+fg0oRHsmhalqdSTyeP1gBAZKwVdN7M1jo6GefHoknAEujTi4kR8jExTJZyIcELICF1kZS7oujUX15dYPZFSYvwy8OL1Gce4MJXIZS9rUaYiJ+9Z2w7nLJcXgQ8/3ZHmkRADeIh6ZG4/oOJCmTzEiO0ytswQJ+bpHsqahMPnhm0JkAwlaObDQHKKYiTGnSrpJUdCCZiTQRlFOV9oDuATBBU5/vDA6rXFGLAx01oHWTA8LiRV3wd70siNpshMShN62pKZyNPIuL8nxIS0ltYlxqeFMo/EdGAdX9MkyCXAFGhXgs2N5ThlpM5IsdA/NcRLj3TQKcm6nzjrL7hszvH7gF8EGYOcD5R+BbqlETt2n19jXcLqkXgh8D4wLTOnkHBSYdWIjwG91AVz0W5oRKH4RJg9USdCmuuUVjxB0IgoK7ktL8gSaFQmn+6Iw0QIC1MWrHShy5YuauISGUPAXrToeY+YB/x0IEwT85IJVmOasXpLIpyGgUxC5UI6f4FKBRskxmriUsgpIcyAGCub3YtKihZNwBaLzBLXFZpVIo+G2odOuKE6CwiJ8uQZ1UKXLVuxYn3uScahXcGcHTHxiBon/A5SaUlTIr57z7BTtfGRFI/tiZwmSIbWSZzoUUpgdEHHibJE2pB4cb5iDBkP3Gzr5FZqge6pIxLpMc0JCXgfGQ4HPrwf0GXhs5vE20dTPQ/S0kSB6hwoeJomCAYhDIgGce6IojDHiImRm8tP+PLll/zy66/59tf/wPw44MVAo6EzisZKumIRJrJ0hvx+Yfl0ZFomVl3P2fma43HH/vuBIY3E5FHRMmwkMoON8PJ6y4vzjvOtJP7wjvnJU+bIJ8tPPEwn4n7E3p/Y/fdfst5dYFvL6WEiTzM5TUzScXmx5vzljsv2AqNaZNNy/fIX3L//TyiVWJ4Cf/8P/8Cvf/eBx2PB+gNv1UeexpHNR8/5iy8wK0E83fPEAwFHEo7HtmOdJszyyB/EhE+GtbCUswvOdUPrFIZCjjNLWhhyYsURGRyyVCeA1gJrMrCnPL0jH48UNRGNoW0zu80BhyJOS4V8nIPJDzhxQsTM/t0tD+8/cggTn11JjFQQBSHOFCyyOMRZwCx1500qjZoaVPTYdkAPgZIDU/HEcYJYsMKwPliijhzKRHxIuJVDC2i9Y9Cyxt4ePFM/gs/YE5Q2osnIDO6F5KrbceGu6Lfn/OzqX3L3xcw//M0/8uZXP1Fsg+62tPGCnA5MceS390+8zIbctlw9BkqQiCyRWXDd7ciqgkL6RiBlQKTCHMH2LWe24awP2N4Sw8Lx9MD+8cQ4HykycJwvcb5GSFefdNWblE+kJiGzY86FY4rMtw8MPjLGRKckSdTpsykD8+BZlsAwjfgpIW01w5t9i58XxmnC/pBpVw3GaszeILKBElEPhfK8AG0OgslGyDNyTH/eYl86DUhSlISKpalRirJQhEHqiuS0bf2hhVbkpJG6jm6KVThjca6hWW1xXVdHN1IzlwOH44z/6YHv373hw/6R++Mjhw+3ONfTth33V0f05ohpCk03sHNXODPg3BPr83Mu1g273mFVpcRICdIYVBbYprDanLPqR5ALSyrEpeYXk1RVOqWqXS6niJAW5aDZwGwFurG0m57t2ScIIqUEolXYPmIAo9ekNJCzwNkGt1IoAjEslHkhU1hIxFSZ/UkptNIUJUkUQohkIesyJhmtmyrosTV3np8RmE3XkNGEUkeO4Zk0ZJ4jQOV5wzs/5+jFc8KmEiqq8dg6S/Qtc+Mo2XA6Tbz/+J4fPrxhtYtsNpZvPv4lm+uJbrtlHa/YrVSl1MSGsASyEqAVllIz9kKBiCAUsuhnGoimlEjJdUm15MwyZVq5ZrXRNF2gbXusqrSRMApmv1R6U2gR64iWDVI0mHZAuoZsLMjA5dWJ0ymxWt89E4aqvyEha5QrC5KotIscy7N5+BlO8izWEqKOyUSsoqYsK9EnUQgKyLkKWyikANoqhKqSsEkmhrQwTBPb3Tlt27BatQhTR3TBZ44uYQGtBLgCwlSqgbJMUyCZiJSFcT/T2ZaXV9f88hffYK929LsNzlmMqWZfU0TFhmrHtnNcn5+xkoLsLS9vrjm/vqLbbim5cH93z7t373nz5g12d8YqKRrn6nuCoYhCRBEnz3LwHB8e8ORKTpJVDV9EvXAWqxHSIjAsJbOETEi52nWLohRFTILqjMkEUSMmSWZ8yoT5OWJmFbJxaGf/FLfqWs3cN8SVQ2jFEiPD5JnDQmd7lNL1/TGa4jSpMZVyVTJz8vhYmGNgSYGNNljbY22P0QZjO1yzoum3PO4Dx+HIw9OBu9MdSk1YCzfFoS4HrNKEmOmaDms11mrSlcYtE6ewsGod4tnQbLRB2w4tq3ypW50Tk2ZYDngCIdb8addsEc2MKAGlFVqd6lL7UySUmnhLgyRpiZUtWq8IfSFpS5EK2WhimglyqeQbncmiEKblWcYnUBkmMTP6E+2oabdrTNOQEAxLII4RoSE58ycRj1QK02hQilwyIUuSTEhZEPGPdIyEz5mgBUFEop8IKYCQKOPIYaLIOjHstle0/Q5rNKU4+v4KKXuGIfF4+MDbhwfujk8Y6elWZ/T9iouLDV2+oOkV67XE5DXkiZgqQUPqKk4qokGqBaFANxsknkxEIivJpkAuibwUdKPR2qFlJBdVX/c0Ex8cKWWEASEM0vTopsPoDUIsCO1RZoWRmmJWCLFm3t6Sp4WEqPEqIVFCQwyEIJjDRFqWSqySCqU1OtVnR/EFIWunlhL/JAjSjUFZhbEtynW4TnEYIcTC4BJr7RDUaJM/jNBJNm3LpnNMBoQruNzg5BprVpimoV91uKYjYvnDHx7Ick9xP2J/+oGLC8fFrucvPvtLVm1Hay30Di0txqzp22s2vUKFiSV7nG7QVqGtorG2UlWURqEh130E72fOdpbzyw17f8GkNLEoSpE4n5lLJsfq4fEpI1TBCsEhSpIyZN1z/nrDJ59/zmevP+fs8oLN7Rn3+0dCSggjUaYWnkVpQCOLZlIzx3nksD/SbXoa51h1HU1jOT0diTHjDeToapRQC/qrnrbvMbJl9APTvDAvCeSGttFIuaLZ7Vh/+hp3tYK+Ybl/IhhH6TdomejOdqzPr+jWl5XaJDPSBZJ27INnenjPP7/5Az/d3fJ4OrFyhrJ45iRYJs+x3CMaiO0DjW3xKjOakeamJSuNbFo6vcZYg9YNbXtGa1yduDRtFc0hnumFGvF8sVIyVFiGhBwj05iYZyjKkUohoRDKoeUW2XiU8ShnaUSpRLegGMeFaZrrc1AqhJBVhuoD2QiKUOQlUoys9MJczw9VBCIqdKuQSSB8Qpo6RXJKURpJKBERPMUoYkzElMlWI4wk6MJReU7PFDSvco0dm0o5bKylaXqatsOahsvLHa9evebrL/+Kp6eEQtKZFpscYWwRQbBuakE8LxPH/cQSCmvRsG5WRBnrM19CKwWIVKlmKtP0PTKrunepLf40cDgNHKeBXKCxK3RpKdrX51mEu4db5mFkGWtKwGc4ZcEwHFli/TONrTIyoQXOJBosZMHkp7qUnwrOWpzU+BBZYiTo2ohyubAUQcqCnAWB58SErDvHIiVKksT/c439//PFvm41cX7GkGmNEoKcFbl4kLZ+UbXEtR1G14My54JRAq0kNAJrLY1taTY7XN/W7C2BkGHYT/iHj/zn3/+KD/f3PD3tmU4DndzStz1PpwHl9khb0O3A66buoOIC169fE16eIdly1p5Vs5uSSKuRSWGLZLW7YrU6ENWRkGbi4skKsqwadiGoLPmUQDu0sjRG4xnQTUOzvWJ38SlSeRALS3RYGeu0YxbE/JaUC1o7jHKUFJlGQ/SBJGqx71MlW2RZEYJJ1cI8hEiW6tn6GFG6qdgrW/PSSWiScrjWEoXCF0lWmiArcsxJnou55+peCoqsv8sikFqjraJrFdvthhIzS9uTgmJ/PDL4A29/eKQ5n9jtHPL9iqtvJtY358xZYWRfTZ6pxc/3NTtnNK1ylfzzfPgIFJQEOQGWUhKleGyjiEvBT7Bdn2HPVgiTceqMeXlgGUbCx8gwvycLjXAXBBXpRUcnNtj+SHE9RTeoNnP9IjLPsD1/g/czsihEEbWoL6L+s6z4tJQK4RkuWYSoYtM/foEkqFgRh1k871FQ8CqjnpF+WRRygiJrHllrzWRmxuw5zRMYRdM1bFY9s83EfX2ITymyeTYQl7Z+5TICrwxlCqSSUTYzHT3XLy84W2/Qv8zE9fOI8fkC0xnL2rZkMdB3HWfbLdcX57QkcggEMpuLS2zTEkPkw4cPvP3pDW9+esO57VCs0dkgHORiKCkzJ8FwShweB+5vP7DsDEb1OOGeoVYZyOQmI5KErJhywMdMyiCcRARTL55JVnoKGSETMcAsMlPMhAWME9BoVOdQbc2NoiRNY+l6R9g0tdhfFobF46OvOXRhwCpkY6CxpMbgk6dkyZQWlliYYmDJAWdbjOsxrsdahXM9tpnR7cyH24EPDx95f/+Oh/tbdB/oeouLN1hdL8DDcEHXrmlUh9NrVptCmSb0MrPqDVq2aGmw0mNsV4s/K2jXF8xREA8jQdQMfQ7QrM/RZkZKT0kOhSZgyEEx81hZ8LMgrjVO9lh7hpSBjCWjkcLiwwm/SIoYKE0mxcwyJpKteU1VYFAz43KiPWnsxRmmeS4OxmqsRAvipubwkRqlDLY1FKGIKdU8qQoUWSdgOWViKQRgsQJPZJlP+JgoQqK0I9uKpFXG0V2+oF+foaUmloW2PZCy5e7hxI8/vud3P/3ETx9vMS1crK4532wJX27pAnS7llCgjzumUHjyM4KW1lm0bRB5hXYLUhaMW5PziJABqTRlWJ4/p4nk6zRWmxanE5FULd8x4ZNlSbk+KIsD3SFcj9RrjDYot5Dluu4UlILRnmXOcDqSpoAMAYlCCYtIVc44p5kwzrWTLRVSabStexg5gZS2RopK3aEyzuA6i3YSY7u6n7bWlI/UAoFAr1qQCp/h4d0JpR3dSrLuGtCQTcGVHqd3OLfDtR2bTaDpOgKW3/7uHfvlyFBGuOi5vm55eXWGXHpeXu7YbVcUeUbXW7Td0vaOvgfhn7DpiJGOxjXYRmNkbQ5poRFZw3Nm2/uJ62vH07zhcUnk1nAKgdlH7OPM3TITUmKFZgz+Od7h8EtCNwbXWq4/v+H1V1/y6avP2DQN690Z7WpFTAnTaZRRGKlJUgEKlTWTzTxNAw8PT1zcXNNYx6rvaDtHuc0EPLLLEGLdrTOK1c2Gpl8hcIzhkcnPhJgRzQXb3RZrMu0W1p+/xq002MQMBNeSVxqjBlbn56wvruk2F2gNUSxgFB7DcRgY9vf85t0PfHy8YxhHZHtNCaXGwNRCmB/xMjKaA5+310w28dgMfH5+RdEK1XVs5QVd4yqgwZ3hrMAoXXGbIVb8rxRIYZHCoaRBq7qTg8ykODJOhWkRRGkIaSFmQRIWpbcYk0BGYu4xuiBKYt7PzCHUyVl5Lux5JvWGQMn1v6UpUNCVXpiqtVUVUFGjrK7FfgxgJdY6GqNJjSCUCBH0psePCR8S2UowkmAyB+05LRNCaYLMRArZFHSj6O2qFvpN3Ts5uxC8+uQTvv7ir/nNu3tYFtoiEChycUgpOe81cZqIMTCeZpaQEVjW7Tmp9SQiuSTMs8kdCppI15+hhSNNiZATaZzZDwPDMuJsj7NbnFyRzUhRnmWOfPfjGz68u+Xxh4kYZnyBWShOaalOk1wN7abRGCexneSmO6fRlpAXtNLV5aM0rXHEEOr73ERYJNnDYvlTsR9VRlSPLEXn6k9REP/c6M3W9kxlIeLpYiR6jSxw0oGuNZSiKViMqbzhkHytqCRgMk4YbCewG0nfOJRzhJTwcWA8PbHfLzyeMve3b8kBVrrGFq5W56y6FdJ6vBxZjhMP373n74//laKh7TV/+W++QZmfcd59Qdw5rHFIaRDLSJKCJAvYjD1zNMXjHz1DesQWgxYa32lk9KgSCVYgbYYUCcNAtBNipWlXAbULiAg5aszG1qysD+zne4I+keQJP53wOTKfIv7kOS4jaZEwGkw5YopBCEV0AucLRWUikTidCE5SDChZ8+FaPDP+45443zKNA+uV4GxTcXoxjBilscrgla8c6gJRyT/V/cbIesg7U6Mw2zXLMDE/7Xn88APagm4l5bKhUxadHfP2EV80y1DY3xl6c4FdNYjO4cVcF8xSYqMkQhYEpi79phFyoNiJ4AcWDozxDmsDmZlYAvbmCi0sIsPsF97//ltuf3zLb757x+PDe6JWyLMz/tXpS16++pSbV7DbdggtQURUiHRnljO/4ud/ec6H7474sea9yyBJKZJyxmDIJeNLQMU/6sUFxkuKjRQPaqq9E0NBpoJQFnEqiLCwmABLzQjKVaLJgpgVkzFsVELkzON0ZH//BAjW2y1myXg74ENAHhae9AHTOKy1zMyosaAeC+nGkIxAK4E+N7TnhlXnaNefMuWJJXim04g0K2gFucmscsvrix2fXl5yvnakOJON5JXZ0VlBiQv708Rvf/cfeRhHNrs1205jm0K2npQXjseBcZn46afv+Pb3t7x995Hf/vh7muMN212CS8G13qFbg7AZazqCyPg0IU8FjaBxBsm6Cm1CxgbLHBJSWVRwLKcD00kyhczgAk2nWDlDt9bkEPFLBlVzz6DQRZOHgeP+I/vjHuMTbi1pVxotLcdtT9e1bDGM04RE1/ywHMkl0yjHy69esFk1WFU9E0a3+GHip1//A//861uO/sCYB/Kmo10y/qh4o3+N6F8QykyQhfjQgrOEpsW0kiUHPImr9up5CV0hZU8WEahilNQsDPrIXfyAlhllBbmRtOdXWNkgRUcunjRIFhU57j5w94c3hFSg7+j4FC0LUkXkHMk2UbSoIqoi0EqxTY786BnDkcPpgXZZ1W5V09I8nTiNe/w40283uNU52lk0e0rriSmwPExM647SGZSMWNvU8ybP5OkNSq6wWMRKYveCRiqas46+ZMo48PR4Xxs8ImJWFnuydGeW9XnDtWtpmqY6JU4zb999z9N+4Dgmbj/e8X4MPPlE7wLxFJiOe0rewOmxLhofn7hPC8VlTA/ffP2av+h+zoX7ArREs0ZBfQ3NTBIenwOTOFHESCMTZf2EaAXKSbRzpDkQliOH2x/46e4dw2HATzOy3dCnLZM4cilnbNHoosg7QDUYo2Ft2OiXuGGL/XjA+1uYPBw9pWuQKSGeFo6HO1rWSG0p5bl5QIZ2qjlmIZ+Z/7GSUqSpOWgHfSMxuSezkOMJ/dCz2AYpM2T46fSBXAqNaBEXG+Q+YGPEfXpGd9nTrjqUXGO7hlh+5OOHH/in3/w9g8jE3tGuXnL8ceDdTw98/893fP7VZ7z+5Jq//eZz/vabn9F0jtApUpfJJMqSaNYzRsp61imD9DMyzyS3kNCEcCDPb2jsE7vtgZdx4NP4Be9v3/P+/S2//s23LPOCKArTXXJYPpKdZYw3tM2a3fY1r774nH/7V5/x+vqas3VLk9PzUnRBNgu92tIIRyoJc4iEANkZdkvDx9s7TuPAum+xrWNzsWP70zlZf08cR+x7KK9X1TgtFJ+/+hnCGWZ/R7z9j2xo6mf2VcP6xZeIIomHPW7XYpZAeZpIumdJA5MfaF9csr68ZnNxSWcaYgmUpClzy/D2LT/+4Ud+/OmWKT2ykg3bsy2NabhoL+isQdpHgmo47U+8/+6J/23/v+JzRliJeBn5xVzYsWJ99RW7bkevWwSlxv9IxAJTPoBaWK80zarSd0TJLHJB+pnsA8JmfLcwhAOP+3uySsT4hPEz1lgcDpMNspOIrMkps7RHtp9oMB0hrrByRo4Z9ploZ/IUyGHhQEHHFqEMMUJaPCV7ZB9QM8hUY2MljVhnWG92iPuB0PeURuOyZRIDU55Ix0OVcBaDmRQfyxEbDGIWfFAL3SmwiYbV11/StRIrE0JJlOzpVyteXKy4yIa7+YnbcGJTVqRSJ57Hk+Pioufs+pzzby7RohDTzEkf6VFIkSki05na+MsJDCuMahBIghxrnGZ54jjfsVm3rFaOy3PJZrNCYAjLyHfffeDX//wrvv/+Rx4fCwugTEPb7nBtTa1Yu6LdGnTXIbTCH97x5vE9Win69Qq9COYlEJfM6hjqhFVLTBSczMKkIt3YEqIgZIGYwOsIMWM+JMpK1s/Jn1uqlUsipkCIEWJdkLRO0vc7TrMn+ECaMzGFioNKgAOFomSNcg1tc0bXbLFNC6EwHU+8/+knbu/2TEvGZ0VnWoyGLBSN3NLaLSjNaQlkJqYw8KQWnqaJ9W7N7uaa3WZNu9qh+3OkauooXymkUiQPpIxQ0OuW3CVyiTBIpH0WBS2FICwBBXtF86KlbRW77pocH5CmZY4tH98dCcuI9yOpbapRcPH4OXN6OHI8zEzjwnjcM5wWDk+eaY5kU2MMvW8JBqTMGK/JrSBLjUiWKGqmLc2RzqwQ5VnOUwo5GwQNq3XL2G1wzRHZaJbnLD4StLRkWT/YKsvnznUBrRHGgpDMp8j74Q2n04m7jw94kVFKoa1Gf2KZbMPYdCj5kR9//4iwkryGr7/4hutPXvLiy9dcuhVWG4TSULraHqfKTbIIZCIlGaSs9JRtuyXFQjlK8pgYTxOPj3c83t/z/bdv+c1vvuXu4yPHp4GwLHXy0X3g8f7Izcv3vHz1Pb94dcZ6u6Xre3qtCHPBZMl5u2buI1NeWMZIcgnta0GfDc/mKkVxBV0UJReSLCihyRKSKZThmbahS51AmUw0CREKUtXx4qZd4RoLXiBHxWJlpegUS9EVyam8wHSGVVyhReCkJ/ySKES0k8TFkEioLnOmG1ZrwdlZjeR0XYNSAmZPUbHSlIDNusEgECGRtg0Xmw3b/gylLSJHkojMeeEw1Vzt/f6J0RjUpmPbNgwF9k97xuGOb7/9jv38xHE+8nH/iB8iw2nh8clzsQGkw6pt7Rr4UhdK5YAsDlkUpckQ6zgkyoAVBqF1fftDXSTOqTAsjklHvAFtXF3ItqCVYZR1rGtOhXadK/3KahY8floIo0f0BmtbrGnJCnrT0rgWGkf2kiQLoRTc7GibNboz7LpPENKyLIHlceI//If/lX/8b7/iP/9//yvFP4OxdN1JUEKjouT+44nD6ffo9nvsVtJYhd1c0tx8zS8+f1VJJkYTco+WDUZqnBIoBRRJSaBty26146vr14x4Wu1oTU/OkmkZSWFmWE6Mdw8cj0fe72dKtOQiSHPDMFmyECxLxc6SLBhViwvp0I2mXWdisVAU0+NEcoAv6KWwGEEOdQfpcfGcq4hSmmbd04xbihjBeob9I9m3qCwxrww5RAgZOUrcpaVZu3rpUhEpMquowMhqFz8EoimkMSNGhelWbJoLdu4MGscyBh73D/z9r/4r/++/+3dMU0BKg48QtCYZjSuWwUfmeOTd/p70fWBOM0+HPb4VnF/v+OzTFwyDIKSWIqtN2AqJEpW6U7C1A2kirXGUNhFVwqQtIhlSDMzTwpvHn/h4+54f/sNvuT3c4scZfYCnBpTt6Jsd7c0ap+ryHRdrdtszdpstr16/Zqs1Gkm7PoOnAS8mFjkj52rMnK1kOBSyThgXEVOpjQhpyGNHMh6RPMwRdKGkhFKiSraiRmXL9mKF+oMhRUFuAiWUOqoRYH2D6h0YhTsIPp4WIjMv3x0Zv5o5Hk/o+Q3/5fe/4j/8H/+Ff/8fv+Nh8Mi+wZmW1rSoWAix8O5+4vjwPX/YfeR3T2+xueHmxTnuyuCoUIPoQIozZIWyYREk6cmikHy1Q0up6ZoVu/XE0SuGuCY/WeZx5u7xift5psiEFgITMrtXrxBtg3Zr/uq/+xe8fP2aTz55zTefXrDpG1pjMCFDo8hGglhRTN1XKUIRbI0DaS/xQpCnhIyep9OJXRQQBK53WN0w65lBLBz8jBGGlGWdBOZE9BHZrTnfbJF6Q9NdIHRP8AuLOlFQLKp2TY/BsugzWK3ZXF3Tbz+haa/J0hIOM0+Pe7579wf+w++/4+PtHZMfQTe0rqNxPY1dI11LkDBMmd7OCDGTVpn0lDi72fL6F5/wV1/9FV+/+iuuL39O785Y2xVOS0Z/JPEswqwhMqwzrNYdTq4RpVK/ygILmSkVljvFklt0q3hpdtybGd30CHXBdGgIKqPERJgiOUXyMzyjlBbrMpszSXx4T8iBoiJmEhSX8ToiPkbkuUc8IyyLKCQhKb4huUTOnjyO5Oxx2rA528LKQgGZcpVfFcgxo1tLehrwJTJtI01pkc5QjEB+W5hMQWhBMzZYWox06ACzqNjYXrV0O4eaFelUcGsBuYFUJyGtXrHSazbNBmPrhLdxK9bKUkQglVAjOzKjZKGVlYKWYmaeEwsZlGbVrNmeD2hjScqxEDjtH3i4/8B//ae/5/3tA5MXrM56NrpHmh7ZbGma5jm+V8mFxjWYVuHUNX4+IXJGJ0URqUryimARtT8vI3gLpsjK2W8iJVaj2yIrfadCAiLzKWNjwVXk35+z2M/kXD80ZPmcsQPX9Iyh5t+Dj0TpEaVKXHTLc0esCrbc85ugrSWOE/Mwcf9wzzjORBRoybrpCVKQpKLTHQJFTJlxTJQ8M6aJY1qYQ2SrNbuzM87WO/rVFtOsq1lV1mw1WtVgVQEhEk4ZorME0ZC9BCsQtiCnhJeCmCViVGizol93nJmO/WCJCOZoOBxPTOOeeTkRnGE6PVWsVbTk08AyzfgQGE4nDseJx9NEnCU0VfQSYiLqKsFSXpJaTRHyOede81wlFEgV04io1jqBQivHatVxaHqMa1BW/ckjBqCkBVELQEVduKqhU43UdR1sGWeG8ZFhHDieRpZn45ZShraL0EEKChP2+HnGl5mTe+L+8chnhyd8K7h49TOU1iipEMVU4YNIz2Pbqu4u2SCVxFiHbgtzngle4ofAeDry9t0bfvj+B/7Lv/8Vv/n+PYfjWCk6xZAlBHVk/xT56faRmw+36OU1Lz55yfn5OaJrCbOAmOiNo7OGbGqm2euIiqB4juv80SKsa5c0U8iy2iyLLFQXW40+ZCFwRoGpC7wypjpd0YLOWlSrnzPDojbyhMI8T17IBRHB2ErWEWiGvBCmCAiyV2Rfra/BJawQ9M6yXTWsuxZjJORE9gvRBGKOQKZ1CodCS80iO9ZtR+vaSmGDZ/ScJ4bENC88zk/IrqVVLU3fMI2Jh6cTt+8f+ff/+Z95PN1y8idOKdErSwmiLtdTMYNW9xVpGwolJLyZcWjU84VJpOfPJKnGIgQIUzuEKSdKiCAki4NkBNZYtC31Qo1iIT+bQ6uhWAiB0hJfIskHCAm1tkihq01QZVrbYI2r6MxQKM8kmaY4cpMxK4eVHTEV0jTh7x74h3/6R/7LP/wz/+3XP3BzsWJlW1aufR7lSlKWHJ8848cjgYlkjxSTaC5esjslbs539Kseqwwh68qlRta4n6xGVhk1WhtW3YrmvPDIjIwSkwyL9yzHPdNw4Gl45OntPcNp5ikkNkKBqIzzYaSKlLRnuypopRBCE1gq3lEbTJdoksZPESkbkg6UpSB9IXfV7pyWxH6Y6KWnsbLGJU1HkgWhE36eUQiC69FGEnIVz5kscc7gGgMxE7MHIr3QyGeL+TIEcl/qaD4rmrantxs6vSYryTRM3H74yH/97T/zn379HTFmur6jabe4VU/jDMiWUCTTEvn49IDPe47+xIfjA2Jj+JzMxeU1S9Sk7ABXzzwpkKIQAXi2Y6u67J2FxauIGk2N34UFf5y5/fCOH378gV/9ww8c8iNlCbhHyVs7k7GY0iPPHNYWjBXkbcfF2QWXF5dMKfLl+SWbdoVpNijZgAzV1h7L8wgdpjEh2mp21SGDotrco6aYhZwjwi81zZhzRVBTG19WWtabHiHq64uo9mvx/PzW2dSYgpBwipyOE0M5MXx4YjwOHPsTJSz89g+/49vvf+Tt+yMjmbXVNG1Ho1sENYO99yOH2z3iwxPfqVv+zYu/RjnNbtNyLiTaOrLWiHmNlAtSBXQpZBEpZHLMFFMXNJt2xXo1cxYcUwjsTyPBD5xOB8YQadY1NpuF5uXr15i+R+iGf/Ev/5IXN59wfXbFizOHeSa8QSSrRJYZpSyouodWUGQNRIEWsq4xLwnvF46nE21yiCJRppruhdTMamEKgSBFpU7JUuVy2eP6Ne36EuO2CHXO6TjjQ2KJhfz8nMy2sIgGGo1TktXZFa7bIU1HzLCMnuP+yJu7d/xw98BhOCJKZKvXGNvTNCtatwUlCMUzhoLFE2PA60wRhc3Zhq/+4gt+8fpnvLr6krPNazSWRju0rDtSWahn6nG1RVut6TqH9oacQ42kxIwv1VcQHwXibEXbKXa2ZYpHjDMgVsyjRpuI0JHZLyz+QIwJEc9pBBRpsO0Kn+sZFPOC9nWqGGMiTQuiAS0zfXIUXS9gOWqy85A9yS+kHNBas16vkY1BLDXyY4ymqILVDm0NREEOpS7VI8EqMCDGwmhDlYWNBZEVskhESGQZUAXWtqPdWMy9RkaBURIlbcX7ioSTDY1sscKilEVph9WO1rVkPCEr0ixRsk6TjLIkUQWGwUeiLkij6bsV6+2KVCQZyZwDj8OR2/s7fnrzPYtPGNexPt/g7CXonqj7Sr3KhZAq8lxph7MGZy0HAcnPyERFx1PpRV4kdBGYUusJlf5YPUVKyvVMUxmZNZnEIjJ58iwFvP5zF/shQPFIuZBlpKgGikSoiVQGljBxHGcWGbBG0RtDK1a0naVdtTS7FreWmC4jbSIcZqboOWjF68stXmZOBl6sXxOhvnhT4N3+gcPpyLw/MsTIuAw8HR9IAWwWbJXh5uoV5+sNKwOKE1rvKtpOa5SdKHkij3uU07gs6aMlbxZSDIQlcTQKP55I3lOk5vzqG85vblj1G4bHM54O99w/vOe7xxN+iPg582hOtPOC8hPD+I4mzYhUCLZOFEpOzNOJKVnMUmikZkkePdeDPITAxrYIqzEWlM+YRmHONMJmSknkOVKUZ9NCe+Y42Bse3AeMTdguc+Zkzc6lgm4asi8UH9CtxQiDlVV+YWQdj055YEmaVXPNq+2XvOG+iqFSZifOaOnRxbAfPMtw5HQ48vbte979+g1Xv7jm2/l3fP4//z840zuaViHEWDm7pS6+xhgo2aPViJGV7Zx1Sy+3lHiH8E/8+OGWtz+94/s/PPDtjwkVOs7ahrLRmNSRvGKaCtP8yPjhno+nI199csn6qrBVGiktw/SBcTySzAxJIBMYFVCnCRHr5U4HjVIFpcAkjRei+iCes3slFcRcWHK9qIoi2V2v66UlBh7jEyopdLYk6WmNolCpO+VYMDqDTsgxE3JgUZnNvEa2iWIS9lHyMB3wJ4t5sGgfyXEmj4G9VtixYTMW/HKsD/YSCWrguMzkkuhEQqcRY1pc23C9uqZ1iiz2xKAhzoTkmVLCTQdIM7Kf+NnrVwjdkW3PP/z9f+R3b77nN394w3fvB1IwCHnOZnfGaXggpYTuHDKvMKKlbQzjmMllQZREnhxplZEu4ZJkLp4UM3oWzGkkIwhFMiwDZVKAJtqF3LeI1qGU4Eyu2UpD8h4xSmwr6TpJEtXybGRGnQK9LtVo7GE4PBDSTL/rON92SKkRe8/cHlBJoTKcv2o5iw4hBB/uvmMVzyg58fThLf/47cj+wfGz9Uu4gVWzZmN37FY35ODJIeDHRPaSaSy8v/U85jvi9hbz4+/45ZefceFe0K0VL9KeGC0CTVQdQlVLs9IBlz2qKSTZoUPPPOwZl1t++unA47s9+7sDD/cf+PjTe0LM9DcvkW2P1IbFSm4/vkHIBmk2/PW/+Av0usNYjZs00+SJKYK1xBwoStHsWoa3MylEksiYQTD7mTkHxO8y7ZeG9XqLSZH1SpGDI58yeTujpawdrlIwKdJkD+fQqBbhDUP4yHT/Ebzn4sWGfqhCo8k90aHpOoF40bOZHEotpPJIGhvefbzjux/e8uvvPVquSE1kbDXr3Ya+vWDV7Nj2LQhNSJGoNcP9jlzuWck9D0+BYZc4zZK8WlFUofgjUWgiDiUr1k/qASE85AA240RhnRUnfiQFg4yGw2nk8ccDh+8XUqM55wXJZE7Zs/UJLwuLAWUuwNYFwbvvJx5vH/mpPfDtH/7Av/nv/5bXL15wfX5NJzVZGEIssO6QIVKGzGj2lKeh0k+6njwESkpoGZBTRFDASnKMlSaUBVlmNjvF9dyw+f6SZAKzONAcFea8Ut3iSZCsx6eZ8TDx6AfevXvLMNzzXT/z6v4zZCM4Bsmy+4aLb3r+9aD4u+//He2u4exih1guWK1WqJ0iNndkfcIfRp7+9yc+/I8Tm3mPuj9ydr5FaYeUAiNnKAFBJJVE8gEpM3I1IXJFF9rdjgWN0Y/szB1/d/oOW96ymh8xEv7y8ozViy0fv7ri3179d2wuLomvtvzrzz6j71Y461iVI0U8+3L8yDR9YA4f6N1I41cVA9xKXFREAbSKbi48hCNjWnh6t8Xd1CJ/eTohSkIDdjZEU50XcQmU/RPKjbTtyE13gdx9SsRy+OFbfvjpDcup0CwbytkNzkmc8XSvL9mUSoPqLq6RMjLPD8QgmU6PPByeePcx8mn7kvsgeVruuFif0TRn2GZNv+o5jk/4JbCxjuEYeXgcef+TJwGudJyLl3z5+i+42VyyEpKkEpRQl82lwcYRSaYIBWJGqIIWDSU8kMtCSp4JS54mWDzJwaef/pJ+t8O0Df7xLdN8YJyPhFXHSq1o9DlBDOz3D+yfbnn78Z/49GJLo+qkdIoz82lguj2QVy3qWOCYmM2e9riiFStWl1fIIaFSQJkB5rrMm2RgWjxKWzarli4pMAUpgWMghomUFmxQbDc9yYP6sTBdB0p4hgyYheP79wzvEz+8fMFnx1dstg2d1sxZ0yjHV9c3vFj3DJ0lGoW6V3RNdWu8H/bI3RVFSD5+OMI3AZU9Jc1IXd0ckoLQh1qvCkVRBe/rBTLlEwKFc7C56NjFDcs8Ev3A02KZUyGLlrb9jL/9qwblNA9KYLgkRMswK0wvmYaB/eHE1hnwjt52fHNzzbcx8pQ+EOIeEfoa07SJPCWyyESVMUfNojxeRnSQzNETS0ItEkypButJMpSAjpkw/JlpPLUgMvXmKUZKloSYGYaJccgsvlBUwcie3ll2q4Z2t6VrDE2jUd0KrRtEtvijYPCZkjUv1DlXLyxKKYoUHI4HpmlhnGZ+PD6yvzvwNEyMyjMcDIvoGc8/4bP1l/zyl5/xt//DN3x58SVXbUevHFoJRNHkJImxwCQpwSLTCvKCUpKmMeRR4DGgE6sQmXRLwCCNQLs16JY5J3773Tt+/+493715x/3tzKksTMWTQ8JIjxWBVY70TLRSstYdQlWZ13Z3g8kBhEYrA4g6rpQCWSJRJqJ8lnl1K5QVSBFr3kBUWZnWmuxWiKTQfqw4O684X22xm44SQFqNSIFSEgFQJNAGqeVzdr3e3pcpsF6vuT6/5LNXn7I5PvH28QO3jx9J1qC6lratsiZ5tHjTIkfF03phZT+hi98gTYcQLcU3IHTtwqjyPNmBEgXCa7KF/Cz8KClRJohPiumjZH8oPE4ZOTtmU8Aqmm6H6xqyB54iUrRAQUnBd+8PpO7AUDr0jeDwEBieIvPRE9OEFB6TM8pplAioEoii7pTIIomyjiERhWwUqqgqBTMCNc0EClFmtlaSjCEURTwpXFfpJVZaVGuROlOsomwUyYBfEqNWhCXWqcE247KDxSDdTIkHUl4IqwHta9SgZM8wPmEnh5k8bx7f8+nNC/qmA5+wvs5q+s6xWV/ROFsX3pNHRogjLHIhx8CyeB7vnjhvG6xZ80KvOHWFOWam8cj//tOv+e7NAx8eFppXV+ip0pLyRYs+dcgYsaKwudmyPd+xWZ2DCoyTZ14CRZ3+tBw2y1KXcZVA9oX5LrGkwiIKPkZKSSASSm/QzqE6hz1z0Eu8gac50W8tWRuEMlijiDkSpwmvFT4UlqUwNwv+6YEUAt1ug+17IplTWFgvAt236K7BdR37pcq31PeP3B8jS4ncvr9lZmD9essnf/0LCgFkQQqJFB1yNqBSXWYdJQaHPWt4/flLdjfXfPrpL/j89c9p+g2KjpU6r1I2WTUPsZTaFfeZcYYlBJZlIs2Sux8/8OEPP/Dj3SMPT7ccD0/M95Gn0z1FKc71GbfiSAwwzhIrPSFqQrb8w69+y+XrTzi/uuCTjWEeMyRB7/SzxE6yW/eIq8CwP+L3AzSKtHjS4jm0PdvjEUVGtYY2gMJQVpJyOJEQ9YIVZ7SQZLsimguK0aTimT88EqaaN++ajqgSIgf0UlDbC0w4EkVkbhV5quKcx3zP7/7we77/cMspnDj/6kvQCmkljXU0doXRDZKmYm1FoSuRWcyUWTGdZhp7zvnXr3n985+xUl+iuSaXDTIUfKrTwjF4rJdIDMVowFcPidIsHx/JKlEMTPMCxtBuN9wskExLiBGxekIOCpckfZEcrGaJnjAvHERhg0ZExXA78d/+yw98+OnAJzePfHV9jhMKI1dgZ6ZSDeD5foDNBlqJkUudjGWJmTW0qn4Xsqjvm5IoXSEJ0vTobseLmzVbej4ulie5cKMCQhtKJzFJkZLgJBJJLeRNoVjFISge7ieEeiSUwDc//7/w1aevefybn/Pu/wWHcc/HFNjaiGwKWit2FztOReCVYCke22/puxs26xXaVFEbSJqQiWomiYWcUo3mkWFuydZQnln7pMw8R/ZPM9M/Lrz5mPg2QMiGb4cRe2dQseXHrxs+uVjzQl8RlUMVTRcUY5kJ04kYPGrUxFMgjYJZdFhdaTyddGSnkFFhCsydRZ0UapYkqZmnCZjYxyMpRqRQ2FVL27SgK0QhF48tDVp0RNUSB88wHPnu25949/0R2+84+4vPcOvr2oxsNM3Np+Q01fM6Z3LWhKkwppk3hydu5z3OeL7+V3/B1f4VDw/3LBqEcaDrZU4oDcpxEBNvbweO+4UFKM3XNC/+kou//AtMvqT4DdG0FBHxTpBL5HF/YgMYKZG2WrXRoLJkOh2ZfGGJEqMEUTiKNLROIFTDEuHp4Z7/5d/9E/f7R6b5yPH4LbZV2E6QVeD+8fc8PX7k9vsDX78+43q74WZ9yYXwlBQIVjDlBahRYBFBmhbdrKsBXdSJrFkKyUmy1GRpkDrRWMO6aJZGkJaIziA6BXNGI1mfnbHMCydmDpwQo6GsBMJpVCOZt4KQEk9PT8xTYl4Ch+Eeu7rCbXtWbctff/E33H0c+Kf0PUsuqEVXXGwpDGFBDiPHd/t6abIbOnOBkpacaxRGTWuyLnWinxXL7PE+UWgx2pGNJtsZ3UqWKAiLRAWBazvWVxd88/OvcWcrktLk04JfBMVLjFIIbTGtoimCp8MeaSNWgLpYYY5bGCee/JGVfW4SlkKwIEVCUSeGKlfMurd14pBEJjtQSYAQyF5hxlonC2P+vMV+zrkuIyGroDAnYkx476skxhgcEakaVl3Det1iVz2tlTgna3ZcyHqLDYWQK77trN9ytukwUlEFwgEjQOaIJtA6R5aa7vkLHbUk7SQ/v/klv/jFK77+8jVX/TnrRuKMQGpTb8cpk0N6XsCWgIGyIMWzjVdJVKm7VUYXYjIgFEorpLKUIlnmwIe7Ez/89Mhv//CR4UEyqJlJTuQ54EyiNZniNEpV+yWljuDatkEbi/MjIVKtgqW+0VCNppCfKTrVNiqEqD9rTZ+AAKmeUXlCEmKqciTrOFtv6VcdYa4HXk6xulCFIOfn/6eUKKVq0Z0ihTpOvHpxxevPXiOPa4IIHIc9AoVCopXCdT0xR1oEfZI0u8zu6hVnu08wxiGlQhT5zPoUkEX9fMRMidXOW39BiQlipKRIKZlcKjoqF4G1DUFJilZotUFpSckFtESVKlADydMQaR9PGLfny11LSBCTYJlmUlggBURJKFFQshJw8h9fwj+93lCEqK/xc/5JUDnC4hkvpoSsyFiqLVVpiTI1uiKlRKpnFrVQCCmIpSIm675MjQgZqdC5IvlKzuSSSXLBWIOUlpQ8wU/MY2E4CR73T7y8uEQrjbYOSVV8d+2apu1xVmN0ISyZEiMxRWJKFTkXMjFE5Npgm2rMnMtIjANPy8DvH+648wnvOq42Z+jRQtYsvaWVDSUu2DLRNg3OOYxx6FAXoatJdCGX5/cNUd9rqhk65kSIufL5n22ARWSKfLbdGoc1ol4CY2Yi1Tx2kZXBjahOiGUmFkuIiRAjfomItFSkoTLYpqHEQFym6kcQtXBS2pC9x8eEPw4IYM6B26cjbdey6re8fv0V037Ap5GYZtRi6kK5Egip8a4hacXldsv1L3dcvXjN569+ycXuCqkcpRic+qMlupBTIOf6HdZFEJMgRFh8wA+Jp8c9Hz585P6pkh3GcWI5SqYo6nc0Wh7nI36OTINAlMgwRI5D4t3+LS9OJ14eX2JeXzMMnhIzvVL064ZGCTqtcV1DmCdm9TzyLTVamXxgmSZmLVCmxclqt81CkHPdq0kpUYJ/NoUrlNSUVM8Gf5qq0M5oGusYyZAjNT6jqjtF1O9kjIkYMo8x8tPtPQ/HAde1bFevaxZWJFSJaOVQUqOLxloLCkpuSZuWHBqOR4laf8LN5y94+eIVnVmjhav2cBQp19c7LAGd6oWn5GeAPdXiGUMk5ec4XpYY29L2mbCWJNczLwvjeEI49xyRMXWVh2p8lX2ibTc0UnE4Bu4+PhGHhTJHzqVk06/oXZV8zaHmnv28EJtIMqXaRZ+PQkmppCUEpdQIing+O4oAqQ3KWJrWsmoaGmN5eEabGiWQUiCFJJXCkiIx+tqQkA3F9hzHBXU8kbXg6uyMbnvOTYHdb/4d07s/sDzckUvC50DOmkb2SLcguoBMDtf3tO2Gtt2i9FQdLUWgVSTL/HwsRsgL1URfz/Bccj2/fSQFTwgLJWpst2J9ldj0W+Qqo5oVenWNWVmkFaSUCP5YiS5aEsYT0/xA8CM2bSAkZK6oZBRIUcl92eiKMlUK+fxcFM90vxDqZ2KYR+LzM01JjVGm0tWErM8C2YFy5FKYjgcOD0fub+9IZYXptqxvLpCup+kbulVDLyXeH1j8kcN+TwFizkxL4DhN+JRZr3v6yzO61YmiHA9h/2yT1qic6TqLbQQmRQ7XCtE3uNASdn/J1Zdfc31zgxamRr5KQQpDToWYC2EORCWRupDDH2Ma9dnjU6go4yxpnEEpUQk2WlOEZpoD7z984DffvuX24YFhOHL7TiC7jFlnTC+Yh48Mx0fefXfHfHrgYbclvQg0Z22VkipBLJFMxRs32tZzVtXaomb+IyVXvG0pf8R2UimMudp2Y87PmOtCLhkhoG9aBueY/EKIHj/PYDXiWWQqGkNJ9VJ/mgZOwwmF42p9ReMcqjGcnV3RdT1IwbQERApIKdmYTd3LoxBTQBuLsQ1GN8+FazW9V1JgoZRCTIWwRGLICKmfCVqRIismXGlZLeSFiituG65fvURvNwQECwce/QOlpEpGEmCNY9ULluFIKImlRNpVR7ve0Ewnyr5i1Gv5kckV/1g/57ladkWuKPhUat2AeN7JFDU+qqSsKGv5ZzboRh/IpCqkEQvez8w+MJeB/nzDhhbpLcI5Vp1ju27AWhqrMVoRSiBLwSILiIaCwrU9m+2Ol21Vly8JHAOjtZycIe4/8tlXn6BXO642jtOuQ5qGng27T1/y8qzjs7OGECNOL1id0GoFvnbeGQe0MyRdeetCFEQuqAhpFRBLQQZIncEU0EVgz9dIIQijZx5H7j4ufHh75P13tyzlBRkIIvMxHzhTBRqJv9miNegS8OMRlTOb7Ybt5QsOD0eejiOH00zIC2YUaKHBgElgUqHkRFoq+UBqSHmBkpAojDHMxROWI/d3T3Rrw80nZxQi79/9jv1hxC+GcYlIJWnRhFBqhw2LbjSLn4hxwfWW1998xheffMFXL79krZ5I+cj47j2Hk0LJgBAzZr2jcxq96rF/dcHr9TUvX7/ki7/+mnXf1UuVmhEugmwBTQ4BET2iRGSvKu/eR0ReYJlAD4izIzYL+gfFtjcsn19iHkdiBJMM+ePAEhP7WGhCJJmO1PTEdGJ/d4dNI+mza+ymJ4vEdP9AOixEX+23KkZ0oV4cs6j6cBGwuWF85u2aLImEugQzJqgpUVQWpKiqNVkKusaiVX2AL2pik1tsFd/Rpook88oTDhO5UBdXnxJuB8oJTJEkUhUjLYHtakdMhnmRLOOMf4hMy8zd+R3Ty9ekdUY0FcVqjOL8bE3bOYxSKDK6jMxiJKiJmHpyhiIkbtWy2fU0TUcwDt4+8fB05Fe39/z4YcKdveDl16/4LDjmIPBBsZws652GNCDHH+mTRiVBKBmZGmScwUfSXMhmQiqNzR0xF2IWLEnj5akSTL2hbxqWBEuGlGd6YVnTU4YRnzyYjN8k5qEnaIvqCkuAafFM80CZIssyMS8T4eHE0hv0umXXtGy6FcM4cVr2aJdRJaJC5b6bpaCnyMcyYB4Ti/cMhwNff/NLrvsrvlq94Pd8YB7vCKMnBGoMhIDOGuEku92G7d/8jL/9xd+yvjhDna04N5oUAilGjPFI2VQMXQnIlGqe1ipIGnJFFJ6ODzxOH3lIt2yuX7NOhjhf8EBmJXYobXi1esXvDgMxBvq2xcfIdP/I+/cP+HnkPs/s5z0vmx13x7cM0xP+NPDl9Ssu11tudjs67chtS+g7htsnUoxEGTD7A2NT9yhaMulsTSIznk6IGBF4Sh6J44h2GikyQpwoe03yiSlONMKiVUvnOvLwhDSqYvb8gCKhtMI+RU5xYVgWnm4Xnj4+gHV88/N/yXm5YQgT98sjZtlTkkIm6DroncFYRVovvHp9xSI1P98Hlk9e8cX5ml9erIhxobFDvVi4S9ISIESUnzGNREiBpzZpRI6INJK3A4UOIRqs3LHuNSI3zNHQqw1P8YnfPhzrw9IqdCdp0oqu7xA20HaFz1af0GP48c0/sb/9ifvjAfM08kFaeFnoXjmcabHTgvQLIQdynCAIimr/hC+NXZX3qVL3hkgeUTJCyGcZEmiTCRTOXnVcLh0ff7dn3o8oV2ikQ7SKXAL+eOJp8RSqPXb36kue4kAaEi/PX3NxdsP57oocBebsivb9O/STRy+J1B6J1lPEN2RmdBfYrBo2F2u6sxVm1WJyqphkEmyrUFIGg8wFeUogFkrvScnUjlhM5MOAmPcYc6D5m2v+9dc7/oekkC/+gm7OJOV4f3XDv9Ajiz/w/eGOT2SkPf8Eu3uNePuWebxljgN0N2id6KykHyZkswJbULbQSMmiJNEUdCygIbpCGge8NYSYOHw4sCxzlRehMF0tkF0uqCxQrUM0Df79W+7f3PHxwwOn9+958W//Z25ef8GnL694yhJnDX3j0JuWee9R4cSweEqTCaowloUwRlrZc/PF1/S58KO6426e2ewTKmtUkbhyZPvpGX3f0Pobhv/bBUtpme4bPry+4ZcXHX9z2THrBaULWgVcd0P2CzlmHBktPaXAHBQtFeeacmIwe5J0CLpqxqU2AqzryFnx+PGOv/+7/8xvf/Mjd48Hxv2RH3+YEf2C3kaa11s+0zvOsuOtfsOPP90z3t3Rz5mL/Bmb1uGsIguP9wsxB9bnPUZndAlkH2GeoHiCC+Rk0TnXZe4SUKrBOIOdYQ4VfzsfZ8biUUpwpRuWbsNyDDzePzFuTmQEZi4UaVnZNU1xnKzgzeOPCLPw8uw1ly8MxrRYafBdQ7fq+WS14qfHBZdnnFa43Su2qx3bTQPnht12Rd+3SCvIcSEHT4kLqZsoyZGTwi8zfpzJOdH3jvRcsEsyNllaM8Om1F7HU/UAXf7sK9bNmjAHljFy991v8HOkmDVFO3p3zmX/kiaemMNMikdudueMcaHoxPzwLS5pZJJEG5GLACmIUqDnxCICmYJZLFEmiiiYBZKOkAt6FAQJUhT0n5vGE0tmiQkfIv5YWEIg5Fy5vW5DY23FTklwVtXFLGWwUqOFIGWPCh2ChqgEZZYoDW2jcP0OckT6Gd009EZwuXG8+Op/wmxvMP2Gbrti0RXZue57hGnprGLtBMPDe7R0CKnJOZP8RPILc1ogdOQiyDlQhhrfkC3YaUM2kSgCehAkVQU+q9ULaAy+ZA4nz9vHW24Xz6m9wAqLbDuUPcPtC7uXF1xve17pTDPdkU9PHB8/svr8FdtXr/jZ519yd3dAv3lHfPuB6At1xyzTZIsgk1IkjM+jM0BGTSt7pLAEKvd/nAuTh2alWa2/4MwvrM52/OY3vyL6O4TyZN9ga5Odpw8DxWWyTEjXUHIgpZqTk8nTtLD9dIObMv+sCm+nB/wpsDQXLErQyomz19c05z3u1ZZ/8dUv2J2d0+3O0E6T80TKnlTOKbnadUvwBAIAcmoIaqakgkyusqbjOX3Y8HI9sT9TxOOKrCIvf75GKEsMkg+3D6SnA/r+ictffk3jeqxuaPoJUQ51mVqeo8WCygHmDcYdkDIRkqQ4ifFU74Eoz8vaBtqMmwUqCRYVyemZ6tJm1GRASrIVhGXEbnvMynDmzwlmRBnYNhu61jEPGXVSLNuEkpqelqXJ5FGQPYybwEpAozTbrcNFi48ZaQOfXm7IJXBa4G450TeFVa8YngT7wbNaFrqk2G5adNOQmnUdoVP5/15EiuiQokfoyDIHYszYTuH6M6x1lLRwiJEYIjsE/9f/6f/OzdkFL3bn2Dlze3dg8Ymry2seHyfm05HxsePtd79GK816c46UzxSWBaIZwVwgGk02ERlAhIyPM71piVrgN5Iua+ZxZIgz56sbmktNt5UU4ViensgiY8yO3ESiiixB0sdMmiLDcWFvBk5PE8Pg2WfPSmxQaYPZ9hhjUXqqqEvf4m2ilAU1RpYcmWRhJc4QK0mYJfMHzReXF7x+8ZrPrr/kh7/7yLc/vedXv/kntnGg356x2pzx4uycT776nLPXF1z9xad889nXqLZj0hqXM1ENpDBSxJpYalffTxX/qJTExF3t7C8QT3AaDgwLLOKcq9UluQRmM7GY39PZNU2/xr08xx5fsIwDnoDcXLFtLhCXL7nf35JbwclZmosNOu4J+yM//voj037hk+sbrF5xfdGgJ49LjoPNmBnaWbFsC3FemJEMbaQfOowB0Qn8fURRMFaR55k5S3xJhMdEcZIoJSluUOcKZauIsNiMwKCjIyuQRaCTwLuE8S0NBmMDOhmsanl9vePq6jPu7m85fv+R/8+vf8U5mkvXE1+84roxbLo1mxevWH9yQ7/bcHZ2ju/O2BjNlRHc3f0B120o9gwfqj03AouIGL+hUBgYWIdn6ZLQrMSXYA3CGdKUiT6SS+ZldgwUplPh47FeFrRUqLxFbhu0EtUsu1F8/s2XvFytOb+w/Pv/58jT40d898DZ6RP06FktmVXTkfWJICEvjpDBl0geI3Nbu4xmaSjtQp4j4RAIBKJPIAoFgcgaK1pe3Vxyc/UFj8fA5jQSF0Wg4FaRRrYkIMtEvvfMdiE7y7nrsM2Otl3RdJ/QuYautUip+R8vd/zdPvGf/o83CPmR8uol5uqaF2cHum7NWb9hd/OKr19+xvX2At2A8lCYKWVGxAuEnEBN5CmT2oCgEJYN2dTsuMwa3YFaNhhh+Zsv12DOkG7H6uYTOrdGKcsiFYQ9d/dvSN/9E7F9SRQ9YvJ82N8y7x/IPtJedPRiw9rMGDYEKwlWko1jaSGPoJMgKpBZY7zhlDz2OJFCZIlH5iUircKsFbGAEILsNEE7Rl8IfuZx7/nD7++4e5g4Xv4NX20/Z717iTm/QD7dIxRgLCXVzzvSMcQDbj6nCIsoA0uErrN88ekZW7tDOsnd4xv+0+9vkcuEKRG5admWM7abcz792Re0ZzfYdoVr19yLlq1VXDs4Hj7SNhtEsyKkKrLzJRNLIoY1mcQx7bE0SBnrAqq/oViDaB2tWxHTkRwKtr/gGBNvTiP/cDvy7v33HFIhrrasvt49s94V+srw1Rc/46rruPznM/7x3/8n5sMDv377PedX1wRjOTeCjVljn4lMvTvDNBZMJu89nomcM/LUwGqpS6RLwWSNzpqSBHflwDx4RFAM2wWbOrq2YXt1ztO7Q8WU88gmXlOMgJXEPlmEcvXSFgynoHgYCzaOlF+AUhqjG768uub785esty/5mf0R4T6j6a742Zd/xWfbC7abju5Fx9XVS1y7JkuIsTawfIl06bw23wgsk8eXQMXtbUEmSjHI0LE+i9jQ0YREpzx9s8GHRPOy59X2MxrV8sUXn/L6csOHj3e8uXsk9RcYtcaIns59w5L3rNaGn//8U5q1oiXw49+3ZFPAFFCaLBIqSVRQeJUQsXYjFxsQvnpugquXySwyYZ1RR4MUCpo/c4wnxUKMmRAjIQTCMx5QK41SIJVAmWeZgNG4PxpHi6xjK8HzGAJSjoicEVnUkbissOIiQhVJUbXQq90O1TdIZ6rVr2uwbcNu04KoKmZJgj9ONXImxYXoPXEOxJieyQI8d7dExTHKgpQSJStuLIuMlAqpLc7q53xuJoRMSqCKopOOuQhKghIlK3vGy901Ly86VssRNRuKNJTGcr5ec7HZsd2e4cfIo3NYY5BhoZSELBlTqp1QpFKXBqe5FspGoqRAACVmUgqQMwpB07Q0tiPFQMoL/apjHFsKChpfhTi5PlwouSKfVI3ySCnqiPfoyUvCWQ3J0mtLLwz3ywEdF9rkWdJMzmu01KxXW24uzths1uim0ncKpVp6yzOCK9XN/Jh8VTsLRY4LIhdAIqTGGEHTGPqc2fSO9apBL4mryw2uaZmTZhpmwhKZ1oltvwLpyFmhosboFa1ROOPwp6lKP0KuVlNpMFkxU8k0db+9js0UVTxWf5K6W5BzIZXagfj/53lqFAmofPN+xSglQmda6xClWoqFlIik6vhWaWQqZEoVosVMihU9K3NdviJHdLSc9Q5QOO0p6xXaJkxTgUnzeGI4OKzZoFuHdXX3RIlc/15KjQHIej79MUpSAKcsViu0Eiwp1YVs43DNhr963XB5dsH5ekt43BOCZ/GZTy86dkYxOHgMA4/WYItAD4FRFOZhwg8ztFB8gZhRqkZyRM6UkNFSo02V5Zi5oLxEeEGjFUYLlCr4EBGloAS4LHC1SYcgkwt1nOpzPU+WRAiZUBLpmUYgskCJWqRZpWuXJqhnSVKCFCHFOtYWtUupleLm7JqXV9dcXJ0hnOY0jXy8/YDSGWEU0inGMpCISKnouxVd6xBO12lFEUipKM/ZyBRrdGGaZrKMGF27YHmpXa+cMgWFNYZVZ+nXLTHUJX3RODarLV23BlM5JCkXQi643qAaUCni8prdes3L7QU31y/wfmQ5DRgFcQn4acHPMzG1IA3aNYiDRpQaZ9FFkGIkLJ50KkQT6nlLrlCuUqNWycdq8M3PiDcrAIVSNTallEYqhSoWiUJQkCnX74+oXKIsClImRF5wItNozXW34dWLSwSe9+8dp/t7VNGYZsFsGh60IoqAXUfaaYfZFq62DaXtaISiLZm2azC6Rjh8GEjeE4Mn+ESUHkomhYWiNchKbrFOIp7NzEv09dLbQic1w+GJ2c8MpxNNlljVY0th8CNGW5xwnJtLrs6uuDlfczo8oa2tbhMBcfb4OeBDRgiDEA1CNnVROCWKD2RhyEuqmE1VkOnZ3YOgpBoPrAyDgpK1k7xab7i6uuL++MT241umhxnvI2GsDYo/nlGlRJLPxDkTYkB6SVoSIglkFhhRn7U3zYoua/zJU2SkXUaaNKP/f7T9R7Nl2ZqmCz3fUFMtsZWrkEflyUpZ98JFGXCBFg2uwT+gRRcz/hxdDHpgBVV5KyuzqvKck0eFcrn3XmrOOdRHY6zIopuYpUfDwzzcPdzXnnOMT7zv80pk0I69G/jybsduGOi9hSvfSFWp2s5ErakNhbRc5bpKrYla0vUZcyAG5zx9UPreoa5DuoHJjtwMPSF4UMMFS3SGG2+YtODmC/kSKceIzhUpggN6DL1YnLXk2nC2uVR8to1/ZdsTKFJRKVfvjFKlorVeNxNN/lRFMe2oJK+ZzJElJx7fvecYV6K1bMaJfhjwwTdEpG31iGhu8lktUJU1Z6wkkEpJC5orDsu2H7jZ7rjbb7jfDdw5S1oETYqJkbpeSPOFNK9Md5Zp6HlxP7HVAQ/0VNa+wzmLqBLzTFqv73UqzXtSc3uuwtAkcyjOmRYcd81sCXEgW8X5wDw/8XQ48vb9R+bzgtqOMAQYO3zf000Db3YPfP3Zz3i5HVg/PdIP/4nl/InzOrNcZuYQuDi4DT3GDqgYhJZdQ67UHKm1tHunZiTmRqcq7R4SbWcmsaIxQyqkJdL5QOcCve+xptU6umZMVzFZMVnx1uGzp5RKyYU4R2LfNmVSmhLDIPRYHoYtP7l/SZorGra4fs/OGXrrGcLIw809IVisqf8/93ylXJ/xqomSI2tKlArWXmlfuWUYOB9Q0yO24FwhmEamW21FqqO3wqazdHbL4cUDopUlZRYTSEWJ64KtMIWBm6ln7AydrQTJBM30XY/xzWuwqmLFYMWQa2oHTm1ntGi9ppy1Og7TzhF+RPjqv/BkP63aDHUpEctMdgY1Di+CmBWlkjKE2wnfCb03eAs1Kzk3rZTrCtZmSklYKlItdS04LojGa0CDoRiPOmG0sOYzuazEw0x6c4v1BZ8sthOkNFxhMQWbI5Jr4+DPK3lOlFSo5tQm5usKnUWNbVrwEHG1aV6jV5wMTWMfSvuzFaXmijcTe7NiJPF3sVKXjBN4ePGGP797zVf3He8+rjiE6gPhzUt+cffAi/0dm/GW1Twx2kAIHXY+oakVMc4KJvf4XKj5RHmyaK3YWwtX1rpGpdgVp5nBGZy/Zeqa0TPGlf1dT1xGnA54nZmXpbm8bUa0YrPiTSvAijVkyRzfnlk/i3RYsvO8HLb8yXTPf0wfuYkJlxbmtHD59EznOowZ2XnHjQORBGuimHrtki5onslpbZPm9YLRjO9PEAHjwbfixPeC9YlsYbsXtgeDnD2vt4Hb3cB53HP+/Q8wdND13FbD02Xh4yUSbGT34pa7m1tuxo7DtzPrcyPQhDDijceL5/F8ZuVCqRGjFkNLcvaxXWqgmFyIuZFOSi5US1v7ZkdRC0nw2bC/3fOcRiqFaRDy2ibpjAY/e/zgcYPFLw37WTy4S8dqLkQLZb6Q5YhqxZ8mHqYeZ5WLq2weChdZiSYxdsry/JFnjfQvPH67I/iOwSSCuhYGRmsyjItYWpFmtLSEXRnpLRjTUHM3vuMy3fJkb/gzV+n2e8y45XB6y2GorB7e2MSb+56zK3zzaHi+3xOiZXOIfJcuHD49MR9OdOmGOhbUJkI1ZKlIKsjc0n/7wTHcbImHE/3i6JaOnal0VZFYmA8XbLUMYtjEym61TD14k0kGVtVWSM1Np1oBspJpIWByzNjR0NmOyW+ZL+/QpWCYwERMiph1Jfu2zSAXNoPnZ69/wldvvuT2bo/ZBSor+fgJd/MCSTNlVQ554uP7hp2s6ZeIZpwKvSpSLMZYcANSZ3I8My8zz8cz1kDnLdkK+TRT5kiRgu823O5ODHJie9+znipUR7e7583DS/rQ8zatLPHEslxYozDslKqJVWe62w1/8vrP+csvfsGf//SXOKnYmjm8+Q0kj69CXo6slx3GOPxug/1uAiJqI0MSqsnECvZdJm9ngjjcqSBBrpH3SppjO1tKQk3BqMGKxXcZrwGHR3pHd94ABWzCr60ttsHQnQ2LPaPmglkPbGxi3zu+HB/4kzdv8LXw/R9v6R6fidHx1BWGW+W4XuhPI7oMZGPpHbgvtgzTDqeKTcqw2dGpYPKJef5APBdyLOQc6buEqRVOCX0xUo2hVIffLjjffBwlrQzdSCcj/W3H7x7fcz49c3p8BzFgbCLsE28/PBKGif3mlr/2X/Ll/jNePQx888MHws4QLobej7glIXMkrwXBY80WZzPFfYesLSm8BA+xIMHA3YqLIGrQ3mEuzRcgFdQqXWew0lHMA1/95DPWMrek4cffMc8Jd7KIM0jWhh60iXppzPzH0zNDNkhO5M0rWBVXDKOx3Hf3bMOG4BrB6KVU7lnwUrlZKi9ix093XzF1hs4kpCaoiVqbN6dyRMuZmhusgCjNODge0bUgEppcST3BZ3abzKwXlvmZPBtyuWGbZ9zoMH6knp7YrgsPoWMfn9Hlifms+MeK1AbBGH1iksqE4p2QoqCzss4rQx1QY9DO0gOYFqo2DZ6uc827o4I1GSuCL1BDY9ObXFmfTiRz5jg/8+7Xf+Qy7HEPe74elWnjsA70fMEG1wYq+YyEHlMjUlbmXHH22JrO5RmXcqP42ZH9duLhbscXr+5Jdw980pHTccGsj+jhE89ScEsl9Vtsb/myeIL3SAFJGTf22FIgHZnXA/PzQpwjKUdKd0BKxZ0KegdFhahgxpVu7OjHRtgb646SwRvhdDrx8d17fvjdb4mz0A09Ox1450C6gW6657+6/x/zX332hu0N/PGbH+huOtwskKGcjizO8OyUn0y3qNlSzEDNR3QuaPKU1LDIogVxEXOSqxeuoppbwV8M/UFIsYVa5sMF/2JDHxwdPbhWuPuDYKeKXTJOCr7z9HOPrsrFn1kPB6of6DYOE1two/EFc8l8OW0JP/0Znz5+RZEjRVfWj59IaaS6idFvMaRWXymkUihFWyItJ0pciTEyx/Wa0i6IWaiXC1Ir/SYgacC7FekqaxGkNziU+cnCeEIk0+G4H3rqdscyJz59jLx9PvLueWWTMncv9tx2e0y9EOdPpPkjW3Nhu7lvoJaceY4GNdKkiafG30fAxjaUBcUlAVuQqrhFyaGgUiD+C9N45nhhyUKqHW57i78aqQyZWvqGXvRKzSPSdfg+4P2WFE+wXvC5xxJw6gnWMw0njIVhbIEdzjp0J7iuYsQAQpkjPjpyNSy+4KPSrRXZKKyNS59SIh9WNDfjRUxNb19LbJHm1bTRiu/o+r6FQ2gmfzBY28FW2Z9norFIMFg/4NQhZFLI3PfCY7B8sp5N52EUhpvA/+Zf/yX/sz97zee3Pce3Lzmffwo10jvDF59/zjBuCGHguM6M84Xd8ZnnTz3Og7cQUMxYsSFT40LYfU53M9HvA+N2iwuWzIKtHgkbjJkYrSUYTy2Z3W1BN6/o7iy7TebDd49ItcQkSMrUrqBBCc6TpMPUhC++pXX6gusCv/z5X/H5T77if/Lf/S/47379O3716yc+fJjZec/3HElTx1jB2ZE+3DB2A/iZJc6s8UJcEkmVVCBejlQKTgxm9iRjGsnFjC1X4bygp5VN2PH68w6/u+fm80pVj6XnS3vHt798yfrxTH1bOE6WqdvyV8PIwy8Dv/zyFT99fc9Pv9zjFsdHGfgo4DuuXGnH++8TcbmwloTpm04WDLO11NI6/GwV1toOq6DYVBqVwjtKOmC6Ld3djv3dnrEUtCg+GT5ePjHHhU95ZthZjOsQ6Vn6xjqnQJlWSjFQhGQqdZkxKOMLeHnXsRkHqt7ww/2EMYIoHJ7O3OxvmLYTfrNhOwyMocMz4EzfjKGSGUuA7NBSKQGsfY+SmW5GXBiwImxsZX3o+BO1/CkBFWHsB6y1/If1xHD+A+Vy4sPlwJv+np037F9Ufp5uUXWIHXC/OnBYMj9cTnz9EFraahZWK6yXwpwz5yHy1f6O7X7LdLdl3XkuUjjmhYt0yCHh58piC7YUkoNlExhv7uhGR3GwD4annLiczxwGz5IgFsPae27CQOgH8jYw55mFhaVTDjNko5ROebyceYrPHOIZczAM9w9sXgx88XPHV3/yiof7G6Zh5H/3v/5f8dd//hO+/z/+77k5j3w6P3M+Leh7zw/hA4fO8/ycycUwmYGNHSBk1hSJMVKTUnIgl8K6viMMLWBLksNqIyU53zGFPWd/w7l/w4svv+Q0H3k6PbOY3xMYSEkphxkxGdcJdAOnS2KuBnVb7jYbfvHLn/BXf/2nfPbZF3R94PXtCyYs6+MJby03uz13r18SlyOnx4X5JjVyRPTYPmAyCIXkC/PjEbed2N1tsPOKmIBznny5oH6guh3GGpKDXBXRgNlOEEwLTxyAFcqsxJtAOS+slzPn+IQ5V7ok3O3ukFG4fX3HF7/Y8eLVxP7+l/zkq1f8yV++Ynl/5vT+zP/9H/6BDSPWGb5xBzZU1FjCdMuL4Q4rQukjp/dH1lTIRVnWjuXySMkLthNM6UANS+jY2h7nLcZsiO9PeD/i+o51XenvhJKVNCvL8chyPpN6g7/dkPvAx7lQmejshptpx1/+j77ky69fcLft+Otf/JzL//x/yccffkCPJ37xi59x/3DHw8Mt3iqSLtSjcnw2MClGhG1fqNqmkPUj2NuhQRq44Lc9tvdgFItBbY8Jnp0p7IbXPNxEfvKzT/zm4zdc6plSCjZ5soFkK8koTAX1iXcfTnz15QuGcWC7zYSQ8R76YeT/8N/+b/mf/sVf83/5P/+fOHz6xKfHlfOpYi89n9KZMDr+9IsX7H1PwFFUriZlxargTpBNQCVi9ZnabdtgpBg0CGIs1gTCfsD6THdujVfVmboe0ff/kVzvyOOOLhhYz4xr5ct602AG4sEbDtvf0e1f028mhm7L5VTpupmy9sSQEV1hjay7AY+jy8Jp5+HJYKrl5vU9ITU4QPGJtERUhDrAaNvEf5HI8+kHjp8iHx8j39Uv6IfPuHn5is/+8uc8vPgS3wUWlynzTPGW0nlMFI7zyofTM88f3kJ3w9BtuBu+oj58x/6uo9/1DNOWr7/+E+7uX/DLP/1X6CVTLpF3P3xH1Z6I8JEzvXUENZgwsvFboJK7iH1uGUFLLlwWw2VZKGVmGB2BriUQ9B4JHd6BpYfnTB/2dNMWTZcmP9bKec384Te/4le//U/85/k7brZv0H7gOThyd8sQRrb9hq/+q8/5+uevuN86SsrET9/z/bdfUi/vePXVF9xst9xsJsabgbrMpMuJePEkq5iubTu8F8gGc1TCvgfJkGZCmKjvI8cPb3nbzeRzwagj3ES+6APbzcRwM/Lh8syH/Mhlc2FEUAtzKNQZ7FawnXD8QYl3nkrHOHp8CDjvCT7wy1/8GW9eveH4F39JmSOXjyeWw8L5BG6w9PuB280NVn1LOzYGJxlvGkVIL5VcG1RB9IztB3zomjzNj1jf1CmjTqznC/E8000v8f7IlBeyeoIo+bCQD5WPH3/gw/tHHn//zB8OC6X07Jjo7ytffPGCn3/5ittxyy9ffsYdln2thK4nF+V0SfywzJzOZ06HI8lmJBukGmInrTEUJXeKTYJYMCOMybQw0H9pzv6aMrmaRuWw5ho008gv6loCGqZNMKpVslEgU2iTT6kFJdHCXS3eG6wVOqkY28xfGN+KNzFQFc0RayyoozMW8YKXjKYzWQtaMpQVJ4pIQsmU1DCAIuDEgJRGYak/Fn/t3/mxqRCLBt/kHpa26peK0YwpK11Qhr4yditZHMPWcnvr+fJlz93WsRsssu/w4rE02cvtiwdCN7TkwTEwjR2bvmeWiFODrYKzFSfmSpChBZp46PqOEHzL0YsF07ur7EiwLuC9pxaDiYHghKH3TN3AZTs3GcdqqLW06Z1WVDIWcApIJclKqgs1XvCDY7+5Zdi3NZuzP/Dh/kgIW4b5EXrhfurxpiCaELomy0BxNARryY3LXFJqNAkD+Ir8OJUW2lTRAaMgvmOoO26tx/rKPDdtf2cLn+0svXq24rgsM8H3TM7z+W3HZ/cjL++mJknwFR+U0Ru6bqQixNQ2OTklSol46cFo64S1OdxLrU3qpY0sQC1NAuMd1lk+pIYhc1oxxjPYHiuCk8LbS2FeFy7nham7wYprnXiRfyIt1VKJrE1jvy6oFIIzbDuLSMZZxTnPng3XRQPOK+M0MowDvvONBmDB2toM5ULj0TtDCZlCk2EYJ3hjCE6A3LZVFnyl4eh8h7GGEDqMtbzab9CXd5yCw+dEV2aW+Uh5/MiYDbEWLuvKu3fvODw9UeYFox5KocSV9WA4zheSFPw0cHM3cbOdGIeex/lMB/QIsp5RY0E6Np1QbGvIfFBML9ggWKM4K1StrCli5BoqZ6AsCf/CE3qHpoVVM6lmDIbgLd4YbIF1TZRlaZeTFaxZ6bqJh5cv6XqPcW2nf3s3of4l252jWztuTzcs80r5vOeWO+zo+OzVnk3vG/7vGpJWRCkG1ESKJopmEMEawQlUk7FOcFhybiv1YTNgfG6St2AwVvi0O1COK5pXXF7w+YIvGaFRqRBaeFQvTDc9N/cbQmgTzL73TFOPi0rfOW5fTAxTT85nolaQFnsqTjDFXDPkFJMzMS/EYqg1NBKUFaw1pKeIlY4GdGjgAkXw24CxBtVG1LimxaG2pXMnbYGB9dwoLoQGNLjd7rjZb/A+Y0gMfcC+2PFn9Secb88c7g98yM/04QYbOmJY+emXX/L5Z6/YdwOuxWxCXrBaEBJVc2Ngl2uhIbYlzKJ4cahYKhZVpfSKdoAV1FhKrRRRKhXnK0Oo7DxYaTkXZQHbb8kUVlPZ3vX4zjQ6mkt0PrPpDb295fPPH7i5uWGadqyXZ1Sb7NRKwqjDqDSkb2lS0Sxgs7me57ahN6XJ/7SJH1FaqN9uP3F7uWG7v2FdZubzpUlljG0b/CxkKtUYVITH9cTmMrFZNqiz1DqjdUG0MI0Db8wDu8lx2G143B45HyN5HtmeHjFBuZ0CzkRaOqtir3mtRgzql0bT0ibpMvg28baKkYDQwt6soREKRPDR0RWBvCCpYssMsVJyxBLprWDGgOa1EcmKoR884zjQjSOqig2OrnfsJsu8NvlHjQuyjuAcKtoUDLZSfWXsAqHz5NzgFVzDqDRFxDW0q1UhXxZSjmSTGaeO2xcTD69vuX/xwLAZEFFiijhncMbgFGrJxPnMcnqCsqLMFGNRNzLut4ybDSIVMYrvPBvZkrlHL5FyWah6otod2XiGurK7v2W/GXBSqXVpqeh5xWim1IVSVtbYZFKGJseURlkkFHd9/wzGaGssO4uxQowtvCnmgomZdT5RlxObvBKsoKaQ9IzUjqTCbEZ29z3d2KS0vgfMGZgxWF4+bLi/uWE33jAOEKXAaqh5RvLYiDmyYmpu0BBT2tZcFOMsxhtSXjkeV8rctt/WKsRE6AKhD5SSOZ+OzOeFmm0jzaSKWSq5lLYZqMo5n3k8Hrg976i2hUmpFqASBsdGRpyHMkQGY1nHnmkNYBU3OAYvQGqQQFyr46TJSLNNlHptzMXgEKxW1GSMypXydiUXBkupBtd1DKbgs6NisGmm5kjOEZcWOq2MvWN3SiziKRa2o2U/WbaDIecLJiSGCV7ejFg/kasydDPrs5CXhedyzeIw7b534ii2nRaq2uplBZtbDdBq7H/hYn9ZC1UKaq5YMSmgQswZ4zNYQzWWahNJDGsVkp4asqtWqImCIlL+qdh3RghSMCY1BJOtWOf+6XAUVzGdIGKw6iBIM62sB3I9QwVTK94KVSO1Noc1WjEieEBNE00aMai2A03UoGNFimkUkuCxtQUwOVdQUxAyLs/0A2w3ysM2o1a53xs+v3N8fufYdZVgEv2ouKXireP27o797Q7rO6oahmCZuo5p6DmYBVMctlqcLQQVrGjT6dsV7yt915ztrdivDQsptRXSzhOGFrOuJ0swGQ2GTbfndD4x50SYLVVLi9YuhULGqmKvn8XKylouxPkZdZmuGxj6nvIqYkm8fhkowyseHjdNwnIzECRBXSjVtWCNWvBUqp0pa2uwas5443BOUFda2Je0Sl81N2NKJ2ACPRusbSmWi/9AyoniEj89WV74wKe9cPzDjHZgd44vt5ZXW89+cpR1psqCuJXRQh82ZK2UlEhzIi2t8bDS8KYqBVNLC4upBSmVUhOlNNlH6ANdaFOE7+aI5oQrGamOoRsJweLHmfxNZJ4X5tOC3bctlbGCyYaq2tT/WVlZKTkTjyvGVLpg2XlDLitKTxc6bvxELJWsle1dxbmueVI617T6RnE2t8vl6jvwDqBQTKSc6zXe3hFEUY0UEYpVXKxYCyFYhs5gnAXj+Gw7sfv8FfN24PL2G/Lxwnx+JP3wA55bYilclgt//PaPnOcFA1jt0FLJ60yehUM6QW+5uXvBw8OOm3FkMIFzynRV6RDMfEB8j+sCt53hIoauF4ZOkU4xXumN4q2hamWJiT4rOKUYpcyRbvR0o0fXmWW1VCM4Ecbe0TmLKxDXRL1EWBbSBIudmUJlf/OAcabpnUtimCx3DAx2h+K5uenQopRhz0/iG6wzbO627MYWMFTIkJuh1VltYTaxFfzGWoJImxaZhAsG1UqJYLyjmwJ+6hk3Q/MtANtpz/nwAyXOdJro8oWcCk4ssUs4Iy37YSOMNx27/YgxAqYirtJ1FjcOTJuO+9dbLIHTuTVnRkPD1QZwuX2PVIiVXFdSNdQS8H3fWO9GiWukdxkXrlrWLOAs/qZNznMprClf06cN4pQggYvCmhPluGBuHBIEk+Fmf8NuOyEsaJ5xwTL2ni/u7jh3A8dNR8mvMfvXuH7HaDwvPntgt5u4CUNrpPJKXk44zagsVFlJqcmNLNCppdqWR9Lba7F/nSKUTaH0BecUNY6imVQrRoVhNOw2lhedpZCJdcaVRDAD6gqrr4z7gHVQamLVM0bPjK5wv73j8ze3TNMekYH1dECzQlGCb2edvaIRpWSQSrYZV8BKQ2w2Eo/8kwZetRUvimd/s2FOe7a7PfPhzOXpjPcTbrJoNUhpzaCKRbE8piPdaWS6bMniiPlMTme0RMQZOm+xXcCOG4aaiYPhXPZMnzIihV1vsWa9YiwNloy5eq9qt6JRoNAwq1WxIuATpjiENrixAEHRTrHngT4prljICa8JykrOB7zb4pzF7wzxfCCiZBX60dMPPb7rOC0XCIYweO72lsd3pvkT1gtm2SCdUr1giqKmUkJlDJ7OT+RUcXjUKJWMrisybjACgYqeE5WIjJm7TeL1m44Xn+14uLlBQyCnBblccN2Al0bEu5RIvBxYD09YLeBWqrckN7MZ9kzTFmpGNTUvYueY0tDCP2tiuwuw3UHY8EIN3X5DFxxOKzGd0dw2+EYLVWe0XljWhCkZLzCIB9uwuH3xVw+BwYigu4z0IKZJumIsxDXh1tbA+hJ5oZVshWgy6BEplghc3IbtbcB3oJLJZiGX95T8Ca8Db15MvLi7ZewfMHpB1oVqDaWeMTW0RFu7YHOCWpBQWuaP+JaS64SYMofjjEjzrtCDjZmu87jOk1Lk9PzMfFzQJTQkZyo4lGIKUhRi5VxPfHj+xM1+RzG+JQZrRGvG+EpQgyWQxGD3iTAaRtlTSku7Dw5E4rWxbt4wQbGiRL9SS2u4xbhGzNKKSsKYcPVwtqGgDYLzBucczgyoDUAl65mUFqo9MWhhFyzr3UBZn3muwskKtxvLbjSMnTLPz2RzxvYr9xuL+ImMMo7CeYGDmJZDVCu4hl/3hutYoP7T0AkEHw1uZ7FW+GfW+v9/FPvLylISuRa6J09xjTO+zhGcxTlH13luLheCb1Id7xyj6+h9wAwWH4em2RuULtE6cact2dMajM/oOVNNolLJ8wYZLNgKSyKm0kIz/AbxVw1nLmAKJIfmHSE8I6lp7ouJmNj0f6WvdCuIV+oI7nhPdQXtCuFJiW6lBhDtW4flYBwG/vIXD3z2xS0/u/yMHx6P3O1HXt1t+enLkU1nMFLxqbB/eMOw2bB9/QY/bCmpkE5nDs+Jy2UhlZkcBrxpFIit7QmTw/YdfrNl3I10U4cPnrHfsbrAbFuk/eQn+sHTTyPOGNKlcskL//iHwtQN/MmffI6vHeP0SNi+49d//1uSqZzdSrRC9UKqDtaOWArHy4X37575YplxrhWE+90W437GNhasVvLdFqUgXaVzE1KEuB4Yql4zEDIl3uA4ICbilopsEmoDut6gUzM5+mqhF0qeIHfYUFugkbX0U8Lc/xxrA12wpJ++pqZKTXBeM+ulEi+VbYBp6zH1wvHDJzhHeunZff5z7Gg4nlfOp8jH9ZnnNDNjGf210HWOEjImV4wqixREPSrK0iWqDdhhIOwnTPC4mw3d/o7X44bufsAGQ1k9Ux/ojUHPQgoZekvXbVj7hJsdZlXmcaUcDSVZ6qYy/DBgI3xMZ86PC7fTLePNjr2CeqFamK+6PCOVPhfGzhI6jwm34BJGK6a0BlRlQBnpu0/0JTTje4A1N4NwBvpxIoSuTbel/yc+vETDthsY9gYfI4dP77GXiCuFdX7PcUn8cF441yd08oRxwveJ4uHs4Cl9wm979ncbPvvlLZ9/+YpgDHFZWXEkImoOmO6e6dZwc2v5/M0Nl+VI8I77Fy/IvhJtwRvL1gdchbgk9M2MPwtTqhx2wtRPjN1ECkr+7hm8YG88g7vFDI7iKvoxsaiy9J5u3mJfBCSAmTOHyyOFwtZtceNI3zcd9WWNMA0469l3G4xoQzJ6gxhP0UpMqQETqARV1rLFmgPBrQRnMb7lNcS5p9qKD55BO+oAS9pR4g6cgVKoy8Jh/R3aW6wdm2nrhxeYqeC2G76+f8l3a+HbJfPf/uv/hj/76ite7Me28ewGbnYP/PnP/pp+GLFdwPQdaT1zPM7YaJGtpTc76EeyRPqlGf+WXcGbDc72yC7giyeEDh86VN+TpVJtwhWD23roOzp/x1EOzOeV84eVelvoZWSSPXnbET/Ceiw8b4RdGemyw+4uDGoxa+Tp/D03x88RCXg3QnVYAn3Y8tmf/Wum/o7Ojwze4YaAdUKu8Hx6REvTkfsSyaWnlhFr3+FqMwevekEuN5jQIfvAaDrUQfQFObyCzoEVNq6n1AuVgtU9X//iF9gQeP9hpm52hM2ebnfHrw6BV6/u+dmXr3kzdHjbpJ2d7/jTP//XBODF/pbt/UuqQpxXyqVQywp+obu5w44WvMEVyENCcNg6YUbF2Ja1wbhD+tAm9NUi6nHSBjbOGXZr4c3DA8sHy/lYmD5bMfambbW2QvhDZJYLWTP9bFhRDrnw9tuVt8dHxv3EPu6wMqAlojXR+YhsbwmjZyzKfe+pJGq/YGUECsbOWBxKu0PT4RZnZsQvyDGj/QLGUtMdMpSWv5I9MijkLZo6XL9golCLY5UjdHtMZ+mm3OQ/qmhVKl8hXSLkFTtk7LSh2sD6bqYkizM9d/0D39y855QyzykjbmYySl8DZw+iI0N2qB/pS0cqK93WsTxWtEJ4oWxVUGco/bV5zobBeO6/+gkPn3/G7uGOEgKX+cK6XjjHhVEW1AYyHc/Pz3x6OnM6Ffb7G3y4xdoRv+m4dT3jYKFPxBxbuJuRq8+5BbrZ3U8J2wkXAqYK6mz7DCVQcyvoVJQuJ6gDhYHRv8enjCuVKgs2TiCWOimjdJjOUHuocYeoaYF+aySlZy5poc494+2O/ZtXhFdfEV70DH4i2w2/yZ4vXr/hz376U15vAp1XUOVm6PmLP/8f8idf/5yX24Gf/vIv8DagMcHH0jaivVK6O/Io2G7FLolurGg16KnH31mCtXR00HeIWVjWSNombsLEbpwYXw50oaFcT/HEt3945sPhhOyVooY0OthbuvcdZxIJoXvsWLbCuUKeayO+Ci3kzABG2tCiF4QbrDPgBdZK1UyxEa0jtQpqrkNOKahRXLqhmgvGL4QKajMqnrpucFPb8HRqib5A3GLWPbZPWGuQlFjKBccDfbhht3nmuNkSY+LrXPjw8895OmaOh8zN4LndDHRSuTxdqCnhqmd68RO6mxuiGh5PkfT+70lFqAvUULEuINZTRsUtjbtfXMbGlvh76TMmCd76f3kaz+k8E0sL9ZnzQraQVFnnSJbaJAM+cI4nBu/prcN6w3bYMPUj/U2PDIKR0kKHrG8fpCjUK90gCaV6qraFJza1bYJCRVlzwmjBGYOxbUXaQg2kbQW0NGJKZ6FCUcXYtjrVNcNVx9w24CtydW0T9Bp+oog5Iyp4KUyTYXUddCvGLWQTedgMvNpahs5imaFEbBeZ9ncMmx2hb5rNlC6cLo88/fBHPn78no/HR0yJzYGNIziLDwHfOYZO6R10Xuh6i/FCWhNzOhOmQBgDfdeaJ63NsHY4PuPdTO97vAQeXr2mOMNhvtBtO1Jt5IM1RowBrQnpEw6HpJk4vyee3tG5F7hhi5JxJqE2UkvFSnPfp1jx5dg0bUADc2nza8iK1YyIUseAUjFVMKFAVoypVIHyYwdtK9VJC7JSmqHbZrwTQnAEO1JzJaeCJbHUlYXI5Hq8zVAz6fIea1bM6JjGXZuQHyPHwxPPhwPrmjDXQJuilVpi0+utzZArtaI5XXMMwExX+koWlsNKuSzYsrLZOHznUAuXOTYJg4HNrsNFg00G2xnMIqRcyFRktu3S1YTJBUKhUinHmZiP5LRB1g1+3KEeiquEspKJgGJt15jcAkaX6zq5Ld0R11aSpuIFZAjXAK6WJ6DXQJTOdljTVu1aV5bcDNd5uWBsI324mrH+QggLW2nI0pAyXY5MtuC7ge3YM6jD5UzJC+WUeHi94/Ww5evpgRorxxR5PJz48P4dh+OBpWRufWU7wHYUJuMYNluCN2xtYRBH72AMBrG097Jk7CE3E5UqXRTSurJcqRalrpAFvSi76QZFKXNi9ZkaQYsQ64UNG4L1uN6S15Vkz20CpNImPNIkHlIXqCsXXbDVXLGrlvEanJWlYO3YVurWINI2Xs4UzNRf03gFq4maF4wafPCkYJB6QeXCknbkdKKUC4GADxY1MJObQbCA3Vr6IAxO2UzCT1/fcLfpsQbm9cCaDojNvHjzCt8PIDStcr6AFLKslCXRm5byPF/y1d9RMerIdSbFQjpUulc7QtdjxDGniJ9NkwVOA2I7MIFKpKyJuCxc0gk9W8JmpNv2mNQM7skqJjuKyRRRgjh873BW4Xym5gNaB6QGjFZECmIKG2swLNRcWFZDvChWKgOZKEsbCpgO5zpAr1K6hA2CVAu14pxiTUbWggyNGFKlgjtRCRQNuA5C8VAVGzKxM+y2A198ec/ZeFwXCIOh7wufver50xc3dM6wLkdynJG68OLuliH0bDc7nPOkmIlaWdYj83JiWWdeTD3BGZxpX5OatRGm3Nyeya6DEMAKJVfiGjG9I1iLF9OagWJwzmJ7z8ObLWIuhGgxvUOzkGttRtKiDTWpZ/w8cDkfeX9+4ng8slxO1HxGbEFzhJzIS7yeGBmxHhPaRjPXgtEVcyV9NGJZa1ytX6EsTTPfG6qEFjJIhFQBi2pLpK/X8x4q0hmEAHPA+Ir1XOW4zVtUNWN9QaRQKZjRggOtmVzP1BwxIuxe3rJZT6zpxDHNsO5QU1FfCVXpgmCkSS3DEOhrR+/7FvJWISSDDte8ygT56UDWM9XBVAuD9VjjuRyf+XA+Eeczen4i3wz0NjFo5Hx6Bkl0o0WHESvgbMZrR993dH2HQajlDLjmFaBS1FAx+FAxJqK1si7CHGuT5wWHmsaCs1jE93gUrZlgFNd5HC3p3ZqGXCQm3DiAE9Qa1JxI1UI2qFOcbXSy1azYUNlsPD/57IZPnacYQzWFPiTevDT88uWG0RtymonpwlIO/OTNazyvuL3Zs9/tSPEaZnX4wNPhE8fzM7cutlCpK7BOCw364ReMNmmoDS0ALdfKuqz0QdkMjv0wcNftyEviuR75eDnTD8K0OOKiMIGuhXrKFKPUVdAFtK7Y5YLMZ+a8UGmp7CItaLER6JpXEykYV6lGqKY942tp8lRrBNHaxMY/BlK5jM0ZNbllWdj2485kTOXHvRX52pRZ3+pLY1twqFbBu4Kp7S4Zhh5jHKwr+65iS6WTyK7vGILiSGh+bvd1F9jv73GbGy5rwszvOVwOnOcDKV7w3uF/DPGs2tJzTSOsYbVJBaNSXW7KlPwvLOM5nedrcmem5kq6Joguc2LVdNWeOi6LZ/SOyTtsZ4jjSpxWtn5HMAZvla50SAjXdLwr+qpou9Rx1OZ3RCRR1VBVKCqkUrEolBWjDhFL22kYjCn/RZ8frglv1/VOK/AyhNYRaQUxqT3FgDrFYLAiGC5IbWmRQ2cYjUOJaEqcN5nbSbkdDMGCrDNaFqwzDNPAME1YF1guR+bTkaeP7/nhmz/w/tN7nk7P7HNqqaBG8c7gvMMHyxCU3lk63y5PcUI+JZZj4fblFm+E4BturqZETpHL5UzwkS50OBPY3U/MKTJ9esSPnnJKsFZySjjb0jptXwgGbI2k5ZF4fqYME4SJSsbUFVsipSrUZk7NqaK2NPqBtU0nTEtelBpbg4UgQ6DG0or91mk1Aqg11NqMg2IKRhyYpnXVolgTcShWOsS6hn4rhY6Iyorahb4LiBRyKpTLM9YIZuzo9hPr08IaM4fnJ46nC7UqfRhQbSnPaEWvn0MttZExSvtxKxZnDN4YnAqX00JaFiiRbmhpuVmVVFbWXFCBYRtwV/mXQWBtCZNZCxIbUUm1yYUIzSNATMR4Jq1ndFmwmx3VSkt81JWs6zWl14O2RpWyUllBrs+5NNO40dwuotAY26hiNNPa4YKXFtZRUaQ0+stpObcmxvWYUijnMzUdoc50VLz3eCv0tTB5mAbHfhrosdQr0YBZuQkDL8YtL7s967zyeLrww6dnPnx8z2FZWLUyeGXshLGz9GIw/UDw0EthEuiNMIQmRFSt1FIwc5MHVlFsUdZ5YZ4bVatqRIpBV0t370lrRqMSpVD0mkFQFgwGbz0uOGrO5LiSnUVrKyBFrt6KslJqZjVgiqBiSF3rZK0F7QQlNMapCIaMpeAEbN+3c0QrQkZybMheHxqdyiSUI+vqiPHMEmdctXRiqBYWI3SjQYtBe0ASzhc2nfDZw4ZN76FWLvORlBacEXa3t4htulfmE5RKypFLvJCWyNj1dK5BDLJkKi3EKZeFHDPl4ghjIHQdWoQUY3uPQ0CsaSm6uKZxjokUI3OekbVDt+BHj5RGSioWBEuVQjYw2J4wBHwwECPkC1pa+I65+k2sFYI1pNoGRetaOMeE1QyS0I1i/IDxHnEDNq/UGjE1Y9wV+ZgrxlSMtiBE+kzlqv0157YFrjQflDGoWKxNzS8zdbx5fcvHWFFxiCtsesPr246v77YYVebLmXU54aRyu981YEQ/UtYVSqXGzPFy4Hw5scaVYTPijcGoXqf2LZBHWdHcPGBNsiiUWkhrousEa931DL1qhK3gu8Dt6y1pPWOOtU1wayXlggmCWRqOL5aVvCzEZeYYL8yXlbQs1DxjrVwxtEpNFZHUJIDOgm1I2loVIXE9vRtuWA1GQOxyTUuu0DuI5ooAzEhucsgqlZKbdKo9DS1tXDCQO8RlxFSMeNS4dh7V0tDYP2IEvUFF25lSL40qaAzD7YbuO4dRSCVCbj+/SvOGhWAxAXxwuMHhiqPzHvcje6O0v1WLcFWWjx+JMlMHR6gFp4LmyuH8yMfDE2k54y9HkImN7RA863xBKHS9IwaDKRVDaqqUriEvDQbNC6rXe1CgYqh6bXg1U3JlXgqnWglWmLLFDLZJRbBgA64kMNruna75H0W1fc1qxeWEGG1SOoHKTC2WWh1CwYjBYUhccFaZJs/nb/akVFgrRI1Mm8rrW8dP7ieCaANXrEdyWfns4QVT1zPtbtF04rjMrPOF9x9+4On8gXk98OANVi22CmJaRLRQsS4j0jxAZrBUcaRaWOYL0xjonGXqOzZuZJ1XzvPK4+lM1xn64ChzuSKASxuKeqEWWkBdjZi4IHEh1Xj1vLTPhR/xqBhKEdDmPVE1FDKZQixt+2atuSKrf3zXDMasGCkNv91ZqIIgiLRiH1WqMdTaMPDGNgJXM7a0UtFKwZoCWIIPaBVSKkyyYkLFm8rUN8+d1AzpiBt7utGzub1Bux1rbQX+x+ePPJ+eWPKFydzgTEOuWwxVchv4IaitqDb5IL5J56WYf9li//HjBy4VEobJe3JVSqnkpbBkJdVMKSc+vBeGYNn2jmG35Rgim/7IjQheOzwBNzhGSzssZESKR5wH8ai2SzwXMCclda0LU12x9DgcJnqk65FaEG3mHFKEuVJdh7fXWGJn0HNEMWjXIdZSTYundpeAeqE4RcqCcaHp405ghr6ZIsqCTRU3V9wBHhi53QyMnSc/P1MuM0aFm/vX+LBHbEdaEu++ec+3v/49//Bv/57/6//t39KzcNMJ+25gczOw3Q30veKmplnsthOb+zdMt7f4cQfWk3ThXDM+jIjrqGLIKTKfFy7HiKyV4iYYNnT7jrtpR62Z5TITZ2U1BReUEAv21mE6x806cHsz4L1wfDqRnj11VLS/kGMhHgplUcQEslkpZHwtmHRN4+1GqCtKO7vlqaLGIaYthbO/pnpdBNkOjQuLNu58NtjsqMZT00KNK3YpEBVdLdRCrit5TaTzgp5XbDZMuqG7GUmnlfI8o8ee4fYWN/ZICHx4esd37z7x7dsDz3PC9QEz9iQn2NIoGUna91orxRYkKt47xl3H/X7PtN1gh553l9/ySgvPIXB2SskL65r5+BiJ2lHdQPUn6g60b4fIxVZS1NZITAVztGgNrGPCnzo6A/3DjsO7I4duz+VB2cYZawNGDDm55s8QuEjGxdYfFCnUEJpHRiomBIgCi2L8hJf261NNxCVhEELYYKxvjU5MpDWiJ8EcHL/63UemIph55u2v/o7ywzMpHjnbRyx7bM4YMdxvNmxe3LC/v8GVzGl2ZDzhZcfrr9/w4s0deaq8/d2F7z+853fv/sgfP37Cmsw4OOw04vwWZyfCxrDU3JJ3izBZj9hAVUdKhRgjMS0sLybqrBALp5B5fn7G94HN53fEZcF3HVPvcM5QcNTec3lOxBApLhE/ZKp0SBjonMO7DiOWlBJ1bax4ZxSXR56OkWUubErPs38kU7Bxwj0MDMPIIFtSjOAqYtoz6+vUElq9Yc4rOSbW0wJ+wnqPEU/OUNYeLlvO1fLu3ZnHj++5PD5xrM3wNSfH4gMno1zyyrq+xZiJu/rA/d0dInA8nXh6vLDrdkzdgPcj85qZ58zxEDl+OvP737/n3/3d75imgsQd1o/IxmEOEWoibZrMSX1Hd3PD0I/YridlWOYDZjPgthvUjywWcl2pz4mLi5xK5pgy/dZSbW1enykg1iHVUPZCvlhc7TDbB8bbG7rON+hZahMoUzqCj0CPt45kEnISiJln3lOOisVith2TecGP0/wqSr1k8jGznizjxmK9ISMszytGHG7cNQxdbRhZc5rQwZOqZTke0LoiJeNWZaJDxjvS5wVzPvK0LjzNK/91+pw/3T7w6tWe88dPnE4LVMfnL75kM44YZ1mXwuUQuTyfePrwnr/5h99R84nRV+zNA2EzYqywvH8Po2mX8CqY4QY/9XTDSEQpFiKRyUzXmPtWOcypUIvhzbhn8+UDz/WCvj8xXyKLFBaXMTcd/Roxa+H8bLDiCSawHyZs2aIxkGPEyQNGC5hI8JYyKyWBOks0mSIVbwJSR0TddfNXrr4MQc+u3cMuQ62oq9SaqeeI3Q4td0AzJYEtDlObZ0NKxtSM9wMmFaQatJ/QugIW8R08rogpECqmLtcsmMx8SMi0axkZh8ghnrmkGVMdy+CwncVYS9x4ujqwxbB/scMsmVwjpb8WxKZtJgdjqQZSzfz67/+GMdwy3n/G2U7I4Ug5F3737ScuTzNJE6mL8Lt/YO8HHsY9u9s32OpQY3Gyko8JFc94G+h9oPddM4VHRX2HDQNeViK21Syzoosh1syn8yOGidB1SDfidUJKQYkYY6AYyAZfJ0LXtmzrnFnPF0TBdhOaLUWUtSjl6CnekA0c3z02THmOpPOJQTzb3Z7NL5QXy4Hvno58/+HA18vn/Gzzgi8+v2U5nHm+nEgxcqsv2d9MBG/RKLx9+8jH73/gu9/8gf/nv/03DG7lfhTsy9eM+y395MnLAek8poA/JNz2Dj8O2GGAOrHEhfeP36FvPmO/gc1G+KCRx/fv2zAGWo1ogVGJaWXxQu0VVzqkV7waTO5I0lFtYOMsXiasTIh0ODO27XXNWGcpp0JdKtkrS44kLWQc2XisCTgXgIJc83YkFkwdEALOKFFBcyVeMn7omyTIVKqxmNJ8YUUspKUNeJI2GpFYTN9TzIkqlU480NHZjq0VwuSIcyGumTIP9NvXTOMdYbrlHDPvH5/4m//4G/5f/+6/5xxXTOf52cbgcDgJlFEwp+vwbgB3MWArZSN0c23IdvcvXOynqthrgEsxrQO1olRX8ABX84MNtnW5tqIsFA0kNZAT6hLaF0wHWNs4o5Tm8Pe2kVwwSGlEnLpJIKEdHDhcVZwtSC+o5GZTNqaZXkJGbcbVAbm2/HKJjb8rbarStgDXCdHmyphWg7omL7IohEwVg4rBOMWlRBgyGweT37LfTGz7jhgXsAbrPMPDBrFKXmfmU+TDb/+Ot7//I2/f/4GxHuicEHygnwrdZOi2nnHosEPADx3DzUi36XGdx9AMP8Mw8MIOjNOIs1Bz5HJOlDiT08zlEknpRFzgfDjx+cMbNrcbbpZbvvzyNe8/vCPGhTWd2M4DvRc2twO3Y2AKgnMLy/wdcbbUNVDXE4YFQqX4HTa2lZWq4kLFuEytC3INqKAWdMqNbKRtYiOxtrTIEYxrazLUYDRhQkH62ug8pmKs4n3FBbAuUd0FltymSWbF7xXEIhJwzrTCwyW6u0p341FrOR8+8u23f+Sbb//Au0/ftTA37+mNYEvb5tRS6aona0ZFcRIYRkvXB3a7LQ+bkdA7ihMedp/xML3ktt9hgY+fjhwuF87rkZQymsGostGeAYuYgouQUiGVjFs9EirGKTYqtm9bg7E6zKRkLlye37Nue7wBi2PaOkwVUlFqrKQ0Y3CEzlKNA7HNSFcz+DY9s7ZvMp2rDMYPpoV8GdcugZpZ64qXhPUGN1VeTYXj4zPHyyc0fcfaR6rNjNlhx8CsiXCJ/Hzzin57Rzfu+HRKLcxLlAd/x95PBA2cHysf3n3g8cMj87sV5ogZHc4N2K4yTo79duBm07PktZlbpf25YgZnCmsxLUCLNr1cVFlMIZ9nLuPC4Xzh6fuPJM2MVAadqMFRSRSTyb1CdYgW8s2K5pk6z0SpdN4QOkfv2laukUQczhe6rgIZcYZ9GVEt1MkyDgbXtVwL2xyVbYUcMiE4nAaMKtZm1BXYWLy9blfEUtczsEK/cq6JLBnjHWE/0uNJpfK0nvDFs6m0DVvveXH/OV+8+Tm30wSilLIw+cQ4WLquhdMdPj1xOR05Hx759OED8/EDJj9R555iV4q3jAycgyEXYI4ku5CsQ2tEi7QgLzKpamvOvaegpPOFpBW1bZLntG0QXTYYheIUkyvJQAqWnhHZCNKFhpUceiR4vNAkKJJIyxOa250gNWN0oYSAGGW3OOqNxVvDMBi0i62pwqKa0LAiU2TbTXTBttA5WcAKzhj6ySHXNb0tGbtVkkRiWdGyYolYWxkmz3O8oBrZ9ZbsR7YaeCWVNy9+xhcv79mEQO7OeGlm92kfMEYpcWV+Wjk9vuN8OHF8fiYf3zUT7+AxXUsjttawjB5bE6KFMiSwCZU2nCm6Epxj6iac8witaE65hUFaA+ICG3Vs6cnWcq6PpJzINSOu4sRh3Ibcr2iENCcu+YwJEetB8KiJ10llk4DWMiM2U+zUwotoclfbKeIUtTSantCKirEgxWBqQFOCnMFkZEqI8VAEyaVJDH1GrCLatcK1WnxJmF7BVYpksD8GdmVkk9qGTCw1BtJ5YT1fSJuMHxwmCVGary3HzNT3TLWd39FGBEPYjgydZzAd0VQSQlkDXd8jaDMKC1RVbCmt8Hp9x/6r19xZw/GH9xwW5ende/rdKwzK+vjIcf4Amx37qScPhbJW8tqypEp3/fuwkGsiF48x4DrXhvpy3W5oe8ari20jCHR4XCd0nWJ8odgmVzLYJj/pEmoLUzdijbQthhbU+rah7AaMbWZRLREzRlaFJVeWGnEyY11mt3ccTMWdKvsE58Hz2k9s7wK//Pqv+OuvvuLr/RYvwmADNRs6N9GHFuR5fLzw6Zvf8un7H3j+4S395UToFdN5JCQkFEzX0bktRVKbrnvBDA7jHcZYkkZ859hv93y2ecnWBSStfPzuOzAWK55OJmJcSTFRMi3BWSxkx7nMiBiqWvzWwyUTnxYO65lCAgPG+aucuwmI1UANkSoJlQBVaNE/GRMcuEI1zdzfEu4U7RO2CNS2DbcxNaNwXxHbQqq0NjKi9YrtKrU2uIhqxWnB+MbCr2oRoxgL3oO5FVQdim8qinpp0qNtz/iwpdtMIIXz4cC7777jV3/3tyzHI8F7tqFnuEpvRSo+mUaBA3wxFHcNVT1VxIHRio35X7bY19qm5fbHpkKuxBwr7Q+AXqUebcOlBlRqExdUJcdm7s1yTQQT01aAV32SXA8eQ9POiqnNBHNFFIpajFWMlevvX9uhb0xbQVpBxTYkmjFNTsE1/ElMkwy13SVQEE/TCpWWvCeiGGlYNJWMqkEAayohGEzX4cYNkx/orKPkivUB1w2EqQeUOM88v3/P2z/+gXfff8/z0wc6yXTOE7xj2nSM245+29OFvhX7Y0/YbnHDgHEOrVetoxvp3IQLbZVUcmFdF6QmasnkXNBcmhE4ZkIfmMzETdrx6sUDeV04HpWUIpRACJ5pHNgOgbFvfomYn0nplpL21HRun78VqiuYdC14rGBd01hXctM56zW90JmWAlyvIRumeSaw1wORNjkSzQ2n6mzDpWpp037XEJLiGikAzU0e4QomOMQ5jPGYLFeUaMH0HjpHLcrxcODtu3e8+/iB5/mE6wI+NP3bf2lKMrZKw3jRcJV9H5jGgZvdjs0wYIIhGoMdJlw/4HxHVeFwnnk8HFnrQi6N6mTV4nF46wje4a0wxxZ7LgrOS/MzFIN3vqEirQUDuSbm5UhcF8S3zLGu7ygqkJs/opZEtdrWw1KBphekZqoo6luMrmozXGEK1nZY06K0NRdKbh6BhlxsONvdaNs0TVbsZPEuQHT4JaCdx2dP2HS82t1jwxY1A+9P5arp9Ww3G4a+RzCcjytPzydOh5l0TpjSGhdrPf0QmDaB7SYw9B5SolQDNO1q0ZZMbbwn1/ZVqVopUslSKDk1tFxKnA9nlprAGG5KRew1cM4oRQQRixEPoWHaSs0ULY1LbC3WBSq16ce1NWfWCR6H7Q1u6UArJSjWW1SUpBFXzfWkULj+Xk4ckhVrDeosYvu2QcBAhRRbUVBFSZoREYLzWD+xswNJKx/XhOapBbp52Nzs+eLzL/jZl18zdB1LWih1xVuLDw7rDClFPn58y+HpicvzM0+fPnE+PEFaEOcRKsYowRmW65CjpEw1Co5W/GltCNXStqbVtOjwXDNxXVpK5zA174q05FeDwYhDrLsKxKCI4GyH9FeTbR8wPiDetSmrDS0ZOV0gO2q9yn9qoloBL7jVIj14b/GdI5rc/j84tBTUAp2lH3qCtaCVVFbEdljncb2DZFBN1LLigqXUTCoZWwpi29co+IDhgquKhMDeWiYrEDyfffmS/bAlWNNCcjpLcM0/pSUTl4XD4yPHx0cu5wvz+UxdZ7iiKH3v8Z1td48zSLVcoRmIt+CkZXqUltruXaN9oK2AKKVRQpw1eB+Y7MjGTcQ+YQ5PbbqeMjUXfNc16adrBXotSpoTpcaGEFZLlbaVa5TP1AZtoo2Kpu08Eg/GWcQa1DTDOtLS0PG23aUFyIrIilhp23ZaMBjVtKLImEYOyQ2RbYBqwXgDTqimnYN6TXHXIGhje0EqLeU5RoppngVKw2CucaXUQugc3jSDb84FcZY+BDZjM9bP+UKKBa0Ga0N7/tst08h1KGI9YTcx3G/pvOP94zOH54X1+cS4e4HRTDqfWOKFOk34zmN6IWca2a2WVpNYoUgil0gtHuMA010HLT8WXE2OUo02gpZI8w4509j0RihSQGzLWiCiRlEn+K7DVlqYZrGI67HG4X2Pqfb6ziash1oK+YqLFt+enanrGM1MNIVyWVmMsLEjdJ6/+Fc/5evdC26HnpQzAY8Ej/E9ki+s68zzp/d8+OE7nt5/4PL8iM+NEBiMIfTtXXO9Q7JrdykgxmK67p+ejaottbzvRzbjBu88pWQeP34gTBPBj1jbEVMip4xWSxcaQhxreV4SYh2K4DpPWVoK+Pm0kEpq3k3TtietnmxJuNVWmvpGW06OWMS2lGUMFKnYKyoXrueKGExt1Clj0vVs94gx175XENJVuiPXWqWlBJv2yxv6kvZ1bjh0sKGpUsBji5J809u77YSfGlyhlMLz4yfe/vCWP/zxO3JK9H3Hpuvx3jf/Ka0e5erUE5oyTQCpzTuANoXCP+fbP7vYt8WQu0r1hbEGVhLFCJVAtStVBau2TVONNP0THbV48mp4Op7ZPSdCp4w72Lt24agT1jlgA5g+0meL2oJahbRvHbOpuMUiQ5vQSx1Qn1tzUQ3JJjQNLUxhVCQq1MbmNXHXVn1DxiwAiSqZGvdU08g/XTLooIgz1DSgJjVdbjT03uIYKDIx7DpCNdis1Fzohld0wx3OT5T5wtPHd/zHf/f/4N/8m9/z/OkT6+kDQXrGrmO7Hfnsi6/YvdnRb5rpzW5H/LRjuPsCN92AQlwilULymbmvZCONDV8zl/JMVzpUBRcKJm8Q3SD9wHa/Z2e3jJvAz7/4CmcL7z5ZPvxwpDwIoQ+8MTdsHgrDsCHYF6wuseiBNfakcsFyg5gBzIoxrk1EOzBmvNJgFiitGVMDJe7BRvCZMBuqjw3Lmm4ofcRQMRmqPaN5wuSRZI/YBDYpZjBXwoxBZcVcO2YbBDU3TTdtlbpk4hyZz5FY35BXw2U+88fff+IffvM7vn3/kcdiebnp8V0r1jEFKwYRh9oVUyqCxQfh/uGBzc2W7ctt+9qLEil8F4686SuPg+WgnreXE++fnynZEmubbAUmcoBu7Hhxc8sSKsf3kfUA2pfr4SaUnTJ9D8FU8l7Iz465Uw5cOM1PaL/B6AbDHcGuGBp5R2prrFf1DT2oFamCNTOFgSw9xidsacW+hoKwaxM4F5smscyk/I7s/lUzc4WK2d+j58gojo+vP+fNaYF5YT6deHz/hDU94+4Fu/vPmBMcz4nDx0Ttb/HDDds/vSW8GMml8P0PH/j+08LlvFJYCbJtkwnvePPmC968ueX+pmdAyNI40rZ7IExQY+L5uLJTT14KMSunaaXMzbEdO8XgIBuOeebjbz8RX1du33xGZ/tGvnCechLctmn0l6dAHALrAGa9GgjFAROZtU1ecyKWQws2shu6Tqni0VKxGlmKo2RlTcu1yC3gKtXfETpD8IbgDMY5rDgCO1zXNpysmdPlkZQtWjdIWBlNzyYY/PaO2+09eMtQPvHevGepkbwpfPnFX/P64Q2v717gVXienzkuFyb/EtxIRTkdz/x//v7f8vb7D8yfCjJ/4PH996zHwv5WGTvPFHpkJ7hVcUU5Gujqjr6/oX95yyIJWSt5bmFW0cPZZtIpcpIZdY6H/pZizrBAfc7Iyw7Xjwxuy+wWSqrUi+LedAz+jm4cG5XDDzhrSCFRyg1JlMoCaya2vQqL7LEt8YvkbPM7WQ9+IqYDppZWOFBR2aDeMWyETgzkzJpngt5hXTPhainkfOG5PLOrr1moLFq4i+CnnhA8vtuzCYboVlKs9GOhhi21f8HtzRsG49BcuZwvDOMLnNuDGNY18enxI//p13/LcmmbMk1HavWMG8fd/Zbb3QtksiQivFO0c4gZ8HWHufOoQFwycU7kUqgeQLi+sleMq8d3hv1N5n7zNenWEKdHzucLKp9YmIknxXia98BtqQN4G+A7eHp85vn+jiUL1JZIb0jE5RPF3LbQNL9iTY8R2lRfJtQqahc0W6C2AkpfoGYFUnv2XUSsw5i7BqGwzaVp9C2iGzRtEbfiUgu7qr0FhtZE9AkuTWdt+kI+37ThnsuYUyKVxJwj9dOOGoSUV84fn7mUE8kJMg6UrUMT6FJwL3se+jsexht0cFx+O3N5d0JabC7ZVc4by0YFNULxhjV0JN+TQ8+yHfjw+z/w4emM1C+xrKz1xHl+Jmjldtjx+euvsTvH+/NMXFd0uFDjhqI9FynE9Yg3FfotKbe7Rc2MJG3BYhLR+tAIga7QjQ11a01AdSTVFai01jwTqyfLyOBNw7eWismR4G6x1uF8hbWyLCtrOtPpHbWuUDJbNfRhSzd07Kc7XL7leDrxUT7xqjsh0y1u9xW//PxrJhMIKjw9vcf6Hdb2OM0cj4kPHz/yD7/+G/7Tf/wV9XSmXxNBOzbBcrMduX/4nPFhxA6W+OmE8Q7MgNF73G5ASiVfIqzNa+bGkbr3rKEFd/3u7e/4yes/pd9aypg5H9eGWd5aHm4fYPKsrrJ+jNi+YIzQuQ3H4ZmZxNPvT1zOM2tKlCot90QyRWbW9ExlR7UTKjOeAOqoxmDM9grnSFAMSqaQyGnbtlWm4ItQrIAEAnvwEVMrJipreUZLhzIR5UBIistCCgbVjqqAbxAXZwRGpdZ7xNFQ8SdF7ArB0g9fY/2EYliOF/7zf/5b/v3f/x3/4bePbO8s3XZivL3BTAGXDVJg7i6Yp9oQ4UPBXVpidN6DOwgJQ/b6L1zs9xZrmvE1XsMJUKWWSI1t2lxqxtaClKaXHqj0zhC8ozcWyYmyXqiXjuh6jDNYYzByAlXKAtkNZG2acBdmTFVqaV9sUW2GObtScwLjqCY0u5DJGNfMHzE29nusmY5Tkx4tpSUrSiKaiLNHzLVLyqY2QkwB6wuar6EyoQcMXgq9PWFyRJOS0pWNrxdMhjRnHn//W/7wj7/hb//2b4nvPmLODVnlaos1t+qYBstgHUECMgzIdsANHcEtsB4oWqhpJbke8kS3gqZILQVSxpceoxmNF/LbAyFF6uHMp9+8Jf4PZrrQM2w2/NV//UtsLxjrOM+/xl9akI7/vGcrgcl6pikzXRImzKxyZJXEtFkJncXkxHVXQ0oFF07NcJIX1N5QFEqtGLtQiS02Xhw5V6BgzSfynNq0RR2xJpw9ITZiU4HazJg1NpmEqMKSEDs1Nn4Gqy0RWNUQl7bOc8PIEFcOzwvvf3jPf/83f8MP795RUuGz6YZ9d4NYacEYcyavFzQnbvqR3TgRwoAMO8YQ6MXgF0tKBwjN1P1CtnQzxE9HvjtHPn24cDknRp/JMZJKQqWS31cyCgNsVoOLBV0X7Kc9/sbRdZZt3XAYFUkZ/SjkYCnFokfDuqmkx5nzWhj6kbyeySUBPRocJlQ6PbLmBSVQmMhGMJLxppIkNWmcKrlCJwcoSi4LJnlSriQGrDxiKo2MkReYHL0f+JnMlMlS1oHNY0fc7OEy0x9OXBA+HY58+HAinxzd1rIdPK+HLTFFTqeZDz+c6OYVYmVJBlsrnQT2buLz3vLgHVvjoCjO9Fgp9OZCVyxFCtJlTGfRYFqi8bOSrZCNxc+BVdtFGj90fDi9Qx4r8zf3xF9eQGDsAl//7O76OSTgEyMzPl6Yc2KTmuTJSpv+lqTUBLFoI5LUmdNTJF208doHw21NVI2kMlPCXQtFCpbR5JZxgZBjMz7XmsnzO3LM1FRJl8KlZowmgq6UdW06T5RgobMJkcI2ZszdHQuF2SfuO2UjEZMXzpeWTJ1rJpRH0uXCcVn57a9+za//w3/m/fffsz4/cZlP2FzpsUx5wlbTsJEXi+CpplIuCeMytmbcKlh/NeR6wViLLAk9nEk5I8bhTI/vIa7SJulmgTlR1oW1HmFOBFcZth6DoxuEYSNsfId434Y7RZEuto1vyWgRcs6kUnD9Ab0YihribMheqF1hcAXJZxBHEVhNI+4M0rSpNUFOmaQFvbxHayE9L+hJOMvKs1/wA1RN2JqoGaQETElYjbj1GamGbrtnCdfCORwIdUuNSooZgsWUI8wrZwYev/mBt9+/5bvff4M/X1jXhfMyI5eZcf/AfrhpGQNVcUWw/USJCazBbSud7xoNxBbUJNQYWAvqC/LjlNB4nLTdUS2ZL14N1NPA9787YCXSo2yKI9cFeynYWPFO0XOhpjPfmG95/PAF84sFzQt5aVtLo8LiK8EtBKNUQJqeklgjnTmiJVPripFNkwFqRcylyb3IbZvoBSkVs3yk1EszzCYh24rhjNMVopKrQ9SivmDcjEWpS0G8RzHUUjF2bhjOWFh1JuXcQhT3KxRhPZ/4cHqHr0rvAje+Y6o9q2YuFOynDK8qta+kuHAqZw61pbePQwei+GjJgSbnKIbBwKCZbp45/offcPr2SLok7sa3nL61nE5nyjfvePMXP+d22tMHIZ1XbE44qVyiw5qEcxWXKzmv5BJwWhCeqbmQS8ToQBFDdQ5n2x2l1RK1BV8FExn1hMuNjFRs34LXJOO1Yo2hJkPNLYTULM9UlMVk9FQ515mLWfH6Cc1nNF2uPsWAoeLlka58Qmyhf9hy9APOO8bwTJffk5bEsqxcijDZFVHL+8ORX/37f8c//vof+Tf/739P+uF7+qpsnWewirgdft+MtqF22BKovWeOB7RUpu5MuZQm482RaD1YobMWu0SOnz6xnGf8DDofWaTyODssiU3o2PUPbLstsVbi5YKrM/bSN5m2gyFaymXlP737B/6bH/6KzbThdryhsl6n+8LFKUFWnLTNR6nX0ExTGOTSNjwlUnSiSgt1tTJTNVO1ErNhzRGq4rRSc4RSWyiwW3GmYCXhckRLo07WkrGmIFR0XTG+Q53HVnAuti1ZLaSaEQ9d8AR3RLT5Md7+8R/5+9/8ih/ef8/DkNkOe/bdhjH0DBrIRLJG3LkFjZVaccdGGkLBnoVVSpPTnf55tfs/u9gXo1RpCbpFmzxHaaQbfpQUaOVHuauh6bKctXjncLbDSFtD5Ay1Vqpqwwf+aKi9+vyb71sQbfQH+TFaTmjyH2myHsG2tWK90gNKbSSfUsiltilzKdSi5FSuBs2rYLZc11J6lfb82CzVxu6Fa6R4MQ15SG0mjdJWhs52SFXqurKkRz59+x2fvvuO86cnJEVcrVQEawydc/Shw/mAtz3Bj5hxQruuXcTaQqlqLeScqMbjvGlx0Vc3eaGZQ3JcWOfIcl7JayZH5f3jI8fDERscvgu8+uwVj09H5nnl7fff0NFWc0NnGUJgCJ6x83RhxIlvTFfTNGtStSWnYlrWokqTvYkg1bVtjColG4htfakoopVa5Cqf+S+Jo8bI9bkBvU7HQdtzUtvWAtV2URttW7NsGqmjaGvoUm7LWmOoOXH4+MS7b9/x7bfviDFibWA7jIQwULWQc2WNiRQTphZC6NjuNvTDCN2Ozb5j6Hv6vufCCZxirbDfb+hCoBT4OC+ccyJWpa+OQitWAGLNlJzRXPBq8NU0eVNRbP3RbKNNKqMCsaBiEOtxbkBMR702pWlemgEX2zBtzreUVlvbZkxdk0IUcNJW5GLl+rgKqv4aJFeoNTXGcAWjAVObHAO1eB8YNpZaBvpiWVMi0qYHIi1MrFhhXRKXOXJeItIPEBziHTY41lKY18i6rBg1TYOqFjGV3gf2w8DQBXpnCWIpVunwqBg6W+msIwHRmCYnkIbHTShFr++8NZSSSTkhzrGsM8fLkffHJ07zia4f8b7j9n7LUhNLXlnXI97aJinQRCn1Sh/RK/2pUk1LRba1SaPI5powLS0ESRTB4TVcaVFX6UEtUOxVnpJIuVJiJh/PZE2kVFiWSJIWElMV/BUEgFWMsU3+CHT0yGBxtaCs2FIhZWrMaClYcXjXdKNxWTk9P/PD2+/58PYtjx8/oPOJeY1sfKAbRqz3KELOhWWOnC8XjvPK02VleNljhw7nx2aUDF3jpXeubUfFga1tU+H9Nf3aImJaQ0smlpVlueCcx7omu8F5rLE4MXjbYaxrK23amrmd1b5Nuqq2syM32SbVNH1yNdfUaTCNxUXhRylcbWKM6InXdzhHJZ3OpHlunPRFSV0lTcqcbWNvW7nKTSpUaWFTWVrap/dYFFMFV0t7H2s775ztMNpesPVw4fT0zPnpmXQ8YM4rZV1Iy4XeWHrv6bruetc1P5J1HrnmXFSRRl2xgpIQ76/4Vv5JjtrulR/pKzT05H5gu+v5GAwlJ7SCM57gMxZB8o/ylCZnXJYjn55PHI4zOWdsdS00EqWov6Zzt+e5yVIFVdt8P9LucbWmiQWUllxbm9y2aqEWQZNSL2fyeqHmgmYlDdLQoZLBhCa7UgWn/yQjauP9RqppxLb2Tqg2KtuPH4NIIZdEjCvHywVj5IogtE0qYhRrG3EpXX9ezh25JkptIWZGrh4wuN477R73od13rsD8dCDOZ0oq2NqTDwvlPGOrMvUTwTlqjqzzSp4jJRaK0Ub3M4KpQs1NflRyvcpNr8+6sU3GLLaFkImlijQqlzQhRhOyNgN3pZ1LptSGH10cOVZyriypUOYZcibnzHxeiTYTu8TqE6oRp9qw49f7Fk04FUQcfuhQE7Cm0mnCLJEaI+SIN1PzIcXI+f0TH7/9jk/ffsvy4SP+srSBKwYPeBWC+Ks012PosMFjSkav8kS91ltFBawDlFoj6zxzOp2Z55kszXtIWlnWJlnxrmOz3WJtywOhSEuvL42eU8TShR5jlNPhibcfHnnxcOSLl7HJ5bBXr4T/p3pT1LWpv0LVVptIbYjOKk3qU6tATC1YUyuahbQ2GbTJiUzTxYsqZWxfe71KabTqf0mXvj5ftTZ8btMGGUxJ/BdEdsGaALaBIfK6cDqd+cMfv+Ht+/ecL2eGoSP0Q5PoeY84gxal1tLupOs/tTHnm6wd2n+7ltv/nG//7GKfWolWiNKSIa+0Imw2iNhr3C80YFDDCBk3YL3HB4vrNq0bEs+aOhoVUVDtcda1h8YatESqtJReyR7j3TW1N2Nsc+iLuFY8iVx1ir4VnkslOUPO0nCP0lHXSM2FtRaqJGzv8F0PF20oMPej3vxKJliVaq8NRqXF0Jfm81DtsM5ig8UaD7GQ1sjp4zu+/c+/48O33xNOEWsHTFdREwlV2W0GbvcbjB3x4ZZ+3GNfdFSxKJVYViRCrsISLZ0R+n2gu9/Qu54sFdWE9ZHjx5Xnp5nnc+R4Tqx64eAq337zFud7XrzZ8fKLz1jXgqmW7/7+t7iQGafAvhM2G3fV7m8Y7z/D+4CVltqo0aBqMGFqybO0honc0IQt+t00w19U6mOkBgHvUFuoxSLJUtZCEsAKJgjY0IqrYpApoLUx89UYNMn1hWypd1qgRo9mRY2lWk9NhVohV+V8jPzhH7/lN7/6Hd988wk7CNMwMO720PeQIiZlDqlh83rr2N/fcP/ylnEzQdiyv93SdQHfeerHZiAVCy9/9sB4s6eEnrfpyEkK1SiRiWQy2SpqVha/Et2Klog1hiAdPQM1ZKwYnAZygD51qAftK6we123o7x8YNjuizhSNXB7PDNsdfuhxvaVcaRkmGMY8EDUz15ky52ZMMoIzPUppcfIlUNPaDosSGtKzWLoakNQ106ztsbuVSRxVlbg+U/+/tP1Zk2XZtV6JjTVXs5tzjnfhkZGJRHsb3gvSWKyijCY96FF/QP9WNEklVbFUVlRdsbsgLi6ARJNdZDTuftrdrG7WwzoJ6lGUGWCWaYZIWCDS/fjea835fWM8HUhm5uIvrNOJY114VzPzy5mX88q5KvZTR8GzdJ5lgHzJnNdIZkZ9T82QTcI42GwHPnm4wY4bxHZYcdhgsLl1Z8QZhq7DxMiytkt8rZBK4dIbTGr5S90IORckVtzOk9bE03Sinj/wL54/8Pr154ybO+4eXzGXSIgLy/lCDRtwA4aVXPSKZxOs3zWMmk30BExqD9NgNthtK9kHu2EIDTVrK2AXFIvJlqQZKRZFmONMXA15yqSPJ6ZDYs4LZ53wu65pzK1wu7lD/Yz6hFynnIpnCBsCBRtX0lRZz4WFQjCFIXSMIdBVxaFcDi+8fDzw9Tff8OH9t1yOJwbXEWzPZhy5u99ibgK5wDxHjnXi/fuPvFwm3qbKq7/+S+zjHf3tJzBarA3Yaul2I363w29vsemCDhbb+XbZdB5xFjUwdSuXcuZ8COweP0NCIPSBFDqsOmwOiN3h3TXLisWUlvGXziGhWaBLzMSpYNyIGIt3M8V6jHiUgJMN2WSyRmpqUrNUKiE6LulETCt58szvD0xPJ56/PfFsV7pbz+3jyL6vbG9v2O42WDJgqbXZx2u+QY3HuICkDBlKaYcK61rme7ADjoqmxPzhxGU/sZ4u+PmCrB0uOfoq3G5GttsBP1jqqmjXfh/nPaKgakhJqKa/vpPAugHrA+KlMdqNRVG8gVLapbPzlt2rG3anDdsXYfmHSCoGwsDWmcbtT5DXir1zGFvR84Wv3n/kB58dmeeC3z62eA4ZzZVSvj+Ijqij4ai1PeNbBNNQfWg/b6VSTyeymka6IsIq1FlZn07E54WUF1Zmxocd6gPGddjxhnIdoMlgMIR2UZTrIM4ATjFL/FNc16RLOys4Q50LySfmuPJynDG94AaHcUIMAuLoa+XkFy7LhHuubB86Sk5Axg2GvF8pBooTdqUd7IoBv3F0rsOXwHNaSOUF1Uqur+CwYCt0DzvGmw0ihsvpxOH5wnlaWdbcJIzq0GSwrwbqWsiSSEtpB0fnWr7eDYTaSG8mtmFOFRCXgXYpxoSGUKRFcUtsQwNyQs8j53RkjYm8BDjvqVMivxTepRf8YNjdBs4b6IeRodsSuty6ixhqMThuESuoN9yU2gY+a4QkeNcTQs9o79FcWdKF+ZsTx/cH6mnih97ibu/wInRe6FNk23n6zpOjQYvHyIALMCAtYUC9CggzCaEzG6hKXI58PDvOy8xSEnTKmUKXCzlm7u7v6DcbNg93rZ+VW1ezH7eYa46+JkN/10NN1MOe3335jtv7T/jrHy+M7g4jGbVCKCPkTJsFjhRZKICUgGahzREcxbUhWckGDrHNalUpJOKc0SWTTgtLzW3gZiubN7s2tKmVumlRWkrFBAvXM0qRRsL7vili1rmdXUTw1lFtaDbvZJguFz68e8/f/aff8N3bdyxLpLu5w+w2mLFHOk/plRpbomENikYFKosvhMUgjiaCPdSWqhDz5z3sa2gyGJ+VbBXJQFWSTdjayhPZaisiamaKUE9PLLGj6zo2mgndK0Sg7w9cVoMJhp06ZLxtD0QRShK4KoTrGIERUUc1YCgYU1Gfge5PF46aZqqs1D6Roqfmta0rTcXITJbCuoIxEazHrkNDTtaAKb4Vmeq1YT9ENAcqLctd6oRYpfaCDb4dYkwl58Syf8ty3PP0dIL0kdFF7jZ3RLeQFyVlT75RXG+uJrdMHCKyiWw0UNyKSkTqmdwHKJXADFYarcJ2VNtWUmi8ZpEnUjnwtH9ijhMaI5IW/v3f/3uKjQw3ls3tDXefvmJJF370tzccvzlg1sI6rZjj2LTWm4SkhIQe03X40xnjW1HWqGtTmVKRmGCX2wMbIa6ZJS6scSYMS4v7ZIOcEpm5tdA9LEnQBDYrYkZMsNjeQtletfG5bVd8K2KX5EEzahLZLJiuImaDmJtWvMlCnVfe/uY/8+v//Cu++uYdN6GwvX3NuNmy8x6L41wic4rUJbEJlrvthleff8bNtmfc9AwPd9xsRpzrMLajLB+oxlF84Cfxc44Z3r3MlFrw9pY6Vi6mEi+BUipqM2OpzOfI2/KB7TBiq9JbR51d+xqS8TPMpZGgvB2Z07ldcmOl9gFdV2pMPE1vedjA1jqGcYOu8coVtsQQmWPkvE68nb7hpoNd75D6CTa3aVaWjDWRKpl9yfTz1K7iBtR1VP8KcYKvDkwrT5Vp4qKRY75wOr1lXqFOE+HwzH7aEAzc9x1LvmGusNSJp98+QWgMfFOFfihIgXLuOLNiB2G4s9g4EYswURlMR+1q68DYxGQiSWqj2YhSDSQV3D5TB4c6wWdh0ol5WcgfE3OnSF7xf3jLr3/9BZfLyuPr18zSnAiaVsJDKybLmjjGzK6uqDYSmMh1rGorxU5YAxIsm3HEaH8tWQmuTMzryokZDhMrkWgyd64g3Q5MID2fuOhMWSfC9My3OTLFlRQntt1n9AOoV6I08pexLdLlfMGKkpy0i6tbqP0LJVgIguu2jH5LMJaYE4evf8uX33zFN199ydvf/keWwwHWjO/h9e0nbHYD3dihs3Ccj6zziZfTmcPxxGoU+eSGN/ef8+r2U6QT1ukZN2yw/Q6sR22myoQh0Zu+Tei3FXPKGKe4rSecK6VOHKvSEShSYLCMVnAb0CGT1iOr3eCNJ4hg+ybSQi0NIZZAE2VY2gtdA+oDTWxdULuQjSPlTEoL5/kdpsyYmjmWkXiYKDGSRtD8DZdy4kt75vT8DeHScZof+OHPHgjpE8r6wBI8vUa8GsQZxIdWLtZIkg8NxmY7ZHzA0+Hw1EGYv/uGef/C8zmSL18hywGfDYM5o1IZnSfceHoEd6rM46XlhI2l4CmholLIIbOUF6QqmiPGNYKLlzZ9pOY2kTUeK5UqhWQy286y7XvCeMvJT6RcsKtDUCRbtJqWC58g23ag/fqbb3l9d89v/uId/+z1PeI7jHRI2bciMBbjxwah0Ao2t4mlMWAcOU5UjRRdUL9nrZaSDPZwJOmKrhdY37Evibyc4PKRLI+MPoAPCH/F974AFkdxEYxDa0/tAEqLR+zWJmhIAibjasGXwqmbOBxWzocjd7eOrPcY12SQN2sm1sqFhlD9cHnm/bHigpC0IqGDk29bplroDxlzp1jT9AafP/6Ebgik8oI9fMVtClS/5c1ry3J7x5IS03rGzBPH7y5c3iXOa2QulQh0m4EwDFhn4DRzRFnXlRtb2L6yiA0Y5ygiZJoEyTqLmNZhcLkDLThRqpmJxZBTaX2F5RlTJigrp9QxPR1Yl4WlU3bPR5Y58fVUKPvv8J1jPG9482mP8hprH3D+Wv614OVCHDaN048BPYGmFvEJGS8dXgLZeS4fvmE+fsvz6TeE+Vtu4hEpPYNbcBh8drAzBG9weaWmiSRTE7OVrg3zZKLqiezuMQJBCsZXQmcZbWD6cMaHTAiGMNyxHVq5HCs4nQnO0ZcOrSudgHXCab3g+wdcN1LDmeVSmJbKPi18++0XfPZ4w/4v/4p+O+KtxdqO7uZEXlZqqdTQ062uDY5tQuy1OF2bnDGV9peypxRPzUI9L8Qa0RKBM5ds0VpwmvCXBbp2eZJ8f3V5VGwWNGQQg6k9hdIgAbrAJoM6TPXYmFvYxCSW9MJlWTnP70nzW4w4Qm/pguNmGAihgQ1cNCwlstYJeYFklFIN9gILEclKNwkmGKxW+HPTeOpVcqEWHAY1bStLFaopVANcf70AURVTExqvxSSvdKeu0Qk6wyZ4rAHfCTlt8bbhnKwRjFhyzYhY9GrvMyptQmcE6MA2EoCoXgUu7lrGrM2uiCHXBNp+CF1X8dpjvTQzIx7EtqlUFMSV64RqwPhGILBJKa4VUMRepzTGYirEyzOXlwOXlz2X/ZG6RKRC8A5bOxJNBGNNW8+rFYraVmq2BuMD0l2b33XXCjCUNvlAruvwtkEBgxjBO0drwDf2ujOWYizFCMfnE8fjhcu8sBnvGMYddw+v+ezND6inQp0W0iWTd5m8ZuI5E9eI7RVvGsOcCiUq2NQ+vDTCANq1Cb+hyUZqQ0CJjK0kqhWp8YrNVNSMiG9SLaft09YQhVdD7HVjUG1G1bfVr1MktbgPtmAYMLZZ6qr1lHVmOh549+2e/X7PvEyE0NbqIXR4F1DbqErU1h3wvqcfR/xuoL+/ZdyODHc7+n5suK9SCd3QSsChTWJyLsRScRpwnV4L8JXFFTQ1ucdcJuySsdkwjFuc7RiccKKgpn1mM4WcGo3BukpaCsuaWTTirSDBI3guhxPTvGC7iSFv22cWg6YmratVcUboRdo2STpqUbyCVUVMxroeUyuepYmsSGAi1u4QG9rnqCQqiZQy57myxha76t3Axic0DOTujsE3PZcWwwLYKyVgqTMSIaUVNQkktJ+TTjDJUbENiaf/ZZPfBYdIpZhWLKrm+q22jbjRfoIh2tyoISoYBzZd/5lRbIJqCotbeP7umaHf4HvfCC0Cxnl8GUmlTVeJimgbrZaWCfwTOaFVQNvzxLmr0RLaSr0IKdNiEaV9n5WVYsb2M0GkxJUUj5S0gg2Ig0GEbfD4jWsyF8wVbUgrS1MptUONpV6HJGKa2du7u+vmpW0sS4xcTme++OO3/O53X/D2m694//YDcVmbrE7bGH1ZM2vJZHNkXU4sy4XjYWnZ4c3Iqzefc/v6c/rbR5LtWIrSZWUspm0anKc6h02FfhwI2x19v2FeEtYYXDbI2OhqEpusq6SMloq53+B9T3B9i2KltrkxnaVWC9a2zZTzuNrMlqwFpD3TnNoWhcBQa4faynUIjDVX66Xa9v9VE1pW0mVqNCDv6fsOt7vBdZZu4NrrATWNOFRzIYuQyw010NbxWZvN13ZYf4t1AWsCRi3ldOJyPnM6nDgdZ3ReIWe85oZitoI4oZPvJ7WGPOuVvGMw4nHBgqWZkkOLWuZlxffuT4mfytXIifwpymhEMCJobRFN7wMWR77yj/LanqHtk0TbPkvD/F2Wlbcfn/jlr3/Ppz/7ASL33IwjoRsx9WqSt1fCB43aJbajGq4xkBa3RFfUXCO2tjb8dVpbZMNvCP2C04yUDWqWZgmoHjHfvyOu/QTtqdU3jPX32RqpUPq2gbR6bYE1yRcz5GWmpIkOg+3adt8aQRzNsLomsi+kq/38dJkpcyRf2qVFa4viFdfOJ0gzznabDSYIUQvWOXbDFhnv2NzeU04LS0kscSWePzSQR4yU0BIBimB7h6YRFSGvGalKNpDyQi4Fp+195qxvmepqKMW1yJUBL9KiRgqlBnK99u5ipqYZckGLkNcmRdPc5JzZWNRZel8Jtze4oLhB0eraFoaM1IYab+eAEWMtxlhs/V54aRHtcKHDSY/g0XViPp857U+cXp4psUETOm/ojMdZ+dOhXKylWkNRoWDJRhpi2PftnV0s4gdsrdhkQK4DUOdAIn3n8b0nbHuGvsPguMTYthk2EUwidC264o2y3dwQtjusH1guhWWdyWqIUTgcj7x/+sBXb7/l7s0r7DASnGMII4sqOWdUDOLNNSVSMdJdT0ylQR9bVAC0nT3bZx+kphZrkwHfNVpbpx7rKmIsqG94zavUGFcAD1iMsw3t3VT3iB2v5zbb/C61DYPXKbHMC+u8UFNtFwUjWO+hawwJw9WQe11LZUlovgJmaP2WipKlYJK9Phn+zAXdmpXsK9UpYwqsUtpkXRyF3FrKV5xXpcXbQSmlkEok+RVRT4kF6wsb45vh1lfutneIDfihsbFtyGTNSPQUo1cbrrQXg3UYbTQAqYrLkJ0BHaF4xE+QQIuy1Ap1gxFDP0SG7DE9MFTqtAFfUFuQ2ULIGGug3mGGiNSCj0r1AZEBZ+7xocOooabMfHji8OHI6enMdD6gl4IkQ+cNtY5Nt7wpuJcmg8liydVTuT7UhgHTtZW5Ztuib1d0n8UBppV2tAlorEAXDKpNSiTe0ElH9IbSCdNh5XSYOZwXHrfKMOzglfDDz/6Ky8uFsz4Tz5WYI26xSPH4TxfCUHCjwwWPRqEkoEstR0e7pGkdG27MJXw1VCJqHU4fUBPBrEjD7qBGUPOK0Ddbo6+W2s8YBkR3GB/he3mxrWjt28cxzNgoGDLFCVLv2wTFNizcOj9zfPrIN18dOB5PpNwuNSEEfAh417HI2g4epYIphC4wbLbYXc/wySOb2x193xG6ES2Z9XLEdTvEKQyWQiWntgbv04AJihGw2XLumjrezJVTPlFKe6S8+swSnGfjO545UcRTjCO5yJoEI7lxks+VyzZxqQvBGEwfWG3P01s4nSdwlm2/Y9UVNULMjbFrUXrxPHRbJGwbGSnNeKERIiwEd0dVw86e2PUeYUbNCdE318l2IcWlmYBT5vkCca6Y4tkNj4i84HOA5ZY5vsAcKWuhkvCmQ6yw+hkzQ1kXqplR6dBg0Y3gjoGqwlKUrKZx2r1l7DuiaWShJSsiEWMLwVo68XjT4nJLF+mrwRWLjtDlgIjFdZ6wwCqVZYg8f/dMP47YjcOtMLzaNkPhaomyUrHIqg0rqEIu5koyMlgBj2kTTHWtC4NBayWmiCYhRkNOlQ53zTMr1DtqSmhdW4lxvlCyUsNrNmYhWOGm8yybSMqOEttL0xbF1VbmjWwRPNVHBHDmioC1bwj2BmubPXqZ9zx/fM9/+off89tf/QNPb7/h8PaFuEY632PomGslnVbWaebiTqxxIcbEMsH9559z8/ozfvKzn/Pq85/RbzfEmjhWyzYLQxSk7zBdh7oO7wvDzZb+9o7B3XCeTm3KN4O8AieWkDuyr+RzpFwyvH5FZzf0dqC6ZqdWzWjvKOX7AYrgbIDQEtqn4/VSaA0uGZIpDRlZR1QmrBo8QiemXa4IuHIC0+gl5XRkdVvM2PM6d/S7W+giOkSsbhFpF327ZoqsRHGscaD62rwUVdrARzb48CnebhHr0KqsxwOHw4X9fuLydCCUTE3aHBW0bZPxQmc81lrUCfkMNRgktHhUGDwmOHrXYfqVmDLLFLF2S6ntoF8VLIKR1uNqKZ7mxiilxVaDd3QMFFMokohzxXpFrEXVNUSmFTQappT55t1H/td//0v+yb/4a/owcDve0IU7ak2oXg/8co2pasbIPWKUqhPWtIOyIWF4hZcMrGgIpNQGZjJ+ys4cMWHEdRsW9xUWaXJLr5BoP2u+bcm1duAKtjQkdnEG1m2LF9kFp+3SpZowJ6GsMzVPhAxmKxhrcdU1D89aKJeF9Q5qVJiV02WF55U4raht3a4iwtoJubZLvbEGt+3IFEouuOGW8dUr/O6BYfea/ekblmVlfzixmgtprcSpMDxusdHh1NHfj5RqycWxdoUu1Sa4Sisx5jZhtZ7gB6QmpGQuq6d6aQPMKySiqqXknsIKpWBTxuSVmgI1dci6x5sCktHLBJtP8Z3jjczcfvIJxs9kdyKtO4zxQMYmwYQK6im6bc4aEbwJYDqgw3CHdwPWBlAhfXzi9HLi5eOZ4/s9aVGMOkJIeA3YzmJHi8wOI47sLEUDWT0iAd/1ONdy9jEqoatNwqgR8DgbEG9xgzAOA0M/4G46RtuTknLJM2WeyWIJsrAbH3GdQ53hPn5Kd7PFOMfHEsluJQF5sewPZ7797h2/+uILfvJXf0kXevrOsfG3gGOxK2TACVoLJVaM6cEownLtOlaMFozeXnGbEZwll9ri5u6ewU94I2wlkPsLpnaYssE4RXLrAqmNqO5AAyYU/FJQCsZbnLlrgx7XLtVxOZLyynKpzNPCOi1tJXfFkYvrSB14p4hCtrV1QKpl9TNubf3THDImCoghhoKeWs2x+P+6s/t/9WG/iCXgsdWQtJVUmi68FR1qrRRzvU1di0dWXcvZiyVkoUpkXc5ML8pJAppXUrlw53vQBfErbD/B2lY4EltJdaUURWtPVkU108kZ0Vb6qq4RX6RGDHOb4PRC9SO1ze9b+dd0BN+srmorVSK1psbUHXwrB2bF9CcsBSMGHQXnPVYgyIxsRmps68nFGXALTi6UeSKtlVIUg8cPgsbEOq2sksnVoTFRzYxzTb+92d2x6kwpE1o/4tLQSDRjJZbYVqCXCFIar9sFFiw5niiXZ9zpzM1tT1k8ZlH2L9/x8Y8bnrYjn+xeEZxDtPL4k8857I8czQa1z+gVNSlaiN99x1IhqEGHhDMG6wyaFmq9o6ollYgbn9s0Kin0A870oIKPE0oTL4WbzxnCp2AKrkSqaWZdaxxJxmvR8YKWMxVHFUteDeKP7eS/ZrIRsGCtx8uKuIZTW55f2J9f+PjywuXwR+rlgMuVYSPcdlt8GJoM57gw7U/sX/Y4DfRq2XnL67tXPN7ctHLQZkDmPTkuxHnC1z2qllIG7utI9ZmhywwRVruhqKGkS7vEmibmXt9d+dmDZb5UusHR9xb/TceaV7JbESkczi9QMtuDxyZIh4njV2/57uaBbuOxXtncGNL6wv7pCAkmMTgLt8HwrpzZDXd8evMZ3d0nBMBp5ZQnXNgR/Bb8PT2lRTKCoTM9mAHlDuKJnE+kPBPXnhVPKjDKmdQl8IahDkTn2JgJJ0f2p5XTeSJPGacjMsw4Ev5jx/N6JKWMXQzZTlQDdijsDGyDMBbBxjNd8Yx0dCEQk6J1wZYTI75JTwaLKx6/6eg3Pe6SSU5JkuFgMDbjjGBWwQwga4WPlY/+PfWrxOX0wu2nD7welZtww+amI58WoJC9Umykynp1brTstJOesN3g1pVaJqIslMURU+VDOvGqtF6Q6zOd2eHE42SgX88sZSVppu+31KEHCjc1sZoO7wO7ccsihjVdWOKZNR8Rt0XMBjV9U7XL3KJ4rsd7x87d8zhMDP1AF4S6Xni57Hn7/I7zb/4jx+cvOc9HJBnudg84aW6Jr5/fktdm7DyXlXNJLEbJnz7wl3/1c37+F3/Nf/sv/zt++oPXWFu5THtM3/Dga2/oQsCZjGPC347sNjt8GFBmKAtWIpud4k6OsDH4m4z9sGc5XTjGlfp14eanDrO1dNYjQ4MkFAW4tAz4qhT/GcUY1AvbzcKiDc9czUOTeGlC9QjaSqOIYCRgywWzfmCuiYAQhh1yd8eNKuTMtKwM3lGNIRlY0hEjRzQdKOGxXZzEIfZ0xTx4bNgxDA90fmDjI34T0FiJMXK0FV8ntumFQ/5A/rhQ14qqpQtdwyBrK9tKEcyUOcmRfkp0sqF7dQNVkaIMo7YSp4VyZ8E3DnmaF8wgBAl48WAEoQkES4lon0hkzi+tyFjmhThFSjDYarHFQWhyKwVcMMSXzMtxT35e+R/+L/+a6V/9S/z/7r/l/uEGR1sCZD2h1yJ6NBd2pW3NxbQcsGiPVHD22CIRVVHZgL3DEtl4pXQ9Yga8vGZMN+3dLgKsFHGU6qiLgXABLnA25OAx2nLq3h8bLz4lkh5YpiPz+UhxR8p0Jp8jUSr9aglDR3+3o/c92U5kc0E+CHGdWUqm+64lw2JMrMcFKwFrHGZR1q6VVmU1hJLpZaWTiOlh2L2i+i0f/vif+Pe/+M+8vJypE5jbR+g66AJ5cfTDQB961o+Fy/ZEyStLhMF7fLXEl5mHcEOwGYYW7xMJOCsM+UymDTu0BpaSMZpwpqC6to4aCuqwZcLmlbWc2bkOEx6Jj59y7wwWJWnPdthSUaKu5HJGJTb/Qf+KajsKDpFzY85XIdXWGXNUPBXX//g6mCxMvlDWPXr6jsvhW/JpQddGHOy7q0fjEv/k+WGJpDoTygSlx3dvKLpg6sxg9rjcXEaytcQM3cbx6mbgs80OsdJK+2Xk5fDC0+nE7757x5CVV3efcLv5BLeBm82O7cMd/83Pfsr+As/Hhaf0jnhulzkjmf1XB744/pH0HPns0y1/89f/lJ/9+K8IfaDH401lMUdqNGQtTGbF1z2YBpHxDsQEnCn4fG4QFCrqPI4BtLCzEe0s1nX0fkOW7loCzpR6odpAFU+pgeAXxEYA1HuMOKwdCHVCQof4nmqlnTqrRfqF5bhnigdSUHZ+IItgt5ZeHU4NhYScKjnNrPWCnSopZ2op6NLiri0qA5erA8Csf+bDPtoyttW2Ykg1pq0EK9f2vdKWEu3s1vxU1xybGPAeY1r+cIqFy/lyzRJa1sOEE9tIO/mACU3U4pWGVaqVkhPVSKM3SBM0QSMqQI/mjIkJRSipNCKHabZFsQ2tiDSii7GCjW0diiktY3VdB5so5GKbZEsAHZu5MFbKfGa9ssk/fvnE8nbP8nLkdG4tfkRwY0dNQsKwimHViq+Cqx1ZW6nN+bbJICU0CflssGOLNNTaTIDGGKx3eOtbBKZCzgsvHy48f5hZUyZ0vq3aSiI9RZZj5nIpzM978jhczZQB3+/wm5U8J/rbgcF7BmeJ08z8cgE+MDzetu+BFdQ4akmUkkhJcTFhvKV6oTJRrnENSUrRtmKudr7ypoGSUdvyaFVyE+pkhVTJalv5tlQwI5pa6SfbZpttCCShXCqJSKqJj+9PfPv2ma/fPvE8ZSoO74VuO+LG0FaIVZhiZU5KKgbfD2wfH3n1+Q+4v39kc3dHN/ZUEXJqxR1rHdo3PBdGuH/Y4hxMFNY5UzLkpKxqiWKJ1pKdJfsOI5YwDuxu7zACMWUyKz73CJbSF9bUogVhNNxfXwolCh++e2J31zNsHGRDzJCXyDl+jTE7hr6jf+hg8cRaeOEF0g27zmOdw5cdeRVKig3J6RQvgASKtB9AVeDSVuApJkq0LSJRLZQNY3fbPmOqhJiaWXAxiN9T7EKSgvX5T1Klc4mkVKmlmQOLtoW8CvjR0Q0dYxjoxh2hu8H77TWyJZjqMCngXIeooSYhmxaRMk5YxTYeea2o1+Zms5ZucA1ziKF6JZYLp9VRz8Lp2xPJK6tR3uxuSSqUqtjLmeNpRTTQjZZiPD6sZFfR6tozpxrqCud5Zk0FomB6j3cdxmwILlDpafXkFV0TpiZiyVRjcdYwbixBQLzDdYFeHFb8FYUpODfgpSeWjpJieyblnjE0iUs1IyRPrIZ1nnh53vOff/OP/ONvf8Wv3r3jMrdo0cUu7JyyaiYuE/t1uUbdhGxu8Hc93W7k7oc/5Qd/+Te8+tHnjNubJrC7kiciA2TBzZEbZ5qLYhjxoUe6AeM95RJx1uOcRyxIlxGXEA3Yzjc7ZVlYdaWmFWJCu56cUhvo+AEpjaZVqhLTCuIwdHi/oaRArJU1pxbNrK6Ji6RrUUzJeO6p1VGzw8WFJa5tMkdH1wdcb/CBFvMwQm8Ed7FEjRRTcf3uetF1lDWTSutZ+bFDCGh2pGxY5jOXeeFwOvKb3/6e9NXX5OdnLueZ9XzGGeHmZksbxVlwDuulFUvFUAsYN+K6HV0IVK1YKzgTMGKopuBqvBo/23TdGdfiAddgTW0wEaTCeV05LRem+UieG2EnG9rwzNkWBZTWg6gC2Sj9EDC1sKwn/t0v/oFJI0/zM//05/+UH9zfczsOrZxYphYpSAnXWZzzrZxLI7xp7dA5k9eVskbyJbEuC0YTgzWY4EAMScH6V0htbomiCtU1Ipcb2za1tuJy+7pdCXprpeZKTqVZifdHzvs99RTRfD0YkbB9oBs7tuOIbHvsFFAMi0ZSWilrYvE9eUmNhOYUiY2CZIL9E/emiMH3Di8Wrz1rjGRdmeaVP371BU/fvmeO0O/uMNbgQyCMW3Y3r+mcwRpY10yeCusSuVBZ/Ey3eLYykvqJLAHxQ7ObOoc1Hm8GUCWpErViamiSOhGcSBNFmgzmNTCjuqBpuJLDGn2p7zqCt1QruC4047sWytqRya0bEG5QaRdaLZDW9jyx3qM5kLOiqVLySk4Xlnnm91/8lm9/9Rs+fvkV+/2KLgtWoesGijQRX4VGJKuWXAay9sAt1txdy922gTrWHoZAu3s3QZxV6GxLGCw5k3MCU3m/f+Hjy5EPTy/84O6OGizVW24fH3h4/Zq7V6+4HSzp6cxhjSxrbYS6kilimrw0rXx4/5a/+7tfsKyVopXPP/0x3rZIWJk9c5xYU+IyKc6vWCtUEUxRVB2iI6Ys1+RCIi+ZkgVrDLYLKA4xjioO67t2OMiJqHrN2liUBg2ppVGIRAwGh6qjrCtlzaiZScvKeTpxOh/Yf/uOj097Pn48sz9dKN4i3uKtpXRylT8qmdwiO7WQrVJLadF4W7Hfb6y8aZFWuEbm/4yHfcP1sC+tlFOvqEzz/R/m+pde80RGwUgr3VpjMM5hsKgalliZLguCwYeRdF5YrUPFYeoBv9lg+x5rHFWFooZcI0b69vAtFtWmqEALaNemHgmqGlJsN6OCQX17YIuEtnYxjR5E9ddvZMVIAm34JzKUWjDS2MZoR42FfF6Yy5nL+cTpcODDl0/EDy+k85kpK9SCDQ7rB2qEjGE1hnQ9XITqKabH2B3W7dqfoXW2SLPBda3dXTPU65/ThXYAEaVNiJaF4/PM8WUhF3DeYWqh+ky+FNZLZp4yl+cDLhdsF3D1+iLuN9Bf6G4fGIKjN8q6bxOSUgt+2OE9DQXqemqcKbmSVoszCeMr2nm0zmR1FHWYnMm1NdyRA4Thaliem6PASjNreodJGVImYa+Z0oq6Ds255ZrVEnx7UahxpMuRmBNLqnz4cOLt22e+ffvEcU4YPCEEus2I7zzWWMoKS1ZibdEyP264eXzNq88/5/bukWG3wQdLXFN7IBZw3oNsqDUCyu1dywRuqHxwM/O0oJqICNE4onVU76hdh3GBbrNld3NHSomULxQiUvsmejOmrcO1kCz0boN3Fq3w8mHf6vW1w5lKyjCXynn5yMa0zGuhx+eRqpWjHjHJE7aGfuhxdUtKF3JdiSib3iLeYVxHlcbO1lLbS3yupFWvE9RGyoCRsds1sqROeBw1CtkCvqNYIduK7XPDrKJMZaXkxs5Tp+TUDvsYwQ2Grvd0oaMbt/hui3VjO9iowVRBcsC2BjgkJblCpeUY106oc8P/Vdt4x0C7PPr/Qt1KZeYSHasR8uFEHjuys9z7njUpqVZqatnrYAI750g1knPBhQhme8WlGYgwpxMxZtzaI5sO711DHgZtpcgK1iwNMZgTUzmgNCRgP+6oVloR1xmC2FbyT8qsnuA9znrS4imlXD0IHtsJzjqq6alRiaUwxyO///JrfvGLX/KLX/2CP7z/yI0NoJbJFpwUSqoc1hPLYrG9w40ekddsP33k5s0jP/7hz/nBTz7h7pMbnA+UqpRSKdmwaoemgltn7i24rscNN80eGTpUHDUpzgVCCFhnMCEh1mFrRkKHE8Vpw9TVnCBmNEFaI9YF/GARrVRtXZOY1kYuk4BzG1ytVyb2GTRcc/mC1A4xBWsMweyuUnPBFktcErFmRgd2aN0c57pGgDItEkNMaM3tYNTtqHWEain5TCwOZwJiA8qOkivLmpimAx/2L3z39JFf/f1vye+/g/OZEB2rTgyj49ZtW/XHuraq9+17XcWgmUaa6zYE74la2qEOd+0sNFFbqbEdQcXgjL9m9RvCr6E/wajhsiyc5guX9UxeFnLJNP5FaUQba7DiULGotFvCMHbUHInniV///o8c0ol3p3dkMdi//CvC6zfAQMwLKa0sk7IdhBoUuquFmyuSc7GUSYlzJp7OpLgg1LZZkK5tKmrG+bs2Pa+Jttts23VxAyY2rwRXG2n7p23DXRKkWJj2M+f9ifN+j7+0AY3YgMiK7dulbBx66qbHdR4RYSWRU6SuiZQLcV0pJaP+ahk1BpwgtXWCqgHXBTrnKGpIeialifPlwjfffsn0fEb9iH0zYLzFB89m3HJ3+wZTV2qemddKXgq1FKaSmV1kjM36Wm4Xsl8xYSUPC9KNGOdwMrQ5AoXChCEg1zNRQ9RmxGasGVCdqHWGtOFSTs2SmyzejnTh+5hdG4Y42pZp1UJEW3betHOQ1kwqjXTWdxbNnrpGyjSj84VpOnE4vPDbX/yGr379G16+e8d8SDhd6LzFh4Fc23erYkAygqOUnsKAkRtEbhrFqUiLouSuXai1UnKklhZN9BZmC+fYLpalzDwdn3k+nDmdJszrR2zfYYfA7asHXr1+zcPDI51XXuaEOMO6ZlJK5FpQMXSdR0zhct7z9//p1w3SEsD7kbvdQO9bbHKJmWWNrGdl7QrWCcYFrLYOnVGHKRXNbTOU4krNtCFFF1DTYYylGsG5sfW1rudOMe0cCx1aCoVKUgidtr5qdeR5ppZMroX5cuZwPnE87Xn65h0fjxNP+zOny4x9NeC9x1pD9A3trtLM8dXU5nyyTXTXgDftXWhtixLa3GATf/7DvhNcBY2V1VYojWdaXcaVNqIoGBzXjKxVei1YEayzDFica48AOyVWCyEKskwQFJVEXk9cDsqgld4U6q4H05T0VtuNy7hKHdqfB62YUrA1U7uJYlfK7FtGsKzUuKIbT+0C0EqlJEWTUroLpTi0tDadIWNMpXYtlmRoAhpcIcqZqXzkNFuOL8/s333kD3/8Crs8Q5pJZWDc9FhnqauwhjYFNBFyZzEuU8zE5nGLv7FIVylLocYFdEI2Czn0bZtNJtcVbMVb3w4GaSUuE89vXwj1wo0vrGZLWiZKzNi1YiSynp45fPkV34SBfnui33a8enwgaSKalaVL2K6j2/WMW8sSjsRzJL4szP075NUG+vGqwnbNgpgjNbQVZE20D3yGXJQUj0y5yYr8PJFNwfrKbmvQbbMBdmrIRrEBbBBSGXFynQgxUbt0pQz562G0UGPivL4llUDMAy8f3/Lt2w98/e0T+fTE7XjHrh/5JAx00gptJ5mxLOw2jt3ujscffMpPf/pjfvSjH3P7yQPBJExKSI64ekatYvsNfkqUKqwoTj1WLa4dDTgVpWZF7YxNPX0RpBOmoNjBYe4Gdptb1suRzES3eGSIjWh0pPGdS6SrG4YfdoydxYuS1srL/sxlPdANGbe9w25GtnTsbu542G757OaB47ZQU0TXhWn5QJVApCP3t5i4x6QZb8EOW8T2FCe4daXkhZguOBfRUTBdR1jBmIwY8FuDhvbvlk9rQ8uVlcXNXLS9rpwmpBSSXKBCPxXmmMg4ku5QF7HG00vPzUbxQ6WEBe8LzrWtWImKKRlnMpttpmCaB4PCXGDKmTk1usCqhUzBTbCUlaiF7XkE53CAz4VFlfmwJ+ePvJTMUSuH44mNbrgsM4WC9MLd9MxusBTdMOX3sDa79/jwijH0+D5gdp5Pp1tiSlxqZugciGVVsFVRKW3NZtc2Oessd+Ip2ugT/Z1n1SYOszmxxAuFCR0XNmXESysbFl+QkKBmilRGN2Cdo/cdxw9/4OW48OHlwr/7n/5v/L/+7pf88jdfEy5neP0JwzBwF3Yc94llXZjWM2/+yb/g04d7Pru/gYef8PmnP+ST158SHn/A47jSSWI6HnELiDNUF7CXmXOdmE3idVE6p9heMQhljW3L1hX6sGETt9zsAvlpJYwJdx/xR9NsyENPPUekti2WXj4wV8VT6NKM3YSW308zeTWtsBag3wQYwGaPzIY5Jqwk7GAoJiFVsbXibcZuM7kvyNyzFU9ZIpouuG5Axo4qDp/bpjeuK6k/IybQmYHQD2RpNCyjgvWCsy1uFL1nOb5wfvqSP74Uvv3id3z569/zr//XP7A9fcu2LGx3n/M3P37DjenhZLmEE50Z2Zh7xrtb1riSphN1DBAWxEUMO0KNiFQkVMSCq0o3ansuiiVYj1i5lmIzpSqGjIg2ROZpIe5nXo6R1SsaK1IqrAlvBgZxhGCZY1vjbwfPtt/ircHf3vLV19/x/usXvnr3HQTlftjx+u5zdg8DEjfYDPT7BrywhuzANw5Ae7cPF5Q2DOhTxUrrSblNhg5Qg88GoxFCoQ4FjRvEB8Racq2YLl/LitchHGCyYZFnYl2Zl4nT5TtOH545vZzZPnQEs2PjLduzsLU39P4G2XSMxXLXjbx6uOP0uyMzleIr5EjKKylm7EVwQ/ND2EUxXXM0uKQEN+K2DrHKth55/81HTt+9cPnqicf7v2DY3XK3G3l7AV88nfG83t6zrHumuuCzYyqRkhPLOWK7jErhfu1bv6uulNMLS7chbDN+HPH9eN1YWQYKi6zNz+Mdei3Q+qJkk6i2UgelbEduT5G6VkqJDHdtS1qkQ+JCzpFUIrU/tfJ7bdtytRG1huoaiMIYwdEoSCnPLPUt718Sz3/4I9/9/o/89//+96S3f6Ac95Ta8cnNHZ0E6iosISNIIx4OHbVT8Cvd7Ra7tZheIQtSI5gFGRcYG+XJLImkM8XVNtC7FMqysCwzp3PhcrlgTeUn96/50e0Dn90/8qPXn/H67hWvb19xt7sjXT7QrZ5u8XT5gEsrXS70HezuRvrgGa3y7utv+V9OH/kPv/0l+//zhX/11/8NP33zY9yNY7eMdD3YzZle26dvrZExV7Sm1pnpJhCLeGGorg2APPjXQv0+WmcUrTPVJapf0di6WwAqicpyjfO6P/3sFLOQ8ltirMSonN59y9v3TzztXzgc3/FuMRxyRLbanAiqZBcZk4CHIhWZM7Umso24MyQDFcEs18M/SjeBCQK1YPKfmcZjMlRfqBZ8hmjakEzxVJOuNrLWTjZW2vo/WJwIViziaUVTTCvIZkhJmaWSi5BVKEA9n7Cu2Q7FD2jQluNWizrAWkrtgIozIKZ1AQqeqhaCYsuAwVF8IZcBkyzGVnxqiDS1GS2bRkfwBjMXyjV7buoNzqfGCRbHuq6cT4nDx8LhfObl/TPP7554ObwwqKGTDW7zvTjMoh1IalKZMhY4WOiE6i1Jr0VdgdKcacQqxHRDp4ItYGLje5si0AA55FiIc2SeXqjVNTLQeKIemwCoDspQRkz1LFqZPxxZdWC2he1hYL6snI6Rw9uVH31a2PUBd3tDVybgQNIzJU9cLo4Vz+gXpDpUK/hCqgE1BTUrpmRiim3FvlSyCrXAmriaTyvkAdGlTQmtp/oFzSNqNtdiFdRSScyEvEGcxYRCrULOmSkuXKYda6xc1pkvv3nh2/fveTp8ZBi2+NuRftfjhg5s20FadXRjx2gdfT9w9+aR3cMDw+4W6VpRSTMUvVBkBC2IKOSGiBGBxVaSs2QxrKujuhkbDBtzx3x7oi6Cj56yWRlDYOe2uBvDqkK+GGazUu0W7wMmVGp1rHllX86IC2y2G25vHVpmcj6zpoWvjhOfui23veV2uGW77dhuOuww0uuMNmQzdT2CUdao5PqCW1dMTVSZyXmLQcnpgilQ8kKJJ3D3bfLuDJKlsZ01o+4BTbXFZoxjiRfWWMi5a4f0oqxJkU1uvGrjyGa+TvMV11cMPVUss1MMPWocxSmzsWRnUN/mReJAqpDriDjF5HL9UBfqkkjrwjREanvCtcNx0z+1qM98JaqEyj0bSl+JJOKHA2mdOFxeOLx85JIja8zEeUW8Y8mRwXfU4Fsh0GTsucNuBTUN09r5DU4yEhdUQpsq1xYcqapkzVCHKztbMd2OXM9ka5hXz6oZUwsuF6b1TBWL2juqbehUqqGmhS484J3DekvvAqkUpmXhH3//wpfffMMfvvyS//F/+v/w7dsX4hJ5eH3P7f0NfQgsaWWJB5ILdK9/zI9+8ld8/ukbPn3ziuLu+OGnn/H46hHGHduuhzJxPL2l62/xptFyZjOSY8bOK7lU1tKy5a4UdChYY4EeCRljHHlSdJORviNIhxksvljCIpyCQgZJhuIN0/sDNiyEsWOrPaqGooV42VPqSmADckuVRg3xrm9RRQxL7Rp5y3wfEa3k2pGNQ/pMv3uF9luqnyh2i5aOohWJlRgXpnhCuzvEe5wLGAJamrXW9W+um1GHWs/xcuH9xz1fffHEb/74lm+++QPffvMll+cP3HYDu80DP3i15XE3shs7vDcYN9Lvdoyvb/Hes9RIVMWbHvEB0ztwhkUrosIQPbLRtlm4NPSqatuCG+Va+K7kWq5lXY/3HaSRmhy5rG16aiy4ik5NXqQoXj3JKpnG4zaubX6D6Xn9+SfYvWF/fOK3X/6B//Aff4lbOn7+L/+GXedwdkPn2zYC06jvxXyPGalUM2LsivMG6XeonFAqmW3bzmBalDQU1Hao9Ii3mCrt388uKMOVRJWukdhCZiWe4HJaOO1feP+7F/bTxEJmmG/QoZX/h75w88kDm9t7dvd3GEl084RZIJnSSEXGUARqqk1CJxbRAEagN4TaYBfVKThPLkpMmfUE67RSKmxe/1OGu1f4oUVR8vE9W+d4uHnFuLXNARQ95/Wp+XZSYU0z6bKSU2BzH8jJkEqTSJWPb+nyRFdvG4rVcZ3ke9Tl9pgzAWMVMbRNii0U9RS12E7RskOcBz2Sa0CjUGXFrImUZtZ8RoZdk3UZgxYhlghi6P0D3tEiXjaQ5onzXNnv4d3Xz3z95Xd8/dXXzO/e0+eOzfAJ3WDYuIHgPTa0mKVaQ7ENRGFdwG8H1HVkESIVqUvDQarF5C1BXStq1xGfFUePsZ5JTsyzMmeY84x3Q+sO2sCrxzfs7u6RzuKlA2ObeKs41hpZ6sxSPcUK6gW1Dj8G+r5nsJ7bTxMvlz0fv/6S/+f/8n/HxLax/tFPfoIVj/cjfVWw7T1iUqFIBi1UrVQG1LZhs+la/rxaQ1zbJUmM4jCkOjfnk9xgvGK1FXRzTYi/aUI80y4RKS5c5hPrx4U4zyzzwrsvv+Lr9295Oh0RGTBXwZtZKqUvYBVfLWkoOMAVR/ZtWxzoWEJzLtkCxTfkpYohdQafGhFR/9wFXbS9dDGKVLkigwAj12ziFfMl7dcwFpX2ATU0jKRcMXhqDWWtDXNYa5Og1Gbbszm3LHKM5LUVZQ2KqQFs+4Gp1WDIVMwVs1kaFx8HNoP14NuKslTBFIOppQlzqFTJSN00Lbg0FJMxqWX21TXDm4CqsKxnpsvK6bDw8nzg44cDz09HLtOMdSMuhJb1sx6xja8txbYboG35zoqhOrliGUGNcgUrXXGFjeHeMq+mlapKeznUWik5k2NkXRagsWa98231I81125sOqUKKiel4wfSG7IXVzsynictx4nhYmWPLg0o/4MZtI42U1AgQKZHnlRBXrOqfkHb6fRFD2oS/aNs+lNJeRlQo1ZBSMxtGrbg5YauhdpYipa3DjG12wdLKvlkjzg5NwhKgFkPOsKyFFAPztHA8zXz33Z79y5F5Wbi5eUPYjISxxwfffoC1SUZC7xm6kdvtDePdDcOmxwWPOMFU28yd19UeClryfzEpX/vHEWWlxbBUDOIsve0J/UKuis0Ga4XOeTYh4DsB115ESy2NeGwaBxlj20VobYQd13VsbgaCeI6nxHK8sD9O3D+uaCl44/HG4BpTFqft4YC3OKWZAUul5gslVaQWiq4UHzGFNhk3/mp7TBik8cahYepKM/DVhoBqLouiTHFljZWc2v+mFiVnxaM4a7HWM9cVsUJVafxpPNlANhWMa6Us2y7salppp2X2oT2hbLNSfm8cKtowiTGRuwjFYaq0GE8zAZFykwRh2nNjsB71EKzjZC+UUknryvl85JwS87xyfLrAzuOwfDI+MOxuwCaMJNZlwvmAMS1mI2Ix1hGsbxNWbU+RZkOt17x4Uwg2zGdAi6UYJSVI2sofJVfmtGBkwLbJROstlYopiusDIQx0fYdDWPKF4/nMH/7wln/84gv+8be/4ZdffIUUYdP1fPKDN7za3iBGKPsTVc5IF7h5fM2bzz7nzWef8cmb1yTteXj1iof7W6rvCGKJMTeCmWnPybLmJhjLFkmufc1yM3YbDVfQQUMJGttiGLW0Qq/4FjlSr1gRnGkm4RZryhiENM3kFFmXLXVzj1KppZDifP39oBIQ177GQgM2gKGqAPGKk4MshWIEvb5QpR8hBIqHYgK1CqUkJBdiTqx5JXT3rSTpHKJy/X4JYodGS7FCVWV/PPL23Ue++MN3/PrXv+O7j1/z9PQek1Y2t4/c3T7w+rbjbrul7zqqWJzr6fqBbtdji23UD5WGFvW25fgt5LX1jmqp2Ho1jpeGS6aaqym+5XaubkwwzVZsrWuZ6GKoOTVzqTGtNwGtMFkLnfWsNEqdltK2wMbiXODm9oacFtI08fLxxO+++JIhb9g8bvjRJ6/Zbjpc6DG2AxRTUotecp0M41vEXhTjOqhTw0aagGiLVBjrqHYFsWB68AVSM38WMkLfvvaSrr2NRn5bzguX/YnD0zPP747MNqLBgHYNOSqO3e6e24frYX97S5KpDUyuP/tWHNby/2Ve1dazokUs1NLyO8Y0N05pk/J1XZhPkRQzxli2d48MdzuMcyQUY4TgPDfDhq6zrEuL8s7LBTObZg2uC+fDRNXMZd22vmKBXAosZ4yX1nOTe6QvGPf9Z/zawaOhkPXaUcpSKYb2DrIFE9rAzujc+m+ptm1XKqQUSXnBh7uGexQgXylhpmVavG0QlGos83rgfFnZHxY+vv3Iu++eePd+Tz1NhLBj03XsNkow4XpWaRe2Svt6lmxQcUgXWicAqNr6GcVAMe3row0xheCxGjDtTcFSM0vKrGshl0Jvx4bpHQZub+7Ybjb44NtFl3a+KQVyTuSy/gmfqQbEOrxvcd3gArvbHVM8czjO/O63v+WHNz9i627Z3t02b47YhtMVg6Fir8/AliS9JgekfWbUelQd1Si5NJKPmraJzJIx1SGmATRslRZV14oxXXtnSIuJx1yYLhPLaWE5nbmcDnz47okPH5/Yz2fu73d46+gcmGqu52W9diQyisFqS0hZY7HGfi+fbudcaThqxFAd6BUNq+bPjd4Ugy8WU7QdarSxkVdtKm29Zrdd/d5qq5h07QOimFXbRN0Ai7JokymNx/aQJBZEHd1m1zj7qZDPT0gOGB9Q2bUsp0+EUCAXEEc1gVQLxqRGZCm1lSiprJOAn7AKZhGKCy0vmcG6GWmhI4oFUddIPnrC2R0gpBg5Hk7s90/sj2/56g/f8vH9mf3zhK6GtGsYJBs7ZDc2AUX0FJtaxOgcWWzbhgQRxgE6KbhaMH4gq6eaSDeckUnAWugtMVdSKZQlU2omrzNlWUgXYbAOfKCkkRfTcmOyWobdgE+R+t0TT4+WrSp2qhy84enrr/j48ZljzpyfDsS7bZs2dJb+9p6+v+UpP+PyiitHylypZUTxFOvw7ojYjKEg3QZPJWsh5DM5VXKFXC1mcohkwuaMrAVRpbpAXCw+JJw5tCZ5bqY7WUHdh9ZcH+7RrJRkyHmEemA9Hnn++gN/+Ic/cD7NBLPh0+0bbvuOTdfThxE1hVlWil24EcPNbc/D61vC3ZbOZUw+EOQeUwqpFtZS8MxozpRLAZ1RUyl4dIZjzJwohHOB3GMVdq5wwLLGwuHlCXuwdI/C7U7ZJMd+rUxzZJ0tG9smpnhh6AVmIX8D53+yMJuI8Vt+8sO/5Mt3HfscIX/BcrEc/UqZlSltyDFx6wtVJ6RaTA1Yb+kk4evK5TKT50JeCzpX0ptvoXNU7SldMy5nBvr149UYC+UYqOLaerD8AcYbSobTfuab44LOiXGJzKczaV4hVcY5MPYO64T1otyNXfvMphE6x5oLaapwL4TQs3NbNiZhU1uByhCoGdCKl4TP0nL1XknFtlhOSnSH72VBSjmBCZWkkeP7irhKQPBzT95FXHV0atk+7DDVYtfA8XhkfzxzPM+8fzlyfFlIP4psYscPf/oJY98zhMDUnTCHSLnsWW56ennA2J7UO25MxVBJHiQqyVSSZG7ShazaPuNiKdW2gxtnyjxRcvMvnCQzcKSrR4LZNelgMYx9jy9HXFrotj8knif2H5/47W9+wy/+5/8r//FXv+fvf/8WVfjRjz7hZz/6nP/j/+FfcSmV8/mC/cc/8O61YegDf3v/ip/8xV/y6f0jrzc7Ljcj95uBu8Hhtz3pWJiqpb+5ZVgTZVk5Xo4ML8+k4Ej396QPz8jphHjoHm9awzqDC6mt3Kxiby3deUvnO6RTZMp4K/ixo9tPpFcH1gp92SIuUXJk/vY9ZbNDTcGsC1YNaYnEGHF6RAaL+ICX1yRnMdbQ2YWiK6ghG8NZZ7wozip5WTG2Q51QdIOzGcrCOk2Y6lgVkgvc2zMujLhuwK8O4wcQg8wvuL6DAsvpxG9+8zt++4tf8I//9u/4T7/9mnxe8BF+8oOf8teffc7nD6+47wdePdxig3DJCe+hD4ahGLJ1OD8yiNANkdElBirWGJgiVTOxV4Z5wJZE2JqGflWlxkyx1ylh43g1rr20ozZhweiKOYCxGd9+tbG44wpFuPt8YDqeWeJM0kq93AABtzN0JcD4QPik48Pb9/zh+Ec+fPGetx/+wP/+X/1LfvLjz/nxjz5jYz1CgTiT83/JBoc4UdcTOUXQOxYMUBnlhXWiCQj7G2JxWArOXshruyzWKqwxE8JL6+aVjlIhriuXw5nL0295evued9+84+3LW7abW3b+jnA/cjmeMW7gb/7JP2f89GeEcaTvHZfF04WAdJWbOlI6Ra0h2EAKEyVlTIHOtdxzTUoJbTglGaZ3H6jxxDKdWPcXjL9n7Dd8PmbibsO6Vpb3z+y2n3C/uePeCdvqmZZKOU3Mzwt1XamlSR6fXi6saeTTpweccfhq4VKxYUtehKIzZX2L3bp2eLf3RNcGiR0zuSyUBt3lrCtB2iBlrRmcR42Q80iVS+t4TQmrjqKJAuz0gPVbJIyUc0b6HcZbOma8u0cR4jTz4eNHnt9+xdOXX/Dlb3/Dhy8/Mr29sMubFv0KljsdcGOHihCLAV8pMTb/wE5wBpKxBK/XKKfF+m3zGLDi/QnOgrqA6fpG7MOxLpbLfuX8vGeZV3zYsr1x7DYjj7ef88nuht1mx3bcYtOES1u6qqR1QecIU+Y+rny4zFAz4yawqR1DdXiBx7DB333K4Eae3n7gN//vX3H4+sBaLvz8Zz/n/u4Bt/FstKE2iylAs81WgU5nci5krWQJJGMwptK5IyXGBo9xPdGClxUvBd/fY4qFa/JE8gK5QnDEeeFyvPDyfMBMR46Hj7y8f8+7t0cu54qRgVef3oLznJeVbnfAlIGaYDZnhoM0xOzgGSZPrivGVobZkUyliBKqo17RWnYVipc2nEx/5sO+5pXVtcwftR3+tRpCubb62+i/Hey1rSG0byUqY2C17UIgCpFCSJnO+VY8cJ4wbgnbkX7wqDSKgUbTDui4loctTTzS1wENtjFHTaNW2NiKfxFLSqmV4lyPpd2aGipJqZop1WEvhuosVQRiJNU2MSlrJHctqnJ6fuIP33zJ8enA6cOejy8z5/NCypGwHbFdh/hAGjoG31jLOhjqxZKwzL3DFqULPdvhhn5zTz88ErqbZk6Tjpwz5/1E3wesKrnkP5UI9XoxSdmSasC7wDJ5yuSpYcDFirGR2hn6p4GSC+cF3Nd7podCvy4Imedj4nCOzIdnDn/zQ2YLfthyu7lBU26yoH1PPJ6oOeO7B9a0UGptpZ1kMRnUVkqd0VxxVbBr13B0FVI+M2zaevC2G6ghYJzFWUfShK0Bmzo0dK20a0vbesyGdDaU1DYycyocLwuXDxfefbXny9898c2cCMPIbhzpXt3jNj12CPjNSDILIQu3PqA3Aze7Hfd3t+hmpN/e4ndNXFRZIUd0VpaLIiq4EKgxXqckQpJKxBAx2IeRUAouA0tHtgurWBYMd5vK7W3Hm/t7XLCkokxLIuUjyWxxPqB9aVbLoWN5XPnq4xPjbccPf/Sa/uGGH8gPCM7x8nLg5u6RcTeSJBPLSkz2Sgu4AaOorYTa4bNpFus6YPKpFQA78FPArZZohCyBKopiqTZAsmi2FFvIC+QiOLcjXzqmnPm4zsRYMEVZ8fThlmHILFm5/aQjOEtVQUPXik82YIaeZR6orlAHy7AN3G47Xm1HdsMtnR2x+DaBUkPNrTzvhtC2cKnJe3JOTPOFdBvw0rYzpTPN41ahhoIlIcFRd445lz+JiNBKkko2yrpEbOjohkq3T+zLiffLM989v+PV69c4Z3AdcPAsY3tGueeBSz+jdkEPAXfXN8QtA6tEcnJooh30kyFnZSkJsT3BCl4NzgRUMsmupDXjvaDOY+pdy32axHyuxLgiJrI/vuWPX/2Gf/zVr/k3/+bf8u9++Q+c9hMbY3n80Y5//i9+zt/+7c/523/2cz7uX3g5nTCbgdem4/bunp/97Cf8k7/4Z/Rd+15M1bHtm95+lMC8qWQy/kl4Wc7YpOzyLd9ywDvHruvaJT9ssN0rzLChdh0qlpTatDphudSMfW2brEjB3PSY04xJkbrLlLRS50z3eM/oj6wSSS4R5wvWd1i7ARvJRSlrZT3PyDAiHZTNhSwB6zyEgNqeQqVopkZPzUrJyroIairGQhh3DaEswHBPzhGNCzkGXHeDMwMmB6JE5nMhp8yULoSL47LM/PHrL/g3//p/5O1XX/P83Qdu9QY7jnS3hp/9xY/4/LM3fHp/z/3tjpvHLcaDyyusjm63JTzeQ1zwVcjFkZeIyhbjNljbhlx5KSxvV8LrHVTFZPBBQCqpJmxpDpKWDZbr872V0r86RL45XTiWZ5bTGXGC9W0LHE2++ikyPlikCpfziU09E1TI1ZN824gaEW7vd6zTzDxP/OJXX7I/zTw83PHmzSf8n/7VP+fx7o6+3yBGyQqlCjdqyXFLzgVTMmiHSI+VJn801pGto1LadHE1JN+3iw6VUgVmB1YoxlLTyjpPnE8fOHz1gek4UYvD957tp/fcvn6DZYffbXCbLbc/+QmbT97gfINRTGZltsJTrrADGwWqxfYd3nd4l0nSBHBiDbU3eIVUlWwq83xBM8S6w775DBl6XDfQ948s1XKYJp414l2l3lTObiVPT7ycWjx3TnvqKq3MmZUcF6wduL29x49b/DC0YWc3UK1QFeI+YbLD9FDCmSwWZ22DQJiRbApRS6PnqEJVYurAlLZZc/dYMqZqkylqJudIzAH/8Bpje7Q6ip1YV6XOimrk8s03HE5Hvv72S375q99wefrA+vSe6eNKOsz4WHl4fOTGCWNwbO6uoAhriKGyXr73JbVkhiBYE/DjA8N4Rxh6kEpInhSF+TgRhq5hI2tEjCfFxOG85+v9C6Uq0vWEbeD+k9c83j/y5vXn3N3c44cNRRwMPeotSQtP05mn43ueTm/5UFcu5HY+pJAltp5X8ix9623es0WTUEvh6f0H/v7ffcH5Zeb27pawueWf/fQztsOANz31im0v2WKLsi6meRXiTDEOK6Ftg+z2+tkV4lIQ58B76jK2YWuJnKYZmS/UFIm18vz2K07HF15ePuA+fGSZFs6XlWWZ2NxuGG53fPbmR2hwvEwXug/PaC/EkimXxGkrbJyjMwUdwCaDU2HuLUTFFG1dx9Jolmaw+Njy/NH+153d/+sP+9dIiRqhGeivpI3W426TCNVmsaSdn67gvevKpj0U23ovtZjINXxjLFhn8V3ABkdVRa9mXDUtIlRLi5CoMWjxaHHtIERtv7mWtkJWSym5EXX8FQEmjT5QNbe8aDVtdVW18aFzodSW0cuXifUyM80TL+/e8uGb91xOZ6bjTExtWyjeYoNrWDT7fWRJ/oT2rOTWP1ChSlvnWmNxwWOdx1qPMaWtcK1QKKRrtMfW0sRUf/p6G0qujYRSrrgBhGYvbGtrEYc4T86QUmGaL3gLUQu9hf3pwuE8MZ+OnOeGqcJa/LBBa0FiwC0TZY3tzxtGKBlqxOTGXTBarpSXgqmKU8WaTDUOASwV5wOh84Suo/jQvibQ1prGItajrseUjFaA9jVXDCVWVBIpVfJSuRwvHPZHXl6O5KqMoWcYd7jhagf0Adf5JoaxFuMqdruj32ywXQfe4zuP7wPiLLW2bZNqI+So4dotaTk4Y9sLOJcW5RmsIbjWEzG1rdutWEQM241nuwlsho5mNK2cz5mlGooI6ixValuVeksOyvN5z+m8axMx7+iHDTfbO27vH9js7uiHnsVcmuzpygk24rj+qdvUFFK1UQABAABJREFUzFxPwd/LoqrBWgO1MbILUJcmd1FrUOdAPCoONHHNq1HVskTlsmZO50hc2qaslorWFt0Zu8Bu7EEbS5na1pzGNF282nYhNap/WrkOnafzHmebBbpqkwl9n3+37biAKlgRcq1c1kjNBlzD5X3ffGrm2Uo1CW8t0jvSdLWxaf1Trh7V5qWQ9jwQ10RMS1rYnw+cT2fsNa9saqX216eSekpZKVrRXEj5e8qYI9fcto1VKRRihVSUmBNeGnGsqlCEa2QgY0xDuTrXY13XJv7anjHrspBjZNlP/PqXv+SXv/xH/uGXv+Zlf8RUw7DpuL0fef2D13z64895/fqRhUi0hTtRbm/e8OrVa37605/yw8c3f3pm9FHog6VzFq+OVKWVNmklZ62tAKo1IcYQnLnq3wXrXRMUSlsTG2cpTY/Y7N/d0DangDPtOWeswV0RwGucqCXhvUOtkq0h5/VKR2loWkmlbXZKbvIbAU0FNQmt2qZutM84NGMvWqlaydd3hUGxWsm1PUfVOXJc2wrceXzYILa7IvAWcsrEpRVp57nyst/z+3/4FV//4+84vezRuHLnb9rQaLC8frjh7nZkt+vY3PZ02+4q6XHUweLHDXYzAgUpeo1S1HbpbPkyxDTaVY6ZXFZEy3Xtf/33KS033I5S2l7e1zRbBaZ5ZlpmlhzJtRlanbYoSDWVatolTk0F00JPVRPlWiJtLNJWJfTeU1wklsJ0Wvn26/e8PB14/90LP7675fLpyv3DI0NozH2MpfYB4zyGQs4H6pV+pWIgeNTYq8mjRQIxtO+b1hYtrFevpzbzdlkX8jyRpwtxnigxYdTQjz3D0NN1HTFbZBMIt7eM9/cMNzdY69rk8iSUWkkl471vr/cqeGtxvtlac8rt8meaDdiYFr0FJcXU/nsIhJsdbLeYYYsZXiNzZNYMvuBcg1CkssAF5uOB+XhASqWqUlSZY0Kc0Pcdu90NruuwPrTnnrQzkGLQGiF3bctgrg5kpw1taV2L1GkLO+s1GpOufQwxihel1PaIzgJ1Tu0d4DrEDyC+ka5iIkUl5cyyHHn38Zn3Hz7yuy9+yxe/+5J8PmGXCyF1OAyh82w7z2gNg3f0vm1q1TWcY3atb2K0XdZEHBaHDR4XelzoqTSLsBFzjR8XVA2uKtZ5UslMy0KO7WvahcB2t+HVwwOvHx55/fhIbz1426rb0i5IJVWOpyPH84nzZSLWjGrBXL8m5vvoW8lose1y5x2bzcASJ2rJHN7v+dbBYX+kG8+87j359oZx2CGmRVX1+r3MpRJLIcbYuh3GktVSrUMaRrA9C6XJxYoaUkrEdWGeZjgdyevMvCae3n7L5bBnOh0w+6d2bsngvTBsera3W8btBg2OVZTNdiQ5bQ6SktBsqa6dqURs88GIwWrL6HO1wLe/tfdsk/GZ66/9//6f/79iPJKBVKm9RUq7nWZTsNcSREJxVRDbOKT9n9aWgkuGYnJjt18W/OBRUVytqE3gMtZqK3BqQ2q6QVHRliwsBlLBmCbvMozt4KuKMxlcpNpMXX37YTMFp5niWylGDKRlbh8eo201qL5NEEuBqtSSOc97TqeZ4/7Iu2++5cP7F9YSybYgfiT4HktHlwXjWh7MRoNu2kbcZUv+/pt4Maxdw2+alLG+YFwB+73sRbBakfuZtVZchVCbRr1oJa8VgiGnmbScyVPBdBXbKSZJk7/UJo7Q0VPmSrwk3p33bEtknGdmXXn3/h3Ph2eelw/87buPTPsTSSuuk0bF8ZZ8EMxNxWuFwWNjB7HCPCHbhNGKroqmBScNSaWbI7IKskpTb7uKDxm2EamOWiolZawz2K4iG23c5rlhsKxJJHO6csM76mVGV8FNnunjEy8vH3k6P3NrLLfdjt14R/BCL55BPL4TXBnIFKKNbLoN1vVkcfQihCD0vYEAdc2UmsBmZGjY12otFuF6UsNWR4qZuRRe+YwfA+IN1Sa2zpGth87y+TjweDsSBkeshv0+8v67hUO+5TF4pINaLMaH9rW9FL47fM1nT5714+fkXAGH9yNvfvCKzXaH9x1D3dBLZOiUZJb2M1fbNN92lcpE1oWULKZkpFZ6DNlfKJpZFqXmC2bscbsN2L7JeIzFHgx+09jDy2Vhv1T254XDuz3TWpvlkYnpciJopRtHXg8PXNJELQvmUlDr2kXGBNSZxm6/BFKxGHEE7+k6g9h2jCmlHVaKS0Qz0QZahiYDFdZaeZ5XxpeM7DbQW1yxEKBoJl5mGKCTga7bsKQEqUKqJCOQG9bzUiZIhlQKZhcYZtAU+fj8wnfv/8iaHljjPa8/89xwz2A7ZGOR5Ek1sYaFnFr2uPiEO6+orWCb4O5CZUHRCGpnjDFM6plsJMVIuVzoHzzbzcBu6CFAfImUZcEGx2l94fTywtuPF/7tf/9v+NXvvuJ3X33H663gdwPudsfmYcvtZw/c//AT7nY73i4d1jgenecnP/uczx4/5aefvMFvbkHbsyqr0AlYY5gLuFzwJjMO4OcL2WaWENl+eKbTVhy/rCs9KzZEpM1IWqTmzrLf71nqTHGGwB1WaPnhxSDGIb1nOAuTHFiXheE0YscdPQNaE7k0qovUgrMDWlp52XQV6+uVdNwuH9REtAtq+tYtUYO3BTWRLIklZUoyzYa+LqjzTfrjHetlj3GGcRsYNh3VelJVysuZmpVaFuLhA3N8z9uvvuUf/4f/mf3vv8FReLPxvNo4wsbR7zo+u9vwcOPZbQ19V3AO2t969JXiQ4f1PWVZG4SCgh0VkRXqAtrRO4WwkuqFJYPHNXhENZBLE3iNCV9r6y3Z5n9B2+bIXD5SLgfm2aCdtMBHrYgXTHEYYzmxsJaJWle6IK0rEiPZTnRr33CFtSJq6UKPE083wbpfmD6eeb98x//Djfz4Jx/5i7/4lDe7V2w3G3a7DfXhHmsVUyKX9y9gImoLyVc0CFSPrHCxkeCu+X0cumaIKzUvlKE0YWUeSJeP5MMBXmaMiYgkHJVXr27Y2oBbKu+7hfH+FZvHeza394zjLeIE6op+DawRlyc27oZoE0UzoxH63pNSoMT12o0pmEtGd67Rb7SSpkR/4/A7x3hn8XdvsOMddB6OjvO6J8Q9ns+wq1I5ssbE9PY9y3dv2cmOs1tYWTnOFx53N9y/esXj4ye4rkeCw5RCjgtqXIMg9Asaeqr4BtkwGdVMdqk9h69Y7+AVzYmsicmDLE1OauyJqbYhx9Il6rtn3DDS3b1CHBTJ5JJYPrxnVscSIx/f/55f/vbXfPPlt/zu73/PtCRGBw+j4363xe0cFuU2VYZg6QL0qki49tGSY/YRqeBXR7kd8d3Q5KmuIgFs14rQomu77u1mVlY8FjG+mb9T5HyO3NSeTW/Z3Aw8vv6Mv/jsh3zy8IZXrz7nePrQhgi19YVKLERNPH/7lpf3J44vEZczoRacwE6UXg02N3hKWB3qoThhs/GEfmwdmeORj+vCs+/oxz3bvPD4yT2Pnz4yhpGus4TOsqJEuxIlspQEdmoXbekI2yuecwU3WqwHa5XFrKyHE8vxxGVZiPtvidOR83nh49dfUE4XZMqs5hmsw449r25v6Ldbht2IGzzaGQbxvH59yzQDac8TkXCyoB3Jw1YtSQzGK2M0nEXIqsiiZCnYXHFHMDuHlYLX8uc97EsWqmvc314t0ShZ2oE5u4oWg1PXfmdnwQVyZ9uHQttKmGJbsXdsemfvOuxNR0odqXiKc2xD30gEUhEGVKSh2Uol+YhgqeeAjkubgCQDu4wmi8k9XhKuzYMoISO1yVGqLfjWZqX4Qp2HdpGoifSyMKWJaZp4+frIpCfm85np40wBrO3xeMq2ob00gdm2DoOzlnpfgBZTqlvo65Y8eOS1Qd6D7hyxE9IaSMWQUUZr2Wx22BBQBlTOyLrizxFcwCLkvJKqYT1k8rHiQmmH6GqZ7UyujfSgvuDNQO5BfCF8DCzXgtTNPhG8o/cBvvP8h3fvcF9/y8/++I4f9rsmqwmOu/tPuBwcKc6oGgIOnKNuM6pjw9kNM6GxCSEodbrH+YTYylA99sY3k1y6oXSm3XKrp94axI5Ys2m0k2TJM1z2F/IUQNpGx3Xd9QKVOZsNl+pZVPGvHhnvbtltt3R+i7vzyODwrkNHxYnQmzv8q207lKiju+2x/YiakRQTNbWeybAdyW4AMtYt9PEGI4bsHZ0TNslRqvD5qxuGKwv3kkbOn1S2g8KDZ0wLZggsyXCIka/nylfJUu5G5ps73K6n6Jk53ZFUMevE/usnvhsjfzxN/HdPK8N2YHt/z5vyM7ARYwpSDMO2w3cW4x3lahe10r4mpW6pdYsZJ1wNGFNZ7QKXG1JVZik8PP4Auxtg21HNSImFslaMh8ulFZ5//8eJ9/sjp2XmsEz4qphaoUA/GHo/MEjP/f0Wu7eQPLtXDjl6IoHsDb3fgckkJlhauciPDiNDo2IIDFYag7q2fkq2bZMXihJchzO2rd63BnEGh1BHpXcjRjMXM1H/N9r+pMmSLFuzw9Y+rarezsy8j4jsXlsF4AEEG6FggAF/CH8oJxShCEVAgYCFkiqgmpfvZRcZjXu4W3M7VT3d5uDcSI5r8AY5CclwtzCzq3rO3t+31qKkVCmusQ93ZJ9IdYXHmyjLKr4EdOqkTL8Gcqzkmnn++MTjh3eE3cSmJcrSSFtIGKbqmLwFCVQZcN6jCGXVWwEZtAnIgSDd6BiDkNpMTspVDdVaopvYftijkyHYSJPI5fmZ4+MXXp4e+fa7b/kP/9t/5PHLM60G/vT8Qg3wy1/c8e6bv6VaYaUQ7g/s7l5zd7fDHQbetK/Z79+xGwMf3v6S7WbPOB3gVpyzzjIYgxFBFdySGcYJZxSrC8/x18zzhflyYnr/hs1mYjPt+A+1camKKRDSjJ0CdhyI4YC4Z9JcOf5pRv+vgnMjIVvaoWCeK362lI2hnT2mBPQXjqn14mqelFIimL5Jc0vFWmijJT1NKBWpV9xFYeqFObvuaDb1yWxWqi8YtZg2srcXzK2MeCkLpU7Y4kBht9tjo8NMgbV4Li9nTqdnPv7hdxx/+sz1+YXL58+8en3P9ekZljNfv92xCSOvtwemKTLFyG478Ztfv2e72RKHAbfdMI0TJgR0ChAOqLPgwL9cIVRkDNTTQLUjxRsmVWywmDqSjx5z7zHaMKmACWS0D4pKY+88wbgej+k7bRqNb7/AMQXu3+1of5oxJvfy5iIgGTVKvfbyvxUDCdj3y2hrsIREqRkttcdpa4dSqFfqWShFKMHyH//9P/KH3/2Bf/NvBx78PZuHkf3bDf/j3/1feP/LN9w9bBjHA017lj/ZgqmbLh8aC5tmMDIhssVJx2qLCM18gUvsos1wxlyv+FJu7o33GF+Jd0p+WnC7e5g22JfKsH3L5vUH9q9f46YJVciL8MP5Mz+eLjydPduvAzF5Wm4UX5jEgQmkjaNqHwSuUdm2XtTVAHa3hX1EtyN2s4M7Rx4Maxn5ePqOj8cv/JSV17srzgxICizLTzy3K1cHm30gXOj0k1b58M2v+eav/4r7v/oFNY59+SgGZ/pGGSOk/LZvyQS0ZNZeSAPdgq79AqeCWgUZUDtxkBUbQVvHCrdsqLmx5Mr2/jUSPAnLH374xNOnz3z5+Ik//ed/4uk483I88/2f/ozYDDXjUN7fb9m5yL0bePUQsKli10YYK6Ep3irxlcUUixqL21kkbVm2yvyqUVfPbn9g+9UBkR1qA81ZAo5oN5ANpThCnLGlEmZFWicfNiv414bd3YG7u3vuv37H3ddfMe0eKN6T5sicVuZ8Zj+vFDmjcubf/9O3fD4/cSpXVjfSxtC/v26HutsgLlnmIRHEEptjjQWfIxhLli6zA8Ncz/x///1/ZLcb+PDuwPvpFcN+ZNiP3Mc7cIIYmEIge+0UQL/DtAnvHHFnbmhV4brC06ePvHz6xPnxC4+fv2d+fELzwjQp28tTv1y+GqjlLWbrsfuAlwEZIzJNSBgZpwHvJ35xmDneVSTCD09b0iYRnMEWQ92ALZFohMv2ij0afGnMoaJJOr1xU9k0oYmhhf+yHM9/eYznNqMXpVM9bvGZLua4ZezRXjwSwNziN7c1vlX6qlF7TM0Eg71lE0tJ5LSQlwCbAbGCeIutdOIM2g2utw+TtP4L/nOUSEuPltBuGnIxf8n9i7a/rENs8L00YHtOrbUuzii1siyJZe4m3FwKaenre7nJUKzptt3Oue3/LUi/iVP6hgNjIPdJjLnZSUutlNrNb2jn/2sJqO3YMGstQwi9+Oc8Zujxn5Iry3klm4bm1FfDRW+Ht0JNhdbKLRjR+HkV3tfj2tnHubKsiVL7S0AMXJ8vPP30xI8/fuTw/jWwx2xGTHTYYHvEqS4402UuFYOsK2hG20oP2veLjVCwtiJWcWMnEYk0qCtgwPS4jY4BUQ+l0XSl5JWcuxBKRDHSENun3SI9O8zNPyMiDMYTxONwBBu4LRpBLc4IagxNLPLzJkmkR3RQaBmtXcBirMWF0GNE2roIZ4y97W4smhRPY3LKzijB9Wp8y40pABFa7gbpinRTKJUsjWJAZKJIZDWB1gZ0VCgNczyh6rlcFj59/4mPn4680h7fCG5gXvvL2inETeyfp6pUzX013rqtWEsX+iidFkQTajFINl3iZiwSdtgwgQ/kBea1sMyJdi58Pl54Ol757vMLPz09seZEFcXZgKX/zkYbmEJg8hPhBsu1OAYbWWzfBIlaQus842gVbaWvGUUw8vNKn37xEsEaQxBDk47ldbH/M2PsTUjTP2MqdHrJ7XnTmqG2Qs6NdS5s7QS5UkvH3/083+h4T25s9W461NJIZSEtM+u8sF4WzsOJIQRsM1At0QeMM9TQD78/k6ZMgfYz46sl0HLzjd4estogJ6xRgg2Mw9jtkKUxLxe+nD7z8vKF58cvfPvxR376/IXjyxkJIz54Dvs77ozh7fv3XFBeWuLN6zs2m7E/QkrCusboHPfbA9tpQ4wRESVp7rtS7XSHqv0ZltoVo6XHdcaRYZ07l7saNsOB8WbMpVYkJ2xecaZj+5xxWHMja0nrsadmseJxMaL13CNJ6G1yXqg10VLCxE6salYxdGKIaL09jrpt1dBopfQoWLM9pmwUowuUjm3WrJSasWoRNTgylr72dwqm5X7GaoYhRkzwiAss15nT+YWn4yPH4wtPz8+k04WdjbjWX3RT7Gi+zTDysN1gvOEwDdztNkxD6IIhK73b4S02ejTGPuywpm+SfadsGWN7z8xojzZSOz1HwNqGtIoRwYRu3mylUueVMVoMneZhxNzSaI01J6wp/WuUV6Tx0gV9tXS8pjpAWJaFTEZbxVuD095tQRtS9Gaw7TE8bfRY383O2uNDhnXNHb2aG4ttmEfw33u2656/rwvftDe8f3XoQxcLsKL0yJJxDtvX4Eg9o6bd3gNdiii69p91WtHWC8bGOEIwaK00LVjfL/VVoC5HQrBMmw3jNCEhkkuilIXnL08s5wtOK0F8Z9PTCTDDEJAG18vKUlLvlQHqemeQ2rdVWipaEqY1jHgajtPlzPePn/n89Mh8uTJPW8T1aODaEuKEYQrEODIvldaXl9y/ecXD2zcM+33/vLUCrRB9RLxDrfSD/I32ckP53aKwaycEitxocO12oTU4qVC0f39MQ9dMa4oxhjiOqHEsTfjuhz/xw3ff8/H7H/j07Z/5/HThfL5yfT4yjY5ghXEcOYw7ds6x847RGqwF47VHx6QhUm+ftx7hsliCd/3M0ArJ9J+PcQaRitaFVkDdptNqjMF7i7ltxO3AX2I5Yi2Dj0w+sgmRw+5AjANie079er1wTYkVyKV7Q0qrLOtMKxVUbzJTwTrDEANBHKI99lLWgrOCOiGYoV+Ab8mSIVisdSQtzJcr1MTgwB0r4TQSjiO6rYRtJIzh9lk0/Z1Tu7lWW48zlqaUJZGvK59fPnN5fuTy9MTT8zN+nglaCE2w4SZNGwe0FswYOqrYTl28aTrFTW/Pg8N+R8uZ6M/9edH6c06QjlnXTtqR0vsItTa0tP51SSd8Velx3f9Sq9Z/8WG/iuK1R3lSLbcD5u2we3vAqOhfbJdKj2rUWzLR1m5O1daQFewELhq8d6R8Yb0qMSp6f+i/PA4suT8UjfRvZg3QClavaGm3BKRFU0Va6cVgbajpNz1TDKKpZ3SbwQ3TDQXayHKGWmm1kKWwroV1KYhV9KyUFRZrMS10HFLQfqDoW01k7XGchqIXZY2FqgJnj0RBWsMthaUmYsnUVBBZ0TrTsqO6XtpRaUTfKGuPkshWKHNiXVbW8wW1mdAKVjK6QplX0nWhXXpmU5uiSUEKlIKuhdVXtBpkhgsLa07kUpAI+jRz+v4Lv//jH3n9/g4x4IZI84KLrWPZUsKZnl1t1eHKI1pTx1Yq6M1W7MyM3sQwbmt6/6FmlJVWbybOwWHCFnJC25nSrqR1JS2JFISh9PiWCQWyAQ0YP2Bt6SZKscRm8cVgqiXYQCgGtxrwFt8CDVikwNrANfCdQEPLUOdenDIGnOsrSb9C7R9wux36g6wI6angXGUTlW3LKD23F/LC6CrFVi51phYl236BU98Q33ABqHtqi6TmaXWD2UZcszizYIeJ63nmu3/8A//0d5/JKrx+ve2RkHPiOs842zBbQ6N19ri99lxn7Td/WwpSe8ehVKXmRrkYvJHbhNjR/IjaDcLA9fLM43nm5XRi/u7MH5/PfDldOT2+8Hx6Bm3spwk3bIleCL4y2sZmM7KZJmymX6jFMYnhZCuiBlM9QWo/1BkFXaGV/vmQhLbcz3p6+94CgzS09Wy4iZ5Sbhf64BlkwJheuCdDcT2vL9nSyKRcuD5lNq8NrQr5qiyt9ZdWFcQ3YrZYMehgMJdG0URmIV3PzMeRswydl58K9TyzPMxMYYeNgXqw7BogjWwLsgwkbWRphDxTndKM0DT0PlFrmHzBBI833RycreN8eeLl6RN/fvqW06dHXn565o9fvrAuK6KNNlYeDnc4EwibHW/eveUnGrkVfvWLB3bbCdXK9XpEJeFdYPKhX1CN0OrMrOAwBCzFeDQnWlk4pRem6jFN0DAx2C+40PDG8LB5wIWR2ixSEn69MuQLwd8O+mIQMq0VxDame4NNDhsDfoyUxxOtNLIUdFZKXboE5nrF7N7goqOh+OFnNGLqBfEKWhQrvRzf3zyuo5e0YGxGFqHezkWpzjgFj2CddjQohtAMUudenW+R6CeMj1QCx+dPPJ5/4svpC9fTkdM8YxT+6sMvmekUs7vdDrGv2Qyeu61lacp+v+Hhfouz0vtG9AiUD4INFnWeam9IzaaY2C8aog4/FrwUbDM0V/oe2SgmLkgRJET8NKBZmNdCOp7ZHRzOTDjbX/BKo9bKPM9sp5W2jUzrO+b9C8eXxHU+QzCE5qAK5+XEjXfYowmtSy4NFZ8sWnsmWbP05zRKTrchjwiueIopNLWUOXCUhfMPV+bLwnpUrnoh8Ru2m79nPw2EaDG1kGvvBFg7kQzIcoJ8pFkPWdByI7NxxmpB10ah3fCpnjBU6jKTlhkZIpiG1kSaf2AM/x273ciw2dAwlLyyzi98/v4T+fjC3hYmIueWKG3Fa2TYjoQQWJbCeb523HDzELvk0zQo8+13y2TYJ6xGcvE8/fRnfvfDD7x8+YJ9OXEKD+gg4BMFGEbPYDdYu+PFXqmmknzj9VdvePvhPXHak06f0LJgWsaOA/g+/faa+2FMBWMiFNBWoL70MwOG2ix5bYTWLwfilbJmSms0p9TrGYwh7Hdsxi2pWq5z5re//z1//POf+PHjR/KPX/jyeGVNhYcpMLjIEBzjFHhwezYBNiEzNUFs73G0pfVzDZV6niHeLq3J4kehlYpbC7lnz0AbhhnNhZYS1UQq/WIbfO/wGW+wwZGXAkZwNhCsZWMCWxt42N4TrEVr5bpmnh8/s5RKCwMlLyiNNWWMrHgBr5aSFowo0Tv2U2QgdtljWajXShktfmPYmg0XcybJSkEYJoM3Hr0YTGnUNXM9rfxUEtb73uG7T+ze7tjcbZnwiA9dGllOGC8YDZQauUhjeTlyfXzku+cfqI8v5Kczz5eZb4xycI7Bedz+Z6+DxXBBgseYAT+O5NZBGNJWcupDxcPDnvVpJcgz0HC3bTiDwa6G1PpZ2cyWkldSrr3HGOjWmcVQYu3Y039pGs+6nJi9Q63BS78ViYKvhmzot8aaqSIdMdaE6uTGYVeStdhqAEVHz36747C5I073tAKlBHKbyE2wubOHy9zgdnNWLRj1mOpwqZeVlAq19ILfRZGlkUfAJBQhNYO5FhCDbi1mXPsBFmX9biZpb8jP57nnn61l0dAb9wj+ciVt++ZCivSYjFaMVrKDsvb4wxIKuyZoM1SbMVfh2gyn7Yh+fmGpNxtr86AbaBvScqVY16MCi6WZDZpW2vXMeT2hKUKJuCF0tnF1pLZwfVqYnwvZ9DZ5k0wjo6dCzV1WFrMlGaVKZT42mjc4E5nsxNs397hm+NO//SemeM8vnhtff5Mx9xMue2zZ4lTJ+YiWBMkjF9/Lh6PrbHrpJUk5e2T0MDrsOFEvjZZ6CaXVDVIiqxb0eqRdVupx5vnlyLxcSTlTdKAwY53F5QOyiyQRjnmmhTtsXAi+0PYehhGJnlwt1gds9Djn0cGhFbhaysHjXY82SOlTREvEuy2lrv2Akj1yjRgTsJO7iWEqpVV+Ws5crcWo40uwaFkoSXl5aXxeCuecONeFITUuVjjVyEYG9vbAbqxcfbfx5RbQwTC4icl6tiSWz19DvvCTVv7df/4njvOZ98dX7DYD8ylxusz8/vF77r7fcjcF3u8i+/s7xDRay8x1ZWyWoQWyCiktlNIoa2Q0A2oc1+wIF085ZY7nmT//px/43W8/8sc//sR37QvmkglVOexGDm+27Laeh+3A63cjQS1+sdhD5m4KHGKghsAlF9YCeRgY24Io1J1iV9en30YYWNGSmJcMSVHjaSJcWiJbc5uWCHa0SBZMKZxs5boulJo4j4EoFYcgIeCb6QXcTcSujWqVFzkRT46kjcUqJWV0ECRYhhYpQ5+YhtSoQyCXxPx05Z//8IXTpTIvK3ePvyQ9PPOyWYi/S/xU/j1JK8G94je/mtiOW6J/QPxCKpCTEkvqC0QruMmgSdBUqPMZ4z3DbuL0duFSM9999yf+9Mff8/QFni8/cl2e8KswhB0x3qHbO6q/4KNh3I80N7Ch8o1zfP03X7M/PCAaec4nLHtEdizDhE9KmRPHdWEnnuQMJwsvL0+UPNNKYkiRtK+IheWU4QWkBLw41jqT3JValVx7tlimV52i5g3FKvl46tQkO1CmHfUAzVdohXIfKPVCuRbMa0E+WaieNE7YjcfHAZUdQ+t4waaWuj52Jr9CmAM2dOmQbwm9AM1gi0cPFlpBU0LJ1EvHyc43K2czlktWyqVfIBkj67sLJjqqgT/859+xXBN5LWAdf3X/hrtx5Jff/BXz6cTIwKfpRw7v7xldZFBHHK4M+xGzH9DJsrZMM5bNw9dodGRrWBX0coM8DB4zDdjm0dZw59QL39b27LgaTPHwPGDebbHqcNmQRUmmcGXlK7vFmgg3cl0tlbQmltOR1ALj3vDr/RuePh+4vrwwpwqldHa9GJgVAn27gNDCbbBRldUKVfvhA98jra014FZQbP2gJ0X7FiwaXJ3Y7T1xGvj+Tz/y/3j+wv/0P/9b/uu//hV/81//PV999Zq/+WqHssOFxjAVahvxTQi1v6Pn50fKfMFOoW9j3Ig5bNDrI5YVOyYsG2xw+HFiM27JfkLVsl1/zftf/A3vPvwSGwJpnXl8fuF//0/f8o/f/pa0roS7O8pWqQUkebZv7ogZ0rKi+2fq80ql4Q6BwfXnkbbGx09/ZldfMcU3TNu3JGN4mS/89o8feXopXFtE7j12uPbBoI7cHza9N6RKdR6uDpdGvtm/55u//Vvuv/mK3BzHq2WwOw7jhHl4jYhgW6NeV1S7KZs8I/MKa0NmgV0nL9WamXNjvjb0WjkvF8rQaE5QE/j45Sess7x5/wF+NfBymfnDdz/y//o3/5l8XjCrofqB+1eOQYW7OHVQhYDXynhvCAouefzBYdICa0EHj66lM/KnoW/nKZhB0Oaw3uHGyLRkxhCJYUOQESsT0gJpXqjG0IqHU8BsNj1VkBJLSpSSehfx1Y74/jXjq1fIJrI0pa5XPj+f+O3nH0m54d3I+8Pb7rKoleulcG0r17YyLwuMDjONxP1EAdK5UebKxStxiGx3e+L9nvKpkZdGMH3LhkmsbSGGgeA9zm2xvnT/kYl8/PMz3377CMHwy795R60eEKxP3G/eYWOAQXh8PHN+euLy+IQ5w+Azoyv8XbzjwVs2g2f7MFHSpW9yolDP99hdxN1PNOsoxpARchKG7Q7jb5ei0AWml+OV8G4iDl0WmWyhvVQkV9IA+Zz7lss3YhWcBbbg10JujWz+hQ/7QC/lKn2v2je+qFYMN9qA/Jy+6MUZUwpG+z+Rwm2919j6yH6/Z7PdYFVx0WBj15t3qU/tbWyv4FzfFig9lCsNEyvN0PXjophKZ32GisH3lRmCqX2N1UH75kYy6YQHCQXJDSldmOOwiGmUUfCzw1nXC2XV9CmMqZC6REXE4CrkVvoKqhTWwdDE4FKjlU5DIDdwXY1OXjsNSDNVEy0p1faDs7H9v0dt/8mUlDv1Zm1YoxQpaM6kSyaVRG0Zk6ULV2ql5UJZrpALNjdMM3hxGIQsF6QFBMN2LPgSsLkXvD5/+xNaYV5XPvz1e+6mSBgnpPV1b80Leb3i5UJHMAUMqU83pSFTn2ojjVuOpVuOTesGQRXaohRxfTNgF+pww3sZeDk/41shyMh243G+Y9xsE4wq0Xu2my1JSxdOiMUEizceJ75TeG6CN/GCUYO2LpcKJfdMnevrORVQ1U7JiD3SJL5r4aH9xQo6ud5v2IlhqUrThrguCPPNELTnOAXFOiVEx34TeNhFajE4cRj1rNnhvCUGwe9fcXj9ivJoaZeZL49XdtOF0Q6Yt5blXLheKpfrylIKxxhYzhPvfUdfOjW9hNhdlqwqzGsgr0pOgYuxqHFUG4mPymkt/Pi48Mc/vPD7P7/w3cczyTcshtEZ3gwDm2FiNwb2u8AuxB5QsUr0A0OI+DEiWELMhCKY1RFCR5VV38kQsiicK3m7kurCkmdS3VJVen63Kdma20woU1aDkx7pSa1SFJpa2tow0WOtpVVzs3sKHkOWLnnKl8ys3ZWwlMRpXTDV4ZOyTplo+2dTAWqPO5VSyMcjdfCwnRj3wjgYYjCIZpgv1JaYvSVnJUWLmoWh0SNhAiY2xPYiWoiGpLX/txdICmvOXM4XviwXjpcja52RODK1gDMTxRX8xtGMYfa1T4ttrzXFbWMYJ+x2w8PhDj9Y1FW2bgAzEsLAYByqFaQRXOmdGPrQYZYrVlaMVM5BODSDbUqpCWtXjC1osJTTkTRXrrniYsQNERMtKo2yzkitOLrl01vLEAO22l6YdALrjapkBE0G9aC2UXLqBUUbMVhccGjtRcRmXbclV8UM2re1phd9XS2INNyQO3GsVYwWfC494xkaXmyX1Qn43BDfCSBNG22+diwiFa8LasENliFs2EfPfhoZ7kaymXFXy3TwDNExDJZxsIjZELcjbhqomrEhYMcAoT8jamlUFoz0Iq0Y6ZPQ1skvfvL9uSKQa+nRKGno2Ke5Wul0qJsMy447gutr/74p6BHSWgspZ4JJGA8hBr76+hVJzyz1wpfjI5ZOv6s1Y2v/OoLtVmuHxdlOBEr0sq/W/z8dp2cw6k2m1+OwQCf44FDjsNFiU2G+ZtJ65h/d9yQ3cDzNRD4Q95VhjIwSGbzDG4N1Q3+G+4auC+16QqNHTaQZ14udIpgsuIMw6IAzG9y045J6quXu6w9s93cMcUIEaqqs5wunjz+gl4prwjBaTNMeqLOVu3GPjTDbmWDHG1mt4FLFTf2dr9pJWTZMxOmeIW5ZlsZyvHC8fMG5yGgMRq+k+UINFT8F7u/u0ZppNbMWx/5uR9ju2f7y73j79j3jtOVaG3GMDHEgbvYY63rMEsWE3lukWmimM6ZMw42NdhPzKY2goL7RNg0fRqxTqoFcenTFhchmOuDtCFLJ6jjEQK70y12pDFkICqOrHVkNiFVs0W6F96Wb4VGMF6iuv5dF+ibUdtqMVKWZbjQ3WcEarCimlt5DcV3gVHOmGumf09CHL0ZAbCWbRBPB2YFX2wceNgcOcYPJkGWhpEJbMut1JZeGRNd9KkBtytISa86druSFMUQ2PnYyW1JSrqxpYWO37MSzcQ5bhGiFNjoepnsm10lpOS/sR8cQPMM44PXS+VEqZLNSm8fgEbXMy0prjV1s5FBJbSHPM59/OrOeX6jLiX08sJ0GtgF2FLYbxzQ64q73IbqMS9F7i92O2M0GFcd6i2YVt2Jvz45qKnnJtFyIDsbat3Oigs9Cvpm1Tda/SGZp3VgvpWGXTsOzqt3j8y952DeYnrVs2rFNjb+g6X42T/6M2xQ63tDk0n+ppHPa0Ya1sB8mDncHNtsJoxUXXT/wB6G1ilQ6AmmQHhPorK/evJeKhIo0A7dYjWb9S3zDZoPeMEpWFBmldwDE3jLcnfRjxo53sg2sM5hCl3JNBl+6Zt14g+RbNtYWzNrNnjjBVsNatf8Cp8xys9j1D2jtzOKlIE5BM+SZUtdunm0esqFq7wCIl95H0J7famvHRZncD2BVC2VdWc+9kd+0YHJ/YZAqbc6UeUZzw2ZwajAasRhULggejCeODVdcZ+OL8PjjZy4p8ThfGO8d2/gOF0Ywii7Qlkwpz+BWsELTjNPCz/0A2d+ywypIyx1HFwRxN8Nh6wbUenMFa+wsfecbei2cXl4Yq0eGEXuIeHokyWEwtRKcZbPZwOXcL2NicdESrCOYHs2RdqOrxr5Rqq1RtDGVjkM0rlsVm3a0KVJh7IcPbi/svo/rP9PRenYxcMACPRPoQyWKUNXRxJHp+cHoLXHy7HeBV/vIy9HgXUdd1tyNo9F7Bms5vHrFvCjpSTmeMsfHhaObiePAfC5cr5WclaflgrML14ui9yO7MDIxMmwixQoqwoJhqZZ1VdYUWVtFTXdQ2Gflp3Phdx9X/vDdme8fFx7nzL2JMAgyObb7HbvNyH7j2O8cWx/ANMqYmcxAjAM2RlpSfIzEajBX00U31lCcJ6lirgqnwhIXLuuVy3Jhznc0J2BuP4sm3VQomTnRH+LedaymguIggQk9u59yo9rWs+fiusm49O5Lcl02l1LmtKwEGtWBd5loXH85uR4x09Kxl3qdMUvCVWW7M2w3nmH0lKCMi9JaZdnMKCOVRHMLQ+06+J+n+dYHrA0MzgBrL1waR1otRZVlXng+dsOzWIh7xxi26Gp4XE4ED02UtdaOlhODE2GzM4yvDkyv33G/vaOYArayH3aU0O2Tg1iKFIxpjA78zd1BqlS/Eql4qxxtZpcNrnQZm/MZcYqOlvL5xGW58ris2DhgB4/xQm2ZOp/Beew4YkXw1jB4hysWEy3iLBx7F6gJ6GpQZ9DQEZwV28u2CG6IaG5ozX8xEosqZtL+7tBuQSUXMA079sm07aR9QlOaa2hQjLr+ewKU0nPqDaEgSF5oudJaYnK9W9PEsfeBcYzd97ELHUt86Yf94HuBPDx4KJ4wDd37UDISJ+wUUV+pC9SqFBJ+mMCCMeYvNmgBwib0ouytk0VrGFHa1J/1relfTMPRBabxgHP+VqZulNqz7q0Vcq0MJmOcwwfPL379jszMZT3z49NPHassULTbmK01RBsIOJx027vVjmLtmMJ+AG5ab1HF24Uqd5hDQ9FkukjSR4yLhE0ivzSu58x3X14o5nuuc2I3Oe6/WdjUDfu25/7gGLzB+gEouAgmVZbjEzoMNDsixmNCd2bYAnpncURUJogT8/MMuXH34T3TZk9wEVWlrIX5eOL46UfMfCugi4FMv+BZ5TDt+oFVHIPtkVxqw+TWy/0/X2ck4oc9w+6ecZi4HjPr8cK8nBmGN0T1yDpzvMyItYxRuD/cU/KFtFzhGnh49RqZNvzy//jf8/rNO6x3nJYXpv3ENGyJ2zuMJmorPYcfKlJMN+eq7RZ0r3hXKcX0TqEKgxVa6NheNdtbt0K5LpUdO8Iwsrt/xRA2OFcxfuTDYd9L2KmiayNkh6uKNy9cltSx4cb2eEdoaChoEcQ0xAmmGprvcBJRQYxHxCENmr1RnEqDMSKtQkk9t+/6pb7OpQ9gTMMMSvP0z23Tmx/HYO3Eq+0rHsYduzCSUyPT7cU1FcolUZoSXEVst2RXYKmJtGZKrrjg2PrI1ka8Glrq55tUVt7oa3YmsrWOnBrRGsw28vbuNWU9d3FdTuzuR6ZxxMcJqWtHXGbDGhtWAiFsGMPE0/mZWgueLpqspXBdTpyOJzRd8RSmg+ewieyDEPKZzZ1nmBx24zBr7Njw3JD7hhkHbJw6srembqj2Hc9qbpfQdc7U1DsGm2oI1fTuRjVQoWnFpH6u1Sa9EO37YV9mQQbbMefa/mUP+zFbUqhUV5laZGmJrA2Mo5ierffNgPSbbEVIon2tpIIaZRp37HYTX/3mHW8f3uGdYSlXrBwwdoRoSTnjbUWco5UH8P2SIIsgrjPta3E0f0WawWQPY0XzhBYHU8UmwTSlbBJSupHXTA27Ck0TTQqm3WFdQoeEP3U8oHjLVD9Qw5HkG+FxyzpmUIe0SJlWylrg2pBgQCNWLdfxiikeNQ0dFFcjajN5WtEfK5e60Ebh08dH3GbqBxs7YKwFYynN46LtKLdaGOdNP0iUTML26emxMJ/OeJ06fm56Rj91S+V1fcEkh7SEkhibJ0mlmMrIAbtVjAVXAsk9k43yfB5hd2X56UJ5+hEeFuqyoG/ec/9+6muwUXBZMbKgNaF5pWnERocfA3b/vluDpROTSB0H2NyOEIZeRFGF40xJUIswSWXOZ5bm+fLjE+9/8w3u3Vumza8wQUnnC8vzZz6eDY8zHFtBh8gwReI4EKcD7C3qBJMNyc0Y6xjNgXVYqHOlzY36ytDE01rsJemsaDXYKaB1B0ZpIcPcS4Q0w49T5m43MOws18FT544li/7AsD1jRBnaA6uZef2w5xfvXzHuHJ9OK/FUGKZGjQPV+J7r34xU00U1+/tf4nTgGg275JgrfHc+Uf7gSGYlS2Nj33M2X7iUxvlJOP9x5WHyvBvgYIQxjAQX8S4yvbXYJDz9mPjdnxJN4OGdZbaOn+aV7/585nfPWzaT5a8Pd7zZbpGwEAf4+vU9929X9lF4ywDbBW890UyE+wHfLLYKl1Ax64bgG+7tir/2l2mLQkgRVzJtgT99N5PqR5Z6ZR8HDvc7hjFSuz6XJkJqlhr6gW9NlQHDKIE4jLBV1EZas2Q5Yxl6dC0Kcu3TVvXKJI7VQBFLfsq0saET7NMW3fRLnT02XtYTec0MMnH/6j0P795x//YDlZEWt9jtjoN/YHxzx7xceP7pmTOW+VIJTzOEoR8Og0PtA9UaxAlRAqtNlGZJ/hUuFpwxROMYXp5Y2LPKhI+FrJCqItfEMhbUCbFt0BoYY+Ru/4pf/eofmO7uiLstoxdyOaNaWO1bBu8YvEdixJqC2IhzWwbn0NafV7/OC0wRjGM8XW+Rviu+XfDj6+6GoPGUJ14+vvD8w09YAxcqUlfsZSEHwcWJwf0V1gdolvlzor022DEyhA3H7RfysVLOjbotmOuOpp4ldqa6hoA9jFi770Zcv9LWFbUVGRWTdjS3oBTcbJEIiIMSYViRRXDZoXtDWzdo8eiu4Yqh1UaaEmXeImIIY8WXPumWtmDdPRJN/zOr4oaAHSIyDsR2T9wmZPMaM3jY7ci7e6boCSiGhhsrNu5Ru2MV5WV5JpcCTtj7NwTtBf5yLRgHcXQM/oFiF2pdqEUgSreCnwY4VKiNdk5kKZ2oFZQ9t+hjU5Y8Y5pDxLHbTky8Iwye91+/42H4FWE7crGJ//f/59/zcLCErcXrQNz04cGWoftMbCAyUXzFloJvkFpB8o2e1+rtENQ3701ubQHx5DpjRfG2Twzj/YFIJ2I9S+H8+JGP/8+PvP/NA+8e7vjV63fsvr7j6/2Bb7Z7dlGxdsBOd4hm3I1iJAK59YOh3wjW/BKGAYbA+dMjX65XXq6NvzW/Ruy200VK46enj/z++4/8r7878txmtm7LFA8cWVGNTGbD+OEON4PFMt53BHASZZkcTT1VhOodedyy7ncs+x3reMfxy7ecU2F399/ix4WSL5yfF7Zl5eu3v+If/va/wYyR88nRfd2GX/2r/57DV1/xzb/6a/abDTkvxDRz99XXxBAJztDSSjl/oawLUneISfTbCb3Q3QJG9tgpYVLFzgp3SuNAkwG7sdTcuxU5zuib9/gh4u5GxATCcmU/GR7e/qaX5POFH//5zLDvW5Z9mVjyH5ivC/ni2N9NhOCxJiCHjJwFs4C7d0jpUSvd6C02bGgjkBxKoYSEfhGu5oxsYD6vhOC7a8P0Er6Kp3IgRo/kFZ2FuKxYO8HdhH29hcOe4gMvp2dsG8lJeE5Hjs+JZg1uK+z8DhstFy0snytXWW9nlU2/4Btop8zj5YU0Jwa2TG8PjPd7/GbD0+MTw/YNh2lLiJFVuv/n9bjnb//hfyBOG/KaOV+fSOeVdF5x48j0+o7d3Z7Xr97yLN+xpoJ7eEtaCyUttLpjIy84v2Mwb3j7auDgDJNR/GYg3O0JmwG3jbQ59ya4qWQ7ITFgo6OuPZXiiiDrAWyg1MzTd4+czo+UkpjMgbaRDmhZoUyCv0amKlziFfcsuASzT7gSqVa4jsomuz6kHP6FC7rOC8Za1NBvflp6+rCB1H6nbip4S4/gaENuKLBGxfpAtJ7RwSSGppWsjWQrPhaCKwQq1nhUlELDuNzXJAoFpYmC6bEXai+LNmtora/cxfUfetUubdACxmSMFCQrDUuj0VrD+Iz5ufDo+njYGCEEQ86OTY7cv96hTSnaJyRfXhprrpS1MWjst0tpyFxYDKTakX/BQ6mZkjOpZcyiyNFAzZiacbXig6MZwDScLF2YpZnmGm3r0FlgadS2kh8vrC8z5aq0lLrY4XxmfTmS55maUqeGcGPhpoLxEecszufbhL5yOmWmO8e4G9hsB57rlbwWrrXyp//0hVdtx9QU6zaMrTsA7BDwNfX1tlTc7oDEAYkBY27sbGMh9fy0VYPR28C8NkqqzLl2zv2S+Xx94fjxwvllJb695/7NPa9eH5gOE+l67H+Pj0TbEWaXy8poHASHMOLtSKhd611NRYtFkS4wuZa/SLq66q3jGXpxtG9PslacpC7syLmr56XRjPKVH7DG9s3UsnSShRgmqSR6ADm3zM467oLlMIE45X6CD3vD6SVQjJAteOvxrUJp6BJ4tdsz5BU3X4mxIrZn+p7WRHKVagVnJmyyuFJZc+P5O0cdlbopHM8FYy4YtzC+3iHJMV+F335fOD4XXBDqtjH/MPPTx4VPj5W3YWATPZvY2EQhWMdkhTvruF9gQrGT4qrDO8sQPUYdtfb1aVoNIg7rQa4VcYo0MItlXRv5qpSrcDmuXMRwpdH+BlrRWzHTsbZ62/6tmKUv6BYVdJgQ7xnjhqEBDVYttGqwEUBoa5eI9GiIcBkKpTbKahjDiBGLq55ahXTpXCqWQi0FckOqEJ1Q18rxy5UmL0AjXxPlPtNuwIDNZsBrQnRBnTCOETdYXPQEO5OprFn5cjEkl8A0os1/IY7lktHBM90KbLNkrHOEYYN7ZbiLXQhUzMT8MoN1uP2etw8eMynFr8yXTAm521v1jJOAk4hpXWAmNCgXTq0TniR34Z4tlx7VkIQrnfBShwlJjxQtzBSOP/7IaT5zHYVXi8XMM+3pCWMGpN5iQTajS+6FvLaSHs9UIoQJn1wXWnmhrKY/g33FFljLis+JWCLmFukz2lAKrfbYSLMzTVdojYrv0Th67FPTjdw1OERLdzSY0iOP0p+RtgjGdwqRbdqliSWRSmMaV5rtpKCkrgveXMG6jIswHQLvfvnARQp+dNxtIZlGTf2zaYbAODlCEMpyoaWZ2pRsAnubeka+uL6vbiBFYeiOC22CcaG/H6g98lUrrWZSXcmtYnMlFOnvK+leGG23IrN2e/k4VqLrQrr71/e8Te/5cPqJhwNM4RZnU0Wy7VPZIWLbiDUR4yNelSpgTcFVIbdOjCml3rbhPbvfxN7MrAsZ199Fa+eQO2c6mUod7dqlg+cmfP+HM8ePmaftwrs/PjG/3lLebvnq7cCEErQbYLXOkJfen2uhb2EEouvF7FIL58sJcZbN3Za3DyND7Gz8VhPPj0dOX56Q42di9sTWaSwlp76ZcJWtG5nuIoMf2H/5wN3uT1zmC65E1nab6qth2gcGK4SWSV+eSXND1PJ2yjyVlXS5UL+8cP/hgTevX/Pq1Z5sMqYavHjq1x949XrP4W5gNwZMzZhWCJNjdIK3ihil3GyqK8rYLuSyUEumXRMqHYfptXaRHBZioDrFiMFJo0hjrY2CEO/v2fsBFzw+BihKVU/ViVeHSFoL81yRcUTdgA2Rtw8DS104miPXdGE+JuxWGXaRvNy2cUbwLRLiiBjLmhbE9h5ITRY1lVYydUmseaVeMu5FqOUKxeO80HxkMQml4uWCVofWjJpEHqV/hvzEREDnDjpJ18LgEi0X5ktGteAlMElAqbRbkdY5cNkg7UbCag5dldPS3TExWrbbkVd3A8E01vMFOyhOjpi6UMI95vHIzirv/5u/5Zv3D4j3vCwr5+tH8IrsItuaGYLHYXn6cgQR4hDYRMMpN2pemU/dtxA97GLF5rVTBJ1Btx4/gA8VTOoMfRzV9N4ATlHpZDToUand1mBEWUphaTPrpVDXho8GSRZrDViBuVFLVxraJD26h0EvSnU9vmKvvYdJa7TyLzzZN+ZmjEPIWkCVm3Osv5ABUKzYHuXRPsWDRhPFietCpGCJ1veSEkoVIURDjI5oPc4ZqnT8nphuIWz07Kaarg42tpdhO89baNpFJAal1Z4Fa9pXIWI7n5gKKrfMpwrOVER69Ei8YKzHGCE6w2AjVRuHV4WchNIyra68XHs5MIsSpJfOjIKdM6n1XGQpmTbepDdrpbSCzXo7cCcoFWlgradxK8qQ0GJuluAKsePWNBXaWlmPM+tppqxKS5m8rqznhbQuaC7YanDu1qGoit4OmYJlGM0Nz1hZc2E0O/bjjvtXB/ILzHnmuiYeP155PDzzNFh2U8bYkWAFF+h5bumeXBsi6iKIh9Qzu2odrdALfyqY28uvpMp6XrgsK21eqZeFT18+c/w0kxZh9w+/Zv/qwO6wJcTA9dixcEm7QTaVyrwWYgyABwm9WIvBqKK2T+tbFaQpLbVOCxLpfYGuXsTgeplEe/RJuZn6tHVbqihNDO+GgRz674FpHTlnUbxUIkIGDI1t8GyjYROFauEwGt7uHU9LZDHCagTrHKoF2xSplv004tctbdrhWoLWs7RzbqzN0FzntMs6YEvFaGJ9brAYWmqczn0d3wwMxdOulutF+N3HTqAYJotbYF0zL6fKmoWvxoFxgBCVQRKj9Wwd7MSwrY6hdXNjEIs3Fm8dqobcKmtVSjUYF/pFXxMive9CEspcKaui2ZCXwkLm6jK19MO5qGCt7VsVbf0S2mwvx99SVOIc0UeCCGtZyKXSmuB8j871n6H0AnaFecn9853B+9BRj63bKcva+xWaa4eFWoMdhCFOaDNcLonmT7TcSHOi2sZgfDc+DiMbaSiGIhbrQFzHvDnXTZalNZbSaB68FSarYCypKGvJSPAMUrG+YIjQYj8E7XZ8FTyj8xQz8vx45NqUi3WMoyCh68/nVm5OD0O0SrDgDVhuZuRW0boyo0hRbGmoWLQmpMw9vpEEqoI4SnqhlIWlNk7Pz1xqYQ2OWMAVxVwTGh1o6FHDliAXWuovrHydyZuVphWrHmMc6gxlNTTbcXLSDLlUUi242h8RxgrW9Kz7XzCQkm+iRL31MXoCo0Md9FYsNVD7y/FnAk6jT6ONGKzrz3eDMN8+v6r0SKClP0nFgO+lY7HgY2Dcbbh//8CazreftaHiO+JVKxoibordPDv3TZQqtz5JguY6ke3W+Wq352ufOxmMD5A6Ilek3J7BjdwypTR8U4Ka2+G+/9loL2xq632rGGHwlhA846ZHXF+/fuBw8Fjtr/6kuVPQmgXrO1WM/jykgZXSIz/ao0JNb0bsDpnuWfZbHGgphYwgpdyElB7BIsZ0WVZSWoMsjuNjYTYzZ7+yfroi70bCeWJse4p1jM4SJqX5mzG6QkUophe/R5/RJmhS1jVjw4a4vefufiKEfokqpfD8+MLL0xP5esI0h5WAMQ7azcTdGtEEttst3ke2mwc2m+2tiOy5OT4xKgxD7MQUFdLpSl77xWzrlcel0nLDNnj16i33r16x2285r0fqcJucvntgtxnYTJbBOtq6gio+hs5GtzdHQq2U1kgKsXV8cs6ZmgvS601A7e9kBLWWKnrrrnCjMilYy7Q/sPUe6yzqPWlJ3RDtJrbbgdWBGMOw2+FNJIbI3esDcykEO/KYPlJLoZb+c66ln4jEgpiIGyesdZQjXX4mpndLpPb+SGqkusAC+TJQc+pniCZY62/RsEJrC5IDlErVQgsGF0IXWNmIlkKqmZQKXg0lZ5alD22tEYKxlJqRppSUemE89xitc/bWeevmWhst0xi432/YbQfq2liXhEyALKAZMTuiawxx4Ou/+Q2vX+27C/Rmi1fXo4iTdru0w3G9rIjtn7cpOq5zHwzWnEEE74QpCu4WQ0QEE3uiwQXb/0zpF9omFSf9+1mkx3UQj7OCi45Se+Q5UyhZabWnLGgCxvTheeoDjNJy71SYjg/X1OPQxggkocV2w6T+Sxd065lEpBiPDb3cYZsQpMdX+hdVsd71A7CC2oChYkWxbmSzu2N//8B49xXBFZoqrowcXv2C7X5PnDa0dCLTGbdaInbYIM5g24VmOw/aOAuxdpzjOveH6FWpi7KOrvPgtUFwGI3ITeolNfeynXNwun3DAgx3oWdWvccqOJQxZ+zDhV2qXOdOSzGbwuPpkePlBWsdWxlx1ZDDhnb+QkoL11oocz+sZNO134soayl8/vzMw9tfM91v+jp+tp3VLjPRvKKWlbSecXbshcHLmXpxLDOs1dGYScdO2Dk/NV4fdkTf2fHRZObPM+fPM4/DheWUMKK8/cU37DRgrZKmC3ev77h794q3v/zAh28f+fPziW9fXng8f8vz44mPCO/HPdd4IklB1ox943Gyw5Q35KcrpZ0oCiY3dBCaU1K5ULIHcQxDoBXhfDzx6Yc/c73OlGUlXVf++feF4X1g980dv/z6X7P7aoeZAuli+PaL8OVp4cvnT/zn55WnpXHFMj7sqbsJpkAzkTIYxCohCau9cbqPPTZjjOIs1Bop1VM0MPoDVmdazshiyMuMMQYbIyUfe/nYe775zQGxoReYAgy55yTbUTh5GAbFbhJvHiJ3h8A4eESF9/d7rI3YMfHjk+NcHIdDZFkTrWXksPCqbVhcw7hKu67U5UpdF4yNFO9R20u2ua6odUy6R+1CAZ6vsMxH5lmYF8vyT0e+tMaqwlQjD+8PqI+k5LgExe+Uv/0lfO22WCn9mjILuymxG5S99Yy7zDTAzlnM3S2qtkZmZ6liwFna6AgMSLW4rMgl00pi1SvLSdBs2QwjAwOXuvLn/Mg1N14xEuwGM8L8WJgzNCvcT/dQK2ld8MX1smFw5FhJpSMosY3Qxv5i9NotzK0/XzhfENuL4E25FfgbtgoYiwgEq2zu37LfbXh92GDkHUu7cMkvPH33gt+ciJuRt/OOr34T2MdI4DX3XwmekXbe8sP5z6znmcbCr7++Yxzu2LmI3J8p2kV6rzcDuXpOy5XLy08MZ7BTJIYHfrl5hx1WjG8IB6YdBOOI6x3/a/hf+PzTD3z77Y8cdq/4St7w1eYrLh+eOF1Bi+PthweCTL3YZSv5fGEpC9c6E/MdzoPEhp89jZtH4zvhybyw1pXyVEnTEcmKe9nxw7KSa8DlA/dvKnHaYfzIdV1pXqkk8qfjLc9taRfH+U1ioxfSPMJhQpeZdl5Ywky+NiQ79G7DUrnx7D0iERcmrNuRLiuSVmou6Ak0TL3LY1eMH3sGvgnNVLR0mIE6D7MgGXQ/Ii1jaMRxi2+uxx69I7987Dhm72kSGDYPxM2e6heKDlgfKeOWLQ/4YSWFgVfff6Ro4SiGt/HX5GklmYWqA3F7z2aciEMjyyNtXTru9fmK2Q4MDzusb+S6krUwXyp+6P0VN/Qsck2dkiYPm17s1d5LcDEw7iLe+l7M1QYkUiqsa5/4en9P3E4MrzagjU30vLs/8Ob9L5jnnmlOp5ls+6F2i9Cs6f0nsyGFjJaMqKdYpa5QE1RqL1bT4RGpWpp2gEDJDTENbGFN2g9axoPr7gVrDDFs8eqpdeU4P7OUT9QasecN4zURfSJ65c27D8i7wDAENDnO5yvNNWRnmBip2ZIIaDmwefiazfuv2Hz4BX4YUFWWVPjjH/93fvvHf+a3T5WH9xvcbmCYBgoLyyzUGWowjNsNQ2y8egiE6Q7bLCYqokItSkGY3u8Yd28I5j2f55XzeuayZlKakKWx3W8Z/+6X/Ku/+29597DD7QfaPxZy2JInj7s41skTJCA50JwieGLZ4qc9VgwtK9nP1NlCgkUHmkbUFOp0wtkItt/Y27lScqGsmVzBe4v3A0a2bPaKjZ7Dm7eEEG7+EXg6z7wyQnCN38t7dubmgNlOVCME5xkPe/71b37NfD7y3bf/zI///AdazixFGO7uIc9oSdg3B8bxvosM9xfm44lcMkimvFRyhWwDrZypxZBLZD4Vhu2AG/boUKnPjmVdeS4n7qYPtFZY84zxE7tpz5v3C/5uy3q9Mi+FMzN5VpYlc6pXNDja6EmjcDy+gBXmdaEBRSrNKlMciPsNwVlGVYbNhu0YediNmHCHuhnjT5wfZ/Q+YsPA6+sbdv/6PYe39/zi1/9Ac5WnxyvpI6TdL6jXGeYVf/CEcIc1I6W+EH0kDpHh/sA2OahQNHG/Bg4ucBcGwijEIIRo2Ux74n4iTAPWbSjt2kEptUCuNFxHafqZGAasC5iqFN/IzaI4wt7gilCOMG8bo2s4o9SgrJeV63XBjBuw3ULfXMVnENto0bAxjqJdrPUveti/P9yxJGUpXSFvWl/txtDJPEWFotykRh3V4wO39aRj/3Dg1ds77u72THuPFQFRvIFhZ/GTYOJNoFUzaCaLdqqBjZhx6BlE06i+EzIwDm0eXVaaX1FT0TJQbzsHVxo6JNRYUNeL8jdyUJtWaun/vowDNgass3jXEHH4Yhkl9/LgZPF3Bnv22F1guoy0UojSJ8qHccP87RfKmlnOM9l3LIhWZc5d1FVr5o/f/cj21Xf4TWDzaosJvYgoZguur+atGBYWxDgGdaSkyOkM8xVHI4eF8QF+9eo1+1jwg8FODvflyE/W8bRx7P7U2P3NjuFhy3/1qw/YaYvxFmsy0/sNPkSMBOpuRK9HTLtCcpyOjc+68vn7FwZ3wZYZ83xCDw7nA9iJVo7kWikN4naC8UpzE9fLQq0BxOGc43hSji/PfP7pW85r7RIP5wlfv+Xhqztef3hgu5+Q1ZKTkq6ZT3/+nh+/nPjxsTA/LTAbgu4Y8ogpA7UNvQyUO+ljJpMviUZlcYmJLTihedCWqD8XoqUzkDOZa36hygljheg22NpQo6gtvPaB5BzFQKCRjVC8YdllpiRY76m7iYfBM1lDa6lP96gEA94Lm02jpsJlFmyueBGCHTAOvPNs7Y6zbaidwEYSBV9HXAtkAdEJZ4SNg2g35Apra+jmQPCF7dj4kgNrqgQ1jHc7DtExVaU+Nt69gdE6ptFwcN1pQTJUU5kKjCtEu+C+AIOQ7mFYPS1Y8tjIa6CIpxqDUcuihlwazJZWCqkaLktgLQvruTK/wJrtTeC18m/+tx+5zIEP7+Hu7cixCglHMEqyDbFCcJHilAzk3CcqRg1eYqd8iYEmmBnAo3RKV6F1MVu7bROLgdajec73Q7jznvvXDzzst7zZ7FiTQS+ZOc0c88p0criiDG8yoU0EsQyHzr2ey8zndObz8Y8sktFg+VWYMFPFDUKwuz54+HngUMBU8M6QTcG4jqHcHjbEYY8P3SAcbs/mxWaqJIqdWbZHXh0shztH3DqiPrCfwBhhE4Zeaq4L6+nIcXmm1IxRxW1GovFEMTA08qLkUnger8xPj8zXmaelsKm5r4k3GT/tOV1njuUL/2d9hWimUaBdCeuEF6WNC/l0RcuVuIm4LNRr4WwvSBxIKbOWyvq8cnFXiA63Hlh0j2sNu55IZYOz3fBroiK1Qs7UMUONSHOI853HScWYRss96KmmdVdLbBAV1ZsY0ZgOYTCJKn1zaLcjtRg0LRTfBw4yeYZph1qDdY7oJqpVqsmYJTPHK5jKOHiubgE672kIgo0WvO3Ct1Xw2jB1ZmbBSWAjK+o9uVxZ1gvTZvqL42UthUteyHqlbC5EsfQ9g1B1RbRi241qUldqyZQG1irWNVpNRNcBAD5ZVpfRrIwa+D/9N3/Hn37/mU8fnznZJ4L2GVfNShscWIsNMFRPFdfL6bXRKFSTaC11HKUIJnhCUiqOJBu0PPatmYFx05HEimLIWDF4K4yu0jRQVElS8M5RnWER5bj27ZJPBf3pCyIj4xjIWObLGYLinWP7MKHeUo0lvtqw2e/YjTustQhQSuJ6/MTHH56Zny+8j5W9n/B4ci6UUljKQhbFVsH7AYJl2r3nr//6A09fPMfHI8f13IVRAu9e/4K42VDNgnv5kUkadrSYe8/DL77BBMs0wt1uYjAWWTLHYSanBV0a5e49cdwyjkKNFQ8EY5m2keANrXXgQFm+MKcj1zKzUWGVSLEGw0QLPRZcjXCWRCKRNfWvfXLYsZKCYQi+H/KDxXmDsabH82zBuIpEZXuomGqwGvjFb/6aViqmNSZXGfxAGAzzemB+3JLLGQkrwY8EO/Xhx2ZL3ES8c7TLSMon8jVRTwtLy5QmUCyJRl3P8NL4/OkBnQY2oeLNlqWdyfaK89C2FamNsMJs1k4X04islboslPlKuTZ8LBjfGCQSpkAIFl+VL5dnvFhaLoTJMrU+zX9/t8VPA8YIWhPTvWWKhtFC2mZCKYTckFeO9/sDD7t7tvcf2E2WzXbHbj+ynM/9jTHB/TVzcZDGwG4YsXFE3IAZC9UFvLM4kzCxESvcY0hHQWyhhgWZdpjBY6OD0PoG1DV0bJC0x9Tbih0zmIjKyCD+NpmvNLtSWz9bbDcju+OBq080+Yw9d6RvGXuvYi0dQbqZA9Z5XFBMuVJM6Zvcq8Pu+tla67/wZH87bbowR3PHi5n+y2ydxbZ6W2/SV4i3/oBYwYfAOA7sDjs2uy3DdoMbHEZNtyh6ejtb+opX7M/tZaHeVroiinG+E4CM0qxgvOt0h1KpJaPSpTzS+iFF6TciRPpLQ7gRFW5rYtPRY9Is1kWM7zQP48HagG+NCZDcc3eeDDESpshmHlmvV7QkSk6EqrjgO6mk6l9MetoapXWDsObCTz898+Pnnxjvd7xLvyGOFus9zjqa62ttLQbJ4Ixgbc+Ye3o0BesR39d0xnuizB0t2h0eLAiLc9x/9YbhF3ds393x4asPPR/tLNGCvbPkXDm/JE4lM5dCqRVBWFflhcSXLydGueDyBZ5+Qh8NPgbMMOI1k1vp0qHrPYyGZlfmYy8TV+3r+JdrZb5emI8zl1qwfiCMgfB6w7A/ELcHsoDOPTYwL8pxzpyXxrwaagtd1uUNzo6I3KJDzqGm41BzUXJt/YVmFestEiwtGIxrqNAZ79o63cn2bF1toA6qbTh3W5kZYbA35booEXBWyCKAZfC1l+osnUhhoNX++2VFiNYQomGoworAtfbYwS3O1qm1crv0ONTQy2kGDN0w3KNntn8GvDD6gC1AVrJriC9orlyulqlVvApTCAyqhKJECnfNsrEweWG0oLnd8s9KpOFb6whdbKc/Gdu7LGJpxlGNQ43vxfGqpNxIqX+vVQVucpiqQqmQ1kbBkYqQSuG3v/uIhJGrCL/ZBlYMeIf1hmK7ACyI7cQs6QOCbtu1GGNvBw6L0PPN6I2ixe1z1J0vqJpupLwJxlrrGdW19g1ByoV5XklpZb5cuJzOnOcEphuYU0pcLyvGW2Q8YtVwzY2fLpVmW6dRDA4TPOpsP3Ta/jLmtqlbi5JqptZC1oLT/vXjpD+wncf2YWn/2q0yjRvu9ne81cTd7o7NZkMYArbeJDi2r+tbq5SaSXlhWc+UVvHqCGPpsUb6VvC6rFzPC8frTEmZJRdOaWVdC8YKxq9kHEkNc0lYazEWmmk4zTeh1C3fWxPSCvGW6c1Fma+F4JR2YwP3KXG3w6qRPnBBqNrZ0Coda2udw/mOn1TTBWnS+q2n0WOgRW/SReGG9gW13VotrRfYel6mx6j6Q70gzmNM3ySrMai3NG8xfkB8jwOIDTRr0eZ6f2naYIwSRo+Vsf+xdOwzpgMlmhF8iIRaGWphybnbXqVH+sT0w3FuYFSx9EFXo/X/n7M0o3+Jh/ZLze35An+J1wgWY3scxBjBGcGZbmmvpYEKwQXeHt7wssm8hKXjXunvRrRTufrvZI/MGvPzt7AP2hS9RYX6J6p3BXqvTgmoelQ9TT0+bhAzIGKxoU+WrbG4wfW/11qscdjR0KJncY5TE+zPJJHrjHmEGDM1WjwNJwYjhoqjiaEYIWwnhu3EMI49nqtKzpnjy5F5XtHW2A6BGCJiLDegECAYYzAh4McRawO7+wdev32LtsL1eKFcuqlerGGzv8PGSGpdWLmPkeoHzPZAHrbdBGsq1nb63zorc16w0gjRYbcDwzQR44g6MGr7OSe6GwCosZbULdJaaNJIWFbpxnlvA8Z2q/qiwmKF6ixqPHb0mCkiw4AEjwuxU9R8/ztEOjXJWUMMjnEMbLYjNSlaLdOwwTRFWkXqhThsME7Y3z9wfvXEWjzNLUzuvtPinDDGgIsdYW4quDHgasJcEtyI5GIEVUOphTVdeXl6wT4806bALo6o1f57YAckuu5sqNLfb8aAtTTtMeacb04M239XEbDeYW3//i1rohnb3UYxYlovhh8OW8S6HvEuHWvtvEXEYL0lxIEols3O8n7/wP3mHn9/z8aaTpBzhpQLSyqkWjG3Z50qYCNYhzhLcAPVdLrWnFbWtlLJeAfV93MrvluwxXvEWdT9HIiTLh4zcjtT0PHwtk/2TesoXIVbtKwfAKL3jEP/nTLWIZm/UHd6TE2orT9LrHjcjULZVKmqN8tvf1aa/7LB/n/5YX837Wh2pvoFc3EUe7Pk+ZFaLh32nyvFtn6oFkc0Dj9sGHcH7u5eMe4fCJsNuKFPNiwYb1iToZmGIbM1njBY1EJOnobFqPYH0cDtQDDQXMFi8WpRq+TrRKuCmWbcYpDW0E2FOqFGaEMhJkuzBXFQlwdM0C56qREJgDeImfDRE8SwnZS1VRYVZhX2xaA1UfPC85dnvjx95vjyQvvywhR25KHx5Ht4tUmh2NS/VrNSJfHnP/6I7kfmaPnlX/1XvJ5eM8SBIfY1a+GI5Bmdu7xMJ8PFVXb7PW6/x45CFkdS5Zpn8mzJ68z8cuGHx8xPX5TzOvA//t//Bz68ec3hbs/0bkM+9V3HcG+4XJ756csz311f+Kc//sjpcmGpBj8I13MlXwt/aD+yq4orZ9LyHY9XGLxj3A98mN6RfGZ2K+vHDc09dgrC2fMsM5dcuHwRdBKC92z8DrUX1IwY2RPHARlGFh/57jzDaqgZ5lR58nekzcBYZ2T+BWadMSVhtvtuUA4e4kgaC6ZV5JNl8f0Q6mtEd45hmBj8QJsSuIlUPCbD4ALjYFFfeJl3KBVxGa9dUiPiabZP+UWU2EnJVGMJOrBslOoMY3KY2KVtZRXMJATn2AXHTqDgKSKMLfUceatcdWVOgVIri82MIXBZG4VCdRuK6Tr3Uvq2oBjLGie2m8jQemO/lYXCSFVhY0uPzhXY1wpJCL7x5pB4Uwe2pjGahGMk25UcZuzaCHbFuUopEfdakZ1j3O24hoSaiOiWspH+sFHL8fnM8tJIa+MsGWMdUYUQMlczknzlMmZqjmi9UnLm3/y7/8C3y4Wvzif+bw8H3rwb2Y2WrbMs3hAs7Cy45ojG94ndaLHV4lQoNuNMQEQopmCaQVt/HlC1P2Ad2Nx7GE1gKYpbE8vcOJ+vrJL4wTrG5nB+x3l+4XR9Zl6Fy2bi0iB+fOFxXQlPhuFFOfhAbQPXuuUf/uHXTHFD9CN+d0fNnuVqsJuubq8ls17PlGJY1pnL9cS8dpu1VcNxXaiiDK0S1XeWNQZpE7/86r/i67d/z3+3CPeHLcGOWIlY32EGirK2xDoXUq7MVOY5k7Ki4pFaWYNifGM9VT59+YmnpxfaDw7/fqAGR36q/PZ4RXPhUC595b547OI7NnJyNKvEU4ZxxMQBc3UIBodhmy1rtMzNwEkY7zxGJiajuLeJ6fKq00IOd0xhw+ACahvz2ghacaFvzfzWU6fMerzFLmtFT5XiElWFvI7UMGNblzPqqIiOoAHiAktDa2FxK+nU4RA2ZEKNOG+QraesEXUDWXoXwTpPE091DthgXSTs4IO8Ra3BDI4x7xESSGeE11aZk2IlMIQ7gt0xDa/59OUZIyPF9Mt8HSMaGtfjQPWGaIWJSBwCaoR62lNd6hcBEVQjKpZs+422YTGmTxSNGqpvhM0GWyPWBNw+wNOKtZ642zKkB4bxRDgcWZLgBof3HrEDauV24PCUMGOWxqD0AZr0w9ONtdm3YvXKVSNVBVWHmrcgBvGe6c3fYIpiTWP7waHrC5bGMG6pWvAqDPoaHypNLEcJfK+OSR2xVV7qiZ++W3AC4V7517/6FcN+xO0subyjICQP0/6BeH/A321ALLlWzpeFb//4BesK434gyUTbBIz1SLMUZ5jsnp0d8e/uGV/dM4aBrzw8LSee18b84/ccF8vaKmEjhLsdzjlMVaz9gN/tYNiRwnse5xeWspJq5pxnliLYWbn8cOLVr77h1TffcHf/gWn7GhcmFIOJ/WJmjSWhXFLi5TSzGI/1gUnhVDeU1jsZIg5rMwvKnC1L6JbXQ3T4wWP8FhNGQrAMzhGcI8SOwwRBWmOIY09EbEYynstyIqUFbzybYcQaYVnGjgUeN7y1AUxkXhbWnLnb7RmkEag466g59Ry+zozyChcncCfSpzPiIVuDO2ZWm1i18umHI8v4mYtxhLu3xGEPFpptBL8BrhQ7s1kHvF2oozCHzLll5lrQrWDdQNHMxa04DVjjqdHQrlBHRaPwarynbBsueu7ffWCeE7VkvPMEHaE5FuuYzIGHVxtevZqIccv2cGAYJlr22KGBM6RU+f544dPjmZ8+rpiHPYk+zHxqE0PxRGsYph0tz6zrwo9PJ5bzM64WNgJmMFgfsXGDjBHUoqWnBVLzaHLYqAQ81gGuUfO2X46jASrVVKo0ltMW5YoRyyCe/cOGS94z/fDAMRwxOGx2LC6jzWPyQNnDJvmekInaO1KACQVfKrjeQ/gXPewbrQymH4gXlzr3RZW0XFnyQiqF3Cqa+4TC2cZpqSgLpVnGVwV/7qQDSsKLAws19HXvEAx+MITDXZ+yW0sYlCIrTSrVDD2naARrM43UzbqDo+KRsd6YthWNlqZ95evcTaCk/ZdLpXOhnc800w931XS8kaAYnTGSMT7ghw3FQKwNmwu5CIaIEHHbDZu7idOXR377fOTppGTX2+/JQFsb9ZpwLtJSJc+ZROaHf/qefMq8377nX/93f8/bd68Jrx5QUs8cj4e+EtYr5XghmJXoIk48eRMonx85rye+5zP6yVEcpL3CprF7vWNz98Cr8cD05h7/ekuwlWus1KJwdHxaHd8d4fefr/z28TPtWvAFJjMScsbVzPVlJjqDUceU37GdMtEbvAu0MODsho0xyD5yzZmSCnOF09mTimMIFvUGP1j8GNi6PUYMYi1PpeDP2qekcWJjGmFQdPK8XTLPxfHDEtkAi3qSJkx2NO/IxVNy5/vmWrmUhZQTQqVKppwdeI/dbtAQqCRSfsGkTPQHbPB4t+MuLLSy0koiTOMNwmdwa8PZitjGYIXsuvTCSmFvhRx64alptzUWElECzfdJt5SItY3gKlsPx6TUarB5wgVFsORiuvCkDtAcrI1VMoWCVMdlFkJwbJvn1PoBTKxhWTq72aI8ldt0UJXTtTHmGZVEu8z4154hGjbeYLhi0oxZV8Ltpe2C4KTiyw7TLKsVFomAw0jF+S2lGpYkfLlESJmalUsDo401w3yJLMvMOsOyOMbpjtw8l7wl7xd+/wjf/4cvzOaPvP2rN3z1ZsN//37EBcFOFnbhNhW2GDxDjTihT0SLw3jppK1qUWP7C7TaXlQS0/8X4baGwRrDaW6UUkip8PKnR6xWQquU259rLPjdA1s3Ii3wux+/Zf854J1Bo7KfBLefcG9eMR8fcPeCnQLpfGYtjVQbX17g03xhWa+Y8wunfEZzwyTl49owTQnamP/d/8yH/de83r/m8LXnlTWE4EmHA3fhDkxg9Y51vZIlgXi0Ni6tspYVHr/jycysOSPPjd8+zVznGZmPnGJgy8Subvmni/L0/R85P37kOhk+/GGDrY7vXuDl838gtxWNE3/74V2Xm1lwIsTay21mT5f51UJpj9TrCaOZ6fXY8Y3GIlFgrbc+gme7eEpY+zTRbRnigTD0YYmh0tJCSokYdn0rI4IPPSJRW6W5yJz7lH5wK6INtUJ10LzFGsVSqKZRo6E2T9GMjX0EqTmRLdRGn3amE+flmfQobPZf4aeBOHh0jRAviLV4hLSJOCNEI71kiOlFaufQ9UrNK5f5iHe2OyIEgmtYSeh6JU6vqRnKCjlcMcZjxWOnAVnGHueKM3VJWBFks8eEijEes3ZZWLCmi5iks7hpCWkLd+8Gog2YcwMLtnaO/N/8H37D4/9y4vsffyKtBWrAyIQPI65t0BJY1kZbYbk25lQp106jymnl5eXYCVc4hHucE9x2xL16y9+bbwi7CXcf2b5x/OnlhdOy8vXwwHnaY13l1cbx+fjCcjlzOc+4rcM5i0rlHz/9wMaMDCawtMLBFqbRsNlO/FIGvJ1oPqBDRqWBKON2xzRsGfxAbSvXZeZ8eWQ5f09rBmc8Y6gseu3FcfGYc5dUEhyvd/dsd1uCHzhkxWmhzivHLxWjEW2wzA19+YzZCMHDZhhoQyBZWL/8M394+Z5lbcSyZfj6gaE2xiVh3+/ZHu65Gx8I+1cYY1Bdmatgy0BRYUXJlyNP1yM/LU88iEF8ABvZrspPaWWujUEGzrkRBLaugC2YMGCHCcaAE4OVzMJKkxGMRcUAXTCX6oo1nT5YgG3MpLSw6AV1kWr6+3MYPdfrGa0VN3j86z1SIlPrg83BB0IIqBXsOlOuF87PT3hDh4CMA+Ndo53OXJ6eKaLkLORsuAwr+fmF1XvevD3hXk1455m8R/MVo5U47Fhd7xwEE5ElYWvDNTBpotRCWhdYSo9ZCthFueoLwxoZNRL3Izs/4H0kF3hOV9KasEsl68rWO976yHzvKAVkiYTXG4xW6nzkpIo7Vhqea2x8/vHI988v/ON8JPxHxfgRN07QZj4xU0X46hj5vB5Z0gW5vJDWFwaUe+cZtx6rjVhnLvOZ4ncUPxJKYwgLXkpHytkRpdG0YcOx+xVaL1dzE3nZeKZdL7SW8LsB+1LxLrCdDOuxIqbQXMUtQq2ZxMxU73Fj6BuIYxcDaoV8clzGXi5vUv5lD/slzdTW0KqI3LCGTWk3eU0D1PS4iYp0sgXC2hquFi6pEK8rqSptzd0maLtxdVcMebAM2TD5BS99rkoVmhOaVdRV0IC5veyNhFvbXcBExFSQ0hFISl9ZIiiu/13G9HXTjdtDUbD91iTO0NTcVrLaLWsSML7LYlqriGpvz98iH8F4mDJtLWx395gvX6h6puYe4ampkjPg+wFFxKLaDyPHlwv//Ps/EPYb1lKJwRO872tY7ReV9Xxm+fSJtChiJqqNrMVx+vzE8XrmJZ2xOmG2E9Zv2fx6j+zucYfXbD88EHZbTIiUlsgpMy+Vx5L43Y9H/vjjkf/4pzM/vmQiwtZ7Dt7gG1jtkyHjDEGEnT2w3wgh9CKw9wH5OeqBI5vUDb9rj2M5FcY4YqZOVXGOmwFZoBjCGoi2M/NdjExR+toYKHtlbSvhuiBmvP2ohOoczfZtR6493tXabfUlXezVVG7t+P57CA79WfilHc/ZFGq1SLMY9Z2ucSPEVCCiOBVMMxjf8VdoF1Ha288ew+2gLT2mY32PHNhOrLKAR4he8K7nkKv2iIZKl3JVL0gwuGw6jsv0v19UEGcx3oHz4F2Pp1nBp/611NbAuv7vGCWK4hCcajdWF8X6fiVlrbSyorpgWyaYQHAe6x1hM+KnEfGeQkObvVGLHLkJq8BVTScxeCGvCTFCNTdLowqIxfhA840WlP8fbX+ya1uWnlliY9ar2NWpbmmFm9FJTwYVGaFMREhQQFJH0AOoqZ6gltqZb6C23kEPk0qEBGVACVEMMpLupLtVtzrFLlYxazXmdmY3vUFzOOAwwM3uPXfvteb8/+8bgygp2wGUIGjL7y4Lj7+cOKfCw0ZzO2q0kiwOtCzkcpX1qbZFqbVQr1ScFrZrFIurDab9wQr1T2Xc9lBtlKhYA7FCFIIQGkUhUii1XgkxLVbQ+PcQfUXVhKkamW2L1OmRrj8wV0FaAudy5pRCQ6elzOJXfn4+sswT4nJkzRMaySAdzz6TU3NRPE9f+Gn3zGF3w82nkW9e9ex3W7og8TtFQnMOkl+ER2YFSXNKC59fXjiejpTn3+NlQkjJRvb89nPkcr7gj49cQqITI6PY8sOpMD9/xi9H1sPAUz+gsubxc8XPR1JJZJXRYofsFHaQiJJRpf3s/hgxSzmTzzPEiKgVbTUWjVQWYxz95oYimuVxnHtCmBECOjMiVEPQldjQc621pVp8pDYKmoggirrG5aDS1vlSmSubvaGTi1HIK3guX+lZlILIpkVzam25fUGLdpVKXANLCCw5E8sLLm3pYkcnMgbbRGsKYpFEcbWRr7WVamslZwjzC2m54OeV0bbvh7CGdJlx3XDlWrffFxhqBlEVUhik1u3vlQQpULGNECckhXjlB7VoWrOAS3Kp5JjJKSFqQVuDkrrFl0SLviqrKIdNQzTXSgiQS2Odo1rMriLJWRJSJaRKTNffV2pDrzUHEgprRx5uv+f2/YbN7Wu299/z1fAO4TqyU5z1wrOypPNEutkRlgoicdSaqgNJBS5CskuN0nWulfNlZVIZhMEvhvJqRPYj97t7GG4prqNIc303t26a0j0I3To3qXV1Ugj40srCQl6jElogNSAreVXYfmTc79lstljnUEojtWJOgiVJEA49WFRQ5LoSz0+Y2iFdi32mZcaXhdOHR6bjF4LQqHEgpRaN1YPhZnfPZveAG3YgLTEnSs74IhA1UIRkqYXL+cy8ziw+EgbXhjFCUkpsbpVcECq156lq3Z7OdTjrMK5vJfSW6WpRRSSlihbzvNqk8zVW295xV/FcFWgUuSRyvT7ztcGajiozSoDr95gcIUXUlXZWdSMMydKkpcZukSzUKtGqYah11aiiKCJClYjaitw1GYpXXKYVYxVdrlgsWmoq6hoTi4jazOjlSk7843syxkgIkSQKSl+Hu9cLTb5G36Rq/qQs4OXlzNPlwho8IhXCVLhoSe4sGyORsXWkQj/iRNvuL7EV5YuwrIvlZYmcfGXyiqlmTAEbCjkXplxItZJT4sv5iF9nrF/RKlKNYNQKd0XslgwxlSvlKiKzbfhU0fwYQppGuiq1pQxqY4XVyvX91WRmsqp2XtAFrRuC2QgJ18G1UKWdc66UJuMsQrcIq1Dts9UAXookBPmPIr8/4a8/+bDv1yNr1oSsrpmk0nBqsYBS//QLRCsQCiFaJj5pgZeV8xooSaJlIiDJKlz17JZN0OxGy3ZjcPJMnwsugfS1rU6dRJaINj3N1S7bgaiUNqFSqv1aSkbYjkqA1FBRtbQ/JGEkoiTkHzNQayZryKblJVuGUZJUwbBBCodQBp0bKir69iBKsmVNnbJIM2CGyt39t/zjT1+o5UJaCyJGYs2sFXRtPx/lDCI1g+wcC3/zd3/HpSg+v8z0veHh8AajBLIWYoLL5ydOv/t7yjTgxy3SOaZQeTwdOZ8D58eC+5ewcRsO3Xc8/Js9W3fHaG4x31lUlJBgquDPmefTyt/5if/v/+tHfvvzI3/94YVdENzeOsxuYNOl9kCeodeOboDBSu5sx8PNDusc0hiYpvaikQa8pdhCdYklnxlyoWbDaA/0O9H4zrnZIHOxlGo5LDtuxj3b13vMfqDfXL+svhKEZVYT47nyUY/XHgP43tL3gmoVPkK9bmtUVQhztRonTbaOrBSJDKlvFzw0Wm6oRZJSwYfr9BiFlA6/tLxeEZm+B3MthKJME4WlSl7boVJec75FK3RVGCRK9Q3TmTJKF2yVxCrousqQKkIVFpuppZFVgnRUp1Ai0CG5vLTvTRHtC+02Gts5cuewgyEJSSiCLZllheArvSs8p4ZM28tMJxyuZCwtQqdVpLOJchYUAkV5RAk4q+hGixybpMRsOpCS7AMpaWRxVKEJUuBlYTYCoy0iGdJVNFRlog+Rk5Roq3Gq41gy1YFGEW97xrGV6H5QCz/+9MjTvHL3qucv9IiQYMhY25wVsgpKpxCxQoasE1TTHnA6Xw/713N9Eu0hqVS7GKnrRSBaikhkKUlSX59BUFTFJkVRmWIyuUiWkskl0dUDsQdhLUO9xT0M7O7veXP/LScd8KeJ9fyEXxbWUFhi5PPyiQ+/PDOdLqTzGaMyY2e5228oITD7mfNy4fHHFxj+AdVr7rdv+Kt/+4qv37/hu+c7fnoXOIfCxw+eRVzQs0ZNhr+PP/Of/uPf8/MffiCsP7AvA4ftlq/+6i0ff/C8PF348vERfn8E62Ac4DE36aA1sH3LH94tICv8g29N7ALMkaM/sdkY3t1oiAFpHKI68Ak0rXv04UTdtt6SkpJu3KBVj9MDhzffU0smpkAaF+aXlZoynXNUqYi5kHwlG4nWDq06SkhtEp+gXgzSuVaEFwtSO5TQGNWh9gOQqSkglEamZmrHJBARURJadrjaLgXZFFKYkDUhauZyDqyrZ0qJs/9Mt0rGjcR1iX15QGtDcAvLrPE1EeWKPVmOaeGYFtJL4PTyE+t8RHvFfWfoO4fdbBGrZ3+r2OzMlQolKKVR1GTXoUSPkgqKocZMngpq095F+VouLbTPqZYGIdr6vWRPWAJxaWVYIQ1Va6oBFRV2MKhOkeZLi6iWyBoUEd2EfdpSTNtGlqhZaiHkio9NaBVTIYaMJ2HFlpvNV/yX//n/lr/8333H21dv+Gr7NfbVwDxXXl4y/++nL7ypW4w+cnonufx+Ia6Fp2J5p7cUlzm6E4c0s8SFJQTypfCsL1yo1Kdbtt/e8vDmHV9/8+e4ew22/fqq6FGqFdXRI7EqSmwdiLwmUqhMskOaNgGfs6Q4h7YKJQU+GA7jDa/evGV7c4PpWok/y8qXVXPKPWbcgTXE+UxaXlifP2D9PcYd8ENguXzivAQ+//YLcZrhsEe8tqisscOGzc2W+/E9492I2XbEKJh9JoZMWuG8L6wl8XyZ+HiZcbGwK4p5ULjaQCA+FFKAUgReJlR1VNmhu55xGHBWYbUgV3nFJxa0FNTaem4hV0QukNt3Jop20M85E1fQ2TLIypI8TnWte2Qcu82GWjMlTuQ6kGKiEMBWcomEmlFYhDIoa9kcIM5fIE84CjGsmNzR6UqVn5HKYUoP9HRijys7no8XrC/0Q4d4VTlsHhAUYl5IMSGyQAOrUmSlSUqBi4TJ433A6yZvS7JSZMLEphVKtmJSYiUQU+TzT194vMwsORJ0pn6JWAkfRsnbFzi9mXh6+8LDOWK1R1HRl1eUr0dqV6ir4nMsvCRLXDTzof27zJr5OQdiaHjmT2Xh/MsTZVpxVfP6TuNM66O0BYsgR0mVFkVG4jFlD6VD0KHUFikTFVCiItcIpl3pa1woWlGrRPoOWbji6BPOtiGgLu0Co4RCytYpVKp5cNyhb9v0nKgW6trO26LTFCVp4LJ/Zs7+KDUqVXwOeL0SvUAmkCIzCoevlXo1kUpZUcJj8sCoLePYs3M9VUYKGZe3FG0bYkgr5FhocBKNHgxSFagr7FWzOirVVr14lCzIoUMIqPk6zU0FNgkxFlTqGzYwJcTiYSzXaaxGOkMtGRkjabe22yuaJAJFF6RW2MEiOtEY7ingE8TqqWZFiC2qZMiJ2eeW3xcFsXeM9yObZaR/6mD22JSxKbMGjzIW3e+o0ZKTIC2V5zgz/OEXtspw/tVX7Lsz1UoQgTku5LBgUsLsM9ZNCLWwKtisT6h7g/jNt7zbarqHHea7Ld/cvaY77NHjSL1OS0LJiOOE1IqQCj/+9Uf+/X86cXxZcEvG1weYoLMCESw6f8bKM85DP8BgNON+w+HrG6zuIBqSVdQkqVkRhohde/IisF2kW9qNvu8mOnWH0RqrIioE9MbQHRzDv3hL/3qL6RQxtwd+lQKKIT56wpeIPwpqntA5o7KjK5USYM2FiznhlrY3SiZRUkWqSt0kNr3FWdXO/jmw7Tr6vUbaQi6VFAvzutK5ijCaqh1CtElYKLHduK2kqsbZjyGTS0b2iSFochbEkrgmL6i2XLnvgpQUNdKkaKaQpvb9UEnCKlnKSrwU6lFjRghes8ZKFDN1FYgESSTAUWZBCKE18FVBCXguTVQHhfUsiZeF4gO+VEaOiDjBZWIwhT4J9CxY0wvSV1wCXIRJg7aM7wxb0yOqY/IFvTYR2OQSdpXMsdE2yupaijxn1kvH0CdErfiq0WJmlBqDY80npm7D0it0L5kZCFEjvG16dW25vBR+lJE5ZOYMnRecYkFJTbdepSQGStQUEZoEaG5t3MofnRltYi8CSNccAFI26VdXR5SwaCWonULlgvOZzf0WZzJaJY5zpa+VjRB8//U36H1AOkUxN7x+e8v+5ob93Q3GrDzlhc9KcPEvxNmQgkELwW57T6/3CPdMiYnOVba9ROgtG9mzL5bOaibxRFGRt6/e8Ov+Pa/lnlqf+flvTzwuiY+XwiacSd6x+o7n/FvSZcXWkX7d0HUDVnbsFoG4ecsoA90y8stNK+SrrSC8/4rOKoxRBDHSdTNGZ9y9pouZeY788rgQu8qxFLhk0rSSRURa0XwCF4WIGcYZJzakVCnZAz3uZsf21YFh21FSRXtD7yv20C7bzu2YpiMxenLwvH29RYlr/KImasrUnJG7SKVHVoXNLZaltMDsBMo2XC9WQcpgckNWxh5hTSu0LgG1iW0Omi2y78kpIKKn20WiKOQZ1rJixIpVPTt5ByriS2B9uvBpLSASTgbOYeTTy2c+Pj9y+gTr8RN5PlND5nxr2A+Ou/OG/cMd2gmsrqR1JfhE8IHtnWlbuxTwqflQpEiYQ2xxhtIO++Eq2DHKNHpTLuQUOU+nZktXAal1U4D4RDytdA+Ha968kHxkeslMx8Jul+mUwJQGcCjGkoRo78mlkn0mxkBZK/gZnVceDq/5V++/5Te/+Rf8r/8P/xv+/M++ZnvY0m1G4rLyuCT6beDfKcWXw3c8roV//MPv+X8gmSp8Uwzi/oZhUvx6/Znj9IEHEu86xfiv/5J5mpjXwMc/u+Vf/4tv+e79e+6+fcvAjBSJLBPRrdhhhx33xJyZXyYQHnXTMwXPZX7h8vlvePl0xK+RbmgEtpgyK23Idvdn93z3n32H0xZyJcbMcs68dom4c+S7b3h++cLJS6ZVYpXBbAtqWDCXZ85HT5pWNuXI19//OXp3y8YaXuTK4Pbc7e4YHw5YAXJNLD7g55e28XJ3TM8vfPaev51nvpINFrL2jjFmZGnAkt2YkW4kYlG6MCtNZzWHrUNZi5USC1xSQKqM0pWqN1AzIQWOwbPTjfHkRUHFhdWvTMtETB8JVRJRiOjJpqNKQz9uru+fQvYgdcFaUHtNipYcPOkaqzO2oq0iiw3VTAgVEatGf9WxTR23/o7ul8i0KGLpuP3uNcLum0PndGQ6v1B3Aw+3b1G2IkWh+oCPE2te8SGRTm0iryvUFxo3XhTu4kDIgVwSNSXUUKleUrxkUp4wZdY18+H4EeqALAoZV57Mys4q3mwH1OuRfqvZicTz5Wc2eWXUhs33f05PpvjMi4Axto101xtuzitLElwS5OkRKfZI2ZGfT3x+8uS48s1BouQOrRTWlNa97QqqSzg5oIxEWoVSAdU71FCRpl6JcRmKp+4SCE0VkpIryU+klBAjTSbqI6FOrOtCLCtyH7h5NtfCb0acMs5IxMExRM1p8Sxzoq4tDYIQ6GJb9J1MLP/M6M32VwEyhNoe5JVGEBBtcSGLbNQEISk0Mko3DGzGXVPPX1ePXCUtSJCqInWPtA7Va4xQaNXQZEJYkC1DSaVJHIokFYXUDUMkEAhZW+moCtCy5XupbduAa+Nh3aIkkoJUoOUIVZBro61U0VrlwowIbZoVtgA0i6JSHUh9tWFXBLnl7ERbk/V9zzj09M5w9i2S4YRutAnVPgjS9EgjURVKKfiaOPuJ48uJ+7d3SNMMbyq3dW9VFYokhybbKhdPTIViFF3RDG8fcHe3Dce336L7Dqk1QoOfPaUUorGU60rP9iMHIxGuo2iHLSt3Fg6islOX1oqvmk6sDNkwFIHtAmawGNdBVSjdU0IlZ0GWPaoKVCqoaDEyAgKpe4womJqxFXZWYm+3DF+9pX+zQx8GRGfxswdtKbXJefCAby8+WXWTT8iClIoWuKpUFFlFIKMyIDJCgTUOaXU7/FVJail4YtUI2gC08XASVbQJtpASJU0Ti9RCFqXJnmQrtrWxZEZI3QqBskVVfIrkLKlJg2tiN/4pYSKRGrSj2Tavn5VcFJXU5HRFIFJGxNS6DCUjYkWFipCe2glybyAluE4GRcgUI8hGIMmIUlA509dAR6GnsHGeTZX0tWJFI5WYrkWeRFTNbCoyKAtOIZxEBQm5tI6MbVnBFBJrvH6nlbxGCwJSCkqq5BgoVqCkYFME73dbNqXyUuHFGkpRSCEYzYakJoSGlSY7UkbhlETXgkI16oaV/ySZETJeaTvteVOvMqI2qqcJPBSNzqFUcyIU0ShaomEfMRWtwRlBbw3UhRgiIiX6w8huv+dw2GB2lazhVCrDfsNws6HbOazQdLFgjWcc769bgoRdd1gZkFYgyoEsT0giYcrE8MT1FMt2N+KcRoww3ErUdkBsNqihx5SIrZ7Oe3b2gUW1aJFbDwxakhzY/dcMnWTsNSL1SEAbS394oL8IZG9we4fa3DeUpVL4qnAqYGTECM8gLGIo7Mx6FSytSLmQw0oKssUPkqKK1FbR0VCvHRUZBPQglUapAWENUrQXYTc6kF17plZNjEeCT5TsieUGVVRbSZfatq4iUWTXCEtFIqqmmMbIl3psz+taEUUjdaJeST/CSFS8/nO0aJcI2lZPxT8SciKdHcjDdb+fQBDJpRUvpc5UCllUfJxJpeKFpMbI6hPBJ3xKbfMrHbmekauiEljFmc26bwep0orCJadGG6IjlkquCVkVUNrnUYwoY5EpI3OlqoCUqkn7gFpzIzfFBSMUQjZqi1UjUmq00xhprpvqzOUUWHwglJZJrn+U8CCvVe5rB7cESlrJcWWZTyhZcV3Pw+E9//P/8l/zm//ZX/H99295eH2D6xzCGoRohd5NTqSHLXiNWQovy553T1u2TvFw80DnQJiByg1RW27choftDa9ff0OKmTVVPqqOX//5t7y6f4XbbTDVIspKyRNF9xQ9UKQlFphTJJfEzndMl5nLy4XweWajEmMv6c2GZGWLmiVNv5HsdztudjcNtEGLMqYSkN0GNa6IYSXPI0V7EHOLr1RBCYV8WRDLismVcf8aN94ghx1uHOmkpB9H+t0BbW2L0eZMmk9kqcnCNtcFiloFfal0445OK6wETUDWiCCgzB5MR0IjqBRZsVohtUOoFmETiJZblwYlFVUpYiqNGJcDSXSNYFRy226VJldMWSOFwmmFSmCvUq4qdMONy7bxNLI2KoxRKKlINGqUQGJMO/uotYnq/vhSVGaAoiAZfLzFLpmQFZvDnqp76jVeFspC5xr61GqLoKB0whWPLIJUEqF6ck6UlFu0SGq0BK88JbSYZqHQ01EEBJkpCUK4fh+jaPQcCalqlJLYvsMdDnRKI6VoUrjzC7YfcG6LVq0kXaskLQXdj1gKXcg423wfJawwNBiClIbLqlCKBiMY9mwHx8bCUAvGrGilMMq27RISVRvdrwhJrqqRwHL7PheRENW2lz+CmtpGptSCSI5Smr0an65RWhjMyNot5NwkW14lTLWoahGdpC6SkmkAD9Hi58VIpOlQUmLEn3Zq/9MP+7XdQjIt81hIVCHQsiOI9nZWtU0+i9QUYZHd/3jYxyqkNFShiaKhh4SsSJVQekRbjXYCg2hFRC2gdK2MJwsiSXJJlKKJSaJ1Q59JGv6oJk2phioDosr2Xy2hdu0SoAIytmwoWlDFFlELsmZKbKUjoXRryl+RaEIKZPTN4Ki6ljkV8ooDjNeyYGPqD13HdujZ9I6X+YpjrLrFSkqzBQvrUKatc52XLMpzSTPPzy8sIWCtwSqNyQZBK9TlcOUzx5V4POPHDVkp7FLp3jzgbg5I16N2A0LahlMcDHXx5JIJzpJEQijFZrflq8GwqZJZjuz9B+403MnKjVopRSCroVcXNsUyZnBuRXUKNWikkVQcObRseC57ZPbIsKK8xhCoWiDVgKorukRUKex6TfdwoP/mHe5hQPRdE46dZkQyVAk+BKoHfIEQUNVQZaXI3LCMoiJFRghH1h5qxs4VXEFpSWdcy7tLiS6SYCK5CnySLRcrGlJO6krTG7bcsJa2HSpLIV4xhApaHo945UIOSJHbwT1KZhI1G2RVlK6SVXvYVi3aBUIJjCuItYJoNuFcWwlL6NImFzkhY0BVicqRGhLqDNmuzQBc+sbxL7JdFEMga0PSCi0SumREyWzkwlhgo+DGrmzpGUk4vSLpKddJqXiSRFUROoOwVCuoXcuy18x1stHjTcuPhgBKZoxul6Wu49qNKOTkqdfJ8Fgrbx52XErkOUX+Y+iIqaE++93InBoeNkhQVtAZxVZZKAEt2mG9WNEeqLUZGyktsF3Flb0OV37p9dKu22FfKIVUGlBNsKzq1fbqMVrhjMFmz7IkpnVG18y47bh5dWC7s5iNw4vC03zC7Xq6/YDZWnQGvXis1ex2byh6JekFs+6x4gWpQHQ9mQXWhD8lzv4j2vRYt2E49Oy7W/TG0h0EeWOIY4/bjvQCNmohZsHd8J7TORGYGPMrtrZCD93mNaNZ6WSGoCkkpLR0hzvGGWy/YdjvGXcdQVmC0OiSsVR0CYjyiOm3iCK57RNxygR/ROfaJn1eIopEr4Y6AAhUMJS+HbxVFG27pVSLM5qWRZVF0RuHUiOlKpZlJsbWkZAikYomZYm4TvWFigiZqOyvHQtaV8YJhLEIOYKKiAIiS4SuCCy1OtAeGQSiCKoBmV1rcugF4QuyJtCRzgwgAspG6kngaySmmUtMONugB1UJYl5YoyTnDpV8u6CkJhQzxiKqoPozLoChEPVEmQJ5iYQU0YlG8FKVkpvsSYhEX0TLpFeJygNKVzQKExWY1A6LtSBK23KkHCnFg9pdL6yFXm8bDnJ0zSCqJLEWTi+exQdiTaTqKNfOA1f08B+zwakspLSQ/Mw6HRl2A8Nmy2/efst/8b/8N/z5v/xL3r57YNiPLT5TBNIZbEwMQRDvd4hzQcjE5m7L1zcbFmfY3z8w5Gd0Z5GbG3ZuQ7+7YXP3Nd/fvgfbk6Th81p5+6tv6TYHlgha9tSoYQlkvSMLh0BRamXOgZQLYS2cj2dOT0fi58DtpmK0pZM7nhXoVaCzYr1z3Ox37MctSVZULeSSSQREv0f0geIeSW6kmhWpzlRzxXbGTDwtiOhxusPcvid3O6obqcPIICXDuKXbHpCmoRiLgFxWshmpwl37IwYlEzdSMow3DKLQlRVVPZqAEgGlN6hrB7AkSRQJJWXjr8vWPRIIjBJoZVHKUSiEAilXUo4k2aOEIJcmCpSlYkQhV4eVEqclSrVDsFK1GetFBgXCtLOTVBZl+vbeLAVRKkq1rLgohSDXhmoVbTtaOofEoqphV26wfiXkgt1uGupbyWt5tmB6i7E9RupG1dQQ6ooqklSuheMYKDHBAKZaahYktZDD1eZs2zO6KoHXCblCvFp3SzEUBUVUolRYZej6AXdzixNAKfiUWlxre0sd79rAqHPUKkhzQA8HOjLdfEH3mya8OmfU/oAzFgWcgqIzjRZ4GO/YDZGdKWxqReoJpwVWugaziAJVBEIXSlWkqpDij72nTBWZmrt2QJaJGq+HfSrCGyoL5IxYC1ZkeqXYmh1zn8lroabK2a444aBqaq8Qx1bwjSQyDUldrELaAV0MRv1pp/0/+bCfUyatE2G+MD2eEdsdtutQeNa1UmMkxRV0jxsVG6fYGonNnrScqN2BjTIoKmldGrtWarTZsOtVE19Mgbw1aNkhrUZzIiWo2aDsHRgNKiPLM4RWvq1SU5VGiIiKC8vqEUlTiyAqhRErtWbCvLaCrxPIXjVhVLuykJOjOoNwGnNFJUlEK5V1Eh0zepk4ec9yCSxLYlaJrdbomgniC/dDYft6y9Z9z/jff2S9LOQQ2GXFnBrGTrmZ4i2iGLptz74OjKtmevrA6R8G9M0N+rBjLZ51uXCZLiznH5A/fIHZE797wJx/YTB3dL9+ze40obuB+krjlpXSFZKSrL+/cFGRlUz30fP0tLB8nNn93TN3pmMzJGRYyV7zxkferZHbukHyjMwzwzKzu4dtNzDWDTp8RqgjJAehFVGyVqjyhZo8aQ2oMCGNQJrEIH/C+xlypi8w/tvXdDeZjp8a//pZIBaBkg4ugZxlswT/4Qvr0XNZE7tL4FICF5EwAlQnGna1rJTLQikeJVe2wtBJQacX1PyMVTvGzZ48OIxeUHmlRovUG6TWdNseHRZIlZJASktVkaQz5ewJMYCGIQGubZBMOLGkTPaFfIGLBEnCioU4O0RR5CR4CVCXiPeVl1ARa7u8XJbKqxxIPpF8xS6Bmio5CPrHF9ycET7TzZGz2ROSJD4dyWGEWEhL5Ogy3bOgEzD7wqvjEbusdFvJ+8FzL1deZcU+LnRGYIpFxs+UkEEI3Ktb0nZD3Yw4JlhdY/cmjbhGCUyc+RIk5ZIYfEENlr2siAyTgcMlIkthubPY3/0IotKNHf+ZhfOu47PtOf/1J5YgCcJwbyVn1dMX2J4upHkmHBzxXc8xR+YY2+VoBe0kUgmsV/ir+C7HtmkppTH9q1XXnH7F9I56dS8IrZsqnorRBtae0ShebRQffvofMNOZhxS5+atX/GoveFBnXP0RfRxx2hG3A7cpMCwzUiqOLy9MKZOUYgyRz9PEy/OF08uE1R2jGbjbaJ45X8t0E6ZsWM8T/ukZdrc89B23YuD8eYtXzzyfz1zuRvRqGIVD3d1wHz1rvTD7F/RLoCtbqhvYphOfn554CQvvqiLpEWMqO2fIvcIy0Z8TH+dXdBtJ5yqnGFvpuRZi3rBVCpUz4xxJtfC0Zs6XTPYVESckkWItou5QymDMkfJY26vBdKiUcWXGikd0bG/2qjV6u0GtgeQnfJrY1IgVimy3mHymhpV5vaBKQO979Ogw4fPVhaBQet+QzSKj01OLSgACCdYia0bUmbh4Sov9QzQo3UzQKcyo2ropSve49TOkAKEg2HBaBSkuJPmfUKVHmw5bRrajw0wLYfqFj9PC/BRIL5lykdR0QcYZ/bTgHgobbehMjy4fEXOkPla63a9aX0RUbH5Gp3Z800riVEeRCckFMVW0VJjeEKJqEIDFE8pC9Ss1RYxxqDpTgiedTmz6ijAG3VtiPJGniveBVCdSTtQEBymRKVFzwhqJKIqaIiEslPNK/PJI+PIzr6rkTVd4+0ryv/jf/xW/+fXXvH24Y7jt0LVc9wEg5yOKiB0z78+Zv79MvPxyIv77v8PnC9IU3q+ex/mJLp/4rj6x//odXfG45R+xa2Uor9D2Bn13x54JuSZ8MazhTBGZ4Aqb5SMxGtbVIaZWLjZGsZ5/4ZcffsvzD7/nxj/S377GdAajFronTxKWvN3w9fuvebVRiPJCXDbUVAm+kItilz3H6GGu3OSVIAvBGuIlENOCLJ766TPuq1eInUOLXzjrSEkL8mPB/sWvGDqNCmeKNIR5JXqPt4Lez5BnnqioE6giyN2Bu7ISw8LzfKZbT7idwW56+vRE9QXQaHFA97odqMOJkGuDiqCQnUGSkWnmnALzMbCEzMlUNmJFiMISL4jQIs9ZG/ryU4OhZE1n74laU0Wkhk8U2cq8ndVErVBkTDlz9hNxTSSf8DKipUGJTFJfMCYgNwpud8jLR0oupKLZOYHtNnglUeUfQfVIenruyIcD2hmGdKScElKZNigzkZITeYqk0xH8ggLG8RVZRwgZdfSslzNSG5zctZSCF5S5EqInV4vWlvvDyMfTzDxFyhq4fXXgxm24l5KP6Ynl45ldnBn/1bd8feh5tZXUMSCPU3N4DAP3fkGlxFNdefwPv+WxVp6N5i+FZFGBKRfKT1/otGE/DnwzGExc6Shsekkvb3FS4VSCJWJd3/qWOLQMaCpiFU1iJ6BikPrUSsc+EUu8PtMKxhwR/oIoC9oVBjVgrKBXgf7njlOeOUbPYdyx+pWYPCJIZPUombCyw5jUNp2rxm0kIkli+tOO73/yYX+NK3HNlBXcxmF7B9qw5IgIbe1mtGjig77DDR1O71C2Q3YWK12LzSDQosf0EmMNrh/QxqGMQqsBOyqM6dFVk+NEEZaqLFpKZLZQJTFXdDaNkUzjT5dQKT6Tg0Vcebc1GNK1lFuqw/a6kaSjJoeFnDWlNsFP9pKaJJcSUZNoBB+dSUUSY2L1E+Gs8bGSSqHXYyPNkLm3D3Rvd9T7wKvjW+LjR05fnvEnTxIRFw1d1CTlSShqVRir0cVBgF8+PfL68AojLJ11SKO4rCu/vDySfpnZdpbxZsur8deUO4/a7hjCLfZ2RO06arF8SpH6qZAugl/CmRIyJSaW+YT/oTK9RE4qc3/YEFMmeI+plYPJDDazU4o4zZRgUNK0TYsxyNSRpkzNrURSVYXaypxrXMlZNlHUe0cfDVIKzBAwU08/aHZvBoZ3r5CdBCMoXxJJCJKQiKXwEhbmuXL+XPgyr1xywpbMhcxaKqFU5prpaDm1NRVKLuhaGJTEaY2RIHIhF0eVBtkJOnpKiqy5MKqO1F95+sFyvszUUtBCo4ZEkQItDEv0ZN+INOag0cI2WkkJpKVRL7zKlKxZMrzkgk0QasYXiAEul8LiKyEKvC/42LYFS6nkWIkBvJEYFCa3SYFSzfkhOzBOMUn4VBLlEtukw8EQwefMJWdqKi237RT7vtIbiRUKIzR6ENhO4pwiTVeTs278YKkNuVqWAHUSiCxIWiBRhCxYIv+EthRdZeMk0Ag8G2m4/0oz6gFTt/z1ZabGzMY5tu9GdruRO+P44ZyZj5JtlHQ7jVohxsTffL7wq67J7oZeYobSYkopkTsNqm3SMAJZVcuEimss8vrEqqoRvIppxWwlFKBISTY9uZCYTmOMwDpJ7ST3N9/w9leKrx4cb9+9xRSPTBmx7Ek7i3A9W3NgUR0CS58cy1UY1ZXKMWamAGsUeDKDcxir8DLTbW4wm5HN21v0ufL7Dz/y2w+/Ry6O8NoQ9oaSBz6z0mXFm/WAMBWlOrZqx5wWEg4jtzwPz9jeYqpkvsyk2SJMJR8MN3lDTILzOuGmnqQSzyag7YElV3K4SqRc60ttk2ZJhRLbj3haIzFkNBBzJmSNqgZjNIKeWhRxWvGrpJorTlLuyaljWRJmbhcqlMJEx7Ss+CXBRWNcj5CGkiB6j4gS1h72DikGRHTkcKGEZpzFCWowlCQIGqrsrobcCtGSc6amTCkOKQpC0oqeObZDqtii+/9RshbzBZJDZUE3OtJq8QgSCee3UBzJaFwx+AJznqlr39B4NrDd9LC2UafZVfre0jvLoAficiQughIdyiqstNQiWecLUhi0kKQqIEpyyMznpW2UHGipMdJSAZ/ahk7WxlI3UlL8RE4KyUA39khtEbrj6csRrsSQ6RKpuZFsTh62ocnziqhI0aACuRTmaSUkkLbnm/6W91+PvPv+Nb96+2v2t3fYcUBkwVzaxUFEyZwKKTcAwe8vTzy/RMLFk+8Vb9kjVCUPmVfilrtuy/ube260Jk+fiNNH3EWi9k14ZlfJCwtZJkrcMcnWtREVfi4eKWqbwJJRDnQuPE0Xnn/+wvnLC4ebPYMbGpqUjNptoOthHCn7e5RwTEtmOPpG2YoFP0V++/GFH3554vHjkSgLQUrc0HE8fyY/gU6S8eE1bvsVouvx9YX8CLkXqHeG6hXnKbHKI+5xYE0La/HUKlkILX+9dkQNWkvutSXSBHM2W/R2i+06nDCkuFJSI9TVEWTSlCJ5Kc0bUqSgqoKpFV8jpWSWReBDIZaKSpqUKrVWpG8TdVULImuOvmGwjXDkraAETUqKz+uFXg9oqUiqUqPEl0CKE/lYScmTc6Sqvl2opcTVG9x+RDVMHPM8U0JCeoPZa1R1mGII+RktRpTq0L1DRUeJmafTI72JuH6g2woMHTIDq6dURWc2dE6zGTZczi/UXFpMrjNIY5Gd5ryE6zajUmpoG5UsOS8Ty5rJBfTO0m+22HEkdxr76Bi3mtv9Pe9v/4Lbm5GuH6jesppKEYJBOT6y8Owj81Pko5NEmlH+1EOOrftVB8vOWXa9ufY7NVVUpFE4bTG1IEIBY5DSooWhZAteUapqgk+aULNIQQpNepdqGzpVYQHI80rybdNjzIi2HVmsKCvwW4cyK3ZcGbPj8/Mzx8sFkS25CFKtiCJ4mRaqlPSDovPxald2/7yH/VBTezhURb/r6ZyjoFjmgK4KlEZ3oMcRvekxvcO6EdM7TG8YrCXklk9TuqHunDN0XdeMYtogrUH3Cq2va7+0UpRrGWMpUFVTsrgaX/U1s9+y8zkIUhCkbBA1NK5+luTU0IcVc2XZmvYDjQsla0rVYCtERcmCVWZUKi1jZzNk06yUfqXOG7IAlKA3PVIlBJK92THsK5oKQ+bTm2/oxcAsTixypguGPhiWshB0QzspW1HBkFPk6enE8eXC2HXsNgNu3LDExLOfYcpsXu3p3txy139L/Coi+oEh3dLdjchdR1WGTzmSz5n4ufJRL9hLhiXyKb1gHi1hKgRTODhDTIqzToxRMzqF7QpdipS5PaCkbfQgadvDK4XU1samIgZJRUO2hLS2VaJVqL1Fz11DUvYSYy3D/cjwFzf03R25rqSyUM6Z0iuqqcicmS8Lx2Ni/ly55BVfMorKjGcphZgLawnNuHwVxJQccdd8vVEtF9g+B+3LK43AVsuaK7FmSm69AFEAr5jnSEkZKwX2aquVSjKlQAwNsbe/bShKUSGUQMqyaeN1omRYc+XoC2MszLmwlELOktOSuSywZsXkIzkXKIU5FnJIZJ8JI1hVsLJiRWvoK9fY8VJAyZkcMjlIqpPUDrpYuITAJUT6UqHPKFsZTEIRESKBKYgNrXypBBTRVv9KNHygaRfbNWWqL0hRKbKxvWOunNZC1Q1FWnRFy0KohVSb0Xl3b7kdJLsk+fDlQPGZndKMr3rGzQi65837RHaC4wK+S8RUeVkTvz+u2K3GqcLNUHml22SyptgMvrUgK40mg2iEJWhm3Gtarggaa182pbyQbTVea0UpA0pjnG7ODiOoRnJ784bvf33gr35zz1fjG07nj0znE/nLwHKjMF2H4oZsLBFNV5ttttYW5zrFyJIKsUCWBW0l2kjWEhm6gW0/8rCXHC6WKWf+cHxBlx7Rd7Bz6LXjrDIZQ81b6D1KOTox8IVAFBYlKsG9MOomM3vygqoMWoK+cezXjmVKPF0mXNJkIBgYtWctkTlKRusQpiIl9ELyNAXStaewLJ4cA13NxFwJKHTVlKIRtO98WgQxK4Q2aN2hzAYweF9IvgmFpDaoYgkB1rUgg7qiEA15qsSwIKNAFou0CiEHRLaUuFJyu5ghBTXItt6vufWj2qsRsiL7TI6FYtrlTYjWW6oltf+/tkhLA1omELVH1IoUCjM4suiQWRDUhCgjZEtWEVscsgR8VdTYYphSSwblSMVTakYPGecs1jg6NRDChZwUJWuElmjR3heXKDCyOSASiewhzYXp2dMNpvW1jEZaSSnNEisxGK3QSqGFZC3rtdvSYTrVcMYopsvSIj8pM0+ekitCKnyWdBlSbpZSpaCU1gFYfQQp6TYb3t99xddf3/D+V2958/AV426H6VpMKaZEiSC9JJRCyRVi4eP0wmWGlDLqTnIvHILKUmcOYsP9XnL/jeJ2cUxCckkr1tsWU9GgQ+Upz3g0rvR43Yr0OsGpBFQV2GqQNtPTfnbL+cj56YV1WpAPG6y1OCmRNWM3B9Q4orcjebMlC4X3hXX2VCGIsRCWyI+PR378cuTlOFEHRdEVZw2XxVMvEpc7tt8/YLavENayRE99MmAtYtshqsaHxHmaGM+CmRUvAmPtmGUglYqZHGUv0FowaE2uKwBGGszG4FTr+CwhULOhStPoS1m2AUqN9NI1mywFciaWSMiRNDuSaO0LU1QDQtRCCQL6hqAVRV5JaRYpu0Yny4qSJFP1SDNQtaSYjCgCHzPTuiAnQ62JSkJXQ1axEewYcZttOwAuMMufQAQkBrvt0aXDREtJAltHtLRIm6mzw/uF03KiaklNtH6K6RC5UkNEKIOzlnFwDH3Pcj4hq0QbgzEdyhiU05wvEyFVUgEpExJFSYKzX4ipGWu7naYbB1TnSFqgq2Oz67j/estXN9/g9gJlJTxZgisoKRmr5R/qC6cYiWtlHQwa6IVmNgWVayu79oZN19InuTlx29lQ6vb7LRFSQVjXMJui4bpLuA6erIEaW5dLKsKcKUKQpIAsrt1UQVwK0RdKFXSmw+ktOVuy9gwbi+x6XIoMSTP7yLQkajLXnqpCCc0cA1VItMukkFrXSZl/3sN+6TZgZkyRvNE9tTeEUvBLZXhjcOPAYbtHPtw2lnUqqDvLTT+w7XrydsPp+YyICbWLbLTGWYnbFGKd8dKi+wJsmlBFlaaY7jPCJETt0DY1XnrJJBeRGVSsBLESCUQZWbTEri2vlnQkc/1DcYoR2zoHulBVoQ4ZrKTPHXZsIpXoM8s2IhFsc8U7UGvGBjjfeYbauNrdVrHOK8GvRJvYCINGkEzi22++5u7Qc3r7mfk5EpEkJJfpgg+ZGBNhvvBSFlYfKUvm8eUjTmVGITEPlags+s1bwvvE63df8d2bNwx/+RWmaGTXU97ectjcIPqe3EvkxzNP20ocKv/qHDhuK5c1wt9fOL2XqFB49bRSuwTnGXv5QpUSVTMuJhZV8Bwp4kK5idSdo+4t+X6hlNoMmNvIkB+gk2RT8fNMuIcsBZvQUV4BNSEvnvrnHWLncLsd3EiYQVwK+VcLOvaYpEh9xnz6hTpPXG57xo8XSoWXwTL99IG1CKLSdHOi0LFahVoXOqUwRoDMrWCoNarXqO2M6AzoEdtHdG56eLHJGNkm+0EG1JxJKnPRAbusiCgpVlLSSOoFogdXHehEBqov1JumcRgmyWQjfg2cpsCnsVJPK2UKvGwc5zlxWSqfsmN8OVFi5FIKbsqEtRJ85V6szKWwpIIbJsygMVrQxciTnYlLpj+vPA4Heik4xMKPG4kPEyouMDo2OrIViSVETv7YyoDbxB09AoUXktk8U0eJ2Frq5o5yCGRbWS8XZiORqqO7aObDyClnHhfP4npECBAjj0aTPeRcCVryq3lEK0PdKn7z3YaqCnIU7KxD9ZJiCv+rdx3/sKt8miKnTxf+VkTWNFM/f+FTNgxZ8qpIxjoSzieyXyiPhVmXVspXghgDMSZqqMQYkFqipW1CvtZ5ZjlPWFuQMuMDuF6hTUYT2ksLicyZw7cH3v3qFd9/8zXbzch+dqQYCJ2iRkfGMFnHy2UmqURxHv3hxCVnLlTWy0zMAZRnrzyGGbIkrYFsKsZYHupIf2f4i/Kebd8Th5X9uGMYRuQ3PcdVkbXG3EJ3CSgFdbMiSiFWzywu7MqCLe1gq08nNlowKsO3QWBUorepvXRvfDsEVMGLe8ZOgTnBzcFS1jOpJKZsOf7ymZQKUju0/4JcV2wKvIQbSh9xymPmroEApCDWSB1XZC9QboO9F6ChCMmqzmz0nt52VAe9BVJhsYExS0oqzGolv5zJJiN3ClkOzbhpEiJC7X1D4ZYOtSntoOoDuW+KeRUKURVS8aTsSdriskLVZlf3eW0XQSkx0bRbsQLbjYghoFWlEzcMB0WSsK6K5CqlLIjLghwkVmcGoXjhEyl4xJKwRlDjEfyEChNsNu2LLivj0DH0oOwTNb9C6ojRmcEGskoUJHjwObGWBZ+PLEGwFktdO/LeMhrDYAeiW9ClgSmEsiiRqTojZWrvp1KavG7+wnKc8KeVef5MKhWtB14dNtcNtOfy+AnVWYiZPC+orvJws+Xr3R3/8l++56vvf8XDt19z+y9ucbsOpRXCFPqcCTrjJWx9YBWZUAP9dGLqKlJnvp0WIp4UI/blSNk5hBvZ1jvErjCqPZ37jrQHxw5JR4lH+s8nSpEsr+DGQ1WKpdfkjytRRVbrGS4F5SdyKXz+4T/h5QVzEByMQncCZSSdMeg7hzIDWu8QO8kcI77Glg9PUFJlrpE4PbOGEy8u8m69tB7SIJi5Jd+vuE7wlb2FOwedYXx+jfw3G9SwZ9O9IewcIRTWNXA8LGxi4T5L/FYjT4qQEvOrgIsVUzWdk6znI0lW8k4xCofWUFVFJ00aG/bXVY3swZaM9Yk4JEQBGxLBRnL0lJBYh4LzCZcrqMpyOhFKYjWVrxeLloJCZVQDqSsUF7B6g7TNNWGWjtoVioz0SKKOkDKiwDTODFky1g7ZVeK6EMJKMdCzR0hNGTLj/jVpv5B0YNCvWwmVjLnsKKax4M1iWfpEqRHxUpm6qVHwniAf9iwxEEtm3DsOfc/GOKTU9LZH7ATdbmCdAqlAQvKcnq7URkMvmithTYUYEm6/Yxx63h4sdm/QppKngPx6w92rW76/e+Du6wP6WgKaf+W495pcBBelePNhQalE/c7x706Wi4CTFCzPZ4rpYFRsSqDXDkfGTy9IJRrO2eeri6OVrh2VWkdqNQg8iSbUVLUZv6mVTCaUiSygVIlJAmoilcxx+ojPASkEVuyIYSGnQBEFtamMqWNMGwKa1XsoibMvPIgDgxvIamXvJ1IuGG3pc0WIQuZPo/GIWhvv4n/qX//3/9v/tfFxS2UcaMW+ClMMPB+fucwXjucX1tpe1DEU6LbYqlAFzmVBBFBaMT5sOdievnN0+46H21sGN9LbgU4lpFFIqzDj2Gg3CGROGKMQSlKVQqsOkTI1+CYf0BpUw6CEyyPBT/i80luHUhboKdNje5mQ2R5eYdwWrXtEnK/h0EoWtYmMkqcsz6S6oHSHcTtwO8L6RFgeWeuMdXuM3uLUa5L/zOXyzM8fPoBRdKpn1BvCZWadZ5Z54penZ0rRKGnZ9zcEBMJa3GHPV+++ZjMMbJxD6oG/+X/+d/zNv//vOIfMbhjohw5ejSjlqErhtcSavonBNE0wkwWpSA7Goq3GaEWvDca1SU32HutajrTGSJlzK9LWtSFNRSOvaJUxuqJ1xdhKKIlUS+O7Fo0wbepfMEhlqUKyrjOJBFSMEAhhoGRqXvE1I7XGaItRI35dWZeV55cL59MJ7xOxKMS6EmthpmKVRSqH0IbL/ITPkUxmVBpxVWjWdOESPMoatocNu+0NzjiM0SxhRYiKkpLNsGOjHQI4+YluGFvRyI3Y6BGiURO++rM/J0lNkYrdYHG6URRShTVGfAgs60JFMofIefXErElrJIdEUoJSGokqSkOepiYekZJeKmTViKK50a34W2tFq1bAEVVQUiJQCKkwLxHcgJOKXkpechPRGanYDiMlr1CaWMTWiCajREEkzxojUwwYAV3X4boO43qSkiQgpky1FiUVtiouolxlKApju+thO3DOAac0WiqUNGxlRtTEkjwARmt6a9CC6+ejcvaBOVZiAp3gcVnbZDzBdnCMqrIVkc4I/uG//W/43X/737C8vBDiQhERfTAUYVs9OidyCZSSSDlxCRklDFpYeqfpxwHX9/SbPcNmg7EKpRoP2pomb+vQ3AyOm42l245XsVrhsqz4aSalSJGZP8rsStGNxa0F1SmgJ1wpEDXOWKdRujkaTFIYEr0M6N6QpSaiSKWQw0wMC+fpxOwTKQOyI7wcKVToHWO/pyhFFILl9EQRDTMqUianRmwycWaqhao06loANhI0FV9ik4ZJzd3dW4gLMXpepjO5WlIVrAXi+RlQuH7H/+X/9H/EXKfp285iVfvfi1/5j//49/zu5x/5D7/7Lc5pcoFYBAwbejPQqY6SJH5ZSDWSO9iaHgTMNSDyjDaWzg3cbR7IslJEYWMrKcbWkak9sXoal6Py8HDXCDRZ4gnM8xm/zuhOo9EoqRFWY1WiM5bNeIOMkiV4LmGB0kRYgzaUpHHOUql8OT6zJo9fV06PL3xeFwCsVLx++56wRPwSKL3i9W7D3bjhzfaOuJ55Pp75H/7xE8dwYjv0vD7ck4tjmjyXy8Ln4yNJCIxxfHf/jpdpZVk882lC73t617N1W+5ebfju1YZvbkcQkq6zWKvRnbwKHyulgsgZQUVQuSxnkk/EJfD5lw88Pb9wnmamxaOHEaUViooaTKPHCYXTG2xN2BpBS/qbPcPhwMOb92ipkQVyKpzPF1IpVCHoisLnyJID2mhk34FShMuF0nQAqJJASFQpmBj5fHxGSuic4dWrV2iawdqHwLx4YgHhLPU0E4JnTh6jXROnGc35wxeyKFRR6YTEWIdVip0QhJz5Y6Ng3GwwaFSR5JrwSyT4SKbSyx4QvMQLn14CURv07ZaDlLRVGBye/nuUWFGqsN8N6K1pgi3hiFr9k5RNOdFIedKSqqH6GeLayv6ymXGr25KXY9ssKUFGIuWA1lv6upJLJNeK6ndI1TeXQrpe4GrBl4R1e0RO1LAw+yes7bFuRPUHwvxEigtFNLhEc6RbyvzIPJ+4TGc2uxuG4UDfbXBkKJFSEzFHhNSQM9VfyKxt+2Z60D15PZHXIyGvKNOj9IAz98jSirTLujS7rjIobdFJtH928YSUMXZAaYfJmpA8qWYioPpN66VUSRIDn//wgS9/+ICuit4qrJFoJwnlKnnLmXiaKTlRSiYKSUmCnATldCHXTEqR6fFMck1G1iPRNz1KG7SyFOHYO8PNYNm+vkXoFrVcc8V/fMJfZuZwabEZaSi2x55Do/LJjMgKsXWgBenTiaI9ykq24w7Tj5hScMuKLwtCN4Ho+OahlXNLJYSpTfmVQnSWelzJMeDLgpQWrKIayfLhRFK5SbqGET20AZmNlSWsxBSJMdLdbFsJOxTW5cJ8WVhnz5JCk8PFzDG8sCwCOXR0b2/ZaAtOkzvD//m//q/+J5/d/+TJ/vu//E2zkQrBsFXoqyBkLSviH/+B9PkDX346s6yJWBJZZmqZrzrvxHF5xkmDtZYyrYxqh609pUYSllQhZUGU5UrT0aA6SoORosoKufkVkYqaE7XkFtkpDc0mtUU7QQ0ruUzUcqTqAVSHqpXAC0ueWJPHyfGqPJcgV0SJjc5DpqQEYSatX0jlgh629BZMZ5jSC0l8YLr8iNDvMd0buuGOS17w9cjT+iOd26EHhd10uI3GnAXimFEeyAmlFLv7PVVJ7Gbk9ut3vH3zHd216U4xDDf/gBgGqggcBbzkRJ4DVWViqVx8vOK3oFDoOtNiZFXg93t248BmHNjvO4ZeY3TD7TknmzZdgb94atbUYlqesB+RxpJigbxSayLVTEjzPz3QKwmlJcqaZmHVHQhF8Jk1tvJk5yxyrkQfWJYzL/OMcR2dHrER5nhmDhceL08k4ckmkdeA6xrxxtTKw8M9zjUU14fHM8dlIqRIP27IqyT4xOn4wi/LCZk0B7dnLrERXkTlMl2QsqKVYOdGNnZAAsdl4v71K4Zhx5Bj63Sg0CoideP3V5GpqkUOhGjIzRIDGU8SK1YarAkMdSWvhWQzWWVIFeVUY2dbS9pEoKJUwVmBle2w4bRp61oqorNQ5LWEmimpYbtKTRhlMVJhpGZeVvre0Y89+3HHEjwhRULKKEWzi+bKy/lMmmamy0w/apQZMaYnGUXOpWWAa7wKfzJFCfABaxR9J+ldJSRYQ6XOnm0PvRV0ClYfWZaVy3TB9gohDak4iqyEmAgxUVLApkxXBbuxZ6cjCEE/dAyufQ9FVpSYWXtBsJmXciKVhSoLdthRRCYBS275+lQia1pRqydnjcRwEJrdDsZecbOP9NuAcYZOCbqtwlqNVRp/DKi4Ek4V5L5dIlLm5fnE+vxEjitCJTqhm5Y8FrqqGm62dnTdSNWqkZZsRth0vbgK6iogRWqeUbJD9T2qU/gA88vCFJ84HT8i54jwmXnNLM+XdsztDJuHtwzbHj045nwkEKkS9uOGFCvRR2Z/4lICKIvrBJ01WAlOZMZ0xqoWGbnpNdoUcgw85kdMtyEhmHJhlRfQHW5X2f3Zr5FmABSbXYdDN4xrmJmOJ3746Rf+w88/oGsrRuciwY04YdBo6tzENFVVSi/ZDANCS7wsVAJGdXQmcX/ftyEBid2o8GdPDgUtJ3xcqBJMp/nWWDptUSgu88TL5YnLcsJ1go3dYLWjaskwSDb9yIOr5Fg4zoEvxzPYxG2GvVXUHNgIiajwuCyczs+cTkc+fPzIL09PdNZytz/w5qv3SNMOHC/+xKtxx/hmx7v33/Hy/MhRfuLTbz/x43RhDJFzUISlcj4tHF8mfvr84XqI6/DfKc5zYF0jy+TRU6TrM+MgeSskW5m5Z2kG8U1P6R06XQ3Zsh36VWo8cikrQ+8o1pCcIfsNmwFS7EkF7GGLMgaZKzgJWlGV5nb3trH9g+fD0wvJCLyBJQRkCZAycQ6cTmdiiuSa6egIMRBz4t0379h0PbZzTFKRRduwOaNaNGRZOR2PfLkEtDNsneNG7anyahHH4rCYnKBGQknkGJDzhWFvsLpFLpKsXMJCqoX+5p6b21f0bkAjuEwzPkZCShTVN9purdQQYImI2ROXM87tkUKi44lX3Zbu7sDNr95w2GyRWlMpfPmP/0itum1NtoraNbwvzjTpVA6IMlNLveJlLSYZEhcKEzIVdLdBmQFlMjGfyCkQUqRqg1F7nNKI6kllJZaEUVdiHIpaA6o21KSoCREzJcVGSzr/hNodkN0dvXJUNVHShVQy2owoaZGlcipnJv+Fp/Mn3E6B7NFqQNVEKR5RPaou5JDbu2k9k+sF0w107hZjwecza3giLF+w6hYlb9HmhhwCkYUlnxG2Sc+0gCICVE8tvmGohUEKDVbDdXCmhx7dbVFSo6pARsvNbkN3s0cuCesMxil0d7W/V64xYEtJkZwjrhupRZJjJcmeSqSkyJIMi44UKiZrdD9SpSbn1lHopMZ5hZgKWWRyrcQQmH98ZH15Ybo8shv2WOewzqOnAiSEzDgzIAsgBKG2bbOUkq3YYoyiBlqnbllo3GaJ8CBybX9+i6emQK2CrAv12ZOCZ80LxmwQvYFeMf98alQiDfZ1j1MOYx0qFtJ5IfhCiJWut43alQo1rujcs6kGX2d6MyA1LEaQhx592NB9e8em30BnKf0/d4zn4qljRo+Srw7vyd2GVDKXT39gLRPzeiS9PDdFdmm0BWqhlgA54rJFG0GRieP5yK8ebtltBno3sk5z4/YPmXd335KsJihBjYH1iri8dz1ZtmmISZmoj1htGGxHTBVqoqZI7ipdZ1FiZAovhLCSVcK6RD/2lFhZU0GQKHiyUuzdDYWVmj1leuEp/EBOM52ASGnZtzJT5YAxgt44LvMXquuormdjA8PuAY+ku3xArJ6wHnnRhnv3BjMYbO1RL184Hn+mrInd/p71YuliYjwIwv2Orntg6PbkK691fZwI4cywG3DdFr154LQc8X7hcl6RdWl5Z+nI80yokULiwQXU8K7hJv2ZID0Cw03vkLY9lHRJrHLGaehUx6wqSkRqXVmFZ2ccSkgCAnOe24q6nNjoDVofUMagy9IwU0rTm4KvhVoqlgS2YLVk2+1Z2rwTlc5c8kKloA0wKowvpHThx+lH7k2PlRahuiaLodEvalmIYWJNCXZbio6kFFiFZ80eWSLLWaCSwVzRZFVUSonEHPk8P5PGPVo5gheE8wu2BrJM7MdDm6iownqaiC4gXOHO/ArheqqAsLzwlC+kmuhUwdfapvznC4WILqAzLHMmyQxawDiwtx0SQUqJmBseULrKzXhLKq0sucQLqTT7ntWSObVsZyczPpwoUlGUZZ0iRmSEyZS+w8gCsjKFgLYN96m1ZDdaSo74Gao/E1KgpoUbd0DWxucWJfDFv1BqpbqBEoEqETIQRYXa+M7T+UQvNi0qbQzOCEpuRCCdV0pemerMbrdpJeOskETWOFNrZTNqam4ysLpOVA3GWsZ+IISEDivp0y+cn3/kxmm2uw39w3tO85GTvzD5Z/qzIitBcIL5MfLoA5cM/0UPNzcH+mGgUzOIjBIdt2aLu71FCYVYPOfywlYb9sMG83CHn47Uy0xQF1SZUSWRB4e8nIgp4Ikc5BZnbzFDj2YmiEoVgq3uKK5v8pTlzBwWrNDcdAPy4RWlJHJYWZlI4UxZVryu5HXBnyc+rI/oEyjt0HZPTgspVogRSmjadKnQxpKLB1WaV6BUUghcjk8sLtIrwSBLi7CJNkS4qMBe79AonN2Q/aV9z5RmEBFqwaRnwrSiDo0Wc2MPCKnJJZHjiS/LM8/HL9gPz6zjBqt7tnag3xwaUi4WSinY0SKMaIQx1SZxnbQsa6WsEk/BHDIVSamG5Wnl8+OF4CP3W8dxqVhneNc5RqXZOkkvwX+MLMcjj/NHtEq8+urX3NkNp9PMbrvndhj4dj8S0fS1kL+8MNtMrYGM4G5/YKdvGq62BPzyhM9nfrn8yOVxht2edHeDVs3+XEPl7/8/v+dgDLttj7Pw9v41JM37w0c+Pv0jPs484jl0b9nd7LHdjulx5hifEHGFLLjtbii6MsszPoBWBjc40iJI50g1kWQvbId7eqWorkdcWdxJCpwTCCSlAj5QaibXhBaBkAJ59fi4UjaKvt9xv79jDpE5rUzrmYf714z9HqM6orQ8nT/i/Qtif6BzA6I4JIZdilwunsfjF85Fk+cKQRDv98TOIrRASVjWTFPWSLSW6M7QlWa/FjlR1oXj5YX9ZkPnLKUKmDxpvXCOT5goSTGSF88svlDkjr7fsd+NrB9mlsvC5BYONwHTjWzHG6RUrNPMEi/kMINxuL4HKSgBCIksMqaXSGGxk2ONZ7wu+LOje3jAOEctkc8vHwniMzjP/e49dXxHdT3EmWeOIDI7qYhGU0ugzmeidqi6oghk1VHKTE2eYAODHShKkQTM60RGIjrHrXuPLJ41r80zodr0d3QdBYksBRsrl/SZEiMlRk7zCWEFtldERrSxVEbOyxPkiAKEKrhxRMYzfs7EeGb2GmThzfYNxRlK1nB84bT+TE6BrpgWdYuFHATCVZRKOGt4PM2UtX2+zHhD3x+QdmQxEtaVGC6cxZEbuQFRKVKiUiTlI4UZpe/xpVBLQs8z1Sa02TPYe3wqhBjhy5ElfqI/3NN3N9RhD9NE9AEfVswayDGz5oL4/PRPzpgu14alDgouM1FOLbPf3dMNB7zPnJ6OTGTGt++4f/cV9XbL/PSFfD4Sgid6T1gjsxfsiVQfmdURtzQ0szIK6Xwr3WpFZx3Ze2qolCVT3IpEY7sRGxZSyOSwspzPDG5Ea4swA+V8Iawz5/RMX7fUDERJ9AtCZqTt6Icd/umZsC6cxITdjLjeMdzcMXlPWJt8bN6cUN2GzozY/Q0pXcjzRFgCahxQ0mCW9hwvIlGeBP339+ihQzj1z3vYv7DSMdKzheGOlAPHy4W//t3v+eF3v+Pp8ZHnS2T3yqKKRfiO3CkolhoD4uYFfOMpMxgOm1t22z1i0Hz5/c/kTcUNO8x4S1UZ0srzlwW7dXS9wZotqtdoIdFZEtWCKs2lIuyCv6ykENh0bUrUkIqWzz98QAjJ/u0bXKgsNeBr4JefntkdYH9QJGvRziG0JooTeS6sU2KZEmqvkHNg9S9oc4PKBiM2WHfDh9/9ApwY/92fs9U37Dev+c33/5Z/+Nu/J66JqS4McWLY3jDe3JFSRG4HLusFamK8GxFO8uFy4jZkNrkVz4RUTPPEL4+fKP2AtnvseAObQjhX1lDw0l952JmsZspSEFbgesfd3XvG/Q7rDN4HRPVQK6nriGsge0+eFqqrVONQziJswa+VnArCGAoCKQXaaELUlNwhRKHmEUQjBsVLga6CLU2KUxuT+nhc2O52KGEQ1bAZNvjFMy+JqiQpBGKMDNuBKXt8VfisOYaIc+B2kvPkyVVhOoFfCrFWQk18+eUJ1beikmagHwIpZpZTBjkzKMeoO8a7nroq8io4yciyJjqtMEPHupR2oJWRSGqWPFd5zjOu9Ay1R5gtQgpyzlx8y+e1bqhFK2CFmGjitiQhVmZ3IV0yrJK+V0g5IKQgiMD84YWy2zNu9igMWTUhRzxJkmkSEr1qxsEhqkYExaUUWFPLhw9NQTDNin7b1C1Ihe014RKQUuK2BlcMu65HvIKXzzCVxDnPjBfLZr/BGEeaK8XM+HVFPJ0pW0OtCmaD1p5Grhf0O0sMkSk1JJspmkF11HsIxxWfI6uM7NaE7a60qy+Ji074EklzQjgBtdkS4wCuShQWZQSn08QPv/+FFCr53Y7SHcgx8/x85ul05vM5YLWmxEpYCn9/qsylSc/K3T26f0Bzw2V6wiaH3W8x798j6pb1snL+PPP04lH3Ow53D6Akp8lzfJrIa0Iq26gq1UC2yCxxdOj9G8xmi+kHxFSRsT0y1f6WUiXJJ5YvE6dYGTeWw+GejOJ0mnj5/MwlzMTLTFwiORZeXk6cjyemy0KfB9yo0Ubh11agy1mRgmQWkSQyyq+Y3iGVbXQI8UhYPacvC3pbSbIhDLutIKypYY/XgjAKrQ3RFo5fFnKt0BvU8kfhGyymsNUGJweEMpRauYTI/+/xxNPnX1jPJ4LZsxsdTo1YuUWbDYREiZFlmMmiCQprVyCLpkIZBOUlUWVFDi0ShY1UPJ8+HDnNFwCSHHA7z/3Nhr/6/nt+9eYAa+DycuJsPrAuXyhPJ4Zv28HNp5XzONHPbRuixw45gR0F6p2gf7EtatZrur7j1e0NWzfw+jKiiPinifC3F/hGoMaC9StznunKgBMW9dWWn/7wA/l04V/92X/OvXMc9lt+/S+/4g+ffuLl9MxlWtiawJuHPfvtHlcKf/sDnKYZf8nYOzBW0/kd9AVZNPWlUGwiJYgVuu4e29+ju5EgC2mR5Aqpq028JDNFBPIkWhegSsTckcqJhZXj88J2G+hGMJsdLiemz4nnH858861FSIuWFjFqnj9knl8WcE+82Uo23Ya71/f4zlKV4vNp4vm3v1A7id47Hl8mquvYGI01FtVBiJnj48L+fo9E4TIc7u7wc2CdCj+ZR0qt3NUd42FDXT3zMvPl0TNeoIpMcLAeG2RDD6URd/ZboPLlt1/YbO+wG9gLjTtskcYhk+VcTleBkcAeNogkkVETeomWI1pKyteV+YOkZoMPBVVFy7hLmC5fUKbi9A2i/xahHTlXpueENBptOozbIp2nLJK6VOyuR4i+uX96j3+ZKDmghKCabRs8qcz08wfsTmM6gXC2SaBE5unTEbuxWFtJQtOPN+0Ch+UUZi6Xifn5hdQlXqYz3le+6l5hhMaojr7fMz9PCFno9xtU1ozuhofbyPlpZQ1n1pg5yAbw0GakyA2UDSXM+ClTRghL4HI6svm6Q1eJLh19f8vl48SaX7CbTN+1uNvt0PH44xeCP7LkE8oHht2GbjMgT5JEoVZBWGZwhlIk8zkzDoKqJEK1WGlOnnk+YTmg3D1y2FOo+AvEBaoQSDMiCZAuLFNuAsxOI9WWLGZyDSxRUrTD9B39uwey1kwvnk8fF8RtB9st7t0DU1l4vHieP06kdGndza5ja6BGxeo9y7Qyrhq7z9jesKYOExUmG9zWsOqAXwIvP54ZVY9zhl5azGZLfAn4Y2J5XBGHgXFr6O5uWTzkUDidVHMVaEi9IDxXtALrBNv9Di/BnzS//O4ZdXuL3ipu+h53u2PNED8X8pxQMtKZgjuMqKCI0SBNRtUeLQXdK0v8uadEgb8E6uSRVqOGP+34/qcl/AFnepwdsG5ASkkKieUyc3x6xE+e4itKKEzVWAxWGnrh6JTFaNPyYCkjSuXgtuzHA2O3RVaNXwNpjYjQpBAURU6QYkLkRuFBWIzsMLpveWs9IoSlFEGJgpwLOSdIIGmsfk2HXwPLvLBOnhAKKVRKkPhlJawrcV1JsdWsBRqpLDlLYigsy0JeC9kXUohNFlEVSvb06ga/JI4vT7w8fSSGgJKOw/ia7XCP1T0lZXyIcJ22DZs9ttsizIAvDc+mUYQlkP1KiYFaMtAyltGX9mAyHVpbaoKQMrEUFPoqt5DUWqBKBt1zOx643e0ZrcMA8zJTUpMVSRTRJ5Z55XQ+sc6REDIxNXJRqZABiQYktYqGqhItzy1VO4AIrtISaot2Fd0Ml0VSU2FeZ4JPxFjIRTQ7HBrRgoyklEk5o5ShCsiikoUilEJIiRQyIUZiTJRYUEKjq0FmzfkyM8+B4AsCjVM9RnbUKsk+UVITvDnpcNJhlEXUZnXNRSCrJKVK9Jm4prYGTYmSM1ZYnHY406GuBuWarxMNodHCtM/IH/8jFUZYlLwW7zKEEPAhoLK6/n1DLYIQAym2z2cuzWpbK03UVirlOiFRQmKURqpGngqpNB59bbKVmALJxxZtExKnTCusp0gOuZUykfTGoXWLpoQlsgQPtcmzULJZizNcYmjfnVKIJRFDagQQJIPuKKWyBt9+VhkEik47rLZopZs1OxdEFVf75zV3WmTL8AqJFLJZRFOhpPZ7RwhySsQ1YKTEGI3SkvUycznOTJeVGKDkSkyFKSRCBmslh0PHq/f3bPdbnHWUIjG6GRWd2xLWFll4/PJIWNtnsEiJ94FpnrgsE6Koa1bVIGniGdt1jNsDw36H7XuU0khjsHagd1tcv0UKTYmFdQmkSJtKKU1cM9N54eXlxHRsF9s1ZuICfmm2VhHbJFxJhYiiTcpjoUZalCtU4pKYLivBF0qWCGnQuCaiSRXWTA2FkoAgIbY4SlkhrpmwZvJaSb42EsRaIQlqLJQY6U1Hrzucbni4UiohRJ6fH/GXSAoCtEUrh9IWZWxjuv/xu5ALNWdKbuIfXf//tP3Jj21XlqeJfbs/zb3XuteSdNLDIzwyqrKREqVJoQRIQA011V+rgQRUFaAGkAqKrMyMnk53ko/vWXO70+1eg23u0jQF+IwgXmdm5+69zlq/9X0SVVUryAqoKtHlNeZZBDkU5mUhbZHi23OqnWI39ry7veHN7obRdVAy63VjmRa2dcVi0EK3GF1uls2wearPyEobgYuGKMwlE/2GAFznGHc77m/vGcZbpBlYfUHGDpEsKcHlZSb6hNaG2/EOv0Uen448//JM8AmtDA+He24P9zg3NEpKjFhrubu55eHhHudGclFcl4UYMhWB6S1WaGosrNcr63kh+4SSGtsNaOuQ2iBeaU+Vivyjelvo5hoQrcsvq6bU17st1LZnkyuiSpRu5zBStfsiFWpumi0h2tldcuZ6OrGtKyUXXNfRjQO2HxDWcdlW1hAoue1r+M0Tt4iSCi0NkvZ5ib6dxzlXnO5RGGIqXM8Tl+vEtLx6aYxFKEPwlfM0M89NpJRjJsdMCRmlDdZ2GO1Y/cZyXlhPCzG075FxDjf2aG0adadkam2UFGEtUvY0lWbbLdLaICuIJVJCoqa2UygqKNNh+h1Kd69OgkIMK6oqtOjReocSFiU0UujWgJA9So6QDTm1e4osETgEDkrDY6aYyT62u7EqRHm9L3OhpERKCSEMWjm07igofCpM3lOyJobCtm3EzVOzQAmHlSO1tN2W5GPDT4qOnb1DVEUOCb8sbOtGzq3VJZQFYShVE4ugJkWJghTbvUZRSNljxR6ybF32aSKn3GoSvcPaoe00FthCJMWKKAopNVRByS2iSabR8JrCuO0JlAy1fb9llZh+QFnXRIcJSkiUlJCl4bkbR7dhZWsGWTXotvtZYiGGiNIOO+ywh32z5QbPdV3avasNwhlCLCzzynSZCGsglkKRAmO71giqEENli54YEzm3Reea21kojGrxpCrxWyDOjZJXECjdoZRFCElaEmGLhJhbY8g6hHFUDGtMrKF5c3KulFSpkZZ4sA6tLdOysVxWtutGrhVtHMb16M5SS6NfhZQaytwYlLMoulbTZlA08o4ognqNhPNKmjbKFv68xf678T13Nw/sDiOyrPjrynK8Ek6fUNHQyx23bqDfOkw0aCk5xA6nDMpJ1FGR54jIhV/tP/Du9iM3/T1qkWxbIC4ZNQlqUaQgiDOomtBFobJtG9G1R4kO4wxK9lSh8TmRpkqNFWQz6Uo5YNSeoeypUhJyYjvOhFTIUVEXi6iJvC34ywW/bqRQoCiU2TXBRi1sYSKeMnktJJmIcYMqMfrAnfwKoTTXdOGn3/1npulMyYJBvuH926+5u7lD1soaIylKRG5vrEJ05Ow4Z4nwBrMo1DWSr0fSciGlQCm5GS5Lx83ull3v6JQknStL3Ig5MtYdB9MxCItMil4NfNi95a/ffMtXb2+4NRbjM8frMyIXHAYrHGmOzNPE8/zMdFlY1o0tRYqXIGhYO2FBGopQxFQpuoBtumbTGQSKvFWyySAVEodVAyopsi9M4cr1OjFPKz5ERDQYDM6qRpBImVRaBwzRyEjFaIpqB2U8VWJui97ZV0Y3smNHHwZOy8L1vLJcAkUo+npDLw4NA7ZUCG3JsYsDTgw4PdLHHdCRq0VsipIqKSbCtJF8JIVAjoF35o674cC47zCitEs0JZRY6UVHJ0YEGpJGCY1zmlEOONthOotdHWkLxLDRpwGrRozoUEGRZKHkhJgSPkVSyFRfsZ1EZUHdCtewIpJCYRBGUYNkS5UjARUMpEIsG/66UVJBCcVIE/qE5PGnjSUEUgKbO0xvEBHSKXHyGzFVRHk1M2fBluCZRN4EJRWiDKQ5kQOA4lbsqaKw5IX1uLDFSK7gak8/Onrn6IprrPck0ck0s25WqKBZhUBkja6KYgt1y+QtEXLDl6rSIkH7G8t+hE5Fjp+fOD5dmK4bSmkGBFJVJpsZBHxz5/g3f3XD/+rffcdXX98w7DQKxeHhnruHN+zVjtPpC59/+YGffvyekgFRyHXj9HzhdD5yXc9o2dPZDmc1QgbcINnf73j41Vfcv7thHDs0Cj107G7vuHt4y35322JZMTCFazMiI6klsxw3zs9nnp+fmK8BHxIhFdYJ4lYhSnq9ox8sRknqRPMl5IaE00ojPZRL5HK+sE0bcUsUKi7v6MqI1Qq3SUyUDXE7K2Q2KOkw1VIKpFgol0otzfSNl6gim8/Ar3x09zy4HTvTlPcpZsK84j99TzhrShjRVlIZqLJrIkMPKUa2vMFUW6ETE2ZtZ4rBIWfb2PLF4raendLITbOdJPOyUOeKXCBsV6zr2e8OfNgduHUHrNLEsrD8GDk/rZyWlT7c0KkdnR7oZsO8Za6zxz9dqQVUMPTXnmQVs184P79QYkQKhXUDw+EGubsjDntOVmCe7xDnG+bo+PIPR9ZTwHUd39lvQHQ8LQvf/y//zOU0Q9bcqze8+/gV+9tbSqrEbUMUjXN33D+8wZmRFCSfTs9M50AOYG81XVTkyfP08gvHPzyRrpne7BjGHtOZtmCbFUInpM6Y2rLNFYUsDTuohEEVR9CVvErqRSN0RSGRr5xvUduiuD1I6uJJW9vhkUGzc4axk5w/feZ6ObGFFa0tpu+xux63G3mSG0uq6NUS/MQ2LYTJo6TG4bDVENKGP8+s14UpeUzskEmRU2D+fOb58ZnH05EUQdoO2fXkIvmyvvB8PVGfUyPppkL2GbSllyM7ORJNZv78wvX3j0zXGZkkzlj6+46uc1QpmHPET4WMAKtQmyUkQchg4oCxGkvFvCzEaSMtgeLb97u7ucG9vUGb2iyqWyDXI1parG6dcZVdK/g7i8ShVI9UPeViG7IbEKVHqj1C7KjeUnpLphKvK6kUSpSIaBiHHl0rxQfWGKFqlHRo15HRbBUuJSLWHSVqQo4s00TJIOnoajMqlxxYzydCjIhq2Ys3jH2PSpV42bjMM2HLlCQR2lGEIglJ0JqyOmo0FC3a/VINWh3o8x3adFRVmD5/wq8LJVcUA/v9nt24w6qOjUIIUBaNMK+Fuc+sIVM8yCixCkSO1BQax79EFIZe73FvdphBIyWIBWpaEcVj0K/oUSBW6mtcySoHLjYZ1SUSlol+N7K/v8cdDoQUmLYr5+2E0x1aaUrNLMfA/HJmOb+086tGkijtxU6Jxr+virkurCGTZ03VCZELIlRQAl0MKmmCCKTzQryuxJqwYsA5h91JxJZZp4XpOlOTQrkOMw503cA5r5zWle1Y2xtQLlSfqVJhX3dYNrEyfXnm+vMzy+rRoqfvB8YHh5aClDKT96S1NcV0p1GbJW4JvybE3KOMbi+0j57504nl85n4PP0X1e7/5Zn9g0LYJhG5+MLx9Aun4yNreouSJ5ysyNIoME4ZOqFhlNTHmXhduPgLrh+4Obzh/d98i9v3BL9xvD7xctGIzrLtNPM2M/sLa5igu0P2A8JKlnWi3/Uo63BugHolpRW/BUK9kHAg9kStMLW9gpYOtnrHxoZ2ArmsFFUoLqPDDQXBVjY+P/3Eg4Bxd0tv9tzcfSDXyvF4RcqFNVTEi+H9eGWwsXVed5UoDly85+9fPlN++M98/XbjL3/zv+Z2/67lxk3ix+9f2O1XHgy8v/+GVSfMQfPLPz6z6UiVDrXeEdUNW9aslwk7CCKFOEjyTlJ7R9aW0/UFy4C0PUVlXHaQFGNS/Nu/+le8e3vL2zcHemm5zD9xvhyx8hY77tFjTyqF03biZV44zho9Qk8lpQJmQ+m+TWGMpPrQhBzVo9wbxq4wyIKfWqa04incgHYII6iZNgJVCiHvSbqSZUQUGBxkRhJ7nN1Ip0JcF4zMHO7eYncHTH/Ly+efKN5Tc+KSFLUKlK5QHXosdLKyW94QdcaTEVNE7zp6MTCmkTVNpFC5Hle6YeZ22LEf9shBk86RGgtJJWTtQRtKpzjNK2aV2CUxjYWhUyjliEIRa1u+8vUOrQsiJkSsbcFMj9zc3iBtZj1euB7PvCzPFNXjhh3j+wNaN3zbpiIh9QTp2EaBuq5gASsZ1QEhF+q68OXHE8POczCGgzsQ3wrUcyVcFpY+sNM91nTEDkLJEBPSGkazJ4pEVoX4HMhWU/aKO/lARBOc5PQ087JbEc5xY3d8eFPorOLx50BSraNidE9yEEVB5oy0CqtHajFsXURFkLWiDpqdvMV2EdnNvPx8ZFMJ1WVu+nvCnUBuC3YuZBUoUiFLx6oTuXjyueKMxqdIkGBSZS2WlA2X0xeqMFjtMMmQD466etw2cfjtHb/5+B2//fhrDu+/5vT0wrJNlPED2FuicHyaZ/7zf/qe42kmpJHffvM1h7f3mK7n8vM/kLzBqvfsb25wpSJzgRTYP9w2qs/+ASUlcVvw60yWPW43oI3GX6+8fHnm6fnE88nw8JWjKs28JH743ff88vnM41OgHwM119YBLx7jDlgzoiX42RN9JnMF+dAcAl3GYDHGYQtMq8SnBGpD5+b51lqyN7dkl6AI0lw5mZmDcRi7oz+0DnCKmTVGtmhBS3QniGsk+FZ0RdOW1kGQqsD7ldN15u9/Fnx5emG5XnG5XaxOOzrVE2WlXgtliXg8OiqMlKjbFp2opeBrhA3sqNg/WLSQrOvE6fiFfCog2g7C5RN8/c0Hvr694d/91V8gjWS+njj/4vn58g+seaNzhrcfbrnpHE4qttuO6/NCdQJ2mnj25OypN5Hb68iMx6vA45czf/F1wVrLznX8+9/+Jc9fnnieHIc3ETtkdNU8q8S4bQynle6u5/CHW3KEf9le+Pj5kY9Zsnu45b/++B0uJdJ65vOXFZ8Ku87wN199zU/ffmZeZv7u//XP3B0e2jnEgXgjictKvBQemZjEHaWTiMFRpaZk2r+9NpIanSJtgVoLSWZ2eo+wkHLE/0fP8XRk2q7o/oE47giDJdaA7A1mu8G4r0lDz5oy/nhFjpLd7oEUFMty4dPjZ0KGdx++Yz+OfLAWNw78/M+/EErAdwLdPbB2PcZJUgXhJAbLaO/ItpJ8ZDutpF4hB8vIHae6cZk3Qnzm/sOZN27gsLvh61995Ofvf+S6rpTxiCm3hAFqzexKpvQCkSwl73nKkW05wb/8iPp3HbthpFeHdpY9XZlPE+42Y7VC0LHdRdQlI0Ilucgodggn0A8K/3yhbAExQDh00Pck2REqxHghRk8WH+j7PcpIsp9JMiFUh5EjwinC5AnLwrw9snmLMHtwO3KK5FIJqrKtI6k3GCO5nJ/AaapWWHWPly/4eOXl84+Mu/do07HrHvjwZsVvK4+fP5P6jBR7hOpJfUeSFS0SWI0xDxQWIgun6QudGxh3B25uvmLpTqz+zJfjJ2TvuFH3jGpPP+7JJXI5TVQHSVioB5wypJqQaabaQMkj0Us2EzDPPxJz4u24Z7d7hzSWqgsvP/4dMyvd4Bn0LUldEXLGXy4o59CqR9U3COfICNbriYohZE/eSaTrqcK2qX84I2tPVYCt5CkR5oCfI7vxDnszoPeW9GVl+vLE5eWZbesIzuGt5Dov/PD7z/zyZeIldfBhpO4tIWf+8OPf88vxwnWBgzpTY2nQjP3Ix19/Q44e9/LC43+IxCpYRcDkNygrkX3B5Uq1IDvNqO/xKlHSDC+C3VcPdOaAHnb46yN+S4TnCXe/chj2GDcQZCUsGb9srCIhS49VBpwkq0p0EJ0kiT2/eM92fmb4/U88/Pod5sbxRn/gpy8bYU34y8b+EBm1xgwS++FK+KlSfSb3G2Z1KGuoe4P/dCKtK+t2+fMW++TaRjcSwjq1bnhM7LTmnGp7k0wFg8YKjdUaETNrLMSQ2dbA0O3pTcfe7VCi5aF9znRaMhhLpztKzqSYiCkx9LqFPzLkmBu+zWWUkm0ZULRFzJgriJapJkGVgGjyJ2UkurbDi1cRSVwiykRKrm3kHRTL5YwE+tu39G5k6PdY65hzQpSMZMOvoUU5pG6dTONwXet2HKcLxjxx9/gL++EWqy2juUHWF5bLhRf9mQ9ffeRmOJByZt4lUhbUFFuWLcaWvTUeWRobeegHnG5cV5EzskqcAlUqISXWaW5dbKd5dxh4u++5cYY4X9nWlRAi1riWOyyVzUeCT+SYEDmhSqbkhI+BpBWdVEheLaWlUEol1YozhjaFq2RdCBliabRXUZs0KpdmNi6lYqXECbCiZb9FyWgpUUKgtKbXhqQ0EsHduKOKHXvjMNvKPE34ZUMq2YRJGaQ0zVRQIkqpNk6szV5XQ0EqgVQKVyyRiI+Jy+OF3XuHGQbuzMi8roTS6DVSFkQtiARZhGZrEjQUVmkEhZpTszALiRYVUf4YKcmUUnBWMzqH0JmlVNZtY5s93dCxM5ZeWajt94hY0KJipMAiiTlSfUEkCfsBKQQC8CkxnxdM1dw8DOycxVuLUW2MW3SmgT0bESWVjIyghUBoSZWwSUGKhXT19NbQRN+KT6vn5eXauuDv7hisIXeO2VlyaTEAoSuaFu3wNTdyTgErJfaPx0CppC0h+lbQdUqTa2VdPLXAw92B0RhUdSQf2/fwtbsuSqWQ8QQgk0tuS38qU1Oi+IxSHT250WBEpU4BlaEber66u+H97Z7DoSe+dlwu84yQhnVeIGVqjJyuCzFGRu3Y9T3uNTqB0ljVlm2tkdgiUQaEcexuDnTDjm7sKCETpSRLRa1ttJ5zZru8RshCQUuJkwZZFd4nrpNnXT0pRKKCkkUbeVNx0mCUwYpMFolca1Oq50xJTaAm/xjqUJrOKayUqFIpOUHJiNxoLTVkalHkWikpU0RB2NpsrrkQQuY6eULRqNy+hvLq9qACr/hkISukREqFFDJqnpmfjyzHC/iCzgqZm8tChEIJkRQ9KQUktk37EkSRKK/L5jUXNILuVTK0LivbtEKKpLKRafz6QRYOVrMfBoosGFkbtrMq9qZ1znRSCARCSnoUmxBYKemFYaob67awLhuxRCDjUAS/Mp9OLLsbbr8eudkf+OrdO/7NX39HijPJZxa1oitNlJgLZX61UmoFW+bpckHqDozBGs1h3HG/v+fxyyfm48zzH174+ut3vHlzy9s3t/xt3YjrStpC+6wg0bKSdSQsnhw8CoGstaGI24p8k8MhIJdGiCmZLDJqGJFKUGtm9RvXa4ud3Y8PbTqLaejWmpG60o0SZxUlJrYUqKul0qYG5MxlnaBYnj99Yfz1N1inOYgdX33zlss64XNsckjZlr1TqdRSqBW6TlNUbDFLKn72jWBDxSGYt8i0JL788Jnhq3d0TrHbO5yRlK2y5ULJAZMCIYRX3Gj7uo0VWAXkxMvpyP3jC7pW+vs7rNYYqVDA9enE2Pd0zmBtE5WRarsXVEGqiqZQUiAH0e4CZFMy1EJOnlTS6z1pWz3xGiUpsrZ7SRkkCp9XvPdM5wWhR4yRqGSoRlJqgQzSgDWGXvZsaaWWxmjvnEamFnXxcWO6PuOUYe8GBrvjMB642e9bDE4VhEzIKuB1MTvGhFQSXTVk1RIL3hPEilYaqyRFKK5xY51mjDAMNzftXNENUe1TesVNF1IoZKBoSc5tUVUbjagN/bj5jW2e2Y0tVtXpEaRkXVdOxyN3ww4lJVZZlHol9JHQRqFe76tKbnK2mhAVIFNToCTZokZCoGqlpET2LZ6UUsYeDMYqZC3MpzPn44nr5YqSPbI2j8I8L5z9zJpmJJlh7NBaEr1nmmbCNpHjQpgjRIlQlc1sKPuAdpKhjqjekoEtZMZaW6xMQVFQg6Bm2WSWoo1xYohsk0c7h9QtYr2GTAiB6y8nho8G4zTDoccO3avgDmoplJoptZBrIdVCoqI6kKqSc+J8PtOdeoahx1qDEa+NwCVw/HxE3e7Y9RbjDNmoRiqK7f4QtVBjIQZPWTL1kv+8xb7YaruUSfjjM3711Fy5N4JrSGSfyCljisJIhVYCObfRvQ+ZdYqYO8XOdOzkiCiQSyscb0fF3dBxsPuW6c6VlKHXElMFMlVyhBgCOcVXn0rLAgsliVlgdEHLhAiOamSL9FSNtS0X2dcOaStxifiLxz7MlCgoHnLqW7FfEvc3jWcb+5Wx6/npuFFlwsmJbd5h9IAymrhJnLPsxx7hDZd1ofCFHb/jN7/5a5TUDOoWqwzT8US8BN5/846DOyCLZbmH43EixAUjzoiwQtxIJSBKwBjNzW7PTltMKRBTw5upRKyZ7CuX4xnTae4Od7zbW+57Q68En49PLEtDVd461Yr6mFhyJIaKyJWOjM21/X98y8bW0gxtQrYOVKkkAQfdDhupYDMR38SLjGREbhm5giLmFufrtWCHxKJQUlBTQamE0uCUwmsLJpFQvBkPdM6Sxj1m23iSjs/hRGcURkhIEtW51mmOEaUENpi2OGQkZUkIVRBjoa+uob5y5PjTkfvdDvFw4N7toZfUsrGuK9qktsMQNZhMen2pcFGgU0HkCDJRX9NuRoZ2eKaCz+2lVlvB4DQUSY6J67Lgp8jtKDgYzVANvhZKKkgPTlV6KehRnOtKXiOyQBlHZCnIIgi1cHm5YIok3x0YtWVzjq53hBCoJoCTaCy1ZFIV1JiQoqClQArNZDVhjmyXiH4o6FzpiuCyefTnE3UrvL/b0VuFcJZp7LguG6QKKmJFk+VtpaC2ZiY2AoYqyFJQaiVeA9WYtsRb21GyTivbZePuZmDUGkfH1UlCyG2nxERUFiAqQSZKVI04osC4DNEDmq47INIFXxOTaONL5wz1zYG/uLvnzc1A31emL595eTlzXjf2xnB9cazCEM4z0xrohOCtUxxshxMakSvKDnRhRuSM0RJT26KsurOMfY+zBmVh2wIpJ3wu6LzgcyDnyvV0YdkypQrGTtKpttS7rZF5iaQQG9b0Vatei0QIjTGSXoEj4VVb2iy5Aq8vlV5TXl0HQmkO1jTHA5WtekSoiFKQJPKaqFSSEhAq1WRqScisyaG0PaKzR5qEUbotfdG+nioEMhZULijVGg0xFXJMDPOZ6fGJ6XQBZVBRIVSlEGAq5HUjhI20pIbqMwZ8ZSWQM2Rf0bKiq8AlxWVdWoxv2hDFE5a1je8dHBTcOk3nOlKJGFUwamWndhhn2Q0jdZGkncBIwVAMs5E4rdjVjhd5ZF5nrr/MLIfEwUj2SpP8xvnLI0fd89U3XzP2O3718QP//X/7b/i//0//C9dl4SWfeaMr223kUgvxtBJrQVmJXeDxfCGikFnhOkXnOh52b3HqicuXK7/ffuarv/jA/ZtbPnx4oJpEWjfKtCHfFPosMAKKi/iXE8V7dBWoXBAqUYVs+0+iIigQwMfmkag1Ig4NcViiZA4L58vEvMy8+abQV01X2lI1qS349TeZ3miWHNnKSr2UZiqXGyIVrucVPxd+Gn7g/ccHRrej7zu+/c0Hnl+OHE8XQlnR0qBwzRERgVLoBkXJmaIlwkr85wUhC9IU+lyZfXvuP/3DH7gbDOrNnmFnOIyaEjQRgcgbMWji5shCvKK0K7YvjNogSuV4PvHy4y+YUrm93WOFplMKKyo///gEX91i+j2d1NReNExizgjlkbKgogIZqFlQQmvu6QoyZ0p4XVSXitG0xcqaSmvaiIowAmUEOr3igLeNy8vM7t7RA8rrZqitLZOtu0LfGfZ6z0s4kbYm+rR9h6gVkSHVwPn4GYvkze0DnRm42d3y7s0Dj59fQMZ2ZueKQFCqwG8bUlUsCpMtqxDkEFi3K7v7AV0LXZXMRbJdZlSGu32PFYake7QdWC4LyIo1nrRIkhBopcnBILXC9m3XrhbwITCfz4zDLVrqhiI3uu3MzCvffHyL0QKpHdZVYmhfF31FlR4pBVVWYk3Nfp6BEtvPpgpyViiZoGaKTyQfiCGRcsaOGq2hhMj58ZHj05F5vvLuTqMLEArTNnGJM75MOJm42TmMhLCsTNeVtF0gTISokFEjdGHSM4iK6Qy93GMPHescWddGVCyrpCTIVlA2AVGiOto+FBBzoR5Xur3E7VWbqvqKnxPnH5653Y+YbqQfHd2+J+aKnyWlrpQCNWtiKYRcSDVj+tzuFFG5XK8Mnx3iLmHf3WCKhuDxU+Dz+QtOwTDeYqwjdpEcBXEDTaTmSFkjMXmKzzD9Fymy/v8o9i2QJSULrnTNTFohVEO2BpLFCoG5BVMyestcy4rfJvL1ig8r798/8Ou/+JabNw+EbaKk1q1+9+Eb3n/1De+++RolC2teCdnjzI6hv0Fpgw8L0jmKbMu7AodWA53b03cRkQUyKcpu13qfOZPRdGUELbh99w0mLzylxJf8ieFRIvtbrNsjZKKg8bV94Hv3FfvdHW8/FD5f/o75emV9DhjpwW4oI0kWTFb0uSPevUFeJ5Zp4e/Fv/BwvuNufMdh/Mhb9QtP9sJZbzw9PXG4/8Dd3T1S9xx++czz0xe+//1P/PrrSt8XUvKYlHBOsr8dGG7eUo0gk9FyxsQdWUHtPDe/Udzd7/j6Vx/46uu3CBQxJM7bxmU6s4aNQ/8N69qWnYTYkNay17d0uwekG8hlZZ2vPH85cTv2HIaRt4ePKJ2RSiCUg9KBcAjRY5HYOhPSRomZYgxCKZxK6KTp68jBKm73txiRIU1cfEYWiS2a/eFr9nYjVM+mRZM+2Z59d884vOHx8TNj/zOLv2B0R+927HVlkgXjKpfrRBhbtvVeSq5qIYZIOEfMzY6ugIyJ79UX3PGRqiX/5r/617z9uGO/rpSfn8nbShUge4XMGaE1uutxtz3OjihhqNogYmy7HR5iTeRSEBl0L9AS8IVIofiM9ImqAk5bnBnI2pKWKykHclfRa9dGt3ZArYGVjVgDw3lGdz1CWHYIzuJCTpXDaceHd+84HG74lRSc5jMlNla7HTS9boW4FxWdauvwDHvui0aoC3M98Xz0r1KSnrdUflo/8XP9gv3Z8NuvvqLv9nzzXvJ4OeLXphgPUqJrRpOZdcIFhRSG1N0wIqglMxNYpoA1FmMH7k3Hp3DkOc7sHjv2hz2uG7g9GE7ThN8y4QpibMtCJoA3FT3C7YPidvyW1CuikrBITCfQaLpwS/e/Hen2d4zDB95/bcgXWJ4C33/5HY+Pz2ybh69vsdeMVpqlJh72H7k7jHz3zVvs4Y5MZJtnTk9nemkY7IFOfcvhQWAHi+oOiDKzLInll4nT8UfWzbP5zEFrqu5IVXI9XtrinO7Z2YFgempJpPXKdZ1JReDMgSQsnShYBXa8Y0fCiDahujFnXIgYHxl6i+0GTD/QuUpvB9CGgxnob26QEtbzZz4/H5lnD1NkLs3X0IuK3PWUUlinzFnbVwkZZN9gCMVA6SU5NfGgG3aIXjVpIRKPJoSVyzbzt1lwEobFOEpv2Otmvi2LZMvtJdlfPVElHAMVxUQkLpFcCkXBXu6IWnPpMk+fHrkuR4JaEThO04QWgr/56+/4m7/5Ld9+9w3KCMiSYdzz9u03/Ntf/4RWB7S9Y7YKXyVaat5++47LDxk97NDv7nkokfM8cekfufyQkPdv6G4P9Fvgh/MLU6/5y+2v6bo93779hv/j/+7/wE11/F//H/9v/s//w/+Tv//qlv9mGHlzd0/pLCkItkXx/LVlWBVRBH5Un9lferxPKLnnoe6JovJJXPj0ywkrez7ef8U399+hrCaSwQtWKqVaduUW787Y0dDve6S5RdjWgRQ5okJbTAxSUMpGoZBUIVw3srGknNmuE2tOeCWxqqPoHQHLuiyosaNIjSkGPe4xVaHXSOoL5WUlnzckt4j1xDFd+D/JlcOv7/iufsfbtx/59rvvuH9zz/l65ccff49UY4sWiUiUrSvbS9M+eykyuguX6cR63kinRNU9OxWxtvCYj3x+fkRJwbcffsVf/va3PL+88PxyJbys5KUydZnVX9hyZCkr+ZIIb24wxjGEjd99eWYBbm8P7O/f4kymMzNnFZHThpKON7/+gN7XtgOweOZfPCUXBAYnNLKVbAyHG/RwQNs91WaoK9SCxJFojpNYC9q+NoemSNCCZdmY5pnHbcVFSS0OrzuCj6Sa2vm00ljn44E0X7jmRBSJ4XJG6QEpB/oEn+MjYSvcnw7c3P0V+/4tH+4jVXUs05kUAls2uEybqEiBjBUjHO7mHVo4puXEdT6xvGwYYVC1Z6c8S1mJW2D3WbHbv8WpnvsDeP/cImFrZpYgdULKQNYCESpqVdS7tzjZaE8vfuJ2WdDKotUNNjgmcWFVMy+Pn7h98zWuP7C7c1ynSAyRl6crWt2hTevtyyqxvaXeDxjxBuGgygJ5RURDrYVM21MrUmJ2rk0u1sA6zTz/9DOn0zNRFPr7O+TtjmAUT58+8cuXZ1LK3Oz38LAnGQjTmR9++kfCVFFJ87E/IFSkisIUF+bNNwRm/46bDyfU8cp23ai+wGCp2jX/wQAqAJNEf7hv8eMUeT5fSZdKnBOxDqiU0ClwKguHT2cIkt37W3b7qS0ca836mCjBsK6WPreJUVUKHQz69gY79uy04mWa8TkjEoTVUjZPXTPPXNlfBvq+5+7DA11WyGHGn1bSqbaFXWPQSiM0VJP+vMV+Y3RnUk0kf0HUhJbgTMVWKAgwEhtV08DnCEsbJ8Va6V3P3f0D92/e0HcDYb0CFWcN+8EyOIWSzWKrJFgt0ba+PrAS9cfxUS2kvDb1ugSt2yShigwikUqg+EaoKaVievU6PGzREKMNvbJImah1JWfRjHMpk9eV68sjQg+U2i71oRtIcWMpM+s8MVmDkgZhO5AOxEw+HUm12WfLtPByOSGq4W4QuP2IvQbWkHiZnjDjDqVtI3zsBnrfYQbBdfmpuQB6i82RzlhudzdIpUk1UEn0StF1jQKzKxYpFDc3I292OyiRlDzburFMZ2pOaKVQMiNKhCypUuC0RpSEzJkYVwpNeqSEaKbS1HT1Ujc6hKowrxOr8GiZCClTskQWRRYJcouWFKlwxoACVzO1eKqsGCWwQK0RakLISG8tnXQYkQl5I4RCNCOd7dnvbnhzu3KaN0RVGAFW9+w6jSgSY5tAShTo+56aKmusnONMuk7tWbGGTmnm5covz5XvLl+/FqAj+51nJrXYREwUJZBkqBErdAMGyNTGs6JpzIVNjYBCpQhBhwIqvvhXukyLt1nToZ1GGUH2gcV7fMqIqtEuA4W0bSRJiyhUmNJCt1VyqlSjUSlTfOQ0nbgdDwgJ1hoOeccqN3wKLNeJOjis1SilgNxiTSlhjKGzjsFYPk8vaG8gtwVAnRRxyfz+80+8GUfkfo8xloPbMZeNa17w80pWAq0FVrVIQCqRNHnqrm8xrFzxaSPXRmVBKaw2dMlw3S5NrKLU6/jZUXRlMzNiEwgqUbSifxx2fPz4AWl6fFoQJdL3Azdv7ukP9wwPv8EcBLrbYdwdMj9zUStZLQw6MzqFFoZBSjrb/s0IhbLQ9aBrIPorlI3oJ2QNaC2xncDtDNq22EyRlflyYjkvnJ5X5tNnfKikLBnuehS6cY87i6mZlDK+LKitSXxSSpjSLr8iM53UGAvaCJTRbXmr1tcJWAMJOGvpnWkjXWOxO4vRzQLqrMbtNEoJlNgzLTM5BjaZMaUgEVQajSnmRM4JvW1IpajGYUxAyohR4ETbuq8arBEYqZGiTaxSWNi2QFg3uuUIPqBioe9ApuZISTGTV0+JnioSgkKtkZICdVJEHylCUk2H1JIcCuvRs4VIKW2pNOeVSkQYw/7+nsN4YLBdEychMEYwjpL9eI/tRozr2a4bx8uJJa88vP2W2kuSicz+uXHfbUeH4XN+wntLWi1rqYSnz8gauE4TSrfR/8PbW7798Cv+5e0n+oPj8vLM9PjC8c2Vt+8+EgtsIXD++czdN7cIrXHnTBSJtCa284bUou0zYfhyPtN1jgIc7gbiVog+UmtBhubcMFq0O0wphFQIkeDVOCsBYQpUELGlq6gtRrjFFVvbeTBX3xoMVVGtJafIukycY+JB37e4oRKUtCJUxQ0dZb0Q68aarlxPTyxxZQsR/9Mzv//hdzhlWiPGWPpuoJbK/u6AXwolepYQoAq0aFO8WhNSC+zY0TnLIifmeMF5S80FpMQVOD8+o0Pi4HqyyEijMaYjdbG9bK9nnl9GqtDkWFCdQGyBEitFV+I0sTrF8Xym240gM2awqCiIYWOOkof4lqoVQslmUO3qa3QPSmcQpSBiQSkNqlD0hsjxFTur2rn82n0XQiGropZEKAGddCPwxEoOUKUCpaghssaNTAHVxGCxBKKfQDc7MTlyjRdcXFtMx2pYVkI98dL/jHNvqVSs7RnNQHKBVDPT5QkjJF03tvu3NlFUzr7RnlIizivr+kQpGlPbRFvlFv+6csSYAaWbHVhLR5GZJDx+nlu8syqUtBShyNLDeqWMh9eIrMfHpflBcsXuBtTRUq4Tl/FE19+iRUeVFqEztRRiiUzpEYvBCE1REmUaiadNrlqsV4mKGmiEmkX86f43SGLcSKsnXCbWsJABZSz9w9iQxDFyej6yzjPGGvZDh6ntXvTzhEgJJzNGF2QNrxFjgck0i7U2DLcWs7dYb6k+IURCpITYFKlrVL5aCqHMqHBAjhZz12PnQNwC12VDlB0ptgVx5WE7T8xK0t/uKBQQAimbQCzXTFxnzhcJokWQhcqUdSGLSnk4gPfEmrnIgr9CCJ4kClwz27Qy7yZuyj3VKLCGIjaKafAZkQApoRRY/9zFPoJIIlVP8ROCjFYCZ0DX9gcKJVBRQi0tJ+fz61a7ZDfuuL275+7uAWcdtVRqqWgt6a3GaYmkXYpaSqxWGANKZYTMqNcMnygthye0AWrTNktFFoUiCrkEYv7/Zs6tMwgyVI9UHeZVxKUJIDwpV4TtXqUXnnNJmN0BaRxKGsZhR8obocx4vzJPHUoO7G8PCCxUSbqcKF0rzGVOXK8zTnaM2mKHHret6HXlfD2zP0w4N6JkT9d19GPHsLMs4Zl+NQR/T58jVhv2444godZCrQVtDf1eYbRBYskZdkNHbwxhW4kxsC4Lfr62h99atBSvufpMKc0oXmnCqZACUrdcrFUKSfu7co2UIhG0cel1vQASrTxSNcypqIokIrLWhhzTqkV9pEDlREpzI08Y2fKGpTHFkQFjRqS2lBJZthM5FIwZ0FIzupH721uqvFBCQ2Vp3X4Wogis08itIis44xCmUFSg5kJeV6Rr3oDBOJZt5iV6TucXun7A2o6h7wl5boV+yhSpoFRqiWgkRRaybEhRRHt5F6ZAbDJ3IQRaKGqp+BIRueXnhRAY4zDOIrVsZj8fWq5eKZRWCEqTeahm5pVVsGT/ivhs3HxdJDVkrvOVZV6wziKMYnQDRVQS7WCQWoCSDFpTRQWapVFbS2cco+3bi28oEBRVaByGGjOfnx45Pryn05o7s2t/doU1eeJ1JmtNRTNq05blSiIunjp2SKHpNJzj3CJKCaoSGG0ZVGILCzF4snFo1WGUIelE1gWmRkoqCmwRDP1I/+4tU4Y6tUNc94avvn7P3cdvuP+r/xrCRkGTZcfLj7+Q00KsE4Ou7Ppmsh2NxlmJ0qIVVLLFxnKY8csZykYKE0omrGk8ZNNLqoCUM8nPXI8vXI5nXp4nwuVEKpoqHPnOokRBydrICL5dyj56Ot/OoJgiugqygCoKnZZIK5GmvdWUVMmltA5ebnlLow2us1hjMMZg+5GqahOY2fbCoo1E0TMOjuA3pAbd1KKvhVgbPeeckNvWJETiFScq2/lshEAqTZUVq0BLhRSifc7jRvCB5APOT8gYkTnT1/pa7GdK9tS1jZIRqVm7a6LkSF5Vw+PKtseEEORYyJdAyI3RrZGU7BGioK1if3fLOIx0xkFtha5SgsEpxvGebmjEr6fryvU6MYWtvZobSZaJZTtyMG/pXcfe9GQ2SlopcWNDME9HRAlcr1fGoRFOhl3H+zfveff2LXdvD1z/8Qvz8cTL05n7269JuUVpLl/OzG8C2jlqqngZyUskXjeqFChp0FhO88yNaNGObnRs00oIiSIKpPa5btGQ9jL++ooLBRDytdgHSkXEluKngizgS4AiIcEa/StmUSFt1yyuS+QlLQy7AWsEpbbJjZQa13VEf6VQCMWzzi9sKeJjpl5Wfv7hRw79ju+++hY79FhtoavsDntqnJoFO2WsVC2TXTO1RITWmM4x9D1nLQh1RfvcnndAp8L58YWybNzdHfAhUCoo41C9J+eVbbvy/HTCdSNaKbRV4AM1ZupgyX4lzIbrNPEmbiBBdxaNJqbEElZSiAgp2o6TktAJqm+RplwKIglkLgilmn9GbqgYELpDaoXqX4lXFaSQrwVfQ2wqVSihkj0NaysNQmtqjMzXmSrB9T25ClKOxDA3i6yQyFpY4wplRZTairItEFPh6D5ztzuiTIdE06sebzZCCWznE5vdIaV9RQgXKoWc1kYUMomoJ6a4kWJDXBc9IDMUCpO/0Pc3WNdTskJJh1SRqgRxXdhQiGIZho5SJQWo25Xa71oDtGZi2l7lp2CHHnU0lKVynWYOw4LTO2q/R+jWnCq5sOYzuRqgp1qHkS3LnkSClCAXpJIoI6haItbUnqOSUUoRUyBuK2Fe8CFQhUA7h7sdkKIS/cbp5cS2LVizZ9/36NJeRuO6oEXF6oolI4kobRrNplbWacF0FnezQ3UG21tYE0qCLKXJ2XybGFIkpUZqCIhhwIw7nJ2Ii2ddZlw1DZONQkbYrgvaqHa/5bZ7o3QTFBa/krznetG43iEELQa5rSRRQe6RJbXY9JwpK6RUGr58K/hpY54WUsot6qc0VTbzc6U920jZ9ma3P3OxH2TE54iPgZI0Vle0MxSzp7hPlFCwQZB2ILyE2eDVjCySfd7z8N2Ob779S968/xahDds5s7xshPlK3r2jYEBpOjKMA93ocOYO0xmkFJgQwQgysF4r5lCoGXRSaKcQsadkQ1IbZV0pOaN3mp18QxWJ1HvGahA3I8k+EP4QqTo1odF85uxX1pCQV8FfdTfc3N7SV8NXH/+S3e4j3dORX45/yzpvCH9kPNyiZoe+dCxsjOdXLOVXb3DXDtf16O7Afolsu8KqFY//9IXRLSh75VZKRjsgd++pN4XZXFtU4PkXeveAFNCPmlPwWG3Z2YZscnpHqZWzP5OmzLTMpM8RrgFIFBI1KPRg0d3AsP9IqJW4ZZhWLuLYeOlRE8fArlr22uH2e1RtLPkIxOOF1a/8tD5xffQgwe40H+0b7G7A7DqsuKWITKmJctkoJlBqIodEkhOHrueNu2d4/0DylRQqylUqGyl4lpx4Oc2EmAnhkff9Dbd2bMt14w3TemHdLjifSdYg9Z6vDt/y6B5JJdMlgdh1VClgk2w2IquhK5ab21t4lGyT5+8+/Y6UNXf7W9RO0qcbogn4ssIlIbVGOktQuTF/c0Vo0wolqUh1T1UzRpfW7da0xe4pI/cFHRS971EHzzDs6e2OM571vFEpmDuFy2Nb/NtphlNmEgbfCcxVEIf2gXYzrE6RqyA8w5fDCectXbHcfrzloAyjHvisL4gikbHi9h21aGqteJG4FR2y75FG8c11Y8qeOXt2iyOZRM2FcMz84fJEkBkZJDdv9hyUwYmO4/YDeS3IKaMOCp2H9sJnVm62HuEkYjCM276RrWxBe4WzlqRBHS0Zga+BbjYUUxHGcPB3fOlO5DWhToXZSQ5aM96MHH+8YndvOdzs+fpv/i0Pv/5XuN0dUvUcpy9cTxeePv2Bv/u771nP7TDeHQTKWAanGe7eg9TE1PaDrv6FVQo2O/CGSi8LjsRgHf1wjxvv8bHy8vSFZblyWa48/nzEX1fSZWXQGjlW9F4T464dujlyfbzyZTqy+Yj0ivzVgiiFdF6Z04bIElt6SkfzcqyZ0CeGIFC5Qt3a+NlqhruO/vAepWXrPGaNsgbhNFJKoq+UGBmF4O7tG6Tp2DbJFE9k3zj6U14gCsiKKxPjtaJRFAO9GKm6EFxCbxGBgmr/tGyZS2VdZcPRIVjkLckJMpWgFZ0siFrbhdhFZK7oJAg2gWyz0iAyW8mtsMszi79FDwXZJeRm0EWSZUXMDat4dzPyr79+z93NLcb2zS1RAmIzDOtbPnytIVtqUuxuNOKXSDplUsjoZ4MaDEHAWBTvD/fEv/prjv84M3Z7ups96ccrv0uRF7/w/Luf2Q0HjDZsjzM37+74q7/+S/67z/8Nn56/8LKs8MNP3N3fUZaKSj3HfqJePUL2+HvHMGlylvgh4z8b2GuSldxvHXanSUQuP1eeCuwHSXCOVVR87RDbnpwGsmi7KTknRAYjFYwKWVwDIJgZt0DIlZmMeRGIMYIqyH/MBFvgznA/3nNh5XyZ+Pn3z9zd3HFwA/3Wkz5YumoZksI8fEe4KIq2nD5GTv/0CcIGdwNP//CZH0vP26/e89XNV9ihR3cjX+0/8iLOzNuKSmC7vokpQyWUiquVvXZ8/PgWmTJqrby4K+m04q8Ln5Yv1KUwDgPduz3hKaKspnuz42Ecebk8cX75zOnvPvPwzS23dyNDHFg7TyWxuwpOY493HWmGog2mSnoj2P/FPcefF16+FI5fr9wkcEojRkVv7skiEMWCPm9EAcVW1Dv7ijquDAWMdehuRMlbpLsg64qaN2JvyUGQrxZ1qORzoHz2ZCsYzD2jfMOUThx/eqJIQf/VA+JlpIie7V4wzhVsjxwkPAb0QSJ0Yvw8cxYBP3vk58ph/IQ1AzIq9O2Bu6rZlYGXfUIkT11mTD+i645cIklu2LrH9nvcB4OYA9FNZFb4Erji2VIiPgHyiOtX9ObQ+xHtevp64Hn7e7bzAseK/rVCzhq5DRzHBbvOSCR1dw9eI6xBd5p9snzRsHSJl58Kzi1kfWG3StTB0NkDMndks+H9wnL+wmH8mpoFwkjimpBRoFCog0HloU2FxYRaC1VCGiphVmxLYFovlEeBeafo7g3a3nG8vvD5l8/8/P0XFhbud/e82b+nWgMxohPs9pYxD/Sio6rW9c6lMotMd44IHdB3gXoxOHdD/6s9wyraNDJn9CIw94aKYz8bttLADnZV7N7dQ9YwGcKNol8Mek38wTyRF4NUlcUv5GeJ1I7ureNm23E8PbM8PxKfNvSb9gIwcstFTlAj7loIvUUiscEQuoTNbSr13FXMUjGfC9dfL7hZIqJG3HW4qaPEQBgX+EN7xpP8M2f285pAREyNdFaQoiHkStkWVMjoDEJKVBCkENnigiiabuwxXcf9h/eMXePbb0vgen1imk+sqbLrDL0WyNSiH1KBUQrBhJQt9iKracSHmkgsbXEmZ4qI1NTeHGuFGqCkSCkFmRW9UwjRqDJKVqw0jPJAtD+AzggFWfTkDCVlhN4I8UTwYNSItI5h0MiHPZfthjRvbFskniUqm9Z5+Hll1hqzVvqkmD/sGHNHiQtqGLBR0wWo/UbazoSjZO1FQ1alQDcKnBwwStEZi1AZqwWjMzzohKwFbQr9OOIvM8s2c1wekbNAGcW6M4jrBe00pjMMu57kTJNQ5NiKoC3gz2cW3SRGo5JN0FQLW04YY6FkMol4nvFLYlk9l0vLxFcyIVR+cZJdzoxFMFpJLIFUIjIBNmBkZp8Kqp4RBHLnkGZoY/BayGUiZUPKii1sKLGhZWSdGsYKBowZ6a0iRoEXGWTrwigkw85iN0g+cFEXZLTUVJC9wObXSZcSuGCwVpJSwT/OvIgnsk8cYuss2QoyKURXEFIgREUnQDebrREdRTaZkBYBXVonC6fJIRC2jeBXDt2Achp7cOzXHplkG/2FxLJs1FIY68BhtPRVYXzlGlZ8zpRSiaLSCwdCNK72OSME1EGyPJ+5tt1svlMw9h1GS/SrRRbZREf6lZ4UYyBKSxUSiWDcddSt2fqyhjqB8AIjCv75zGnL/HSjkE7TmSa/20vXaCcpcJjKn2y61mfO8crmA0MeaH2i5iLwJRF9osYEOiKzhCCYq25Sq9o60UPWRAmpb8WqKpLRGO4/KKwbGW7uefPtryhp4/zyB57jxPXvjjxervxhfuGXf/m+UZVS5P3kcNbSdR3eXshSk0rFbwvPcWbvDPfWIWjnQhECYXtKivjpyDkcOX06s26BxSU2f21uB52wSmClQwtDyYFlLWwx8ng88uV6JafCvetJi6fkzLZuaJpQTEnBNJ9JoUIRDKZrLglZqam2jq8Rr1GaSCqiLcIXkCqjleF2sCQClT/q3Tt8yphBU4+RXJvoLsTSSFIV/BRZ4rktTTtJfxgbwKAYVKepErIU5C2RTaRSGUzhIiXZR57/8D3bvECFDgEbpJQIYWNbY5Pc1YzIhhgLoUTWmskFqoCyFoIupCVQt4w0krImyhRJnBiM5K6/4WE/MkrTop/ZQwp0o+bNd/ec/zATpSCqAmiu8co8L1z+eWEvBvbK0l8LYZhJ3sOUsPeS/a3mZtT8U7ywfn9FK8/nf/vC7csTShu+XJ6JU6I3Hb/57W/59T/8Jy6TJyxXwgvoaOlLpRw31n1FiYIJBVxBCDBCEjpQqaLPlel+o06VzQcYLPZYMaulbBqdIZRAkoqaNKQWuZDZo4xAqba4TUlQEjJGskzN57FlYomorflovF2o04QqCSU0BoWMhfX4xPb9R3YPlu7NHtZIlG1hP28K1cHw0PON+5bjU1tYX36+4m56nk+P/PP//B9ZvvXc3d1xc3PAOIWiYqgIodCCFm0snu06U6zD7e8x1jLsRw73O16+nChaUI3B0RN1AAnbNLOtKzoZ1CR4e/cVKUcuy8xx+ZHDuQe1x2IJl5UQA6cQKLUQo+G0m4h+bfKhwXFXO4KZofOIaSUqQFlUarFerRSyWHAKXklqxIyUG0qUtvNn9kjZIUVsUY5mLEL4ikitrqlzbkhpUxkWha4SKSXSa6bLmRASKSrG/QMag5gyc1xeKVcZdEDLEYUhWIF+KsQYWWXk6V/+vll8heEwf8A5h9ICnWhpBhGJy4yMgZwW1uuRbaea7EqA65tRPUZFNQK1RORWScUzPx/x1lKLZcfhT/FAp3aEOHNdT5inEVUkSlXstUVnS22Cv3gwKD2gak9/6NifB26iI8mFMB3ZZIGuUItCWY21FiPay2Te9WCgLs0ZI8sVJS1GOqTqIEVqXihhob7GgPCQ00oOkeIrYq/pe0evd4Rt4fjlheOXI2vwFKvohh0fPnxk0JatTpA9N7tb+qywaLCatGZCyKhZ4k1gmi+IHzIqa5xWdFZhup5wXsjzSiodcu0aFypk4s9X8hDAS9g5SsyAoG5/jPMWOm9QMlHiSvg8MV0XMAJnHHa3wxqF1u35L9EhXMfgDMs1UnziRb3Q1QGjNAkgveb3ZKXfBFUHVn1l+XKiiA5ZJaW8EiaFQARJtRZyac/sn7PYF6miVEUKgTWamgo1C+K6QSoIaPbM0qIfMQeUHjCDbESFmz3SKHJOLMvK+Xrlui4kBb1zOKUQKZFFBSsRQlKThzr8CcFWY/tAUgM5tWxYodnYyAlKoaIouVBqI0N0tmXbo0gIAbL5dRGEP5lnq6jN1FclwuSGQcuJJAMVi7WmEQLsgeuUWb0n+zbWNdKS50wygRwVtqwshwubb5k7rUFLialtJ6GGQJo3vFhY/QLkNpJSru0fmBY7UrJilWSUmpIjVTTk4+V84nQ58jg/ciP26M4iTUamDeEGrNboTlCVoopmUow+siwbl2kimcLoDKq3yAy5RHzOyNBsjLVkIgnvS5Od+fazpTZU6lxW0A5Uh06KNW+EHKixIF2i05W9EMjaCr8cAqLvW9YsJ7L3lFLIueEkNQ2bGlMgpgWTFbr2OKWxUiNRNLedQAlJ31mMVIhSWdOCVa+fGSNeCU0CZMWUhvfSoXHGp2lCColWkv3YN6JTbRlpaNGmNnCHFloTrwbh+ifzswCQkpwyMQQ2v3JTd2ijMM6gZ03NgpQq2Re8b4ZKJwtmr9FCI7PEx0ZBKZXG+xVt36OqZlUVsh0C0Sdm77lunv1+3yJSpucVkNowfvmPLyut8E85gWxfSecsKSeCSkgpGoEoN8V58ZmNjRdx4vb2FjlKRufodccqAjk3ApExTZKiqmTzbTSNVPTqddQPpJLIr5QiKSqitMI21kCIbWxeJS3+JAXFFPIagMZ8H0dH1/V0uxHTDXz++Ueezkf+cHwi/5B5WVZ+3s6cTzNr9MSS2Je2ZKWFwi8rQShCzqzrwiUvGNE3j0vN5AqhgqwQwkbcVo7ZMx3XhpGVDSwqtEQIC1IjbbMXlpLYUvs5nOaFy+IRwJ3tSCGRU8LH2GIBCCqVZd4Qr8ul7aUhQ81UFADKKJAt2parwNcWE9M643RBCt2KlpKJOWOMQ2pBFYWQIrE0mVd6tYVWKjFUYvAN8VjbRVyR1KpeST/1/8cI3dCbWglKTmzrwtOXz2ybR+vWfaq5kmPLooeQCCWTKegqSZn2clkr5ZUgKUiU2n5PygEzKnJsY+tcVjo9sOs0+95hhUSWSskRasVazXg3UP/A6/hbUqtkDhvnZWZ52bh/d8fedthoCN4TvKeGhHWCcbDs+g6fA/7U3BjHy5npMiGl4un5CZ0txhg+fvjA+7cfifEXpuuGCA3LLAXMiyKEivcFkStR1vZipjSoJifTuZFMxCLwISKtxoiCLoaaVEM+okEYRG17T80w+sfzQ0AV1JSpuUUeSm3nbk2JnD2ZikiVQCB4jxbtXDPCIAusy0y4BNg3Y3AN7dfmWlDatSlsb3nTvWN/84nLcWHyE6kmlnXmy09fyNLi/UbJibs3N+TYDLTUFvGqACUS5pmaEt71IBTGaLq+ayekaNECq3owrfEkqqSU2CzlW2Dsenza03c7tuBJPiOCxFqLiIK8FtbQ9lmSSkzTQg6JakFpRSctVgo8mbIlsknt+ShgnEVImpxRy9b8q+2sVgVkFRjbt8JTWGpeqbkVnVVAjbU1CrOnZkfOmUwzVLdDqxF4LtPMtkWE3HFz9w4pJGnNbHF9VcpWpEloodCyIS51FuSYicazvDwSEaxALpnbuwfG3YjMgkom10j0HlMCJWyE65WNM8YOKGPRQpBR5KIbDalIZGo5+LhsxC0SyozQIHd7RmsxcmDNC9u24edA7wxSgPQQZSSzYaQm2AmtJabvsJ2hM45OOC71SvIrcW7PckVhqqV/3ZPKsiJ0osr2vJAKsiSkbFZrhG4YTh/IPjSMsgBSQ83m1JC90im06zC6I26B6bxwvSzNLGs1nRu4vbvFKs2WMzFEejfQFbBCIfuBlY1cIrJCLAnpPaYIrLVoDFU7dGdJF0lNlZwjJTbTPKmSz57kC0KfsfJAjbldbKHy+ojjhHm9T1rzLKwLJInuBeog0bpZ72O6vtamgt4YTIEtZuZ5wXQd2tSW95ft9hRSYNFtHyIEtotHde05Kqm+fn8bohVjeOXQ/3mL/c5IiuqowpKNIvoja9o4Pm6sFHCSXhuCyYSYiaUi7vaouCFK4jRqFjL9svL08xP/8uXKFgJ3t45hPGDtQE6C1a+IziGtpGwJoRUIixGCVGtb6PEJdh2ibhADWRnEplBrZdG1sdcFWDGwH+/QSjX6y+ULKW2ksiEugmws2bXDWsoBqXuUEVj1HiVGkpipxdGpgdE5dvrEcwg8XRa+s4WxjFQfiV1HXAWpFOwu8PK7nxjkQPyVo9tC030PB4bvHbrbgx1J54mlTIhacdWg3wyYqjGbbHGYHEBmZB2Y05Vl21h/9z3/+J//meenE6fLzL//3/wr9tVgJ4npbhiHe/bDDef8mTULcgC3FM6XyHFa+fTygjaVN/sDd/1tyxnnhbUsxLKBr5AhdQZNRkvY7UZM1hQp8UqSr2dWH/BiRgjJJXqmuOKnF6xT3DjDw80e198giiZsiaJW6pbIc2BVAm0iQmU0Q1NBi0IdHEKuZAqpaHaqZ1NNvHddfsENYKzhxux52u2ZcmT9/ES5oxknkyLuHYqMLQXR7WPkTV8AAQAASURBVOhCOwjPojCHhToVopFoobHOgNOYpSHYoqmozqKNe81CQ8ivjohzo2YAqFLYYmFbIvEU0b/a49aCrRtH6dnnioqCpcKytZy/thllHRjLpgRxEyRTKbbSBdPynEoxqCvHHdQKokrqbkcIgcvpyPe3DjVKhuoQ2lHjRi6Nc6yFplYNDESf26FvNb22FCdJRXPgGd8rijbYsEPfjEDm8vzMz3cjVcO+Hxhv7lnXSLhuBFPYG4OVhllJ0vOlkY/0zJ1sCNpqNdWndnAZhVkExfYEpbFxY1NQqsQFR+gsNVbMWgl6w8tArBtufQOHPaHrefrpif/L/+1/5B//4Sd+9x88f/G//9eYauH5gLDQi8CYA65PCKNJQnKdV3ySrCnytJ7YysKgGikhJckSNnzY6ItsOz8+8/nHyu6DpBt7drwn3HQNaVg1Svm2WGsMMQnWXLnGwiVEgohooUgYVGkFd8yBOgiqhzxXLqfKm4eOu9uRu4d3CBEQtVKTZlufSWSCloQMgcJSCtP5ROcduzDwvndopcilcHx5YXwjmOYrx6cXPl0XpFD0JlOVQ2UQRaBdRwqRlCPnWLgLA0pJMJLlurYFwaoRVqK1QgjwwnK+PPPT55/4T78/gRGMO8GiFLZEYkr4tbDK9KcdqLzLr5EkgdQCnxJVJXQX0eaekAVrhm1ZkcJTu0h8BPewZ7+743boqLUSYiJvCTWMKFUQdeJTmdhzw1h3lHThfC08XyOT2Tjcjdze3aCHgenzZ5a8kmTgMMHdhwO3N+9x8T+ydAWfVh6//4XT/V8gMvzyH37H+K++Ztcf+FX3nvdf/QVfjhv+5TOHO4NKlnnu+PLlxLvXF6FiK3VRlEEjRsu4Xeh3jv7QMR83lqDYUqEvmnjTCk+SoXag8sCoYOk/Y53GGA1qD0KRqyLUgpwzOZU2zdsKISaW6mHekKNBaEM4JT7ntthslKCoRvQ6hsp20HDvGG8GZl+Y5gvLMnH77o6yZnSR3H34lr/6dsIJh48VtV0IQXCOjue//Z/58vEDj7/+Nf9O/YZ5i6w+YkUildtmdE6V7aIIKiPKCd2P1FAx2WDSnpwvVCJlOGCxdIPj/t13yLgRcmVFcRh2CKmZfGYpf0/WEtUL9v0Nz9vGliCsEdFJUhIsf5hJ3lI7hVQVxgH5qUO8bCyjwQwSJSEpgSoGIcFbSRcLWQaqjlgpwdwhu56qDiTVzvR6AU+bopUsSSRy2CjXCXXo8T4wX6/8Xk18G1cOq2deV358WtlKoLxd+U4UcimcQ2F58Zidwg2Kbq6Y+wN93yOWhfPbK+mykR4n8t0Ny/WFx6efOJYjv5G/oVNfQVT4uIEIVN2hS6JulXQ2XOcn3DjS7w+IGVS2qFSR27k1qrTC5UouhhAi16dfOKWNDzlzsAOoPaFcuforIytjVc3xojRlzpQQyMpjPz+jkqbbfUCyIccOeTcg/zERXWF1mbqdybrtWcqY0f0D1EDccvuclIxAoMs9KE2WuhXVx4w/ZbZToWTZmg6iUqaJLQeCFUhhoTekQbFOkdMcOK8JHwWdHNkNe27eHlAI1inx9LSijMaKjl51uPt7lDyCWJjCRLh6ZDXUYY8pjZiTrKS/OVBCJSWF/3xG71NrkmVNYaD4SnpZkU5RZoFcQXUOZSvCZPLdgeLbfgD9Dv3LCyEnzlXxQVq0HhH6wDW84EJkjIm963kxIz4KwlWQbyEjkJuk7kcECSs95vbQjMxrYQmaTlekykQqetNUIUljxWwCoRpA5M9a7NcikW2mTyor2+xZp40kJrqsQCqkFJQ1UnIi6cKuCvSwQxlFJ3qUMCSpSEajTKUXiofdAekUVUPNlUJCFglFUG3i9TZDmQ4dFrIICBeotf6pM0LyYAVZw7YEqBUjNE5ZTO/QWlOSIOdA3jxlSsQ+glQYaZocaJfRteA6S3IzW4l0x5lgBWqX4HCHGDRu1OxCy7Z3PZTSsbOOaU0In8mPmUcxM1ye2M6f6W+/puSEjJ7+wx61KxSzEoJgWyJCZMIOpL+02AgaEyrZr6QtNtTSPLNdzvzTL4/8/MPvEMB/9eu/5DcfPuC6Jo5IywWnMk5Xxr4jXSObT1zLxLZ6st/QtbB3lv2g6ffiT8V9FQK5FLIIVFnZ0VFtkyUNPlMV1CpRVTPbESkNqigmE5jTxrZtpFrpckHlTCorQ92h6msHet0oNVG7ROcOqNqiB6kGcLGJ2qRAFwsJ0jZRdjuqTQiTEU5gtaLTCrUXdLPCLJKqIU6tAEsiMfgd0iiK1uyEYXEKYQXicSOPY8t0LomrWzBVITYYVAVR0KGgXke3RVRKiMTYOqvCemwQ5NJe6LZpIuSVNDYdvNCNzuTWtuGfakGuAkFBqcpBKbRtI1ux0XY7siD7zFRn9mnXFic7Q38V5FrIOjDkiq6KpDTb45W5m5ndrm3xlwWlBIe4R2pNouC3hUsMKKGw0pBFomZJh8T0jiEFakwsasWFhk9clSOcA5taWfsAPjVyjIY+g7CFKhN2bdS5nCvmmrj2MyYbrLestSALuCqILiJzQGyQlEInQaKyqpU0FRAgtWDwGlc0qmjKG4FgwT8tfP/4e37623+hhMK//+//hm9/9YbkJc8mEH74A6VkFIJRCnTMiJjZTCBXQ8kFnQtOCYwCoZpISpSMSBuXxxe0kRhr+eZff8O7twds5/BVc3k8kVNFSIPRmpIrKcFUI2vMxAC2cxgfUVSE9IjkUAWclcQFQgzEmvjqwz2/+vYdb9/cItGcji+kEHG9RYqeEANbzFy4ElPFR1rhsUEWldWfqaIQU+B0eWHNmfN15ewXVG2TnCra1ypVK7ptUiSrGzu8wpwSyVdMhi5lUBVV27MhpaLWTAhnfvfDT/zu+z/gOGHFW7qqEd4TQiKGjZgX0hrbQrBUaG9JqlJlouSOWiCJSgiSTUdKKgjviSyIHCBFir5w8/Zr3n9zw9u3b7CiQvaNZy/GJjpcN8LjGfEwoG8U1x882S/IbaXOhWHoGYeeEgtZVbY5cD1f2HoBnaSzmrv3e4YfPH6e+Hy58Pn4CWLh0+fPqMXzzbe/5uGvv+JhfODQjRy1QtIzdCNGZO6VJZ8zW07IO8UqPZ3XDFdDd7fDdA5pLVvnCT6yLomYNcIrjLL0DmpUiBgJJGRtk+5aMlo2oVbJmeILWUSqKqgMpR16sFxYc0BFg60K+/6e/acZ6QWqG9ApoEqkphcG4elf9+aW4wtbDERReP58xucTylTeS8Xduzu2tPL4yy8sdkGJjNqufLrMeL5Agqfxjut8ZvEz1mi++dgacK7veTRPLNvG9Al6Obx6TDK3fc9aA15nHE1r5pyjq5Jb94awBcJaEVogtcZpy6GvdBqsUgw3A8OLwWdFEgkXLVVUrmJlOx8ZncTt9thcMZ1AHQQ1ri1j/0qJK4dmQhFr20EB0LHVDtJIdCfbxCk2Ck9WS/Nt1BYBCuu5FfsECAFtGr7Y/HIixXY9pligeFRO9KEinGxTuutGlA0DylqJbNzGhd4q3H5kf+1BTeSukOczYZ7xWyD89Mjq3uL7wLYeCbGipGXf3+F2DikzXAPzEsgpINaINi2KbKQkKomJbcqGLci0IWNBaEd8uRDMSHhoS/yo2gAW00a5dy1ydaksuZBLpjxFLjcDJu04lAnddfTKsq+KcNBoGcHPhKqR6o+Lz5VUrlQSWmdCzVAMslrEWCEHagyULRLLlaRWhFGI4qlxI8S1OQaExCmHvesRVVMnWGyilEaOy6Zye9jjxmaslSlRyBgDRvSYQSF7SX+/a+I3k+nWM1vOCBlIzKRSMBlMEgjVvABVZpIM5NW3KFUPdhHEXEkhoV9eZZq60vWKSpsWOSLZNMeEzgHZqSadPAf4VqKsxlmNsgWtCs5UhtG0PTcKq4+IlUamEwmTPUIIpDUcqLyYxFY8wV+J7oAQhrgljH6lGCwCH5uXpW2u/hmLfSFEy2ZSiT4SfSCl1OaurzGCtq2dqbkiERinsV2PcRbtOoTSFCGJFHJpmDztOoQ0VPFK1IkVoWqjRQjVNsjF68MrcusCo0BkBKX9nTUhRNteTrVAyg3BKBVKNQ48JRBiJIRISomERUuLVg6jNJ0KZJExfUcRhZg9IiZCmdHG4uMOXnFkOScQFdc5hBgYdwPT6dqwXUKwpMKyRrawkUNDrEklMK5DWEWVlbYYnoFMTKUh9Wol54IMkegj3kdCLizzxvU88/L5iRwL+/2erz6+5/5wS5WFaZ2QSJSUKC1xuvuTKS8m2Ta8S0FmgZISYwxD17XRfG0jwcYjo42XZEWJ1v3T6pUugKJUTcqOIiTQJi2plHbQZvn6UlChKiqi5YkTba9CtGLBGIMsAjKovIJQFNFycbU2eyvZk0vfKBWytv0LQTMayp6+7+icQwrVfibUFimomVIkKgvMoLDW4qxth26pzTCaIz63uJiQFVskLXvWYjVCvJpbS2kEoZoRSiLVK4ouV2KMpFSoRbRnUymEMqQCKVdMadQeUZopU6qG4FNCkktboqyiUmSlpJZ5lqJhEZWWUCtSSoxROGfoXUcsLS7iQ6C82pClqIQh0VULtZJLwq8bEklWmVRzw9BV0fj/WhONJNQmSKMKtDSklBuJI8Y24s7t6yylRbiEeDV+lvbziWRybPxfVBOV/PF84NUFW0RF/PG/ayXVTKrtXJAIlFQIXjudqZC2yHXZ+P6ffuG6VPTulm++/TVv73ZMF8/5ZUNTqKJgaPZaYkN/FgRFvGZCCyin0cagtGtM7ZQJPjGvEdf3CNtz8+bA7f0D2mgu24K1ro2mpcYqQXzlQ8ckiAlSBmorlLUAa10LU1VQRRBfnSFWO96+f+Dduzfc3x2YrzMKQRGKrtPU4tqzGCIhJlJ79KipkIiEWAkhgiyEFPCrR4oNvwVi4jUy0352QtI+81L+KeYmkaSS2VLDwWYBprRfyx+jFwhKqczTxvF45nw+I0U7G6QQUBpO9o9WyD82BGptnpUKbbT8GkkhC0oSlNSEfbJWCJmSIyVHpFQcbnc8vD0wjl3j64v6KjtqkJqUC1PY2KXIUCo5Z0hAbOeM0QatNVvyr/GLQk7t/BJCoaWiw6JVRepITZFUAikmTtNKXDP72zdIBDf9iP3/0PZnP7KtZ54e9rzfuIYYMnMPZyCLZJGsKrmlFty2AUP+w33hK1/YsCG11FK1Wm4VhyJZ5Jn2kJkRsYZv9sUXpG5NA3WAgwPss5F7Z2TEWt9639/vecRRkiLVivUOZ+FwHImpsWwJPeeeVqyVVCpaWbQ2nUyjDEEKqRb2WEi5i5GU6fGjP3c3RPrrnGOGklGlx7hyKT1O0jqJp6ZMSZEUt07PGhvKKMZhRJRQWqfRqXuHaL1s5FYQ3Ylr2lkkR1pVxJS5xoiUBkqYx4nz6cTD2yP1eUVXhVUdnZz2xPV6YVsWwray7wu3VHnz8J5pGDF+RHQjl8x+2UkkRAxIJ19Za3rSvwWqaJw1ve+gHYVCiRtxT5RUoDZUuftzNQyz7+SlZUduCTF9k7WnxBYjMRem2n+vmG6AzWRKrhSpHa15t7SKdCnin2NSpfWoRKML5ErLFBq5Sbf49uwhJYWeHY89l65FY8T0M0Iq5NyvXTUVqP1MYbXtcWEpPWWgW+8u1E5nqlS0dHxu9I7BDejY0PSOUogbOQZqilAzcd1pLRAPG6ImjHUYb9heF1KBhAF8vwXTH+SFikhFSY8gK2loNLewE0Ig3yVtNWdqzOQx30ly9LNH7KbknGFzjhD751wjGCVY22PU/Bmzm+gP7TnT8p3S1CqU1k339+Fdo/UITKyd4JYTufa+Ui2FlBIhrAxtQO5EJm1N/7ncrx2pdqFqKoIePGbwKGs6vlKEJgbrLGI1eI+eB0z22Oxws6ZWhxYNrlG3u7H5z1FDA1gh10JtDVF9I2emLqvK8e54lv5woAeoCVpuoFLHtWpBbEM5RUsQU+pEHbmfHUrr9BzdGGbHcBgIJRPTnUQn9CirbkiT/tqZ+3sYSC11gl/phl0n9Ei7SL8v10b9K8/ufz1602qiKoRSub5ktriTakTJTHYXpFVsEgL9EDQkz/gwMQ1HnJu4nRy4gdY0txC5rgptNGkYkDZRmyKoQF6FpqBaRS0Dhp6VqiVSVeolszhh3YZWFSVCIGOSR+WByk7aQj+EGYVSHYOUa+J23Qj7SmInpyeM7jnO2U/YFPrT8jCRcz8QbkAJKwVLaxPEwrpsXbxgI+PxkXkeePr6Hd/8bmXfC+PJEH6wLKvmJTaeXiMyCObksUu3ChXT0K2wSaHmwuHSGM62TxOXiEhh2xKXdeNaGh8/3fj08crrD9/z9P5nfP3jH/G3v/g5D+eZy+tnLh8/M/hHUAPae+Zi+VN55bJtmGophs6EjZbYBDGe8/jE0vo6rwUNc0SKR5pht4W5GTQCQ2NipmnVaSvJsEph1RV9Rzo2o7FXSzaJiEa1E5lCLpW29FgSMoCeO0JT+mFXlxs5n8lKKPaFVvqFQ0whbJWcK6hC2HbqfMCMhlk/8rTf2GLgOwbqUVEr1EWz28aQKnavqLeGw36kBfjhfKNsjZAShQ2bRqyGOjSGtcdzqhUyldr6bUIKtJruB+8DxcV+kV0htkyKDb05su0ZY6UsL7pxiuA0qPGuWhchWMugBpTtxCD/rKmuEo3C3LpICauZqkMdDa0qJhlxjwNnI5Aqvwqf2Ok9AD16tk+FmhIvh43R+7/k59OyU4HdJbal4CaP95azDIRpJ5lMqyBTZ34fimPXlb1m4pZ6vChV2tK4PSROCE4Z1jEhH6HkxjZnbPBk18guY1ahjRBHwSwjZRKKrbigCJJJrdKCIg0ZU8Ds9IiNtuxVc/mu8ENa+f7yyv/4j7/F//zf8tVPfslP3v3XuMfKFv7I/vobrBrROuApTDKx1aUPHOpENYnSCrkp7Ohw84lpfOJz+MyyJ5ZLYd1WZjVj2pHj4YFhfkCkwvWCsk+Irmgp2CJk1eUoZeuUn1graWvdRDk4Toe3pPpCWrvEquXE5GYO0wN/+/c/483TE95aLi/PKDTOaMazpZaZLRXWFqhBaAawwEsjTInqMnEV9Ng3nW0v3ZKbhVYHRK/df0HfbGkxWLEUUzBXRcyNvUXs7qmikanHuPox03WSjjRSrnz/3crnzy/clgXUmWL75Emavg9VGtJUj4UhFLqcT5Xeg1KjoIpCtdbxy6YjEZtTlIsmtEDixqSe+Oqrr/jRT79gnF3H8SlN7xcLVYSM4nu1Yvcd+xK6ATV5yAO7r2gsGk10BV4bKgv2oGkfNWSDFof9ZBCvUI9w1g3vDTE1Pq2Jz+3G8fpMXG98cZxw2XP7DJd046vxHYdh5vzjJ374ZucWd2peOdsZBJLOHFaF8hoxmsc2U9zKzW08X66I8vhWyNrQnAJlsLujGd2dDOvGtjqGalFNCGOEXdNolCFT1khYd677yrB69KPCnRyPMrJJ46oiqnT0a86a734f+FwKwWrm6cDTl0L7VhNeC3lIPL824lJICg7uQDtnvvy7L2i/abQMgxt5/3ll0YHXupHWyx2/qPjmd9/x8OYdbvI8HmascpAXtsvKjRVVHRqLeewEFosj5mcsh04a0htII7TM53Dl+YcrVaDsif25Ed8VqqscziPjVye8VOT7QDoqYoJtUTwXOKTKIVTKoYsdpU5samXIGUETvOKwN8Qq2qBQr4WqhOL7Ya6ke+GyGaorFFGUNFPVFUqEZWNPazeZX6C9UVgUNik+1IXtLqeCRr72pEKeDSd9YjGB0m7IDxllHcpquM0UMVQl+FCxs2FiQpa3tDFSciK+jPxxWMhtp+0B52e2z5/Y9oB7fOB9e4ezE+N8Yo/PFJ2IQyIvgh4EbRstVIpkqi6YPFDnRqVhk+JSEmOIxGsgyE64BMJzJLzLHfWMZh8b6dKHCvtokefGdoTYFDZkxDRkFtKm0K6gdMUEQ8wFFSr1KpijoVWoG5hhQGqjlkzcBLkUWsgkF4mrJkZFkkTYM9u+cw0LTk1ob1EjmB8MC4VYEsdd2GJijYntJjA4zGFkmo/c8kIWRywT7mwo4hE1IscBmwZ8GRneDxg3A4KxIDFSjVB8P+9rp1CDJu6VegaZLON8YlAFXiN8yqijphWDSQo5groKLcFuN1w+oIyGE5hL9x99ZiPE/nDVsdiF8FjIpjHNB8Y3O7tq7K9Qho4Q1s0RB1Cx/xt8pSmHrsKuegy+lcStbpg4dYHZDOajIqFJ957hv9phP221F4byRikbZWsQLPM0UV4TMe7cUqAV3Z8AVeasBryb0MOMF09LibXt7OGV81CZ3MB7e0RpaLnAlmAcwJo+9TcZHTeQSnUzVjxKBZK+oHOPDjQBdqHITpWA22/UWhDl0HtAWsct5etz/29ShKgZ/BVrNBTL7XmjHQQ1wCQ3ZBBaMbQ8sBhFqSuvz//Etx//xPf/8ns+/fEz8Rd/hz58wTie+MJ8yQ/nV64qYOqANztyXVn/6ffs//YR0wZ8FpZT7GIvDPPjAx9fL+z7jXX4yONFo41Be4G8sl02Pn/Yed1XPn7zLdfrK+e3X/Bf/vxrvv76PQ+Hgdt3n/h8feFlj/zMNUbAF+EaM2GtxLWi7d6ny4DSlSc5cBaP041jFqwxhIOnVHMveSXaVdisRonG4JGhYqrgo2YbhRyhBDpxKQZMrrRJ441lUg43GnSMVBE2IzRV8S4wuorVhbwWcswEHVDtgqoFqZW4a4qyVDUg9VvW/cZtuRDCRlhuJGNxTwdObiYcHvnyRzcut8QtB7a605bKVoW97Rw+zl3j7TVT1hRlEDGYTVNdBGkMzbKyQarYVIiXSE2JrDInsRjtUApUS5AKcU98utyIn3LPKdqKrIWaK7lWxk+NalaiNHSyVJVRVRhfCu1dRqrC5YKcBiRpJEZiu1CXlZIKxStO20AogUVdsC8KmmY4DvyoPHCQXhi1ayXsC2EPrP9iiT/zKKMpIeCdo925/WvcyDXRNiGlHtsyScg5IK+pH9jUwLl6fBa2fSFfE+u6sOWd+fNAVZGCYPbcv7Yo1Jb7Bq1kJFWWljEb2CAEnRjLgFUOZS3mVii5EEkcYt9ycFDopRCXwuunwOf0PT/84YWXS+T9L3/Kf/lv/pYvvv6K4xeKf/5//7f8/g//zG//8Gt+Oh6Z7chgJnLYua2BLSX8YLilxN4KMUfe6ndMciJF4fVT4HpNrHslPwy8fTPy9tExuMz+8h0xR57DZxwRrQ1WD+y3yhIrr6FASuxbYN8jLRdGNzErj1KN+JypsWH0gBHL8TTz7s2JLx/fIDT25cptuWFkwzvLwzhThobaDHlTkCMtdE9D0xUd+4Ej7gsjGiua0+ENWTRGRc6jYVs1uTRKTIhS1KGCrah4ny4ZhY2GkiKxVlRwTKfuFg219ol4KqS4s15/S7jcqEvjZKEhuAaG/mDTJ4ARqbqX6ltDJYcMFUwhh4zzIwZLTrpvm1q+i4wSpSqKeJ7eWp6cZi5wXVf8ccQqwUim5k5iaUrj/sXwOj4Tp8T1+5XBKs6jw/0B6r+rpBoJz89MTwPxJVE/LAwHi7RI3i+cfzHwy/VLnl8sabhS9humCG/fev70//zID+kTv3n7PX/608Z6S6hYePlPC891gXeGt/6JZfhMjIXykqktQanoINykcdgtvgn7YODWSR4iERctQwCfGy0WakwEFSFWwmXn8sMFHRL6fMaPI2qDkhO0ismN27az3yLttaFHg22CjRX7OPDVHw+c9p3vLx8wRlHChdOYefh0ZbpsoGG0isPsCOeBy8dXwvWZWHcuH75lGCaMN3wxvuP6+IG079hcePxi5JB939KkgFWNsWVqTlx+/4FD0OT5AV+Eg/Ywn9ljd9yUeoVFoQpIzUjJDPYTXl6x6YF0E/Qt4rbMn371jwSVuJYV9fIBuzxg99rdC2tBR2E8e2gW1QrVNOLvP7I1Q3Aj464YNGy+UD5H6pC7tT0XykNG105OaqbLHSU1rp+u1NBQB4d+e0DagBKNHzrxJ+SNZb2QXxuSBLGCXQUlFu09X95m4uXKR/89e9s4nrtA6ut1pJmGqnCImnYc0GLQuyKbQllupJowxjClM1qEdrwRX1PH+b57QtYDc7GUvGKVZTQKRNP+8Il0fEENniEJx+NjnxJHIddI2xp1b0TVIGh0sii/4ttdXHi2vPmU8Em4rM/sYSVtF6gb8/IGpkLWCX8RivW9DNdAWwVhJ33zgfbmHbM98s6/5/PhV7hUccUyHia2vaCJhPMr/ipYUZjZ9oL+nomfAiEtqKpRaCiuO300pKhZlpV1CYQd1BcGayw0IbpK3DL7Bil/4vX2whqu4BI/P7/lq+lIKYHl+TukvXJ4LLQHi5OGNZGNFzI70RTi2XA49NJtDoUhjF0iiKKogJiMMRVFIX26EmOD04zJrXuGHg3Wj32LqyvcApVKHQo+DuihoN2OTgY7acZmmS6Oy/P3hLgRr8/o7YZbD/itIU4YMByUp71RFNG0qjuI43Xvm01gzJpsoQyZ9rmSHqcel7ol2pyAQntpRLXTSsLEv+7s/lcf9vtat1JKI6Mp9ImMNENV+h65kR7lqOpuDR3QzqGNJguk2GUsNVW8NwyTZ5gHkF5KRGmsVihruw0y5W7gaT0OoLSmNdOzkE16qxnuMZKC3A85CtDS+oXsL6IKUGbADgLWocVijcNoS3KF4nonwbuIwvdI0CC4bKgEqkQGNTP5kWmy/cOiBGMM5+Nb5vFbUloR77HG0kSx5R5zMdJJRXXPuGnCmZFxGDHGUisst0A9Q7eG9fVrzJHLbeHD9cZtTyQ08/GBh7dPHB9OtCJc1pXbtpFSQxlHwxATvN421hCIOTGZEdEGTUXZ1qNVTmNUY3AKsIgqlFppodEKJNVLN0o1tJFOQxIFWve9luprTMk9RoUIPZejwPQ4QNy7G0YZQcmEsrb3J9QBfKDpiMeiW6BSqKKoNtOkx4WoYHAMesbJSquZVBJSK4MbmOcT59MDTW09z5Z3xMp91VjJkrsQo1W0GVBaQFTfGpUuJNJWQ+rvY+7r8pYV9b5ZUsr091TK1HtUY98DoWSkFKRpSmnEmAkh9klmzORYYZQegRChqErJGRFNlYa2GiuNIg29CqVCosfX3GRosZCiItTSWeeAsq1TcRCcd3jTGeZ7DdSa0WicdojtEbFWBVVbh1Q1qBRQpa9/G13ypATIoDJI6YQU6b+3to4ELPUeAdMK63T//7rRtkJDSCJkqb2vozq9grGv3Z10hjwFVBZk6JE6pTRiC3uN5OXKh48rr0slqpH3X/2Sr372Mx6f3iJJ883rwg/XlRga9jzh3YgVzxYuPRpE58GHWjoCtFUYDNUIa4q8Lht7KmRlsePM/PjE6d0bxuGRkpee04yGcdAdqdc8q1r69S5nWin3OJuQKVjnsE71j6oI2his7RbFp6czb9+95fjwQNxXct7RqjGOA+MwMs4zetkQC01KJ+PQaIpueNQ9QpdTpPoRozXWa5RSlKaYx8I4B7YQ2UOGVsmlYVTra151j1Rq3WEiAEbu0jcNxvRfa13ydVkyMScqhVY1udxhD3eqUGt32Ah3QkupoPq0n6rJpfZryX0l32NvfT0uDbzTjH7kZ3/zFV++/YLHw0N/AJd75EjuQa9aiKXHWHJspE31BxrRVGsoY2PLgSEqijTMYPHTwDhMhGXDisOZgWEamB4m1rISbpG6F2qEHAOX18+8fH7g9eMVJwo3eNxpxE+mIxKXSFOawfhOQpIuQ8uq08Jqrn317hS2gRQNSSFZ7qbk/lqVUimVfs9SlVxS38bFgRFFVYqcoMbWXysrhJiJOZNURZQCpe+R1EJSjSCF2+uF4/mENobDcUK8o2nV+wDG4QfPPA8clomWOxHqsu0oZ9EGhsPIcT6yK02LFXcCFTK19IGZtZ5RNJMRYthYt6UbuXW3FdehoU0jR0WNHQBgVAMSNUxMOuN0x1G7sTE1y7lNd3qLIEXx9sePnN8emQ4jWiuGcWCaCovbu7G2aVJrxF3unokuYdJVY6KGqO+ZeXqEK/YIX7M9BqF0v0ela6IlgymOpgeq2P4eRlGbIpbKZV8ptaBrt7FXpUm1EXMmqkqIO3HfwSvsMOC0RU8DuSQqDeU8fup9BLSQQ6JWoTT6e9xaTHUY7cjaoF3DNhhqu4suG4MbmbyjI8sCZbtRBYzYHitMpX8OQqFZoWkF9/cmCnTrIkdVwZqItYJWtSMvaze2i26YUd9pfgrlHaoVuBu9+5mpx09LSSil8MPQy8/SEOPww8C2bpRUibcIg0KsQaSgbRf4tQY1akQbmu7lzlYULStK6XnzmEt/OND9WgRCLl2IlmsjrpGUe9zXjx59GJDBgjSMHfDz3KPD3mFQGGNx9gBzw5iK3w/YVCCUPkwbegRGWXX/mTjsOGI9tBIpZaekiLr/fNCCsbbH1UulmoZqGd1Aie4RKtU3d6JzlyCqTIl9ECQiuKPFHz128qAVbhwZiybnjXCPbObYY51QO/LbG8yi7x1Hdbet38W0rd3jP9K180oQpf+1D/s991aakHAU3Q9FUgxRqb5aSIbqIiIKzYCaZ7TvB+MgBbtHWsy01HCTZziN+PPUbyqiwDucaLT3iDHEdaPhacqCVJQxnVRScj9wtERriQiwFyQ0sjJoKRgN1SjKXVVfqkH7A4MfmbT07KIZex5fPxP3boibxgjbsecCpytudTTpOfu384nl7dbpGrMHIyitOT+9Z56eCMnQZoN7dTTjWaynpEYThVhLfU1o7xj8gWmaUYMjX4X1OZN/1FGZrSbEa/YUeb688M3zSivg/cTp9MT5/Vum85m0NT7tN65hp2ZB7EjCUkLl4/OFy7qw5wAYtHU009BeMAeNGQUr4GeDGIcOQlWFmqFExebuPGKENtyz90pTB00Je8/gm4Qu94cAVZFUKEZRXc9qLwmMBo1iNA+YccIfJxQPKH9DyYYJFdX2ntPPhja/omqDbLENjJmw45nNfERUIZOQlBndxPGgOR831HRBX+hZxYOlhrtUbWiUJVNyQQ0TRjoXPtBpCk1ATQZzMRTdUN5SpfRRRLEUazGqcz1TrOQmxFIJ+8ZKwJRui44Ftj2yrAs3vXFKGR8a7dDzuk01gq+kEGlYild4URhrcLZhPimy6i37oVbcg6XtjfgxszVQLaNqIbuI6AGrNONx5vBiIUGwvbhkRJiGmbXWHmtqgq49HlGUwqjYvRK1YpsiSetq8xbJRkA5DFBtj1jRMtFnMplaKjiLKw0MFCp1hyxCcpq6N4oBbQW1CdDfV04EXD80qmCp3vfMe1bIWFgJvNye+eY3meXkse/e8JOf/u95//e/ZPADr7965fd74TkpDAf88U3fthSILy9kelkz09hqIbRClkKZFbutvISVz8vtnvOcmKf3nN9/zcOPvuIw/5igfqDtimmvnA8eVTVl1zybnSYBKYlSBKsVOEWUjB0qbui9DG01YjWj88zvj7x//wVffPE1x7dvWV8+ktPCPGgO/sg4HZlOD+jrC+Jax9KW0vOaVpDapYHNqX7YbyNo07GuziDWk7LhIJCuF0q9UlPF1ILKmmZ7H6opBVb3u4oR9EF307EolPMgPVNaa+XTTdhapqhEqpo9QdYwNE1Rf8Yvapq6D2MqoBuq9VV3ygHnBa0VbhS2pXWBsRZkF+bBcHoa+Lf/8G/4+U9+wfs3X/Sbj1IYpftUFEUpmS0u3MoLbTlgmyWfHBFHMJX4ZeMSFvTayF5hnGNscE6Z7Xpl0Aem8YHBD9i3E4qB7Q9X6p14c3258mn9jvly4OXjKw9vHjk+Hpi+OHP60UBtmeWywTww2AGlMlEStUDMlaAFfSsUByiNDxqVDC0ZVDDoQy8LltrYW+3OhGpAFwqJmCKqGopYqjLEmvpgpXUnyL6nHqMbOtYWY2nOssfIqw68mJ3Lp1em4wk7jJzePFEeDiRvKSlj/MQwjpSceZMfkV9rbpfE5z0xHAOTN/jHgYfLE4sZ2GMAVWh7g1ipSmGHGY9wHg2xBZa00mLCmwG8grHhEOpmqcqjjp5hyCgVkUtlpqCqIsYJ/SbijgU/eubBUJsl5X74evvuC45vzjhrOD4eyFVz+X6jOoXU3usJxROzoqaKHgw6W/TqkOJQzSAipJYpe6WKpvg+PFFOIWMjvyZgQsmJYmey9AcrUxS5CVtOfL71zb5voJMiGUPIhSXsXGxkSxvzHnDTA3aY0IOlvRmJYSdbg0wjo/Y00wc44baQxZKUobWMmixKPJoR5TeUtHsxVdCmnz/m4ZEwviJp73HH7YoVhR4fcDbQ0+CVuEeqMohVSNtp+j6syrr3KlrDbgE1VrSpmJz7h1WDOI1+tLRaKAXUcULSRsuF1CpjFloVsmhyDIgVzOTQeYYBGCxumqghklMjfA60tw5RHV9u/QCuUM1OrR2Q0Yyi6UZdoEQhZmGLmdAKOOl2WNcjrimk3h9ACGuiFI3SA9NRkY6ONGqahun4BMbB4Ij0+aI2lnn8oseokuZ81cjtRisFJRWGtfeadDclGzehDpZxFsoeqSjKviNmxKhuXzbe9C4ejTwYVI2oElEuona6+to5qt6pOpNNpMXUY0JmYPrywPjugH+cEK1w5yPNZUoEaiRsjXIV6sH3e3sr6IPFvBpMtshk+gMFldQSpbYe2fQatcUesxrkX/ewf71EsBVIlHShhgrF9A/1oim7sOaEyb1MUAaFi9ILRqWitp12rDRTsTrzMHvO88jZeFJdoClM0ahxgNygJtQpIsbSqhCjYdCmFwsn1dfUMRP2Qt0DMd1IeSdng7MD2lqICyF2oUwbEvHzZ4z2TMMjxjeM7wURH96j30worTFl49V9JtxurD88c7kX4YyqfJZnmlcc5nfYlNheLqgIYgsP54kUdj59fsWOmckVziGz7BnZM051E+PDkHG2gnaoVhFJcNgI+2e8TFjvMS1xua788dsLJRTcCJP3/PRH73nzcGaaPNd6Y6DQvMUfz1z2G1vOoByvyw3JFQfc1CeG2Jnjh8nx6AyjVEJeGGgYrTDOErNFTwtidvxi2LtDkUMdEV/QOuOqZW0JCRG9B5KvSCioVAg6cNIGr4XdRdb6jJRK2Qfe/cPXHA8nxmGiqILeFSZ76htFCUIqCcioFw25UHKE84yiYVLC+hmDRudMUjfIHl0L3jaWW0FKRp0jT8zIcaI9aB71wFUtiKycQwLlekyhZKLqYqb6DH7sMjFNpgXAFKqJhJBo7v6eOBbi541t37jGiCmmdwlspGw767pxXVeGrbGNV2rLHK4B63rZ6VDhdX9lyA6/e+o83/n9jXqKSOpIyHrwHNSAtZr9sCLLTiyVrRYOpZLVyrMp6JfMXhJFhCF0ZnE0kZIaW+wTmBohmh2DwzcH44jDMbmdEC6MS9d94w1jrmA2Xlthf22kFKnGMkRhlxs17fjlQLUG1QxDEhb/So0N9dEQtTA0i0eTTjcsBRcrdfT4ZslUXueNOSjEQnEwRcPrplhujctPMm/nA19/eeb/8H/5B95/8aZ7D34R+Xe/Fm7TA/z8K94YTdwKyy10KVkzVNGskoiq3zCa0qigWXPkZX/hum40UbhS+elXwvnNwPlx5vC15RDeUfOZN+82VNpIsbBtBfdqsFh0a6hxQ0VBZc3DaWSsFrc3krtStoo1Cjc3vvjiPe++/pI3X77DTgeQvjb+sfpbtMpo5/AHhyqCCtKRauaGahodLUllfDW4DEFf0UslpRHjTnhxOGt480W3N6tUCJeNFBTYSmkRW9RftgS6gHY9DWljw40a4xpGAjk1lG6UlEjxD7xcLrwsEXdoyCaY0pAQqLk3zrSDEsu9sA5GPE1VqopIgVACqTZ2PDV8ZtKa4zBwKSuuKs5q4pd/947To6GZxPWmmA8VryvGFkpd2dcrrx9e+OF1Ja0Lpr0w8gW6Js7O8pP5iV99/CPzRfGzw8j0D18i2nLdEu/+d4/M7w3iAqIMUzty1pHwdWbbvuP6HFi/e+Y8WVq78rtv/mem+B5ZF35ujhyOR54/XAnLM8dw5jSdMcqy7ploEjZZbLRcLzeGYWQ6FsazwxbHsFj02OlQKjdqXFC7oEtClw1VGykUtjXzxRuFypUUMnlJKH9nuV8zr8uNUiODc+g3E+INNVdWkxmMYRLNP13+RPlY0KL46m/+hpOuqLhwvb5i09ajBwqQysMXht0prp/+xH74GaObeJgnlqcXlG8Ml8olH/AtgmS2eqGtEdU09nRiSoYTln2/UVJh3yMv6wYF/ADjO8HojHcW4z3uC4fsF3IK5LxhrhldE2WMrKGBVohTvMFxrA2XFm7X71BpYJDCZArLsqNr5fgGpjWgXiLhnJmtQ0ZQ58LwqVJKoe7St59uR+eCumrKnx8ylbBuwvBOYR6FGjcyph+8Zlg/JrbbxsvLM0/DW4rSJKsgFvaaWUpCPUf2Nyu3dmHcNh6eRqbpwLtxYElLN2VngxqeyCmTckQ9QKmBuFfiNHFUR7T3pPNKTrf+s9GGowwYINcrt5c/obXheHzDMVVaDoRwwUmjNd0j0UFoQ6EWgUUoeUDngtTEagMql75RasIxdMvsa/nIsr6gteHpMHNImj1slNJw7twxk1skXV/xf/dT7FFBWtkX8OOAMQPz+yMSdwyKpgdMg9x2XvXOUzyh9QnnD2gqKWXSlnGz9M1DBgkeXKK2SHkphBBpCJM5IIPp0/0Mm1Ri7OXYlUTe1/46+p3wx3/mOjQ+PAwMT4ZU+9dTvuBmh5scw4PGpSfO9Yy8Kawvv2G7LKw2YS4eWw0WBW7vA5DacOcHWrohqbJePqP8Yx/ENen9MzLVJ6Q4UlNkDK4N7G5FmYhpqT88oHnQA3t5pbROoXzTJs5NMdTAbfuENjPWCN4q4qX04vKxYoMnpUIsgcc3B/RBY5RiMn0juKdKugbqFGilwbVLZBUFE/6VaTz5/pRRKKStgha0V+imSaqQKNQkZF1x2jDJiPi+PiPXnsahR3LQikE5RjNgne6xhzvxw3OnPGihtZkmtq8wUqEN+l40mckqQ2tILH0l3gytjBRdkM6moVpNil1MUMVxPLxFG4sdJ7YYYc3QYmd/x4JSmhRu3K431tuV1w8fuK4V0QpjNa/bxuXDM/vrlWmcoAw8HCvD6cTgPeM4oMJK2zxVO/JoqUumTIU6g6sHRA00bfsKbhwww0RbJqIIqRTKlqjaEFNhTQk1GobjyPHhiJ4HisAaEx9fLnx8WQmlgm8UO2G9oHQl7LUXCqX2nLZJKC0MTfqEvCT2ZWc8jChROCpMjUGdyGJ79m5vKBrFNLweMKZvaCRXCqWzl4vpzHCp6KYx1nT2erEoNzIOji/fvuN4fo/zA1Uptn2lxnxXVyuWZSfkyN4y23Ull0bCEAeFMb2srY3rcZiqSVFAa4wRJm3Zx5EklbkWJnfozH0xnA8zxnqM9uyhILWvDa0qqAzKQPCFqRW0CNpaIvkvxBlX+iizN+FNZzuUgoTatyStVwaLbp2sESq7q9hWsaUSVcQpcFqBFdKeUV6jLdhQOgZMGqaNPcOnKuwVPSi88pzikaVttD1S10rSDcmVuheCT5SUySHzIpG3246SfgEtId8pEkIuQiIjqvP83WjQduQhPnKRlZwLqnTCVqkNHRpNV4zqGM3cKiFUqqqoIaPjXf6lGqqZ7kQwBZU6wUB5w5Am9OgQqzFNqFooWiAYou8HkqEoqoZoNNEaHuyJL3/6Y776+d9y/OIdzTvWZeWH7y9sxVH0iBPPdQ9sy85y29mAXRRBGrGpbhBFAEsorX9+XjLiZs6nA09vH3n7/qccn77AHc6U7Lqsrgg0R6yJEBvrLRNiIzeFGIM2px5/UhldKt4orAgtC8Y2xnng6d0jT1+94/jmCXc4dRlbhpZAG6BZajWkUqilX6i1N7Q4ItLJGq5qvDc4q8kpkVJGVGK0MB0nlB3I1SDPG7UIZW/klpBqkKZRqqAaGPpnxiiDKCHrTKka1e4xtg6TI+TKD98XYgJlukUzuwJyp5VIR1MpMYjKd+oJ/5vk5c+En6qosVHZKVvCnzxfPDzwo/OBw9nw5ouZt8d3eDOhMFilcMqglaU127e6qfe13GzYYyUGhdUwzgfG0XN8OvPNb/5AksrzjxUax/FgEecIyXE+H3Cj7yQgA9pr5vpIpVN/zn7gxz96h/YHsnTzaNaJaAuvry88f76QQ+H4dOoFvAZBKk4cWimKQKmKrVSuJTLJgHMaNxha0eSqSAhFKYrrDHeVNE163qIhZNOjJ4RMlIxvltYqe9v6BoJCsoIXh1b3AdVSqE0oRtHWDsdwWjOLZ6tw3TPXl43DW0OJlbJnnLfM8xvmWAm6EtZIcgn9YDj4M5Lg5hPuOVKUoQ6girpHBRoO04lxRoih0FSHD0y6fz1tTafbaUFb13tvIsSayKUP4aiVlBRp7XQgdN/4hJjQr4GWLTTLMM6Mg+M8jxQtpFSpSZGsIgF5qz3qaC3WT2yHvU9dSyOq2l9bUWTdH3DrnSAWBwNGo5V0SZbu5wlRnlgS27qxfgo8/Kgi9LhNUR23XLdI9YpaVT/P0JiM5eAcbvTclhtiFFiDT3d5lANfn1C29qn7XmkzPQLj3pDnC9JWJETqmFAYajK0Q49laqA5oRZFyYpGdxxI7ZHJWgegUrnff+5bN5M9/UNY0KFRtfTXYOnfszOayVq0VuRQiaGgTcVG8EX1KJw74OxAtYq0bGijMdZh1fkvrgPX/iwt05St07EKXe4kzd9lfQWsQ2U6zcskpGqompA30lY7RtxpnBsRrYkkyNKhWxrICu0Nnj6IzaJZ1sinbz4zcETfH+isPWK8x/gRpdw9Ktzw1qHaV2i50NKNGhakCApDax6MQQ8FbyzJ34l4QVCzQdDovcNTWlVQHHvL1NSHHNkLlAGpQjGdoiOiaIMmpUJuUGg4JT3utHQR4fGpD1Pn6S68DIYcKtUIJAVJ0YzCDxNGDHZs1FWRaiTr1hFCxnQ8epR7dPavO7v/9QXdmsm19vVZAOUEMRoJiqQykUzLQlKFQTyzmXveKlVIjeb6uogKTQujdkzWYa0h3SLoRvMV1wAtncYTfccTSuuH/VZADMII6vrnpxCaatAMVEuxG0o0WvXVdkqNphTVe86nL8EoihNu10+kbesq55IxZoemWG/PrLfAtlx4fvmB2+eCKI0dHdctcP30if12wcwHbBuhaN5NR5x1DOOACQ5ZK1V5sreUJVJOiVI9vh0QGWnKIg3cMOCGiVYnIh0DV3OijiOxNPZamKeR8XTgcDoj3rKXSt0jP3x65YeXlVwLxiXSZLFVMK4QYiFQSNQebRozTguDCCKVUhL7GvDHGQ0YFAwNz5HUPPi+MhcqRVesHtBGU83/ZnzMuqGSJkm/8B5Ll8doY3qbfZg5PJz5+uufcTi863jMHLheIznulLRTMrxcXtlCILZC3FeqKMRNzLZiB412GqX6YTs3IUeFmTTWaGbr2edKUsIhCm522GrwxXI8nbHGo5Xl43pFgu6Yq4HOu9WF5LtgSSkD1rDX1Etn9C7KPQJNpfPLW2uo1MB11JmrnqIrpVRqKuyuMtZGzYWkEoMWnFE0J6TXglIVK40aCsU2iqnoOtJ0pKgKe89jWm05uSNZV2rpP6/FNlQumJwJp0zNveT8ue0sy4ZRFjtP1NCxYkn3G0eUPg0xOwyzQXvHaX5gp9D2gFzL3djZMXVMDav6a5Baf4CvItgxo+IddToUVLFAIpmIWbt5WKxibAfM0OVNehGKgk521aQeb+2OAdOjf8lZ3ozv+fInP+fLX/6S4eGRGHZel8Af//CBlw1aUjQq4bazXje2286GEESIAqnpXpCjXwdCgxYLt2vh4esjb9695yc//RHv3v2M6fSIchPbSsfulUjLjRgq2zVx+bxzWxN7qWSt8HpCVESpiAkVaxuqCS0K2ham48Db9295/OId4+kB40f2bemF6/0+iCgWGtS0U0qiqdrX/G0AiWACPloGb7FWkfZ+2Neq4GbF4XRA7MweHIU/UXIjh9ZRiK1bW4uuKKQ/YBk6OldBMYVcBd3ofP7WY2yxVF4+Q20dZafUiHJbd0jfO1L9p6p7Tl+6I+EvkZ4/E3mb0HKjpUDeE+5seH8689XxyPTkOL+feBgee+a1CoMCZzRG98N+rZFWKipX5uPAbS2soRfW5vPM+XhkPB8Jn1b2HHl9nNFY5vnA/HRgv/m+MTH0TYypGKcY0wMiEa0Vj4cJ/TSyYwhVgEgxiWgTLy/PXF8v1CqI7/eeUmBvlVk0VSuKblQ0eyncUuRrBOc1zvdrXb/FCUU02bc7OUnR7gd9mpB0peaCakI2BdcGam1sJdDWXtDOFRw9PlgVsPTPctWC2gopN7QSZuUITbHEzHLd8A8zJSbyFrBHwzw+cYiam/5I3ALJhY7htCeqK6zuikmapgrFaWzqOE0UeDFkC9VAjBk1jmijOThF0/drpdheiNX975papWR/Bzc0Wk6kpAirIdV87wFBCIlaAjlaGCzDqBi853Sc2F1j3yvpqshOiK0S90Ru/c9xwwT1Rruqjv/V9+l3UyQp+Kr+cthPzoBSmE6BRkxDGUHEs6fAtm3sz4H249pR1MVRpdPN2FPv/BShhEZq8GgsB+9xg6flG1UEpQwm0yNO1iJhBLcjOsGlo6aVtnj3RJo+IHcbaxoqEnoETLTC0HtZ2UHJGqmGJhopfZhZdaNVT1WBRsDFShsKqIYpw70v19Cp9sFKhrIVeFA4a5msRUw/gKa9kA4Vm/oRMB4mBj1htKcaIW03zGRRWJw+kx0okzGtxxVb0rRN98N+zZBTv0aUSk0Z8XdzcYViCxI8rSRiXilbRUZFNQrrJ6qq1DvWMwNRQWsGPRi8VhhvKNZxC5mP3z4zOMPhZDkcDErPaDMg2vfPLSBK4/0MvEOaJ+3C9pqRDKCo1YFTKAXOGKo3lFbvRDSNNI2ukGyhZgNZEdoOuaM3o2/Y5lFoium9UFFCGQxh7dbrpsGqfqgPWyLHzPQA3mv85AiSqUvteGUbka13WaoG70a0Hqmn2NHLTUiqUUXTtKbair4JFf5Kyv7/H4f9y/OGdhWtC28eB0IQwp5Yrp/Il0jbErVGylZwk+Hx3ZFD0YRWaCpxSprb/pFQN2q9cHwzcXwwWGdQ6ltyzNSoKE+GpizNGZxL7Fp6nstqWqlYKbihEW+lFylGTX3WVLaeo9pv+HdfM588TgFqRWlhdgOnw1fUplhD4Pe/+b9z2Vb2lHCXwvOWWdad+O2fWAZDqRV127g2j1Ewqca3r59AYPCOv/EGcVAkcvn4HdorptFx+kGTdWFIGf+cuA0/0D5ttHTi8OVb5kHjRaimMjTN1ARrXmnPDc4H7Lsj6s7zzxke1ImjGhmapi6N77dnbvvKb3/4gbRfqQgBwQ8bbS/EoFllI4REzolmN6Y44d3A+y+P+HukQZPQtxvKWWSwmKIxOmBcxFwbi05IUwyboKeGodCWxFoWSJWxaC5cKWlBlcTh8YFHPzIrS0ifOT12g+g8nylN8fz5Ax+//4bf/PA9dbmR1o1v1oXt0w/s68IlVo6TwwwjMj/wk8dPTOPAMFiMqpiS8DqST0dMc1htOTydCc+tq8bVTg2RKpYqHtceUIOl4tHfwJI3Wm3MjDitUNIwocFYKXUnpcT1hwvT2TLNmsc3X4HzVBTxXoItOpEPCbeDHzT+rMkvK0tauKoV9wn2+RnQfFUeefPVE055iJpLe8GEhH2GMNQuLaqJpjO69ovHTkRdGt55hmHgcOt4wrVE0g+BoivRCfbSejlIC9uvP/NhmCkq8UZXkukPe2mtaJVpIbCnnSorzR4YJ9ezozkQ887WMuMqZIkkLt2yqhT6IKRlJeRCFmFQB2o70MSQkyAx3KVJO2sQ7AKTtfjHgcEqlMBNB8KHSNojQSJP24SfLOZoqJ92uDVMVDz+25Gvnh740j5Aynz/z7/jn3/3a/79r/4flH/+bac1VMuDHWkoCopiTO8j0IupWoOyYEeHNwN7WFlZ+PL0hvfvvuKXX/09h9Mb6mXlh4+f+Lh8j7l3Oq6qoL6/cr2tfH+7djqX9ig38mYq9/x6YWiBfVPo2vA1IigGN/D2ix8xnd8gZPbb91y2KyFcCOXGpSwMMSAUkhKi+UydIroN7OkTuQRoma8fnzCqmz639kpeG1UU58cj83QmNeFye2bNG6VlnILrWtAtdlGZGxHdiSRKWZTqR029gZ0LIjs53djXzmCvOfLv/quJ/O9nwuvOi9oY6nRneCdUSJ2nrSolpj75NCCh9uKbEYzSZLP3IusaUfUZUw2uPPHFj37M8c2Bw8MA63dsUuh4jhOP5glxYEri+fqZXa3w3vLm9DV7/J5qXtjKzj/84ud8/ebEsAqrfINKC+fvez/Amp67tXPGjQ6tNMenyHztG8CHqZBSQ4zh/OMDtngutyvp5VtqnZkqvBuhxczoN1qtyPXK7TCy7or9XxL7u4RyDWMUWS3UvaJeDO7HClcFaxptykhssDZSqrSYCWnnFq6UpVK2QomJ8bJhHy3Wax7aRG2FLQTCp5XsAlILfrEMxwkthrREyhhwF8HvipfxGfXR8fR45id/+5ZRzUwYml1py5U9Bm5pQV0rp4NhmI9cYiMvG5fwidvzgcF7nHXYbLl4CGshL4HiIxMjXjnMFxPby4ZKkVAvDK2ghwF9mLB7pKSdkK93qtxAa5akG7Wu1LJQZKPELqRaZkNbYAs7e0x4GbFHRT0WiDthe6bZEfOgOYYBc0tsIZB2iOXGh5TQQ2E4jJzfDORy5PNyIZSE3ixBBeoWUTUzvT+hECT0jciwJR5S5u27B6oeaQg1byzXC9v+Cv6G2wR/sgxnT3lZUVLwR8Pjx5kX9YFr+cQ7+8g//Bf/lsfzO5wcmQ4vtCzYW0OOmVYzLVUODxPifPcQtEKJDW2F4WSI25HmIB8EtRhqXiltJV0zbpgwo6XFghoqohJl6x2GuBXCklAeaLkX+qeCNgYlgnnMFOk+iWozQ/PsKrHrKwqLHgR/7Js/NwglZ9YPF47TzGAdWE2TlRgCLQsSL3DrQPrz+wNpK7QSyL5grgZThTi8El8smQd4HEFV0raxfX5hqgEzHbDjiG6eJQbytpJed5pLiLawC/44klNGlsCzX7jcKiGBOEV0Fe0109zNyy/7yku48G4snPeR0zYgBU7B4K0mm39BZ8s4jLQfB9zWZXx72QkaVJX7sOMGqQ8E9INCZ08jUlgo2w0xHg6Gcm1U02hOo2JHsKdWURnG2eGHPjBdjr0zonbhun7A6so0KFIbyL6S55W6vBC2iFIHhvGAMcJgGo1E/LSRJFBMIHy2jI8n5ocRjOeD/UyQjKyauEVUrsjdfyM0VPrrSPt/9WF/32446xDXxSK57ISWWa6ZZDTF92JKKamvUU8H7GEiXhIlJPaxsC03comY44Q/ndDjSMyZ5RLJRWjaYZcFJQekWgaEZBRZgBj7TrwIpkEthloVrYIdfJ9MAm02zOOB0Q/kBhJrX0vpE4jmtlz503d/4v/6f/tveb1uxFSpamP9tBBuG2FdcG7CaHMvGB6QVpESWEtEq8o4Wp7/9uc8HDKTy9iqiGthXTLXFlF3c2AxmuW2U7SieMVxP6FPGm1c54Nb1Vc0wcNpQDmPUa5PQXLktt14aQHbLDUb1s+veFHsMXJZE+veb/RWhDkfu+Zd1S7jUonqEir1KIV4wzSPGFHoXCAE1Ju3nYvdGreaSLFnvbMxlG7xILuCpptlk9foVqkW2gD2AtZq9KB59/CA9ZZKg9IJDTFULvuNf/6n3/FP//Q7/vP/+hv++P1nUr6R88p6eyXGlaZgOB4YrMGOE8P5yodvvucwz5xOM482MU4Dh3nitKyQHaIgpU7xaaKoqZGrEGtka5G3fI3WhtF65uHE9fotW9ipreCUwjmFGxy2JGqFJIo177jmaGqkKgOoO2WAPu1sUErCeIc2Cls1NwrbGgi3jTIFdOsad3ucOB5mjBjWvVK+DwSnuJmG3LbO09WFoRr0aDrLPAdyi5imMHiMcWhR6JypKiBVIHYJ2WANZnQMD0f2y8q1KqzMnWhQGztgm+p0I9HkfWdZITfLJLpHfQroUkgl9ulIraTB9Atia9xaQWqGqrhtDVU3lNGoySNVEAzNOqwElOrTyVFbrLU0BbxcyDpRbMNmj4wD2np8MwRVeAkXfvj8gXff/Q3L14FLvbH86Rv+u3/8j/z617/lD//5O0xN6FIxpVHFYYzGGE3MPZpmlKI1DQaU18zHmcPDSM4b+3YlLpnL7cafXr7n0+9/y3c/fMPL8yf254U1b6SWSTTYIlIUuhqUV/j5wHQ8ofC92K4rXgTn+vRc54HxNDM9PuJPM3HfCPvGfruxrSvr5YWw3qg1YCSgVUPayHJJrFsgl4wyltEbnFMcnh5o90w3bu6Cn/mIHkb2WLgtgR/++JGX7y98fr7ycb1SWwOxnaDhLblFiuqkn7ilLo0ZNLnRi41oSs1oVDebzo/gvum23r3TTJTIndTRBTPqXvSWlLu0zCakWlRR1LsoyKjGNCu2LbOuC998/Ij85j+hv3fY2fGnp5nxdMQ7i5c/Mp4fePOmMhoHSZH3xrZG3rz1pHTEVoGz5e1h4uSEvT7jdoXlgH//HkUllp1r3pBtwYpDjYblsnO5XrltO18enihNk1NlvQVirehcOdmJYZqYSiGURsqeuhrWNfJ62XH5RsoapTNqoZd0x4YuGoWiKcE23aMvWcGmMPPd1lo6napUBdF0Mp3r18ryMFNHTzaaW8rYIJQgbEAoPWuuHDjvUNoiKbO97oQSyCaikkdL34ocRovSvkuVLpE2WIiRFirZO0Y9MouhYNj2T9Aat7RgUaimGMYDg32hWEi1QNZ9ej5NnJXFNENOhbpGsp5ppVEk8HJZSNtOCzuMwufyCSmJUCr7p2+J68ZSDHHbWUPldRWk9PtKjD1ANj88cjgf+frLia/lwOwsEhtbbcStkm6FTTQpJ2oq3PYROzmccrhxxOS1U/1soSYoKKo3KKVBFbKkjg3WJ5Q/gB0oKHLJxNtKiIG9FTZniEOCseEHSx4c9XNlDwvrdCHGiDcD89NPmB7O+HmmNCDQ6S3z3D/TursXRpmoWoOqGHMn00lD5Yr1MyUWtInYqcI2IMXg5iODGzBKU6RQ1nrfnFryHru8sWWm1o32TXtEwn3bDXqrxHshPNVMaqbL3ZoFmUh41iYs15XXzze2W6CiKXlBDY5ymtGfA+I1dVK4BLpkpAUmGZD5SKkDaV/BaVQ22GVEuyPazVjjEKVIJbLuC5YHvJ2obiBmiLdMuhWaNng/IIOgpoKx95SHgvQSSa0SBVQyJCOUJkTd+PDxI9fbhdeXTzz+5nvcrNETtHHo378IRjyUlcM88Mu/+1t+8f4Rqz05W9ReMUpouhONqlIYDW7SlElTgiK8ZOogPU5VIBD+Ev2RcYS20VKk6F5cNt6w1cS6NpYtc9sDbpyw1qIHj9cN3ExqAzJltjCQo+K2v5BEk0MlvyRCqqRUKClTyGjVGKxBRosqz7RYyCaRSh826NFit0xtPUXzr3rYTzFimu2IlapIrRByJITcD1y6t7BrrWirGGbfD+FXIedMqhDTRi2Zo59x44Ryllgi+x7J1VBNw64LVlusOIwocutrHomRlhxSwbV6R1xx//M6wUBpqNOA8yPWWEKtqNZh/FoNtNpYt5UfPn7gH/+XX3N5CZSsyPNC/P5Cuu0kGid7wNu+thunrpbPae34Jp2JybCsfa1aG9QipL0XmbYUGKr0BrUS9j1QHTAqpHQLn1KauMee6VS666KVAtW7BolMKoU9RUKr7FR0zdxeb4zakHNm3yu3kBHdGI0i1Ybcb9IhZ4rLfU3bFF1WrPCjQzWFtNDRkaqTDWrrhc+aK63QyzNaAT0i1cmUAvfDgKiKmIam4q1FDZan8wOlCSVFat4hP1BSY903/ulXv+e//w//if/hP/wvvHyOJL1RZUNvV6pt2MHx2ISrVrhQmMXwqTTGYeF0ndimwuPTE01ZQghQd5T06XjWdxteE0qupBJpNVPoWnZvHdM4Ulvp9sJWmY1DdC+USi5/WZeWVjtWy9wtwa11Zn3lHm/oCFrlBW0UShR7juwhEvcArvY3a2tY53qHA81eAuRMkUzIHQ22mkKyne8L6o6OE7oipaBoKG1Q0su7IgWpCmn9AdcZgxuFw/lIWa9sy8oybtQ9kgSyVujSf29rHUkaw06TjFdd4NZqQ0ruk/oGqlaIDq1VN1NTUXf0ZgwN1QK6GUzV98M+Xe8kDaU6ctEZjTb9oa+mTJXaexdiQFlEmW4QVq0/0K4rZWnEFFnjjf2l8k+/+jW//c3veP3+gj8lBgFXWp9ct3rHNd7fg+qeH9c9jnI8TIyz5/Yq5BQoa2ZdVj68fOI//o+/5rd//B0fPn2E58orC/Ge9G/ArEfeDg8c30/M2oJLrLkwOYMVg3ENK10gJQjT8cR4PGLGgT3srLcry+uFvGe2bSOGHVMizeU/q5nJufTsphT84Bi8Y54Hjm9OxHWlsaGsv2OCZ5S17OvO9fXG86cXtsvOtgW2FPFGo6gdo2s1oapurK6NUhMigtW6v5foHcFc++snImBHivQDXyutoxzvyM2et2ydrCZCq42SC8Z25GzHb3bmuNaC84oolT1s/PDymZ0L1SnUYNjfvePtw3sOo2fwN26XC/M4Y6du5M2psm+Rw2x4Ok2YpmhPnod5YLLCbV9wYhmcxZ/PtFpZ94VP2yvn0siHgvKVFCshRkqJTN6zp0yrO/sSuhETxeQGvHOYkjApE7XGG82OsKwrJXsqtr8+seejs+mfu75CAWn9sNKyQoru1wID0u6EndqNwq3zg8Eb5DDRjCU32HNCZddRjaJJTfo21yqMMx2tpxTbLZByoqnSI1qiupxtsFTtUChqyORQyKF01OhR4YzDa89SoeobjdQPz/evY92IMQZl1N1S3LHWxjkOw9RRiXuk7RsldzQqpXB5XonbRt138JDDhbzfuF4Dy4d/IawrW5mIdWePwm23GN2JLCnAzsJ0yRzOGRkTTj+RvMY2IYkhp45+zqobnCVVtrBzrge0lm5fLwoSNFMpud+bxN2vc7Xn2ptWKDdihgNoS86JmCMxhB65vPcgismIbdjBIKpHNfe0s9NlfbZqxsOIPxzQfiCF+pestrIaaRlRgjbdMZO17fEaG+95xT5AUdp2+ZbxaKlIFXS2GH8HcojG1Exdtv59IJTUui34bk/GanCCFEEcfae5dylnzplcYreWq4a1lmIHqtKE0ghx57oF9m3vRKgUMSUjg8MVQRVDMwbdepRYl4SxE8oNSLPs20pTClEGjUWM6z0f3c8PpRRiSlTtacbRtCWFQN4zNVaUdlhnwTa0rhgjlNI7QHGNJNsoVihVaH/++pPn8vnC95+f+faPf+DwQ6SNlTJmqvG9b1UbLg5U+czp5LlcXjH/5hecj094+8TYGtrSY+H9ykYD7GiwoyXdMjnmPsylm79jCWitsWpAeYekiFShKjoZyjtaFEIsbHtiDakf0ocRxhltI83MZD3ixkgpnpKEfF3JeFqs1C1R5I6zL30zI9L6tdr3XkBL3WCec494KW0QOlky/2sf9mPWnKrh0AwQWF8Wbp+vNLMxbZpYDIuAqYKxCns0eOeoqrHXHXnOlLrAUHk8KrxV3RRbXtnVK7kVqJpPny0HlTj4jD1pYtOkAjWnzt71BjcqQsgkIonUdcYTqINiViNq8B0Dud7ws8F5hZVKioHlGvj8OVDMK84KlgkrB9bZkU3Cyo5zA804kh1Q80OP8XDg9U/fUWwh2gbriteecT52qct1I4Yb2/cvPHz1nnm2+Bx5Djfi60olwH/xD2jTkJr6Q0Ao6Nbwh0q5PBNVYT+MVCK5VZp4HvSBSY2Yqvn0ciPOrk+YV0XaMsY2lHUUEiYLkhQLAbUnFIV96DgrqQN2HlEho1ovOuuwUbXu08B1p/g+hZqummot0BiTQUxCqNit37gICZZEsRtvpwceT0/86Kuv+PzxA5dt5eX2HW8OX2OLJi6R//i7D/zjb37N//rP/4Gn6eeMXuHnE9PXX3M6GpztYpEwghon/OGRmna2y8rzH39g/bFF3MjRzMScSOGZnBvXbUPrgUxlnBz5cqGURJaGpuDcgIyO41uHfNfYXwLpulGOlpgM+epoR1CqYsRx9meO48w8WqRlQszUBm5suFeFqVBbZOSAdwo1CvXbnTWsXPPGXAY2/UqUwpgywzigxJBCxj1YVKio15XX3MhSqLaSvmr9ghstxk5Iy5jWldwm9vpWMZrxNoFLaF/R14J7O+FGxy/KzB+fF1K4sXz3Lc17CppaFYsW0p6QlDCDQreGxMRuEjYVcorc0gtmHSlSySpxykKbHTIaJgVF9ziHDh7jdO80vCSi2alJ8MHQBnBKGERj5l5cTrFyrRkdLa4UdhvIz5Z6UPDkOCvDWc0czQPzjx7wrVK/+8yvf/d7vv+f/we2jx84D4+oZWMUzaxHrF6RGqmxIylLNVQN5tCYvWM8Drx9P2KVQ7SmmYa9RtKnK5+l8N//+/+J5+2VrYS/HPC5/9cD46w5fD3y9HBmGh8Yx0fsBOfDkYdx4uwy9fJMDhtBAueHA6fzEXGK/bIQwmdS+UhzJwYxOOfZ9wU/gfHCOmaO1wx7wzTH0R45HR45nZ544w0vP3ziJX7m6m947ZiMh1b49M2f+Pz6ynX9gHOW0+ip0VJTYSZwbI03+swyCFvuW5hhqBhtmNzIG1upOiPtRsqCybofGgi8rguv+8I4J3QdqLWQ6o7cUYEiDTt1NntMEWsnmuGOZ60oFUFpcjPog2ULG8sPC/l1wKnK7DRvB4fVCjEzD38zg+69H0G46Y1rubFsF0Tg3ZcH3v/4RDCWt8OMLcLl88L0kzMHYzkBy23lu8sH/umbf+K/+T/+N0RbyPXGcDpxnj2TaXz10zfEH5553SvxuvDm7Vua0wSbCDVyu/Widxs9ZdSoZlief2BvBfQM/kj2GxSDWi3a9iJ1q41VN7aiSFXj5vtBMzeUydhFCDGx5Sth2yj1hB4eOI1HakvEPZC+X+CtxhrD+TLzWVWUbn0IMdpuLZbGp+2Fcit447BfOmavmZ1jPJ8x2F62bolPH39H2DIpFIZB0McT7ugYyw2OIzU73G5gpBOWmiG6gRYLVgl1voDqfQL78MBBHHZbWPwKKRBDISTh5fsLa74QueF3yOnGul357a+/48Mf/zO32zNLUxyPb3H+CTd+xegVuVa2vfA5JfT6mVFW7PdP5KVwno48Pj4xyyPGGPxXFp4re8jcSuD4ulPeVJRVDGIoNRFDQC+e/RCxsTDcDIuOGNMFRF+++QXvn77k6fwGRWa7vrDvG4NKHGTiqAdmU3ChYJXCngdM0GTduOWd/C+B+tCQoTFphXMHtJ2o2wX3ZCEW5PZKkwkzSEdMHytGKQSDtW+pcUMREbtTrwUw6PGAuRrUIaJt967IcEJrh0sr+bhRc0JSx2mXKH0j8ATKKZQxuHEkr1dK2AjyTFoSZd2o8Rk3WNRsMU+e+qhQe6VupaNeh0KphU/P37Ami79NTFFh3k64NjJEC95TEqQlov/GYpRFpUykIfEOY3kElSLETEHQNVObprYJP80oZ3tJ+rsrRe2osXHMBzZ3gxZxS0QPgqE/IL/IC2XztODZzoHHwxMP7574+u+/4lonriUhl9+R00YSRdSaYT6iw0ZbVj7+yx9pbyLJj3x8/ciy/A3WB6K/YOhdSuMN2veuY8kVdT7id0/ehfbmW6ReqbmS3ET84Yo5V/TZ4AZPFksdIJcLetLY08gsI+Ff/j/s7UYxirVuOCO02RDXjJszwwnmpxOSDSVkoquk7/Y+AHhMuKsjq0RhYfsM5ekR5RVWe4p030N5hVV2pClcdeyl0FKmpb/OqvVXH/bNqKmjIjihfIjclitrXPBqoAyRtjfsReGOB86nR54Ob3phUjtMdtzySkq9DGJO7/HTmVYh3gLJnzEYRj3iBoefj7hhxlrN3BRJV2K9MRiDE00pQiNRa6bGghuFWkZK1dQRQKA08BppB6SOvSW/ZcLtlcun75jk50R7A4l9smkaVhtGf2YaJkQcoRjMNHc8pYL2VSKFDVUa29wQZ7HK0yRxWxcu64VNr91sqTvru10K9cHQrOegDgi2xywuC0qBsR5d39IeIslq9peFoho5C+Id20kzWEMt8Hx75Um/6WVZVzGL69tCb3F6AKsoUtGfOoWjmsyjzEwHxzhrfG7gQcShkqU6TcqZuEZeWHHtjDRH0Btk1dU6R4UzMyKN0Fb0St902MyDvOXx7RMPDydcU+zblfV2Q9YZGQ3FNm7Lxj//6n/i08ePYM6c3p8ZRocbLYenkYfjCT941Ggoubf168GSrjPVDJSj6+3444z+YmZyb9nSjZgWri+vrOYVlMaoATcfKNtG2QJLTsxKMfmRNw9veHx4Yt0Dr3IltLsUbCzYWPoTtTY8S0D10Sg29ygVIlg1oXyXQanF0B4cdpg4+ZkP44WSK3mp5Ldg6oQVR/KCrg2jKnpoGDVRTafXtEsiqERujcN+JErXsqukcB40BiMeNxXGxXHQE+kUUHrCGIuZDd5ZRmtQT8J5e8+SF7a8Ui6JAOwCs53JJKrOmAChFozVnMcTTSdiaeRXy2YCtVRaatTHG+PNY1fDh/BKixXdFNNgGWXEWIXxjVa61Cv5BKl1kZBqeDOgrCZJJF8rxTaaUZg6sk0guuLWTEO45Mi3YSVVTRkm4uh4ff4Vzr/h8WB5JNH0jJPGpCpaFE0yhcKex86rt73QPEyGwWvs3kjlBbcHvlZHnr6acUMl3l65hVdqSQzAGww3CkULbvL84h9+yePDA+fjQzdAGgfWMT09MB6PDN4ztMx1uVGlMrkzh6/eMr5/QE8j6cNCyooqT0yOLsizwuBOHM8zyuh+s2m9dzAbzXB8x3A8Mx/O6C2S9sC6LNQ44d4e8ccDtTm+/fCBT59eud42xrky2QajQw+R949nHk9nxvmAXjVq30nqhhtPjNPA09sj8ny9R3ksxnTxXQyN3/3qhefnC3va0XoCI7TUaPGO6TeWwTm8NG5q62bKHHClk05Ed7mhtAaSybkLj7RO3C6hr7tV43f/aNm/WAhfPDGPB17+dmM+Bh6ehEk59CjEMTI7QcwD4s4cD4pHHDpXLmnFfZhQ1ZHOIy+vF37z7e/5f/32H/k//f3/mewLzSZun1+wwDiOeD9T0rdsy42Xl0TRF2IpXLeVa70QtkDYM2m+IpHuE3DHTkwiQt0IYilaULbhBEotpBypsTC4PmHfNwWS0C2TjSYf+jZkSo7L3v7iTlhso74WwiXwKT9zqMfeefAJuwlOLG4aGZXrESpVqR+FXQeUS3wlP2Y6Hzk8TBy0ZW+VFAr7LZF04vvLhQ8vC7/40nDMBV+EbDpZSYtinAasHsiqFzxdHVBDo42aXE+MhxE3jrjWKBZqcbj4jlIiLSXqVtm3Z27ryhZ2DnNkeXnm8vLMh+/+mY+fX9lCpFnD7ISqe/x22xUxQ5BCFEcshdftBt8WPpqdkzvy9Snx9FQ4TjOn6UAaejTPbP3111rjtSVMGSmKFoRkE7McUcaQfKNdMtklyphpR0caNCtQ153X5SMp7Iz+LWIbqjbUs+D+ZmaazhyHJ65c2F93Ln985cqFQ3uPa49U72k1UdNGLitp6xNgMYlluVLpE+/x9tAxrLphUkWrhkJBHhC/oErDVI06OUSmDv2Yaj9bSMMdDSmeyK10GETKSCuYQWPUAdEVVEGnSKuF1jRaHjicKuNUOJzeUm0noZmDJ7vDvVMVGVdY1heG9UrmQrtt1Kq4pYS+abJS5LHBntFuxI4Toz9RLdS40UJFeYXRHrd4ZBpBK+otwNQJQE03dicQMuyJa7zgZMZYB9MF86Ix48jh3cjp/MRNXVG2ET8r0lBgTjh1xL2d8e+PTPOJKL8hqQruzOHNO7Sf+uT7YYZlow07B33srHovvKhKGSf0YcafR/RmUM6ivGNQR5o8I3GBbUcGQc8GXw9UU7s3qGV2HRkYofT4T6u1SzWtYIcJN01ECSxX4fvvVj4sn3qk1OpeKi4KczrijxNfPYxM5owTiy47mgPGWpy1bCaxSSO1jqyvgDEGhkZMsO+w60xRhuIs8aTwHxQpN7b2r4ze1LY33CuNEAIx9dzp5MZODKmFmgrjODOPI8MwooxCqW5gra0jjQSLG04oM5BiZouNdS9Y+jRTWyEVIPeJp1YaUZpmB7x1WC0oKcif88StIkqjm0HEkFXXkLcmPQfNPYcqlZoDKeyEdec0HrjlQpRGbhp1LxX6ecIYT8NgogHpU0JlhDoYShBaqijtscZjtGXdb4R9IaWtZ8lU/1qt9PVn57v2vwutUXPuzX+r0Gi8HTC2H5ZSzhSpNBHEOTA9c1tyJYT4F0FObQ0R3WM1Yu433R6toFRqyaiaGcb+sOCsRrUey1FaMFaDyrQWuwJd9TeQkr6ubrXPPbsgV/XX7x556FEexWQH5mFgGjzU2k2rTZjsgDGKlCOvzxvPnz6QYmIcjwzHI34c8INnnEfG0xk3DjAqiI2iITjBzA3tG5IzaleYYcQOI94fiG3rVsta2ZaNKhprG5PvRT0tlrDulGNBKWGeZh5PZ7Z1I4ZIrqW7IGjk1qMItUkX6ORMyIncDLmUe9zhvpKlG5prAZrcI1nd3thaJ5UYNEYZmtxXg9JxYQC1FUorlNKzd1U1SJlqGxmo2SL+HouhT/vsXdokquCMxxmHmsFZhVH3tb4bSCZyWzLrmthKZW0NPSua6TeJFHpsRwlYo3GAMRoKZBo1NyTTUXlZEWvh5bZQ9tQpKkPhOJ0ZhokBdecuVxIFUo9i1NwwuuvA6V6Q/uCtBN3UPU9eSSXTpMemcik4b6GpXuzbNyajcc4yhb3jJFvDScXURqGRoKNGq4VmsNIYDHjV0KVQcsKL8DDOaAM57izbSisJS+/2qDvyzmrDw+HMz/7mSx4eHxjsRIut5yu1YZ49w9hz9SZ0Y64ahPP0wPww4+Z7f6RlSr2X6FrtZBjR2PGA9WPP77Ydp2zHMOr+PRqtoFVKSj0nXSpOW5w2KITrbeHT82eeXy6kveBsgRSxuTANmofZ83QaEauJ0ZC1xWqLMYbJOUZj2cvdpvnnayGQS+VyuRD3QM21Xw+gIzfb3RirFKIEe8cYKim0ljtLG4Vowbj+mmilec0FyX1in1Oi5C5i/Pzx9X7NUjy+3Xj5tHA+b9QvK4qKNTB4jfHSjevOY2dhxGFS4/xw4pN/RWUhhczH5Qe+/eO3/PF337JuN8wGkjM1RkZt+ta4RfJ+Je43cs5c9o0tJq6XhVe5kWOmxEpsYItBiQNfO1WOhG6JQo+9gCHXRk2VsmXiXYgl9IMOuXUSTKNP7qQhqvarpwiIJuZCCZGwRXLMPTZFpdWMLg1TBd00Wvr1xCjBCWyt/zxMA69VF7zlSiGRYiSuO1FvXC/PPL9cWNe3XfyUU9ch137vEd2v40IDRY/EUGmmM+OHweK86Th4pTBG44xjl0jNibDuXG9X1m0npUywhXUNrNeNnCKobpNt2oAyNKUp6I6mtALaopKl1UipmZcls+cbi86o2KOTVMGJp8gdxxobNdZu4OZOQCmto7yN6r92j/KmvaBqorqCNrbjTnNmXxfitlFyQnnpbpta0LlilMEahzX+fm3PPYZKRaEwcu9tlUKlA0hIsV/Y2t3yKxoxjhK6V0OqkEPDDveffykICZHSL4Xe9h6QcmgXeqyW/hky+s/21khJgdK6/BHpZDxap7ApqRgtNO1xg4YmlCRENaIGi5ktWxtpOtD0jipgSsTkjFL3YugdJZ1SQWKmJcFlxTgPaKUx2lFU6THSBkprmlJdCvbnXk/Of4nByl2OF2PH6OaccbbfB1orSO044GGYsM5hnMG4/hpn1Wha8KNhfhiZHmfcPDGOE9N85HB+g5knnD9i/IHqPWRLqxZzaphUUK4LH5W1KGPQWmGt6X9vMSjjacYguadExAwY7/FuZCuJ0gJFKUKNqBrIJdBq65LT1nDe44YB6z1SInvKrFvgctvZc7qfES17rbQloT5eeJ4bkz7itePghIN/y+hGZudY9p19D4Q94eime0H1s3Qq5FwpnYHc48Ol3p0OldT+vJP+/+2fv/qw79SELpq6V2L4/9L2Jz+aZWl+Jvac+U7fZKMPMeacTFZnsdRoSU20tJAECBCghf5NbbRrQBJbgtCQRLZIilWsymTlHJOHD+Zm33CnM2pxLKvXFJALRyAiEHAPM/vuPed9f7/nuTxjxMA5eDrOLNPEGia+3NwzbDp0I5GloEREKo9MBq1GnDbs3B6KZQmRx2nl7R+/JZWCdg3XzQZzdcAdtrxKPe3QY2zDptnRdhojAipdWKf60FAqk5LCmkyjEiFHiqxRDihou6JNbWV7fyIsM2kRfHIX+U4pPhw7lK18WC0E7WBZgq9ZRSGJq3vGQSbe+4VlfsL6wK5cs7E7nLa8ffc9fvyADCs71VaZUk6oU6KYjIgBdVqIrMhQv55KJuKaUSmx2wtUlCidCa6QgqdYiWl7Gu/wREJYIIBIlYUdfUFohZQSFTQ+RWxWmFSZ12UMQMbtEwOGDksqNX8pVcEMokaLnjPZNkl0F1CmYAssREqGPBXizj9nBD2iF+hgEFkz9IqNlrSl9jFa3aA3haZbaGTh49OR3//mD5yPnkY3HG5b7O6GZuhpm5aNGWi2LaqTLCWj21qW9UGir6GskTQvNBtF1wz07Gl3O0I8EpWm3bQ8/uHEkkZO/QnjrlDC4pqW8e2JpevJfcOm6/ni7hVdMZSpcIrHmr2fBaUTFCHIOSNHST4HvKiorYRCKVVNzSFWhbWDcgwEuTI1GhME2irURqO9wNmI0xGxRpJ4lpZJTU4XwjIT1kBYayHXClHLOHMtGsfSInY9SilEPiGkxljoDy0lJDbO0Dca2esa8ckSKy19L6vMZVp5OI1c5sC0RNRtpGkrzvF8WWisoSkNtvJt8Y1Cd5lyqWp03WTKpJkphBR4+DowXR5Y1xGfMrd3r9ht91xd37JrGgSFFANBWhrTENqM0M8XxVxQrUTF586DynRRImUiNJ6SEpbCVgpe3Da4MbJePDEVXpiJrE/MxzPtHJFCII2gaxQ+ZUQqaJMI1POM3Qhcqb8kM4NsMX2PfJGYz2cu44Xj8UxXyp/vbbwtAQvsTcMPbr7kp6/v6HcNBYGbJF5YVmXZtOBsxMiMWEe6xuB2PZ+9uuHq0GKNIC8zqyjENMJ84hI0bW5olKN5cYUqIymNZPHAbW84h4YHDD0BuR6Z/Jk0horRNQ2HTabJEf904k8fH/jqu2+Zx5GWgigdYopwCWy+uOLKKq4bwSICUWWKkoxuy6AiJgvKoyeca35eDz2ySFIAvwZCeQsxoqLC2YQosl78RCIsAUpCWujbPdKCNAGZTRXlUJBGsjkYWreh0Vf88ff/gbR4HI4gFEJochY8+pHzu8TD5Gnslvv7e3rT8tmnLwj+Ql8Knw073qiCayVts5AtOKNpafncfMHTzVuWhwvL7x74+vwdv/3N7/jwq7e8/T98RbFXtNpgdGGjOxpdSNOfGB//xDI+YZrIwzIzx8AsFhZjnk21hbIo1lLRrslPxKZaSJvsELmKwxSCKUfEVCgXw/FYkDKzThktEmY1NLOEJVWKkV9Z8gwhIWJldqfTynoZWaeR7qIQayTLBKcVKRIqC8ylXoKVkDTacLiTlCdL9gITZ9zikaPnYkcWseLniTAe8fOF9O4RHs8sb66Zt3vWVmLwhBjJSbAGT9PUOKYuhebQVC5+MXQh0jqFs4qCrLESLZDNSpgyPsx8fHzHm+8eQQaaFpa8ZUkCX2AYrrCNxifPOYDpKxYx5gaztSjboXVLTjPNKRKnwOw/Mj2eOZcJQcbZBlaBWhRGQF4zxRcOtqF8UsVRci6U6CkpINYO0WRkKpTTykVGLAW3QpNt5c6PM+PjO9IlooTCHBJiXZBxRtsFl+oCruiC9AltM3YnMB97rE5YuWDGQvIRYSDHFRU/IkNGZUk4R3J2KNUgvEQIRxGaeZYUWTAyotOE8BNkRTaOrFs6Y2mVer4YCnKRiKKxdkL4WIVX/sQaMh5FvjsiMpAyfq4DPGsVDQm521KkI8+WR8Qzgz8zzishrcTsmVIkp5k1zEyXSojJRaGcIZYLYl2IjwolWvq+QUVQWlJSRIWEMYrsoeSEbT1m1UgiqVGI/GyPRZE+nilJUHyGRYJNlBJI00R9m1raYkHW4bFrG/avGk6hkIxme6N58XLH7sUVbrfhs7sfY+WWZmh5e3wkdRaGFn9qUIDQuXbAOmgbzZXb0SiLKqDXSONqjDYniXARSFAyPq64Zo9tBN3Vhfm7N/g0stoz07RQTEH6jJ47cq7egf3VHf1mQDcWzheWcmIpC6V0CLUgbI3+zcsj5/cj43HknL4mzwknBHe7lpcvfsRVf+CuORByJkwrcVzZOIefIjlJwtET15kcF2TQ6JhRUzVun5eJHNdaVv1LHvYPhw7VS7LKPDU99BcQ9WB2zoKgNW7fM3z2Ene9I0tICKY18Xia+f2Ht/US0FsmD+fwnu8/vOXf/vo/8qu/+wPnjzPz2ZNFYH+14XDYcHXb86PPfsz9zT13L7bc3d+z6VsO3Yaua5FMiHQi6BVdFCoZaC1GiFrcMxYtGmS2lKxJWdHvWn7w4yvm5Yc0O89+icwiEy+BtCZiSnS+I4bCeQpIl5hK5P0pksSOZm/ZOc0nX37B7u6WoW94df2S9cMRYTPGCbpUV6fRSGzQ0GpiI3h68z3t1TWqaZ9vm3VKs0yFbugpJZDHiWzqi1JqzdjWoliOBdlbgrREIfEatLQIJ8itJIXMrAtJJOIqSCIjdEZiGfprdrsrDld7VhnROdGkxBq3TMuZJZ9qjvnsMNogVYdSC0lFQlfzuVkIUqtxrUO7OjXaSIeRpsol8ky30ZSmQY+ay3Thu4/v+NX3f2D7SYtTOzbdHfH2jtZYrNakRlLaAZzFDZlpmggqQB8ZzJ693KPkK8x6Ynd9Q7PbIazC7W4opuEqK053Z/IpEi8z8mW9ReskWBxMZeU8TVxfv6Lf7Nj4yOHxzPJhIpSMsBLpE0IbsD2Hlxu6rsbHZiVRRSCLwI+ZIgxSW5zSHJ3Hh5HlfWQUGeMc+34g2pm4CkJQCLulawfaxqKcYhgOUDqSDMTlkWnxZJ+56zdYtaNxjusrS7fb0TSWrtGIRZL1im+qLK2zhs462maLaNPz0LCSqAQNa7a8ufyGy+XM43rGPVmudEPTb9jeNRijaZq6/YhrZhoD7x6PjMnTaMdObEh9Q4gev3rSdmZdMtMsmJMgn06cYuBYFvb2iq7p6PuW1hRkB2kQiCLRSmItNNsOSiKkgp8hDwYpBQZBbAU3n97yw7/6Ebe7z1iWiegf2ZXI7HrEBq6EZDp+xCpB3xp8iIhciSI+FILN0CTamBmcpmkNTgu6QZB6w0EPjEHwpsB5WvnJ53dEL0hR8iLD6x+94PVnn/HLX/7X3H3a1w1YqhjSNUR8SEhUnURJQdmdMaajaTtubq9o95tKR5iPhMuFHCXa3XC9uabfdriuQTYD6/wd+WJxJ8lvn37Pw+XC8bygP7ti312xbXYUPbMbDJ3ZEC8T07zydD7z5quvycsZQ8GZliZI+q5hd7Xhn/3Nf8HhaqBtDI8fLgThyX3k9ZwwMtbplnJIDkjn6K7vsa1+Xkkr1uYeNo/IJbCGWqouRVJEQzGSkDLlEukHgXqegoq21MJ4Ebiu5dVnr7jd77hten7991d8jI/MwbPpmzrxVwqXNYOtdLNf/+Y/8bvlj/zgu8/50DzyN69+gaSlHQZ2YaY1Lb0b6IaWVrs6XW01L3Z7ThHykPi7f/81v/7qa769fM8ff/Ut259vefH6ls3r1+QUWZeR33/9H/nqdw98882RN29nHtMjSWmKNdhuh2wqYWxXLNM5sS4Qs6JEjURi+kJMlZGfkyB5EFqSbaV4zEvgdEyksqXfCkynSbPgEiPrmomTIstIs7dcvd5jNh3z7FnVwsl4tmNACc0sDdoNiE4ybzTrPNdoSi4YBrxY8DLTttdstp+yv7pid+dI5wVpN/TbO8LTRFQPZPuRp5g5jROby8z+8AJl39dybhHIJBG6Rt5QqjpdUoBLoDE9rW1oNaSmkHzCZ83aScpl5pEVdSVQssM1Lfev7xmuG6bLNWpcefvwDcfpDGtClg60e/4at4hmQA4bDmHAu0j0icN6IG4mZIy0SlK0qhK/JXH0GRmqc2eSpaKEz6GiQr0mY9Bd9T0kKYidxs6V2x5VYjjc1M+eEjwkS1AzViTSEgkSojHkdmDeCiY1MV/es6hIVpoiLN/5NzTygOquub79KdvDK6SUpLLBvbyBOZHHhPIf6vLGa5RssepQ5ZNmQjdd3VjJFf94qYV5H2pvKknAYdsNGo8UBaUaWBU0M253xr/5yBIWVp2ZTweGw55uO2CvVpTqyClzid/y8McPnI8rx4cL380TFz8xriNPsWFNM6HMVYqYAyJlmAt+WdDasL06sKaJxvW03YZmW/HOUcm6+SqZXCRaN0hdvS7+mBH7AWnq+UXrhuawof+00LhbyupJwqN3krwqcigIPdAPEre1xI0lzitEiVU7Xrz4koaZVRec7XHdDd3mmqurK8x/6bj+eEX73Q3z17+v0rUk8GJGlYQqim7oYRmhKGzbYO3A0N1wvT9gdab4+isHWSmPVsFwxNweKF5hHhcIZ9bjhcePMydG/Azlo2F/e0t33eKGlt2LF6hNpUc+PV14eIqcfab0hSbsKf2Gshm4Lj1uONNeLphHxXw6k/zK0xyR7x+YzoGpLxhhyCFQvCd3hilH/BJYl8h5TIyhoNuaPFhKIajn/w9ZyO4vPdm31VQWZSBSV1JC1uiCkAVj60uo7RuEEqx+QSpBSJGQE35JqIPCuIr1WuLMPHu8F4yz53SeOD/MeLsSVCaIxHk94sfC2/0HXl2uiQJe3lyza64pSlUykJZ1rSxFJS4U++yZKMiUQCYgVnoCK9YWdlvL9tqSW4NbCo/zmafJVxxeCMhkSCmR0kwIFdG2hkjb92zbnvt9w2G/pbEaJTJKSVwr8FEgo8KK+kIkglSVtCJS4uHjB3Za0ZaMkIaSqzCsqEQuGXIg5zrdRlRzYVgzuiikslUsomWVeiSNNFUWIpUikp+z04mUK0JGlkQqAUFBS9BKEUQAAiWteCSRhcxKSgsxqSrPwaFUNc4qIYjZI2Vlr2irUbkgSo01S3JdVQqwSpNzJpeF6XJiOn9kXY50TmJ0XdM7Y9BCIjLEBDlFShKEJPEykXRBOI1tDI1WOAmyyTRdg3Wqxo20QBmNaQzGKqSiWjGnBddprGvJsuDXwOlyZtOvICRaW7R4Ljg/S6SKqLSiUgqdazC2mp9yqavcLCCUQCy5ft2dIVHpMcmHWh7PBaklSshqPFS5yt6e2/9CispPzgvrurKUqdpPi8DYTONkPah2DdYZtFEoXU21WSayiGQZEUaiXEbrWuATz4gV5QSqkfUAlwNrXFn9zLgcOeSOxu7Y7QaUks8khID3K9Ny5jR/pChDlpJUAtEnQsqEVMjoyrSn0keq0COzxMCljECNwTTOILREaUlMAVE0OYM2GpMlRWQWHSBVVVON+Qj2+z36k9foVlLmkeJPDLJgm4JQkpamlnHJGCWJqa7tZa4UHvG83tYlY3L9qwIaJUBLbKMRsjB0gs0AOlniWqOEh5s7fvBffMnLzz/lhz/9nKbLaAE6Qyz1cx9CqjxrXSdEqdUY3eKahnbokEqRwkqI4/MzUNEqR7/b0+06TOdIRZEvCe89S06cLkeOTx95fBr57IVD9weccxRVagQNxeXxyHQ8cX46EtYJpyq9yBhodcO2t1zvWg63B/rWoBRoZ2veWkhUTlVcJSVKWFLXgnM0jUNKWSOCUqCf1xx1UJTICUrKQAatKg0k+Iq4RYDRCCVASpSR9L2haRRtqxm2LX3nuJwFl9WTi6z2XS1R8jkmUyDIlcvlyLdv3vCrf/gVd25L0xhSWYmiFu4bU+hspbGJUhAEXCfQY+H0NPJwesdleqJkz8OHD4zjmVJusY1mWWrc8ds/fMeHtx95fDzzME48BQXWoUVPO/Wo1qBdjRwKPVNUrGSdZ6oUz1GFEgsJiL5gtUQbzbisLKeV6RxwUqOFQhZF8om0JpKvlBRB7T0Y2yKlIotnWFdS9SIlM6posm1Qpg6I5nlGP6OZ7dZhF40ombZvcV2DbhxSGYJY8TlRgq+cdQ2md/hSSVsx1Y6L0BrINUZLrrFELdBZ14GQqHQxbSTKVLKQyAWJoLS6yrdMZkwzQvn6zukcu12LdgOuSZxjpogMuUa4fPDkvFJUpMgqWlJZoIvFaosRBdJYN+4y0djal5PPG9Y8ZXLOIOuzNSxVAhmWjI+JEDMyFLIsSFEQudRYayoknzHaIpUkE1nXEykuKCUpItU/owDZWooohLAyTidCqsQVrCaFgGsNw6aj73qMqaZaZSN+PBOJJJURpjxHXCv+GSnrxqjIStdTEqElxXpySGSZKKVQpAGd63tB6Poc+3Nc1AIeknyOloTItJxwqaWoHtO1xCiZ5plv3nzF7371kY8PIx+PJx58Ys0BXzxeHggykmQAI5BxgRDIYwKdcST0ujyDUiRKKZKo2/+YIz4Einj+PjxH/6QsSAviOTXBM+5dW4tru/ozHmtkTAlV166ixqVoDMpoZIYwzuSsKgZ229IH0DIjB4d9jpO51tIKaGLAPBhkrnbm4APJV7qdiKm+eynV29GaGjeUIGyNzaITQmSklggpEdIh9QbZNGQhKJ0Ga4hCcA4zPq2IIpm1Za8SpjW4TQtW4f3KMi2Mx5HZj4QUKLIhS4MQBlEcSlm63qHNgCgCnQxeTZAXUJoMhBTIEdLzZXugxmfneSH4go81BqWpw/VMQjw/m3Op8q6/6GHfaAci1dtzGik5VmJDm3Emo7Rmf7ujazTkyHk801gI2ZNEQiXN0DuGQROXmXlaCBM06honNQaFRiF6h+pbkrM8HU+8/+bv0Ury8v1LMAJB5H63w8tE0JW3mxZP1hlMrrhBZDXYeQ+mkGUgFw3lglWeTafZvUjY0bIbDeWbBz6MF6aniSEHMj0pJmJ44mOsD0+dCvv7z/n8xcCXr3bcbDc0IiHiQmDFbiJ9gfVJYxWIkFFjQlqFkqDWwDfvviOrAiT6q9ck78kyIdpICGPFYeb8fDGpU5F4jJUzbB1ONmDqKspGi7Ty+SWhiCTEmihzJIiIjXWC7/OFHCdKGoBIKhMpj5R04lIKHg+s5LAQrKfICRHuUMqgpMElyRpnlKzECusMBJBJoNsCJVSbaKNQWRBzZIwj48Mb1sf3aH9iI5tn+ceZXaj2Tp8hzJZYLpSsOGdHbGeEUhjZ03SCRimsUDRyoGs0VmYinlwiRSRUK7CyCrJWtTA9vKeRCr3b0y0wXWameWIwW6IEikTEGgUJPiB8Inc9WZT6odMtUUtW6TFrICsDUrCKWNfhgOxb5LiyhpVzXJCTxmdPEgWTFKuFYhNlWfDeo/SzSj4/sSxHzk8jo1pQUtAagx0i/VBoWoGypj5MTS0QB51Z5cLKSJAT2SZEC0WvlQMsBIUIZgG7UPTKHEcWP5KWiYv0wMCmueHm9kAhkZNnnY+M88hles/T/D37/jWIQhAef5qprkZIoScz1cNdErjGYdsqjlnDGZUTLiu6/TVSaYxSzMuMVI6YqJPlYogiEu2MmkA4jeglZMHt4YYXX/yA3C2kNx8Ql3fsHagmQSok3RJ8pV88zxcglTotMhqbqcU3EsoH5FINjTbW7gS6kFg4bCr+056rCK9pW372L/8FP/7rH3P18p7u+p50eSKVQBaJboFkDSk3WJsQogPhSKJF5jqt1laSciSGEb88YBtFo1SNWt1saboOaTTTdGY5n7gcH/nIzPn4hqeHDzycLthwTWsy7aZBpMIqJfjE+vTE43dveTqfAM+mbetBTSa2u4Gr3cDNzUC371E5UmKgdJomZWSWrMbQtwklJASN6Vqy1ajmOflcKga01cszejVWT0LU5BTJJdQDZQr4PLMsES8EyZqKDjQK3Rv2B4cWHghIZ9n1hrMpXOLMtAqckKAUbVOIQSOEorkGxMT8NPK3//rfcbjTXB9uGOyWOIzsrKFpGqwVECMlZsrqUX0gnxZOxwdO07fE8EgnCm8/vOHp/JolXiNUYl5nPn585Hf/9jd8/+6R95eFd+PKx7X2fnrtCXOL3bU42bAxjqQuBLkgskRZkDqThKqT0FhhCTEV2l7jjOPj+cz8GFnPnkErVHEQLdEH8ilRcqBIjxQCJSxKtlCqgT6mjA62mmERNNlSuhZjMy4Kzucz1jhSKjQvHLulIa2Z/tBgBgGmsK6Ss/eczo+cH99DSuQMpRVYHKUoQs4kVqLWtQ9UElH4emmVzx20Uoccts9oWzGFUjtkfEbmbkElQTaROZ2RXBDGQAvbra7SQzPz9TcT43RkmU7E1HKZE1FA8VvsdcKGiJsi5KZuaySM5YLKCiMl3QYa7TBCQYnoqdTmhAURCuu0Mp4n4iJZfUUdi2xINwlVQM2FZDPZJxgzBksms5aFZfoWosLYFlRExoQSYAaLSgk/TTyFhBKuoitbg42F/bbh+qanbxVKahKQTebx+D1rDCQpMGqlSAdKEQooUc25OYEpoZLUpMVbiY+VBliKIBsFraKU2m2oqutULwUpkGUku5m8TuQpclzeYaOhwSHMDfN85v3HN/z7f/f/5n/419/z/cOFY1pIeoNpHW3v6IYNotVgbXUNxAeiXzh+eKJ70ZKVollXNo0miIInEsUNMVdJ5bLW/mFMtbtSchXsqS1IFoiWgqWUjFYW51QFpsgIRHQsZBUQJeFC9fxoI9FrZn28gLaUBGaj6C4WS6FcNbStwDmBbjTkUtHAfiQ/jfjlzBhn8iKokoWEP2r0VUS1Grt1CBHJYsYrjVoKyhRMB0YLshcQDVp3COVABFIHKE0gc0wX0slTuoRwhSIXdCMxbVPxppeJ8XTh/PDEEp8IOaLWHd4JVFLo2VEaRd80bHtBpy2PsWG1F7K54IrGYTASwhgqWbBEdIF1qQNvgazI6BAQviWJRPYR5QtJZ5D/eVP9/78O++3GsMrKzFVR024aSik4WvRhptWaF7sbhLEsPrNMCfEqY2RDpzY8dd9jQuTyNPH98p/402/f8O2bd/z6T7/n9H6h22y5/vGnbJsBs9PoThCGG8bukeU88ft//4G0/QferytX5gbuJK5kumJodztKbCBYihlxWSAFRLeSQgvFUJyiM0PFJZbMoD9hXS+cHx7513/7W/70+z9xfLog7Za73Uu67Rb78lPMccENPVf313x6uOefvdzzs1c79rcNVgDBk4Vna3Z0fcNsIsyQVCJuIu0HauxGKsJXnke7UtxC7xKqsxXHe/RMamU5n5m++8Dh5hZioW01cSP/qfQkOhDZkshkt9RsoskklzGzoThPspnhO8sqDF5KzKlnGTPTuBKmhfcfviWXiDamKqezxbqOF01izg1rNsQcKHNGKKDXqLhFGQku0h9tncy2CpuuUVagNbRJcPJPjOOJp4cncvY0JXFYMu8u70mmgTjx68fMLGAumdM8IV9fITf1Q/r5Tz7j0G3ZHRq+vP8MKxXkxHB5qihWs5BnQRQrRQXaZHEbg1ka5MOWaaNRy0p580CwDcf3T/hpIXvNoPrKv+4V7jwQCpzMDDFjhEFES7KZpAQ5C5QwGKUQCMKqwAissRzo+TgAo8QsmmWYyU/178t9xy4ONFKyOpiOJ5Zz4WF54t33iTFYyl7wedmhB4ftG/ruhig0lzXh54+UUWGdZWg7VHvFvmvZ6o6QFrRpsKqlaxoUNQwfsoBsIRu00Xx2u8WVxHskcV2ZQuZjWHkhPdN8Zp4unJ4eQPcM/YFffvFLohuQuebr3yyJsNZJ9DgdycpgtlfsXw3sNwPWKYTLzO8ngjY8DnDlWpI0LBnmsaC6VLcgq0F0tTxvz5JTv6IRdCtEKWlbh7keEAxsb+7Z9R2NaLmMK8vpxOWbrzh/eCKWlSASPhuSk5RWUWZJMhqMQntHDrCeF8K3M+0vMvt+4Oawpek2HBbHPLU4WdjtX7E5vOLFz/6Gzc0VunVkAsflSI4BheCwHWhkjdJpfUXOhVLqBss/G2szgiWciSmg9YabG1CiQ8sdWRYul0eW6cRv/vE/8ObrtyznmSZJmA3X/TW31/e8fPnX9HYPT4njH/7Ix8sDj5cnvvvmgdEvRJMZ2HFmJj2LsUqjGEvk3XEkffcVyRfimilzoT/c4rYD29aitCP7wHo6VgKPAq16rBVECj5nvv66wgmaziIWwygCKRfyIioKGYlVHe3WsDw41jWwupkGRYflIAaWr1eeHj7SjAmbFNZ1qM1ACpmSgSzIyVB6V6WIi6DZ1g7H+2PklAxf9Df88sUPOJsnrN4jyx4nelRZyGXkqD6wzAtryYTXCrdpcbklCkFZBe/fP/Hr3/+J8PCRdw9/4puvv+H/8v/9CmValNnycr/j/PGJWCzTvCWrlo3dcbut21m9NghfWF2kG3qMbqu4EU2WivKMaM5WM5XEcq6ULlqDynuSzHhpCKZn2UdKtJjQMUeD6Szd1jIiEMEgF0O5DlUQpRRLu9KeG7KKPMmI/j7Q7A2qVbziE443gidmpinxn37/liQ/sMwr/8f/+/+Nt2++Z3k68dNffk7ftrS2Yfdqz8vHO14cbvjFLyOm1LiS6BxrMgiliLmwyQZnFbJtSBdF0ziaxuCkJIZCTg4hWjYHx6vF81effsbfl684lczoBd+OE2mdOH888dt/+E98OL2jCMmL28/pDzum0vAhOCYs42LAK+52usrYEngGbDtjVObKdmhZtwKyWNIhoTzoIBhtISDIXjKWlTgp0mS4XMHBtGQj8W6Fp1peTHrhy41hVZ4wZ8Ki2B4a+rYhRwhNoUzQLopZQl4Ky8eE2WXk2bKbDtz97Md89slf8eLqJ6yi4eHpyDfff8N/92/+e/7V/+vv2TSOL++ueLUZ6LZbXDfwzR+/R/RVVqdTwdx1DJuBV9s71LZHmwO7bV8JfGpA0WF6jSnVBZREpEyJkiWlDdxsblHC8d6cef8mEPWRRcPDd3/i3//Dv+FX//g7/h//1zdol3DWcWvuCLsdrt3SD1eUYVMvgKWgek/Re7Lr6LoDe9vV8qwNiOgIypC0pREaoRWLVoyngmhrfEMtjtzpupWYBnKfySUS5wtSW6TQNBuHzwLtIRfJulkQy54kE1M7MsyWJBJnVuyHBbUz5K5hE2/J24jsJPd3d1z19/QMtOfEV8eveXx4x/HxLev6R/zsSV7QWl39QUhCE7G6oZEtukiy64nNjuJ2vNx3SJ1BJVToUU11EVmRKaJurbPZEm4vlLDQvN/x3eEDpkjConjw0AtNbzVeT6Toa2ds19Knu+pkaB2uuWYpHafUsjHdMxBFot0XCNkRpwt6WfDphEKiZUfCoxePXANTI/GlFru9ioTZEGfH0hY2ytXCeVtgcvU9KJa/7GFfKVn16yKz7TQ2tviY8LNHk3FG0Q0txOdVsMhoZWi6jmE30LxvmE8TyxIoreHjODIlAfaOz77o0b1BbjSDaSojO0uMi/WWVRRhKqwfM/PHRCDDsqIkFCmQUiFU4fk3r0QJCiUmsLFKMEotlOlisMmxbwtP+syS37NcHvDLSoqFpoGzrAKSl9LS32g2u4EX9xv2TrHvBLumVERiXMnxzDq+xxExEnLRxOwpMZFyrAQAIVARVhaKnyhzVd6XmCFGpExV5SwUbuPQRmGdpmkKReu6zhalSpVELYxp6ipdyrobLs9iKZ0VSSh0kqiSiMlXggYFpMb1GyiRVipU46Disgmm5TwFLpPn4+nCPBaKlGRn2AwDUlFJG7pUYYissSiUpChBTJllqSIho6DRmqFpuNlteEyZGcnKytP5K8Y5sITMUgy4iFgbhBVE/wKVBY1qqqxHVlmT1RFZYvUpsECYyMHXaWeuX40ioQTPKhbOQiPXjF9n5nXi+6+/YWh2KG0JOSKLREuDSRHVWoSoFAldKhklk7B/puwggLr+RVSUXj4nSsigQD7TV7IoqCCe41ICDcS0QipEnxl0vdhNEjSarh1ouo6UCuPliA+hRn+20HaOEvcMpsFoi+s6RFZoqTAKpK5YN1EkCYVrLTYo0KmWjnrDsDQsaSLEE8fxAznesi4r0zSxjGf6my2D69iolockCasnhpkcCsEn1jUyTxLjGrSxRKnJytb1dMykVCo1ghrpygHinAmbQAqFjCCpUqkCFVBCUwRS1l+kSuhphMQZj922mN7hugPl+zekMJJUJklNIJJCJgtFKs9wK1WjEyUpssmsy0rOEX+5kE4blIN2p0B4jJH03QZtFJvO0btEiY/4S8EHx2Il8+kDQhRc16LVDqktCI0UkUItsZMzpUQKhZyrsEmIhLUGJXcQBcSVZV5Z55XxdObDw4kcAorEXGYabUE6lHOIZWFdPzCuifHpkePlwmlcKaGq0XOpfZmSFZlMKJHvzh8ZtGPvOsTYoZAoBKIxmK6h7Xps1yJzhRWgBTJXi3Y2ldqVSyaliFMjjZQEaVhlALGACBSxEv9c0BWCFOvGPksIob6Q5rhymkdYA8YMKHnLzWHPMZx5s2RYPClULjbmgJcVKThoyfyUyWJFmoW3375nvH5N23YkkdBSo2WoP1BlpRRPWAGVEDpQsqfdZq6yYRsNIRx5eHyLcgXjA6enyHgSBCkw3ZauO3DY3vNmgVlAaQ1LWkl4ZI4o3dG4AR8Vp+U9zbNIL0fIpZYdM1XcGEtG+IQrBqUkSkCOFnJBZEXMUALEmMkhIrKqGF1lkDliVEHrggoKXKkCppwRRlZq3Cq4hBGcpNEd7fUB54/kk+d33z4w3CuK0nw8Xnj7AKelQTeFJ1+jg0UETr/9wLgJnK5HtleOF1cv6Lq+lha1qGbrkkAphK5UNaVCvRA8RzWfbXlIU+rlvG+4u7/i3XjCrCNj8pwuHypjPYNRW25vMsIq7HbH7fZTVlp0MBwznCfJZcocFs8UIiZKHJqQIouMBC2Rutq+hcwYmWu0ElBzIq2VkObXUJ/5SlCSpCRqhjkVUkrElClrjfnBikgzuwY65bDC4n31BigytrXIpRBTIITE4DVt33Lz8oYvYkU2l5Lx0XN8uvCnrz/w97975O27I0+NrFuDy47+uNI0Cy4JRKuQRqAKmIvlcNgiXir2FgbX0LbDs88AYKXISM4ChKBIhWyqqC76FdmA9AIxF1I5M86KchL0BR6PmXE0XN3uaXuLNQ1O7Ql6wHQ9zWbL/CxdA4EqLf3mCiUix9NbWq1QVPnbnwkwZQ1Y67DSorMkiep7oVQxXI6RUgpSVjmdlApp5XPE5zleSaifUwM66RqxJiNjAqEq1ccDVlRq2VKpdMKH53PMgl+eUCZgZamFbQ82RPzlI8IX2uIwySBLdUxM2QMbRJaMU2BeFtp1Yc0tttsj9bMckkxR9bAPilTqsEgNjnRRZCehk1UCWyJLXjgtFyIZqQ3CR4zR5NbQBMdm6JmDwEtFDJJTDHyMF6yz6KyRznCz3zLaieg9MNVoIwqKquLTmKskdpGVCCiqSE1J0FKQVwGNoFD/XVwjUSTSf+Z0/z+fsy8lKoMRmd1gsatlmgMX/74WPpWkHRpEKIiSkTpjlaPb9AzrlkH0PD4dmcqJuXekmChNz/b+JX/12acsauQhfaApgjhJ8iJpbKJ0GSk1Igrk2ZJPqpoeV185sM4ghH7W0XtKSfVlLGreUthQ8YelUDToorDJsmsDSp+Y8zvi+lRjqrJh02k+mAKqWj/724bDYeDFTc82SzYu0uoVqSL4keKfWM9vca6tefDUktJIiTX/LF2DJoNPFLUi44JcF1KJZA+kgFABNYNQFnu1xSqLayRtIxCqZt8EuR72Zc3MmSJRpppPiTXrWC+xklVWe6oqBZ/mejChgDI0+ytsiWxLhs48r3IFub1HPnygrCtvxwvjueZ/g7bcNDuEUmgy2VR0Wz3sz2RZBV1rjizrTAyBxklkaWBIlJsdY4HjsvKwLJxP33B+nPBThuYObADfwWagPFMOGhw5REoRKJVQytdVdSwgMsVPJF9NsWSFKAoUZL+yPiMTuzmT0kIoM2+/eeI0XDCuQ+sOikALTVMsum2oY09ZZValABmrJIlaMq8ynVjRmQbSJVacmCqItV5ss8pID9JlpABdMj4tNdoYBVddw5wEKmVSFkhtsbJlHk98eP+WyzgSg6JcJ7bbDpsTdlMPqLoZCEWiRcSIjFS1OAoKKTSus9ioQWe0FbjOMMQOOX8gxTOXSZJSZlkC87Ti55mDswz9jn5wzI8Tl3hmzTPZP/O718Q8K1y7xbqGMa8EWcuxchXVHh0DcvXVHBpKnaSJiAjPlkoliRFiqs+ELlc2u7ACP0p0ljQImibQNx2NbDCHe8bxAXlMeBEJShKQxCgRz8KWmBNFVxZ3SZIsqoQnhpVlPpPPCbWDtlUwnWmkRLQdwjS0Eky4sDx9Q1pGsms5N4by9BHbaJqhYiuFMmShEWmuKN+cKTETc4aSyMWDivXBbDTJDMRpJPoTYxiZLoHzceF4CuykQjSah3Vi03RIaSi6gcuRxa+M48xyXjhfPONUUFkhs6SUVA/JSRJLYs4L76aRg+kpPZglMTSK1mmk62m3PV3bI1yPmJ/+yV4sZCFrRdaKUgo5ZXJODG6i0wovDDNnqBwmkJ7kq7hFGEkMVFSfzqSldjZUXPgwnXDR0/UG2w68ennDY3xEHalyO6BIRbGGVXhCybSq4fzgSXHCDEfef/fI+OWKahpcLGgR0WKFpMhlIWVPXEWFDaiICCvdLmOKw44Na/jIhweJz4HrYct00fipRbeO7nDDdnPH3eEV+9OExON7ydNlZS0TfrXYfoNzHW1SLOVbhpwrpDQIMjVOl2SsRvGUETnSNQojn5GHrlBWgIrkLb6QQmYNASUUimcUalmqgdkW1JOqkzqZ0CFTjIRU0a6TP6NXg207mrs99m1HOj7yD+e3fKp7ZON48zAxpy26b7i6gmQCyWiSknz/jx85DjNPpzO39w2b5oqm3aKLwGhJURW7iquDMkRBq+W5olDImCqbEwKhEypD21lu7q54cTnjTpnjOPF0fo/Tloyg728ZbnpEKzmKHXf3r0h6QAdLmUfG9wvztDCPE+sq0FHyoukY10AUC6MsaNOArucGUwqBTAL0lMlrZPUeP4eKKzaixnVTqZeCUAg5kXJBrQKZMiJ5VJw59BKtHSIZ1nAEv6IpuMEhp0wsNcg6pI7+0KN7h3rsMEIyLxfU5cybb7/nd396y6+/mljWzIJnOkXEmulPBScjJiZkU7tLyIw+SW5vZzrXovcW5yyy68glQFqhLGShycJQiiFLW81+MRHLQmkKYqnDriIvTKsinBSl6VjDBqXu+MlPdhjXg3REGtalQTUNdtewrBKpVI3fzpbb/bbG6cqMkSsyZvJkn5GjmbxmbNPilMVlSZGhxl4pYAtpjpAT1gh0btGmxnL4cycxgyoBdKZYUIsBJSipIJdENjW6aVaF7FWlCy2RjEesKyqBX85cLqF2d6REeIVNhr6AP5+hSBrzbBEuFcI8pTOZgRjh8bhwuUx0u5aQenRXzcglZWQcK/2qCAqWlBTZFNTWUR41uVEwSNSoiDmyMnNZzwRStdeuGmvroKr3ic2u5xILp0UwrZnjGvngM1fNBqJDZMP+/pY3+j1engg8wyWQFGpsJ4eMLpJu0agsSLKQfUErgTWSMkpEoGJOS8Gvf44w57/sYd/ImlNLsoH+CqNWbByRTxm3G2g3W4a+47hc0FlhZUezO5CVoMmesm+ZToVpCZheMDvJ9sWev/75D/nl65/zcTryu/df8/XXX+HVRNYrKg5st47dJnJUHdm2dIcDrRtohutqqMszqThsENgAsx3r+piC0A7hHWRNdpoUL8SQiaEwXhThrSN/0/E7NM0ztunNEKDcc7Fb/u6V5NXykoPokYeWz5YDpl14UDPlu+9o4wLTGTFqgrAUbXBDppwlCU1pJS4qgoSkoYkaYbakZkvwM6tThJJIvuA2O7LvSJcZaSXOFroW0tYRVk+JAbSHZMlIvI4IWS/PuoHysbBkQSxVXz2FSA4JSuDtW48xM7ebJ0ap6AfL9sYwPhYe15FzWLjabng8TzzNK2cx8D5+y7IumLnhqt0iDzt2wx4bpyqhkBn9mIlZ4E0hrQGtNabtaHLPtiuMrSPqhVdWMb57z/vzhdO3K2GtZS7mtzAIaAfY/BBefAqHPQpDmTXKJKyOxLVOe4wQNNEyR8eSMvO6IjpNu3ZcyT3vbUBLTR8L21fX8FCz+BdR+PD990QK9urAdhhqPr6zxCxIGRIS22lQBp2aehktQMyUC6Qianl1nljsjAigo2btBwQjTsyMmxURDMnDNAXOj0/P0rOWq7sX+FMgvBX83e//A63t68Hn3TvevH/idB5ZpxP2+hNef36P+Z81uG2LkA6lMtMKQluMUQhp8DGQciJKiV8lxI6NuMd2R3aqY7MtjFaA7nB9PRj47yzLNGBf/BUvbn7Ktm8RLOTvf4ufBOu6R8ojMXrmOUFXsNc97XZHXC8sqmLqNl1Grw5khxl6RK9I7TOutDiksSAEcl0RrUBniV0dsSt16hUFczNidpZO79hd3SF47gC5jks0HL1iSoKTLohO0VmNCBkpDVJKQoiUVpKtQUiLMaH2HEogNRFpC61QtNvXBLESWJCTR1wK4Sjxbz5yuclE45iDZP/qiqG/43b7KaZ3VRTjM+lILS5TSFqyTmPFVepKyypGEpykhIXl9MT47gOPp+p+SFlwpa7oO0OjNZ9ni+ir5dmPmW4VRB+QYeHEBZUfafNKVhsMCo9nkZFoF07nkW/fPPE0F9xnG9z9nr37jM3Nln7bsREH+muLcRqxGtblQs4SkuHSDkgpaDCVOAkopRibT2muPtCXJ96/gylFUgkgI5hMiRACeDJZFYQtiH4lBY3PhXEeeTd+xGwN95907D75Bcte8zCd+ce3vyaLlaQzb+wDNmjEmnk3vqNMj3Ujqw/88uf/e378+c9p2zvyMmOXiPWR2AVScPgYWMojetW42GFch7u6R/ULpmTe/fot6aSJGLQd+P7dhQ/vJ8ruhhef/4z91Q1259jFHyJTYtECIY68P77n2+/+EdV9xYtPvqTrdnTqjmwHijY0ClgUSUrQhSUFGq1ojECZph4aMiSjcC5UPUFQFKOIQbOMBrspqE7SHxx5gWO7JzeJMnysxd8s8U7RJEGWmbUFcVHk4oiuxxXBQ0z85uOZX//qHV+fDHLbcZSF4YcHdoc9L1/eU/iATgXlC6/kW07vzpyOha/eaV5/mukyNGaHZQAkWRa0qNl1hcBEENGSlSbngtAGUSpC0SiDswnbO1599hLeKuYksOeVd3Lkkj2H+5YPu8wsFfmy5dfpjC4K4TccNxomx9YYfvX17yiPKyZIpp99ipoTjRB83Fo2WqOUwYgGLwtaR5TILK1lCgV19MyJWoZ0gtILUJqiJcFmxOqAldgERPE4oUFumcynJJVIfsZ/954oFEW3qJQ5ixUVJC41bD/5UfVxXI785nLmq//0B+bR89H1/Obtd7z5eORPj0fufv4L9hvHVScYrMWtArsI7Kke9CORx8sjj1PgkiOffaLJvKCILbm0ZNEBK5qIki05+cpQT4X1VAiLRqkDpavvu63SPLybEWyRaoPaNHz+k0+5e3WPYmAstU+SlsDjqqA4FC3iNpN8oQSBetHz2eevOfQWscu8f/M1YbqghUdcnmWRjWXYtOiuIRpHWCSq79BaIkV87nJk3CJRuy1S1a5ckRJpBaqXiPWKoleyDWgdKe8TaVak5GopW0tKY2n1gNhsMbbh/usPvG8XLipxWgz6gyZeZv5+/BWfbz+hPTi2P3yF+H++4H04MomRe1qWlPApUbziXYk8LBdOv3ni9c9/wsvhjs+uf0rTDsSYCN6jRou0UAxIo0mxXuTzTnH9MhOK4fvzRNNnwtNCOkdKsyEqWMrEpcxcDzs6ueWFOuCuv0IvCj0t/HEpFNly07c8rJpFS4oWyJc97jKg1w1Pu8D+fEGFQvaaMlcfSL9xuJe3iG5DLoYcIhiL7B3GZqSyIFUtu08a1Fp7m3/Jw36OESEr8aLEhbSsJL8im8jQ9GxdW9eVK2gN1glkSRASZc24ZOiHBtkaVKfQRbPfXfHq9hV9N3BaZ3KEdpqRF0+cIrF8INh9LYpaBYOiGRTaGZTVKFI16pWItAJhQWaNoBZd5RooLWQRIWlKimS/kuYJoUf0taT74sB/lX5IZ+8xumctgafmHoxk0x45NieGPnGvBe1LR8tMs84s64gmIP2KkBrlEyoKcjEEnSjpedJuVZV1xEDaGrROyLRUOUkSFDJS5GdjXkTZQsozqRgoBukLKpXKyI8SIRMScEGhXG2i11uhp/gEa6ao+gEGwRRXHh+PGAWdTpS+4zYMXLsrvnp4x7v33/Lw4S3avmIOM2uMzHJg8qWailNkDQshdZTCc6s9k0UiDoEgBKnI54JmgxIBKxdIkqY4DpsblvHC0I3sD5a7v/4CnTJaKri5Q/ZX5P7AfP8ZP2odtySGONO2kdZYemWQs8LmiBKRos1zpKmqxMMi8FmwdiBCtVxOwteil6sxsvJwYfWeNWaSiWgdKolnfRZLIZBSI7NAGln7izkSfCKGSJIrMla4QIgRFWs5c2GB1QICYTVNgSQyYwisf/Q88ETbOm5veqxyTLqwyMLx+J7j9ITwhsv4lvEUWX3Eq4V+C/3eshm2yDZTdCTnQswLCUVG4WM9JKZUoxFSUClJQ8+m36CyZF0XdlcDptvR9DtCSLhNy1XjuLu/YrftsVJS5kiHYc4zkz8jloKKYKTA9h1adajcoonYFDAUlNJIo+lcx/X2hqEbsM5hdKUlpRwppa54NQopIdsaVRNSoLTErrJOkZoetXGEy8y6LCxrJuUZ6QTu5gbefSClzLpKmlajhKKgajQFgyia5DQ+r0QyurVoparITGVoJbq0yGhYw2MtlEtBGDS2tRjboDDs91v6TYdqVZXTlYIQiaBO5FJ/T1KBGCGHyt3WtkYeYmCdR6b5xMU/MaWEMR3aWHZ3W7atxqkq0GtkJnvPklZ0OVFExdf1YSIqRZF1SOCX+kJqvefd6DldIsexcLi/49XrT/nysy84XN3Sda4Wp1WPKKE+l5eFdbpUKorTmJhJORO0r/2DXJN4V33k8aRZtEE5DxdPjh5KQEpFEpmYIutaiTwlS6wa0NqRi+D942OdthtDs91x5bZ8fzwhXl/D31V6D41FF4tpN5hWsDOBj+2Bpt3yxac/4/OffM7hdofIheCPGAmiq3GTGFfCPJNOCasz1gnEWXLV9yxI4rxiD5Jmo3GD5vjxPZPwyH3LT4e/5v7l5yhROH/3Fe8/fMAng9EDc2wJUVVAgl9Zeo+IkjU3NJdYDeiyqT8/EqTU4DMFSVIarQQiaQoCw1qL0CKDWkljJK6BWFYMClEkogiUkGhdvyR6VWSdEKWu8IVOyJyxMXMRkRwDZfSkLDFhoIl7EB/xl7rFFL2i719wtb3ixeaWKThEmEHM+GGLmhbiPPPh3RNLyHWj2zSYxlAkqBgrJY46DJJtoshAilWKKFEIIZCm4hdRleokg6TRgn4r+LAKlqeVeVkZXr9gZ/bYWHjn4Q+//T0+d0R3wu2vKKtFuBZjEyE9UuaAXl7i2o5WJcwyI4St72+TsCiy0iALNteL/ShXSAYhKwNeJk2RdYuvgmBNkRSfhW8hImxCqoxmYplW4rJSZKIpGitUjT0tI1JbmsHijKJESSmS8Ahv3z3x8HjmuDQc/YkiNTf3P+Znt7/gsOvYbiQ6HgnnlZQD7gCsmpQyZRtRO8Pdq2vuP3lFtx+wXYOylhJ8jcJSqOrE51jdEhAyIF2hqDqkFM9YzuGVQfYG2defuX6zxZpMGjNpnJnmlcvxjEw9WQeiS3TmCp9rCTQuK05bNt2G3m15HxN5DeioESpinaDv/owYVlAyygoQNb5YtXISKQu4SuiSVHwrJSMwyGLAKJIRiAhqFkQRESrhhCXnuUaVY0FsM6JEZPY0bUMXI0nC0hk+xDPjZWY8TXzyz1/TtZZXvkdfd2zPF7Yx44TA6Vw3PLsveXXTISx8P5z5/OU9r25vGDZdjTHluoXPbaRIDUIRkyAlAUXR9A0h7LCXUxULng2yzahe0Q2KZR15PD6ilEY5hRKSUEakPxLnR55OK1uuq/16uOZ0PjGuJ+Iloouh6Xd0y0Q6fosYA8knCCMa6K3leujY2BZyeS6eV5eSThlZaoxUlOqcEGtAyIjIf+HDfkqpSiBKIvmFuPqaRXWSTdfSNy1ammoD1GC0RORYZURLRGXJMLRYJRC9JibFvt+y3+5xpmLZ/OJZP34knCJpKUS7oMUGaVu6rkXvG4atwzqDNKJGCqiHaaEqelOusk6NyRU11VbTbMnVZltipIQVoQPuynHQ1/yXWtPdfYrrdshL4dtuQ8oL29Of+NtpZb8JXDeF7srQjAJz9sznR4IAnUuNEYWCIFW9sa6IQY1EKUlOBZVrTlDJREkL8zSTUkXgWSFIpVJ2lCiEHChZQjGIkOrBI0OmVKyUAJ2fOxSVPVRD0fmZZynVM+pNsiTP0+n8nDWeaW53GA1hd8V3Hx/505/+xLd//C2JdxSjEK6hu/mEUlR9AJOfebupIqBk7Q0IUchtIQfIKdVsqjboAsZ4cpBYHJsseWoKw9Bzlbd8dn1LJzWtbdFf/AhdNiTd8rTd8eMmMKiIKCutTrRG0UqHRKJSQYlUXwii8u+LL8QgiEWSGo3ONWbhcyQTMbYe9pWCmBLeZ8QSWHxElUIRBcdzhrzkasUUz38vKhY0pUiRCSnUszETVBEVUUZEJI0UkqINloIXnpAS54cLczmy3Q3cXEucaTG2ULTi8fGR9WMij4IgL7AoSqnTKruRNDtL128QDRRdWce1qZLJFGKKhODJqRqC9TOKVHUNbdOT50gSAdP3NNuBph9ICZpNi9aGT17cY20HMRJniRMSnRM5jpTV1QyyFFjX4EyD1Q0mr4gQK9xaKZQ1dH3P3f6Kbb9BaIlQFVWacqaUghbV6ixFoZhSI+FCVFRkERhlq1220fhzZFkmUgokMqpxuKsrhNLEvJJDwm5rv0KhEFE8O3AVWEPwgiwF2lqUVkhV8XfFClTW6GJYeSRLKFqQthbdOrRtMNbRbQaarkHYioWtPw+xlsFFQ0GRfaakSpsQqh6coEBMhGXBB89aIlGCVQJjNKZt2TYGq6p+ffCCPCvkGokpoZTCGEd3UqxGkYxGOM0SI2uIyDUxHQPjVAvKty9e8vr1J7x+9Qlm2GJk7XIIKckxQVyZp4V1mauB0zq0rweKGGM1vlI/QxsLizVMzmJbiZxq3CrHhJamRiFLqcbnVChZoGWLsY6UE6fjwqZVCKmxbcvt9oarmxu6uz3izw8qURF7tunonOFm8BRVOBxe8Dc/+htef37Pdt/X53844ZxFOAdRkFKNE5UlYrWkcQqrNdfNwBQFUywsh5bNfqDvOx4+PFaccr/hJ6//Oe3+lun8yNuHJ54+viXljsEYFj2Qk4YkKeuFNGWilhQ0TIkiE9kJ6KjvFKmROdTIWJbVKioURdRnd66sZ4QKpFAPnUXGGsFEVoMtNYerRSV3oEFQCV6oVD9zsVT0cYoUH0hZoqLFlg5lWkq04C00msbdMHTX7LprmBOpHEkxIZ1DtpqS4PF4Zo3PXa3WYqwhiVT/rEJSQaAR4aqhs+RCyvVzJZSsVLDnZ4GSVVZkjaTdGHTI6FFhgqZ9deBAy7oWxnziq9/8jsf1xKXLfKkdFAXa4TpN0R4lJnbO0vQtloA+j0gDwgiEFhghKbJuTlSuZ481RkxSz3UCgcoVTYx4fjemRAqpxjtirNNPEZF5piwLeQ0ILXHlOcqWI6mA0pqmbzFK4oESC/6UeDwtfHi8cHpcWYxH7q64uvmcH9z+iP2+pekFl8ffMY4nskiYXpFzNRAPboO577h9fcvdy3u6TY91FqUNKS2VKiYkqRRyyc9/do/U1VSLshURKVeUUgy3PaJpkc7hR0XbG5yDxV9Yo4fpzPTxoXYA2pZsElt5SxaxxqH8ijOaTdfR2Y7sqwlaUelk1imGzqC1fUZsF6RWQKn4ylSqxEoIUKVGWmOVUVZhtEAIVTsf8jnDHwGZERqMNvg0Q0z14JqfD/tImsbRhpUkgb5lGZ84zTPT04RUgqFxbNOG3U2PyQZxKhRCvchZx3D3ik+vG6TNqGT57MUdd1cHms4BtU9XSiLbUrdxRVQ7eKpG6aY1rHmD6Qe0dWhpka1A9YV2qLCScRrZHXZo8zxsUpFGBEzxxLRw1WvaTU+z3xGWE0e/kqOgd5a+3zCPT4zTQr7UhEYpASMdfWPZDx2d0UgKIQZUEpASMubn8+1zZCfXfqDI+Rl9+pc87IeFuSSm5Dk9TuAzRMXQfML+9TXboaNRDrsBi8RES8wePy7408LkPLf7T2j7LWoD339caIcOpzzCJWI4cX77R/5P/+q/pUWwbXu2r3/MF4fE7qbli5vPuf7M8vL2mm134KJHiAUjCsGOyNIikiXJJ0SsH/joZtS6R0RJtjOmhrxRDqS45/WV5OWdofzkht31Nf1mR7e5Yloic5w5hw/c/w//AdU1XH3ygk/ihjVNTIvDjxemcoUptpZH/TOTvc2QOrRTmEGhPiSyNMQGmqnBt4lVjZhjZD50KNuxKzvsbYJ5IT9NONtio0DlgG8Eea1nrKgXlOxrQamJNNkgZKIoj02W4grRJpqzYlGCWYNcDG8+Hnnz9MA/fB95/Yt72Ei+MF/yx688//3fvuff/N2v2aS/Zfj0R+xefM4vupUXVzf0rcGqhd5eo6QjCM8mKoRTdWLnr5jdjE8L+eOK6CuCVZdX0K3k4FF2YRtH7oZP4OZT/uqTO672L9ltbrm6e0HfbEAoLnElrRPT+IGPj3+kty/pjKATkaKgIBBFo/yucnWJyFlBk9G0bBZHuBuJx5n4tLKoxN5u2LkdH16c+P7xjF9HghzRqcE0Crk1lMkihUK7njkHXNE1r1qqc0CqgigbpAm4aBlEy7IZUbOmmQ3rPtJ4hQyasfF0S4dVlo+bifNXESU8NJn9y3vc6Jl94e9/9Y7z8TsUCz/+4p8jO1vNv6YHq8kN5L6j2Aa0rSWqGFlpEbkjhpFpHikpcdhKitkiFbgMRna4NoLOTLMilBZVDI0WbDearhu4vfsMqQUlBLw2SPkn5hR5v0rWdOGcVy4l0cjM7W3Lbr/h7YeJP74N5OC5sxq3PTC8vOPmh6953ewZ08QlT6jSscqVSEQHS1CBgsTmhrSJqCSQQaKFRDaOInvWNPBh0ZymjIgjvv+UYjNX9iM0v2VRgViONHFAN3WCpBaJV1BsZus6VBuJsyAeM2JrYGhBHIgl1gOBzsiNJosDxfS0mx5hNmAddhCI7prielC1xxJSYFknfLhGyjrkCEsgFv9MytsT8hmo+D8pM8bsaNsNzXbGRotBIfvM0O5wzqG7iJkTy9Mjl+UDKr5CaoFKBS8X4rCi20JWNzxO3zCnC+8ugbcfL6zKcvPiU/6nv/yv+cmPPuP1p/eMx7f4YlmyJjx+oJGGnCLH0xvmxaKkpqvrRYQHOVMHNrKWHEW65/p6wjnL5fwpcy5wHPEfNbZRqCLRReGcJfqM95mioe0GRFFczhExBsRFo8rE1VXPT+cb/puXr/mPUpAuvqJEXxy5tVteX+/55U9/gdwIPn/1Kf+bv/lfsrt9gRWFGCYe4xNav6DLBwqPNY5ZMrZdaMQtRg7ku8zuIyzuxPrqyId392xv7ul2B36bHumlou33/Muf/Tdcpswfv/qW939/x/L071hUz/mwg7OG0kPzGtbfYhvLpnN0KTLGzEzBETDNDqHrBTPkelA3IpOyQhuqbdwrpjwSSWQp8a1HqsIu9TSHBduIuk0SCR0ULliWjaDVHcZIRJtQHzIpe7xZ2V8cRmpkUyjvV5b1wpIXmu0LXL8hWYe3DtUYxGCJ1z3yqDh5xXFUWOkR0pFk4S0Lfi3opNnuBpxrmPPCyoUuugrdUAYVdmS9kPOKH1doC0o7hNyg1IJ2EdM6+jvFejnQjxt+vj3zyfULYlLcfPGK6+YzBC3vL2f+W2X4x6++4zffPRAPAtZqvd18+QpNoZ8C/9v/3V8TTiPn90/88T+eEE5VOl2/qXGxuSDGwoxnmxwuWbyN8JQRoRCHFSl2CKNI7Yp90MQCswyEspJSZI2eOBUUzyVofVtjVN6TnybK1YbW7hncS3SryU+F9bzy3r9nTS0FRWoXxqyxduDu+sCP/6sf4Yzgcj7y3/3mBO+/pRmPvHj5o+fNhMLKO67vHS9f3/PZy88qP14IbC7E+IjILRSHTyPLNBLDgjWgzFUdX6QzSnuajcZueuS5IFuLdJqgI6KRlAjT0nH88I55PHJ685Zj8x61OdCqV5h1wi+ZsCRyl7m+bvjk5Z6Hh4F/+05w/pjZvCwM7Z7+aqB/vcdoWz0+GlQaiHKiZI8eE7HJlce/9ogeRC6Uc6R09TIrjSCuUEYBI2A9KnYUkUntjH3viGIh2pk8R+RQkL1ks90StEA11dCeJ0tzfOL3/iPX+4b73R572/O//umP+bsc+M3TkX38e+b+S8Twkr/62S0vb25pe8c/axK/+OFP2ex2FCtqBJeVUjJSXBNFJGTPdD7hekfbdvT7G2jOXE4jff+K9ucNPiVCgf7mmkZqrDboXYtxHY10XN1nfvCDn6DMjrJ5C9dfoNyBogbeTTtu88L+0PDXf3ON+Xcn/DvFv/pu4tX0SKcNze7A0CiGqw3721uMWmhMR6MMp/TIOnv8HJHNTJYDyijEJtCtTbWb27/wZD8uqQqY4oQpnqwURUpaUeiFpREOoSSN7lE5UPIj5RjI84WSRjax0KkFpwR+CuhQ6FLDtRy4bTqO7Y4rd8N1zDg0u6x5KSdeqJVrFdkJwXW7Zdt2oGZ0npG5yqhSTMQyIcpM8eeK4IqR4hPWnZFFkGMkiZaUoWTB0AiWtLCEkcsYEShKEOwlGNMwGNhGw+nFgRI87cN7Hj9+B6cnuBwRZ4VuV4yIhHOiqDrhyVPGuQ6hNSJKJjlClqisWfUF6TUaQ1YGeUlI5xH7EbtWHr+40UQE4m2V+qhLnRZkBHJxSFWn+1JAMfXWV1K1K+miIRVmNZOVAqFZ08r5fCYmj9aCf/k//wVf3vyEq/0nyM1v0bajFQPu+sDN4VMO/RVPp4WrNrFvB16+eMmhVRgTEcsF1e4RUj1HelZsiohcGFX9+gkUbnimJWiLagzOBfZlRipfvQvnC9OqEVjMMNNaxQ4I64iJK8I0uHxGrwKVCykWZFTIIlBuRo8Ldk40XY9PiYjHuZGdGZg7yZQz8nElbqsxszeGzaapimqvKMkjk6SLGvmskC9pJY2ZlYWsMl2q5egqRAt1wp9TldeMukYmbIK1FsM8AuEFMQdintHTiZJWrNzxsn/Fptsg5cJm17O1EmN3WHng7mrD0xhY1pUcMs5/Qp/3DE7Tq+oaMBik7VAIVFnwYSSsnhQFixK0ViBVQQO7XYNtBEts6cePCJuRJtGKAYlBZw3+iJYdOSeIGakVNgc2p0fePl44TQFfJC+vf8yn3Q3bzZ4370cY36LINIeWV92GV23PnbFsnUJ4C75g1UKM1dZYsqoQKAqChR4q9cOUWjzKArIkM9MZA27HSQvu+g2yFJbBMQnFOUIKiheuRxuDkILSBMiFEiCktW7sUiE2EjFq5KyQ1wWzVFmVlAbZDDS2QWhFLCslzMQC0XbIMmIQmNJTUqkF0xSQaaz4yGcWckkCpUGKEZVWCgKpDAWLsYlBJEIICFX/m7wIpJ0wBGzRVepTIoKE5B0pQfECYxbaoJDJ4ZmRl4XyuBKOgTlB31p+cX3FF69fcGgs8nwkhUSeHyhrQElDmidSTKRi6QQQI+GUUCmRBJSmqWCpXBlTr641p7WSh169PLJw4UkLntJKkyyxRCQeciAJT5QeeTIIB9oIOmcoaSb4hfMfJtynhU4ZOt1hEQSo24Y/PXCZBO+PF77+eOL2f/IjuA108kKTagdinUbAkPNMiu/I4UwKMzlG1Kyx3YQsgeEUcPcH5tRxjlv0J0eGm4Z207GMhe8fW0TagJxZc2T2F5bLCcmhlgY/LKT4Hsh1gsIV+2C5WQrnk2CdLwilEYcteikIKyhag6hIouJ5jqf+mdOzIHJCZE+KK6xHckwEoJMdJWnCFAhlwehIP0iyGJAxI2LCXEqlt4WITiDaglUR5RfOacW1mf1O8cma+ZhOzAuERfGJ/hlfDjd8vt/xf/5HeP9x4nR+4iDrxFW5TLgceRyfOE5TvUBIgS7Q5Op/QjxvM3RAxpWcV5IA7z06p0rvib6y0psG4zcMLUgVWGWLxTONsHxd4NUZ03j6Evhy01B2W+Ip4799x9ObmaevzxS50inL7uqKH2wtH8YzgoUDZxo26AzaRwy2ip1EQmdFKZmYA/mSqoSxVEGeygkVMmrxzGIGEWmzJBxHgh3xecSJiFINpaL7KL5OpaM1NHRYpdHOY7xH5wUlV1pR2DlP6SamdGbj4b59wb/88of8i5e3vD2f+eqbC7//t/8ftglumwbzYuS0ZnyARjxyCD+lKx2N01X0VASlQBZNFYBmT8kTKRVSkvgMja3vIukXXN8QsyZky1aPoAUowVo0JEdJGTEc6VVkJ8EbW+3lSdAHz+XxHXEuyCD4ycsfs1MNxMg0e2Q8Y/KElhs20rKXlitpccYhTSXb5XCC2UOKVdwYJVIJtIvoUAmDwtUNeImJPAf8eH4m74AQjiKqNCrPCz56cn5Gi+48eT5DmZFNi1WGbAqNDdwLgy0d5hDYpJauWPpWctdb/vntFa/8F1y+2xOsRIoR+cc/4B9X7M0NV//sFUZETFkRWZN93bJ7BDYcSTkQQuD8dIECVlqUzOTkcU3hxacbZqGJYSKFmb4pWKmw0qAnBe5C0RPKjxz2hsvUcX3pYf3I8XHk8awxb99x/8ktn15t2RKxacEtR+4//KlGzqXCLp6bz7/gxlr2WuLaK4yCFEbmxwvL6YSfAo3c4WxCA3lNxLwiRMJF8Zc97OcQSMkTk68rcqURKDQSaxussQglUdpCCKSw1HJGmMl5xZHryq4ockk4WegM7Jxj3zru9wd+8OpT/sXPf47Oks523N51XB/2bDc9g9MMtqXVFkGqFlfqKrRkqvQhV9xmtd/Gf/rn9Seyru8RCiEMTtVscSyJ4kfidCHIKgyxvQQqFu3GubpunybCcUFcFtQcUaan0wpNIT/b9wqFHME2GvksZCqi5pSlkMTV14eTkEgtELGAiqQ0o0qPMRJlTDXmyqWuJbWuiEeep82p4rkQz8Y/CsQCQtb1K4koSv13UpKKYJwDMQaGznC7e8Xt4RXD5sDh6pq7u1e8evkl3eGW+5s7Nv3AJYSai1aW7faK3gakWCjZo7RCqEpyUClRhKRIjZCZSodRGGMoUpBlXQE3nSeJ+v90RlG8x8cL8mgJZaFxBmcsMiyIHMnSYEKs8p9UyLG21vWzHVSGapSzxmGImJQwqtDaBnIixYUyR7yfgYBUiqZ1tD6S58pMF2SsUghbV5GIQkm5kkdyleogde1TpPDc4i8E0vMBtn5f4/PPWKUa8YxkjMiScVrQOcu22WGtowjBbr/lJz/+EfPjhEiC/W7LEi+EtOBjRJYWQ4czjlZbnDYYDDo3qJyRKUMWpJiJEUqu5l4lwUpN13cY52hSJjwXaIRuaEpTTbgR1nlCosghscwj67KQloUyL8TFkxZPQbFtN9xsNxx2W642ey7DFikCN7sdLw577rYbDl1D6xSpaFJOGBkwzz+WQuRn1BiIXE3TQjybPCWQCzkXSAUtG5xTNFh2+y2awlEqJqk5l+rNwNjKdZb1ciOoU/uU4/NqvJoTRZa1fyGAopHCIJRGmQFjG6TWiFJqB0LI56hJRNRMWl2tl0QpGZU9GVUTcnFFioq7VSIRy7P5UiqkcugS0VRyVhalogFzQZZcDybZkPKzxTNnRKw5VhElUnicFjULm2K1f4dEigXT91zf3fLTH37Jyxd3DFYi40QJkTKvsC5I15NCZY3nrJA5QM7V1JgDWSuEUjWuIWsOd7frkd6gbUO4XDPGGSkyy3yi9ZbgJfjnfLGoJmeZnhF6UtK2hiUUYg5cnkZkKWyahhdXN/z4J59xGUd8TIxrYBCGLsF6HLFZ0AqFFQmTIzGFGq0skhJDjcjFlRRXcorIojFSoKSkxdLvNzS5YPyKLoJ+f8Bt9pxuJE+zZlkFD+cnnp4Sl9OZEGZUaVFZkdYCeQIEQhgO/Q33/ZbbtkXKwCUmUhH15ymX//HXc1JSUH+Wc6nPkSIrs4scSXEhJ/9P5DPrHErKiqIuCW0lTW9IBcJ5QaRK7pLimU2LqJseCiJGUlwxGoZW411hjHW7bvDc71teHnruNi1SNCRhic8W1CINSWqUkqwxssSAlqrGHxEYoZ+jSM+MzRwr57LUDllKz1GBEqBkpBQY67BuqJ+14rFGQ5hROTEdJcUvleR0TnQis1GSnbC8e7gQ351Z350wJrB/ec8n11teHRrE2UCrODeKRksMIGJG28pQ/zNmuuRCCs9m4ly/CfL5+1DJyDXvowpII8khVOoNEa0NGUspghRi7SM806kE9vmZlOrnLXlKWjAEWhUJJtNZ6BrLZzcDP399zyf7npgDvbVsG8deOg7dBq0N4hnT6wlY4WhUg5IKI9T/+HwStsZtS3o+n1QEptQ1BiOe3y3KOSQWkV0Vbz73eSgFQlO7fq1k4xyxaUm7jhQ1qunpXINU1RujjOKL+zt2XYuRCqc0u8FikqNvHJumZWhbNk2HNQqhNUUUlulSxam51GjRP+E1KwJcqhq5Eqp+n0quvcMi6vcAYSgl1POYr92fUur3q4hcUZ5LhsbUny8lsBT2psF0ArVL9NrRKEvfWF7d3bNDsgx73jcTSY9klRDF0EZBkwRb26MpyJKQuYrlyvNwNwdfo1shEtZQ42nw3P9LGCPZXvVY0RAWTVxE7blIhxYGVQQleUouyHXF6kSrM30uRD9iLx79pGiWI3ftHZ9ed/SmsG8kN63mk86yLGCl4mA0L2/23F7vOOx6UI6UFvy8Mh8n/OJJKaNERXjrXEVtsSSkrPb4v+hhn+XCWgJzKYjuUEtJRaBmaA47bGcRYSEVSTxCuWSgsK4r3o/IJiJDwXhNt91iugvXd5qbW8fVruew+wE//8Er/lf/i5+SThNxXDmeR0zuKEVySmeGxuGkQUWFFt1zS9wTk0GtBeELUffkcKKkSLEGckUrFisq8k6V+mIeLS1blM745j3GXzCnwKJm1KRrzMGc2Y2SECxFCgZxhbctUR+5ut+gQiLNK358i59XUi5EXX8fYQ3JCngUKFfAQHgbCFKjG8XBGqIsRAKX/x9tf9JkS5ZlZ2LfPp02tzGz1/nzJgLRJDITyKYIoKRIkAKKUEoowv/BEUU4Jn8eZhywhFJVWUCiyS46D3d/rZndRlVPtznY1wPjHGQM3T3eM1M9es4+e6/1rY8bLx4eiIMnSMUNnuQLumbWQ7jF3mPZBSXRFdaw3YpUM3GmMlC9snihLSaTJAEysBVLznx4OfPlT1/z+uvXHF/d82//5C85jK/46hf/mn1XWjfzynVbcbtK200cD3sOweEpKHvi5HChI64jj/0m6ekMp+/xY8INIyneoaOY3rd27oInnTLDcyGIcikLW32iPi7Uek8dd8T5SIz91r2OyLMYttx13FIZDwPjkPAnw/n1oMQ4MAxCWQrhGvH7kcE1elm5hDPL6UJZO2U+MO5ndqJc0pnugSGSHnbEJtTeDdEVK+hAr5Ft9CY16UougrpKQbi0hZxWQnaELVCioppxWqixI4viqkPHPW9fVN6+ODAeRnz0HMcj47jn//n/+n/z+buPfP7hE3/917+D8okkj/x9+ZYWJyTOpOmO++EVMQYQZZ8r0iybIbpE74YlTLtESiNOhOOgdnhhhsDHYcKHSIiJ1heePl5Yrhvve+MuCCUvfPfhN3z/d7/ih+8f+bAUdnpHTc/k1Hjz0zu++uk9X759SZoH/uGrA9oLX+0DxxdHHu52vHnYmakzFVjBLRNFHPhGDEJWuwBLdpQp2IGxNNxglJutrkynV3QZYC98vbvn4eFovhud+BBnPqTAflL6YOsriCNdGjlVWmi0UonHQNCOKx13+94A/O4eFzwuOqZwJMiMMJjGPQpEh98FfPP0ImZEvR1MDocrM90JvTdy/8DuuCcOA94NOA/qHRIDg9uji11M2TV6XtC6gSUhQIn0kNB2QptF1/NkKFPvHNRnhkNg9B75rhITuJ2g2fOLn/+SP/mLP+Pf/d/+r3z55mtavbKcPyA/vIPVoWXGV+EiwobQVri2Yof7sOepNFzwjCHRekad4oMwf/ETXrpIWS2gbjwe2d3teS7P3PWB7Vo5nxOXpaMoKgV2FtDlfeDu1Z6an8mu8KF/D7Hx0y+/4O3Dkbc/dZw/fuTpwyP/61+95yh3OAn8wBN/8sUb/tnxniA7ggZEG81BagIrbE3ZXCBfN5sk3yXGcAdOaG8PxPEBkqdF+Pj+NfPdF6TjA59+8re49Xuevv/Ev/+rH4gf4PnjJ6qeSZqoPpHTDJcXAAwh8e/+9F/wL//oZxznif8if8tjm7goyNQoEaBDLUgx03eIRjkxZ0k3/bi3xNxWO1kcRM+0m3l4PTMdIi4oviZk5wjDiB8Xzqdm+RP3wqC2FluAcE6oRkp36LIxi/AwjfSHmct1JlDYHzZ++Rc7fvKTibtj5I//+CumD5EfHvf49fd8/N5z3SIPLyY0DVSBFCMOIcjA4A+W8n4LWZFnQb2jS4L2iWqHDT07JCR8sGnWXhyiAc2JaTgy+DOH3cJ652nrxuVd4fSrjaenDyzXC+658vjuylY908NrXr+Cf/uXP+N//2c/45e/fMPRKQ9BqU/PaDdAgnSFMRB+zI9Jii6dlhuLMx+Qd6DRmntdhBqEGBI6Fty+4aOCjAiJsB9pvdK2Qnu6Eo4zjkxcK3WMCA7JnTY38nalnB6J+sys4NxIOO54+8vX/OJPf8lf/MVbXr0aSdMDc/znzP+P/zvhsuEumb/59jNvfKbmzOdw5nB8YDcecCQGmRBnqNVSJlw21YHyQNMf6HTCvMP7EbQTB3DegQtMErl8TPiUcEPCpyeCH6Aoq77kmxeZo5uJLzwvn2c0HXGHl/yr+5+RY6XPyl/+qz/m9f0LAsKffPWG9b/7M06Pnxm94/7+nsPLOx6+fMk4B7qDrEq+qgWEBSGNkdoUaoeLIi9HXIToGjLGWxPS4y/3SLJGjqhDP2y0LVBcpOqFLsVSzXuga7K6bFusGUogbZFp98BD6rwIEw/3M4fDzHF35H/4P/yP1LoaTvtpZf2wsH3OPD1m2tiQw8B0uCdpQIp568DjVQhNqIs1pLQ1xD8x7AaG/Xg7K4VhGDi8euDFELk+Hzk/nRnuDwQpeDoNRyvNAgw/V+rpE/L0if37Rz71mQeNvN5N/Eff+dk3I3/y8ztePgz8+U9f8qL8nPDx/8LHf/gNIXhevX3NP//v/5zD/Z5xGvj+uw88fqicL/Dp+2dyhRAT4872HBFvUIuz4bXd4Z8YvXm5XPCuM3tl8ybBCClw93pPHE1okkuFayU0xQ2e0Kwzq9rZdyUOK30UTj2z2++ZYqJtJ3rZI84RYuXVEKj7kRo8h6lDuKP1wHwODPuBYVB8WOh4pDVc60QEUqb6DV1+DMBxpAIyZ/AB32185hSiOvq9EPuAb5HXwbjWQZRBnynnK9w6b0NRfFnp25klTvieGbWzn3csz49sdaXWhgrWIZSBFgRap56VIhXX7Mae50aSgteKO8yEtqCaqbKS+cDg96R5h9Io2rjmQvpckSngonUiula0d8IK2a+A0Vi6L4aDLIncIrXNNAJ1PuOnCS8D4+G1mShbJa+Z118e+Hk/oHLmuw+Vlwe7RW/1a+K0cdwH7u/2vBhBtFFKxLnFMIko5bDRW0Cb4MY9g/Mk8TYW1gG9sUEHv0N3jp6Udh0IcaT3xozjEDujvxBUiX1ExeG9sM1nJHfTGrdMrAPRC4s36YR3EYmRQR0lNuJBYbWRekiB4RJ5rI88bWfunCdNI3PwjBSqVFSucD2xPz5QC9A6oTk2MgsFvQppnAjOEXaZbbFpEa2z0xGCGfmmFZZSyW2zdTU0imTkvJLuZ+I+0euzyQPmHWlM/Pwnb3mx3/H0+p7jK8/np59wumT+4vyetz/9km++fM3L3YRP8GOglw8NkQyhsGShDzZ5CQ46mQ5UyaTbeF7EMx8huIR3E9dLZYyRqI192CitcrleOL//iITAPEdeHIS/qxXRyGGeeP3KMYaCayvDrvLqkqEru3nmm1cTh3lgipHndTVesA+sYcF1teAYNQutus6arrgcSd4ThsDswGeo58b742fKUgmS2L39mt1xovZGXSYuz5+4Pp5JdaR3j7YALsK4EbTSUS7tzHCNBNdxo7fimU4hGzErRGSYcB5cAokNz4QPpodzonQ503tBcsc5j8e6hXV+pmxKrcrgPKNEknha2JBm2lVKJ0igDRVNHZ8TLgq4iCsVZKNpQXKG2nAIw+RYd4+U3KnVEZOl92qDNZ64xkpJkRd3b/g3/8f/kT/+y3/BH//pnzKME9vzO0KG59kxVjOj5+EOfzmjy8JpXdnHgoQRN4/c5UgPHjcK67WgIzjtzLEzpQk/Hzj+d4H6nxfeP36PlI3j/jVX3Vi3hq6FVgp1qcRxx9ZWkx9clew7OVauemE7v2dODwyHyJ/Ut5x85DKMvPWJ4fgTJOx4fn7iq5+95cXLI4ETtShaK76v3McIcqHUK5dLhrzguzKWCRk6EgKT3FsjBZuiHb6aSbsRFxN3n3e8nO7YUuH87q/5/O0zj+8/sf3qV+T8BZ2Ma2c6rxil8SIF/virbxgcXE5PPJ8/43slyUjXAyzgsPc1BxDnqQ6C36A4WleKXuk9U/tK4RMHHDFF5mPkuLsnuYGWu/m61EIfQw+EHeAUd+50J0iPpCLUmHF0QoZzzZSWcb7y+uuZ9aTsvCe9PjAeKt5fGTbPm7Tx6foD7bd/y6dr5f6w8c9+4vhm90f89P4Vd2mk52xnsu8MGDDChEiNMl+oXYz65TzSKyIFwoq4iVuwilG/ZmGIHh8mUk3sW6fvHev5O84snI8n7j8uFGmUV5F4WXgaRs6S+OXryF9888Afvb0nX55RdyJNC28elMePdvEYQiGcG6V3unRGibRYqZqZ6kB19rxSCbRpsQvBtSB9I7hGqoLrHh0a3ldEL0j1RrC7F/pt8l+0E5q/XdgroYKWSqkbQ1HcvWe485AjP/nJW7784iUpZcgX5tD58pXwrxfHejdQcuKbe+i6oxOprvLV1694/fJo60aq5be0indKTxvVbWzZQjM9A0kFcQUEkiYQk8o2OnLfbq/A4dqAU4+XSjpAe+PozvN281zvJzPEDs9weOJ+t2N/OPByHolaqDXj/Im3+8KxCjWPvLhPzFNkKgHU4zrEroxjQW7hWRIcUiraC3VYcFvGa0KmAacdrULLYlSn1tCmsHm63+iy0U+V62po5aF5Wt9wa4Or5zpmcELw/jZBrYgLjNOIaxWpG5AJk+Cyp282jXcPwrCPTN+8otIs4f5uIAaTuqhEfO8EV0mpUeczuTtyVYY5MXgh9EYpF5oWXIDdmMBH9FiQacDLzVzeK75UpF9purK1Z/r5CV8Xpgfl4d1vOMnEUzjwk8PGF+PKkTP54/e0/I5BfuAX4fc8fK1Mxx3f/OIL3v7JT/HJ03rm8jTz+fI95+9+R94KUWGUwFAHomu42mibIrUTu5DaP658/8dr9nNBb4FKoXskCikldvs9IUWTW5QGavQb5wfTrRPsY/Nqo0TnKaHjW8fVQsnPtHyPD9bB9DeNhESHuAmJA12DJc0G8E5QnBVBJkywYhdB1eNcswID8F5R8SDePhR+RKQ5REbrwPvAlEfo3TZ2FzGLeUO6kkLHKdTqjf3bO7GDc0oplW0rRtIBI9UMJg1o2skt2xjJid0gNYLz4D0pJGpUHEarIJrTXVRvmnijrkQajoA3cQAmFlJzmFcLdFJRupPbJNZ0mCrdAkiccc8dSu8zT2vmaVl4uWSmeeTVwx0lbzTZuDuMzGMil4lprOxnx3E/MSVBe0ECuFZvP4Eht0QF15Uo/mb4uulA/5CsJ8ToqSQiQhoCQSK0TnKNGIUQLA3YY4m16hxOAk4a3rU/pISCUDYLbBLnGONAlcZGwW+J3LNpOpua1KhjG4/rDJJQEcY5sdYMHoovQMOJjSpNx2qHTnCe6BQfoItHpSIC0QXGgFFLeqf3TKme2m0EjtW4VF9pLbGVxvNyscyCYSSOjv08IwhpiMSxcn+Bda0sywP7l3se7g+Mw2iPUI2QkjyomJxEtDEMEQkeCWp4PCzhNElAxEg0vo84H3HOE5wjJY+6yBAjpXbCGkgxsttN0MH7yHc902VgnBPj6FEKpa4glf0c8CLcHQf2u4EhRUNcqnUJRW5j9VsIp6iAmCRAnKDSURGcdIJA741r2bisEHGMKTLMI2FItJzZSuVyyay5QhwsPVeM+CbOI2KYXa31Rk1xt+RG0AAVh8SbNMIJMjiIEQnG6pcff1BfQZJ9O9JtTf8oxRGPSMW5TsLbn+NMPoWz1GqnDo3+JjtzaAD6DdXpK5gww1CB9gJxSSANNypFI/qA80IF+k0aN8yJb776CX/0p3/CT3/+cw73LyzV03m6KuLNMNuKher11lEauIobooX8jI4xTRA8bp6o2hA8zgV2w8w0TUQfYXaM04io4/pYYe/xEgjYGgmSEM03fot9J1Us1bgjZK1sy4WaJ/zoGJygQyTsJoYv3zLcvUH8zMNu4nh3YJ4GnGJTjm4Jl2MwslZt3gz4vZuOXTqoA5cI02whixh2MQwHQrLU9SkkXuwH2sNEe33Hfi3s20Q4H9nVI2sPbF24XmZm33g5e0avnJ9PPF8uPK6ZJhHCiLoB1Qhqe4+7aabFK+pN2iNqEVS5V5pWSxn3He+V5IVxNL229GbvpVRL3lY1P5D3tFqQbrJRflzT3oJ3ymokNIIyTp6DdkYv7OaRtp2o24D4geMI+0GZkqGof/L6gbevdnx9+Jo3d/c87Gb7+/F2mItac8pODLr421r+UdrQjawiwfTlGFXLe8GHhGc24pXzyC3p2bU90pRXbxrl8ordVDjeOy6j42kLnNrAL14MfPN6x90cqOsF6ZXohd08cD11WhW88yh2pjlnzSLpzlLDBfwtcVZ+DG9FUdfwqj8eORaA5gWcQmuY0s4hbqR1k8eWtd4SYC2BHRFaMUOregg+gASis+YgpXK5fuB+nHApsRsjr/YDS1FyE8bDDtzhRx0hh7uR/X4kOE+7UWHAaHvqHPiA8/WGfrZJueKti5sE1x0dtfOJCbnx1oMPeExGl+Yj+5crwSmhFWZmxHtcCORdYJ48++QJVFoulG2BujKPET8PlBCZxpGUEi44S3D3plcLIZkkx4lNOJ1tabYB30z+etO16Y0E6IFidDLVm9RYhKqNljGwQei0olbruP6H/15ag1zRtFpuiqSbryHZnumcyUJvSGQX7Tvxw2TMfGfyIZOmYbuUWA0YEXpM+N7x0g3d7kFptGoXKe89Pg507+huoItRrKTeSs1ezfelnTBHht3ELjfumzLoHl8DXoU5zjxMntE36vKMbmciGy/f7JhIzA8vefOLbzi8uqOj5NXqhq0WllJo2hl9IIZAdB4vJjtrvhKixwfw0f2javd/vGY/F6oXOo65CLKzg3k3viAME23d6Fu3C0FPaJ1hJzhJ+BzRCQaZiLJD00q4ZHo4sSzvyeMLYkrghdYMTSQohAM+JgIOGSaKXEGFXkfUn0z3pmojsp6gRkKqhMXb5jYW6IdbEEfHbzaCJir+dGesXVfxEmis9nfGe8bUECq9roRlJZfE6nfM7YwXS0HtfWG9blzOmUrD9wDBo3t/M9wUzv1M3EwqQHLMeaIcIjqO7CQhh5EqoJsS5m6GqbUSdjtUhdIycaxIHPHeUWRBSqAjlFDR3FGpaKyEHmheqBFkTWhQ05e1GT9MSO+s14Fff35m9/mJV7s9r75+w+tXnt0ws7+7wjCCC6znjfvZcZgcLx8STh2tr2htpGW06Gap9HyP+BVhw3fBRUWSo/edJRd3Y7aHpEQdaeVAm1fbh7NShysh3eNTJO4qbrWIehGPr3eoZCStpKsSbljH9UkoXnApcBiO9HEhXxvx+cCT/oCUilsbbYIokalNyM4xb56I5/luhLPJuq67ztpXggRCHGAAp1Yw7oeBYQjgHFcCuIx3jn2YGI+K6x7JnpYeqa3QS+UaV+Jq/3yNFf8oPMnC7x4f+eZ8YRh3TPvAkIQQIrvdjvnhSF8rWo15rbETYyQNM+XHzV6UOQi1T2T1jO5E3E9I68jwo6zatOPjTV7SvXLNR27JOUTvkDkAnjHdkcqKd5G8rOStsxyVaw58Sr9HHQzzgI+erS1cstB64Hg3M4+Rl/cTw27GO7tWO0sfo0lFSRBNL+6KsZoRZdCBdbzJY5qlEp5041xO5CfP64d7dncPTHczPg20NXP5fOLxqbKUTrhvlN7IriOpG670JnEKzTHsPANKuIAMSk9ClQGZIt7bJd/tAsLeRvxxJdx+vhI2VF6Ci2jsuO1WnElH6hHvLkhYTfMc7GDp24QO2TTQPaGz4LaEZIfGC37zSO/koUCeUIQ+XtBrpUuDwSPDF0RZieHKkDs9dbsQ6UR0hfuHI//83/2f+JN/82e8fPsFcb9jeX5ircolK81lFiesEtHLRm5Kc45x9sT7FzdZnWOKO6KPpHGmebXJhU+82A3MhwkfAiUPjNNAL54Pv2387G2D7hjawH4OnFMlCiyxMjiHE08bGpxGmg6svXM5XzjsZsLoyPmKk8Y0D8S7L5mHo+E8xx3uoIQUkT6g3fZdL8oQBKkz6MCUFpwWk66FhV7v8W7G7Q8MPRBkQ5xS5QWOAe+E3RD56kXiYbzj6/2/onzxe07vP/O7r9/w9Jy4loHnOvHt3z2zS5372dGun/nt9x/57vHC+1Xp4YiMBySMdCYrJrWhQ8B7xflGDZbajG/MzbFsmUYlDjPndsH5jgfGSUhRTaZEQa+FvjZ0VBwRHGxjZniyC2qdGmnbocmZxPP5dpFPSvKRu31HvePeDSwfv+cSlb4/8uIYePl65uVyx0NVfvnLX/LlV295OO55SeBuSpYEjKPRKXTSrSgSEWg7xG04txFV0dRwIdJ1ZxcY7M4ak1B0xpUdEuqPnlGKVna7V+yGe17sj7y+O5KXTN0Klxw5P2cuTxtfHBLH+yPTCPX8jCuNJJH9dMdpfyJvHvpIDh2qEJqnj4In4oi0qTNcAtKFmhRPQH1HZyVePc0J2Xfc4KnBvFe9VmPGO09rB2rcyGsjPxfcncPLgOieHoSydvJTI09YV7VHQrpSnhaef/jA7+87d2nH/viSaXfk7njHmBu9e/Z3b4huvKUm27TAB4dzI6Vfbjx6JTil9xFhIg0nQg3gGqRiz5uIH4RUHN01nCssTy8hKBIbMUaQipdISl/zahypL16wPLwwfbwEmh/ZtkgSR3Kg9UxeNrblCsvCNO5ILkJtxOGAHyd0cmgu9EFpSfH+gKaMuI7fPDoA1aOXHW4sBgpRK8IVDFXsPGyKbg2dMkpEpZPjCV0FjUreN8ri4Cj4HcTPnjpmelU4dWTIOOnEW8ZPb5FWFWJDe0VbQfuKckD9TJgSbsNmVD6jmuzuQcE7a87gPL0+gK5EnwlN8EnprlGyIs6K6yDYnrbt6HWmjhsxC64Kxa8E7okDjCnhqjIeTuz2j5zffsnDKZOfM8M08fJuxxw65fqInk8kYPqXf0SY7hkeXrH/6c8QN1PXTFW4lCvn3rnc8h9cGojDxJA8QUbUNxgqg0u4uSH7f2L05nJ6YqyeuQam+wTJIn1TFBxAENLBsz6apm7Yd7gIXaCOsD5XVvfJiCSHmXHnmJLDLx0Oj9Z9L4puZqDoteHDRmemq5C3K8/bhvfC3XDGDTZBsK6ZIj7joy0EZoGe6NXjfUG0wtqp3boQVTvqH1Hn6OJwk6NtHtFOcM/4OBg73c9sVQmszGysY8ENIBqopdLbgtYr9anAPuFcwF8d13JhWze2paDRM3RPrILcKYPvxNbIMSMl4F2nxSuyRvw8Eh9GEMFFO5DHZbCufDCZjkql90bbMq0bVqpfFRkudOcoCCsbuVqB5ncwxheUVvisJ779++94cI6f3gXultnGm5NnwtO2C2WtXNbMTCCTuG47Jq30dqbnT6gbQRxORnxccJoJvtFf3PRvCE4XpDRonVKU3DGzYyp4VdxsLGinnpA8MQhBEgw2xtPa8WOGstLKgtx7DGSSaeUDo5+JcWb3YmbLgtYTny/fcTkvOCA6x1gHfHLIvhPXzqorm0LKicUVXG9MTwIvlFYydemcfnjCzUoalPvpAMNg3uflifX8zLpcqVroJd5CrwtTgwvKRqc+Cd1VujZ2PfLIhet1Q39T+NOvXzLvPPM24MNAp9HIsD5xWq+U2ph7ojZPaBX6RvMN7wLODYQ0mxGtFkbtyG6yMat4pBXrPPQNCYEuntoVeKQ1R8dDBAkDToQUlOYVlcjdm5dUH1gvVy7XE/cetCUGPzN4pV4+sW2fCdPEm7svOez3jPs9rttYt2tH3EavhVILpT8TnbOxbBdcE+v8uJVjV3wI+MnRi/L07Se+/eu/4/Bn9/xi/N/x5ngkhECvhct64XfXD/z0q8TF7Yk5oVWpS4Ha6UPFOwAPu0ysQhQlPShRzOToYiVcNmQItHGkbJWUzgS/4fxtEqZQW2BKC14yvghdA9oF6Z4YN1yzg8y9HAxZiSAx0+vVGOwxUIoA1XjPxdjlGhwsCfEF5xpuaxacFQY07/HD8630qvQX1d5VhuA25leRh1cv+e//h3/Nq9dvCDGwXR75/fvf8OHv/jPv/vN/5P3yDEtDt8bnyxWvnjgM7L56YEiO6BvedVKquOBoofP88czhhTIdRx5eHVBnqNFWV+LgeXg18Kf/cs/L6Y5hP6IP8Fe//i+oX+nDQnuEOm6EAUbtpLkx+Yp73GD5SDtnCiO6FLa2UCnsg6Pqla4jEU9ZBJq3Yn40aIK6gMiMDwvqF/xSCMcBxwRNLaTRZ3T9RI8HimusviPtexo7ukzsd51SE9IqL8YPPE0nxumMH1Y+TiM5FEq9MIYTx+C4c5Hy3nP59J7TeWVtL5hfH4jzPcEfOGUjMm194zgIrdxyI+oHvES8CJWN1C10SlLjECdeHPf87O0Dez/gq9DWQnAZpaK+UTaP8x2RRnvMnHrFVyVdxVCdTWGp5HnDF2FUz6QnOIIfAy9jIw2BF75zJ0/IsMF95nUbCHd7vjx47scNF0d20olB2Uog0OhUpC/grWnTabhY0b5Zk2329J4s24QFKR1wNPXk3uiacSGjBKpAQ9lyY+eE6BrqG/f7mRIH8pq521ZWV7kOmbvdjhBBZKOvjwgDMXn2r2bSowVpluVkRaJzNgGviRicFc490CYzK6YW2JbN8mPqRpWONAN31MsV/BOBK+O4gzigElG9Upcncr6Sx4y7wHAYCAeQtaCp0I+N+GG2JlqojFHYeOJ8XZHfvKe9egtjR8bKJAohU3rDbY7iRwoBt3VqUEL0hOkCbrOJjRvQEPFUINPrihs8miakR0IALwVKBRlp2si1IOkzEhLOJcLkadWmqcNQkZzw7HAPwrqc8TVDe0SnyhAPjOkO1UIrj7R8IviC3wX64ChZibIiuaO9cGmgVZAiHPYz0m8p0X6jbsaIF7fRV6GPIzqNINDyRn3eQBquGcCgbgEfGsF3/Kb0wVQJYYGij9A87SIUVdpiAXOhfyDkCQkjGiNItG6+rGitRl3sjazgwoq4ytYCvTnDri6Z6CoRd5v+7nHOo+IYqUjNtFaI99OtxhNcu0LNNuV1RoHCFeJYALH8h+BgGwi+EzDJ9nB3AO+pXrm7nBj3mfJ24y68YDh6ghTYnvDhCb8T9sc3DF+/JcwHQqpUVsr1kedvv+f33/+W5+9/RXn3A+7cmQ4Dc9whPaLechj6avkdPkO8/ONq9398sf/0Ce8PxPlgtzkxxzxNceLNNHkrNmmNUNXMPGKObRfF3NpbYZSBOSWGGPE9QrERo/OJ6AMaPLU3tAqIxQqU3mi9I906vC5FRJy9MJdsHNQbXQY7yJ1JOCyQyloQitA7dHUWyuO9jQp7vY0qPa4poslmhFpAAkLE90YIg+XEqFAXC/FopUOKdBFab5RtZb0UcmtklOgtOrlFo7dITEhMhidMNibVqjif8C7hSDdJkqK90zxUURTr1kq3bmoTpfZuBwid2hwNKGIBUioOCY6WPWEYQIWcO0ULp/XMd5/e88WrtwTvqGoFVNmK4QWXwnNbqT0QJ0e4yYucpttoFwSPb80oRNJxIaL8t5GvuABYeAb8KGOyMB/vg2HC1ApWUQ+E24cN4gdc6ybf8gkfgqXaNpNBpHFi2O8R77lsC4+nEx8/nlmdpe4OPuJGh7vYWLQ6x7YVu3Q4MYwYDhfMV6LNDq3TeiK5RHSRJkKrjVwb58vGVjqlNXrLLEsj4kl641TjcN2mLILH+0Da7Yg547zQgY+nT+z2R/b7V6QETZXSGsuWWZ431rXwzMVIOkMk7CJhNMa+oiYbaR1p4DVakNJN10nvVpxi34Ri4SGum4RNu6O1epOt2HoT9XgiKSbmaYamtHVjLyN+GhnHGVeU0qqZi+eJKc2kNIA6crEuvdJYaya3Su8d1zA6jQSTunXrQkizdGKPt8RnUT6dPvOrb3/DL9/uKd84evDU2rleV56fV/pVSeMdbZeZixEsnDSiF9Qb27k50EXwyROiMkrAJ9O81lzxo4UgeaB1B81G9yY1M8qEl2jdQ/X2jBRbs+IhN0SCjdCDfed2Q6g4lxBvEz0A6YJvciOVNZPaxQHfK07dTXZ0E8L40Wg8VDQ1xBmqF2zdH+7vOXzxDfdvXhKCY1sXPn56x9//h//Ct7/6W7771W+gFXSxVMZcIc0DQxRiVy7ZitCRyJYKHodIZasrB9kRY8THQOlKqY1lrUxp5HC3Y/fFnrv7mTnOeA3M7yZEOqVcb/SMTnAwThB94mFKHMdAbxu9TLjqibHTZEB7RNuAy7Z3bLXbmhahewgp2XyfG9mjCrIpjtGkIuLoudFzt/U/DACo3i4MTXA14JyjViVpR3rFbyemvlHZwF3ZR0/pyrYWfnJUxgHSoDw9PuHyhq9KHBIxDcRov6NXLICJTi2G2zJliHmo8I6Cot4mQZ1OjJ5xHtjd7TnsBmKA3griPHg13Cz8QR7QvaNVK4RqcHR1xsWMwhQi+daY6LkwtsAkjod9YpomDkNiCI6X+3tG8Tzs9vQwMoSA95FRI3i7TsqS8c0SgVUsAM8aFoJrnXYLm3I0O7NxSBOjqoBN1NVD8/gaqC6gtdKLpYyrGIbRSyC4WxpWCPgSCGkk4ZnGaOdaq2ixADwJkVUMp9mrUq8Ks8k0xVkQnRNHFI8L0c5kYwahN4gQ3lnyKw280sp6G0dE1Nn6spTazRQZXuxMlm744d6MvGY7OX7s9FVQdbYekicGz+AjpZxo+YjUF6Q4ohJwtVNrRzel907uG1JgqJ4ighv8LW0WUId0S5nVFkz1KGoSwmZnhUg0KrHNAggtoT4iPUBr3NS8UBWRiI8CA9bgkQAqjAyWaO8DbV1pl0xfunnpXEZdN5lTtbDO5gxXjrNLVfDByDy9kcvF6g8FV4ApIi4ZcvgGL6hlM7mws/WrzQzWNMH58AcfFQJaO80J3d1k1c0ucH27PffgcQGkJWgJ1AiKzjd8qHgvRo5qYiqH1qlqdnltDjQgau+zi3lNVAueCCKEaJLN3pWem70T58BBaw5t3khZwSNqEiOHvz13m9aEUehdGGqj5WoUQgbmw2zf+tapmyJlh4+JeHyBCwe0J/KaWZ4y77/9zLe/ec/7377j+eMz+ZqZvK23MDrCKPhqsjXnPaF3fFBc/Cfu7F8fPxIPiRTubzpNw9tpu3XYJdBwFEBLxxc1Zity05d5dOvo1hllZJciMQ54EmzdkjH9npC6HYZayecKGmmibF2hCjhnGkMdbx9Kw3srLOlKiwlvEZiGn1ybGRZdhL7eimjwxSEGakJLNlQfAZqHPtj/v27Wq9YIVQnJIdyQa9cLrXRaAeaR2tUYri1TnxotCG3vwQd6EkhWYJEG+jhQcyEcd7b5ruDjiPMWDNadmVy0WofAOdNY9tCJNYJikp1sJit1Fd8TVTrVQ6kNN4J4oWyOOEQE2LTRU+fcLvz2Q+eP3v6SGB2dihZHWRt5Lbit8VQurNWxHxLTFInB4/3hpsEWw6K1DhLpTvFeDGOoAqXjwnhDXG6m97zhEE2bfzs0iX8wcsKA6GZ/rh/ptZnWO1qXuGilSUfVkfZHhsMdOMen6yPvHj/z7ocT8sZZ5HdMyB7kFCwQxzu21ii10edEWIONp6MnFsNnVuCUz0zhyBgGMsabXtbM4/PKVpTWoLXCVjIDEZEBOQ5WwDZFU7FUQknEvWcqq6H1hsSHp0/s5gce9hu6a3T11KYsubI9Na7nzCf3zN2w5zCPDGHHMe4RHF0xnW1VpJrpNoohN+st4ZTukRD5UZerKvib4VkRci32b8TUzkhAOiQfGdNID40iA3d6YJwm5vsdZbWrZFXHzj8wjDtCHMhNWVcrZpXGNWdyK5bo2w0DJc7jJLM6k5NJE7qYCSxUx+obH8+f+dX3v+OrD39JLp7sBLdm3n8+8fnzBX8RQnpg2GX2/Yy0ineONDhbMhPmVbk6whSIozCJI4wDiDdd7n3EO2esYvXQEk4GKgmnept0DHg1ZwgSUM2mCxYHOSPRwS2lWHFobWgp+N2MRG/eiZtZVyroFBGyFSYJwlpwvd/42itCQ7wiZTAJ4midqF5BtVFl4f7lT3jx9ufMD0candPpxK9//Tv++n/63/j1d7/mdx9/z9ci5GWl5sZuvKdFQTWScmUjM0ZD4V5zJXhH7GZYlmBFDM5T6sZaMtelsBtmjscj4+s99y93HOKeqJHjrw84UUo+w93edLBBGGfH3Rx5Nc28OIz0vqFN8ToSJ6BEXPFoG/F9BwSu/cyINXE0O6RNINDVCmLJAqvg447gbZ9p0qhrxQePH8Zbg8DQxU4TsQ44DSyrMrRG7Jn1emJsmUyhugv7oVKK4mrnxat7dAxUB8uHJ1JtJI2Mu5GUBrz3qBRLaVUF6ZTSQQsinbmPN+2s2LQ4NUtbVmVIA+M0Mh73HI8DKUCvBRlm07xoB623rozQUkAXa944p/TuDLccArs4UiUjvVCulUONHAm8OE4cdjvGaSKlyHF8S7t7TdXM+gzneqH0yiwTVRaydtqyIbURQsANETPcGmJUqin6FYfr2bxs4swMH25Yq17RbhpmXzzNB3q+2kWsFDqWu+NSQtjMzOsc0SViTEwOfIK6VUqpuJrw0w7wtH6htU4tjbqAP1gjxnvzvzhxRBfxu8FqiFYoruHKTbifIsk7OsXkO3XDJY/4RPejpXrXSrms5uELEfGF7rCE2FzQaUY0mHl67uTske4Jacc4jszTyH4+UNuFmjconjQn3ObwHZ7yJ9zqaFU4hcLYBV+U4gIpGoDEbiYOmqBF0J7wvpsm20HfqtVLMYFW+1lxxLajN2umalluf47VB5Ks4SCDmPRFI7SA9IR35tfK5yv1XOgruGkyPbpUQwxXu2CUoJYT4QNBheCiBTxqg/OFLre7Snaot+6794nq7OJVWyam/S3PwBKZyRhWOCaiLFYfeNAmtFvGSnB2AbagXjGFQwq4GaSNlinQAz7uIDREC6FNtNU8i70rpa40QHq4afwTwmh+ToO0oq3jdUAkEZw1Oaxj3g3njOVTdLV1L8UuxLTNPAU4KxLUvs8weBTP0IV2Ltbx7zAeD7SLoy2deg047gjjjnj/GtU9dWvkfOHpVwvf/uYD//UfvueHv/+O5eOZvnZe3o+kORJnT5pBLgJ4go9EOiE13PBPHKrVvRXnc0ooheXxM2Ur8PaNFTSYQdXZ5RCZlLwUrnlj2Qo7d0+brpSxUuoZP39FGAbEFyQOaKh0vxEYTJ/tlCs/UNuepgHJirslmjKtVLVfw3lv5IC5olMj9QEa9nJzhrkiIgQf0OJubGQlPDRa9/Qm+MmjpSDacBM0bx+U+G7s3SFD2vAloa3Tcyc/b9SY6ceGb4nrduF8vfLxwxNpHBj8zL7NlABSlNiUeoBEQZaVj014kWfS6EmHQKvPtNTRYWDdzhStCIF5MSSZiyB9oJHRWoknKwy6Wkdpk2fUJbqLNF3YWgQXmV5OlGwsbN1dYM7E3YH97sjvPn3HLgzMITHMA9+83uPTHU+5sD5NoA0/dcZdIERPjw7ZNn40Cbf7hieZdrJjhRENpm5roAfUW1e5jxWmRso2WnNim6FLDbz5frr3lpXQCv1Fw2siMoNT6tMjeV3ha5geBoYxsmwXvvvNB374/Tsu2zveXL8mDQGSJ7WEnwa4W/BnR8GxeUgtUn2GrcLvKvpVIogSxfEy3jMfDozHgUTnsmaW65VaPxDyjPZASztGLaTgGJMjDjOPgydHJdYJv3O4AHN25BezIetSIgZh2068+/xb3shb0jAyDJFv5i8432+s28abpwMSIEXP3Zzot/Qbr54uDYkVCZXEgCDG+u4bYbDNSFw001Tv0AtpzlT11ObsYhzs+3EeMo5eBaeROBemGJDDzJ99/acMccAHz4fnJ2JvTHHgxdsDY/Joq6zXlXX5aB1Al+i5mM4yOGTooLfmd3DEVm2/CFeGZYQh4XYDoTW+3L3mz7/8c375b3/JyzcDoZz43acT29M78mXBTfDNC2VZIb73jHwi9BlXd+xfR7RFGh7/eiPVylAC06s9+3BkiANtFnQ9W3dvGHBOkZ0ioxIGh2SHdJCecbOZ5lTcbXJlfon+piJqEzcXAz4XM4NNAe8TomKmy77iRvB7BznaJugdegZGk+pQAt1Hi4unoq9BGIl+Rxgj+cOFWs/kN55XX+45vN4jApfPZ979/a/4m//Pv+f373/PcnpkXq5s/sDWOxob86s7Xr99xXiYKEEIAnH2xJczR72le8fKFy+/5v74wDRNSK+cr1euy0ZK1Yy3qhyksPeB425inGeO/2wmvUvw3pPyQO2Fra3M28zLNxNvDomHu4rThdKfWF3kXl7RWVA94fwHdPwSZGY+Z4SCE49LhcLNlCrms+q7DklMzw+WYVGu6N5DVNxoUANPJblOnDa6U1p3TFzQmJGD8Opnr7m8nhg/eUY+8vmHR8KDY3o7In3P9XPm+cPCu6dCoDOMFsAXRWnaOHVwwxWfG7p2enzi2jKFzptj58u7b9jNAx8ePyNxR5fGEk98sX/Nm+MDX0zJpss4UJsCNqlUKvW8Gc2pd+ZT5JN2fFNScay7DbTRi1DHSOx7dgyUry74aSDc73j48sj8cmLcTczTzPgwEMQSj9uDo5QzpW2UNlDOnVxXrrohvqGx0wI2lZJbj3zO1iVuQr/lPJiOvOPEjOeKI5DpQ6WNDc1mOBWEXfDEYIbLqt2m+Kr0mvEvujXRummr2QpKgVfgBiibslwfeTydWJdCCDDqDHS6V8LmCQclzLAjcpUTW8/I6miyGD3m4uDgcaoMxeFkIkzBvuleKEs2CEU6EbeEdk/xnlQqLjVKLKAX+k5xLybShwfaQ6c5By4yvN4x3+85vrhj3h0Io6ellcG/ws+OOCkpT2x9oFRhuu5pPhOiybJa3EACQQJdN2pYaFMhMuJtkaN1haEgyG36CkInuEZ4UGoXWgdcx9WMo0FyNN8t/8GrnQ+pI3cBz4hrzqTR5YKbLvjU6F3QttFrZjkv1CS4PkI5kFXwtRNKIx4iiqcUZfOVsqwWRrnf8CXQiqPOI0pDVVCiEcjoaG7wWBGfCUNn3xJtp/SmuA4ydjvnl8aaGlITLnrqUei+gAY2NzGElR486ic7C6u/1Q4r1V1oZSV3A1kEEdzQ8XNDYqP5G4XNWd1Y582kwhJwKri8ga/4g9xAGCC946jI2HFzt3oRa2iFuiERaza7aJADPL47/M9GRAJOEqOO5GEhryt+15nfvmI4PjDuZ/IC9Xlh+/Adp6WwfPg129//Jz58+5GDg4cp8Wp3ZA6JUT1hdWjYgE5aTDarSzFs8z9psR8he+VKh1xZGoypEvyEBG9hKEsjRkuIjQiLnshrYTtnpvsIOoMGsrMxjKjStJCLpzsIvpipbbmyXK9cL54WM+oqdMEPkRAMb6nOutp0bwYGiagmC3oA0AY+m25LjBJD9JaUqiv0ncmAPIQS6cGCZjoWECXaoABBoQV6S0hUtGY0d0rfqCXQykB1loC6rBvXvhJ0RIPQJyVUM1U1D3GJaHA0p5ArLgRCmgl6gKHQCZRLpmalF+vml9QZQ8SJUFlsDKnQpaJVbYSmG+o9+HajczTbhr3HpUSIgtZKuCTjQ4sw+BEXPFUK15px3VB9wzRzP3au3TpSIXQkjfTgaNh7EDE3fmd/ozXYNA4nKB5kb5pLbmNCXdEeQWYjo6jxxU3zkexADGaEsXE+SNuDN+mTK9kmG14Y+hskDDRRlsuVHx6/58PzZ3KJ9MlD9IgGWrIshpHKNlV8FZLaiNYVM8KUGbacrQMVPdfQ8EEJzlERSs2UWtBwQAYb8sacUOcYxoHDbkZjYEgD0Q8wFcZxwgfPusvs1xkJiuwSXUe2Cud8Zbg8MrNjdDMp7knJyAc9j4jrhBAgTDSrN/FgBzWGJ7MOsdFAujQ7SMXd/rncuoyLBbKojZZ9t5/fO48Pg5mBe6XhQBw+zgxhZgqTjcS7kj9/woUZxj1hNJrRklfePf1Azp0QPeNgbHkLrHMkP9PEzHFcbaM0itGEBEGd0jajIJVBWB4CMZiWdUX59Pg9oXt8HHl5yHx1d8e6LgSnTO3ONP/RUV1EhkBMjiRH4l5JzhG3iHsRzdhfA22sNDZazeAj4kbEzciP9JGuON/pfbBupi9GEcLMsq3PRia5LWdCM0mavzeCRetG/NDFukk6ge+4Zh0rn0C7jaI1ZchGDXGDIPUBdyOJ+qZ0zmy90J4G/M92xHlCtfP583f8/vvv+NvfnsmnZ8JWmfvIMMA03xHHxBdfvWB/HE3axAU3H0i7mWm/g7UgTQndkRP06MCZVLKQaS4z+olpjIxxxJcDu8OOly/veHF/z5+dv+Yf/vYf+JuY8LsbEAEIo3IXZo4hMSRP9TPNR7orVLlQ6iNrvhDSazyK95U4DebTSRE/ztRw0yQoIA31iaYeZLXCoAl+Dnju/0B4o3W0X6ntCVfeGHtaKl6ceSpCJKav2M1PxBgJ68owCOoSMrzAn+/QdmZ5LuTS0R5xYcSPAy04w0bmjNAtiEcXnDSETJTOV9888NWX98zDhPMX1tJpLnDcDbx++cD9YU8aE80pThS00ggm+1wbVa177oLCmAmnYJjX4EjdJtm5V9pi+7mLnnF6YLj3THcTcRgQf6PWueFGRbllIWgDb2ekE0FixDtlcBDSDgnQnJHExBlVrfdk54lr+OZsIi5Cb+MfLr6iSteV1hxNo2n3m+L7rQP6Y0nhy4321PBJUTej4o2GU+wsNJnbgdo8ectcnhdyrXZGzhPsPSKOgCDJprVjHA2q16x5pr5blSGYqf4m0dQo6ODo0YMXQ9v2lS4F72dqaEjt+EtHDgkfDBqSMUluXTsyBoYwIjEx383c7+7YDyNhisT0Ahf2qAi1LjRVC4EjgXd4EXoKOK+G9vUjTYu9F4TuCr0HOgEX3C1boFGl4ZgRcYhTfAdlM3BIPdBRunZiM5+hAF0HRBRHt6aFByWhEk1K0k2LX8pK2zytBbpk6rVQ1o0tX4nhzsAESdCnjsSEH0dC3N3O+2IThCDgAr1GUy1Ip28bzest1bhRteEz5gHwGdc9Pnr8XBnWRHWCxmakIWf506xCjw2NoJdEjzeZytXT9waEqRr+QOFBOiVfKc1RmEzmRcQ5cElxfjIZkcMUA71bIKCONjl0gjRMBiaC93tTEara+tQr2jz0SO8Z1zqu2triRvRT128ZeKZUQF7ZJNsFXHHoqnQc8f4t6fCaOO3Aey6njzz98Mj7f3jk87sTnz48sZTKlALHec/9vGd+2DExEMURXMNJpMdO9uAencV+uH9izr4GR6ZzbQXNSnaOgBKcBdRoN/Oc955AwBOo+kjJlbJ1JudMDqOB6mwmpF2prlGq4Zy0bvjmyOuJ7Xpm2/YW5OLA64gPARfsBtXkaj9X76jvoAmIqK82UndqxSLjTY9VbVPSbFrXGm74p4ZXb7+DU1QDiN2mLJcblIC2Afx2C4qqlF7o1dMLlLSxrhvLtrH1ahpUL2hSWEz32UTw2dFG6GIfs7iIjxODTpS4or1S10YvavowDy2qId+AppWuQtNGJdNKpXaLYneYQRZnsg5VQaSZ7tUrUiLlnCxhs0Ek4byjNUuqTK3Q5QU+BHZOYRyoRbjhdFCn1JbNo+HV5EzMIAWVZglzN8OkMtHZ7BBSpWk2HR2DdR8qyI8kOA3YC67mu1Buv+9gmsLQkM2+Ww2eVO/BRUqrnJ9PfHp8z+lyMunVEGyk2R3Nebwkkk4s8clu/oJ1B8XRvUMHMe+EC2Zi853RKVXUZFmtmk/EzRAqrqp12b0jxZndfCD7QgyR6CI6KcMwE2JEx6sVgk6RwdPWRK5wzSvx8kSThrrOPO5wYpxhH4JphUMAH2maraDH4XxHiTczY7Ebn6ktUb3J6sTQt12toPB9T9eC3rT0DkOa+jAa6kzkhjG1Z+X9SJoHXFPqZr6TNCRIO+Tmo1m2hQ+nD2g/MHXFB5PFoaZxT24iu0LHmPLdRENESTCYPrPmYiSEoOSdw4unqWOtjdP5E4fxFYP3jAO8HmfyYUcIlaGNNCqVzrU7k3WkgGci7htBlfBs+ksjOkUaFj7W6mbbnouIG0BW5EbIwHdU/e3ZGUNaxfwwXQ+IFJyraHN0V2+Hxoz4bIWqYHuGJqR7RG5rvykSFTaTMxIWAETEDvpwtANqaLjzRtNO0YZeAiEMhDHRe+Xx8R3v37/n+3cXDtuZUDqDmkRk2t+xOx559fqe4IRK5dozYUjEcWJICc0VmhDUU5z+t2JOoYsl6voQGYdgic26J8bIfj/y+tWRP17f8vbVC/a7PUzVULV0UuwcwsghDqTU0TDQnUep1H4mtydyvUD6Gi8d5xtxGEmTBb35YaK5820SBSoNlWCTmLghxeG4hRS2PbiASgbttHahtEd8eYUTo5aEm7zQeY8fjrhYCBTC+gVTOlNkoqQ3yAfH+pzxKVDxKAmREUKkeqX0Rm/bzeOVaXohquKoBK9889NXfPXlPVMa0Hri8brSHUx3My+/OLAbR1KwRGlHRXuj9krPlbZVOu2/hbKFFd9MAtnEfGNdK7VVOwe8YQHH6ch4p0zHZFhEjESn6qAWVOSWPGwd6Y6g3fCD4j0xJEKcUNfpstiEu9/QzX2wqYoo4SYZ7Ai9BmuYcaNY9o3WEq0l1Bma2nXsom8HJYoRqpw4K7x1tALplpytzqM+4Tiwlcy2Zi5PK7U18BGfJhi9FcFFIDhiiAwh0UIzAllV+gRezT9Wgk0mrE4R9ObZa0AvjdYLSse5GfFX0IasDTmORguUBFzR1k0qOXiGMBOnmbvXMwc5MKaIRIePR5wziWopF0qtlK5oPN5M1+YHcM4Y9Uigd8vD6epu+2ECAuLbrTGpmJDKQr7Anrlqo+mG0zuaVLpUpKldaJ2zWoVsz1VvuGkNaB8tqVwL2jqtFHoZ6VVoslKuG2XdKHlDJpO6di823cHhYjQpraxIM5+TBHdLoo2Gz6TRSrG8jVrorVJygc1Ie+orriVTfMhmFzMHNSp+C1bXSYfi0Nrp+TYFGxvON3o0TXxTRyPYeWcsbXJZKH2iElC32pTQudvzT+YLoNyeqzVt0BHFsKL8ISFdbo3jaonmKK1viA6giU7BNcU1pQfzKYLQtRiBTuwijjve3jeWK8WAukA6viWMB5wP1FJ4/viZD7//wO//4RPP7z/x+PjMVpX9OHE83HE83DPtBtIWCOoMEyqJ7oXuK/JRaWLP/h/zv390sT/IjCyV8umR6ybsXn3FFA54Z2lwLV+o5RHUOgNVlHbdiMGzO0w4jeAb3jekGD+4iel4RU5QBb0ImUSuG0UK4/7ZChkN9HjjXlPxboO6oi5S/WSbp6x4NuPLI1YGJUGuT/Zh+o5bhKyZhY1d/z00M+nVbvIe0Y7zV3rppgWcbFyFdFy4UrdKLgtbWeg14dIF31bK88LT8zOXJRN6IEZPUk96FkpU04WtnWv9zLiNJDcT7l4jGciN9KLjteGjGEoqV9JdYrcf2ElAWqZqxdVKXVfKtrKcn9muZ1ozxvN8Xwh+RCSxbc949gQNpH1mdIkskevQWb+FK8rysjGdL4TekF75xMp+95HZF6oW2tnRVagHj/QrvWVyPiPVotZd9KSh07TSeiG3TpVbeEx9z7asRpVojsU1olss3XZx1BpQ9egYGNJmeN6l0ISbgUyIabVxdq1s+QzOMYwzMWxoW3h+uvIf/uNfc/ndiaHDFw87XtUDqY90FxifzTzeQiU+dpMIBUe8BjIngippGZC9BYH0VTlukV1VUtsoTwU6RB+JuXC+bqzXzPmycH/ck5wQfCOXjHeNlByu3DHsZ9IYmEl8N1k3b/jsyKETyMQO7z6vpOGRaT+y/0WkSaHWRj1DnZTkClMvuJsnAjdQVfFS8dKp2kxDKWq8dX22SPml04lkbbTuSFygZrQU1iaoTnhxRLcRympejSjomIgog26Ig2XZOJ8WanCMcWPvninrwNNl4fP5xON54e0cmHUkFo9G62oJHucrsZqe8vJjFoR2PJVhc3Q6C5Xe4JCVb9bIFBbqu/eU6snFM+onXN149/zE8OE9uw3m8Wte7DaeH5/4/PkZQkYeEz5Fdm8iIVsHtcSV7dtnmApyPxGfhL7rZFdp5wvz7oAPyeR5WAeoR5j8gmil1hXcK6ooRTrjcKHJQuuFbQ0WeuQhymJIuCZQHEUr+GciC26LpstFICvBZeiFet1oMdBboJWRNCp0pS+da1/JTUAD+1efuNt1dg7y04nzuwvt4yOvL79jffdE9IHdNBHbAy+HIw+HIwd3IHc7xERgVxbGpaIuI2WzC2s6EK9mgNXJvvtRDng/kwZoxeRY9y8SH/76W/ZVefV64u3bt/yf/82fsZfOv////s9kfyH1hfsrHH8WOTzsmGdlHx4ZWoBLIvvI2lZyUl4+PBL8Hd4FAsnoFr7geY+0FZUZ9YFVO7iGl87WV7wbcTh6DrT2jrqtlOfPRI6sfeWiJ0b/a1w3/XnA8jukZ0L/T5Sn73FbYxp2hOMDg3ZUnzgFj/gLzhcO918w5IqocDldqfsGITAnz7Y8UsqFvp0oa8bvJu4fXvBv//LnvPzyJc47Dnrm83JPbZ3gKw/jiB8cxA03TaRLpZ02pBRazvSmRBkQNd8HzyuXskCGoUa2l5muFUrB3SV8dITB8/IYGPeFYVBa67TWkHJhXr5nXTDJRhOetOKlAZ21Cz0PNtF6mHB9wdNxLZv+2yldGs41tCy0lrk2wKyOeM2Uy4bg8G5gbRtCxrOQsuU61K5oUWLY6FTadiW4nUlR+kDg8mN9xbasaB/wcSRMnfP7lcvnM+/fP9L7yBAH9kMkXKHSKaqMi8PvLCejP2YrXGmMbmeZO7UQnle2JARtpCKwdLqsECqUkxm5JeCHFVkukDd62ODs6E4oU8er47APvHy7I58iaXYMs3JwnjgPuDSgJYBkeqnk0uhL41wXNi3c7e7NpyaRtgZ0cMToGGRF+oJKpLuJSie4TOLWqCuFWitrXdHlhPRKc5XYEtk1rrFw597htEHv5PJjQrrg/ELfil1qXLRJMBkvG9pHWlkpeUU1QV+gbFyfTyxPV3Lr1hjzSuhKvMImHmpHrxtdV4J3EEbi4UC5KrWvaHhGckJTooRKa5V62SifrujTlSaeIBE/7CyfpFXc03JrqiquRiRV/FJhrZRhhA3zrxxW6vtCOW/gRx7ajkE9jkprDa1KK53PbmEMjSiRhtC2/gfvzMzFpFG10X24rXGIfjMLfWusuZHLZiCZdqU583tSYeFKlJXBnQklo1Uo/ea3kAuijb5eELc3maZMDP1sl1lVtnOm+Yg7JKa00fFcTpmn//L3/If/7T/z+TcfuP7Xj5xOF2oRUvM83H/JYTezjwPzdab3AnT8An6qSK7Ey8ppOyOt3L7vf8Jif9x7QhqsozVHwmFPmEd67UhICAFxiU0Ly7rRLiunpVO6RW5LmAi0m0Yt0bttWF2N5KMpQoxoV4gWuOIWb4l+zqQj3if8LRyrmcaDjqNkTy0FqQ0JA6VvtNbRFrg+X+jZiBXrekZ9xyUljANhnPEpUbaCG6zD+GPQjjp369B3qBVdMiqD3ZaloFOlnx01w1obuRSaVuN6uxupYRB8szFj9oXTp4U27NC447Cb8eMO/EDJEKc9XtSQozJAE9vYorfAkA69VJwKHm8Grt1ocoQg7O92VO9Y6ISYcMl0/lo9NQoEzz7tyEPhLAuPy8Kb+9dMkxB9p2wrfetsy0aSHQyCF0fCG0GimzPcxqOAKmWFjrd4MynW+WydvG3U6mmt0VqmBpPjeLkFVjT7MJx60IAqlKoGLHCdpg236G3kO0Bs0Cutdcp145I/8u79J/7md99SYmVIE4fjS3Q/I4MRnerUKEslL4WTlFtB4GnREaoYSnHvCNV0py4N7F7NTLsDIQSqNzOQa43WzfUfouN4hN39ZB3vKrQKwVswVZkCYxoIIVIn2Gsl+41cN1igOfsORucsNG1zXNeVIUxEHC2u9Ft3pfsbUcB7cBFHRy3Al/4jSUMdQoKcb1MyZ4AZ9TgVdFXQhNdEkIy/pU2VqvQcLfmwVXpTSu9ob/gtUoux5F8e7tnPEyENrGvnumzkUkk+MIYdMQxGS9Jq+mSnkJWtNbZScVul0CxQpkLbDzd/YocYGF7hFMTXAADrUUlEQVQkjt9MjKfIyXUWtemJG3dMfsdXw8j2F39JcrCfZ4ZyYvr4kenjJ567FSoiSowjcVKTL507brDNcnsqyJcv8dHC8xre5HFFGPZf0H02mYbTm98BPJ2td3Lp1NqwJJ8RcSM1bfQyQjFjcG+N3hq1VYiCtACS8MNsndNbIJJrwczMYiQOR7NQoEVuw4ZuMrvhQtolDvU1w7zHR0dZn7h8+DXXz+9YqycMiRADfk48fLFnPs6EOBBVWcVkXUmFcXdkN88c5j3r9YrzE2m+48WrPfvdSPSRLRiVxrvCtmw2pHBQXOPvl09sP3T4W+EXv/iXfP32S7Z/ufDr99/xd9/+lvXzQvninmFQ5gl2UyRFRxwmMy53kw11qUS5I4QHnLPwNsToGuIGXJ/peOt6Vmcmxdphmm9UKaU3hz6fqcuFdT0jEcv5cDZVdNNAGEYroPuG9o1eKtITuA6DEPQVWhq9ZOZdYj1G5oeBuzdK+lzRRVhqpbURH4Q0dMpFWdbGcsr87MuXfPHTV/zsj7/iF3/yE3aHnSWcrhv7p5UtF3JtPLy4M/QgFTd6xp6NqOEiBGeemeBpjwVWpbtg0y4aTTpuSTRxFB1AV6qYcVA14d0d4zByuNuTmzJINLa7+luehjK21dDMTQn1JsnxYnttczYJwOO8N5O7BnTZaN3RejAohZgHq+TKWhtKwZGpseO6Q7p9v9oyrTbEGeUOPJXRgB3qjMS0bbewOo+LHo0DSqJWz+OH93z47sTpuTG/CAwpEWWgRX9LNG9oEsQLqKOoTX49xkn31chXbZcICj4JsheG3YQbHLhOweFihd7QZbPv1kGnUmNmqw33eWW8f8swjuyPmYNz0AKxJVLYMY+JmCKSIsGNdr56T+VK2oxKpD1CHy3ZPXTURbw4tNuz+BEv61BartS60ZxQykatmbop7fOZti4s28JaM270pGMkhEwYJ3wakN6wVFe5kX8iiLMzpxruupeGpETvas1PGWmlUhbl+rxSt2Zm2RjQ1chwOkC4+QWKwLZk0m6Hi4Fpv6NqQy/C+lRoLye6C0ZjdIKkgJ8jWiJOnE0+k8DFzixSIpSF7m8CjGswKFUywkzBpoz6WLi6gq4d5T3+sMP7xP54h0+Tfe9ugzraBNEHvJ/QZBI2pzbt6F3oEunBtJfahHLNRgASoZVG3RRKZ71mtlLovdJ7hZ0FzHXApdH2bVWrbVRRHLXPiItoF1q5KRU0AAEZR3w3lclWPZ//5j0fvv3Af/if/meev/0BPWXiJiSZiMlBCByOEzOR1LxtE5sdO3HqeFUaQpkc4VHtjE3/xDSeEJwVHj7gQjRM2RAs6U4wzVKI9FJYcuby/MxytQ/B7BvhNmoBiNRabZMI8Vb8CSoedaY5lBBMcy7e9LI0C7RychubW5Goakm25A2pBe2e2jaTsrRIXU6UZWO9dpblAy4owxw4yAEfIupHQ6OpBQ5Z+qg3GgdySxrEtF8+/iGRV4KlWNZa2XK9ddSUEI0z+2N6XBCT7TRpXFbjz4cuhGHEpQQhWHfWWZKeths9SI3uobdRlKgJuL2HGG5po07xQfBjYJonFu1spRJCQILHebGuiioiwuAT1XWuLfN0uVK7Of+H0RkXv9uzHGIgDIbQstHVDY3qRrrXm5a5QS3cnBOmDW8YGqxmtgK1FnK5mo7ec6MrjLfxs+Ugo/Z8aseIM7YN4/oNR3hbV1TodeP5dOLD0zPfv//I0/MTfnSM08Q0z0hKeG+Th+YKtVdyLaylEjUQnGC3L4zmgWmCnbPkxmk3WrgbjiZqhvMbKcHdQjd8UsYpGWP7xv514kyDPEfCj/rU4EkxodrZtFBapTbozeOHQG+KqCPXSnLOyAkh46oluKI3OpQYJ1iA3puNZcXZmlT7bkwG0enqbgBA+3etVW6AfbxU24gxNGtt3OhCjdqN0997I/iEquK94zBNRG/rc12226bYGGIkxoQPli2Bu8kF5Pbn1UYpjV6qBdep0nqnaYSuZnKPyrwbkddH6LC1hY3K4B3DkJhdIspIPXhSdMzTAI8fb5psgaXQZUWpSHEYkEvxN+9Kq5Vt3fDlntCVYI/kDwW6DxNOxDTINaOYlA8cpTyx5YWcF5pz+GGPjwOCclM+oDRKKbRaqW3Di5op18Ubncx0/nJLW7VXGm97F/Zt/eiz8IL60RBtg1FHgndor5RtIT9/oi0nvGC0qRTwQ2DYWfBZx6SF1VnBGLyQhpE0zqRhTy3gwkBMI/v9xJCMUCTOE2MA7eS1G55QG4XKYznD50b4jfKTr/6I437PN199yddvX/K7H75luWRqrfRupvwhjrY3ezuECYajjTjLH7mh+iwV1NjtuIgQb4Zu+x16zWhpECMNO4Bb2WA9U64nlssJTZt5qbxCWpFhxOMRCtqL6YypRpzy1jTwOhgaVztp2jHuHcNRGI4Lcq70pdulrTXTDDpovZhEoTZevbjnZz95yx//8ie8fPPAkBKtdY4vjjhvaN+1dnaHEaVTGsQpEtfbeB+Tyym2r7Rm37JwwwgCTTtbrjQJFHFkVTNUqtBdwLmZEGaGecZtYkFAIeHV82OqeZBKrfY8/Y9SEW8pwEaSM2y2jVCtaGg3uWLtag0lJ9Y8KJl1MzY5NwZ/UId0a0L01ui94tTfiGHQxUIfudFbWreQRJFo364kM2CeCk+fLjx9vliatw/EYOuyO3c7+/hDIqrqLXnV6KHW2Qa6mHzQacd5hwudGAMSDPLhqgXvqXQr+PUWXCeNLtZZl7yRDh0fA8M0MnelLnYuiPME74nR42K81TARHwY0dXwHr+4PRmzUW43jBPeHSF9DPoKgvVNrppXN3nNeqWWjbQqXZ7bzmcfnM0/LJ9Iusi87wvzAJC8s+fumQFAV+16NbWdBY93wtL5ZI03xqDqaQlkz23lhOxvxToI1TbWaEVqjJRb32zrMeSNMMz5E4jgRto28ZZoqXRxdbpNLsbPOpQDNTN/WnDUCDu0mDbr1TrvT28XQ8LvSN/P7qXm/slRatpoxfD4xHva0qgSJ5uXThogRojqC9xHEmjsi7iYZM4St3vZ8VVvLzTkaQq8Wgqm5IMuF67JRa6H3ldHtcN6MwCGmH4s/uD1v2/mDWbh6pdSM1Ioj4FzCDx7fI1o91/OFH371Pb/922/5m//498TnzYy3cWZwA3gHyTOGRGqe0MDZXcPequgNQW6ScrnJmOSfWsYjxdN2FcYrE5V9bMxJYBTUN1zsTLvE8mlluV559+kd6ydHS+AHzzdpgvuAmxxeO6frM6F50m60zpp0Omq3YdcgduS+EHKi90AVR7wpLI2j52yDqpVr+YzoinON7Fb8eYGSuYyV6D6xucwPXgnrb/FeyDLx6vjKmkzqUH/T8+LQwaF9uhX1nVYudL/BfkPWIy4ofnD4J0/XldxPLKeVIcAQIkknxCtOG2H15MG0cCyN9+WEPn9kiIn2R7OFhSSQyVH96faCobYV5xtj9OjTYhptCp7OeGh44D7P9DCYSXJMrG2jbnbpG+MAbsSTcJLxa7zdjxLL2nh+rPyaD/zkzQuG+YHDMBF3z2aeRGnHxuiMmdt9xfdil58poKeFohuVFe9WVBI0Tz9vZLeAZgZdeFZsI3t+ok2R3Tigw3zzR9wKK1costGBLGIhYb3Q+gaDMsSJFI1xXtpGXa/83a//il//7pHnp4XJd3bTK6bdgWlyjMU46N13OClbyVz6Qn2XaTvwQYmL6QalNdy7CnPAe8dQO3sZKdJYdSHUQvARGR0qG7MPqEacF6YQqGXltJk5r9AhRHZhR/eWUekuZp7z3jHnwLP/wJIz18fMuB9IURi8Qwn00Om+Ic3jx4L3DRec6eG5pWhKoYcNdZVek41stdNbxoWF3ju1OyvitVN7Q/yGkxmRCVFnBZIr1L6yOChS0Hrh0iwcLWphmgNRPYMayWB7/MR2XXmsniGYTv5h3BNniNJxXbm4W7etwZULebM4+uderVvkGiUt+M0wnFUrUuDL/QP7ceLX/gn58AOHrbD/4o9489IxTyN+OMJpxHXwLpHXC/FuZvSZ9v0TEg6I6+TtE+0iaLPLcLs6ar1yrY/03w3ULx11GombUltgU8fEA+qVrpU1fyL6Hc5Hmg9cP3/i6fqO0/qe+6kQ40+J8pJ5KTRZITb8IFzaRstn3PkzjQNhtyNNO6i3Yso5KNDcaj6K5i0kRSw3wd23274TUJkJ60z0G/qQ0XKiPCrbeqKdLkw1880+s14m/BBIc6TVxLps5LKw6EzFoYMnvRksH2N0SApMySaNIQiHZN4nnOJQYrB8i9YLy4eFU1u49owrG79/94lfff4Vf/rTn/Pi9Rd88fYb/uTLf8bffPdfubz/QPn8xIcf3nMXPd+8eKC6M9oyZb1yePMVvgV867jxbEZS6Za98qOMxA/mB2rW7bz2zzi/4KRQyg6XFygLpTwx9I+seuXzdkby860I2aOpgFS0NUQ2VK8IK2FaqSGhaqhfDScYC65WYv6CMXt2GfRXV5Z64nrd8CLsmsO1QC1C3b7HU3lxiPz5n7/lj//y5/zyX/yc3TzjgqeUbCSf2ZN2wkO45WeUSisrh+MBOZuUL5DNv4PgNs8im009sjUzXHNw7TylzfjfLfJeClOP7Dzk2cNg8kkNA9MuEb0jOpMnSs30XBBXiKHgm1LE0UNAvCO6Bq7dULw3aSyNpoUST5bBUhv5dCZExbtOl41zzuTtSlufSNUuikMaGNobmm40CtICPTbwQm8Tzd0msX6xFFLdEXs0VLd6au68++7XfPvt93z6cGIaOrMbGH0kDkpYhKUpW+/sNoeWQg5CPzUzg9KJ2+3vLJ10Ufq+4dVSu6V5msu0sEB9wkkEGn06oZ8zWjPEjrtuFAqbVOLyCU0TaT5ycJ5tvNA0U9szlT2RYDQX17BWbkTGhPQF0c0oLXiTA0sgiAXaSay25jHW/9afqfpE5cLaBjid6evG5jZi+Zbz9sSvHx85f/uf8aNn/HzE//yn9PQLNH1DkhHXs11gUqHrRFdB68rWnnEO0pjw8YjmitaVspx4+uHXXN995HoVDm+OBB/RAjpviHhiGbgOwbwg68ayPZHagBchDDNuWJB2pr9a6C7QNFFJeJoVxmGipY7cchBk8SiZToMVq2C74k7CykIrnp4dOnRoDteVRS9wNsL6h7bRv3tHHBPXt28I9ztciITkSfmEtkylommH5htgMzUIhe5upt5uiNGmmRo+UmqkNQfXhVoz1AX4yPO2UtYN8pXKzDAFxiky9H9ml01/gwj4jjqhMqD5QusbxZ3t+xofCNOeyc9U9VyvG9/9L/8r/8v/72/53d/9nvOv/4778BafBlJYmdMLK/adYzz7WwBiJTxH1FXLkTkLNayW5XRq1pTOBXeu/7TFvu4iMo64YebV4QWHFw9Mhx1BBrp0aumcHxd++PyOd+8fef/DigyB5f2FtjaGf7Hny+MrRplQp2yXM9qUcRfIbqZjHYrB33S0vdPyAeeFECBVZ+ZbIq7MEDaCM0d+CSdUHxCNpjAZoTmln58p4R6/C3wZhWm+B5chZmJ6SUh7fAqEBhI7Ljm6voRgN0tfPD14fNsj+gqZFdf9zTD6GS0e6kCYzujZWyDF0TCfMjja1Ik50JynEhifRrbB89w6+lzwdy9I48QuBko8s12eWT58IgwWQrKfPCcKSYTBJYbBc5gnBOWyXLk8njifz3zfF6oqGiItRBIDPXpk8ri0Q4NaB744fNzY8sZ3v8/86u175mng9fHIML/Au2YdOU12ADksJdXt6YC2xhRHSmtsVUC/sAPcN8IcIWdai6g/kvpCGidi2JFlI4U9gz/ihxnXA4LQpNDqZH+2WxllBqlU59m5Iz7aWKutnQ+fPvLr3/2W//RXP/Bcz6gqB9mT9pFhl5j9RNnbDZyiXFNGuyfUkXxciJsitbPOGb/aRGqdFXfNlOAhNDIbpSmlZSaXSME660UmzprR3kjq6VJYt8z5KcMsDD6QfERmT9mgN2UJBbdaME+ZPPE0U+h85IT7vWc6JtpdQqtYYFZwhCHi6Yj3qN8be1uNV9SkGnq1z6hb8aVDKxTOBN1b5yhkJg10CkU7Lb+0DrITQrdOcS1C7juQTPBio+9a8H4ixQPzONtUoBTOP3zH46czy1ZgTEwykrxDvOKbR51QXMNfOxqhRGhnT+7Gwd73RI3Fxr3bnnNY6VuhnzMMlWknzIdAf1/YH7/gME28/uKn7OYH21cq1GApmc11nklU2UOC/ReTIcClsz4dKOmRulwonxfcodE2JXxOLNMT/rpj+nBAvtnRi6evzoJbxOFF8TFSZMIREQJ3x1dEL+x8QMNAKAO+9v8/bX/SJFl6pWliz/mmO6iqDT7FACCBzKqs6mazKdVsUtjc9d/gv+SKIhQKF2Q1yVqU1JCVlZnIBBBARLiHD+ZmptMdvpGLcz1y3QuESIgAHhHuZmqq9373nPd9HqRccLZgTaD6r9mPKxIyfvwlrV9wZoc1t0g/0qZKjZkcFsq6p1aBccYvhmYyZtfw5aU6cGzGnQqps1QCvrzQyWldkdMV144Yt4LbYfcaR7pEx3Q964ZN4OU3jps3XzHeH7h7MzIMaiPGCyHcYIzTSZWVn7eWndPJVS6WNd0xDCcGO+Kvjjx0kDPuZHi6zox+YR8sr7/6Fb8ef00xmSWfefvdO/pS+NU3O7VWtgbOcBsL6pWeWNcd0hfEFAyGbDJVOko50GxFyoqNkb5doA7QbrDMmBwhT1h3Iuy/wo0Nuz8hy0K1F2o4UfKBgsfZbbtrJi2Yur/EBJ3k2wylvKMsnpIHjN3rVifP/OH9R95dEg/VUA4CBwU3lOlIzjB0Pa/vDvyLv/4lv/jVG+5f3YCIkoxKRbqB25sdzUCulTmtmFnoUqOzSu4qUqkOXBakshFhDC0bcmh48UQaV7Ni1gEzOGQ0+PeOa78ys9L/2GGlo+E5jAXfG5r1GvczGuExoeDmRN1gFb5HozsVaom0eNACqysqWduwzabc482K7VaGAbKZQcDLCw53V0gRG+/J4QitR9oeF+xWZDe0sCJyQ5OA6Sshs23qE96/wtsebzskCvH5wvn5xA9//8yHj4/My8rrm1d6r+osxnYsh4osQrc4OGiB1ERD8ZlQHa0A3tBJT/GZZT9jJoilkEKhBSW35WrVKr1XQlpZB3z8kdoycgWGRl0M5eKZ7lcVuknH7cs3tFR0y+UiNkUQQwuGdRlpTeidUWJPX3AG1oUtiQBSKq1mauto7Q5jtLBvK2RmWhtodU8vZyQo9aXEZ9z+a/b+Fb+yHzHjHvwEu5XOfIUze7y1+Cw01Phay2sFR7SGl0bzPc7u6PwrpHmigZgmPv7xRz5/98h6unL4ak9oDtccsRNs8ZjgaHshrI3VaIQ+XhzrwWB63Qr1+1uqc8zZYYLm3VtM4JVeaJwKqczsdLOwz7RFRW21W+GkJe3iCubsqbZhdhUze0ooiGmM64gcEqEW7CUxf/rAc4CP+z3h0DPe7unHgVe3r5jjQsyZWhvWNoQKLWLMK7CCJeK2DazKT16pW0ESxlhmJgWHyGv2N0fMrtKXV9TxosMxOeC8xZbt4dHOIDcgDmMS3jlstZhS6cY3hO6GrrtR0ef7z3z44zv+X/+Pv+GPv/2e5fnKa7fnxSGw6wb2YYfrLSpFstCBFKckvQO4q8cUoQXBlRHjC/Xlgv+hJ9GY7Z95sm+d4iu9Nxz2I+PQ0/mgiMqmCMiSI+fjlemyENeCaYXL6cJ8Wbh7PvLmxT1GLOJFLWXWYLzT1rpRbJhGN9jQeEWxXwimOfKXHGxFhUsiGCzedLRsoerESsJANoaQFpwbMc1hO8PAQGOhMuFELYmG9eeYxM97H8q2/0EnYMaoaMUUjNF/njd0oZSCaXX7bxUrKfIF/9lU1tBEDZqlUeJKWhbSulJzwSAE39FcJBktlCDgnbDrDVUafYHOGHZ7z+AsJSeubaGsM8s6cyqT8mc7wBiC7ShW4xt6W9dvrolm/1tuxCXx6cMzn3d7joc9N7dKVVKnX9n+FooU3IYpRArOKv7RNAvZKL5QRFf1tgMsDk9wCeMsPQOeGSsDThQtSVU5Vt3K8aCCQSvazzCu4SUgBlrLLPPE49MTHx4+cT7PRJJKgsZA5zqC04m7xiwqpTTNJWbd3BijptmylclMUVtnq0LMmVwbZk1b5KxgSQTbb1I4q/i/bestDWJKxHVlXRaG3YAL+h5OYkhNs++tFSVjVBBxdHYg5oVlXniIJ8bcsZaeN+MtoVPJl92iH8a0jQSjhyNlkOt0QX+W9edMeG1K1RExWAOeLQ9JwxRPlaLoWtNtK079XXStavDSYfwOZwOdPxCCJcdEqpV5mUkp0XLB1LzpSZSQ0sqXOIa+z1tFDZgpU1G6gXd6Iyi1kjSnoFbilLT83VmkNTqzsh/33N684Ob2Bc50utJNFy0xUmlOYU3F6CFn2DucF91uRGjpTJNGrhmJFZsbHYb5emEun5Fs2b/8ls4P1Fx0HWocxnrEd0rqkgZkQjdAu8WabWFaqkZS/IAEMKHD+R3GBOV8N6jujNROSQ6mqgCu6qasVl0lN4Ftz614RCxIoUmmtaTXGmcI1mFIG6Vi0r6SaI6zukbKEDOUSQ9r1huKC4Rxz7C7oet6nFFRjLSC9e5nlj1sSSIRtVqKcrWMMVhjsFalMSUJJTVaKnz+/MiOHkYwVbjpb7kb7/kQr5yPF45PA9Nl4X4cKcykemUOd2BXxCZKi9SwbDheS2uZVi2txZ9jN1r8VCeDVKjtjK2LYrusIzjl7lsfkdBRxJCt4pKVdFD139WMgFqPNwY5rSF4xTJbR5NKksxcEw/zyqU0ohigUG1FKLS4QF1wfmC8Cbx8ccvtYcfQdcr+R4vnfR+wwdCk6aG4sJHYDM6ZLSfc9H7F9jBUoWaFD1SpWGswxVAiSrLZIjFSdNARa+XIjD94QmeJ8ZaRL9ZPoVH08yx68JcKRrTsTPXUppGkVov2r1rZruf6NRkMTtRoarsAaCzP4eltQLzDh55oKrU4qA5jsn6fzZK397SI6PV9672JNXgJOK+l3FYyMWeu14mnT0em05VUK/bW46xeQxvahQGUUCaixtWm25sviGF9ULdbvEEHLC0pPlFRNmpvNxac91rKzxoBMq1qP64JX2xR6/WihVJb8O2G4DxNHGIU1UnNihcvC1lUQhV8h7Ee5zqyiWCydkhqp9jKpvhLTPk5vSc0TGvY2hBbMUao1uKMU8moOO5u9vTdSHMTNVwxZo+3grBohMVsFwOUPiUCxji8HXF2xLte+21r5Hq+8Pj4xDzNtLT93KsgTV8/o8UNfb1EQSWlaNSz5EzJWdGWolFT7zqNhBr9+tliVvoZq0q1KRtNsFTIlZoTLW3VP6o+rDWNVNWqrhNjNDDsDbTacLkwH2cmHziOH7j75Uuct4S+J4ReUxkSWfO6ibOgyD+7H4xUDBpxFBp2O5NV0zQmvsWNnHUMPuDEMNCRPCrmag4jq5qCxVKs2bCoBusEh93OA40QBnzQGGbNmcv1yufPn3l8/4np6US7JsL+jt4FetfRuU6je027Li03WtVeih49jQ4ti2FjiG7Xaf33S/0zZ/Y7Gp0tDL5wd+gI/YDzjlYm/ULLipiFy/uJeIr6Mj/OnJ4febycuP3TyK+//grz+g6/80jX4TuLG3q6AJhEk4j4USkZtWLts76PqqGUna5tXNoU2mgW0DiCPQC68iX0+HagcYuMNwx5xWw5swDUvJBTwDAhbablQuUWsr6hm33+mbqZN1W62BVrkvKFmUj1xJIStU6YekGmTMmCGIebDHQNkxo2CW0AWwS3CNFNhGmB58a0XhnPJ1pn6V4eMNUjQ4BXAynDMAov9oZ7b2hzwtC4e7Enn49c45Hl+o7pujKlzELhEBT716pjGCxVemrxtBzx1eoNziQkCVL04/H+n96xyxUvlb/8zdfc7T3eOJpcqUVZsdEnQrvojUEKzt6Qc0AkY9ejTnCaIVeP+D3OJbp10qKJDQxmJLkDUsCUxlLO5BzIxVOsZTARa7YLlt2y8SHgWqa2TIkrnx7e8sO7H/n+/XsIGTcZfA2EfuRg9njpaDbhJsvaipqCL5USC9U0xtQztUStVdGMe73YuYtjZkFyhotB5kwYE84lRmdoQZnfZbngykouldwa1/PE9XJhWc7cuz3D0OO857RmprJQUsKvjeeieNZd6uj7AGtj+nTiu+WZ/pPlZuh5PfQYF0F6OjcgvfKupUxU26imR8x+I8tFQKU7SZp2QYpBbFQTrGTl0BuPkY5SVhIzqWWyeKrVh6nORKprGLF0BJof8UboRbQMtEysy5VLWfA203s2jKAKkEx1FJLK3qyofr5UWiqsUYkFXsANPa5YEoksM/0i1ASzFOK8kJwhmMqLmxMv96+53e8Z715Tr0/MyyPP5z/RnTqwA2UYgEwxheIbd+OIGEcrha4/kZ8yOSZgoX0AL7APhqcfn3n2Rz7v3/HtjaMzjnHXU8ui9CrTYbsdQbTcmVPE928w3Qv84YBZPhHjTKvCYfdraq987I5Kk357yHKUPEJJUCJlPauArVnStSLmuj0lNooVvelVh7iFWhfKOpHylVwzTaDrrlBXciykeNziYBHHkaValtpYs5COHWG0yv++uWO3f8m+O6iQpy0Ysz3YDtuBT7SvKk0PedaaDT8H1kSkJeVdvxgo/5CIy0I0V/74299R/iLx8tXE9PHCbtzz8tUbnt89cl0eOR47zu8j7i9esa7PnOc/8CFe6cJA143sXuxpqdGItBb04Lkd3kpddb7iBGmCyY9InijxAnQYF7DhNUNQEVnKBRlGSuvI7RbTZqyd9ebobtXKWxtm97w9ZGnBtLlBH3xqZC0XLhx5yEd+ysJkGs0WSlzZFyXWxDXh6md8d0v/4g2v7g7cDTsGCeS0oRwb3N0E5qxYYlNnQi40V+AWXBCNtohgWkakaZwhGnJWUkqJCdfd4bLDXh0yNmypSBRd58+Ncq58vDxTQ8SYwjffvOJWtq4RlcIVsR5DoLqAYYWiiE/MjloNa434esZUA9VsBctGQ3BmpjSdEJuhwzfNRvuq1m0jHm87fPG0Gql1pZaZ5nqq9ZTcYYkIESmF0tzWSbUEk3BhQJxnPV25TjNPxzOPjx+Yj2d9YBZHqAFbHaUV6nnFWL0P+BkKkaU2ZM4KILDaHTBWBwxmqmQKplbcCpIFa1fgShcq3gSMBCpHmBeVEvmKTPqwbkJk+fCeEgboR8yTxd/c4YOntIpxBaRQ50yWJ1q21BLo+h1NBOMCnZ+ITFo0lRfElnG10erzNhPRB12aw9QJqQsFfXgR1+Pba3Yl0iRj9p6b1/eIEe2tyEIzC61MVDOCVWy2aWdME0QcNnS47gYrBlcTJRcuz5/4+P13vP38iTsy+06w10rttQvii0d8Q0qGZaG6nlo2Ot1hpsQLZQHpDpQYIa8EH3FRu1FmZ6lp6xOmgqSVRtFv9zpCSrRlpR1nVvScILOltERetO/UOotPAVMMlYhdMyYnvRZ/WpguTzxc/8ju6wFjoRtH3MHTNYeVQjUrkjpKg5VGaxfFH+tkSv9q4MxEbWoNLt4iecSxMrhIMA7rO7rugK89rWnJP3NF7C3N7Kh2wLeEMQk6o10nCVg7MhT1qRAa8fnMw+Mn3n5+j4snhhxpVQi1I9SR0Ho8njJXUmnkUrBrplinnaeTU5KlgW4y0GnvJcfCWhU73ZY/92HfW8b9S8a717j+jmY8MTXWecX1njRnzueVh9N71mvEFEs77KlPD6SSeesS/4qVmCPp4jhfJ0LveRPu2NsGGHIJXORMy0JNe1jnraAEpc406WliWW2lRIdxDWMzmB1tNrBY0pPhUs7kVijWUNsVuz2unNMRKw1vDCEWsnFU2+G8B3MDBPI1k5xsJlM037gW4hyZppnreeVyylyPM/N5ZZ0LEjpcyjSp5CEzZGXhlsHQlUoxhdZlukVYTc+l9eT5xNTuCS3r4bA/UJNhXTLZTHgjjA6k35HNVdeCMXK+nDk+n3l6H0ke+q7nWx843N2ziOEKzBRF7hnoyo7kFXMq2eDGok/ZWB4uJ+bv/8gPj+/4+o+v+Je/es0v37zgN29+he8fqTQui/DVjcH7HrF7Fr+ypkqMAZmsOgdS4vPTTxQD3sLLriHGgU1c3bPmoXOFlHk+6fQDGzHxVqdS1iD7Dh+06FSBclp4fv7M+4cP/H///X/kp88PnC4XhhQw4x43jvTjnnZrqN5gS+Dso06WU2btV1qqmGKIvdGDajGws9iiZbF25whPhdQSqzV0+57Q3Wg/z/ekJKQ1c/2cueZKawUnlct1pRbDONxx//JbvIfaMik/Kzc4Ok4uU0+6gWq3jdGMII3VNfY//cTxeuLz42fyf1n41cM3vLw/cH/vqK1n8I43N5Y6vgBrmU1kxWEj2NxYjaHFRKuG5vZY223FYNEJlmj5yrlEXUctoVmhRUdreqA31eG8UeOw85itIPn50xN/evuOH99/4PL4zMH09KFH7jqcFGqNIMKQPHih9QZXi5a6SqNN0IaAcZauwmSgZIObHCcS09JYHhtPXPn2do+/u+Eb+z/R3dxjxwNlrTw/XTh+OPH+H868+OsXBL/DxZ7+9b9i1zKmZfyYYJ5o1wnz6Y52WBAS8+Uj5nbG4Rhk5HDbM59OHH860t3/gTyfuT49Qejpb69gPesCZgSLxeQDp8tbWuuBPfvDawI6bVrmibYIxlQkJIw7INIosuh0KQptFcrak84zaZ5I9JisE0D7ooe66lDOiOYwa1UGe0rYFjFUbNlr7yIunJ8T8zwxpcyl7YjBEL0ldhZrRvoXdxxe3vHq9a/Zv7ghdI66RPIk4MHtHfOi7gWxK8ZZrLX/XHykkXLh8/NKjCulzKR2It9WLteZp3cfORzuSB//xGl5ZH9/R58Dt9wRnu84pQtL3+G/OXD761+wXgzr+yP/8Hf/xN3hnld3b3hhvlYmdmcp6YFiDjjn8Riq3/FlsugYkXSCKcBimK5Xaltxd5ngg8IPuh1FesQFOh8wl7NOv7ZytfQvdeixVGpXtNTnAdNR5on46ZGH45Xf/unM3/x45l1d+Bx6Ztthk7CYgS5A93Lh8QfPQQYO+3vuXt2qZTdFWhrwIWC9BVtZykRaM8fHxO3tiDMosaaqpE8GD91AW/TaVF2FK7TZUPqBEEQ5/kkJW8076D273hF6R86V+dPEd3/8zE/PF0rKFP43vHp54P4QKClgHFiXIe6Uj1+SXguN6LW/7MhYLe0aT7PKdDdNkGWhkSgtsawzqSakZLpYqKFuk/RIGEZ9CFlhteg1XhxiDpSYyLWwUtl16kag9ixToeVIjI/88Y/v+ae//Y4//e4tv3974mYYub+9pXt1h7kNmGrhDMUGvLcM3rGSMKtgk0GGHm+bbqBuLS46RITodoSLpfkVOUS8A/w91dzR4kS1O1qtxOeKmEG3TdOqxtq14KdM6UeWeCFenrF3I/vY48ThZUeZJvAGfxvw00KaF6bTidIMvjvg/IiTHmJHLoVzPlFiR7BCN4IZehV+AabdwRqo1wlkZVkWcoqkvJK2Ta4ze8ow4NxAsANlembJkdga4W5Hyz0lwrScWRBsMLjbHqonzjPPj4/813/3N/yHv/07fvv73/N1M4TxjmF3A+OBJk6LzSOYaKnWUoxgS9FirfGs50Tae0LpMSlRMLQa8NMOu9tjKdiYWOsZa8B1DmNHIGqHRqBNlTI3snfYpdCcPmi0p+2fdxYTo7L+gyWcPNnqGT1IYux6cipcf3jPf/6/TXz1337il//9R9789V/R7wLGGcpyYM0TKWXW1THvIHQG23n19YjDNv0e6pbGaDFimmLKXXPYoF0YcR7Xbmjbw8YaVwhBxVarYY2Lbj5swN/1GPHY7FnmmfWnI+eHn/h3//Fv+d1/+Qfe/v57Tt8/0OeOXT9g9w4GS7OWkq0O7fPWNRqSWn0xyAA26iaw7TIteu2CjD126qimULo/s0HXOIvve7rdiLWOWjQPVWtGx0H6xedlpeaEFY+TXs21Bkpc9AmlNMp85TJf6FsgrbNiqwyKXUxaWhNrEW8Uu6aPyyCKBGx2o/dU0dhHYyNJZGKsLNMzMS0kGs2vuq62O1q8UKVppksWqgk0YxHNkNBso9RIdV5Xq1anTVUypUwsNbPGlXWeuDxfWeaZlFdo3T+v04oWllsxKgURgVwgZcTpCpGUmJdIf72SdwOlZEzTCJL1hpYzhrqttLSYkfLCMU5M0zOlLAxjYNcJtuvwww4zKK4z5UaMibbdQCFtWURtctPAGsE6YWnCdVlY8oUokf3oGfuB13cLuwBiRQ/iW6G22UoteSOaqJ1vzYU1RqbpSqIRnHCwnmp1iuhy0d5D01hWNoJ1BucsYhu1JCXPVEerih5NBU7HRz4+PPDj+098+PzENCWomjvuwsAQBlzncdZjjFBaVqFFUapGK9tKXyqhWbLoVtUap+s4AamKMK2lql1WDNa6fyYnFF21Q8KhAqpaisZarCgRKQSMqeRSVTdfi7KHl0JNBefAVcFv8YzeBLqhI5SOROHxcmL31GEpjIc7Om907eyVR67RpELeYjyNppGYqt+faaIoVKckFNnCNg3UztrszxQrRZOB1zfBRufR0mzKkTRf+enhgY+fH3h8+sxyXTFdoxkIsSf5DFkw0ZBFo3UmG3Vm5O0gQ8IU2YQy6M8kF1JZWWMirV9QZopKc67D7+9woUeAeTozX5+JZcG+eEk37vG+x9RANzqN9bWMqc8046nGIV1VGsIaELHUWLXnEzYUXFPz9fXDs5ZBydydvkWCls9EgmJ9RWMEbV6VlkKm9j2lGI1dzJ+oWKw1uBFMV7bP/KxyslogZ0o26Hh9ew+6rPtp+4WIUrWP0BZyy7pBrJG6RiiROm6m0piIs5bZWutoXsjG0cRslLKAH3qGccc4HDSauMUScJqdL9ZScyK3qvFIkZ///hK/bDXjRHtKrVRqXCi1sJTIMU18en6EElnXhb8Y90jokC5xmlaWbMAM7Hcv6bfezz4+wfffE5fKfJ6J6YpJd1S70V9aVCMrTW2fgGGzljPRuFDyRCtX3ZZMiXbT0yRQpdd3dyu0ksCplbWKwTqv6/G6IeqMU9qRgYYh1sIlT3yOlU9L5mHOnKuhisUZQ7DQ0wgYxAcykdAZvnpxx+6ww3tHq0pD0ciK/lllTZS40PJCrZ6Kwdb282eUqt2bsv3sW1TpXZWEFUV92ozadqm6mcgNJxozKEYoQ2N+vHA+r/zWw7d/9UvGwXOz6zSagJJY2haBrVXlaU0KjaoITmdotv0cc9G/9H6ltwsDbSPCtQKu/GxrbRRKSYjk7deVrqdEKfTPqFUHCdZijaMaT25JH1bWxqefHnj77pF3H07UXAm2Zwg7gg3YajXmV7eNIRobrteiW6EidHXEWiWFOVGJUm0NlwWzybSMiG6ujEGcUOK2dazKjTPOY61Xkk/UzytSFCiWMq0m8jTR9uoqqClpmROBmBAptBrJaeL6bOn2lW5s2H5AvFFaTzWKhhVo4sjN4arRukwriBTEqdxSNMeARdGhxhiaCXr9RAkwzTYwAcFiXFDreVXk9mZdQ9D7/vnpkc9/+h1/99u/4+3b77kenynjvZJvrNFrxEbqI0OqUX+vZGi+6fu76PS71kitkVacCtpaVnGVsdt5TH/uX6hOxohK+lqhLdBSopWMVNG4aQFZhVaipqQFvb/GgtnIWYr20y1/EIehkGrh9P6Jz72lhYa/23EvLxn2O6z3WHRL5VrDeNlM7fqulS2N3Wyl1W27oGlZvR56Ae+2WJRGnbFti7wGcEqDbLbRnJLlqv3yyVE8/3Q+8fjxifc/fua7f/iv/PDHd3x6/4hcZzrfab+iQk6VWDNWVkCx16UkXDRf8mVI8T/L8Fpy5JoUmpKUyqMx9j/zZF+cxw8d3a7HGUPK+odWFNVlAFKGJWFKwvXQtYq3gvEGM11oWRGL63LiMh3J1bMuO0rdI7ZRbERSw/mGCYqVLMVABiuN3Io2ozsHLSGiE1tIVLNSjfJpl8tn1utJZSW7hg0dtbtliJoBbbbgDg3xe9VDB69ElO33IKh23QGJotY5TiziWdKV5fLM08MzbblsT4F+i7kIZtUikRTwi1B7IGbMkmAQXI7Ydea8rAzHI3HQtbAUaBJxXaPFFYMWf1JcaOtEXs58OJ8wZcYay/3re8YgisXa3XLKkRwbS2uEXCnSqEYfdiRajDSyT1D0QueDsBrHNc2c45W5Try6v+fucMspnehkT+8DYwf9OIA1RJto17Qp5BO5zMwF5pxJaWZOmewN835PMg1fYZcbyV9xTnsf7AaCD3TWUaRtkhQwzdMKlNJYc+anh594+/Ej33/4xPP1immOzg10Q8ehHxk6Pex7CTQa0Ub8LIp9LAmZCtSCmMqYPQuKC+voKD6pCXgRRYalihPNjxuRLVJQqSnSSsKExNACqcFcmubRO0u/93TOUGsjF7BRKBuOqz4q2g0BHwXfq/p7aJZuP7AXMNbxfP3E8+mRYCpf1XuGfWC3Gxj2I6vVG6+WxfTBRVwlZotQtgOS0YdLZ2nbE+cXDB9eH0ps5+mrPvAgjVArqW1Jx6qHzXk+czo+8N37H3n8/JHz6YklC85vDxXryNpbahb8KqRBs+ouWaJkUozkdSWbha4YbLMUY2At1BiZ65X1kkkp06SpmLk6ggnI3YDNBlLifH1mvj5QreHw3/5Lbl2HEUsWw9j7DQ2XkcdHzXsah+wTYBHrAU+dG/QGf9Mh1W6ovsr00zNrmVjNlVfHb+kPI84HfNBYohHIeUWeKy2eyfWZPI3EZsgpw/MfKRSsNwRGGrM+Z8WZWnSKbIxQ6oFmKsZrF8SODQnQJCEm07Li5aK9UIBcIZcr7XLFxEjxhVyDxmjmM6QewSB9o+SwWUWFLAHfBcY+MAwDvoJNGjmQoSBeyN5A0v5H+3LQ/7nFUylV43K7UHg0VvPy00pZM1NZeWLCf/zEdL5yPsy8evFrutuB4jMfHs8EK4jsuB2+oe9fE4ZA6hLj776DeWK5zCzpCPEl3o74rqO0BZGVajuq67EIpgDtQpPPVPtIbBErF80Hzwvc9TQ/UK3H1kwtmZIr0meKCTSBYDtqXWmSoXc0Bj2MSqWUzFInntqRn+rAx1R4WCuXprjczhoGgQMVC6ziKWZlt7P85pvXHG5uoEBcog5ODFo4XBN5XsjLjLSJVBytWFoB44I+JKaCcZlWkv59LWRZKC7jTK99OCOYUmkuY4rFLQbbwJuAOE+685Tff+BxOvOQTvx3/+avuL8bqfUeglp6S9UIUSPTyBSjZVHQQz/BgDVUsz1ws3V4ulU7dEWwFkzWUqPsdCAiW6wn1wlj9X1N8VuMVsBmmk1bL8XjxGGtIztLvGQW4FIqH378wLv3j7x/vPJahEPYsQ97uuZwUQclqc743OM6o72qi95rxAhj3mGCYK0hZEu1BVMLIesBTIwOVrYbij7wbvKyVgvNFzWFp05dPVeNzeASZsrIqp2GfL7AywwUcjqSyvbAtEzIoJHlks4sj5lc1YTe9z0mGFwTutJpBMRkmtVrl2BwVZCWELcg/UqNgiuKBTZi8HtBnKMxboOHQioXWpfADjirTo0m2tWyxuJMt/mBMvN15uP7H/mnv/sP/Md/+hvyeWZoYGzAeof1loDHfulJrsIiM7ZUuuipAX24zpF246jMlOKp5kBLEWrEdBkxTXtatukD5hdbuFRaS9S80k5CzQu1FEz0+p5LDZmEUlbN7WehkMBqBIuuItNmSXbgi8VZo92stw88/SlxihOHX97Q9Z4wDLidQ3yv/+6wEDpFXxcByT+DwaGLGyVNENMwUhFTVar5ZVhdsz44u0yVAiFsnZ9K7QvWFf3/Xnt1NKWYPX58x5/evuN33/3IH//xP/PT+8j5lLiLK9iGNKEkWKeC+IiEiKsdOSdyWgnZULtM8xlZu604LJipI/uV0pp2qHLRiO+fW6q1es/V6GTK1Macr9Rm2XVvkOBI+cTThysLR7x4RvaY28buEXYVnqQQOsf9YUfyA7//7h1PZsEfPnO7v8V1jmwKMh0JIeBDj/hb2BiythnNS4kj5QMyzhtlAGI7EVMjxgFjGi4cqKVh65kl3WOLJcRFCyQuqQLc/xW2H7BdwLSBmCJFBD/8pQo7rNDEMR8/sM6WtNzz9NMHPvzpIw8//MDnD5/YNdV4u1uHPWsBL44FR091sO5WhrmnSKN54WbqOXaF7AR3nDjf7fBTIj9lbN9R50b8tCLFs1wqT+eJpUKeM+sM58cLNy/vGW5uePPiFTcv9xQa05I5Xiy5ruS20kKvvHVJGEZa2BjMyeD3VdeTeWD/lcGcK+aUWeuR3/39P/L43U+cHv+K//6v/4pXr27oDp7b/lYv3qUS85XT5crxPDFdHaaxFXIOpPqkdron8HZi9Bb6jq4mKjeIu+PmYOnwmCaclwtG7rX04hMlV56nI3/6/Cf+/j+95eH4wNPlM/EI/Z3BHTy9u0NeONqgG4fSV4x1DPHAaXeFM/jFcOwLsnq6FphvC+6iN+DcN1zpqaGyDInhtKPzI2HnWduX0qkhpKZbK2mE8IrkV/K8wqSTQm86RnNPC4a2FEqqnOKF5TmxXjLXOhFW9RSsXWEYehUvuRX/ztOPFXaNden5tF45P0f6725RannjdndLaQ1INApSGrVYqH6bbOuk3lkopaOKJbmME4egN4PCjmYhCAQcUhO1NXB7QsvbdDTz8fN7fnr7me9+/57vH79nvVzJ00r1jrG/p5cbcgcm6VR9MYU+78BbnfY/rqx55lpWQuyIB6hBp2VP0xOX68LlMXOWE2Up1AusrjL7wPXmhiEGkmnkmji++wle/yv63R0v9gf64Kg5IfNE9TdKFckL4fAtxX6mSIblG9z6EeFCOmbsi47u7pabN9/ygpn5D5nLcyZ8WzktF57fR54fvmfcv0CMYwiFKnuMU2GVvxuZH8+cHj9yfAYrTjnlLVHrsx7oi2BPPxGcZwgdYq60sqdxQEzRaEk1mD4i3CK1w5gV2wyYivgzPr+gpIm0PHP58RkTJnzX2JevWKZnrscLlyewg6cbd/TtwG2t5GgpyTJ3j+xuR+5e3nP4yjM0Lf8tNSP2HuMMEjIl73AxY+J2Mf/Sqas6aUaEZu+52xdejC+4kZfI4YlwDNy0A8U7TsdEOc0s/0fh3o00b7g9vOTtP/6O94dnPrPS335F133DmL/m8tdPXB5/ZJ6OfPcw8MYlbu2MMx3SLzQfiGaPtctmYs0sfNAJl7vB9I9gbpBWcYcr2Y6U4qjmiZqUAFdcJqdfa/7aJuL1SuZCM4JN/wLpVhqVlg3H8yMPF8fb5V/y0+mJ33964rcfJua2sLt/hRlusTXSDiPLuvD5+/d8ffgLfvObf81f/u//FcNNr9nfaCnisM7SrE7rs81kI6z1nqFz1DUynyd87GnniTpPrBQ4FdpSWGokLYYmHf7e44vFtkIzF/bc44eGHQrmvaH4SvWVV2bHr/7Fa/yD4Yfv3vNf/vADNRgOw55w2xGM9lSWuOhUmwFnFAUJlWAyjf0mUyrUIlSKFvjrgWYyYgo+3Gh/oTrWOGB67Yu51Ej2BGYH9oAPWfP/pbHEKza8xNnArWlYFyi5Mk2Rp5Pn+DTz+dOZv/34zIfnEzlGxl//N4zf3DHe7vFjp3282nCtR15anAg+wZQvuOKVbPQy0SWPK0IbE6H2FFdp943uQRHGbWjEslJTpTQDC9ixgIHEPXa4YGOizELdJSShxutdRtYKc+JcZ2Is7LLBDwOXnz6S7Izrhb58hcUTXGN6+ydy/MASD6RkGA63uNDj7MC4uXOqPZCZtRRdRUlHpqO5HcGtiN3p4bp8pNp77V64CgVSmljSBed+hfcDvtMCb8ozrTXc+C1DjZS8crxc+Pf/6d/y9//pn/gv/8vfM8czh9BxuNnx4us7DrtXDLsb7OseGwXJlTImbBywLiC3HnMqNNPIzlAvHfHW4KTSkTUKnA2y7gkjsK7U8wzVIlGLvzEl2nOlXRv4iLFeHzDHjHm0tFaoXSE8B7JvlH1FPhpkDwzQycgynskR/NkjN+pQkLzj618mTtOFy9u3/PY/rCzXha//YuX+X/6SXd8TrG5sxAXtRLVM3nZSmkC50cK+rZjmSUYLwnm9pXVJFSkYcn3WL8btCU6R0rSGjROue4M1nq4qHe96OvL++x/5v/9f/y1v//QTH99/4vH5M22uBGd58atfc2s6uuaIqTDXiVY6pPY6cExZqROjIompFu4z7lkBQjJUggwU36i3K/3as5pM/HPHeOoK+TqTzkdK0GKsd4GhV1V5K5mcLrhoCEbobMXmwmCFXe+oa0FappqMD5a725GcV+zSIGadRUrC5UpukVIKNm9t8yaUpHpmawujt0jZaDEIqep/b62ub413mNzjzAHvRf/cdYFglIhhPVYKzlasU2iBMypj8mbFuZ3GVnJhjpl1nlmPZz6++4GPb9/z+e0jyyUy7gas65FiSBlqbbi1UbuGyWBmKK3QakNyo7qELQmzaoa2XSJ1t5CY8Yuycq3LWNNYY+L4PJO9UOaFklb8buT2fs/tzcjuxiJNizhLSqQlUuaVukZKTsowEkNzK+S2xQcKsmwUIlPpqoALmN2IWxLrdebDcaaWhTqtfPX6BS9f7xmrWvQkOB1D1o3+UmZqKpTcyA2adIiF4JTYYkSFOsXrzdGZgqGpCbbIZrmcVJyVLdNl4vR85vNPF54fHjkenzleLwQT8G6g8zt836vYJVtKZ5DssOIwwdGtVqUZVEJSuUu1wtgMyeozvlRdZ1bAVLdNxXQykef4c8bX1bBlVVUqlpdEjYl1zQibaMU1bK0qqUqZfE3kdabEBYmRmC0VsA8zadCJ4IDl7LUYa6sh7e84Xx9Zr4nf/vF7TvHM5aszo3j8vlfwQtWojRTNHOa4QFIBXHGGzkV9/xaVImFUNmMp24a1beVireSRpw2rWslL5OHziafHZ9bTkXpdqWulVstgB3rnCdZArojTeI5rgjOaHDKlcc2ZHPNmk10YisEVQ0yFPCXqnCCtSNGoT6yVGHXSY4slmRmb0Ljb/R2HXU/XO1ywWqAvlWothrR94hstZ1LO5Jwwy0Ser8RpIa2FLg54dni/oyuefdhzf9OI1xVfZ7LJzB8+cOx/pKyZsr5kkI7WeaxVKoSzTmMb6Ym2NkrWSFTN0CST8wcqHgk9Yb+nhobIiuFMs4KqIh01Now/I7JoVK9CK0lz1+tn0vXMcnpkPp3oR0uQDntn4VQhVqzpqTKCDHR2wKwFbw2dMZhwy8F79q4wmEpvLIKjlk5pGaYgVVfyqbL1n1RoB19CYRpZ825Ld4iQgyefPLJ2+DBgVkPU1RXzp8T0JrHkQklKv4rXldMfjvA/BGzX473w+tv/jmg8z48/UtfMuszM1mJqj7GWYK2WgusMTRkapSSNnHmwtlKtoVZDXR3NRaiJMiWq8aSmkcqhf9ZYjankHCg168OL+YiUgYYll8a0eGLWf++nTxM/fTzy8HBiNC+48Xfsuhu6khjFsNSVWuDbuxt+dXvPV/s7rLXUWtXmWtMWF9KtXsrqtXBByc4t6yG6StVY1Fq2934il0zNhZJXzU2nHWIbzgijeHrfcKZia6W6prLC2ogmczM65l3gY+/gY2O5zTzfz/Qp0neGzguZijMGK+rmaFWJJJFCX2ekWaiN3CyFQm6Z0PRwVGtFMKx1k2G1BVLEiSDGbzK/or8uDZoDlMRmasYawbsBaUJKlcsUef74zMcPR969e+Txx2fqDIPfcz/csTcHutZrniOj8aaY6HOvEU8aUkT7D+RNpGdozmCafi3UgqSEhIbzghjDer4q6rYTgjjFwBiDCxZjAs14koUWLbaBdYLPgjcW7yBPhZoXSp2xtYJt1FKIz1fK/Rnqgk0Fb4U8r8RSucQfKcuZMOzw9o7qm/4cyLiSkNYoTcgk9QE0Q62JileEcQ1qVxaVGxY8xViKDfRGiXjWsN1/1WJc5yuYRponnj585I//+AOPPz3gW8abwI3fcdPfcBNu6cKoAqq1bdJQo9sns6VASyUZFYNawLiIrQsmOcTvaVEjvNZl/bXaaMGqtKxE8hQpUajLDGvCNLPRwATmorHIppgpMUYjj7PGsGqutFxgaAoQoJFJ+OSVpmRh7wKtG3TA9zly+f4TH6JjlYWXr7+h3++wO0v4mQoUVdK6zfaNRGorm4hMiOhgz5kVKEoHFFGUrYAlIW7rkVTB+1GjY2p6Y73OPD888/0P7zl++sz58yOXz0+0VAgtMNiRfRgJBEyBWKK+ZrXinNUUXdYH8ao/Ur0iz4laGjSLzQXjs75ua6GInnPNlwTen+uwX2IlXWdisNSbA2YY8L6n7w0pN2rJrPmKzQbvBW8qrlRdj3aOdtlIFSSC97y835FWR1dUfiA5I2RMEXLNlJwIqWqOCwt5x1or3mUGC2RVcFex5FIxVJxpVAGxDuM6gr8l+AVKJm5mWqyjGYuRjJGy2X/B2qB0g7Zg5EBrhrTOXK4z0/OR9eEj79/+wKe3nzh+OCrD+hBwYaBmiFnfRLI0qtdpklShdlvGqkBxEVmTogul0aZEnVZSnSiLICRMUFFRTInjcYK9hbggrTDc3nL/4obbm56uNyzniWXNTGshzZE8J8qSyW3R4pQ4WluhypbbzDAb8AbpMj7ra2V3Ay4VHtLE6XTi+PkzLRY+vbrn269e8HLoefHijv6w12lRAWmGUFUTX2MjNw+2w3vLvve02uicw7uOFAxiLU6ykiBypSZUNV2jItfcyPV84fh45un9hevzM5fjmeu0MLwYCX6g9ztC3yveKxlqpwIc6zw2WLrVaevfVEL2ZKP0qpC1SFekqW3yC9uuGBZfaBkt3qwZcYp27Z1FrKJLTcmQMzVmYswYY7X3YBumqHUyxUSetsN+WmhLJaJmSpc98fWCdYa+WmxnMdHgm6fsGmlZOF+PfP/xPdP1zHqZebHbcffqnuA8XiylNaSttLKS5iulBDA6zbgJiiu0opg/NW4KvmW2DSsxJpJAaw2fE8Y6Sqks08zD5yOn5xNlvmCWimS19+79jiEEOqemRUXQOhWtmIbbUK5fTMItVTIJyQFrDFPM5DlT5oSUFVm0S5HJ5BS1+1AMua1INlAs9uUr9iHQe0N1QlvKlj82GDJ6LIQSo35PayTME2lSMUqOBVf2+LbDuZ6udRz6G9p9x+cPRzrXsC2Snk5chvfUqOST295ixqCfDRnwxtL5nmYSqUTK2milp61WYxw8UetA7QvFOTId1qStG+MRrF6fYgPOikWsN1AbLSfqminzE/l8ZH1+Il4vdOYO128o16rULBcGmowYM9JLhzMVY4XghOACh+A5+MYg6EOZGDI9VvShiKoxytpk6xLoe2BTa29gOoM1eiMqNKI3lItDoqL26rWQq14/rg8rl/3KUhKpQDONtGSOP14Ah/UqJLz/6l/xKSVKKtT1J1IurGuiMmsELxisaBFOs7RqlXZUnAErhmqU3idroBv0pleXCh2sBa6x0LsTUjX1X4CSBEMD/5lmvqKKoeTGtAZizjRW3n448f7DM8+PJ77++i+58Tfs/AFvCoGF2rQT8csXL/jl/QtejUo5abLl3aseojX6rof9UnTNTzL60CpFM8lVD/smab+ttkxJethvYiA1xDecNQw26L1ze8DPvvGlnpNN5tBZlrFj3Hf4k6N+bpwfFwUmjI5x9OCLSh0tNBOBjtoglkyw82Z3tmQKiUpuBV8LpSqCuDXPWpr2mFqkpaQHIO8oqG3ZFMWotgqtKmFGspbLTbcjr5n5uvL0dOHTjx949/aR73984PmnI53bsd/dctcdGM2OUL2edFKjpqIP76XXnoVor0dN4YW2ZFrn9cDTRH+tJGRJSKdEFGuEeL5q9jwbuvFezw9YnC+0FmjGsZqKXRzOgg1gZoM3ivO1S6WmmVJmnO0xDnIuxOOVMgSNUCad3tYYyVNimt5S1zNpPNANIPteD40haverVUrT7aW0hKlQU6GKBjKT9IStY1FLQSRQxVPtgDMFK4qRrVmHhyVXmC9UZ1nOZx7evuPdd++5Pp44BIMrI4d+x01/YO/3eN+pv2VpsLc0a2i1YJzoA3aBaDdKlwjGRmxN2Jy3wWejlawOojxgWqMFo3n52qhzos5Q1pWWE54R0EFtW5r6QJpS8MQ2JBX9mQvaAUwF9uXnB4TSMi5pF8E6GJxaiG3omC4Ly09PrHPh2s7UJBxevaC3B3qj1zLtTG0HeJS734oS+VJzxKbrzV6ivq4oTKOK035hjVjpYKMIWdND3gq+TTh9euLj20/86buf9Hx4vhAvM9ZAb3v2bs/O9/gWaK0y14laMrRGFwKtfUHkouMro4PqupYNrdmQXBCft3tGoVBoUrHtC2boz3TYv5YTZe2oc+D+zS2mH6EfIBwo8chpXfj9+cp1vCLSs9Y9st9hni/Y6nnaNS4pkpbM199+xfziSKmZ4XBgtxu10NMM0/qI5IwtlTpVJAw05yg2kmYt/S2pYHad6qylkmvALRWJm6WyFqz17F6+ZJcztMo6FvzgKRVSbuTiacsNpe4xPcSl6c2mGdLxwrQuPD194m/+4W85/vQT17fvePrpzHydKTnzF7/+Ff3tDtt1XOaFyxI1g35r6WIHg1AGy2E11FBpoZH+0LjYDsLI12I4SaasMw/vnuj/6gZnhVZXgnOkWniaj+Sy48X9wO3tyJtXX/PtLw54Z7k+RX48f+QyzUzXgsTAmipTKeTSsF1BXENSz+r0gFXTgg0ZkR6f9iydsmh97QgvGmk9IKVxmiM/fP8j777/nr+xHrcu/Oqbb3j96g37ux2xCmuqdAuY2GkB2CwcXt6yvznwF2/uEAlb6SQzzQteBCtGuc/M1LaQ54xkQ6VyXS/88e1b3n18zw8f3nKaFpJY7OGAv7vBvxxxNz2hDFzqAhZeGofcWEIX2JuRlUTLM3VqcBBC8phiue4rfsrYUkiu0Sctv7YboTsbsm/YwUMQmu11tN+PynQujZQTxTaqL4hNNL9x0qslV2GeV86nI6f0SJwyeYFrDzJFqslcRrieL9gxUEbHIY0sPhFL5u66h5dCN+wY4luOl5l37z7gTeZm/5rBdQxeJ1EDQoewGkHMFfEGl1/yMgi9HfBhp0IgGi03UqvUIuTSOKUTNTakQF8btRjmuPBw+szHdx+4Pp6J50z2Ozpf8LZx+OaGQ9jTO8+FFdc5fOegM3RWrazRNNa6kohkk/FHmENmlcbydOY0H1nXBJNhNYbUCi1WVpuIXSUNFvt8Q9kFzM7z2g70g8eJQZLl1BlaKYRSscFSl0xLK9eUiMeJcpqoV8G0O7yLmFDpXg90r3a4mx13v/mXuNNMd57ZffWJp8vM2gp3v3jByon1+hPnNrHeV2zag+vBrUgUhnqLDb+hYMi+cHl6j/MWbw/cdl/DfqT5QPMd4jIUC9nR/EhDy2pVzpB2SAsweHKcKesM85H2acVMjW4eaG5lf79j//qOEF7SDSvdwWFb5UW4I5aRaRn59lstoHkrdG3mzYt7Xt7fcbu7A7dNmKdCmTPGecJ+JM4z4hpDrwclPfELtWlpsLbK5WJYV+EcC+/jmXo70eZCedSVd52BpfKxPcNTTwHsqwPy1jN5y59eeEof8N2eYCz29cBvTMeu/4r//P7fE8av8AfHx/gDL0vDJUHSDdUofGCNJ2oJSDJaFjR3rOsTJa+MhxvIg3Llh0YsnlhXUnW06TVmGDFdjzON0vT63E4dSy8kqcQaeJiPPJ0rD0+F//q3f+TDj5/IS8S9sthdhwkDQmZNlmITtzeBf/M//0/86//hX3P37R1ihZq1mxLnyt4KxivZiFxJc2GeM8PXAajUJVN9Iq0L+XqFgzoYSrVcOLJcGzhL3o04B21nQQaYHdIFbHD0+Uq02q3oniy7wz0l9PxmXnjz61ccXu5pufHhB41/dYNgnefVTWA/BIy/xXSZTGadC341WG+QYKk2k1ol14pbKnOFFQGJVAxSAyYaWrdXgog4ljXgclIAASPiGphKnMHVhqUgp5nj6Yl37x74+//6J/7m//O3PD+sXI4w+cZvXh94/fo1u/0ed9MjncUJTH7WLjsBsx/UIF4asSuYqPbyOAQ6Z5EgMDZ4glYMZfAMUrCDwdxacpqRfINpN5Rwo4VyMZSrB7eytmee55XDjeCqRbJF7u8wzxckT6xOsbN1Koz3v2DgmWs9cW1n5mPGhw58wIknGIGWOb57YHpMECb87hl3OLC/uWP4+pfYcYeh0OpCWY1y+wssKVCdqMiyf4Ftouz70GkJNCVYItBTZke6CHO7Ml8n0nWiff5MqsLnxwf+9u/+A+nDA2MqHMKO4eaeIXiGPtC/cpit4Jn2gxLYrLAaGG2HDD3cDtjzBe8a4qFdhcoe/C0+aD+jLJb4lAnfDojJkJLeR00l1aRnqtIjzVM6sLO6dPIQ1H/gGmYQylOlWUtzYHKmuEq2mTqrD8Y4IaQr0mtRlWSRmwO7VtiVzNUdOM8L5+8f+MMPT7z7/sj45pbdL97wf/jf/msO+z3W7TQCV4WyYb/Xxasp2iQKg95jxFBrp9twW4hTwJuGMZBjR26JVBfma4bpQppmjp9m/uO////xw3c/8N1vf4T1RFwaHfc4H9kPO27Gkdu7PZ0dSWvhMs+sbaGWhJlm9rs9zhqsBzmg2y0MtbdwjdoHGFecsSBCdhYXNOKV+/91o/3/1Yf96TniDgUzgncNFwIh9PhguZTMPJ05f35HS4bWOfDgk9JcGIRDLKxl4jkdeREf6XY90HDeYpwAusqR3GDZSjW26FoweIwNGNOw0sAX8sb5tg2MqeATVQpl0rxyaxlfK7XT3HXNjZhmXQ2PHnd3h+12GN8jMeKCTijn0xNP88Lz0zPv//BH/v5vf8v0/IhcniGrEKwLHcE4qhgSINXp8KA1WBp5iNgEdrYkq2KJVhtrqEjZVmadh5YpeeJaz6zlSafsnk3TXYhRvzcpDSdwczfgg05XFlmgFI24hsBa9YBnm34dLalcqpoJiXohbnWlzY3moAYhLE7X0qZhsITg6HrPbqlULLVqP+P9+yMtGqanmduXL/CdVyOhVwpGtUKrBV8WZTGXjBlUXEGpiCj60XiPQRSAUBvBGlpR8km8NqbHR+anE/EcaTXTWUPnA2PfMfqBwQzkljFJJzvihZGeTgLYhlsMJimNpCsWY0Fs474GFi9kK7haMZ1+mH1zyNDTKIrRK19oCSqqYYvAEDRb1wSytThvEG/ITvXtKSViTDA3sk3kUHBRHQ1OLHtr+fD8nmHqOYx79rc3+ORZa+TYHnFLo4+Bsr/FxB3GwvVYWT8eNWphCy4IXWfxncV4j/UG33tugmFZDvTBYyRAEQqVhHKeC5YiStBBKs1mcl1ZYuN8ufL08RPL80RaI9VlBhzGO0JnuAk9YjOZREhaPnXOEVzA9gYquNhIJVGTFqtWvyKrwWbHmtZN2Z6JJmvRvupFf9cMezp2ZuTjuHJwhV4qw7in99p1yMbgLgmRpt83mdwisSzk60rORfswblV0nWsMty8JdsRuhe/u5p4iI5WJ9XLB2StFViQ1bAuYBCFBfr6QYkZcByGA0ZgUXdOyYlVClnUN14HZe2poYAqtrcRaca4hnRJPpCg5wTqH2JVmI3kJ1OVEWy/I9QKcEZNwtrDrHaPt6Oi2IrbFGAfxigsjbrxh93JkMoGyibh2xbAfOobR4ryltIqgEb3ULVSTUcxA3ugxGuGptaqzpWrcD1NxfeFYjjxPz8THCZ92eDLGrrRlJa16DTtfAT+TWuV0TGSpeAf3WzykNTAi+DDgxgPu5obwCwMve1rocY83tLhS3UwpT+rzSJkWE1YymELxhbhAlVnDq6mSfQMXSMYS15k1rSx1RfYW0wes67FJcGihcyrPlHIgVsvlfKVe93x+94H//He/490Pf2KehOBuMH5PsEIvGbNWljIzjJ7X3/zv+Ov/5i/55ptXBOtY55XrvDAtMztvlcoiBozV3k5fwc5Ec1Eu+6jSyFoqcYl0NlMt5JrIp5XoI9KJ8vC9R6yj63qNqZmKaUp6sjFTSuTCguQdvRhev3zFm5sDu76DVsjTynKJHE2m6zpk6UmHjvFe8NYgRjeVNgjGo4f0UnCo1bh5FRDWDDlmzTZTaa4izlBaIc8LUTI4wfuNtJWULIQY4nohx8T6dOKH3/2Btz888IfffuT40wdKdPRuz2G44YW7Yc+eYIQ+GkITWle2+FMlu4yt23TXNExTMR+ScEUgqF+EuRJlVZfAWqj9dhbIkJYVt1+xbqFGjxjBeo+/9czLxFoTsRZMOWgE2TVcNjjrcZ1njIkUz0zRM6yfMYPFM5DnmZhO1BqwqceIUZZ+qXifyHlR55BYarqQUuPSOUZ5qcQ/wJuC9Q2xW3SqZSUOloXVBqzodlE3/pksOqFOkomtMT08sMREXmbK6RPzujI9PuKej9wli6lCbxuHJvTWMYSOfQtaWKZgskaHwOKqwd9aXGcxRVhbgaKTfsaGcRGRBBiaZKqdybsLyXgQjdq1migxk5cMq6HVqCSna6BZjUDZRWEctAZRqL5pOqBYqhPto62VHBKlKjXQdAaP1Q0IK2a2mCCYzrETQ/KJtSb6y0p+mrjWRlwjD4cd+fU93d0NvbdaJjaN3BpZMkkKeS00L1RrSHiqt5gGJib9bIiGMeY8sZ4uxOvMda2cP/7A+fGR998/8Ke//zueH54x8xUhqlF5gNQaZgsTd52w2wXikuGnSMr683YUhtpjtntMLVBtpdiEq1b7K63iV0MZZko1qthpKqr1+c9c0F2WyigCweh0y3u89xhnWHPkMl14fvrMzXiPsU7xTiKI3SZRpZJyZIkLMc+ErlPyiT7Q6BthW1HUUhXJZHQKZQRMC1hfVRTjK5mq69sq2O1N1Wg0KYhUzfqTaY7NGgqkoqSV0eL2B2xQQUVNmVIzS1r4+OkDH0/PPD585qc//J533/9IWSbGFhmHHd5pWcg5RxOhNP6ZSlCgZjWG1qIIq2qUfaGfI+0gWCNgg2YfKcSalEJQg06Ta9EVKVazw9sBqx8CDUg5c1kncqrUshVVTVbahnI7NNrXKvpF6RcgFGW7ihqM7fa1I/pfWbP9WZJZqoVWsSKcnyd8NbBEUmwMu45+57Fdp3hS0ciSyQsme2rOWFEGsqVhRckB1oqSHbYOgzTFueWUSLEQL1fSdaasWd+kzuI6xVt2LhCsJ5ZFV8lNjZ/BOrxxYNAHxayRKbcZn40RQnE06pbFyzSvP4MggjX6c3ROEY2g8rB/RtNt2C2p20xUbcpit5hBK5RcFBlboZpKNXrwNc3gjDBYy8fnR2qIDM0yvHqNbZmWKilFahJMNvhuxDmNU+SYiedMzJG1Lfiu4QeL63XVHLqePgZs35iXVwxDr4ezph0Dtrz+BvPDVgNWzZ+5JOaYmKcr0/FEiQlaQ5wlIEqbCY7Be2qLlKpoWGsM3jk6H7ABalLcX9ly9a2omdSXtNlyNQesZWFVm7fWMNIITeiMw1tPlAmxhs5B11mcKHYugUaFRHDe0mIil0TMKyVq2bgZoXrRtXYwDPs7fDci1lOLYMc9XeupOeDDA74FKhlvDESnBtxaqZeJXDM2LEq/Ccp+btaBbeDUUmqCPiwyKK5XX+BKlUb1FkKgbXEHjdB4ml1/jm+wXmCdMCWCrBibsb7iZaQPHd4FEDbcrdMbXr/HHW7w9zvc7Ek1ktvCTgzD0BF6r5jWvKH8nMZrmmwl/e01FKuZ/dKqYi9r2f4csB4ikTWtlHPE09PZpLKgeaYVS8mNJQqsylTPCZpYQKN5OVVKUaOvdR7fDYTdgfB6hz0MGOnp3R5HVApUWaBZyBlJGQkZjMqgGiuGrAVbClkCTQwZS6llows1TPBICEpiiijxLSbidMHYkVQN61xIS8/j55V/+v1bnk8nxN3Tjzc4N6iNW/ThzLvKeDPw67/+Dd/88g239weMEebryrpGYs7c9IpJbtIU/ewtplN2drZJuyzBYZzT1ztlSBqpq1X7P8VUjNNPp8aADTZ4/fk1QbZVfiuFGhOxXOmqmrhf3d1xtx9xwVGr9jLyklhzJA8F14r2A5ywqx1+O+Qbs5mzbUVyRaRipGhpsaLW0boZna1G58SiaMZSaCHrG8Xo8aHFbahUC5fjmeV6ZZor7/7p97z/8YnHH08wLXRuT+g9h2HPnR8ZTUcwQmjgvkjeqibLdPCk/7tshwMxGue1mzEY0ZhRIetQphbAo7xCIaUELWIk0nJEagcS8GPHJSrVL6WCEY9Yow/ITUVRzjlCMpQcWeJELhcdrBRPzo5ctBwpTfBm0BmfgLMGydtnKjakrDQDy9HjRzX4iniMWfW8IAaxSe+DFY1RGY3UYbIieGuimUKuHWuuLEti+vzEmhN5XSjHJ2JeaNOJIUaqCYhUnG3sjNA7R+88g/GkptdLxduiiFBrCGP38/s054p1BovdUM46zPhCsMFValCRlf6UtofCUqixILlAKbSiUVj9PVD6l2wvVEWvm9vPuBlLq5sZlkZtSpISKxtlCFormNJ082HU1BysIVhDT6LOmSozS5k5vf+EIbPzGWynk3PfaMWTc1JiVVacdBFDLGgKoaE9AqfXsJobl+uF+dMzy9OF85p4+PGPPH/6xIcfPnJ+/548rQTQa4DV4eN1QWOEVHznGA4dLliCN8w0Sq3EXKlUvXYaFCMv2zVbIbd6XdjwzxuXHiN6/5Q/N3pz2nX0ITC7nv72Djt0WG+p1vPp+Jk/ffjE3/9w4f/8P94z7jt23QFeGdxFMVnTYCBa3FVtZTsZsc5Q+0ZeFsVp7Tr8shAHQ3SW9dxrwXWZCMUQ3gzYPmBtT+OCrYWuNIpp1DhSktANz9gaQAoxFFq91emzW7k/fIMMHW034MdvaAilFK7rhY+fHnj37if+3//P/4Xj5YF5OjEdP7FOhb0fuR3ecHjpcMngqsfuFQkozeAOFfOoH5jYZc3geZBDZpxVWJGcob8OzDdCPfS8qD2fdw7bB/pppBJIsdGuEzKOOD/S39xw9+qOl6/uuL87UH3g0+XC+Xjmh+8+MSVALNYYltIri90VcoFsItVUTHZUv2o5NwoMZYugGNJQcc3gqyW7gq0BXwamEGlntIh768jnxNImziYRTxF/cLi9pTsNdDdCt7O8DAds36AX8nSlGy0hqN5djMPR49rAOk8wV5ga63xkPQopZaK5wiVCKpSuQu1htHDj6EKPHyzSVzgVSkjYzrO3AXtQIYZNHVf7npiLyr5uGx2BIIF00+iPHhsNpy4xyojxQusr5lIwxuhETAceNMCkrEVLBFJHRl/DPgvGNaxx2DqQLbq9WBtpbzDPWsiZ3InbtGewHtkF6j8l5hvL6VXir6XjHBpTaazPhqtEsit0JcCgF7UuOsovwV8i/nHm2p3IUWhTYa0P3MjI0Hcs5YnX/WucGRhvb+i80Qes2silh5KRkgjekuNKTIXTxXB6vjAfT9gpEXqDqyNSPWtIDGLZeU84BOKpknMjDpax6zkMA+6uwxbHVCbOcqZcC9Fksq3IJbAeGtYlQrZkq6ZAiY5TOyEVuuqoQT8jMUB3tAwv7ugPNwy+pzZDLo2aEm7YKYdaKsckXK8r8/FCaxlxgmOg8Us6+4neeqQYwusBXEfMFn//kj40Qrey9hfq5wPLEnnxZmV5e6bWBXu4ko4OSQvyomLPPXUU6k4w7mvN8Xbo5PVQkKGnhje0gD5aZ0fYRax/iXGvtHvkRN/L7Yl6HagpUuoH3KqTIH8j1MeXuLBiupWhHeje7PA3I3XpEOPxYeTF/Ut2f/0LzM09NdzQHo6skyevnttfJMbdDWEYqaFiMHhjqR3E9SUFpWJ0pUPEYnwgtUythkaja1s+Vzwie3Zux0iHTJXhxuE40EfLTzTaElgKpGDx0WLE8OabW3786SWP045/93zl//I0cdgXQu8w0rgd7rCm4/uX/yN7L4xk7t6sajpvhes80nVHTF0IeaWElVb3UHq64QN+rjq5HQvT4qimo/aWvnWYPuD7iOENrXg9KCwrz8+fOT89cnlXuPnrgh1GsAc+xjO/e77wH96fyTcvCS+/xb76BTddhzeBIo44XHnz8hXf/vIl/+b/9Fe8/PoeP/asVE7PE9UX/GjA7SlGDzDeCDe7EWMsz5c9zS9ILfS1YvuB1TikFNY+YWYDS2X1FXftsbanjIK/aG6fQyW0nT4ESEEeDGtLzFKwZ4OMjt1h5Kv9G9zrgZQLyzGxv+8JJ8N6clxk4ulz4vihYd5/4Ou7F+xve4ZfGrx5gW0GsYVg6vYwCKaMGIn0LiHes9hCNgZpt2AgeMsweqKsW1TNI0knumnJPDx85Lv/+kdOD4+wXHj/97/nfFzoZ8Obw9f0uwPD/obR3bA7DOwGx656zK5hfGFYDdFpObhfR9oO3QJOsLjEQCD4Dl4Y3OqwVSh9wceOIoW0W3E4xAjZZ64pYtdIWBI+rDh/gx96QniF9U/U3JgfEvIbg6XDro68uyCfLWFyzHc9Ze3Il0CzBp91UNRuA+Wp22I3lnBsNCdkH0jTnrbbisCzJbkFKVDeL8TdR43nJEcaEkEOeDPS9V+OzHCpK5Q79U5E3TS7WsgtcT4Xzo9PnB8/c337mXR5osxX5Lzw8uuewQndEDi/6WgJbILuRc/gO/rQMb7oWJ4aOVbYdQTjlezz1Y7D+IpE5pKPmD8WzL3F3na4ZUeTnuwclorvA54DednhuootGbtkqrXqqKmVxSy4RXDJ0V5XrIxUGvX2hLlqV64OYOeeNujmyL3tKL7SOqGunrJtJE0Cd6vnFFk8ctdwBewilMNKWCxjHTjcapm1xsLanTj/8A5ZTrT8AIwwCK0XhvySJJlmGp3rmWoiG51yBKI6CKyQ54n5tDA9zXz4ww+cPz5zfjzx8Ok9D+8+kueJ0RdeFKi+J3UWawPNFGrLOuSz4DyE+1vuv36FpMr87pk/5J+Yp0hOltrrkNYRaMHSjKcZSx4KZra6oR/BtR7jDXmfcY8dyVaWPzeNp51mhpS5t8K+G5Aw6nppPvH2/Y88Pb/nvpvZm5HgHHQRM1UlQuxgHzvm5ZnHy0989fkF998e6PqORNIWOhGTIs2p4IFq8V3UtWfUQ1crFZ8TjoyzCwaB9mV9PWOl0IiYYKhOSyHCGYzFdoFw2GH7Ha3fEeOFNUXmZeHD77/j7374I3/88Ud+97vfc15P2Na483u+enXHru/YDx5XMxpFtwxJEFtUtNQEF5zKha4QB51kg2U1lZYKKSUunHBlR1+FPDTNOeZMsVfKZUCGQLjpFY+GUPOGnqq66j6eIs+fTzw/P/Pu+ZlWq05ZfIfBbrzuRiFCVmZ8NRnJVQ9MDobk8c3rdHh2GOcRbzGLZc6TbiXmTaBSM/Yi9DcdwXWwGnLLtOdKPglrPjEs0EZPeWmp50DBssb3WDPBuMP3B6wFqTrNK+lKzplUI9dcoCzUtJLTRDYV4xz7uONsJwTBZ0sXdNriSuN5OuKio6dj9/XAQfbUDJf1QrxsVKKyYpYe6SpiC0M0zBQwlR093qjcTFYlaAgV2zLpPBOI2MHgXUcRq9PxulBTBCm4vcWKTsGa0dVlMVB6i/vouKwXpjjBmulednR9wM+Fa3niZt5zeL4h/KWjWzxhtVxOR1aKSkC7Dlss3jl2445i4Bos877QzgHnGsYW1ghmUDlZO1vyZSLtz8zTqCZmgbVV6nIm1kxuBbMa5hrJNTLIyuozuQMZA33x1FIgF4qpDEPHYRzpMJyuZ9Zp4t68Yug9w9jhbM+Sr6Q0E+eFJU8k1OuQ68IuDUjzZAd+deSUuKYrPiWM0c1gWQvleWL9+MjcfQQGQrsFsbSSqTWxtoWQdU8x01iOj8zTiWu+KlPe9hjjCeVKzLoJ617ebIZHi81Cmc4Y1yE7j59vGIYJZ1ZCs5jB0dYOrh7n9JBWUmbJQjkJ1TnsLeoWCYEanBI8qpA4kRPYMBL6PXZ4iTMBJ5U1J0qJ1Lhyni64uGDKipSLfq4aSPNKtqha3rMhYKx6AeryTJm1eHp484pwu6d6R4xnpvlIiRlDw7g91oBlwbSsXHJrMAwMbhOwYLB7r1SbKlyfzyoh87Dr7kCE2pQC4n1gOOw4/Ooe914YrLB/vePj9BlzKLReePpcaC883S7ggmf3iyMyJx7+7W/5w//8Xxj6TBj+Bf0wUESLor+6O9DKgqmNnbwil0JbP9OO3xOno94gs6GVgDUzxkz6enkQa4hTROSKtEKbO2R8hbU7zbpzpWahpUZaLkQKZhz45pcj4cUdxQ1cT8LxSQ/GYywwvOZu94YX+zcc5J4BwbaKrMJfvXnFX377Nb/Zv8FkYTkv5JR4evpM2HeMbkRC1S1iE0zosUvASSLYiVANwQV876F1NKNRnu5cSZtt3M+FpRbl2l9XjDVaKD0mhps9UhtlhbNdqKvmtpd6xK6Cw/Pyl3ta55jmhWg2YEUHZRDG3OuUOEfWhwufrpHTs2GIAvcL401Pd+cA+zOP3+VJ6U0CIj2uaMyn1iM+7PDW4ARS89SUqPPEdb0QTyvLeeHj+0+064UhrrQpc9vfsuMGdoFxd8DaAWs9Y9/RmUDIFpsy/qQR3mQbPhukVBVYXSNiPFiDT0Jw4KXRRUUpVhFM8WSSTmuvC+3VsImiKul4JoyV8SDs71/h+x3O9xijTHjxQn/vMYvH9j1+74mXi3L+XaHNGiErFJbLZ8a+x9dAST22yzrwXhvFFChO0eBmpmaLiCNYR40ZMRnnCvI8UMWQszA/rFR/onY98mKH8TcYG+hqgHJCygTSYZujNo0Ir8ePrNdnYjzR6oUUJ0xN/OLNgSE4MlD2I/mspDAbIjVGrO8IAepUNb2QM26C7s0N/W7A2z2tJUpaqLM+bBvjkApuX/GScNmQa6LGiJQF30VMUZiJ2fcQK6000pyQKwrrEEOf76jOUEumnTVG02pDFh2WUXQrlJwmNCQaYlgoU9TOZadoaRHAZ+qxUZySmMiCEDEu4Ug4E5Rmk6GPV8ICbm7UGOFsqcaylonaG5q3WHfDLJEMJDORXx4IzlGb8On5meXxyvJw4fn5gcvpwnS5Ml9n7ozge09wlrlZcrF0LdB1CsZIDTw9S2kYsdipUCaNUPoXHe6z4KIOB+taqK4pvrdUkiTdql20hE2FsAjRFkiFljb5Ys6Y9meO8dSaccYoV95tTyGlMl0uPD4/cp0vjKNXvJUXlV/Jtn5zjV4cOS/M84W0RrWoBq+2tOL1B9uaRl2M1XUjidLYGtQzbQJKoQsFglJHStFLlslf8mgVGpTWiAloSS+eLmwrYKEsmdPDBy6XiePpwh/+/h/53bu3vPvwkefnC8U0Lbd0e24Pt4ydp3dCTSvSGl88pTS1xYlVdTNZFMFYdLpeyrbQqZVUMrEkxXH5gHjBNp3KV8XBIGJwLmgSpTXWnJjWxJQSJkbqUXh6nnk6LhzniEXzaFINnUGxZF8iS5s6R9o2nRa1C1qxOD0KYavD4BDxCHnDsimSq1bNHZdUcdZp3KVBLZqhNsXQUlQpEJW8W0inGZMa8xTVsrhLmLFRO4NrUEsjrQvxGlnmyDKt2OtEi5G22X31NbDYZGBbd1qn4/a6xWW89Tjj6EOHM55YMnGOrCmRWlExxiYQMmazKm7cEScOuy0hjRi+xE+taAGvFdnQorpqbBXNFDfN8lkvGitjMzWqJlFf9C1/XJLaE22wGGfIOZHSQvWdIkkNsBEV1mXLs1vBOqfRIzF470GM5n+t3pwN4DBYs0lSnCJI4xKZLhPn5wu107hYRIVORZp+FqbIXBK1Fm6yHjittTjvCF5oudBMYpVKNwSGsVfSyLoS10jwAR9UyNIEUoys68ocF2LLlLbpS2reTH/6sK2RvC2Wt0UTKBpTWteVZZkVcdq0LNWaxtTWmIhLotRGKZU1VS6fzyzrwprKhnbdbMdNH/oxHtsHpBuRzQYKmqvGO8QFnLOQDc4GTKeSrrZWbF1UQJQaeZ5JQDIWWzylFNxQMXXU+FtSMlDu9J3kh4DIDprGWdJaKNNCWmaWy8JQFiVtGaPIRgTBYaVSjUXw2L7DeKc0nWWlYTFdoLs7ICFQG6Q1krMi5MR8ifp8eT+iyMkmNDymRlozYBR/+yXSNa8z3gjB2p8P+qVWcs5YsYSuY3+3wx7rlrBRZ0DbcLVLysy16RR2HBle3SHnCXvO/NP3/8h4P7B/8YI7UymtEmvEGU3XgUG84NwNrcy0qgVWJTkJplrEFF1XU5T4ItpFqjVRxVKsJ3XQxNCyoeZV70+lsk5nGoILPWPYIWGgNk/MkaenM9N1QbB03Q1jf8O+29P7Dtc0Iz/6nje3t7y5veEQOkpSQd8yz0zzhAkWaXrtN2xowU2YJE1oqWKDx4nH2UCpZutIfInwNEr9Yn9vm+dAyWylVFLKGnUUs9ncqxKAjMZDkIoLwninFtVSHcFbWhBK0rw71apNmEZKQswTJSp55y4FzDpiaodYp3ZdyZgVmhPaZruvdVX8Y6ybRCjRbFTny3WmnK9c15n1PLNcZtLxSkiFrlnEDTBWmhcsgeD7DdbQ0XUOj8EBtjSN8FSo0r4IRDdni9pwZYvJ6XXcYq3TiBMq3Pry2W+A+fncUcjrDLnHYXChwzqPGLuRVJp+JgZPEzXDG7dlpwWKVH29KdSW9OE8DGoiL177FFUAy+YL1ojFdv4SUzEkTCl6aDYNEzuNna2ZGhPZJIxfdXuzs4hTSyw5aSyxG8jSkRHW1ogPT6R5oi0RmwqdqB38br/DeUcywtL3pFJpCaQUijV6r/JsplZFXzqrElHjvX6GYqLmTC1VDd9W0ZjWGayxGKxatjWZgqkVafrr6iKK1O36IVmvKViVHbbK1gX5Inrcommtamz7i/zM6LmlZJWXCShG1eo9tm70sLadd4zV+ItIU9yrLRrvapbRCAOifdFUaAimCfV6JTko3pL7wiWtpFqxGLp5xntPMIbj05n0vJCfZ+pcdMtSKoN17LuerjpcpwOWVAyldnjXKGJwYhkGy5wqDbvFtXTjROh+jjVhmuI20fd+karnqNaQoltX0WOIdhjY6LHyBa7wZ47xlB5k2OF3L2ghkFplWv//tP1Jr6xZlqaHPXvt7mvM7DT3XncP9/DIyMqsolBUQRJECBwK+tmEBpoQJARJqGIVJVaxMjIjMry9zTnHmq/Z3dJgW6RGGlBQDhwIOBxx77Fj9tnaa7/v86z8/OsXPv78K8u6Mb7/gJwaJvQvIz1Z7BWigfreUm87+2Wl0O24Q/SoDHcJSM+rLcs/Ik5wqrQ3i3WRRmFdX5C9UnzAzR4zT/dBOrE3weVu5VzFIK5SW+N6E0YFxJC3Hi3ImrmsO/+vf/tv+fXPr/zy0wv/jz/8D9Rbj5BIFT58/RWPh5GvDoHj80xo4FMjhYarFa9KGRpSGmIa7nDEXBw171zKistjL4FGIeyVZCqrzZS1od+M8HDEe0+O3dTbMtg449yIrY5qGlvJfFrfuHyGPcLRVurnN95eV65L5vXWT8jONkJNqAuYKJhgMMl1BJuA3T3ZN4zczZlBEOPwGsnBEV0kSGSPG0YCpkVUOk+8ZeVGQ6z0yJYB3VfC5Bgmh3waoFZKgu1yQbfC7hyrM/hPC3GauB5fsdORaJSoja1Zrrcry3pjSRv2vPaH/POIKdIHl6nhtkD2ljR5rPck07eupnjMOCLHmXGYaEFIt8b2mrnqxu4qOjjqCGIdzkZyVFhBtNKCQOpXaCYIM/eBwgpqC8qEtomC6zcluVKujWIFNYKXjErAqsUVwYwBmwW7NLLbYauYTUnPFtdh9lx0RW+ZOhm2h0irlbX090reHWsoqFRsbtixQTR4H0hBkFrwzbIdBJcdsVoOYyUMnawhLXA5r7RquK6KsZ/vf3fLgzX4MIC1/PDpj+RFkWpI04B/jFhg9CsSApqBXUluYZoPzNPMz+cz61KpuyE8P+GHCazlWnaur4m328qn5cryF7uvUVyxNHEUK9T9ylK61bpmQ7GCbQZZG9ey8loXXkkcLt8j7x5o4tDSuNwy25LYXwu3KZOWnf3jjY9/fMGJMgxCeLD3GxrIm6XRY4VutMg0Q5GOPZ0OYC2NRgsWYyYcEMaBUirNrrSw4W8eYwI6GNqXK3urbMZQP4F7V7CnjB/B1iNWLflqkdNMY8YdRmwaaLnRtsTtrbCsC2m7wL4REJwP2MeZumvPSE8WuwjGRjQa/GnGzgMNy3at2PkD/vCA//pbivWktXC9FLRJz8761gf+O2LXmNi/1FsnMNWlK+CNE9h7Z6WZxrlceWgnJiaaSh/IU+F8yZhqmf3A149HjFFun3e+/HIlV0spUGpG7MYlb5TqeTgeefyr3xA182wK/83/7b/lc13wT0f+Jn1AfSSL4XW7ErF4Y9hkYdYHjK1U/4AsV9J6ZV0WhqOH7NBiyA/0zbMqtVnyW6YaRzkE0uuKcRnxjrQIiqFoZXt9wz094qYDYiZyi9x2+Pl14w9/+jt+/vKZ7A4cD+8Y5v7fxeA79U0979898NuvvuLD8yPGK/tlZ88bt3RmuS1M04RXhxffB0gr/da1QUmG9OY4HkY8npAcq+2G4lR27GSpN9NBEUOAc8NUR5tH9r2yt8yl7XyFIMEj1kFy/RYmCP5zwE0j/nFkeAx9JLJKTQeys2i+0qRgZ4fTiNaIxky5/kq93bh+Wrm8CDzNmLcZjYL6htqG+QJ1MGgQCI6lJnIutLdMfbihztKMIWcoLzfyy42aHMt+JuWV0RqGPeDchD+NvLev3V1iLfpmac7TYujbelVEKyEp9lGQKEiCGjo73xVHCxH1DlGlOKVaBy5iHybs2gVOzAa7OpoDDYqfAm4C9Y2tLMzmazQ809xE9Z4mSr7d+veaCZRhoh6k7whag8eRlm+UW8U8NLho/6z5gIR7sdCMyDljJMAwotvyT0V+WSMcDMYqmm5IAyeWoUVsG6lpQ6/9dou1UlNi/7yxP+9oiJzPBd23fqi3nuICONeXRT+8ANIH2wTP48w8WB5PT9hpYF9v7G9X3LxRbobyBjxE/OTRCFtbyFoRExg/fIsfR5oXbibjXxNZKiVaJAxIiEjwOCLOzVgXkaoYHKYGzJti5gOWHm9KmihaKDVhhiOxRZzzcBTaS6NlpY4W8v21iRW9ad/QB8Et/fenAdqlwWQR1yOGZoK2K3ptyPsBK+CMoT0EpBRIFesswVesgaGOXcQYD7h8RF1GtS8F9p/OrOuNpe3s7x1vnzf2rVBrIUxPyBSQg4VLwyWDy4bJHYmtP2vdO4e75t7tODrGj7+y58qmjj1ZnHgkRo6/e6bmQCsWdYI7njBqSO2VLEK12uEmTsgOxDfs0NGn0jppymV6MXnoABA1jjJ4Ri39gOb+mdGbf/u7f81vP3zP8/yAtMx+TVxfX/n843+GW2FUh50dQ/H4weImZUiOFxG2aDDbQBsKda5U3UilkFLGmMI4uPvQuPeCR85orpj3O7ZGyIImw87nztv2E23sPHC39pa6zH0gtTjYV0iJFirlTjqoYvj4y0/8+nblj59e+I//7t/y+nrjcl6RvCHeYpxn0MLJO04+cBpnpuSAnSIroXpi8DgLly8LGgM2Og7FUlByqdRzoT4UqIrdDdecKGlh3xeusfHsLAfj2JshloC3lvEomHWjAWUIpLJBgVFOPJ+eeRePDHh+rRuFLk06hiMmZKzrG+QhdIKJNkPyci8OKgz9Kk5qP+nHFgkuELxl0gC1D0KmQquJoiu6pF4MsRVnhOEwEWJgXxe26xVbJoYaMLMhMDC4wPHxiLsbXYcJmq84kzDVdvNqNBANohOxZrTuXK9nNO5gBWs94+RIW2TZDNdw5eAjB/vIPBxIy0ZZK7tJvK+RpzLhjSO/ld6WT2/ExWFbR2iNu0djJcvGcBtQ5/smW4XdLNCEsI7MT8N9w1UJdu79gKHTfbqFsdAOibBBarDVxmgVG00fLDHsWrjUHbdYVBo2Gv6KZ7wfwEDYMvbBM0+Bd9WzrCuXz1euv9wYjw27WtreB1VX+/aqhcwDAznvnJdPvP30mTQFDqeJ33z9De/fTXhvebksHI+WYKCdb7ykjImBeJhx74aOUlPleXBcpMfiWtxJbsIYy/Aw4Zuj+kobE38bv2OaOvXpcLmRjgEzB343PTO6Trhp18Rl+cJ6XTCXLvnQ1jeYr/uZp7MgLpI04/dGS5XSVmamHhWQit12Tjrw9fQVw4d3TFNAWmUrmVo+0UxBHybs20rbFq7uwuFdYa3C2QjvpxErXdRnvrLAM9YoVhpl6w/U+PWAGWbqbaWcF/ZPF7y3+GnGWpBhRI2hZQvjSx9QzhbHTDCOpo5zLKz7AG8jEyOuOZwLcDwSDu/w44Dguk8greTtxtvlStvOkK6YAjr2IlrbDHYcehGygj6m7gQJA/bwFa1acqrsRxgeT/j5CYme/bqzLhtLfiXvDeNNjyrWroxRaR2XeC+kW5R2bF3vUcG6u9BGlUm7bdI4Q6uJW9lJJRPDzmXNBGf4ZjjyODxxCa/8ROG/+0HIxlI2g50fMKNjNcqfPsJ3h4HBDbTq+Jz+yH//b/89//gPn/g//J/+d3z77iven545HQ/sbSHpSjMXhnHAxwE3fWB9+wPr+pn06RN5W5lOM/E4ku1IMIJoY9sbHDZaq6y7Az12PrlRDqehk3gk8hi+5bIkbl828hggOpZWWfeFtgZsjczDwrv5K47+gVkjWxVM3Ric5X/97Xd89f6RGDyXjxe8Nex557wkrucrx4cTzYIE6YcoDOuW2W47Je/EUyXvN3Yidhjo9hdDw+EW24uhFPKXK2Uy+AfL0cyczY29QloLcY4YFVgyGiuhBVx1vJ5eGLDE7Gi1l22H0WO+nrm+rOw9Hc2QFRsVrPJUA9txolYwyfL44JlnYfCCldZBCWowzwlPACzVKsPeHTn1oVJ0J6+Vuu20DUxKBEkYNzJYi+pISIJ9UsQIlgBfPfZ4x9pIDxtiLdZPbAbSWWlbwg2WsDmkQgkFt3eoRRozsQoSLNUptnjCADEqsUonvCj4FMjuDLUwrP0QpblHMufTM/PzI+PzEfFQ9hVNe4+61UYwhuMQGMqIsx4zGPRL6QcBcf2AEjbMUMnrRpueeyyjrtjTCNWgtSJhQPdK3QvtmNHW0L1LFlvbUOsws6GVN1rqYkFbLTKAORicdrSu1oq3DXeUjk1uiltvmAIgxGHD4DHiGR4DvmQGC+6U0dA3x/75gK6d/GWOwvz0DWIj2iznnz9RpNPC4n3xl7fM7dMXTocZ5y0TI+vU5aI2g3tWvG3YVsjaXTPWFvRxA1aaeqoTSI2WlLoqUQUzdL+EfnbUmqitYXdL0oqmArtiQ7v3PizVNcxqYINsduza6Vb1KJhL6tK0WLBpwjhQ12i3hroCc+neHE00yei8M7ybiQ8Dbar41ytaPU0c7ZvEtHhs8kTZ0cmSoyKm0WwnC7lmCPOAGRu0hhaLjgNaFd42xvfdL6MSMW1mXTN2hdOHSPUj1U88vnvswjq1aHb45yP7vnJdf+D19TN1TZxkQHOiAbVVavMUad0pkIdOitJOS1zN2v8euyc7RcmQ0v+XKf3/T8N+PB6wQy+nlFK43d54e/vC+eVGKQnTGl4dzlqC9QxuQKTLlMRYNDicD4Q4d85v7eIs8QZk6B8UShcH3PPVJox9+DEN4khNCbkbS/9iaTN/iWSIR0LEqb0zSy2mLGRjac2QSuFyPvPLx8/88Oef+fGnN7Z9JeeMM12gJBhiM3gL3jRsbWAqGBBj8dEjd5xkTgnnAkKnWZT74WUvqYscBKootdR+sCkV01y3DdqANQ4XPM57rDqqCjk3bEvklmnNdIPbPGKG7hpYy0LCUR3YUXHWIw4kGFwIPUbQ+gNS76+jNQ5sR3R6pJOSxGLlHkYyBrkbE1sXuvVrtnq/YbP0zHxw5CzsqRJc74sH36U7MURimHrGX8A7i3qPdV3A1A1aDm0BsV2YY1Uw2nAu3OlOrnNvFao2vB+I48Q4TzjjWEsj5Yzo/XWLPQK27ivrvrHv9U4bMHh8j/9gseoQL8Ti74ZIQ2uxk4J8t+OJMX37a6Ca3qYvpVJq7TIQY0E6NaMlIHa5VPCR2qCWRtoKVRtiHcEK49yvkWvtwpogEWc7Vi1tO8u6cttWnLFU6deaUulXlUaxRjBGKXXndrvyen0jTE+Mh8CHb97zeIyIUW4l40LAIrQGUnrMylBpdxa+IIRxYLJCaQUZFONcj3jdXxMRi2FgPhwJ3mG0UXIl+ongAuNxwlrHXhK3243zZed63VnXrWPTWukyvCTUcL92LAbNhZYrWnsUhKZo1n5jYgw1eGwMd6uxkvJCUqEY1zen0uM9guCnY49pGMEPEdu2/lk3U9/qG4WaUE3gAibO4ANNdkprVNvwLtxxsxvS7rGXaCB50Nw7Luqw0j+bUkeMm1AboY1Usd1AmQPORtRGVCKtFtJe2K5dGGarYtVhfMNa2+lkweCM67QwKaADJgRk7FSw2mqPxNkDDDOMIyqOVFa2nFhLJ4mYJpjqKKYTU9T6vqFt/fW1vpJb+KeoSLvjeFHlTEaoXV6llVw3Ss04sQQnjMFxHAc+jAdOo2MYDX/16c+kP5belRgFjUL1sNTEpVScdTzMgbA+g1FuaeXf/90fWPNOo9xFOhuGjb1cGeyGong3ggSyKtdyIxYLxVLb1Okm93iH1UYpHprD0S2r2vqzuRSPSEUkU1BuS2LPwmkeMTKQqVxLZKuOYiIaj5ghoMFRrKHkzGCFOEfe/eZEHB21Fb68vXCKE3tN3LaVt2viKTfU9NiH2M4Qz7UC2qMPfgTX42zlHp1pRbug0TRybeRa2VrB+Rk/jLgxoLdbt2ZacDFAg5QKpvXnjFgIbsLGHhfVUiGavuTxnn3dEbmTe4z2gc0b3ABh8zQTQAohBJzvBz0xckcT99gsd6qSaUqVHusxduiRjdaDZ4bUP2429EhToRd2peKks9hFXMf8SqdwuegQPyF+opw3Mp20ZuXOGPdgMfe+gMFZhwz99VVV8J1s5IJHgkFT/zuKMzjn+zPM3GVMaCfNRU8LluIMuVZSvaFGiCai2jricy1wFKz3WG8pppByJu0ZGx1Kp2o1MWjtqEzxBttiP2Dr/bvEaPdptI7S1FaRvdIoiEDNDaXjpav2mJfEgHiPowshqzEgtc8gxuAaiG09Jmpaf5bdCYejE8S2LnS0huq4SzIDpgpCwLqR8PwM1VK2Lu4yEhAfkTGQa2bdN16vX5jmqc8/Tnqe3nQamxPf6V0WWlGM9K6iqWOP3dDjmbVUaNpFodKfNxSl2fr/Adp5xew9ValG73PH/X8XOklRtM8vThFat2Ga+xBSpQvU7v1IBcSPfZ5sen//CEgG7/oQvfY/UKg9Gnw6EYLpGPK8sDew1WLthLoJawSHEMT1pEyF6k33pmSPjjshRJwV1EaGdgSbMa5i3z/S4kSLE/HhiFeLqsMyEo8H1pr59Lqw5tR7YRYqPeZYm/QIbOM+N/bniSqUv1B3RMH1HKaav9h2/xmHfZ0DJUiX5aTEy+uvfPr0Ky+f945/0oLJFvGOIQyc/JHLnLFfHIFAO3oGOXEYHrHzSGuFWjdMtDQ9oBSaKZQ737c/f54xtoAtuNYz4q0W9t3gW8U4g7q+rbVyQGQmGIOREbE7ttSuSc+NLa38/PLCDz//zA9//0d+/mHB+UKIjeDHbpGDfjNhFdGCLpl8LH24YCAcfP93W2WvO7GdiBrQ0Bmv27qxlI0q/UGTfC/F5FrZtOJzwEiEEBlswM69uGRSIBuLyRXztpNdpTZDi4FyHMnTATXCZf+FRET9gJ8avoJYhQDODjTpDxmfDNnsYAyuOlrICEqorg951iEEajDY2v9JrfQPZ7U02/o2XkFOMAbPEBxrFdbScKrMDo52IMwDYYyMdqTIiojiTJfcWGfxYsgtU4vHmoAZ6RKTEnAiDH7uZIBokSrd6kphjA9MxxPD8wHZhT0nlrR2Pu0c4eCoufG2XzmvC9tq2G3F0zFpOIPXyNAC5mQYrwbVRvaKaOwP70mpa3+vyWDZTfczlCa0DYr2zDhloEq/edFF4WixMhDtzCorLVXyJbP7jHf3n/t9wF1NpwTozlSPWBnZIsRl47ouXNLSyVH2bobdoU0VFcUbT/aFtWycX9/4dX3hQ3zi3YdHvvvrb4gKJe342wvGz/1LNhRme7dIm0apnuYszgruMHPcew6/TgZpjbZl8papvmKMx8lIeJhxuVGXnWXbmfyJ0+ER/3joaO1t4cv5hZfPieu6seQLfhV2EjuZYR/QuV/7uywdg5gyrXraHY+qN2XbKlejnAfDwQhVBEHZ0oWFmWYssRWIEcmVoAl3eOgGXNsIzvSuRwWVR/xRekF/uaEeMCNGTjRXu2UboR6EWgaaOtRuSOoI2DY3TOmiKHVXTPPYaHFHh1ueITrUB2w7UYZEMYbt5hmboOJobqDmF7a1cH1TKnu/BcQh40aQieAEd0z4mwXJ1JhgOyBhwh4mtEIxld1A5ivacEKHkaKeNW3c9p3r7lCzY9TQkqFIozmHuojareMLDdhgMGnqB1SzoTe4t/34oS1oCwT1iBpyXait4uwzYwgchsDxMPDhacL7J36r3/KH5Ueu65Vfz6+McyNFQ7aGUld+2RWJ8DfvHan9niFUTlPl3/3Hv6OYhI0NXTxhVkQS9XYmyoWHGDi4AeeOFAm8mMyDvpDLA1tyvDv1/o4YGJxyXWbEOCbfuKWE0dyHqNuJpgnRxPmW+PJayW3k+LtHjDuQTOXzfuKijtXNVJlJkyCjoQXgsjAdj8zPDzz9/oQdLMuy8MPnnzDHb0ktc9mvfH7LfLW1jt71/cDYasf0iVMcjponGDdaqaQ1s2k/1KKw+EJaC/teWUzjXTgyTifsg0f/3CA3ZLSEOJJboaUdUzwyBowzHN6esXNEx44+ZTRY7wh2YpvPWNfQkskegggiFjkoPjuaBuqYsG7COIcGcMVhvIEoyD6iroJU7E0pfqNhkXLCDQm1lqEYNk2oCT0Pf6jI6mFvbMMV1wJWAmay2HPHCFZXsTJjxgjRc/3cy5cqrS+qJoPxIKtFbcdAxzYgR4dtFrk12qDI4HHjiJlN34yjmEEZ9pFqK+W094GVRnWGPAi7g42K5J217fQYzEhtSkqZ6+eF9m1HtwY/kmNHb6/Xlek0oWWGOnSHQs4dQz2CpAm1iSYb3BpNGtU16ioU31BNmKXPLKiwScVMHRXaDITZI+EB4w+IL/3RXyrNZZr021ZvSz8kUbqjpk3ICBKVYQMdCuK7FxZreiQmRiD2gm3whPfvKbeNVm+od1gmfDhgDiPrx1feLq/8fPuV9/V7jNjuDNkaZjDI0G831WmPSeX7gaJazHbohdlSqOverfO1R5ZabLBZSIZ6yJjq+8HgsGHe7vTNqFgizXZ/jLwYythoopjdU2PqXoVV4KFCE0z2FNkQPNIC6gTrZwbxGElo2zBtxxahugmyUM8reepA1iDgDt9gDorLFX++sdGXuT48d/uygi0dE26qh+rYzQqL7YvKI/gwY11AB8fQLDYmQk2Yb34L0wzjBKPFNo8jMB6eqNr4cr7xx193Sq0EgWIdSfSfeoQBqGr7cjBUSGCaodmGLa7HsycDi9DEUv3/svH9f/Gwf8iWIVXsbeH88RdefvrI9csrk9wY90rbKrUUYu4/KN5jXhemONO+nWjTAWd3prkSTCbXja2Cq545XIEF1TNhdKiMnTKT3ihm6/roFDj89QNOCr6uMDusnbEcSF4wtUK7saihXBOlFPxhRPIredt4uSz84z/8zI8/vPLxY+Y4Sc+hNSitobVvpR9PnnHdcXumxcKqjungOZ0ivlquW+K2rqgecXHCBsfy6crr65nruuJM6JzlBPoKlzWxrDvrurPVjbouuH3ndHxAwgSiVL2inxtFKosp7CTUVKZw5KFNbF+Wznhe4DRGnHM0a1Gf/0IixluPto7E2sMNnw3UhvVgW+5FFyu4MuBMwAyRWITSKnvJ8FrZLwvr+ka5LaR8ZfCO9/NvGOepb9xvDVRIu3I5Vx58oW1710G7XsB2ArODfFtoPWPE5hTnVmr5jGZDWSDvjeAth0PG2ftV+PaCa4YP4xNPjyfcOEON/PL5V9ZLxuaBrz888V6OjFvglY3tJZGXhOYeozEIxRqmLeAGwQmEm2FXSxFLy0oIvQxurpWbXjGtHxLcLqhN5JKwdqQ52zNyZqNdb+zXlZflxrg6zDQgodGWDK5gx8q4RWzsNwbTPvLL2yvrspGXxun0zCkcGK6G3TUGcTyHgZdl6TxdVQqZ9/rARGBj7UPxcuWaXpiD4/k48/75gaeHA227HyxzwZgVpHO+8zV1+nTIaP4T2+TxMeByxM8DfrI8+p3bspC0byb8GBl8YPYWX3bOX668frqgqfHu3cT75wMhV95eXnl5feP66UZ+/cJ2vfHleqVdur0yHCzjDIdoiN5wM31TOagSSmZbKtu6c327UmQjbpXHm8GdCiYJFSHZI4ea2evOx3Xn8vMbayqsqvwLc0Ua4ATjBmqcgMChZfbaNyfpsnJ4esZOM8M8sb5+BlswXtB6wviGsFEvVwwNow55mxC7QU60N7BxREvEfY7EAPXSyJq5ujfOPxsqjuH4BReF7bKxzhde387obcWsO85k8ALOYBfBjVv/IvncaOOdvX4VwtQwZkc3ZatKIoALvP/u0G3LqlzOb/x8TmzXhKyJl33DiCd6w3Z7pg0WEyr77YJxvueki0HbipZCyStryihCk8B3y8AQMlmuTO6E5oGqmcoLl/2VNV2x9OXBaToyDIHf//Z3/P5Pn/jy+YqaIy4EkhP+nGqnqmwz/vwN/6uvLG+S+KXdaP7Kv/9PF/7z3//P/Nf/lWG3V2DnMUH9Ab5/PnD6Lx4YDkfevf89zhz48fwDVldc+QPpZebZPzDIQC6CqS/YXEnXynUVliZsWMLw99zeMnvO/OkPgel3f83D1+948gOrWPa3M3/6t/+Ryz4yhZGvnGM1MyQh50x7G/jNN8/8yw8fOIYDRSt7UjgPfKw39nXn8rJgq5KXncv1ivBVL7hjCN6j5oitCV9WRGCj8KIrLQxkK6AW+5q7DKxuTD4QJ4uPgqvgpBFbwy7dI+NVGIxjeDdijQcFN19weYfLwvnzmYM5YA6CPxQChtE55sGzJb3T7QqudldFRbBt7lvwVGiviXp4wDRBCkio935EowbBtaFLGOOtRxgAHT2mzRjboKUesxULQTDrgB/7YU4XhTiirhPevBNMtFRnWdKNtFZMcbiHLrOjKbv0WJuoUrUQtv4zFA/HFhmNIwByLpjaKXdSLOJ63NdeM/XRYy04LO/jM0O1+OuK8Q6nA4hFppXydmO/nFlvX1j+8ROnbxzmm5lxP+D0lSbK9U2ZjxUXGrJ7kluo1WKyx8sKJWPWRDFC2Rv7rXJrn7sjJmXquRInJRRD287YNmDdAfEP5IeHDjmRXtYuBQqGYAaiK0DG7Rmxtt/KVYMfb73hnpQ6xF5SFbBj6Qh2bxkfTlxvK8FajkMkHg7s1/6crzZwOk4cxhFz21lfz2zna6fn1B12QXZD4+5MWSsyZaQJFGGXQGeIFCRekQStJNa2kUy9u4Q84S1SS6JqxusModFqpXwqrFt3GelaYdooa+mJhwZlhbqDUGjXhLhGDkLoDjd86G4QNAIj+CNqVpqtlIeGXyGOgaf/4q94mmdEuqFDdkNxjuotw76w7Y18LZxfP5JDxgyWcUyUfevItyJkIwTfCLFQLi807b2ONlrC2Aih0IIyPX4gN+FWGtPkKdGy+cLldcM9PjM8HPnum/d8/nhBflWaf6XmiqrDOUtaexm7iulG5btcQjftYlo1mNzjRXZvuJfGah1gMOafedgf5wHvHDTlctu43c6s65m2l44N9A6jkRYN9V5Mqsbgx4l5cmze9XjPODCP74njAecD4BA33cUGgTqs/QVuhqYZzZ3E4o8WO8w4pwS70cyMGktTQ80OrQutZGob2NYbW9pYpZczTLNo9ZzXjbVmJFgGP9MUmlbKckPFoM4gY0dTeiu4KEiMDKMnDBHBIbJ3S+Toadawt8KXyxvnbWMtBT/2gmsBSiukVEm5klqlFqXdqSFx6qbO0gp7LoQh9KubkkmlAt2Qmo2wAwnFBUcI/fqqeGhq7o10sHezJgZM7kZfYy1OHAWLmtbJEc5hrMeagSoNvUtNmlFahZoMa6oYtQQ/8Pj0xBAjNGUYRqbTjHMOF4VWDSoefEBFEe/w3jGcTpRqurnQgRXF0gvNKWu3rQKH4wNDVEzL3LYFzYqzlsPBM48T1Xm2pqTcMFYIzjPNR/COjFKWwrJt7HuG1E2xGIPTTpZQI7QmrNoopdFUaWIoe//zEaXspctDrMWNAeMdag3iIk0MVIVNacVSi6Cp3GlJdHxYoRN81CAWKP0qc42NfU3klKjSulTFeap3PWdou7lR1NJwNFHGIeLn3gPRYrrkyTgO8YQc4OHhxDzNjH4g58Iu9583eoKNKJ4ywZ5Lf8jupV+PN1BJSPM95mYjVto9KrT0HLsVrBpqUkoqtJIJcSDOE2Ec2XPl9XXh85cLX95e2fbKsjXOt8ogBuddj71Yz56Ufdv48ukLW9pptXXztXH9+lYUNZ3GFaeIU09VoSrsWSFr//9YlIVe5pqNww8OSqNtyu56QVWMYHzA0VdQJVjscMINEy5M+JhoI9QM47ric6fuiJvArqClExLwiB+wc6Xs0n+3tWJvA84FqnXspZNCnFhmNzPKgMNScs84m2ZxGnGjI9ouaIqjwQfBuy4zwsqdplMhW9R4mhlQG8DNiBuJ8xPNRlJWXreV25LYbol8qSxVsa52Uhn3GI84VCO1mW51rfcMszrEjl2gRd/2nh5GQuwiOsVh8L1zUZTIxHEE87Xl6ekr5mkihsC/+s3v+eFvriwaSTLzZj2bdfyXzlP2la+nmW9/c+Lp8cQ7Es/pitlvfL5+ZslX/qef/szp6Bkc5GXh3+cLl3bk4bvfEs0DDIIeDR9/+RlbMkNRnt3EKnLHKvcbQBGDtEq+vJD/EqkZj1h7xFrLu995Hn//e05f/Zbx8T3LVbkthj+fByoJY4SkA6YFTOukLPckjO8OjM8HzGAptbKXyi0vrC+G7ZY5vxUeolCzpZQeI/iLvNA5D8ZgjbBrw3lDVcHY0tV2piNpq3OYEjqMIJS+eReLDQEj0gU/WKqCOI+bZobjDHTSTqtCbp7UbDeOl4yUQqgN5yPDODAdJtqakL8Q1SSA5M79DgEJI8YB0uk4yN23mAT1vmOvtWHsnTrUpG9g5Y5iGSMmVUxulNAwtdNFnO0ENe4xSHCoSBc3tR4lNK6L8sz9cyBi7gdiwdT+DFXtUREJodPQ6t11IoKxDrxD7qAJCYLZBcShocs9xYFEy+H0xHA8EuLcs9N0mVy67pSslCqkLCxa2FrqxfNxpvmBDcuaNzR7pCpNAoWMakO0gbq+JLSdTNdJN5myNHKz9K9uRYYnxAtqEllHMt2Y6ovDqEXFYFykkChawTisDVgMLQ7Q8p3kBL4I1RaaaYAi1mNDf46LG3tcOhTMsqPGUm3A2hn8ioYJ/2ixcUJCxFhhL4VbSlzyznJdEeMJw9CjMEiPQmkf4BGHNb1b0ZKh3RLt4KEpraY+N0mnOKmzGA2gioY7oUqhGNP7Q6oU05HXqRa2kkm5km232Q6xz4ISoE2FTRtDcIyngGXARA/RU+yE+oTYhjcD43sYTyPT6TvC0fTYYHbUsNyRN5BdQatFQoPHK5apo4MfTuStoLmge6ZU7U4EEfz4CEPHvWIn4mwJwYEfaHaAooStYgePHSbCMBGHRjg9Mp5OHJ6eqNXx7vkD75++4+VWMKmxq2Cr6Z89qzjTcGruQTR3j7R1eAv3oHoVg/9LXMn+Mw/702HA+45TOt9WbuuZdb30D5wVxHsMPa+bpZJLpjqH9xPODRRTiM4zzSeO81fEKSBiqc32U681GPNALp8pqVv5GhHNAYwQ3jUcH7De4adEWUZK2yncyLulVKFWoEa2rbHsO0tzOGMR7cjDpRSSafjRM0qkKr1Ms2/gwHhBxoj3B6ITQlBCjIzRd25yFYysvYg0eopp7Gnn4/mNy75TVHHBosZ2dJ9m9r2wl8Leah8MceACYQxUGyhJSbnCIXaKxray19azyUNgN4ZkDMUJcQyEYcZ5D64fHkQaNiiuhF5S0YasrmcuBVwbyPeJT6RzZo31CJFkewzC3Bnp2gwtCWtSDiYyDDOP758Zx4hWZTrMzA/Hvn1ynduN9R0rJeBcIIwD48MDee0HDHzCacOWhiuNfW+0umOkMR9OROnq77L1nJ4PlvHgGceBpRlyrrQGNjhCCPg4k52QtdHuw37eC1I8JXbcKEZo3tAw1AqLVkwq94eQpe0FI0AUWqr90xDAjR5xnYhigsW0BqWiO9TmaE0gN+rdnFxzpWalFdAmvUC0KrlVUrhHZGqhDoqIA+ep3mPzPQvptW/uTP9EDqcJfwxY62C3VE04G3gYnxmeLQ+PD0zTRHQR7IIzPXvrQsD7EdNG6lRg2ynLTs0dp1hx6LB1EUr1VML9RgjQjmK0BmhK3rv+XUxjmGbCPGGHyLYVXl5ufP5y5svrK5IH1gSXVQkPDhkCbohgPNelsK0bP/38a39OOst0uF/zW0FcfyDbwRMOI6Ke0pTUGin1A+G+K2k17NYQneUkA3a01EvuBlJfCVYJ3oAPOPUYUymjww1HXBixbsDH2g+lDeZ9Qd8aJldsOKFFwWz9YJzoBXJvMV82KA3VjCyCOwxUH1jy1q3N3nGKRw5+7M61ujMYcNbhXMRNFScJawvDQQnisdZ0gk7t2cvmumSwmUC1IyYMSDyg8YA7vifnRkkbr1thuSWWa2a9KJtA8A1ryz0v3AugagaKtp6ZraDF9m1miOhWe7zHeQ6PE8F4BEuml/ql9a3haE8MhwMP8zNPD48EH3Bi+dtvf89Pt8IaJ5bbhT8kz0rg++MjH/cL76bAb3574OnpA9RCWicuWybFwuXch/1/2X7D8xC5ns/8urxw1ZnvPwvfHf6abB1pavyyGvwuHIrn8eGBpVaSKoODMTzg8PjQyD+9UkoXy4g/MsQnnD8Sv/M8f/+vmJ6+QcJAfvnC+WL482VEuWKMpWkk1nDvE1nCB8v4fiY+zmg05EtjTZlzvmEunuVaeLs0xkdPydJxykofXI3BOdc7SHTtvQ9CVoOzO+vdBdykId4jtXc28J1nbsXhQgTrqGLZVKhNsdHjfSAeJ1pr6Jb7IaP6XqbXRioFm7uV2fpIHCfmQyYb0KXzzpuNYFPvJ4WADCPGdYQqVvoQbzrT3/g7FlBT78mowSbfCSpae5zEWgzdlGqCQKnQWscAtw6HwNC3pAgaLaxyHwZ7/0ZiRwgaMfRynL0z6w2tmf59PUS0/YVF3vtUiIMY+2eXXpLG2L4NHQNiO8VFIhzePxHnE85PXJcFNZVaC/utUDPUJmT1LEZZtZDzDuNEcZFNhc/pgs0DoSnN+u6W0Yb9S5a8n3DQutNa6dCDVckEqlFsMMj0NRIdyIWUhp41V8OYhGYN1RqCixRNPbpsHM50ko0Gi5Zr7xcA7tpRpCrl/jztmX+ViHGHfliSG9qgipCMR+yICTNMR+Jhxpr+e2hi2WrlVjKXvHK9LDg/YqcDd55lXxioARMwNnSvjBpoSrlBG/uwr832LLm55/WDQTT0G6Ro0LV/Jor0fktR7TcBW2OthbVk9m2lRAfRY+3IME7IaDDzyt4KYRqI7x9An5DZYkbDerFo6E4mbe+Yv4H5cWae/hp/2vrv6BYp9iO6ZnRtZJcwdUIGsB+u+N3iXWR6eqAkQ007Zb1g1oJtiihEf+pxKatIscQDuOiw7sjWduqesSVhwkQYnwnzM3IQ/HQgTDPTwwHTPO/eX/j6w+/Zzq/s14U1mY4i7xQVvGmkO763GYcz3ZFkfL9ZqXd8dFU6vtnZf95hf6gBXTP7emX78gfa+YrsjWGqfLjNLF54lSvpJXFLDnP0HN+/p2Epapn8A19/M/L0NDMfLVb6JtQHBVtpKEUy5csba9tJphCcEr4ecGEi2oAMXeZAC+xToqadumUWvyPRYGXCiGccHpDdw7710+Reidp4fDyRcyWnC9lkRhxH57g+THjbGINwepo5HCJzCDx6TzUFa5VmE/sngwmW4XnCLMrr9ZXzsvDzrx/xVphCZPYztaR+UkzK59uFZbuxp43DFAijZxojNo7U1Aft6eAQm2h1ZdeVXReqTpg2Uj5nhmhx/oAcO7FGjGXMwublvrEHNyksDrMKKeh9+wTGFcLSN/OEhmkDWIe6RrwF9rqy1sS+rWS9Ue2VUDJfff+O3373Fb/77jccHx+orZKscvvykZoK1II9WowmWrLkwRNHjx8thUS2rnON97UP5q7ShopowIb+4CnphtqN3HY2p8RZGIeBMTyCB92hJWEPoZfMCLxeXomXvoUoNqHrfXM9Fk5l6O/sqNjNknwlkdheCs0qxhm8elJdManiL0KRHVMKQbfOCfaAFGpOdM9UZZ1ucAZjKjoKZk+UbeEWLdflxl4XqtkwuyW5jVwq+0+pU5jthG+eag2mGOLVsU0VRIjiye8L7/cBsZb5+cApToiBzIZ/i6xuZng+8fX7dzw+vyOeIqVupFbINLyzXD5/4cYb6makZUqrvQDaMkjpLbhm2baNnBN2N9z2TE6ZstxovhGDo3iLrSfi5PDjE+P4QHSWfVl4+7zz8ccf+Pz2ypYMgQ3n4HGa74OnsKtQb1c+frrw9nLm5ccfwXqmKfJ9ODEEizWNGC0m3RjFcrIjZ020tZfli1FEE1hYToHDecAJ6ACkjZ+3Cz/ebnyzOx6+njlOA/hKsp5a+3bEugKyU0zriFxjiTaSFt99B+YKbcL6I5RIXVbUXaE4JHus9VhN2FxwpxtiD3iNFCoyRMIYOR42bAmgBZErXizuqNiHgqlDj1LY/vJrTFRtlKuCSz1Lb6G9v29NRbHjCTscMWFCNXPbd14vZ15/+Qc+XvohGa1c1kAQobk+GO575mYNyfZSeS/aF2zsuWhvR/zgaK2BgaOJFNdIbJTL0m+xBhgGKK7L+UJzjFMfEIw2wvMDx+PE0zywPR74L6tQi+OX/cBQe/L0h7UyHyu3nPhx3XiN8OYfeTWVj7/8O+rymech8i7shF/gl5+u/J9/+h/5r/5NwT4cWKPnSzgyDDs6W7bhHbeli2aeBmUajqgIe1nY3cQ1K2vL/IvpCA+P+OMTx+l7DodvkDbx5e9X/tO/f+N//g+/8Pr3f8dL+JrHY+T7J4+Uod8y2cDh3W84TQ8cTCD92Ph5u/Lxy8L5YhnbTs6Q3xx/53cOeeG3ulD2BEOXPokz7ALNKX5ofSuKwqDUql2QWBxj8WSTwRTMS8F+JbgHR1SPGQbMvsNlY98T1nvEeeTg0VsFMtvDDb+CN8LyQbAbZJNZ7Q1vI8YJ7hAIbxtJMsU17OJJJnbHRJCeP48O4y2pJihdeqmPCWsGRH3fyGbTI27zji0RtN92siWIGXzGLRNqbb8RbRa13XFT9obiAYcplupvYJRWDPbJwltEUmfLu9KLjJvs6NI/C+1UCU3Yi7KXits7LABJ2BRB+mFFVsMuSy8B70KZesfMZggtYmyj+Bvb7Y/kOqDWEx8j5dcVpDA/9udyvlZeWVjYOS83rmnjuq68+9BoB/rr1BSnSiCxmozFI+ohNnSpaG3ooyDJAR53eE+dPckIkmZeYqakRPuSCHbieLAcvFCrodD9OKKZahfEBWzst1UtJ8q2Uo8Luiq6Qw7aGffNUNVQ2htbbpwvCz/fPhKPM+8nzzpWzKMwSqQk6bHPbed8u5E1YUwjrMJyeyVaYTCW3Xa6Trgl6jEhGhC1VPUs+cbGjfT4hg0VkwvFbKhp/VZfI/bVUm0BUdzrzK5XSi20FW5r6QvgWkiy3A8bmZeXLwxfnZhPjzx8NxG+nfGTIajw+N3ANEw8hiNlPmJyQdNO+nrDt34Tkp8j744nxmkmPjgCh05GnBr2tZGGxD4kjuGImhGpntPb72lae0k9jIRutoJ0Ynl5uztRFJEZK9IRx6Exxt6JWnNh//yFpVx5kwtfn36LPB6wD46H4wkfp36Tf5fd+QfDb/+V8NOfB7ZboYbSb3VzpeaEV4f4gloltshe+431mAPFpg4yuTbWqFgytv4zG3SxnbiRy0p62/FGMYMlqmcJCc2CWYVqA9gRLw/Mj1/h3YDYSBo97x5PzNOI8bGTVwSUyp7vpJMmVBf6dVFt7CJomWitPyh16/GgvN8o7dCLUcGRGggVS0OzQ+2IBEPbhcvtM+uaSGvjcRrJh519y7DunURghSdzui+oDT4GqgwU4zqGqw007QY4fO2N92LYzJVb3rnlneprp+oE27e7QDGNbPuDoGn/ch/DAX844U49q2pKo6yG9eZZLzfy9cL28oo7TdRqaFRqFNQ7zP2BbULshRqvSPI0U1FbUeNooVFNRfaBSu0ZvGapLkNtSJO+lTZCVUcJmbYroga1d9mI9bhj5Kt37/jmwwfm5wM2hC7Tig43zvixErwwu5E4OLwXXFFqWtk0ITsUaxAFr40WEhSB6vs2Z6lortyGXm4tqbKlxuH4jJ1n5HCg2Qm0UMuOrANZodIjFnXqNAL2RhZAHMEEste+JM+GMtW/eN3QEbx2Qk82hVpsz8jbTL0lVPoGsVEx6qgKvnXSkzGCqxPV7fjgOIUJ9ZBqZb0kUm201N0GdTDoEqi1cDO1mwERjLd3nrqnHgw2d3oH0TKrg9Fhvec0ThgPqBJKYJ8V32Yea2N4f0BcoCzK6/XG9qX3RP7484+kz7mXFx+PHGzHhhar+CZYCqIbbu9qemuhrZ5Exhk4HQ40BK2eytCjWCJ90BNh33sc6PNyYU2V3AzVwpIc15o5t8T+acEvG2G0sGaul5V92SnuQPBCE8fHBez13M2cuZClE6hUQHNFnCWK4Rkl2wGb4XqrEEdEC5TCl2zZJRDnyjdfvedwCsTB4ay/C6U6ZSiOESuWSqdwWTU4FxkfD9AeexmehhSgCCqZshxAGmLrffObsXMl6Ql1E9VYzNUjh4YbC94JdlixVnFicT53sVe1mJiR1rs0xETDgSp12PGMHXs5CDZ+AD+iPuKnJ4oNFHFsRfjytvHly8J67iZbHx2JoW+FR4cPgeoqt5qpu0FjZfSBKIZqd5Lajn0UGCT8k4xGLXdRoSHGkejkfn3ft0VGO+3IGNNpEaWQq+Hh4Znffa/MZNYa2YrHJmFZPcEW5gOsqtxaYuMGpvEwR4qe+NU/szbLeSvIBb4+jtSW+fXLjf/x7RfeR8Pz4RvGd18zx04D2mVG7ArsfGkL+3XB0m+PxT/jWsTUGz9fEjezMtZA/fwROcMtef7v/+3P/A9/f+FPP154yU+Eh0f8NFKnSC4GGQLmEDnNET8GirdcbObLl5Xz64YJDa2eHBqXqTKHGcJMCyPlHuGxRnC+b2yzGtL9mV2wVHUMHRsC0cODx90iAQjvhGk6McZDdyxoj/TUgyNlg1fBO0fQSIqll/jsux5HG7r4cLtbOA0NPRS0KLZYZDDI5nv+fTK4PIKpHUPMQNU+LA/iEdfAW1Rm1IOahk3SN6ZAqwMmCNLAZkMeM7p7dHeYySIrkDs7vSZPyY2kG07voqposZzuMTNBsqe5Hsm0wwSH/kx214AZEmIM3gw9mt3AVul+H+8QF2G2SOpbV/WK7BGk0kLD1C60S7XhB4s6ixoQCcQ4YtyAtweMW3AucooH7HFkxfDL20IZG9WOTMf3fPXVzOnpO+JwZFGQ6hADzcFyTjhX8JFucnUWmTxSLcZaVC1rUS7XC00NZGGbI0YC9qhIGNlNQJpjcv37wYpAaGTjwDiMF7x0T4bYRjkf0Fh6N2zrEchsDGyRrPSDURVMfMBOT7jjb4nTE61YcoJmd7Z1J2elUEilAYZwihS17MBma8/oi6EEIe0BHWwXiIpDgkPMQGvvaM5g2tZvuIrBlO4qyG5DiiDVUoeCFk+rsNuNPTX20khkjDrelsTrsmMenjn+5juev/uKw99+j4yCGwzzQYnvR/wdnS46oLKjbsWlGeMtOE+UZ1QiGUddCreyUoqwl0AIHXBQi5JlREvoc6ovXdBZG+e13mWVhmhinz8MOJFOQ9R7l8RsNHH3m49KfHiPlCM2PzIcv8WP7/BhwvqI+YuwsBTSltEEp/jE8XAir4192THRdWRdE5qxNDzNOMog2F16vNdYnEyIVaxvSGpUKjv/zFItpVLrTk4rumWCB28drji6cU4hc/9i80iLjIdH5vHEECfSJMzDgeBCj3eYOx2ldOsm2uNVRYVcPTl3m24uBqOVUle2XElpY11eafWZePDMT469OJytWNtoeyEOliaBVDOX28ZyW1ivSrDCEDzRB/ItgWk0ESYfkUFwwdyjRa6LZLBA6F+CRlGXaNI/MLeWWEpiKxm1ivF3vJ7tr0XVRtKM1kLP2QlDnIjzkXA8MkwzrRakFfZsWJYb6Xwlvy48jAdq6w9f4zsWC2vveUuHWkuzXdUN3cLW1PWuhDFIsTTtpk1BqLYzsGyV+zbAUIyQTbcymqY07fxiMUKcIs+Pj7x7fGKYxm4rbH0bb2Jnt8doiW3Ehdq3mFnvNsxefG6D6bZgXL+OVEGbRQellUbZCotJtKuhlm6gGw8PuOOBOs+UNmLaTnOFpo7cMqlVnAaMaThjsLVn8O9gRorsuAqmCZWOKJRmMIPg7zzIjY3WLKqVJv2gUU3tSC1VuhX5LzbPhiC4askmdbNvGKgWSunis2oVg8UZT/F3NJYaEhnbughFxCLWY3ynHnRQUv+iiNZiDhEXAqMPrOyA4o0ljYao8KDCeAgownYraLyxv628vSz88umN2y871joeTSX5GeMNGmDUAW07WhKjWmzot1TFKMSCDY55HLnVBnhUI00Ebz1eLDtKWQvbsvO2XNlyo1RDsYY9wzVX3vLO7bxhN3DRoFvH0mptODf1Lw+Ft0Vp+4powyGY6GkqNBqqBWct1loCsLtAM42wLFTn0aLdqluEZj3TEd599cwQuukRPEZLJ2Y4hwuuR9Nqo5SMaYAR/BTJ60xrFaMXJLsuJjJCSxEoII0QfI9xmYbZDl37TsWsBokZiWBNwdqEd0J0FhvvnG61EBJyF6OoLX0BYTpdwZjeC5HBYe1jj8CNETceqMbQGiyr8nJZ+PJ6Y7spcTL40KN3tqy4AN73nsdeKy1ljG8cwkRwlmIbJf3lEV/w1vf+l+t40250rYQw9MiYEYpaSi3/dMBVY2itkmsh18Y0H/jaWmxeea0DvnRgwzoI1mSOsdCqIWknlSXNWCtMYcDYI6ltrCUT1oY5jWgz3F4v/KdPv7KEAX/8Ch1PuHjAx5mlFQbbEIVrXbmtOxYleIe6uWNGMbxcE6ve8LthXYV0sXy+Wf4v/+5H/uPHyvmqFPfEGE/YcUKHkW3LxCFg54EpBow4MobXknl73VguO8YZarPsVrn5wmk4diOvDdTWP+PWGKyzPT6h92ifNuo9VxtVaM5TvcVEg9stvnriLAxxJLiICjgjOOswzpKrUhWcGJx4itBvV9yJ3W494tEMe+0oVd8aEiuau3fGONOz8gY0VkQ8GEfziYzDNHNHATtwDRMU1Rl1CTUJ9l5IVAym9hgPAubeweodOoOJitm74bba1mlb2VC1N0GMtcjgoA59pqkN01zHKbp7Ln+w/Vmr/Wc3RrDa+1/GgFUB37tnYh0mGqSa7oRxFTEexVB9hr9gGRsEb+mMbMX7iJkmxI5QepxGxDLHETMMbGtmv649ouRHjg+B4/vCPLzHSmArZ2Lu/gqxkNaG94pKxaUet8X1rHuTHuFa98rblqhqsCZi5oEQAzJ6GGaaCxSxFLPije2UGt/6d7ixnUxj7j0H61Dp7xN1Ddmg3TkuFEuyjVShYrHjETc94sdnfJwpseJCJlmorKQKa8nkUlHAj56GkJuSKIwmgu1ktFzurh764Cu+m77ZLSq5M7nFdiSrGkxrVJOR1tGxtVVaNpQKq24se2Urld0WUMvb2jjvyvvvP3D6zfc8/+5bpu++RlvFBcP4PhCPEZFeDK6rvc/G93i3GJo4XI3sWXoEtC3UfKYWR6kHTh88tXWT9a6OupuOzjaWLSs1N+re6WaDtajvC95gHWJ9JxA1hdZoLVFxQI+thxjxNHzJhPn9XYrqMdKfp2oMrVbyliipENxEjCMh7KRN+6LZdLlnbzQ6qnrEGWxxUC1VLN54xComZsiVosL+v2zW//9h2F83Wrqg6xuT3UAfqM1yy2/U5doV8yURzoaaM6ldmPyB988fOJ4eWa2h7FdqWUjaKNmRauNcE/56Rm2lBkVulaUZ1qK085VrKaRcMW+F//zxjcvtRr6d+ZgS7x5nfvfNE+3wnsMIU1AKnm/fPRK95afLmc+vF85fvvDxpy9479huGfbWr8guiVQa/vmByQWsWPJaMWVDg+MtHBhjIDqDtVAWw1ULr3Xjh8vCvi6UlDDqiOIYxDE0R2kbac9sy8qSroh3HIaZ8TDy9O4dHz58zXw6UpcNe71Rtiuf/+ELRhPj5Em2s3GtOuYyIsYgRrFp6Fnz2jo2T7UPX9mjvh9OinpqMKSbQ3PDxT6oI73gsy1QXX9Y69YV1TUn2jlTtwV0493xxPuvnnl4fsLUkd1m9ppIqdJMt2IaEbJUWs2U0ofifK14qxyOFacOsQKjoNXdLdqJ5XZhK7Crsl0qHrCDY358z+HDe2Q6UMYD62XBJKU1w+vrlVutVAzvxoi5KGqVJBBNBG3kttK2RLWW7Dz22k2jzhuO8YAxgVoUc6mdx1uARcjSB05TDLYJohUxFe8G+m5WUbth960/lB8GTMo0KqvZCFNkfjf3K/IvGyVu3bK3QimgKrhsCQeHy8BLoTjBVc+U+x7wwQViDOwtU98aqMFGOE0Tc1SOp4Kvhu268I/1zLCPmJS5psb2OjM4RwyGiHDNO7UYahIOTbmmG2vd+er0TJOK84bvTsp47L0RO0TECtIUV3easWQ1tGo475lyvrKdF17f3rhcNpbcSC5wfXnj8/XGT7cLITfq1jscvkJzAcQwFNg2xWjBmZUtZaYp8u7pSHYGbQa9roi7Eu2MdyPZR9q6I5pYzY4pylLgrQnfaOF0CMTTzDzNiL/3Uu5lrwaICxgXMFrRtpLShaZ9G2ZawYWKqZn99gLuRDNCyhZjF1reSduKyEyzjiYepxf2tFNzJdiRsgPN4IcNS4/IuGAhWWzdse1GvjWM991JclMcl35waIU6D4gL4CbUXDpP23qM8SC+m7/Pv/D3H3/h86cvhOWKHb4huMAc4LpVojFM0VGyJ7cGNmFDQ8cGzpPUE1zrnZO9IUMA+ust246RV4zdGNzfUG2gASat5JxQYzFuwLReUK5lZ6k3nCjHMPCDjjxJ5tFUft2FwMhoTnxtT+z2zG1ZuFzgD+dfub0GtrdeFi3bSm4rfir4X09EF7HPlv/mv/vveXj3yt/8S4FvB353LNQxseuNp/ge7wKfzzPj5YrURLNX5nmiukDZ35OXV358vfBZPaP713zZKp+XwMv8gWUvtEE4PQ+8NE9wI9/NB35g4/vZ880h4OqBdIYvy85P5zf2Txdaydgwc7tkXpcrX8orf/3+624kbcK2rdhgcPQhUBFoFUdmKQWccHw4UqtHjzMaPf711gcgB89mxNHFTHXZe7QzBx4uHlML5IRkC4cAN8WUgh+lc9mNsKSCLQ7x0EalvCZqruSUIQlWFUxlzxvNDjSxJEakJqRjRxjnY2er+0b0Fa2F2ioaLVo8RisuaB926JeybRWoCZF+y97EQbSU1dDqTtPa0ZqjhTFgxwOS73GmqmhQ2uIgh3/iurcGi6mdroNBtcKSMUWxThlK6KQ0o7i9/BP7nmJQqbRS0CXRHuN9KWUIDbQsqE2MjwdaeKI0y3n7ldfXn9i3leHdgZwC19vKp+srwYx89/Vv+PD+A2acOG8fWZY3bi8rNSvBCN4Jc95oa6V+6Qz4XKBkZV9X3gpcq3DLIz8v4IfAt7955PDd15zmEw/xSJkcQROhbOznneZd7yBU27uB1sC+k2N/LVqtGL/QtoWSdtphxjhBFKzdqZo6Mnh0DI9H5iky2USjIcESDyNlnwhjZrvc+PLjJ8y2Y5oySsCZBvtGuUL4+l3vchQlDzdsq2hTjJvRAkjG2zOaDWINw/MJ1cAeXyhlw64HmlaqKvnNc9tWrvuNX5Zf+XiuJBrVVZbzK2kAnma+/6t/w2//t/+C5795h5hMC3TJVxzYo9LSBpeVl31Btw1S4jYOuK1BU87DK/FHx56UP++Zg9lxo8OdDnzb3iPTCIMjXW58fF0433aG7HjZF3JKxGVn3a6M1vLVPDMcPcdh4jiOqEtYGzEibLoya7/RNQdL9CdwPc0R1WBcw/gE5g5E0IrWynV54XX5zKtZyHQggziH2TJGfHeBNIdW6eCPGxTt3ZXBBIpxvRtzLWzFUA3dyfHPOeyzb5jaee1GJghdYFM/FbYGSQS8p4wT9vkdx68/8P7b7zk9PBCHgT1tvL3B9VJYbisve+Lzy40//f1HlttnglZmUdrQWLfC7Zb44YcfOZ9hT4DPbC+NvK/s+QvJPeAnw3hU0AMP3xw4vp/wdeL7b5+Zh8Db5y+slx+5Xs98/nLuhremPatYNnLO5D1z+XlhGmfmaeDDuwHHkZot+mXlzQeG4DgMwrIYXi+Zl7eFj69n6lowqoxzxPqADQ68gRVKVZamqBjcODE/veP3/+pf8pvvv+PpwzskOva3ndfLjX/4+fXOuDds54q0he3qcWbCTKGXmcQgEQxCUyG7Sl7pQ8wkpOrJxpBMJ8QQG+Ia6ieqtB5JaxVH6Znw5tig2xq189hVPaKBh3cPvP/6A199/Z7hdERbIu4jlgPb7SPtbvHdbxXvDNjCVguWLuPwdsaNsVNuasZbi2sGVwxGjzipqFc0BIboCePI8OE9w2GkiLBV5fVa+XTe+eX1yueaqa1nr1PrUiNnDaE1qq8dAZGE7LqcxZruHgghMsXI/HRCc2XfM3YX9BaoGNrYy/ZZE8aDEcWoh+zJKuytI0LLp0pCuuxK+ubOGiGI5TCfOtd3VT76lXyFsgslDjRtXUzi+uCffC/XTEaotrft5xIZx7EPEueVL/Qt02E6cnr/SGvKviVezmderpnbJfHOe/JauN0KxRjm8ZkYPX70lPXWo27aqMaCHbEScM6y08vZj89f8/j+xDQERmc7Fi1X9jWjgych1JL58ecX0ueNdEucU+XWlN1UcqvsO7TqCHZgvG8bVQ22eezk++1C2tneNkqy7FU6pSR73laLRCXXfgvm97FTFgzkkrlcCpelUM799sF7y0N1PJw8x8lzmDzTMHTQgnZpkW39pnBtyq0UyBldM7eLYsuO08LoG1wqbRPQsXftxODjI9IOECt6aLCs90ylhbXhdUCkYU4BqT3rGXXExdDLeKoYcz9Abo72oIhzvZRYuijOWIubI/5wBB8pEvsByYwYN5Ol8Xld+HTN/Mc/bXz6RUm3gHt44uE04KuQ3wqD6WKdabBMYWCMkSF4xskyxoCIYPeObRNAvHY6j9Yu/XGWYJ4IBlQCWg21KTl7XLtvm1SoBQRPiEe+kUiqjaU2rm8bZdPewzkkrlNjcI7DYWIygSvKu9eN8/IruVxQu3CaKj5UBoVoDozvZ+Yx4KeZ/7r9H9mA/Za4/UkZn0+4pxl7tKhOiPHsJtPCgC87MV9Z3hRXEnFP/PzjL7xtkY0T/m97ge4xzvybv/rAb14Nlw2+7MrzSyWKZwsDj7NnGF0vGo6wScccrrlgpxnfLFZvvF0btQrDPPHVw8AQA8l4GEdcCDjbr/XF9DhGNZGTc2y5ck6Zy7ZCax0BPB4Y14JrSh4DkjruUMShxqHWU/1AKwYjETceseSOo22CLYU2dAml4FF73wgmSx20Y5cLePE0VaQ5HBYXPM31zXlwjRAtYXYMwVKl32q2IhgbMK5gWkWt7cSqeywIGpQEVjHNY7ZKmxr9jd35+FIUHIRgiNOE8b7b7rH9FtM2jB2RsZPQarEw9+iYXy1pEFAhEO5R1YZJBjdFJERwEcaAawZUyWrgpp3IFzwiEVxBY0NNQbRL8ECopbFtiS8/vUFyOOmyvbU2bDzy1buBb/7mb3h6PDGOA5/zjddP8PalkC+JhYxXZWqdSDMGGAeDXVPvxSm0c8UQCW7Avnsk/uaJw+MT3//+W57ef8D6HjVMpaJpR82KHaCVHW0FbwLCiBiLREOt2/319ZAOIBYdAppBGcAEKoKYR0J0yCy48QHvBoqOOEYKltYst/UjL28rt7eEVEerXaAWnMPugjMRPz0yTANFOn5Ss0fkgA8zIQYGM/ckgTq87T0KzZVCYt82tusb1jgsfUmW7ca+7SzXzOubslDROGAPD3zzr/+Ww7snTh/e8S/+9/+C09ePhMNA0hUS5Nb41Co//YefOL984eX1F+prpslGkx2ysGwL21657AfWIVGsxfDEu7/yPJyeeNpGftwvaL6hu+HNfOHXP194e10pc8V+zri9MRkYbOEUDC+j52EeOMaR2Q9IhDgEfPAU57DvLPYwEnjEWEdToS6wloRxXbpWYqKZSlVItxuvP+28/Xnn058W0rb1OHTmTsRy4Gy/DcZhtBPSxAac87ihY+zFKM1azLbSEIr8Mw/7bd9QTV0TbQU1XTNWW7ljs+SubreE+cDDh685nB6J44i1FvadfS1cr4nLa+Efrxf+/NML/8//8DPXy08MtXLA4J4z61q4XXb++Oc/cX0NpCLovGGXAa2VrDeIExoyvNygXDitJw6XI74MXPed0yFQbyt1W9jWjfOacLniUIKBQbvhr7RCWtc7xhJy9qjtVzwlJ0rI5M4TY81wTZXLlrjcOrHDG8tkLNYK1nYrYdVCa93AKtYQ48Dh8MCHb37Dw+MT4ziirbEtO9fLwuV6YyiK1m5k7JGlmTtbpn+hiOkopqqodjNjraB3A2Ju0t2YKvTYEIi0bhAtgX5xl3t2V/vVXal3hmRtfTugiojh4Xjg4XTkdDr06EPqGK5aI2G8Uko3WFbTObhqhCYNb6SXG53t4hlpaKsY0zoe1IKtAfUV4xQ1I/EwEueZ+eEdzimlNmrK3JbEbdm5rZmtlE4nEv6JaqBq6M2Z+/tOe0HLmF56BnDOEkJgCJHSdqpUrNiOvDKCcwHbjRY0U7vi7z7waIN67xPUUvo1M/3PUP6CFbV4F3DWY43vNt2q1GoQCeBrt/Ma07Gfd26y+O57FGOwYvC2oxD3pl3SIw7xnnEYaa0Pa6lozz2mSsmwbo0lKbiAH/oDWYxFTOrDZysYq3jrsRIIwdFUCTEwHw+cDk8M0eEomG2jtUoriqinac9XfnldKJedspZuMK69u1LoVlZrHJMdCVHuw75g6QVWY4VNzz0XXO/otVbJxbLs/aYqV8CANfZuLVRKyeSUaKUgTfDW4IzBW+FwGDkOXfzknKPWrjVvd/aw0X7TtLUCuSC5UIqhZaW1jCsZkxNaC824/kVNN4K6eegUCTVUvsBmULXI2O63UgrR0JaMaR016kMvYRn6ob/n4LTbiO8HdCOm0698wIynzvA3PepYW0Oaw6hn3xNfXnd+/rLx0+cry6VhisUdhWDBtkrRRHTSSWEWrBWGGJiGkXFwvcisirT7AUMMYqUPcK1v3IyVTkUy/QpetXUbrfbinwFMbRTtr7lzgdkGXK2YUjj6Riqw0/syay53Qlr/YorDAQkncgmknCFf8G3D1YRtCeMEe7CMp5nH44CvH/h0OfPz7TM5KWWSbss1gWt1d7LLgNhulHVkSAuSErre2N4uaLF4azG5Ywls9Bw+nNDgMNfG68uOHTPWONQ5htgdCLsKt9o4aaeNlHy3yWJpGVItIMI4zoxTv8FR25GxYu19yKfLielkLC89T9208lYqQ2tMpptatQgUparpsSroEiQjKJZ7fgYQjLFYB84rNoDz3fprHKjpuf2GoQJSpMds7l2CXsEw3XfjLM1bmnf4KITRM56GLqBrHRuJ9O6asR7TUn8va+vv4TuBh9a67EgMHc9Cf16qYpq9IzUF7zwu9iJtafdntL2/r7ztfhPtkcm/UI3607DTjcT2mE2zgnENe399+mviEMf9z1SwrR8kvGCsdAykoRvgzT1SUZWaEnnbSMsN5zqJrACpNXwcOByf+Prr75jGAREoaWPdCuuakWxZdSeVQkuNqII1Dh+63IvWoDZaKVg/EXzEHmYenj5wev+Bb777LafTE4qy14K57b0zo40W585Zrx2XamzP/RvppJ/7l3//3dBxpNpyf39i+wDoJ5yPuChUO+EkgHis7UOi6s6y7KQtk1PpNyJFu51au4pVxBLCiHW9R0Xr1Bcr3SRuTN80e/E0F7AuQqto3altp+RM3jeMLVjpRTmthZI7EKKpw4SGnQaG50e++dvvePft1zx/+xUf/vYRGwcQQ06lI6dr4XJb+Ls/fuLTLz/y5fM/Yt7Ahh077JibcFnPLHth3T9wmVd0CMyzx707gOto10/1Rro20qXxYj7y8YeVt9ed7bAxvTambHgMjqeh04NizbjSIBSq3xHvGcbUSYzDkfxg+s/C0DumtVH2Cq1iWr9JTW2jqFAb5GXlet25XhLX80pOmVYLphXEhD7fqYIK928PjNr7J0KQOwIXc//M38v/7Z87s79fL9SWqJrwoVD3QNkNZUgML568K7eccanwOM989/vvmYYRZwTNjbZAOV/IL2fW14GffnzhP/3xE//X/+kF+fXPaGkY4/ju2wvLalhujfx2ptYnDEKpCyU8IG4iyDfU8ZFmrjQ+w8Gz3wL11tjylX2/8fDseXw+EgmIzAxOWdMXWus5UOf9vZPWWOsGZkSlUYuh1Ev/DFdwh5UqpV+nVGFrlaVl3q47gwXrFZ+lDyQGYlWSLmjZkS0xD5bH8cCHw3u+/e6veJifCOpZXi98+eWN88c33H4l54HSGnvNfLmsIIfO8n1JuIPHjq6r5NlpBWRxqFSq60WOVTOUAVMH8IqVGREg7NTrQEsWKztb9lRqZw1eldoytS09qqAL3hW+f37mq8cHHg4HsjFY3/m+SQ2H+cC6JPYtIXPGMuBM17p7wAeDmRJi+iFPhkDbFOMzMlbG20izjiqCK5b4GBmOE6eHE/t2hdxgM5zfXlgumbaB3jJqA+otMhX83m8K2qyYYmk1k2RjWG1n9DolJsEfujJ+yI6lZqQKQ3Fkn7AKExNmFuxW+wZ/rXhbwFtMg5Z2WknIaWN2R2iGUhJmrV2dPgmiSmcTW9qtI0GrVQ5lIvuMEe0sdpvxWZA3S/uqtwxsFXLMeIWYhJdUcKvDqgMrjESaNqpm1pdKqw0/gikDy5a47YIbnpgfI9FYymIYfOhW5CIEm5j8jPMT09EQpDKOkcd3M6fDiLeWmnaoN3Ld2Lny0B5oWsll5+PrhtsXTC3sa6C0dj8bemzYOUhgLkf2uFGqozbHED0DByiGde0Z/WCFII2Xl8heoImylcKWevciT2BKRVNhTwXPyhQMD48jR9PIRrlaeJ4dQ3SEYLtFvbU7FjAhwWOrxZfEdU8IhTg0WANKgqLs5zNirxASuksv5BrAQnicEONoySCmYtaMmRrjo6PWsW/D9jPpE2jNuIczNsae5dWKJoPGHZ13JB87fEBa75ccInaK2PHY+yS1/7zFXTGu07Wury/8+R9u/N1PC2/nT6yrMFo4SaVuC1oT6roIawqGwfROThwsp1PoGdqS0VpBazduisWKg1w7Dag2nOl9BKwg5b7tpzJIYnED/dGQ2U3HqVrrUWPwrVEaeGuIYyVm5Xp1lPNGGQ32nWPEUPzAr+MJUyPbWUkvC4/XT6TLgrKTP+w0+R3H0yP/m9/9NX+In+BHuJ0vJB84BcfDaNncV7zePpPLyjTMzLahTXizA8/yStuv3D6/MixXDoevccf3rK87L7axFGgJPiXh41vl5/+80Lzw7gCPs7CVgb1kPq0b591yeG+IQanXSLE3at1JW2UPGy6OPJ7ewcHDQXCTYQ4Ob6V/Cd/hDaqNkcYmQrGKcYUfSLwrypg6S956C6L414x5UOQgRBf7oaw03KWh0gcl3TLGR6wYgofxNxZbI63BWityg+qUOmXc1YPtyyDZlRYKMiiRgDqoVqleiUfHMEeGw0DdN+6FOexBsQSM2v773xvGFNoxYVvfOBLA7g2dCkwF2YeOW5QGG5gJxApeJ4y3aFXcWjBzRcThmsdOUDeLWQUddsy5b5jV1W7d9VAPFVs7GDgHh1scJjbamLrp19PdItXCtCFN8Viqbf3gmhqmSb85jgV/TeTrSl5ueP//bu9NeiXLsuy877S3s+Z17h4RGVGVrCyCFASBY4H/WX9CAw3EiQaEwFKJzDYyI9z9dWZ2m9PszcGxZI1rkBAUsDV0wP09mF+7d9+z1/rWG3H/HakIb89fyVtm//iBb7//Ox7u7rCipJRY3ip5O2HqzN4eOc+VvAjre2I4SGsa146w99TzQpk3SpyJxwfG/Y5xPzH+6iO7pw88Pj4Q+oFaMm6urAghFqwvOA7U4NGy4ZcVutw+U2ko8zZQC3JMuGwhD+QQWqOtKTAF/PgvKO1NBG8r0UPoAikvKAun5wuUQocynwoqCWfBakSGjIvK5AMQ0FLQUokflBAFR0aTwdZCcAV7qBDMtcehUuZEzRlZKq4o5pggVtwMOb+irrJ/eqAPK/7pwPjrJ/7nf/+P3P/mE/u/f8BrIgdP0YpcNrLvmbfCT7//mf/9//5vfP3Tb6k//T+kOvK0K3ycCuslkPIbWQpMPXHZsB76h8AgA5IcP+WZtx9f+HzKfL4UpvIzr3PHabOkt0R2zc3wwQXGODF2StclojF4W7FhxVTLulU2TYTOU2VqW1AyrELKmcs8E0fbsN7VsC0La7GUaugl81pOfJV3TvLGvCbqtuE4Meod9WoBM3ZEbUZsxtXmCCgItgSq3zCq2A2qJEQLVuvfdtjPeaW4gthCPBtMyPgIu8sdb8MZh+VA5PGH73j49huOd0+YGBvJpmTetjOvdeBLVn58fuOff8z8+HlD0yvu47/haJQHEuI6lDfUnFmmOzq3w4Uec/zA4Cdct8PtH6nOtQSczdTy3HjTaunOGR8NUpVcK/044rzBpjfiyVFTZq4Lnb2j7wf2/YDxnmyE03pGXiurNBYvGjHn1IrAdiNWhG1eWbMhxEj0kRA8TII1ilVBbMEkxRbFGeVXD99w9+0nHr5/4u7Q1j9zyqzvC2+nZ07rhc0cCXsDW4W3fwl8CRv2AESLOgv2gqqnOsM6LKSkpCqkLZPt0Hj7UQi256/pmhp26AjiLFID1DdELYkO7U7YXLHJUHTDjB39tOfp+ycev3ng4eHYSsMunnxJzPOC2A5CwwBiH7HREBzs1hY+icGAmXCDIRgliEenBetGjBsII6g4SjXkdaPrH+n6IzU4dB3YUuXz6Z3nS+B9TZzySsLjrcF5QwwTOjTPfl8Ms21DT1CPDDSvWwnovtL5wORGmAw2G5DKygmhawG83hDOHiMRvPC+vBOdYGtsHvntTKnCOByxo8co2M0i2xsiod18J6XQSrvmcqEmQDxlakQdRSmhIUeLhbNb2a8WUxNqE3s3EaeAC5bw1ZPDBdM5Dt0AE9Sk5AUu9oztPDt7T9x1mK8R3QQ7VZSxEXX6DdkcpSxscuZx/y39MNB1zV4wu40wRMbhsZGBDNjaegHU9oT+SOkC51Ph5TXx/PkLT+MdYzig4YRcoOZClQ2X20lD7iqyKVXb+tK6HeXaweDXCSmCeofvD1zshsPRx4iTZ/zQUXx7uEkD9+GXd/x0j7cBmxsH3GpFNRNih/eubbmsgXptTHFjO2VDsL4j2MZalrojuhWfA0E6dALKrm3HphV3kYb1Gy6I+QAuYvpK2O1b4FaUcPxEwEAR6kuPefypeVb1ARtt21iVHj2+ozIgckAHwaRGW9Ddhh0esf0Bpg5KaOV/24wx36FhoOI4vyvr5YKkC4P/xGE6MYXEsTfs5BUfHPb4hI4dLva4vm+bTQsZh1AJttF0oi9Yu+P6RMdlR1SHkcJiM04VWy0Voab3ttAaH4mVtrF1ll4F7xtzW2hBeOMMg8usGqnespsS53dLMlA0M/Yjv7kfkHqgPn7gp/pbXnlnO/ccpjNjrey+TBzWf+ZgHZ/u/wPTg+fT9x0f/2Hg5bRxvPuB3eFbXnLh+eSZV+jkgpse6DQTXv9ImFf8+8/Yt9/xbr7l0E/sDiOX3Y4vp41zOXEI3/LiK74X5DFyd1kJGF6tJbpCSRVT4HtbeYodDz1sh5XL5wWpM+NwYtg9wm5EHybGfqQLHu/b6fZfkfLtlFjIgDh/Jed4Jj/ydySsGFLdsAFcaiepHAoxDkQ3IAFMbv9S2YFuPbk4VlV2RfGdofOBQ3okmUzZCvFrZjErRhxpDri+Eo3gFbK7NBCCWhgLvhuw3iEIrh8RH5irtGyNVqrJiHnAWMVSCZunRIuKR9YB0xcsik8eJoumEdKEGQVzUbQIeVihThgi9hhxyVE0k2OhM4c2uBoIl1Yipb3B2xHTGVSE7uLIXWpdI/S4g8dsEFYh9bnx63Og9P9CSZNeCWlsQ35f8GvbLtfOsPmt2TGTZd7emedXSoLdw7/H9APrtrHNwtFW7u4+cffwK9w0UdeNtGUu21cq92gYKXalvnlMdcQBhvBE33lCb+guG7YoJlSm8Ug47ogPB8Yfvmf/6YnxeM+w27WNmrZQcgxvVDqUgaAX/NK1R/UkWJ0wRhvaNDmwFY2Fut0hvqCuEs6BYgW8w5gntOtbPkg7tm3F+EDs7zEuMC+Vr88zl8sLO3XE7kh9mMlfWrGgm6B3e4bugN1PmAKKIEHQsifjmrVVBLGCqoNyh/cOoxXUsaeSi2XeVlY54X72ILBtC6yKsx1D7zj+4w90H+4Yv/3E43/4nuFuj48dduyuKGvhLUysL4X3c+VnE8mnlVwC6/HXfLvN7NyKKStu+4IPHjuM9IPCxw/U/Z6td1w+7vFxAnEc/83f0b2vPLzNnOI3uK8bu1Mm88D29na11N0jbsMCkwRMeMGFgdjt8F1AtW3QtrJwyRabPWUpdEBOiXW+ELtvMCa2PM+pcFpbFpRxj2ZLFM+D2WHdK6t1bDLinBLUYMRRtGA1NNrYaOiKJ4pvpY6uxwSFXcU/91STyTb+bYf9Wiq1ZlQzmirWeZwxRAfRCOIgTgN3d3vGqcMZQanXkFemaoVSkS3z8n5medvQRRh9z27aM9aMywKXSkgwqGeKDu8ac9jZQOc6Yhzo9ztOpTWfOu+peQLbHvdlOeEwuCsurAsebCbTCAeZxu+taUV8wFhH9Ja8ZtImVK1c1tKGfdPjhr4NQ6qNn58SkiGGgeA8zlu0KloKoq0l1kqiu5J0no57jncH7o57LNJWW9Uwv76xXFZyKngaNkyrwTmPveIfVStyXcFTLerburAUZUuJUts6cjPm2tBaMc2pB84gxmCLkqStjqM6injQijdQaytIsVWgCL2FXbBMfaC/cvNRg18WrCZMTQQqxYGNhmg91jXvpvcBF7W1GFrautE0TJqNrtkJbGv81dIWziEGvLv+mVTysrHOG5c5UefSfLzrgmZtbZfWN0yZXtnGpfHkrdRrQ2sLUkWjaPBE37YtzrT2Q6OtdTWYZvTR2j5fkYqokJatNT+WjKkWKDh/fdOnDVIqV68qgrlataQ2K4QozXZQlZoLXlpQ9a/deC3V3+wQ3gidM/TO4FSw0rL+wV2L4IpQUyGthW1OoO1FpiOwrs1KEqxHg8PhWwuy1HYDsR7rI4MzDB76oOx9wARwXWykDmnEKMmNj22NxRlHKpXlnLi8bGiFYDzROt5LQZaEyaV1etS2Mhcp1DmhriFGO+spGFTaIKBX+kXve7oIDkMfPEVC+1TKtRmyKFoq1tPafW2l2kKtjnot4THU62dJsw2hqFHcFZvargmhiGAEvFa0VKiCqQ3hp1WAgtbcmhYBMYKWBaXdU2x0OG+b5903PzS2YLS2FlwVTG4EMa4N1FznOKtcQ5AOpdEW/nrdQ9tEKO1+aUWvLZzC+rpAqXQOojGYLHRSiasSBiUGJYYCXWuBdNGSO4e1FZGNTMGJwaHgmk0KbXX17Ve7/vzrNQuCKxmRBMZiZGvfD7WoumYFuZJ7Mg15LNcsSLsfCTk3u5QC21qbx9UajsHxD+PArt/zHA48l2cetLITpRNh/zzTP79j0zOHg0MPEcwdw5AZh5EQDV/PZ/Q8w7xhxogLCbPNbO8v7N5f8fNMZ4RaXtnpG3tzImw7jjKSTcG/X6gXqHPGXc6kueKloSYXbwlZGESZ7jxBFHIlzQv2PBPJTJOn9TYpJih3MTIFT+cdoK3dFP6HjYerxU9UMKpE2zYA2UAthboumOqxOPzkcU4xFCRtOK14awihWQWpFc0Z28Vm87MO7ZRay5U+Zq4r/WZZEWnXlEFxATTnaxutJ4Sh4TWdxV9/Zi21Xf9UrDdXcE2z9SB67QpoFlIVuVLKmk2nVQBfOfwAV/vN1VGJNdKwen+9Dh3X+yU40zaagoJUJF9tpLlgbftueypWavvr2uwYFm1WtFza6GK52igbkahKxTlDAwGadhqeF9QIZT6hVGxwdEGobAQyvbOMu8A4hAbgsCDaVkLOC71tbcK1FFo9QuvqCC409OdWkHXDmop3hp6KD0KMMI09w9jRRY8z7buDZJAVdRWrlnbLy9dTWoM63545WhBpbHVjuDbBtwMPkYKhazcaY1sRqW1mLpGCC+7ahg4iibKtlMtCWhcMPcFAuBJ0rDFE6+icIVrFa8WhOGPwzuKuh5fU0kL77q95OMFWxV4JgzEEjIUizV5X1+blzzU3HGzf04079lPPcL9j+vbIeOyJo8O2IYQqtRWXrRvzvPL+duL9T8/ky4xJmU5Ns1RvK4ULoWZC1xClzgvW0krZnKUzpn3mthJF0GCpu4jSwCfJFPoaEVo4OWCRXDBADIHOWqKFYNp30kij4FVth4VSMlLawbKKNgKjVLSkdrD9vpJTIqtCHDBaCKZy8Aaz61hq5rzOxNoaqo04klcM0uAgRfA0pxxoO0S+zkeKXvMv5l81u/+rh/2SlJq29lC04MoRYy0hntnVld557GHkw8OOqTPUfEJSh6ZCXTNiIW4X3PmFz89f4euJaYYPu498HALrXHlbMtPnN3pn6eNEF5WNiKjFn2cYjoTOcxcMb+cCruL7irMDvXc4hNf8Be89nXj6eWTqW926isUEw5YMrgDrK9VGigmN2T5n6lqYa+b9eSFX0NgzPTxAKbhl4z1f6NTT4enjkc619jOZE1m21mgqlmBm+uiIccf3H/Ycno7s7g+UdKZc1sZ3/ctn5veVugqjKby9Zow1dL1r9dhJ241mdRiTrlSYiCwrZc3M5w0TIRtHsp5jH7GpjUKdd6Sho1iDe11ZtowUYSiOuUSUTO8yciloKZhasJuy74QnhL01dM4QgkVioP98Zi0XYt2AZlMp3rFzDfunWVoVe+yuPsuNus5UYzAxEkJ3fbjNGGmeeWNayNKZDYqhrnB5fuH0NnM+J+zbTHo/8z6/M5mO2I10rsMZ0KXlRbJdWmDSVpwv9NUSfCVGi+9Geg/BJnwJJGkvQd55ohSkSLPuSCbXlVI38mmjltzCutXj70d85+i4QHZIschyxWZSoS6khWvJmGI0YsuGpEJK2vCK3mKrbS9iqWK2An2gD4bBBQZf8SlB8kQV9mHAGk85LawxslwSl68nXO3p1REV/nA+4dS2kGPn6cWipTXLHqxpp3lDz57EQAshH7sdrh9gCFBmaurQUqmnE2rAG6WXjbcLnH4+c/rLhdHvGL0nIryfF8LLuQXS97vmsc+VOSXy+wW6AT8NTNYzl/byXC4L1TQc5qSOi/rWzGsSa2gNxTJvlLjgtuY1t/uRUDe0LiSaXSB7iwwOU1awEbUekdZAqAZc2chSW2HenFmK4FXoNFGWFZMTXgo29BjOqC7IfEL9BM4hxlLXn1u7dBfw4bGd8juD2V7aDT5lJK1I3UAShguk9iAQNRBN8+6bhEnNj6wmgvg2SEt7salbOynCOUx6IyfLnC3zT1/bdnTs6fLK27pBXvE5EfcdXSf05hllIDpL1+24jBFvEpoyxQqi7fCiRk+U1LIoVdtLlSlkKi4Jq5/Z9MLwvqG7Pc4H3PZz25ZKwOYenaZ28ptmVqPoVsip8CrCWFbMJry+J8Il4b1yeRVkvPKrs/Bvp46P8TteTeZ363/jqRYmmu/W/75nsGe23/xn9t23PDKy6w74IdCphXTi8vVH+PxOmBX/8InIF2T+ytef/isPn38mdMK0O9J9+S/skmMsHbtnz6+GPQFh/d2fmdPI9pro/vAzz9qhXc/TUvi9d3zCchccux8aXWtdFr7+6Y37tzd2veHThwe2PGOT0OXAr/pI3/d0ofmVxTT4gpXrDlXB18xWWgA1WohToHpL3gry/Iz6Dtv1jOMDPqSGK3zPeJvpg2GnPd4lTLaY2WC7EW8d1ioMle1Sr4V5glPfhmASstbWk+K0+YvlBHlDdKB3B2zvcKMn6katlVorWjKms4TeE81GKRnJlVpoWxwDNiTIqeVtsBj1GJPAbejaEIo4g6kO50vz9CeHZIdicCHgYmufNcng43W7kZSaL5gVtEizJnjFOcWZBTu3zZxDGPAEpHHd3w3ad5jOtcOJboOckS1h9wZCa3FlU6S+Uzmjr2f8/g4TOwb5zLJZQjLsrYG7kXGEqGe8OGq5YMuJaYpY+4W5nPj6XjBrJYhnsj2dN5iUGn2Qd/zgiMHjOWPchWhXDtYQo8N7xeZLG9TzCtuZ6itdUUKtnNIFimLEIDaCXVFZKesFcQ5nXEN32lOzlCYB3zfsrBpiXIBMrY68Jqb7B8bgiCzkVZDLO3p6I11WiEJQQyhKsOCwRBvpfKHTjbjOhGFArMNYTxcWfK24HMHba7ZEwMywtVxS6FrHiUZlZSMu78j5hG4JsQPwjh8n4uMTD8GzO47s//GeXWcwQZFQKS9nsqskSdjnZ05vZ77+5Znn//OfWN/e8euFXVn5enpF1nd8PvPwoWfnwEc4+UpcFqqNcLR8WNvhxaUzhK9nli6Sx8jDS+JlW1nWhf0ZHJ7glKFsyLqgHcQoHExPZ5SgM65GIg5jYiOzlQ2bFMqAStfymNOIkzOlCCVX6pe1HaJ5i59mPAud23jqld2nI7MvvJ7+DOfYMi/GEOyOahKQcGePG33rqVDwNmNrRbdMshljpRGb/pbD/nK6kHNB1bP75kiIE2CpYjk8PEIX6T/s6cIjWwr89DqT6oVUC2vKvH5d+E//9TO/++ML2xel3gX8PvCwRfwAoVYmGbj/d7/hWAxdUv6QnpE1UHHkp0Ds90js+Ol9pWqPD+AmYV+F87bytm2EEMiauKQNkZnlp0JvM4fQ8/gUsccjOmf+8uUPSG3es2VZScmwbvBlOdPbD3SxQw+G4PZstXLOZ0y26OAwfaDHU1Ki5I2lLOxDxxg8vbccD9+wG+847D/x/b/7e+LhI/R3fP26YCqUKnyZE+VcuHy+8H/982+ZfGC/H7h7OvLp4ZGffi68vb1hH59acYi3BC1cUmXeKssmSGdwwbJzA3NnCAS6OmC+3XFvG5/8tyxoCaDC+8gV+WY4V8hV6byHbuI4P7E/KNPDQDfcN9KI8/jkeL5Y1nlgTAekv3CP54HAsl2wKgSn+D0MriMacGyYMBIHy3AXiGFEa0LKilkNJphWt752vL8kcs2UbeP3ry+c1syyCn9Ihc+XzMtLhm8mgofOCFsWtpqwktkbIQZt4SF1hGFkGB3TZHHjPaJwWQyjeCrtJjaVkc+vXym1EoInessYB8T1zGVFnkeM9oy/3tGHA964luFIETGgo9CXPVuu/HQpxHPl+W3l5W2mrMrrWZgXYXaWg2b6wTN0nstJSDmRy8YnHfEuEqJjiB5jO8RY3LEjJliz5U/PlfE8c8mZ5y1j6ZgxnNVQ1iO5E3xveLzvuTzPbBmWHHl4skx9x7EbiPZECB0x9PijJ5ZI3hx/eU54Y6lSuayJLbvWFlwqb8/Kz2vlJSj3Hx+Ya+XraeWnP13YT4Fd73kcer6+zKznzPKeqJOl7zu6buCnObG8Gpa58mYtdxrJ1fD7bUMWJfQeNwS+PU50g+e0zeiXnv4Y6MbAID2bXsi5Ut89PESccYzJ80dX2a2FSQ01FiS1kNSqM372aFU2W3ASsNoKXGztsNZifMCVyPa8ks5Q7RF3sDh1yNyxuDPWRYI/YO4dtkQogcvpmfpW0KVguxVZOox0GJcxS8BFi9lbrE5ITui2kcVhBg/Rsb060lLAragJlD6jNgCR0/JOejcsb4Y/l4J1I4Pt2PpCvHR0wdP9euQ4dFhdSfkLMT8Rj4dGrbFHFqmsVQgS0QhFoF4Mfz6f0SoEZ9mPFowQreeNjfxskXWP/fBIXyPUylc+418nvO8I9xHNgZ8l86VsfHg1nHLiVBKn2fA1F0oBth4HqLVcRHi7FExVvrER++tfYXYj6/6O/J/+C3t3ZtdVPt4PJL8DG/n5n/5MLB8xe0Un5dt6x4+XC385L9xvT+y+HTEe9v6ezjR8793hB374tz/wGCYe2PFz/0DnvyGaX3H5/p5piaRz4X/70184/ziQimXbBX4YW4HTj4s0xOFdwN4HHo+W+X3l8nXm8x/e+PSx534feNoCn5dA3x142H/Hd98f8EMPEvmalT4rHshWKdkw18qf88Z4vsIROsOxs1SrnG2F84B76LDTQOyPsFXKaqjWUW3AxEhUx8ufN+KojHvF+404DRjnyCeDrgGybRZGPCRhnRPVWdwE3WAJ5oDGDlzGykToBmyI1DlykRmtDpciqTfYzeGKZyWDNtJKdQlJAbJrQXn1OAcmgpMOFofOllwUY1swXVLXenYEanJUkzEx4MwOMR6pUJPg9z29zZS5Mn/Z2mZWBe8Lvp9wNmK3QD0bxLWw+zgM1FmZT1AGGO4r0UCIPfWcydmSaWF4Fx2m9yyyoW8TlAPDk8fZHbVWnuffYU8j+EC4j+x5JCXDH04rT2XHaa6cLoJ57vjj18rb88Z+C609OFhs37FuGbaEbhf6xx2xP9LFgUt9Jtrv6Mwn7NAhi2HNhVPI9LUnV89SI34W1rxwzhmfB9TllnsonrwpiKUyQGysd0uHpkYRNMbgOgOLoWbLsnrkPFEULqzsXWDtLdJlzCusycF45Nff/QP68sp2Xoh+wEx3OGsZhyNaVig7qt4xjANKwIhj/lLoDj1+iFhfEQw5CcvbO64LxN63F6UhstbK5/Wd/ZtjeuwZ9kce4j8yPyboB2L8e47/6w/0336kHz/y7i12VtiEF6uUl8r7+8r/8ePPlH/euLxeeD4ov0pPiOypbiH8v8Ljw45PR8P34Ug9CKUzfLzsmf6nT9jHBxb3PaePgegmfqgP/G564T4b7jf4z/KZJJaokS/hxJ0ODFjOpeDk2gXRRfbDHYaNum44vSPed7ghou/7RuxeHGbeYe+09Vksnuf1p4alXQJ+jDzYCet7Yqd8iPBwv4P/+ID7Unn988/81g3Ib88UUbKzBH/PUoVUBJM9LBlJlT4a3ueM62CaPF3wLf8x/I1tPKcltXWYM0iGGuTa8ObpHiK26xmmHWFwGKdozSx5ayvGWhqhJq/UPJOtEPICVSi6US4ZK4lpZ/g0BSY1hCLkOcJ9j4kRf+coXc9qLK85MbkO6wVrN8pWyeuZssx0ruBNwlOJxjXMlau4TuiDJTqHMZ5tnqjaCkxiguAdMSl1hX54wMWI6YRserZtpc5CdO2BgwpVBS0ZciKoYmn0iqHr2O0P7A57dvcT3TTi+4AGRerSgr+qeNtWTZsm1uWE6XtisZBbdbnoRiorJo+ENWPVU2JPyhuCEveBOIKLDtvZtn7zlj56nkbb0v9JsC5TbG0p8LyRSjutIaW2g6ZiyPSTZ5oc4zjgI6263LS2w6H3mALVWSYJqDqqGpZc0ShtCDYgrlBNoxERlBBbAYUEWopcFBlbY6fF4QdDfVtZt8pSInm7kFNlrYbL+Z15mdlKpqaZnCzbZjlXbR59BPUJa1s2EQUbKqHzxC7iOseaUiu/0hWs4Hw7gRUqQiEDXWmlYPj2/yJRsE4J3uGCwXrQ5NDBXFtlG+qtzJW8biwpc57PXOYzl5pYamKphbkawnbllruuNcqmRKmZdRtxQfEhgnONF20VF22r7ajXFwMVtlLQvCFDoFQli7I5i9GMZOF8qazLhZwyueYWHovQDYYxDvgY8F0gBtdwnxVSXqgeahUkZTKOXBua9K0YtppAMkkNy/nM5e3CWgtH07ZnWTKlLAgF2wvHMRB2DjfAeV0wweNHOF4xqFWFLa3YGOk7GF3LeRhtSNjSKb1v9AE8mNSoHG7nCZ0nGIf3jtVk1AgblSi10TdUqGsmm2bpMTlhrafWRF4v1JpQzTjNqBZSaZ9T9YKYqVErhoBIRJ0jd4agplkN7HXF7CrSCdF46GwjgqWE+tpoR9KKAlULopkSBR8i1kXMCCKZSqGGihUa0SRY6qmwqjI78KZibG7fo+XShrVo6K6WOUtDBrpde/g45zEBamlWBry2QL62YqclrZRa8cHhL43yZoJlqg7xSumhd5FgfDv5rxN2jK2U7NoA2SdhKIUZZd0upGVFzMCybcyb8L5a8rYRi0N6x495wdaCSYlPPuO9xY0DT8cHemAMhd10hwyROhhyUtI2Yy1ILrj9A7Im8nklV6Ut26HXFZMu6DpjojB1O8ZhogsT+48/YN0O6wPBWPq80dcEv/896XVPNZEBR+7uETxbdsTuDpWNlA2ff4rI24Xt9YSWleB6QnQwFO7HnuFDz/2HQB8dPlhMANGWbag0Kxa0sHhZMn8pSlfbAdQUe9QZSnTYLqN9bFvDcC02o9EMjfI/7CrqMqUdTpM2B7GVFOa6sknD3oomcoWaErKu+A5c8Qw1IDFivMdhMdHjBocNlhigpgaPITa7hnHNfiMpo82Dg61CVW1FRmVGrOKrwSfTwrGaURLZVf7KDZFOoBQEIQWwRRupyFe2nNp9qwhiN6ovFJ/J9b3BMmh2Kusd6lsDvBqHMa5ZKntDybltI4Lg8VgJYC2ZlWQSK4mhVMhK9RUxEQ0GGzwxjrjQU2ohrj0cAjZ0+GEk+p4kma2urGUGyc3q4hy9gZVG92Jr9s5sDOftDcqMkRmjj1gfsH1Hp/eE+x3hbiD4lgkTd+Wt25Z76LBY30okkUKxBlubJU5VSXUDyYhryFdntRHtbLMoEQzOdsShUZiMMUhUVCBUiw/NRlW2Qlo3St3wTuiDZy6JvLzDvNIbxbmA8dLuD51i3Apu1zbnqs2ybVLrLhGLkhFNVEnkWtHk8VYwfiBZ2AaP+yAcPuzYPRwZvrknjsA44O7uOfxwT/c44Q+elUq1igRDr5U1CM5XxrLw7mYIF3YlkfpC3Rby8oLpEocp8HTsuTtMlCBIMLiPR+6//0C4fyD3R16iYmykx5NWR0qwWmVnK7kXpAiGzM5FeqNE2Qim4qLB2XK1QoMVQ9jbRhnrI+osNgp4pbhCb/irZxOplWoEjRA60/JV3lK2C7UuiEmMvcMcDMPcc7zfsy2tn0iMJUyBLilpE7alopIbOzHAdpmxBayJjSBplHQtSf2bDfvva8JFpQsW2Sq5a6QR4xzdfcR1PV0YiZNBrVK1ssqKF8WpoF6JbHS6kKMSL2fIhUVBzxei9QzHjm96CK7dQEMImA8jcT9w3/e8dD3vWejfMtJBlUxJF/6UCml5p85npn3AkgimNcKlmjBacRE6G+hdazutuz3VtIsupciigaWCP/WE4wMueHzNfM6OIgUEfO+al6oUKoaaN0ze6J25+q3bsDztd4x3E/1TbB5pb1FXgJlqLdVCV4TiK8lmarmwKIzVQ9pQSVRZSHWGbSDisdmTx9Jwds4z3o0comA7Rx0NYTP4wdFPjm8G5VUqG4XgEskXat2I64k1ZUgZu6xEqxhTcLow7CzTFNkNER8ENfU67AuHXcB7ZS5KNzuSGJaqcLk2CjtQNY1CYYVSEtorIYJqR/UZpCC1IpPBJYctFj+Avq7ksnGyHVoXpAqLOOb3N7ZlIUlGViWvlsUCzETjMQ60XzGuhb/ESnu4xUjoYuskKIWqGwvQW4fzBu3B+IJqJhuBfIVeSWvAZFTM2MKONggmgBcLfbu5evEY59iKoHXlNQuX9cQ2n3ivyiIbm2SWAp1rISZMIZ9PSM5QhHkdCZ0QOkVtQFxBrcVhCXJl+deZi2kPUZsz6ehJa2UVYQ0OXzbqmtmSgfmC1ELRSjCR4CtuKExjxA4e2ztiDWig4cHeVnJoA63NmRq1PfS2lTexVNkIkpiz8vb6yunlxGbb4OVFmbNS8tzCnzvH0y7CwVF6ZZkXwjjgjGMoyrsT8lYol5lwsIRe2bmr371WtBry/vo5W5AguAwaLP5gGQmodWRrCEshWSW7yn4Tkm+ttO5SmKOiRZmWDe2hlpXl/Ep1QMn4nKmmkOtGJlP9htg9+A43elgC4i1lbFQFdYI6aT7MUVAFM3dorEgRZJmpo0VdT6gezIaYDWGlDhbnJ3AR11fqpeUi0q4wLAFrLTKY5p93hXVUhnOhuEQmo+cXZPDQBWIpaChgDdFN+MeA6zwWjw1Kp82zmzrBZYNWpdrCVhdSreAC3VLaw2zw+BrQrlIGYbTN2ohxhLRHJt/W8+qxDvaleat/9ImcTzDPcHCksvC+ZH43K7slcdgCGh1/TGcoma5Uvrm32Cp47/jwcI8tG9EluumBeFSKFy4UUjljLgV72nDjBuuKXBaWqvS5tGvOCeX0TJUzJaZmZ/MWszfsPnxHCUr1hvDV0PuFURYOv/8nnuUJEzoOxrPcQVGPbAoEpFbSXPj9yRNO75hlxpKI1uODpU6Jx7t7pu869t8YgreEYHCxDUPJtHqPoSrZtnyEXQt/UWGUTLcl5BCo1lA6j91tSOjBKxozWnPDL8aEkQHraI3d/YbETHKZtDl0sK3hVxZWzWStWMlcslDSiqxnrLfE0rPLI74LWGPw1lPuFOcNzhlMVMwFMkr2Sr9dn9O2UlJGruhKn9tBSDWZKhfEGqJaQnJYV4GE2pXsEpQONKBdQZaNYgpLrPRzG8YJG3VeSbWySUVIFFtILpH0haKCMxBwOO/BX5tZTcW5rrHzB4duM7Vu1KHQ2Q5Hac9te2GzicUk1tQapbNTejugQ0EjdCHC4DCiTOeRfG9xPtAzIaNn2wrmXEj1jDOFySlLZ9l7qLZyqRfslhF1bCKk0xfQDecqpnxqdrzB0Zs73ONAvI8E32N707z2WSih4EQIpoEFcoZMJTvBpebTFgNVFlRze3nM9trEbFo4NmijmEok9gax16KyTjAKw2LpOlrr9Zo4pwXVjWgLxiqSZ7bllfJ+otvvsNaAy8TBE8aK9Scw9y0bZwStG+rbFslKR7G1NSz7wkpGqyMuBe0syRnSrkPvBf84sftwT/e/7PC1w0wj/ObA4eGA34+Yg4W3jcVDCZZDquhY6Urlky6s44WtXnhYN772C7K+4V7+jI2G3bDnYQpMnyIUBe/w/3jg07dPDMcH9H7P/WkjGU+OSv9iePPCV6c8uEoeG2BmnzP9mAnG0C8rIQohGpxRxLembqvg75XQO2KI2DtFs1JNZR0S1FYsWkOjn6lXai9MricMinGV7cuZNb+DZg7GUnvwO8PxMPCGJyZtduGPDpkhz5XXtaBLpkjl3VfS+a2hXYl4sRSBzfzr0JtGVf91f+Omm2666aabbrrppptu+v+F7P/Xv8BNN91000033XTTTTfd9LfRbdi/6aabbrrppptuuummX6huw/5NN91000033XTTTTf9QnUb9m+66aabbrrppptuuukXqtuwf9NNN91000033XTTTb9Q3Yb9m2666aabbrrppptu+oXqNuzfdNNNN91000033XTTL1S3Yf+mm2666aabbrrpppt+oboN+zfddNNNN91000033fQL1W3Yv+mmm2666aabbrrppl+obsP+TTfddNNNN9100003/UL13wGk8NKp+tqCcwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# 从文件中获取模型参数并加载到网络中\n", - "mindspore.load_checkpoint(\"./generator.ckpt\", generator)\n", - "\n", - "fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))\n", - "img64 = generator(fixed_noise).transpose(0, 2, 3, 1).asnumpy()\n", - "\n", - "fig = plt.figure(figsize=(8, 3), dpi=120)\n", - "images = []\n", - "for i in range(3):\n", - " images.append(np.concatenate((img64[i * 8:(i + 1) * 8]), axis=1))\n", - "img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)\n", - "plt.axis(\"off\")\n", - "plt.imshow(img)\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "MindSpore", - "language": "python", - "name": "mindspore" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": false - }, - "vscode": { - "interpreter": { - "hash": "1b7d0cf718d96af9afce6b8a158fe6c40f94b7eaa199e9db8a682b64f9545fc9" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFgAAAFcCAYAAAD8qgoUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAABWIAAAViAHE10CgAAEAAElEQVR4nOz9S5BtW5aeCX3ztdbaD3+c1z333nhmpDJTKlVJlIGqrMxkgAFlGBg9aNGgQ4suNGhiPAzaNGjSpYEZHapRLYxeKUuySilTIqUIZURG3Ii4956nu++912O+aYy5tp9QSQ3dcMAw28PM7Rw/x9339jXXmnOMf/z/P1SttXKJS1ziEpe4xCUucYlLXOISl7jEJS5xie8c+v/Xb+ASl7jEJS5xiUtc4hKXuMQlLnGJS1zi/9/jArBc4hKXuMQlLnGJS1ziEpe4xCUucYlL/J5xAVgucYlLXOISl7jEJS5xiUtc4hKXuMQlfs+4ACyXuMQlLnGJS1ziEpe4xCUucYlLXOISv2dcAJZLXOISl7jEJS5xiUtc4hKXuMQlLnGJ3zMuAMslLnGJS1ziEpe4xCUucYlLXOISl7jE7xkXgOUSl7jEJS5xiUtc4hKXuMQlLnGJS1zi94wLwHKJS1ziEpe4xCUucYlLXOISl7jEJS7xe8YFYLnEJS5xiUtc4hKXuMQlLnGJS1ziEpf4PeMCsFziEpe4xCUucYlLXOISl7jEJS5xiUv8nnEBWC5xiUtc4hKXuMQlLnGJS1ziEpe4xCV+z7gALJe4xCUucYlLXOISl7jEJS5xiUtc4hK/Z1wAlktc4hKXuMQlLnGJS1ziEpe4xCUucYnfM+x3/cbj//n/wseHOz4eH/jm4wd+8kd/xIvPPuPm9pZvfv01x4cD4+HED3/wQ5TWpJx48/EDX7/5mpgD/87f/mOu9tdY26GU4c/+7J9wPJ6IKfO3/tbf4sOH9xxPR15//pLPPnvJbr+l2/S43gGKWipUyLGQY2GZE3f3D0zzQqrwgx/9mOubaza7DZFCrZWSM/dv3nO6v+d0OPD2zRs+//xzNpuBGDyvP/uM7WZD1znev33Dm2+/4f7+jj/+4z8mpEDVcPvqGcfjibu7O37z69/w+tVrXrx4wYvnz7m7u+Pbr7/h4eGBq/0ev8zUWtlse378J39AN3TkUvBj5u03H3n7zQc+PIz89Oe/4O2HDyQqf+fv/rv84Ptf8pMffY/qT/jpxDKO/Mf/u//9kyx4Pv0/UCioCirUagCNxoEbUMZSlaHWSiqJVCLLMuHDAymPVA6YrlJVIuSJD/cfqMpgbY/rbolZyUdV4AzaGfreMtgBayxWWaiKUjS1KEjIeipFApKqVAVa3hypZmLJlJp59+4dH+4+8uHjR652V1ztr3j1+jUZSDkTQiKFwuB6hm6g6wdySeSSqVSMVWit0AoO9x85HA8cDg9cdRuevXjB1c01znZYbaBCSJlYYFwW7o5HPjzck6goY3j5+kt8jPglcP/xgJ88NVZMVhAKFKDA/+Z/+r96knUD+M//b9+wLAsxRrSWNcq5MPtw/hqlNdpYapVnJJWC0gCVkDzaaIzWWGuIKVJrpdZCCAFjNVA5HA7E6HHO8fqzzyBnqBXVXmNZFkII3D67JZdCqRWlNSF6Ygws3oMCpeQ7jvcn5nmm5syXX3yB0wZKJYSAcw7XdfR9j3aWSqUCFSilolBY5cg5syyew+HA6XRCa0Xf93z5vdcYozFGcftsz/XNHqUUx+OBX/72G+4OJx5OJ7TWbDc7dtstm83Asiwo4MsvXuPDzIcPb/npT/+S733/C/7wD3/C3/ybf8KP/t3bJ1m39//Pf4jbDLhtj9vvKMbI75czNWZUBVsVKlfkwmm00ZAVFNBJ/pTrUgEotcp1VwqlFbRrXZWsNbVic0VV+ZCbo70hrUDLM1fXf1eKqhUoKFpRNAQHVVfQYJ3FGi3PZUoQMmn0zPdH4scZlojyhS4r+v0OvRlI2wHTObTWaK2pVV6q3Y5QynrTokqlpEzygQRoY+ldDylRS6HmzHJ3R7/rsYMDB95mgsrMKrF9eUN3taO72sF+9yTr9n/9X/8vUASSH/nlz/6cw/s3LIcTy8MEVK6eX/Hlj77g3/n3/zYPx4m37z7ym1/+gu9/+ZIXz/Zse8jzAasU+90Vn3/5Y5ZUuDuO/OKr3/D9P/wjvv8Hf4Mf/eHfwg07EnA3H0kkdlc7Xr1+SUmJ4/HE4XhiniPPXnzO9uoW5fYou8N0G7rtXq5qhVoqNYa2x8M0nrBWo4DkIw+HB0opWGt48eozlFLknHn//j3b3Z5+s2HY78EoKopaIPtEmBf8NLG/GSi5QtV03R7jBrAWrAYUtSpKhaoURSmoFTKYClreFYeHO07HAx/fvWM5HSkhQMr8h/+D//6TrBvAmOWeV6rd9kX2L9daSrVITgCaWmSvSaVwPB758OEDf/qnf8p/8p/8p3z11a95eDiirMPYDuM6QswU5PqgINeK3Mlq/Ve0Umw2A33n6FzH9fUVV1d7hn7AWUs/bM57n7UWbQzGGrpuaPt6JoSAAmou+HlhmiZCCIQQmOeZkBIxJbnEOVFKppJJ3lNrASpKgTFgjGa3GUjBY7Xib//tP+G/89/+b/FHf+Nv8P0ffA9rrOzXqu0VFUopHMZR9mGl6Dr5fbTWVFUpVX5rrRXdE/Xq/o//p/85SiuU1qBAWyuvp9X53AkhsN/u2PQDvXNQKsYZtLUoazmNct6M48jV1RVdu8aHwwFrLc45ttstKaXzdUYZWQMjKXFte6bRcs+2bRetlJyfRuP9wjTNHMeJu8MBpQxGW4Zu4NXzl+y3e7bDVrZXDegKulJUoVJZkiflTK0VhSYvCT8u3H245+3bd3J2G8uL779ms9+y2W95/flLTCmEZeHtm7csAfphw82zZ9gBcvGUEjHKYHB0ZsPzqy/49/7kv8Lt1TMsHTUXNGC1RvX9k6zb/+z/8H+nt4qhUzzbOz5+eEMtmZefveD551+C6ZhD4atff41fFnJMbDrHOE0s0ZOo/PhHP2S73aBU4ePHd2gFfdfxxeevmeeJmCKfv/6cGBMV6LqONJ5Y7h84vXnHfhz5no18biPp9Ib07AXl5efYv/Mf8Y/+6ud8uL8jjkdeX73A6h5Fz2evbvn8y1e8eHXD5rrj/ft3vHv7jp/+85/xky//kJo19/cnfvnVr/n+j3/ET/7kD/n8J6+4P5w4PIzcfXvHfr8jRs+bN9/y7NkNz58/5+XLFwA83D9wOp0oqVATpJSZppklBzb7DS9fveTzV59hlaHEzDe/+Ya/+tlfcToe+cOf/ITPXr9is5Oa5HQ6Mc0T0zTxP/xv/t0nWTeA/8n/8j/ncDiwLAs3Nze4zoHW5JJxXYfW+ryRFtVyj1JQJaEprYh01KwpAciZHBfCfOAXP/0z3r9/yzRPvPj8S37yN/8uL17/gJtXP+S4LNSasaagysw8HpinAz5MmK7HuA7TDdw/nPA+kGPkj/7gx3TOoVAkepR2KGXR2mKURaFQtZJioKRAjp5lOlCTRxG52g1srjXDXrF5Afvra1y3wdot2u1QykF1jCeIsRJD4XA/kWKm5EpJoKNGV41RVo7dlk9p1+GsxhnNZoD59Ft0PbEbZv4bf/+PefVyw82N5Zl5mnX73/6n94TFk2OiU5bqC/Nx4utff80f/Ogn7PZ7uqGjUgk1EWumajBOozXUlICE1hpnLQ/3Jx7uZt69PfIP/sE/peu3bDYbuo3lb/zx93n+cs9mqzj+4sD7r37Db3/2z+h27/jij/6AL/74b7J7/Xf4+O3I6cNEen/P889e0u2v0PsrMgVdIjoHgkJyVg0xSe2SUuJ0OOKsxWqDNZaPH+64vbrl2fVzAKblSCwLyiVU3uBUz8ZuePv1L3m4f8fx+J4f//gnpDKQSw/dFVcvbui2DtUnyIllnDh8PHD35gFSwqrKly8HXr/suL2u7Icj/7X/6h/w+WfXPL8eoFbZS439TnSU7wywxBAIIRJDkiJNSfKfixRrOSWUVlhrKaWQU8YHOfi1UigUOWVqjdSaCCGQcjonFyklUoporcmlkFLG5iLAClBrQaHPRWZMkdz+XyFFdKs5JElp5UkMgdwOtdo2ipwzOWdijEQrhURK+fzvOWdKKZLIpEzNhZoLKSZCDMQYyTnL+6KSS2YJ/ly8TtOM9wHjLMZaam2vDxhtcMZitSUkzzRNspFOE4MBrY1scE8VVbUroqi1XZf2PhVFEjOlqBQqkrBVlSWhokrSXSW5CrmQ0Cg0RWlSLcRciVmB6ailUnIhpUIkC6CiNSgthUADIWiFXl4Lvlb11Zrl9ZQk+qW2nxcS2SVKyqjSHlbke1OMZGWotrTfq57vT20sRgElyzWoUCqkCrl9qEorSBUFTSJLoWAMShtKTpRcBFj45GN946VCe7Pne/WpIkRPpZxBkpQzUFEaSq5orTHGyPWscr9rLWtZaqEiz4zSSgr4WCUprxVjzPnZ896Tc8ZoewZyqHLPA+drmnNGaXkvKEniS5H7NWXZuJVS5/ebS8F7j+k3DeSxZ+Az54yy5gzKyG0q9ybI++s6R9/3Ata01y+lyGFRNdM00feOru/YbrfsdjvmEHg4ys8pORFjwtqIMQajNcvipUDoBq6vbzgcjnz48JEPHz7yI26fZN1c57DOYowUC1L6yIdSGl2lNKMBgVCo7ZlXDXCp5+96jPVa/Zc+V7Ljof7L33OO9UH75Geo9T0hZ4kzRv5iFMYY2bdrAXTbLyRJL0ZT2j2XUsHEhDaR7FpxZNrLtccktzpOffK665uqpZBSwphKUQ5dBCCqtYJWApZGMFZ+qGrvOsdMCZHiA/qJAJbN0OHnhRi85JdKodo51/U9+/2eF8+fY7QhhsA8jgx9R9c5jDVUEtoYnHOS7PQdIQdSzNSqUMqgtUVpKQ5NW8OSEqUkaNfYKIVTmiklSoqUmOisPJOqZMgJtH28yKXIRS0VcqJWLfdVyZQUpbCMihwCxtoGClTCslBLwVmL7h1Ka1RVVKpgclqxzDNGSyFJydSSUUUAQFkNhVaajOyj8r2Kxx0ajDECMvQ9xS+yr6P+9YvwHcPPyxnkNUpRi7xCQs46AYxV2w8NKE30gV9/9Wt+/vNf8I/+0X/B+/fvCTHiuo6qNHottltUajtDQWtN13Vs+h5nLZ1zDWDp6PuOq/2evu8kgbQW51rhojWKSs3SSFhmT0xRcosQ8MtCDFHur3lueZH8Xy6ZXOrvAiwtt6Ctacv90RqCX6BkjIK/+quf8/nnn5NzYbvd8vz5c6w11NLOjAbg1pa7gcJaAdOpaw5Gex6eLkopaKXlvGnFkryP+kke9pi7lZwll9AKTYJSWOZZrluM8n+5kMnyte08W3+vlBIxRpSuGDifd7VWKEXOJGj3tax+qZLTeB/wIRBDIOWM0QqjpPA3Rs6yT6+NRpFrJuVEzBGfQvt/uYg5ZWI7C6GdDUb/Tp5RayXX9vdSSDGjtSWEgLZG8rZSZD8uCXJknmcWvxCHiHXuvJc95cop5Py3xpBSljPEarphwFpHLJV5meV0q5Ijg0WTsTWhaoIwUW1FGYUzkp+WWpi9b40iaUzknNFK03cdx7cjfp6AIs0zrVAajNXEWihFmkPWGKx1VOtIbf01mZQk7w8x0dWuPTWKnAu5FpSS36mUQkwBv+5XWe69tU7JOaONIcRIjJFSCsaYM6A3+YnO9lAVwQcwlZIK87QQY8I4jXWG7W6LdVIz3T88cH1zhbHy+q7r6EohpvRk6wYC+sizLCA5Sp/3xvPjvuZlLa8tFUz7+qogRXnOFLKf5ZwIwQsQHDwxBWIK7e8RpSpGtWc7l1ZFKDSaFDOQUBic0zhjKVpqxXmcYJB9VZncwNiK1rXtfQpqIZcgtSUBbbLkp9qw3Q9c3fRsrhxXzzr6zQ6lLKkY4lJJOZFS5nAfyQlSqkyjp2ZpSqu6nnVILtRqE/m8UooAqKWAVnJ+ppS5vz8wDJVh2MH2aRCWUoqcb9pQcyV4AZ+1UvJ8t/s0qyJnlJLGWdvaKEVBlQYDKZOWjJ9m5uOBGia0Veii0VVyB0pFY8kxULPHqog1GaUStQRqFkArhYUYZ1LymNxB3bTGaXkE8NtBWtfGbSmUnMi1gpF/yzmRszT5VTWUksk5oXXGlEpVlZyS7Mu1kIKcmwVpyOcYiSGincL1tGaDxjmL6xy5FmpOhBgJEXwAqz3TNDPPHWnn6Kw9X+vvUod/d4ClvfkYYksypHOVUm5gSRa0v21OKWe8D5RS0UajKuSUZCMrnEEZlKaUTGqJoNZawI+U6Eqhtiq4tnZoKfIwxxgpWbqdSpvGVJAb7ZzM10oIUUCS86H1CKJ477Et+UspknImfQKyoOUQlM21kGMihihFfc7nAqeUwrIsOCuHtV8W5mXBDb0ka7T3XzkXmtYaiDBPM6dxZJwmhquNFM36iSBPQCqmNU389IAtAgzU3DbVAg1cKardtFQBO6p07Xwq5CoJdVWGWDIhV1IGZzsBHpIU/pECRl5DadXAj8cSqyIdz9rWi/YezgALUi+UXMkxkWIixySb3QqwFEghUpSlugwtCSnnNKa9XgaFhnaApFLPH2unEwUZAV0KCm0MyhhqzuT8u+BKLaXtWo+JWV3v1SeMlKJsqEaSffLK9+CxmDCmMRsEpNBKnp9aMiBsljURKfXxd3DOEaNsUN4LOOisBZQUyaVBlJ+AViklXN9jjCGXdH5tbTQlyqljjRUwwxhKe8YG12HbfZ9SOifL8uw2toN6BEYrBWscYOn77vx9kmAXqlENyPQMQ4fWiu1uy/X1ntkv6FZg1VqoVRKqruswWuO9Z7Pp6bue6+tbvv7619x9vOfduw/AT55k3VzXYZzDWCv36vn+lqRbK2lu5sbKq1SwK5uFx8Pok5+pziAav4OTrEXAek/Is/Wvuw/l56vHL3z8qrZfOm1adcbj4VK13FilolEYZQSQVorcQK8YI0ZrinNSaLTSWtVHYEnep/oEJKrt4C/tuVZUk84XSlVJvHPJlFSkqG83iSpQYqKESPXxO6zQvz76zuKnTIoepeonu2ZlGHqu9lc8u32GqhAXj59GNkOPc64VagnrHN0wsNtf4VwHRFIsVHTrvDmUtsI6aytQSpazLCdUVRjAoKg5U2Kkxojq1ywpU1NCufUmkT2cBvTWksi53QWlUlMityZDDl4aEVpjgOQXcgx01tCrDdo6lDaoVqBrDcsy0zsneI5JknhlBabdG0qDlmsldf4nAEv73GiFtQbnLIuiPf/5ydYNBGhfo7TzZgV5anstKeQVShdA8fDwwC//+pf887/8S/7yL/859w8PpFyw1pHPoL88bEqtpYQ8G9Za9vs9V7sdQ98z9H3bVzr6TgDfdd81Wsv9geRLsYH2KWemZcF7adoEHzidTlKUtM8FZJAzaAV4QJFSbNewNmBbTnrd6BdKFYLXst5UlmXiX/yLn6KV5ntffsl2u2MYBuQx1+1nS8OqFLk+n4IbvxMrKvtEIblR2/0buF+qFNalsSnPzbFS2n0t4Euhsswzi/ekGM95HtDOCkF5Sy7klCR3SxllpCNnzPq1kiOuYIRW+rzJlgb2+CW0oiaSU0HZCvZfAVhanrrutKUWYoz44AkloLRFKd3AEinOUwNYdGuElJJl3yu5MQeKfJ4zKUaUNgQf6PrH3LKQIUMlsiwL3ntCDAx2wGj9xHAmGKNw1mCdIeeA0grnLMMwYK3F+8C0LOf7agU+DAVHwtWATYuwNTE4rYUZVis+Rtb7es1XlIHOGqbxSJxGbK0YA9q0vcoZKvXcTDVGgI7qWmFVMxoBK0KUIquUKvuXUpRSiTnjlMG0JnEMkWUFWNr9l1rTptaCtVbqoga4WGuxTl4354wdJJ/yIWAHR06ZeZoJPtJbh7WO3XZL1zkq8PDwwLy8xDpLLllA+q5/coBF3j9npsoZeD7nD/IvtQGdtYG61ejGaqnEIvebrkBOxOhZlol5mQjRk3MkhAXvZ0KYoSZpdiKgjVYKozRGSe6YJPumHypOG6qxZGVYphmDwlkrTAZdUTpLEqCU5A2qNFClYIzCaGG2GF3ZXQ3s9lu2+57dsEHrjlQghsQ4RkIoeF85HgI5K0pRJC9gj8JgtEG1RlFZmxgaqC3H1KrVKaDlkCSlwv39id3WcHXVPxnAUlcwWitKjOdzYm2GQcunVJGjWQlzpVCRnnC7XqWQUyFMAX8cmR/usMVjq8PiUKWiSpJ6o2hS9JA9zmQ6UzH8KwBLnIlxIaalASyx7Z0CsKw551pPSGNacp7U9gWtlAAu7UMje3LJmaIyRsm5kHI677MpRWIMKO2oWFIW8Nv0GlfXPEbLM9lZao7kXAkpEpLCx4rVkXGameaeEDf0jS1VW2Px3za+M8AyzQvjPDMtS1s4eXHvPafTSI6RoRtwXYePssmPp5FawVp3/tqcCyFmpmkk50I/bM5dhZwTXdcRgyRLu+2GnFNjLABVkWJgmWemcWJZPCllut40xNpKok+FXMm1Mo8jKYSWLJQzWybGyPF0EqTKaI6nE+M04b1nmue2qSuSj+QYSSGwLAvLNJ27JUopSq3EJEXqzfU1ULl/OHB3d49xls1mQ0mtMKxC1R76gWEYOCwTx9OR/s7x8e6K51cD2gh19alCq25Fm4AiTe5zBdeKVhJQKGSqSuS6EGsgkoU6qAohw8EHQlHYxu6IIRFiIReFHWBePLXCBo1SZwyzAV4NEQaq0lRtyG3H1aWiS0HVxmhQqnXBLblqwhIJdSHonuQDSg8ih8mJOM9kDMoN4BL1k9ed51ka8hUUBpShYJhipPMB7SNDtUQtCXRVipgFVLJuwLkeHx67yMSCSgWzdjRSpsZCCUkooU/MYMk50nU9ztl22AmiW2s+Ay/WWkJLSJQSdk9MhVRkTbt24BtrW5chkHNhGAbmeeZ0Grn7cI91UhiXUrHattcPj53DUpjnma7vsc6QfMRai2rU0lOT5WitGYZOgDUFx+NRkomdYbvZEhrTq7TCvOs7rJUDwq9Aliooq3DOsd/vWZZHuvy8LBi7xVrN6Xgi5cjVsudH+x0//tGPcH3Hu4/vOR0nedaGnhiT0M21HNS73Y7d7prXr+FXv/qKb755xzxH/rv/o7/3JOs27Pcoa8AaakPb1yJiBVco7f5pQJYxpnXMG/ixohP/uqi1AY3yqVIrKqP4BIL79BtYJSSo9aiTz9Xala6gyyfoDtC0FBASNSRIBaMMaCf7BEqAr9mjc8EaK8+2q+AcGJGgUeV51NqcOy3yJmWPTksAnSlojLMNPATbdcxhIpXMJsu+qKhy+E4LqVRsBvPl779mACXO5DhR4oSthZoSJSdQlWfPrnn16gWfvXzFu49vGR8e8NPI5z/+AX3XtfY+bK+uuN5fsb+9xZiOUid8SCjlcHZD57ZQBUKpTcoagyd5TYkeg0KXhK0ZHSN5mkmqg/4KjXT6S8kYs5W1z1nWs2S5n8Ik+0Hr4ursqWFmmWbCdI1VO2zXsx863r9/zzROHD+858UXn7Hd79ns9xjtwCqq1dx9PBCtpe96jNIi+6kdKAPKih6FR6lMS/NYmUbUgrUaoxUlRb75+jecDkf8NPH3+O89zcIBQ99Jo6fthdY6rDEYo+QMRJK7nCqnceT+/oH/7D/7B/zZn/0ZP//FX/P+wwdQAqpLqr8CXxnby1lgrcP1Hdvdju1mw7Nnz9j0veQextD1DtMYfvrcUczE0ACUEBinidM4EnzAe9nPpCueSSU3IFmYKiV/wk5RCq3lWtdaiFGaV64VYwpJJkt9FF1qtQLkBb9E/vwv/pIP7+9xtscYx+efv+bZs1u5gBVqKxqsMY0dqSlFTlNtWqNm7XA/ZQ9oRWHPXU7IRcD5leEiDMZEbEykXDLSiBVJXQjhdxpe5yZZ+7ErCyg2UENbefa00pIZ5cZUbs8NunWAs/ys6D3jODK35lnOFWcV1li2W2EhKP0IsJR2v4UojJJpmaiqYlxBKSnClnHCTx6/eGEuW4vpOmGcNTlTzhFdCrkkUo6SQxew3UK/UWgtwFuplZoqqsKYTxxPR3bDnqvNdcvVpSH0VLHfD2x7hzOwjEeGoWO73fD8+XOKdYRx4uHhnlrVuWhSqtDrzNZmdiSeW49GsSSNch2+gM+V1MDRWmCcF3TNOGMxRB4+vqUsCy82O2E7WEPnHNpsONZKzAGXE65zDMMGUzNxisK8U4klRZbgWbwnpgy65bI5cxonNh1YI2DIOI0isUz5vL9XICRpKOx2Ox4ePsq+k5LIK7pOiteQ6F4MGFsIMWJ6R4gJH48cj0eGzrHfDNzeXnNze8P93QPv373jcHiFanLofrvDuo6bm+7J1g3g/v5A5xxdN6CUEQKkqnK+KvOYK9AanKuKQGsSSvLulKmpoKJnOd4xHz5yvH/D4fiexU+SEx7veP/2txjreP36e3Smp2pNLhqrLMX0JJsoSRFjIJqCMwPbzYaN7em1w08zui5YZ9nuyjm/z2is7rDO0tmO3bAXJmFn0ZTGwMhYqxpgBm+/HpmXO+Yl8nBcmOZEiJWUFH1/LTUCGoPGaDBKjjnd5NR1JYG1xsH57+3lnBlARVKwfPvmHmMVw3bLj589jSyPIgxireB0mpimkbhEAcobIz3GSKRgOouxApqlVguDhgTFZ8LxxOHNez7+9rd8+OqXfO+mww0Z080saUaHmbpsicrhDwdUHHm2q/Q7xaAj1Z8oeSLFI8EfmOc75qWDHvo0oJ2Dpooo51ygAu18S54QJgA622FUJaVAip4UF6zpz+dvyp6u2wsRw3uMEqZjDAt+HnGdRWlLCDNhdlgH5noLVJTR2L5j2A2UEknJM4fAtFSsk/3z4/2Jvtfsdz27zQbTGjTfJb4zwLIssin5GLG7jRRXSjE3rTClMrhBUN4GsEzThOsdtulc5XBL+CXgFy9AjVKEIIWcblqseZkE4Wp0T1WFxqZNQ5pjwi8LqaHQCqGDrTdfbZ0K72fmeZIuXjuwSusMyIEsFKJNHJiWGR8jqVRCSpScMVkLeyIkoo+ExUtnIARSbN1W5CD13lOqJJYhRh4ejvT9wH53JXq+RrMruWCdZdgMdLMjlcK8LDw8PBDCK6yq8JQSIdUyoQqKzFk9rhrgwtpFLw1ciaQSSDWQEHArVYXPlckXaRmgoVSWEEipQpXCOidJDLtUKFYQ1KRXLb4CNEoLuFK1IRmFLqCRDnUFKUjRgsAa0VrqogTI8Im0REzfnfe2GALZBAgR+o6qV4S9UELA1EqvnABcDcWNqeBjZvEJ1ynyyjyxwswRGl7GaotGozKkOci9GDImZkoDW1JI1BAb9aU83boBxiq6zuA6AbMEHctoLaClMRoo5Jx4pD4IdZJa0Aa6zghbikrwSyu+aIyyTPCBZV4YGKAK+m+NJmah065dNBQsfuGqJfM5Z5yTTjxqQKlKKYmcFbvNrnUoFOPxgA8LnbNcX12hVNcAG5GdrfR94wy2GAHmUm4MGWGw7Pd7AVnHyv39HUoVtN6z2+1IjRL99u1bnr9+STc4fvzjH/Czn/0V8zISoufly9cEH0iN+h5zodOOYdhzff2c4+nIN9++f7J1Uyu4sHY3VqZTRZgYuUKqZB9bAaXAdfIcKh79IirnomFlSoFQroFzN32Viq3sL6o6s7jOdUsDUoRp0MCVMxWmCTaW+PjFBulo50yOnhoKJPlQSLFnjCEqRYoJVSqmi1RrqSgKYHXf3jtnSenahVcK0TIbUKVALKQ8Yq92KKOlwLEGsqaWTEgR17YypzQlZFSJlCds7uXlhMkBRyYtM3HxpJBw1nJ9fcV+t8Uqw8c371kOR2wt7DcDtSZSKthBs72+Znt1hdtuSEs9P0dKGYzpMKYnl9XHQwCsHD3RV/x0ZGN7avAQPCpG0jiyFMXQ79BdAusoxrLpV1qwyBNLjOQQKH4kTBMlFzrnsKVgSqL4iTRPZKtxWtE7TadhSp6PH++JceTq9pbXX3xJd3WD1hVnwTlFWCb8dMIU2G0Lrt+g1SA+LFXJ+inhCNa24KXdv7qWR5quM8zzyNdf/5rffvVr/sdPt3R0Rvb9QsFohbP63LnPTRYg+8QHvn3zht/+9mv+9E//lF//+rd8vLtDG0tac0AQBlrrbu+vb9ltd2w2W4bthu1mQ9/3bDdbyTlaMb6C4CFGovd4vxDC0lgpUtgvfjk3mlKWXCm3/TAVYVHkUog503WdNNihFXdN6qrEI4kq0jlhBUp33lqDUvos5alrdxrD6Tjz9ddv+C/+7M95/vwF8+zpup5h6KXbpzR938tLtM7fGbhtDeP6CTvjqUM1iWmFM0BSa8V29ty1zDlL1xuRp/tPJNurPH1lW6qV0azUY2Ot5YG17atnN7P6Cc+3FAFvapXmWmN5eu+JIVJSFqm3s3R9d957c62onIXpVCq5JMZlFHA/RrSRPBYq3ifmyRNmuRf6rkcZoWPEJgtbPWNqyWf2TUqRUjV+8cQoxYTWCBNXiS9TzpnFLwIi5CiAGevaPU1stwO6ZkpJWKvp3JbNbosxlnERqYj3XmTWtXWyVWHjYGs1n1nYukxUnrhkuu0zijFkpakYchE9+bws7AcDNXL48I40j5hScEZhqLjBMgwGVzbczVG63CmhQBg2w4Y4J2Fj14qPgdl7psVzW0EZg3KOBBzHiZIUu8FStSJEz+l4YJlnal0lQAK+KAubzdAApEKMqd1Dcg+XUjBWmgLiDdika7XwcH9kO2y42u7Fw+b2hvHlSx4eHhinGW0tBYUdZ4ZhoO+fFmAJMdIPG7p+ADQ5ixyi75ywtuHcjJamqDrLidZ8xRrTWGEz0+Et0+E90/EdJZ8wOmJ0pZYRP31gOW3Jyx12eCagvGosGeUwtsd2G+I0kXOkpsy2H+i6jrq/4v37j2gjYDda45zCOM2m2whQrC1GG7om7YN4fk6FrRapRTwgU2h/5krwmhyssGdCRWeRnmitcZ1DV2GwqNyQlvo7GHA76GRDrFWRYsb1Fm0GXHeFDwcOh8jbt0f4yfWTrJvT0uBYFRPzslBz5Wp/Awpykfur6CoyH+TfUs6yN2lHzZB9wZ8Wwv0BTvcM8cCt6TF6plZFCBUVv0DFPVXvKWGm11EkVtueYgs1TKgYIHpKWAjLCe93mNCh0ywWbVQoSSwX1iuX5RmtJQozplR0qRRjKDGQUyDniNWGWqS5vYSZrUqoKlJgZzJWQ28NYR4xaoN1A8kn4rKQBoOuG0rb77TR2N5ivcN4Q8qFJSW6oOg7xeQzpzlyGhdSrWhVWxf03z6+M8AiuqUo0h1jxJQM8CGw+IBuhURpm03wQqe0nUUr6YSkJBIb6SQErHWtuxBbN0EotaJpzOdOd62SxKDEGDGG9hDFBI24az7RoeWciMGzND0gTT+5anpFXxlRCrpOpBLLInSrXAoxCn2pGC2bYmyHWwNWchTARhsRuK0Huuw9UlTN08w0zYQlnF939Y8xxuC6TiiMtRJiYBxHQojS+VZPl8AIsV/+9tjaXv8iVGApy6XYLTWTayI3kZBGk2ol5oqPBdtbAbyyUDlzqmgldCxBJotIaiqP0h941Ak2/5aiFVmtry2d2bVFUGgsF6UFhGsgR42Z5KOsZ6Oe5ZTIQVhGtRRRM1BJtZBTbNpImiRFPGVyKcSUiSlLU6e9NFVRW1ItCafBIPK2tARZ6yisFZULUillyJmaRef7lGGtxjqNtZrUWHe6sbm6zgLic5JzboW2/YTSXRvDRWOM0EKFvbJKe+T6rN3Vvu8brdJitCLCGWCprWu4ao2hPupBrUEbhdaQcz0nIroT6ZfWQmdfdbjiwyL3SCz5TB82yklxQCWmQikJYxTW9Wy3GyqFlCJ3d0emyWGd4eZm33xlxKzSbXuU1dzeXrPbbXm4P3CaZ549e97kQlUo+iE1gMCx2e2Z5oV5Pj3ZuqnVF4cGUlTEK2rV87Zkq6TUChdJyKsSRXj5pNBbD8qV+r4mb0LbLWCsYKjarPhaAzNkL2xEkXP3Tbd/OO8wZQVaKvjE6ryEks51LU2mkgrkimpdUqMUxUgxl0sUmVxMEKUIrIBya1X2u4dVrfXMVFNaPGkEFE/UTY9qSZg2DZCtilQKpulibZPBqSo05acKXSK6RFSOJO9JPlBToe87hr7HGUsKkcPdA3FZsEpyr1TkOmkz4IYNbhjQ1pJr881oe5swP40QkKpcaWoVnxRfCNPIsFHUGCkxQIykMkGBuD1hcgVrydbShw5tm2ilKGr0lOApyZPmUeS3rsMZh8qRGj15mSidA+cwXYczCqcgTCfuiidFz3YzcNv1zUi60neWZRpZlplRW6ySRLazBowYmNOkfrT7TkBT2tlYGrtC0VnxQQohcHd/93QLh+CZRtcV1xSGWHveQ5CGz+Fw5Fdf/Ypff/UbfvXVV/zyl7/i/nBk8UE62Q0oUloaINoIgHx7e8Nut2e7ERPAYRjO3irt4RaAozFoYorMzVdtWWYOx4PkECkTYvOEo31rk8OUNddpe2tKse3dBqVXJgqtEaUf/a5WUKII68NUfQYV1n27URvJKTGOM1/9+rf8/K/+mqHf8Nmrz3j56rmA5Vo1uYIgoFq3AoJHerdCPTKKnyBWCdbv7En1E8+vT37Hx6//hKXSmmFnbX+tLYdr1PnGJgprky0lkdSWgnC/krCvGit7bVJTisiifWjNOn8GPEopGNfhrBMDTrU2Nuq5kC8lE6JnnhdiW3OldHuvhegj0Qdyymg0nZPmUKI++gCueWNeGTmp+Rg2xncqjfVYz7+/UtLECyE0qYbcU2cp9hNF76z4HzQgcDN0DMNAqbU1Y6WhIWp38U1TqjJYxR7FrSnoslCSIk0RPVwJQ6uxiEutqCavUr1G5czhcAc5YJTGGoWp4DpDt1F0ucOELDVCjqhaMUqj2vrUxjYPMUqjODR2VGOMVxSLD1jdM/RyP6ScmZvcqqDRSqOtxc/xLD8AAbTEOuGR1SDND/Hd6oeBOQiQVmvhdBoFXAuJwTl2ux23tzdst9szy812HV0QOZh6UssAYZJa67CuO0u2lVbSzDx78yHSyk9Ao/UYF4l8RpVAiSNxuiPOd+TlDl0ndJPvKKVR+QTxCOEB5TZgBox2YjVgLNYN9MOWZfHkJHWa0YrOidS8cx2pSt0Zg9hBGGtpBGG0qijSuYmdc2aZl+YXGlnmmRwVNWtMGdCmo1YtfiTZQFbUlPEpys90CuWk5pCSs/mw1Me955xPtbyuAplKrRqlHdZtyWliXgr3d/PTrZtS0kzJmdBAJFUVruuab5UAKWuTTHpyTbVRKhhNjYnsA3FaqMtEVwK3XeEHLzt0p8Wz7MHTK8mFSkgQPZ3KPNtZ7MYx68oSPEQBxGpOAoxET0qekiOldq15L2A1ZW3urdYUkuOXmCWXzB0lR3IWJUu14i9WsgxCKIN4v6UYcKqI95U1RL/QdxFspsQsTab4yKBfzw9jjeRLRpNSISTpyccEIVZCyKJWaOupvuNm+d0lQn5mDsJg2WmD0pZcYZpmpmXGokkp4RcBNqZpYpkmhq10MVNIhEUOqmV5NBKsFDFjq0JNrVU67VprShKPD9ExG7CK4D3zNDOexO3eWqGUSxdJCjc/z5zGE8eHB/wyNruRcj7ochYD3tK6Ht4HTuPEvIh8YvaBnAT5T7Hgl8AyC5UzhdBMriJKu0Znb92r2ooGZZhOM6dhZBoXakQMQ7O8B2M1w9Cz3W6ZvMiSPt7dc5pm2PR0T8hgqcW0fnL7vK7VW23yAHXuvpUqzIFUIwUBK1IpgvjGwhIy224gFUUqidM8QVU40zUjuEQImS4mulxAyc9QTRwuKLgmaQFZIg1hXOkoVQ7BTCXrVQxgsMphioJYmMeFfjeAa6yZEEl1IRrHsN+IJlJBLG0aSZROt9Kie1YN5EoxNVM8OUDOaLSUuKB0Y4k4jLLM4ySFYC7yEK/mx23i0eoP8pTR946uE7+eEMA6DUqoxH3fk2IhjDM5BZTrUKq2zo88M33rrknHbGGeR5RSOLclBEHA1ylFa+LedU6okQizDFYPF03w/hPaunSmxeBTOtSVIPeVqnRD34wfN5SUCGFpEsBetKoAYSHXjI8LdnD0rfg7xURKAd103d3tFa6zQOX9+zfc3d2xLDMvXz7DdYaUAg8PD/ji2V/tefbiOd//8kv8vPDuzVs+9Ft22yusdSwhcTrN5ALb3YarqxvmxXMcn+4gRCmR+MAnvj1gqkKVSk1yX+aQm8mkFnaKblbTqynz2j1eZVqte5vPnc1CtaUxZuxj13pNhD75oCXgpTbI9fwf5fxnDbEBAs33oBntlpSaIVJFF4XKnJNXbwxhCdScwUeqFaNJSoWuk+k06vFNSTIiNHmlxUPIoMgx4WfPZrdtB6ORRMcaNEbM6LKm0wpnLLrmNr3r6SgsvU74HCh+Yj4eiEtAFcXVbsem7ykpc//hIx/fvEPbynbfk5aZrDLaaWzXY7sB3fUUowk54nMklihgcfMJy1nM8eoKEgePz5XjPeyME6BkWSjLQiqeaDxOd7idR3WO2jn6jZJOmzGQ5WekReRAfjwQfSAZg91fg18oy8RyuGewpq2LYd/31O2GN2Tev3nP4f4DOQZ6Z9nsd9i+4+p6x3h6IPqJ9+OIymIUZzuHbtJfagHdnXH7XHPzGmogX8mYWtgMAy9fveTdu7ds99snWzcAhXS1lZNmjl8mQogcx4l5XhhPEx8+3vFnf/aP+dWvvuI3v/2ab799I9wtpcE2Jpi19JsN18+e0Q8bhiYF6lyHNY6u6+haYyisRXeSptHxcN/8LxZOxwfG00n8QZZFLlNLeK2zZwaYbmC+AjDrY1bIORCjAhzaOGoVX7qcisgqTfsZWibx0cxOHw1TDbUgk8C0Jjc5UamV3/7mW/7xP/4LQojsdjv+3tW/3wA1Q9d1jVkoIGjV66So2qQET7psrJ4rFPE/UE3mtIIZq5+X1jJ5bL3JVmB+ZStIirH6CyTCsrDb7TAtvxEDxDaMQa0+b8K6BJGFmMaoXvfb6APjODWvMmGy5DYMYeOceO90QzOZraDFQ45UG7gycjwekDNRpAo5JkquhGkmhYAqMHQ9m2EgpETwC7FGbHvNGCNkAQlX38JStHToQxSPCBSrfwYoSkksfmFeZmIM1GFoCfLTrVvnDClkcolc3d6w32+x1rbJf0fGcZJ7JiUMVZpFSrG1mmvgOi2cDjPeFw4Pgf32GdmJBGWOC1orrAZXK5YOgufdr3+FrYltN9AbUal1vWGzdbhacD6iC+QYIGe0osmHxCC9FsU0jQy9ZthYUk4YK9YCWlmWELEmclUVxjlyKYzzwvF0ous3VKXQ1rLEQC6aKwQIiiEyN9Zgbp59WmvZVqzh6uaa07dvGpNR83D3wPXuitvrWwZn2O+vqK8VH+/uePPmLYuPaNvRDXtSqYzLAk9kwA9wdX3LpsmP5sXLvsea75pzLlsaK8q0ekTy3ExOC2qZKMuJNH4gn76ljO9Ry3v6ehC2klZ0LrM3E9t6RC9vqW6DHkB3PSmBsRbd9dw8yywhkMcjsZmmZmewdoOymuQLflrw7z2brWOz6VEJrFmgyvCU6CMxymTREKTRm1LmNM6kpaCK4WZ4wTCAsR3adhg0pWYMiru7B7quZzNs2PWbZs3TDMmrFdZtaf52GmlqNCZcKbXtRQZrOvr+Bo+wpBb/dI07i2p7hG8WGQudlUZ9Wpu7St53Rc6aVBIxBhlQogL15CnHkXR8wMWRV5vCdr/jv/4f/SG618w58U/+6ltyDwnPaTxSl5HBJT7b99BHPgSY54W6yHTJ2oCNFDy5+e/oIoyuUhI0q7bGqWn7fYYkjfEMlK6jJN8+AsXZxoiPBL9QkjBYcvBghLG63ziOxxNluIZuR42BHAzZW0gB1TmMgVwVptMYp1FWEefE7IXQ0TkIURGiZon1zDb//zrAEnMhpkIutaFBorcf50lMk5Q5y2eWJTAvXrSHWhz0UypnQ8RpHEkxiqlmEbaJNUJJFSMvMSwKIYk2UEHWGYPBz4vIDuZlvZ9wrkkLWmIwjkeOhwceHg4E79vmKuyM2gqYaZqaJ8Sqi57OJruhMXCcEa2895FllmJUOgvSVaimGT+KkxA1C2q+6bYE7wmLHMo1NLPc1llZi6qu65j8RMqJJQTGcaa3jn7zRJq9FnU1kCucpwIIpCCpSfvf8wGRUkuwaOhsaolFyo31VUQPPC/CXumk6FvmBe8j1jj6Tty6hXmkmmWE/JlLM5QVIkyTc2sxtkQ6LbnlXaqK97wuUFMlTjNq7tFVZBjJB3ysLGi2fk81rkkzhIWUYyQtkWHoqSmJ/MQHkgukTjrz6+QWuVbr7CRFZyybrqO6jtPx0NguQmmrjbkippMCtpT8tMaNu/1w1k93vSFnI11NJ8BJihEfZnLJ2MZYCS1pMNqw3WygilnbPE6kEGSEpbFEvwj1f5lk80KEHTlF+qFvzBNhvWw2QlNdDd1KyeLan4LIkPoN+6st4yhSwrp2rIzh+Ysb3r95h/cLMUWurvZUKsuyMGw6Fu9ZQmDxE31/i3OO4F0znY7E5Hn+7EUzu9W8fbtnHGV84fv373n58jl9v2GzCZzGo0zkKJn9Tia+jKeRb7/9lhcvMvv9Ncb2nMaRmGQkYddt2O1uuLl9yrVTzXm/JSmlGW9XxDBtZbBE6dAqrYg+yuhUrWSP/UT6Exd/BmqcE0ospbJ4T/aRbCO6KszQoxGGwToRQSnVplDI/riyQhQizam5np/1HCO5rNNJmjk1FWqGxlyhKmqszaRCumFGaXItxHFmcB2rN1UtTQOr9BnwhHXHobWAOHsaZR8I0yzeBoOj5HwGYXJKq0JOuqJFjJh5QmPp3hRKmFhOR3LzldHa0lmhEo+HkTv/kXma2e07nNE83L2n320Y7BathdotSqqKzwGfF0KeqWzkLNMVRZZrSsEAJQRCDcwk8v6KvHjiPBLGUyMECVOk8wum71GbDlSg3wwMmw2mGPLiyT5Q/Uwcj/hpIWvDRmn5v3Fitvdsu468GcR01ii2m55Xz5/xcLjjdH/Hv7y/Q1H57IsvePXlFxin2e8Gst/y/ps33H94Q/QzxhkGMcqhoLGqivRTnTkArVBN1BioJeGc4ovPXxHjH6DtE7bTgTSPwrINgXGaOZ0m5sUzzgvLEjkcTrx5847ffP0N98cTGTBd34xNDZvdnv1+z7DZiI/OzQ1dLyb1fWOaUhGteJRJP4f7B5ZlPk/P+PjhnTAdYhTGbIrUWuis+HRUKtMsQHMtiVSl4JLnUUEt5ylA1CJ7c+5kWo01YDSqFnIKUDLGWGyb0KaMPTMU1il35hOT0JwLzghIHWPir//6l6QUgMLnn7/i9etX3Nxe0fddK9gfAV7Uo0m1rOuTLh2rSnLFbkrJ58lxq+n/uk+qBvykJm8NYWWHSBNgPbO89yItbYy/4/F4lhy1Vz2zAo01zdRZS9HUmE/zPOMX36QSEJqk0xrLfrtj6OU5WoGzlYxTmn/MaTzx8HBgv99xdbUnlyi5VMyUxUMIWGPZ9T2unec5RGL2uM5RUkErc5504kMSOXNOLNNMSXtKVm3ctCEn2c8VXRspPXE4Hbm+umq/8dM1gGpJaA1957i+vpHfrxa+fvOO07QQQgYkL1dKbJRD9NgOtkbTx8BxiaQpESfJ80stLDGwFIUzUgx1zhFPR5QfsSmw6Ry9M1Ay/SA+E1WLRNIYkY/mWtE5CxhcFX1vxWEwFNIyE2aDnzqZArfdQlVY5/A+CeCqDbv9FYfpyHiaWZYApmtNASPM5wZ6USW3n2fPOimzNp/DnOXs2mx3gKZkAYLnUbzvxvHE9X5AWUW/cVw/u+WbN2/xfuH+cGB7dYNp5tZPGdfPbkVVUAtLCHSdwymHtVY8MJvFQ0kJY21TB2jxz8uejoApI1pNPNsEXn9vQ1z2+Nlzf1goCrSz3Nx+xsvnX3B9/ZwXz2FyiWgLqVNkY6laJPlbc8t2OpJKIMSJu/v3TPMR2/ccZ8/kPeMyw+GE0RWrFbvNRjw/rcUah23m8crIAHltjDCxkyf7sYGukc4WjG4+bqU0towhhIngZ4Ifudp3ODugMVAKPmmMdbi+p5SEVrInpeTRVJGZoQlRWBPOWlx3QwgnxvnwZOumUdQs7LfxdDorIUptgzeUMDRUKeja6uYkg1tKFWD/tDxQlyMdI/th4dXe8YOXL/lbP+gpDuasKOolH/yWu0kxno5sdOCqq9xuHAnNsWSUz9Q5o5PCFoNOSPOwiG2C61tzJUF1BZWhFeLSFCsJqyDkSKLivUwNqiVTi0hecxKQWVeIfiFnTQqeZGTe66Y3jA+BGheIMxtnUCVS40yeR7TeUFpd1znLbJohsnP45GFO7DaOxUPKhs5tCTFjDXTuu63RdwZYfErEnEgrvRXOY1hjTA0QeTQRi+0wkHF3Mg4w53I+ANckfvWQWE0ec5vkA4oQIlrJFAJjDNkkYvOMiN4Lnc25s+NwjpFUM8s0Mo0nxtOBmCKcUalVxyvvoet6fIyo8cS8yJjHzhihoyVB4HJu4/ka5fHTSURmNUZrU4ZKLlQtc7Rzyk1OlClxBVga9bMV8dqIHKW211lCEHfz/ukAlhVc+XSih/z7J5980iUXH5VPNvX20NQ2tosmAxFvGqHVKbOOsY5N+9imO9XVjf9Rv/nYVa+NMfIY62hESTcb5bUqrDI4DVYJCCOdG9nEU4hEVQjakGOEas+QkdDkCjlGirPCIipiXpljkxXl3LQ3j5NnQJg9Rmk6Y0nWUlOWBLYIvZiySoQEja3rvz1hiAxI1so5Te4suVSsc5QiTJuUQrtS8vuWkh+ndlh7BsbW7lu1MqElNWq1JPW1US3Fv6XtSWfduiS6zUC1gZi2Td5SCvqh4+pqL7dL8ziqZIx2bLcb+r4jp4T3M7lciSayuf5bZxm0mJzlknBYus4xzwJ2xRiwbvWRQRK5HFn8zOFw4Pp6z9Zu2e13hOKJKfHx4wfqrYyMf3b7jLu7E9M0U4ri5tYSokjDDocT2jj6YcN2u3/ClVPns4Q2KUjAlXqWB+WYWCU8OYvkzDRG2fp8fPJ4SlTZ59TKQmmAbQoRrRQDNKO6Rl+uCFS4skaV+DGcJ0C3P9U63atUVK7nTvFqgLs+p/I8NlykgS1a6ZasIVTOKCB1rRVyoRpNVesElNqYNCu/lnPBtN47MQRM7n+HZSfjotv3lCrATgWQn/1UoWsmx0BcFgG/ChithEETMtEnTqcjOa17BPhlwvbu/Hs1bz1yhpgTMUViDmjdt2ZBPRvwKSV7R4oRciDqKow870VL7BdiqlQMVRmK0pgcMbWnqkRJAZUTFkf2MlUp+YW0LMR5Bm3Iw4biAzUGlvHEMu6I+z2mH1C14Kzm+mrPfrthnkbuPn7g669+Baqy2Q3sb6/pnWW/HbijsIwHSkpsdleYYSesPmNIUaOsRVkB1VW7n0Covus+MwyO/dWWZ8+eRpe+xulwL4y82XMYR2IQurQ1llrFTPb9h4/CVPWBmAvaWDaDw3U9NzfPuL69YRgGumGgHwYpLsyjMXNtkoXpNDGNI+/evheD4iyMO7k3UmMytulFVUDGzdALkKI1y7K0CQhJOsTNLFxkc3U9jvBBDHtTtFi7OUuDUkri6VDEzHd9RjDmvF9XtU6FQxoqnwBfSivmZeb9+w/84he/4K//+hdYZ9jtNnTuMUUs1HPj4Xcw0VqbgfXTh+Qh9cyqfAR7mtKpvZHScsl1utxZKrWy/ZqccpUbxU+mTNVa0S0HK0Uad4omJW7TnWQQQmqTLFYWouRszsmkKGtWY/hVAih7VkwyNWjxy7npIuvWioYQyd5jqfTasO06YpsYlmNo4NwqE2oytyiNr1La9Y+r5N08sgNLoRSFrpWURY62msr/KyfKE6xTEY8TIyxVax3Re46nCe+TePOh2/2s0KpQizQ7lYLOdQy9ps8G6zTO9STTYSsU3yb8ZBkbW/OCCp6NFtCwt4beiT+b60TKaKqR95MVMXhqCC2fU3RGk0zFU9C1NEnmQlw8XZNGO9sxV6lZcq4Y21GLWCDMi8d0PcaoR3YVFR+SDFtIItlYmxXCHgAfEqiEthalDCtDO6XCsnjGUUDgrnNoI1PJjLXkRaRlPgQc6sklQv3QC4M7yH3uOvfIJjVGcorURk+v51oRwLgkj9Oejclsneb5zY5nP/geujwjp5dM4UuRyxjD/uo5V9vn9N0WY7Z84xUThdkUYZ5U8SJDK5QRU+0cMst8IsUZE3pCFVPdXArZZ1TJaCp5zsQ+4ZyjdwKIGFexzgAOlEOrdfBJprAQ/EJqUzBVdU1SpzBG2OF+WZjnhcPhA0pdM/SdeIFgKFVRqm3sWpDkSvLlWqSG8zlRMlhj2G4c0FHr0/nnrFPEYps650zX2ImyLygtnqKfyilXfy6oct3iDHFE14nbveKLlz0/+nLDzbaQbcXlyvMry0Jl8iKX3rrKfjBcDx1TMrhaUKk2q4SKLpxrIqmthOEvb1pqpFX+rlotWYsINGtuthRBarG11qy1tMluGUWhpkjJipKD7MMUeqvpnMKoDDliUJQUyEGRw0LtLaU1vbRRGKswjalaYiXWQvAV7zMhlObVUxvQw3cycv/OAMvsPT6IFi43nWtdNYpBNIpLkxwI6BJboqEeNcJJpBkhhCY1kG5BTgGtO6BKMZjk35fZYw1NisBZSz23ST5d3wujQClyCASt8DkwnlYGy9252K+tK1xLJhUZEx1TpC6VxS+M80TXdW0KkriCg8LHxLz4xshJ5CIA0DqaNDeaU0mFHDJm9S2JkpBHH6mxfkIvTTI2runWldZQhcI7zwvLsCH0TzuW7VwQCd5Kgzek41JBaKUNAMv5TF+v6yaShKWxAgolZ9ISiUvE9gblgJTJPpJ8IHmRFAi7x1JVM+BEGDTrRJV/9bhf5UpG6zPDRgOdtvSINMAiGv6iKjZX0uIJKHzlXJzpKk+GooFGOckDnzM6F/E4CIHsPTUmqm1p2ydSBlBYpXHaCCU8l7NMgtI8WFKW708yIlo98RQh15l1H0frlRYNxnX4JVJrblI1CzTgLyVs38mYQutIQRKz2MZTlrx6kYjZlICX6qyRpubzAfI7kxhal3UFB/u+43B4IJdEHx3Pnj3DOvFXiT5SikNby263ZX+1Y5lnTqcj19dXbLYbNpuB4zjSDz175/jtt98Qgow6H4aOcTQNjPXiDeB6uq7nxYsXsp41cXd3x7NnNwxDz7Pnz8hkPn78wLfffoufE7vdFa9efcb79w98/PjA8TCx2e6JKZ+12F98+SXDsGW/f0JwrNZHcKU0QKFAyygoMRN9QCvxFimlCCPrfMevTDMZ7yuzVgW0EVDTSFcJ8ItvE60SKldc12F7h+5c0wivkrHm2YA6A84ryCEhLDHR84gsQMAPzn4pVGHHZsrZJ2b9mbpAnoVRI2O3rYCXSTUZRisMVpq/kntbDHPbiMhaidHj0ka+TjXqf3tdlcUokWZ8rpQkZk+2bCWQwoKfHwEWXTW6avwSCTFwd/fQTIalmPN+Ydht5LmBVhBVsq34mAgxEKOnH7ZoXVBKRimTogBPKZFmT80LEWHXhVmm1YVlxsdCqZqQqhgfpgGTPIvXpGVDDZ5e98KgTJkwj4RpJM4zShlS37cJaIEpChtt3m3pdzvxs9HiWfT85obxeGB6eOCXf/Uzcg5stx3d8Af0VuP2G95axd3DPdN4wg1b+v0N3Vam9ARfsPRYo1pHby3qBEiqZFQtWKsYBstuPzzZugG8f/tN6wpPnKaFrt8ybHc8u33OsohJ6bdv3zLOniVEfEyYrufm5par62tevnzF9e2teEQhBaqY1q6jgWV/naeRt9++5eOHj3z9298iz5YwTHJM5wT8k1MWKAybHtf19Juew0ExjmJUWIUegjJy7pWmHbdGM6UgprnGshkGtBJzyRQCKRcgtcEA4jNhjSbGx+k4nVvbcA3trXKGDKojes/h8MDPf/5z/uIv/oLdbsvrz17R94+tu/zJGFtthFl3Ph7d0zx3Zz+mTz5fPVRUu5CPni9yVUt9POtikDzzDLycJZnlEZdujaP1561ftwIs1HVKkyJ6yU9XD4dS1ol3kpM569hutgz9OrmD5p0j70/YKwvTLB58ap1QuDawQiAvC3ke2Q07dp1jP3R8aL5OcVnIqrSmiPiFeS8fIWZyNqyyuxRlchiuMZUaOKWo5CxFsgyQKK28ekqAJdP3HZsmdS8VvI/c3R2YI8QCpVoMFa1KA6+yyCMtDNs9V71idoltmtlsd1SzYWPh4O+kWAP5QXlBR8/eStttsJbdZmC36+n7inWZ3nb0S8J5xcM8CahcKiVC3w8ko7EqyoSZGITJMo1sd1s0MrWn5FGuecxoZcm5ssyB43HCdgNdr0nNxJpSmRdPTpWqEotaHveMWkmlCFutKtBaZEpKGFKl1CalOnB1teP6+roZqV/j+p46jkzzwjR7Nsrivms7/d8QXdc1+VkgZRnWsfpUCONLGFifNmFjCETvKWmhsxP7ofJ6P/BHr2/4mz+6ZjdUOhvRA4RSSRWU2VCzIYXK4X5h+UYK26AKJclkUp8qVlyaJcdVFT8f8CCTaDZ7mUmnFDUqahYQtM6B2hWcc5QuE2zBuUI3mAaGOZTucAasTWSdWU4f6XqHNop+6Ft+IfK67a7D+yPTOPL2rQcWytUV1/s9io6KJqVAP9gGpEqeXEsh1wRV4ZcFYyogE5pgkPHRTxTxk9wghUi37VFKEXMShTm2sXc0VXHeR6uqaKNQNVPiBPGIrkdeP7f88IsdP/nhnl0/kpSswdVGsV0iHQmdFnYbzbOd5dl+A+MJR0bFCr6gYvPlKwJc5hioy0y/idLcK/lM3VbU5pvXasmGIZRcyTpSchLLhSZ1LTk1P6VCyUEmICUBaa3O6E6x3ziMLlCC1N1JgLgwb7B9B7ZSjXgLGSvG5NFoQhCp/jwnxjExT4kUCiU3NrXOWPNvL2P+vaYIhZhItUKjApdS5d8aGBFCxC9yMMksa6FSmZZMpyDTg+Z5Ph9sGpr+V5/Rt5pXsyKPs5XOWaxWzEGokX4SA8LtsKHvHJ21xOgJyXOaDhwfPjIeH/DziCm2jVmD3dWeXMR7I8RILpU4L5zGkdkvGCc0s3kJUsRYR0UxLgvTspBKkXF6rSCoVQ64ErOYUaaMMpVOdaiszuPaiG0aEjxqidtBb63QdkvJHA4netsxdE8rEQJa+1kh849Fm1OVaQnUakIsiUTKMm9+TWZyTJSQUKmADyQfWE4n8hRAd5hepvyk2RPGhUVPxCXSuQy9JNe5ilShKiMAndFkNKlUdLNTcCBFXFHUnKg+Qkg4NLu+o3Mdph9ErjPOmM7hT5MAEDFxM05sdgOqM1igavE9SDlDTqicBZFPmRoixQfI6cywOc+5R66VVuCMJmsNqTFzsoy6Tj6Ka/W8TpSiecw8ZSSUbjp9rdC6pyqFMV2bkiBL2ve9MDyU3EeueZ9Y3VPKQgoJPwdiTHSdoMQxeEqJKFXoe8t+t2G/39B1ormttZLiI9iplW5eMAHvZ65vX3E8PRCjJOqvPnuBsaJ1f/vmXQNBLL3refnyBafDkV9/9RV93/GZecWrVy84jEfEy0XhnMH7mVozt/trnDPknBnHI4fDgZvrG3a7HS9fvkAbRdc7/vqvf8H9/QNd5/js9Wc8u3lO8IFa33D38R6q4eam5/PPv+BwGLm/P3J/f+D69oZcCvcP9zx7IUXVk3pCpEdWkzQPCu1MRuVC9pHpeOL6+oa4zEzLgrvagxaKJ9aQYkI3ppCzDl0VKcuobNX39NaxG7aEaWH2E/cfRvK0sN1s2V1d0d066YTX5vxfhKlV1q4wzRNJuLKQEmJyLP3clFLrJEgBqVemS+XMioMmETKWquWQLzFSncUOfbMfFzBibfqcM7ZSmvxPoZwhOkM1sASP8wtDHJrZnHjXGD7xr2ld0YYKPtmyTdOBeZxYJk/yBYPDqQ5HR/KFeQkcThNYQ6Qwx0DKMlowhoUcJAlQSVGTZhoDp3HhNM10/S0lJ1JYKBW0EkPhMB7wpyM1R7ra48eJ6XDieH9gPp0IqZKKQtlEBaxf0M4RyczbgbAf2fZbnLboqgjHI/F0Is4LRlvysBFgf5mZFo/T4oUwbHq6Xlganda8fv4cYuD08QN/+bOfsoxHxuMBqzQvX96yGRxXg+GheKZl5P2br7l6/gJtNZveMk0nStk2O5OB1VtDGzljpXicsAb2u44XL66ebN0Afv3Xf8XV1TXPb674/ve/h3UbYiq8eX/HP/nH/4SvfvON7EsFNps92/0tn716ze76SvZPs7I9ACUmzsJiCGLwezpxOp149/Ytx+OReZqYTiPD0OOcQzUj/pV9QlkB8UKqYqb58uULvv+D7/Pnf/4X1Io0bXLBh0BIqe3jGmcsxXVi5pyEkdtZh3VOplw4R84iRTrlE9thg3MdXefonND8r6+v+A//g/+AH/7ghzx//pxxPDKPI8u8cDwcmE4nlmVimk58/c3X/Mt/+TN2uw1/5+/8e48mq6WI4Wj7HYBzAXn1w+892dqdzUF57NKGEGT8qBaGnFoNpmgsk5jOzbOS89kAUqZOInJLPpFqNqaqYgV1KkqLv5hMxJTXFq+ymRAiNbczsE0Rurq6Zrvdc311Td931NaYqu1nllpZQuS+gZDjeOT1Zy+x1p6Zhsl7sl/ocuLFZuBqt+Xadbw9najzjC0yLcRUjaqanBUxglixaEpu10Fl5mnBOoXrdGPgwgr8rgyWOcxkCvYTCdZThNGKzbBhv9tBVczTwjj6ZhopR2AusvMrLWNvc8ocR89dKBxuLMEMlL6gNgaceLPZIiwTlRNUGS5RakDXwKAqCei0pmtyFm0ipUqzqbOaPimWhwfxbUGkQ5uNePNF3SYuhZlwiBw/fmC73aG05WZ/zVvuiSEzzR7jBtAdIVU+fnxg2F9h+s25SZhTYp4mnLXUnAhtMipKN8PVwvF0IqTM7uq6NZILYUlobQkh8vBw4NmzW25urhg2Dtix2+05jjPLcWLxCe0y5mmHCFFqZvYTp+lIJbPZ9Gx3G1wvtZIAcwub7QZrFVpV/DKTk8fUyKALW+3ZG82Ng1t7YmMy1kTcMDT5jwXjKAGWKRIfJnQqqJhQuqP4yjInRp9k1L0q7HsNRTOFSMqJWiNmGChVn01kKZKbagq6VFQU4FHpQO7kmd3ogapK8zyzDP2ASoGlBg6Hj6TscYPFdv3Zi2m3c/jFEUPlw90b+gGsLdxc96iqxftkGun623YNCwpNrjIMQyt3Bucqhd1uizbdd55G868LP8k5NI4jxhgZ5d3UDjEnbNOXdn1PyjK4ZZom+s0g/qY+ouKCKhOGB148e871PuLUEVsDxlhQhq0Gkz0qZXSd2HWJq6HjetBMU0WnRJkzcVrIPkCKaDIqzhSvSbOj7K8wtmvy8HV6bWP/pyy+frlAlHEqCSUmtVmAYlGypCanDeS4UGMl+hG9d/RODPhrHvC+EuMkuW6IJDTLpOkHh+o30kdUFWc1m02PnwyqGnKKTGPkdPCcrgKnU6CzFmcK1O9GcvjuEqHG+MjqkcZZyc2tXEbHhTbdR0YSrhTHR/lMaqPmckznzqUx5kw9f0TmIyEm8TyxUHNBo4gNYInBk7MUmKs+d1kWYgp8fPjI8XjEN7+UFNK5w6EUeL+wLKHR4ARsOY2jAAtNr5ZDYDNsqChSOzSXEAWhfpQin8eACW0fcsxklaDo5hcgm2pNrQvWkFjdPkB8M2oVuYSPQZKt+HSopza6TRxRrCMCQVF1PYMrNJ1yzkkmOrViTGjOMrmploJRqo1tFaZKjRkVQSXIvrFa5kCwM2FecG7AdgNYyCgyWnSXrcBbTRBlogbnza6WQgnpPJVE5YLtDL11dF2POooZb/GR4qNMOUIRl0AXEjYWrJbO+cpLWI03dSnolX2S8plCXFefCmR9RVbRjD61jP+MqY1oLKqNTGxTDNJqLPi0DJaUAsY6TJvSZF2jkmsB5VC0EagO1UCy9euc69DaUFJtG/8nHhhanX9nKGx3A9fXO66utlir21QgudHXRBslYGAIgXmeMcYwDAPLUpjnEe9njNHc3F5zeDiijXTVUoqSxDqLsYZxOnEaNy2B7im1ME4j1lnZO7zHKd0Mbg0hKE6n45m+utlsuCk3QOWbb74Rc8nTyOk0SmeiG3hx+7wxVk74JdENW7kexvDx40cZJ9mmgNw/3ItxZfd0WUyNuXk+ieRMJDGcJTkyyl6owyjdOo/tTtUKbR+p/qUUzIrAG9MKikJRBWstQ99TUmIeR+bjSPFJRikbi+kc2gqNfZV35VIaqwY04o8iuljpGK5miaoB6LWI/M9izoVOc3ABVcXXoUlDspKRzTomTJNiou3jyOWV6g9nT5q6vqhWFCPeMbl1p41x6HbpXOvAqiZRKKzyIv1k3o2n8cQSvJwBzVxdKyl0QkgsIeFTxtiKLwnd9hl5UyK+10WhkiIthWWOLLM0HRSakhJx8eiYsUpMxf3piB8nakkMCsLkWaaZpbE0Y4ZcxPdGaYsJCWUtPnnC3FNCRO0zuZl0Fi/ThKr3ZJ0o3lNLQTeQeR5P3H/UXD27Ybvf47oeZy29NVwNAy+vr7kZBsKy8ObXv+bbr76iI2GfX7OxMtp5qYl5POKnkc1uh+Kqda8WktfY7nG6DiVCTaiaKMk3s1XNyxe3T7RqEp81U9p+GNj0Pbkq5hB4/+49796+Y55n9rs9g5IkUlvH1c2tjNm15mxQvrK2gg/M08jpdOTu40fmecLPM9M0sswTMYSmtxdpc8mNUm90Ay4/aVCkwvF05PrmGusc292OzTjSjb3I0ZrsI8WI0b1o/JXBmQ5KbCDLTN9XXDO4NTqRleRfsckCrdVNei3UamsNr1694Mc/+hEphTZ5IgjLuE1Y9H4m58jzF8/Pe7sU6YXgIz41en5p/k2f5D//n4h1Kt4q8RFZ1Aqu1POemHMml8fpjCtzZd1HPx3rvP7/Kr8spaALWC0SAmvEAD8kTwi+yWdLm4gZm/econc9fSf+Z6VNSpQTVLaAlCvzsjDNEz4GUHI2w5orJmpK6FzYGM3NZsPVMNApqDFCylge90aq2BWkWIhBaOzkJp9WMvAhJwe1P8uUUOvZLvdeyumxuHlCMHozrB4YwqY9jTOnccEvmVw0rZ3YgCwlnX1tiWnhIXp+uQSiHZiqYUqKfakkhC00dA6TKi5nXK30GjZodsoxZaCU5n8iTZH1bOu7jh0Gu8BgNAnINaGbybZrgzBqLqgU8eOJZRwx3YZNP6CVIYfCdJoZtjtqUeQCx+PMskT6jUyWSlkmho2T4na3E/uDJukS2bbIZM92B0o3Y391niYVQ2I8TZyOJ8LzW8pmg2ljv61z5CrNa5cy6Ql9xgCO45HTeGJeZpmQtx3YbAe0bp4YOVJqbhK42vaOBU3zxKTQGRgc7DrFoDO9TmiTcCajraYYQFeRXThF5xS9LnKWZI8tBqInzR6fErZEnFL0ncN0mhDBl0iJCxqLwUBjuKDEh2XTGZniF6M0DLMYrFZlcUPCdhnsVhp4bVjEvCwUKsN2y5WTKXFaiaR+GHr8ZuDj3Qcejg8oXWUceXdNKoqQsgxfMOoTqVCbRIqRvCWnBmAljP2UIfz7xzLPzOOEn6bfmSS3jnXXRgYHoBUp5PPks6EqdFH4KaJLwarC0MH1dcd2o7GNZaOqQeNQtVJjpMaIrp7BFTZ9ZegVnQHb7gFVMqoKEKpKoCRFCZU0a1J8hiGDdue67izxzo9eRSu4npMMfDjnhWW1IyjCZCGKtD55qMLWHHqDdzJAJ1GxKmN0ET+nZparjENpJ+d7lWauTCsWyfU8zcxTYDotTKdF5PcKGlr9bx2/15jmlBNFq/PmXUptVMpERZ1N5lawIuc2srcdfGvXISeZOW6bk/5K76TRLWP7OX5ZKFZDkTHM8ziL/8p66K308lplctEycXd3xziOzUy2sHj/KA+qQs2bFqHzpZzwzRQvtm696GcjzvUUIOWCD1FGEn9yeCsF0UdyzA0AkqlHiYRV9vGAzKU5vxdh7GgtQp22gMaYVsZXGXkdBFx6qtBay0Sg2ui2VZ8P4JW5AbS1EoClkKWw0Kp550hxbrQALCWK3p9YIFVIlbwk0pKISyAYj59mXDfg+g2qKrLSwhBR6zhBdZa4SXNfrGXXEYc5BGpIkDIkmZ7SW8em71GpiMSnVEoUPXpEE5dADgmTCuaMQTR5QtMIqlIFOU3NqLg2EKUqSl3bj7RiTgrZ1UMiZTGhq1WfvU1KSuKhUdX6rU8WMflzR7RWjXONLaBM68IJ6OE623wfxBTUNdYDGBmH3GR3pTxKMkSyIZvRfr/h+nbPfr/FmDZesG3gpSWxVLDWEYJnmuRrNpuBXCIPx3vG8cR+v+fq+ortbnveMGOKWC3stL7vpBs8nhgnkQeN08g0z1jnOAUxybZas99dYa3sD9M0YrTBGsswDFzpPUrBfr/He0H1H+4f2F/t6FzHi2cvOD5MHE8jd/HIl1/+AOc6XOe4v3/g5Wev2BhD13fcPzwwDD37/e7J1q2mNfFfDZMFAlClMUCKaGOVsdBGROayTtxqdGJ4BF6cFmNXK0layZmsNNbJ+OASxQB2mWfyIs+lcx39bofaDo3e/+k+LOZ8piowRuQ3qrbk5bF+qg0MqjkJmKcrVtszSKx0lVG91oFNBC1m1zFFXPMRUE3+sMYZTF9JMFWkiEVVquFstF1SwjgrumIANLnNUy8N/HzC5hAgiefiPSkXcpZOskK8bNYxfiFLEaRzQkXYb5vPQNP3G1FuEFJmmRLLFAlzkj0wZuKyoJTGItrj5XRgGSdUzQStZVrCtAhTc/GkIvtSUSKrUj6gjGHyM2HqqCHSVUV1ohcvS6D4QAmBog0lyHh5VQqGSlgmUolc3d1Sa2G73WGGAacV277jxfUVL673vP34kY9vvuXrr37F1WDZWeiMorcKqyqzn/DzieSv5SwriRwgKhi2w1nyVUtE1cdELPiFru+4un5KzyP44rPPJJfVGmcM4xyZTifeffuGh/sHcq7c3NxSTQfaorRj2GxAC3CXa0K1ZE9RmKeJw8MDdx8+8M233xCbb9xqBk3N2DYNEKqMci3l7H+kaDLbWggpcjgeuDndAorr6xuWxXOaZuZVwlGkMOtcB21qYmclMZQJjF4YwW10qTWWbDJlkTHASiGT3FpCmmLA+wXnDLc31/S9Ewp2y9tyjGe/rHE8EaP8fsfjib7vpQhscu7Vk81g0OZxqsiTxgqcrpKsWs+gutK6JciSpAu4sk46ka+Fx+//9PMVrMk5n8fqioRIoZQYWBslLFfvxbNEJrTVc85acsEoQ9/JaGattDA74XcaQzGKMe7K0LbWSle45HPeSxIW7a5z3O42bIeekioqJXSpWG2keGlswdWDJcZMDEWYfKqxCpovoGBPK1NQ/e61PBv7VuoT5iebfkPfDVhjmaaFcVyYxgUfMklpqlarG3lrpALGEiMcfWQ6fiTZnuwGwuaKkCupCkgxdA6jMk5pugQbo9lpyw4lX1PEcPgsZ0VGlPduYKs7OpVRWmMVZDQlCxvUqYpBmmW1QJhG5vFEXxV912O1JeTANM64bkupiloUp3FmXiKb+HgvhRgoKXK92SLk9ZYPVsjNhywXkdxLLiXNlJQKndNtMlXgdBpZlkDKFes0Xd+Lx16thBTpYm5+Nk8Xh+OBcTrh/cLV1Y7NdjgP1oiNlQmlWSqUVo95epvRVgrQzip6p9h0is5knBGAxZgCFpSuFFXQ1mAtdE4zmEpPxiaPrT0qRcriCT7QdTAYxd4ZbO9YyFTvmcMMusOqHq0qVcue6gxsOoXRCl+z+KskCGGhak1XEq5k3EZhjcJ1BtdZDscDKScOhwOb6z0OLSxca+iHnk3cUKqYYtdauNpfsb3uKFXMjWPyOGUegfQGbFay+Ou0fHtZoox8fsKmq5+X81Q62/Uy7EDRfE8zpjEcAVKSSWK5SG2jiiZPCVMKnYZtp7jaOzYbhTHyLCksunaonCnRU2JEExl62PSKvgdnKkY330bEy0qT0FWkmiVkFlNJYcQpqK5CFTZZrat/ZW0Nbx6ZnpQz2KJbHdj0l6JmQDxaRCJkMdrRdwZnwKjmS6gL1pRmphUpKaBtB6UT37xmIq8awKIwLEtkmQLL6JlOM/DoaPld4jsDLHV96aZjLU0rm3IhxECuqrFc0nlTf+wilLPje4zS6bHW4DpH1ztJ9tvIQjFajaQgHRejOko2lCSTf7z3UrzV2mjnhWWeGJeR0zxyf39H1c0ozohuTqGxpkkOppF59nLDLkubcy9a6JDEl2Hxge1mRyqF0zyzRE8qBdNouqYdnD5NKKXoug41NA+DlFHOysNXae7VnujD2dhSsbryS4GstKZoQwiReRKH8ScN1eZ2mAY4NCOhNlQQVWRjFXbPRNJBut9Vk3JmWTwxBvFWaAVXiQmVpVuf5sSCJ8yRuCS8WjgdR6p2FOVwu0q1ltomHawMnrPxF2J2FauAPDEG/GkkL14GledKZyzbYeDZ1Q071wvtfF5wtY1mDIllnumnBdM51K5HFYVuc+xTzOJHEsQ3JasgZkw1o3DUMwO53VeUM4IKFWs0KQaWeaarBpVBJUFkTcq/I5t4qpjnqRXpMulC60GMwCrCDqAybHr6Xhzwa6h0rsO5DmsdJRZCyAQvWvWVXj4MA+ogvgHDZuD7P/g+r1+/ZLMZqM2DxbYDpzysXcFKP/Tcv/nIaTwyjie2uwHI3N1r3rz5lpxf8vnnn/PZ61fMp0kmb80zyyyeSy9evODDhw9M08Qvfv5zfvSTP0AhQKs8d4sAqItHf27YDFuur684Hk+cTkdqrbx69RlaaYZh4LPPPuPbb79mHGd+9atf8fr1Z2y2W/a7a25vnzMvkfv7j7x//x5rLDfXNzw8HHn//h37qyuev3rBx/sPhLgQc3iydcs+kquYbNY2HlPTmBalUnNt57KWSSDOMYfAJmccnxYLmdg05KqNkB36ntwKLlvFl2gzDFxttpzmSFkC0yLsl931wvbmiv7mSg5e3YCWFegOAn5Zo8UQ02iUeZzoufpippiJKWCUoXMOpztEtCOyCGsdui/UzYY5hbb/F1IzkDRaS9ewaShUBZUF6KwhsgSPz8KOLEqmvMUgY7qV0W3E+yfAjELGsWueFNR88/4tp1PAh0xBy/6EJoXKlAJLCMRShGWTCllVrq93oJo5dM7oKGVXjJXp4JlPgWVKpFBZxoXT/RGjKip0lJoYHz4yHx+ggMuK0/7IeDgxnyameQHtQBkB++OJZhXHcTzhnGU5bBmUgc2Gzjry4inLjIoR12+wtcjZVTLPrq95GEceHh746T/7Z3zvhz/kxauXPL95jq2w0YYvX7zg46vPiMvC3YcPfPXTn9GXAPOBH3zvNdcb8XsJ957pcM92t4P4go01LCkwj57N1QbXdSgqMcyoHNBknIGPd3fE1KHdNU8JsTy/3rP41pzImW9++1t++dXX/NVPf4oC9tsdV9c3JGUpkhqSC3Bm5zlyY3DcffzAuzffcjwcODzc83B/J/mKs3S9o+stSjmcc/zoRz8khMCbb99wOp3amdGmgwEgflen04lxOlFK4e///b/P27dv+ec/+yn/4B/+Q+ZpISfpiq/eKfJcb9poSpGXRGOw0ZKceGx1DrxeyDERqjSRhk2PMZqYIv+vf/rnOKM4PHzke19+ISOIEdBBnnthcPR9R0rgfeCf/sU/5Uc/+jEvX77i2bPnhBQlT9Aa3diN6gkfOtXeU6kVVR+nHikl0h1rrRSrq5fe71DIc2MNGZxzZxbias6+slnWvz9OEKJ518jPzzlLLjgthJCa0WEleclltTJsNlv6XqaWiBxJ6nuFFPchyajZaZKx4H3vuLm9oVZZVz/PlBzoamHjLN9/9ozPb28Bzfv39zhg6zqGTpoW2vZo5YjtDI9RGDOqikl9pYqUyW8ouWXnSjW/gtz8TrIAZzVTKM3K92lC5DmGUmCaZoJPpFQATS6S21ndoZQ0U41RuGGg5p5lnnj79sisRuz+itsvn7EUAaqU1jijsBk6VdlazU1v2etKnz1JdUTTUfsNxhoqELMU49U5FJbb/Y67KaCAXd9xSBFbFb1u7B8rB0ecJw4f3jP4zNXtF+x3O6KH09Gz3VcpOG3PaVwYx4nNbos2llgKiw+keeH1i5fnq7qaT8cGsMw+ULVpZ7ejFpFSuettY/fL/bI0z0rXS87VdR2lyMQxZTq0fVrLgPcf3gpTrVY2uw3b7UYGC4wj03QiBC+DBZxmOs0cjwdCmBmsTBqSxo5h6BXOQqmBWrNMyOvXCbNW/AKtwXSKbujotcemQD49sHEv2NRKXwthXhjMwJVVbGrm2fUeHx3dQ+WruyPF9KheGAoFTyFSUsSowmboub3a0LvIafYcxhOHQ8DFE128YUtkO2yx1nB9c8PD4cQ4zXz97TcMVzv219cMmy2lCjtwW3fCzJ7Fz2ucZ3Az2jhQmuPpgV27ZlA+UQW0KWQIi22cFvrB4p7Iqwo4TzVLKbO/HjBOGm4hBGLOdLVHtyEts18YpwlrDVZbDJY8g6uWjXPsNo5hoxGCncLoHtQWXQZKmsm+QsoMRvHsuuf2umO3UWgd0ER0zRidsSbTmcJmUGAioSaSj+R0oApZVJQETaouvnz5rIqoK0iuc2NyyvsRUnVtLPAmAyyJkj2qdFhl6K2is0p8WnWhEOmsQVmNARmEoxzODeSyqgzkNYx2FF1IEWIo4rX0cDyD3PW7ONzy+0iEciG06T65lNa5z4SwEHxAFcVsPD5kYmr0zZrPYEnVihwLOVVKqhjjMFrGa8UsD2jJMk1knUazzJ7eWKouJJ1Z5pnQaE8y8tjjl5n7ezjOJ2a/EIOn3w2oUtsUI3Eel45MYJpmpnluI6eF4TIvC9pYzCKjn1MuLH7BztIRGucFnxIJiKW2w9SzhIVSEkZBVsL0WI3hjFbnSR4rlbU0yE4r0bA6rSgNnTZaE1IWhsAyf9dl+jfEegCbdjgjOH5pI1M1orv0cj2zTnTUNh0iNypqonMyOpAk00ZIheIzSQV8mUlLFKNbbfCnSaQsytLVSnUd1TiK8uhODFBt1zePhUpOlVQqub2P+TQSZ08JjcGCpjOOXb9l1w14M5PrwsY4mdSqpHNQYpTud+maUahcgfKJUe8qszhTkdfO+Kr1PoMsK9opBaiMIAvoarGIr5CutQ3LqN+ZVvZvihAiShsqGq0qfZ9By7rlNu3H9Q7bOWIuYMR81jihU6aSz/TulEFri7Mdne1QJeOMUDJfvrhmt3UYDfMyAwNGJxlVVsXwtFYto5nzjA8TH+++ZbP9AV3Xsdvsubu7p6YPkBUvXryi9mIsnUMiVZkIId4A18zzzMPhwPsPH9hst9i+w09SPCqlmeeF8TShMOz3A6CJuTAvnuNpbKMxC/vdnk2/IfrAx3cfqQWub294/vwFQ78ROZnWfHj/nqubG7rOst9vOR0fiMmz2XZQMtFHUvRPtm4rIAVrf40zgFdUERND1fYDLY0+H2Zqls64lpnv0NavpnwGJ7q+J1YEJMkJ25hGw3ZDGEdZ8xgYjw8ySj0uXJWMG3qMtSK/6nqyNkSU+ALkTImlXS9FNU1C2DqEpRaCnxsLo6NYMEomI5SiqVVTcCgr5pmqSdJ0jGANuhRK2wvXiUZy2IqEzKdALIlsQBlNUoklLeisMFUAGq10GwGsZNS1VuID9oTN9IfjyLIUQi6PfjhKEVIS08EYCBmKL9gVJMOJxDOLjCcFmSgzzpHj/ch09CQvxdoyeeZxbGZzrgEsJ5bTIgykajkdRsbjxHia8CFiOylOxMS6ktu55seZZAwqZU77B2wFM8h9QamNUafOk/u8D1xdXbHZbMgK3t/fc//hA6pU+mLYuk48f6rm2dU1L2+e8XA4cDweePfmDb1VPLveiUxv6Bm6SJhHltMBP52wfUeNieA9y3RC1Q3GGCiJGGZK8JS80DtFWCbe/vbIiz94urWLcWlnveJ4mnjz7Tu++fYt9w8ntjcvscOmAZ7AKtlb2VOl4JfA8XDgdDxy9+ED9/fiozFNY2OIdFgrMrmci7CWKrx4/pzFex7uHxjniSq1N3KeGGn2GIP3kXFaGKeZl69ecXV7w7Df8s3bt3z926/5+PEjZZUXKCXMihUEMRajLZ1xaKWI3mOMALZDG6tac8G3iSRFy9j0Dx/v+Mt/8c/5cPeBzz97ySrBDjGcARbnHJ3rWrOqMk/L2dx1s9uJjLEK6KlKaWft0zUSamPJynI0xt7KmDTmbNj46RQySm5Ag7yV3nUMw4btdksIMqBg/XnrGb92R4V9LAwhrTRUdTa1TU3uW+WApYSIqSIf6LpOvAe1oWhNzPH8fkOQBsbiA/40i4x4GBj6DTmvUzU9Kkc6bbjqB14/e8Gu6whLJI4jnVJ0mwF7dcN4uKNQqSkRvce3Ln9O/2/e/qvXtixNz8Se4aZZfpvjwmZGFKtowAa7yZYuJEAXuhKgX9H6h0JLEGSuGgKEFqkmm7ayKqsyIiPi2G2Wm2bYvvjG2ifJ5k1HbWhm7gyTJ07sveZaY47xfu/7vBml9FN8OXrZN0n9L1SzXY0pXMDMFw7YU6bhWS7bNVJVPM/s90cO55nDeWKYAxDFvWNFRE/ZEbFobSjWEZqWsFgSMah+Df2GpBu00jhdMCnREOlUYmNg01kWWqFDQQWPUQXXSINI4wytbmnsGl8sPhZsmpn2D4QMrHqBjaOJiFuzUwqnCs7PmPMRpR1lW1DtgmgjpzCwmmdyDNicGYZJmsOWI03TSpX2PDOej4R5wihV2SWFXBSpaGKC4CMgziRXOTQ5xSp8RaL3HI8nDocj/WKBdhZrG2FjOUsu4gCenvk8kKeRcikPMFKJrSkCsg3+aa+mtDz7Q5T3ujOW3ll6nWktOFvAFCL1+W6kvUeGgVKTbJFnd7/ouVoHhsnzOARMk2iM8DXO55GFAhsNjYqsb1rWC422nveP9+IIRlNKU3s2EjmPxKKxDl7cXrFsFuwfM0wnjuOJFGGYC1PQ+FVk0basulYYHGHm8Xjkcf8grnotQ3JjRCxZLpf4WdbBx4dHSjG03YK265mGCWc0bdNUwH51lOkCKpFzYJ5HhvOenFpK93zR8+nsCVMk+4zOGpUKOUf8NMreKCeMRsD63pNCoGsdlEzOgTAf2ajIxiluVi3LxtC4hDYZTCYrhS+ac3KMWLzSqCbTrVualQNnydaCVRiTWTQe33hi4zmpmae9Wczk2RNNwOtIdomnpbtWNIt7MtY4q8BlqY4gaaCtz4FcUBhK0ZQscXZdAgZLo2XYYV1BT9I01DiJ6VqdCXGA6CSKpBqJK6qIJkGJ5CyxTO8D42w4jQM+ZXIx/Nrg+a8WWEIGXwFiF7r+E48jJkhCEY91wiDTgosjIVCM9MDLuUHhrMFoKxvnkusNkFrWC7vFz4HUZZIRgSXM9SFY3RcpRXyYSefEeTwRUoBSMBc3Qs5SI6o1WqkK6KxT8lwIUSJC3nt5GCgBSSqUKLwK2WRNI3OIxJyZ66TiPI74eRIHhC7IMlNVuijtQKbKZSknUp0iSEuAxEmsVviSUUWqnX3NzM5++rW36X92PW1KuFj/q120/Mkfs6jvoUKIs4lojVTGBREVcspo6+SDkIo4OJLEIaRiS5G8MEqSj8zjJAuudkSloIkUa/EFlLUCV2wFvmQKxFwIKT89vKbzSJoDOURKSuiCqJZNy8K1jNYxo+mMJRSJWFGFvxwitk56VM395Rjr/yfUamU+x9ckrqXrq/N583jJWepaYUcpTzbQosUZoyhPltwSn1dgCTGjQ0KpVG3MGXQl8ddIibZGohTzLCCnzqGt9L2nEsVJkTMpFax2OONorBAtnFE0jWG76elaW2GAEyVPKOWxrrrQsiIleR1yCfh45nD8xOv0CmtaumaJHz5yCEdUVlzvbp8s7rFp8NMsFdnI5MsHjw+e/X4PRrFs7J8Q+MH7yDBMGNPQdZlS+TLTLHG+xtkqerknQOVwHlF6D8qwWK3rhFcs3cfDA4vVAusMi77l8fETKQem4YxGnCJSifpMV7VaaIUc1PXFEyVRj1i/skqgBbaYppmSPCrHGqORtpmcZVOmBAcrLSc21fYhmfwWDbZ1uNZSksQnQ0jkUaIPxloWeYVqO2zToLXFWOFE5SAxgZzqBFTL3y8mfz70lEyI/okrpZLB6JpVVRqyxByLaSR7n4usE1Hik/IR0Z8Fm/rz5VyBetETSahG3DSFzJRGbNK0xaGLrTyUal/JdRVT5VlrmsdxxnsIUcQbtKJoiCkyzjNTDPhSSL4IwFEpSrGUCp/MSZxyGc94njifRuYhkHwh+owfZ8ZhEB5JsuScGM4jfpxRBWbjGM7SPjKPs1QJVzvupdLwCbw5e7LSTKkwHs+suh6a9mnSD6CUkSaB2pqF0rRdR7GWjw8PDKcBWwxbt8AultLmkBPLdsFuteZ6s2V/OnI8HPjUOU7nL1itt3IotwYfZuZpYJ7OrHqHQuKw8zBIvMpJTlMAwBM5TTRWMY2e/cPjs903gBhmtJFD2vk88PC45/HxwOwT26bDuLbGUOt/lBKBrzLfhvOJh7sHTqcjh/1BpoV+ru5cYSvUOaUIFXUPtFgsca5huVryeNyLmF1kYFJqBZZS9mlgdDwecW3LZrelXy747b//S6ZRYpPTOBJTqJHQtjpdJfIE8kerJPKrqljQOEuKkZglWh1ESacoxeQ9v7x9y+P+kY/v39aNtgxxjJIoaVNrTk1tiZsmz3YnPJvN1Q6MrdWyM6Y6AFCF11fXz3LfLmf/UocVJdXNdimVKSA/b34K5GRIIvbo+nxvG2mzaavY9KfXk2gjfyFraBWsRCDmKdJ+qQUlltqYmDDG4Yy4l9ACwi8KQrnwBZOIJHMgzoHiM6YYtDLy+SueFCMpBmyMdIuGddexXa5ptSWkmTTPOK1o2oZ+teTd+YCvwProvYjgQZw1l5hPqS7AFIVfbipLrxRqxElchCU9Ee+gXPrT/+5XMYrgA/M0ykBkCgxzZA4ZpxNKZ0xWImriSMpIXEdpgjGEvqPoFhZrSr8i6RoHzdCS6FRioRMbBytnaLUiJnFQawqN1TRGGEjWOpzpSKH+8zpS5oEYqt8hZiKaqGzlh2UcmT4H4jygXCcQ5KYnu5kxIy06IWEzpBCYx5lpmDDK1KhCJEwTcZ4oxlJSIcRLiYMiJUX0Ep8oQfZvGuog+bPDaBxnhvPEMMz0S+GOCT9PnoMpR0J8vuEPQAkzKgZ0BZzb+r3FKk5SCta5p+HwJZFgjaE1FldKbecBZQtZQzYGZVuUaihKXPka2SOoorCNZdU3rLpIpz3KBawNKATJMI4yiF26jLPQtAZsw8JG4lykbly35KxIRRFLIOSBjGa1gLVpafOMf4Bw9oxpxHtFyA0ge/fVZknTOonUl8jpfEQ7i2stbSfPDpsNXd+jtThBhvNA4zppmnKOGGdS15FjJquC0rImFeozoiRS8kzjgFESZXquK0yJGAolKVSuYgZ16GuNVFiXTPIzOXhKdSpSjQ4pDLQ2sHJw1TtaUyTSZSJZgc+RMRVOUTFkxYwCE2mXFttZklEkY2UNJODUgFMjVg1oPIoGXRQE4WfmmIhOjBbUY2h5ElikRAFqU19KGNfUmO7nOKjMIGWQJ3PLgi4RpyLOZpyzaC0DD3Ki0UhMSEVKMuQkjZTZNAiVs2BUgRLRJWKVxPumEDj7iVAKqcig99cslb+ewVIUU5CaSZkcXHLXQaqNYmGYPQlFURqlJacWk7SOZNuQEuRsSFHT9wusblEYchZ7WVHg/SgbaaUYppl1H7FKOCveR8lSIRGGVBJzmCHNsjExSmBVuhDqQb1tGpQSK+F5GKqDZWDysULAkkBlZw/nAVD0fU8MYlGfxgGfktSzxcj96QgGfJhwWSIqRmd8HKA4MoYpZNqufapu9CHgUyDkhA/SVmS0Flv1Wez8tjUVeJuY5udUrP9EMiiJJ7pQNZvLfxN+ErjieBzIWvJuzonNLw6TCFeuI3mp6NJJ4bIGn4lxxqeRMM1kH4nKMB7O1d4aMeNEaRqSNZxjAqPRVizQnW1wSuMymJTJQUj743BCzwE1B8oswo0q0FnHbrkmDBOTPlKMozEGjOQxcwiEeaIJHSpJJViJgThMtflHNixohUqJkCRXr1U9sNXXDApWVyaGNsI0KZURlLMAwIqqHBeBNMnE4vmumDR42TA5p3E+YbPwgEJOJNllY5yimEJSkcW6Q9lMyDNznvDZE5JsIJerFYt+Ja0TGoxT9AvD9VVfAdCBlEZ8gJwDzkWcMeQE85xolwrbZvAzH+9+5JuvvmG9bNj2W0xynE5njg9Hbq5u6DuxU2/XG0iZ0+nEw8M9XddhjKXvez7d3zGnyDoElFbMwQuErGge9ydmnyk4XNMSaxY4l6Nk4Z1FU1h2S8LC877ItBrtWG2vsM7QdC273Zb9cY/3E0plFp1Dq0zyE6fDA9fX1/gokMrnuqyzcriqTTcXP4u4IwteJ2aTiCqSVQQVCcORPA2oRYt1FotU1AUfiU2Lso24RrTGNg6tFX6aiEUghrrVtNse5QrFCIclpcA0REoqEBIsEmZRsH2H0RbjFKrN1d1VaIOr8ZvCrGaiCqTiCWkilVCnupFExuhOvpxFKwMYcIpizkhWklpzrNDKUJQ4zXJ9WUqSf+88jwzzgGo0i82a1apl/3DH/uEeVEA1K4ztawWhWEeTKmSTng47z3X5uTBPmeALzjZSf2oUYwycppFzDAzIlLJJCo0heEfShmwMOVimORJSlKnu/Ynx6EleEabEcBpwxqCUAEhzThz3Z8bTJE4+DIf9kfP5zHCeUNrQuIKqfGCdSnUQJgiFmAPZR8b9AbW7okFzGkaCj2hlsLbFx8LgIycf2SpFv1rTO8fD4cR8HtmPjyyyRa39U61vq1uuNzfEXPjw8IlpnPj48Y6Pd3usW9K0LcvWCdR8PrM/PrC6WWGNtPeeHh/RpbBYyDozzWfmcU/OZ65WG05xZrx7eL4bB8TgcdqRC7z7IN/r/jSj2yWq6cA6GeAkGR5oDSF6jscj59OZu48febh/xPtZQLH1WB+JNRpjqiNV1UFRxucZ5xzL1Ypvym+4O+w5nM/MPtIbhzYOjaUgB+zDYeD3f/MD9/cPfP/9d3zzzTcc7u9xFkr27B8/4UMiJ0vbWEyWGu1F25FzqfZ8S7domOaJGAPWGoKWakmfC6fTCdd1UkOK4mF/5NPdPT//lOUknvNT9WXnHKvlkkXbygFynKVWFsOHj3f89O4jWKFWxOhxCqwWNtHf//7PnuW+Bbg8btEVyH6JUmsr7tqQoohKZKRZZoYc0UXcrZvlksVyhTWWBy+sPGPNE+eplGr7TnLQXXQ9zjQoNCnCPPnafCnxYZVBpYxJib7paJyjcw1o8FRWX0mUlCg+EkdPmRMmwdL2tE2PNZZ5mtFKhj5lnrEFbhdL3uyuWbcL4cD5QJ5nemNY9h2b7ZLlg5zKfBE34gWoT6Eunsj7sO6lvYfeWsgSl45BIrkliWvXKIehQT2XugIcpoHxsGc6ngklMyY4R5gLdCrQqEhfImO2KL2mNAuGsMfnxFwSU9/TbV/gljvKakc0DbZELIVV8Wy0Z60jrxeObadRRbEfJX5jbWJhNZ1JOAvaWqJyaDKdghcrxSdXuB8mTh8ngmqYUcyA2q3pYsTg+cIVzn5gGhpO5zMs1uRFYtT3nE8DTfIsUTzMkfk4MnQDvW2xSWFjocwz82mozk/HNGewjlQ0s1fEAKYkpsMg8VHk/CQDEzDaMo+RaYiM58CpnbFGIt65MrOETviMwx9AzQM2ZRqjWFpLa+R9M55H/BwwRqrfRWAOFfqeaI1laS32NNEp6BtNt7SoRQtdC+0S9EJYKWQyHpgpaIqKbFeG4zHR8YjpFrTtjG5mktKcpkwJkXaRmOKZfql5c9Xw6tqg7hP3p5loWmkUKvKK7Mc9bTuiWfLt7RWjXbM6DZjhzNvjzGkOnGIncaWS6VWkaQ3rdc84LzkcH4klkFVitVnJsJ9Mt2hpu5ZSYfvz+UijCrQWlSWy6b3wPS5NiTnPoDzKBKyN+PFAazK6f76K7fmUKcFItXRUmMuANwSMAUOENDOd9mQ/4TR0zlHSTPQDlAfWduS2gy82HQ0zqkzkcmbOioPX3I2Fn06ajx6OpWDtSLd5iV44jrngTc+YIufhntX5B8J5Io0Tqox0ZoEqhqP3lKCkoDVraXCtTDaI5OLJZaaUgFZZxLIQpEJbCTzXUtCpoDIY1TBO4hwmZhwzvXVsOjjMTXX1Z1SJbBpwTeZcBoienFpiKcTco7U4H3un8PVnX/ctKXuGMHPwirlARGN/pVTyd2CwKIGK5shpODP7qVKzCyHFal80YjeHp6y8HPBls5JIAqki43PgOA2Ux8zD4YNk/hqLsQ0f94+MY8Dogc5ZYuzoGlfbf2JtwtD4EGrjcGJZYU3L1YL3H94xDBJdWi13zLMc3I6nE4fDAR8Ctml4cf1ClFqteXw8iHW0tqM4a9AKgu+IyDRofzwSg2ccTtgyc7PsySRyEddJKZmiHFkrmjrtiEWmtCEEqfrynkbrp8NCqeBLo8TRU4qSaudnui5tS0pLYFjli6Ml11tUba7zwDQOjOcTPo3E0EvOtoITNQrdZ5m0zxGdClaZ2pQkNYY6F5yqbewpESeZwqoQyNYSjeYcAspZtLUM1tHbBqcMTVGoStIvdfFXKUu8IBd0KRjEOr3qFwxdT2sc2VrJrfYts5PWJ4HdBiG+e5k+DPsDfhLrnK+UdxMlq90qJWBRo/HVBSV7M/30PnZNg7EC+EwxkkiUcoHmyfRwmp530pCTTIDIWSqQYybnyOyDbMRzQRsI8TJh0E+sgILCBVt5SeKcaruGxaJjsVzIoUEZ2q5htVo+sV5y5V+UUlj0DU2rKGVmGo80vaPRHY3umYfI/d0dOWh6t6HvG87DgYf7B/5///xfsF6vWK/XvHr5UoCuiMg8DgM+yOfh8eGB4/lI8/CJzXZDmALRJ9KcmfPEPI1471ltdoAixsTHcaLrOhZ9z83VFmUMTdvSdR2PxxOH44FffvmFV69fopSIpavVknkWjtBmt6VtW6Z5Yn/Ys7vaVXvo840a1CWCVgrKaCGZo6DWi6aYnqawVCegKoXpfOJsNIurnQhbxjDHmTDPlJglJtBIdakyBmfsEydIU0hdS9GFbAvMCe0TySfm6hYax4nVtGSxWtI0DbZpaLUi6UIk4tNe1mmVmNUMTmB1rjM4syAHiQSWkCkEkpJsrS4OzSXKUKHdIaKMojQRFbK4Ci9LjypQGzWICWM03XrJ7Vdv0EtLdoVSAunsJYqhJeKnoDJtxB6L+o8dZ3/XKxWFT+JgcY2jGGlGmoJnipEpJuY64QBL4wzjGOhRRCON79MwM86Rx7tHxtNImKIchkJmOs8YNFpnjNWkFBmOA/PkqxZnOB5PkrP2EWeN1D5fuDi1rtphsBmphCwFmzQua2xW+HEmp4Kx8jqNPjD4wBQTuAZlHbZpef36S+7ff2Q8inODKdE2wv7QjUGpwna15vWL19wfHgghsL/fc7W5ojGOVdcT0gQ5MZ4eGf0tyjr6Zcfhlw+0RuPIdOsFRc34eOZ0+MjSGjqneXlz9Wz3DSAXTYiZYQ78+NPPPO5PhFRY767Q1oERqF0JM3OY8T5y9+mOw+Oe8/HE4WEvLp8iPLgM5BiJPrDdbujaDmcdJcmzNGeB0jtnefPFK7778+85DEd++OFH3r3/gJ8m2rYXKKw1FK0Zpok//vgjf/zhj2xXazbLJW/evOLvff8b5uHAz3/4a87DQE6BcTiwaBfCCnGa4XRCKUPb9nz95VccTweOpxMPD3uMyZgilaUpK/Cy6e97qaDVSqK3RlkUGQN0TrHbrHnz8gWb5YoPHz7xfvqAnz2//6vf8/btR/7l//jvsG1T3WMZq4qIaEbz3/yf/ptnuW9PYOHqso1e2nYa6xAMvvA8Li0SucYPpY0F1oue26sr2q5jnGds5TOValdPVchNoUKM0XXSK62PPnhxnqSESqWypxRKGzC5Nsw5aZrKWXhURQSnEhIlJFJItNahG4uyjmSQNXSe0WUme4/JsGwct1fXvHr5itV6y+H+UeC1IbLZXrHe7lgtN9KMmfOTs1jEklyjunBxHusqHpFLXVur0FYjS7EVt/fFrfwEjXmG68OHe/IgnLwYFafjyOkcCDFjmgajagMlsk5rrbHKMfjEPHoomr5bsFisWC56GmtwJdOiaebMsjXsGs1u0dIYTfKJkgIqFnEZqI6ehiYnbHV4oit8dd3y8uYKazuak4em5xwi+zlw9BGvMsEoTOtQIVNKpAwnWrOgRxqIgp9rMYIiRsP5nDDNzLIL1WGlICvmaaZkhbE10l00qShCkHugUn4SbZWStUWM7cKmhMg4jgznM91igbIS2+u7jljv84Uf8VzXPI1SoWstbeOgSIGD97M41StXJAaJ6/tppm3EtWi0JvoJrVpM5TGJK6QRaL+y0qCms8DNlQjT1oHrCk2raJtE10Z2i8zNKvPRjIRp4jQXWgKHuaUvHVd9z/e//ZK2OZJ+PPJxOKKNwWqDD5a5aE468+nTib//6hte7l7w7esvufrrt/zLv/6Zww/vOc6JaX+gjAvaYctqs6U1Hbv1junjHeNxJoUHXt68oW0lFtW2LU1r8V7Vs5thnibOpxO27ZinCYzBtQJJvzQuXoohSikM4yhV5u3zRYTmimpQtVVN9pjSJNf0jpJzZUkNpJwrZNsQJk+cPboUlk3LqlN0VpP8yBDOhHiPH2aCKQRl2fQvuN0oVr2mV4GrRcuqNdgU2a5aXr/YkXPhu++/Y38YuX848h/+6kfadc8QFPsxEoYBZRqU60hIgkQVRGxJSaI/CknCFHGWSKmFtMbl2siUYpQ4ZBDujiNL3GvRsV4tYD8Qosf7QT67zuIaGOIMNBSkBvopm64URVXQNVLlnZUi5MLoPbOP0tpl//8cESp8Btv6IDDbUrOtudZ/PjUGlfJEVk85E3OkZEVIgZA8PgdMMhivUVNhmCccFqekTm2MM2PwqJIY50ky+IhVO13iRAixmRjJJNq2pV8s6LoeH6JYZStTI6bEXAFk3k8UYLVacHNzhXWuglzHWtcl4F1rTCUlJxpj0Vbj44xzFmvFyr5Y9pQQmLPkFC8sEO3qJFhJ7WisHIxLk8fnM4Gq2A6FQnKLORfixdL6LFf5T7K3n6MzStXvJWdpFYiekgLRz3gNJUaMsvhxwqDxjQBIkw+QMk59rpk1RUnlqwKjJD6T82V646WhSAs0V19AbEHI41kJZ0SFgMoFU0ApJz33WTY98lUw2tA1LX0rXyqIYNCvlgwqM5RIVBJ9iDkRfcBPM8NpIMx1GqQUpvncqpKL/P6XSIQ0v9TDm/xXYF01apaq7fgz6b/aPp/1vkEpFcQIUC4WOQhBIJsCHzRSE/4EBRRwIUg1Mlw+n3KQNVa+UHIIE3tkKzGZMAvLJiVA07aOrjd1EziSo0XRYHQHOTKPnskNmGKxVhxEKSU+fvjI+XzidDzKwopU6Z3PJ0KUadwcA9M4kMeCOp9IKYoynxVEpDI9iIiasoi3ucDpfKafO2LwrFY9ttYaN12LOg94H9jv92y2a2mhsOKWkRp32Zhba9FB18aYRGMur9kz3becn94PJQnBXnJAF+v5JWdaKexF3uNhnpnHgXa5kGprIzHDEqU5QbpFKy8BVZvRxJCmlDhbkspoEgbh92iTKdmTcsT7wqBAqwKpRalcG80SmkBUnkQiqUwxCdNYgVpi6oNIKiNDkI0h1Xou0lShoEVgKcIAUVlYTSrJYcEUMdPqeihQWQ4Jxmhx7bTi/NFWYxvDdJKmnZwzqoIvqbA0au36Mw5lEfBpIeRSQX0yLZtjwKcssdJyMQJoSjH4ORNsIQbIseAnzzR6htNInMU9pLSmRAhzZFazNFdrEb+n0RO9tDR5LTGSGGQTX9Tl56wOlipQmXLZw0qtqUVJHjskwhwpRZGUtI/MIRJSJitN0Qa0QWnLarURXoRPzPsjZwbSbOmahjyDagyq0ezWW0LwnKaBeZxEvO4iXd/J8ENDjh4fZ5pGGs1KisR5JlpDWVqUipTi8fOJ4fyIpWW7fd4WIVPdOufzxN3DnnEOZDRduxBjcHU+hRgZxpHhPPDwcM/5eJJK7HmSTbLS1Ul6eT4k+r6n6zqsdiKiq0tzSaHpWq6ur3j9xRd8/9vfMo8Tp+OJ4/FMNg5VK9ZVrW09Ho+8++UXrndbVoueGGcWbcOL6y1fvX7Ju/fvOZ0Hop/JTSegZwWlBIl9JGnvsNsVjdPs9w8ondE1shdzghxQSTaIwi4y5OSRZ7806SkjQx6jpRJa1w2L1oZhGBl9Yj/ObHYb2rahsZopTGiSrB/PdF3aFi9Ok1gbIm1TRek/CTan8nl/CRKL6ZqGzjmcNYyjbNRVjXDF6kpJMT5FVIvKNbIjgzo/1/hqkvXImotTTuJKxkrDiNJSXf255cyTfaSEjDOORd9jbUNS4nIpKZF9IPkJnRKN1mwWCzbLFevlEte04g5Own9brVYsl0vathUBvYomKcQ6WCmf1z4uETVqHJ8n6G7OtWWpNnhe2DN/MvF8lut4OOOS1L6GOTAOZ6YxgW5qS2Ehl1j/1cKxs9qIqDXXSnMlQ4LWWpwWsK0picYUemdYtIquNehcKCohnUBgMbS6oVFOGt1KemImKCXPoEXTMDWBwQRMY8gUxiBO6KASnixQ3CLMIzXPODfT5EhnZE8bKgYiZUPwBT9l/CyfQYXEwFLIJJ1QqtR2VEMuWiJAMcn0PAQRycp/XJV9ia/FGJ9KQDrbS7y5aUiziDzlmfeVIYTKwJRWMhkQyvD3UupwaQ+K3stea9nXvUAmZY82LcYqlBbHrrFWRMk/gb4qZbjYL7VROJdpGkXXFLSLbNrM1QIWLnAcJV52njOnWbP2jpjh9mZHnBXnY+DxLIBTUOhsITrirDgeAsMU2C6WXL1c842feX965Je95nw8431g9iPnCI1zGNvQaIdTljlG5mFmHr2I2dbUkgiLNpoQ5hrTurhWHCEGmKVtTFsrZ4WSUfpzeck0TzTWMM/PyPaLsv7pyn15alz9kyr6WIf4ShuJgSv1tB+1StEYjdOSQEkhUkogBmFNiahsuVp2nH3CactCWRZO0xmJcHZOsWwtm2XLbrOQYpoUWXSGrmtQVtE3Xqq+Y6CkQI5GANaATulp0vanvEtJZKunv3d5/pZc2/iyJC+0lmSBxHzErRfDRIwT2jmsyQK8DTNF9XCJbtUGKnWJCPP5/CRnWEmyhCgNksX+urXy73yKKCDckhiEx0KNShURUsLTQfOzGGNmjcqB83zmPA8M8wiNooQs9b5UboqGqDKBxJwjKURO4yjZOKUISZo5spJNR8xZJkoGVusN6/UKZTXDJBW+TduSKqRpmiZOpxM+ePq+482rV3z5xRtSTjzsH7CmoLVCDC0CypEIjVQnKmMJqWOzWbFetGwXLa9fv2I4HtnnIlP5JNDK1vRkJYeJWBIhy1fK9aCEkhpkZSrgTX54o5zAiMLzWQIrG1PqwuqblHqoEzproeRICh5SRGex6oVSiLOHBMPjUT4cseBnXzkssOz6WhusKUm6131JqCKW6lzZEz4EOZAY6a1XuVofk7AiihIIsYkZiwDoTCnolFEpSYa4iOJptGbRtqz7Bbv1ikkp1ts1q+2GgcjDfGZIgVSrvsfTwHA6czwca5wtkxqH6nKFLskkQWVpBUl1Jq6BWKR6VfG5MlJrTUyXYu06JQt/AtJ7xitfCJ51Yp6zpkAVPGSqYY1M6S5tVo0T6C0onE9PkDIfZy5UQGkVSLSNoe9bur4l5ogLDmM1MUSscSwWHZtty2E/VEdYjyoNVq2AQAyJaTgT/Yw2hcYJd2W/v+d4OnBnDcP5LE6LnBmG0xPwOebMPA/MQSJM43hm2fW0rqXFSo1ijIyz53w6YVyDsY7JR+Z5wseZ7dWGRd+BMSxWS9xRKp+Hhwe2uw2L5ZKmbVitVuz3e0IIjOOIbRw2Wk7nE/M8S/Vp83yThkuVuTidwCCtY7pOSUkZQkLngs4FUwrOaKKfGc+Ffrmg6XqsNXStkwlsSqSi6JuOokwFNWrZWGtIGJxtSVZso7oobKNQSWH1SJwDOSTG8YTKnuRbyJ6mcUACIsUNFIQL0/QNTd+gjGyKy5ylCpzAnAKFSFERqzMXUL7OtVYVhdUCY9RPIsulPY36kKvCZYVtKp1JQWKGwY9khTgdY8CUmTYrYVpVBgtZGATPeNYjFyciSi4VBCxutZP3zCUTMiKwALJSNYxDYTIFbzPJS2PIeBo5H8+kkCArjLbkWJhHL04kp0RgiZHhNDLP1WWIR3F++pmyLpV5I/WiF6hnyQWbeeJhNVgBzA4TYQrCLCqa0zAzxIgHdNOAcRQlNe+LRU/cRXTWfNifGE5notaUrmfwI3bR0G4W3O6uKCXjjo4wBqbzSOjkoLjsGmZdmAnM8xnXtDSuxQJpHpmJhBVoHdE6EP2Ru48zN7vXvLr9+vluHNAttxzvHrh7OPLh0yOjTxTTYZuekGUKHEmchoGHhwce7u95vLsXMHqUw1upswhhV0RyEvfAZrOi6xZPDl0mOdiiYb1Z8+LVS7777jecDv8UcmY4nfjLx78i+oli5PBvjSYkabr7q7/6K0pOzOOZzaYh+ZHr7Yp/9k/+Ef/D/xD5+ZfAp+EkgopSEgFUkRyz8D6mE6/evOb2dsfbdz8ThwBKYtayqQVV3W2Xw22MGVIQLl1JNMUyDxOnw5HsE8MwknKi6XrmVEgFWud4+eoN2+2a1aJj//CBMI8k/3yHBhF2qliQRPCIKbFYLZ+mnpfDw1OFsxLhSBtFZy1OaxEbg0elRKklCGM6/Ufg3MuWJ8yeggx75mmUDX4VMPq+RaGeNvfaWZQVaHzKVZwJAeZJWg5zYXPzmpubG4x17M8noh8lD5oj83hmoRTLtuGL61tuNltW/RJjGkJKwlkyjt3VFYvNFtW2WGWeII8xigsxxyIRIHXh5mWE+SgcrlxBwSmLsHrhGIpoqGqr1TNGhB7O7BaWxmjOh0eO+xODVyy2L2q5gQy4shYRXitNY63w+c4TKCVuFBStdbRaYWNCJ0/fwKozrHtN2yjKHCWqpxKNMvS6YWF6OqWxpaBzrPDfcpkE0xpFo0HHmVb3RJ1pVIaQmUvkVLK0cSmLKxbnJ1w40ofE2ijOWuMj+AgpNwSvmafCOMpeVitHY3tyzCSdMbqQ5kgplqzyE6clFYFShyB7z0uNLqinPw8hMM8z8zTRL3uck6HQOE2VSfS8AkuMEVSR1IC1hCDMxGkaKy9Ok3PAz9KwGrw4WHQVzUIecc2GptVoU3CNCCzoi6AiC6lW1YWmNdZqmjbT95plD6YJ3CwLwSt+WiaGw5nBex7R3A+GbjDshpHv3rwQl3uBX96+ZcwZkqWhk6FjyDw+JH5++4nOKl7eLPjmtzse/ZajX+F/vOPdhxPns+I0ZqyCrl/RdCs625JiYZojp4M0wnaLlrZpcW2DcZoweFI2xChiiWtbsldkNClGbCMNTylVlIURl9gwjBJH7Ptnu285Xz7Pdd3M4lgTl1uu8GQ5P9pGPblphC2VaY3B6YQukeS9FBIQUUXz8vqK4q7xZouOa4Zx4hgzXUksdWJhNIpMZzOdTfQ207lEaAp9q1i2ivWqoUmGw5y4myMlycA+19p0BZAKJsuZStyC5bO4Un/NpW2oXIDnCJNFq4QzGUUiRs84nBnOB6bxSAgjtltjTUQT8dOZ3C6BSNGJorNMpahFE1VgMdah6l9NXkS+mCAX86t6hP5OAovSsrkdxolxHOXAeSG9Az5EfPCyidYC2BvmgVA8xhqG6czkpRLV2Q1t29EvWtZtR9s32MaQcmEYIwXN+eSZg2cODbHtyapW+nKZYGScc1zfXHP14hptDHf398RScG3Lar1m/7BnDl42WDlU58o133//G6yz3D/cc/fpPd6fMdaiTaLvNhiVMUqxXmxRTcMwzRzHI0pHXNuz3C5589UXPH78RAoB7UxVuyPFT7jgyLqQVCYkX90roswpZTD6AgUUPY0sC1LJCe+fd0F9GhHVdhJVEoUk3JGcIHlKmCFGTMmYnCmTTHiiz8zHkzzIJ0+uJwxVNCYoum4hNa0RipepDUaAuMqKC6iUTMkalTNt31aonWx6cwrEotBIXa/RFoOmeE8YJ/I4Y2ZPDp7sPeE8cN7vOT4+cHh4wI8jWkklt7eK6TwyhAlvZCKdQ0TlQpxm/CTvA6MUqmZcS8o1cpbJRktV7cVilJGIR9bkC3gpC20dCrpoTNIy2Z2jTKKf8fJe3DFKZ/qlRgUoJeEnzzx7tNE0pSWnLLZirZ7I/jEm9scj94933O/veDw8MIWXTH5gnDua1rC9WnHz8ppm0WKzwYeWpms4zSe01jSN5uXLJRAIYWKeZpI3JN8w+1neswasS8yTR+tE0xiCnwkxoJRi2Xa0jasZzCw1atqCKqw3HZP3zH4mZIFOqQxaizhqtGaeIvvHO7R1uK5jud6RS2byM8M4oqulsF0uWW7WxJI5jwMfP37kKkW2ux1N01YL+cR+v6fpGlzT0HQdx+ORnDOr1TNO1EMkX6pVQ8Rmg3K1JSEptE+E0yDZ2VJwWtFbaSdJ88zx8YHNRjggfdtIhXGdZIVxfJo+kS4wsDqf1AZjHE2b6kRWGmg64yp0LOLHkTCPeH9mGB9ZrRc0rYDesAHjNMY5cI7TNHK6n/j5j+/5w+9+4PHukcOnR8bTRC4FrTWLzYbr3UuuN7d89+p7emfoW4u1nTCRslTxqSybLlVE4BO2wIxPnqmMHB6OvBvek4LHKHBK0bRGGnDijLONOAqLsF2elrPnu2vEokhIM5FqW0KKzCkzBE9UkIzwN0JWpGzIxeGnSHQQHVJTH71k2ccZU+S9abWj+MycZqKZ6RYtIA1KU21tuWSUS8w0ztE4V39WEeG0Klz2CKpApy3GZBKKxhjmYcbPkfE84XMGaxkTqL5Dty2L5QLXLTBNj7YNBctivRMWRcwcPnwinEfu7h4Z5hO2dXTDgpe//ZKb3TWLfsHD4z1+mJiaM3m9omu1tHm0mpImcvZo1bNe9ZwfHzmePW3rsc7jjCf5A+8+HdExc7N5Hkjq070Dfnn/id/9/g/szxPKrXDdEm0bUvCMPnIeT/z+b3/P6XhgHAZKHRLV2p+nOIW1pk7MpPr4iy+/YLlaA4phnkjHAyEnjILj6cA8DvTO8r/5X/3X9NbQAI/vP3I6n2Xj1/a0rfBbhvPM3/z173AqsV22XG++ZtVo2mWLub1m+OZracaLPwnQu23Yrtd0tjCej/hp4Pe/+x0KuHn5gv/6v/6n/OXvfs/H+wfuHg5YI9PCHCOn0+EJYGs0lCTA5LZxtI0ml8j9wz1HdybEjGpaVNuis0wzTdfzzZ99z9//iz/nv/on/5g0nTnuH9jff3y2+6YQoKAAPTPzOBNzonESTwZxBAqENj+B0MU6msnBc97vUVozHY/EeYYs8ecUfR3OyVDG6Eu7iUEbKwDFIsM7pYV3c7u7YpwmZu/JbZEqVK2JKQoMt67tahyxudC2Ld99/RWL9ZopJj4d7xnGI/M8Ms8jzJ7d7opvbm/57suvWHdLSiwcxzOP+yPjONG0LVdXVzSrFb42phlEQPY+EEIixRpLSeIVLCWjc3UJ10azUjIpJrxPeC/ctVJd1c996WJwymCIPN69ZzoFsuppbQNZC2+rKJkAaVUdmQ3KF8oYaTpHh6JH0ZdMV0AXjy0zL9c91x2sG1jYTCwGsqXvG9YLWC0aNp3DqYDOEUpA2VQHd8Lt2XQdsYscnWXR2CfnwofhSIiJU47c+8DSOVptMQn8cGLymZ3NnDXMuXD2mZQa4qSYVeLYDDgyKhta15GDgORDkVh6UUYGjkGcU2SJDvlZ9gIlZ0o9SKrqRIg1Yj+PIyXvsNrQte3lA/InoszzXcaIWyOT8OOZ8zBIFXO/oJSM9yPjcMTPA6UE2saQ8sw0SwlC2xmazpLVXKcmF5+5+ZMRpar+BI0ylqaPLFYtu12Hdgm3MHTK8fB6weHxwPE4cvSWD6dAsSMUz59/+YqvXu54uex49/7ML3eeu6OnJA1qgauOkQ+f9iy7wotbw1dfXfOP//EbXr5Z8P2Pj/ybf/8LP/504OOHgeP9j5xNR7/aoVWHI5MoHO8/UXIgpRWb3Yq2aWmaVhoUg5dhkVKowdB0PY0xnM4njHNoU/c5RlUnuWGeR6yGcXw+gQX4PFCqTvMYpNSDJPusFGQooKACbsVBFecRF0ecLrRVHLnaLCQqbte4AnOOhHBCx44m7lnrkTfbjoWR0hBKZN1prlYNKbS82Pb0zqJzotWJRaOwWHbLhofziTxpomsoi16G6CgouT5zBXB7sWArJSYLVZ0pOWdpII4BafqcUWkm6YEkGEiGszQRGZNZ9JpXL5e8eb0ml5m3jxlrClkX+T21mB+KKgQyvmRSyTijoVgyicknZp9kGPErj+C/XmDRCpQiU5j9zOQ9jRXootIisKQUiSnhrDRnSDZNbLaN1jRWkxpLDJa2bei6lkXfoV2WWI4zhJRqPEesTSGKKyaBbBwQt4wqiqLAOMv2ekfb94QYOY0DaI1xFtM0jLM8LEMSkOZytWR3teP6esfxdCCEiXE6y5RIF4xVbHcr/DRRcsK1Ft1YfAqU2ibQtI7NdiPfc2Prl8OkTEqKOXqaEMAolFGi5Odq66xOjMtEQSJWFzaB0P8vFthnuXKq1ZRwqX4t9Y/yBpdJi0bU3UYLKTzmQEyQJk+cKjTNJzSm8mI0Tluctlhl0cxiW0d+W5VlA6SU2NEUiKpdqv0Lnqx1JKkeLbahGFW/7UKYJtI4oufAcDpxPhw47ff4SVR1P00SbaqZPqM0VktyO/kA2kKSaT71+7lYgS/T4Itd7SJBcZmSc7lPYjuV/6vatbNkVnXWkPUTsDPOzwsji1FqWXWGnGs3fFGkVIR5VB9il0uhhPFR5HMzzWP9Gpj9IDDiODH7EVSmaQxd30hsNgsDqWkbLg0ZWmWWK0t/1DhXKnxQoYoleFHMtYK+dwzHAa0zjdU4qymVPmpqJEUcF4rWSYONVElLi5EPplrbs1iAdaFtNMZY5uAY/CytLVEmISlJfjLmSMwRqy6tVI0wlRQMw0C/WLAI4QkOaa3leDrhOoepFaXTLKDK9Jw23FLfY7W9qkSp19bGYFAQM3HyUr+MCH221pWmkpnGgbZpoC24ppcoj5LYZbw87I3Up6qL3RJQCeEUGSe1e1lqyTVKXhdrsBomI+1uqETSiahlUxovD6ESOR89Hz4euPt04A+//4X3f/zAcBiYDiPRy4Q4U9hPiXHWjGOhs1uu10sSHW1rsCiYDcpOYrNRqsYmIylMpDgzR0/UwjRKOdEtO1prpN3AK9Ixkf2fWt357Ggrsp4815WzJheRV6VIJONzIhRpaipIXXmOhZwVOWtS/aM4+KLEU2dxqtjKizFGQxZHZ05Spa6q7bXUqGF1xtZJjcJq+9Q8Qc6gat1qbVhxWkmMycjaNHtPLIXTcKZoK9M0bWjaHrdY0K5W2KYDY4k1aqCNxXQ9q901aQqMRRFmL3yR2RNILI9nmr5h1S2Y21HEau8Js6fpWpxVmNYQS0JneT8v+47hITFPA8Mx060TKs8YFYj+zHjec3i8Y/Nsdw5mH9gfTtw/7CkojHVo60i5cB4G9icRmx/3e8I8iZ0fWdNRcmjNuQhsv1wOsfIM2O127K6vUdrw89v33N/fC85Ca3kWTRMlBFyr2S46Xl3veHm1pUTPMCXa1hBCIaiEInI83nP3acm7XzZcrzWNzlgyu0XPP/iz73l5+4rl+pZ/87vfE1NEKcVqs8ZZxWgUw3ng7tMdTdPy9//xP+J8nlDGchpmwuDFjl0boUoWiI+zABpdMlZLPPjJwZmtgLh13VcaA9oyp8Q4e0LONF3HzctrwnzD+fji2e6bRl5/pRQxFzkwFJn0ay3O1kx+cmOU+jkqMckzF+G3OK1Zdl2Ngko0Q1kB1CsUWVuMkqiWVhqUlrhTEV9Hax1d07Bbb+TfkRKpDm5Q9a99EFu9D2gfaZxj03bcXu+ISjNFj/dTdT5Fsvc0SrPuem42W5ZND6kwThPDMPF4ODCOA6pIY6MxUiNcjb8yhIrVJl+VEtGW6l6Sp+3L01eu3JkU/+OI0KXV87KX+btenWnROZLDSBgOkORnsJUPURA+V6mbKIW0QOossO4WTa8NnQKXKqcrzrgSWDQdnSu0psgaagvRGqxzNI3sDRpbUAQgoIh8LnDQoLJEj5yT1hslZ5TUyDMpFIgZjnPAGcvCKNZOcy6BMWf6uidOKRFSIWdN9IWgIn4yGFcwRdMYV7kShRIFKFxMouhLy6rEzy9tUxekwtP9rM+uHMV54C972YIMzJSqsZXniy8DqMpOucTefPB4P1deo7xPUpT4RclR9ihGBMs5nVFxEleAknbBEAIUg1aCT6Du8T/vpWU9Ms7iWkffN9XNqjBYXmw7li1onZg8nOdMOySWJpBioe0M623P118smWNkmifGSWp7DZbOtWgzk4A5zqQ80vea1y825OI4PU5knwnTkU/3R6I/Mw0B111hMFilmKcTbjS4RkNZVuOAkZheRWCUUqo7pAWl5DXLl/bLyz6s1HNvElE2Pt+Z4GmnXz/4n+OA1XJQeNpT6IoMUEoKHHKcsQQ6p+lb6DtoW0PjasohSsxNq4jTHssMamZpFVbJMAEDbWNoG0PTaBoLXaPpGk3rJLqqiqJzkljJyZPjTEkNl2bNS2MwWaDrJcnnVlEwWs4ISskZXwSkADGQwozVgaZVbLYrrm/W3Nys+TDvOQ9Sqd66wqLT5GJorKaW74m4osoTgiqTa7Nvln030i8UUyHGTEyFlODX4Il/9SdVGS21laUwTRPTNEHbPuWLC1J3FFKUzY0xT7+eUmidJXet5FtTpu86Fl3Hsu9JKtI6i20M2ctkXilqDfN/IrAoBB5JRhtN27dc3V7jupbxFDiezxhnpY7UGoZpYgoyFXGN4+pqx+3tDZvdmsfHO6ZpZJ4nscs5Tdc33NzueLi/Z54mmk42scJzFXBjv+i5vtk98SyMNbRtK21DPjGOgcl7eVJqydmWXGr71OWUoJ7sUDlXpoc2VcR6vquUKFwLBSVHSpJ6rJKlfaTUNiijCo2W2uPiGnwuNRMZRGQJgagCrWsxrsUZw6JpaV0rUyFkUlS3rcJZeWIHZNmwZjD155W6RwEnlyTVzunCbUmGEhJ+HAjnAe0Dp8OBQ9dxeHwg+JkcJAZUsmwgtFKYxtFGJxGGeZKHSMqYixRRp9/qSQD6fD/U5X91PelkoC6Wum4aLnWHJWdyKJSs0MUIZC4m0nMLLEniS1orBHBXWQIJUpTDgLBuSmXIFLwXPtIcA9MkAss8j3g/PYkr0yzwJ9sY2r4BLfE44yxd18q9qVn+5dKyWGraDs4+ijVbGaJPRC8P39Wi41HfY02hbc3TAZKScVZjtFQWG6tlcW4dbddI/Wc2xCyRpnkeSSFiSqFtFK5YUuk4nM/4JKKANfI6oKRCMCaxH+oKu3WNrD3DNLKYRkIIMp20Fuscs/esilSAtm3L6XSSw2l8PveRplB7daS9J0iVuzEVvpgycZrJIWK0uBIMte4wZ7lvjUMBpmnrgw+oAotG1a/L+/ciPmRMdUwYnYUNFaL8/K6p1dUa4yDmQMiB4grRyBQnKakADyHw87tH/vZv3/Hu7T1/+Ou3xFOCoFCxwZmeVCIxBs7nSFYTqRxZLu9RBoopNK1BjDSZVED5RDZa1m8VSXEkxZkYZsqioJ2m6Qy3L69prRVx5pw4zkeiD+Qn28pFYFGVYfNst42UjAgoJeGzVLL7lAiqkOuErmRThwZSxSl8D03JIrCE2lJWUsIZWwUWU1sExYqq6j27iLymWvgvjCerDY21Up95EYBzpsT8FAtyWhhLcgAtzPPM6AOH05l2scR0PW3X0S9WtKsV3XqDdR1FaQGB50KjDabRLHZXZB9RKKZxRM+WyU/4aaC9e+DFy1uW6xXrxRIoEr+cJxrlMAacMxI7zRFdMsvVgjsNwY8cH89YZyBPOJspeWY4H7j7+I6vnu/WcR5GHg977vd7cV/UWK+Pkcf9gU/3n3j74RfOw1E2c0piupdZcqzvo8vjOReJgUJht9vx6tUrtGvY/u2PvH379il6Mw0j0+lMGAZm72lK4Xa94utXLwjzgFaZftni54HgJeoznB+5+2j5qTNsmsTVqme77Hj5+jXfffMbQta8/vIDx9Hz6f6emAKb7ZZl3zJ2LX/88Y9VYOm4ub7lm28CRVnef3zkeL6TDbYGhWxi5cApzhyNxCpkM/s0N6MoRUIiJjhD0YZh9nx6eOTj3QOPxxO//fYNrb0mp1fPdt8ug6ZcBccUIwURGS9CCDWuk+vhIUWJX+iYQCt65+gXC/quYxonRuXRKYuzVssuO1V4p5THQlYgd19V6G/LdrXiarNlmqSeuyhxtGbkIBO9lyGDj5iYWC2WXK/W3Oy2fDoeCWFmmgdyDpAE4r2wjt1yxe3mmq4Rt2nwgcfDkf3xiJ8mVv2ivg7yBlTqs3Ce02cWgSoayE8HuouT5/Ln9cxSxRXhsOQ/Ofw9p9tv4Vp0nEjjmRJOWBqKTlhVJLohpuwn5oiEnA2mKFxRLI1laQwLpbDRo6JHl4mmBBaup7fQWhnQFCOMN20jTZtwjcLahFIisBQCqu5lVdagEs4YEc2cwxYBiBcrXUoTEEvhOM0sm5aFQwQWAlOJLEqCFElJDltEYRvpAmE2tHWtdsZhSFVkEcFPV4HlwmBTRSLk6YJOqIfgy1RVYLdykPTeP4lipgqMzx1fBp5YfNrop1KDJxAviIMgBoKfpHGsIhxCGEn+hEkjhUgmisASAxSLUQnT6SpOw4Uhoargq+sQrF90lHmmMYbOOl7vYNMbGpPxCc4+48ZElwPzlDArxW7R8NuvN5zGM6chsT8EQtKY4ui7Jd3CYhqDz5FhOtI1Lau+5ctrx92LFdMwcDgeOR7PwimZRpzTGNXitMPPCT8ZfGvI6VrWCm0paFISJ0QpEGOQ4YRSeD+RUqziZhWVoEJaq0DwjPvKy79H3kN1UF3jgPVXPIl3WmmskeP+k8CiPYuuZblQLBeapgFjFBflQamMUZnGRpye0WoWp2wdjqI0jTK41uCcwPqdKbRO0beazkmk8yKwlDiRwwSpl/gY4rDXsnmXGF2KAhivgyj9ZMyQaulYkwspzTiTWSwcL19e8eVXL3j18ob348/s90fm8YS1ka6V5ELXSCy3GDkXXab/pQjc4cJGbYyct1UdqMV0Ycn+utXy7+BgkYdNUYphmrjfP7Jdb7h5ccv793fMcyT4xON+z4sXN+y2a+4eDU2jWC0avnx5y939gSOKMHrJr3YtVlv6rmG9WeBax/uPn9iuNsS58O6XO87xTN/1mMZhY4NF8pjFFL749iu++uZrvvntt/zx5594+/4t7z994LvvvielxOl0QrcWS0Oz7Pgn3/+X/L3vvmPZ9zzsH3j78T2Ph0eUhrZzvPnyNV989SWr9ZpxHtFO892f/zn//T//F3y8uyfrzFe//Zqvf/Mtr7/5GoYz2hls17DZbVAuoofAeT7ig5eNutdyyMk81fpqJcAvKFXljAzzmd3NLYEAz9nSfJFriogtOQWZaiUv4oQqaJXpnKH0LY0qLJ3jzJlzgFOteE1zpKTAYtvR2UY2F7trurYHNKfjwLLtMMow1TYgUVTqQbOKAzqFWq1aQGlUEotbru0+qUhVVjoP+NOJMnvWTY8xAgu1VrPUHWm5YrveoFFcXV9zdXNLu1vTHPc0xwPjHJmDl987JFojTo1UIjkpSixkn8jxUjt+MW1SbY0XFVWYNFZJg1FjLSUkVECEq6IxsYqkz3nbgOP5BIC1VhouagRonmeOx6O4wNqWEDwF4bCs12vmMDPOM4+nPcNwIsYZY+B8fuThPqHKmfWmYbvuWS9lEoXSWKPYbVZMuy3TeOZwuOcvvvqWkgM5RfZtx93HiXkW99O7tz9T8obrq5Zvvn7DcT/x4f2e+4ee4zFKZGE80DpH17ZcbTfSaJED42HENkZaarRitV7TdVtKyXx6/57Zn8gVtLtaNZxGzzCP3N9/ol+s6PoFwzxhmoaixTWzWC6JMTIMA+/enzmeTiit2e62FKXo+p7NZoMPEZ0EjD1NEyEEHh4envXemQr1KzGT5kDC4myLidKUsLQN8/HIYtHSNpp5CDirBDqsLX4eifOMP4/srl6AFsZRSAkfR4KaRVRUugIENVYBQQ4qXYRWO7LTUrfoRwoF2ylc53CuYdHAKYyMYWb0AzkUjueJj58e+b/93/87Pn4c8BM0rNh1NzjToNF0TUthxucJZwpXL1/z6vVLfvMX30FlbP3t25+43axxzmHtkeX2GpxwmaYwMc4HlE5cXS15/c1L2k2LWzfkJK0b2UdMoyg6k5R8uFRlIEkG+TKNeL4rREVMipjgeB7JqQJnFdJMorSI5Kq6yHyiOBH8pFVmrm1VsiltGwH/Ka2fmAriWKpAOZtx1qK1APKsNbRNbfpqO2k+0UCpE0UvHI4cE846lDEoazklz/3+wPE8YG3L7vqG3dUN1zev0P0Ct1zSr7cCbdSIjd0o+dygaV3LAiVOl76HPyqmjx/YP95x/OsRVcA5x26zZZ4mCoXzcKYrvSCOo8cVg4kBsset1rLRVpHHuw8447A2cLXquG8NIQx8+vTuGe8c/O0ffuTnd++53z+imu3ThPHjx0/84YcfOA0nJj9jaqvOxcBOpg44xB2olLDTcpKDfMqyTrx885rNbsdPv/zMj3/8gcPhkZwiP//hD2ydZWsNrdYYCjd9y//xf/+/4+3HD9wd9nw67Xk4HHj3/h3/9t/8a4bTidMh8+l9xv35l3z/zXd8/83XvLjasVxfkXTL62+/5+qLL/jbH3/g3/+H/8A0PLLuX7LsWl68fMWPP/6RX97+wv/lv/1v+Qf/6B/z+uVL/v6fe7wPDONETJHp7MFZae3TmdvbG17e3vIXf/Y9pMTjwwM//fQT94cBrcFpKw1ZtQHR+8DvfvdXzPPIctHw3TdvuL3a0nbPyRUQWK0CHvcHca4YI3HbXGqDliHFLKioDOMwsbENV5sl/+i77/iLP/8Lur5nnGfu7/dMU6CEjHEOq0WEnMLMerVGK83heJRhWMxobVi1Hb/9+hu++fILzucjjbXy+bIKn6t7JkbCOIBPuFT49tUbvv3NN7x885qUIo/7Bx4e7vB+ZDqfKSHSFfgHv/mef/Db7/izr79h1fbM48jsPe1mx+PjI3Geubm6YhjODH5ippC8J0VPCoEwj2RfIEvM4k9Vkj9lyEkkKNa6aakzzilha4OduG+fL2qip5kw3EH4xD/7h7/h/QkOoeWcI0pbcgafEnaR0VbhnKEcA0vtsIsVv311w85pTBhJ+zOZma5X3K4dV51l2WkaXWCcMa4X56fR6H6EJjFzxKoZygTMmBq9F16OQTtL12turuDDpzuaheNqu+HF5sj8MDCMMx/vPFdtB02Hy55XK4dWilMILExhXyI5eHQQqTVExfHgsVn2kk7D9fVWmkXHkTiNIuhZSxhnSNXlud8LJycluqbBzzMKWVNDda1cOCvBiwOtcU4CN0rh9PM1HAIsFj3bzZrtesXsZw7HPadhQGmEmZFFSLj79B7nDOvlgpxmzvt7lH/g610DOtG0htevXrHarDF6gdJLKA7lFJhCLtJKVFAi6piWNi5Zb68YPn6ibzrabo1b9PzNu0fuBs99GAlz4RACRY384W8/siLz4tsd//Af3rK96fnyqz3/5//rv+b+IEyp9eoNv/nuDddX0C9nfn73M+PxxPk48vh+5t3HR+4OR4J/5MWNZhsUo58I6aO4K3KD0SumcyTnidVmRYgC8QdLyjWiXaebufI0x+PIerejW3Q4J2UTqbZFoeQ1HMfh2e5bCpFUkvCGUMzeC0T3MrypiYHlUloiSxGOpioJpzMNM+u1Y7szrHeaVEZSBJTGKY1rG9COPAwsl5Bbg7WyN4lASJmiG4HJdi1zDKC1VF9vOvoGTFHslo48HYnMoC3FNuga+SwxSX9tKiJiRg9F0dgGreXMFcLM8bDnfBYAvcuBdmG42nV8+dWCV2+uuL7ZslwtxBVdIlp51muLs2Ig2C4XnHXP2VqGGDG9oZCIWUwSsWRCSdiuJZ0nKJFcRJwmlycX4f/S61cLLK5phLVSJ8chBGKKdO2Stutw7QTnicnPxBQpSujSSksVUte1LLoOPwuQSuBNhZJAK4MxDc61LJYr5gDDEDDWysMjBiY/yzRUyaG9XbSstis2uzWudwzTmdGPuLahW/bEmBiDR7eW5aJhuVjyzXffsrvZCYju/YCvbBa04vr2luvbW9bbLedxxHUtTd+hnGMInikGbNdx9eIFm6trmr7nfDqQkJaIpm9RkxwEtDEySa+kZ4lWUP0PcoTPJTHPI7kIVBIrk91iCrp5vgehUokL3EyVjEYqe3MW0OkFgts4A43DUkjaUnwi2iC1oMoI1IlUYzgGZ4wQ/NsOUDhraV0jlrqcCUUAxKWyGoqSikFdVd5MJUOniM6VLJ1Sjb8k0jgQvUyilssF19dX3NzccHW1w3tPjpHlokcrw3K5ZLlY0C2XYulPUvPog+fSNtIYi7KFmBU+l1qvGCQ3m3J11FBbnS4guc/xC2OkhtZWRozVMmFz2TBnoXC3+nmtnCH4p1hSypGUdHV1BUIU6/g8e0LwXGoA26b9TH/3vjqW5CuGGT8bxrGw2aywVsl9V5Audr6S6gGkSAXcPNI4zdXVinmKGBtQakarwOl0om0SD/dX/PabbzBbB1nxww8SByxRVXFGNojOQNtYYoQxe8jpaYIZ5hNX2xf0/YrWwfv3nzgNM9Ps6RcNIWeG2TNOg0QbnGMpRMqn6SaIGLVYSLY0l8I0T3S+f4osGmvIJT1Nh4y1Yv18xknDxRirK+Mnh0g29cBQ1JNzIcwzqdE4JwA5XRlAwnOS9TGkgPcTujZ2KSWbapIAdNOl2UopYXVcxPo65VAZ3IUtUiqkOitU0ljrMF1D2xqIltPgeTzu+fn9A+8/HRiGArmla3usXWJyhQ8HSy7SuNatlyw3L+g219A1oIRMH0Y5DzklLU9t21KcHOxVp6FJoBK6a8T1UhLBj0zjSSYauSAJ6ct/LvR3WUdlYvS8kmaY81NDRAwVSl4SUo4m8GCFQLgv8cbL5LlQakQ2kEvEOrHoUp8BF6u1UqoC3QoWTdNIjEXVVq++a2mbBuesNDwphE+RMr5CuimFxrRoa8EaDn5mKonsDKvdln61ou0XuKal7ZeYboFxLROQlMDGi9Ioa5/gkKbrcFqxayym0di+JZbI+4/vOTw+slx0LL98jdHyHAhRYHoqaKnuJaFihBCgy7RdS9u3nB4nzoeBrs20DSwWLeMZhvH8rPfub378kbuHR+YQ6TuDD4Fhjnz8+JHzcMJ7L/ErLffxyRV0iV7CJQ/6NPUXV7QSUX/Rc7Xb8vLlLYtFjzOaEjz7u088Xm057x/Z3t6w7Hv6tsVaze3tjofjnr99+xO/vNdkf+bj9Ya9zuLSUonGwKJr2K6XXF9tyEreW8tFy5dfviKrxDidefdOhGhnLb/97jd0i5b7hwceDw88Pt7Tdj2rZcerF9ccjidOw4ipa7nAbWUKvega3rx6yarvOR2PrFdL/sPvf+DheJa6cGNFUESEjXGauLu75/d/8zf87q//mvjt13zx+iWdeZ6punEOdXGL+doYVw+UAmmUocKFMaBywSnDerHiertjt97SNS3OOmLMOC2V8SUHuqbDWHFHei81x6lAyRrvZ5TRrNdrXl9dc7XZ0tqGY4ifeQuX5SVncgjoCuFfNA3ffPElr25fsFwseHt6ZBqliSrMM34Y6IzjZrPjZrtjs1zTNz0aib0ak8EE+uWC0jVsd1sWfUdQpboYQm3HkMEGteZU15NbvuQBUE/RoBSTVEjH9LnLoFz4NqW6gp7Pw1KGgbYE2gZe7BoCkTIU5jFAccKDKdLCWZC1PsdEo+Q9fNs5ei0Nd0OY6JrCUjdsnKGvUSOlC5iGojoiMOaZuRhIhcM807Uy+DLaEkMdOBRdHYHiSF8sQOl9XYMTV+uOh8FyHGEeZqZhJrgZ3XT0zrBsYdVodn3LacqcbSJkgToXrSm5lcOsgkKkbxxBFVL0ZKmSk6rmKA1yKIm7X+D+T05o/acdWTydE2KMT87/izP3uSNCpjZNGmukhjh6UgwSQ0biTNM04OcRo1ooiRRnQJ5r2+st1y+u2V2vWawkxqS0Bm0o0u5Rq3AvsYxLO4xCWYttO4zrMLbBWcvGtry8WvL6esXffpAzZCiKaOH+cWJ/8syp0CwL253jlV/wxeslMY8kPCEcadoXZBJ3+wO//PBH7t5/5PHjI9Me7g8HztPAoAa6fo2zPW27ol2sOY9wf/QchwOFSPSFcdgTixFHkjKUPMvnKwaM/Yy9yCU/iZrGWC4fvMszPmep6H6+q/CnOx5hW6Ynga5U18VFsCaX2qTqIc7YJuJswphCLFGehdqCkmamaBwRRXEau2gpAbLyTEnEldMcSCTuh4n9ODP/8jMlKYbzyKdPHymqAbtE47BKGCc6VxePtkggtBYTlM9RplJ/FkE9pKeYlbylpE2z6Qxtb2gWwn3Ttka5Y6xNVhq07D2h0LUtJopHUasaW6wvXsryvZWaopBLPRUuXIZ4v+b61Z9U42rdoJIOiJgSKUtMp+s7UcyUZMFDjJRSsM6hENhl27pKxhaBJUWxr/sQ6WjRxuHantWmMIVCexqxrhEqes7M0YtNXCu0MyxWC1abJcv1AmM1wzzio2exXNAsOpQPuLmhXXYsl0uudzvefP2G1liG44lhGsTaphRd13Fze8tmu6VpOz49PgrIqG3JWotd3GhW6zW7m1uWmw2mcYScyCAHiL5D7WW6p7QcmgCxt6ckhx2lhbZdMjlHfJixTg46y3WP6y0OSxN+TfrrP3+pJ9oJXCoMVf1gQqwbKTloq2SlAYJMcJ7ZOKzSOK3JWkQxg5IvpWvOVT44zgpI7NJaE3LNnOaCcmCKWG11Fs6DQuzIqi5KVvHEbck1m6eLZHBXyyWb7YbtdsNyucQawzyOtE2D1lJp17QCMu2Dp5s7nDFPMQJVwBkn0zAjdd/UppfoQyVVi4slX0ZET9Zang5VVhucNjjjaLTBFo1OGl98ZV88s8CSgkz0iq5VyxLLCCHIwqIU3ntiDPJAL5llv5Qq5FDtdSmKb7gIUDjEmeABFmhkkptTwI8T4zAyjgPzPBD8SEozw3DGWMdms+CwP9H1haZNWJc5nwYOh8T93QPfffsty0WDVorVopMGjSwxLnHaR3FKNS3JQimGIN9IFVg81tyyWrYsFjLR8ylymkZct8I1Bq1hnieMdVjXPFmqL3lnECGs63vatiWmKI1nwWOrkGKMRLouk1JjrdS/5/Sfvwm/+vps5cwxkUOqcNYab8kQZ0/qLLRabOH1gaKcVB3HUIhBHtJWZ7Sq9e/8x9n6S2zShCx16eXyUJH3vq3v4Vgg+cQcowheDqHlG0PjLOEUuT8MvPv4wPE8Q+lxtqVpFzjXo5Op2WwoSmNsx2J1TbvYYtoFXiH8HWvqBrSAVsLHaRr5+0aeJdhELqG6yhLERB6lTUpiM2JHzUp4Oxdx5fPXpYvo+USWGIrAuFHCMSiJXIrA3euyIFXxFxZT5SDVrtmYU7UMJ3Hc1fv41FRW/1lzycArad5KxaKU2HXbxtE4qVtXF+5C5U7EFMlZquqNE4h4VIoheJLRONez2m3plkuarsNah2talHGkDGOKpKzFsWGER2BURoVAEzwNhb5tWd1cs/UT++Oet+/ecj6dOTzuef3qRW07UjJkSQkTEzpplI4QI/LmyLRdQ7foKDkxnc+oBL1r6dsWPwXO4Tk3nvDT27ccTmdiLhSlmWbP8TTy8PDAPPvPk8Wn5b3U2EWNHNbNVkGmgZfNrK7CWuMMi75ju92yWLQ4p/FD5LR/5LzfE8aRVd9xtVmzWi7ou5bdbsXVeY3PAowcN0u+eHVL7+S51DcOqxXOKJxTNG3DeYr4GMk0NI1mtZI48uHwkRQ8qSRe3LzAtZbVZsXh3x7kM6MVfeu4ud5hjawnJkeZiMcgg5+ccVqxXvS8evkCv9vSdS33p4E5y6EVXTe8dVAUU+R4OvLHn37iL3/3VzTOsNuuWbfPI7BoYyn1cxZjfGrDufAnioJSa+2rzQinLevliqvtjs1qLbWq2mKNOLuMMlCQiJBxT1yScZZI8TR5Ju/p+pbFYsntzS2r5QqrDCkKA0NrAe/mIp+9FAIOiSPtuiVfvHzNZrtDNYbT8cg4DvhZeDzZB7pVz8vrG643O1b9EmcbyfZqA8ZQVKFb9pgC682KruvQMTBG4V6kJIDHkushrx7aLhJJuYD7iggpT/b2J2YLQI1ZXf6Z/+SA9ne5yjjQtpFNC7drw2GKjCFjhoDK6Wm9zipTlDSBlHwRWAzXncPoQsgR70f6xrE0sGpM3QuKqBx8Zk6B41S4288Sw3Pgc2S5FE2/MUDINBqsBleEx6frwcwYCyhKimyWLauuoTWawzkwn0d826A2KxpbWDSw6jRXwXEYEkcXODDIupENpUgRhbz2icYaNJZgDSl42bea/JkNqJQ0DWVhC12qmp8iYZfXs3yuD1dGP8VQLlXKz3nZWj2uja57x0DKkbr6EVNgmgZC8DROIno5BSBjrWazXbG73rHZLWi6+ASw/zxWyp9xOJcIIlQXqsY0Dca1GNtgrGXpLLdXS17fLNn0D8yPkRyhYHjYDzwcRo6j58U1rFaOm7jgizdbTmPkNCb8/Ij3I6nMPO4/8cdfPvL+p7d8evsJfyicxhNznCjdzGYXWSwTi37B61cbDudILJHT+UyOhaQV03ikmE5an9DC4UGe7cpYEVdq3XCMUuzSKn2ZzlZ+lKqisX/Wewc8ncEvg0UZxqUnnpvW+mkIFWMU8SxFGltomoJ1hUxE25aiG1AdIRWmCGOOnDwM0ZPmmTQdQStGH3k4jYSiOBwHjseRHBIGTZgDHz99QJmOpo9EvcLpGjfNqTaqSQzosmZRz6BPn4EildPUz4cxqg5BtaztTqFMJuOZ48QwDYBmnEZQBddajC3iZkGLuJ4kEnpZN1V97S48nVKFv8vQTmuDNcIX/bWNa38nBotzjrZrqwVQpljaGHZXV4yjp7z/yOFw5PpqSy6Z5WpF9Ge0NXSrJdotyabh/f2Bh/2R+VDwqtBslzTLNVcvXrBV4Pkjh8nTbdZkn3FtRwZsa3D9Aus0X33zmjdfv2H3csc8jxzOjyQiX3/3NcvNinGa6JLn2813XF9fcXt7w5d/73sefnnL8Gnk0/0dPkU2Vzu+f/H3+Orbb0g5czyP+JS5fnXDcrXmPI2Y5YpN1/Ptd7/lq+++Y9k1RD8yx4hyhm614Pr2lo/3J2IRsrGzjpIzPowVHJhRKNrVmpwiKUCMM9/+9iuuX97y5W+/ZYqBu8d73n388Gtv03/mxnEJ71X4yKWSMpKz2LOMMrLZy0WI7UqRmkhsPK229LYBmynxMzD2ssAYLQ+wzjn5kFcQ1DzXaRRFpvJGSTtQimhlnhg06olJo3FGY6zD0AnEM0SsNlxfX9F3LcZKrOqyll+yyBfxoSAuAGcEvqtr9Mdpg21aYjGEoqW2MxXyHKuVs2DKBaBcs5SXaUP9PQyaRht613C92bLtNpisCUNgfJhERHTP5zwCmP1QJw2QSoCYCcEzzSMxeCiZcRwp+dIcFFn2S3yYmfzIeDqRvYck2WhFghRIEVT2hGlgODwSw5mPn+65f9jzy8/v+fj2LSVH+tZSmHj9xRtuXr5EK0vbwnqj0Xrir373C/efzvy+ZP7st7/l9nrHbrvgv/jHf8EPP/yRt2/fcvfpA8Y4tAokf8btOtbdghe3ax4ePkl8JcycxzNhPpJzS7dY8PV3X7B6PJJ/+IX7R3F6dX3D6e4gm8mY2Gx2UgtrLBh5PxhrWa1WLFcr9oc9p8pkWiz6J1EFLfBC6yrUdy4iOjzjdXEeqSIUd6MsFSSFQh7A5/MJ14AUBgjI1hiFbS39YkGMheE8M55HFDNWOzRWFn8tn9unB2nwxGlGxcp8KWC1xRkrDKGa69do4uTxcyJNZ9qwwPYtOMvf/OGP/Pvf/Z6//psfyEpxc3XFenHNbnFLz5I8FyYlOXWjDKZpcM2CmKUSeH535sWqw8b4ZFHXBZw2mAIhCezbNBZjNDkVpmmEw4hpCrrJYHJ1ilUy/5N7JddidFkvnm8W+/nKAVBGrNIVXvc5hPT5wG2rCyKXJG1OJFIulRcWxKmnJacseWKYxxlUdUP0rbhjsoLGyZRdy3umbdo6/Ur0fS/NJTHK2mQEbNsvlqyvrjiNI4/7PaMt3Lx6ydXVNX2zYLPcsWhXtN2KcUqM5wP7FPjgJ8aSmYBQN18heKbjkTZFelXYGsOLvsWWTLdcsuqX+GHi/t1HDi9vaVcdprVkW4sWlcFqS5wmlGkwTQcp0C9aNts1XdOQpweZpHXQdQ3zrDk/n3MagF8+3JGyxnULfIx8ujtw/3hkvz+CVTUXX4hBJmTi0tMSK6hiV6ntBdRabGvEcRrHM9PxwHRe0zWGm+2ah9WCXz6+ZzpB8iO9M3z79Zdslj2tNaQUaJoe5wqHmys+vP0JXl7zzZeveHx8YDyf8cOA0YX9cc8v79+jlOFuf2R/nvh0GPnj3QOnSeKe+/0j4/n01ND25s1rbl/ecHW95XgayLlgreXV7RXLzrHqHOdFy6cPHzlMZ9CaFDzzMHD34QMvrnesN0s2uzVRG5rlXzH/debjcSaVIC1h1qGQeOoffviB/8f/6//J8fhI2za8+q/+ybPct4hsrEOK+Jwo6rPw7ZwjXdr7UhEyaSwsXMPr25d8+9VXfP3VN/TLJUUpjPOs1lv2p5F8GpjHQMyBafb89NMvwtQIkeE84NY9L17c8Op1x2azo28a4dFkiUo54xjTxDSOzNNMHCder654vbvhm5dv+OLLL8BqjvPAL7+85e50ZH8+Mp5O7Lol377+gn/2j/4Lvrl9w2q5QruWmCayMWQMWRW2V1s6a7je7bBWcR5hCBd2ToQcsRqMtqAbClITnpMIuk8sllwqIFhcLKXG3kAO0+pJWXxGx9/pkVU383KheL2Bh2PkNBR0mkD1KF0qdkEYQCCcuqWzbFTHN+sOXxLnecb7I7f9LS/XDberlnA+ME0z43nir374wM/3no/7mb95dwItcM712nF91bJdNWyWDTfrBTfbK/q2ofiB7aqXfYFT9KuVDFGi52bbM/gNMXo+/PwLe6vZqAKvrmh7WDnDC9Xxte3EMewz8fGeKUZy0ZRi62sORUVaJwyficw8nHBNRy6K4Xxm9jJcJsmBVhy0Fd5cX8Yn2G0ptTklooqRYaY2OOuehrXPdTWttCgaYxjHoe4nA9pYFJngJ477R+ZpYNFZlC4EP6GRlsjVesFyvaRb9GhzBl9bQrVCmQa0APSNcShdq/5CJivAKeyqxy5XaOXQTcdi3fH9t7dElfnp05E43DPGjCmW3//hF3Q5Y5uR/8Nv/5ztwtF0mf/yn3xHv+r549tP/P7Hv+G//+cfmePA/eN7bndr5tISVM9PH35ims7ENJHswMdPj6xWW774IvFP/9n/mjeq4fpmy6eHf8XoxY1y2nc0i2tylmF4SpFQFD4YgcSnKCkNZOBnRytuYFX3ldbSNI4pxmcXWC4ylsqFnKTV7DJwlYiQOGe11uKgmQVe3GjF7c0119c9m22htRrbbwm5Y/KOx4cH3j088n5/4K/ffeTd+0/sP33i+OPfcrc/sD8PfDqciYm6J0lYDN+8ec31Zo1Oij/+/J7F8ordzdcsGgNBcZ4GcrtGJyvw9UscN1bxv4qQCmFKGqOE22gNxhlMY+mcYkoP3D2eieMBM/3MsukxuuMPd4l+4bi6kdiQJVASrFdbnAeDlLAkJH2DMsQQRbxppOxC2DkC8m2sqQOKX3d/fr2DxRhs42hTR9PKRk/U/UTX9/R9j3UOPwfGeeY8jrSNpWQLVhMVlMZC4yiNY0iRlAxNKRzGicdxoJknbl7esn31gnPKrH96z/HukawyPs3oIgyMbtGyvdrS9FKy9XB4wLWWq37H199+yewFJrhmzc2bW1arFYtFz+wnHo97Hk9HMhcmw5bbl6/QxjHFiSkm+uWGKRbGw5G3Hz5wDlHiStqyP5+JMaCiF/+HFleKWPeloadtHdYYQkyEOZBierJDqVKI0ZNLBBJffPWKL779mq+//w0zmRfHA7cPz0fpLyVVF4Yo7nU+9WQvKwjkyBr71BVuXUPuFqQu0GiLSpkSEiVmTKG6WHQF21bgl7OoCSgFZ8xnN0c9qEiTkKjBII0opIyqDUAahVFgFVilsc5RLpPsxtE4sRMqJRPdUuFvzumqOtoKh3Q0TUPrnDQESAEHCi2HoSq+iHdTJg0lladf9/TapIxO1cFSClZp+qYlLVd014arxQ5bDGlKhJPnfDwzDtOz3TeAkDzKlPpQjxXqOhOj0MuJ1dGhNH6W6uZ5EsHC+1kmKjmhSxYOTkrk6Ilz4nw88P49jOMebRX7/ZHjaeDu0yMlJxZdy9VuQ9NI3j6GiaaNbLaQi+V87Pjlp47DY+T+0yMf3r6nby27qwWv39xSSqSt9a1+HPDzwH4fca5I3OvqJX3/knEcGMYBpSJ+PvPwAMuyoSiDtrBc97y/eyQXKoPHkFJkHEf2j480rqmxNXFPFQrGGvrFgqHmX6dpqq1B9T15mSBpTdu25JyfFUam6thGU50ONcOf5lm41wWcsQQ/yIEpWELy6KLQGDIZ23c4ZVi6Fj/fC0A1RFbdWrL3RSaWRlUwaiO1vtlLfCz4gK0tQRpFKkJNzxpa4zDaSFXdEEghE7Xi/uGBkDzdsuXPrr/jxfVrlu0Glzu0t8xHDyEQQybmgg+Zu4c7hnKimSzNlLhq39AqTdFy8G6MY2EcrXGoEglF4KrZWLSy+GxonMI2Bd0AteXjwljRFcgn+IULzFnu4TMnhET8qk9WDVXEVWQyulRwsb6sBwVXralaF0qNzaSc6jTEYp2giHMueC25+rZrnqbsuSRMVlinam2mlTWqqke2ccSUySKNoq0VsbJtiUo6NJJSvHjzmqvbW9brLaZYlGnxGebDmZ8+3nF/OvPhfOJ9mDjGwDlGPIU5SLwwDANLBUurue0cXywX7LqeXduilCbOniEmjo97TCP1nLaRVharLW3TcRr3EDzaTzQx0DhHv+hZLJbS+JAiJWWsaWhay2L1vIeGohq0MaRieDwMHE4D53ESR0S16svHskY/1EUuk+ocVaNcMiRINE42S7EUDg8PfPrwDtsajMq8eXXD9PiKhx9/oMTANJzZ7+8JYSInSzGFnGcoGUNm3XV88+Y1sWQ22x0hBvb7R+4/3ZHmRIiFdx8f+HR34OPDA4fTyP1p5OQTU0xMwTMOIyEIePPjxw8oJe1GV1dXbHc7ccdqw/5xz2nRseoajp1jOj5yfkw4BY0R+Px4OnL38T2bsGW93fKbb78mKYVqGv67f/6v0DGTSVDM0/M2hsDbn9/yb/71v0UD/9tnElgubpmsBBh9YYXk2pil635AFepzOtM3HZvlms1qUxkjUoGtlREAe8wcjyN/+PHfEkJimj2//PJenGQxMY0zemW5utlx/3iHGka+uL7harViGifmecZHL/W7fibFgNOal9fXfPXiNd+8+ZKm6Tj5keNpYH84cDgdmeaJ3ra8vrrlzc1LXm6vWTYdBmn3CwUpD0iR8zTQOo1tLKhc2ys8MQmw1WppOHbGkLSqEcRcoyblaY0Q0+9lZZQ3eUoFahypaVr0U0Uqz6axdCWwdoVdB20+03KmQWFSQ3bpKWJVJMiKUuJU7p1l61quWsMYIkolzipy3Tk2VtOURBxnTocTn+72/H//xb/h92/PvN8H3h0hFtlrLhaO9bqwWTp2q4ZvXt/w5euR290Vt9trVhtBDqhcWO82TJM0KToTud4sSPGa39uGOHrOpzOn6Uy3aNDWsegM22C5ag3HznDoIZ5nplRIuXuaV5YciLU1ihw57A9kZXF9ZJ4mZi+iirOWQpJDY3V7X+C2lzYo6qAk1dY/KYKgTvOf18HinJMBRykMwyAu6JRorQUKKQaJcJaE0eCMNNFYJRXE0q5T3RNKVYeQBUz9mTJF54onyJcCGZLKFFMwrUX3Eu/X1qFbuLpu+cov+e6LFT/+/j2xBDSW4zDy/lHzw/uWwwDLXta5L7+4JSuDdoV/+7t/yS/v7lluVnzzm++wxrA/zDyOM0NKzLmQkkaXnpwU5xL5+acP3H2849WXX/H3vv+W//Hf/Y4P9yPzeGQaFmjbUVSLUTVmWYXglFN1kXuwDfM8oY1hsVhinUSCtb6IHIoYns8ZLa9jZSkVceXFGIkhyOuea1kFVVQtpQLBK3DXSzlGRqPajqg6jpPiw93I/+f//a/448cPvL1/4C/fveN4HPHnAe7vOEwTvhSitmjbUFSimIxzljff/IZvXr+mUYpf/vieYTgT8nteffnnNF4RjoEET9DuUodspTatlZyE71pjQZfz1+U19n5iKvA435PiHffpHfnU0ygHqeHD2LG7WvHiZslNe+a2b+ibBYvuGoMXMHjmyQWYUczzJOdE62gbYR0BWKNoG4uzpsYx/5dfv1pgabuW2bfkkuh7g9biFsglY53FVVU0+IAPnmEYadultA8ZTaCgnUW3DbppOE4Tp+CZKJyLZySwnwei1YwxQePot2v8OOGU2Geb1tJ0lrZrWax6jNPkEhnnkdVawJdXN9c8PBxAa1zX8OLVS9quwWjDOAwM00hIkW6xYLlcsV6t6BYLhmnmfi8wugQkVZhC4O2nj9w97nFNi+l6/t1f/k4shhr6EnC5oKLYx8QeLlN0hRys4qXpJhfKn3xQiypYZ7i63nHz4orVdklnFG7Z0G26X3ub/mdXKdJacRE5LuZ6xaX6D6Bm0+ugw2pN2whAtXG1iq7+DOri0c+F6IO4c1KuzRIzYZ7q5Ppzk0oqBV3K59aPmtEstZ4LqEAvgXoJ2EuTtZE/N6IqyrRY1VYBcZnUlJ1klBFbma28lKfvu1zMi5ITtdqQgZQhh/T0a8il2hsFclhSrdCuzUMXAUc3WUB4WMCxXa3JPjE/s8CSS6QUTSaKIFeUvM9yFHZPKgTvwTpCiMzTzDwHQhCR5ZLhLjWGJXnNusmcBoazxuhE2zUoCq21rJdLVN+yXHRcX+1o+w6NIvgZ0xa6HtbZcPtizYvbG1TWHB6PfPp0x2rdsNk2rFbXvHh5g7Wa6Xzk4e6OeRxIyTONJ4LvUGT6zpGzIwRpR9jvH3g8PWIP9yjtmEPi8fA/EfdnzZZl63ke9ox2dqvfffaZ1Z5zABAgABJmiGFJVjgs2dd2+B847D9m3/hKYYfDDgs2RYuQKBDgwemqr+xzt2uvbnaj8cWYa2dBNMPmwY7wjNiVVZVVmTvXnHOMb3zf+z5vzc3tDb0TIGyaJrgUYb1er6jKEVpZMpMTxGDnAGxu77hRe16UGFQRQz4rMDSOjUH195cAFSFtJsOmsQfc+a5HqHRY0ErSNkmd4Ia1IwTD3hcqjEZIjYnJguJ8gojntoQo7gCHQaQmi9UGaVKBJL1GOD/wkPzHqMgYiDIR5pWQKB/oG4fvHb2ISCUYT0ZgFKcnjzhanJCbEhpJc9Oy1lv6uqVt03vTO0e7c8TM4bUh2pR+YFUCMhqph9h3g0bi4mCxETKB+4RGSJOmgDqASp7tPW9AigTH81Leyd730vN0iZ/8/T/8EkOzWfz0n4eptiRZT7QSuJgOfkoJtBIJRMtHGbiSSYKt1IBSHf57m1nKskjsHzkcKENEG4k1ljzPUjP+bl0enp2Q5KzSpBhybSwekdayLGd+cMB4OqMoKmIHwSfL3fq24eXrN5zfrni/XvHBNaz6no3raYnJSugcvmuZaMkkM7iqIHM9OgQqpcizjF3T4rqOZrvDuTEmZMN7lg61WtnhYJcSKYLrEUpgjCEvCjqlETHxY5RRyQ5j77fB4kICB/so2G4b6rql69zd5y8ECTYc/NBpSf/fULOmv7/jsjjYW7SCZ7tZsd2saOsZ46rk4ekJ/XrNq8mIbrOhbXcsb2+StbK02LgfbASUSFagk8NDhFJM5jNCDCxHI3KTcX15i4+R5XrL7fKWq5slddvhhEIXI6wWuBBS5CYQdZoyex9o2xZtDKOqoigKxqMxVZ6zLgsKa8iU4PJdzlILrJZkRmG0xLuOpt5R5BliPOZgvqDzgS5E/vW//U16jv1Hi2ySRER2my1vX79Jn+F9XWJosJDUo3eeAlLjIIn19pJ3hpQKS5EVFFmBEJJ619D1PZu64fpqydXlDRcXl7x68z5ZLHvH5eU1DAfXpumINezamr7vKINkd3rGw6NDYvR0vkvMs5gGY1om1dnhbMHhwGtBCJq2Y7XZstntqOsaHwLT0YjTo2OOF4eMqzFaanzv6ZuOxjt2rmHX7Vht1yxGFQgzJIvt7SMRJRkmuQod0nvmIh8PtTHc9Ur2FsSkwkqx1nsbSlLRmbuG/31qWHIZqYygsgIdWww9GoEkWSQhsd2SLWaoP2LAKkWpDCMjEQG8IsUkZ5pcCYRzdHXDZrPj5uaW775/zTfvai42gWVX4MhQRlPkDnvVMKkU07Ghrh2rdc/RfMvTB5GimDEdpefeZIaAIQiNVpFxkREmgoPxFN+n5MKma3AxWUAyoyi0oDKScaYYFZJ17WlcYtkFLwkDrL/v22F4GKl3W1RWEYRO6S4u2SL2zzEk+4jWOjXFYmJ67e/JndWDfdMsrVu/72Hv33ftVU0xBto2AbH3a2Qc0m8SOyTtWynx3SF0vOOtiJ+8pwwJeykLMSnB98wbgmf/s5EASiQWUWaRKIRSoKGsNItZzpPTKYuxxjUOZRSbbeB2V/Pu+pbrZYNgH4pScRoFm3pFlkU66RmNS54+f8aH9xfUnWe53qQkxQAhKrRPh+m+E6z9juXNkuPTBxwsphwdTNnUAyC8TwmHQsnUIBLpPu3vj/OpblNK0/c9akhgYrD6Jrv34I+6xwrljqU5/Kp7Foz3fhgMDBal/fq5Xy8G3mlwJMZlcmRzu9ny/qLlu1cr/ru/+R1vrq+4WN3yw+UlXR+g92R1x84HgpKITFPYknFZUhU5ou8YLxZMDw45nc1odj3L5Za275hNJ6g2sum2tDCgGtL5ajA4sZ9zCJEwFR+/730KWqqL2+jYbld03RLlbjjMPV4XqCjZNQ1i5Ylhyzfhkt1kxGJ6wPGDM0De1cmKIfExJnh7PpwZ9mofMVgXrVbo/39YhA4OD2EowkejDHAJeBfBDJPg8Xg0xI21XN9cU45sOrhrRR09kyLHerDjEa8uzrldr+mDZ9usGc/GHBwt+NN/8mecPnxEnheMDuZoIJeKg9EIZUGqiLGS8aREKXC+o+tqnj5/wmgyY354lORApE7t/OwIYqBvGt6+umDX1kirefzsCfPJnBBSF/e7l6/47ocf+OHlS95++MByu2bXtjRExJBFn5cFf/mXM2bjkqPZmP/4z/6EWVmRS81uu0teb+/ROiMMncWuadnzPAT7SUTqDI8nFYdHC8aTEW1fI1VKU5ofzX7f2/TvXMF1f9+KE8OwBO6/BMmekBbX4BzYJFWviopxWXGh1B0sKEYIztM1Lcura9pdIqcvLy65ur6m6boENzY6LTQxIF2aRMuhWy/22ZBIgpapweEFGpG65IIE1pUfE5e0TIdC4uA/9im2NJUfQxckxjvyupX7AjncRbnuozmtNngG6F3viS59efkRRha9w/mATKpk1N2oLdL3Hat2SSYMhSqYjlMjcHVzb7ct3bvQ46PAh6RwICZVi3M9zid7FyQLU9M0bHfb9Bz2NV1fUzeDL7xPU7joOqJT+F5Qb9dMJhZrx5ydnZDnFUoaYpRs1ku0kpRFQdP2tN2WertllCmyImCzjPn0CCunvH11yde//Zbvf/iB1eac29U7/pP/5H/Oo0cPeHB6ymI25tWPP3J1cc6Hd6/pu5rtZslymVOOCup6x2a35na95O35e66WS642a9o2JUpFDJsm4r0CDIuDB6S2nSZ4sDqDAIXNUNYkmDJQFAVFWZBtM7b1DueSLNB7n6I6h7OD1BodAll+j03N4O/gY2kCHHDB0e12yDxDxIDR5k4503c9fWgxIUtQWKWSlEumZoyPnq5vqesuJRFJkzryMRJdwAlBJAzeZovKNDqz+MYRO0fswx33JXhP6DxexBSXHDs6PK0IPH58xvGjE4QxfPrpFyymB2Qqw+8CP/7uJe9efsD3TQIibx3trqNperKgkEJjjWYyKploTbvbUmhLoS2lsUlN5lL5pQIpIlhahBbkOaA6ehyBkCB8SqODTawRNVj62INt5V6HNzSt7+dKqpV0+PZxXz8OcdiD4kkJDSFN9YwmqW9kWoOcS7JhoTS2yNDWpAlS9CgtGY9HTKcTIAyJfGl9UVqS5zmT8YT1ep0KWClZr7c0XU/nHEhFUVZYm2NshvMBnecsxiPOHjxCZzlSKjoc25sdtzdrvv/uNX/3zXecr1Zc7DZ8cB0b79jFQAegBsVOcLSFJYSCeZmBMagsIysL5jrjvOsTrHa9Zdw0GGdRZEMKnUKb4XuKkbapsXVNVmQoJSnHY7plge96fO/JCoO1intOHmW761BGEKJkuUqQ165LEeVSRoQSSC0GlkC6/DBV2xdTydPuic4RdUyJGl3HanlNu9uigc+eP+WoKjkaVSxf/chvfvlLNtsVr9+85Ob2mrI0ZNleZxWREkZlzmw2RRmD1CkqXguNEprgLdfLJde3N/z6t9+y3m6wecZnn3/Js08+A6VYbXa8ev0G7xxSRMbjkhA8dV3zq1/9hhfPn/P06RM+/eQTfN9zc33Nh/fvuPpQcP3hHeubSySC6bhkXGYIERA+JanZCNOqpKzGTGcL/qv/518R/S34brCmpSOgUQrpI+9evuGH3311fzdOyDTsIOCCR4lh3RNiABgOirbI3f5e5SXjoqK0Bd5FXr56zfnFJa/fveNf/tVf8erNW968e8/tuk7vEpKucwm0jSBET99FLi+XXJwvef2rb/n86SO+fP6U58+fokqDN4Ku7zFaU2Q5p7NDnj56nFQpZcWyq7leLnl/fs7t7YZtU1MUBc8fP+UPv/wFpwfHjEcz3HbHarXhZr1i1TbcbJZs2w1ttyZ//JhcK5zXWJmk8XlmMEaSWU0vFJ0Q1E6k6OWQascQ9wf2j412LZMK+Q7ML9LwIMuy4TC9/7zv57aN88is0MzLCL7FCkcmk8LLR0+MSWHowjAQCo7oHVZLKmsZFToleqHpWsOsyDBK4Nqaze2am6tb3r+/5ndfv+TVrWDlMjpdIe0YJTL6RuFuO7Z1ZFP3XF2/4df8SGU1nzx5zHrd8OTBGQ9OF1S5JC8NeTUCGoo8pzAlP/vkU969ewW0bJqaLvZYlZFpRbGDSSZZlJrVJONmG9n0Pd61uD7S+4AWHU29xmiNUtA0W3S9A2XvVFUM+5VUSVlrTFJY71k/SqamGDDwPPo7MOjeAnbfV4KvR1xw1M0u2ZJE4jalAJOOtmkSZFSKO56IMKnxp4YmkVIqDXuSZnNIb8pSXR09dZrEIAFr8lS2KYXUGlNkaJJdCumoSomSJX/8B0/43W/fktsNfRxT+zWress3L1d89c1bPn36gNOTBeUo56wscLHhk+dnBFvw+Pkn/PGf/1P+D//7/yPvLy758e07CmkJMTV/BBmaxNBp+i3v3lzw8NGWqir42Ref0fSwrd+x7WqCaxBRDcMV2LP+nOvpuw6pGzJt8G0LgjRIH6xcYUAjJAXXPd6/IeUuNbfS9xO8H5oR+1j2vboqJq7V3YA14VCCFymSut/yr3/1mr/73Xv++pev+Zf/8r9n4zvaGOiCB52hpULKCmFTc6wjMhnN+IM/+RP+4Gc/48evfkOhBcIY/uhP/gRrCt6+Oeflyw88enjGcuep/TWr9WBrGgbdahickWnCkDpmbFJVQxyGjamG9q5n161Z3l7j3A2F2jE/fM7pwQNmoxP8t1cslx94+eolf/sv/pZHB3M+efY5/9P//AuGvi6+86j9Z+I99a5lNi9TGIYyZFYjpaEqJEUmMXo/uvsPXyx/7wbL7PSEXeipg0NYzaicogS0uzrBGXWkGGfcLAOt7xCtYNf1lIUBYdmtW65vXvH2/JK/+tu/49Xyis4HpNHUKOpNzbI/Z/2v/jvmi2+YzCacnJ7wZHrA4XTGo8MD2i4dHgM9qEjrWySSyeGM+cEBeVkhc8X0eJEks0qjlSV6hxcKoST5uCCrMoq8YLVa8/7ygq+/+Z5f/+5b3r674PziitttDUoTRE5HjxaK3kvqVctmfZ668Jlht4k8ODzkcDJlJDO2uwi9JhcaFT10PcH1uAjaWqTNQFl6n97aaVGg2pr++pL6vKElUI5HTBcz+Pz3vVP/gyu07J17giRrDEOqTOrMkjbkwTMrlIChsWFyQzEqESrJqwSKbtfRbTqW/Q3n378l0xopBOvbFX3XYYzh8PSE2XhMVILG99x2Na4PhNAjlQAl7yRse6ZL7D30gY9sdYlBkBlL6cHUDnG7w/XQbbf42y26dWQlZF5ivES2AdND3gnGaPI+UHc9XTccTG2SEHebNU1fp+/H9Wjv0c7Tdj2+7e/kmT5EWqAHohLU3tFGj9KRPERyIoUMCBUplOAew5+GewfCp2ZS3ySGg+vT/fOuBwROSZo+Uvc7du2W5eYG51u6vmGzuaXvGoJrwTcUZkxuEujq5OSYh49OOD495OzsBCEU0UfapgVR4Vyg7l0qBkJHCD2VHqFUMogFl/HJs5LpaIzNJL/7+tds2o7vXl3y5fk1h4sFVZ5zcHAAoacsNMFtub655Hp1w229RmU5y82Gy+Ut3795za7u6H1AqpwPl1d4l/zWde3S9xBr2h6szZL0WXqWa4sykaOTBVLIoYBOyg6Zaey4pA7dMHFy6b52fbKD6RyT50Szt67dz9W5FEsShBysQiB8oG9qTExg0JHJ2URF7ALNrqWLnmwsCULjhEyxk67BbbZcX75ht6nxXaQ0BpWVKJOniLnBOtaGGhd2aKvJRxY5MdALXCeI3Z4yr5DCpokpEaMimUnvKVZRPDxMcnQlmYxnGGnwXaTuWtREYxYWe5SRxQx51eJjh8BRHSgOjgtmhxnFRJAJ0NMsWQtlirj0XUPbdTgCxRBrnJISQLuBbyKg1QFlJDq3SHKwLUEEXAMi0wlwHPWQLOTx3N80PR3EI1Em5d/epuTjEDUvUwpC6LrUCFbJDqkICA/BRTBq0PZrpDbEKJDCU5SWalwxGo9o2zqlDXlACJTQyKjSlCkkhV4gsNnV9CGA1hTliGo6x2Y51mZpsJFlZGWJttldset6x9X1Necfrnhz/gEvJflkzGw84v35+5Tp4QNeiuHAr8hMxeF8ysP5jE8enPH52QkPphMeTCaI9Y62qambLXW/o2636MYgmhzvIHqJFJqimrKtd+y6FrVZQazQEsblmC4f0/ge127J/aBAvMf7BinloO5qui5ZQpz3uH2SSdrkAAawnkhT16FpJwBphml/SFYNRUreklJwcjDn6ekRL86OeTAZMY2BMQH5n/2Pif2O9eqW88sPXN9esziYMlMTgGShjRarNYkDmSxVfewRXhA8rNZr3p1f8P7yih2Cv/hP/zOePn/Ko0cP+eXf/pJvfvs7/u2//Tt+fPkG5z1KKk5ODnnxyQsePnzAf/Ff/C949epHrq+u+fWvf80nz59xMJ8xG494kxku3r9he7tkeXPNfDrh5PiIk5OT1JCWAte2FEoxLipym/Plsye47jvaJrFe9MAmIQac61BEquL+mtEGRe9JFhkiNkucv8pk5DJJ7p2IqQaRCVBuSWuA7+D84pq//Bf/LT+8fMWb9x/48dVrtrsNTd0hOo/RIaXl6YiSDoRAF5oupuFFFJLZOGc8G5NNRmxdh24juLRun84OmU9nPDw65eTomCoriBKuL29Yrm5Zr9fU6y1KSmb5iM+efcbBwSkmK9k0jovzJd98+x1ff/c9787PuVxeUXc1NhO8+fSch8eHPHtwyqfPHxFREBSlKQhYjIl0riMqSQyBjWsIQeKDIMRAoTNUVMgA+cASkEToWzKlKbOcqhoTY/p/EIkXch/XaLGkHE/JsoJ2W2G9xRKR2tNoT6s1ThVoZ7BdTtYqdrEjaIfLIRYGpR2Z0oyjQcQa4RU6gAiWZqdYrRR1PyPIAmkqdH5EL6d4rVFGkY0zHr445MXzQ8ZF4NV333L1/j1/9avvKUZHbJqA0IJnj0bkKqCkIwqD1jk2szx/8RBUy65Z46Smk2ZI2IEs7yjzlknWsTCSuVS0CLZtj7I6NdRDj+trcluQ54ZcSwwaHXIKO6b3W1zsaUJHLiRCarSWmEyn5Sc4gkxDgiAibtjPfAjUzY7EOEzW+fu8iqxARIFv+8GeD1JERByivtstrquxViOUIAhB53oqoVDKkBuT2G5CpUa/yRFYiIb1LnK72bHarbi+fk/f1MgoGJdTjs8mjOcVk3mFNzVaqLRvCZHSBTPD9CDj0dMZUQXW2x6djbi+aVkub/j2xw+UoznFRFHMSpSKzOdz/uwf/yOWmx3T2RjTtnTLW0TtyGOOpiSKZFkiODqfdnUpRrSdoOk8zvd8+uVTrjZbltuW5Q8b2jYgVcQHhRIWYkrBkjLBjPtWkOUZREHoI22zoSrNkJjqCTISZMDL8P/tdvz/fjmD1AETBbmSSS0WEmeq6yPOK4QoCL5l8FRStztEbIl0aZDXTahrya5x/Ot/8zv+9ndv+duvP3AdFNKMMApCtxksfY5V3SF1GpBbbZmPpjw6fcqnn/whrgncfHjFTd3S0HP86ABloG12HM0LBC2VAosi+JRWGL2DGJBSMCqLlGgrBNIKbKnQNoLo0OwoTY80PZvNCnYrgqvpNCyOX/Dis5/z7NEn1Pw13h2w2xzzl5ffc77qCG9uePjDObviiE4G2rCllJGmaVitV3hhwBQIm6OlQMUVhWo5O5ijVA/Cgfj9WiW/d4NlcXrCrmvofE+722CzgsxoJBLf9WijGE8q8jKj7TrqtmHXtNhM4z0sb1Zc3K54e3nFzXrNwcOzlJEtJT98/wN96HFdz4fLK1a7DaPbirpvyHpHqRXi5IjJfErdKFpXJxq11ujMMCksxbjCZDlSK4zQaeqhkmhxH1dXViXaKrquY7vd8sO717z/cMH7m0u8VtiqouwCO68Sj5IhVlXIoYMZaZ2nx9M2jq9+eMvNzZbFeMLJeIZsHDaKlAPvk+xTShKtRCmE0vgIVkmyzHIwnxH7lnrl2dQbolHkUiDK+ytgxN0MKl0pgWQAx8U7oSl7v6dUKR5PCpk2sSK/S5CSCtqmo2862m1D7PrhgAFdXaMiyDwnViOy+RylTYpuDoFORvrhpRch1bcyiQRTt1cK0AHfB4Lz5FaTaUNuM1Tv2V0v8ZuaWylpmpbNbsv69hZ8UnDAxyg46TyZECgfkC4gQyC3Fm0sShl2rqUOHX3wEBzR9YS2SzGHu5YQSPc8DFI2CVhFHwJRpKjh3EuyILAxEoTAKkl+z7J3cZcSkCZXyZuepKUp9UaggsMBzqe4vbrd4n1H7xKHJcTkc1YyUuaGotRkhaSscoqypChLtDWEwc/Ztg27uqNuWjabmsxoou8R0dFWOXmmUmKUtagDi84yoors+jW36xVt1/Lm3QeCDyxmU0aFYTabpoXb7chKw83tkvOra64+fOB6teVms+W2cUymhyzKCWU5pnHfsd3WSGEQqkWQkp965+7a4U27ZbVOVozNbkWlZkiRYFpRCpTV2DxD7fSdh11GiC4lG4iYpnwq6iHO834uH4apuEwQTWI/xNKDHw4rRkpkFMlG2DmCSNOFGBRCGrq6oWtqVufntM0WKSK2yChyjbUabRTGaryU+ODoek8vHFGDynRiEAWJCQaGuPQ4+CF8DEn5MSSyoSXCKLKDMVGmQ0dmTUpNYJhcFQozsuSznKzryH1LETvsKOfwZMLh6ZSD45LZoiLzkbbWdLc1dSuxSmOyKtmhiKlxqH4y1QgREVKDNw6yVxcDRqWpmBDDBh0kIg4/3qs5KF1SAjLJ9CNp5sWg/EkNZoFUklaKJOMXpEShfVM4poN7lCr9ODSKpVQURYG12SAP1zjf30n5lVRJutr2d89PmlQzRJJbimpMMZpg86QWkdpgswyb57QyQReDD9S7mtV6w3q3IwjB/PiIkTFMpOSH3YbNFmIX05puUhrReDLh+OSY04MFZw8ecnp8yOGoZFIWBKHIRwU6N3hSMZqSCcJgI0lRj9pm0LY472nqXVI8GE1uMrTJkNLQNhHfJxhn394v/K91PX0faVtHv0+jiYOf9c4JO6ToiX9XABz4qGbRUqOURsr0kCqVrAaFVhRSIKyByYjnTx/x2SfPeP/+Pev1mpvbG27XB8xmEwqrB2vqANMNyZ6bFJXpmVBSs6sbtnVDHyKPX3zK8y++4NHjh4yqihADdb1jubzh6uqKfpg0++jIBubd82cvGI8mBO9omgRlzScTprMprjni5OiIi8V71ssb8jxjMhlzdnKclKFKpbSGGLFSglUczGaM8hwrFXXs7iZ5yY6SJtpK3CMTog/D2hiIQpDlOeNRxWw8TrytGAbFRmpWByDTGX3jWF7f8u0PP/K7r77jx9evuby55fpmlSJzg09KWJlYSYnHnIp5RNKlhZD2iel0wmQ2pZyMcTHBWLVQjMuSh0enHMwXHC8OKIoSpSTOOa7Xt1wtb1je3mKNYT4/4OGDhxwdnWHzkl3bc31xzle//Yqvvv6Wb777nqura1bbDZ1rsZnEN47Lw0tur24wWlIWGZGA1ZZ8gHpLukF5KwbL1l4dJRIkVCiUkGRG411PEKlusFqTWUtmLKk9fL/Tn9E0kpcSrRWtM8gg0AS0EQQdCUoQlEJ6hfIG5VO6jFeRYCRkFq09VjqKYIcDHRBSGFnXSdpeI9QEm0/wcozKjxBijDAanSnKKmN+8oDTpw95eDomK0fk1YRfXf01P7w9R4hIWUQePfyMqARBeAQmBXYozexgymFzyHaXo0xAZwXKZmhjyYuOqpW0hWCSKUZGUilBF3wCyQ8KhbzIyQuLUhJjEjssBoguwc09ERc9PibVSEpG0XgfiHslt0xqn/THT8qEzvUf1697brAopdmnFhEH4LcAET3edTiXosIR+s5almxp6m7t3KtrhJD0vadta7bblq+/veDD1QVXyyvev3tFu92hkCzGB3z25QOevnjAF0WFVHpQrwgiGoRES6gm8PDRET5G3r2/phpNsLon+h2v351zdHzC4uCI00cnKB0oqxHPnjzm/Ooaa0uUd8jeo4PEYFDBpBQr4YnCY1SGtSWjaszx0QOmkymZNYwWE46PD1i8W6JftUgU+5uSkmbEXXLXXWrlUIMnpUWXrHF7johIQ5L7VNgSNSK6IXgjNYxiSBiA3iU+V/qeJZGkxPfeIbzDxW5Quffgej6cv+e7b1/y/mJJFwLzk7PEkgs9lx9Wdy4Hr5LqOIaAd4LNesu79xd8892PvP1wRbupmY8MaMlkPoYQWF3fMh0XtG2kys2gNxZDYl8K21BCkWeauld4IdBWkxUGpQQxenIb6WRPExqa3Yq+3tG5Bq97rpc151drinyJ61qm45LZ6DgFzXxYsukiF8sNyixwOg3iJAkK3LU9QlmksUnxLSRlLpmUmuN5iTVDHfh7vnO/d4PlwdOnaSJE4Nuvlqgso6oqyjzn6vISm1sODubcLm+5uLxivd6w3u4oixyjHLfLW75584arzYY2eP7on/w5KstpOser9x9wTepurTZblusl+lpyvbohLFco73j+8IzTJ0/Y7izb3QqpNbbMKUYlOs9QWTZkeu/hgqkwp/ODtEoxnS9ABpa3S776/jv+5te/5OZ2Td9Hjh8+YnoQWKxqxHevWG02NF2D8GmSwVDAuiESr+sDX/34llf6nCrLeHZ8ysPJgsNqTCgFYpCJGa2Q0iC0QUhF5zxlUTAejXh4dkpoazabltVuxXg6RZUFur8/4KaUQ1F592+GyDwGsnvCoacjghwOPgKkFmg0RVUORX2N947V8pbdasPmdkVsOswAuhXOURqL6R21vYGDBZkaU5VJut6IQCsCsU2yXSWT9UcFUCoBTCWCZldT9zUTkzMqSnKbQd1yuXyL65Llqveetu/ZtS23N7esb9fM1huicxRliZCCLKZGi3QOHaEscrKiRNmMXd9Q+5a+c0Tf49uWflfT1j3NpsGHNG2MUSQrkYyE0uK8RypBUWSUvcA6ge4iXkJuDVVZ3Nt9Az7KQweGhpT7A2i4a7Q4J0DH1GDxHbtmiw/93UZJ9CgRMVowrnJGk5yiNORFRpZnaJui0Nuupa1rbm9vuFxuWd5uuLy6wQgoM8O4TEX3dDJBVoaqtJTVmNHBlMXxHJlL3r0/5+27c779/geapqZtj/nk2QNm8ynz2YjprODo+ohvf/iBV+cf+PU3X3O52rHtAgdnj3ny6S948uQFi8kxLv4rPry/ZLdtQG7o+xbXtwjZJzp637DdCZompScdXR2jbYaVxd27pq3BFhZlNLH3OO8xSILbR0emFCytwcT7mzQ4H5O8UqSIRR8hDt7dPgaUFBghUHFgmchINILgBNFLlLCsb664ub7g1fffUljNpBozm8yZjkdImSGURhqNsIKAQXUpvcvrQGs9dpQSCLTWSGWSBJikGrsTiQnBEFORClAZkoxk760OIKPEFBpdarJJxuhwRO0dvXSITJDnFY+fHnN0suD4bMLJeAK7lpv1LcvzDa5p8Z1jPrcJ0knyBoufWA4J4Y7PFL2n6xOrRmYjUsqLGSL/FCLIvfvi3i+pueNkaSEGW8LwNdgLlZQ0KiUJqUFCndR46SgtpGYY+SSNhpBIZahGI+zABEoS7fR+J26UJkaodw3SqGF/6YdnOMcWBaPZjGo6w+YFJssoyhHaaoSWtKtbQgj0veP2dsVyvWLXtmTViONPP0VVFY3W/PL9O1YDh8uWOcg0hTs8OeHJ06c8Ozzk6dkZZ7MJ0yxxEvoQyEclWZXj/Q4XXIL59sOhGEAalAaUxAfPbrPGSokpSgqdoXUOwtC2kbx1dE1Pvd3e672r25a+D3RdoPeJhQN7qW+8s5YO55lUNMuPdrNkwUiHPKMtxmj6fmAKhB58j/Q9OjgKJdBljn70gD/+R3/AD9MR337/HReX58znU2bTMeXxUYKKh5CGCENh7qNLUGql0cayq2va3qFtxl/8R/+cT3/2BePxiN1mlRRTQ0xr8CGxpIInXKXUmM12x+nJKc+ePcMoyfr2hvV6zaQsmY7HWPmA9w/PuDp/z6vvv6PILLPJmKdPHhFjkrV3bUqjk0QypTmYThiXBbnWrEKbPjO5jx8dmDv3eFYPTbKOBR8QUjCqRixmC06PjmjrhqZv6YNP/Kyhiimygt2mZnWz4a//+m/41W9+x/vzyzu1qhQBoyDTkGuwOtU1A7qXCGiZ1GUxCg4PDzg4OmQyn7NcXhNDwGA4mR/y6dMXHM7njMqSzBi8dzSh58PVJW/ev+P88pLpZMbnn37OkyfPOHnwkOjg6vya//6Xv+S//hf/L77//kfevn1H36VkxcTWiFx/uGI6Lvj+aIYUnrPTYw4Ws4Enlqw2Yg87HexAd1lmQgxgf42RisJmtNHjkg6GPLMUeY61FiFVYrPc321jfmQpK41WhugMOgiMCGTWI9TgrxQ6NRODQfiBe6cE3ijIczQgLUTRItU+uCDSNoGmE/TOYotDKnWI1lPa7AAjKpQxZKWhHG2Ynz7i+PEz/vAfveD49CFHx4/47qtXfPP6LcvVBbDin/yT5xQqpXoKkQSG0krmh1O88GzrHZ1rKaoKmxmM0YxC4o7E3rIrDbNcszGSxnlwHRGBzjXT+Yw8k3jXorRMgM6up66hcz1O9RA8Nh1Tk+VNqTtGR5Ri36lPEM6YYsH7vh8YNunrPi8pFX3v6ftBTTCsicSA69tUa/keyO9qhcRVGWayEbxLyXlGaXarlouLJS9fr/g//9/+W169ecP7Dx/48YdvaDY7NJqTxQl/8Rdf8j/6Z3/Ck0cPqapySDckPSfD3mpKw6efPcNkmqZdMx7NmYw0RgW++vYV88UB88NDfq6/QJlApSWfPH9OkRX0fbLMWARWKDJhiUNjK2EJesbVhPn0mMdPnvPzL7/k8cMTJqOK+dkhDx9c8+79mjJbgjKklRv2u8hdr35ADySuEMTgcH07MFASsDEOzZV7vXVRDyyTMEBiO4JrCa6jb1tc14Pf82ISa9F7B76ncx277Y7l7ZZbv+E3v/6Kr776hhunKEZHnL74Et837FZLrt99B9KntM1CI13ip/mu5e3b97jwb/j+5Qe22xUni4KqPEbnGbNiRJEZ+l3NYlbSdjAZlShRD6pRMbBXAlpJikKzdZIgFKYwlFWGwCdMRSHY0eHbDZvVNc1uTet2RNHz1bevWa09r19e4ZtbDmZPODw45PHTp6y2kc5rrtY7xlOHF54gAiIEQp9Sl5TJMFmByTNMDMynOYfTjIenM4pMofS+hf0ffv3eDZbRYs7x0CH/6puvud3WWJvz9NETmi5FfPW6Y3F4RNs52rZns9pQZhZBiTYZB0fH5PM5UyJ/+md/Sucjb99/SLBAmU73Skn8AEGtN1vevH9HmWWcHB1x8vQBxXTK6HCGLTW2KlBZhi7zQdKTRhVCpA0FoUB6RGbQVqHxRCK9X/Hy1Qe0Kjk5mjKbLfjzv/hn1HXH+fk14v/6f+eH735geb1N55FAkoIJRacTUK+LIqlupKAh8PL6ghADvfBMDiZkzuGEAxza2MF6kzbW6WzEyekRZ2dHvHn5HXW7QxuFLTOEVnThHhNN9n/5qQd3/+SIPbk5/TspBVqpVIQqgRaKyaTi6OgAIlxdLGn7mrZvCDEwmU0ojUUjWF5c4kRg17a8/fABXeUs+iMOsxNmixnBaLyWjPtkdRFSkGmFGmKUc22wSlFvkwfXCIVre+rdhvdv3nJ9ec1uu6XZ7tJUWymE0ag8HUDyquLhsyc8ePSQyWyKVGlqaKREFTkH0yl5NUJneRoxqIjaCpoQabc7eh9YrRo2uxbvY4LLxsFCqwSuNtjoKIBMW7SPKZYNsEZTlYHZ9P5PfXdRjIOKZU+e/2mTZe9X/xgJF4gxPXu51RgkJmqyzJJlGTaztJ2jc4HOwc1qx+p2xWq54v3rt7x5d8Gubmj7DithPh1DnKC1JK8yKlXShxp6kWCmheazL59y/PCAR1cP+O7rH8iNofMNm2aD1iWZVYznU6TV7PqOh+cXfNH0HK1rVrWjRdDULVcXt/i6wHcGJUq0VIyrEnDE2LG6vQB6pEyJJCBxzrNcLqlGM3IfMXmOHFJOMptTZCWtrwm+H96HFO3t+i4pNGRqXt3XtV1vKbOCTBkyZfEiAfSCD7S+RWuFsSne3PkWV3coNPWmIbCh84bzi3O22yXCS54/eUFVVRhrcT144YjC0zRrNAqdafKFQauDBIRVCpvnKKWT+gNSUTco8bgrbPaVFcBHUCIiTd9SA0pQlhnjSYF3HW1TYrTk+HiW0odcpJoU5EWkzEVia7iIzcCFjtD3CB+Zz48guuSD7XvAE6Wnp8fnIIbYX+ciXgakjMlmIw1KBfrQEoIjBI3aT3H3f4Z7urRVwzsVUEIgghrAbGk9VEZhrKHterSUWJ2SqWS8O7YhpEUqC8oSSIpAoxSjyQSUoG4boutRUiGydICOEbxLcYvjYpqaZ8oiTCSr0mR2MjskH43RNsNkOSrP0jPsHFIk6KIYkkMWi0NGU7CjGeXpGcu24+35Ob3SFLMDDucH9BLG4zGz6Zgvnj7myeEhh2VJZnKsydEpLonJYsH06JDb7S3bzSVSpxIieo/rHK5L3m9hU6SiNorNzS2t1NgoKEYVQmcElVF7EOuWzXrH+np1b/cNYLXe4n3EudRojFEOj7YY0v0GXzw/2QJ/ksgAKSJYGEGmJbaUtF4Rm4B3HcJ7dAho5/Fdi/SOUZHzh3/wcw4O54wmFU1b07Y7dvUGqY7Z92yT8sngfaRrPTrL0dKnKanUyd48mfLnf/5PKScjECk555/9s3/OJ88/42df/gH/5f/p/8Jvf/cVP7x8id/saJqO5XLFZlfzv/5f/q94+vgRZw8e0e02bHc7lrdLzo4OeXB6wuXZCWWukdGB77BKMD+Yg4C+7zHWDpYFz2I+Y1SWWGMgRkLvicNAJAHl7/caRmGoKJAhUmU502rErBqxcj4pUZRCqnQfnXMoa/lw+YHry2t+ePkdWkumswlZ79isV0iRYkhz2aFVRMnEDgwigba9SwlsUkqMsRwdHpDZlAhS77acnp5yenLMl198yaPHDynzgugdXdNSNw3L9YrvX7/mcr0iaMWnv/gDnrx4weHhIV7Ccrvi1flbfv3tV3z39keuNzd0wuFVUqWEEEmYgwKlLbu245vvfqDve6RUjGczVO/xuyY9mj+BMqf9PwGdQxwaBlozHo/oupquT8qHIs8pigwp5ccl/h6vMp+iVYmQyS5SZopx8FR1TSUCQgZ6GREu2fD6EOmCpI2SJgp2ITDKTGIqhhJ8AoW6EBBap7q+KqkODpH5GTs5oesLbCzIs5zxqMBkJe0m483LHZPymnpds6k9usqIweAzwU235bptMWSUxQgrMoIQ9MFhTcF0vqCaTOn7FqnSQFKKSGYt4zIpoP1Bw806p4s17aal6zxaFVSjKdvac3F1zYeL1/z13/wdJjvA2DmrnYLMkI0yDu2UMktDH6k10hhi3+NjTClx6SYTEXQ+4Lyj6XuU1rgQuUf38t3VdR1NU+Ncj7VJTRJjvEvR2qcq7jlxbdvRZYLeBaSyhKhwPfSt46//+u/44YdLvvvumr/562+4ur1hvV3RdI4QweFZbdf8+Ooln109SUB+pRILin0zLgz7Wc/h8QxkpG1blssNB4dT8rLgzftLLi/P+frr3/Ef/bM/HprhgtFkymkQ7HYtq9sdVTkms0VSCYqMEFLQiFaWRTXn4fFD/vCLX/Dn/+iPODobMT2y+AgjmzGrKnKtiUYO3DXofMQF8Iihr5Ias0RB8Mna1bWpUaylSkoND3dlwT1dnh4pwoCCTIEjkojBE9stdFtkaLHG0vQ9jfdJEdZH2i6w6LqX/wABAABJREFUlVC3gVJLFrM5z588pNh0LJ3CihaZCeTIEmRSuGIU2IymbVLAiVVEnXFZ16zef0BLz+HRCF1W6KJgcTSD2QwjbFI5Cp9Ug7i0t0oAh9GQZ4Kq0mxaCMJjrEeLXUpI7RuK3LPbXXJ5/ZabzQoHYJK85JuXL3n7/pJRVvEnv/iMzns8keliztHJjt5ZqnGJUALnA03fsVpt2O0aXO8py4qqLCnyAuotZ2enPDgyPHlyijGJAxOGZNv/0Ov3brCYsmQ0nzF3HUdnD/BdS+0cxXjM4ckp6+Uty+tr8rygqkbsdg1d09M2HY3RlCPLydkpXis2MXJyekLdpUhnbTShV4NkP32Te4VF2/Vc3S759tVLPr++5FH1gOligcmSRF4ZBTItXkmWrVI0E6lwctHfHS6k0gilKKopZ2dPmB+c0LZ9Sl+pW9om3VxrYFIaRJsT6i69LDF58RsvEwQoeLqgqCaJ4N9ut1zXa5CR2XrCkVVA2gBTBzUV6RAGeb+idz2ta4kiMBpPqcYjyumYajb5fW/Tv3MJMYBsh2Jzn4iR0HLcFZ37xBMp75B/CAHGaqazCX3fs9vWKJMOdJKcs7MzKpsjQmCzuoUQCQKiFDR9R9N3uBDIiwJVFsg8Y6LF3XRRyz3YVmKlwghJV1RURcHy8prb1ZKr8wvevHrFbr2lazpc16cJRl5Q5RZrDW3bsN1taF1L1zUsDg+ZzKcQA5lNwMZRVVJWJSYv6V1H6+rkoW13uLaFEGl3Ne2uT0DNMHStZbIFdCKgRCAqidSKIRwLpSDENIW+T5vJ3f0bvmI68SZ5YozIQS5912jZf8UEVkzqAJFgnEgspLQva9HWsmtqLq+WbNuem5sb3r19z/XlNe9fv+PyaknvHXGIoj06mHFyuOD0+GBI5zEJpKoKpBVIkZIdhJ1gcotWCt87FBGbD83FQSqZ5RmHh0f87GdfMloccr1uuFnv+P7Ne7wLLK9vMRxQFTOCMyi2KX3ASrJMMZtU1PUtbZfi0okR73u22w1t06B1soIl5kjqQ2ut6WXaMKUYePbR44Nj/47eZxJiV7dkGGKmBiVLeqP2EYaQCn6lDaLrE4C487Tblr4XbLcpHWtazjg+XFCOJkRiYlzUKfauD4Hr1Q1eeEyhOTw5YHx4jDIF0lpklqUm5JAqwcBRAj5mEP+9/SN+LHaiYB/vDgIpI0VpuF16lreXfHh/QW5yqnLEwdEBB4czxpOK8ciSG0OInnKcY4vESokxfd4xDAupS82VGD0+9DgHUXi87+l9RGuNkQVSZhA6gotD2pLHa4+6k7t/jFW+j8uaFHEafEzpQCFNi4Mc0snE8CXloGARQ68qraJBaAQqNWcDOAJaCKKU9MElmLZ3RO9RSiXwt1QpIQnuJptGWrQRxN6TFyPycozNR2hboIxFaEsc4KBRKqyy+OhBwGQ0ATIcimy6QM9mNJstwhhskbOYTTGTCXY8oipzRkXOyWTMuCwps4wiG8j6SgyTaJDWoPMM3WeDXXQvhY94l1JassomPo4xKZWqaemkxmU5UaRGQkRT7zrqTUuzut/EtaZtk+LQD+kzg7R7n4zBQO1JiQEkqfcwltzbgtA+KakUZEVO0xmQgq5rUxzr0FhRQ7MmSMF4POIoHNL2DdfXN1SjEVJJfAh3UL8wNCpFFCg1JJcphVEmHcqVppotGI/HSK2HdQIQktF4wrNnn/DZZ59zc7vi/cXlYP2Etu159+4DP/zwI2We89mLp2QSrDG4vkcrSZ5ljEcVR4eHHBzMGY0r2q6h77vEOhmN8D4d1vs+NYHTfpIK+BDTCD1EjxBpb4n3aDdJaYDp97LKMMqHlIq8oN3s6GRKpzEq2bW8d3S+Y7vbst1tIAYODxdMXGDX9XSLKUVuGZUZtxev8V2N912a5MKQSqgTrFMprLVYozFGkWWG09NTPvnkBQ8enHFydko+pH5FEdn1HberW96fn7NpWnReMC4rnn/2Gaenp5RlRZCCLvRIqzk4OeDk4QkeTx9a+n1MqhdIFEfHJ0yqDCN6tnXLru0JQpAVBb3oUa0b1HEQY7JOgkLIBIlUMiV1FUXBdDrldnmT+HFCJMh7UaZY3aGPfr/T9AwhLEIYpNIY5bEqUEjIiXecr0DEx0gfI10UuKhwKILUYJJKUIcM0aWo+4jHVopsBMUIsvEGNT5AygmrjcTEkjLLGZUVQma0NXx4t6Wtv2Fz+47l9Rtut2t+9tlTjuYFRzPLxnnGXlDl47RmoxBohJJooZEhorUhpuB7iA4rBRiJKA1hXnK6G+Nkz1r0XF47+r5lve34u99+z3p7xfXNO5rQJc6L7KjblhgMQZV4P76D6se9dVSIdIAf0AFC7ZMtA/0Au7UqqSD9PYNuvfP0fVJ7BR8G61ka4PV9f2cdSqq/gHepmd62gqYx1HVLXffcSsf69oLf/Ppbzs933C4Du11HUzv6LiCQST1F4s2sNxvW6zW73Q6dGbTa1yB79XA6c1irmM1GPH/xhB9/fDOs6ZIvvviUzWbDarVkubxhPq/QyiB1RlGWSGkBy+HhEePRGGssRmd0Tdqn8Ip63XB9cc3Lb39kNlVcXo44OC355OefY6Qm0xajErrCC4EQbhiM/+QDHBSQ6VuOd02o4P1d3ZksRB8B6vdy36LDCAla4obflxAweLRvEX1NbHdoa1JMOimxiagIUdM6TdPDfDTi5z//BTG3fPv2kq/eXdEqEFIQvUh2Kq0Q1qDKiqD1wJIzBFFBViDznLIwiCLDa0lUkqwsyYRAOkG/g2rcMZmOkKomDEN1oQQ2U+SFpSwt2UYQBGSZQIkOpT25hEJrjPZEeoTRSCz7gJi2a4khvcfTxZzxdEo1rjg8OmRbB7reMJ1N2IkUYtI2HdvNjt71CAR5nmOzLJ2FXMfBYsHRUcZ0OkGrVNP9vlvc791gUUVOyQRP5PTRI96/fkUXIzLLWBwdJz/xtibLcqpqRNt0XNZX9F1P23bkleH45BQ9qtjFwOLggG3TsN5uMUYTtEKEBA4UMkmJQvT0IXCz3vD9mze8v77m6NEZxWSKzeRPprDJ955o3PrOOxdjxMeQ5PEqqR6UKRiN4OnTT1FacXFxybfffsvl+QVt23C7WiFFT1VoVJfjfSK4h5jSZKSSSC8JHgya8XzCaDzmvG+4bba44JjfXlNORlifIr6iSEWb0inFRClABLa7Db3vUUYyno0ZTcdU0zHlPTZY9iK1O9EKkY9Zy39fCCWHw0BS7KQiVWnBZDqm63tubm5T5J2zCGM5Pj1hlBfE3vHy++9xfQKvSquHrTISpSAvS/LJGFuV6CpPMueQilkjxH67Q0VweYe1mqsP59ze3vD+/D0fzs/xXeJYxBAwMZLlGUWeUY0rrm9X7FYblutbvO/ZbNecugfE4MkzSzkZMy4LyqrEFiXO99TtjqZrWbc7QtfjXKBrmhRb65MCMJBi9aSWeAkhdf5SxK3YWwTg4wZxv6Oi9HiLIQUg3ccYP/JyBMOhfWis7DdKNaiRYgCtJVqAFRqbGfTA09msanbdOQH47vsf+PG7H7n4cMnFuws2uxoEKKvINFwdzrk9OaRpt8wPZlTjknJSUmgQRqTYYaNQmaaoCibjKfVmS9c0ZBKU3D9zYDLL4mBBVpacPH7K9brh4mZN5/+GN2+XrLZrJoVjPJpjdYWMt8ToGI1yprOSvp9ydf2Om5sLrq4uEELgfU9db2mbhiwrktzch3Q4iOlAI6UkiJTOkt6LNCmKhKGxeH/3zTU9XjmiMijxMSVgH/MHIHUCXgoU0ZNAabsOmkjvWw6OJ0zGIw4fzGn9ju0uFSebXUPrPXXX8erDG3btFlsYnvknPB6NqKwlVwphTIpAHGqYeOeNgLtsPBj0x4NHNnxsxqZnaXiuJWR5UgOuN9dcXLxmPptTjTQHhyUPHizSRio8Kgp81JTjnKy0KfrSiQTWjumlij6ldgXpCcHh+oiPHi+SQlJiyVSJJCO4Da4LuN7jM59SvgZyU3of7u+dywz0w7pltQKfLJRepgj4fYR8eveHBosk1eRJ+IpA4qPAeQCPkKkZ27Qtvu8SnDpGyrzAiMSU8SHBN40xSKnQNkOaDN905OWIvBxhsgKpM4TWRKUJ+wI9CKyyuNAjJExHE5RxeGmwkwVxPGaLpBxVjKZT8tmM6ekJs9MTMq2wUjAJgZFSlMZQZFlSPg08miACUht0lmH6HGVMep+AOES+d12PFUVKhzCG4PYNFpWaoEKCNEShaeqaetPRru+ZwdKl3yc1WfzwqA8wdT9ItqNHGXGnc98fRvex5VrrZO2VgbzMqdsMqRVNvaPZbWh3G0LfIoO/S3Moioy5nCEU5HlOniXOjncOFdPanWIiGfgLMtkSlcYaw+nJCaooqWYLMmvTISumYn2z2eF9ZDqb8+DBYxYHP1KUFc6n5qfzgZvrW374/kfmkwlffvqCcjJBi3QYF0JgraWqKk5PTzg6PmIyGdN2LU3bYKwlL3J2W4d3nqbtqZsmNVqGBlGSxad3QhAJMdkY7uuKPvEMRIxkxjLKC8Z5SWEsmdI0QqbMOJUiUH3wtH1L2zf0rsMaw/RgQhCKXduhlGI2GTGfjvj137Zsbq+pdxvqOjVYBAyKGIXSmjyzaJViw6uqZDFf8Mmnn3B2dsakqjBqULFFRd02XC+XvPvwPlm9p1OOT094+uIFk/EYKSXb7RZPoBgVPH72mPVuhY89u3pNXQdclybgWmQcn5wwG5eEfktb39I5RxQKY3OUi4OaULKPYg7BJ8vh0GCRIsW7l0XJZDJJbI2QOB9lUVIWBUbroVb4qYT5H36FaIgYhLBpzVIRKwWZiOQklEAg0JKYX30IdEHQR4lDE2SCgQsBKmaAT8pkGcgrQTFW5GOJHa3I5guEnKB8Ty4KClNQ5iN8sHTNju12y6uX71lef892+56+3fL882c8fXRIoR21DzRBILMRSvZJiRVVSr0JOgUtaPC+gZjUDkoKhJHIqFDTgtN2hJcdF+2Kq5uWtom0vubN+Rs2uyvq9pqjwyn5yGKMwl3W+L5D9un+RdLAa2/5CZBsp0ohdDqbxJCUVZ1LFnhlswTsv2cFi3c+AU/bjhA9BE2UgRg8ru9xg3WImIYNvvf0nadroGlatrv05XrH21fv+fabV+xqSYxTujbi+8STE0IjVXq3AylAYburWW+2VOMRUmq0FINxD/YNFm0ko3FJXpRstztCEGid8/Oft3z11des17fc3FxTlooiTwOsFHqQIWTByckJ0+mEPLNYW6TBRp/sdrtVQ+yvof8WWHN8NubsyYxPvvgMLTRGGoxSBJVqNiH2Q3LuaqafCmfj0IB2ziVuWgh3TRfi76eC+PddEUdUFpTCDVYyEQKZiGT0aN8Q2i1yPB5UazIxRFFENL3XNB0YW/H5Z8ccPzrl+Lsfkb/8Hd++XxJkWpuEDInLl1n0aETssvRrKYsLGaYYkZVjJpMSVWqCSkMok2eU1mKFYX1VU016JrMRSl3uXdZIJciyhCjIC4M1gigiRQZa9lgtyJRhlEnKXGB0RBeWMHAMfWjxMe1HQcLB8RGzxYzJNOfg6IDeK7peU41H7DYJ+t/Wkd2uxokUM17kKSTDGIOxhsWi4uAgYzSq0mDpH9CK/r0bLMEIpMgoxIRnX36BsIput+P1h3MeHh2TjyfYvESqjOlkTmFLYh/xoaNrO9o+oxyPmBwdEqylrAqEksxmqausVYoJE8QUxzsod12INNFztduy8x6nFNFa2uDQOlmK0jW8BYPXej/VN6VNj3gEaXKUzimrnE8+/TneebYbx/n7K7795tth0tGy214T3RYtenKrcEIk8ODw60Qf8V4jKsvJyTHzgwVdu2X5oaNud7z58Aa9Lpgaw9hacjMizy0my7hd1dT1huvryHZ9zvxgxOJwzvGDE7LxGJXl9ztp2DdS7orKlCAU8XdNlGQVGiLYkCSjcoqJkwqKUcbEjZgfzpnMx+y0xLWOXjg6ehABOyrwu7S5TxZzDh6ecXR6wtnTJ5w8fIDKc4TVRKNwQwyX932KpY0gQqBrG9bbFRfnl3z1/ddA4OTBMUWRcX15xW6TDtF5npGPMmxpefrsMUdtw/XtLV998y1v3rzkzbvXnF994Nknn3CyOOXx00cUoynGZihrgQltt6Pra67XN9D3acLeOaSPRJckvDEEvBAEJVE2wyiJESZBlINP3dFdz3rnWG1rVvfMFYCPDZZUqIe7Rsv+n/dxfvvLe4/VEkXE0YMPmMwwHY8ZT0cgI6v1Lb/76htu1htu11vevv3A6npDs2txjceF1Eg0KEZ5Tgiaza7n8mrFxc2S6cGcw7PjFO+nZALreY9UBpVZdJAUIiMvFEYJdIyI6FOiVu/JVEZeVmRNT1Y0GJtxcrjg+mJLt+sREc5OTyFK5uMb+r5hPC04PJygTMeH9znv3im26w8DUqSl3l2x2yyxxlDkBVGlJi0hoI1GaUX0irsGQghJORLdcMC6x0ND4/HK4aVPaqdBXO+Hzl3oUyRpFHulnUJ4sNqisFgEpcjJsdAJLs8vWG3XrOodXiuulrdcLm/49uVLLpeXSCN5f7ulVWPOHkZOHpQU1X6bSFODFJ0JRqfP4K5Boe4qheRRvzNagxg+k0gghJZqpHnx2QNefHLKYj5nMT8gyzKK3GJ0mnThA0I5VAFmkibD1uf0riWJLOTwvjmCdOkp7VN7Ai3IsxFFNiXLZtAp2lXH9maXoL9Zh9Eagxkmsve7Upba00WHI5BbTfQCh6SGodBNa6jeA25JsX8MDVkCKQKbHifbO7Cm84Hzt+9TlKP3FFmOHEliJiBTyVyUafKioBpNyKsRJi8wXY8tR5isRBUZQUhSyLjE6AxI3DJpSGuSjogMNJKoNBQVsawwszHTB8fEKqMOAa81eZkT+x4dAhOlOJ5OmVpNIQQ+uLTuDWlIqsiwVUkULTbXaGPYW2+6vmWz3VCpGdpmZFkBEbp6h/KOrsrRSpBnhjzL2V5saDYdzeZ+Gyx116Kl/hhfnnCRgEprz6CginpgEYmheeZ9AierfNgqE/xxPpshRUtbX3F1cc5333zNSMLMGqazKXlZYlROEz15lnF6csZ0PCO4pNJyvUPrIVViiGyXEmxu6b3DKJhOSr6YfIrMCnReErs2Na+co93W/Kv/5q9YLm8BxfnFJav1DqUtUWiETHDa4Fq+/vobyszyRz//koc/+wwtIfQNznmMNUzncz777AseP3nGZDJJ09Yw1DQ+stluqbvA7bbl6+9+5OLmlrr3YCx7/kDE44d6IYZ7TIAKKWoeD7NyzLSsGNkc6SIZAgtI5+8sxK2INK5hMp8wqgq8jFTTBdJaAoonTx6zmE0YlZbtzVvevvYE37LbeQKSKGSyPw8qIjs0DI+ODvn0s0958OCMw4MDqqpCG3OnEPXB8fbDB16/e8vbD+eU1YTnzz/l+SefcHr2gK5p8a7HWstkMmE6GfHlF5/w+afP+Mv/qmC3vuHHH9fDwC3JJQ9Pjjg9OkDGnm9+90t6H6nbbvixZ9t2BAT9YBvZN1iGmDMgYo1hNKpYzBYpIbFzGGUZjyeMqvEANI0471OjL7sfle2ukfQ2I5iMqG2C6QdPSWQ0jNd8dDTR04eexjmaPtCZSO8jTYj0QiFVsoISNEIlVtxonjHuO0atIZoPZOOKXlX45S1t9GjhaQkoXRJ7hfeC1Uqw3ni8h6OTBS8+fczTR4cIV5NJi7YTvChwoseoxBICDcFAlMhA2oPCoOdWHakw9RgrWEwsfcw5Wuf87qtrbpaBnZO8u+nT0HbxgH/8F3/AqKxwfeDq+pbapcPcZLzAmKTk65xHdh1t7+lDJIj0TAYhiUT6oWHdtD22CPjIPeetQV3XSbXf9miTmpbRBbzvads6MVicH+pLT9f59GMPTevZ7DqWtzui3/L11y/xXjEZHzKqHvFf/zdf451EqQJlI65Ln2tuc+YHh1hbcH15y+LwIDHElATv74Y/+/GXHGY9Zw8OaZqetvX8/GefkBnBxfk55x/eMh4ZcqsYj8qhZBForfjk+XO+ffIjP3z3GilG3CLZCUO/67BqRCYrjLD0jSc4MCrHddDWgbr2OC8HUI9GDilkMXhCD1IopFRIqZEyxaKHEPB9Og8E5fHOE1xiW8r7BIKbgLSp8dd0Pa7vUNFxWGoW04KylOhuBWGRZmNRQBDEaAixoEex2cFq3bFZbjl5dIitShZHh/yXf/kvaZ3jdhupJhmhyBFVhT04xPgBvB8gt2Om0xmzyZRZaSlokJkZ3nhASkxhUVmDLRTFyKYm8d1DnAJeysySaQm+QUjIdE5uA2dHC04P55Q68url99yubqlVzbJxxLbHR8n8+JAqr5hVU56/eMaDRwvGleD6ZoQPkqZNLLz2cstuB3WTUXrQ1mCspSwN1pikItWGg4M5i3mqYWPsB7g4QPYffIt+7wZLH2MC9BWWg7MTpBKsl0uW789pnRsSViRSaxYHBxQ2w0jF67cv2ew2dF1PVY1YLA7QkxHFeIQymmkzYTaf0GUaETy+b4fix+N8apgIrUileIo+FSpJllCSmMifSaa9T5MZkntSyyy9qTEOB40QiSiqyZx2V2N0hhCK9WpFjD1COoiO3rX0rkOpPHUio0AqzUhrlPco78hnEz559oTDo0Oa22vC7Yq27xFdhyoLiiLnYLFgNDtE6ARqvLnu8L4DcvIyZzpN1qA4gPNUliON/X1v079zee9SiRRTqRSDG1gGLk0hh78Sk9om9an80MBOLA/nOxCBalQwmU9QWtHVLY1v6TYtoXdEK8l1lbyriznzkyOmRweU0wnSGqTVCJv8fVoZYtSoIFF3gMvkJkQnnoAtc2bjCVVRcnN1hdASda2IN2n63wfHerti22yRxjCZTzh5eMzF5RV127DZrukH8JTWKnlrJWiZ0n6KzFJYi0LQu8Q2Cb376J30aX9FipT24sKeqw0++bgZvNw+BDrvqe85GWPfWNnL/QQfmy13bJYQhtZi+vd932OUTge7rsNniWNRlAUxJFbJy7ev+dVvfs3NasN21+GdBK+wukLbdJAcT0acPDjhi8+fYQ0oGcgKODg4oRrNiEITUCCSTS8OtHnnXJIMWwVaoPbRkWHwN4eQ3kVBOiwrmZpswRNdQ1fvWF695/TggFE1pjyd07bbZBHSntFYY+ScSeWRrKnrmqbuWK93dLtbGmPpygqtkvQwWd/ksCkmy47TarCBJQhY+g7vD3IbGodXHV5oxChDDxPrNJFMRH7XdSiT7IwqKggJKq1J6+DmZknXbmn6LcvViqv1LefLG377w4+8v7zmernmarVm19ZkRU6UYx4+vqWq5hwcuJSuJdIaKXWKAI5hmLDsFStxmNIM33fcj8r2tmj5Ec6prWQ6q1DqIRAp8oKyKJBCoGSA2CNiP/yeIbEsRhk615RUNOddUnwh7w6xqT3boXuZfk5JtMiRThO2geZ6xfrils3NGtlB8PttPHAXo3eP0/RSB3SIeBHJM0nwgk4I+k4nH3YMqEEZsG/aJytFUuEZkdQJVhkqYynLDGs0VmnaprmTDFttyLICYyw2y9CZQmeGrMopxuMEbTeG3GqE1aAFcQBHRpFk5NINazUpvjZqMSgyIkoMkbYCiA5QoASfHR9RO0cXAo1zpGaR5LAqmGaGUissEZwjIod35+O031iD0hKpJEon+Gvb1sjNGu9CAqCaDK00sWvp+4amWSNMRIqAVoKmbthta7br+7UIOeeQOinUYvBJMSfTBG+IWIK7pgvDLCYk3luIEH1qBIcIwaXGrJAYpbi9veX8/ANvxxXXz55ic5sk7rIkupQcIYUitwVBeaIfGD5iUNDIpJqJeGJMCiapBLlWCGmJSoLwuHpNVlQo0v9/fXXD1998y+s377hdb7hZ3rLe7lIamhzatkKzXm+4vLrm/PwC//kLyqLAFhkheoy1TMYTjk6OEUrRe5+YcAPocnm7Zrlas2l6rm63/PjmDcvNhi4GhLUp7TMmy6wYVG3xHkfq+7QnJQWT0YRZNWZSlFTK0CnDDpksHPsB0DCIOzw+ZFyOOH34EFuOENoQpebo6AgtoW+3fEx/DClhY4AGG2PIbM54PObk5IRPX7zg0xfPefHsGbPFPCXk6XT48wPbbLPZsK1rpNYcHR1z9unPODg+YX5wgIwpwtRHQehSSodSkkwrqsxQaE2mBIWRRK0RwqJEyagqGY1KZHTkeYHNMpSxtF3PrmnZ1s2geBgULEMNLgd7kFaKLMsoi4osK1BSoaQkK1JKSlVWGLNfJ7lXj9CH6x25LslMgcwqxK5HiBbpPUZ4jHRo4UjAzZ4+dIgYkrqtT0qIMNZELZBao7AJ6OsFsQVpJMpIkB5bKjAZo1mB23ZE5QjGJytc9Phastu1hBApi5wvv3jAJ88f8vBkTrdbU8iKUTEi1xXWDhw20qFPSJn001ImO/2g3o5Cp+SjHoIYuBFWUxYFq1XNxUXLNmgOTp/y4NGc5y8O+PTFBEVgt9kxHlUYZyjGU+bzI2ymMVZjMouSakjlVIPKVA4KU5m4LCEOMOR7v21A4q841xOCg6iGdxqCT4d257rhnBAG1XhEkBpZXeu5vd1yfX2L71Z8+HCBEgYlTNp/okRJk2ySoqMajZmMKr785DP+9I8+57NPn3B0dIYkNbYGMMfAOov44NA6Q2iJkZLpYkrVB/ou4HtNZhTLsyNW6+u7hlDXtRiVD/uU5PHTx3z66Se8e3dJu4usx1PqTctm2ZCbMWVRMp2NGU0iZTEisyXGVAiREYIlioyIIQiT9l7ZDbag/cgqqcfkUJsnEPpgDRrWs+iTskWJ+5NGC+lABqJMQQoiQq4Vx6OSB0cTTF7gk9hksKVLYhCEIBFB0QVL3Qa22571esMxMxbjCpMZ/vP/yT9nudnw7uKCb77/itoUyNGM6bPPscUYH6BznvH0gHE1Is8yrt++pLmuadsaN7AhEQKpFXmZMZp4pnNPkVtkn6J5jLSMioJRWVBYS2bSPZtWJYvFmGePTnny8IRcOj578ZRN0yOmDee3GZt6xXZb8PDBQ3JTMLIlx4cHzKcjyjxydDRnPJ5RN4KbpaLrrmhbATHDGIu0BmFJFlGRQlW01uS5JssVWu1Hj/H3rit/fwULifIupWY0naCEwBrL5mZFkIOvUCYPeVVVHMxmuKbl8uqc1XpFP0x0irKkGE/QRZ6o8eMRk+mY3mqEd9TbJCf3QaT8ciRCpwIxkBgfCJm4DkoO02iGQ8FHI0xCLcifHJvS5updKnxMVhD7gLEZxmQ0TYuUDmtJhzN8YnQIS5RJWmTzDFNWGOeQbcNsMePs6JDj42PejMessozdriEXkkJrqqJgNp9TTac4H6ibFvDoQSY1mozIqyLF5BKRxiCNQZj7Y3mEgXuwt5WlpkliQcT9h5eiPPiodhnajcOiFwYrRZZbRpMKIQWtMRAinesTnM1qyrygLErGizmTgwXj+Yx8XCGMHr7SYi5FmiBKH8G7IeUoIqNBWYPJLaPZhNl8wbga4YOnvLpk1+xQdZ2gjgSarqHtOsrMUBYFi4MFddfi1yElXURPFBGlVUpAkAIlJdakyZU1BiWg9X7wRvv0Rw8i5elGhlhPYCjQCII9pTsMscFpU0zSznu/9j2v/Vf8qD8QP7EFSSFQQtK7nhhkSj4aVFxCQJYliN/NzTVv3rzm7bt3bOsO52FSHSQLQlAEEYlCsJge8OjsKZ998jNibOn7HSYLTKcHVNUEpTOESPEMUqbnd18MagFCJdbBPmp6H2UrpLxzVCXuc0QEjwgOXIdvd2yXF9Sba3KdZPdBOQiOdufJrSLTnsUs59PnZ2w3W9brLW/f9ETf4Noa17bIzBIH7grsm1UyWb6USqqM4aAv95nB93W5iG8dTnZQkRosUqc/v5AwFPxCKZKTVON9Ki6lABki7bam66EXDduuYb1tuL7d8LtvfuTdxQ3L1ZbaRXyIlJXk5qpjdduyW7f0dZemwlIhlPj4vOytP8NztLeb7e/OnsaUpLr7nxsO7UN6lrWzpDJUg3owDFYiP/woBYhAUBFdWrJgySloLtpkkRDpoBa8w8c+Ud4DyJAms1pm0Ev6rmdzsWJ3s6XdNIlpc7du7flR3Gv1WWpQIb3quRF4ldQOtVG0YRC9x7QP7j+bfdNEIrEqpUdZpci1ZlwkWKjWw4Y+RKqmdKnELDEmxxYWU1hslaHLEqlTdLaWiqjSuxzlx4UgBoZmypBEIdQQr53iIe8O9qQoRyMiUkjOxhVt72idY7laI2SKWZ1ZS6kVmZIDX4Q7Sx+Cj0k2OsFGxbCW+pBYBKLZEXxAS4mSekjOiukw1dXJZiFSelayDDva7v4ampBS1qJMdtwYwl2arYjybo+Lg+UtkpL1IDWrghcIfCqORNoju6bB9z0yipRe1/dpbR0+45QQEdOUMCbLnZaGiCKKkAYHg1pOSAFDekyMjkiqJ6TSRCmS3Dn0hA6wBoXEGg0xsl6v+eGHH7hZbXAh3FkGREwWMakTdHmz2XF1fUPvPFppyjLHdTvMUHONp1NCjDRtSyF1GiqEllA3rLZbrldb3l3ccH5zxaZt6WMkqpSkl965xA6J92wRCnf7l2Q6njAuK6osJdZlSmGlQg+WPD3YY6KIjMYjTg6O7mzfKA3KkOUZ9W7N+rZJh0gf7n59BsioNZaiKFjM5zx5/Jgnjx5xdnLK4cGCvKo+KkJFsnQ4H2jbDqEUZTWiHE349MUnlKMJWVGQwtcUgZ56s2F7e4uSEuF62s0G37UoEnhXiDTwsKZMh4w8IzpBWRbkeYGxls456rajabu0Gg/7apLZi7uDndaKPMsoyxI9xIorqcjzgiIvyLIshRbsG+r3uMddrxomVUeZe6YmRxibrIRCYgQkA1FAIoihx7kWFT3ROXwXaNuWGAsEAxvNGGSIqUhV4a7BEnFI4dAmUI00degwKmJKgdGKtk01aFs3aCWYjCueP33EyeGCg9mIzghyMSbTOVZZtLZJ3RaGMlfsU+AkiW+jIMj0fe0byX1qiEqlECh2dc9627GLntNqweLwjLNHD5gvBNL3GKGpqhLVG4pyxGg0xdgE+RT7CFghQOzThJKNWEiBDz6tSXD3H98zgiXZgJwbbIRqeN7Dnao8+EHdHvbWtIhEEbyn6xzr9Y7Npib0O3bbGilsajT4ZCuUwyApCkVmNfPZgk8//Zw/+sM/4eHZIePxPFmn91HIDHtVTIB5xMcBT1FmBA++j0RnsDopVl6+btO9iWk4ao1Ia2pQHCxmPHhwwtPHD7k4vyXTOU3hGGWB3I6TgqLM0FlNliXVpZSWGA0xaBAZAUMYIr0RHkTa9yF9uwkePQw8o/jYWBnWszsO2H3eOJEGB6kRlfYwKwSLwnI6LcBYNjHQDuEld0j3mCxCPkqarqFueupdi3CePNOYfMQvPn/B9eqWySjny09fcIsmFBNGDx4kgYBUuBCZzhcYpQnes3z/A8619K3D925olqdv1VhNXmSMxp4ss3cpVFZqyiKnzDO0FJih4T0qc44P5pwcHXB8MCeTjgenx1ytdsRxT3mjWO9uud1UnBweYoWl0Dnz2YSqtFjTM5+OiRPDtoa6ToxG74bENaVQSiF0+vu7NVQptJEYLVOwwj/w+r0bLD+JBUfnhjxUSKkw0kDTsPKRrMhBRrTRVGXJ2dkJP778nuubK7rOJTp1lzrIWZYNjYXA6ckRvuvAOT68f0vbNvRO4EVE6RRHaosiea9CwMeA1TYpMgZ/494GI+74IukQfzdsiWmipZRBRJ2sE9YyGo85PDrC/cqTG0lV5YBhs9qwkw01iStS5hmLs0NOzh5wu97w/vKK+WTEyWzK2XzGYVbQVmO6IJjnBafzCceHB5ydnYDOWd6u6LoarRWLwwUPHz/g5GRO51v64Ki7jgkpbQCT3duL6b0fXrPhWBIGZsed3FSAd8M01jF4Y9hHNysx/HsC2ioWh3PKqqJtO0Ln2W22NNuaIAMPHz5iPpszHc84fviAajphNJulCG1tEknU9SmabugWBPExRlpIQTmbcmw0apieud6xaWr6GGBQUIl9M01LvPAILcmKjMPTI9rQI61ivdmkaauWgzQsee6USo3ALDPkWYaSkuB6ej94KB14JwgugSqFTF18bxQ6yyhsTm5yet/RtY71tsYJSxcSIu0+r+g8mI8L9f5Lkg7tTioY4tiUTEDD7WYDMbE/tFCpkx4TI+Xtuzf88PIHfvjhO7brNePZAbPZIY/PXtBvA93Osb3ZoUzGweEhZ4cPyc2Iugn4XnJ2dsLB4oz5/IDxuMKaDIFKA1/SN6akGPz7qWEnhBgi7dJhVCuNx+O6Ht95+npDu7mFrkb5BtFv2Gxbvv1NTVWNGI/H9K7BuRrXb1Gq4fBowtHxjF98/gICrNcbfpsLXr1qILb0bY3uLUGb1GQZAG4+eIKUCUYsBNF39L3DCJDm/qSc0oHfdbQOmEaUNCiVng45yIGJcoAdGoyWuG1NH3pQAa0l0fd0wbFb1nQWugCtl3TBENUYlecUXhOCpMxKNMf4naZedqzObzmaH6S1Tktim6JLpfgfFNk/WRsFaePZFznpEO+Gw0myCiJTEQNhiAocMPl+eEZ1OtV64ahji6os0lvwCid8SmeRChEC0fW4kFg1IQ7SfanJ1Ihm3bO5ueHNd+/ZLbf4xuONSEDMPSRYQEDc9QHu41oUmlo6WheTal1ZlIlse5c4HlIQhEgco4EhJWJqbGopMAaMUlgpyYWgtCkGXUiFUlmSFQuFc8kmEJWBrESWOarMMOOMmAmCikQFDNGycUijUyoxXvbgSyJp6ql1UtbFAFHewVUFDjqPEKlZcyYlITN4o1h3Pag0vBBakauIkgEZhsONTEOK9FukRgwhSfqlJK3dviO2Ab8JxM6B1sio0crixTZBi9tt+gxCjxKpMRSQ6c9+j1f0gaBCSlkYAM2p8fWxubKHg8cQ8fjEZYqe3nuIkqoo0AgCLW9eviKEmtD3zEYjHj16xBc/+4IvfvFlegeEoO0ahMggCkIXBnitRmqRTm/DFDjtbemGueDvoN8hBmLviGFY2b0BY9A2YzGd8Nlnn3G9XPH9j6+5Wq4RpHjnEAQhCoRQZHkGvmPXdLx9f8521xAPJGVZsvUdNrMURU7XVXw4P6ftWvK8Zm0zhEhJeaum46vvf+TX33zPxeaW2iuc0MOarohREQLJIhTcwGq6n2vfMFJa8+jsAYvpjFGWo1pHqQ2TLGOWF6x3LUYKlEg1jR4avlU1Rg4NliA1b9684s2rl3z/7VdcnV/SNi1SasajMUJbpLZk5YjpdMLzp8/4s3/8Jzx++pT5wQKbZakhM4CQg4/DME+jTcbDx08AgVKa+WSGzUu0sckWKaHZbPjtL3/Jm5c/QvSURc7F+Tvefv8ttDUTq+l6jxCeo/mYo8WUSVVwc7Xh6OiQw8MFo/GITdOyrWt2TQNK4aO/S5q5G5YpSZEXzKZTDg9SyqMkAbLH1ZiqLMnsXgn9MZ78vq7zWwdyTeMEv3h6ihpPKVCMtj21t8Ro6WJaE71vaLYtuQzIrsZvPbulhdMxEkHwPlmXBpiyNBJbSPJS4/tbtqu3yOg5nEzpSkOeFUxHFb5WrFZbVpv3rNcf+ORpwWfP5/yjX3zOwaRiklukmCB9gcQk9aRQaRYgYCA2p0ap8D+Bv6fmh7QGETN834E09FFxedOwbQRdyMBOWG09r9/dgGqY5CdMi4zC5CwmMzaNJqsmjEZTlAHnOpp2i48K59M7lCwnCQargKbrcM6nZrxOAOH7vtqmoW+7NFwq7dD89cTg8K4nDEDopGwJRJfWNtf3bDct5+eOpj7CDs9g6z2CgAie4DqQAaFARYmWlrIY8/jRCx4/+oTFfJxs4yqFbeADoO7UD1rrYZCyVxEk9YzWihAhyzVKlXxinyamlk5DpFQNpOFCURrOHhzy2eePWd5ckeWQmZJnDx9idYnre1abG5BpaDybzujaSN8LfDAoNaEnw6NQmSRse6L0SQEYHNnwfSbV0zCcGmDdBBABgnME5+5S9+7jEnREXBpmOo/vehQ9B1nG2UjhFNA4+tgRg05JQ9IgpE3PtIRtvWO98dQ7Sb/dInEEq6iyAlkV2LMj/mf/8T/n1arhug1cOEFlFKPxhPF0ipCS8w8fePv6FT9+/StkW1POJnR1YlnGbEBLSMhLy3QuGI1yIj2+D2RSMRtVTKqMXbNGCSgzzWIy4rPnTziYjsi1JJeaxydHRCF5oiuW9TM2uzXXt9esb3cIJylUwdnpAk2N73cczidk2YjVxvH2zRrXNXiXEoQlabguZWrS7xlqRus7h4BKE0j+IZ3o3/tuSwkptyR17WxuMVpT2Jy4q5ERVpdXlGVBWQ1AUQnHhwdsNyvOVzfs1jt22x3jJBPAWs3iYM7/9n/3v6Hd1ayXS/7F/+Mv+fqbr7i+vkZ0MDlYUI5GTOdTiswOE1BgsGZAkpfe9Qrv2r379uFPj6Xpw/34U4pqVHF2dspkMqGsDIeHUx4/OmG2OOTDh3NurteMiorTo1P+6A/+kIePHnN9c8OrV6/p+47T+YxFnnFSVeiDObEoOCxGHBwlBcd4NOFmvaWua3a7HaNRxdHRIScnp0ymGZc3F3S9SxBXbcFmkP2He7/+fVeM++zxYYMV+wmk2msK0ucTPB8JXB4hdcqlR1CVBRFB2+7QVmOFSLYfJNODWfo1QuTk5JSyKAFJMZ+SjUbocQVDIReCJ8o0Bd3fkjuoUAgILzBFmsppk7Nbb1jfrjBFQTmZgJRU4zGZtYkm3baUo4rJbMpkNqNxHW3foTPLuJvz+PkzTs/OKKsSoZJsUSiBiilu1WQGqRWxTTT14D0xJMhvsi2RItmIuN5DSFJwQVJsRdL0IUhJHyK77n5bLHck8pjiLIe24XAvB3zWoKTZ/3fEiOs6ugB4aLuWnVasV2t+9Xd/x9sP77i+uubP//RPePTkOUdHD5gWh9x8uGV9veXmw5K667HGsFtv+O2vf43zDUoHvvzZc6aLAyaLQ6To0w3cd10jH6e5hOE1/P8gchXJlKYFKKM4mIzIlSL/J3/O58+es15vCV5RFmOsybDW0rY7nGvo+y3XN2/Ic8GoyjgaG4qixB2MGRlFpi65WvYsNzeIXKOKAiHTuxRCSCk0QiGEQimS3SQkDsM9slLRbn+AcvTbNiUGSYXWemg+SZQx9G0/HAI1hS1xXZqSG2XvGDu7piXYHGE0djTiyz/8Y358fcH7D0tub1oyU1BkOaFVfP+7l9xefODDq+8RMXL24hGLsyOC8wirhglM+Pu35KdnpeDTdG8/ieEn93DfeIlxAI6kfWjPHklAN4giJFiaUVBYZMjQPkl+ZRjWX+IAhHOgYpLta0uZjQlbx83ba96/vGR31RD9YB+MnuBcsnQNz7vcF8T3dM1Kg4gdxIixAqxBekneBVSXotuREHo3FKUJmJnUQCFFhxuB0klZsmk7fO9wUdC6SN97OhdonUdqizYZ5WjEQs2ZZooDMx7+/4BQydKVzlXD3/shVUToVJzKIa5V7o2ew7v49943GKjlySATARkZH1TD1C31ZZT3w/RxSEYSP52WM4A1FVIkfk7fJWgcUSMVuLpF5wIZZILuSklyUTpCTJNAneXockQ2VhS+uLf7BtzZJQMp6lPqmBToQhEGBkoYhjBSKaSQuMEaREgqqrZLqYOh6zBa8uDkhMcPj1ldviTLM3rvCCKiNCAkKsq7/QAh6buOIFMyiFb7vmMa+sQ9k18NypdhB9EiHTbSNCMiXEsUAm1Lnj97yvnlNb/53Ve8fP2Grnfp/gmBkhqtDVlR4pokINvudqw2G5qmSVPnGMithbLg5uaK3RDhXDctDx8+IisKkIpf/pu/5TfffM2vv/6OPlq8EHgE7g7SKBDSEEQYJv7314x2MRClQBvDYrFgXFYUSqMbR6kMIS9owpj3zS1GCLSAtt6mZCfnUgNQKaROg6nxeEpZVCipcc5jbU5uLdZYpEnwaFtUHBws+PSTz/jyy58znowxRYJI9313V0+6kFSANiuYzg2T2SJZA6TC2jw1JwVpz3OOdrPlzfc/8m//9t/Qdw1FbgmuZXVzjQ6RyljGuaGsJnz+5Qs+ffYQazShXfPi6c+pxhV5UfD6N7+lrus7m4gLnj74ZFEeGsxaSSbjZLk/OjxJTYAIQkjmswVFXqYh5JCaB/xE4f0Pvy53niasWLUt49k4JZEVYx7qEWwcog3sWs/YCrquI3YdUwlZqLFdj1trYn2IMEU62Azfn1SKfGRZaEXtJZMq8uHtb9nF7wnlAlMV9MWI0M2ob+Hm6pJmd87JgeCf/tnn/OkfP+UXn50xGxdkmqREFjJZ/7wfGCv7xsrHzyMAUg2DIAnpqJSGuDJAu+lZbh3fv75h3caUJto7zq8v2XUXbNaRP/tyzng2IysnzMez1KguCjxJGe1DSGpNYlp29lOpAUYaYqozg48opcl0hpIDDuEer+1miw/uJ6DWvfU2JuXiMKQOQ48jIohB4DpPCC0X57esV2fMJ5L5dMTLqzcIr7BlyWKWs+1a+ugRJsX1tjvHD9+/YWQKRlWG0YHnLx5wcDhmtiiReQmxJQ6I+Y/bV7pXd4k4ioQXyDRFru+S87TW6ZYO/yxtxtHJnM8/f8rb16/49quX3Fxf0KxqymyUEjhDx6OzBc+enPDi+SN82xOdQJGjZQFRp/3+Y5A8qYkj7zgsKSFJcmexcoEw8FdCn758vD9Vu6SHmPYy33tkgEwJJgZm1uNUikC/xuGROMTARdEIlTgqbRuo657dFtq6/X/z9qc/tmRZlh/2O5MNd/DZ3xgRGRkZOVXXwO6uFj+QEATwgwCJgAT9gYIA/R0CCAJki2SzQVUP1VVZmRmZGcObfLyDDWfSh33M7n1R1Q1UpDct4PH8+XO/btfOtPfaa6+FMhmVhKlYa8XFouVf/MmfcH274T/8/jv+5f/nf2A7jDSLBZdXF8Ku2+/oux0XjeYXP/slX376CT9++ZpV04o8AZmUeqxVNI3l4nQBacfQDVQqcn7aslpWbDZvaCu4OFvy6evnXJytWbUVtVOonHj54pJ60fDtfuT+N7+lf/zAuL3n4f0dy2rN+VnFb//m31HbkaZK/OSnn1DXC1TusSpgVMKoLPHRtITkAJ1DYFVs7NXRfJMuhR/W2vWDARalDojiDFRYg2mkz7VqalzlpKfcWtG7sFqsIJdLPjzcMw4ePyWhpXWhcpZPP/2Ubrvltnacnp9inS0UXHkUzmoWdSNBbZQJhhWAYHpS31f+FTBqov7BMUVySlKzhrqpOL885/ziAqVFqPP07IpXrwJ1s6Rd3HK2PuPF9TNef/IJlxcXaKWEQhwCp4uWWitWzsJyibaOy3bJycmapmlRKIZ+YBxGYkycnKxZrla0ixbUxMgRajmuImtDTJmnU2GR1FyVMVRKhLW0NtKeUejk89AeM34KQ2hC/VJOGCuUXbTYqTZ1Q13VLOqG07NznKvw3lMtG0xToazYz+UoDgTaGDlTyuDNPW9FOE8poZm32jH6gOk6lidrRj/SLEQRfNkuGP3I42bDYr1iebJmdbLGjAMnp6dgLSdKcfnsmpMzmU9SldIlcygLywgtc8bm5vetDkZLQDGen59PiqWTXymUscScRYNlfFoNlmPx2sntQpUkajp0cs6z1Z4uFZkQIhqojWUcO/p+YPO44cPNDY8PD8TgefH8muuLC87WK0yE2hhi5YhtK9Vqa0hxZLe5Bx1oVxV15aicxVojrKapwpDLfU3PaiIooWYq/t8DWSSbo7YG3daY55esFzXDMELWOCNuJkZbhqEjxoEYO94tR4yO1JXhpHU0rSO6zHCy4vllIMQt99sNfuzJVmiBGVv62AWUtYWSK8ELIoodn64qaxC730zC94NYVaOw1onFnBKAU/QY5DlZXYn3QowEH9CVwRqHNZltDIwluXvxyWu6YBiDIYyPLOsVtaux2rJ/3KPiHuKOd2/esr464/zZJRMozoTQT8fJ0eeHuV/W/ZwETnPx8HG8YKa/T/8lpaRdxWhwFpUsSlswkyZFaR2bqqpaqkFGi/tb/9ixv9uzv+9glJYiqXSF4pZVaMRHLLunuurKUPWKsThfaWvIRsBYrSUhT0mYCdPeaYrY6ASyTBhHSFn0gRJ0MbHtPd0Y6H2gCxFlK2xVsxp6ntdw5RSctJzULZXSWJVB57nF7vCw5wNPhkBR9I8mwPfQ6HVo84Jyg9PyxDhLDqnsy/LTqkyH6eSdL8VR0B2FveQDkQTZgXWkYSSbCqO1sDiUOD3FnEUnTRtM02LbJW5hqEJ4wpGT9yuWwoWplos9OXkWKk1FpHViQBrAKk1CWhdGlTEqobIIUJ+dn/PTn/2Mr81A27bMGgEYNFnAvjQI2KEdGgEkdGE2zdhkAVdyGRhpLZKC1Vy0KloxOQbQAaMU18+e8eLFCy4ur3BVRYjiZigCrU4cghYLBhLO2iKmG0S0sjj1GaOpqkrmZPn5ZrGgXa1IKO43W/7uq6/4w3ffcXv/gF1fkLFy61laoTTS2pl1gVueMFGPWYA/lKKpa+mPR4ocVmlqY1lWNZU2OK3EdaRUh1OKsuvM7nDStt40DcvFUoo9dYXVirquxeTA1TTLE549u+Lq6prT84viKuQOzDCEwQCAksROl759CcilnUQmXmFqFn2R/W7L48MDfuiJbU3lxBS4cY4hRZq24fx0zacvn3G6bDBasV42XF2eYauKmBL7rpN2tFIai8VdJhUGNwrqyrFer1mv1yyXS+5vhtKhqVktVwIoGTPrtf29Qscfee2jIg6JaEbePO5YLBacNA3r80vOXGDcD9xt9jQxoJK0C55YSx1gqSKMexgHCA59TGZTqsxZzbK1vLxcshnu6Hdber8lxSVxaAndDd1DYtzusHnH86sFX3x2wZefP+fydEllp4JwBpXKnlhiuwIbHp1uc+vfvAlqA8mSY0LXihHLbsjcPg74bMjWkAyE7PF+ZBgibWVZ1jW1qai0pXIG5Qw+jtisi+NjAbpTRo6LuYFXAOIoXzfaln20FLGe8BqGAa3F1VRi/DjB7x9Nk3ykKyJxr8zx3W7Pfrdj3YrAfY49SdeQB9bLiogn+ZLnZcU4BN58e0OjHMu2om005+cnrNYLyCUhz+IAx1Qsn1q35vFSJVaXr2ld3J+grH/kfEuRrCLtsuLy+oxXr6+4v7kljZ5aadpK2kKMqXn57ITnl2vOVg0fNgMqJgxa9vKoi8aVOrCO1ZEO4uxaW8YuF3bmbHM/2TU/3ZrTSqpZU8xvEBfWlVMsdMRrTWM0IIWZrHWxR56A4EQISRyhRiXOjD4WW+KAKbH95XLBbki8a2rcOJI2j6QwkhuDIXPi4LJd8ez8nH/y5Y/58evXXKxXwk4uBQCQAphzivXS0e0gjYHaJhatpqkgx45FazhZN5yfLWkqg7Wi1YgPLBcVicRDGIj9I+PujtRvUaHH2AZHZPdwh15kWmtZVBZjFUZlVPKoLMwqmTb5CCM4BLMzkDIf0BNm8L8zwKKzbPAS7yVyNmWyZXDSxuMqR7No0UYToidHT9s0rFcrnHGEYcQPIxpd/MKF0jyOA/tux26/k6QkecYwMoSRzeYRawxxfYLvOvwwEL0H5wrVR8qoU8B+OEQkktSow4OjBPaT8G3KNG3Fi5fP+PSzz7i5ec9+36F0xetPfsyLl5/x8PDAxckpJ6sTLs8v8eMIKbFatFycntI6Qx4GFlaxOFnhYuK0qmmX4h8+JbfD0KOU4vz8jNVyhXMVXfdAP3pwlqppUE1L0JqxH54MYFFKgCitRLKGabsypZonzY6SrORps9dzUDqOxX0hJ2KKAlaYDEb0a1YnJ5ysT3j27DnGSCI7DAO2bjHWFWwikSSbQtsCnhVu/4xvZENWXpgYqYicdR22bbl68ZzlekUYxRXn9OSEfdfx4cMHTs/OOL264PTsDLPf48m0pyfUyyUvXr9isVhI7/W0IU6Br0bswKepoSjaCupwwHB0AJazOqXM6L1QdrXBVhVj17Mfex532ycaNbliEY4SG2FZ8HqiJZYgN2exiAOxIwZpq9JZcbJYMuylovnh/Qe2j4/4ccAaxfnZKSpHHm8/sPmwRw0GvKbWCtOKGHFUA2P/SN0KkNY0BpMD+B6MiNWSQE2q/GoazCmjSFMGWHLDPD/rKYHXKlGZTL2qOWltEe3NiPiatNKEoIGanBvOVwFx/sm0xSFsJLEwitfPLvHB8ubDlr7bzT2eqpL5HGPC54BxlQhymnIwxnKvT3SZktzlmOl2Xen91NR1Qz8MpVtRqiJT7GtNRdIBHxP7rqddLnCLhmqReff+9zzsduxGz89/8adE7VCmIgfHSXuC1ZbYDxD3jF1gez/y9R++5urlNZ989gq1MPOhN627KQmfZrgcOkn0JaabOur7z9M+mvU0gEe94WVxFM2bpMWphipBthBFf0lNQQuy1jQaXRmadoE1hqEbuXmzYXu7Je4ia7eUxCUHfBilAhkLuFLEZZ8y9HSV9ONaL8GMcxqyo6qiAMwhEkMvpoeTLoQp4XpxXEg5EmLEe8+HzY7H0XM/jLzf7NmPgX0IbGMU8M9VLNdrPgk7Xo17dpXiy+VrltZSo6i1FtYKoLP+6P1mNQFhSZ65KnuZwK4Hluuks6MkgZ8YCZTEFJ0xegLUypLNx/NExlacSEY0o7SU9mLFqmOFNo7YDWAbVFVRG0enDR4jksS2QllHRUN9ck4TB6J+Yr0qJXaw8hFJ2Uh/fhagIYVAzEna2AvA57ShMQ5lMl2/Z0jyLCqnUEZx9fyaP//zP6dVPZUWwc5hGKidBQVj1zP0gcrWrJcn1NYcUcYl6c5lDWklQtqxMCIFCFNlLpezJkPK4oCgteb169e8u7nn1etPWC2XpJhEy84JuNI2C67Oz9hbWC8bnDFI91EkxhHvvYDiVXFyQOPqBZ9+/gVnF1d89/Yd//ZvfsX/+D/9K24eNvQhsVzEovcjG6NWWQSoy9lNTugnFIXwOUp8gLRsG6WEQRozOmcqDAtX0RpLbS2VEXA/xUCOUbQctJzryUsb3XK55urqGS9evobg0SpjrSugZsv67JJXL59x/ew5zWJJGEbZworLmeikGAxm1psxxmDUcfgsa54oSfkE/IZiKmCtuGWsFy2V0Vijub3xrBcLri/O+Mlnr1hYGfTr8zUny5YxBLbdjn23Q7STRWg6xMK+TGJSoLUSncPLK87OzlgsFrz95jvRQTKWs9NTqqrCGkNWujjIHTSInuLqsPgc8R5+/eEO2zS8Ond8evmC52tDftxym96xH7aokFEx8WJhqbWlCRo39jB0MDpp2U2mhGYKckSRaavMn/38E7KK/OHtB7568zWjd3RoYtKMHdhsOa0bfvrZFT//8RlffHrGugGTRijOYdJaUYprkxFGBqN0MS4ofR06Mdnyqqn4kqUQN6Q7HnvFzSaQXINdWJJxYindaNZLeHZxytlqiQ4KFUWENzrY+y2NrSHmorUtsUiOielEVFkJ2B1krJx1WOswyjy5jdDQ9VS1w9oC6mZpEWIC2svhHifzhygAVYqZPEa6cc/j/T2n7YrzE4PKAznuIXVcXCwYU88QxI2SCP1+5Le//pq7N3esVw2XF0t+8sUXPH+u0LomxyimAxlsJTGsKswRKVeVsSsgCkUzZi6YGynUTO6xKfY0jeby2Qm/+MXn6OD5cHFCnUWU2RlDVSk++dE1l8/WLKvEu36PCqPwlrTDRchZXFXFIEETlQDNunzMDp9QAKhYxlWeWY6JJ9wqsSbNraYpJmyGxijOakurpAW3Nlb2JQUYQ1ZGWCpWgw8EnxjHwDhALCwbAYxCAY8VOiZOlOK6rvny+pJni5qmbbh+dsniZMHF9QWXl+ecLpe8vnrG5fqUs3opIvEhlLZ8addyTnN25thuIr4fWC8VyzZTuUCKG87PllxfLrm4WOJMmt08c+ionSItDO3diN98YHx8D9FzUhlWDhoCjHsWpwvOlw2LShGCJ/uePPYQR1QWxz1VHMGmPJdSpJvBuwnmnGLc/MNYmj+8ISz7AqiApiBi835dAgadWS5bnDOkLFQipTJNXVFXNX4Y8f1Y1HvlNXzw/Pa3v+Hdm+94uL/j6tk1f/pnf8brTz/h7vGBs+VKxGLXJ3z26iVXp6e0VgSxJrB5vge+93lWEuDPQWVmtidGNrJ64Xj2+iVf/vynvP8fP/Bv/v3f8ubdLT/67FOuLy9YL1vGbuDtw7f87V/9e775w9dAYrlo+b/+X/7P2JQYcmS9bKmsxoVEHTPWGrqU2HYDXdej0CwXC9brE3JO7Hdbbu9usZWjWa05u7hi2O54//DIN2/f8X/89J//4KE6voxtpKFFiS8EBUBRliJKlSFmRLAUco5EL0yj0Qd2vWfXDeyHkWEcaVaVMAAyuLrBtjWmrYgGokooralWC6ytQWlETFtEzIxxKGMKcFAmjy7JeErSRlDuO/kAlcUsWs7Wa66NETMGH3DGMowDp8+kslc3Da6uaZ1FtQ0pZdpFy2K9xlgjFoXqsIhSTkyF4VQ0fJTS0jdqpf1HaU2MB4GxGGJBp8VKT2ep/A7B8+Hmlg+3t9xuHp5kzL5/TSJN8rg+3uAnq2ZjTNGYMQJElcd7dnrBojZcXSx5/vyMMfSEPPL5Z5+gsIxd4O7rGzbvt8QuUauGXdihak29rvnZl6958ckzXn3ynM9/9IzFUoMaRIBTRSaHquMlVwrpMyClQpLkOARy8ETvCeNApXVB+hPaGCwRVCTHEYroqcKic5TAR2fqs1NyHEnJF4A244ylubzCNQ3KrdlHw99984Z+2NMFT70sNpUZ/BixRKw1OCebb0baw57s8km0i7Si2+4wVuOaiqpUpFIBqytXC43US2Buimp91/U0ylDVDYuLhuHtb3jYP/Bhv+P/9MkzXn/2GeNfZt7+4QYdNH4/cPPmHW0dMDaiTcA2VjQ71DRPgrSxlPa8udX0eNucaVt5mnhF40QVt4WDiNsB4AMJdnIRHS9V5ToWAeMGFWt0XaNHLQku4ghilSE7eZ3ddseHN7fcfrVHDzVrt+akWjN0e7G2VAjNe1InTGmuZj3dsI0YJ3pO+3FEjYFsxF64qRtS6hmHkdpJpai2BmUzVhl01hhdkWJmGAc2j3t+//DIJia2KHZoRuvoreVmv2M7iiCz6rd8tbvj6sMbfnP3HrNqeHa65rSpOLGGCisaL1g0FpQlK0VEgKeUUnHzmodsDvoUpd1nRjVlr0tZ4fuD+5g2RgKQopMkLUEGoy0J0Q3pw8Bm+0BtPC4nzAij9+i6QbsG3+2JVY1DUWmLMxXBVmSnydUKqhptNaurgGkSq/Onc1cASvVfdLQiRfC2YIFTz3XygW63p6prKlehjMKVvT+QGcJIduBcxcbvud9tuN9u+MmXX6Jjh9ORh4dbhv2GOAbev/lAvx9p6oaz03NevXxN0yxwrhYxZCguE+LCU5oDyJOgnVIYjCR3pS0vxQIG9T26PeHq+pq/+C/+gn/37/4tv/vd77j5cMPF6Smr1YpF07BaOOgSp43m0xcXXJ+tWDYOlSKVlPHxIRGy5vL5a9CGpCv+5b/+K/76b37F//d//l/45u0tPiXQln7X4Roj2mVYdPKQQ9GLyqXd8SnXnLRouhAZhpEBQ5WgGj2mAOStrbm6uGTvB8bRc1I1OGtJMTH0A7VpUFaRlaWtWp5fP+d0seTTq8tSwRRR4ZQ1GIdrlziraBYNk5WqkpwN52qxzZ32vblKrSmyxZTI4UB0KX122kCzrKnbmnHIkrhrqNsWVzlW6yU//8lP+PFnn/FPvvwRIYng8fn6OdthpNtvebi/gyiOXGLKEGc7bQBrDacnJ/z4x5/z85/9jKurKxRivds0DZeXlzx/9oLqyChBI0yhpwRYUrUk14roEt887uDrN2y2A5VZsTy/pmoXtG3N+PiWNG5pYs9Vu+DZ6pRlXhCHG6wfyUMvZ4ARHa6M1PucyZytHP/Nf/1P+ef/9E/Y7Hve3t/zMAS23cjDtmPsAgZD5So+/+wlP369pDGdABlTxVpncvYoO4mqluQ9y3hOuUsmiJ6fTuJ2aCwxQTIaa2q67NgGC9Wai5cLLuo1i8tnnJxklrbjvO75/PUzFqpid7fD93v02oGNDPERo9aoKM5FuSTIOYorlCq6WdPRqykx3hFj+WmvAqACk8BtLiKzM9svJbz3hDEQ64QzmpylzWn0I+/fvWXd9ry8uuL1q0vIFXVV8d/+t/8Nv/7qa379uz/w//u3f00MmW707B8euMv3nK4X+P6KX//ma84vz3j+8pp66bC2JStLZpyZK1P71FTQIQSmarEyugC9WRiI0385QpAzsK7hyy9fc7mu6R/3OK+FmaIyVmfqhQYbSPsPqD5jhoHKe5oMg5pY4hpbJAES5WzVGlM+9MQsn2KpArqqA933yS5Dno0tok/oDDWKlVG0BLSCxhiSH0i0hcFihI2rhIQ/jIG+H+n7xDh63Ch73Ulj0Umhghg/XLULTn72M37yxS8JOWCsoq4NXoXihmWBTG1brK6wHgGbkwInBeGsFBa4OHfc3QSGrueTV89YtAGtIudnlk9//IIXLy85WVu0GmVslSKrAWsd69ryy198zutX/3d8HMnG0HeKHCw6Oi5XLc6OGOsheTQZS8SVdZ+JWHsoSKdUGEApyRo0kGMu65K5IPxDrx/eIsS8Jg/B3PwPCE1ZKVwt2izGmoJiFecWYyVxHwaC97KYI/jk2e42vH37htubD3z+ox/x6tUrLq4uedxtWdctJmeIkbZpqZwT1sVUDQemnWlmvB/KfIIMz2l7qdKiCq26VNG1uJU0bYOzFXd392ileby/Z71oaYzFDyMPN7e8e/uWRVvz7PqS5IdSeUq0jaPSYH1Aj6EkNZFxHBm9lyqWNTMFVJnMrttztr6gXS6pm5a7zY6bdzd884fvfugw/b1La1foUSJQN1cvC8VVaMWyWFOIJB/xpZXLhyBAyzDiR08Mxbqt0PiMNdhKnH/8hAhqg9OmCNkqoUFqLa4yQqEpCcABlc6Ic40qLA2F2JKaqqZqRZzTOYfVetbfycaw0JNlqCUbja4cdWlor5tG3DgmWnOpwE/nWKK0Z8UoIEtpVchJLIcJcifShyrU+GnDzEBIiWEc2Wy3PGw27MehPJenvY7db+Z2rTnoY94spC1PmDoZJRo1vWfVGJqm4eTklKurV2QViHnk7PIcjcUPke52SxU0oxupVc1JVeMWjvZswWeff8L1y0uun1/Stg5rQRUKIln2Io0qmZ2e51SenDtCkIOxACwqTE4CnmxNEcAtAmFEyAGVA8Sp/zWjhWJSrLZFrFnnaWyU5NpZ2g1P1itevnjGNze39LuOvvNgm9lNKSZhGEjSNQEe+UmDmBSiWMYCw+gZh0HaodpKWF6F7eCMaAmhwA8e56RVxtm6VFI11jlO1muW/ZbH0JMZOTm7oKqW1NritwP7xx2+q1m0DahIpMcrLzncpO+gVAGTpomFgOJqUn6X/fTjGTwlFCXQK20rklCoI0p9EWLRh/YfbS3Zgc4OHS3GWgh5tn8/PlCGvmfzuOXuwx27TWBlKlrXUGlHUAadj2jCpdr3ERD0RJePUVxGtGHne0bvITuaesXZySlWOzbpEWtEA8FZPdNPNQqtLCEnUkiEMUBSVFXD6WLJs+vn9Cge/cjDN3+ArvTBW8fgDJ3KbIKnS5kxQ0SXHvDyfue3nA9nXAk2KcPHDKxMweExuFIq4lMFd6q+lbnBlJCoJGHttOcgVUzvPftuj7Klzz0qkh9FBDVEOdeHgagMOoMpwqDZWVTVoKsGbSzt6QVVY1Dp6XTGAIw1RH9gQ8RcXMLygYGTUiJ4L22DxqJ0xgoCg9OaISXpU4+elCIPuw0fbm94+fkrHBUmj/RdTxo8cfT0+47gIx7oux39flfsOzVKNkpkNRzODaVNsTkurLDpLJyjEVkfIQRMSiwWCz777FO+/OIL+t2O/eMjGqi0onGa1kJ9ccqz6ws+e/mM02VLbXRhn0xxjmyvu36gGzxvbh/5N3/9t/zdb7/iD9+9ZwyZmAVM9UNAaY/NxXVBxVIwFsAqfxRP/fFXKPbDMWdCiEQTpShT9NoUYLVi3bYs64bGCeBpdIlfyvk8ORGSxRq1qWrM+XmBRQRgiWjQFlM1GKPQRlgvaF22sYQydn5NGZ+jFuqPrpKkZmkV0wpM5bi4vOTl61f0u21hTwiDzCjHcrng5cuXvHr5kkXlGLy0h2eliF7OibEfyh6qPmrvUYo51lksFlxdXXF9dcWibYklGa4qsUg/OT2VmCjD3MKknvaMy9pIAqcz3QgPnaeyHd/dPHBKzS4EfIh4P0pRJXriOFCvala2wmcnYskhkmNExSRgCGpunbFKs6wtzmlO1zVnF0t2Y6LrPdtuICdpiTZac/38irN1hdWhsNanNm5mYEk62005P8rOqIQFiEpzi1AuxZGkNFGB1pYxQcjQrk/47OQ19eqM1eUFWj3SKMdZVdHUGjXE2aUHpO0oxIFkWnQWPZVcgOxJ2PWwTxTAG1Vag+bM5ukGDkoSS+kYLvcw3dfRR4rShpdSROqv5bzPim7fMfYNzhquLk8JXgCsLz5/TVKKMUb+5le/IYyWlGXtSUFMXCe3245h8FBc3lSe3JQOrXlTojuHJxOKUTRP5LnlA2uw0JFFyFxiSqMjy9ZS5xo7JPCyHp3OoEZy1vhsUEmJk2WK6CzMIqPg4Mh3aA+a3YPm/440EZlu//BvT3WlDDqL1hjRo1JEFwDZKgmZKxAjkSxiswmF0hZlRLw9pIwvczllVYgcpaUpMuuwkRO1UlytV+JMqDPGZGGeGoqwsHS2qOABewCUypyS4UksGmhcpHaRy4sldSX56PnZgsuLNSfrFjHNK6wklYVNpqVgX5vM2XpBpgFjGRpN8hqCZemK+49O5BQk34gRqyd4Lh+t83l0JgJLAVwO0/6jloYfcP0RAEs5VDOHgE9R2pUU2SiSVtimwllHpSUg1kp6smvrCKNn6DvGsSOnE3KMjGPP0HfcfHjP2zff8enrV1xcXGCcow+B1hiG7Y6HmxvqcoAICTpx6JOakPljBEjNi1QxHZCT69CExMigphio65rzs3OePX/O27fvuPlwy+2HDzilqLQijiP7zYZut+Xy4pSL0yXDfoe2Bp2j2E5NSUxKYs6TIuMw4L04Nugs6O/jbotPI73ved62tMsV1tXcf/sdb799x7e/e0qARXwRKHaLakboinBkyiQvCWzwXtq4+pFQDsjoBWQJPoh4U0oFzRXqnKscrnKEIsgo4ZcTFwpU2cx10V7RpJTLRlqCzqm3Xx1yBTJgDK5pQGmi9yjnxOdeG8IwoMg41cgPaVXoewpXVNltVZWK+pSYyYGVUsHrk7Q8+RjmSpOrHChHMpCKLVuMAsSI69IB1Bi9Z9913N7fc/corV6melpnDElsSx+oNh8BLLps+tPGMAnEiWq5IqZM1/Us6yXWVSxXK7788guqSpMZiSScceSQ0X3kRNd0mx6bHKvLJc26ZnG24NWnL1mfr1idLIU6X0p9eRqwzKwpQgkMQ4jlEEiy4XnZ+FQIqBTJoXyQUSlLoKWEVaayWOJNCmsKAVdl8DKowl7IZU9KCpIienHLWi5aXr1ccPK733O/29N3O7A1Wsm+4VMkRC0Ww7q0XqVMzE+XNKQQ0MYWF6yRoRcNkrqtcM6SUsSPXkAYA+jM3nvpDbaGpmrKfFVYbbi+vmaPp8MzjFuqVnF+vsbGxObDA4qR5Yll0VbE7Ol9wCdPthTQLxfnEoP0Wx/SvqzyvBbVUVCjStAn8d9xH/gU9U1gB2QVAV3WYgEcnAU0JjtUcBhnUaMo4CsxPBaHnKTYb/c83j9y9/6etLecrKCpa2y2pTpUgIYJ6Dm6l6cMPscQqeqGWlvU3jN4j8qe5bLi4rzG2YoUPDmMGCNaAVoz6wwZpUUjISayj1S2ojk5pX32gk//7C94DIF32w1fd3u2j5qUPLZpqGqDWTTkuiZoS1SGhEFlsVhVU4RZ3m8iiQOQ4VBBV4dwbmKxzAyfAkaKRbp8TVtbvoeyzkoyqCRBnRlyOcs+6Uf2uy2mkvYZly0pBDCBHANjv2esGlwJNK1xOJVJdYWului6wSTH6rzC0NLY1ZONG0hlX7SHZV+PORKzuARNTy0nYYq5mEoLTwGijKYyBhVFYyWMkagTD4+PfPfmDf/iFz9h4WpMGtk9vidlT/QSwDpjxIkuBvq+wzqHdY66cgfAhGJtrIRRlFVJrkoHpZyTHCWEktzoGFi2NZ9/9gm//PnPebi54fbdW1JI1EaxsJp1bTh//oJPXr7gJ59+wumyoTZqbo0pcBkhwYfbe95+uOXNh1v+w99+xXfv3vH+5oHJqjUGUKMALAqNM07mxlTxy5mZFvRE11icN0JCKubGEbMiRk82MqMNcNI0rOqGhauo67qAP4VhMrPqIEZJkpTKVJVD5dI+rjUGQy5WxtZJATANI3qxkDaJmFDFrSzBPF4AE8MIKO5aUzVZRJWtE6fCly9ekkbP9vGB3WbD5uFOWpm0tOW+fP6C59fXGCXAEVEYsb60z4/jOCd1M1iqlTD+sqZ2jtVyxbPra66urnDW4ceRYfRi82ydtEtbK/N+ttE8tBk/xTXpKmWV8dmy9aB3I797d8vZqIhaMcRICMIO1SGw3+1hWVE7h801ZjrbC8gi4IOSua+kTU7lSKs1TWU5OV8ToyLEjA8Z1zTFmCDRnp0I8zVHrLIlzqTEhsJ6VCmjswGmoAkm8CkXIG7SvBIgUT6S1pKQas364oyXn/+I9dkl7emKzf1X1Cpx3lisSfgY6YaekBKaAh6mUcROsxYThVzGRSaZvGemBI95zs+stqfM0hGgTs3FsKkupuYWVFUYWSkGsW1OgYlio0rS13cDYz9ileb51SVDHxgGxetXlwRg8IHVcsWgtYAsqiHHRF231HXLbrtnHIpRQhK2g5oqQmq25WBqTVYZYbvnyCy2rw+FAsrzkrYPBSkQx5E0DhgV0TZjvCcpAVAMiRQ9JItWNSQlCXqKkGMBWNTBjpnvgSxz4ZaZRDAVNXIBzcXC+enWXMwSqyoihAEVB1QMqJxmtl+FEsAje8nvcjE3MNIp4LN8hCwtowKey1irMhd1XRFDhOwxLpB1cQVNEVeVVraU0NqR4yCFILuQISjgptKqjEdkUUNTJRZV5tnVispBTorr61OuLtas1w3WSJ6llGgBKY0U81SEGMTiHSBlHBTNC4WKHqmGl4KujxCj6NhlSpNZLmfhBOBK8SoXIF90j0rxr8SYeWrh/UdePxhgSX5C7zQHM3dAZaJOJKfRJ0uaxYI6K4yX/vtVvUSvE7vrc3axY7O54fbmLZefXcshh+LZ+QmfPLumv7vn//3//H/RnpyyODnh/MUL0r6ntpbzkxU//ZM/wTQN1JYQBrTJsze5bE6TRaXobShEmG2i4wr5jkMkg4j91bbmL//pP+NPf/kn/D/+bx1393dsdzs2mw1/+PYbvv7db7l7/4733/2Bk85xvl5yurTE/R2qaai14fnFGY8fbkXp31VEnRniyH7YYGtYni5ZnZ1Aq9iEHSFFXn72CZcvX+Fcy8P7Df/rf/ev+fabd3x4f/9Dh+nvXdn7gtJN/W1CT05hxA8T4pfY3ksgoHNJvBH67nYzMPpEzAqtHUQ9tY0L6UAZtKuo24VU47WmaVqMdoCSgy6VTWYSy8oCjwlYWAIlo/AxzpUoaw11a6mqhuR9WeBpBjZiaekwhYWgrZmFp0RbwBIKKp/ImELwVUoRkmeIA33oGXIg2nKkKRHkNFZjLKSgUCGiQqKphGUEcHv3gcc3H3i8f+Dd+xt2+4FoDLZ+WoBlUbdoNDlkGlsTlUVFhVEGZyoqW1NXjYBb0t/EyeUlo/d0W0/XRbomsNsP3D08YLS47zR1Q+MUFFGuq8UXhF98AUmhs8PqLH2bRpx+sBaVEiZM2g6KbCEdKQEnJfC3UqC1J/qRNHrwkTR4VKFN6pgxUeFwqFEORMkuMvOBWgQyVT461CdJe6WkXztrslXoyhJC4nH3SJ8HXLvks6vn/ORHb9juO969e8fWj7i6RRuLTwmdGnRuyFiauiZFLSy5J7riuCP4IihqNX7ck5RHWzBOGH4DijB6nLa0TYPfDQzbHTkGbGOolktcUORd4M//9M/5Mv2U290tN/2OfveOnUtcffKMeqlZXi44fX7GYm1JeHq/o24rzi7OyE4OqzTp+ZgSSCACX6JHBdOCVFLTl+v750sB0yegsQw8M7OirG+tNXXboBuDCxbVK1StSIO02hETve/xeFzliPtI2kZUn7k4WVM7RUhbjIbAKJpcMeGDwQfL4EUGSmk5Mp/K0yQSCUUUTZuKoQ/EYU/Uj5xevKBpW1arJW++/QPZj4SQca5CF1AleM8YPaFY854vVpxcveDZ5z/h9ec/4Tc373kYR5arNS9PVuAsy7NTmspwtlzw8uwUZxpyNGSvpG86yXuMJBJeBkpTEmclZ/EEppQPgUClJBKVORRDMmBVcVE4BKY5iGCvLmKQk5BeTEnYZClDzHQPPbZSqMoUerUkqs4pto834gxGQmuNq2qUbsjrBdXyEtOsMG5F1WqcWdBUTwuwrCpLGDJ98vjQ44ywUkTpSKGSaFqtl0vqusFWlUQDoSReVmGiRmcIUUCZh4d7fv+73zGM/yUXqzXL+qScodIGd/n8FTpPFU0jtvVVTdQwxjizH1CIiD3Snmry1JpaCj7TclKSuJMDhB1pD61rWF+c8l//5V+wNplXp0tu3r3n4uyUi7NTPnn1nE9evuDi7ITrq3MaYzBJwGaxEZWqwn6z5d/+1b/hb371G373zRu2nceHiEVJgFz2v+ADqF7AfGWoqnpusQoxS4/7E9o071DkMRLCjq+++h3t82fgHK7bYPSCShkqbTjXjterU/Rl5GEYqNsF9WIloEGMkAaUHrAqEVMglWR7vrKS+Z1BpYHsRbvFGA3BA8L2wQ+iFTeBEaUoJYDHcdCt56DcKYfyiZVr+Wd/+k/585/9E3Hy6zv220dymWNN5VhUFpcg9YPMm6QYfeL+fst23xOSwtUNISQMiuuLU9q25XG75+tv3/Dp88/56ec/5hdf/oKT5Qnj6NkNeza7HdcvnnNxcYFrarR1hS0lQPZTgmIAlYpUWWGSAXvCnkw3wN2HR/TXt1xeXPDZFz/i8sWPeP/uG969+46/unvgbHnJan3C6Rm4tsJYI+PX90XEPJc2rRIXaFtYJwJMWA2V0tKGIGqwYDVq6Av2p1AxY5SavQlMkiJDJpPycCRtUPIBhYiVR9Eqy1n0KWzR2NvsdpxcNLz67Jw/bB5w4QP+7pFwl9k/fsXFqxN+8uPX9GnHV29v+O3vb+nrM3Js0L6m1jWjB5VEA2ulHSbBSGZMiRRHlAqiLRRGsi8t7Uliqh8oB/EfvZTTJC2JtouKStUFSLQYHAYt7SgMxLBl6ItNshpIWlqt94+B+3d73v/uhv/qX/yclAKPux3d5g3Pry9pFv+Ef/W//Yq+M/hREQdNGHqsEYeZb775irfvXrN5/IJqvS7ElFxcBktRnKKFMeNhUf5NqgoHUCoyazdaNIwj+ID2kSoEnDIko4nWYuhQcYQ4oFEkLDnX7IfAYx94GHt6lxgzJOuo6zVKb4BAij0ohVEiQOzHHq0ydSWsMhTEqU1Gm6kU8mRX786plMLEPey/od9/xzZlHobP8KxR2VGNmedxZBh7trEmmSv2RLLuaZp7dg8JNSTe7xL9oFjYiM4DNiYR+jYWtIVa8rcY+gJUgjaQg4DaRhmwuhRWNZCgiCZDaYlVCmcUK5d4dbHgvIHXzy/wfsQ6y+X1z8VmW8tcn9MJBZiauahKRukalRQ5aGykCC8PogsXhcWDbchjQA+aNiuqMVONCRMzLmciDo+j6zTruhFdtLxhv+/o9sBJhXK2AHz/OwMscy/cVCWbaqBSQEZZg21qXMjoACSP2KFaKlexaGp670khMPQdOQWhwFvL9fU1/Y/2qARv3r0joNF1ReUc7fmCs5M1r58/5+LyiqZtAAFGUhFIm6r5lDv7qKiZ569+7/989E3WGtq2oXKOqq44Gwf6YeDk/JTrizM297c8fPiMuHtkVVku1kvOT9Y0xqJTZp+7kswLghkL7TXlzGq14tnzFzx79QK7cCgLrracXVzgQ2S7feDtt7fcvr1h/7CHJzSjEWr/AXkVel0W+9BhJAUBWR4eHqG4z1TGsO97un5ks+tplitSzGy2G0LS6KoShkgSJeqx92gbZgpbTAfB4ck+c5pBmakarWakd0oKJotYlTP5qIqqgFwsGbMSS0ddKNjGWmFuaFOovrIBqKlNiSyuEImZ6hdTYgyBsQgyzYyeIpinspFEVJhnZA0hBHa7LQMRf3fL49t37Dc7NpsdWZd7cE97Eiqt54+pRWgCOY0WCrcuQRQFVbfWoo0V5k+MDD7Q9QPb7Y5+6FkGC7UtFb+MNaBrSzRixUc2mFyUt7U873mjy0craC7PqpLn6TLPxCY6jgPJB3TMM03PZFX6Zida/DG4MvHKJlCF8ud0RJVd3iiUFgHEqDJZW5IKDCHS54jxgTx6tLE4V1HVFZuulxDTWFLW1E6ShkkkW6uDxs1TXH4c5kKv0uLWklSm6/a0JdO11pLHQ1W0co7kAyEl+X4fiX1g2PUs9yN1a7k6O8f6hnq1pKktzimqxkpbRIrUS4e2joWqqGt57zkncsgz+JXjQW9GIT3gzEeJKmP8HzlYCuHhI4BFg5pKbHPJVdhkKusiMFaqDaVdKXEQ0lWlcmWyxip3dMIgFYypBTsjoFo6aCKgKIH401xV0xITUlnThpQ8/TiyHW9JuqFplyyWK9an5/SbR8LQEVPG2gpjIYaekEZCabl0xtIoTZ0yS2u5Xq3pg+eTZ88YjEI1NadXl7S1ZeksJ67C7zv6EOkrT1gscOX56WlBKiUMvCzWwjkCtqas0qPxKe1g+bCq1DxMh7YVmBLxdBDRnSqnCXSKMi+HQL8fMEGjk2PVKJljbUPVOMbQMcQOn1tq3WBMhXIO1Z7g6jWmWWPrU6x1aNXgzNPaNJ8sFnT9np0SVoq2YpdtrSEYcZnIOVHXFafnZyyXKx5vbkVbi4x1FpMMJhoRwwW6fc/7d++5v3vg+mRJtV5xcnohrKXCnoijCIwrpTHGgjaEmTU5+ZWUKiwypWOabLVBHSe/WqGmSnrMiAi2nJ/PT9f86U+/4LJtuL+5Zb1sWa+WvHh2xXq5wFlJikLXg9PSblhpYrGn3W+3PNzec3dzx+ZhQ8CQjlolJop7KvT66D2jHjBiNyIirxlyEIHOp7qGYUQFjwbevXvP86qmXq+4rBtSaesxSHV2UdWcLldEpaiMxRbrcJGVEiAJLS5QqljOT9N8XhuAThNIXAD7I3A9z+eawJQTS3oWs1TliU2MliyFgyx9TSgUzlqsEoe8xllyEecWPztpeVXlPE9JrHmVFicjYyNaW0BYRBfnF4R4x2A9F2dnvHr5imfXz1gtVzL/orShW2tZrlas12usc0cx1bTemc+ap7hUjhInlfNiKrilCCZmQkbaxesG5WqitnRhZDcEdoNnWR+erujLTi4fZRyReDBlVfS2omgsWFvOBV0q3QVgzknOIc1Bn6ssvak7Sk3s9fJrJn6XjK2ZN0iVFDlKaxU64ZxhvV5ycT5wuqq5efeObtvT77Y4u+G0fU63P+Fx+8jDdsPjfk9AnG4kK5WYU6Ow2mK1Jke555gSKRYmVgzE4MmFHRf8gI4W9cQIS1VJ8iwuOcVMAIGbDEVXBApTJJKTaFlkEBa6cfR+YNd5Hh53KK1p6oqsEynuaaszTmzL60+e8eFmoNtHwgDDbsCohHWR0/OWdmFR2pNCh7YBpSeNTJjazedVW/KJ6eSaOCUzY2L6pqmdpzDaKY6G8uMWraWgTLAl7jeobBnDyJgSY074HItkgRGhYWsLY06jDZipFT9LK7jWWv59fsJH/lRP6ACVfCQZUCkQcqKLiY3P3A6RfYg0xlBbWKieCoeJDuwFMWuiEnaLD5k+J/Z9wvuyZZYdQslilpxoai/NCnTJ58qZN2vklLauiXDxUaFgWksKFk3FxfkJ47JhuVgwesmXnKtk8U9sPVViHHJZtGnmQqg0AW6SNyhEiF/pieELRfCTHOX8EvZliS+VOCqBEjy+kORjESaOMU3E+JIz/7Ax+iMAFnX4yMyOBVPVTBmDq2ucBTNGlBfumfRiO9q6wgQFpW0mRamyGGs4PT0lvn6NNZabu3u2XU9UivrkhLPFksvzcz59/Yqz83OquibnjLGm2NOKWrEEkxwOy/mknG45z+8COLKkhMlBRCjfGmMNi9wSYmS1XnK+XtLvNnQPLwnbeyqVWTrDSV1jcyZ7cYYQy2UJmFKhj5Izy8WS66trPvnkM3SriUS0VSyWC3abPXc3G/7w+2/Z3D/iOy8BwBNdHwlGqTIBi/ZI9LKhp9HT7Tuyj+gMo9Fsdnu6fmA/BJbrM1JO9PuRkAwulWQ1ZPwYGIYR09QlaVbEKD17CkqAOK2AybVnAn2mxVmuw9knCZXSxc63MJFIKKOx9cFjSQQapS0oqZKETdRhcwAHREVfFrJQTAODD3IfWmjUJEVWWrQksj4qCmf8sGfjI/iB/sM7trcfGPY9wxChXWKUmmyanu46VipXgrfrssFpU0S2pgCjHCj26DCIKTD6QD+M7PYd2/2e5dLS1g1RU+yKJRnJMPclqjS/JJMywDSXZxcmDsH5DOKVxx29CNnmIG5GE/HhkMrnoxaGeaYefVoCV4WMy5H97UQhJeciJCn2ubt+YON3qNHggqMbRmKWAMwHsQxUsdAaoSStk7aInnv6n+IKwZezW2GiksBDZegV1jhJxrTsA2Spc1hriwZQIiVP9Ik8eNhHhsc9tW1ZLBfoZY2qK0xl0TrjKk1KhugNrjbYSmNdXZxDirtFSkILhlnciwLWzQfnlEh8DHH8g8Pz8bjlo8w9z4Gt0sjhpkubXgl20KqsxTwnKypLsOe0PWwAU3A87RfzBChBy3SA/9CT8B+4mnbJdtcx+JGYiv16CGy6Edw9p2jaxZLFck0cR/w4MMZE7QTQRftZCM9ZQ1PVLIylztBkOG9bAud8dn1NpxWqrlhfXIh+F1CnhN/tiTERUibXNSgzV9APnVq5CCXL0pCQ5AhELwFCLuMzseEFfJ7AqnIelted9KmgMHOzJCQpJoIPjP3I0I2YoHEoUtJUdUvTtlRNxS6O+DQS8FSmRVcVpm5QzRJXLTFuhavXZFOjcOgn88mT62S14GErranWCsDgKot1uoBTspc5Zzk9PeHi8op+s6UbPQmx5DbRSE27xPhd1/Hh5pa7uwf6F8/QxrFcnjJtFTElujyQkpz5GUUsoLwyhTlT5jeliq4mujtlipf7SvMITd+TUYhjYfSBk7aievWSZ6en7B8fqZ2jqR3np2tyigQ/0u+3+BBQSRJ87SpJfEOk2+/ZbXfst3v8MIJrDutqupcpsE6JmANBjwQrrZVW25J4He7/Ka7Re0wQ2/Obm1vuT045qSqerS5E/6LsEQZN4yrWiwU+RWprMEfUfDkPorSbJjEy+Aicz+njPWOy8T702B7d1QRKfs9IQR09suISxdzuIftsitIaYrRCaYvTrbiJxEgOfqb0K6PIQYo4IUasdbhKKq3adBgDyhguLq64f9xTVyPXl5e8fPGSq6srmqZFKTXrI1VVRdu2LJZLrHMzO+3w/o/jsD/+ms6VqZ0jUfKbxKx7qLTGmUrcJLVlTIr94Nn3I36ZpuJ0SX4liTMKYQZNzaRzQFKEWFVk0iyaJQLUlOyVLx+rB0yDV4LKuTU2T3IB055Z4uMjTSt5XgnrLOv1kksfeXF9zuZmy3bYsb3/wMk6kbzoSu52O3Z9x34ciAiTU1hEqrQ/aGn1MqLtQs7EGIv+h4YUCqARSDEJCzhU5PS0zGjrjKQ8pV10AgGUmtrP9dEYiwZLzrHof2qSqRhiz673PGz2pJywzrEwDs+ANQFdK169vsbHW1A9g0mFdZ1ZtZbnL884O19gXCalTtawzuRcdCJLAXDeneYE7/jP4/Evf5b4nbmwU6o6SoBapUYxXVCenBQpW4iGMWR8TIQkoFc2kg8aK7p4WhvZ/0rcaLS0meiiAznH4fOlyjN8unFTwUs7WU74rAhR8Rgyt11gOwZMZaicYWED9dijs0MZcYVLZZ2GmBlSoh8jo8/EVHKfOUVT8vwKcKKyOnSFzjH7VBTXh3jxiD07fW8JVVg0Nfn0hBgjTSPFTWlxNnPhdn796eePK0JMkNX0e8qn5BJnlj08Hfbj4MfDa+dSdClEgxCF+CDE3JILzy2w89D9oOuPAFi+93vnHkbZSKq6YrVescgKdgPRSx++Sg6dak7aJR/29yQf6Hf7j1/RaJ69fsmL16/58mc/F9cZ62gWK4a+wxpDu2hkk81FlNU5nLZCbyVJUFR6VyTUKZuwhtmijQPuMg3+4YvTHZW+OzTWGJzWrIwin67h2QVh+wjBo+JI2u3QORNQDP1I3w/4MeBcJdodMREDLNs1V1cv+OSzH0NrSXHAh4Hd7pH/8Nd/yzd/+I6vf/uG7WNA5UoceJ7sKmADWfoSh5E0jiI8miLJe8ahx6IJCJIXBk+/DwxDJPiITsLSSR5GFYlpFB0Lu0cbi9aWxfJEAIbCy5QWHlWCj6lOl4ssirTxzFqVUwJflpFWJTTKsUx6SbCVMThzoO+mudJRQtPCGMopiyp9Fnq99JcndFaYrPBjoOtH9v0g7CtthRSZDiGZLmwLjdC5N5tHxu4R3+3w9zeofQ8pC3PFKJISkaWnvqZgIE3PoDBVKiv2m01diwuDsVjraJWmaWqGqqLrerp+QOExeuC3v/09YbxCc4k9X4GR9oopPklTdWCuApTOkXkmyR1NSPcxcUyVwDyFgO8H8EGCXYodr4zY0QLMzHHS8c4yHaTTnM2JIjQBKpFGTwSikhpfiJ67xw1/+3df8du3A0NyZLfiw/0D729v+XB/z6YfaBcrqsoihSIR2NbKYrSTYO7p8nTGArCopISOG0X/aAyeECJVVVNXLUYrcoiEFLHWUrcNxli6fcd+P5JCJgUY/wCn8ZyL5orVsxMCUcR6xx5rDbq1GFUhlrvChrHOiUhdsfmd9rscRYR1Cmh1ARiPcc7/5KXU3//7nDGq0psvVF+DkcBRCyA4AaUCPk9DrYq4mrRY5EAxfiv3ZYzoN3EABmaAZtICe6Lr4tkLhjfvGLcDd5stY9BEND4lvnv7gfttz64buLq8xDVL7OB53OzJUVG7ipihahYsF45Vu2a1vmB5esZqtURv7jlbLmlP1vDll7zfb9mOA7vthryDXKpgK1dxVlWc1w0LU+HKs01FhC4DyShQk70ioHJhnE2B8uE95Wl//ehB5aP/l3yxJKUGYTVZa6isoRt6tpsdd7f3PD7sCJWIDqdkOD27pj1dYBY1dzc3DCrjnSY0Fte2mGaFXZxi6xO0W6JoUKaWltGn5E4Dn756ya7bsdk9oivN2ckJbVVTZU233aKUzMmUIldXl/z8F78g7Hu+/v3vGYYO62T/NFn620OI3O8f6e4f+fVvfsuzy3MuCpt19CPj6Nl3Aw/bDcM4MvhRWGRVzaJZ8PzyitaZ4lAjjiHT2abQ83lHwV5U4UcbBVYphBrvRSA07LHKcN7WPFtfwfWF6COEQLfdsnl8JPiBFEfq2hGjZUwJ5ypSllbEzcOWoRuJIQEGraxU9JJo7Ghj0Ej7aZzcREaPVyNEOQ+NMcUK+ukWXQ4jYRRm89cPDzw/OeNkeUJ1cknsOnIW3SaXNFXVcO4czhmWbU1jjTgalWSVMOkzHIEr863mow+AqR1OkouP9v+jc+2oynKUYJTXS1nEWSfthhglxgoCtBpdigoqgc6EHElhRMWAIzPGwBADIWVWp6fYlKkGz83e05zUtMs1P/3yF9zd71Gm5uXLT/izP/1znr94RbtYkGIkhMA4jiyXS87OzjgtFs2TqPP87r/39z/2GkdfQCrZ07OixFkRW9gf2mjatqVua4wTg4fH7ZbbKnLWGk5WrTCPy89NbN0QAygtbc9atovpsUc1AVsalQsDJYuAquheUFCaSaR4GvujT6fydSqMcxS2aCdiDMpa0VVCQBZnDNfn55xfXPGjn/yct395x/t3N/zhq9/i/T0Xl0uevzjj9mHHvh/ohl40tIxCGV1+ZQSjsU4AlnHM5OSJaUR5YQMZoDIKXGFnBk+OpT3+CS9nLcELcy/FRNJyjhitZ0b4FIbFlPBlr0lokq0gt2zChve7nq/evuV+u8U1C+oaUD0pPqCd5i//8qdE9dfwzcj93cBPf/ljfvzpS375s89ZnzUslhVNa0B1SFtqIhFQkzUzk8iY+gcW6PcuPW2kuuQhZv5WlYRNS1QCLAc1i5GoVAGW3nvGMRK8OHYpKzGLs1ZirHK26iPmuEqqnBvyQYlPZv0V9Q+JY//wq/Z7yBURzT439KHFdyN/+6Hj1dWGHzl4dbrmKsCb7HHDA5pHFBatEhWWwQurcbf17PrAGGpQdZEDKl0DU9yFJUk5RURu9VSMLoVoRSlmf39/PCDSWitOTk9ZrdcAGOeoCwBG0YQTfbSJzS25wWQZDVN+YpjEiIRZL0C6yuljoJtMItD1e0KKhJSESY+0DRrApzD/rgQMITGGxFMQM3+4yO20w/09tF8AFmcdzWJBkxUpKsZOrNF00ChrWDQNtXGMCcZuEPZEjCQUtq5m8VVX1cjAWJxSormiBDwRYM1I0hzSAeFMihiCVApCwigNSpgNuEnU6nC/BcyeKxhT68V8dM7OJgkdE9kHCJ7k/VyJwI+yIWXRn9j3Pf3oRYCusQz7jr73BB/Zbvfcfrjj3bfvqNctY+zZdzu+/ub3/PpXv+X+5pHoE6fLE1LQeP90q1KcfyI5RaF7j8Umt+8Zu45+v2f7+MjucYNCY5SjcS1NrcnZst8/cvvhnpggekEGtUvYCK7qqJqWsEgSnLpCJTYWZYyAiuQJH5FkipK1a6lAzEwfjmxDp4pUyhK4pIhRUzuHLsrmxWZrSsYnFhOAgpijiDFlsVZOURgsOUM3DHT9QD+MsgGWvk+0KiwYmRPTl8VpJeL9wDjsib6nykkWrLVkZ4hGE56YwBKnAMp7EUrOEgxPly4tdqo8r5wSxhqqqsK5il2CEBI+QkiK24cty2XFel1zdr6SxApBfiddHHmWViBKycBLRcCUiLFsokVk8OAcBCFEfN8zdj02T5uNKsEXqCiOFELVPRqs4z8UHCEvJYkuLBY0SlVyX0qqxbvNlve3G37zu2/4u+92DFSY9oyIwmewdcOqalitTnBVXRIM0QaaD7+ZlfM0lzUlOCtgotXS85xzYhgGUsxoDBYrzz2m4tpicE7jXaYPOwIJKkW/GbH3e9xyy+XFGmXEMjXHgNhKKlwl4KJomWWIxSZZlcpciZh0CV/keRfwa3r//8m8qXzD9/f/8hBzmStZ5SJcffRcC9VzOntnC9QCxgYvYttGO4YQkIJdAboLwCLHoRyiKSVSEB2MpwxgmsWKxaqn7QLvH97T+Ug/ZnzMdN7Thw373jOMAbw4ydSAHjyDlyTapsIss5blomHV1ixriwkDBIPSieva4lTLvrLsfLEWVFADa1exMIaFFSq56KKkks8d9rI0iUpnhSahlFCUtZ5R66PrMF4zgKoOA5LmvbckIvrQghh8YL/d8XD3wOZhi1kviUuFrVqqdo1rllA5gtkSTEWwNblZYhYnuHaFbU/RrkEpCzEIzTnI+V2tXjzZ2L16+Zyv33xdtLoCbVuxXiyp0Dze32Gcpl007PYblIaLy3P++V/+c5yz/O53X/Hm3RtGVdgsRnQhcpae+j98/R1f/OiGly+es1ysuHt4pOt7Ysi8f3jkcfvI7f0dD/cPKATgfH39jFfXz7g6O+fF+QXNLMoqzzmXfS4jLSZqWjdlQpuURPc7C+CiFOD3hBF878kpEkNgv9kKKOMsujIimOwsRmwZCD7SdwM3t/fs9h3jGEhJCh9ZxIYoMi3CAClOY1MVO/ogay5GEZ62jso8XUU9+pFYNBMMhj4pvHK400sCj6QwEuJICr4cQZpGK2yKReBQ5n6Wxymbi6IE6NM+BBxqrTAVEo7OHoUIIgpYoAvFvbQ6Kjn3JlhS5Qzey3kWI0SPnpw4chFkz4kUp/iysFtyZBL9SEkhjRcK7Rx2sYKU8XpEm4r1yTnr80uGMSJaYStevnjN5eUVq+VSnl0Uh6+UEicnJzRNc4gHOIAqTyluO12DLw4wSZGsJZtpr59iLmkDtVVVhJ8NprKEGOiGnv1eE0IiVxLXpRRRpWUnSd8CkzmCthZl5CNOlXJBKz86i2b7ihLPl6FlYu6hFDpGKcYpSvFOPkL08u9WEkmt7aFAl5KcpxpszlydLljXjucXK7LqqWpNVWvutn8nIESZi0qLU5VxlkoraiusM6c0zmmsFS6fYHxypi2mhB2FL85LaXhaBotSlP0jErJGxEs0zmiMdRgjhhIhhjkGjT6QlCNhiKZBhYp98Nw+7rndbFitNIumwlURq3uM2XN9ecEvf/GKF68u8dHy8vyUy7MVF5cNTWsxNpIZGcZHLBpj5V4kftBM7OkJ8TRz3/U0skdnWc4l/hBwRZLyEr9mJBZJGmUcymSyLvo2oSIlyzBGfMwUcu98BlpjiqOTIqVS1Ci/O+U0t+UbY6RNED078IlI/NOBY2rsBXDSmjE7fLWm0wPv+szvb3dUteH0YkW7aln2gUUHLo00WkSnG1PT2wZ8xzB69l1mGDURS8wRaZMTgEobK7bZygKicSLCswJ4KaaY74hBryZmCzM4AuDqA2Fgbk+fqLSqpNrFOY9CinDOkQvYI219kx2mnJ9qmguFRadSJkSRqfDRs91vGUPE+wDDKGOHrG28FJNS1iLIHCK9jwwhs5jm0w+8fjiDZXog8BEgkcuf0lMlAkk4Lxa5Rh649OjVVNYRCYx9TxhGohcKtDZmRrC0MXOSrbI8kKmKP+s9qDIqUBDpXAI3cbpBGYwRQUflym0f81rnYsZRNXQ+ckvVPArAomKcD9IcpipFKoi53FcIkf2+Y/TSN6uNJcQ0V8o3jzvefPuOrCzVqmFMA12/582bb7h5d8uwH6l0S1u3BJXJ4elEWGKM0tcZI1ZlAVtiJISR4Ed839Hvdmw3jxhdUdmGyi4w2mGU9Ic+3m+kbTFEfBYKdFJa7JsHcVRQqI90QZSafOOZE4HpLzIcquRrh17mA41LBukwNuXwLEmG974EFrFUca10jmh1CC4oiVhKxJiZ2rFTgtEHxtHL4qOAPuXnBGSYY7JD8GX0YW6UHnqrlPTTGi2U3yes7MFkKayKo1MolWaZ96rQFa0pVTyAnKXKaB3OOZTWQoErBZvBB7b7nruHLZ8UYojEe6pQCAGVD8TqWQPGFEqfPqIPHto/QM3Vq3EY8f0gQV0RwMqT1Wee+qyZx2g+LNW0+so6nPPE6ZkWplrRohC6Y+R+s+Pthzu+efuBtzc90bRU0WGqGp8yaIMzjrppqaoGP/qiGVLue2ofe0L6tHVWKIeKA0igldBsg4CdIXi00fMcjyRMOeCkjUlEFFVS+D7QbQbcw54LX0xSDcXZqjBRzOSKUkDnQnc4DjNzlj5rvqfn8/GZ8vefQ/7+Z/n4ODggM3k6aOdvn9YLRy0p015evicJuywn0MoUa8hyhBe2ljK62M0WamcSoEHFf/B2f/ClncNWNa5uSGh89IwhEyKMIZHySD9GrLFYKCKLwjQwWvQXKkBHEeMO0ROTJ2dxIyIOmJRZag3O0BrF0onLm84ZkzIrV1FrhVO6aBfleR+a5srUBTElDVOScBxrTg9m0l+YB2WONyVQzOr4aFTzuT69VgyeYRjouo5hGInLBWCwrsHVS0y1IFpLUI5gKqKt0e0K3Swx9RLjGiiC5zmGg0vdMFI9f0KA5cUzTtYrKmfoQqKpKpbLlsY4nJMqZHSJcRSmSeUqvvjyC27v7tjud3zz9juxzM0i7prKI0wp8/7DDR8+3HJ798DlxSXbfc9ms2O37fjdm6+5e7jj5v6W+/sHVJaK9+PdPWPXk0bP1fpEgkUJmKZhEAA2UwpF84KQGDPn0qZ1GLyUMykk4jiUdhTRR3DOCZ3dKFxlMdagnRPtsBjohoGHx0e6fsTHVNbSdLjJPj4Bl1KtPCTk0h6QZZ1qiyn6Zk91peAJXoQ9o7Ns+5GHbmAfMmKiLSmrCiOVKpqmSqFSIsfA1CIuc1YdSG36aB8qz32OPo7y8mOK+1yNLYl75ujz6UAqe1r2vsSCsp9PNPVJmF2uwjwtJgOQ53gokqWlRilMVWOrhhAiymSWq1POzq9Yn13QDZGqaqibJc+evWC1WuOqWtq4SnwDsFwucc79g2DKcRz1VFcIAojNGnq6lFNUYRIn+RBnPDkDjRPXoRADflSEUmTV03xKJSaYtjw1gewHJqNg9uowhn+PWcS81x3G//BvU7VdijxpPvulflPOnGiYba1zFhCt6CoZMm1laVzNelmBDsJOSp4Yxb0x5pJ7GGZrbUr7tnXCANRawHApvqjyXDzO1DTGUlvLXbcl+VH0JJ7wUlBkAoLou2hhiyQnbpC6tJgDJX4O4s5lXGGhOgKWISo23chmu2cYakgGq8AyoHPHso68uF5yenaCqU5Y1YbWGaoajBUbXlQAYlljsnZEZYx5rzzqUSl/nz49rgodBTGTPk+ZSHkGWBRKBgWUFXHcbKV9LUR8lLgC1AySGD0VEqfa0uGMlF+lj/T7VGEFTyx79aTrLgWPclGef1YkXeF15mEY+O6+Y7VwXG9HzHopTn8mUaWEz4lUWrCtrtA4fAj0Y2YIEJMpTK4jHcpJlkFpaQQ6BljyIVumMFlmkOUIAJuWnTFmBrrGEIqL1TQwZe3msk+pI02VGbAR4Ep0/XJ5rRJzlpxCANNESOIGud13hKnVOgQBmpECZE6RFCMxSaveGDJDSPh4YPoe5yn/mOsHAyzTrz7M7ePJLRuJrSsBWyqppmRrSFphtGKxWrJaLAj9ju5hw+7hEVM7KrcsvVB5VpE2CalEhSC9igqUFRHOw+QuA5QgjpEwFKrpGMBYsA5VAXXNcSOtmpOOIvpYhCdy+ni5UhaoShFbxKii90XtOM/q9cMwsNlsuLu7I2dNUzfYqi4xr0Irw3ffvuXrb9+R/9f/jUAm6YjSmbqx+GGksjXtSUtbVXiieBY+0RW92ESnGIWmnxM5B/zQ4fuOse8Zuj3v3r7Fmoa2WaGVBNE5G4KH25sbEXNsF2StUCFjsqKqR/r9wNCJoKmqKzkQZyXwsva0EkG0SbGypA6z/1xGWrsOhhdIbHMATGRBRIL39L24COUsYqHOlSpJ5QriqT5iJ6UYBfgrlbpxHOkLrTurIjZXqklz0GuOEhWlaJoaX1Vk64jW4nLEKWlZylajrCabpw1ixuBJhYXQ9T3WmFkwWCklAtJVhbXyvhUisFfXDU2zwNW1VCmSWLwp7Xjc94Rv3/DTX/xEBLqMOCmoEgRKAjtV7Zy0+RVwRRmLqOJOTk0FQAFpdRlG+l3HfrNF17UEgkhFQojpUy6YD4cnB+aRKiDLlIccUpHy7VkTM4QMY0zcbvb86qs/8Ne/+jX/4dd/YJNb7MKwXmZ0iAKkxUDrZE02TYs1DgI461AUS+kChj7V1SwXjH4k5oS1xV1Ka0xORCuCy9F7fJTKiMqKkAJZGhNR1mFiTVaC6A/7kaQ6ksp88uMRs7LoSpGNWEBmRRGrNWgttnST7hAgbKOSPGMO1QXBxtTHNz8HLnLJEvgYWD/6UvkeWdNJSUUeEKHkmOf4Kcd4eJ3yWhlhY0SfECdISwx9wc4LiGdkjqImVvfhZ0Tj5alGDbI2aFuhXQ3a4sPI4ANDMGIjGzMxe8Z3N1TWUBtNqGtq67DGYLVhJNB7z+BHvIqcpR7vElcnDToBIVCVYgTGYaxokaQYSWMQvaIkwtApeAnU50rtgQqbSzuEyhltjxv5+N7nHB9qpbYwgakTmCItYqK9Iq8rLEEYh56+6+j7Tqj7KIx1NIs19fIM0y4YNfSqpdFLYnVKffIM1xRwxVRy7zGSx4Hu/pbt4wOb+3vOfvqnTzZ2f/rLX/Drr37NV7/7DZtuy3LRcHF+yun6hLffvmEcPcPg8eNI1/WMfuTnv/wlw+hRWvGr3/yGYSdMTWMsMYm7TkqJr7/5lt989TvOz0558eIl+27k5u6Bf/NX/57/6V//z9w/3jPEEaUE8K6s5d0339A/bghdz89+9COwtgSM0whMozGl/QcAUpVx1nMhCEBEMlGgdSp/KhbLWvZvJXGWq8qe7SxJGca452G75c2HGx73e4YYwVVgTKF5yxpDSQtaSmlmi07Ju0aCXu/Hef491ZXGAT8MRB9ZuAXfvP8AuuLT33/HRdNQa2jQaOkakeMHyNET/UAOATezg1QRp590Jf4TejHqaF0VUGUWTC2VWV2SDY72vCy0JmLfSSxY2mAnQFLDDAZPw5vKIIpOg2hudWPE5wzWUrcrsDUpDPgAn//4p1w8e0HVLPmrf/vXXF294PTsjC9/+nNxMlRFe2UcRcNDKc7OzqhLpXj62nTNBdEnLAANY4CkS4yrUNYKa6iwiFIUhkQ1FRisoW5qWQYqMw6B/b7Hao1dNZjCGImhMNXLs9dGFYBFBt+o8nz/gfeSjyoFM5BSwLcZeda68GMF/AkFrI9xkhmYisdaWmjKONpJgwMIOcpIG01CEWLC+8Ru7+mHgI8JZUFbjXGGqm7wyQsbwirRpySJhpoxRJMJKRPDSN0uWTcL1m3L3e6eMPbo4WlFbo0qOowhkJQiKi0umIbSzmvkzA2SH6UQCGFE67qMS0XSFWNQPG4GPry/5/mpI55ajFWFaZZwacn16QKqFcuzF/S7DcmP+LAjK4WrLc4aFnZBtoqsJRmek2cK+ysXxsL3DnvFtJMeAWyZUtjPZTHqGRdNGVS0qCjItYqgVIUKrjBToyTkWYAVabs3MxslU+bGZJBAEdk2RhhbSKxurZVWq1LIeqqrHz2uiiSd8GEEo4gYbveRX323ZwyAW/H803N2g0OjWEYkvo1QY6nNAq2EDLDpMrsBhqhZZEWeGCxaSU6jDRMzVk2bm1IzWC2DMK3FY1TzCPQC6fQqRQshpMueoAobemIFaSvdJlIwNOVcEqBblXGURFFi5qzURIcGlQk5MYbMvhv4cPfIEMCnTAqBmAIGcdLNIeCDZ/RSH9v7yH6MdGORcVGTqtQ/ft39URosHwEQH5c9Z7SZlMEaVO0wtWPcZxKREytCt30S283t7SP1YkG7WkPl5IBXEZ3AphLsRelJFueQ8otSngeJLBXoGGJhUkhVIWuhYIagcEhv5pzEfe89aSW6ASmlGXyR95lnunGKI0QvFpQzeJbx48jD/QM3H27YDwNN1aKtkwpoTOJQEJP0NcdMCJkxCeKtjFRAna2pdEUOkcY5LAbGJ+y5nJTAc0Crqvh+i3NQXVnMyYrKWW5vHri73fD+3QNv3mxomxXWOIbBE3yWQyT2ZGPABtTgxTWo9B8+3N2D0tQZTJVLKxelGmEKI0naTyZxMxRMLgtC7ZMNVcYoMFk2pxjww4AfR/qhZywVvAzUVcW0KJ2b3HFk/KxV6CTW3TZbAeNSAWpiIIgQh4ArRZx4Tk4U8tyIJBUwxZkhVxWmXdC6jC0izp2itO48ba+sHP4S1MY4VcmYq1RGi05QXdel1Urcoeq6ZX0Cj49bHm47Rp/wSTEEReoiwxDohlRssCvJZbMkwFqBigKGZSXgkbQGGZQtSPTsaGLmwFT6hYXm6rsRnxVRGaralXVVnuvMXpgORmn9maiFmWlbUwc0tNCKpsBKaXES2I+P3D723D727ANQV9i6xTUtw+gZvIj8rtcVWluUMlgj/drWyAHovT/q/3yay1aWRIIY0EZJZbHYp2brBGCJGe9jEVOW95SLHkLKGmMcGSWOTD4x+pFu6AmPAe2cAHp+INuEcmArLQD0vMMdIyBHn5fk4egLh01Rl9as4zagMq+Evjm9hProg6NETSc1U+J1SOIoFxKj7wRwSZne91gnbWi+G9BJQ8iMvdDOUwEzGtmFOQgR5uKaAVVwuCJu/VSX9ONG+mFkDLFo1YvBe8iliVEpfMrEMTCSiV72baF/1zirUTGy8R3v+weW2xvOdzf8tM6cXZyzNGux80ULkOIjccZHDkm2RhW9PjW3LirKkihC5SJYnslWwDn5aTNXydXETkAd9N6yhKTSSTE58E3uabk420rxIofAbvPA0G8JYZDA0hlM7bBNjV2u0IuVbAf1CdXyivb0BfXqGqOs3FMETSRHTx53DJt39A93dI93TzZuAOTEsm04O1nz+2+/xhjFYtHy6tVLvn3+DeM4cn/3gLOGse+4vfmAVppPPvmUEBN//au/49/89V8Rths0muVihVcd3u953Oy4ub3n/e0t+77nfrPhD19/zX//3/93ZA2vXrzgRz/+nGfPr2nqisZVnK8WXK5PuFyf0FRuYlbLVewsReg5S1uqKgy9MheykjZXETjWKCPtSlFlqCQB0ChsjCK8WFiUIO5qKUWi0Tx0O94/3HG7fWTnB7okxZ1DVTYfChpWl7btWOjwoLFyDiBirDEl+nF4smET610DRrHtBnZ7z7YLRP4Hfv7pZ7y4POeT60tslmp/bbWwwYwlK9H1sDlLEcdZ2epSms8zpsc+CUWjEJS56Dvo6XzT8+fHVPdjzafJ4VAhIIZOwjxTEyAAoJS0BjFX8o5IZsK6DSkxpgxVjbEVtlmyDxmfDVlVXF69QJmafe9R2vHi2TUXl1dUBVyZTAr2e9EyXCwW1HX9kRPe9+97+tpTXV03kJ3sF4uqkb2oAHGq/K4QBSA2zkrxtdLoymBcBpXYbnaonKispW6EfaOssA+yOmItFFHMqV15Yq5MbJmZHXnUMnSkg84sXKukKCpImAyK1gaMMNWm2ZKTsFamOB9T2KQqSQfFxLBQFm1qoMJQcfcwsOlGhhjE2c2K/bu1TgCnHNn3e3KAfb9n3+9ZXJ+xGfb4cQASlTO0tWO5aNGUlvD4n0HbLxexe6RtLefMrpP2KYxBG1tkhuVKMeKgtM3UjNmSosUny+3NnsernvAsUi9rlPcodtSxExa1V4ybt6isBSAtIswClArolX0p4U9sxwygS5tdWcr2e9lb0eJh0mEqBSSSLkGkFvbYBF9nJcX3ST07KzKW1BtitmQpf4NS6OKcBnk2aNBK4dwEnChhCurJVYfZNCGlRFVVDGZ40jUXXYvRDsgo31M5jVUQgubd1jDmzDbtud5sCGbBkBtUDJgxIa4WDqdrsm7oxi1jrBhixRAdmFQeaULFACaSVWE7Ttpupdh8SJKn/bSMyxSL5Ty336lcHBC1xCO2aeblOAU0Ci36Ls7NWJm0qk7/HcZdTWty2l9N0b5BXuth+8iHhz2PXSJkR8wK7wWMrtpIpRVGidPp6DLrk4Z979lsNbvek5B8cu6Q+UdeP5zBMh9Wx5P8+PM8i+xNmg3Z6EmoGl1JIliHkX3v2d090q5WLE5OqKua4pEyI4+Ti8G8eMrvmP+SOQAss81SsThkGvYpWThSo56+Lm/qqIZ0qEJMB6lkQgFiIMcAWWhGk7TAOI70fUfXdWTAVRVVJShvKpRbaYso/+WMypOtLpBE/lOhyDFhtUbpjNfHz/WPu3ISESCVEjGM+EG0V7puj8nSU1hVFU3TAFu6bmC3e2BcZCrXkFJmHEWITU+921HEOU3lGAfPOHq6Xc9iNWIr0WI5nitqQj2PxnFmh+WjUZ2CPSaqbSrJmgAHfhwZ+p4Y/ZwDpmRL73Oxfp2588wVJaMVtui9RBBhr6LBMTlQTYnHEb5SEhHZLHSheKq6oslLlllhyykeUyQUMO4przC1o2WhepPNPD+n52q0wVmLL73YAh4YXFUJ8IJiDJFu8Dxsdmg8ipHbuy1129AsLKayTHJvKSeIUsFRaIF4zfcC0bk6JE/q8NyKywS6GAFN1YdJSq6M/fwOy4Zcem7n4Gh+1bLbHot35rK3ZOh9YogQMJhqQXYNyjpQmhDjTPcUK0/ppc0qk/ShohdzfHIKtSrJjkKoorZU8EjqEBPosr8U7SkJKuT5ZxTWTmOd0EkTPEQCw3ZALypsZWaapQBERTcKfbAuLtTL4yd6DLbk8j0qI9WAifVV9s2ph38SU5yqe7ZUZybQY2qxzNN+l0uxI0axnB4D3g+YqNAJQgrUzqCyJHSKqjjWyJzIWZXz7XB4Sz+zPJ84vdWsZq2Ip7isrWTvzsxV8JyZ5xGqVMbz5ICRGWctGIXShqQsqIyPAR96dnh2eNr3J+RKYxqHrYwUEZTBTPv/EdA1t+mU9qi5ela+U5fzKU+gcIxIOa4AJWVdTu5jE6Y5j3w+/DnTco9KELqI5pIju+2GYehIyYs7T+1wTY1rG0zVQFVDVizW5yxOzlksz0BVRdC/BFlk2RtzQGdPZSLL+unOOBAtj8oaVou2FDATxiguLs559fIF3XbHd19/i9KG6Ee63ZacIk3bcHJyyvr0FGsrtDZUzvHq+TVpGIWFsn2g9yMPmw33jw/c39/x8HDHZvPAL375C370+Y/42c9/yrNn11TOyX3UFYtKPowtEfrssjUFjhzcGOcBmiKXfBAUpMx9hQS7rrBhKC0UuiSXWvaLrKT+5nNg2+153G2IOYlOhlHEqe2m2LOW1QulUDHrV8z7cZ41zT6O/57gmh3+Mj4JmzDv9vzu2+8wSrPr94ToqUPHbuk4X1UsbabS0o6eS+IneyXMVKw0sYXKJaIdzI4x0zmmp7NsSiTUTK5U5cfUlEzML6dmQPJjsBnIRzamBag8MJdUuT9A21IocDIaGZSpqFpLu1wzRsjRc3J6xtn5BSenpwIml3hk0l/RWlPXtbQEf4+18p8TYIkxElTEqMis1zznPWoeD2mRMWKD7qRFxjiwNhFCFHeyfqBuqvL8JnC/ROWTG8xUKZ/AlSOW9DS8am5XOLrR+RuYbu7w5bK/aiS/lOmjj5hNTNneUVwKiqLjgjB+x5jZ95GHbc++E3DeOAHetJGW4YAmRRGMtSEzhhEfxtImnAgpyN6uD2LSaoqDn3Dc5G0U1n6epA5kH/AhCe6oDNZVxXq4tOamUoBD/j1pJ63MybHZjmy3I30XRdQ+JzIeNQ4YV4FypDCgTSWMCK0P64XDupK/yxhKZKEkTkrMkytPSUMZxSlsOf6Zaf5M8c10uuWSbGQ9fV2TslgXx1l/5RC3TVbqMg3KfJuLSnwEruQ87Y2y3pyVVs2nZI1F7UhK8kgdvcgxKNnruujInSXdwSYPaCv7jM+ZMSoSBrdopb04KQYPnYchKMYohaSsigDNkQC7mtfA0fZXnvv0bOGjzHwGKg/P7bD3aK1n0ebvz2o9rTld/nUe5u8/w+MMv+R1MbHrAu9vt3y43TGMmqwrSKVdv7i3aSWkjZQiIQiL00dpERp9PFpqP2zN/VEAy6G/isOGdUAo5H9GDq2sFUlrqbhoMLWjWbY0ccR0Ox7e3eCqmna1olmfzK87BR3SIqC+nyNM4TYTdpLyobKSpw1AH2hchzcg/1PzbR9AFiiVwhI0zwI9OUMUu1kBWMKUW5KUousEXBnHAWMM7XJJeyRAlmIqughiEZYUGC2MHshYZTFZSUUyBoySe3dPCrCEomCXGMaBbrul3255vL/HqETtapbtkkW7wBpHDJn9viMnS1UlUlJ0/UhGiQhVknaupMA2Hj9G/ChCvsuzEdc0EvDk6ZhVRwwGEfMrGQyzNWjmoJSeCz3ro+A8E0PAj55x7D9arJNrwNQKpOaDeErRFVZNwp6yecTSk5dzBq0L4FJmR5kDUwAcS5JptaauHCotWNcNp9piEP2d0O8JY08/Pi3AMvpReu2TaDpkk2dtouNn4JxYD/ucyTGhjWiw1G0rok9jZLvreffujhg7Yuj4+pt3LNdr1mfnLJoVygigFWMgBmm/MGpqB1Kzsvi066q5wjSNn1TdjTZUrirCYMI+UkVMYNq8FMc/ag5byvFeMu+vU3IyBTqGrCwpRrZDwGcDtqVZnzOoCm3FzcUH2SyNsTjjZjvPIzwDkL7NGZx7omt6Xpo89+gaY1G6CB8CGY3W0vstOs6ZkUTMsgdUzsmziQLkhig0x93dHrOsMa3DVEYYdikRQ9F/UhMTqwQDU7CYmfe6A1henvt8CKajoLzY18VJ86i0h5iPqzbTKE66KEaJ+LgGSJE4ekLX48ee5DUmQiQK/TRLNVYX1kVOWqKfrOcK1jTueQJYUhZafqa83z+KlPnR1batuAEcARMClEtQqSgsuxIFZCXtaipEAVyUCF1nnfEpsA8jedejhy25tei2ol611LVDZ9HcUUpjtbAEZlXtaXCMmgWdNZNekEJn0DmXRDCJNpgWEF1U9fW8jBRHgo7l75TqoWCqch7lolkhxeIiEJojjw939N2enCJVU9EsW9rVgma1xLQtuWrQSXFx/ZLzi+es1hekqEm+OKvkKFCtCigClcuYpWNVL59s3AD82NM6y9lqSW0MOYp48PXVJV9++QX9fs+v/uZvAUMMnv1mg/cjzhjatqFtF8UNwtE0LX/x5/8FDtjdP/Dv//X/InpPj/e8ff+Gd+/ecn9/izHwL/7ZP+XnP/8ZX3zxOSerlVTiAFdCIYPEEFBimrlaXvrGjwOqNIGFwjgyrrhnpSSCoEqo2xor4D+FBU9JHkhHLD/F2HsedhtuH++lvaIUP0KQsVVTUsphzVP2LKUmzRhKESvKulXfX/t/3DWBuDFGYlbkbIje8+27d/R9z/ub99zdfaDB8+xkwbOzFa+vTjk3NY0THY8aQKmj9iZ9CNLna6IQqXlPQWkBVaaJrw4w45ScKSSeFcymxCQ5Y4qYrDBYjopHKQuQj5IRKqAIRcScLGvLOENEk5QhBEXKGlfX2EVFszghdAM6wPMXL7m4umSxWDC7dRRwZWqRljZh2QdnZ8V/AFx5Uj2IJACJUUXfYE6SJ10v2YMkPrHUdYWrK5wzOKeoK0X2PePg2W13nJyfyLPOQUDu4zhDy3jmKdnTamYu5qKgPwGDMzOrjB9waKuensW8x6qi66KplJE9UimUNcJqP2JGKEV5j9PKk9fxMbLrPDf3PR/u9mx2A8PoWSwTymSMVVSVZcyGlIU1PYbI6AfGMIJWRScvSlutVhijsUbE5+OU5DzhdShISiuoxNFa2qSUtGfUTcM4VkUfTfITUhTWvVYoW6NSA7Hi/mHg/n5guwlkr0EFcsikvkOrBq0DMccDYEUp36kDW2waj2OdgEkWJ+sJEIrMhTcmkE32pwmcVlN8N1mUHoOOJLKaXGfk50LIDD4z+iTGqqnEbnqKc6a5dZhfqsRWWh0AlKnINEF+zjlcKUQ91RW0EzHgHNFxxATRX0zZMOaWcXTsHwzvtgPWJKweqVUl68VZTIbgE8FDHjK7IbH3mSFqcZQrnF1Ic8w+hfnz2mOKKQ6xyjw757x5el7lrIiSg4qMwXEsMv1cycaT2NdPSWE+DOshLJqJJXJTORfr6SFxc7/n91/f8vW3D3TBokyLSlVpKxdhW60SRsv+5WMgIGYYY8r0IZQy8w9fb39ki5B4R5ujB3m41OELRoQ/g0oMOaKyZyTSLhoRXet6Hj/cY7WjbVdcv/4EUzmyyQQCKYhyvS0T9h8+0OXrxljqukVnxFWDVPrmTEkISzL/0UtMh85Bz2JGb44jFwM4hQqyIaQoAa9Q1jP90M0Wh8vVkrOzc+qqZb/rRUwvhiOrPgFanFL4mCElqV5moc3rnHFaYqzwhC2XH968EaExpckhMux7xmFgHEa2D/dYY1guVoDGmApjKoLfMwyBlALaOpStMdbRLpZobfAxMsaRYfDcP2wIKqMXNc3pCl0V+riVyqxCFSvgQl1nIv2XACBNGxOl17vMoTRtqjIHjJZWJKMtcWKKqNL7a53cp5Hd4GgmIqmsIidRlO77gWEcxXouZ6EaJ0VSEtxlDq1nKYbCAIK2bsmNgBcnZFbOYsnyjEbDyjecPaE4sTwCAYNyyvgQiqXulIwe2AR1Otgyxlyo3cZQLRpMXeGjx0dF72EcIt2+41/+q7+ij4kxK/7s/Lx0/WRMVaOKja884qO2k2m3Lei/5Hdy4GlETLatW/RqjckRM7VMTTl+jh8JalKYLjN4Oq9D+WL+COwq666uCB62/cDXbz5w87hn20cSNcbU5KwZup6h63Guoq0b2qqisgarZTMuGDBKZzKJmMJH7kx/7BVzlE16PhgEWDRKFRV10UswtUXcPTPj4BGxN6l4rZa1UHS7zBjcPA/3tzuadUvdVgK0EIsImfyyqd9f6jBzPHPUFiS0TSlUTEyuorXgSsUwg/fieBSCCBGKkKYpSegUfEyBRSrr3IgoeBYwOnd7Yjfgd3uGbiMBQdJySuopcEzlXg0GafHLWRJMtJr1f1DShudjIAc9V5rUD+iT/Y9dBiMB/+OOcRiJXqqzWutSmZu2pVzOAUMmEXIBgGNER4t2BlUZUtUwBtH9+O2370jasu16/uzLn3K2WLKoaqyrmNLszNFhUZLEqTWIAtQDAqIoSQKyliqjLaCLiulAb48adCzOKBKQTALkKE2YgcVJ4FSCyboymBQIo6fv95yerDCff8YYPM9fveL5q9ecPrumXqwxixPaesl125CVYewGHm8e0Rms1ZycLlDWzYBa1RgCShh/T3i9OD8jfPkTKmf4ze9+TR57tvc3+H7Lz376YwyZm7dv+Lu//Yo8eobdnn63JaLo+z0p+rJM5Iy/urjkkxcvOF8uWVjou0f6oedXv/oPjH2P1on/w1/+M/6r//Jf8OnLl6wXLZNdpLDKQiFJZJKGXbcnk6mqSqrWTGHG9J+a215lV6Lo80hw6IOnQNhoY5kD0JymhgUyFMetTEiJh+0j9w/3bLaPnJwsWC1b+jEQu7F8/xF9ftonitCooojH6sL6y6nsx4knFT5CT7rx2MqhdSUV1t7z2O2JOdH7kSqNfFNbThc1P/7kBV/8yPJMVazXi2kHJAK2qSElkhdNnLJiKAvr8DEldjM74uN/PiTWR/tmKhtAytiqKUDv1NMlxZucgiSJhSUQQ5znBIiSTswwAjEbJMo16HpJXS+o2hXGLXBJk43j9PyMpq4wRhND+EjXoa5rqsJUNcbMjkLfb535zyFyC4qYEmOI9ONIXVU4MyW4Ml9CDGJNbZjbg1TRJWkXFWEPKY5sHrdc7DrqupIinrEYY4X+r/UhwSvtkmpqU0bNbdPAkYbOFEswP3emZ3AMNHM0BwCtMvloThxfUw4/u1lqhXKGHBydH7h5GLh9HOgCZOuwtcU1BtdYqqaiUtKKM6aA7z1RQdYabaWVPqaip6VM0RV00vZHmgGip7pSMb3IRWcLqjk+8GGUtjvn0NoQUhQnMZfI0UMcMQRMW5P0Au8XfH3Tc3078mGrGFmI20/2hC5iXRY9GsqYlOK7VtKyPQGd01BlCY/k8ReQ9LAGY/k+KQTm4jBpTI3OR3vSrOGijv4/tcZOHQ4CKomURKLfS7E4hlxA0IMTkJpEludi4wTwTQxCPZ+jKBF1nbURnxCMrqolzip0GsXxSYFBoZTFmJqkZUxQLRoDWQSVJyZ5vx9IWZOUZUyWhy6wGzN+0kfJFMHuAGlEnHvyURfJBFhNe2gBXOZlVeLKstaUKq5LikN3C2WdlpNOxliVOJ8ClpYRUlO2yJHge/l+NGAlrtCKmEa++vor/vY37/nuzZZsr6mWa2ynSHspQJI8JidqaxhiZBgzvU80zjJGxWY/ENKKYzbxP/b6I0RuD2+N8iBKhP0xAonM7+LgJjGehmhAW4uzjkpb+scb+VFjefmTz6lPF+jGoesJSZ6S6+n35sNvz9Pvkt8tLSk1OVlUjmVPnhLBMkRH58s8kMdnzkfPdKLcR1IORNF8J+dIToGcpJqslNj0uqqmriOuUMy7rrAsFIdZUebTR5u8KpTvsqdbDUkradF+ouv2/XuMEutQUZEGZxzr1QnDThKJ2+4OTU0KCWccTlekqBhylDYmYwtgZanqltaKHkfQEVUplLaMPrDZ7rB1Rb1cstBWgLicSyCnigr11C5yCBDnxTWhw7l8Ry6BAmCcxVHTZBF4ymXeWVehS9VZEO+5IeuomkNJjlJx5ImiMJ1LaqOtoLLZMh2/UyyZY0YlqLQj2woD1AYgFiQ2s2gr6saxpnm6gUOU+oP3RB0Zx1Gq2UZcFGYGDrKhm4K4hxAFtFIKV1XYqkL7gUTGR1HM7sfIH75+S900+Jh48folJ2dLqrq0fphpJUwB2uHAmtdjcZ6YHvChXcmhmgbCWFqmBDTIZU1N+ioqf28HO0KrP9pH1RS0STA0+MDt/Y7v3t3xu6+/4cPdA5v9gE9iOSyCXgMxBJqqpqkrXBHH02S0SmU2JlCZmAMhhyLg+XSXVDimKovsY5Pt7ZwOlbY5rUXgy1TCzrBOY5wqNq0Zi6bSDq0U+4c9zf2ealnhLhvRxUEoj0WlVF672L4eaNXT/jlFq5LE+cnqM0bUWKrXWg7lCcBzzmFdYQF9jxY7DZ782liEHyP4kbDfMWz27Dc7UphcN+zRGX0Adz7O8mZkCpiYOKXtMkoQlEsV6ilbhPwwMBZwLvog8xo1t5fJPp1JcwvW4ZkqICuFnwRVciJpxCkka7xP3NzcoyJcLNfo5y8wa01dVTIXy/MUq0QB/ziqjAtB4XAviSTaGFOghwRbhomldUgip2Q+H9/yR08YJrKvLuuY6AnB07Y19vk1l/GC/ThwdnnFydk5VbvE1TXGVSRjGYInhAHvA2nsBbiLhhhrshbR4KwNyjlMrtBPLAh+cbJC6xdYq/j8k1d89+E9u80Db779mrOfnXBxdsIXP/oR3/3+O0xO+L7j/uaGpA2bxwfGoSdn0TOpnIWcaJqa62fP+NnPf87tzXd0+wdGP2CdYb085fqLSy7PT2griyrzewKp5l1MI6KmfiDGSBc8q9VK9oVy/uiyJg/uZrJ/pyLkl8jy7LKMcs5TISFL5XEqRpSsJCVxyXu4v8cPA1Yp2rpi0chHzorRS1IXj6r/MG0NaT5/xT1C9AamPE894ZpLSRXxaopgbJLzRmds4zCVJeoiRLjpudk8sh1HNmPi1cOWLz77hHrR0poaJuaIUpKcI+tgSqg+nunI2vjIJYhDiFkAk0OizpzMZ5Di3Ux3z6WVVx0SeqSV+qN9jMKKyxCxs6C2q1foeomtWmzVYqqa1hjqnAroUIpTkwNV2ZeBuV1zYrT85wdW5NLaljNcEWNhPqLm/cPoQ2JljJGE3ZoZHDHaYOqGFBRh7Ng8bEirBYu1FPGUPjjHTcyqqa1rbvgvCdj8iPX3i7HqI7F8aX0tSfrhKyVfUyXWkDkxv66aH7vs8nkCCWRPvd/sePPukd99/Z5hzGQl7cDaaSbDGuscdsoZjJU9u9hPi9YJxJwkNC5r0RgrDjbFjekpr5RiAUyLjIGa3IPERpsYITusdUQjrYEyl4SRWDlQriKoBj807MLALhj2qWKkwRTEVI2JJmSR90hH60BNTCPFQe/oEFsysUbIR8w8aUGWwmei6wZiEkCqbQ3KCSgiLelTzCUDmFQuYKs6jGHKhDHQd4ndNjCOAe8TIcq+y3R8FjBlbl9hCksl3gTm52jm1qdJ/HZyE3qaa+FqcXZNseQqwjxJ2ch4pogioHUo+YwmIg1twnT1QqjTmqi0CLv6yBjzXLgV96wg66TkwMLDPICXU7Py/DSmmD3/x/YcdQCgjuehHICHNa4k99NFd2zGHNL04nz8gWIcAn2fuLvf8+vffMc3bx54eEw0y2usajA+kHPHBHgbEs4ZhiGI66kPwohH04+emPLHe8o/8vojXYQOwl9TX/jh3/no7yjREkoa0Ipk9CyIWmnLuNnRdz1jCGw+3JB1pjYr3KKVQSr9xCrm741L2fwmkEUhdE1NmRTxUEkqN5bnoOdIh+BoEszgzfTlKWBJiZQCMQfZXJAKRY6BGD0oZnvqumow1pIT7Lv+6HdOKbt8moLUm7SZLImnIF6ogTpHzBMCLA+3t+QoVeJlu+B0vaapHM3qhN3DI2PveXx4wKqWMAastjhTMyaK1WwSvQTr0LaiWSxpFi3tcsFIZIg9gUBMmd2uQ1cVy7OR2tVF9IkCoMQirBgPC2QK5uaxOKpGZxE7m4IvbS2VVoL6j7ZoVYBxlVT0tNBKJ92BGdfK03gjlMAY8VHUwsW+WJEnsbs4MZ6YClIiHJoUTjmycUJqqiCPXfGOjzTVZJP5lJU9ef4hyGY5+lG0PFAF3Dg8twlFlx7tQ+I7aQINQ1/mLIQAo8+8eXtLTIluGPjTv/hTsIa1WdJYfUR5lgchz3BKqvl4cz1aR1qLgrquK6JKMteLxslhcfH3wMzDTjoNVT6AbbrwV5SwjLp9z/ubG/7wzRt+//W33O0Cuz4QssKiCu1TBHedMbR1XdB+CbH//8T915JlW5amh31TLbGFy5BHpyrdANpgbQR4QaPhhjd4Pj4QSFqzJboLVZX6yNCut1hqKl6MubZ7ZGWiuzK9mivNM+J4uNh7iTnH+McvdC7JAEqAv5QjIfnHBVgKsCJa3vt3apTQYlO5H5Uqq6qiFKGZlBXGiu3NfBMaNJWWgqvbdDR3e+pVzcofoysr7KsUmS1tDuBFMdC8L/Mz9xuirDwhJoIP4kqf46EwmN3xhbJssbPGP8tmmB/cZzNnbPZ6IgQYJ/x+x7jb0W93IrVM0qRZXWIw1fyQCdg0J3/8TlXLbKAukyslxVac/X0e77KNw8DYS7JaCgGZZJXIxjK1lMtyz8Sam9O5pIspiU9MTMLkVIDSxAi3N1umbuT8aM26bamriuVyiS6AzOG9F/bKYepTmiv94KnRmAOIEktRonMBX+emsRh35lK4iHdYLtSJMnhQh9tFQH6lMFrYLd6PLJdL6voE5yx3+45mvWZ1fIJrWqyrUUYmsGO3x3tP8B4VIfhIioYQV1KcaSVRrrZCqYR2j7tWHi8XLJcNbVvxoy8/5+buhmG/482rH/jZj37CetHy1eef8beLBkNm6jquLj6grGWz2zMMPTlHjFG0bYOxhqapOTk55ic//QnrVcXN9Xt2mw8s24az4xP+8md/xnrRYFQijyIlFmacgNS53BNZZ6boGaeJPEK9XGAxBcic9ygKwFIAApVFMkMmo1HKUsw7kMni/RYq+6s+AIIpZqZx5O7mluAnKmcFYKkqlnWNwbJTgdEHop8wDwCTxNxMzaDL705t5xvycY6cC581i6waQrlfMlUjyYBYwzhC14+MXcfVZs+2n7jZbGmbivOnT6jqWtg7CeZUrI9ZCB/BiMy09Kwfgiv3G9NcJ4rpvvoYXJHCrwBRAogplQoN/n6Pmz2xKGwgyp6dsjBATdVSNQsWq1NMvUSZCmUcyjncbD5v1Ud15EMfLGPuJQpy7jh8zfznw2bnMcEWAVjkXKeYDrR/XdaPw7RfIT4sTjwp5vOslKKqa4koDhPbzVbYc4sWPTMb9H0DS6mn5y0icz/8vu981cfXPD/8N/lbOny+wDTzFJ4CnBwGEvevU9h/+nCf5mLAGVLi6uaO1++u+O6H90xBQWUxjpL+JhILay0mOXQMaGOJBWAR9rVET8ckoeSUczoPzVROjw6wzP3PAWBBBhXWWVCWpBJKJZyrSSVlMZcGPhOxBoxzKN2ghpaByD4ZuuTwqiWVPixNCRMRo9MDKPzx5br/RDnvef787AOSylVLh0Y8xMgwDgQfMdpRVQusy2X9m6/v/fHxILuAAynhJ8/QBXbbUQCWkPHxHqSd173Dx4MXPveTv4+hcg+wmI+Mp//UY2EdOQWmpEk4otKIub0wxlSeZeLmcG8HFKGsOzl6KiOoX9KG3kua2RgiKHvfpB7Alfm8yyEVylxJ/o4flyrrDfOaow7n4kAqOLQNcy+R74G+nA4mwfIozmuY/N+hzntYKyYBWDabkYuLDb/95g1vP2wJsWV5eoLFoE0P9NwblGcqa1CjrJlTiGRVkVAMkz94c85C8H/q8adJhPLHi9J85sUo7yG4VKCW2f3bGXAaEy2uctTO4bKi70Z26Ybvf/01z1LgzCrqk6XEOyfkwVb8nodGcTgFZUFUSibqOcV7/xbEiGruPO5/zuFq3f+8Bx4gKcVCo5tIKUgiSFlwkxK02YdAN/T0w8g0RWEKaCOA0XYrE0WlhNY5F+iFeeCclSm1lhFnzpFkRAKijaGpHu+hjIMkHfX7nqZqePniOWenJzx7csaT06cQ4e56w+XFDcFrUjA4W5GjvBazXnJ0fMxyueL4+Iy6aQ+GZTkM5KTRBHTVMIZE3nXkdx/QLzTrtmVZNxT3KFIKGKPJKRJTPlAzD+BTjuR8T+uV6ZZEvypt0dpSGYeunHg+5CzRhOV2TEqhlDlcz1hSNnQWSUYs7Jd+HEQiRCbkTFKamA0+IowdGSkIuJIVNmtqU5GUl03TyuQtToEYOnFWx+G0e7Trdrh+pcmegqdOFSkb4OP4t3sfFkl7Sbnc9cZQNQ3VNDKNHVkZlKkwtiWEPe8vb+nGkf/t//Vv+O//5V/xxVef8+Of/giUv9/Y5j74d5BjuURSlBSTCpQxwiZzlhCk2RyHTmQsKlPNkdAH54AEH1E7y//l0qTMQ0fEVDSkzJt37/n1b7/l19++4vp2S7QLtK0Ly1SRYiCOE7UxrNqW0/Wa2rli2jm/p7m4iITomfzE5B9P3jVvsPOuIGlkIgOxxpTmRUsDlUQilJGa0igwDpIKhBQIfhIfF+1AK6H9X94RLRx/cYpbtChtgAAPzBszs7wkHc63mgsCrUtxrHC5Fp+a5KiqeV0Xsz1pqPSDQmj2aHkIiqqP1+csAEvsO8btlmm3Jww91szNSZnZ63RYc3MumHYohWzxZpp9tVAZbQswFcs8Jkrh9xDg+1OPu1vxG4nBk0LEZI0rMpwYipRBZZkoZyltjAJbiq+UFTknfEwkLxMSAc4q8JmYAt008Ktf/haLYRw8bduyXq4wRgptSjyhyKLkQ6EEQDmwhwRYmemzcGDPy7V7yA5T+qAr1ghYLZOj0hAxXzwpcOqmwlrNEAN91/Hs6TPW6xWuruDde+rVmuXRCYvVCZDww469n7jdXklEfCVGhl3X4bOiPlqxCKcYXYmZbh0Yuw1dH3j5aFcOiJ6qeLD8q//hv2e7u+PV2ze8efUdl+/ecLw65uXTJzw/O+PubsfN5Xt++8ufY5uWbhzZ3F2RY2C9aPnRV1/wf/2f/yeenT2hdRU/+vFXPHt2zG7zCW9ff01jFWdHR/z4qy/QYcKPPfiACsVDQWuU00QN2WhUU1MvWryGu82WVfA0xlBZR5g8hEROkkVitC3JDYjpq1xErLYohMUyK1UgH0yNVZZQWZUVYfTsNzsu3r7DKM2To2Pe1lccta2kOp023OwGbrc7Lm4m2ZNnIJ2ZYXpfBAtAYB74EjweONY0C2LK4jFTfCHQMoBCZ6JOjCrincU7x2AcQ4J0dcd+nFg2jvOnT1DGcHp6REQVMNQc1vlcVsD5WYIC0haG30fyIDg0Vxp9T/06AKoCFqbgDw29Vsi6W0y+0RoV5XuNRaRFORPDSIoCsGhb0yyOaJZr2vUp6MLAmRmkolQWRRJzQmGU+kZxmJQ/9LB5+Ln7a8c/+vtjHFVTi3/gfJ9EYRbMPguSIlR8CJXCOCMASxIGaYoJ24hcTufI7c2FGFMrOFu0wsyc5SNKlT0ilZpD6ulZ7iHXRZUm7mFbVBCxdL9vpYM0US64KI00cyLi/bmSQZb8rgIEJghFMhpzZNt1/Oab7/nm+1vef9gSc2HuGGneRJaQqJ3DG+kdJj/hy+/UxmGsBS1gec5KatYMxjpcVaOnRJil1o90HBQfKeO9SIBnDzFtHFornNO483N2W8dOb5l2I96OWG8Ywp718pjKLanCCd5nboPh7cZTnX6CGm+YumuGaUeVNVY7bLOQ+anOCKv5Hz10h8Y2pyi1k0qk5MnFs1IAMnlujRE/I6Ptvd1SAWgeXn5QwqYp8eg5cTAOniYvPehmz+ZuS985gq8wuhZA0Bmx/1FzL5k/Yo7PrxlmEOf+PrXW0i4WHB8/3uDuvLLshsQUFSHVZFWJPCb2ODxOBSo8Oo1k3ZBUQ9BHxLJOOYSMoFWFqWummOl9oBsnJq9x2qPwuGiFfX5ge80L4P3aMpMt5vc+f93sk3dIodNKUuLUPTj88JjGSZIzyVhrsLaku3Ff2imyDB/ml1E8+FJSTFPmzZsrfvHrV/z6N2/Ydg1Ve4pxZxLiYjNZbco9LxVTXTfoXoZofT8Sc0tImb4f8CERo8bpP+6Z+6MBlnulSznRzCyW+3+/770UFI08SmhM2WgwQvWKYRIaWozE0fP1r37LoDKjgvrsGF1c92VqyUcmT/eE53v5SE4Z7ydi8AQ/oJKY0RqlqOsVpkS0zgSJDEI9mxea+V2kIgtKnpwmUvQwU95jRMVI6Ef8ODB0HX3X0fUT3icW7VpirbJoKU3RxqeYBO1XkIvUyDiHqx3ayrA3kokF/VNGY6vqj71M/+ho6xbfBkgaozTTNLHb7alL0o9zNYvFEZdxT4iJnDWuaiVKtKqoTo84OjmlbZcslyvGybPve8bNiM8B21hJxigJDDEmbq9vWLqKvD7CHWtcSX0hI4Z9Xsy+lDGFmqYO11HN15R8AM6Uqg5UQZXB6KqYOSaRB5VLmMqGmnMmhwyplFNlwpxSYvSeyQeJRlVaNIlZSSET7i1XU8rkBA6Ns1IMT9qIdMoHUpAptZ8mwhAZrKV1jwuwpBiLH1FiGkYm6wqd/OCAIk2zlphOky1G60PhUduKpqoZbcXU96SSuBWCUCyNEXDv3/ybf8e22/IXV9ccn56yWldYp9FWmDIzjjknPgCYGSWHQ9Ej/2AOtPaQE+MkukenFVVdrvfhBz54+gpTZS5aH06appAYQ2DXDfzrf/vv+fW3b3j94YZugKoVxpsfB8jVQa9cu4q6Eo26s7YAeLlIX2ZQTyQnIjt5vI0wP2hwc5ZJl0qFyVOAWpQq1NtITIEpJBIJpRW2uveOyilgdDWnCmJSZtp17K4yd+9uWDtwqcY0Ndgy69HzGj3Xm/mwxImBdCp/B2MzxijIUlDkXJrvUgSq0rQfLsdM35UHVq5ZUvKLA4RdR9jvGG+uGTc70jjhyGSb8VmoyWhXJF8GpWpyMkL9zbM+uqwAeZYCSZSrnovlAhCo+bU+0nF7dcXYd6gUcRp5jdmQMJgkHg+aTE5ifqeRwu3eD0Chk8FqQzYGHRM6FulOSWTQOTJ2gQ/vrtBZs1qt+OIzS9s0BwNhbUSOiS7GuqoALOhS7On7KRAzzVrW1tF7wnyvGYOpKrAPfp7iALdR1tic0j0Djsw0DgQv8fCr5ZK6bjBVxdPnL7HtCtcsyAk2d7f008Cm27Ltb1ivV1R6jaFCqwmNLYa7DnRNzgrPgM8TPj9e1C+AJkH06BT47MVTfvT5p2iVubnbsFw0nJ0c09iW0/UR/WbPdt9xc3mJXSwYQmDsO6ZpxFUWqw3H6yPOz05Zti1aHXN3W2EdXF6+Igcv3lje048TJiV0SpjMITFM5xLZmSUBzjjH0hqqdoFxlqQgpCj+aFnuKzFmEJBRCLmRmQmrtS1TYAH65sRS/YAVCGIuPHYd2+tbtjd3nJw/YXl8xLpdUClFawxPzp/R1DtIicuLi0OqBoh84DBFlA277I9Suyj9uLR3pS2pNJYohbHqAODMBu9oI6Wx6C1QWjOmyE038PNvvqdZHfHl7Yaf/vRHfPbJ8wPbDe5ZxDPt+7BaKA5shXm1znNdmYKwRycxfE8xkWYvFQCthHmmZ9GBvt8jtYY4x/jOJT3SzCaIaLK2uOVaPALaFaqq5brOppCaQw7AYZaZZ1+DuccoYMND4GSuo/JHXPJ/lsM6K/4PyLVLZW3PWpGteDBmLYy4ShtaU+HaBh08MUcGEgtEMuy0otKaME3c3d5w/PwZGFtYILZ4hglArbUpckmKl8P9+fmoeSvnj5RJQe4jSXsM5VQpbGGKiPxd3deOKZFmhs4s0ys/LwP9fmLT7Xl1cc0vf/M97y4H7vYJ7RqMUxhbhqYJck4Yk6mtIibF6BRjuU+MVThb43SF1Q5FJijwKou1ginr/ePiK2htmfun+bwIS9+UZ9BSOUtlF+K9pg2bdMdi1bJYLlgsa5q2Ena1Nmz3njfvN/xD9Za//+0Fabhh3F/j/YbPfMsT3/C8UTh9X0+Y4n9H5kBFOswOmOVcFMPowxMsPoFO064WqCQDVWstc+La/EzkAqLO9cQMqigvz7XvJt5f3fHm/Z7v3+646ye6SRGiBERU2uGUw6GxgM6pGP2m0hNmymMvK8CDezGlhDGSmrtcrx7tulVVg55iwXBnlliWejPOgyhwxpC1eLRNhVkHSSKxkyaVAffgI/0Y6PrA0AVcimgXcQayDqA82sp9keb1iRlUVXIO1AxUSiInURJfQwhIfZGorT3AAqoMATNCNkghl+/XGGWlxsnqwDYR5olHZEoyxEoZUlT4CX71mzf84pev+PVv33C3DSTtqG0F1qKKgfP8emfg3GglSYMkwjQW6bqSwJIAMUqi8R+zy/0JAMsD1E7u/AdpHFKsyV5WigQojXO5xWe6lYKcQmmQM8TE9eU1zfkpzdkp0xixykij+5Cyl+WEzBMVeSALtTTlQ9b1NAwQRxQZqxQ2W5SrhXKv7QHpPPxckAevTAgyoYArEzlN8jBFyaJX3pP6kdD3jF3HNHl88IRMmbBGcg5UVjNNMoLIAZTRZKSRSkS01RKzqvO9NHG+abW+p1I+wuFszaJNMgHPWYyrQmS/22OtJSaFtbWAQBpQYhrsmiW2bamO16zWa1zdoCvLuN+z7zq6bo92mtYtcdowp8rEkJj8wN3NHTplGmtZLZYlVUZAgxCDNJ1wcP2/1zjOU6f7ibsyqjRaQh3WsxHtA62eDLof+Dkk7heC8jB77xnGER9CQcJ1mTrnAu4cXgIpzs24xhqLNZaoLQnFNEUBiXxgGgPaj0za4J1/tOsGSKEWpcCbxpFYN0QjIAqz/KoUXLPWWRsjqF3OGK2pXUVVAAZp2AU88n5mugS++fY7bCWU47/6F3+N0ucsVg2Vq4gPTFSzEume9NT5cHYPIxGtxCdAF8BFz7Ta2ZTUMqc5CAjxoFGcjW1VkUDNhSUw+si2G7i4vuUffvkbfnh7xc1uoFmdy32RIAUv0oiyWFdVVYxZRVqTZFUm5wc+I3nW9cqk7XEPVVD2gugXGuR8g4mHhkwnY5INKSuRfjAXC5QCrZziYk1AGD3jNrO/vKNa1milqExLcvEgqZIN5fcV2vPUTxgNs1+V+PsYAdEe6F/kb/fPVWa+3KkUSKVIipA9hK5n2nZMdx25n9ApiSGsKUkkSQlwV5hmWjfEZIQpmO8zVZj3hzIVFhlDYh7fi+EkjwqwbO/uCOOIRmikOZU1JnEvD9IaHec3LEXNPGVVWR1il8kZPUdbRmTSVsCR6APb2y2VNnw4v+Ds9AStNYu2vTfX0zP4XFhEUFKH1GEtLZcEjCmFssh6pskLWGVNsdCs7n8u5QImOAwpMsJOUOK90w8dfhKT0KaqRfZnLetmhXItylj8FNnuNuz2G25314xhR2MjamlRKqMIooXPCpQl44g5040wTjCGx5UIaaRZ0CTOT4757MVzkQrmjDOatq44PzrhZLnkxjq6uGfYd+icGGIkBC/TyXJfGSX+OKv1EmszKE/MI8vVGr/fkjP4acRM5XfM1fY84SsMsKwVATDWYExFY2T/ndduqwwokSNPk8c5KZrJ6l6GposuXRaM0tLL9F0Vv5SyADNNPcO+Y7/ZCJPPOtbLFcu6wWao0Dw5PkFbR7fvcAqZVhqD+ghQLUVXaUyEeSEAcNKPV59oKcwQHOVBAZ+FwaZTOrBPhOInz0bIiS5E3l7fsfr+FVPOtOslT56coZW7DxeYf9Fc85W9Z14D5d7h0NDBvCckgp8IQfaG6MNBToFWNItGQChVGLaUW70sU1LPyydyYWDGrElKg62wzRLbLDB1TTa2rCXcyzxLs6/1/ZT8AADk+fXOwPcDJGb+b7j/vvtT8GiHMbpIPRVx9Af2kSRdGbLRpALmOqWptRED4ikTUmZQQRiWKmOVgCxTCPS91PDOSuCCLtI3AdYlHlkSKvNHPckDlIz7e1fJflbYNTFGQvYc7m6tIVswMnQRbX5p/GeJAjDfSRkIOXG77bm42fD960vevL/iZhPpvaNpFgKuGnkNuQAsWgtg7yyFyZlLL2QwymGVxSqL1omoIepM1MLatFqLUfJjHgdTWakVUk4HXxZ5zAzGGRbLRvqrKCmWi7UMWVerBZW77ye8z9xtRl692/DbV3eE/o5hf8c03hLcGZNeszrPLNxshZDL8ELOsJop0vPzU7bVXPoh8syXyBQVPMYwr4KAAEP5wIa+Z1rIhY6QEjpFcojEMdJ1E+8vN7z+sOHVhy37KTIGMay3xmG1xWIktYeyzkZPmkGWnCQF6XDjfbTaoLTGVY7mEaFOZSsynayLmhIiIedFfo1GjF8rVAFYFBFNsc6IEZVrZka4j5nRJ4YxMg6JhoRLmewiygaUETsMZYUgkMrvmN+zmmUrh9r//toxsxGLf458g1QxgqvpYr8goLLWqgAsqgCb8r1zXz5DbBHDFDV+SnT7wDfffeC7V5e8eXfH4DWucSjjyEaGztrMMv2yL8sGh5GtRIybk3iNZpLwPpIi/ZHSrj8eYCmbRlYwE1fnKkFKQLkRBbRS6KhQ2SBJjUWyYLUsPirgnFx6pTRj1kxjott7UtDEUDYVncnKcdByZo/KAVUoZhKdKV8bouRYD/1I6HYQJgFGTiKLxYqqWWDVUjSfKLKZDbAkwYccAGGuxLAn+VFMgYJHDyPKB9To8dd3dPsd2/1OCrrKUhmDW9T0fU+cPKfHa666O3LQBC8GcT6O7MeOoEDVYFpLjIEAgqRXDbPuVD2ibi9hWZ894bwkqcRpwg8Dm7tbhmGUmOUxsj46ZYqKiOVofc5ieYRrWpK1qKoipMjdzRXv331gHMRE9OzJGdbIxDaMEzpJlnrygbev37C9vWPsR776/HOapsEaw+g9PgjAklLEIJu1M0LHyzkLGgsHicis6/uoXSzFe0rCEsoplbQizRxS+oDAym6/Y7PdcXt3x+BHYgKlxNRWwJUkBUOkeCgEVIjYytLUNZWrSZWwpG63G/b7PX7sSOOISh6dR5miPuKhcsbkDDnR7Xasl0sK0iibYWHmiDmjmHwZZ8jTRAwJoyOtqxmrWqQnSiis2swyAfFJiePEu7fvcZXj3/2b/8D/8D/+DS8+e8HzozUhRjBKZAtqnvCIs7wq+vzZE0ApXdJxahqVcVYadh0zNguyfqBzwqHozcU0TvAWhTIykZh9QjbXO354e8Wvv/6Wf/j1d+yHALritF1IgeAnVArECfHqqWpWqzV1VaNQGOtI3heQA2oriThz9HeYJLns8Q7LrBsmIxParA5SjZRTYawJwJJVJGVfaPhWAE8sSsvG4qwqhXamJoukYD9x98MFJinyLlCZRSlOEqgISuIn80znL2toqfllT4wSnatQ8rWpXAT9ux4P8ukSeSQoTyrsvqI7SSER9oHhZkvc7tH7wCI7UPL+dA1jmEhkqvacPBlytjjbigdOmAjB4yor+tuUZF2OCUKURrA00SFMqJgl7So8XgGzubkhFlf5vHAwKpJHZJ5YGmdRVkBCab4mfBI5gzFSjBElGcrnTDTm0KzZYhaudIY4MexGbvIN33/3Latlw8uXL1guPxMGhLbFdFCSHJh32DLh1kodaO9JiUwkIFPaHMRXI+aMQuKgNVkkF0qQunlSGONMmVcFAEr4qefq/XsskaU1NHUFzoGtcKsTxsLg67bXXNy8425zzc3dB9omc7bUWBbSkIdYJJoJlCNmSVB69eYaP+7JceJnj3blQEq2RKUVT46O+Kuf/pTj9Vr2nG7H2O9ZPnnJy5MTxpMt1gsbzE8jUwwYLdHoRmmGbuDi7TtO1ytOT9dkp1mdnVIvG3IMvP/+G2K/525zy3mzorIVdTGQ18XYcI5ENkYkHxLfLfv7zFSySuM8wobdd2yvt5ycndG0rQDDpVlUWc9uyQcwzKjSdMTC8lIZZRS721tuLi+4ufjAUdtyujriaH3CyXItQF+El6fnnJ2cgY/88O233PZ7AYAqGbLEUBhQWWKPyyyxmCve+5s9xlFVdYk8lvs+5yLFSzCOAaUsVWVw1qD1KIzAGDDKgDF0OfLd5S37kBi85+z0hBfnp5ytF7Na8gA+HAhClPOKAHOHOeGB/i5Nn2oc4AQ/jpEQy+BHKYIqkhxNSeCa26uy7isEvbaOECd8ygQs1A2mWWJWJ6h2Ic9WaSrvN8byqBawRxAV2WdTvCfs39/53A8MHrBX8kc/7zHhlaL8r2SgMwYxSg8hyD9UhlRZkbb4hAuZFoNeLgkmsfeB25R46jQ6ZUwOtFZYxGMIXF5csB4TixXUugGXS+ciwzVN8fQoQOABU3l4PGi2VY6CzfvEFMay5s0sX4mRFnCkRRktKTimOrBWjBE/nBQywzTx9feXfP/2gt9+/44P1z29h2QUjgi6wliH1omcTWEHjlRGEXTAKamftBIpvssOGw02aWylyU4x2cSgJurWkaLFxMcFWFJUMrRPWVKbVAnzSEFu26yIWWPrFS0GjEXXluOjI9aLFSerI4Z+IPtIa2qcWYiJ+23m59929Pue3bbn9uaa9/sFP9k4Fqdf8TQ3LI9q1m0NRpHlRRS8p0iP48wdmKv3qtSdRQKpCyADpX4qgIs25DLQljmb/KsykLqJPI2YBGkIjHvP9U3P3//6Fb/9/pZvX3fs4glDUMQEx6bCJo2LUAdNjcKkQBw7wmiIfgmx2EKUHnTGOLJSh/7NKEvziL6Mk7Z0MdD7nsoGdBKWac4ZdIVWjqxaEq0sGRHIIy5PGCJVylSqZTYuD1kzeU3Xw36TaCM0AcQjoaQIuQHtbAFJNGSNEncTyIqcZJg0D761Vrha01QG8V+MEjxzQI81OcnYB2PludZK6hNHedFBDHtVktdiIXlPzJoxaTZD5OZm4N3bDf/x715z8WHH7Z1C2yOUa8jO4lVAOYOpDLayxML4M8bgU6S2mlRphqlDpwmdLUopRq+YoqFx/60BFu4L7nvmihyy4D+wvcmFjk+ZUJQXP0/RtFZgkKx0BcvVirOzM548eYqrKhIB7z37cUfbrA8MgkM8dJqhMl2m1QatlrR1RWgq8rRAldx2axe4qsZUtcDHD9B9ocOWQiJHof6OE3EQcIUYSN7ju47YDfjNns3NNaOfiCFQWSvxx0oW+3kztNYwRY/PkWwsU44ElcEobOWom4a6aei74t+hNc46Sewwhj/OXuf3H9uux0yeqnI8OT9nuTomtStiUlzcfM/mbst+u+f8+Bln5ycsj8949vQTlLbEBHe7PWOKQlfOkfXRkuPjNc46jk6O0ZUha9j0W9KYUQYqZ9lu9/T7nqHrqV3F2dkp6/VaaGHFfFNyyDMmGRKO2hbZSYlwnUkFh9hB8kesKUWRWcQk8beqaK8LspyTRAVO48C79xdcXF1xeXFJP4gONiqhbYaUSFkK3hgDcfJM/UidoDKGRdNgnUwockr4kNlse6ahh+hxClTKsmE84uHHEe89MUbGcWQcx0M04+96sMxGoBJlrYlKir62bZimBXVVE6LoHbV+wADKMj28ubkjpoQx/18+XH7gJz/7iv/uX/4NL54/oW5qtILgR3J+yDySS3FAtwulW9cWoxuU1jQ+okJEp2KSXab6ClGWzD9EH+57JZrgIGZm3Tjxn/+Pv+OXv/mGv//Fb3j3/hJbLVgsG4xxDEMQdk8IoKGtatbrNWdnZywWQnGd76G5yHxoDOi9F/bIIzIhDrRuZlBDPhFS5OM6937cKQMcBcpgq4o4eAG3CjtI6SIRAUxWpJTpNx2X6gN914m06BzUQqGXCrdcoqwTUxdrODhnz8XM3ASU2l2esZmpIhPRwzAb0cAqNMpUkEtSVQSyYur2EsV8vSHsdqgpUFtFo2tyFvqxTxNGK6xOVEYJJTlmVEyoJIlTKgcMGk1Cq0TOgRBGQphK0pJExoYpM3pPHUW7+1hwdPCgdYPTFh81Bo9JkSYHXK1xtaFqBWzuukjXw5AyTmmcsTSVI42JQGQInuAKo7jsV0ZrrDVS1NIT0sTV7QfevmvReqKtFc+efUKjlzjrhLFShhBaFxO6w8BslhNopsPoXNM2Gecq2Y2tKdIxU4gkRWCbk3x/kmLaGYtOmeAn+t2G2+tbVm3N+vRYJBnWkbRm0+3Z955hHOj2d9zdXbHb3zJ0G47XZ1S2wmbHrpsY+0hQJd1AZUL0bHYbfvv1N4z9Hp0j/9P/8kgXDkhhYo4BJQSO1isZBuXMNHgao0lTjwqeRilO24Yvf/wlozXc9B0XV1cHU+wnZ6co4PLyA5vdNbp1OCdJZN2uZ/SZaUy82d2w/HRNXUkajDFSKGozsy5zASEVOaRSfFsyGR8j/RS4enXBzcU1+7sdRhl+VlXy87J9wIqhSOiSTHOVTOXJieRHlJG9MYbA5fUFN3fX9GPPixfPOTk5oqoraicShJQjWcPL5y9JWvPh5or//PO/x4dEyKMMKmZWYQhl/dJUWotEr4AKj3VYJ8EHpiQBlgAQYZxO/pCWI0cu+48urB4gJMbdnttp5Lt+zw+ffYobPmHxiXgHMSfizTilgqyksVcHllB6gFiU8IEyjKD0D8kk3L1ulYwwC1UZVBy+8AGoUQgUBBReaUxTUa9PsIs1LJeSgDgbuR6+aa5P7//8KBnowb/xO3//Lx6PCLIczELnexRBI5IggGirMdaJp1Cp3zWZqm2pnCJuB0nAMrLfpa3UB9YYbm9v8V6e23NrMSsZOOiQwYj0QAKb5nVPHYYCh/NSuhWlQFnpHSqtqW1VTFhFamqKJFNbB2hSyISY0C4RUpnyd1u23cBu3/Pu6oa/+8Vv+XC94Xo7YqqGReNQtkEZg3WWqqpQWoIxYhQWgHENzlpcSX3CFBaQ1TgnAKLRMiQ0OaNz5Hi1wKXIbno8fzg5OerAZI5RPFhMkUkLUCdgRrffE7zUnd2+Q2dNDorGLfFekZLB6AatWkiRECz7vWIaLH1vePt2S7f/hjdvbri57fniq1Nevjzjyx+9ZLFsWTQ1TVNjUilzlBKQ9fA0FGZYkTIdZEC5sKkPg1TKQyofMkCafYtkncwhMG47Xr36wNv3N/zymw/8f/71P3Bxk9j0De3RKTFpEsKQu/c7K91tYfmEWR6aU0kJksFFmlPEigGyLvKzj9evP+2I+Z5tlLOEGgjvopyxMkHTxdg+5SQs+JTKIG8eXJevSTD5whoLjmEMuOTROaBjRPtU2K8yZJfYaX3omSmqFLkm5b+VEq9HZIBNlj4/xlSY84VFrhLWFT87yZuWweBsEl5ma3hFnjQxVUxRsRkyv/r1W7799j2/+dVrvvv+mnFUTN5izFKMl1WFdTUmlDQuo5mltsZoYunRbdSMw8A0jYQIutIMo2eaNLH64+we/oSrfZ8i9Ie/RFCueZsRt3Pz8a89TBGkyc4K2kXL6uiIo+NjbFUxhYj3gc1mS86WpqpRFViTZXo3U34OG1qh/VuLoUaZVHRVEZQDV6LRHrwGlWfmSqEhRaGPESKEhIryuThNDH2H33dM2500c4X2bssDn5USj5YstHu0NO0RyM7cZ947S7VYSLxlyUifNc3WiPbbaMP/+Un+px3GVvgQmPyAUrcMTYtConpHn4jFcO3k7IzVyTnL4xNWJ8eARP6OMRCHkRAD1hiOjo+oqoq2liShkBNTmEjbyOhHtFFU6yUpJsLkuQuBi8tLmZwaSWYQl/RMpKysZXB+3zyIBm+uHR5GWx++KAt3atZA6zLdUIj5VfSBaZoYx5HddsPV1Q23txv2XU+IiWT0fXpALg7TSorKFAIpeKwR/47KOvGAqGpSTDjXoHUFypNVRhtdKF6PG/UbgkhHYpSY5hkMOJwT7pv3WZM5T0fl82KoXNcVVVWx23eF5jyf6Pl7DT4kdruON6/fkpWYv67WSyprOTk9ZrFaHOjp0teZg3KEYq44b2YUl3ztnHhA4MtCnzlwQAsTZ94UVDFUJYPKSiLUpsB+P/DmzXtevXrD6zdv8SFhKiUUyEzRTcqibbURWv9qRdu2OOc+0sbOIMsM2MUSUTzLhh7rKDLgGQcsU9QZhp7X0Jn6rR58lLXAGqY0yERpBlgocYFojBJJY/SJaT+gFewvb3FR4RYat3ZUoUI3GlUZaGTykI3cE9kU8EQZuXYcVKofs1YOY5l7OrZMazQ5i4lkGiPTfmDc7oj9BoIXEEiLF0UuUw/tYzHkTOicSNGTY0Rnh0oBQ5AC02SMLmtyimJaHIOwFbWTVIUsZs4hzlHpj3RkhcKglIMsumunYOmgLVHsdetkYjnBpDKVAqfEE6Mqg4OQMslI5G/MyOQ76UIgEaZEyhNZR3wc2HW3bDYVd3crjo6OscZRmbpEi0sqgNaieZC9UwljociI4iHeV9ZDJ6MrWVutJWlFKFOre98yiU/XWrwI4uTxw0C37cRwFC1UW2XKe4jsp8B+8IzTQD/1DFOH9wPkyKKuqcSdmWE/4CdFsqncv5mYI/04cHF5RbfdoNJjx6LDXBPkmKmtZbVc8Oz8nP22o3UVxIDJCUuiUsJ0mWqHri21s+IHYTRHqyVNXZFSYrPd4PeJtmkE+FCWrBwhKfbbHp8N2dSoqhEPNrndoRS+ad7HyvOUo7C+ovf0+46LiwuuPlyx3+xo60bSMWKgyu5gayWgWL5/o4fkhXho9FMKDFPHdrdh6HtyTqxWS2lgnC0JIWLQP8aJ1dERzxT86Mc/5psfvmez2zJ4kXpoU6LAc2FzlOJUGS3MqkeUMOsSV2uMOaSrzYzVEMULRSHPDWVSrPRMI5fBhk6QJk+/2bK/vaU7WjEerVjWNdoVcHlmYGpKc0ZJbSqNupzcAnLPIy51X3sc/NyK6Wkq7V25FvNPmPfllEW6PpvoYx2mbnDtAtO2MO9N82bx4PiD4MoDAOef08D2v+ZQD/9X3sPBpLhINtQhSaj49iTxF3Qmk7bqUJNLVHG5JkozeY/pOnTSLJcrapMxukbXjjl9bpYjyYvRh111/v9DtTjft4oC/ERyKh49ah5OFdamEmN62V0NPiUGH7nZ7rm+3XC33XN5t+Vms2PXjfiUC9tWUiyVvm+qlRYfljntcU6jM2XAPCupTflTl/XLqIxWst+ulw1MA9MMEj7SMd9HD0G9Oc2FglOE0oPFEMVr0IshqMLSLSZSgBAUOVuUciQUMRr6IRG9JkTHMGry3URKW9r2Ldv9LZfXt+y6gdOzY56cn3F+fkrbOuraYIyS9aysn2oeAoE8k7O06XAPlv8XtK3UKLNVRfHOzEmG5MPI7nbL+/eXvH5zxQ+v3vLu/TW7viaohiooYhIZolLmoJrI872WZ/asJ8ZwMG/WWh963fsTTKn7Pk6R/FOPGONHJrv3Pzkf6swZEJ/P0MHHruxF5FIHl/ozRQheBswpaVHLhEweIwlPtgPG1egEqlay9s9aIOZF+P6i3BuGK+5flCGpSMiRqZAQtC4SIK2FaWhU2ePS/bUuyV0xWMYA+yFyddfx6vUtr17f8ObtLZPXhGgkqpqEQpKwlHGolMvPN/esNa0g3nvOxRiYvCcGi1aWEKKwXf7I408AWH4/uDKfz4fHLL3WzlI1DSrIREIk87kgcYVMqRSr4zWn52ecPTnHNS3TfmQcJ96/vyBlTVgsUUDV2DJt1TI1iLIsx0PTnWXqYEzZtxRJGVLxdFApzvwx6edV2bBTIk8Rpgg+YGPRbfqI7zp2txvG3Z6w3UOM6LKITuX3ppxJ3gv4pmVjCTkJa6VxxBBRlSQHnZyfUReDNClkFEbpA7otMVqP1+wdnZ5zfXXF7e0tr968xWmDM4baVYwhUy/WnD9Z8uM/+zNcuwRXkZXBKINzhnVeSZKNlD2cnD+hXSxoFwu0MXR9x36/gxjpt1tAWASVcQwhst3u+O6HV/TTxBQiX33xuaC6Wh7WVCjU2pTNOAtWoShRxDOzQAnJLOVUtIBzPr0p32uFIYUhhUS/H7jbbNhsNlxeXnJ5c0k3jnSTJ1kxXZYYXTCpwIc5EydPmiaIgaZZ0DhHU1UCflnRZh4dn7PvB7SpidNA69wBrHvMYywMlpQSwzAcQJbfF784J9dUVYWxBh08KXuqytA0FW1bc7e5BxRmeZFSCudaUgoED5eXN+KtsNuRi2zqqx99ySe2pnJWprNaHTaxXLiI84IN8pxrrcFaqKqycAZSCtiZSTLXRlI9A6qk4WgMhtDvGIaJ3bbjzZv3vH17wfX1Blc1BeByhJCYfMD7CEi86nq95uTkhOVyeTg3858PgZSc8+F8KqWoHtFY2pjivXIwWtQHWuv8xg9FTrmXFXNKh8FVTnyKYhDwrpwiq4ojO5CUwQJ+iky7nru3F9QbqFvH4qih7h1qDSyNUIUqLdNcFQV0MfqBSaBUVbq0U+rhip7zIQWDskGjDGRJhPD7gf31hnF7TeW3VBiscRjjiiRCoZWTe8SMoGSalKeE8lqc7ZPHEqhspnJgdEYjsqmUPCl6kgat62JKnYr/VSTERP1I120GMxKGGDwqK2rrOK5ajk8WVI3FVoabXWLsMh2hxGkmjIq4AhJFG9EkRpWZMqioSKEUzgqqppL3phLZTvT9Hbd3imVrOT46xipDbWpqXVNZAd+VtQeAJRklbgRazGurrCWyMgRU5aQBJxFzJGoIqkgCVb5vXlPGKGFg6izMjH634+56g7UNrmoxriEqzRgDfQxsuokxgg8enybG0JPyROU0J+sjWteQp8zmesdAjV0upSDTEHxg33e8ff+Bu6sr4vi4JrdW60MxGUPCOs2yrrHnZ4yLJSpk1BSxOUtcavScLFrSaoGuLMumEkBNa06P1pyeHIPO+N3A7e0dYRXJK8350TG7ektgz9WmY8KSqha1WOGnHnJEp4TVB6tmcpLJWaL4xGhLmAK7zZYPFxfcXN/Q7TuWiwX7Ycfoj2iQPScjtVPWso7MxrOxTDGVSWSt8X7i5vaKze0N49BjtGa5XNDWtZiq1sJm8zly1+9oj5csz46xTc0vfvVL4qtAf72X50CJEaBWB46CTJiNpaprquaxnjhwzuGsAECTDzOeK/t8EBPyuUk/MBDn0UqWiX9tLLXKMHnG7Z7+bkO/XpKaGlU7eSZcXYY4GUkxmZMt1MEP4tCwcZ8YkkKUSf88VDPmsCZLMlyZkB98LeRHRJKw2JISiUXlqJZHmOUS3bTl9z/cCz4+HoIr/4jBwsd7/+/7+z/3oZXIumb/rhDF9F/qiyIZNvcDDaU0EXBVTYUmFCNONCjnZmGVvL+YGPuePCUaW4POVCphF5ZczFGzQqRzB5YB5dKViX4ZBiVdXLGMxqRZ5iZfrIrX1ZzIhqlk+KAyyTimaWQ7BF6/u+Tth0vudh1RWYaoiLqsyTkTg7CxV/UCa8UkVWnw4ySSrhzvGfzKFNaD7AeGPNt3CgCsBbA3JE5O1mg/0t8+7rW7l5Hlh58kxojV7jAnC0GAhJQghEQXBoKHuurQGHKEmAwZ2Zd9hO3eYzCk3KLUihgjXad5/WbL969fsVw5fv7Lb/j0s0/42U9/zE9+DM+fnXByuqZpHCEMVJUMYI1QLJn9Fw8JoQ8qlPl9qOKLIib+CmIghwmSZ9rt2d9tefv2Az+8ec+rt9e8/3DLbu8JeUm1OMIHCbxQ2hyukdIi4T541KR4SJz0YTqwk5XSWOvEW+sABM/A4+MBLNM0yjVJ6QG7prz/B0Cm1nPCVnlWspybGFUB/GUFJWmRiwUFiJwbJcOZ5BMkT0w7sbDwARuBhSu1o4AhAqjoQ8968EidcZesyLou/kcBnwKZiM4ZpRNKRWzxRJRnU3z2rLMoVZGxxLFmu+u5vNnyzetbfvv1Fe/e7djswDVnJIQRGtII2ZKUk8j7FA4+LHGOklcy+tBapN0pJ8ZxKAyY5gBiyT7xT792fzJf6dAmfNwvzMMjZs2r0oZq0eJMQk2OPG7EiC9HYk4kg0T8Vo4Xn33G8dOn1OsjtHUYV6GMYZomcXMPgb7vwENtFZXRaOcKkKKwqUwhCvIrTsVAViRlS6pJeTSLjONgvxsjeA99D9OImkbCfs80dEz9ntubC/yuI3tZ/GbjQaWQJB4f8DFATtRVi7KKIU54Erl2LI4WNMCuH9A+8PlPfsw0jIx9zxzPhlYiFVIGZ+yjUnAP7vva4KP4lXifmTzUzYLT0zM+/+wzFkcnBKUISjxjlDaoJBTe5aKmaSpOzQnHT59QtQ22qmRB0ZIK5dCMu47JT1hjqBcLnK3xVeb6bkM3eW42W4yxnJ6dsFwscI0jaElPkWSfKJHKgC236n1JNU/T53tf5C055pLoExn7iakfGYeR3e2Ofd/R9T2bzZa+8/iYyVm2NErcsQaMKkXMNBH6PUyJhTGcLBasm4bGiuZwlqq9/OQTqqZht92xub0R0E1r7CN65wCCrEaZgkzeM81ylt8pqu4TBtRBQuSDx3t/YLCs10vef1CHaarCFDfxRF3bEnuYGPrA5Ce++/Y1tze3fPv19/zZn/2EP//ZT/mzP/8xzz95wfpohS6R27KIIg20UmARc1CtUUlD7cQ7AA1JHSaSpmwKD6kTOUiiTz90XF/fsu16brcd795fc3PXMQUBFlK5hgfzXKWpXc3J6RmnZ2ccHx+jtT6YEs5/j1Fic5VSB9lVzpmmaTg6Onq066aNNAg5zXTm+4nIXLznLGS5FEUTrbUY8lpn0c4whYkpeGyhN84JWZVxEIVRkAAbReahh0x/19HFwE0OUL3CLmrssqU5O8YuG+yioj5ZYJcV2hlUrcEJi0FrVVIb1P1I7bDIC/2TKEWgyIJ6xl3H5uqGcXsNfs/aZSrr0NqRcUxJJntZK7yKKJtwlUOi2OWj1uB0JFpYtk5A9EzxePGQZUNO6MPkJKbEFCNjiEw+sXysCxcTIY0kIsZB6yT+/OzkhOOTNUorphjYeV8MOROVszgrxn0mTzijUFZRN46NH0WCowwxWIJP5DySs2G5XqJdjc8KbRLoACpwc/MBg7BK2qpB6Ua8W0xFnq+RlWuTlIReW12hVCRpQ46TJI/FCFlSN5xWaGMISs6d7MOCt+WU2G/33FxeMQ4dKcL5kzOWqyXKNdx0W3bDnt5PJGOxdVNMbhPR96jsaWvHyWqNwzDsej68u6RaP2HZFhCdiE8T3dhxcXnJ+9dv2N7cPdZVA8BPEjcshWcgB7mX28qxqmpiH9gPOwFYpGPApMSirolasV6tcM5graZuaurasVgtWJ+s6L4PNO2CpllyfPaUze2WcHHDqw+3/Pr7N+ynwCcvMsvix6b1nFgYmKPhU8jMCVykjB8ndpstw35PjhHnDItlTb2ocI1BnO5kXU9EWU+1FPTZ+zKFSJjKEMLErt/x5t0buqHHOsvR8bHEwNYNumpYrNeoyjFEz+t3b+mGgZeffMqLTz/l3ft3/PIXv+Drr7/m/bt3zEaqKgtTUSlhey7WK569fMFnn3/xaNdNG4OxFmOklppZVvCgESyNjFFa6iRjUMW7QTldpswCBDs0JgKDp7++xbUVpqlwLFFtVYY6YoiZCjiQy6RV1iU55hltwtw3KQ//IQQOfiuFmZmSAIndMDBMgf04sVifslguaZdHuKpF1Y3UfTkXadH98YeYKx99ze8dc/7jn/HPf8yUY6nQQggH4Nu5ee8t+4gp9ecYULaVZrSqSVbWNJ3BtQvi2IscFKkF/NSzufyADwN1t2KlJtx6jXIVylh0VXFo8gqdNs+GtFpqX63uHQUg40u6ibBJKnAVs8xoClmuWz/y/vqWdxdXvLu44vp2Q+8DMStUtaTzmSkbMI7aOGxWuCyyKK3lHjU2E72ANTKYuGf7WK3AZKwGVCBnL2abORYzawh+4vT8BDV27BePJzMBCN7LHpHvvYNUQTb9NBUJiWIcJ1IUJvjQC1hkTMC5Lc7WEr+sHa5eYEwQi9V6LYNsnxlDAZuSZj8aNpuRfLnl+9dX/If/9DWL9t+xXDScnq756stPefHyKZ9/+YKXz89YrRtWq5q2dVirMUbTNBJYYNSD1J4y4MMo8akKE+RIHAemoefizWteff+aq8tbtrtAoKZdPeH86ZJ24dnsHdutp1kq0CLx0taJ52C5PjFNkiybE95PjONAP/TEGHBU5XyZQ2DA3F0+9qO422/xfkKpkvw4AxLIf9ty3WaocpZ6yTqmymola/nMYkkJfMigWmFfOYuzRt5zjKRhYkob9H4gNQP1cUA3DdTy7OQsXn/J3ANfB1abMigEKHEmY6qEqTUoj9IJ48T/R5mMshoVJQYzZ/BB0Xew24x885tL/sN//nvefrji4m5DP2mCh2TW6FSTdSBpL/481slaUzxXtDFUlSsSKQFOUvKitKgMy+WCcRjpe0NW6yJlmqHe/4YAy2GN4uFf5FAHjtADJFmL34hWjTTh4z36nkGABaPQznL+/BnLoyORE+TDDyBnRdO01HWDyom+70gaktW0yxXKzrTo3z1mCrw6GD3mB6wVXTZjJTsiTBOMI0wTaZqYdnv6/Zah3+P3Pcl7+drSFForiGW27uAwn8m44oiPmvBksjU06xXGOry+I/QDJ0/O2Nzc4UMga3mPc2KAKgj3Y7bpXT8wjp4Qk2joMoUx4zg+OePsyRNOnzzFKENM8jAqK4Zzc1yrxJYpqrqhrh3GGZQtnhBGaI8WTfYJP3i6XYetGjAa4yr8NBL6AZ8Sr9++Y0bjjtxaUGDEoFDNUh2KDGW+jvlB0RGF/ZQL0jIOU0n0ifS7nm7XMfQDw25gDL5sqPOcoPyMVBzey//UbNI5TjB5TFI0pmJRVTTO4oyYt+pSMDTNgtVRBG3xMTLsOznZjwywzHTAeYqZCrr6u7KINF+3QsuVqbphytNBd1g39QFcyFk2hBSkCNKzIWqJLFZKMw6e63BLLsyG5GUxTxmif8qycTRNLYyWeTNRcu2SEoQ8F0ByTqfByPfrnMllojM38SlJUkXwkX4/MAwT0ySpM+MU8b4k0Dh7iJyNJaEHFE1ds1gsaJoG59wB5Z9pnDPAMmti5//OOWOtpW3bR7tus1xhjhgm368dpc47NDFCDpFCX8/TUS1+LTFHnJVJkbDU5f2qrCR9RCsiYvhXJYOJFdErgs/4LhB7RdhnQp+gslAb7KrGLmtMY3FthVtW4oNQWVxdZDxGoZ0MWdGl0zIKYiT5CWJmuNuwu93Q320xyeO0KdfTklRFVjVBSepWTNAHQ6ASwCVZ1Mw7zEAWWnBdGZzVhCj+OxDnUuVwLg8T7lQmzH8CnfMfHbnI/HSmbiy2Fr+s9dkC29RipN5HsnUoa8vmbWnrSsDVNJu5FT+BJPTzrC3RWiaEbq1UxLmKqrZUKmLNgC3pE01bYZwiEhjjSB4dUwKbNaapD+kA+aOd3KBMRmeRN2WVSVrJuqYlzWNmJs3AljWaFCJ+ivTbHSEEjLYsVhVNs0BpwzAFphCZQsJHYYUoIKdImAYUCWctq+USZyxh8uw3PfvtHtOelmmaKV4URSY09Gy2G66vLh/vupVrV2TgzCriXPBbsfQq8t3ypynAgXMVjTW0bVvWR1k/H0Zttk2LKYUbGIyt0VYYoLfbHYtly2q9hNwQjKIyCOimix+AMqW8RVJnyoBMowQwbYS6/PTJUxaLtgD1RfdPoe+recygyERQaWZf0207NtsNm+1WPImqima5QFcVygmDwy1abFOTleLm5pbbzR1Pnz/n+PiYv/zzP6e2lqPFkl+5is12K0b2KWFNGVDlzGq95OXLl/zlX/7Fo102dc9rP3wIDn3fBMx/Ctu3gCKqwBtGEQoMUmstmnslg5fQj+W+iFKzaFDZYpTjUI3OE1gZbd7XFiCxpBZIc+0401yyeOvMwEuSVLiQEsM4cXu3oZ88Y0g0R+eoqsI0LZiqSFH0P6qhf1cK9If+LiftYyDl/y8SITUnuEg9kZKMAWKRbYrngT7swSiJc85amJTZOLKxZNFb4ZqWUNrAnEd0luc2ThPDfkfSEbOyKOewlFon3fuIiS8YJXK8XM8y7JU9o1yrEkMjKaIiLM9Z41OmmyKbXcfF1S3fvnrLxfUN13dbfBIfnVzYfgEtNY6xaOUEJyuSkRmxEAbEzGK4511opUQKk0DrUveW2ncGNXNKRO+pK0tTy8djHiHIMDOXYdd8L6aHPnTldcuwI5NTJkZp1X2YmQ4CJqHu1eLCXlZleDxzczQpW6ZgiBEoPhy7XcDZns12YrePvH57w7v3t7x8ccbRUctq3XB2tmK5aFitWk7Pjqicw1pHXUk9q5USo+rZDJpMmAb2mzs219e8ffWai/eXbLYjyh1h7BJtIz5O+KCJyYByxKTmt3xYhwSkexBBjtRfIQQBqZJ8Th1OWdlhD8/G4x7TNBJTkPvLqEIoFtNfLeqm+9rzwFy5n0rnIkHnwTA4pcQUEgnxwZQdx6II6CxpjX6cxPjcF/VGkvUWXaR52qAedK0zsDmfmJxDAaEybgZilEKbXBQp8zeagzRoGCauLjs+vN/z9z9/w89/9Yrruy1DythqTcqamBVWFQNeJRHxM6SUycKeNpLKO0sLVbmmSmuMMjRtTUg9k/cSPlHu8/BHhif88QDLHwJzyuT8wSdkbTMaV1dYCRFn2Kh5DyOpDCXj3dQ1T1+8pDk6ErfiA3Ikk+nlckVTVZJ8s+8YkqcqSKFrFmhXUUYcJeu8vIyZfvlg49b53u4DkGmsn8jjQBoG0jgSx5HhbsN+e8c47Il+OGRyg0zDrZNkGbQhTBLTnCn540omzp4EVcPy9JiqauhTZMiZk6dPmApdOit1338dCgiNVX/oZP/Tj91uzzCMxJCo6waywmiZjp4/e86Tp085OXtCv9vjYxCwwzlhsETZwKyzOOdYrlZkZw4Lj9CW5wxzDQniFEXzvjrGNgZjK6LSTJOnG0Z+ePWqJAIo2mWDUYIU32dlyN+LvaM07DmJb8pMQ02zxhnu7rb4Udga3bZjt9kz9ANhDLIJaoUxFQpbAAIpxAWoKShvguwDYRjAe5yyLGvDsnK01lCZ+ZrIclpVFcv1GrSkIg1jkE3xkRfVeNg0pIiKJYpV4mzVoWF/CMQYLQvKQSdfFuOmaQ4AC0iBBFq05MpKE6uVRKijid4z9AN+9OQEQycSJYUmDJ5nT89Qp4qqsmWxLxbXSh2ATTEeN+KqnjLZJEm9+KiwBRAq+DQFptGz3/VMYyCGLMWPT/iYSVlhrchPtLbEKBueVhJxuywAi2gr4wFcUUodmvF58pEKM04kUo7FYvFo100VB/ucZ2W5fAh1s9xHOZe0P1k8ZnmQLgVLKEw/9AMwMEvyi0LLxMIYQpb3UGWH0pagpDFPfiAFRRgzY9fhiQQSwWbsssI1FdW6ZXm8lIl9W1MvG7QVk07bKHQFyoK2CWU1KQXiNJCmwP76hs31DXHwHC0aGitpGz47cnJEXTElg4+ZKUa2XRRn/lQRk8WW85CKWafRYLXFWI2YA4p+WpWpv5xLuaGV0sWgT9aDRzuypBQYk3FLR3tS0y5bVqcLxmAY+0wHRFuJp4JzNI1jtWiorCkR9PKM5hhxxmC1RduKgEXljJ+yACxaUzuHqaTIr1yFMYr1yUp8qhyMaWTogcHjWs3S1YVdaAv4VergKHRfbTLOVpAUKRp0VPhZf13M/7TSZdJl6YeBoe/ZbrfYrGjqhqOjlcSzp8DoJ0KGmAUCt0aiOVPwjH2PAdq65uRojVWabb/n9uaWfrdn+SQdZLDCIJX1qx8HttstNzfXj3fd5OLJRE+BtvcNeE7pMJUS/yCJ17TGAoqqqmk1LIrkdaZaBy8Gr03bslgs5BwU0oG2NbZqQVn2w8h237PrOrTKTAacztRWH9JvXFVxqIuULuCvoXI1i3ZB2zRUleOzTz9luVyWZI8ikyHJOnBo0nIBWKSgzwrutndc396w3W4xWuPqmmaxlFjcypGdw62WVIsWtOb65pbLy0s++fQzFosFf/nnf87Z+oiXZ0+wOfPDq1fc3N4yel8Mk2GKkePjYz777FP++m/++vEuW0m1mkseVRrjh35ZusiDRbokVUGZ0RIN+ChSoWz1vb9dVoTRo3JCpUiyRoh5uRK5ljJln8rll8vvFaCgvBZTbMVz2TcOoIokY+SCfKco4MoYIrt9z8XVJaOPJON4YjS6qjFNW1h4s8zhD9zFfwA4eZii+BBP+Ufgy//J8ZhAjJolToc0R7lHYwylGaX4L913fiGKtxPGkIwlapGIo6BaLAkqY3MksT8AaYTI1O2J2aNbjWsaFDIkxNq59C97ZHmfxW/nfpzLofEyxpXzUIavGUJK7EfP3W4o4Mprfvnb79h1PYMPLNfHZCOAQVKGiIDWzjpQDryk8DADLGWvn2Um81BFABZ9AFiMSmgVi39gLkEBmRwTcfI4a2hqR9v8cYabf+gIQUI6ckpFlj3PgWSRMeW1zoPf+xJGauaYIjoF8RjDEJF1KiWIWcImCt2/DLileY/ZMiUr4BKqSLwBldluL/nhhyu+//4Dz56esFrWLFcVn7x8wtnZMU+enPDZF+c0TUNd1azXRzR1jbOG2iEJs3hU9vT7LVcf3vP+9Vve/vCau82AT5b1ak1WLSENbPeBYcrEpNGuIiW5X2d2x0zQkvd1zxTJ5R6f/HQY0Mn5m8HPErRBOYePeIzjKMEsBcCLRfKryAeVjioyyJySeHTlmY0hr0hrLb15CXwJMTH6QMyWCEVhYtFZo4sqJE6emD1eewHPSjiMshqFk7UZ/cAfbn7FBfhIUwFURC0gL0X+DeYeBsgGsiMnzXbT8fqHG7759oL//W9/w2++e0fvI/VqzbqqSShCloFg1kakskqAJWF8JrQSby9ThqoFUy1Ai6hGFsuW7d2OKUyEKAOwEDMh/rcGWMqfB7CpUHCUVqQcD5thLpNj21ScPDlHTwNxrxkuRPIQUkRXlmw069MTnn7xI9pPXmDallzSDrSrMLaCLNN1axy6ztzd3vGLv/tbvvnVr3j25Al/8zf/HZ98+hn1cs3Z8+dCPw8ZrIMkKULkPAdxQAxirhcjeRyg7wVU6Ts2Hz7QbTf0+x1TP8y466FlnqdZi2UjOenGEmNkUOCUolmtqZuGMQR2Y080irOXz/iX//P/hTdv39HlRHSOT7/6iq4fub69o59GkkJMCHPGVQ2Vc0JhfqRj6EYUhrZd0TQtZLDasGhaPv/8S9ZHa1xVM9hJjPB0ibUNSZofozE6YZ3C1YZJCaIrzb8CUlEUaCpbY/WI7wN976mMRM66ZsEY9wxjz6u3H9Aoxq7DqczqeEXdVNRNhS2SHZ2QuNGcSppAYJoCPkSmyTMWA65hClx8uCpTR0uMCPNhDIRJGlSlNNZBjIocTdHmlns5ZbIPYk4cAmqYaICVc5wsl5y2DbU1uJwwFkKZwqacsU7TrhpOlWgA+35g6odHu25QwEgExFouF4zBs+s7njBr+iGmEo84iRRjsVjgmpqWzDSOhBDRSnO0PhaGgbxzAVWU3GfTGKkqMVmua01mJMdADIoJuPxwy+Z2zzfffM+/+df/npOTNT/76Vf8q3/1P/Lppy94/vwJp+cnWGvl+ukSXUeRL9SWbCKRiZjGgwF1LEaBOWVub++4ub6l7wZBsqualBJ3d1t2+57JJ5R2VPWCul1Q1Q37vsNYy7Jd8Nmnn3J8eoq2lmEYiDHSti1N0xykQCAA6TAM9H1P13Ws12tWqxXHx8ePdt3EjDiWRkqu4wxs1XXFOHp8Nwi9skwhtJYUMW0NAaFNUvyuxavJojCHCa0tzDElRA/SkDhanzNpz9Dd4VwjRcDoaZY1eRpIcSJHT38x0ilQVvOhFJ6RRLAJXSl0pamWCt0mVJWxTcY1quhuI34YaVzFom44WR2TYmY3BXyw3PZ7tsMd13vPm4tbbjc7NtsNapr44slTPn/yhL/+7EuObIuJiW23IaaMNZa2afAh0LYN7VLMVcmim6d4QlTOsV6vuL29JaVM5R7PD8K0Fc2iolo4zMrw9DORrY6m4fWra4acSXXF7m5P1rBY1jw5XrNqhTUVyGynwDB5UjcKq8iIabHXisqC95pxDIRpJFnFarnGNQ3GZfrJYxvL8bNjjk+foMyKn//yB968vWU3aL746mecPnnK2bMnWC1AibWKuqQZqKjROUIQ8NQmTSjFYUJAZK0tTltu9x1DN+DHiaqqOGpXNFVNU1f0/VbWOZ1pT47IvcH6kWWzYLfdMG737G/vWDaOo+Wap6dP8OPIzdUlb9+8xU8jViuaqqKpW8gKP3n2+z0311dsNrcMw/7RrhtAVduDNEopSepIOeMnj5aIAnTxFwtZmvIhJlzbYtua47NzAcKy+CkkJX5NlbMsFgv6fiKFxDhONE3D2fk5P/7pz/ji0xecHh+xPj2i295wdbul73b4Yc9i0bJYtJyenlLXNdZarNHYqsYszjj9ZImxa5TKVFXF519+ThgHYhJPK6XV/dNpRXYZlcJ7X+RQmWns+eH9O64uPtBNA89Ozlgv1hwtjjg9ewLtgklp6qM1q7MzqtWS12+/4ze//S0nJ6f87Ec/4dMnz3m+PuVHzz8ljZ7aVrx9/w4fpYANMdINI8+fP+fHP/qKf/EvHg9gUWWiilZFPpgPrDQBxGWgEUO6T67JMoFMCgYlMjijFElbjp895+T8nHXbkPs9OifymNhf3qJu7zC1pVmvUacnUNVk5xCzxWLIPbMMKXVCYQ5pjTS/IRD8hPJTYcckhmHkbrvl+m7DN9+/4t3lNc3qiJeff4VyNRhLUopQWEsl4xD4pwEk8DHx5Z/6vY96JAhTGSCUXx9iYLO5o11V5BznVgdVDO/vdjte8hTtWqKt6ZNi0BoWSxYE3KKhXi/Z7wb0FDE+oWLExEQeeu4uJ3Z9R7Nec3z2hOMnTzB1YWnVtTBjUxI5R+k4tS7eFMVzzCgj4HzOjBn8FLi+2/K3//BLfvmbb3h/ec27i2uUrambBc1iSTKSpKaMA+NISmRpShsBWbQp0/wkfQeJ5XLJFPb3Q+WUMUqzqGsaawhRwABhM2oq5xjHyDhEfJ2o1jXDOFDVjk8/e/Gol67rOlKRtR8YY1Aw6iTDby2gfAzyQTYH8MjHHlsJq22YPFlNZCX+ST5NYAyRyJQD1jZgLT4lfIZQXMBT1ihVodAMQ1X8FgPXl7e8/WELeMZpR9taXAV1rVifgLGaqqp4+fwTTo9OOD8/4S9+9iVtkzBMEHuu379hc3VLt9lzsjyR6GLl+OaHG3548xuubva8eb9jioaYNdMUcFXEGEnaqeoK5xzGSIpUTBJhLV46mmHoub294bx7TtW0WFezWq24ub4DMo1rOMDhj/hoTn6AHMhZXov3EzlGbNnvZGmMVJUj9IFxGghxQivpgSMaHzxOOarKEUPHMGS2+8RujKwaTeMqIhNGu8L7nzDGlEwmxbDZ0O22JKNpzk6olytM26LbBtsu0dYWP5bCHNAZpYYHLJUCSinkeVKVmE4HTYwNN9d7Pny44z/977/g3//Hn/Ptdx+42sKUtch/suF8dSzDtW4Q82vjUFYz3V1QG42yAZRHWY2uFLayDFNPTEFemlFYZzDOUtWWobsmhMB2uydz9juEkX/a8ScBLOrBn/f/8ADxL9NrVahbSmsUESYnDWEW6neIEdfULI7WHJ2foazQnhNKCulC9XSuJiehFop8IHF9ecM3X3/Lh9fvmIbA+3cXvPz8S5R1rI/WVE4Lfanc4JoiCSosFJWzGCANHePdLb7rmPY79nfX+GEg+xFbXOR1QfxmmpGrnNDpjUQrpxgxWuGMprYWazU+y9e36xXr02OOzs+4uL3Dtg2V99imRlcO7YRlEJU4+4eUilRTHVDlxzi898ICWiyo64YwBRSKummoqrowAWYDIEFfY5b4thRk0aSYgSmt7xFS7qmrIpsSA1ijLJ7AMExka1F1jXMNxngyIzEGdts9V0qzairOxxMWi5bloqE2ToqPBKEY3MUYCT4yFlPLyQfGkOiHkc2u4+rqlnaxZLVa07QLNBZrPWM/MU4T3ge6zZ4pBPHhUUbo2UnAM1uggIQGbagry7ppOGkbFs5itRRDhkxSpVHJCZTGWEW7ajjJJ1T7ns49LpVTaZF/yCXQh+LTe39gZszeK3DPyphTqbSWJKisReZVNw226+jTcJjiHFz0uQdfQijIvnYItVfjvZi13cY9wzARQwJlePPmOV9++Rl/+Vd/ztHJEcvVCh2RySQatEX8WQTlTsW/SBstcrw56WmzYxoncso4N0tLEv04EmS8gK0qtJV/84W5UNeOphXPBK0VKUYG7w+mtbNBMAhIOj8Ts1nwYrGgrh+vSZffKedWFXbWYS0qMpr5ugFlGqGLREQ029M0CvNIlzhCVSQWSaLuTPGXUmjxIcqZFDLepzKRaQheHP+NVqikaU2DUxblMyEqkgKVTKFzSyE8xSRj/wiRSPAT2UXUEMk2YAzYSouhqNHkZBiHSN8n+iFxdZe53A7c9ROX+5GLuy1d19Pv9ywVnNQj/SJgVYOmIhPwESR1Yr4PxazZuErkZLqXPSYKK4RZ51ykmdMjmqW2Z0e4WlO1jtPnp7QnJ0TtuNp0bAcP2dG2Lbv996gw0lSGJ0+OJU1OKVJSGFthbcBi0XnEUFIRrCp7mph3xyBsrRwVRjcYLY30MA0EArpWuEXNqDwXu2t+/qv3/Pz7d6yPT3n+yUvOnp9wfLLi7GTN8/URjTXUB55waSZchSvMTo3IK2OZMoZ+gpBwyuCWjtpVaGAaevw4oKw+GJDWdSU9cFYSH95PqIgAMlVDZR2b61t2u608a4oSPyp7pQ+BoR+4u71jt9swjh0p+Ue7bgA5FJZHoWc/rEnmdlYYISJhjEoRckI7i1suODt/QrNYoFB0/cDQjwQf0RiWiyUpwjgGYghYa2mahna5xFQNrl2yPD7j+OyM3eaOm+tL/v5v/xPvfv5ruq7j+PiEo6Mjlsslp6enrNZrkd1agzOOqrKkynHXT+Qo+1JlxAMtUcR0SsAVpTKjEaahnyYuL99zvbll9BNN3bBqlyzrlsZWOAwpCVDTNC2L1YGPTDgAAQAASURBVJpmuSQoePfhPd9//z3ffvMNa23p7rZcvH3H919/Tb/bU1vH2fk5Xd8zThMozVdffMnLFy9ZrdaPd90oIQF5ZjUqiU+eJ8mUvU/ng4EjWYkfkeLgQ5SVhqrCLZdU63Vh6yjwIzlMJD/JwDRlouqE/dB4Ul1jqwZtheqe1CxMlvpV59JaFK8HYa1EYopMo0TY3t5t5GOz5frmBh8irTbUbYN1TlhcFGZngcz0A2DivwSQ/CET3P/S8ac0Cv+lI6eZkS7vYyY5zNLbmcWSis/HLNWPWe5p1yykvkM8AlVVYVTGklgdH5H2PbmfyMGXWjORpkhSHRrFoB1tXVPFBbaVoap48+XCAi3smpQl3SuLvC4ZBU7iYzd3Oy6ub3n7/pJf/OZrfnjznm03MKZEa4uJrTFoU2TOxbhamLFSw2glU3mj7lkEYjtjiiEyck+XGksrCVbQuvQiReqntZH6RBlS1kwhExI01rJYPZrLGFBYRiXSeJZ4H+zWssiBchJmlnxkZnmTsIUiOfpybTU5+cKWgJQ8USViDhwSZmbvr0zhW0jap87i0ZGzKxIuGbCKkatYYz55coSrFFp7Li/f4aNHK023z9T2A8tly7u3b6ncyGphOD+usTkyjhNjSNxuRrb9wHaAi73m+rZju5/oBk/IWhJeSwVkdMZYhausqCm0SEVCkeXPzJaUEsF7xnEgxuLp8yDyTST4s+n6Y4KfhYdVhk65uKocJNSFbqTmxMo8y0w5MCJDmO7vOaPkPebEEDNj0nhlyNpKDYHmkM9VLqUVWighJMJ2J0Obvset1+SQMIWth3FFp5vFSw/uaYooyBqSJPKlYPCT5m4z8e13V3zz9Wt+8/UHbu4mhmDwOZGNgfJMiq+bEgDViuTWRAN6Nn2Y2TGlj5/3iiwesJDQVuFqizEOWzlUmvCTsJJikjrpjzn++A5wnsRy/2cBND/6GrkJdYlTLifRShZ1KPQynwRgaVcrVsfHqBKZO5uNKW2Kzk6QwJwUKckC1e0HLj5c8n7yxAh3d3t8MizXR8QQOVovaevZ5ZhD5JkGiIE0jaShx2/v2F1fMnUdfr9j3O0OFFBrZJOdtdrGie+IcQ5jZSE0qlBHlcJZQ2VFCmGSFG2L9ZLl0ZrFeo2pKmxT43zA1hWmcuh541Uc6NNpPomPGO3lfcA5x3q1wrqKUY3kREFoLUppMRKOSZB5JGY0RIlIVWVadIiLLa8tP+Bkai2eLtY4jLaoIN4oOIeLGVtVWFMiLlNg6Ee2wOV7g4oBv1yQVktCVWMQaYkPiRhicTHPjF58ZHxMDCGz3/fc3tyy2WzRpmK1NrSLJVZXWOdRaiQpgw8d+66XZq1EQqoMKio0CTsnMyiZoi+s5ahtOGobWmdRhRoujCZxfpcmRjbFunIovRJZziNet/m8HjwmSlP+0DtErkM+LOYxxgKwmPJ6DDH68u2apm6xzskGOjcjajYMuzfAjcU02piqLNa66KxhGALj6BlHT8pweXnF7d2Gpml59uIZZ08i60Z+jzFWPCmyPCuykR9WDkKI9P1At9vT7XtJ21IK6xw+Ce14GCcB/7TGlEV1BhusMdR1RdMI7TuX+3iapgNokpL8t4CAsvxNBdiZDW5nz5bHOmaARaiiWRqCB+dbaJFlM9RyTowpU1IyIXiJt3dFdpUpEXtFCpZBYIZ5lcoQYZoiKRfK6zShlBGWS8pUtqI2jjx4/OH1WCmklMg2dU7FCycRRpG7JC9Aa1AjximqRuSRukhFum1it4vs9pE3V4kP257NMHHdD9z1A34cCZPHVgY/JuIEzjToAu7EAEYVU20te4CeJ4PzvZkfmKcV0FykKoEwTY923RbnJ2gLrrEcPX0mU9YpcHW3p5+SGNhqwzDsqXOkbmuenB8zTp7BB4LPYCuMqaiyIYWMigGdPRhp2HI2hCnI+Z0iccpoLLoUBMM0MMWJpBN24cgVdHHk69c/sOt/oGpWPP/0Ez754jnPnp7xyYsn+GfPOFuvOGobaTRiLMlPMmLQKqNzub45k2MU0/ayJra2wqLIMTCNPcGPOF1hTI3W4JwVEHpKhCkQp4hGjKVrV2GUZrvd0vcdIXq0lSQza2XQEkNkGkZ22y39fk/wE/qxo0eLn4Aqe9g8OtS6AC7qgZ9V+Qg5o6yhahqOT09YLBbCkJwEnA9B0skWTcs4eLyX9dcZi3MVdV1Lc2gd9XLNyckR9WJF0padz/z8tz/w+vVr6rrm5OSUk5MTXrx8ydHxMYtFy2rRcnayYtHUNLXjrhuotMYZQ+MqOUdl+dR1Mc5VWaRb00Df7Xj17g37bo9KiWXd0tYtTdVQW2GEhgwmK5qqYblc0i4WYDSX11e8ev2Kb77+mpfrE24vLnn93fe8/uEVkYyrhCk2TRPBGNqm4fPPPuPZs2c0TfNo120GV+YPUxgt6kExfkhg0XPc7+z5UGSuc5NuHXbRYpcLSbAik3qIQ0J7jYoJlSOpH8l2J817DNgMZIe2Yp6aC9A7JwTNcqAUJlLwpDgy+pHdfs9ut+PDxSWb7Y7trmPXdWDF16pqCsAyT5cPt2UqNYX6qAH7fYyU38tS+efDTf6rj9/XN+ZZQhLvo06FxZkPIIMAvODqltT3SGaJTKelxgqsjlb4rAgJwjiSlUjicgrkaSQoxagtQ9PM2gLxSDL20HTN5yhnDp4MWWl8SqSsmGLk7cUF3716y+u3H/ju1Ruu7raEBFgn/kXWCshWUi9zkeTpwz6lMboM6pU0tgUjFH8QI8an83sXkKKAMMV+TqlUpB26pFPZksiTiRm0dTSPGIsOFC+/TH4AZIoMtxg0FPJBKhLs+V7Vs0ohJ2LpDSTOXZ4PAdR8Sd0qAMvc9BbATcJIZB/MxQwgl8AJhS5DJjAm05oFn37yKVWt8LHnw69e0XUDOYG1e6IPGKO4uPxA7XqeP1nzkx+/4Gy1YJgife/Z9Bsubz13+8T1VNFPiXFK+FDSbMtEKRFQOqOtMB60MaDFjiBEkeVrLeD8/P4FYIkf1XbiqVc65Mx9CuojHErNgE0utgCztx8HMOehD8ucJqgO5x1CEIN0YzS60igDERhSYsqWgCRvzamts1qKIlO3iLebypkwDPgQUOMoQKZPmDbgskI3pQc3qgDTCpWUDFzLaDsnh4+GcYT9LvDq7R2//fo9v/zlD7x6fc22S0QcSXkxeTfiv6isFs8ijbBUoiIenvnynh9gOejZTiEXgCVijMI5S9U4YU5O4td5SEP7bw6wzMd/aXGf+6e5CdBagAdrSTEU+nxgebTm5PyUk6dnKCsUylwedK0tlWs4PjrF6AqtHa52nByfUbmGsfNcfnhPjprdZmScFDc3G54+e8Jnn33CT37yGXVlJAbNVpgiXQrbW7aXF+xvr7l594Zxd4cKHpMTTskJt85SVVby6imJNotGFlkrTBajDQYlzazKVM5KsVUZvMpUbcWKiuXxEc1qCc5QLxco61isBXRpl0u0E7phzCUzQEO2hyfkUY7NZsf5+VPqukEry6Q8qIyz7oC6+hDph5GgIRrZ7JIPpBgheConhrUBifdMszM6SKyZrWjbJZVrMKYHIt2+xwNUFesnZ9S2pnVSqGoMOWQu3rynu7pm0dQcH61o6wZnLFZbQsxFc22oqrrolzVWWxqr2aeB3aZjHD1aG5bLFScnZ8Uc1VM1E80Y0OaWD5fXTP2EsZa6MdLkJymzF43DatA6Qas4a5YctQtOlwuOalfMvRI+B5KwG7FWivhUTH3qRYOtJHXiUY+DOF3O9UMG2MPYRsUDIEFrlm2FNZa6bun2g9B0leX4+JSu67m5vi2GkIU+e4hYmz1DZBJf19XhN2gty+IwdoQwMY4d++47vv7mO/7tv/uP/Nt//x959vQJn758wf/j//Z/58n5GUfrNUfrZfHnyaQpEadA9J7oPXc3N+y3W/p9JwkQzlFVFW3bsp8kLanve0LZ5DOKECPKRIx1rI9XHB8dsWgacg5stpuSymWpqoqcM+M4HtKDtNZ470sz2JNzZrlcSuT6IzbqMXAoXFDltef7833YABGjOFV2sHSIvdacnp2SQ2bsJuIQyaHcsloYgspITKY1uhgfJ4ZxkCajqYh7ST2zSpHDRNOuqIxFTZ5JmVI06WIMJtNxcctPhBjYjXt6NeKNhzajGg1BkYfEfn/NuJ8YuondXUfXaabgGNUxfVZMKEadmZIhR4tOiUXVsnQLVlXLaXtE2o/0YWSaIivrRCerLCFNVMV8VFmHcxuJr29a1suVNFNxLwat4/Sosrxnf/GzA3Bq1id898Nb3l/e8Pr9LavFMTEGbnfvIfQ0bcXxSctXP/uS3377A5sPO95uPe3ZOW5ZsWqX+JxIfU+aPOL8X5iAywW7JCaiu92eZqVprIBKm/2WdXfLejxi0b7g9JMznt0+R7X/wOtXb+nHd/zm7TuqnzuWi5qTdcsXp8f8zZ/9lJ99+SVfvXxJpWTf0qHo4bWSaEXrZI8Flk7kGOL9NjF2I9FPxGnEWKHSawRwEb0y9EOHHydySOIf0qywpmKcPBeXFwx+pF7W1HZJ0zqMhRw9wUeG/Z7tzQ39fos1itMnZ4923YCD7h2yROuWhojZyau8b0mcScQU8MGTAOMsp6cnPH3+lN12Lwb0CHN28p6mbmgaTwiyzuIUxlkWqxX9MLAfenyMYCzt0QlnyvLiy5/Q/PJruu/f8OtffQt8T9PUnJye4oNo2Z3VHB0taGtHUzkWruLpyQmr5ZJVu2C9XglrtrLUiwptQRlIaWIa9/iho7u94dnRCavFiuNmSVPX1HVD3bYCjJVvOq5azpbHnK4kwe/y+kqGFz7gN3v2N7dcvfvAbrfn+MkZzXLBZrfjw+UlWhtefPIJf/XXf81nn32Ge0SmZixSkgPjqHSeYg5aWMeo+8GWEbN6nTOmgEeKYjjqGsxyjVkfoVcLbFtD15C6PepOk8Ze2MuTZ7gZSFZDbVGrFa5ZopsFqpU6TUaeQRbzFCF6hv0dfhoZp4nLmw2Xl9dcX9/w7sMFIURizmRtqJ2jahoWiwVV5cT7DAqvSgD3P3T8PnPbP/Z4yG597EP2qbkymYcGIln2wR+GQJP3uMqUJDTHMAW6KXCyOiaOQYy/lUJVcn9bC0fnZ8SqIbYLJmMYp44pjkzJQ/TkLtMPgXG/p1ouaFYrjp+/pFqtsHUNdYZK7gmlNRaKZwNc32148+GCH96+43/7f/9rLm+37IeJKWZC1lhX0zZlAOoM2mnqxooHHAlnwBkZazijsIUBkpI0cKqY1jpnqaw9eLAUj000GauEVQMiJ1JGS6pfNGTlCMkxTBofFcrVLI4el2Eby/qGnlOPBByIIMMgOAxaUpx90sowDmSe4yWVRVjSxc8FRQgTWSdp5LXUrxmKZDqXp9kyOy1mNDkJM09pOadNVXN0fMTnXzzhf/1f/xdspbi9u+TX/89/YPQKcBydfsp2s6Hvdlx9957PPl3y+fKYr37650y7Ld9+80t+8Xe/YnPt8XlJNmvs+lMSFh8TU05M0Ze+wtIwokzAWrCVES84IGV1eO2mxLMnKJKSLafj+FGgAmVYbu291PBxD2HbxBjIsxeKVig1+8cJsJGV1JMwB2CI948PIk3XtaNpVziTSCaymwJdsozKEJwT2/CsBKTRBRwrHtFGKWo0IWX8MOG7kf1mB/UC1bSY5ZLq6ATbNrimpl7Vcu2jQtkaVE3KhmHSXFwOvHt/w2+/ecvf/fw7vvvuHW/eXpFxzMlHEcoAzgirTNviPydEDHTGpiRhHUlkgvOhZtKHQkDyFIStZDVNU3N0sma5XDDkiX4cmCYvTPD4x12dx9Uw/IEjzx+FmgwymQgpEqJINdbrFYv1irptD41kUUNIyoFznJ6eUdcyBbBac3p6zvNnL3j54hPuLm5o6yUnx6d8+cVXTDHw9s173r59y+3NJU+fnPL0ySlnR0cSRzuNXL99ze27N/R3twybG1oDtdU0rqaprFD+ZpNQLSwVm5VoPK0R8EMXxknOpCRyDKMsde0IRVLSrBYsnaZZLsTgs8QW1y3YylEvGprlokReaohC9soF3lYz3ewRjpOTE5arNXXdFuM+Md9yzuGDZ/Se3X7P5dUN2VlUU1O3S7IP5BBQIYhkKGdJNlECBkUyRH2gzllXYaoKYxzkSa57VMQp4YcJg2HZLIldh0qKHDNWaWxS4APjZk80g0h4kDSluTB2riJrQ1IKn2A/TtxstlxfXXN8/oR2saSqW1lErBWTrpBIU0BZw2p9xC7u5L0XaUVWQke0CRZNJZPDquGkblhWNQtnMESUlvizmekyKQjFu0RcxUV7HEIkTOHRrhsUGU26d+UXiYjQkzMU9kNhN8yxZLOkTVuaekHOd0SfmMZA5RoqVxfmkjrE8UEBV0oUpbUObTXGCsA0PxfkTB4moXBGj4tirKl04t27K7Z3e67eXXLmFnz52We8fPGcL7/4nLZpxLW8yDrGfqTf79nebvDTBEnkBnVV4+qKpm7YDVvGcWSz2QiTKQu1uq0rmraVJKfVCq0V3k/4ocdnTdUsWB+vMMbgvWccxwPDJ4QSOfjAo8VaS0qJ8RGlJrnYEymlJFZXSZqKJJfAYYUslVfOiRAnmAo93lqWx+fkCMFHfB/mUVyhWhe6M3PqhfzOkEeMSTgNWkvcpVaKpDxay7SnqcVoUSZT5uCDowCdJd5uCIHrzZZt3jKpidhkhuwJZJkxBkX0ijg5hv0KPxlicuBWBMR8LZHQ2mPQ1NpwtlzxdH3Ek9URLmeGcSSNIwaoXC1pJUDOGjDCrskIe0WJoW9bN2Rg6EdyCLIm+MeTmqw/+RKlDSFmvnt1wbdvNtzd7bE0LLRl6nbcfHjLqjWcnh9x/vIp7dkZw/dvuewmvv9ww8vFmtO6YbVa0u3u8HEgJFkvtVJYY3GLlhwNow+EOOGDp8oCKk3TyG635W5zzZnvOD1d8dnnL/jk82d8/fqSu37HfrdFT46b7Y6LK8i7ji9efkpWFmNrcpBBxtR1xRSvAAJriZpWKOoCNkbvCeOI7wdSkLhQp5ys0Unj/X3Bve92TJP4GbXtgqqqyTkLM6Xvsa5itV6iqjVN24hPEJGx7xj7HSoH/uLPf8bRYsHnn7x8tOsG0PfjQZKkjcPMjO0s9cRMqw5+IkYvhVby5CzPxfn5KV98+RmXF9fEFFBK9nc/jjTrI5qqITaZUVwZsc5xcnrCu7evGbs9fuyJfsJay3LZ8vz5C15+8gnv33/gzZt3xJiZfGAYBrp+X2j6icvLkmpUrslqsaCuKuqqKs25RJQ6C+ujBScnK378o88xKmIVvDw+47hZUFuHU8XktalRTSVJhqXxaTE8X5/wydk5p6s1m92O6+0dv/jmt0y7DhszeQp008igE3rr2PQ7pilwdnbO808+4cUnLzk6PcG4xzPd9CEUTf5D75N7VqUwWGYmlpjpByK6oNZV1FilcdbiTIWpapSrSNbJ9FRltNW4HAgdpGkk+4kqBQienDyERHQTuerRiwHtKqnLFIAALDlM9FcXdH3Hvu/4zesLbrd79n1PN44U+nbBT+7jQfWctJGTGEHO7zIrHsqs5V79PWyVh58/fOK/7tz+c0qEYiyIAfMAYQYupcYPKZBIjNOEtg3WCh2/Hyeqruf8yQkRYZEFIGuRx4AhaYWtK6oMVQzoLqOmzBQ8eNkHVUrkacLnTJwCKSnqoyOq1Yr2+ASLQVXFUydGfIx048T/8ctf8sO797x5f8Gby0ti1sKwdxaFpINqZxDFuBKw2Sgxmk7Fu1WlIg2KGGVF7VDMlinJLdbKUDmrYnperr8BjFEEJUxkEEl0XTf4oMm6ImKZEgwhEbIST8lHPtTBiqGwXLUpzDAxHpUyRd2XKnlWLGiIhTVWntkcQSuDsxaVtYAyIR2ogilnvI+kYpZeqg35MyvQCbkLAjlPnD054dPPzvibf/EFLz9rGcc9233HydkpykykZFmuzshUoCv23QZMDVY+dsM1t93I9W5i8gZbLdHuiCnWxBwOTPgIoCJaBzAebSLGZUzpkkUqkvFl2Ky11Fy61Fx93zOOo3ggUhjnUZj3OHWQkj3aMVPMyYToyTmWyOr5d+kCAgnLJqV4WJa0lvsuBvk+58BVFmfkXt5PE310jBiiEbuOPF9cpQ5KC1UkrAaFzeDQRJWZUEwxEfqRIUR2gyc7h65qXnzxFdrWKOOwesUUDP2QuLjq+e7VhrfvN3z7asv7W8/WG4JbUC9WxJjIwRODRIAfAmu0kUhmbTDaFX8sMNpB1uLpkor/EtK7qEOqF0WJITjNYmFo2oowWqIfBVjMgqn/McejAyy/65Sc7wfu919Tmo04Jywg7vxVK9GBh+8rPyurXBx+V1hbHSYXy9Wa8yfP+OSTT/n+t9+yXh9xdnrGZ59+zu1OYgqvrz/w7bffsbm7YXt3xvRMnPFz8NxdXNDd3RL6PY5Max1NZWkrR1XbIoNRKFMmeErihzHyka1mnvGnKPGJRokcw1hDtgKw1Iua1jrqpi7+LZa6pLjo4oXRLlqqphaZUAyFrjYTfx5vY1wfHR8ayXGcAImusq5i8oHJe7bbHft9B3WFQaFMRQ4yvTEldk9kRJGo7ynWh+4OMFbi07SRm1y0mUiE8hCEGWQr9GwyFsQAKeLxAaHt5jx3phhmt31V6J+iu5tSZjeMbLqe/W7Hi88+p21bSWooDtkqCQczK1DGUDctgx3IRVNqjMhNtFIYFK2taJ2lBlZVTVtZaldegaY0yEqApqJ5ZL4PsqQ8zEXiYx6zCRl51lPKgj8nCsyoeYzxwGTRZt40LVXVMKdWhBDFJ8eJmerDlIZD4k0WuqFzTs5jiQvV5fmLIZIxpCy+LCbrcg9kdvuBaZgY9z0/fPM9NYoKxenqiLgQR3wyTH3POPR0O/FcIYs0q64a6rqSia01hCjNyHa3E7Q+Z5TR1E0jH3WNMZoYg3i0hEC2NXMqEIjW2Hu553POhBiEEVM2xFlGFIJ8/hGvnFwzZh+nGVx5QPXNc4EqR0pR4pgV4HOJSp/vp5IwgICwAsSWJA2lyFmTSQL45lw2Fcm0MkpJhK9OaJNwlSaixWc4a3KYtdGZHGEKkW6auNt17NXIpKUguRt7fIaYDcYs0DSoXBdARVI5lGrl55TpnFYZqxMViaPFgpPViuPFAh0jaZrI3mOVwliL1uaQrqLKuQoz/RYBDJ21ZJR4niTxaErh8UDN6ugJU0j0u57v3t9xcdsTh8T5aonLET8N+G7DyfkRp2cnnDx9Cu2CLmtuhsDF3Z7jaWKdM1XtmJwiOUUOipTm6yHJanWTyFozhvGQUqCUJsWJaRzo9jumoaNpWk7P1pw/PaVpK5RVjP2EVoopZEaVmI4jxtW0yxVNuyT2Pd5HQihU7sIbVjmLNLnMEQmeNI2EoSOOYmytchQgL2iiV3iByohRvIxCkLSMqm7QRhOiZ+z2ZOR5Wq3XRN3i5sl9ofYblVkvW/7yL/6cZ2dn/PjLLx/tugHsdh1NXVHVDlvXpRib/3XuEtJHHynJFFBrODpe8+LFc1LKdHc7hIYtzeI8kKjqhA8FyDaW1XoNb0TSF/woklprcc5ycnLC2fk5J2dnaGNLQVwiPoOsS95P7OOEKn5gjXXc3W3QJV5S1g0B+Funefn8HJufU/34C3RWVAqO6pbWOJy2OGNwdYWpHTgroF5OEuOO4Xy15tnxKSer1f+Puf9asi1LszOxb8oltnRxdIiMiEwkKrMUuhtGNu94Q+MD0KyfkVe8plnf0Wi0RgugC4WqrEod6kiXWywxFS/+uf1EJapgQMK70cvMM06ciJPhvpeac/xjfINvrGGcZ67ub2Gc6bTDK0MsmUMOYKQVar3asliveP7qJYvVGqUNh+PItnmcmNDDsOAh0lEeBiun86eq+0+r08avugEyuCSV4xaDtx5r/QM7Qw4PumBiT0EYTqkkbIA6HSGHQraJPM7oOaKcq8wNUKrGg8LE7sN7doc9d/s979/fshtnpijitzan3kP5XkUUc9UdgLhxTiJSOcks6uHqfLhS/0BkKX/w+/LH/o+QEarvDE5rkzoDqEOgk6syxEhbajy7Dj3GSSIIGWTdW36weaoOCmU0xjtM25LyRNFJqlRzlEFQTNJ6kosMtwoMIeCOA8MU8MsZ07TopmOeJo7jyO3hwC9/8xveXN1wdXvHFCPGtWhjSUWjjZMIeR0oyVrqNIiSH1o4jiKiqJxRJj9ARE+DChBHnbB3Pp5DhcSLjD5FcrK4NpzDe4WZkMadIoy5OWZCLo/eTqkrq+vENDpVSudyEuXUD/Z19acqPPxVFWG/gZJ3RZaohrNOIpq5RlgyD1EyccFUQUV9FE8/juMzSiWMzZxf9rx4ueXTz8/pF4miAk2X+OrHX3FzMzFNmsvL5zh/j1KaqytfY6kN2jVkZciY+leLMg3KtORiqgNcYvDyLRTQCaUzxhSsESHixL2LIT0UFqBO+125Vk9pjFTtDuJO/gjpFtHjEeNdDx9XBf/XPYcMS/XDewOootjHyNBJWBDRJZOzxtgaySIxzDNTbAjFkXXlWp0ENi1cTBlQl4cK9VPkzVCRIEWJgyQkhnnPWGBCM6sF1vcY1+JaOE5wOCbevD/w3Zt73l8feH83sxthzJZkG1TbwzzXoa/6+ENUvpxSp9ZNK0zAjDSEKYUq5mEP+tBEZ/THr3T6zES7dE7ahvJUPn52f+Qp+uMFlj/YQJ74RXLHwQ9WM/VfOKlN6iEDFWIkpEhR0C+XdMsVtl98/KNKLGQUIY8vV2vE5SwPgX615fMvvuIv/6v/hq9/83s++fRzvvjix/z5n/0FUcHVzRV/+7d/zf/6b/4V/+64k4nZZ5+x6VsW3tIZWDnNpu+5WJ7TalWr0urPUIUU+falos9pRzKKbDTFGgFT1QosirS5eCdQJOstHkunYBVausUSbZw0CDiP9y2maVgsV2w2W5arFbfWkkNkjoGQk0SFzOM9UJ8+fcZyucIYK9M3pTGuwXc9wzBxOB65vb1nHIMo7DqQGFEloXPG5UTIGZ3EBYQ5KdeyiZTFjwg21rdY56X9Q2lKykzHEecazEIgwWQI8yyTQ1UISXLQKcyM4yRuDJRs3E+7Sm0EQIcmopgo8uJRmu3ZGavVuubhTw4g8xB01dZUccsyx4k4z7icMV7AohbFsmlZdi2dVqwaR2MMjTGUKNY/tCYoMCVjisKimE/7Y4UIFtag1SM+TAHvm1oxGqrjoOabk7ABxPanH+qGjTHCFPEeoxyLhYCiY8yEEDHW4r1YyFXNWJ6OU9Wztoqu1nnGU77ZiCgT41zlJYO2DcYZlMqkPDNOkagTxMT71+/YNB29dix9R9s24iJJCXImxUAIM05Ltr9vWvquwzqp6VXWcjzsub6+5u3bt3LdaoVvGlbrDd6L42GeZ6bhQEmJxjnWKwEmO+ce3CoS/VFiXZ4DNzc3hBBkM7hcPogrNzc3j3berLYV8lcb1azUnBtrBLRZ3UKnWthTzWXKhZSKMDpiRJeP51ap8tDIgLVkbcS0VLkMhUKJR0qO5JTxNsm0TCuUU1iX5F6wlmwhpkLKijxLpjbnzDQnbvd7rva3fLi9o/Sa5BVTMFzvE3OCrAyb9Za+PadxG3znCGP6eI0pqfRTTKgSMAW8Ujxbb3hxdsazzQamiTgcSdNIa2VjWJDrzXiPcR6MYRpGmZSiH5xXFHBG2qpKFIfBYx2le8K71+/4+vc3/P/+zd+xsJazvuNyu2a++Y4y39HqxIsXT3j1o8959tkXHGzH+wm+2wW+vz5wuR/YbgLGKowv2KAga8JBHEUybXd0vUJ7A3PdKZYslbJKEaaJ3d09u7sbFtuO7WbBJ5884+xizfXuyG46iItAKYxSXD57zief/YjPf/QVl9sz7j98gATBTiiE7+OdF4Hq9AyZRubDQaC2x4NwWyqQt4RCIJLzwOAk9pAz7Pc7SpIFSbdckEiMxyPX79/T9Qu2Z+ecnV9yvZtwTqItSoN3hrPNip/++Mf8+Z/8jKcX57x6/rjNGK9fv6HvOvquY7lZYbpGqsWRe+C0ObJGyd5ZF3KayWnGqMLlkwu++uoLrDH8av/3UkmeksRkAd/KNTkHWTwbqzk7PxeYdslM40iKkewzWlvOzs548fIVz1+/wziPDvLMLsiGipLJKTAPE1bLEGaxWnB7d8twnAi1scIADvjk8oz1oueLV6/4+Zc/Zn93QxyPdChczngLfdvRL3p814ATxpHOYIvA3F9dPGH/8sCLZ0/51fs3TEi18Nu7G3yW91oGyl0dKGnFZ1/+mB/95Mf86b/4S1zfcbvb8ebde/7lf/NfPcp5CzEhLWpGxAx4ECN+KD+ctmOqukRIoHPBJPBG0xlH3/Q0TYf1DcVamTYrU4GLK6xTmMEyk7FpQqcCUUS0UKYqFu/IWkvrT04oC4VMjBPf/vbXXN3ecn2/4z2OuSiy0nRdK8UOFRhvjFjXvW+qyKjr9Sdrho9ayUPx8g/+9+NR/mOW+eWf+PX/xseDqPLgyEGEo5yqaFIeWmYWRVyxxlnGaYAi77pS23wkyFDPrVYP+3CMwnSe3iywwcCkGOKOlAIxRbmHUIQCh/2B+f0HApqApttusW2Pa3tu7u65ur3lzfU1f/X2LTPSONUuVhjXEAscDiONa6qwpjHeStOIlUYdazRZFXKKlBgkPhNnijY1ainPTtnu1He+dcJEq9tyrSTea62u26OMtZqu66TVKIgYHnNmnAOHMXCcIkNI0D3euXPW1BF+deprK78uBS0qy4PAlHPdjD5ctxqVZSCiQeIYWWGVo/EdWltJKaSqYydAiQhWco1rlsqNqxdOIaN1wtrCcmX58qun/LOfPueLL85AXWHdyMUTz3/33/0/ePd+5OZmpmTPd99+y7fftnz/5ne03YKmX9D1KxarDavtOevtBbdhxjhpmtFFBksxCXdOnZwMuqBNxjqN8wbrnAwRY+J4HJnnSIyy0dfVQVGUIVaBJVYXnjzDxL1TSqn3/uOJoaeiFhFYBLxdyklc0WhjxTX1cF/+UKyWd6AIlJBiBTRrebIehgPHyTNGT0SGeBKxleeXKgqb6nURxclCOQVwZQAG8gxEG67v7nl3e8/3N3e8/Ve/wXcbmnaFckv2Q+Y4Zu53mWw6ppjZjZlDdEzKE20he0+IgVBAabneVBVUjJYBsDVeWmqNQWNpXE8goZVFY6Vx04hDFWfwFUEQSqxuFjnvzlkxIJw0DvXHtz/959U0Z1nI62oZOgE2H+6V2qP+QyVXFU3MihAyAc2kDIMxuPMNdrOARoOqVic+sgFEWdQPhjIZrbesnjzj5Y9/wlf/4i95+fITLj/9HH9+znKxoHvyFL/asH76hLubDxxurznLsO0869bQmkCjIo0pOAtW67oproKBEvv8g79YKTCQtSUZoSvnFMlpooRI4wqNyzgfyWUgmYaoG0JqQTVgFhTVYFyP05q+71FarNrr8zPaRQfeEobMcR4Z40wg0T7iPr3rVhQMwxjZ7weBj1pAWe52O3b7PXe7AYzFpAoyjBNCZhBHYEygU4YSH+Ii4ryBnCV/qqyT+knfyOdXqtUlKuIUyU1Ce0fjLGEWF4HywpEoJRPmxH5/JIZISqeHR11cKelol3o8g+pabNuyWq3Ynm3pFj3G1YhBvfi0AmMNymhp5XAaNQuYMyMMgdY6+oVns1yw6lqaUlh4h9cabwzZVzI6Qto2iPNF5YJRCpTU53rfY7TFPKZaDVgt103RM0R54TvdQbJ42+GdF2eNrbnaBI3raFyH1o6SA4vVilTgeDhIY067pO1WaHNNLgFqBXVIUUTDpGgbT0GTxgAlYSp09JiOpBRJOeG8ldYNnRnGAsrQdQ3nqyUvn73g2cVTLtbnLHwnEFOQprCcMFrjG8+ia3FGYJhd236s7LSO292Bdx+uePPmPRpL6xpcs8QpjyqGFAvDcCTME8Zo+lXLYrmgaT2lBKZxJswjKUrj0nA8cDgeubu/EwCns/jGs9/vubu/4+rq6tHOm4uRooRVpJTYj7V3YDUpJHF/aYMxjopSJBEJDoK3qIuOXZ7Rx8B0u2Ohe3I2zBR2nWewhmxlUmRSwSSFDw5TGlRO5CHR4Ku+LdP2oh1Je3zXgRpRqWCLZgpH2ahrxS4nbgJcBw2LS/qzBaZxBF3Qdi/g6aLxfgN4SshkxMEVk4gs2hWczlAmjBppCPS6cHl2xma1oW0WxDEyh0xIBWdtFe8kPubbFqUtMRd2hxGUo1s0rDbnGOvJOeG9l/agOk15rOOv/vp3/M3f/h2/+vVveP3ump9/+RlnZyusSxziPV0LT758yWdffsGTz79i+eQV/+Mvfs/fv7nn6+uBq2Pmdj+yOx4JeQJXMK1CKcP+GEhMZC010DpZfLKYIFMUbcRJtbANWjtyUtzf7dD+iNIdr1484ZOXT7jbDXy4PpBjZcV4z+WLTzh7+pzF9pw554fWrX65wuo6TXeyfZ7niThO7O+uRMAKM2UccapgFVhTIEaBiY+J3GowjpgV4zjg3QLlHAm4vr9jGu8ZS+Dlk2dstgKKvd0HrHU469HWsVwYnG9YL5f0rpEIzCPGTAB2x5kQCsMwszsccYsG2wiLqfcNJSTiNJCiRIRSDsR5olTr92q55JOXL0gxcnd1hTKGRCGUTMgJ7TzeWvw0kWaxLPdtR9d1UKMQKSdxKhnDerXkxfPnfPLJKzabNe/GqUakP7Zp1DA0y37BxfaMP/vzn/Ph5oqb2xu+ef0Nw3DEGM2ya/nTv/jn/J/+8i/5l3/+Z/z4s0+5+t5zd/WB/dU7ms36ob6877ratmaEBWVkEplyYXmx5ll8zpc/+hG//v57VC7c7nZo75ljYojCqipFYIYXZxf89E9+xj//+Z/y6vPPuNvvuL274/ru9tHO22nKfZpjl7pylGekLNaTEuEnKEVQSlrIrawtrRMelW0c/aKja6zAqFWmKNm8g0I7C91CGjJSIaWZpAoqB7QGnzIuyZM4hSxMs1KISTOTGWPg/WHmaozchMKspXq2UCi+YJ0MbJTW0rZWBztoR0a+irJ1ZlQw1a9c1Eeh4rR2OTlJf2h/+Ohl/Pj3/2AT8A+eg+UHf+J/m6Po9BALyiHg0BQccwyUqMlJpMF5ljhGQbPoFlwfjgzzyDjMeCXtSjFpyFI6oLISkaNkopKBg3LSENhbR2Ma5vHIeDwwp4BOIiLq4tnPmTBGrq/vefOLbwgo3GLJIUwc5pn7OTCZlmwdxUiDScSQFbiuup6sxBrESWkxxqOxlFODS04PEF8Jzcr7PGpxcStnpOEKGQTkDGUK6DZLXJiMdx6rDTFDmUbWTUtnNPEwEMIRkgJr2R8HdkPPcnpkB4uppD2l0NqhtK+ukjocUTL8MRZSnilqIuuMKg6Nw9Bi0CKUpfmj61SLkzammTlNNK0HJLlQUgZl67oo41QWTpgSx7kuDapk5jjWFtXCNAycbzyb9Qp/2TPbFzx7Bscxk2Jhu02slkeO90+4WGterBqeNBbdeq4XjruNZ1kKq97RWMuU4LcfMrejYqYjF43JCp01nbJI71qD0guMgpwn3r95zXSIlOixrAhlRJqqJHUwzQeGcU8M52glTVbTcGSzOnXZPV55gq7O/xwKOWicrUgG1YJuUMajjZe2uyz7JqtMdSgJyyQXIGXmYabVDU5ncgzoMZAPA/FgcXYDtiGrTKglFxRVHdYz2SR0ysKyLAaKNI/iWnHn2pZ4O3EYNe9vMn/7LoOLaDcyxyNhlnh60y5ZbRyhSHHGPO5QaaY1md4kQCKcOWdMVtisMBm80iQNwRiwWtqFlMK2DdN4JKYMOWNKwStFawxTULTOs+yWhAwURwyaOWgEtiwu3VyHKn8snPiPFljUSRX7gX3mD2tiT//eDx/u8s4QkFDWhmwsxUmdnunqZlydcDbV3sPJioX891RVuDW0qwXnL5/zkz/7U549fc6Tp8/xqxWu7VC+4SwVhpxo+hU3tsPf3tB4S+MN3oit1tYMJYoK/TPy0VSB5QSiVBVGJfnQWimFcDdySrROY51CW2EOZKUJGPYhc4jgZqkaK1icb+j6JcpIa0G3WNCvlrjGM1tNnAMhRYmbPOLzVBtHSoUQZoZxplVGWoJyYZwC4xSZY8Iod6pWQGkJAWUlSclUMqlIllUWBhatagyiWgWVtkKCt5aihSsjThTJJZYoD1lXp+9F1RwnRl5SRUl0KBViyqj80UartSyUispgTK0ObVksl9Wx4VBa4lt1BFbV6Wp9VEVebrpS3Cl4a+gaz2rR03etVP6VLCwWLfDQE5YuIVVtkdOUOWONZIqxDd53SNjocRc1XbOgJA1FrPbOepxrsbal8R1N4x8cELOeRbyoDRfGeGJC3CzWPNTkCRhKBJTTwk5VS6NW4JyprToKTZLOeFMtdHXC7pxlsVjQLzqon61rLGfrJc/OzjjbnLFerFh0vdS/1lYxpVRtxhHtsm+9xLRqrOc0zQox8u7DNe/eX3M8jljboF2Ls74+1KupNBWUFjB10/UYa1EU2UTFWaZNRZqVxuHI8XBgnkdW7QbrxGVyf3vPfr9nnB4PlmpKepjIndoBVI30xErwP0EcqUyMokE1Hrtw6O1a2i9yJoWEdiD3mEJ1HdkbZiNMKzVGTMjEUvDJkIoiI9fn6frXxhCNRVtLaRrGkIiImLaLiRgLIcP9HBnRFN/Stj3NokN5AzmxXngRyVNG64aUNbFIdrqoXFtaTm7ATC6B1kFvLBtvON9uWHQLrPVM00gIcj1aL9MI6v3unNiM5ZkV0cbimwbftDUnnikKQgyUnLGPCNz8n/71v+N3v/2ad+/esmgtq0XDsrcojlhb6NuOp0+fcvb8Bc36nFm3/N3v3vDtu3uudhNDhOMQGMaZKUzCYvOKXMyD4JZVwTYWh8Znh5ozWYnjpagiE5raxhbnRAoB5Rs26wXnZys2qx5nlDRMFIVRluVqQ9MvMN4TDgdyqQwII+6gkw18Gg+EeWYaB1mIzMKy0SWha81jIZOjJiGVhsoYcpTnf04JGuFXDdPEbrcj5wnnG5Zr4a4Yox/iosY6qMEJqzWttbTGYEtBP2K0CyDEQsmBOQTsPGHTjGusiMV+hlSYh5FxGpjmkTn8IJqFuBCXqyVnZ1sunlzgGldt8zJl1woBZjphSYndXyKLKcpEPab4YN12zrFeLTnbblmtlnz4cPXAXTnFKU62+8a3rDcbvvzyK15ML7i5u8E7zTevv0VrONuu+fLLL/jRjz7n1cuX9F3H2PfEQ8uuwsGbtqXpWpy14qQokE9mD1WIFGzr6ZY9Z9stm7ZnZzzHpMSx4aSlAYR31Hcdrz79jE8+/4wnz59hvOf27pYphIcI5mMcpZQqspze9h8ndKfYSKlfWckmIWkwxmKNZbtY0znLZrngfLum9Q5nzYmvKeUJNYuvnBV3TNNB04rbL461dSujVZJ5bJbzpICSZbMfYuIQIoeQOSbFnKSVRlgtVt6ndVrsfUPbtrRVLEaZGuP8OBk9cW4lFf0xHl493B8N4w8G8X+4ujgxMQqnNfcPj39qHfJ4avQpJo087rEYChlTDCVpclLECIkkjoHqYim5EOeZ/f7AOouWMIZEaWSTr4o4gDL5oYEGrSAbbLTS1qOh6IxNlhBFGEt4ik7EFEjhwM31jkNI2GVgUoW5FEYgO+F2qOraOF1jgq6Q56a1rroCJNqrtZFWnerYLlmi5iklyBIaT0Wcvjw0RhWM0jX2Kc8ZiT9lmcajRHRIkb4z6NYybxx3dwfmOREnxTCsGMeVxBIf8VDqNLhU1V1Vb7gahVdGI03X8k4XJ19GFyni4MQxrFeCMRbrHL7x9ZlZPxslvy4VAmuqAFOUgH4NWZiIxuCswdiCNqW2tVpQ0LqeRbeg79eMboVrYRGFCRbmS7Q6cHf1ik2TeXG5Zd04UuP45GKL+eIVIcDSb7G6Y78vDCmT7yPDACGIM8egMElhlRHRwjpiCsQ0Mx7uKCnK96kduUzCjFGZkiNhHpiGI2GOGOXRSpzSMYQaX3m8PYGmyL4oZcgarRxGeTEFnBhGWtUKZySFocxDvTYlI3BhSAmsNnglcSBbCnkOhHGksCUrRzKy19FK3ifo6onREZnGAxWGm1QG74WDYxpCVkxBMUyKIbWEbEkzTFO9ljQsTabPss4NMZDijCLhNXhdmOvu8OT8q6VUUlpzitHW2uYCGO9Q84mdVWrHnBQ9TLl8ZAKlQpgj4xQZxywi6EO7afnB13/68Z+3Gj29HP5AVIEfPNJPL4Yf/jOlsK4BbSnGQdPhVyts16OskU2ayidf4MPCg9OLp9SqZZXpNj3P/Ev+6/a/5fz8CcvFBu+XsmnRnm7jOcuGTMM8Qd7XVgSrMTZjVcaoVJXnWt/MaSQi2X+tNErnalktH50tOHJJIjbkTNOIG0RpATsmZZiy4eYws5sKqgkMx0TMGus7+uUGbSphfrlgc7alW3ZMeyuW7TATU+IxyUhKWcn0HycOxwllHL6VfOcwRcY5EpJ87ERRXHW1VKMLQUEouUIPIydTWKa6VEqdxBldyetSdUgSoITGQBTqeAoRbz2pNkplTounU/e6Fbt8rg/yaj/TNQ8tCxpL13X0qyWb7Rlt1+PqJj6nj1WcRShkJ4FVjElW8treGvrGs1p0nG3XrJY9nXO4mHC5YLUSYFd1aiVEZJpTRNcMo2s7tGuwbY/SnpIr+O0Rj+Vig8KilSWXROM9bdPTNh1du6RtPScI8DgOhDCjlcE3Ld55Yio479FGJmchRnKpWcVyAjkVSokidVlD1zc0zhESGD1XwcZhjZENrRV438XFBb6RiUTTNWwuNjy7OOPV5RMutGa7XrPsFnS+4VSv6ZyTSXpdQ3urHsaXzsk1EWPk/jjzu6+/49vv3jCMM4vtBtN0aNtWtVUeMFpbnPW0XcNyuRYIWf3/SFGI4ZTMPM0c9nv2+z0hzLRNIy6IeebN2zeEEP49sOB/zmGqvb8oJbBgI9OdlDNzjMSUpN4w5WoblleBW3SoswX2yTnq3Z6kxmoFReDaRuPO1oTGUJxiCjNpN6KGwJQDbbbYXHAU2WRUgaVUpV95S/CeOzszx0LKietxZJ4icyx8GAKTtpjlmna7RHtD0YU8T6yWS2KQivVcFPMPok5FQdGFojPGZDSJlAPL1rJtLU+WHU8uLlgu1hgsd8PIHCOqCLdDGYNKQsN3XsS/GCW/v1gI0Nj5BsFCRrGehxkouPJH0sj+keP//d//fxgORwyZ//a/+jFPty2bHhh2dAvN9nzDy68+5+Kzz5nthg+Hwv/8N7/l19++5/3NkTTDYQgcjxPDOLBxElEQgUWamrJWuMbhXSOL8BmmuActQqW2VmyvriXHQgoR6xJn256nlxsutktar5lmcSc5Y1lttjT9AmUdUxBGirWezkmbGKWQk1SrHw/DA98lhxlVMlYpVA6oItPZkCFWm76q10kU4A9KG1Ipwju7vaFtDevLMzbbDd56yALrdd5jra2bkUgOkTLPFbReNy+PduYgFs08CaRXW7BhxHpD11hm16AypHFmt7/jcNwzjHN1o8q0yhjNcrnk/OKcl5+8ou07WbgVAcV+5FNZsUfnAiXTLzrGUTFXrkqMDc4mnDWsVysuzs/YbDYPTWW5OjPzicOhNE3bcbY946f/7J/RL3v2+3vWbUtKE0Vlnj2/5E9+/s/58qsvePbsGXqa6NuO0C/Q1tD2Pf1SKpidFVt6yQWNkhm7yiQrjImm7zhbrTj3HffKsUuKyUo7gzGGHBKLrufi4pyf/dmf8eU/+2c8efGcUDK39/corVmfbR/tvJX8kf+lT3Z2qG1CJ0eqrBOSgqgKUYN1jm6x4NXnn7FpWtZdy7PtmkXX4J2VXX/luQmPrUYTrBKBpRcmS46jwLZV4lSza4kVIGkIBchFBJY5coyFMWuGWHDe4rUH48Upk0XI7PoFy9WSxXKJMZZcm47IPEQtTkt54CMslD8IBZVTEUvlJ/3gz5yOf+z3/tHPmR8MLR/h0Cd9pdqGSzFQCrZYiIoUCvOUKFm4RbkobF13TFPg+uaWtmsJGvbTRF41dZ1d15JGRCucgZBRMcOcpfHRakyjUUW4LCEkUC3GFQoTVu84HCZux1maeVpHtpbkHMo0UmVvLBhFrsLKqSHGOFf5Ubp+Gaw20piDlCSQRUCIc6SYWNtOZJiitKqusZO7X9UIySn+lutwUlFiQefEunP0XU9jMt+EI7dh5DiMHPcLhnFFeGQxmtMe9GGjJtB8lMZYjzYFV9ffJYlrIkVhESnzEayiasbGenFriaPZkAvEyuA5KYemDpnkP5xwqmBy5XloGZharzGtwbUS87PW07drlv2KRb/BuAWulW1KUeD9C9YrRR4/sLKRJ6sF265Fd57lZy/48fNLloslXnnyDG9e33M9F6IZuM+RnAs2gyvynnPa0TYtzlvm45EwHwjjjYivWt63pSiyLmSVIAem4cDxsCeM8kyOGMIcmKZR+KHeP9ppM7U/u+SMpgJejRMDgBZxRR5XIvKfBnwnHICcY3nrllJw2uJ1pmhLoxUlzExH2bpl50hKtnjeyp/XtUiDLEM38gnpUQtqmgZ0Q8YxJxhjYYyK7DeMs2acYZ4FrWGNwqVSh/2JECdSmnEGvDF4LeYUc9LbqwYgOoCIdcZoYY5V3qbxUs4hr45SQdQy4MkpE0MkzIEwBqZUCKWw36+ItSdB1yj+CUr+xxz/u7QI/XuHEotmzNLK3bY9Xb+mca1YAk9BIAXyFvoYO9I2gIook6AknAHTdNjmJUZ3oBxTgvv7wn4/cX19y+++/j231+/Y37zni8ZRmga9sLVNRFNKoJSZUgQQqatRXx6TVSks8tiUSsCE0Imj3GwFsjZVTBBLY7E9UTVMybA7Rt58OHKcGqx7y/vrO/rFhm6xroBZQ9M6zs+WNF44FjHMoh6mhFOPd5rmmDlMgf0wMc6JJitC1kwRxjkRIhRlT3oIhYJ3hqJEdT+5N1SGklJVvys4CCPnzGi00/iux3c9SjtSSqgiVYpFF8JxRqXMctkStGdWkTHM8oLTCt02dOsVvk74DVXsqhvzpMRCm5SiXa5ZrNesNlt808jU2zpymeUhXkFapS7kvfdMdYrrvGHZL9huBVR5eXFG7z1eK2xKmFnYFbZGK7KShYnXCpcSriSaAm61luvQ94xzZJ5kevqYxykDbIwix7oEe2j7kQeosQaUY56lLm6/37Nab+pEIT0sWlCaw+FAiom2FegxRSau0zjTdlLLvFisCTExh0hMgX7RoYBpmpmnIC/SrmWxWKC1opCwWrFsexrj0aWwWLT0i4Z+4Whb91Cx6b2Tn4G6YTF1MU1BeUUcMscw8d37K95c33A3jjSLJcpJ1EDcODLdOOVOvbc0rcdqK4uBnKQdJcnia5pm9vs9h+OBeZ4qiFkaVD58+MDhcMA5x2KxeLTzFqmXoNX4tpXJjrWEmJiGmRRl8T6FgNEaa6U5aHN2TvvsHC7WHO4SyQ4EpTiqQlSF0UBe9ailR3uDypHUHsnDRNyP3A+xJiulVUPVF03OiZAjqUyUY5DPYpxJY+QYj8LGmiJTAt91uL5Ft44pBVKQNoiuX6CmmeM4ElIiiHeFKUZCKqRCfRYmFAlL4enllifrBS/WazZ9T2sNOmbGwxGqWOe8FQsxYJuGpusYh4lxHMkx0Tae5XKBNZpUEkkVJhJ22dK0DReXF4923j5c37JuNc+2LT//fMvz5UxnZ2a9o3u55ez5Cxaff07cPOFvfvmG//F//Q1//avvuLk+Mk0FhyKMivFYOB5nnl42GKuYc6Jpl6A8GYk7NssG5w1dsewHmTqd3EbWerzroGgRfFKh9UueX655+XTN2aLh7XHAW8/5as3P/uRnPHv6jLbtUN0SpSw6JnyBEiPzPHE8Hri7uWM43DIOu1qfPEFOGO9o6p40B6kvLsZgvCNOMyFByJq+2zKOI8M8cX94T99bFosV27NzfCOQgFgKzaLDeEcxinkepdIzJnSMzIej4LXQ9F8+2qlDtT1pOJJSxiqBGE5T5DBNdHrAFmDO3N3vub/fc5wCYRZe0QkaaJRmvVzx1RdfkidxA3rXysClOnGaxovnMkRimFksOkpJHI8HjsNQ21I0znd471ksF1xcXGCrWFO/2+qSlQl6AorWnG3P+MlPvkIruGg6hrtb0JkfffEpf/HPf8aLywusM6QZuf5Z0+7O6C63dOu1bHAK4h5VBWU1qWQCoJ3lsDtwe3XFzeu32MPEOhtCu+S+c0xGEbRCd5avvviCH//kx/xf/+//N7748kustby/uWaYZ84vznn16pNHO285JkqS6aJGY7WpgoJm1kGm4BRSScwpMsVAKplV49lsN/z4ix/x6dOnrNqGTqvaVidDENSJQVDhs6bSMJqCLluS0hAiORROHKtKbqH6taUOPgTG40AaJ3QutL5h8j1DzBymzKgijbd4b2hNQzILsu4pyiKT1IwukZJVZalRN+E/cINz2ouKmPJPqSb/sYLKP/bnHvPwQbxpFB6KKwyGqWh0kgbHcRjJc2KaRFjEWIoxRFW4PtzzYrskG8Xd/Z7ZyiBNZ0spHqWry5xCCVm+xkgeAAwqG5zJKBWwOoB2xCIburZvpUkrQ3GO1C3I1pCsxjqNsqBMplgtM0INylSnmk4oFasQaijFkksVblOhVw2NElc4Y0TpKCDTWt1s6joz5YRuLCXC8bhnzglVjDC4nJc4uRK2y9lmyeXZOU/PtthSeNs4UnxHnu6Zdj376yV8unq0c6eM4+TURxeKqkw/DIYenUFFJc6yGVRImDQJKF9FMBPWy6Y2hYI2VcREU4qFOhS01lGSDLPRYPWEYkb4bEMdlonzIuQMxdF4EXDPnz3j4vmWxXaN0Z45GxLChQKgFLrFBtvseHd1i79YomzDol+yffUSnWZUCpQwE4eZicC8SJwvEpsu0NuJoAWEqpFBofWKpgVnDsT5NTF8T9feknKWKWsBa2YiiVgScw6E44HB3hOmI7RLtMkYV0h5IMSITY8pjmVSDoQ4iwHAZDCyLzi1eWYVJfqvIlpL5PPEowSH0QVKwOSIQhzrxjU4JyJgmBOHw4y3Hucb2m4FZUbVlielNSqnWmGf632iZA/YiLgSE0QDyluavmG+uafQYLVDO4hzxqJorMCjUy2fmOeI6Rqs77CuQenhQXAtWhyMmROkGZx1tG1TDSeFtvGM1sm9VcoPnnkSUzscB25u77g7HomAO7ast1u5l4voDzFG5jgzhwn4Twe5/xcTWIz3AlKqDg7b9CjXIs0ap6ecvD4K+cHmg5KLBaS/utSJhPEN0wjjOHN3d+T6JnA4zOx2A9+/O3JzdeBws+fLn5zTrFcsNh6TLWUqIr5V+jVFXua6iCVOmhaS1EAh7RulSPYSakuH0hjjq3lD+AYReQjM2RCLdHiPs+bmduJ+NzMMkRAyHdVa3HguLs9ZLjvuG0+0WtoI5pk4P95GfZzEsj6MgSS7PooyQikP6SEfW5RM0U8VybX5nFyV94eccLUTVp76RyVcC/Xdeg/GknJGpVKtdYVIFhipNeQki4xUTvqMwjZNrcqrjzztHqBx2kjEJZZMyBnTtpIzr2R6+ap0aV2VTiPij1LVjVIKShWMUfSdp+8a+q6hbTzOaIxSIqqUEyGb0/gIkJtbGYtVjt55bLdCOU/R7mSwxDzyKmYcB+Z5qs6mUL9/zeF4YH/YkUvCe0cIgcPhwOGwZ55nVisBwTrX1AW/tFxN00guuXJ0qv26uoisdfXfd0xBqOnWCsMgzIG5XpNd27NarVguVoDAnnMKtK5BowhTAArG6sppkbYfrTXWnKo4dT031AlxIRMZ48Td8cDXr9+yG0ciCtd12KYVV07X1kmHQ2uDtZamsXjvRISL4aHBAIRLM44Dx+OBGAMKcUwcDntAMc8Cu3VOrrXHOmKNTRmrMY2rbUwCTRN7Jw/W3IKAEo0zuK7HLxZk36C8B+fIzjFrzWwUg1HgFJPTzI0harFSZ6dJCoIX6q0xjmRqzBERb4dRKgWP+x3D4UicAnmKYhh0EmOxzmIbj/Gy4EglEXIiF1lQxJJJp1iTklyvCNFJ3CUlVqHO0viGT18947xvuWhbvDGolMlTJM5zrSyWezTV+nftRDjLORNCqAKaCH/KaEpMEl1RmW69ZLFacvb8yaOdt97A823Hj56vebLULGygsZF207N99QnLJ5/gNk/5u2/e829+8Vv+9b/7e25u94QgjiVnHGEuDMfIYT/jX55hs6aEiLZWWpu0TMBsa2kXDUU7gg6EIKC8ohwFWaQ2rpN4zjBhiqVxmmXnWS9art5PdM5ytlpxcX5O2zQyQbYWjNQsxzlw3B0Yjgf2+zuOx6PAk7Vk70FghCcRXdcYoTWOSGGeAmOJJG3JyjIeB272I4dpYJjvWSzPcd5Lo5B1xBDEmaSbumPMpDlA/f9WJTMOQ43YPO7D8tMvv2I87BkOe27vrhimAylHjM4SL0PccgVVaxjF2RbDyfEWHyqt+65jLnNtrpK4lq6xYWMMxQozIs2Zpmkkfns8SDX2PNdnrkcbTeM9q9WqxjYF1pdSPKUreIglOEdb6+zzPHO4v2fTdfSLli9evOJytaYxVsCKJQuDyVtS48jWSCxXnWqAPzovJdKcKSFw/eED7777jvffv8amzOVqzfnlE+56x10KHFPi4uySP/vTn/Pjn/yEzz7/gqI0h2Fgtz/QL3oW/YLGN4934jKQy4MwLK078v0bLc08MSZh4URpjMsKilFYZ1mvl7x8/pRV22JirNFe5FyXU/AGPkoMsgbFt+gUMe1ImmaZxlZXUkZAkLHCJMkZUiKOA9MUGLDEtiNKiBYiTDniImTTUkwHtqUoJ0tYautMkW1sqbHeGopHFXFqy/u48FFGUQ9RdVAP7tz/Ixw61fdLQap5kUZFU0ClQomJOAVmFZirmFmKvO9izuwOB44x4JVGl8SAtDt664HaRHcCbGnZSCqT5Lk1z5RxQKmI1bPESYylKYlmzjStALZ1SERrKU7ukayVRIzql9aFrGs8VxLvwri1dZJ9chUaed8VJJrmtMdqaS4q6bRfqf0yNQodcsQ3Dq0KoSTmnLGlYI3UNzvn8M7RNo7WWVpncApePr2gbzyt99wfZxyB/c174EePdu7UQ0Qfibqcqgu0hWxqnbSRUoc8oxNYEsZkrAXvQwX2F5QK8pkYsFoxzwPzNDBPIylOqCJrA+8LTicaD13jUaUwDjPDcSYzYo00SDadZ7FesViv6JYrMI4pZObhyM28I9YxeKr399s37/j2u9fkYYFJgSfLlssGGjKGRJFudoqKLNrIti9susLSJQ4kCgKLx5iHa8zamfWq4HTDQr8kHmbCEBgOE/fHyHGaOU7itih5JkxHjocd69UZxiiaxhDihE0Znx/vPZey1KDnkqTdSqnq6q2D77pnzmRQ+dQNgpjnhDWitaviQySmGbQ06TYt9L2nW1jGcWZo5Drt+k6EaRXROqCclRatnKC6kCmIc813ApeN0K9XnCfLbJf8drfnMCvGUDhOowzeUXhrJFKe8wN7E1SNVTpp1FKKUh0qp1jlaV+nzMeWJmOMrOWtFSd7/LgPOEF+Q4gcjwMhREIuFGVIMf/ARVkb0FIi/ZGusf8CAkvlEDjJJxrnWSzXmKZHm0Y2scU81DRLJOdkliwUAjITTnLpFE0qkIpnNwRu72a+/+7Ah6uRYYiMY+Lt1cTt1cThZkT9aU+73tCf9ZSgmO9n8iwVYvKERF6CuTxQmnWW35QJsJKHRAFVRKVWWqOto6hM1h601FvN2TJnQzHCjEilYXdIHIbEcYgMU2CZJc7iG8fF5Rmr1YKua5iskXaVeSbM86N9+uMYGYaZ4zgL4EgJATvkwhQlHytQqVNiTdpwTllJ8bA8fEwPF+tDnV4FehWtJTvpZUN5qmrTRRT+k+g5OZlYy7aMj5+nd5UZYPHW4W1Tp3wVcFejFUMMYIUncZr4anOqdq08n6p6nl54zgrgUauCttB1jq7ztK3DO4NRIi0ZpdDFouu1IC4YyXEnEBCwEbeDanuytoRcadRaYR9ZYRnHI+MozIBcsexKyURkt7sn50TXdczzyH6/Z7/fsdvtODs7p+sXrNZ9JWmLGCEP51wJ2vK9ykvSYJ3HOY9Shhiltcha4bFMk7TxKKXp+4VUd3Yrcqm1idnR+lYs6bVaTRuF9Za293XRIZvxelIqEC2RktzrqUSGeeB2v+Pr1285zIGsDb7psW2LazuarqOtldxGayaj6+RQNkIphmq/z5Qs3CERWI7iqKpuqP1h//BAf/78Bcboh4fxYxxZIVMda7FePtNcijy086l5S1UbvCIrhWkaTNdhuo5iHTgv07cqsEz151VWMzvN5A3JiRCaTZ1UNwqlHNm1ZK3qwj4TpoFjDhynkQ/7e+b9SA4RQmbhO5SyKFNoaDDOoa0hq1LZS/JSn3MSPhQiXmqQ1oE62a8UKharhs264Xzj+PTVM9bOsEDjtEJNiTTOpDngmlONryKWREZjnAWtREwNAWvk+pMKdmEpyTys0G2WrM+3bJ4+noNl6xWfnC/48vmG8w4WJuIduNWWixef4DYviG7FX/39L/k3f/Nr/ubvf8tud8Qh3CanFWEuHI+B/W7G2Q6HIblZoOBVYCm6YFtDs2jQTnMME1lPhDmBcoCFYmn9gsM8MIe5NtpB1zjWixZn7um842y94WyzxTsnFfS14SCVSJhmrm9uOezu2N3fkvKE1bm21ji5/xTkFEW4Lh9br2IMzPPEECdwHdlo7g473l/fcphGiplR+lKeG74REXwWoUi5TgSElCjzLO/QnNE5kcZB3CzlcZ+Vzz/9nPGw57C7Z0iRQwrMc8JmRTrFWk/vP8RJME4T8zwTQyBFqeMsBWFU2VIFFv8P2iBOFbylCpht2zDPE1prUm0uE7deh1YK7z3L5VJirKdGmY/LDtAiFIiQ2JBC4rjb8/7NaxbO8XSz5dMnT9m0PQolAguZaBTJabK3ZKPJNQYDEjnJFOYkm8BUIE1H3n//mtdff8PV6zd4ZTi7POfik1fcrlquhiP388QXn33BX/zFX/CjL77g2dNnvH77ht3+wDiMPLm4oF8sZCr6WIcQf6tzWN7BSomzwGiLqvDBOcs1mjhtihXKarq24fL8jE3fU8ZRoghUcGzOfGy4lTWLooC24BvICd0uyOMki+yUKSlSlK6bOAG5UiqLbp6Zh5EhK2a7JWpHRpNiIcSAtRnTQjEtylSBpbYtnqrBVX1iyq7+D6I75WOL5oPIUvj46xO36/8AMosq6uMgqshPkLKso8mFEjNxjkxlYhpnmU7LnyQX2A8jx3nCK4crhWPOOCXvS0mnCOdCBl0FZQvKFdkwToGMRZURnbW4IIzBpYBvROR33qLnKI2cTriAWYmgIOuPWr18Srrr6mI30hB2GrCpGkk6rVu0tljjsFpE2ZJlnSz+q1PMQBqoWtOCgpAzIUm7EkpjjVS5N97TN57GyrPdGnh+sWGz7Fkuer59855hnBl314967ooy8MA3EjCFUkUKP4rDYHHKoYnYotE5Y1XEGXCuohEEh0ZQEW9anClYnTkeB+bpSJiP5DRgq3bResOygVXvOds6yJ6r63tKmhjDjLEJ5xRt71msFvTLFU3fk1NmmCbubw988/Y9Ub5b5izx6ndvX/P6+3fEQ4MriefbFf35AlSgyROMe3QK2JLoHWy6wrYVgeWKQqI2KlXHr9YJ5wLbjeZi09O8+oy4GzjcH7n+cMt3bw5c3xVSisRsCXkmzgOH/R05B4x1eG8Ypz02FHJ5PF5VPtVfl1Jd3KfUR6miQ3W41yyi0nK/lBpRLFlL4YQxKAohDoCiaR1NA/3S0y894xwYRod1ng0tGGTNZww1yiDcxigumFIUqliK79HFYEJmud2Q/RK3gqfvv+fmfub+MHG4G1DI9+GskHxKSXU4WpuaqsAie1XNqVkMeNDJBS1Ra5gBbQxtRSOUcgLV5rpHlQFvrK1QAQi5gBEHa8m5iusispeUKg7jP/34319gqQ8mtCYpjXae9fZcPsSHTb28BUv9X7np5e9SlJelrkTvYZq5P068uzrw+vs9tzczx2PDcVAcDoUPV3uurifiZNHNlmha9HJFc75BRUNSkXzQzIc7iko4Sn1pyQJTl4zSSV4UCNjIPKje4vbQ1qKUJedIpCXh2SfPYFqSbek2a54t1lAaFI4+Z8ZgePvhns1Zh9egvWN5vuXs4oL77RXjhxumaWIcRqbh8apH7w8Dt7sjh8ORohVzBpdgmDPjnEix4JwhZ2kSUYgqeJqVZAIFLbZzXTDGVzVffTxndfLiGk/Tdfi2kYlzhXuVLJDWXODu5h7jFcoKeyXJbpOAtDopa3FNg/Mtp1OTYpTJb6lOEukXkxo/b1FWRilFCcdBF401RjYSSlRmrRLWKZqmYbXqWHSe1lu0yg8iEbmCkzQV6qwqtEw24Lbt5GuzJSpHyBDmiHYKqwv68eKWAAzDwDQNhDBBfRApnRlHz35/j1Lgva11xBKrOB4PvHv/DuMbFqszcSIpWTSgaoQmziJqZJnatm1L1/U47wkxM00TSisa2xFjYJwmjuNI0y5Yrbdstlsa74mxLm6wLNsWlSPESUBltmAdGCv3FiWTSuQhv3vKx1thkAzTyPvdHd++f8evv/mOsWhU26N9R79eY63HWsfFxbksYGLkcNhX4QzsYsGi75kmxRwmjsc99/d33N7eMU0TzvsKZyySiabQ9S3GasI8czweH+/ENQ7TtriuxXgvXIs5MB6G0zqblIu04hhNNoZ+s0YvF5S2pVgLTUNpG1LrGYohWkNsHO16AZ2lOA3eSP5Ua8I4kopBKYnLhQryVgWIWrLw48jdm/cwBnQGh2G1WGO1gVRQqYZe9cn6GSklQk6keUYV6DqpYU+zQMk04GzBO03b9Hz+oyc8vVjx7HLFs2WLjxE/B1o083BguNuR5hnbCytBVb6CthbftAKvS4mYM4vFEtt1Ak9TWfLPBoLKLC+39Gcb7Prx+it/9sLwp58u+OrTNRs70XWOfr3i8kc/Yeif89114t/+L3/N//P/9d/z5s0Nd3cHcokoKwtOheYwRm7vZ25uZihtbauaMf4g7zEHptPY3uEXDdY36PuBcEzc7UaePr0EtaCUjsXykvn+mmnec399T5oDXmu2qyWL5o6LzYbPXr5g2beoXJjGCT0FwjAw3N/z9utv+M0vf8nd7Q2H/R3Ldc9q2bJaNDSNwRrQ2og7jowyhtY1hCxT1zHB3RBIE0xx5Fe/f8fV7Y6sCpfPt6Cs2IubhpgL8zQzDRPniwuIiXAcwIBzjUBXp4k8SoOVVNk93vFXv/odm9WC9XLLn/+f/y8cjnfc3V3zu9/8kvdv31OmCabAGHOt41Xc7w/c7w/s9ke2U2QYJlLKGGXQReNcw7KX5pkClZuS6npE41uL84YYZ5rWo5QsvKdpwroRlABP+74XZxFKngUxyRQtyPChaztWyxVN0/H6zRvefPM1f/fv/pZPnl5y3i3Zug6GCdNI1W3xivvDkX2a6dYruuUS33ZVdHAyiJhn3t/cANL2d/3mmn/7P/yPfPf7bxl2e/78z/6Sr376J/zsX/432JfPGHJmypn1ckPfd2itud3tub+5YxoHOu958fQZxlrGYWDTPJKLpVRYc9HoCmVUSjarJ9joHCMzCZzBLTqmGJlS4DDI5LggdbemcbU+VDaNGihZwQNo8rRRrhEg01CaBbqPxFSIc4SYKhtOhCmtDd5pVr1i5T3jFAgpcTzek21L1o5pjtztDhjradstWbcU05NpKEWL0K1ShZ6Vh02C/qF+Uv9S6rrjVCjxg4/pB4f6937nP/azfqwjPYhDNemRU23RErdaSVlcLGEiTjM5RLqmofMdg+/ZTwfu90dMathYy/VhQJuOpu2xSLGB1sI90q4iAzLgNNkFsvbotKNEDRFUThhXaDrN+cWSvnPYYeSY5wpGr82nALoiK5yw/XL9Z5laT6vl3GejKdZSnCXaQMoZ5zSq92gSZRARKOVCyrCqm1pUJswzxggSIIOwYqwHL46YtvGYZcdm0UksLQzonHDW4VtN92RFZ2F/OLDbHx7vxAEZz8cVPBLH0hmnQGOwyuK0gxSZ8ohOd7TmjmVvaBaGppsxriVnLSD7rsE7jc0Jm0catQd7RNtE22jaxrJeen7yo5dcbjvONw1399d8853jm6bw3btIVkeKMixWF6zWC5arBd63zHd77m93vP3uLb/4X/8niTOnxPVuj9KWcZ4xwGGY+XCz5/evP5D396xtYqUji3ygUUn8GwW2beKiL2xcwqaZlEV4M77DNBLb7X2kbzPrZcPnrz6njDt2N7e8/b6w+d2R795m3rxPfLgp3N5PhKlwuHvPPLyk61f0ref2bpByjv4/PWbyTx0xQykWo6Ht+gcnMQiziNMg7w+EhYIwuXJJeCuRRXTkMHzgfLulX53T+sxy5ViuGkqaGWLEpQy2B6soJpCNNEydHHl4iZZJw5CqorUMThfbLf2556nquJkXfP/6hu/ffODtd79B6wbtNY2BEmfiNDFPEzmXh59FWSvV2saBmqrIoh4eAznnB7e6qc7HxWLBvmsJ88mZmkArjJPijxQTh8MR5VtiKaiQCXMmBhFYjLZ4q7F1OP/HHP9FHCwojbIe7TzOwmK1lhygtvXldxozlDp9kRegvIy6+sEEbnd3XN3suL49cLvL3N1lxlFTSsft3cx+P3G3m5hCpSQDgULSFtU0NIsNMBFaQ7CKtNsJ4LKS/0FY8JQTjUzJP6vgWx5sSrI5zNoTcITsmVVH8SusWbJynhg35GTJSZNMIKvC/X5kmAKmFfK2anvOLi65v7ji5rs3Nc4zMU6PJ7CEWF8AJ+GkskkKiG0dWYAkCroyU5RSaCWZysrYFh5KVRdPExf1QMuqApVROCdcDONlNKCKEmiYFpFlP+wwWiqHTdOgVBKR4+MZlzaZnOrnXx4m5yiqZVOjrcE2DuPMw9Q7n0oZlYg13lqCUuQQ8FZqzXrvWS472q7BN7bGE+uDSitUlu9ZoYgZmQxqLbm+rkO1Hcp5FBqdwaIEEqxKFeUe84h1QZ9JSapPc5Ys/zRNNM1UmymkKWeuQsHNzQ2+7diePWGcRuYYCFGiOwWBv+raqqSUiE7GyiZiGkdCCGKF95kQxM7uvWe73bJaren7BZqCVTKRM1oqXlMMxHlgterp+hbvbWVqyZk1RT1MWalOBJQiZ9gdj7z5cMW3b99xfTjguh7XG4zxtN1CIk/eg+LhZ41xpm0X9H3P06dP0Bbu7+8YpoHD4cD+cGAcR4kSVdjvfr9DYJWexaJ/AN9Oj3jP4S26cdjGo5QmxZkwyZfKFWhYCriPAovuO2g82VmCUQSjmI1m0Erq+RQko3C+wVlNMuLeKhmU0YwAOaK0wuAAof6fBKiQC3OImMMBH8Frw6JpeNH3kpUuIsYmJV7BkAOaLJM119C3sklO1jJNkwg4RXhFWovrMIaRcbhjGDLzAMFEWm3pjEDjxvs94/6A0XIvWuvkOVRr362t7rZaodEuOnG1GAABBmunUU7T2Q7Xuh9MqP/zj59+cc6rZwvO1571wrBYr7D9iv3k+MW3b/jFN1f8q7/5Pa/fXbMfRlLJKF2wTuGMgaQZQ+I4B3aHmfvdiF4olLJ1b6cwztD2EnezNVpznBLXtyNv39yx3r7EeIWLoJTD2galJ3a7a+5u90xjYLVY8umnL/nqqx/zl3/xc7zR5CTxnLg7cry55f76hu++f813b95yd3vDfn/PYt/Q9w1d5zCmsOwdXetYL1uatkNpQ1SK6/sbru7veX93yz5G5irIv31/wzDO2EbqR08RGlvjQSlEyBmvLWGYmIaEdhHVVwfAMBKnIO8P9biV9leHI1PO7KeZbZrAZFTb8fzzH3G+OWPeHThc36C8JyvNnArHaeZuv+dut+fJNFe3RGK3v2dhOwGYtgqjZJNEkdjcaY9srYciMaGuk5r5mBK5zPgo4ok2wgAzp3YfXcs7c6kOxJblcsV6vSbnzDfffM3rr79GK8WnL1/y9OISlTIf3r2nXXU0yx6zbrHO05UepzW+7chas59n7q6umEJgikGMv6EwHSZ+9Vd/w9W3b0jDzKtPXvHFz37KJz/+ivNXLyirJW11lDrbopUS99Pb96RhorGW8/NzKIXd7S1XH6549pfbRzlvJyzNac0hXiMlIMPqHMpZYq3ee4o1TMOBOUUO45Grm2v2hz2rpqF7cHicXCFVxOeHX9Q1p0X5Bl1p7yVFSgpARqtMMYo8T1Dk8dM5x/PLC/rlissE306QTEOxHmVb3n64ZT/MvH/9ln/7b/4dh/uBGAovnj9lvexZ9i3WNA8rJ1XtK6qchIpSF5c//P5Pb85/WCrxRwPZH9E0FmzGoCrstkh8lERRmRhnwjwyDQNzGJmHiXCcKcajs8YUTYmFu5sdeRjI3pD3Ow53LdPZkmdna5wVR7Bz0vaj1AmkaVDWob1FZQ2ThjFDmKSWNQsDbrVoWQ0TMelapy33nLIWja4VzK66T+Sj10qhrQPrKFnJnsU3mKZFzdKYF5yGzqFKRJVALlLpXcOHcpUVYfdIDFvWkzHlGm+TNZCxBuUcziiB4qcodK4oAPxWG56cLdgsPdPZ8vFOHFCyFVfQw7Um3EmjCyWOKBVxNtH3iXXf8vL5BWfbDc9erDm7WHD+ZIs2LTHCbh847jPjEDgeZ+7vElxsMGbLxdmS1bKhbx2rZcuTswarIjnsKUnx8vmatvEod+Bmn0km4WzB6YLOkTgc+f73v+PN77/nu1/9nve//AUlR1LO3NzdE5ChvTUO3y3puhWr7TO6tcekgRD37A5HAhmnEkYbNouGyzU82yR++/1MTIUQYY7ixNBa4y00rtC3movzHk9iPitcnMPTl1veXY28uxr47vXM67cDt3eR4+AI8wHrDK3v8MZSYuawe7zBXc4apSrT0DYPeyJtTBWmRZh9aGQ7OcUL4jwhokxBE4CJEO/IOFyz4uLJks26pet8rVEuTClyCDN9YzBWgVNQuaQPDy9qM1pS4ARyr3LCdwllW5xf8ec/7/n01Qvevrtlv7vm+maHQtHYQiwBcqDkGpGue4KTU9QY/eC2kr98dPvlXIgpUooR+K05VYUXxnmiywVT28C0EfhymFOtHxfI8sfPSoQVow2QSfGPS5H80QLLDx/qf9gg9B/8908OFmMkYqE0bd/XZhhV2R+nF4kSiaPUB2JRxFkxHAt3d5nX7/Zc3ey5vjsyzJZpssQo2fb9IbI/BIYhEmOWh2ndxBUNGINtW8hLjCmolJhCpKBIWSZXGshKFL6TjvJwMXGijlBhO4qsLFE5ZhzJduAWGL+kbTpiWJOiIcVCp9ZkDhzHmWGKtF4sglor1ttztufndMsV8fbAFEJtyHicI1Z1PddpzAP0VItSqAt1k1un1pS68a7m/3wSWSxKSUXzQ/b2tHipIovRqgL+BM5aokIVJZlT69BaYcIoFZ7O4BqDUrFGsLKYLJVkjXOutXYVQPjD761UUrtUdMnUXfgFRUQSwBSDM0Zq0nLCGk1jDYuupe872tZjnZGPwsiCrsq+9SxriTVpRdZGXrJNK9N0Y9A1LmaMwppMqguzRz1UfsgLpxSlKSmLuyvGUKM8qZ6HImT7GDkej+x2Ow6HPTEGUo7VtSIxO3HCUCNWWmqulaYUqcbNOVcCfiFUcK/3DavViq7r8M6T04ypNYbeKhSBUmNYq1VP13msN2IvLNWKVFnWIC8zitxHsWR2w8jV3R0fbu8YY6JtFhjr0EoiIs57vPekGAmzRJZKyThn6fuO8/NzrBf30Yerd8R04ipkzIO9EeZ5omk7nJOIyn6/r9GAxxPHijVoV2uRSyFFadDKMUmTRXVGFSXiXTYGvKc4S7aGqAtBK2atmE1FLupT9EicWVYrjDJkLVBwixInQlGYEuW6QRx5XiuCKkwl0cZIm6BVmrXWbGsEJ6EYxgHqCzonaZWxWtM1nsYJRFilxJyjcKpqvtoa89CcQJ5I0ZGCJ89KXrLWEoeR6TgwD6NcN8bWdit5MZ6alsIsi1ZlNL7r0FbLfa3Kg9lRGYX1Bm0UuTweRO6zV2dcbDv6zkkUrVkR6Xh/PfGLX77hr3/7mr/+299wtzuQanWmNrJYPoldIScRWUYR/HvraL15yOZro8Wh1zTCq1KGcUrc70feX93zoznjI8SsUdqhTYNSlvvdkf1uIMUi13pzyU9+8iVffPEpRhVKjKQKs72/v+fu9k6Abvc7cWns9gzzEX+wuEajSJyfrdhuliyWPdq1oDXTHHh3e+DdzS1vb64ZgSkUhilxtzuSc6EzUqdqjcMaizWGNM5iy62W23kYCUlhO4U3lc80TqQQJPphH1eMPoZIKiNjiEQiTe9wTtOvtyybjrnf45TB9wu082SlmGLkOE4chpFpCihrKRmmYUZbjbcNsYt47x6syOq0OVantgLZBHrvZXqYEillYowC1FTqgfH0Q86TLIShbVqWiyXL5YpSCtfX11xff8Aoxfn2jO16jbOG43AkmUK2iuW6xRkHrg4ACkxzYBonru/uCBUU35uW6f7I/YdbXv/ma4b7PdZ5Xn7yiuc/+pTzV89pN0ui9dg6eKEYQghMw8T+9g5KomlbNus1OSR2t/e8/f41/OVfPMp5K6XwDx691QuutaYx0m4kAoPGWgfKocNEyplpnrm5u2F/ODAtlzRNw+ntrU4LuCqynP4T0qRRqsBXUL6B2KLbFj23EEcUTp6fWcCmRimchvPNhm6RGLMm7QeidhTj8YstDsOH2z3fvvnAt7//lhQLxjZMIfHi+VOU9fSdoyIRHvAiP7ggOFl2pYzh3+etqLo2+g/9+j/0OT/mkazE7HUuKJWIOZBKQBsRIXMKxHkkhpk4zcQpQlfEXYxBZcXxMMAkzTEhzeSxxaTEwnp6b8EbnG4QbqCsM4uxFAvKG0gR1AxMQEAng02Frm1Y9i3LbmKaCseShWVFQTcfOX9aGZnG109a16pbcWwrMBbtPMY1aBchK6IF1RhUMhCV4AY4DWiFM6WKxAxOgGWNRBJPgwN5/ctQQZpRMqpEjMryjtUaY8A2nq4xpPyIzCNAwGunDXKp4iZolUgElDI4m1ivDIu+Y9k7Xr1yvPr0nMsna548PUfrljkUdvcz79/vub05cHN9z20PbePou4YXz85ZLRu6xrLoPZ2HMO65v51IucE3nkW/4nqnmNKBMYMzBdJMHI+MpfD+2295/8233Hz3LeX2g6w5ckTf78kZsvHY1RadxV3f9hu6zRIb9ujREqcDU0yknGmVfG/rheJ8nfDqFpULWZ3cIfKOdhqsLnirWPQNvZ8pq8xqDZsLy/nTxNObxPZ8Znt24P2Hge9fHzA6Qp6wusNpYe6Nh+HRzlpOSgbdWpzKwl7hB2kQ2Qfk/JGWKc2apwF1EKFFTWgVAIXSI8ZF1mcti4Wn8RZlpOQikRnDTINgLTD1vwmnHpGHxxZaSbQ9K5RT0u7jGpq24ZO25fwss14v+MXfPaVEqUjWKiK3TvjBffixwEOfBtunQ532mnVHXrKwPlUNXv5ggDGHuTK4LB85nsKxMVUUyg8CS40ZKV1THOLI+2OO/2wHy3+MuPIPjiK6bkQTlcZaS7tYSONE3ZjHKHwEqlpVMMRUmKbMu+9Hrq+PvH27493VPQkNZov3G5xvmWfF23c79vvEcAwVWDdDnkEHlJYHYCaBsdhugbUaqyU3Hw9H5vsdqRwEhlRqT/uJBg6ViJuqi0W+v4QimZaZhll1qO6M3KwoboXVS7JyYMC4gvIbDsfIMI/c3k90jcN7j1KBy+cvScPM3ftbfr/7e4YY2Y2Pd1PGXAi5EHNF2Bqhe1vncU1LZiKfgD41yqWsQH9LkfiHqtBFdbqzOE2bgLqksRKDxXtN13q0UxCh5IKyBtt4vPO4rqGYDCaDTaK+IvT+BtkoaqWk771mCmMMldMggkcpSYQwJzlsfaqkTQaVQGUl/e++ITqPAby19F3LZrvm/OJMMrpGk0uS2j9dwYWIRbmgiVkwPVkbuu2aYj3ZSAuIVgL1Uii0l9akPxaM9E8fBWsVuWh2+wmlC65o4GSPk1rVtm1wzlbAln+Iz9zeXT8INIfjjpBmUl0IpRIxRmGMwze+fs6yOTgJJ6UUhmHA+Zb1oufs7Iy2a9FaEecosODWsuoddzfvaVrLYrvl+bNLNuueprOgYrVsy8s857rI0FJfOcfMcY68u93x+sMtH273NN0Spa1Uivu2NkMVcowMw14cFDHgvWO17Dk/3/Dq1Qus1zivub65ous6xmkiF4H1xiAWX2M1bdugjWYYjoQw45ynbR9xSmSkNU07S4iReZoJc6AEWXhpa7G+YQCSsZSmITYN2Qm/KOrEpBWTgdkqnDUCrKy2SIOmfRACDQHDnCFMI8YEfFPddrX1bN00YDPYwou+pRxGGjJnGlYkDImoFIYgOfGcCfNR7JXG0TYWXZKwfm7vORwOhCJMoBgDq9WWxbqn7ddslp5la2kMqBDEERY16Tgy7Q+M+4FlrS9FCZveN60sEkqRjWTJuLah3y4x1siLUiHPgFJFRxIpTIyHxxM1/9mPX2EQ4cAtL7g6wtvbHf/LL9/y//13v+P372/4+sOtwCmVRitF2zqctygMM5GpJFwq3A8j19c7Fm5F5zu00ZW3YbC+xbULbLsgJtgNiXdXe377zTt+/CcjrluyUAblW2yKZPZ8//0V9/uJfrHhX/yLP+H88hMuLp/z9MkLch4I08Q8TOzubri9vuX+dscwzOQsQ4uM4f3trTRiqAQ68Zl6ie1aTLtGtSumEHl/t+ff/vob3l1fcbW/Z1aaVDQ5a0jyzAOFN47Ot3S+pTWOIe5JtQbx9vqG41hI2dIljdcisEz7AzFEnD159R/vyNpyjOIe2k8DbW9oWstm2XHedqxcy6pb8fzTz7nbDezGmTkXEcIOA/e7A8v1Ribb2nJ7dUsaEzobzq1DewNWmvO0AUomZ2lVMM7RtC3DMJByEqFtngXYXLIwoyq35AG8h2yyLs7OefLkCReXl2AUx1r72QCt9yxXSy4utlzdXzGmwHB/R7dd0VlHqy3DUPjw/gOHYWCYJpTStL5h3XW0M7z7/vf87u9+w/e//YbF2RlPPvmEn//L/5oXP/0J/XbLZEAKcWWokCjs73fcXF+zv7vj/OKC7XLFdrni6uqKd6/f8Ltf/ebRztvJsZYRp0hOCa0FWLg6OyOUzG481nrzBu8duzBTppExBr55/Zr3N9dsVyvWbSvcFU7GlZr1rccp0gJUHo+sHbAGvEN1LURpsEEXdHZonTG5YGLmydk5U8xMKbPeLBhCJqLpt2d8dn7J1f1Ah+XX373jl7c7vvv2Lb//5g0/+7Of89Of/XOev3zKwmu8BpMqU40TvaPyFXLBGVMHjHWg9/ADfVx/S234f5rI8phHsokYApSIKoVp3lNSpu0aitM4CymM5HkmjjNhnCBkGuXoTEuDZ9ztCSSSV/QlUsaAnjP6GDhfLtgsl7TPFqjeQ30PJGUoRoamNhhUtoCnhKGmlRV9D0/Pz5ijgruRfBDxN5cCrUengjB0lWwIAWVl80pRxHC6hgzOtTjXYbxwGCMRvTAYZWAuTMNASVLhXFIQF2mOlGhEfNIKo90JNYQxChLVOa1J8wS5xaAhxfp8zRClBlgZg9WPGzzQSLsVRXDq3ri6lh0p5R6tFW3X8Oz5mq++vOSrLy749NMFTy4WLBYeRcaYlpwN86S4vV1zf3fk9nbDMMysVwtWi571skVJILM2scI4JBq74umLFYchc3038euvb1gtLD4qels4XL/lSh04lIlv/+avmG72rNPMp+dLShqJSbPv1txOkX0qXMeB4d4wDRPFdCwuP6XTCROPHNqW6eZ7wvGOFKVFcrNwvLx0OL5FpUhWiVwMuUhzkgZMUbIWsI5u6TG6sMigbxW+b9icNTx53vHFl4Wb24m//+VbXr+5YRozpD26BEKYCeHx1ichZIy1WHsqhpG1tHPCqwRZaocka26jNcoocpqlWUhPpDKhTaRxgW6p8e2MtQPbc8eyd1hrcZ3ieJzJKI5hoEkaisVoEbgrkFTYRSch2Io4SZHBX28cxshQFKBrNc42/PSrV8zjgaure+bxnhAVpInGQZ6lKbjkJPsrY3DO4owhVafcKVKeKxsQeNi36mIeEg2H41Gemw/YCyfCr5L7XMQZaoPQSZQvWKsFC/tfSmA5HX8otPxTD3qpV1KMMWG9xzcNpvVIPVi9+FSRCtNj4Ls377m6uefu/si793dcvcuE4ICObrmgWyxp2yXK9hyPkfE4cbyfGPdCryZO6HikpANKH/AqY3UW3rsywgbBY5drtLbkbqRpeubba/K0J80HSIFcVbFSJ1Va16GHlrgMWIKyZNuh3BqzvCA3a9AdKVtyNYo4rcizwUSPzp7ruwPLZVVvvaffPuXyJXx5P/Lum7fEOXD7iDyIkCLxAW6qf/BlHiBJGbFHUp0h5YGxUqvaSu1/z4V8msRp6bV/8PcUaQNyVtP3Xixlui4SrIhn2lqW6y1FR4pKJDXLS7jac+cUmWNGpYzTUtFclGKao9Q060oQT5mYCwUjjBzrUVZys0RQCUwUWSi2LX3Xo1vHetlzdralWy2r+popCXQVW3RRTFVUSSUTlEIZi/Ge0jiZaNRzr1HVV3qqj5XN4mMeKc1CBCcBiZSifOX4UNcWwsRi2bFY9EzTmmEYiCkwTiPTPFYGhMUYuLm9I6ZATgmlMtZVoCC1TSoX2SyYhocFXyl0XcfZ2TmLfiEUfKNZr5e8eLJh2XsWrWbVJvrGcrFdcPn0DG81RiP553J6WJ0K0fXDpu92f8+b91f8/W++5d3VPYcxoHSP0vahKSjnxBiCVGZOE23bsNquePL0CU+eXHJ+foZ1msWiZztvePLkksWi5353T4zCRJiDVH5utmdooyglM88zi4VEjJbLxxNYfNtjnaj+0zgSplmiERmZnWmZQmSlUE2DXa+w2xW5cWRJmjDnyFwSycpmVp5FAhFWRtXGKqkG9tYQG49aeWzjWG47ssoo3WC15qLp0OM9HDzzticbhU6gdcS3imILOUdcU4gpoVLGNAL3M0ZTiNzf75iOA8PxiDaaVdfi+xa/7Hny4pL1dsliYVk2Bq/Ap8A6QZ8MPiru9wNhmMkh4X1X71mHsuKOUihSyEzTjHWOputR3oIxNRMfiFm+SIkyZcI0EdTjbSouzy7ZHSb2x8Drb2755Xd3fP3mjr/69Rt+8+aGwxzxWGKMGFNwTrPuFqSUCXFmDHNtjJAK7t1u5LhqScu2Lq411lu5J9slrl0Tx8RuyFzvZj7cTdzuBzaXBdW2JG3ANrh2yebsCZtzx/nFE372sz9jvX0CGGI8ctjdMQ8T8zByd3PLcDwSQsS5hr5fkirX5n7cMaeZRGK16tk+ecLFixcszy64Pxy5+nDDr371e3793QfujweGlAhGYbXBKCuRswJWWTrfse6WLFyLyYo4Bob9kdubez68P4Busc0C06wYhxEN0h6FxCHyI4vRRQvjRKlEIjGESCiJmAImwbbr2Z6dszl/Qrd6jXIfGIPUON8fB+53R7Aepy1dt+D27TV38Y4UE6Ek+s2CdtHR9A1kybnHWiPeNi2bzQZrLcfDwDhOTNNE0RI5cs6Kw0lBCALzOzky1ssl5+fnXD55QrdccHl5yXR7w82Ha969+Z6uc6wv17TnW3SY6v0p0OCcEsNuIISM1o7VqqO1HkIi7SZ+9Xe/43e//A1vvntDs1zxxc9/xmc//Qmf//xPWD65RHsvUYgkMESlFHNK3N7dcH17Tde1XFyes1qvSClydXXFzfUNh93u0c6b6zp0FCihU4b1asVqteL5s+dsLy+4urvlF7/+Fbs4y+ZHaxarNZMqxGni7dUHfv/9d/RNy7bv2TSNOCZzfnBPltrXcxIpKKpGQwpJS/QQZ8AbaCxa+7rhLqgQ0amAyayUZlFEnBmno2wds+I4H9n0Z5w356xcx2ax4tt31/zu7Vv+zThxdzzy9u6eT774nC8+ec7T8zXnjcVZI8MkZIBgqsOpPtrF+UBBq4/rLPj3RZY//PXDPfG/oeDS+URMM6nMeK1Yrhu882zPzrifJGqa54E0zYThyLg/cGg6VNE0tsUUx3GCKUbCMXIII5M7Eu6OuPMzjnrHe6X4/lffstxuWGxWnD99gtr2FKfAKqz2YDtUzhQX0SnjKCyxnJ/dMEcHeqBfJI4hcIiBW2INvYOpzWZJybpS1dYqlYqIfBhabXBK41QhKGkS7Z3Cdw4fe5ZazpM1licXW4zzKGMJKErKKI04fnOWIRwCGRdHY6HkJG7QnDHkqqZV57y1oAqPWHAIgDO6TvfBG48zBmMyugRMO3J53vDjLxf8+Z8+48dfPOXzzy7YLDTOFozOde0RpTjAZJZtxCpYdh1Nc07XtLSNx1pFSTPUn0/ZjlzOeBafUnTi91+/4e37W+6uPzAfxW3AsOO7X/wNh96wUjOL4cATb9m0C/xhgiRx2CFHrsfIzRQpdxPzNDLvD9zc3lH8gnbdsXCKrm+4do7j1RvG3Qco0LSa55c9T88XHFLh/jCjdHXKhyBOBiPx7uOoyUzAgRSP7HaGeU7EmInJYJ1ms3H87Gev2G4a7u8Hdvcj00FxnwP3w+Pt5eYw0ZhGEAtGxHCtlYRDnJK2xzSTy1Rd45qYDDEPxDyS9UjTWc7WLZ88f8LPfvqcy23HxbZhu13QLzqcd6QM7XEmRNl9jHEij4mMtDxJ5EZXjefkQFQkUTRwzgrfTclQvhTwFtZLx5/89DNSnPnm27f8/us3HKaJMA9QZrTKaMTZ4iw4p3G2DntTeXguKqgD4ShOmupQL6VIxM9ophQJ+RRht1Lkkgo5CTIjZ9BCvZa0htbYut8wphZE/BHHowgs6j+gpp9+/fDParAmZDDeY70DBala0Aswz5k5wO4w85vffMf3r6+4vtnz7v09x0OLd2tW65Z21dXNV0+hIYbENCXmKZDmQAkBU4K4V/KEYcYbMKp21pyo8EqhrMW0nUykiiKHmaQSiUiOYrE/RUWUOiksIkJQHQ4JWQAr36F9D7YhY0lZnSDxKAPaSEOGSZ7jOHMYIl2b8MphfEe32nD25DnNcsm42zOVx1M9UyVPf2xJUVW8rtaoartSCJPjH8Y4+CEAX8BfSQQzXU4b5fJwkykF1qhKGdcojdRgKSpkTGF9g3ENymQyM9OkSGEmzUKdLzGRQySrXGMdihgTuVb8Fl0hmCkj9eXyYtRK+BRoEVhUrZ5zTkS9xrb0y55uucR6L/V01a2krcQTJLJSSKUQsrhlrLeYRloyMGKj1qeYBxqVFUK8lwaExzxSjnxs1ZJKZAHJxY8OlpweKsq6rnuIEcUYmMJE0zmcNzhvmcNIiLOcTJU5tXXFFIWijSxgTX1YpRQxRuzvbdtKFbaSWMRy2bJeL1m2Fm8iet2zXjQ8Od/gmwqGLjWb9oND1YhaLuIQ2h8nrm723NwdCQmMaXDaU6pLilKIcyDHSE5ST9d4S9t6usbhnFi9h+GA0uKAGMeReZ5rvfRMSnLfG1edY4hVsJRC0zTCSHjEZgxXK8QLCGxrPsWDfhAxoN5HzmG6FtW1JCubsFIZRInq/mo9Ml1WhDRjkhEoJOKyQyus1dKK1TkWC0/UUnvpjKFzDa7RWKdYLFtCSJQgwEXtlESScqTYIs4upci9lcx4KkxxZJgOzGEilkDnW5res1j39NsVZ+crNtsVm1VLZ0DHQDns8VmYTgI8neuEQuFdg7ayEFW2CKAtFUoMxBDwbUvbd6harVnqPZlOefecKTEIO6H8cZOGf+wwyjNNEzf3E799e+QXX1/zzbsdX7+5YXeYSUVq0lVROKXxdfF9iqPFHMkKkhIBeJoj0xiZpkApGW2lilLq7Fu07Yh54jBE9kPkOCcO40wsoJ0nFeEANP2S5y8/wdqW7eacs7NznG+YpsA8DQyHA0N1B+3u7pmGiVBjpsaKoGOdk1hWkczZ9vyCs4tLVtszstZc3+94c3XFd++uuD0MMp1XhqwtGieLJWRx7YyldS2dq5ySBONx4rA/sr/fM8wa1yTabAjTzGQmDFBilGdkgZQe77wB8g7T6sENUFQmlsIUIlOIxBaMa/BtVxsAtcB8U2GOmWGesMNA61t626CUIoSZ3f09pjEklchkrBPYuyzy6nVjDG3bUoq4cec5MIeAMtLGpLUMdh6iuFmaTJy1LJYLlqsl/VIg4+fn5xzPzrgumaurK1bbFU/HF3SXa5Q3mCgMm5IyOSZKLnjrcUrhvEeFzHF/4O7tFV//5vdcX90QUuby5QtefvUlL778gvWTS0zXynM4FnGZ1U3+MBw5Hg9M88Rq0bPoe7xzzPPMbnfPsdZRP9ZRtEYZYaa1vuXs/JyL8ws+/exzVtsNxRjc119DbYgrueCcI1qJiw7zxIebWz5sb9g/e8aqaUSQOFkGlCxiKi2Ajx6W8hA9zIKLq1Hyj4tu7S0WhdLCWpKKb/nztkSUNqSsyPcDOkrr2fP1kv2zJ6SQePfhmpu7W15//z3FO2aj8V6aOOy6ZdG1OOtwRvh2KFU3Rh+1oNN3++Bk4R8XU/7BZ/q/g6vFxRGdJkqJLKyn87L+2KwXsE8cw8wxzpQUSKE2kg0j3rnK8bPkrAixEHNiGiZp+TlOrLKhQ9EoOHrDNATGwwRYmlIwnUN74WSbpFHJUUorzjwF2jiMaTG6wapA7524EnMgxRFTBU+QtsiIxOhN/fuSExqNo+ABVyReglYULdFzvCNaS+p7aQ1zDZvNObHAnAv34/zxevWeYZ5kgl6bIAVQysMiW53OU22ByRRIqjKI1GOixsSnpmTYY7Wtq5Fq5Grg/MLxyWcrPvt8xfMXPRfnDV7sZRLlr9dV7drC2kynFI13dG1D4+SaVrpA0mJgxoLxoDQNHanMpJy5v79nv9tRksM6DfPI8fo9zVHRN4WtUqysZq1qJW+RhtNOF7QX7uGVhuspkseR4/5ASFCMx/Sejkva/R0hzMzjAdKEMopFb9luWhaHgJ1qgUmOMmiyBms9SiuGWRFyfd5nQ0ieVDwZJ867EkFB3xvOzz2Nz7SusL+BMAT2PB6guFTGkaoOVK2K4A0cGAck2VPlMtfqd1ljpzKS1QR6xnlDt7CcX6749NMXLFtN61JtEnK4xpOVoRhHiIk51cgbwjWN6eERWQf0uooo6iGW+dAaCmhkb6QUOKN4crHm1YtLYoxcXd2wHwZxOZVQnSQRTcLqgjMKZzRWSdKAupc9Sc2lriNEZNGoItF8ZQ2x5MpDk8jlCf2Q6142lx+KQ7IvMVrKUarZ+I86/miB5Q9FlT/8/X/qOL2UYpbJrvOWkAJ5Cg8Mj91uZpzh5mbgX//rv+H3X7/n5mZgt090/UsuLtZsL1f4doOyHSl7UlIMQ+B4GJmOEyXM6DRjCZg0QZlpVGDhFU5lSDMlUjkihaI12AZai9YWnxLRSrtNmmSDo3JGFc0JwPYQYVKnBhxHcR2qWVKaBVl5UjGE+oJ8mJ1Yyd1nlTjsB+72AWNmafFoGprlmrNnL+k2W3GcPCJwM1YxIlb7aakLvBjjg8hy2lwqI40uGMipiNiQJb8Yk7wsxCFe824nAaYKaydb16Jr8M5w1OIEqSnVh4q1vutpWovSgWHwzOORoRSm/UScE2mORJXE4qY0oWSJKdWXzZQCLiSpbSzy0tPa0BhXG70LqEjSBt8G2n7JatGwXPR0ywW6cZw6z02tvj3B9Ko3l0xGWYtvPG3XyYa5VqCKmVlEloywMU7pwcc8Qpxrbl9aEVKKApCLAZd9jQhFid21LYuF/DqkSIyBYdhzdrai7Tz9siXEgXEcgEwmSg1lzpSpAhmVRK1OljlpUGhp246maaT+WBWMUWy3a7abJd5k0jhwvu3ZrhZcnK9k4lJytdlJE8BHXk/97LJhnCK3dwPv3t+zO0SsX7JaLxiSrnXPhTjPTMdjzTQXzp9d0nUdbeNJaWYaj6Ayc5zQ1nB9fcVvfvMbrq6uuLu/43A8YI1lsVjQLXq6ruE4TJQizRN932GMfdRNg2/FkZGTNLvM40SZEw1O7rEqOielMN5huh66jljrlgVqnICMbRyL9RKlDBHFMUw4LwsNY4yIZKagnIAY275lte4IRmq2vTH4XARuZmC9XjKMkcBEiBmsTELGPJNMot8saZYLtlpzc3fPbrfn6sMtx/lAyRntwC8c3aZlsenpNi3twtEtHGebFSZOpCEyhRmCosyQhsy4O5KmhFFW+Dq+pXhDsgVjLDkE0igCizaGdtmT6/eWSiaqQqwiIymSx0ky+H+klfMfO8ZB8eFm4nff3vE//O23/PrNjvf3Izd7yaVrpdCx4JU8a7x15DmSZvm+M0neKwaSKsxzZDhO7HdSNds5S9e3uLbFtguU7RhC4GY3c3+cmVLmfpyZskL5jrlonG9Y+54//bM11jQ462l8y6FW5x4PR3a399xd37K7vWd/e6BEKFEEUmFMaYwV1hKuQ3vFF1/9mJeffsZ2u2F32PO719/xzTev+f3rNxymSFKSuVa2RRuPVhabI42BzrUs2wV90+OMJ4fC7c0dN1e33FzfMkdLuxCn6HAYIIPTGkumdRJHDI/IGTsdWmtMnUYVIyKywH8TIRURx50HbUmZGgFVxALDPJHv70l9YrFt8d5xnEbu7u/IKjKnwBwD1lm6rqmTQyNoKa3xvqn11olpnDneH8hF2kNOWXKttXBaioifTdNwdn7GertmsVzgvOPVJ69gPPLb//l/4bvX32M6x5PPX/DFJ5d43Yr7MNW65piwxrHtFg9NCu+/ecOHb97w21/8kr/+q7/GdT3r8wt++i//a37yL/6CJ5++ojs7I2pNLhJZkEy6IqbE1dV79ocdOQW22zWLZQcK7m73XF9fsd/tiI/oPoo5Y7QS6/52y8tPPuHFs+d8+cWXWO8Z5kDbtKjhIOJqTOhGuFG6Cq5vrq9ZLxZ8+vT/z95/NFu2ZdmZ2LfUFkdd6e7Pn4rIiIyMlEBBWVGZoQgQDXZoZUbxB1j/gh0aOzTjD2CLTbJNGns0I9mpKgBVCVpmISMjMzLUi6dcXXXUFkuyMfc5118gCyTeu0CDPCPsxnO/fsU5e+291pxjjjnmc56fnWO0QqpIyH/V5I8x/U8KPuWoYikUsi5kU0RZbSRx0AjZbA4DgNAc4vu6arDWUoqie+gYNmswA+fLZ/zeBy9wSrPd7fjJl6+4v3nLNgwMRmFsYRh3xOslzy4vWcxmLGZzKm2PU4UkT5mMHg+vsBQMTKN+H2Px3yZT/j+pWp4KbvtAlQsWxXU752wxo21ntPOa6DUlFfphhFyI0TOOPZv9jrPVSgh1U5EwhKxJvhD3I13w7HPCbEYu6pplXbFsa/yY2ax71tuBy/1LmuWMZl5DC05nDAZiQ4mFkgoxakZvGEbF2EdMVdHaisbUVMWJf4vVjCVhs7R8+Qx1JWbkQrYompxocqLOYlg7d46q1izamaj6iqj76qqmrme4Zs5D13G/6xhv70hJ7inbzkjjIAnf5Jl3MCBVU6sOB41SlqEGseSpWl8kkX7S1esxqsIYi9UVZSq6NQvDxUXNRx8v+f0/eMYPfveMy2VN0wBBH33zUAgZkQopSctuVRmMdSiVUUoKg2qyE1DagpHCs0LU8zF4HtZbvv76Nev7BxaLSxqjYNiTNwmdLCvX8nEzp4ngxoEc4WB30yg515TT3Fh40wfK2LNbr9nue5ZnCxbaMDu7YjHspfVxv2Uc36BUom0Vz5/NuR0HbnwmqUDJIyUHmqahaTTawn7UlN6idYOzNdoucaZCJ4sPIz5u8d6jFZydKVYLx7NLy/5BMe4HHm7un2zVtIkoHUCLss1Yg3UKWxdcnSk+UspALB2qZBnLHEcyAXREGY+rG9qZ4ex8zscfv8Ti8f0aZyuMcxjnZLJhI+0zIRXiMFKS7DPBJ2IqMim02MnHUtbZqMeCPEmIRDV1RUh9v3B5OeN73/8A6yy3d/fs+56u2wNBvicHDJHKZKJRRKNxWhMQgiXFCBPhpbTGe0/VNiij0crimgrTV4SSGGOkShlXiTUGxIkUQ6YqTR+6HPzxDJWzOCcE+rfBv7cWoX/r1ylNUYaQM77b8dXXI+cXS6rJvPL84oxSKqp6pHILFD2lyNSZ+eKS1fklF9eXKGPwMTHGHqNrhl6qd2HsIXpMCugyYPHMGs3l2ZKrRcPcKZy4prz/yuQ/xkJtMcuMaRzVoiUPDWnoSEF8E3ROxwRaKaZJPIZiG4prybYhYBgSDLkQsqIyHCb84oCERiWLNjP2fYIyUClLrR1N1bJ48YJPf/RD3nxZcffu7VMtE95LIFayJDJ6cmQnM03zsBSkJ81YMeZU1sBkDCbBcBBToFRIqchBpBSVOkwRkoBGTVLJ+WxGXddYO4BOhJzQOaMLdL2nXcxlMslsTts0+LGjsxaVwFcjYfTYIsqVmCIhZmk5ypqkYBgTZgj0Q8SHjEviFSGGSFNVKouJmasDrm5xbYtpGnC1jMEt+WiYlXIkFqmMKyVVf+sqjGuo25a6bSi6IaGFLEwihxPZZxaiRxXyt6U9/1sQoz+O9xSz30CMmpTk4Y8pst93pJSo6xqlNc459n1PHHr0W81iIaOI68aQS8SHgRTFiyUGLwkBRQ4NLS1QYUoIrHU0y1pmyE/eIYv5nOfXF/zwh99j1Sp0Ghh3PR8+X7GcNyxmlRikIoTboXIr70FD1oSIeCXsIyk76vacT74/I2IYQuTL12/YPDwQxlHUTWHEKEXjKuZ1w6cff8KHH73kw08+xMfI3cMDP/nJX/D551/w5u1bvvjiS8ZxoABN03B5ccnZ2QpbVWx3O/m3IpORxnEgpcQ4Pl3CZ40RP4rRM+w7aeuJgHFSMVJWpnpZi6kbzKzFG0XWAAoHVFZTVw4WLZfPrnBVTdaaX799QzGIuW2lpTKWPalSPD+7YrWcc36+JNmJMAXKtqOpHG3lcLMFdhYZsmEb9ngfCUZRrOHZhx9w/uIZ8/MVHoX++jXlxrINA6EESkwYFLOrJZcvrrj+4Bmr63POV0sWdUWdMqEPFO/ROeOUxSF2S+O+R1PR1DPa2QKamuTAEyhJEcdIv91PPlEGZQ3FanwciSVOHukGazS6FIr3VErTuKczAPzsxvMXv3rHX/7yC/7yszve7QJDKIARE0AKumTaafKSVppd1zEGT8wZ3NQ2qeVZHfod+11mYz3UirZZcHZ+xeryimq2IGTH/XbgYd/ThYRyNX0ojMkQVc3s7DltXYuJcC7EMRIGT7fpGLpefH3GxMPtltdfv+P23Q379RadJSBXkwrNh5GYOpROLGdLzq4u+P0f/wlVXbHZ9/zkL37GX/31r7i/W7MfQdu5OPTHAqZQlCTiTWWYN7CcWVYLS1XLFKjdfuT1qxtu392y2+6YtRckHRnLwL2+xc9nNE3Fsqkph+pSfFoFy6xpju1HSic5dGXsFdaJiXfKcH5xxcXVM86vrtHzOfVshraGcRzp+p7gPfOqoWlrxr7D+5GH9ZohBbqxI6SR6+srIWxnDTmJVJ5SJmm0TAvquo7c9Yw+iJR+IpkPviyzuuXq+prnL1+yXJ3hqgprNR998hGNhs9+8Dt8+etfcL9+YLNeY5LsK8WKNNsqhakq6gw5RLrNjq8+/4q//LN/zeuvXvHm1WtU3fDhj36X7/3Bj/mH/6N/wuLFM2zb0JVCiXIe66JI2lJSZvAjX37+OSlF2qbmYrnEaE0/Dtw/3HN7e8NmtyU8ofro9//4D5k1DfNmxgfXz/jw+Qecrc5YLZb4lFgu5lxdXnGz2xCYAuOURHVKRU6Jm/WGSn/NwjU8PzvnYjGndeagr+XRLvaQyB70IAdj/ExWWdpxVSapBCphNVBZVFaYpLAJMSyPmaZqUUXMEj+6ek7XR4aQ2e83LNslH5/NST/+HXKl+eW7G7569TkDgf3uHV9cX/DV8ws+ePaMs+WKq/NzXl4/Z1Y1NFXNvGk4TBECUT2i3iNM/hYD3OPX/gfyYvnjy0sqY6md4+rsQto8jcFrxZpCnyMmB0qCEDz7sScah2tbIaZRBBRjkZZsn0ANib7v0Q89G2WYaU1tFKay2MbRni2p/uY3WGun4oiRaUN2et8JKIqcKz77zVesNzv2XYd2Glcb2nnF/+C//x9RtxUYxS54tsNAHyN9jkSlZNx8TLiq5fLyiqvLC1bLFTovsRSWjaW2DjOZ1xrr0NZhqpoeQwyRHZ3ELl0nPixNQ1KFWGQIQbZMEzctlZvU3u9d2zKRLlLkVeQkMcFTQdPjtMFphdOWnDKNM7z84Ix/+I9+xO/9+IK/83efU+ktMfas1x6Xz7G6QSuNjz0x68lXpkLZMiklHVY7mdJUNGSxCKBASYqEFcWaMqSsiVkRY6GkiCmZWimu2obvXVU8axUfuMSZ76mDxgZFtDOKNmKknzusNSgUz9qKX96vyd2Wcbdmv3nAXy0oaiGTvRdL5iVyngZu/Ya034EaeHbd8LYrLLYDD6WjqAFtImerOYvFAjfTuHmNNQusFl/OnJx4K4eEMndo21FpOF85Ls+XtHVNbRqW9cAvr+Bs/nRxpbJhGh8f0cXKtTYWSPhY8KHHxwdQnZx9Wp4xlFgMhNBzd9+T4wZb9vz9P/wB89aiksLaBqMrlLKADBDAKFSBtmpFYRyitBjnTMiJUAqugHVWvIaUFuVMTCQvk0hlxHqehqhAVc14+fKCxXJG1bRcPXvGL3/5G2IMvL15wOqMKoG+2zAOgeA95GkCKYiMBlGcaKPpxoEmzVFGS3zY1OjK0gfPfuhxVU3bzrBWct9SxCMtpYJK0zCcnDn4u9R1RVNL++C3wXdWsLz/53/b5w6b/IEl8jERQiQlj7UJY8+wTnr8jZVJNSL3t2hdY634eVT1TCp+tZGqg3SeoVQhxkgM0uN3GK+scqIysJo1PL9oaZzBqAIlQc6Tx4i4BJdpjLBWCoxFUYHJaOWBgtJGfGKitDPJgXxoEzIoIyxKfm9j9rmQiubQRaKUJDrIfULVtCityMVIotlHqBQz57i4fsbQdfRP6MGSUpq8NDh6P+ippcZomfKCglySECxHo+EpHDmYCUUxWRKTUpFFG/tN6eLB+dlah3OVmDEVjiZ2BfAx4kOQaTWI4a4qDaVdEJcR70ZiFVAJhnEgj6OUFCYz3VwgpCzX2h8mRiHJu9jkyW9SZpIAa5SxFDUJGkshlclzRmkoQpaUw0x1q6eNQYyArZFNXB19afQk7QSRw4m3DFmLJPIJcbxHpwk/789+V0BOmXGUscpVVdPaBq013o90Q0e2hYfNBU1THVuKchZ1izbT9KSiSFHWOBeR9CWmMeJqSlmKTMcwRjOft6zOliwWM5zy0r/YVMzamroSeV16rxtN3sh7AaFSU1uSqKKcazg7u6ReasaY2fU97uZO3m8ShY0CjFJYo1nMZ6xWC87OVpydrdh2e9S68PBwz83tDfcP95NKR1p16qZhPp+htSFNfiwHDwSlFMMwHKcvPRWUEud22Z+k/WoqlkqfvTGk6b4RM1xHmAJ/rSYDPqVEsmgtdVPhmgbMlNQ6UUkUA75EGXVnFbP5jHnbUjsnfeqTkigUcQ2yGCya1tZgEx0DJQlxMWvnXHxwzfzqnHoxQwVRs6yK9OH2qyVplFG8TdtQzWvcrMLNalxjMdZAjEKIxXBM8EmFHJL4VTiDcxXKVdJfbpDxqGXqjZ3Gg2sj3ktlGh+fKDKtxlmSFf8j6es1zOr2ydbti7sdX93ueXXXselkPLG0BORjXqa0koRda/E2iXkyklVHNZ8UzxM5jQSv8QPUixVtM2c2WzGbrdC2Io0ynjwVRTOb8+KlY3V2xXxxTtOuqJsFzlVoBWn0xOAJPhF8JIVMConoE0Mfjh99P1C8p+SIJqM1xCznrlawWMx5/uw55+dXPKzXvLvZ8MVXN9w/9HR9lhGeGJEhlzgpE8XEXBNxTlHXhbZVaCOePV0/sN3t6bqecfDMqkIOkag83XaPUQpDIVdOlIFHbefT4frqaprIUcTjyxRpg8yRubHMZwva2YwPP/qI23d3dPueXkFdN8SY2O52cnZpIVsaJ1PvQvBkrdDeoAaN2zmqylEo1E0lSgMOSe1BbD+Nko+RYfSSVL3XKllKoaoqzs5WXFxe0DQNSiliiMzmNfPVkucffsBXX/6amCJ+GFExS1utEi2GrR0qg+9Gbt/ecPvqDZ//7Fd8+avfsN3syKnw7KOXfPzDH/DJ7/2I2dUFuqnJRhNznlpSZA9MuUymgZGx72VcJUq8IijkFOm7nu12yzAM0r7wRPjBD39AU9W0dcNqtmC+XFLVNVobnFI0TcNqucQYIzPwJoLhccqLI+bMrut5/fYt9+s1tdVUdi73gnqcqPENHJZqGjGPKocBRo+xj+J4TpTJEFcqtEpaq4r49FWVQ+GwNlEGz5AjjYaLWcMH1xe82215dR/pd1s264bKKS7mDucswzDQ7XaoXDhfrDhfrJg3zXRfHV6P/K7jKTr929+mVvntaZ/vK1yeEp+sznDGUFnHspUR71lBVwqOjClZfIJyJsTA6APFBSm2FYnHpOSpiEXJeYgk3d04oqd4z2tQVqF7w857Kl3LuagUVYPEa1ZJLD55u6Ea7tc9XR/woYinIpmmsayamvm8wTjDPDUsZg1jTlIYVaKoCjnjqlaIvuWCunbYXHClsNQaW9Q3b59cKJNvoMkFJr+VHCM6JZw+FJgQFbCE0KI6swatJhsCsrQO5cmcWR2mXz1tXGl0ROuEVmKEapRj1lquLle8/PAZz57Nmc0MvveoYjDFQq5ANUxBBRBQU4sKuoiaxBhRq2TpWkgpE32W+DJmfBZvy2JAq4DWluVqxbNnz7lcXXOxXPHyvOVymTizkVnpmWkpNjkcYzKUpClZEYMnq4hlut9ypOQIMTD2HTkFjMwQl9bw2Yz27AzX1OA7dMnM547ZzFPVoH1Cq4RSCWe1kEXOYFw1tbRxzAEy0hqUJx8IazWrs4azM0tbGSqj+fDDJf1+xXY9f7J1K4Tpd0tBXGnJZQ8tyn7s8bFD6ygFIa1A5aPfpCqQUmQYeu5u7+i6gdq2OH3InR6V+Y+tPmLsLiabCquYCtOJyKFDheOQx0fVIBz7hKY4RH6mtFk3bcXz55cMXvK4z7/8mofNTkaF50jf7ej3gXGIlJQxhz14op4Pr+3QIqS1pmglpuVaTXmmF/sDDpNxD3ncY9fF+x9q6sCwFmz5dpYBTz5F6H1i5f0/H150LmII533A+0DOgRDz1PNViWnoxFmIslNhtPSm1pXF1Q2ucmirJNFXerpYSLIYvJArh5FjOVI5zXLW8vxKzDY1Mr1DKO6Dm3+RvjEOe5kCKySLUq2QMWggSUCREe3TNFpaadlQDol7SIkxSv+lBEGPfWqHUaMpZ9p2jp76MGOC3d5D1DRnDedXz+h2O7brh++6TEekiaUrheN0GKNkUo41dpqMJP16xr43SlI9TvFJSeSA3kugqJQSt+kszWp6yj4eCRZLVckITxBDoWl18EEO28EH2uiorca5CtqZTC+pA2EMlJApWosfQUxHD5xUMjFlQpAHM4RETgfdooKiJXhX+vg7lTFHciXkjM0Fa6a2r4NsO0n7lHViRllVIpdTRhhYpkSjqMfDVcgzgzVCIj115ehgMnu4ekKyHPoQpaXp4DeyXEowqrRi9APb3ZaheB4eLlgsZkAiFzHHTTlQu0qM/RCi5tDbmJkqD7lMjK/8OeWEdYb5YsZqtaSpa1T06AJVU1HXUk0C6YM+NMJMUYXcH0ibXUGUPylDXc+4sHOSbtgOA0WvMcaQk7Q/lSyb62EE+Gq1YLmcM5uJjN8MihQD6/UD2+1mIlfKsW1qNp/TNC0hiB/LOI5waIUC+r7/9yKlzjmTohx8wpBLlcoYI6NVlYwvN86hrCVSHkeMFlEgHN6zGBVXqKqiairCRK4kXRhzIJRI7Qxt29A2tfSIm+lxmNh6W5RM6MrQ2IpiE1bJ1C1nKqpFw7MPnmOXM6gsYz/QrmbgDPPFgth7xn6g2+7IKeDaCl0ZVCVO9Whp34nBU0IQAUHOlIk4yTGja2l5wTqUdWDEZPowij3FJD9Xa9lzp1abRJEKhXNkazlYQTrjmLdPF8B8frPhy/s9b9cjXShTAFUmokF+pzIGU1lSKsSciZmJMtDSgjm10ck94IlR4T0s6xe07YL5bMVstkTbith7NruOojTL1RnPXsy5fvaC1bmQLK5ZSBtKSgQ/MPQeP4zEMI0CDpngE76PhDETYyH4wLDfkcOIIuJqQ2GqhmpYLhe8eP6C1fKcr1/d8Ob1HV9/fcdmE0hRyVjUY4Al54Y2YK1CpYC1mqpOtDOFMoWQIruuZ7fv6HsxdCYXSkykMtInReUMlRVjxXwIUZ+YjP7gxQsmppxMIBkZSa+m8ZzLZsZiseR73/8e/b4nxsy7/Q5bN4QYeVivmU1+I6MfWcyXotyLgWI1OhjUqNjtNMYoCpnVaikqs2n6zvvtshLIDnT9eDS2PZwPQrBIS8zF5SVN2wDgvUctW5r5jBcffSD98FObpIoyBbEoSLZQVQ0aRdh0fP35l3z1y8/45U/+mjdfvUJpS7Nc8uH3vsenv/cjPvnRDzHzlmy1NJsWmVyjphbcmMTTK+ZMDAGrZPKeKlLdyyEy9D273Z5+HMQL4Ynww9/9XZy1WG3QSSaaHIh9YyxN3bBarbDaEpHx7akwGfUDVUWOiW4cefPuHXfrB5azhuWsxehJDfCNBHWqjkithEMAePwq9dg+VNRBPSJSZGPkbCxZEfuAUVJgMZXDNgpnJXkOQ8SVwryyfHB1wRc376g09GPP0Hf0fc0YPOvdlq7reOAepw3pMuK04dnl5dHPAKYt6N+BXPntIue/D3xyfi5FAKWpnCMDYYr1bckS45ZETvFoAE4MQl4AGDF5T8hwgKKlBRttGH3CSSQi0/O0ZG9qHKipsEXm4GAT2k4mxdaK0bWyaNuy3Y2EmEhFiXfbNLmsVjCzRirVwFzVRGBEEbXEiLEUXNUya+fMmhkAJiZcLswKqJgm4fYUK5mp1aAyYsAep5g7iXJbkkO5v3KR8dYKaXGxxkweEYfinRTqDs/Av8kMfndYm4VM0FN7nqmZtzVXl5c8f3bF2bnB2EQMA7Y0aGXRukUVIVhkPL1F6SK+KSrJ+hhJ1LNS5FLwqTCMkTBGxs4zJKZ5ronZzKCN5eLiio8//pjr1TMulkueLy2XZsMi72nGgcZAYyzONTBasjGUpCB1xBzFqDhF9HTPkRK+7ykpiAItSyxI09AuV7impgwWEwPzeUXbjlhXsKmgdRbSyUiibqyVaYdIGCtjfpli13IsJBqrODtrmS8stQVL4NnzBfvNgvXd0w1PKARymSYekUGJCbKQCQPe94TQoa2sq3T7y7kvRWF5ooIPrNcb+n5gOaunlnPJnQ7KgCnjQAa6TLm9hsrWxBKlqyMnQFrHSioyWGG6JnqasqgOBIvRKLQoSIrBGsP5+QJtGrr9wNXlOV+/fitjpXOi2+/o9x4/Fkp2aFWJUe1EeB8qXrlILqSMmVqS9NFM/ti9UYqQmNNQl8NmL7lNRh/NrZh8WBTuW1IlqvyHnOV2wgknnHDCCSeccMIJJ5xwwgknnPD/g3jigV8nnHDCCSeccMIJJ5xwwgknnHDCCf//hxPBcsIJJ5xwwgknnHDCCSeccMIJJ5zwHXEiWE444YQTTjjhhBNOOOGEE0444YQTviNOBMsJJ5xwwgknnHDCCSeccMIJJ5xwwnfEiWA54YQTTjjhhBNOOOGEE0444YQTTviOOBEsJ5xwwgknnHDCCSeccMIJJ5xwwgnfESeC5YQTTjjhhBNOOOGEE0444YQTTjjhO+JEsJxwwgknnHDCCSeccMIJJ5xwwgknfEecCJYTTjjhhBNOOOGEE0444YQTTjjhhO+IE8FywgknnHDCCSeccMIJJ5xwwgknnPAdcSJYTjjhhBNOOOGEE0444YQTTjjhhBO+I04EywknnHDCCSeccMIJJ5xwwgknnHDCd8SJYDnhhBNOOOGEE0444YQTTjjhhBNO+I44ESwnnHDCCSeccMIJJ5xwwgknnHDCCd8RJ4LlhBNOOOGEE0444YQTTjjhhBNOOOE74kSwnHDCCSeccMIJJ5xwwgknnHDCCSd8R5wIlhNOOOGEE0444YQTTjjhhBNOOOGE74gTwXLCCSeccMIJJ5xwwgknnHDCCSec8B1xIlhOOOGEE0444YQTTjjhhBNOOOGEE74jTgTLCSeccMIJJ5xwwgknnHDCCSeccMJ3xIlgOeGEE0444YQTTjjhhBNOOOGEE074jrDf9ht/8+vPWCwWtG1L5RwlJ1IKdN3++DVKaYyxaC08ToyRN2/esF6v6fcd3/+d7zNfLLDWklLCGIOxFhSg1PQzFDFGSikopSDLf7VRRMBYgzEGUmG73RK8p6lqjLUorUApjNbklIkhggJbOYwx+BCggEbjjCHHRKGQVSHLn0DJyymlkEsh50xlKnKI7Lc7tDXUdU0zm4E2lJwoKZFixFhLAYZxwFiL0RprLcYYSimUUo7v8YAYIxQwypBzPv772dXlt12qb+DNqxtCiOSUsdYSQgCgnTUslwus0aBAG8g5EWPg7u4GMljjOF9c4OoapRQpR2BaD61IJaIUx+uOynLdcgIsCoPCAIqcFSXD6DMxJmJMhODphj0+jHjf45zGOUtdVSzaFTEEUpT7ZLVaYq3F+8Bms0EpRdM0DMNwvG5N09C0LSjDZtMT4oirLOfnS1wFShUKCSiU8nitp29HKU0psibee0BR6QqrHWGMslbAfDFHWUWhyDVRcu8UCk01f5J1A/jP/5//BSEnQk5s93u63Y4SEjPrePH8msvLc569uObs2QXGaDQFxhF/+8D+9Vt+9V/8S14uztAxcn97QyyeWdtwtlxwfraS914yg/fc3t7Sdz0hpOlatqxWKxarJQ8PD9zf31PX7njvWmup6xrvPXd3t1RVRVNVtG3L5fU11lqU0sQYp2uc6fuR9XrNMAyMfqSuHGdnKxaLBfv9noeHB1LOvPzwJbPZDGMNSslznnKmKKjbFqcMBo0pCo2hoBiBZKDb7bl/845f/Is/Q+8H6lBY1C3BKqKB0GjqxYz5fM7V5QVX11e4usZUjuY/+18+ybr9x//j/xVWFYwuOJ24Om/59KMX/NP/5L/Hj3/4Kc4pvO9p2wprDdYZlqs5m/WWvhvIuRBQZAq5ZBaLBXVV44zli199RcwJjOH8+hmvvn5L3/U4a7k6WzJratqm4u7hnn0/0odIO2tZLZdYY1nfbfjiF58Tgmd2MeOHP/odwuBZ3z2w2W148cFzLi4uKDkRQpDnrG1BTXtizlAiTHuZNYfnRpEBjZKtXE3PFxqKotuPNPUMpSxffPkl1jpyTmx3az753idUlaOUTNu2FKXwIfKv/+KnWFNhbYW1LcMYyFmhtOVP//RP+eyzz/j888/5f/zf/vdPsm67L79iv+8IIXJ+cYmrGzmPfMTHyDh6+mGgaVvquqGuaqqqOl6blDPeewoFbQxoJc+Lev+3yOcOz5HWWo4/1PF8SCmRUoKUj5/TWpOSrMkwDJQCbduyWCxwVs6OkgtQQCmyUgRd8Kow+pFuu+fhi9csm5azxZKrZ1dkVYgp0Q8D2WiMtTR1g4vw8Potr3/1Oa9//muWszkX5+f86I9+n30YuX245yd//VMAVudnvPjoQz76/qdUixm6qSjAw+0924cN96/eocaCjmBC4eHVDf12T7/r+E//d//Zk6wbwBd//xOsc1hnwUKzcti5w17N8MuGoarYu5Y3qeHr9cDXDx1f3m7xGWIpxBQJsSNmT4gDISdygpQ0MStKmdYLJetV5N4+xCO2ssd1PazZtNpYa5k1DW3dsFgsmLctWilKLoR+ZOx7vB9JcYAUUCSsLhirMEbhrMIYOaOVhqrW1G2NrR3KWpRrMK6hmi1QtsaYCqUtX3z1hp/+9S/4m19+wZ//1Vt6NElX6PqMZbukdo7aWlROGMCUgi5FTu4i71MrKCqTyagKiioUBX/6s589ybr93//Z/4JROUbleCgVX96u2ew7+r7jeu54tprx6fUZSwX9bke/77GuJdcto1K82u+4uV/jfWQKJCklk1Oi+JHaaFpruFzMeH6x4mw+43K1xOoMJVFKAhR1O6euW/phYL3ZMI4jANeXFzR1jTOG+7sbtFZUVY2qZxStKKrgkyelgC6F2hocYNEYZdj2A2OGAOTK8cW7W+62HUM2vH73lm3Xsfc9dlFTL2c0qxm7YUMJnsYY/tHv/SEX2lH2A69+8WuGomgWC66fv+BMVVRaQ8589u41yx9+zNkPPuUH/8l/lw/+3p9Qn52RtCZHIBVUhnrhnmTd/k//xzfEEIjRM/Q75vMGa5TcwzkSo8d7j3MOayUn8DHK86ANTVMz5J6YAzF43r254927W+5v7/mf/qf/E5bnS7TTvL19x5/+y/+aX//y1/z6l5/xox/+HnVVE0PE+8DzFx/w/PkLfPLsuz0pBdqmom7nlKIYB09TVYz9wPbhgZ/+9K+4u79j3+9xreVh88DgexKJRdOilabkwtAPtHXNrG2YzedsNxuGfqCkwuL8ihcffMgf//GfcHtzw28+/w0//8XP8anw8ccf8+knn/Df+Uf/EKMz2/2Wn/zN3/DFb75m3s755KNPeNg8sN6s2Xcd11cvcLai5MzD/Tvut28YfU+MgT/5oxd8/5MZ3/90xv/6f/t/eJJ1A9i+fkNV19jp7EoK0KDNlIOVgp5i4nG3x+92xGGkbmpcW2FXM/a3D/TbPZv7Nckn5osF51dXzM8vybEQQmT3sGV7e4/vBgiJel6TiPR+z6/+5q/Yrm/p91vaSmFKwahCbS1GV2htsa6mmS3Q2lKy4t2rB/b7jmEcSTlRtw3WOVztpnhzevaDh+n1W6NQ2pExhGzQyk75i5YcQIGpHP/4n/xjZmcLki785G9+wvx8xeJsyQcfvGD/sCaMnhQCs8WCqmmxdUWkoJ1FW4t1DmUk/yspTWfx9Bqa9knW7V/8y59jFdhS0H7EjgN56Oge3rFd37Lv9qx3W956j/vwJdWnH7P9+CW3lcG3DRcffcK46Xnz1Wv+7E//X9zf3rBaLfjow5f8s//hPyN2njR6rlcrVosGpRPr3T2vbu7xIZKLYnv/QL1cUi9W3O1HfvrLz/j65pZ9yihnyargs4ccmFnLZdvwj//gx/zBRx/x6cUFdSkYLedIIGOxGKVxaHwf8VozaHgbO/7m1Ve8226IdcPZ8xcU07DpDW++vKPGclbX1FVie/eKzduv+OJf/XO+/lf/ipm1/JP/2f+cP/yn/5T6+hLf1oBCKznTEoWYk3yEkV/+4hdst3tizvzRH/8xTd2g0fxvZrN/5zX61gSLdUKE5CKJJAqUlgDjcDMp9U2BjPeeGOUAmy8WWFdhjMUYC1MgXnJBW30kWOTnvBeRTkGLVhoN8l+lGINHlYLVGucM5UDQABQoOVNSAisBLEqRC0LY6ILWmqyyJApFvrFIpCyEwXuvRSvICnLO5FiwzpFLeU8OJEm6LghNkwvZB3AO5/SUgEgALMnHN99joZBKQuvpfepvROTfCSEIKSAbivz+wwZzeC0wXYYCucAwjFhtMMrIxZy+TitFLhLEl4IkESAEw5R85ZzJKQMRSqaUSClCXOQM3idCSKQkCUsInpSEZNITIVVV1RSkquPnDuTH+0TV4c/f+DuHazj9zpSJMcr9K+/mSK4IWSRJ/OFn815C9PjzOSZRIPeBwRzvy6Iy8M3A+inQ7fZkBbFkUoyoIgG+LhC7nt5adpWjbh3OGHQpxIc1D198RffmHQ0K5SMxSLCjKgVWg7OkUiR4LoXoA2EYCd6jlCGESLKSRKcQp0Aq4pwD8pEwOax5CAGjNclaIUKAlDNCQTGlJPK05FJIOTEGDxTGEKhjpIAcUikxDEJQOhzG6mnNHgnPYrRce+SeTiWTciYVBSXjnGVxtiChUPuRkCMpCYvY1DXn5xcsVgvOzs6oZ3OMM0dS+CmgJr5RK0VT1zx79oznz5/T1BX7boezGq0zlZvjKos2mr4f6Pue0XsqVxF8QBlN29Y0dUXJhf2+Z7/fUc9a6qamH3pyymhlaOqKuq6wzlAo9GPAxwIY2qZGK0UKkf22Y7/rSCliZ5aSIOdCjJLU5zTtXymRUkZrWb1yYJ6VouRpHygFO5HK721sHEhYpRQULc+kMYeLwnyxIPhAygnrKva7PXnWMp/P8D6gjUFpxdXVFZv1jnEcqOv59DNln7i4uOTu7h7nqidbt74fKSisq9DacNwejxvloQigHzkTNe0pyN5ZDp/kcN//bffH4+dzzmilOXzn+yjqeDShtZCVOQtBrVBHItjomjztVVbrKbYsct4YsMbS1g1bo8kpEceR4APaGTmzlRISvhRJiNA4V7FcLOnPz6mtwzhLTImioFnM+P4Pf4CPAaU1Ywy8efeOet9Sz1ra+RyrLG3VsFWGzfqOsBsoXSDtR+LgwYfvtFa/jVdxlK3NgDM1y7qlbhvqumFUml0o3I17vu73vOsC6zEykolAygU/ekKMpBwJKZNKIRcle3+W6ymLIbuaHINJnh8KOTze8/Khp/8WQozs9x1+9IyjZ1zMqazDWSdFmKpCaUWOipwMlIgm46zGGIWx4JyQLXr6e87gh0Aiol1Bu8QYC9qNGFuhraNtK168uGYImS9vOt5uRrqQiHEgBIdRBasVlVZoQBUlpB6KrGTHztM9mMjkmEhFAtOnwphhINPnwD7I3h98QFGoK4c1mhgCXY7kXDDWgXH4mOlTputHUjqcDfIMqFKOpKVRGmssTV1TuQprrRDYMaC1xLXWVoBiHEfG0U+xjaVyDtDElMkxSgFRG4w2ODQxC6mqcsIUpgBeYY3ExL0PDCkRUEStSVqxHnpudhuCqhnJJANRgzaaUDJ5HBnGACGgTMGPkVw5NIbKNcSU0cg1wVkoUuxq2hY/ejbrNfd3d1z1PdVijtI1eiqCPV1UCSkFcomUkkg5klJEK43SGq0MORtKge1uh7UWV1XyPCCxQ+4zyUSUKlSV45OPP6KualSGn/zkL3j28gWL8xWb3Y6qmXFxec12veVheyeEprH03UhWhd4PXF1fUcikHLm7W9O0Pc7VOFczDAMxynn6/OULlNWoB83D7h7jLK1phWjLUjArOWOQRDmGiEL2UOccoUTGcWSz3fD67WuctXIPGYcPA0Pfs91u6PuOpnFoYzk/u+Ar/YphHLh/uKduGpyrgZHdvqNtMkZptJF9N5cMRbF+2LG/tBRWT7hyUhzTRuLXdMjnspzNh3ukTPtdOcT0pUzRHPL56bw5FqNzJsU0/VuWAnyO5JykKJPlc4WEKhlnzbTegaZSGApGKZq6wiiLUhalLdoaSoaYM5kEuqCNomiNNgptFUoL8YySBKaoTFHT68cgG7jsCDn76R7UUyFYiq59v8c2Bowix0iOUYiS417C43srWQ57efPHYtOxgH6MfJ8WebslKlkLkwMlekgebaBoSEYTK0e9WGDOztHtgpjBaYcxNVVR7LqBcd+Rh5FFVbOqWxauwR1y1+l1lymGs84JcZqAnFFOs+v33I8DupqhNTirISWJUwqYLHtwSYF+THx5+5qztqI1mo+XqymlVChlSEqTp/MmaE1AkQo4U7GarRhi4cu7O4ZYMM0C216xmM0oY6TfdxilUdZg5y315Tn24oyx6/nZX/+Ml3/373LW1ihnKFriT40ik6dzQp7rqmowdqTfdxL7FgXfMh/49gSLNRPBksjkiQRQqIkJlNj7m1v4OArBopSeKm0SuArBckiIhag5/v2gXJn+ro9kgMZMSQsU2TApEqAYQzrGP0KSlCRVDGP1FOzo6ednVBaiRiGPXilSleG9n1HkBbxXgSxSVcxSYZwiLAmip6pVLofHSk3VXz39HiXR8m8dcfK+5MBJOVG5Cm005gmTvZQSRksCmXKSm8xozLTBPhJdmZzlPe73eypbUbKQZPqwIUuaNV0kIScKmVIgJUlyc07klKeNCEnGshBQuRTCRLAckoOYA6UklFKY6RBzzlHiRAbp918rx8T+/T9/g2gpE4Fk9KQwkapv3dj3qvAHQvBwlWTxD/fe4SOnaaPmm/dkThlTzDHZy6pQivpvTai+LcZuIGvk56ckig2lsEAcRkal2BlFO6uojEbnTPfqLQ9ffM14d8+ZMuAjcRSCpapr2Ti0qCMOB2UIAT96oo/UjRVCxUmlK4ZACJEYhZWXjbdMayrrHUI4qtLydCgdVEWgj5W+A1ESU8b7AKUweo8PgQyiZgP6fsA1NcpoIV95JGZKykxM6/HnlZLJJR+VSMYaFmdLhpgJIRLGRClCyDRVzdnZGcuzlSi42mYK/J7uQNRKYa2mdobzsznPnz3n+vqaqqoYx5GSNW3rqCohRFCw3uwYvZdraEUFZoymaWqcswy9n6o3A81ihqsdm10nZJ/WVFVFXTmM0ZMqKRFTQRlLXTs04KMQLN2+p5BpQ3u8n1NKxOkZLqWQUp4CELn+Uh0COFz3w775SDYo9JFcUhxIcyHXzIFgAWbzGZu0pUSw1tH1A9polssF4+gxSmGs4eLiQt7zMD7+3IlkOT8/Z7lcioLkieC9x1iLte6oLDkk1QccCNxjoj2988OXHgiXb3zPUbmoj6//SOhO3/m33n2HL+Rw/ae1irJfHqq41j7ujweCq0wBk1SMNaaqcNaikhCqcfQ43aCMXNiYhGDJSdbcOcdivqBbLFElg1bEksFqmqrlw9Un9MNAPw7suj2b7ZbKe5rRo4pGF1FB2KLx3UD3sGF82FMlJdX0mP+2d/ytcUPGkDBYaq0IxtGaikZZ+pjYxsDbceTNLnDvC9uo8ChSlns9joGYIiknYs6kw5qUclSvPC7oIRiFnBK65GNgeoxVjCS+qiBqsBQYlWcYPDElmrqhqWvaqpnOK4tSGaUKFI1SGWM1RguhYpzGGiFZUJmY5PWOIWKqjHYJEwvKjRjnsK7GVTMuLs4IGV589Y4u3RN2njEFIVlUwWmFqupjYaGkA0E33X4qHwtAIXp8CkcV7FNgKIo+FboY2XWJYRgJMWAV1NZilSKGQAkjRhm0q8jKMvrAfgwMQ5j2KiHKyhTom6lYZYzBWUfTNFSVw2hRe6UQcFZT1RXWVYQQGf3IOEYhWa2jrhsKEEOkpCixq7ZYZXFoSJGSMjoX0HI2axRGW0KKDD7Qh0iyhqw0Y0489B23uy1UCa8K0SiCktebc6aMI8MwQoxoA8FHslEYDJWpCUoUoSlEiinHYt2saVj7gH9Yc/vuho+7jsYHjK0eY5onLNylHCTGI1NKIqaAVlaKBwr0FHN2fS+ESAg0TQNIHjyQqVpLVRmapuL6/JrKOsIw8vOf/zXrfsfls2cobXGu5uz8nOvrK7549QUpJZx1DL2nHwe2+x1VU6E05BTYbbf4MVA3MxbLc1HE54yymourS0KOhBK5297JnqgM5IQfRBlRYhI1cJbClhQSDDlbYszEGNjvd7x795aXL18KgeQcDAPjMLDbbun6PcYt0EZztjrDWsvQC8Hy0UefYG2F0Y591wFQOTsVE6tjIXez6djuGvrh6QhNAGPMe7mH5C2y78gecLxL8mPhtOT8WEl4v/AIx6KqxH4S+wuxko4xosqZnCOFSMkJ5yxtU+N0pqkVRoHVEu8YZQFDUQalDDEVUoloq2QfxKCKxlYW6wzWaYyVIkUpCoqZcoGCNnoq/GtykoKrxL3SgVEAQmLo99StQ1dWCJb0mMccUkDFVLjPafq8+i2yaSqHvKdQfdJ1G3ogTQRSJqcAJYAWkjYYRagc9vICdbYiNy0+g9EOZypMLIz7nnHfQUosKilELOsGW0TJqaZY+hDDWGuxRhO0FE2N0wz7jvU4slgpIGE0KCWCg5ILJiRInqISY8i8vn3LVduydI4Xs5nsDUrL636viJS0JhZISFy4nC3oQyKPb9iOd5jGs3o2p65avI/4cSDUFRiDmbW4ixXVxRldjPzm15/x7vVr9GLObNag6oqpjDARiiKuMNoK8W4sKSb5NIr8H5pgMc7IBjbJqpRWqKKmyl1GodCq4KwkZiklNpsNKSWqqubq+hl1XUmgjRCAWhusMVS1I8Z4lEY/Vj8LlZP2HqUVRUFIUapNXlQWh+BSlXJUO4RhJIWAH0aWbSMKiKlNJ4RI0Y9Jg5qCpVKYgqqCMwaVpUpYUjmSIOM4oJTGVRWSdOvpmkytPpJxo5Sm73pRZZyZ4zX87WdOa32sTA7DgDUW5dz0858GKSZMJRtqCP5Irjjnpt9/CKzAjyOb7Zpf/eozNIq2rtk+e86z6+fM5jOatpmS4CnYD4GY00RiyPodVSxZHracIU437iGYTVHInJgiIC1A7axluZpTVQ5nLX0QplkbfUyiDhL5wz1yqOgeiJYQAs20ITpnoEi1dxg087nIIfP0GjgGxNLC9L60+6DwCTmSVMao/Ei6TIoNbSUJVEZNbKw6HjhPhtGTySQF1mh5FopsYHoYGf1I2G3x63tMzjB6bn/5GbOYWWnLi/NLtus1435H3+1RM0PIiTEn6pzQKEpMDLuOYdcTY2TWtozDgDGGPEllh35gHEeauj6evkpNLQs+MvQj1lip7LmKlAsHMZs+JJPTFQ+TemU/9PSjBq0pCqq6IpGJJTHs9jSrBU4rMJasFTEn/OipqloIiIlkFQWRvCijNXkiZS6eX7MuhU3wpNyjjcFVFfN2xvlqxexshWtrCTpLOUpKnwJWK64uL3nx7JI//PHv8OxyyWrZ4qoK5zKLecP19RnzeYMPgb4fePfuhsViQdNWbLdb2sWSpm2onEOh2O/3vH37FldZ6sZiLWy3GzQVlXM4A5WTvaYfE7lIomSUpnKGHCJx7Ll9c8vQdbjKUmnZO0suBB8JPh6TlZwhhIQxEwmu9IFakQOoyEFUlPmmcuvItugp0BCCuWprxjGSQqCZz9kPPSpFjFIMQ8cwePphfE95BudnKzbrDSlmum6HcS0qg/cjZ2dLzs7OmM8XT7ZuMWecNlRVJYT8QaMoTK+cdflxL5C/l+lsOpAsj3TTv4lHovZQ+TooAg8B7/EyTvvRsSY27S8p5WOCWybJzDgOsj83khAeFKWiPpI10JXhcnHGuN0T+5F+s8Mag23qI1mjVCKFBqyRxGMxB6Pp+5ExR3CGetGgmwo7a5gFz+g9y76n33VHJdybL75i7EayT7TKcVHNqarI3bihf9jRuIp5+3StlAC78yUBTVTSqlb1IyZG1CYzpJ4hR/Y5sVaWUVkGLENRpBjJYyINgzR5TgF6TOmoBIJ0JE6U1qLYpBwTCpJCZSHuD2eHtfnYLm0UFPR0Bmb8ww6jO6wxOGOprMFZjbNaWoM0VNZSpr1NhCVqIqcLqMI4Cine9T2mDti6omojURUhCeuK2dxjjeP6ask/+Pt/hGk/46s397y76xiHjjF6VAxYzoRUVKI6UNOdL9y2qAKGMND5PWMQQvypsCkVu9Gz7Qfe3G/oR49SsFq2tE5jyIzDiM6Jtqlw9Yxdn7ndDaz7ni4mUlTHZ7XkqbiTMnNjaaqG+awVtaJzKFWk8Bc8uVTURRNiZrvr2O72KGNomxl1XVM3Ld1uSwyeEiOX52eiPFKGuigIhRITGYWpH9UbIRYGn9j7wLvNmupshZ21fPb2NZ/dv+Ptds3sHOq2IRjDdu9JyaKLpqjCZrvHZTCVYhwTuQKNo3YzSVC1EjVRjGQUWhlWqxW36xvu33b0f/XXfPLHf0A9n7NoasBAEeUhmH/bcvx/jVL8pAROoBIhDKhiaeo5KWa01cwWc+4e7nlYr+mHgaurK7SRdUo58PHyJefn51xennN1dsHl+TmXZ2f88//qv+TXX32Jq2r+wT/8j2kqUdPV3/se6+6e12/f8PnXXzCv5qSQSalwcytkx/n5ObP5irubB+LNBm1uePbyBbZyEqsVxeXVBe28RunM3d0Nw9ADMK9rsrEEFfBhpOREDIUQPUprrKtgEMVACAOvX3/N2dkKBSzmc/puIIwDm/U9727eoGyhnc1YLlc8u37Gq1ev+OqrLzlbnmOVYbVc8dkXvyGEgbpytHVF5VoohqFP7LvA51/e4MP2SdbsAGsrKYzDdP9Oqn1rDvw80+FGTlHi9JQk8Z7OrZLLRDYUiS0m0r7EeFQ95/RIspAiwScKkRxHlrOGVWvR6oy2kS4EO6lajHWoiWRJGXyIDJ2HokThFgKRRF3XWOtwtZW8S+5M9FRYkNKO/H/O4EMmjJ4YplbbXl6byolue0/dGlxp5LkKkRITKhd00dIaWoRsNSZhTAJnJzWL7M16YgqORfonTgheWlDWgQVlYRxh8JltyGxKZG1hW7U0H3+An83pK8uuwFLX1Koi73pu37xlt9lysVzRKM3VcsXz83MaJV0hcejxTUUulXQxGINWQAqkceDsbMU+jvhNx5e/WbPv5ToZClYBKaM3PbtXX6B1hFazHvf8eugJD7dcWM1H189pKokHR2vJ2oAx4OS+KxNpPJ/NeWYqfpQUf/brn3Nze8vb9cCH159SRUWlNWM3oBcWu1qizlesPv4IVRRvf/45f/4v/mu+v+/40ayhenaJMwY7kSwpyb1rraapW+qqRyVkLZVGmW9HlXxrgkUb9Y1qsT6qGNQxkBY5kSXGOBEmWQ6qumHWzqaKiFSjDzI1SeQek+T32VUQOZsosaSK5vuR3W7H0PUsZjORYxaRjRmtcdbQBTlAS0rCFBt5AFPOhBgo2lCQirnKwmwmpJVGKT3JgzKqSIJvtcYXISCMtcfXaY09VuxjjOIpozVV5fDBo7TITt2kBlCTFFy91wYk1eI0JbANxmip4Fb1t12qb67bRCblnEkpH6+vMXpip5kIMy19k9s9282eoe8wShHGkRjD0Y+jadtJ0q5ECTEx3Mfqd57aNSayRRKCOBGG041dDi05GWPkes3alqZp0QgppKbXbt67R0IIjOMoBIc+tAE9qlcOBJ0tGecM2ihSKIzjSExzIRQOjPx7Khil9CSH5NATcJRQlixJv7PukRyc3h9a5MCHtOop20wAamVwSggIUDg1SSnJ0i6UCprM+O6OsNsRNjuGtzdcnl1wNp9RZ7jZ7Ri6/RR4Tm1cU4+otAt4ut0e7/30fCSGwWNcRU6FYRinVq5IjLJexkoSKs+WkBzOSGtXVdc0TTslIhLQKGukSqIN1X6PHUaMdRQyISeG4GkW0tOuSsGnRFJQtEY5i7YOpQOlIK9NW7Q2pCKbekFkocYI4YVR2HmNW86w3ZzgA2QhZTQTOayRrz1KDp7uMPz9H/+Ii/MVy3nDu7dvsASMPuP51ZzZbMZs3lDV1dSO59nt9rStXLPD3jib2oCcM3T7nqHr8d7z8oMX1G1zTPYrK8GJM/LfkITACimLzL1yOKMYBk8YO7r9msoUZq1lMW/QCmJOjPFAlsqekBFCNJMJKVFbdwwaQoSURFHUtAcFn7RkKi0KPG3MVJmQxDTFQyVc9mBXOVJO7Hd7lLHElLm/X/P8+XO5D4OnamrmixkhRO7uHljUzbSHZipXsVjMub6+frJ1c3WNcRXa2KPhhZCD07MzVatSKegp0TUmY44Vq/dVinq6tf527y2QZDDFKPJVOO4v32g1ka+cvkNInQOxrCdV5na9FV8x7bCVEWIaIdfyQW6UCsv5HOUj3ejx/UBoW9TU8mAQlWEYPLmx2KmQYCrDuBsZes/r27dczz6irSw4jTEVbeVo2pZ5PWPsR8au5+7mjjgE4uBRcaQuGm0baBe8u9uiQkK5+GTrBtC0jdybKMbKsQMpsvQjYxqIJRN1IVWaqAuojJ6qkeRIygGtLSgJpvWRMJtIxWkJSoEykTiZR1JdUYjTYapyIRUwqRyfBzW5t6hJ2alUQhHRDLiJYLFWUxlRHNXOUFmJE4xGFDFK2jqVEn+5FDPRg08BNUZUP6KdEMymshKvVA3YmvNFww+/95LFYo61b3jz+n5SZnhyTqRkKFoIHaO0SLZVYvQjPoyMvqP3/bRHPB0bfRcU2yGx6wLbfkRTaCvLoqnQ0n8FgHU1WTv6BHe7nnU3sh0CXsleRAGjgKKP1cnZvGXeNrKXVhUlJ3yMxGGQuBHNGBJxCPSDJ8RCW9cYV6OMYxjl8yUlKW64Ws6Yoki9lzaelLGWqWXYUJTGh8CYMj4XPAqlDWjN6/WabRjpSySMWz68XKAbTT04Uon4kKRNLUVMkXg1hiQtUADaUFtDmcIvSXQzFE1trcQKPnDz6jXrtzecXV8zPzvH1PZIAD8VCgklYli0ZvJkZFKLlKOab3V+xhg8m+2Wn//ib7i4vGSxXNA0FdvtGmNguZjR9T39vmPf7/nok4/57LPfcH9/z1/+N/+aD168YLWYs2gtL69fYIohjYXN/U4KbjGyLpEcPOu7W64vniGaH4PvR16/eoWpHKZyLJwVpYS1fHB1Ra1gv9uxXT+QU6RYSfRNmAqDpTCGkcrVGKuwzky7ayb6nvv7W3IsVHVNSVPhx3ve3rxltpqjp3bT84tLUQaPAyX0GFfRWE1TaWL0dNFTksRXORWsdaRUs995vvDrJ107BUwHAymlqWQyeYFNUv4yfU1J0hpYUn7sgZ3i/JIl7k1JCidx9OQQ5OtzmgJqQBVymX5GCajkmdXSmuecoq60XHNrRDFhK5SRFqGMJoRE3QZZi3EgBE/MCVdVWOeoaic+m1rarOyjRJQSJffIqYhy3sv9En2k23cSx6MoaYTkUcWicpQKTznkS+/5dxxaqXN+vI5quh56OuM1R+/QJwwrWRApWVEihJhJ/YAfBja7jq4oQtuiL1ZsVy1rBds0EHLFRd0wn83Zrtd040ixhg8+/pju7o66qZjNGgyF6EeGbo+rDGHZYpwUVJumIgRH3/dUyvDh5TXLds5P/uKnvLu9Zd2PpHaJmykqn3C7wPkmoMuI2SYMGd/3vN2s+Utd8L/zu1xdXbNYXZIphJIJWYkXkHqMJyMFYzTnZxe8+OBD8v09X765453/motmwVWzYD8Egi4EE4gYZueXsB+5M1/z+U9/hraO57/zOzy7PCcpIySh0sBkDRHBKUetK5yRVvxSyrceB/StCRappkl/krxIYUskWdEin7SS+JTJs0EpxPyyaSShKoeeN6avlSQ5xHBMeg+GWIdg9FBhLpPywHt/ZDFLOSS16ihJLAXClBDmXKZ+fn0kdlJKqCLmkc5YaZkpGXKaFO3qmNCKz8OBjcyEMB6NJw8kiVQFpmA5SaXLuYqcMsGLIeGjAdNBDPX484Gpr16YYhsNUUWehl559F5JExEEB6HN4XWUKeDTjD6w3e7Z73vW9/ekGCgpoJVUSUMKrNJU7dIGbc2UdDC1B5WjUiVGaXtKKRIO0qsDiXGoyypRZdR1Ja0QR7LtMSF5XzmSUjoqnb7ZhiJIE2NeSkZr+1472WQaqQ5VLo4eEikVtJ5avVBHSf7hHixZDgdwKK3QRR83WJ0zBan6HaS6T4lqIleKkoPMFfFfkf7GJIHkmBg3D4ybLWGzhW1HvTynFddixn7Aj4NsGFNAlqKYHhcf8YNn6AdCFGl0jEKWSa6gpJKbJ1p5qoYbLbJrrQ0HPwqtp/70yWNJHckoIVYMkF1Gaan0iUKgEEvGx4g+qMyASXMIRqOdwzWNeAmpkRgjISVMTlJbnuSMuWSxu9WiLArOoBqHnTeonSWPkVTy0ZMnpoQuk6wxJXKIPI39H7x48QxnNCUnNusHLs9n5CRKi7qqqCo3KdfEc6Dve5rZ7NhiZSuHcxZnxQAshUApRbxllqIqCDFSVdVUARe/AG0UJWVCChQy1or/irOKPkdiGMnJ0zjNrHG0jXt8RnIiF4kXDva0B88qUXzJnnFol0iTF4goEUEhKiOdlfz9WFGaJLpaZPSoQkhBAiFnOfT6piQmyAcS4/Bs13VNO2sotxLwHPYDrZUYKl8+jRk4iCzVTPehmkiPg7rx4O8AYtadc5lkz+X4/uWqTf993F4f23zgSJocKoH5kJQrxd+mYnnck6affCCSQyRPpJcfPL4eCVWN02Z6xiRRll566YmuqwpfOUajp7bAEWUNunEYJYlpHAPZZVAG4xyuqcgKej/w+uYdzdU5dt5g2umc1qCMxcSCzgqVCkZL8QGdSOMIQciGWhkxT82Z/IQqCICFOahRFckavFb4DNuUGGMWvzWljve7LhmTEipHUolEEihRM5aijmeFXPt0WD1JrrS0FB7iiEM2+X7bVyGTy6RsMQdz3PdabKefXSZPk5A0NkIwWnxHkiEY8ZvTqmCnliOtwejp0M0arSo5F7P4hJikUUajghcisw4YFzH1kvNlS86F9UZMhschkZM+3OXy3CstgS7SptgFLyb00TPEyGOX/tNgHQo7n+h8xMfEzGmc0dRGo3M6PhfaVsSiGMfIpvd0PjGmQtZarvNB7VWE1LVK0TYNTd1Qu+qoeE3BSxXaNiQUY0hTK3sGbTGuAi2V83EYCEH8MaxtpKquNJQippcpTsmpYepblfuvQEyZMSS0q1HWkpQkEKZ2VKki6cRsXqO1ZvQLQoyM3lPIpABKNl9iChJbTWyGkT55iUUOvQvIXmG0QufC7mHN7v6Bbr0hDkKyKQ5x7VMhT4XVRwPuQ3wmEAJalEA11hnu7u/ISLvZcvWSvu+gZJy1jIPHjyPb/ZaLy0tu3t2wvl/z5uuvsEDxZzTXZyzqmrBY0K3O2T30pOwJKaLGiCZRQk+dM227nFp/CkPnKaN4Nai6oq2lXXLe1JTFAqeghFEGJhRpCy/aoYyW+CclcAWtNNXk4VNyJpXMfrfFaHf0NCxTEXe9eaAfB5oYcaZiNltwcREgepZNNV2zwqzW7PaJEBMePSnEiwyRSAbvYRyftkWInI/S4pJleIAo1x6X7khQTK0/5PweyVwm9aT4WJTJoyiFybtkImDkvCtoJYUaIS0iKkeqylDV0r7snMK6qeBujShYjEVpR9EGGzO2kvMieC/tkTlhncNYg6scrnLy/VoK1BR5DTmEqX2pCCkdopAkPtDUelLXF1SJUBKqSJxRiiQsaqKeRMFSxKMuyblvD9fi8MHjGV8O5MoTPnO2RCiKnIT8S51n7Ae67UB0GqoWvViys5qHELn3kdY5tJVOER88SRV07ZhdnNFv1mhrqOoKowolB4If2O01F+GMOjtQUDUN1ejF89AnlrOWs3bOu/mStb6njwEfPC4l6phZ+My5qqlROJXY9ZFQ9kTv+dJqKm0YxoGPTUVu5iSjCCUzvHf/qUMRXimquuLs7JxdTJibB/b7LZUvzKOilEAyhWgCqShc3VLNFtR1w/btLeuv39C/u0PFRFGGVBTZvLeuGWn7NNU0pGa6r7/lKfetCZYxhuNhF3PCYifDNUspajKyqqHIZIJxHKdK7JzZfD4FJXaSn4qZ3iGQfj9pbprmGGSmqQ+OIntC1/fs9z1dN8pxpoXt1MZgK/l5fhzZbffkmN4jaziaAIYYyUqRUpoko8JqBaz4bWjEq4SDIa0kBTlH+r7HpkQMYSLapKKkp5vCj17eQyuu0eM4cn9/z2LxWzL2KRJQkxnr4WuD98Ijl8JTCaidq6e2mnj4xUeYSX0hREhmu93x9u0N6/WOL7/4mv1uzf3NUpLEqytefPABH374EfP5nKaZYXKFBBXyk9NkkBljEQO4JIoImQqFEHJMSYZW1FXFarWknapMMokjkePU9zjdb4d74aBgOaiFDnJ9eEzKDuSHtRzlqKKoeq/1DDP1VxZSlN7cw0YoCdNjsvN+sme0VIfTRDrkiTU6GII9KV0NNEY/JmelUE0BewyROIyEoWfc7djf3JC7HjV6ZhhmylIbyziObLsd3dhjFjWkTPaBqAeisoTe0+86dts9ISWUNYwpgdZoI14UaDnwqmqSYzqLc2IMdfCgSLkI0ZjVNDxGFEEZ8CHg4ChJTUlaytKU8MQi6glbVdM0jpq6HyQYchY3aycFmMIPI0PXiS+QEcXcmORAB1BZCJyqadj3PaVxuPM5ershJplc1Xc9m+2eVFnmtZMe/35k3O25eqJ1e3Z1yRe/+TVv37xCE7C/8xFtI1NyqnryGCqw3+/ZbDZst1suL6+5f3jAe8/lsytJ9NXBFBDatuG5q1itFgzBk0rm2fU12RecNiyXM9S0d4UYULown1dcXiyoXCInTww9tSuctxVni5pV66gmkzjxyJEUMBckyZgCsBAfp4cZIxX1nEVGnXPEGjmIUwqyJ2qFMYcSwMHkVk0GvJm+HyaiSSYohTGIAi5JsmOMmip5kdmsBjLGQsx+mi5gyDGymLd8/3ufPNGqgbE1xlZiEjopI0mZGEXFk4uYX0qboag5jZWqnyTuevqYAs/DnnBUOQjPdNhsykSU5ulAF/PmScUykS754GV1+EiZ5ONR8VhbBzEx7jv2BRyaqqml9XFSmU5Zp7SRNA1V07DZbNh1HYHCwp1TGYdPnrHrSHVLqS2qrVicnWHu7xgeAj/7+d9QLRpQhWv3HFfX8vZ8QsUkyou6EZWWa4ndyN3D1/TrPXQjeRhxWpFTYpxk+U+Fj6NnpzV7bdhWhntrWGfDLo1kZSkKjLM4Y4/qPRWlEhpIBJvFTLxAyIcopTxWd5WsjTFi+JtVQUVPzn5aXmnvOPiwpSQkjhhJvh94TdXQo0JG9kSfAyogLUJKURmDncg4rcBp8XUyRlM58ZKqrGPeOPqxZ4we73tijlMcU6Dr0bbH2Ipq4TFuzmru+PjFGU5ptlvPdhPwienZl8pemNp++7GjHzpS8hQS4VAYeUKh5qutx3cBP4q3SFVZ2spQqckrb1JGKluz34/c7QZu9h1jLkRl5daeVG0lRTknjaGtHBerM2a1o64MIcjeH/yIUoVKSft3P/YMo6euG5r5DFfPJNn1Aw/3opqr24bF4oxcpFVLo9j2Mj1TGT0NA5DFTLFQMIwh87Ddcfnpx6TaMarC9fMXlNax7Ldsuns+/OCctmm4Omvpx5Gu79nu9rx59RpCQuuMTwNjGnCmBltQRqr9tXPSRqQUSouC2hlp+9zd3XLz6jVn19dcvnhBNV+hnXrSdZOinLxnY4wQTiUzhiAJ7kTZGWdYLhfEdMVf/c1P+c0Xv+Z+veQP/vBHvPn6C968fs1PfvJXfPLpp7hpoujZ+SUfvvyQHCJ/8Wd/jvKe4WGFjc9ZNjWXlaX+4Dlv7zfsU6DzA4rILI+oYc1u9xVjdUa9OGd5/REZGMaOftPjgfmsZd62XJydc7GYs6hFiXdzfyPPUvDUrsIdFNjeo0rCKM1y1tJ3HXEaWLHfbHDVjKpqscbiU8QHz83dLS/3O5r5ilK1zGYLzuZzfvTpS5ZVYLtZc3/3wG5XkX3PZoz0vkNZg7GaqjHkEXKylPzvPs3k34Yc49SafTyk+Ftj14koyVEm2h2qqdJCPClYDmdSlLwohyjkRBJvDmsUWUMqiZICFDFmrd2cWVvTtDXaKFxdYZxFVw6MfWzTMA5SpomZ1fnZRPRkDmHmwW9RCpzv3ZxJVDRl8oc5FNFKFN+kFCLd1hKDxIW73qNJaKbpYtP36qIwaBmYUDhOjS0pi9q+MLVLlW9eQ3UwQ39/GMp3Q2FEJYMuCnrPeN+x3+5Zr/eol1fYaklql9yNA6/2e+6HkR98eAFWkUls+x61aKRV5nzB+EUhW41rKowtUALed6y7Dc+eX9IuGopSzBdn5KjY3u/Zvltz/rLlww+umf/hH7PA8KuvvubzzZZZTMxT5jLB37v8kOet5aK1/PX957we99wMO768ecfd6zdcffAhf+fvBT780e+j5gui0uxynAp9mQowZeowKYarszOy0my7gVe/+Iqbhx1b/5pPP/5IOiN0JCdFsg7VtpxdXNL/5hXh67fsfv0l+j/6Y1Kj8UqTquk8L1JAVrbCNg1uarGmZGz6diqWb02w5IMnSc7kEMnGSmXamGlqi0ErhQ+BMMnNF8sls0VLVTlGPxx9P4w2R0Llfd+ObxIr0mN6nD4C3NzesdvvGYeRWdtOiYAWxhOR2u33Hbv9TgYEq5aSIikiUwFSJKcIk4yzdhV6avOodSFRyCpPlW5hbaUNSNQofddDP7CYL4k+YCeSCKSVabvbEWLg/OJCKove0/c9H330EdY+GvseJGfHB6cU4uQZYyZVx1PBGIv3IyH4I7FxULUcatVaKUIqlMkQ6ZNPvk9TVXS7NXUFFxeXzGdzjLYMo6egCCGzWJ2JzGpKyg4tQZJEZ2KeglYeezaNVjjrpC1o1rJYzKlr8ZEYh1GkdXA0mny/OnK4Zw4fOef33svjtcwHBprJh0Ap/BigSDuSyGpFeRJjQmuLMQfTykwpUwXYmKNkNwTpZ38kXvLR6FVaTZ7eNzwzkQcpQT9SfCSPHr/Z0G3X+L7H9x1q6Gm0oTWO1liMgpg8D+sH1vstYw7MskzoIeapd3xquQoeHyO2cmjrJHAwZmrxkBY3H2TCxjAOxGgIwR6Dqs16zeZhi9P2WLUYuh49ma1u93shTSdi9mGz5n69Zr3eULc1uc8oved6s0UfWsFi5H6zIRnN4uKCqqqp2xmz+UIUHs5hnKOZzQhRyMMwevFk0dNkM6vQjcOqlvpsRYmF3Hv6sefdzVsehi3V5h6dofhIGf2TESz/1b/8LwnjgNHwJ3/0e1xdX9LMZNSxnsx5Q0i8fv0GgOVyxWa7JcZ0JLOO03umGMi5mnbmQBf2OzlUweI7ISuuL1bs9j03d2u+/PIVKRVWsxqrzxl6z93tPXc3N1gVaG1NYwpOFSorShltLMZljLNCVlNAG0qS1gfZN+Q5ryoL+0Lw46QqmfQVJU977OPJpHU5VluNdjir2e925CTP5WLRctP307NsuL+/5+x8xXK1YBhHmikIW64WjGOiZKhdxW4caJr6ST1Y3icyjozr9OeD4lmmjunj/lMOsp+JVFHl8dvebw9675PSWjS1opapUs1EiOiJj8nq0F4lJK9CqtqHymHwXkzclWY5nzH0PQ99h9MKY87Rphblm4EifSXijt849KLF7zeEOBIGaPOKyjpyiGwG8Vsy09k+vzjjYnfJvt/z+W8+4/O//gVxs6dJsFgsyCnTdx27XSctVUozjJ7W1szqGnt5yd3dlt12y/bNDSknTGWx9dOdcQBnsaPSmsYYVFCMxTIWcCrjXEXRBq0dxIxKCZNEHpymcy+gCUWRioTZKU9meEqhKWgl16OqW8w0qUvI5YO6SYmqUE1KlpwnpasE6KJClLW00xmilQToIp8XY82k5TxOU2B+UNnVlfhv2ZRJxWAsk3lxzbJtmeVMG0a6cU+InhBHMenMmRQ8o7+jmJ2MnB4iKowQAykMDKNGmQIGIbyTxHA+HJSN8owfAs6nPOdu9z3Fe0iJuVHUzlBbLTL9w/h3ZenGxH3nudsN7GMiTZqgyspIpRKlbWrZVMzrikVTM2tqamcwCva7vSgUcqJyFh8zKQW6vqMURdUuqGcLlLFsHjZsN1uGruNidUE9m5OBxtWQE2MY8bqIIkRLhb5xlqI1+66XwkIWKfrV5SXRaQZVuPj0Q9b7B/bjlmG459nVJZWtyB9cS5EvZnrv+cu//ClDN5B9xMcdIS2IJqNtEo/6yXswDV58fozcj1ZrnDbokLj56hWrqyu+9+Pfg0OLYy5Y9zTpXjne9/L8pFwI48huu+Xi/AxXOezUbvPs+RUvXl7jGs2f//mf8erVK/6v/5f/Mx+9fElKma+/es2vf/Ubzi/OePHBc54//4DZfMkHH3zE7Ye3xN2G7v6GGzbE5RxXt9h6zicfP8fMLPoWhvVrUbXbwuVyRu0SmQd2rzbkak7tauZVRfCe1I3s+g3DdproYy1tW3HNiq43bLYbYpIJacoaohYTWEOirmoYFMFA0YY+ijK0ZEVdV2Qf8CnSjwPr3Y56vsfac2QATiTFgR//6EPa+iUpev75v7L82V/+ms/DLffbyJgCKiqyMogx/8Gc8+mQYhSljBYDaab9SKGOJIpsTFk8WkKEmI6KDqb4mzK1qgtLTPQjYRyngSFlUqykSaUXMcWjcoDsaaszKmeEMJ41YkZ78IOcJhsdz8aiKLpgMFOhXp5pDq1yh4/DzpTFJ5SsUMVgrBT/ismUZChR/tm6MrW2RRSyNsFLHlsmjw6sPapxhXCZrktKk6b0vRbg9zbG31bXPwmUtKsNQ+DLr2/46m7LOiT29Yzm/BnjbMF9sNwMgc5nNI4Pn7/AWUc3et5uN5jlEmUtXYiEIoRt09Y0zuGsQZG4v3tHN/Ys8xnaOnLWVK7l6uI5X7z7FbevbyjdyO9++iHLv+v4g08/5Se/+BVfv7oh9x1NHpjNLBdzy0fnc87PPuE+ddzHgc+6Db96uGP98Ff8519+ze/9g9dcfPQxq48+Rq+WUDI+R9b9fpptr7G6IWiNyZmPr5+Rbnbc799xf/MOFSPVxQI9l8lyIYN2NefPXnBf/YzQ7Xj3+WfkzQ60IbuanLXEckmqwFpVWNtQNTNRTqGnQvG/O759i1AWaehxGk8WhkdPlelDP3iY+sOV0jSzZjKX0iQfHkfllseRvofEGSSweJ90kV5OGUsVYqTre1EwhEiqDl4e8nTFJEar3ntyehwlm1M8KlikP0US/RijjL61Vpz63xuVGZIoalQuKKNIcfrZo0z5GPp+MlR9ZIDFKDCQ8+N7iSGw2+9IMR7VNLkkGS/2W/4hB5PWxxHFT4P3r7G15j11xmETkE0ix0wpCmMclxdXWK3wwzmVyywXS2azGYvlitl8LlJ6Y8mpSP/hJKhKKR8nkqTySIocXMql+mYnR/+K2UwmpGitJ0ItTUm6Ok4OOqzjQeX02xvXb1/Dcgx9yyOjTcH7aQqAOch55b3nKWkpxzNMHUe8vS/nzylT9OOUocfJNdI3W6bf85TYdDt0loQgr3eo3QD9QN7sGfdivpeDpzaKxllmVYU9BO4psd5u6f1IOmZ9IonT06MQo/R8xyyTaNCK4MNxDX3w9P3AMAyMXgg6awzOSRuQH3q6fUffdQyzVgyrnSOMo5AlpeCHUUJhowkp0fc9Q98zDgPKyPSSUgrb3W6q2BdpA9yIkqbbd6i6Pe4RZSLycs5TO4fI6eV5nYyjrbSv6VIwBVzb4KuOOAa6cSRstpjgsd7jtMFmGS33VNhvN1TOMpvNePbsiroWIvegXIlTj3LX9SzmC+azBV0/SLDs7JSvq0kNFsR3Zhp1mWLGj0EC8KwIo5fYQot8vutG9rtOEo/JnG4cPPuNVDs0EasyVhXUVIlJMcsI3oNxXSlCtDhHnJ6hgypFBBF5UhjnY/KvtcJMe1489EBPrZaUMpGlovpzTlGKBChNLZOPDt5Mfd8zm7fHdgutxMOnrivGsZMgR0+JqjXHyRRPiUMrzoFckb8egkq+SehOVT6m9zwVdd/7OlG6aK2PgelBnXJ0WJn2oGOANhE1x6kfhYnEeXxt6T1Jdtu2+OkZ7fZ76rYGI4TWISsuqogBrDPQOHIthQOy+KW5KZDMOROSVJIKBdfWtLMZ89kcmxXDw4aNdqwXZ7A6I4bAZr3hfrvDti31bIZyjoKhZDXtX2IkWJIk6yiDfqJE7wDXVvjp+pM9JWTxSMmgjSNjKcWSQ0RlJR+H4gCJrDQJQypaXvt04UWmXGBSsBzMbqHwOBExT8kmx3vk0II6RfoULTGSPnpqcRx9erA2AHmGmEyTZRuYrtPU6oySfSGkhIkJlzJ1VeGckC1Fa4wfUMrIlIzJkDeFTAoDIRfCEKdkKDAOA94blFVgFL5o8SnJh3vgvVPtG31vT4MxRVRJWArWSHuQ1WrSxSoyipBgPwY6H+ljIqKm9ZCkTLwgCkYr5k3DvK2ZNw2qZFKU9oRhGPEhkslkBanvySnhfZRpQVomUR4Ujvt9h9MGV9XTSN0DSSnXPjtDKhmMomkrohG1mc8JHxNZwXy5oG5q6qaiqQzV1Rmr8xYfz8jpjFldy7krORsxi/+YSlLMG/Y923f32FqBymSdplgroyjifaEVFovSYIyW6rRS7NYb1nd37DYbLlI6JtRPhZTScby892JomlKi23esFnOapqJtG5q2YjZvqRuH0oW3b16xWT/wm1//hpJkKEaKid12S/ADMYzTSOSaejbn+voF92GkDBvi4Bl0JKeApbBsKq7mjuJrbvaaEgtjyPSpMJsZaqNxJjGGHVoFjG5QyETBXBAyII8E66hSjdPQWk2pLOMYpY1AQS6i5lQUKpWpp5Y/8Sma/EVyoHIGH0XFe1BjjqMnpYwtmhQjQ+jYPdyyuF5yvmr48Q9ecne/oe8HHja3MnUTiFF8LqX97FunbX8r8uSVptDkSYnB4bjmsIe9b2T7qF5R5fHfj5vDpMRMk4IFM+VSUywhE0oTRWcUWSYGWYM1osjT1k5jlicZyqEzVl6MvKj3WuEOfy+/9cKPxM7hS/T0Q6aWTzWZSBeyDKkwkKaY5KBayTl+8zpwOKfV8Qw+XJdjnHBQmk5P56GN+qlNbnfbLbtuZNsNvHm45z4melejri+JixW9dazHRLePKGPFSHg2x2hN7z1djNi6QWnDuOsmckHjlMZpLapJo+mGjn4YGEI4xq7aOdp2jqtqhr7ndhj43osrLpcLFnUFIdIm2KEo+w7XKtxMUzUKGzUuV8yzwuiCDpG3Xcer2w1v//JndLcb9pue6uOPKG1FdIbIFOfHBCEdpwsVpZjPZ/RNzUbB3c072jjgxpbYJEoBqw3tfIZ2huRHdjdvUf0AyyW6VvhcUFkKITGLsXzRBls1U2u4qK6/Db49wZLSdC9N5Mh0QxltQR361MUjJZWCsYZ2NsNOprD5QG6QpeqT0nEUqPeeamoROCR3OefJNkIm//R9T9d1BB/EjyUmcirTpJrMGMSbZRgGDmqClCLJB1QRdcrxvZRMDJ7oKwwKXbmpX12CspTEXEyXgqoUMcoEk3EY6MeRfdcxjiPL46YjiUDwXoiTSY0TYmC9XovRbVXhKgc5H8mDECbvmelhPVyHp2Q/vQ+EINdaEmMZaabNNLIM2SNCiDBVys/Pl5yvVlACbSUmR1XdMJsvZNTvdI32XT9NwZDAQwygMjFFYknSlpGSyNONlr7XuRh9NnVN2zZy/+TC6Kfxj9O1PFyjA/EUYzxeL3jcaP8NguV90ks/TgfyfpxaHAzWOgmS8xSk2CJu4YeYv/ybDuApZ+z0uUOb3CHRt0parZ54P+XNw1scGhMT4e0d+naD3g9Ue08KI1CwBhbnK1aNyF6jH8W4NEZu7+/p/Yh2kjzpaZS0Vlqk8DExeE/IiXoK3oe+O47Q7vue7XbLMA6iSvPxOIEKFGPXsd1s6bqObt9ilMZZJ0qsydg2DIOcmVoC92Hf0U9EqbYGH4W0vH94OK6fNoYheEIInJ+do5ZnpNETfCSGhFIRY6NMBrIVNos8VWf5PdoabFVNm6Simrf0TUXuBvrNFpUiuq9ww8iibWmtw9qnm9xFySxmLc+uLnn27BnWyPNd17XsfaO01wxj5Py8YrU6Y9+NuKbGOof3kWoK4Pv9wHa3o27EGNf7jB8CYz/SdwMocE6k1f0Q6PaeYTfSrAwkGUfabQd26z3dpmNmE05lTJHKVBgjfgyMk5ljnEwDm1k7TdORGEVP5sa2KBIZO5EtQnjI822tpev6iQ8oR8IcwFo9qVgMbeMYBqn6te2cuqpIqciI1BDwPhxb+iShLbRtzWa9k/ZxLTSG1gpnn2YqBjz6LqE4+kCBhFiP09GmIOugokuJYszjFKFyCMKm825KonmPhCkT4XQI0A6KByF6j9n24xE/FSQeC3WFHCVJ9uPAcrmg227Zp8Ruu8E1jqJgVi3FtFBNXkUastPQOpjVxG6glMQ4jVlnSurHGKhyJFGwTc1sMWe1XLKoW9K2Zzu+4x2WuDxnHAdub295u9uyfHbFxYtnrK6uSXmEkEndDp0Clow1QsKjC9o+XbIHYK7PKcNI9J4xRsacCUVTsChdQXHErMmjVEKNcqAdWXmSSiSdiBFSUZR8UA6lycSQ43RAiezV8b4w2k5FoDj5dU30/qQYmJbraMCtjT5WgdPkZzKVA+TfrZmmN+ipYUe8NdzBxBEoKTCESAIwFlPX1JWjqRswlnEcMKZnHDtSSeSSyFnO1xACvuvwfWDsPd1+ZIwabEbZzFD01A6XKTofSdIyTYqUm/Dp1i7mhCkZVBYSwkiblEbB1DMfQmLTjex8YMiZMqmnpW0LIWtVoaocq+WCRdswqytSkmJcTol+GEhZCJY+REreT4Ucy7wWKfzgPbe3d9ze3xN84OXz59RNi6tqVE7koggTCUJTEVOgaDW1bQZGHxlJ7PsOW1VcP3+GqxzNcoE7m2OWM0y1QtuE08OjWWjKxCBK31Tg45cv6Lqe7WbDz/71TzE+gxffCOlKFqWnj0HaK3BYLa1DzhlqY9g/PHD37h03b9/xoffYukKZpyM1YxBSFqDrOmmoy5lx6Ek5Yq1htVpyfr6kaWuq2nF+vuT111/ycHvLn/+rP6Pbj6yWKz54/oIcA3c3O27evcFoePbBJywWl7z48BPC9o4h7lGxZ+wCMXpc9sxXV5hWM0sN+b5h4yP7EHitE+cXjvN5xcoV7t/cEdJAGnqMcxRjyUrTxcTQdxQUrjNcrFa0WtE0jj6OR8Icp/FRioZGRRojs5hiKQQFkUTKgbpyDEFBFAJ8HEbGQVraa1WRfGRYr/nFX7/C/PAlZ+1H/J3f/5T1Zsc4jPzy128gG1FA+Uxl7VTQeNq9MoY4Tc9E7sGpYPEN3lSMCuVMEpneY9HgoHKZ1BxkKYJHJVPZNEZe8vHf8kT2is+lNQbrLMbaaV+cDEcRQrkcp/Idpvjx+Ocje8JUhTi4ZRwU5EKcf+OKTapCKgsRIWOnPMhMPlccR0vnY+tbKQfPuan1fVKqHq/JIeA/CgYKSpdvSlmeEO/evONus+V+1/F6CHTzJepszup7H7NfLNmExO1uYL8JLC6WPFtec9bOGYNnTJGuJC7rFgXs+gdMFl9HhxAsjbPUztIPPdtuz2LoMcslVhm0M1RzS7tYcLdZ83B/z+3La7734QdcX11yNZ9zVjnezmq+2j9QzQ1mrlBtxm5HVhoWxrE0K17Uc97sOv7811/y8//mZ9z88mvmX7xj9Sd/QPXiGnd9Tn2xIhkp/gz7LX6M4m1lDbN5y3K1YDdv+eJnv6TZ72j2c+zLc6IpZGNQ8zmmqohjz+bVa/S+R6WENlqGdaDRyFhoKBRtJ4JFBuLkb/nMfXsqNDGpM/IU4Ml4OrRF/IBEeSIEB9NI0sfxy2qqeEr/upAqKUZCiNze3jBrWhkDC8cxvDKeV9qO9l1PDlJxPfSuq4kx9N6z73aMk7zZai3zvGPA+x5NRTEKpYRBlYqOJ5geTUargnJyWKtcjj3uqhRWszn9ZETppwrh5uGB25sb5vO5EDM5oybSJlMY+k7qDDGw26x59/Y12sBFc3VM5I7Tg/qeMHqZvpTi8Xo9FbquIwQZqaenJMhOB60kKmryt9kzDKO0zCiLawyKDLmn7yM+DKSiObdi0lk3jnY2x4c4rU8ngdxkZKyNFq+GqbLSNhWzpuHsbCkVNyPTK1SR9q1DsMFEAByUPAcVjPf+aKD2vhHkb5MrKcXJfM5OZpsHE+GEcwUObv+liHQxZnSQn+vcNyuX75tOHjxb5LppSiqUVKa1etoKwwG/+erX1NrgEuhX96y2I4sxs4waZUDXDj2vufzgOXXlsGjWfU+cJJ0PD/dSOTXm6AKfYmYYPX1MrHdbtrsd3TDQzpfknNitNyhj8XWk66UvPARRmfRxPKowwjAy9iN+8CQvRKaM6hM3eZIYRoXBi9eQ0aQUyCmgS8YaSSJsNpScGfp+MsuWe3Tc9RAyt6/ewSg/v9vuWb+7oWoq2vkMZyvqmYxaLqXQtjOp1BnDGZndbk+XeprFgn7eM3SebbjFoWitY1nPuVydS0LzhOtmNbx8+YLf+f6nlJypZ9LmApARn6j1wz2Xl1c07YyYM1XdoM3j5JoYoet6vvzyK2JMXFcVbVPx+s0DJWka2/LZ15/x7IMXaOvYj5mHu47dfU/sEu1lgymGMCTu3m0Z9wGdYOY0M2upjSFHiAHGPtBtdiQ/0C3nDPOWuq4Io6cfB4IfOVvM0fOWura0taXrZgy9p3Y1la2wVlNmc9ZraXWiiJRd9vyIq5yYxGXF2WohSpcYgcxiMQOlCXHP5bNnzNoWisJYx4FrrqtmGgUvz7nV0zSP8HRktEzGchj9PmE6PfPqkBjnR1Xbe55PxwlAyDl3HPtdsgRvj4U58eV4r+Ux58k4L6VpKtnjeOuDhUqaEkVFwWolxowxMPQ7FvOWi/MlbW159eoVb199TbOZ8VJ/TDVrYCKAkirgNLZqmfkVsSR8N3K3uZdqXy64qsLHSBc8JnrOqhl107BcLHh5/Zzx7gF8YPflW4K+kzM/eFbLlvOm5Xw2Q+XIbnOP33TEdw8Mt3fEXU8i4FqHacyTb5n1P/nHDF98ye3rN7y9XbMeFX02qNKQU0OICu8zaZzIQiOjqxORbBKYRAodKUdKmsj2LGRKIZN1kalapUilNmdijihtJt+0xwl5BwLicL6CEN6UIuurDgQNkyHiZNRvNLaqJFHWBoWQlHZqCbETKRfGIl4P0RNSIZRCOwaWS0Vdz7C2xlUtbDXej8QUqSsHyqO1jEBt25rV0uOqLW/utoSSSUp6/KWGXuTeJUuFF3kdhyLZk6F4KB5DYt60VBasyoChaEtImv0QudkOdDEyJCl6GV1QiGktMeKM+GPMKoNViRx6jJJEN8RAKIlQpN1xDJ44emZtw/XqjHYxx/vIenvLze0d5ELdzmhmM5lykWQM6SEutXVFUpnGNpja0Zyv2N0/MHpPUNClkYVxzM/mJBUxjWa+ahhsol7WVHWNzlr8IGIi+YgqATUpBaw2mFmLKfn/zdt/NVmSZVma2Heoql5mxFlEZGZEZrHuRldjBjI9jXkB+T14wk+bh3nCAx4hkBEAXU2qi2VVZgZ3ZuQSJYfiYZ97zaOqBSIdbQ1NsfRwd3Mzu1dVj5699trfoveeNJ8oOWI06PLkwF5yaCnJlpUaLmPNVhvCaeRwd8/H9+/FaVuFb2eeSWQZp4PsObTBGhGa+87yJ3/8FcsSqCWzHjpurrciBi2B/fGRwfd89uoNv/zil3z/4wfevn3P4eGRNy+u0c4wTwv/8S/+X7z8/I6Xn33JLz7/FdcvXzLbSLh7oHNrNJl8uMOFI1vn+MJbhttXfK2veD9G3i0R+25i3E78ixeGf/XVFTlWTlPiw7IQCCSl2XaeKcpoFnmhPMwYpeiUZq3amEqV7MFkaKDihLaFuWROMdIbT1bND+0MU9C4CJFKWiRVLS2B6i3WONxqwzd/+C3Hu+/57uu/4v/wf/4/8ss3G5b5C/7jX/6OHx8iY8rCJEJEHPLzjpuUlCk6oYuh5HxxVwJPa1OpxJRbI7ugy3mPXtsjTT3VfalxSVKR0ejixIXXnv0lJwnMUAXtFV3X4ayTUW/vm2tFX36tT09KnhwkPP3ZZfv/hCI9u9afjk9/fxY9qozi6opqjs2qziEWfMJolDS1M6hWkmXOSYIZldPF8Xs23OSUKCa10U99EaOf08UyjYmIoQwr3G3P7otfkK5vuNut+fYw8uEw8fbukWVJvLjyXPktumrGJfA4zWQ0veshFQ5TxmWNLwZfNQ5Y+Y7dsMYrw/7xAb/ZMLx8xSkFDApvNddffEaMMmr///i3/x8ejn/MV198zi9fveKf/+lX/ObzWw5fveT0zT/gUiST+Wz7gjpH8pzYhcJLpfjldsM/+9NX/O5mz/fTzO/eTvx+/EvG2xXL7QZeXeP6Du89Wz+gkwFlKKpynGboDG++/IL08cB+/8jhhw84r8lbhzOwsga7uyJ/zEwf7jm9/Yi9viKuB0I2AgRHnXteZKUxzl+Sq35uxuHPZ7DkNoOnJHpVQHFNaGkK5nnDeOYgoAS6mLJspM/CwVmImaeJ0+nE4/0DcbWwdC2DvJRW4ErnMMTINC9Mk4DxtNb0zl1y1lPJF75KbTN/NRUqEh+mrGmpJuexEeGxnOnXUSnAkhXCDMlZitRmk0shXEYnaoVlCRwe95L+4TsRWWolF0kCGsejmFuVuGgeHx/YXe24utpJ54zW4SzijIkxSpe0zRHH8HwJC7lRsuV9awtIk2jPiR21wDIHYsznekA2jkpTypmBEsnlRC3gu46u69hsN8KwcYa+7zBGNZJ8JiGYQEPFOyOOlb6j67x0v5UIdiUVcsyEEKUbbsylWDkLLGcHi8Byz+MG/zRx4+xuKU2N/pTVArnxYQrOyUJd6zmdqKC1jPqc1edLB/sssJSnFKbz9y6Uy7X6nF29p0MsciUUbIoMFdZo1s2eqp3FrgeGqzWqVtIi6TEpSAEQ50DtJUp8nhecdS0pphKpTMvCEpNAatt3DA1Sl3IS5TuEi8DCuWNfMrM1l8jss+CaYxMIQ5B+g0L4MUni5XKOqNIaD81uenY1LJM4Wowx4uaaZkiFcX/ker2l5ooqEIPct+TKaX8k5YTSijnMOGXxzUWzWm/IGXIolKyxfY8ZerT3Yo+tkJfItB9bjOrznb/r6x2bzYq+79rMvL4wHHISAPg4TXz+2StJPIqJkiu5JnQudMPANEaOx4XTuLBa9Q2uqhhPC7T3+vC45+WbN2htCTExn2bCuFBDaW4lmTU9HI6UmLAVHJXOSVJJaMJjiQliQpdETZESo8TJFoHBTdPMskSJKtUaqwwpSezhNAWBISuHcx3ed21zVbFWIwih0tzpwnHpOsfQe0IQ0Xu32+B8jzYdXbOwpixpVinKwLS1HbWKm3CZF0BRslj/n+tQze583mzW5lo5x1FqJaWnVkqSPRrcrzrZfCponb7SYsnPTYXz2KiWsdp2f5276yBss5wy1Z7dLfrifj4npAhgTxocRmsZ0yqFuEwYrem9wzX210Jh//GOddzgug7bdxjr5GdD4Z2j9x0qFsoice3nYj6k1ASwSNUCh/VDz3a3RY0Lud3DOTY4fcqUlJimEfX4gPaWeX8kHk7E/Z6yjJSSqAZ0p1FOP7vAkr76NeMUeDyM7PeBuSpS0tTcU6I+4wAoVZGzREMqZ0jGUrRB64wyC6REKUHi5antvS+t0CqU8+hrE9eMlfOk2/nNLX3CmLMLRvY7spdQlJzaGqculnjVRIvSWBa6VIpqDrBWRJT2oQFlhEFQqzBWpknOCUoEWmM0zjms64hZip9cwBgHypAKgGezdbwxnqQUYyhMqZIWSVEhlwvsn9qQv1k6tOYZn3WqBEwbW3S6YABVlew7iti5p1hYCiQ0GNWKImmWaVXwnWXlHLvVgNGVmiOxJKrSpJyIOYl7Mss4bDg354zBeU8qmeN0Yv94YJxGdtudsOH6nnlZhDWVc4MOV7QudDcd3XrA9h3TshCzJDnFkulWA37dozpDtxtwW49ZW3ynsNsO7Q2mWsjiXjEhY+YF22D8KQl3wior4WuXHJMGvJYrkoLwAvN5D9wcF533HOaZw8Mj7378kRQj3bm4fK7zRsTocxLMhtPhiAJ22zWPNRPDzPt379isB4HLzxPvP7xnmRLO9rx88Yr7hyPH45HxdGIcPN4ahq4j5pn9wx0xVZxxuFrQXUe2HbUWvIbBa8z8SJc83vV8vt4Ss0PrSMh7akrMc2Y/acIAg9YMKxisZSkQqiJqxagUUUOMFXJEV1qzpbQxFAXaoGXLQaqFTgNWRteUkiTESELrgtUV2xyQNSZqSJASWWV0BUvHvCg+5gO5HPju+69Rdst25bje9Hw8JHSSZ4BsZ2sTPJ/xOD/jWn1zcaSc90Dn52Ap/+RzzyPEchG0UddLg7OQQwAlTb2mwMjV2vbPSsmIufAgjTgG+ERg4fzrJ6M57XfnK4/6JLKoi/GmfPLz1+b6aX/ZxJXm10cpKdbBtBrgPPrfXIoX98y5TmhvT3v95Rxd3eph6bu0NalNXkjT73lPG+uN7M9qoe42LNdbTquO79PCH6YD+2XhWKOMgFvD4DtphiaZGnGuw1Th6uWYLz9f2220pmPHYD3TcWL/eCAkSV8tKEGi9B59e4UNr/j6b97B9z/wGKTR9mLVsxl61p+94uN8jzo8EscRt+5xfYeKlTQGwpzol0IH2NsbbqfAzXHGLUfeHxbuSua+BE4rz7FzHP2AKx6jHMZ5Uq0SLOAUL7/6nNVxxxwDYdcz2wpVwPX65ppcCmGceLs/0N3vYTUQtMeQ0MpglZZksxzJy0ycLDUaASf3/+V8v58vsCTZCGojD0AKAoRtm41zoVprRZ1Bk+osOkQ0+iKwnMeCjqcTD/f3zKcRBQ0mG1oMVmmjClLELWFBEl4kK31wnhQDuQF1z+KKFAYCyVVFXCW2a+Ca1hEqILDbNuOVWtMpNyv1uahXVW6o2LrztQ1LhxDY7/fM44RrKSvnBJyYIuN44lMxZ79/ZDwdSSHgWjrFebZxWRZCCGIZbmDf9IwRljmfAcLnReTcZX0ClJUir+mSCS/0tra10w1iltsYT8Y5Jyq0d20uHLrOYQyknDExQWkbMaPovZUo5k7AZ0rJYlyydDZSzMSQMNqilRaBpW1Mz+MqqQlvwH9WYDkfPx0Tag+Gs4WvxbVJLl1TLnPF5ELWmVJMI+1LQfMpJ0GElKfxpHPGfc6Zs77ynEU6gDMKnRLESJcLaxQbpRiAZGS0zW9XdLs1YZY45rNDIsVEChHtNDll5mnGWy+vuVSWmpjnhSVGAUC3NySmSDWakCLzMjO31CZxjRWyFcHGad2+T/zJtZtjIoWAUZIcIxwQ4TGUGH/60M4iBGg0yzSjTYv+TpEwzdSQGR8OpOsX0hWoIkKGmCUB4nAi1wwaETttT1XCIui6gegTyUdi1vhhwA2DCC25QlHEMTBGiV9U+nk6ewAvXtyyXq/atS6A1zP7KKbEsgTmeaEfeqiKZQ4Su4c4IYa14TAuHI4zU4hsrzYisGTFdFowtZCWwHg8QVFoZVhCZhpnwhyoqVysxaVUjvsDJUWsEoHFW40xStg7SQpknVpyWhaRRcvcShPDF5Y54l0S+Kk2xFgIS+J0mi58qdXQYb1sggU43DfhUzYbqq2Jwk7pxMmRCuvNCjErerGCpkJJsp7WmlFasd1uANWu5QWjeyks0s/tNfzT4zJ7XmWzdr7mz1yo8/+kkD4nFORPNp3ynp2FGYHl5ScHZxMPtdaU8BSXrlucsvy+JdPpM9z2vAadnxkytiKinUbXyjKPrPpB4m2tEZbBnDje3aFKYlivJW3ECgtJKU1nHdl36JAJ00haAlYbnNZMs4xjxpSoTcj1fc96uyU+noipYHKBxk+qyBjn8XhkURnXe+JpJJ0m4nhApYBSMhaknEY5Be5518r55WuO27fsuxVHdyQXRUJTixO+WEvCqIiLIZUKWVGdpWqDUqCNQulCpT3rOT8roVbdhLPSUvcywmEtl887c9VkPE5ffp/TuVnTopRBmCqAQrpyNCdTateK0ecNvoyn5qpRzR2jtHTgzo7NJQRyc3867+k6j/PCbFpioBKIueCsQ5uKVgWjLYO1+GFDKJXHcUaPgVBmeTwqKKG06qUJTVXQsto8o8BCxJJxumJVK06qllGrXAkZcRlURdHStKu0JloV9/Gqc6z7js2qQ+VIaSIxxl5GlZeUmFMkFhnF8ZdRUscSI8fxxMPhkRQyvvOstxucd4zTSEmRGpMwvYzCe8PqxYq+H7C958e7j9KIyEkK8PVAtx5Q3tDtVvhtj1lb1NqgVx7tLYoeXZRU7THj3ERuzbU6TlAURonD15zTyaoWF5U5swnF/ZsaRFSCKKBzjnjac9jveffunQil8KxNIGcrzkHnNbvdjpplL+CcovOGEBZ++P57dtstORemaeL92w8sc8Box6uXr/jhx3fM08RxPHA6HdHrFdv1wKr0HKejcHCc49X1Gm8s1a/IecQauOk08TjicsDlxIvNNWljsVozz4pcMylF9mPl0GX6leOq9+ycFTdbUcxVMSnNoitTSWR1XscLiSwuBi2insoifJKgM9IkXdJ5XZZGr1YZoypGIePKqUBKqFwoKjdyjidkK3yWeODbb7/m9We/ZvCOq01HZ0bGVuyXdu/p/wYjJ/XszMgFTBV94lxxt78TkeWne+haPoG6/pMPaUarNsJb1fmLnUVqgYU7Z+VztKa2ZqoILOIcUT/5qjSxm8vvL9fxJ43Ny5V9cZ1+ss+nghLotGrpcEobGUdCNcyBfhJYztZ3dPuccznRmrUpU6ys6ahPn8/tvRFr4qXOeq4jb9by3FGQr3eM6xV31vDNaeTbec8SE1UVNrrirGboPOfEw5zB2x5TjDR2okyTlCoivlGKwTl2/cDW9xxPM4fHA/MS6QbZV6dSSd7C9Q5TMnd/pzm9/8Dd8cTr3Q3dyxfcrj1X1zvizY6lLKRlRPeO3jh8VSQ3s5iZYBKOwtateDFUXvWJ8i7zdQp048JJz8zBMHlLMh2eFU57etvJs9NKA+H6i5cM4YoYIvucUHEmpUDWEfPiBdlawv7AD8cTq/sHbOfR/QpdZETIO0etYiBYlhFbIqaxSrn9/6PAMp1mfOexxrZoLlHsUk1UZBMQYmgOA9kghhAIbabfW0cuDRylFX3vmWeJfX31q1+x3Wzp+/5iHT9v2B4f7xnHEzHMnE5H5nkmhcRyPLLdrHDOYJwlRhk5uti1opDpl2nE9hbvxAZnrTyk4rRQ/CDzfkVJjrtW5FqYx4nQOnohRE7HkXGaL1bwGIWt8vj4iLcWs1IyQtOEmcfHR9abNd47hqHn3bu3dL2n6z2//urXF+Egxsh4PDJNM2dIbrRWXAHPdKTm8hEDz9lipzhHrlYNNZYLg8Vae7GnA6A0XTdI16SWS4E4TRMP+3ucd/jOM6wGKSgbSM1ai7YO23V03mCNfL/S4s9yzoRJbuIUJN/9enuL0UacFkVSbs7iypmf8umv8LSAPS1k0sUxRl+EGIl6bmlU5QlIeJ5tzWcosjt32ptTpc14q9axPotV5uyyKef4uU/m05/xuLaOcJipp4lNrgwh4yPorBhud7hX1wy/eoPa9cS0MKVISZn9wyNhXkhLRHlLVlJoe+svwLE5i8ASFtmcH8eRlGVsyCwLS0rEUvj4cE9JuXXnK9ZaSRxJGXIiBrnnw7JIGpebWcYRg4BSz/CzCizuN1oPAAEAAElEQVTzyDyOLOPIMk+yFjTL/P3DQxOrpPtbxohThnScMFXR9z3GaOISJFmjFPISyFagkfM08eHjB4ZpYrsEtJNksb4b6N0AyMjJ4eHA8d0dIUR80nRrh+0s1j8fg+XP/+WfI65bsc9qrQUKXeTnXEJEaYP3PQ8Pez5+uKfvBpTVVC3z3o+PI4fjTKnCKYipEELl+DjiqNQ4i3OgVGIqHKeZw+MjYZzExaMtJVXGaeHx8QPrmlg7TU/GGwVGxMFpmchpwVFQJGqYiOMRnQumxYKPp4n7xwOgsdZjbaVUQ1WW9+8fWEJmt0TcZy+ZpplxHHn77j1/9s/+RKKZS2F/PNJ3Du+cFAGdjAA+HPdYH5mXzGF/4A9/+BbnPMOwYr1eQy0Ya1ivoBbhMSzLgdvrjnkO7B+Pz3bezgKzMU/F8pMLLjUnirAezuuTfAS0AqtUc5gUqJmSFCnJGlaVfE3n3EXMu4xAVtmcF22x+mn2X2uNUUq6qEWcLBQBtxsNzmq8tYTTCd3E++uhx+TEEhbC4yNTSsT9kePdPe5qi99s8JsN112P6xJjyDykA/F4BOvo+p6yBKJWzP1CrAWcxa0Htq9eMB9HcZAqTZ0DYVmI08hcZvIYIY+8evMS7w2udqjRSsctC6AzmgzeYYfntbD8/d9/zduPjxxDpigrgnGuMM/oGLFZYqCKioSaCDUzzRpde5RxlFxROmBtFCdLTK3eUNCgt1IgnQWVFg1cyqUW8M6QVBWHz9mh2YR5OZdAGzXRCJeFZimvrYsWluZkKuCsxShF0QqlMsoqtNVtA+guex25bivzPHN395F+6FmtB4Efp8gSI+P+gLESY1/R5JJRVkZxP3vzgu54wuwPLCWgl4LWFZn2PQviiDOnzes/1+F1ZjCwMgpTU3NryDHOgWNSHBdxr1QlnJpaE9SMUgULrFeetXdoEuNxj6pF7kXT1s6cCTkxJ+HWGO/ZrFcM6wEM3H98kMjynDHW0K8GhpVE4z48PpCWgDcGpwXKrZRFFZgOJ9J+z48/fE9qAqr1DrxB9w6/G+huVrjrHnPVwVpTOkd0DlSHqxqdKzpkUB4dEs4EcjKovGBURCeDKsLTKjHLNa1kTYo5SSJK0rgWb1oB77wkdTZ4bKGSVSES8XTPct5+9dUrTqcTsPCnf/YlxiR+/OEH/uN/+gv+7E/+GTEUvv7DH/j2m2/Zbq/YbLbEIIWMrppff/kVD3d3qJIZj3uOp5kUI8sy8eVXv2A9HjkcDvz2L/9X9l98ydX1Dbcvfkl491tinNG28vpmQ54X4nyk3P+BX66v+OK645ed59sHxxgz8ynwXVlIs8HsOt6sB3Z9h1KWacospTLrwkFlzNoLr85bxjCypExse76o5Rk85XoZI1k5LQBv0QpkBNJUeissSZszNhUczT2nNLl26O6WY/jIYT/yzQ/f4/wG57ZcrTt26545V6ZlphjVHBXPCwRvmTiUIvUKWqHzU9T4WVh52lOry549pQjZtNGh3BqpArA3RhGWBWUUTgPWgKpPP74CZTSu685DiCKqgDhKGvD5J+IKrXF5rl0udQmX/bt0k55CSqjmqYnXXlQ9d5Z1azIUUMZRlaFU2YeKo8Zckrl0A56K2nwWyEV4U9k0F11r9NYnBsx/q+NrU1HXV+T1mrlb8U1Y+OF04nfHPY9xpNSEVYmNVjiXWHlJsEtLIi2JjV9jiybEyhTFzXcqmamKS2U7rLBX8KdffMm//f3vuXv7gXfvPvLqF2+wzlOAxWjGfiBcK67+9H/D+9/9ng8fP/Lh//Z/53//m1/yZ1+85n/7Z1+C99jNBpMzs26pT0rRX4m7r+ZKTIrxGDBzxkyW//H2S34RJ74OR+aHb/hxUuyTZRoM2ggsP6fAicRkFbPTdMrSF43PClcsHoOzPfnK4f/lv8DmSBcT32iN/v49+sd7OuukUdUE81wCuURimi8NLEqF/+v/5b/4HP3sXU1YZpwxKI/ERarCGQCElgL0025irTKrfBn5OSezgNjXs4BFZbPdNeiRad1euWj7vqekDU5rrNJshhXLsjBPM0tYeP/2LTEGbl7cSlRuSyrQnGG6iRhmcuypjQFglUapwpwEGmaUxngjLpy2gVqWRZKItCbFRAiRnITE3rXiPsfEeDwxDgNKw7IsDeokGx3vPbVUnLXMy8I4jtzf3/H69es2elNIMTLPs1irkVhba+2z2t7zJWZRta6ndNSVUhdYcFgi4zg1kUXAb2JTr6CMWIUVoISPkVJqUcjt3yORod47KcA7j3cG6ySOWWsaE6cQVSEFiT0ejyfmaUYV6FyPtUbGNWqVkbB5Zl6EqyMz7FzI4GcY5NlBAvLfJiSUXrBescxjG2MJWOtlnCx9snFWMi6jam1zygVVpXOo4GIVvKQkte6lcZLPjhLxSvwf+tmnhNbGYYqixMI6gU8VVxV+8PSvbvCvb+lf3XAgEavM5JdlpsyReVoERqrl/hRhv17ux+MycZonlrBI91NJEtccFpwCm5yM3yiFsQbTRDejtTBdagWl5YFknTyXcxFHWQhEZ8WeGBMCImvrwVkIrQI7c96jjWZqVu2K3DNad6gCNRVOj0fiuKCN4vDwgDNG3B+lXKj2OSTmOqGVZhgGluOpxW+71pFVuKFne3vNePdImiNLWqgpXyzXz3U4Y1rCmoxieGcbW6NyPI2kFOm6jlJgmgL7/Qlz2+OMuMfmJTBOkWXJQr4vEst7Oo0siwD1apxxRsZESi4NAL5Qc8AhRXiMC1m1gtwWnAFrFa4zFCfsqBQXas54o8WuXmTGuKTYNjaaEDKH/RFvHbvtlpQKShuc80zLnro/Uqm8en0DKEJIfLx74PWbI5vNCt8ZHh8fKJs1am1wRq4bhRJGxOOelIU9czyc6LqMVp6+a+JGLSxzxBiHVpZpmcXxk5/XwfKPj7P7SNWn0TgAo00TbQXAHoMkVmGtdN7Pa4kSx01agqwfzlN9uTjgFAiDIUvqXjG1ORfkuegbk0w1B9S5MaeVXGOSuAKhZJYpkQBvtAhoWpNzopxGltNEUhUzTaxu2vnegg0Zn8BmSMtM1VHSLoJsuuMiY6NOG0zf0d/ssB/XZApOW+gWVHCUzrAETVAF5TW3t9f0SqNSZuoc4/2BZZ4Zl5moMtrUZ3ewvP36a5bHPTZDpxxLTW10IhJKY6sIsAKtMroWUshQE1VLFKUloXRFW2kgUcTqX1BS4J6jOy9iunAIzvt+pc7cFZ46vi3G/PJUac6wy2a/8okrShx6lELSBUNBGRn1OzsyRXhTnCE/1pq2SZTiJ6aKjhUTwBq5xpyV8b1paQmP1uE6gYDHlGTctw5kKqdxQhVJfVJOkcSg2BxVWlLo0vOtldZkemsZjMFUha4GlCVpxylVTqUylUKh7Q3bKIPWwqkZnLhjlVKyN1wWnFEXyHnKmdCadqVA1RplHH4YwFqO08zd4wNhCRQK69UK1xm0hRAWljCRY8Qoj7PubCThtASm/Z4xTJzGieo0tnOs+hXKgFt5rl/f0l2tcbsVdrciuwrOUbWlYsltjEH5dh04g3KG5XQkq4pcsS1d7DLCkJspQBx+ZKQ4bgKutRpvDSUllmlif/9InCMkZGz/mY6XL2/Y7x+4u7vnu+++RWvFMAxM08TXX39DTgWjDT/88I79fuRqN3J19YJSFKUatPHcXL/gdBx5+8NbYhLoe84Ld3d3rHvDy6seV9bM8wOPH2dSSdwkjUdzf5q5ue7wfWVlIE4nTIooHJuVp6uWx8VzP2ac0aSq2IfCtssUJWMUIcyUrHAYXu56VOcFJ+A0m/VGEhZTpmbdEp4KhyVzypo5SWpVOc3tfGiwGuctPhdCiKicIUVqCCRlqdqBMfhhi4s7Urnn7vHEzf7A0CtyTpATqiR0KRQtI6XKPN95A1DKNoatCN+CS0gXEHs9G1ra3vfSzMxZmm2pXMbbxMVRJZpSK3KVBDJVDRYZJ7YNKaqUOFieYPLNpafOQpK5CNjAxbspP/M/ehGy/fxk11Z/+mvb87WU5/bolP9pVWWEh/Ofy3cySsvHxc1y9uXUhgMQEZMio0C1uVTVuQFyFnH+G2ks+WogWsOUM99/uOOxVMaUSOMEccaUhC8ZVw2dgd7bFmZv0FiMMpBFWMsU5rJwDCOPxwPpdifNbe+4vd5hycTDxP0333G93cIKotIsxlKsw60U1y9eMt4dSWPix4cf+X//3R/48PEjYTrwzz67wRUNxvNxDtR+je56Om1QJkGVcAS96ShzZj4Gxn0kTgVUZGMc3fGIzRnnC26j0b5QraOYSkYRkYZvToIpsjljUCRdWVQidZpcHcUq6ix7HY+MmAsuAxKFUhdqlRniuCzy/PuZ5+hnCywpLJSuky7auaOhZExINcEgtwJJRNB6sUCflXWxf8oGo6TGTCkV66zMPPG0mZQ5YkvvvcCVUsZuLGFZmLqRDx/vCGHmdDzgOsuwGlqXXWZzzxuZ1GC6Z/ukaTY0qnAjqsng2q1XpYiWkR353LPTJJcsfJB2w1FrSy2asE54FGeL+dmFIxwCiwoLYVnY7/dM00jnOxSKHCMxyt/VIq6P1Hgkz3WcwcT1k7EakQ0UGbElxxiZThMxVrR2DdLUOnSoy1y5ZNULsFRiLk1LNlDC4NDnBUpJx8dqvNEXMaZWmRVeloUwL4zjJGwI3dKNLmwWGR1alkXGJ2ID17aN3mWjSnOknN2MRQoebSAlRQhTG2MJWOMaJyj9VJk/jw/Vp1nLiy2/2efOM6ECiis/WURre2/O4w/PeQzKyDWZKl0GW8BqjV/19Ndb/PUWtxmo4+Ey2lZSvKRdZWQTgFIXRtLZwXOcT0xhIebUErBaxLgSQeY8CmuMkdnhxik5C3W1XUequTPEVioP7JwiOSZACkxjjDyk2rhEafGfpsU627ZJ1jlREcif15aaCmmJlJBIrSs8nyayszLSl4THUlVtLIvmXmtpRcY4nMtEqUpAK/zQCbgwRmoMzI3Lk8rzgaVTilhnMNrirBGgbyu8lmVBqcpqtSamzLJEliWSc8U2b34IkkgRY2m8GGGPTHmWqNEcIAa80ejWiVoWUffJCa0qtUZyWloumjzMjFUYq9DOgNOS8pIESGhANjqS3y2g4jaiUkrldJpZ9S2Vo5NRPm2tRHTWirG6iWmaXOBwGDkcJqx1OC+isXce5xKmP8eeyv27jBMF6QxLelC6xFuWWjBVeC9aSXJIDKnxlHLjRDzPcY6vPxey4kprLI029nN2/4kLupJTJAbdGByqPUfaU7CKQJhjotRKieniBtPNWlwa70s1uHFsnCylJNb7SeR5WnaM1qhznG3b05WU5Dw6i6oZQ8GUQo3iUAs5C/eoOSZ6LDUWdMzYAvMcqSQiljQHahNYUsoYbzDe4bdrzGZAZ5lfro2/1TnNsChMjVQDu92WlbOYUpi1wmrF6ahZDpGQJLWtPjODZbz7SAkZVyBiCU3oihRCDWQCkNBKxkq0QGRE1FCZXB3aFExFzkUbwanIc0W1cbAiVfplLayfWNLPnexaRfSUCdnmoGx1g1w2511/vbiVzmw76dFUYZMpEVi1Aez5mScXwnlc1RorxZ0qxFxkZCRpQpDroxQRxZ3rOU4nlpAhZ6qRoqhQ8P3A0HsqlYfeC0chyTqR2rc0xsjo4aUseZ7D6IIzis4YbNFobanKErVlJDFRCLTUh1rRBYqSJpAxis67S8MqLEFGlE2LHK9V1vaWOEkVnok1TkYZVeU0TxynCYpwC7reo42i1ESMEylHco0UDGiBdxbgNC88Hg+c5hGsaqlHXM6V6y3Dbo1fN/ZX16FMoWpDVQKyrm1cXaNQnUTTKAPZQDaVrCVpSqsG0zT60hCo0FwFAlCu1MtaIftsKDEzn2bykqmpYurzFeqbzRqqRMf+w9//Ay9fvgSEaffjj28xSqKWp3khRoG2Or+RNVbLurpeb7naXrFZbXjYC4y5lMTj/pHerNitPZvbFT98eOQ4zTxWQ9eJg+oRiFXRG0NvLKmMUI+oqrFmQx4cvbHo6qUZpwpzKpxyIauIVYlYFrSyWKtZbzpwLcrayGhQzlr4YVXSrFKFIRYOoTDGgrOZZZmpsZBqpTTIsLHyXNbUBi7O5LY2aq3QvkO7FcqsOJ4mDseJkiUQpOQIJUtMeauz6jPebwAoI4EUTSCp5dw8qG3PK6yqos5pPupSW8k4sbgD1YXd0lxVqlLIwpIrBlslndUq05hwtPqhuUWUujxPP3WsPO3O5f/UeY1Vn/yt+sTs8pM1qf5E4KifPjjb59SGLrgIL23N12iMkmbiT90y55G8JrDUp/82tOdFjZd/cmGzfCJOPceRvGGMif0UuL8fGZUh1YKLCRcWVImNsTfQay1mgPaya5GHk6A8EqlGQl44ng58uPvI9Nmby3nZbFZ0WlHniYdvvyV8/gt0NZS+l/hkrVDGsFpt2Gyvmfczd/Uj39zfkeaRa1154y07b3AYDjHirEyPDNoLO05lgkmMFh5r4cNSeK8KD7VwymCrZojSjB9yxLhAQTMjYS3yvyf5qyLPT40ScZJEUpqiKtVARtzeFUkR0uYpgU4CoOV5bbXGWPuz0yl/voNlnijD0EjSuT0kuNyguWRy69aUkslJSapIm/+stWAwIrDExOlhz3Q6CSfCWioQsxRHtW1khDdkMMpgtWW32hCdp/eO3ntWmzXKau4/vKdeX9N1AsrKtaBqRtXMMo/EZYUfOrF8GQ1ahJIcosz1DnLvliqWudNpZOh6tIGlwXhjjC2e9umYp4nT8YRC0nrOjJkapUCppeB910SUmfuPH3n4+JGbmxucdczTiTAvzJOMJG23V2gTUS2J6TmO2gDDSluGTtJ7zg4WazyJQlwSdx/v0cox9Ft0NTJaVBMZUaRrswdbK1Y+6xxD16C1zpBSQiMdtaEb6J2XorwkiQhFoLrLEhmPp0tUb2c9znn6vpdzkMX1NE+LjLA0sStF6b4ZpVqk9lllh9wgTiBFnlKZHCvzeGA8zUxTZOhX1Cw8nfMCqLU8QHORh0NHjy6IJR9DzYhLS2mUEfAmKtMrkZ5yzeScUOcN0LOdNTlWylCTIoaCWSpWGfwwsPn8Fd3ra9RuIOu2ua9VkqxSZIozp7iwKBl5qlQhh++PwjlKiYc4ktumbbNaMfS9OJyMwXhL13ds1ivhI+XaInnldaMFskuVzS5GS0ejiGiZQiRaKV5SBGsBVS+gYrFsF7SV79N3nnHuWWIgpkRcYkuacnSq43q9w2hNzZn7VJjiREyBh4cHMFII1JQk9g8gRtI4onxPQXGMCwUBTs8pcppnDodH4v0RFTLOWDr3fCNCP/74PS9ub+hvrnBWYTVoJaliMQb6vmO32/Hxfs84LwJ1TRWPpiA8GeEdSbStNx01Vo7Tgfk00xFwRDa9wZCpcWFJ8itlQRuoeSFHS80RbyreaVyHjBl0muo0zIUcZmpcUDmzGjp0LSzTyP7+gdpvAE2thv3DEa8t4/U1210ntYZT4ngqBess948nMBZlLKcp8f79AWMl5tcYLTDOBN2rnnPaStf3nO4lbtp3HZvNjnkWMXq328k4hdbMc0QpseyeeVHiEHg+gcV1/sL/sko2W0WDVeLuqbk0Z995DEgE/KWxNTTlYkXWSpwoNQtEOKVM9IHURShIUohSxBCISwQU1opAmnMilyTAXyQKuLTxWmM0nZNi2LXY3t57Us3kJXA8HqhZeCOWQo0FMvQowjwz3RXm04nl457eDxjl8BimORJDZNlPTCUIR8s4whRw1mG8o7ve4V9cEY0iBXExGm9Zb1cMbJnCRKqR25stK+ewSlE2PcO642H/yPK+MB0eKb6S3fOCG12cccVSlCFkcdhFVTlZeDSBwoytgQ0Ki2ZAMVWYYiYVRapG7hutpShDXLpFSXMoJUnE0DrhnJO1EtmzoIRLYtpae8bSDl2Pc5KScTqOFxH4DF1UVGTURV+SiCgtRUzsMxQjnfFioRoRO+W51Mouqy+CnLHSpMo5soyJZTzhbI+xHevVhv0pE9LI3f0Baw84b+gHh+86+lXPeuiZTgdMiXhVKUmj1hbvPJv1to0jJWHKPNOhtYwsDtbRRYeqPRnDEc0DkZlCNpWOii0FlQCtcca0Jo5nWTIpLIyHE2vv0c6D9dLIiUWgsUUafEYbtsMK53vmZeL944GliMvBOMt6O1BJTNOB6fhIIaAMVCPurGIVQVUe9o+M80gqiVe3L/CdQRvFkma2t9f4XYdeGfz1BrXqqcahrSJlYTU43XYwCqqFbKs0+mxFbdsQx1iIOmJswtQqe9a5UIvCtvjwXDI1SEpkrUoAlinhtSMphY6KPGXqUlA9Z4Lrf/XhXS+cs1D5n//n/4X/6X/6n7i+uaFfbfi7v/1LjHK8ef05Nze3fPh4z9v337Ekw+2LFwyrgVwjXb/j9jbz1a+OzH+7Zw6BTOXDx/f4PLAqK/6737zmWo28vTvxlz9+zcebz4mdA7/l7XHGbSrXK8166FjmI0uYmE9HboZbrrcrPr++5YfDkTknllr4GCtqmVE1sfaGF1cD62HF0PXidjgL6WS0VRhnGLoV2nqqtgRlGQuMsfA4RlQKfNiPpDEStaGoRFKVhDT6nFNYIORAbmlkRWmUW2G6a/aniQ93M+NgmIO4TmuJOK1JtZKSsH2e81DGk4I41q3V1JKoJfEkUmiyspKwhqFWjdMKYqbqiHIisujS0LJt3atK+CCpRGoEp52MFGIw6cyik7209Q7dglBA3vcz0+TJtvLJrwokK/npqP+Z352nhur5/835dxVFRpkW4VyNrKdamqhWa9kHaovXMlYv0dEZGlQ7JHG5USFlTUgBqweUUaRZmCIgo0QSPQ3PdsMBxzDxw48f+XB34BQMUTmc83yxHXi3H0lR+HyvfnnNte9ZOcdcKikk5iUSncGEwLJMzPOB6fjAd9OB+nDPb25e8vJmx6q3bG433G467n8c+eb/+b/yq91r7K9/w+qXv+IxV2KO1JJYKc/r29fY4vnwfiIow0M88fvfv+XFOPHLNy/4xeevmbMhPM48Pmb01S2dqqQS+JDv+Ptpz9sp8N0h8+6DYh4zcYnoVPnMrPlyo9kOVxxRPKTAt+lE0ANee9ZFEY4juoitUOMwVZ6priyoU0EZGd02Vbh1FUP1EJKE1tgWmKMR3eLN56+5ur3i6vbmZ52jny2wLGkRC39TBOuF2twe+kVo9cYamVfLhTAvAn/SGovGVPnztESm04llnslZ5thNU45Aupq5OVxiXMgpoqj03kJJxCrq8OAd/apn8NIF1wpxujSFLVcnHJhlwS0LdlhJJ1nLeEwsEevspYOUYybMCzXLBttqI9DIWrFag/dSVDZHhrhbAiE4amlgO6UuUDtjNH3fE8JMzvK5Hz9+aCJEzziNpBRIKbKEmXVdU3IkhZ97lv7pkWqWzuoZKtVU47PSGnPmNM/cPzxgTEepVmKTObuQnhKVKA2sqBXWOW5f3AK12aAV3lmcdwx9j2kWLKqiZhoAOHE8nDidJPJaaUM/rBm6AecH0jnVKWam8SSx1831kIIUHgk5t7ZWrJMlTcbTMspY2tkkp0BqI2oCYM0oxFVRS7kknZzp5yWrVsw11deoizhfi2ruybPt+6eKeT3bvj+hmz/HocZADZLykzqD310xXF2x+vwFdrumek8ulS5WbCyUkNiHhUOYmXPEdJ6QEyUEwjTTGyewy1a0uc5hvWMYuuYgq3gv7hBTCjpEfDnT40XIqme/u5X7SEl7U1R8pQQ4nRJpiZikIGTQiYJ0GKOG5AzJa/LaYa9WrFYr2N+RZmG6pCSusrOboOSMbufJWbnXqoI5LkxhRhdxkGljJBGnCMcAFUFp+Xmaw0cBw2qgbNbMS8L3Srorz1jv1ZZoVlLCGi1jH6UyLpMs6saxXm/58d0fCDFhvRfnlTIY5ZgOj9RYUBnh3hRDCpFpf+L0uEf7irVttnuZidORnAukGUumsx5VkTQpEoP3OCtJWdoZlDUtsh3iYSLFGVUz62EglUpcZg6HBzollH1nDIfDgb1R3H28Y3e1AqXwTpx4KRbmMfLw8cjN7Uoi55fK2+8f0NgW0b7jdJw4TDNX24KxoJVltdpx/xClY1Yq6/WKaVo4Hk+cjiPGCtQ8NkdUrbXFycuG0Nrns0JYbYhJbNCpIDBWhPvwSZOtnWSoWdw3UavGy5DyWhst45Jac6aIx7CwLA43WUobvRPOi4jOtVaMSbjspeseC6sh4JyTZ1aVTo0C2RRjxI7uLNQMSVMUhHkmxyjXjbI4Y9GqyvoYWppNLhyOC5PtMdqB0hIn2rgjMTdQ4RLQqcgor1IoZ+m3GxHLp4UpBgzgfUfvLG7aMy4n4ulE6juMs1hv2L3YoXrDZBKPdQGjyc+nZwKwwrGkQpgTUwhMpTKpzGQqk1ZQNaUakhjA0QUGFJUn3liJhVhFyFZ4lCoYkymkxpurqLjIWnnpasaWhOYAD8VQSWgV2Ww2bDYrtDeUHxLTtFAzWOOEEWYU2p5dLZBzE+WKAF7bdp1qPjXLi4uynIHrSZyk4rT0DTourrWuPR9VraBhWPfECod54XB4BAq+0xituCo71ts1n716iVWagz+xzImvvvw1n735nN/85o/ou55apQP6XMfWOwZjhBtlpOhJVMYwc1omUqmIJ9acG+V44+ido7dieZ/GiRwWyPUSs15yZRwnliiRqkvO2H7A9z3DMBBzYg4i6FPBW896WLPqBlSD78/jItB9azDeE9sYbSmZw3ikaoEKO+/AQLUKMxiuXt6ye/WS1e0NZhio3lEbn07XfOmYK9Ve0Pk5moFSZPTkPJbxScfeGCNAzpZSBlz2MNBGwHVFIXuYUiTVZTozBdMA/nkKvsNhIsZCSpXff/0trvt3vHnzmtevXuP7geNh5Le/+wdevnqDdo71bsO3P3zHfjyyWa+52q1wSsbIX75+w/v71zzs7zmNe3KB6TTxWEaO68jnq44X3RajE+/mRAxwXy0/eosPAe8S/RaGYc3AinGGsFRqXXDK8HrjOGXDMWemcKTWgNaV9WaN3q3xmw1XuxvCOBHnhWUa6ayM9Vpt0KpiHWgjxZirMBTYblYcj7eg4RgeiXR4rYi6nVdTqLpSdGkcvELOkvSYtaPqFblecf9QeXw88eFuzykshFLIxpCLIlee1aUJPLm225hLrU8QcC7PU3W5386BDqWN5Or85MLUWmFUaU4dETAVMmIY0gypEkogkUTILomYI64mqFaaErXVk1UL6qHxEs9qiWyr/5Fz5R8fZ0c14gD81PUjQnZBNQOAEovOJ4ysKgEb1qKsaw4r+WKqMf6kQSxCC7pcAlBoH5eSoH7606lndbX/9V/9JU737FzPVbel295gVmv0dsV/nEbuw0eOxyMuZrxWOO94DJmoKtVo/LACDaUoWDIuFObjI9989z1/+8Ub8j/7E17/4g1q23H76pa779/xt7/7C97/u7/GLpp1f4PuHCgZMdJV0/UbNlea69dveJj2lBgwJdMFg9snMEc6CzlGppT5Zn+PqpExjvz+4Tv+5vGOh1g4Zo93X7AyKzbDmjf9hpcry7ZzbLs1+5j5uMz87vTIb/cnTizMxjINPbNSBAXUGV8UJme6aSTXTCiRKQVi32OGDtMPrNdbum7A+571asPVZkstmf3+kS9//SXb6y3r7X854Bb+a1KEqhhxKvw0AQsuc/JiW22Qslob3FJs5lbkdpk5j5EUIzW34r89MPTlYSE3tXR1ZJthGm9Aqxb/22y+VoEZuvZ1xBJqlBThmtqs5tI5t+eLv/2SW/F+XnBSlPEK2aCoS5EinUNhBvzjxekMYi1tbkvEDLFBGgzOCTUb5P0ZxxPjeLokCIlaXp8Wu/bxXEetlaplTlBSEmiLVOOKtHnRJQY6rJzh86pQP/mgnfhaUS3px3ddcytFrLW4zuOcFaGs5Mu/q0Us/vOyMM9BOkponOtwrse6DqVNS2uSIjun0GZDpWDPMZKLdJBreSJmyFopG04tCDva7EETzuSccBZSWgKE5h9DLNs5VU9/ztmlefm8Fr/3ySJ6toif74XnPGqUpAS0wvQd/npHd7PD7tYo70DLTLzNoFsxvuTElCNLThjlqamlKMSIpbm3tIwJOGOlgLPmIhpZKzZklTM1JSzC1asVUhM2RJwDbdtIhbWolChICkbKGZMSqggEriax7IUQxWJoW1Rrb7HrHr9ZSbJCo8+r+vRAU7WlcJyLVdUenVXSQHIpUJSke2QBr9Usdn6lZTNMbeNJSdab1WpFWS+kw4iv59n/5ztvzrl2zZUL8wiqcJoQfoDWmmWRe0Fr0x7QGooiLC2Kuo1d6qopsch4VFjauJ/CGyt2/xioKWNoKQatIC8pkyt0zmJNEnirFf6JNgZn1SXeHgp955ljJKdCnGfMEKmI0yLHyDxNMuY4Tti+w2pJZ0upsNTI6TBydTWI1VZb9g8HVquO437Hqt9QiiKGzDguDIO8B8Z5tLHkKCKAs+IOKLkQQsKj0FrWWbknJZ75PDJonhG4eU5VkLVcCejs7BLWIsJJg0HOp4wlLNL9sJbeS0FrrRXODMjIFZ+wiRoI/jxiQj2DSiXJjLYRL7mwzLNcP9ZyeeBSxTFnZHOrNBd7t4yoKFI9d2HBatvYDJBKS2gqkZyBpCg6U5qTpmZxU5AypIJKApa7zGAqhes7cTEoTThNkqzSYO5VZzDynnQaDAWcxnQGrzqGtMY9eFkr3TODG7WwwkJKLCmRqhQncluLIFVqpShhIQGXER5rNLVK7GotNLFCSG7iM2hiRxWwqEmJ2kCKtQi8F4x4YxQSc0+m7zu2V1uubnbEmHh42LN/PFGUwhqN7UQky1EaBLpFeJ+dmXLpteKmfPKsOneMgdhSh8CglGmMAKBmhI1aQRW0KThn6HtP33v2+0JKgZIrx8Me5wy+c6w3a+J2g9WapU988fkbfvnLL/j1V79ku9te9lnPdaytp1PiKFZKxpZTLSxZGiqFsxtM7kkNkpbVRJmaooyRpiznUltoI5WxiSupyP5SmHAebQ0xS+OltM6mxJZ7vLGksJCWIM8LY0AbqjbM+RzV3VxuVphzhacibdisWF3vGK62mPUAzlxSSZSSEYnz6CWKC7dBoYVj0ZJMLpJaS67UqPY+fLItq0/1nG7pJ1rXxhfQ0BKUYpCR9RZL8yzH2x8/cDxMLaGk8u7te0oubLc7+mHFNEXu7vcY/0jnO4wV2PV+/8g0jcSw5mq7wypFvxrYXl0TUmSaJ3FNx4WFwOn+kdf9LZu+59cvHOW+MqZCrIljzDymzCZlXijoh47OWbqNZzwGYoJUDX1RpCyQ+DkolLZYK7dJLFkEDQXKOZxW2M6yXnWtGYWAYKuRQQQtz3SvZAT4+mbF4zyzOsxMVWOQERPT2LRKt9GZKuNeNcv6XZShqJ7KmmmWpsw4JULOxJrJIlNQPz3Jz3SIUCB4AFlbZO8kiUJnXh8/UTJqlUYm+UmUOEsh56tSAbo1GmtNhCiiYcihhaHoFnMvTl57bvhqLXHNuoVPqKdpoPP3qfA0P/T/Q2Q5j1yeX8L5n13+7XkdTS31trS9uz5HNPPJmn9GR/z0Q0ajGvbgk5Sl83l6zvXx0+NqtWbl1/R2ja4D65sbTDcwG8W1tQSlWHIWflZz6aeaCTkScmTQEklcCtRYsbFSY4Jl5uH9jzx+dsP6dsV6t2K93XKz23FtO8zDCd4/wPsH9PUa5Q3VKpZcKEqjnWd7fc34foVaJtJpxmZDXwybKoywVDOJTM4jIS4c55FpWlBLpk8ai+Fm1bHtBrZu4HUPN71l0xlW3rG1ho0BS8KEzD4m9qFypyKPunCksOSMw+JDxj8cmcYjIS6EvGC+/IzuasX6dsNue83Qren8wLDasupXhLAwLgv9ek2/WtH3/c86Rz9fYNHigihSA8ghTWxxHrQ4y7PqSWN7GKVFCCnCYyghEpeFHAOKire2FVNSLKWcMUphjZD7dduMaKOgyrJjdMVqKCmQoqZfDRgtaRVZy/x0sVpsmZd0n0BXCoXcAISQcmpzn5kcMvM4Mh4P7aF23uQuaKVwxlKUvL7cCp9UJEIYaCJKbYkhIqoUCqkYfGdRWhgY43jisN+TYmQcj1RKE45kHr/kLNFwz3SIu0Rffi7VFJbSHrY5Z5bm0tHG4L1vaT+XU4zR8tqMEarUWXAyxsjX1xpvNc77NkKEpDK0mzznwjwvHE8j07iIxdd51qstXbfGGEMuMDcHg8A6k4g0OZGDXC+lgum6i1J9eY2y7eHCTGjVsjGtK+ZUc5+I6BNjxNZ23ZXS2CONUaKFOXKO6fw0pUiEGE3JP52KvSyuz+xgqVlcYspb+hdXrD57wXB9hb3ekGwDkBUwRV1GeKYUGFNkSYmuRSRL+hGoM7xYKXQt7T7TbVRKXGJd5wgxQhJp1CCSf6EJTLWJLLXSGYOxFmUtcTyRU2TJwjAyygqMMQr/J9bEtCxECsUZ9KZDb3rc1Yp+t6Fb9czjSAoSlX0WbRWwtE45n3AQakv8Oj+M61lEaRb2kiPKaEp1WK1Yggh1Riuub64wpTLf73FV02lLZ5+vpb7dbMRZgFwO4lQoTKdTu2/k98scAIPxIgqWokixsoxRZu1jJIUFXRR5iZz2e1QOmOpxymCcx1Qk8SQEHE1wpkKRTncqVdJ7DFhbJabOejCOzhVqTtSaULqwXg+oCUoJzMtCDgtFt1GPlJlPI3cfPvD4+par21ts16GVIYVAKJEHa3jxYoeqhvWw5nc/foe1hpvra26uNxcn2P39Aa23dJ1rThpHjJF5mqVoMcJ4iSFijaYkzTw9jU0K9DdeIqOf68gxXkR3g7ps7qAJLFqJ5tKKzJIS8zihqoCZ+1ZsFWfpjYLOy6gqUsyGYLCLEwuxNlAVqihSFM7XWdhWWkS4cTjKqFLfNrJnR1eRlBT59EJYJmHvaEU/dJQcCaXI+FbnMc4xmI48TTKCGxNaOVknSyZEKWh0VTgrgqNJBR0kvlulQk2Voipu6MEoSudJ84KOGa003TBgO40fDMd3P+KEUE3M4Hdr9GAZ2NDfDeRcntV5BJCMYS6ZU1yY4kJGoPYma0y18p4XRTENaF8yyRhJtUAg+pLKhTzjcxWuVc2y52mtohojVC3XntLUmsDoJk5VjLJgxPHb9T0vXtzyz//ln+KHnm+++Z6Hw28JNcv1su5Zr3sO+yMhiQNPJYnprlXEMQPSyEkRYxXWtbSMVkzEnChF/o2zDgliF1h2SBVLplSxwHvnqUpzdbXh4eEjOS3EELj/+BGtwHvLy9sb1NWO9WoANF/+6nPevHnF1fWK29ur9ox/vnN32w24rLAZCuIci7WwROFHgYjJtcg+xirN2jl66zBAmE6kOaIo+L7DaUcpEl29BIllTlQwlq7vJXIU2fvlLM8XEVc61v2ARbHMgWWaKVHGWKvWLBWmsJBbcbrtLF0v7pV5WShe0a0s65c37N68ZHhxjWopRbVx0DSIcKfkV9U2y9pUVIvhrvoTgaXI810XhS7SsFM8RcuWVnUqpS58PFsbN82IkzynxLJIQs8FBPQMx1/+h79q60bl5uoFDw/3LMvCze0LtldXhFT54d0Hvvv+e25ubri9vWV3teXt23ccT0fe/gh/8kd/xG63oe8cL168IsbE4/5AChGKIQW4f3fPl9uO285x/fkW5xc+nCLvDiOnWPi4FKwrvCpw1Xdstht221v2x8xpjjweZsIScUvA58xgPd4brNOkeWbPiRQKRntW6xWb7RXX1ztevLyS/UwbVx2Po4CQ84zqPFiNtoqb11sOOXMzJe4/GnTJmCqirbUKbRVVFzIQi+xSta0kbSlmRaUyLzMpTIxLJeRErJlYIJ0ZgM98pJxlLL7tWXMqaCONb2P7Jhx/Us+1kfzcGHu6uUfP4oqp8t9KQc2xAWEVoch6GlMisFCUJ9dECAtVgcsJmyOm6zG+PV9LkUAF9aSi1Keexj8SV/5RW7M+8azqJ5+rzo6Y1uTPOZGCfJTmxlH6PK4ka36qku6XS7rwVqSx2wSVs7P7Iq60B8cn4spzn7n/0//wr1FJUaNiOWTW1y+ISvH1x/dcGcVsDaMClYXHVmoh1sJpHjmOE8N1Jhep14lgQqFXhtXQcXr/A3dvt3RbS3/1G3a7K754/QV//uUfs06a4eOB8rtvMV++Rt9sqJuBxyVIwpnSvHjzmvHuB+oyMX74iM2WnV3xxXpHv6pk7Yk1cH964OMhoUrlardj29+gi8XVgZfr1/S+l4ZgWTAEbIpYFbHWsB4Mt/01v3QDd4eRt/sjvz2NfE+g1sA8n/B2YFgq6vt7Dt98xxRGDjrz8rMrXtzu+OzPfsNuuMarDqM9yvYsMbKEhWNKjDHgloi1AYb/8prgZz8Zc+XycNFaXwpwgBgXUooXZTO3rk4KEeO9FL6fuFfCMkP7OsZa6QSGgCLKfKr3GCohBpZpopaM94YlzNScsErUYJVlIXZ2QCv5+UJeULq2ERWNTw5Fc9M0KKLEAn8K5BUbXgiBeV6kGBpH5nricL8nRQE+noF1paXJuFZE5ZIxRV+6hs5J/HSpmZjNJ11ZAbzuD3vmeb4oqOcHagihdRufkRquuACDrXUXmGJtQklKhXmZGYYV19fX3L64fRJO2jiJaxsqrQWm55ylawkXxgpx3zVAWKG0kY4GoE2Z4zhxPI6cpgmUYbVa0/cDfT8gUM9MDIFpHKUASAlXE6pmNIkpLtSS0FoEIOlCCciuZkk4OkfB1ZIpMZNUocaIKkWKpZzb6y7CE/IOVGMJkKkNlFdal4pPCrdznOqZ3XK254pSL0Vjrc//IMQous2K9Xrgsy+/ZHdzTbfqKd7K62sLemkLfi6FaVkIOZGpwsqxFp1bkowxAjCuoCk4rfBaY6wi5oRS4LuecMqkXESUEIUA0Cgr3ytRWcKC7gym6xi6gVIDeW7vPYWYBB6VQiJRWGpiiZFqFLZz2PUK5YVxkWompEUSo+YZU80FKu06LyJmytSYiEugmIpWVoj/VrhKtdZLJHQ8p4AlEVWc9yJWLAvaeHGwLPLnDiNF7DOKmi+vbyg1NwBpvThoTqcTV9c3aG05HhZiaCBMXRjWnRRSORHmQJgmlmli3B94/+OW+7sPfPfNH6glY5MhTxqrKlFZ8J7Y5vK9lnTEFBOpyAP1+spLZ85UlO3Q1mG8Z01L9CFTamDoLWEBciSlQlpmiqkSuZgjKRaWk2I8HOm6gQHLul9zuD8wTiNWFx7v9ljruL265q8Of8PBWfYfH/m47bBOCtP9/kDf99RqMFbA1Ms8M46R3q8aaM4yz7MAtDNY14TAmJsYM9F3Pd4/T+wonKHJsnZZYxrMGdmoaXURFqnidMkhsYwTukgBl11HTAG8JRsRCnVJGDI5zYQAdjHkBonVGLSy5NTiMmtpMGTpnB4eLL3zeGulqC1VBFUUzmhqyYwn6dR4p/FOY00Hbf4/xMCUJpTVDMOalVYwzZQlCLuomf08Gtt7aqpQCh6FKRWWQDoIe80OHdpaXN+D0USFiC0qiNOOih967Mrw8e03dFWL+AcoV8EZVv2a69sdYVok5v0Zj6kUxpwYU2TKgVQLqSh0AhMUOUkaV3JWhNimh8sGvGJNoXOVrKR0SMVB0ZSqSCW0BIkMRUOIWFUZbCeCWykkggiUSlNKZZwKp/2Jw+OR1WrDv/k3/yNffvWWrDL/8A+/I7W46I0G7w0le3KEkqTJVHMlFBGErZORs5ILMQob7VzRVM7x4pBKoBZ96T4rzSXaW+WKc8IZsc6zTCce7g13d3fkXDgdT1itudps6PqeTd/ju46cA9N8ZJpO9MNn9KtBuDLPdFwpD80BkkpmrompFGIJWCPNoLNzuXOGlfFsnEelTI6JMAZsVVjr6V1PzrKezNNCyuL2Udrg1z1+1WE7SyYLUNaCNoqVH1j3PYPzpDkSpkCcgyRpNeFnSTMzEhnvvWO9XaPb+Ecgs9pec/XZS37xZ3/C9S8+p7vewGaA0thRLR3xXDfKrSH7xUuZ2BqTZ4CoqvUyvqqqbq5IcTOFlAmpoI2IZ2dg6Nm2a41ApkspLEEAss95/NV/+Gt2V9d0Xc8ff/VH/Me//A/cfXjg3//bf88f/fGf4nzPl199xd/+9d9w9/EDp+OBz7/4Fa9fvuRqs+Xbb//Ab3/7N2w2az7/7A3WGq6vrij5C7795vfUkFhS4X6KfP9hQmnLn7y65l98pthP8O4x88PDQgX2M7w9aFZDousyN72XLrXyrItFv3tH/XhPuLvjN1/9CTfXO/q+4+PDB47HA7Fk5qwx2jOsN9g3b3CvXzBYzU7B5nRimWZySlgUWSmWlDmeJmb7wE3VfFEd76dKPEZCrfTG0FmLs00Qrbmdt4KpBTAosyKUQkyVEBNL1TKGVqFQWnjA8+8ry2VSQL52yZkUIMyBzktEfG1Nc+BSB5ydLuUcY9uehed13qg25aYKWStp3ihFNYXqK0tZUFOiFhEqMRqMoWpNv97QDys2V1f0wxprfUuu/Klb5afeEPV08/znXCNF1r7SIL4lzIQgXMd5nHn4cM9ymolTRG0dxo2YWDiNJ6qq2BzJNTWw7Rl8/5PvDvzU7X4xGPw3OF5YL9MGy8J4PAkLzWhUOvAv/vRLfrG84se713x790hMkUIlUJhyZMoLoQYMXliO2mOwXDnPS1vxx4+cfvd3fAgnfnH7iuv1FesvHet/nShv9xhjceOB03cTobxEm5eSMFcKWlu2V2uuXr8kLCPhhx+5H0fGMKB0YrP1JKtIWtF9ccMr9QaKgdlR3wfy40x8OFHiTJlnyiJ1mrUVbatw0Foi6JUfeDXcUF68YE7w2Y/f89d3P/KH/YmrGLl1Ay+vt/zxL/6Iwx//MX/48J5/+8PXPAL3dx/Z/86w7W7QyULVZG1JWjSLFCNv339gPJ1Y9x1c/9l/8Tn6+Q6W8wjF5UJ+ukFzSuT0NGpTmsIeU8ZZufDOowPpDMNtqRopZ6ZxlAcQ8hCxgK0I/K8pIDklQi3yd8aQlcIqQUHYVhxVJZ0crG7zqAafIkWrCwG7Vlk8pCPC5QG0NDdKSpFcKnOaKDFzOo3QIK/q8l7I63DOtg2LpXQ9xpgWm9gy1CvNLtjScZTkxJ8jh2uVhUs34eYp2vH57lCxpZ4j/nTblLXxC878koR1jq7v6YdBenXqkySNeqZiixXVGIv3XpgWWux1WuuLVVYhok4uhRgT0zjJqFaqdIOj8z2d7zHKEpOMi4VlIUeJi1MlQY1iN6SgVJG+TTvXkhJg2qVx3q5UQBTzkis5ii2/5EKtWjaZTRnPMcr116jahYLOqtn9zs+NigA+2zL6yZ/X+k8Tg+rFw/iMhzX0mxWD9Wyvr/CrAe0sWUPiyZYor0DkwtyuLW00zjm8a+DOkJoDRaKNjVZYbS6FpFKy2ez6jskZSaMoGW0s2krMmwJqSnLNVLGyelWxvUdZRbXC24k1o1IkVTkPRlUiAju21oB3+M6LkKfa4nZm5VRhlChj0NY2SPTYODwNbnp2rLQ1SbWxinoWcVt6GSqhQsBYd7n/Q1rwfiWJEUOHmuX1hGcs+CTKXBI3tFLUFqGaYmoClyKGJFGwLXVE0wCFUcTGeT6yTBPTeGI6jczjyDKPdN4IxLJAUprj/QOpapZY6JYDvdXEdc+mW4P2WKVxGpy18sAyDpSsT85ZcTC1zo1CZsRTChjdC/hOGazROKPJRRyI0/HIMKyxtmPwPbpW8rKwjIXT4cgwbATwaTVpWXi4v+P25Yph1WOdJYbEeJpRKNZbhwIZCZoXvHkaMcohk23B6NIKJfm8ksTp5p1/VgeLRjXzYuXJJ604J3QopdqIUL3Yg8/JQFpn0jSTYkBnRxkWihcRRCy7RcYZQiAsszgdkG4zpcp9lRPZ2Mv3mseRZZroncNrLdbkImJdqqBVEVdnG5fVuqKNwneGUi1usaSlEHIk5jbu0Bhhx3EkNxE8LJG6JHRROO3xXY8ymrwE0rxQU0KXlohjDLrKvLrzTsC/uYrIbc0lpaoaJQBuo8htNM1UxarvMbkS8/Js5w2QkZAkIm7MiYIiFy2NxaKgNnhsGwMqtXX9c0bYNlVs/VaBMqiqJCI9axGaz2MgigtQnAqqiBstkZsbUAT3vnPkJMD8w37kTz7/HN97/sX9n3Ac94zjREyyWVZInPuc0ieMx3PynoLLc6fV3+VpxERSg2T1T0nGVM6YrKoUpRXo5xQ5hYzD7LYbcgyM4+kyRhmWhfE0Yo2FJqJM44TzR07jqT0PDN1qeLbz5rNgDNrEGqkUYpGI7TMLQVMk7cUZOuexWtbPvCzUFLFaN2i0QOtTFufeuTlgrMF1DmUUVQPmKd1JKVmvrbEYbWQ0KOeWFmjkuVMLk6okZ9De4tYD3UrEp1wKyllW11u2L25Z3VxJ86DvqNZSY/5kW9DWlctJ/qR8PG8wmsBCQYSVcqbvNHGlinPzLMSJi0p2aqU1QeVbyN6yUp9GZ//zgxU/61imyFGNpL6yWW8Z+hXHw4G7Dx/Z7W7Y7a5ZrTeshp7xdOK4f2Q/rFkNa6xRXG13hHAkLCMf3r9lNQwoBde7LcerHWEvIywz8BA0q6lyWmbWPuG6SL8r2AynWIkFYoTTXNhPiVNIrHYr+n6LsSv0YWK4Bt+v+OUvf93cpZVVTrj1Rlg665Wc181AtB0PsZDnhRQWjvt9wxIoOmPpVit8v+J2d80pwZQN18GwWR8YZ8WsWjO2jQdfEiZrpuZEqnIfUjWhQKwQUUTOaAMJXlANhv2MxiPgp1qEbiNrNZe2/24jPpeEoKfEu/O/PQsK6pMPrSQtznlNcZpsFEkjQN+U8LGjd4reGjpvJcFUWpnMKUoakwLjBTGgEMDw2aH1yU//0xfT1uP6k79RUCUtU5omUbh4oXEZo9Sr54CLXCrTsqCnGZMrSwiSdFgvvsX2VS934pOz9ZM3VZ1rkXqOVv/JZ/xXH6uuwyRQqTAMBgitST+Tk0KT6L1trJkqAnHJhLZXT+05p1BY46g5s+4tX1z3vOjWJGPQh5Hl+/esd2/ouhW7z94wzRGTM4NNbONCHj3hYPF2QyxndELC954y9GRvOZTAPkwcw8iVURSXqa5Ap3BKoZNBT0qAtiFAjkSypP4g05ISdKcwRmF6i+46umFF77bUogkJviw3YBO73vDD0VFSoUsLJZx4ebsjOsV7kwjdwKQMc6poVbC5oKui2EJWlarBOEPfd3Rdh/c/r4nwXyGw1PZRLkUmtO7+OXJZifKUGyk9xkTxbVY4JWKWj1wzyshITIiZ+PhIbcW/NxZCElv6FGTzXSshJIqqaO/pnCVrhdMS2WaNafyMFoOmBIxonWVOkZjLxdLdKD8Xh0aphXmemXIkxOUylxuWSGxRwYpyoYuLACPFoLEC6XLekXNmtVo1gaVFDteKaT9frZqiikQK5kKqCTBYZdH6PG7T3uxnVEDP1naxkMqDvbYuiFb1wmCxVtIEuq67zCX+5GdpPj3daNveSqyccWLblTWtAjIyZLURaPASZDMZM1QBY3auw1sv4NTGXFnmhRLjJf2JKhvPM2/HaCVf1zb7axu7eFqmy8W6l6kSy5UiJVUqBkoRAJxWpJSE8m3aNU1toOYnGfpiS4TLBkaKenmdAr5UPxHPxRX0jIezrPqBq2HNerfFWYvSkEnNTSYOqFzlNYCInUpxEcGGrpMZfxsvSryuFW8cVhucsa2bLSkUq3XPae8oNZNiwVuDsR6tPardN6Xx5WMtZA22c8JUiIpiINRMzgGdEjWCpZC0jPZY12G8p+s7nJVEq7Mj7BznbqxFO4v1nm4YiMdJ4r1DEDFGKXQb5chngSVnKpqSCiXKhvI8a+z7AbIwSWJcWNkebQz9MLDMMq4X4zPG/TZHGlUElpxFHT8LLFTVUrGEJyVhEucEiEwIC/MkAkuYZ8KyEONCyQveDZLMVQoVy8NxYpwzp2NgVQ6svGbernBXr7Fe4uaM1pJm5ADjJCJRG7xyWCfpF3LNN1ZIDJjVgMSVZJyWblxIiRojp8c9fbfCu55112OUoiTpCh0f9+hqud6tWfcdMUbuPrzn9Zud3MMoSqqcDhO1Vob11UVgWeaFocsXPtCyBHLMlLPAYhCuTHMy1b5cxPXnOW+qBbw0i/RlQW7dYa2e1miqbOJiooYonceTFNU5J3LvyAaKqpATpoqLLC0zyzjibQ/IKCxVRKMUZpKRsSetNcs4Mp9O9NYxON8KexF1Ik/CitNt5l8VjK34TlOx9LFjv4yEFJnDQm87UkrM88Tbjx+Yl4UlBKbjSJ0leWS3vuL1689aKo0lzjM1yky3URL5W4wmGyvOsFQEZC1WSfAW03WSjGJoySsIMwbNuu/RIaPm+GznDURgCVFYYqkkqmoCfKlc0nlaMUPlsoEvOV86nYLbUCIiYdDFQsqoKBHPFTBGobNY4g1Qq257g5bqJIn1bGpHypnTYeT9uzv+1X/351y/2JHVn/P+41u+/+5HPr6/ZzzNrHxP5zzLlMStoWsbRy6XpkgptTWNz6KJuKtSrsRcGrBR0tes1uLqw174WapAjQlTFZ317DZrUowcj0dic+imkDgdR4ZhRZcFFH44HkFpdlcnQkwNTP98AotNpf2MkkwXKcKgyFm4CLToTaNwzuI7iy6VEgJxmcXR5wRIqpQiJknsyo0Xpm2LGO88GOmuO2dQRWMaPFg4ZBZQUoCdnx1ICECssBhQrsOsevqrrRSSc4IMfj2we/mCq9cv6a936NWA6kRgKTm2gkxOxKUddI5jP3e8S3nafzTHkSoSPfrU9Gn6S4baQgNQjtpGSc48lJ806Nr+POf8rGw/iuZ0mJinwOs3L9ms1hyc5+OHD7x7+5acJUFzu1kTppHj6cTHdz9Sb1+yXm94eXvD/pCZpiPv3//IdrPharvjarfjxc0ND7kw5UqoHQ854Gf4eBjZXGd2tnC7qfRVcTfC41wpGU5T4d4nrsfA4Du67Q7bb6F/x6Yb2PUdX3zxC06nE6fTCbvZsNlu6FYrhqsdUUMoiUMMfPjwyOGw5/j4wMPDRzZ9x9B1rLueV6/fcHW94tWrVzwcZkK2zNGx28wcDnDUMsKpPwFoa0SULSlSiBjtUNWJg6VWItIwUcbJniAGKdjbnvY5j0sDQUlsOVWev2eBRRqStSHv1FNj9nwdFj65bs+jQtKw6/qO6g3ZKIo1JMBkSyqFlTMMzrLyHVWL4zrmRByPIlIncbF7P6C1xdmCUqY1NhQXx9cn1/enAof8gWqulXKZjKgpQk7Cqsul7bfkNSklTLp5CSgzo5O4wFdlff7C7XnxT75jq40+EYB+ovLUy7l/rmPdS8qpopJKxzEK062UmekwMudCDiLiKeSZG0oi1MSC7BnEPaXwxjHHyHrr+fLVLf/85Zq7u0ceT4HlD29Z/eYaN+zoX79kuXuHDQsrm7nNC3k6MD/CsPNUHKlACAu2c7hVTxw8j/OehzjysOx5iUPZTPGVqBKuWlSqpENmvLsjjws1JJJXpOaC8i3KXpJpHXrdYzdrht0V3m/IWeFC5hfmls3G8Yvjjm8+9Hz37h3jOPG4BK6+/GNuuit+0SvemkzyK5LpyaoTGLqyWG+JTmKaHYXd1ZbtSpraP+f42QKLRkkNm0FjOENbaxGAbMrpMkNXEKtrzCKKFC35LbGcAU6FahTTOPPx8ZH3+z2H08S0BMiF2/WWXT9ws96wHnqomRhnjCq8vNoxXO1YNeu0NwZvFFUbYkksJQlk0MkGcOgSOopVXrcB69oI/NpqqioscRY7rtGsNytJQwmSE39zVRvsSu6c0roruWSmaWSaJ5YQ+Hj3nmlaMQwDOUe63su4j3ZY7aQjogtdNzSRCrmAtECAzuM7WplnFViMVfS9Z1h1VAoli0iWkwBNQ4js9wesFfK8FH4S9VjafLc0ghRGKVbrNa5zpJJJObKyfSsSKt4alDqzTSrH05Fvv/0WZQzDasNqs2O93lCrEvFqmhnHYxvfihil0GRUjdQ4sWRJ0PGux3qHdT27qytiU51rLVgtKTC5ImMZVQjmS5hk04xsonIK1AYeyyxoa7DayfVaizCGWpewltbp+uREPAGRBY6lG0OhFPXEACmFZ2yos9pu2Axr1qsVysksuHBqPXE+EZOo8a4UgQ57jzJOANDWSXfOWBGstBSNqQg8VUbGNF3nKL3CVIf3lt3VNeM0wdGQTyPaWob1mq5fcywF5zQU+R62d9iVp9+tWMUtysJ8KEy1oHNCZ4XFEmMgqUSm0HmHXw2s1mvWNzt2ux3rrmNzc8OyZJSe8d0G5ztcN9CvN+zvHoiqEqoUcgUFVRFjG/czRVKmrAIrIx7itKmgIqVfX5wGQsuXglHif2eIueUuPM8hG5WMNuJQiCE22HZBKyOsnDEQ54T3Aip2ypJDIowz4TRTQ8QrxXB1xevbFzidmE8bfvOb1zJ2UuH25g13+8BxzEzHhJ7eMY+P7Pd3/Lu/+AucX7Pb7njxr38NnQFjxMJbNVo7nBvYrDdMxwPzSeO8ZbvbUIC7w4RzvYhBQdFpiQiupVCWifnwyGgsm+0rbjcb0nTg8fEt+w8P6Gi56q/4/OVL7u4/8PB4x93bDapUsZW7Faf9yDwueKepWVFSYTyO9Ham5ioF5ygCS1INMqgVOSZUVczjxNANsHu+xbK0MTvpggvoWRmNtlqSY3JbI7QU4dZYNAisOCYOS8IbTZw0D9PIvOkwnUV1BqsKS5Ln08e3P+KNx7kBU8WtqVOiTCMxF5T3WNdhnWPZHznmyso41NktkivTeMIaReetxIDnJkyTcRqUg+gUjylwGE/cv72jpsLd3R3v37/nt9/8juN4kkSmOVCnzLpf8cVnX0D+c65fvGRnlPAbQqDGhCruwgvTWmNdR3GV4pIIrUZhWoe/1kTRFeOcdPKNxqAZuh7lIko9r4NlaVGUSxCxQGsRUSwV3VwfVTT+ti+urKwV51wtpEx7Fou4a4xD50oJCRe9MLySxpBZDZ7eWlbG8PgYJHEKQ04LXefoeot3hv0psEwnvv6Hb/ju22/56o9+wX//3/9LnK/89X/6O/79X/wnvv6771BZ4Z2MUhsNxmvWQy8NnZyIaSFEgWVWZP0/i8epnF1WhZQX6rKIY6Naau1w1je3pyIngfJqFqwxrIae7XbD4+OjrI2Vi7usVo0fBqwD6xNTSFScxMsOV8923nSoFCPjd2MOPJxOnFISN1QVAbL3PTfrraSalcx+fySMIyUmrLGs1gPWWnIpHMajcPVUkbE2Z7CdY3e7Y4wLSieuX7zk/sM9oPDes95sSCnzcX9PmiZKTRQLWRVK5+jWA9evblm/esFqu2Y1dBx+//fgoN9t+NP/3b/i9R99xfbVC9YvX0BnqFZDySjnxHnWXF7njwpPAPScL8UaDb5/vhZjzpRYyEkYUarBmsd54TRF1sZSjWGcFxGDcsYaJ935LKyneZ6l0HzGjeX11Q3vPnzg490dD493eOt49eIFdx/f8fH9Ow7HA3f3d3z26hVXuxWdKXz3/Q+E+cR6tebNq5dcb3q2g+HgNOPxxP08Md7fcbXbUHY7tDYc9484a9El8fu3e679lm5lue4qu83CL/vKGOHrI8xL4u1jxD9mtuPEUj/wOP/Azc2W3fUNNze3/PjhR051IXSwevkFbrMG5zhVxbff/8C3333P3/3tb/n97/6BME/kGNC1oJHxzcF7Pnv9GS9evuDLX/2Sr37zG4wRwfJ2o3hwkYc6CzhfecDLHpGCLgniLGPtTuz32QWmMLKUCZxBVYspFa/EpURzbj7nEXMSgQQR9zWCLzjtD/T9BmWcsH/QaG3R2rKkJ0ZYmAKD0RglTCBrLFpXrDF0wwq8pViFKj2nOUCNrHwlLQuxyP2+Wq2RVl3l5s1rlhRIJaO0sPvONRrmCaNLFUfW2bktBhFpfsh/C+hZhBRpsuUlyIitdxjXNQdgYekSORrKIPa5/f2Rimm4goxzgiJIIcj92eogRxN7amU8nei2G7xqxfgzG9j/yTFYwpI5lJH79MiHhzvGsFCMYpoCf/jmB/7tf/grupef86s//efoLPH1KSdiyZxypjcO68SkUHVmILIm8gvX8+uXW9KV5nfHzOntB8IuYF9ck18PpMeJcrzn1y9fsa2VYd5Ts8b2V8xuxVIUa7PCr6/I11c8/njPY46MKaOjxhYrTRoKKijSMfD4/pFvfvyBJSSqsRhWzYVe8LmyW/esTMfaWDbdQLde093uoO9bCA7sXntWxxWvTlve3K3401+85HF/4vsfPvLNt7/nfS68M5Zf/pv/gRev3jBf3TKoLRvb0VmL7uDHx+8Z5yN5Hnn14oZdv6LT7medop8tsBjrOCccnFkUoGRcJknCi9W2cUjExpiLLPgpZ5IrF0BuKJm7x3t+ePeOb77/ge8/3jOFREgZVRXvfMdgHVvfcbPb0neOzlu2qx6LQqXEyrUEFG0kEUa3h5KWje/ZwWKNkcSEc1eyORGEfaBBN3J9TqDAWkNqqQxQhTHS1EgNKOtlYai5dfyHBq8d27/JPNzfy2LTCT39YmMvFefcUxJNbelESrooqgkuz3mn6lYYnb/PxUKbMih9cQHIHGhkDrPMYNYCJV/GcFSWjk6IkVIzJmlJnCnlYom7GAlrZZ4m5mkk5UjvPV3Xsep7rBZRJ4VAmCdqXCBHdJHioJQEOWLqgti2xbVSjXAjjDHNsZEbV6qd15yhRPGVqWb5bg8ndf685uCgAbxKS5s5D02er+nLIs4nUc31bNP+5AMun/ffYnX13rf4ZNrPpwUAq9qITkrkGDBFxALnzmM3oIyAyars2cCcR7jaa9EKrEF3DrtymBrQ3mLXK7r1hiVm6jhfKOF+GHCdp1iNoVCtoeqK6Txm8KyudlQqMUVqNc3pozDNPphVRluF946uc/jBs9pt2Fxfse4HgffuR0ICM6xQ1qG7DrvqyFa1jkibQ1dwBjmKU79CLo3/Ix8GLU6zKlyWnJ4Shs5pMSlKuoLVmu5ZWR5NQNXNlVIk6jwnEYhqrsQlUlKhakkWoBRKjMR5IU2LFNMVvFbkJYjN1mhWvSUtCXKmXzn8knGxsJDZbAZWg6JfWYboyVls8MfjAdOt0K4DL+T+qsQRNgw9XedltIHKZrfG+o4P+2/F0aEViowzct2FsPDwfuTwuOf9j28ZVi94/+Edj/t7jqd7jveBx7tHTvsTj493HE97lunI2++/l3SiJXF185ockLjghxGrDarqi8uIUtsYVcRZS9FGmEJWy/m7nMfSQNDPc8zLckkoSzmjS8G0EQPVeCypPiWYqQZjD0UK8RiLiPZGUefKPFbcyuM2Papz6CrjPePDA8vuFt1XSFEi0VOmzKEVwYAyONuRp4U5w9KfgEqJQaDGMZFzJZWEUgnTKbSHGgIhLEzTzId3e95//YHTYWY+BpZx5u7hjg/3d7x9/wNLDMIqKhW1iEhxdB2Hh3tc39HtNs2tmS5R6WINFycL1lCtCHdFqZYGYfDdQA4ThYwzDmu8bMJLbeOwUjw+5xEWAbamKFy2pn9/kkbBJdoYWtdVaXGbKWFQdbaXlJeLJV3atFopKSY01FhwxrDqe15dX0GRzW2Iwk3qe9XcoD2pVpZY2e/v+fabbxhWltefXfHVV19ScyXNkeOHE8sUiCG2+O6C7Qw3VztQMM8z+/1eRhiTJHF47xDvm5wPraEocbCUUshVU4oFJ/e4LpZadUtlFMi70tJVH3rP4329RMHO00LXB4zzdMM5/cagtWd3dctqtUWr5zt3NRbQDowiZQHc5iruDVMUnbIMrkO3CPUQInGZKSmhqtxvRVVizYQYmM9wXKPoXU+/7ulWHcoqdustvu8Y1p4P73J7zYp5WSAncdAaEfJLLRjfsX6xo7/asn55y+rlNcZZUJXiFcOwZndzxfXnrxiuNti13Oe5CUYgsbWim1QoqqWKncc/mtCiJfGn5kKNqbGQpEkVQxJhtzlnU6mSiJNknPZsesmlNpj9pyJKS0H5ZNzjuY71ek13PKCOivcf3rFdeWpJ3FxtuT+ciMvEw31m5Q29M/SdYb121LywzInTQVNLjzGazeCxpYgTPmXCNFNzQOmMcjJ+t+TMOMNpUszOwWDobaEzlcEpJiz7Ygja8rif+P7bH9lcbRl2O7qVR+nKcTlhe8PKregQR9LjeOJ+f+Dv/uH3/MM//J6PHx/48OGO0/4g4Goqq75ju1rhWwJXwnAcIz+8u+f1L75ivVpxfbtiNSisTWhSu2ccWnlqNajSZuGiQPiNNk24L2QVSASUqpf9puGcdlafteEqx9l9Le6ws0uqJGEmyjh4Qxc0MV3Sr2QzqUobl62yPy40l4uxKOMoSpNLFbFiFpgsEWoSvswyZ6wv6AYBltAMK+NRxrbm3xk6e17AAd0cNa3d/enknbhMamNatsQtDZ3zGN32jUW1fb/kZ9QqjCelNaaJ1jlnSpL9h0Zf3pvz/SMN2OYsOgs99afjQ89/vuR4mE7sw8gxzQQV0R5MrsynI3//V7/l97//jm9/+we+0CvScaROCz4WzJJRSyIvmTQgY569I6mMRdMDPlsG3aO857MrxbclcRwfmfqCdlC8IqhELYGd85jOUxS8y4GHrMnW4nqPNh3Deosylpgr85jJo4zAGmUoOjI9jpzuR959eOCvf/yR+3FmLNIwdFmhQ6KGic/fvODlix1qt0IfA+gJP0xybr1psH0Bg+u+Y+uvGFa9rPOq55AMp0WCdtTmimFzg1vf4vKAa0lfVhfC6URaTnRO45qRQP/M9fLnO1hMS7poF5Zum5DcYm9l/MBcik/pvpzn3Aq5FqoSMWMOC+8+vOfb77/jd3/4mu/vHgkVChprHI9K49H0SnO727BZr7jarYEbsTjFSOos681KLuzLhkgEC9eggNoYjDWYzGWGmlYoK9U6skoKi1JLG4FRAhmjXESYi4iglIgKyDy5bfZ7FPRdx7JMLMvCaTpxPBwkuajrcc63wlBLN6/NrdUKRpmL0HLe8D3roYXHcZ6/L82BkXNG69LEHnFoxBQJUVKR5Pkvqm0qpfXIVIuWFUDiatU/xd96g6JZ2LMkMoVFkj+8d3Te413jLTQWQQ4L5IAuArSlBEqK1BwwNrWFXYlrwjq0c5exHOBin5Q8ekkcktcsyUxnQKXYG8/cBBkVOlPSSyn/2Q5B/XRBPVv//vE9V58Elp/OiT7PYZ0TcHCVgl01W7GkUxVSc4+5LH9unZWHtqIVPUj0SNUoq89OeHHMG8AZtHfY1YBKE8pZTN/jhgEzLhQMGQVGxnWs95TaeC2dI+SI8lZSjrZrYg7o6URNUFNFJTF1pto4N1bjvMN1Dusl0nLYbuj7FX69xvQ9aknooRP2i/fozlOMpjTLqdHSdTmnLdBsqhS5x3MTzbRqsbpZ+C6lgSNFXKmtUG9cBWOeFZaakszAmjbLnHNunCqJyqzqEztu+yDL6EteImWJaFUwCiyKtEjXqzOavnNMcSbljPMG6zXWViiJfiNMkmHtWdcV4xgI89lG2j0BW89ARC3MHd95jDUUCpvVhn7QGPO9QCa1Er4HpSV6zZzGIxkNyuL7A6fTiWmZZP2rmWVcCFOg1kKMEyUGHu/vMMpSs8LoNRWDsZrj48hms5YLpcqIFFU1N10Wscqc80RoYlS7kM9jfc90hBgvXeXc0qp0E3m1aaMal40ViOYj2R4lV3JaJN1LQdWFwIwNnq6uWNtrKeorjPs9y+GALQpCFPdJytQQZeOnxVJrnXStYyoshxPKKHIO1BjFoUUmpopShU5LzHkqgePDAw8Pj3z/h7f88If3jPuZ6bAwTyOPhwOPx0fG0+NljXPKYqJCV81yPDIe9wzTVkZmS2rjJxnTuoaqyga2GkOxWoQvJWMKEnnbMadALRWtLdZIMhQ1UZvl3DxzilAIIlLkmBrPDX4qep+dq09bYYWIPUplYg542hiYeDD5dPRUy9VHKSK29N5zfbUlzhmjT+z3Au/PyWF0z2Y3kAA1RqbpwI8//MDuasWfjL/ixcuX5JBZjjN/+Jvv+fjhjuPhKPBVMtZarm42eO85nUZSiSz34syo1WDtOV2kFR/tFZWaKCWiqsShau0w2WG08PHOalNOGSXbATovriQq5FqYlkC/BHyXOYewngei1usr+m7dHMzPdJTWAdCaWBFuV614DF4ZvLb0tgOUCCwtgVLXjFGgrRKXdEnMKRCKNMq0tvihY73b0K97qqtc314xrHusc5IcmaWBNIVF4u5LwlqIulKVwq8925fXbG6vWL+4we82xJL5//L2X0+WZfeVJvhtdeRVrj1USiQAAiSrKaqmaFUzXVb/cZu1zcPYjE1ZV/ewu1hkkQCYSJ0ZGdLDxdVHbTUP+1yPJGteCPPpAwukQiLc/Z6zz97rt9a3+r5FlIbyeMr8/ITZ2RHZpETmJhHG04lrvI9Slfph+v6+8vyne4yY3mnOEweX1rT7mL1HhrRHTALL+O737yOMkTSVP1Tv/ncr4v1h4eHWSpMbsiJDZ5rdfoOMBZkWTOqSfdfSDpau3bPdLJGTirrMmVQZzb7B2YFmLxBMKIqcuk4Q7aGXDHHAWwvBoaRHm0AUDhcDg4VdJ2gLiYsZWlmUiOQIjlWJ8Jq9l+xby827W5xzyXGtBUhP7zuUkYhME6KgdZ43797xw4tX/PXf/C0//PCCpumxPqLR44BPIE3JvJxQzacsZpN0YFOazidofFFPKPKcohQYFZDCoUSOEhqBShHzpIIlEP9gCVqjM4VS6fvzWCTJRUkcmWxirGyPDzdESJdklEXGOHMSDVL8NjEPkWkgK0dxQtzX28s0DIlpgx3u245ARUk7pGe09471bkfbdHjrESG5T5WAVms6a8nLjKwwZEogTUIpKJNiy/elAzHyk6Lm8aj3TwM791DZOLKxxjNhGgKkBjnv0vPVD5ZhsHT9wL7pEUGMmAaThnDBE0YCuhx/HbYY6c1xOEfG+9/z8EvE91/TT6NCDzV8XTV79n1L5we8CAgZEdHR7zZcP/+Rq+evWL6+4uTRJ9hdg296jIuo3iKagdAMxCxF6rNc04qAxKfBh0/FAlIZFmXBu/0ddC391iGFJ6oUknW2p8wMdaFxUeJ7j3cDbbDoLENIQ1lPkDojBoHtIq4VxFyTmFaW7XXL8m7L9WrHD8sVbzY77jrH4y6j8pJs8HT7OwYpsUZTHi8Qux6BJC+bkaFkEIUi6EjUklhoikyjTEFlSug13981FMaSaU0op8h8gjY1RD3G7wIiBvrdFmcb5kfzMUVx4On8y68/eFejtUm1p6Tpnh5rke1gUwOQEJAlBkQIkWGwNE3HZBLunS8I6G3P63ev+T/+63/h1du3vL29o5MGkZWoomBWTQlCYQOEYaDdrJDbFeZG8ovwIcPRghADV2/vUGWOmVSU8ifwWCkxRZFAe1Kg8hyFJVifFpHRnCKlTC0kQqBIhxkf0zQ52AGjD+4YnSIsY341Vaz6UYQZtx9CMp/VeJenCdLJMcvliu16xa11nJ9fUpYleV4Q+24E6Y3tMz4iZXKwpOuh3RDxnzQTeZ+gttY5tC4QUmOyHOvCGH+xyUUz1jm7cHAlhDTlblJOXMmU/xd4QhiYiioZsmOg3e+4u71msI56UjKfz6nKEqMVXdPi+44wdMg4IHw/Qqh6cB34gRgteVWm2kplkJlGZTmobPQIhbE5h5GQ9x4kqSLJFg4jeFdgx80jwad2oECalpM2WZKUOYWfulTSzy7es4cSf0X4+7PdODV6uAX0v7u0xDpP79Ph4N5x5cK9gNlbi05c2yTIjGKa0Dr9eZGnjYLvafcJPBtjwGaCWObISU02n8DQ4pTE5hnUE2iHsRUlUIZAIQSiyJBRowXIMsNaCEYxCJgez+mjQ2w3YCPBWsLgR3HVIwyU04p8WmKqHJUb8mmNqguCNvg8x+U5Lnf4IsNkOSLLCbnBG43PE5RLqBzhXOJPyJSbP6yFB1iusy4VWsb0ObshTcaC99ixJl64QJkXDFWFkSlO+FDXMNi0SYkytfk4y9APtE2Ld4mtYAebviaZ2pGC84R+IPQ90lq0chglyUSk3++QeBazKceLI25sj3eWvMqZuCTgbJQlKwq0lugAmUhslEHB6dmCySw1aOy8BUbXlhRU04rJbMJkNsH6gDSGPC+5eHyJDRrnkpt5u17S73fEoSf0DWU9oawriqLmdD5LzSn9DkR6zGwP09mcwbZpEmJ3bNd37LZ7lrctVT0jLwvqSYE98gxDagxq93u0ygA5xroCXiWBMYGAE6RZjsK3G4YH+9ys9yPnSGKHAWHt+D5J0LPBWjpIQpBPn6tWOgnHqsdu+7RsaklWKHzfM9iOdmioJmn9Nwju3rxjndf4SYuSGWHfQjug+oAyESEdUQy42Kb3hHCsws1YPx8IDPihxbuBzg8sqpKo00ZwdXfLl7//R57/8Jzf/bffs7lKz2OGpp7UoCVTLZnO5+9dmV4gfRJio/fYZkfX7Nj3DX302JAaqTKSQCQRCKURRUGMcfwMxja8KDB5MVZxCkxWkpsSZLLwN84ShUCWxYN9bgBdN9B3A0NvUyxEHcCS7+H0aV1P4mvKEI2TWSkY3EApkqSS4GBxzOv7FD8c0t5AY4heEkMasPz8Fx+xulvx3Xff8+bdDVkJs6OCx08uObkIbHYtX3z9PS9ffg/0HB/X/Ju/+jeczo/RP/uM9t8OvHj5irdv3vDdd9+w3W7wMTI/mvDBBx/QtC3ljyXrf/h94muM654/OOO8RWmPDyP7J1hklCAi1g0IkQ54UmqM0klMGVseBVAWOdPpBNm0dN3AvmkwWY4yGTPvcb1Ftz37fYtSKTrFAwosRmdEk+EV7Jyl84EQBYXKWeSTxGsThl3f0bQtbdMgvSOXaaCQVRleJP5OYxu8CmhjKOqSZ598wOx4Rl7mbJoVn3z2IVVdstmsISaYuB2SgBaiI0SL8FBMCybTmounlzz56ANmx0dMT47YtHvuVkvazY7F03MuHl1wdnnB4ukj0BpMgu8rlQY6PiTRPA2e3sfTk6skiezEsYWlHwjtgG86xLjf8C6VBOgRuhxjgtja0cEiZJr4K6VxLjnFfQzEQwEA6XAeok971ge82n5PlivmR1PqdyXdbs2AZzapWExL8kHRtB3ruyt8k+MmFUfHC7TwNE3L3d01Xdcym0yY5IrSSCqTQ13Sth2D92RuQIsIzqNjQKC5W3fkUrCYVEwmc4xMz/nRfEFFRuPharWlbRp8WIFSPK5yFhdnnJ4d8e7qirbp2Tc9r66W/M//j/8nX3z7HW/ulgSdgcqQqsRHcc+WbETL4llN/egZv/rjP0KR4jBlnvOrv/xLJlVJtJbpLKMoBJkKFJlAj4ydBFUdI/fO0TcdUkl0JjE6okRARJcGMzGMx3jeD0QfXGCBw1AwiaXJ2TG4gb7riMix8U8mB7NUaKnGwoiRiTRCel0QNL0j2oAYLK+/+4Z3Nzfc3N3y6tUbfJ/ElVLnuODHSL5ndjLh7OKE80enfPjZB1w+uWQ2nwIpqimkIEaPCPI+BoR4fzb66ZD1/u8fxI5x2BnH1tb9ZkfbtOx3LTd3K3a7hs12R9tacpUzLSd88uEnycXjk3CkReJjqvAe+JteJ2PJxT0vKd6fDdNXcRi2PvyZ4M3qDqJHkMpF9stbNjc37N/ecFZUbIuaH61ne3vH5vqW/fUdlcnRyx3x6obBFujPppRGEirDRkNvHatNQ3ck6WyK9ZoyR+HQtoGbLUJJtLUoZViv1hilOJnU/LzMKBVUrWe9W2FNOl4dXZwTXi9QPhBchu0ymg2E3cCP797www8/st7uGJDcBMmbIfLD7Za3q1fMYkbtBcvlK970PY+3e7qs5KPFlEUPLioWUpFNS4woyGvoRMQDqs7JvYDe4H3DPkiYzbl49ozV4gSnK9wg2W1bZD4OJts9/m6JFI7ji3OyKFD31td/+fUHCyxCqXtF1foEa40R+t7iXXIbRB+IUqTcfO8Skd2mMXaRFfT9nrZpuXr7ls1mQ9t1qc1GG8gzKNICmxVlahHa7emaJllnneW3z7+jD8/I64LLJ48JxrAdeurgsWM2XmXpQC5UElhMIVPFdBgtwiKBTlN5w3hQHR0Q0afFTAJllqGUYRjGznch0OoARlPo0VlwMNAopZLqJeUI4s3Ybnfc3N6yXN4y9DVVXaGzjGRmE6mpR6dsvwhhVD4f9uFMMF/GdoPkXHEuKbp+tNcfKPpihOndcyPHjag0BsYMaqoFFBgtmdQTskyRaYmWcmwD6lId1nqDNhnzoyOqqkDJxEGxQwfRppeKCPhgCb4j2BYZB7QMSAlVmSFNBtJgo0DpBLbtnR85MqNNL4TRup5ElUOzlBSMlZsxfbZBEIVEEJHm/XotZQISyzFCFUn76wOw+Z/Ggg7snPfOmTDajFND0QN7A6XEe5tql0eXWGpxkpgswzpHpGWwLuWElURqlXLfmUkOkCpP7xzbEWyPI+JFpBXQKUFv0jRm6xPA+fVmS9f2rNqeq6ZJ0Qed0UnFvm3wAlASk0mcSNV8A5F6PmewFlMv0UNk3+3owoCzA0JDnmUUJ3PyeU02rTBVQVFVBCHZ9z2rrmc9WPZuwPcdxlqKoad3jptmS3ADSivKskD0KRfrQ8TdtzSMTWIhAdsONmtxmMyMmfQksAzkUjOrp9htg3fpRfxQV9N0aAVElRqKBkvf9fRtn6bH6NRyFOMINx2IzhFH72rEomUgM5KylDjbokykKAtMViJUThA9QQjKaYUXgvzmlrw2ZEYABmSFtZa2sajRqaILQ9d1BCI+BoyMZHlGVmQoY9h3e2Z+RmkmnJ6dcn23wQfP0dGM9bTCKpC+QJ8t8FEQ0SxmE5AGH8G0CmWSU2e/sZSZJNM5xkw5VjltHxisxGhFrg1aKIbWspVbYnRIRBK/8rFuODA6zUbxU4bRTcg9Z6drmwf73DyppSxKkeKtziFVcmXqgyvyUA0/WpHVuPmMShOkJDiLj56gIrlSRCNRmaHQycUXo8CEwP7uDrdrKbIau2uInUVaUtsQnoDDhY4sz5FK0e92SBlRWpIXCqkVrQsMfYeZTVndLVmvbvndb/+OH777lrvrG/a3a6ogyKSikBIVbFoHvUBEhQhpQmekxoxA1HZwhK7H2QHnLZ4wCtphhHImUQalwEB0Bp9lqJB4DwlepUGOLUm6QKiMODZjdNahhKCsqgf73AA6a1Nswqd7JaiAkCkqqJRAB4n3CQSaWvREipqKdIgIcO9OSpB3kdaNweF7h3dj+5pJfIuu67lbrvj00484PplhCrDsCQRWqy3OBS4fXfAk0xQTw9W7O5p2y1dffM3F6SPqqkISeXR5xuXFKW33GX/9v2u+/Or3WDsw2IZqUlBNSqIQvHr1js2mZeg8fT8AqaFqGHoyUpSvzEp6x71LtY/9GKOMCbpPhlYKo8T7uJSAk+NjqqqnaXpulyustWy2G/RtjtIZPkZ2uy37fUNeVJgsJ38gfUyZgiCgD55t3xOERBvDpKiZZMmh7FpLYzvafqD3ASMFudEIo3HC38OaG9uRVyXlpGa2mHP59BGm0AgNul5QzyqUEuyb7djqZukaS6cTHw+V9oZVPac4mTI5X3D0+IR6OkEaQbPcErHMFhVPPnzM4viYydECUebjZiKxbuLY6iSEQKo0dIoh4myCtAfvsCPbiEMUNAqUiyNMWuPCgHVpOBnFwbQXx2hY2qdonaFNWrvDODjzJMt8stcGwiEW8ZOh+0Ncr169IC+Sa+V4MWXnW3zX4JodKkZMCGQStBFkOETf0K0DWmnqMk+zLqHou47rt6+o84wsK8jzKiEBSPuW3nQIJ1HeI11kCIFtO/D2bk+Zn1KXGUVuUHmGjII8RE6O5jS2xMXAdt/SDz1d16L2G16/es1u17Fc7vjPf/23vPzxDV3n0VmN0xmYAplVSJUhRudpg2PlIrsoOfnwE04XU3KjUUKQzeb3sdCqyCmNpDAwkYbKSJSMRNsTRger84HBDqhBo61OnLbRNdnbIflmRBJSuYc8P6zb7+DMPLj4D2c5O1i6rkeMlbhSqBEyK+8jRcT0qCBSbM37yHKzY9/t2Hd7fvPFP3J9e8tqvWZzu6EgI5OG2pQMwdH7gW5o0S8Vp+dHnF+d0ro+sbsyQ14V986ZQyzofrMef+LOEiJB32G8sQ9794BQia017Bturm94+eIlNzd3XL9bcnVzw3bXsNk1ECSTcsrp4pTTRQK7WxuQUaKFSQLL6OIWozszOe4OX8LorDk4WhH/9Fz+wMcBpTTBOvxgsZsVx0XJ0w8+5uJXf86LV3f8zW8+5/XNhkEphmGg2e7oQsPu+UvuvnuO4zvMbsfpxSmnRwXlbEE/NLza9uy04fr6hnd3d2y/7Gl9h9CS+WLBdDZLri1d0K4bul1Hl+85r+b4QiKE57vtijsPQeaoMiM/OcP0loCk97C+W7Nulnz+41d0NmCRdF5zu+7YbHu8jQzCsbae7RBohGS/3PHGeq6t448uTjmb15wd13zGR5xenHBSFBirEAq8iMggGSxsOs/3yw1LndHWU+J8QdRZGmKGjkJLNGmQ9Oq7z+lubpjPa06rGn0ohdF/WJLkD35S0z0kRjuiJ6BI5Gd3f1AHRjvWaHcffwXnUUIlu7xz9F1q6xFCYDKDnk7weQF5QcxzYpGn/GnX0on0w4shsNvuWGw3nLcNHz99jMgznABLxI0ighASYfQ4oUobYOUC0iXAqxzrocPBuh+T8p828umPRukUM1IaN7xX/pUca9cEIGTa5I9PkRoP5wgwSpNnOTEEmiYR1Lu+RUiolLo/zKevJdWk/VPB7AGfzANHYRSE3BgP8uG9nVRK9ROBYXRvJANLEliEQgqVqn0VGK0ojKYoSzKVxCpiZOg6mmbPbrOh73uUMRRlkRgqI/fF2Z7gLQSLCOmP+AHhB4z0aTOcSfJcI7QmSI0dUjwmHiz64w0Z4yEqEEaBanxxxFEcuU8ORVxIn5lQCjXa/8WoJB1qUdP/bRzFlXHR/omN97//lV5W/9Sw+HCXlBIXA9Z5rBsbc5Aoo8lidh/nstZiYprGSq2I4+YzKpX+KEAUGfSGGNM93xFogqMYW2NWbUtnB/TtkqHpWG02vN1s8N1A4wPbYWDwLjUOaUWBT2coLRm8x5QFeVViihItA1E2DNHTuiFlajOFmVVkdUlWFWRFjjEZLgR2bcumadl0Ldu2pXXJtpgpxS4vud2uUUFQ6ZxaKaIaqwVjcmS9RyYcmp4OMaCxVWq0U8cQU8OE82CSzT8BkB3WPlyriT00BMn0e1vrksjS90n8keE+Ux9JDTKJK+KJ0QEeIQNaR/Jc0bZ9mqb3gpvbFTd3a7a7NfXVO1ReMPQDvWuJskQag9EGqXKyTCFlsqMrpTCZRrkU9gsxucBSe5RCGUXbtwmAJyWT2ZTVtsX5NOWe1CV99GBhPpvQdpZucBRGgdS4CJnV5MXIbHQBKUJqj1E5Jpco5emGOAqFoyMlxgRvFGkq2LoBo1NLV4iHz3A8aIxRzftpUghjM9zDXM4HTIwJ4T5GHQ+NIodNn1LqnnMgx6y3GFujxCGKGEgw0dGpKCPIEFOyfRQ77H5PaAcoPL4biINHeFJUQASi9EThEotICIZ+IMiIiBKR5yn55x1919L1Hdc3N7x5+YJvvvqWd2/e0u32GBuphKGQklxKwBGiIEaJDCL9ipJcCDIhsQJ8cCkKNA4jojiEZUbr9f012seVRCqNEGG0kcvxEJgq2IVMm/QYkuPPHmJD+cNF8oBxfYwJZi9ietfH5NNQUqZ3txTp3hzXbReTYyWO09gYRos+o4PAJ9Bk8KNlcRyKhOAZ3MBuv0Nnium8xGTPuF29Y7ne0FvLar3l/Mkli+MZv6g+QRnFftezvF3xw7fPOT5aMJvWFEXGZFKBOOLd9Yes1jest2sQkbLKk6BRlByffE/f39Dudjg8QoR7/p0yKsFxlUbFBJ5EiPGQNAJwXY9X6f2tlE4OznHDUpUlWhu0MgmWOoqLu902tb4ZQ9u1bHdbsrwgzz354mE+tyglNnp67+itA6kxOiM3eQJ/e4/tewY3YH0qSEgsPIXQCkegdz29S2JgMSmZHc04Oj1mcjQjpJECVbWgrHKcs/RDRwijozmmSKnSEpUpYgai0KgqI5sWZJMCXRhcSM6/PE/AxcX5CZP5jHxSkwBVJNevEIeyEw7tdtb2qRmu2xOCS/eTs6nZEFLUFXk/8JFC3kdLD3seEQ9tgQdnSkx8P62RSo9R/SSGCv0e0PhTKOhD7ivXqyXT2ZSyzJnWJXGfMfgBbJ94jAQykYaehojyjtB3qKJEKYMx+ehmcPRtj/L92H4SKappio0ITR4LhNEI75GDJwpL72HVOtaDRBQZShWpFVKkNXZaGjIf6N3Avt9jraNpGgYRuV2uuL3bcPVuyXfPX9AFMGVNEaGNCkyOKidIXaTYph3wrmPvIjsbMNWUk0ePmZQFIkayqkTGFC8zSpMpSa5TDCkzAiECvR+I45DM+5BAxM7jbIKoKyHHeJBPQ8BkJhyRJ2MU+gGvwx734GIRY6blp22HsUj7BgH3Asv4L3PI68aQ8AGb3Z7b1R03q1u+/u4HVutNioLtLbUqKGWG0JEeT+d6dn1D3Dqst9hgKWYFl08umS8WmDy/H1pH4k8M/eN9fP8KGvfrh6/p/t0bESqJRfvdnndXV3z/3fe8evWGN29uub67Y9d0NE2f4MT1nHY3sNnsyEw2hvokEpW4W+O7/cCj+en4+xAFiv/k2fopLiA+5COXGoRC+urKrOB4MmNRVjw7vaQoj7nZtlw++ZI3IQ322n1D13n2r6/Y/vAj/eC4LnJ084yT8hPyyRS3Ddz2HVsB79o9P1y/5ce3r9BGUFclygbm0mCyDC0VnY/YztLtO0wMzI1kEHBkBjZhhw2BWEyRsxm0Pc4FOiLbrmG127AbOoIu6BHcbFo2+57gSU62akK/62jswE4pogusmp7mzQ226zmbFlysKoqTKbIumfoTsqjQQSAJRC/ZdZabbuB1N9BWFW4yhbpiiHFEBUTyoiD2Dc3yjtfffIOUA/lRag/SUiUdQf6f7GAZnCMfD5tuPKAGP2ZinUUKkzheIaTceN/jB4vrB2w/jH3kHomgKAqqqmQgokJN/fRD9hHaKIhZRifTdHI79PQxdWMjkzn65fqO7LXhX//Zv8JMSnSVY6WATI0oBkE0BqESJEki0D5ifKp61kYjAyMwbcD51IDkvbs/LJd1Tm40UiSeS7JAj81Do9qMiClbSTzgDBjG3HmhDUoIJlWFvrzg9du3tH3Hat3hY6CuJ2QjADdxV8VPxgsPGzlRWiO1RiiJC57BWQaXsv7W+bShFGnjj0zgPE/6nA5WN5NlaCUwKkGAijyjLnLqqsKoREjv2x3LuyXbzYq72xuQBqU0ZVUTY7Ir267DdnuCS9VpfmiJwx78gMJSZoq80ORFhioNQRocijDEezeN/+f5x+DBW6KzRIbxXgnJwu/B2kjbRVxQCOmQOuJjYvwok+7hOKqVP2X0HAZ88fDX48FdCO65NT+tKxfj5vshL6MUdpx8dUNH4TJEpsirkpBJnHNsRJr6K5Wn2vAiJ2SGoDSexC1By+Q8cAO9CAzB0rse2Wzp1woxtHz/9i27puHtZkff9qxXa65ev8U2LaXJKLMcqdV99np2NGc6n3DkZlSTCp3l5HVNOZ0gW0tQgsYNbFxLraeUdUZ+MiVf1BR1SVHXKKXYbPdc3y65urvjze0ty+U6VWV2HQqodU633FLnFcfzBWU1JZloUvzLudF6nbz94+Auvhd4vUdYe89bcdamjLc0aK1om5bdbks3PJyDxQ4WJwMxeqxNVYFd19E2Lc5atEwZ0Og8XgScSPnk4G1iKCgP0qOMoZwYmr5hs9uw2a753bdfcHN3w77ZMf3qK2bHCzJjoO2ZzzUmXzCpajJTUVU79oUmRI9QYmxXS8J4GNe8KMQ9G+dm9Y526AkSJvMZ1XoPdJhMM59P2AXL/m7HfFIj2GOHgRiGUegC7wa0gjyTZDpjebtHkOrCtbRMSkWewXLdEbwDlZOXGVqHVI8rJcu7Pd6E0a7rcS5tRqVIcL2DWPZTUfShrqZrEldLKXxgbO1JnKODg0NrPboCRYpcqLHmcoTjJqDeexE4WIcNLtUtmyzZ6uuau+sl/bDHZwN+EMli7VJUIQZJiColMXxakYO1oDxSKrwT+DjQNXtWqzus6/nmq6/54btv+eGHlwgfyWTBcVUw94EsBjSew/E0AopIJjVGaEqhUcLQx4ATntJoisxgjCbKJK6Efzb+Pmx2xSg6SZmccAiVnksEQRwavyQhpGchIJAmI68nD/rZDc7jxirjMLrWkBKkRimFChElPUMcxu8lMT2S2KKADO/EGPmF4CJ+CNjeJzjp+I6POFyI9FawbTyb3R0nZ8/45a/+lKgCX339Pd8/f8nnn39FfVQzP53yV//+L3n67AnPv3/D3//XL/nf/pe/5uzslA8/eMpHH1/igyIvc/7sL/6UwTW8uXqLD57pfMLJyTlFMeX7b1+xXXdcvb5DiiT8OW9xrkebDDEe0qTQFHlGWZcUVY3tB2yXnKV5dhBedHqGxnrffHQPFHmF9ZFt29DZJCBJ1SG0Yt80vH3zGjtYqmrC0ZMPHuRz64Kj8Zad6+kGRz2tKMqKMi+gCwxtx2a3ZjARN8p8jogwGlkYrO1obZ8aSHLNyeU555fnnD+6pJhU7PZrbHB89PQDisKw263phlQRL5VMTSHSUS1qqkWFVRZVZ4RMoOoMryM9PV3fUNYZVV0zP1owf3yehgl5PsK3R9FVCoTQ947XZrtluVqyWi9ZbZYIINOKo+mU+XRCWRRM8hLpQVhH7B1BDUkAtKniOcWhU2FEOEzqI0itU1ugUgz9kBytEVLD6PsD8f1/HtDCsl+viLbH1xVnRxN0N2VQEHrFcrtF4NESgoNsFHCJAd/3OBlQqkzrRhRk3uL6Bmc7um7PQgRUbiiMpConI+41xddD1zLEwLKXvNl6Yi4xdYbSEpEpjDFUswUCcN7StDuarufd25Y2Bt6sVnz1/Y/88PIty+A4e/ohuqpZNQPX6z3IjLyeIVWKKkXRYvKC/RC52TRsO890ccLZyYJMSfCW0DX0Q4dCkSvNJNPoSUVQkiF6+mEgOHDO0TuH9QHtPIP1FHmeXHZRJA7QKMpHJfCk9VU+MBDc+eQSj+MhUoxDgDg6fI1JB9Gf9Cukd+0oYPjoCSK9iwcbeHe74vnLl/zw4jlff/sDwQWSXy6DkBhJzrokGkUBKLyzbDdNan6NA+ePL5jMp9Sz8b0wmkPSRtvfD/iRBxZKfD9kJdwP12LwYAXNdse7qyu++PwL/svf/Fe+/fYH3l0v2TU91gV8gEwXTKsZ27s9b/7kivl0lurc5QHEbtLwWYyF23IUmg5Cyz0n5p/9gB94X3K4VOvRQlBlNb/45FOOypxMCHznOH9U8OG+4Vf/l79g+/0rvJas1yua2z13X37D3W9/j8Lz/Paa/uefcDzT1IsTughvm5ZXruN1t+XF6pr/9b/87yymM05mM/zdnomN6MWCyXyOCYqhsaz9lvikZ1opVCX5pJfcrlas7YAXJf5oiq0L2sGyDj0739LHgccfPWXpIuvbLf/w/CtuVzvmizm//tnHHJ/P+e7Hl3z93Qs2WwVZCVKzbDpe33xHrTxnE4M8neLmEyYfPeVUZqjokT5gneDH1ZLvlxu+JMCjS+LxEa6uWa63iKDIRMaRzrh++Za3333DV//lb/jjf/PHLGZT5kdzZJbepbiY7Pn/wusPf1LbDl1UmAjCO7yVOGexbsCFgAwxRXFcZOgtbdsmUSWEFJ0JAd87Mql5dvmI7yYz8qJClBXzj3/Oj3dL3qzX7HrHbbMmOIdBYrVOiqIEKTwDsNo33KzWLOYzppM5Rmn6zqVpQGbGjZUYD2IqQc1ykJ0d88upHsw5mw5gBDKjk3AU0yT1MJ0rqwLrerxLzA51yDGPLgc1KptKCLyU+HiArYoEIhx6To4WtNbSDT2ddWhnQanUsHJosnlgYeVwKWWSeCKSAOVdSLEKD0FYpIvUumDwPSqmWukgD4tIRHpPmWWJa+Ick7qiyMYDN3IkcgdWyw231zfstyt83zE9OSE3E/o2YkJD6HfQ7hC7JbFv8G7AuQ4pQakEstWVxuQKU2pkprFRE4MGZRhERSDHyUgXG2J0RDokK0TcIOIO4fcEH0f1P0OQus4zo1EhI4pk4e1bm35vnVpmZJQ4LC4b0HlilwQRR7BzYguEIIkj8Mq5ACLVdQspEIrUXvTAV+gGsB4xtt50TUeMkTLTSegwqQq87Xtklqo+qzLHZwanJM57yFWa7gTD5s5yu99xfXvLcrnCffsNXggGLVnu9wzOpc/fJYFi6HryKMiVplAKreUIYUiTqXqSc3Z6zL75jD/59R9hTMbxyRnt3RadV4g8I3SSxcURZ8/OOb48ppwVqCxDaMOX333Pf/vdF/zdbz7nN7/5mt22YRgS4wfrUEChBcp6cqkoVcbF9IhHR6dcLI65mC7ufzbBjQBLBTJIepsO5957lEvVb7gAPqQ4kPP0+4bdZkMMgUlePtjn1oeAG3qUFeybga4LDH2k7xJV38hDrM3hfKQnMtiAHSJ+LMKSwiGlxWSe1faGL7/+js+//IZsWuBFoHcdz//+b9LBD8iAv//Nh3z49Cm/+Ozn/PoXf0wQnslRTVSkvL7USdw5OLNCgvdUZc75xTk3t+/wKDySItMsjqZkmaJves4fn5JlkX2zRKjI6emC09MTlutdOoR7gdsFuj4wm+U8fnSKc2/purQcqjZS1xpVSGT0bJsN3TCgxSLxPEb3BHG898Qwtp7E5CIQpChX29E1HYv5gizLqcr6wT637WZLpgxG6dTqRMQ7RXA+AUZ9GKeNcmz5GKGFMbEPvEtNJC46us7S9Bs8DhRE4bFdx2Q2JTOCTEPoHXa3IzhNDGKMRKUNaRQBXWmiS60qqIAqBDIHkaVJrTTJTn5z+471bs3gHceXl2DTtFduO3KpyANkMYAxRCUJUhFRKC/QIaCjQwqBiYJCSU4Wc8rFnGpa/3RMhwB0InbiIAkPJEebDJEoJF4IhM5S04yPaCcI+wHnBmxriUKByaB4WAZLcA6CTzDmcaJ8ELlkDKlWfrTDJ8Bpcrn40eYeR2HGjc4r55LbzbkRdivSoMcjkCFiraTrLNd3S04vjsmqjH/3H/6Ky2dPOPviG/7m7/6Or775mvX+Fl04PvrgU379x79gNj3lb//Lb9nv93z+xecI3fCz+mcsLhbMiyM+uP2YfFLS7lumsxNmi3Pmx2f86s/+nNZGmq5j+W6b+ExaEUyBICBc2mQ+eXLBRz/7mF/86o949OQxb9+84dXLl/z93/4d3a5l13eI2pHlBZnRaJMjhCTKJJ5fmHNm1jJ4j48RqRO0sK4nLNdrirKmnswe7HO7UgOrvmU9tAgBZZ6T54aWgWW/px8SQDEEATE1BxV5PoKoI13naLwgSE1eVZjLE8LJjE0h+PbHr+mGDq0Vs/4pufNs1x1vli1bZ7E6oqaaxemCD372IU8+fsLW7bi6u2Lf7/nuzfesuxWTumZaTzg7OmMynVHPZsiihiInGpOg4Wocu4vRAeUttuu4u7lmv9ti2z3TomBeT6nLgklRYorUrqWUSou+0ggZEHKPHRxd06cShJAGCEqle25w4wjM5Hip6AL01ie+IAI11t5Hn0QkrdNU9iF3KOfnj2iaLdvNGq0sUQvktERmgieVwLUN+82aLgRCUMSgKJXBmIiUnhC2OJ9aZZxUxKIeXXCBvrlG9AqvFU6nulyjFVlmEKVM7VEx0A6Ou/UW73tOXEk5KaimKUa8OJqhMkMQsPMD1+sVL67e8eOLL7hZbkBp/t1//I/8/H/4H1B5yedff8f/+3/5X1kuVyzXdxT55N65kWUG2+65vb7ib3/zt3z00QVZYTibzwk21WjjY3LiCEFdFtSzKZsu0vcDwxCwPg04U/TUIq1KMaFBEl1yYMs4rl2jE0qIVJOcuEcPd1kXETo5+g6NgkGAi45+SIKq7jKUniSkguDeOZ7kjIANgcEHdr3jzbslV+/WrO4asliijcBIgfExifvRIkVisVTGMJ0dEwogE8hSMTs9RmQlfRBpoBrT+ymFdgOH0hQps4NlZZQZU5lA5FBUkRyXru3Z3m64evGOb//xe15//Yb16yXGQ2UlPghAQ9BkVsDes1/tUcJQREE5rxOeQCl8DNgIAxKLIooDIFUk7sQoYHoiTsTx64loAfdVYg90fXj+hMW0ZFrlTE1E+rGOWknyacXZsyf8+s//Fd+FyKAiL2/ewNbhbIuRnkmeM9zdcfuV528Lwa/+/b9GBotTkb/53d/T3d0x2IFf/8mfUhY1thv42999SbtveXJxwUdPn3F+eo5UEmUE22bLtIwUOuPPLk9xasfLNvByewvK0GjHdRi4cI6ji1MePT5ikJ7/9N9+w8vXr9i6lj//t3/Bzz/5hH/16z9iP2yZnR2jj+bot3sopkRpaPd77N1bXLPmXbvity/eoE6PmTx7RLWYU4gMEQOv79b87vU1P+xadhfHhOMZrZJs7pZ03lEbg1GB/cs3LL/+nO2PLzgqDR8++4BHj54QSQ21zjmsdZD/y2PMf7DAEgYLPjUJEJJDILkE/D0I1Hk3wkAPrA93354Rxl5yLSWL6Yzj+Zw6RNRkSjlbcLVrIW7xPjFeYoA8z0dicIp/JHtuoLOWpm0JYRQ44iGql9p4ONi2R7VRKoUyEWXSRvZgsUxtSMkyW9Zl6gt3yS56cOWFGLAj0FAJKDLNPXZ/tHRqKYjOjz0DSQlObBGPiBGtFXny2hHoEVISxknZIZITRobIfa7vga6D/fR9miZtLPEx2fgDZFIncJVIduqoJFKK9LOJkVyrZNkkkhuVgMDOcbfqUtax73nz8gU3b18ydHsKLTATh2wGotqjhzX0G+g3xH4DYUBEjxYBpVMlW5YpTK5RuUYanfLMURGiBpkRYjr4vc/KewQOfEtwO4TdYGjROkHfEvRR4pVMEyUyIjmBHNyYY/YH99HBRp5iUIcD6D3c1v8kIhcFPkRESDGLKGLaVI0L60Netutx/ZCqG32qG7ZSILsOJbJ7AdONVdsIKIqCQclxWhBohx4bAterJa+u33G7WnG7XLLabBm8Z4iBVgo679LUPo7VdOP9gTaUZU41mTCbVIRosd6ybbfs25Zsu2G9XbFvG2ZVTVFX2P1AvZhx7Cyy1Jw9PuP04pTpYoouU6a1d5YXr17z9Xc/8PuvvuPl22sGm7LqWimEt+m+y0sk0DvP0O6RLpJLTaVHoHQ8NELFg6/03lFwuNeD9+DHTQyJReTwKVY2xgjNoUr9Aa7BJ1q9FJHBuvvK6oP4nBt3L6V6n5hC1oV00AuMzyKE4NjtV7x49Zyrm2vawfLk8adsuy39+pZ1syOG9H2oGBHfB9bbHdt9S55VnB4fMZtMUvxvrNA1alToicSQhGCjNZNJTVFWSK3TgV5CUeakw4IjVxnWTpguZgzeYrKUfTddOlQrJ1BGYf2AC5qs0BydztisBjbLAULECCgySZxK+t7SDxHXZRTlJO1XfEo7ex8Y+iE9hz+FTMeAc4lpQ2TkET3cdK9rOlxtR7hpen6CdbjeJhKJ8yP8NN7fZ/dRT5Gis/1+j+0b+mHPrl2O7iEY/MBuv2V2NOdotsDbARHS5jy4kCI1pIjNqBGMsZoAIsXKRKZRuULmkuBAKJHA8wLyumR+dsKpzmBw0PTwbsmk6dG2Rw4tQiVhNIr0DEqRgG4KUlxBKvI8Y340p5hN0WUBY5zsUHEvGF2c44ZbCvm+2YskQCuVhiLRR2ybRGLrLW5wCWCoNfGBW4S8czDyxoQAlYppUhyNiBJgxvdaHIcC3vn0PhkhhYmxNUZpR27Twa0oZESogM4Su+ZgqV+vt2y2W3rbc/H4EU/sJUP03O1WdLbBx8jr168piwlFPqWqc559+IRm32CHDqVTnSgqNbPU05ppM0vrsEiOIKUzTs/OePzkEXfvrtndfZH2QzGtERKRBhVCMp9MOZ4tODk65uLslNykavft3S0/fv+C/W6X4rs6ua9k9GOTUlojisqgQk4q0pBkVUVVTzk5PWM6m1FPJlT1w4majQq0OPrgyHKDUpIQA/u+pbVdihGQhiCHtkCtUlOXj5HBR5wQaSgkBQ0BfM++C7zaLdluNnjn6PAUyjC0HS9evWW33ZCrjOOjCZcfPeXppx/w7NNndKJjcjNhs9/gYop9oARRCnSek5UleVWDHomOUqYDMQcIZop6emdxbkArSV3XlFWB0ZoqLyi0IVNqjNQJfBxjGOOi4nygHwb6rv9JyxwQxX0zZ0AgtSYKiQuRwQVESA6axN3hJ2vkWDP/YJ8aVJNZij71DdvdjixPMTVtJHVuEDqjlgXLVUvvJDYIjIBSRDIZMCrQCUkfJfso8Voi8Ig4IOOQqoJjcn0c4h9SChLWXoBIA9629YjQk+kAMglK7X7HZFaRmZJqNkUR6KSi2nVolVPkFSIr+fhnn/Lsww9xUvLNy9dp/e4b+rYnWEtmEmw/evDe0vUtb9+9ZrXd0Pb92JyW1g1vHV2XXLB5liVGUJeGp9YFnFcjhNqNAm+6P7zXyXUxxsAO9wDI+7VViQds7WIsshp/l4PAEsdzhw/u/mtLX9foEOawB05/Zb2nGwb2Tcd+19I3A8FCIXO0SGB8yYARoGUkkxEtNOVsyvHlJdX5jJhLYi4pFhVHZ+eUk1lyZIkUc7yPCI2/a/rTw9krjGLmAR49NqXFQNe03F7f8ur5a65fXzNsO5QVFDJxcxJGRROlplQ5pckJPj13LoTxHUli4cQwnj4hjM1JMG75x2csfRWRIBKi5X41GPejDyWznB+fURWaMpfI0CAOMVwAqcjKgtnxMfl0gpWw6vbI3uF0RFVZShM4i2/23D5/ztWzU+q6oBDw7noN+xbpI+dnl0znx+y2e7776gfebRuEWaHzkuOzS+qqoCw1NrrUvBYNJ1nBhxOBlAPtpmMfBiKeQXgGLRKXVEG7W7Pf7hi6jqPjBb/61S/55IMPOb844+0qcPLogidKcaNusRS4IBGmpHUDVoC1PTebhqvlhnd3axoXU2NqlLxat9wOsBWGoZqwc5HWWhrnqXJF5i3Kttjrl7C+IXctTx9fcH5+xmw+RwiF84F917HZ7WHxf6LA4roenEOEkPKEIrXLJPt0IqYPg00PRlIMsMPA0Kf8qXMW7zxKKo5mcy7PznFCoqdT7GRKpm7uc9pCJvhTVtaYTCVuhOtT1rhtsT7QdAkYOda53L9ItDajsCITkDBGpJboqDF5xtDZRFo/1DArRVlkHB0vsM7R95ZhZMqEkIBy+67F2QEtRKqCUgloqpRE6DSBGLp+XCTTNC0cRBORvgat0stYGHNPCBdSpspgecgX/rN+9we4BCnMGYO4r7H1PoBLU1IRBEYqtEgLuVQqwXy1uN+UlnlGriVaCTKjcCHSdC0/vnnHvmnYbnd8//UXbO6ukMHx6PQIX20prCTbD7B5g7ZrtNtS654yS4KKzjN0niCQWZ4nEOcIZ/ViVLJFcrAEFD7IcaPvIThkHIh2T+h3xGFLlXkqrTGFgbzEB4PzqSZUiJIoSgIF0iYRz4WAkOl7yjNDMU6UYhQ4H8eNUjrUJUhcAtMEH/Ba3NvkD4vxgwYugW7XMDTdmAX2BGFxRMIOdEwOEz9O1xOfRTCpa/YxTUqicyy3G9b7Hd+9fMU3P75g3TTs2pbBelxMk+hWgJcjeDlGtDAcqnK90kyPT/ng2RM+eHyBtT1Nt+f19Uuur9/hQmDfNqy3a8o8YzKp6XYtJ49OmSwmHLdHPPv4MUdnC+YnC4JwNP3Afr/n2+c/8s33P/LDi9csd0N67qVMhz+gyDMW52cI19PvGrr1lnW7Z7LdMDEF/eCAgBqDD4fqUjGmyA4gYm/Tphf/vl4+xhQnyPMcESLZA25iemdpug5ioLcOEQQRiRsiXTuQZ44s0yNULQE0h8GneuuQMr9KCKzteHu14nef/5Z9B5PFMX/1P/6PfP3DV/TffI7MdQLgBY/rel5eXXF1c8v3P/6IMYY/+9M/4ejkF+mZksmVl2U5B79cCB4hJMYosqxmvligM5PWRxEoqyxVwnqH0ZLIjGG44ObFK6RSCZBbGoaQBGlTanZNj+4jLnrOL0+JccXybkvwDokkN4pymrNrBrxrGXYQpzlEyWCHBKd2Dhv8/SHdC58szTGOP6tkhRfjfx7q6vYtbmZhZAA5n8DnfdsRVRKAvE3vsYOgJ1V67ygt8cFzt7pjs16yXt+wb1dEPEh4e3PF7HjO4viIn338ETkG6SU4hbekyZhK68vh3vU+TUYRgaACMleo0pDVGe1+IGqSLZ6Ck0cXLC4uWBwdw+AImz3t96/QV9e47YZhnbg+hy28hAR7JzUI+ZDek1Vdc3Z+hjo5wtVVagHzPsXJoh/rO8dNZEgbSaHU+Odp8620ARLsfr/eY5RIk8DgkCZDGkM0DyuwpLja2Jin0j0tpbxfu5GpalSlG2nkDbi0KR5t5iH6tG8nAb+TZjO+k0VEKsgLlezDPgkzy7slt7dLNtsNT/OnnD8+pZhWZHXB67evWW2WvHpzRdc75vNjLs6e8sf/6pcIJMF5bm5forMsOaBEwOQZRVkytOlg1g+OwToWR3OePXtKv9/z/Otv8EO6D93QobMCLRVGSWbVlDIrUstFCJydHHE8r9EhpDXihWW33aX4F4mvk0mVmAMH6LVKkGKdpQ37bLbg7PyCZx98wNHRCfPZ4sE+t9ZEWhwWT1WViDFq3e07hmG4b580kVFID2lfR6p07kPEKYVTJGFraNg2nmgFV92Wq9u33L675j/99f+HOivIpEY5MAEuz095fDLlkz/5OR9/9hFPPnyELAUfdB+y7/asNis2qzV+cMgg0UWOKUvyesIg088oilT+IMYIThqEJLi7d5bppCYvS/KiTIcta1Mds03DvCAgyogWCukjwgW6wdG2HU3TJLfxWHMLMrmqRgiz1BlRSKwP9NZjZGJGxMOgAZHYeSOc+yHXynoyo2t3tM2W9WZJPSvIc4XWUOSKqiwopwrhPdsO2kFioqOKgVpEplmk0So1fTjFoFPzkYiCDE+mDUaltq5D/C/GSKlTwYSUyYHeeI/rIlomdlkMHiEjeZUjy4LJdIo2hi5KjnYdpydnKXouJR998inHp6esm5Z26OiGjr5vGNqGMHRQVmhR42XyKFgvuLp+y2q7punbRKVSiZdj+4H9bg8RiizHKEkIQxpA2oD1CmvTeckHh3MCayXWmlHgTSuzGIWWpBQn9qGWDwy5jeNe6f42EfeskxDs6C4fRlbiuK+9j+UnQck6R9u2bDdbmm2H6z06KmpVpFbWmNyxmYJMCopMIU3B+fkZn/3qj3jyq58hKoPPBIN2nF2cMF/MEsT/voWCsVE6wacT2PbwNR9kjZiwAM6Dg+gj2/WG1z++4uvPv+bdy3fENlCrgsrkdNg08EITlabKp8zqdLgO6Q4iytFFyji8u/90GPfF8TBT5cCEO4xXD6LVfcTpAQ9zj8+e4ENLCC3eR7SRSAxRR4ITCGMoJlOySU3bO3ZDA3bAFgp9PKGcHcHQ07QN61cv+P43iosnFzy5vOTu5o7cRSqdc3pyycXTD9ns9vzD51+z8g633tHHt3zyyz9iPimZHtcM7W1KcQTBFMOn85LSpKjn821KE3gRGYzGGY0LgeW7JbvVBhEiP/v0U/7yL/6Mk8URMTgGCfXFGc/Oz3kZnrPeOLo2IFRNsC6lMOzA3a7n6nrNmze3bFuLK3IGB1/fbliS0eUVnZnwbtNjY9rzP6pKsn6L3N5hX/9Asb8jy+H8F5/x6PEj6vkCITW9G7jbbHh1dQUfPv4Xf0Z/8JPauz7FX8aH0tlUz+y9v7dwOe/RIk1pm6ajbZPDIY68lna/R+CZT0s++/RTGufpomCtc9xg2W229CIynU0pypK6rJObhADRkQXPeVnxaDrlow8/ZjY7Qqkc7x1KmXvg12Eik0hMNm2sjMbknrYdGJwlEsnLgjLPWcynVJOKrh8INLx99ZrNdkfT9nQ20HsLh42ITG1CQkSMVhACUZvUiGT9/dRAyLFfPiYbslACoxRCCdxoPwe4H7mJtFy8r/l6mEtLlQjQkfetCNaBA6eTWquMQWcKpcUYW09chgSj9wQTcRqQkX3Xsm971ruOr56/5G614e5uxe//8fe0myW5FnzUOi70MTrfJDvh9XMup5oni4KjkwllaSgyhc4MpixQJkPnJvFxlAaR4kEOjUeNi9WA8BZlHRMc4IjW4q1EUKO0QQdH3yqsy8hFBSJDosmVQaicKHTa0CiBtAk8GRSoXICO9L4blfx07yQ1Px0w4qHfexQQo0/b04cWVX563b67IXSJLG+Pe6J1SCOJbqCQqYFGyxRhGLqeDkWel6nWmsB6dccX33zLi6srvnv1imXb0XuPDSPkbNwgBinHikmJQoMPI3F7YDdYnJLk0wnPPv2EstQYI1EG+qFlv9twe/WW11evqaqcR08u2e3XFPM8VRmWnzI/nZFVhqg9Lia+w1zlTOZHmKLCC43IFEKmzWoXHUYKVJFzfHHKk9MF++Wa69dv2b9dUUxrsrqk6ds0+RURLQKRJMD5cSIdYjoku74fReCRw+JcWhPGzacY4cEPdTXtwH7fEoNjs9lRZgbnYqrEW63JMkNdH6d4V9uy2+65OHuCiiO4MqQI4/L2ln/4zd+xXC35+LNf85f/9j9wenbGFz98wXq3IWqBzrI0wTYaqpLoHDvb85//j/8N63u0Ufzrv/gzVJZYTEVmGLxLoqAEnaXNNwiefvA0HfSixboeLQ0m18yPZ3RtR1YULI6P+fwffkvXWxzQec+Pb664Xq64ultye3eFFIG//q9T6nKSpn+DR7WWx5cLLh8d8bOff8IHTyes15bn367o9gaVF2idJXek9Tg3Mo+kTPETn+q+IxFjzBjbA+cern7Utz2u7XBtDz7Q7fcJaNq2TI/meOfYbXeoIMGm6Z4yBpNn+CxHaMm+bWn2+1T/rhRt37Frd7y6fkP2OqOuC+7evuLDi2cs6gWlTnn/QHLAeASpZVcxuCHFi2RqfcqNQtUFxfGEPnbEvSKUipPHT1NtdlUxnS5QDmg63M/e8e4ffsvq5UvuXgSG/TZNxENq9JGjOhyEhCIjn86YffCMs6fP8Ispm0Kz7weavqPou8S5UCMALpDEIxESd0KrdE+R7NNDN7Bd77jdbamKtL6raUlRTTBFDerhatEhwRZT052krkqKrIQo2LkWDu1r2lCXxSgsBNquQesxUhxJLpwYk/vUBbwDZ1OjlFDp/z9imUxqZBQ0mz3L9R0vXxk+/33N048fUdYVRyc1f378p/za/wn7ruPFi+fc3L5NMYep5ulnj8hNSfSSx80jIhYXBl69fM6PP/7A7fWS7bJjtXXo7EekMmglqIuCjz54wtNnF7x59YrdpqEuFJlUKQotFOvrNe+yK4wxRNsym5dUdcZHzy5488FjbNeyXN7S9oYMUhuUtciYXJyTzHB0csbR8Skffvopp+eXVPWEoqo5Oj7FmMSOe6hru02OGu/DfRW6GxztvhudUYc91NiGqJMbY4hpndwysPcDaEVZFXzwy59x+eFjji+PWe62XL19w8vnz/m//0//M8vVFj9YNALlI2qR83EumVyeki8mhEzhsOR1STYpqGcTTs/O8S45C4usRGU5gwhoo0ew6ihb/AQCGoVEmRytshHyPJ5ejRkZRZZm03J1d5scpt4xn0yZFiUTU7JrOnbNQNuNkbqR6SRIrCEfQGlDWVWEGBiGnr4bUGWBHCuaPTHxtYzGmAytD87Fh7l0ZijK5G5quzXCWaT0CCnZtXt0LjmalfyqfsJ63bJeNWxXK1Tf4QcPomA2mzDLSs5UQesTF64bPNGPX6sUoDIUSThCHRqSRgeBSIcnqaDvWvbbCMGS5Zrl7S02RoJUnDx9xrye8dGHH/MXf+l4c7firml48fI1/+3Lb3mzXPL3X/6eveuJRoFRqanFDQxkzE8u8CKB1293e/ZdR29dcqHDfaPYbrtHREme5Wx2W/atpe0DdggMQTFYy2BbYvQ4D8PAKLB4RoP7uPMU9278Q3vdg14xpJf/QWz/CUeLGIg+8RHdUCDFoYQjDbpDSGeIvh2w+4bYD1RG02cZZDmBiIoBObbKaRnRUpBLiVA5drC8eXvFUAoeffIhjy6fMX90TDUpyQtDNp5BDswvIQRRKkI8sC/hoAaFMUKc/komuTgmaP7QdfRtk5w0RQ7GkMlUXOKjIAiFrqdMF0ccX1xQzaeYMkfnmrzIKcuCPDMcAHMyBNQInhbEkcsCYmyqFCT3mJQP94z980sAWmqiKiDzxNATY0jnNSmRmUdkGU4ZXKGxSN4u1/jHZ8wuTjg/PuN1CPDmNVzfsvr8C3j3DvH4ml989AumpqTUBd5rsmrGyfyEP/8P/5HN7S3tZs3tZsk+F+iTCUdPz2hvI/rQHOhgbjS60hSPc8qXr7nd7di2LWtVMJUZShgGNKcnj5lfaH7+l/+aj58+prMDX//4ki9u3rE2hq0p0OcnaFpk7KHrePrsE5R/jF2fc/PNb1m+WfHNf/uKR6eXxKqkQfJN23LdC9Y+cre9xec5k6rkbDrl+GaDXr9Dr2+ojWF9NCdUBU/+h19RnB9DVdIryTc/vOT1uyveXF/Bv/3Lf/Fn9Ac/qT6kg4uPKXd+yBMeIhYHCJIYb/o4WmsTTNamA5tzo1iSqMHKOoQNuLyirkrKsqDzFlPkZGWOzjOUUQTvcNZzdHLCB+cX/Ozigscnp0wnNZnR9MN+VDUTEGo0TaV33sECFxPwNX15Kc6kZXK5ZCZLC/W40CilyIqSqAzCRYZ2lyJOQqTs+ag0KylxCGwAF8bGhHECyb2t7NC/kCZoEkbhIn2Vzo8OhMMmcKyRfqhLqxT/EYeJvj+0IowODClQRqNMEn9SHEsix1rmTKeaQx8dfWe5ur5htWm4Xe/59tVblpsdy9WWF7dbwmCpi4wjrxBNhxhSQ8329SvcUUUuFlxMc+qyQKmc3OQonY/CWHIeHWoIfTT4oMa8ZEyxohDR0aJDD8ESg08CWOvpm57ddkvn0iGF/BaTF2idk2Ul09kxJi/RWY6NKfubioUOuef0c4/jZ3uw/wPvYbbjxxJCsuMmC2H6rP//wc/ZrjZI5ymUxvUDBInwiiA8eSiRUpKbBFT21tHHDj0didnW0ez3rDcbtrvdWHGZ6sydYIxNKQKpBQZlxppJSRSRLJMU8wV5CFTTGXlVc3xywtHRhKrKyAuFkIF2v+XqZE60PVILfHSU01SvqZVispiSTwpUJvGCVEMoFblX5EWB1Do5urQiCoWUijovKWRgcTTn5PSIi7MzhqpmmuVszISFqZjlNUYrZEyMGqJPMOd7IHG6zw8NZ/GwPokUO/H4VOMd0nOn9cPlnNu2pxssBMd2t0fNpuleE5J909J2fbKbkhwszb6hbzuMTFNt6xxt17Hd7bi5vcHkGYvjIy4fX1LWJUKCx1NOq3uyvS6SMOaGgaGJ7IaW2/WK6+Ut1aQmK4oUkRQJFxClSOKSkvfrZVmXIyjxMJ4ZVy6dLAtBRGx09M7y5XffsPvNnn3fcb3ZsN7v2XYdbb9HEMlfGoq8GPlbHtM73l5POHu7oLV7Li8/pMhqzk5rWu/wrocoxnahw28/rleAlwmulypnR2u9P1TWPswVB0ccfGr0iQHbdqn9o5WUVZXy831Pp1qkDym6d5g2qiRUl1WJVifU1SUudtxt7ri6ueLq5gpEoO873r56SeklzAfMsSErc4RIjRqO1LykZHq/Hg6YNjqiFsmxUmboukA1CQY+OztmfnRMXU/J8wrhIrQDQWi2b97Qdg3ZboMLiQPjhrQWSCHQQo4RWoOe1MzOT6nmM7oqBwK27xjGGlzrLUqLZE0eI7uC97EhpCAQcT6mQ3LTsr5ZEucTKjGl0BkmL5DGJFHnAS8pE7zVKE1VFRRZnhyxzhGjTcIVkTw3uJgGHJt9Sxjt+cEHok9rUXCpnYyYNvu5ViA8jK10eV6QKT3GRDt2uz1vXr/l7nbJiZLUs2lygqDJyoLBOrLCoJTg5OyIvNAJ0i3Ss7fZ79juV9zcvqPtW4RSTI+OycqS5Fpw2GHA9Q3Ce2ZHNauloW8FyoWRpZRA9X3T0Wz37FZr7EmFryQESVZmTGc101mNJ4BM7ByTZTBWI2dFwWQ25fT8nPPLRzz94ANmR8fkeYnJcrI8H2H4D/eu2+334wQ/rYXBJzHBmAyjdBrcjWuSEHJsE0wuwc479n6gFz5Fg8fmH1UagpacXJ5g48Bmt8briJMOLz1KalrvuG23fPv2R37//ddY7fFZJMsFRZFhMk1ZVmRFdSgqTPw9pVHaILV6/8of93KppTAdktO6lb6voU+Q89vlktt3N2xWK9Y3K65ub8bD+sDRZMbRZMbZdE7ZR9a3SzYHJlmI93EEFwJRqJFLYuhtn5xYfhwSiFQE4EYmolCJQai0etDDn40emRmKqmTW1hhaTPDk4zPSycius5xPDGeLjEUeWaqWrk2sqi4GtGvJdKTOBaUBGyRDnjEMgt4LbJR4DGP/GlH4pINKMYpO74e71lqaxuNDalvrCez6ntYHrNRkVY0yOY8fP6U4OmXRtjy/vuX6x1e8fPOG9XZPVk1HJ2GG3TX4osCXFcXJSRKWSXDwiLyP2YQQaNqGu9tbZJQoZYgi0qy3WBdTW2cMWBdS3M0nYYYYcCGBqg/xSyUEcnSvKqnQY5upeWC3H8EjUPeaoBiFAaVlgs/jiH7Au1TZLDm0xSWnolABLSWZ1swmNRenJxgimZDoOEmwXmsZdhtE8CiRGiEdkq7teHd1RZ9H5pdnZFnGdDrFFAY9uuRTdNkDghDFGL8R9w5/Dm7lw977fmsuwEdUFGRSUWYZhTYM0hO9IFMJXCuUQZUVp0+fMTs+5ej8nLNHFzjhCTIijUQpmYD1MbXRyRCRkeSUkUAYR3JjRD2JLmMr04F3JB72VHD76lXaqutIUaf21kP0W6rkpPc4MAIpDUrn9HlOPDYoKbHTBfL8DNX3sF7im4bmesmNdcxUzTA/Zj5ZkNWTZCpQAisj5fERusjICo0XYuSsaap6inTuPiKlRKSUihNh+PBoTq4Eb6NjcD1dzOlUTixLZmdnyDzn4uyULNd0fkhiZZ5a82JZg5EovyOXLY0TPD4/oRABP83pfviWfrnlxe47vr48Rx8vsGXO9a7l9d7SoJGzE04XBTMdOep2nK62FL3DoGhCZHq0QBwvKI+PcFlG6z03+z0/Xr/jbrVi33Z/0Gf0h9c0iyQW+OBHvo8fDycpg36/KT4I+eND4KzDDvaewSJJ8aG6qsA6/OCgmjCbTplNJzTdPsG/8hyZGYSWhOgZgqeezbh88piPP/yY86KkVgIVPL1t7q1uQqn7A0P6usdDMmkhSYmZNBE5vG7Shn3kqWhNlucEpVEutUD4bs8QEsG9GRLISggIMrXUO+kZbMrrqgNhmnQ8SVnmMbpAejGkfysJMc69b6lI0KnIAw7Txwxnin4c8rxpiinuf2Zpuq1GYSciCWiR2DJ5nurv3JBaBV6+fcP13YZ3yx3Pr1asdz2rXcPVPjktfK7Zi5xoPTiHHRpub+8opeNkktNZDyi0zjG6QOkccVDPBaMLQeLR+KjGWtHEixDBo+KAiT0i9Phg8a1ls2y4vVvz+u0tm7anc55BRMqqoiwLJpMJFxcddV1TTWp0liF0qjI2MrmR0oc2xtsOds37FfIwQUr/LIxRsMPfHVGPPDSDZbvZkCFQJsf1PXiFyCRBp42nFILMGJRU+N7SDYHZfEZwPX3fp4N736XqXaXSiy8my7yQSVyJyDRN1lkSWEY7ZlHXXJwcU4TA8dkZk9mMo9MTLs+PmU1L8kKSZZJhaDle1Fy9ekGWa6zvqaaT9KxLQTmr0LlC6EhAYKQGGTEusT+ESJsVoQwRiTQZi8WCSQZnZwvOz884Pz0lzmac1BNWqiIfBGXU5EajbQJsCx8SbHi0kh8qEUOI989UHEWz4N/XXh6y3eYBp0RN29EPFqJns9tTlRUxilFg6WjaHj/WvjrrkyDT9pAZYkjsKoaBtuvYd8k9MVssODo5JpuU5FVBURWcXp7TtS0+pJ81ISC7JMDZfcd+aNk0e8q6xhR5qhhmrKoXSVgF7u2/WZEjnUzuC8no0BrXUhlxwdH0Ldtuz5fffs2XX3zFut3TBMcQAg6Q2djINUSM1Ag8REvhPG/e5Ry9qbG+5y9VzsXZE05PZry+7bDW4r1ACZ0OgAfrrU8NNl7G+2pVOU6FvU8NTQ92WUccLHEELbu2p2v32Og5Pj1O6/ng6GhQUSB8YpNEAClRxlBNasxswrOnFwRpeXvzBmEk226LH9vTVjc33JFh+si8WJBlk9RIEEPaUApFDBofUzQgxiQIogUy1+gywww5ep+hq4zZ6RFHJ6fU0zkCneKfxYD3oI/mZPsjqmafWvNIsOAhWtTYJGGMRhY5alIzOTsln02wWsLQ4Vxyqg59z+AseaaR8fAei6PIEsa66nEdDBE3ePp2YL3cUBpDUU/IsgKd5Qil8Q9s/NNGkWlNbjLqqiA3OdFHgk2g68EnF1BmzH1efrtvRr7MQZRldHomRgukKbIyCudFspY7yExGXRYYFdlsBrqu5erqmnfvbsnrgmpWoTMJQiON4eTklLIukDoynZUoLdJzHjz7tuF2ueRuecXN8h22D0iTMT06IcoM7wKh67Hes9s32KZhOquoJhntXhL2jjjWuxJ1EgD3e/brDUO3IDgDwWCMZDqrqad1ek/JxKbTmSFEjc4y8rKknkw5Pj3l/PKSi0ePyKvkDpXKMEqfD/q5dX2Hkomb5pxDkA42psjQQo0O6cTAQCbmkAc6Z2lsTxsSY0BqgSwyZKYYomPb7Tmdn6ByjcgkDoeTgaAiaIl1kbtuy9evnnPx5eeQC0ylWcxqYqwQsqQoKzJtYHxHhfH+RiqkGp2s4/N/4Kkw7od9dDiXYMvb7Y675R1ff/UVX335NW9eveHudsXNckXTdXR9z7yecDpb8OT4jF89+hC72tFt9/SDQyNR48/dh4BQmiwbWyj7HjdGJiG9Yw516C6ODmZjxnKGh/vsWtenfUJRIicTYjOggiMLAhsE/RBYi4HzqWI+kZR1Ti1LljvBth1YNT3ONgjpmJeRTGcEKXEiox0M+wE6JxkoCVGPpwk7dtUCMj2vB2eqDY4QBgbb0dqOJljKtmXbDwxSMz85ZXFyzvHpGbWQLKxlGwVd/ztW6w1db6mmC0w5ReR7vFwiqxJ5NKe+vEiMthCw2y1ijFATwfs0yLq9vcUojYgSFz1N02K9JjW8e5wXieUYDl1Y6e97nxz+aec7iitComVaz4zRZNnDQm7FKAjc3w2jKKDUOISKnugHgu2JGpAaqRRSjVNJJdLZIDPIac2ji3MyITAICq0Iw4Dre1YhEPoOQkArTZDQDZbm7pa+FHzcdRiTUZbVCN1Ns4oofIK+j0PqiBijdOJ+rxLj4TtIe3FGNyYhohAUxjApCsosI3ZDil9KSWZyTFlRH53w2S9/zuz0jOnxCYuLc3bdns72aDM2z4m0q1cxdTuISGL5RYFQIzMzBoiJh3WfPrj/wcb3zrYHuN4+f47JFFmhWRzVlJMCnRtkNrrcRMQGCxpUnmOKGl9WqIkBk2GLGnV5ie4HxNUV4WZHP+xY7RteygJ3aQlRUJ0s6HyHCCnqPT86Qsxq3LQijOtLiCI56Lo2xSIlaAmZhJmSPDmaIxU433Nzd8MQHJ3OCFXJVJ5SVBXHR4tR+E38vrqekk2m+MmMqheYkFGqHWsbOD9ZUClJyBUvTMn6+oa3qxtePPmB6vEZYj5hazvW2warc86OKh5VMIuOettzvmuoRETrnB96QXV8hHl8iZrN2CvJqht4cXvLy9tb2v2eMLg/6DP6g08RRVUgjMIfbuvxRpcy9bgfrJLv4aBhFBA8Qz8wdGkTLUlslvlkjqklRZR09YzHjy941+0Z1ndkk5HijGA39LR9S9PsuNvvaJwDo8gnFTr4FBvJ89RAMYonBwUxvfzSQux84G69IsSYbN3G4LoOa1NOUpksWc+1YTJrWb654vX1Db/79ju+ffGctm0xSjLJcrSQKAFVXVHnOWWWU2cZJ/MFdVlRlxWz6TS10Oi0OIWY7J0xhgSdFAI/AmKdc0ncyfIHfQnCvT6QFvHBE6wnOg8iEZOFlMjMoDKDUqBkIJeSwgiKXDEpJHd3d2zXG95d3/Di+Q+8W++52Q3svGHIS6LIcPMdDo+pK9r5KfOLc8pcYuJA3N9wcjzl5PKUyfyIenZEVdfpgJ2ZNBEbFwiEhKgIwaQGZh8BC75DBkuGo9RJuGl3a774+hu+eX7FD69uebO2WGVwUmEliHCDxCNxHE9KilxTVwX//t/9FUenJ0xnMwpZj0iXBFYeycPpPiaOIGebfn4jpyTGERQsHzhk+c+u5fKWicnRZaBtGooySyCmNtVuGmMwSqGRNG1L3/TUp8fYrsf3PbmSfPDsMcePzvjQB7568YKb9ZblZs/gQUqN0BmirPGZIch0OCrzkidPn/GXf/qnfHx+zqwwLKqCp08/4NHFEdM6w/k9MVrKQjCtnnA0zVNde3QcHS3S5jJGdC7wyibej4JM61S/23fsVg377UDbgSgnmLxkOp3yy1//kienUx6dzfjFRxecVhn0PcN2zxuviesO1XpKlSHdKHp5iyJV+Trr6bqBwY1sGi2555OJtC44l6IouckosyzVgj7Qtdk1xOBQInK72jCdzjBSIXXG3XpDVhSc7ZqxISBN53bbPXJao2SC088mE07FOR9/8gle5kxnNVVdcPbkkn//f/t3fPjLD/Da8o9f/J6XL1/y/Q/fJ3dHZcjrjN3VDbPTYy6fPSGryuRUESCVJpMjlG18/u/vYe/QOlURp32CGOHYgSAiy82K337+O/5f//k/cfPuml27Y+sGMBkiS+t1PMSnMwkibQxl9Lh+R68lG+v4h8+/ZLUe+OiDj/l3f/V/xRhBP3ia7Y7Z/BTbD/jBooQeoY7JceVH+KizHikSsLzrHlBg6Qbsdk+vDNPJBLqBfrPjbrNkPp1STtJ6v15vkFGMjTrJCaDzDF0WVLMZpdEcn54yP50wPZkhMsXtfkm32xC6llJrhs2a29ZSxQIZMsxkhsqrVEYSPcEN4BQiS/eH0pKsysmqHFVoRCPRpaGcVyxOj6hmU7KyAqGJLtIjWAbHJtcUTx/z5JOPefHbf2T59i3r61vifo9UBqMz6mKCyguqRxdMn14iyhII4BJXzNmBrm3o2gaVacwYE5IcBgfpHlGkRj08KXISE/fBmJKymFDXCwapGFygty0XD/fJcXl+ghknvqXOyXUOMeX/g7OI3tJaj0SlWnOlWZcNbdvfRwa9T/DkA/RWKYHW494m6HRwbR3BOsqF5tOPP+abrx27/Z43r2/4u//6jwzOY/KcclqnSbVU1HXJdDZBKoHOJLbv2O93bFY7/vEfv6Dpduz7Ha+uXmF0QVnOMBPY77cJ5A88/eApzWbN5vYGoRyzxRTbN2yGFeLgRZQBwkCzXfHuTU9RWbT5gOksZzqfcnJ+ztHNBoRmsB45WHRnKSfJ2al1QSSxV4pqwmQ6TxEikYoDfEif9kPuUWbTOeN5EykUZV6mpjOhcdbdC/AH4KQNMblXnKUPDrQgyICNjm5oub55x+32js53DHFgvV5y/e6KzX6JdYkLMRAJJrL3A83NLb/96vM0AIiWj589QTy6SEOpANV0Nrbe6ST0xLG1JIx74JiciQeRzo9unK4fWK83XN/c8PLFj7z48Ue++eZbvvzqG67eXLFd71NHSpo38sa9o9IZ3xc1w6dbZioj94LeBuTIEyJEfEz18HlVJUfLYMf2mjTCdj4wxEjnHYOMKK3GiJDiIdMLP/zwPedHx8yrGp1Psc0W6SylBi0yfLDs9y03y4ZsoplNNB99eEy567nZ9bR3e+x2TT80rG7vKLIcldeoasbx/JLTYoowE3y+YN9buq6n3a0Idk/0A871I2/0wL9ILhasx7UbNn1PttlRdz3XTcf06ITjszs++/WfUJ2dMZmdM3v6hOvVDqFztr/9nJMnHxKyjH0I3O53TE6POb4855ef/hy/3WHXW/avXzOrplQmVeQud1tub655++YNR8fH7FdbmmaLtYEhOHpPclrZSGtjck+TXE4iJo5laj0DECiRnCuZ0ZR5RpYX5A/YcAhATA5NSRwHPyNLTJKanGKK37tujJ2YMjm9lRgprgMuegIek2mePn3EYl5zcX6U4uxdR7fbg3ds7pbYwRKlZn6yIA8e3+3GaG1OXhQpeSBF2voTxjpk7t0r6VwgksA5GtrvN3QH6K2H6EJKSUSo8oKj2Yy72SS5aSLJkV/k1PMZZ08f8ef/5i+pj4+QRcHk+JjNfkfT7YnCk2WKAxPn4GJRISJCAvFLL1ExRYQYXdJC/hTv8PBng6+/+MfEowHKXPOzn3/Kyfkp07MTvLDJcdu2CQSuFaqqmV8+oR0CQmecPHlGripkWbNbrml3W2h2hK7n+upNKlbKIzO7IGrHdDbns08/4OziMUYoYt/Tvn3Ndjtwd7fn2cUMIUHE5JoJMUXdlDAs6hyVH1FNcr5jwPaWu3aFqBRHp5cczRacnZ2QGUlV5Ty5PGeR5diiwmYFGxdZn/Qs13u+VIJ3+xVyGMjbHoqKcnbMRGV8fPaUclZDqcm055PLS7LphJOzE+p+S9lHJj5yeTRjPbTcuoD84BnFZx+iL85pi5pX75a8uL7h9z98z3K/J1g3inb/8usPH9MKcd8OdHB8QKqO8z+JSIgxaiNG4NbBvtfumzGSAtb7ZKE1WXIQFDmLxYyLi1O6KiPkBg/s2h7nOoIGkRu23Z53t9f8+KrmWMBxkZNLgdASEWTaDIwP6vhF4wP0Q08/WEII5EVOnmWIENgN/ciOceSyYLCeXdPw/fMf+fK7H/jx7Vu+fvWa2+0a5z2Z0uxkh5YSoySFHchUaiDJhKS8uiLXGXVR8Ojyktlsxmw+ZzaZpZ9LfM/wCN7TdT22H5J7Ret7q/VDaiyRNI27b6s4tGCIQ/WZQCiBNimepCXkUpAHj+4s/b7j9vlzbu5ueXN9S7vaEi0YpSizkqKaMZEZWyHphpaiyMhOjzl6dEGdSTLfkX/yEb98csYff/CYp3VOLQV6VM3T5g0OLTxJmZYIL5P9xyfrvIgWKSxGOzIijd3z5uoFv/v6S354u+HVqmcvFzhTELIckWdkMiD8QOy29LsGubFkInB6fsZHNjVaLI7O0CpDyRyNQSaDLz46rIuphtzZ5HRIYasUEUqi8ehZOdz/DzuWHaxlEJLBDbRdi84kKsAwBIYuOakKbVKMyweGrmOzWqHKjFldEwpFZmcMUhDyHCcE8tVb2tbiY0TnBSovoaoZlMTLZDEuioq8qFA6Z9/1ZBJckVGUOVlm0CY5i4QgNQ5pDfMaN/R45ygyjddqrPkUYx58ZBiE5LRgbGoxKqcqp8jJESoryMsJgYwoNCYrOD455XJeYfdbtjGQZ0k8I3r6pqUCZJTJshlTA4u3jmGw2OBIfqlRJBjhbNE6cAFpPZO8SgezB4ws7NsWJQVaiXvHSm4MUmfs91u2+4bNbp8cNaPlvBt6KleAiljrMFnJ5ewRJ6dzvnvxlrOzU+bzKWWZcX5+iqwEg+y53tyx6xuy67fE4PFW4ghkVcnx2QmPn/4E1DW2McQoDs7a9//oALFL3rpRQA+Hfy3FJvOMqq7RmeHk4oyTyzO+eP49QRmi1GihIXNjxEWBN8iYWleCDIRMo8qSZ88+pll3PH/1lsVXX3J2/jMQgq7rqGt/HzVNeefRdRSSezKEFPNKIlBySD7UJVwg9AO27fDKoEJEB0FoB5bvbgj+mOOLs8SwEpKoDhMreU/xN3mGdZZXV1fURyWT6ZSnH37Ai3evuHsr6GJgqgzS9WRIXLPHdQ0mL8jKChsC0Q04HMEK8Cm7XBYFeZFhcj1Oz8fNjFZIIxPDKEvuPwTIwpAtJpSnx8T9ns4FHn/2GUen5+yWK65vb7E+tehoafBSoY5m5McLvEkwTR8i0UV8/37zVtRlipPKtG7L8duPPgmdh0lswuce4KnJASFHAH0IgcE93OcG8MGzR7jBEqxHR0mm01oQtKIuc4QUBDGw6wecUAREigWKHh+Tly+ME9AQHPWkQI1RmGEYUCIJ0sRIt2/o6oxMnfLB0yesN1ve3dzx/IeXlJOSvC6Yn84oJhO00Wm0F1MzBgGGzrG6vePVy9fsmg2bds+m2fHmbokQGcbsuW0sbWdRUlEVBafnx0xPjlgcTfnh64HpbEK337G5WZIXBoNBCwEyNTY2u543by0i8/ShI69ntN2Aj4IoNP3g8bHHxz1BFgy+oR0AU9N1qVEOqdOHOzYRHlgi8QE3KMfzBW3bYwdLkZUUWYEUGu/HaewYxZZCYcc1YHAuTbalJJC+Xzt07LZrXv34AxbHerdi220JPg0jCi3IiuQDMUqRSYPWGUVZ88GzpxzNFyihEAFyk1MXNVmRo6SGKJLrF8ZigrHRaFwypUjtWd4Hur5ntUyx3NV6DSKijWE6n6EyRdu1rDcbunYAZZIzQGrsYGn7DtUF1qsdppwgpbl/VRLjCP8OabKuNc4F3ODxg0fnCSwdSTGiIQSsgEJIhDZIpR+UwXL9+g3KgTyCo6wm5FNijHTtlskstY8NDtqmYx0l2mtK6wlCM6lyPqom6HCCDAn42ztPEIaoSor5nGp2Sj45wszP6XxMBRTtHtducH2DbXe4dg22Q/oeHfvkcCHtzarFgnI6Y3p6zuT0lHIyp5ovMHmeYOJSUGY5P//ZJ9jBc7vc4ycLep3htOLpp59x9uwxF08f87NHT2heXdFevWMzeOqswgRJaDvCMFAVOY8eXyCCodvuGfo+DZeDwPpI5wK9CwxjGZQfI0KMn5WMh+P4WM08tuOpUQDPsoflVRGSwCI4WDNIa7mMgEfEFEuLVhOkIsjUuBPleMbSCi9SE6ME6kVFMTHMjyZcv36DkQapJ5x/8JjJfIZzyd2v64JN27BbWvIyp5pUTOdTlE6R05SISHwTxrjUwe0zbgTGH1u8X4MEAhFH68voYsmyjPlizuXjS/abPVpK2l1DrnNkXlCNTr7JYkpRV3ilMEXGVE8pJwVSBqqyTG1l3kEI7xuewiGP9B6HQQyj++Z9TfP7vdX4v3uA69Nf/SKxFvcNr398zpvXbxmGgSglrY7YpkUMHjl4TBBInbM4MmR9wJici8dPybxH9C3bxxe41z/i/UDY9+B7YrRE4RAquZhmVcHPP/sMmZX0fc/2bs3d68iq6ajXO548OUFKN0KZR/AvSfMSIrXPzuuCy5NjVqsN+6ZDKMnR0ZTj+Zwyz9BSUuc58uSEVmk6peikwmRpD9oNA15LrvYr7G6PaVpaGTl9dMHHRz/nz//8X5GVgmgCn+oeWWVIncQv0/v7Aoxdv2MlPOvSUH74mDg/opWGu/WGH77/gaubW9rVahQ+03P6h1x/eIuQdWPtsofxeU8bb/lPBIGkRKYF4tDi45yj67rk7ho3WFKpMZpi6I2inlQsFnO2RmKNovOeLgToAS3RhcF6x2a/5fbulv3xMVOjyJS5F1jEWNUHB7lnzGc6l9wzUqbWEATBOprthkgCF4UI/TCw2e54/eYtP756zYurK26Wa3p8sqcBw2DRIoFuuxgSlEoIdEwHOS0ltcnovOeoabgIHpOX5NrcNxjEkOILfdfjrE0/OKXHhzjVLT7kdXBcpJz5KLDIcYIN6UCkFSqmCJeOAdEni6DdLdm9ec3m9pb19S1SGQpVEIsMshJzvCCWE7Yxst5v0EZRHE2ZHc+pNeheMnl0weOnj3jy7DELEZFdh3Dj9y3GaNDYwhNjmpoLHxGjwBLxyYkiPFp6ZAxY23K3vuXN7Q1X247bQWCnBpcVxLzC1BUmlwg/ELaCdtvD0NG5nqvra46Pjjk9OU2UfanR0qBiYugcaqCd96nKM/j/7ucZDx334vBf70XGh7pCTOBo6xxd11JPCmRUeOdww0DIMnSuyEb7b3CObr+nKjOyskCoHHyJNxoznXJ1u2K773h3s2TwgTwvMFVNKKt7KJ5QqRpZKMNgHTe3dwg3YVIkiLTSh2lDRN7HBKCsDFZH3CDSmiAT6+NQaZ5eOZ4Y1Fi3mQBZRVYwqWfI6RFyZDR0nWMYAqCopzPmi5pORPr1GiVJDAXvcX0AY1AxCXUKlaodrcO61BbmpUDEgIvvq+ODs8hDrSUCGcUfrFj//7o6a8m0AqnohoHmsPYpxWAdbdez3e4pC5PWSq3pB4t1jkNNcYwwqaecXz7Di4zzszPqqkJLCSIQgqOzHdZZggjILB3gpE4uglB2TOYzjo+P0wT+Jw5D4ntxJR74ATFyaI5K46PE2Dg4FJSSZFnGZDrh/PLiPir63fXrdGAVGqJB5AJhQGlJdAbhDTgFcsArCFnO+ZMPeb77ntW24fsXP1LPnhD9WLvtXYqpCZGy6T95uXh/2ISl7zFCavN5oEv6QBjFBKczZAAdBdF6NsslJjMcn57eD6fu3zQivfN0lmGKgm5vuV0l+39eZhyfnPDo8ROkt2xjoGo6RA/KCYT3GMBIgVESFR0heggiVTl7AVGR54YsN2hjRlbWe+FLapn+njo4qAUy02TTmuJ4QUdkt1xzMZ+jTU5e1YSioLFDYgJEUEKRHc3I5tMkjo7Pj4iR6Dx+sAxtRzgwesbnfvz2x/vpJwJLTL8k6p5dIZROwn5MMaWHvC7OTtlvt7T7FuGSHRwRMUpQ5JoQI70P+HbAxYCNMh04x818IL7nsURPXZdoJSAG1m5AxkPLmsL1A92+wfY9J8dH5HmB93C7WfPu6ob5yykf/uwJx0ZTGY3UgB/b/HxkaAc2qzXXV2/wIdD0Hav9jtttQ4w9UnWseot1AaMNs3rCbuiYzScc1Quu375mMpvR7vYpppHnZFIjfcDHIbGCbGS16pF54jUtji7ZNYG2GxCkyFMUEWkDPgqEB1xIzTYxfYpJWBmjLweB5TA9fqCrLiu8DQTryU1OpjNSe5i/75OVcnze44EFmADSRqSIOM7jbRLc17e3dK5jub1jvVuODqRIqWWCRyMw2hBVRlZUzGYzHl9ecrRYUOY5mTLkOiPPcrRJjtGIuG8yOQzBwsG98pP3fgiRvrfc3d1xt1xyfXtLkRu6vmOwA4PtGYaOwfa4EDAmQ8rUbGXD2JDmHMPgsMrhtRq5dKldc3Cp9QopkVLj/r+8/devZdmW5of9pltu++PDpb+2XDs22QQISCQovYmSHvQuQP+gAPFFrxJAoprN6u7q6upbt7Juushwx263zHR6GGvvE1lVFFC3DrkSJzIj4kTG3nuuNecY3/iMj8dEM5HoHTxYJCEwZgGhtLFiIP+E67a9X7MpJlSmZHF+hioaUhjo2gcWCqzRFMYSusg2B1TwTGKimk6ZNAXnixOmdQVZ0faB+32PT5qoHNPVBZPFKfV0iVueMlWGmDJh6GDYE4cW325p19f4/YbYbjGpw+iIMYqyLpiuTmgWC+ZnF0xPz3F1g6snFHUt3mNK2Gkvri4ZWs93r9/zuoskpXFFweknn3P1xSc8/+QFF6sTHvqE6zxMbii1RcdM7jw6JaZNzdXlBZvbFoVi8H4MN80j4yoypDF8TIllQEKGGjEd8mkeN1OlzdELUo//fsrrAK6o0Tz5wASCjCGiiGgSOfbkWJBSNebeAzoLI1hDVDK0mtQVpbKk2vH9Dz0pBrJKuElJrSV1U2sjA4nYk/XYhGvxdjn+/R8Z2x7q6qNM/2gY81Hx8njwHH5hPJtF/lzWFZNZQ7ufis+esURtwGrxk4sBHQZSEoDHOoN1Guc0hbNitusf5crwEWvt8Ncf/HOMPlb/x5efDx6NT3NdffYJ3W7P5v6BN28lLjzlRDOb4mtH6gdUH1BDQIeMRTObTjBFwrqKxWpJ2D3g75dMTpbs5zORQO83EAMpeTJRzr0QcUrx6uqSbYhsdoq2bfFasfOe9X5PGplPGo1K8ZHRevAFNIrGOk4Wc6kbhIrIdFIzndQUVvotbRy2FLKFk1uMAJRWhpRJZTa+Y7dfw8OaWmcWFyf87Gdf8sWXn6CNJ6uBWHj0mHrpH9ao6Ekx4zNch8CucnSTmnKxZI9hu215e7/m/Y9vuH9Yk/2ALUphSv2eyV2/N8Byf3dHVRRMqho9nZBG3b/Vln6UVYiLssE5NxqiKWJKDH5gu9tRlQ6QYieliFFgrVDTpk3JajmnrS3eGfYxEBRs/Q5sRiWLyxDiwGa/wYeeSCAbOyKgeXzehKKZUyIlyUQPQWhni+WcqijlgQDa7RqV5eDq9h33D2veffjAN999x/vbGzZ9TzGd0synkpIQI7uHNcEHhhjx+x6twGpFYQ1WgU3QxsC7v/oNdVVxulrxX/wzxeXZOauZ3GgxJHzvWd89ABnnLKYS8OXw/3uyS0sEp0qBFLKwQsbhS4gRrMZpS1k71JBQwZPanv39DWF9z/DhR+L1NawfyNc3PP/iK/JsiW/mvNc1kxdX2OUZ9dmCtzfviUROL5acnEwofI9vPVfPzjk/WVJXFfhONus8HhqjeZX4zqQRDILUizZV5QgqoF3GiuKKfr9n26+5290TCk2cVsTSMZyuaG1DsDX1bM755Sk1kfjwgXzXYLo9bmjpfWLwiehBRYPNDpMdJAM6jcCGeAeFEEeZEqPcTNIltDGjW6h61J48McCirCEpoUTfbzfMVwsMkmrRdz11KbGTTV1RFbJBxbbFsaIuxBE9hJ7kLOV0zucvP6HrAvd3O7LaUS9WlLMFvqjw3Z6UojSJZU0/eL777gfefPPX/PLzl9TulyijyErkIqhIUgGlIoaALhSFkYShFKKYFhtN1I8+HiOEJg27NkzqCScnZzx7NlCef4qPir4f+P7b10zsFa+enTKdzqmmFWloMU6L+ZrvSH1HDo6MTNMrV4vON0X8MIgppJbGYAieIY5eR96TO49NisI4og+ErAjp6dbNpyjMnqzY9T039w809YBB4XNmu295+/49z59dkpVGW8tu39LUNbmQuMCH+zXTqeP87IL/8uwZ9WTJpKlp+5Z/92d/xp/++3/Njw9veHPzgXYYKOpSktdmUxpb8HbfM51NWCwXWGOkAB8//0dTRsbCQR01xIdiQqFHrFoMy511zGZTnj1/xn/3f/2/8MOPr/n2+29ZvvmG1id8UAwDuJlFFYlsIiqVxKEg9BatE9vdjuwjy6tPuL/tufvwnt9+8w3T+Uvm03Oqek7fDcQozZyxRuLSszTtPkiqV1mUYtj9dEsGgE4Jv9+z94EqS/NWADbDzdv3pJSZL1dUhTRGWilCDFIUG4mbn66WZBK3tx94/eYtZxennFyc8M//xX/Gh6tLbl//wIe/+E+EHoyHRTPh6vyMYr4gFI793mPG9Yj9HtUn7ERTNwVNU1NVpXw2ylC4gqYWRgkmS8FLENO7wjA9WXLy8hlv/cAPf/MNmwCNtlTG0FycQvRifE1kOl2wOrtgcnnGw+DxIyDplMGkTO49+/s1y9MToUXzSIIe7YSk6UwJo42YAka5b2xZYMsCPRatOQ6E7mkZLC+eXXBtkEjJfsBpyFHhLFSlJStF0IrrzY6uG9j3Ec+hXimIwUssdxajlbOzhZixa/g2DvRtIPqE1RWxb9nc3vHt15n//F/9Z1ycn/Hq1Uv+7M//I/tdy1/+xV8xXVT87Fc/4+rFFYsTSY/JSRH6wN31DR/evOHt29c8//xz2psP/Hhzx/tdL/e0Uli/x7oCFy271PP12x8oJyXL0yVXL16hkzD3vvv6G05O5pTaEPY7ttstmUhWma6N/Pi648PNHbd3A84t2O2GkSVjRco0nbFYnlFWE1w5YXFyStXMMLYiRo2xYxrjCCU89TNntZUheoTKulHqMsI6idHvZ4wYzgJihAyz+RxTOezujnDXEbxH94rctlgCE8SIUenRJ8XKsM8aQ93U9MlS1RUn8xlfffop5yenLKdTThcLmrLBasch0wXEn0K4reILZYxEyEvTII1DjJF213J7c8v333/Pb7/+Lff3t3R9S9vuub5+x377gLNA0iwXM7S2dO1A1AZrFKUqqFxFTjLMa0wxPmMS162txTiRLO3v1wQfsVqifEXiboXBScIrTTJGvl/bJwVYUjdwf31H8rCYLanKKSjYb2/oh57p1HK2WPL23Z71dsuHvufqVPGq1pw0U37x+SdcPH9FLifcBsOHfSQr8YtR1hIwRKUZlMj5S6WxecZq1lAXjsYZ9vfvuXn3mtv3P5L7LbNJwWRSszpdMVkuKScz6sUKO5mOHnOOYYhEp4lWEaPn1dWZyJxczf/z//OndLs9GsXl5SVXl5ecn58xK0s6ZxgUTK3D+ojuJN1kXlbMLs45n9T8m7/8HX4EyGICHwVc2QyBPhkCInNBi68kMYE1cn4gkdpioizJT9pZtBvrzCe8NIcoifH/m8ehYYpYFQWoIkEeIHmIAQqNMiOIpxO50KSYCUNPbRwpR/q059t337JZrxn6gcJVWFMAmuATbbtn1+642z7QlIn3dx94d/2es+qSsiywxohD8sEMy4x82r+Do4zAC6N/Iok8etlkrVjvN7y7/cD3735kM+zQtaU0DX07cL9ZQ9+yJTL/83/LdHlCPZuj6wIzprxOpzU4jcoy5IkpHofRmQRK/Cq1UaScIEeKYjIy8g+c9scz8qmuxacvmXjPdL/DF5m//vM/Z3PzFldY5hcXJO9Rmw42PalsyW3PyYsrKp8xtqCpKoZZg19OmJ4uSK+e8RA7bre3hLBnGFri0DMtSuK2pb9dEzd7HrotbYzkSqPmJa0fuG239GHAWSRiniwMcrTUtEqIm0orTlYrSltyMmsZ9h2rumJiDVaD0Vp6UcDn0TxZQe7Fh5BhgODRVjPEgfdvf+Dn0wlXn13wJ//qj3n+ckUIW0LYiV/ddkva7gn3a+J6oPXQRcutgn65wFyes2l7Xn//hrc3t/zlt9+x7z2gqFxBzhFdV5jm95Pl/f4mtyFIElBMUgAakQkcdPw5j07CTozTbHEAUsRochh6iVyOCu0zvR8wqaS0mto5JlXBrC6Z4lGThkmWaLzr67f0fU/ftVwsV8yahtV8znQykQeSPBYBh/QXCU9LKRK8RymoyhJtHc4dqHaKsiyZzxeEMWp613fcr9fc3K9ZXlwx6TxbDLqoYFrhU2K32bBPipTlpohGEEyVEkVMZO/ROdMYQ+x71m3Hw3bLtJ7SfzFgX1maomS/b9lvd4TBU1UyNTFK48aoxadksEj0rRS/OQm4QhpxgXzAB8ToMIeeHHrau3vCzXvy5p5iu2alEkVpsYsJV+crirNLWJ3xr79/h/Y7XKz4ky+u+PmnK4nyJlL0G0zXUqSeT84uOZtVVCaRu04ODGMhJRL6CPmm0ZQ0xUQa2hGMzrgSXGGxGiCQyVSTmhefvOCLNqM3EecN8cWX3EZDqyxlPaOZT6lSABe4uJhRDh2229O+/yDyJidJRs4VxzQbSZ8JhOCJ6TCtlWnEAUX/2ET5p+yVp2UelUUhzU3OrPc72mHAlgVECF3AF544SZROfIAq5/DDwLDbo8oCZWeUtiBZmW5enZ2z2w3cPexZ969ppgua5SlueYLdPrDtOwYfmE8m1NaRYyD4gaJ0LJdzyloSpZKKBMbDV0UCgdKNDDKlIEuBL2lQGfQYsakMKlm0Aec0zWTObLpgMduzOruiHTyb9Zrrfs+zyzNevXzOyckKYzwxJfq+p923DF0L3lNXU3JIxKSoyhqlNTEE2l6iL8GA0XRdNzbnEZWSMNCsoXQFatyb/O/pGv73XUMIR1aWsob1fs8QI01Vo6zD58zddstlvhSDZ1OQVGLwEQkfNKzX90zuNO1ux7NXn1PUM4xzRBUprcFp2G83rO/v2A89ZZhQVIUc8CqzWMyYTicih8zINAV+Mg06FAGHnz3e1WNZcPDZUrKOZVFxfnHFxdUzVmenTJYLzn/2KbcPW95f3/Kv//W/JZZ7so3gLJoS1WuyTnjt8X2iRxNySVXPqOsd2917fPTijWUL1uudyPVsNTa8+fgK48HXx9rRnFhTuqejT6sQGIaBqDoqo8UjKiVKa4mD5+H2ju9+9zs++eILUkwS1RmimHJaxzD0VFVNnEyom4b9vqVthb307MUrplXJatIwvH3HfjcQtx37/Z4YA66wTE/m3Oeeft8ROk9ROFIayKmgbCqKusIWBZCw1tJUDdaVo9G1Gs0JIzkGNDLoaBYTZmdLFs/OsJuWYiy0qumMpRFJfciJppEoXl0XDH1HRMyEZSABykf6zZ7cR3QcQeVxiHGAutRh0pciKXiJkbeWsnp87SoNwkrs/JOtG4i+XgY8SJE+FuHWKpQHbWSY45yDvTAJAg5rLEYb9oMXQ9kon6HVJcvFCavFFBUS79/d8HC/JvkBTcT3iR9fX/O7r7/h088/4cuffUU9nfDu+gPX97d88/UPoC27fceXX1km0xNyNrRdxw8/fM/N7Q05JRbzBdZ9IGaJxpQYrYwyck8UxlEWBd3QjWlDO56/eIFLGQbPcjHn4uKUylpiV7PbO/Z9y67rWA89MSl8G/jh2x8h3xGToS6nuMmE6XzB2cUlv/z1HzFdrKgnc4qy4fT8nPl8hQAMBwbLR2feEzbqJgl7RsWEyQo7Mp+UsvQY8XqIWYAYJX5LRVFwfnbGZDahvDOEYU/bt0CmyuK3N3jPsigJacCHQCDTTBsmk4bT0zN2HUxmS56//JQ/+MUvODs5YdpMxJB5Poey/Ml9dAAnhNT3SGE7pGfmKKEJTVlytlpxd/2Bbrflr//qL9ls13R9i1ZCp19OS6b1iuXJOd5H3r+75uLZFSWOGkelLSpKw2tKS4zCwB58jy5mx1plvV5DCFglAAvKEDLsh4GgFEEpGQSOddVTrtvp6Ql9SGz3W16/fc3V+Zy6NDRnz7lf/0jeDjgDp6tLymLOerNns9tyf9dR6A3v53ekckV5MsFdPOflZye4QoC/7KALmT5m+jjWZCEQu5ayrmjqiuVsyvykoZg4XG159/obmrMlq5MlVy9eYMpSZPemIGmLnHYZU7jRzydjDGSjWE4r/vCXX3DTdfzm9Rv+449vMNfvYKKJuufa92xfvyZt1rw8nbOsLCUBv10TQ4vvW/brNbfXN2w2G7pBTKljMoQEQ0iErIijfDNnuVeOwSAjU9Ao8fUyWoFKUieVhmb2tB4sJj9KXozS4jWYRym+ChhEhp+yIkdPCMNobiu1m7EZVxaE2ONjJiqRlng1sPEPXO9u2G525KzRI8ASo/iYxBQJJrIPLd+9+Y7mP/xbvvRfcXV1yWI+pRhTwlQWgPXAskGNP5cpnUjNj8iLsAsjmSFGfnj/jr/69m/4j7/9j2wf1oTeE3zEd5Hee+pmhpvPcIWjaSqmk4Y0DJKkp52kDWmN0vKXJZVJKhF1BqPJ42sMeZQ0aYRFqh73yTzShA/9w1Ncg8oEB2FScPLlJ5xs7rl7/YbfffstXxjH7XbL777+mtjuCV1LbHdMDMLGK2soDcWsws4rqA12VmPnE4r5lBqxFZhWFZerE56fnrKqa9Zv3/Dd9VsefM9ORYrSUDtDYzU2htGUGWy2qCxeXQZFzOk4eFbKMm9mzMqGMBmoigrnJIU053D0bX33/j2DMcSiwjVzqpyokqfsHqjWNyy6LdOJ4z//+Sf8+rNLTk8LvOsJxpNMQO06yuhRKhPrgru9ZxsDN95jmhm+3XP/3fd88/o9v/3uNW8f1twYxeLqiqquqYyjqRtmqxXL87Pfa41+b4BFqJtKqJujLvbwc2X0OMZCGgYr1C/xPcjj16Pj9+EALMeYZ2cUtXNMS8ckWHRZUGlBSE+mM0yMdMBqOmMxmTCtRHJjx/Qiie/6CI0ljZOoMabYjhTl8QFQGdCaqq7wWotmMgHKYIuSZjpDu4KkNOGQVhEjXcwEZchWjw96FAf/HEf1ZxBDpJHKrmLCD563Hz6wWqw4XZzg5pq+6+m7bqSb6iNN9DAVfTRKeoJLy3vOo+P6USIwrkcaGy9jxMA4eY/f7Uj7PbprcdFjDZjCEErLstBUpUFXloVJ7HZ3DHlg0lhcoUlE2m6L3nW4GJkaxaouqK1CJU/KgaxFzpCP6zZSbOHo85NHQENpJZo6eyieR8ZCVXN6esqzZ55uOhB6Ba8uKIJilzXG1VRaYXtPtpnzkxMq36O2BduuY9o0VGWJMaPkZWyIMxJHHkIYmweO63EwssvjZ/ZxatZTs1cAnHWoIJOOrh8YRkZNzhD6SBgCwQesdTjrcMbSdy1926H2HcV0gnWWND6r06rhZLnk6vyS7z5scHVNWQjQmJ1lMnTsu45lMx2n1i1OK+qqYD6bUJYSaZ1SQPL6Rk5K/iiVS6tx4jIejEni60YHMw60T2PAFQ5rFUZldPao0KFiR+US5ydzzk4WlFVBjuIZE1MSMMR7TJKkm5STUBWtkckQmTBK/g40zRAC0QdyFv26NQanrQC0I5su+qdr+CQmM0IEZ80IuIgvSdYyxepDoA+jPMM6dCXPQYwJYxwhZobes91sxfNpTM5xxlAVYoBXjrHUwXvibsumLlA5UTayt1VV9RP99uEOHWuUj66f3Mjjf6dHdsthzaxEl1ZNw2nbsvOehbvizYcPYC1F5fDWkCxQWvR43OQciTqjCoVKBqULnC2oq4rVas502lDWFVpbhhDkcyIQYhJNuj5iPYBIBjJC2XfmCSMscxJgIGX6/R4qYTsW1qGBoeu4u7nh2ctXoJTEx8YklNjRN+aYRFeV+BDxXuSgdTNFRU8eOibzOWq+p4+K/Wag7Tvq6GlKSzWt8L4ntANOKdBWzKGrAltIPKxC7pmyUlhEave4gx4WNwMGVxiaWcPJ5SmqammsoylLmtmM7OR+jDlR2BJjnVC/UxzTpgzOZpJP5JDx+57kI8Qs073DxzZu4SLFFhZLCkEYcc6OAxfxm2CUouThaSVCfT8c9+yUBfiRWiCSsjBTlMripfIRhVsD6UAtPziORkUYEjmIP81iPqffd8ShY7fpGbmMdG3gw/sPTGcTXrx8wdXlJUVdUU8b1u2GoY9sHvZs1ltcMRVZR/Ts2z0pZepmynS2pJ7OqaYzFlUjcegEfN5RFI7KlUyrCUXlUFbSNJr5nMlsymQ6oazEy2BalehUsogTdt2eh+0Wvd7iI4QE+xZJNlOKyXTO7PSMxeqE82fPefHqUxarM5rZHG1K6mZC1dQynOEAMHCkfj/lWWdQxxhincW55+AVIs1fOibmqdHdRytNVZZMJhNWacHDwwRFImZPOU5PS6AsHD5lvE4kbziZT5nPZ5yuFqj7jsVsyvOLS05XKxbzBU1d44xBOUvW4/seGbYjme8Ro0gHFuD4iSiZxpZVxXKxYDqZYBQM7Z5uv6HrW8oCCiPyo9PllNm0pu8jbVVxNj+hyBbrpUFRSdIe1ei9EkfDdmcMSmtCSHRdN6YMjtP/UZbSe38gKo+NvgAs6m/t+v+Yq2pKYjvQD5H7h1smdUZR0RQVva7Y+Y7rh55PL5dMpiW2mPFwl9j3mZuHjubDmrRsmU8iq6JiujyhqEqK0pJsxoaEDRnnk9TYMZA6SX20VYEuHUU1Y+pXDKHlw80bKEtUWVJOpyg3pj+NdeZRzzgm0aicMejRfF8xn1R8+eoZyigB5fot5vY9kQ4fB8zugSINzMsZw/6Bh7ClIxB9x9B17Dcbtpstfd8LoBcTMeux5ua4J+cR2NDk0dD8EexwRo+MfoVSGes001nD+eXpk60bMLJXRqnLKLMR/8ODPEgkQmRFTEEkPymhzRjnnA3Wypc2SLITCWUTZWMpaouLFsnSEDmbVZa6GOttq3HThvnJAiz4OBCjl7pS28dyZPzMDkRbdZByH0CW4+cqe4bSGowmKohWQWFITtP1kT70tMOA9xFd19iqYDqdMG0a6rIE71HGiM2DUcdyNWWJW4+jNuJwgOQxKECPAys9Gtz+VC57JLQ8yZVyFImgM5SzGYvzc/pdy/U3r3n/4T03uz377ZblYsbaaPadGN66WuqRZEDXBbap0HUlDG9nKZua03rGcjZnXtVUxnAym7Ca1qgwkPuOdrvmw37N6WLOtCppXINNCZ0OFiEHoZsaM0sk1lqjiCixx1CKwmhhVGtQ47Q/50wKkfX9DZsh0KGpVhdsB0/3sKa/e4da37AgcPnsgj/8/BWvLk9oKkPQgazz6P163I4JCnYEdirQazGsV0Mve9a7a7bvPrDd7VGX52RtwTqcKzmdLzg9OeH0f2uAZTGVJIzoZbMvqgIzpvWI0W06NurWSPPiY6BIlpTTaIonjBcfEl3XUvsalROFUkxLx6qp2YQBXRbgHItmxrDdsJ7NaHc7Xq1OuJpMWTUTKmNwI1qWkIVkXNg0usVbo9G2BC2kuATjgyinT13XFFYmWP3gmS0WRFewjpmkDPshsPaRtgNPJoQkTBhtcNaOpotjTGL0MtQLkT4Eoboizd27Dzcsp+9ZNDMqZdltd/SdpMCMo30Bgawcnk84aABrSFEOlZgSOY0pTyoTkrBvIGONls1kGPDbLbbvcNHTqIBxhsoYcjRM8RSxQ/sd5zayuX7Nzb4lbN4zWUxAZbYPd8xsRTOZ8Wx1ymlpqXIkDj2jxRdJM9oP6WMjHkdaegyenDzKCl3UFBpdSHqBCmJON5vMsKbiIRXk+x26CxRfXHKSDbuoCEkx3NwQuj3Rb3h2+opyGAgqccIVF6dL5pMabTJZR5JWRKUFYMnCYJEwCYkROxyOIpk4FO9/u9R8WpCldpVo6mOg7wb6bmAoA0prfPYMztPv/WiEVmKtw/cPsNkRjaE4WWCVG5MgNMU4Xfvs08T3NxvaJN4RJ/M588UcHwNt11FoRb/b8bDfMKksJ7MJ5ydzmqZEp5YcBkhR4kYRgz/voxi7ajHdJCopQqMUDoBMh8cDUVuDs6AYCP6B7e0P7HbyXJwuLC9fnHB5ucQWmthmIpkAtH1PDmI8FlJAImKVUFYzBJUZUgAtzQg5Eb0/ThiroqDUlkLLc69yIoTxzzzRFRGPmRQzRTb4FMgeSWgqHGr0kdnu9xAztiioZxNi1xNDT1WUKC8RrTcfrvFtS+FqtBFQZVo3rGYzLk5PeXv7gU275eH+jrbf0y9PaJ45TpqGyWRCXVcfk1b4e8vsQ2PMx3dwPvqbSPEwTtYcGFswW6y4zJmdjWz7gbK+pajEEE9Zg6pKNAXGJozLZKOJvaOMFVVZUzjLYtbw6uWXfPbpS2DOZmMIKROCx3tIWWOdxMNqBdoIUKf1x74wTxdhqcjiPRIC+60mp4i2lrooKKxj27fcfLhmt91ii1L2sSisB50SamSbKWWo64a23TL4yNAHlC0opjMmvmd2fk7tYWfv2e7ecLO5R7czJvaSxcWSNuwZtgOFNrgCXG2pZzW2cmhnyRHKuqHIGfQI3CGA+UHWpXIm+h5jYL6cUnzxCXo/4JApqasqcFYkpFHS5cRQU56rPDJDrdPHpL1h15J6DyFhknCtDqbkaIQ9mhPERwZLWRa4usSWhchs20weIrl9WgbL3f0Du33L4MXYWo1NgfcDPniRmkXQSvaj0lpIamR1jg2+kvs8K83mfs9DuWNSVcynM9Jpj9Wet3FNCFIL5JB5/fotGakl/vf/xy84v7rgq/wzvn//ltZ3eA83d2vq6ZLClXK+ZaiaGbOTMxbnz1jdbTgfAjNjyCoyhI773QeqqmDaNJzOlsx1zWQxxU1KitmEYtpQTGpc6ahnDYvFjHlTMJ3X7NuO24c1P/z4niEkhiHz4XrH/dqDLji5vOD5Z1+wPD3n9PIZLz/7jMVSYr7R4tchzDqZ9h+92jiYOj/dujltRkBB4lANevwHCm1IMTLEiDLItHSMR9ZaQJbz8oz15g5roO221NbilCUXkhiYcPhYYJXnxeU5y5Mls9mM7fYt86bm0xcvmE+nlOP9qQonzWb0aCvlsuJxii7XoRbQx+GL0VInWFdSGM31+xWzSUVTOcIg0eZGRyaVYdqUnC+nFKXDG0NezXl1+QztIWwHuBsgRklFSYngPYMfJKnLidyt7XvafYctK4ra4YwjZPDes287yQcA+nCIi5Y676kuU1iKLOfy7d17nNoRujnl5QtMvWK/vePu7VtOFwsuzk95Pp/x3XeZu/sb7m53PHDDfrXm2aJjkhVFVVE2Fa60JCPsdZUyJiScVticMXFG27YopfBkXF3SnKzIOmG//xu8UnQpE0dfM0nIGz10xgY8HvZopBk6pkLlwM8/veR8NeHqpOHP/vzPCW/XDNdQNCULZHI/1T3vfvwb3rYteb8jBY/vevpdx/puzb7t6H1gSImQ1DjoyWMggDDsjc4CjKMwSYayRkFVFhSFFdNylagbx+WzM37+q5892boBGNIj2/BwZaGMmJwwRHQO41DWE/CkECmsQiuLU5HSWJI1BKsxZqyLC8XV8zPKxrHdt/ioUK7CupJJM+dksWTSNExnE+rVnGJSUTQVzaTBOEVKEZXH1LYRzNQ5j/3dkZx7nO2pI8gickANmDIxOVlw+ckLOgI31ze8f/ue+7t7NjHgc0RVjsXZiouLc+azpQy0QkDHiAGclv0n5oRPHp8jgUQcGcnKaNTo45K1qDnMCBrw0fZ44LI82ZUC2mjpZ4uCs2fPSV3ga/6C//TXv6WNEa01P/vsU37XD2z2W1LfUS+WlE2J1xk9qXHzGeViwT5GotY08zmfPz9n2lQs5lOM7zlfTLk4XdIPA6u65vruhg/ffgvLKacvXrBYzSmisMH1yOiRN53F8z8dunIhQYQkpIOiMGM9mYUBjyInSU3cXF/z7Y/veHf7wOTikmAtD23L+2/+grTe8+L0jP/2n/0J/+KPfsFs0VBWhpZ+TL+1WONQ2uPxPKTAh9CxJxPKAqcyruuwD1vqtqeIidI5ps+e4auSbC1V0/DpixdcXJ5xfvG/McBSWgdjUonveopy1KGbjHUWpUSn5kqH8wFtDft2h1bi2q4Lhy1KjEGiBPc7mrZChTkqBBptmDuHGXrcIBP5yXzO7Oe/kgLPe9humWvDiSuptcMkQYDR4wampAmXtF0x2sXaI3NDa/FmyUkmV9o6YY+YggqoU2bqAx/2HdPFgvL+gX6zo80Z5Sz1bE7tSqzWWK3HScJACAPdbkuXIIaW6CM2ZnQS1DWEzHaz48P7G2ZFPQJAY9MyPpzGmtF867GxeZJLKzG4zQKohHFIlzMygfWgPBgj2keVIsp7ChKlyjiVKKyiMAqtCpaVxpoAueOfffaMF6czbvctuSqpm5KytNSfnFKohsqVTKqGhkD2PSn24hegBWAJh90oywQ4xihrPfRYV0GpoNRQWTBjs0eBbRaoKlE1mV8VU6ivCbcPxELcvwdr6X1kHwyYkrI645evLrFdT186Fp+ULOZLJrMZRWUINhJ0FoAlREIS/5WYD4atmpwDoEdWi6SxqHxIQnq65fr4Op2veHi4Z9cODH1gt2kpdEkzmUk8o+ppqz0nkyl1NWHSTLm9vaXbbBmiZ3K2wFUa4zRWK7KKnMwnlM2Umzbwu9fvuL7fcP36B6q6oXAFJ86wXd/T3d3w8PZHCh2ojZgEqiBrmOIAWRgaQlixpCz3dEoKPRpcq6yIwwBxNL3VjwWp1gkfd+y373j48DXvf/wb/OBx1vDZZ684nxnmlZKUACXJQNvNjs16Sx0SjbFolTGFxlpDNtD7QJ8Cw+GF5UwKiUJLUoNRWoCVLMVbRiYC2lkK/XQ0XCnG5b5oh2E0HxS3e5Mydrxf3t/eMC0bZtWEZjbDa0PuFY5AVU2pqsh+t2PzsMGamsZU5D5xdXLKzz79gq9/+Jpffvkznr94zjdvfqCcTlgtlrw8v+LZZMXFxSVlWaGiPjLX/hbt6hF8yYeh0TiNIguAnuVeFyBYkmFS1nzz7Wv+p3/7P/Pvvv1PfPf6e25ur1k/3FEsS2xT4lCcns4prMaoyHooeMg91TDl1YsTnhWvKPIlV1cz7jYVm50ai1/Y7nb0feT87HKMzM1YV0iktQKlkniAKSRy94kuM06hU4bNZg05UZQltqqwWjLEYkysHx44OT9nPl+wWW/ZbXeEtqU8TNtSpKwbfJAI4PuHDQ+bLU1lqOZzLj55iZ2u6M/WuGLGne9YDzuWqeP0xUsGFfBpYPvwwHxxxuJyxfR0ga4KYZ2QcfVEClGtwOaRtizrZIxILqL38r0FFCdTmESUD2IKmgZSHEgBQkikLpCTIisnKWlKYazDOKGA46OYRO9a4r7H1pUwV5VCmXQEyVPOxL4bzdtFelQ2NaYsxVhw6AldT26fMF4buN9s6XYdQ+9RScysg/fsdjuGkElZk7JB5YDTUDlDDtD3geQlDcMYx4G7v3m4ozA9zjzw5VeXfH4yR+sZHz7M+Prr77m72chzkeD+Zstf/oe/4uLqFZ/9/CueffYp/+zLrxj8XlLoVKSsZxhjmdgpn37xK/p+AKVYTC/47FXCTBbsUk9RGJKKbP2GuhmN/7KCzcDZYsHJfI6zEvdsxq/Jcsb84pTlcspkWrPIiouQ+epXmb4PbDct//bf/Yb4wwd02fAn//Kf88//i/+K1ck5VTPDVQLe6jENLI/T/sxPe7CfUOCe6JqWNRtT0NFhssLkR8cXq7REfSdGyrl4MQ39wHq9pqgLlqczlos5WifUOrCczyjKBcZe8MXPPpHkIJN52D1wfnFKOTLLnJtx9ewz/uQP/4DFailgijbQlDIwI5PVYd8cAbjjp3L4PB7Zt48fVIZx4JaGgeWkpimWpNSQU89ivmA1X/Hlpz+jqqYYXaBVwbBJPHy456a9Zt3tMV7qi6HvGfqemAK2EDbYECMP61uU0jgnjBjnHF0c2Pctd9s1ffZ47UhtT+c9fnxPT3W9v/6R6WzJYtngtCcFz+b+HhsVi9kM7RrKxQV//eaWde+5PO948dXPWXnPpu95c7vmt+/uucnf0pqSddcxnc9ppjOK2qGcRTlHM5tijMaQcUnOVB8CnfeUSePKkvnpKV/96tc83N3Sp8im7ZiNrB6lDTmOE25j8KF/5EyPxXBOiRg9+/UNYbtl0t/zy7kjDiIXz+1OmBtGYxiYTR3VfEljL7ABfNuzv9/x52/W6NEUOWRh0gmYkzBjxIrOkhGiU8bkiFMaazROa0qr0UrONW0VX371CX/0T37NP/0X/+zJ1g0OpUk+msjnMRzEaj2CPgnigEoKpQJZHVhQQFIU2lAbRzaOoAzFyBworOW/+a//K5ISEKBopkRdoIzDFg1qZDQYraE0pNGK0VorhtVZjf5eP71P9eFXxjQtDrXMR9+alUI7R+Ucv/4nf8yXv/4F3dDR9x3v3n/g5vqWH777kQ9vrqldxRcvP+fs7JTCFKQh4TuPsgUmiSEvRtIUZRgW5YuMKR3WGIyz8j0j2IKV93zkbv/dt/GPviplBTiNmT56CqtZnCz4xZ/8If/j//A/UEwmfPnVz6k++Qyub+mub9i8e8disaTRELKcubZquHz2it/4jMIwW6z49c9/xdRqSqNQ+w2NySwnFWkywU4aVpOapTOEdsen8xVXsyXJB/q+RyuxbEBnctbHYWYOgZQCxgizOuVE7PuR6CDsY4X4tdkY+eTijA9v3nD7+lv+zf/0PxKd4AYn8wl//M//kK9evuKf/uJnnJ1MMaUmm0zqerr7LbFtse2A6iPJZ4IuqZenOAzZlPhcYu0etOHHzYbz5gVKa27nJdPJjNPFil++fMmXr54zb2rq4veze/j9+dQ5E0Ik5UTfDzRjEab141QhRzG+NVZjrDAi8igTAk1RVlgDwYtEyA+eFCOWTKEVpTaovmfnB2zbMSkbFmVJMJouJjZdjykrysoIcjbexR97CchrMo/TlsPvHM/B8fsPRklKy2RUaxxi1GmcpBtp6zBlSek0uiiYNDMKY6VHSVk8ZazBRCsGUYCqa6pFJu52xK4j7FtJ/kjCrIk+jLo9kVGZI9VOCueDAfCTXUpSRzLjhv/RP4exdooRtCQgKWcJRmheIsnJgEDG1uoRaBEjwFmhYd4wrQu8VuK+XViaspBUHm0wOaFzGv0o1PjZ56O85JFQd/DrkUK+LBW60ELzM2PzkEEpizZKmAs6MSlKmeS2WzZvvidMpgRr2bUdZj8wUYarkzmnkwrrLENMNNpQNyWuGE3wdCYLGkYmjilPQdg1Whq8nMcmIuujROinz8f4wxPKu+qyZq+3AlzETNcNdOVAU4lPzdAN7DY7TiYzrBVjaWutpBQMA/vNhmYikzldluKJYDSlNSynNbVT5KHlzbdfU1cNVVkxbWr6fs+w26B8S0w9+/tb7j68ZffwgrrUWDNa1Y4SP2NAocV4dDQItlgxvQoQB5HnhCxFohSusFpO+eKzF3Tdnv2uZ7/dQc5cnExweSD3O1LfkqULxGZFbRyFCgKuxiimcGPx07aezvcMfpBDUgb8lEUpVPQMKgj1OukMWmOtI+skEdVPdKUUSRpUHpvyLLIzrRMxy5RGZ03X9zjtKK14fxSFxZiasN+O6VYKaxx9KzTkuvKgMrN6wsXJKXVRsX64I/QDy8kMW1aomLm7ueVnZy+oyxL9UZMgT5vm7579x7Lg7/n52GwdPAjG21v2L3Fi7wc/sp/2pE7htCI5S9ftGMa9YrJawLyiCRPOTqZYd4aLA03tuN8cUrkEHPch0PXijSV/l6JS5ZimIElDUsNJZOpTXdrIfRS1JEEcmuDCObRS49+nqJuG2WzGYrFAoQhtS+w6hr6Xoizn4xk0DJ71esP93R36bE5TOk6urojc4rA885p4/wE3KfE6YWrH9HTG4E+5ub9GFQbXlOjSkc0oq9RqBJsEYInKi8GtEoamGY3/yAGV5X7PYwS1ikn8HXIiItt7GBIqSHGU9PhMWyMeBimNcmAEmOk8sfdi0DgCLBkFYzJEzpngJTpXoSirElcWaGsISSSzcQhk/7QSIaWMMOmixL7iPWHoaduWMHp6KCO1ijUaZzRDHFPQgMI4qdtTJmRP3VhOzho++fSEr35+TtMUGKM5uxAvpHdv7nn745b9dksMmYf7HX/9178DV6DLkk+XC4qipKhKAglblJJIozWL1QldOxB8ojQVF8szTFHw9uEDqEgiUBUzXKHJwRO6DhMSlVI0xqJCIHuJMJ4tF0xPFkxXS5rVFGMNKitcVjhdsr7fstv23N3fse9bjNLcru8ZgicpMG6Mz9ZG9uWPZbvHo0wdKgaO1PcnmioUhcUaLcx7RG2glBon1mr0v1cC/kWROkcSQzvQtx0pNnL2WYfVhrquWSwnzOYVL16+kM9QR5p9w2TaYJ0lpszz54rzy0umy6U0S1reexxroTzKlA7H+mP9cdgdD4lr8jo5TN1TkqGb98TgmTQVEwzaSPLhyXzJ6eqUF8+uKMsJzlY42/C7v/xW5Nl9hx8GVNZkDN6L+XJSWTyhjCX6yG63Z2IMzhhp+IwhhkQfAvt+wGuIJoE/+MnFsQ5/mivnQIw9MUi6XBrkjNvv1pRmDH1wjv0+c7dr0U6zvLqkXJzgbAGrnr6X+Pjvvv0On2EyXzCZLzhZzpmt5kwXUyxRYqnHet04M/oGSq2stca4gsXZmfi0dXvafqAKCWUFkDtoAnNOMmQd0yG7vWfftfS+Z9e3DP2eOPTooeO8FhmSzgLOYMTI3FUFTVnhtKXAYIMi7AZqCpyRIc7h9Mw5CVNGQdJyx4glXcYg0fCFluGlNQqrJJnRGCirgufPL1mdLDH2aZ61w6WUPp71eazFlc4iAVJqNOhH7u3xsx9NNoU5qkWl4LQRVllOR6xxPqnBWpR1lPMlSTuysmTlOFjTkiE7JQCLEuNpYjqapx+2lsPz9beZ4vL/yMdfP/q0jRKdoq7QpcXFgkmaYquS+cmS2XLJ1eUtJhlOZyfyPGXGwbJ4xOhjWzKekWNqWcwS7mCNERbLKEkXXYqY/36cKPa/xmWVsGpTiqS2ZWj3qBy5eHHJ6dUlyjqmszmhD8xMwbPJnG63Jz7c4+sS7U6ICVQ2TOs5k2aGi4nzwvLpq8+os8eEnpwGKqNwRhGyYlY4WC4oPvmE2Pcs5zNmVU3fd+gsqUN1Lo62DjkfEugOn+MAyOeb4phghaQzKiUyfRUTTWE5W854dXWODz3Zaoqm5uUnr/iDz7/i2dk5y0WDcTJkI0WUH8hdR2w7dERIH85S25JsG4akGJJiv/esu47r/Zbb3NFVBZQF1bzi9OyEy9UpV1dnNHVJYRVWSYrpP3iNft/FjUmy6AnQdd045RJtk7WanAXhNMcixo4bzSONqywrnFX0KuD7rRweQQyVCq2ptIa+5/7hHuUKFvWE5ckZOgS6/Z7hYQ0LTTkTr5KDTiOP6PAxjnQEQbLsqqN2+ADDSKOsDyI7paTw0oasR4PZA4JpLWXdYOsCW1U0jRjexSDeF2iDtRaVnUidmgmNMZw1Ex7evWN3d8cm3FAaK+BFFj2pdkaKCqNEo+5Enx5H08AYn06uoJQeTZqkMEnIRpEQUy0QWZOyI5OmKBicEdApAnqcHqmxARlTn3IOOJNxrmSuavoUMOPhUIz7TsoSn4jVGAsYKxOBY4s3Ou7C0cU8JaGZW6eF7eI0UTOmvAigxwHlzojhZwqodsNmfUuaNARjWG+2nNYzFosTPj9bsaoLrHNEpchDxBVWIr20UCMPmzNJUNcUAyg7bhAjJDU2qulAATqidvKDyulxY3mCq3IlVllUklOma3ta15FmiRQyQx7YsCGfX2CtFc8N5+iCxH9v7+/Q0xJttfhJjIeA0ZlJaSh1hGHLm78RgKWualbzBdZpVPJMbKbfd+zvr7n+8Xu2N59QnS8oXEFOMs1HZXG/RxgIwUd8DmDAYiBEQjfgvacdWoq6RBcOnOPq4hT1R7/k5dUF24cN97e3dG2LNpoy9aT9htQuyEkm7yWaedmguj12CKgQhBo4ouH90NP1Hd0wUFeV+HcoTV2UcnDGRN/vyUFiPnVZ4gonEoknHDeknIgR1EgpTTmLIVoS47tRFcjgM4MZ6G3Pbr9jslxS1yUP7QdA6LiVqxi6nmHfEesBlGZeTbhcnXMyXfLD6x/p93tOz1Zka+i7jtuba6Z/MqEqSvGYyPmYbpj0gbj6cdny2Do9+g2pUXapEJr14y2vssSrnpycYMYp45B73r79jtxaQs4ElbnXkZQGYhr4g6tXlIvEQk05P50ymQuYvt0IgHaQmqTxnBkGuWfE1FaAFEmLi4SQR/bkaKz8RNfh7DJG6MrDIACLLt1I4NEYDMvVitXJCYvlEmM0w25PbHu2mw05JYyG0ok56DAM9GHg+sMHytpQ10tWz5+zbgMqKa7qGfv3ilAZogVKw/R0jjKZv/zNX6AKja0dymnSyK7IWl4jSn6eFASS+BAqyDqhVETlAFEilv2+I+07aWKVTN5SVqQEaYiYNJ7XMaBHbxtlSnIMDEaeb4LEWMdukOmvExleQijtco9kvPcSzamU7ElHgCXiDwCNf8LYLsC6kqx2hJTx/UAaPGEYRFKYlRgzGodzBucS1if0ENFZfECMLYk5EYIn58RsUfHi1Qm//qNP+MM/ek5RGJTSrNeBqlnw+vwO437kx+9+pGv3dK3nt3/1NRFRR87PVizOVlSzBlfUgkJnTYqK2XyJtT39fqDQjsvFCfPZlDDs2XdbYlY0riDHQN95+vWWMheUGRpjYBgIfQ8pcnp5wfLshNnpisliKs/MyJyt3YSHuy273Y4ffviejVcYH/nmu2/56s2PKFugXcXEFmgMSo9n24gi/DQ76CCLOewaT/PcVaURRo4aNfv5I3kAAq5oJftCTgqisJB9OzDsOkIfRPJmHc5aprMpZ+enXFyd8Oz5FegR2K8L0AJIVtbx8tWS5dkV1WwiTYESECn6ATVGoX8cBDCa0ByHeBmR4x38B2D8npTwfY8fekiB6aShKDVlaen7HafLFecn57x88QLnaqwpsbrmN3/2V+y3O4n/9r0YfRtDHwI+RTCaypWgzdHHZ9VMKJzBaalhfYq0fmDfeXxhSTrLc+AHYgiSePJEl9WJ6Dt6oKmnEm7gB7p2x94AdYWb1ASlWXc94S6w2mx5dnbF4vyCZTPl/dvvWd/d8Pr1j7QhUU/nNPMFry4veKkyk9qh4iCejkqTdBZpsRFWbvKDWMJbx3x1Ioy1taHteyYhoGMxhvRI7R+igMchBPq2Z7Nec7d5YNft2XU7TA44BY1SLCcNlbGU2lKWpQz5jEI3TlihKGKfsIMiuAEbzZjWN9aRo5xcKfGYzEpO0TgyVwwZR6YyisKOrEOdRtmrYTarePniitmsZrvfPNm6AdLfKDXWPHJWaJ1QVomnxiHCHinktdLjTFSkRYfIY2skCUaPnjaKjBv/mDISJJC0IaHxMaKtG7eSJN6KSoBMoyV5Mo9D+/Ehk6rkWKIchgYc63DSRxHKHzPJtXx/VhlTWOarBc18ynK1or18Ru4TNlpMlF4gxyg+UOP+QwJiljTRIAPDgy+ZchZlDMqZMbpajz4zGnWgP/7E4+Hp6hONQscM3uM3W9r1Azknzq7Oef7pK7yXIIL13ZrGlrycLnn37g3x5obWKGbzCUPUqKSY1FNWizPqquHFrOSrL77EthvS9oHd5pbKGCyZSKTSUM+mPJtNMVlLDRYHbm9FmomzqBRBRQ4OQxhhFmuVySk8SikPktycJdFWH81uKLTi2fkpRmdOTmYoY6ibCV/97CteXFzRVBXKADrKfRsj2g/yFTzGVEKKUJYCR5UM7RC57wY2uw3v1g98+3DNj2HP0Fjy1DE/mfHyxSXPTs+4PF9RxozJGR0j8A9nR//eAEtAoV2FNpp92zMMXoz3nMhLUhKTIqMizihKZylMiTMlWhV0naeuJzRNST84Pnxo6UJk1/dUSj5wS2RuLX/13Xfc3t/z7rd/xenZOcZYcso8f/aMxbRkOq9JxRgLyUFbOp6ESoruR4nhTz0HjFLjlHH8cwo+IqGB1nit2YSBdeihaqimM0xRgDHs9/04UW5ZrZYyDbOOspjxh19+xaeXV/zi8gXf/Pl/4Jvf/Ib/uP8zSjJzZ6k0pNCSXUm2DgowpXhW5JzZbHZ0+5a2bX/fZfp7LiseFQaCyXibCFmixuIQ0EmMtbLVaO3QdYVeTcD0sI/oTiRY2SiU1ajlClVJTKAycTQOVNSjlEYffXH8cfMZx06QJYpOoGvQRMgHnXEgh3aM1aypp404diswOeOOcHYiG6FNKKdQSfPrX33FF19+yq7rRf8aIv0QmTQzJs2UxXyFUY4eT+sspm5AG6I2qFEygo8EPxB2PfSeYgTqMhBzwCcBpw4otUUOA2sUMQSZwP3DAc//v1foW3LwElWdMrvtDo3mZHUKORJCYtd3tLs9Rmlm0yllUVCFkjR0XL95RxgnW3U5wSpHGoJI2t7+Dn3/mlm45RcXFc+ePWd1csr51RWnywV15agKg8qe2axkuWho9B7dZ7KyGJ3RKY0Gt5mDHv3gixR2G7rW029a2u2evu/Ztx22KinqinI2ZT6dcPrFZ5iffykN4BCOSVLGOIxzuBDY7/botqNMmSUWosZ4KIzCFAatHQpD8onQB0LvSbaQ4tM5qrJkaLsjoNuUFWVRUhYVXdvRti37/f7J1s0yBnwmKQJyFu+ZiCLmgMqiyRcD03EqmQeqWjOblGTfoGOiNEBfMDMTXIDu9o56MaMqLFf1Bf+P/+7/zndvX3PzcMP72w+4umQ2m3F2esrLiwsmVY2KYgbLyPQQL28zFiaRA9ySVALtOBhJqhRHjyQ5BwVbyeicUMPAatrw8tklXeg4eX7K/GrC9Ye/4eHmnvYuo13BbRl59uoZX/z8Z1RqytnZghfzU5azAraBrgvcrRMxVbJ9J4/vPSplnFH4vhWJnimwSmGKglxYptOaqqkEgH1KFzkOAwNhFcbs6Xwi7WTmUpQFxtU8e/Wc+WpFURQ0Q8/ZckmZwPSem5sP+OBRzlAag0qBru/59re/pe02rHeXfPnV59zlwD60FEB1MYPGYk9qfBEwlaawDWefXcLEso89+9BjszCSMBqfIiPxkqgFVMlKGIohe3QKqKEjbjtCNzDsO5xxxJwZUhTQVdAawIh3WVTEkKXJtRrrLMGJT0ZQ4pelOg/tgM4wIEklIadjkZ1TpGv3xOhRSjGZz3FNA87S9wP7XYvvh6deNlwhaUVDP7C72+J7TwwRlBNj9RzJccAVDhcsdpBn06hibJwN00mBDx3Xw1bONWMpXE1T1thKjE+nFj6rGs4+fcGLr77g9e/ecHdzx82HD7x984bX3/2O25t3tLt7vvjVz7n65AWXn70aWSIaowx1rYlDoI0bvL+mrBZUk5pfffFzbh6uedjc8eHmR2LwVMayPHvOyWzB+ckJs1nN/nbDbrvH+8wf/ME/YXm2pJpNKGdz8tATh0DqI/d3a968fsv3337H+uGBZCsSirfffMf/+7//f/Hik8/4xa//mC9//odMFyfUkzmubNBmNCY3Y/WUD9y3g4my7PdPcZ1dWtYPhn5nMFkaCC3uiFSVw6fEMAykWKFzQZEDLu/QbSA87NlVG6qmoJwsmTUlf/TrP2B1Pmcyr1isFmQjI7V6eU5GZONVM6Eqa2GBDe04gR7Z2NpCGIQt8xGL5bD/HUb1aQSfM5B8j1USMevbPeu7a3IcuLq8YDMpqaqSelIzn8/49JNPOTu7YDU7I/nMbr3jzXdv+e53P3Dz9oZ2s8cnCRVQ1rLd7sRnpapgtuRm19Hu96QQaXRi6hKTOrKznjfbO765veN+0LJXREPOift379m+OiWqKVA9ybqhAso4tM0ok3ETR44Q9gO70JK6ADrijKHznm275+Hf/CUv7nqefbLhl//0T/jqZ79Cq8zQ7dlsNzIIUIput+WHb77h9uYtn/38M07OT6kaWS9rLSmNg8HRAzLkhClKismM3gfeffhAUTdkZWick3SZfmDf7rl+94F2t2foe9Ca2WLOxeUl0/kUFTwmZYqUqUFA4BAx1pBGTzevEjEI6BiVwtWOoWt56Dfs+5YQ/CMjQmWshtpK3xFSYkiRwkCZFSWKRieMEmClmU8o6oLJfMb5i2es5hNubt7zb/7DvfRLhAABAABJREFUn/Hf/u+eTibUUVFqK0NQOqyTZDRlDCZW6FCgygnDFlIuyWhKHdEMxASb7HB1hck1eQ3JDxg8Rkdc7+WMskCIaFeAEk+nY/utEMYK4y7SxzGrTD9uK+MwJx3nQAo9mukSEtH3+F6AwxAixhhcWVJOG3Lv0WQKMkPfYQxYk3F15KSeo4OGFm6+fyAOGRUVoY/koFHJQrIyKE2QgyIOwmp3TtM0DT4n+pxwRYmtJrJn6gqSgOgHh1z1pGaakIiQPLnruP/xLbd3dyhrmExm1FWDxpO6gbtvfiSVFWo65Q/PLvi23bF+85Z0skRPTtG6oCoafvGrXzONAy9mJb/6oz8mfnhH+/4d+7KiVgYdBswYla0zIuH0gX23Y7Nfc339huXJkqKYEmN/9M/Ko0xOiZMtMclA74CdiYFy5GAzQBbpXKUzz0/nXJ7O+Sd/9CusLTHaQdJHllNScr+pHNE5MjOO2WqFWoEyDpUNecj4+xblE9u25+F2zb/7+mt+17e8zoF2fsLJqxcsLy948dXnrJZLpq6kVGD6SOiDsJebf/he+XsDLJPp/OiQ7ENH3w8Ug2NaVRiliEqNx86BAiR0W60MxliMsdJE54L5bE7brVFas93tOYlB9KRacb5c8uzsDGJks93SlyWz+ZzVasWrqytOlkuqsvjJpPXgv3Kgjh2hT3WYtTyCLLLI0qh/HLeXP/oq6oLZcsFiu2WDxTT1MZYao9GFxVGK9m6kuZWlYzafcrJacn66or84Y/PuLZWzTF3BrGlo6lqYECJGRBlNP0g6TAqZvushg7VP5yug85i4cWylhL2CGn8tQQpZIiqVFmlUUYA1ZGvEjd2MCLHVqMKhCie/rw6TcMY1H12exp+NBKHjBvlIoVPjhPxQusjk1cm4YfSieZyri8To8eeHfSsraQcLK1TFQimCi8SUiV5hC5HMuJwJSWKXY05iFDXqRLUWp3cyJB+IgycnmXb60fBRKObqKA36iZo5y30uOm31VHUnAOuHO/zQCyioFN4PdJ0AAlXhICcG37Nbr5k29Rh/VlC4gSF6YhfZP2ww1kpyhBkTSVLgctpQfPKCVxcrjLGcXz5jsVyxOjunLgucVTirMEY8eMpCSzQbARXS4/2TkemFFolQypF217Hf7Oh3HX4rDZX3nq4f0H1LGGpyzsyrEussTklD670nZlk/qzQ2aYqU0MrgMWwTuDEWwyVFpSSakiQFVBjEjO0QeWhGr6QUEzFEMSM1hqKsMMbgg2ez3dK2e/ZPCGqKMGjcd0bE/kAxZ1xLrTQxRcqyYLlcYGKU6L8QKIoSnRKGgA8Jpa1MnLJI6FSSxLFZM+XT56+4ODvjkxcvUVZMX5umZlKWx4na4V7NSg69I9MvZUjhSNlMo178uHdmeQ/CRhuFA1kYfM4aZpMJOif8focyiT/+gz9ge7+n7wNDSJTzgvOrM56/eMbuvefZcs5Xl88xPtEPiSFkfDZkpBHIMY8pSoa6qogxUJYNVSXpA0Llh5yjvMQxYeyprpDkvStjMUUhaWZZ5ELaiKmmnTWUTS3mu0qx3+7puo4cE/P5nGHo6fZb+naHVQLIFtoS+sDu9oEbMlPn6PqeoCFEj56VFMsJzeWS5mQmBnt9wcsvPhHWn4XWd9S5weZR/npk7uSRnqzROUsEsk8kL6yv5Ec5TsxoJxInoywwmp2PZpKSWKIprEUPEoctX+MIY/QwOCRk5ZSO/MMIkjIRAtmPUdcpgxHzdmOlYM0+kkfD6adMNAEo6xrXdpjR/ymn0XwYRRoliT4EsrYopbG2QKnAoX1OyTOdTMZJd0H0W3y3I/YDOpd0u4Ftt+eH9zc8tANdn+g7BWVm9WzF2bNTPvvyU7quE9ZS3/Hmh+/Z7Tfs2y2nl2c0k4aqrvFdx/rhPW/evGG3/8Dly89Ynl1SOsdyPqeqHNNJObIgEiSYVDXO1YDBh4R1FbP5kqtnV7ja4coCYwuUj+z3W27fXvPjb77h7Q+vef/2HVprJtMp08UJVy8/I1rRxV9/eEdZzznpBlanmdVpOYIr8vcqdUgcGfeF8Z57qmu6bJjMG6pJiwoKowSE0iYTsniH6bFZUVmj8sj0DYE4Gow6Jz5/s8mEk9WK5XJGOXEUZQHOgFYUSpOzRimDdVIXSHn40XvLWqLO00dmvlokEn8bbHlk9B13V/lRKVxRsFws+eTTz/BhoKxK6qZmOptycX7JfL6kLCesP9yz3/d8eH/DbtfifZAqylpizvQhEJWiKArZj5AkqBQSlSvEfNuJv5nPXjxYwkDIapzEZwiJ3WZDu9/hw9P5HrX9jkVV0zQ1i/mSttsQhoiqClLX0fmevAnMmxpjSqwpScDd9S0xRDSZz7/4nNPzUy4vn/HyxSdoq1Amo1QEHbFOMWlqrNHjxDuOUlLZx9KYJpfIAsqXFfVkSlnX7HYtZEVRVmx3O9quo207UshMpnMWS5FUl7X411hnwUR0iugght8KAY8whoM3mTEjQJBH5scor5M9JIhsISfx8xq/3JEsL+d+ocVesIKRBa6p65KrqwuG6CnrimnT0Hcd2+2W+/v1k60b8JNhS8oiyY8xgo/orCU6nUN9L2lMegRac05jmo7YGihtHhnlKY1feawtRj/JEbBNY5MNYxeQD93AsUXgY87cT6/8+KNmBDcluMP7gRSF0crIghGPGWQ6pJD1y1GYnYwEmBzHB1lSTTWHBDM9yqREkphHlMcYgzJqHBCP0w09fgYCQ0g/OtbFP6Xg/OOvw36VUqTdt9zf3Um9pAx511NGRamh7jxt64n7gcYVXBaWqSmJu4HBBvFJyZnF6QmTNNDUhmo+Iw4deejwvkVZO/IVpIY5xGb3fs/9/TXXdx/Y7TcsFxOsQtKFD4QFpUTrmZE99UBgyFn8qfIBI5A1HZeTQsv+n0bjYCEliedlClFqYJ8PPKHH9froIz7IzIwr2PcDN9sd/+n1D3x9e8NdUcBsystXn3D58gWrsxNOJnMq6ySNLQa2mw0PN/fcfLiBF/9wo9vfG2Bpmgkpi3lc2wf6oafyBVo3EjUM48bzeAQdzPKslUmy9zJVqqqG6WRCTH6cTkTQ0hSt5nOen1+iYuYH/5rKWuZNw9XZGVfnp9RljbOHxuERQDk8sEezsSPgcgRDgWPoIMffHH89w1FKU1Qls+Wc5b4lhoSqSiKKoQ8id0F8QLTV46ganLNYK2yQwlmmTc2kriicHPzTpqGuyo92FXn9vZcDM/TS2FdlRVM3v+8y/Z1Lo4/MiwPAkZHPaQzHIUVJdnIWmaoXBVhLHiMLDwBLtgqsTFaw/0tpRx9FZh/pfvojpOVxzR5fo0yG7Djl09Ycd2DZrA5AWD4+TMfaZpw86ayxzpCNkU3RGbIadZJjbG86SEGUOmontdbH6PEUIjFIPJ02hhSC0NozYIvjZ3dQCB0ZUlkOkqw+flf/+Gu32RCj6Ia1UqN0oqdrWwprJEnHe7abDVXhqCdiVGusFVfzBP2uxVjHfr6mqitMIbTOs1nDybxBWcV0NmN5cspkOmO2XMohRUKrhHVKCgkiVmd0ilLokGVdx6NJ7qNEGAK7hy3bhw3dZkdqB/G0SYk4DMQg4ENRFlLMpIhOcpfGMS45h4h2EtPpQsSgKBPYIWJ6jw6ZIikKZYgoidXtRLueYkSN4IoZJUIpHqRnGXto+ICu79i1e/quY3jCmGa51PHHg0QS1HFSKlK3RFkWLOYzVAwoxWjAWKBTRqeBmPpHra+W40YOJIWzjtViyVItSAiDQZ6ZEfQacZI0NhAZRiqrPDtaa1JIHx1WiUf/hcOOOXogPEKmpByxRtPUJYtJw7bbQEp8+vwl3TLQdZ5d2zFZ1CyWU1ZFg0obrqZzXp2coXwiDIlhgJDNaEB6aPiFgqytPFfOOcoxTr0oC6F4Hymn6lgsPsWVEgJWGKGdZ9SYqhNRRYGrSqbL5dFThJjpdq1E+PpAVddMplNIkWG3Fd19lmQtYiBsW3Y5c1eVqBxQzhB1pFg0VCczpucrqsVEWE+l5erVczZtS1SakISmrEmjjFU2b1kRjc5GqNMxQgBCJkdJ45Dpn+yr2lqUVoQYpGgZi2M1fo/SFrIk8MQDiKLE90U5K+lzOZFGoDuNDU5OSfZRP57pSGOinexFCUUO4o+SYxgblqe7yrLGub0w3w4MLemS5MTPEnebTCKP57dSBgijvNlTVRrrCnKuUbkj9Hu63Z5+H9m0LbebB3737Wvu2w4fwZqG2WTBbDLlZLFiWjfs1lvWDw/cPdzRtTvi9YB1maLIqDTHqUC7fWCzfs/9w1s6v6Wez6hnU2w1k9SlwjKpS4ZepJ6+85RFgbMlZEkFLKsG50pWZ2dyvluNsQXQs991vHv7nr/8y9/wcHPDdr3FGsukqTk9WfHVF5+zGSJJW2IM7LYb6mbOZNodqf7HYZV6HKA8JbByuJrFhGY+pZ62xAdpQI1WGI3E1moZxGjEehsE7I0pjlLtgRjFD6MsCpqmoWkaitpinUUXVpoFY8UbAAFZZHtLjyDJeLArkgwLAGHtjMOVQ1P6ePBzrCwPdQ6yL5dlyWK54iUySCurkqqqqJqG2XROWdYo5Rj8DZv1jusPN7T7Du9lxi9y8UwgoowVg2/rjvI3FRK1dVTFGM9MYgiRzg8MIYzuHgeSYmK/3dLu94Shf7J164eWTMI5y3K1QD8EOp0IeNnXfSAOPXVRUI6AViLS7faEvoOhpVIamxXPL19weX5FOSkoKk1UIivNOVDXJdbY0RsjPXqGjDLHPJ7rJDFCL5uGZjJlt9lChumkY313zzCIl03hKibzOc1kQlXXRw+vGALKHkAcL+p4LQO8rLU0hkSMyeJxlTMqhZGBOkbVSjcuXh5jayD+p5ImpJWAQk5lSq0oFTiVJJ2oqbi6OOX24QFTFpRVeRymDf3TGoIrxSiJg5QyIYoUJg/yhJmkMXE0nT8IBfPBh1B2bqU1Shs5M5LU6Jk0hog8Ai2HgfdhsH1sCcYv/dicjfjKYwV9fMrG5y0fyv9xuHIEWWIkp4w9nGdGjYCs+okxrjCJ45iOpOT95FHYoz/yUVH6cVCfODKrrLWjka30CIdoaAFYDiM1xaExOtgKPFVXcPDBSjnTdT3b9Ya+6zERKlVQaEdFZuIzaRho9wN2NmO5nFJj2bSeXHqikoFWPZ9S5QFXKHRdQlNjJw1qXZDNAbhIj+umoQ8t6909d3fXoLJ4sIDULChBYbR+/MxHT63DOj7WkT99Z4rRA1QrqTdGO41DhZMPE/YkvZBWGjV6meaR5HCc+CTISnPftry5v+e3b9/wbujIkwnVfMWrF59ydXnJfDGjdk7u8JTIfeT25pYff3zL96/fAP/lP3iN/hEMlgl3d3c8PDxwv76jqgqqqjim9RjjMHF0Ck6BGAdCHNBakh6aqqbdt2idaBrNcrEcv6cnes+BbjkpS37985/z5Wefs2v3NFPZCCeTiRhSjlM6OGSQ6wMc+dHD/NNbWnS0slCHgYNCFkGMZSWaNyIPTDObcH51Qe8s0wibENi1Lfv+HmUFCBBUXuE0OC1T3jdvfoB2xzQEttdv2bcbCme4OD9l0tRUhRvlORIXNwwBhcIaw2y+4Gx1QlM3VNUT0TjHdzrCX6OWUjYe+aiE9JtToh1GLbNz2GpCLBtUGMAcDKyyUIatAWvACa1c5QNo8wiegGzAjElLhxSVv+tPcthZZapelKJvPGhtZI0ev1Nx0I0etrLD46dGfbU7Is/EESNVSmJzx03eGjN6czxOgUXmkiRVCfEmyD7jQyYyagrz4Z46bNocQdkYMtGI/8xTXsN2h7Z21JhrvBd/ivVmQ+UsOidi77n5cEPlCpqqomkatu0elTXzZsp2GOjXW25ev8EZRT2rqaYV57Oa6XxCM21oZlNhVOmE9hv80MmUOke8yaMpc6auHSqKe3pSjOi9RWvL0AV2u5b1w4bb63vCviP1HpsRs1alwFpcXVBPambzhqYwMq0KEZUyVkWyTgTfCxsmREKMxNbTvr9m8+M72LaUUdFYix2nj8EPbLdb9tsdIQRK46ismKJqFNF7Mbm14gDfdR1DP7DZbPDBY8qC+eTpQE34GIAbPS/GQ0ErMzYR0FQF83nNajVj3ky5/3DNsN9RFoXgfwlyigStoJDPjsKgCi2ywhEQyYdKIH9EwVVyIKd0cDwSQEwrdZwYqKQwIZGDGDKKQZjEemdjjkBpRh/QB9mnTUKpzLQp+D/91/81//O//zN+eP09t9/fgpHpq4qRux9+5ObrDhsC/7f/w/+ZX18+4/lkRuwi3daz2wWGpOiDNAgCJmraYY/vBy4urphMJjRNI4bEzoHKhCFgrCWrLD4pT3RpW3CYaGtnx2YTmVZaQz2bcv78imLSSDrcMJA6z7Bp8W2HaiomTU3hNM4oNvc3hKEnx8QER0lBmR2m9RTTEjcpKFcN1cUCN69wyxpTWPABZRUXnz5j0vYMKZKagoycrUa7I4vOoNDJHCMrk5fpoQKwYCuLKRIFSYBFLXtx6Hq87/AxoVHUdY3B4IdEv+9JDowuSEYTKkOYFJimwleOwSjCQWquhLWWo0d1PWnbsttsSAZcVeGm41nmA7odSF1P6MWE+ymvarrAbfZY5yRJbpQcpOBRxpBTZoiZYfCjNK/AVZk+7IihJ4QtOe2ZTyZ88uIVH95/T+q3fPv119isaKNn43vety2bGMnWMV/UqNmCUJasc+SLLz6lNBoVA7vNAzkOMkTye8L+lnt/z35X8u7De3xMLJclxaShG3a8ff+GyWIADCkJtb3vBsgKayzL+RznCpTRmLLm5KJAa005nYIWGaA2lu39lm7Tcv3jNe/efWBoW2KKuEJqNasNy/mCX33+M4p6irIl5XRFUU8pqilVVTyyo/JHB93/StfJy2c8bCJdq3i/uZXpP4oCub9KwKXEMBqGojJJR4KKeAI+DChVi1l9jgxDTwg1pbJoI0bcIid2MAoRSEpYcB81d8CRscX43OvDNPaj68AItIxg7Cil0mNjZp2kX05mcy5fvpQzyNrxdUjCRvaR1Hl+/P5Hvv7rv+Gvf/M1m82W0AVU1DhVkKK8htlsxqQRn5j1dkt/v6bRjuV0waSsUGTa3nPb7yR9beixboq2BqUySWc+fHjP7Ydr9g9buHyadcsZNustzm74l//iOelqxXZ9y9d//ZfYiSX0mdBG1tstTnsKV3Fy2lA6MDmwffsjf7HZ8OPf/A0ffnzHn/yrf8mzV5dcvjxnsqhQppLXfzDZVkrG1gewFplSD0OPDyKXLLTCFRXPXrzim6+/Zr/b88O337Fdr5nN51xdXHB29YKkBNAPMcoNkDMkMQ5HW5JxHByI5Mwz6Dx6WqVBznMyOgYgSR1kNJaE0xlnwSVwGUJWlMZgwgjaGVApUKiMNYrSKJaLCWfnKz55fkXve6IRb8fNriVFmE3mT7Nox0vYiiopUtQErxg6RWgV/RDQEUzIhEFSdIzVqDJKuMUYTnEIMzmAkWmUiIbgscGijXjkYaVWQDP6Zh5HvH+rYwDU34UijjtP/sh0X2nxtNIGlCFmGPwAxlANHlfIOa4Sx6/DpD3nPDKa5d85KTnvtX581JX8Wo4RHwIxJpwzItNTiNmx0mjjMFb8M9VxKKX+1nb5dHtnGz1ZZYLVtFFqXr9rOaHk2ekCGxT9es9LU/GgFQ/ec/ftD7BZUp6c0ExW/Jh37I0mqIiurQztnGITPUonegvb7BlyGuu4TCaMrBLNJrfsUkeP59nJGZOqptCGHCPJ6GPFeASolProMxjrx/zxr+WPfoxjUaGP90FWB5BPzNtNUpgs+3jSGa/UuL/K566Sw/vI++2G//5P/5T/9O4df/VwT/WrX3D68jOuXnzKr3/1S5y2GMCoAEOkbTtubu/5//7pn/Lu7p67/e/HaP+9AZZvvv2W3XZL27Uonej6jn0r3grWWvJoEDcMnhhGI1mjkPSaKHTNPNDtd/zw3ZqTsyVlabBOs12vKcsS6wo0iqZwVIVj2lTYQsxJnZH87DiaD2n0ESwR/zF5QI5xpEeyw+OEThZe/aRxB457bD4YBRrFdNqwShGTFIX3KKP4cH3NZrtGa01ROur5jElTUjuD7lva/Ya7FLibzQjtFuc0z54/4+R0RY6RIQQwhsKIUdby9Iz5bEZVVtRlhVGaYRie1INFH/1lDi7XPKKyWT6ZhGLwiU4ntMooW6DKCh0bCI8JRDGHj1BIAVHGMDMio+wG2fRkSnSwyXtEePk7W6iskVIci/8DpSwfBkPHQkceNUYKoHAYD0XgYalH5FQByowocmQkqQBQFoVMHpREsgqCH4kxywEbM0MfyWi0sSht8HlE7dUBSR8R7PH/kdJj0spTXaXWI3aYjp93ypntfse0rnBKgY883N1TFZJyUU8m2PUDWmsqWxDH9xV2ex4+fCAME3KeYk2kUwEVO0qTx4ZdEVvx48g5EnMkmyNwjFeBXDiRcBkxk0pB0fqeu/stu33HbrfHdxEVNUa5kZ2ETJ0sNLOG6XzO8mSJbYpxw83ErsdaoYDnYLHKiId38AzbHcN2S9jtRgd+uZO7tiWqjNea6AM5JoxSlEVBYa2AfOM9zigbGAZPP5ruhpwpqlo8N54w7lempOMEbAQYtTKoLKwiNU53zk5OWMwn1I1jOpuy32yIfsCVBaGPJGXQxnG/b3GTitmkRjmJBVRaiX0GH9Etj8lcch0mTo/A5tg4aCNMB++JXUvse6IfRFJVV+iyBO04Pq8pH4sjFOJ9kgBd8Mc//xkvTs/YbLdsty232zXb/Zb15hbdd9QZ5qbgT569ZGUsdrdn6C1DB94bonIi34ti7u39gEKmwM4ZSRkprOz5WiSZ2ggw7kMkPmHimnFOZFgxytRSj2CqLKmwBCqHKgyxi/h+kDSXIKk1fp/k95U0voPvhQnXtTgfKKIawcGSejqlXNaUZzP0rCQXmhADvvM4wCmFNopqUuCUIlSl+GSNsLhW5riT6iCTuCydnkg5tZUvFwQgUkl08En2un2KDEqRncXZEqUKQhfY3K9JPoAp0EoRnCGUlhAsSjt8ofGWUU/PMYUhDAH2LWGzoW33qNJh6wJVyFAkhwiDFxZbDAJ6P+HVTBdUzYay3NAZQ+EsyWqGEEmBkcEIQ4hkHUBbjCuwpcemAd9Htrs1i4Xl4uKSSRXo9i23N7cUxRvcfE4sS267Ne93LVF7VmrGQ17jrKE0muef77lYzlhMJ1SNYre+Zb/bM7QbTOEwrqRuSq5evBB/I2Vx1QyfLSlbvJf0uhiF0VqYisKV1E1DWTbCmFWZZj4XEEArdOFIyR9HDU5bSltSlzVZKfoQGfoBZQyuG9jvOx7u13w1nbM4ucDVM5SrxqQPK6syaubJCWtGOaFE5DCOM55oJgvRWYr5lOnpiptvN7hoJc0xy3NdAYWCTsp8EoGkIrY0VE1JPSnJBAafUG3PMHSk6NGqHoMMxgM7HgDiQ50y7onj3/N33tCB5TqCLjnH46BIKSWeQ4dPwxwOyYSxjphEMmuKQuqEcdCEUgxdi9/3tPdb3r+95vrDLbt9i9GWrCEF8SBTSuOMYzKZopA0sv1mh02ZaeE4nUypipI+tGy7jrvdhs57IdQbyCrK/aE1Dw8PbO7X7NdP5zOWs6XvA3d39/y7P/sz/uSPf8Ynnzzj4rTh22++Zn1/z+Y+4bcHs9DAdrsmyoyAwmpIA5v7G37zF39O6zsuX1zx/NPnfP7zZ8wWU5pJQz1tCCN1QZNHf9YDn0oq0ZSh71pS4SispWoaFosFDzFyf33N6ckJi/mc2XRKGrww6w5Dn8cZn4Q3oMbIe2HnHXvEBCTxKTycieNTwkFYqxEWeFloyhQZ0ng6OyeJ0GPDYq3BmCyMYBU5OZlxcXGCNZnlag5VxcnlOcEIcN400ydbNwCVI8LNMWgMKpeQIzkHFPHIVokxQDYkJSCnpMSOARDY8Z0fVkGehhhluJJjxKSISgllhFN1lPbzaCZwfE1wHOD8lCHGkcFyWHeR5xiMc9gMhY8Mqkepkb0eZYitUBIScVjJ/HEPosZ47kwKY42kOAam5FGG6L2Xd2cttizphoGstUhfD4a3xoxo7OFVP4I5OT/WY//Yq8uRlAM73/Pu7oZ+GGhswSfnzyjajOo8VR85dRWlstRmIHdb7m/u8e1AOVty+rymNJoPoR9lhYE9mTe315jNA3HzwLZvhbWbFQ5NyIGoEj4HdFMyOVuCVcyaKWVVoowiJsahq3yU+iBDH1f344zKY0iVzkcw++P7QB3MuJX0rcKGdRzMmWPWJDRBOYI1KC3j9hQyQxt42Hb81dtr3mlNfnbBJ7/8gsUvfsbq9JLl8hQKCTFQOVPExP31LW/evuff/6ff8Ls3b9gbhZ/9fiSH3xtgubu7OzrsT5paItH6nv2+Zb6YStGOGo0khTJszKG5F6p3jBHvezabNUVpIIuLete2UtxbO8Zhjs2RcqgR/Zf4sEPIqFDLDu7uOY1Gjmo88D7mkvHRg/x37vU8/pmPv0GKiqYqmKWJRKqGgI+BsnSjbi8BdtRK10zKgqwzqm1xWpyTtcrUdcXV1QV1UdG3PSFGrCuo64bJbMbJyRmL+YyqKCldQdd2RzPQp7o+9j15lAnlo6zlgLqGlBmCbPpOG7Qr0WUFyktpk4JoNbPEbZGzbC6yK/0EcFBjEZM/Yq4cV+LjidDYXB/++yA5yTn/L3iZHF4/h8X/W79/QEMPENBhip+IKYs5Wpb7TGmJCw6Dx/sgUbMhkrMg4lEQwrFRMdIUH97FEdATurE0N/DTreIffzmtCQiNUz5SSf0YgtDwlTHYlOi6jvV6jS0sZxenWCtmcDEmCrRQ+kNi2LVoI71zWWg0AZU8XWlxVYGxoiVWRuQiinA06lIoaTyjIWtGnwMIIbHf9Wwe9rTdQD9EclQYzKMWFvHQUdaIwe2kppxUqFJMhPPomaORxjDnjM5aHO2TknSpGEhh9EwYD1ofI9EHopG/yxnR1RfuQJ0+3APyucVxgt0Pg8gXx0g3pc2Trp0kXzweMqNt7KjS1UIdNor5bMJ0WlM3pUgOD9NOW5C9SGfIis2+ZRbn6LJEOUbT2oyY1B6mBQdwZaSlHp+zw38fqxvRRseI7zpS35OGnjgWDspqlBMwiCNACgdu7wHOVBqsMpwvVyybOYMP7PYDH+5v2OzWPDzMMW3LJGuW2nFeVriUoRvwvax3SEYOyxyEEh8kPc0Vkgiijg79ijQOG7UWLXSGI+vsqS5ljNCdkfQnghJmXJLpjbJShUcyeQSDkg9HwCz6IDJKIwVY2dRoBMBVfRDJzugYLEa6jsI5ATZTJvVRZF7GjDHjGTtO4ZXVItNBPCkO5+Ah3eE4HVJm9KkRGZqymqM3mtYwSAPvgWxEt+6KCrz4/3RtB0nkdWYsaDBK/LiMATs2IGQMch6rlEjeE7uesG8J3lPUBbZwKCt05KOcIwTSKN15yquazCiqBluUaGOwB/8lY8hJjxG6eQTDpYFAW4w1I7NH0Q0S8e6c4eR0yb2Cdt+z7wLNzIApWfeR23ZgINKXLWUQQ+bKad4/PFBXjkntMCR8GvCxJ5EoK0dR15TNBGdKUBa0w7iadkgMHgE4kjCKrFZURS3Dl2qCtSVqNHk0ZfnIQtNaQIJxsKTRFLZgMpmyWK1AKfa7PSEmslKEmOj6AWsKympCOZmRtSMkiIeo9I+O1YzcWodOc3w6nmz5Pqwf2AdPMnJ/66yxjAwRlMTYKom6HbIA/4mEcYayLpjOJ5JQqCMxDnTtnqGfiez88HoToJJ00OP7eXz9j2eEUsJ4/duslcNg7jH9UB2lVIwA9kE+mbX4Y2EM2jpSSkKujpkUI7ttS7vZsv5wx4f319ze3LHftePgUPp2wUhlf7DWMgwDQz/g+4FGaRrrmFYl2hq8T+yGns1+jz+8ZwVZJZJSGJXZbbdsNxvaze6JVk32lxgTQ9fz4+sf+PKLK87PZjz/8jNy3nNdGzSBh9CRfSaNiVgqKXDiK5NJ+NAx3N/yw7ffsNtt2GzuyXnPxdU5q7MTTrVI0rXV2GMdOXI2UxwHf4nBD1gjz7x2lqIoRGqrNdPplGYykR4keEnDMY9eZPCIuWUOA7o83ijSEzzWmiOYdmCParln0mhSYQ2UVlE5RR/GnVdrlD7IbzPOavFyGYGH2bxhtZpRVY6zy1N0M2F6uuJ634sk4qmp0TkdQQyFQasCrSJKebTOaCNsFGN6kb0r8exIKR09NPIoh+Kjp+IgqVUxQ0rolI5hIofn49CXHa2L/r6N5MB6+El5P55vh3pn9Iu0GVxZkjNYZ0cvwBEvOQy2FKSD1InDugsAknIafVoO7FV5J2lMdA0hiP+YlnMi9sMoDbLCEjuAK4c94/iafzrseooraQgp0vme69tb8SIsayZVQ1pvYAjokKitPQLBm6Gl7VpS3GFuH5icnIGGTU5sfY/Hsw+J+/UDrt2R+442DJIc+3FVnDORjCkL6skEBRTGCTtUyeArS9E79n5jz6nG9cwjePXxEPpxWv2Tv0cd137cYRVHiSZKLAECCq/AayN7c4YQMu2QufeZ6wz59JRJU7J8dsbik5dMJ3PqqiFpkR+lEEnblnevf+T773/kd998yyYHfFGRqt8PKvm9AZbtdst0OmU2m3B2ccJ6c89uv+fm5obptBkfQkXXdsQoUY3OWmnojKKqSkLMhNiz2++5u4WcZji7wA8dpbOo0olpVBYXbqWRhzgBSh5kkSQ9PoA5ZeIgzBDxN9CP9/XfvufHP/Z3hxV6NNQR8KDQmnldkY1l4hzTlCmcYbtZs1s/kHOmqQvOVgvOFnNmdUFuCuoUWVU1n7644jZGVFNTPbviww/vJNEAmC6XnF9dslydcHp+foyLzjGy3e64v19zf//w+y7T37kOEh5p9D7Oah8jGbUYuIU00AfZNKeuwJQNWmeSjeQwEOOAz0ESI2LCGGlQD4ZOWlx7UcqAtke08cBK4e8tXPjo1+T78rix6eLgw/JYzKnDYh7ogjkfH96fgiuH5ziTcsbHRAgQs7BrrHGS3JJgGDo2u5b9vqVth3H/Fwo5yo7vR6jVKUmBq8bmWeQehqMXy9/3/v4RV1OW7AdPyEGabyNsohgjfd9hXIEzhjAM3FzfsGt3LE6WFGVFU0/ody0Oee3ZaLwP7Dc7Ot9jVCYMFWEoGeLAYrWgntTUTQOj/4nJApBq9cjEUMqhsCjl8H1mt++5vnng/mFHyvL7WY9CLiXgSkg9WYMtLW4+wc1rdFMI2UnJ5qizlcSbBKYqyQGRsCSN27bowsl7IOOVMJmign6kTZZlzWw2Q6Fw1srkYjyoszJ0Q0/b93RDLwCOFtd5lKKPkdA9nT7dGj1apiiMUuO/NVZLtGFRaCa15XQ15/xsyelqzs2HDZmMGw0N8+CIyeNj5vr+gfn5EsoCXaixWEswRhuOG+Eoj5NnWFl7BDXVkRUGhEgiMLR7Hq6vKUgQPDkOsn7RQjC4svioHpK1l0cvMQQvkcZaC9vCaipVMHMLltMpPnT47op4d4/e9Zhtj9rtyDaSVGK/T/hQE5Oh68UzIMRM2/ZUVS1+BVVF27akw7N+ePiVmGD7GAQ0e1oixGhqKXH1IXgOE25TWVRpCDrT9R2p6+jbHb7vyVG8GmKMDH0vTJfCMVssCa6ky4r9ejuaaCts3+GGBtN7wqYjeyUBBCZjS4MrFNZpwKOcmLY6RG+M0mOsUzzKGQ7jwKwkUSiOk3sN2KwwSSLCyYqoowCuWuOspTCOia1pdxva/Z5u6HHVDOcE/Bl8wiKNi9FGvI1GfwEzFt06JMK+w292DOst0ct+ZcsC4ySeuRs6trsdQ5Apu3G/dyny917z0wvub+9x5a3IlbWhsI7CaPoIDIm99xgtAHoYPRWUFvNkXTi6YWC737Pebvjs1SVGF4RgKZsVbrJiqAre7Qfed559Gngbb7DWUFrNtLS8+OZbiaRMnrD+QLu7J6aeZjFhdn5JM1tQNXOyrkTOqsXXy3oIETKa0IvZs8FQWvGusE7MWlMOxBykxzucjUpD+v+x9p9NlmVZeib2bHXEVe4e7qEyM1KURHfXANUACAwBwoCxMZux+TBjRprRSP4W/g3+G5BGAQMHbDHdje6q6qpKnZEhXPtVR2zFD2uf65FVxRlatp8yr4qIcnH97nP2XutdrwjFe0c+ZnXDs6dP+fk/+6dc39xwe3fH29eXRK9QpsZHQ4gihUXbAirow8RRHUooSU5R5Zi9hxEe7pz7D3/55zRxhuksg/esjEhia4Hu6I2mNYZ9znQhkOJAMsJgma1anr3/mKoyDOOeq5u33Nxc084rZsuG+nhxAJTRk99K+cFTc53frS5+p9Y4/G9p65NUFwcAWyPMHjVNrOVztavIWhPR4qMTopy9+57r8wvWV9dcfPWKT3/zGW+/fcPN1Q15yBBBJ4l0dq6mqmpygt12x36/I3rPsl6ymjUsGhnq7UPguttzvdngU5Yoew0Bfyh8r2+uuDq/5PrtxYOtW84ZU9Cr6+trfvub31BX8C//5T/h8eOWV6++4de/1HyevqVfB8ZuZPA9OSliEAC5rSzWaYzVbG+v2d7e8PLLL3j76ks+/vEPePHxh/wwQnu0pJo1tKYRs1uEa+79iB9H4jgSvJfERCBmGfDWdcWz5885Oj6mqhyZzBg82cuQoqqKV51WJXI+QBYT0aykNpH7ZJqoA5iDkiFbeW6ShWgi6IC1mbbWrHRN6JFz1xgB+LRIa6pGIWokBcpw8mTJ0w9OWR4d8eHZE9RswVC1nH/6FeMYJab7Aa+cAuBKv+QwpsFaRTJa5ExZ4nS97YXFPBmNpkiKYgaaoyqDy3hoklGaGCU+lxgxMYqfX0r3b9/0ZE3tQLlH/9Ds+3cvpY1I7EgoZTDOoI1Fa0flahnSVxU5BFAyIDIlaUp2E1uGphqlZI1TKvutseX3lPoppUgIXhi1ijL8qvBxi7UiNzeuEoBhav4nyv0hDv1hAZbKGMYY2W+3fPXFl7w4eUJVNQxjYOx7zBip0ThjaEqAx2ndkH1gFyPx9TnN6oTq0QoWht9u7uhjT1SRy6pmkSPWD3R+wJMIKqNjulcWqCym2nNwtoJ+ICiNRWHrybflXsXwLlNQiITTostHnurSd5g+kxLwANypRNKZUUPWEVRiO0a8MgTl2CdF8IoQYOwze5/Zm5ruvQ948ZMfo+Yt7miOqmQQkVMQuWkM+N2ei7//nL/+87/m1cUlr/Y73I8+wM9r+ur7rdH3rmr++I//mKapcc4SkshY+kHiGM+ePKaqKrRx9H5PGAN9P6J0pqosbeNwtSWPBmMNzlWi7zKiaxtGSSWytme+tIcTXW5sXRa4gMnlYY+xRMTGyNB3aGOx1tG27QGdPVzqd/58eKjzAY1WWWFywhSzJL/d4ceR+ekZi/mMR/MFz08e8eMPXuD9SCZzdnKEzREdPZB4cXrKSTtjqSvMoxOGzY5uvRXTutkpTTPj7NlT6vkcV9ViIqUSYfRs79acn5+z34vs6qGu/M7/phTLBFgTJvNGFNo40JaQArkYKeZsQFc426KdQ0XZTHY+EU2iteqgOz7IeiaAxYhPx2GK/v8H8CBLmw4N1cQXUfAO/a5UMZNrOfDu9P5dcGWS1oSYCUE+0EYMEFGkAD4kNpuO9d2OfS+Nt7ENRju0rYjFcFMpAznKvYgC0kGZpJUSeVHQqPphmwZtwFYGp2EIEWMLMhwRSYVJZCOo/TAM9GHg6vYG6yzNrBXK8mFDk8PHm8wYI3fbnmwc2ULyGtUFRuWhgqat0VbjiiGqLpu1MRayImXFfhvYbDr2+5H1ZsTHEvNtKmIey4QnYZUmG4euDe2jJdXxCjNvic6QdZkkp4Rp3TsmVYocEmSNVjXhas1oYE9ksAqLQSvLOASyMRjjxAzV1Yd7IoVYzLcVu2HPOHj86GVNixdFyElo+SkW8OyhrnszW2lIJWauqRxtZVktGs7OFnzw4hmnj46oG8PN3RWzZoGbzwn9IIBSMuy7yG7oON129D4xb9z986CmPaxEHmqRqUnNU56RjDRf6v51CTU2MgZP3VZknUhBo4wjWSvPrzYcHLzL1B8lYHntHJBlOpUkPcsU7az1CfoRtntYd6g+oMeEsZo+RLrQc7PLdKZliIquCxKv7SPjOHJ6elqeUdjvd6QchTWoyrSpFDHaGqxWwjR5oMtVjpilaFSlRtBZoyvDyZMzZmcnVPOG7X5N3o+EoWfwAyGOpCQmyaZIT+pZw3w+p3cOP3pyVTOqxJAi2/MLLvdrZouGx08ecfz4hHoh3ki1qe+nqrUlWw1WGt2cIkrlIvs8LA1RZ6IqMj4k1YfD6inRoQcgyD1ureP4pBEtc0hsbtbs1htSSCxPTtC2QVU1ZKgSzIzFOvEKa4yj1haTMzYisrw+kLd7wmbHuNmRQyxAohjO7oeebbdnPezJTqaKk9H0g61ds5ChQNWUWOgaHSOzuqLFYLuRPm/xowIMBsvoI4qAIuGsgxzZbvd8/vlXLNuGnDVVs2Jx9JT2+DFj42hWx8waJ2kzlaXrtzLJbA23u1u+PTfkocONI/OmZr444emz95k/OsHWdWGLaDQWgxNJstOYSoDmttbijxB1WciJdp9JMq0iq3if+BVL1HpOJD/ihx7rNKePT3j03hPGkOj6kS+/fMX5mxsUNc8++CH1bIUy5YyzBmPEo20aU0zDjXecD6YZ9INe//Ev/oIFK5Z5ybN0wpgkmloARhl2VVbhEpiy54hUXIxQZ4uaH/zgI8ax49PPPOdvXmNsZr5sOXp6epDm5CyJXeKvJAO1g6T33XLxd3/B6ZfOUj/FGIklulcVgMtWApSVWdMhUc/3Pd1uz/X1DdfXN+y2e/abLd16x+35JXe3d2w3W/qupzGNmNNjaGczKlthtWG73bDdbBjHEWcN81lL2zaoyrLLA9djz/luy5CFsSKvVeo8kbkkdrsdt7e3XJ5fPdi6/et//XPevHrL1cUV3X7g9es35OSxNvFv/t2f8pM/+hE//Ucf8zd/8bd888Vr3nxzzuXrQA6ZEBX7PhOVp06KmVMsV0c0rQx4zp6dsJgvUEpYZa1a3bNyk/ju9ENHDkXOmTPH8wVWKXIMnF9d0m02WKM4Pj0BC2P25KjY+4FxGMkpcXpyLKkwSos0dAIQtRb2/cTUZhr2KjHzVJTgB0AXsxUH1kHtFNEp2pypdSbqDJVBM7HmEraC2bKindfUDTz78Iz3P3nG+x99hF4eMWjLjU886U5Z7EfG4YGnCFlkPikGrF2glBh9hxhI2klqpQHnFDqLJC/r0nnlhNEQwoj3I5BFSqQSxgqrVKeEKdOPHCMqTQkzU/38zgP3h563af8pb/HUY+SJ7aDL0CgLgKUqLQk/FIhUm3cYvFKXZHTBgYRHbHQZzidJl3S24Z6RBjEGQhBjeawha0PMiogkltm6lpj3d0z28zvGe/k7m8rDXDon8jDiNzt251csH7/gqJ2x2+/Z7LdUWXPUzBjHgckfqrKGZeUwI2w2a7rffgpnx5z98H36quLN7R0Xl2+4jtAerZhXltt+ZPQjISdmdS1DFCUDlUjCGkvV1GQ7UhmL1sLk0caWZ0lhtSvnktQu0jAlUOZg46FyLml1SmTo0+0wvYcZiInQj7y+u2E7DuxixDcNybXkasZg52RVk6gIzhFnc5Kz2LaWGb+Wc8MOXhxHs+fy+oIvf/sl3375Db/687/jbjeSmxnL9z8gz05JRjGm77d+37uqefz4MUopUgrcXlyz3W4Zxh5jNH0nWnORJURG7+nHAZTQtqqmom4cOXtQsO97uiHQtg2gmM3naK0JUSh/VpnS1Kn7m35CWN6hvoOgzLqwV1BT1Cgovqv5OwCnv1clSMOucwkazhD3e+7Oz7na7zmzFceNxJ5KVrbGB4n8rYwmD52wPlbHnC5XLKuaaoyMWhNKY3q0WtE0M9p2wWK5xFS1IJ8o/DDS7fes12u6riPGeGgwHuKKJRJLzILuk0VAUH6UvE9amQJwyDp4hK47YHAlisygCGSCDFtwE8BCmaQhYNhkcHu4/gDAcijkMgf6oVD25HWaA6WvfIvpi/L936cNLR++VS76PlnvFHNJHBDEW2uLs47oEz4mBh/p+xEfs0zzCkgk5sealKV41WqSQHG/0ZcXIw3rfaTpQ17WWTRe9qViMqUKuDMZmMYkfMgMhBC5Xa85OlpJY29sSfwReYyzVfHwyKSsGSMYn0WKEyD7hB0DeXQ4JUi4Kxuo1jIDCCHhfWCzHdhsB4YhECPI1mKYYhQP75BKKGfFGX+xwLUtupIJ3zQZyUoVIzvEVyTJIUkSMKdPnj5FRgXRakJWjEDQispVErdYNZjisxKj+OeQxMjMj15SDWI6FMGxyKZikSvoB2zUTZG1TB8CsGicNTS1Yz5reXR8xMnxEXXtiDGQcsBVltpVhHEQZ3ql8V4kYLd3O25u17SLx0WVOk3XOKjl3nk87icC8jcpFJUqZuBgtKGZtQJ8J4PyArRKRLuTZ+A7muXpG8tTea9pnp5SBTlhU0LF6UMKGm0U2cAYM/uY8drS+0TvA9FHcsjEIAl1dS0AQyyF87sP/IGMXKbPVovc6qEua01JHpBJI1qhnMY1NatHx7THR7i2xvuROIpvTUIkC0lljNIoI5M1W1W4tiGEgG5q8bQikHRiiD1+1+FjoHKWum3RxuEaygMgrELlhOUlSrHyXk+slfLOJJXxKgkAQ9n75Dtwv3rqMBqShB0N2pHGgPeB7XYnhn9ATolqojBEMcw1SLSoVkb2BG1KbGNGx4wJkdyNhH3PuOtIIQpjyzq0kvMk5oSuHLPVsqRMPOxm6WMGYzF1g64aee9iwNQNla2JeqAZA13yxe/CEcOAeA5IQ0pUjIPn6uqW65s11jbEaKVgdDVuPufps6cwbukI6NZyfQuV1pzMFzTzikRk13Uc2Yq6XbGYL2maFUa1qOwAK8MIDDmb+wJdQS6vY5IUyvE2GdKXT5pGfDmKl1qK6CzU/TD25BSwRmFmDWa+AGPxSaGqBVVzQfCa5fEprpmhjCRlvcvsSO8MKt697u+rd0/lf/h1fnXDPnt65Xm0WBENTNHISiF7p9YHJmA5pQnBMwwdfb9jNqtZrhq6/jkX1+f0fc/V1RVP+/dxNChnyWpK1hH5w+S5cAhJmJ6WiTErBYac96nUET4cIm11SYYhS0Le1GxJHVQmskmkcX4cGYeBoe+4vb7h7vKGq29fs7lbMwwjSiuapsVph9OOuqpRWSR7u92WcRwgw7xtaect1bxBtw6lIW0c3hniKM+kRgmzRMnekJDzY7PecHlx+WDr9m/+zT/n17/6ez77TPPFZ9/gQ8/1zQ2//OWv+eiTM374wxd8/PF7/Owf/xHL+YJZXbFbb+g2nugFZFEjwhjQHuNGMBZbR9l3jUZbXc5SAEkBC2kkRH8wrndajNutgtD3jENPt90IkGYqTCVm6JMcSDuDjiIj0VP6z7s9BqCyQqciR5+KuneHsu+kWcqfI6hIUYZhNVRK4Ug4lclWvk3M8nxZC4tFw6PHRzQzw9HJkvnRjOPHR8R6hkHRj5HTsyMWQyQ+nAq2/BIloSWlgwG/7AMS6JAnAF+JUbI8D+n+/KUkzElEzP1bVGqDSfmRUkRFATB0ioXV/jsvBX7n39T9Nzt8Ur5vAeHQT9z3M2oy0GHypoKp15ueaY3WFpFmTrU83CfaTDus1EqpvG7g4MOYQJgz1mGrShL53ultDrvm1JOU1/dQl0nA4Em7/jDM8PMe6gW5NvgIOwKkgKU47GhN7cTDbowDfrslGQVXLcsTwzZmbkbP3fkFp0azXC4gS7JUTEnYOcUCwmZxRNHaYJQlW4edAkNQ5f2VHVqVQJVD4zbVFCpzMHaUBoESEXa/5lOtU56/nCANAT+M9CEQspgzp2QYnJMgj6ixixPMvJWo+KZCq4zJCRcDetvjuy3dds3Lz37LZ3//KS+/ecXrb1+jj84klW++ZKRCJ4TZ/T2u7w2wnJ6e0vcdm+2a169fc3NzS4xe6H27Pa6qmS9mEpk6jHRdfzCDbdqa2bwlJTFJvb65YbddUznHhx++4PTsjL7r8GGURrC6j5M8TGgP0xXuwRKtMNrSaC1TntL8CoUTDqZI6v4LD/hpnhSRgiyrDEYZbIJhs+HNF1/w6voGrSyPlivmrsZWNYuTE0KOhBjYrm+JOWO04sXjJ6zqmiqDokx2Ea3pydkJTd1SuQZdV2UKJeDEer9nc3fHzc014ziKOWlTf99l+r0r5IRRRVOq5UMV6YY46WvECb1Qu1LEp2LxgCYnS+sMVldYW5H8nphN0WuLCl+mRAYxWTTvyIL+Z15YWcxUNuqUYjFHlv9o3H2hw7vH33e//t2/ytZP2TiLeWrKhJixxuFcja0ahiHSDYFuGOkGT8qmePjoe2+WciBqpNHSWR+8QtOEyJPKv+VyoDxs01C1FV0OpJBQVqGzKlIEicoThk4s4IuBmLi6vqZqauZNS103hK4vwGXEmppq1pBbR+cHQrJ0Hmwy5KCIYybvB7zR1Blm2mKqCq0NCU2KiX3v6fYDt3dbum4UcEVZjBLVfBLzGgoWRVYZ7RyubZmtlrh2hnaapISNUHJvBCQSC5iDXwtRMfaRTd+xCyOjgtQ4Rq/EyMwoqlnDrJkzq2coIHjPMPS4xuH7kbEbGftBIuJjFKp9FIvNkJPsIcaWKeTDXNba8ggIwOKcpnKaqtLMZhXHRwuePTnj7OSEEEY2m63EuzeWyjl2O6GkZgyDT6w3HRfnN7z8+i1Pnz0uz9u9aaMUNML+AjFVvPdhKYeVute2KiQm++T0FK2i7OPBoYystdJFV6s0uTT8qgCIKnP4ObK3TiVKRuWASwmbs6QoaAPWoqxm0CO99+xyJjct+5vIvpOI+hRE6+x9kChEOGig7x/8e1ABXSRYxjwoGG2tSB5VygxWSdyjsjSrBSdPzmiOV9A4rq5vCENHHPsCrpSpptWYYpjsmhrXtvgY0bMWM59JU0yUpJ6xI8SByu2Yr3qMq6naRJwjTYAxYCuSSffmcRNcNoHSyETJEw7yBIUq/hVlu9dTJK2SVBXk3kxZ0Q8d++2OzWbHzLYkMrv9niPTYJRFEVCxQALFY80ZJ6BrRkC0kNBjJO0GxrUwNpNOGCVm7kqVuE+tqZdzGu0IfU+/fzjDTYDdMIJx1LMlpplD3UjyVdXQLJYkNzAfE7vhDuMqjGsYuo6RgCaU6RaMQ+TiYsub82vaZo4xM+bHPUYr5ssFP/3RDzga7+hUoFpWfPvKYhWcLhactUdUXuTRzfKYo6NTjo+OcaaFIHuoxmK1Lc2MwirHFASQcyzPlsFkW4AxDsk1WbSpTN2BKAIDBnmGh24nxbU1GFeh2xrTtCjXsDh5RtOesd8H6uoY18zQroaSqDKdoJMB4YHdW17DpAK4ByIeZt3udh2Dz3gyvfOkFlC6xMlnrFYHgMUgdvkGCOPAfrfh6vocZRKPHp3Qzn5E+o2nGztev/qWT378AzIIyKJL6Zvva8KDRGiSGR/MwMsn5PvBSQjCsJv2JWtMMeaO+H2kappDpHxKscSTIo0+CJM0J64vLnn11Te8+vwbbq5viCHSNi1HRytq11DpChWh24l3wt3dLTkmmqbm+PiI5XJJuxCZbdXMMP0dbOZkP6BCwky9jJkED4mu77m+uuHlN68eZtGA/93/9r/hzz445ujEcXX1Gt9HtrsNv/r7K86ezEAlfvjDj/jTf/pznp495uRoyZeffcWwXzP0Cas1flT4mNgPPd14y6wb6OLI0dMlIUeU1dSNQ6ni4TIkhnEPOaI0VLaicrIfjbst+7tbdtsNfhyYL+ZUrvQQSqGcsOcro9FOTN5dZUpSlMAKudwfpMJcnLrjfOBGk1QspW0uHsgRCKjsJcJZZ6zK1ApqMqGY+2cFPmV8ilhnODmZ8+LFU9qF4+R0yWzZsDiZ0xUGwKw2PNenxKjFfOMBL1WilO9Zu/I8F/FN+YCD3IP731+Y4TIIzzmVwfaEbWQ5t8pzlGJElRQ3HUKxDnh38Mrhaw+SPTgYyysoNUCpW6w+4J7TJ2Xyd/aiTAFYJjZJOfuU1hgqlLJMukcBg9ThHlAlJCCV/i4UgMU6W1ILSxJl3VA1M7R1pUZ69+fzneHWQ5rcuphR3Ui82xFvd9y+ecvK1jx78hS7avGD524YUdnjIlRZs6gaUhbGcYyeNAwM68TwMrCYPecow1pZrl+94WldceLkmQgxSrLjBE6hMYdI60w2GaoCVOUsdUCRMGspMA5ACXkCmjSZ0jtNcvYUi4dqiVvnHZ9NEKsQZXHKUuOolYKopVdJgRg9V5e3XHcjx584WrPA1BpMpskZnTJ1TPirDZtvX/Lmm6/56//xf+TTL77i4naNn684+/CY5vFj1HxFCgLgN3/YBPR/8freAMvd3R2vXr/izZtXfPXV1zJtbWqUtuz3PbPZyGKxQmEYBs9ut8dWluVqxdHJMXVds9/vyRnGMfL27RVkjXU1/9V//W9ZHs2ARIhepg2TNGNCASfB3uSOVBoYoYRVYnTGdGimA2Mjl0IEOBjj3qcPxQlqFfp0krjYI+tYouFuzZ//+3/P5vyCp8/f49nz99DWMAZPN/Yk73n66ISzo8c8mi8gSEpCt9ljsmYxX9AcP2I+W0CWBzEbYcAMPrDZbLm9uqbb7el7MbadkjQe6hrziFOgdUFNtNAUIZNSkPcwWYmAVAaUgxDwWROzZoiWlB2N1thK5DA6Z0KSxnjyKDlw6ica4H1v94evaU1k1CJ7oS4FDRRvGNlGzbsQeeYPTz8PyBlMWHJKmWl/rusZ1rYoVXG72dMNkcEncpSm1jpxfI9ZH6bFqWzeegJfSsGU05S9lKcel4lR8pDX7GjOJvTEPmBsjcmIBIQgTA0SkUiKYmBplOX65gZtDEeLJavZnM3oSTEWmVSk1Y5mccystvTDyBg8d1sxz6uUIblEv95j9z1us2c5H7HGopVm6EeGrsePnnEIgMEU5tL9UV0AzhQhR4zW4qsxm1PVDcZWIm3IQYzQVNFAk4r5pGzMPiXGwbO73dGHiG1bTp895aaLpG1PGBKr1ZLl8QmrxYqz5QkXb88lsYwah2a33nJ7e8Pd7S0BiuZTwBtlNM5ZuVX1wxYwbVsfmGJKR9pZRVNVVBaOVg3vv3fGn/zRj2kbx5u3V1xcXvDo7Jj5fIZWVsAh7yUuPDn2u8Dnn77k8uKaZ0+fcvb0iNmyBmTKkpOAw1BAHWOJYfzOI6jz/TNZBj2yV1qDdQZLTZTQXzh8TF+tZL/NAioe3q1pklQM/pRKkAdUHDEpYVxN1FJYDmaBbxLBwDjWDGlHInOyXPL61TndTqSRKSVMYUMaI9TtGMOB7q4OpnVluv2A6U9N6/AxSNKMQqjdztKcLDl+cka7XBCV4vbimv0w0O23hDTex7ROyUNaidHtvMZaaHJg3O4lcSgl7Kxl129AZep2wWp5xmKxpG5mjEmjlcXYCuVqEnKWaSZzccRQN0YCCZ8jg/FoBRZNowv4URpJrXNpJjVirgQ5RS7fvGV3u8V3I5VrGUNis9nx7Vev+eEPWmatxTlLGiXzwZSiu6or6qYR7zAUOURCJ+DKuOsZ+xGvEt1mx+5uw2y9ZblcsThaMfiB3c0dOjlaHjYWPamK9ugMbSv6oWfTdexub9j4gUo7TGtYnmSu1xuc0zS1YZg7ckC8jBQCsyRDiDVvXm9YLDOrpWKzPme1XjI/rfnnP/sx58OGbRwY8Lx3NEPlRGsMbog0GGbK8XR1RFMrUuoY9pFmthTqfcFGJUVoMoTPB9VfeVeZah01tX5KKNZyCwRyDqgcMSqSfM/Yb9ltb6m11GX1fEYPEvsaEs38jJOnj2n3kW6XSUoMOpUToOBg5HlgpE67xwQyvONt9kDgilwVIWqGmOnHQGiQqanREhZgLdZZ7JhlWpoVOmbS6BmHjs3+hu32lqOjGavVgg8+eI8xiLHwOAzCFrYVVSvm9llrklZFgiyz+jyhuAdQGt4d6aQUCd4Ti6G2KQ1ELAlNd5sN89WipD0Jwy1nkRevFjO2t7eM+y2f//2v+OK3n3Lx+px+29HWDdWi4mhxxKJZoLMhxcz67o79ZsfQdVirmC3mzNsZ81mLnhnco5blh885e/8Jm1XL6+R5vV6TwliST0ZibcFpbC1N7Wa/4+XLhwNYPvjgmNn8T/lHf/ScFx895q/+8jd8/dVbvvrqFX/zt7/m6uqWV9+c83/43//3nBwt+Sc//xl/9ze/oO9/y667YT8OGNOUFBZLv+m52W1R16/ZhS23+ztu9rfg4PmL91kerZjNZ9RGzH/bypFCIHQdm65jc32FH0d0zpytVsxWC4wrqViVvAcJsJWmdhUmg81AisWjR2Mm39ak7pkQSgu+oZOA6Ujtp8vAIo0duZcPqyENHcP6jhA0LjlmusI7iCphtCTILRc1zx4f8+Hzxzx6eszx4yPaucLnHUlbrHEc1TW1q8lZF8j8Aa+MMJtDIOeI0kUCpRNZBxmuIMyFnCZWSyIlXeq7IpUr/itam0NtoEp6DwlSiBC8gC5FCg7wDo3+/iW948MBU6kyAfvTi07fGYwDHIqRjIR2JPk91OQxAKDfFTrK2sYimxYbitIUljomB48fR0Lw4pnjGqyrUcbRLpY07ZyqqlHOCeO+MF7fGQEdfqeH3Cp1TORdR1rvMP3A28+/ortds/cDy6dnNLMZ7aLlWJ/gxoQbE0tTQ04MQ49/00uQRxwZ1iPjq8zJquX0ow8Zjx6xrB1h26EzbNYb7to5p6dPRNkQs4Qj5ISqNMpYcmVL6EsudcY761oYRTnlw6w9I2Ejh4FZEla8JNSV718K1IlVhYaZbfm4OiLmzICiRzMk2IXEb86vmCeFt4bVzGFdQiEMY7XtGNYb+vMr4lfnvP3sS17+9jNe/se/Zh8D1XzG2c9+jH3+DLU6wistaYfh+5v7fe8n9bPPP+fq6pLbuxuMMaxWK2bzlnY+gzJVz5nSqGtCkGmkqxyVqzBazECDTwx9wPvMetPx+vUlV5d3nDw6YtbWYlZbUj1SVkUjyQEVOUxL9TRJKdOcd32oDrS23yE6TE14WUy5ARJEmdSl8saumoYfvXiBRvFXv/wVrz79lNvXb7l+8i3LoyPqtqGZtzw9PeXJfMlxM6PK4H0ij5E0RpqqFVlASdqZZkTee/Z9z77vub29Zbvd4IexsCKEFurDwwEskSg+GGRK5S0FnZH3IGUxoZKCoJiZGoNSTgzJFFL0J0WdFDGbAlxoUpS0JNmP1UGmJVO2+yLxD12HMqZ8/eTnor5T5MBEt1Plz/dw8R8CWdTh/5GH06B1xlpx9s9ZEX1i6D0xQM4arevDLXH4QWr6eqGqypR8KkJBq1wYA5OLuvxHImMf7jCsZg12Wx2SbmzWQu1U6WBXTBYgKU/PRxZTPGKmPj4hUuQGGsZhxAwjLiTa4wXaeawf6UKHH8QsVlVaGFakEmWGeJlkRfDCpkmxGKoemgDxAJHzr/w9BdHrogsDUFJiQowlDUCXtm1C+tXhlsk5Cx2wG9jtdjjnODo6ZqZr2I7szR1xN9As5syPRX7ncySqJElF1rK7XbPd7dhtd/gQRLphJNpPOSfJKArRHceHjfutquowEdFGY6xCaUkNOD095uz0iNWqZbfdsNvtGceRJ8+XZX/0aCvPmEQIgqYmhUC3Dfz6V58R40e898FjqsaglRNZHpTkDJhomvcPWdF/53uzW4WSQzLH+/lU6d8PEsLpy8kHKc7Ejk4T4E1ZeBLgyWmA7KX4RJgL2Vj2Hrqs6ZPiZrcnKY2txDg1+BHvhYVhyjoJ/VimZTFFcfAvqQRGSTJNKnKwh7qE4aFQSRKDNBWmqXDzOaaqMcahcsZiUDETfBSGiqLcT+8Ay0phnaPWGh8i3XyG7wdyCDRVS9SKFD05GPrOU7WBKilM3aIqSzYWn4u/1VSoTYwessiGcpCZY9ZiTIg0nyYXEdcB/S03gtL4fmTYdexvt/jdQBolcLnbD3T7gZTBWCd66qxIvkxsS5KEMRbrJN1PQGyR4I1dz9gPhNFLDmvKpbgS/6GkQXtZb9c0uNn8wdYNYHX6lBQGfHfEMA6st1uGmFlfXbL3UgQmpUR2oDNaR+atY+gMYVBEoyAZIgZUxXrjQQ0i18CTxi2pW7M0GpYLZt5xeXdD5Vpi8MS+x6bMvK44ahtmjcZoz4FnlF3xKnIIFyMfzFfRRWJQmjaVM0UHOi3boaZRJHL2kEPxI4kMw56xFz88U4mxsHEGk8BHyERi8lS1K+d6ICZPCAOVKz9TTTLffGD+TixQskjFKGyOmME23y/G8nevFItvVFYMY2TwkbGKRCUBCcqWFC0lfnEGjYqQQySOntH39MOO0fcsTcvJyTEhBVIWXx0xZ3+nnlAcpu5QTu97DdY7nzbtb4X+rsSDSCld9gmN0emwXxltCuMhS8qZxNax22zYb+7od2tap3l0tIDRs9M1yWd5HpyVRLKQCWNkt9sy9B0xBNqmYrmYs1wsWK3mNMuW+eNjzj55j6MffcLbNLK6vsB99VIWJiaRMqVAzkWGniLbfYfK1w+yZgDWwHLZovQZ/6t/+U+omwVPnr+iamZcnl9yfbPhl7/4DX/+8V/x0x9/xLMnJzz/4Clffvktl5e3bNd7XC71Xspk7cnKQwzsdp2kLe16kfF6TwpBTPDJMAbGEMjeE8aRNAwCmDiHNYZ502Dfka5nNCmJZMrokvBXGvY4yJ7lR48zDcbUWNuUM1WSraRdUCQtTd9Ui6ocyV1H3G0Jm10xiM2oGKmVIRQJUkgjtYN2OZeUR51YzRpsTjw+XtHMG+rKkNIo1mcZUsjUqkj40sNqhA7Si4MvRkLpSFZewBSl5cRXByo7OU1niDw6MQaC9/gQCnBSJETlrFBTxHlM5BDJwYNxBybDuwDL71byU+82FSWTVHgaar4rYPxufyf16IHV8jsuBWpiSiO1Q55sCQ6D0QIkpygfEyNHa0mcNJbWVbiqumfilNf5+13JfV/wUFeKiXEYGfcdFZoqQd73XHz9DRc3V7imppnNeO/oEc5nzBhZmoqj1YqqqlieHqEXCZcT2kS2Osu6dIpV27JoKmprUCnQ7zo2662kSeqpnhDUKhUwKYZw8MNBKWG7KCWssQJw5QMrMEGRaeVckqgorKGpXSQfeppcyBMma3TWZKMO69inxCYF1jEQKsvi0Qm10QK67vek3Y60H3B3a/Rmh7pZM9xc4/Y7XI48efIUFSP7+YzZ2RN8NSNjyVGSMaP5/rDY9+7+vvjyC7puTwgjs1nL8fGx0PCaipyL0WdMWCvRaDlLNLNzTrwktJao2DEyDIGUNF03cnFxy5s3V1R1Q9vOcJU9PFBTdN7hoSlXnt7pqREuwOW7Jb/6A439OzjNoXAgJZEbxCwu/DGxrBt++OIFs6bl7ZtzvvjmGzbnl3RXVzx9/pzTJ49Z1c94vjrmZLagtRV+GGAM5DGikqJtm2KUVZgU5UHu/ch2t2O737Fe39F3HTlEmaTkTIj+YU1uVSaVCZlo+QVoEVaGQPY5CSsDg5iZYuVgSYYQFT5nKdYS5GyKpEcAFqUL6m/UgY45PSVKTZO36d2/X8DDepYF0UZofId9saz7VNRJE05ByqeFzvff+juIWgFrtEJbSdJQSl7vMHrG3pOUk2JJW2K+/zlZTQwa2ZCN0Vhr5P0pQJ5WxWm+bBSgZNL+wG7vVVtja1cmMQaTMtkospZiUx3el/tDRaHoup4UIsumld9NCxwz9iO6H3DDyMpJjGoVK8LGE8NIGBIpVGQnXkYpJ1KI9+B+zIVBoO/Tk6bIv3zvoSPmi6GYoBrRTo8jwzBQjTUKh7MGzX3s4kHbBcW4eqDvOoZhYNY0WDdDz4/w6w6TFb3d0y6XtEcLnKnY325JGpQ1xRxwy267oyvMMGPEWNM6h6ocWStiTuQSG5sPzu//8EtAZilOJG0LlE5YB08en3B6ekTTGN683spapcRiMWO77fFxRBXJY/DyYVVDzCPBJ3776y+Yz1qWixmnZwu0dqDMoShgmkyX2azcIOm7u2cBElWZTB3ia/P0zObDo5SRZ+4e5Jy+9h2wW45byJ6YRlQOGFUox1qRtWW9Gdgnyz4orjcdbbWgckKH98NI9MUk1tjivVUCvpNoga1WBdiVP+cggKaKDzcj0kakgBPIbK3Bti3VYoG2TiIfk3iEqSyA1pgiDl3203u2JKpIxZwjotjOZ3LEaEM1a0SiNg7gA/ttj6kq3HLOzFiytiSlCVEaAqMK5Tap+4JE3mBIAn7ZnLEZTFJCUCyfk7NMiaaZwrgb2d9s6e/2ZB9lsJAU+03H0I1Cga5qKYSiACy6AOgJxKfHVWQjnl0hJrz3DH0vUbI+oCvHgVZs5OyHjE7i/eOMpnUPJ4MFSREiBcLQMYaRq5tbdqPn5m7NLiQxCEwZYwTsBAFYusowOkOwmpwl+S5Hza7rMTYwn3tUDqRhT9yvqWLgUVtTG83u5haFYwie7banahxzZzhqK+oKSB5UAJ1JeUBlia5VOGEYHYgjAaU9yqQyzaNM0eWMniReAr5EUPKaFMIaG4c9fthDEvNV44ShZ5Qq/iyZEEecq9HaED3E0BN8xlWTuWBpKPO0Cwu7Rk9nY8yyV5aG6eEAFmnectaMPjD6gA8SKY1RJe7YoFSSARDFUDskUvDE6On7jnHsgCNWR8vD2YV1cv+pe6Dou/3OO4xZ7s/S7wAy5Z03JTFxkiWmmDFG/DTqusZZWwYxJcknQgye/XZNt9sQho7VvKE/PsIkhUtOhhoJNJphHPFDwHcjXbcToD1B29TM5zMWixmLeUt7vGD55ISzj9/n9CefcLa9Y/Xya+rFnNyN5MELeJCF2Ziy+JLte2GePtTlxx5rFEdHC/7kZz+hblc8fvoMpRr+5i//jrvrG16+fMNf/NlfotKAsz8SluaqxdSKPuxIysn9pSKYSC7+Ed1+ZLvt2a47hv3AsOsYXUWqWoySfT9GL2kxUT5qa6mswVlLXVVEZH/MpqRlFUBTa7mnValdxr6j3+7Z322Z1yuadoGdO1RdMdG1khIT8cwEWEepQ1Mk7zviZodfbxCHJRHVVM7JfpKhT56mqjk9WfKDj18Q+p0YZYeRk8UM09boygorjcIGiZ7Kyp4d48M16SADM4mrL6k5xUMmMbFXrBThU5hEnk5/eR8V0yDYE0KQ1CAlqTPAwZ4BhUiRYiTHIINcpQ+eG+9KQaYK453jk3vAo7BfCvP+8AkKDsk90/eYpnRT+XPoB+REklpd2GeT3G9izhxYNGmq64Wdg568JS31rMVUbkK9pfY5yKTf/V1+/8//0CvFxND1dPs9VVa0ymB9Yvv2grs3EnVv64ru2XNczOiQmGvHhx+84NGjU+rlHHVkcIDBM45b+mFg7AfmJ6fM6oZ5U6NTpNsPbO+2BC9yPoo3FgqSkoCUvvfStykZlVojtbfVRiwAkCG3Ouy7WYC3whLLKkJhXk+lKjmXJZ2cyBQ5aaIS58GexG0M3ATPrR/xtWPetNi6QinFsN4Quw7uttS3N9iux+16dtsNi+Q5amtefPwhavTc1TWcnBFMQ0ryrBotjNKk1R9ehP+F63sDLClFTk6OmM1ajo6OsM6IeaESVkbf9+x2O5RSVFXNfL6QCMOqKgUWrNei9w4+s1o+IuXIdjvw13/9S5mcuYrHT09lSnMASESzJTWGPODTwyjIY/y9x/K7B6c6NAS/e+U4eaVA9gGdxdOFlDhqGprn7/F/+h/+B9b7Pb48kEcnJ9SzlqptaesaFRNhu2d7t2YYPFoZTo/PiDkcGt8YA/0w0vU9l3fXrLdbumEolEZ5vcFH6qaWTekBdXtoyKbUcQZy8WHRVmGzEZaQzhz8WDTFB8HK5q5achoIOdAHT6UrEoHRR4bBU2W5qbQ18gMOb/S0Gf4+tvvdf+fwNUoVxafSpAk5Z+oR8zvgSv797zF9K63KQyv6W43GoRkHT9+P7PZiGpY15NI0hKiKcW8um2lRPVmFrR2uFmPcFGNBcUXP6APEJHTTlBTpgbWyprZoZ6SZihmr5ZmLCONHFRndlAqVUpLY5hTxwXN+cclqucRoAwT6YSBudqTKUT0SgLRtGtrqlG7c4bMnhZE8BDCKstcwdWdaieHgtN+mBD5E+mEQoKCsjzEKVeL5dlvwt5AbR7Ve8v4nH3J0vOJkuSAmcaWfXPo1ko603+7oJ+BhNuPILTBJo8ZEfvE+J0dH+G6g1jXEzHbX8eb6LS+evkcaA7fnl7w5f4vvR6qmYrVakZUg8Ulr+hiE8mjE7yhGieR7sHUzhQmmM9ZpFIG60rz/3hk/+OR9TlYr1jc71ncbqqpmsVyijPjSxBwIMTGOY5FkBUiuTG09/Sbx93/3GZeXl/xv/u2/YD6vcE6qDWMqQJz7hQEihYYuXjBASaCKB1CpaioBDnIB0koxcg8WZIj3Du8TsJJ4tzGJ5OTphy3kEaWCHLDOELOkB/36s5f4akV0M/qYOZnPqLDcvbmUie0wQBbPKtF2S5MUUiipPrrovjPW2gPw0j8gGI1GIpYxVHWNbSqq5YLl2SnG1bKvpITLGpuF1ZWy+BzkrCg2JSTKXlKL9HLZ1uxPHhGVIfYDatYwtxV5GAm3G+7e3LC5vePq5pLF/hnmqEEvatrlnFldUVuLzWVCbjRUGmOUTASpxNg0ZUluyFEeTpQUhbYmx4wfPMP1Hbsb+WA9EH0khYSP0PcjGc3y6ARbNZANIUZ6HzBOqNrJWlJdyYfWhNGzHwY22x27zZahH0gps2hb2ralaVuqpoEkDIBZ1RC2HZvrNd+u1/yzHz19uLVDg67QjeH4+Ud8lBTzR2fYquX6zUuG7Zow9HJfp0D0gcVqybx1pFBhjeVuG/B9Yt+BdQvGqNhsRnabjtW2Z9x0rF+dc/z+U04XLauPPuJXv/w78nbLPMNPnn1AbZSk3YSIqx2msijnyj6ewfrSNBRp5ZhQNqGVANUpKsgWzYxDDALSqGQlzVBlhdmbYyL0G8b9muhHifet3cGXyBpxMssx48NAUtICGp0Ztuek3qB9S9tKUkQIgd2+ExND42hmc5xx5JgJ/cju9pbtesP27o6f/df//cMsW1JlaKMlZTorkjaYRlIgjE8YV2EtVMZRawfZklXAak3bVnTjnrvNHU3tePreezhjiDlhqhqcBSPJFbEkwKQIVv//KAr/wKWUOnhDHaJ7kWGUtU72UFu8B3KGINGurnEcreaocMrMKi7fXvDy0y+5eP0t65uepm5p65bVakVXjQz7nn2CK98zaxrm7YzTRyfiORNGfBh579kZZx+/x8knz1Enc6qzIxbPHrM8ecR4vSaGiFUKjwzWlFa4upLm8gHnP//h//F/5wc//gHP3n+OsRU/+elP+OiTn/Bf/ON/yf/0n/6GLz79nN/+6hf8+rf/mfOLL/jLv37EH//RP2aMHtMYvOqIyUCyRdUhbA8VFS+/ueXmas+Xn77kzcuX/ORHH/LBB+/z05/+CU/OjqgqizVQGyN+Va5C5yR1x7trqjTKOnwqjbLRpByKx0gmDyOXF9esL6+5e3vF05NnHB0FqlxjTE2qNEHDoJFBgRI/KpO03ERjJNxsGM6v2b2+YHtxgxojy6rh+Owx153Hjp5xGKkWM06Wc44XM7yKJD8w3N4Rtltmx7JPjkSIQ2lYDS7JsIX6Ia3ci6eTkpo/p4BSEVQgM0jVPk3uDAKsqjJ8LDKfmAJ+7BmHjn7owfcoPEYlFrMWpUoCpdHyM6InDiPWBtnPviPJnno6mNjqh/83i9kshW3idzsZglhhImuri09n+Q6Zg33Au52BhBDJOE8SCz3dvhNwCPFeo3jK5CJ7MlpkyjYqrHUY6zDOUc/a+znu9M2B+4po+vl/uD/5h1x+9FxfXfPm2zfEXc+j+SOOFyvsrOGLy1dcre+4WL9k/eWX5BBRMXO8WHLx5ltOHj3i+OkzPvjZz2hOVjinOf/qhu3Nmpv1lquLK37ykx+xOn7Bh09+yK/+/rdc3Wz48uuXfPjBe9S1K+ElijQG+q7jN5/+mvOrS0Y/8uzZU56cPWG5XHK8OqZq20OCmy5efqkwnWJhV08+4xQQ7d13TE2foDXZWvYpsPYDr/dbvtrv6JUh2oaaltAFxrs17LewXmO7PW2/4zR6mhBpvOc2DTw6O+KTZ4/5xas7rE+8sY7z2VxCHUB6KDWQdCDx/Vhj3xtgWSzmtG1N09QYKywG79PB+EspxWolKRCz2Yz9fi83sJL4P4Vm3/Xs9gMhQOWaEnnnubq84/MvviHkTLuY0zaV0Cwn9HQq9CcE88BoyVLY3j+RlPW6vw7n6O80+FOTPrFYcjpMdOPoDwanq/mMtm0KMUIJBddaebjHEd+P+MFjkmLezFDKEGKSIjsmRj+yWd+x33d0+z2bbsPoPTkmaq3EHFRD0on5fI4P/vcmKP+Qy2b5EFrkVCAIzdXmMuEAKCZ/Kpeo5fL51oKKhaWhFEknAiPkgEvy4OSsqdDFIE/arwkAUe+CIe8g4eogY5hc+6e27btrpqbXdljb7z6G3/0zKAw5a2ISQlJKkJNmsx/o+sTQJ5SZiWlrmdwrZEosgLgwGZTKWGNxxhbKr7AEKMBGSuJ9EkKkqtw7r+3hrqgyMUdCFCMoWxgfkwRABssao500w0lJak8p9GJKdOMoB4Ux4p3jPdv1hubulspqGqexRkm0GZDqLI0AQiF1piDJOh/kQSS5n3LKovnu9+y3G5FwkKnr6oBkG+dQjUHPKpr5jKauqWyF0Q41UV+zeCD54BnHge3dhqwNTlmhtScOQMxsMcNZSxw9YYjcXd3Sjz31rCFr2Pcdby8v8CGgjcZZe3A3l+mJ0MxTioyDRHOjfn9q+Q+5tFaHOsJoqK3jaDnn/fee0cxqYo7sdjvmi/nBiT+MHl2mAF3weB/w3hNCRGHJMeLHjMqO68sNd+s76tryRz/7MWdnx9SVuGRMd4bWRvZJdSg/DlOENE2VUiSOUjiFEEgRjJNCQjvLwcVqmqqXb5Emf4YCvuUwpWX04EcIEZ1AZc351TXfvLnBuCOG7BijYnV8grEa3w+s13eMoydN08ViZi7SEivbRhJmpKS3ZWJJvNHaYL7npOEPXUpbYQho0FWNW8xpj45YHp8cIsoLo3qSgxfGm+xj1hZQOkmSXsoZZw1G1zTLpXi7aI1rG2yVwXnGPrBdXzHuOu5ur1nvdujjFrNqaU9XzJqG2lpaDLWxwlBoHLm1ZKtIBkwBig0Z827SXs7gB0lN24+cf3uO33WkboAhkb08zyGCduKPVM3moB3BwzBGQszgNBhLrh3JaaKRAr0Lnm4cZQo2ekISiVrdtszmC2azuRi6gvhVdD2bmzvevH7Ny5ff8s/+u3/1YGsX8pQMYXDNnNOn71G3M5ytuH3ymG59S3dzyZsvP2W/vsX3OyBT1ZY2VmQd6aOk5FVREWNi8IG7zcg3315IclkAuzgiWcsqrKgWNe+dnRKPVqicqJQUnzFG2nmLNjXG1aimluhzZQgEyFH4PdaQo3hVpZAO07ocEzGC1rUkWLhimo08zyp5SCMp9Ow31/hxh0oZW7UYq1F2OuyLKjhB8CMxbjCqoq1aagU5jYR9x3otBfNuu+Xlq1eAoa4b3vvgBW09ww+eq/NLXn/zkrvrG+5ubh4MYMm5+Cxlzxh6fBoIuSHmct5pkehKQnXGGkhYQpY0mApLa2us0vT9Hu97nG4kJMEZ0bIcaP7TsC3JhGWa0Kd7ieSUNjN1ANPM/l1vllw8O0hZQPQy5VaKgwG4nGmRum1p2obaGfabG3zYo01idbLkyelTFosly8UR3379mn6/Z7ffMGsb2rqlbip8DPQ5ohrH8ftPee+nP+TxJx9Snz0iV5b5Ys7Z6SnP3n/K/vKSbrsm+UhSIpNKUe63TCY93FbJF198hq0Nyhoev/8CpTR17Xj6bMnP//RnvP/sjI8+OOWz3y7Z7W4Yxz1v356z73pylsl2yIFMFOlONhJPni0ZxdAndOr58tdf4lLEZs0f/+RnNFVL3QhIqBGJulZZniNdBmxF3lOod/Lc5PuUnGlEkJSmni9YRrDZMJ+tqOctuhKvqqgTQSmiQQZ+SGhChfhhsO/pLq7ZX9zQX9+RR48rEsjGORqfGFKkCkAc6Dd3XHz7DTOrsWSM1Vy/eoOuFPPkUasaZa3U39nw9s1r9vuOfd/z8//2Hz/c4ulJ8i6DMJMzhozokUVWJimOh1lLkRjL4DrFIvcOoYRTjJBGFIHtbktW0GpFbSWoovBGyKlENmdZl3sQ4l2vEkUKkeg9vh8Y9p1I3rwnxRFXVbi6plnMsVWFshltp9TKe6XD1BkYNU2YZUgZdgPDtmO/7VBZYYyTejK9O7It+0Q50ycZ4CF1qthTKK2+0498R2r4sK0AALe3t1xfX3N9fS2hDX7EhMhJVZFOHnFcVxzVjm0vfnbBe5xKxLFnu75j1/Wso2dx9ojT95+yamdSw2jNoDV7P3C9XbM4OaZdLthud/z6889YLFtOjo+YzxqRCZdUzDCOfPX5F7x6/Qqt4b2n73F68ojnT55y9uQJs+WC2XLB0WqFnSKtp6EtSvbonA8M6ndQq1JbaaJS9ESu+g13fcflfsvgA0lZCAIJ1Fljk5awjgjKJ3TXU+dImzMtmWo+Y4dBR/BrkQ93VcU+DIRGvLlUzOgcUdmj8vcb3H1vgKVtG6rKoo0mpkAo+vfR+zIhl5tuyqt3zpU4O10a0sy+69h3HSFmaufQiIP9ftvz5s0lWStefPwhZ6ePaBsrB+E0wSmpI/eeHmWDKODLQUZSFki+6B6cOTzAk6HOhHhOGuN3vmeKXg5VramspjbF58AY4dMUGlkaAqEfiGPE2hpjKzKabhiJWVgEXd9xe7em3+/p+45h7MlkjIJKSyMqEbGKuhYGyzA+nAeLTQmbJt2pHDyqOD1bO1EFZQMUMIwCsOQCsojGXyFNqkyVRZPaZyWbFxajzD1Q8o6kS6JhCzqcI2QlE/MCvDHFGk7bW2kIJ2ryoTOcpDvvADWHlKjpU3SJmMuaGBQxirY7Jdj1I8OQ8VFROUNKiphVMbsudOpy/2Qlk3JXKG9GGbK2ZBVJKqKVIWaRxMVw76b14AALmVi0sipL/KJWSswSJ6yR0mge7vXyO5f3boxejNmMAFkhBmK3p9ts8G1Lqit0a7FGZD/JCJAp8ox7EEfe6yDeK6WxFB1ykmchejFNBhTSHFfOUc9nqHmFWdQ0xyuapsGVIuJwxGaJwBz7gWHoCaPHVhZrtSSWJGkulMrUjciLgq/o1J6IeK+0yzkhRXbdnrvN+r4BN0bUK+Uum1g203QkpljSyB6QfaTvU8yMyjS1Y7mY8/jxmeyfOTCGkaquiqwKchRfHaM0KUb8OIrRbUoi2UuKGARg6fYbhrsNv/315xydrNBGc/boiMrK+oN4B02FZD4AJBOltXxehhRiAQuDsHCNOdBjZd8sHdr0LwrSZKibJXEnxUT2nuRHoW2HRIqKbtdxebPh1fkNzdlTMo6sLIvVEoJn9AP73Z4QipN8kdqkNDFydMG/xddgjIGUMj4Iq9GYhzW5VVP8cAblHFU7o5nPaRZz8YEIIjPJ8R1a8fSWa1XOxhLvWNYOrbFVTTVrcf1AzAlbN7gMaEOsKmGCdSP9sMWPHrVp4Khl13VUdYWzjhZNayyVtbi2Ri8aqDTZaVzlcEaAUmNVod+VF+chDoFxN3B7eSvMiqQwUYm8KoqM1ZgKXTfUswVZWZlS+lRsXxTZaFRtyVaTDMSUGGNg8J5xHPFRGjq0pmoa6ralbhpUhugjfhjo1lvurm64enPJ+cs3D7Zusg4FYFcK4yrmy2Nc1WCUYblY0G9u2d2c4PsdKQXGYU8m4SpLkyt8GrEu46IALH0nhnxdjFxd71DmlpAUZr5A1ZZ+6Dg6W+C0onZOYnXHsZjjKbRpUKZBmZqsHZjSBBSgOBdz25w9OQX596iISZOSJoYg5AvEQ0x+t4QiQBxJsScNe/rtHcn3WGWxE+uwSLo4PPZZkJYUUXhqW5NyZuwH9rs1d1fXbNd3rO/u+Pqrb8ho6rol7DY0dcvYj5y/veDbr75hfXPL5u7uAVdO3JoSgZAGYhqJyReDefE+MEZjTPF7UxmnHSmPEAAPFoMGMab0I6ayUpOawvj6jqnm5GdU6pMsg4JcCn1yJmuZukqSGzIEmkydixwWppomo1R1kHEBRV4hn2udFamhUYTYU1Wa5XKGq4559uwps2aBMZIk5f3I0Hc0rsEVWf0QPD5HGqs4eu8xjz54zvLpGWbekrSmqWqOl0tOzx7xejlDNw6f/IF9qJKcz4e43Qe6QvRstztubu84ff6CjND9rVE8e37Gau44WVmOjwLnb19xdXlOt9e07Zx25jHuljBmYi4JWiQ09lBfRA9jStwMGy6WLY+OjxnHEWNtkbolkdSUwRxkYWuLa6mcdMogvmPTSTZxMMsiaUM9n0vimXbM3IyqnqFqRzYyMIwkMYSe+gzK0DAEctexu7qhu70j7PbigWUtykiN5qymilrMb3Mi+4Fxt2Exn+OMxN5uLi+pWkuKnsrPJV5eaXJSvPr0C66vb7i9vePn/+3DrV0ukbkqqyIxlXQuFROYiMIcpKj5MMAog0cUKitiiGI+X7z6BMjzdP2AdRXGOqo636ehi+stOWl0FoBnar+ma/pJ0Utf1W937NdbfGH7OyeyVYUjN4pkCjtCa7JOBxnsVPnIimlUFllKHhLjdmTY9Ay7UczkjdT34eBzI69WymeFMebgK2LM9Mv8DuCa7/ud/G6vmeX9eqjr6uqS65sb1pu1hKGMI9GPuAyP2pbWalpnuFxrdlrTaUVlRdIWxp5h37FLnvnmDlTk5L3nLGczsJZ1SkQyd7sdm/1epHUK3ly85eLqOc4Z5vOmMNlVqe8run3Hxdtz7m6uGe/27E/PyNsOv+9YHC2ZHx/h9x3OOZHo1078qozULdZKom4uz5gwjaSO8ikyxsTdOHK5uWM99GyHXhhSSmFypE2RJiuqpLFRib/mviNud5jaYpXCAW1dkyJsQkCnLJYFZMY0ElQN2mBzxMRAjiPZd99rjb43wNLUjpgiXd8xboOgg8Yyn885OztjsVgwXyxlKhoTPkS0seLJYiy7/Z4355dcXN0yhkQVQGeDoiKEkbdvbrjZ7GjnC37+T/4Lnj15zKwWhFK4jRPAUtBQ8oG5EkPAD8L8qFwtTVUWz29yPsStqXfAlSkglmla4TTZB3IIciYXP4kQepyuUBTWTgwEH4lDgD6hlaU2DmUcIULvR27WGzb7HX3fse92jPstOid0zliQ2EEt3uBN7aiblna+YL3b0/UyTX6oqxoDFaIdbkzFaDwpKkKZlqcMOcjm4Iw0tEZbZKuIgDjiG6VRxuGzJmdLzpJyEpUhKtmEnBbTPYgHZsjkpRCCbAYkMKpCa/HmOVDBTGSSgCklka8TkiyLV9DzVDYxRZl2l6kyqqyRHE6jz2QsMStGDze7npwt1s4YSleU1b36XBzLlUwuCrDRWEdlLBaDtS19yKQocqhxFKPmYfAcGyMeQ4fYu4e5ohJjNhRUxlBhJEnbGGlKiSSTBFnHYbIhE+nHHjK4tqEbe3wY8DmijSGojA+wubhmZh210dTVEu0Arcg5loQQOYhzlH9X2uDsfcEiPaV4+6RZTdIzMUxWsJjXLGZHzGcrFqePqE7m2GWDPW6RzELxr9BKQ0zkkNher0V7niJtO8NaAWBNSLjip6NMhsqQnUZXmn6AZl5TO8dRveKLX33K1c0V+35P01QYMR1iHEZikmjraNTB3kAmE6oUyg+4dkW26xQ4FEftjMcnJ3zw/nO87yFnqsYRx0hTN9RVQz8ELBBSJPTCetvtdgI+5Vx2QAOxQqcW/MjXX5wTwl/y4qP3+Ff/+l9wdrrEGgVZ5B6TgS2H/U9AgApNNokcDN6PGK2pqqYUVJPmuBjbZhCQRmhLuZim6iQSGZUSeRhJQw/jIAkfEUaf+Jtffsp6DwNLYqjITU0zazh5tOL27Vv2+y3b9Y4UstxXCqyxBDyyD5hDzDqlDIwp0/cDrjI446jrhwNYrKrJOmAQg/ZmuWR2tKJZzDEBcvAit/DhXsNNkoLeapQ1xG6U4kdB8AGFxjU1djmn9h60oq1qFIlgFMFq8V/pKhg19mpg2Hv62x1vL64ITgoP4xOLJCyWWVNTHy2gNuTaUM9b2llL3da4RSVG8QpMAjskQjfSbzrWNxvaqsY1LSY7iFF8W4xlpzXGzZgdneK9wvuMH2OJKy0sgrYhW0NQ4KOn9wP92NP1vZhFKzCVoT1e0S4WuKom9gPbzZrNesPlxSVfffoFN+dX9JfbB1s34FD4ynkhfkutbajrOadPnpHGjthtaNuW3/xtRT92+JSYzRuaWUUfr7F9xqVMi0itvIcYDLf7yOblJS/Pr/nq/JwnX3zG8dkRzz885fTRiWjUc2I+n3F2dsrp48cszp4TAY88CyqLx48zRZ6SMikMjL4jjmLimRIMIROzImKZNSNNM0PbaVjhIY/g96R+y7jfsL85pzIVrpIYeGVKh6EhhoSPiZBhsVjgtMUmhRlGQuwY1pe8+voL/vrP/oK762u67ZbohaWZ0Pzyz/8/DGMo4R+a5IOAiw95zimNUhGlPJEtPs0IuRZzcO2wJhWwQcAhsqeuGoIfSb1nd7nBb3vycgRt8H6P9oADrcuepmTgIIOxMqRAlwazMIZ8IARP8CLv0SX9TllhQhjKEFFJHemHjhBLnRMqXDPDmKp4lIm/QIpT3Sr+EaujOT/+8Sf4oGjmj5m1S3bbPV9+9jVff/MV66s7xn5kvpiRQqSPkZFEqDTLecWzP/kR8w+fYU+WRBIuw9JZzmYznj9/zNePj7m8vWSbRmKIoKTeNNGLMe8DRtr/u//q33G3KT5n+1GAoHFLt+t4cnbCfGlYLZ/w4YcNfvhjxmFkcwd/9Vef8Ytffs6biz1+LZHKY/BUpshDUrFHV/bAzr29XvPtqzd8/vUXvPjRC9qqyOdAUkwA5TSxnOFGy1CFd1jSQqPIAh4U7yJdNbhjB6sEjxJGOZQ2THHC0nLeD2l1GYzqGKDvGW9uef3552zO35KHgdOTE/pdh+9HwjDQGEusHbUHW1uO5i1PT445nc/JMZDCwObtW7rNrZipL1rsvCWj6DvPX/3Ff+bNqzecvz3n//h//r882NpNIhyVBXyvnBE/HJ9QOqGNyAtjTjLcUopAOjwX1lpGPzJ6MeWdqhMA7wNdNwCapm1xtgxC40gaFYqItlqGru8wxUAGbSpDGHqG3Z7dzR37uw1D1+HHkQ8+/JhZu6Ju59TVgqwLAJoTKfnDAEgbI5L+kAW8DJo8ZsImcPt6TbeV9LzHp2eQIIzTQN1irAN17ylatw0hCYBX1a4A5Iop9i3ldBjaHRgsv+f19DDX3/znv+aLrz/n4vYSryPrfku9UazamuWyYdY0nC5mHM9qbtdr7rZbPBlTO/GOsortzQ23Nzds3rzhj//Vf8mjDz/g+UcvuImBi5tbrm5vub67Y97OySmy7Tb83d//gmHoeHp2xiSfatqGT37wA75++Q39fscX2z3vHT/iyeqEI+3YX1yyvjgn5MRYPEiNtTx97xmL1ZLZfM7x6SOePHuGtvagXrSFcTh2ntvNHbebDd9cXHDT7wkKXF1ztFixcBVL19ImhxkBnxi2PV9++Q3r63PwOx598Jzc1GAt2tWE/cAYE0+ev4d7+xYfB4Ie8Bh00lgfqX1gXK8JN1ffa42+N8Bye3uNLsZ/s9mck0ePit7qhPlijlJCq91sxYtkGAKr1Qpb1YSYePP6W24ur+l2O7SSGNZc2AVZWYyCHDRfff4tbdWy22z55JMPsTMr6b9oXDFeyjlhrJjS5JQJw8h+vwcg1IF525RDNJMolDd135gfaF5GS3OFENYmxFZrdZhmDOPAEENpLhT7riNFUNngsPihw/tEPwT6mCV+uevphl5yx1NAR5E/xHFg6HbMmoZZ27B6tGSxWGGrCm0t291WUPoHPAhTCHKDGY0zFZX1kkyX5HfSZbNQaJwSN3xjzD1jJJrD5xmtwWRimSqHBCGIW3qI0gQbJcaGKsV3kNxcaPXikh8VGJUgaA4mfkaKECXagpJAIZMjMVKSNdSmJFZRVI+xTOwRx+kYFD4qQhDavMRh90RPiee1hS4K7/KdpD5XRUJS3g87Tc+EwaG1pGAoLX9OOYqEo5joef9wPh4AWYOxlqpyzHWLi8UA2gS6LIbMMQS0spATKkWayqJshU+BECLWWWJODOOASVYiKrXibn2LsooxeXSraZe1SFuSgogUZJXB+0hIFB8O+fmlbBFpmzKouqa2Sg5anVFO0RzPWB4vWT1ekueOXClGM4KK4nWUFapLhK5j3O8Z9xu0gsoZXC2MGhJkP0IukjajyUUionVitmqJITDuPPt9z/nNJVd3N+z6PQmHywaTdSGtCcCSkyIXQ+bKOpq2pipm3A91iTGpKgPUzLNnT3n/+TOcMfioMFaiIr94/RWPTk5ZzFcCzvZ7uq5jv5d46f12oFKtRHIH+UjJoKnRakYePW9fbtmtv8HvFf/sX/wRp49XHB235BLdLXVAmfAV2ZimjLmNGI8LBd5gnSYqmSbm4isyPRf3c5lCeRNXXGK3JvV35HGH8567mw1XVxu++PKC1zca1T6mWr3PRjuOT5asHs2Ajt3tLZuLNeNdQEWLzpGkUplcC6BnrWUM4SAJss4Vg235GL2/B2Af4NLWSkQfhnZWMV9I9Kq1BhWEZSCy1uJhQz5Mt0RunKVwJpOCltStJPtDM2uJ/YgW+h+uEoAjWfA5EXPGKMPcOCojXkfJGQYLIwnvB8aUMTmThgzbQNh5hhxZVzsWJyva1YKqvzcfDONIWzXCbsAwPz7jZHnE8XxJuNuzu9swDqN4hGh5f+u6oRs6iVPUBu00ylq0tSwWS6yx5Jjww8Cw3dFvtvS7LbEU23VdsTxekIhs1nfcbdd0+46x7+k2W8J2Tx485oEj7YWxdX9NJFWlLMa0mMpilePo9H1Wp6+YH71mf/eKprbMqppn1QnoG9bbHrbDIcYz5+KjmUW/f3klVOv2zQXnb9/w3rPHLJcLVssFR5+cYFQDyTH2PdEogoZglDA8lYZikBpHSYOIfS9Sk0K9j1E06qqy6MpIqpsBiJSDGxUS/WbLfn1L2HcsjhoqZzGTZYuSgtZHTcYVJl9dzrVICiPr63Nev/yaT3/1d9xevMLve/I4kvqRlCgSWy1yZ0Gjy30vjLWHuqY0PCHZib9DiCI/wIIuNck0lNJKDGeNNoQ8sr5bc3t9zWxmOalWDNutRJZbC2MAJzIWbUp6iBAkRHKai826NqAjGRijSLzImW4chNWmhfE7ARRKSVM5JQ26kvwCIhnKkwE+iXEcSo3geO/5h+RnGqUcxi356//pb/n8s6/4xd/+itdfv8YmxcwJ6yv4SMwJrzPNasXq+Jgnz5/Tzue4qpbfL0PTNhyfHLM6OebFhy/EeNt7wp0nRC8m1lH2J6Merq587/2POBk8Q0h0fWL04H352bET9pUe0GZH3SaaxnJycsrtumO975kfLbne9gzB0w0aGofVFmcMKXmSUeTCBum85+3FFf/x//2fWJ0e8/EPPuKDF88xTpNKIsxE2tMTc6dgrcpMzKRS3xVmptwE5WRUCipLmvqEcg7lcg45BaSIThHnB/ztDdtXr3j1n/8z65tLdA6sljNmdY1OiS4n/BhwxlKjcCmwqhxHTc2qrgndDsJIjp5GJcJ6w7jODNeGaj4na40PifeWc44+eM4HJ0cPtm4wsVLk3p0q4AlEP4zPSr2bmXo0Du9diF4kKsFLGml5PzWKyllyDIxdx26zYc4cRcYoRdZJzrxxRCHeSBLHroSpXQCcqq3Kc66Yt42weceRqtWYOqNdQpkkDLWJxZ4nfpJCJ4XKBXwZYXe3pdt0bK/W3F3eQEy0TYM1FSF6xtGDNejCrDg0ibqMX6eeEQ5/eIdP/zvM9Xf//JD8Ffiz//Sf6C5vGPodiYgnMibPfr9D5bHUzo7jqqJerZjXFdf7ncjcVEajOGpbvA+sb9f84s/+nKNX33L2g485+uhDFlVNXTfs9vuipsgcnZ7w+ddfcbe5YwwD//znf0pTDKAbV/GTH/yIZdXwdLHi46fPebQ84mS1Yj/0bHthk//q00+5uLygHwd++sd/zI9++lPapj2wtSep1eg9m60Y797c3LDd7RnGERszL+aPqJua+WxGbRwO8cFLu4Ht5Yb15Q2f/e0vuLt6i9OJTz56yrxtsJUlKljnka4xeNfydn/LsHLCXGstRkW0H3HrjnhxzZOm4dnTF99rjb43wJJzoq4aQZ4enXDy6JTFfMFivsRaSwgRP/bsdz19P5Jipp3NUdoyDIHXr9+yWW8Yul50xro4jSaFsbY43ms2m47Xr8/JiN/CydMTqsZi7eEOl9v2HlhG50lpeXix5f+c6F6/c5sfpl2qTGvLSFurSSUk6Ttlehx8lI04Z8Z+lAmuyvR9x+3tlt22I2YNxhES7MaREEOZikeZRnQd/W5Ht12jjo9oqoqqqnC1xFoPw0AMAaM1rp1932X6vSuWKcvkESDGTTLZmvxY3uFwHBqWCdzI2Hs6odIielMJlCWmSEhKPqKwZJSmFHK+gCdZYreNwSQrPri5pMck+V55agInJoFKxNIgKi2xrFOyyO/KgvI9R5+UlBjleTELHGNiGAJdN4IysqmjD19/f5uUpu4eaSkHjsbokhCCKkWW/F1rc4h5k3ssP7hEiMI4sM7RmArrDTkmknF4Lb4VxIRyHBpeg6LSMsGOubyHZf0zokUmSxzwdrcjG8XspiWbI5pZhXbTATIdFbqwIUpTXmqUg6WXUmCcMEFUuTdMQlcW2zrszBFrTbAQlGymFMla8INMAodeJGHWoJwpEeyZg16DdyUqCUyhKdYGWzn8EBliz2a/Y9fvGYLHkMnZ4LLBYQr4J/dodoURYw1V5VgsFqyWqwdctmKCqBRN7Tg+WonRbkqSqKbEET54fwASjTHi+zCOdF1P13WMo6duW6Ep50iMsXjGSDyzSpZ+1xH9nq/Va07PlozjGUqfsVi195BIkSVM/1Dy2UoRVcyglWHy2U/Tm33YO+8JtxMrjSQJTNF3hGFH6LcMuy03l7dcnN/x6tUlqXmBVi1B1VTzOe1iRtvWjJtbdnd7tnd7xiGhrZOmMIXi46Mw1khDE4Lsw0mYWqBKepkWj6GSEvUg66bVAZRyTUPV1Liq0P/LvjOBOylFcpJ4cgkZKAk/BQAKw0gYB0IBZpxz1HUFTY3vh/KzwOeAz8WHwJrS0JVYWDQhl0NbOSprqHRFW89o6zJZCyO1rpirGTPV4qgZ08CQRlIUQC5bh3IVVmeqZkE9W6EHRb8fUSGDcVirSgKg3IcxiY+YNJOy9zd1jVGSSpJ8IPYDoe8JfU+KHm0MutIYpxl9jx87bi6vDpr6PIwoHzApUz2kJE9Wj/uyd9rXFQd5h5bo7fnylKNHTzl6/JTt9o0kXzh4tDxmjB7tMjH14i0XOQDSIPXAOCYx/+0HQhjAR45WS/zpyJOzZ7Rtj6v2JKdRjUXV01S0zOiyEsA0BonmHb34pEBpBAWwsyVqWRtFiaySjxjJo8fvOsbdHh0TVimsuT+/EhTmlyIri1IOrdwhXSaEkaurCy7evubi7Ru67YY8enKI4INsvUmRoxjppgwxSNx4jA8bjW7yvacY+T41LKVUzmEZ7JhiUnloogpNf4qLjUFSSpIfCUNP6BxVvUBpS9bpABRP8fEJkRzBNMQxaGcxUeTgOed7w3w11ZHlRWcOz6mAL4Yp7XIKZUgpEqIM1VLOWFfRHp2KP1xU9D28fvWWb755yeXFNeMwYm1DZauS8iJgVlaSSte0M2aLhfhjlYHPZPjdzlra2YyTs1P2+47z83N2+w0h+sOgUIiwD1eftO0SU0WcT9xsBsgWYzRN0wjQpwJKjWgbC5iVqStYrWqOj2e0rdS9knJWSVjAQSoQyTrK4K9Epvb9yNfffMsvfvErxjhiK83pkxOMEzlsVqnI25UMYUtNWXbtQ337nf2BfO/uJ62I1EgHa4LStMeMThEdI3YcuDp/y/Xrb7l8+4qcA8YqXPEJspXGRcvoveB2yP5da02VM4wD+/UdRiWcBlsVH6ZynmT2sldlWDhLvZixbKoHW7fpl/9OLV32SXOINC+wy9QXUWrb0nDFFEhJQjy0mnox6SKckcTNFANj3+OcOTBTSxpE2cf0YaBZJuVS32lZT1NZqlQL09873FhhnZCLlJ16kHvkQ01jv5zJYmtFDuD7ke3djt3djt3dlqEfxR/QCEgg+2SS5Ect5y/37wDf8WSa/nt6yRNQV65D/V8YLO9WTg9xffvyW8zg0X6UQAgyISd8jgxDIkVNSp5GtTilmNc1gUSfMz5nxpBk4BgULmc21zeMZPbBs+w63GqFaVuSkfrLVo7ZYsF+HOjfviHFyCcffczpyTFtXeOM5fT4GB0iebfn0WLJsp0xm7Xii6MSw9BTW8usbanqitVywXKxYDGXgA1SYhwGBi8hMOMYBKQNHlPYvpV2LGZL6qqiqWusEp8e3w9cvznn/Os3XH77lpdffM68scyO5hzN59TOCrtUZZJSjDGzS4mb0OMrLcNrBeN+R971xIs1p9HwYTXjB0en32uN/kEeLE+ePObxk8c8ffqMpmmlWYmSIjQOoqe/vLhmu+1ISXN8dIZSjvVmy69/8yk3VzcMndzgVXbFt8NQUaO0Ba0YfM83r95yu90QUuBn1R9zfLLEzmuZ9JRir/BWUVnc5WmksJBiXVgrgmwWt7dy5alp03DwX7EasmSiKVUKoJSISTbdfhwJIRB9xFC8KlLg5ctv+fyLr7m4uOH40Rknp09wdU0XJC5RKdmghmHg9uaWm+sr+u2GyllWq6VEfjnLMIxcXV0CmdlsxvIBmz3vA1VxaHbOUTnR/I8hlgZLmiugJO5KeocpWfZGu+mtlon2NK1JmZDF00QHhfVlEqTudYuaiFYBZSpMcYPONoonRlLk+M5EJUsqVM6JrCI+ide7QpN1yUOHQ1yyrOsU8WXISAqBHzOjz3hv6PqRfe/pOl+KLSdJP4pDsZQnRK009AVzAq1EO23NgVFkij+FsYXKFiYt9jsI9wNeMji01K5iVrVCbo0RXWdC7xm9TPdNLpLylNFRpE1WWXzyjFqKK1dVpJgOhanKsN9u2fd7ovIE9R7H+Yjjk2Xx/8t4L5M3kNjPjEUrkXXFHMsUTyYJ2loBy4hAkLV2mlxpooVgMl5Lwg6AIhH6LbHvSaOnqipUZclGE1HEKIWZ1fJaU9H8KiWsHmvEPyhbTVSwD55Nt2Pb76UAywmy+DhN0jdtLaqyorHWioQAHkdHK1588P0Q6z90SSMg8qnj1YqzR484Wi7x48jR8YIwjtzd3IrxcEHvldaHxm293bLr9kSfWc5lWirpQp6YhRFhtUVjIGj60fOqOyfRcXH+jBB/wj/6k0/Epy5HUh7Lc67BKmmklEZjqCt3eMVE0NqhlBX9eQHjSEjMbDED1miJSO17Qr+n36/Zb265fPOWV9/ecnHVcXnV8+EfPcW7FXsf+eTZKavjBmsTV9c7Lt+uub7Y4H2idhUZdYj8rWpHVVXCUvQSpz0GT1vNhOmowNUV/diz3+8ebN0OxZ3WzGbiIeImA2sloGJMxbMmSQKDViVK2ShUcb/NfmQcEv1ux9h1xBhxzkDbYFJinwLCYo/sx44he9AZXTtGpfEafClqVVRYZWhczcq2LJoZj1bHtLOWECPDMLKaLyURbNZQNRVD9PRx5GbcMyhQViQzoRvBtmRTY+uIrnpUzGSjaWYNtmnFDyamwlwQdwxVJsLzpiUh03XGQNztidsdYbcnxxFcBRVEFei2N+y6ntvLG2pTSyPtIy5mGiTd4yEvhbAqM+Vu1uXcnzZmZVGmYnH8nCfv3zH4Pa/e/oY+9zjgkxcfUrWaxZUl5y19tydHAX1TsmKKXprscYiMYySEQL/esZy37K43nK5OCaOn6/as4orl2YqmnlFXWkx4KUbhPhG8+IWk0RcTyALim5JW0baHZyCTxBA8BAiiMR/XG/xmS+2KHl0BKpO1AOtjjPhoMc5hbYNWFSBgZT90fPXVF3zz5RdcvHmN3+7QMQqrKApDRCtFyMKYiSHT+Ug/jvgQGR8QYKmyQLoaAS9DEgArFAas1qp4oZWQ1cKe00o8EZyzMgQBdEooHwi7Pfsx0DYrUA60u59wK4FYYumUJF5dWLLOGYyreLfBnKzgJobKNHmYmkNllCTZGAWkAhBDSp5h6Bj3PRpN2y5ZNnP2u571es+3L1/xy1/8mq+//Iax81SmpqkamqqlUqawpGW/reqWZragaRdoY8nTxD8ltDO0ixnNfMbZkyeQ4e72lqurC4ahFxA4cTCTfKjLugpMllotdNR1hXM1bXOM1RsMHpSnrjIxhHJ+r2nbxNGRZd6KF4NSlUi5ki7AV0Tpwhg3GYzFVo6U4c23b/l//T//A6/evKQfd/zzf/GnHD9aMVs0kL140wEqJ6Iq3nXl9U5MhHd7gXs4JRNJpSYQM2CjQKWMigkdIy4nTAqovuPlb37F+Vdfsbl8w9msotYGlYVRqWtNZSo2Q4c2ScyvDTSAGgZ211dcXZ6zaGuOljMxpi5DXussQwjCZjSGyipy5UA/LMAypbpqXd4BmQZhrGUyss0pCdgwDWWy+KlkJYlkMQfEpkFMicUb0FBbK71SjIzdHqVEDm6tw9lG3tMkTBYBcMQjZBpWxpJ8pazCNJK+poPDhBHNgLEZZSNZ+7J6YglgrEiXU8ykkEljIvSJ3V3Pzfktm9utnH8JXO2oXCvD2CAS5LrUh9rYe/YjqoCnvAO0fPfKE/h0+Id3QJf8kCHNcP7mDXPjmKGpFAKukIgm0/sRHzLjqPBhkAFR23B2ckwfE10IbPZ7kh9BKZZ1TdftuX31hq9fvmT9l39F+/iUxeMz3v/RDzh9+pjl8TGPHp+Btbz69hW/+uWv+JM/+RN+qn7I+0+fUlvHyWJFkxWmH6AQBBKZunL4WDGbNXz44Qt+1PyY2XzO+x9/yMnpKbP5HDeb0fU9u92W65trNrsdxkjy4mqxoqkbYZnrCpu0sDxTBKPY9h23t9f8zd/8FZ/+3d/z5utvcSHzr/7FP+XjD9/j9PiIuqAdUYGuKvabPeebDW92G8bFDNdamhjo35wzXt6Qv73kZ//0f81Pzp7zycnj77VG3xtg+eTjD5kv5sznraSm5ET0mRASfTdwc3PHq1dv+PWvfkM9m3N69pjHj9/jq2++4auvvuGrVxe0puLR0YyVq2kDKJ9RPmFzJCpNNI6hWRJsxg/w6W++QUXFs2ePefHiGY/OFmLGrynNt1xaQ11V4g8wpT1wP4FX09+LB4s01WKgJoOTLA+8FZ+RnMQPQWfZjOq2JYVEHDzb6zuuLs559eotv/78Cza7jozh/Q8/JmdpEDKaYRCU0WjF5eU111dXrO9uWC1mzJdLVkdHtO2MfhjZbLdc3lzz0Ucf07YzXFV/32X6vWsMkbpMvq11VFUtRWKZRk3eI+KwLsUNZpoSaSjyE2EtgDIOnTXJanyfDtNdpbVoIpXIcJwW1EH8W/L9ZFZbDiYYqTh8Z+nishIab9bp3lCqXLl44kiBpctkUgm4koW90u89+z4weJGu7HaBfojEoDGLGShDzCAmXvfznKxSSQMpkw6FTKbMPWMl51yYKwLGGGOK/lcc1UVK9L0frz94yfstB29TN+hitd0oQd93u47NVkzARJKiIWQpFrWhshCzL8+DwlmHcRZbVeyiZ9Nt6fZ7Ls89UUXutnfsxzPalTi0a+ewrjjvZ4PGEvK9ARjTR0IMB8t94KqGqmmwTY0nindIoXoP40Doevzdlqbz1BjqpiYboc9npUg+QpaJFLqAakoKXmNlLCTATqKaW0JuqPY9T3/wHsePj1CDJ97sYO9RfWTp5uJibjRBK4KQaEhojlcrjo+OWK2WD7hwwnBQxvHixfssF3OaqpKpXcps77a8/Polp8enWOOEsrnZ03U9/TByc7OWZ1MZtNXYWmGDQXsYQieFpJHi2zqLjhDDyN3VyKfDa87Pb+j7gRcfPubJ8yOss+QcpXilAKF5YrIIyy5nUMlyaEpToc8z9ahORkIxkP2ecbuhX99y9epzbq/fstttCD7TLE540jzDripy3TKbzzg5Pub9p0v86Nnf9WwuBtbXA7t9oKos0cjkOitF1/XYylG1tSRQjYPIgcaRdj5HWU1OUQBDikzoga4MYDTGGprFgnbW4qpS3Copvn0KjL4n+IEYRpyGujIlxQlqp8lRMfaRtNuT9h2p73GLJbm25FxjY48v3kgpjsTgiTEQidC0BKcYrWIoxo+NdizdjLltaVyLqRYybYoJO460XtO/umW974gpMD87pjpZ8PjZU3Y6EZRMusYh0YfArh9YzFrcuMQrxd36jtXREcZWkgbkQ4ksLN5PdU3bzqispe93hP2e8eYWf3NHuFuTNmvmteX46QmP3n/C/Kjh7vUt+80anQOtrdEhM3Y9ab+D0aMf0vOoXAe2HnJkyd2rJxoOZHDNEY+efkg2kc+++RvO3/yWodvQ656PfvqcD8MZH//gmDffXHB1uePy7ZaXrzbsu0Dvs5xxQQAG4zSnJwuOlzNOj2csGsuycawakQO0laPSGh2SsA3Rsg+W+4zayd4apSg3pkK3Lbqu0c1MKPSHSTzk4In7HeuLtwybNWocmTctliQebzLAJaYCjmOxusaZFmcsw37P5uaWbz7/jE9/+xnXb94wdAPDrsMATmmccvgxElJg7yN9BJ9ALOcUAYmufairKkMSU2qymBI+JUJOwuSxhto6amOwiKk2xevLGkPb1szbmUjhEMAmj5Ew7OlubnA+YmIs57hl0o4IO0X8uOTN1cWo2qKKqbsqgIp4t5RQhcMk2xyOv6zKRJ9UPBkiMQQg0zQtFoNKmqurDb/+1W/54vMv+au/+ls+/+xLhv3ArJoRY4CoxK7FWLSKUoM4SztfMFsscXUrA8QyyFLGSKLKLLE6PiJ4j3WWk+Njtrs1L7/+hu3dLTkLwPEdR9EHuDa7Ndt9x2IxE+mSrdFKPNVy8qToCXkQOgEJ6KnrxGphefp4xdfLW4ZBEdPEigykHKgaUDmisqJ2DbYwnq2r8dsdrz//kj/ze07bmg8+eMrp6RGKSFM7AdyMwSqHKuyjCVTLQYxvJ5xFJXlupsFBzOUsyRmnFSZldEzoMRE2a9Y313z1d3/DzcuvYL/leFaJsXwKxBSEzaHlVkomgwGnDSeLGS2JmkilDddxZOgjGxVpG4crww9DpjFZPH/qij5GiYc2D/jAlUsXU3YQ8MBojTFOrAMQzyIzsVcQsN2W99KnKAB8SsSkCT5RGU1TOyqrqYwtbPJEGDr6FEVamg2mriXVFJgCLcCikSAGXdnCss6oKIMfGyMpGlSSfkyXNDCJLZX6NA5ilJ/Fa5fN9Z7N1Y7dTYfvPcpLQlVTVTR1gzU1XTdI2h8K7SqMrdDGyWChhA9orQ8Ayx+8/meeqTIKfrCrQoOX/bE1hpAlpWogk6xGFzaL7z02jNihwzU1GMfMWharRwyuZ7ffM9z0LOsKmxx1StiYOH/5hm8+/5K/+7tfUB0tqRcz5idHXFycs12v2a83/Pv/6/+N4b/cUf/855ytjnDakl3Ncrlg7Dsgkyw4W7FsHfNHx7z4yY9pZi1109LM52XfVOQY0EBTVRyvjljOFzgnQO0kgVRZYZXgDaOXnuVvf/tLfvvZp/zqV7/im7//nLz3LEzDf/Ov/jU//PEnnK2W6Bzk/QLGGEXJMAR6n7BzsTQJ2z23X7zGX1xxqiz/+KMf8G9ffMwjU1Fffz+PuO/dAZ6dnRJjYBx6Nps72mYmdOKQ2KzXXF5e8vLlS66ur3niaqq6YRw8wzCSMfzgRz/hUdMyU5p5SvTfnhM3e2Lvid0WHyqCd+TcoGpDsprkE1evrkm9JPag3me+rGlmMsHOSqbzuew/0808ReWVkuaeXXAYQEiTKMoQjTIiHcEUqlrUZdJf9oCQScEzbvfsbtdsrm9ZX17TbbYoJQ1i5cQcKUWZthqjiTnjh8B+L3T/nCe6Z0vdtqAU+050ZrP5jOVqhTGGEB6u+Ewp38cRq6JfNhLbK42rOkSjTjKod12xhRo/uecjNEIjh1NCknhCFN8TGzU6GmxyGCMVrlaxwBbluZrOilxWLE9GuBwORIqUY1qtyfcjQzEflnUR8zpJHYkR+jHRDQnvQdniw5IUSpXou8k9Xd1TRSeUWRJmJgGEKuqxe9r1u8OPCbEWmi6EENDaCSj0gJe8RUJfdnWFSlIMoDKzOCPDwWxMFY14zBldfjmrNJWyRCV+GjklTJZJw6w1JCKYTB882+2GqBK6tixyxNV1Kd4UWudi2SHuibm8ugNpMityLI7xShheWss0QN5zaTpjlGjk0PfEMMo9ZixKWZLSpY0o6TEplKkb9wVvUSnlklKlLVStIeNYni547wfvE7sBGxLd62vGmx3hbk/ljYBPqsiEyILRGcPxakVTVfjx+8Wy/cF1yxFnFE1TcXK0oq4qrDFYbdl3WzabLXe3d5ydnEmxkDNd19H3A30/0heTOK3FTd1ai60MtrL4OKBdVSiYcn8k5BlM0eF7w/rG84u//g3b9S37/VM+/OQJyk50V12AzEmXW0a0ORdApSRxMe2gJSkqi7t6HPZcnb+ku7uhW98ybG7QKTGrZwSnUW6FCg0Njk5b6nnFyemcWa1Zd4Fh23N7uWYcvKjaTFnPUrx1w8AszcWAuMiEYtHn5umZ1KpIhizt7OHklAlhEiknbvfaTswtEPlCAYJKIpoiYdQkNUhi9JpHcvKoOBK7jth15GFALeZoq9CVwdSWfhS/iZzCocjXSuQoyWqJYM4JqyWRa+YaalUdGgdbt5AzUVtsjqy3HeuLK2LymFmNPZpTtS1dHg8G66ZyJDK9H2jrSowVYwPbjfhmKY0ffZEHyb5oK0fd1DR1LfKUfiDu94TNjrSTj9jtSSYQY09MA11/R99tGPstDotECktcpIpBIkHtw/lBALJHH84U3jlx5JrON2Uc9WzJ6tFjnr7/EevdObtNz+X6imfPj1i0S1Yry2Lecnq54/h4g3YXXN/sWW979oMnKzEQrRvN8/f+v8T9V49lWZqmiT1LbnGESdfhEZmRkZlVlSW6q7p7MA2QxABDAryZf8C7+YUEmgJkA9OgmmmVlSVSi/AIl6aO3mopXqx1zD2rqymyDeQGLNzjmPkxsy3W+r73e8UZl2cnXJ6c8OhiwcmyZT5raG2FTQrpJYwU36OjMXj2GcumcsWQMwmksihbI7QlyRz5ncrzeZS/hL5j2K7BjWgimlKzlLj3UPZ7UvbcUEgUghQCh+2Ou+trXn39ivVqTdf1OJ9juhMU4DoPzXyITCExRYmLMMWES4VdKB5un9Ml8yNbx+RUv3gcgR2lcrp4sAiBSHnN+ihvLuKPsrYr0v1+Pex3RCGxUmKbGkweAChxjEk4xtAfhy2f+C+UojHjgJGjelogysBOlVutsKrTsbLMcphj0gYBpiEydgOvXr3lV7/6Hb/59e94/c1bpsGTosC7gBKyeJDowiBSCBGRUqGNRRtb2NnHn+1Yo0iU0dlQ1FqatuXJ5WOePn1KdzgQ3MQwHPLK/oDXbdft8GHKe3CtUBqkiugClkP+MY97CmSZl1YSazUnp3OWy4Zd59n1Eykez65EUhL1ELQ2rzulEMDEhBgnpvWW8faOMGsQRuFdz6AlTiu0tWhTIZVB2AphDEc+9JENIlJCRF/AlcLmEJmtJ1PM95iPMHl8N7L98J7t1Qd2798ihp4qhpy8mFyRQOWfORdKAmM1QiZkhJm16BTQKQMRjbWEMsyMRJLUCCEKuJHK7559S4SQhd/1cMeRpf17t0NJFk1J3bP/8nORyo2f90ZUkR+mLOOfpoh3kUoqjM5MdQGg8nB58pHkA2M3IJXFpHQvtT8mlaJKhDrcKxOyZ17KvYkqdWVQ93Kd7KMos91ElNnQe3SMhwHhYNw5fB8JA4igUCk/40rq+9Rb5zzexwKkFHlQqbmOZC8h83PIEWQRHwkqUDqUT/qB/FrieNoe8jBCo0Xm7R99TIdpYt0dmFcGKwVG5mTeEGJmlYaE1DlwhhqcK4l/ZEmyDhETEwtb0Y0j/Tjy7uoGt16DNehZTT8O93X73//933OxXHI2X3DyZ3+OFAJjbZEv5nAUZVSWQxeWnyq9hC5JQrGwlRKphC4UuWBM2S9MZj+c++sc4PrujuvbG3777e/4D3//13z9zSteff2KuOt4efGUl08/48XnL5jNZ2ijUT5mBmrK6ZTaVlQ1WCfoVh9Yjz2boSest1xKw3dPzvln3/2KcxTtGLDDHza4+8MBlkfn3N7est3umKYJcQ7WVEwusFrd8uH9O7795lv2uwOPnwqaps3xxIOjqlv+6p//VzxpW5oY0bstr3c9/eCYwoHdbo8aDK6yxBhQs5ZoLVFrNu+39Oue3d0O29Y8enaGNIss0RApG1Klo3FKynSzdOyKP0FWKHQu8pfFUnFJIbJGWhZmS0pE4fPmDkjncZPH7Tu213dsr+/Y3a3ptnuSjzTzGbPFIsdSRwrNv2fWzgg+cNgfOHRdYTnkiUPVNNg6a+h3hwMhRM4vLlieLJkmR9/v/tDL9J8cWc98BFqLUWsBWIIvOmcpix9JXtyK1WQhAh3brLyQqLKJCKmISEJxGVdB4oJEBIWJCi109mshv7dMxermWAAlSixXCTYTlOhK7ul4x4Xs2O4dAZdYFsvjYMl7mFyiHxPDkAtGDcQoSMV/Q6BIQiILsybfEKXAun/n48+XTT8/1lnH1bJQSovJX/53Au89uvh5POSRiu+NULnhEzGb6OUozgxejNPEuB4JqcQHlmZKkgEWIWWOCEySwY/5PYBZ0yC1QE8St1vTHzrG4IhGMkafo1brmkWSaFOhdMAYipxMZL+X46aYsim0SPm6yaSQQhe5SWEYuXQfQ5n8mAn3KkeGIxQRRSiYf6VN0f8HUgiZuimOQFyeFCYRkRaszCwPaTS2/RwRIibA7uQD+3d3dB9W+NvuKI2/n3ALLdF1zfnpKUorDvsHTDVJAWsrFrOG05MltTWZxi4E+92B7XrHZrMtRW8+h9nctqfvB8ZhzDGhUhKCx1YGYzW2Nrgw5Xg7pbNJbRDEJPFRQmpIQeGGwE/+wy+4vb1mu11zfr6kmVcYqxDafAQURf6geLSIGLlPaOZ4y0dSnEhxIowHxt2Kd7/9Ofv1LdNhx8xaTk7PqeoZU1QMLAiTRniJlIZmWXN+OafSkKaJfnvg9sMdbjrSwI8Aeb7XcyJNvuZ5Q1b4GJjcVJqhXJx5H9BWMW/mD3bZQopIldPNjLVInQuuI8CSUiQUA0tRRCNKJqTIySuTHwkhs1LwE6HriN2B2HcIThAKpJGo2hD3MUdDRo8BEAIt80RdSAFaQshsGqsNbd2ifTHZRmBMlYEmqVFhZBwmtndroggs/BOSkqi6gimzkyTZgT9ME70bmacZqjLY1OTzXMy/3TDeF0AIMHVF09S0dZU9d/ocgeg3O8JuT9jvCd2BoEf63nLoatJW0HVr3DRQ13NiGEguswpEaUy0fli2X4Hoy61b/MRKTXCUC8cEWhlsM2OuL/nsO19xffct/bThw901P+Rz2uUJJ+0ZZ2dLdquOR4/3GNvy9t0tVzdrPtysyDH2kbqJfP6dRzx/9IjL01MeXZ7SzObUbU1lakTSpEkSgszSyNK/I0NuoLQkSQ0xR4lKaRG6AqUJZAN+cZwEBU8cBvwhM8esiFiVoyqJR3aCJPhUmgN5L/URMRKcY3N7x/s3b/ndr3/Ddr1j7CeCi/iYd/6YyBPQArq4KJhSBljGGJlSkWU+4HUzSX0c5sC9FM+TCwaVBEYrjFIFQKEovLNfR7wHlFLxaUnZx04qtoddBpOlRM8ahBEg85pyDDfIg51SbyRx3+jne+k4wc9d1e+1ucUAHHEEYcrdJ9JHyZcQDJNns95xe73mZz//NT/96a/45utvuLla5euDwo2eymY6vDUWjUZJj0ox7/3GYmyF0prwSRMnkAiV5X/1rEUZg7GRF5+/5LOXL+m6Q07m8+M9A/ehjs1uXcBXg65kTnkSAq1z2AUx5prveG8niRQaLQOVtZydLzg9n7HeT3DXQdIFgNRZdolEo5hXNX4cSD5vTJWQVCGi+hF3uyLMZ2AV037DSP4ZVF1hmxZlK3TToGYzosjgoDQZkE8xIoLHqOwHl1IkJlcuZk6AipMjjY5pveX21desP7ynv72mlqBFQoscIpEBGTIrr8jG6tpkc+MEtTUEN6EIVBpmbU3vXAYp4IhEEVz2nRApM7VUocOk+MCDu9/zHPx4v0upsg2AUHkg+UkPJQQIlffr4BNTiHgXkD7iXARrqYwtIRcZHI1RQXJ4nzLAInWpG2UZRpr8rY/eY5DXOQrIGiGpxDEyWpQBXyznJBZwJXrwU2LYOzZ3e7QThD6SRoEMWfaU6S+5gRelJ3E+4HxOihJSIYpLeB6UcG9ynCPOy5D5H8Im93PoT18XPOwqmQ8rDIoiX0sJ5z2HMCF2O4RckGxJZg0i79XeI6dIkp6gJGmc2EdHHzxBRpQymaWVEnNb42a5t3pzfcNmPWWzZgXo0unExN/9/U9Z1C2LquWPv/wqG8lWFXNxgvE1lH2tauossYScaphTAEos+5FAkNlISqmsrIjklLoCiiQhCTHRDT2/+fZbfvGbX/H/+I//Iz/56U+4vV2x2+z4zqNHPP3sGT/6kx/x/MUzGiFzWq9UBDdSpnJoW2OSxjjJan/garNi1x9op4GXl0/4k2cv+Off/yHyzS2299TTH0Zy+MNjmmvLxaNz5ssZ2+2e9WbFNOVIrvfvrri9u2WaBv78z/+c5599ztnpGT/76U8xtmY+m/P89Iw2BBgOjHcrllbSzAzTZEnrkeQ8xICQNseSVoKh1vRVwxgSm83Ev/33P+XFy8e8/OIJX335AlPlQnQioHOCLao4ikMqG5+8z9mOQuBldo4IMZuqSgRKJBSpmM0JfAK/PeD2HbsP12xv7hj7AT9MVPWMRTNnPHW4JJidndGenlLVDYdxhJRYtjPGccrMnutrhn4g+EzPb9sWpQ0uBN5d3+BjYr5Y8p0vvos2lmH0TA8Y0zxOnsl5pskjhENrTWXz5Ce4DTGlIsUQ2TNDqEwzDsVwUun7tSIlGN2UM9CriqEfSCniAZ0UPipw4MNAP3RYHaiqRFMfqbnZ90WU+FyCxPsyQS+NRS6GY54SHcWQ98VN/q8WEIJgcpHdfqLvPcMYCckgVIWSmnGKJFSOCi/TwDzCzA/6cXoVU8wGdyWlIMQRLS3zRYvWsqSDQN6A8iIaC6tASnA+MY5jThoR9YNdt3zCj2lNgSAFtjGoSqKDpAoZGQ5C0LmJcZwYvUcJQQgSo1L2+PACJTRW16yHwOQS49BjzmfMZie0comsLXeHNYOfWN+uSCFR1QNVUzN2I7Igz/VsVii4Gq00ta2zVw8yl0NCosgbX0yWmCriJOnGiXGa2HcHkB6jFZUxWCEgKqYoCeg8u0kC7yIyGUQyQCLE7MOTPaiPPi/lFOmAUpK2qajPamQU6Ci4WM7ZnZ2wW8y5FW/ptwdcP4HP/kJGGU4Wc+Ztdk1f3d092GVTwOPzM7747Dmnyzm1tRATm82Od28/cPXhmv2uy1HUIsd7D8PI6m7F7fUdbpqQZaoWU06TEFpiast+26NMyvd1fYKLPaSAaSKjMyRhmFlL8iuuvh3o1r/j7u2KP/2LH/LyO8+5fPYoq32UAJlw4mMDoUXKUjcUwkdS9AQ3Mu7W3Lz5hs3NFasPbzipBc8Xc5ZPHiOTZnQJ5wVCVtxsetajYOVqvvenP+Li8oKz0znbmxuu313x7tVbbj58ICSFkBqhNEKqInGQ7PY7LsMFtrIYq+9NPp3PPljaGLTWDH5EmoaqerhnLoqEqTS2bTB1Zgkdu6okIcpIFJ6U5/goAkZKJA6ihzQipMOYhKoV0h1I3Y6435LcKcLk57dSFeagsZViVlUsF0tU71BjoO9GxiQYpULZivnihFk757Q9RXRZHimCwLiINJpoK+xFzfK7L2BeIbTg/Huf0T45g5llmvZZ0y8VxtqcXjOOdIc9lbZIKTk5OUUlQXAeFRLcS2A07aKlnVdUlYKhx603uNUdab1iuL6mv7uh390h28jYaQ57CWbEGqhODI2WTIcxR8X7A9rGnNhQPSzAAkcD5lyE/97rIuYkOlnYLcJSmSVffPXnuDBxcnLGL/7+/8qrb9eEaPnB909ZPJ0xv4xcvvRcvvyMN9/e8Ob1NT/+D3/H+/eOcRypjeKzz57y8sVTTpczFAKjHDJlM1+ivjfX1iYXKMmk3MRLBUqTpASpSChQNUlqQpLZkFCK+0n7+OGK/YfXdNdvqbotTaWw0kAwJSUtm80HpTKIQIVWChEdbhq5efeOX/7kr/nmd7/h6ps3+GEiTgk/QUgSH2NOZCyxziEKfBJMJS1wyrY7hWHycIdJWSISE3iR/YA8sNlvOcxPWNYt8/k8g4yVpW0qdtMATZYbBx8y+0cojDHMZk2W9JLfq3cDm+uBzWHP7NE51XJGe36SJYYpmw0LJUBkFsGUYmZg5lsna/7jpxyCY00SOJpqxnHKNi8ckwQFm9WGb1+95pc/f8Wvfv5bfvvrV6zv9uw3B6Z+LJ7HASWynNcU/4q2ssQxYLUCJRik5Oz8nLPLC4Q1aKsIIoOzRwZL1dR89vlL3r59x37oSFLw3/wv/1u++sFX/F/+zb/hx//+32Y2S3i4unK2nHHcpGIMSOkQsqQocSD6Hd7tczILhpQUKVYQElrVXD464bMvLun9xDdvXwMNWmqsslipMQIMEhMTrdUkHRnGgToKqskjN45X/+Gvmb55xerylPmiwQWPT0VWow3SWHTbsnj0CC8kY0zYxRm1rTBao4NH+IAfB7a3V9xdvyf4EUmgEoDzxMkRxxEVPDIG5mRLA1lYK8KPGCGplML5fC9pqZhVmi6FzEpJDpVCjqB2A6eLOW1M+JgggFCgpaRtZhwT+1yR40WhQT3s4I4CRB0/nM+Gte1iwW57yCa7xtzL3I4GzlFEApHtMLAdJrr1nmmz48XZCcbOsXbOrBEoFTJLTwqqqmZyka7zHDZbuv0Os7OcXV5g2hbd1IjgwRowJVWo1OMcWboF7ExeItAIDDFo+s4z9p79LvdmyQfwMPUe6RUGizE1IXpCciTv7kMrEgkfijRaKVRlEdaStGEcekBneVDJovU+MgwD9XyWT2FhrcjiI3PvwyIKuCLE/dc81DH2E7U2GKkJMfc3IUT8vid4z7KuYT5HCEmVFCZpdMpDs+Aj/dRzNW4ZiajKsqgtkok4TmglOJkv8qAMwTerG24Pe24Pe3zIDL4kBNfXt/yHH/+E7XrLsyeP+ad/8ee8eP4Ma2foaDN4Jz9hJJH/P5ZTluf8xfOzDAWOwst0lHulyGG3483b97x+847/+7/9d/ztL3/Gu6sPvLt6S7fb0CjF54sF/92//J/zF9//Ed97/jknVFhyL5+IBKXxQuCk5Kdv3/LjN+/5j+8+8LNuj1rOmM/PeewDz84ueHRywsJYXAIbE/YP3OT+4KrGx+wzUdUV58YwTZ6hH0l3K5yfEBLOzk94+fIFCXj35jWvfvc7zs/OSScjH5SinTx6GJCbDS2Cylp8U+PaGj8EovfocUIaR1CGPqS8q4ccYeh3nts3V4S+ZyYVj59dMls2GK0yfZkjTbPMsWQqztzcUwSPt/yxlZdFUiFDIo4ONwxcv/vA/nbFtNsT93026ENibIu2NXUL85hQ8yWL83PqxYJNP2bQBmiblturG7bbLWM/EkPxOxE5CzynETi6oefs9JTl8gRlMn07piOn4mGOacqRat57jDEFHcz0VWNMRmtDKEhtXjB8yMWD4Ej14X7NOP6ZEydlYfSlMuktk7CQ40qT94gU0EKCjgiZsgyrXIUjTex4TVShJSJkTrcogNcRYyclUkgElxkrwxDp+4DzOY4SWeXHK0kQJaYWiSwRbKlQUj6VQsUYIclM0ZfZ1V6WWEZxlAiR7jejLBs6Iv55EptiIviAcw9XwABZ1lKm5p6A1QYlNEZY8GCloE2BheuJ2x3jfo+LgRgclYeZUsiYWw4VE7XUBOEYgmc/DrRVpvKdnJ0QdaKbBgbvwEeSC0Tl8EIinMMpSQwTSulsMqstzg5oZVBSZ3PGMk2TItENAX1wdJuRoc9RlSkGtIVoCutXaxIagSZFnRtuASEGpCimdLI8E3ktBmmKosXnIldk7XwCPCnL05XAziua8yXCRdxhyF8jDozbDmM1dV0xn89z2oOfmNzDSYSMhHlhr1iTC3fvPZvNlrvVhkM3ZHBFaVwIDNOBrjvQHQ54N/Ho0SNMmfDnSOrsK2WtZegnkkiEFAoAIEFGlLTZQLNAUEJaBInkJevbiV/83ddcf7jj5fee8eTFBe2ypVk0WJlZXqSETAKCx/uRYbdl2O9xQ4fvdrjDjkYJmotLWp2otMYIDSlHmTtgP0TWe0cvauanZyxOltRNhQD2qx2rqztWN3elITwyCSVCmuwTkEbGMSewgcAYUwyzi5bWTWhraNqGwY8fabsPdByTfGxtUUaXqQtl/4iFCRaI0ZGig+SRQpWYb0VSBqEUwoPwuSgVYSQOB9I0gEoImdM2rDVUtaWqKowekdHDYSD1PXib9fvnF8zPT2hnC6xuSX4gjYE0DEybLXJWI9qa0FQsP3/C7NkFyiqa8wWyrfA6R1XeF3+lUZRC0u0OBD1hpMYqhRtHfIioYkJojMY2ltmizkkXeKbDFlfuBbffMew2uOGAkpGT0wWLsznz04Z6XiHRGXRNhh4YUyD1Oje1CKJ82LXyY74MH4eMKZVpbWGuCe7RgYSirk549uwrtNSMhz0hTWz2iev1yKOLFqMleqY5FQuSUtim4m61oh8P7HaCuqlpFw2mMUQVmfoOh0KPB4JzSN0iZAUYpNVgFNIqogyZvWcKC5eY73EtOSYeCkDERHQj037L9W9/TX/9lrC54+lpgxUyF88hkjKXiuATVLYMGSpUErh+oNvs+PqXv+DNb3/H3fv3GS3xeS+N4SgJCvgQcCGDKyGBTwqfZP57JIMwn5QED3HIcEwqK9I/IfAkxpC9BmKRFJhjoh9FtlAezBgy6ySlowREFTZyQhuJkfl3dGHEdTukDMRKIdMsm55LnX3dROZPHo1Sj+8vEMXbJzfUxKMX3H0Vk69VEnif2K32rFZr3r19z69+8Wu++fo9b779wO31HeMQCg1ek1xmZAiZxxOqSJdy0p3AJYGIYKyhaipsU5UJe8E1OEqZCw3fZDNYoRX9NHJyfkZMga9++AN+9auf44IjDg8HjRltilQ3N6jW5IFTiiMiepQgM0+jQGTDMySZ2VxJxbwyXC5rbueGRjvAoFFoAVpkgMVKSVtZjMrT+GGc0NJSacHMKKQb8YcDvZFoERljZoXkeGcPyiGGiX5wbPueu90Opw3Pnz7j0cUlZ02D9B7fd/RX1xzevSO6ASMSdVtnBlGKmUVLkXEqMuMzBlJwRbKRIIRswJ7yMyJlwujMcyRm80+p8ucrozGFUZNSLF6H2YNuCj4/A9oSTIOuW2zzgP5wQCzJnaJ4mdyz/oQqniPyk6HqPe+fECNTDHQucBgC3RBwY8otWnkOcwpfyKwTmfdTg8LaDEKEFInTRLfdYb3HeIedNfn8JgNGZ9aelCR1TJQ8dgGqJOXA2HvGQ2QcAyFvxRmsilkuKI/SXREzkz4eZbiFl5aOlsoBQWaviOJtdPQYFKVfEIXt84+nhBZ2xyes+I+ferjaBOB6s2VeN7S2ZqYtxgh0yhLu/ehIIYdc6HqGMlmWPrmUzZsFTMDoA5OI2JTHlPViTnNxyRd/8iOurld8uLplPY6MgDEVISR2fiCkfM94F7lbbfid+oZ/99d/zfL8lGrW8ujiLIPUZNnPvQDzGF4SC+fuPnXt6LFZ7ClCZN8fuL294+rqil/8/Bd8881r3r17z89++Wve3Fxz6PYMw4G5VHzn8il/9uWX/Fff/xM+u3zChWmwIa/fkPCAl5KRxCEGbvZbNtPApATnzx5DbZEk/N0KaRQued7cvOfFvMEqi+ymP+ga/ReMjVKJjM2xgyEmhn5kchO2zhP/tm05OVlwdX3Hu3fvuLu9wSpFJQV30TMMjtp5Fs5TCYk0hlhXTG3D4Hrc5FDDiK0cGIdJlskHYsiUNJci+2liOnRczpfM6jZP0VtLYOJeByALrQyygWn+8fMRSqBXzJO6FBLeJ9zomA4d/XbPh69fsbtb4w8DNYLlbIG2Bq0tUSp0VTOTimU7Y3Z6iqoqVm/ecgzdSDGy2+047PbZ9DbFDPRI7mMwjyaz7WzObD4vk4CsB4wPWME454rWMBRAIX2kZRlLAsI03VegUmY/DfgIatz/vfzlSNnLzvmlHCneCKn8k+QCQjpc9HgpkQGkKbk/x2q3bEaJXKAc6bqyoL/iExouMZZ40IgbI9MY6PvAOAoSVW4oZZVT4IqvSvbtyGZeogAmCVE0wsVr5hNNxPF7S3UEUsrve/yc/BRgAchyqxBcRpIfGGDR998vFRaDKAk6GWBJStJKwdxPDDGwnwbGcSTFQAqCOhlUZi0jUsQIhcITY6QbB3SsMNLSzFuCiOjBILoue7j4SHKeKGWx4RaMwRfjX4VSBmcqlDZoXaFsVcAXg0ia6jASdc/msGMaJ0iJxhhk8cvxMeIbmSO4yQZosgR856Aoc7zwBBxHFYlUOt8HMRNJRSlOIiIbIxY2lqkNZtkiQmK+PTBNHhci9AO6MlR1TdO2WfYRwoNO94xWzNqG5WKG1YqUEuPo2Kx3bNY7hsGhtUVpg/eeQ9fR9z0pRiprOX10iZIyf+7QZSp4Np9hGkaUslkqIiVyyAWslDnZKUoIxUxTCAVJMXQTb7694e7ujsCAtRGRTrEyoa3K2vFiaOenCT+MHFY3HDYrXN+TpoFKQGMN81mLLlPdGFI2PRZZ474fOvZDIjWas/Nz2sUMYw3RR7brA9vVlt16X9aVTwEWjYgZRHPO4Xy+R3Mk6cciy7ucTqC1vi+EPtJNH+aQ+tio/P4U5mhemeOyHSl5pAgoJbBW0lQaYSW6JoOaQXHYDgg/4fs9fuyROlPBhVIZwDAmswxCgGGE7R7Vj2gRia2hWS5oTpdUsxkqaMJ2IEZPHCaG3Q4lI6qWCGVpHp3k1KPGZOmYSPjoPjaBKSEL7TwIydAfiNIRlaFqZ/RDAUGFQMacvNW0Fc2sRklBDI7hsGXq9rhuz7TfMXZ7oh+prOL8YsnifEG7bNGNweoaKQ14lSm7IsttAQYfHzSJBj4CLL9H4RbH/ytAS8pM1nxSJEbPODt7jtWW4bDn+uprRu9Y7xyzZaLVAmUlTfG/MJXhsw9P+XD1jiQCs1lLPa/RtSIKx+D2ucBNkjg5tJ6hZJXXMmNyDHBtiaIkz1hTjL0VSSSkzMkcSRyBhIA7dOyvb3j/9W/xqxv0eEAvn6NTZln4mEhkue4UBFYapKrQqkK4xNgf2Nzd8O1vf83N27fsV6vMTnOR6CPeByYXcMGVhCDwKXurhZiyVAkIMXsvZDXOw9UnMmZgRBzlrOQErTEGXAxZ+iryvnc0nPx4meU9yBIC97T+JPO+IZXEKKAMQMLY4WTE1zqn01U1spL3vg+QUIUtkEoNcZRwSkFO3CI3a9nfPi9iMXqci3Rdz4c3V3zzzbd8+80bfvHzX3F7vWG93tN1Q2afIdEyg0hHYEYJkZPIiucMSiJjkfVZja0ttrJZG1Du9aMB+RFkFlKibTax78aBJ48vUVrx5fe/4uzy4l5i+VCHVhksTSKhtcJoiRCR4KfCDAejTFaJRwmxeMbEhEpggaXVLCtJq3IqmySiyQCLFgkrFbXWVBU4r2AXUDJlfzOtUbEktvUD08wypYAXCYFCpVzfRx/pRs/NesWbDx+46Q4cvlgxvvgM8fgxVUoFsN4QNltwA8iEEQmtcqN+LxMv60huFiOkkL8mkcFrWUT2Kf/dGJV/9RjRlBhkmTBa5TANoRjdmP1XEESlGULAI0nGYk7OqJantCfnD3bdgAz8Z6S91N6Uwam6T825B1jybw3iYzrZ4CKDi4wOQpB4n6PHjz6PBR0Gcr+jlMTo7LXkvMNNjqHrCDGUYRrZ+DbmfSodB0chFKPvzGSJPhK9wDuY+ogbE8ElxNEkmeLRdA+kFAsEQvHXiUX2n4okrDiNiRxacZSxpPvfW9x7w93vJGVAzfG8/L871Q942Vb7A66YjotWUSmFkbl2C+NIChMyJGaywkiD1gpPzPeXhCl5pphN703KSo3ZbMbJk6f86T//S37z61cEqbnb7QlFmjhMDr8NGfgjMYVcr364jvzNz37GF9/7LqcX55yenWZwWBwzNOP9EC33nflPeZRiFo8dHzzOeYZh5P2HK7755ht+99vf8T/9u3/H629ec3Nzy9X1HZ2bSESshMuLC77/7DP++Q9+xB89e8nCtlRSE6csA4sCkhQEJbMRcIgM0RMUqNpyenbGJCJ+HOn7jil6umngw/qGF0+/RGr4B4LQ/4+PPxhgmS/m94hcSDHHJ7U19axheXpK3410+4Gvf/stX3/9LW/ffODxxSOWswqrEmk8kPoJi+S8ntFOHiE1UdfEk3PieMfYT3SbOxYaah041w3eT4RxYNPvCY1CL2agJV//+luCi2xWe15+7yV2ZhBKExgJIeSHTOZptgyB5D0pBEySpAC+n9jfrTlsdmxuVrz/9g377Y6+66h0xdnpGWeLE85PTknk6MrdOLHfH6gWc5aPH/P0s5ccxontoWPykdlsyWG358f/8cfsd7tMX6UgxeTiIITE4Dw2RM4vHzM/OcXUNT5EtM7Ur/3h4aJHx2mi73u01jkKtxiGGqVomybTYqcp671l1m3jpzJZSxmt/6Rwzf2rQMkc2HRkwkl1NKUr6cUuEsLEFHvUCKkSUAlUpZHWZuAjCbIt0seYYVKJSk7ykzF3JE4jwXmG3rHZ9QxjZHCSIOfoSqN1g1RtoTs6nBvztS8sE2lyI54Q91q/j8hbMTpTeUMwRmGMKJHCha0iKElBH80ZpcxZ6uPoS9LJwyWaANS1YdbWyBhyQ2ckyhY5U2Wwi5aFNKTa4K1iMrB/f0UfQvbqmBRK53jn4GI5HxopA91wgAME6Tk7O+Xk/IxFOmG2P7DebvDBMw4j1tockSnLVMMnkvcMfmCf9iSpEKbKsatKIbTCtDNuux5jLd5NVFZnH5L5HIUmOpiGhPcKawRWqzKNy6Z+QpkSqZ0KPVHmyEadMs0eQTbuyJHsogCGIkWyeavGVRK1UNkHZIy0SII1jDHRmJp2tmC+XDA6h1DyQWnvZ4s5l2cnPDo/pa4q1qsNd6sN795dc3uzQSrB+cUJTdtyd3vL+7fvGIeBL7/8ktOTcxbzU96+fctmvSHGwNnZWZFiCb787ksEAu8jV1fXSD1yOOT73bMnCsEULT56XFBorzGmQkmLSJ79asP162/pV++51YLz+RJTWEheeMahw7kegqNWgnktsLMWXbStIqR8DQtDfjcMeGnovORq0+FEy3xxzrOXLzg9neNHz3Z94O23N6zuDgyDuwd6Y8pMD8FH1pgLI33fs9/vUDp7kCiVmRjH+Eel8tfGGBmnP2zS8I8dSWRTV1NXuaO6L6FyExWCw/mRcTpAmqiMYDGznMwrZrOGxhpqYZAhkXrP17sdvt+yu4uI2yUmnqDSPJu+aYVWmq7rWP3md3C1xq4OzHRFNCDEghdffo6f1QQhmdYDw7An7DvSbkAwghwRtUdXgbOFRc00Zl7o5CFAV1IyYsKQMNYyRZAhsu9v8SkRlKYVin69ZpymrKJsKppqxtnZgtnpDNcf6LsdHz58y3Rzx7has739QHAddaM5fXTGd7/3GfVphZ5pXPToqqy7subkZE4YA+PlyIe3N6w2W+7WD+czlo9/AK7cl8nl5XQE1I8vSaCibs5p6gWnZ+d88+qnbLdX9MMNh16itMTWAqUzuGhmc74/vuBm+5r5jeL87JzzpzPqWjAcOrphDaNDuEjPikrXKGlJSTH5QJISZStQKmvCm5a2nZf1ThP0FmlqhMp09W6/5e7DW779xc94/ZO/pUme00qz3cw50efYShHQuKhI0YBukLpFmxqjKvr9hg+vX/P1L37JL//mr3HdQJg80zTR9QOjcwzTSDdOTD5Lk6eYJUMRRRS6bMGigCzHSNIHBFiA7JwiQGkmIp137KeBzo0sQpOlBtZibDaeJpJlhSr7NoxTpB88wxSJWiNN3s+NlugksTHBMOLcRNxN7McDpuuw8yXVyRnYWABpnRvfY81zdAFNH/GcbF+RiMmRQiRMjtubW968ecebN2/59//+x7x9+571astqtUUKTUpZ+ipV3kMzBJBBkqNfjJGyfAgQChXyubFtxXwxo523eTpVbnGVKE55+TUhJVVdoyvL7fqOr37wPZ4+vuDs4ozf/e7X/PpXv+L1t9882HXTggz4yAxCKpFj671zpCkhksrDkyhyAx8FznWM+z3DekV3dU3abqnHkUdW0QVfGIERqxS1jFgBlQicLmpchLsNpOQgKaxR1KZIbFNENg221hij0HWFTQaiyOanKTGFwKY78B///m/41c9/SqU1f/WjH/HFkyecNi0tiZNZhYoKnTyVIhuYS9BG4VPCx0hIuR4RQqMz6SybjiJASlzKDCerZa5tUyRWHhmKTNOU+1hqEIp+6vEpg6pOCNZCE7XFLE754p/8JYsnT2kuLh/suh0PqRRaq3sPo6NnkCzpLdlu5ON6qo2k945uchymyJgsQbXoyoDIGUmRj/5uIoXy3GikFFhrMFrinKSPnn7s8W5k6A6MXUc9azF1ha3rj54sKvtwRHKq0bYL+KhJyaDlHKMqtJBMyRHICVQhTcQwQIgZsBGqmAUnTEwYA8okhAhZ0kZOpjRVZq1SasFspa3IZtapDHT+8bVP3H/uHx5H2uTDHKtpZBc8djhw0x84aWe01rKwWT6ZYoQQqcYBrzWuqqCySKsJIrHuJ8aUwWxpK4YYmbcNZ5+/4Lv/5C+YP33O+YvP6ENisdly0XWcn13w45/+LZv9jsFNSKVyL3zo+Z/+448xs5rVbsvF5SWXy1OslkSf2YCZdJRlVrL0k85F+rGn63tub+949fo17z984NWrV/zy17/h+vqG29tbrj5cMw4j3mUShLaGuqo5a1v+2//6f8Zffv8H/NPvfcWprDAeZMoWHD7mhNAgBcJYlICaxHe/8x2mmxXj7Yp9P7Db79huVtz9/BdcTBPxyTPal99hrQLY7Dn3hxx/MMAilCrMgITQmlBuKGUVZ5dnLF1kGhxCSOq65uz0lHEMNNZSKYWNkbbSNGgqoxBTyJnXTdYfu5ApPeuhI447fJ84ESc8P2uZeYXeR96HCWkktrK0izmb3Z7u1cS27/niq89oFzXCkAGWmDWTyY2EcSJME64bcIcR30+M245x3+HHiWmcaL1ivrxEnRuqWZvjwqTkzvvS6AUGN2FnC+rTMxbnl0Sp6ceOw36gtS2/+/oV11fXrFbrbFAVs5eJ0qowILJJnNKapmk5O7/A2jonOJDNwZzzjOPDNeo+BoZpQvU9s9ksUxUzrxNrDDFGKmNx0ZdUklTcaAu7IxR2SqHMZZPVhJIJrSWBbKIrZUJpUcxIc3qB8MDoCM7jbUJWAlVrbBOQxoK0SJGlO5KUx2THqaMPhWEUCM7hxgE3OfpuYugmXFQgaoyussQAiYs5VQghsZXObCtjMbZBGFOQcMHgPMIJhMt06AJr5yZPg9YlwUSK+4L8aNwlJffNnRC5sTfGIgT37vkPdRgtaGqDCJYwDcjk0TKhjMjyECEIRMyy4UxeoGcVXgq2qzVTN7B3E1roXCxTUrFkjtHTBMLkGPseN5+V6ZehOVngdW5mU6GNpxTRUtFWdQZayGlUkxBEqYhaMwkI0eOdJ+0Cpu+x2mQWh6lp2op6Zgr7gAJa5kLVhVCSj/Ikx/lIpWqMPsYuBqLIMimdQgbDdDbSDSERAwghM5sCSRQ5hUEZhWwUfj7DtQ1T0zEaxTgODDESleLk7DQbeS5nD3bdHj+64GQxzxJI79ntM2385nZFN0y0bY21DSToDgfWdyva+ZLzs1Pm8wW3t3dsN2v6oUMpMBoqqzFaYytdpqqJpj2jnTnWG5kNyPcTzgV61yOqBhcCfpgIaJ6czDm7sJw/ghfPLmhMYtzdEXarfK6kQepAIyKtSiirjwNiYoq5CCxUfjc6JhcZxsjtduJud2C183z9YctnX33J2dkpF+dLtIJ9P3FztePN+zX73pW4dg/eZ+ZNAJnEPX2UCOOQk+rOH51nrbxWTM5lLXXIIIs1GUTabrcPdt2kygaFUskCsHxksKQUCMnjwoT3I0Zmb6nlrKFpDMYKpIoQHclHQt+zv7miD5FUNcTHS2aVoK4Uwqg8sVYZRM6SqIStDIvnT2i+ekH9g89QJzO8lhDy1HYMnqnv2KxXCOWol4pGL8szNDBNHfqQvcxCCIRpwhZWVyMEldF040QIgXltsSI3d8J70jjiuo5uHLl4+Zy2tsxmNSFO7Lstm/UNN3cfCJs1fr/HuY7F2ZzFyYxHz885uZijakDnIk+SgbTRe2Q0CKmo54bLJ2fYWUW1aB7suuXj98GV9MnL9wbvKqfK3cs67ieRIEzNo6cvOT0/I4TnNPWIUgNCdwR5IAqPFxNqMXDyTGDmDZ89u2S+BJUcYxwRwd+bUzZaUmuQTHT7A5vbW8Ycb4epG2zVUjUzpmZOLD4kPmqa2RKhK1yE65trtne3rN6/pRUGKxUxwW9eX/FMV5zYFtPWBGFyQkfVopTJOSyT5/bdB96/+ob3r75h3O1JPuB9yKDKMDC6icG5TBv3ARdi2UMpTlfhfvKY4D5Z6iEBlo9XLScHjcGj/EQ3jQzeMUVPTBGlZE4TMgYZpjwNQRJ9oh8c/eSYUiRqhVcBHxwaXaQKgrbSBCWI3uOmAb/fZuaKENh2gdAWDBACQiiKrWUxtC5JajHLXAme6B39vmO33vH3f/dzfvubr3nz5j2//Plv2e06gk/oVGXT0PKLGpnlDalIxUWKGFmSdbRCq+wDl2K6l2HXTUXd1JnBIsmfO16FEO99UADqtqGdtaxXa0Y3EUjYWcNXf/TD/G/lA163mJ9vYt4fQoqZOevzedcoZBKEfmLsDvSHA3e3W7a7gf2uR/jAy8dPscny4fU1375Z4X1CyEitoZbQGsHJrOJ8mQ3U26ZGeJ+Bz0pnn67KYpqap19+gb04Qc/bHAUcNCJAmrIIpHMDX3Z7Lr77kl//6le8/fZb/uZXv6Qfel48esT3P3vB4rRFRkeceqYY0TIbLGMM0Xti8AQvMxuPVJq6wmJK2fPn2COlMpADQbIleKAY16Oyp5wQ0J7Pud1s2Q0HhnHk8vMvWT5+xuXn32Xx2Rfo2QxvLPbBrlwGBFQZSuV48SzfUCWxLsZIoKQYyQx/Gm2Ik2N0nsMUEKbBNpZag9CCnM6kQeT3ixyZ4aEMwfJ6q7XKiXRkk1Y/TfTeE6YJbS22tghtyqBNEkWu6UOCTR9IwiJVw8lyTtvk3slNjm4/MgRH77b4bpPjtWNCRYEShixfUQhhIOUwkph8Bsu0xFibz4eQxzlvAUNlYWVQJMKF8VN6pKM/439ePvRwh5OZpT16R38IHPxIrTWtsVzWNa1QtAiiG+hHxU5m8Ch68Cmw2a9RkEMklGE7jcwF6FkLVnP69AmibvnTfc83v33F+m7FYnnKZrXh5vaWu+2K1WGLSImJxL7r+Nmvfk0Ugi+/+z3+5V/+Mx6dnWG0wQdHPw7su47VZsN2s2W323F1dcXV7S2r9Zp3795zdX3Ldr9js91yt14x9FkmPowThIhIoBE8Wp7y2bNn/NWf/oj/+i/+jJcXFyyWC5RLRJeIMSCEzumEIrNjUgItBI2SiK4nrjb4DzeMqw3DYce43TC9u+J1iiylZPbnf8EmjhnYs39YffKHS4SKQRwF2TxKK6QSKGUwBqqq4tHoUVIxa1tub7e5kA4BObncwB77WVk0mVJSo5mWgTEEuNEMYUJOHcH3LKoFsqqZ8Gy3OepYpkTwnn13IKwDu/0OZQWLszm2lbjxgPAO6RzCTTlmxuWoZ38YCIPDHbKxrkyJWljamUHVNbquUE3FRGJMgb7PCHMQCacU8/mcZrGgmc8zshpzJFa377m7uuXu+o5pclTa3p+vYyKDFNn13dqcJNQ0DVpnk0eA4DwhZMnCQx2JvJhMhXpvlCZIRSw6e60zVd1P4ZPLW4CFwiA5KnqyVOZIwctSiKPr+se4u0yD1wgIkKZI8o4YEiEkfHCZNmojQoPQ9p6Kn7LzWy4fJkfyPhdE48g0DTnNaXREH4GcHqOkJolMkY6FboyQGKMxVY431NZkQ8FCNbSlQU0pIVy+IY8AkiqURqWO/iv5OOowj0BZSvL+88YYYsw014c8pMxTuKAVY9cRizRBKYGyiiizZl83hlrOwCgeTROQ2AuB6wb66Ikpu4PrlLWRSkg0gug8bkhM44Btcqxh1VR4RWaOTY6x64tUK/vZqJSLBl2o2EGpTCfUuciLREYfM6jpIvO6+cj+sQqtM+sEcUxMIY/qUrn/Yp4URT/ifKDCUltZZGkB8NmEtbjJ52ZAQLwPFSagcMj8/lrgKktoKkJd4Y1m6kamEBC7LbqpCYIcm/5Ax/npCbOmxSjFOI7s9zkpbb/vcgS7UFhb40NgHEaGYeDi0ZPCMBPs9zuGaSAEj9bZld8YSVNrtBGQIjEGqjoymwtClAwjjCGnqvmQ8NHjXSS6gI+e8zRD2orlact8uaBWDuUtHPpCzQUlixnofUGRmyoXElNIRQYH+33HoXccOs9+VLy7PnC7HbjbT3xv1nJyumDWVngfOex7bm+37A5jNrQWqujYPSmJzIqBe4BTIHBuous6HqlH6LJGjYVlF2IoflKaMOZp/EMdUqlPwJVP2/Qylzs+4ymgJHmKWhmMzlHmSWTj9GPiy7jf0k0eb3uq/Qa5nCNnDUIbKixGadqmpZnNwEHdBOYvnzD/4hn1Z08ZaoNM2c9KuAyCeDcy+gmlIkolrMog5Th0jBL0aDPjL0aCd6hxBJ+IaWKKMOx29NsdeFdiXyOHw4Fus6Hve0bnMVJmXxmrGaee/WHLZrvm0O0J3Q7GHiVhebrg5HzBycUJptYIHUgyoVMCUSRVRfqlBCiraRc1aJk9SR7wuPctE+kfvH48PrIRxf3XFvRFJASWtj0jNQ2kOVLuSeyIQBADCE/AQ+WYnyrqpubJszmVTcQxN5bZZDFBFEgZkXHK8crjBre/ZRonEgrpl0Q/EaPD+5HJRZxP+KgJ+z1JKA6D4+rDFf3+gD8cWNoKRTaevtvsMZue0E6cnRXGn7YoU2UJZYAwjKyvb1hf37C7vSP5WLzgPJNzDG5knDyj97m+SalMinMsbOJI5Y73ktt4lEr8g3P8X3J8CnIFEi5mOvroPS6EnIKY0j1LUev8jKZjokiIdN3I/jDQDSOe/Pj6IlOQKevytZbZrjJJ8InJTYShY1Iqp9xUERnJDZgyGcARIgMr5Bjs6B3ROaIb2dyuWN+uubm65Zc/+xmvvn7L9dUdq5s1bso+K9YawrF2EsfGlmwwrkBEsvfK/YcoxuaJY2y7tQZTaZRR5Xyl+zN3H19EPj/WWmxV4b3HeYePkdpann/2GT64Yhj6MEeKU14VhYBP1kUZQw4oCNlYs9v17Ldb9ts167sto0sEn2jqmsvzxyhhefroETfXe8byiBoNVoJV0FaaRVvjkqSta8bukHsHldcoZTTKWhbn5zRPH2FP5ghrUV4jQoIxyx4XRE6iR57OMfMWWVf8j+/e8WZ1B1rx7MUzLs4uqJQAP+L6LpclCLyU+HHEIfAxpx/mK1CejeKDEVQ26Awp4mJAI4uk2mYcrNTQZQZIkqAwxC4zO5zUtJePOH3+grMXLzGLE5I2OV3zAY9U7hdZgLkjz+K+tiUnZYrSrKXCbDkOxaYAUleoSmCVQOIQ0hQPvfBJ3VzWinvJPiV2XWJiTvKKQWRZcILoHH4aizdSZqghMsgSEPgpS12UlsTgECLmWrhSBKfwUwIxEWKXgdB7V1WLwAI1eZURZAJ7BCFzD2tUua6Cf7hXHGt/Sk909IDKfd3xE8fPP+il+v3rVpgyKUZ8CoQUGJVkdA5FYlSaSUpCCExC0JGDA4JIhBjoxp4TU6MS9M7TJ0/UCjNrkcVHrkVy9uQx2+2elAQKzedPXjDTFbXWTONICiM+5XX66uYWYy0/+du/5WJ+wvbyEU1V0Q8du8Oeu+2G65tbVqsVm82Gd+/e8eH6hvV6zdXVNdvdgXEacxqqm+79WmICqzRWak6qhi9fvOR73/mCv/jjH/Hy2XNO62zijvdQvKAQFK/FvDRKch+rfCAeOtQwUTuP3OyJmzV+sybuOw7rNUPfU89aphQYiDR/YHnyX1TVyGL6F0kgUwEPshRECok2hkdPzjk7O8O99Fx9uOX26pr9esO42eKmkSlJvPIYnWn+Mmlaa0lSEaWivrvibnXFNO5Y7W45e3rJqa3RynCz2dMNjok916sN+7Fj8g5B5PWb3zJbNizPZrjdFoYRMUzMraWta+qqYl7PqZTBKMv8ZEFTN2hr0ZXBSxhSoI+eQ/G0GBP4RUs3jqRksMpw+vQJJ8sz2tkJq/UGpSxaGn76t3/H1YfbnChjq7LoUujt6T4euWkaFosly+USbQ1SG4TIBlCjG5h8wIcHfEqFwofIODqmyWG0QXqPk5KqNhidi8W+aGdTynpEH7NniywJ2HkBjvdLj5SCuq4QIuHcUWaTQRYlQCMRURIdQI7ES84z9IHUTwRjUKZG1y1CK5KURBE5CkJDl1lH0U9M01DkARGCwAiNEoYoLakwNNIRXCGbiVV1hbVV9nEw5qPJccpTobxnRaZJfTS0LQwWpdRHKdA96sS9n4u1mmn6OM8zxuBcZn085CGJaAlGCfowMXR7jJIsFktsa0lK45GMAqISoAXfP/0+i/mc66tr3n7zhn2XqdZNFNRJI5EIJamiZBgycLW1GjWrUYuG+ekSNa+YppGh67B1BS4ifASfTVdJAl02fqkUyhja0wXJaIKUrNc7pm4iucjUT/jRE5uQwa1mhjYVUlXlRopIFVF4pMjA1eQFN1drhmGkcyOX80UGpmU2ss3GWRI3RrSucmT1J4V6SoIhpvvIi2ANcdYiliOxbeg3O1LxZOmdY7GYszxZPth1e/bkMSfLOVor7m6uubm+5ebmju12D0JhTEXbzukOPcOYY3FPT07w3jEMK3b7LT44lJbMmwprJVUlaRsNBPr+QN/v2XdrpnFAScfpqcZTo4wnErl6v8MNkuglEKmXitmp5fLpV+g6YKxmMXvCeHeX/ZJ8LrCOsed955lENgsbIvQTHDrPZnvg+uaG27sdq+1Iu/yc1+/X7LqB5fmMxy8uefriEY01vLvZcf32jm+/fsc0pRybLnIxg8ieM0KG0nwczc8E4zix3+/RKk+7ppJAlVIi+sA4DCzOT/DRk7qHWyttXSH10fOlzOyPXUlh9MXgs2ZcSiqbE9mkTJA8ISRSgDRN+G7HuN3SjxODsaj1GhZzYm0Zp8jF/Iymqvn8s5fMdyPhMKASXPzgc6pnF8jHJ4wqYp0nTJ7+doNb74jjgJlb7KMlalkzSYcIjsNqIN4KorL3jMkYIxwGpq5nu92zvV6x2+3o+47T81N8M4MkeP/tW3abLUkIqsWc2hqqyiAlrFa3XH94z93VO4bhgOv2aO95dNry9OVT5mdz2tOaIHokrrDs8pReiIjWMpuep0gkYGrDwmraxcMxxvIh7veOcsGgAMNZVy8++rWn0uggEJgsRyXLQ3MR3oCqSBiSEAR6YnI5oaRyLB/XmNjw/Nkp1kWGcSR0jtCH3NAFmIwH4SGOTPsVyu+oYkRgOVW5MTEyQRqYXJbuWNPQ3W3oDhN3V2vu7rYYoTlpFjxenDA6x37o2O0T49s1q2j44bMvWNQtumlRpkYKjZ8mutWG97/7hps379jfrWm0Ze8co3Pshp7dkGuNEBPILAdCilKUlgFCPinlXOXBytHY9KGPCKQYCT6zWPuQ2SsuZpAl+7DkpCDlFVGpPDCJibvbDRiPmgeeT0+ptSRphRc5GU2khM6/CspItDSkKTD2Hf0wMvUO3czQdYtuA6pqMsNWyFInJFLyjIcd09DT7Xf85N/9e95885a3bz7wtz/5BUMXmKaEH0AKm6fmMfvkyOJhSowYbVA6Gwfj86DCKIVWebCT55g5CVNLia0rbGXR5li6HyuwPErIdRkoCXVdUVUVk5sYhgE3jdSV5bs/+D5PXjzjT/7sTx/seoWpJwqRrwHZpFKkiFURfMQNjmnX8e6b12zXKw77HVrVzE/OOTlrObkQPH30BYuzHe+u13z95hrRTVCkN0ZApQWL2nCxXOAJnJ2ccjX02QMlJWxVYaxFVxXVckF9foo5WeCFQkWVQyunLKTSWlFbxeyL55x98TnPfvhDfvbqW169ecPt5Dj74nO++5d/wdnFGbPasr29Yeg6pn5g6AYOccvkARGwJTJckxtBSa4NgwQXAz54Dvs9WuckpLatc4oYOQpaiiNYKXBE1LJlNp9zfvqU51/9ESePn1OfPiLKosH/A/0g/nNHKkxmqSWMR4ZfLnKlVMUDMiCk/AiMyMzu8BFCynYDViuaIJHTPnvxmQqhQvaLK7V44mgaW4YPpRKvjEYh0ELSx0BwE9OYcLGw2KVEKYO2FqE1aI3SbR4uecdhv0VLRWpamqZmNreQDEMHYfColHMpcb4kKoScWEiWLoUYSSLmMDeTU5NQ6h4MSqKAh2RWfioD2X8sgkT8J6/cn+kHXSu1yFIpirekDxEXAlMMTH6gVoqZNiyloRl77EGTgs+yNiGoa0slDCGO3A0D4myOaGrmFxeoumEaJ7roGGRidnJKCoLQTfzln/wZh/2e9x/e0x860n7FNHU4Idju90zffMP/9l/9K379tz/nfHnCsm1Zbdesd1tuNxu2+z3jOOb0wr7Pa5Pz95YKsTzPQmXp5NELZ9HMOJ+f8KMvv8+//Kt/xndffsZ3X76gEhGdPOM4IAJZvl4SpwIQUpazNlLjvaPf7ZhuVixj4ovFCb+Z3nB9c4e7u0X5AM6jgPmsJU2RKBPp/x8AS0yxGDxRIHlAkKf9ZdohlcTUGmMNT+0TTs8XDPuOzdUV/fsrZD/QOY9GIIPIefPJYSvJyemcL777Etsoum7Parvl7vaW+fyUWXXCZ+aC16sVd5t3rFyHUxFhFCdnC6bX75hwbFTEdyOVqphVc9qnj3AoRFJIJQjKUGmLaBq81MQQcLuBSYLXgqgEXmXDKYSg0ZpmeYYxllkzZzlbIIWm60cO/cjXr77h9bev2e47Hj16gkCw3m4Zuy7P0qXERYeUirquOTk5YT6f0TQNVV0Vn5Z476wcY85nf6gjxZgjqika0hjwUTF6j/bZtNRUFjMqkos5Ox2BjLlZyAZSWXwcQ0JoMhOQTHEPSueH4ziBLptHyCgLUWXNvw4RnRIyesQUiWokqYloh7ywaZnft9xXw36C6BDRY9OIjSE31sIy6RlTrOl8S1BF/6kNkYA2mYaomzzNkUoX8zyZU5oKYKSkQKtcsImC0ifylExKVTr1kGMGlYDkc5OPJMVS4pREAWkMWkqietiNUBsFTYUUAj9MdEOP95HKznk0W2KsQViLVpax8TiXGRFPPn/B+ZPHPH/5GVcfPrBbb9jd3LLv+uyhMUBVGYzQ+CQZ1x07fUf0gbpuaOYNlc0JJ+Mw5Omn83SbPcootDK07YK2qhBGkyrD4sklSSkmHzlsB1B5vejHwPXdhm1/YLXbMmv3VFVLXS9o5zOqxmArRTJHA0WBoEEYj5sO7Dcb1KyiarIfAii0tGhZo5oaoUyOja4UM1vnpAWpcMEzuRxJ6+QOpoCMMHvaY7Ul9QNpmBBSMhJY9/sHu26PHp1jjKLvD9zcXHN9c8XdaouPOflHG007a9jvtkx9ZpAkF1lt7+iHiegctbHUleX0dJGN9GRinAYmv2fst/jxQCMnTuaWlCr2fc3dTU/oE26Atj1h0go3wTh2vPlwyxQ6XnzW8qd/8hROLFiJunzCNDj6/cjqZsc0RMYpsd979v3EoR+53R64vtuz2/Wst3v6cchpOLqmOkRWW4Gp5/z5X/5TPvvOCxanc6bR8f7NDb/6xdf8zY9/SlM3qJIuEEgIJZFACK4MHhTWVIzTgRgDzuXX6zKRXa3WSCAGx+GwY3m2yAVe84dpZf+x42R5TlW1GbATHyfGMkXkMKC7DtMfeDKrsSlQ6ZwSJGOeqsuUiINjWG+5/uZblA+czGacnp+RZhVjPxDf37KsHDG0qLpl8fkL5HJGLBHr7ek8Fwsk9HrP/uqO4W7D+O6OhkB7MuNyOcOfzemt4OA6XIoYXdHqGouE9QG/33O4umb68AG/3zHtNgzrLTIJZtpwOn6GlhvGYaL7xa8Z/IQ+WdKeLmiWNVEnVoctN1+/pn/zDnFzQ7vb44LHtIrl52dUzxt0q8GkEtag8lqVfC4ChUCLxCQmYvJMhDzx1BrzwE3D748P0z/yWr6a93+kT14TCpIpAyNFCkUeIkUGH/BEIUBH5ienzCuNDgmNwu8dU+/wfWDcOqTL7xkFRJ3NQJenC+ZNQ3KQvMboGcY0VGZGMgqj9oyMNMs53d3IQSZYKSpTYzAsZcPC1wiX6J0EL9luepw9gGqp21NscwJC43xgs1nz7vUrvv76N6xur5n6QwZdhpHDODK4gI+CmI6mHh/NPUJKhESh+Zd9MX1y0h7Yg6UXMMnMEkg6g8GkyBhTMdvNRr6yeMjVjcUGRe8dPmT29IcPd6z6DZt44OkPP+fsckkzr2mkyObwKRKjL5P2gFCRWkh0EBgHw+YWt1uB1lTzJbZpMFWNqetyb2QWWXd7y363Z3W35qd//Xe8eX3N9dWaw8oRvCYGBUGQpCKHmni0zoJpI1Q2cC3sy5HMJhIyT4ltYcH55Agy4WTCK4EwmrpuaaomF1bHuhtyvPT9YxRoK8VJa6hFRLiJOE0kn2UQtp0h64djaSqtkekIYorMyPCRaduzudvQ7Q7s1zvi6GnbMy4unnN5+RTbNEQkt3dbmvmMUxRf/fD7/Piv/w7JDh/AVoIZilllWLRzLs4uEFbyxdiz366RMRISaFuhKos0FZ4sJYkIPKCKGWmS+R6OJaFqkoL27Jzv/MDyv/nv/3v+zb/+13z79Sv+bz/+Wy6efcYf/1HFH//x5zx+/BlhHHHjQN/3HDZrhv2Wbr0i+gmK0Xv2YymxwkmQQiA5h5BrfBhJCoy2oAuDXchCkMz15hAizeNzThenPP3ij2gvnmGaBWhNjJmlJVD/ry/G/7eHFPdxyMYYRMpBItEffVOOqVwqm3BT5IJ2Do2FfkFw+f4NcsJaiWkTonJEIrlNNuRRvMx2eSIgYh60ihQILmJEyqCiMQQVs6m2yGtQoW9j2xZtLcpYDk4wDDFL/PyWg0/4pictl9RzQ9W2LC/OibFDugGVHDUCEbNvkw8eL3a4KOh9AmsRtUI0FaEMeX2IuHKOhITox7y/CfEJcJTveYUiFdQ+/V5U8z9kvz7M8S9efof1bsf+cMh+OHiSEth5ixtHhhhx08TgJ2o50CjFom5o6zqvnZUlJskQEgOBRdOwuLjk8cuXJG1wY8AlibINp481Td2SBs8XT54RnOPm5oq3qxum3/2C27eHnNxEYuonvnn1mvW7G6zSKCkZJ8fkXZF259F3SqmA5fen6SNcXGbrQiS0kjx/8pw//+M/4QdffMk//5M/4/LkhNoadPB5oBVDHrb5QBQaLXQx0czvLMky7BA9Yeh5dn6O6noOqxXrm9d0+1v8tIfgsEhaaVjUNfv9HUIq7B9YnvzhAMuRTltOyHGRT5+epZjdqUWBPW1li8GRRqvEQSTCdgfrLa4PJVxQ5AdPCrTUtLMZJ6cnSC057Nas1luC05wtW+qgqUdJfYjU3mOqnGk+i+BCyAZYPtCNHmErqC1R1jhhiWicTxgfsCowhoQWGTnzQFIyf2hBEMepgKKuG5StMMbSNnOMsqQIk/Nsdwdu7lZc395lSlNVYXS+ideTIyt9UnZ4N5qqqmjqJhuH6rJolrolxpJmUiixD3WEkBdNWcxsJ1MSOAQY7zMbRGXDRef9fQElCr1ORHH/Mx6vMelj1HPQx3jsjH5LIUgyZbBBZcAqj2tyJLZOIEKOOyS4jF7KfN5Rn2gaJ5AEso2fz87f5E0yCU1IBoImpZxAk5IkCV+Q+RIXXJIHkDKbhJYHOD/w2cBMSfFJrZ1dsD86Yaf7CVFOX8qnpwCs+edMkNOEJNUDb4RCS4zIiTFpiqzHDePk2O72LPsRWdhYRiowAikUMQaMrUhNom5qVGOYbxdUi5r99Q1xHEmTO7oKQ4gkH3C7A4OS9Is1VilMZdC2RgtJ8AFvPKPzaGUw2lIvl5mabjSqrjg7OycA+37ASI00iiRTmaZ5XMgMpBRq3CiZRoXz0PqaNtWcNC2yFEnTKBinHP8XMbggkSFTu7XWKLugsjOUbIppr8TYbCAplQKlEcFns2ZTZXDNJ0iStB9JyhaGm8v3gFL3FOyHOJqmIfiJoesyY6Drs5E0KcfzVhZrDF23I4SIMZa+HxiGiWnKDInFck5TVzS1JUafI84leOeRCqxVNKqh0hVuiqzuNowHzzREgtcgszlklInIyDBNbHY9X796z+VFQ4wLlkvDrJ2zmfZ8uNvx+psVh4On7wPb7cS+m+gHz/YwsjtM9P1E10eStNRNS21mdLuIx7JoZzx/+Zy6bUhA141cfVjx4f0dVx/uePLkksoKlDyGPuYJl4Bi+5TXE3n0f4oha2i1wdoqry2F0jyOAzFk8LqxDwew1G2LsiUOVX7CiIgBfGaKqOixlcnNkgwl8jKnF6gIoe8Zdjt2d3cYJbGzGdX5Ofuqwg0j427k4DtGX2HPIuZ0SX12kr0eil+KHwZ83zNd39C/eU93u8avtiyaGbZtUQqG6PO6h+TgJ8LkGeJA5zTibkvYbJnevYObK2S3Rx92VIcOaWtMM2fZTwQ34Q8d4naFkGBmLbO2RlmNi4F+t+dws8KvdsjtgJkCtjJU84r6bIacFWBUeHTMZU0uziNHPULhjhBFBrd9nBAEZHrgtfK+pP3437xG571J3Be/n8RwQkkXygVyNuH4KP08/kWwQKQBIUasmWGEQPmAmoovnReEEeIEMimUyrLbykaMCWhpwATilHB9YuqPZtEp+2iohDJQ1YJUKaJV1CJLRWwSNElhgsSgMdKgpMGamrqeUzULtKlz+o3UTMPIZrPmw9V77u5u6Q/7XHQPQ2ZTTYHcRx3NG2Vh9yRCBB/y0OAIrtz7EcD9BPch6xMnwYmEI1PfSaGkI8WPYI/gPsHSlmHQUBpcKbPsOiTYHgZ+8+oNZ4cty9OWl08fU5VJtC5MJnn0W9MKXfSpKYZMuZ884RAYxz1Oa3RVA6ow5yL79Yb97sButeHm6o672w27bU9wghQUKaly3xfpRWEGHF/RyOzNlwQyB78jkMVGRXw8xypPqZKSKGswpf78dFKe7nPH8x8iJozMhvFWSUTMHnbZ9C+b26sHVOWJdByqJkgRP434YaTb7DhsD7jRoaRmcXpC285oZjMWJ+coYwgRmj5gjKVpJU+ePuH09IRpdHSHAWPACklVGaqqYjabY1rLo8ePmC3mhGEs3hkaaSzS2JKmJTLrqAzM8onPks8k5T3bRhnLbLHk+z/8IVfvPiCF5qd/87e8evOBZnHK+dMXfPHZZxjbolqPmo+Y2ZypP1AvT/DTmGWbMWCkRAqVfY9CaSJDwC43BNdBChgrSHEkJU9IAVV6AoRCS83s9IL29IL55WNk3YLJcnakJHFs6h/uSOII1IlsFC3yvpNi4qi1EEKitMn3joBAxDaKKnh0NSFSV95ixGhQNmUPMo7hEfKe7XZM6hEyHf1i8/2bLxemMLeUzL1AOEY0VyYb7BeAJfSJ4AbC6AhhYIzg3YQLE41vCniqqGctaUzgAoqc4CSRhJhl1DHkRD2ps/8KSkIBWDJmWM4PqaRbHZ/NnCB2lB6JdHz9+Pey94i8H/2nAP9/2fGXX3yPzWHP9nBgNRy43m/Zu4lBJqr5HKs1jbW0UWZLjsnTKk2lLFpoZJSFsQjaWp4+fcbl48fMl0sm79l1HZv9AaSkalsUitnJkosnj4nOE0lUTYMunqEypdy3pkTvA76f8t0qSuLcvYFy+rinwr1ViCwsFaN0Nvo2hrqumLUzvvv5F/zwy6/44tlzLk9OqY1Cpoh3DqnymqpkYQ8jCgMy5AShss7HGEgxoaTkZNFyU5jfF5eZpb/tOt69fotWGiUVldRs+pGQFKn+/3FM80ccpdxU4kgDPiItFHAl5Ri7lE0DtTLoSjNbtpzMavq7FWsiU9iASPlkhYhCI6KgKs2asYZhGLi+WTPsE8q3yNEwmxTn3pKCJQgNStMI8mIrQenEdTKkeoGcnxKqOcEUdLKYruoEM22pyfo7qTRVU2UNXvGDUFJmk875Em0qtLZYU2d6WcimcNe3d1xf33G32qCkRiqDrRou6xn9Yc8wJGJ0KG2oqpq2zb4rOZlFEUNmSKSY8D7gpong3X/GMOkPO7z3uQlIiX7oUUrex5MZp/MERRdDWF8KgxCyU38Smbt7T5fj91jY2uh7+VMiN6pHpDIZSTSKoLOZrCgAyzF8N6VEDAEfIkGQaVnio+xGqzlaZLmRUanwT/JkKKKQKRc0KWpiUsXcNpbfR6CMKY1S/p2UVmTgMxYpzzE5SGRqP3BvdCvlvQ/Nx4HR0WMmM7akFPdrbWbzmAdt0iHf08ZoVC2xsma37el2Pav1mpOTHaCQwuRoWZE3i1hV92yodjlj9viEYRy42Kx597uv6e7WDKsN492mTCECyIDfdowhsFWKVhnMcslsOSfUhikGxuBwIk+NrK1pTk6JAaQ21G3DxaNLhnHCh0SlLNTFhHC/z8kxoycFMMoTvGMcBw6dZzEFopBcPn2K1gYfIrv9mkM3MU4RXc1ANYSUSD6hq4Z6dsl8fpojUCneOapcLK1Aa0wKiFijQsDUTX5+bY2NAr04QU0eE/KXK62yg/wDHU1Tsb7r2G53rNfZ28J7B1KxWLbMFw3Gam4/7EkR6qZls8l+DwiBsZJHj86oK1tkQxNSFUaTA6sqKmFYGI1Ohp3v2dy+Yb8dGQZBSIaYmkyVTBGfBkiernf84hffcnbaMEyep+kCrxre3O342W9X/Ozv3rDe9Ox3E5vNyDBEfBAkNEpVJDQxzZidtKh2gaoaVqsVy9MZy/MLPvv8OdpoxtGxXvV8+80H3r6+5uZ6w3w2Q8wsVSU/mYgLdEmnEgi0zFMHQd64U0oYbaksSKmz0R6RoR8IzmGrilnTPth1q+ZzklGl2Pq43qXgSX6C4JAEbKMz+VlA0BFVQBYZI/1+z2G1ZnN3x8X5M05OT1g+ecz7uma9XjFe7ZhuR047sM/G3DydViShSX7CrzaMd2uG2zX71+/YfvuG7m5FGgbmz54hRcSMhqkLNKqhrltwjml9YLMbSLuIvNkgNlvS9TX1YYOZeio3YNxEJRR1K1iMgf2uZ1jv0JsdZlbTSMXZ6QnSaLppYrXbsru6Ra12mP1AJSLN+Yz6fM7sfI6os6zTB49Osnj3CChmgKSPxXU2gszRnkRBCoL5g1254/Fx3xS/91L69JU8aU6/T9+OSaClyUZ52eSBRAbwJSOJEZkmjFxitEThEC6hCIigCCPgJVpZKtPQNBVNC9YklHKkfsJ1Hj9M7HZ7tIRm1HkYMZuQKqBkpDKSaCQ1OVrYpkDlEjqAQVHpvP7Ozy45efyU5fIcrW0BIBXrw4qbm2u+/fYVt7fXpH1PGkZ2uwMH5+h9wgdZJu95cpiHO5EpRJwLBCisV3G0YcvJe6TCYn44M3cnySkvKeSBVPSIlHDB49PRKjMnUpnKUk0VVWXogsP7iDSS2XJBqhNTnPjJ3/2M2bLm7HLJrJqxqC2NVhir0aWBE3hQGikV1miMSjg34aaJ7rDNppuFNROiIMVcI3T9RNcN7DZ7bm83bLc9XechWlLKkqBP70Mhi1ltGVgpIXMsdeLeI0KQyLZPogyRUh4SRJXj3KuKqqmxVfWfeqiIIwicv6eSIifwGI2IMYMAiSxBV5/Gzj/AET/+GZzjsNkx7DP4FAZHZSpOzy55/PgZtsrAdV72s2l3XbdoY1Da8vz5cx4/vmToOtzQYzVUWlHVBlvXzBZL2pOWZzpyenFOt9lCygwHZS2qqjIwWIAB8Ulak+BYtGVj2RTz4FRXhpcvPuev/upfMGsWvPv2Pb/95g0eRbs85+Lxc2Ztg25UflbPAyl4pm6fpeshkKLDKJXBppg9Z3J2kMCNB1x/wLuByXX0+zWTG/DTQCKhlEZpw3y+5PTxE2Yn59jTM3zSWa4HOaYz5VTOhzS5vTeDkSBUjken7LfH1kPKfO8JndnlUSRmMtHLQHMYCDGinEdJMJXAWHINdm9uK/JA6xOlg0jFWaJ4DUFeU7Qqa5EQCK1JxiCsQTY1dj7LqaPaggr4MeD6CT8NDONEPAjCVqK3Fc2sYr5saBcLnIq4biLF7GNnVU4Jk06Ah0lGklRgVB4Ga30vIRJK3K93KRXz1OPaF/x9dHROgc7AiiwdSv7NP4X6H+74b370TxjcxMGNvN2s+NnrV7y5u+a3Nx84v7jk7Pycp48ecWpqhrsN/e2a1Pc51Seke/mLNob58oQ/+sEf8cXL7zCfLTiMA9d3t1xf32GlyUbs2rI4P+P0yWP8OLEf+7wnUKLlUwarEpEgBKF4UAohjmONrGzgYwCIyOgLQkgqrXh+8ZjT+YLlbMZsNufi/JxHl5d85/PPOZ0taG1FmEYOY/H6JBCUpCmDSm1UTgQvgTIhRlIZsvvJ5RCX2tIuF7i333K7uuYHf/w91HLJrh/4H/5P/wMiZu9NIzXTvsO5SDD1H3SN/ou6iPvm+sgWhY91S5kExRRygYUAYTiaJE0hok/mLJqK+emS4f01w3pPt97R7xw2RLSnnBxDXc959vQlb19fsd2PbG9/y5k9IYyO1gUGF+jSRIqC5uyUxekcVQmCTmz7hGvOiMvH3ElBPZ9TzbLsYXJj1o7OZ1l+obNBp/MOEQI6wvnpOW1TY3RGzbQ0SKGRSXAYJvZdz3qz4d27Dwz9iEbT9wM3N7e0zcDl5SPOLy7YrCXX1x9YnM6ZtXOWy1OqKvvJ3MtQQkblDoeOFCJSCMwDSk300SArxpyYpLIuuDIWN00oKamspbY1wXmcHBknl+moMaO2MR4TaPJbpeJHYIy6NxyLRXuTimmlkEcGy0ckO98u4hNEOAMVQnxclo+HKShkTiU6Gk8qEKpoxiXeRTwhs1cKUmqkxiiNEALv/b10SSt1/w1iyEyde6D6E9RIiI+RsfeIdNl1jhIopRJaB1IKuCnkh7hKPKBPav6+uiHKnJbTNpZl5wlyxer6jq+//Zazfcezp4Kzi3OMyilJtTK4kP0CJhK2tTRnZzz+8hkvv3rJYbVmd3XD3ddZm3/Y7tjvNoQUYIq493fcdY5+PmM6PWHx9BKlFVokZBBUVU01n0FrcVPAWkNzuqSZz3Ax38u1qXBTZiA8ffSYyZ0wTSP7w47+MBEqRdPkyM1hmEjrA7c3He28JQGHbkBZy9lyydPnzzi5mCFkIuLxwaOUxUWNbebcsyAEIGMGfiEznZRCaqhtjVEWX89wqkJsDygfqKWkhCKRHlCxIAR0XcfN9S1v3r6nHyeU1Tx6dMk//ct/ymI2z8k5SaFNjawEwzQhRJZuvXjxhLOLlpQim1XPMB2wGHRVs1yeE8YBP43crid2qzs2mz3XqwNffv+P2HWRV292JHlGNbMkIdltK1x/R4p7+tGx2TtOB4GQF/zv/w8/4f37FVc3Wz7cRg4HxTBUpLggFCM+oRXh3mhPMDu9JKTIXTexGvZ85+lTvvfDL7i4OCWGkf32wDevbvmbv/4Vb1+vkLRcv98wLisWi4rTk4aJwNE6WRWgRZkMpGYWmWC72XPx+CnzRUvbLnBxIhExVrHb7ZhFmM8ezjuHmSXKbKQXZPlZYsymmQScSrhGEY7pCyliZGRWDCtl17O9umZ/e0twjvnpgsXZkvlixnKaGG+2jF+/Y/uz16zf3MGTJ4S375GXcyKBaerp3l7h1jv8doe7vqO/uWU6HJAp0vUDfjkjXc3o5hp7fkJ7cUbT9Uxvrhje3xFuDiyGQOMitZ9oVJ7yUzUM2tK0c9q6xfiA2+3pdzuSVFTLBYtH5zx+8RzvHfv9lrsPH9jf3lEdBmTwmHnF5ZPHzB4voalI0kGKiPRxQpVSnl4Fn+XEIpZEmpC9uqZhILpIcJEnD3flyvFxigifwirpH3zNx5/1yESUSmWwIWWmm5QWITRaWCRHVodCBIf0CuF78CNpAt9H+u2AjAptLEpZ9oeRbvRoE5m1CpMUQYKXkW2fGzRziNjWcrKsaVuD6xyH2x3jbY8NeSLv+oG79TtiNKizBaen51xOlic//Irz775kcXmKk4LgPUI63r/6lm9//Rte/eq3bO+2iNGRJse2G+gjjEmQXeuyQX8MiXHKhrL5I3301RBHwmpm+saCtjzkACjgQSW0BKmBmM22QxoZp57RDbjks+FhVdHGljY0HILLHlEqcnl5SnNWYc80X3/4Dbd3V9zcvUe6wIvHT3hyccHnz19Q15n9RWHGFggtp87pCisNUluGMSfbhSQwNieQJKFJaqBza/bTjnUf6ENeC3RVIYImRUFypbYgz+qMKPVOEsSjGT+RkVim95l5Ku6lICobhooAUtLM59TzGaap//NEhnIj50FexXKxRCRB9GXQmZ3XHrThSx76oafvB/abNWGaUAhOzy5ZNnPqqqausieQkAZQ98CcQNLOl2S2mKRuFF9++UVO+ux7lBFUKicFmUWDnjXUp0uenbZ8/t0vubu6YtjsSEajmpp6sSgeGjo3zSKz0FOZkmd/v9IYJoEIpUiI8PL558yrOY1u+T//63/Nmzcf+Ff/u/8jSld876vv8uLFc+rGEKIgomF2SnOqgEQMrriMiLyfh5Rr1SSo4zF1KuL9xNRlmZ6fxnz/KZUDJmYzTF0jrQVVQ8pJYS5ERPIfAaOHPARFOiVJfKyZQJBL7ewH1M5moAVJ5tjbmUiMybOoRobOIXBoPLWKGAEiRqQIhRGTPll/y7cVMpfw5fUUM/NKyJSBFyFAG0zbIOsK3baItspAk1Q5sKRSpErgxikzolPKUqpxYlIjY+WRTR6S6KaFSeLLPddYRVNVyCihge2kCUIhRMoSQqWKV6YqaWL5B1XakFSW71F8SD/2vQVQCB/JBjE9NOcoH5+pGq9rwkzwncsnLKuKn1c1Hz68Z/P2PWKYOK8a/tn/4l+wNDXaRw4fbun2B8ZxzJ51CkxTsTw/48vvfsVpO+Ow3rJKgV//9je8efeeP/nhn5Bs9jXRy5b6YsnUDaQbQxcmPBGUIsSS6FkAu49DqZyEFu+HK3BUwKSUw6/ndcVXn33Of/e/+l/z2bPnXJ6d03UHun6g63vev37LL1abbMB/2KNkAaoJnC9mXJyc8OTsgi9fvGQ5m9NWDdY2TCEzbQCQClVJVFPxfrPmbr/DpchXP/gB7eUFY0p4BL/9+W9olnMQgnHX4RyI2R9m0/GHAywlaQK4B1fyfXb/aH48xJF+S2YlCEgqFwyZJFlTPTpH1g2qaRn1jnhwTL0nKV/ciyVzW/H47JSd7NiMO7b7uyxpiBEhI0pCkJIgBaPVWQ8+t8xpCfUZNBdsd9lYkihpbIuRBkRCCYNCI5NEBIFGUVc1rbWctov7FJmIR0tVDDgFbvLstns+fLhhs97jXURry2JRlQhEx2a7o6kqmnZG07T30yWjM39DlDMnj1TSmBiHITMPSCXe7WGO7OuSUyWmyRUjP4HWR/aJorI5SjpLhQyTmD4S3ELIP6f8eI1ToYZBjnZDQwiifJ9ciKmy8GTz2LzbpU9WJoFACXnv+nw/XBHHucPvf/UR4UmySLkSRJmNE0kZTc7J9QItsglZKKh8hPtY5UxX+1iIH6+GhJwYUIx+//PnU5S4ZokojJtswFsowg+4tIq6xYdIDl/R2JNTFtKArqhVhapqXAx0+8O9Ma+xFivLdRGRmCIiZTDItpaU5mRBamR2Mmfa9/TbHWEaCd7jfU77Mii0T4jOIU12a7eILAUIOSXI+4iS+p4uKQIQIstZzT7tcc7RNgvatsV5i1SZqZWEw8eOFHJKVBwCt6s79sMBISXd1NEsWhaLBcuzBe28zTGThJwmE7M2vx9GjKmyb07RNyPy5EGQk4dS+ZCmwjZgTiJRKNI44b1D6XzzPWQR413gsM8MFu8D83nL8vSE7/3wS54+PUekDB7ElJkZUili7DE2U+CXp0sQMI4ju/0+g5Ayg5d10zAlSCEbG9+s37NabcBqnn/+hCgqTh8P/PTnG/bdxDA6pHTENOWJpixFVUmgWN3t2O9GYtAYM0eIgRQ9YLKunpSnuSqnWiid7283TvRdR23h6ZNTnj+/RIjE0I+sV3vevL7m9mbHOESMbRmnPYeuR0rPxfkMrXS+SsXgmwRK6Hw+RK74Npst55ePqWYz5os5290dISWstQz9Aas1YvZwqKY3xTtDQBTHaVyA6Ms5iQglCFYw+YQPkZpAXaaX465jv9ow9QPNrKFatui2QmiB2XuqfqTe9fR3a4IwDN1AGg6kRYVPHjf1jDd30I/QT4hDh97vYRoz5XW7ZnIdYdiyv0ukD4Z1U9EojdoOLHcDTT8yHxOVT9m3qgRmBiWIOk/rohCMbmRwI5OfwGia0yWzizPq0yXXXcdhvaW/2xD6TIdHgGlrqlmDbeoi1czr+tETOOaxX47fJMunhEolajPhXMRNnuRSSYJ7uOMf4a783kp8b+R4D6hzDwp9Sl8WuVgpxJf8+wjRIFkgk4e4QYQpy169ww8eP/lsYGokyIiPjmkc0SkShaBKOZo+ktNtpLWESTCF7L3kPUQvCKPD9w5cpLEW3SR6PzH1I5tuj6wFoha0p6fMz89oTpa4kqyVXMJPnrurD2xv7xj3h9zcOY8fHZNPZP6VwCeJC6EwSAPTFAglLSiWc5XgPj0o7/fH6MuHBViamSKIzGINKktaLAmtM6AeUsh3sDJoY6hSTTM16K5D+gmHR1nJfDnjyefntOeKftjT93uGruP16zfcfrjlw7s7Lh5dsDxZcHq2pLUSIxJRfJo2ItDCYJVEiUSSiiR1BkaEIuDpHWz7if0QGIIgUjw4RPZNOjJWsiQoy4LuAZaUG9gABJGZKznZMEuVSPI+sY/yvrauUVWFsJpQLGoEHFNi871dgIQsozK07Szv/58cIoFK4sHKk+16xzRNOOeQ0lDPaipjmDctjTkOETXHqizXcCUC9who3t9HiWfPnrC5u+Xm/TticBgjUUYga42oNaqpaKuWR8+fIoRghUTWFXY+Z3Z6StXOEErlWo8cLZxTCkvNKI6MFnk/T5MoKltzenrGV199n1ffvOZ3r77m9es3/ORv/g4XPAnB5198dj9cA/LAkWyQfRwNJoBPmA8ohZCKHE3cIPWMGLLHISncp2urysIxHjjK+zAGKXMFnEgPyhgDuJ8slsL3yLc4Gu8KCVJLpFF5SCoSSgtsgKZKLKo8uEohUaV4b9itRJaDilT+vL/d8vf7COJkSc4xdE8edSVSIqsa1TaIyiKaKkdKFRmjrCx2VlMHzzSOkDwpJoyV1K3CNtnLSJBycAaWlMAFRyJhRUQagRWaVFncKAlUoC0xeWJUHGPVP9b5xYMpxY/svbJWJD72xPeytHQUnz78oYuyIpSk1svlkmcX5zy9OOeb2xsO+y1v377hzds3VM9fcn52yUxY/DgSg8+SGZmVB03TMBOaYb3j1fg7fnn7nldv3tENE/WfWULwudcdO4KWBCtxJntHTSSilAipihw4lucpjzs1eXuMpI+Dc/Gx12qblovzC7735VecnJwSE7y/vubq7oZdd2Dfdxz2e5zzxJjQlc33S4pEP/Fhd2Dbj1zfbbm923Jxcsb58oQnT55R1XVhowuOUEtKkd++ecNqt0MrTWsq9qs1nQ989vwFyUWeXT5GaVW8dyTyD9RTPmw2InwyJjo6LOcbHCHvdXZHmnCSkLRACo05O0HVDbqdkZLFyT0h9iTl8sP0/2TvP5pk27I7T+y31VEuQty4ceVT+VIgkUA1gGJZoYgi2aS1sTnhtDnkgGbsz8FPwI/AGcWkJ21sY7NptGKbdaFLoABUIZEAUj5xdUgXR23Fwd7HI14WqpuVL2Ac9Pk/ixc3PNzD/Zyt1vqvtf4rQqEU58fHlEiG7Y7N7U3aIpVClxpTaFRhCELRS4kqC8zRmmX9GGGOiOqIvh3BQewd1bGBQh8MBhVSCYqMkVIb1vWSo8WSpirxfsQHC5kIECLX8HUDtzcb3r+/YLvdJ4OgqKjrhtvNFmstt9sti+acum5YrY+wbshiqToRDdMGL+613RpHTFEkguUhUznzYg8hEQHjkNr4apU6TSipGAtLrRMJpLU5EBAHIiUf4PcolmRME3Nnqek9JnIiTwqRnVchM+kmJvl0IIl+xSld8WDspjk0scCCqZ42RyKUBC1T1yARUi/7kIx8GWNSd5cpAh4O18BBiPf+2ZJX36F1+HS9k/OZnn93zemxvPmquzRH5x3OKZwzDzhuIKoFdhhwLpWSmaN10mGoV0gX0UhcDEmxXqY0ar1YokqFUoIoYjKkbcQNoEuDqQqaoxUqQDg5IgwWt2nxXY/rB4a2TYeXFCihEINLkQktKRQo6xG9Sw16fIrq4lzuMhQQPrJelgS3p8NRV6msx4eIUJHtdoMLDhscIVh8/nxXN1eoXW6VJyPHj45ZHi1YrCpMVSaCgQjSMI4OZx1dPzC1fEbm+nZElhaYDvu0zUupERrUgkRaKcm496kbp1ZIrfjNkgL/bYzDyH63Z7vZIhc87IYAAQAASURBVKXk5PSYZ8+f8lu/9R0WyxX7XY+/skw142Tj3BSaqi5pFku6bkPXd2x3W05PTtB60pop8NYhlUeXmk03sO161qdrnn/8mHqx5mUnuLz5C8Kbjq7fEulxvid6i5R1fstAxNO1LXZ0KJH0XrpW0MuBEFRei6k1LDGlrqeuMA7bD9iuY700PDs/4tmTE2IIdPuB68stX3/5ju2mxzlFYWqGfkvfj2jtDnoKU7vKED2gkUqjVUES1BZsbm9TPXuhWa8X7PfXRA+lMez2W2xlMmH4MPCabKCTTYOAwKdIpM+GsUrPszEyeI8mdWLxo2Pc7tjfbrCjpV6vKdYNqilAghpHim6kbHuK7Q6CxO5b3PYGVwpsSASL22zRPmICaOcxbkSHkNoat1u8VYy9ovU9vbdY73hyfMKagmVUrG2kcRHtU0lm50PqboHEGZNaiQqwtqcbBwbvEKVhcXbC4uwEs6zZv71mf7Ohv9nAMCJILZarVUNRV+gyCYrfhQpIYuohtfK2zmFj6maFDER5R7B451O2z0PnT9+lSP6tDx+coHTw/q2dhoWESUPjkNMYFEJWyLggGRJrROzAW6LfpUjqmHJCVJFIdxsGfBhTJoyQyTEm4kXEyYhpKgKRsU9E0zgGxj7ZAK53SB+pywpTpy58u/3IdmwJvUSMmkenL6lO1phlwxAS+RW8ZWwHrt69Z3t1het6RIhY6+h7y+gDTkickNgIg03dTrxzWJdjfiIRBncEC4f7kBuy3d2XB8LRSYnL/w0hlSabCEZGYm6NneaRQpmCQgSqssIYjRiTDSC1oF6UPHn6mGflMV23Y7O54ac//hnXl1e86Ua++OItLz7+hMdPn/CpbggrSaUjpUpBmcS7JXnOQukU4dcm5boIgRWK0W/ZDY6b/cBu8FifpC6lUN+I1kuRKAUt7ssHp6AAiEQ4CtKZJichYZEjkplsITnopqpQpQGj8SLekSuQM4MjU0K+VCoTLE0qM8o2mJgEXx9w4PbbFh/SjKiqhtViQVWW1GWJImvRBCDneBBTxkTqKEYqTQmTA+R58vQxV+8f8WrVpA4xWqCMRFYaKoOsS8yi5OzZsxTHtg5dVFSrJYuTI8rlAqF1FroFcuZQIrCmcF226SanGIHWgsViwYuXL/nBb/2Q0Xm+/OoVP/mrv0ZIgSkKTs8e0TRpzsWY2kxLkv06+T2pZe9dtpcQMhMsEiE12kwi2qToCPlLTHZsyvyLiNxBR+OjP2SLPygOzDIHYzgN153m4CEwqrJukZYUJlIXknUpEUUqm9MhUsq0XuU9cmX683f78aSSJQ5l+8hUWpXmrkQonbJWqhKMgdKkYCo526U0mKaiCp6+3UEYiSFSVJLlokBXBlVmnyIaolL4mHWyosMJT6FJvo8qGaXAixJ0ScxByBhFCvJOfgs5cCySHRl8ylj/phiAuPMpDkQSD7tRQi5CSu/jAhw1NU9OT3j59ClvN9fsu5Y3b17z05//jHXV8PT0MeuTEzQxnWhT1j6gEITBc7m/4Ktuyx//7C/prWexXNMUBd45ur7ltt0xEHBK4LRgJOKyGyeVIrh4EKhNu1YiGWQ8zHDcdG8kKCTr1ZrHj8/5+JNPiUJyeXPDu3fv+fryLfuxZ/AWgaBpljTLJevTM8pc9uiGjpv377npeq43V3y4uOZ0dczZ8SlDVJw/OaeRC5RSWCHxeKxz/PTLr9gNXRL7VYbX796zGQY++f73KbTh0foYrTVCKYTWqXPVb4DfmGC5i/d/8xFIDFGM6aaK+7NrqsVOL00Ge1IHJOllFJiy5LheM57uGa823IavGdsdcgiUIbAuKprjI9ZK8df9FpRA1yXN6SMoarzS3ETH7d6B0SwfH3GkTwiDYtht2by7oe07RpEY69XJGmE0+3GAaNFVyWK95OzxIxZ1RVkUtPsdAUcUMWdZSKyLtPueX/38C96+fc/luwvwKY2uXjQcHR9Rr3fsNls+vHnPft+xqCs++ugTXr/9Gq0LhEhlKt45vLXIwuC8S5FlIiKmtrxV8XBaHianTcYYEnHhPXaATvTp0A13Cw9IbQSlxsWcgofMLKXMB2fa7MIkXKvk4aBxbtqvRWoBp5N4qCwUOqZNSfjplMnTQtwx6CL6vOGCVCan6AkQuY2z0kRTEE06SK2wWJKwEhF0EBgUhdSJORM6bY651llAdhIV3qf0zWSw5EMmBqy1aCsPGS+HzfPel5SpU1HwqVTI2pGui3gPq+MHVBZYHuN0jx0tfVFglgYZoFpb2A+EfqDd9+jRYxAYYRm3O4xRqEJRLmt0qcFKgrMIV2K0wtQVVVEy9gO2HwmrBWJ0SBeQ1ieV9tEyjgP7riOOHtFbdAiI1oPpkFVBITWmjkS5xZdb6DqK4GkeLakXgX4ocLGnaiq0rlkfr7m81mzbWza7G6SpqJqKsizY7nf0OY1RV5JH58dEsULoQ7oGCEVRaqTyWONo24522KO9Zrk4QvicjSQzMRZTdljwkXGwRDsS+w4lBNEYfFVyvbtNhoWWrB5o2N69fs+H9xdsN1vOHp3wB7/3u3z06XOePD9ltxvphccoqKqCru1p93tW64bzJ+ccHR9BFNzebLi6vubmdsf5+TNOHp1wcrLm/cVVKhVxI9/5/HMub29pu5ZPv/spn3znnKoyxCg4Pf+H/Ju/+AX/+s//hj/5F18zdvucwrtkuSqpGoEN1/i4wcdIiJKyXNA04Jxhv3eJXI2gKBAhooVhYWr6TUcYA7Uq+cFnj/nk+RlnRzW277i+2PD1Vx/48Y9/gRA1SiYxY10U6ApUKcAEykYRHUTrcAwEpTCVYrFcM4w91g7s97e0uwuOjgxPztZcXxq6IWSnRuK9ox8ervtTfzAMk5Eoo0cEj3AWbS1lrh1ukalrBaADxH5g3HZs336gbfeoomT9yVPUk2NiXeJVgL4ltlvYbzBxpIw9lY8UYyS6RDJ5axmtS60lrcP2XaqIzF2nqA1WBHZjj9pco8cR4Vz6O2h0VBivUD45ijLX+UetGLVEr1ZQ1IxScr3fcTN27AmUjx/z5Aefs/7oGfuh4+rde/YfrhG3LQ2C9aLi5GjB009fUh1VBEXqJDX2yOjRMXUO8zbttXq1QMkComewHWPXJ5FwFE3RYJROe/SD4teDEt+0bu/0K5Kw6DcM4elfgoNwoSDpsqTzTyOo84gfQWyJccA7GO2Ap0NVYyrFkKnd+LKuMaXKGXKe0Y146YjGc3y+pt8FdjcjNzdbLj6MbLcBYfcsKWlUSVUuGVyPEZJCCLZRMa40rAyn3/sIfbbGlpLOdpho6Pctb794zdsvfsXthw+4rsONli53AuuCYBSpQ0YfYBhSRDOEya2Sh5nvid8gV+J9cuWBnYY/+MOPGVxHbztudleM3QBjpLagioGoBqxwBCmQ0lBIQVM2FMqglUYbSQge70aC7Tl/coQ6XeCfnHBsKm6vd1xf7/jZL17xyy++4usPl1zsWj7/5JTTo5rTdcVJtUDH1DmRITmJMUK0AlmURCHxPvD6wzVfv/3Aq/dXtA5iVCkLGtBSJL04IVERlIhoAVqEVBYUcyZ3dk6iShkVUaRModSqNJXzEO4c87IscyZB7skyZRnkuTzN3uSY6yTgulincvOcrRx9snOEfji7sm6OqOqKqipTKclEMoRkMybWD0DfIxYEKW1hIlnURL/w9NlT9ptbri/e8rO/+uukc1cI5KJArCrEqkZXJS8++4Tlek2zXNFvdpSnJ5THRzTHa3xZ4GXKArlbxYm0Srct98bKBOs4jBhdILRClwW///f/gLPzxxw/OuW/+C/+7/zpn/4pX3z5K6SE3/rB93ly/pjCGPw4JjJOa6TQRBw+upRIrchBRXLpuriXrZd1/ZA5O0Ljo8uC0plIycSGyi3TQ+7m+aDIAancO/wbpGkgB0k9uOCSNqaWyEJTiTRuZ0uNaRU2Cry36BgQ3hOsB5O97UwF3I0DhyCpzEHKQ4eUe06tKFLWSlSKKETWXEwZpVF6qBWFKFmONa6IEDxVoSkXCl1pikWNKCp8SGVWQ+vwQwGuYwx7fBhzqZJGFCnrqqwbyjplWzmXJA9E9mVH69AuywUoQdd1lAgKIVGZNLt3Yx9+g7wHacAFi3MRWRgWRvH05Jg/+oPf593VB75+946r2z1/9qf/im6z5frykv/oj/5DTFmipCRam3T8fMB2A1999RV/8cUv+Gd/85f8+NWXfPd7P+C3f/t3UB5679jagTe7W963G0xMNnUjNFWQaJ9yYxW5tbf3eR6lrB4d01kaiQidQjFSSBZFzWcff8rLZ89xzvP/+W/+KbfbDdt2j1xWnJw/5vnzT/kH/+Af8PFHn/Do9IzV8hidpS1kCNy+f8fNhwsuXr/lJ//qz3n/6i2v/uYX/MXf/Jzf+sEP+Oijj/j+D39AvV4wDi3vby7443/1r3jx0Ut+63d+xNnJCe8ur+itQ0rBj370I46Wq9SkxpiUyaJ+sySHb9FFKJezMBGg8d7XdDTnJXVgcacuLQJPUhtOTG9IRItIHWcQGiNrZClx44DtW2xw7HcthSlQpqQyBc35CbJUVKua0yfPcF4xjIHxeku7HfFjT+8uMLUnDhG7G/HX74l2ICrBVkm0PadYLyibguZoQb1asjxZ06waQgzsfEfPmITslMEIibPQdh3v3l3w/u17Ntcb/OhZ1AuqZkHdNJR1k8RyixIZBO12gyBQVZrlcoUpikOpTvCJCfXe4dxICD53FUoHqNYPV66gcipmaiN2p5MyjiOm0EgrGUeFHe09kdpMotzrGHQYawFTnDcRa/KQ1ZEO2VQ2MxERQcosMJsPeREQIaTNVcqDHgt5dh3M3imtJIme5C5Piqg0UeXuKNITo4NcuyzRyENc9V4GSo6uTmVOMj8u8kFwqJ0MAeci3ilCCInRvP/x8nkgZWpRrXX6sqPFOZsZ+ocjWJbnTylzH3upFFroVNI4WMKmxe1b7O2O4d0lQ9cT+wExWowSaC0xlUkq6VomkmvZoKoKXZfIskwRnLJI0QLrET4gfUSOJdqOqGFAlgY3pjT4vh/wg8f3Hrfr8UIylh2bwVMKnTpBuKTLoqs1VSi4vL5BF0nk2RRLgnQUC0PRaIapLXS9YH2ypus7+qGnHXfsdjvM5RVFUXJ0/BhTVCgtU7YSiaOtypJhGPDOs9vtKIQ56PYM3qbMorzGXN/hrYVxwEiRp1fACkHbd7S3Hd99oHGTwPF6hRDPOHt8ypMnjzhaLVBSkJtrkYRcHSE4EJ7lckFZFkDk5uYG6yxNU/P5d77D2eMztJZsNlvevXmHtX1KoS4ELz59gfeB8yfn1LVBm3RdZ48Lvvf9J0gZ+Olf/5xh3xOspDBVGh8jCNHio82OZHKyiqKkaQzdsMPbnPopNEZLSlNQFhX9fpdKIrTk45fPWTYVIqYI/OWHay4/3NDtLUKs8DEyjD7PxXTyjs4xdD14QVMucWLEoXE4pC6QzgMOJQL77TW7W8PLjz9m1dREH/BjoCoWEATbTf9Ao5b3hhztkURUTFlxeI+0Dm09yoMIkkk9Rg0jdtMyXG/Y3txivU/dy1YNvjY4I4jB0W23jF0y8KpVSVHrNIY4xLTPSkFhNIGYupqIiDQaXerUulkCMQmn40YKAsooxDiA9Ahhki6WCIQANgQ6D50MtFaxVIYRGOzIddfSEYhNyfFHz1g9fYxc1lzc3uD6Eek8FYLGGJZVRbNoqJY1XgRGbxnsSPQteId0FmlTSYNSGu8DPgQ8ASFlKpMVKSPOCMOdW/qQ+IYpf5et8s0H8lMnU/AOE0mfWyDevX56eRQQNULUCFETRU2QJV5FogmoOmC0wBiJ1qkbglCAyGd+sATpiDpSGk30gbHzKKlw44h3I7iBpq7AGLxUWC2JdUmhNE1RYtYN4uyY5dMTYm3wMqRSguDo93su3r5he3NFv9vh+oG+HxmcYwiRMQiGGBhjYPAR63wu551uWrrWO2HZ7CuIu34Y9+/zQ+H7v3OGDQOj69nsS9rbPXZvcdeeso+oMiILgaqKdMIHz8I2LOoFrXM4AkM30O322L5DsUpddJTm05dP6B49omsdz1+85KYb6ayjd46vXn/N5aXkdFXz5PgRC13SqIJaFogoCSGRiPtxy24cudy3/Pznv+L9zS1tPzI1QgwiZfOqENEhEIOnwqcqCAQptyU5H156yGL+QsZkq4hcBkIi8wISMtkiJns55Cy66BI5eBibnDVxb1yEUOiiIIwOmQN6ObniQUfu5Ow8lyWnbj6JqEs2VgCI90rDs8hHRGa2LnWJu8skjhSV4dHZCZ995xNef/Gr1KpXS2RTIEoNuVGFqRuWpwIhFTcXl9RNgyhLhCkgl/GLgw04ZQQlSGLyN2IyP7URIJKGn9KSuik5f3rO74Tf5le/+jmvX3/N1eUF/+Kf/bdIPNGPvHjxEiV17qKkiD6kEi+hD2PrY0jEgxCoqLN96SF3qPTeZX8oBZ3vMqGT/piIAe9GpJi0SR7WaZ8yuafMlcPXtOvFVO7pfeo2KaNGpMMHowLHywL2BYPXDFailUvFh/FOt2R6n2/MuonYUSL7k8m+l1qDNgilk8B8tvdDFiee0mpElGgBkUC9rHBYoo1IPLpInSSlFqAS+SGFRhrwnSZYg7A+rbFMZgkp0IXGVCWyKsFLZEyaZUFCDCG1GR4SLygMuazWU1rPar0+XJ9U8uAl5YtNJeoPOHQ+2kzCgoiBIkaWSB6XDT/66BMqFD/tvyD0A2+//prYjxwv1nz88iXLxYLNzTU3N9e02z37q1s+XF7x5uaKD1cXiH3L+P6G3dF7Lr56hTk7QSqFC4Hb6xuW0lA4aKKmiooiqty5yx9K/RJZDDamcsSpC+uBWBSC1XKN8IL9zZ4vtl9yu9sjy4oXT57w+Y9+i+cvnvP0+TM+/fgTFosluijxAUbvUvMVa/FCUC+XPHnxgkIYLl684+r9Be/fvObtxQW3+x27seOHv/NDtt2en/78C95fXdN6T+s9arGgWjR8+vgRJ+fnnD8+pzElond3+9NvOHDfkmA55BpwR64E7m9pU36pmHb1vIimTTYQ06YiBKiQ08QjUmmEkdT9Me31Dd5Z+mGg00ndVxQFxdkJulHURw31+RF963HbEXUt0EMk9iNh2OLLgHAR2VvKdk/0I15GxqsL7HFFsdA09YKj4yXVekl9tEAYxWgdvR+xMhmuKve4t/1I1/XcXF+zvd0xtAP4SFlUlLmFnjZFaimqC6SH/faWcRzph4GqqtAqsXzeuax1kfQunHPEENAqZZlIKZIg6wMhRTHShLE2HFqdTp0DvPf5s7iDtkicJtih3CePI/f+efgxW2gTeZvZGZnTX1M5jUpZCITDfDjUBxzoECDrZty9R36OjKQe5yqJ58oUCYkiayQIz6StMjnYgXhozXkoW8o/T8+bDprpCmNIgr6TlgxML4kTqwj3yCOlJVonod8QPPGBdQWaR4+SsZuDQRKJCJFoHaFscdUeJRXDzZax7RiHgbDv0KR6WK3J9YQCZTTFaolpasyyQa8WWTldpQgZAqGTzaa0QDqFNDo5TIPF9yMmSIZhwFpHdBYRwQ2OvfPpQKtLRJXWgaw0Bs3NfocuTOoAUTUshUNXGl1KbrctRpdoZXh0esZoLf3YcXktGAfLdrOhKEqMWVCF1LZRymnOCLSQjFEk7aN2jxX6MP7tMOC8xXuLtUOqQ7U29b03Cq0kqpAEAaP37LruwcatMIbj42OaRcXp2TGLRYUx6QDOMUViJldCNkrKokjGKhHnRoxR1FXJcnlEWZaMY8dut6FvewIWpTWowNHpGoFiuVoipEMIj5CBupGcn69w1rNe12yuWsbg0SZpGUglcSGRdwGVjd8k8FaUEaVanEtRCoHMxrRAykD0FqJDK83jsxPqsoDgGfuB66sNt9c7xtETAqn1a4gYoZJKv4p4oB0GoosoVWJkEpCz0aJ0gZQWgUJLQd/u2W9vKM1nLKqSsbfsO0thSnxwtPvfrJ3e3wYxESskw1aRRVpDQDiPciGVtgRByKn83nrsrmO82dFudsQIqjCopiIWBkfEDT39ZovtO0J0lIsSXWqUEElML4YkcSkl0mhcDESfdK+0VujCILXEEfHBp9aRMXXDqIxGxxQtVyrZ+SHraYwh0nlBR6CPkUoIrPPYwbIde5wx6NWC9dNzyuM1o9HcXF3j7YgKgQJBYwqaqqSqS6KCzvb0oafzHdH1SG+R3lOLOmUzZh2ECCBEalms0lmqpURGhYwSda9U9GFxn1G5M3nvE+Xx/rl2+IXIr7r/u8PJkBxFJEKURFmBqkHVRC2hEMhaUFaaojAYk4guyJkJPhBHRxSOKCNKRZRKvoNRChdI2T824GtJkIoRsFIQS42pKqqmRq0XyNMV5bpmlAJHTOfskLKdNjfX9Ps9Q9dhR8sw5tIgwEUYfcT6iAvh0I455ts0lTn46Q4cjv07Xau7G/hwY3f+ssJ5gXWCZTvSrWHYjOzViPvgCMoSpEcYiRIpS6saS5qyph5GWjswdgN92zF0PTKm0hwpBcvjJatlikqfncN1O3Dbtrz58IHb2y1dH7gODukFfVEzmApnarRQBA/btuN617Hpet7vtlzf3LDf9ziX1lfSrfFJ4yhrNKiYW7dDLjHITR+yhxZzaFwqUPmsQnJXkpB1SkS2k4L3uatjdmCZyn2SvXNfh+XgsCoNKpVvi+zYxMzEPNTI1YuU7ykEiVjIn2niUJIvIImTATMRLKTn46YMYRAEtFGsjpY8ffaU5WrBfuiJSqCq1FEGrQhSIouCSiQb2XmfzsEiiaBmMzQRV7mN9MRA5fgfE50FoLRMpY1EhNDpM6wXvJTP+f73P8faju3mhl/8/KecPz6hrgrOHp3RFElXkXDXEU/IXEaSx8QHnzV2kq+TZBKmWgp3CEQqIQ7dnUSYcm+y7spkoz7QmB1wyMwWd3Y2eZ7kvTGJWntkDsyG6NLQyUhTKcZSIUpNNBIppoCrJ7n/94m/X3vf3DJb5E6XCJEFik0KpB40c9L3KdA6leuIKJBRUpQGOeqkneItWqeseSkFUYlE1qgSIRVOBMIYQXVYGwkxZemJrL0njcrZXSIn9kxdQgXOe4JLsg1KS8ZxyOSqoKrqRIhJicxEkODA0R/0XB4KIQswJb3DgMkzeS01nz1+Shwd3WbDzW5Pv93yZhj5yV/9hGHsWa/XXF1e8P7de/a3W7rrDfvNnt45lHccRUOxt7irLTfvLjg7WqVSKqC93aJVhbGRCk0pNBqFmFKr8n6V+6LgBVnbVhzGLJ0zkrKoCNbT7zs6H1BNxfHjM15+51P+g9//A54+PufRyQmLRYMPETtadllDJnqfstBHiwB0VXB8doYQqXR+tAOvvv6S7fUO+0vP+tEx23bPL7/4ipv9ns0w0FrL0fljvvej3+b06IijoyOOVyt0kHSb61xh8U2v9N8HvzHBklxjceBMpqKLiadKJS7cT2pBhJAFvUQubc7O/SR/IyJRJYZfaIUoJPXHJ5xpye7smK/5KV+2ASUjVVkivvcJemmQS8OtEWzChn3bsqPH+EgxRNS2ozaOqioom5LH1Qlb27H3I7fDnkJHlsc1T77znPWTR4hC4wRsho4Rm9puFoYQJS4KRIjsd3s2N7dsrm7xg4UIWmlKXWCUQankqJbGIKuGZVlze33J7c01X331iu//4LspWj5a2n1LWWqQIW24JDY1Za1IQjB4/3BN2VQW60lZKxZjCpQSjOOIdx6vwqFV43RY+FxnOA1mEgzNtpaYiOi7dsbEeOgGlAY+omRufyZSv3lCEp1Fi5wjO33CqYI4cticU9g8v1kEmdJlpdQIqdPnUDFHH3y6jzIJUEqtcv2xT10PviEQlsif1NZXYrTCOZmEV2PaWEOImXTyFEVxmMxqUg8nfSytU65MKJLoprUW5x42l3P97CWTavno3EE1XcWIPB4I+5ZxtcL1Hheh7Xp2wzUMI1gLrk/PRWCUom4aZFkgqxJzckSxaDCLimK9zG2tE2GklEIqSVEUiHqBsA5GT1w5uu2evuvY7Pbc9D37wXK13/Nhv+XoyRmPP36J0BW6ECjlWB4dU5QLVNGgippVaVjENSt3jNZX7PeOvvM01ZqnT9cICa/fLnj95ms2N1t22w47SI6OTjk6CiyWq5w5lYjBOEZsZ7m8uCI6d5if/TCk1HGf9TN8MnSlCCiVIlaq1OgyOf7alA82bo/PHnF+fkoUgcHucXagbcGYdYqiBccwdFjbAQGlJc5aovdoVXB2dkRZPYIIw2C5uHjLfr+ja1vOzh7T9VuCGHFhSLXsKJyLtHuLUqlzSdF4qqrg0dmaZ88ec3vZsfUdVVVS1RVSG7re4ZwmhAJBRfAFSmnKIlJVKhMwA863CNUQYk/bB3y4yWugyYanIVjL5btL3nz9jg/vrhh7z26/BVmiTYENllJpZKGRxYL9cE237djtAo+fHCELjRk7jpsjnI2o0VFpaDc7bqQH23F6tEJESd9do0TJMAS22+HBxk3HdECqKeIbYiKGvUVYi3QOfRDwk5hg2HaezeUt27cX3F7ecPLoMavVMYv1EbIo6Dct+7cX3Lx6Q9hskcHTrBokaZ+Jw5CcQqXzukutqF1wOCWoqhJT1whj2I8dvbVY61L2pNEsjEHFSK0NpVIM1jNmkdkhwLb3tFLSakNhHft9z+1my+3Qc/LijJOXH3H+g+8QFxW7sePy8hKGPpX6acVxXbFeLqjqkuubK97u37N3HRSBAkelFauizARcanVZlBqdurQnceSYRT+FQiGRUSD+zgiWCfeJlrt/TfkY//aj902qqfRikggmGflSI2SNEGsQHtwO0ayQcaQwjuVRTVmY5PwNLnfJgDhCEGPqmAN43+NdwNmRRVMyOrBOJvFAXTAIwWB7nAjIskAvVpR1jVpVyGWFKVU6r0LERxi7nmG7Y39zw9B1DH1P1/fsx4ExgBOSAcFgU5cgFxPJkpyoXKJy757ckStT5F3cEVEPPGzFsiUMWxj2mHJHc1YQVwVbJfnVu2u2veS2O+V48SQRV0LTuIJ1U9Nby9YHtptbdBG4ubhNpoAQSQ8CT2kkZaGphaY+Knkclrz4+JSu+yTZddfX3Ly7YO+2mChYqDI5BD7QD47bbqDzgdZ7FnXN4CObbgDvkp1EwBRVSpQQ4ETExkRZB1J7VCeSDSxUOmukTNp3JRojFFooTFmkMkqTssxkfu7YtcRxQDpLmQOahJi6lhS5/IY7+xwkSpuU7aNyRm8mHx4SgdRxRUiR7Hnpsy5fJovSk7IJlwOsQKI/4sH+T48kva/F0ZonAj767FO+fP2K1lvK5QJVlYiiIKWEuUTKVxWrEHDeEzNxjE4abkkP4ht5LCnzT8QsVj6RriqLx0OISROtqBSn1TH/6B//IfWyQOrAv/hnf8y//JPI7eaKZ8+e8fT8BVWRyoNyj+1UwhVHhIxoGRHCooVKJV8xkUgxenzwSSA2FeJlZdDkF0kFCp8D0SF1YPo72CaTKyZytz6VCKCsVzERd0oKEjsWECJ3hBMy7esFlKUkloJoBGF0qVTfW1xp7rLIxT07XuYIgJLpu1R5PSjQJhNk8kDAfEOb6ECLhVRSJlN5dd9KnEwamVImXUTy3wwTWSQVRd0gKonvLb4bcDbiAmglcoJTIj3JAVelE9Hpo6fLWd1aGqqqou9GRmsZnUdJnTOzDcqonAY5kVVT+dXDpbAorcAnwh7nMCEe/PHfefqSF6sTPj17wp//9V/z5sN7Ptxc88//+T/lT//Nn6K0xjuXJAaE5kQvWMuC56tjls0KGwKDALm1XH/5mqeffEK5WnCia/avL9G64lgYGlVQ6gKlVMqADEmtTooUEErefH4sa5CpCFEIlNAQBMN+oHCS1WrF9/7gD/j0h9/nh7//93h59gS3a+lvN/zqV6+43m9p7YDTgqLQSWdSJBFd148Mu5bd9Q1+sATnWT95xCgs11eX/PyrX3K537DZt3zx6hVX+xYXHO9vb7jqWwYp0U3Dd3/rhyzLBrvr2FxcEa1HLxTmN/QHvkXhs/jGJi1yRkASRs/CUQeHNm30U9pZJKXmqZjSqiUqbTDREXGE6BC4xOZXNea8oS4EKz9y89VbRptaEJpyASZdRRSRvlbYowrxXHB0KqlGKMeACS5FW7VIKvNiQW1WHL94xOMffIfV88eszo/BCEY3sh96ejuii5KqSGnoWqTJ3O527K5ucPuOddVQGEM/Wno3IqSgKguqqk4tnaVAC4ERJednj/HOcX19yX6/Z7la0NQ1N7cbhIw4ZwnOUpbFIRPCGJ1rNx9wUeYuHSGX+hitUVLhhc98QypZSqUXMkVRczTC+4AIacO5a1+csiLuNv67SKE4lHUmxvkQoVBTZknOzJlU2oQ6RDXSU+8Ov0PeJGlzFkrnMpmkuK7waBlx3hKCIohUOhRlfj53bZjvJzkLkciGqVuQkhIv/KF8ChLJYq0lhJxVIGSmZOO9DTNlhpSlIcbAOErG0T3YuAEEnTqt+OC52bWJNPAeFUkiltYhi4Lli2fIokBXDft+YH9xibOOwkVqIZNIc4Dheg+0yZl4c4MsC1RZoNcNZlGjq4JiVbOoSgqjkSbVuQsEQivUqsA0FQvvqfoe07aUfYffbfkw7HFaoBcVMdfsqkKz8AusC7g40hiRHMjcTeHR6RlK7tlset69+RJBil6dnRyzubkg2JG+77h6/5Z+u2N3fcPR+hSp00HonGUYRobBMux6trtbXBZ91CZ9bkmqi5f5p+ADLnpcSLX2OItUkvX65MHGbb1qCCIw2p7Xb9+z2UqqqmLoegpTMnQ9duz59LMXKY2/H1kuFxytVyyXDaYQ7Not+7bl5mbLm7dvKMuS46Mjnj97yuW1YN9vcG5AyhIRA91+x2pREgK07UD0ad2W0nC8bDhe18jgKYzP7ec1+50j2gXSG6Qq87J0SBV4dGxYL2ukalgfrSkLRaElRSEYu5OUCl8UnB5rRLB0e8vudkDGAolmHPtsQHmE8cgi17XKkuXyCYXp6bilawMXHwa6VjAOhpNPSgodCToQ/QBBMnaON69esT4+Yb3SfLgYkWpEq0BhHi7br4ggw1SmOHWHSE62jR4ZAjqkaFYhFUJoWi+xraXbdAy3HavHFcdmwSIYhuuW8c0Ftz/7iv7L95Sto3QRpVOzVhlDOgtjEuJuraePnv3Q0/YdvU+ZBrWLyNGzH5KDLCg4Xi4ohEiCoBEKITEIghSosibokCKlnrSXSkXrPLfOcuM9+vEpJ59/wtmnn1KfnfJ+6Nnst3jvqLXCqIDAYYeO7daz8xuuL3fsRU8wkaZoKIqCUqd2o9oUSTdLKpxIEb3kf0RkUhkn+JB9Kpk6mvwd4hD6ifKwZ/+tjWqzqG2ytMPdQ9yl5k8kS+pAUqLUOjkhOMrjW1S1IIwrikaRGm9EouhTpqGzaO0pihLhBX4M9F2Hc0lgU+kCbNJZUEuDrmpiFHS2I0qR15wmeofd7vHWsX99gVksKUxBiDDuBvyuw+57xr6nH1MpzIhiENAD+9HiQirT9iEmwVFSeYsPuSzoQKxANkTSHZs0Mw6ing+Hj7/zgv3umu3mkldfXaBkIg6WK41QlmHsuGlvObcdTVVQVQUExaIxLKyhGApuL7e0dkPzK81v//7noGqMSXaUFgElAyifpP9kYlHrYs1Rs+RsfYo9e0YcRnw/cPXuA7dXt+x3bRIHjhGMYblc8uj5E570lrPrDT/+q19iO4v3juiT3aBJjuvCFBgjqIzEqIA0ElUajp89Y3F0RFXVlKJg2HaM7Ui/HVDBIIU6tBcmQHCO7uaG9uKC/mRJU+tUzpud09SFjYPJFLMjI5RCRInUKpdkkB3dhxu3P//xX/Lk/JyTR6dUdcEh1XYSe2WyBadsNnIWWHIKk+ir524+SWRZUq/X/Nbv/i6uMLy7uiSrEwJ3UfAp2lc0DcI6XPA4HxJBHX9tlcfJwjz05Dlkj0w2qDhk/2QtrBA4fnTED374fapacXX1hs3tLT/5qx/z//gvG/7oj/4XPHv+CcdH5zgX6fc9XddTVIaqNGglGTrL5vYCO44oJGfnj5J+nLnLmk52eSohPCy5kCZAaioRDq3jH+6UA60MIufSKiHRUqUsJJkChMluTlk0SX9xSsnIdXHRUZSCWGt8k1pYE1ItQz+OyYeQyQaUOVgqlPxGXDVlmCjQOumh5KwVVGYqSfchNznP2TU2ZZeKRBpKrZHaEIMEqUm6E5KDBtBE8iBAGlS9opQVYgz4IWfuTtkV5PMh7/mRRMghItokLaS6aXA2MDqP85FhHBhHmzqyCijr4qDBFaLjoTuuuTCJKwvwqbRYk5wcqSKyqijOn1JqzauLc159eM/fvPqKwVlc9JysjzkxDaflko8XZzxfnLAoaqqioh1Slt6NHXj/459xdnbO8bNnfFSfcPXmPZf+mr3UqEWFWtXERYnveqIT4FM5NV4csu1T5lXiBUqpUcZQlCV1UXF+csazJ0/54e/+Ds9+77eRy5rXN9e8/foNtRcsUBydHnP6/AmyKhCVQenUc1fmwILrB/q25erDBdubDdvbW96+fs2tG9l4iy0Uf/31V2x2Oy43t4TCcHrymKdPn/A//sM/5Ld/9Dt89PHHVKrg4s1bdlc3vH31KpVnE+m8/Y3G6DcmWKZs2bvpl53WX58/U/nH9CNpsU7p15OrI8gdSGLOYMnPRQRkIdGrgubJMWW3xe1b+mFMbTRzR4IYYEQRtEE3QFmgvKR0EeNGiAEvPD4KZGUolxWnn71k/ewxzckRuijo7EA/DrRdh1Aag0wtvEhiq3Z0bC6v6bc74uBoyoqyKpHDgBt7pASjFWWhk0GZzzAlk/jtomkwpqRre+qmRmvDYPd07YAQgmIqQ5K5fbNI6uFF8XDR9APJkSe8kvqQpXC/RnLSKznU+IbUUUdmBnlKm0vdc3J6YSZX7tcaHv6O/OZ7k7sNTTWyh9mRtX3SAZwNuLvJcHiOyK0MBTKn76dkmIkvDeT0zENK4b35d/iKB/ZeKZWdJZkZ/Lt7FmM4ZPGkDTP98q46HcgEjlQCY/Q37vVDIeSxCFEw5M40drSIkHhGFSLaBwopiXWNOVpTnBzTdj3BOqz3SZUmiuTQ5HaiIgJjxLeOoAd8O+KaFlkVDNsK35RUpcGVFdWiOdRaqyKRLkRDUSiaUuPHkr7W7HeSclmjCp0F/QJCgjKCfd8BnkUck9hzTC0J66bC+ZQ63HV79vtrlHYsVgvqSmNHTfAjAosd9+y8xQ5dErySMmvmeLxLuhx2HLDe4kWkiAVaKkzOspJMybdTK0WIOU1eR/Gbalr97eMWXQpdC0+IjmFMhlS1r6BOad9aK46PV7lkw1OYEqWT9k/fW/a7Hbv9nt1+SxQRrTVVVdHUFW1fYUOHc46qrhAh0nZ7ap2uNXhFt7VUdaKzl01FU2mGQiClQ0sJQTJ0gDeIqJERgnC5Ek9wfLKiWRzRLAqOT47wbqQsNKtlhR06xt4iQkyRrJDKTuwY0apM7L9IpRCoiFSp00eIEecjxiypyiP6IomEBucZu0grOvbbXVJUUuk+SSXwLnLx4ZLleo0xgqIUBCxSOoqHS/a7E2mfkulyi+9AxE9ONzkwF0UKGERBsAE3OnzvMEFSBIkeAtv9nu7tFe3rC/zljsoLFCpF/UiGq4q5qxWBQXi20bIfBvY2OcTROkY5oryiGy0hpnJSrQo0Mq1/kragDCBQKXtQhCx6G7Ei6YIM3uOkgLpkcX7G4uljmsenUBq66xuGvkdLiVEgpcUHRzeOjGIgWtjJPaERqCI5EcZojNJonYThphKHyHTm3ysd5pumwkM66f8u3M+v5eDaTWTL3bN+/cNMr5scwjg9JiQRQxBVur5ipFw+QZuCMJaowhGjxfkxZS9kok4IhdEVwkissbh9Kt+oKoOUBXZI2l+mMVRlCT7Q9l3SPVDpLLX7niEE7L7n5uv3VOuBom6omiVyDIjB44YxdVjzqT20lworIkMMDFnX4754Ldz9+74fMJEqh9uTPeRDrf0DOg1Hx2eJ8BWR92++TEKzBJQSqSU6nn7sGF0PYoUpJd5GiiJiTCKRh3GkDQNvLy652uxQlWahE9ErhAZS5pQg5mSDZAdFIShEQZAGXw440zPsW6x1IAXSjCjnQSlMaVgv6pRJLSRnR0tc3OI7S+8GpNJJI0RqvM5lCiaTaIVAV1AvBMuFoq4L6lixtwHpIlbZ1IEr+uSsqlRnE72nvb1l8+ED26OGxaJENw2yqBBVnTq2TCXRU5yL5HwKFXKmgLjvrz4Yx3Jxec1iuWJ1lMpC4lT+fVhf4o7QvDMVD6SdVJKQPe4YY8qyAWRR8OjJU57sd1CXObNBHObkQVdPCHRRpA6TQd05dN/4lPHw85RhH8ixsvz7aV+4KyFKn7MoDI8enUD4iO9+/jl/8zd/zc31DX/5lz/mybNPQJUs1o+5uNlyc73h6vKG0mhOj49Z1hXt5obXr1/R9x1NXSNFwdHJmtXpgvv5ct9YSxORiThkhsf4t/hY3xJS5L5ZmchRQhKkOASkpnHiQK5kcirGQ/awVAKlFcpogpbIoFECkox2CkvEEIgydXKcegjFTAhMfaonu/6OFIEpE0scfAVxcDXlHeWS/IIs5JwIltQIIR/eedrlshohQZUp8IdHeYfzkkP7i8QgTzxbJgVjfq1A5C6dZVmCTF0zrfV4P+Kco+hLdKHv5uffxQEnZbJZ81jkGYSIEeWhAJZGc74+QgDGaFo7cL3bMjpHrRRLU7A2JUdlxaPFmkVRU5qCxpSJsO1aXm9bLr98jR091XrN7eUVdhiTzp6MyFJTVAVykLnDa57Hh8jEnc+lEJRSU5qKulrwaH3Mi+cv+OjFS55//DFBKzbtnsvtLeuoKOsVzWLJ8fEJxXGDqktCFjKPIQkpCx8IJiCNQRZFzsqv0E1NuVpROItsd7T2itZZvJScP33Oy5cv+OTjT/jeD36L8ydPqJuGvuu5urhke3XDdrtLGeZawm/YaOY3JlhkvF+dPG1MKao/sa9CijTBp91epJo9IRILK3K5hkQRxXTkiUy+pJr36F1KJ6okR89WPAmnXF4I+ncdfRiJ0RDQhAjOm2Q0aLBNiZfpQNXO4d2ItwMDDn12THV+yulvf87i6Cix5wF2mx27vmc/9jw+e0wlNIUXEBXjODDcbnn101+hx0ClK1ZHK5brJZtxwHd7lJYURqUWUlLltNt00CyaBeujY05OTtlstiyWi5RSiaTrekLwNHVJURZIpYgaYkw161X1cHz1VMsr8kahtcYYjfcFIYa7NMGJdZa5TWOMSRg2M8ZKZr0RBUrJQ4JJOpAm0VCRy4fu13emjUsgUs1qJlBSXXDaXBFJRV1EleaUiIRM1InMYseYnEIpUgq/FmSx0kAUqe455AyWmMuVxN32+c0vKdH536MxKc00Z6dMGUTOpRbCWk9EVDwczEKQS6jSbDaZYDPFw3bGCFn9PnrP2Fl2N6lMxA0uaTOQomaFS5085KJh8eI5Y4CoNcNbT5+1MAQSHVV6vkwR5DhGwuCJXYu93eMVeC3YVpqyMtRNw9HjR1TLhrKpkgK8SUJkFAXVskytsf0Rqj3CNBW61Fg3UHifnE8Gdu0lIajccSuVvjgZKIuSoihYrRq+/OoLNrt3WL9htf6E1cIgRUlhAmVpGAdHu99x+eFrlEhOpJSpra8USU5Q5JTbEAPWjUhtQJjUPScbLVLoqfFnvi/gRo8dHi77aN/eJkJBeMqmTNo4ITAMI1oZpIT1esFi1VCVFVob9rsB21s2my379pbdfsswDnTjwNnZGU3dUNcNWqWsORcqhnFkuUzrbL+9SS0Ti5qyqLm+uIGTQN2UnB4tWNaK1niUshipEEGx3wSiN/lg9CAGTKFolhXf+95zfvDDFzw6W7NYGD68/0DTVDx98phxcNxeb9ne7FBCMrQjfW/xTlBWC5pmQVGaVBAhA0IFhJKMo00po7JmtXyMcDX7uEWKnugGdtc73povOTpasFxUjN1AVUm8h69fveP8+VOKqmC5Mmx2HUoFqofqrc0duTLFVKd6YisjXk4OH9nAy6ZeEESX1pHvHXIE1Ue4Hdh88ZrNl6/Z/+IN5fsNqNR+0ip7F1nVmt45uuDZBsdltLTe0nlHDJF922KGkULKXNcvWZQqtdEmGbYVIG3qeITSYDIZXpKEFKUCo7nyDsqC5dGax59/yvHLF9RnjxglbHdbhq5jWVbI0OMJjK6nvb1FdBFKgV9BtVqmaF5ZUhWGQmmM1GhlMgEhUtlmSKnexLQe75xBdejU85D47ye3J5dGpH1isgUPjmn89RQOkq7A9FAa9SCS4Y/QSC2o1oHgTgj2huhusd0GO2xgTELBwgdk0NTlkiAcvevY02GMoayWIGpGkzrwrR8dsywKwmjp+z3RC5QSydG+vmXXW4YAX42aYrGkWa/59LufY8aItuDagaG3ibTWhqBSRHkfIn2MuTW2yIGOu7Kg6Uz7W32Ce9kRfxdew2r1nKpYUuqaV9UvsfsWn1t/aqNxMtKOLZ1tidJSVBDHEVM4jPFIA4N37IY945uRL99fEuuS87qhqJbJdpgCSdFBTGUGMYZkT4T0O6E0sip5/OwJx2enOOvou5Hrm1v6cWR0niaXG2kl+f7HzxHyDe7iiuvbLapcUBQlVaEYhWcUEScFUXmitEQxMroruj6A6wiuod2N9G3S9yMUgEIIR1nXae45z/X7d7z+xS9QYaSWkcWjM8zREYUpku2tUjvnkMdWSJnKLkT+ruXkbz6kdA7b7T4FPX0S1L6zsjhMkyl54EBckOV+RczipamLZfQRqVXquEPk6Mk5n5eGR9sXtM6CUAd9v0mDLcaI0km3Q2fnOJUjffNN7y9vYkRGefh1COLQLUQJiSM54ib7K0fLFYvS8I/+4R/ihoGf7P+Sv/g3/5p6eUpv4fmnP+BvfvElX3zxii9++TVxCHz/08949viczdUlP/nJX9J1LU+fPSG4kk8+Kzg+fUpSIRuBgRD69BFEJOT2tMmNUkTrDvvmQyJ1ZBG5q2BqRJEy2kh292TrhgB57yZ6yBk3LkwEZOq+FMcCg6RUBbiWGDwuxiSATqJPlErudpxoHJF1Vu6LNqcJctCkUdMZO5G8QiJEJvJi8tMiU8dQQxSGJCSYm2fERNameSBAGqQpUvaoHXJ2VSZkpqjuFJydbrmcyIM0DkVRpL3CBrzvGIcRGyz7/R5Tp0xgrfRB/0dMAeQHgDIlLqamDhAxKp+v3hFsEmhVwFopiuNjTtZLVqsFX717y9XNDf2uo3ABKR2u6wkLh9ceHwNFYTg5OkLXFdcfUleeV69e05yfcb25pW1bunaPaRKRtFosuNnfMuSxdiFpbKZ1ms5ajaSUmkZXrOolx+sTvvvRZ/ze3/s9nj5/Tn1+yr/48qe8u7nkanPL/+RHv8fZozO+8+Ij1mcnOC2wItDZgbbtU+nrfp8E4seBruvYXt8yDiNeCE6ePEFVNdV6zbbvkBdX6BhY1hX/4B/+IT/4wff5zmefcXpyjDEFo/fcvHvP+69f02122K6jNhpRaopV/RuN0bfyANOUyeTKpGCeCcnJMBUHJjBnE+TFqu/zy7l9c9r8JAJ9WFSQRBoVgULDybJChTUywtV2RMiUtu6dYBA9wTiaY8nZaoGJgXG3ZXO1JwpPLCVyfUr99IzF+SnmaE3QknbouX5/yWa3RRrN0XpFoQ0mG4thHPjwi6/44me/4J/+V/+ER0dnPH7ylO/8dsOj80eMMtL5kbJM9bQT06vgwKSXRUlTL1gu19zeblIZQ29TW7fgcTbQdSNlWWJ0gdZFchoPbY8fDlOUI4a0vWmlqasa5x1Gp85HRhumEoqQJfKnEVFK5BKmAqFCYq+nDJh7m7/MLeZEmB5OWTAp1SQLQUWXD9esOZMtO3k/2CHAa1KpURRon4mYKMAnPSwjBKWRGB9TGqkEzGRQiMN1fyOT5d45lUp/BGVZJC2PGPE+Ke/HKLCjy+l/Cm30vQhMnsKHzSQeyqfUA4oTw3TAgBCala4YqcBbtn2PVymqPhLpgk/6ERL02SPWWlMcrXnvYfvuA3KwjMBRWSYaIoKwqbeXjAEZBMZLQozY4PG2x3eWobPsPLhVh13WlNZSrBfopkbVDaNI3bBCBFManLfc3Fyy1EfYCHLn2I037PdbQLPbXXJ6ckxRVhhj2NxskqhqIXn+4oQPF+9pux2XV4rVuqGqF0gxcLSqKUyJFJpXX7/l6uqa7eYWP8JisaYsarSpWTQlhkDnR2xv8dbifSRETcjlb9qYpDvgAzb4pEeSa8kfCs8/Pj9M18fPHx/WnZGp5tu5QNePvHn3jl27x5iCJ2ePETGJpl5daZDQxAXPmpqiKqdgCsrAYtkgDdxsbxFojFEcHdUM+x19uwUUgcB22zOMimYhWR9rrK949vyE0Vu2VwNffvWWi6s3gKJZ1pw/WfPZd57z8SfP+d3f/S6LlUYqR9dtWR8FyiKgtWdoUwZf3/cYtWC7G9nveoQAozVSSpwfQacIU8oAM0jAW/jFT3/FqlyyrCpkPdDtbxn6G7rugq/6X7I9WXB0vKKpFsjimOgL+m7ky68+cPLohNOzp1xc/w3WuYNo90NhSnH1IqUIexGwAmzSNERFQZVaGSCcYNiPdNuBdj/QD46bmy1KfWCwga//+me0766w725YtB5Lx04OuV4/nRlSCHbO0sbAVkRuKkEvYBQRbx2qtegQqWRKZTdK0RaOUpWsdMFSGRY6z4+QtCMiEqEl2ihKpQhKMCjFiGdxdsrx82e8+P73KI+PcUqw221xfY+OcNwsuLy5oW239O0W5XtKDJUpODs7pXq0QNU6n/Wk+yBSG1pE2s+VLpAmBxOjT4Y6qU7b6NyR4u+4ROi/G1M8FaZgUXp4eiwb9ocIqmWi6yHiKZC5c51QCimPkeYUP17i+3f0Y8DvO4roU0WzBKNz1y7pkaLPRnwE46mKCmMajh+fUsSIbVv0jaTddHRdi+2u2Lzb45zEe8WXb35G5wO6LLn9+oKTR6dc31yzv9qmDJYoiNJgVWQQjj6CkxoZIyIkDaGQO+tNnMv07QGTU/5/guQJZXUEcs3T89dcvH7NvtvhHZiyoVeB/bZlP2zxoqdoPMKNlLVD9x6nLE4H9uPI1dWOP//5F3SmQKxO0E2FDgLlI9K7XMYSCHik9xipKU1JWTcpOuotgySV9DhF1JFlrClGjbWOVVNgygqlS/7nf/Q/4uwXX3D0xVdc/NmPcRK8glhodl0LIVBKQWWSc+qt4827G6KTCKcwXYOkAAqELFkuHmGKAl1UeO9zwwEF48j+wwcu8KihZfn8GUfPnnGuFLGsUFWFLNQ3BTVFEvwUWXhzsrWD4MFKTf7oj/5x6ixWlXifHD5Byo6QhMN5Je4tr0juKiqSyKjPmi1KKzxkfY4SIQMn5+csz87o3chyscAonRxdP5V+JzImkUq5OUO+UCHu+pdkFxt5eEQgSCUdyW6f8jZSy2gESKHxdiCGpIPyw8+/h93sOS5XuF3k6599jev+BKPOuN4Erq/29FtNvxn5569+SnR/RRhS04iqWrKvKv74v/5r/uLPv+bp85+yfFTz6PyIsyfHPH1xkjI88QihaHc7gkuFUYu6yXb2Aw1axkQ+xJC0xA5ZIXHy7+Cu4iBmQjI50S6kEmshUqTf1CW4mkIGSgMMAu9Hgnc4a1NWlkuUkihSNpIIEuEDKonl5JIfcRghso4SkjR5/TSKfUo0mX4USY8xCkkUVSJYMIio7hn74Y48iSnDRciYEl4CCJmC9fdS8HMGSs5WPxDP6SzQWufsnZg5+ZiaPsSYNC19QOtMyjwwIf38+59z+f49N5dXdH5HqdLMdaTPH3wgWIdEYGKkjoEX62OW2rA5PuXi/SW7i1u22xvGzZ5d33O0Pubo+ARdGKJSeAOn56dcX7zn4voDN1/+ksXZcQouKYd3kdoYnqyPuL25YuNd2jvzrVbZ11/XC5qyoikbGl3x5OQxz8+f8Y9+9/c5PnlE2/f8yb/857x3LetHJ/zjH/2IP/rd3+OkWlAozbvrS95efeDy9pq3H97T7vcHncLgHSH43KglHhICnLU467DW8ujpMz6Tiu12y7bd8b3vfJfzx+cURUnvHBebDW3X0273hGEEEVFNwa9ev6aTAZYFv/MbjNFvXiJ0v5jyEP1Js/2bNWyHFzDVOSZFb3nPgEmvOxwJQqcJQtocRfAQAtI7Cq2pq4r1KnJ5e0Hfdzg3AiWFMdSLkmVjWKwapLO0tqcnJGNYa5pFQ71IUVUlFH0/0O73XF1epjpqKZE+sbRTvb3rB27fX3D51Wt2H65YqJrxeMA6x+J4xdqOHLcdRWHSxhBCUnnPaXbRJ+dbCokxJVobQOJ9pCwN3qc66CGn9FZVOKS6CWRSgX8gxBDvMkriVCIjkdIkllFpjNZJEE2Iw8SN0wGZ0+OkzGVF6u5AO5AX906A6fCbhvmw0Yh7pmxOETw0ZRYQwtT1J6clSp2eFwTR36UKTtGIKatGyjyPZPqc5HKf+8miQsS7/VaQ3oNEZk2CrtIn1fC7ls0xlwndZ37Sm08cYorO5pZvD0yKTfdVhFSO0BQVQ1mnjhFywAafzg0lQU9CbdlgrkrUasnq6RMUErfdYTctu9EyxJRKaLzAhFSiYOR0L9P1iRDApc4Xdt8mdyR4opIpe0UpiqZOjrOAGAPWjoze4WKgXDUUVUFRFNSyIoSI84Jx7Nm3ewSKulqglDm0Kq5qw2JRIoTj9vaSulRoJWhqQ1lKCpNE+47XNW7sCdZytb+l3YEvHEdHBTHITHxFjFaYmBp3G6FQU1cBP8VQUss/P3pQYLR5sHEzhUqOusjCXnkPlDlHW4jUtrMoC/ZtR9v1KCFpqgajDIvVEl3mIkqj6EebSc8U1a1UBRJud3uCj6AEq1WD7ToCEa0Vnsjo9/R7R9UoXn78lEfnx5w9OqEfeq5vt9xsr1gfV6zWKx4/ecQnnz/hxYtznjx9xPFxhS4i3luC65AizYGhH9htWtr9wDh4ZKkYhsA4ekyhqJuKxaKhaRoGn+uqEZC77gQXuL68xpY9GrDtlqG9QsmBRycFx2c1zaKgrMG7EevbZIiLkqurlkhBtViluuv8Nx8K8d4e5UXMrTSTHKHPQQVHJAqVdq4IbrDYYcQOjoCg65KIbO8D+6sNbt8jbUTHlK/pfUgFsTlK6q1lay2diLRa0AtNL2CIkdE6jE/lPyJKpIj4AETLzW6PMxavS5YLTRlFKgfMZGEUIsl8hpgy+1RKqa9WCxYnR9RHKzAaGwL7riOGiBapFfc4jvR9TzcOHJeGZtmwWNXUVclUujB12ZMiEbMhZ+QopbNGWlqHIuZuGJC7aeQz4t7+/HeBXy9juX9G3blfHOyU3AclRx7j4TUyTpHW7ELGyXGbSqEWqQwlSqT2aNNjTAdyh8h7jVICIWOOvub7ZS1+bAnOo9YLqmVNsaiQ44CwImUC+pG27WlvemwXEFSoqOlu9myHAaTkK22Io2fft9jeEnxM3S9Eqtn3URBEavGdhCrvgltJMuPe2Xi4d9/8WUz36e+AfBEsQGiUDCybMzZmQycdwQ8olTqKOe9xzpL0oTxSOqT2yEmV2qTr7Zzlw+2Gx/uOzgtMc4T2AuECDAPR9sSY0uyjd6mrYxxJrronBoePSaw1CZBGyioR2AKRu0NplNE8O3/EdddzO4w09c/Z+iTMiUrdTwIe6z39aNHRI6PDKw9eILzGeJOI0Kns7L4gZs4wIgRESBpGwlrsbsfm8hJZVazP92nnUxphQsrw5S4KP32P4k6B7iGH7/j0NOvqgY93Jf7f+LrnDiTcFen5XP4y2ZchJII2dT4KiCCQIVCbpBkI9/5WDnZN9unBjZju2733m5ZzEJNWpDjM/4P+EjInOohDoFhOvxOaRb3g2flT+k3HLx5/xc9+9Yavf/mKP+a/ZX3yMdYq3ADRFgxtYOwsfggsmwZ0A7bh4uoNlx92vH93zdnzY57cntL1Iyenx4hKpIwVbxFR4K2n2+0olUEUAi0eNjP6fvnRN8qqDvcuTiZ7+n2+hzGTMiHe6aAoU+CNQebyYlGVSCcJ3iGVSo0Z8q1OmeKQ2JZMeeUuPFOmTirXmmwGILc+D8HjwoCaNAVJTS+iTKX0aY/OmVsHx+TuOrLnA6hD11qZibiQM1S+MVlFLg399YyWe/dQ5vNPCJGdfU/w/vD7f+tF3xLV8RG1HRm8Y9u3qQNljEThU2llzF15Q0Tm1vGGSK0UoqoQJ8cYD+22o920vLm94Mb2LMaWctEgtCIKyRAC19tbrvZb3uy3LGJP2VRUVUEVNIJIYwqOmwU2JH0X69Jn0EJSS8PZ8QmLOmVoSys4Pznlo/MnPD19xGW756Ld8v72ikefveTFRy/5/ne/y/HxEX4Y+XB7xc+/+CWXN9ds2x37rsVbC8FnYtDnvSwmn494KPt3weG8xQXHarUEATakbOApq+jy+oZ93zGOI87l7FoSgfjLV1/x6uIdX7x7xf/6P/lP/r3H6Fus1L99ew5x4vfub3b3tPoPTdazerhIYkrpaZGUyZAXYgxIkuqwCDEpJUtFXVT4pcb7d9ze7NluR0y54unTpzTLJYtVQbOoieNAt9swiEiUYIyhaGqapmFR1egouN613NzccHl9xdnRCSoAYzpsg0497G3fc/v+gqvX7/C7juhcXuCe1aLhKAS6YaBQJrUFi4HoHVrmKK0PKc01CowuKIoSKRLBorXBh9RarO9Ty1sXUupjiDl2Jh8wEyLeMffTZiNJpUgiJm0How1a6jx5s0r1PbJMHjI0ZCYy7gzWb+xJ4t6GzJ3hyjTWcJeSLe9x5XF6XjjMnKS4mTcpKZJhcvj0iXFXQibNiJwJk4Sy7hcFcfiMd/x4IkhkvoZJz0OIu6+YI3yHbkoHRuXXDPdsoCZDIT7suJFdx5juaVPU2KqB0TOYjjD2iZBUCqFlKuELaf56o6GpOH7xjNoUtBfXXLVfc7Pdoaf2qxhKISlF0h/Rk9ZMrr2NMYLz2LZP5GfwRKMQpUEUGuNT2UdK4PKMXUdvR2wILMdjjGpYLmpKJFW9oO8ttzcD280OLUqWi2PKsqJtdwxDz/GiYrmqQTjevnnL6fGCuqpo6oKiSLoQSkbWqxrvEpP9/u0FfTsyFpb1+hjnkgMcYqA2FSZKTBQYNNLlGmwfEFl5XkhF2/dgoJAPR7AIdaf8cPe/O+89OV2SxaJmu99zc3vLfrPn8dkZR+sjjo5OOC0XBDyDHWg/XOFDQCEwpUZHneuXE1lLiKyXDZvrSyKCZmEYXGC727Nrt1TNCZ997yOUMjR1xZ/+2Z9zdXvFZn/Dk6cf8fLjF3z+vY/5/vc/5uiooWmKvMZTVGYcujQHnKfbddxe79hvB8Y+UCjFOARG61kuC5ZLw2q9YLVa4ncWF3J0NZf4BR+4ubmh5QZFQLqOYK84OdY8f3bMd37wCKE9zjs+fOjo+pYYIsvlMVdXHc4r1sePiNFwqBl/KEwt6kkUrIvh7ovUvcuRNo/Uzk/ge8vYW6y1ICXtMBI3W9i1tNs9arAUSLQkkR2kaB5SEQJ0ztE6R69gEBonJSNJM6OzlipnSviYDEFPIEbH1W7PqEe8sZyUDZPKkFE617dHXAzYGLBBEJWkWNRUqwX1aknZNAwR7DCwb1sIEWM0pdaMQ08/dPRuoDo6YX20YrVeIIykc0MiB+slWiZxwpCjZ8qkrBkkuOgJWcRSiqk8L0WZo+Cga/X/D9w/uabzKZKEJu/rVExnWepJM3llApG7nkyr/CAYaQKm6IllD/omtdWN5Ci0AxwxZhH1MbWOj8XI+qihXNSY2uDDCCpiSoV1I/v9lturLcbVlCbZEXZvGdoeGxyvxpFFWdHHgO1T5yIfwImA9WmuRZm0XAg+0Uj+14Id3DmnIhvo3/BTp3Ldv4shiwuICik8TXVKod+jREfwI1qXKBkJIRnMMWc3C5GJFhMRRhK1IKjIYD1X2x237UAfJNX6FO0EcXQEWnyUBDuQxEOTmKl1A84N2aEKWO+SfRYdkUhRGrRUFLog+KzJpgSPjtc86wau+5FFU9F2Puk0SZkcleCx0dL2HUXwGAKqAqk0GkFVGGLQxJhLM2LAR4/KwZoYIjH6rLcm0AiiHdnd3KAWS7r9PrVRLUqUn8qVVZ7N9xoEcDfWD0mwLJYr7Dgkx+ceUsaD4L7OyFTiMU2fIEi25sSUSIn3Ie0JUoKWhDEQIpRlgcjZVt/cMkR2fn+dDZyc67uHJpLl4KmESU9kOkFk+rdItnzwHk3arwQCNJyfPMY9c3z05CU/+5s3vH31ll/98or/4O//h1TVCZIGGct0cV7i7Qh+gQwLhF+wvXJsuxvG0PJyd86+7Rit43vf/w5GGpSB6GLS6HKBzfUtR6sVWqZuUg8JOdUDhpBTmqbA5TdnyUEL5h4hE6ZxE4CSSQfDJF8CGdCmAqNSS12XMr98CDgPzrnccSoeAgBRZF8kv81dVnzOSHJpPLyzDK6j0AapDUIXSKmSJACASOQAEzkj7rzQO8ov/16Q9hGZyo0OQdRpfohpb7zT/ElTKM+b6e5M2S4iSQakDJbUMEMKwUFf8oFQrFc03mKjw12+T+dH8Ohsm0hytRTxQMziHSYEhFaUJ8cYobnSt1xvd2w2V4h2g9ld0RwfH0oLbYhc7XZc7/e8u77CxJ7V8YrHj88QeIwQ1MZwslrS+o4+DPRBIIkYIVmYkicnj2gWi9Q+eTPw+OSUl4/PebRe8/PXX/P19QduYsfvf/oJ3/3ud/neZ59TAR82t7x6/4Y/+8t/Qzd0hBCoqopSq9SGW8AhDy+TWD6kwBXAMPZY7+iHnqZeEkJkt0+dT511EOHDhwsGb4mA0eXh7PPO8rMvfslmtyES+T/+BmMk4kMqlM2YMWPGjBkzZsyYMWPGjBkzZvwPEA9fxzBjxowZM2bMmDFjxowZM2bMmPE/MMwEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S8wEy4wZM2bMmDFjxowZM2bMmDFjxrfETLDMmDFjxowZM2bMmDFjxowZM2Z8S+jf9IX/p//Df4pzDucc7b4jRoEQEq0Nhano+5Hr6xuGYcSYEqOL9HxvicEDHoAYIzFG+r7He0+MkefPn1NVFVprxnHEWkvfD1xdXaF1iYswjJ53F5fs2p6ut7gI1nmCDwA0heJ4teDl83NePjunKjRGCAigpERIBUDfD3Rdx4fLC7q2Z7lc8vz5c+qmRiqNEBIXAm/fvmWz2TAMlqZpWK1WPHn6BF0U7NuW6+trfvzjH2OdJcSIUgpjDFprqqYGAYMd2Xd7hmGAkK7b2hEBSCHQSqG0RNy7z0pKtFb853/68990qL6J618RBEQBMT8kEBDj4SkifwIRSE8EYvoBBAgvIAgiglFJnBA4QERQPqBCpIiA9QQXsNYRQiR4jxst0abxCjGCC+krRlACtAYlUdqA1ggpEFKAlgil07gFkEEgkAhlAIEX4ESkCw4hBFLmzx05XKgIaW4EAYj0+YkC5UEGDwSCiDiVLztfu0iXne9DukPE9MP0OwFEIlGkN4v5aZ98/+OHGTfg/ON/SBgN0RYwlhDztePzalJIUaBEleaSUggjiSLiQ2AcR5wbkUpQlgVaS7x3WDvi7YgQAqUUdd3gXCD4iHORmO+bFBKlTL536Rqtc/iYfo+USCnRWqO1RkiJVInDDTEQQmB0Duc9kYgyCm00Sku00Ugp8MHjvGccBwQCJQQGDc4TvCOMHcQeKR1FCf/4f/b7/O7f+z4fffyUfXvFZnPNbnvL+zdv+Ku/+glDP6CU4cWLT5GqwPnIT3/6M46P15wcH/HRR08g+nTdTc3z5y8oqxqlC/73/9v/zYOMW+gvCDGm+ca01AQqqryk0lwG8CLiRdodg4wgIlKCFHkehggEBAFJABwihsP6FXlO4wXEQPSe4EaCH7HOYZ3HDeBGj7eeMI64cQdhIPqWYFtEdEgChUx/NsaIcyB1CULhvOLqpuPqdse7D9d8+dUFVzc7bjct+26k7z3WgnOagMQjsEIyANuu42a/JyKompqyKikKhRQCKUCJSHA7RByRWJpCsC5LjuuaT15+wvL0lPr4mOr8CWcvXlKvVtTLBadPTvF4Bj/yjz757EHG7br7byiIFDGguz1idwtjD64HAqPzdNbilEGWC3S5oF6eIKsFQmmwjqFrcXZgHFvAIwAlBYtFjTQGlCK4QNv2BA+mKBG6woeAHTrobqgLRVVosJ5u2zN0jnYUrE/PMEWBUB6pRmIY8H4ACqQ2SCmxPmKdBympF0ukVhDTmrZDB6R/bzbXlFWDMobeRfq2RcRAVSjWywYZI8E7+t1AYWpMUaOqNSIoNrc7fvKvfwyu5fhkxUefvKQ6P8NpjQW6EKnKBqMKdASGETeMjG2LFCAVSCUpP/pfPsi4Ady2PUpItJQUGkQYccOO3fuv+PlP/gVje4UKLTIOuMHiBku/7RiGAR88SoMxGq0NZVkhpSIE8C5wc7OlKmuKoqQoCkDgnKfrOqrCICXEGPDeH2wapEBIiRACIUTaD2I8nMGjcwyjp2uhbgxVoygqT4w94JFREZ2BaJCxBATBj8QwoowDGXK4TDNaj7WecXSURU1ZVtR1w8nxIyDivOPm5hrnLMPQc3t7jS7T/itEpGv3jP2It46qqimKghgFm13Lth0ISEzZcPToMc+fv+STTz/jh//x/+5Bxu0/+/r/erhHAGVZAJH9fs+f/Kt/yTiONIuG09NT6rqmrmtevHiJ0gIhIy5YXAgIoVCqpLMR68E5wc1Nxy/++he8+tXXXL16SxUFJoCyjuHqgtNmwWfPnvP05BFHyyXrxYLTxZrLD5e8e/eeP/03f8EvXr9iN/RYrfB1gWhK1LKiPj1GVkVa08ZQlEU6gxEQHFIIjDYIZDrHnEXGQFWUaK2JQlM3C3RRoI2h7wdiiBAFMUK3bxnajv52S3u9wQ8WHWF1tIYYGYeBsevp8HQyMiwUQSarRNiAth4RIiIG/GjxzuGt45//Z//yQcbtr/6ff0nXD3TDwK5r+XB1QT/0SAXBWby1jMNI17VYa3EuEEl2gY8h2c0eiBB9JHqXzi/ubLYYY7I1QjyYqwIIISTfgpDWmBR4a9nv91hrKY1h1ayyTSLAKIZxpO0HmmLBommoywqjNSEGEIJCafp9h7MW5yxnj064ef+eq7dvqQfH7/3gB3zno4/4zotnnJUnFKYkmhJfSIQRyEJglEOokA5uAC+JQeBG6Lc90Qaii7z66g2CiBICsAzdAChOz55RLmpMo6nXClGA0hqlC8R//HsPMm4Af/C/+k95/+Y1m5sbjo/POTp7gaoX9CoQJIgYUSFiXEBIQZTgVSDgiTEgI1y8e43tenSAZ09foouaoEuCkkQZiDIAHikVAoXyaSyCiHgRQMXJ4aAEVBQE59nebnj97h0+RprVkifPnlGUJp1jShOkuPNlsm2uUCAESEmUgsnykiIiSTZVjJEQA29fvyZ4x2rRcHRyjCoKhDY4BAiZ/g6A90gipVLJls1fH95eIoTEFAWPzk7xwhFlRFUGrRtCFHTDgAo93fUHdhdv+Nn/5f/8IOPW/+q/5Jc/ec3P/uIr/vP/2z+h3/RE76gq+OSTxzw6W3N+dszV2/dsb7b0+5HnT15iY6Rarvj9f/SHPP/4I7bDnj/7qz/jn/7Ff83R+YrPf/gZv/d7f59hZ+m3PX7fo7DUlebJ+Qnd7SXBDwjhePrdjxido+0HbofA8vSE5mjN+vEaH/fEOBLjyM3lJUNrGVrLFz/7wPOXn/Hk+UccnT5CCYEgEENHED2oiCySVxVCsk/GsccFhw8eHwJIhZKKQhkkFTJU+NHw//6v/jn/5P/1x/zZn/yYi1dXfPbsCd/95Dn/0f/09xivW0Jrib3n0foYWZRYIfnTn33JX/78C169v+R6u09zUUak9Hjbg/cQAv/s6vrfe4x+Y4LFOUcIIRngkB0rQ1XVaFXgXEApSVEUKKURQuCcQ0oJWhB8SIYHdyQLgBACrXV6HuT3iISQDBaESz65c3gfSL5FJASSEx/TRhVjzI6aza9Ni9fI5PhppZBaIYQkEimKgq7tsc6yb/fowmCkQst02BdlSVlVyXhxjn4Y2O/3VDERBzI7l0LckRUhBHze/KWWQMzOv0wHR7gjNWK+D+lmioPTPv2dh4LPB9adY5epgRgP5wDEO0eNiCdOnhYiRkQQECLCRZTzxMER+xG72dPtW8Z9y/7iimG7x3YjdrBEFwg+4J1nGHt8jISYSQ8fk0EaI0ErUAqpVN6cBUFLqAynT885fvyIo9NH2NEDgqJsWB0fo8sSUxaECEFECMlRDcQDySJI9zcKiFISQyQGkYYhRtJW7AkuEyvZ6Y2HuzJt1XmuTof8PQIGkZ6V/n2fKnuAsfMhf+aIiAJJIomEEIiYDgQhJFKITIJEYvD4mOahD4nYSGToZMROTn88zGEpZb4Xd+vygPSnEULgQ0RIgQzJYfh1HC5f5LkmJUqm9RburRERIHiPUskpVDEmozNE0jKZDkiBNAUETyQQguPy8op3795TlAJjAlVZosQRwVpWqyVlUVLXDd/97ucIaei6kVdff83pyQlPzs/46KOPkvNK2lO6rsOODlNUDzZu01iRLuewtkSc5lCEmPanPHRIefc7GdN4T6N1mG95PR5eHxLBHEPEu0D0jugd3o6MY4d3Ae8j3kF0yZD1dkQECzERNTGmtS+FvNtbo8D7yL7t6EfHth15+2HDZtdxs+3Ytj0eSdEs0PWKorV0nWV72+HdiEcQpUzOph+QcSQIgUSjpaapSkJIhxjBo6VCxgIZFVoIpChBViBLpCoR0uBdQCAojGG5bNLKlJJCFQ82btOYxPzZYt4niNOZlXdKpVFKo7RBSJXGzUei80Sf9r3o02BPjmMy9QQigLMu3XOZ1lUMgeA9IYTkoMVI9IFoHW60jNbhgk7nhBJ5R4+HiRNCWitIjYiBENPncM5T6HQWRwIxv1eMAVOWRMA5jxSJ8Eq3IN3nyXhFTGSpR5GIA6kUZVnSuT2jtbRtixyGNPe1RpDfR3iIaU8V2WFywSFC2kPKhxu5tI/lawghIAEfArvdlhDc4X5JJjsjEbsTySxEWqnpdxEh4oFsvG+vHOZBtlGmKTJBZFvk3wVB2t9iiITgiRFClIQgDnNtuob0/OSIxCAONpHUASlkJm7I6/fuixjxzjGOYyLW3Mhuu2W0A8PQs9lsqOsqEUpGJQc3RLwPuNFBnOwaIH/OIQ70Xcdms+H9+/f88IHGTYhMJucASdoPJXVds1ysuPW3bDdbTk5O8T4Fb/p+oKoLlMhrCkmMMDpPiBLnPG1neff2LdfXV7TtLs2/kE5qZRT1osHHyNsP7zmqG0qtKZVCLFacHh1RKsPYj5ii5P3tNe9ub9haR+wFQUlCP2TiMmKURvgcjNICpTSQ1qlSEiEUUkSw493ZGCPBWpASU5YEqYgxZKIuoAEvJUVdMA5FOgRGj4REIpoCG6CInkoEdiGkMzYHuuTowftEuPtsuz+cWcm+bemHgWEcGYYeO444Z5FREHIg1vnpeyIeA+Lg6IYQCPm8SfufI06BAzlNvZhsmIO9lW3XEPDE5B/EgAgi37t48AMGN+JjQCqJJKZAbIS+79Fy2gVKfMiBX5WCwaNL17NrC4RRHJ2eILYtFJogIoGIjQ7hNcm6FsgcbCYqYhQg48FmQoBQEWlEOheJlE0BIRzii0WdT3pjMfUyEQpS3jsf/DeCsN8W3X6PHQdC9KDA4YmkoGhUMu35pICPlGltxnwGxBhy0EDipSQ4d0ccZ/LcB0+wjhgdoigRUhGEQKQ4bVoXyHRuxpDtxhRIcmEk4JMdnwOYUaT7e5jf093I30IahTQ3pv+L6ae7dS+lpCwKhj6w3+1ZrdeJ5yHZ/ocA9GTz5vma9lcFCKqqxPm0Tp236FKhS8Py6AitK0bvCQrc0CFqgVqZBxu3sbVcvLng6198TWxH5GiRAhpjqBcNSM3ltuX11TVjOxCd593NJXWzotaG1fqU7W7gzYcLfvHzL6nLJWePnvLs6UdoXbO1I7t9z3jbcrKoUMEQukC364hxpCgF0QW6dmCz3RNMhRISo2QipKTEBei7gcuLDUoaymoJ4pK3b99wu93xwx/9iKauMSoR0WJaKw6iUhDDwVeQyXFLpq71+OgZhMWoiJagEHz68ik/+O5ntNct16+u2W/3fHh/yS9++RXPT54iS83Q72mHHh0jUWmaqqCpSqrSEG99nl+Tjab4d5/e//34jQmWKTITY0yZK8ZQmJKmaYhBorVFKYWUmrRDJoNAqUSexCCBu01wMkKmCPhEsEyGSwg5GoTHh3ggWHzemEN2PGMkbQg+ERt9P6TnyfR5daEPJIcxJmWoeJ+jCBFrLdvdjqpuEFIjpUqv05qiKBCyxTpLP/Ts2xahFD6Ew9+cHNfpcwufDDedo8GTAztFtA+EzCGilRawEOKwif53GWj/voiEg7M2PXL4lg9cMWVuTIkak4EfAmIcCS4QR4/vBuy2xW077O2e4cMN+9tb9jcbrl6/prvZYdsRPzikIxn53rHp2+y8J3Z8yqDprcUrmVhpICiJlwJnBKxrPv3t7xO++xmli2x3e8Zs/J0/f0GzWlGuVsTCkFabBJ2yNw6ZA9NX3pdjIBuy5IvPDuu0ieYxinAv4+eeVXKPWDmQLWJ6F8E9xupB4H0ijogkh32aP8hsqMlkaEuZDgMSceGiP6yhtF6T0Zpe+831d590+ebOkh6P+TlCSoj+jqi5N0d/fb6mMzDNOaXShiViyORXIHgI2RmS2cKOOVIQRST4iIw5g0ZrYtDJAAuWm6tb3r19j1aB49Oao3VDVZYcHx+zWq6wpWW5WvPJJx8Bms2upWlqTo6POH98xotnz1g0FdZari6v+OrVa4SQFOXDESzTaE13MX2/twYzkRIzkSmnxzKXJ0KehTGZDWmOhntfnhhSpop3juBTdDI4i3cWb5ORGDIh7b1ARJkMUecQYkyMSwgH4hVE3l+To9V2ns22Zdv2XN7sePvhln1n6cZAN0RQhrIu0UWNNgNKdSmzMZ8TQmpwFhEtSqRsMYlBYagKgXcpO8AHh5YKFSUyarSQKFkhZQOyRKgSgcZbRwwBKaAsS7xP0UujH45gmUis5PWGvEenMcncH1GkLDqpDdokgiUtvJDIlUwsx5DWXRrcHB2LyYjzLhn1iRSQ2OAJ3icS++DY+hQFtolg8ZmwRIqDk5//CDEIEAohVIoSxkRopgCFvLs6IYkxjU9RFIyjJwSPNiYRoSGTS5ngnGZsjImsNTEQJUitKOuKrgWbI8dFP6TAitZIkYiagAOhv8E7p8+UjacHhFLyQEQG71Mk3Xt22w3BJwdFiLsx9j4kIiWTy3dkmLhHrNwnUiaC+I5oCTkrNcUl7rMs5ABGInXu77UxT6iDYxkiwSeCJU4cT85iEBMBe28MnHeoAEqIlGXjs/2AREmFINld1lrGYUhZhOPIfrdjGBPBst/tIEZCWQAl0UPwkeAiNtpEyE/zOibbyvuRoevZbjaZQHgYyAOBz8EGFEJQliWr5ZJ233K9u8Y5jzFp3LquR+sUlInZsQoBbPC4AMMwst3uef/uHZvbG4a+O5CMAZBKYZYLQttxdXvNdndKoSSVTufMqlmwrhpEACEli/cN1jnG7S3j6AhywO87YojIAKKoQGc7Qoj8udL8UFIi8xHrvT2cqhKIzoFSaCBKmQOGaf9XMaIEmEJT1AVk4kXGSCEVZanxUmGDYwgO4y1BJMcvBpEJ35jIM5KNgHq4Nde2LYMdM8EyMFqLtQ6NzLZ6JlgyyeJ9ICKyDZBt/GkNhYD3NgVYiIgoCXm0vL+zv5ITHA6ZLS74ZNseHO1E3lgPo7X4GFFBJrLKp/18GHu0SmSslAKXCRbvJDF4rLf048Cu21NpTb1eprPGKLyEINM8A4eMOjtlMpEHyPR5VM4uOxAsAWnkIdhV1hUEjyRgSkElFFEInHfoUqILjVQyJVSQz/wHRN/usXZMRLzMGSXRp0DlvSBjEHcBoBQ4cIToD1lDUohMNmRbRiRimuCJzuKDTZnpIhJlzkqaxjLmcGEUQMr6iQR8sITokh1+jyTJm2oyzP+taXygUg42/+Hfk6kaI0IojDY4MdJ2O7xz6MkGEhz8BpgCidlnybasFJKyLGEccSERckZqjClomgXGVBjn6MOA8yBKiVo8HMGyud7x7tV73n75GvoR7QLGSBZlSVlWWATXmz1vrrdE79BR4OMtT5oVpqqpmhXvPlzy7u0lr75+x6NPjlg1J6yaE8Yx0rYj222P3fUcVw3Ca+ze0e96hHRoXeDHQLfvud3sqY9KlFBoqRAh2WMEQd9Zrq93LJo1i6ZBm4qLiwvs+/c8efIYefYIUZYobLIXvUAGRSxlsrNigJhPtSjQXjAOKbHBx4gwAqHT+n32+ITPP3nJ7nLPX/7JXzEOI5eXN/z8i9ecrJ5QCY0XinYYKGJEGkNVGOqqoCpMojxjOnuDEER0mnu/oX3yG5+MdvSHqV5VFevVmqpqqKqG7WaH1obFYom1Duc8zvkcGUoOmZIq+YrZuIk5Gq51mqCQjC9rHeNo89eIMQrrI31vGfqecXRY67H+XqaHkAyjhei51ZK+GxCxSD6394ldRqQ0M5HSk40xxBDY9z27tiUgWf9/efuvZ1uy/L4T+yyXmdsdd2357q5uNAwJcMgZkiInZiYYMXrQoyL0rP9Bf5geFIrQUMGZ0YQokiIBEk0QDbQpe+vWdcduk2ZZPfxW7nMb5DCExpEScbpQdc3ZZ2futX7ra09OWK1WRxXK/JqGQaTEOWdiSqK2yBlrLXFmB4rYMgpQvK83iiMQM5/yjTHC3h4ZMeoH/P0b+oAH9ZR/Y0Eqs4pGG1EkoDDKgE+yyqCwUyTsB+K+Z3p3xfjyDft3V7z99gWvv/iW6WZLuj3QDFHYQQWnJydcdGsWbsGmOWO57Egx0g8Db0LGOINrHSnDerXGaMPVzTWjgmGauL69YbHq8CozqoQ9O+HHZ+f84NkzVuuOb9695ftffsH/9H/7Zzx5/JzzR0949sHHfPKTH3P65AnrRxc0z0+FabAGrCMZsWDEnClZ1wOIJsRc2RJhOk2RD3KWz/XRUvWe4Ih7GOJ+CZ8BF1VmKOJhL3l+jAy7xhxtWvKdjNAFRkDB+Qo5EWOklHQP9NdNUoYaGdRFvq4BPZ8l3/thq9apqrm0rgNaqsypqZJ3OG6uuWSxcqn7bzoPm1YrUklVBlyOIJBzllkBpLVCO0tJkGKQw4cCZ7QoGEik5Lm+viX85YGXL7/myeM1Hz5/zKNHZ3z44XOePHlMCIHlcsXFxQVKWdq25eL8lGdPH/Pxh8/54aefME0T79695eWLF/zZz/4DKWdc83B8emS+H3K37hUB3GNZ7z1cImWt+FwREGoGP+T3ChgiyopI8hMxeMZxR4qBnCMli3JFDsj198rMQ5nqkI3CaI0fe0oRVt/Zlpwyk4/0g2d/6Nkfer5/fUk/BrExTAmfNKk0oBW201jb4lxH063oukC36BlDj9rLIaZpO1wvA4A1il0/oSMQEg0LdKPIVjEOYNEYLFY7Fl1L13a4bkHSS0J26Kig9xxu72icZX2yIihwXUOnH+6wZwFTCqoefFWV7GcUUypEIBuLbVpst8R2K5TtIBWIieIDOcQKshSMqeu/0mgjg1ZOGe8jrio9tdb4YaTkKkm2DaYIYHbY9ez2B6aQsYsGZTVYQwoCoIiKwZG1IquZ3EjEJOCVtZlC3YPJaG3lc1QUi65jmvbEkGidYtE0pBAIXr6cFcuh0UYOQTGQUsTYFtNaTi5OuLt5xTAOXF5G7OkJK2fp2kbUI34io2iaDo0MQ8aA98J4Zv2wAAvUwzozGFkIfuLy7Rssoq7VWcAtHzzeT+RScNZitCLE9B4IzRGASanIHlcPz8LkFmJMlUEvFRApf2UPh/nk9x+pWmbUPxemaUKphFIGaxzO6bruCpGlZqRfQUoRHwLaKFzj0Nqgs7DgWmUUAqxPkyfGBFl+nhAD+33PNI14PzGOnpIUscuobEQZGcRGGInYkDHGoazYc3PK+BjoDwdiSOy3+4e7Z8zn0MqWy4+KVopnz54xjiPffvuCq8sbnj9rOdusub3eAppVAdsZUlFisURxe7fn8vKG16/f8e3X35CmQCkZYxA1Ryn4VHhycU5sW66Gnp//6pf86OOPWTjH7uaW1bnhpFvx+Qcf8vT8grc31zw5O+ePf/7nXO7uuNkeOIwT7cmG9mRDtsLSa6XRTd1nEbOLNbquvBpVZyXIOGPIKaCSwqaEQWyiCXF7TilSwkSKkbPNmtx2XA9vIEwsnOPDR48wOTMdBsZDT9HpyNpnG8k2UJJYSxerFbZrcO3DgdHb/VbAlRgYp4lhPBBzpKhGFMsxCkAcA7GSjlT1eKnzdT4CjAIIzuCjkg/yPRADdS/U1aYi61+MAerzorQWADInUU5ohclRVI5HgKIwDH0FKyOofASjS10LfAoMYST1mVW3YNW26M6SWktuHbQt/RCxwKJxEKqtIWZ01LjWoJwhEio7r0AbbNeiTKKowMnFKSVGSvIUtadZGLTVhGhQTlGMRukGbRSUSMn+we4bwLDfEvxIKYmsElmnam1S92qUkiUmQCuKKvixx8cJyJhFK79eQb8QM6pkjMpApmRPDqMARk0re5+uBEUBlBbFSV0SM5lSIjFNeD+Qo6coI79SuL9HHP+C/8RP9R4Qw3/8/86/6qzDG0NOiWE4gNG01lG04X62r/OYps7c818iwG8pVV2aJnJ2pCwk/WYjBMdi0dKPGm0dTbv8m92s967/5Z/9c379p1/w+utXNFEUd4tFy5OLC8YQub7r+ebtW65ue0iJhsIHZ4bfefqY559+TEiRL778mq++fcFhl3mmTtjdJv7y5y+YQiGMgeQTSzTpRJN04e7mlv3NjnZh2bQbDteBd28PfH99xyeLx6AXWLcCIiTI3hD6hpu3kbQpnCwcn376Y65ubvj+u6/4V39c+MM/+EOePn7M0inGw4C2FrdcYU47cTBU8t+kgkkFfKYMmRTlpoa7A4ED2li67pyf/ug5p8sFh9sd/+9/9e+4vLrm8BffYpvHPD+/4Ml6RX97SeMnmsbRGMeiMSxbizOGKZfqClKAg2L5DWL9r3H9DRQs8+KnadsFi8WKpmlJKdFXn6W1lhDikSFfLLqjrMwYQw4iN01RFlZnLE3THQ8bORX8JAv2OE54H1C6I0YZSr2PxJCOQMb8Acr10BYQduNw6FGl0DWOsUzEEPFGfJgoJTkS1dcVs/yZ5vZWDp8pCdJe5iyR6q3OmWGaaMfxyMoba9DRoFKq0ut60IwRUZSp9wAWKsBS7Rh5PqBmQcuUDBUPqV4B5LAg5CnKaIoXq5JJWQ7mGYgBrvYcbrbsr7bcfPGC7Zsrhtsd6XZP8+4GPU7onPhEa3JZkBvD+XrBbtgzlchHn30qUvNisNmhozBJ2+tbmsYQS2aKE0+fPif5RPAeZx37safkxMlyyenJmkkleh354A9+wrNPnrA8a0BPfPTsjEX6hP73fsJ0NZLe3HD3/R3h1y9Riw697DAfnLH+4CnLRxecf/Qhi6cX6GWDcZbIPWtSENb3CG4BpSiRapd75Hx+LgVpZz4Bz1EtR0uHKA54UFwMIBcjUkplUNoekdaCFsYaQ9U4gKrSW6qssv5cWquqohJm84ikVHuB0u8x3O/rLN5jG45bl67vWWXaZylfqlL7Wbli3G8uM0opTNGUIhkwBbGuxOjrMCVgzpyjk7U+ssYpg60/QymOaTiQYk+/L4z7G+J4IIeJTz/+iIvzc7z3KG3o+z1aWWLwPH/+hPPzU1brJU3TsN/t2O/2XL674tWrV8SUaB4QYElaaJNSmXqt1W+CLBVsFevXfLPfU6fEKOtmFjVEDJ4cU7UApSOrlUMSiW4SQE0XYUBzLqQQK8Ci0JijWkKsWC0pCwB88JHb2wOXlze8u74hxERIiUPv8T4RUyFEjTGt+GCVwuDQxmK0lQOeUjTOsjlZoo3QQcvlitWmYxhF+Xd5JdJhXQKOTGvFoqJioiR5TiW/akXTLbFdR0ATC9hU0CT2N9dolVmsWpqTjWQc5Ic7qDsNupSadVMtNUqRiiagyUqjGodpl+imQ9lGQM6Y5KAQM6Qs60FWKGNqjpGFIof2mOI9cKq0qHiCR5WCtQZrDHny+GFkt9vTD5PYsZwM7hhFCnWvUMKOK+tAO7Iy8sqzIiYIUyJPEe0s2jQYinjpcxG2tT4TJUacMRhXKNEQxkl+zq7FNQ7vRUUaQgAb0EazPj9huVpy2AUO+z2H/Q677HDLhUiFKyMdoNqoCs4ZvFeVkHhYVlbNZrwiYG2eRuLQE8JI60QNoBSM00QKAapK9WizOSpSq4WoqmUFaBGSYrY5yZ4t6p/yVxb92b6Zckab3yROjnu7quuyEVVgDBmvDM4VtLJYa6rtWR3tg3WXEuvPBG3X4RAlQ85i9crZM44DwzAxjRNdu6JtG7FhGnO/vqaMTx5dNF63OGdFYVw0Kcq6k3RAV/xIFQUZko/4PB4VWA9x6WrN0iiM0gJKagGdN6sVF2fnPH38hMs372h0w7JZoo1hvz0wTp5205FRpAw+ZL786huuLm+4vrxFo3BdiymAjyhjUDGRfGQIE21jef7Rh7z4xa94+eoV4dBz/gd/xGAdbc6cLE8ojcWcn9H+3u/RtR1fv37JFy+/4/vtDWoK5P1AdA1aK1nPjUY3GmU01ljJM1M1W6xtKUEAH2VVBc0jOUw0rkUVRY4ZYzXLRYumcP32HTYrGm1YP33KcH1LmgZur97x0fljHq03tMsT9BhIWRQGSYv912jJ+WtXC0zbYJoHZNMPO1HXVYClnwb5PCgYgyeFIPbwIACLZCXOCpRMDGIJEsKn4JMoTkopGKMqKCU2v3Q8XCtRXdRhOlTCBmSuDjEQkpAzShd0qYp0Ve3VpRBSgEnOIdbOao1CSAmXnCi/UsCPouiIRNQ08eLqLalknj15xonr0GiGMGC1xWSNSppUDGSDikaeASVWsRTz0VrZtAalC6RMyY3MYDajrMatFkyDJdSDZGPtPYP3gNfYH8gpHmfDGdASzCPXb5cxFHQla3y/I6SINgq9dKhZRZsTMQcBs7D1niX5SmLtLvN+ejy0aWblmSysGXKkpED2Iyqnah2vz0GpjCfzn/9fvxT/K2N4XbuttTTWopWm3x9QxuK6Jaj5s1FQJYlIXGmKEVCQqiI21mKdJRcrDg1nsY1j8CONb3HOsWhaFqrDKSj64ebKn/3Jn7N7vcWPEy2ak80Jq43kqL253fFmv+PN3Z7DWFAJWq354fqM00cXLFYtv/ziL/jq2694e30DxvLyu7d88/33+OIJWdHajkW75MOzc86bJWXpKP0d486jkyFvDN9/c8277Z79mFB2jW7WqGZJVgOqGEig4opw6OiTYttFPv7sMZ98+hlRRX795ZcsFudMY+HzTz8i58RwiPR3N9jeszndsN4sUTqBP4BPuKyEEAiFOGXyGETtzoi3gaIcpyeOv/+P/ja7aeAXv/iaX/7qO/78V19z9/RA+vA5K6VIITKFgHIdRkHnHJ21TGMQlwwC1JZcWfbf4vqtAZbZ/6YV6Doc5lIYxpF+kE333grD0UaUkpKFt+7J4vVN1T4jkq1UlSizcmRm0WLK2CRDTqygDIhU62gFeV89UGXR0zjRWIszWgAdXTNTQgCl6qArkqaCwofAYehFKj0Hqyp1tEXJQiFyaB8CpohPXWtzDLIDfgN1TymjjDp6pe+DWCV0MHMf3nXMvnjPbvSQVwUEZUBUEnxWfKEETx4CaTvgv33D7vU12zdXbL96xeH6Dr/rKfuRcrOl04rN2YZu3VGKo2THWbvAUJiInJ6eEEOixIKKGj9OIkn2k6gDtPzorm2YRpErx5KZ/EQG1qsV1mgRZiwszz96yuZ8hWkVSUWWa4d6tOHzH3zMq8O3oiraj/i9J2lNdJp8tWL/9orFxTnj5Y6Tz57Tnq1pzjaY5QqMk03PaOb8m1zu8y5yUaQyY5fyIbs/E9+jMfLs1Vs+S8HL/E4/4H0rSoAUbVDVXjDLTKnqk1lOTv21+xemjoeC+YvjcWD+tXqgeO83/aYy7l5yObNEKteDJ/NmJt8z1UHyfZn3fIkMVCSlx6iBUkgpoks96Gld80Xey4uZDzP159Fa13XAE3wkx55FozndrFClcLo5qc9cYLfbHdn3x48esdmsaBpHSsJgT9Mktr/DgRgToQkPdt+UKiK3rWthnpn1uj7c5/ZkdMnynkYZMkiJEj05xyrNT0TvJaOjhm8ZXf3MMZNjqoo4SQwU60GZ40TmO0dOAr6lXOhHL+G3OXOz7Xn37obvX7/jZnuQ9c9oYtKECDFlQig0zFk9umZs1eG0DlmQaZqGmCR3a7lc4FrLom1YNI4cPcM4knPGKUVr6xprLYGM0mAs2NZhW4duHZFSLaEJowrh0DM6w7g/0G02WG2wD2hXMGq2Zr1375jZcXmB2nWYphNWTglwPttVZx+RygJVaqXR2qK1lfybmk1wBDILYvGKUYArJWoCHxJjL/tqCIli5pC/ahGi1Ewb0UgpY8FYYf2UIhclZIUPxCmilcG0Dl0SWgurm1JBaYMxEoysTbWyWkv0E6mukdoY0LKnhRTQOaKNo1kt6JYLpuHAYSdhlotJGHfdOJGJp0xkwhqLVgqj5auUe6vNQ12yvM2WNwjTSBhHSb6Z72sFKEoRi68xVsiakphzqmbbr5A25TgDzGB1miXxs9Ksrqh/VcHymxZMjgfB+fcJ6KExRta5FBPBK5zV9bmR939eno+f+ZIJUV4b5X1bTQ0V94FpmhjGkWkaa5C+AH3HBLYsORWBRLQJo4wsH1lUnLkklCroomrwqpzxUgjHTLCHunQ9QCpVj12VaFIKmqZhvVpxfnbG9y/fsNvu2G/2nJ9f4MfA6D1jjqQshQeHwfP29Tvutnv6Q09bD1N2zmpRiaIVsf78nWtYbza4pmHfH4jDgP/JTyVg0Vl0t6TRGtM1OHfG+NGHKArTOLLtd4wxk4aJ2AxoJ1l/qbFiITT6aLuTn1PWvBDD8b5K+GYmRk/XtehCPdgpnLUo5+jQuJDEwtR06KYh+8DUH0iLFa5dcWpbFp0TcF4VcmMwTtRn1hiaVYduHKZ9OIClH/sKsERRslRFmHYGH/wxVDekICDlDLAclQ+hBoeKTcinWJUKGVsEbNPUEPwyWyLvARbF/WdT1mpT81oyWovaK5d8XKd1XatTJUChMHlX8xE5fv8YI7EkyckyUHTBlsjVdgup8PLdJe7xc7RtMCrV/VuJikpZCgaNRZlGlBkKYi4Syqzk864yoIsw5QbQCYxGN0uUV6So8Cmjq8q/KM0DJo0RvUfC9O19rayaCTZ5b3UpGISgLTkSppGcE8oZWVPnufeYn5PqXENV+eXfUOrP++m8983zo9CFomoii81Z7CZyZNBVXa6LEqKYCraoGZzhnhTkvVn1uET95ppsjcwMRimmYRSlbEpyf+osO4P174PndfVmzuwyxjAVLzOxMeQYxXJkLJ1p6GilyyM/3Hzy3bdv0EPBJCEtmq7Fti0+ZW52e272B/ZDYIoKm8Fpw+b0jKZrCTnw7YtvuNvfUVTh0dNH3Byuub275eruGp8Uy27DZrGhS4br9ZIyNpipp0yJxhWCL7y5uuJ2HJk0aO1QxoDWpAIqK3IxKFpKdIyHwvZmwH2+4NHj5wxx4uc//zVvX13jWPLB4+cY3ZKAQz+Q/JYUQSXFqrWQmpoBFmWeTVkAai+zcEyRTEC3C6xp+eD5BZ999pztrufLL95wfXOHU5p10/Dh2RpbiyJsEaumswbnDGr01dKsj6T7XzkI/X99/fYWoZoobTKElDkMI6UUbm+33N3tjuggABU9N85irFhi/DSSKcSc8DHIkGENrm3wQf49Jfm10U+M3h8tQyFkYgjiMTYOiyLOYThVamtVEUuQtQzjiLMGaxSUfMxBAY6SMx882hjxMRfYHwa0cYJoNsL65IqexywLhq5+U5tlA5WhVMmUUO4HqUyhpIjh3iIl65cMdeUIrNRcm5yh2qmA4+HlIa6sNVnVDqdUMMqgciFve6av39J/95a7X33L63/3C4Z3t4Rtz8XmlCfLNa1ZSVL6WtOtWp5+/hFjzoTDSLzrCUPAth26lRyVKQZSSJhsuby7ZhwmstNMKWAXLW7d4UtiNxzY7feEAjeHHctFx6MnH/Hq1QvcpuXk/BFPP3wM64ZoAlhpt7Enmh/+4Y/o316z1JZu45h2npwhUbi7nbj87i95FTzZdqw/fcrmw6c8/90f8fEf/D7dyRluvSG2ikAmMueCVBCgFFKpwEauvNo8RNcNvqiKx8+H5HLv3HxgfIWMBWXRukHlOpzk2XQiAEspFQisHlZ5GapaVf/qC5LndA7zVcpKVsa8mxVQphytd3XeO/5Ro/S9hHQGQfgrKpb3DhBQFVpzjozWmKJR9X6J6s1gVZWiFwGPjFWIabeQckTnIp5pYzDFkALkHBmiZ79s6Pc9KUSePXnKMI5cXl3x+tX3aK1pmpbPPvuERddhreH65pp+GPBRDpqZXNHwh7usSccgyxn0yIgUOiHZRiUnUTvEjEoZpiibR4qkMNVhsYIX7/mcdVUtKSBGf/RS68oQyXoCSjsBDov4pId+YpoC/TByu9vRjyPbw8D3r2+5vLrj7dUd65NzTk/PWa7WoCGpgM+eXd/TNBFrZI1vlWxUWilSiUzTVJWLDqs7jDE0tmW9XEHJxBhYti23d7cM08iisSzbRp67nNmPA0pnbJNxXcEuQDcQCcTsKQkabfD9wGQUw27PBz9YsFqu5LU+1H2bg/xyEiIgy3rgiyIbi2lamuWKpluAdqSshHkTJApTxGJUioT4WS2hvkY7QkyMozTkOefEupUy0zhQYpC9EEcJiXE/cHezY7/rwVicbWkbhzKKouVZ0lVnUwo414lFAVODEQ0xFaZ+oLEdRVmWC4dWBVN/vsGPAlA1mrA7UIzYxxZNx3YYSCHKWt4uIEoI7xRGVHSisNisOTk7xfcHbt5GDtsti82K5cmKRXuCVpmcpbXGNB3OSNOYNaqu1w+nggBwBnKQz1Uuhf3ujmF/x6ptMGVCVetcTBIw7JxF0+Jr84hzwgCoKl+X7KL3WoEUwvRWv8IRcC/3Z4j/1PU+wHLMnatKDedg2S2I0Yv9ZwgCBiRIpoi33RS0USirq4KwHG3SKWVcfY6iDwyHnsNuzzCMeB/Y3m0x2tB1HUYbIcaQQ3/wcqBpdEQjKhhy/d5ZQi9JCervJxd8mDA2/aZ39m942eqmlF0ti11Sy+cHo1ivNnzw/AP+7Gc/5+byBoPl+dOPGA9b9mPPcHPLMHr2fc+7q1t22wOoaj23lsY5Gq3RxhDHiWw0jW1IgycXhWs6njx7xsuvvuL1u7dMcSLEiRgdKY5icRD6hQ/OzzAUGqO5urnizd0dd/2OmLOoxLQiWIW2oqgwTlTZRhVMUSyskzkXwUqjhlgyQ5xY2VNp/wugS8JpBCDanBK2B5hGmgTPNmdMw8Dd9TVvX36PXp+y3JzxdHNO1y1xjcNsOrDmOJe4tsG0DvOQFqHdlpAioRIWwzQKCWIV4zQSozQX+eAF3J8FazXnKcZArVMgJySUtlqYLbLeWyVzfki5rhYyzzMDLHEOwS2YImoJaxSrRcduvyPGgnaFWMrR/leUNE/lEOkHeU5Q0uoVTKxAsqyPmURWmXXT8vr6mjdv37G/6/nf/Xf/HR8/fsKygxxqQ2gqKGXRqkHjhMwoE7mSYU3XYK0RZbsGrSpJYZxYcZQG1WFcIZfI4MdjjlcmPyjAklKsgHc52uNVBmXkc2hKwZWMq86AFDz+sEcZhVEOkwoWJQBMqa2FOQiqoZQEEJd8VC7NuYuRqupVtemniIXN5kKOkeCl3VJAF0myM1lhi8yNEbHrzquPgCm/kdLymwTj/HvVMU0M65x8Roxhe9hh247kowQNl/f+HsRZcExlLKJizEXUSMpZ4jBIvK6yWKuJPtOozGLZsmFJiJrYTw92315/f8dJs+HErSh2SW47Rq24urvlu8srbkfPEAolKxprWHQNn372CTknXteWTbva8OyTZ/zO3/o9/uTP/jX9NzeM7+4YB8W09/R2QE8FlzKPNgvWJrHpFC4U+jHwq19/SXSG7vwUY4qA1kXCoUuCmJBiAhyH3cCwf8Pv/53f58njT1kuT/n5n3zJm29u2V8mnjz6kB/95Ec01qMOnnffvuT2xRWXiyW/9/s/pW3XoBccwi25DOQyEfMoJEFIpCEyjKBcRjtPs+j46acf0iTFzYst3377kndv3hGHgeYnn7NuHa0z+BzJKIx1dF2L2veVLNGElFCY34hd+OtcfwMFiyBUKEVIGb/bEXzg7nZ3BEhyXchmBkYZSevWWdeWhP5YJ7haLbG2wVqH5EDMclxh3kIIItGqkKRzliebJ2QglcKuH+4rYWOktZrOOTarBSUIap5qk0NKkqiujZ7xGEChjUVbC9pItdY4YpqGjZ2DbgSwmUPjUk6s1itU1jWQE/nw1oyVMluXKos2q1mgqgW0qHn0nNRd5FBcinjD9ftgzANdJlYGDCg+sf3yO3bfvuLdn/6S/PVbzMHTDBFzveX5YsPJs4+5+Og5xljCFHj9629x5xuazRJ3esLNm3eUDLpZ8O56z/piw/J8jTItpUykkkgadmNPKYXlyRK9bFmdnbBYL/n+m5dMMRIovLy95OzigvVyiU8Ti5MliycbTj95QvNoRVxpks2k4iXUaKFwFws2j0+I2dLugO1Iaxq6puPDpWU8e8wQEzf7nrffvGX/7Wu+/PMv+PJ//Nesnj3l/JOP+fDv/AGLp49ozlaMVhFVkc00F0gaVTTVmU5Ocl9VVR6A5LrMqsX/HwhXjpc1C4xq0cXOu59sxnkOiiugMqrW0ElTyPtMaj4CgapKmGX3ELBCmwqwUGWQaLQu98AlVa0zP+c15ft9e6KkO9wH1/1mGPZsB5C/y2qD0YqUIyUUYgoScFykcWZmN5Sx6AI5CqMk8v5SZeSuskMJsmfYj2zv9uzudlK53C7Y7Q784he/IlNYb9b8vf/y78kQ2A989+p7nHFk4PGzZzz94ANijA+awaKzVGSWnMVPnCUbIcYo9ZSVNU9TgBgpMcEYMPXn10qUd7kkUbJkAa+0UqJUmC2FpsEpUxkjsU/GGPE+MfYDYQqEKbI/DOz2B/phYLs7sDscGENkDJnbrefQB0ZvMaPFNnLPtbP4kJm8ZpjEUmCtpW1gClGsGAra1glw4DOlWFK2pAJ9H2ibDmMVzjZcnINzjqGuC01jq1qgJZaJrMC4gnMZayLWSLg2EYpKKNWhSiL5wH63E3VgY8A+4GKJWLSYq8yjqIiKNpimxXUdrluiraOUqoJLRf5MSVUEpkTirixNtxAfPbK+xyCs7nq5QiukNnfoscigS5JnIoyBsfdMvWd9sWJ9smF9skL8+ArnHH7yzHuYVa6uDxJk3LgFnsDd9paFW9C0C7EyBWootmEKHtO0cqBXmjAFstY0TW1ASQU/eZbtAmsl2H0/TpjUorOjIXJysma8W6KU4rA7sNjtWZ0eWK2WuKocidFLja51WNXhrFgFc/7P3ojf6pJ5oFCmgWF3xzQc2CwXhHEvVoPoJefTir3S+1znhEzbOrG8aVMBYoNS8rmV5xRADv+R2tRUlVcCLM/3Xv78MEkQK8h/10ZsUkcGNMtw2rWJZDQxBkY/MA6BGDLGaZaLBdYWlC5CWBkBrve7ibYdayA/UBTeB4Zhou97xtGLvVrtcM7V1zAraaX9MY2BNEX2YS+KCWdwrmUKIpfOZZ5b6rxURPmSQoL4cJkQVcAj969I/pFSkhdkgMZYVt2SpxePubnd8v233/ODT66F8c+a63c37A49w+AZ+hGDMNTOyh6isrx/zhiwhoLCWF3XWs1hGHCrJcvzU2Ly3A4HzpYLFt7w7tpjnaNkiCExhoLN8NHZGf/kv/wHfPn6e168e8fXV9eU3YGYE85qaBxog7IJp7QonmPGNpYOTVYFE6tFncKYAtFKyKKyCj1mTFFYZehWKxIGfESnTDwMNKXw7PQclSKpZN4cbkg5sslLVmrJpmhWzQrrGpxzQhg6Kyq4B7p2w0HUlSnhQ2D0oxAarRN1cgxCrAZfFX6I2jbnGmobKYSaa1iYfCTmTCyZrlqGS7XvxVJICPFlqnJiJhIy0i6So0Ir+Rx/9OwJ34w9h2EglIxq61G8KPTcWoKsTTnJgBwpgvTMs3tKTNNELLWNSQEq8/Wrb/k//9//rzx//Iiffv4DfvzZpyyXHY11hCkSpi3RR8pU2CxWLJuOTbeSHLGcSNUqFKsF1WhDTQJEZwMmEXTg1l9y+2qLbh3NcsnZg905oGozhaBL5HIPW9hSAZYsz3oMmTJFlI8Yp7BWY2OmUWKFHpAZLafMTLfNdvE5o0oVOXimrMhViZfqG60LoqivSk5SYg7dz6nOlUV+3xx8KlqTWWUygyeVPFRzH2a93lO4qCKNs7a24KXbG8LkidMkNsJ5LZpV1lW6J69mftfmeVhyzqb9iFMNbbskTZ4IUALowBi3bLdXD3bXlFqCWpD0gtAsuPKR4Edeba+53A+MKZEQkuTpxRmfPnvCxcmad69fcnt9xTRu+ckf/pTHHz1ndW5p1vD0k8esHm24u068/u6a28s9JVxhC/SnK56frzB2gZ6g3A18/fINi7M1z0432KZFYUgRxiGQg4ZksW7Jan3O9fWBN29es+8Tj5annK1W/L0/+K/5f7z5V7x9ecs//3/+Gaa94PHjCz58/hPGd4F337/i1dVr9lcjH3/2IeePTujajhR25CmShgkXG2w05GRQPuKHCV/2+DLhVMOHj075x3/vjyij5/r6htvrW7745iUXZ2ecbjZ0bUMqYptu2rYGkUcM4kxRmtoC/Ne//gZ6pSqyLcI8e++ZJpF9U6XEckiqXuhqOdD1aY0x1QDcWOsRZ1XJff1grF52qXXLdRgwdMsVjx53PP3gQ4xzFAX7YRTAhCKeNKNxxtA5y5vvvjseaop674Cn5p9htszIsCkBWfUAFKKEv9bD9GwBKlU+mHJG53wEd+4VKup4sLx/v+4Pmsd3cbYLVXN1fo/lnn/vfxSW9ze4lJeNI/tA/+aKy3//K3Zfv6L/6hUnfaYrhq5tiK5nfXrC+fOndI/PRD2w75lKZLNZ05yuMU1bm21EfdSXzKrtcKsNKUeMkTrVu/5ARPyJZtHSXZyyWC5p6sHAh8CUJP1+fbphs1yiyJjO0p6sWD0+o7SaYpS0fCZBxosBtXBsHp3ivab4AW3F39xUk323XrFWGpTGH3aMIUAf8GmHHxPv7g4EH1h//JzF80d0HzxGrxYSils9pCKjFtiBMitcqISlMMiztCPfizge/DK6QTLw9W98i8KM9cxbyfyqynubwvz8zp/FGdRXVX1ybw+aPxOCO2pQs192FkZW+KX+Pah7ZrbULe592XypNiIo97kvx2dewsSMisRCZbTm97PUF1kPLjVeJiOSVRRobVE4DIlMIGfwU2S37Qle8p1iTNze3R3flVQS4zSx3e949eY1p5szjDacXVzwg89/KLWY7uHk03Ecq78+k8O9vSfHIF9ZhpoUvKhXavtYKXU9VJY5hHlGhItCgkGzvMcKRYyIui/V9bgerLz39IcDfgz4ybPbD+wPA8M0cugHDsOIT5mYFCFLWLJrW1COmBRTyLRGYUyDdQpjJbAuF7F2mqoMFMVXYZoCMRYZoIsoWxSRkIr436sc2TUNuWS8nzBaGqJQ0AYn8nKjsBqcFta3kNFZAA9yQisJkDwMA9vDDhaOYIDu9GFu3FzP/F7uVqFILXPTYpoWbR3Mz3tKko0TAiqmejgUtZWyFmOtHBTIR6BRAt+1WGhipMSIbazgRCkRxgk/esIUoRjatmO5WGKdFWUNYj1IMaOUkeGg2lrnwdRo8ZgnH/HDSBhGmEL93FZJcz3kSFOXERsaBaUkfFesCxHKPHQIOZBSJKUAOeAah2sbrLVVveirnU0C53UNtk5JpPTZGbFOGH0EHx7sOqpMoNTQZ1UyTeMgGlQSVZ+1YrekGHxl0HlvDz/+37y+zaqw9yxBc4ZMqepYYww6q6OCt5TC6Cc53M4Ax3tAszEGVMbMwH09hOSQiSVVhashuUQypn7fuc5U7DDTFLDGi1JCm9pclWvBQJT8i3GsjTuWY/NUAT1rMqrtK8aAdfdZDIUKstc5aFb9kqGQSQ+Iaeo5+LTM8DqoXA83RVSTjXUsF0turrfsdweu3l2xWK9JqjD2E1M/EXyEVHOM1AygyJ4ldhN5n4pREqott4BYpCGmWS1Y+DV9GBmjZwiW4D2Na6p1TxRmzloWxmK7DoyAUnfDxDYG0uApU8Ckgk5IKLxR9y1wuWC1dAipXKpVOeOz2DuVVhLGTMYg2WO2ceggBQQ2FtQUKFnWGues5G7lzG044MfEoCN5ZdGrFmUdrrWotkFZ86AAyziNAlrmWWUeavaSkAgxBnJJNROFCq5Q9/u6tighEea/J2ZRiycth3Gt1JFQjchncT5PyD6oRIGKqNltkXats5M1t+sVpSTuhpGSba2olwfXaY2ZLa6lFlRQmMsw6odeyKJQ8MZgEGAmlMj3V284+APRJEYCi26Bs45pmJgOI3EMLHD8zic/pDm1sk/4Qpmz5Gx9PdWqWWokgZxKCqhEJPDi7QuGnMjW8Ef8bx/s3s3KoVLfuzK3BdU511RAQ+fqXkpgUegCJhd0zjRaE7WqbamJuWL7vnGHupfOZF1dV48tQPNALevKHHac579Di1VR1MUyR6h5RmXWMMnrnTN2jsOp3FhZQ2Zldv1+YreU+AqUloBlH2Sfq398JtfFVjjPxXO7qBCCqroToo/4wdOapVQJm0QMgZgDk+/Z93cPdt/aboU2LcVYvFKMg2dIE9f9yJQLUdAklouWx+fnPH/yBD+ObG9u2W3v2GyWnF9scK3i1dtvCXlkfbbmyYcf8vrFnpurkZC3DGNgt+vpjOFivSIWxxgVYT9yvT1wvmzJSmGdBK2TFP6Q8FPAKsW6a1gsl+QCN9std9uJzUbTrpY8f/YDnjz6ht0u8OKbN3z95fcoHJ9/9imPzp4w3Y0cbnq+f/GWmAq7Xc9HH55hAxA0eNknc9CUqMTWGmSWnuIB1xQaLE8vznh2cU72gbfjxO3dnlwMPmpOTxTWaBIa5xqaxhJSYkqlOlLuyfS/7vXbAyxKVBo5Z8ZxlJq20TOOE9Y6rFJHNmgeJkMIv4EejtPE5L0kinMv4QohiKeqgi9p/qBpTdu1PHr0mE8++wF/9F/8FyzWa2zjGMNUAYpMv9tLe3UShvPf/Mt/we31NYf97ujzLCCBUnVKkTDTmv9gTAVQUlWq5GNI2GwvUkpJGnqMMlDNlp76NWOmxwWgnliPXuz338o6CWp9nzFREEWCmr2FD3UNiTKM+O2Ot3/yF3z3//q3jK+vONUNH338A1aLJUYbQk5snj9h88lzQmdIQ8AP0KeJR2cfsDg7RbuGHJHNUlsGoynLJW59yv7qHa3tSD5xeX0lcsKFQ6871s8uaLKmDJ4QEv3k6b2nGMPZ4wtOlwvCdksokfZsxfqDxwSnyEYedDMHsRpF6TTnHzxhiJbtnUc1IoUtKhFDYnN+ynKxIBiF8p7kA9YYvNa82x14+fINL379NctPnnHy6Qf86B/9XZYfPsOerKFbHp8paY5Q9y0HSnIsjvdTVl3er3Z7aKTF2haVNaTZejMDG/MTI4NbqS9otggxgyyVCVJGHR8ppQQ0RBmKEovRnMpf4Fi1dr+blSNQ8X7L41ERg7o/VFJVW7VaUWkluSFKBmldXw9FH+srSxEZ9YwXF11DRhWgC9rKwW6Gj6yxKN3U+JkCOeDHzPXVjtvbHSlH9vuem5vbYyPUzfaO3W7H9dU137x4wYfPE+fnFzx++pi/vfwjAMmaeKBr2u7qQJ3J3kMNrZW8DV+HhkzJoapy6v3JiZIVWUp5OeJZNWfnWL1bBwA/Jfp+YBhGdrsDfT/UWl/PWG0Cfgrs+pFpCviQmEJmSoqUDDlrjOvorKEtRtbvovEh4xpF23VY1+JjZLu9Y/Lit++65qjC8TESvKgFRQosm1QsilWQqsA510Qpi7ENKiR0zU9xzlWWU5ofGq1oNVhdyLpgc0InLQpEZwg50+/3vHn3lr4EFqHn988fBmAplUErFRCTbDAtTHDXYdtWGuSKZGYkH8hjoPggLUL146+txrVOQmlVDT2tVcFGa4yC4APJe3SOtK7FoMgxMOx7xsNImBLWNCwXG9bLDUYpfBKbizGWHCRXTFlT24iq9lyB1Q6LgZAZ9z1d05D3B/TKiapUSYOe956iNRvXEKZRmta0xllHiF4CT5Pwq7OqKgSPsYaSOkxjcW1L17ZMU08KQfJb/CQrY4mQAzFmVI4kZ3B2gbNGPsMPedVcFYCSIpqCM7AwFhUMPosno7QNJWsJdR0KM5J7r/BQR/LnHmSpAemzdXK2khVpJ2qcWD+apjkqeacY6BYLnHMCZtWZKKVU81VkLU8xkGMShZNPddmQWcC5gDGKUqqith7AQogM/QRFmpnathObMcKq5pp5MY0j/aHHaI1ztu5fcJy9inzflCI5O5ljFPVQiwC/6j4z574e/OHkRxIEWm0fyh6zxlIUgFGhaWzLoluhiuawH/ju25c8evYM2zaEPhBGYdAtWlSSSh0BFqkRFTWL1Qao0fBG3tGSCxhDt16hVWbvR3o/sNAQ77Ys2o5F23GyPGHZdmjToK3jrO1YdCtONme8u93x1ZvX7AdP7j32DGwGQq0uncPLS8JWFVLOsk6WolFJQpcNVSVKkp9BK0wDBINWikVjMD4yHXqG/sDi4gxj5QR5e9iy6yfaNJAWBrNZUHBCQHVSn54fcI+TUFt5pmMQK5DWmhA8IfqqYMmEGOq4IkGV7wMsSkt2xxwmLUBLqSHcMNO1oQIs1PupC5AKWYl9JioBxis8wsVmw/j4AqUKd/2BnANZKXKth2xsWxVOYk2RKICMNpZZZSMtOTWDTOpLMBpUa9nu79heHbjsb/nm3SuslYPmNHimXU/xkY9OHvH49IKLk1Ny8IQg6gmsoVgn3jijSUSKsShl5TziQKmMsokvX37By+tLLvcH/o/8nx7s3pUSRR2kqkW61iurUo5nS1F/ZUwGlzRNtcubUtAp0mpFtobGarHJvqf+Mbo2gldiRADjGQKZbTf3oMc8A+Za/KENKF3IBFKpRn5dJ9Fq2znWL7+nUJEfjiNIzHGtm0FsISW0NjRNK616qTCNk5Aras7f0vegSrlXrJQZgKsztdZWlIJlYNGsyTGTQmQcJyY/chgP3O1vHuy+rddnqBoRMObEtu/Z+5Fr74lWg5E15fRkzfOnT/j4+QfcXH7PzdUN3g98/ns/5ux8zS4c+Pf/4Y8pneGjZz/ghz/6KeTXfP3VW3KpeVaHkYVxhAtFoqUPhWE4cL090F6ckI2RJkTtKEkz3nn6g6drFWcrx2q9omjFzd2Wd5c7zs+esVmsePb0B/zgs+/Z7z2/+Df/kv/ws79EF8ePPvwhz59+igqG7BV//O/+hKubO07O1jj1ezxeKJpsUMES+kiKmpSkmqrEQvGZMnjipFCq43y54dNnTyk+sr/bc7vtGSbYHhIha1arDmsUTdOyXHSyBoweV/e/PIfG/jWvv4GC5T5dfxx7+n4kxnhkcMTmU46L7gywzGfOkgvj5BknUb74GOnHsSLL4r2MMeFDrACLfEhzyazWS370ox/wwx99xmK9krpfSl2YI8NhT4mJ6APjoefRozP81LPfbwm1mq+gxCNvZJMVZg6UMZhqCYoxMowjy2mqdh1hWG3jMCniY2AYBpTW2MYdW1iO6pX3Dth/FWA5IuN1FVJQQ3ZrY8qc8/LA9ZXT5Y7x9o7+zSXXf/prPlZrFh+c0m1WnH/2ETEn7m5uWHzyAe75Y8qzC4w2JH9NirL4rZ8+pVtvGHYHijL46NnnQPv4guWjC9xyxas//TNOuo4QJw77HeuzDe60o3t+ytQo9u92TK9viTFze9gzJs+nn37MarPANRYdHX2c0CcdzZNT8sIIuFLkvimtSYAns3j+iBygvNuyKYa4H9n1I75EsvYslks2Tz4k68x0uyNue376gx/xg1z48aHn1999z9uv3vLul9/w4l//O5Y/+oizH37KT//rf8T6+QeU2jpkXEsoYhOSUGek8QTJIppBTjXf44e9dRjbkauM/ZhjMitRhE6UZ2kO/TouDrLpaKPQ1h6DqKQVpaYmaivPXrXnxKqksrM8l/q5VNVAVA8wM+BYatL68ZGfFStJgAQwshmUGQQqSCFvZRyUHORyPbwoLc1cZIg5yzBjhMGMo6jKNEpS7WOmpIw0DWdu6PnLv/iK211PKoG73TVv312BKWz7Lf/0n/4PxJjoh4Hvvvuely9fc3p6ytNnT1mtl/Xnfbirv7y8V58Ej6pSWV1EkaGVyNazulcdzURPATQGY1vA1FBayU+R9TOQswyLIcLQT4zDxN3tntFLUJ/kp2hiavDZsiuKQIMn0qcRHypgh+JsdYo1DUrZGvgbiCHQDwOr9Zqu61htVhJkuN3SD0O1VWoyil0/EOtBnDIcQWmTLK0fsUnueYpBWK1i8UnRZYvWLcvFAhXloFlKZK0bWu1ojKUSu6JiAWlBK4X9bscXX37Bye6ckycX8PnvPMyN8xPJR6IPwrBqLT7d5RLTtjIQ50ScPGnyJO8pgz+Gro050S4WNLpDdVaGNgQYi1W1Y60wmtNhT5xGHJIfkGNi2A30+z0lFjrbgbUs2wWtaygxkmrtqG00ofcSiGoFJM01qFtjpJ3PCMiiUiYPE9Pdjk6voLNoq3DW1ODCwmopFiAJr1a4piWXQoiRmJPUKCpbD1Aj6MIqLdCupVl0bDZrdr4n+onxsGM8LGjbRuTYCqYwkoPsuWsrCprfUoH7n79KoZRE8BNGSVZGazVJCnLIGkzXUoohJg37hNYWq8FoK0RRbRZKKdXmHc1yuWSxWNB1ndzPqmAJQVcLhpNtvc4BOSX8NB2Dao0xooqqB8sZsAkh4KdBVHch48eAtYVkNNYpRp3RKtF2YlGa869SKvSDzF9WZwmpLdSw2ix5EMgam0JkGiYBF2qWioAxQiKEEBgmg24UOtfyACVrU0bJAamo92JXHnaTy3PWmZKnNyWQ/ANTZzCDtS1nZxesN9c4d8PXX39HP0bWJycoDEyZEoMAGErhdIvTVtbCJJYuY2seEgWnQDkFJh8Dwdv1Atdotlc3jOmMYlecnJ+yXixZdUvOVmfY4gAjMxCGi80J7WLF/+bvaNxf/Ae+u3rL1d2BcdXTFkVrLKbVguFR8DlIHorWxMljnMaVTBPATp7GthjTMCjJbRDBhcI0Fq0zpML6ZEVrFaZEHFWN4Qy2PcUnUY283V6xSyPL1Zrzi0dsTs9wTuz4f/BA962vdccz8CgKFsM0jtUiJGrvEILk2RVRTs1nhJgiOk8UEjFlJi9ZKzEXDPkYOD7GxKAh1GclKVubZSArTVSZoBLaIiq5aEhjz+/88AecnW54c/OOXZooyqC1qxYUh7WKzrYMhwMx1Ry2LAHkuoiNxOcZ9MkC6gBohVmv6whlud72+EmyGXPKNNrSKsub6yve3d1ycXpGu4SltvKah4BpMlhNMUBTJN3dOFwjDSZOw2rR0S5b4k3mpt8+0F2Tyyot+t+cmHLEkKo94n5RVkphoqdJkY7MQRt8KRBlDemsRjnFoDJ+GsAvUSmhktjrrdIkH8QWGxOmlec5Vym4YBa6BsBHCddOBQcYlSl4SjpQGCk0QHOkFY+IR1WVUGY1i5J8m1r1m2uOiuigZB7LNQjauBkcyEzDQPYTyhqK1hRj5yEbKLJ/VHWkSvLaTVEsu5ZpnBhzwPsOgyJOiZu319y9u2V32RMOD3ffFq5l8hPeT4wxshsjQ0xEWlIJ8twsHR8+f8zpZklJkRdff0fbNjx++oS/9Xf+Lt+9e8nLy5e8ffeKf/RP/hs++cGPefr8Y/78Zy9wVrFeNLSphVjwfWTYFWDBFCbe3B7Y+sgFUIyREPgpkcbE7as77m5uOTk949PnH/Po8Smrkw6fI3/273/NunnMWfOUVsNPf/pD2hZevXnByy++Qo+BU9PxD/7hf8WHn/yAs/PH5KL405/9jF/+2Rd8//UL/qvf+zEfPjrj6cmSkA54H5mmREyKPCbUpLB9A0qRiifEK56uF4SLc+6uDxzCDh8U43ZiDJecrDuWi4bVyrLebFBG4/MdJUGoBMpvc/32GSyZIws7jNLUUUrBOScPfslHz5ygkvOJYWaVyjE0bl6UU0p474+Bssev2WpTGaWmcWJTaR1d1+AWLRipUs5ZQoXy6AnTRG80m5M1t7cLrLOMQdqICog16a9U0wpAZNFGkyiSih4CTSO1liCgjLWSEu9DwAZPm9p7hYB+z8IxK9Tq/7zfCCQM//yLHNky9V4rzUM3CIV+YLrbMd3uWbqO1drQaYtZdui2Az+RMyxOT9GrNaF1WCy+Wrq60xP0+RmxcWwvryoCr0gxsTo/oxhFPwxMU2AbIjF7lNMUp8lOkQwM+z3+7o7pbks/ymBorOH5owtyCkxTQKuEXTS4VYddd0yNqfk9ksuu9OxnT+gOzGpBc7qijIU8eTCKtl3gc4Aw8eH5R/h316R+YMwRjGK5WmI3a8nvSYl2m7i7GYlfvmZ3O/AXu4kP/+hvsXn+jNMPngGBiMylM5syawbn5qH7MIECD3vrUNjKDggAVz9JcjjPs0iysmSzOvI9wEOqed+3nMmmJAPfzGJy/KpaM+YcoPK+lJN7iby42+bclPIbz2yphxwJWq2V5LJASL1n0feNZFoyXQRkmV+eVCjq+pqPXmzEjmKV1B+q+RCQM8Errq8PhPKarCLDtMeHWK01hRcvviXmLOqpYSBnxTR5xmlkuVzU7/FwrGzxg7wvuUgF+tEKcJ9roJBchTQzOJVFk3C4TDr0hFA4DIHttqpRfCSmgjGNWKWUZZoC05QYp8QUREqLMSSVCakwReiDJqRCyJYpO0JOUgtsNMvVGmccpSgOhwMlC6AYpSuSpnEs12dcXV8TU2SYRkKp+TKlMMQszSyV9TNFMox0yezGCWczRmlyjHLvgBAhZaBoGtOQXSOfrwSN1rRa09SKxBRzPZAmtBKlgFEK3w/EcYV+wCyPnEJVYUjKvHUO27QY50SNVSSkPYSJHCaK9+AnAfxyrutDqcCjEAb39pJS7QqKOA4kP1FikMrILAF/Y78neAlzXy5acrV/UIpYkUqEbCg6k31tw0nqyLoKiaCPqihRdWaS90x9T7O0aCvKUKO1MMMpMoVJbI8lM03T0YqVU2aaPE21syoEdEEV/DRK6542LDqpZp6BBT+NtE6IC61KtesWxhFav8A2Dco8LMIyQ6Qly8Cfg6ekSCyeGDxxEvuSqTYeVX9GVK1PbVqaRiqL5+yoWa1qraXrWtq2JeeMtYYQKihQFXvHnLaqcu0Ph6PibLbozAAL1PrZ2mg0r++lHjJkqK8hnsmQUqx/xxzGrVE1LTOEWNdhfQzmm5WOzjZiwSnlmG93nMuQdTomTwiOmAJpbqHRHBVzlfwVAK8CcOW3bFj4T1051/1ptg7M82Kt7g0+0veTKOSUwRjH3d0dq8OAdS2LxYJG26pIEUOtKWIpVcdQX0WOBacNzkKrRCFT6p5WVBbw1lmKkWbLxjlaxMaorRW1lu1QCDFBlgwzXeCjDxSXhz3FOe6+/gJ/GFDW0q6XpCxWH60Nktmj5NnXRSzuubL9MWKUpTGaYPTxmUpFy5838vkzjYLkWHQNF6sVbWOxzuBVlCw5DdoZ3HKBa1ts15A1JA36AfOqYvRHMjXPz7LONbtKGj5StRQKwFLbz6oVJOVEUQlIFfC7Jx87a1k7Q6Mh7Q4EUw/MpYbElwqwlEJUiUhCU7BkYpgY+j2ffPIBWSVON2v621sBSarSdv5atA1+6EW9UZVn8wg1Ky2O55HaRJVVJikBPCOiak4KitVghRXKaIYQuDnsuD3sebw6JVZljooZRaQksb+XlCk6ok0kFQnIRWd00Tjb0nULlsvVg903AIOrCh0NqaBytQQpCZHNWtYJlwJdjpjiuSMRSyaiCECnCq3KrHViFyImTqgUUbRoZdFKQGdRgkZR5Wp9JOtKUWSticqAcSQMqijWRWxHWWXGNEIYKG3HMQtFXuh9tfQ8+Ob5zFXEmkQGVYmZOm9pRMGitMYYh7WOnCLZB1KYMLqtxQcK6VACrWTyV6XIPr/3FO8pMZDCgegHCpld3AspojQxQ78bmMY9KT9cyC1FwuZDlDNTiJmYkXtWCqZxbBYrNssF0Q9cXY2EFHl0+pRHz57hFktevbvkarvl0eMnfPrpDzg7O5csrpsb8jjQqsK60TAkVExMYyRmzZhhO3jEiWlQWLLPhEMkx8T23Y672zssApg1raHrWrrW8e0XX/OTD39E/+RDbFdYd5anj6UR9vLNay7fvuUvf/4X/O7v/JiTzYpF1/LxRx+wvblGpcgvf/mX/HmGu2dPyT/6lM6JvSeRJBh5CqQxkidRhqaSySngUCxdy9nmhPZuIvpMTjAOHkrC+5GiFvI8VAA6kup++v93gEUsNN4HhlEQaqUUri5Ms/wVZvCvMtPMA2CtQKue7HlhjjEeg2Tnr/ezTCSAzUlwnjNYZ2haJ4sZVc/GgtyP+MFiyGxO1lIT6hw5SxjXPOwYY+4Pb0pJhaW1NUMmE2LEV5vQ/DqMmX+PJkQJ4BWQQJLA53T/946ZR7m4SEHvh8kZgDqqH+piXyr7df97HuaKo8gW/aHndL2hSwqnDCxalLGUEsix0F6cwHKBtxZTGqYpMk2R5cU5+nRDyJm7ccAZDVbu+fp0RcgBvzuIFzF7sgqY1kJnyI0m6cLu+g5/t8Vvd+yHnlQynWt5dLJhmw5MMdIosMsWt2qxq5axEcRf54Kt8slCXfAqwNKergnXA8pIOFy7WrDPieInVoslfdfhrSOVRMiRtnMsNyc82u7QPtCFTHcT2V327K4OfPn198TB88Hv/oRN1+HWa0FqtSZq6mCpOGbF1sfvPXjswe6b/HWVnU4cgZxZXlkFkyLFr+qVozJq5gd0lb7f/wJzXbhihuWV5ABVfOj9TCFhZPPRRvR+Lelv5gTJSPIbOSzV1nLkAbIwu+oIyEjAG7lmVBQBVwSHyGSlayOKSDJLbRkCg9JWBiDRsRNjYbcb6cNIUZHIVO0dhewTr9+8Ic3y9qJJ4cA4jBwOO2GfZ/PxQ922KEn4VDabko8qp3ntmQeCXHMAfEyEkggpcphG+oOn7wO3dwN3tyMhiJLJ2IauW9C2HW3TEnzCRwFTQhKFklaGUGCMiTHCIUCMSjJXiiPlgFZy4FitVjhjSTX/Ktf2nBLSEUC/uLjg/PycyXvudrtKYomc2+dMrFXNiixBfVneTzNMNK5gjYOYJFsFaaTLtRbWakNnGlKRautGaxoULfKzeImfrk1JUlfbaEOYAipkGh5O9p5TFAVPrE0zTYNtW5QVRqvkJABMmChhQgWPqm0PABhbWyLq4TVKwOMcGq2VVEH7URgzcpLnL0WSnxiHnhiFWW3dikCW3Ih8/xwVBSUksk9yMKwfyftg6nxsYNAFUbCEgO970tQKc6+tVMgWUYBOvjLmRVqNmqY5yvWnyaOtwTiLopBjkOfUT2S9lOahblEr0fMRYCnLDq2k0pMsVpQQI8FPoME+sEVIzexFyfhxkJaSGPBlJEyTvK5xpF0uQf2VecUYrHW0bYu1tQ0mhGNg7Zyl4pw9WnwEWxF2m1q/PX+FqgArFahpmqZ+1u8BloIcPo7ZBaVIFoFCDhNJ1MKp1n9mJ3kEFFFTGuOwxtRcnCRr+gy0I2u8c5Kno5jDxvORuBJ+twIs0RJTJ3YFXeSrFHLkOMcUgKOl9CEBljlAuNqsKymVUpLg2mFiv+sZRiGClLYMowTadu3EZrmmNQ6nQNdsCV3fT61rkFfdQ7UxOK1oFETKMeMh18wvjAHraKyjcQ2NMigrfodiDXbRiZWjaEqS+nWtNI9tx8eHniEmfvH1V0yHCd00lFRD8rWqB7tSLelCchgjtLhRihITSieccTitCKkqtClYXZutShaFYDKo1nGxWrJoGhpn8ERyKyCRXbSY1aLagkQdYZzDPmCLUDyGtZfjbK+1hDWnOuOnGtBOUrWauFrYqmKdCrAcH7Jq9+iahs2yY2G1KLWqcjEdlZ4FnRWplCMpUVQmlkiImsNhS9c6TtSK05M1b25vRB2uMrZajDTQtQ17o+sMLsqw41Vt//I9SlX/CgCR6hwlrTbSKmPahqJhbiCbQuR6v+V6tyM+U/gsmUs6SUZZSTJ+5SilENpYrO6wWpG1rL3GONpmwWq9ebD7BmCKQwYQjYqgZ3uvQlpHs5jCmxxYFU+DZ0FkTyGhiUpjlOznG5OZRo8JEwQPiw1aOYyuZFqWoP6CZKjN62ApioQma0MyVua9otkUWGtFUpnbFFBhgLiqgEklo2cSA94jFBEFY84U6t6oCtSGJq1KJWPKEVS3xknTUYgkP9Y9rhHgiXktlXy8nCsQc3VHPPSkoafQ4/MgQcs7y7rZAJYhFHLR+NGT0/hg963kRKqZWZOfCEmRkZD6ksEpy2axZtE6pvHAbrcHrVifnXHy6BFTyry+umJIIz/63c/4+ONPAcvlmzu2by9JhwNtjqytIigBqWNI+ARjzOwHLzNmlpD45Au+D4QhsL3cc3d7R+sacphwRrPsGtZdx8uvvuHy89fsPr5hce5oVonTk5Yfffohf/pvDfu7W371y1/w9s3fx+onnG5WPH50xg8/+4QcPP/23/wxvxy/ZXs30HQrPnp2XvNUlcxrPhCnRJpUnV8zKXt0NrTWcrrZ0DZbphQIKRF8JMUJ7xXKJFZrKQEwzspnNJeqevrrX781wCL1gIFhGBmHCessxvzn/7pcQ47mzXrynsl78TTO9cZKagHnoKuUkyBQx4NcwTrNctXRdg22dShnoQTuMycUyoB1mq5r2GxWLJctzkmVZUhiO9LGgDLYUr83wia4psE6R8oCHPkQCCnisoUs8lJXMm3bsj8cmLyE+25OTmqWxD04AjOSOof9yuag1P0+QrkHYLRWFGUeXLkyXwYo1aLw6NkT+qtbvFKcfPQYpS3hsOeu7zm5OCe0lpAKq6g4XO45XO95/uNPUdrh+wOHuz1rClFFgvbkNPDq27dsX11TBo9eGHRrcUvNycePaBYdRWduX70hXo+kIXC937LcLFmvloT+gF4WooahRJrTE9TZEnW6RC8tKsuiqKOWkDPkgJJdAZ9pHp+y//VLChlrNSkEjNIYn9i+eM2ZanDdih7L1eUl6mTF5skJi/CYSQWKznQh8tOTczzwy8s3/OKf/nNe/Is/4c8/+YD//v/wv+fk4484uTjnOmQ8ghajxLoxSz/KzL48sOw9RohxVqvAPaqqa1bPe0gP8k+tdLWuKVH9aPl3QDYaDZIcXG19RWpTc5FnUTafCryUcmQxVZGhSoZ7XUOo7wHD+UsppLmhBqcBzPryQiZXZU1jbX3fUj08Vq+uoGoyNGVhedTcDlLrHq1yWNOIPSJBzpFhyKgUwUSyCiiLbLQ5MvhUlWLix48pUSj0h0JK/r3372GunOeUAg3OMGuNSinC5GUBnPa3B/b9QD+MpCKM7Rg817s7tncTh0Ngd+cZx8rOWsfF4wVRyechUxjHyDQGxliIQZ4HnTL7MNB7T+8D2zGQ6sHIVCZOK+gaw5PzNUZpyW9JiTEVYgKnEN+7tWzOTvnok49Aw/awJeXMYRyZxrGKNRQpa1DNcQDOWTHtJhqXaV3BkWlUwlLAB7yfSK2TMMfWkI0V0FpnNBGVJJMg1Tr0mCd0adE4ltYRimGFY6Merv1pGkZSkKyUtlvgFgt001KUIWUBX8I0SsZI9KgYIIriA2OwiwXWaSAxjgd8SLWRpWCMqEpKStzdXNFqaKww1uM0MA494zjgypLGNSyXS6YQMMpAEcZdGUQZM04UH1G6oFMNg8ySHSOZL7keMqEx0rwRp4kwDhST0cVJaGMp5BTZe89isaRk2A8HHl08Otpdxn7AOYsxBucskxe1TPITxXgJtVutWXYdvnj8OHDY7zhdL1HOCuimMiWJva3vO1oSjRI5+MNeopYZ+54wTeRpJExbhv2OadgxDLu6HmZi0ozjQE4cw2l1tQnN65o0cnmk9codrUPjODKOI8MwMAw95ghQ5qOCJVa17qzSnf38ab5H6r0wSFVTSGQ5FHyyqhRjjPI9nHw+BEwxnKw3dF3D0F8TY0brdATXVVVZdl0nihyt8N5Xhc0M8EiNtk8jxRdcbGlyJ+y1nnMwCilTZfa2Nnk89B3T9XsIsDsOA+M4sr3bcnl5y3a75+ZmyzQmxkGsHijDoR+xtufZ46dsFktSmBjHXa2Slayjoi2VO5A3uVoOrZU8lqwiocRK3AhApazDaY0zltPNCaOfKMZSnCO3LdJ4B8U2TFEsLIdq3fRTJEckH7B1LA8jy66VvDAQoFJrnBZFrjGGoBLFQERCxHVOrJRlLImpZIpWRwVKiQmjLEZBo2CRMicolsaSnUMtG9SiwW5WLM5PcYslbrUmOgvWoh4wyH2cBt7f+ueQ2xAayfRJQQ6vdTNUWaHRVTkhCoOYI0ekoX6pUmid4/H5GSeLjquba8YaQNo0MrNUHBlTqICfBgIqQQiely+/482bV2ANy65Bp4ROYJVFKyPqA2/o2o7lYkECpiBtf6WU955zySTyxxBoA1pmQFVVfWkejrQCi5ANBdpO8+3l9zhn+L0f/4SYIk1RdE6T8yTEUoEQRBmC0QRlaFRmLJE3/TU32x198A/clAc6NDXM06AnhZ4S2iVoDUEJ4dXmyDL1nJeJNZ439CjlSNoSrUWryMoUzpaa1E/4cCD1e9TqMUq1aKsxdiHOheApZUThmONocxEFUKrAo1GapsCjBJ80LdlkXk2ZN/st2bSkbk3SRuzRWlFwzPlZRlGJBrF2pDDhWiuB5goUScJ7tSbkRMrysxvjSHhynBj6A6btMK3YbUUhXCBPTLdXTNs7hqsrtt98z7TbEfoDti2YFpTKTP3IhlMsC5ResTk9x5VE8Q8HsPhxh596pjAQciBkRyiWTMOiXbBu1py0K8rg2d1s2d/d8smHn9KtTziEyL/6n/8nduPIB59+yD/4x/8Njx8958VXL/nFv/9LXvz5L5hu9pgp4lbglMO6Fm2UgNzjyP5uIkwaskOrDu8V+xzpdyNvL/dcvnsHZO7eXeIWHWfG8dnFM375r7/m21/9isfLFfzuU5bjhDKRTz55xO/+/g/51a+/4ouvfsn/8i/+Z/7O3/4DfvrjH3L79pLNsuV3Pv8B/+1//Y/5Nz/7C/7i29f8/NtX/MO/94d89OSC5+drdCqEJOr03SGQQ6GkCLkn2xajNCfrNaebDTH3xDjiqw0+hkRIA9teKtS1VqSSUKrQuN/uM/dbAyz94UDf9wzDSPD+6FUGjsNFPDIpYjGYib1cFDHXYfNYjKGqpxJhekshVg9mLiLoKigJ0esWLJbLKtWuypWCMA7zh0tbTKNolOHx8w84DJ79EHh7vUXXbIL3CHiOQbNKWhiMsSgVKKQjap1KltwEJcypsZJ4H1NiClHaarSpcl1VQZPCfNIuCM6izDykCHNU49VQgJmNGWpW5OijRuEhrrvrW6yxnJ6ew6ECTc7gNgvK3UCeJkqIKOsEsQ8eRsW43Ul4cNOQdwfCzQ3jzS3aKZLJ4DTniyU9mn2IYBWbJ2eoVnE7XHH65BylDPvrHWaKhJzwOlFaxfnjMy5OT9jfbTl59pzgCld319h1A+uWsmhQrZX7mqDYKtes6HPWBTYd7nxDHz0qR6wGnydMu0DrzLtXL/lwcSIS+RAZt3tW+4HoE9pZlLMUKwob5wydtXxyds5Nv2W3H4jffs8f/1/+B57+5Mc8+cnnnPz4R8LsGkvS9aBc1JG9FgXSg902AKIPleWcacRZwHqvUhGFmBzY5YESwE+yUgQokdmlIvJ6TuLX9bNY81FUVbnUEFqpf5YDoeI9hlhXNr8gfn1moKm+6Ir6l9lgV78/paBIGKWxRtO4hpCigA2qkNV9kC3AMdOoSA7LTJrmoo4BeKp+dufXoer7UHQ5KljEO1vDyYqo8FQNXCu5SKji+wvDQ1xGQkRTkQNKSEWaP3xgGjwhRPwUuHx7xTBM+JBou04+IzFwu+s5DIlpKozeElMFh5LBJwdTIeVAQVWLUGAYpCpZKY22mWHyjDEwhUgISYBBufmQE0Yrlo3ldL0AENZRgy+FUOT+JaXAaJqm4dHFGdPYc3l5SipgtltIVXmjhJGKeZZyS+B5LImUNCVHkpI8H6sKOkoooo9iS2idwWiLUqaC4JpcZdhzErIqRfzzWmONsMgqFPIY/3N34q91TRWIM86gZ+WKFr9E8Z48TeSxx6SIygmlstghkYFNiikk8HcKUZjPSjA0rkFnaQ2K40S37DBVHTf2E34M6Gzo2iVN00lbURKygRQJeaIxDRSIwaPe++yT8jGYFy0ByboeEp0Tm05OibubO/RoUZ2huMzYS1jm7m7LarVBoZimSV5XDUktpWCb2oYUkgArOeOtJZml+O1bR+sa0hSJPpLGRI4SSKisIRtRAIYc8eOARqpAH/4S9VxOE+QJsidFCdWPKRNiIdWgzZiS1KmWgspSSR28rzJ0xThODMPI0A+kJtE2rdg8cqmtKZHg5Z8zYDoreaVhKh/zqLTWFQcvFcmuzzRlFljUvA2EVS6KEvNReRF9JoXaRFaD1tu2Y7FYMA47ZoeFnAtnezUsV520GCnFdCsKkFTB9HkNjaWgUzmSYUpJBoUuHG1LEixZPZwUeMD5xMdSw7gn9oc9t7d37A8H7m5vubvbM40CXCjlKvBksK4lxsw4jITJs2yFfSxJ1Kqqvv8Y7tXBKZNjpBiNbeRzkUjoHKU6Fjnc56pqtqZhudzgi7xHd4ce1a5BWUKG2/0NN7c7rrd7Xr655Bdff833797y9uYabwuhUXRjz8ac13ss4dROG1pljoG7SQHHPC4xJ7RGk7QiKJhSxJpG8qBMptEGY4285pwgR3Qy8kyFiLK6ZmEIyKqR5qLfIFoe4Ip1757xhXlOmSt7U40EyFlUdqrW2s8ZLLm2e0prjeQFKWYyJ7NaLnh0dsJ62XIYBmnZy/MIJOue0UZmcyoBoY0w58uOZ8+fsj47pTs95dXVDTd3O7xPgCEmef1GFbquIZbENk6yfmdFVqq2cxVsVQ9mOzeOFVlvmZW35djCAwI+q5Rx2nK1u6V1ji9fv+B3Pv4UpSzj6CVTsE46fRgJJZEjHEpmqWEkcTf0XN/tOUwj6QHtywDa2SOBXaKsf7rcR8+qUlAl0OJZElipSFuiZDwpRVCGmDLkxEJDhyemkWnco6qtsmBR2tYZSAKeS5HTji5y8skoYpmJJ8lJsSqzVlkMCs7Qx8A49sTDlrhYEaOcGVUIEh2AJqGOa3PKkUO/o+sc3aKh6ZwksCglWZtKDtDOKJwtBJUIeSKkwJTlHictJAlhIuzfcvfya4bra4a3l0yXt6QQKCWj2wYdxa7WHgynpePEnnKxfMbCr4kpMfqHswj1vmcIPVMcmXIkqVrUkmHZdiyblgbN7vqO6D2d6zi/eCRqqrfv+Mtf/pLf/ds/4ZOPP+WDpx9yuB24/O4tr794ge0nlsbQLgw6jkRVKHnCx4FxGPCTJ08Zk2qdeNL0Q2BShd3uwO12z+12x3LpONzecpI2LAs8WS9pyVy+fsWvlkuefuBIasI1BYrjow8u2B/ueP3uNb/41S9pGofWmk5pUeqGyI8//zEv3t7Rx5d8+/IVP/v5l9x+sGP66BmfnJ2QiiWSmWIijNLWqbNnTBNRO5RZ8MGTRyhlySlxOx1kr1SKlDPeCxhsrVjZpVjlt7tHvzXAMk0T0ziJxLeU44A3e4tzmr1LUomHvs93kOrlUtk8YS2ENVf1oJrrwsuRMaGCLNY22KbBOYcyRoCIAhwzw5VIao8yTMfm7ILTRwfOru9qret7NFGdLmZwSCnxuWtdB3vmQ8J9nkzFYjj2u2c5MMmhVECW+QA3V3vJv6v6n+//Wzl+VV/+zG4zH4ZrEOkDXf2hZ2NbFouGvL0Vz6fRaGdJ3pPHCeVrAGWWAToeEtP+wDSM4q3fH0h3W3LfExdi/7HW0qKwKaFSQDeOdtXBQpEDrE7WpJC5GS9RXiwE0WTcpmVzccJmvWb/6i1P1ktMC7G/qQyMg9airJPQKsNRsni8jRrUssWdLPEpYorItjFQTCaVQDgMjFraMGJO9PueYdfjD4NUzdVblDQoq3CN5Xyz4tRa0ug53O15+/NfEcdAnDx6uaB59Ai9WkIjTNY8XFTikfyA0mkQxqq8BxQcWZUyQyvV/lMtN+L4ma1BlWVR8mwVJYdrlUWyfBSd3D99VRZbn/UizLgkysuwRk7CoisrzFp9XnWZHcuzlqcGt/L+KF6gZPGZa0XrrAzwSli68J7FQVV2HYAsK4ocQqqFpX6CTGUddVXiHMU8R+WNvG/zzzEffPR8qinCqhXEHvFQV8iFECW0b4qJYQpMPkpF8n44Viq/fvUOPyVyhpOTU1LJ+JTY9oHRQ4iKkDSpSLtGVhqfRJmTc0QbmHzA+8DoE2GSJHydYPCRMSammImz9FmJ9FHVRp6usawXHalIkG5WECj4CmikCrw5ZzjZrBhON5ydbpi8HBxTiITt7ri+SuO0SLdjArRCZ7EEyY0UG5CZgZkYa3uDeNdNkbrhomvY3KwMnNfrekBVqlaDx0wY/IPdt5jAOrEJqMbV2ggoOZK9p/gJxkmGv1yfciv7FOpeyZhLIsY6WBXxt1uctElNnlItSChDzDBNkRQKVjc0boGxjaDyWouSKyVC8rRIRXQMobZy6QoqRkqKlJiEdCjzOmDq/ifMXn8YIICaNG5lSUEabPw04Wr99DR5xnEUdjVG8Xx7T2ycKGRCbcSaJlI3obXDOEXjLN5rUoASRLGai5IcHQ1JSSlonEbEKPjQKbfzmiZqGYpUSZdcGwqrMisluacp1gN3kbyTGOLR5qCUwk9evryHovA+0DRRFKmp5kjERIxJ5p3jqzimWx1BL5HfqyPjf1zbKMf8p1zXcDlo6jqriOoix1Jfb6nLqNTKt22H1o6SteSmMGPd8v3arqFpWu6/2zyPQVZVWq5E5TtncitmgEVJlfBxWayht0eQ5WGu/WFk6Hv6vufm9prr6xv2+z273Y5x8FW9abC1nEBrg3WWFGIFZjzrbonWhmwtJckelHNVcWldwRMhE9AFoyzOakwxEDRpbtnLqmYNiQTe2hZ0TwiRaRhpJmk16X3k5ZsrXr+95O3VNV9/94ovv3/J9X5HnwKxgJpG+nGoeThyT7TWWGVqjpg+7p0yysrarIsczmdldK5qbgU4Y3BGqs6jgiLyTSgZlZDa0qBF+pqSNLvkfP90PiComWaZ5gywZNm3xRb0HpCSc50hypE0yTNZVmar/BEuBiXtdF3j2KyXrJcd10HyPah7OMh8cgzdV6BKlJOH0bjGcXJ2wpPnz1icX/D4T38mdtmwRWvZ63OSg3bXOkKOsK+EkqD6UpldJKx1Dg+WwIP3yKT541FH/XkUExoVDn7kcnfLl99/ywfPn6K7Fbqx1UErP/8YAmP0pKqcKaFjKJHbvudud2DIHtoHXiud2KszGV1tXrJnyGlEl4zJkUZFOpVYlEKjKmVWCrGAr61PThUaldBpIvlezgK6kf3QWHIJxKoMkmIROYdZrUhFoXM5Wh8LGXTGkVmgwCjehkj2I2E4UNpO2qAK2FwwWd6XBGRjawxExA+jZN+FCGVZG2E1VucKwMpHTusEKpII+BSxpWbwaA1pIk97xtt39G+/Z7i6Zry8IR/G2vYkcRU6gwrQeMNjfcYz+5RP289ozIJQEqN5uPlkCCNTmpiSx5dC1gKTKQWta2iMqP6H4YDVikXXsViu2PY9b28vubm54XRzwtNHTzhdnvDym5fcvr7i7tU7upg5c46Vs/R9zyGFms81Mk0TYfKUkDFZS6tjVEyTrDH7w8C+Hzj0A/2hp9/uWVuHK4mTztFZ2N5e8d0Ly+3dRxiXWGSFVg2nm46LszUnmyVv3rxlszllsVjx6bMPSMOAyoXTzSmnp6csLm/wMfPdq0uIhQbDSdNhkiIjs5SPiRQiOiX6aaLYhF40nK4WDMNEf2g47DVkKU2Zx4a5ZCfnxJz389tcvzXAEiZPDIGSC13bSTif0tUfLvkA9QwlbEyWY1tMmRizDOVFg7YoDD5mjJWgrzp+k5EhqChD0UqQSedQxsqwPzPlpaLxtdZL6kZk2EQV3OqUZrWlWZ0gJ3QZVBLSU64Rvx9GhhlhT+8HjqS0ZAKUTGMkNGfujFdafm30XtzuqkoHlRVWuTag6KquAZhPrcdysiItIDPTBLJImPk1PCBDNMXIxnYYDNN2gH5ClUweR9L1LVzf4XY9dhhQTKR+y+3LgcPdDWHoYRoZ93vizQ2LlGhMg+5a9HpB//aa8eaO0Pd0y1OijhStUUvHYrNiuD1wuN6S+4kpe8am8OHnH/HkyQVdsbz5amT16Iy0MrC7xJ1ssOsVetlibCdMVN2UlZIgM00hNXKotiMEA0lntFFsnp5xdXNDGD3Pzh5zeXfFuBsZKdxc73DdW05Wpyw2LeYwonwgW5hsxrTQdQ3LhSEkRRPkOb978ZJfvHzBty9f8Dv/8O/z7PPP6Z48wStpydHZyKvS8pw86BXjkelQM8tZuD+MKhlLcgVdyDVT6KheAbSmaEPGonSWYLn8XgCIyhI8VkecBFjEzuBqfovOAUqUUDZb5J+6ISX5bJmSadSsMpo/zeYecKQe7Am0yrG0ilXj0CEyaYUuBU+SDICS0WgM3IevWVOtWQVPqBip1PkaqzDFHFO/M5WNVUlep1LkFIVFQ1pW5gwY8dAjG/9vmRr+n7qutnv6YWIYJm63e+7u9hwOI7v9gX6QwMZcCrc3O5QyONuAWVKUMDpTtEw5EwpMBWKRA7mNmv000ZiIM5mMZxoiYcr0Y2YKMriWmOl9YoqSy+ITospQ0pRmY8biOFkt2Zys8bGwHQIoCd31JZNDxtdmn0VjaZZrSjjn7tlTvn9zxfnJCcu25c2bt+SiUVlJOO57APmik+FGwlM9WSPVy2imVBhjwWcoSvKtKEijgnUUbcQGpQZKCpK/UgGMECPRaIZhZHu3f7D7VrBgW2haUiMWNHIijQdKv0eNE83kJRwxZ3zJeCsgu1IaiyIXsbmSA1Ckua4ommRqBfOARVd2T9MfJsYho1PDpu1YdCcUYwkUdNsQkLaiMfRs1ktKTgx9j3MbjJHwVLynhIkcItlpdBbZfEbhY65ZRpZp3JJ8hAlO7IrOGLrNmtP1Cq3F9uh9rCG4Evx6d3sj7HRM2FxQoQLqzhOnHcq1ONuyWnTEIZBiAW+IXjEFyI2VpgmV0AZiP1BCwcSHBaPlJDtXQw+o3KPyAElCN0PITJMiZXnPgs/kMImFwRhiWJBCItVgRFEVeVLITMkTfZSsstZhtEVjiCETQ8Jqi6126axqFbfWEu4bA2QhC3SpUHbNAiiloJ0iT2KXEAtJK4BNjugEKmVIhTgmsny4SDFgjaXrlrhmTUqh5lokCYA0sv53S1G5HMemCmzFrFCmQTUR04mCrRRNCWCNgiJrdxKUTNYUXYi1LFc9IAH0xRdfcne3Zbfbcn1zRd8Px2ycxrU4J3ZQsKJcRfbp3TQxjgO73Z7zkxXWOXJ2NYizhmLnclRzGlPQMVSrgGQ95aLJRqMNFCPWE9125KKZfGEYM2MsDCHhfcJf3XC3P/Dq8pKf/epLXr99x9XNHVf7vQSxWo1adKTsGXLgdr8lFV+BzkKjldiPtEFZS1Hi/rBaI9Go0uZijKilTdbS7JREmbhuFiytk2aokslV+ZJKosRI0Ql0hskSg8eEhrnaW5GrSuBhrhjzzD0CkEnoompLFgI+ZMgl1ue+2nyP5Eu1DiFqBl0UWgkYFNNE22jOT5Y8e3zKdZCiglRBR1UnBF20WEg1pFgwWQD8kBKmcZxcnPHk5ITPf+8nDBSu+gOgIQqIU1Jis15ILtVlxChXX6fYeLVWOK0k36boY5PhTG5R6ryui9iqURirUKrgU0EZxdWw45/98b/ALBw//eFP+L0f/gR/O0o9dAwMMXE97PAxctI4UJG7ceCrN295c32HcYrT9mEzWPIq4idPjJmMIZSIRQLqXU40ydOmgZXNrI1hrQwLZ7BRQONpnDikxKJmo7U6YfNAHG6xeUSpDmU11jn6MJF9JGdFk1XFEosQW8JWg4KoIllFfBMBT4dmjeIuZ5hGera4R08wrgNtaEOim0R11+tEzLGqmgtL45h2I3fv9oTzjF006NYyxYzGY8jYnMn5QFEDSU0c/CieCWvRFqbdNf76Ff1XP6d/8Q1pP2CGgC6a3LTohWN1dkq49agAF+mMP9z8ET85+4y/9fwnLOxaWh79w33m7vzAGD0+Z4p2pAKKTGs1nbHYDH4/kKY95+ennJ5uUFrx3Xff8fLtK9bdmk+efsiH509pk+Xdly+5/OIFhxdveGYsH52dcr5e8u72hi8v7xjHPanZMR72hJBQodBkhRXpI36KTFPgbtuz60f6/ci+O3D39poLq7F+YG0SF+uG79++5fb2mhdff4pmSdxYTCnYnDhfdnz2/Dlff/lz/uIvvuHycuSf/Len5P4AfuLuakdrLI9Ozzg/OePy6pYvXrzh8nKLnzIfPn7C2XINtiGrQCrgA/iYKdlj1Q5rl5w2mny2Yhp7dqO0zprOYltNzoFh2EmjVQoCTv8W129vEep7QaOVqkFwgrDHql55vy2hJAnjmz3JKeX3wq+kd36aRmblvjFzGNLc1XIPMWijMVb8qnOmhPgfzX36uJJQouP3R0loVNPg2hb0QeT3NfsllozLGSrqGWOVc88qEgRcSWUOlhOYSyupqJ0ZVR9CRdLltZXia5hWVce8z99XtcB9kO8cTueOu1Su9NLD8Qxw8uQCN2TKbiTdbuHQo3JD2h3YXt8wbHekKVBudig8ajhw/fI1092OMkXYjuyvrxgPB5GBx4gpGWs0N9c37PodgcAnHz/htkzECGdPL2ialj7tGXaDPOiNxp04Pv7Jp3RYUj9R1gZ9skCtG5rTDappUM5hbUNyzVHRYFSGWrsoOR0CbNhVwTaO6dCTYuTx6Yrh6g27ccfZyTlXuyvG24EwRqah5+7dJa9cwwcfPGa62eJ3B0oq7A89GcX5xSm2dZhRo3ziwjWctS2TUfzqF1/xxRC4/OJbPv+H/4DF82fYdilgH1rYvoe+3gOYjlQYVPCyHLlSAV1AQIMK+Jmq6NGmthZYIFZVRxEJfx27hZCv720uKG1olGZpHEudyD4Q457gIDoIVqPsstIA1ZaSJ6TrJ9z7klVGYdE5o0rCFsniWFg4WRo629KPmf1Y6P1YDwkKg8UUZn3O0eJTTKledQlotBZMFAWT05LZEouqyerlaO1OFahRMpYx9zFVG3Vlxh7uwPenP/tLhnFkHD27w8ihH/A+EqLUURvraJqObrmBWh8ZiiUmGQ59gClkQi74mEk1CDIrzeQV2RSCqSGzPhNCpg+JEJGf3yvGBDFpYi6EBI0VXjbFJO+Da9mcnLFab9A+YJu9SNmLMPtZQwoTMUyk6Otmnugaw3C4k/BPo1i2Fn+YiLFg7KKGmIvN09TGtpzl58o5k1Sh07L5+ZyJaIrrRN1QVY0Wg9NOpO0lC4CZZEiTmSwRkvimlXm4kFvXtFLVa6ww5qVIa94wkPsBmzKtFeXV/HEMMdI4YZat0ozDWBm7e+WCUYrkA34YGftB6nNjImbPYZxIGYxxuHZNt1pXQFQsj4FQ9x6F9xMlC3AqllVQOpPGgehHUkwU3VCKIZeETwGtpXq4W3QUG9n3d/SHPWNzn2vWLbq6D2ZGPRFiEhtf0zK1zbHJCBB1WExMfY/WmkVXsEvLcrlg6gPTEEg16DXGiGk1VmuSMRRj8L7HZ0VQDxtyW6qFrCQBIqSFRfbYEKIoVFKqattMDPIaZ2vM++2GSkl43jR5hmHEWss0ibVvsdDVTix2qnEcJVejWnGo4c8hii0p5ULbgbJUNdT965X1Vx8Vs9JYJHY5Q0OmFzse8pzNlafzTOSahs3pCXd3N8RQ7U7GYClYa9mcnLBar+WwaF9QfKhKGfn+1jo26zU55RpQGutzP6sS5iNxRfbnP6sfbq/7+c9/QQhSHDD5saqFjQTNVluW1oacJAxWqULXdRx2B+Lk2e/2pPgI1bS0tpGcMGTfk71MgrWbGkw8270bY4hJbDbGmONmkKxl1w+YdEvXLPE6M4bM3e7Ai199xZvra15eXvLl67ds+4EI/Oh3f5eLTz5EN47L6yvevH3NNA30/Z4SPMY0OCdZKZ3WtEphNGStiCC9RGUOp64zb/2CLOolU7BmyTAeSENPigFj1kKmIKpqUqJERYpRGrNCwIaIbeR9UA8Y5C4KEJk/1DzXAtp7lLmfaSkSsAwZ7eqcVC0vSs8kTI0KULLnSxizrEGfffop3x96dj4wpQRBFEZWO+KsvKBgTIut9mNrhDC1zrE+OeWHn3/O25s7fv31C6FusswGuWROTje0saN9aahiNXgvOF1I10ws0gbY0NTPcDmK6Ocg/jwzYRpyijRdQ86F7WHkf/w3/5JffvsNX756ye98/DlL21Bi5F/9h3/Ply++4m6/5/TsGevzC4JSXPYHphTpnCXF8GD3DSA3gRy8KC2TkFOl5uS4FGimHtff0ZkeVTIhZ1L0qNxilERBYA3GtCz1EhM25D6xnQLR96hujXENqlGEKdQswQjG1bdHbEi2LoZF1YB8lSh5wirNQllWxfCBM6RSOISRq9tb7OkZbrli0TZ04mTH6ky2QtSnAmZ1Sn+753C3Y7/taYyhcWKvDVEKL3ROjNMkdtsYSeMIPqBTImePv73Fv31HevMGu9uhg2Q1TUgmqFs22KJxacEyL/ndxe/yt8/+Lh8tntD0C/oUKBiMfsDcI2PxyJlb6YYcFLpoTAFSIAf5DC7bjtVySdO1vHr3lreX7+iHnh/95DPOV0uaFBnevub226/xl+9YpciPP3jKh+enrBctJU9cDQNxzPiS8P1AiNI21epGQpK9IoyF0Rf6KbMfI/0YOewnbq5uebbqyCHQxswHiyWjHbjrIy/+8mtW9iPy+RKVA1OKxCFysjzl5OScd9c73lx+ycKd0pWCiZ5wd8UYE9thYLi9ZRgG9gVuh5Hyxdd8ctfz7PScR80Sq4ysP1ry63IupEGabRsFp4uGR6drtNX0PpC04nRzwmrVsdl0jP0d03Bg6n+7fu3fGmCZW4OMMcd0feC+xuy9jVvsLxyHlpJz/RALEKNUbWRIAqrIHF1le9yfI2XPE1BDmffAlfe+Zolh/RMAVUbqaLuOpm3FB14KIXiU1rjqBVVGAqnSDGrIaY7ZKnEPGs2vR5hKaq1yjEmGT+6rcOX3v3foLe+9vOOvz5WJVGuTugdelHpPQvw3v9r1EvP/4e2/nizLsjNP7LflEVe5DJWqKlGFAtDd1tNjNmMUZrQx4xgf+Mr3MT7whf8iH0ijdVM2eroBFKoAFEplVmRmCA8XV51ztuLD2ud6JIAmZxI+PGaeEenh4t4j9l7rW58Y9+RxIu72lONAJjM97Dg+bBn2B+IYmLYHsgpwHDjcPxCHUZIMDhPH/Z5pPOKtZswThoI2sNvtGcJItoXN8zNubr4llMzzyzOMs4IkxkixBtMa1LLl7PocDrKw0RroLLrzuL6naDGwU9qKtwZZACwt8hZdCjoJi0h5DT5iGideKjnTbVbozsFRFsCkM1OJhBiYwsT+uOfu9gPn647hcGAcBlLKHI8jShk2m1UtcLUwkWJm2VtoG74d3zG8fsP744TfbHhWCovzS7r+jFKbvI8Btac4yszplv/7//q1j8RtmagzR4eruWybwcPqHTNLcsr8uitNsygpYJSmM5qVNcQIgcxRFbTOKF0YlUQmowxm1kkVUfYXLaCkgI+6MkSq3hqF1YrWGxa9w2wjMYEpsWqTNUaYooLRKFX9eAVUzRhmz5Ski9A8c8KUTFbyOxTiWTJjJgV5rihaWGcnYKqcUlieEtV88/YDwyiG3sMQGcaaSobQl42yaOtxjaUUQ8EQsxGH86RIRZOyOnlSlZIrOy8zRvGgsUUo4lPMTDFzjJFUhCYZUmGqPycXYe5lZK2MqeCVRltP2y3wTSOSID3Tn+e0EUgxiGRwGjBOzFNbbyQaVGustbx6+Yz83Xvi9kDM8bTGlyxAtXdSZMTxKH5IOZO1IuRESIlYCqVO/4sRE+OiHEVbyS9NVmjjyFpdKmtxGidynQQ/1WGtSBGM1ui6f8UwMY0jpcpyjDUilaFO8vNj/LIqhTiJJHG2PBIJmzTsYZqIU8A2DSlEIonhOEACpyq7U9u6z5UTI5S6Z8YYKVkSYsTrrKBUJoWJPE3iFVBZlDlHiipob3FdS7vsUK4whoG83zENgcY5cCK1ExCnNjgVQBKvJIcRmpf83irVClPAhoCzEtHtvRdfNi1O/rnKY0zdG7USJt2UMpFapD/1Udeg076dy6n2yHOCjpxOKbySGGsnHtML5d8l1ng2rC2lnAAj4JTOlnNmmia89+Qi98HMFBF/K3mPKWVki5DzOC+9Ii+Yv0fYvNporDF45zgORxn2ZKk1Yh1WzdIIay39YsHDw32V0UrCkDIGbQ1t19H3vdQ6usosT7C6mPs2bUOcJrRSNd2R7+0R82Bo9toq6ml3ue12X8F9qYl0HaZZ5zDWiZxTSSOhqgzUGCvnOhfG4yiR8tnLs6tqjWisSBCKTMyNkvcx74ZGK4pW6Ao6nNLqrCVlxZSFXfcwDOwOB95/uOOrb77j2w/veX1zw9vdjiEmTNvSXp2xenGFaTyTg2Ma2d7D/l7WDdtYeuNprcErJe27EomtsEWrcLycOM4ny5RSm9+CoqTIfrulHI+okrFGjBmp31tyHdDFmowSJEJ1Tqgq/wzq+z8+Huvijz+XKoP78Z/mTbjKtVQ+DYYUj7V0ma8Dsl9LKl3h2fU1q6+/ptnu0ONRpM5CTWWWFWlAKXcanZQ66ilKmJtXz55xfnlB33ekQzg9AbkkSRstDu8dMcySi3r/MwNBhUL6XilW4CTrUxVkmfcmlCJShA1mNNkZ3u+2JPUtxUoKVmcbVEr88re/5tv3b9gPAx+GSLPbgvckYyQ1iXwypn6qI+WBQqjnQOK0Y8qomLDjEcY9dtzRLSOegiHjNfgCnko0dQ5jFd4m2rDgEI/0Y+B+PFLyCKpBWU0p4scVQ6T4ciq91AyM1est+0vBqILXBU+myYWNNuwKnJG5Peyh8RRrUE0nCgSthFFohPlvEANrugRT4nA4okJCp4w3jbCRsnhbFS1rLzmjQkTFhAqyh4btjrjdwv6ADTUVq0rVtdUiqQ0FHz0rVny2+ILL5hmNWbKPA3fjlqwUmKcDWI4ZIiIVN0rqBF0MRhsBLlMiq4LrZaiC0tzcvGe3lyTdi7MzYZqPI9P9A8PtHeVwpNOay82azWpB31hWi5ZF21S5oyQHllQvXZXIxikRx0SYHj+mMTEcJx4eDhz24pukQmLTeDbOE0ncf/ue7dUaFxXGFIY4coyZHDXWeMKUuf+w5fe//ZaVNficiA8fSCUzxECZIhqEPRwy394+ULJlHBJ5dcbaOrxCnMyDqUOXTFES0GEV9M4yek9BMeSM1ZZFv+TTVy+w5gVhPDAefxgz+p8FsDjnJOa4Ah2FuUiphlVanzblE1W/FjgiL8qYmQGjFFRQJSslLJjK/jD15zyadcoUY94EhddfF7UqQFCnpRms93R9z3qzoV8tsHeOouA4DMScscHirUfX+M05+UJphTa6bgTSkOZU2QNIs6i1kQl6gTBFlNenggfk5+R5oS3/ID1IvuJUyM1gFVAd2MOpOHyqwy961Ps9cT8w3d2jU0TlyP7Ne/Y3d4z3R+KQOHx4IOtEGQ8M9/ekccIUQ9gP7PZbUg64fsE0RazKaKvE5TxNmE5z/cUzfvXwmkji+pPnqMYRVWbIibZv8WuDvug4e3HJ/t0tw/GAXjhUZ9F9Q7tZk7Uhz8bBzgqlteRaEQFFaLTaWqFO+4hdtOi9g6Q4e3HN6v05SWUun19w++17ht3ILh445JFpKOQHxfV+zW6/Y3/Yo5RlGiJ5ShwXC6x2aGMIKTAd9pwvl2zaji8XG/7+7gNvb274+uGGPxn2vPzxT/jsj/4MGkepfg1PeuSPChX1CKGcjgreSX/0EchY792kZkOxCrZoRcmqWhGJuZmqDeI8rZQ4XIfXml4bVlgillEbkonYBkwDIUuaRVEKrWz1T8ok4hxdhXic2BOAUbKwvay1NI3l+fUGZyPD8IAhYJUhF41OBSKP3gVKgdcSK25S1UMnAhmtIoZUTdrq+mEc1miyLiRTPvJcgVyjr2eqspqbiCdksNzc7k6MFdCkLBJCax3Wt/impWl7jBXfjxgVUzaEjDBOihGD2CLeVZLIJM/CcYqkbHHWEJJmDIUpJHbTiDKdNAcJQhIZisgXa8RlFo+XzluMa+gWa3zbYlOQInJOpqpgW5pGpuOB4/4B03k0kUXreXl9idEKZy0vnl1jf/5L0leveXi/PU3ChGYdadsV5+cb0jQwHEVSkRGt7DBFxhDJysm0NmsZm1uLsqaSwyLoTNECyNQRNIfjEZvSU+JiNN6hrK5+VJk4jkzDkfF4QIWI8w5tbZUCKuYIdFMLO1IkjgMxR6yTAkcBymim45FpEIN4Yz3jMDGlxG53wKsOqwQQixVUlQQvTuCAVoZpCgJAWofWCmNAq0IYD+IRkzMpDJSsCXlCOUO76ulXSxabNf3QchyO3N/fM+0DwQSC1kRvxPA0zjHUE95anNG0TSNJd7mgrUbX4co4jLi2IbpAignfNPKea8OX56FKEuBJq+rHkgWsneLTAixqXuMyJ0+B7w955gbucRCSa1MP+SRLmffeUyJQBVmmaTolCumaAJNzZhiE4dJ13SmNSPyvhBGSqymutf5UC4hPT42qrVT5VGpTbcQHaLHqGcMDqVQPo8qKCUm+RxuL856ls/DmO2J9H0UJwK6MoVss6BcrAWWMJhWZ8KLEb843nrOzNcPhIIaxU6gCT3XyojtJvsu8+zzlEyeQh9heaIxWWCf7g/MeoyvtB4W2GpUlblX8SYRpMxyPhGEidy3WW0kR1AIgh+ocrHOVcJSCyhkzy1B1wVlVvTVkn1SuQZcGXIvyHd9+8zVvb97z5u17vn7zlu/ubvn27gN7qyne0i5byqZnai2udSyuz7gsAWMgHHbkYaRZdpy1LSvn8KjKADYkpQlKYQuYUkTGNPtkqVKTpCJaLj/jeOT23XfYmNi4Fu8dtkrlBT/KkBRlisQxoP1ErrJ+lWfG1NNduY+Hh6fAi5xrPMXskaJOrK25rhYOiuxLUrOrR1aLkmcvxImUE5+++oyr353z/mHL3W4Ub64kdbl2BnNivlg0AYrIVlJJRBJJZ15++oJXf3jJ9fUFb373LfM9nHKUiFYDi2XLWFPFtNIUZcjI8MZadTJ8NlrimWUAkR9Ztqoyb+bBsxJ/P4zGrHriMPJhOnL767/lP/z8L6r8q3B//45m0WG953DcE49HXNuxvrpCGYmBnsLTGaUCjMc7iKo+Q40w8aeRqI+4+1ua6RYX79mcN6yVwiTFpvGsRs2hAvGuafDe0VnNiswU4MM+cH98IIc1qWvQXujBOUbG40jpl8wBIJRSWcVQED8cqxWdUXQGOhIuBs59T1SGqWi+3d8z6kLIE+HiCoVHKUPCiAEv1RO0KFzbsiqa+9tbVAioaWLTnhO1I5TIEEbMtkGNR8gFFzJ2jOjjSBoGwu098e4BcxjQUQZ3CShWJOvOOvI+0Iwrzjnjp9c/Y+HOmErim3jLH+K3TDmSnvCRu49RBtDK4rA4I8O6xjZyVlMmlYizfZX8Jl5/85r9fkvTN1yszyhTZLrfMYwTw80taphY+YbLszNWiwZnYbNZsX44cEgDh2MWj7ci7MFUREZ83I9Mh0gMiXhMpCETjpGDHrj58MDtxQpPIQ0j533Hvu9hH7n/+g23yxVql2nXPQ/TwDEl9rmgkkUFRdxH/vDbb1k7T280C12IcSSWhNeazntJ8wuRd/d7hkPi9sOW4WzHpxcXnC16Fk1DGSdKkn0xx4k5aKYxmmXToLUlD6P4uVjPq1ef8NOffILRmRR/WPrTDwZYrLV47/Hei/FplmlkjJFUabWPC005FSilTmApmabxNE3D2dnZ6etkmjSPkREX4agfQQht6mRnNpLltLDP8acwT7oVVhvW6/VpCvTZ518wThNTjBynSTYlKzdnrAg0Gpy3ZAXKyDTOOYfRGmb0WKnT5KogNOM5ms5oUzeUOtmqCQJzmpLS/3TzprUkdMyGpFKQ5ScFWHJBKF539xzut7TOUMjE796zf3fHsB+JAQ63O5RKhHHP4X7LNA5Y7Thst4zTSHGF0gkrBQfaKB6mPblRtJcL8mWHWjc4lVk921CyZtSFo0qszta0lx7/oqe7XJFKZIgj9ArdO9qzJRf5FbeHvaSHMBsHazGqU5lSCyRdFNpatMvoxkriUN+gisWsO5rzBW0ZaNaeq1dXqKw43I+YrSPlyMPhnjdv33AcjozjhLYteSqkKfH+zXtCDlSup5ibpRGXA6/6nu1uyzQNPHy44Zf/13/Ld7/6Hfv/cscX/+a/pvQ9o31iM7KZwTEXMXxc3j6St6FiKkZX6Z7+aKOfWV5UvXCVvNWHSNV+Ws3ADBmlJowpeG9YrVdoGkJesX3/B6wBazLeZg7TREARMgRlwUgToY04cVMSmgxKfGoSEDBEbcBanj2/pJSJ/f6O9oOGCDFnSsqY+VqjiSmTE1AMOE1OmpJhSBlbasKQzljdYK2hbRxq6chOIi5DiVLxlAowfdTgzGwY9YTF53J1xTAExhBEq56lIddGY22L8x1Nt8JlxXGMBALHIVVZQRH2Ck6ilasmX2kpTKcwoZRDKUvKhmGqLBYyXeegGNSYicMMlMhrSqWAuNxgnKXpWpbrFd2iZ0wB5+dYw1I31IQqEWcLq2XD1WaF1pr0/Jof//hLhuOBMA2s1ue0i56Lq0vif/+XpCJeHiEVlr3ljz5/wb/4F/+Svzlb8dtf/z1vv/uGMEVsMaSoCdOBUhJay/4yhQlthLXmrIbkpGiO42kSb52XmL38WNA+xWEr2F1yYjqOHPY7xuNAnCY65zC2+moZfTI59VaA4DSNDLsjYTgIeCkiflJ25Az3t/dMQxDwPRcxjU+SrJesJWlH0J4h5krdDoxhxxT2FBXoV46UCkYrmqaRCWB12EvDkTSNpJIJvhHDtxLRraVdL2lWK/RyCdbQrc5ZbQ883N1y3ItExliFb5uTcW5JWYw9x1HkuxVo6HwnwJ7Rp+FJyZmYIotmgXEWbQVIKWSZfIUiGvwpUiaRAA4hUtKeT57sytWjmmsmcVs+1SAhRDFUTtVMP4mh3ThKGoQ1UsfEmLB2NsyvbFUEjJ5CEEp5lKREYy3GWsZpwgwD7TjgssfUAthax3EYSSlxHCasbSRdoyhSlsQ0aS2oAx5AiZeFsoXVqme7c8RxYpwCGIkHjhFiyhhrabqebvaoK7UeK+JHZhvPcr2i6VqmMWCcF3+5uS/WmsWi5/nz5+y3W96/v2EYJjGpnqVUBSKPYtT/KQ6tff0NBaUtzjthklUZeinSTAsrUbrptm1Z9gtUzIy7I4fdkVXf0ax7JiMG7EYjNV6Ue9QaYeg5JHXGG0W2Rj6UyNeysiRv2G8jt/cf+O3Xb/nNV7/mOA4Y2xC0pXhPaVuaRYdedNhFx6/ffcM3cc/mbMMfffIpz42mVVC296TtA/3VGc/XGzZ9Qx6GGrcscbMxgysyeDQqY1ShlIiSeTmqRDEkzYFhCOy3W5bG0i1XeKsr67MOODOSnhSCJJ45V021U5XXP52cUo7Kwj4NeebPyd0tTGBNnkEgJSbFSgvoVWb6qJqBFwFZ8lSj0Mcj5xdnXD+75M3DPV+9ucEYLYyLGPCuP70OQ8aohFF16KITViesipxvOj59cclPv/iU97/9AyjwRmLa287i+4b1ZsnhYWSKpUotZK3XGjnPSvxw1Jhx2kuaYUoIwVbMihO1xqhsolCtBzQK3frZyxjTOdIo5vSNO6dpW6x1ZOVojbAYpxhpnMROp/Hpon4BwvYeg0PTkIxnGAdKM7JcLGjVyNoEnnvFp1dLFkVRxswn48R9FD/NMB1JyTAWzQHNhbGct55Plp53cUecHgiTsII6Y5mmzLgdmTagjLAgXa1LFHIfeK3onePZas1lb1jGiXTY4hOcuRac4S4r3oYt99uByStYbFC2I2lT1zRJIZREGDC94+zVFfcf3rO929E3sLjcYJwh2MqWVwatLCYU8VjZDcTdluH2gXC/x48JVwwgAx/TtLSuZ2kW2EnxSfOCH7df8OriBeMUuS33fNW+5Rt3w5BDBcSf6LAOlLC4x8Bpr1VWwJSsNc41WNMyHAMPhz0fbt5jGseq7+msZ3w48uEwssuRMiW6rmfZLnGbDTRaKkQj/SwpMR0nXLMkoQllYsyB3TBwf7/jcLMTxtpupA0FNSUGFfnu/Q3Pr87olEINIwbNRePxXUv7MDF9dcPtXaB9+ZI7BXfDxPvtPfEwsVEev1jjaHHF0ruOLz//jOP4wJQGjuXIqkzcDQNmd+DuYZSI5jjwVXjPOE6cr5a8enZN7zzaWHQKxOFAKlEku8ZAI1LwKRXiOHJ3c8Pf//2v+PInL3n2/IqLix/me/TPAljmD5gnQDXnvq6yM1BQ/qGZVgVRZHLtWa1WlJLrZEiKnBnt1nUTmJkcWqvTxvpI7YfviSJOMazyy4y1NL6h73v6ZS8LmLMoo6UJNVqoqHn+kVoYN0pDTKfNXWl1EofO9KjH91NOxbLEtNX3Xyc/eU6q0aeXeUL5P/67sHNmpo4+gVNPdaQCcYpMh4FxGLCuE4nS/Z5pfyQcAzEZhv2AVpE4SspJSglVFIf9jqKyxP95TRkLyoB1iikHmoWj2yzJzqBbJ41u74ljpphC1oVm2eJWnmbZYhceM/WoY0e0kK3CtA3LC8uHaZDrULIUuXMyjKJO5gqq6mtFnaJJVqEai1WW4g2lMeA1UWf8ssX2njFNrM+WMoWsustYKd/eIfdGUTxst2QPOUnhEEpmSoEYJ5besbSGhVY0KZDu7jkWy9fuF9CfsfjkFe2L6ye7boBM3Oa/61nWA/8kzKIeJ0ZKOLPUU1e/av5TUU7PUS2QstzbWpWqLopy/k2iWa7puxVKZ745fKBYMQxsWkMTFIdYeCiJqBVaOZTRNG2i5IlcMoYs06BaTA4FxqJIRtO2DctFx3rR0XrLlIPQ+UotuJTBKnVi25AKys7rgEzDcwVvMrk2Pg7XdNhlD96QjdynJcskrSQxIxaPpUypVOQTCvUEh/M9qUwUbVEmo1M+NTXWe6xrcK6RtIlUKCESS2LKiZgzKda0tRoFro3BGjFnPIyBnBRJG1IypKRIqU4ObU1uC8LwOXErVDqBcd6JX0a/6Ok6AaRMBeYoVVqSAtZpln3L2XrJ1fmGZevFiBbDlMAbxTBo+r7j01cvKEpxv9sRgkQU7w4D2liuz1e8fHZBHD5l2t0S9nfs7m9ROVGiIU5HyJO44xhDPE0FZzYjJxBlvvVVnfrHECpw9DSHNAkiV0jTRDgeCcMogJ+Xc5RKqb4+WfyoGgvV02M87MlTkH9XgDESWV0U0zDV9A \ No newline at end of file diff --git a/tutorials/source_zh_cn/generative/diffusion.ipynb b/tutorials/source_zh_cn/generative/diffusion.ipynb index cab0643bdd0a2a194aadebad8abd8b90db27accc..d88dfdd4e158bac6b9aa482a9a166d89ffbc51ab 100644 --- a/tutorials/source_zh_cn/generative/diffusion.ipynb +++ b/tutorials/source_zh_cn/generative/diffusion.ipynb @@ -1,1863 +1,1863 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_diffusion.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_diffusion.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/diffusion.ipynb)\n", - "\n", - "# Diffusion扩散模型\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "本文基于[Hugging Face:The Annotated Diffusion Model](https://huggingface.co/blog/annotated-diffusion)一文翻译迁移而来,同时参考了[由浅入深了解Diffusion Model](https://zhuanlan.zhihu.com/p/525106459)一文。\n", - "\n", - "> 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件,执行Python文件时,请确保执行环境安装了GUI界面。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "关于扩散模型(Diffusion Models)有很多种理解,本文的介绍是基于denoising diffusion probabilistic model(DDPM),DDPM已经在(无)条件图像/音频/视频生成领域取得了较多显著的成果,现有的比较受欢迎的例子包括由OpenAI主导的[GLIDE](https://arxiv.org/abs/2112.10741)和[DALL-E 2](https://openai.com/dall-e-2/)、由海德堡大学主导的[潜在扩散](https://github.com/CompVis/latent-diffusion)和由Google Brain主导的[图像生成](https://imagen.research.google/)。\n", - "\n", - "实际上生成模型的扩散概念已经在([Sohl-Dickstein et al., 2015](https://arxiv.org/abs/1503.03585))中介绍过。然而,直到([Song et al., 2019](https://arxiv.org/abs/1907.05600))(斯坦福大学)和([Ho et al., 2020](https://arxiv.org/abs/2006.11239))(在Google Brain)才各自独立地改进了这种方法。\n", - "\n", - "本文是在Phil Wang[基于PyTorch框架的复现](https://github.com/lucidrains/denoising-diffusion-pytorch)的基础上(而它本身又是基于[TensorFlow实现](https://github.com/hojonathanho/diffusion)),迁移到MindSpore AI框架上实现的。\n", - "\n", - "![Image-1](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_1.png)\n", - "\n", - "实验中我们采用离散时间(潜在变量模型)的观点,另外,读者也可以查看有关于扩散模型的其他[几个观点](https://twitter.com/sedielem/status/1530894256168222722?s=20&t=mfv4afx1GcNQU5fZklpACw)!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "实验开始之前请确保安装并导入所需的库(假设您已经安装了[MindSpore](https://mindspore.cn/install)、download、dataset、matplotlib以及tqdm)。" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "import math\n", - "from functools import partial\n", - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "from tqdm.auto import tqdm\n", - "import numpy as np\n", - "from multiprocessing import cpu_count\n", - "from download import download\n", - "\n", - "import mindspore as ms\n", - "import mindspore.nn as nn\n", - "import mindspore.ops as ops\n", - "from mindspore import Tensor, Parameter\n", - "from mindspore import dtype as mstype\n", - "from mindspore.dataset.vision import Resize, Inter, CenterCrop, ToTensor, RandomHorizontalFlip, ToPIL\n", - "from mindspore.common.initializer import initializer\n", - "from mindspore.amp import DynamicLossScaler\n", - "\n", - "ms.set_seed(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 模型简介\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 什么是Diffusion Model?\n", - "\n", - "如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。\n", - "Diffusion对于图像的处理包括以下两个过程:\n", - "\n", - "- 我们选择的固定(或预定义)正向扩散过程 $q$ :它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声\n", - "\n", - "- 一个学习的反向去噪的扩散过程 $p_\\theta$ :通过训练神经网络从纯噪声开始逐渐对图像去噪,直到最终得到一个实际的图像\n", - "\n", - "![Image-2](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_2.png)\n", - "\n", - "由 $t$ 索引的正向和反向过程都发生在某些有限时间步长 $T$(DDPM作者使用 $T=1000$)内。从$t=0$开始,在数据分布中采样真实图像 $\\mathbf{x}_0$(本文使用一张来自ImageNet的猫图像形象的展示了diffusion正向添加噪声的过程),正向过程在每个时间步长 $t$ 都从高斯分布中采样一些噪声,再添加到上一个时刻的图像中。假定给定一个足够大的 $T$ 和一个在每个时间步长添加噪声的良好时间表,您最终会在 $t=T$ 通过渐进的过程得到所谓的[各向同性的高斯分布](https://math.stackexchange.com/questions/1991961/gaussian-distribution-is-isotropic)。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 扩散模型实现原理\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "#### Diffusion前向过程\n", - "\n", - "所谓前向过程,即向图片上加噪声的过程。虽然这个步骤无法做到图片生成,但这是理解diffusion model以及构建训练样本至关重要的一步。\n", - "首先我们需要一个可控的损失函数,并运用神经网络对其进行优化。\n", - "\n", - "设 $q(x_0)$ 是真实数据分布,由于 $x_0 \\sim q(x_0)$ ,所以我们可以从这个分布中采样以获得图像 $x_0$ 。接下来我们定义前向扩散过程 $q(x_t | x_{t-1})$ ,在前向过程中我们会根据已知的方差 ${0}<\\beta_{1}<\\beta_{2}< ... <\\beta_{T}<{1}$ 在每个时间步长 t 添加高斯噪声,由于前向过程的每个时刻 t 只与时刻 t-1 有关,所以也可以看做马尔科夫过程:\n", - "\n", - "$$\n", - "q(\\mathbf{x}_t | \\mathbf{x}_{t-1}) = \\mathcal{N}(\\mathbf{x}_t; \\sqrt{1 - \\beta_t} \\mathbf{x}_{t-1}, \\beta_t \\mathbf{I})\n", - "$$\n", - "\n", - "回想一下,正态分布(也称为高斯分布)由两个参数定义:平均值 $\\mu$ 和方差 $\\sigma^2 \\geq 0$ 。基本上,在每个时间步长 $t$ 处的产生的每个新的(轻微噪声)图像都是从条件高斯分布中绘制的,其中\n", - "\n", - "$$\n", - "q(\\mathbf{\\mu}_t) = \\sqrt{1 - \\beta_t} \\mathbf{x}_{t-1}\n", - "$$\n", - "\n", - "我们可以通过采样 $\\mathbf{\\epsilon} \\sim \\mathcal{N}(\\mathbf{0}, \\mathbf{I})$ 然后设置\n", - "\n", - "$$\n", - "q(\\mathbf{x}_t) = \\sqrt{1 - \\beta_t} \\mathbf{x}_{t-1} + \\sqrt{\\beta_t} \\mathbf{\\epsilon}\n", - "$$\n", - "\n", - "请注意, $\\beta_t$ 在每个时间步长 $t$ (因此是下标)不是恒定的:事实上,我们定义了一个所谓的“动态方差”的方法,使得每个时间步长的 $\\beta_t$ 可以是线性的、二次的、余弦的等(有点像动态学习率方法)。\n", - "\n", - "因此,如果我们适当设置时间表,从 $\\mathbf{x}_0$ 开始,我们最终得到 $\\mathbf{x}_1, ..., \\mathbf{x}_t, ..., \\mathbf{x}_T$,即随着 $t$ 的增大 $\\mathbf{x}_t$ 会越来越接近纯噪声,而 $\\mathbf{x}_T$ 就是纯高斯噪声。\n", - "\n", - "那么,如果我们知道条件概率分布 $p(\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ ,我们就可以反向运行这个过程:通过采样一些随机高斯噪声 $\\mathbf{x}_T$,然后逐渐去噪它,最终得到真实分布 $\\mathbf{x}_0$ 中的样本。但是,我们不知道条件概率分布 $p(\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ 。这很棘手,因为需要知道所有可能图像的分布,才能计算这个条件概率。\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Diffusion逆向过程\n", - "\n", - "为了解决上述问题,我们将利用神经网络来近似(学习)这个条件概率分布 $p_\\theta (\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ ,其中 $\\theta$ 是神经网络的参数。如果说前向过程(forward)是加噪的过程,那么逆向过程(reverse)就是diffusion的去噪推断过程,而通过神经网络学习并表示 $p_\\theta (\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ 的过程就是Diffusion逆向去噪的核心。\n", - "\n", - "现在,我们知道了需要一个神经网络来学习逆向过程的(条件)概率分布。我们假设这个反向过程也是高斯的,任何高斯分布都由2个参数定义:\n", - "\n", - "- 由 $\\mu_\\theta$ 参数化的平均值\n", - "\n", - "- 由 $\\mu_\\theta$ 参数化的方差\n", - "\n", - "综上,我们可以将逆向过程公式化为\n", - "\n", - "$$\n", - "p_\\theta (\\mathbf{x}_{t-1} | \\mathbf{x}_t) = \\mathcal{N}(\\mathbf{x}_{t-1};\\mu_\\theta(\\mathbf{x}_{t},t), \\Sigma_\\theta (\\mathbf{x}_{t},t))\n", - "$$\n", - "\n", - "其中平均值和方差也取决于噪声水平 $t$ ,神经网络需要通过学习来表示这些均值和方差。\n", - "\n", - "- 注意,DDPM的作者决定保持方差固定,让神经网络只学习(表示)这个条件概率分布的平均值 $\\mu_\\theta$ 。\n", - "\n", - "- 本文我们同样假设神经网络只需要学习(表示)这个条件概率分布的平均值 $\\mu_\\theta$ 。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "为了导出一个目标函数来学习反向过程的平均值,作者观察到 $q$ 和 $p_\\theta$ 的组合可以被视为变分自动编码器(VAE)。因此,变分下界(也称为ELBO)可用于最小化真值数据样本 $\\mathbf{x}_0$ 的似然负对数(有关ELBO的详细信息,请参阅VAE论文[(Kingma等人,2013年)](https://arxiv.org/abs/1312.6114)),该过程的ELBO是每个时间步长的损失之和 $L=L_0+L_1+...+L_T$ ,其中,每项的损失 $L_t$(除了 $L_0$ )实际上是2个高斯分布之间的KL发散,可以明确地写为相对于均值的L2-loss!\n", - "\n", - "如Sohl-Dickstein等人所示,构建Diffusion正向过程的直接结果是我们可以在条件是 $\\mathbf{x}_0$ (因为高斯和也是高斯)的情况下,在任意噪声水平上采样 $\\mathbf{x}_t$ ,而不需要重复应用 $q$ 去采样 $\\mathbf{x}_t$ ,这非常方便。使用\n", - "\n", - "$$\n", - "\\\\\\alpha_t := 1 - \\beta_t\\\\\\\\\\bar{\\alpha}t := \\Pi_{s=1}^{t} \\alpha_s\\\\\n", - "$$\n", - "\n", - "我们就有\n", - "\n", - "$$ \n", - "q(\\mathbf{x}_t | \\mathbf{x}_0) = \\cal{N}(\\mathbf{x}_t; \\sqrt{\\bar{\\alpha}_t} \\mathbf{x}_0, (1- \\bar{\\alpha}_t) \\mathbf{I})\n", - "$$\n", - "\n", - "这意味着我们可以采样高斯噪声并适当地缩放它,然后将其添加到 $\\mathbf{x}_0$ 中,直接获得 $\\mathbf{x}_t$ 。\n", - "\n", - "请注意,$\\bar{\\alpha}_t$ 是已知 $\\beta_t$ 方差计划的函数,因此也是已知的,可以预先计算。这允许我们在训练期间优化损失函数 $L$ 的随机项。或者换句话说,在训练期间随机采样 $t$ 并优化 $L_t$ 。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "正如Ho等人所展示的那样,这种性质的另一个优点是可以重新参数化平均值,使神经网络学习(预测)构成损失的KL项中噪声的附加噪声。这意味着我们的神经网络变成了噪声预测器,而不是(直接)均值预测器。其中,平均值可以按如下方式计算:\n", - "\n", - "$$ \\mathbf{\\mu}_\\theta(\\mathbf{x}_t, t) = \\frac{1}{\\sqrt{\\alpha_t}} \\left( \\mathbf{x}_t - \\frac{\\beta_t}{\\sqrt{1- \\bar{\\alpha}_t}} \\mathbf{\\epsilon}_\\theta(\\mathbf{x}_t, t) \\right) $$\n", - "\n", - "最终的目标函数 ${L}_{t}$ 如下(随机步长 t 由 $({\\epsilon} \\sim N(\\mathbf{0}, \\mathbf{I}))$ 给定):\n", - "\n", - "$$ \\| \\mathbf{\\epsilon} - \\mathbf{\\epsilon}_\\theta(\\mathbf{x}_t, t) \\|^2 = \\| \\mathbf{\\epsilon} - \\mathbf{\\epsilon}_\\theta( \\sqrt{\\bar{\\alpha}_t} \\mathbf{x}_0 + \\sqrt{(1- \\bar{\\alpha}_t) } \\mathbf{\\epsilon}, t) \\|^2$$" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "在这里, $\\mathbf{x}_0$ 是初始(真实,未损坏)图像, $\\mathbf{\\epsilon}$ 是在时间步长 $t$ 采样的纯噪声,$\\mathbf{\\epsilon}_\\theta (\\mathbf{x}_t, t)$是我们的神经网络。神经网络是基于真实噪声和预测高斯噪声之间的简单均方误差(MSE)进行优化的。\n", - "\n", - "训练算法现在如下所示:\n", - "\n", - "![Image-3](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_3.png)\n", - "\n", - "换句话说:\n", - "\n", - "- 我们从真实未知和可能复杂的数据分布中随机抽取一个样本 $q(\\mathbf{x}_0)$\n", - "\n", - "- 我们均匀地采样$1$和$T$之间的噪声水平$t$(即,随机时间步长)\n", - "\n", - "- 我们从高斯分布中采样一些噪声,并使用上面定义的属性在 $t$ 时间步上破坏输入\n", - "\n", - "- 神经网络被训练以基于损坏的图像 $\\mathbf{x}_t$ 来预测这种噪声,即基于已知的时间表 $\\mathbf{x}_t$ 上施加的噪声\n", - "\n", - "实际上,所有这些都是在批数据上使用随机梯度下降来优化神经网络完成的。\n", - "\n", - "#### U-Net神经网络预测噪声\n", - "\n", - "神经网络需要在特定时间步长接收带噪声的图像,并返回预测的噪声。请注意,预测噪声是与输入图像具有相同大小/分辨率的张量。因此,从技术上讲,网络接受并输出相同形状的张量。那么我们可以用什么类型的神经网络来实现呢?\n", - "\n", - "这里通常使用的是非常相似的[自动编码器](https://en.wikipedia.org/wiki/Autoencoder),您可能还记得典型的\"深度学习入门\"教程。自动编码器在编码器和解码器之间有一个所谓的\"bottleneck\"层。编码器首先将图像编码为一个称为\"bottleneck\"的较小的隐藏表示,然后解码器将该隐藏表示解码回实际图像。这迫使网络只保留bottleneck层中最重要的信息。\n", - "\n", - "在模型结构方面,DDPM的作者选择了U-Net,出自([Ronneberger et al.,2015](https://arxiv.org/abs/1505.04597))(当时,它在医学图像分割方面取得了最先进的结果)。这个网络就像任何自动编码器一样,在中间由一个bottleneck组成,确保网络只学习最重要的信息。重要的是,它在编码器和解码器之间引入了残差连接,极大地改善了梯度流(灵感来自于([He et al., 2015](https://arxiv.org/abs/1512.03385)))。\n", - "\n", - "![Image-4](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_4.jpg)\n", - "\n", - "可以看出,U-Net模型首先对输入进行下采样(即,在空间分辨率方面使输入更小),之后执行上采样。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 构建Diffusion模型\n", - "\n", - "下面,我们逐步构建Diffusion模型。\n", - "\n", - "首先,我们定义了一些帮助函数和类,这些函数和类将在实现神经网络时使用。" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def rearrange(head, inputs):\n", - " b, hc, x, y = inputs.shape\n", - " c = hc // head\n", - " return inputs.reshape((b, head, c, x * y))\n", - "\n", - "def rsqrt(x):\n", - " res = ops.sqrt(x)\n", - " return ops.inv(res)\n", - "\n", - "def randn_like(x, dtype=None):\n", - " if dtype is None:\n", - " dtype = x.dtype\n", - " res = ops.standard_normal(x.shape).astype(dtype)\n", - " return res\n", - "\n", - "def randn(shape, dtype=None):\n", - " if dtype is None:\n", - " dtype = ms.float32\n", - " res = ops.standard_normal(shape).astype(dtype)\n", - " return res\n", - "\n", - "def randint(low, high, size, dtype=ms.int32):\n", - " res = ops.uniform(size, Tensor(low, dtype), Tensor(high, dtype), dtype=dtype)\n", - " return res\n", - "\n", - "def exists(x):\n", - " return x is not None\n", - "\n", - "def default(val, d):\n", - " if exists(val):\n", - " return val\n", - " return d() if callable(d) else d\n", - "\n", - "def _check_dtype(d1, d2):\n", - " if ms.float32 in (d1, d2):\n", - " return ms.float32\n", - " if d1 == d2:\n", - " return d1\n", - " raise ValueError('dtype is not supported.')\n", - "\n", - "class Residual(nn.Cell):\n", - " def __init__(self, fn):\n", - " super().__init__()\n", - " self.fn = fn\n", - "\n", - " def construct(self, x, *args, **kwargs):\n", - " return self.fn(x, *args, **kwargs) + x" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "我们还定义了上采样和下采样操作的别名。" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def Upsample(dim):\n", - " return nn.Conv2dTranspose(dim, dim, 4, 2, pad_mode=\"pad\", padding=1)\n", - "\n", - "def Downsample(dim):\n", - " return nn.Conv2d(dim, dim, 4, 2, pad_mode=\"pad\", padding=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 位置向量\n", - "\n", - "由于神经网络的参数在时间(噪声水平)上共享,作者使用正弦位置嵌入来编码$t$,灵感来自Transformer([Vaswani et al., 2017](https://arxiv.org/abs/1706.03762))。对于批处理中的每一张图像,神经网络\"知道\"它在哪个特定时间步长(噪声水平)上运行。\n", - "\n", - "`SinusoidalPositionEmbeddings`模块采用`(batch_size, 1)`形状的张量作为输入(即批处理中几个有噪声图像的噪声水平),并将其转换为`(batch_size, dim)`形状的张量,其中`dim`是位置嵌入的尺寸。然后,我们将其添加到每个剩余块中。" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "class SinusoidalPositionEmbeddings(nn.Cell):\n", - " def __init__(self, dim):\n", - " super().__init__()\n", - " self.dim = dim\n", - " half_dim = self.dim // 2\n", - " emb = math.log(10000) / (half_dim - 1)\n", - " emb = np.exp(np.arange(half_dim) * - emb)\n", - " self.emb = Tensor(emb, ms.float32)\n", - "\n", - " def construct(self, x):\n", - " emb = x[:, None] * self.emb[None, :]\n", - " emb = ops.concat((ops.sin(emb), ops.cos(emb)), axis=-1)\n", - " return emb" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### ResNet/ConvNeXT块\n", - "\n", - "接下来,我们定义U-Net模型的核心构建块。DDPM作者使用了一个Wide ResNet块([Zagoruyko et al., 2016](https://arxiv.org/abs/1605.07146)),但Phil Wang决定添加ConvNeXT([Liu et al., 2022](https://arxiv.org/abs/2201.03545))替换ResNet,因为后者在图像领域取得了巨大成功。\n", - "\n", - "在最终的U-Net架构中,可以选择其中一个或另一个,本文选择ConvNeXT块构建U-Net模型。" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "class Block(nn.Cell):\n", - " def __init__(self, dim, dim_out, groups=1):\n", - " super().__init__()\n", - " self.proj = nn.Conv2d(dim, dim_out, 3, pad_mode=\"pad\", padding=1)\n", - " self.proj = c(dim, dim_out, 3, padding=1, pad_mode='pad')\n", - " self.norm = nn.GroupNorm(groups, dim_out)\n", - " self.act = nn.SiLU()\n", - "\n", - " def construct(self, x, scale_shift=None):\n", - " x = self.proj(x)\n", - " x = self.norm(x)\n", - "\n", - " if exists(scale_shift):\n", - " scale, shift = scale_shift\n", - " x = x * (scale + 1) + shift\n", - "\n", - " x = self.act(x)\n", - " return x\n", - "\n", - "class ConvNextBlock(nn.Cell):\n", - " def __init__(self, dim, dim_out, *, time_emb_dim=None, mult=2, norm=True):\n", - " super().__init__()\n", - " self.mlp = (\n", - " nn.SequentialCell(nn.GELU(), nn.Dense(time_emb_dim, dim))\n", - " if exists(time_emb_dim)\n", - " else None\n", - " )\n", - "\n", - " self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, group=dim, pad_mode=\"pad\")\n", - " self.net = nn.SequentialCell(\n", - " nn.GroupNorm(1, dim) if norm else nn.Identity(),\n", - " nn.Conv2d(dim, dim_out * mult, 3, padding=1, pad_mode=\"pad\"),\n", - " nn.GELU(),\n", - " nn.GroupNorm(1, dim_out * mult),\n", - " nn.Conv2d(dim_out * mult, dim_out, 3, padding=1, pad_mode=\"pad\"),\n", - " )\n", - "\n", - " self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()\n", - "\n", - " def construct(self, x, time_emb=None):\n", - " h = self.ds_conv(x)\n", - " if exists(self.mlp) and exists(time_emb):\n", - " assert exists(time_emb), \"time embedding must be passed in\"\n", - " condition = self.mlp(time_emb)\n", - " condition = condition.expand_dims(-1).expand_dims(-1)\n", - " h = h + condition\n", - "\n", - " h = self.net(h)\n", - " return h + self.res_conv(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### Attention模块\n", - "\n", - "接下来,我们定义Attention模块,DDPM作者将其添加到卷积块之间。Attention是著名的Transformer架构([Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)),在人工智能的各个领域都取得了巨大的成功,从NLP到[蛋白质折叠](https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology)。Phil Wang使用了两种注意力变体:一种是常规的multi-head self-attention(多头自注意力机制,如Transformer中使用的),另一种是[LinearAttention](https://github.com/lucidrains/linear-attention-transformer)([Shen et al., 2018](https://arxiv.org/abs/1812.01243)),其时间和内存要求在序列长度上线性缩放,而不是在常规注意力中缩放。\n", - "要想对Attention机制进行深入的了解,请参照Jay Allamar的[精彩的博文](https://jalammar.github.io/illustrated-transformer/)。" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "class Attention(nn.Cell):\n", - " def __init__(self, dim, heads=4, dim_head=32):\n", - " super().__init__()\n", - " self.scale = dim_head ** -0.5\n", - " self.heads = heads\n", - " hidden_dim = dim_head * heads\n", - "\n", - " self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)\n", - " self.to_out = nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True)\n", - " self.map = ops.Map()\n", - " self.partial = ops.Partial()\n", - "\n", - " def construct(self, x):\n", - " b, _, h, w = x.shape\n", - " qkv = self.to_qkv(x).chunk(3, 1)\n", - " q, k, v = self.map(self.partial(rearrange, self.heads), qkv)\n", - "\n", - " q = q * self.scale\n", - "\n", - " # 'b h d i, b h d j -> b h i j'\n", - " sim = ops.bmm(q.swapaxes(2, 3), k)\n", - " attn = ops.softmax(sim, axis=-1)\n", - " # 'b h i j, b h d j -> b h i d'\n", - " out = ops.bmm(attn, v.swapaxes(2, 3))\n", - " out = out.swapaxes(-1, -2).reshape((b, -1, h, w))\n", - "\n", - " return self.to_out(out)\n", - "\n", - "\n", - "class LayerNorm(nn.Cell):\n", - " def __init__(self, dim):\n", - " super().__init__()\n", - " self.g = Parameter(initializer('ones', (1, dim, 1, 1)), name='g')\n", - "\n", - " def construct(self, x):\n", - " eps = 1e-5\n", - " var = x.var(1, keepdims=True)\n", - " mean = x.mean(1, keep_dims=True)\n", - " return (x - mean) * rsqrt((var + eps)) * self.g\n", - "\n", - "\n", - "class LinearAttention(nn.Cell):\n", - " def __init__(self, dim, heads=4, dim_head=32):\n", - " super().__init__()\n", - " self.scale = dim_head ** -0.5\n", - " self.heads = heads\n", - " hidden_dim = dim_head * heads\n", - " self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)\n", - "\n", - " self.to_out = nn.SequentialCell(\n", - " nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True),\n", - " LayerNorm(dim)\n", - " )\n", - "\n", - " self.map = ops.Map()\n", - " self.partial = ops.Partial()\n", - "\n", - " def construct(self, x):\n", - " b, _, h, w = x.shape\n", - " qkv = self.to_qkv(x).chunk(3, 1)\n", - " q, k, v = self.map(self.partial(rearrange, self.heads), qkv)\n", - "\n", - " q = ops.softmax(q, -2)\n", - " k = ops.softmax(k, -1)\n", - "\n", - " q = q * self.scale\n", - " v = v / (h * w)\n", - "\n", - " # 'b h d n, b h e n -> b h d e'\n", - " context = ops.bmm(k, v.swapaxes(2, 3))\n", - " # 'b h d e, b h d n -> b h e n'\n", - " out = ops.bmm(context.swapaxes(2, 3), q)\n", - "\n", - " out = out.reshape((b, -1, h, w))\n", - " return self.to_out(out)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 组归一化\n", - "\n", - "DDPM作者将U-Net的卷积/注意层与群归一化([Wu et al., 2018](https://arxiv.org/abs/1803.08494))。下面,我们定义一个`PreNorm`类,将用于在注意层之前应用groupnorm。\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "class PreNorm(nn.Cell):\n", - " def __init__(self, dim, fn):\n", - " super().__init__()\n", - " self.fn = fn\n", - " self.norm = nn.GroupNorm(1, dim)\n", - "\n", - " def construct(self, x):\n", - " x = self.norm(x)\n", - " return self.fn(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 条件U-Net\n", - "\n", - "我们已经定义了所有的构建块(位置嵌入、ResNet/ConvNeXT块、Attention和组归一化),现在需要定义整个神经网络了。请记住,网络 $\\mathbf{\\epsilon}_\\theta(\\mathbf{x}_t, t)$ 的工作是接收一批噪声图像+噪声水平,并输出添加到输入中的噪声。\n", - "\n", - "更具体的:\n", - "网络获取了一批`(batch_size, num_channels, height, width)`形状的噪声图像和一批`(batch_size, 1)`形状的噪音水平作为输入,并返回`(batch_size, num_channels, height, width)`形状的张量。\n", - "\n", - "网络构建过程如下:\n", - "\n", - "- 首先,将卷积层应用于噪声图像批上,并计算噪声水平的位置\n", - "\n", - "- 接下来,应用一系列下采样级。每个下采样阶段由2个ResNet/ConvNeXT块 + groupnorm + attention + 残差连接 + 一个下采样操作组成\n", - "\n", - "- 在网络的中间,再次应用ResNet或ConvNeXT块,并与attention交织\n", - "\n", - "- 接下来,应用一系列上采样级。每个上采样级由2个ResNet/ConvNeXT块+ groupnorm + attention + 残差连接 + 一个上采样操作组成\n", - "\n", - "- 最后,应用ResNet/ConvNeXT块,然后应用卷积层\n", - "\n", - "最终,神经网络将层堆叠起来,就像它们是乐高积木一样(但重要的是[了解它们是如何工作的](http://karpathy.github.io/2019/04/25/recipe/))。" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "class Unet(nn.Cell):\n", - " def __init__(\n", - " self,\n", - " dim,\n", - " init_dim=None,\n", - " out_dim=None,\n", - " dim_mults=(1, 2, 4, 8),\n", - " channels=3,\n", - " with_time_emb=True,\n", - " convnext_mult=2,\n", - " ):\n", - " super().__init__()\n", - "\n", - " self.channels = channels\n", - "\n", - " init_dim = default(init_dim, dim // 3 * 2)\n", - " self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3, pad_mode=\"pad\", has_bias=True)\n", - "\n", - " dims = [init_dim, *map(lambda m: dim * m, dim_mults)]\n", - " in_out = list(zip(dims[:-1], dims[1:]))\n", - "\n", - " block_klass = partial(ConvNextBlock, mult=convnext_mult)\n", - "\n", - " if with_time_emb:\n", - " time_dim = dim * 4\n", - " self.time_mlp = nn.SequentialCell(\n", - " SinusoidalPositionEmbeddings(dim),\n", - " nn.Dense(dim, time_dim),\n", - " nn.GELU(),\n", - " nn.Dense(time_dim, time_dim),\n", - " )\n", - " else:\n", - " time_dim = None\n", - " self.time_mlp = None\n", - "\n", - " self.downs = nn.CellList([])\n", - " self.ups = nn.CellList([])\n", - " num_resolutions = len(in_out)\n", - "\n", - " for ind, (dim_in, dim_out) in enumerate(in_out):\n", - " is_last = ind >= (num_resolutions - 1)\n", - "\n", - " self.downs.append(\n", - " nn.CellList(\n", - " [\n", - " block_klass(dim_in, dim_out, time_emb_dim=time_dim),\n", - " block_klass(dim_out, dim_out, time_emb_dim=time_dim),\n", - " Residual(PreNorm(dim_out, LinearAttention(dim_out))),\n", - " Downsample(dim_out) if not is_last else nn.Identity(),\n", - " ]\n", - " )\n", - " )\n", - "\n", - " mid_dim = dims[-1]\n", - " self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)\n", - " self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))\n", - " self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)\n", - "\n", - " for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):\n", - " is_last = ind >= (num_resolutions - 1)\n", - "\n", - " self.ups.append(\n", - " nn.CellList(\n", - " [\n", - " block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),\n", - " block_klass(dim_in, dim_in, time_emb_dim=time_dim),\n", - " Residual(PreNorm(dim_in, LinearAttention(dim_in))),\n", - " Upsample(dim_in) if not is_last else nn.Identity(),\n", - " ]\n", - " )\n", - " )\n", - "\n", - " out_dim = default(out_dim, channels)\n", - " self.final_conv = nn.SequentialCell(\n", - " block_klass(dim, dim), nn.Conv2d(dim, out_dim, 1)\n", - " )\n", - "\n", - " def construct(self, x, time):\n", - " x = self.init_conv(x)\n", - "\n", - " t = self.time_mlp(time) if exists(self.time_mlp) else None\n", - "\n", - " h = []\n", - "\n", - " for block1, block2, attn, downsample in self.downs:\n", - " x = block1(x, t)\n", - " x = block2(x, t)\n", - " x = attn(x)\n", - " h.append(x)\n", - "\n", - " x = downsample(x)\n", - "\n", - " x = self.mid_block1(x, t)\n", - " x = self.mid_attn(x)\n", - " x = self.mid_block2(x, t)\n", - "\n", - " len_h = len(h) - 1\n", - " for block1, block2, attn, upsample in self.ups:\n", - " x = ops.concat((x, h[len_h]), 1)\n", - " len_h -= 1\n", - " x = block1(x, t)\n", - " x = block2(x, t)\n", - " x = attn(x)\n", - "\n", - " x = upsample(x)\n", - " return self.final_conv(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 正向扩散\n", - "\n", - "我们已经知道正向扩散过程在多个时间步长$T$中,从实际分布逐渐向图像添加噪声,根据差异计划进行正向扩散。最初的DDPM作者采用了线性时间表:\n", - "\n", - "- 我们将正向过程方差设置为常数,从$\\beta_1 = 10^{−4}$线性增加到$\\beta_T = 0.02$。\n", - "\n", - "- 但是,它在([Nichol et al., 2021](https://arxiv.org/abs/2102.09672))中表明,当使用余弦调度时,可以获得更好的结果。\n", - "\n", - "下面,我们定义了$T$时间步的时间表。" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def linear_beta_schedule(timesteps):\n", - " beta_start = 0.0001\n", - " beta_end = 0.02\n", - " return np.linspace(beta_start, beta_end, timesteps).astype(np.float32)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "首先,让我们使用 $T=200$ 时间步长的线性计划,并定义我们需要的 $\\\\β_t$ 中的各种变量,例如方差 $\\bar{\\alpha}_t$ 的累积乘积。下面的每个变量都只是一维张量,存储从 $t$ 到 $T$ 的值。重要的是,我们还定义了`extract`函数,它将允许我们提取一批适当的 $t$ 索引。" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "# 扩散200步\n", - "timesteps = 200\n", - "\n", - "# 定义 beta schedule\n", - "betas = linear_beta_schedule(timesteps=timesteps)\n", - "\n", - "# 定义 alphas\n", - "alphas = 1. - betas\n", - "alphas_cumprod = np.cumprod(alphas, axis=0)\n", - "alphas_cumprod_prev = np.pad(alphas_cumprod[:-1], (1, 0), constant_values=1)\n", - "\n", - "sqrt_recip_alphas = Tensor(np.sqrt(1. / alphas))\n", - "sqrt_alphas_cumprod = Tensor(np.sqrt(alphas_cumprod))\n", - "sqrt_one_minus_alphas_cumprod = Tensor(np.sqrt(1. - alphas_cumprod))\n", - "\n", - "# 计算 q(x_{t-1} | x_t, x_0)\n", - "posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)\n", - "\n", - "p2_loss_weight = (1 + alphas_cumprod / (1 - alphas_cumprod)) ** -0.\n", - "p2_loss_weight = Tensor(p2_loss_weight)\n", - "\n", - "def extract(a, t, x_shape):\n", - " b = t.shape[0]\n", - " out = Tensor(a).gather(t, -1)\n", - " return out.reshape(b, *((1,) * (len(x_shape) - 1)))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "我们将用猫图像说明如何在扩散过程的每个时间步骤中添加噪音。" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip (170 kB)\n", - "\n", - "file_sizes: 100%|████████████████████████████| 174k/174k [00:00<00:00, 1.45MB/s]\n", - "Extracting zip file...\n", - "Successfully downloaded / unzipped to ./\n" - ] - } - ], - "source": [ - "# 下载猫猫图像\n", - "url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip'\n", - "path = download(url, './', kind=\"zip\", replace=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB4CAIAAAD6wG44AACez0lEQVR4nDT9V7CsW3IeiGXmWuu35av2ru3N8eeec71vh0Y3PEAABDgghwwqSM6IIjWhiXmTFCETcg+KCUVIEcOY0INGQ0Gh4RAkgOEQjkB3A2h7u/vac849/mzvau/yVb9dK1MP+2JH1Mt+KLP+XJlffpn5Jf4/Vr7sia/IIBpNWGKpJdAIijRRgYIEHgOQCCAACAASqVKS0gGK06g1GkJHZECBEyZmKyyiEByBAGpABHAghRNEIKN84QwJNPqAvhLnFCOU7ECjAVCIBMjgQCEIoJMSUYQRAAhBBBEdCDEAiygAQkfiAZaEClAjOECFkhdMRVkUWABoAhEBEHf5M1icEAkjohRsQViARcChoDCBZkAFUqBNbJ4zl2ytWBFxYkt2FpCAHDgCC6CdYCEWUSyDQTGgfUIAyEVYwDFYzh9Jci7lZ/m8SnRTBUTki26QaqnAI1MwlFCGqKroBeQxCoP1EA0pASUCIMIoAOgYrVhBYQEEdMAWrQHlhBgcAAAIA7GwoIigFsESHaMmdACEqEkBCQgKMKFSQEoLEhCrQphIRESIFAIDK4eiSQSNQmRixQa1NaIK55C0CIhYRb6AIPhKxAkIIUFAqJiYlDgWAEVEIiwgBOzIomhQjHBpJZ4TBxqYLYNCEkREFgClABVZJ1pQDPoAisUq8qzN5izOlUgsrIGERZiQBVC+eDl2QASAguAABIiAiRQAKQAGnnM+sUXhCgSwwA7AoXMASPryuEmIxZToLIhCFhFfe6EoQMcCpbAFEABHfCZ24OyRKwFlQemcKBSoKoVAKbCP2DDKic8gFiVHVijEpgQBUEYBiTj+4rGIQh/YMZbIIoyICnwLAOhA8ItHLhaJLAuh1RmjUcxcGkIWEREUFAINxhKgU8hzrTwRTeIhcim5CIIoLUoIneSlOI2qhAKYAKw4UAoI2QkLIjCKWGDWxISACBqIQZCIxSKUgCCOHQvK5QkqcUxAgmKhJFAAFhFBnBNARABBBwCAIIhsbamQgHwrSiQDULNyljsnUhBqZgBkYUBwANoxExp0OSM5EODMsoJLkwNEIhALgGNbjl2Sco7iEJQAlmJZSBBYBAVKKQm0FWtBgBGRFRhNqAAYJUdmcQSaQTLgGdvHbt6X8oKLCioDilkQqRCJlTZoUnEEVCHSoBQJoHIioAQBhMWBQmQBYXGIKIgCGtESgAMEERTrQFjAoRiEUhhEAwAhgiid2MQHTyMgaCQEQOsKxyLaKGASEPRKZiUOpSAyIGDBwd8cORGIkAgzGmDn2AJoyxZRA3MpBQmzmEsPIMCktGMGQsvWAbEtAQlFMZdAyjEoQBFQ6BgNYgHCAoTIDAiCAqVitgIFpBo8DYoFmUg5YbKFy9PSgggTMyjFpQASKARywiAlCrGUBYtCcOAAEMEKIQCj0MhmuS2mrmBwJEJEDrQTAbFO0AJbKRgciHIMjCWKU4gGFYlBVCziEFhczqJAp2JLcXORZ+X8RMoLVyBKncxMXAXFR2UQS8GQtIfsGFMsFXAEhtEiEAGwWACVS6ZYGyJFyAKKxaEwEF2aFxAAghQsjgEyIRAAKYAuzYP0wM7qGMYUFKhAlAbfSg6iuMwQhdCggEYRKsEZEmc5IzIEUIpFwFKYxKGAFSAAB2y5UGiJ0QKikEMNTEZsTpaEtM1RhY4tQslMllADlMKOSy2EoEooAFGEAUqRyzcREafIoLDlhMGzXIIYJmTUhAUDlK5gax1ZInAiAIrAijgEcmIFGcBjEARhKRgYBAmQQBipsEXCdl6mhVhGAhAEYAQrYp21ACCOQayIA0YBRCREJYCoiBgEHKBA6QBKd3mZMIeiEAS251zuuiQBFpEYlQX2BADBAfpIodIOnAUMURQQo0uEYwxFCiDU6CEWnhiHGqUAVATKoXPABAoECcGKvfwpxA5BOwErjgFRHDMAie6ViUNkhRUgB+hheWk+gJdBGoRdIU6D0sqh8wQARRkBhQGgAFgQVwIBFwq0A3RSlk4QSkBtUAkxsSvEWWZiImBkJgICZGDtTCZlCaWwteAMkiUCcVrQSYEEGkMSEmBxpSCwowKtMKNidLqkFCAH8CxbQuNYachKUSJOAYuQkEVBBnScI2gBB6wQyUoOwqmUiXMZM7MAMgOBIABasE7QClspmRGQBUREEEGTFiEGUQiMZAWVSAZFycACCOIEErEluJzdOefPbTZlewl+NOKcXUlUA3IABWAoVqNmwJwBiX1UgpRC6aPGS2gqHoEDYQTlhElERCFeHoFzjI6VkAgwAwkwiGhEJ8wMACgMeuJmVDpPAIFCMYygCRU661JFAboCARRpABQWSzmAUpwWgChEBIyIJMTsQCWcGhRBLegUKkINgARshUvHFq1iUETCqEQAiMBZLAtmxJKFWEqFikQL2ByNAmAGDZYACdEBK0EkQBFF2krpIGVLVqwQa0AnDgEKcISIiACKgEsgESeMKOKwQMDClSW4xKW54wLYitOoGAhdKYhOUIgdk4gFFEFgZA0agBlFEFmEgQmUoDBYJ2AFcmALzAIFcCacuHLI5QHnUwVhJVzyg1oQIcDO2TGXzrGcYg5ACq0GQsIAlSZwgJk4T0CQc0AFJYjySAkAorAwC5SCAgWIcuIQCUhYWEQcgBULAIIELA4YQQABxOqplOBQiSqFSx2GpIwEmhwhinOaEECzlA4UA4IIiXLIlwkLu1KhJiQLhXM2c1KQI3I+GUHK2aE4dJBJjgTAYBGtMEJhWRBRvnBuVhwwWEIQYAIicVa4JFACojAg34EAl5aFSJyAZZexY7GEqNFDcSLkwCokAiodowLrGNCyIIMTAOfAcmGFSy5yLlkQSBgQQSwTAgt8cUmFkUCciKCAaIWXoQcREACBgIQZhEUYwAIUYi3zBIqRc0NXDNlOxCXIOvAXWs2FZuXKQrdZjdLpuBGRQeVIH5310rIcJbMh6hZ5iyoKSXtKKVAoAIiXcYZQFyKIVokmABSlgJmUCCCjgEUARCRgxyKCAAQggsxAKIyABFrPmQUsS1IIl8yiPU+Lx9qQEixFCEQ0aiulRqWFWBgUCqNBQCSWMmcBFIQv0lMneWKZgJ0AIjsGAYeMDMgAII5QOc4BEAAU+ohiJQfRCEqTFSgISIMhBtRGhFM7Z8FSCuvoMtRd5mkaUQAtMFvnUICFSBR6LAIlO3AMxFw6QMvWiWUBBiRAJCLRIiLoFGiLwiAIJCICiCgliyVQQIRy+bUZRMSSqEubEJACOGE3ctm5y89cORRLnhYfF7tLxWQKWR77XqxpsVFvLXb6g+H+/uFKq7a+1D45HdX8duCZYW92MJgeZfnY5jUKGux7qGIyERgAJlSIhRI2QAyXgUZImAWdFIDogAkIgewX1IFRwA6FBZUgIyAgg2BX6Q6pCngV1FUV1JVfU35EnlHGA0OEikiBEUAFchk7CbWQJTAIlgFFEFEUkmObX7IFCCJ0GekdsgVU4FiwhAJFkDQIXHpUg8CCxRd+TzzylDiHoMkQlCweCFuwIBZEAxIBO7BfpCWoBQBBWS4VICIgMIBBQYACCFiIGZ0UguAcMzKCspwxKAcI4hQignLiLFsGBkTLiIotOxAgRAQqQQQERRi0k1KBK0XGUvZdeVgm5+TQ96txtNSqVGuRH1Z39k4ms1klDhQSiFtp1LqrS7XO+kmvP7540Qy0BgUisVGNahR61Z3nJz95+MzasgamolRMJiZVwcCQ0iiE2kNSLEKAwErAgmJxArmIuURJjAKMgu4S4bOQA1AggigCuseuEGhiXiCn4DIuMi4rFITihQhGwIDSAprIgVxmK8gMDISlgANgJT4hCqEDl0spQBoUIOYuQ3AM5ESIsQAnIgAsXDIoENTgCmTHismCkADknBlF4gAcC1hFgCACCKJJgNA5FAHtobIgVkBfMjwIl24VAEWcoBVBFAQpHbMDARYELNk5KCwrACfgNGonYqF0wu6LT3GCGoSA2DISoBVrRRCUlbKA3ApOOR9ycWaLc5e311deWu5uLi93a36jEk5zTJytNppl6ZY6tYtpAs7lo/Hh2ehKJXjn3dd7J+sHLx6LHY3mecHaq7iNlW671RVP752cnZ4PUpfnjjNRKbBHKkRjSBAsgPLAgFh1SR4BCmgHTgGxCIuwlCIGABwwgICQQxEBAkYABBQNqBA1kgGMUS2Q3yLTVlFTexX0DHmC6CMqVIqUQmJwIiQIIIioNTAjM1LqUhFEQELF4JhZoSfoCraFc1oBCuIXMJWA8xJIEBQAIJMQIilEhXRJihKgIgUABA4BGYAARdCBkDhGp1GLAAgBKo2uEAfCpWNGQlaAxSXScOwEmBFIHAOJIAERiiBbIRYLgIKXME2JiBWx4FjACZdgGTBlO5VyzPmE7bkt0PffeuvV9dXFqhe0mvUwMGmejMbT894wTaZh7HXqzUq9Uau1RFTOcni001lcRAoA5Omjp08ffV4PqVOrv//ee4H2z3YezlP55OnuaDyXwqZJYgDraGrKC1AZJI1gwChEB2JA8PLkAQWcMPIXkVEUkhMhREDnWDRokRLh8g+BANtKA4NBEhAN4CH4qGP0Y9IV1JFSPno++oFCny5DphYUAPziA4lKgdzNURyiQlQsyklpxYm4y7ABSCRESAXnIswiAIKoENGggktvCEiIAWkRBERD4kQsi4C9BBPMDIIMlkHx3zAhhJSzzV0p4gwqjwwCayBBcOJIAEBpAL7ESWIZgS+zC2EHiIgkYIFLcSwql9wK5OjmXOTMM7FzcVN2KfP2+urNK1evXl9nl1dCbzzJnr7YG/bPrS195ZVlbjyz3o6cQ7+ir6wvbV1/6XRsdg9Pz86Pbl5ZcaDGo2T3ybPt1e5bb76dZcnu/Y/ai60PP3sWxn46xaf7+1macFFWSPsgFTQxeR6SkBArIgdCSlCAAcAJIJICdMAKycnllWUAQgGDhJdIjAXapLrKCwSrZLQgIV0yW4zkxDKgE2EQQUIghQgoPpkAyaBRKAikUSMJMDsWQmagnKUES8JyaULiABUQeIJAqEQ5sYWUChUCGVLCFpSgEKBSggxiASwIiAPgUqQUEmTLjgFZ0IJTSBpJxNnSgoniRrsS1bPpOJucaQKF7IFCBkAnqFD4MiVFIQfWAapLDIWgAS2AA87Flsy5SCYuR5s4lwCnwiWzE9haW37/ndeurK8KALF68PCzTx89L9JiaanRjoNEnKBZalXaUZjO7DSdLEb2xks3440vnSd5NrP955+QTlsrV6ajWasRXFm9Mx6fDc6PBdWDh3tLbbPUWJym5fFpf39vb6fXT4ssZGDLAaEGjJE81ASiGRHAEXqAl3S6iAgCyuUjFQJEAELQBkmjZIAtMhGqNpqA0AfPkPZQEziF5m/YWhZBh5dhFRxiIY5ZSnAp2JJFCAt2DOzkMqRxARYAHQoAgCAgEIAC1AJIZEAzOAFnUBkE5QwRoqOc84zLQtgCIAgICKIDtmwZpHTsUJMxBiH0wtzZIAyTrHjvm7/+i7/129WVtc7Kks7T//f/9f/03d//3dD4WohQAPgyfXQAClCAS5BL5yWIGhEEGcAhz9ml4nJxqYgDKYSt8CXru7m29qUvv73c7jqxy2u3xqOLSnNxqTseD6eNasCWqtUaE2mtxfMyw+3qQjEb7h71376hry9szabpwmLt/PDh0vINkT0kt3/0uB4HC8vbmSh9NDnrP7+z0bly7XYUHy23Q+/FycSlszQ7PhnsDwdxGIIrtONQec243omrJ/3z0mY+kg+gEI1oBSCCgOSJILLPSiNCgIpBKqQjQJ90DNon8shTgISewtJDg6CFnBZNAEAogiQoxAziREqGAoixcGJzBgHFAhZKBkK4pAycgAOAAtyld7UigMCsGKAELNjlnObOlSBOQIBLYBY0KKVAAa4WtKqVZliJr956Q+yEKTjp7S00G9WFThjFt1/+0ktvv/7iOF1aX19brizG1a13Nn7397IYHAIgyqVpowgAMgIAM4gICH5RBAWAQrgQLuGyuARWBADkb8zgrVduf+MbP5/Oho2Gl7M+7T/vLt+8aqJm1Xv6/EVWFnGgWSDL8bQoeqMkB9TUGqZmMQTFBboJgmq1V2ajM1tmQRwMTg7y0Wm50G4vIKgomZ7tH563KrsLk2I+T0jhSqveLbXpLryoVD64n/lROJvPvUrs19s33n4DnPfxt//DfDIjFGQ2iD6QBghQRagDwADJgdUxUgUIUZoY1BUtqjhEZQA9pR2zIoMQKEQBIAwVOAECBERRqCxbJ6SUsICAsuADOyZy6EphlpCALVgBRSiX0YKBheWSVHPIVhABLJcWnBWwIjmwAAuAuwS7ICVLXOt88+/94/W7V4v5/MYbd4dHT/r90af3w0p7Na7hyuJGrdH64U8/6968o5RrebZ/evy9b397BpxcogwGuSRfLyGlfIFEBYDhMrFFARH44t8CAAKXfNglF/7Gq6/+7d/+TXTF0/sf7DzJmF2rFYRkrlx7I0DorN08PT6fjA539w6dX+kuXVHksmTkAjXtWeknR88/bnRXgtZ2VG2TmMNnP51k+XTG2Wx2djFuHZ8uLKzOk1lu4afPjq9mrJT4qhborGReWWzW4/pWvVaSdzrNd3sn3eVup1bNS7PSXT7TOp1NbZEUyhTAriwRLEJukAyAh3h5a8mBVBTVKeroWIMGcgY0kdIkAEbgkunWIs4CgICIY2AApQgREKlApwwygjgQ7awGRCERKZFYhAQEFaAFBhZxeAnOkAmBFBA5sSxkhRnFCbMAszilHDPFwev/+B9u/+b7tZGrhCuBThrtSChfXmiUsffoxYPdJx9fvf5Wdenl2I2DMhz0Z3/w//uXn337++vKv7ygJCIIBHRZZOTLUiOg/Zu7m4ETAQZwX1iCCKGAKMCZc9VO5+333+z3jj786LPTk9N6AKHxI6X7J8eNxmJn7UouZvVG9dmjB7q5L2jffvfnh+fHDz7/QObD0/N+vRL9+N6TV4tRBxHBY057SbKz3/ONv95dOtjbz92ws7IGyp9mBZDpTTKbFwYToMJTnlN7kdduNoPNjVtaBw/3d3cvznd290rQmbNFkQtAVG+zc64owIGIFRAflQIRIN1AZVApxBh1RenwC6TpIZImuHRhiBqECMkhGSkERFhZaxUyiLGoQIfKDzkIxa/EUQWCQAUR+b7zQjLaak0KAHUJQlwIO2HLhS2T2fz5J/Ozxx55SpQCRhQBLISiuN6+vtLZXE9mafP6W/5//tVHrdnaj8Yv647CUbWiLi4m82xscCrZ/P7OwfrWK203dmfDLEi+++Huv/oX/40pQGmlgRCI0AEqAgBhBBQQAgBUFhgALXDdYclOAATJEREhoyiheZnX1zZ+4Ve+ee/jT7P5+LSfRkahiaJaQ4W1ae7mWdmu1OpxjOxu3Lx+4+bV0ei40wxcau6+9Ore86eVyl41kEniPr53sHCRbl3LhzO2UB2N9rY2alZsEOjzwXRegjb+UqszSWbno3G73R3NEg3+bDBH9v1mkp9cLC0vRPHGtbWFq0vN54e9s1Hf1gJJK3lZWlRWiGWuQGzuQGTJRNe8JgjoFvkKkQQNBrGKKqoqYBE8hJLQIUYAyG7umBA8pQx4C1Cr6dYCtZew06bFpmp1uFGTOPRqkWlEO2cjT+nEYKS1LXM2hspyIrJZr0T1UBzzZa2DweZ58nzn/n/5v5zsPDHKeIgAkFkXLC28+Vu/vv76XVLAYq0tLv7sL/K3FnaXoq2D806otQ7DsH5yMaiFto5Zt+m9ePTR2sry/t7xn33r9053Dg4PjkOtCYQAFLBCuoSUBpQAEsAXGFO4BLRcRMs36xt32Zjp8YuTvU+VlCRq5kpstr70tS89fvrisD9XpVOeWd/aurq9sXH1FeX7cdyQIqnG8Xx0nswulCHgLCaYnu4dPrvvEPNieOP6Vjntp2lxdD7PXL/WPmstXSmYr1zZjENllAbPW928HkeVd9/+xr3PfrS3/2IubnVtwVCldOW9Tz+xBoppsXN4cfXoaL177fQs292/32l3b2+sXVkXizddwWfD2b3HT5/P+kU6v/RKI5u1oqgKgfZQhahyJZqgruOaCRBYoxLxmRAFbAm8/Dbeua02N2Gtq7stV49Tj8hTvWnWqviD6Ux5+vnJYMlh0yoTYRxQHPpGKSUeCxgd5AVXIq3IAQIzlOKUJrRltNqlN9/ee/STqhd7wAhaNZrB7WXv+iq14tBoRVDOxqefHcn/9/ujt69fhNdWqzf9atvr7f3C13/2v/u9P5jOLjSUe7sn06x45Y3Xnj49uv/Z574CAAkEEYUFDCqNQEKAqAFICMARACMWLl985evX3/k5HTUIQeTdh/dvPfjOf4dclvXa3/0n//T+gw+PLuar61exnHY7C93Fxa//6u+U1iGL73n5tDe6OHt6/wchZp6h2XTcXLwySGRw0RuOR+D5vg4xqpEuPM+zaX50sLeyfGVjab0s0fD8xrWXB3M9GZ1d34467euIeml1Mx2PmhW6df1qfzy/2Hu+vNDeP5kdDSezLK2HpphNk0miO3klqnTqG7Mi0360fcN785VXHz3b/+Th5+Pp2BZ2SQxmooW0DxiSDhEDUh4qEgAQFnGX5HbJ+uf/rv9Pf6fnMZR2pVudpPnRyaR/USxFXlAJhlnx19999Hd++fVXt5fnJRtP/WZz98GkceZV0NnUlewomxdTYQ/jZtO7BFmogAWRFWYldDo7nHTQNBcXF7e3woVK4es/++s/WVle3Vjf3lheqzSqt776q9Xnxwd7By+8o3Wzulav5f3nK+2Vf/xP/t7/+v/4X3pSLnYWd3af7x48L3Jpd1qnp+cBO0SlAT0iD1FANJISRBQkJlGIlNhcqs0b7/wK+IFIyUVhWe7cfPnp0x/v7Hz8m7/4W9fu3J2XReGfXFlutButRme1ojmKfAXsknQ8Okvmo4v+ydmgj3nCeRbVK9ksHw0uJuOTeq0ehPUkKXZ6F9e3u4sL28eHZydnx8+f37vz0vsvX9uu1Vobm1eDanXv2X49zBcWlyuNpXI2efbs6Ysn31+q+NlUdRdqt67ffHr4g2bo39lYTZNxNZbXXlpeXlwZ5RL5ueeHrIK4tVppNG+/8u5vsMvyrLRysff0+OmBetrTMeqY1FDAA6p7foR++UWziAZHcvO9xv/0twYffi6vbcexUcCE2Iz8xYWoEfjnWX7wef/v/Na7f/hnP/6l129V2nHDp+8FV6Y5T0ZZNVJCJvSUX/frDHGoheALPgZAMZIxGGvLGUeV6195/7W3XznrDY9Pdxtx99qVdxCzp/svRsPJ8vJKq1W//uqtrXKrnGb9s14xm1Xi9uDwMDHef/HP/mf/9o/+eDo6I9BJmqdZ3l1sng1GSVZWEAlJAQCAB9pHIhQFQECMgiApcLWz1F1ZVuSJ0ixlOZspTbX2ws3KK7/6t39n0B+SkqXFjvKrncV2rV2bn58eP/u0qkmK9Kh3lsxGlr0sZ8dqnGPXRWVWvNjfr3n+YquBQoPzc1/B+WC+vFpZWcqXFjqHp+cfffLjbre90v1GENgajm9stbUrAsVKTzJfby4u94+7/UHPWVms09ZSba3RuPvlG1sbaw8+f9BuLyhVPRvOd076i+vzarQYNSviKLeuVq+BTSjupPOytra6+c57H/3J9zUgGvIdpx7qiPxQ6VBA0BOAUgC+8RVYiUy+Fta9IgWjlE+QevrgIpGq5ErNRjk4ePX6dmshdrFflMVeIlWEu9cblrmwLstdlhTT1NpULSzVWIDQKA0oXBDsPfvJ44++v7K5cTod1KqLW1du/sl/OOt0N9u16oP794d5Pp+VojwBNRn+JI6wHgehyoYDG/rUWb/1o/ufr27U/if/6J/8b/83/6tOaAiNMpyUrlqrzWA6KJwRZxAIyCATggcKBRFBX3LdAp2lzai9ICCZdVkyx1b1wc6zxkLlS+/9zuLKCoJpng98ml5Mxy92ZvWLc5wObKwpjhyULs/D0BcnrYUlMkE470V+BM5trS62orjbWppng4315dW1WjqfEDsVtcqy2NxaLcBQrZVLrfdsN7qyWfFYKaKiiIyxFmo+aO09ePJIWT0czZ/vPDNqcm1rc+eg16iqOzeviL/5kx/fv+gN+uN+vZEtbVK1zm1/c+6HymZS9eKFuhfQfHB69eVr2gPRqBwzERrlecowi1xWgZBgqUVx0Ly9pOa5VaUyJNaWpb22UqtGel3p1s/d/r1/d+8f/Py1fuEGuxcmDt6TdNTP7pXoOZc7jAOflG4048CALfP56KJ3cna6v3P49OHOw3uY8H/y9/9hMj/613/wbz5/8fkddb29sP7s2cdK2a1rd8KLw0ZrKc/S0+FZp9alpORsVjGBodlknqP23n77/TBun/V3WrUIgCfTeRhUwHEcxUmanaZpSqbJsARgyJAGBNAoRAaFSwAE6Xa3n45GWMxbi6vHs+lqt31wvvva3TtXrt2dDScmbi6tXXPzvn1+P0mzs/HIhywKWk/3jv1646jX075ZbjW7jZqKG8GUa5WKLuAoPdeBYc3VVndx/RVBt/v44zwbl0VeqXSDyERR3O0uVGMIsOtHdQ8cZgPNRaAj0aWrxBurNxXKxfw8YHN+kd+++XombntFb3fv1DrLDtUv/MaXvvQzX3n+4vinP/3JZ9//qLEQv4IlpYsq1DU/LIt0PBhWwnD59roO0AuRrFiD4OSy2UgUKYviEQEZYhEL7MABKZLAqErDPx4l3ggmAhtx+Ld+9jr4+uRkvt2pbWw2y7OR+LzZrhgssmSeXhydH+0+eP7k4PGTwUlvenGUzmbTaX8ymbx6963/7H/+z7vLdS/oPHr4yXe/+8FCe+HOjevHh8++852/uHvn1ZW17ueffxpVulduLM+z6YwT7fLtrc3YRlqHFLaN71+/vrHfe1qWZZbDxvLqef8CAIs8t0XxytWtl1+6k+XJ7KgnvTlMZh5pFFbAQICMhrz25vVpHLfrzblvapU6AyxEZm2p3eouudlseatRa8a9k+hm6B8dnuy8+KhTMT7685DnBR8e9trr67Y3rTfUrNdHmfpqI83ZN9hu+Nr4jcX17urmxcHO6vadk+PDi8HjSlTpNq4YValFTZyfda/eiAPfzWcuS6KowqDqIVElvhl2jB/OPv/2q3c3VhbXvPZ6kkrW+yyqB6RNkZZRlNdWO6sbt97/8mvPnpx/5w/+3V/9v/6QYrty5crNN9/QlTCKw8rSreH5UPuoEXUOYCiMKKp4vnOMSBa5JOBh4iuQEspInZ0XygmyDMdFO4yiSHU9avt+GGOW8Jfv+kUyPfn84eDk8Gzv+cGzJwd7z88O9wZnJ7PROPCC11595xtf/cWrN1Y9lxdp+mLvWeB7+08/2NvRN65ceeX6xvd++PFZ76xdx7W1FaGQ0dz//OHtW2+3W2006uxkT6FZrPmfffrTN25cN2GtxLgaxWlZtDrLk3nx5p2rReHIxf3JNEkSRVSL4oWKr6L4InGpo3QyVqA1GY0IIg7FM151adXGUS1ShQXyo3zSW6mp4ekJvppJcnHxPNGN+vpq80zLyvZWIzIVGQv42WxWr7SCwwMwfm1heTLta7DT0Wwn3/ejJlhvO2wY0pEvs+kQbHHjxq3xxaBeWxUduaJY2+oWs35cQeWsy4ZSAoGQDkkFINJAH1umF4Z2Nqx79WarjTGFhnZ2KEnOlYr8MAQrzmWBX6k1GvVO7aU7/9mn3373+7//7/e//eB0vzAL3UExft69Pzk81TEFDEoQia0mZ1CAwAmiiFBpP/y09Q/fKGJlLHS7NetTbPC1a0GZ5slsMtrtfXZ8ePbs2cnui+P9573j3dFFL5mOy6Ig4AB0SGal1r75ta/cfv2V1956q92JDTltPNTmpdfuJIPB3rMfPXj6+L/93ncqflDk8w8/+sn50SIbff3GKy+//s6Tx/cePvpodWV7eWUdsV5mQ6wACT9+8nD7+nv7R/vt2uYs7Y/OjkJjGnHzja++9L0ffPJk78eRZ4osU7ns3T+grDzdfdFA1VJ+iBoJDKADJWKVF0RLC+cFeqFPqXVKValoBpxm6fzZ/QDtixeDuL6wfOVKALS42Aze+dLhx99Li9naS696JjZhLIidxe5k0D/YvdfprA5G5y929zv1cK83Wu9ugYqS2UxMcLG/q4qzlXZYbS81mwsYhq7f8yorkCfKbzGnYqcIHVBIYsQGNstsCeXcaW0rYVhkMD7eDyMw0JpfnJlabCrLpLWKqyoOFIKOoi//zs+uvHz1u3/wpwcfPkw+ebEVLTdO/VkZa1/BCc89IE1U0bHGUOlMhBhIG8o//Un6X62Vv/HGxM56h8eTwax/9Hzvwb3p0eFF7yAZDjhN0FoDHJNa1v4G6ShYiaMgVCok7RoRXll+51d+bf3aFceJJtBRwxU55hNwid+IPE9ttNsPHz3+/sPdas0/PDg4O7sobXF8Pny6+0wrpVEdnhyR51crcbO2tnvwcNY/2erGeTKcJrx7cDg7fbR7dmiLpN6sqzA4mwwR3CxNKc/1LGmaaHJ2vu1FAZMi8FELiBYgkBIgrjS8WpMvBn7kc8azyWAx30vGh61YFaN9bUJORsfjQbXZXLxyezIYtJfai9/85aOHH4YrC0VedpdfSqdZpVJJ62F3sZ2mxbPdXec1l1p1KUvUZIKwsbA46Q1ePH0wOH4WBjTrPVl46+uDvYti+Hxl4y5BHpjAqhSDNjoFosirOEEuC61grdMKADUGSZ4fHzybznuheqlMEjXNwtVOplJrCvCtCSNjPAztlZc3rr7yz88Ozx/+4OO9Dx6efX62ohraJ5XaaUOHhr3I8zSRs0pACAEBPWXLf/NvZn/0h8d2/PzicFLMnEtjxmXtv+n5zehKXNce+hFpjaTRMqhSnOWyVCq4eSP4+uu0WvfiWm1pcXC+8/iTj15590txq15O4Wz/JEl6YbN7dv9Bo9HM+Gh0OvEDPZ+Ot1a7oVZxqM+O+52l5Y3Vtdlssr+7g1DGBp4/eSZlNwg+vhiG02Fwuv/5oyc7WVKMTvceFlM3SeIw8oTM3PlJIW5UKZ2vtFKAgswOSLSJmqZRpbpa2+h2241OI7dFYIcAo6z/KJ0NJ+J5nvManZUazKDuXGECVW8szMYT4+PWrZvKj8uiLF222Gqiw14+0636ih/VO615Utgs0aTKrBfGrZOdneHwRMeRxfanDz71lNy985p2UWXl9TIpMAioyDQhebEQmrAm4GkopITJ+VlZDEWv5GXZOxuPRnZyYD/deZJjiRHeenuhIc0sOS9ybna7xrgwIOV7wNzd7Cxs/vzkl95/9NfPf///8n/XNYpnbljzfF9hLAqcZVDMrgAGVkwFk47y/HXGlxubAqhIfPQ1MhAqREBmLgGoYGApCmdHtiyi6HRRxa83Vrt6Y2u1Xqt6aP3FxR3P/fQHf37n5TdWtq4Abt774M+1quq47aSvlSrKLC8KJ3x0NuoPMtTBe2+8NU5HP/3x94i8xaUNALz35MFqvW5L4NIi6tNpMZnjQrVDFvpHh+lwUAn8rZXl+x/eWyDPL7m085CIBDzUgal2w26k46VaI/KrYP1+p1Uq+Om9p1c3uswG0gtyaS1g67QteToZtprNPEsnh8+G1Ya6ejMMvNn5QRAHDV8ST/scKHGsje9VmFxUq1ZLGwVxmnlRJazGV9Kz03pcsxYnXvb87IeHU7jZjThPASznWTmz0lgmwlLFQGiCGmmfkQSIHbErK1G1LKvpVM4+P+59f88kXDqX2DRT5Qef/wm1Gqt3r6y+dDubTiuLrVat6RF6Hs0LNZlcbF3pNv729p/+/l9qT3sZlxGQp0KtIyXOQyXGOnEiCpFBnCOxzhJ4QMjyN3NiAMDOgRAoC05BWQrlldi/cZ3fuLXejPyKt/PswWcf/fjtd76yeWUNUN9988sf/vUf7jx9GHYWkRQGtVH//K0335tlo+rnT88HE3YOENm5aiucJ6OP7v303r3PHXivvvamBlzf2l5qeX/4h//+137mnUqlpmY2neW/8Cv/wGj5r/5v/zvO+MW47GX29ORs1amG8j2WkLxu2GpGrbZuNsO4oiNPhUioVFw461VrtWp49/b2YCNO1hr+LuwenddrVG86raPSymA4yTmaFgPz/CPHZWt106/VstOnw1GpgqaJAmfqmnzMh5a0Mh0ggLIoJxd+bXPc2z95/KMwqENWTI4PPFWyoB/GwKw1aDGeuhwwM8bziURrgi+aU8VmeYTB/o59eO+T02DXXWQ33VJQ0b42tpRSynnO8/3ZcP/xkz/7cO2tq6/93NfK1RW/VW02GkASRjGZaDQvNl5a1+DsxOVFMbWBIySlBcUXdpqCEpzjQgmxgAa4bJ4hACdEaAEISTO7L4yOywKteuvd9m+8Gy5WAz/UWu68fOujD3/y5NG9wPe7G6vNVmd1+9buvfvD3mmRS3vxyt7+we6Pf1jqSq1ab9SywWgizOPJNC0K73wYhEG10rh+Y7vWCLevbGgDf/qXP1hbXr+6eUdccX3BIfgf/PhHUWPx+upLuzv3f3q07zOsKH/JeEtedSteXgyaa3FHofaMIXQokTLKw4glICxMHE0439nQns1PfvqB3rnXSyYnqfdKEJRBMMsYTQbgTUFRIvVkXvWIc5llRXLy1A9NWQr4cRiH2TR18dJhlvVePFLK9zQfjZ8dPX8qbv7xg4NZlkBur2+srS+93orAC8NQhUrr0K+Ss8iFF1aRERwBsbNpNktOP39+9O2PKqe2AWGsXGCqKkQg0qgMic86NggYr7p8nLUGP5l875Pf50X/K//k1/St1yy4MOTBzslkZN/4+k3th90r5ThnTp3M8iQ2WmDu2KJkgsYCF5wDk7BDNIAWEBGcBUQpWMCC5FBmAmd2Mr1ztfbyoid5aD3RTNrXBFevX4mscmGVNSXzycLy+vGLp/2zfnt5NRnl9UrNCxc2t64utRr/6n/4o2mSOuvYORAI48rN7Y2ci7OzXrXauBj0Hjz47N6DR3dfuun7dnX1yvjkxXITP733+caatZ7/4mSwrSrrQeVmuLDsN67Ey5FRsRd5FGgAIgT0PEJFnoKQBJxGNDhvhPuT/o1H6fwnD+J83l3Z7s+KWenC9lY6nhqPrNfZWurqcBljf5LZiqY0U5rC/Z0XaZKwy51Y7dcn5aei62kyTvNZ7tSjp3uryw1javvn+SjJbq00N67d1KVbXfBCI76nW50tZVNFyOIUM2AogMAk1s4Hs9HDXdMfxxAGRnukNaG+HHhjUUiogMkHdgZVUIWGrczycnA4evQv/mz89bPO22/oCmyuL1UXouIs0DcW33115Wups57WnvGYdTWuMju2VimxRWYBlDFFOmfJrS2dnRMJu9KCiE09ZZy4Cc4frjYmrTJ49EHttNlqtzc2Nle2tqPIS0eT6bQfRiGuNNnlw+MDYyLwA79ZLYrEb3TT0/3RYHD7pVd/I0uDv/ju7tHZvCyT+bzMk+c7u7N5cvXmNaXcX37rz58+eRHGlePexf/5X/w333z37i+8/yV2xcWo96MPfrAC4c9Wt7b9VtPEHVMNjd/QkSEVfDF7zihaRKw451IgRkQpJQqjq239k6Fv6qbi4dTK3VsvLaFf9wrw/c3VO1SpmsaSp1UYxdl87AQss1epeP6S7p2ltphPzkEHTx48LUu7sla3zsyT7OB00pukC4udlbXlq7m/f3y4tbmaluVbb74XCbikHzc7GsBTkaiAy0IcEwgDI4kTGh2e5ad7xrIhDCkMtCZSGjUAAijnSlGigYSAxGcS42Hg5ZUwzrJ88kePioNCrYe1b1J/qB797nd05HcCpKrnBUEQeJq078Wx0qoonYJSgFAZ8sDlzs6nqCErShBApKLICAC0X2rJbvBrr4SzIgNFeWl9Mof7R8OL0ZXbV+oLrcmsfXKwj77XWmz6reUwQy4KmyYgWAn8nhL01MnRfqUeffVL78n3fmAFjnr98+F4IuMorlh2f/2Xf3160ut2V775zfdPeqcPH+78hx8+KBL17ptvb1/b5mF6c6avBq2uX/fB8wC1SMGlBkqK1AorFHFglPG18TE0VPO8aowwqS7Unfyjpda/hfnSra0lb9TduCGoFxdiD82sP1re3GRlsnSuXL9TUeiFLoGw1cREe7Xmaug/K7L2ysYFtE05x3xSb7UqtXKWMwSNlZWthe6S9mtvvvaGnh43FxejMKjFC2nft+PTQolfiz1QYnMpEhGfkclTdp4OHr+wg1mAFGkTKKUFCTWKT1SIJkBD1hNhhVrpQERAjPJqvkIfp1XO558djz9xTz8+c+xHhxe6FoRiS6UkzybIVS8i4VJQTKCRL8c2AMnoABUGRVGEQcTISgcqMahBjFdsKfNe5eXNhufpQlwuYgjOe82d58fzVGqBanaWuURXWksYNVqN2ehw97DSjMlmaT497/X8ylK3sXzyuF+Nq7/x67/5H771J9f0Qi0KSojjRu3k4GDY77c63XfffzvLsuV25+2/e7vISkOeCcJqRsulXjRhgwJPoOaZCoZAAgAEzKgiNJ7WVhU+BYGuBl6sKQiNIsIiDoRVy/NuTnofnh2+8/aXyZio2qxVtMGCsHDznjOhHY59PfHrC1Y0+cqjMHGmuv765PAe6+Bier6+srbYrBy8eNzdvtY/msTx7Bu/+duhZ+bnx69c3Wy0Vs8+P6l3TBRWs3EPceb5WnEJnCupaeWJzaxLSh/cYJoP7ez42CaFVp5CzV9M6jtAZieErIFIoSARKgJA9Bxrn3XVizOvNk77HpYLWstYkdbUuq4D46k4REFnGUCYia0orZBRRb6UeTGZpek0z7O5zRUZ43mh9lQFUdiWMOmkx9fr1ZbnGyEqDIAtcmt1s7MUNrueUp2qObkojp+NMFDsIPRVURbDyXl80SzmR5PRuEinOJ/XlpcWurUPP/nsG1/5tV/+2a/OptMffno/xzAI4p1nD+NazRh91jtdaNQVlf3z3l//4OP9w5Nf+9JXr2SVmq77pVMAPnmxjipeGCrPiThxngoVkkfKYcVBrpE81L4ihcqxM3XvWztFXbtKXOk2OzqIijLHMhGpJcNzOz6Y9ibVlZtxfUESm6RJ3G7OkwyKnD0PK63hnDJQ5bBYWazUFxZNWF+8ensw/MGtO68uL2/aed9EUSWOXTasVmMjqF2KSjkXGl+FAL5BJLbZlLRV1abYfHZ6f95Tw6M9cJnyPERLGCpCBQYJRSqIllE7SYk8Ao1ASGCwdOCJlDUdxdW1fjIt3UVkPKUqWkR7fiCkSaEfgwgQRl41BCUqDDAgKXwvCHCs5seH03TOjqtRnKOOy6JgOOLh/aWB9BeW/a7CdfZKoWA4Ho0G6cb2RrvmK8I0zRl0dWE1GWe9nePCzWr1OgE/f/Txxsbq/tFuLe5omn300x9UaobK8ic//qvb17cajZZ89mmaJCdnF0VZ2GROLTObpScH+xeD0WXP7dbqlq56R2bOKnktWqq4sOJXPK0IEZFCTVZQE4GUAoLiK7zsAwQQjQgOyNTj3gQiPZDjv1bJ6HS/HJ4foU02Nq5U3Wkym2SzRJtQdWKbOZvNJ+O5Vw0NiXM8uEj8latr8UIUGuJMG6/RXQGLWzfvDg8/9FSaDA4r9aofRfnwJGotaL9RFFMRzwpo0KJVVubOzYMg8qMuGa3KuaFGOh5AaQ0YQ75HgUekERnAOVaUCxgCK+ghEAvCZUOS9sU56wiZPS9YrS8O5jiZ9zxfAYVaLCMxKoWkEC+5C4eXA/ieJ55WRgu7qN5soLLiAu15YYSoxrPTT/zdx3kKn5/2zo+G/cny1Y1OJ2Shcb93UWt0Gita2VmSzvtDoySIA4NpcXb60f3da9fuKHf++NlD3/eTZBSohuRDlzW//u57z3YeP3m2+9qdK6ut7llv7/j4hEhFlcDa7MnDR2VZIKn17e3Q82sV/69+8mHp4PXtq5NGrZoFXuJTjiwudzmwT0oxO2At6IByDaHSKKRKcSQBKMkaZnVr+CUzPLt4cqAW095+NW71D/aOn2cRTrSnkiyl3XvtIp2MhpwnaCpe4Mf1hcOdx157ubF8myhUCjyEArLID5nUyuaa7e/MTh8HcTVqrJazsfbDctJL+mezZFqrX2XJ5yW7mlepdTSQihaQfGCn/Irz1k+fPHFJUTU1dTnsC8xsUAGREJIIXbajaNFMFiEk0SCgkIXBqYIF2NWWKiuOvUmyB36u2WVIMdkCSAsaCBBRAFFSh74oDwUYUYIwts7ZLPfCivbVLJ8+jWfm/bu/9vJ1W8x7w74SrXQQVOOuB9msqxRo0vVAi4Nng3u944tqpTbNR3EQvHhx/wc//uTXvvneYr2xM9pPplkyz7fXuqPx8PnuC8e0td6xRd5otbygb8sCEV1p2blLwYxGs91aWExno2c7B0AIZfHpzvPK+417fP6l1Y1XijV1lqoUS1sY0J4OHRQsTAAIVpwnwEozoWMS24kf9qdvDfXz0S/WWy/8unK6AtOw1eoWIxtqTOa51Yt5bvJCDQdnKiorZW3/+FMLoo6ee17Nj5phvW1ng1prddK/QI2mEirPS8YDTTM3u/B9FbWu5fnFaJblOY1H98tsXK+GrfobQVATFFdkigJAn3Oe7k3PnxxIyRiIIaO1h0KKEEEziggjFCSgUIMKCJGECREIgH0iQBFx1vK8BLNa7wLQcLanlfK5ZFCeK3JlDJJDICEEdJLmqH0BIG1UrH2OlFJAmBfFMc/kncXNu9vb11cVpUvzZbFMRBqcRWwvLS3U46oPLMxg26tbh7u7h3svvKg26qetztLJxbN/960f/dz7L7XqejjF0aQ/Tens4mJjZZtzXl1o93pn9VpzNOmXeY4gyhg/quSzmVJmcWnF06EL7cp68PTh5+zcletXh/N8f+/sZDT9y3DnF7dffSXpmKOJyy1zKoSX6hqOGXUhCAAamItK3F4I/1lnEf7ld6e9fbPlXxw8VUrbogzsqFrXYOomLVW1vXjzHXW0lxfpPJkVFR/izVqzMTl5Me8f1VvLUkwCz3hasounutoeHtN8Nj09HYwvDq+uddY2tsDmpto20/5xbwecXWjqbmfVi5tClel4lA93mt1rRHq8cz6498IU1icTkqdQsy1R+Y4vBy34cp5PsRblwJUEiMoTYSwVIotSThCBiR2USJBttNqanAYAHSFwZnNhsgo8EY2IQCSWOSlAg6AmFZgIQKjMigubHK9nnxw/f/vuluOcwNVCrZUS5sLZ0A/ataDqC0s5TsuT8+lsMGl2ljVRsx7Ox2ebKyv1yH+2s/PDT+7fXF8l4R/8+J7Wwc+998q1tfXedJwl08ncWYuaEBBJEQBkyVRAFhaWmYTB1avN+5/8BACvvXRnZWV1NhpUqrWdw6NP+v1U6YPGwleri20LzpEGIGAAuZzXAiaH4KSUhXho9P6T86u/8+XzPw/g2Y9ro7Pm2mKtea3Sqma9p5Nk3Fnd7qxfJ5xEgV3rVM77RW7d+spGxjbzDYLMLx4oxMTZo4cDTseV7kar2kHPby+tWa6f9J7XKieE1d1HT3f2D8piutQIOgu3W80Vz6umqZsNThr1SjKcUF6kz3qTZ89gnkbKFywtO0ClQBgJCRUECjVicCmbRAhfqHJBKAoJRUgDZIihOHLMWeEQ7WpzWYMyijyHKYNFy1IgK0sWKDTCTnIGIUBWGoG1GDeeJAdwfK88bi9vprPz8xOoNeqZm4Hzo6o/myZF7uq1alkLA0MFKOUHF73+4eHhysr6LD3sDycAMOqfXpydDyZp26grm6v1WnxxPprPk8H4PIwWRsPTyTxZWli+vb2aZ+Xh6ZkxXl5kxvPYltPhODD63k8/iCqVX/rlXzWhf3p60uws6Mmo//FJu7NYqzSeFgkt9F8vTHcSs1OGlGJEosIVSIHRacFgN2vbC/79w+mf/OhZcvwisOnaRrdg61Wa1ott0OHZ0LlZoVx5PgzQTdKUMKtUlmt1RecX1nNBWGeo9c/2w0br0e7x1tr68f6L6XSqMY5qHS/KBuNgnBixz9uLi4Xz0uT05RvXu2u3lHWYpeJy368ov225XhxOi9O5SsqATElirSJPtEJNBlFpAsQKIRMqQlSkgBUQASoCQ6BBlSKoKGJRQA6BCpdiZom1NoFGBcr5TjlX5rbQZAIhBQiokecloCIggctR22IqyYfuWffW27W6/+CTHw36t26+enPeP0sLvXFjqxRJsllqC4ZWFAaJtZ5vTKXqmShJZrVKezh+1qjG16+9jOD1ByPUXpYVrTi+stQ8vxhcXFyIKRcb1ZV20Govv/XaW2sb11xpD84uRqPBrHTzJAWki95FnqXvf+3rtUb12c6LvRc7a+ub/bPjazdu3r7zSqdZzbLZ4+lsoOBvN2owKEiMk5IkR1SWJ2kZo5SjsxMu3M3VqlEyHrTX6nmj2dr59K+Wb9Ytq8bG9hxeziZToFqhQscJNa4GlSRqLmaz+fDiWPIDXWnUl7eUMRQ0b725yOlgkOqT5/vthlfjIkReXQyX11/KT+5Henxts6PNlaXuMiFNTh+Jm0O4RNQsMrGH/eLRmTs+99lY41vnjADhpabQpbidrzBXqAWtAt+CKG1JYhBBcKIY2EN0CjwEA1ggE2kpuUztRCP65BORCLgyTcuiVNpDKCQjDBXoywLipUAJpUW27yerb759/dXXai3TvbJV5q4aR7aITl6chqf1rSvdOPRcYRVKWhSe1lymQRhtbt/s9Z5cXMyWV5Y4LxYbtdpL2493zrrddhRGvYt5GIUvXak8fHGQTrDbvLq81mLAVnO11PEbd9/YP3yGIBfJ5Dt//cMkSZUyq+tbw8ns+YsfeZ4RJ0XB77z31Ua92Wi2RtOxH8aASne8B8PkzkRDweQ5zZpQBKAAawjKH93/i/99+PJ/+jNXlurf+/6QFvR0MirEBx3HVT8wGqzSYRhGFaqDK0yGE2/xdv9soOOguXo3HzVMGBMU1fYiA9lJD6rRdvW1J/m0vrhIoKfJKJJQ5meRT9UwopAC4yuFSVZeDPv5dFyJuVrnIm3kh2fl/j7NSl98RkkpD8iQDjQZBZpAFDIAOPQVKEYgUMKCaJ0YRAfioQgisZCIEChSogAQdWFZO5uSxAjkhVUiKnNkZGaGpFDKR09JYUVEHJeFGwv3a+PzIr6KeqHTbHXi6TxlUKVrROFQ2CKozcX2ZDaZZ+KRE1cOeuf906Nmq7O0fuX555+UZeGX5fBi/9nRWZ7QfLL75huv1pr05MXRart+df1mrbI9R386T8rS+SrwlL73+MHF2V7q0I+qtWpllqSbm9sbm9sfffJB7/To7mtf/e2//0/RDyLFo36ftTd3Q4KotrihXPGjk8fVTnvhyNXzsOJVFSARIWLJru3F9juffvvx3ujGMqoH3Njs7T5W7c1wYdlgjq6s+wC1CjtdZANfptHCIlUr4NRkPqlUF2rL68XwVCnl15bm/WOBSciV4/N73bpZrFcm07RGttZsS5E6KycHT+rVRrTuEbTzWTJMs2Zciyut4rRMDh/D4JzmqS8hIitSkfI98ghBWEBZEcNCSikEg0QIWisW9BWARhJQgIqtcxaJrFa+u9TJAVGXGlhlUVChMYhUSIoNICjUl/oPPE2xEog2AAxsLdgLHI5DWl3dsOVs/9TFgSbQypcwMHffuDueTmxhUcigymentmRQflGOlU3yybS12Gg3gs8+f1Ex6unJyWg279Yqq92FZDzwFB4e7yXj6vuvdEEUkRuen/V2j1VkRvl0b3iRzOcOsNZo57ksL610l1dPeqfPPv/c5vlXv/rzr7795ajdSPrD8+OzSsOcf7v32WeftZr1axvLYb3yJEtcBG7MofZIhSIgPBMMAHE5qNDZ6KHr177eHp7tT7Pszt0vKy6qlXA4mIlidCEWA1NOEclFcZGU2td2xI5H1ahWkkTd7Xw6LxMZnp3n+GJyflGpL4/Pj4bD89XVNSpGRsdFXo7HSRT6QCTMw8G4fzquLC1lJWSPBvZ4HFgMlM/ICoxRGHm+CIlDR4hSKtIKAIAICYkMEIrHAgJaEIk0oUVSDrAEKwAaDYo4YEGlDGltVJkVyvMIffYjrXNExQDAzICY5mI8QhCAXpIMuubKG694dT063T94XnrVMK7FcVwNKmGtAeC4d3IyGgzq7Upi+XRvp392sthZWltZccL7j+/1Tk9e29qYJ4P5vOFrciWdnA/2Ds/u3tr+5ltfq9SWlAn7owub2dnjPbwYFFnuB1GDoBxmzbimk3Jlc1P7elQUD+59mKbJV7/xa92lxWQ4S9PSlhmCFKPezfXu7iP8qz//s/xL79zeWjnLT9ZXm16p06JUpCx6yBoJbDlRplXRtWh2cHE0c8VFu9v0Ql3xQYMolvHFhdihJzlSDOWYw5HvVUfJvEzSems1Hx8g6HTUywYjW2Zxdd2NPou8QCMWSdqsN/LpYL29kE9GYOzq+rVWqxqFC4MZPXz2olOrdNdvp8/m6X4/cEgqJDSX4pQkJaqgYOsIEB1AQECAmkDTpQwBEjKIiGjRgARWiSJliLh07JwTZKMNgFboEEGjUmDFFqhiRGLQHgFB4cD3wRUAgq5gQOv4Qo/u28fx6faC160vdor+dJZNjx/uIcry+o3N62tRtTaf7u7cf15rtubJyAT+rCxHO49bje6VzY0sOa+Eyijv6GT6+q03iU+OziaDi9G9x/uBqb5ysxPFrUk6PXryiPfGUYaLOgD081zXkvmqbd7xFk0R/esf/uR5PisQAmN+9ud+qdpa2H3+YmlxKdL0l9/9y+H52dHJo3dee/VXvvb23rPHP/jeD7r1X2g0a31XLq8Zb9day6itJsWSK6DC9hmreT6cDtKVl15ee+mNPBMbEmRpYROHwdHuREs/MpHWyjeP1ZWvXBw8VrVoMk9Hhy+8wKvM+hqFyKu3q7m61lqSwclhUozqcYXTwuiZ34kgbaiwEsY+i1fks3qQbF+/Y/yKRfHFGGJPoRJQoAgBIQSwQJSzda4UVarLSqcYEYugSRMgICti0AoBEVEZDUoFwH5uMSkmrkh98sFoZtE6MFRa5kJKjwDkkuXQ5gtB5QJFAYrbH55+YJ+bK6316+ut1U6rWdm6ofJs/PDTz45OLzzjA3mNShRuXW8srQ9Ph3lykZ6Pl9pLXM6n4/PdJ+NkMp1lw8fPXvT6w4XGMpcpFOmbL925vX2HrQ3j5UH/zJaMvSw4zRajOCg9o4KsmNd5seqH18M2SPBNO+jM923kLdx5aaRkwpglU1L+ZDTr98++8xf/LkmmoUDnvVd/+Rtv/T9/9/e//8FPX7l1u35teY9nNzu18sJq1CBCRJcqNSBpJ4wrt64t3X4tbLTzIrOCioyOOrN+L1jc4nJpPr+IyFr2i1EfAz+HajIaHSc0OzlbbmXNVrVqnBc1dRi7MmMplIF8nsWeQ0JPk2mEQf166eZ+rRlO9e2X3oyj7vDZfvqor0kZNCQekCFRDKJJXco+kaicBSE1FILyQHwAjwBRCEkxKo0lkhbmS9Fcx6CVCQPy/cXpbD4uRyFqX0canKDyFIOUpRiFqACFPAQLjAq1BcGkKPeDYvHW9eU3uvN0fnFy6qmuDowtytbKWmv9KrqCGXw/sEIVQl4g36Pdh58f7z5sxNiqtImCIp+c9AeaTLNecQK3tq/0B+fJbB7H3ajSyvN0/+BZE8NO7sdhM0CvaiKDyhrth7rutapeDbj8cufmjeripCjO7w0uwMrqIlyP7GBcX+r0z3ujwbmU5fc/+MlnDz5/aXv1ynr3+f7JD6ez8/OtN66v+M3wWt8FEiARiyjWonxBKqczYjk/2nnyR/+f17/yzVbjTUPg+/7i6nI275OrTC8IXJkkJj05t7r+0Qffj+LW8dnBxcXJcadx6/pNT7Dbmkzn06oXe/Hy0/s/bDWatchT5/311ZWg0g7C0FCgg1rQosbK+sXOyfz5VPoTn0ShAWAiJAVKIzog8IhAQapBiRgQg+gRsUJQBIJAeClkp4UFQSFfKtPmTIhW/MD3Gk2cqsn8nA3pPElNUCECVPoLWQoHqJxjQG1AE7KdTPOel9bX1pXW5/05BMHBj364sLjeWW4j+YPz053HD6uN7b2FRqUSl3mulZv395e6q6GX2/G5y3Pf4+W6X7++qlX90cHhp48fOpcs15bjqmbhPCkcumw0HZ0NNtNabEyIfkDGKB15FaOqoac9UKhxUXuNIC5KKbh0rFxa8As1OvjpqBM0Cy6zDBHn02mapD7SK9fXXxz0JpPRR5992q3EEnPDxm0KSCEwgSJE8h2Ik4O9XT5JDh4/DOLq8rVXEmWANLhxIwBnalmeQVD1LsL+rD9Myu7mqwzZdqX65NEzA3ZHBaXIs8cW3NSvVLaXl1JXe3Q4CAkuYiHGjSvNsMa12qITt7S4PJk7mXruYK5TNCZCKBUpQmDRqswdEEmktOhSo/QtZ9Yaq0QRC+VEESIig+Dl9BwpJewQkFEUMCOyLQvP+J120/e8/qinbZYLgwlCcoUoH8UhKSeA8EW1EUq+gNGn7uHaGbxx4527bzbB4CcfHHz0wV+urG/GtdbaxtatVxoWeHA24LQAtqPB4b2Pv7vSXX3pxg2/3gl9RZydHx53ml3Pq9l8ms1Hpwdec5sWWq+i9kfnp0b5W/FSNjkKmaqe54HWWvkQeMr4iMgEKMCgKVBKe4BAztq8YMwTRyyNafqujX6fiJmV0kqpIPQXG+1uHB8Nh6T144NDMnVfX1dIGrWQIfKdg5Lzrc7V3Wz3o08+u9I1vfP+cJ7G1RCsrccVz2v0LgZIxg/DUXpeidurt7ZtiePRyDPkEE+efXb/3sOl1dbImXQ6tmVvMJteXdua7HFzuVKrtRJxTkIUNF7oA82dTE7Toz//EMdzrUBYSAUohCgAuWAA4FAVSjRiRqSRWdAhs5BG8AEVACjFqLQThSzAl1JngugYCBwTJlbY6LjVagR+pGfziSrDKoIiUUIQawFEIlEWyzK1ckqze2tJK2gcHD9f3FnOimFUaa6uXT88ePb7/+Z3W4vbv/Arv768toI2mw13Huzs37j1sh95i+3u2cnu9fUbi93lIptM5xeTWWaMmya7i53q+Dy2pdV+xIq5KJDT2cFpuTtqOi9WOoDIkGeAiBSAupRFgUtFN7HWFgTAVhMZEQa0kSZFwW1udP2qW1i5/urP/vjP/9vd/T1PqTfXryzmhxmUyxN6q9LqhJGmQKEh9FgUAIfV9ebS9u89/8A5W1LQqLU73cWyyDyXeZoFNaJp1IN5ltTbS9Hidl4kiF4UVdrNuNtuNqrvmbh53jsK6wEhTsfn9x8ee361sb50PjjqdrrV7tWSOuN5FjcteKG1FmIvaFXLkyOAgMg6B0orBq3Qs4DERqEl8jQbhUqElAAiGEWkCdABGwdKOdIKULFzCi5VBoEInEOwTIAWihy0HzcrujfreaYmzjUEGNA3EQYCRJzBNMue5r1vBZ8+mh4ZMdu37h4ePev3B76Gi+GJ8vyf/5XfmkznDz//+Lt/9cfTabK00Hr45PNv/eVfvfP2uz//lff3nqmnTz4+Pqmub3bLDOJGHZDrjQUoi+qtSnNhtV7tDAbD0cmg6Qfz54P4Iq97tYiCUIWI7OkQxSIQIGnRSMAWHOdOGMEQAqHvK0TQhIjKbJj1d6pbzzc3EJ02/sLm9Ud7TxdvRr++fbsyVotBfSmq14O6Rz6CgMyNq6BfXbt1ZzLqHx2f1zb93qjUK4ROXGlFCTrGclYJqcitUShxZXaxV5Rl7gxMz3tHkg5Oulu3iOcG1c7e40D70xyduAdPdqvVQaNWORhn1bbvN3zPj7JyFnm+Ig+CefW1jcnhIU1KREWKNGlSgGIAGVQJZJQUl6peCMyIQD6jUSWg0aAIWAGwWMPoCVqtNDvngBgACIDRgQWbUzZXKtTM46SYMs+slA1oE2pNGjSUIn3IP2kevZieLSysjcf9waD32utvv/Xe+9PJ4Cc/+WGzWms2Fu+8uv7w0Y/+xz/87/uj7D/5p//FP//Pf/v0bH+5tXxlvb7QrI4GRyene2cX497pRTPkTsM1PG8wHjdrK53OpiszxdLf25mdl42RaqkwwthTARGhQRJWIoikkJAYUDkpgYTEKAyIrEKl0NMAQJ4o1UDzjfYrf/zjfw2ovSCo1JdAnv7wyeN3rnxts9Jt+5W6Fxs0mhwwoIgyZunmXe14/+jpaDzo9Vzoew1250fPY5qn6XzkCi+KszThcjKe88NnT/b2j5YWN/rnF1AmXq1Wq9Xvf+fz1dVlTvpvvHQrK900S7WvsxJ3D89Xlvj4/KdJ6crg/fk4hdnF2oYuTXs6Gn1y8uDa1Y5+mkCeXjZWiXgITOKIkIAAS0ABJo3gK8+g1iBKGyKDpBBZAV76NiLNCi+l1BUIIjkFTghYyjLH1NcsYF0yt7lgXjjbKSFCAF9loC5M4ro1TkT7tW/8wpd753uPnjwUgVF6kc3HF/NpmSZK6+2Vm7/9H/3Wk+dnb77x5s2rK1e6C7evLl0ML6aDE9Lh7Rtv9S/2FJeL9UXgMbisUasHvk5G83Tan/bH/lCCM1v3Kj4GGoGoAGRlNYoIGU1Ka4NgBZhIk5AyHqAoMkjATpEOQAgRHNHPLL3+93X/dx/+2Xw0f37v+4qUNh6I8oh8IgJfgSXngRSa6q3rr/naP91/+sHpTy6yJB27Rk1+8sEH/d0Xb95cyJN5oxaUInlSDrNklJWjVJWlbN1Z3mh3E/QbjUbS6wUO0lx76fDBx3ubm5tbq6uD0enWlWu7h2PtW8emPxj/4IMfNUP/V7/8tSb4WTI/OjnqDR/eefvrcXxl/sE9kFwQBEoCC1hxwMgWKWBnAZPYrxisgCgASwQaBYUvRw4QCRBQ2DIRatTgLChBEAESIhKCMp9qZnEsJWcuu5SDdzFnUb0x9f17dP74/OD2S1/p9fbOz0dvvv1e//xg5+lutdP88MMfDcbFO2++259NY1Ot1xZWFt1LN9brYXZ6dHTRc1mSR3G70VjO8/mqLpa6G+l0ns+KPLNkKpN0Oj/dr6jOYGfHnM+7QaNCQaw8TUqxp5XS6COBQkPkUDxARSCAgKgUaVSCROKAEFAhKRBUZHmB439W+xl3N/zr8QMnmCaTQOmQBNiRAg+tD54ST9BbuPVWEFf7ey8+OPzgg+HDvp2FGAN5b75yl2c9INNYWokj/XznZDjOdaWx+crt6yYEZa7euHv//kfXbt7itFSkNm9cP3/2cRDFfHBa8SY3brx9ftwZ9A836sqE9dbS+qPPHz65/5nz/Ns37mjjh7FfcFkJTVTNlv7W1jCMxn/5Q3ROKQOoAEExIqGgRRJPK00BCFlMlTSYldClnBvipdiXAidK8aVCnwDA5fNHZkZApZ2grgXNQXYG4Cb5KJMyABsmrBRMK2H8+krrqM+F+8o3fnE6Oz98cdjoVLorC0cHhz/7y7/x53/yPx6dnrDB//CjP3NWNtbX/+T3f+/NN1+nLOU8b7UX64iHR8dg6eAsSUdHnpbZPGNxLjtp+dWF5nIxmat+1oJqVYW+8gzpgDxFxpCnkBCNIqtQkwCQAlGkWACFgNCg8OWSAiWKDCLoEiBAvqIW/1P/fWXdZ7ODkUtvep0rsrgYNJq6E3mhFmQw9as3w2ptfrT78OSnH1w8Os5ndR2kuSwsNt945ebJ83R1scHkTfOMFUbN2svvfH1h6/bp/mFroZUUgNnsfP+5sErno/k5ZWkRV4PNtYpHiqezZpguXF+bHPaGszHNq4163Zbp1rUrT0/PDo4O39pe9+NmgsF573hza9D95e304JCf7Yk4Rg9BhJWgQWYUq1EbFVihS41cNBbFI00AxEhKMzAiITosCIkUI8OlWjdc6s4yiNKtSpvJDee9lItJ2p/bWUTOGA1RvbbYvh6mH338ycLZ+t23bz7+5MP7n+wFEdbDRkXyl2/efXaw88f/wx+Mx9POwtJ77/+8tUcvHj56/ytfandXcpRnDz8fnZ1xkj9+9MF0NLq2vtpqrlbqzcjz69UOOXX22WfTMVYprujA074hzyfSCEo5EEK6lLG3X6gKKi2oCDQSiRIApRyLAJBCQhDQCoUManu7bP0fVn7j3E3neVFXpkYmQPQQUZhQ+Ve2/VolPb54fvz04/7OfnYRKLUM1WPJGlo9/+iDW69erdY7RTI47o/vvv5+sHS10V5ypNavXtdGz/YPp+m4ubRWaazi2UEQegvBjaS339m+m0/mDx9/cnu1sbG08GyarDBfubq9mscnB7vtOD49PVhf3rzIMk8nk0kuqgRNKibvS9emh6eYZ4Y8QCKNiBlIqMky+ASkUJUIogBEoSIRRYYJnHBEwIqYtVIMKA4cilhUSkiVrjQggqRbq5umXycTZcMHecFZUSbj08DBfOanJ/jSa3duvPZyEHiVij5u+v/9v/q3T5+cfOUrP3Pt6vVrt9/84Yc/Nb7/j//B33v5ztXCpq+/+RuNUBG50eDCr9Yyq7LpYHCx325U243uysbWzes34ygiJ9k8Pd85yM6moYS+MqQCoyONCsUgAl7uTWR7KYdMSABAQiIOyaAgMuDl+ggRIIWkEYFLAC0KFJEKwLTEg4oRZGCL5NAKs++vL6oozM/6hwdP71/cP0jO6ira8JszV2TlZDyZV0Pf5qUtJyIwnRZPHnx6xa9V6nUviGoLzckk63SXX3n3F2r19sX5UJlQHE8n4/rSaq272Xt+YPb3ynR2drJzbfu6ddr4fuSFmoLJ4GJxbU1rbzCzPibEo2pjY1aUp/tP/vTT7y4mvbdo3TlrEPlyKoUzwuByHZ9AiQAEpBCEFCCCqEvmi0GDMCnQmlzJl2q6zDmEMSSXebFov93WYSWYVRDt4eDFRTGdudE5RbQQBqY82N0v8rTRWVy7uhhXOteu3pxOmYyngmoUwJuvvHx0dPzGy9c1cTsK5ifP1m7fzQoL7GyRH+88DGfn7VocVpZE1PLa1aASaXaFzUUKhaYcZ9qh9jQRaRCFpFEUkVw2kQDhJWPDSikkRCajAIQY0YAD0ApRAwkgCGpQVoCUMqAJBYVRpEQkEAHygUr/6roiU5yfHx09udf/aH/eA5CtuFPVvgVWSXDqhd27r+70Lg56A4UUt5tc5A9//Ocf//BbflRtdtarzfbVW6+2G20wutWqeQqS6YCyfHgxGowyBWp7dfl8/x54uitcbbRmoLLZsNpqH+y/aHaqNmg92T/+8js/l+Z83h9Yffpn3/7pH3//+/HU1lrmVtRVCCJWcSgkgkKogJ0wshiWwkKslEaGyw2QiILAIA5ACYtWihkcamRLScGX63U0ahVo8FQ1VJvqZVQBT/fTdAALaze/9HJrDS/OzvafDy56/SQt1692fuabv/Llr/zqyXlvOB4U53Blde309OAvv/+tqs6+8d6vbN1dJpspTceD/tPvfkcmvdryYmNxpdVeAR2J0mlhc8eqhNlFevGoN94fNihUxEQgpFBQlHYsWhkEA8KgCEUREqAGEKU1ikKtLvEjAggwkQ8IKE7YKaVIaRBgKFBpKB2QZkWKtN5YQqPL8/7Zye6T84f7s14OshZ0YhOGxhTOrXtFHGzUl16bebvf++s/TSan7773xsba9UZXe2HVau/gxeHeix/e/+S74FSzvfL6+28RmzCM04ujagyl0sXg3Greuv1OXKvMhdzsIqhfGyTn9Ug9zfMHj569+363N5i+2Hkc1hZ+8OlxECXf+uFPnu/tF9b++erSy1det7tDTxO7HEkLWeSAwYoogowhBhQsnTJGAAkBUWtwzgGDQ3HaGNSoxSSZY2GtvdKBkVwjeuQzAFda7VXL4kG/N0+rAXrkeV7om5W1zcXNLguUNq3VWn5YXVhf/v1/+7t/+u//WJgnk+lyu/mbX//q4mJQpFNE48Xx+dHh8c79V27cWVi8XmtX/cA0KnUdhtbBfDYr5uPZYPLwu9+Lp74fROAQlcbLvbFSEgYgpSAKkAICUgBaEQApBCVKaaVBCWolOSq4XEJBIhZRX2p7c1mKs6gRkNFZ7UWq20YAdzE4P9zdHz06mh0L41LYjoxBFAVkEGqm5oLKwtLCowd/1ahX1lbvEPknvb3xcNrpbnXXNm9e2wi/9OXBxeDHP/zOw88/ffbgk83NxeXVlbB5tb2yXpblkJ2ydNY7WGtVq9XFdN5TostirLlMZumcRQk3Q+9P/+JPNjZWNIU/+tb3e6OLNMsDg1/6lTc2v/7N3f/6p9nOrqdZRDErBEYAwUxYnDgBvlyjQooQNSA5FobSOQRCjWQCTwqrNJZOyBaEyrHSbC2iFuOjcpWFhTaXnrLxG1cGk/Onf33eqjW3r7bnkyH61XqzynEQ+TqdFV/7xs9+9OEPL46HN6+s/84vfe3m2tV6q8WoclCeM8ubN3yhbqfRXFx0TEYFDDJN8jQtbZm63JmggaKkLMFnQQ0ASHPBQMAXyUSEMEBgEAYkJBEBRZc9tILiGAwA/c22AoeEQB6IAwQWCwikjAAAaTSxXukAoL3o9w6f7w32XoyPMnD1oBrrqiJLCBpVqYA9vvrz7zx58IMKTe5++asLi+uz0c5573Q6uDjd+/x85xNlFEUt5Vc7TW9r+a3pdFyPTFlYNdo/KadR3Kg3OmG4sn9wOB0nSjIAzIqiP1P3H+3Nk8QLKfaEPI6qwXAy/jt/6+8+2e29ONwLPfPbP3f7l77+rr+InV955fBfnkja14gGAgc+SooYsGSKmR2iRmAkDULG2ZKLFJVSHtpC2DoyZLyYmYtiatkGBgG0BvqbbdJKqdhPvdhd2y5qpr93PMuzja0t0Pjs4/vHvenGlW0S9kMGp63N/qPf/o+Hh099omsbm4tLy6BcWjiCtHDggKLOemu15QEPslIApHRR4JeeJKl1Gcz7STWoI6bIAaEFSEFVQNgxIoKAZhGNlzubBQ0QGUAWrREUKCTSIAwKgTQwiQJwhJfLY2wJmkCQQFSlge06SOl6/dHp0fFg72hykIs0gkaModFGkw9KHLN2iJ1qbbl2+sOPS+ZhsJsPDhWhT3T91lvnZ88Uq8EsFxUcH+xbx3FwZItiGJm1pSUJ5uNZLw4aSyvXddC58+p7H/34Oy/cfrdTubZdU+SfT9IXh+f/4Nfeur7R/fGDk+lksr22sL5Y+4d/9z+m7OjXvnLtN3/9VyuV5SQvotsqevul8be+7fuWBACnCsU5C8Sl2MK60iNSGkEACmEnCBoFwFdYFEVJqjQhKeUrnbDNAQ0SaGQRYAQAwSIre+G837SSJ81G9aWN255nZ/Oys7bm9OEHP/ijvYO9eWqrcX2l26xF3vD8KCDz0sZNUCgQsxR5Whqrer1RvdkKvTDyJKgFpYMkGU2TvCxoNs1VgdOjk2Q4a1D4xdCNRGAjANAkSjGKIkIBz4HWir7Yq0AGgJDUpd4ziAayIADqi7QfFAALeAQORVB3WtRuQJKV/cHo9HR/sHM4O05EmkE9VqGnUJGQ8gVyRu2A1PrKjFmhevPrP6vATC/2z3u7TNQxXmiqCUulYuJatNpttWu1IGyOxxeT1B28eKZsVmk1DRfTwcV0fNyqLaxs3fzpB98fjXqNuOkHsXjUaEXvvn4tjNpJkha22FhpzN10fWn5f/GP/t6tKy3jN2alnfWOI69o/tx2On89v7/rkpEmn9AAOJCsZDImYzbiFCMiM7AgiSggdgQkiM5ZVRgNSEJOtLWkkDVfFqkIbVr0OXnSSNOAisloMlEs+fPnT65de/3dL7/06ut3rt249u1v/fnnn3384PN7h7vhtWsbEbq/+MEPthZXbt25Ncuy6cWkurgAWjHb8cU0X656fpWQ8jTTYnJnp2VZlm50ePHs/gNOEi+ISIlWBtEK56I1gyEJkUgEgTShUkQgwKBIvkDWgoJf7JBQiARC7BCgBOsASBktANRsU6sCLrfjwfDk8Hh4cDA5S9k1gzjyAgW+p5SvHAMwVhEoE4kqzQRomIor8vW7L89arcH4vNlZ6m5c3w7jaXoxP78wYlvVupLcb3jN5vJ0Nl9a/vL58e7+051h77S0w267wZm/FNe7nVbvdK9w5ayEVrPbOzskUx9OgV1y5dp2phq9YTKdHzz//MFi9w3lhxeT4vzFo41rN07PBuErRWf7nfEPnhfDCypQspKACxybwuTooRgATZebk8QgalCKbVI6q40nIIiIgFZKAwAq1G6aKgoAsbByGnFWR8IsiHzf1MK48v7XvtruNC3YZCrtxeWv/eyvdBc3VjYejUand67fXgz55WsrS+16xqUfoh94uSviOKzV6xokzVNS4GlTjePD/njQT1GCbFaePXg+OOitUOBrz9eeUUaTT0qBAItjdAAekUJxeJkDoVFAii4vsObLxXokIiTA4ADVF4tSSClRhjpNDA1medm7GJy8OBkd7k8PLUrLj0MvMKiVRo8IUCnUBNqBocDXC7VGbBBdvLiKOgirndbSaqXZjvzY81Sj4KW1hUYUJKPh2dnZ2aDnnOts3vVRN6uv17xoeLY/6k9SYL8om81O0ycbG88I55LMRmluZznGpSwtLfTPh0dHB7deuvNi98m3P/g8Nurv/fYvDXvnJ/3TaoDldN7evGauVpfe+cUHP35aHF3MPvr8O4+/+yzrvb/00qu1azdwo821yARskZBJAuUh6CDJJi4dNXQDKALUpc19HWrl6+mwH5u6aN9pdB7FjWpcrZ6dnTlwnaWuH8LJ2dmTv3iapHm9VUGwDx8+OO3tI6j+cLZaW3n3zU0il4zm1XZcX4z6g5KKcnt9mdkqKTyxjs1Jb3h0PC7yJB0lJ7s75x99VmeKdegpIlQlOwQmcHi5KA98EUXqcgAHmLRGAUIHSKU4ZdExoIgoVIqdQ9JQijCS0lSJ6f9f1Hs925Zd530jzbnCDiefm/v27ds5o0GCyFEACFGBLFsSpaLJslV6sGRXuazyo6sc/gHbL35wlWVbsixLlETSlEiRNAASDAgNoNE53b5988nn7LjCnGMMP+xr+33Xrr3WXmvMEb7x+zbXgBmWTXd0cHx/f3965/7yABBGsao4BI5CHDFEKdyZKDgTmjgwDtZzRb5Muc/kNN7eeP6z3zq+d6eZLk4OFmvF8sLFbehmi8Wka3GM5dzr7QtPLSf7J3ff31xfX5zurY8GwxjXBgNC2B1W81MZBxnv7Jw99+w77384b2ebhV5/9PEbb//epXPr4DRbNkdn8xt3zzrbGK35yy++yNptbBcxBg4pDBt4bPx/vfPDrRfWFmuPfevlv3rjw6P/9b2f/Nrl8SM3ztaXpWA1LOrsUDGyVIGLlPu2X8YiMgsCRiGhIAenh2P1amvUVYUVwIGLMp6/dCkrnB3tvf7ma2czu3xubTq9+dY7952lX5799Mevtovle29euPf887/6za8+cnVLvd27e1ZtbROymQk5hQjKhjZNeHB8ND8+TK3OTj/ee+fD+Z3D86OtECtGRsjqUVWd44HMG4d18gRdCYMaqAQfqGQUgEyZlIlTViBCBlXklS2OAGSKJa+NcWMNUspnJ/3pyeTg5r3p8VGasBSlDErmAmJkYi4YCiEEj8SViKBxdp5NjEe79cb66d2PrzzypCZl4uF4Z4ZH6PNmOj2S7sKFq8NhsS3jnfXLR0soRxs3X/sz7Cbj0Yb2Jz/40fsX16pvfuOvQMaaOTIMxSzGAIMLm/UjWxf6Zf/ma2/tH+0//9yFSMXbb719cWftL33jC1LtHt4/Xt9cqwaBfEES592Utd8q6Su/8MLpYvrKMxc3t3c38M07b+ejc3j90qPv/6s/HhfhKj1WI+cO2JHQW9WmVc2LKBVjUcQooZLJ/EZrs3G83A8355Fny6UVUq8VzXxxdjy7cvmZLz9/7fy59cX0+KMPPvrJT14riuLFFz7xs5/8cDE7+b0/+LfPXNl59NpXMWzOjz48/fhOGdbHw2LZLyCnZtlsXrx2cnTcTc6G46LTSZsk3ztZwyKiBCeC4BSyKzD+lO/dTc24GjZ+osw8XW5odbEcDGzjXKi3OEYuGRidANRIEdhTQ1CiJhoPZGvHmX22TCdHy7PD08nx4eJworPAMTIWWBRMgQshYQkRawJiEcIiSOEkBnJy5wwW61/52lf/6Hf+6fHx6Uu/8JXzVy+W41LKDWxnR/PFmvSja2PVZshy98OfjR//xHoxEh/sn93omoPRoPzki09cuniO2YKUUo42x2MKAx4MuWsev3iRsr71wTvf/u53r13f/epXf/ntjw4EF9/6a19/+dNfJw3l+u6dW++euzAquKhK6LWPG+tQ4rNPXfzwfZD24+5osjh572uffnxY9rJmiS1SVFRHz6CQWzB1sF6zQVsUcVCtMUcUlrabNKinbVmMN/I6bow3Y+0nRwcff/SRydYnPvPcaK34/p+/+tqPf7K5deGVn//y9rmtQdBf+tY39m689i//xT9rl03b+GJ22vUN9jLaKly7NOkztCcndtgcT84OPnzrbSrG60XZHc/y8WK7WneWQjhzPuS8zMs3C71BbRzE+fK465q0XNiiEzPS7nFa/+bWi0V9cWAsno2YV17fmMgJR7VsreFw5G2rZ0fN8WR5eni8vHeUlgm0LGJEjhwF60C54IqoDEIMXIQCuUAuUQgx9l2en0znN+6dv/rsF3/p137w57/3e7/3m5/94jcfffIxJtxc25hyOD05Or77Xl2dP713942334H7zVd3HnvmhZ87+KM3u9Q7xK2dWFRrAlFSruM45I356dbx0XTv7lHFWzfeO/13f/aDo+nsK+efDlDcff8nX/7qJ776rV9plp12k90Luz/9kx/cevPt6888XY5gbbOCIrV9PWkXoxiR19bPPz6Z0XqpJ6fzj994NwBtjM6PivOMhQEmTcmMEMF7omjoo+GQXMxdFpbMNJQoGxFHcThIXV6sbe18YneL4qjXxR/9uzd/+P1v33j3dQ7y458++/Wv/ZVXXr6+s72VTi/8R3/nNyaHB0nTyf59dmTqAhl4NgxnU1003fzkrfv37/zk9R8cz/sKy42D+SPOztQhzEjPKt/P03crXY4GhOXe9OzkaH+xmHaLiQOkfjmG8OhgiLmftlMTiIqRQJDQQjkYxwvnwnDkbnZ61p0ctadH0/n0LJ/OVImKIWMRBDwXtB4ZYxgGigRlIQFZuBTCEkUcXVOe943n04/eOquPb5XrG9/8lb/309d+9C/+93/0+c997hc+9xmUQspikcp7H3+4PlYSUtSf/PkfXX3syme+8PXpMy/94Md/UEUWXN+/t3/SvrO1/sjJffjhn/346S/Gs2xN3z+4f3f/xr3p4f5aHT///NP96dELzz99/vqzi4PJ/OjGtRd+LqM8//zL//q/e/XWj2+tndsabL3x/Oe+wDI6vH9vbVTuXL68PJrtbu+mWfPRt//0yh5/6txLO4MrCJVaa9bn7OYGAIyhlEqo5lCau3uS1ru4trHx/CO2WYRaeC06hels1ji3zfyDm6eTZb509bEiwjtvvfrWT79Dlhy+tVaZnZ3sjKUshxxLNTw9vX9xZ71fnLZwfu/guOu6cR3WRmVxYX3jy1/5zh9/7/UfvLNNuzJeP/bmxPR4bf3j5uReUKnGpPl4f69ZnuSUmmbS9A2aFgbnQtnp7KenHzw9uHCh3hr0RSU8HJ7fuHKt3Fg3V22X6eSsOd1bLqfT5WLu8wQWRCJJCBxJhEcF1YEKFhIMHMpQFsCBgoCDmqWumy2Xy7TU6bQ4W6tfuvzGd38nl4MnX/75z3/5F3/w3d9tl4c//5lfLNauAdrd07P37706OZ5htwzc33n9Tz/z0kuzebr9YLE+4PVBKstB7303X775Z+9AtxxdeGR+64Ox4XzRH5+dbSDWcVS04dErV7bk6UU7K+Bo7dqTRvVs3v345juPPXY5v/ugOT6aAPzFz34rlNXJ5LCFXkM47ebDanTJNj5VXf/stVfqolbllJu27/p2EWIEIAGu6mFR1CEUGTG7oqmAW7s8Ovnwo/7WneLJC7bNDaeTxcnBssc42Lp4/blXNtfWv7CcnfzoT7/9T/63f/TGa38yObt3+cLFl598bE2qqqgWiyzlxry/tViCc+4We5Tng1h8ePODvYPZhfOXtocDOlq+Qucu1BsH2J1AE3Z2oeo+nJ4Vg/NliPfv3My5zQ5t36eUyYFJmOVmOttrpzCEy7FetLy2cX3n4vXx1iUqSKfz3My7s5P27GzeLSfaLFNPrEJcCkWJAWMIMdKwEAYkkTIUgesh8qoTALldtMu2aefTftH2LTOO7kxsohuXn/zhT77z3ofvffKzX37ls5+/8fZPdPmvH3v2k8tZ6mjtLPTvHj64f//+Rj14qbAbN986Orsz2ji/t3/z2rWnNur1Ozl95ktfOrthR5yJZehFtYhJ66L0mbZN6t/84QcvPP+lat3i2iDDMLeTsL51eDz5t9/5gy88fuXLn/rUyZs3s6ZFSl07L3N11NlZf4a526jLbzzy0suXPxGktJRVl8u2XbSnAJ3AduCyCqNBqCAUOSNFdffctzIsqtPZ4a039tset4+f3Pnii+OrQxrA5N7JrcMzxQdB07C6vLm59clPfa5vO3AbDkaDSO10huVaDsXByf6bb/w4MA3L8RLa8YZMmsXOWlXI8sdv/eD0z+Hp8UZ5b/HYYOdAmrfaM9ze3tnenM6OqFpfW9863L+VcjebnqRlQ2gxFjlEVFx2k7adDmVYGdRh95nHPnPx8mNUFnky6yez5uQsL6fNcrbQfmGtYQoBAxcV11HKUmKgACKBK2ZkYYqllDWwOIN2mud9u1h22vSpY5C1+lzMy3JrOHv00f3mkEPFlP/N7/zLZ59/bvfKYwe331t0y/PnLkXxi9ub8vyT43Gxsb5z/XNfvXs6Off4i73c43ZfLJvFN96+9elXTl/5ypdu951NurV+dH/+YEeGQ+SFVS2l4w/3/+3//M//+n/y66Phxqyfj7evtbn8/W9/99JO/Pmvffpc+1j30b52y8jSZYrcFcyRfBvsCxc/9/T2MzFwTtanvs867866PK/jKHI9LschFhAK8+DYgqPmTnUpV9af0+mN49ntaXc6+WAx3aYNvN5WtLW+uXvl+nA0rNeGFGgxb0Zrm3/tb/x7XdOd7J2+9fqPvv3Hf3jt0qUnHrl2b//+5HB/Yyjt5lBEp/dPj48nuHNhWI0/9exzv/3b3z28PXt5eMHXy3fm+x93023eCovTejjuYXZycH8+OVhOZ0yBakTHnJrcLXPfLtv5GOjLmy//2jN/9ZOPvixVqd2snx53R2fdctE3i86aJbStGWMOTJGqgoZVJeKBMEghxAVHkVAgR4wRIkF275puNl/MmzbnWGBgqWNNsYgdjn7uifUnt27fLp97/uXXX/3j0ah847Wfra2vPf3YxeO9/UEody9sE1S9B6jXpZbsQLuXmhab+f65c1s5Je3nBaYP3/r+s6/85SvTC/u335nevFd2bVUMGg1JUxJvXY8+vPvDf/oHX//Pfl22NnukG29+WMfJr/y9v3t+97ofLtefvX720w8EcgJHSGBQc/HK7rMvbT87LiWnpu1o1k2Wy0WfTphkENfXBiPi0hwEzEzNurbV3HUptbK7cY2lDDx4b/LePWi0PQtExXgNBwMVmjXd3QeHZri5PT5/Ye34470f/sX33nj9p7c/ev9w//Dg3t1uOVPPMZbb53a2xjwuNODg8YtXLIxu7x1dv/LIL3/pC3BrErF6K03ePLvHZT2dnG1deHS+mHXLs36pVb2xWLRdO4WMAG5u83apzezF0fV/+Ozf+uWnvjheW+v6rj85bs9OczNt5/Pe28ZcuXekkjBgUUhRhlJCLVIwEAoyM8ZKygKlAFAwtJTTsuuX07aZgcOojhIrMJNQImGUUXOU0knzxKMXJ/tvX716JdzdG5Tx9Gzyxrt3nrm+e7z3oO31/IWNeXO2sTYusP/4w/dCfa5rm9xNN+t17RYXLp/7yhe+euejD64296pm5O8f43I2jKWjF1BiAHNb5GXF9PGrb/7on/zWF//TX9tfTq9eqZ5+8TdGo83jgzMf4dpffb6dnZ68/m4Cb7VFtE9tP/XC5kt1GKScZ106mp5MmrvoWnO9OX5kWKwBR2BGsmyW+kWf25zalFsgktH59VhyCBXHInQfLc4W85NuY7eYLBans37v6N6PXv3ewd7R1WvPVJUsph9/+P57njL03Te/8Knrjz1y5+jIkl7cXd9dX9du/uD4YHt7q9HpaDx46rlPhuH4U98cMOLJ8dnFD9/p/nDjvQ/ezVnb2SlAGI136gvrb/70uyeH+6PRFsUwXx63y+nz1cW/99zf/VtPfX17c6fPy8XpcT89ayeL3M2zNr15D6iESEVBIVCIGGIsJKBIpMAca6ICA2EQCtE0uaFqp9n6dp66Hl1GdYRYSSgBMlANllFzuHm2+N79Y37v0YvXDo72di/u3vz4tnb9Wdd8/42zn3vqGjfzt985K4UUl489e322XGK3nw1S26yNNhfTxc2b9zbqzZOTyc9+/OOrlGE2HYbaAdgxM4AnQiopDHKcYProO6/uXLny8q9+ZeqlSpktjTfK6UHTD5cX//Zn7zw4OLr18fogPrH22LXx0xJklhbTbnnv6PayP6zKers4vzW4UpdbXBBJgZCyYWqXfVp0ObubgxCg8GhQopyv6rKOxXJrb3jWU27npxYHu5cvrV3cooAfv/vG2+/+6PToVKhzR3D92md+/ltf/gJXw/TGW0dH985Oj8aBvD87Ojzan+VLVx7hSobmYbi2ublWV8W1R6++8skXvvXNX/zd3/qtf/R//POP33/94iNPrW2u3Xz/B/PJ5JGrT09mx2cnDx4L2//xi//B33nu65uDoXpuFpP+7KQ/PevaZdZlb5BAQQgQCohRuOBKhISFAhNGDoHLgoqaYgHowOxZPWlu+77rLLeGFsuANAxVRSzAAlmzGgBlBda+uNnMws8mxdpLzz/9w+//qK7DcH24f2tvWG299s6ti5e2X37uSbbEaX7/3uHWpWtIKP1kOBpIDEVZd91i4+ITp7O0pVBQbDsIMZALoLmTuYBnCRSIIuvSqhu/9RdPvvLi+gvn9k6Py82NajiChM1Mi836+t/8Avzj/umwvTu8lLLtt6d3Z/f3Z/cZ7Fy9e35wcb2+OKzXQ1GIQFLXrH3T9TpPpgbAHkSAwQWFqY6h4HU69/hwU7p7t05bvBgHo9HJfLF3dBxk/OLPf+0zX/66WMu4OHqwtzlau3J5l1o9nk1PZ0dGMJ03t+7f7rtZTkbd6dHCLlzBfnBuZ9TxWL2HyXzifQ+An/70p7Gf/7f//f9499Z788kxAF68dPXg+EHR4X/+6C//gxf++sWd8+ptOz3pZ9NuumiXC81tbykjGjlQSZxLCgUOYgBmZg4chJnNhEKkUEAocFAAI6rnru2XS+tbBJQiIkqoSkAmInA0M8WVrEANEgBPfB7rwdHHNzCEF5+60vz0g40L1aWddTfaP57sHR69e3twdffC8y9+ZVCv/+a//GdJF7/4xS8n7Zt+kWcnVy9dXM7mUFbrW+fppEJ39iAkjsgIYIV6FwAj59p4DJS0//Cffu/T/82vbq1t758uFwMo6qA2OjuZbb3yiNz+bPXqSdM2x8uTG7O7Z8uTcSx2qnOX1h/d3bxUh4rjIGXPfdvlvmu7PiVHiEGQgEDI2VeqLGtaV4rj4SB1gbbizjKzHRztv/7ejZu335tNjxHp81/4y1/98s/XZetPPF2Uxb0Pb+7dvXvv8MFi1m4Maq+51yVXrJ6WZmenpw3gxoXH1/OF44PprOgMdXF22h5MRuPB09eu/6VPfeI3f/87fbso4rBNy0+Pn/uvPv0ffubak87edPP+8LQ/O23bJnez7GhomYiJVsNuZiklErJISRFZSiSynEAEJGJgN0MRR9BlA+poKFEglIjEEpCDu5opZABQz+poiLEUbwoNT87OxUfvnJzdfO+tMN6uKqnLogr1aFh/PNobHhV//r1X966eS5DHo93nX36iWSxmuWe15dnx009e392+8tOfvP7UU1eaxfHkxvscjIXBXAgJmAMSFMnRtDI2Agn1Wn+z2/uD9y/+8stNnYtxsTYc34LqxhvvvfDidfjG8w/u/fD+j3+61z9o+uXFcuOx0SOP7zy7MbpARW3ZUtv0fTZIqVeDzBEIy8BB2B3Ze6VggsKA0M9aqUoRroq6on6vWRydLUI9fO4Tnx9V+d7tj9YG5f7evZT04sWtV//sT/7gd3532bXnz105tz120j7j5tbFjeHaZDnH+Wk+Wyzm/YM7HxMWt+7fHq9ffP6ZR+u6au309utvXNzd/doXv/z9n70+bcEg/dpj3/gvX/r186Nxyn06mS1OjtJsmvIipU4JPUQACcBRkCUQEBNGYQ4RBJkKKgeek4EjOEcGdxKyrG4Z3FAC16VnBgmMggyA7l12cyAEIBKC1CORx3L61McpzAdVfOLyhb37e+++9t5Z70nkc595/u5Hd5DDs1ev5NTvDAo9OjycndRr40vnrrPjJ1765P0PR7dvf3jwoKuL8NT1a5PbZ7OT44AFugqJoAhHJkHn4AABTBVgEKINi/rBb7+99sLlR3/hymyp90/bO/fndyaLl2Lp4eTqb7x0SpPTb994YnTumfXrO/WlothocsbUg/bZMpKrI5KWLBxqBjI0QkIH5awOgjEgYTOb9NPFcH00lnpN8KDbKyNf3jp/8ZFH5mf3b3148423fvrbv/3G2nh9enpwdnxYRV92nYFs7uyc272A8bCotoeXnnrtO/9cFcajDadwe//sp+/+/t27Hzet/tyLn/jSl78+rnzv+NZk2T13ce3LP/eJ3/q/f/Q3t3/hv372b2+NBk2/7I9P29PjbjZLuVFkl+AkzILgkVFYisjgURhRKo6MBIBMVYDeMYPnBIiQs2OGbGgEHAEzWXAk0+xkKMFyzn1PgsgRgb3vQIJl3B/vvXHy43TYQcwHx6eF23p06Jc9Dw/2T0Kk81uDnPpf+tKX7ty6e//ocLPeOj6ZfjB9c21Y17nbv3PA/ez+4f5Gw+MPEx7E2FIUKThGDqUMYCV4dkQSBCFxQCmE3Utcdm/9T9/59NP/vpRxHH1tTK989ucfHOkAFMfFl/7B1y4/sg3fvc/AizxpJinGeiAjcCISBGIE4ShcEqMDgwG5A2akwj0LEJEwIByd3Z/qzm48NwijnXNaCPTVzng97t9Zhmh7925NT2/f+ehN7Zuvf/bzTz/76J//7K07dw+dyq2dq63Z0elx9+B0feeJfn6ohlU1ODq8M5uesOByMfvo3j383h88//gTz7/0ys9++Hq4MLh2+fJfX1/+F0/+jc160JycNGfTbnqWuyZpm5idXIiYWAIJUoDIMYggiqBE4gCxIHMkQQxObj7X1FMaaM7kHZclMmAsTIncc7/MbUeSAwm4kggJI2bT5JmM3XL33f0f7oW9ccyzxUy9Ob9Rv/D49WEcVcPNruKm78zjrO9u3Lg1WZxtbow2ysH1a09JEYOm2++83U7P3v3Z7UcWg8v1ueX9xbiGcVUVYVRLGWUQSBDAncEzUiAIZkpCngMIVbXfeP21d/7ND174G59vza9fGqltvfPWh1CPDJuE3ct/57O3mw8f/Mn3c6CCOnAsoGQOwhmBiERYCAwwuCuRqQkYAiEmEESnug5D6Q8nR7P5YrdsZSyhIKnWtkZd211+7MknnnsK8uTO+2+cnexvyODqxYv3Do8Gw9trg8W4qqmoLl557nTx2p07N5566gXql7EowPtnnnpp2S7u791+5703miUnoI/uH61vXZicHpwtLuY7y7//xK+c3zq3ODluzk66xaTPKYNlVOMYEZExSogSWWKITBQhCKEDRzKmWCKLWwZECMh94QhmalkRAJJCUbo7MRgSmmEGTY0QU10gORJ5Js+9oUHbdZzfPbp1jAeP75Rbm+tPXf+5x899cjDbvPeTo9TT+i/sdAM9PTucdamO90MApuQAhE6pXR9tZqxffePWS/3WtbXzW4P1EW9WEmOIpYwLDMxOyIBC4ODmyOyoHgCIgiRLkDWavP2//N71zz6zqOPxg7PNjdETT1zQdgl90eZu6o28sDn5o8UWDlDIaJm0ZAKwCkAQTRWR0ZXdGSCBZQcGUiEQYMIoZT2oq+Htw4+O72WqLp1N41HR7/3stbaLj1za2T63Trl54qlPYjfT01MzmHSL4+OTC+fOb+9u3L//4JFHn0eKH771pxtrlx975EIVpM9dO58SVrvrV/BJPjyeuWyo8Xf/5NVNHB784MEv5U+9cOHa4viwmy66ftJb13iBYoRScihiKCQKEocgRSApgAOSEOtD0FNgAAUkclIll5ICYmBSdSS3jClDYFNHQicDSIQOiJYc0IHINQG4a59zC9n/5uAzusnnnjy/Xu/waWzv2WxvHqeiB3b/wV3fLU+Ojg7u31DK1W49WN8uN6vdp6/0CU9/dtffgC+GZ7bG42GoCxkWVBZMkUsWYhYAQwdDEQBkdHMCYVBVZKTcoWo7jnKu26XfPArfuGJ9gtEZ8fZwbei5mu/vx8BXP3fp7d+9mj66A7EmQ80AopoNsEcIGVRNmDswdk/AUc2JxBkEFDxQGI9G1VaUjx5MPq5OhzAsD0/uPphP6vLc9//s1dPp8XOPP/fR+hhdB368f3dPykFa5jaGjc1rae/jxdnRYnYynx3/8R/+U//arz722GNVGORuFo8PBov2Uj/eKZ8spCB1rq5covG5HAeFzU/3l5O2sVljABRC8ILLksogdSxFBFkiBcYYCQtEREQPgTggORCDk6XkroiMokSVmdFogGqA6GboAcnBEzJLXYOjIaIrSeHmZtld3TMisPPTmy9giPZ21qQJp6AeCYtBPVQdTr076wZ5fdee7nKbbubsquv95L3jcne4+a48Ur9QrgfCEMFX6rEoQBxRA7E5ATqs9L8GCA4ETE6Qwa0XwAKKc4NLVy5fDnfD5H/4Wfy19fWnrt68d0JCV87vFBJCXcx1Ta5c6vb2Isc67kYsUBhdASWrArkD9C2QZDMiTMii2RCSWKdYIYVic7y1drx1Ny2WQ995fPfT9aUJx65N6k+98ep3Do9vnO61O+sbJ4tpmk8O7p8UfVo0e6pxc7jRL2dDDOOqTpPF6c++35421648cc53d4uLg0UzDFy7UBc4BCDv27abHR3MFpPutFVDgaLAkkZVkIKLUAQhRhGpKiJwEkQAJBQCQRIBQFdzdTAnBKCVh1DtfbtS0gECEq5W08wN1NzFMQM6EWMM7mCa3QGBUACxIPVMfQgCXaYABAGhI47InHMfJAINc99rjsnQSQkCDhETiQ5xexS044AAvMJLui85FERiToKiao49mgATatKUV8pt4KU4menaYFDW5+vNHSAeNPav/vHvfOPyrwcBrPjo4HhrVFM5/OhHd17/0Z8+2ugnrn5yGHb7lNT7h3phZXAFJOVsXrBoNmBQ96xKAgaQCdDjuD63duH26dlkena0v72smYbja49fqSq/cm6jCFZhWuztf/jGa/1k+9IBD6w0te07TTWsp/fP1ua7T1z4bMOzR8PVy4tz5+6X25trzADktoQ+99422a1pTxd90+XcYw/mZVnWXJYxVEUsypoQHElCJCmdyVc08BVGxhDNXB1A0RDckdiRkZAyuhhgAGAwRSIgXoF5rOs8W06tt0uKBUYGNzd17RwBCEUGOXdICC4IBQYi7QCQMRgDAboIgSJRqCrHCFmBGYBoWBqYmPtIVs6wiOhImg0ciYQICNiRJTioqPlKGsgRkUiTMUVXj3VRlnUYDKCo82IZoP/gT94KV3/zN/7h3785k9s333jks9fu3tQP/vX39O6tjZ1rG1sXQzmmo8miy2YeWKBgdAIKbKurVzJzQPLgmATa3owwuQQ5v3X+/PTB/OZ+F9bb6/VgNJhP23o4vHD1ylqhdz68vZh0j199ur19nAq6XG+OQx33ufCKnFw2w/hR2eCyWEMBnc/7W8egmlKnfdP3bWeWLCEZIhQlb8cdACkCM7MIsxQUhIIjRZS4sgtCBgBHYjd1QTAGJugUCBAIwBEZAz2kRFEGBA8lqAEzuGlufblMfbbcAhgwkZBrxuyYCJmAlKhgR0QDFgJwyKu1LpNAgK5GhCDBDTiIO0AQAnRAqgrLCdpMK24CkSOAKWF2IxIBZyADzW4R0RASgJnCau+ThN0il8bDdQklCLp77vq2656rtz/6P//s9/DR609+8eAvPvjea3eP/uJ29/5bL25ef3T9RYLAgyL6ej7y+WxiqQmDsXDBjA5iSYnZPAMSaNCEkpct9oJMQFyN157cfqLfp9zIGXASmhwftIvTPs0x68V1GUDeHuwso/XlGTVRqAgH8wLWhCIoiyZf9u3piWrXdfM+9ymrMxIRMrDEigqhogjCxDEIRgZHjohGq8hJkQijIwIrICOgm5sZIoKaI2MyQLCsFAXAHBwMUQidHAmTuWdkBM/WZ+tSbpfaN8zBPYKTm6KDAiAhREYS14f78igFIK7uvoMRB8uKkEEzIjkaiEJyNEEijADgmAxYUDMJOaCaI5gDorgDUAB3IUUMbinBSr8vorknZqHgVaBSQl0BoCFpk1LbNu18oyiesHX5nT9//PmLk7uLd/7w9y/UW2vD3Uo2xnFMxJ5A6roa5tz1k6btmvmorIlqZMASCBxsQJCBHEkEzC0bmRsBlkVdD69vXl8u+/I4Hj8el6nP/WRQ8iOPX6wgtYsZdHrn7Q/mH90+V5xrZTwsF2F+VlYDaDMYaA8OhqCAGISLclAwiSARF6Emy1gEIkFyCaUTMjkgghMQgQOggikyAzI4OgASekZ3REbPhmhuq/84URBEAibAhxgtNCdm77P12XKGnLRPgILMQMxC4GKgCAZMSIzCbhkxghAXEdRc2ZTBsnsGc0/qaI6GUIAqObsQREF2SBkAAQgkAKw8M9QdgY0oYE6IBOLO4AqOwbRFFEeQIgAyYuAicCwAyR0g5dQscztvuq5APF9vPH/hE2FQb1TjC+Pd7XJYho3cZ8NGywqXS6kGYTSsU9OnxbxfzCCPnLmsnJwVEBKgACIhCjAgqRtgclcPIW4OBiMfbRRrH2zK0ex0Y/Pycnq6f2u/zF05adrZ/HB/3/qmlzaLJGfqvG2VYsBkRQhAVnApwEFirIVRgEUKZESHgREzZwREKl0AUUENOHhWFFmZSAI6KiKDMyMAuYOZZwBDYwckNyUGMPKCERwMgAncwNEata53UAB2BCQCUBAiB0BAB8eVK24ijOj2sDoFNHdXJ47OaeVX5ICA7m4kgqaIvCopgWjlAmqgDurAAADQuSECIbKjQYiACMkAHQwBjYSBGHIPWBARFxEpuBOou2lue11Ocz9rdMGO28X69tYlB2QjxoIljMu1VpvJyf6ovDfa2bHU47CM4/GgozTbny+mrkdj2wyxdhbCDOaOBogCwp7NsnHBrh4Cu0Yix1Y3BhtHk8N7t27u377Rzg6HOVzfXG/3Zkc3P368PB8oE2TUBCAiSdxYOKCGEIULCcRShaKggBSJHB0YEZhYJAIgIPmKnytsfQfgCG4EwIEMgMDdEBwcgYJDNkvgK+euDCTIiIRICMwIYNm8771LfZMJMlcRWRycQqm5ATeQAYIBKREBMHryvsUYHNkQUB2dkBzckbKTeJcdMiAgIiQCQgcgJnBiEGewrBAYlcEUDM0M3IEZMSApImvOCOAO7j0YEqEjcShIGCSiRGRyc1fQPud+rv2i6c20EabN0cWiXk89RKSKomUMXHsRz+b7pyd79Wid6wBd5ipW6wP1Uc5t087MuDaoiiqjMCkiAKCgg/WOCJ4cCSlEyY6IrLYGsra7canYvLhTvPb9b4cmh7A7mTdrsrYWBwOpS6mIhKADBYIASELCFESwiIIlMAAFJmZzRiE0d4BVUAUidEVAJABaeRM4mK9s44EBMoKjZkURV3c3CgJgZohkDvwQl+zuCt52eT7XtlfPVNcYI4XgBJQBgNEDy8qHhlECgLkzuAMSaiIiNwUzBwLPQOwpAwGYgQi4u6ZV2e0IhGrEQI7CoGYOvjI8UERc8bcBLbgbEbs7qgITqoMbk7EUGNkhYpCHlKu+zX2XmlYzNLnN1g2o3hzuUqy8XQTAgtjACLEq6sVSJ/P765OtcfmodwZCPCrLdnOQsJ22bXecPatvFiG6EGskNiFhw84JtM8kjMBSVd7nnmGhWlX1ld3yns6uXnxcFqmoxyEerHM1jtVAtoaRyUSQEJiIWIg5PDT+RCITZ7a8As+juzvh6jUBRSJSUzSniBgCEII7Z1zRnsjB2V0N0T136AKKQAiuiAEsAROYAZJl8KbL80W/bNQ0REQiogjChE59CYrIRDG6OgV56DvEEVEByYABAAU8tw5oZqCKQmbmKSAkJMDVrxdFKkAICUEBViHcUs4ZHcASMiGWoAymToYYAbN5RjKgQIGZEIXRAzBCzrBydOv71J1p16Su7/ISSTcH24ONTQOwnBFNeKQwNadCQpT1eX98eLxfjdZjvekLgyqEtXLYx9RvThcnTTNVs2G5XnlN0qccBQJTVUBKqetz5+YaSiZELKkDrwIvmoW5ReF5msaurquBhqKS8SCWAVmCIIErl6GIDFSUghBCBCrchBkAwJOBOpUCjmDuSCSimt2dmcHBSRAUkbwksB4dVR0RIKsLQAbgTAzggMiGiTAgACB4ztanNFu2i1N2pCJQrAgRA0IMkJGKAEkhCHJ0bSG7R0Ra/QxxMLPk5izs2ZzMDXD16DhR4ZjFDNxb5JIwgDs6gyMAOmRIZqDgPejq1CbImQWdFA2BHNwJA6hSEdARYgQgZwJ3d7KUNS3VkrUKObfWZegr2NysLoXB2AyyZnSMjEtl0D6U63U1btvD2fLe7HRnsxwDCKbEhYTBsNacctLO225hGXOZqrIS7AWcqAhmzkXOjTXTSe7rUEagIUSZNS2TlEVhnKazk3PDCw1xYA5csHAwZmQHKoJEESlCKCKiSFECEgVxNRICQwOyPiOKgwJI7ltGdiEzRFVkc2RgRHB0BnZC9NQDEKgjuD3sTq0afgHUIQE4uOW8mPaTpWqWuoqDgasbEAgDo2dEDlA4AVlOgKteMLiZmboDmGvOCK5Krr0rUyQ01T4RB2DGSNglgMKQEVyCwGrhzdQcAc16ByUDBFNmck9m5OpIiADghGgkTDGCIa5gFA6e3E0tdald5r4z67Jbb4quw2pzvLEOEjGZ5oSUhEu0zoiYnahgHuQ8mcwORxu7YTC2XolQBnXZq3YpecLO+jQ3aDNujDgIGEDB6FHAczfnEJbdEru2f3w4aRcYVcGZ69Ha+X68cORW+04BsBCMxOwOgYVCLRJZCmZxZiwKZnEDDIgIACzolggJ1IzdMZtFwZwfplpE0CUXXpGMQZMTAomjuwIAkaoxga14YI4VW6OgXW67djrNCriaLHIEAIqr2gsR0VCQkxuurJGpAmTxnN0cPHuftGmpiuTg6kjKXjobBzLrEUskQnZbRX0kBAEm6LKRo9mKv+1A7h6KwpFwZVvr6ACgGZmAhInNCHnVOXPLDuiacm66lHpIjefcuylokGp9vBkHGyis2czALSNJYAxCzDHGjFQIwbw9Pjve3ylqZLE+U4ixLEwH2Wxm1NskWZeaE4gjWdUnyIELKwa1mbYznXfdrOimy7xV1+MBzyfT6dnJiq7QzFOfXdWyQclqWBBhIRCKgooCUVZZFRJDQOSHsQqQUQATCBVI6AyIhgpYshm4qRMRrsZpBgBo6IJoiugZjIAIxdndHbI7OgLkvtd2CaZEKFXBQWjFrpQCXUEJNIMpZDDLSIxMgGjJ1CynjNprVoOFd4qFAAtxgIDohEVERc+grrziwyMaiAMhYoaMGdzVszoQoq1AT8iOmgEJiJGcmAEJGR0JyMAZCE3RUzLtLeWcG03qGdWo1wRm42JzOFjHsnIj7bOjGzKRrZgyjoQiIdSaQtfPJov99W4nDNYhI6BTESQN6kot9wB5mVKXu4nNxbu0OtyAmMZFxdjrpM/NvDtLzYhp4C5Na207ZbAYyKxpctN7h1YnEbYEWgEHR0RgFEQhAyQmAnARRlg1zhzDKh90QrDVfJodHBghdSsrN3d1N0J2dWQ0QCSErMgRmSApIDiCJfO+T02buyUwF4NKipqLQpOSCBWCCG5unXvbW1ZEBM0UC3DXptG+09STkyUFEFRHAqKA7KAAgYHZWwDOmI1Cqd47B2JBzd47ojuapgwO4AYgJOCujOz0//GcM5hRWNGAkBzdwUHB3LxPXe+5Ve0sK1hSN/McYzEcroVyjARuCqnH3LqjeRZGJHEAAhaJgIV5t2hOpqdnG0XtRKv8katAfRmLgSL1MMuuOSexLuu8wRAoEA8LlDAaD/qcsrZdS47rTd+b5ipUHtSdisFgCt4rZM+SiZEMNXUeKYAbohAAijgjMkJKzhHQNGUnQBAEdwNDQGdgQAdLBhQB1G1V+6KRo4CrIRgSIwgGNDVngOxImBdtWi77vkUpBusDNKQygiMBIZOvPMNydkvuDoDATDGQsDZdbmaWMzk5qHsiBhBCXOFdVhcVSAhELAGyOBF7BQzg7o6m2VVNES27RMiKBEgByVwVREARCYgjsgD8//Aud3Qj12RZNfWmnVsmzsm8M2fmOlR1PcZSXEnNVTEZOKghggUCcnc0RKocAzq1/fx08mAwGoXB2ME8KVJgkRAqN1BQdGp8IRDJOrNl5+4w7YphjRKqenBweK87vwFwadm0qc9GFYWWmaKHwNynNpUFOz2UieSUugXGAQLSavIDpMkxo6NB37sjETopupj1iIzk1hgJITiggSIG8p7cCdHRfXW2AQEwWUYwdXdPydRy1+W+FQnleMixfMh6QAKOiAS9WcoOK64ugBtyhChukPtO+wSAGIywBAMKBkAYxPoOA1IdsCdQAwASATMAAyJkNjPQDJpUe1BwIPIVsj2sUidkfgifIEZCdPcgQAoO6OTqmDq1lFOvubNs4FndkioxRirruuZQIgsI+EItdeBqAJ6dGB0wGytmJlOJlkrP80lzvDadbw1qhwiOgEoEIbK7lFwzuRMKjwsnT6dpuTzr+hwXy2o0LqvqvZ+93Q6uPPHcs9s79cmS42A0HK7FBrvlIpsKac6ojjEoJIKoBqrJKahlx9CZMjm5w6oSweBgDORmagZEeUUyc1c3d2cExGTojMHcBdzBFZEQAwk+/FTuc59S0wtTqKpiPCIRClE1oxMKuYPlbEh5NgPiUK1mAogACKhNq22nahILFCYsAMFShyuhFpD3CZ0hwkOQj5uhs6BlIHN0zpbMHFfXlcGZsZBVaxwYHQMCrOxxfIXxQjLD1WFuCqlTy9p3CUw1mxv0KTtAZK7rKlZjLgWcXJMbZHQ3MANzEBB0hNyCq5MGiUaQGbs8P5sfrbW7VCFARpRVQURaBSJzHHovxDGuCeIiYzE77I5PHvDZ6fnd7flscu8uEXMpUtVhwDmqAGrCpIbqYD5316S1k6a8DFJg6qknYOGAqGZuxOy2Cp3B2dAd0IiRhE0NCTyBIyMqAho8pE+iGRJAYE9m2Tybq1vKqelBgYVjHakuiAMSOhhydFAU9C5bn3olTUsw5sgPcyAmSFnbRrsOgVkix4jo2AskRQ6QUdnQAjis8jhERCcC9wQk4DkDsTuAZTMCUA+AhKs+MwAjCAAgr0BujowI5Nqjibtbds29pdZy69blnNzNKLMQOxchchhiCCiFpd4RVM1SMkjgOQAzluBirtlALSCgk4BGzdNps991V+uB5ISsDgTIRAKWQwiOKOKdYRQZD+pAm8rNwfz+2a0Hi7tjjGdSSsTZomESQuibtqRa6qrTBiwh1A4FuppFBXA38gxmHszdERxB3B3Z8SGyPrr1bg6BLWUkB2QgIwTLyIVbn5wKyOpESLQC9UOf3Q3ZvfdYleAmRYBAWARIBsbEoGBMtKKda5utXZj2LMFzB1wgMxJpr+YJEEWIoiAjQnBIQAkZMSAmAAfNyiW4oyVFQBdAXzGa0NqMZgAMK9cHJIJiFRscwRgJiZjcYWX2uhplAmTXbGraJ82dap9XJbgDQORIATnGmqVAZM+GjqnLOXWuqp4d0DmgFIYMEIEyCRqJIzmBGy3a0+l8Uo7G5o7OiAKQgTwQJwVhknQyDaMaSgnD4fhSdMrL1Hx8fKPO6YWr17vlctosfXmyPJv6vFmvwRlbaxaa18EdMGuKQZkq8OwWwHtQAjQsAkAHRkBoyABuqIjimFdWA26rZhS7K4tb50ZMlr3PEFiTIwJycDAScVApSirIUyZhR4KMAACwupcEhmaqXZe6uWMPBm6ekwVyrsWSQuo8KwBSOSAuwbODEaMhIQUUIVfNhmAr8DIAKDqqAYq7mmY3cO1NgYTV9aGZFQAAIRgqYAAHAjeIZNlJCAE1qznkvs+pT6kBB1AFNGIQjECRY+BYkgR3A8s5g+WkXXY3IzHMBBgQ2NSoNTVCIKoMY4YGgbt+cbY82O4v+yCAKhIjAjqTZwDM7jJ5sF9OB8VwyOPI9WDt0vnHKLbaH89955HH9/aO+unJRu1d38yPP06LdqrTWFPKTdIcfC7CCL1bACvdCfLDGa/l7EpYBMoGplSwN9lIGB2yuSo+JPEJYNIZYMlkbl0GVJ/3GKNbCyRI7ITgtkIuEYH7KuECIIKAboDC3jRuObWLrL1nV4eC0XrHikHFcmu9goJE4cDIAMZmsCKqScGIMYESZlVwzSgRyNDY0SEnB3fNau7gxBmAhd3BwTrEAtCAgrsxCKA9VOqCuqKZWzZL2TQb9LYyS3QAZODIzIQemDlEAFp1wj2DJnXokrdmbsgxAGB0gj6pQwY3IRcJKbkZZMez+XHbLgsZmAOIIgWkzkwRlNxkmXKezpfLJpwU9Uaqdte2L209hy+kk/GkoMPDj6d7B6Mnngr1uDE/e/DRwdFyKAQ5u5qBphRKFqIyxJIZHMi0o14zMDoERncEBOsSGiB7NiV0UHQ3F6SclR29914AwDWBI2QDyADgpMSuWSUEXyGlDYEMiVydyS0DCXnbgeU8X6ZOwcEdhFZw0uSu1ifNZjm5UCgKRAZwzcZBXA0UgBkIKJP2Bu5uuhqKIKibqzqgWq+ICZ3Q2VeceXLAsBpJuRtxdHBwRCYgBxcH9Ww5ZW37nLPl1sEtKxMSERByEERCikjBHFzNNAO4QZMtmTsgRgmITEJGQbV3VXd0N/REElAZNM2Wh2ezw904NMwEokSKYu6mlrPJYGvDu7Zpln3fNPP5aN4NLo43d7eeXIs/9NT3aTk7O5nsUZYwHL/74Z2S1gRVgNx6YinCsCw2Kykp1CxOIa4eWAQFjNpmIARUN+dQQMrI5oqewdkwq/bgCMDoOSNm6xEDOIP2SsQkauAIBNpRERAIANzJ3ZHcgQiy92qKqe1yl8gzkmRaEjNxRPA877hGSAnJSRgkgJO2CcFhtZwUEUmQ2R0c3VLilfbPEAE1deYMWR0BbDXFKsESCSLK6gvAkJhWZGM3JFBzRlNQz71q1mydpuxMnpfMER3ApQgBqAR0FAEhyjmbGljqNatpMjcnAKQICEFKUELkHoyILGkCdCyIOzBZ6PR0frK1ec0NsVOM5GRIKxXiUoKUWAqGaF3Tt4u9ozv1dLS+tUuXQttOykKGw9G8a5p5W6Tm/slpXsw/X2yOYBgkCq8PqrUyFkVRsCBAQAhUMLNAyijRc+8ohIykqj0JgwE6ISYHRw4q+SFnElZGfA+DmLMZABGAFcBuGFAZeQU7NDCEwGBuqq6Y20abpWNvJALEGHwluGTMi0anWQaCyCIRDMyz5p5X+orVQDqyJwcF7bO5SQYPAASaAUmga8DMnYjFAJASUHKP2YhXmZagGaKvXCXAQSGjuZKZ5uxp6a6e+5yNqSQkFGQIQAW4CQVk8pzBwLIbZM85ZesgA4IEUstMBbgjqkOH4OCkaAaG0DgNkOeW8lFzcKVbENeSENBBxcCUSBFFNXOQclhbXcKsbOxk1p3lg/Z4tJGK8uRgOiir8eYu5YM12djdWPvjH//kl85/YTzaXq+2t4bbZT0Q5FhF4ODmaA5R0BGL2pNBLGjVaQ4FZAUmN0F2sBI0eREYfLXmZwCg2c2ZUFO/agCaIzIROaIDmBoQCiIDGZibKRjkvkl9h+CAJMYohDiggMQAJm6575eONVHgAJgzAHjupVq33nNPyOwKAGKeUpuIFRjcEAjdkjs4IjB5RiBjCW49Q6XuqNkBnYScwDMArIo7cHTtESS1q56XWbYMRkQEmTgAEUsEZgJHwv83G1CgpF3uTc0TmSrYyg6NkW3V9gFBlGzZXRE4O6Q8BeZkdrJ40OR2JMFNHlojPyzjXbKB970HllBW6wzCi+mk6zswGY+37rx69pe/8EkrZHLc5IWf27jy1fHsqcG1tXLr3Nal4foWB/acwYkqBsAVUBSIkcFzdjMMSEoAhixmRgjuAGyqRIosAm6aMkoAZoIlKAILIzg5I7EI5B5EHrYt1ZwNAF0d1Po2w8oDKgTyAIQIjGxgZAZAyjG2y7N+jtWo9NwDBNdMHKEI3ixdO4qFG4L3llabDxGcQDMooqHmZMDkjuymwOzMgULhnQKm7EoZPAEHcjdCAlA3dHO3Hrx1Q0cz85W6yKyIwgY1irMbcHQA184N3XKfUpczgjJR7wSeDU2iEJCt+qRgAJnJSSJrnzJnW/bgJNTkxbKbjuuhu5lmRGI0QjQsRcFSnwon8BirEEoYS5jPzmzvrPk3e4Sx2Lrw4ODgT19767HR2tV05RcunXtk7drmeHO4sS51RBLwpE1GIjUTIVcAIk8KJFwxaHJSMAcCdHRa3T4lIUsdSTR1R0ZLxAJSKCXy6JrRnUQMFCjISjimTkimRm7mqG1DYA4WiuCmCILWmyoFNs1uZp0ik4TQd23JPVilOQNkHAYwBcfUtlRVq2cdvOPVoQAARgZmOeVkEh00rjTtmpXKApi4ZG0V1F0zOikhE4FmI6KVRCT3DmTWaHZiIw/JTITNhGVlJKKAaAarcYLl1GuPpoqQVRkzEAuSOxg5GJgaACJBzs7ugYueB8TzdnnYeWpNl32rq9ZfAy6QHdU8uQoDdsbQZVR2tiAEsUTagEXz6K1F9ZXPTfryeH85ffPm5d3Pv0yPXtsdjdaGg80hFkTMgGiJqCJ09JwsGyKBZ1dDZs8ZVF3BCR7O78jdAUycVo9EMmJyIQqaew5RVi96DLDqGDpCZNNEwm7uaLiqkcA5rFTNadVCAgRSAXQHQVLLDo6uILHomnnf9DwMpp05lFB6Au2TmaG5O4BnM8uU2RkdHNW0y30mMvCIoohkKTOs/FARhSgGblpTyJ6JAyo5CAGog0NvltzNSVc8XEdzc2Q0RqZVqohgKysrs9z6SvrtppkcnDEAC7mZOVpOxIpuauoAAIqAADEI2Pp0MZ+ns0b7WZppVmGwaK7s7mqeYCkSmHNGsN46bWNgKisvygAOT4QL5/cG+3/S1O+lp9b+yrm0OSoGEgZFWTIzUABBdANEEgJHDoU1GTA7kylRNgdF5NUoicjcnNDMAQXQFAITuiugu6pyGaB3KISRVxUKkaE5IJm7GwCiWwJ/KFfDyJ7dbSWfM0RUFyT1PrmrZTPtirpirGPTeN9aX+bOmM0VzPvUtA/jnqkmM1dLrgVmzUSkKTOag4M7UQDLJAExeF4px5CkxJKUEqS5a3JHBFdCyNnMbVVLgRiag0I2JnZTQQE30wzoYI5qml0JTLNjNnQmIyfH7IBGpWYF1JyVmZ3RclYiVVI0JFAp68FGnU8P+6OzvJ/lRfQcPDoh5KQOpiwGzoTauxTuqVPFhCgRhYUI14/beKvfybs4dEKtippALLk2KiGCoxsS4mpJh5gwgmXEnMF0JQd3N08dIJiIKz7MklEcUVzNkICRVtNwQkmryYAHpOzIQbMxwmopwYgY2DRjiMxkrohIxKoJ4WEgU80OnWVLfSoCIkVkCNXIuk5z76CACKZglFNyU02K4NAlTwaOlsHVARCyOhmAIGTE6MyeFdHAIfdJisCrMVNkwNqygmpWY3fL6OiekRySoVpmUgBm64mDZQMEpp6I1VDNzBIo55xXCi4AAzS3oFmBHRyMMqC7q+oqhwH2rJbNiSmVMe4MN8/y5HhxMm1PJrlp+24chrN2dm9+67g5+H8AXINXCQwiIicAAAAASUVORK5CYII=", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from PIL import Image\n", - "\n", - "image = Image.open('./image_cat/jpg/000000039769.jpg')\n", - "base_width = 160\n", - "image = image.resize((base_width, int(float(image.size[1]) * float(base_width / float(image.size[0])))))\n", - "image.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "噪声被添加到mindspore张量中,而不是Pillow图像。我们将首先定义图像转换,允许我们从PIL图像转换到mindspore张量(我们可以在其上添加噪声),反之亦然。\n", - "\n", - "这些转换相当简单:我们首先通过除以$255$来标准化图像(使它们在 $[0,1]$ 范围内),然后确保它们在 $[-1, 1]$ 范围内。DPPM论文中有介绍到:\n", - "\n", - "> 假设图像数据由 $\\{0, 1, ... , 255\\}$ 中的整数组成,线性缩放为 $[−1, 1]$ , 这确保了神经网络反向过程在从标准正常先验 $p(\\mathbf{x}_T )$开始的一致缩放输入上运行。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(1, 3, 128, 128)\n" - ] - } - ], - "source": [ - "from mindspore.dataset import ImageFolderDataset\n", - "\n", - "image_size = 128\n", - "transforms = [\n", - " Resize(image_size, Inter.BILINEAR),\n", - " CenterCrop(image_size),\n", - " ToTensor(),\n", - " lambda t: (t * 2) - 1\n", - "]\n", - "\n", - "\n", - "path = './image_cat'\n", - "dataset = ImageFolderDataset(dataset_dir=path, num_parallel_workers=cpu_count(),\n", - " extensions=['.jpg', '.jpeg', '.png', '.tiff'],\n", - " num_shards=1, shard_id=0, shuffle=False, decode=True)\n", - "dataset = dataset.project('image')\n", - "transforms.insert(1, RandomHorizontalFlip())\n", - "dataset_1 = dataset.map(transforms, 'image')\n", - "dataset_2 = dataset_1.batch(1, drop_remainder=True)\n", - "x_start = next(dataset_2.create_tuple_iterator())[0]\n", - "print(x_start.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "我们还定义了反向变换,它接收一个包含 $[-1, 1]$ 中的张量,并将它们转回 PIL 图像:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "reverse_transform = [\n", - " lambda t: (t + 1) / 2,\n", - " lambda t: ops.permute(t, (1, 2, 0)), # CHW to HWC\n", - " lambda t: t * 255.,\n", - " lambda t: t.asnumpy().astype(np.uint8),\n", - " ToPIL()\n", - "]\n", - "\n", - "def compose(transform, x):\n", - " for d in transform:\n", - " x = d(x)\n", - " return x" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "让我们验证一下:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAACacklEQVR4nDT694Ok6UFYjT7xzZWruqs65+7JOc/mvNJqV1msQBIIGeELBvMZ21zfaww2xoAxYDJYgACBEqtV2KBNs7szu5PzdE/n3F3VlcOb3yd8P3z3nj/hnF8P/Pv+ZyhSTIyZoAK6lMYiUFZgCkTQFhwJHxKJI4shpmAksCNCLqRACBOYJlgE3FFohLmhqPGAuwJDKj0naCW0uJBJKCkmnmNLhUBKaBBEQHUppy6L0lqPGzUklAA6INIEEkISFUGAfe5amLoEYUBh5ApAoII4knpHMC48ibjgGECu4JjrOggiTIEAvgSqkI6ITKR5EccgQl7k61pk+0DDKkCMg0ABlg+9kEuX+Q7zMSaRZBridc8jWGVSIqxKEEAZIGjxKGpjZiIUMIExQ4yaFCOEOAOeDCIgGIsAEP8S1GpSSIBSEPQCYkGCsZZFKIk1DStuyDzkGNJKURLHqs8hRIxzJqk0AZTYRABijpBDAKeRQvoQ9EmUAIJ6gJmqz5UgHu8VCoDE8xlBFKlmnKgZX2pccakKKUxRQj1VcyImkcQMI2lg0h34cYpCYrTaHUG0tqoAxj2I2zLsjhAixLTpfCgjhAlClCieRJRAgtWAYRjRECoYkAzACKiKYSgO4WUuQp9zGQKhIcVH0PJ4m1haCAM3chl0Q84jLKXmhdwSsuWwAKsEIkAUA6tQNyzNUgIQ1qW/7W1FhAPCBREOqHaEAQkEGEqIMOJYAIi0ADMXBDFkuDzECMZAwsASANAKvJb0OSIWQkjwu9w9jpIAAAHEhGowohBTzSLoyNCGTECZ0I0CTmoo35ZOEyGhRiHhCKtxqHOoSs6IAnWPewaJfCVOvarrRQGAJhAKVgGCMcVoBw0ObSlNw2ScxSXaVkiWqhyFMccNMJQsMiALjKzrdwgQxOEBRT7QSBiZXARAapBYLdYhpEdGLaBtKiDtsjLraKl0wnWazA8JtiiCQI2iyBKiDLEJAQnBDhAxzvRyZHusZSihBzEQEYSIsFjg20TDrl8mNKmCeiSBgCrzbAERZK7QDIXGIa1BKFHk6CjTDsUOcxkQzPMoMRiXEaMht6lMYSVCXNoAU8w5kB3gYIBZRAiVAvIUSUgiYWBHVIm4h6iCIArDoMIkUfSq51zkdQ6ABcB25MeBKgLuKzgLYoJDDwsgeYyQOGpjVECUeq5AlCMcOoKpIE4phn838DHTMDhnKiJRpGPchAwyLDAgoQgB1CiOvCjEkUAq5RxqlEQ+wBRC4TKmURUhTAMuNUoDZlOGCGk5ACHhA9kNga0qxAt1VRM4UJEmw6AtAFKoDkKDoxYEgQAGwy0piCKFFFmCGhSpCMdc7nHmMiYxVT1uc+aZihEBoHAgkRWxKkJaGLkEYz9SMGIAi0AwDbCIQA1YXEAF02pY4kzZkR3EPREJhahcMIgsBH0uZRBKRj0ACAJ6yGyOgIQQigBKXcWAR5JSCoCgCLgQQh4iqUYggkA0I98R4s2wEQDOJKAA7KeJDeakiZIVUCOaiWiKmgqGrhfGiIIBt3AqAg6AWIWGDxoUokgqAQkJl6HHJEQUREKSJoCaJ6osYDrNQuJBiJiAXBiSRFAopsIc5qmKxpmLoapYhIcMyQjjgAGFMMCoYjNAYRpSCcIOkwqQBGOihKiNbY2bIRcaVmFAXNGCoIaiNFfrzCGqSjCICdniACpIC0XD9X0hIkgRha4AnOJEGDaQ0ByMdNRmXAXEphRFAknaCTwAkaJRi4cRJTQSfsDsDccPIokVR0TQUBSfME9wFQJHuJBFDggooFwSxEOGIhURJgCSzNBTfuBjJgHATbdh6kYz4CEQOtJ86TqCKxJ4QLwdtApUnYtcAIAO8BLvpCWNJCM0GVOoAlUWcQixrutEhr6EHLQo0HUMgOAKVlno6yRAXCMQQsExd6IIAKAwFUUJLVenZYeFwIljbAsc00iFA10CxLnOhKPokQRKyLkIypLrIuKmnrPbFU3pBqLlhSqmEQmlgDkRVZi0AfIcYVKaY1GDSxEKTKAdkB0sCgg7PGQYZhynHJoBRhHz4y1QUyHEklCNBqHoSJOANosiqeimpvh22AkZUUzJzI4EiDu6YYbIBVxw2PYpbkelwIccCsYgJgHnVEW87UVAoT6RoRMKghiUKlQCIBBjAiCVowgBFcoQKF7EpRQeAhGQKrbaXEjOJAI15lMiQwgkYEuh64Boi3EIoAQyCWFbigYO+4Daga7iKZgwCFQiaBRKiIFBhBsCRfeZ1KAMsORUU/yAqtRBCCIgqBWzBGeK1D3utP2yDiRAHlcdJZZUqCOEqhsURszFIQfIt1Hdq4c44mHSBx2JULsdSkhaYqbj+VHYdkTgYe5E6x7wnSjlSFKFzA/CMIoMnTDQdoFq4l7EJZY6hwoDvmqpjKF2hCIj4CCKUBhKvRPYdhRh4UTCFlIiT/W8CKOAMZ9HjKEAgiCSzHMFw1EH2ktObTuoRhwF0GAIQRg5EcAk3omCNggj3xORExoyhDKuxxlzLEkhkoIDjmAABBYUKUgTEAhJJBYKtAGXIPIJcQG0QbDJWStk74nmHRhwiG0JAJAIgAaEHJEA0LaECjMjhBAxFEWNmE8VFgHoMGlgLWLC4zCIJGey0QGURJFvwb8aeIygSHIVIghC4iHGAKaYEWEQrCQTuFyzCRIIyhD4OCIcBB5SLem5kqpIKIoRBAxRyXgQRUij2AcBAZGQXEM5CL1IcFNPs8hjEhnSkBSFQR2ImKrWhFQgIwhAB3k8UqT0oVA5bYBQUxRKsC2iBEEmpjRiPgQhkNCOWhBLiBUkOGMAIuyGrgtYEECkMMEAULnkahC5GkKQghAh4MGIupzrkvuEKAhhP7A1xeRRyCgQEqsImACVRZCRWkv6lIeM6oHgXLAQiYhxX/IaDzuCbwCvzaWiKQfGR1nU7M+Mpy2yUW9eundXZ7DDOYHSEqhb0TJQSRGDhjCuE8qxhNAHLGkaYcelGkCRKhEzMGZch3+Wf0wATyFWADCCEYDShTXgJKiCFUB1jbZcx9CoG4RIAQIGkCtQRAxQBH2MYjCykWJx6UVchcANBQKcQQENJcERC5kLBKAExZAlqK/ARMAciqAbMCoiHykRlFJAlTIJIBIQI0Rl5AsF4oAzhAUhkArMGGBCOFwqQnIhKJJuxJEHEEQs5D6CMmQ+gpqHgE4w4L5ESSZ9wH3CiQ8hRRGXMoREwSCMgMTA4KIDKBGOSlWfR4pAPgVUABtALHkr9BACvkAbYbuCZZX7vpQYUy6YpilxLWOm8ekDRwm2o7rfbJYxJgdGR67Obzr1nUS258r1OwaCCUh6qGYCDSNAEI1jAweR0AjiQtNUKQgRgYgogUTTqBYwgSTgEUbEBZHFAFMAa0vhe0xC1GEtP8QqpiG3ITAgSzhkNRkNOrTjhD6FXBEAgpap5ALeoQRJrnqoLXikoQRjHoDtiKQJYI4vfOZFOEJQMJQ0sYMQtAOfexrUqeeDZMyvtqFmVIVvQBoGjGm6SRliOApDBRCTsx2EqFBU7HaEkEjTSIAhAqaWYcx3RQhCi6pK4EUSAENVOjQUvoC4i8tmx7V1jFVd4xHzEQbMFRjYQgAEAHAgUxxJPenVmL0R+quAhRBoqpmKKYOx7K6Rkdm55aWtraxlCODv7SlIib1IXS5vbpfaX3rqSK3WbDbC/oK6trX18NhwG4Co4ay264K5XUhXpN0idoZgGmkUauV2PaYCxFUFh/B/5h8ByEcyjSGGgmFqIuntRCVLlZJpEiHOAYZJJh038jWkS+bYhGHhQKJCISyc8WRbcAXDHYEKTLocB64rDGgQSBDhUGCOXYh7UFSUIMHRehxmndAC0FeUiEfI5a5FdSkkRIZOkBC+F0YUKxK5GkwySAiKGGzwEGFsBp6NVM2XHelTrHuCGSGLIAb1wMuRGECRYMyBgQEzEoad0FNUrdOpxWI650jDFHHZwVhGDKuqG4QABVyqSLgRwZ3I246CiuTr3IMqmUjl02kDe51kf27P/of+9m//j2nFgEILiVRHNPJ6YXF+Zmpvz9HHfsqubpbL606lnB+wVu/XMknNt73TR49uLqy9eu6WDQJVAA2QNFJVSGK6xjhLBshKJqIoMLAkgQKZtLUAQqVXiBYT1UAgKYkTCoIAANIRTRWIQACB6q5QmGqCCARYVUPgStwJShAaMQLaMi6jjkSBCCiETArgqx0VaAAhBwiNlSDFvutaam8jkBoJGMZ+5EMtkxRqwAKGLU1GduBrislQQLAvMOkEHiEdL0wLqWsIBGHHkZHu6YLgCAoUGpG0BVBABGI0xgWKEGAYhEKIsIG1BIQw5IGqZ9yIYxS1JUQYdoIOggrwg5A5IYGK4EUZtEK/TUmROREiTz58JB7Pj/f0tZztsZFj73/4pqryif17RNB59vFn37px4ZFdx91SPYLttugJm0s9PQcqRTvfG7+/ep37rT7zhBqr6imzMNb3uAJ2as7FOwtN33F5lMS047gW0RFVbKfBAVeFhP+l+yBERAIAeFLBDkNR5LuORBDpisCAAsYCgS0NyICLALSwVCXyfIY0HEFhSey6fgdCiyuGYB4CGCNXxQhJgwU+VE0FQB8FCpIUGpIrWDQxUVkYSip0aDQ5hMhVQuGTQMOWZAoCAmALAd9nLsJI+DzAVEURYNgHgEIJgYywiHhAINYQchjWoQow4rKFOABYhkINhA8kYxARCBSsuYxxCQRgkRBSykAGEONW5LQFsoEfSViSAYdkfGzoC595Yb2+k2DS1BO1Tnu7Mmca6tJKye0EA0NaSu9VDc2IZ/r6cgl97+2VD0xLm755/8S+s6Eqz733Zml5O2uhpGGceuAsoNBeW8WEvHFlGoTACX2n3QKhUDmwqB6TioahCiH8lcwRQnVAIh4CwCKCEVZQuyMIYj5tAUEJVCRTGGQRt13PpVRXVVOwQKoQR1QAwIAXIQ4DoQM1wKGJDC4kxlQSgSXypadHOYRDSQQAXJXUFkEUeRBDFVKOhR9wrBDIfUA0IaHrhSoVAiABgSf+n8ZtEyhcehRBk+guYyELFY4VRacSBAhGQUAVM4pCTn3KkYdEJCXACDMUQ3pLtCEmYSh86FOkdoBn89ALghaCEQLtKIoQRMT63CNnuEo4bp954MjKylpzHb126RVTSx0YGzA5WCxuU5zIZX2v0/RYfGgodeJwdr0+/MHlOYCxCpyzp6aMXH7m1tyda/cOHx09dugjxZ0PV66vnTp7+Bsvv9Y/khI1rdaA06VZ4nW8KFJ0nBcKFggep3GFKEmpUQQVHOkyryu+F3IpIywVSaNI8ADgUAZY6EHUMqjBEeccRwQbwodEIRIjJjrcBUjTkRJJRyWa57cBQhoihGgC+ZzhUEAbiAQQLhAaQs2AqYrqSyYBlFAIQHweKBARSSARGFAJhI+53fEpEGlDhZIHHJgIa1IlCIUw4FwCKRDGGGPBmCTS84EQgEJJMMUIAgzckCKFdYKOAMgDrB1FDPIAAEFwMwoEQFwCneLjx6eSicKu/tToocnV68WXX397u1PSsTy4e7K4XDTTcSOZEjzcU8hrirg8uxLnwemTY+nRM3fXSp/47Iv//I1/SIRhqXxPMfdAdTOjD5x56InFuUt21Y9b/XdWZuxO+bkzD9y8eG387Nm/+cP/le0evjk/hyCHkSCTao4x4VGIOfO51hRlKZRO0Iww5Jy7HCqR4EQCASPUhJDwwJcQQRjFAqIiLHmAuUxi3REhBywpVUJAyJjUTUWgauSysBkyGUAOqKJLWfFDSqiAIqLIZW0FoFDqGDOTKgSbLdaOGV1trxYg+PU37xm5unRIMhtzmvgLRwpmSJoKQNwBWAohACRAcsFDICUSgmMIAQaEcw4BDygkwJcSAh7Juoh8KCLOfQgiKZgULGQAIYyIFNHkgeHhwd0xE40fGuu0od6DDxwZta/aBJChvqTXCft6B3ZYpwsaPoqvV0sPnd3PK535pc7Hz2ZAss8pB1/64q/euPZarlOIfGNheWf/2IOvvP/DiUS6r//RUuPO4YPHvvndP3Obw0fPjjTd6qnTZwb6MlURaEmv7ilkEMeAxm0WqVANpAzVGAYdn+T8KCCK4cpIECYABEBiiAEiXAYikhyGECCEQYC4gLDJfZ2oMoxaiHksaEAGQulBASXEEknAAg4FdwmmHRDqABgyTUJ25sQnYt1dO9sr3YNTly6e33dgzOjONBvlXN/p554/vL68YFkDk+lsVwpUnfVl5mOMEgHCCHMgAZAEcMQ55IATGADGIJCRxAJyyTGiPPShBG0QCQCkRAGURMJQCvD/BwGgU/n5L381n+w6uK//7vTm0nbzyP6pOze8/Nipnx3Tljbhldm5qcJkG9utnc5yvbVnd7TVqWdXE6G0r61u7p25PHb4k+Xqwszy1Z6eo9KbLwztjaBYXL8bFYtt7DLyUk/2odnFyxs7nUtztxUtGwmgMm5zM2Z4ewt72s0qUQlzoiAmiaCaiVUuuRspJgkCGBe4afmJgPoahxzakaQUiYBZWAMYUgmwlIKHDtRAxAIJdaQwN/QjhvoJpQg3QwciBLGQgESCM4k6oNOn9A8P9b/4y/9OMfxkdpDFQPXeQtldaXRymdFsob+3VbH2P3T6lVcXPv6vnrm7WDszhmkUcgAjRDqMNQGTHAAOIIACBBgCAKFgEkAAQgAAkBwAAKAICQAcAAEABpADASQIgfz/qUdECA4leezhw3tH+q59cO6D85udNjfjWA9tjvWhodH5a4u7ju6t7wjX3Sm2bWoaJx56VFH8id69G27LbzJNa9RbnerCjfiksRPAcrE4e2/ONFYbLUWDqc36ZstmKgVnTizemrlt6Hxmyd1VWKyy1MDwGCGJXb3dbqf8wCPPEh4RS1VUHg+JzQMfUyVlAuAbNnAJj8Gk4XhSx8CDaRh5BlQ0qmBCMeAU8Q4PucAyggpCCFGKtLjBQmYx7kdSWlqSYwYkAoBELGJIJATZve/M/s88lehJ+QinCtBuhLE00hMTI/3zXYO7bi7fHbT03/r1L/3kV3/7G//4LWok+anMnfmNf/2FB7oZkSIMAKIQSwAYkBqhQgiCsB8FWCIMZAgRQFADuMV9BgEAQADAEIASQgkkBAghQ6IOkB6Cf/Knv1HeWnrrpbdu15ZMLxRIOTjQU16YNwq92+0PJh54YrB/T27k+NzMdLpWvHL+/QMHPja//vZKKewbiH3rwuVOWM/OmJ2d4m50dKpwOsC8vDq0Xp2v7Whq0kmkRu7cu9afnKyIzsTg4dVyowFlAEd8Xrt74/q1AOZHSX3D7t18lQCKCFRt6EMOGApgqIQMAow1mA1Q23CFFIkAIExVTXiKghBOO0RGoQykY0LBVMf1ABSuhgOb+6o0Ve6rBLsiQBy2OY9pMR97o6NjIWaI64987Q+uDKyVbefgFYgNK8kr2Ohbv7cay2Wq5QV7e/2fbt37+Z/5fDJsDyXASDI2c+9Gc37aWWY6RoDo8QhGCCIQQkEUDnyINIBMamDAsMRcSkYw4FKhBhGcS+BDACEWIKQQhRBIIRAADcFf+Ojj3/7H1+OaP7+5TZBKYQeqfetNoPCwN4X3792VHRitFLePHj+4eP3aiYMHerpS3f2KH/TlsxrtVE1NT5OeWqk+C+PBh7d7B1e1/qc2trYgGVhYv7hbz+eHuyU7ODu31GwMrXQqBolLGF68cytuJQpjEyuL0+Ox8enKnYW5kCRkn2fGU71ToDCmTew3R5KsT4eqRKpEKoocR9WxG4ZuqOhRvaXEzYCbKSXwCYBcAoQgEowz12+88nrjb35P4A6gGol8gLHLOVDw5JljAw8foVrCSHZo1Lf85j8bD1nVwV3L4Xyvz5wOS5vJC+X5W9evHz0+MZr1YsePXj5399TDHvKVSrA+s+n+w3//kzhHEUVIAoyhCiGBRgS4hDINEUAAC4iBwjASQmJJOAVSBB7QY7FCJCOvXfQBwAgbEkIMioB/7iee39han1kvdyvGRqMzNZLPxQbUOIkbhaljJ3cqG8IsjHXnp7cbFz84/9CDU81GZAAc5xGpLkOjK8BAY142bfgO6DTZhYWN4yBR0O/khrun763mUqZmZkIXG0l3z6GH6rXqcGEvDpT69vqOhbXhbE/cnFdEaaPtojbTekjfK//UAS4JAYPs5lbd9Ff3xg/rmvPf/uHdn3/6zPUlEe+LcjS25drH+gdvlDaOD+Yll0kTeRKELMQCEAVQAMMHH77/d7+eDQCC3NSoCGyBE9lDE+YDe/JHD4AQAywBB4PhYuObr3pnlotdPbVmMR8fsQMaVIKJg4N/8823nzp5xK/NbTbcH7+79q9+9tf+y2/9fzSqVoMwgFQXUpeUYwkZQFBiCCmHHgG6AFICRiQSQCKJOBPS2/Op/5BR0yCFSE1vUPcH3/ptxetgQtaZ8+wXv9R2GssbjZjRZaa1ibQetpxP/uyvhZCXnOaRM/uWbuYHR3suXTq/MHdzuF9fuWqWW+/1FB65eu0tYSt3b10MJTx8/LRX85VJtnxjYWwoXSqVUdYfSh//yGO7VlZLzdbF0aGHFzc0Vek6e/awgvOpKD6r8pnLrRzke/bu2XWwb+bGjcZOxkylyDKNYg5+9Vbr4xMJlZi79g+8t771WFfu3Fd2vxrgpwbyUDCo4DEea0f1qf6sEkaqFceSxQHhgng+QwK3HDcAvhwZXJ69kxSkxnXTymSO9d9vNBvXPgSqp/LeviEJ9S51+CBslNzv3esc2W6kDhd27Y4puF25+vlf+O8TY2d++3d/t0/VND2FPePXf+1XYnl1+s4yNFTfZ4qQAmPKAZdSQVSyAEKShUrIIoKRLoknmIkUBwX5M4/GUzmsJpVkmouiGdWf/pnf+Oaf/r8Q5y5GJ48++u7b32+5/IVPnw2bRa6mJ9MFmhFWfPhAngYeGD3UVy3udOxOvbbmbtckkJ122JbVJEreWH6vL59jQusd7X9r5Xuj8YmR0R6LdjFRdusNc9IuFaPHn3ziw3Pp7MhALHvqww8/zFjJeGIo9+Lw1Ozugd0btLyVic9ZsQMbtGtgWBybfIwMShXmfcUC6j4tc9VJGfihoSE1E81vcZqmy7VmebNYrvs9A4OGCItuKzc+AkkkpASACcGBZEwFSVPFjiHiepkF2vjoI4+c2HEdyPnTpx+d3Sjfmm/7jc0D+tHBTCeRST/66E8/8khzbXarGETxze1sr/6xZ85MX/728LHjJ448dO78uZ945Oy7lz5M5GOLyxuHdudnlhuu34xDJDhAGCuQAcwVCSnGEIAEJZHkAPAYUdoiDIXcffanTRiEWMEs8KlRa+ZTWelymEiRP/n9v7S9YHjXACcxzMipAye7xg7PXn9D2K7T+bBo9wdBVN4ue0Gj0aq22qBSZ/H8YO9IjCva3OwtaoFmdRN3j2+V1zVuKiB0NCNSPO6Ymq7dvTb3yKMf2Vq5/fAju8cn94GotXf3R0cKmchvVjqsZ2Jvr+JfAMXWMho4013oHSjEJaGIxLvg779x69ODe994b3vj1Q8mfuszt+9sPHy4583swFCL7kqbk30WE4RCTBBnTAjOIw4RIYxziIimA8lFoGvAYgv3pvcc3LvnwIGJ3Y/tVsN//PZfBwg9cOCjnc5M3Uq+f+mVA4PH8rlaTMslC2pm3Ot1rbW5ZRztknCseyz2F//jD7/81V85efbkr//Wf53oijWdyLKy62U3AqGHsS2EhgWUkEjEOUqpmgg5pgByqUhCIAhZaFDUAChGIIwNZmEkkKqITjJnwmYrmU48/5EHjFS2kEVr87eQ6jJgziytcMNqNb1ldimj+Tmh1vyGbM/0JA5tb68jH598+KmLd+945Uq8g5tI2dszlckRzMit2fWTj5x+6+U3Hn/+CURC12tTH0yvOt955V/i8R6q9hFwsb9vNEk6rRqwBKfNhprQabanUG9vOvXNtdm1pcVdQ1pGbRLHpR+dGH9zq/XpvUll/7MmlY5qrW81J/sTRhaUQLMHpWste2un4bRsF+fjrcaBB7uAwABBKEEIhSVQ1a997Xe+8omnn1tev3l3enZi6FAsZ490D/QP7Q8Vtxlxu+Hu2f2AjMJIoyHQ1ldu6ysGEo3BgaGdlemaJ4YTG//Xb/7+0s3pg4cnC11Ww3EiAQhKjvQX6pGcuXO1THTCIAiFkDyJkeu6hko1pgSIqFhIhExE2zKkzM/1WZu1tWzP1A9mZw+F/nR6ZP7+d5574YX+fG/CUjmzcgPjhw7sPX/jsg3l5soNwrCl9Hs7i8uVu35Skf5+L98+u294rX9fd19/dnk28tWjh3YtLX04c3vh5MOPx5J63365J/Fx9onk9tYd7IGBXfv9aO6ZkwfNnn22v8mMbBhs+UHQ39MPHMlaja64ZStAVtZiWeX6D1aSerMVtpfXGh/MLhOoyPHhnu/MTzulxNvNdqu5NtY/OjagJF/98IPC/lvt4iP78EqV7x3tUkgXjAJOenzBeGl5/dbKO29+d+76ObvhNOzWy98679Pyc+7jv/eXv7VYm+kjPUN79v/TP/7tyO7dTz31mSC2ttG8kk4lX3v5+vEHT+koClN4iPbUaiLXm2osvB/1Hwk71cOnHqqW7j104tjrb7xRboCJSa3BBIyEwKZw2ptCljC1BJtEMk10IGEAIxVTyKCGiCsk4lJR4xsNuFqngwPq4b6J/V14c87Jeamf+6V/e+5Hrwe1qGsiYS2q2zVcSOa8INqs22RnI55QVzfqQ93d11crOavFZsHe7r2sWaplZehWB/bu1/3GVH+fpthr21chOvjRB7/s1ba82yuTY3tW7rw/Mkht6yMbqz9yVuv5vsLpA54V368HQW3bU2WZAKFIIxvVo9GU7KS//PlfXNy5tu+A0Dz7yZFJcn2nsXm78RvPTIXIH151Yj0TakpChTQ/fmKMoX3KwBYD/bI09+6VmctvzV27WNpc4VwXwE6m+hOW4XuyKzP89b/4jXZzOp6L0VT+0NTe11+/+tyzD+weG3zw1PE7t27+3m/+2k/+zCdrRZ3zwlOfPFFaXjOsrtaOe37z0sPPPBFsb49PPml7AY/j/nzS5/kLN6+X62hqbGjm3v3e7q4QcIpgTzL1qWceLWSzDadZWymt3ipSp2pCkzPfosRDkcIxQqSTzcy17ERM08zk/Zn1qWS/5dXMVMNpbx188ITSbmrIm9qzL9Uz9sFb74z29377B1/ryadMAvUk44kkXy3NyZqlqixo5bI9q+dXdu/dt7VRdw0uW24mHT84Omn1Ddecle7C+AMHH/cLhYXlO53FrbtLl0+fekhPWe6yx0FQSBKoayJy3W2eTKtQy1Bf5NWYZsQjxtOd/qj82tSePYk0JY8OpTuFhIAyBOTARM73WKfSunN5ef36B/N3Ls4u3W52mn4gJeZRKOKa+bGPvPjgyYdHd3XTWLBxuxhLpK5dObdVWrtw6dt7J0aH84MHRgf+8buvh8GpSm29MNoTUO/x/NGmtxpyML536uIb508dGb+/cLtvqK93ePLS+StPn3pyp70VS+3vS6dWtjbMZHxpeu1zLzzbbDXOTD7159/+EYNIoTiAYqfchCLaXK3Bus2dMpKSSUelOpHYEpgT3GF4z6EHT546xLjjcZeDFgjSVWc6m+++df7S5MljldU7jVIXN3GhL4uQmx3pfuETX7Kn3++dPFR1OM0Wuqd4+daF7Wbw3NGzwisldXjnzkoun2h0Os1m8diZJ+1yi4pK0FTeuPqX+6ZOpqSzd9exzOSuo9llSNWR4an3bv7DBM44fhm0GdbylNRh1I1oh0HKiGUpIJ1I3qkWd1qdh1MFK9ZN6sXt0p2V4s1379+5dvP+pWqtLSQSOCCRyZATQ9hE2hCI6ap+9Jmnxo7v6x/cQ7PM9otJlJg4M66GWnLo+cr1rRPj/bVm8/dfeqc/kctmYj964/tdeqZr0BjOj08d6ZH+1O/85m8BwvpTmYh2qVpG9USHF4nHz334T7nCie+8/de/+os/zdttd6Uczw+cf//yH//x773/4c3dU1O1Wq1qt5AXgbp7+dqCQVy1xbqwZhBMQoYkIIBLRImQDRCefeFnd2zDbTvHd+dOTR0od9wj+bhaLzfrPtmc1nnrztLKYHKk2jPbrWS47yeMGMvvml+8wxOFsT0Tjzz53B/9Qeu/f/UXtrcWm42MqUV+pF7+4Hyj5UwOTKxMb+W7D6g63F5fnxh+zGXE235H9ZlSqipaKjtgukVl3/HHyvcrqQOxbFe2EymUMUyZwAmKOxgZrkOYX5NCzYW9RDYQHCW/eHKSCEUX3NTMEYSPWL0aU3zpJUxNRDRtxBQaC5JhKxWbOnJ8ZKRHidkqiyl9+73KZsikF25ELT+9N7m5E8TMNOT+9dX7mChNx1fyxuwHW9fT699950J3LH3gyP6FxbXxJw9V2wtnHzh+Z3r55uXv9CeP9nWLQjccTg1fvDrNNu/X/e2BdCtp7vrw+uvlFtp2tx3HDVwvA1UtCvf1ZP2NKlJDGkECQ0NNB9LRSJwHfqhgCHH35OR7i9fe+sY/Dfy/f/XDm0uH+sJOaZ45cw+MZTvNUIt6LNBY21lLLg4de+Spq3fP5Ub6npg6+8FLne4xTbrliHR97vM/hYSbSRtxOYJSYbko8r2HZHz1wJmHgRN5NYo0d3BPX5pY5dXWW1fueuFyTZnZYeyhhx/54EdfP3ZqfPTpzwpvnWrpJC8Hag7APIlCYnRHEgtR4ULryhLmC1MCFarkP6ROmCqJQJAFaUVDmEONKh0RMeD7PgtiCu3fqzx1qnd3tuVgo0cllFz6wXcOHDwdHzIyar640ahVSyk6kswOFxc2tKTVrIVO1e3qTiwurE6O9yRpYteZ/ZWyc/X2jWee/OTC4uVEcvwPXv+T3oFULDn2yruvfeG5B1cWp3eakq+012anr8wuwo42sN/3W+Hm7LoptGMn9l95/1JOQNWT7laJEpBAeqSEQOghcCACnaBtEXN/5mzCsHGv9rx68PP/a/+lpdWnj/Y5y193mwF38drStp5d4fHu4XRQ8gdrbGGrMjQy3O+2vBv1+ZFnj7p1T9cA8mSiG3UXejY2jWJ7LYy83u7+sb2D9arTKG8VhvLvLZ472P/81u35b7zzxtGTg089+VN/9fXf3KmsZnqcVPZTyYlEbPfo0s163yixq2UFAS1uSK9KcuMS6VYgnYD6wfb6yjzjjf1qv++0yKneMcp1N3IMGkVIC0NXIQAGYTnAKtGKw6DrbD496tKkMtyXTOHAc+HY0QN3Pnx3l3dM9gbZgcHmTrFdubVVb9R8nkzEvOYKprRSaTAu1jYba7y55Qdf+MQvPPzAifcuXaoUS4Ve8fBjn774wUvLq2tPnT50a6n4bJclQl6XCAgUtryxfrNaayfmF2bvL5w5cvq18x/GeZQk8Xp5W0MCI0VKqSAYcjwYG01AcyTdZ0Mvlxjb8Ro6hX/1xq1DcRfHeo2BTPU84tFayoI0YTDu1raXBge7LVyqbFfqVmHy5Im+XHL2zgysp3p1T9VygS6aLRKFYaYrDqIunDIMnCmVtgOnky3kEunE537q80GtkUsZz33qGSbQBx+8ZTO4UF3/6EhvZHeGxvfKymx1vbVraCqZiDXdkKIYiekQK5KgMORAAs9XVEAKenezDRKaikxXJ6FvACY5DLxaEIblDmhCoR+a6vybLw8+/SVrfP8Pvv/e29/4x/LsUtn1hW9nevv7xg7dm/lnO0KOV4/lcz/+8YXuTO+Ln/lFEfBMNh1FkZQSYQQhOnJ471hv193ZH/7ln/zjD77zTqUKktbAe++89fBjDx87OPDS+5efPn60w2hfV2+jUX/s6S9887sXbVfRZPXO/MqhI8f+8dU3orCTIxmT0JSgVOpIwQPZiSnj5AuTT+7PDR4aOKiosax5UOOhxKFA4KsfP0KGphKP7bmJoUm3Z2ZrWjzaqN5PqfkwiNcqIPS4V2GbN99dubMwt7ztCgHFztrt95fmrlU3Lw0o1Gs1nK1iUOkUix2iBo7nD48POrUtu+E0nOK1c68E4c7G6nm7OkOildKGn0z25rondxamw83V2OCDhfw00gWXUFFNQBHSpEQCAEAVwUKuSjwxsGvmknf/m+eu/M23CdGZBFwnpuNzkyDGGolCTjz2KfPR1JSVV4nW1sI9e3/lxofXbt18fVdwenRkwkCo/+DwhXP2rnLbixANUd/oxMvvXNy7sF53w0I3YTJdqVQBAJ1O5/rtO17EU/Fsw648cPhxElfMtHjy8UeEt3rutWuje6fm1jdM1Rue0pZuh+c+fCeRjsNOSdUHp3dWLm2cN6naDYDFPBUZB/L7FKpmtZgmaEgFRnUoB5kSWDDGQcv2VSw0GUasoPV05f/Xu1cP3Lu8dHObp3turzRzes2JVNsynPY2EoNKJtto8vrc1X0jj3YpMRKVAntbhJtIiV1Zu96dOx5wVt/c3EHEBUebd25eecfJpeIJC1fvr5XWru9UZtfXVxQ/1mxt/fK//pkfvXJhz8Sx4eHRxk7RlKSCUlgCGfq6mcTIEFxijEDocg87ncb6B3ebt24UOq2eqA/AiHAWhBHhJAQQtsJikyKxq4eOoARKISoD3o5JwgTYf2zvKjBkLLWD/DinXMhDp05Oz507dub5Wr09PLwnpeMwNv6rp06/9eM3S9UPIEWASSml6wWmlRga7n1o5OSNa9NT2dGdjYAXpr/97W9XHefJ/sLugwNj/YemP7h++sDgW2/fcavgN//H1z79lZ9gUdRPzC5Axo3uo4kRC2lxqltWUgGBAk1OBGeGGSM8CKSCkEiaMbyzXd4p+VqvsfPP7+0uR6Vb04fGs9uRVt2pjw30c3Ii7JTSMa8d4cCTycJRmNW27zsTp3q9UqXVApaGFstN0zLuL72KEXJD0fQY8nzW3g4by2Zu37f+8htRqPYPZe7c2bq/uKij5Ml9yfp2+cCuWD4Dqut3ka7Xa3cH+07RUFAL8ggAhQrBoKRcCI931m4s2jM3jKav43goNSIxCWQDUR0GQVFBRaqt7c5oSRHfmq77QUzn+ZGevNknIV6bvuf5nW5k9Vl5n4WdjZohRczo9jUqLUWBOSrh9swH3V0PPfDwg5vl1sqKtdWq1atVIbjvO77Dv/fdl5PpPqxqAG5//7s3Kxt1ieA3v/uj0vqujz7hF0bGtyrtO3Pz77z3RRFEQ6p5Jrkvq5mIdfLxwW6SNqnAuKBKXxAuQglUFsMWkfEIAypZ1VvEapgm8SClvep39u+ZoO1tyitFrpspvWvo5OTIcHPb2TV1JJF/KIr3Xb30zvhDj8iwLjqO3QSDg8fp6fTm7Vc6rbVqYwZzvFYJpXR85szcWQAUuX7i3fPfdexo157Bahs+9NhTN2/eHx1Xzj7/lWpx+ukzv9xavCFEfXDPR2TxvuLZLb1Lcx0tleJcAI5A4AqIbTsS7UYiggFgBk2rSKeKQuL5j0m7pvc+iNmN9j7XSqc4W6yxruLM9MjoSPP6NTYRZQvJkcndM/4H6/ObvmTZRJyxSgsXVDNpYZcmAxZlWsVbWjbOJGKd7See2nvpSmS/Xx/ft//KzL0oihaXpqWQI1MFO9h65UfXJY8wxl/6yhfv3bn13of37q+sv/jcx8d6rD0jYyvNaCqeSAl13EyiUBrmWAKYQEYBB5ZScnlI3V5O15Ff2LQ3TKuhuipN7B3t667U214MdCn4d5T07+a0A5PJqxdITyE7tffgOx9e9PfEYcrotJbGXvjq1vTqvj1nvOLsidNH2s1SaW0B80wjrDed5u6De+5+WELprqke43tvTMeF+ezj6fUGk46msOwtvgmJnulWerPJX/sv/9PfuhfWth987CcN5MS7hlqpgWCtqeQtEaCMkYXQB6ELBY3CCGV0FLHWpuMsLnu2Y5E4JRBxj3JM0lZmowP6jzhuctfuR5PHpBVpx1gkQmRx6a7P3rs7O7dbOUDpfHdXoSTbrMXaaqT17+5PtTZurqwtuoUBLO36zNKyh3Sg38jHcncu3Ts2+nSC9N5Zvvjwrt0fri/4bQaw3rT5zQ+uQo4gwb/4b77yV3/ytTNPP/Cff+MX7tyYzmZ3q4ley9y0+gyrgvo13QRMknjkMj0Z1Fgbe05MH2w4KG25cZltuG4ulsI8o8S1yHGitozH09CWArC7Hfv/Skeff/sbT0ydyBwdCKr0gQc/Nz7W367srNxYpNubXUml4TLXF+21DY8bzMxoMNPTFVdHP83NEukdKbVmU+xY/1jPRG/37Mq9/r1ZBRama6X/9MU/qNWLNGC+xydGc6WS05UjYWkhTI42N7ez/XHk7/gVPZWzIrdBDYtFTOE2A5iHgdJq8A2PN6nCQlPPilBluKiAXoSonuszV7i3Nq4YDKdjYRdQczHFhKygweGJ3fuPHjVT8eGhMStr+bzT9j0trQsv0FlI4Oz1Ky97xa3N5feOHXpg5s77Y/n9XXrvA4ePB0r50SefUmSuf6jw2LG9D5w587lPPR9Vq5io3cP9x46faTajocnux/ed4K5tB+v/+6/+5/LyufiGd7iaSnPL4IrH2WRX/0RXdwIlx5O9WbVHBUpBTdCAQQVl00SnSVNV4qbS1Q00TYkx1QnCGDW6eXqmkzjZfbTnyFErOU6yev9g3uZOtkB6J4eCVilsLXWlUAyUGWHZVHRy34BQKk5T1FEIccxpNypb3HO3Du174MgDZ22gdI/8RODmBzM5xQr6+4c8d3GoQPp7ve6sxjpFxYjRyoZpmJYGta7eFLV8t6FDiSARXjOQGBqSl+/b1c3a3K1mYxnCGPdcQmzEuyLcRCFkm9Dd3hdXKScKdCPmkKjqOR23UXJAwtR7C13dybSOoGJqSDDNFBu3Z7MpQ5poxyl2d49Y6dHimnPlw7cztH/+3jt6Mqck+v/8a19TdfORM12Hju6rVAGIvPmlzbWt9TBixZXNezdvL63PJ/Xk37/8rb//9juvvX5/q9H+3qvvDewblSoTKPRRGKPJrXKFhz7RFRORuJEmIJPWrYSJNKBqNBXABQmZCFwZcQiyGDgonnt329v3p/eylC3dfz3XZS7euFe6M+u3GtXyijs/xyu1tZkfakBUfQ8mjery0nbb/+Dy/aiTxlpDy5GO41Q6cHj8hKF2EVQzzMTExNOmiY1E7PiR05lDhzVRGts90Z3KF5dCKz6UiI03Ns9HFBeGu+1iyBo7ZlpHWjrAuteqShhQixFJ/GrHc9ud+j3u+wFvAwVAqcZ1qUALnnvod2YP1pZR1VTi40MnB3b32p3KQO++u/fvddxobGpoMJ3kOAiF2CzuYKh1WqECJAdr719aOL5r9+byvdLmxsCxwZ17O7lMLK2P/8k//fYjZ57QgPXq5bd/+rnP9A8Uvv6Dv1pZinY6na3NIucskc309Q/P3rvKIwAAJgrpHxrcNTgIRf2Vd69PKpl/e+yZXE2oyERYmELjgmfj8UjyIMroAkSopGtxLlQQKlgNKNRNPQ6YZSaUm7q55+8e49DOT//v3/xBqp+mO12itXK1Waue3jWuBiaincZOmB0mPYcOXXt3tn8gKaK0OdTbnaHb829Aa3RjoeOT+ER2d2VnMzMgh/rI6lw6ewCVl73pV//iqY998tz5H/f27pvYfXB77qZlCR7AUELOqTo8hlyi+MsUIMF34lEhXshhsw8RjUubVZzGRvvcX/xx2IT9NG2qWY10VKR6doxcsK+E/mk9Js3CaLW+5t+jY0e7sIIzectd73hSRQbBkAadDvdCx90GboolyPZ0a28uee71t1/8/NMrSXb/YqXByj7Avn7nix95Flm4kNt/aL915U47kYhllaEtVPKippmIB2Hgup3pm9cQ+n/WKbn3yEHWDm/cu1cqVh5+9JFEyvj99y/8xEeOTc55PVHGC9uKSlquoxAFwRWGoQ57HL/u+cTSYhTVEOrzXGBZ3LE94/TEk5du/EJ69Mv04b3HzLWr39oz9LHAtGZvvVRuGqB+lcSsVhs5y0BY9ThBs7evSOClZ3qLPYcqW0utcG3qzL7J5AOXtt4/NHGQiVqpEfqpZqWl6xqPdT0wv1ad2v94oMK5hbW0yiKlq7F2a6s40zd8cPnc7dHeVHmzOjAyYOX2qkoo9AwEHSgEwmkG6fb1abfqJ2WOmHE/sC1q8BAZ1CPDP/dTu3ZNcCWsNJqU88hHJshBXXRZsU7cV4VtqAWLspRKSrXl+3fvJo2ByurMUPbAemfx/NV3r9279rnPPt3fXwAbNiZezJqCcKtS25xfbu2Ut3/6M7/aqG/HuxLB6nqlWIQAQgjNWDyCXAgGANi964BpxLcay34k+oZ63n/3PMbwE889ftv2F3KbD2Vz3eVcOkJhwxfS13GcMacZNGOqghRsUiPwIMKqQjtRYBGK0o/1/HV/7GCSbPxpsI52sukE2d6+s74cM1h3XwLH++yOXwE+NC2d9PoW9tbe7t19cm565TCvbDvVfPeUrJr3im/mjEI7DGIIY4VUblx1CDn71JO9w33rm69vrBfjMtvT1+0avXxrzvXC3NADldKmhp1rV9dOHphMZEehUDwnlHLLiPUCgJnXdkuV+tqMYfZRwQUP4npSAJ0rDkaEENTgmpFLhZqRpUSVQijUlZHBCO0bGRlIKRYJgyiotDxVz6dzw9WtlZg+FnJRvFb+xAtP3Z65d/69mY88ONB2SoCnLHZ5J0SciVMHj9+6cZ7oG+nu6ggfBR/cAEAAiITgTuBQlUKG9ZhuZXKNSqfd8Camxq9cuAApjaUyc8W2EwaqK155/+8eOr37U8NHRhSLV4HHOxhKRReB8ChR6u26mRAAeQCmEPG5GqRGYyqBN+41V0otLw4NK3vj5r8UjH2MW6a3DrSwp+8xQT7YaNeO5nvUHAztQzPX7sY04GZHM4FDuiYWps8dPPs4Bw5mdSs74DXmpFcZ3XVk/ead4nIRkdjlD+YO77G6R9R4x1hzk1aMXr/8vcjTqblzaO9hTc36gGkQNTpVpdImgwkEYWulvHNjTXUgZlLKkqLs4cxVkEqICFiE4ukpDEu+h3SNEOQByCMPMgIsMzGQsSjBLS9stsNi1Q2atZAHqtGTzTMe3H7gYx9T1fx4d653RH9/vpTvGt7cLP34w43WTjiVpAUlk86Nzl9f+6dvf9i22zEtBgGWQmi6KYIgCjyikZCJG9c+xJr46S9/5cqFCxAppx959OQDj/nNHRXARtRptxozixt/dv39N717Po37uO36CYkiU4uFYdyKqxTEwlBDOIdxkbtMjYV//2ZnbChBnzvVciterS4cU+8h2uBk967jTuBeXHgTGbHnn/+FgC1v33qvp2Ds3tunkP6ujHZqao+OFnKJ8dbMZWfzamn+6p1r37nx/e/hKLY0c77eCDLZFMwZZ5552sPW/N13Wu6dxvSlDy9eyu15emA8MZbPd3UdwXEDiqQTRq1KSU8OdWpBa2s53HZRbaNaKqYoAlwLeT3kYcDaQRBAqaKtzYXGFq97bc/lWzutdkTtMNrcrm2Xy8VO2GhFEcBCU9SYtb245ZWxqecB7Vnb1Dv1RTVa3toon3vrfH1m3bYrjx3b+8TDYzulHU9Tlip3B7oHc4U9AKAu0rV/tP/gxCTG2PdChAjGlGAlYcTHJnYx1/v93/5vgNAvfulL+XTq9o33ktl+221sLy0hSFRL6xkcv0351V33XQcJzQ48bAeCKDaQ1GFVSFuM3NKisY0qBS3y0ZPon2eq8aSuhjUey5zaNZJLwXj3rmKNRV73wdHjpiprrNZuB1pW25nf4GWupVCneE0tDMqFpUhfiLqUrbW2ak5GZO97N2ZGzhzgrOpuXXv/R9+J8/RGpVhst1Zq8bbXGj86cebUqbBZsaVz/KFf0LP9GuqO7BJmK/FYRlJNianNNRJWfXvDJzxAIogEJYhqmm5YiqXlAdRIZePm3MLNk08+7WtOcWMj2Qu6ehJR4CKBdnbWU4P9tseavqcrSM3EFc7sYCOrDGdz6qVbN04fPDvmSQYFFMpGs8EEN3D3p544fXn63t5dxma1NV7omezeayQThYHCAQief+b09EZ14f6sUCzbkba9hShduDsNJP/sT36h7TUanYaiqJ2Gv7W+bcWtEw+ezRrMZSifT72xUE2N9w1t+JhSzAIB9YAvm3pBMhgFqME2oLpjJkG/rSd1BEww1d334OMnZ9/9++Lc8rFPfmTx2gfde/eAgcOx2Zz0Yka2Z6vUGHnysRtv/tPUnqfnbn7bk5cqdvPw1JQ68smu3lLp/qWB0Sf/4x++8s4Pf13PPr48ff7wRx4ulhb7471Crxw58fzO3RnhO4YWjObGeyaOmUrB6dzrLM5Ghmp0pSHv54Fbn5W4UnPnyjE1hrIFzw1TqqkRS7LQ9SFBFQLj8Pzlxdrm/UJXP9D40tK83TEHx3t7c1az05YwyiZTnCGIkILdmeUtt2S3mwvtzk5cy0qwE9ixoaTSCrwm9yTjMTM1s7y2v78ntGvNamejzianTiXSSUxItdX68dW3n3v4ST1mri7fS3cPLm/tvPLDHxtJZXO9nM2lW20bMtgzOLgyf1dPdk/19hZ6ukZ3713ZvpfQJu32YnXHjnWLx5eS6ZKvU1OjCAsEgNCwDiggpMuDYKmQPvjfPpkuRDfm0cpLf3H84aML7/0gP5F36cG+4XyzsmGNDzqlTYS6LcWoNjb1VstLqi5J16/cLLHN/WOHl5ZePXTqc821VWug0Kz51aUFaUYyGHCDalcime5LvvH9V3vicPfBvaB+NUkHkW4qcUsVgVD2dKq3t2/Na4lULjsKSEPBh4OlkjO9pDSFhg0/dMvuOoQkTpKKZcSFGUSMEIYGhsjYeBZmPIC1tJklCKU0Q9WMkT6rKxEr2R1NARw4M9vb964v6Zl4z+SJre2trp6+hfuzcaA03I3vvvp+rdicn6nGqdbfq9d3moqmj+3a9bHHnu/uymqa2mkyEIaTvbsgtO5P31pe3mi2sOv56VTCEfjoiadPnDxACC7XN5fX5z/yEy+efPr5Zz7+WaNbJ8m+Jlent2+FIjs4PtZtZb6+ccFNMh/7qhqTmCCEGccK7rZdRxeoe2Hnw8/9zj//++uvfO13d5orrXYz9Juhsbdn31hHCgfInMsL/X2W4etxv7+XINW3MmkIw2e++jNPvfAzJDbY1fVo6a2rh888jVP9GrMnjnTFRMpvXlLlSspSmV2bGugmQIeiFraG2v56ae1Df6eIYcKkgWXuBVnkOhLhKKqGcKXlLt2mTRjHDhIcQUKwnkAFQFkUuJC2AlGWKEsaO4GGCjmlITToOl0HxtRGvT5kpFWQ9KJaF1Xd7RokepyH/Tjo1CpDI72PPvPo3M33S21Jt9fXqvOJVBO5fiGDio2acOyX35rbOxZ/7OQDgZS+jOzGzuX3Lw3sG0KYf/N7XzfiCRqp//LStyf3jCBsnNgzafDYvcXVjeVFSvAzj/zciROTI1MnFEoX/mo1nVAP7zvw9T/+QzpptZvNRnMND6Sa3fqlC/PPpg2deALghEZDfi+hZ1ohTZmJOMDn3nsp/1h+ZOCJ4pUPNKsnO3pUNuvZDDWpvuXVzEB3amWhEW43tES3CI1sLnXh3Ctdmb56eXliandjfKiChLdU3Ypi2qW3oQS83kQ5bjvV2bnzR3bvmeusQv+BpCKqjchttAYGfRTvcD++uVO0637OMqLGqD9XapYvwXI5llFcphAAdI4pwzTWhjzlOE0/FmlKEqEWWV1cxSmMJUtZ3fFkPLTL9o59x51LdqUtVS2t3CtteIFrx1I4mU4yNLQ6U1mYvZJJjJ/Zb21WSjElwX2JDBr5TdbJdPfHvvzxp3StwABtRm0Y+tt3F5Iur727HMB2fxw2arYX2SbyyqtrJ448VW8sNfUOQQoCrDC8Z3hyMKYPbG+XVAMfPH46YWjzV994/hMf/+uv/UNctZ594WnWWf+wtvXI8IjfNqAnLYPbgSEkgIaFZEVDwolyE2puxedBbaVaazz8sY8AXutOcenDrdntNmv3jQ+bvKMacelCF7garpk+2a5stLGaTDGAJdtmZh+AMKDlVsMnOqlAhQ+lT/f0pKsb6fsz84emjpPI33TnYjElETskadrUB7Y3zKvXXz8+MZmMjbZvz7mrNnFcjXRZ0AxQwENGLZBSzEiEyBCS41aoWYhJliAbC/dbTphIZnSjtuvIPiRwOhvfWlteXyzGM2onjDLDuZl3PuiFSj5+Op+1V9Z3Cl1j4327QKjPLpQ/88yjy6s7N+YWp28smPnqA86uiVGaSfbWW/bCxXcp85ViMBrLQVSrNTKqzFaaG7bT2pvpr1Dt7Qs/ZEQuLG3U26VjD5waHjvt+TulbePY8b0vvfQdKPn03UuFIWVUy+0dHLw9s/DNb/3Nv/viz8xVp9cGHHFpvcdIsNDApEHVWMRczgLbtX03rEPHq9TnW97ByVEA4g3fyVBYqTdxzsyrY1de+WZSbxtqvisxHERrytCu7XR2e+NeEoXhznZ79ZY0uucuXOofOUaSo4vXZoOmHBrfF/qtc2+eM5OERqpBXaB0DWYKJDZEgB3XE81iR0BVNZpKXzwGeqIuEN0rKoRQTQuiGoVdACqIRdDO6oYThr5uQiw1JFREG+j0M0/sO7C35Vc2lrZZox5hM5OjZj6fHixsr1eqy/c2lub3Tn00aU7M3r80v3itUZzxWPiNl//sT//lh92ZrtIGWHfqo7nYz33ho8fGd1vZjInGS5U7XuDzRh3M1PoZitU8rS1HlSixsdXtKC/kdj0YG3zE7+pZavetRY/2HvnCxz5vGqZF9XuXL+W6zE6p5Ef4u9/6+vLCXGdLKWjpr3z+RS+sdhr8nas3M4NjKJbr7CuFOIzCDhMe8GA8Tn0AGKdcLvWmQpnSjp99bu8Ln7EO7FUECZGSiKdTZu/dC1fG9j+24vSQ/GSdmOXy9Cprly7d042zEYvpPadKAt3dnAZB/sr514ycHDt4NGn0EDTYKBd9Yg+me/IZywvKVqYdoRDpUIv3BgbIDk4sr187NDg2oPTXVi/x7VWdcj2mY8nslkWhq8UjVaHxbBFDmwASdSAIfcerCtGGH147zzzacBjWbCveM5TLmFRst2yElWrNlq3F7SXeLN7z4HZvT5IHWqVSWynes90k2eEV0vnik8/psFJyq0mlO1Di3XK0DtZrOxtIRN7tprHpJZGi6znIccTLIDDiZjytJwyoAQnnneZ8Yx5qwZrApWjrwGe/cvHO7U994WcxUjYbN/7ij/9w8e5NGuvuzcIj+w7GVfhP/3LOSOoGMX7yi891hcJcCEe3DQtnDSOMQluNUi25DlBfBMRMdnXfz3y0uCEcpzP17GkjbGCodCCvVzpOOUwUUtd+/MePP/7F7fJyuwG6UsZa47ojepHvvXLlplvZ+ckXX7Ck4RMZdeYGYoVG2yByPaCCtFg2l1dx1YixOBzRMkORpAR1ersPXXj3jb4jp/gmXnjrVWUhIL5tkZTnNONJDQmmkDSEdQYEijK2zyPsBcAmQkMEoMhVgpBBD/KOf+eD8/NrlZWaW2ujUqWUjJs1u9HwNmY2P8iaBzslnDRGRnoOxqz+vT09h586s11tOsHWjp1IRXtbZU+6oh6WdCV+5cJ8uOHFa1iLDB30ERdoknaRnnwsllNJApsEAUM1RxTlse7RE4mpj5nDP5X+6L437/98YoK/N+3du3v5/SvL03cRBFGnvLlR/cEb726vlQMYuG5YC+zf/b2/vDG3/L3NOxt24INiFDpSKh6xkdwNYHetE3UiuW2vX7rzjelbX1PcmmUksa4ubZa7u5N9wyAeQw89/tNRDMWzh2M5uuh7N+81YUSvXLs2Mhhv7mx+cPWd+6XG/NJcf/7od17+kZrTSSz+ystXb67fO3/1wrtXr0FOhe5D2k7Fk6m+yZXS7OmnP2aEkrWbaLMtO3WF6gI1EIHSy0BYQMATPEH9Xog1RTEIICjShPQMbsHvvnQOoSDbX7j1zjmgZre2N8xYfzYdeW2pJIMbH7z50ce/MDhM1+5v2l4lhbprlWWqVgf7T9/evHr90owZN3d19+GYNZgZ9/wwsFvc0NzZ1a3Li4esCYPbIrBilqTAUAHhITEMaKopyo2QteOprOOUOGNYiXmiKpxkqFUjrPgMrw6JF//hN6SUAAAIUdzKjBWyyGdXt5YgBwDBJ44cvXF//ne6zo7Hcwa1OLOIBqIIAlEJgXZ9r32nuhoXlVqLfezz/3r8yClfYZTRna25oa48T6q3z1/tO3CgubZdLy3I1K6jZ0+V11Zvz8+pHfYPL/35yck99zdu6aSLu9FAV1RsqsOjMenTanU1k85GdbsnqR+b6Bk8+FQ2O4QSFnE8QLvqO82tN3c23vhOT4LAMMlEmyBKEIrRbggDzkjoWkoMSNz2o0q7JbEWx8oWun7hzW/9/TfW7m2MHHlg7/Hew8cmMpYsJK2xCa2+vXDn5sI/fOP3rr570+xKxfRCqsuqNe8rarxSX1LajMj4xvL9Tp0P8nHTQCTZRRCLhQFf6owoXRqKVILjCkYcGDKmKnpKFyZMQgGh9KAimduOfEXRUpoSRL40dZ9IjdgJ4ISFZUdKiQkBAEEEO3Y9X+g9enY/lRJgaRrk/nLjydhIkkJCNVWBJiAaMTWYwzBTbMcL9fz8/MZWBXfH9Q5QYUKTgldrO3tGhlCmt7HtDU/t0bu08vaHhcGT47t2vfWj120BhvqzmULeygxduXqLRV2T+6YcDm9ttZvt8spKuyufG548YWZypx59duzInt4jP4GZppqW8AnDagu3ilfKG+9/R1FZpe5JacdozIA6CnSHVaAuAQ21eITDgIqkFKaeiEsPKChDFhfeX6qHq8XVjR3W26MoEJ6/9BdBoE4Nn9x39PTPfta4vXHVjKmwQnPp1MrmXdt1fZQPa0UUNyfHaTq+RzFTQb4qIsOrhYgl5999p5snstQkPiXCwJTEaF/EmzBUJdJtARKMRUBIVw0IUzQWBFu1co9ihfXQVlBejy1oPL/Tgo/HCivpwUOf/Fdvf+s/N0qbb128mM4kPje4N6wHAIFCmJjSE2krj4WJWY9Uiq3GloKG04nxA8cm/vdb39kzNLC5vZQcH08lFc/181bCcN12e4cmYDZD0tmYFLkFo78w2ju/cKffKEDuxJCxBmrdafjTv/BXP3jlLy6+ey1BIZR6OpG+eP8Oj6KBfYMrc7MmSe3ddZoWso2121bYillZhIyIAb4vmZrZBZbncUpFAvpCGsQCuEzhYKehChEqtJZIxDwnwtJoudsIxoSnked/6t81G42VxduC3P7TP/oRwulHPvv49Zd/NH/fr1Xrn3zhI03aWFxaeHvrjU9+8oFSrXTk7Mny2lJP717b30BKZnjf7kxvIgjR/M3rwBMj8cFMM5dQDZUzDdFcPAdRIKWgiAoRKVq3Ah0FWJGwudYiBnM9gMFoIuFI0KuhwBOKJh4KUCVnyF+c+MSLs98o3XiVhWhw6iQLm6WV1eD0yEEBe0iuN9VnsIBAw1S10K9YlpMN+4mhDBzdXy8WB7v8b9ydHh1WfvjO5dHDn+224hvlpd60qUaUE6/SEp3SnN7L48n+hfu39cD307mFD/7l0OShzYs//uTphy6c+/azj39ydvp34rE46Nir9eLoQGZ6baPKosGe3ptrS1XbkRIku0ZqlXUIkE4yISMaqiun+pvbiwozQuYaFGoGh04K0QZFMQhCacREyCnxAx6hUEdGBIlGKhsryXT/i1/4pV/99z9Z22mM7x168MijX/3Sl6+99eEzzz5TLq4eHnhI9LUPOPGLHxYrbh20ZSzG295KYyUyNBGzsEK76q3rVgxv3V9b2tnIcgOCBpJDusltp2nEuwlqSk8R0LM7vqnhiAghFBHmImWTEgtJIgShQAAtKfwigIFKYyKs9usDFIgL774EgAxDV1OIhOFLFz54ePwzOlBJAHXNwlKHwhXQFWEaSNR74njTra3MzM6153c6/vFU3/Vtmciql89/LxdLbS3ZEDdJrLvTtr3OWiEM7195++0P33/02FNzC38+MJ5/6eW5I4fOXLjxQRdG9179c5PynlzyyMFDb126HDGZzpnFYlsGTO0xvDXfT79yaOdszQp1NcA9D7V26qXt4jsf/vgzx55yLi8pKgUchVyVuIpEXCAPhaHwQkxzWEQIu4JXTJQzoUZCz2lUKrcuvPKTP/WvDfX/nDj5sw+d2O9VvZOnn+s2QDLf9dbS6149kc2eePaB+lp9m/hx1VAblZWxPlOSvZFXtrda1eK9mL/bKOFurkOEDVlAJIpQEDPiwq8KnoKKgsMEJ76qaUxEBClS36YihWDEiBfXdD9ogNAytHzgQFVtIjJIif3bvS/86sbLrt9mnYanKkKI3sRQGHQMQ0WwCUlOlRwigNR21EbDZz5JGdLK5brRubO83Qn43IotCPzt//z7BOEHd2UrTScdizHaCEJ9aWd9z5H5jRXI0MDxz/5M79KRSo31HCR1W7/3/t//2z/4P3e//d1Dlv/mvZunAdw3OXL5/AdPPn54eY1IVikMD3zw1nQki2Lq3Wf6n1/eiYbi1AV8ZX6xN6epD+g02L3x7r3+rGzW3HgmgWAZer1Sz7Ewgpy2QNWug55Cd+BwjWbIhcu3Cv2TGuns3X0wYSaAv5kzlbnF+0J6Ja1vfbHUO3DaGk4JNbSXV4cKPa7NQctxeEFGQ225tFXbSqN6AvQsXLraLdSYoShQVWWgmUwJ+jisG9qgZGWK0iBWJrwgmKqohIU+VqFkHkCKoTJfUgSSUGVSilQXcoMU0QV3+EE0+ffH/+u3Undv3bjTlF5lY6a3L49dAAkgOIEDndIkF00FDfU/+hSXsL1t3924/8bmO4t+NQQ+0UFUdD7x+U9UtlZ7xvu6XNH0tqo7o0rMOZ15ZnBqeNcguj67XVwpdo/t2dqaHT+2+3DKD8on7XWbdrmlptKPcxTu7D/+xP7BY8sbF/rIhpoZSSSd/Xt61hul7790Lgrjj47szfbPN9tlTBUlUlStGv/YQ2bW2Hj1vViMwXAPIx2MMWYOiGo+KWhUUQqR7aKE0eP6CG2WNzWd3V64+h//078/d2lhZWn22rszTcb9tqcEYf/gyNjIZNVusAaptLM3bl5tVzZXKotlUVkJLtTrm0NaVyI5GLRrXYB2q5YqiYZUXYFW1EM1rKAkCgEGvQhSjDQEHUTsKFIIDSPmCSQIJWGQjxENYp0ogCCTAxK6vqkbhpEt9OYeA/FDa0274RbMZCo18tH4wAAqdNFEDk0lYjEIPV1Ld+9/Jgq5t729VHzvauX2vF22NCOL1NVi45f+1We9qJowudLyrVjcdgBWncWV5e798WzPLpTK7t8zXrSjC6+9njDt1//ur99/7W3Jsm+ef9nX07k4OHY6JtuYb9j3b399ZNQ8PHXUb6+GZXVoKCVa0VC+t6d7cIPCS5dfUuq6mRtu+JWNpVmsLxWe3asPDwOocLAjeIHTwA9CKIcIakjfcmxoEJ1LN6Tz5NSpwz/8/nebjXbDqT//wMcPPfDAd7/9Vw888fyhk5OFQt4O7AvnblTq6wmQvXzrZdfeprv3k0Ar5BPxmJGNDRqqH3a0tXNv9LIuleGEkgGA64pJpELQtqr1Bh4nNIRCQcyQIAilxHBDYF1ho0B0sGIyaNsOUJRIRJRzoHArnqRchnocIQ/QmPaicfpTmU+GshL1qSmqdEizS4tFLoRExpQ02TUOCOSVsF4p36su37fXA8RNrgwoKR/jroRz8drSs88+H4T1lILWNePwAx8d9e18oTcx1BfpGuuWpNl8+5XbP/XZ54f3H7Fbdj1sPvviF2W7sY7hxNihJXr53Ic/PrJnfE/36N+/8cODR/fnR3oQmFRCNLe58cF7Vx98/PDcEuo/W6nbje2SMJUM1lIRcZLPHq3+RT1m2DoEHheKliWi4wcGgSxmMNseSVhVHY2Rcq1qWtq+walHnn527trre/buP3rkWLfCdireNl+O5/prOKmzpdnt88PD4wYbgfno6NTHNS1EIIkj3Ny52yqux1kGiICQmKBYIzECXc67OPcIVCPGALYpjwdRzFAtgiyMVT+oadj3I4wkUzBSknERCA4DJjhWBFKhX4E+sKEGcUhxoOSTPpSJThtbioq5NGISpFS3GNG9w4JiErjVYv3q+vnVsCw43k1TwsAV1roRwivvXT94+OROY2vAiNXXKuUVew7e2f3sQ1YuE4VuV3ca48TgILx28HvZ4YEdb2Vq4MiVtxde+/F3R8xUYXK31jvRj5LzMxvt8vLGZv7MJ55sL92XqN9h5WJYXJ4ujx0cGUxP3NhuX19b96rBQL/Q+qyO12xWo3fvX8vFVya98ZB4Koaa6to+RjCj0rIbpCiJMLC42CDJVMGN5j/yia8kY9UDX/7XN773l4cfO5LpeXiLbHZ8RfPai5de3zPoT/YPMEE21xaOHPlUzNQxIcxrA+KrlKsIsUbImAP1AkZtipsYjEO5RQ2NRbVs2gh8C+IIYMiB1DUJANFJCoJAl3oEFGa3JJNIkZDHjYQInDYFMWxGUsfEjmmKibv6wiYjsJXr7494Pc5VDiJRZunjR0TN5V6juNq4s3Nrtbm+IesJLTlgDvrMK4hcR9bKAdmQsHLtasnSgDGcnMRMBm996y85CxmQe068mEkljKR68uAzlHbHLL9WLB579PNOZa0pWzsb9ub8tU278XM/+cW33/6zle03Hur9txtdMK4X2muNodTwldiGpgkKw3KllKLJ3tzY7atv+q1KJdz98qvf/+DWzaDc+LW43pvKEiUP2kGAKxQ6vogDrR4PJaYDKEDwd//LHxWb04yRZCKsLDR/8Vd/GjjtdHaqw6IGc9c/vOW2FjJ9Wc3KZFP9No8iSAyQUWgnDjI8aNslf+6d8/JWJwYUSwcJ3K0QoYMsJAFgHiaUu0BTKKLUD20qNaoiomDOoKJbUEJJOOJMoarEMOIwElHMigsRRUGDkjiTBlaUsN3QLCIBdapbLEqaJsXCh5MjkIHIcYqL25v1hdnG7eWoESc0oaUUrFApal6thmHixU9GtBSLF175l7/p74oXenK9mUJgsuJ6LZbKRjJx8eIrpw4fYdTZu+fJ/OSeRn3DWadVf7u9dWtiZOheY+f0wGPl9TcxGtDU7eUd52jPgOztXbx8ucJTVy686QO47/BIqRlZEXrwwY/N3ng1HletbOw73zt3d3mDMzakGX+476txT0ApkJIiIEDAEICbGNejOgUKPHl0//JmtVNr9nRp/+FnP3fokYdJYCYyiQbE7730D5uV9UdPnLX0QteAIUEyHkslrDhQkO0FnfIaavG3/+pb4baXbcbjCkipKU1NYe6aOI4o0nTOAhRIrEpBVQQ5gChNUIQAhYQBACXSFU0wgRXFaNWCWMwjMAYti9ltzluEG5ER56JBfUVIgYgQLtNT3TzswKlBaYe81WiXKsu12U2ntNWuQ4XqwFeVDIw8I6V3WtGqdN0Hxx/5zKd+8zd+Po1ogOynH3qy2to0aV/vwK7Rkyf9tao+2X3xzVfraxvX7rwPQuf0gae0eNg/dRjF+lC4k+zqbS40uD9TbrUVZIwOjW0tXp8486y9uhzpte99597t2YXdhwcff+QnXvne15oOfPKh/e988E6nod5bveX5QhHk+FT+W3/2zY3/eR/X71NRwLiGJOA4R5SW5KbPGUznemMmevapp/YNZnZNHu/tUncUlqZ9UMA1e7k9fWOscDjem5Es5MjMqGpkqPV6h0LMpAdaYun75+7+6OJwfLQnLrgfT2o8F+9y6lC1FMEaUMq4ZUR+GtNQVfRIcAIRwZTLiIg8MRzGDEE6XErhalYCBgGlMhCUSBFg3Yr8NokQNWJR6CmGwRmDjob3GCJUiOc3iltrO6WF6sVi0Nb0DPEVpLk6ysVxy5WazTt+In72b/+vv/yD/5rv1ggpCG0yY9wMQnbxxpWx/r7tZTuu+f0j+5M9JzuYl5bvT44deem7/zLSpQ4esARP9WRPgWBn8tSZ2Zu333j5W2cfS6e7nu5H1r3KIvfg3PKd6btvzs4Evb36vr79W344u7F+8sS4pYz8n3/8cyAjGUVEB+f/5vf6Rs6E5Wzpt/6aC2YQLEROIUxGHBAuZRL98i9/oS+7+/Bg70T3lKLUS/W6EiIU1jwRGiRhpAbjk5Zu5ue2SpEEDsQyIjGjK0Ka60i7HqlmnkAIpQxcwzCJArKhaAGlIwEDPK5pXRFLR74AEodAKAIgAyEgJTR9tA0BELiBVE1KyakrFYE0FyOoZzMcMBAAXU/q+R5EOaQKEIAhRY6mAYqzplNZXV0qzmw3bpfsQIXdMS4thWRpKqUTqqQVJlSR1C196dJsvVguztVisb5CNC1Yq9ro7O8dtIu+wqQI4cLi0r98/8/vnvvOzI3vvPzN/96fKO8+qZaXVJWU15a++877P5y7dttltRe/8tWl5frsu29duP+NbK8ZNaIkSc3OeG4QHd0zefjJnKvY2ZwBfPuTn3v+k0/9G8Dp8bHCd//3zxQGBxCWyV7P/MRPtyV05U7ES35EAqALmXSjFrn29sWPfny3buSgLlTcHRncbsmIUiarHhNY6TdEPwD1iYmpbKanXN6mGEMRhk6AwximdnVpJZPo1gQEAjG/jg0G2RDVypIJQJAMETEiYEGgCAwoSmpuxVMtHWKuUIUjnUoVSsCFrlqQhwQIA8Ydp1pRFEuEvFWrGW5Dpd1UFwgSdWQggAFb2QxKzZ3aVqVV33a9mIVU4CbMHsgdCOKKInc6bUvX4zEQPv7srVsXx3q7M0OHZGNmvrjuk3BgZDhhDFu63XCD+fmFwZGhyFxOZDKFnkc03HflyrvBu8V2fc1pDVp92cE+HRKkwa5OdWN48Mkbd86VLixaWtYWqIPDStgZzWsfeeisn+yNZBEGdjpjRev3P/vM4amBE8f3HB4Z3gMVq8PY+vLs+OldpdeUkPURySBuIUk5bhNpEBKnf/JHr3/kodKXPvcZxYg7nTaXYRR5KrIqlaphxQQOVSuX8UVxayNlEq9ddXHcd12/FaDN0ur8dBfLBdCLqxRBLfBVqc8bYgwhnxAbSLPdqup6FvEEgBGJIjMe932AFY6RBWkoucEhd4KWiXTdpIFsM1+FHEoKqQ6ctgh0M+zsaPE+mTRIaKNKuV0sViv1Tbu4Ya+b6pBJXZXgpK4DrgEQi8LGUKpLRqQVhv17u2bLAMenkvl8d2GXNrvUqt7zK02ZJrre1Zu3ciO7FQjjJTLWZ2JjIKGbE4e7EyA/N3f5zR+/OhTGXL2ezNyrN5cGkt3J1IG+7sFWuxSUy/mJh6Zf+/bhwwf29GKqm1fvLc/fvnH6ofGBsT07UVyG3tjoQ+munOu0QqK3N7eSsXBdxHK/+Gh0LWq88UbEHQBSRHTDwEEnD45P7RvbWNsOIVBI5DQ3eAdpsURTg0x3AfSitl0tlT0mMpls2xMBVxtNJ8QB9ML1pXnbtkUAOXRhmFMx102GheYJh3Hd97oAEHoshwn2QhsQRWKNcY4wIAhLAhQtybiNoKfqSSwgpBa2CUqqyEBBrcR9lu7OGVDQkQGSS1MhUa1pr2227cpae7UWVbNWKhOHaTOjSMvvCCgMhdqqllFpjcYUBJDVRxSj5/bceUtXEvmebK5ne3k9P3Jo4ODD6fHdXQNdarCaVKoP7D3RIwt+/V5t5769ubiwdl/pzrz41Z8PeKdd36htLeZNCwRhnsIER6lsnMRDV6j5/MTcYml5esbh6ZK32ZM39/buffP9izwu3ru48Kff/P5G5TYw6c5O5fVz71WqrUuvfvDS9/+rtk/t/3cvZk49FR/QXGrX6AqisdyLz+791GceY8INhZUdSKpxxRYoQaN0MpXrBo7uZSxTahGWJPS9ta2G13TtLdypLC9cmU7ShBkH3UZaj0tNGY2EBsCgDI0IQKL4nnB9N1QI1qgmmB9xBBHXqYyEL1gggAASEO6rBgTSdps7QFVFzQu5j7EFqBoqgAwPqt05WHeA41XmV3aq1dVyucPLcUWzINUgQK6pUy2mM03hIhJhW9bbfUoHZWIJBaUImB0cHFLNbHFlNdbXd/DRx7HJ8E7VMiPWWhwbHh8d7DFQs0xuSTc5d38nNfjI4QcfszqBCDt7hnsffeSFOCX1ja244e94H5pxlxSbke1YQU9p4yqBbH6nSRP08NSeBx987NVv/SDG/JXlnWSuuloJ/vb7t0InF4sCRduJnGjXcPWjT74QqHUxpolPjv5zplP8yMRf1FZRsx3lMrtGhs8owHLbDcCMhE7d4qxFtInCYEYvWMCM/Ii3/IWNren7xVBFK8u3t7dnL79+lYSZJMoaghNicl73ZIlFMQZ3QMKHoB6Fig0Mqsl2GIUSNANb8hACGQABRRYI5rUrCCksslDgcMXUNEyoj4RnSYskLUUqxtiUBBLYIvJqjcWFeqO8ULzdlg1LS1i6YRopTdGw0YopGCGsooQBs91d6Twx1IRhmPHumBw59NDNy7cwwb35QYh4z75DnPWFCE/fvNYodyyKRNMvF5fcVqJA+bHBfdIWOouUVMGyUSbXdf3a1Ss37w10jahkWFX25lM5NaabRiyf8Q4N5sZ7R/v6BmqeH8r4dqlE4l4EVL2TefmVd2y7KT2qxgbrKP/o2U/HC3lO0gqONCUikWtq9Wc+/fEFsbP7k8+hb33z+zfvLYpwSTP8qne9vFVvcjtpDQVMKMIHiuQiohR4JBGyOlI71dmKXdz0GouLC/d5Z56gQFHjXkgpykRciVhD4vg63bpNituKs6EEy4A3QNTgHCu4ZftQmDyUQViTDte4BiSPuHDaHIgQgcj3BBSSYY5iSZDPCdcWzY63ea+ytlNq3p9vbQFDSyomkCG0hcqIBZW0QXW1J65mCfZ1La5SZBo5g+skyq5OF2O9BS+qNGdnW82gXiyJtjI80R9L9A/2HKzvVFaWpqmJ8nufyDiZg4f3ZDODB0ayUWgGWzMha5pEJrBd3mz86Ec/dJEntxZrtemGw9N6Aqso3/dkaef+px49Rv3t6vrM66++0eZ075HhoXFWruwc2jX42U9/rCNCr8GqAUcGSmZ2RzrqUL9RKW6sVYG77GyHZ47vR1vF9X95/S2KKA/zCt3d7jR3FjrC7nS8etVj7XZrabniqtmlpTmn4mZj/dku0Ds2vnx5eYwlkBYzJGUQcIRwWsDQ5qr1f/zl15fnNnL4n6Ob78OZHzauvu2sXYpuXWyub4nKjr/uizrzcUiDIADcsVno6hZRkQ8iSAGQVgwM9KopTUrO1tZ2Fm+3N7er7UqVAUMVOooZBs7pVsbqU0wDyRgL45YRYJZN6H0aRCrXUlkkZczS0Pb5WiyGPvXM01//3t9dff99jGMh63i+NPPYa9rF1qbfQqqS0pzt0SF1c3plbf7ldEaplwmg1oXZtzdrS0Yi/x///ZOf/dLjWNpmn9nf89SRyREDm5qezQ6Pjo8MZ2JjG/fvT19ddmznwcdO7tv/6I3VjSOHD519Ym9h9wnpsb79I2v3S3Nzy9vNsF5rcAfbvGb0ZCJV//kvfyRs1Miv/dJT//Ste1LkKnZVIY12ayuTS9OMrfiGorhlbwV46dv3ljq+eu3Km9zD3ZlsUsDifHtcQaqEHQTzVPNizelFEfbbP0RlS3KeHZwvNYGKW5tLCbX7Rul2m7u7MD+qTJ1M92ZJP4Q2CBSkBgQHJLLCsI2w6UiU2D0gHIHrzYgDv7rt2Z3Ar234W4qqY65wRLqMOItCRTUgCyycRDrSkGHXRbab+b5nKH2uEllWmvudilt2a2a0IHr2P/7loSPnzr/2w7df/+q/+vlUP4hLfXAo7rVPF9urTn3LiPfWa9sLq9e26vrEip/L+Ag8mJ2/L2lI0fDMvZZK2qO9x2DljozXkJtt1Ltr98Pf/b3fGh/vuvjmJWP86GuXXuYAxB0bemzmg9cePDvy2INfRiSo3VvIjY9Brfu9l//p059+YKO43jMVKHrk2NzeRsuVYrDegC997W9VUaOxTMdz/brjUtxvwWSmj+OmaQ1vFcsSKIsLl3wZvfXWxZnlzaN7TshKPV8MkshwU2gPGDaySMnrVzvyttdIxHt9WbRtXi6tBFHQqG7qWsxzGhYDAzT3y2MD3XQwSScoh5rl4kCHMq5iYRpxPNRDFQ1EzKlW/UYLy3K7Bn3YLAcNRHQssW6IqJUjRlvHcaK0FZiTnCuUxvQY4xAZOpJMarpCFRaJVsur8Y07sr5zQOjZZFd2hKvalRuvv//WO5954WN7Dh5LF3JL538YajLZqJqWns6PtUvbr7/z483N4M/+5p/L1Z2Vmcv3FtbbjVbPYHp7q43CtaHR8XBDf+/CHRk1ydDE+9feycXyYyPD1VJlobEqVPGXv/6ftmxuw+rY1NNCBjPvf+PMT/wb7AFpt/7iV34bMxzgoKe/L79LP3TkE82WJ2VZJ3GCVLNcE1NdyBWgXF3OdedEB7XVDCD59bLt+n5SjRUGxmRj++c+/eLrF869e+HqbjcNNCPqie3UlvREonfywMXp6enAGR0eLNUW2tV2o7meiKfsZhki5HYqRJI0jO9RzLmq0zKKParerSl6kOawxSTo3X82xEIYNCw3UbXJ3YbdKIUcNCJXEheDJAKOZkQUE2i4MT0OuVBAAeIIyqSqABIzdBKPGEPQh1zjwKMEukGLAJpxQDh+wlTBd/7wfz38U08/99wXY/HuV7733UhUxqaejvXvdUqz8x3aHbG377yWphBKkUkgWVmOKemlnfDOwkx/PjY7e+PM8U9vLe+AZnjv5jps1B/8j79U2qkM7dsjmrUPf/AawIricQmgU18eGX4Od5shbFJ7++mf+iXJksVWcXtuc//xsfCi63YcOV9em2HLL/0RUUA7qrY7EQJtN/L5VstiPAaz2tzcSt3nbR4Ud1ZRdJuwlUvXvrF4f2a9nhI0Z7h00kseTBxteJELmg4p+Lv6Xr7+aiWRTcXipWqzvTOvpnLpQvdOuRaEPGbEIISYkprivdRauFi3bRdKYkssd5zGwNTjQyeedi0aNlpajTdWluvlxUbVq9rhtr+GMBAMmVBRKdSw1GV3XO1ThaZjjBVu0nQ8R+O5QakT7kZ6PhGhKMQMAmV+aT0Q8y4wCSGNS7f4+tLxjz759ls//M//7ucHRibPfOzpS+/eu/La360uNet2sz/Rteh2Ly35X3/r9odLzqYj17Y/XN5Y7Bni7QBFsH78zBNWQt69s3b4sY9ne/LpZMKKcLpXGeNi+517vUq3CcRAMt4Htda2n6SKqG1GVSKtI6WVuYqzYyXCV9965eWZpX1nD/YW0LiZHYv1DEGY89N5mU8TSoApVBrTqHjz/BuIxPM5Sni8Wlqf2H169vq3BofP2uzDb3z7jb6+wX35ru2rixNklMuNdi7a8L2hfSdmGrW2yFXmzx84eGph9R5NT1SWrzmO7/suoSjCQE8OM7fccaoEo4IS91FQq/pPPP0spAkufNFyFdJxGo1aa4U7whGNJivpSSW0DUTcOM7oGqa0z8QqpixCUoVx3wGGbhCjSZVhQLEaS6KUyct2VKOBshN4AaAOYQeRaFBkJu76/NG9l//uT1rSyA/F/ttv/KevfPGzh596Yuat91DmUm93erW+lUbWE8+c7Z0zcqq+1gTpPY8svncxPnrkgUNhuXK/UVvp1p8MVQ3T4Mnnf7rWwxrfWX3+yWf/7m/+R5eaCKkXF7oQgUPEy1+/vHGb/+T//A9b7RWKbZEazvUn33i55CL/2TO7ep4/Qn9TbJOZgsN8Yxgr6nLTsxJ59OqF841S5Y3zb6rArC5dCFxyZW0Jq/LNH33t6vV6rdbZN3j0ubOPz91YufvmUi40M7pRMsCtUmU78K/ee1PVRP/u4d37TlRK637Tby3OeMJXTL2rb1BVTR602q1t12mFIctTDQPvy4e+/Lknf57Ek1GwLb1OVFlpzK572zvtVrHu1zrIBtD2fGbq0kJ6OpZDwNZ5AhM1DAmFIHKFldYIJUjt40niQCfsuKy1s7A+E+F64LkQSOB2Ud1J9GQm04UXXvnFdGi/8OLPJYwoG+syTe3v//Ifb527ld3VV17YLK6UhAIyXUILxLn35j0zaanNO1WZ33c20T3k+Ztd+SHJDK60Wl5zZfrdpncj3cDZR7I3X/+eYXuDihIXIAP0jIgVFGMoVdhZvLv95oXh7JAqjEJKK805b57780dPHnz4Y8/D0MwdLyRdXcVJgmXolw0E1NCAA2PDx0b29g7p99dW+qzsrvGuXZNHhDfXaWm93T1CVe/PLzU9dvvtS3iZ5U1K+rrOVYsz23NHTz1Y7oTjo3vqO6WZhbd2j5z0Qz/wzHJ9mrU5IQhquNFoAt+OgL+H9H3nmT8Y7sogXRUBBmG9vFDszqrlzWIn8LBGfGb5aImIUAoc17JEDXSUpiSLqQQQcxDASOMgMLtTqpqOhIeYEko/rDlSuLV20VL1gJJUrEuGwg4glA0aM0OSKvzWg5te+c7Vyzfv39xcvW+33Xh/12uvfXBwbPfAcIp0dvon9kFadVzn2nJ07EBXl0cnHnzi+uUbSSPp1OeSoB2BaNfUIb9Teevc9RP7Ro5+9Od2/vbqjfP3wkYLqVAgAhmKCEPcr/ptDyFFZV/6//6KfmR0o4Qb7K4P8fEDR+ub9UrbVgSv/dGbnY21MAhs3gmjlM924LOf+qjKmaamEn599MDRrE4Wluf3ZfqhVouwnh0aC4JJmlrloj+paEtLmz+68r0b5+dLjZXJg6eyXaMb/3dB8B20/ZoXBv26vlf/1fu+n/r2855etrLLLrC0EBYIJbIGMSo4RI1jZjKOmRCjo8k4cY3+4YDOwEw0jBmxEEpUhAwunQ1l2YVt7J49Z08/b3vep9ztV65+ff18Hnzp2Sc+QECAvPv7v/UzOJA5hZu3707be0Ca7e4eyfE3P/Yz33D3aWNUAY+STS9vc1kjbpKf4uyvgADyzCWdRdNYikaxU1TrVtYImQSqjlaYAjQyeV33KiUUptvff7cyOsZw/nijVVm0LREVUIHTRpycTnsPKmQHr23c8N1z/UL3zldf+eLVF9Y79ue/96cnN44/98Ybvek+9tEXN+/sblw/feb9d3/7//vKD3zfc0N4XPCpFvro3nxwdfktT97Yn+/vvPSBZl784Vd+YRemf+3bfvL8lz5z9s6Z9t4iEmgDf127k8zkRK5CimvHknQ//tM/efDsdcfyY0cuLs+lajWf2A46KJ/9B7/+8PzlhTxI9NGRvAZ/+zu//9s//L405b2B+XJH8nz7Bv/y7ouPp6y6w4D17dv+2p3ve/59z1575sYP/vXv/m//6//u//zVX/qHf+fv3n/nq2+//tnpikXXPvGh23/0e/9sOD9/4UMfamsyPbo/2fHq/NWv/tCvPP7hX/7Ye57SK72druY33p3+/GvZvb3fvh7LeDXYQYHK0nvZmfXx0UoZVouurqKWhjCtm7p+8hqWBFUny0ocLTBDDsUNa8XYNGXrw2pRCa4HN4AQIXt67druKgghyt65MF0vlJarP/2N/5XUB4zegv345Ieeu392mbaRRvP2y9u7t28e32y//tU/PdTba8tZ+pOvfekrib+x3g7HKu3peObTP/0nn2TN669/5Y3bjCv25tnjN+p8pVeqFtWyZw3eAWENTyvSHbCT4xpbCP/yH/50C1XDxZHJLz3z1PWDxY2T0+amkifVh/7B9zteMZc/cvOF9x7fAnp0wxIzm3Xbrd699+oX77/xW3/4mXfPNg/s8Orr9x6uL65ma6eLmGLdLoa5KFjdPjj4zu/+np/95N+7ePfNcf/WxfbN/+d/+sUS1x/81r+yefR1iCLC/Mvf+I83P/E7T9wx+smjMNnptUd0OxVirsL5Lo6DJ/PcRHFKgItKL5ddLW9UOmjayJpTw6WsOEdmVjghW63UwSlbGS5ZtL4E69ePQ0brrwRkrqlq6/7oRgIgYhm3Q0pXMU+EtRxnaxS3psH8xc//H+99qn7m+Mhdnb3vPU/furN44ZlTWedf/M3f/vrl2eLomY985/d+/Xz5xHM3wVTPPvsBpccPf/gTL9+Dm4fmP/wb/8j6Z/Pq7pfe8TfvfnsXF0x0cRMrA8VOiyov9LEyCBXj1W4lT27qZ/p0+IWf+5QEZbdzdPvlqg60DZv1uMdyLH74H/0H73vyqSZfA9LDvbPX3np4f6GWFWsSN9MWVvI9mPTDh9svv/7gjz/3mVfO00hpYNXjcf31h/dfeee1z/zJ56JekFz/J3/zJ5J1L3/+05D90fLF+y9/4evv3vvrp9/67r/+83/5xffolcELP7/8Ju52+/U708XD7eWrhSSfXRH1jNkACEZlwQoLz6ogEXrBFGeZCsWI7MGTVHHZr1BSJ2h8vEtu8Nsx5TxNoT++xmSn2iNtGsKi5BXQIoxpThYluiLZWHqFu3n5Gu0PcF/+6FOf72/kG+1NMW9+5Lu+8YVnVlKRF186+fxn33zrbPOrv/HHH/mGj6/HdhPf/Omf/vlbL338y+dfvtPO8/rNqv3iUT9w+pih/NQ/+71ILYBQWlEAKTkib4jWpVli2+D1la51IAdMDH9yjztyfXVjvCJ/9uqrFR3N8QulHIRhLE8s7cn1hzN7cHlGf/Lv/2fbS9jHd4zCRZQbba/x5sG797OhQ/ar9s6HPvxtN2/czD42/Z3+CPf2sT1bw7oSosn2lR//Bz9pB9ssl9N6f/v41i9980/dag+XCwieTvsHeUvK1f09pTpcjqQSmoxTqXXRLeX5dvYXVDEJC8ZM3YipXGh24tyopaFCIaexZmQ/NPqAHrTFBxI8gA/7fSExkSOuk8GWLur9/qrmgFvI4LyjplGRegjeebP/yMOL6mEw9k8/94XX3nrj3FcHhyerI7x5+P5X7r0iWogD/uqnP5fD7t/60R+83Myvf+3BJ/+Lv/VHnzt7/7Ory3sP/O6rT3/Dxxteff63f/2Z53/ki/f+hfyyPL3HTpZHdj9QTWjWAJzTpJTJLgRkwuSSNWW5hIZo8R2/8ONeoSB5k1vE+g9+96svPvWahpe2dv+nf+/XHzz8I/rt3/bXXnzv3ZWZr/bT4OaXnvvIbv/WfpeZEm+/9ki2+enrz8uue+ftS2La7/nYd/QLntG+8fmv1BT6W6dn9z77n3/yn65Wz2X39qd/+H+7pZokXcv51VvbzeO3jHDzZDi1gY0gVlwBI1bCCpEzpgvZ1VqEjIr1iVrBa9YbFqgPk2SsqI53BkYfjKJagZb+4qI9OnWXl3RyySV9oIDzBIQUuHzjreOTm0UiejaPD7Q6LLJ2h/G11ZeCyFQ+/ou/OPv9z/5GJEf3r8I+pW/73ucp1m8+fOPp7vm//LEXP/3prx1c2739+OLFZ775tS/cu/3R29fuPv2Rl154/Pp6ePW3H1tRpvvf/A3fl8rjBz/zqlYHtdCp1IxMkDKwNhfT1bvoblO5A7ik/gmshxAF4fzoRz98+995IXnzB1985ehm/b/8k1/+9/7GD7ircihoZcLn/vkX6Ld/+3deu/nEiy99gJS4vbx3fOe7brz4xP/wX/5Hy+WpNqvFjRO3P3/5q18Nfrr34OK5F176xPf86JPPnG4e3v/jr/z+D3zoEzC/87f/m//quL/xz5/7ux98/oM2Td4XOF8P40M3xQS0cCXAxwyggCQp6cwFq6uqYKUUI547kpkUdVsI1NRUKQZTcLJb2fdUahZI4hWlkQGPIdGVzJdDdkXVNF3O6voyUbY7e9xJjkwCAoSQciCqB5c+dfpr9szxI7/LV28/2F8NOyRhs5ldEZfKvP/Z524cmH3cf+ADH3381YuNsse63UT3a//yd//qJ751s1t3m/ozX3/1fbeOHnztnZOr1Wll7jbXGlORkCu+FK0nnhq1Cl5IwUtmwAIDCNlzaBUAxnoE+vr08g/8X39LVjxTOmP15Xce3T7p7v3ZH9an1WLsdI18jBfO3161DTcmZPrKK3844cnR9VvPvnjr6sr3phsuXzk+Oj7fPBRgm+rWH/zJpzbbxfd+/Ce2F28P+7eeu3EqcvnZJ77/qevX3H5MfhNmm8Y5J5bFFeHXJUvIbAt1KbzqGcSTUgIwwZit+6ec3yxMPwQreJNTIIVyB5HtOMlxO4HE4GJ9Q8dcYKnELFMIQgnBYLx4UFVVnhJTqZY80UqCJVIOIS0PT8f11RvjxZfP3pi3+N4T887Dy8UK9KL64e/4obRumr7Nxry7Xl9tRnm8euON187Hq+J256+RD73w0Z/+5E+9ce/RR5+G3/nNX3jv4vr5F+/fnhYvnjwhUSgwujBjhFaNppK2HUVoZRKkTiRGVwshDEapuR1YtWLUi3pdfuXf/8f/5s/9/UGIeXz0LU8fffnlK1gcM5BwQIJd81vHdw+FZjVZLW+fr9XbD35nLNc/+MHvknV9euKzJ9dWf9WRcdqWrz37mdf+7OG3ft+3vXn+uc9+5Wuvv/bn9fMfvpj1J9/7Y9/8/Cc0k+sH79D02K6xCD4HIioTEyrFY6GUdkCyIivWFe+pMgteGcxZNlWcCvAYtWFSI5TMZh5MnBLvdcpUGxmnLeFdmTLhjCWagfjNhWI8JAcelezs1bS8tko0+suInLir15MNlq7/4p35+eNnz95+9/Cw+3f/2o/xy7vlMr75x2+mO6vygrhz/e71oytx3bTkWr5Nintld2vueYtv/cFtXrcxwVv9/s1XPnj0dIVkIfVSnTLMlMhFj7I0qjZxE71oKuXTJKtWelAshjknrbSg1FlO89AbcfHmQ9yVVKGl5uVXXn/ixuHgTo3h/vLMVXfoJ37o+28/de2wP0r8o9Wh/79/5efv3Z/+4//0p/zl2bKFi8t7u0fr07u34ma9ni7WwVztzpdZvProjVuH5fmbd7/p68vvqJ7hUm7Oz+NsC0Xnzx3cVBI88UupsbRKWSEYIV53K076TD0zmua1FAdTmJv2wDFSEZ4pYIoMkfBmd+9lohZcxXSxVYdHoq5ZVxMjx4udinS4eqQSDsP58vSZIikmz6gat5dKMI8lFSPSJpFQLbS48YJ6/2r75/fy1iG/ig9b58OGrO9t7j/5Dd/02Vd+3a+3F5vJLOTzH/mWd1/bLF8K7/nB73Kj/OrP/qJy/QkXSxJGCgdqJcsB4Zuad4FgJRqicppTdpHxpRSZsEvMXLB6nkXigQPPkztP98I8iRbfc+svDX/zA/YZyBdfVMs7dpR37pLdZfza1+7Tb3rfX/rox/+NJ46r1998fXXr9m996pfP7j9cLJ772F/5scN26pvDqzdfWzlrN5s65hv02dXiOASu6cXT1VNdcSzg7tE95cNm2owkF9LYdLbQtyjZdnzBFFfqoOBQVYsciziqOTEkgsetMoSIBfpCgiNSFc25z4VmVvjg9royZA7q5nG4f4EEVd8FqfzlVdXWJfowz946GQGWOqXU6NYSzyOjBPNkc9lPE5NGI231Qoart4AeDc47F7qjhK5imjk3Xlyc86oNiQ/uMonLPAhh9HT7Gj87e+oDT22/Zpt8lQkx1QGfApWYSu6kZ+agzJVQMRTs2oUb5wJTRBS1ZCVgbNzMIGfrt6UoO29mPj1z40CtnrJY/7+Xv/t9/+MPlUy/9PrFSy/crsBcnr3Fw3w1Pd4cfeOH1pfnuHnj+PTF+w/Okj3fv/I7ff38U08cvZdf67LSZehBni65j4wKTnA1PJ7G6YrHdcj8sXNDeKC7k6oUo29Aiov6tqo5RUoo9gcnmVASrJQKx5gqYHIpFPhNZI0mRlOgycfEkRSeKt6ba3G+YhriO5fQy4AsK8JKqA4rF71IJGfNJIqW0sSZURkBB5GVKy4PV7vqupF5ap69S149vyhekVZJctj3w/qs1UeeTrn43hg4vkN8KHRckANommiAxSpcoZCLg2nZcmA1l8wUkkBJF6iGx7o+zFHqQx0s1FQOdmMaTeIhOhu3AjmNecLSgJlrVhUkxqyO6YHsr0ndJTu3O3z8YCRU3L5z8vb98aVrcOPomH883qjOF7eRTZamqX5K3H7pZB23V+/Z3XySdE+f9XLRm6UZ5pc1EfPjiLxhyXm/TeHR5bZxYhtjTHM8XDyZHR4sj5gYJD8GwFyK0FqZNiKSxEgUwdqiV3QOdtqJa3eKvEzjVohaakWsI9HTSlFXfJdJrElmBTeMZFNkuLDqSNN6xd66HynmKdQyDT43TZP9WAQjNMY80bqqdetnx/nx9O4jKlkremIeFKZKvOr7pYtUwoHLgcJUCcxQaHVLDkPfn6bEttP+QPLpxl32aMuboslBFlgLOsxZKKxaUeiS0YFRXXeLnMYWujCpmDnrAriZQtb89OpsEmzJpXVxaqpnUA/CLFwmZXgYB/w7P/Jv/9xv/lrX9pLz4f6XDl58iX724/990LdvftOz+7c+W59eD3+xaU4at/GHJ9dGP9jHrlaapIThsPi3U7icUg6RDsmuDNu70LXtQqwyOiO1oEwokYFwdsorl0tSysxRaONoZshoFFraOWAqKWjTFS4QM4uOJyhth7QQzcg4RxsV5zGXBEizwDSY5jjmKYfZ76xqevTniUbBl0AkQ58yD2FEbTjmUkS7KOFC2bxWqpIn7fatK92alLexKNl3ZZtkpZOdsqe8SX7neVPVfUuQ2vGSIKma42G45LLOfgDKkJXsuDSA44h1HcbctG2Msx3C6mjpJss57tf79niBbh5SZDkJogjPUC8MMygldPX+wVnakk/f/60/Pvvs4rmnPvEv/ufdl15e/6t/9ZEf/EH6hY//TKfp3ByeXjNxFjrzvJ0IKXbE5DmHC4xiM0wOgqm4DyNXTNPW2tA3hwomznpgPmbR9XXghUwEmey6mtU5e2bjrPqexFx8gpzlURu2VtBUIqNdCjNnuSBxRdaS0CIQjSal0BlFpfLofAjVqo42ZkE4FrffussrwXRMTvCmPTn03maKNFE6bdjprZKGYik4CmzD1BLahV9vmY4kClfmEKSqsZI6TW67H40w3GDMOO/i4rTGnLiu9yLxcyI1LSGoBkiSkfpiE5Calq1aHM1uUmYZt5d8IfNUwrjmjDIhRNMNVw8LOaxbkSmUOaqDjhLgy9rtbdq44fzqD9/6Dcucjfk7b71w8/r7f/5z/7uokF9dbAZS334inr8Zwk5VvIhUdrNl1Dmkk7XLDkjHV9h2XZrDgsI1HsNqmYCaxHl3tCARUOyl7DkpBaxqFjT6pCkrXBMjXPbZE5ZFW40P1vq0JUVlh8JHRhGZdZEhFiSUe0JE4pnkA5PmiEDoSoV31rQywEVyk5QhFUlaycOO83qa9qRwXTW5DLQ/TPOWd5XK2csC7a0yz+gmbnoSLnNMFeMKkBXmdxkLmE76kQiQmqb6QM8M+U4SVdSQkBdHjGI0ZMIDUhAkx8h2IBsyDd5GRneZ0nDJibSiOiR560caSWLiRBoFmSAN8nBJacaY7YWjkXjnkNO+rkWkJ8Ye9O/NtK3x6KgAX3t30k0XW1EKEqztxqouMqKYUkvlD/QipUorbEWxkXa1oTyJ0qa2ArfpmwaJjobXRboS44iy66DARJmYBGaHMY0i1qoKU5lLrFZNdgk4ozFD3dIU45owUQQBJgWRJPkUhVSEpWwp4WC9TUFMBRoNZqTjCa/OaB5A9dZC1zVxytYPtWqcvdLdAlOV2Jrpdj7f133jY+ZpRt4QSG6/rYxIQuJuTQVnhBs5lbQigk3T3MpDuBHREsU1JzjnzCXkrJLZp8lXbe/9zEQY13FxWCOhBVVKa45dokGzNtRjibbtloQEwjqWafIxZ8IyKTSFuC324XY0vDJ4dX5j8aLploFqBVpVAXQJyEt2jpSZuKuulTW0hksJvIJV3RjT5KZuoV4keiuClpWWB5L4meWDnDuSeAkZa2Ccy4W2OZ+HGaUqJNOupquqMR2NUfJcHS65MdkTv9+7mNPOMqBEcVEteM5pZ0kSAEwV3EwTEZyozIqoDhcpOtCEqeMi9kJQ66tCA6+BxVCcZcl6b5ky45DLdIlkQaeZ8WTnDVcMfSkSCvdOxZBnJpUTMDs7jRhnyeS+JC9kJzoxbwAzpUSMaLOdMwIDhDxydpQQBG+xyPrEEFpb5wlBw48xaQlsCqIkWQgUwTOrIy8oDVctqVlih1Bs3s+p4Nbew4FWSh4f3KDS1dJfr64VB5ybkLxM4rwmhxyUVm7YxLppaqVCDv1qkbgiwGimh7co8CUhNCEFQUo764UhhFfEbC+vGilYo/KD7bLpaIlIAzqOqXgMBEAuqpIiZuSKYeJ1tn4uhigORZIwlNgeHcYcGAhSV9W75+mkTmeXueg0nVc3TzPjggshdMCgWITQgzZEo9ANlpidoWxicUzEyGy9L4iCaUYJBKoajiHytjmZ5/W0fmRAJqM4RuhdmJdmQTBg2gfFE9faWdF1XWQk01JCHKeTgxVaZ1HJHGlF2mFeCyYZAU/OGTcpOi1r0CLNIJYmjrPhzFpE4vk+l3i/8EIZpwlp4IXZA3q3re9Q2l4+XJ8s2ivHoDenFdQGIdsROdluaVWtBDGUMaN59jRml3YhuCS4A9kSbriAijCCdd5SjNwX0i1a2hiGuW5qtTApZ2CCABWJKggMSLZ+vP+YCZJLYVyPu8wPOoJI9SobXgWKw1gUp5q5/Q4rGe49sPuQvBNdK3it6h5rHioRUgDTF2ZicRlaIQ01vTQCYkUFAapynrhUwFAAkhhjsLvNphCK475mrQFJaSVVBtnnWFPmQiCzd1CJlFlKlmPIfg4kFBpctEavUwpUVEC0oBDsBFoD1TkHrntRAaUNAKOJ6EWPlxmczFlySTmSxGSWyQ0Xxe62DqgZK66vLQ5Fj5QlrQNDShBBE2NMLOqGJKeFLBd110AvlQRwjGGkjgMIY2qDw04W70VCdOh6MDWNJIUpa5r2F55CLqoTLQt0MIsuEyi0BCOprrlpsZB+tUjzDB7cuBVtI3LY74eShzxj6A00FVifhrnsYt4MJYVCvbU75jETW2yAKRmpWNsVt1ctbRfH1Lk0ekZLon7aXnBZyV6xxUmMMWPx6CE52dGu72kivF+ipBl8DPvAZPFbmoAACqLrRk/zEKLDKP20DQPTUCCNtaiRVuNuPY42zIkiiqbtmo7qHBLFPc4XKWfMjABUORFSkSIw2RTGhJSl3Txu184+ypHO4Sw6rFs8un03YcWQB7dnzCEqUIC9vCl56Vfbqn0gMI3jZX/Ud/USpCgR2xWrBUHDGgVqR6b9mFyurCCzSy4oEvPaLlcNHWmaHlGtyFhjSAIYV0jsUCIpmIh3aMx2oJk5Ux+IOGduKkEIsAwlTW5OgQGnIbnhKtld9lm35vCpF2GhIWq24GF5hLWpRFudnFAuY8KL/RqUst5zIUyjsGARGB5cQM61abjDWAIrGpFl73G2UshMFdctpMCNcsUK1TACbj1Ti83BEZVS8gry2gVamPZpXXHDiaoNpyBBNcHFaUqQCWcY0MoDU68qkrinkpA5IgLn0EigKe4eiOrSDUTjTYcB09D0YqlfyLRVUFlnMZtUJKgFJwXDxLVuMjEd0WiqamW8tUxwpQ9UjfNACREqc9pWE51ZAtUv/OUOThcqT3mORUF4/LAST6IM2V5Afxp9ygmZL6ZpY/ZkP1AGOE29YRTp7LagVSkIRDEl+MM97VtmE1Popsdx8FkTBoqbbn/2dZErdbtQBLK/cMCwOEZFtoUbf7Q8RoYGVNjPDkFSktb7CEIr8IP1pWjFchymIcmKbs7ut6FhopGa26HN1JvFYRon1mm9XObsyt5HYrOmw6NyIEu0LhYV05mobqS4EYy5neN6KdiEYCRnupcRgIAWKgIHqlumZNqM1hNBplSc32Ot8zzTQJlSK8p5pSQKVmShO7YbH2tFJRUAVVsk5miB8DlrIRUVRFWLjByZ1s2KFKY7QYwmkVCHSdKwG+CQi/M1cXPgha9q0awmucWARNbp4RWQREukSxkwkJCoMSHTknDe7mPOQimgokFC5l0ZQumMlCKk2U6z3w0FZUZGCSMlHCyfrirCFMeMJYGoNKcScxFCUxsHRxgnCBwZEayIAuiKsG68PAdDBDcCo+n7pj5FKher6ynEnGjmBMRM+zoFJ1lF0VKjaKTIKKdeEHV8Y+XtEJMSANBfC+hB1rEEykCyFBzPheQScymUimDnLIDklAmmvfcOStiOGz5tdaHoxy2RY8bBl34Jq251IBiAMBnIYlETSikKoGWnAZbLAlF3jQw5EyB2SJQxZrjdBuhIESXxEuyluLGSEpGXZIGuFuKgMzWb7m/4UmtdClPoczAiFiAF4+VgH3pri4+FA3c0a92Gyyk4BE4deHl6PbvCjYr7fZnFdD7xhikOqm21bJjWgztn3QlKRmOQJfLLvahVKjLQGIEItFhyGVOaQtnzcb/NMXhwBCs/BobDlOWw24e8Z6h4z8nhEwz57io3/SHDZJhJnGbsQ3FyuQrzhFmS4HbTgKYRzAIQkanQDHIxSteqz4JQVQgEwohuGkpRVEwxGagKAxbrKJkZqyLGiFAyLbKz9iA6cSJL3QkqNa/NdLEGSjdWhVjT8hhcxKjdtMm0LUgwoSExZu65anktda3M1FAQnFK+vM42+1K1cqGE5qUkqGvroDQqz5IeH2MtM/WC81IXAEZYZSoQVGgleadkpWcb1fVeSlZ8pJcyFV8YYETifXQjq3ZhRqdsJVhpAgm84jJURKDIsRRBnFfubAdhwO02O89LwcLt7hxsoLUAsgyzTY5QsYFMM+k1h+WJGXaWCMTAizsvBSuIIUU/n4FRquaMRZ54tKOQmKEwahaaaeZyqphg+2kNBXzOgfEhBvQkp6SN0OYgZ9BaESdBZSGKZDFistsQ9nbYTdkWUmYp0TTvmrqNoPTiaSk6F0bGrd1eHelAhJNyyRkTZQAAQwuJQS9qoLo01SK5mAZWupaTXEZHJRMp0FazbnIPFUkBekPWE8coaC8whHeHvMu60fRAgSt5vhB1NXJSVyaBBUuR6+qwlDGwI01jVehUdkRIEjf79W7HWENytzzq3fqx55JFTG5fHS79PCVKaC4ssZj3TLHsGV9WZLJiacKESK04aNJ+DCQxQZGNaZyr42MXIzKeHmxktaCCxgCVPHV5NnUHPLH2rsWiEy1FExbjcIalD8mjIskDK0krIpgQZoWxVKLBiLJpkBZFZUqEgS2QcyTEGOeIMDL5lIMXzZ5RtSSbktuU4jSVRISh++XJMaEzctB5GdhVSJP3gNklRiFSnxlFkWYfMDgbJ5IFZkoVQqWFdWGMrAih23m/ww3Sd6VSTB91tQQuBEALZvZt2YeJdQWlG3YcJZOmyqzqGgFhF6MpXObJh1Kg1myXGUmcST8NbvCp+BRspdXhQYupmCduN0qDlrKrKNd11bFAKaNZMVX1OZGCLhEhb19DUjJanqrp8TTlh1UvaFG01IfX7iKHRisefHX9tCWueA6EIwt1uyAIJXIXpqquU0mM78HuS1ih2jHAQjwUrJoDoCIm2J2VVCC4ALIQggWwhMyAF0YZp4zxHAo4n9YXSGMq2W77q4ud4JkwDIEAI61s+0WveFuAUi0QxzSg5o6zuSQByUOyjZAJUk2yRZI5oQVqQpt4hWQsJfkqE+9dutriPs4m5AgpUns1pMHFyVEVuDwUMVedILT4UrdPIJ99cISWbUZPRR2mqWCURspjU2Y5piYODyLS5FJOjnB+cvO0u1kHqtTRomRCoVJtS7Swbpz3fp5t3Ezz+QVN2904ICU8zSWG/Sa73R4hSM0PTl5IzsiuBpaGOTCA7Eeiqs07m0QElpg5EkGi3ezszpGpWAjOR6rW5zYxWYSXdMW9EkQXEvZhmGIk1vKTKIAzDtETLCCyEjXNEBIuEbWbPWMkRFVIeXxv9gMHKoy8ttvGeTuViLroSjd1fU1UisQmjZ4gIWZOKEpWBXn2ETI+3u8mV15PQfvkfMLip8t771ANhKzBl6wIFYFwEE+eptHnJmlDtCrThKzq7Tan9RqwUqoGZpRE8sYcPE0sUdlSxwkTVatJoH67z+9iKWNdj+O2Gh6/bparmJIsrSMpEdCdjjlToshCIA2MCpwnN8dtyNN+sOc4paJk7cvItLGXW6MzpTlm8Inu11tZZS6pEj1xMVpCq4rxTJLzFLjSYTvmweW2ayXwLOVS5O0sS6oXtXfDeniYgiPtfru7YvQaeKikIU2lZ1VAFSKk4QjFxjX6mmbB8xxsogjzlmAeOM3XThsmss1fKfgYdEcNJlC0AkLV1bAnSiLYlEPwEVMd0kz5muYhliVHdmC0n+3NpYhcWQqVyNiv2oguOBGjJTEJJaBj1Lu2X6KgcdphglokzE5cr8qU0Y8lRkpVmpJYAh1nLlTxKXjV1rS4RCTRSQIbna/Wdp9FNP2Bvzw/PD6ligq6gsICWqFM0QJ9KYmDooz0kEYeHE9O3moQHZdRiOOipSB0fHDGeMq2mMOjIDKisjPRYKQgBQiPkFghrUzzgF1RSlDKpU2prvLsyBR129rJCiwE2eroBoaCuKzrAHxvmmXKgXDMRomCirKcc2IOaEV1LASKt4o1kVJRBlLi47NJiznQPcWls3Rv/cGhUgT6ekE5besFEMIh4cQSwRLG7CDRA9XssufAmdkPXtB91jxNkMNmnHOKVnIAJ0E0CimE7fjOu/N+BlooyaDaTAmtRC5YpkwZy6IhpoppIjLDEEStSKLOhmbBhhwYCkgqJzvOFalmRWDZrOp20d29k5D6UHjmIToSOEMUzuNUmJRoXSxWuqGJpADkYdzvdgwqYhLZbCRgVbeU0vb6MTDoOCjFhCa7+d157YQ2DkLGBJa0XRMuSfA5Zb/zO7+dCmEgxbyZGLJAxugoB8QsSyla1ZTKcTemMAKJjOpAZhdzoaAbk3NhoFkGEjHBUChNnoy7CSlPwfIYCrKqnW7cPAXSNKvl4DzlGlj0rlCqiSDeTS4kykOCISJDsQbnNqKJtShpCChKcLyqF6yAm8ARV1WdajkVx8AXteDWbYbLh25LlTF2A4Ibv/c4u7C7H7djxSIpvHDl5pngtPAYoqovCkmXYbNnykieDBomyOQtDamEIBUqAgqI6JdSlNnTxBU74v5yPV89ctNlpMPlMPqQUHOdl6CXBdtSwbzZABkZvVVGTdBZi+fnG1pbs+gPXmyi9JABQPBexXkqGRlnBIiinTSaTJMQHCuSfMhjMsuCM4l+ltT66DkApYmBJISUecMSqypOEqGZN8s++X3OCAjFaigD0BFk1nRTZEOYMg0rSQuslPIp+uXRrTQQOxYOjESwU4ACKUfGSnY6kUlTAzHHtE6Dn1W9ZVhXRnGcCsVFp6XUyZ2VifEKdF0SUW5kGoCJnb26gBLitJYl5JyE6qRZOE9M4alMrHC7Gyfh0/bMC1ccw3GXJ69Xct6OkHQjVCxASHFTiorSuitbX/RCd6bkgI92lBCki4SZFM15qhqVZ8fzmeoqCIUmurv3yMaA5JwdiZlQH/cHq2OGBFKIUYqi1KKapw1Y59dONUW2SiJSiCRlQJUDAecIi8hbEjkVN5mceW10S7gQFYcIiFlk4jmrKWGqUQBAKLEOi7eBYp6vwsC8T0LymCFtr3IyDFUkx66sc1RGdNFHs+plZbJH64Y8CBv3vLhdokU/0HpZWMMN3bl8nWdNsu6bBdTZzoAarR/K7D1Sxmbp6iREq+UwXIa+llEwk70bJVE5+8kWFcbaMDqpiW/8Pnenom4PgWbiiq8DTkIdrOY07i9DY2TxXnY1+rX3RlYSsGy++Ja6UalAwzBLBiFiSMHt9wyKTbhcVSwXNMTNh3m/5YS5YPrrNzNYgirtZo3AyGEoEwRUepFIBtDOp7o5Ia6wFStcADOII1OM+BAV5Dh7a2veUJgvN7TXb5tmMQ77StTsMKYrqUFSoMUHtsJxHzmj2ScjlalN2hdKxv1IACZEnAdLfTLLxk05wrjsaKI9lyUHodo6BF/2tJRR1jDsz4XUJZGWFaTHvLQDmcGX+fjI9F1PCYuIyatCAUu7PpfZUBdQtG1iKIDsxnvdQVfKkCH64CAy6nkMYASx55txM5LkCEDkNKXoRu+jdcKWMUVCNmf3YU6LEMg0UA3jOIVMJIOSCgmieU8npMrRAqGUQCGJJc5bV/Nbglg7zL5UIHrTUnc1uXnA/UWJiVAt24pyCbGUPLACIE3Ms+wOKfcqJze7MdyTopSYyjBmBilnn5EzQkMiWQVaIyGSYYbDEJORN0EIt/GZ2BJIsFGb3u8migQIYsIcE84+hCizJyxkdCU7n4H2iqJQOjHS+0LQ8zITynhKrkQESkDTOAulGzvE6HzipeKnj+epZS0cNx/b7QhEODk5Nj2TFCM0SsfjU+jlsqkMFm43l3aYGC68Q044sql4RdtV4ROlAThdXX9WVpqvpJDs6KBKhCAgVzxME5dd12XRNEJyBM9oTYdJV1V2BwSobnqxEhBWQabMWOawu7wq0yaQC7eFSc7LxWnVLl3aO+c9KgwTDufs+IC3bde34IswbJwscYQzIShLlgsZKOFFZ5an3TkJU+JcyESr0y7bSCBm63PJIQapEmVte3Rg2n10MblxmhmZcbAkq6wqwBDCGJllhJK4cdG7ODtZ8GJkWjMglpUsDRZyMsStp33V8hJYYVbw2tQih1zzUiDlWSDZ5yQKuZwQDTPn1i6U9Jj5Ya8Xy+Wq4rkzEBF61SXrE4fCJ8r5sdSZp1s3mAxxLwUvCFpUYBY0xjHnzrstIytmBrcVKTjOdlE+oRtztX3EWVOZ5X67nybkPK4tSh7aXgWv87ARAARrO484B6MkLwiZT9v7xvRMZOJn0fHCYG8zCtJ1q0Qjc2o/v0tkeziOdhx5qUGatHlcy6JuHkxXgVEqec4jJ1BKMIVNXc8SYdwxJwre27RHB2GY9uPeVLmuOxcuOBxQsMQ1pmMlxJoRl+lSSMyOUE6FRCoBEkaQbSlJzNazkjWbgy/WZq6MDB75upJL4JKQRAxXhRMF0RFW1MbvJaOTn1ldVxIm3ycfBkNm+06/en/OG6iuHy2uHco7p8Qh6CqmrJarxbWlaCuseZhGK1B2SmLddCCM4kxlz8vc8b5NKslKa0P3m1kvCmPG55rmeXdxyWs+j9ZFojS4/RZot1w0MDOKTNdGgVSmSTFxDiTifhxZ0nY/CaIpJGcnwvqMLDnaHaLiJs97VvoQ3xJaltlOu43sDmdnoyeUy1hktkWpEOctMofckwR5DkrWqVCeC1RRUl9Vlb0Y3HogSEU6qg4MDW2chzJw0CSzipTOxonxNs6heO4tTmMWShbJCRSOgoFsu8BFQGGAmKZVHIu6diqyBN3mrFHpGikwVihLeZ9LZMicdUTXMrmLYVtY6gwzcVpUT1p/obgC1tWk1QgUK0YFq6VxdixZFyVqofrDQ9U1itSEM+AUciIgiGfrXbFn6xqkrmo/p5JESSokhqQmFIGK2ixUL3RTg9KmPWAchIb2bsWaGjDnzYwFwWQaZ0W4SGz78FyKfSCkUBWzAsi1Ro7MbwkIVlgi06R6TVXDZAnBBzcBbWgJOaD5UC84TR4Y8W4AyllGigSH7f2GVRFo8oykFiOb5xwIND1FHuJcQHPeqCTcTJJkNJk94ZCxINJkk0+5Xcg4bOfNRBILhIq8Y2zhyaYkl6NlQhcw0/matJUoyGAggZOWohJhGkKuC9gg1oVGmGzGi0rrZC0hzJa0WLpGa0cSMBBaKcZye3JCGU2cpsnNm33xwc7bMM255JwtQT9vqYsUMpre921wlwu3X2eUMTl9Xbkw8xqMauYk5LImQEsQGXZVw5uTCigKckKSzvExYaZ6/obfrZnWMSQvInJaHTQojtTCeDdKnQlg5oTHkTS0BKREl7q4dcWTVop5K9CWadw4t3MOp7+wmVfIvUsbrYHMjEvq4wWlHCojCiMYkc0hDiUOjZFuCNNcuHTEayiCkEZyE0KpKgUFhntvaa0SOMWReDTisNUipmSM3HuSKUoNFDjlDc050tlItlz1RcxSVYKR6GOwjmND/ZwcSksTo1m5vSMggmQVF0IIubuoCGESAoAQhNPsuPdzxshrLuoDBmK+3Buz9Kx2Z5tovZDK+0eO+UjSPCGllLTOkcbbC1B+uiiMeSwY1LbmoaratKXVga77QztHP2UKLJPLZGmOdU5T3Pj+5kkZrTA1iYbaSCWN2bLMVNtJdSCanuDCMzpczErNRtfF7nnn20MCqquUz/nMiCpNghbPFUM7pslR1AE5iQFCpoyXDOP+TDSQibX74EOsm0QxV0D6SoQYTFeIquatZcVXypBcU7k4uX1n9E7QkuOUYZ/seeKG0TxtqZ13dr+LlpGyK57bvNfod1O4vHiFpQWDUmhmVAkhg7/EbJGnOYDKCQshhVObKeEuboYpMk4frYeMBiijyTqUVKqWOFYycCiURWFExsC2oe3rbCnuyKJdNj7j1W5e24KpMzMEw7gqqLgOfiaSovGUVa3fRXaQAX1OSR+shOSy63eDY6vKUK2EKiHMMZUo5r1jVdFdZYcChTBK035iUo/jlUfHG6Oa1s9st14XhAoOtxsqlKB1l2NG2PCqgBhZUTmH7FiKguSY20xzlk7FNNe6L+iLVaaq52FEWdtAIqWElWkeUvYsR1XRaYjebkmhyMg0z8oAlZrVPJwPNOli5zwXoR5fv35DEGK0zlGw5rxmh26CziQtb6TsrYuMAA2UIk+Y5zBP5zEGzEGnEI1uHWMMyDSSg9WRNqRvaMyX/z+8sJfXTa/cmgAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "reverse_image = compose(reverse_transform, x_start[0])\n", - "reverse_image.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "我们现在可以定义前向扩散过程,如本文所示:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def q_sample(x_start, t, noise=None):\n", - " if noise is None:\n", - " noise = randn_like(x_start)\n", - " return (extract(sqrt_alphas_cumprod, t, x_start.shape) * x_start +\n", - " extract(sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "让我们在特定的时间步长上测试它:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def get_noisy_image(x_start, t):\n", - " # 添加噪音\n", - " x_noisy = q_sample(x_start, t=t)\n", - "\n", - " # 转换为 PIL 图像\n", - " noisy_image = compose(reverse_transform, x_noisy[0])\n", - "\n", - " return noisy_image" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAAC7/klEQVR4nATBBWATBgIAwHjSuKeRJrWklrq7GxR3d9nYGDDm+8HGhBkMGDLc3Vug7u7ulsYbd0/+DijOu34HWhMwMYUeANt9RSq8D60L0JcpC0ZmDGpAa8ZAlYmywACYvEU8o7Ps0yEaYiHLgvtbB/CLa6+ReuZjql8PRJnEHn/dvDs1FH9xqvqUjYfkBWDk17omYmAxCqbps3bciHf/oMBVGB1IdTrfjFo8tO55dZQffJ0E+joMipH2IjMKVS96yAHh0LUjEbVrhtUaf1VUn9+sxXyTzo0JEHoPF6dNnvsTQIqFuufdoY6W0bhjlnEtEvJslrFzFXDwFA/KvjaY6IFrqBj89JLs1MZdvrqzVv1k21Iod1ryrccndDnz4GRVP4UPVl3QuI+g3oKq6fJwFinW+fpqOPjwCLjGtJRheFy/Mhr2x28Dy2MKujY5kO3+kkjQkpcAFGVqwivcG9VhDgqYIXdCJ4kIXyt1ljA/pUkP7n1qaDm4QLtgUyR6LxPZkdKgflRdFpXLHJqg5CGksmQFQhugVICo2YGqfpkXgS0HNPijtDTICsMMzhMPav2sNk7vLcEl2PeTdN4ELB8tLTC5VadqAdXwaWXf0g4GDmX5MA8cy4bTdSJYIE4eKoTxkH1E93fziNrHfbOOYTwn/x0/xo0mAAhnvNJryIJShEVXeFhMJdn7sgcFLWG9ZADXz+hhKoxPJkykgEytQU4x+y1abyULQt2A/MjcvEmUxpH0Adlj7cu/wXoiAzqeUScX1PW+LsytTtxkQA9x8V16AGYeMpDPIhB0XE7IuNJOtcCsScEvfdpLEcVfhGyd86L47egL8vFQVFqTaPNNR0NzUTPH0TfokhXOsDd2VNX6J5TatTP68FLNPDZGvxuwQPO+cxwOiD2NuhsUgeJ9LQ40rvm28mTaPyH4KETO0+LAIYdyUte3tRyTSQCG6/S29TJw9/Coyz/UVlseKSC8RBmiBDDimn59mULGzDjgY1COTdSkygtCXYRNCxow3UZNNdF7NDgJBRU1XgiYiPNnuOC1Yb5LGaWfGB+1EXENvCHglfzIOXPWSluHTZamrBgUppuMhhX+wfcnJ2LBQV0bE1I9Zx+/cxLTAiFDxqRWimApxRQP739m+JS7SIATuuMw0AGbWZmAoHWAh1zIDIJikK4tKLM+/CyO1S9PloT9CrWFU+foOATBDBycNWNhFlW4j7prcam4FYnIhXBHOtGmQqh/pW2RtpAkYQ+rZ32iDVafMBOVkEB0Oo/3YwgyydI85ED5GFiKR3K9gbJwefwJIJ6PG08djhrxUFz4ERlTFpyAaynrmlUfHCK8PilNUB3Rt0/pA58OjDPiUYWZCPSs96iIM1/+WpjMDTjmmr8UgrSbsbIBcVwlQRClntlspL+h0gqs/uORXpRLd8awWvhcOGmd3gkRJvApp6pTEgNm4dMrBZNNRApGgoW4/ZppwANJ1eeqXiETS0Lejlh4EIIYU3XgUfFgO3TIewpuGA+RRMoM+vHIoKKGfnpeXv8AOph7som01/fzYUEWCC41CQPIp0H9L1eeHRGag64jbBP6pHHKHmNCzANGBMF+oDnMjGxsFU+FfKtIoGk0bGpKe36H2szf3Dqas0an4pClMpT/M/OAghWBSDQjaFSlA+yg8JyTptbNPrgej2EUe9pi2CV5MtROiT9l80iIBor9FcVitjuO++iJfhmzKYFlwrg+YULHkPyVOo6UYl9EFkssLos22EGPqcdWnDbdp05MUf2eLphqrINLYVt07pg2tOMoExzSMwieCP/gM9GzXo1SgBfPujwtdLExg48P80oTjbEknjv6jRKKIT4/QLcQCSzLfQ5/Inr4TJ6SSIU4XlzD2sjv5ytwIL432BU4ouTwfDyIdh8t4AWm1n23uim2CLNkrTPIoulA1acjllcYiwTIRkQEBGLFxjYlHXm3BjA5oScvnn/9qhIE1OKNTbR7qVi29QQ38NOHa6dGy+3kBhPiIXChSwNvD6RWuklmZ0/XAyOq2dy+Wi49G/g7jRMlH+ckRvW7W0DOgNIfyG7Pg18q/D5ixqyP+8/ZMFnYdGkxry3HvwPFp9hSqdOf0bZ0/SgFeB3AAQ3s0a+ZxexuAMAOnPdhz+JiMp1wiGIptw/LjW8cwIG8h5AGYeWMuz5WUWxLCmkxa3fioqZ/zM60idUJUmlIGYI3rgzUr/1PISTNtIPBsh88Pb7ZM3mWRmsvTsBND58lgCcUUEH3TEXKN5zDGQVPCA8x+iuMnqI2sD/bGk5bXOPr6JhfmpLi2x+EsMErh+UZ6ua9EBP72Re5DDjw7CpxDNGKCsHrfpyYB3f2CnHD9heaVmZdcnl63iLNOwloS5UuSNqx2Usan49PqNv2RTh9BaShxiRXeytmdIl3DiU3Yar72YhUL4LzBle3Z19Wg2nYKlDfTd/xHxH+Gcr/0KbBuDXPQskWNXVG7U8HR6Bkn/2iUhLP6QEzYB2now9AnluV7tlohNPtvM7ibsOmvvUST85y8dwbdlBRU8rCqJL0LDZiIyk6EjIFvIk7uN7+GdD94ytVYee6P0JH8bE4sxnknPMOBfajegXu6cyYRPJdkoqGBIG0DgUFI5V1JgfxOGJJf2G40P2B+7zZmuz/2czq3+RDccFLZbI+B0o0i9Cv4wVJXPBeQXgMGDQhLZOGwckIzt5x9xc+wDVtHxCBQb/q9ud0vLHCbfalAtYCCoXjVgVovIQsvKgujMYl9ROep0uw2vDiRYcQA2Dm21r/7YXlMtOkrIGhcg5Lz3Xy7HCGji9uV7P9wWyVZAYBUPkafa8vaIK2zyR7SO+VYd4vZhfV8YSCyikxkJjMyL/UdGJLSN4HEzSq2w5LmVCic7rf9iSlYM5LUg/BytCwJacLaEu1ZrufO7Ch9kWgJHyCrrOz3AGvVgQb/2n5BCCqtmtPpkb11NEFTybLfSEULHwx3BQmIWC31tLrohsx8fGR0Uiv2xPeiBEwM0HmJqOptaEdS95GOKFkSrF6QXFdo0IGmP0JZG4ZJSZm5LEY5O2t6wm6dHpN/qJ/057Z5f5jy6+7Y1sWuzC+ky88c5w84Cf4d8WzgGf+wf/BouNfEh+MRGJ4fOjcMD1G1fcusTLwDfLImqnoagkNt6hoV5Gm28K98CZSV0jZO/ppSLujAeIcqRMg5wMGl3m3m9+B3HQxQET8TYpAHkPnkmKtmtkFB8OX7AkbrBmF9mh3Dk4GUg7NRtmgLlZxRKUHSn0fx8IRZ0Wv61avzoiZGq4j9LpOJjPz9WcI5Lf+iXML89RcJbrFLxzrMXyr7O/vMzqGpec1dWa8pe1KM0PNhZ51vDNK6nWysYW/VhatuYwjDvkBjKvI/4xPd3fOhyZFj+lXraeOCEPimBsHDv6vZ6m6flf3uCWH4zduBkJtsboJ5eBSgOjTcWcN2MuWYT52v+KquX0y2kY67Mn3QqLQpvHghFlh7iNnLh8usy2+eVpG2AUEJEVMqVpuKcBTfKVcEPYZHi9tHRezp5MzWhcnA5Z3SSaZrW3j6i4O8PNJqhc/wG96OW3JYQ7wkz8IqDCEbGFAn01JiMt48Pp+GJY/LZcQ3FmS8BbVBzFtuzDtl+wXoUP5xwLPjbm8m/T+AfOfwknn5mnhUJ6/UTTsP2mz7+e2l4K3zlPu8t5D5lRRsFCFxR2V0nR7eMmnKaNzcOaWBuD9VeuFjXMkJwjqUBjwSp/kwfkhDkPT2ZvMJv/L4n0Lm1fTw2uAj2UTm6K8R6FaZMcIaOm26nJkoO9ln43euR2whVJbVx4gtZQ6us/5snmCrTNS+KtrxlrTHUYLcAqn+RQb+MGVRhTeI8QjF3G45Frp1VnyJHB+CXmle5qSsXKkXjJm16+XRIlJjEZUIzOK6ZwCofiEmao6TRzJrdYtnQ5ZNFa2riIHTE3Bxl0Eb7LeWXnHEPgRrDWCsUw/N0pNfUyMK5+Ye1N3rzPaJwl2YGCmCdrREPuXFnqBwNoQY10cD5Vo+sc3R2p4WugRR/pWIr8Pfz5PyhjwSvIhqi0ezSTwgSMIB4dMpRRaXSOnFGGnOfXhZtfoO6Z5I8TwrJ7pm5SQ3/V8NJA4h5+cgK9cHnrzaXPk5W53c7HG0RkXQ2T1aufN+PdCGh83BHdsJqLfznjgKDRrqB7K3S7xc6/o72rdlAVqf5uCSXsZNptcmqSI6B0B4LH3DOzQ967MbwF9vV79avVXmu7HFFq405xNDa1kJfreaxQkGKdgQ5DFfXSlMHNJxaKIdleG2zCWOuBXOxdpj1RodPO+2kmd/SOy7W0YSDllAwmWQCJH/UieULiz6WkHf5bHAwSfjcfmKV5TvIAyWocnbBvqDRPNtrTKHZFq9wJSASwC+tzt7aVjAVhficZbxMClcsWR3GxZc6VjrgtvCYhzX58D8fRatbhoGiKSe5rySEtoBOIIRnwIndrrO7AOmPWXvXfZO11R3Ppb9qsqT/mQ5HfH+NSKyWe3chN2g4Y+IFGpgkSh7GEcIYjC8FmMD9E1vu+NTsqZbUYzvaX1WND7nWuUHj9NwKQhdHpj71vyMI86pxav8afIfwiOZVHU9GtSCDyhXTG2mPg9eLzp9HI30fmI5AoYigs+MzPl/3yS6fRygfVgliYB4idYMC5y4qQB088TsSrLmEgFaFlGdNZ+GHJ4vbXNku+crV1fJ2wHc6Yf9ufUzpvi7M7B977S2k1K8atif53eMRIZ/aUDYQee64RDTFJMKOnjOvtdmA+pSwxyDSWvTmVh/x1kK7wDdayHQEd1MEYSg737xhvk243OhyRmB5Qt0TtnaoSEKoXSGU31YyqWvorrGNaGaUMiXMHTYQNdg3donvLkYXefgsptEnI80IVB0MogPlGYeVaNR1JWhU8alIPI1X+pO+8HMI7qBc9QCXGt2aNE6Uq7zBuD2hkigkJkCbSeXCVk1jH/cXv0/57N2N4B5Yn8Z8CBzhlrxGQg1dy6YUkb+hP4VlL+2B2mtS10niRMzUs1+Fszl/FGxxdArQXZPQQskm9tdTOkC8CvfTic4cWhrbHpdYhWUmIczG3HdcKq2hnpBDfIc5//KbqzmjYdvjxlRi2DLhoLJjSVOrQPJacU/vN407ofsle0D9+ZdQQEFsZL2x4aOQIK1CR+mS48oI97okw0ATRcOIToqokgbOxT3aI47dToxOFWXZA3CgRPROJqBmA8Ztd5Im1PhxwAXK4nN7zU6lcGiLxAF3iYbyZEP7ta37tSKKD0KfmTWcaoNI3F+JCSYpgV6h2VIbafNGEoWVM7NC9aOXY3BhLfOMqCbgabxgwRDdURifDfsIYkG9pNWRyepAdGLqOXvudECWDjR+ZEv7zLgX4zs3IQqSgcA89G0UXy33CiA5Xy17g8aPOlhPi4tvW6z+VWt3N9nWvhYztOsfvkf0W7ArYqfYGRnGnULccwCjdK0WfHBnlv2R5n1Hz5RXPwGoIFCLDbtDunpf1CMi7lI5H9Cai5rEFE8vGHSCRavmlKgon+yqPXRwWfAw0R5Wb/rnxvqg34d9gSmJrUNw0PPUaBTPXD59xAjRHrq1OJpiTgpSkKfTVpzuFZ3mVs44Sgg0FvWo2ZIbF1l9/G76GzA30HiWcQ770Zy0KVw4AReXI2+20oavOlqpktX+KfCscjm3WBvtnJ2rs9tI0a67fIuzGAA44RgXdJINCuzX3Z/w4QEhsq0/YHGfJ8SGM2v8BBGxgj7VZDM/ioWhhHMfc4JAvr+zT1eoGMEg20VmKjcwYYPxjUUSjJZC/aqk9de58g++PWEI0+7oeEo+a3eUHnrpFmw+aZ5Bx0Ivrh9SfBYEwockaXHTGr8+N7TZgeW7SB/maTFeWZGOOTl1sWqrE8Za812EMdoEdq574dhMEKOGtWRZIkErsEezB3x7OPm7y/QYNHdGJ/0AI+7ljlm+urMjnrAYKSi6YoBwYOQX51ct8ZxYxnzPmh8npmoiU3s/jKff265V6ciThAXhvt9MtVQARMMx+bhE0hSKuff1REuedliX8j7uewfEnjQ8CPd+8Ov6zVcJihhlvQpdmN2r76u2BLiSLlfRomth+SHPfimWE70ofr9UsFg+RI3ZG8oH4tK8sZ/HuSX+YtUavHOOqVsgCwRfpoQm7Pomx4z1IstT0JAUTX+iyAWtP3M2FPfQYz5F53luwLeCjQwioz0O62CEyGO8hVrhVrsB4Ck5pue3jkFmTfugBG/6wRsbMdUgm2elz+9nwxe3KVqf6kOWutc2oy86BsSMD26qkE2ZnNILPTBx3jau/VcIlEynacvVu6ag6uBplUDpRaFpEfK9MsYkmptvFWmQgLC3SbFVR4m2lsm42pFZsikNWNjdy+MPDnKdjvawbWZBE6emsxgOwQr+gv9junF2ItSII/Vr9gqW6YYE7Odn0F3HeIO5w7QCLM9H9+bOXDEBe/adqUByEOB43Tq6BPtznymsUzD3DSfmlL6AQvGksJ5e8yMJuEiOmgIVql5bnajAdTmWDAY8KzTo37HwaoNTKhkDCqV1MlwFP0lAfOxhTprmgfbSh94qEWEGOnNtoV6/UTPZMxyhDtgt5BDoIbXD66JYv6Iw0ZmT9ZW+ZdAVc8V5mjT5HRZawuuIO9Amd95u1yLy62uAmp0GCqsibdFhlDTrSPy2qQtp5UJe1W4NiybqYo4AeU4yvIfJJG92yTmXZ/CVInTIjH2MXM0cEn3CXzloR/zOfLtew8K73fOoqDEFBM/WRph7LoaAKxlNMd05CBbLsKgsBdO2+8vHRvzWaUcaEx0pIvmOivTU8wxTizXk5Q4YoriM25yjoPRzwwLF6jiX6MCgsiCUzkeyNNN1nEcg2n9eDC8g65wlkbs5ii9HSh/dbJnFH7Q3DX4zV7fo41uweCt8u78KInfytCSShGAABv0wkGfZRxZJpGMPsi1HaQuX8omOXbOnR8qOzleCj7fKehLzc40duAU0NuTlfbptZvPMSd7RjUzZkwAVKDTopi6Ts6e97Z83LALRZisFrcAscJitpidAQaMNTZkwDY0+rTF6jbM4N/GqcNjYIrLWC5BjwVFLmuaW4GNYly5MOdj2EvmOZQeCRuqqmNUHVaUzCcUUBQLszgS7wmnxWBpF/5u3y6Bkp2rJ/vCGGDXO3t32l9qWzwEl/HDZ7mdJv3U7k/rEovJYIwIFzOrpuY+c1t4w6N1uPIpDla+nWuJI45cjzkfFyV0DfsYCNWDkIB5cpy4PUw2KUUsOH9lgnO3bwBYjsbB6YSPEBltCVoQRBiH35uAwHjclrt2lPzmoWIFJJa/krqDXd2EkCkgdyp4m4619nm+LBdkq1RqTz9FmtQLTyIrzrxPKQ4gadyjPpAVDhG77UfCq7KwkciCCmKz8f6H+dU/XM/Tap+4S1LA8Ya/JqEocHpQ2sFPQbKJhEj2T1V+maDbZUhnwF1J1xkS4t9PD2NTlp/Qgbi/IQczgleMy4wHb5oen+vOWA+EA8I/Vlz3xaKi8FEPNY++rY58UlNPWgzElQhGJNV48M2AbcxE5vtXktbFgQJEGtQWKARNtu1YEzrc/2Jep+i3U0ElE70HgcVl5fMsdA5vXKBfD5Es7Oj0E2y3RsPBaeM4lcWpO970xq/VaUfTqLAlVZp57Dvvhy4aMFWF2oMGLnT0FqSxmzg+0qHY7+zQa8oH33SJav7OU9mleTVoF+iZXHeFQjDN3Lf0HHJXqZ+rxaQLaQ1emPsz04suMnKBCFIuQlgF/kv6+oKXI8jvE2H5iLNEViOj0r62y2obNNtrnP5apDnLTd1fWffOFfsbOqRhiRjZCoikYLEO7vGs93slj1t7G57CyLb6fXBU7ZK4meL0AVdFgiWFFY28qeirV8sZWZHUcc2bQmq+6vZGcWpmCXIBC+XWSbCfHc88JRrS5fjGBauH6Mv2G2sGdxuXa9VNao3y+ypmVgocuNw/JvliwzZfN1CEdVS9VL153Tk3b/vPNLDDjINBJemWxWFH3N9viEhM6+PNYQ2PJyX5sg7drinZMIUXAEc+DB5thy3OwTiJJTJ3m4R8LvN9ZVU30KseHJiGWHDtHqBHQmdhLcsVhF6eZysIA7RIw7oNc9FpLzxmk262qLmgTAhga0maYo4Hay9AF23bOCpTQwS+39vgL+GztlZLEJb1cQQHnbAZajmmzLFUdPmeVCMAo0URe3fmzus84fQfkyt5RRvijgwNyjyL6J1KHXrtx+NWhzo73H9lB4yfszN+TejtxK77fF6yXhlhDPuMkmkndd9xx4FDDExweJ+6yFZhIio6DOI/NYmDF4ZS/h40PyCP6YMCaC/jwkCXwLs577a+p911SnmTU/Rraf3pg7EeMrYMPJMmyd55Y7kdavYCh+/9KcNdVqmOXM6wjmuUntj/oK1bJ5AX/TuKQKuBAOaBq4H5a+deAkVIExLvRmoEOjDsXF6Pi2Dvye6zZyUWVNz7qPElbrKrbr0m7eGNEvF1mst+jzAyTBNdfcmmcR6fPBs7MqITcCZ5+9CC73y/QNe/m9ee/Yo4r9qInC7eAlS2O+thuP24xQRQDhPTyjLFXL6UFIBvAU5GMrG4haGqvgHMvur46RjQ0XhYzfliLwwFGEEKGY8JjjWyuHeBKwKtrDEpP5HxKVwBNlS7UON9XBJRCsW1nd9JI9GgUSxx0ZP45Bk02iUgs7wMDdVHh14KYPGbsRmGND9zTnqxAP/W6PP+L6oECMhWIvD4hafjQb/dszQU4cK+yQtpP7KCc1nBwqnfBp9qtGZINJEInDY3AHfm1B4CVHFGknrCfxjwrMxdMaAtXiagjI2zNQ7sODp+oCla2f68fwRiy1ytJkbgLl7mbPlW1RLBYqs0PuvVMzZ8oGFwT+5o9SOq2Z+8LbjxLOhdt13Vs4iDAzxLOulteSX94u8pO0yz2K6f6YkUcd9stjpE8zB1YHu4w3+HbmRvzhT+qn+zKZrApb3ns65UxRUNuSvx8KMOAFsOsVpmQ+nr4lLKrfcba/kQQUci6XrrB9zDE0bppJ856u6cdyziWjgF7gkEEwAQMXHWzTgiImuTl70+gBI+cAzaisGwRp8vfPjhL+V2lWosMXuXgUqlDVpDIbIHq8KPjJR9gRMjp7Fd4oatNb4nCAc1SLspwd1AadBw9Jgv2QLYmZ6LC4mQdir9HL4SlIq8S0s3yU5WIDi8MGVag5xzBTwt6H70WIlAoFAvp55u3wq3Tui46JxUtHK5mUS1rf3EzFL3V/sMCbXbPX71cd6WxT7UZn2+zB0ctT1SNQWVOkwIgzhQSyOdqMjI5ZO9HUPY+Ex0bXNmdvx0guw8Xz8SDM2A+TfzJvVBQUESsaUShmWa+KCKQ1zY4R4ojL2YbmC1azrb4C37ZtG12oUUzwMO9cQ8tdKUM6covBjX8Oz47FEx69Fj1evff2VZ/zI7mq98UCAbCeEeXf730MZTCW/MNcin0DGf+3g7FwJvlh3Vt3u+7f1Te5nOyg9D8H97OtvdJ+f9J6MJZTMSb4tINqao9c/kA5bwDpzZ9J2lkI13iFLzAV+u/LbmfIbaX7R9ukuGc6YA4lrm+2b2ZfDfuZCWRordQUZKzX9Q+iMUUGvKpPhC3Bv9gNNTWHVTHnIjX1lpHFO+vtgcaaEOe++JgeQeXjfFovWC2dPh8ar2+q8tiXUzeLztOIBh4jstqBSIuh7P5mKRqx+4+XaodPX+LEihcEibYdZ/fCf7lC+e7Ku/xUt/M+xANuuuXHptih/rJ9DbbRMbvnjYAzUBgPSVxhmXlIxC1OJKFTDPZB1vTYwfJIJB4EGSjR2JVn9rta8PGK1rvQlKRUod5K1TJ81rxfGd7GGRmns8ecM6gqdvDI7PO03nW1HcWoQnAsaKnVHjfXPQHEv/e3J+pagFfzhoRVFEayQFhT+n4TI2y1sX+EtsH1lm/Cmdzj7Jbl+PTPdOOFz4PSmpcOJdZbaQxl2c3IuWSdLyIruvO4Xneo4PXolFZ7ni6SX7qQMflJJXAVdqfTtgn8IxOD0d0f7/ZKjOpLepc6GNuXCTbINOSrgCRZp2h5Mo3Kj6YktrGTaPvvXA17XjUbfPem26krjLrDmZHzT8jqDJW2rrnN+UQeJK/QCzfbIuO/9VC3lwsX1fG0/SOpRE4szLkKKd2ibqoNafZC7tdUyjNGhoGk3rsfqg/azcbn66a/r80sMNCZTBpwKowc3NAZDmVARjbF6THZXUGV+uiWB0FvhqoRGRbWO26KSNYG00JDpEantyu+9n4h+fBiTT4Sp+x0Hcj9Ymr17/d1TBrptfUVBWc9g3HO6j9ev/tLTrU0TC6EzXV2byFZbJJ5uiNINZSp3/LbYEARcFFh9i3lLrmBPHfzb3+d6irPlpULI7A4eVvYtX8GReELyME9UoDzkT0ugHXaz0i+Pvrpnrhvrec1PPAciXhG8aKCl//rEforsTGJB2n5eD/4ioaIM6xss8n6vbtunTcmOJ10oZrp0ZXnz4ve00PQXZlehrr43C7N0FAZeauj9SdgEnwVEpiguR2785odF7YlF7NvhOmhJICT59KyOM+qaXTaSeBU+KcXQ3ecsK/OiL50p8SZs3pxxo3mCMP/9NdI7fxI0OIref1VCSGOYBteOM1NT/r1YR44bILGJj0tHaOmXKmQ7Ck8yYkgfGvNByj1pvWGvfQoC0wXFkQG+WBoN2BLy3UqWfqijXT0+tdU0IFvxPR0lojySOwj2Rou2YyW3/kJPZor39HCdDO2EdtTcyRP9+XLlaPysRgkrHM3JBSC77JCcl2AnLWILf1Zo8Pc2qtqoJo0va0ZIty9+yYDwXmdoSj7k5oX8hU/VIPIgJWktTJI/eyPcyv26pJA2Apw+EW3bBK7tMs5D2sSh2X4omu+6nAkT8/Xh/Bkwvrvd/AuXFTKv/DPFtd7Dv+gyPw7S57yS/5c79iRwR+SNN1+ungl+Un1LpM35seMO3YRYDfUsrpzfpVb4dTlbfRypYjEz50IN4OlQ2Xxcym784R9Fr93noCW2IO6Q4/wc5KK4FBx8LN/KOVzjbYB22mDEntRPLKAb5Cpug6VfJZH+tsjlxRTPxX7wv6lvCfzx1p29+IvByYE0lFUYggAts9zAvTeEJHq8apUWh30bMlR4/uv8OA0C1/lUThcQRIapmHw1Vq5CrbizP82wS5SN+dI72me+VhotHpifBdWuCR6ygWP5AZt9taLWmtC/vj62OHXbd9+mUUvgjLNvN3n5viVfMO8+8ZqES1LBCP8jv5wjSj3K2Y+MxPCumfwgIxFP0PnPFouaIJq/wUlTzTqTNXkSlFhsFUPbWlCgpjF9V3x/fU1UKzYzN80LZNZFGgk8H3yEyd+Wk11WMy262SOhO4nTSYiIJNxzZHByYkD0L6qqlFM7FS8trwQDidyN/Epci4MJ+E0nFd89EXjVHNFkmae9H7mvnBlZBTwxs3zIuDC13f/A16kBtMPbwIjO/LgJwWcC9/6W6HikrQYKMj3x7QzP/vzjvNCw1VWWtu2Ro45rXilLSpdEFvK5oCV3HmwdGi7wx0KUywJARZN7dvgsWXkVdNCxnhsBJS25u+Jzw+KYVJcycpi4ut8Fd5iCcai8cmklQjdZLzZCxwawvoAp7iNCb+buXSMwqbF1+uRCh2t90/ebirflfgqNnA4gQahj8zc8k7i9b/JSo4JB9Azostg6fPY7iOzpgzultTVjg1fl4c8iy/9XVBQUinyHkfzy8OyHQC3tbDAJ09TIRLCrQzOQKvvaxY367rveSb6tkoF1yFh27JJ5qPifcrPT5BMmph6JB+2ZmEUjTTERrl2klnBbNw2H0vkQLNwELG4lwpCWlf7eN3hfBuJKEouhAAisRXGEDvPsuDAyLGr/pTOnw4vCvAiW7NXjzSzzOPtS4aHx7T5sHjv52juA9Ailrxv45hd9VMe6zHN5pbdyBkXW6Fr1QspcJmqH5PkQCLb00eLFV6ZpZHWSMxSn7+yA3eRbgAbb5cXw4PNv50KHhaTpBzGbU4JjTu3mxX6aF/jsZw/j6/6+2JYlGwl4qmxDdMAEEwAOtfvPbiIMpQwJ7gJrLS+fP7RTkZSRHNX8P4MXg3bUyUQ854Fp3vO1fkvq3N1+dMGgbB0DZEYx2wwLlCyij17YrQzHsyHEinZvHa+v0M7xU2knent3nc9zpPjjxNide+J9PWtvVr3QaY0/bEnxVDe8MO+MaGgczvFnF+tEj12JJZEJ0Pp68FYfxCsETBEp/Hl+P7zuy2gy5QuVibnt9O5lB0PtFcaJkibhUw4eNlJHCd/ascAQRjjTOr178Nc5uHX5CqAQmvgI+abEyEYH+DyhBJY4Oxba0Qs23w+b0W8Kyemp9i4BPxT63j0R64w8fvh1Sfy8ZeC7ldeNl5SVi8C3c/j0Yy8nwteUDL1UtTD6i8PcsVJel5ceCR12yza91VThhisFicuwjj4xIiSXjZp7auN8h4eNsvHe7h6jIBrhefvatiKNNJthjeud9K/VdcY66xapQyP5a6MgS4vDl2RzFwwzlTqnDcUsqKrxibj7pGmv11vEMFJ58qf4Yytv1xyZ+1LyI/CLtxGUyc6GHUR82PyakZF91jDevHiZhoAnGneF0evMUrdINycRQ0Dp9dX4zCgBEk8LSOEYhl0aVb2FGxpEdw3NQDE14AODGzPfFUjSzhPHNMm+p50JiutIxXoPLJK1qAwLkP7YA8jAYg3WQ/Bbg5B5TMgs2C2o1ZABBqwPacS/GbuQNiz8OpA8uBchmP/jy6X+aG+dpkGh2+1D6XZFFqgbnrlf1QSm5r3yha6vw3dCa37w45935fNnzqP8wspmvPOWjVh6A/zmR9+5+fvLlxMWVxEYhGfv1FEadEsmIRx7clgZHTrZzojZps2n2l7f/JrAy7tdk7Y7vQnaA++IP7Ob9vrXx8VZgHP9nFVwi5lsoTEH3k1/XZwjfTEwP1w7vTPEp5wn8B+J9edEYFJkQ+rbcsgF+ovnWGMtDBBoSy6ES8pQmV6LnRH+KcMWJZ/ugWUNJ7Q8n0t+njTCdPaje5Ywops/emFIUF25qzoT+6z1xoo+joAYRgIhs0sTCJ7pPinlhlepmWfa2lkkVbkWfeLPYD6+IvvruHLRd+lLLVS2W7zvldSZi2802aZ65yH8Fxr03OXuyznLvjl6JOHWI+bbLz9bcq74dspRK0Fy/8suDW9+F4YmrLpV1oTy9UGz8L5eIAyW4lwj/nhR3jYPktzWtf8L8yrJAsWpQRj0aw0gqbglZH9Z+8qQ2RhU+JTIKBhh2bvv4YMs7Nm3jsUhxYHoczijXafUBBmoMtQNTWnA1N8kPHxSU7+Rb/Z65qRi2/5OJs/g5FNEyntVeA1WtwmI7ysJZGsu1H4t+XxfuuCH1WJ7T6of3jtKss3mGt8U6xl4DH9hgAmFpT81amWqkaEOOnigY1L9Uw+kDZyM0v3balgYVlZidnCJ3pIs6NAIf0D09l+rojvBefs1X6bwGpn6zp9OvhVhdTChgV2fC0CgD3m2cYCtnkYNsuU/AJ7LH5C1JNl7FprNm9/X61I8Id6p2zYWjtL/icrJX7clkp6bBcKdX3zVCfieRClMr4qrI5feI23eDvbb1wP7y7F1I+uLFWvAeuEXHmzSCuXH+VXP8rdKnyffS+fvWXbhn4JfEM+u0p+0gMR4+IYv6mwu5VQvOeITenDqkrOVLIt2YxIUxP2EJOj/c8Md/PLEhYX558GMr2Er+zKjWE4mLyH5bdtbkd0E7jJU+73gWaI5yojxjSsRNpXCNTA0jI4vyZnEiifLx2+MRYkNNE5PzD3ivitx68N2Lw9eFydvwxKSTRIWDbwYHZjeC2aGhytI/PO2gl9l+SNBpJxGjlLyhPEBBR5lyRYi8v3n3xu3tLBjfZOJz8p13Wnb8pf8QItftfO3DF+Dxj0lCIz1XmuUph95hgmlb3q8lTIhvlX9mo2Ej+s/XfcNXLjQKyD1f8uHvGPuS/8pzbZF4Nv14WEcOTM4A7CvXIPsx1hr3+s+2XaY5HvQKt5NDwxG2/FxuZ9YY84jJ1Z2TMDOBUX+WrPuY8oYKN5N6UC4tGFxltc4MeBLXS/wzbNwtLccXNjkL2VKxLoPRPZkn7Wgd/A6Udp1fzVjQEzDR9endka07oSaK2ZQYVuS1i5X50X9S5tJ7RAfXqQv8Vd/0STfHjID+dVLiKQalliIb989Ze9iEMp3Qotblk9kDGDvZZMXbL8efHrbf+/b3oVk0AKovzuLt89F63/iGkpExEtqLXrqNtpXv1DIRwPocTsBxoht28tUBHrnRBWkRX8PfTQNchiu/WtjKrMf1eJD4E12VL5p8mEGlbCeTxcfAf6mTkQUtBTNzk483+Z3wvR5gRq2mrfw6KxO991HCU1nu6x+0+wFMycgcmacnR2sH0/oIYj/G5rmfeu95ak60u/OuHyJdmBaguVuNAxc72sViKBE1JEYorGV08BvE4kKfcEaJhg8J+MZTQ7f4OzUhFlLQuvkuYjlKTOwXh+xQTcd8siKzEdz2Enqyp6Ja4xYYLYBJWcthCwxjQuVbT2FuyQjncWT4msRvhs10D7xw/rTHcMnjn7lY0QDr42qI9uqHt7smKBFBXd++VxLHcaaE7G4rhcQX1O1vjAnOKCfY/RjjWRzjkUbvNojQSvQPoooEly9LqbvJ24ibGqBPpocgDj59Ah8SErttdYmbvW8VLVtbYDVRRYcjKK1BHOjI0nrn/97Z2oQhs4dcbF37RapmlfKAWCprOkQH9pdm+LOGVU92bfvhzdt/n74nh8fvyJ3Vx75fvdgmWHyxP2ffb9nBX/qpAYWnN73Oq0zP/Y4VLqS8c6qJ0TZ+VCAeT5wLMQZTpLbVYyN1Jy9HwZ/fzZ+IW1FC71FPYqC+YZNfqSrwPqmRgCOvpusdkym8m230RmncpWTnaGwz31Gfp+HZNxB/hmj2UD3p+4467WUfXH9Z4fp3+goKa8rOEgPOu7DlmZ97JvlvVQKfQP1uMLaTXAozehja9vfzeJs/YEq3cSkT1o4XrsUltJPnPPqagzCZoB5e9PT69Q+HGprde/Ezk5Gg86GyAiZ6B3LpHIutf68+FKVeD5YhMoDfXbYHpb86en3f4693TX+grjrImGDcW5pcMf+1JnsFWk/o/z3g6LcBv+5AiPGgMet/BycOruE7F+xNglePpv36QuvvRClX+fzYTwJvHIr7chT2upWyOhAyTPNHY8Pba6++9WeJ9PbFD+klQpJjAh3u8KIzhxpKo/GLa3VIn6AdlFPCMaERCmPMdqOf+Y20nqO3dK3j1TZLUFJpw3UG0SjYRMkKe4cpNC1qwUc9N2DpyydGXQ6NJCzmJxupsRlG/Rhu22YYGizYAjHJiBmAmhsdMWX8OYDq13st5iYXhH0DITsYBcOMA9BQluCEiBvUG8XWViK5eXo6g2nNdefhwds8yQY17khhWmZNu3U4z1+Z7iXcUMI00cyoS89LCxtesAb9kUaKPIC5M4h/3dag8NA4rgxKynC+6a/w9zDDRY79Z2dfvkE4DVGpH9YvSe3d5ydHuANk8khdZyWaxOyRp4h+nGoU7bH7U+bgW1YAAAb7TB90iYFNuX7zdb3wM0x6USkbckVX+ePcFyHnU4OvWRo+cicqvfvqRqDzVOsiT5AHOdY9VHnVs+CS1+wEIiyHnL4ZQVEpV2dgC43DFSIdJgD3hrB/Zlv0aJuwT3nVM5tQ8M+OXYqrRY2uyMyUL4hlvf4g4RDo63KUV9cmA5kfK3xDPpLZZ4Z6uWFqa8+HggBrnx5YywyPelNZe/pyJ4ljQxGiTk6IVl10kyAjdLiM+5Xlm2mdAGh38WC9D90s1ZsrFQ0GJlEf/T90u4CxnJ5oJzPdwmDAkK60PWvvax1DV10QGVkRnyp1KRCV3TPGmxTGZjtORMMGEwoO9o96igKU/YMA1O2BmDN5tonfNqXRjeKEdg2Q9TXSlxczqSzJiV9TjqJyuxD6UKitMz5GzW4LwNAQMyTf7u/29XXNF5y+kb9J5+Ex0hWbW8OpjMjEJ3voo8Mshuu+Huy7uaLdxP8GVxA2BilE+9IHOC3hVlgRgYi0+G5kzwNOdHyCmyPu8pfvg0E9AKd42RfU64HxE9DrGn8k53tDPcnxNXtoPZJOoTMmB5L0nnnkMZ9Xn8K5y0+LeYhpaxRYOy2McjFDS0X65SzJgpuVa9FerW+7eIXehlnfMLb08CTp1BgimWC/hq+CVJePR5zoFOY/e3RTUs+/8GxV4byoTeLiv22KG3GX8HVNQnbGhS7tIipcFYI6D87Mi819TK60G6OfGtI0juhtpfBm35vkfSvRAAeB6b6OkYn8uThGySW8UyOtZHnIoO+XLudsYeXGB2FTQr/bj5wfrmaAL53dDlh1Lgd1XA5zNcxZ5tAQFh/iw8lEiFPY/vVnlmEwF/bK+y9JlyLKQsPG9v0UQiyWlbZt040nqFTcmZXdoHSoMX7l45BfXjstQvrUME+ricSa7G5Dx0MG3MkPi6CXf0uNTrqQ8nf+SORDe7b8IWIv66rVRQWckwSgtpJVb37SOjcChVJgjNmZH0YF9JABxrJc7RCGHBGJXb9o54MZQDmwseC7TNhshEmsJW6DUMEz3SFD24XJz511PLe7R3NuZHr7U8CylZuwGH0Esgs7LTIGdYa/mlstoGI90px63FTJsubU9fzb8dDZSooYMOtQ0XILUcLWPYrz/68o3FJp/U4JVqHdPl2xfidZYQiZ53GV84zUU9jauhhe/MjdzsmSldryG95boHs/vEN35oWmxp6+rSVfpt/OoaTh1SWL9Xopeo4E8u6eaSy6ZLX1CPV1ofO0n2ueMe3Kt8FoHbYh+ZLPtjjf4+uC6RpteYS1ewt5pKirHeKznvfCSQ1QkkqiT4cY7D/PnWzv91QvMuH+Fct9etPfTtvdv64IvE73VmLOHgBQjn9I1lh5+AbgSE+yNM38EfWlY/eOcfcLapkP2ATgbYpf3289tgIcGpxqjVdJWj3bOTEy++N13CjNoRXP7wPK1ASB6f/XMLDESb+930RkPP6rWLNNiJNhvuAHOYA9v9QgL7sDg0dfpjFZPummhA1QTxD61/QMbem/16p8rUWmGWY0oJQMn9ogTDgJDRuzsLlX72I30xkSQN89/PXnErVgWMTg+7Rln/1ZElc5L7O67RzkzO1JBEmPpQBvRGzClTXQqLZNs+PEHxL0ksHTqo6OgQQBkxZA+SLsKLBzKxWYLDDXjtyvgP85PTyS5Hv0T5f8rD2rQnqNH/Ps3Xy8qb32gi0tRemnwxMQHwRdzjji/vvZvMaLvYQQGGI4W/hH6qvTI3IT5rkPTYx3rU2Ce3kVDr01K2xLiHnMe6b2NooKsPHCMEsdrvoCa4KtkD70tPtoUfHxH4ieC4j75xqmauryfSLFf77Ckg3jt960e6swb2o6J0s38Gj95TwF3UHfWEKp4LPfG+EegVQGjvSK6C/zV8ZJb3yl9tf296NtV8evgwSHbCN3dpDtmGxM7DZkVjHjPDxtdsDpeWdd8pPrPT74U38LAsw4orDRD3MKV6vhGrpmsj1W7/5aL5qGJQwcdW+le1uCi2tjK3gTDwwzk12doDnJ5wg7Cb/juxTeCtwInLtQMeoAJNVlDHSIQojiLDSDQEZS8EdUfl8ErGld2ydkXSCkrK6DR4BfTkaZ9bM0Hi5Tdbe8JfGDl/ZrZxlGZk1mz/TXg0Q44WREUuGWTnC1zmTD7qe6cTPjH5Xw6RiCc3aTTwViW32n3MuonGr+U4CJjL26vgvgQ+8yHvoZ+Iz5ilQ8SA12fW+ZtBJiL95NKgLdDM08cp4W9hqBgW0wopeUPzvo6yLly3rNiveIFIYbpeGL9s72fNz2K4MP2lQH1g3BZcwbaSR9llU807QfEnNm8oJ3GTY4KKEIbJ6cu3E5mUKgA9mybzzb7uSIs4iY/txMX57ENB3WoKzaH94xwuzzvWlkJKddqV/cT1Jsz+Ev3RCtFskPYlAxPl6RkJ0mNZIevofwsOM6J+x5Xo5+YWkCfchqfwT4qr9lH0qhgT3Cjvo1RS873dvYJ83gNUTKI+AGCeBMaHR80v/yWglYckpuIEPJ05c0xU6hpk17MEsIVQRwFMKQWNkS1p8YqJDb/k9rQ9SfXelqiEKcdMucY4z5S3f5HqmWJmSK/4aDPxUD3MxgIlZtWUCVxaFKjDGfQ9y9W6ZhPL7owIRcf6SON8nXR8d9X3x+JcAKZ1lT1wV8BVvuN+tRPCdRJeqMkfZGSpGG7Z4xilYqbwtjGSaekc7K22X3/7wvLPtGj3DU29dO948cGoNOeXr7Z4XoECfS68JQdtY/BvmsI3AtgWvgMOMUDWlwE+M0ZGWPsbJTCWBVdURr51Nrs7ldMmi02FRCA1+i99e8Ht1fNWe1JCAQP1bAKLBHlK6k0hlH0eCyA2hrk3UDUUJuUdJzqZeP82rkCKdO2hQy8dQA3PNrxCvGWVwToqYo9nS/49R/+ETN0NV21mjwkR2tJjlf3QY5ysN5FftgQABP+JGM16Y7/bJSvqmL/kG2NdrPLL56yJ4ZgJpjsj1QCpypomtMjumuYpsiLnFlrqX3n3+5r57OutYlD18KayL3GZBzwQHRuncOKAed2KGQh4My/6C+Xhz/EpsLSg8q7yy2RCaG+PRzPrPdExv+x4x4psumpWjZB9eP2Wc2J7e9N6k2aDiTxl62pMjI0RBCmo7ppFYjgWlWlwMmwnOse2vWEwfHi8XfbNOdekr8h8BE0Aj1ZWf9oOG6IDX3pqZ4zujJuUrVp+4xJ/xjA1EenRf9P/UlWbq5baW1Qt5JGjGPQDJP54IB0pCPImzwa3wp+sxVJk8B91lCvSDGQKvagFrxCobh6ofnOdlS8GJ+TkL1ld6rkmx7+fYCOKeWhHeWthdyl7Vmcf5FHwDOlMiSQHbBwweE2Zb0TLPkKR1u0s1T9y/FzY2Eek4J4BGXQ+pjK19i8pJWTx8X7Q1ByeKrhq5zXKFxUGlChQTBiEJK99fxsZ81mQEW9sS2zssXw60pw6aCqLdF1JKVs6mjD2/k/a9bupRLHGTN7AiKFdqng1jW36wUCXloaWsKlo3zIUAglA/7p9spUamQIbQofk1qi6eA4Q5mCHzFZT40u5lhu5MUv5XFKrOoYQUxexN2/7RdLo87uPHL6/N2Bnr1rffCycyP/2DOdM4nLuckgtUhzPG41NvkowsoX97aoy4hjxp4NvxD5Mu9p8d34SxhAcM5k7tkBwbOLdjtz+UEjgh85EJ5f/8qVQQ8ENp6nUJN/96fz+zpukb9prQvNUSpT+CGNqs7EiLTYu4HvTD+gi7CAyPgfMeKvQcZ4oqes5MNKIQZdsm3PnDLuahNjiDBKVCuPBAiky1vLkc+y+EsOzBJAvVnNVimrhYHGtBlHxl/k41ShXobJswR/fAC2mnU5mc4LDYNWZQxGxCZ62ye2zucxTg6d/B8VCFv8+dKNtYZbWQW0o4SH0cMKUf9evIoKuTupGUxu9RVMqyR+SQj1Z8wGXswx24N/lB1fedMO7Vi31Pny1bV+nXRrmV7MVTLwaHvpBOznmCIY72PBmZPEK4/Vb4MvNDOMBoTga23m3r7rSucmREyNJ5YU1zNYwa6sIMSFGBwAWleUe/WATChyWyh1FG2kIYc4N22oBY/DGCY5r8MmfViqUfnPPkNRYfcF9TJ9M7zjEPeu3/uUHANo4vHdQA5OLMvjvUk8zBl6cVY2Fda7Bb4rChUSM7zu1aC9CMcAYf8zKKw7NHr+CtKpcyVRpF5l5/vcM3GAByp9Bzf+ofmn7U6fgd8g1aeXLT5djgf7sPbB/4vYJNhju3Dnvpc2CJfXPMNDfPKVyXfie4LJXT7Jhoqluf3DHDCeeX4kjiOAtova9jN4r2dr0J59o8PT0VKLvcmDV8Y3KXX0w3L7I4bWeG5Ha4jdXA8NZV6tsHF0vh6+q9Q5fKZJDNpNDU0GDMTATIZxmiOfbrojn/7OA3A76d9pf1yV+4R1NZMyJ5Ued3JF7TWdfCPOLj2NXpn6E+BJFlrMG9sce3lcHcBqtGf4LAe5oY6C4D9W92+9o1/6rI4zUFT9FDEOt3FJ9beQvec2SoS7X6swcs0X+OwDDXh35mbI8P1gWzcUD3OFheSc9Ttp/CL9SLUwT2F/2pFydJcgbq3kNEldCPIpOp6bhIU/OShIWoMVcs6ajvXHmNCLQuUjhAiADYnnMZwFSfk+Wmlu/v0ybuRWkMRXFRks8+6t42KGaEFJm28pCYnqcWbJ3kSS+xDpTIr9D8r1cpEnePmk8X+EgqmytKlauC3910m99WVXPoa0NMcG/xeTrZ9Cyb0vuBWL08O9I0K4apY1csOaUo+zjxn9fvXKSIa0nkqbCE/o6L0URbpiTqQ9ci13gBtqyN4Tuqe5FeNiG/7S13HQoBib1fet3qeKMbMnBg85Wq8+it6yRTNxYiDcNct1wWU1g9dOLBQN+yJ3PCKR6aw0ceG4Rb/+xOTu9PC0rgnBFAV3rnBFjX1phnph3WGf4GbkGGwtB9gbybua5EAJsDfKC6AsLhfHLHi9vmWPDQOGuD05rraHEmx7T5IB1kRG6b7rVPQ7HIYgqrhSyuH//WOsbeIL/9ePEpqV+FQNk/g3JDgdp9hccX/MgJvI04YiOD5x8KH/7yYdnJwq/vGITB1rTYwO0Je6aIbYPmMejttmFunMAhZTgJKkfv/Kw9hWirfCOBJerg+gAzxQpGGXhNrn0ve1d/RD7kyNzX8OulDWftFud/ZWeC/Yr/rf+En5w1U4YZiUJuw4kqJuxktZngLTY9N8+dWHHA0q/QZTWLDrjnfvl6a3ycor7B9FHYvCyLgalkO5YTWeUm6kcyyz04i801SJS/h5Z9G0Du7ksZttG5ntr1aDzNtedBD2AyedumyIlQvLJ07Wav4GtrbS//rApdVALce0HqwN4InRdVaq2DA/F5Fw7/fnbwU6YN4Yqt2vSO/4LsZxOIOJbBUTMOoAvgrxbRYQEDcGae7YIIvivdYHlPXfu/b1t2fnG0af6rUwJuddp25fC3JECymzqITxum/BIA2xXlxkxBzy4jrXsDlvRUBbLh1qTJT2/uHD/mJAHudv9n91NLttT/D5D1EzivkXWP2rpmfF21wgj86uPtftX4AKKyMyPJ5DTDVlN2j8a8imMecg6sLZvbezCeOjCxDUpqQSaNSpupwvk2RJER3b6h3Sb3DF2P/hCV8DnaIai7ILVPkxHxHRGuyP7ef9Z9fXdgAL/MIp4GNtcJs7yx15Kua7ZDfF39uNq0Q2uR+Seao0hBU8nvxbJgehHQZj5Espcih7zafl6XI+kIRNpGWRT/AFJ+yKgsYnJ8xss0m7Dce17o9xlDVdpoBWzWEf7TvF06BfL96JMml8Dp9Z47w9TpxWsY1wEAHw+J8xrsiLp3lWcG127Jz3xOuNXwuilcWsijKxSTtiGOPFBKcPxL9fmHJgSMnJlkzJswndHMv5t6CJtlK6HfhkB9FjVdG4PxzobuH7Zui9bfUZhTUhmNT+9ivZmSbDOrIzuIZbgvfy0ZDVk/Mn4Rbp0PY3MzewMH48FYMy0NLleQGdOYEmaf001j8EMkgwheJibk1udtYeZgxC3evU+4sVIxuGDzCnT96FAkKJIbn/1038LJrbny7JPmYN7AcsmWiiIzC+l488MvQWKbIH9TajNvo2EcLS3Z+oaJMkPewZ5+Vfkxc2qltPuy6enuhz11y51LuQl8BIuWF9iTdjLXbu5+Zu58eLbxn+mofFacrnc04VkOXE14MRt2KlKXKs9Hs7raKDw6OpC0IVUZ9u8GQE/jDJeX3RdR+ujykWqLmkg+vwNfbb04EUe5Gw2yfcQ1TnUuRDr973wwLi4d+mAcGgiWfgHPTtfNzThnzUuF2cEcb1jmp+NjPIyRnIwfOd7wmzm0xMOe18gsZYO2olVeMaHrwdrcIXbqtGoujEO0xz3ITooMMvXc/49s+XNu0py5gAhs2P62Bd18agz5VfkfjIH4sfd0hHfH7b4b8Nonv04ObKiATOklT+qAl0aqStUTTk9gUoBgniOOTNrJNLv5j4u6F6ttNKHRl/GxKoKT5ZBFsW8t+PzGSiP5dPdebzqBJvw9LM1/y/KJggYYl+ToX0nvDUUxZ+2g4QGDHh+y3ECQfWIiXdTA1krDnNdCp0Ui/BPZdDCmMUsxqkK7njlIk9b64yLAnJdC7Re2xvxwuO0RYt2ajGQcC/B8fVo9uZ18G9U2+zTm5muqDWTBxB/eZ4rlcfSjNmLpihMRLXS92wi1UKATBJj0ESrzBGOpEhbDBYDAeWTorMyxZ1k7GOV4P9GZ/31kE5hBc22rWZgklQy++OCwTwOh2hQHLoh/yjeWSFWEUeyRXA2uXdc78Vc52t/H0LwgkA/A/R60M/l8RGj0rClcXrGifX76hijOeO4UBvaifaBOJvtjkLi4F+S/MdTYOlQIAUAAcLwdEfdu3DCbGWoIPLo/zn91OePSDyKlJi6+6MTC5cogVnqcx7LEAumKSFxhV9RHT07L3Z9WVmCtjRjJDOxdu8gtIoWzAx4eBLu6Hf0VQu8/08gW2KL20vvpQ73QBy42irCw7JLU2UhnU/otDxRKLNWLWxAr0sC5s1ajP0vntXAxQQH6IhYTNHWF/Ok8OoMOMx7Knx3Ksz5/ngrUsmpS1RWfRNXfyVfzXiUHuW1pMA1WQWpROv7bH5Uf/o7N2NCGptVOysWJurL3I4kq2lMsZS5iVvjTV9zRacWII6SPK9J8KNukr2kw+I154QQKuncGx5hOFLS5kZQm7Nvr8q6L3UPv92mP/0B4hmyrwKyPOmPChnwxPvwvfg2kA0+KHJQMjL344tWXAVKjSCcwch89nyUq1z7x5wSCbe+jjZeQgOkev06ActHA44cUtqEhlkedhu6G6O216c/eU7sWgkPId+zDLF5OSOoZ1hilofSVUPv96mXoz+hjhGcXVBvhDbBV3o2ZQbKfTDuTI7Ch3etZ/qF1ZbXdHebbC69u/1J9b6MK5yIhp7palIqAyNwl1+OK1uj54TZV09HdL+f7y1vJL7b+iycZyujKed0ErCXHolhuzZ55LeQ4B8dCWEsXSOUGnOJRCgaOgMmM/YSa7OaVC6/V29oA/r0HzwaH9DUDT/eezZzn0G3wd27/TWxPr7sihoN9Z+T3gLTH7EkkIM469apyk8urFw+pHDtrguflgZntINeEqyPpDbZNKWuYnsC6CGyTtSjzwKOUVuI/PfqgtLxcwvuo1LUKr+Tgm89eBiebE86Pl4TDna87JgVNWcyUhikI0xkk8RrngQ4oCV3abpmjRJMUtAyOUIAUUwmkVW8QZ6DX9d0zrrXXMAiIz/TrgP0xLeSOfTywCF0UFtMPKnsNjAq3DdpV4Utjl1kMIxrSkHWNfVgJbEVXxzByLknNuLZ3r4aPfAS22xdfyfdAF52Ri8cd+5ZZ/D2kXnTYgrXHirU1KWaTlNYPNUWRSwqP7Fj/zc2V8Qzq3OQ9X8psP3P3orCj/Myaujsd34/Dt2hFs21Fb34+Rf82dNGIDD6chf2vP9UFD1va9gHbOP/qJXwNL8IEc1hP26VRQiAjj+EcWj/sR0f9/IwegkI99XQuea6SjKtxcdEosAfm1gRxLF1RUXAd8PKZDTSAKCI+ZU7KxNuTZPZS+y871Xl+2/+5/+J+DG9raNT8QE+VNH0t+DMBN2juv0CMV5uNAxpi3Zh7tON7P1XvXNvPHf7hDl/HSteq7nKLabPLXw91LpV6GsjusDree6WpGgmAloRzbv6VgoiUBrKY73s+c1rzuY7xFcQVpYz3lY01IfPPUBd7A65U6dkMB3h8fow0OWHZkQz0AEvWWV0tUAGRu1rIyK61qyjfubq3oYq8MgdwtcFLM2cGXVTne5ZfIqu6eyAybfSEvQbQGNwTy81q/Wbfo8AL1578NV/gu4Hod1cy3h+r+6GeVGoyYEOvjWw6tvjQAA5HiY4vHPpyxeSfuyxHYX0fkIcyCiz+jHKBv7Rlf+6KXSPYorSUxzV/xSjetWPjzGyUeMbI9wkE5uIo0CsDmlCDEqtCqgonUNM/BwfUCSFYSy1xrrWhZBW9dbMorkqzGMZe2f5wU+f2bK+hGnG4pQRIAS12GVkFGwEjrV11oxPb0cDpCyOdK2s080uQanh6D9qI7qn5FJ8CQLp+hansfVFwrjCPYYU7pf0TzDxfYctToVK8CFhYg/xhBL5VNlPCAGXi6Oe6OJsQmdcwj7KudHxY7vdTPGhlHesYpnZqlU8+UEMtR4EwAmmTRfxX4Yc60JeTglE8iTv2DAIXP3tHh1r7yAl8kSRmarda/W/zp0bnOVy6TRNbvGkB7o/I/au7a3NYwDzs9rY5L3H310sYt/tYE4n3l8gON1stcb4SYdMuP9WV6OXmhNkVVS1o7jpWLGXbwI1XqKB3hqiQjjGXBJkVw2LhppqWCzx1yw4w274xmD6joYUgVmNNB4rAzfkUB2+tOXmNEtdHRH/eLdmbuPuhEl4LH0iRj73P8wBfL46nSA8/0b9J35rIwUIe/3uWXbcXcZK7YvZKBoF/QzdB9gR4+dDtG0Ndr796bcrIMJIR2mkIQftx8PJf6+syr8d2IKcikw0PpsaIFLkV4fX5YHCN2oVPIS+Csij2PqBBda3MblpDD6qsA3u5IGOCxCJ2uTl0DdtWamRl9vzUv4FH+xAbHdPWXzVUT8kptsNfCN7LvY6C+o49ig/dYKGwX7xYzMqIgAy2JGeg65DOV5Oo01CXluZPa3V7XZdE/qgvQ8bg5013XbWETTk3Tejkx8fy9v16u+8iEwyyVzhIAXEBNEFjaYUe4KGqtYlPThq6VuVDZscHO5GE0TEFeqiTT0bG8Isb8SiRYLA5cP5/UlxdnE+sz386LL5QsPaVl6o4klipnprv0UTP84FQS0R+jnrfs/aPN6ZNz/SliHjRf614J8EGEM6iqFv89ABDsquzsz9ysQDUcXHg6+98Kz6QEvI7bXLDGTfTt6tXM/ODMqb3Z4j+EnQkfMLljPV+frPXry065hcv4FR16eUp5/KdIHUdUxuHZiH9Lu0ufTO3XD0ImFw1Cz/VPxSxFWiuiJk2zhyfA2T8F3Zj1z0mkHVP6cnIIpXW0Bl0MZIMwM+hBTI1G9PeQyoElZL22D1bhelKdhy+k72ObcMtukvS5hQWkoXUp+MfRNaTrOF+TU2MaompuRMPxkl2he4YhE0Od8QxWjiGT0UfqXvrx+3VAWZ3Zyq0e9ASsu0ynPGYaFcp0jxTm/0v5Ikbm07fKP7gIfAlDVeL3n6e7im+f6TIZIoZq6AT2CkCe9K43loxIpl9alleUmrR8JdwhWr2N/IUI5z1P0vez6Wcd4XqMvM0uLfe0zCRos44oeP0cLT23zbL+123KIsmjalV2mJT+kaGxPH4M76KG+2Xax6EHt7Xriljouecawr0UlN0awOWndshEU6jQO6OhMhP/WvE01PbcNufgYSI1X1CwdDi3CPK5FySmZkSbT4ZMvyyuxcz8u7h8HDfb928hXC7FTrT07lY+3VInt19Gax0X+Sy83kQ1XPm/1iPz+BA3lzriyARUakd6A/HoAE6FXFvbXrCqZs1HNKH0Rko0f/5gCx85gkxcmJuEDt4d4QQKYJyi2M7tKCIp69MbTUt/gBNs7ei8YduwJu+6od3tDWXRo6NeBllp8WP29qaT/fr7vCmCX5rhgHV9xafvST3VuACyIXqzvtblD/kpA+tk8EfbKlwXXt8yjbleyaVb/+kKmjQkMCZ+HO//j4B3okh/2ukvZ0OaLWqXRaVahoCSd803PEbmgGIGgpEVLeP+Q2DoEx/VZSdgNolFasSJKSx7LdHy41B4ZKvD+J/3mSunnvYRAy0p4SOKbFmgD34tlz+80NfDlJsHfOZg6mrtx2fsQr54zPGMEP6vlc2oxel+VKCShW7Oi5k1U2Ax2Yq9m66+eeA9oYv4O8+r8/vnp9EtDUrTKnjAYA94EeUF7uJ1cpdERFxI3GhQOh/mDkGpjE9CMx0i8HSKV2T3dK7Am+n5jeBPm7V8uAhuKLQb1t9fzXAptWUv+Jdzwbl4hG/R+0qISuLwuTGv2FesLMy08+b3hGMqmTQE/aPEPbaXlQodQXggnKpw29zJOmDgCAwzwJDMMBPv+0NBZ6wxf4cXNktP8qIUXkDlj0/fahkTbGw1zmQr8+S66Atj0+DI3dvBwPYKcL3D1PQwqnR3d7gZqtmcKhgP07zl/iWcBHDqZImh2YMoIKTdsGKo6dGxO6Jt3qf5ilbzM4R+0wMWKCBJl5buI//nbu4n56EAnAS5TBB39unipWiwfuGzZmp08zMPbRofHh8wMHA6/tLosVx7z6MsLZoQqL2DrbsOnLzW7S5runUCtFM9bnIgj+PPEpLPi6Wtioz4kSCTmamJ+BZx2vScj8PlCRPgFIGf4kfzHRsSd4JlYbGhWWVBf7m0+0e2srM/K6r5kNgadgCIavVG1g0kSHaXM3Coh8dn4k+0A+ZIuHRSAQl1UPFhvrGWydG7BLZtZHo9dFfz1MZoI9XZu4pc1siRo1WfZ5NJ07hcgpnQDNCS2c+eJINevvNu8PhmzhBPm4E9sP5G3Tt7tmpSspH8pXDfBQcMK+XeY1z5vPcCzfG0QEykDNhKR+unpoDcY4wvELXE+qqht9T+JPQqdnrtN8K9+wYM/tSkuc2/dX7uRbenrhrFcsf9KRFddqjNhBqOzJ7Aia3v5uqHyP/MVMDu+035/7e47f+Mw46RrKyhOxt66u9BWQ5JmwNtnIKvs41BdWU3pAvH3NDrbowYVh6AjnwXTL9OVjyvjdzNty3KTkqKNwJ5+yQLn3e/SuFm+j8d84GWN3VWj6HgDt0wYvtWn7Q9ytcNRTD8NkJBEjt84tmsaM4UEqc1xAjcsxjgQIb8fluId43jM4MFetbeKWAhJCNeyIKPvY1Mn2Z4Kfym0hYXp2/Ys/njstMMTLlYkYeOHliSZjZlnwtjy0ltQxtrfMhZSSnn9qutIw8J79cCGyvh08iZKO0I4pNxCpaXsT8Wz/g8ZkbvMjHGqqRYFzhK2o3LWpdO2koxxJKKItB6lVLVnrSV6jtkr4XogFOmnpL7m31diC91ePKrRW5oTNF3tMAs6VR6FiaMeEdiI9SiiS6d8vBwEW49UEn3Vj/W+SStaUE4z9Wn2vR0v1mnFIFfKi+UTAL5rwhX5x7p6AJQnM2Yu3TkulX870UAw7cA3EEdnMz92yM3PgAXifsEqWmyH0VqVQTV1o7uJj3VNlpl0MbDJS5ePI5L/qcx9ovmrSJi3lUaBks1w/7fhY7kg40VkyLk+ne09NVPrDoVUsXOzqSPypi4d7MeoWc/qn26dkunwOGJGUs2boAS8DLuoA9uhF0B/1Cz1JltyLWYCfBCGTLEu6cWKUpf57DChtjcVVYqdRwJHPwn5ykh65Cv7L3hI93R5nHZiWSrxjawrH51alZiJb4F5I4zjf39OOd3s0uLBtirWhqjz0ySi1vH9Rabx98ffreVE2SYLgn43PDl1tMZb8hujBe5Fl/NbmSrCKhS0KUbd+PC+86ksfzalZA8qQx6d5P+94jzctR7defiFetBG2WjPwvM3GxZ0GYyCUsnuGLN1cwzGNv7UWfh0jKIzPDfl28oHyzneStp2SCpFebw90PN/gthzQMsivfPBkYzhMom8W3x9SvvoRlvxJzn6eB8uGOHNy3mJfKYgMuHfN5yOpTSOKaM1s3zXbe9yO+k+7yk3bljVn1pSETpDI8q8LO+KQahMDiqsYjF5BA0hJurxNwz7NoYIaHrmIiQt1fk+vNEdjiIG9P/5poTwLHDEGlBaHjl3W7vjHEU/vgdRMb2v5qrPjzZSj2NevEQndbgxnxDFG7onloCOZGCHgRa3Z/76hcqOt5Uv5vy5jj4SmR2MZglNw7ip4GlNF55YDHJbVAmfVN0J7mCcolvmh0muCg2b0bXHHrVx5lyqYRk6nxrDvUKyORlHALUo/HAO63BwMUmOofz/4PNui/QGlqd1YtkQ3GmiKhqcc2zKr81C5t4vM3DW186Xvo0wdt7Ysp/uuj4k6mBsJ+HAWy0zt7q1lZ4Wx0eNwySZiiASs1MkMGlMpSlz2gjphh9nmFgULAqvjP9M46xRdbbgCsmfCV9i+x0CQkOgVYed0xIby7kjB8Qj235POdb06+waEKuf1S0jHMYKi9dc2H7VuSslMS23yGAu7Je4tdrhE/afOFveF/30I0G99pmVJj87dk16upnYhfg+FlbjV21GobZb6teL5vOb05WVGuI4bqzUszypWzm8eTzfZOMDiSE97hDousRREnHsr3r1yUUhJswvaEvurnzG/Y9cN+67lxL56qt3z3TV40MvYBAImabIxJyXIUzs55++Gej8C4gL552w/u/TeCM5/LHgQo9BZBkAAFZq2lW56/BLNYi4sJguxOCctd0OcUlxAwzN3WHRYZMCa+pb1+kZ4aDwc7gYoT/ea1TKVdONfR7706+buRZTWYy3ZNcJ28v7HleQLg3Cxif8x0cq96yEWqNX54WfTz3X5/gt0wHTVVU4s8tAPESgKAUHvRbHUkwmi0QJUmfGYIfrbmQkFj6akNeMslCHsDUzVskKTNUMYDwwlA1bBjIZq6ZB7e6eNcHHmyhMc8ZwYdmkVfAr2mfP905HHVFnSO6ghQVJ4Ss2d3Uq9xqwAz4MN63/zBKRiqufXrSP/kE7R/PFLSaI12V+c6DlT36YmvIFg357S6Muvy0x/9+OyUk3a704yYybEixm+ifwv/dTtlYYidSPSiJKQjF5e60ha3ewNCvuBu6dRij3MmG7cMVQQfoxexKIEjC6pJ3/NBn6CBo8QCmkL6+lICtZUPFsP6JsZ5m7R2jk5teEFq5eSExBTo0c1KCLoX+ML570rGx1L7jghEovwgmTfLkXQmg8LCN/rT2Pz82P2jY8OXTiPE83VyDmIx923abqnU3mEsPDpOWijAzoAgKaER1rzgTtDHnOPHJOHHFZ3zUHttz5tV4xtotu8WK3aZ6qJDCglUNg1PirD+e7XPHA1zEyjj5Ijtl1atpw+HYfyDwdJpXGJBrIxTLF2drQpivZkMQc//5Ua9fzdhWLpaOkqQMwKXv/3AT/Raklk4GlaFRhma6L3eQTPB7M/a+orXNkae2RbtB9zGT1PQJNysHfQoSu5CEdTZ+athBAhpt0CP/jzn7EAMgOAv891XpGyejkrvlH77YezOGucvopgRRAoUdkrEBdGaooCfLCIG1rdpyqMPeakyq8p+9qH1tq+DeU0mDLQpvfZOUBzYhOfLRH8C4Y2P9K7D5iAjCwPCz4LMUDnt/rDFL6ic1bcej5y0BuZMcK9E1Ok82T7irYRpUY/W+vfp8eVpiAyEuduzIhfEQ0qbq46ZAGNfpndCb3yKPuHnOzSq4IPGo1ErRqWouSAOJvPYgWrNJqRz43uXBkSkwql/Mr2hrkjnoR7l/AQqZqOApFND5Kzu4EhSveQDCbV9YvyqZ44dAOGmpXltefQses6dFL/W0PPLLY+BtRDcJ5zklRZ3rF/OTzxMfVY4FP8CkJR1sTAgvHsrUHUZtSGlf8JCiSWL3uDMuPmxH1oIQB0jwsa1GhQETKp8/j1exfLsghrcpU81wan+ucGtM0xvjQryrPUxbT5j1UYVKHHt/2KXv4hQ+0/xRjOrDhbcPtQlV7/eHNAz9uu36Nklmw/6whP+9tw4NPU5Yf6vyFpFCfuHafaRwFF83j+2eKp4OnhhC7W4jxff8jDNaj3dcT0vhuDfGbAkNqrJBtZGLv0mOo29A6rJqiuJeg2whHN2urMv+01Powzdp6bmpP2e0eSY8agReBTHrY8HiWYSd+LRaSyOj8u23D+CYyEPuo4eN/iMyeO+3BUFfzsbJ53+aMPaqaPxM1HiXxOv+csQNoI9leU94/0rbLH16yFLKDAUYC7jhfJjFWcUOHfH41cGed0v87rdtg4avpPGHR0ggIaF2te4eTv4bkO1MoDS3wOZswLDHJw3fyzcqkvpOh9QBO/r/4cecRgiFixQR2JCd43lVKdmH6wUCeubHlqNWrwY+/3QwrOo6y9RYeE9PwZwW7zYc5gVwSV1dxDL0FRKucrL1xWgn/cPOo9ejZnafh9Yxex+l4erM4Ic84iRMJH27nDA+vYAaqEFXk4F/vHXMQ0x4Z9YeuaenytND5Zk3c08Zs3mBfWUjqxKPPA62O775017QMa07JXwFHIwqy/aNwbu48NvXZijANqDxcsZSzx9RBVU7Ct4NPk1N4xcXh64c1W+ka5xR7dDgCZMNdGuWAQAomJDgX/56Lf4CqdG9y5z/z5BwVOdK8h0YaFEe31C5oMZaBFsbeOP7TFEicDJM5Nn0Gk7GeQf/lPcawx6lD/3rBGrnKPs57MqvHZnHSA6rSpDTIz2lYYpto2voKRNyWY3L0dZZpZ+/d3c6R/0PY8fOksZq3cd2Pnuv4iDT7fChkZTeDO2K/66U/OitxloiBsJmqvLxLecvVsBkpyI+bmpqY0cAB/p6P+ImlDKANn88LHVE8MLxHDEhLxgblpB1AznYMkdOrV2EmRa4Q8sl9Ge+7vXEzaUFi9ITRGMqM9dwPl/P/zCqIL+Lzh65vPN0nV0b/V3kXzf+ulWYkynVRf7CrGYrKOVNAapaBOYCVPvzhGQFDE8kghyWboJs67n5aWJ99cfkmgTMuRZqJUNdzL8YgtMJtjq+ZaEQemMfNCbfDHlviqOvtZHN1NiIQYFzu71y9n181LVUyI1yj7cdZdFpPml6nuoy8hoEbXJA3ru1zSnMahSjUS03zJokALKVX/lZX5xjZn/R8uc9YvJiIzG7s67rZFnejlpPtZ39A3d2zTL7rE7vd/AYmdCV2dFaafsP+m94nKgV1skorjwWCy6v88xEoZCBAtEyka6DbloEaWR2MRwuN4/I9B8+C4nkut8dAa4YFEaboc+VyM2nj/NHuSO//Tz5Vea/u/uvTqAKD2/t2rS+t0L9/Chl0cbSU2ptbjsTkAJeMWB9ckBBNWyT39c+MnSV/Xtz+nrpfnwjFUSC38xw16UDcprc98NPeKdnh3kS9ekQNNy3B3hvnEfMwF3ZfxxlbO7Yop4sT6vey5CUieIg1RsuUB1hUBixv6ZamZ2foi0INqHPJedQOhL4vi2OxdZns4UJAsfBpqnYrEjwKKIGHqiT5gthJ+9u/LuNyqfiPMdCWNZHtRHYFCsBPIiF0p/8Ez62XbRm4W0MZ6Q/FH/9PUq8vdLeAnScKbtimNuqCZ6NYypjKqTBLxdkMVTtStw1LchvmJJH8oUSoIUw/e8njzG27q9vXcqaWASfrBktiklYPzs80SslyM+zdrMTYp6IoX5vvMB5nZiyWavpHJ69RZ7A/w2eQwkZfSQ+CNtz4xbpiV1uunyR0XLvknwaDHQwMxl/+X/dwzu49OX3mEc8i8sCniGQoFVFmz34KfDZNXisx6t69ZqzQ+2kB2gsEC6ABWDlfewh2kvzK9z6PRFFBvF2bwbZWuR1Ff4bY2kchOb6zf5x9fkjvddbeqTfv45+FZJ+8cQ8dHh4/4n8EGxDcYxfGmFF55NJU+YeBH1Qymi6v9ZHJajW46Zc7qLMJsf94viGlj3lXW/b98RZvpyhBU7cs4IlIqQuO2Ufo0hEoWCDTFMTjvYi4wNnhG3VC2yN1IG36P2gwLxrT7OvQsv+4uOEO/E4Vjt49g659RfVaIZA7w9S6hSmKkEG+cSCOgHf4i/PtGXJsS+zrRx8MMgw39zYtm8aFdREJVYYXs/M4r0sWZA2dgzqkV3BXg6ZwWOx02aqV/4KWOVp+YFAVvj7ZQEaxa2Eb3r7H67l0/Cs8r0SjxbcKk21CxKPTSms0y7x9C6zm8rrf0vD6lWpu9bHsw8xxowpU2Pv3/mx+5a/03C+kCVTT2mRqnpQ/81m51o93RXdR4geWtDmPuwbZ575o/NL697hz9gRnj8qN1fgECn46GyuNJZLtvg0s77I0vUHitwphQjDKIDidQ+P6Zhq3Hnh2Zs87HKfuad8+uP/iF5JmLRuw6dXaTz0venbe6KFdyqgQCG4BfaSQf4u1hETUtCULeQpelfqyYtYJe/V7NmR46Wrq7Ik/k99zfzpzWG+iPPJaf2wL4OHke1z1CIDBU0zhBha3J7Ge1vOBN+3h3xAeBgeXYmHYumhxKbgJdWfv0texLd2TONodKhcUcC1/bJuo9y4rb8IXat/LJi23NTS9Jr1p21Ml7Lh18bqV4r9hIXUJGbFCQgg1VPuL5GXTQgKlCZ+Ozn3qbIbP8a/DuP+Ht3bCm7F0aZxE7aSSORbwuXpUY2a85E90XO5+MUXlfi+Cd7MffEvwdyjyDCKVjLOLKv1QGMgvqBpf0DrCjyDIfUixNzVKqNunCrfl46O6/K9V1frXvXY1zOxNcRmWtyFZ+ONayjlRDNmbTVCwQu6MKdpqiaeuEMXsiqVmmhDqMZ3CFM5ZXErlsE1i2LOplrvlmjzxWOVwODaRHO2BZYOi5aF3Tl0eDOlPCethdWFyUTlfM64iTDtKRigvLaLvkQzFo42QM9Fqy77HdT4auETN0tun6t7mbh1lY2P0Ag+YM8WtcGyp+56/x8B+xPTPZ33MXrF3vkY98caMKIxdItQPPLqME/L3wGMCroi0/CImIqJFTrzlrfl9xDYSCRa/KMe1Pe4pzKCxi071B/dcv6iKFgeAMw9BQh+e4ZQvNAuN/caOyGTFJlTeNvHTZfRvf084skCC13dA/p9wtiRglSF+q+yfX9uks34uMr10Ke3DUNjZiSiwXzbL63uNrPtO6xl/pgic+5r81x6ynE4SpQerByUk/KhraIO3aDVii1WnESDvjOS73KGokGLU6iJ9HYUMuNSO/Dw4Zh2Otm2958NAFgrV6jRVQSjC79Eg90eABUn8pfWfniBmMFVTNNd/hT+RwsttmjT567/YJBxR0oH4MqRkHkbPtIE4AzqTNRHbErwxNo8VPbSXxxpunfX+47PN8kruR562Vkb3Tu4CjicxJMCrutu6m5GJO1x0tsEKxbmHrR7aXz86nxnf0sYEOyaQo4M7njlY8fxrrsJ2dQD+i8fuqgjvvsq3558fMW31zy2M7gf07RFQe6NSbcc6C3h61OKliWZ+4f+K4WujSBFvPH3MvNX3FlR4I9HSDb9gpIemrEW0TXoiMrGK4UfHDXgQIGMq35Pgnhd4sLW1dEfMpruf4utsb74aSvvlne8cYQ5A3urUJX/4FjR/pYYrsiZkxTW/3BPG+fnNAfuxHnJMqGBqVvdXyksT9Ixcar57iAJpl80zfp7JLJxbZSbHgCP84iiNZ7ucdQAeSwLljJOkLxPwUjk+G5OqR/SBIv6YkB/MgthwjRA1UiYZ7SOccUxY5vW5H2ePCm3YsX8pcB8AFMg61EGcckfEqJF7w0u5nLGzMiRyn7O8Lcz73FzwnjwzWb+3//bzx1MTDPPbUvxp3xRfZ3ruUrA8ghz6whE5GSv9aW1nXsbyoM+fzzxAdKTwK4v3Rg5rcNzU9fP5XPSgaJRkPOfgKdkRnaNZSZvAx4KFYGshdzIEz549/lbw7Dlu9einpdDhg7mEhP42Mp2QtIWOAbb09Buo5EZwc9czI8TW32BBF0y5/dCheWDfrg23634saI+X8/3/9iyDCZAfoy3ifCgvkEJNWjZV/TRuJBKlrZB7RJlc80BYAiokDfSmN9AQ0fRMr+kWbMp1+OvNkBD85iyqAvdGO6iy9TBGQi/7vc5Ng9WUvN28TLkFFeLark/14ktSYgTuW4mMzOL4KfVxDBLRfwLYTfTF4+OGZZ8vuhhe1oAqiSwD2sDSRcjklc52UHgv9b39WK8iUQf8eHjP9qUbWiwGN+HGdzEiMPnkQfD9wpAXYb1ioRQ3Bn++/sgGNdhqaAII84xTRZh6jxc7Ln/Cfa2z9zhJo9lLCsPLC2UrjXYXAun4R/oDdpXMvBgmUNxvi8C5gO2jPkI8iENyF3ycOcPKGA+vTi8a4Q1yTglfbCc2iG10YglxDVDM/2QdJnS3/7+J2zBd18tX10wjTCIz9Dk+UcTPqCoRHhP/3GVzewOQl/pccz+tnfu5HZgpnD2dYqqCSO06+N4xmHMsvcs72G2I9KBADP/Ny4aW6ZGt7pUCx+b/xlQfNmhnoOj/409NJiFR+VaUzqr5lAMUl+G4y+cRq2J52Jtw32cKxBIIPo4PdDpzdcq+k6clkR/AF/S7vJiqsfKb/w0wJpUvPn60fI3eUH2iP+gvi60w0b+TeNGesWP+KAcqg61YgHDJC9+8Uiq6RigG60qFRaWr3oq1lHWS/A8lRjfkM6Q8giFaPr5GhL3iwqheriR0sw6otiTZC/0W/9rungK090r+nAKP4FB36g8ZTX+CdRvn4vnEWTTJlibStYRIQRX+m6sKEBEtZnw08/Ni5/8JJorO762JtIdwXjvGaWSm6BINXj/fINPv0Ukta/aDra0TMeGgCCW+4uxSY80tsx5xi1K6KDjt/5Y/KPNeh6LGhZMEU+LkKQuPOffre5FUA9Efa+vfh9TJ2H1lR17tOOk7bK59M1d/EdOMMvCzmi/OKI4yLVYTCvJeTXzh9FBHn1n1UQGAcySdk/4zVITwUEOD1RboUP+UTkaRG172m7JJp37vLr7rHTBc8brC3Nvg8rc2EZ267RBl+YhlGJJP86mV/ZcO3XygM+pHGhA2/WyguAtrUUpzrjbLgJ7hWJoCQfdS8Xcb/rYB6gBo9Lp1/ilRqaYmd0FntQRaQOjZjYcci437urIIyE5e0Syx9yRXz1292XXXK4txQi9gmPpQ1ciFjHr4FZ9SNZoUMmcoi3KVjvagp3s1ssI8Slm6xAUlTKSOk1DZs5BEUuYyzUb5r0/rowyWvwWHjKR7ZxNJMob1SMhFdnW860uWpBgRCkFoCHs2jQN8nF+x5dbSWYfHfjyro3riIpbr1xQ4q/YVxrLoPbNLgVqkUVkYDwh3ACrC8A9MK+ZzpumlfgQ9L9k81JiU6BZXOb0LrNe+Ssi4GB3KPrsqcmaq8Ec6tai4C/0W3zdKZiUKqltzvmTZ6Bf1ik6wJyhJ812G7DHVr2v8eTFPEvu/lH8GtSeUPct/L6l/NR4NbXJurVNydnDxehnwRxNR/AxYMO9bqYDOHyr5qO8fJsYFUzFBH68vtv0vy8frmxl1/518xSPB0wnDLsq3EulSpeQtdwxstGQTepGZdkE57w0EBQ+GGE4GPhq+uGc2FQm6yb7DeVPuOMn0QGy0ph/QNn+5lr/Fz1wNcf+6yl4GvfFsCED/7VFzkKx3yztZR2vgIyaurmZB0sDIU7b32XDJ8K4VFd048G3RDfYIHCodXmrfxgXqw4V3B+JPvZjPfraK9KnRGx6kQXPh1/NmH+03S9jNFJs0zZk6LDtmZ5Dt6yGCVJMPBUgNjgNdBpyWh7TM3cgIGsaHuFXmh6DQKN1Gqe9/8prHYFDHvBV4T2ZDLmowijqMbaCO/jYNO8/84Zrd9YB3ab0zaNb1BKBYg8sGyYbkJXydd4WKj2d95XM3+2E7t2dd/78qsh6Y1ttT89snAZsEmmS7WlChgco3oiHvvpClXS0HpDHgyff9T8tuOrsKkfftvkN82g/KjyGLrePzAs7Ftly8jdYfJZB56N2RNCVqMLt3nHx30mdr8KTUz580LWYAxp6+jmkrPz0P8dAVqv+Y2FI6NUXZHrZwv69VcGCW8lwG208Pyfo8O0FChD50NYAzGES7k/A/VHgCMtdJP9JilybZJfV5DcWJ6+UXN1LCotmgmSxnUq/puUpy4DXFSdnrwY8tbu48vDUdpafCN/tl7wKD9jGsvKvXdlh+qrHdGfnjNqVtfMvePqICGeYl1PlToDLfIK3Jxd8qD5VbGkAY2+8o+6OQpRTeRHJ77hv9osCBB67I1OHG9kZih4Xe5L+fW9fqecLToOX+8kWNwy9QgKtHxa/sfsYpNIxAHxyt44t6dqzKEBjt4Zf7xUBpjKtAt6Sr5rqkY+2lEmqSZBvUMGEyU41ZTl7gJ3JEwrrzde/jKoloEcvf3aNW6zOoR4/oEFTlk4LwBxYLQrh4sZEdgK+f7K1ETW4FjM/q/dD90LtIF5u2JithU901e4P0YnZFonxD8L613D/vV3Dj+fRl3pPrvQPdUWHzUUGmTFRL+HnEnqLNi7KzCcBdFABQuPl/orx85wWvL+HXkw9anfkimyopFdtYyZgQV1pPl+Xn33DURrdK4OD1jUyvoAjXyIF74Dz/rLwQgWNst90UyTdK1/zRwWyG9RDktUff3wp5gl0XJHvVP9kRybPA0FjImKbqLOAri4gQ3t1WJowUV8h+P9f2M8Q993Iap50jK/nEz/hPqCBeyKjBwa4bhdWlb3oBiN9yi24Kev3sDMY7hihHX6Xby0RPOaUgXMiBY5YWrfEhB96LuRo+VtcwSRAQHqa6yfBPRPUJWAPV5N8zonT4bnecdnZlGTOvxdqMFIMmXhq01K16Uyx6faelV4mCqBgwYTfCE9FI44I1EHNGELaQCMLTndv2zC4mphrhZvTEMd2MX+be+qzyL8j3/c45N5vWQdddnhpDW8hkedwe1iof9w6Y1L/0EvyYXvyJoODjBNJ6NMjvtZ7oO7uyYOJESX2AxDepF7eujtI/Uhatx8foG3mcDp4eRgcJzCqKn3z3+aNpWWTqjjJ6o/31soyNZ5Hf30K3J0WScg3hkf+ULh1IKysMsCJfunh8bn/GVV44tPY5yDphA4xJJK0PLp9V7i1W2vhQMSeo1ou4QVWLlLrmQuw81QAPVvagZ7QYwOYE/n9A9BA0lYo09GR22dNLkvuUiAbhSq4uWYkE84upb8ZpVo0efY7c5XoJ/6yRJ1wzsJ+J/k3X5y1gw4ZGxK9yN7Y5OSZO37KaApND94+oM6FbMca/J2a9zaGVlQHVQYpdv68byaNlWlpuL5XhV84F9sW/4IHN09AwgDTD+7C27v0hxv9ZPrG81zug+9x1xnY7N5UHwC4M6WiPzXzcLHd/hT0qdtO3h5P3MfV+a0JUSBWdNIcACZ89YHCUkk38hCQaTnvqMAXhn4Dy7gxFEyySo8d91Fnxr2FOOanouS5VB1ZEA0ZnJrjMcRnuHtmLVRc3Kztidd3fRYUOQ0NY3JJ0f46CjyrqCbf/QYYa4LkyNX+yoJPGFLDicT0dVuKp+bf5B4oexL+Xvd1l7CNics3W/d6R+u4PkzppegjXL1joLA/ZB1uivTDxFbt0WauwIpg0gTluEL4OWm/bJwfO9CQZAwPf6x00UbFNAsZZdJH+p8MLGARiz62KhNbSNNI4/xcbrvtIHxiUbgt9ycJWP9leIx9vq1/NfGQrgGldbv2rt9mKG8Dp4niAN8HWr2m1rWMJPqGLdnkw6FiHix/CS/DkxE94SbnYZoVf6pmyXRkj0XEDFgn2hArKlhIAMG25ceD/Eut4invb3Tq0RPlhOLXL4MKMtPsWdrSEvHoVRZaLBsDVqGbKcccjG74Ya5Zegr+J4NW5i4X8yQyI1pL3sqYz76bBViwyjcwtyz9msMXo6JCWeFuwNMQkScfmv77dCIHsYf5m+oX+SrZGZdzOaMD2NTmSzyXETbuIyROQpe8gRCbKzVo9XgSi8At6l9ZvaTYn1bi09kkm7V0e++D/fU3gq1DSC8vT5bf0u83+fq6d7ixZQHV9nIyeDO6oh/0c+3LJ+RmwtZkHTZt8wlG66rqc7Lo2LggTvH+WQIy+ZtTV23xGHrH7wcyfTd30P6PccDqgB2wP2h3mBvTBPA43mv5S17MUH9klD2Fib3aex8SfJXsbGq29EK/4hUQhuwH0tyUYaSujiikKHPUbZ242Z/8JggdyS2DHlr5RwNBwvpQgwfjURW5jJALYAFKEl4JhVwyUHVCQTlA/x1GRqVvGDO9z9N46d55SXNX9xkRdCCgV7mmb6ejnEDxrN5sPu+WkIRiHV+BQlSUFkwyNa1YE/ZZ+iRxwTae6gmv2YPo4ggFU+TDWEVKmtxkOjnHEmvqefkcfbDN3EgpENaJWJhKE5n4DX7o/kaQRQ2NytjTVKj/7RnCZDMrb8QrVlVi9r48zrMh3sN5vXzsBbDrSkGq7shIHRpYowfHvZz82DW8MwHSlEs3ZEMcrxbGNDdKA38dTpn7kq0ona4bWopK9s/NPPP5op14j5uWFLWvh/PG8qvIQMQoYsfQPEfC6tvtTqL1uVldzi1iAcRAwF/UZEzIPTV6ch/lDykD1mzePXlm4VAeJcn+Y/2cPG490RmqqsoiRaPZsSCx6Z9aKbbP/mxfv3hJcw5ipS0+6nfB8+N5LRnztiH5y4cIU5Q09BbsqHMbap0J1CIzJU7n7tHlI4FyoVcuKl77+TkwXkNLOVQBE31hDPQPaPWdeT5n7cjGyIMd9Vjfmtr3sAnkmxGEgeHnRjP+g/CexInHsO2qhpGB5bNOWUN/f82KDuQBGH0Z5NRsg9g37AOhj3vY8FcZVa0xMdqQ0d5OxmYnjkDi4cORkeH5pqdnhRPdzDW2F/CgzXfNmL6J0BSw0gKcYyrPWHCnEotShAxbP8+rIz/2JEdXD5yqOgXI3bPvymea05tdwzc0M6KniP7kX5rjiGVDvze4/V6RveLfpncgvMLYaNhTozUTXn/FnbmG6O2st9Hff/2zWJgWgbFmOdfltr6L4CcgvqukEcF2UU6r+Yu4pQrs9ny1I+3JtgbPwuuQdHlkNDqWxC9V3406E/IMf+F2ruG2r6a0eOB5O7u6EmC7HnmmxVIxmzle4Om+WlXZQt4l40cGQDd9sXa7JicX/QIv/4enmwaLnYFsShG8Ap/Z+qnA+DV9uuEZf5Bxxsl9xd+GxGNnv7qUXWo6QrY++q8wzoIE6u7AmAmzW8qB/piGCo2COl4uX2N3hSpH0r//o/xe74DfoP/TToHg2AisMpH7PskvgdTOyoeRqHCfuN6a2ooYWmFmXQxVODtJY219Iw74OTW8Sv+wRANYtKOBntaxMK0OH7BY4WH8GaPxOoVQPD7ps2XCdm9OihuR9OY3QnRvJpnAaZuBsbb0XxcY3BlZ5XQTfeA+Qj8wy3p+h/MckDPtQrsWPQVH7wMP95z9Ry3Suks/pwgP0+OQOkmcCZ7hF8iH4dn1lsHiQfFhAJbLruJ5lGhvM+VEWB5LkxqGm9XIjGxOWZrPD/oVBc3HXjzDDtmJbWl4qE6CnRnQ0t7F4o6D5gF+zSzfZXSy5CVgAf5wE++3WD68kn2+FWTCO7WjIQBUJhoS4APeWYyx68aDI2t/Kd1XWLwTSAR2dgjKasSHMmenTVkSB+Um6aKVcGMdEZ3/iJpjCW1Jh/T6m72pLn/msBuWczk2xdpg0NtcLeUDTk40vbQzxhj8MXo0r+y8AUYOtPvuruZAt3CdUPDRjp6ws0OX2/OjIkbmyPzeD7vUvapmZ/g5GjboDovJuxjeYsW7r1dt2JKWMmftgn2hwhUgDjX4rhbvxIQ2vZODktJ9tbJZWApfgrGpqDS45dfON89snSCBSuo8cfu5PbNIiE3O780zgdtOlgAUtPs29zuFy7pxQf4Lc3L0Y3BcaVNj2Cyl9O1sKnE4o88y4mcMZZtoNGKHH4RjuF/MWregsDi1vNGmojp8LcWYsBQGDUs4ovf+GBTAD5JuSnm6eUPR+WikT3/84qL+/yvT858ggj0bS5LGm/4V+ZFFwRKMDNN9w9s3HGS2tLV90PC1tvWJgfas44S0Il1zlQD5/+6+r6YzDC/k/WaxdIdxeheEMntcRbxnHBvsuCWl8LoB7v0EFqNff9D1XCXScEN5tX/ROXsEMS0mKDrvIJaIya8e2L4B2fJ5b+e95B3JHrX4tFFMlC7TTu6+Vxw1l5T5CWV/jdZUjTqYeYiFLYuLlaf+7i5lRu5LttR16guWbbWYdTr5T56UTcqNdYbLICQRt9UBS31eP4G2LgSECgmYaV6oM19vtbDL0DooCaLpJ9tHAss+DvQ1blgiPALDVO23QgvKZSPINRkI43yZsyZTVLNWCaGfBtVINATY3K+F8QaNjAoQntdtFIOG9KSz8/ZVca5z3qGcMd53n3A6Zyl9vlO9uyPLW9p0xOnm0+Hz238hPZDwn+JrgnN0DbW+ICIOiqNLwgclc4oGxZlRsAq2qu1/bzkiOICvvtdy0t2XXN1xn/nPoM4vUyoFiomV8OETS/uzltTPg/YW9j4/YE/b6b2w8vQ1pykdfiMTnfQOersm1Wjgtc5R0BDXJjm50dI9To0j8sz/bGAc7fhK4JJSiyu+UpMm2YM59vmcyzefhvHJOMOfizNf/dfWbiP+RAygFA4q/65fyhWHwpadnz6cJPLlbVtVYSk2mFsht2fnrHPiebZX9qYNmnrv0l6l7DJHrDWUsISm00X3+oRcdi8AYrLD4/2HWqZCyeZ00gQyApn0uQUekoIOWPqFEGm0RVZH0SyyPsy7aMyPWCKt9zHJDTVftKBJHjFkbBfDzl6641cgi3KPfJMgJEofmvwloAZ6CFp5aqdTmHgRJBK5tNT7NqiOMaQPZlOgONpO7/6OuQYwPe3CmHtz16Se1x2wV8RYDEOxEK8eX8KP99h68qFrlO2ebW8zR+2Vpdss15Rvi0TDwD+lR1ZFG6ZcytNzYvK8Arjxt+vEhvoH32+NSuH7Bw5ObqkgFoVyAgddW38nlgYyYrb4pWGWuZrP/bld4wO/11/ZyIDSeRsLpqHysoLpnNPgx42Q348ev7t2l2q139/Fwt88NmNKqHB58C8WVkMGple7n/T9q7Ia5OluTrBjjBEsd6Mvv8wcfR8UL9JiQ7A9P08+ZO3h4dbGLYBd0EsBK+lIcLX5zU4v8tox5fmSAaiw4PlE8cWBrSVzkUqNSRfibF1TJWHQ5Nt1s6nn/JuRPTZOL7NEr8IlULK2frLR3Gey81RnKZu3RLcdtqwtn/qjTMR0fDI+mNp+dNNMBNmSRWD9VX90JzaM5hkjDsYND7YCEDF50t6BNmRHBHCIbAgRoK4hYC3xIbsxaWK+a5mGI1lf+YAr7G7XvrMeGoBii3HRcYqEWC9rjV+w42E/u8icMrXg2msFbxFAMyBfFUyGPp+wAlVD1yMA2/RmfuP7zmuU8wDBuDPp8e8Z3wD/lFhQvGXi/p/eRJf/QAS8ViG2r6fF/W42gE2bkM5YxpuP43yKpSGzcNTz4AdzoNxXvWeCCVB93tLWxloOW1ZiO5H/sUXRMv1/YGKf8xzZsQSn5hbwIrMKVo5vws4tQmUFIj/ap0nRF+sn1/AcGsWy6JECR5CPYOHc5gLamHAXUpelnX1J1caTreKvneXz1rWqkrCfDz+ze6FkXRxzv80K9jwNf34LU3N1vr3VmP+dLPIYKLf53JHEGwio3NixJgpXWkIZBkni48Z3DXcLe/bcuHJKw6H/PjF6obRa81JMYaHE3kNNFn5mTH2wwUubPiDJ51subQbK8wHs6gJTKtz8ACfhdqcFr6BWerpV5663ybv8VkFdYagJsgxNCjGKJ6JvRGlQs1TMeo6LR0En3Fn6WnOltkVAi4iyJsbVhoyWouasSN46JObezPv9DJjsoruP5P97hxB0khgUYEqC4UC8GyfZLgcyxXxKmiCewDXdyIjMCGvHggzGIyaLnCc2EB1xRynZ892ZpdiDHrYyfk/nHpgtWZ2zz9HqtLmahccqee/8cAunQCkn5S5EhcoC8xgGAQvefaL9MY+3Z6fGazE4o+/+QiMsdb7P93glWdH+FHHUME8AOjolbvXenP+7R7Ua69UjLaN4QtQihm128cS86N6sqCsseNoHplRvMsyNBT11ucMDmF94/siq35qAmDmPZ2JqIjXy6K/9CRlEMI/K5dsoZjLFniv3msXfScRG0LHzt5H7LmLkQcOE8SNkysWHxnnu0XgDV/LbyR7O7yeTlLloyGqVyKVJ79qwuDSxtj+vD9ul7aPz04FetB3bdjp6HdsZ5CPYNGs1G6aqKBcrZ1tzRxpfR2csI0CN1SOa2K75N4so9gH9ALbcytZ/dwpWM7FdOAclFBIGeGwTwWS6f90FxvYGP7RmjuNe+ZF8CAb8q/wrubAKR1hzwyxAaYhLWS6Oume3C5NF8LrabovHAYxaCBpKcXRDbPIuVLucSb+e/OOhpCabTyj+PUgpD1+NjEk3dXxrGGUItbGUcAxKruTg/y4AIsR/401zVi9hl9U/Rq6YH7lcBfNOYXhz1HdGwI3myu+LVvMmO3yxyC9bHU+s0wOyFSDiia0tUmADIWLdSATrg33Zt3D2OLQAL/grbwCS8jhcceynYsh7Veq+k6wB66XGeelqaErLwwyN81e+iPbGc/xCzF4WVwr9a76konWTm58xYona0cTLXr7+PkngztTN7/sMRzcY77S96H2Ue6ekN8N1pufhYuipj5148Ypi01tYOJMSPWWOdCkJlyTKJNfD01bN/ttbfNuY9QzfnIoVeAYQNKhAA7ZzPGKuR+rM0xXr55WI6LY+TK1C5v+zbtt/9Ce3GlHjq+XAHuHYinombF4FSz8y8w+xRmQ81C2jX1pooHqoNWFiMqQY6OFmvaTWkCbswYL+hhT+v16WlGBX0xRpDxFK4C78xdiK+7ehKUUTBZO5pxYlnHVNHZ1bVraf6ViudIsNEMYO+TLO7K6ek7B9gb/JN8wWm9v6YagSd+/SOepq7MDnIYxiyuAPhKKMlbYlQra5Jsd/zq8Ho6CFUDt7xVKZNqXxZKp8+hmh27Qx7vG0w/o1kNHW73FExXSlR9rgJSi73ahv+qD/l0cYOlOK+DKm3e1oecCrHPwirlQiHdfIhRNzk/3G2n7f0FwAdgGgSgANO6eJmmk8TT1pu46ade5u28Mxg0OjgOOf8ABdzDkbsAGDN2YS6ft2q5d29XdNZVY42nc/b/ntwYzbAjDkPYT1zfUyUDAu1tW7todiHlEDFatMHEmLxb56PyLYaPdRGR8jqpuvuesKBjsD4H11js1jXtF3l5SSSJ4eUCjTpgS3UrteLMT1QLjZ+uI0qYr7cfiJeM4TtFzmJwFxzPNncmbKx5+76+uKQUbwxpsPybaf97+ydelduLthKhNai3V8PrcC28vJrqYhiu2rvRc6hhL/HZ8qHvAw/GFhgz0Gpn/xnFBzOw17sudc9Wa6N9jkW3f/L1WAyHNMh8Sk79AHb/1MjUBGXFzYOZSfpq/sibn7nnfrznyn1IeZGrxY4g7esHvuV8lfX6I+xZ/NK4/du+m13cdfzNnR/+Ogq9H2kDjvzx9Qwibt/m6FJb0lf7qsylDI6zpOK3oE5+MUnVt0+UXb3+JOumTAn0qM6fPG8+ArB7svjE0f9qTaVfeuK1rmTLya8SyCwtFfODjZ0fle0oulzx5BTkqZSPeyVz779HguvZbj7a+WthIz9++DKPveJpQusU2CKCm8TajEA6H/7fxS13fft4xhQLHMVdkjJwPDuapSnrq8S+RxcJoUps0KmTXeaPmvsYXt54mAtPpUANarzEbk0lAFV+RaN4ypx6dM2THgTAhYkdohGUGz51m9PwSScZY2IBthSl6rcLw5XpYuZm2iwhiTbvN5Kcvp+hZnLfJpDbvOs/oJEDRYFxLyB0uh64zk4bH4tL83wwWpDPA2AbqwnF4QBI68PhpRziGyUG4GwtMhye/7Xpze/pnF54Pq0Kqg6Uzt0dIzf6nu8JpadtOoh//ZHmFRP2BYU1GpVaAEGg7eGYZ4P9oqu0uYs9pWHMXgU9T6v6dtfNX+1tXJo9tvJG8/J8j/nhEqCtHl9h9I/7QW+phgSOnCR+gdEvJa/zk75DDCZQQzgj59peJFwB1huNaL+vs0uLgbm2B78h7Si1pxsoeea3Z3jV4tAb05+JfgA8t47rv6xTOvrCIRL75YirvCBHz8bhhFyVr5JWhTVKKNW2TJI2WDwitYjXxLEeBLjC1TPBiwfJrdeM/ffjjDAT/34OUC6T1bz75Zb4Qiu7DNiOIvQ5Tj+ZkTFVydkURQDbrp/kmnknF1cnD9qvMrhkGhNZvxKdTQd2RJGF4K172NUsgoPHDT8WgBBwHNiYyMsc3ms29UKfYsI4iUvdnBbHWjczBRTnCr0BEqGyb4Q57W8HiPSUwZ0SMPHQZGTjkHi/oIN3bBS/8FYNkh0cyWUBQpG22f9tc5lCpcN3z0F39k/OJ5/ZCHkn+tXJ/47a55k9WOQm7tMkxjaqGN+Pd8/qSS5mcjYCB0y7x4MNm/Fc/o9SzVTjlM0veEfkjU+xfSfngT398Q0hkNL126/ixL48XrH7f1R0fXVsMzTSDm91l5tHBhGK+9aiHfMm67ItyiDdQj/4OPN948sGtlWIqD1Y929LBD4CJRc0rnN1R3ZWeqfsLgvlSInEceOPfuww/Zam3DQTICYNGrYQoK+woT1V//5/dm3z9S6/ic5pfOcCzdmZV3cR7b8Z6Cvytt5aRDBLd8EcdF5j508l/1B2uEiBn+TECYvcd6VBV8Gw6txC/+UcAPRYQ38j7UXMxISTWlgmco4N60lDSDHEuvlpe90AAiYXvRucwLWQTzz0In99hWzfxRu2y7//ydJ/H/myB5FIgdHHwgdWf+KlpUzdeOd8b6Mq2sRUQKlA6ncrEK8lgihMPXaYxN/iW6KagNMxWF/WM4YtPhJDESfMLp3+h6tmMToUeyPpSYp28JsUNqCzErUS3Upf4UUnfh+eh9jfy/vXix7VT+R6cslDKOJ/labh2ff6Z3vHnN+N88bkcBisRMdXzYDCRmEl3URf26KY7RlVjzhTR3g6DEkdG0qzAp/FUiX/gEShvPYckmwWv4Ft3ilYiEG3dbAzfGYHkXXizwEj4aCbtnf5IQLSaNZgiPjYC82Rcj1EIfP9umUfGABcGgAVf/bcIxbJcsB5658VEv/w+On99kDo7apr/zgP9aWKHE/Xo9NGfU6H+px22vFPLtgS7arJKO66ChcUFJPOILfvEvxEIjYQds7IAkRSnXio/gFWVQ+BKG2MaZDlu6Z7h7JRpnoJ7LT0lofScBM1EkkT7eHlPLjRMqWpwq9cZ/ia3VUhL+HQnb6OUIysevT9buDl6hYDJjQShwbOq6JPcVaANRJoF6re6aKqKsVA9AkMJEyqh1/YzrWvul1JfpaPuOOYr1JX+nEWbI2Czcxe8sHxiF2b+PeQ7S4Kj03MZk/u7Bi/Py9WWlbS4OM+XPH+jJ6fJ7V0D6gJyKbcvltg0J9h/X4ORpXKh2OWPkyp+txZXhq2LIbmCpgICBBV0ckPtj7u87/wN1nIS5ky/RHdnxwdsz3tR41zNJzG2p56swrUwIJjcPqkDQpCH7vG+YyyfzDKFZ7I5d/8Bn07jzQfb9PXCYHK8Z6LLgcIeT0t4CFf3HOxcBbFA1O9vBteSBO8pf5vFngcHtoujmyjJokLwfgUOc9OijBza0ej5sklx/mv4xNuXIPfHqijCazX7JhfEP7QqWqnZF9+7mG0OQvL2b8RyOvcdMsoLx2ukofjY1OVq1D9rYWsmhxE9EeWdba+uUPbMOSzzJs5c/GsoENWObhpVsSYAwb9mE33IplJQdHlJKJMztxytnfe4s1fEyHmuRWZKRkQ1mXBHoJ+0AeCF/fHk7p4s+ibsLqH6YXLo99VEwW5o2pJ9go4DXEnxa8o9gsWZbY36kwnj8RZpHqsr9+vex4irZPXW2nQymtElC+tmbavDl+52qSPTBVxNzJCsNoDc8U1043db18RF89ZEBzDKyL4PjJbgzJwGEpuQKVFHmNMvxibt6XfpkLjpL9t6gXpsb8U2VzTXrx5fG9izsiWQzD2TYV3GAcNfSasenjtHMT3dBS7nEkMb0xjZKMPbT42CqImM2uPJ2Smy912eWKIQkvXSW7SrrPxPv0gT6IAbb1Wafq04/SnbpDGQ7o01VUryMol397RydYM+0c6NXFY9Q/3MWJcEezRXl5t0iraN+hFiK3zXae/5lFv/XHdRb7+6Y/cbqp27B2LPJIAEM0dNhwYhGqlWR4NwlNwXt8akR1kVczpBRRn8RXOEMzzSoHi4O6bUTvw8863rkyzkXJ2gavGWl//3UUq/KJQR0d3CVwQBkPHJutfOoWMbS8ZdHmZz7hOK9UvJcKABdve7jKTmpZHcHTHp52O/jPMdgqh7/AHKKmw1eYiJCI+MlVRiYYpuV1sVsEg6telXyKCfqAt10kARVVavTMEhsfSL42pEFBKBF5buw2Uu8helIdIZSKjLhAVRQOs9Uz9/s/hy0+unPSPMZLmj/4n01T2xT2IgE5dsZ9FjuALmmBWCJhcxffNhOB7j2UpYfZmG1TfGi6KphYU3Jw0esUrbH/3Ywh7nMMWNU5Dq4ftT53pPimYM13ZpcYw4ZAcPOKiCoA0RvVctmz5a8i1w/4mDPv6O1IVeUnnyY+KDtj+2nMnOkv3QX3Qm4Eu1Tvu3A+/9ET6yHL7YoxoyJQBPQrdp+GWZpSVVqB9++xkHPKLNP9j4+Y95paclrzsnoEA+XANVc9ojOvRkGGq525Wwf/dNLrJSRgjT/+TZbe2m1wleaQFeCGGGyZrDyuAmLe0YnJ+4xdjaSayLG3qlRB2cPgmYVMdYZf5MIbL41pXbFWuTM5PYS8YFdygA8cBDPFjHOHs9SqkbUJOAue59S62/3drDy1oWxhe9HOmKUnEV4jGlmm0z21VXLha7dkHiEBPdPfH08Xt7nr4pfS4+SKnrMO7bjvhixHxUEZNyDP7wX+crMdEX9/HjgP3kS7gPl0DXXMTXM62Xah+YCMinohylF/guxhUPz/5t8hEE9iaIafVBA7HLYbGApKhmulq8QRkGK9OT1xCp8B+VOw7QLPLAsl7m8awv6mx5q2QLS/T2wQ3i3fe/qiO9lj1ybYVuWQYI4v0lg8ef5gI3nf5IAqLsysG3+6vR7Lrr5+sA0diS/QdyMObv2u5mbT+uWzEylIb+HbKXn2HghuBWJB9OmA1m5T113/8S9prydEveTk5K2gWc8nM/WO4XMfwtbONpTP7TWUB/yL0RMRGqhIcvQ8cnTbzUeD6Elpm62qEycJgnpslSAGxvQdwPxlHHPClnN0FhCXgJ7VpjVS4piOoAqY5Zm+6Y92u50tRvp4SHd94ft5GgNVknZfGO/pcBMvoCyvTGkvEPY1FFTr1WkVFessk70TUTqCvLTG1X6XHf6LvsFMAweFFS+p3Z8YEnHXUe+H6S/Asn803rYO1gctUrCWMz42FQdA282N3mejbzkJi4xR95EIUbbwL/elrEjHbdkZmujgKXcpIOyPDSWUr5qx0zX72Tffu2/gncwti/xjpjLYB3RXsl/0sDFIA8vOCQsiC8brXaYuvSgnNxPk2WjfhrwI7p045Wffx+bAw7Abixnda/cdZWtw1MfAkimMbAyUbg7q01GZTIVByWYxfa0vdcbvhe+8v8+1//wzNKysQZvXyCCtxKF7/BG77uWhxGp5nal3JOb5Rfv2aSGcFOrviSEfVa5bHFiYYTTOH+lX4IBFvcfPxx4EHyGvtlqfgtSYyxSYM448p84jalLS6t42OG4f0Ocv1Z4SdPx8+EV+zQU5039P5sDiH5Q5rxbVUGQO1v8KveE7AngG0P7R9mgdaRmX+D+FKY+KbJhcxV2DKVsBKPE4LqcZp4Xw8P4up3TsYh/pM17FODW8NA9cxq0ckcVweR3zKho8tAoDf2b1Kfl00ktHjk6TWikeWCAw/uXTia5ZHXlWrxhhipORmsfW+BdNqFJ+fIhpwvdpZ+7IozvhowHn61n7O7cHLDOcqS3HpnIkZUY8sN5UC9iK5QqBo0EoZTzep6Goyn5T0lrn3DdEMuTOXc8zA2BSaSzaUfm+PPQB/vaOV+t+m6w3MSEZcbnFjzIeVgv+WxShDz/g18bY4inuj6yaSqBu4u+gydvSqKkh2mbx0bPmte/1/d7oxjXqvgXydk7hCrm6Rc8GSmLLr6oNwShdF9VMd+IlxYG0arUw6Dtq7idaMbBrUfg8doMTZIv8NHzYcEwu1IPpf+osIEjsTj2lyk+Ellu4v6qNp+Dlf4MQD8u3/gwEwNh7rUl2mdat14Dnn5MSFnwzH/y3sVgg1TXfdizVkdokkuk6HqnGPtXWUn5uvHh2QP2TUbJ+p/OuQkaYhs80JOEHzdEZOejQJiBFw40nVHFzkSNMriyHXtE2I6nAFYmsTRkWpqVSkLqwe81xfYnKDTZcdW/GRw8JHdHQ7SVgBIOf8iwKGvrM2J+V2eWajVvIw2oBckJ6cYF7/hM7u9iYKUGZZ19aX0wJtj0jm88GWqOgGi4ATSRLkr5Kvlv8d+7A7+S499zg1l4HSTIg7OGokLUo2GgAg4BH+JvnbKjQtj8V1wQaLl0aZdu5TA5U+WPH99jWC3WvXKSN+GSrQy62fEXdDq7fH2THPS2/FU7t/CAW3aiZ0FozbvMsfyvzb90p8pdeTtoBuaroKkstSS8Zw9ZaZtw8nn1LAylXbnx9mrHc+Vv1w59idiFeJd1T/euk4P98+KyGVciO5lKEjWNk7t28yPqjL5v+VVNCG46Xi1aXjiGD2/abTtl+qdypjVqq3GeyxJD/jwhUuu7vD9Rb9co+ur6d0IJlLYRpIgXdkSE72vgI/lSSgRFIrsOYkrrrxuQJl2IbTwwuykOz6wYLZd9mSenDCHVM9oBc2B0nnMfAFUR9tmN5pl3G75uJ1iMmTzaJJQMOBFKTb7h/SG9d/5k7zeYv6rF5IR6MIEF9B3dAYnmuDDm956VXjjWWgDTSB9DZBK9jlmRSm7k0H6iuwK+7TE7oUSeCH5gHxO/I2AjMYeZs8+3Lws4GNgCN5L0eZEYs5T2Ni0ebI94H+0luy4vl9CYhPjfa6ZskPX2E6IetNRKx8Lg/bSnUJ+HmApNWRN/VJ0GPieZ3MGjwf89Eg4enn+yknmXPdY4X8cn61lvbmB7a/4ilErqynsV1LXWeW1jEkeVFjtLJlBG9Sf3mj5x3LVzxkkxMQD4XyeKy4ywozLoGGOxJnb+7SIXJIkCKxj6uMjOBAfNoMGYJbh5/orMIWDUkbUbUpr6Wjflo59QC8iBaIqVO+ecd8dBFUgTcgX9ADinVK/AB6NtI5PcA0FwCIAtYCmIvC9375MskMlRmdvWUTBKFjLHA78bsQnQoyUihmCsyS3Dn0lOo6FE5TUL8SJhWUPi5aEFllpifCDodnLL4bv7dvJ0a8IhpmAvQTDg1UIow+fRJyo3YLdPwdqV6ARNEeNp+3b8O/5hpr+zP20JSeXE3K/itlzH/Ak4F4LwytGo9PhYWd4fWmKNy3Y9cPgt/60gVT4UtSj8Tk5eWja46ehLPZo9OjakYELObgKw9hCXyU9yhfv+1HE3V4PkuN+Ir/JGVqW3h//9jcpVL+qP4o//GbUWgM6cjJdn527YyRvlz7pTI5Fwobvpv5+4Necsn9s2iOE9FDhXd+PKIyyelCRDV4EbB84Ovbl0sVJXcJw8eMkvLVdxvh4V/JeLAS3QUSE+5M1abxcZh4nfhN5JAoBPbUW6BdeXnGcf0qQx5S3V7Q0y5AdCxspLf9yuDY49wICmT7RalA66/PNi+j5K0u7vkVVFE0ReAx0gqI7lJpbnpKdG2E4By+NSH/sBm63Ld1Qm78mLCCQyRLBlDsgsSws4Xf240dKVL0vFfHTwq2p9PKOV6x3H3tjxz6GNiJUyzjttjMj3cczS/rO5CR7Gc82tDzptTEcM/dU6X6i2AQekIem3BuF/QLw1Bj2rB76EA07tk9LL4HniBk1hG8sXTPxOgup3+WjCbCK6DZCjH1QaZwGSGKQp/c9nSSUkwYmqVputJslZO0bHsqvgDt7aGfOXAN56WtAEEblsSHL6Md+sEVUB5lXz/w1Rp47aCq/8vDWVuQy9AzukD5RUQmcKvqalA+WJEfqSNucFD+124xccoAVYZJSbU0wFuiqPwNjxH2+mHSjvkPPS/IFj+MXbgyTwixhDosGRhpQJhuRppMWlln80v0Dr6gQ9XDTjWfV64QvYmJ0lmnBwo4NxwH/sNg/tY8+jJ7NmXG2xdfbbejjCXTMJKydZsaj5mWaagx7wRmMIXdkIvNbSwyomcKBeB+9/qVnYx61Wx0by4I7GMs93SSo90+gO4/tOmEh/QJzVdE3/GwdfZWadSswSUYUi9DLqoJxibpy2qi7Pku4oPKxk3nXDbbUeB6U9iHxQvWzIz60XcpgJ/gruif/ZIlSI6Ud/HFUAwy109TfSNtWYC95gZxCTMRcEn62w7aznGvJdft89sl21y4hGB/IqF1R5C9CNeQkd/X8QYFooOfnacLfUQTFfU32bkhtdIGDBy0JEuhP4LgKyH81tHOmIQgzXEFZbTIcmWIuGG99GV4hUpe4nnwhDBiA1NQt/Bw8uwi8WHC61CUBqApid5hmn0yHyoypP2Caj4i4RusQLGuz/18yzNaUeBytY+7HPEsuYgtCdBfU81Z5z7Pvctd9l7N8pzeb8vfxX57RmwDi2kPPpH/OlQKzHYN0bjCNrb3nEmYGj6n6ByMUF7MLD2QOksYzUHy6/l153LGVRXzcCsro8CLguIr19EF/zPSsP8Yo/z8ipRvHgVPL0uqbngDtjgwQxb9L9Oov3d8WYmcDPV5nDt8vDTNKzTOBTbvsrU/Fu57NEFk764VPTbtqykdHkFpLj8tJt1GlqQhynGyDK+gx6yIDxT2xEhNdGkA+XzHH7GBGNcBOePSf+EDiiuNFBJ0DUBkD7vnFiKEyFRlScONT79xV2KdM+1/Pzm8yuxj+bps1KY58Ydgp2rCa4dmjg71kQXXxXv5IQRSkDI8j6aU9qG42agNuNohehhoQAwxathMs8UgEufK7IfK2H2fXJujobhC1+yUNW+GkH9xfsufklweyC4E/lL5+rj86WjAfs3gILIpCdBvMqX/wl3K0G/Ttt4nlkUXSbqGmcekIe9VlR1upfEqj/o93PmcpFErz52huPJYfWvlfUXrJCCtba1hipwRhZEPGVEl0YMHDtOJCa92xt+AJlauTKpY/eJWVRJnF4NfTeT29ogUoPjHlD+rlVDD6sWvdWUD/czhrPBj6LJ7cDwPivG2hHvJcoPDE4OPr2WL+VjTmOr0z7Um5jHFXIrf20HaWxxtwrGT48soAI+yK9MFVvJx0RntPcij9M5RhO8PvcaCKiwMzt6GpmqS+jRisZ2l7x8Qn5eJ4zE/KwL6dnasm13zf+o3pAI3L7g7EWNThdaSF/DRgrYyyEYR4blFPBOFyVvgnt7LRe2QjR9Fn6xrGV2VxhzVaPrzphQJ7MALzg9B3il2r3blgSt45yJAmDRDfUDdfttMCW2HBgAZ33FSPk86go0EDFXprE5KysvzyR9iN/1ir48K1AP5P6nndTEUHaDtbrDuVIpOvacnLC4+pfz1zLS4e3hDzp0MZl/7W/EqSLzAvaTwGeUBhGAvj3Azto/3Veai+A7xplJ910PQFWpQC2QrUZnNXiRVQ5655zjb5SlvH1CO15UmEv7hZiSRiX17DaWHc9znfvC9HVeOBhZ/cR4NJ9kTSiGsVH0xzWrzsyK8NwjBknNyFhD1/TDbeR8300kdBwgxubEcRHSCDItV5D/OjZ5l5CjUzvT0DZE3QfacsbkjzGzqswk6Efvy1dKfzl1oMFvW//PHtKJBBF/YsIpQPk1JKfeMi+YH46UgY8pBnA0S4gS8OSNAQry5E2A1JrxfWwkDQRA8snJ2m8QrKe1UUatnCLzwlHL0tacqxJxOgas+4TfzOP+uU0oix0zPKlQOxyy9nSC44a0hAZqT4yvxlRrmjIOb6Ai4hRd4BSn0LsrKaj94eC8pXa81p8JiwyBYgAqWkxAkBKjdIOsrapKKVe6pUqeWvB7Ce4EAWSNqkMWmatrFRu+Hzw2jFxatg81AAiSdXcHI4VnIyMcG9HNz70yZdKdRUK2kLbPMm/aRtuWnGd+YwqWMYBUhHOyUe2nw1G+3WQAgrPbonwBrqO0lvy/Ydz+dO/WMB4wmvey0Mdaa8ifxmkqRo9o8+5AhD0DZSzJxNtGiem3SpKzsC63TdO228paoVw953PKGMbJxpnXJk2AO642EFe2HdA93DFfqosT4Vlom3sje9TxoIbs2zA2pN4VOc/jApxme8YV//xloGy3f4B4vvLtwcl5OYCxGgVC3kBfYOT79q8Xao01tWQmm+Yf1abhuFt+9fnRpBTNTo98jxqL5qZCBwp/9Xh90M1cgQ5ZL7eabhXkDWvpYpzLMK8gcJV1TFwQz3etLechVXDhrZUBF7jkMLE1y31a2qYczxvaGzEWuw6VcpkNHp6SYgaN3f1A9ip0845BIpOj7lufZLH6L5efptWd15fRTDP0k+jQMGR6VxyUZKmIEFrXLJKy+osukKiEbBEWz7RpkZL3binftNs7WLwiBmUa4q6tJCb3JuX60/hJVob9ZcLQol7Ln6WFaqZWLBdwVjQf/M5jtlg+7rkQhhfuvxdIsP2rr68F8LiOFBSRntmS0G61PGG3Wg57r/aWzE2bJTLh5b5qsdzAh16EX0dL8o7m9z+Zzdd+E4AjPAufpReM3NL5eAdKICOu2KX1E41iMOkWWtEi8HyfcbpLptgKctf8O9Tqm3pjAqqEX4mLxQftrNSphaPwV/eaiMlqsroq0x/sIJayxDQujCxrohrbZhXeIkCF8/VBW7qVC3Sz5QgI1NdWwqzpRPagTUq7E3V4PwDa8RIQnLI7KkkamM9QEQYx0pfg/VkpUb9FCjzfJAQtCmivlxZnNrkzRJ5j855cMBXVp0zCl50nwUjBpEaOkfpXQRwkYDVwFaYhb175iK/J6XHaRJ/e3sdHrs4438lc/ws+/zc6bos6KLvmwNM+49BYQCUNwC2SFeSTX/BbNWQ2Hwt+HRw5jpnoOHUPcxvYWRZhxMXJD4YJPoSzwg5ujWNiwy8rdJBukmTSE4WTa4aZsyTB3rWGUmNOdHl7tLEQgQR9BzY6UD71cve+CLSqFTixHGg5674EXHx+a3xLFybcxCeJ+oc5CAeyc0j+UtFXe5ku2ahbinPuPGXMf8ITYZVRj+GWmHZP60pto7U++gGyriiLKo8/gIsWe5kI9egfnq0IXavB/0SSLMVP13lyA+GpAAOec3ZPnDk9Qbl48ukCqUuo27ADnVtwsHOPMKZVoIxnsPscMpDoPaoH9iIFezDly0148KIXC5ZmRuhRUTWEcd15AURayuU2V4p8WyLGNA4XWO377wkxuGGdjam4tjsY1S33T6wZUO4daP0tGzzRo+xMPCpa2WHnfHr1/1JAF29N9i0ALgordMdjWeJd13Ozgf1wUnc4DnLRhrRXSL/h65sb9gU1nqCK4AfEDwvmxlnOwTWspbMkA7sxb4KBOZD+gN/27493NylapnSbUcS3TufBwajP7MGsx5X551W+RVE7T+ZiHq8mvFuP8C8i0vgPoXdZ4o3vwqSqFnmOGHtyLAyog6TvqR/0wWhlqxfN4DR4CMXXwdoah7wjVNNCoyNsugs93PAl4iys95HrMOnURuiM+aWYQkxxBQZ+YWcevg/fNeS6gmh1kVRWlQ5Yjd6cQ9HFPAt61EyBKAbXOGYgpfvfYIJOR9a1T89CUWz4HDcEqjXqvuinsTypeg0JFWYcEA3tIx6Hg2Wzw7JiOg3pzixxnerLmU0bV9vyy+1PDC6/EdxYKDw3+6ZaU8ALFVAkmgp1ONpXCZGt150JGqfJq5kALCBMrapi1pjDE1tsSSfXxHDJcmf+TP08x/JzVEiKfnmtkpmb7AXA93vAFIOQ/3wh8Oyuay59o9ImYvZMdiuwaJrAA9lwI+N+oWgLI+B1t8N0q4cQPHyBkGy+e/qpzGr2aPVNWf84KmVUn3hqwnK5hiy4GY5ARscul7J5YC/q0GWXIKVfL3pZTZfs3C+rjS1NW4fOSUruqrC4sS321bkcUCl43Ax5NomD67eCDPDAeuPgBjxqc6gIO2loUg/fCwfjAnf2+PN/7GVG7ni3KYYynGpSD8I3XtySgFxs5KqjOqMhw584tV2It+bEqBh9k8cx0KqBsuGPPzvgtDZQgvdXIRC7zir5DcRZH5QwHpXIsdPjMbvbbw/fJkvCfD52KESuYBEJ/RwNzGrNT4nsQQSrMPhUHtx/DhesfMncL/w6766looKqQO8UOSW3tpzzAWciq0rB9YGFuXxavb4iemmUmrC4+eHWQA4+Jcuo8S56X91fIHU2kG3SIsbZcP4gVnLlusvJTpECS9Q74+imf2CpHrHWP7grGzpQjElWJ+dIfXwoDHUS4E/9g7ZJhDyYPiLhWl4nhsNDLi8sWbQWS8xo2P4mRbVskba4jbHmMtui39s1xG+G7e76fZqaBMdA6PEv6py04ODk2HtAzeI6zV1xugbshfxksWlRaKzyn67x/Gx+wjY7EkanYj7byojVcgMazjqIhbl7b573uBJe2FrT4ANHJlhDmTMcfZYKgp1cXMHczIGtHNqnx1oMqkjPA/GHa5ITa+4kZy7x2MgTQehE8T1DGJvcJzQFmceuyBLF5RJUZwSRX7LiFbJrAPH8SCNWfS5iLzK6bPwg62GUmig2hxXCEpBhnrWeO8Q5eKAEVqCuQeUk7AI4dDG3Pv4vktKNj5j8eM7Ms0PQq19t/RpbaE8M51aM02nvy3UdI8MjZPim9KtYlD/15rkFH/RQRCjIFcyv5MgvIep8ULScwD66oprrR/+0+kQkg6GQwIsUPMufCalgTuhNK3riyC5S5RbL33teApKMb541PJ5vkFtYo4vt87tH7c2PcDDryjsO7JcrJRn3dzdN3D+sm/tceEJoTAdJdfnXtZ4lNM/AG+4Db5rzOq45pqrDj7mIoPJP9f28smKgfXZKJAMChSmzzzDL3TZgAAyToLeiNiYa+H+F+bKCsp8x6rh/ADCo5xpga6CdsLxrd5ed9WyKmP0sbhCnFN8mjkeYGRCurAAbUoYLoVxDWosRnwhwJ7JmAOOHXKq+mCeBqCh/fYbsZkoAJFdvMf1bEld9gKnHJ5fbv/fxJztoHw/WrwbvKEPnMjfCnsBKEifXOQ0r9DnL+pFTQWx0/A5JiCAE5YMTlDlUJ8Qrpjc1hU7w4RUqPPX9ZyweGkKfLL6gAqzhzu5BEpbmmkNEv4m89ICzjGQIGKJH5mfEKL77Pd//fe89xH1FPJzhEtJZhnFy/lTVs7QBw8IUKDL3bTUWm3C3T9A1mZ9FtbTEfHXPj32GN3sF7FitPV8gL5bknsCPE5hVrIWyM4e8O8/Qg0OBYEc8DxDUAAUzWlg1JZal0fMTstqUO+WozwJawqLrqYU8hWWlK0mHjyxEN87Rl1duLM9zdBOZP8Hu5j0GrtRCfhmlKVIe5JtYRh8QXdAT/TiSVcp2bGxTT54z4neBOWnEO8//HHiFuo+bYy6JPKk0rpvvD/hacl7kZr1kcyFD1SP781VF2P38JHk1/upvJOEKf8zN3jgAh9PMH/u1MGSYZzVDjAwcmXE4WrI7UbUbYqNLUb4oRqJ5MsbsdGCH7QWlppPke0fOYrUw74xmNpdq0WkwGoirOqIpvhKVP5DBIYol6J/EzkGGz4IdauVpy9775CTtfcGNXLEqf3U5LRzjTfda6Y28Tyro2dHVOVFfYw9e/YWkKi2NfxcHGS0wZT59SW3kNPx9fkwi+TwtFUNdVrtDmeU6zZKzReP9bsK5lsPkuHDSTlFJpEnNf6jBOLxfNf9elX2dAUUgzowz2pI8lBmnIX2LAwdWPoPTK76N0FUQAv6vXHp8gLRntJGPS0EWbBKTvH1Fjp1Abe88YIk7qBWbOu8J1N3ynhlpZCKaK5YORJSjqG0w4b272WAjKnOMpJW0N6vS7V82QWc6poW7II51eDDwTwlsD6F9tyQhBqjhbvy1zVkewVg3QzP/3lZOvEH2mk5M0Y8Cm0rOz0YrlIMLby4ue4mM6r0bnojYY/IW6XOXWCNLig62/C7P224usfaQPBuE0qboCvPiDa17L6V82+QPSKYbuHww+QIA0GIk9Y97LEvSnrA6bGmMGa/jmAoMOYENGvzxXklemkwn1DA9OdvhHbrdxHGoyIyN3WQJmluGPiWGpKnucjsnb3f9OvW2ZM5l+isGg60PddhMbYAKsPulebc/ZWy2IJ1pz6KfX44uLwBsQp+kpbCD0120QRENjzk94eMiWc2Rgy9ieNJU/IWIbrrixYIObnSa12kZSAPfOAjSrMNjMP6Ln2kSZ8NJQ69T2XpUreEGdU+7GYNvpG4wLCA4L315ZexeplyxU/KVPYTkb6CekR+shnc9kdiJ5F2aWiYRG6qREXy2FLKpdxl5tM7wy7FunE0Q9rw8De+A4tcrpMUOZXtPlPMrCNtiwJbQFVOQxV52JyQg1jcckKB3ROeoaB3JKUWmR8fihOdMlKCiCPp0Nql9xKgm6JRrWCICT3WEWXXwRf6FVs5G3JqsNMOheQFUA2B+82efv1kCKfu00kIjvP08cPoaFL2JQUKK53RM/1mZHI7jFMVqU38WfjjTdyX4MRWVk9zokn+sBbz/T2DEqMMYaIJQVoX8Ky34+8bI3wyj6aj55dfspNTIkI/AsTuiVPODYolVMpBAA8jl+4AqrvBVOKe6zQAZn/9OlUlUUOIk0jnHt6516KhGzrrJ1/KEdLCDquyuYiqUfj5AjakkMMm5rGh4a9XsDYOR3sblFKZCUCKSSnmiza+33R0m/A+g9AlYdO0P75xtUzqcRAfA77wwziO46x0D3aHzVNH+uzSs2S/yKuJgYPDXz7Mv/1BqP+VAys26gV9xllRGwGEVCJ5TWZ0hCk1t1czu1lYwsZtz6EhdyFGkFk0IzQEANrvTMDMpm/Ctm51cMZ0YW5sSTpInrsWy1kGeZAT36VAR7Iq3AZG3ipSTdcxkoIVhK4o/iTQIWmvhTaZnH+roJ9i+/qi8XPcf9UCPxq1BX2s6lXOgKwfQ1g14yht1oVj3KUyWcwuXbWwhaaWCJsmGYoVSUEtjojEzC7wY6nUyLk5O1nV/RT4vaFq+FVydlYo+6vIDdf06j9MZww1Bi8Cf+tYXYy8sNsLxfdg91r43k+nfZGGqjBkDcEqwhLBGbgsHDsBxVz/q8fXipl0jMAhwS+myoLfj68UP9aXTwurUojB2igJA/UfivpBoaXniiO9IXQi6bpWOLgykH/ErUvxL+T9GliTCTZROINsdpiZ51PcUeOCsVWJC0dbvWMTH2O2Ywmrl0ygRKvHVc8/8IhypkUddbcUTDe8r3LVIGarxGwrz3v66lUkOR3k7kB/3T5G5UsrgnFqxdOs6dkeN/4VdNvHE3k1WDbnFFLFlgaQPVptQuvmH2ZYbpDv1LJwNY+Kbis6Bum+ybE/pGkf7NgFrcBeAgnNHgffRPd8zAES/VghroGgNJO9ubpbnAz4/PXR5//rOtpGep+OMY+mPJUCNOzFXuDIpV8M4J87VStKbMItjord3KekPaEdWQs+5cl6+W5eF+bDjiwvtMTwGsZoH1SrBDXfOimA2bTH2W+KKa45mIGXkv5V99MXamktHQZHjEvvOuyNBhe2XdEblAAs/SG0v8IU2GmWawFjOdhNfLtodn3Zs7OnvhoQRp7xxQ+jw7AHe5yXVKPKo6Foq4bKW8Z9C1H8x2iRFt0uq/or4Ynzulx9GEtZIUX6jD2DtOuWf6S+YlVu7YtbywH3gZ2qAs0Wn8i4GCLx8U0znhhFl+rTZGxYp8uT3MDBbKVX/4uoWfxFm/DVr3YdYQGJ+jIpCMGnfCD6tEbKObk/MJIwQRnno1fucGkfpOLMYtc6YPJWZzKPWWs/61O8lCODYrxgW+O6uKAzxL/3BElLrqGZWZQIX8PdEP7r/fV/91ydhk0TeKBV66sAGBl3sTWlaPl03jjq3PayeFSQoFnk9//wKl/ORVJLc5CT74oqIEA7/i/R+bytH4/S/NXSvEf4LFD88aBXpmuEMskfRUItCEVC4w49xVi5NgUzuGg//rm6KbfySNpSKGSRzdMmfb6sjycSCItMjy+DUB2TFLaupPk+/o0Sa4VBTVprKWfjD+LxKqZVNl1BmdjYEk9jfEsr8RFchx8CdxUC46oxVt3t7f3oJB2seeILjp4YAj+52bnEo8aXRiNegkcUZT6kLWGbGjbmp8+dUdjowzDwRt49LnOekwKQW/xmjPeZI81NB1lMS6aaGRABuGtqO638DqgwYbQxj0fvX2kNGwtejc03AqbMlsYaZjgvETouw9HJDa2WQnxUQoxO448OHPN0QoqyU9U6smPk3BrhSHENAWRq1xkCBM6YUGMamyQZgoZaZaUVN2SLa8ZZHODxIftD/yjSjeZejTC4vY/MSyf2pVyTnrTQgkxh8PaFI5lwz/J0UTicXjVhT+kLzeQJpy87s13bjk9SuMaiS++vptbqHtxuwLHgedD7yVlL5fIcAf7WtxwzA8219r1b6cDsmJre1NdQ0ouM4ogSOaTdYcMCj/w/e6yeXdGrsL/ug0dj5PYXgzPdxnG7o5N1QfqHaw/iKOUtF9810GR0QDnikFSszclDJp1goYSdXK63YkwJ+GS7OGYYy1MBxGlmItW00QZS/0qkgiE6XCvIjBINP1GWe6ifBY2h8gpBZlicZ4bbj6mzxSa1fapNEmFSWFi52LlHZu3l1c5nlvDt72qcwzflIUKdVGsNku7NvXn598qBP6u6/nYpTEr6pQIDdy0I/LnAN2+wD2MAwVX4qDZshfgmKGBej4TI+PpSFKpxgDuLoNuqT7vyWlxsdfNZYy4LUfFMOJgbKo0tpcbnUviB/KdeekY6lEpMqMDIy/0xPFBclBrcqID/XlNRW+W09ZClJ+bfIre59+fEBVr4GkJvngPPEuBnJ1Y60nLKxQOCBIOqWtNk3D2g6qFfYIxGRG9FTBYxF76+BP/VpZfAphnXzWbHgd4Zgh+Pdk2N/H77GRW4vZn1ywlygkSMFrOzDfN1BosZQ+vYaaLds1Hkja3rtcH8LUZzOw5EcOJ9+HiePMsPQpQdDOXiIuxJ7rcdB687/LPXkVq0MgpepJUluXFFSqEpALQjoBdYiiROwozqa2Lu4zOCq3XFuM4dJpEHfXJnw0wu4kURtg+jNCRJFI2Kp5rTK/6Eh9rI7r90sme9KWybT3rA4hYq/4vL1RLwbsnJgm5niTp8yTwseewbumBY3nAgFP315sY79H1i/r8s5AJF0NH8hZx7cmx66SI/tTHYTPCbEgnxqsV0eUiSyZuEaC4AKHDjdwS/XqKLJT7fd4I/K1JiNU222xBbAb61igfp+Fl0iRt/6NIf0mFPvXuBCoAcjyMkz2Ja29uvFgJ7ogTRzdr415JJWb99APGdL1sTsVdrgwz7cvr8/pi2WNQc7W16c/54ZFGnuIVC+9OlyZvWHehCOAcc31w6KKDzXVLNsvX5svfHZsKdQ2DCNRLQQ+JiGiReq2Vc0UMys2UWXvPrYKUE8z5+IXpGLgZQfhc6UA3jtnSFTMRng+FF+8yJpkUs2aDcSVnItWm7YilBUxxprQSf6Z2eB4XB0qq8AR6u+8i5O3t9Mb8elDcb5Xr55F/nqA+ywX3JO4mel67Pfegn4KooQpXtMKAfhcC8vM00IAbZGesDFBUVTklXJQqKy+vobEi8gA1AITTR0suxoQmM9O7BB7n1qYDGDNZU0jTaYHRxcnxU6cWpjuALKsHYZIiwU+1ZOK8VERsah+s6K58ILCCs0Nb/9hnk0gPByHtUgYl2f89MaJOyqCyJfwYiRuVkZxQSsNqqncdxcw7h3KXFjywmLLwr7GQxRRG42KCZMvboSMg57jT/C46MyTJatEzOqC8xoA02Kn49a97uwbO/up1PI2eHahZV/+VTTi5GKsVTjyuzsN9IhSjKsYQtLxY3OgxRs2vk+SVI340f/Fu4/ToMh/voOYXSU6WRrk68X/WktH8icUA+/CcarrlfiFd3rr7P+1t93bSQlsZqGf9tmf/8hgaCeC+RQmENcNqqXIreK2ctXBkPDB5LG7OX1jS9hFHhwk7G0KrZQwfvgvccffTAFCYxuNQ0ChuD2+neikb3dR3MRKbNjwRUK669wxLoGfXD0x4dqYuiVaAotUK6l8AtqQDggBxc9DAEq8W9yrWPIOMZVA0CBg7GR6OO+NiW0oIAdTAnIWzlEYraomMh5bJB66AFbj1wT+VX4a3D9iYUl5Yi/uoBPxcJAx0Iimxc9nSdfr56iXjUmHD17MlnR2tyeIHuO/A5CsYnDTp24HOEPmGq6plcvzxJE7W3Tg6iH1RunUIwJpvQiLfuJ0QN+x+DaW8GwfIawIuVV8aIcTXqJoVZWXeZ9azo9Jnn5yt+Sn7DcBvaQVWIc3H0HpbQkVLxEdUD/1MiNxjGiXwypOqOEF/mNC5OorkmsxDjhtm8Z84dYeOsS55/BbvKFs5YcolTLbFvTNlsZNnZeLFRH6MarySLRq16elu51BFtuZ6M47ksiyx3zm5x/JyzEijWS1qGHz8BTOF4OMn2XoN7fbU4oxouyEVtfpd1fR7dniD3MJFv5Pq1z5eNbTsG0lZRlf5DqsCIAe0d3sLoO2cZ/oLVEJSAC3UoGnwezZCFvcvgwMt2yK96O1Hl396iYcE0NlY6XIkz+pbjKBZNTptA1GZhu5aWjpMw4KssRZImBJ8AD9UJV30mq+l80ijSVW06W+T2a8/0HuzLT8ssd7OzVrq7YYY7YPpvtLBuDS6s2PA/iIdgxDycqbbcN6iUZqZgyrIEvTFKIXXUy/vUW8CiQJXVgX5WL1BzS9Ety07s7239ZQ8TSNxADWe+C4AOHbz1tzrNj4MlnA0R/yZuf3renJTsTrbzlsFY2FZkOagt2x5gcpMidpBTqET3Rmk4VBzDoOOj6bjypXWXxTQtRtnavnsYmwwKG3snXl9Q0KKx/kOkcYGwmmd06h0ekk2s2F0FmeCBmDCGK/LzZzDqUtAWQ9jTTufV77cPc592Lt4nMB6nLtwivh+5/e/SPNhCLyh35EMXO09K4r0QDZubtB8mhQ4YJ5JN5d9lsCR6SY/oK6ImVXfDtyRfJDT83VGlmQa3MObsC8XFtLCK6xxnCnNikJjmvoHdVuQa9xpmh7YznB4URzU6wv8PmZR5OHtvQZod5qpx1QcY1wgRnl4MGTUC+gujHyhbX0PkfKmg5Sil3Jd+KuMnDTh3z34LOpzfktGHk7yoCYdNnh33tb+N62lXhCbw4aEiIC5CUvMqnwg9v208RcAUYbD5k5bD0I1W3ryudUr8B4XUbhO2vaCElmRpArnoRC1/vmv9PVE58R+ChuoWds0twKpOjqLQ+6Utjp4p+NV18a5WEI7fiaTJTGQJ2RSjvsHX8GGp7jCq9F5gz3jgvaBiPSP5bxazhKB1zCHoRY9247MGr0YXVTodn0kzAt7OhA5BvPdXiU1aRUfU7bcMY3bC7DLuWT05BgbcUpBmZSOrKIO8+gvgLr1jlQ/guzHPgHNxHs2QGpdseXNU+Z4usMST8ffgkELwJ7WG7Ky9xPQY3BFn1qzCe+8a94pjJulD/To0r94n/v4l0FX5GKI+vkeTO9XkF1ipGKNhLnY1Y0Dbu5kjTkV+lce0leLt/QGr2Z6XDQE/kHS2nUTw0a4k00MdcY9PTz7l36Bz6JzO1B5SYALbQQxz2Ri+jY9CLf9B8T9gb3sVxZUxImI/UsmepChp7eumwm/AABAFy3Y4xfjpBei36SZLkzKdXMqP/FsKdrShJimVxXD/nCQjmXGgJczHnW2kkxFPpBjhu4oj2t4SQigFjjQ4ZJk4g1t1GDYdBQYriImIBrDaGQHzaT7MTHxtH4BJSgR1HuHY9V9HlGqpL23paAyiUyiDgWhOUlq09SKdZiCfIYA/CXvblmt93f+umq935tIsM4L8PEwe3S1C9cjmgwndVR4Y+0D6f0I/XYAcmw12vtK7IeaZ1L9rrq1nvVDBjj+mQjyAaQuVoF+UMUDImIPXxwcIeVDs29O1510YUipCo1qv/6sMXnUPf2o1O4ZysldblCySqQNHYyS8UDe+ld+eqrk7v7z7J687+oiiXDxoDnTgmk4RZ577gKLCMWeLleatX0kb6OYDmwk2nMctjQF7rdE7UqzdfN+dJ/0gwOK8zJzopmFTgcv2bIkoLuTfaJ8xVK/OF4xVAiNW8IW4XRL0FL4tAVLUwbsG0XWK6DM5FQvsK+Z4coIBkyYKB9p7G+16ATLZBk/sq6s4N7yKWLW7/La5xv3woVTki+RefF5T8sXFnm14rtROmQ/Um/BQyeuCQs55o4EtmBsoVWsAz6ve1A5p+BoBc/1E9WylEdZFKr1MezdN1Jb5wMQiTe1VfnQiUUk5nQLL+xzSyCQvRj5ZSvLWacU0NhbMLDbpcSqp41kPUKJdPcGN6bVdHKXZ/oUWUg9TFCMmhFG6S3UPurH8bwT3ePutVszh6cgKUEVGGMFW449wffCGhezMgODDCXFkkir0Gom4USjo3LExN39rs1X/8Pj5c3rIG4qBj1DkEs30BbtY1lL4CRvNeyJmgG3uzG6MJRuy5xik3kx2pYLMzvFhysTuy/MfPIP8VdTAJhcBgqIcoiKK+H7SY7PEI67urzSxTvNaxCnNeduiKW3xdwPFm9JFAUY1I0J9Ik5ztx6N1A+PRJ1BDv7qbyyhAg1kWC4JTbuUsQ9yBOAXI58pxIGLOszDq5JBKM14S5LErZVL7dTaa/oDUPsBH6XFcw74o7cY6og9XjBbpjWT64GSi/2L+cTtP7ibZOdOIVJLwJ4KEIbUmEfzHczGxlAH3Rw8UIpFtBOJJDOzN35HlOUSFNhV1IHQNKBQOzm8aKCNaOPm4kChQ2YTH/GBPk0j/4CldzWIrFaqP/ET7sYeXc/2sAsHxQ/yYnJdbbRsALLAIgQ6StDPu179NWDS2v4mCfpXRCn6Fp6fKxt0eCaEs6wBLvl00N91eUbH1w2kt/AFV/nGIThJ4ncIsWAAAf21U+iSC6mGfvI4Qzmr0mrQ2u2WXKiobBTvjIt5ydU3Q6A3kWGvoWMEWMObpiwNfGfY4nMJR/0pP2FKbM8vCQDpApGplIwiq+QieuLHxK6xEsYPsw2asF4kvA8+WNaQsQqF69SIxuhr9+413jylPdmdUjw4eaBKJJavgH05xfhv4OI/3Xy8KOAvAKCcTb2L0XaZ+A/1jzJXGH9y5/21Qt51vImA/HxKFjn0dP5aS7MqtoOz9wHI/1P5BX5FiN9SB05cTMMckc7V8wlP7T0psCt6yFxHaPLyE93zNbqIeHVtK1sU4hf8z9gzhsIGX78BW4wSglSlcd4y32mSjHEa9DeBU58x2f+OL+mEBoFez0Oy60f8OTN0D1q7Qg+BshMZEx2qbLQaKuox/rL7pbSsWp1elCsK6kjvQz7EtfYXOXZrofhxW0vyNPCEbcuV48qzUFHkjnPm16gza/oLJ3ulWZxwX9SHZfJPMjDCEU5v8UlGdqNFC9eAS2hJr/Y0f2TM8sudyYiStE25acCT5LdIuoTJ2csmZMmR8Ulr3+dOJ+6QraQh7RS0OHSaNMsOGWeP24jbYMkPM9xCweD7fSnPF5GQ7t2x+KCPGG5HMIcTsyKb9IQMyPdVKKQPWXwxseP6swWK6RgXXihtxif/NCpWysIdRIWDVJLLCOdFOIh/C1q04kt9D71FEljpU+xAWdghpc15plaUralZX4NkvUzMVrKfTqwYcO2y/H4lIhToOfNqldsXoZdfM/VNE44USh25Nc9m8jcURWg/ca6vrcv8zpR/L1y+KtyjWhYDlqg/KlTEXhh3mbEOZTzMhROxQjRWc/UHtLMhxdpqCieKSXL7pIzHmw4mTqQ9cRl5kNJOhg/Zq4TRcidMrmcmLW+Bbtj0qOnwGPQ9NZ3ceF1Ousy1/0Qls0O2+YOV6KZNQaehDPxbWcq6NYSJFroD3ey+kOF+xMC4S8Ah3LB7vTRHISFMnkEmPhJx2+RTQ1F6XO3lqMGnXOyWQxIHPzeRdu33LPXZijlPpb27RwbT+LUj7YyAEGG4t8ex+i2sPrDKZByXjmRqbOsv2HkPtmLmrPR/ozVY6385updcuw2l0nyppJNswF0q1U57cKsvSJG2Ie0+sQJaVVkxjHEy1nIWuKcA5pTbl9ZLSFGNNU5GbCQswTi6SIssuhPNHPF7n1FlftAD16ZkIrYY8mIdSiANloKWnLvP1G+DNBw/zk/MYNTmovJGHOtT7mPEUlbKF5J5BH/yJhHP45cWpvJBY8qgk8rewuGiU9xXOnldxbjOgVzRzb/P7tDa8WEL2T0AAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# 设置 time step\n", - "t = Tensor([40])\n", - "noisy_image = get_noisy_image(x_start, t)\n", - "print(noisy_image)\n", - "noisy_image.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "让我们为不同的时间步骤可视化此情况:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "def plot(imgs, with_orig=False, row_title=None, **imshow_kwargs):\n", - " if not isinstance(imgs[0], list):\n", - " imgs = [imgs]\n", - "\n", - " num_rows = len(imgs)\n", - " num_cols = len(imgs[0]) + with_orig\n", - " _, axs = plt.subplots(figsize=(200, 200), nrows=num_rows, ncols=num_cols, squeeze=False)\n", - " for row_idx, row in enumerate(imgs):\n", - " row = [image] + row if with_orig else row\n", - " for col_idx, img in enumerate(row):\n", - " ax = axs[row_idx, col_idx]\n", - " ax.imshow(np.asarray(img), **imshow_kwargs)\n", - " ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])\n", - "\n", - " if with_orig:\n", - " axs[0, 0].set(title='Original image')\n", - " axs[0, 0].title.set_size(8)\n", - " if row_title is not None:\n", - " for row_idx in range(num_rows):\n", - " axs[row_idx, 0].set(ylabel=row_title[row_idx])\n", - "\n", - " plt.tight_layout()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAODgAAAtBCAYAAAAUBZm0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Z7SeVdk24J7rWWtlhSSQ0HvvUgQUEUUFEVEUBcTe8BXFhr0rir0j9q7YCyooYgNRsQFKFZRO6BAQAulZbf/4tv++vcerI+fIyDeO43c4ucez7jLLNeccmp6eDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw/99gdV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwJBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCweq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYEwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBCP/yT9ee3jG9IYjaxUuY6iQ+X8Ml7Knatc8VcpNhoaGS8Hjndwk/+Et+r833Ymdmi4FJxmaLt0bg869PDTde65bT8lgqHfN05lsBZdii/dyLXe0kzvU+y2mSs9185qHSn/BoaHO+36q+F1tGSpd89RU6T2UZHi41MaYLuUmSes7NSj9/Xp/vrQ+f0Ol4OlieytDnb/foNgumix9s0eGOt/VqenezVz8YldSm+3lVvR08ZpL3ZLUeg/Nb9RQ5zlpteOKQzqpvTJ6N1wGtbdR55oni5/V6dbz1+rvFN9xra9UbawvydRU6ftXSW0GF+/lNXB8ufb9K/WjkqTWfZhqzTv0fovBoPNjlF4XGcqgE5zUviW990UyKD1/U6V+cLPr3npOJksXXWuHpzeO32vTJhOtNsZQ553RnCtJ6Zp7E0dr4Bx28WXUGpNrdVenmrdyq79T6qO1xq2T4mNdbOJPlf5+rdzmc9165y8sDXBN5EGV3P/jwkpqcUQ1M0ptrkFtbrzX32n9ziOl9+eg+FtMlT6Ak6V+VJIMT3d+j+HS36+Vm/Q+f60r7s5ht/p+Tav+bbRwamWWTk38V3/C2aPD0+vOWPXXND254SrP/Lf7t7ivkjvnls6XYsaGcyq5STJj/SWV3OlrZ1Zyk2R0ePNK7sT4lZXcxdNjldwkWbf0rb9yTude3uLeRZXcpDeWvu7sYk3g5IxK7rIVnb/fgj179/L6V95VyV06mFfJnTu3945buXBFJ3fQe/7GB+tWctef+lcld9HKTSu5SbJ05uJK7qx5nedvbNFmldwkyfKbKrErJnot7dHSPTc01Gm7jLY+fkmGxm6r5C4dbFHJnTPWW3M3vFnn+bvvqrsruUkya63OczI+3nnHrbVj5zuSJFMjnZGKxVeV6gBWdtoBSbLWhp37YmR8eSU3Se5ZvHEld1Y6bc+1d+msDUiSy24q1bQM71DJ3Wb8/kpukgwmVlZyJxf1rnn2vLUruQtXlK55+969PO+azjjU1aU18lsWa1pWruiMN4yuNa+SmyRTo5328galceBbJu6p5CZJpravxG48eXsld+HM3nO9bFnnXTRr3fUquUkydv/SSu6y4U6/ZGKwrJKbJGtPdO6NhRO7VnLnZkElN0mGhzp9tIk9e/M7s27ofFfvL/VLZozvVclNkuk9bqjkDq6oxOauB/Se66HpnSu56159fSU3SUZWlvqVk419u5L7du60A5JkxQ3XVnJXzuyMvcyY6vSvk2R0y7mV3Ok77qjkJsnKlbMqudNLOs/IzD17bcQ58zvP38qlnTqPlRt17rckWX5fp7+68WRvTG7hZGcccfmMzjjU2MT8Sm6STI527rlF45024sQDevN+66y4qpK7uPPpS5JM77ZHJXf2xaX5/L1vruQmyeCazjVPLd+pkjsy1Wt7rjXSeRdNrOxd8/LS9qDjo505tI126vRVk2Tsxs5Y+53LJyq5Wxb3jV2xU2fs+r6VvTq5qcE6qzxz+a3LsvLelf/xzbzB0NzprQYbrfLruWKjzhxWkmw8ozOWMLSk85JZd9NV//v+23V3deqRtlq7V4NzzZLOvTFj7U4N49QNvdVpI+t0+qJLl3TGPuau06sTXefuayq5w2OdOoskmb9eZ65wrFSnPbi+VzO7eI9ODepG95fG2xb1arMm1+1kb7Oo1BBOsmDOdZXcqTtnV3JHxjvjE0myeKjTxt689OdbUaoZSpIFW3b+fmtd1VsXN3tup78/tHapzikXV3KTZJNS8+Wmm7ep5A7vdkslN0k2G+/MVdx8Y29+c7BT51uy5B+dsY+11+2tq9qi1Ba49QGd9+c6y9ev5CbJ8hs77a3RLTpt2iS5Y3HnZTTvlk6d09JZvXG8zSc7Y8d3zu7U1jXrhzddtzNvunxBb13Vso06bYyNFnS+USt36bTjkuTO4c49t8U/Otd8+5xee3nL2Z3x7kXj21Vyk+SGsc444p6zO3+/a1b01hLNnlpYyb1vZafWYp2VvZrL2aWh6xuLm9dN39QZ49p21841r31rb+32ik063+zrlnR+i63u7Xz7kmR46b2V3KHNen2/BXd3xq432bAzdjZ/Ua+9tevczhrrRTd1auHvG+2tg95sdNtK7uT9xXHE3Tv1Bevc1RkfuW1erwZgu9FbK7n/+Oe8Su5or0w0I6U5jdHZnTZtkmw+rzOus/DGzlq+RdtsXclNksU3dPruG2/WKY4cn9X5jiTJYE7nuV50VW/efeeZnf7DgnSuefl6vb7fnLs6teXLVna+fcume2Ny683u9Evu+1enHZ4kE9vvUsnd8NqLKrm37dXr78wr7YM1e53Od/XO+3uNjF1u7Mw1XzrWmytZZ5OFldyF93TWmz+gVCeQJHdPdeZ31rmqM1e5dK3OPmNJsrz0Ldm0uAn/4pmd8Pl3r7h7enr6P3645647Nr3Rpqv+fl15fac+JElGdujUit4xvzOWt3Tn3prTPe7asZK7bHFvL5x7VnZ+j62WzqvkXrVpb53s8pHO+3zd6RsruRst651jcPXGnedv8xXbVHKT5J7Fnb2e55bKZW4r7uM3OrMzZrPe7Z3+89rz5lVyk+T2+zv7aM5d0ltDdsd4p580PbezB//0up26oSTZeqwznnDvPZ0265zbejX8KzbvjDNttXavzz9/7O+V3PWWde65G6/qzZ3OnNX5rm6/TqctcO098yq5SbLWUGf/giXLe2urxkr1Fkvv67wzVi7vzRfOm9sZT5ixsDPGOzzVe67XG++MH4/O6+0f8s/bOvPqM7fo7Jmx7XTvu/r3tRdWcmcs6exrMetfvb7Dyu064w3rprc27vb5pbUSQ5361oXbdtY1Jsl293ZqF269r/Mu2mxRZ411koyXikXvHXTqC5Jk6badNsYeizu5Nw/3xlRXzOjMv01e3hkTn7d1b+5tw0VbVXJv2Kg3jrh+qV102+zO92/XBZ3zg5LkmkWd2suVm3Xa+FvP6rU9b5jqjE9uX9onP0lm39wZI7l7pLQAf0HxnJ+dSuuJpjrjk5veUTzjdUlnHnn5xhtUcpNk0e2d9/LCGZ3ahQ036O07P357Z952av3OuvD17+7VGl69WacOdbsNO3vDJ8n4jZ36urkzO+MY/yw9I0my45I7K7lXzdqzkjv3rl7fYXSyM1c5sl6vjurOTUuTzfd36uAeMLtX63vNjZ3s6aFOn3L9id6ZORuNdn6L5p6iK5Z23kUb7t5pL//jX536kSTZfP3ON3tiqlNDPFbaxyVJlpX2AllaXHM+Z4POup9bbuq08XfbqNd3nxrqjF1fd3dpDH+4t05peHlnL557ZvXGl8dnd87Nmbr10v+q7nl4rZnTI3NX/Xjsyrm99/no/Z0x01mDzrdtbMHCSm6SzNyq02adc9vCSm6SLN+q83zNn+60AWfNubqSmyTblsYT7hrrzH0vHunNfU9MdmpEBqObVHKTZN78zpj31NLO93j5dr31KOOl6OnbOv2vpRv09s/a8LbO/q1L53TG25Jkq0WdsbHxOf+s5E6M9dpps9frfFeHrurM3dyyXm8f9+kNOr/FVp3S5CTJ+Nqd/uht63b6z6N39calN9y+sz779n912luLlvXmkbcc7ZwNu86y3v51C7Za9ecDJcmKyc5878Lx3rr9na7pNDIWb1Haj2NeZ/+XJJm4vzP+uNGs3hzL3PFOTeD47M47Y3Bzr40xf6gz/rjN7M7zd889nbqhJBndfmEl9777OrlJsvWdnfXQC0r91Yl5vW/U2vd33p9DpfWHw4NeP/imBZ120VZDCyu5STJrt05N0vzrOuvBVi7qnQ07/cC9Krlr3d2po5pxb6+9vGjdzjjiVut39mVIkvFFnfmBO+Z3fottx0rnmSUZX9npO1w72qld2K23xUiu2rmzBmrLq3pnsE2l8zvfNqfTFpi5aW8cY/k/OjUtW6zotPFnrdurSbpxuPP+nDfcO5t22bJOG2OT6c7anOUb9+pmb7+5M6a64cxOn3J43d73+p65nXfcwhu3rOQmye5rd2pPrp/ujL1suWC3Sm6SLBjvtGtHt+yMb22wfm8Oe/61nd9iw417+9Bdv7DzzpixdWccauNbe/sF37yiM+8+tbTTsN174975GreVjqu4d6tef3Xn6c786uUzO23E3e7o9M+S5NqNOnMPW5b2R7t1ca9WdOmSTvtlaGjXSm6SrFvaSmn4zksruYPlvW/URlt11sZde1Vn/eiW6Z0Tumjj0prXmZ09WJNk2WjnPbf0mlv+r3XPQ9PT//ubcbuxudPv3ezhq/TCkmQw3RvNmjPc+fAvn+wUbg8NehuAjZZOI5oYdIp9kmR4qLNBwNDKzmDkkqneQWCDiVKHbEbnGRkd7w1yrixtuj826G00MzXS2eR3qtSgmExnsjpJRoc6v/NQOgOzoyO9RagrJzv3xehI7+83NNXphIzNmFfJXT7da2hOl+7lGem87xcv721yuM6cUkd9oniS4lSn/Tk8o9OWW9KrYc+M0c6E5+hIadHEyt4G91Njnb/fzMneiUGLJjvfqfXGOovtl63ovYsmB53fYmioMwAwVGwvT5W+URPTvXt5rZFSG3Go0xaYWNYbpB4a7Vzz6KDT9yveFpnqNJeT0mFrSTI21HoXdcah7pvoDVJPtQZ9hzptl8nJ3uTh0KDTRxsdmlfJTZLFS0v91daYwGjv7zdRupcH0522wNSg1w+eWtFZLDCYVTxIoPSaGyztfEuWTfY21pyxVid72dLOjzw20jsQamio068cH/Tu5bHJzhjJ0tKc1PhUb6HV8tJcyaLSgYgjg94c6IrSvbxWen+/e5Z2+tgjo5328kRpAUKSDGZ03nNTU533/VDxGzU86PSxpyd687b3lYrtZo102hgrJor38nBpfHll5/251ozefPDwWOfvN10sMFuSzrO9crpzX0xN9uZAJ0vP9WnjCyu5dxd/iwx3npN5k71Fg1sOd7JnTXWe65EZvU021ivVvaw31KkTWGtmb+PUxYs6z/WS0V5t35zJThtxvbHOd3Wd4d7fb9lUZ7xvaND5Rk2PF+ewSwvQZ/eaGMnwqt+U7osLr8ltE0v/q5fcFrNnTL9891W/2cz4vS9e5Zn/dvZHflnJfeTrOod0bP7SR1Vyk2SL515QyZ0+qnMoU5JsMvv9ldy77tq/kvvHlb3f4mmlzfH3e0RnvuLjP/pDJTdJFpc2dX/awxZWcpNk9v2djQf+fl3n7/e5G3v38rMO+Fwl9++zj6jkPv6w3kbK80/rHFhy81q/qeQmye2znlrJPWb51yu558w/oZKbJJfs/OdK7oOeUtpA6uwTK7lJMn3tKyq58+/o9ZM2WfGdSu7Q4H2V3C1X9moXBtu9s5J70VofreQ+ctvehrnz3tt5/s484KuV3CTZe69Ov+SW239Xyd3rF0+r5CbJ0nU7tUPnPqozJzt5U+ewriTZ4+Wd32Ld2zttlyT5/h9fXcnda7rT9jz4D72D+LZ4ZWlB/DpnVnK/duevKrlJstY9nc057j/r7EpukjzoKQdWcs+4ttTGP7V3CNKRh59XyT1wqrMx1SeKNS03XbOwkrvZXk+u5CbJsk2/Vcl9wf3HVXLfcNe3K7lJMrT49Erua+87sZJ7+s6bV3KT5PLLO+/PvY5+ViU3SXb4zV8ruf9Yu7NJ84I5nYPCkuRRd3Y2wDzjns77/rCpz1Ryk2TuWl+q5N49/2GV3CR54PM78ztnzZ9fyd32jt7GfivmP7eSO/sBnXmHL1zc2WQtSYbGf1fJffohz6nkJsmGN13eCb5vj0rsT8/9cSU3Sa5/7uGV3Jt3fUYld8tFn67kJslmn3pSJXfig52x2iSZf+ODKrnTF1xTyd3xttJOkkke9j+djaVv+mtnvOHWVx1ayU2Sq37R2dT9tff1DqD+0b869XXXbHdGJXfbO59fyU2S+7bo3HO/u/URldx/XfL2Sm6SPOb6R1dyz3tib93B+BWdsev91u4cBHHj4ldVcpNk5hOur+Qu/2dnfHK9pc+s5CbJ7hv+pJJ79/zeXNc1nbMPctvGnXmj43/7l0pukmz34oMruSf9s9Nf/eTwLZXcJLnut52a6jNuXljJTZIVsx67yjPPP+q83H/5ff/xx2Sf4R2n/zjnE6v8enZ/ReeQ7SR57eaXVXJHL+jsKfrUE15WyU2SI79wfCX3kwf21vYe/pfOt3irR3cOM1/8nN6elOs/tjOnfvH5R1dyH//Y3sFJj/3yqn8vJsnaO7ymkpskL3r6Nyq5Ozykc9DvzGf0atb/dNObK7kv+8UXK7kjv3tKJTdJ7ju6k/2lP5Yawkk+vd9RldxlJ3fWoqx3R6e2J0n+Mtbp77+3MySW+Xf1Dmf81Mn7VXJ3O+DlldwkefATOmPHo485qJJ7Znp7ir6pdLb7S1/ZqfOdd+WbKrlJ8u479qzkvvrFpfm8JDN/1fmWnL9XZ833QU/r1JUnyYd/3altPeHSzkGjh/yzM0+fJFe89C2V3M0+0Ksn+8if5lVyn/TmCyu5l+7VqZ9Kkvfef1Yl9yP7vauSu+h3vfV27zhq90ruFZ/urBdJkstf2RnHeOXJnW/Uzed12uFJ8vF13l3J/fA+nbbne/fvjU+e/LDOOWln3/K9Sm6SPHe7V1dyb9lv30ru4fM7z16SPGTRaZXcM296QiX3Mbf1ai73fWlnfvq4tDb3T6aO/30l95TzO/s6HfT2TjsuSa59S6eN8fQLOmsEP33qgyu5STL34k4N48g7LqnkJsmnv9IZu37Ty39Ryf2fs1f9nk7/9pfDP1zJ/d3xnfHlX274tUpukrxrs84apft+1WsXfer6zpqRgz/dmes68YiFldwk+cGmnf06HviQTi31Jof16tQ2OqczKL7Rwzp7dSTJ+59wTCX3J8d12vi/PaUzbpYkf352Z83Ba97VuZdv2/sjldwkWecRnbbcbw7ctZKbJH/Y5YBK7ifT2V/rqmf05roe9rl/VnKvuOmeSu6l0701/c95SKee+sxv/KiSmyT/+n6nvuG4Izt7Mp+4YK9KbpIccW5nTO4hh3bmbU8667BKbpL84bjONW++fW+vo4Nf11kzcvp3n17JveRTD63kJskpiy6p5B584HaV3Ev27OwzliRX3dzpR7117d75eX/cqVOEcMyXr71wenr6Px402vEB601/8jurvt7wxqcduMoz/23DMzr1yR96YeesqwvP6eyJlyQ3fO7nldzL/tI7O+N78z9Qyf3MJUdWch/51t4eSddsdFEl9+jxF1Vyj7+id27bQa/t7Hf5oat644/fPX/bSu6hz+mcvXDiHVdWcpNk4x07+6s+932d9QwHPPmISm6SfODszrq3J1zQW0P2gds7eyOMH9apXZg46reV3CT50k6d+cJTv72gkvuIE3s1/Fd/sLN++lOP2KeSmyQv3qEz5vaMyzr3xbGP6tXN7rZvZ77+hwd15kKe9IPO+osk2X2ks+fC3/7xukpukmxzYadG5MIzO/sC3Xp1b7+vJz3hPZXcLU57ayV3/WV/r+QmydNu/2Eld/MjOr9xkjzk7fMrubuc1Hn+Thk/opKbJNs8sjOuufXfOvta7PONqyq5SXLrdzv7Fxw53anvSZL3v6izP/Uhw6dWck/7Zm+v4O+d2lmP+fafd+Zu3nVOb7+v2/fv7N/zo5mdtQFJcuF3Om2MG87t7J/wmnU6Y4hJcu3Wj6/kLtqxs1/Nk7/aOUspSY77bWePx+e8vHfOz/Nu7cyrv2u/zvfvr595byU3SR77u8687M3v7NRxfGHvXtvzeSs6taKnbtTJTZKHvbazp+iX1l+3kjv4bG/vs0W/7JwB9fulD6/kvv1jvTNetzm/s57vyte+sJKbJOe8u9NfPX2bTu3Cy1/Y23f+1vd1+iWLn/OFSu7zvtw7/+mQd3XqUH9wXG/N+W0v6Zx18MSdO32HB2/dmadMkl+c/7FK7oH7dNaPPu4LnfUzSbL5PZ25yvWee2IlN0lOftPzKrlTv+2sYfv7fp05mCQ55EW/ruROjD6xkvuCe3pn5rxsk8436pc3L6rkJsm1F55UyX3p1Z21OXt/Y5tKbpK869mdcyYXruic37X1sZ05mCS58mEfrORedENvzfnDj+2M177uZZ298q98Ta/vvnSkMyf8lC/eXMk9ZO4DKrlJMvuqTtvzBw/qrF9Lktsf2llzvuiN6/9Xdc9jm2w4vcVzj1jl13PD47Za5Zn/ttk5Myu5e4+tV8nd8VOnV3KTZOfPd95hD3/7Tyu5SXLl5zvzN89f1jkjYd9HdvZ4TJKvf2V+JfdLO3Tm1M9dtzf3fc99nRqRsU1eX8lNkqOO7Yx5L72os6b1qu915t6S5I5HT1dyl7+z0xe99Jje/lnHntjZv/XvB3TaPEnyqT90xsZuf2in7nnBjr225X5P64wFjT2qM5b3+mefW8lNkvFjO7/F57brvC+S5PZHleayjuysDdjsK9tXcpPkJT/srHX+wCnPruT+5h+nVHKT5JObdNZKHHTZykpuknzmU4+p5N6wqLP/5+m3dfY1TJJfHXZgJff8j3ZqtS85oncG4T2/eHEl9xX79NaqP/G2zrzeHft36ntmvKqz926SvHCkszb1q/t3zs35/nc79bhJsvGPSnus/qxTA54kX/z45pXcz27W6a/eeXjvDK8Dz+6s5xvbtrOf0Zw5nfVPSXL8Jzv1Fp+d2XlGkuSBl/+gkvuCp7yxknvLOZ1z7pJkfMG9ldzdvtqpo9rq+50zx5Lk3Kd2xoE/8/xjK7lJcsdvO2e4fviYzvP39Z2+VMlNkjuu7/Qdnrz5fZXcSzuf1CTJo3/TqeP42EEbVHKTZMl0p778xEd09uve+e29cYxrHvjJSu5HbuiMIz7w6M74SJK8dHbn/Xn43N4euf+4vFP3/Mbxz1Zyr3zNcyq5SfK+N7ygkvviHTvzwXOf9pJKbpJ85wmdb8lPX9R5XyTJNY/szMM8Y/zESu5Jn+7tq/HZ2zu/86af6tTXveA5vRr+Fzyxs07wxa/t9d2fdUbnXbTF5zr7db/+rZ3vSJK85vpOHdzSSzau5N732lmV3CR5Z2m7uNM+2VsneM54Z23cLrt0agIv+2BnrDZJjjy+U0f80TveUcl92597e9pf9JdO+2Wtmb3zII96bSd3nZM6e1TMuqq3V+rxn+isjXvyozv7EJ883Tl/NEnOefXcSu5Vu3b2YE2SKzbp1J399dDX/1/rnns7VwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/0MGq/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBNMFjdFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa4LB6r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgTDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE0wWN0XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrgsHqvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWBMMVvcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCaYLC6LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1gSD1X0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAmGKzuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANcFgdV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwJBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCkf/kH09nKOPTw6v8IoYHqz7z3xYPpiu5w4OJSu5YNq3kJsn0YEEld7Bi3UpukmTGWCV22dDySu7skWWV3CRZNLKykrvezO0quYuWLKrkJslg6L5K7vKJeZXcJBlbq/OemzGyViV3crz3Xl6yovP8jY117rnZo7MquUkyvWT9Su7ozHsruUmyaHJOJXd6vPNdHRrutAOSZHhyRiV3KINO7ljnepNkxbJO9pyZ45XcJJme2flm33dP5+83c1avjTE66DzXE8s67/vpkaWV3CQZLN+skrtiZGElN0lmDHWevyXDV1Vyx9PrO6w13GkXTU93fuNB8V5ePrR2JXfGZK+NOJjRacutnB7q5I6sqOQmyVqj/9FQzf/a8GC9Su7UYGElN0nGZ3W+q7NGO/dFktyfzr2xfHHpXbRispKbJJnZ+S1G0mm7DI0WxzEmOs/f0unO+EiSjM3p9IWXL+38ztPFe3l0dmdMbmJ8tJI7Ndx7x2W008afmJhdyU2Siek7KrnLpzptzxkzOu2AJMl05708PHOdSu5g0HuuZ84otZeHO22XJFm6sPP3u2e681wvXvqvSm6SzJnV6VdOT3XGESdHe/fy0vF7Krnj05tXcpNkaLQz3jc0UuqvTvSe65Hpzj033brlRjvfviRZkc59sXy8N6Y6e0bn+7d0/P5K7ozhzpx7kqw91Ok7TI92/n7DQ7321n1LO+N9E+mNyY2W3p9zpjr9koWTvef68lINyUOGO++LsyZ7fb8Vpb/fTjN7fb/7pzofwBmlOo/1J6YquUmyeLqTvXi4M44xUhyenLd2p/0yb0Xvuzox1Onv3D99cyV3aqjXRhwZ6bQRJ4c67fCx9OoxOiPiyUSprvb/m17I/O+vd86yGTng71uuwmv5Py7d/s+rPPPfnvL2zgvyudd1nttrTvhbJTdJzj3v1EruWkM7VXKT5J5FG1Zy97nu8ZXcLfefV8lNktHxjSq5H3nNtyu5f7psn0pukmy3/68qub/69laV3CR5yOZ3V3IHg05N0p5PmVvJTZLc2Plu3rrWoyq5N/3hlEpukuy3aONK7uVbPrySmyRbT91Syb3ygmMquVv9pDd+tWyH2yu5W2/SWY/y2z99oJKbJDPXP7+S+4fFnfqCJJn3uv0ruc+///eV3L2/2Pstzv/TRyq5k9/9ViV360/0xni//LjDKrm/W6fXLtroxk4bY/0X7F3JHXtqbwBr6PzOb7Htxp2+38wn/raSmyS//t7RldzxW/ao5CbJ0Y+cX8n9ypVXVnK3P+zNldwk+deKt1dyz5g6uJK77p96taJr7dZ5f1689/xKbpJcdHdp3eQdu1Vidz76wEpukpx56C8ruR94Y+dbcug+76nkJsk6T724kvvcda6t5CbJBn/aq5L7xe91fovXPWXfSm6S/Oy2r1Zyf3TvDpXc2euu+vH7f1tvs5squYe98UOV3CT5+S8648Azhzvv+3/dMK+SmyS/n/GKSu4W53XG5GYf/MBKbpLcOrtTD3/ZrjtWcpNkj+v+Xsn949GnVHLHb+iMuyTJxPqdMZKb06ldeOaBP6rkJsmXzn5tJffkub+u5CbJXr/svPOv3bHzXK/c50GV3CTZcK9O7d6Wyz5fyR0Z9NbcXbhZ5++36Rm9fW0OHOrUBM7fqLNHzBV7d9b8JMntQ522+M6P7tSgXn/mrZXcJDl4+NxK7tXX9mp9T3vkAZXcp/5li0ruXzbaupKbJA+6pdNf3XlJp08yfuMLKrlJ8rXSHj+HrOzVBM4+qlNPs/2czjdqj413ruQmye8X31jJnbi9U9vwiDdeX8lNkhf+6d2V3DNWXlPJTZL9l3banz99xp8quTtu3qsBX7hpZ+5hp+vuquSePKdXp7P8kT+r5K6/6YcruUky6/xV/5yMLL3ov/rvLp+6JzssXfX1kR88+52rPPPfPvrFTq3FjBuPquQOjj6nkpskjz6882y95gOvrOQmyWsO7oyX/uCBnbn6XdOr/z7h+mMruQf/pFObdcWc11Ryk+Ta2ztjmgc+eJNKbpL8ZNmlldzzHtGpRzr7xZ29LpPkc6/fq5L7zn91altf95vfVHKT5JRdO/OQj16r81wnyaYbdeoLLn/OTyq5D77iaZXcJNn/hZ3cJS9+YyV3MLdT55QkZ73iKZXc39/5qUpukhz1ks6eGY+Z25mDfOuiv1Ryk+Tpr+/0Zd5170MqubcNnlvJTZK37HJbJfe4DTpzkEny+yM66xrvfUFnjGKTV/XWeH7p1Z15002WPKmSe8A+vef6q1+4rJJ7zqs6tdRJstn6363kXvuI8yq5Cxd+oZKbJD/bu7P+8LR1Ouufdrv/h5XcJMlRL67Ezryys44vSZ4/95BK7l5LOnOFNz7+E5XcJNnr3CdXclc8tbPmYN9fdfrtSXLqdZ2/3x5P/mAlN0m2Xf+hldyvf/6pldwDX/fPSm6S/GBBZ+7tRRs8q5K7YLfeWpRlC75WyX32Tx9TyU2S/Z/cqZvd6bKFldxTvnJhJTdJ5tzZ+UZ95qxfVHJ/cc3lldwkufq8R1dyn/uSF1Vyk2SbT3Z+j3/c0JmD+d2n/lrJTZJPfeqsSu76r+icy3f9xzpt2iQ54xWddTlz33BnJTdJFu3y1kru1I2dOvuLVnTW+yTJJWcdUck99aWdNdYHbN2rzTrk8s6Y3K3f/J9KbpK850WdfUC2/3lnf8eDHv2HSm6SvO5/OvfGsgM788FHPrm3V87LbursnfCNkZ9XcpPk5Nc9s5L7/I98p5J72qt7e6Ks/aaDKrnPW3Z1Jfcxr35EJTdJdvhSZ23ABtv02oi/Hum0Mc7e7NWV3P0u7K2L2/upL63kPnTBZyq5W/y+N758/s2dNsbsC3t1okc9bddK7i1f6LSLNhw6uZKbJLe8sNMP/sMzX1/JPfK8zrcvSb551/GV3I/d3mnTJsm7/97ZwzP57/YBmTm+NDve/N/VTP//88IPdvY0TJJn79LJ/vP9nXXOJxzSqxW99e1nVnIPeV9vL5wL9+2c93HJNp3ak2PuPLmSmyQX3H9BJXfjyzvfzFnndNbGJMkDHto5X+1H+7beuclrP/iWSu6+5726kjt01O6V3CR5/t6d+vIbNurUOj3qoSdVcpPkY9/Ys5J7y829Wu1PHPq+TvD//LQSe/rTOrVOSXL7WZ16p+Ne3xm/OvDeTj1uknzr1M4+A59+6dsquUly1fM7tQAX/7DTlnvB4b15hR9t36lP3vgXnedvxwP2q+QmyZ53d84MfsU/51Vyk+Sp886u5C4a6swXLturs0dLkrz+9Z3v39u/2XlGZv1Pb9/ke79/eiV39md7+5b/+Po3VXK32K3zvd78hk49fJJcfcRHK7k/u6yz5u4FbzulkpskW+y0aSX35gN6e3Fc29mSOedv0dm/54K9e23EO0c62d/56Q8qub87qNcP3neT0jdqWW9/47GdOueBzNu0Mw612TN6e8LelM64wCnve14l96Gf/1IlN0nuO7zzW1yxU+88zbUP7dQuXLRJZ0x85wM7fZIkee5fO2dWvXx+Z0/Dt9y9bSU3SVau87FK7inf79TNJsnjpzp7lB01/b1K7t+v7v0W+39wSSV3z3WPrOTetE1vH8aLH9bZ5+DuIzrrXJJkh/s6Nbl/e29nf86P/aQzJpAkHzyuVJ88szM/98leOXx2Oa0zXrTsob29QP5+TOdc2pN/09l7Zu3NDq/kJsm87xxayV1+xjsquXfv1lkLliQXLeu0Xx78sy9WcpNk6ec7NVpXbNLZ/2LHtXv9nUd/rLOn7/EP7MxHvfSm3nzwTetOVXK3/HrvXv7I0c+u5G7zxk5t2Jkf79RCJcnnb/5kJXfLz3XOtjnnMZ1nL0lu+kSnAXPCPp12QJI88c/Pr+ROPLmzR8Vzl3b2t0uSPR7Syd799cdVcl+2+MuV3CR59cGdM0Lv+2avjbjs+/Nq2f+NuRMzctg9W63y3Pfu0ln3liTTj+zUy7xw5rsquet9ozeWd/m5nT2jZn28N36VMzvvsDft3Nmz5qB5vXOqn7RRZ2/Dr99+TyX3fXN7ZyUN7u+cP/+kL3bWBiTJD47r7EGx1ZxODerTX9s5aydJ7nzuZyu5RzyhM3586X6dfl2SHL/yYZXcM6/pvO+T5AOvXVDJfdSRnXv52B/3ztMc3qPTbt13987ZARNf6tXXnXdaZ2+gJ71icSU3SU7a/XGV3E+9pnM+w06fL20wnmTL4U6Nz7vP7uw59Ouv9ube/vmeTn35Hzbv1fr++gur/jyeJPnBWZ15hWd9o7fP1WlvvKSSe94/OvtmvP/g3rlf49efUcn9+Y96azA+dlxnf4S/bdgZI/zRO3rvoi/8vtMWGPtkp9ZwbM/eHMsXft05h2b9R3Vq4JLkt3d01ufsd0pnf/8HH92rr9vsBe+v5H75fZ2zRpbse2IlN0m2O6xTQ/yIH3d+4yQ54LqvVHJvnN3Z3/+OU3u1C8e/sXNO7o0v6Oy3fvANvX0N99z5sZXca2f8q5KbJI84tjP3/ZtzOmcgXlHaKz9JBkd25uu/9NnOGozPfqrXj9phWee+2GTykZXcJPn0e/5Ryf3ubp338jmf6JxBkyT7/qyzTvCPD+zMwVwx2anTTpJtDp9TyX3HLr09mmbM63xLXrVXZ7+c1724d071LxZ15tFmvKeznuhBL+msGUmS78/urGHb8h+9fW1e88JZldxdrru5knvtB++t5CbJ+cs69XXf+9oJldzH/P7rldwk+duCzu98ya86YzpJ8rNXdr5TF9/TaRft8b3evO3MPVf9HpBJcs6DOn3KW+f3ziI/bf/O+3POWZ097ZPkd/d2aqrn3dE5X+qyp/Tu5cnvb1PJ3XvJ7yq5o2d1vqlJ8u3jT6/k/vnITps2Sc7/QqcOdd7lnTqd732qN9d18gs79Wzju86s5N653fcruUny3occUMk94f1bV3KT5IPXnFjJ/f+10+ag8n8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP/HDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE0wWN0XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrgsHqvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWBMMVvcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCaYLC6LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1gSD1X0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAmGKzuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANcFgdV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwJBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCweq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYEwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBIPVfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCYYrO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1wWB1XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArAmGpqen/9f/eLux9abft8VjVvlFLJ9cscoz/23ujJWV3OWjcyq5a01UYpMkS5cur+SuyP/+HvpPrTO6ViV3MDpSyR0Z6txvSTI9c1DJXTFZic3k8iWd4CQZmlWJnTmjdy9PTXTuuenhuyq5Y5PrVXKTZGqk884fXtl5Ly+fWlbJTZIZGavkDg1VYpMkKyc7H6q111tayV2+tPPuTJLh8bmV3KXp3HNjg969PDzc+Z0H0+tUcpNkcmRxJXfl4nmV3Jnzxiu5STK+svNbDGeLSu7k8vmV3CRJqb01c2j9Sm6SLFm+oJI7OTRayV1v7saV3CRZtOzeSu7E0k4bf8Zo7x03NtRp5E/NqMT+H+Ode25yqtNenszsSm6SzBl02ogT050xgenR3m8xvqTTxp/I/ZXcJFkyfnsld/asmZXcJUuHK7lJMhgqtT+H5lViZwxPVXKTZOWKzrdkaFZvHGP5yk4fbWxo7Uru6GBhJTdJJic6v/PE0EaV3MmJ+yq5SVIaRsxwadwsSVbO7IxjjEx02nIja3XaLkkyMt15zy1f0elHrTOj14+6f6pzNy+YuLOSmyQT051xgYnlnWdkeqj3jRod7rwzlpYmS8aHe2NyI9OdTtrojF7nb+WKzndq5aDTd5hOb0xuZNAZyF883unvDI/0vteT453s4ZHexPvIdKcvPGvQ+a5OFOeNZox3+g4rS/P5UxO9+fyJoU4fezDde/6WTXTmbccnOt/V0bHeN+qcZZ223HXjpd84vXGMOem8i9Yf6Y1DrZPOczJ3uDNuPXu0MwacJBumM444Ufqsjs3ozeev1fr7TfXey7NHOn2p4eHOfTEo1fUlyfJFCyu5kzM6789eLzgZTHX6JWPpzVU2ug+fu+fq3Dq+9L9q2W6+/ubTLzv0Jav6kvLUda9e5Zn/Nv++z1Vyr/zISyu583Z4QCU3STZ5+Jmd4Bv+2clNsufcdSu5Z+6zSyX3AZfeVMlNkqVzv1fJ/eRFh1RyH7Tpryq5SbLuRn+q5M74V+97vO4PT6zkLpvVGVfZ+ID9KrlJMlb6nf/12844xYZv7o1//OHTnZbP49/SG4u9YL0tK7nrbXRHJXfhgt5871FvPKyS++OPvKmSu9OlvZb2jEcdU8mdvP4rldwk2WjRKyu5J37vlkruc96zfyU3Sa7/TKct/sBDN6zk/n3B3ZXcJNlok057+bGDoyq5SfKlB9xcyT3qt+dXcu/f+PBKbpJc/OaPVXLnvuR1ldw5C0+r5CbJYx7yqkrudzf/QSU3SXY9qdN++emhT6vkrjfVqVVLkpec85lK7lt2376S+6hbdqrkJsnj9t2qkvvhZd+o5CbJvt/+VyV3h2Mvr+T+6cPHVXKTZKMP3VjJPf+2zljs477Sq4m4ebzzXf3qc/es5CbJM39zYCX3uxt9vZJ7yBEHVHKT5O/nXVvJfeuiTvHJ987do5KbJO879JxK7pV39tbG/fVFt1VyP/GDzvrDd1z41Epukuz6nM7anPOWdGo6b7qtV0P8pId0xki++NVHVnKT5Mjjzq3knnFhZ3x5w59cXMlNkot22aaSe+hjd67k/vHCT1dyk2TWri+u5N56xm8quUmy67Gdd/56pbHPi+fvXslNkl3HOu3aq/aYX8kd+ev3K7lJkgdsW4m9Y6N7KrlJsvG8J1Vyz/9Tpw7usJ1aK9iS8y/tzOc/4NJOrdruO3e+qUly2uc77aKpJ19SyU2S3Z7eGbvefU6n1vcjW3bGzZJk6d+eXsndcrpT6/ubb+xdyU2SBdd/oZL7whfsVslNki+f8dhK7kG7dWoFjtm69y761eLOt2TvSzvvuGUvfGglN0lm3NIZnzz7N50xgSR5/74LK7kbjh9RyZ2cvqqSmyTL7urs3fXjF/2ikrvxH19eyU2SRXd0fuftHtYbR1x741W//8X7zzorN95zz388qLrLBrtPf/nwVT/HeeWpr1nlmf82vbAzXvPkN7+lkvuX33b6dEny3ts7/Y2VL+n06ZLk4+d12sKnL+i0K1/x1t7atKV/2LeSu+DLnXrA/e7q7fU848rvVnLXed0zKrlJ8q1fv72S+6afHlrJ/fEJnX5MknzmsZ11b/8YfVsl95N39Pa9fuGgU0P1+JHOb5EkJ37mDZXcv3yiMwf5t9Fe3cKFp/+oknv0QztrDl763I9UcpNko3OOrOR+69NHV3KTZK8nb13JPej2z1Zy9/tQp++VJCdNHlvJfd3hN1Ry935wb43gBg/frJL7wCfsWMlNkrct7dQBHH9rp4/2y6f+oZKbJK+8oNOufcDrn1DJPfLZvXv5Fce8opK7dJ/O2sMk+cq/Ov3KLT/+10ruM0/4ciU3SX60pDNfsdlrOu/lVy98QSU3SdZZ8cVK7uuHHl7JTZKrPtvpr95yXKe/+tjrOvvkJ8n0T75dyb335Z2x7oOmejUc513YuZevv6/zGyfJbX/+aSX354/t1MC94voPVnKT5CebdGqorvhHp43/24f16gzveGdnHftpPz+vkpskb3tbpwZ18I/OWsw5j+79/Z676wsruQ99duf5e/fzemsEt9rieZXcux7Zed8nyVfvflQl948LO+uV97yrsz43ST55aWcflxO2/3El9+4tT6rkJsnVd3fGJ7f/9YMquUmy+R6d99zoRs+u5I59rbNeJEm+9tjXV3Kf8tZOLfwt67+zkpsk75nXOeP1vV9d9Xu5/duPT59Xyf3HkddXch/97M77PkkedvmVldwfPbuz5mDnl76jkpskB67fGXs59r2/rOQmyfZjnbXQDzykc1+85cBebdG+V72skrvnws5v/MFbeuugjz7xgZXcZ7/5J5XcJHn3tzrvuV3fu08l98OHddqeSfK2Ex5fyb3ohZ0xucu27ayPT5L7xzo1CEfue0IlN0ku3aPT9/vIw4+o5K71pU79ZJLM/3rnXOHHLO68P//y985epkly8MxODd7fpz5fyU2S/e45uZL7gvz1wunp6Qf/p//d2B6zpzf/6aqfmz3/QZ1+eZIsOKnTtvzwizt77Cwf79VnXbFbZz35G4/sfCeSZIu3vqiSu86lF1Zyr17WGS9NkntmdPY+u+2He1Vyt7xgm0puksx7cuespHUX98Zs9nxjZ4+yNz2vs3fddo88sZKbJAef3FmP8o9jdqjkrvXZ3llJ177xW5Xc2648o5KbJD8c7+yf9citOrW+H37IiZXcJDnnos4+xJv+pLOW/JYPds6tSZKXf6EzR/3sR/Rqtfd/cGfOYvH676rkfmLX3pr9d1/cWXd3+2lnVXI3fG5vT8o/L+jsQ7zFo3v7tW006OyVf/RrO/2oLz6gVwM++cXOWOwtO3Xuiztu7p0n8cUjO9+SOW/rnaHwyx06azA+PPzhSu67hzv18Emy4LzOPpp/27sz3/uYzY+v5CbJzz7e2T/ksb/apJKbJN+5ofPOf/MRnf32Dv9N5yzwJLn5xFsruc/69gWV3Gfu3JlTSJLnndepPVm2ce9ePmXXIyq55/+yc4bk977WqzW85YJO++Xa/R9Syb1g595ZZuf+pTPfO/9x//FUxf/aFdOd5+T6F3yykrtiv84+VEly9UM7dQAzSnuKrtjkQ5XcJLnmvM7vfMrc3tqq627fppK7176dNZP7Hv7DSm6SjL23s0fM3Yd12p7bXNI7V/Hoh3ee63k79eoj3/Dy9Su5W73qA5Xcxzy1t+/1K37VaYsfdNwGldz3fHt+JTdJdtqzc5buttv2akXXu7dTo/WmHTt7BO50T+lM6CSb3dmpWz/glZ0zx37/4o9WcpPk7id21kw+4qUXVXKT5JRfdfah+/hnj6jkbvr83r08/7z3VXKXL3tKJXerR21eyU2SkSsfU8m9+093VXKT5Flv6ey9u93vOuP4v/p0Z/1Tkuz9ns4a0nNf/+tK7mGn9WqID31Jp7Zo42M7YzpJ8rZB52yUGz/U2VfjpL/29ure+q+d/SVnnbtpJfdrG5xSyU2SFa/rnGFy6IeWV3KT5Khnd2oFPvOLJf9V3fPwA7aanvmNVX/u+g/+0qmBS5LFfz61kjvrmW+u5B72wd5Y0E3P67SHH/2N3rj05rsdU8l91R87e/j84eO988uf+dbOfhxHn9fJ/clhf6zkJsmXJjtrnV/2w39UcpNk0XM656Hednynb/7AL/TWh774HZ056k2e1dm79WUH9PaWOfO7nfqePV7TqYFLks/d1enbfeEznfGrryx6ciU3SYbvOrGSe9vbO/W4H13YqQdMkq99bFDJnXX71ZXcJNllUeeaj3/RLZXcxdd33hdJstX6p1dyv3NCZ+/r8YlV3x/5t1l3dn7nX849vZKbJFMTnedk23TWEz3x1ydXcpPkXbM6Y97rvaKzh8FzdurMKSTJjOefUsk9e6hTQ5wkL/hK5zt1+uM7exHPeVBnT98k2fBbnfX1J7+kM1/xm106a36S5A1f6uyzs/97e3+/TV7Q2d/iQ8d31kJvdWfnzMskWXp6p/byw0d31mLO/lCn354kt/20cz7KWd/sjcnt+4FO9jGnduYhL556ViU3ST62Y6fe6dO/6KyR3+Ezvb7fK9/aGYf6yGv/XslNklc+/leV3D98t/POeMOxvf2eL7q1sy/Khr98fyX3x+/qrBlJknf+ofM77/nbzvs+SVZe11l39+a3dM4QetmSznlKSfKx/T9RyZ25badub+dXdsbDk+TdB3fqI3/4s95+Vcve/p1K7i5rdfY/u+GdnTr7JHnKRzp9qZM+3RmTu/aMx1Zyk+T0j3fey2cf/NZKbpKMXNAZkxt7ZqcOZ5NLejUtu/2gM6b6rpWduZJ5Gx9TyU2SA87v1KFOvau3f+TRN3fO5zts97MruR9+Y28vifs33LWS+5e5nTMJHj5r7Upukrzt1Z2zof/ypN6+Gk+bvqySe/gjDqrkXvTH3hz2d7/XOW/k1mf8pZK7y8XvqeQmycn/07kvXrDrSyu5SXLIgZ21/bMWb1nJ/dHXr6vkJsmZT/1MJfdFl51Syb37tNFKbpLc+vBOe/mqlZ3ahiSZsaCzX+OrNt72/1r33Kn+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/xwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBIPVfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCYYrO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1wWB1XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArAkGq/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBNMFjdFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa4LB6r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgTDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE0wWN0XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrgsHqvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWBMMVvcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCaYLC6LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1gSD1X0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAmGKzuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANcHQ9PT0//ofbzc2b/o9mzxqlV/E2OzZqzzz36YmVlZyR2eMVHInl69VyU2SoaGFldzBxKCSmyTjo+OV3JHp0UruyunO9SbJUMYquYPhzjWvHO88e0kymBjqBM+Y0clNMjU1VckdK72LJpb+778N/6mRsc7fbzCxvJI7Pj6rkpskM8Y6v/PUaO9bMlF6tmeNdn7npdP3V3KTZHS88/0bHtxXyV02KL07kwxNLavkTk9sUslNkgwWV2JnzRiu5C4f7z3XM2Z13kWDpZ321vDYRCU3ScZXLq3kTkz2nr8ZY52+1PRUJ3dicG8lN0lGplZUcldOdZ6/qRm9b9RU6Rs1lt69nMkNK7Ejg7sruTOGO/2zJBkerF3JXTrU+V6Pr+g8e0kyMdnpR80Y7fSjkmTxZOdbMrWy8/ebM7M3Jjc+2cmd0bktMjHo/RYTk5130cjwzEpukqxc2eljzxjufKMWTXTankkyOtxpf06Xfotl47338lqDzgM4OVJ6sJOMTc+r5E6VxoFHRnptjIUrbqvkjo93rvnOdL59STKYKn2vl/fu5dHS2PXkdOcdNzTcadMmydB06d4oDYkvHe/dF5Ol8a2h4rtoZLIzDrx8YlEld6o4pjox6PRLBtOdd9zweK/tOTrS+Z0npnrztjPSGS8aDDrXPFTsB68sjRdNT3bmo4bTmw9u1QoMpdTBTnJvqe+3bKpzzb+ZWFjJTZLlpfn8if+gJus/0esFJ7uNza3k3jy5pJKbJOuVnu1NBp2++2hxTGfOUOedv16pjd9qByTJ4tLY9TpDvW/JyEjnW7JO1q3krij23YeGO/PuY+k8f8tKdZlJMjrdeRetGOr1/ZYPVn0b4wf33pwF48v/q5fGjnvvPH3SOZ9f1ZeU2zb4zSrP/LfxoRsquWtNXV7JvfSAAyu5SfK8+66t5N57cK/PeNB376nkXviyp1RyX/X831dyk+Td+3R+57+++pBK7kPfcnUlN0lO2bLzPT5hl79XcpPkoZduVcl9xTXPreRusP1rKrlJsvv08yq5f3rohyu58y/YoJKbJLuNv6iSe+7feu+iZ37uAZXcfa7v1H5t+8APVHKT5PezDq/kDl92ayV3xqJdK7lJct8fOnOny9butOOS5PYrO+/ldY7YrJJ79xZzKrlJ8t4NOuMUJ119fSV375+uV8lNkgue+ZBK7v1331nJTZJ9Sn3oO0fPq+T+60m9uvVnnd95Ti6+vTMuvfTSvSq5SfL7dTvjx0+6bb9KbpLcvfuXKrmDpVdWcu+4uPdevmivTh/tIfdvW8ndcOqXldwkOeDhnfbWht+5ppKbJLfvf1Ul94TrX1jJfeqDOt/rJFnvgk67aGz+9yu5v5zYoZKbJDtu3/mWnLFl5xlJkp02eWcl99Av7ljJveG49Su5STJjZmfs+ohPdca3nnLdLpXcJFnw2s69/KENe3PfPxx0npN9/tmZl12297mV3CT58+TpldzRiw6t5F553yWV3CR50cKNK7nXT7+9kpsk9844sZJ72Nc7YwLn/Okfldwk2ewjnbmu6bvWqeRu/pzHVnKT5Kzp6yq5v9+8U+uUJMcNd8bbrzq5M45x5qa/ruQmye47d9pbh53V+ZZMD/X2O/rL4AmV3OsO7vXdX7K4Uyv61Td36qmf9ZTvVnKTZK158yq5f92/816+feve+PKKn1xSyV36+PMruUnymHMPquR+e1mnv/PrC3u1hrcd2hlveNKiTlvgj2ddUMlNkt2+uncn9+Ref2fR5PMruYu3+04ld/PFu1Vyk+S2B/2rknvUbzp1Hpe9ozcmcPCX/lzJXbB37++36eWdWqslG36wknv7nqu+jvTftn/3/pXc6UWd9+f0SO9e3vOVnbnm91/Q2ZMoSZ4yeMYqzzxp6bdy8+Qd//Gg3A5Dm01/bOjFq/x6xr730VWe+W9bbNSZe9vtZ8dXcr/7w1MruUkyusE3K7l7r9OrE731/a+r5M765BmV3DOf2duvbYPDvlrJfePHv1bJPe3b367kJsnE8zpttBvSqwd89T874+j3b9Xp173rR3+p5CbJfh9/fyX3z1/vrBl+0HmdfXeT5PdHdOYhX3hZb83BohsPrOQe++3O3mevX/aGSm6SbPjtTr/ur+e+uZJ76uDYSm6SLPnENyq5Nz/l45XcJPnURp01I6++ujMmtunDOvVvSXLp+y+s5H5lxxMquY9e9qFKbpIcPNEZe7z22Z+p5CbJ0Q/orHN+52md9TPXfqY3Jn30KZ26k81W7FnJve2C3vjuskFnHvKPU71576eu21nves0BP6zk/uSI3nkEO0x11sWt/PHOldyn7f3KSm6SvPZX76jkXrpdZx17kpy26yWV3D/f1anf/9iySyq5SfKqh3XWbj/kz++p5O7ynOMquUnynI93ambf9dZePdmvxjvj6Dd/8G+V3CfcuurH0P/tiL9eUsnddNtOu/bwzvLOJMmxH+2MtS/7dW9M7oSvdvb+vPyBnXnT//nCgkpuknxh660ruaePvraSm7Me1slN8rdzO2sxJ99/YiU3Sb7+/N0ruQcc26nn/OPLevOm153VyR193UMruY97Yqe2IEkOel6nXbToxdtUcpPkqm92dqb81vM783MPefADK7lJMu/hnT3m/nz4JZXcx35030pukmy7Uedd9Ol9H1PJTZIP79fZt/z6qzq5+z/7B5XcJJk7Mq+S+7lbOvWLD3/djyq5SfLtP/62krv4DUdXcpNkdNuLKrk/3aqz1+yjjuitVz7/aZ35namvPbiSu/OHe2drfPaHr6/kHr9/Z01/kqyzT2dM9QN/vrSS+/YF76vkJskRX3t1JffuG46s5K57616V3CS56vZ5ldx/fPV3ldwkGX985zyXr05vWsl94Ga9sfYf/rQzpnryWy+r5G5xRW9/ip/v2dm3fN27ezXr8w/v9NFGX/LKC6enp//jj+u6szaYPnCHVb/W8ld3dPYHTJKZl72qkvvquZ06qoVH/6ySmySfOLPTzj51WW+v58dv0vluzvrwOZXcHT/TO0lk86d23mEHP+4Lldzhl/fWsLzh17dUck/4Yed+S5KPrd25N1Z+uDPmdvLSp1dyk2TJnp2azj995cRK7l4v/J9KbpJ89uGdNfu/ndNZJ5EkJ77kiZXczx3U2QfuB1v2xq9Gpjt7lI3t+opK7nef2Hl3JslDDums23r5ib09RU952pMruSe8rHNfHDi2UyU3Sb62e2d/452P6jx/t93yq0pukjz9SZ1zA+645ZJKbpL88yOdd/7z/35MJfcn83uFOGfO6Lw/79r0mZXc3+3S+fYlyaFbnVzJ3flhnTWTSXLqFzvrBHc6qLOn73decUolN0k2OfnTldzfv+NTldyFr3hTJTdJBvc/opK7/06/q+QmyfandfZOPubBnT7lSY/orDdPkluP6LQ/r3pKZ1x616vvreQmyYO/2qkRmbjuOZXcJNlx6rOV3H3mdOrgnnJ0px2eJN/8Rmf/nr/9vLP+d8ZJL6vkJskbtzqgknvQSGdOPUkuPq3TFjhy887a4idv3Vuz/OTvdPYUveIDnT0Odnr9aZXcJPn5SU+r5G52fqfWIkmOu32vSu7dj3tLJffqh3XOckmSxW/qrPP8+vqbV3IPPbuz9j5J/vrrThv/Ydv1xhEP+WynxueEqzp7lX7j6b2/3zvf3+nvPHbXzuKAs0/t7Wc/c87sSu7Qq3vvogePdNqfUzd09pD+/b29mqQ9HvrzSu4fNursvfa+751dyU2S0/fprB/9/UNvr+QmycSWndrZoW06e4H8ZslhldwkufryT1Ry3/De0yu5Yx/rrItLkm++bVkl97df7azrT5LTP9zZl2/6YVtWch/59lW/5+i/Hb19Z/+Sbx7SqQ37/NJOmyhJHvHDznM9cUbnPIIkWe+8znvuzIs7NbmXH/DSSm6S3PCmzjk/Z5zaaQvccFHvnJEzXtipT37AGUdUcpNk4Us7c8KH7X7Rf1X3vMOs4emP7Lzqa7SOeVqn1iJJDrmmsw5wm/d39v88/G2dvYyS5NQDv1zJfdDrenXPy37X2fPrynfuUcnd6qJLKrlJ8uyZnb37FzzxqZXc387oPHtJcsxdnXm9E5d1ap2S5HFjx1RyX7/JxZXcR/6uN9/00u916iPfcOHSSu65m3bWvSXJnK3+UMn93WW952/Xt3TOLf3B6BaV3H3f/K5KbpJc/LfOGppj7+isgdr5pgdUcpPk1GWdvWU+vU7v73fE2p39k/90dGc930n7dep7kuSi4c4+nZte16njeNsWvX0Nn7HXjZXcP+/YW9u49/xnV3LvW9Dpl3zqss9VcpPkjZ/v9NFe+ebOOrNrz+/t437gFlOV3K/94XuV3CT5wruuquQ+4ppOP+rob3XOZU6Ss+f/rpL7o4s7Z4seu0HvPM3Bpzvtrdcs7e2H84qLO2ur1ntZ56yRrR7e22fn+is6NS2fed5YJXfeDzr7BSTJO/f8SSX3kyd+rJKbJJ9/xk8ruQeedkwl99VndvaxTZKj/tz5ljztkzdVcsf/2Fk/kyS7vLKzL/MG7+uczZckx+/2qEruJ17aqZtd56LOfpdJMnVTZy7y78/rrPnZ9Gn/rOQmyYWXdPb13eNfvfXbd13Yqak++2GdPR/W+nPvrJiXntc5R+j1D+7s9/DVj59cyU2Sd459sZL73iM6e38mydV3ddq1efcLKrF7v713zutxm9xQyf3gwZ2/3z2TvRrwtz/ykkru535/YiU3SR5yRWf/z2/O6vR3jv9F77m+/5BbK7kfH/pkJfee3b9SyU2Sv+zS2aNi/jXvruQmychBnbUSG/6mMw61zns6a7aSZMXFnX3dNp7V2a90w8t6+/A/cu1O3+G6n/XeRa/+0UmV3Ccc8tZK7sfX7pynlCSDb3TmB6b3OLGSO/OYUyq5SfL3ZW+r5H7o952zFZPkyQs6Z7O/8rudOqs3P+GYSm6SnP2Ozjqzw57R+S3OfF6nT5IkH/3asyq5r/t5b4/qV35sr0ruy+5+2/+17nlQ+b8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9jBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCweq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYEwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBIPVfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCYYrO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1wWB1XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArAkGq/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBNMFjdFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa4LB6r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgTDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/8Pef0VZVhZs2/ZVq6sTNDlHyUEFQVBAJShBggiCiAEVHwUUFFAxoSIYUMyKqBgRA5JRURHEAEpQoCULkpOSY+euqm/j+/223o1H/75GjXrHcWz26HGOOVatNcM973lPAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwWC8NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoLBeG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwEw//Jfx4dG8ucsfmLfCNGFo4u8ua/DYYmV7oLZ3e2eTDl8Uo3SSYNTa9058x/pNJNkgVzRyrdqVmu0p00bdH/Pv4/Y4NKdsHoUKU7Mjqj0k2ShcOd78VgdFKlmySLTe5s85yFcyrdaVOmVbpJsnDh7Ep3eGyxSnfqkpVskmTB/LFKdzidzzhJhoYXVrrzJ3WOq5NndT7jJBmd3tl/ziqdF00e7Rz7kmRo0tKd7ugzlW6SjIxNrXTnDzrH66FB55w2SSbN6WzzrOGnKt3FRnrnGPPmd47X06f0tjkL/qNLuv+1eaOtc/zO9yJJxsaW7nQnP1bpjjw9pdJNkqnTO9d+w6OdbpIMjTxa6Y4Md/ZxGfQ+i3lDnd/JM7M654ijI53zwyQZKl2WDI91zuOSZCydcYFpw0tXunPn98ahBqOd861nBp2/39RJT1e6STJ/XufLPDqld748mNr5nOeOds5dhib3/n5z53Q+i+FB57OYPnnxSjdJRuYvqHQnT+qdF40MOvvlZ+Y9Wek+8czcSjdJSn++DE/tfMajC3tjOtOndq6x500ufchJZo90xoumDnX2cXMWFMcnS1/mWUPzKt3Jw539fZIsHOrsP4fmdz6LJJlVOl+ePtz5LIq3sDNpQee7PH3xzjjwgsyqdJNkUmkfNxjtnWM8MdoZx5hROpd7Zk7vGDV/qPP3mzboXEctGOtdR80e64wvD4+UxreSzE5nm/8wvzO+teKk3pjcbYPOd2NotHNeO7k0FypJ7lzQ+fstV9wvL5zcGaMclMbklpzcm48xtTTeML90jjiW3vdi+rTO5zw82psbNn+k8/d7ePiJSnfaWO8e6OKlceCMdc5dhtP7XS8Y6VxjLz7ojb0MCp/H4P+Pezsj192Rp9Z67SLcmv/Xk0OrLPLmv62w/X6V7oxpL690N7/ii5Vukvx217Ur3eff+7JKN0m+9JI7K90F37+m0j1h5oqVbpLc92BnX7PawSdXuhvds02lmyQbb35ppfuJm3eodJNkq2d1jpsbrHR6pbvaaGd/kSR3P3BBpbvKrntUui/f81WVbpLcdOlhle6z3tObuzBj/kaV7o9u/Uulu88Gx1e6SXLHcjtVuu/8bWe89IJJa1a6SXLHJr+vdB/Z9puVbpI8ut+Jle5br7u50r394tsq3SR5zfadff6SUzrnLrOeWa3STZKxO79e6a6+sLdffundnXPxb6z+vEr38dfeUOkmyZnXLl/pvvS7nTG3x3fu7DuTZPFL16h0P7PX+ZVukhx66/qV7lOP7FLpPvDd3pykhW++p9LddY3OHNSLn9f52yXJ9ed0rh3+8O3nVLpJcuF731np7jTj55Xu2Y/0xmKPX3qtSve2t3e6r/nmryvdJFlt+y0r3TvPPKbSTZKdltyw0r15//0r3cmP/6DSTZLvbLBZpfutV3+p0l1jqNNNkj+c3Zkv8+AHi88sX9D5bd+33t8r3SXm3F/pJskm3+t8zle89KZKd+W39ebw335e577RMsueVukmydoXdT6Px7f8cKV7z4GvrHSTZJVZ+1S6C/dcutJd+brObyRJbhjp7DNW/eN6lW6SrLzpuZXuM69dodI9bI3e/LpfL9c5F79l3wMq3cHwsyvdJHnZzZ1j1PKrd66vk+TEf3XuYe910BaV7unPLFXpJslLZnW2eanLOnPKFr76F5Vukjw9tGyle9sZvWv3c17wwkr3tCfPrnRfuk1n3DNJLv5HZ6z9u6s8WOnufPtmlW6SPPmJzpj4FsP3VrpJsvxqnTn8y83szA17cI8rK90k2eeZdSvd2Tmy0n3z0adWukly6rHbV7rv2nbVSjdJTtqzc+9hpdM74xjb3LtxpZsk1x79w0p3xfceXele/qfLK90keWDbzuc8efPeg54/WP47i7z56B/+u2eUZm32VK78428X8dYkP9z444u8+W+PL9U5Tqw2tXO+c9mWvXGg7e/pzKE6YPC7SjdJDl/7iEp37Nedc/cXHXJspZskH7nvq5Xux1+zeaX7nGd2q3ST5MTdvl3pfv/Czj3IJPnOVp31Ejf78Nsq3eN/9KxKN0k+8KL3VrofO6ez1vMmJ15X6SbJlPe9qdI99H29tVQ+eWTn/G/ebp3nb7e+/jOVbpKcdWjnHGP6UZ3rutfu3rte/PaOneu6T71gnUo3Sc74W2eMYs57Op/F1Vd01vZPki226ozxXrp+Z/2J9YdnVrpJ8ryPbFbpPvPDzpyhJDnzZZ3nzP4x1HlmZLnleutFbf2vcyrdZe4/qtK94brevYq3Te4813Hyab35gEt9pPP874m3HF7prnHRVZVukrzytoMq3Vfcu+ifYU+SSZM/VOkmyXf2v7vSvesrJ1W6SXLwzZ3rko036Yw9Lj+p8xknyUYr/bjSff0FP6l0r/zU5yrdJNnsqM68k89/t/cs2IXnds7Ff/HkjyrdJxdfq9JNklcu9/xK9+lfX1bp3rlzZ3+fJDcd9ZtKd/cvd+5hJcnKh/+p0j10/09Xuue/uDcH59odO/NDPrDXHyvd83brrRf1u3d0nuX7/u82qHST5EP7d9a4uveEzvF65ac7z64lyRHv+lel+/SjnXsa712xt9bRA584pNI99cO9FyBO32v3SnebUzardE9asfNMeJJceUjn+dHdztyh0h29oHcP7b3HdebAvWnw5ko3Sa66o3NP/+frdOYmb3rOZpVuknxuQWdNonM+1VnHdvbzO+vZJMmRrzqw0j2k+Lz5vw7pPHNwwaXnVbp7bLFrpZskz3qg87te/fjO/YFfn3ZtpZskH/pJ57mOs7brjI8kyXJPdq537j+0c0/jlFPfU+kmyUVLfL/SPXiJzjyB7+3VmaOdJPc8fVel+9dP9p4Fe/qJzud855al+RiP/bLSTZLf/O0jle4tG3eu/Z5evrdfPuAbnWu0fZ7X+/utv2nnmYP/1qz1V8lVF3x0kXe3WatzXZ4k++za+btfuXhn7cG1N+3MB0yS05bsjDPNPKazpmGSHDBtq0r3tPe+sdL9yoqfqnST5HXvfH2le/QGr6t0Tz659V705C0nde6RbdJ7PVDesd8Vle5KMzv3bo55rPMZJ8lrd39BpfvEip137Rx3Re+dKg+8ofNs7/devOifmfr/2j/urDc7ZVpnHeJbi3OS9tugc/7yood+WunuX7x3+uiPX1HpnrVL772J6z3WeQf2X/a8q9JdYe3ePIATduiscbXmGr+qdE9aubOeb5J8fY/O72T7uW+vdJPk1CfPrHTXP6gz7/ntP+u9Q/KeM/etdFfavfMb+dJPO+u2JsnZv+88W/z0eZ31MpLkkzceWOn+7v2dNfH+cUBvDf7739BZB/yiF3aur6/a8tBKN0ne/fJbK9033t8be3ls/Rsr3Vs/3lkj8GMjm1W6SfLJlTvXJUdc27knu8lxnev2JNlvo7Mq3Vm79N45tuQJm1a6e/2isw7jjZ/rDerc/LzOPMaZj65e6W79vBMq3ST5wYOdsfZlfvLPSjdJzjmicy/rkc92ng340mp7VbpJ8tsvds5rfzGzMx/+mqm97/LUz3WehV7/4B0r3ST50d8769p8aJnlKt3cPKnTTXLWnp05ItNu7Jxv/fnDnWcxk+ThOZ35WTsd0ZnDmCRvOrLzXd7xQ1tXunfd2htrP+Xt76h0P/DdzpyymZf21i3f8PHO86N/X7239tqyX3trpbvECzvzZV7++t47x1bbrjPX8BuPd77Lx816aaWbJLvd9mSlu+y5vWden3pF57zon3u/uNI9/gW9dQT/8L3OdcmGp3TWy9nrqd6YwCdO7vyu37ZCb63nJzftzE+5atWDK93PH7tDpZsk3/9H517Jbl+/sNLd/TW98+Vlr+mMvfxwpPPOnCRZ/AOd56yXPfELle4K3+vM006Sn31riUp3hZ07z2L+4e7hSjdJlpnZue/wyuuvrnSTZOOzW/eE/7t3eT600YycdMmiX0/sxNf1xq8OeeTiSvexhzvrL026sffets8d+ddK9/kP99avu2nxzjXY6R/qjFOc+MXenJYPrtGZ07JJ6RWSHxrqXTO++pKNKt3Bdr11RXf9SecdoL/5S+cZjJ8+2HtP7vZrd86nfvjyzt/vJSv2Potthjvzns/9R+f6K0k+eUfnmvHyQzrngE+v3XtP7gMXds7hl39b5z7yUdf2nhue98nO/MhX7vWuSjdJTn560T/LlyRL3NhZ9+TuI3r3vr+wTmfdoSU37dzHet17enNFd1qhszbehe/8eqWbJPu8pTOP8YrPd94h+cZVO88pJcmpsxf9u4mSZO7Cznr5Z+7eebdNkhz31s4z1Dff9EClmyQj7/5KpXvUDzrzcA7/eO+9Rxte2HkH76ydO+uVHnj0gZVukvxhydMr3e9/+WeVbpL86FWd5zyXW7JzHv6zz3XuQybJWdecUum+4NudZ+6+8dzOex6T5Iavde5XXH/V/1S6SbLjezvzODZ5b2cO6kZ/6py7JMn/HNF5R8NlS51c6U55sPf870H7nVvp3vGvznzcJFny0M71w4vX6TwDdebjnXeDJcnm31mv0n3tVT+odNe5p3fu+dDdnWu0i3+6d6WbJKce3JljcMxZnffGbXxZb3zyU5/orPd887o7V7r/c2DnmJok29zaeW5rnz927qknyZeetU+l+8J3H1fpzv5VZ9wzSd5w5GGV7k+37XzGL76k002S1S/orDP3jbEbKt0kWePUzjnXDb/q3EN7sPhdfttrO89Mnn17Z+2ns7bsrT14xXZvqHQf3qb3/Pa7V+ysS/Tp0c77wa4cXaXSTZKD7/pzpTt32VdXuuuv3JknkCSfOL/z3s2Zi29R6SbJ/qvuWemuNbPznPWDu/eOUb/7eud9yN/8Xedd8v+zXec8PEn+tkJnbtgHr/9upZskq+3XeffR5b/prF/y8j/3xlQPXr4z9vnmF3bmT55/8naVbpI8ctTSle5XN+nMLU+SnXbuzHs+9LT/878XlzoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP97DMZ7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgIhiM9wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQwGO8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICJYDDeGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8FgvDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaCwXhvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMBIPx3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmAgG470BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDMZ7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgIhiM9wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQwGO8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICJYDDeGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8FgvDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaCwXhvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMBIPx3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmAgG470BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDMZ7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgIhiM9wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQwGO8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICJYDDeGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8FgvDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaCobGxsf/1f15rylJjx6z84kW+EZMmTV3kzX8bmbew0h3L5Ep3MH2k0k2S4cGUSnfx4c5nkSRPjD5c6Y4sWKzSHZo7XOkmyaRJsyrdscGMSnfq8KOVbpKMDDp/v7HRaZVukkwfnl7pzp7f+Y1MX6y4X547qdIdHevsP0cHT1W6STI00vlejI2OVrpJMm3qcpXu7NmPVbqLDa9Y6SbJ6OTHK92n5nb+fosNevu4KcNDle7QUOcYlSQL5j3SCQ/NrWQnTel0k2RstLPPH568UqU7OtrZXyTJws6lQ4aHluiEkwwPza90n86/Kt3Jo6tXukkyyDOV7sKRzu9veND5jSTJvHkPVbqTi+eIk4Y6P8CF85epdEfHOt+3JJk0aJU74eGptQ3OvNKYTtI7xxjkyUp3/kjnfCuT//fjgv+pGdM7135zZ3e+F/MXdo6pSTJpylKV7khav5FkdH7numTSUGf/OX1K5/o6SeaOdLa5dR4+lAWVbpLMGe3s858Z61xfJ8m8OZ3x2oWlz3lBa3+f3rXD0FBnvKH5XZ41UvospnTuwSTJnNIhe3hO53pndErvHGNktHOOMWmos83zxnpjtcMjnTHxscm9e13DpWPJyH9wv/s/MWnQ2y+PjHU+i8Hk0j2YBb3xydavZKx0bzxJJqXz+5s10vk0Bgt7f7+Fpd/JM6X9xdTiMap0uZpB6R5oktw+t3O9c2NpTHWx0v2oJHlmtHRcTWebVx/0jtdPDTrn4tNKn0WSrFKawzV1Ume8Yfmx3jFqqdIA8yCdcYypk3v3HYbmd75zw5N744iLDXW2eW5pk6fO6N0fmDK0eKU7PNo5FxgUxzEmD3fOEefM7/3+pgzPXuTNbz9+Xx5YMPe/+pFsuuJSY+e/ZutFvUn53p9esMib//aS5TtjbrffdUmlO/1Pm1e6STL1g1dXuqu99ahKN0muOvu8SnfVDS6sdGe8trPPTZJL1lur0t1i4aWV7uyHXlHpJslTn9q00l38O0tXuknyqnW+Xum+Z6QzB3XNkXmVbpIs+cgbKt1/rn9xpbv4J39U6SbJmhuuW+luslbnN5Ikd261TaV7wq/Oq3Q/sGxvTtn1S3TGgm69rvMbWe0lnd9Ikrzkd9dUurd87vmVbpIsfWxn7uVTS9xY6e6/fW+u7007dp4POO/IeyvdBxdfq9JNkjd9/K5K95Fvv6nSTZJrNuzMb917ZucZtkfuur3STZInj+ycfz761+9WumtM3rXSTZKn5l1Z6c5+6DmVbpJc8MD3Kt2T9t6t0v3R29esdJPkxfvsXun+6R2rVro73HZQpZsk/9qkc79+5as3rnST5EU3dO6xHD7vgUr3yHf17p3m+tJzIz++qdIdmbFnpZskU1fsfJeHV+7Ne77oFZ17LA8f1xlveGC3RT+O/m87b7FKpTv3hr9Wur+5tTe/bvONO2Of112/Q6WbJL9b5Y+V7rsvWrLSnbRYb07SyDWd78Y5J3Se81zl6udVukmyzcV/r3RvPWjpSjdJ8osfVrILlntZpbvXgh0r3SR59L5TKt1Pf/CJSnfH32xS6SbJK9ft7JfnXbRapZski611RqX7u7+/ttJ91kanVLpJsvZq91W6szbrjOk8+bofVLpJstYBV1S677+5cz8/Sd40szOmes8ST1e6a+7a2d8nyQrz313pnnX1lpXuYGHvfv4ar+7Mo7q8tMZIkqzw0BaV7mM/+Vml+6d33lrpJslVv+7cN1piq853brO1Vqh0k+T+L3T2y4P3vqTSTZLP/aQz9/LOl5SepT2mN9fwiRM7x5LND3xVpbv6setXukky86bO+cvfO0PtSZJXrdTZ5p136FxjX3r8fpVukqz+rVsq3e9fu16lO/264yrdJHnm0UMq3ad6S8Rk5/sW/Tzwk7e9Lg9c88x/PHD9nKElxs4YXvRzcj9z/3WLvPlvP/hgZ7xtve99qdJ96k1vqXSTZK8tOvO/X/LkHpVuklz/5vsr3efd9GCle9h1/6x0k+Saz15Q6Q6+dX2lu9G5P690k+TK056odI941UaVbpJsfnPnmZ5D11+r0l1p9d6zhV85rzPeduAenWukmb/5aqWbJA9e1bnGnfPcF1a6SXLjsZ05VB+7rzOH40fnfafSTZLRszv36i+69LJK9w2X/bnSTZIbnujMef7I0533HCTJr/7wqUr3tGf/pdL96Yt795p+M6szz37BDp1x9J88eVWlmyQHf6TT3va83vXOq97feTZno2xf6a63TWfd3ST5xIqdewon/KUzprnpL9audJNksSd/V+me8rEvVrpJcuISnc/jgNFTKt2/ndEZ90+Snd+0d6X77q9/qNK96KdzKt0k+fKGnXtNh0/7daWbJEsc0pmPdPrz3lbprnLLPpVukjz89c7xb8ORDSrdI2f0vssfe+uxle6dJ3bmUifJhkfcUOm+86cnVLovvP7YSjdJxt58eaV77+Gvq3R/vnJnzleSPPm6Yyrdi6afW+kmyZJvOr3SffqPnXkne67dey7ulq32r3T3+ELnfvoHv9G77z3rotdUuuv/eJ1KN0nu2/awSveQX3XWJFrjzs5zfEly3XKddVxOO/t/Kt1dDnpPpZsk7z268y6zY67s7C+S5JH1O2Piy3yxM+9rsLA3T/TWNz+30n35DndUurvc+rVKN0kWzOp8Fue8vzf2sux3O89ifvCT/6h0D/tpZw2lJLnla515e8cs3Vnf58yHn6h0k+RDn+t8FruNdtZkSJKnN++cf/7xzZ13Hj15YecdhUny4W13qHSfe/fvK93vfvm9lW6SHPHw5yvdjc45u9JNks8/cXClu9MOv6p0t9mqs25Ckuy7b+fZ3zMe7NzfuWXJb1W6SXLl+p31Oh7drze37/pPv7nSXfXSzue823W9Ncyu/V1nbtFHNu3c9zv1gx+pdJPkq1t+s9L90T2vrnST5JDZnevVpx898uqxsbH/+OG4FZeaOrbvixf9PafLv/LyRd78t4NL0+jvW9AZ+9/7kd46jHv+T2d94x/87huVbpIstkxn/H/2WvtWukd8qHMfOUmOOKozp/PEj3aun/d9/YaVbpL85pWd+xWv2Ksz7zJJfnZpZ/2CKf9Yo9Kd8fzeZ7HmQZ3x4+Mv6ayb/ONJvbmiUzf4fqW73R6debNJctmOnfUnrnnmE5Xuzd++udJNknec0pkj8p2fd+aHfOvcX1a6SfK5F3WeU/rHCb211sdmblbpPv7qUyrdyz7Vmzd7/m86z2bft/+xle5WS3WukZLkhIs7Y+mT7+2sAZ4kZ/60s67hR67rXJufuGFnTcMkWXvxzmex2xbLV7pfvb+31uwKR3beIXTCdr35dU/d0ble/conj6909z1m70o3SR64ufOc9fIXdNan3vvUV1a6SfKH33RevHfAIb21up931d2V7s3v6ry/65tXdcZLk+TET99V6d7+7V0q3a2vX7rSTZKLRjtrcbzjqM76ckkyckHn+Y7lvtoZO9v37u0q3SS54l+d9XFv++QBle60O3vzLv+wUmf/ufkmvXssl76tcy63898793vvem5ne5Pk1bO3qnRP/PyZle6cdJ4rTpLt53XG5N77+d778+ZM+XClu8XCzvO/B365Mzc5SY7ar7OWy7WHde5VvuK+syrdJFnnnU9Uuh/8Q+czTpIdt+6sS/S18zvjiFd/tXN+nySXTz+00v3ooZ11lFY97jOVbpL8cLfO/YEnDu88s5Ukq659YqW76/zFKt1jdzyy0k2Stzz06Ur3A99cttJ9z8c688mS5KmjOuuXfOxlnTkTSXL34533Mxzzp85EnUdf9s5KN0lWfX/nmP3Pww+sdDc6vfN+3iT57c6dtbpPfGSvSjdJ7p//cKX7y6s7ax+uMtaZM5EkBx3YGRfYd4POmgHPfHrrSjdJLn11Z73GJU7qLfb8+ZHOvMG9duq8x/rot3bGBJJkxzd/rtI9fOvOnLMf/773zqNDftUZ+3zOJr33Ta801plfvuRxe/5X85433mzq2A8uWvTznj98U+d58iQ5aErnHuf7pnXWQp2z91OVbpIseeb5le5Nh3Y+4yQZfkdnTtll+3TW7v/0BudUukny6GGd+U7bldaAeWBGbyzhghs6z9Rtekpvza/vvvaDle4bjphZ6U4uvcs2ST71z85axKfM74xrvvk5nXm+SbLuYZ13uZ9/fmf9lyT52eGdtTQvfbLz7pPtPlDJJkn2e85ple6W0ztzhz5x4Ucr3SR5+LudeQC/f+UnK90kWfEPnfdV3Hb8RZXuap/sPWf24QWdddGverhzvvXuX3XmOiXJ6S/8aaV70Nm95/Zv3bXzPOaVr+5co6133T2VbpJc8Y3O9fNu0ztrUFzzzt775+c93Vkj94dX994N+/DDd1W6v75g6Ur3vM/01uF/0YzO+9Xu2eQPle4/ftxb+3rexm+tdF9xWufeTZJ88B2deXCvv72zNtA1q/feQXjH3Icq3Vu+23n+95PP9MYnb7yvc7x+xfk/qXSTZO2fddaNWnh7510jRy7oHPuS5D0f6Tx38LbVOnPAt9zkb5Vukqx/YWdMZ93DeuuKbn1I5/7bSRd27tePLt0Z60uSv6zTWf/zoE07c9Wu/ssmlW6SPPsNnWv38y7urVF9/yadOfFrXtc537rllb1nXj93Yuf498+9O+9Pnv6d3vnW1p/u/K4nfeCuSjdJ7v95Z8D2Wet0njm//UsHVrpJssqHOnM6P7/UrZXu+vf33q0448qlK90tV+mtvbbx7Z13Yx52U2e9/D/f0BtTvfN7nXmol9/fWS//opM67+hNkrEtV6l0t9ql927aD9/cebZxya98vNK98+EvV7pJst4/Ou8gfc2+nd/1Ji/rrKmdJNNf2lkj919Dg0o3STb50Y8r3Yu274wjXj6t84x8khz67s441LvW6MwN++3kzvt4kuRHn+8857nHs4+udJNky9d25iefc2zne/HKt61V6SbJ0S/onL9M3/bFle4fPtt7n9nccztz+/Y+Y6NKN0lWXekLle67rlvr/zjvuXeEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/iwzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPB0NjY2P/6P681damxj6364kW+EaNDMxZ5899mTBmudJ9+/JlKd9r0xSrdJJk/9FSlOyULKt0kGZo8WunOHp1c6Y4srGSTJDOmLVXpjow8XekOjVSySZJpS06qdOc9Nqh0k2R0sSmV7vz5nX3RcOk3kiSz5z1W6S62eOc3Mmnu1Eo3SeZMebDSnTrWO66OLFiy0h0Mza50Fwz/q9JNkuEFy1S6sxd2DibTpi1R6SbJlMmd/fLCBU9UukkyMtrZ5w+NLF3pjk17pNJNkgWjnfPlpUZXqHQHebTSTZLFF++ci8+a0ztfHk1nvzx9cmeb5y/onN//vzrtBUPzKt3ByLRKN0mmTOls85zi9c6C0sXU5OmdY9TIrN6HMWlS6XcytlwlO2/wcKWbJAvnd65LZkztjb2MjHY+j7F5peudQec3kiRj0zrf5aGRzrXD7HlzKt0kmTp52Up3dLi3zaMj//sx4//EggWdY9TUod71zshiT1a6c+bNr3QfmtXpJslY59Ih0yf1xl7mjXbG5EbT+f0Nze+dY8wd6QzYLjG1Mz7y9LzOuFmSzB7tfM5Tx4Yq3SQZmdLZL48OOj/s+SO9z2L5qZ2xz6ee7oy9TB/0zj3nDneu3Ufm9c4Rhyd1vhvPDDq/keVK42ZJMm96Z5unLugc++YtmFXpJslw6X7+M8O9+34L5nfOuYZK9wfmDHqfxcKxzjbPGutcO8wqXgcPzev8rm9O535+kjySzt9vrDQk3jvDSIbSOV8eKp0jTp/U2d83TRrq7YtWHOu0Vx7ujMlNGerdN1pxaue+0bShznduZH5nrC9Jpk3rjDeM9oZeMjyp892Yms49qbHid3l0sHilO2VBZ5unDPfugc6d2+ku0fmIkyTz5i3679wPZt+af43M/q8OrKtutsrYwRe/dVFvUv445/ZF3vy3s6auW+n+aM9TKt05F7+20k2S83e7odLd/eHVK90kybq/r2T3+84hle6J+99Y6SbJ1uv+s9KdfNGLKt1zHjq30k2S/e++utK9ZZV3VbpJst5TT1S6923WGf9fevXe8fivZ3fmwR28wUaV7scP+H6lmyQv+OGGle7ay+1T6SbJd+/vzD05cve7Kt3PTbqy0k2S/X9zfaV708Odz3iXtx5W6SbJ4NSfVrqXL9Mb/9hm5U0r3dO2Wb/SPfi2+yrdJJn58P2V7ia371fp/mq791S6SfKKBz9c6d60wncr3SR57vM71w8//2PnGu3Py3Se2UqSb1zaua9w3op/qXT3O7tzTZIkD2/320r3qV/07vfeu+Male6cDTrz4F7+8AOVbpJcMKPzOS/2u868vde9+8JKN0mmz35hpfu+JV9S6SbJ5N3+VOk+/aHOtcPr77qo0k2S6XtsVenees/MSnelDxxa6SbJ7TNPrnSnntL5XiTJjLHOeN/P9uuMF6178UqVbpJssezvKt0Nf/upSve2Z/XufX/h8c7vZJUttqx0k2T6nBUr3fVmd+b6fmKXWyrdJDn98s75yxmlOZ1H3r5epZsk335R517JZecfVOkmydo7dW5G3li6eXrszzvXJEnyr+90vsvXf7QzpvrP73fGzZJkjUM3qHSXeuquSjdJ7nz+yyvdnaecX+nOX+6llW6SXHNZ59phdLOlK93dl7i50k2SB47ojNXeOak3V3TBe9eqdJe6rnON9vjOO1S6SbLMmZ0xrqk7XVHpPnxeb37dA/PvrHSnPnBHpZskj+9ybaX72106n8XMH3620k2SUyZ35iefMLmz/3zxk73xyRVHOvcqb723N3N93kqdbb7ixZ21JD75ouUr3ST5xb86z9/vfl1nns5Fz+1d++30aOeZyXU2vqTSTZKHn+xc+/1o0Hl+e80leufLHz+/8zzK15/3q0p36kfeUukmyf6bnlHp3vrR3iT+C+9a9Pfn/vb3WXlm9n/+oPXKi684dsCz91/k23PPpLUWefPfTrluz0p32qAz9nHv13vnqx/46I8r3V32vLfSTZLDr+ys5bfxlzrjQJde33lmKkl+t9+HKt2RtfeodJc7vDcfab9tnlXp7vHhvSrdJHnvEZ05HKOPvb7S/dK3O+erSbLTNt+pdF95Zmctjlue6O2X13vt2yrd0zf8dKWbJAec0Hnu7XPn3F3pHv78lSvdJPnNqzpziM/NRyrdrR47uNJNkvfPW6XSPWS08yxDkkz5xN8q3b1+35lb96s7P1jpJsk9j3T2n5cte16lO//ozjltkrzi0s7Yx/nv+FylmyRH7t1Zm+TLN3WOJb8e661xdeEenfPl+//6o0r3iB2fXekmydi8dSrdmxbvXDskyZM/eajS3fyd21a6B9+7Y6WbJJtf09nPve/4zrN8L921t18+9iWdedrP3NabJ/rrh7epdF90/HWV7iEv7K2ves3mnefY33z/qZXu0Rf1nv294i1fqXQv3LXzGSfJtaOvq3S/tv0Fle78P61Z6SbJE885sdK99qTOnOf3v/WJSjdJ/vjPznyW763aO8c461Wd7j8HP6l0l/lO73nJj71ji0p31+/8rNKdfknnPC5Jltnr8Er3ra86ptJNks0/d1Kle8geu1W6c47srLWSJPduslqlO5iySaW79HKd5+OT5NS1vlfp/vCA3jsUfnxF5/zllrU65wLnvrUztyBJpjxxZKW7zWadMfxvr9Bb92m7gzpz4F55TWeeWpKsN/aNSvf68zrz1G48tLNucpJ84Lg3VrovXKbzXX71jb3xyV/PPKLSXbBzbx2CSft1nlNacdPO2OfD+/Xmpmz9ls45/v2bd/ZF+/65M+clSTZYszPncvnSOn9JMnJ+Zw7q8ucu+jlySXJLb2pkHt2pM973+c8fWOn+c2TrSjdJThvuPD9z5NKd/UWSfGioM0by8uU74/g7nNJZTypJVri4My5w8vmd4+qLVuutTfj0t75e6a5xzEcr3STZ+2V/q3T//savXz02NvYfL6AwvPrqYzOOeOci356lju+sA5ckv/tCZ/2et7zg/ZXuHTu9o9JNkgWPn17p/mKNuyrdJPner2+tdGdud3Gle/q2m1W6SbLY4/+odDf+5gcq3Vfd3rkuT5IvrvbHSne9dZ6odJNkpYs7x7fhGZ31Q571mt46jOvP7TzPuvOHOucmhx/wi0o3SX7/p69Wuof9srdG2eyXd65H7zivs+bC2Ps663Mmyc7rdeZFXPCx7Svd52zTG9d89yGnVLpH/LU3/rjVap15jA892XnO5ZJfnlPpJskq+3TGr3620+aV7pIv6zwbkCQ/Oe5/Kt37N+hciybJGTP/Xukes2fn2d7vvq8zby9JDv3+Dyvd9z/Uucey4MDe/LorL+2ci5/9/I0r3SS56a2dNR53OqNzHj5ty86YQJKM7dC5Z3HXtzrn4ZPX+1qlmyQHbPOlSvfDdy/6sa1/u/jnnXkRfzqg82zqvQuPrnST5Dsn/7XSffzxzu/6ypsfr3ST5K8Ln1fpvm7h2ZVukmy5QefZuCVvva3S/cPKnTlwSfLbQzv33za8anqle9Q9neefkmT4/Z3PeZWX9db7euu+nc/jmPWeqnTX2qXz/uQk2fVz7610l3xu59zlkEd6zzOsMvvLle5ax/Tmrc/8aec795LhzjXlzFVfVukmyQ33d57BOP5fnflZa7618/6LJLn/oM44/meXuqnSTZJvTu7si2au2VnD/Ztv6LxvM0kuOb9zT/itU39e6W70ts65S5KsuV3nmde/fqXzXrAk2fEtH690b/lNZ63Szx67S6WbJB/5Ref4t9dVnbnlv96g8xtJks+8urN+yWdfcFalmyQjR3TmdL5qxc5v5Acbd+6tJsnmb+y8//CU2Z3zrcO/37kHkyQ//VpnTe0N3v/8SjdJznu6Myd+9l6d6+DRRz5f6SbJKqd13oHx6xd25iydMquzH0qS6ad23v+0yzt69yr3+udrKt2f3NM5Ru29dW+NkU/fsmulu/R71q10Zz/RWd8nSW4//YBKd/6HeseSxX9xYKW71A8/81/Ne15uzWlju79vrUW+Pfu+qneevfV6nWfqTvluZ5xi67d21rFNkhPO7Owbz9qrtw87/4vPrXQ3X7pznfuuj/beQTjlls412M9vf0Gl+82jP1bpJsnXzu3MCfzJZb11rp6+q/N+rke32bvSXXHb3rqUS93QmWNw+N6d98Gt/dZ9K90kmTyzs8+4dffeu+YePbYzd2/BcqdVugc/q/d86D5v7GzzX+7oHK8nfeYzlW6S/OC2zr23g8/u7DuT5Ief7Ly37cZjO2tpfnSD31S6SbLRJb+sdE94yXmV7uN7nFDpJsnPH+yc1+78q841SZIc9/zOOeK+f+o83/vB9NaFfcuf/1bpfvnEznjpcq8/ttJNkrfv3Bn/P2BeZy24JDn6H09Uul+/+geV7o3L9dYm2eqezrqi3/h5Z334s2/qPc/w12078y0Gx3be55ckF32xs+beUOm06Fc7dL4XSbLVoNP98Q877yRYev3ee3KPPaOziM9mb+7dFzp7w86Y99rrdH5/x8/rrH2RJBvf2nlOcMdXduZ9HblK5556krzyjs5+ef9nLq90k+Tta3TmBN4zZWalu/oRz6l0k+TvX+ust37WI9+sdD9/67cq3SRZ7DWv7nRnds7jkmS9BzonA3t8oPOc0iuGp1S6SfLweV+odPd53t8q3V0nvaHSTZLlT++srbbqlzvvJEiSs19/faV76Yl3Vbr7PHl8pZskO1w/rdJ97XM6z6996Y+d9wYkyelv7Mwd2u7SzvE6Sb7/js5zP0t/p/Mu948++O1KN0nu2b3zu/7qxzrPo3zgbb17aCd8q/Nc/yUPr13pJsklH7+o0j38nZ252l9ZrvM+pSS5/YN/rnTPntpZn/BLC3rXftPO7dzrOnPnzvyfJFl53846I8u8pDM/ctpqvbUkNri/85176qjO9fUdv+y9v/nu2Z17GvcfvFKlmyQ5cOlK9lM7LF/pLvx4aRA4ye2rdeatP/vWzjPnO1/Ye5b92UccV+n+40O986KPTu6sN/aTdd78f5z33PsmAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/RQbjvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMxnsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAiGIz3BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDAY7w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwWC8NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoLBeG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwEg/HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYCAbjvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMxnsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAiGIz3BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDAY7w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwWC8NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoLBeG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwEg/HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYCAbjvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMxnsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAiGIz3BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDAY7w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwdDY2Nj/+j+vNXXJsY+s+oJFvhGTsnCRN/9tNFMr3eHBoNIdm9vpJsmssdFKd+HwpEo3SaYOFlS6gwWLVbpThocr3SRZcunJle7DjzxV6U7qfRSZNNTpzhub3QknGZ7f+Z2MDM2vdGcPd/adSTJjtPM5zxmZUulOnjRS6SbJ1KmLV7rz5na+F0kymNL5Ac4f6ezvFy4o7TCSLDG1s19+ZmxupTt5bF6lmySjI53fybTh5SvdJBkbdD6PsQWdz2L6jGUq3SQZmd/5LOaNdH5/MzKt0k2S0cmd4/XC+Y9XukkytnCJSnfKlEcr3bGh3kni0MLOfnkone/FU4NZlW6SDC3o/E5GR4rbPOicf45NeqLSHZnf2xdNndZpDw89XemOLFiq0k2SKZM61+6DyZ39RZLMn985l5uU0rnLWG8cavbCxzrh0phcJveOUZNK54gLx3rXO5nUucaeM6ezL5qV3mcxd17n7zc8vTMmPrKw97seTO5cu4+Mdvb3STJvpPOdW2y0s88YmdIZw0+ShYPOee2gc+jL3Mm9c8+UvnOjo72xl8FQ53x5cmmXMWteb6x92vTOmOrIvM6Y6ujk3jFqZKzzu546/L+/d/yfmrGw83k8ONb5+y1fulZNkqfG5lS6k+d19kXzp3R+e0kyL53j30ipmyTzx0rn+KOd863Z83u/60fTORmYM9o5X75nUunkJcmT8zqf8+RpvX3RFuuvU+nOW9AZE19juQ0q3SRZtrSbu+exZyrdK266vtJNkiVK15VPjfT2y4N09sszSqdyK07qHVeXK107LFWaQzJ1YW/O2ZLTSufLC3vjiK303IWd38hSi0+vdJNk9JnSWPuMzr5oMLv3WWTQ+fstXpr/kyTzFy76z+MHT/09/1o4+7/a6BU3XW1s/18esqg3KUsu0zl/T5JVZpxa6S657O6V7sKRrSvdJNnijadUupc+2JuHs/6Fd1W6j+y8a6X74HCnmyQvGHlHJ3zllpXsXU+vUOkmyfKrdu5X3HDnPZVuksxab8VK9x9veaDS3X+xpSvdJBn96Isq3VNnfaHS3W2/3vXzjFUvqnSv/cV+lW6SPPHEw5XuC/6wZKW7zpt+WukmyV/uX7fS3eyo+yvdc1+3SaWbJNcd+9JKd6mLzqh0k2SfG1ardF+4Xec66fwl7qp0k2Ty6p25X88a3bnSvWdm73i9YPNPVbq7/ukblW6SnHla577eQZt0zjGueEnv2mFswRaV7k35bKW7+U2bV7pJMuu6rSrd6X/u3SO7+IdXV7o7fu83le7j23TOPZNk1l9/W+nuuGFnjPDkV3Sev0iSta97e6W75v0PVrpJ8p1Zb610t9j7Q5Xua3/QOb9Pkn8se1ul+/iczljsAc9dv9JNkuNv+WulO2mwUaWbJGusuHGlO2v7n1S6t57d+yy2333RrwOSJItNPa/SHdz+sko3SZ5a4k+V7hkzOuOTSfKWr3XuPdz1thMr3TnL9caXH520dqW7/iU/q3T/enlvTG6L4asq3ds26j1b9ehzOtcPd5/zykp365FvV7pJsvRtK1e6T6zT+Yyv+XhnbmuSvPvLnXOMy97dOfYlycvO+Fel+5tJd1e6m2z0kko3SU5aq/N8wPtm/rHS/fwTveeUNpy9YaV76bN/V+kmyRtu72zzvZP+WenevX5vHOraiz5T6a6/WGeu2uxJe1e6SXL7zM481E+t07mfkSQnbfe+SvdHW3Xm6Rz1x879xCTZbV5nHuqDf+7MAfr8cz5S6SbJRo917u+8cOnOeUCSPNlZyiX3rNw5l1uvOD9yzZd2xvEv/tYNle66z1u90k2SFdZ6baW79pKXVLpJMnXbV1W61+1xeaU7+bOvqHSTZOsn3lLpfv2SzryJ2Yv1ftf3PHVcpfunRztjtUnyyCsX/XnRO656OLc8Nf8/vkGw5XOnjl111qqLfHu+ue0Oi7z5bx+4ujMH58yrvljpfvwbvfHdr378K5Xul/75hko3SQ4//ZZK94KLO5/zZ2fuVekmyRd2ubHS3fzp11S6V13Uu3Z+yQc760VdPvLGSjdJ1pvbWf/slc/pjO8e87w7Kt0k2eiazn3Ib13beeZ7o8ufqHSTZPenOnPrjv3beZVukuz87M51+XbDnXPhg+d2nlFPkod+0pnDuN/oppXuC+/apdJNki3/+MtK99rPHFzpJsklV32y0n3hWkdWuvef37u/8v2LvlnprrlY57v8zL29a+dvXPGDSnedN3e6SfL+G46vdG/a/KhK94qF+1S6SXLgw53v3AHzO2Mff75v0T9P/G/HrX1Qpfvl7XvPVb3lbZ255Z/es7P+xBHb937XD599SqX7oQfvrXTfvt7zK90kOfz+zhplxy7ofBZJ8vNXzqx0r556YKX7wOs+VukmyVZr7FnpfvSA7SvdZe9/V6WbJMvu2ZlneOk776t0k+TSD3eeN//82zv33Ta/vTN/MUk2u2inSveGGzvzFk56c+d5gySZ/5w3V7rL3v/lSjdJ1l3YGcc48VWdNXY+8ufXVbpJ8pZvdNaoePYDnf397S9f9Pei/u21Czrz1Bbe0Xv+Ytc5nWfBnvvRzrnA6re/uNJNksHvO/ORFtu9817Mm37ae0ZwswfOrXS//eHnVbpJssvpO1S6163240r3nlffVOkmyW6ndO6vvuO+zvOSUx/prSm6+OylK93rpmxT6SbJet/sPLv9t6s6z2Ke9aLetcM7znl9pfvRDTvn4cNn9sYn9zn/y5XuJ5/9P5VukvwgO1S6z9q+c3/umc/21tS48pnOM55v3LVzHnfZzy6tdJPkodU6azJ8/bjeWkefuKhzLnf18k9Wuu/ZakalmyT7T+/Mkzvg453nXf/wvN61w8xB51jy09etV+kmyS9X7Mxnu/FVZ1a6W+/bub5Okquv6KzJ8PfrO+MNL13voUo3SR6+q/OM9ek/6TxHmyRnDXWeizv81FdfPTY29h//UNbedMrYsb9c9GNjh+7ZW0vlDc++vdKd+YrOGO+rh3r7xn3O7IyZPv3dzj29JLl6xc716N1TPlrprnXZsyrdJNnhgc7adSdu37kvdPm2vXUtVvjLCyvdV13SWQcuSQ7ZrzMn97XLLl/pXrnbeyvdJHnoPZ3zqdd/uzM/cvVnd9Y7SZIXDzr7zzPe0HvX1f7v7FxDf2F651zg1O+/vNJNks3e9elK9/CvdcaCDpt3cqWbJM//Z+fZjmWGeuuHXPO5zjnXj//cef52+3d/tdJNkk02u7LS3fMvlWw+88beGi2/vrBzjj/l+7252h9/Q+e4eu9fOt+Ld83tPTO5/t6dz/noD3XGCB+d3/teXHdRZ1z6gPf/vNJNku3/2rlG2/C3nXV3z/tB5/0lSfLaCzvn4sce9PdKd4dfv7vSTZIXfaZzvrzuWO+7vN23OvvPr/75TZXuZ27+RaWbJHe/8Q+V7vUHPrfSfWTh0ZVuksx+e2eOwUqP9f5+73is89zkC//SGce48N1nV7pJcsjHOmsOvfF1J1W6W+51YKWbJEeu3hmTe8kZnTUpk+Sz5+1d6R7+7M61wzbze2Ny16/cWTvysbmdMfzPHN65t5Mky/yu89zBV1btrNuaJLvf0Fmz42dH31zp/mXP3n75gu935uS+8bTOGldfHuqtRbDH7M49qeEvdtYkSpLl7j+v0p18TWd85MFle9fu5+zztUp36ZmzKt379uuMhyfJWc/vrB35k31PqHST5C1LdY5TX0hnHb+ZF/y+0k2SZ32ps//86fmfr3RvO7c3jvH09Z2xz5X/0nsebP7HO937lu5cO1xyW+/vt+G1nWdIN3nN0pXuS9bv3fd74Z86++Uf/rj0hUsytPF2le7jf+qchy+56bWVbpIsu1JnrvYfT+9cO7zsxGUr3SR52z2dMfGvLrZZpZsks9bdrdLd5bR3VLovOKyzJlGSXPv9zny2Fac+U+leuVRnnkCSnHPVnZXum0/oPef5rFd9oNI9/end/qt5z5MmLT82fdqiv747+5eXLfLmvz32vs47sE+5+P2V7j6v7r1/fvl1v17pvnbdL1e6STL7g9+rdL+yf2eNx2OO7l0/z72ms3b/Phd31i7f9NDe+zQvLT3HefNxvXk4J7278xzZEWt01v+cdvL+lW6SLLvThyvdq/fsvJt5jZ/8utJNku+Wxkw3uKhznpYkj/288270NY49ttLd6kW9d0geeUbneZRbju2cs/56hXMq3STJuZ37Cqct21mLKkn2PKMz/nHiTo9Uuift/ZxKN0ku/l7nnUZLndwZl/7Fcp1xlST58/6dY8nvP9F5T2CS/H2LzjtB7px0SqX7w7/11nPY6cEfVbpvWmb3SvfGy/5c6SbJgb/qXFcOdupcOyTJydM7343VvtSZE/j9zxxZ6SbJ7Ud21q+75cOddZm3vKm3rugxj3eu/R5bune/8Hkv66z59a4bO/dYHvlr5zwgSa74dOf4d9j3OnPV3nV55/w+ST552Zcr3S8/elilmyRnvLwzJ/e8gzrvJNj7gs577ZPk96dcWOn+7DmrVLq/P+7ASjdJhq5eqdLd/KvfqnST5K6PddbQuv3pzpzAjX/cW7PtRaeOVrpfObYzb32/o3vruH/tpZ3zosu26O2L1nzDVpXu/qOdv99xv+2dI375G1dUuqNf+GGl+6OfddaHT5Jrl+28j+7JnTrrUibJ/DU668/84qxjKt1PnTCt0k2SbQ7+W6W73fGDSnebT3bu2SbJ6vseWen+5eNLVrpJkld37j2cu+4Dle5+a3XmTCTJ8W/szHd66qTOefikn69b6SbJ0Ac67/rZ4FcbVLpJ8tzpnfPlaUd1jiU7rXxWpZskvx3qzAG6+ezO2q2Hf7k3v+7Sz3fWRd95l95990su6/z+Br/tjONP/XxvjdXHjv9KpfupZzrrjU1dZudKN0n2+ktnLYJdf/mJSjdJjj+8867Cn/1P5/j3sUO3rXST5NQd31npPnhI5xx/4YadcbMkWe3OzjX2H9/fmb+VJH+c849K97QTLvk/znvuXAUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9lBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWBobGzsf/2f15yy5NgHln9BYStmLfrm/8/w8DKV7oKRoUp3MLSw0k2SDP3v/9b/idlDj1S6STI2Z6lKd/JwJZupg+mdcJJp0yZVuo/Nml3pLjl9cqWbJLPmzKt0B1M6v5EkGRseqXQHCwaV7shIZ3uTZGxoSqU7GCsdS4aX7nSTDC98utIdTFmy0k2SkZHONi8Ym1bpDhXPMeaPlPZzCxZUskPpnLskyfRJne/cyOTRSjdJ5i/sHP8y1jmXmzrc2XcmyYzMqHTnTe58xosPdc4Pk2TewjmVbuvcM0memdvZZ0wb7ZwLzJ3U+y7PHyvtM8Y651tTJ82vdJOkdLmaSaO9Y8mkSZ0fypSxznd59kjne5Ekw8OdY8n80lduylDv2m8w1rkOHi1e+y0c7Vyvji7sdMeKf78Fo51j1MjI1Ep3MKl0fphkpPPny6zh3r5oUum4Om+sc76V/2CM+z81UvoDjg0618FzR3ufxeJTSvuMkd7vb2zSspXuwtHOeMPQaO8ccVA6r50z2vleTB4q7TzT22XMH/TOl6cMOn+/uQtL2zzojeksXvoDPp3ONcnwaG8fN21y51gye0Hv9zclpX3RpE53yqB3XG19M4YXdn5/jy3ofZcnpfM5zyv9rpPk7nlPVbqPlk63Hl4wtxNOMneo850bLl2vjqQ3H2Nq6X7+UlNXrnSTZPqynd/fts/dstIdTH6m0k2SeY90jn9PPvlQpTsY7o3pbLb22pXuX2+9r9JNkmeefLjSXWaZVSrdK6+9ttJNkiVKp/hLDXWOqytNXbzSTZLFSnMQhov33acOOp/z4sOlz6J0nzJJxqZ2zvGHSuOe06cuVukmyWjpOmpSaQw/SRbOW/TnRT9+5tY8ODL7v/oBrjY0deztg0W/Tx9su9Iib/7bx9d6Y6W7/0lHVrpHbb5FpZsk2z7r7kr358v3/n7TL1y60v3ZIxtXum86+uRKN0nueHL5SveuO95Q6Y5e3LmuS5Lrljqj0l1hpDf+cevO61W6y93d+S5fecNplW6SPG/uHpXuumveVulm7vqdbpI7rv5epfv2l29U6SbJv366SaV72cs7z43MH/pbpZskWz2rMxZ0y7WdOZ3fXfhkpZskJz2ncw7/94tXqHST5KGNOve+H33nbyrdtT/ykko3SVbb66ZK98Hfr1XpPvel/6h0k+S3s3avdGf9ufds3LM2e2elu+Lft6105z30/Eo3SWZM7lzvPL7qKyrdQ5/oPZvz7XX/UukuOb9zTy9J7l7+kkp3w1s6v+vLx5ardJNkpVM75wJ37tb5zm14fed58yQZvHzVSnedR35c6SbJlBW2qnSXvLFzHXzh+gdUukly9Lqd65JLlvxopXvbbzv39JLk72u9tNLd+97OWFGSHLTCvZXuyet/v9K9Z+mjKt0k+eOl36l0l96qM1b02JmVbJJk+9d1xoHvOe6BSjdJvrv9XZXuhev8q9Od2RmrTZJ/TOncr791j/dUuq/6wwsr3SSZccOfK93LN31vpZskK93aua8+d41vVboz1+vMO0mSBU9+pdLd4JOde993Htsbx/jMnldXur+9rDMGnCQPLdO5fpg6455Kd9tZvXnPp673q0p3sW+/tdK9+sEbK90kGd25c69rjTt6zwnundMr3dePdM4FVlztzko3SZad3Hlu65dfOqzSXX6HWyrdJNlmyc6c6tufOKvSTZIdXtDZfy7xrJdVumtcukulmyQL9ryy0n3OeZ2xvsuf21mrKkmWXKozP/nW0x+vdJPkygM7Y9f7zf1spXvStw+qdJNkk407689s9ou3V7rrvfEnlW6S7DKjsLZrkpuK3+UHdl630l1q98419gUn98bal3343ZXuhtucU+k+57zfV7pJ8uyDOseSv9+1VqWbJKv+YdE/n/PO/W/IrTc+8x8PkGyw8hpjJ77xyEW+PZtf2lvva/l/dq4LXnzM+yrdfODZnW6Sj673w0r33ptvr3ST5IyfnlfpHvb2TnfqSrdWukny7R076zD+6F2dMc1jvnJBpZsk7/1rZxzotHeuVekmycJv/KjSnfP7FSvdX7506Uo3SWbc0vmd7PG2zn3TxY7bp9JNkvs/0rkPMvmimZVukrxsaMNK92f/+ECl++Dvd6x0k2Tfv19a6U7dfq9K98M799aL+sKjb650Rx44otJNkvtvP6bSvenDnecvTj739ZVukhw2u7POx++XPbXSXXyV3lrPx+7U2S+fedL7K90k+e3rO+f4nzis88zPtPf15i384MnOOOy6/+rMJ9t6id6zDAuu7+zjXnTS8yrdJPn1GptXulf8ebtK99XbdLpJcv6rL6t0rzrwC5XugUdtUOkmybZ/+0alu/kSb6p0k/+HvT+N+nUs/P//1772bNzmeSZEyJwSITITKUJIlAaS9KFJylQRFakkNEiUqYnMiszzPFPmYRv2PFz/G7/V/9Z3rd+nfvu1rrW/6/G42dJzneva7/f5Ps/jPI7jTCZt0Vlz8NAhnUmMi57+XKWbJMd/vDMu8LYP/LTSvfcnW1S6SfLnJztzW69euDeOeO1Wx1e6y25xRKV78cq9z/KDL3fOGRO+sUylu8E+vc/Fmud27v1eXKazPj5Jvnx253dqwWvXqHRXWaD3t7h2ZKd99IjOHIA/HndFpZskU3/VGV+efHFv78H5LuiMkRx5RGf+/q/m6MyHSJJX39/ZF+/RYzv31wNz9vaBO++szpqfRbfozTvZYZOPVLqv/+L0Snfrozv3UUky6qCTKt2Dj3qh0l3vq1tXuknyz706+3VsvGpv78h5nu/Mjdzx8M7803df9uFKN0lW+WrnuuiGmzrzPPa7d/tKN0mmj+msN//9H/epdJPkXft1nmms+sZ3Kt0btt+30k2SdZZeutJ9+I7OvnlbjVmr0k2S4ee/u9Ld6xcnV7pJcuV2nWfCC+14QKX7g+c7a/qTZLdXOmu3P//0vzrd23audJNk05939nvYobj2fv4jO88ett3jqEr35s1KexMmeeP9nfmIY9bvrL2/85zOfihJ8pdFOnPhnzigMxcxSb54auf3b8V55rltcHDwP36pxOLvXHbwgGu+MsuPZ8T2ve/A50Z19vv68tadPXZeW3uTSjdJHvt4Z4z+5ps+V+kmyddevb3SXeEjj1e6P9r8+5Vukmx3UWcfv9FrdfZ3vG3jzry9JFl5y+Mq3ZNO7+2RtMmhB1W6B6/ZGWd6+F3zVLpJMnhoZ1+8X/+88/7ym888q9JNkncOv7TS3ffyzthxktx+4u6V7mvLd56pb3Jjb37dCst33h215b6d51h3X3ZJpZska6+8eqV7526dNSNJsvv0zu/qsC91nhdu+tYtlW6S/OCTH6h0v7N9Z3/jd2zZeT6dJEde0Nkb4aAzO2NMSbLDhZ3xjyc/2tmX5PKzeuPSGxzfGae49oTOvkDHvd65Dk+S3x/duRY/a+3OfNwkWeNzF1e6W729sxfO5fP05rTsvnhnDcaSz3b2Wh+18VKVbpIMnH5VpTvjt71j/vEmnf2CL9m1M9f3H4d2ruOSZPhZnTU0ix7R2av05jGdd3YkyT8X7eyP+8fneu+z3XHc5ZXuGXN07v22uq+3BmO9x06tdKdO6+wp+pljO/vuJsmv3/pepfultx9b6SbJUut+ttJ948DO+ORVl/TWYCyxYWc90XKLdOb3LDWpt/fZ4T/9WaW7+NTeu2GfXL7zTGPlX3Se1++3VO939dwLOnM6l3ypc15+YKDzXvskWfB9nXejHH5ob/32K5t15g5986jOmNw88+xU6SbJDhd15uG8fHBnr8t7X+y9F3PDL3V+/9Y+6W+VbpJMO3bTSvd3n+3sZ7/7O3vvK75phc499g5v77wL8pdH9+aqHfiRzjvjDlus9/17bfd7Kt0vXNY5F828p7PfSpJs/bHO/v6r7blfpXv09b1rjIVOe6DSPfhLneu4JNnpfZ111jf/trN30NNjO2vukuSUl95f6Y4q7QXy9hU2rXST5JpPd54bbTips599kkzabZdK91tvdvbiWXqJzv52SbL/ueMr3V3PuLDSvexPnfdjJ8nFX+rsT73YLydVukly2YHnVrpnP7jJfzXvecmFVxn89C6zfjxo17t671y///HOvqLrj+rMez7sid477H52bufdvicN743l7bls551Gn9+gc23564V2qnST5K09O8/15tmo81zo2d178+uW37jzXGH/S3vzqB64tHNvt8GOnbG89bft/I2T5MM/f7LSfXz3zrrTxR7u7St64T87c5IOPqWzX2KSvOvuzjsZ93/t7Ep3ix913iWdJJMWO7rSne+R+Svd628bV+kmyWdP7aztOOzhWyvdJLnyM513EO68ZOee8U9v9e45tlu0s+5uh5VGVLo/va73btEXftjZ62PvH/bWo7x7tc7+u5PPnvXrXZPkvV/o/UZdfH1nrv15C3fmqp11yUWVbpKssX5nnOnlj/b2nt/lH9+tdJc8vbO+/qCVe3PKjnqrs75+/3k717VHf6e39/UzR3f25lrkV535IUmy3W2bVroH7dj5vf7MuV+vdJPkrJU6a2heWK/zvOLL3+7M50ySref/UKX7vtd6c/gf/NtvKt1zrr6u0l3u1s7eCUmy8RydPR+O2Wf5Sve603pjcov9ozN36Gf7rVbpJsm2f+/M4b/sPZ3v9S8O6KxLTZJ3fLtzjXj76Z13Bs/3gWsr3SRZav3OWPsfnu2sf0qSQ5c7pNL97N9frnRXfrqzZiRJFt6g8/t3zzmduWpzX957N9/Y33T2Cz5j7b9Xukny+h6dvcBPHtOZR/XEgp0xxCTZ+dq9Kt1rx3Tm4bxniw0r3SQZnLvzG3XH05159kky1w867yV4Ye3Onva7PX1gpZsk+3+/Mz9r3wfGVbpvfqfzLt0kueEHnXevfOiW3vfv0ec7z6Tu+lFnj84Re3fWgiXJt1foHPPex3+r0n37xb33Hj2yQufdD4f9pLf3/IM7d+7Rrlzrtkr30/N8qtJNktUf6Yz3fX7j/6l0b/9Cp5skK561f6X70v2d67gkmXfzzrnooA07f4tTBh+qdJNkte8fUun+bpNlK93b/9T7Xg/O0Vnbscj9nXfpJslZ9+1Q6a56x5X/x3nPnV2sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/MgNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4OBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgdDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNnBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHYwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjDiP/mPh2UgAwNjZ/lBjBozepY3/23K1MFKd/jwgUp32rThlW6SDB94q9IdNm2OSjdJZgxO64RLf+bxMzvdJBkzsXPQAwPDKt03pr9W6SbJlGn/0anrf23UiJGVbpJMmfRmJzzQ+f4NnzZ3pZskb414stKdb/ryle7U9D7Lb0ydXOmOGdY7GQ2f3mmPGOh8R+YYuWClmySTZ0yodEeO6pyXh0/vXW9NHlk6x02f0ukmGTkwrtKdMa11zKW/cZKpI8dVuqMGO9cuEyfPqHSTZPL0iZXulJGla9okwwc75+UJMzvXAmNHdv7GSTKsdF37Vun3evqkMZVukmRs55w/sXdazoLzdP7OL4/vjAmMnqv3WZ45tXSNn875c/zUzlhDkoyZc65Kd/TUSjZJMmNE55w/cUbnd3XEsN65aPpg5/plIJ1792nDe2MCw4d1viczp3Z++5Jk2Jydv8eIqaXxrRG9MdVho2f9eHiSZFrnfDFl+KRKN0kGS79Ro0bPW+kmydTJnZP+zGGd79+cxWclb87oXG8NTp1e6Q4vjulMmjG+0n1rcu+6aPSwznl5zJyda4GppXNckkwaVjrnT++cP2f2fqLy5szSGEnxmKcNdr4nAzM7v1ETSuNbSW8c6sVpnXHrf87s/I4kyVMzOr8lU0u/10kyduQ8le7883bmIKww1wKVbpKssPwKle7Djz5a6T7x9LOVbpIsNGdnTHVmetf4qy+6WKU7c6Bz/pw8tXe9/PjLnc/Gs8+/Uenut8ValW6SvPrq+Er3tTd614jLLjqq0n3iuX9VuputuFylmyRvzCjNZ3ujcx335PiXKt0kGT6tc8wLjuzNkxtI57pobGk+4oIjOvO3kmTU1M6Y3MjhnX+/5ye8UukmyTwjOs+DB2Z2nsEkycgRhWvx/w9zoYa/c2TmvXbJWXgw/49dPtF7xvLxo5+sdP+857aV7rpP9h4k3/1w5/s1beY7Kt0k+cxK91S6c6/1vUr34bc/VekmyYfO7Nyb/+aNzm/mxFW+U+kmyW9/c3qlO+cnDqp0k+R71/6i0n3htrdVuhuNWLzSTZJ7P9q5NplyZ+ezvPrLnTHCJJmw6pcr3T/PWKTSTZLX1ru50l1/Rufacv6FV690k+T+z9xY6c6/Ref++WcrLVvpJskyt3V+ryd9eKVKN0n+ssESle7Wu46rdG/99Y6VbpIsf1lnLO/B0k/Jy7f3rpdvnfpQpXv//KW5Mkn2fHWLSvfRD3W+IxPWur3STZKDP7ZKpXvbHQdXuqc80Pm3S5L5V9qw0r11js71VpJMnNg5aVzx0rqV7he/eX2lmySnrdO5r9zygk9Uulnykk43yX3PLVrpTny1kk2SbPDMbZXuFUuMq3TXWbTzHDlJDp5370r3g68uVem+a+EVK90k+dePO/cOV2//eqWbJLst25nHccxd11W6S6x3S6WbJLs+23lG9qeF3lPp3j6pdx+1wfm/rHS32GjVSjdJ1h/+gUr3e8PWqnTnW6I3P+uexf5W6a62ROce7dX3vq/STZL5F/5Kpftiaf1Tkiz5ub9XupOfObTS3ejo3tyF5f8wvtL9wdZrV7pnnNZ7jvzYrzrrPEcs1puH89gVV1a6nxzRGRPYftTTlW6SfOjCznjDc7/ojOE/M39nPlmSzD35Z5Xu1T/pfZZf/fD+le7+Cz1Y6a61cu+53y6Lf7TS/cE3/qfSfXjj3prXw0ePr3S3WaAzbzZJdnzbJyvdIw9Yo9Jdbu7efIy57umMff556ouV7vsmrFXpJslhC7y70t3mO5dVuknyhbOfq3SHHXRUpbvfrmdXukmy0Audz/LT712m0l3urc54apIsfF9n3dauH9is0k2StW+9vNLdfMvOHJK13vxSpZsk49bsXG+t93jnAcHle/TmPV/z6F2V7sR398bkttpr1l8LTH3ivxuDGvH6tCz8l1n/O3HRXV+c5c1/+83vt6t0V534QqW77Iw1K90k+doenT0zDvrs3ZVukpywb2eu2i8/+3ylO9exvbl1X7uvs+Z76bd35lAt8v0TK90kOeXCzt959cMPqHSTZNFPdtbdrHtMZy711fP1zkVnbN95VrjtJ56pdHdc4auVbpIs/a/DKt059jqm0k2Shw5fq9J937s781nm/3Nv/vcBl3fuZY7coLMXwNeuPKPSTZI3J3f2ifjG+3pjV98d0/lub3RR5xw3+tpPV7pJstUh11S6v5vv+Er3na907vWT5NRHS+Owl/fWgp15+jmV7gZ/7zyr3/3wcZVuknzttvGV7k8f6vyNHzhznUo3SS44fI9K96PLPF7pJsnm93y+0n1rpc718soXzVnpJsm8f+nc+x12x1mV7sJXd9aLJMleO3f+zpfO13vWe8Mr91e6Px1xQqW78vG9Pa7uGXNvpfvQiM7z2JMu7cyLTJLFTuvMAZh6Qu89P/9z4aWV7pRvnVXprvzeztyeJDl6+sqV7iNXHFjp/uX2z1a6SfLEk++qdFea3Jl/miTjpnbW3O27VGfNwcOP9/Y3Pu07nXu0zW7o3Lu/fkZvPsS8946rdJd9+26VbpJ899P3VboPLdBZi7nDRzpztJPklNIeFT+c0jkvX7JQ73r51w9eXOneOeGsSjdJ3rXDPpXu8Yt09pFYYlJvT5R9Tv12pXvFXJ01B0cd3pubdfOSnb/F2o+eW+kmyeWfvajS3ecru1S6wyZ1nsEkyTLf65w/1zz+gkr37K1618t7bffbSveoxXr3fl/6aGevuAe/dXilO+2g3hrP+T/T2Qf1ip3vrHSvX6X3MrPX/vLHSnfqCr1rxHdu2Hk+/tp9nbH2H5zbG5N79nN/qnRP/HtnLcqmG5xZ6SbJayd39vfZbbkvVLpJMnWuj1W6by3xrUr3F6t3ruOS5IQ1T6t0b5q0e6X7r48/XOkmyVozv1bpXrzdTpVukkz6c2c+1H9rzqljs84zq83y7p9+PsuT/3/LffqiSnev5zpzIkZ+v7P+KEmWfU/n3aKfHtfbb2+NDzxQ6T50SeeeY+RjneebSbLWL46odK94qrOG5cgLzq90k2TkOZ39cU+7/+pKN0meXKyzPm3VEzp7L708obcvycdKL0c/54nOXrP73vfTSjdJVn+l836Z1U/s7JeRJEv+sXP+vODCznqic8f13nV12m2dz/I3b3ii0r3zjl9Xukly4G0frnS32Kc3Lr3/pPUr3XX2fq3SXfbuD1W6SXL1GZ3v9fVbLF/pbnFpZ3/AJLn2T5358Kdv1Ju78Myv/1zpXrbh5yrd/7mhkk2SzHHvFZXuHl/pvDP44EU6Y0xJcvjWnd+/Debu7U8932Od37/fb9eZtzfxvN6z72UO6ZznTnzhg5XuJsf9pNJNkg8/t1Gl+8NP7VrpJsnLp3U+yx/+VWcO+B2Ljqt0k2TO33f2Obj8/Z1/vzVP7s2v2+Lbnb1b3/2Ozp6USXL7Yp25e18Z7MzbW//x3rno5K935nS+9OZ5le6VN11U6SbJ+x7srM3ZaUzv3bA7XNhZW3zjOzrnoh13+n6lmyTH39NZs/zlwzvf62/+tjcm96l9O8/Vh8/bW3N+8jad5wOfuLqz99ndO3TeUZgkT921QqX7/IGdZyXPzd97x+Tv9/hupfuXxXrPd2Z+pTMOfOOXO9dyxx3Q2+Pnhhs7e7f+7IbS+t8Pvb3STZJ99ul8lm9duLf32k+WeKzSveW0lyvdZy/t7CGdJOvt2nmH0Ff+0Nl77dsX936jDl+4M79uiRe2rnSTZKl7Ou9Teuw9nb0khn9iXKWbJL9ds/Pc76obO/smX3FHZ25ykqz9y875829vduYQJ8nqr3b2DNjszE53wy9+pNJNks+8bZtKd567OnuC/XJMJZsk+eu5nfGtS9e/s9JNkp+d2Fmfs83fv17pLnxL7z0/J3+j8/68j6y3bKU739t648ufuqWzrv+x13r7U//+t52xz/yXU3bnGP961rl01j9XP/lfvT1yf352Zy79L9frzC+Yc8mzKt0k2f2EznsMPjt+y0o3Sb6wf+eccOmkzvPC087uzPtKkjV26byfa8c9O5+LKUf29tl5+flvVroXb9l7rvDzQzp7A61w1Xsr3bX+1NtLc74Pd/ZbH1yvc0G8yzq99Wmf+8LHK927vtx5H1yS/GDZhSvdNX7amUd1/2K9vfz+8VxnTd2au3b2Xzrh1t6856OPOLrS/e4Zvf2ev33ADyrd0zfojBFe8K0lK90kOW2xUyrdk3b/VKU77MjrK90kOWDFzntnJ2zQe154yD/fWeludsnJle4Jl8z6dbT/NuKdG1a6R83RmR8y52XbV7pJcsDYd1S6w0rvpkySuwY7eyae+/xvKt2ll5u/0k2Sj+zb2Vvmcxd35g5tuW7vemvCrWMr3TPuXrfSTZKl7t2z0t3x7539jOb/eGd8K0l2eaWz7uD1r25V6d68y3GVbpJ84aizKt29Xh5X6SbJ5Wt3xs7unflIpfuHBzatdJNk7/k6e5f/YL7OmrtVzzq00k2SZa8/qdK9Zvve2qqnV+jM8Vmn9Ixz8cs7c4iT5AMHd56Rbf6VznPkk8/vjLskyV+P6MxpGfXsYKWbJOu/2bnm+sZW+1S6396ytxfjhZ/vrJX4+LWduYb7Tuy9j+6jB+1d6R5/yO8r3SRZ/bT1Kt3fXP+7SvfXj3TeTZQkC5zfeR/4g39bqNKd/NPeuzEv+ckmle4F7+3sEZgkn9qs87t6/jqd9Xw/W2e/SjdJ9hicr9J9+enOHj9zXdG7xvjxqctUuvv9ojRvKMn7F++80+WpfTv3fpe9pzPWlySfO6az99qel3d+r584orc256J1O8f8hTl770e5+9Od+9Uzr++sbdx2187+dkmy+mad945dvV7nGeg+A729kx9YZ9NK95sr955VnnpTZw7X8yd23qE3x++PrHST5KmTOvu4P35qZ53g9OUnVbpJcua5nd/V353fe2477ZnW9csG/8f/tbPrJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2ZgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNnBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHYwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYHQwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MGxwcPB//R8vNWruwUMWWrdwGFMLzf/HsGHzVbojBwcq3WGD0yrdJBkYPmelO2zYpEo3SV6Y8kKlO/eYmZXujJljK90kybD//Xf1PzJ9RCU7bGDeSjdJps+YUOlOnD650k2SsSM6n42ZUydWum+N6J2LRszsnDMGR4yudIfNLH33ksw1svMbNWnG65VuksycOarSHTnsxUp3xsASlW6STJv5VqU7Y0TnOzKxc+pMksw10DnHDaTzeUuS4SOnl8qda8QZA53zfZIMlL4nw6Y+X+lm2FydbpLpA/+sdOfJ/JVukkyc1rnmGiydi0YX7/2mDw6vdN+c3jmBzjvQuT9LkpnpXMuNGOh9/8aO7NyXTJvR+SxPmTyj0k2S0SNHVrqt35KxxXu/qcM6n4uRzXPRsM61+IzpnXPc8OG9661pkzqfuWFj5qh0J8x8s9JNkoHJnc/ywNjemNy0KZ1z/rSZne/f8BGdsb4keXXSlEp3/tJY0YjOz0iSZOa0ztjZm2ndnyVzDitdiw/rXG+9URrrS5KBUZ3P3MS3Xq5055ln7ko3SWbM7JwzRg70fldHTO+MUb45onONMWxa73s9ULpenjit870eHOhde86Y2flbDJ/Ze1YypfORy4TBzu/1Pyf1/v1eHuzcVz6T0m9J6buXJCvPv2ilO/+CnXuHJBmY0Ll/GLfkgpXuaqtvWukmydlnn1Hpjp1znkp32KjeZ3nRBTrP/SZMf6nSTZIFxy5e6T728IOV7mqrdc4XSbLeFntVuq+9/K9K99UXn6l0k+SN55+tdBddZlylmyTPPPhKpTv/uDGV7uS3etdbG63fmNeXPP3gE5XuFdfcUekmyevTO9f4Y4b35pCMTOeCef5hnc/y6OL48pyjO3OAZpSeD8w/sTMGnCRzztd5pjh1eu9Z19yZ9d+T37z+TF6YPnnYf/P/XeQdCw5+9MIdZ/Uh5W0T/j7Lm//2yEHjKt2lXuvcM949qvP7kyQrDetcT63+81Uq3SQ54p13V7qXfOKqSvfmYzaqdJNk8kqd8+NJr25e6e7yp869TJLc/LPOdfZa542rdJNkmyU647z/Wu7pSve257ardJNk/lV+UOk+cMWWle4G71mg0k2SkfMdVum+/ufTKt0keWP6w5XuipM74yoXLNyZm5wkKy51ZKW7xDJrVrpjH+3M50ySu2/br9K9eZHO3yJJ5t27c5/79p8+UOlOfevySjdJdprr7Er3kZ0vrnT/cd67Kt0kuXRc5/rl5Fs6a/mS5O5p4yrdsZscVOle98WjKt0kGXtuZ8xmh5s7/37nfGClSjdJ1rzi95XusL2Wr3STZLUlOs/1Bv7ced5059y9+52PXlJas7zbjZXu8DmWq3ST5CvDOvdRey20YaWbJIs+tVile993f13pLrpEb83kA7tvU+mufsGtle6bRy5d6SbJdV96T6W722ZnVbpJMtfj7610r96qc/686bed832SzP3GTpXuHiO+Vun+9ePvrHST5KF7Otdbtz74VKWbJA999H2V7o9/3xnTGb5G71x0zwadZw/3nti591t/92Mq3SRZ/LK7Kt0xc/bm101c492V7qvfOLXSHXbiIpVuktxz5m6V7pLLfa/SPWdK73v9sac65+UX5+rNCXzqb525e9uP7qzHvGZ4Z21Hkvzup+tUugse2dmL4PP3duaTJckCX+/MYzx67s69Q5Lscsdzle6oNT9R6a5z4UKVbpJc+0xnPeaW+3XuV28c6H0u5nt4h0r36B17c8o+utz5le4HL+w8T5xjysaVbpK8dmDnGuMdL3XmFv14k9711tPf+U2lu8mCvTn8N097rdKdfP96le7/PLRCpZsku13RuS46/Jed3+sN7vplpZskv5rvskr34oHeOt0Dbutc49/75uqV7gor/bXSTZIPT+vMRzzvsc6z5psW6lwfJsnyc3TGG+ad3rtGXGPvWb/34U8vuCfPvvjWfzzvedycowffu9qSs/x4lpxY2gcuyXzj/6vp3f+v9v5mZ97QRld9t9JNkuve2XlW+ORJx1W6SXLZAndWuofN0/lc3HzObZVukmz99a0q3auvu6DSfXzP6yvdJHn5T1+sdJe59OpKN0kmvtUZ+x+z8Z6V7hrrnVfpJsl5ixxR6W65+ecr3RP26a1t+v7CnXV6p+SblW6S3PbFzm/2xn/7c6U79tr7Kt0kmWPszZXuo6tdWulefF5vzux+x6xV6d68VG8OzsGb/6nSHbbmspXur2+6stJNkj8t0dmf+uD5O/NOvrVwb73dJ77dWYu57hc6z7CS5PD7OvNEz/3ngZXu0xf31jLcuf3+le7X3ttZV7X3bV+udJNkz392/s4PLNG79/vrHp31Mz/coLNX6RUHz/qxkX/72XadfRhPWPSmSveu3T5Q6SbJlMf3qHR3u6HzDDlJrnt0XKX72Zm7V7qvje+sNU+SP4/tXGNsutUale4c9/TuHZZ/x2OV7mFz/6HSTZIX7uvMs1/uuM7a+xGHdf7GSbL3bldUuqcM3lnpLr3SuEo3SW48vXON+Njavbl1m951YqX7yRffUeme87veHu4H/+SDle6ec3XGoV7+1jKVbpJ8fY2VK93D7u7N0z5gyl8q3YU378znvGOVz1S6SfLmrzv74k1fuXPtecAWB1e6SXJkZ2pdnlm6t0fZEed25g1d/d3TK91F1unNJ3t1zs6eDJPu6DyfO2e93l4rH/heZw7OYhuvXekmyftGdZ4prv+HbSvdj1/Xm48x/yEnV7ov7tC53vrV9zrnoST56oSvV7p/uLTzuUiSU97qzPuafNXele6ZF/Teq7jlMZ1xgSkDnf34Hn++9wx7+nt/Vul+7qXeOOLUR4+qdJ/+TGfexPgjenuDbv/WhyrdwVs6658+ve34SjdJzr+nM140Yt3bK90kWeOy71e6x06+p9Jd8ebO3IYkefZjP690P31HZ9+go0/bp9JNkjX27qx/uvHICyvdJFlofGc+xsd/+dfbBgcH/+OF/WvOtfDgZWvM+vVNf3+0d8+x5Qc781tvOqrzHbgnh1S6SfLp8zpzcnd9/EeVbpL8befOeNB7P7FBpfvqsr3r7KlzdPbqfuKMnSrdab/7RqWbJHMffUmlu9ZvvlXpJskHzuhcQ2x3a+eadZtbO89BkmSVn32q0l1wlc5cmU9t09l7KUkWeXXnSvfrJ/aus8ec39kXb6mXOvccoxbvfZYn/b0z136/FzpzfR9Z822VbpLcdFZnPdgnJvbmPR+2eWfuwl3bdPZB3fQnnfk9SfLWi505/Fd9rbNO6ZEVeu+wO2/hT1e6796o927fDVfYutI9ZpfOd+SszcdXukly7oWdMdNtpnTmt3706d46sx0P+W2lu+uo3jXGfVd+p9L9wnKd+VmHPrZppZskB+3T2Tt59xU6n7lfLNB7Z9Xar55T6e7y084c8CR5+l+dvYz2vfC6Svf0z/bmGn7k/M7+Wdet3dkr+JXle++TOP8rnffEHLztmZVuksw4tfOe6ttmdObD//jeX1S6SXLMnp1rgb8f19k769qXO+OeSTL6r0dVujtd01nzkyQvHt+Zu/fm+1etdCee2xuf/PL2x1e6X32+80z2x5t05ockycGbLFHpbju69w6MCad+uNJd8h+ddfJfXr7zfDNJ7tyns4btpFc77+x+613/qHST5IbLOu9pWv/G4nqUD3bGiz5/9Bcq3fff0ZvDf8SUznsxLzq089t35Jf3qnSTZOe/dJ6hffA94yvdJLl+685eBCfc2rkP3mqNfSvdJJl5ZmfPgA1vOKHS3e7wzt84SdbZtbO//1pH9c7Lm2/cee53wcKdd7wu/KvOPkpJMufcO1W6m+7R2Uvijk16726+/C/bV7q3bbhppZsk5z/QGSMZO9f7K93ffPCUSjdJfnFC5902t9/UWWd2zFudcbMkee3Azl7rO03q/Zbs8Exn3cHE+x+qdC/5XO+9mF+96NFK96QZW1S6Sy11UaWbJL85sHPvftnSvT2a9t2486z57IWf/6/mPS887h2Du2466/csffy6qbO8+W8rrHdIpXvssM685zUGO+8aSJKlPtaZEzjHfb21G399qDOn7McTOnO/Hr6pc/2eJEtdvWKlu+Q1nfHumzbs7Tm0/tTOHPAtb+5c/yXJ1ZteVOketPzMSnf3x+6tdJNk5yO/Xeku+Uxnrswnp3X26k6Sx7fp/M5f+e3OGFOS/P3HnWPedcvO9dT+3+y8yz1JNj+9s8/ONUt09km64dSlKt0keWi+zrj0jQ921rkkycnf6ryP+KN/+mOlu8HH1q90k+SZgzt7tax1zCcr3XfveW2lmyTvO6yzz9WFn96n0k2SaXN3nr/tvnHnnUbrn98bo9//pztWujdf3JkTscPnO3OdkuQ3v+is/93/Xb15HE9d/0Kl++M9nqp0lzj7I5Vukpz3Umeu6N7HdOYnv+f5H1e6SfLeb7y90t12emeuRZK8ba/Ou5reeUhnHOp3gwdUukmy4Fmd9+59/uVxle4tvz200k2SVW49utK9dc7OnsxJ8sK1nf3yz5i8WKV73q3XVLpJ8sq7T610X1v+/kp30l29MbkjP915Xn/VAXdUukny5T067x3b/ludfXY2uKv3PtTTD+ms7V9o1c5c0fEb997PMOfFnfccf+3E3vvnn/tX5zf7R6tOqHS/ccnfKt0k+fLa51e631+oM4f45S17v9e/vKCzlv0Xm9xZ6SbJB/fvXGPMNXmfSveFzXrveb3j/pMq3RnzdL4jS6zQ+426duX/qXQvvaa3F+rre3Tud/41pTP2csB+K1W6STLqw53fqIX36Tx3P2je3rr+4zb8XKU7+ZDfVbpJ8thpnfdLPXRi572Nw+75eKWbJJ/aunPv/tqaP610l31H552bSTLn9m9Wuj/dsrNfcJKc+uPO79+6q3XeQ3Pv9zvvfUiSR47qrE392t3vqXR/slTvs7zMeeMq3e9d0JmbnCTnbNR59rDpjFm/z22SDF7Wm5uy6nc685OPGNfZX/JPR3bur5PkivM635Nlftnbu2vZazrPhD+0+kf/j/OeO7ttAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/ZQaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHYwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYHQwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4OBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgdDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GDEf/Ifzxw2LJNHDJ/lBzFz5luzvPlvo2bMrHSHj1im0p0x7blKN0mGDb5a6U4dHFbpJslgRlW6b02bUekO9P4UGT58ZKU7adj4SnfktM53L0mmpPOHHhze+Y4kyVtTx1S6M0Z3uoOlc2eSTBjR+SyPmTpY6U7pZJMkb016sRMeObrTTTLv8M4f5I3BeSvdGTN61xgZnFTJzpzS+Y4MDJ9Y6SbJzBmdz9y0sa9Xukkyembn/JnSb9SEmb2T0eiZnevPYaP/o1uN/7XJE6dUukky54glK93XSteeSTLHqM7fY+qI0r/flN6/3+Do+Srd+Uu/q1Om9/4W0wY7f4sRw3rH/NbkNyvd0WM61xhTR7xW6SbJ8GGda/GZozrf6/GTOtdESTJmROdabvzMznckSQYHO+MYY0sDDlMm966X35rZ+f0b+1bnumjGyFk/5vlvU4d1/v2GTxlb6SbJlIHOeXlgZuc7MmP6QKWbJPOMmqvSnTHYOeYpmVzpJsngQOeYp5XOF0ny1tRXKt3hY8ZVuhne+yxPm9kZFxgzdoFKd2JprC9JBgZL91Eje/9+w4d3vidvTp5Q6Q6k97s6WBp7mVr6W0wb3XtwNHJ653PxQmncM0lenTa10p0wqvOZe3aw87lIkqkDnfGG92+yTqU7z9hFK90kWXnJpSrd1998ptJNkuWXX7/Sve6GKyvd0aN711tvW2u1SnfqpM7zge222rbSTZIrbvl7pbvu27eqdJNk4gudMa4Zg51rz9dnLljpJsnkV56odJdY5B2V7qvPdu7bk2SxpTr3wQ/8885KN0mmTel8lpcYu0GlO3buzr1qkoyZZ45Kd7EVl6103zfQm5vy7PjOde1t9zxc6SbJa1M615+TZ3b+zvOm99xowsTO2PXYEZ0x1VGje2MCEyZ0zvkzB6dXuknyRmb9uM7Uwf/+mnbUvQNZaqVZf368fKnPz/Lmvx0xx7GV7vJzfbzS/fWDF1e6SbLyjp3fzcV2bc0bSk5dqXN+PGn/D1a6C6/5UKWbJHO9uzM/8oxdd610z7+uc7+fJB+Zv3M+/+vKvbHYizbojNmMuO0Ple5Om/XmR5522h2V7vg1H6l0/zD+hko3Se44anylu+8SnbHjJFnvR9dVus+tvVele/gCvTH6W3JXpfvUcTtVuh96T28saMYenbnaq2z6w0o3SUZPOKPSXW7Dzvdv4+V7c1revdrbK91NHyid71funeM+vM4Lle4FR7670k2S4dedV+mufdfvK925F3+50k2SbW6bu9K9ZolPV7qrDH+g0k2Sx+bo3O8sNrb3uzriHZdUum+/5yOV7gKP/7PSTZLvHN2Zk7vU3NtXulPf2KPSTZKVpv2x0l3i0iUq3SSZc9nOGMl8825e6f5hxL6VbpIMv+dHle733n1YpbvbmKcr3SR56YPXV7qPXzZnpZskZ6/XOc/tc+88le46L7630k2SeXc+q9K9bExnHGOVOw6vdJPkHV/u7Bkwx4q/rHST5PgNO+O1W729c41xxLW96+UFj1u+0t10uc4zmNHPdeadJMlyq19Q6f7zvA9Uukmy9uY/rnSvO6UzJ/eCR6ZVuklyyKGdMfE7lp6/0l1vvrUq3SRZebXLKt1H/t6ZN5sk677/L5XuVVcsUumOfc96lW6SfOT631S6243cotK9/cLOOpckWXh05xno/lP3rnSTZNud31fpXr1MZ0xgh6NXqnSTJBd1nhtdN9g5Xxx+1KmVbpLst2rnucOpWy9b6SbJnvt0nh19cd41K923HdUbk1t7jeUq3bkW6dxHPbxUb67hF7brzNUe/UhvDsLXv3prpXvrHzt/i0l7/avSTZIjT1i90t32uV9VunePflulmyR/vaYzdr3uUrdUukly5xxvVLqvvuexSnfRuz9a6SbJ5OGda4xb5umcL1bf5qhKN0m2f6TzW3LHdSdXukny2qqzfuxsxmv/3VjDiOmDmf/lWf+7ud3enf2GkuSihzrj3X8Z1fksHbf0/ZVuknxo386zwim3/7rSTZKdT+zc1637409Uus//s7OPWJL848mlK93Hz+t85o67coVKN0ne3PrSSvewG8+qdJPk5R13r3QnbXlTpfvE8T+vdJPkn1seUelee1nneueXm/fWv/944c7atGV37MwBSJKDbli30r1/ic784dv37azrSJI7x3+x0n11zs6Y9DE/6d0vHnpVZ/+C37z5p0o3SbaZ2XnWe+AjnXnay23a+R1Jkp/t8edK9+LrO3Nw5p2js99Jkpw8+dpK9639vlHpJsk/ftx5pj7iHztUuof/4shKN0lWvKszz/CmKztjYnte39lbPEkmHntPpbv5Z66pdJNku43vq3RH3NgZE/jde3tr9n+9fmctyrGLjKt0p8z33Uo3SXZ5oHOPff5rnWvaJPn1Ap0xkvW++OVK9/ipf6t0k+RfkzrzAZ857V2V7o1L9p6bnn/OyZXu91/uXWM8vM4xle6ri21Z6d55dW+e4XceuKbS3fXsQyvdFy47pdJNkptGdOZcHvmTJyvdJLl7vs595Rvzd/aO/MaKnXWYSXLizZ05OF99rLNf4rAVO88zkuRvb3XGEV8/6sOVbpLsf0dn77qj5+ns97D9TZ155Uly33c69zu3bdy5Rzviu5dXukmy/8qd79+yP3i20k2SNz98UaW79C876xrfvPFTlW6S7DVfZxzqw3/p/EbN/4nO+vgkuXCHzh4Hnz2nt9f6vy48pNJd+ouda4Fxx3WeJybJjDEbVrpf/EJn7e/whTardJPkpot3rnTfOa3zHvIk+eEvO3NQf3bU1ZXujYt37kmSZK1VOvPs33dvZ034Bj/ctNJNkmUW/3qlu/i5veui5975nkp35j2dNT/zzXN2pZskKw129qo69ced53NXfbR37/DqHzvt3b7b+V4nyUF/76yL+/OenT1RzhvZGetLkkPv6szHeGuTzu/qbWv/ttJNkl+N3q3Sne+7D1a6SXLDyGU74f9y64QRKy6YBS6a9XvArHhKZw5xkpy450mV7k9u7/y2rfuF3j5+Uw/rzAN44W+996FefPvzle4c3/5WpXvlQVdVukny9KGdsbx88rhKdu0JvT127jiks+7moqMurHST5LJ1Fqp0D15t60p3/U92xhKS5KqLf1rpjt+0M05x94d742K7n9HZX3zOd3Xuy5Pk+ZM6a77XefD7le5d6/b2a7vjmc6cwPec2dlL5fBLO2MUSfK9qzvPC79/QWfeV5LccEBnfvkWT3fm90w6szc/6+Vbf1LpPrHtwpXuhyb21tzt/b4dK91rT+2MUSTJTU90xq/u3azz3tJ5Vz2k0k2S27/QmRex8aGd/QsO3aTzHUmSJSZ21iBOf3rPSjdJ3v/dzrqR67/SWee50Ud6e9ct9EJnjsFSP+7cOxz06S9Vukmy/Qc745rrf+vblW6S/Gu5n1W63xrWuadc4+LO+rUk+cXbrql073v+uUr3O4utWOkmybxf/Uel+/2je+s8t1my0568e2ff3fUf7a2tev2Gzr3fqOMOrHRPP7pzvkiSN8euWun+8nu7VLpJcthNnXlwF/+p8y66bVbs7ZH0+2M614j3bN7Zt3yX575a6SbJOTd1/harfPXkSjdJnrplv0r3I+t2nqG9fY3eezF/ekRnL6Wnn+/sOz9qz94e7g+81XmfxA1XdMYEkuR3H+nMSdrk5c79zn6bdfZKTJKdl+/sI736OQdXuuc+1Nvr+a+ndPaf2e3M3vOBTb/Sme/07g9/rtL91M9/V+kmyY7Hd97f9dBzB1W6ow/vnIeS5MmvdtZA/WbvGyvdJJl+Yefeb8z1nbWpL63Ue4/8fqvdVum+7ZrOv9/bP3ZapZskx/+ls6/N+ef13idx7WfPr3Tnfr7zPH/y1v9T6SbJCdt23sX63Okfq3QfP3WTSjdJfrB15xr/2zt0ns0lybvm6bw/dsU1Vq50j1m7c0+SJGs/vX+lu+TV+1S6Z67xyUo3Sf55d2fO50aPd8a3kuTP0w+pdM/Of3f+fHPcs7l6+6/M4qNJrj+g927R0Y93usNW71zz/Haj3tz/d17VOeaXHrio0k2SqXeeW+mudkZnreWIgzvPQZLkgIHOmM3Cf/xspbviJndWukly0WnfqXSXm9Dbr/uYNzvvunrm8K9Vuud/pvee4ysmdPYVXeHhzljCgpf39k6+ccfO/J47l+/th3P8c531KJ//4zaV7sCts/665d++cuoJle4qm3aehRz2uU0r3SRZ8EOdMfqB929U6SbJfDc8WulefNuyle6D3zqz0k2SezbqrOPc+Yg5Kt0XJ/XuHZ7Yu/P7d/K7O+NiSfKHPU6udBfavrNO8KERnWf1SbLqzM6+6Fss1TkvP/V6Z+wqSSb8vLOHweIf6e1B8bUtO2vNfvelzvPep7/S2Xs3STb4xWCl+4WlOmNu172vd718+H0HVLpPvO/wSjdJjhrZeX66zeTOde2UX3b2+UiSP+3YWQ+92Lydd0ie8Hpnv8skuW9aZ63ET+7pPIdMkg327fxOnfyxlyrdXUZ03p+cJD/4YmffmhH3d+6jfjrY25fhZ4t11kzu+8DalW6SvH+OVyrdj4zu7FFxyaTO/J4kefyU9SvdjVfpvFtxt8XPq3ST5PQT16p0T/713JVukpw0vrOGZt+NX690V/1FZ51Skiz7+c6Y3AovPVDpHrhxb07EUfN35opOXrQ3V/ujW3WeD9xyXWfN6+8f6axTSpI5ftc5z3117c6+KHee1Xl/XpJM3a2zz8HNx3aerSbJbmt1rj/vOumQSvemC1epdJPkwGc7c6rHPn5FpTv/P3vP0D43pXO/utRyvXeG//oHnfXbG55/TqX75k69cYx9Jp1V6R6wbGc90RzrdK6JkuSWf3W6F53Um0+z1emde+zxp91Z6U6/tDfX99eHdq4xLjpv8Ur34vf23nn7patXq3RfeGl6pZskP9qt8xxm6XM/VOnOv2vnHTRJcvU5nTn8v1r+/ZXu2Wd03qGQJFu+2RlTnXvK8ZVukky6ubfH//9J7y2tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/kYGhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYHQwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4OBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgdDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxg2ODj4v/6PFx85x+ABC6486w9ixPBZ3vy3mTM73YHp81W6wwcmVLpJMnP41Ep3xqTeMU/IyEp3xkCnO3pmp5skw0YPq3RnTul8LqaPHFPpJsmY/+C89Z+Yms7fOEmmzHij0h0xc3SlOzi8972eOKNzzp9j5IxKN9Pn6HSTzBzW+TtPmDKx0k2S4QNjK90ZI0t/5xmTO90kM2d2Pssjhk+qdMeO6p3jhs2cs9KdPLnzt0iSEaM7n7mRg53PxeQRUyrdJBmTzgXzyGGda4EZpd++JBk+OL7SHTHQO+ZpUzq/f8Pm7HTHTu9dI75WOi+ndF4eNWl6pZskU0Z2rvHnHDF3pZskM6aNqHRHDOt8lmcMn7fSTZKBwc613OQZne7AiN41xuCkzm/UpBG9c9EcwzrXnzOmdsYbpgzr3F8nyfARnX+/ETNKYwK9IZ1Mn945L48sjmOMGdXpTpg8UOmOLn6vZ6ZzjTGQ8ZVuZnR+U5MkwzvXL1On966Xpw7rfP8yOK2Snd47LWf4sM73b8SIzr/fxJmlf7skM6d3viczB3rHPKOUnjG883s9dXpvTG6w9Ezx9Wmde783B3u/1xPTOeZpM3vH/Hw6n42ZpeeJKyy/fKWbJHt/ZIdK98nXX6h0x00tPXRPMveYzj32ixM6z+aS5PkXHql055yr87v62KOdz0WSvDmhM3a97LKda/xxYxatdJNk7JjOMY+aZ6FKN0mWWXr+Snfc2NUr3TuevLHSTZK55+z8+913ywOV7oZrvafSTZKpYzs3JlddfXmlmyQvPP58pTv/vJ37qHnGdJ65J8l7Nil9NkqXiBP++VQnnCTDO/d+V95yX6WbJIPTOt+/iaW5YW++3rveGiwNkoyZ1rmunXt4b27RXOlcI44d6A1EjRo+608a109+OeNnTv2vwqsOHzX487Gz/prqbw+Nn+XNf7turYMq3cWHn1LpbnD76ZVukixxYOeYX/j93yrdJLlhmTUq3Tn/tValO7hcbw7/EunMMXh62t2V7oJv7VTpJsnvVun8LdZ/fdNKN0lemPalSvfGyZ17g/mv7D0j2+djb69053y5cw3xhyvnqXSTZKuFnq50xx/Qe66w67WLV7rffWqdSneH3S+qdJPklRs756KB2zsTDAaWeK7STZLznn53pTvlwDsr3SRZa3Rn/Gr63J178wuf63xHkuQDz15T6c71UGcewBofWqrSTZKLv9f5jRqXX1W6SfLygt+rdHd8+ruV7rHLvV7pJsn31umci746vtOd9PDvK90k+cSaW1e6Z93VG5deY77Os5DF/9q5lpu8Qm/e+gIrLVDpHvHIgZXuLRsdW+kmyV9Gdcbon7+18xwkSV558aFK971zX1XpXv7oEbRDkgABAABJREFUhyvdJHlup7Mr3a1Hdn6vt7h3fKWbJJfOuWKlO/cyf6p0k+T2jTprG+c7bbdK96nne2sml+yclvPSwmdUuhsMblnpJsn5a3bGMY56tHeNeNodnTG5JbbtjJ1d+/KXK90kWW6lWb+nTZL8z5R1K90fv9x79jblms7ckzlWXrbSTZI707kX3uWOzrPTm469rtJNkrlPHl/pPn3SPZXuFt/9ZKWbJJfc9fFKd6NlPlTpJsnvJn2s0t3+HT+pdO/c+sVKN0k+cPtele6yO2xb6d54ae/3+kOr/r3S/fziK1S6STJt5o8q3W890rmu/ckPe+u3379RZyLcsyMer3TveH/nniRJNlj35Up3ifsXrnST5K1VOtdcq7/RGW/4+Yc6584kOeCgt1W6p6+0fqX7xbn/p9JNkgeW/Gul+53fvlTpJslqj19a6S74+iuV7twP9p51XfX771S62z93TaX7zDy9a4w1HuyMb117w46VbpI8+dCyle760zrrlC7cet9KN0k2eP6KSvc907erdCf9vXPtkiQTF+ysU5r/iVcr3SQ5f7M3Z3lz/HPPZ9qU/3ze89hhSw+uOOyLs/x4PjWm96zpHZ84sdL95jfHV7oXbrFNpZskk8Z15rbee/KDlW6SfH7DLSrdg27p3BessFBn3DhJLtrk4Up3u6c7cwC22vzblW6STH/+85XufJN3qXST5IUZnflIb1zUeY518tIfqHST5LIrPlXpLn9c53rnz+M7z22S5J1f69wj3XPQ9ZVukry12p2V7ohrv1npPnVoZxwhSR5/W+d5xfu26jyrWH+13rqcr/+4szfCzyZ2viNJcu4Lm1e62+7TmQM34rhzK90kWf+oztj/y8t11gwvc2Vv/v6MH3TW2623Ye9+Z59TOnPLv/bKqZXuM4Nfr3ST5Fef/Eul+94TOn/jhzc9vNJNkp2u6swzXGHDxSrdJLl8j84cxm+/q7Mu7tj7zqp0k+Tjx3euBeZ+56wfX0qSz5+8SqWbJBtt09kz46Fzz690k2Rwk19WuhPWWqvSXXPfOyrdJDno7m9Uuqsc25k/fMaOi1S6SfKVY79W6S6/7aqVbpI8d3XnN3u3cZ2x2vumd+bJJMmU37+z0n3r/M48w+Uu+XWlmyS3/6wz3rDH0r3nmzcu0Xmmd+aJa1a6F2zeuaZNknd+cqNKd4OD/lnpLvGj0qbzSa74QudZ4Yn79J5vbvmR31S6H32yMya34A86c06SZMw+nX0IPnjBhpXuLQcX9w26o7MWZeYJx1W6SfLIXjdVurts35l/+sI+vee2L718VKW742ad/cBO+fZblW6STP3MkZXur37Ye2674Yqde/dv7t+Zd3LyV3v/fgvMM+vnjyTJB5a6rNIdeVVvD7q7z++cP3c98/2VbpKMur6z3+XCO3XuV+e9/tFKN0kO+0Rn75LP3P/ZSvf9e91Z6SbJj7bo7K/1tgU6ewUkyZRbO880ttjog5XuQzv0xidPHf3bSveMBzvvObj+1c5vapLM+/STle5Fl3W+10kyeqXO9fIj8/+s0v3ZrZ2xviT5ypXnVLqTFuzsG3TvI5tWukly+Ic769e2Xqv33Pbrm3Wej19y6h63DQ4O/scTuVZ4x/DBEy6e9fvirfh4b/+JYXPuXumuN2dnr8vvj+2tOf3JVp3n9cftcG2lmyQPXts57w788l+V7p0f6MyhSpLxi69U6U4d2Zmf/LF7es8Lbzmys+5t9ZufrHSTZKlLO7+b+3y2s4f7Hq/31nzvd/N8le6v1/pcpXvvLzrPN5PkSwd0/s4fvqDzuUiSI097stJd/anOM857x3e+e0my5dOdMe/HT+v8Xu++7CaVbpLsdGRn78hF7uitoXlxt9Mq3aWW2L/S/eDlT1S6SfL173Xmra93/66V7jrv6TzHSpL33dy5f87qnXegJcn5h3fmqy02Y4lK98Cv9vYUHTbxvEr38x/o7Mk8be1bKt0kGXFjZ93PRif3zss7/7XzOzV+tc463VNX7M1pWf+5j1S6tx7WmVv+nT16cw0ffmbtSvfwdXu/JfstfUCle9jHOs9u7lqht/53zFud9wasOv+nK92t3vhMpZsk00d21vN96YXeuej8ezprGnZZ/v5K9+hf9a63rn5jtUp39/d21jYO/Lo3j2P0K525Jz994L2VbpI8dVtnfvLfTurs/bnxtM5zhyT5XWkviadmdI55/X177y8/afHO2rgfrtfbO/If+59V6R6wdGc90WX7995FN//ZnecDO1zcuV/d7vz9Kt0kOWaJzruJ5liy9F70JMd+o3P9edi5nfevfWLZ3vf6kxd31hOtOtDZB/XWv32l0k2SX5zc2W9v5VH/qHST5BsvdvZYfemGGyrdd53d2e8hSU54qnON8dcvduZT7zBvZ81Wkmz08pOV7vS9O3u4J8kP9u3clzx7ZWct9CvndM73SXLLuM76+x1XOqnSffdmvefBL63VGdN59Pne9+/k186sdCcev32lu8JXO+NbSbLvk+Mq3U8e1tmrcY3xnXd2JMk3H+pcy31/Qmd8K0m2+Hnn2dGrB3b2tZl35d5nedTpnfmkj0zr7Bkw47LOutQkefKTnfGt+z7a2xdljRM71/inrPS2/2re8yIrLDf4keOOmuXH84+5e++6+v6fO/d22554dKX73Mud9eRJcu9mF1a6/3isN2az71Wd9xyfP3JCpfuny3rPFfae0Bnn/dYTnfe2/WafiyrdJHny/s5cw58f03lncJLsPabzfsrtnt6q0n18dO+37azpnWuTcdd15gTesdSzlW6SnHTSnyvdv53Vez/Q5Ld1rlu/fFTnGvDOsZ212Uny+hGdPRN/+WTnee+Bt2xa6SbJFxbrvOvqgLfdVekmyfDNOvvar7ZGZ+7JAwv05gE8+63OHtUXrtaZE3HW8r19Db+9+guV7uOHd9YGJMmWB11Q6a7wbOd8f8NZvb3LV7v3o5Xuxd97R6X72ct7n4slnuns5bdcOvvYJsmKCy5f6e554JKV7s6H31npJslNB15T6e75ZGeMaYNjL6l0k2TcCZ29Bvbf5neVbpIceHZnPftyK3Xmw5+/a+c5VpJ8fb7OGoyXP9953jvqxt4+/B/dtrM30OUDx1a6SbLcEZ1rjDH7HVbpjl++sxY6SZ7YubOv6N2f6nwuDligt9/zY2t3zhmTivvXvfKbznq+N0d0fqMOf7Vzf50k31z5D5Xub/f6UqX72LEXVbpJ8tlD9qh0v/Fab37kZYd29r9+7NzOO5+XfKC3r+h7Xuysx/zD2zvr+Xb4UOc5V5Lc+/o6le6xd/XWVp31nc4+/H984T9+zfH/ygtH9tZvf3alznO/a+frvHNzqa+8rdJNkm1P6YzV/s/03tyTNf/Rmbd+1yudeXtnf7AzVpQkN93cmd/w8zs7+4ou8/BRlW6SfKczBSEf/M2VnXCSd1/S2X934AOdsfbXd+o9z//GH/audD+2WWevxvfe39lrLEm+smJnTPW513rP/S7Zb8FK98btO5/lP93em+t7ytGd/Rp/u1lnH6WTi+8JveYnnWvxDVbuvR/l7Ks6z213/tbdle4zl3f2GkuSsbd19gs++6XOuPUtq3fe25Ek+4ztjJ3dkM6csyTZ5d2dMbk1Dv3g/3Hec29XDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4v8jAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAP5/7P1p2K5j4f9/f9a1BotlHpZ5JjPLmCkhIiQUQhqQBspYEUUlDYY0UuobKkMhJVNKppCZZJ7n2TIsljVd94P77tnv3v7f+q/Pdm3Xb3u9HvPeju1a53mcx7Ef+74fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcjBgcHPxf/8cLjRo3uMfcK8/0gxg1MHamN/9txpgple7g1BGV7sDUtyvdJBkxZnSlO2p052+RJK+9/r//fP4nRg10PhdvjX610k2SzBhTyY5KpztjWufzliRTB6Z1wtPe7HSTvDZ5UqU7dvS4Snf0qE43SWbMmFzpDo4dqHTHTBtV6SbJ1OnTK90ZA73fkskDUyvdEaWv37jM0gknmVy6xhg3crZKd1rp1Jkko0aVfktG9T7Lo6Z3zhmTS9+/sVMXqHSTZORA57w8YqBzHTfjP7h/+U+NHTGy0n1jRufcmSRTppfud0r/fuNGNK8RO7+rkyd3/hYjR/euMUaMeKvSHRw5a6WbJOn882Xym53v38ixpQNOMli6xR4c0fntmzS1cx5KkhGZvdIdHHi90k2SOQY63+2pg53v9eiB3nl59tJ43+Rpnc/c5Bm9z/LY6a0xuc51eJKMmt65Lpo+uvO7OmVy8d6hNPYypXT+nD6m97cYM7X0WzLLjEo3SWZM7XzmBkd2/hYjpvTG2ueapXMt99rU1yrdwdJvapJMmdr5zE0ujmPMMqIzxvXqjM41xhvTiuOTUzrjGK+N7HzmpozojWO8WvotmTqydy4aPapzjb/LJhtWutNm611vTRvoPFN898ZrV7oPPPZ4pZskrz3W+Z5cesPFlW6SzDrrfJXu6ssuXunO0bvcyoPPPF3pjspcle748b3fqEmvT6x035rW+VskydJLzFHprrdW55nG4y8vXekmyfX/uK8TLo0Dj0nnOjxJNtlglUp3tgXGV7pJcvft91e6t918d6W79lq9z/I6a21b6T7//HWV7sM3PVrpJskGm3Sui379+z9Xukmy+LJzV7rTn+9c174ysTM+kiR3P3dPpTtqcmdyyqRpvedGYztTSDJ+em8+zcgZM/++8l9vv5ZJM6b9V+Fllxk9+K1vzPxr+Ct/vvBMb/7bGyNWrHTfnOehSvc9N65e6SbJSwMXVrqn3Ne55kmSk57uPBe6cZu/VLr3vLBgpZskRzy1WKX70AbrVrqnr9y5rkySVS5fqNJddqnnK90k+cvVl1e6C0x5V6W7xueeqnSTZN4zNql0T5vvA5Xu22OPr3STZNln7uqEV+ldmzx+TecacJt55610x638RqWbJPO/sESl++fbS2PpS9zY6SZZasRyle5lc2xQ6SbJs0v8vdLd/fEXKt3T5++tzdnpqc0r3VVfWb/SvXnSCZVukjz2gWUq3WuvfK7STZIPzdqZu3fTOzrj3XM9u3ylmyT3LPXjSvdLfzyo0v3j3FdUukmy49zbVbqPr9l73vvkk535yZNWfqbSXeOO3hj98u/tjJEccfAfKt1Zi+sEN9y9s3Brxo2d58hJsvEcnXGBK0d0xngXWvflSjdJzh61U6X7ju/+qdKdZ1LvHLfscZ3P3OoLbl3pJskd53XGSKbNcm6lu8DrvevlaS92xl7GbPzLSnf8qL0r3SR5+oHOXMMHn/p+pZskf1/k5Ep3p9m/UenedG/nOjxJltn5gUp36wc71y5ff6H3rGSjzTrPIl8qzcdNkklTOvMj1/htZ67aYa+9o9JNks/uOfP3Z0qS+0d05sFdcuellW6SvGOVzhyDd/3xmko3Sf64y28q3c9t0nluNOn63l4E89x6fqW79c0fq3QvPuOlSjdJrpzz1kr3j1f09iI4+sU5K90Fb1+k0t1ty/+pdJPkE+M7f4uFZ3Tuo86/5clKN0nmGNP5jXru8dMq3SQ5da4jK931P99Zd/DslM5zhyT53cWPVro3vP1EpbvyNmtWukky9y2duaKjN35fpZsk54w9ttLd9nedf7/JG3+60k2SfVbatdKd/bud8YbzFru50k2S9ZfozIc6985/VrpJss/cnblW55y+ZaW71H2deZlJ8ssN/1bpLr1IZ27Rny46q9JNkm/s2Vnn+cyinedGSXL7czN/f9AnH9o4k9+69T+e9zzPQnMMbv6RdWb68Vz4+h9nevPfPnxtZz7ZHAt1xj7+vvYelW6SfP2znTXfN82+ZKWbJAftMLHSHXVO57n3O6f15n9PWOXgSneuOTvfvxcu6cyfSpLf7tp5JrT7fb1n9XdutV+lu89pnf2G7runMyaWJIe/2blGG7H/xpXu3p/pzc3abr5XKt2vzt9b27vxeZ3PxsfHvVjpnnr1qpVukrzvtc583FMf7qwlf2bv+SvdJPnUnPtXupM+07tfvPXDnXVVH/9k53Mx78hzKt0keWCgs+ZggYcPqHSvzZWVbpIcf8h6le5Dix1X6SbJZ69fo9J9+uOfqnQ/Nu/OlW6STPpBZ5+BRT7yiUp33p921s4kyTKrdebg/PyZ3jG/cu9Rle7yh3fmWnzwkd9Vukly6is/q3RH/PLMSneLy35U6SbJ9yZ2xh4XvqqzJ1eSLPr2DZXukbv+qtL93lydvfaSZLV3vr/SPe64znXRRQ+eXukmyYGzde4rv33XJZVuklxaWovy3H2duXXzXN97H8Ec53ee1b+ybGft2g1HPlzpJsnnvtO5R1tm09Mq3SS58M3Ouv7BozaqdB9bt3MdniTrj+t8r99T2kfs6Zd641s/vGybSvfMq79Q6SbJ9ht+rtL9n1Vm/jO/JFnzA71xjCVO2q3S3fCYzt4JH7it97fYbKUJle5lq/XWCL7vhN9Xut+8v/O+zXO+cFmlmySLXNZZuz1w+QqV7pHn9D4X5554WqV7+fmPVLpJcvOeX690P/3ezvjWm6/sWOkmyX5X31LpvrFV555yr73urXSTZPHzO2u2dry28ww0ST70kc5680lf6OyB9c3jOnMmkuQ3X+uMtS/zeue535Yb9fYwO/HBzrqqPW/r3EclyUsbd8YbVlmsM8/+jOu/Vekmyd0zOmNc+2/SGcc4defOflJJ8sl1PlPprrtSZ6w9SRa4qvM7tcYdnX0a193m45Vukhy13aGV7qkXfLfSHXNY53likuz/Que50QZf63wukmTF5X9a6Y4f+9wtg4OD//FgxviFxg5+8CMzf7/Zr0z58Exv/ttDX+h8pr40R2dfkv3u7KzfTJJb3+qsGV71Z53zQZKcunbn2vJD3+k8U39mxd519grf6sxPfm7/zr3oPNN712mbLHJ7pTt9tgmVbpLstkhnL44v/fyDle4XLui98/lDx3f26Fz+7c6zt690tidLktw8rbM27Yl3dcb+k2SXcZ1xwhO/3plvccBjvWuM1a7/YaX7m8+eXeluf2JvPcpGu3WecS42+c5KN0nmu7ozlnfAWp1xzcWu6u1fcOyP3lvpfuqwzj3/hc/09mG861ed5woX7L19pZskK/6us9f6t87urJm847ne/hO7rtXZB/VDEzprO1a+v/N8LElyXuc36u65O3slJsk/Fu9cIx5zX2cN1FdP7X2vHzr/2Ur3B7cdXukusX7nXVhJMvGBOyrdpe7p7FeTJK8/1Nk78qu3dcYft5+3MyaQJHs99oNK9/3Xda5rlx/RGYNKkh+u09nf/6hlLqh0k2TNOzrXnz+Zs/O52HRk59yZJLffuWel+9kVO/slnrPY7pVukhx43mGV7o+v771nfNtJnb2MDn6ms5b2/kO+V+kmyV7zdubXHXnweyrddz750Uo3ST71TGed7sVjO8/0kmSbN66vdD/zamcvnotm/LrSTZLllr260j1vs845brsXOvsDJsmPf/bZSveEd3+p0k2Sj87eWYM4z4UXVbpb7dHb9/q3V3cePhx7S+dc9MDtnb9xkhw82Pn+3fnB0svAkzzx09sr3Q9v03ln44qP9OZHHn1v5308D1w7o9J9ecGvVLpJ8u2Tf1vpnvfgtZVukjzwfGetxElPd475/tUuqHSTZMYJnX1R9ti0s5b9C3tuVekmyRt3dta6/P77vT2aVvxqZw7X6St09u66e7XOWEOSzH9NZ8+O7S/aotK9863Os50kOeX1zjy5pd51TKWbJL+b3tkTfdct3lnpvveY3l4Ei83oPB+499DO+1wWnOXCSjdJnrm9M46/5HK9+9Xpf+rs2XHml6/+r+Y9L7fo0oMnfuZrM/145ru+d/+8UDrPQq5ZvjMW+7vd/1XpJskqP+rszXXdY0tVukkyYcnOu792e3bfSvfW1TpzW5Pkw1t3xhOu2KKz3+wrGy5a6SbJY18+r9L9y4Wd9w4lyXWnd95vOO6JzjFPe6qzN0KS3PxiZx3n0Xd1rv8uWbw3p+XWRz5S6X75GydVukmy4jzHV7prjtir0j1j8lWVbpIc+pvOPdhR155a6b7y295ecLcs1LnO3vjo3j78T1zaGU94x+adz9zW7+jtP7j5Q51n38ds3Vmz9fBBvTlJm2zy7Ur398X9I7f+9EmV7pHf68wVHfVab37dX+7rvOvn74d3nguttXVnjDBJtv1+Z07EEcd3xv6T5Nc3d+bBzfGOzvPCw7fvPVc4ZrsJle7Bd3fGNSfd3tsn6YIpnfPnLZd0PhdJ8sLNf650f7BHZ5315nv31lZtusOXK91bV3qs0l1uk977/N5Y5pOV7vl/vqDSTZI5l+68r2KzWTvjW3PN3VlXnCRvntV5H/gFP96l0r1u796a1zG7dPY5+MldnfWjSXLS0TtUuvee33kf8RK79d4nONd5C1W62/64Myfi4YeWrnST5MWlN610z5irs0dFkmz/yWUq3Yu/1dlX+/J7Zql0k+RT/+qsu1vojB0q3Yv3vb3STZKnZv9rpfv5K3rXy7uf3nlX2qY3nlbp7nNKb4+R3Vb5UKW79cmdtdBnfrQ3vrzu4p19+Fc789ZKN0m+9vg+le7LS3XGl382eYdKN0ku/XFnXGChTTtrq8bNt2mlmyRLbbhDpbv+vltXukmyx186+whu8/fOc4e/faz3fpsJC3bm143/9thK9z0n3V3pJsmyy3TuV8d+4vlKN0nm+W5nbdUzd3S+IwOHdcbwk+RnD3feRb7fZbdVujsed0ilmySvz79kpXvqI705CJdv1FmPMnrKzN/nNkkG1+ztl3PwMfNUuqsd29mj6fZFO+tSk2TzTTrPx3/05969+1Gbd86faz75pf/jvOfOmwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P8yA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB6P+k//4jemT8/dX75/5BzFm9Exv/tvcb4ytdEeNGlHpjs30SjdJZpk2vtKdbZa3Kt0keWvGYKU7fcbUSnfk253PW5IMjHm70p00rdOdPGKg0k2SqaV/v4GpvX+/tzOt0p0xvfO3mD7ylUo3SWZM65w/p7w9stKdbcZrlW6SDAx0fv9G/2c/7/9Z+61Oe2ImVbpvpXcummVG52/x0rRXK90xo2epdJPkzTdfrHQHOpcBSZKxozr/fgNjZq10p+bJSjdJpkztfE+mz+ic718d7F0vz1P60E0anFHpJslsIzuf5Rff6lwjjh09W6WbJG/PmFLpTu18lDNyWuf6MEkGS9cYb03p3fuNmdH5noweWfr9m9H79xs1o/PvN31E5xw3ZXTnu5ckk15/vdIdWfq8Jcl8YzvXAiNGdO793ip+luccMbnSHZvOb8mIGb3r5YmlMZ1pU3vfvxHTO9dcI0v3USPH9O79Zkx9udIdHN05F735Zm9MYMpg5zM369Tezd/IkZ3f1dZfecSo3t/iqcmla7nRne/f61MnVrpJkumdf8FJg53zfZK8MbUzdjZtoHMuent67xpj+pgxle7EKZ1rlxGDxWclg53P8rgxnbH2JFln7aUr3ddLf+ZVxneu75NkyXUmVLpP3Ph0pfu3y2+vdJPkmdeeq3RnG1ka1EmyyqLzV7pP3vdIpTvr3HNXukky1/wLVrrTBju/JYvPt0SlmyRjF+7cR/3jgQcr3SR55YmXKt03F5270l1u6fkq3SSZnHdUutvvskul+9uzfl3pJsmklzrjUA/cc2mlmySjZ1+50l3nnZ1z3HzjOvO3kmSRReasdCdN6nSXWbXzb5ckb02dp9JdfpXVK90keevV5yvd7bZ9V6V72/U3VrpJssNHDqx0T//RiZXufAv2rjFuv+++SvfFkb3x5cEpM/+6aOr/i2fur886LVev9sJMPJr/r3cv0zuf33borZXulY/P/PnfSXLDT6+odJNkj+0vq3QHsmqlmyRPrtS5VhuxY2csb8F/zVXpJsmi/+ica/a+4KBKd+fVV6l0k2T00p35yfM9O2+lmyQvXdt5fnr3vtdWuvcf2LtOm3W/2yrdXZc7rdL9/dwfqXSTZMyCH610X1ntt5VukryyXuff73dbHFXpznrZ3yvdJJmy88WV7ojV16p0593wfZVukixwzx8q3TVHd+aAJ8nf//RmpfvQAV+vdA+99NhKN0keWXqNSndw93GV7gXnbFvpJsm8b3buc6dceHClmyQPfOwXle6cF+5a6X5g9s6z+iSZ8EbneuvU2Tqf5XHjOs8UkuSmm+6sdGdbsTdXdIV3d+4r7/7bhEr3D+M71y5JMmq+jSvdTY5YvtL927QfVrpJMsu4ztyh27f4eaWbJE+c3Bl/nPH+9Srdiyb9ptJNklmndY55sbU7z94uH//+SjdJHn3hvEr3hdX/WekmyVOvPFTpzrV051rgga/cUukmycdufKbSPffBT1a65y/8RqWbJB9fs/OMer4nO3OdkmT5bR+tdB+4onOOO2CHzrriJLlpnr0q3SeuOabSHf3u1SrdJHl8oc517QqHPlbpJsmfV+nMdxq1+OyV7hvnPV7pJsl5f3xPpbvhVgtVuku/sEilmySf+Ftn7tdlM3pjch9+prMG46/Pd8Yx1lv2rko3Sd447ppKd64vLl7pXvtCZy1Ykhz/17Ur3V8csXmlmyR3l8aun3rntyvdJ0eeW+kmydvf7Yy1/3jrzvy6j93Zmw9/0HGdv8VGP9q60k2SFT60c6U7+1/nqHTXXLZzjkuSawY6n42B879f6S76pZsq3SRZdlRnndmzf+6NQ02Y3jlnTHj+c5Xur9a9udJNktnH/azSfX3PzvXW4j/vnDuT5JTtdqp0F3ytt0fM20t2nvt9+Tc7VLr3/6H3DHvf/X5U6U5coNP90CefqnST5Kk/bVfpLrPgHpVukty7xsy/xn/njEf/q/9v3MAyeeesZ8/cg0kyz/6/nOnNf5t7i79UujM+2pmn/ZOvbFPpJsnuv+/MR3rX1M6YWJJ8+dbOOoj3HdRZJ/udEZ1r9yRZ4sLfV7rz7nhApbvA5jtUuknykVs6z1dGndZ7Vv/gvZ3nm1P36swB2O/B3nl5s806698f2qbzuVj6ZxMr3SR5ZKMtK90Lf3ldpZskNy93WKW7++Bile4vr7+90k2SQ0/o3CPNM6Oz5vTQvb9c6SbJYrN1rrFvO/V/Kt0k2fqgMyrdZw7uXGNst15nrCZJTtmrcy96yJGd8Zpfb/OrSjdJXr6uMzd517G9NYLXrvnBSneVQzrzTi67v7d33dwf7vyurn5B5/n0Utv19vv6wZjO+ovj9u7M+UqS/XbpXH9+eNKVle4Xv96ZD5EkD37g+kp3/ZNn/hr2JLnshMMr3SRZ5uLOWszjPt97vrLBUZ1n6vsd0uk+/ad/VbpJsvvLH6h0b3+oc+0yYo/9K90kufPPnXHE5T7U20di9Ko/qHQ/8O7OmoNnz/1YpZsk+214fqW72vKdvXBu/0FnD80kuX6tzr37cfe9t9JNkr3efW+le8fcnTXhD73dmf+WJDc/3pm3MOnazv4UO7+9QqWbJM8t2JlP9olnOvckSXLZc511jQtv+edK9+Y1evvOf+TyDSrdz3+/M9din1t741vj/qfzfHrv0zvniyTZ+I3jK93lF+ms67hs3969+/eP6ewddO8n16x0x3/ynZVukiyxXue+cmCw917TJb//2Up3xTs6z4MHFu7NQVjtCxMr3V985ouV7lVLb1XpJsnUX3bmpsy/e29PjRNGdq6Xt998s0r3vctOqHSTZNZLt6h0V53SmQO3+Pm9fZOv2r8zJrDkXF+odJPk2pcOrHRP+kdnHGqRlVesdJNkzIlHV7o//fpple721/TGt154X+f371trdtaLJMnKZ3be//udX3Seja+zam/9xckHLFDpHv+NzlqUK350aKWbJL/drPO3WHRs795v/5U7+/sk/938u1ffmiOX3LPpzD2UJIuf2ttHc/y9f6t0tx3VmUM85ozec+S3fte5/zpg729Wukmy5AadPZJ2+saBle7Wm3Q+F0nyw4mddVPLL9wZYzpj584cuCT5wFqdv/Pme/fuGX/+kc5v0Krnda6z5yjta5Ekx25+QqV7+kud/XF3+EnnXahJsuQBH69071+59z7N+Y7r7CvztXlPqnQvXaq3l8rjZ8/8tWBJ8uj/dJ6x/GT/qyvdJFlyl2Ur3QMv6+wvlyQnrNm577hkYucct+Mcnc9bkpxyZOe50GYrdt6N8qWlL6h0k+SlH3bm4fzpk733O631p844/RLPdT5zJy7TeZ9fkhyy04WV7ns26lwvT1ypN7/ufZ/9SaW7+U96+6A+k86csiV26rwP9aatNq10k2TuIzrPWHb97B8r3fHX995ZdcY8nXPR3Ru1xtuSa1f+TqW73xWdMZ2/H3x3pZskn9/24Up36Wc6e0fOs/gdlW6SLL7IPpXuQt9Zp9JNko8t07kuOnLxTSvdk/75vUo3SW4+YmKlO/lTnWuMz07vvP8iSa65tDMmt+kjvX01Rs/euRaY/wNPV7q7bNCbU7bNYZ3xvm0/1JlD/PiV36h0k+QTb3TmGCxxzpcq3SQ5fpXO/c5PPth5h8mmh+5b6SbJ0+ufXOl+9a7LK93jl+3tW/7GPp3v9Zee7+xnnySfPqQzdj332K9WuuOW7b0Xc9dvdp6B/s8inXdMrnZzb07Spu9YrtKdVNqTMklOWryz9/VTu59U6U74Vu939fa7OvMbRqWz7+46f5i70k2SFzddtNI9asfOu5uTZPv3dMaXj/1RZ1+Gf/6x926UJU7p7D+z8wc7cw0P+nXv3dv37rRjpbvXGr330r70187fedEHOs9AX7ls1ko3ST513K2V7r03dN6X+pcRvd+ow/51SaW7+2W9MfELPnpcpXvNpzpj7T84aP1KN0mO/HDnb/HM1Z0xnRN36L2veI0/fKbSPWSP3l4SJ+xR2jPnv9zub/KYUblnyXln7rEkue7mzn1dkiw+z9GV7pVXXVvpLv2J3h6d37uk8+z73ks7Y0FJsuSWnf2MFvpm59rklwc/X+kmyfEvdvZz+MBdnXGxc17oHG+S/PZ7nWvAo37SW4Oxze//VOl+6OzXKt33b9+bt37chp3xxwPOXrDSPeUzX6l0k+TcvTrryFZ6b+c3Kklu+2LnvuPXa3TGYufd8YhKN0kW/3tnLPakezrPsd7c8tlKN0kOe/ieSne3g3rzI3//mc693Y/OOavS/dRDs1W6SbLw4p3fkgPn7sz1PfArnT3Rk2SO/+m8T/OCo8+sdJNkwuGda/EPfqVz/3zAbr33ae57cWfPr1t2vKzSzVudOYxJcviznTG3Je6e+eMB//bFr3TOn7c+2Nmba9uVTq90k+S6rTv7Obxzhc4z2RXe3dvPYeMFzql0V+wNP+aJ7Tp7lm77kT0r3blfnFrpJsmIIzrXtfv8+neV7nc26v0tDt+gs8/V7vv1nvdeNr4zd2/LlTr/fr/eqXfvPv5rkyrdn72zs55o+8mfqnST5MxRnffGjb299+6A387ynkr3kEc791HPXNVbG3f4fZ33E22wXmeP6pUu6awFS5LjPtXZi/iFV39c6SbJy3/u3O+8eWdnDcbK79+k0k2Sb1zb2Xv+sSs6z+e+sVtnjWeSTPvm9Er33mm935IRN3fG8Q/b8oZKd/C9nfuoJNn5js45f51Dd690D/hk77N87ZTO/MijftjZkyhJVlh5QqX73HtL91HPlca3kqz03s41xnVnda4xLl2/8zwqSZZZpHPvt8hSnefMSXLwjZ05JN++7bRK9+ivfr7STZInD+uMvZx9/WOV7pJL977XeyzSuY968PHeXNFrtn13pfv4L1audL93Xm/N5Ea7XFDpTtiks+/ob2/tvG86SeZY5chK98UVlq90k2TFUzrv5Lnkts7v6rZTent3vfJo5x77zc063T8+1XuGvebXO+/EOnZ8bw3GxheP7IT//yxN7b2pBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+LzIw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwYjBwcH/9X8838ixg9uOW2ymH8SUqf/7Y/iP26NGVroj83alO23GqEo3SSbPmFzpThs5ttJNkjemvFLpThsYUelOnzqt0k2St8Z0Phujpk6vdDNQ6iaZMThQ6U4d2fv3GzGy8+83/e0Zle7gQO9cNGJE5/w5btroSnfsQOfzliQzxnTaY6Z1PhdJMteIWSvdSVM7v1EzOh+LJMmcg53fv9GzdD4XA9M7v31JMm1Upz12RO9c9PLbb1a60zOl0p06rffvN3nk1E541CyV7KzTe/cOr73d+VuMHt37LA+mc801vXQf9caMtyrdJGmd8mfM6Pz2ZaD3ez176d5h9IjZK90kmTTl1Up3ztlm/hhGkkx886VKN0mmjO58mn/559sr3XHzde7bk2RwUudcNM8Cc1S6SfL6q51ruU+s2fkszzq1d78ztfT7N3pq57po5NjeNcbUaaXxhuK9++Bg5xpjsPSnGFG6JkqS1rdk2kDnHJcRvXuHlMbOZgyW/hZJZszoXHONLX3/Bqb3rhHfbn02Sv98r03v3F8nyZuDnb/zlOm9c9HkkZ1jnlZ6Pjctxed+IzrtkSM6H+YRpW6STB3sjGOsvuY7Kt0kWesdq1e6c87e+cVeY+3e3+L1Vzu/JW+8+Uyle9c/H6x0k+SGG/9Z6Y5s/Ugl2WrjZSvdu++eWOkuvuiilW6SPDPYGRdYsDQmN9ucC1e6SfLsi09UumutPL7STZJpL71W6T750qRKd6eP71zpJsnTk8ZVuovNs1SlO88ii1e6SXLHrRdVum+99mylmyRvv9X597vn4Wsr3a3W2K3STZJrH7600l1hrnkq3TnnfnelmyTPv9y5xph93gUq3SQ5+5yTK909t9y40p1z3s53L0kmvtl51nzvnY9Wuksu0XvucM5Vd1S6s8zZ+b1OklfeHDPTmw/d90jeevOt/2qAa+RaowZnu2rm/xsdtUzvnvEvJzxe6d71vfUr3cHHd6x0k2TWEUdWuhsc2huLveaYFyrdzV85sNJ9+OobKt0kmW+LiyvdD9w0X6X7nU/vUOkmyRULd+5H933yc5Vuklxxz3qV7jqvdMYpFtx8oUo3SU4e7MwR2fpHt1W6U/b+QKWbJKO/eVml+88L/1XpJskHT+h0H51j30p3pSXur3ST5Lbpnee924/ozAl8+dLeGO+kTa+vdO9ed9VKN0mWeWbmX2cnyeJXdJ5xXjV+7Uo3SS55onNeXmbB71e6E5ft3T+/+7XPV7oPLH5spZskS6/wg0r3orturHTXWXTOSjdJnpmjc557/bnOMe/2u955+dzlXq50F1+5c02bJCtu0Hnee8dPO93V3nFTpZsky5zV+Wxs+r7OGP3A5Z+odJNkwbeuqHTHv9bpJskSA2tUuu84aYNKd57d7qp0k+SEw+6tdL8w+M5Kd/Jcb1S6STLrs53rl/kHV6h0k+TiaatVulu9dnelu+ijf6l0k2TMcntWunMv+tNKd4Urnq50k+SK1ZevdO+7fIlKN0lGrXBepbvVdp01W5c+sUilmyTT7ug8Sx6/dGfcepetPlPpJsmuP7y80p24ysRKN0luWvi6SvfYIzrPpO6cZblKN0ne2LUzj2PerbasdOc55bFKN0leWmWjSveqRzrPVpPk2/d8tNK97MzOmPhpS3X2cUmSw0Z0vn/r3/PnSve1N3pj7Y/97bRK96UFO88dkuSva3aerx52emfe7N0T1qp0k2T/XTpz4h/qTLvMs++aqxNO8viozpzAOZ5eutJNkm+++stK99wVt6p059mkN299qR/PXem++L3O8/yVLnq+0k2SZ7fesNJd7rhbKt0kGXX/PZXuxXe+XumO3uVdlW6SvLV4Z37keyd3noE+PW7XSjdJbr6vc1270UBv7GWf+zvridaY7/xK94hRP6t0k+TO1WardC/+148r3VXf2ds7aO4vnF3pnvyzzlhfkiw8deY/q7zrG09m0qNv/8fznkcusNLguJ3OmOnH87kpv5npzX/74QXnVLrXjdu70j3xp71r7MseOqDS/fIxnefpSbL/sl+pdH88dbtK94+r965Lbnh1nUr3Jzv9qNK967zvVrpJ8vOjf1vpTvnA3JVukrxrhc56rCte+0Wlu/KECZVukix9buc55KM3d+Yvznio8zw9SeZf8SeV7g6PrljpJsmvf39hpTtmameuzDwP9tYMr/xQZ83Pw7/qrAE8drnShPUkW/zs65XuM9/sff9OO6szRv+lbx9U6X74ozP/GvzfrprUOX8++LFHKt3ltj+00k2Std7szG1ddf6DK90kuWWfzp6wK3/h75XualfuVOkmyW7f7ox9zL1CZ2/4T/ywc02bJAfu01mLucJJd1a6SfL2/Z+tdL99+aaV7tSPde7PkmSDzTvXcrMf0jl/zrnzVyvdJDl3y4mV7npf+kalmyQ3Hnh8pXv99p1z0dWndbpJcvoOt1e637pl5Up3o+V6z5An3vS3SveGRXt7iu78Umeu2lU/7qxFeX7R31e6SbLh5jdXupPHHlbpnrZh55ooSUYc2dnLaPY7rql0k+RvJ+5X6X5rwc796lnf79xTJskv9/tTpTt6u878/RNP6I1jHLxnZ7/Ez35380o3ST7z8c55bvsrv1jpvmuJzp5qSbLJ9Z39fS5+ofPce6Pre/te3/Dwlyrdsx/q7BWcJF/5fWcOzqGnfLzSfeTc3lqUMSd0nhv99dTO3pE7XdqZ85Uklx15ZqV79VadNalJ8pN5O2t+Ru3cmWf/1vHfqXST5NX1OvMu55993kp36oRNK90kuf+kzjtCV75yr0o3SebccWKl++E5Dql0b3u6986qDd/u3Ls/9q7O/gZ7v7u0MCDJRSPmr3TPuK7z3CFJpkzszDX8yUad/cWvnNb797v8uX0q3WueXKbSvWS93jjGUYt21vxscHRnr4ckefC1zj7u92zReT532FM/rHST5DtrdN6t8cc9OuPAf9/vH5Vukhw58teV7lXv7tyTJMnYQzt7avx2vt1vGRwc/I8f0i2+2qyDB50/8//td9279+6Fl5a4vdJdbFznvVFvjluw0k2Sz3ymc5+020f/p9JNkgW/3JmTe+Y+nb04dlrxg5Vuktx5w6cq3eWu373S3WbnzhyqJLlguc6YzeClvef1Hzyuc5392PjOHmXHnj2h0k2So27sfOb+/v3OOzk+sEDvfZqnXtTZn3O9n/TuGU/5/ORK91c/7+zrdMbIoyvdJFnpqc4zsu0P7exvvO7821a6SXLK1p01UJd9+phKN0nu/EXnnLHcSl+odJ8a/eFKN0n2uqrzt1jgL53x7p0X6u1L8sLenfnJ751360o3SZ6f0Hk37Bb3v6fS3f7Qzt7wSbLPZz5Z6U7e9WuV7glr9MaCnv/impXuOw7vvadpi+931hZ/64DO3/mFpTv7IiTJdzbv7Du/0zqdvbqPPeLRSjdJ3vhBZx7Vl87orTk/+4hzK90v/Kyztvib83fOF0ky7i+dPXb+eWxn77o9p/+10k2SRZ/7SKX7zF29ccQflqYbfmuZzvuTD598daWbJFtttGmle8GIzr4M7/nGFpVukmx1cOe6duCgzpyIJPnrZp252otd9u1Kd8LYztzkJNnsjN9Vur9evjPecOEDnXvVJLnoss67PK/YqrcG4/0jdqh0F/j5f/Vq2P9HK9zZGR9Jknl3v6TSvfbkzvPe9eborf9d/Ied53ODs3T2UUqSv+/9vUr3gyt0rhE3/mhn3mWSfPu2ztyFax5dqdL9zdje++fv37AzP/lrS3bmJifJDy/dvtK9b4nO84FL13xvpZsk1wyeVOn+6qjO+X78vBMr3SS55KXO33mHhZ+sdJNkxSc6+yf85etPVboHnNh7n8R2r3au8f840Bn33H3B3tqOJY/ovBvln4d+s9JNkhdO+1ClO9vYzv6qC7+jt87s1NM795WPLLFupbv453tjAs+d2dnreb8XPl3pJsnEgzrzoeac0Zl/99UFOvN/kuSqy0+rdEf8oDPwucsxnffaJMlZd3bedbDrS53f6yRZZnRnXGC7JS79r+Y9r736yMF//Gnmv5Pxwu/19sg9ZoPOPNQL/9K5F13lyN4+LUdt01mH9Pc5e3u0z7ln5x0XH/hVZ4/HH9/cuzbJOZ33aZ5yfefdC0td0ttj9Y7Xl6x0t9yuMxaUJHPd05mTNOq3Z1W6037be4fkj3btnJc3m9bZf2nKxFMq3SR59OudeQBTPte7tpz1u532sbfsUunu/vZJlW6SzDqh8yz5gVs6c5Ie2qz3Ps3F1zui0v3Vgr33VM/6YOecv89gZ7/utSf19gue8+nOs+/vHNNZ23jeJb13oO20amdf7Yue/HilmyR7z3pVpfvAFzt7k7x+UWdfriQ5b4nO+8v3uaTzjOzbmx9d6SbJ2Z/vzN372ey9uSe3ntNZW7XFdp01bKss0tvz6/33dd4JcuUnOnv5vW+J3t7XV7zUea5w+m8WqnST5LWJnWdkqy/V2X9w/z/0npGdsFNn7sk/vtaZn/XSTzv37Uly1K2PVrqHXNL57UuSaUt29gZ6x52dOfyffF9vruijK3X2b/3TBztzZf78TGdueZJ88I6PV7qPTuzsfZ0kJ/+g857xWVbpvKvigLd6935nb9F5b+mGX5xQ6a73md55+eG5Xqp0v/xMb37k1W919qP6yB2deYyvj++NTz4yaZNK9+0v3VTpvnB1710/p/ytMw/u2qs7+z0kyQl7frnSvfDAzrsD7vpVZ95Xkqy6R2cN28QpnfVg57ze2Qc1ST6/duf9Uhvv0VlnliTjH+usB7vrV535WQve39lHKUn2W7fzPfnLXzvjy+vNWKXSTZLRG3TmDm12V2/99iwTOvvwP7n62pXuRtt05kwkycpTO78ln7q486xri50mVrpJ8p4JnfeDzXdA7/02N616YKX7h+0610UPbLNDpZskmy3dGUe8/czO8+Dnb+6tU9pyrc59yVc36+zjniTj7vpVpXvQBp3xhgnrdj5vSbLGgTN/jmqSjLigs9/YmWtOrHST5D2/6KzffvL03jvY9ni9c117/1/v+D/Oe+69EQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/i8yMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMGJwcPB//R8vPGq2wb1mX2HmH8SYGTO9+W+Tpk6tdMdMH1HpTp7e+1tMGzum0h2VNyrdJJk0bWSlO3n6tEp3zMAslW6SvDWj81meMdDpTpvR+bf7/9Ur1VlGjqp0k2R6Ot+/6SPe7nQn/+9/G/7j9sjJle7A1M5nbmD0QKWbJFPSOedPK3WTZOL0KZXurKXz5/Rpne9IkkxP55wxufS9fnWwc+5MkpROGW9meiecZEQ63+3R/8G19X9iRvF7/fZgpz299Hs9etTYSjdJXi/dO4wd1fv3G5d5K91Rpe/fhutuXekmybjxC1a6Lz77UKU7/xIrVbpJcuNNV1e6a626XKWbJLMuOH+l+/IrL1S64xfZoNJNkg/ssFal+8wznevlOVZdqtJNkhXmWaDSXWR877ropcefqHRXX+Udle6okb17vzmmde6DZxnRGZObUromSpIRozvHPGqwN/YyWLoUHzm1dL08pvdZnjyjc86YNrLzuci03t9iZOkjN31675hHD46udKcOdL4kM1o32EneaI0vt05FM0rfkSST0zovV7JJkqm136lOd0Zp3CVJBkp/5xEDnbG+cWN7v9d7fmLvSnf8fJ37syRZa9UlKt077nqy0p084tVKN0kmrDHzn7knyT9v6oxjvD5t1ko3SeYdcWul+8jjvd+SO+99sNJdYdHlK903B16rdJPk6Wc735MXX36l0l155cUq3SR55oWXK90JCyxT6SbJlHSO+aa7n650P7lzb0xu+XV2rHSff7EzPvniGy9Wukmy2MLrVbovPfH7SjdJ5pt/40r3wYfurXRnvN6bZ/XkY7dUuosuNmelO+s8ved+C829SaV734M3VLpJctbFf650t1hj6Up35GxzV7pJMmVG5x5tlsmd8ZGFllio0k2Sa265qdJdbbEVK90kefW1mf87deGN/8yLr73xX13kLzLvXIN7bzHzryOevni2md78tzXf9Wwn/OrjlexDU3v3jFeN2rTS3eOqhyvdJLl2lvMr3ZXmXqPSvf3tuyvdJHn6vQdUuqNO/mile8cOn610k2Tna26udB9barNKN0nWnbUzd+G1xc6qdJc8YotKN0leP6Iz7/mVZ0+udJ+7572VbpKs8enHKt3rj+udi9aa2pmvduKUeyrdndbs3Sf9abFHKt311u/8rk74V+c8lCQXzV6a3/rD+SrdJHlug86cpDF3dz5zC+z0UqWbJIvPv2ilO8tNf6h0rz1v50o3Se49v/O32Pjc2yrdJNnz8vGV7onzde7R3nndIpVukhxy0sqV7u9Wv7/SvXTt4yrdJHn5muMr3bGLzVPpJsn+f+x85l5e52+V7i9f2rLSTZIZq51Y6Z41vrN+bdKOl1S6SbLgvV+rdA/YqfO5SJI/XPXPSnfP/TvPZee981uVbpLcP8c5le4/rjq00p28zDaVbpL8a5b3V7rvfqo3jjHy9X9Vuot98O+V7htPXF/pJsn2s61b6e4/o3Pt8tWte9dbJ57Zeca52WXvqnST5I0vfb3SXfuCznjRDTM6370kmTedZxoLrd6Zn/XUzZ379iT5w4jVKt2vztV57pAkx3/6O5Xuqk907oNHXt37jZp0/+mV7uwbHF7p3vhKb6z24I2OqnTPHujN9f3UBZ3nO2v/YVylO+aiRyvdJJlztbkq3bnnvK/S/fVtP6l0k2TWXc6odF8763eVbpKsendn/f0C876z0p191c7vdZLc8KfO/NZXpnaeoe24UWedRJJ8d4HOHhXr/qr3uzpquR9Uuqf/8y+V7k17f6jSTZKn5v5xpfvk/qX5yfue1ukm2XueL1a6/1jhm5Vukpy91U6V7ip7X1zpPrNkbz3Kinc9Wuleu84qle694zrdJDlwlc55+VsX/LbSTZI73uysYfvYY51n2K+u2TlfJMkLk6+tdE8a15lbfvXGB1a6SXLdPX+sdOcdM3elmyRnPT7zr7nevOmpTH/t7f943vOICSsOjvjLz2b68Rz71WNmevPfpt7UmTf0p1mfqnQ/N64zfypJzvpMZ63QQY/sUekmySkPduY6LbrzmpXuhXvsV+kmyXYLdn4nZtzfGdMc99RWlW6SXPh255n645svVekmyeWrd9adLvatPSvdC086pdJNkt9d0JlnP8cKz1S6f9q5sydQknzr4KMr3XP27j0fe/jY71a6D+7T2eNj48c666eTZN9bF690l9/qpEr308909n5Jko/d1zkvXzF/77P8+ITOc5AX5+nskfTeJ3tzZt9zXmc+5+Xrdp6PvT61c3+bJPc+ekSlO/Gvh1W6SXLFB9+sdNe/sPOsYoOLemuG136y86xp5bWPrHS/8M3efkNb3No5x618R+9c9OFpS1W6n75m/0r3hJcvqnST5I9vdObjLnp8Z572LL/trTG772+d8aKvH39NpZsk0+f8SqU7+2N3Vbqf+E7vez3r4qdVup84pvMMa7mVeu+J+es6nTGB3W+7o9JNkgkndv4eDx93SKW7/r69PUUf/Oiule6uy6xa6b66Tue3L0kuuKpz7/fGfb+odJPkzJc676q44ebO3oO3/+rYSjdJNlhr5j/bSZLrb+nsQ3D2bJ299pJk6/O2rXRneXH2SjdJrrmu8xxm21+dV+l+9LO9597bHNK5ljv35isr3TPuP7DSTZJ9Huns+/TY4b1rjKsv6qw5+N1infHl95y6b6WbJJ9a8OOV7k3Hd9Yrv/+szrOdJFnmoc5z29/8+VOVbpJcM29nH80TL1270l1m/t7+Pp8Z0RnH+Ptz21W6F07p7RV8yvqd/f03/823K90kmXdUZxz4/OU7aw4eWaIzfzFJnrmyc42Y4zrr2Jc5ozNPIEnWnr3z/q6fjHmu0k2SXd78eaV70yc64w0vHbR+pZskN+zb2Tdv+/U7L12Z5ZTO8SbJ0r/8R6X7/Nm7V7pJ8tctO+MNh47vzEdcYePrKt0kOXGLzrXcjNc71y4n39a5J0mSa0/p7J0w6ZO9OZ+fP7qzxnPWdx1+y+Dg4Dr/8f83doXBpZeY+WNjc+zW+f1Jkv0/39l78JMLdK6H5/vN/1S6SXLrhzrtWf/1+Uo3SS5YsbOX31de76whe/PJzp5qSbLvlRtWumd8sfP9e3S13prh9x7bmau9wOTOc+QkeevM1yvdN9bq/E5c88Xe+2VWv6TzvV7hpo9Uuru/0Hv2ffhDp1a6G5/S2cshSX72t86+XOe/9L1Kd4He64Eyy0EPVLr3b9I5Fy19ypmVbpJsfFFn77o1p3bm7SXJIj/drdI9ad/OmM11n5tQ6SbJsRt3xmLv3Lpzvfz82W9Vukkyeb/O+MfV6x5d6SbJXHN1rhFXWfrCSveEgd79zimf3KXSXWDMxEp3vt0+WekmydkHd+Zn3fJaZx+xJHns7M7chVvv7sz9emn9zjVRkjyxbuf8ucTpnTVbB2/dWXOQJMeM7aw7+MfWvbnac6zWmXuy0VmdNTRzH/jDSjdJrtn7pEp3lbk670k76x2XVbpJ8vi+nbXhq/7gS5Vukmy//vOV7qHr7VPpbnTynyrdJPnosZ33Yf3t3Fkq3d8c3psTcfsZP6p0Hz+l9z6XF3/+5Ur3ux/tvGf1+e/15opu/pHOddFxn+3MVZv+lc64WZK8e+qmle66H+itJ3p4zs67UUZ9tLOP5pHrd57VJ8n3l+7sg7rGG5156y8/9/1KN0km7NR5r+Ihc15e6SbJazt21kA9P6qzbuQjP+rNz3rrrc55+TuHdZ7PffPo3jqzHdfsvCd+6aV64xh7bdwZkzv2xM6853XX6+3xM/mqznXRled05iQdt0BvbdWer3T2fDjtW715VDv+rfPvd9+KnX00f/GFTSvdJPnQaZ39qd88oLN31xd37d07fGHBzv3qel/sPFtNkt2+2fktueL7N1a69xza28P95zt01h08f2Nn/faJ2/TmY5z4dOedR49+eOlKN0kOf09n/6ctf9pZF77xqK9Wukmyx16deS9/+EXnnnL5aZ33ICfJfId03huw/2pnV7pJ8tK+nWddsx6z/X8173n5BRcdPGm3mb+f7ZtHHjTTm/92zYc78+DOmevlSvdLX+nt97zkZZ3rtEWO/kalmyRf3H/7SvfD23beWzr1+715zyd/urO+/l97Tah0V/ls72/xo3M7Y97f/vz5lW6SLPJw5xnLDVd+utL98aO9d6rM9bXOWNCid15Z6f5o1d642EdP7bw74G8fPbrSTZLNv9X5bKw8d+c67eTDe/vwn3nMryvdu1deqdL95G0frHSTZI7bO2vgl/xy513ESfLPUzpzqnf/2gWV7hIXdvblSpLX1u38Zv90vR0q3c/v1pmDkyRjruiMUwye3PtdXemxznzD047t7Ll3xF5fq3STZNXPdubL3Pnhzvy6Txy1VKWbJB9fvfNuylUOXKrSTZKND+k8FzrsI53f1XO36exRliTjT51a6b51Vue5woajP1zpJsnPT/qPh67+V378fG8vxsml8eM5lu1cu6zxm956ou/u0Zlv8eyozu/q6+PvrXST5DODnWdZW67c29vpxN919mq5ZkJn/fZ7vteZT50kv9ik011x/F6V7q+f6zyHTJIRf+28H+Wy/+msc0mS20/qrDV7cmJnv5XXf/mdSjdJLniucy3+wxvOrXSvPbo3D+D4czvvmTy59J67JLn5e+tWuhs931kPtujtn610k2S9vTvP1a98rvPeuFuP3LzSTZIf3vOtSveNr/TWNr79xc7eDCtfenCle+Mfnqh0k+SQkw+odI89vzMP7sj7emNygw931nkefFrvXDTvm521Lt9ebuFK9xcvjq90k+RDZ9xe6a477fRKd+HPL1XpJsmx83bG8T9xSW+u9ufm6cxP/v73OnOdRm/ZG4eadnhnX7BnD++MyV26+pyVbpKs8lRnrPZDY3rPbXe6pfNbcs2Dnb/FsVv03r9909TO9/p3y91c6c450Ht/85Mvd8aXr9ujMwacJP+8rXOPdugsnXPcNmv15lntOfDXSnfHP15Z6Z486cFKN0lmee2CSvf2VVavdJPkyBunV7qrP/PY/3Hec2+VJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2RgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAOD/w95/BVtWF+we7tuzM9DQ5JwzSpAkOYiAIpIFxCxBUTEARkwIEowoiooBRBARQUFBRBQRBSRHyTnn3Ll7nYtzvNunamv1W6vWrue5/Ap/36jVa805xj8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQbDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMhvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGAz3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDAY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEY/6b/3gwaijzjJ0x1y/i1Wkz53rzP+bJoNIdGj9PpbvY6PGVbpJMHzWr0521YKWbJPOMmVbpzsh8le7ssS9Vukky79QFKt0Zozt/fxPHDFW6STJr9guV7ozZvb+/MWNmV7oz5sxb6Y6eb06lmySD2Qt1wuM7n/ezhzqfnUmS6VMr2VG9X+UsOWt6pTs0emKlO2ZM79/v5dlTKt05M0dXurPG/Ve3ff+Vselc8wszX6l0k2TUUOfnMRjd+byfM7r37zdjdueaZ2dUpfvy0MuVbpIsM3bpSnf5VZapdJPkHR8+vNIdN2/nM26BxVaqdJNk1qTO/eezN91d6T4144FKN0men9K531po1cUq3SRZYuklK92Fn+48+6237aaVbpL84cJ7K93dD9y+0r31/ucr3STZbPXO79zYWb17xBljOt9/M0d1nndendm5D0iS5+d0nh1GpfN5PyfN5+DO/fLs9P79xpR+54bGdu5rh2b1fhYp/c5ldqc7NKbz+5b0fs6jhjq/b0kylM5n/tjSNc+c3ftZlKZKUnoMbv2J/P90fi9mZGylmySlR+wMlX6Xx5a+R5JkzqjOL8foQeead9hmvUo3SV6zUmcc47or/1rpJsmVl/2q0n35xc693LyTen/X42d25hTnDDpj7Ssut1qlmyR33nBPpbvahmtUukny9JOd7pQpj1W6jz7feT5LkrGTJlS6G225baU7YVxn/UGSrLHMayvdh19+rtJNkqnPdz4/J4x/odJ98cUXK90kefqumyrd+dbq/I089UDvfuvJxx6tdG+/9c5KN0kmzfNQpfvsi517gXlG99ZZPfz8I5Xus68uXulOGFd62EkyaeP7K90bb7ml0k2SSRM7n8s33t/5/lt7ic7POEmemtVZJ7f8iqtXuoPR81e6SbLW0p25kpdferrSTZIttn3LXG9eevv//lk/5/lxmfLb5ebi1fx/jVv7vLne/I/v3NeZo152kc0r3YmPrVfpJsmbl/1FpTvYarNKN0n+MnOXSvemZfardNd++HOVbpLsuHZnffKk2SdXuq+9v7em5U0zdq50p91/V6WbJL+dMK7SvffOjSrdlQ69tdJNkgvXWL7S3XnRH1a6iy33eKWbJKtt01mHs9IavfHHB/fprDf84HEbVrqTFuyN5f1t9qRK94ef2KDS/cWX3lXpJsnu3z6+0r3pwc79VpKMW6zzbPfZJQ+odB+4fXKlmyS3zHq10n1x72Mr3WcP7IwdJ8morTr7UXZcqXPvmSRrXdC5//zcmzv7PNffpTf+8dnlj650t7j335Xut1b8SaWbJOuesUile8Ya11S6SfKOvTtz3298unPvstdSnTHeJHlqm69Vui9s2Hn2W3PmHyrdJFl/xyUq3V8801kHkCQTZnae3R/+6rqV7mPfeLDSTZJXB1tVuhPf15nHumavL1a6SfKexzvzFfds3tsP9sKSl1S6W1zR+Y56YtSBlW6S/GuRnSrdO56e++PsSfKTl5+pdJNkvtM763B+vfKVlW6SbD6p83ey0DtKa0X/tGKlmyTzT3tvpfvAnZ09UP9+7Vsr3SSZ8VRn3fP9E/eqdJNkvdnvrnQXfaGz9uSqOZ2xviSZZ+2PVLq3339BpXvMvt+rdJPkfcffUel+9cu9NUkz1t6t0v3E+zrPUZtN6G3C2G7iOyvd+YY649b7L3BhpZskj9/d2Rv30IzenuV/Lds5gGbJy26rdK/ftjfXtVAernTXPXOPSvfWA5atdJPkc/t1xgTWPP/0SjdJvnNXZ67yfZ9YpdLda83eXvZrH/lUpXvE5Z37oqFv9ub9Tv5pZ7zvjpv3rXST5Pnlz650p32wM78z6Vedz/skufylFyrd0Ut0xreWe7pzT5skXzi1swZ8z/G979XJK3d+Hje86ZBK9xOXfavSTZIbnu/MKX7w6fUq3c+/6YxKN0levaTz9zdm7Osr3ST52mFz//vvuLv+t5/x+mOG8q+F5/592npL/XGuN/9jqeM74/OXH7drpbvd9TdXukny9S/9vNJd5uHe2YOHvr6zh/OJx35W6a5232cr3ST56pfPqnR/emjnXviq/LnSTZLdv/23SveMZZeqdJPklOM666mv2qwzP7bLuC0q3STZ5ck1K93BvzvrtEcv98ZKN0mmnNdZD3j74utVukny2ff/pdJ9ZYPO/eqvvtbZp5ck75/YWQO39e876xdfc+ralW6SnP3tzpjYqm/prcE58ZTOnq0v3dRZD3HWK53xwSR5Yc/Os+iv/v6jSvfhNT5Z6SbJGv/q3L989p+9Pd9LfP+ISnel8zpnPd+wxLOVbpIc+GrnHRgrTeisE53x8EmVbpLM+5nOfrt1Vu2shU+SSet+o9Kdc/bFle5BW3bOoUqSL3y984w2es3O2fC7f7L3d/2rN5xW6T5+/amVbpJ889Nvq3RvWv0Nle5l655b6SbJD1/onHEwddbHK90fXfOPSjdJfvjtzr6qT03tjBUlyVJLdMa4Zt+yaKU748HeuSRztu3sK/753zvjy9/7em8f9DP/6qyhevLO3nqkD+3w+Ur36s+sX+l+bbnevrjlL+l8Fn3+8t9XuhfvdUKlmyQnrtOZn37zrStXukny5Hs7ezzf9v3OeVF3/uv7lW6S7D2n87zz+sPeXOl+767OeHiS7PSuzt7RbVf5TqWbJPu8rfO8s/4Kt1e6O5y0f6WbJEfvuF6l+8Tr3lfpLvKd3n7XoaU7a2b3fO9hlW6STHixMz/wzzs6e1zecVPvfJjjX7600r3/J3P/HeRJct3nO+OeSbLqGp21Kd/5fO9909du0rkvesOozvPqpt/s7FFKkkOW7+y9P3D65ZXulF2/XukmyRe36qxN/siZvX1x0+/p7KXd/oY3VboHP/uFSjdJPvyxrSvdMV9dr9Ld7treftd5v9xZ9zL7L7159y336eyZnLBlZw772ZmdszqS5JpHL6p0b/5JZ3xk6132rnST5MAvduYUbxn99ko3Sdae2rlHTP63ceuFlhqXd3557q8LnPm+zhhFkrxv9FqV7lcn/K3SXXr2C5Vuknx6zc56i3s+2Hv//M4/7pzDON+bO2carvCr6yrdJLnwzG9Xunt8tzOW9/BXOu8aSJJ5J/yu0v3s5N680EPnd84Sm/HAlyrdYw/pvQ/12W9/uNJ994qd+79XtuvtbXrTTzvtA5++vtJNkpd+2Hm2+/QTnbNwbvtu7wz+Q/7Qef/8mg99oNI98WOdsf8kWff6z1S6z5/Tm2M56uLO78ZRV5xQ6d5y2tWVbpL8fOnfVbo7rdS5D9/4G717z4emdc4Xf+Og9w6F097SmeP87Wc7nxnfHdM5LyNJxtzRWV/3jZ06c7IHv7O3Z/LGD+5Q6S72me0q3ST50086c5EPXtdZkzv/Q7335N63feedVUNv7IwRXntTZ91Xknz/iM56+O0+1nkOTpIxe3TORD91vt0q3SMP7T0Hv/eYzrkk917WOdN3rT167wx+8i2ddYyb/r637vnzt3f2hh/w5JGV7ozv9X6XPzKpM8Z19lade4Hld+qt49jhR7tXug+f3rvHuO/BKyrd9SZ09ll//vzOHvkk2fVjnbX2X7vnlEr3sld6e6HXveaESvf8FXvvZj5sylGV7sLf75wPf9Fb96l0k+TqK99b6V6/auc9Ff/8xDsq3ST55c2d55JDPvWaSjdJlv9r5xzpT63UOSPmO0ueUOkmyQ6f7XxmPLV3Z03LjZNvqHST5HsXdO6Xbz6nt6bsrhM766hWOL7zLsiT3//3SjdJ1vllZw70Dw+vWulOObkzPpIka5zVOWPktkd7a8puOa2zvmHeP3TWBP7uH53fiyS5887fVLpbvOHaSvewRTrnfibJISt33rP1zrs6n3FJ8s3Dl650H5rnY5XuRbN76+S23L9zftDZF3TeubLaNp09I0nygbVXqHTPeqm3NmzzH/2i0p1wRGd85JKjxla6STL+U+dXuoe8+N5K94cbfKXSTZIj/rhQpfv38b31NLtv3Pn3+1+9+MLi+eN5c/8z/cITe38DF90zodJ9dXznXMNnT+ud/f6Rfyxf6b70RO+87tVOv6rSnf7Vznujpp/b+Z5Pkjc/1DkL/4TfdM4h3nXbX1e6SbLJkZ322mf2zvU9Y6jzbPDyRzvzFVsse06lmyS/XavzbHD6cZ25t8EVr6t0k2TLCZ29lodd1TmnJUn+MatzZuKcFTt7cC9/64cq3ST53k9K71R5trO+4LzvH1PpJsmj13TGNWdf0HkfXJKse9EDle7Bm3Teu/fcd3rvbfvRtM47QBf+8zcr3Qsm9ubepq50cKW78hd68wp/37CzB+ONZx5Q6X5m3c467STZ70Od93NNPqPzrpgvPN3Z45kkd7y1s7fq+G8tWekmyd3z/rLSvfSUzjUft3vv7Pldxy1Y6V7xi87euD0e7JzvnySvefpfle4Rs3rvZn7NoT+udK9YvnPOzu4n7VjpJsmFp3TO6/7oVzvvI17z+M4YYpLc90JnTdKRX+jsk0iSrU7tPFeuusj2le6dF/XeLXrrk53uWw/onKey6Fq9ue+fLt9518ikz3200k2SOx/vzD2suWrnvY3vXHqdSjdJfnxM51yUZbfurJt9daXO71uS7HpkZ43Bx+97otJNkqM36qwF2H6fzhkx+53YmdtJkl0X6pyhdd4VnT13Dz0zvtJNkjnbdT7zF3ml83yWJIuceGilu+yxnXd4/fumzrulkmTmcwdVujd8uLMe99nLOucbJ8mlp3Tul58dfVylmySv/KFzL77CuZ29cTc+/5ZKN0kefUNnvHa9U8+sdAc/7uxXTpLDj+i8M/UznS0jSZKj9+i8G3Nov865GgvP15s3+uP8v610v35y575o9kW9e88XN+qstf/+GZ37gCT522c6a7iuWaPzrrRJr/TmSg5Yv3O//JHPddYJHP+v3rsVT169c2bHlstuUukmyZknd+7xz9+pszfgwld762ZP2KtzzsFdb+3MO1y0f+esxiTZcfYyle5R7+qsWUqSa57pvEchj/+f56QGnf9vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD/lsFwXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjASD4b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBsN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgyG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQYDPcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMBjuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkWAw3BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPBYLgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGgsFwXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjASD4b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBsN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgyG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQYDPcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMBjuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkWAw3BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPBYLgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGgsFwXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjASD4b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBsN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgyG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQYDPcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMOa/+Y+H5ozK9Blj5/pFTBw/bq43/2PCnPkr3eljXq10Z06dUukmybixnZ/z+PGjKt0kGTV93kp3WqZVuoNZnetNklmTJ1S6U6d2/v3mGT1U6SbJlDGLVrqjZ06tdJNkwujO39+c2Z3uqMHc/6z/jzGjZ1W6g0ElmylzpnfCSWYOlX7OszvZJBlX+kGPGoyudMeM7Xx2Jsl8mVHpTp/VueY5MzrXmyTTR3U+8ydNWKjSTZKZo0t/20P/1e31f6HVTWbO6Hwuzxkzs9KdNKfzeZEka62zeaW77p47VLpJMv+yC1a6U0ctXOnOv1Tv2WHqc6Xfucmd37lxWaPSTZJVlrqr0l146dUq3SS55YHbKt0VJs1T6R71hf0r3SR5zwePqXR/cfrZle7ESb3v69kbd579brnnoUo3SQ5+z5aV7pJzOs8Oc2b3Hh6mje585o8rPUfNSe/ZYfboznPUxKHeONScdMYbBqXxyWmzes/urbvPQak8c07v2WFo7PhKd+LsiZVukrw0uzPeN2toTqWbMb375Rmt9KATHjXU+1kMpTSQOKp3zYNRnc/PpYc6P4sJKf2NJBnM6Tz7/eCkIyvdJx65r9JNkkt+95dK9+bn7q10k2TC1M783KhRne+otZdfpNJNkifu7vyc511s8Ur38Rf/UekmyRpbbF/pLrv0ayrdJFlkxc444t2331LpLvzsY5Vuklz9zysq3fXX37nSveuBzmdnktz3ZGceZpnlO2tekuTXV15X6b487blK98pbO2N9SfL8k3+sdF87aqNKd60lN610k+SVQWe86InJK1e6SfLws3dUus892RkvGr9Qb23KApNXqHRvvfXmSneZhXu/F0/NeqXSXWWl11W6SfLg8y9VulOGOn/XUwcrVrpJMnP2M5XuLdd2vvuuH+qtk1timc5437OPdf5GkmTZRy6Y680ZM1/8n/+3Sy8wO8dt87//7///uX7sa+d68z8+9Mz3K93HF9+m0r3q+d580wIXvb7SfeJTV1e6SXLY3p315TfPmq/SXelNC1S6SXLf1M5c8mu3XKnSvXeD3hjvDz7150p35atfrnSTZOiBznfQMs93np/vvuaGSjdJvj2zM85096c6+0b+cfKylW6S/P60zrP5lF8uU+kmyezxO1a6e62weqV7/Vt/Xukmybgzv1zpbv+Gzhjhu+bpjWse8aYVKt2Dz3yi0k2Sy55ev9L9/eOVbBaa582dcJKzJ2xQ6X73oT0r3SvveL7STZI/va+z1vDor/fGbB56/uFKd50Dnqp0z7qr83yWJB/4emcs/ZVZV1a6S//g/ZVukhyx7+GV7k4Pb1jpJslXhzprDHa4q7Pv4MSLf1jpJsn7l/1KpTtr1gmV7h23rlLpJskGSxxV6f5z5tOVbpKM3fKUSnfWLZ059fHXd+YrkmSbGzrjApe+b9tKd/LPOs86SbL0D9epdFd/ovPskCSP//vgSnetV++udCdd2Zv7XvxPv6x071t8s0p3nYV7a/iX3aXz+bn625avdJPk9omltSdTOnNZZ4/rzTdtNrXzmb/7v9aqdDcZ9NbXLfJc53f5hTu3q3STZO/XdtY7PfJKZ05jmed+X+kmyXMTO/t05/nG6ZXua9b6d6WbJKf9rTM/d+8De1e6STJlzw9Vuqt8vLO3eK+te/vvF7/iokp30ps6e5YvW7u0ZyTJgfNtUumOXnyrSjdJXppye6X7xK87Yy9rnFIauE4yNLnzu/H8CZ01JDtseFalmyR3TOncF11zXm8N/6IPds5FuX3ZJSrdPS/orG1NkvdP2bjSvXHRzr7+V67p7TN7brBTpbvj4NhKN0meOqGzb2TPvTvndWy3+Fsr3SRZ4M+PVLpHbNqZN7rgtt46q/V/1Tkz4OyfvaHSTZL7pne+S/LVzlzz3YddVekmyS8f78zvvG7MC5Xu2Yf3vq8f372zBvy5XFbpJslbJ879+YGZg/9t3fKzsx/ML17+wFy+muRjH+mtzdp2k79Xuhv8dXKle/O+ve+10+btfE8cusabKt0k2WjGpyvdjefrrHP692IXV7pJssuTnZ/FNrscX+neflXvTMOb39MZI9xjnRcq3SRZ+vg9Kt3JH++sAZixyKmVbpLMf33nWfTHC7690v3Aa0+odJNk6bd/o9I9f1xnDjlJDpuzVKU77tSfVLrfXXPVSjdJtn9icqW76T77VLorPfqHSjdJPrf/byvd1X7VWVuQJN+67JpKd96cVOmOurS3BufRX65Q6X5j3ksq3f3u6uyJS5I3zts5c+G2S5eudJNk0pmdcZVj9+uM/f9y/c661iQ5b/FO+41XdNbJbHx9b/3+e/7YOedj5vXPVrpJsucWZ1S6x+57QKX7lrV2qXST5Owv/6DSPfaJzt/1Sjd21pwkyfP/+m6le94jX6h0k+Tjr39Xpfup13b2QW/6j49Uukmy4x87a2X2/XrnvujuJXtrs8Yd0fm7fseDJ1e6SfKB7TvzIDs81dnHvvCBvX1Vn9+yM167wD86ayOP+dWplW6S7P9kZ950u1//qNJNku2/dGKl+497O3sZjvvpfpVukgze/e5Kd7HXLFfpjpmntx5i689/tdL912c/W+kmyRFPvq/S3XGbFyrdO1a7vNJNklGDd1S6G253RKV72qXXVrpJ8vrnO2suV/zYoZVukvzlw3dWuovd25k3WvCO3r/fQXsdXenec0rnHRgz7uicgZok336+826i/YYmVbpJctoTu1a6a4/9TaW7wrjOfGKSnD2zMz75kSs73bPHd/YbJMkyH36h0r0sb6x0k2SF286vdP/8dGdMZ6fHv1XpJskZ13fOAb/6us783Bp/PrDSTZJP/6TzO/f+vb9c6SbJ7655tNLdYrXOfuUb9uqdL7L3Zp01CFde0Nk7+vKVve+o1Z46rtKdf/POM2WS3L5d56yqKy/vzO9c/oG5f57vf+x82Nsq3e/9ZotK9761emeDXrPheyrdgz/be5fnF0/tvT/2f7HEQ9PyyQ/N/Xflrnpdb8/+Tot05k4HMyZXundO643lfaY0L3TFA705lnPP6+x7O/yAzvf8kQf33pN7zns7Y/QfO6dzjthVP++tu7x8/s57v95zVO/dCwdc0FkLMGHQubf82A2dc3eT5KipnT2AO32yMyd72Z29+7R9l7i10n3Dkp+pdJNk/5s6v8tffqizHn6Zn3XuhZPk0CU7Z6lct0znjLLJK3aekZJk9M8+XumOv6S3bn2Jj32x0r0qnfesvu6Hn6h0k+S0+x6sdEc90rmvnfyO3vkFG184ttKd8d7eOYznbdH5Xn3p8c6YzR2Pdb77kuSaizrry79yeWd95MKP9c6z32353SvdB47/TqWbJLvddVOlu+3dnXWMp23b+R5JksP/0HmHyTWf6zwH5/WdM/GSZJ6j9q90X7y3d47mqCM6+6wP+tkKle7Ff+3NF27xxs45EdtM6ow3/PN7nfeiJ8nGx3XGPrfevXPeUJL87A+dPTTvf7z0ns69t6l0k+TZnTvzChvf01lH9cMxvTMNHzv385XuH77cm69f8JOd/R13vKazt+ND23fWwCXJQpd1xq7f8Upn3PoXu51Q6SbJw1/p7Hk98Xudc/KTZP6bO+/ynHdaZ2/xR1fuzDskySfW2bLSPez5zu/Fy5d2zutIkqev6ezzPHTv3j7Ptz3WuS+adsMKle46S/f2/x73686z36mXPlDp/uR1H650k+SIn3fO2PrN4b0x8T8c1Tn/abuDOudeb/PN3pjqRn/u7Ns66jed/UR/2aJzbl6SLPLBznl/txTnKn+5y9xf/5Mkl/288x7kl/fvXG+SLP3Bt1S6R2/W2X+41D+XrHSTZO/5O58Zp/ymt+f1KwvfWOnes0dnrmvT7/fOLd/g5c6ZmJ85tHMe+j+mdcZTk+Qv63fWyX3zjN7Yy58u6axzfGzXzjtCr/9r5520SXLLnZ1nqS3P7rzn4DuPdPYrJ8nL23TWcG27wtcq3STZ6qe9+fH/xXzz3JxN1lt2rnff+eiX5nrzPx778OKV7sqTPlnp/uiLvXeqLLJDZ1x6yhadd4EnyRev3rrSXf/Ezvvg/vXRnSvdJHlkeuf5eaNP7lvpvv3jH690k+TsqetWuuuc03lXUpI8+IfO+wYu2vqDle72j/XOpbxlnc66iE8/c1Cle/xmnTNrkmT5f3T2yu7xoc5nZ5IsO6rzrtwPbdB55ph0ZGevXpKM++phle5bx7+/0j3pfZ29AUlyyCGdc8r+cNVilW6SbLB6Z47l4a91zj3ZfM3OebNJMvpLnb3On9ils6bz2xv03g908n1PVrqzVumMUSTJpX/qjP8/e8Iple5yvz+30k2Sy+/vPPud9nRnHnmLJ3vzFT98tPMOwo/+vnOWWJIcfMSCle6WF3XmFWbc2Dvz66zF96x0H1uqM4/8+IG9c/ivfbGzvvVTJ/XGYv85qvP5+elD/lrpXvzOzp67JNlz/s77bJ+9db5Kd92PdD4vkmT+635c6T732D2VbpKc9t3O59ybduy8d+UdB8yudJPknV/pnHG812pTK91nduud0XnFnp35m+NPLO3NSfLpXTt7oM46qnOW7Qnn/7TSTZJZ23TmqN/23c56i3/t+PVKN0l+flnnPLErX5z770v9j6VP+V2lu/+Yzvfq8mf0noOn7NnZ9zPvLdMq3WO22K3STZI/dbYdZMpS53TCSX569mOV7pSPd8atN/1C74yY3b9zYaX7nd925jRe3aSzXzlJdp7ReW/O2W8bXekmyd+HOvfiH317Z35n7a90zlpPkm1e7Iz3feAfnXWXH/1t792Y37+lc48/6ZudvTlJss1WnbUCe7zcOa/jO+efVukmSU7trNVZfqXOWsO3nd35HkmSpc5ZudJ98VO9PedfP+Bzle71P+qcy7DhKZ29AUlyzIKd79XnH16p0v3YnIsr3SR59Oed+fxVS+/XSJJ3n/fRSvfav3fej/LHfTvnVibJI3/qnJ+8yaudM8Ge3Ks3vrzmnzpruBac/LdKN0n2f+ZnpfL/eQ/NoPT/DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+nzIY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEg+G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQbDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMhvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGAz3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDAY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEg+G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQbDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMhvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGAz3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDAY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEY/6r/3owKoNxo+f6RYwbjJ3rzf94ZdT0SnfUnFGVbsZ1rjdJpk+b0AnPmtXpJsm4zu/G2DELVbrTR71Y6SbJPFOGKt1Rs+erdGcODSrdJBk3pvSZMbP391f6VU7GLFrJvjpmdqWbJDNmdT4/R81+pdKdd9TkSjdJhsZPqXRffrXzefH/1fk7GTfodGfM6PxeJMnoQefzc/yM0r3L2P/utu+/MTR7ZqU7euaMSjdJppU+5uafME+lO33U1Eo3SZZbaaVKd8bo0u/FrHkr3STZ9kffqHSvWeHRSjdJnnn51Up3vWvnVLoTxvf+/cZPmlbpjl55mUr3odserHSTZP5FFql0n3/63ko3SV5++OFK94xbbqt0D3zPvpVuksw3vfNcucrkuT+ekyQrLNi5J0qS2/99baX7/N23VLpJMuXezvffhFGlcaiJpbGiJJNLY2fTBp3nnTGD3r1nZnd+zmNG957dp5f+/SaUhhHnG9e7xxjM7jyjjR41sdKdPapzH5cks0Z3vktGjeqNY4wf0/meGjWr83MeGur9+03v/PMlszrhOaM79/dJMn5OZ7B2em9IPENDnb+T0XM63eeKv8u77bh9pXvmaRdWupMn9u4x7nr0iU541LhON8n4oc547dCEzrP7I89XskmS0XM6n3MrTep8xq267uqVbpIssvQqle6zTz5S6SbJhq9fr9K974arK92NN9iw0k2SpRbvzLsvsVxnrH3atOUq3SRZbNHOs9+EV56udJNk3omdz/yFR3c+l599qvfBfFdp3m/alTdXuksvd1+lmyQTl39zpfvQI50x4CQZlH7n7n2o87m8xvjFKt0kWWLlJSrd2TPXqXTvvKf3u/zSCy9Vug++9GylmyQTR0+qdOeM6gzKXXlz5zMuSeafb4FKd+lVVqt0b7urMx+VJKsu0Lnmf99wU6WbJHffMfefd6ZP/d/HGu57aWr2uXDu/xutt9kH5nrzPxY4/c+V7hIbd+55Jgwer3ST5KfLrVHpvnmtZyrdJJkxc/1K9/2rXVPpHvnwRpVukhzw5K8r3eU26syRrbzpgZVukrzmO53nr3vOen2lmyRf2v6iSnfJH61Y6X7q31tVukny1is7n59vmW+pSnf2a3t7c16/TGf849qdlq50k+TYQzrj0j/64WOV7neO26zSTZLTbt+p0r1zqc6zzGkbv1DpJsmi331dpXvV9i9Xukny3HOd779N9j+00v3i7N9WuknyiedvqHTPf7gzln7ifr01xDsduWyl+/W//LXSTZL5F9y60t1yy86E/SEnnVfpJsllm29Z6b79I53vvvdv3/l9S5J3LPLGSvcPd2xR6SbJxemsXZha2gs98/TOeGmSLLV453fjmkU766m/udj5lW6SjH3rPZXu9b+9s9JNktWnnF7p/m3TN1W6F/6x002SR8b+rNL93J8q2SxyfW8/yl37vavS3eyybSrdJHl08wMq3WXu+UKlO2WdhSvdJDm1tD1g7W917sMP/n1vreG116xZ6Y4edX+lmyQbP7JqpbviG+evdA9fs3euxpuW7oyp/mxUZ753hbt6a5LGT+6cJfH0lN444sfW2KbSPenazrzsmPXfWukmyee3fFul++vn/1jpzvnt5Eo3SYbe1rkxWnK5zn1Akix77HOV7p+f6ZwZ8O7Fe7/Ll9zYGfs8/NXO3Orei3TWJifJio915sdPX7szN54ky667QqX7yiM/qXSnnNzbJ7j3dp3PjBe3eKDSnXh+bw34q+NXrnRX2aI3b3vKfe+rdOcf3Zmf2+zWznxwksxacNdK9/aJf690/7JHb95hvZM798u/2OjdlW6SzH7miEr3Jxd39tDMe2MlmyTZ+5T3VrqH7dw57+G++X5T6SbJUZM2rnQvmdn5G0mSY0rHNe7/4865NtOueEOlmyT7T/9wpfuOff9W6Z78rs5YUZL8fYHOHsRvHdOZg0mSuy7+w1xvThv7v63rm3bnnNy25dzfk7zBJp15+iRZZYXOuqEND+ms056yQu8wgB0P6FzzfR/prHNKkrdM6dwL33/AXZXus4u8ttJNkrVvu67S/dD3jqt013jt7pVukqyy+JKV7gUb9s6EvfrEbSvdb/1zj0r37iU+XekmyVNLHlXp7jpv57No6OXOHvUkOXDNzr/f5EM7n3FJsuE9nXmQlW/crdL9/BG983FHv/DZSvfFGWtXujNW6a3//tZ1C1a6Yw75aaWbJK97+8WV7hkHXFHpnvjjD1a6SXLN6Z37z9U+1Fkccu9venMVJ37rgkr3wNvurnST5KpffK7S/fFFnfXD05ZZvNJNkgvm+3mlu8q9e1a68xx9TKWbJBv+tDNXMWH93trWWR/YpdJ9+zWde4HbT++cA5ckt+/emfd+67mdMemD/vZQpZsk576ps374qhsfqHSTZLOP/7PSnWdMZ23yx67sfPclya/+1FmDuubmnXOdvr/L7yrdJFnhoM7Pef+Le2etH3fr/pXu5Ff2qnQ/cdbXKt0k+eaMr1a6n519SqX757s/VOkmyQ9X74x9vuO1nXvaJFnmyM76kFW+1Nn/tOXW21S6SfLInp3zxcdfcGSlu/69vXnT6/fpvLfj3Fd7f3+3feyjle6ph3fGt1batfPZmSSnv66zJuLmy86sdL992ZOVbpLM2OcHle4Bxx5d6SbJLWM6c0c7j92t0r3mh701AG/+cue+6LYnOvtnfrr8eyvdJNn0rM75nEOzevvi3jzn1Er3ubX3q3Q/9+XS+4OSrPzmzufyMq87o9L93Uc67/tLkuVX6pzvc8jPt6l0k+TMu0+qdP/0wc5+ybP3/WSlmyTjp3fWRm642Ecq3anPfL/STZKF3tA5Q3DFP06udJNk6fU6ayOff6XzWTThc73zMHf99lqV7lu27owvH7H7jyrdJDnlrZ2zgs8c35kPTpI9/9m5F/j7azp7fu6/9i+VbpLsuEdn3uiYD32q0t1p9d65yY8f0tkX/qmNO+cRJckxH+gs4P/pL/+3/939g/nzjnnm/plRW8/prJVJklM/tHele/mFnTMitjn85Eo3SUbf9v5Kd6WHe+fjfmuZub/uP0lW+Vvn8/zjb+ide33vFzp7AGcec1Clu/7ynfG2JJnwzfGV7m4/2q7STZKpV3TGCbdc5B2V7rXHTa50k2TxczpnDo0+rXMWx7su+R+/NP8vHHzY8ZXuPbM74ypJ8up7rq90L/3BJZXuntceXukmyTlXdc5wv/1bnfV1e5zTeR9Vkky+rXO++I/+0XtmvGl8551U7/zUlZXuEa9+pdJNknt//1Slu+WMyyrd0X8pHbaXZNROnT37T17W2YuZJGdv8t1Kd+m7OuP/vzy2M46eJJ9coXO/fMr151a6+6x9a6WbJGfc1hn/+PernXuXJLnlos5+lLPn6dwvn3ZX594zSXbdpvPsvswjh1S6m53bWwN+076dPYijfvTlSjdJfrblJpXu68/unB35+EdeU+kmyevv6ow3XPzmzrzeVgd33gWSJG/6Rmdv4w6Ldd7/lCT7HdQZ75v6tVcr3SUOW77STZLbz+2Mcf3pxs5z8E179d7lvtunOvu23v/m3r/fz0d9otLdZWxnDeoXPtv7uz74TZ35+nM++PlK99AF96l0k+TC0zvjy8c83jm7JEkO2WqHSvfoI/9W6c78cW9vzvxHdN7P8PSqnfNxj/5AZ29AkkzZtTN2veKunfu4JLngHZ13YDx2XGfP+WuO6J2Xc8TFnb2Nfzioswb1q+f2xtq3ee7tle7GO3fm85Nky/d1zp3/3PTOWvs/nto5AzVJNl+zc9bzGkOdd7nPObRzXkCSbLtEZ0xg5yV2rHST5LzPds6033STzh62k478UqWbJM+9rrM25ce3PlDp7rBrZ512kpy82ImV7p836dyHJ8kvp3fmFOfM6MyVXPTWzll/SXL4rM441Li7OmfPbPSv0uHGSX41oTOOccJpnT1bSXLIxp0xkt326KzTWee63rztrJ90zvvbduXO2Nn715hV6SbJqLU6fycHH9N7B8bxv+6dmfO/GDN65Sy64Nwf573hz73zOJ7bu3Mu5SGHP1Dp/uaQ3j6If57bGdc8cHLvjOpx13ee+cec2TkbaO2tOnuzk+SulTvzvZev0XmW+eWHzqp0k2Twm8599i4v984wePHVzlrRLffp3Jt8er7OGG+SbFI6N+Pn+3bOtD/p3Z11e0ly3/2dtaL3v9D7Lnnx3s5Z4O+c2dnHed3uvbPLPz6n85lx0wWHVbonPtvZC5YkG+zcGTP99VWdd7UkyTb7dPYuvrRAZ/xx2zccWOkmySVbdd5p9INjOu9X2+2izvxYkhw+4ReV7l6f6j3v/PTmTnvJwztnwa2/Wu8Mg6HnPlbpHvhc55yk7/2zN645fffTKt0lz+nNC+26QWec6eAPnVPprv/Hznr4JJl8cOdnsfRRnX3Wj2zSOf8lSV75Wme9xTvO27zSTZIVLj670v3N2M45gSvd0XkfT5K8c/ZGle7BJ3XeW3XV/eMq3SS56Tel8xO+/M5KN0lu/MGNle7Vp3fWtExdsLembM8DOvf4Wyza2efyuX1777/+wbmdv+ujxnbO70mS9b/yQqV75w++WOluvGVn3DNJrn65sybpzB0650fu8JHee3OuWLxzv3zzPE9Xukmy1w0bVLofm7ZKpXv5Xw+udJPkj0919iCesvT9le70LXpnfh2/bGdO6tUjevP1127decb+xR6dccR9Fr+j0k2SKx78VaW7/+qdvdDHzN97n+CYeTt/Jwcd1TsjZqWfd86peONvOu9dufUXvbPnp93buV8+7u03V7ofOrtzXmmSfGfOeyrd5/afXOkmyV5zOmt9z/v17yvd2Sf23vP6zwU662k+c+Gxle70zTtjUEmy5Fs787YX7tkbXz56tcmV7vFHdNYgPLzzeZVukvz17tK65+93zk84/7e9d8Xs+/7O/MC/Ttim0k2Sb73QWVv0kcM6e3Meeqh3Dv9tR9xe6a72iSUq3bGf7r0Dasc9tq50/35Cb23fXz/Q2Sux+aH/5/97b/UqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPw/ZDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAlGDQ0N/V//x8uOmTx06AJbzfWLmLrgAnO9+R/zLLlGJ7zUypXsvKusV+kmyfhVOj/noSXmqXSTZNTEOZ3whP/73/v/xqjxoyrdJJn10pRKd+Kk0ZXuKzNmVrpJMmVK55rnmfNCpZskL4yZv9Kdb9asSnfi5AmVbpJMn9b59xtkdqU7Z9Sg0k2SwaDzmTFnRuf3IkmGpkyvdJ+84OJK96FTv1bpJsnYQedzbmj0xEp39MzOv12SzBrb+V6dPrXzd50kM8aNqXQ33Wa7SnfJrdevdJNk3Dyd76iJ879a6U6YsXSlmyT3vHR/pfvc1r3v1WdWWKvSXfGSeyrdN6y2XKWbJC893Xl2mH/+SZXuhZecX+kmyZV/v7TS3eD1q1S6SfL0Y09Uuk+8tGClO/W53vfqZtt0fs6zXhlb6c47X6ebJE/PeaXSPf3okyrdJJl/ZufnMWNc5x5/MLs3jjE2nXbraWfCmM6zapLMmNX5jhrq/fNl3jmdZ+Gh0nPwmOIPY9B53MmM0u9c63qTZHRpqHZm788vQ0OdZ/ep6TxTzjNxqUo3SaaPmtHpvvhopTt10BsTGD0YV+mOndW75jml37knRnf+Rt6y986VbpI8/PADle7tDzxT6S4+oTeHdt9Tj1W6a664aqWbJAvN1xkjmbBA5z580oQlK90kWWuTzSrdp55+sNJdfZXVKt0k2Xzjzs/i1uv/XekmyYtzOmOfKy3TGat94fneOMZ99z5U6a66Smd85K6r/1TpJsns+RaudKfP6T3vnH/W6ZXuQgvOW+lOf7X3u5xRnXvEl59/odJ9/XqvrXSTZPE1Ot9/U2b11pDcekvns+il55+rdJdbvjdXsvD8nd/lKVM7z37TZ3XW3yXJxLGdf79JC6xe6SbJIw/eVek+82jnHvGhl1+sdJNkiRU7fydrLLJspfvPW6+sdJNkxQWWr3T/fe8tlW6SbLbB3J/D/suVt+a5F1/9n26MFp1n3NCeqy86ty8prz4+ba43/2PztX5V6S651A2V7sQ3b1vpJsk1K65Q6e4zzyOVbpKcMbszUL/aIeMr3SVPeKnSTZI/L9kZC9pt4c7P+PILr610k2SR9+9Z6U6d+nSlmyRPnXVJpXvKOp21X/v9Y3KlmyTXT+usz/rwe26rdF85ZvFKN0mGZp9R6a73gzdXukny0/k7awJv3eW7le7qX5uv0k2S1y97daU79tHO+rozZq5d6SbJ00u+XOku/3TvmXH7lTpzTg9/vrPWcIl7O58XSbLZbk9Wuo/c1nl+3u6xPSrdJDn+uZsr3RkLdv5GkmSxn3b2xq165B2V7pr79/a8Dg7p/F2/uF7nfuvLv3u+0k2Scat21lu8+dXePf7m+3Y+P086qzP3ffuUzj6XJFlzqR0q3Zdmde6XF1l8+0o3SRa6+JuV7tcf+V6lmyQT/7VppXvvOn+tdJe/eqVKN0nOfsNile4n5ntNpXvXnb3xrcPP68zrfWWJ3t6qzQd/rnTvWmPrSveFZXtz35su11nTMvOVzu/ys/dcX+kmyf5vfqHS/eLvevP1b5rWGcf47sqdvamv3a2z7jJJNv165772oLHXVLqrvNgb09l+oc5n/j3L9MYxPrFCZ/50ymc798vPHH9MpZskiz1yXqU7btwGle4/ll630k2S1X6xV6X716WOq3STZNP3/LzSvWFO53N5nZs7Y7VJssemb690/7pmZ//vtPN641v7HLhFpTvj4YUq3SS5c+xPKt23btnZ6Xn+S531PUnyzas7n/nH7XdipTtz619Xukmy1lt2qXQvnfGpSjdJbr704Ur31bHvqnQXGvudSjdJnn1757lk6x931q0vvdCXK90k2XXcVyrdL2+7UaWbJIte19kn+OJiV1S651zbO+9opVUW6XQf/0ul+6tNe+cd7fdAZwP3S5t1zutIkuuf7JwRM/REZ2/Aktf3/q6nfL3zs3jbSZ19ShfeeFOlmySvWX73Sneh6b19grNWnPtzD7++5NI89dzz//UX6+jJSwxN2Oo9c/16tlz83rne/I8lVjmk0v3gQrdXujdu84tKN0leuf6dle74j1eySZKFPvfGSveRmzv7kR87qDdX+OK0zjzyw7fsWOleP0/ve+1b63bWQ9x1+2cq3ST59Xrvr3Qn3viNSveY7TpjNUny3Y9OrXTfMeFLle5JW3+/0k2Sk8/qjEl/+D0rVrpJ8pYdOs91V2zbOZfkngUuqHST5Ia/fLLS/fYSnXWGl3/zyEo3SXJbZ67i76d11hYkyZnH/a7SfcPNb6t037fyZyvdJNnrW5318I+t0VmDs9CET1e6SfL7LTpr66acM/efof5j+qadOdmzl9mt0v3Zz3vj85sd0Dnff+mrO3N6jxzZ+1z+5OzOmud33tKZg0ySfe/oPD98dcIHKt017uztMbty48Mq3fcs3llDddOZvfVIn3xL517ujnefUukmyXx3dPZfnLJf53d52WfOrXST5OCtflrpbrpgZ95tkavXqXSTZNIBL1S6j+3S+y45/uHOuVwfPL0zDvzCeb0zNZ77UWfedMI/O+cQ7PfqxyvdJFlh9MGV7jxLdZ6Dk2TplTqfRafv11l/utMLnbMekuQfi+5f6b60cmfN3htmdp6vk2SDCZ29vxfO6J31/M59OveI//7gvyrd4/bs7ClOkjuP6MzVH7J2Z0z8e9t9sNJNknF3313pXvpqZ51akmy7UedzboPFOush1t22d3bdVz/6m0r3X1u/r9K9aPvOM0mSLLphZ7zv4pV687Y5rjPvt8uj7610Fz2ycz5nknx+Tufs5Cv+/VSl+8ZZnbnxJFlwqc563Pft/ctKN0neu1Vnfvz+dTv3Rfv/+oRKN0mOnXhypbvCi5Mr3a9+srP3MEn+uf1ple5G+xTXQ93fGcf/+cc7P+efbdaZj0qSOf/ozBttuXJnz8huH+6tLdr9M1+sdHc4pTeHfdItK1S6i3zphEr3Ld/du9JNkj13/mql+/G7OnMaez3Su/f8+6FfqHT333WnSjdJ3nTZPpXu2Z854rqhoaEN/9v/3YQN1h9a/l+Xz/Xrec2s3n6s5ZbotBf/7G6V7lVje2fN3vd05yyVO7/24Uo3ST6ydmcu8icLd/ZZLnDf5pVuksy/48cq3e3+0vlZfGuN3vqsm1bvrAG/6j1HVbpJMnWhOyvd2Yf+rtKdstM/Kt0k2eIva1a6n1q382xw75O99XXn/Luzbvbtg7Mq3SRZ6Cuvr3R/+q4fV7ofem/nXR9Jsu30N1S6i5zypkr36d/23ifx1PyduZBHH7ys0k2SdY68p9Idc9d6le4SX7iv0k2S3Z7ovFB6kfE3Vrpvm3BspZskB3+zsyZwmdm9++Wr7uu0F9yocxbVU8d25t6SZPOxh1a6G13U2Uv7vj16a0V3/H1n7nux23vnF+x/Zuf9Gud8oXMm80dP+3ilmyTfuLzznb3l2Z3Pix+9s/du2ANXm1zpLnHpHyvdJHnkA519ggd9s/Nz/sO2vTmyyc903nl08l6d875Ovrjzb5cku+3cuffc7/fvrnST5AMf7YxLnzPl25Xu327ojHsmyZo3/7bSPfNbnTWdL9/ae5/EJse8t9Ld867emNxxTy9T6V56Y+ce8dmrP1TpJsmxP+rMZZ1QOovgyX/3vqNed3fnrPWFx32i0k2SWw74aKV7wwXHV7qfX/q6SjdJXvpM590oq97cObvutm17z36LntB55/POz/X2LK/z08mV7h7v6ezBOOeSzl6wJJn5+s57aae+ZpVKd+Jpnf2HSfLwzzvnG281q7PPLEl2eve4Svf0+Tpjcgvv0Dv76U//6LyncN/bOmM6U1b8Q6WbJM/u8EKle/6PO+9LTZJTbzyo0r3um529jafNPLXSTZIvvr/znsI7tu/MrS5bWpucJJ++sDM/d/YjB1a6SXLmDidVuuf8fWKl++6zBpVukqz3vc7ZrZcc3bkvWuyI3hz2nAc7Z60futBulW6SfO+6zvrWd4/urE2Z5+HevO03Lu2Mif9+q87enL1e25vPP2v3znjDUcWzJG6cp3NG2p+/efr/tO557GoLDS140tzf/3bc0SvM9eZ/vGX7zplfE+7unO303lN3rnSTZK2jL6p0l/5x795k/s901pQdtH/n9+Lg7/b2bpy7V2eP0xde7OxDunbMLZVukuxyUOedVE/94FeVbpL8Zp3OZ8ZJa59d6S54TWeMN0mePb5zNsn1X3uh0j3+wt645pJLdZ5zv39g7zlpi5M6Z3Odf1LnHbzXffjGSjdJVvr2WpXuKq/pzIUstWRvHcC6R+9X6W70aO+d3e9dtjPHucbunc+MBUrnLyXJNz74g0p3p7M+X+k+8HTnjLIkGf3hzvuBvjeq957qm17fOevjrnGd81Q+skTnfPgkecsznX2CG72mM/Z//tdmVLpJ8rd1Ou+3OWPDzrsqkmTSeZ2fx6ZXd/YW73N2b33Wj//emRd63bTOHNmTZ79U6SbJeRd3rnnnX/beO/aNoztnaA1+3DnX8JLpve+ohV7q7GdYd8P/ekjz/667Y2c9WZK8clvn57zgnZ13QCXJE1/tPKN9ZqHO2oXDfjW20k2SD59a+ju5/rxKdvmbe3Pfo9NZA/7e506odJPk+Fs684WLf/L+Svd1+3X2BiTJ397f+VxecekbKt0r9tqk0k2Sy04ojV1P+HKnm+T0Dx9e6d57bmdv45U7rVDpJsla/+68s3vhz3f2SRwx1DsH/J7ZnWe0H6+/b6WbJH88p7PW/r5PL1HpPrB874yR3ffoPK8ud3dnfc+1a/feFXP3k51nv10Pu7jSTZLDd+vMVR50c+ce8fKP9tY9P7bxzEr3O9M7Z3ed+7rXVrpJsvUHOvNzm8/oncM/9ujO2fM3Tp375ykmySKTOnsDkuTUXTrjAqud33nXyLmXd57PkuTwqzrPDqu/rndG7v63dc7rfufozrsffn5s50zmJLmutB3zd+ufWukedNwPK90kmXRb5z00z769s5YtSQ76WOdMxWM/+ddKd74ZX650k2TZXTu/zA/++pxKd6ExvbODVvzCVpXu2C90zpRKklVL5188c/2E/+O6594qKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4f8hguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBjz3/zH41ZdKcv+7My5fhEvDb0y15v/MXpWpzt7did845MvVLpJMs+0+yvd105ev9JNkokTp1S6x/ziskr34B03q3ST5Or7Zle6k5eaXukuPG6BSjdJHn31+Up342WXr3ST5N6nH6x0N152qUp3aNZQpZskC80zqtJ9ddDpTp/e+1mMndO55jnj/quv9//KYNTMSneBbbeudO885chKN0kWmj6n0h076HQnTBhX6SbJnKkvd7qj5690k2Sx9VetdMdtuValu+QG61S6STJqVuczY9Sozu9yeh/LWe7+uyvdF868sNJNkmlbdO4xnlhsyUr36Wceq3STZIn5V6x0X5o5utKd9vTUSjdJVlxvmUr3lLM6z1FJsv3GG1a6M5+/vdJ99LkZlW6SXPzXByrdAw/4fKX7lWM73SQZM+jcvzw7vfMcnCTTSwNR8w6NrXTHjup8xiXJjFGDSnfC7M4zyZhONkkyu/Pol/HFa371/8Pef0brVRds3+6ZRUiDhNA7hF5FmvSOFEERUZqISlMRBURBuVFEAbEAghWl2imCiIAoSO+99xJC76EESEh5P9zbb/vd+9GRc2TkGcfx0SG/McfKWtc157/NIZ2brlGte7niPeLkWTrxwVM7fyNTZ+n9YgxMKT07THm30k2SlXf4aqU799B5Kt3M2ftlnuXV4ZXu60M736sXnP29SjdJhrxdmpOatTf28tx7EyrdLT+7e6U74Y3XK90keXzc+Ep39OzzVbojRvV+L5YdNbTSnfRmb972E3t/vdKdOLUzDvXiO+Mr3SRZY93OOOLDt3fGdMYs2ekmyU23XFfpPnr/7ZVukiy2yIhKd+xzne6Lr/XGdBZYZPNK97ZbLq90p77VuQ9PkvvuuaHSfa801J4kK6+1TqX73kude8TBy3TWTCTJ43c9Vukuvfjcle6zz79Q6SbJoPk7z2hLzPmBSjdJtt1yhUr3iUdeqnRff/PGSjdJxiy2UaU79qnOd9SwKfNWukmywQadeYdZZl2g0k2SR9+brdK9b0jn8/PBW3rPDvOX1qasvFLn82Ll93Xm5pLk/jvuqHRfe2n+SjdJZp9r9HRvDgz+78cmF1hgnnz14L2m49X8rxuWW3m6N//t8tk762b3emT2Sve+ezt/W0ly2yovV7rrrdJb63vwO1dUupsc0hlz2/OW3nPSA1m70n14pz9XutsO/UKlmyR3PPK5SvcTj3R+xkly+wdPrHT/5+5XKt2vjnxfpZskp07pPDOeveLyle7Bf9+l0k2SJ8ddVOkO+0hv38HspcUAiz57YaV7+uhfV7pJctWiH6x0l717zkp3gW/dVukmycfevb7S/dUGnfXwSXL2hw6vdD8+fmSlu8JynfnNJLnj1s741UZ731rp3nxDb75w4cGdNWXLntH5G0mSwx9+f6W7/qTOGvBZH+7MySbJUnMeVunOMrGzpmXOdX5c6SbJ8HM7z1G3vdZZZ58k/7qmM/f92lK7VroPn7JtpZskKy7a+cw46PgDKt1z/twbx7juxe9Xurdc1xtLX3OR1SrdoR/uzAv9YrPec/C+d3X2B3zwqfsq3aFv9+4x/r5SZ45z49V7ezCWW7iz7+570xardD895zWVbpKs9PvO2PVvlnyx0n190qKVbpKc/XZnvnDZ5zardJNk/WOHVbqHn9aZ+7719N6/348OvaXSPXy2fSrd2cfsUekmyT2Pf7LSPW6Jzt91kvzqqqUr3e2+sGOlO3Twc5Vukgz/SGd8+eJ9OuMj+17U2aObJN/84BmV7i6r9Mah9tvk5Er38bk76/b+/ug/K90kGfLFTnf5K8+udNfb7fhKN0lenLPzHTXnK70xuUEPdsaLxjx/f6U7+8bT/2y7fztklrsq3eE//k2le8UGb1S6STLfc3+rdJ+aqzMHmiSzLfyZSvfeA56qdJ85sXcm3wGndb6zx75+WqX7+h69dTqTh29f6Y6f0nk+S5J/zd2ZK1ljziMq3U8O6swzJ8mlz3fGdCZt2Bn3PGxSb2/Vp5bfoNJ9a8feONS2Zy1b6Z51/b8q3X8897tKN0ne+vZKle6hs3f2yG/ykc59XJLcv+ToSnfuB3vnJ+zx7uPTvXn5oP9uPHyheQflq5+b/ms6lzyvs84pSc65cP1K95hZO8/OK551fqWbJG8u1Bmv+fZuvf10J/ztB5Xu3yZ3PnMvfKE0QJFk9MSjK93nT++cffbd7/bOi9rvwZ9Vumds0xkrTZJ1nzul0t1jbGd+5fIbevssVzpst0p36yGddUPvTOvtbbpo7c7Pec6tenNCgz/Y2Ut0+30PVbovfH7nSjdJVtuhswbn+FM664b+8YPOZ2eSnHJ1Zy/Y+e/29kPePetSle5Z15/Q6d7R+179y4GHVrq/f7OzF2zIG719VXvf1pnHGrrxeZVukqx/QOeaT73y2Er3bx8+v9JNkvF371vpLv+9DSvd9X7/w0o3SQZd9N1K9/SDnq50k+SQyZ2DUB+6Z5NKd7adD6p0k+SNm9etdHd5s7OXaPBp21e6SfLbv95U6e6zQmeNfZI8tcQ5le5GQztjAseu+nylmySL3do5f2LZpx6udO9d4pBKN0nOOKWz5vnQFXv7XQ//83GV7kfeurnSXXZa57yhJHnrqM41n7tFp/vLN3t7Ub5+Y+e8oVtn76yTSZK9T+08S+3/1Kcq3Wvv76w/TZIdb++cv3Tcnp17l38s1ZmDTJL7tuvsl7z6jN7Yyxmrde5fdjzpr5XutIm9z6JbF+78nKdt1pmrPOToZyrdJFnopc7fycNn9w4VfWTtzvffR6/ujGO8eGxvj+CdnxxX6b7y4865u8/tOLbSTZI5RnbGMV46srNmKEnGPNMZ19nqwM9Xuv9ao3OedpJsudyDle7uf+rsvf/HoZ2zHpJk6EudedudThxd6SbJz0/vrJs9aLfOM9p+F0z/9VP/dscv/ljp7rlV5/v6vj+cVOkmyXpXd85TPG/jr1S6SbL8Wp29AXPc+vFKd5V3l6x0k+THB3XmNB5ZujMfdde3e5/La07rrIU/4U+/qnST5KNDO/tHh0/rvIt1tZvurnST5ORtO2s93ry/Mx918yG9vb9Pr9CZz1/vxc53X5LMfnFr/+9/N6Yz5+1PZ8fhX5vO15Is9fvOvt4kOf+HnfGrwf/T2Se75xy9/dOf3XnLSvcr14yudJNkg28uXOkOfW3vSvfhdXt70964uLO/YvLRnfmKL+x2ZqWbJKv8tnOW0dy3nVXpJslFX3mz0p1j3876nmHL9r6Pb5l1h0p3jZs6vxdbDNmq0k2S2e/4ZaX7r4tLL1BOcuO5nb/tbw50xj+mvFrJJknmH7VdpXv1Mp25mxX36Iw9JsnbS3T20Dyy5LmVbpL8YfHfV7ofPfyySvfzJ19c6SbJ3l/r7MFY9NLOedoPfaWzbihJxqzQ2ad031G9875+NKmzvnzZ8Z09+++N7XSTZK0X9q90P/f9zvjjXhd1zipNko++2Jl7e+GJ3prA7TbbvtJ9c+3O38gl532j0k2SY888ptIduU3nvfbPvdkZd0mStZ7q7E3dZbVplW6SrLlgZ2/cemd1zrV47VOd602SL3ynM6++7pyXVro7frFz75IkN/14vkr3vtM659UkyYZ/mf5jwEny1Pydd6N85fLeuSTjd+3M945ftvNesOWHPVHpJslRm3bOeh5+wIcq3SR5eIHOOo6LB32r0p1lsXsr3ST50v98utL94o87Z5cc98D2lW6SzPf7zvvztlq8d97ed/fpzJV847LOWO3pd/TeuT5x987Zn4M+/YlKd+GlOu8YT5JL9+zsjVv/jt44xm2HdM5BnevznTmN47/XOe8hSd578OeV7tTlNql0V7t5+r8P+t8e37bzroMLV1+u0k2SXx99Q6X723k6+3+XGtN73pm46rcr3Q1/2jmH7sW9e2cRfG/9zvrIHU78R6WbJMsdO6rSPe+hzh6MDc/urGFMks1P73wu//POzvPqqiN7Z/LtP3h8pfvzD3yz0k2Sy8+/utJdbIfOv9+un+vchyfJult21sTf9K3Os/t6f1mj0k2SZ+fpPEeddOn4SjdJxl/UOUd6kfk7a5bO+/XESjdJhi91eaV7xu6dfbo7Tuzde17/s84ZWzf/bb9KN0lG/ODgUvm/W+ex8KzD8835pv88y6VnbD/dm/920K87Y24Dq+5U6R726d46jgXv6txbXnPtHyrdJJmwduf7+NqjOvtDJ1zRO7t/2Ke3rnR/OLIzlv7CxM7e+iRZ/q7OOOGr+9xa6SbJD+fszPduvt6mle79d3fWRCTJRit03lX2gds78xU7D5xR6SbJZvt+ttId8URnr16S7PtEZ1z60SM67/E59+e9s2U+ftomle5q3+2sW1/tm1+udJNk3H1nVLobnNFbh/PA3pdUum8OW6bSve+wzlqLJBn+4c77iH+84ucq3b1e7rw3IEkenK1z7sL39+zsM0uS007s/Dz+tWXnd/mddM73T5JRS3fOmfvb653P5dOf7p0D/vNDOusjp8y+e6WbJMvf37nHP+3czpmJ63z6L5Vukky8ovOupm99vTOP/NuDP1LpJsmaV3XOc3h+RG9N0hO3dfZj/uNXnf2Yi/9tTKWbJL99sPMO5W1OfF+le/BdnXH0JFn2wc7v8iIP3V7pJslBH+2sBdj7+c687E8P6L1zfdx6nXMq3pryaKW73CWdNetJcsH7Omde/uDd3tqFX657RaV768qdvTm7r94Z60uSw+fas9LdY0RpDf9NnX3FSfL81p3v1W9O7qybTZIDj5q30l1xg86Y6qVvtc51Stb78vmV7jE7Dq50Tzu9s/c+Sd436fxK94DfrV7pJsnsT3feVbjCVzrztkPH9s5luPG2CyrdA87trM+atsU2lW6SvDS6sw5nyUN6e+PGLt1Zr/bytztnxK85R2+t4aQ1Ov9+c691UaV7zzWrVLpJss/RnfVOb53ZGetLkjP/+slKd/vBne+SpW45v9JNkgMWP6PSnfSpzjnud23fWaedJNvu2Hn3w5hbevO2f5n1X5Xui2d1xmpnX6d3XtWR83Tek/2bj3U+7z/0Tm9869N/7bz36NfPdt5HlyR7nNs5c+XljTpz42Nv7pyPliTjj+qMcX329J9Uuped2Vs/Of5nnfng7Q6/vtJNkgMv6pzx/83/l4+MzilIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/mYEZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg8H/yf954qCpeWzWidP9Ika+M2S6N//t73e8Wuluv+yoSnfI4BGVbpKsuPKYSvfqp56rdJNks/nmrnQv33v5SvfiyQOVbpJsvdiCle4smVrpTh08rdJNkmUnz17pvj719Uo3SVYYOl+lO+zdKZXu0FG9z6JM6/zOzTZL55pnK3zv/duESZ2/k+GT36t0k+S1tzvtd6a8W+lOWXqhSjdJnnzgnkp31JT/6Pbs/9ykzmdnkowc2fm+nusDC1e6SXL/+Ncq3VdvvrHSHTR0QqWbJEMmL1LpLrLELJXuoOHzVrpJMnSJVSvdQa89X+kmyTvn31vpTljjmUr3tdGrV7pJssDcK1W6Iwd1PpffeP7WSjdJPvPloyvdFZbZsNJNkh8c+6NKd5Ehwyrd4UPnrHSTZJZ3Zqt0v/0/B1W6I+cbXukmyf33PFnpTpuj83uRJO++2blfHjal8+w36+DeOMYsUzrPfpNLz5QjBpfuw5NMfq/zvDMwqHO/lSTzTev8bb83rfOzGFT6vk6SEdM6P+d3pk2qdIdN633GvTHQ+fdbeN2NKt0kGTl3Z0xu0JDOc/CQOeaodJNk2tTOc8mIaS9Wult+5shKN0nOOWnfSnfQlN6Y+FtDBlW6662+RaV75aV/rXST5I33OvcCm39w3Ur33ZdfqHSTZPLw0ZXuCnP3xlRnnavTnW3kYpXuagstU+kmydvvdu7Fl1lt1kr3led788FvvPVGpfvKa09Vukny1rOdNQhTZ+k8+70+vjfX9cbAy5XubIM690V3PH5VpZskiy44T6U78b3O33WSLLJkZ37g0scvrHSXmWOpSjdJllxi/kp39KwLVLoTp/XmHSa83JlDG7H0W5VukrzwbGdMboutNq90b7iuN74879Kdv+uR83ful2+69vpKN0nmHtX5Lhk5aolKN0nm3WXxSnfFh99X6S6xYu9+a5aXOu15Z3uo0p1tjt4c6NNDOvcYiy7aW1u01nLT//Pz8ivv+6//2ycHj86+831sOl7N/9p03IrTvflvb914V6U7bttVKt2b5hha6SbJUdcsWel+77wfV7pJ8tcDPlLpnn7ME5XuyJG9Z/5r/rRqpbvcy49Wuq9N+EelmyTr/+mlSvfatU+qdJPkzis69xDL/KEzLvahDe+vdJPk9iU7axe++pdNK91Lnn+w0k2SYa907nuuGHNBpZske17VWTv7pSFjK93F5vlypZskz0zu7Nt6/Bc/qHR3emnNSjdJXpmvM/e29A69+cIr/3BKpbvNG51rfvQrne/rJHnlms76yNv/0ZkjW/iFyZVuktz7ZGcu662nNq50k+S9wy6qdP+6yg2V7rVP71TpJslJX+3ciz/4YGdv1RKf6/1df/3gzv6AFwdtV+kmyYObHVLp3nNsZ//ohLd7ezAePeLgSveAL55Q6a5+5n6VbpJcc8UVle5iA53fiyTZ9ZbVKt2ztr650v3RvCMr3SS5ct3OWOweN3auee61enOnW1zeGe879dKzKt0kWXVwZ+3sTo92/v2W2v3tSjdJFnhvuUp3rjk7eyYXWKs3X7Hyq7dUui985qhKN0kG3dNZH7n6op35gT/u0JlTT5LlftpZ37r2Hg9Uuud99uRKN0kWX3OPSve15f/7+bf/f77ydGdN4F+27IwD3/ZA5/MiSY4/vjMusOugzn3c+Fd+XekmydiPdp5Xt/x4b63vP27tnD/zjQU6v3Of+P3+lW6S/H54Z+7h66uvX+l+bI3fVbpJsuUjnbHrk3+8bKWbJEuP64wDf2aXzhriZS/t7Y1b/LFdK93VHu7ch7+yZef+MElme6CzHv5DH+ism02SEUuMq3Qf+05nrPZ9j/bWGt79P501uaPe6aybeOWY3u/yb/cZXenutXhnPjFJlljxn5XuR1fpjBedtNInKt0k+f34wyrdezf4TqX7l8OvqXSTZKPTP1/pvvWTztrkJNnoY53P5SmDO+MN37urN2/0iQc+WeluNO+ele5K8+5T6SbJ3Td2nv3uPf3iSjdJrn/0junefOv2Hf6r/274uIWz4peOmc5Xk1ywemf/bZJcPH/nvK+Hd+w8h55a2kuXJJMHdZ4Xv775epVukgw/7XuV7v2zr1zpnjKkt4Zj/ps7ayP//MLnKt39x3XOJ0uSOZ96ttKdtNollW6SHLZb5x57iw+9Weluc27njJYk+eAeu1S6G53dGW/bbuvOuYNJ8tm3OntR9rq/Mz6fJB++tPO7/MjNnbHHDY77VqWbJBe80lmPNHJKp/uD0T+rdJPkkyuMrnQXGHxbpZskv7tvrUr3J7d3vqM+9MxelW6SfOKKzvkFD67QmR/be4mvVbpJsuxXO58ZJ3+idw7qQV/ozE+v/1RnfP4r43rnynz+1jMr3ZFHd/bFbfWPVSvdJHlmlQ9Xuo/u1zmTMkkmPdJZHzJ8tscr3SUO7a3NWmq9cyvdIXN29vs89/hvK90keW7DzpjOwqM7Y91J8sjX1qh0V5/aGXt8+C+99/yMnqszJ3vebp+udG98tTeHvPoVnc+MP9zZG5Ne/lOdsbOdl7yz0v3RBZ190Ely2KOfqnTf3bSzX/mOT/Xutz630zqV7rwL9daTXfftzj6zFS47vdJd6Sed8x2T5IlF7q50dxq3W6W75MW9sfZ/TemslTn7lc6Zhkky9V/vVLq/+MUPK90v3bZNpZskX9vwj5XuwOiPV7rf37uzpzhJFni0M+836cTOOflJMvssnXUADzzX+cy45ie9MZ0JwzvfJZt9685Kd7ne13VGrNQZb5jjvt590dxvdc6l3G78qpXuB9fvjJslyfu+8Eqle/0znTG5pb/w/Uo3SRY5pbPnYLb9e+fmzb7L2Er30ec797WHL3VipZsk3z/7M5Xug9sfXunOP6n3/qfbtu+s4TpnzI6VbpLsu2FnX9zCZ3bmVzcbu22lmyQjfnd7pbvPCp3n683uv7LSTZIl957+axyT5O6lP1DpJsnmf+7MlVy7eWfs7LpvdvY+Jck7846tdAft2hmTu26W3jq5fKwzdv3amN5Z6+fvs0Kle/rV/91/t9Dcw/LNbaf/nNOU3/fmCy/7U+ezZtVd/l7pHnZvbyzv/T/vrONYaNu1K90k2Xilzn3Pmd87tNLd9IGfV7pJsvsjnXPL/7Fd52e8y6FPV7pJstvozs9i0zXHVrpJcvQunfeBz/lSZ93zXhd/qdJNkrsP7Jxje/HyYyrdY+fuvY/xewtvXek+Ps9plW6SDP9t55yBZS7t7O0dfENvb9XR/+icXXfUJp3n5+//qLOGKkn+umfnrOBNb/9NpZskx0/r7A19/f2duawlXu+9f37t311W6e5x/52V7iGL9p4dbln2nkp389N655YfudRHK91Xd+qcu3vvVr31kT86sjN3+tpbnb0Br6Tz/osk2WnTSyvdk065stJNkqc/1Tn/bO8vfqjSvehXl1e6SbLObZ13VSx9aOeMnb1euq7STZJtTumcSXnxh3vnh+w1V+ce45rrv9DprtDbG/eP8Z0zki48v/MO14dL729NkqXW6Pwsxqz950o3Sf65Smdv6ipHdeZujvjLvyrdJNlg2E2V7t/XuLfS3eTTP610k+R7a3d+L766Xe+dVS9s0dnP/sbpoyrdC9/XGStKks2+2Bkv+ujJnTWoZ9z1wUo3Sb6ya+fss/t/2zlDOkmmHdUZOzv+5BMq3VNX6p2v+qvJncWXv7j8yEr3++v37j3nXKvze3HD1Ecq3ST5xTydsbMJn/h9pbvbFsdWukmy0xOd8y8Gn955L9jD8/feWbX3vp0xgXevPK/STZJjRnbWzu65dede4Nd/6Z2XM/L8ztrLFTbrrJW5/Pu9z+Wdf9Y5y+Wb93bOikuSb7yyb6X7rUU77ya64KXePcZqc3XO+1v5j535uY327u3//dew71a66918QKWbJIcftlWle/acnTmYye9NqHST5JkzF650n7+2cy7REx/pnVt+yH6d86lPW7KzrzhJlvldZ9/drk91PpfHrdA7u+uM/Ttj18v8vTOmuu+mP650k2TQXg9Vujdu1nkXXZKcdmVnPdt/u2J32qDZ896Q6f9df/GJvfV187y+aqV7xmc6c5zzLdebb/rUqZ3zjA6a1lnPmST73tX5rhg5ubOn58LFemcDvb7W8ZXu0X/svJNjgX1+UekmyaHrHlTpjnu6czZJkgx6rHOG1gr3dMbc9jug9w676y7rfH5+Zt73VboHXXttpZskv05nHdyBX9ys0k2S5W7uvAdtl8s794DPjevtLxzzyc45/D+/r7Mf5biv98aCjnuosybpwJ/vXekmyQt7d8YfJ93ZWQN+wU9fqnSTZNBqnd+NFa/sjP3Pfm3vmfGgFzvz9X/4Ue99tqc/slGle9cZnTUGN+/XWVueJGf9sHPG8bnrddbB3f+93t/17r+Yt9Jd5ZUtK90k+elTnXHeby22c6X7/sN7a1q+Neqrle7aV3TOK/3GKZ0zmZPksCc6Zyc/uM2QSjdJzvpdZ47stOvGVrrv+3DvnKudftH5Lpl33s55l88P9MZ0rtyms8bgkrXeq3STZN3fds45+Nd7nfdLrXpT53z/JBm2ZOe9pQuN79zXTv3EfpVukmTWOSrZw3fsncM/5frOWoBzjvp2pbvn6r01/B9c6YlKd/7HOmdUDD/knEo3SY7e/MBKd93ren9/l9zXGfs8adTYSvfg7/bGJx+4pXOPcegnO2fu3XNvbw504Xk77zO77o+d8a0kOXO3zr/fZg931uHcscPGlW6SvDBlg0r3tkGdM1a/8L45K90kOXpIZ5/ncof31q3Pv0qne+AunXmH9x3X27M820udeZhfH9rZG/flDV6vdJNks6+NrnSXXrx33vOcW3Z+zpuO6Jwfud8mJ1S6SfK5dNbBff/RzlkEk87uvI8nSdZa685K9+u/7P397f565375xs06e16POvOblW6SDP17Z0x8r8c7e3OO2+tXlW6SPLD57pXuBVd01lMnyYmvdeYqnxrZOd9uyzc74yNJcvDfO3MPB50/vtI9Zv7e3/XRx3bmKq95ad1KN0k2mLVzxtb/m94pcgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5GBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGPyf/J+HTBvIYlOGT/eLGJj33ene/LfBIwdVusNXnq3SnffWiZVukowaMVDpbrz4YpVukgydZ3Kl+/BzUyrdwXMNqXST5IlXX6t0X3zy+Ur3udfeqXSTZNHFxlS6I6ZMqnST5Pl3JlS68y6zZKU7bUjnby9Jpk2dVukOTOl8fk4ZPLXSTZIh77xX6U4a1vm8T5K53pv+9wFJMuuIzs956mwjKt0keWFy5+9k2DJLV7obb/yBSjdJnn+385k/eErvs+hD625W6T7w3EuV7p0PvlHpJsm742+qdFedbc1Kd7E5Xq90k2Rgvrkq3U0226PSTZLNNun8PJ544KlK97mJne++JBk57plKd+4FZ690t/3QepVuktx90zmV7pJrrV3pJsmaq25U6V553TWV7ic/tlKlmyRX3tj5XB41f2cc49Enx1W6SbLaigtWuvc+3vtefTudZ/dRlWoydWLn+SxJhg3+j4Yd/48NDHSuedBA795zyCydZ7QhA71xqEEDnWe0OabOWulOHtT7Xc60zs9i5Cyd5+sJU3tj7VNKQyTLbdC7X559UGe8b9Kss1S6s7zXmx+YMGvnd+7lV+erdOeas/d3PWFK53N51KjOfFSS/PT40yvdt97pjOmMWX6RSjdJNhnaGe8bmNL5Xl1njXUq3SSZf6k1Kt0Hb/tHpZsk097qzJW8++b1le7zby9a6SbJxEmd+8/nxr1S6b773suVbpK89lqn/dobvXv8yS93vrNHLjim0l1kiZGVbpJk6NBK9rH77qx0h47s3WO8/PzTle6sC3bmg5PkmRc6Y6rDpgyrdGcd6M3nTxreGQeeOKTz3TdlQmesL0lmK91v3Xvrw5Vukmy62TaV7tNP3lvpbrrJCpVukiyx7Cqd8MTOmOoqK25b6SbJMvN35v3emdAbX37prc7gy2LLvr/SXXBobxzqmkHPVrqvj+uM6Sy67ryVbpLMv9Dine5svfVQswwt/JwH/vtxl/kmPZr9xn50Ol7M/3prRGe8O0l+u96Ble4aH/1ppfu+w+esdJPk2c0vrHQ3X/LjlW6SrLLWSZXukAU7z6Lj/9xbB7DZ7J2503fv6fws7h7890o3Sdba7dFKd/SpvXvL+6Z1xhPW+HSnO+aR8yvdJFnhu49Xusd/vfP5Oefy81e6SbLr6uMr3RHP7V7pJskvV+qMmZ56VWd91pqv3V/pJsm7b11d6c6yamc/yvu22L7STZJB9+5W6W5+zz6VbpLMckjn/vOnvx1b6S71VG+f2SvzdcaZPvN2Z059wdk63SSZumNnfeQcC3X23CXJGVv9sNJ95pG5K90r7v58pZskV/3jlkp37sXvqHQ3+MXKlW6STLv5vkr3J4e+Wukmyd9Gdb5LFnyt8zu35qTeOoD5rzqs0j35h515vUkrrVbpJskn1tmq0t3vpc7cW5IMn3JzpXvNrZ31WQ+v3nve+cXIzrj0Eyu8UOl+9aB5Kt0kOWBiZ45zlnU6a52S5NLlO89+L532YKW786je3OlDO19W6R59c+dz+ed7bVLpJslzUzq/F6/ecXalmyRP51eV7p8vXqbSHfO13j7P/V44pdI9Z4nO8877BxaodJPk0kc76+A+PnKJSjdJZrukc4941LlrVbp/3+KRSjdJ9troN5XunAt31j0vvmhnrUWSXL/OCZXuG5cdWekmvXMqjnj+ykp34O3OXr4kmWfxv1S6G//h0Ep37bPurnSTZMILp1W6Y5/ZvNJNkuHXdcbkPv7PSyvdvz7Qud4k2XDHzlkg81/ZWWv49u2dtclJcuRanc/85X/ZWc+ZJC/+sjPX9dCZlWxOuuiKTjjJCXsuX+lOm9RZp3PDWqtWukkycUrn7/r161+sdJNk/Nc3rHQHTvlbpXv06C9Uukmy1FGd/ZgPDe487+x2YW+f4ItrdJ5X5/pq5zsqSdaar7Pu5Z65f1Lpvr3sJyvdJLluu86c1MNnb13prrFWZ6woSW4a11n3MnTXVSvdJFlu7un/uzzsxf/u+ezVhe/MmUdO//u0e0++cro3/22BPa+tdEdv0fnMvfITvfXDB939wUr3q6t15vOSZI1bd650L/9I5/5hqVl6Y5qvTfxRpbvenztzvZfe1rtfvWOWznf8OS/1zoR9dKvOeZeX3NT5Wdy63Zcr3SRZZ53bKt1bz+p8fh7xwXUr3SR5bO8bKt1frjC+0k2SKz9xeKU7+fDO+S8fOLb3WXTY2509I/+c7RuV7kFf7YyhJ8kiR3Tm6jf4TmdtSJLsekhnfmy/QZ0xldX/+olKN0nGbfD9SnfQVv+qdJ97ujMfmyTrvtT5WbwzS2d8MEmu3X2/Sne9uzvdJT7QO+t5tzU743g3rNs5YXXqX8+vdJPkysM647Anf/u8SjdJ7v14Z539uHM6c72bXHJVpZsk60zonHv9ypud79VHT2ydQpz8Yp3OfslTX/5jpZsks77YmR+75InOvdwyB/XOFP1lOmd/fvzqzh7rh6+7p9JNklH7du4993q49+y+3unfrHRHrNw5S+WHC/fO+1ru9fMr3RX/1Nl7v+B1vfVIb3z3M5Xu21M3qXSTZLs/v1XpvnZL51ynid/p7fF8/ttHV7onDel89915VW+P4B27dPbFbbV3b7/rXyZ1zr7Y8rn1K92bruqcZ5Mklx/XOQvuL+cfWOkOWbCzXytJNnix83Pe7I/HVLpJ8pVtO3uJvrj3tyrdP330d5Vuknxzq87+0bl+2Jl3WO3d71a6SfL88p3n1SuW7Y3JPXZ+Z7/5nV+9qNKdckJvTG7YhM6ercv/1dnXOHxo7wzwe+fqfK9euuuKlW6SfOuBzvvMph7120r3qRFnVLpJMnhY5x0Yu903/c+VTJJnf95bW3T/Db+vdO/4ZufZIUmOXa1z//LHjVavdB84qXe+6v6Hda554893zjd477MXV7pJcui1nXHEz/y69+y3+NU/r3SPuKmzD3q+7x1R6SbJc0t39oJ9ae0zKt2hx3fmM5Jkm0XHVLp/f+PrlW6SrDWi966K/8aTk57Ovs98bbp3F5+y3HRv/ttH97yk0n31r53npCcH997nd8rTnXOBVrh740o3SX505BGV7kFndPYML/X13vkTP3lnfKV7wI4fqXSvuLAzV58kWz81ttK95oT/qXST5NPHd8alH7+gs7fpvVd77+z+4iWde8B9zujsR7ntzd7ewoMv3bXS/fLVW1S6SXL7rdP/PiBJ1juyszdnw/1PrnSTZIeTO/cvR11zRqU7ctXe3PfdpXv4hT69aaWbJA9udnmlu/vtT1W6X9yxs5cvSc54ctVKd+RmnfU96w3tvTN49LWddw998N7euUBfW2XZSnfXnTqf90cfskOlmyR3b9d5j9ahYztjQQcf+0SlmyS73vS+Snfv3b9Y6SbJ/At21lH9esXO3tTLB/feh3rIF8dWuvPMvn2l+91z36x0k+SUdUvjGCN75+OeP7Xz/bfI4p+rdI/drrM+JEkGnu2cCXv2q5353o+e3VuT9OclOuNFK1zd+13+wsTO886lj/yz0t19na9UuknyqWe2q3Qfe7TzLrPtf3ZipZskL3+uc2bNeqXzHpJkti0655Xu+1Jnrf0L9/TmB/ZbunOO30aXduZkv/3cGZVuknzygs5a0R0O6Ny7JMmdx3X2mm159p2V7tGn/KHSTZJ9n+s8O9y8U+fzc+xRnfcSJclrm3bmuv56ZGf/WpL8/GOdZ6nPHtJ5T9ODH++NQ33y8u9Uugvt1pkbP2R0Zz11kpy7Wefec9cVemuSjjm2s47jTwtfWeleeFHn8yJJDjum896OdZ7szNvOembvOerxwQtXumft0vtdXuiQsZXuRQd0ztH82wK9NeC/fr6z7+6tz3b2Hdw1ond20C8uvbLSfeGY4yvdJLl7vmMr3bm36Kz1PXibzlljSbL1ZmMr3d0/0Nk/uvjcvTPcH7m4s7d4xc/31q2PeuRnle6Pvr14pfuF3/feJ3H5ap13ZO+/zlcr3WUf+2WlmyRX7dw5X3KPOWerdJPk8we/vxP+L3/l3njknfxrmwem77UkeeHS3jqObVZ9u9Jd9rs/rXR3uGZMpZsktz7TeQfvJW/3nvkfXq5zBszWt3bW133xny9Xukly9hNjK93nT+3cT+0+W2++4rLfdtYuvHZT54zVJDn1xrUr3UX/Z2in++fOZ2eSjDigM9/0sUU+W+lOPre3N2enHTtjNq9O660p+92Nnb/tG67t7JU4cYM9K90kuXNsZy7ypEM6a32P+NMvKt0k+eOzN1W6z+3Q2QOfJKc82lmfPN96nf0oa67Rma9IkueXHlPpjl6lks1vPnBjJ5xklS915iKPGPvpSjdJvrFuZ73hsX/vrEkacW7nXLwkufZPnXU4v1yiMw+58sjOGY9JMnpQZ9/Pp2bvnbvww5069+JD91+o0n320c77r5PkTwt21ohc9bXFKt2vbD2m0k2SXy/XGfM+ZO2DKt0kmWufzn3RMrN01hjctUnvHPdD1t290h1zUedctQ9d09vX/8bIzntorv/SCZVukvzi9M5ZmtfN3jm7/KADz6l0k+SvP/5spXv+bPNXuret1xlPTZI7H+qcn7XPXb13Bxy7xk6V7rj9Omd0nrBM7z25E8Z3xuTm2qOzt+OtC3vnMrzxSqe9xDGPVLpJMnzBznq1YaM694jvbtJZm5wkd+/UOcvlJz/p7B9dbNneuYa/37jzGXfuZ0qDOkkeWf3JSve+Zzpzzb/8XOd9WEly37IHV7oLnHpnpXvPT2etdJPk8VVeq3R3PLZ3j/HsgZ01Iku/vzO+/Ph5h1W6SfKbp79d6f7qys4a4hsO7Yz1JckR7+/sLd559d5c5R/37Ly3ca+NOmdULPq1zjvjkuTkNzrvAL7rtnkq3atn6Z3jfv6UztqiKUd33veeJPf8uHP+001jP1bpPrV477zuHb/ceT/Yvht31oAvs+RZlW6SXHhk5+ygxe7s/f0d+a/OWt85zuvc4x9waG9tytkrdfZMXn9d53z/Fb/U2z865/qdtR43X9h779hds3fW9g37f/nfezvRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBoP/o//zrMmcC03/i/jhP++Z/tH/j10WW6HSveSa5yrdZy66ttJNkuWO2bHSvePepyrdJNlk5CKV7j/nWbTSXeK1oZVukiw/akSlu+zas1W6U6b9Rx8v/5HBmbXTHZhc6SbJe1MHVboDk6dUuhOnTKt0k2SWgYFK971BUyvdWYu/y4OGd37OQzq/FkmSd2YbXulOe6fz9/f4gw9Wukmy4vtXrHRXWO39le6yq2xd6SbJykPeqXR/e+avKt0keXtQ5297w/d/qNJ9+63e7/JrI0dXulfecHGlu+qia1W6SbLAS69WuiOHzVXpJsnohTufy3MvP7HSXfjNzr1nkjz12BOV7iyTlq90B82ybKWbJPMu03l2+OX3f1bpJsmenz+o0l134/Uq3e8cdWSlmyRLzzOy0n39nfcq3VGzz1/pJslTL71b6U4e6HzGJcnE0vPO21M6zztDh3SeVZNkWueSM3jQLJXulPc63SSZc9iwSnfSpNIPOcmss5R+N6Z1HlgHpnbGipJk1tKPYtLkzmfRkNYFJ3l1auc5atTQzmdnkgyaffFKd67ah9yQTjfJsKmvV7qj5p290p3l9Vcq3SQZNbrzjPbRbTv3nkky29xzVroL/2fThP/Hxj14V6WbJBnydiU7eUrn3vPBR56sdJNk0PDOs98b4ztjfUny2NQbKt15hnWuee6pnZ9xkrw0sfQ59+Z9leyio1evdJPk+XfHVboDb/fmbdfaeNtK9+Z7b6t0H3+x89mZJKPe6Nx/vj7QucdfcZHlKt0kmWeuzvfqLJN7c5V3PdT5+1t7k8590eXnX1bpJskHt9+i0h0YPKnSffvt1yrdJBnybucZ7d5xnWeSJDn7b+dWuqPm6KxZmnVoYfHdv02+rpIds9DSle4cg9+sdJPktc60X4ZP7Y3JDX1jfKU7ZI7OfOLAnL35gQVGLlHpPvdm5xfj2Sd78/lPPfFopbvcIp1x6ySZd8j0/znPOui/X1c0bcjsmbz4utPxav7X0RN3ne7Nf/vZp+apdC/59T8q3Rv+MrbSTZKhW6xf6V529tmVbpIs/f41K917j/xlpfuPZ3tjed9YrfNs8MTgznfb0HdOrXST5N4pH6x0Xx+9cKWbJNss0Xk2X2to5znpho915iuSZOJfH6t0D1z7u5XuDTd21ockyasTr6h0V1rj8Uo3ScZe2hmn//OnOvN6q/+997N4Z6nOmPf67/90pfvcgp3v1CSZbbnO+Mef3zit0k2S95+3WqV7zNcXq3TH3d15lkmSya9PqHR/+aujK93vnX17pZsk99z6QqX710V6e6tOH9e5Fx/8SOczbtFRd1e6SbLtpKcr3ZGvb1bp7jr8jEo3SbYavm+l+/VfHVPpJsnv1vhRpTvu71tWutt/rdNNkjXX6zyXDF26M68w4si5K90kGfbLjSvdMedfXukmyTyDr690V119qUr3ymmd774kWWCXNSrdScd31i58ffneBtLdzu3ciz8/rHO/lSTDbvtypbv0Yp19Li8t3rkPT5Kn7v9YpfuleTvPq+98sjeOceAVX6p053/12Eo3SR787AOV7jkvfr7Sffa0f1a6SfLWb7ardKeddGWlu9ULvfU9fxjYvtJd5EOd34sk+Z89xlS6t+7YWQO+8JDez+K8RztjJNv+9c5K9671d6l0k2SOaX+udIee3BuHuvsLnbOUvvT3znPJg/N/stJNkrcW6ZyLsud6B1S6244/vNJNkuPevKjSXfHtzh75JPn8eZ351SMePKfSXTF/q3ST5JabOuudLnnpmUp32uPbV7pJ8tq2nTMflt+/szcnSRY/rzMOvPW3O8/B5+3eO5Pv1XPnq3TnurLTXeex3rrLJV7uzOdPuPj3lW6SvDT5U5XujSt25h02f+MTlW6SXPfDBSvd1y/sjHtOfKO3bvah026pdJ9abJlKN0kWP7Cz7mz4p39d6T6xVm9MddILnf18c7zdmVu9YfdVKt0kmfDRsZXuEl/uPDskyePLfW66Nyfe8d+tV5r01HIZd+CfpvPVJKec3FmbnySX3nN6pbv54M45flsPurnSTZIV/9HZc/qNvY+odJPkT1/8V6X7+qmde6mfL/mRSjdJFvnmw5XuOfvPUeles3Tn3y5JfvbJnSrdq1/tjA8mycDHj6p05/laZ23yfF+5utJNkguOnP7fa0ly554/qXSPu6C3/vvxkw+pdLf4Su/8gtPe6sxDLvW1lSvd3+3RWdeaJH/+zIGV7vI7dc6Yu2zfhyrdJPnXIZ0zykbd0Pm7TpKzvn9hpfu3479R6e54fu9M2B0Gd/YSHXZ4Z/3ieRutXekmyX7f77zP5XNzdvbVJ8nBw0+qdDe8/4hK96pDe/uc/7RKZ+7tm0M6zw4nr9Gb9/791G9Wut97uHPeUJIsN6KzJuI7l3bWrG99Quf9QUnyqw+dUen+fsnOHPIf9zyx0k2Sb326M/ayxUmd8+WSZOVHO2MvBxz8UqV709IvVrpJstB5nTMprz2x8/e3/6O9NZcb/KZzj3jksN55bb/Y7aOV7rSnOuPA696wc6WbJMfd2llPPefrnXuBWc6+stJNkjmW6NwLXDq2N6b6vWmdd0E+90pnDdzlI/+n0k2ST+5/WKV7/Sade89rzu/cxyXJ3Qd17j0vOaHzM06SgdLe+2X2+E6lO3Bfbw3OeZd0xhF/ObRzPuBOJ/fWZu1z0z6V7hPznlnpJsmNK3S+V5fYsTMmPumoSyvdJNni2hsr3Vmv7lzzbvv33nm06Mqdc6QnfKp3j7/NThdUuqsus1Gle9gmvTXP9z/SWbd39Badc4Nu3LQzBpwkPz5+80p3med662l+c0Fnj+dDd3TmV9efOKbSTZLlBx1Y6V7x8c590TaXblDpJslr13TOENzkleMq3SQ54dnO3oDFnumc+/Tc+N5cyTo3nlfpnrZi5/NirWM6Z0gnyaBVD650L7q3c1ZHkvzyI539ylmsM5+/8kDvfuuuIddUugdc1zmb9wsn/b3STZJTvt45u2SzVb5d6SbJBy4bW+ne81/+d6NHDM5HVp/+ZydP+WpvXHqOpZ+tdD+y2PQ/8zpJBk3cptJNku9/9g+V7pMr9s4PufaHv6l0v71uZ+7t3fftWekmycRlO2v3Tvr9hp3uyr01/KvOv0Cle/y1vbMjr/rG/ZXu707ao9L9+1md8dIk+fOWnWfzLZbu/Iz//vXOXvIkuXSdOyvd5X/wvUo3SYZe2pm/mbRDJZvv7lZ6cU2Sxz/VeeY/Z5POmWqnfae3bvbwlzt79jd9uPRcl+T8WTv7c469tHPe3ugpvbnvNzbonDOwy186Z/oefWnv/ddTv/TzSvfRkb09GGtu1jmz5ub5O+fOz3pqb//7j2/evtIdfktnHuvVh3rvDF5yp86+g7/9+K1KN0mW/1lnvnfi4p3vvzu36b1/fvhnOuc6vXraxZXuPJ9atdJNkgNHdNa0jPt8bw3/01f+pdJd8C+d7pPr9PaZrTG5M5c8z5Wd76gDluyMjyTJp674eKU7ZlhvHOOEEzpjcidN6dzjH7hhZ491khzw085ZwRsfuHule/WSnfGRJDn+w517gT9tsH2lmyR/vL+zh+ZzG3fuMS487PuVbpIssXjnM3+eNzvrLb46pLNmPUkumtCZh1l2wvsq3SRZ6fHOezse+UVn/+jSa55Q6SbJR0/r/C6vc1dn3u8HX+idNfvKnztrqn97fW++frujO/u3nz1yt0r3jkc6955JsvOsoyrdD684rtL92Wy98eVPHNE50/D5q3vnzt+w3JhKd9Ej/9uVHP+/Lbj73pVuknzlnM7avXm26qyD+9iqnfHwJJn8/OKV7iIrja50k2Suizr/fhMmdM7nPPmjvb05R5z440r3r8d2ztHc5qqRlW6S7PmnzpkBI+5Zp9JNkt3e37kveuPBzjqrH43vnSP41DGd948u+q3OXOXanxlT6SbJym+fUOl++qbpv3by3y5euDPvvt5lnfWTN2zc21t1+vydueYnV+mcUfGJHXrvrFpx3s65NuNefq3STZIxT3XeX/nfmrDAa7n+kOl/HzH8m509BUmy322defWdPtI5Z27dD/XOgtt6885n45qnHlrpJsm6v+t05xneGadYcOneGvAtd+l8V1y3/CuV7uc/u3+lmyTfvafzPLrJqM4YU5LMs2lnnOKIMzvr695+7KuVbpK8emHnM2PTH3fWty7zVm9NywG/6/xdr3lu7znpvtIZ/7sv+JlKd/8be2eXn7d/Z5ziwcU6Ywn3PfaVSjdJPnJ453d5/iG98atRd3bG/6dsfUel+/11jq90k+ShV/5Y6X5umc77rz90YqebJNP22aTSvfsTnb31SbLEH35R6b79pc57jjdbrXMWXJJMO6GzpuzLT3XOSdrhs5292Ukyy3c7a4gv3njfSjdJZnm+s47q+q+tVOlufvAjlW6SDP51Z17ow4//qtL99NjO+pAkuWKezjlJf72zs7Y8Sfa4trNebeGtzqp0lzutd8bq0C+dUukevs9vK90z7um8Fz1Jjn6gs4dmybN68/XbHdgZ///Hi53Pz+U/e2WlmyS/X7BzNtCS+3XOxfvb/uMr3SQ5ZsNbK90fThtW6SbJ/gd2vqe+vGXnZ/GrYb13gqz1xTcr3d9u1ZkjG7xK5+yLJHliw846ql3W6M0PXDbQOYNprdU64w337dk5nzpJPvTAqZXuPsd11vBP+VRn/1qSnPp85yyeex7u/f2tumHnXN+hN3+t0v3EXr0zfiZ8+apK9+z9OvNzt3zkB5VukkzavbMObvu5Or9vSbLa+p3vkr/+9LOV7leW7cxTJsmCwzrzq9/aqrOG+HcnP1/pJslR7xxR6f5kUmcMOEkuu2KNSnfMMZ0zHw6f0DmTKEnWeevOSveixTufRafc2FtDvPLrnfGi3U8+udJNkr9d0nku+exVnTVn4zdestJNkt2Gdn7O19zbeaY8677OfuUkuerqzlj7BS/03if4ua935ucmrNV5Xv3O3tdXukmyxOQrK913Vui8X+O5v3fu75NkzD2dvdCHDu2dJfG1Xf/RCf940/+v/3Pv5DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+L/IwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnB4P/k/zx56qCMn/Af/Sf/Rz6y5JLTvflv/3hufKW704pzVbpD379VpZskwwcPVLrvDB1Z6SbJk0+9Vukuu/ioSne2eQZVukny4qDOz2KBwfNUuq+++kalmyTPvuGTAfIAAQAASURBVPBCpfvWm29WukkyYdACle7oN16vdFfZYM5KN0mmTZ210h1U+oyblt7f9dTJne7wabN0wklefPflSveUH+xV6e6w1baVbpI88uRdle599z5Q6a4wZrVKN0kGzdP5/FxywcUq3SRZZOn3V7qThr1T6b762tRKN0neHP9WpbvKihtVutMmv1vpJsl7Q6f/s06STB6YrdJNkqcfu73SHTK2c80Dkzv3tEkyZuExle7z4zqfy6++M7HSTZIl5niy0v3qd35U6SbJ43fcV+mu9v5lK93555290k2S1yZ0vkumDHS+SwYyR6WbJEsu0nmOmnfye5Vuktx7952V7nPDhla6A8Vnh1nemVbpTp3W6c4565RKN0nefbvz9zdiWOfeJUlmndh5dn9vcOd3btgsvX+/QQOdax4ydXil+/q03v3y4CkTKt25Ful9l7z08rhKd7YFl690L3ioc++ZJO9/r3P/+eDozvzOQw+dXekmyXYf+3ClO2a+hSvdJBk1fFil+97UzlzJ3IsvU+kmyarzvK/SveG2GyrdzqjL/3rysTsq3SFTemPisw9dtNJ9+/lHKt2xL9xd6SbJO3MNqXSnvrdKpTtheO+3ef33db5Lxi3SGQNOknkWXajSnfOJeyrdSe927j2TZLXVV6p0xz5yXaX70J0PV7pJMmrjrSvdOUd3xgSSZJFVO93lR32s0p32sdGVbpI8+2zn72+gND6y2Eqdz/skeXdy5+9ky7VWr3STZOSiK1e6b094ttKdMryzTidJ3nv3qUr3nUmd8YbFS3M7STLlzc448JTSOp0kGTGyMz/3+rDOZ9GgV56pdJNk5Hydsc+/XtiZQxs1ovd7Mf7dznqMseNeqXST5PoHpv93yauv//c/4yGPj8+Ynf86Ha/mf612y1ene/Pfjrll7kp3joU7a502e/hrlW6S3Prw7yrdld/praO6Y9POvNDO93+80p197LWVbpIcMv7tSneH7f9V6S4/R28dx3EHdNZd7rn8zyvdJPnRoM6z3ez/6Hy3LfRsZ04oSV65rbMO9baBRyvdN198tdJNksF3dr6jFr27N2az/ugbK92DDti+0p1jcG8/wxWzrFHpLj6xs9Z3gcWXq3ST5MKhnbm3e2++t9JNknku2KXSXeSTneeZ2+/urV0Y8WpnjuX5b/yk0n32ys5nZ5Ksv+Yile5Pn+itj7zkte9WuiOnduYh19mq9x1127X7VLqjH7up0t1ovm9Uukly6XU/rXQX/v7RlW6S/Pr1zt7iY9/pjEvvPLz3uzxtsc736jnTxle6F6y6aaWbJB8szasfd/D4SjdJxt/zvUp3yws+UOnu/NSqlW6SLLzo2Er3+nQ+7/ee9VeVbpJc+c8LK90Pje+t47hjwoqV7tBlP1np3vaX3j6zZZ4YUemutPO8le76I/5W6SbJFQOdNZ3/s88RlW6SzLHwyZXu+St2xlTv+fgFlW6SrPL6CpXuXrN2xs6uOn7BSjdJFh7Zea6c/MnOfVyS3LjT2pXum+9uVunOc+3ulW6SHP6jzufn4Gc7ayJ+uMpDlW6SLHJu54yYdQ7sjYmv+tCele7oRTprOn9/xvOVbpL89pv3V7o/ebMzb3vhYp25uSRZbZ/jKt0N/3RbpZskD2zReUZb/MbOXNdmj6xZ6SbJwIajK93bZu3sP3zzzMUr3SQ5/JdrVbpvz95ZA54kV03p7CHd6/HOmOqPxnT2bCXJ586a/muhkuTAhzp7Jr+8cSWbJNnwoiUq3c3P/HGlmyTbjftTpbv848dXunfd1TuLYKktO/uJpq60dKU7cegPKt0kmX9sZ3xrmVfOr3STZI+1O3OKc3yqs07ug7v8odJNkrs++GKl++07OvdFwyf8vdJNkqfGXVPpjvhp7xzBVx+c/nuW33z6v9uvvOgKj+X4i6f/38C9n//SdG/+27sjO8+iT7zUWZt85J69NbP7XFVazzn0g51ukuN27qzB2esLnefFOy9+vNJNknuW7Jx58tI+nXUyX7ykN1f4s4U6Y1fz/bJ39uDpv7q80p3wVOd5492Vj6p0k+Rz13a+509/rjM+/4Hbe+dFXThr5xl31416e/ZHju6c9/WNIzvnh3z5c51xxyRZ72O7Vbrvf7nzd73o8t+sdJPknD2+XenOt9NHK90kWWDDD1W6v+sMfWT1id/qhJNsecv5le5Jr89X6X7u4d747sY3Pl3pnrRsb67w11d31uB8ct/OGS3XbNXbL7nwpM49xro/65wRsfa6vXfmfGnTzjP2Rkt07l2S5GdDO+tEb39910r3B4t39kgkyTM/6axneejyzvkv829zS6WbJB94orM28sy/XVHpJskt6ZwLtNDGnfH51RfboNJNkjGHfL/SHbdcZ83z6ce9VOkmyXGPdcZI1ny6t4Zjljm2qXR/tH9nPe5lF42vdJPktFk7+0df+vwvKt2/Hdu5P0ySda7vjE/ut21vj+AOz3fWRj5x8/mV7lVL9M4K/unh21W6283emSvc+L3OGSBJsshPO/vtLry/d97eiNuOqXS/uXlnbc8+3+it8/3+Dl+sdO+8qXMm3jk/7LyjMEl+c2TnTO2lXu28ly9JJixX2ku7Y2fv/Zpz9M6qGvOJztjnr1/q7IPefmLvHL91f9LZ87PaOb3Pop9+q/PvN3DA+pXuiTv29rF/cvnrK91pc3TWNvzqst7e0WPu+Gylu+IFvX+/cw+6rNK98dL9Kt0jTu+dlbPHv/aodN+77aBK9+Ibe2fwH7lr54yD5f7UmyvZ9aarKt2TJ3TeEzP8E50xgSRZ48LOOrkfz3d4pfvKD3tnaowY1zm7ZIXf9N5Z9cZHOudgbfS+DSvd0+7evtJNkrtf7axb2u+0zn7lO/bbudJNkpUf7Lz34Z8L9vab37ly7z2F/43XX1swfz/369O9e8BXOvu8kuRv+3bO+Vhs1x0q3YkP9/amfexjnfnCny3bO3/i7R92zpt95oU/V7pfnKN3Xtsb+3bWdK78oc7n7vtP633PD5zWWcdx4CWTKt0kGf71WyvdB/b9SKX7+Xs674NLkq8s1hmL/fSJnfXJC489pdJNksEXdc48ufUbvbULF660U6W7/786i0X/9uuLK90kWXGDdSrdAz/eWbe3zdjOGqokueylvSvd05+4tNJNkhd/2BlnWvu1zr3ck6V3MCXJ2+k8cywx+rBK954VenurZr+lM69347qdfWZJcsyjnfvlD/2zM+b2mQ9uVekmydKbdPaNLPaFzvf1z3fqjdFf9vCDle5zH+48UybJOvffV+luMKnzbtG3V+x9Fq31tU9XuuO26ozlTfjdRZVukrxwRGft0Md+fXClmyT33X9Cp/vnzvmcX96scwZxkjxzS2fd7KnLd/bQ3HJF73N59cc6e1M/+uHOWbNJ8s51nfV1t/28M5a+8RrHVrpJ8oUrO+cvfXCdzn6+Yxb5QqWbJGsc17mXO+uwzlqLJFn1w501Iou+11kv89b8vXNRvr1QZ9/WL0d1xicP3q/3Gffw2Ok/z5UkJ+/w+0o3SW7d7Y+V7qmTflPpfnxS77yjI+7vzMMsctkhle68g3triGcfN6HSXeyxzr7wJPn6h86vdHd4c3Sle/txvX1mv1m883ey0uqdfZ4rfKnzXvQk+dJsnXNRfrRZ5/1PSfL2sp29Zr9dtrO24Y733VzpJsmIdPayf/nEzvjykZf21iQ9O64z9jLbSr09GL9bdpNKd577Dq10d3iht59hxF6d82fuuuyHle4R83feaZokB67e+fzc+sSTKt0kefnpSyrd7Y76Z6W75Sad9ysnyYjfXl3p/uSKzrqJIf/qjU8uv2PnvaYPXnR7pZskhx/Ted/0ur+5u9IdumPnHKwkOfU7nbGzrbbunEt0ypTOWXFJsv/PFqp0z3/xq5Vukiw+R+dzOX/a8r/6z8aMmDc/X33f6Xwxyb4n9MY/Vri8Mxey2oqdcxc2H9Xbq3fkzp3PsAe+0hlvS5J9lliq0j1n+c76ujv3/06lmySj7uj8ncw+6vxK99snXlnpJsnc53bekXD+rztn+SXJbWd21iQd/5fOmpbNxnfOMkqSC57sjBP+aEJnvHuvw9+pdJPknw+cUOnecMLESjdJvnBB57z8KbucUemu/4POWetJctXnO+/0u3KbzrkZZ57ZO7/uz3d31ohcPq4z35QkAy92nhmHfursSndE6Z2zSfL02Z3xqy0WOLfS/fB9B1a6SXL+QGef0qwPdcZVkmT4Ip1zmU//RmfMbb2tO/vUk+SLb9xZ6S56ROcMirk+2Jtv+siJnXXr247+S6WbJAdd15lz2v3Zzljs2B/11tcdfG3nXY8vfa9zruGU7/beNXLYa5159fkP7I2lz3VmZy5knQf3r3QPP/q5SjdJXv5/2LvPaL3Kwt3XdxYJoSf03glVOkhvIiqIiojSVKoCoiAgFkRAEbEiTQGpihTFAqgg0qT33pFeQocESCBAkvPhHL+dPfb+M3KPNdYe1/XRob8xXVnrfed85lPm73yXTPxnZz3RHzfqnad5+zc7e2neONcrlW6SbL1HZw3GhJM66w8XyguVbpKcNv6wSve12TrPq98f3znzMkl+sGPne3W9z/beD4w+orNuZPNRnWe0u0/rjS/v/PvOer5Fb+3MSTpxscMr3SRZ9bvT/pzVJFn/N737op1P7nyXzL3Go5Xu41OWrnSTZMfNOnN8lv9L537r3K1648ubH9TZV+rKgzasdJPkG9/qjJGcsFFnft3v5+qtzfnDiNMr3TFf7KxHuXimzhm9STL1rM66n80PWqTSTZKDJ6xb6V5x6Wcr3Q2++nilmySrPXR8pbvuOZ372os37/1dP3JTZz7GRw7uzJtNkjFTO+tzLl7n/Z1B/78z8kdHV7pJsv18nTHVW9bonJ/+qe/13jvcdVVnTuDYgzrrXJLkpNM79y8XbNJ5p7HxtZ011kmyzxrHVLrj1tq30j3lmQcq3ST59qmdeTp/Xb733n3JdTtnNS2wxAmV7nILde7Dk+TVv3TGrje85TeV7n3p7Z388iyde4xFt++cNZIkO/14iUr3f/WJ0TtpCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+LzIw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwfD/yX95YFgy/f/of/F/Zsml5pv20f/PeY/fV+lOeGH2Svey8RMr3SQZP/6pSneZhZasdJNkmSVnrHRH/e26Svf6BVardJPkjvEvVLqbrDii0n3s1cmVbpKssOQ8le6MA51ukgy80/nbnjx95/Pzzffeq3STZOorT1e6T97+cKV7+WV/qXST5JE7/l3pvv7Km5VukoyfML7SveDsqyvdCdM/X+kmyRZvfbjS/fmJR1S6D73cuSdKkoWHLVDpLrHCKpVukpzz+9Mr3UVWWLrS/ehmO1S6SfLubE9WumPH3Vjpjpp9jko3SS6+8PZKd40N1q10k2Tmgc539gxzjKx0F59lwUo3SV57dWqlO++Cs1W64x68ptJNkncX6jyXvPP6S5Vukqy2zoaV7ssv3FvpbrjWWpVuklxyyb8q3ZfHTal0xyw9Q6WbJOOndv6u8/awTjfJ5BGdcYypEyZUus9M6T27Pz+iM94w86R3K92lRvR+l+ce3vm9mDy197uc6To/5+mnm67Sne69gUo3SabP9JXuWwOdv7+Bzj9dkmT6GUdVumOL44iPje98Fi20cOd+efWFl610k2SFuTrdZx/qjHvOPaHzDiZJdj9s/0r36r917uOSZNJrnb+TeZbqPO/MNkPnszNJnn2u0517tnkr3bff6X0wjx3XuUccPrYzhp8kM4/q3HM9+cyrle6icxZejP9/bh/3YqU7z6yvV7r/ebj33milOVaudCe9UfrASPLanJ2fxzsTXq50F1tplUo3SWZ6+7VKd8ziC1W608/Ue4f21POdMfGBEatWukmy+Xq7V7qTXunMTbnh7scr3SRZZonlKt0n7u2MAy+5UG8cY8JMW1S6zz7x90o3SR55onMvMP9C81e666zSmxs262ydz4yR77xV6b70dO9zefrhr1S6I0rjZkkyw+TOOOJc73a+r99dYnSlmySTJ3TeCe/6+b0r3cfG3lbpJsmKK3be78z4dufZIUk+ssTy07x5x8NHve//7cCYYZnpjGn/fDf242tO8+Z/Tf7W9ZXua6t0xj8Wn31cpZskz77ZGdhceY6NKt0kmfh8Z2xztrOurHSvfaM3p2zxTTvPz8/d0Jmr9tZf1690k2Sfz3aekx4et0almyTfnqXzmTEwz0mV7rjxvZ/FUqN+Xun+5bHOPes7B/Sen1c4pfNst/T8S1W6SfL8b39d6e522bhK98uvdP5GkuSas5+pdOf64x8r3a+/clilmyRHLv5spbvosZ1njiR5+O4DKt0f/uanle7xJ32q0k2Spw+5o9L95St3VrqTNvtTpZskF/544Ur3iRlXqHSTZNkvbFPpPrNDZ37rAhN7ayZfvaCzhmat725Q6S61beedQpIsvu/infD14zrdJHssun2le8x2P6x0Pz1px0o3SY65/JFKd59nx1a6c83y6Uo3SZ4a9UClu+ofNqt0k+SKm06rdO+ZszNX9KrFOvdxSfKpG1asdF8edmal+9eZx1W6STJirc6ayRePWr3STZLHP99ZdzDDwp3nqLe3780BX+pfnTmBM/y587P4Y2cIKkmy0EuddZ6XvXRnpZskJ73Xmd966lIrVbqzXdH7XH7x0c540eXzd+aqjd2+N9Z+4E2dZ4eHHuusZU+Sf5x8T6W75Pa/qXRfWHDmSjdJZhrZWYNx/ZevqnQ3OeI/lW6STLy/9HO+rjf3ZPKhnXeK3z+u84y9/MpfqXST5Jp1flvpTrdx533w2z9atNJNkqm/7oyJL3TPxpVukkzcsTPfacUv/a7SvXOvzhhikqyz6SyV7savdj6L3vtO5z1Xkpz6RmfdyCcnLFLpJsnLS+xX6d52cWd+1sIbde7vk2TlxfesdA974R+V7grL/rjSTZJHXum80/jme7375ZfO+0ylu+8WnXHgc7/X+ywaWLDzvfrNezv7KP1p+q0q3SQZPf/xle7Gj85d6SbJJct1xvsev+z8SvfIdQ6vdJPk9Qs7793/dlbnHdrqV/6g0k2S5576UaX71Xt6c/hX+/I507z5wLHvb43L62+8m8uumPb7zc709w9O8+Z/3X9aZ67TiIs647vHf/zPlW6SfOnWKyrdZx/+aqWbJFN+dkule+Qx51e6X57/oko3SZb6bmet3luf7qxZfHn73tyeBzfs7L274Z867yqS5EPzddb0nP6pzj5+q7zbe0YaeXlnbvKBp3f2ev79rZ21dEny9f3vrnT3/mBv7OOIEzrzhi5YbutKd42lOnN7kuSkyzrvFBb67CmV7uiJN1W6STL3PdP+fjVJnn27d83Pn/vLSveATTvjg5vv3pubtc+pnee6jdf5XqU7/JeTKt0kWeaZtyvdkz7R+Y5KkhtW7swvuHeF0ZXugyffWekmyVN/7owxffXZzl7B893f2ds4SZZYabtKd+Hdt6x0k2TsTJ35gMtv2Rlvu2K1TSrdJDlli87ZGoft1fldvun3nXOJkuTGM46tdF974gOVbpL86bDOfrO/e7wzifHiJ3vrqjacYZVK941PfrTS3f+W3l4c79zcWcu3/uje39+SA53xhitf66yrGv7j3rvCVR/u7BG4wWWd75KHPt15bk+S067q7C9y1Wc780+TZLd9OuczzHtVZxz/a3PfWukmyVw3dsaLVpvw70p3jU067waSZP6NOs8OX/957yzBbcZ05sqsu+Bdle5LS/bOaRq3ROcszwkHXlrprr7CJZVuksxwfWcc8bEXO2ekJcknzz+k0p17audzeeZLe+uqFrmus4/m1G92xrfmu643PvmXMZ39Kfb602WVbpK88saule4n88VK95R1O/NkkuQfz3feYd81/zqV7k6X956DR37+Y5Xugb/tPfsdsWrnO3vyOp19y0eN6P37/WncTyrd4/7YWUe71pzfrHST5M+HdP6uf/Hd3vudT+zd+fv7wXmdZ/c1N+/MsU+S/W8/rNI94ZzOuqq7n++td735vM664gt+3jmzI0nWOLezXvnmTTp7/X39ts77jCQ5/YHO+9W51uusZXhqpt455J99ZONK99r7O3uAJ8kaq2xc6e6W9/fsPv1Sz2bhcw6axleTHLlaZ51Xkqx89rWV7s+/s0Sle/L0nWekJNlwgRsq3aU++lClmySPHthZD/nNH61S6f7ivt78rBd3OrvSvWZ4593prx/r7c+50hknVLq3n9Y7n+u5n4yrdO86rjNvdu0X1q50k+Tq4Z15qPOe39mfc/evdM7DSZJzFz6s0t3m3701+/Ms05nre+iHO3ue/Gqu0gGuSVYcsUqlO+W+4yrd43/aOyf3qdU7c4d+vWtv3/IVb3ys0r15pc6/38Th/650k2Sb/XeudG/YtvMe67cHdd5vJsn5I2+vdCdt1hkvTZLL1/x4pXvu651n/p1P7eyBmiQ/eqkztvLKDZ17jHm/1zuDcJvzTq10b3q0t7bxP4d39s8a8dqDle6Hl+/tr3rjvp3vki8t1tnjY8o/Os9nSXL11zrvONe/c0SlmyTbfKszxvXk6519LaZbq/deYeqPOvdbk+75RaX71bU6806S5OS7OuOIK+7bmZucJKfN05lH/KvpOuOIL5TuA5LkrJ93nisf+Wtn7tBeC3f2B0ySBXbfq9L99KjeBtXbLtN5r37v3DtVugtv39tjZKV3P1TpfuiEr1e6C8w3X6WbJOvcfX+lu9rOnXX9SfLdLTvz1lcd03nGPnK93v3WRSeeW+n+9KPrVronPN+bK7rDg511WyNG7FDpJskjMz1R6W47b2dt3FYLnVjpJsnxYztnpk7cqPN+4NsPdd5HJcn1l3bOc5my4uhKN0lW2Luz1uw3l3TOf/rVpCcq3SS5eXhnfsOl/3ir0r32AzNVukmyyuude4H9ru08ByfJjMM695+b/qyzHmXJCZdXuklyz8Gdd1KHvnRwpfvTkzrzf5LkmD07++Xc/Ghv765nvtHZB3y1hR6tdPc6dt9KN0k2efj8Svehz3bO9H5h694c4pPv/VKle8kmvT19Vz17q0p34VsurHQ/9oNdKt0kuXt8Zz3YvYv8u9L95GbnVbpJcs5dnXP59pj/C5Vukjzz6kK19vsxctyrWeKCaf+ebL/5vz3Nm/81/w6dMfpDVu3Mz1rg+M6ezElyydOjK90tt+vtk3T62rNXus8d3nkX8s0f/b7STZK1Duyce/mtCzr374u++PdKN0mWP7Lzd73LLBMr3SRZ8pnOuQBXHLFppbvUqIsr3SRZ6MzOvpQrfn63SnfCIZ1ukiw3Y2dN8vkH9PYu/+f1nbG8xz7emV931L7LV7pJ8rPtOs9Jf5qns3/Pv67unbUz69udteo/WrezN0mSfOzgzvjHHV/4a6U75qDOXvlJsug9nbkLe177iUr35S+uWukmyefPObrS3fF3vbWy743v7Kv9weU6Z84+M9OfKt0kufTi71e6X/r08Ep3kcWfqnSTZLc/duZx7PSPkZVuktzy6c6+vsdO15kDvvN3O2usk2TKNzrP2G+v/a9Kd4+l76h0k+Tp2Tvn0HzzjM4c4iS5buMjK91vXd95X/jIlM45aUlyytjOu+Tlv9rZ5+OCM3pneD33cGcPpq9c0zlbNEl2/2pnLP22Nzt7ic3+QO88wf8837n/PGaTVSrdhRcZV+kmyVnrdN7XXze6MwacJP/8/R6V7lH3dPa+3mvN3vjyxnN39qm464HOWSP3n987J3fguCcq3Z8v1htTnelDEyrdk6b/ZKW77Gm9eTiPje48ry6y1RqV7k57ja50k2TTBTt72o/dojO+lSTXX9553vnJM52fxeE3PlHpJsnkgzprq57frjMncIdDe3MN37i1szfeOuM+X+kmyQkbdeba/23vf1e63920N9d3h+U74w2bzbpVpTvi651x6yQ5ZLnOOvlD9untH3nJgZ1rfmBcZ6z27NV7azD2O62zR/VX9+589y3zZOfdapK8cnvnO+qgu9+pdJPk7I93xgUOP6azX/4spXdzSbLLpjdWup+4s7NHzG7fX6/STZL1f/r1Svfzm/TO2nrsZ3+odDdd4IFK9/VLO+MuSXLi1l+rdP/5cmcO0DlHdOaSJsn6F3TOMdlh2d6Y6o/GdubTHP+/+M87J3ECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9lBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCob/T/7LE96dnNteHDfNL+Kpu6Z9878O23z5SnfSsLcr3UWfHqh0k2TU/MtWujPMPrXSTZIMdH4e4z6zdqW71HvTVbpJssqIhSvdJycNq3QXmTK20k2S/1x5Y6V7/w1XVLpJ8sCd11e6Lzz9ZKWbyTN1ukkmTx1f6Y6eY5FKd9aZZ650k+StiZ3Pz3lKP4skOf2E71e6r4+7r9KdZZ7ev9/0o+ardFdbboVK95//vLXSTZKPf3z9Sne5Mb1/v3XW7dwL3HvHbZXuUYd/p9JNkh123abSfeGZznfJpKnzV7pJ8pHPrFXpPv9I6fs6ySyjO59Fbzz/RqV77di7Kt0k2fCjH6p033qmc1+7zHKbVbpJMv6tdyrdqaNGVLpJssC8s1W6b73X+cy4/s5bKt0keem1TnfZMUtXuvffd2+lmySLzDdXpfv21N44xsipnXGM2WcbXel+dotNK90kmWfuOSrd1748rtJ9ecNnKt0kefzulyvdkW++WOkmyawDs1S6705+q9KdafjISjdJJg3rfK+OeO9/NDT/f2zG6Xvf1+PnnL3SffjViZVuksw2c+fnMXKWUZXuAw8+VekmydKjOuPLs739bKU70+ydMcQkeWv805XuqhusWekmyfAJnZvEGYd1PpfHrLBypZskc847ptK94Yp/VbpLLNr520uS8y78TaW70Dyd+7gkmbn03m+WWSdXupNnn7PSTZIpdz9f6T703KuV7kwje/dbt711XaU791wLVLpJctfVj1e6y664UqX7zJOvVLpJMnHWzv3ye+M731FzzdG5j0uSlZfsjL3MvMASlW6SvDrxP5Xu/At0fhYbrPzhSjdJ3p5n3kr3P0/fU+m+8WjvvcPdj11b6W6wTmcMP0lmGN15p/jmo53PoslTJ1W6STLfqM54w9SZR1e6ebs3JjDx+fcq3Rnn6o29TJ2pc/85/Vud+/B5Z5m10k2SGUvt9ya/W+nOOb737PfeyxdXusus0JlXmySj5pj2n0XTjXj/cxxfmzIsf3p7+ml4Nf+vOw7pzAdMkj+stEylu8qKnX/3p858rtJNkpMXvb3S/fRsf6h0k2T+63evdO/9Yufd6VyHdH7fkuSL895Q6Y547bOV7kEr/bPSTZJHt7uo0l1h4/Mq3SQ56s7OPcQKN11e6X5vyhOVbpLct+rvKt0bz1iq0n3zwt6clmf36TzPfH66zs8iSf746LhKd+DYlyrdWw76SqWbJA9v0lnr8ok5rqx0dz2u9329zOjOXNEdP3BipZskiw7frtLd8uE/VbpnHPSlSjdJXl+1M8408/WLVbo7PrdrpZskh6zSGT8+//bTKt0kmfKLGSvdNSZ25q3f8p87Kt0k+cBKX6x0fza+M0b40d22qHSTZNL9nfUoiy/YW1v1w1U7Y+k/f6nzHnmLv3TWjybJTx49v9I96vAfVbprfKTTTZIl5lmo0h374E2VbpJMmaezVmnTtw+rdH+2UO+z6FN7PFzpPjR/55pHrt1733TfS53PjPeW3L7STZIr1t6v0v3cm511nrP/5fxKN0nu3mzJSnf51z5d6U7ZuXN/mCRr7XlnpbvuandXukmy9tc74+03btOZNzvykAcq3ST52OInVboXPN0ZB350xQ0r3SSZ8LfO9/VGo3rz1r846+hK9587dPYYWeanO1a6STLDxM6czm8dsUqle/5Sb1a6SfLnfx5T6c442y6VbpJ86vX1Kt1LPt2Zaz96ls67uSQ5b7PFKt2Xt+rs3XX6/hdUuknyi5NXr3QXueuRSjdJzv5SZ8+AL97eWSd/yxbnVLpJsuw9nXfNR97ZmWu42FW9dUqHzHtnpTv7Mx+odJNk6i87c3L//G5n3sQ2H9y50k2SX3y48yx17c2d550vb9VZf5Ekb63460r32U2+VekmyWZfOqjS/eTVne+Sf43vfPclyQfe6IyJf/601yvdGR5bpdJNkpVGd+ZNTH/TDyrdJJl3lbMq3cnndOaXrze59w70owOdtTnzvXhppTvP7J+qdJNk780PrXSffLi3J+a6c0z7++VhM76/+7h3nl45z+wz7d9DXvJE7/3YGw917tHWX72zL9DX7juj0k2SA3btfJafskzn+zJJZtq88+7mNz/ufM5Mt9GBlW6S7LdlZ97eo6ueUOm+OsMZlW6SvPu3IyrdDf/Q2Q89Sc6975BKd8sjOu96D//C1ZVukvz8iM575EMW7LyPHbVIZ55Fkmx+UWddx4Uf66yrT5IvDevsf/bvb3+z0t3x+M4eLUnyz1k78/cPuqbzvPiFPzxW6SbJi//o7BX855V6v8tbXNx5ltlxq/sr3TmW6rxPT5IZtu7s07LqJp3PuDe+0fm3S5KRX1yt0n3+qDMr3STZ4KjOO4V75/txpTviqN9XukmyzNKdcfQDD+usv5hlm9GVbpL8528HV7o/mPFzlW6SfPWKzr5OD/+z8zv3uVH7VrpJcudenf2pF530+Up39x0vrHSTZLYHOnvW/OuIL1S6SXLORqdUunNNOr7SvXn8VZVukuz7RmePndve6Xz3fXi5v1S6SXLolZ2zDj449WuVbpIcvGLnPcj9a55c6X7lk733pud8+xeV7p8f7qz3+dIHO+tok+Tg8Z0zMJa7rDMXPklW2Lwzv+f5XTv7G+xw1R6VbpJ879bOXkbrzdFZ4/K53jExuXXtb1e6P5m4YKWbJPued2Sl+5v5L6l0H1i+tw/BCxM794ir/rSzh/Tce3fWxyfJ/ed27sW/8vhxlW6SXPudzt4XF6zWGV++8pd/rXST5KzDOnOoPjS8Mxf+45/eqtJNkvnn6expuMz2vefVr2ze2cd2oWc6e1988dTOuHWSHP32sZXu2ut35nyd+tvOu/EkOeH1zr3AkUf39pGY67bOmOrpW3TmD6+za2evhyR5Z/kdKt0Pr7JVpfvGMeMq3SS5+J7OeNGJ715W6SbJe6M77ypH3b9zpTtxpz9Wukmy6g869y+zX9uZZ3XP+N739fH77Vnp/mPh3j4Sm57UmYOwyLDOPPuvX9Bb47n5PFtVuuP2f7DS/di94yrdJNnyzs531A5n3VzpJsnnDu3so7Tb+/zfjZ40OVs9Ou3PFXvg4t46y/FjOvswPn9SZz3Wv7/w90o3ScYc1Hl/848tO/vuJsl3z+p8B81y+xWV7t+P7I1r/me9X1W6673SeWY8etnOev0kWWXczpXumif+rNJNkumP7qzN3uR3UyrdyYf2zro6dUpnL44xO3X2a1t25c7YVZJs+82tK925TuzN1d5ln60q3WOf74z/f2bX0ZVukjz0WucZbJu99650r7+4d57fT8d25lRP2rNzVkuSLLpnZx7czDd1Xswe9G5n75Ak+eTbnfnJS/3mhUp3w7V656zu8+XOM+OqS55a6SbJ1Xd01t09+HBnfvkSe3fOZU6SWz88W6X7seErVrqHLd+b37Pyc519r9/ZrDf+sc4cnc/leW7pfH5uu3NvfuQnP9jZS2zULZ31o8d1jt9Nksy5UOd3ecULXq50k2TVX6xR6a59Q+c76pCPdPYLSJKdS0dAXfndzhqMNQ4+o9JNkkdX37jS/eEne/PWTzntqEr3mOM+VukOO7j3vfqpqzrrwXYt7XH112M/UekmyRIzddac7/Nep5sk35hznUr3Mwt1zl/73Bu/rHSTZNHFd650v7Z655z4WR7rjI8kyZF/6uzxuPnnO+dKJckyc3f21Vjrr09Uujd/8PuVbpIccWPn2eG7u3bWhR91fG9/1Ynf36rSXeLLvf2qfrdkZ23/U5M777pePLN3ZvdrH+iczbf/AZ1nylv3+EylmySnr9lZp/vrbTv3tEky2yPXVLr33N15V7nk4p2zzJLkD8t3zhJc/K+lM3N+cVilmyRHH9PZh+7SRXrP7nvM0OnOMqVzRugDZ/Te5++09caV7gmlMfHFT+6sJUqSuz7cWdv455PWrXSTZJ3bO/uVHn3rcpXuZ+Z/vzP3/vcW2n/VSneXo/9d6U54a6dKN0nGr9eZ6/udnFvpJsljj3f+/V77Wmd/+HEHHlDpJsmC++9f6c713c7z6tQ9e/PkTvxR5zP/rF933sEkyb8u6u2J/n48/9pi+fGfpv3e5Efv9+Fp3vyv1+/onPcx36Gd/Ze+v3Nv7/fln+mc6bDcrp191JPksC939if57ENzVbr3rtEZR0+SLxzSOdPv9nTWZH3o7s54TZIc9vPOHOIZD/tupZskdz7Y+d3Yb9aNKt1XxnfGCJPk8rc749KfunNEpbvb3vtUukkyw2mduQtXfK2z5idJPvxMZ7/urXfprPtZa9+dK90kycOd7+yPHdfZG2HM3r1xzbGf77yvX3zMXpVuklz4nc47p8n73F7prrpd75zjZa7v7AHz+w/NV+mePKr37LD9OtNXuuOm6+3XfceHOmejL3hu5wy7j32mNw9g86M6+3U/fF9n/eHKL3TOEEqSJdb5baW7/6y7VrpJcvwinbUSn5rttkp34k978wBOLO0nNuy171W6l4/tvJ9Oko/f3tl/8PmtOvsMJMmH9vlGpfvr2TrPq0/t3Zm3lyS/+GPnXdYP5+7cL2+wcOe7L0k2f7kzP/m8q3rrdI9buTO//Itff6LSfeyRRyvdJFlxic6YzgLp7A00YZ7O3PIkGXNu517glyd39jVMkjG7LF/pzjd2XKV77vDFKt0kWe3VzmfRcZ/o7L173Sd6777fGfW3SveI8b19fU8Ys0ule+lmnfvl+Y6+r9JNku1f3LTSXWKpeSrdj218eqWbJIv8rvN+5/dTZ6l0k2SWjTprU8/6eWdOxF7bdM5dSZLJnW0p8/fnz690l9mu97n8kVM682Zn3b+3l8QbM3b2v/jlUl+tdBdd8KlKN0lWW6OzF/E+H+mcjfn3dzvj4Uly/Kc79xirfb8zBpwkj32sMx9jg8911t/POr5zZlySHP1S5xn76Xu/U+l+e5UfVrpJsv7WnXGog2btvXc/rbRH7qh7O3vxPPf5zn6zSXLmctt2wgOdNa/DR3TuaZNk3fGdOfy7je6c4ZUkl+7bmQ91+a86z35vLHpSpZsky+47d6W7xxr/rnRXv6UzFzFJdpjxo5XuJ47onfWz9jaldw83jv7//Y87J7MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9lBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCob/T/7Ls46cLpssOnqaX8Qb80/75n9NHZhS6b43MF2lu/ric1a6SfLWpMmV7uuvvFnpJsndNz5c6T5zx/WV7kN33lLpJsmDT95e6b4+/o1K9+1J71W6STJleOfv+u13O38jSTJ6hlkq3U98dNtKd6N1N6l0k2SxZeetdGeebVKl++Sdz1a6STLzqLkq3dtvu7LSTZLnx3Z+HtfdfE6lu8KYJSrdJFlsgcUr3ZUXX6TSPeu8SyvdJHm39Jn/yivPVLpJstASc1e6U4YvU+luNv+alW6SvDLxiUr33anDKt2lVli60k2SG/91XaW77mpLVbpJ8sDDnXvEBRdboNQdU+kmyY3XdO7Ft1h3s0r3udfGVrpJMsvsq1a6C8w+W6WbJE8/17nHmHV055ofuffJSjdJtvvk5pXua+PGV7rrL7NppZskJ/zxn5Xuu+l8RyXJiOn/R0Nt/8fe6jwGZ+zYVzrhJO+9+06l+9xTL1a6eW1Cp5skE16qZIdNKf1iJJk0pfPzmH7kTJXudJM7f3tJMsuwTvvd4QOV7uTJvc+4VVbeoNJdY72VK90kmTJ5YqU7cXLnb+S9qeMq3STJ23NUsi9OuKfSnXuBzhhiktx1zc2V7jLrfrDSTZJXH7+z0h03tvPs994snc+4JFlwoc57tIG8VenOuVjvd/kTW+1a6U6455pKN0kWXn71SveVzuuBjJh7nk44yTzLdi76pbturHSfH1f6ISdZZo2NKt2pE3rjy7PN3LnnuuvuJyrdeecdVekmycuvd+63XhvX+fdba70tKt0kmfj8uEp35JQXKt0keee1hSvdf918aqW70rK9+63ZBzq/yysts1alO+eY3ruSD87dGfucOmL6SjdJFlms837u2js777CXma43N2zipOc64Tc782lGjJiv0k2S6ad7udKd7u35K90kGT5jZw7eO9N1/v7em37mSjdJOqOIyeyzdP7+7nzl6ko3SZ4b3xmH2mh073d55lmm/bPw8IER7/t/O9sMC+TDS39zGl7N/+u56T4wzZv/NedA513ICw90ng0+tei4SjdJdn9jpUp3xi+cVukmya826LTf+u2/K90t/31FpZsky73WmWs/9+6d++GXd9y/0k2SRV5Zo9IdPvuBlW6SXLJFZyz92E06/35HfrszHzdJvnjVuZXuUVd2PpdPfumpSjdJ9nymM1f0rNu+XOkmyTk3HlnpPjzq35XufMO+V+kmyS4vv1vpjpvrW5XurLd+tNJNkilr/6TSHTvQm8M/+SNPV7qfffD1Svedd/aqdJPkyqXu6oRf74xTbDR3Z7w0Sfaf+flKd+GHjql0k+TeMZ3n3Jn+c1Olu8wTP650k+SN6f5R6c4y1wqV7ttPddYfJslqt3be1/9rkd78ugvn/Hil+6XbO2P0oy/rzeP40HXfqHSvv27BSnfCxutUukly68HLVbpzb3JopZskmx4+tdJ9/gudtRJP7dP7Wfxohc5n/oIXfKfSXWrB3v3ybQ913rFMmuOHlW6S/PKOzlzt8at2fpc/OupTlW6SLLbXjpXuY399tNJd5LgvVbpJsuK3Pl3pTnd4b07grdN3nqWG3Xt2pTt+od4eI9dv2Jnj86FfvFrpnv1a7375wqcfqXTX22u1SjdJbj7nwUr3++t07l32f7nzTJkkO369c7+8+O8641vbzNZ7h/bcJWdUuiuP/H6lmyS7PvL1Snfx+2esdDd4+W+VbpLc8cvOPeJCv1+s0v3B3FtXukly2586c09u3/SLlW6S7HFiZx7js/N15jasPk/vfvmYBzvjUP/ZqXMvcNHcvb/ridedUOmucURr5ley3N2dv797P3xfpXvHQ49VukmywyuddxobzNmZj3vZpr19zHZe/e5K9+kHb6t0k+S9b3ee0W47/o+V7u5PFdejfLQzh+T1HTtjfU+92lvL/upfOveIo1fs7KOUJGtO6swjfnz52SvdmZ++v9JNkvtGrljpPj/wm0r34KV/VOkmySw/6OyxdfgCH6t0k+S2Lx01zZsTh7+/tWCzLnJXNvrhtF/TuurWF0/z5n/99o1xle50v+h8Li62dW+e2mU/7qzZn3XJ3p6+G6x9fKX7ux0/XOl+98LlK90k2ac0H3eHpTvzybZ4ovNvlyTDz/xLpXvkkQ9Uukny3S0PqHT/ekpnH9u1v3xKpZskj/+zM5/zl29+u9Idd8AfKt0keWzjfSvdlX51QaWbJMee1Zm3d8OyV1W6GzzUWZedJMfM+7NK99MbblnpPrFYby+OXz94YqW76aje3oMnHNyZJ/rgJp19Ea5YoTef5cUvdvbe/fOf/17pbv9g7x5jr2tPqnS32+/ySjdJLr698+7mtLk+X+nuvlhvL47F9+zM77lpj05357um/Xri/9pgme9WuovO3Zl/miTrX9h5P7bGU53n4H+st2SlmyTZprO2Y7fPdvZy2OnM3nvT7/92q0r3L4v+q9JNkvNW6swbOuufO1W6e3+3t65qi7U6fyfbvtP5jNtyld7a3xtn68z7uungzrh/kvzpG5178TvP6qyTOPOGzvzFJNlxXOc95FO7dc6TuOOQzrhnkmy27+6V7gNPdcbNkuTQQzt7VEy3f2fe13ondvZjTpLdVziu0r1vxs7+Bsu/19sH7vYr9650d166M9aXJGN+1vl5nHF6Z0z1vM/0fhYX7XZWpfvbT3TW5ax78Fcq3SRZ9IzOOT+TburNed7s353zeG76due75IKF/1rpJsk2O59c6X7ti4dXuhuc0ds3+cgbL6p0P3PvtZVukhx9eOfMxrkmdtYeHvuZT1a6SfKpA/asdK/5wH8q3SvHXVLpJslBj/680t39l7132O+M6dx//nabzv4Gm53e2Y8oSf61fOfZb5l9L6t0X9q8s1dHkuww9Y5Kd4O7evsbzz72iEr346M6Yzrzr9jbd22l31xY6e73i85Y0UHbd+aPJMkeF3TOmJwhvXcl2w5bt9K95PLOOtp7v9U7P2/MRzrnYn71z51xxANm7n1HPbZOZw7Xomt29jdIkl/stWGp/P4+4wZenimznrHsNL6W5KPn9tYgzXJi5zzwF7bvzIl49KnO2ookeXLLzrz/Fw/sjHcnySuvd9ZjnXl6Z+7JAgvvU+kmyfPzdJ5zN7ius8f+wjedXukmyVzndNYKPXzPYZVuksy6/icq3Wtn7ryj/vKcveeki7Y6qNK9Y7WvVbo7fbozXpMkG17SmUe1y6a990L/XKSzNnSjy56odMfO1tmbOkm+tcp5le7en+zMaXn4lN5cwyNu7uy5cP9vH690k+SBfTvrZMcs2ZmrdsMJvfeFv7z6kEp3u9913t3M/U5v/fvam3T2ifjJov+udJPk5W0776i/sE9nncus+3bOL0mS7126XaX7ses6+xd8Z9ne/gVfXXiVSve3242sdJPkwU901o3c9VLn2e8763fO302S+Q7szAG/d6vO+TMfur7z3J4kZ8zReXY4/7EZKt0k+dDEzs/jpMs77yteW783FvuDMztjpqtu1BnjPevJX1a6SXLOmgdXurt/pLeXxKh1F610r73iB5XuTx/qzRX9/oc7n/k33dr5jLvlg51ukoz+Wmdtx8x/6Dw7JMmrJ3TOo1t2ic494vW399bmbHdWZ+7efed1xmrn/31nb/8kmbhSZ++6yTt1ns+S5OTfdtaNbLBS573D65N7+14/fXfnXNNDXuzsEXPySZ09pJNkzz07f3+rnN15n5Eku502rtLd987O2o57976m0k2S753TeT/++b3Pr3Rn3KJzllKSrPl0Z9/kCS99tdJNkk3X77x7OGaNVSrdw1fonYv52YXWq3S/PGtnTOfAc3tj7Xss1XkOvmCe3rPfV/bvjNfe8o3O9/VRn9mh0k2S4Y907vG/unRn3vP9u3fWEiXJW3/ozDU8flRvPs0mYzrnKV17XmcO/zqzduZvJck6s29a6Z4+y7BKd/rpOuOeSbL6Qp3n4E1GddZMJsnImzpjJA/f1zkH+VMzjq90k+TIN39f6b657Z2V7l9PO7/STZJ3rums85xhpZ0r3ST5/hud80dPf5/bQM6y+NNZ74xp/z204ba9z7DtR3TGE56+u/MZ9ok5e+eT/OzQj1S6H1/lM5Vuktz7uc54wvJ/6Kyvf3jH3jyOB1brzDX80g6d9WmzTtebw7/FDp3zBr76xuhKN0n2eLyzP8KdR3bGxea48p1KN0l2fL5zHvjPZumMSx/z8Wm/3ue/3r2+s4fBrt/pzFVLkg2efrjSPfTczt7JM/28Nydpgf0747yz7trZ82uN68ZVukly24w7V7qf+HrvTImb516l0n37ss689T0u7o1/7Ld75zz3LU/6R6W72BKrVLpJssRznfuizdbtrKFOkmdO6oxtXn15Z1/tzYdvXOkmyRqf7ozFzrfhLZXut7/de194/25TKt0lvtB5X5Ekm7/eefab45YnKt2HekeCZJFtO3to3b7a9ZXuH87p7PGYJH/4TWc95gkbdtYpJcn35hlR6f5qamfsZfvSOqUk+czmnXu5757R+Rnfu0vv2WHC4Z2zO77w9c7510my/N7HVroLH955phyxzBaVbpIstWdn3d3bF3bGapf43R6VbpKcs3dnndIr7/Tui068/t5K94Ylpv05nUly1d97Y6oTjty50j1nXOcMy6+92NoXKFn13Z0r3SMO7ezLlSTrrfL+znH93znwtc736vVf783DWXt8Z23/Pj+ftdLd4MnOs2qSfOvUzhl6d335tUo3SVY89MxKd9tP7VLpjv3Em5Vukox++flKd9UlOveImw/0zvp5e4HOvcBRY5+rdJNk5Q/uWOl+Y8E/VbpPTtd7h33SvJ0zLG/463WV7icuXqXSTZItT+7M1T5zUm9f0YN/0hmT+8LvOv9+A0d1zl1JknMu7szPmn1MZ67hvg93zoJMkt2u+Ualu82kzrrUJJmy/BmV7srX/a3S3XnKfJVuksx0RmfvyvuW7JwdMMf9vfM1fn5OZx/B7Y/oncE2/sTOZ/64hzvj+L95ujem+uavOu+61rqwc376Od/szGVLkuG/7jxXrnf0fZVukpy00aWV7gb/i/+8MxMNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4vMzDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPB8P/Jf3nyu+/m1Reen+YX8dw9T0zz5n+9cPvlle59995R6d51/02VbpK89NKrle7UYf+jX6P/kXeHT6p0R06atdJ9b7o3K90kmWXYdJXuTMOnr3QXmzpbpZskI0fMXOmuscVmlW6SLL3mByrdBRddvtKdbs6plW6SvPXW2Ep35LDRle5S6y1b6SbJjO+MrHTnXPSTlW6SPH/7c5XummMWqXRfeX1cpZskv7jwtEp3oVnmqnTnnnOmSjdJ/nHphZXuvDPMWekmyTyLzFjpLjr/MpXusqvOX+kmSd4ZU8n++PAjK90p079T6SbJIqPnqHTfHdHpJsn0M3Q+M0ZO7Nx7vp6nK90kGf5Wp3vltWdVunPNv06lmyR/ufKESnffr+1a6SbJsJfHV7oTHnul0h0930KVbpJce11nXOC4Y39c6V5z3d2VbpIss2znO2rcK69Xukny8pud9vC33650h705odJNkpvveqTSnWnYxEp3xgnvVrpJMnc64xizjhyodJNkunc6P49hU4dVuiMHev9+kwc6Y2cjJ3d+Fq9O6d0vr/ep3SvdF9/ojNUmyZtvdsZrP7jc3JXuusutWukmyUvjOz+LNebr/PuNfOWFSjdJxr3aeXgY8dR9lW6SzPRu5zv77qevr3QXmWPJSjdJXpn/gUp37uk7f9eT3+6850qS0TN03sNMWWC5SjdJHny483713VnnrXTHLLd0pZskG2/WGcc/7pdvVLo/2nPvSjdJnnz20Ur3jfGjKt0kmXnE5Er3rfc6741uuuaqSjdJxo/v/M4tu3Dn/dzjdz9T6SbJPPOtVOmOmLEzVpskY596otJdaqlNK903p/Z+FgOPd+YWjZjU+byY/oXOuGeSTBrZuceYa+Hes99bz3Xe+62wxsaV7osPvlzpJskcK3V+znPN13lvO+7tzr9dkoyY3LkXn2663jjUe8M7/34jpu88U04d1puDMHHCiEr3vbc7n58Dk2eodJNkvnc6cwWmmzqu0k2SYWnMm3j/4+HjXhiWC3857ee4zv/QcdO8+V/Pv7tApXvq4p339ate3nvf9LM3/ljpPn3C6Eo3SU5Y4TOV7kLLdMbcbn2081yeJM98qnMPv8J1nff1U5+7stJNkpFXdn7Ot+zUGUtIkntW/3WlO3KZzvyQ1e9frdJNkiO3frzSvWXsnyrdS177eKWbJGef/16l+5Nf/rzSTZLLL72t0v3H0p3fubv/3XuvcNBLJ1a6Oz7Z+fycd8tvVrpJsuyDH650r3+wM78gSZae77FK96q1plS6j261VKWbJMuu+LlK9+zff6vSXW7heyvdJPnm+TtVuu9cVJqQm+SiWzrPJVvd1Rmj3/uNzthxkuzx3oOV7sYnXFzp/uqrO1e6SXLQ3odUugcusmalmyS/emzrSnehSzpjQS8f2VnzkySfe+jMSvdDFx1f6X7wglUq3SSZ6dZfVro/XfSHlW6SrHnZzyrdG86/v9L9210bVrpJctikzpz4kTPsW+muOa4ztzxJ1j2vsxb6qS/05nGMGtt5L/uVxzvvTp9K57svSZ44s/MsNemwzpzORU5/uNJNkjGLXFLpLpLOWEOSXPl2Z+zsJ4t8otJ9apnO316SPH/hi5XuRasuVule+MZXK90k+dE7H6x0J77Sm+s777c7c8rWXHra73WUJF+ecVylmyRXPvWlSnfP4+epdJ//duc+LklefLqzFvqDo5aodJPkwmOeqHTnvblzzW8c0bn3TJK95+j8Xa+41r8q3eNX64ybJcnOn+qMtV/2s96csuk27jxXTt30yUr36vf+UekmyVsvdMYRv31hZ97Xrzfv7TGy8Mp/q3THrHx0pZskMx7XeV49YJ1jKt0LPtZ5n5Ekj35t/0r3yp13rnT32ezZSjdJZlqis67/+4t2vvuS5O/X3lnpvnhxZ1+GWUYcWOkmyaXPfb3S3XfCupXuMXOtV+kmyUUDnXGoX27YmfOSJGc91/meen3M2pXua6+uX+kmSd7srHnd86mfVrpfOXb1SjdJFv7QqZXuUyN7a2gmvrzFNG9Oee/9rZN4Z9KyeeaRP0zjq0muXuycad78r/2+3FlDdtg7X690V734iEo3SWa6orOG8549/1rpJsm5H+/sP3H9HZ0xsf0O6s0n2/PFTvvxr3fuS5Z/ZodKN0me3ea7le55ozt72CbJpYt29lr/zdyd/aJGXNTZ1yJJDv5cZ27W/Gt8o9L9xuudeRZJsuBFnXupiy4+pdJNkke2+k+lu9HPz610v/veKpVuktw7Z2et3t+GdfZw/8qBnZ9xksx4T+ezaOymR1W6SfK1f3TmF2y48rWV7gMndPYWT5IHSvNODh3b2aNs2ct6axnGTuiscznr8V9Uuknyo4mde65Nd+usxXz8x715hk9e1ln/NGXR0Z3uk2dUukmy046dMcJXf9ZZy5AkX/t8Z37I+ecfUOnOfWrvPJAjD/hNpfuHJTrPUbud3pnjmySvrnRLpTtupXGVbpLMMMPtle5SR3Xu5cb9rTNPJkkuPHvnSvebp+1Y6X7pO717jL+t+/1Kd/Fvf6/STZIfPt7Z3//UTTaodJffbo1KN0lOv2Laj4cnyZTHO2NFr77S+77+7CadtQzH3tk5pyJJ3r7zmkr33lc684bOnL3zGZckOy3S+Y466sLO8/V+281e6SbJpid25tb9fetdKt0kWevSzufcBZt3/v7OWPngSjdJTr3rY5Xuelt31vRvNON1lW6SfHrjzrPDzSP+XOkmyWWbdZ5Ltl6usw/B0fN/vdJNkvMfvKET3mbhSvb2GTvjLkly+Qud9WuXrtNbi3Lpmp0z/1Z9pHNm3JxHd+bCJ8nVj5XePey/cSX7zPjOmrgkGXlg597zsh/PUukmyYTVnqh099/30kp31N6dfT+T5CfvdN7D3PR0573DpWf19r2+a+E9Kt1n/t4bRxz2jc9Wurd8tnOW2ZH/XrHSTZLH1/9KpfvPlTrjWyMu7p1l9sbinT0ODl+yswdPkpw287GV7oK/7uzV/equ3650k+TEHyxe6e55Rud8+jvP6uwVkCRX3tfZE2zeHXrnbI28oTM387C8vz2J3pnydp56a9rvFXHtmM7/zyR5+Iude8BlDu7cv89zZO/cqMN/0NkzY55Teus21p26YKW7/b8680P2mtAZr0mS36czFnv0E53vifvv6JyNlySHvnp0pfvugv+sdJPk88uOrnS/dUhnLH2XDXv7lt8/U2cf4gse6oz9n3Fh793b9bNsV+kutNGtlW6SXLVMZ232yRc+VOluuE9vT8rv3fGhSndg+Ysq3eVP73ynJskDZ3Y+M87dvDdm8+RvO+OPj+7XeebY5W+d8ZokWX1E5/7lzFM691tr/aL37m3ln3TOGX/v2d7ck8fPm/brZJPkjZ3Pq3RX3L1zFk+S/ODTnb/r9RfrjH/cc+ZWlW6SLPzjzt6tu23VeY+cJBv9ojPH57aXtql0jzrh6Eo3SX6zc2cvlb/8tjMu/a91eufErDqss1/bWVd23lckyeR1O+/I9p6hc37QQp+bWukmyQPf6cxJGr1m5xltia176wTXerRzL3fK453zu5Lk/Gs6+2c9/XrnvdClX+isxUySb27SuX9Zf6vRle4vPtiZX5AkFy/V2bNm4KdXVLpJcuq4zrmz932pM+95uzGdtQFJ8sb8u1W6W056rdIdf2xnPmeS7LJtZ+7e2od19rpMkpfP7MxjPHOezv7iH32zs34tSQa+fEele8KvOnuqXbpgZw5jktx3YWePken37Oz7mSSH7d/Z82HFBTprzq/a5+hKN0nWP7+z5vygn3XGard7sHfG6ymTOvutnHzRryrdJFl9l0Uq3e/88epK94GtO/vwJMlsX3qp0j17pc7fyBu39vbkW3jrzpjAQm92xmqTZM51O5+fp97QuQ9/aaXtK90k+dyqd1a6Ly7wyUr3zQN6Z4Se/ZX9Kt25n+7tA3nX7H+sdD93Xeecn+nu7s2P/P7Gnf3iFn+qs05pntc6v29JssOUzpzqMS925hAnyUyzdea9XL9HZ7zh0Z/09pK4ZIcLKt3zt+x8Xiz12y0r3SRZaqnOs9+/pu/M/0mSUxforKF5v4aPfS9zHjLt97Z+Zfhi07z5X/v+9fBK98UtP1LpHvlU77vtyL91nr/uuGmvSjdJhv26M6/lmE//vtL9/j2deSdJ8rkfr1LpnvJiZ/xx1t/19gu+6onjKt0fbtUbi534pc5c35lf/3Kle818vb1Jdjm0s2fUb0d3vjNveKoz1ylJ7nyns+7nmls6n3FJss2VnTlJb93WmR+509K9z6Kxb4+rdLc5pbMHzMjVe/txvDlL5/tvkWU7Z1UkyXJPdJ75Z/jWxZXu2QfcVekmyevPdZ7tXntkhUp34b9eVukmyXx7ddYHPDfrVpVukky5rbNXy9ZvdZ6jlp7t/a3B/T8x3yY/rnT/8NpNle6Pl+ydGTzD9w+tdCfc11mLmSRL/7azBuPqszt7of5sp87vRZIcls6/381X/6XSvWCg8346SZ4b3rnHX2ivnSvdJFlgs40r3Q9f3Xleffd7nb1bk+QzB7+/8+b+dy56uHOPMefuEyvdJJl4Rmdt1dHF9URXPfTVSvemX3f20lzowY9Wukny8yU777Ie+XXnff3bI3v7apw3Y+ec+P326p1Tfex6nbknG3/usEr33ke+VukmyQon/qTS3f6TnXOq7zqld+7RZ+buvC886aBpv2/Qf33yss6eHRdN7uwD/rGxvfHJbS/+TqX7jVGf6XT/2Xv3/fM7O+f+3bpe55kkSSZM6ox9Prlg5wy2Ob7XWyc49+mdM9juPeD4SvfZCxetdJPk9tk675oPma03j+P1TTtjJAf864uV7sV//GClmyQrD+v8nG/55kGV7pubdfbhSZKfXXB6pXvvtr3v1fvPfKrSXfLLnXnrz36ts8dBknzoC53nnXOeOrvSfXD+zj1tkuy3xY2V7qRje3uXP3R/5x7jzRHTfo5ckmyxRGdtQJKcssDOle7iB3TuPcds0Hv2W//KztneL13dO59oq4+eX+l+4WsrV7pLrd87P/25K5eudLf4Tmf99vJTOnvaJMkWz32q0v3AAp0xnSSZ991nau3/P72d4wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/yIDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D/s3Ve0XnXB9us7K41AIKH3Lr2KdEUjCILSEaSJgKBSpYqgqCigYgFBRFEQEQWkKUWkvEhVuqD0Gukt9BpIsk+2++g7eHXnHmusb1zXoQN/Y46VtZ5nzn+bAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBiP/kP37svruzz1pLT/eLGDXtP7qM/8jIKZ3u2NFjKt3Fhg9UukmyyiwLVbqjJ/f+/d6e9lalO37WGSrd9yYvUOkmyexjxlW6o0fNWOm+Peu7lW6SvDZubKW75MprVLpJssRic1e6I2Z+o9KdYerMlW6SjJh/pUr3nRef6nSnlL5Ikrz51mOV7pTXe39/s604a6X75OWdz/txM85e6SZJ3p1cyd458b5Kd2B457svSV56q/OzGD1375rv/tuTle7YWR+vdC+46vpKN0lmm6Xzd73iKitWuo88NLHSTZIl11u50n3hlUcr3ST54DqrV7p33/dIpXvb9TdVukky32wrV7oLzz6s0p17vt5z1MKPL1rp3n7zPZVukrz1VOf776U3O5/3C87WuQ9PkvFjlqp0b7jtikr3uVdHVrpJ8sybz1W6b776eqWbJO+82bkvmnVYZ7xo9FvvVbpJstJcc1S6bz/1UqU7bOSblW6SjHpvWqc77J1KN0lmGDlbpTt5oPNzHjHQGTdLkhHvvF3pvju6c48xMKI3pjPX0stUun958OZKN0n+59dnVroLHf7lSvf6Wx+qdJNk5UU631FvPNO55nffeKDSTZJ1luyM1b7+YufzIklGTZm30h0/pfO9+uRzEyvdJJntoUUq3dXX3ajSveWuv1S6STLn4vNVuusvu3almyTXn/9apTvPEp1xxClvvlDpJsl7w1+sdD+97Y6V7pQpvc+4uebozPuNz/hKN0kGxnV+Hs8905mTmnf+91e6SZJxEyvZldb+cKWbN3vPwW9N6nwWjRzdG8dYdLkFK93ZRnb+rp+f2PnsTJI/3/LPSvftdzpj7c+PXLzSTZLn3uuMN3xk3Y9Wukly3UW/rnRXW2OJSnfxT3660k2SqW935ipHDO+M9c027JlKN0neGTVPpTt1RKebJAPvTa10h880V6U7bWpvfmDqlM7vxpRhne/ruWfvrfl8+93OPeKYYZ3ftyQZM2L4dG8O/P8YTn1+3sfyk8P2nn4X8/9aaNvVpnvz3yZd2pnXe++1fSrdcR/YuNJNkkU/0Xn++s0KnfHuJMn2s1SyByx4W6V79QLrV7pJsuukCZXu6kt2xkvn/tBylW6SZKDzO7fs/K9Wukky/AOdcfpT/7JnpXvWh/5Q6SbJqsOeqHRvvLkzXzHzrq9Uukky7uYJle48N/210k2SWV7qPI9+ZuETKt2T/2fOSjdJjj93m0r3qOdOqXRXfmD3SjdJblzye5Xux4cfU+kmyU8fnqnSXX9CZ63afb/+WqWbJIt+cJ1K96znnq50Nxvxvko3ST4xX2d93Wxjes+MI175caV72cB5le7iSx9e6SbJ0+901g5N/fSSle7wxTvzkEmy0G7zV7r37N4Z10yS2b69YaV75v2dtV8DH+nc0ybJgY90xkheHNZZu3D+bWtWukky04OdsbxlZ9i/0k2Sp+78ZKW76Wmdn8XHDu7sn0mSx27vjL2sveqoSnfJn3X2hSfJZaXtmOut2ZmTTZIbXu3cF730fGdvzvBVFql0k2TNrSZWum+s0tkLfeUHOvdESXL7H9erdL/6q96awEVO+GOlu9/rnT1sc/y2N46RqzprDR9Y9aRK9+p1emtaJt/TGRPY6/SFK90kuXfFzvjy8td35o2+8kbvZ7HGMZ39RMdc1/m7Pvrru1W6SfKvzTtzaN8a+E6lmyQjt3mw0v3q6p2zQFZ54EeVbpL8YMPOmPhN63bWt9506aRKN0kumKcz7771AtN/rcW/zTih8/ww/orxle4Pl3i20k2S+Za8v9Ldf+bfVrp7nHBnpZskP/xy54ymVX5yd6WbJKst07nHv+PGzr6R+a/p/S6ftdDESnfy+RdVuo+cdWmlmyTnXtsZR9x1396e5au/cUClu+pKnTm0R5b6fqWbJKv/o7O3+LL9v1rpPnXnWZVuknxknc6ZfJee3Nl/mCQLPdsZk5v1pc540R/mv6DSTZI73+7MlZww0Nl3MGWgM2ebJBdcuUKlu8FHOvv6k2Tm2ab/PNrwEf/deMDkNx7KxFs2m85Xk1z70n7Tvflvr/x0i0r3vZvGV7pP39vZf5Qky67zu0r35At7Yx873dpZT3bp0p35lXc/u1+lmyQPvtu55vOOvLDSPeFb/6h0k+Rrpf1Yc63zpUo3SWZZ/9uV7onXbVXpHrNT7xlpvsdvr3SfOumQSvf+i3p7GVY74mOV7sb7dD4vkuSkbTvnGv5wxc56wAfP6s31vvDevZXujLd11jy/s9UHK90kOerZzpzCkQ/uVOkmyVsf77yfYdi/nq90t72h80yeJK9e0Bn72P2ZzvkFax7/80o3SeZ/srO394sjSueSJLlmlc443i9v78yPbXDS+ZVukmx5zmmd7tGdsy7fWaW3ZvZPX/5upfvptzrrZJLktO/8tNJd4+rOuRa/fbB33tevx3QWR563z2cr3bMO377STZKzf7FLpfvGrzvrnJLk8Vs7e342WuWoSvfc2T5Q6SbJfp/8VKW7x7FfrHRvXHb6n/Pw/7Uv6jyvHrl+by/KVtstVukutW7n3nOlM3rvXxt+x86V7szD9qh05333lko3ST5/fue8jh2W7ZzJkCRf3WF8pfvTvW+sdL/1+x9Wukny4BGd8wL+vkZnzfOPv9+bd9tuSueaV1i1d4+x/A6HVbrb33NHpXvpDA9Xukmy9Oc663xXv+GuSvfgp3prLldb/+xK9/0L9M5n+tIMnXf+XT6is2Z2qQV77zx648O/rHTX276z1uK1OX5Q6SbJKjt25jReOupblW6SvHhz5xyQXzzdOS9x6g69dyjcedWvKt3T5ux8Lh89X+ffLkkenLfznpGjBzr3AUny8jeuqXSv/9wZle4BP+g978x01yKV7jl/7IxP/u3CEyvdJLn79s5Z3TON75wVkCSfWrezhvjYcZ2znvebpzNWlCRLzP+ZSvfjG3fOtDl9086apSQ5+9rOOya/el5vzfNXr+ncy+31nc7n8l0LfKLSTZK3Lpz+a1ST5F/TOveeizzUO2dz7Kad8/2/sEHv/WvrfuPPtfZ/49W5l8kV+5w73bvfuXvf6d78t7236DzPHPH7iyvdI7/VGaNIkoUu7Iwfn7jKgZVuknzsxM7578ct21nHOPVDnfPJkuSLX+icnbzKBZ1/vznO6t2zbjDh4Ep3qzVOrXST5M4jO88dL27T2U/3pS178wrfHds5V22VBxaqdP92Su9zeb1VDq10z/hGZ+w/Sc66urNP/ZUJnb31t9w1odJNkvff0FkX8fsTO89JY075XKWbJIs+3FkH9+LGd1S6SbLQYptUuufcfGulO3X/3t7QP63dWd86cM8XKt1FR3fO+EiSDU/s7DuY+fK/V7pJsmo6a6oP3qqzpnPGTXvvQ/3i6Ksr3YdW7azVXvyDv690k2SBmTtnAVwyQ2++/pzTO/fL69zfOTvy8e/31tdNHrVDpXvyQ1+vdA//+uaVbpJ8a+POOxQWXay3DmfFSzpzITcf/4tK988LLFvpJsnGt3b2g/3z0c9Xun9apnd23fd/1lnfM3GRzr1Lkuw3pjOX/K3bb6h0F161MyaQJPv8vfOukZWv7bxP4vlRa1S6SfLSZzrncr3y/t45qF/96phK94q7O/dFv/xoZ94hSV7b5M1K96YRnfc+bPPV3rkMuz05sdJd9rWvVLpJcvHtnXNtrnyuM464x/2dvQFJcsPkzn7or+/e+Z376K2993ftulHn2f3Pk3rrqGZfoPN3cuBA57tkyu6d9SFJstXUzu/GuNM63317rdYZa0iSdYd11tfd9WznHJckue8vnXu5397VWS+z/1OdMeAkWX/xzj3GUdt9o9L9/sGdceskufdjnXvEuad2xhqS5Lj7Ou9n2GnOzrkoV4zrrB9Jkpm+1xm7/tzpi1S6X/nbTyrdJFn6hc6YwA339PZvb3dM5zNjwkyd76jRx/fmB4a92NnPcMK74yvdA1dbq9JNkpWf7Lz/6ZnRnTPBkuSEeR+tdC8/qLMGaNwtV1W6STJhUucsl3kf7dzX3npt50yUJNnu2c46xx8d3FlzliRP793aT3v8f/X/Gjl6sSyw+PQfW/nKuCene/Pf1tm5c9/ztRM6e29emdBbK7rXiR+tdEe+3BuX3vjO0nf9Ep1zpN934jGVbpLcdmLnHdgfPLszLn3Kr1esdJPksl06Z0Y9ekbv3bAnHtvZn33uXZ392T9atzfHcsrIzrn2EzbszJ3e8/3Oc0GSbLl6Z+/UXvf0xvJ2/VVnT+SnJv6r0v36er0zVs/6Uec94/9curO+ddR1nXX2SXL2RZ01gUc/33vX3H4jOt/Z6zx8UKX7lZteqXST5NQZOr8bV780odJ9+dTeebMzH9X5Xd7l5Eo2SXLzjp3xoB+c3lkruvfBnXfjJcmnHu6Mxa71TOdsmRfGLV/pJsn4Szrn1231fGf/YZJcNrozZjP61533Hfzqqc7nfZKc+IeJle735u7MN31l09Mr3SR56Ued9XW/3/O0SjdJtr2kM0d93/OjK90N1+68yz1Jxn65836iea/snG3x8ITemMC233iv0r1xQm9N4G1Pjqp0//rA7pXuk2d03vOYJLs/3hmHOnugs45qxr07+ySSZNaDO+8kWOK53lkEi2z1m0p32V92zpI4Ys/e9+qZZ69a6S6zV+f5+jt/PLrSTZIpm3fme5/btjNWlCRTD+m8z/3q/+mcUf3JKZ0z7ZNk5P2d9zYeOlNnj/yo23pr1R7a6ZJKd8ld76h0k+S2O66tdNc7v7NPfpaXet+rV9zaORf2Xy927l0+9eL1lW6SPPC7ztjLqB1774O84oKlK91D3uzsc9nhJ71nvzvn7Fzz5ld3zpI4aLneGTGPntqZX9187qsr3SS5+MXOHuC7ftg5B3zH4b01CN/ZuTNeO9+JnX0H6545udJNkj3P6vydnH/bM5Vuksx/59aV7rjrO+9gu+zj0//M0X/bb8POHsQvLLZOpTvD40dUukny3YM690VLlPYzJMlRD25e6Y4/v/OukeETbqt0k+TdGzrPwXOkswboQ2t3xq2T5Iq1Ouc1Hv+TzlhRkqyxfues4vnn/z+ve+7tjAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4sMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDBs2rRp/+v/eIGRM0/70myrTPeLmHXM8One/Lc3p7xb6c4xMFelO8PoKZVukmTKQCU708gZKt0keX3Ke5Xu5IE3Kt23355a6SbJ5LEjK93RCy5b6Q5ssFalmyQLLj1npfvaW8Mq3SSZdYHRle6IkSMq3Vv+eF6lmyQrrPzBSneWhWesdMfPMH+lmyTPP3Z3pfv4449Uukky51xLVLpPPvyXSve+hx6vdJPk6ptvqnTvmPhypTv5lbcr3SSZc65ZKt0Xnnmh0k2SJZecr9KdZeS4SnfJDy5f6SbJpKffrHQfevzRSnfDj21V6SbJs8/dW+nONOv7Kt0kuee2Gyrd+RYcX+mOmtq5v0+S667pfC5/dtPOvcscc4+vdJPkH490nitnL17zv+69vdK96YGHK92Rr3Xu75NktRXmqXQXW2ahSvefdz5Z6SbJfY8/Ueku/77OPW2S3HTtLZXufFM7z6srL7pYpZskrz/5TKU7qjO8lVmGdZ4pk+TddL7/hk3pjUOVfsx5rxSe1rvFyNgRYyvdJebs3GPMOtNrlW6SzHPhbyrdN55/pdJNkrEjO5+fNz74WKU7x9Te3/Ubj/yq0n3+oc4czNtvTKx0k2TBcQtXumPn7H0YzTSuMyY+ctjLle7T7yxe6SbJDHN1/q4XWWH9SneG0b050Ndfm1zpTp3yTqWbJPMu2BlHfOOlzjXPOOZ/P4/+nxpRmlN8b0Tnc3meeReodJPksSdfqnSffKzzTJkkU0d1xtvHDuvMSY0qjeEnycuTXq10X3ju6Up3gflnr3ST5Lorrq90N9l6k0o3SZ6588FK9/Kr/lbprrZWZ3wrSeYY0fk7+cUZR1a6U17ofUfNOVdnPc0Ou32t0k2SO//WmWt+/4fXrnTfnNSbN5p3sc6837yj5qh0Rw3v3S+PHN25Rxz2du/Zb+ScS1a604aPqXQH3up9Fj076cVK9/FnO2tI/nbl7yvdJHk3nXmYT2zw6Uo3STJs1ume3P7Qw3LPww//V4MCcy43ZtoWZy46vS8ps2/fWc+ZJLNf3fkb+PsXd650P7vA1yvdJDnt0c7Pebt3V610k+SDS29a6R5x0TWV7pZbd9agJslc13T+/Y4/v3OfduqDu1a6SXLIWRdUuqt9vDf3vfy7nTmnG+ft3AP+4ObOPEiSTFr5o5XuN+edqdJdbc7PVLpJMvmczrPd6w+uV+kmycZPvVXpHnvxTyrdP2yzWqWbJBf97opK94UXJ1a6271yR6WbJPdv9sVKd+qN91e6SfLETJ31ydvu8Y9Kd+5331/pJskc/+iMBd1487yV7sYb7lLpJsm4ZzprtU/ZqLc+8roTOvsxF5mwTKW79t0nVbpJ8s0/dNbN/v3cgyrdX97zfKWbJGtP2rDSvXW23vjVUmt0/rbvXX7mSvfxiZ0xwiT5/oXPVbp/++CXK91jTzqi0k2SWSd19tMut3zn+zpJLp/cWbv3vnf2q3QnTes8RyXJ2hcfX+lutGVn/9ojr4+vdJNkpis745PzbtSZx0qS23/VWQsw76iXK93Xdv17pZskbzy1U6X74ff2qXT/Z75TK90k2eeyKyvd9SZ39kkkycVTO+uoLv5X5yyJD/3hG5Vukpy77r8q3eUv6/yM5yvuH312pel/vk+SrHrRxZVuklw3+4qV7rx3X1Tp3rv0cZVuknz13c482ugfduaj/vXWnpVuktz0gc75JbOc35u3Hft6Z73a2HGTKt0FLryx0k2SF7/bGcd/5oDOGsYPn9LZo5skl32v8/c309TOM0mSXD1/Z7xvlnVKa3K/3duPMnyZzvPOO6931qqtus4GlW6SHPzpzvrW7+78yUo3SSa/1Vmrfe4xnX3hq+zZuSdKkl3m6Kzp3OuXp1S6c13450o3SVbad8FK99xFLq10k2TjF7ardN+ZZb9K98NLLlXpJsm48YdUulvP1BkHvvWTnWfKJHnwt51x/PU+3ZvDvu/0zvzO5Lk698uLTOnMByfJ317s3L+c8r7Od9/YFX9c6SbJc1/qnIO1/0qdeaMkWXXv2aZ7c9J638y7dzz6H697XmLYvNOOz/Rfx7jUcb1/8/1/vVylu+0lO1S6l0/r7L9NklmW6BymstwNe1W6STLu6W0r3eev+0Kl+/aanXm3JHltu8642NLP/LHS3eWrnbHSJDlguVGV7l2fnrvSTZIJC3R+5+ZYsnN23fPzHFDpJsmk0lnrJ+/z80r3i2f0fpe/vtrple7qn26dypUcck9n3eW64zrrkSbc9IlKN0mWPO93le5WX9u40r16lc6YSpLMMGmlSve03U+odJNk17c6cwrDP3JUpfvZszrjE0my9PzTf09jklw99/R/jkmSR15cutJNks0f7Mzprfn5zn6fJDlr7Acq3bsmfrvS/cy1vTUA6y7XWbew/tyd82r2Pq13v/Wb8Z1ntEUO790vL7XcGZXumZt2PjN+/mJvv+uRd3bOGXjrR69XukcOdJ5JkmSvtX9Y6b7Tm6rP+EM+Vunuukvn7MH3Rv+z0k2SH62zW6X7u7k686Yrz957jlrhn53nnRE79t4Zd/v7O+Pd67x+SaV7+32dc8SSZO8DOucwrrV/5z0Vn1+z9+yw3p86awC+sOU6lW6SHL9nZ7/r7/furC/40Ud7/35nn3dnpfvgnZ2f8frL9NbvHzuxs4Zq85G99wa8/o3OZ/7pIzr3nmPGd84tSZL/2aazx+wvp3eu+fD1Ovtzk+TEO39d6Y5d+9hKN0mePa5z9sxO4zpr4P70WO+sqlW/33l2WGfDnSvdiYd1zlBKkh0u7OwLX3famZVuktx9c2cv0SaXfbzSPX3T3lndH/tG59lh590798t/GbNZpZskU37R+VlMe6S3x/NDCx5Y6V563F2V7nKL9t4RusEunfVkvzmks//ioHN7Y+3b79GZ39lo330r3STZ6dLO2SWPvfbdSvfHB/TWf596V+dMm61u27/S3WKbzudQkuywZmdM7txFevN+r5/cmZP6+2zfr3Rv+3hvL9EWZ3TGrrf7XOes7g9v3ds7uuh3O78XP7q3dwbkipcdWulecvTdt02bNu0/PqB31JID0+b6yfT/N7r/9M7+vyRZ+JcTKt1Tlj2s0r3xs73xj5M+21m7t8YevfP2Dh3ovLftF9/rnB8yfs/eM8cPVr+s0r3i150ziMft3jtr9hevTax03yrtOU2SP2xwa6U7bIXzK927Ft680k2S+362Y6U7x+GrV7p//3Bvn+VKp3f2Fo7ft3cO4++XeaDSvfGPnf2QI77Se+a/Y8XOvsU5L+qMd//+kN739c6/79yzHrR+Zz1ukvx8Quf779Cnlq9031izs0c9SY7er/O5fPEvVq50t/hZZ042ST5/f2f8cbveUHomfayz3mLJczprIuZ5rbPnJ0l+92pnzPQPlz5V6d4/0Ftf95sdOutbD96rt45j8qKd+frDv9I5D/2jN/XWcax3cud9IIeM/3Cl+8xBnX+7JJmwRecZ+9VHe2N5+5/eeRYeM6ZzPvXSV/Q+lw/8cWdeYYM/d87OeuPXvXGMNebqvDNntU16e2g+/vefVrrbb9T5/hu36n2VbpKsckDnd+63D3fGdEYctHWlmyRrHbtypbvcN2+rdJNkj8U6z5UjxnX2389wae+d6/Pd8PlKd8YPTKh0D/hE72dx5aKdNZ1Xz9S530qS2y7dvtL94KU/q3Rnn/mOSjdJdt+9856mv365s8/sniufqHST5MFxG1W6Hzj+S5Vukvzm253n1dPW6azpvOq1zphAkuz+xc7v8i6/7JzLcNdfOutxk+SLO3bOL9nwE71rfuepzj7dJ7btnB10y76dcyOT5Iirz610v/y5zlmzr83Vm89f7vOda95s1xkq3ST5/Jydd3mecl9n0/lvdxpb6SbJxas8Xekufdb4Sne2i4prwG/t/J1sfnbvefWKFTt74449oDP2eddGvb/rnR/uzKM990JnPfz2S3+r0k2SGRbr7L8/eduzK90k+fiKnXvEUcd0zrfb6rjeWcFzPNVZqz3PYZ39DNv/tnd20ExPrVDpHnNr7x7x4J07fyc/Oe/E/2rd88JzDZ926FbT/z7igIV6ezcO/Xjn3bB7fGOWSvfwmXpz3w8s3/kOOueEv1a6SXL4Hp1zyn68Wee77fOjevtY5t2387uxyVmdMwInfqbzPqokWWzSaZXuoad33p+cJDt+s3MPf/hRnXPmdrmqM3eTJNvO3hlnemPZzprAa47orPNNkh0f7TyP7r1qbx3OqT/vnBE/5tud9cmbTeytA/jjBktWugv8rjMXcvtXZ610k+SpmTs/59+W1kQkyQGLf7DSvXWxr1a6Jw7rnAOeJNc90FkDft2KnbUyO32p8/7WJNl4oHPm0MqrdNaWJ8l5v/ptpbvPbp2zLbY99k+VbpK8dH7nXu7WbTpznMc80JnHSpJ5f35cpTt1g867DpJk87931n5NOXLhSnf4jJ+qdJPkwB90/q5nn2HnSveW43pndH7qhvGV7nOXdc6lTJK7J3fOg9vmwM75dZf/qDffu8NHOvvuNvp45znqjTt6eztOemT3SvcXL/bOe/7u5Z31Ts9tfEWl+/Vrbq50k+Q7F3R+Fsd/qfNZ9N0NO8+qSbL5yPkr3cXHddYNJcmje95b6b5vh84emnUX7H0uv7VoZx3Ojet0xs5+umXvnd37nT+h0v3FSZ19Sklyw7Gd9ckr3tjZv/3MMd+pdJPkuqc7Z6sdfXnnOfiMVXrzDt/e/O5K94B9dq50k+RDX+vss77qe51zYX/zid57Xk89baFKd/PbO/tGXpjYOyNm/g927hGf/XLvncV73XpEpbvRzp2zNLd5vnf+4N+v77zr56r5O2dUvPyH3vsEf/F4Z03Zsg+Or3ST5OpvP1vpzrtJZ2787dV77wRZ4orOeUe7r9CZ07j5sTsq3SR5YqF1K90XPtk5oyJJTh24ttK964HO2OdPJ/+40k2SPy/yvkp3gV931oqeuu/wSjdJNjqvc3bXwwv1zi7f7sjRle6aH7u80j3xU733b2/0g29WuhOO/o+XzP6vfPbM3plu9/6psx5x1LOd9zMkyffS2U90603f+z+ue+6tLAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4sMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUjPhP/uOxo2bIBxdYcrpfxMgpo6Z789/efPfNSnfG0e9VulOmzlTpJsnb771a6Y4aPlDpJknenVLJPvf2f/Sr/782dsToSjdJHlxkaqU714fnrXTnXfytSjdJRs3e+TkvOPO4SjdJZsu7le6bb3d+Lxb9wIqVbpLc+de/VLrLvrFmpTt1gXcq3SSZdeHFK91Jzz1d6SbJ68/fXuk+8XznO+qFtzp/e0kyftZZKt3Jf/9XpTswsne/9cKLL1e670zr3AckycQnX6p0h015udJ9+u23K90k2W6LvSvdCRM6f9fX/+2mSjdJnn32mUp33tL3dZKs+7EtK93rr72o0p34xGOVbpJsuFbn/uWOh56rdD8xZ+d7JEmmvtv5/nt52vBKN0kGpnbaU17pfH4utlDv2X3SC69XuuMeerTSve+e+yvdJFl71Q9Vun++4a+VbpKMfa/z/DDbqJkr3UnPdT7jkmSGgWGV7rCBzjjUtPS+r0dOm1bpvjdlZKWbJAuNW7TSHTu88/m5+Kyd8a0keSOd75I5Z1mi0n36zUmVbpLM0Pmzzk///I9OOMkHZu7MD4ycdf5Kd6aF5qh0k2TS9Z3PjCnvdO4FZpulN+8ww/jOvfi7UzrPlEky6cmHK935F+p8fs6cxyvdJHnusRcr3Vlmmq/SXWr1tSrdJFlw7tkq3Xvv/GelmyR5ZXwlO9/YznPUmBnmqnST5O0xnXvEl1+ZXOlOfqd3vzzrnOMr3amTOz+LJBmYecZKd5ZRnb/rp59+qtJNkrdfe63SnXOezn3RLON788Fb77h9pfv2yy9Uukky2/jO7/ImW3+y0p3aWaaTJLnhxqsq3ddKU5UPvfBkJ5zkE4t0nnfee70zb5Qkiy25fKU77Jl7K90Xnnil0k2SJRdaptKdde7Oc9RLb/bm80cM73zGjZixNz8wbETn2X1qaUznvdIYcJJkSmdc4M13xlS6owd6Y7Vzjpyn0n3l1d6/3/gZpv/PY9j/j1/kGV8ZyMp/nv7/9tuu1BvL++e+t1S6+56+V6U75+e+UekmyZkDZ1e6c7y7XqWbJHdf8ptKd/eL9690f/WR3jqAt1burBEZc8bPKt2Jn/lKpZsk9xy0caW7wiO3VrpJMuOiO1e6Lx13T6V7w16dvQFJstWPvlfpvnXI7JXu85feV+kmyY4f2b3SfXXV0yvdJLnnhqUr3RMv7NynXT3u15Vukqy5dOc596V7lqt0H1xxzko3SS497LJKd8Z1rql0k2ThJzapdEes3lkf8vgevfVZv9/q95XuQtuuVuled1xvTcTMs02odLe5pLNWLUlm26zzPDrpnFMq3Ys+0Js7XevcjSrdBX7QuRfYeYvPVLpJ8tjCnXuB1yf2nt3fnfGASvf4H11X6W4yx6yVbpLcfVbnvujRfc6rdMc/f1ClmyRjV+k87zxyXW8d1fwjO78bx2/RWd/z2N82qHST5LrDvl7pzj7nCZXu5ZfvUekmyUc+/d1K9/bf/6TSTZJlP//jSve5dzr7f7fZtTc++eZVm1a6997X2dd/yr96+8w+Vtr3c+Bfbqh0k+TB0Z2fx/j7O2uH3rdt5z4gSTY4bL9K99YHO+vglnvryEo3SV4+rzNv9NrIBSvdJBn9Smfseso+nbG+y649qdJNkoXHjK10j7qvs9bp3Yd6+1GWOuPySveCZ3trAt9crLOmc+OzO2tablix8/uWJFtNurLSvefUzjPJuLvPr3STZJVjO/f4r2+6WaWbJIeO6Mxhn33LqpXuiyt3/kaSZOnFOuvLzxj38Up3udmfr3ST5MabOmd2bPZcb0zu+HPGV7pfuezgSnfihZ354CQ5/4+nVbqjnt+z0v3Wbp31P0my/6c694ifWODOSjdJZt+nM+8+cs/PVbpz/bwzbp0kL474dqX7m7M7n0V/vak3VjvjKp1xjOFn9/Y2PvN0Z335jistVOmeMcu1lW6SPDeuc0bTrhM7v3Oz7tM5dy1JRq67eqV71vsOqXST5O7jjp3uzfWe++/OzZsy/N28NMsT0/lqkiXv/uV0b/7bOVt8otL9yI6dtcl7rjv9z9L+t/nn7qz7+sIqvXuppf7ZmQfZ6dTOZ+4Fp/yq0k2Sj4y7rdLdacUHKt2XvtVZ15ok14/pjH2ccNX0/3z7t3lHdvb2brfDpyrd6z/UO1P07t929gaseVHn8/Pqn3TWAibJLsM6c3pfXq03733bhzpzQvP9sDN2vMbBnb3ISfK5f3bOxdvlhR0r3R2fX7nSTZJlZvxDpXvURzvnGCXJby7onD+x6Be/WenucExvHHalBzr3Ahv8/bhK94sjVqp0k+S4r5xZ6a68YW9f4xcO7Yz9LzJ75ztqqcMr2STJwet39mxdunVnTOzIMzvnDibJTXd2fhbTLp+70k2SWZ9YodJ9eeKple7nFuuNw576xEcq3cMO6pwNv8bad1e6SfKrV35U6e731O8q3ST58nc+Vumu+olLKt3Zdv1apZsk+57R+S55aN7OGVf7XLNupZskWyzXWbdwyam/qHSTZLPXO2dGvXpkZ0zgx68uVekmyaYndNYZPjupc484bb/eu+jWW6qzl/bzH9yh0k2Ss8fvV+ked/wule5uf+zNlexy7vsr3XWO74y1f+bN3vrvE47snH326HW9/RcjXu3spb1l/87a1klTenu3T76is57zT//qnJXz4MnfqXST5P5ffKDSffPs3sP7FV/7U6V74KdfrnR/M8+2lW6S/HDFqyvdRR/q7LE+fPnOuRdJss2eC1S6C23SGTdLknMuOrnS3XWDn1e6Kz3dO7d86707exmWf7Sz5vKjNz5b6SbJmPM7n8ufGd4763nKDCtXuivv1tlHe+k1nT1KSbLTOp3PomMnd9bMvvNUZ11rkly01VmV7lrvdc6TSpIH3+ncY+z3j84Zghcc0RmrTZKj3umcPfP2EZ31nCfe+WClmyTf+Po6le6Dp/ful3ec2DkH/NvXja9093qrt/d33gU6n0UXLN9ZD/XEC53PiyT5wJUTKt0rzvpjpZskV63R2aOb/HdrgOYZGJUDZ5r+a/+P+mvnTK4k+d31ne/6t49apdL9wvs6z0hJssEynffEH/un4yvdJDnq/M5cyI2Hd+Yr7rtg10o3SR5b9MuV7tHf7uwlH7tJb2/a4iddXel+9N7OOWJJsuUlX6h0p/z29kr3lyf2ztE8e4X1K91vPt85R2y1w3rnMO60Vmf8ao7dO/d/SXLh9p39HV946uVK96IZeuNXjz34pUr3fzqvY8xx3+i9z++GH3Z+zt//7BGVbpL8/ded89puW3C7SvfBIzrjYknywBc7a/j/vE9nTdmd1x9W6SbJP9b+aKX7rT/0zq67Y//OuwJ3P6PzPuLjxvbeVbbDAxMr3d9e/HKl+52FO+ehJ8neO3de9rjg13v7Ua7ZtvPs/r0X36l0j9yqNy6948866zj23LDze/GLDXvvOf7XYxMr3SO37L0D9PGDOvvu/vCrzpnaW77Uu8c4avanK90dt+/McZ77k87e+yRZ8AtbV7pff+2MSjdJtpurs1b7jWs6a7/O2XTzSjdJzvtaZ87i0Pc6z1GzXd7Z85MkR+zTGce/45DO83WSbHZu5xz3FW/vvBvl5d9fUekmyfuW64wjbnJXZ079s689UukmycVXd/aZ/ebjy1a6STL3iZ17jBmGddaXv3pkZzw8SX64w8WV7qI7dfbcfXiLSjZJsvsM91e6F521U6WbJJuv1NlDs9uNnTPKPjtfb2/Otrd3xl5+t1NnHGr+gR9Wukny9Dqdc4j3236+SjdJXjmlM4c931GXVrqP3/fZSjdJ1vhBZ371l4d2/v7Gj+qsjUySC6/vjDd8/PLemqRb3u6M902c1vld/sCaf6t0k+SxzvLILPL15Svdk2+6utJNkgnrdsZUDzut986xfT53TqX75rKd8yW/dULnPZ5J8tR9nfbqj/2h0h1+fefctSRZ51udsw+nLNTbszz2o509pGsv1Rkv2iu998hPOadzFsicL3Xe37XaC70zRpY6arFKd45neu+M+/gx0zrh//K1pk+NGJEj5pj+74w44I/zTvfmv818cmff/nk7d9ZE7DXPaZVukhz0lc4+wE13691b7jVf5/zP9b7aGb8697refNNCU/5S6f76x5212mP/0pnfTJJZt+rMyz4wpbcm6cUzO+9r2WO/zgPY7jv23rt37Qe/X+ku+G5njPBja3TeG5Aky/zqw5Xu7tt11nMmyXKPdNZqr3h855njrZ90zsJJkpt/d2Glu99HO+fNzv50b2/VlfN23hU467aduZsk+Z81O+Mfn1z+mUr3X6f21md9/P7OuPQxx25S6V5zQufMhSQZeXTn2W63w7epdJNkxrGd9eXvv+G4TvfMzj71JPngWZ014H/apXOPMeemN1a6SfLCBp1z3K87oXfG8bdK31N/u7Mzlv7wCr2/663n6pxndPbfOmeXX3J5Z4wwSZ5cq/P9t+utX610k2SjmztzyYfu29mb+saU/SrdJLlnSucMmF99ubPP7J8rdcYQk+SAczpjnytN7tzTJskS13b2TX5pls7czZIT/ssB7/+FOa7vrGlZftk1Kt33Vu6t41jz8JUr3Qe/8PlKN0mWvaDzPfXSCp0zE+8978+VbpLMOEtnHOqM33c+P5d95rhKN0lu+W7n73qn4zrr7JPkxdJc8vu/1BnH33ex3lkSV63Yma9f9WsnVrq/ubn3HLzw5zpnJi51RO9zecL3OmMvbyz/m0r3ikN736uf/tnele5Fm7xc6b43c28++C9zdsaXD3x8w0o3SX5wceeMmCdXWLvSnXzZXZVukuy7zh2V7jnXdTaOLHZe5z1NSTJHOveea57QOz9yy5Gd9ZF3rt454/FH3+2tQVjlzM5eiVdP6qzT2f2Q0kFKSf44a2cNwl9+uUilmyRbLNFZH7nGRUdVuhdu0luP8c+vj6l0f35R5xylX27We2/OyHs766GmfqE37z5+785ZBJfN0dlLe9xWp1e6SbLRLp2zlI6bq/Pdd8Vpvfe8HnFlZ+zlru90ft+SZOZJpXXPN33v//g/92YwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IgODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAXDpk2b9r/+j5cdM/e03y326el+EVPz1nRv/tuUvNsJD3Syr733Wiec5L0pnYt+591RlW6SvD2687sxsMwSle6LH/5opZskMw2fUukOzD+m0v3LJedUukky/4wzVLprrfvxSjdJZllkzkp33JtTK92XZ+x0k+Rff3+i0n360bMr3fev88VKN0lmmWNEpfva873vkrNPOb7SXf2Da1e6SyzT+1z+zlF7Vbq33vdMpfv8iy9WukkyfFjnd3lKOt99STLjmJkq3ZVXXKbSnXH08Eo3ScaMnbHSvf/epyrdBx56rNJNksWXXbbSnbDWOpVuktz/wEOV7gYbr1bp3nnrVZVuklx77W2V7td3/Wyl++a0NyrdJHnl7Vkr3ftf6nxHJcn67/9Ipbv0CmtVuvvvsXWlmyQLzDSp0p30emd8ZIElV6l0k+S8P/2l0h0/spJNkiw5ME+lO9eI//343X9i9vR+GO9N7dy/jBxbyeZ9s7yvE04yy5vjK93F55690k2SKe+9U+nOPnq+SvfNyZMr3SQZKF3zmOGdZ/eJkzvfI0mywIXfq3Qnv9L5fUuSOx/u/DzGrrJApXv/w89Xukmy8Pn7V7pXXPdwpbvOR8ZVukky6dXRle5KC65Y6SbJE892fjdmG9cZa586vDeO8czLnfGGsSM7z1ELfWSLSjdJZpp1tkr3zddeqnSTZLE5O3OKLz18c6U7fHzn8z5JRs/ceUZbcvyale7Tw3rzDm+90um++kLvml+ZufNgsuQSnWfK++99stJNkrnn7syBPnzfLZXu7HMtWukmyahZOs/ud//piko3SZZeZsFK97GnOvPBY2aeu9JNknv+eW2le94511W6maF3v7X5h5eqdJeYrTeOMWpYZ93LEut8uNJ9/sE/VrpJssTKW1W6c4/rjJ1NTuf5LElGDu98Lg8f0fv7GzaqM4c9bUTn5zyiOCb3ZGlM54nnOveIrz15a6WbJNf94cZKd+FZevMDI6dM/7+/I2+7MhNfe3HYf/P/XWXYQtOuzyHT+5Iy9aGbpnvz357ebI5K9+pPdT5nHj+58yyaJJstdkalO+9KvbH0N67urBG5btFnK9215vlcpZskJ72/8x2023vvr3Rvvn7XSjdJzntz3kr3yn2/UekmyW/3+lulu9PpnbVOj6zY24/y8pWzVLpXPX9ZpfvJhXp/12fOfUel+5VLVq90k2Szh79a6U6Y/1OV7pRP9+bILjmnM1/4zmWdMZuLriuNqySZ+6XOfNPSM79a6SbJ2Qt25pz22aGzVvveazprLZLk3WEvVLrj7umMf9w8a2lfY5L95u/M633yYwdXukly7pU/rnS3OKrznPs/3+79XV/xUGdN7irbd+ZCll+nt89s6pubVrp3XHZfpZskB279XqV7wxK/qnT/+v7OWEOSLLdq53fu+hk6a2U2WbyzfyZJrjmksw7uge07331JssXxn6x0n99h5Up3wkPHVrpJ8tpunTnOPx3dWZN07Fq9tWrbXNm55gf27D27n33TSpXu3Xt07gX2vHe/SjdJ1n7nkkr3gvM741tPLzWx0k2S5+84tNLd+Ine3sYL0xkXmHOOzt/fiRd1xvqS5Dv3dfYg/nhYZ63Tng+dXOkmybC5l6t0556ht47jl2909t197tk7K90z136u0k2S7/2j813y3bF3VbrjP9UbExg2fEKlu/aw31a6SXLp/p01SUtd1vkuGXNdb6x9plc761DfnLJwpTvm7+Mr3ST5wFadMZK7t+mtw7n2zs683xbXH1jpnvu13lkEr36787yz4EudNWXDt+2NyV22+NKV7qI7b1bpJsmn9uvM6R9zeWfsbOVnTq10k+StGzpzGvvv84tK97CtO+txk2SOVZ6udOd8vDf28sjPO/N+hz3wP5Xul1fu3HsmyY53/7LSXXnBByvdTbfqnan4u8M/U+les3hv3fOHFujMdc34Zufsp+HLvVzpJsk1J3X26c45trPp7qZHe+sxfvdQ5/7luNk797RJMvXa6X//ucNL7+aed6f+x+ueh8298LQR207/cc2Db+zsrUiS8bP9oxM+8IJKdsZdOmvzk+TnO+5W6f7+zz+pdJNk51WPqnS/+fYule7zM3yo0k2Sf73S2We56D6HV7qrn9fbm/bpmzprcOZceoVKN0mWOKzznXn/XRtVupdu3Pu7XuYvnTGmHT58faV7wFd75+M+d2Bnn/rkWTpnfCTJh7/0QKW79QqdcaB3PtR73j/6/kcq3XcW6NxjHPLK5yvdJJl9gc5c/W+G984veOa40gEit/+8kt1tvs6+jiS55HcbVroP79BZp/bkW729DH9dtvPv97NVDqt0k+Tgv3bm1F98Znylu8e8vXOv19+psx7+2E901hYcdkFvbc+M63a+/049pjMmliR7PtPZ//uNLy1Z6f5swfUq3SS577jO2vJJP12o0n3wgRMq3SS5/dzOOMZi7+u9T2KnXTp7Jvf+62KV7ilfX6PSTZI/n/ujSveiL3fmTZ97sHeuzIXn7F3pXvaP3hllB29wZKW72+86n/e73995L1GSvP21H1S6ay/75Up3yyt6a+tuvLqzFv7Ov32r0k2ST5/WWXf51GeWr3SPWK2z/jRJXr5sk0r32P1/Wuk+eHtnbjNJvrR8512QW323c75Iknx5sc4e+R336ryz6pn9vlnpJsk2121Q6f5zxt9Uunvf11m/mCSLX9AZq/305N45mhsc0XmW+uUee1a6R3z99Uo3Sd7/s847FHZ7pTOOcdTs3610k+Qf13SeS255oveeprUu7Dyjnf3jAyrdq//Ze5/ET7bvPEv95Mzp/w7yJLlq3955fD86qHNu3txXblzpJsmUSZ37oh8u9oFKd6aP9cban726M6Yz9sTOvctiO3TWnybJRVveX+mu+4fePcYft/5hpbvVT79f6f5uaucdd0ly0m1HV7r77dt5H8FNt/2h0k2STU/pvJvh6Vd6a0h+MX/nHfWP/Wyg0l3hrc6e4iT544md9s5r71Dp/mTTfSvdJJl9zs7ahndX7Jx5mCTf+U7nXaw7377rbdOmTVv1P/3/DR+22LQxw6f/GOTUZ3rPHN864GOV7h5jO3On73y5966rgw/r7BWabasbKt0kmfvPV1a6P1u0M8ey55kTK90kmXmuzh7cWbbsPDOO3Kh3bvlBB3fOV51//c5apyR56q+dtXvffbLzfpld7+2cY5Qkyz7SeTbY9O8nVbrzPdB5n1GSDDu6s7fwuLl7Z/C/s09nvdMPJ3fGmR68ujcu/fDWnfm3r1yyXaW75ph7Kt0kOeTxzvPXxce9WekmyXtbTqx077u7c+71Uyd8p9JNkjWf6Jy1vtjRnbMj379Yb77w5y939ux/+sDOzzhJdjmg8/l5yFoXVbp3Pr97pZskf9urc//y1hqdM66WP693DtwFR3X2o2x89huVbpK8PKYzlv7e9zrPJSuf2XlPYJLs/P1HK92vfbSzz3rgnd7P4tSnP1Hp7ntMZ61hkty/Rmd93Vw/75zt/92zp/873f5tj899pdJ97OSXK92fz9c7k/Lwozv77//1fOfzIkleXOe4SnfJne6tdC+aozOPlSQ/+GVnz+u7P+7cu+zxUu/Z4bpzOveIJ8zemx/4wqmde7kf3NE5r230rr3nnS+dOaHS/cJGnZ/x2xv9tdJNkoO/0nkX5EI//I+n3f7Xnvtx56z1Tf/yzUp316tWqXSTZNYjOuP4Fz70s0r357/eo9JNkk8s2TkreIYP9c4e/PGjne/VS17snFF2zYG9553P79m55gWeHFXpzrDUjpVuklzx9c6+kX32m6vSTZIP79aZwz51ky9Wuhut3vkeSZL9l+yMT865Zaf70B29tYa3bNZ5LtlyeOcdhUny0dM7c0dP/n1Cpbv4/Z31P0my4ps7V7qL3dTZ27HRQWtXukly+gnfrnQn/biz5y5JfrTca5XuUdM66yNP+uKfK90k2ebIzrPU8et3zrc76cC7K90keee60yvd1fbpze+M26QzJv7FeW6rdJe9qvdujRmv7/z7fW3Zzr7+8W919hwkySE7/LPS/cewzrNDkvxoweMq3a1Om/hfrXuea+blpm2z8u+m+/V8fr/OGZ1J8swunb2nH/pNZyxv9O6dd0UkyTrzdcZsbjrpS5Vuktx36WmV7vA9OnPqz93U2beYJDu+8tlKd8s/d95/fcXTvXGx0TOMqHQ/c0rvnSo7LNw5t+YP3++MU+xy9O2VbpI8e++vK93FvzWh0r3j5P/49Qj/a/OX1uGssF5vvvCr23fGH9d7sXOGwV6nds6HT5LJp3TOgPngtM57E3f6ZmefepJcdEynu/f8nXerJclv71+k0r3o9c4Zxx8Z3tvPcMOvN690x07ufF+feGhnPXWS7P5E5/yzb658dqWbJFd9pjM2dty+nTMel5+xs74gSc6et7N26IyPdNb6fuCYzjm2STJlu874/4yH9tYEPv/imZXuQeMWqXR/sVvnvfZJ8vUrOmOm2/zzvUp32Kqd93YkyYi9Omt9h3/85Eo3SfY/bJZKd8dLX6h0Tzyu887LJDns+c736qjDO++qeHJY528kSV76XOc8qoPW6n0WXXbdnJXu+YfuXOmO2b2zFzpJfnVyZ33Wl1btjE9ucVznbyRJPvXujJXuD0/4QqWbJCOu7Jyf/Iv7O+8aefP0zj6JJFng2gmV7vW3n1Hpbr5h57yOJNnyz533hP74e725kpkvPajSXWH2xyvdIxe8utJNkiUO7OynvWShX1W6Hyi+f37lw9avdJ/cp7MvPEmuXatzX7v1UZ3vv3+8tXilmySPzLNwpXvDUp138vxrWu+MzkkLdJ79Nj6t80ySJEdt31l78sarnc/7Zaf13q240CtXV7oHbPanSvfOO3vre2bZavtK99Z5jqt0k+SWDTvnf3558c588M8v7p09/7lpnX0H3/hVZ93s3bOeW+kmyWPLXVzpnrld5z13SXLf+M78wDoPbV7pTtqzd3bXRmv+vtL9/Syd37nRP7250k2SQ2++vNKd++ZTKt0k2WylzrjATvd2xj4vXqG3//cHW3bOKJx5t8765FPP26jSTZLRV3X+rn/w1hGVbpIs9WbnM2OPGUf/H9c9d+5oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/MgODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/8Pef0XrVRds3/aZlYSQEEKo0gm9F+kgTRBpUkTEggoit4LYsaBiF0UFFEVRBERQVJoIWCjSe28iIL1DCAQIIT3fxjv8tp53jFvfnGON9Yzj2Mafc6ysdV1z/tsEAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCYXPnzv1f/8frjFli7pmr7TPPL2Jups3z5r8NH5i/0p0663//c/tPzJ4ztdJNkldmvljpjlhsuUo3SWbtsEOlO3aHRTrdBZaqdJNk1PBRle7L88+sdOfPsEo3SW67/uZK99kHO90kWXOdrSrdlVZYtdKdNrqSTZLMnt35zD/jx9+sdHfa6UOVbpLMXXREpTtiRiWbJLn5+ksq3Vv+cX+lu/ayS1e6SfL3mzufGa9Pn1TpPvXsnEo3SSZO6lxz0vmOSpK5c4dXuuMWGFPpTp89vdJNkvHj3lDpTnr5+Up3q7V3rHSTZGB8535r3Y0nVLpJsvjYlSrdubMfrXR/euwplW6SrLjOapXuZistWemOme/1SjdJJqy9cqV75e0vVLpJktmd+6I937ZnpXvM4R+rdJNkhcWWrXQveejJSve1GVMq3SRZYM5ApbvcsN7z6rJzRla64+dfoNLdavE3VrpJMnK+zv3WYvOPr3Tnn9O53iR5fVbnXnyRMb2/v1nTJ1S6Yxbp/JzHTO/8jSTJnDmdf79XZ3QGX17O5Eo3SZY478uV7vSFOvfhSfLC3M4917FX3FXprnfPTZVukky8/KxKd/qohSvdJRZ8udJNksVHdT4/115lxUo3SR6f2pnrytSXKtkR6TyrJsl8i3bu5V55uTMOteJSy1S6SbL+zp05tOEze/fLI2c/W+k+cfdlle7AfJVskmSBUQtWuq/MfKXSfcNim1W6STJj9uxK95knnqh0k+S5uZ1xjPGrbVLpvnTHrZVukjw1sXO/tfiinb+RldfqfV+/+OSjle79t11e6SbJQOle7pHHHqx055/Ze/Z7+dXOd9QOu7+j0r3gvKsq3STZb4+tK90VVl6l0k2Sl559utJdYcLyle4jD3buXZJk7Q23rXQXHT2h0h0YvVClmyQZ0RlvGNa5dfl/2iNLz36ldTqzp/bGVB9+6OFK99aL7650X7u9d781Z0rnO2rFUcU1n8NnzfPmZx+4KA9OnfRfPbCusdiqc3+557Hz+pKy95K9+d4/nvm7SvfKpTvrk1ddZUKlmyTL3Nr54F103c73fJJc/mrn7+vYtT5Q6V5zTO+Z49Wz16p0F36psyZpgY073xNJcsvk0ufu3//S6SaZOq2z1n7WMm+tdEd/5J+VbpKsNNBZu/DNnQ+vdPfc4keVbpJM7yyPzKiL3tIJJ7lzyc6Y24jXOmuSNni4t47jru0/Wume+pPOz3jWar+qdJPkDY+vXuneMvPRSjdJ/rbm7pXu+66YWOkOvP/XlW6SjDvgpEr3pb07c+qj1+/NfX9l1fdUun/Ys7OGMUmOKo3zfm+p31e6D7+ptznnX6euUOl+8rTOHMvyG61Z6SbJQ0dsWumufvrFlW6SfHzlGyrdUxftfK9+cOfe3OmW23bGG479XGcdxydWO6/STZLHt7yg0n3TUsdXukny1G2dNQZ3LtT5jDtgmacq3ST5xqzO3qqrJz1U6b641IGVbpLcM3Nypfv8j2+pdJPkwjO/WOl+acPS+OSNt1W6STL+jR+pdHc7srPP+sbVe/PIO3/qnZXum3Zev9JNkoM//Eyle9s3O3vjRv/yh5Vukox9fPFK99MDnXVfW8zsPKsmyXuu6nxf/+5976p0k2TdVzpzDyMO7awDmPm7OyrdJLn0jZ09GLsutGilu/7drfMCknX/Z+NK98Er1qt0k2TMep1x/GEndNZb3LXB2pVukmw4rbMH41+7dMahPvnQc5Vukvzg2c4ejEUuuqPSTZLZm3fm55bc89FKd8ave+NQMx/qzDVPfkfns2ipA8ZVukmy1ilXVLpXHXBNpZskt2/cWW+43R6ddc83PHxmpZskf32ic8bWx7767Ur37jM66w+S5OuT7ql0Z5/xaKWbJLe/v7O3+NVTO38jC/72xko3SaaM6cyPf/z2zj3GCbv0Ppf3fGKDSvee+a6odJNk3RU6nxl33H5GpXv5U2Mr3SQZP9AZ01nll52fxc/Gd8ZHkmTBsd+rdHdeujeOcc0f5/0z2imv/DrPzHrmP173vOG4MXOv3mzenyt62fa/nefNf3vtulMr3Se3faDSXXHWJyvdJPnkwZ3v+K2Hf6PSTZJznvtqpXvPz8+vdE/+eGefSZL8ZVJnT8g3H76+0p3y1s58UJK877J5v/ciSbZ6798r3STZc3bnfNxNZ3bG2757SW/N+tr/03kWvW2JzjV/96bOfoMk+emkVyvdFfc7sdJNkkfuebzS/eAHOmP/M5/unLWXJD/epnNe4kcv6+y/WG+N3nlRz+z950p3zWM65+QnyXJv2a3SnbNn59/vqpG958XVR19Z6Q77Umf/zI5HfbfSTZJb/rJRpTv1Y53x3SQ5Z9OPV7pLbdY5i+rJX3yl0k2Si+6/vdJd/cH3VbrP/64zPpEk5/66cxZHNvlgp5vknL90xvFuOO1zle65Z3X21SfJ5zec9/vfk+SkyzvvrDrnwM58UJL8bVbnnVX77txbw7HvtzvjsC/d1NkX8MNPX1jpJskBC3XOz/rx7Y9Uurd86L2VbpJcOb2zL26HD/X2gq23fmfd5aYXdPZ1TNu897yz9suddYYnPnNYpTutNJ6aJE+9dnWle/GuvfHlgyZ39q9N/XLnnX9r3ddbG7nhJp29RGvf1LnHeGLP3jmMX/9w5zP/uQs6Z4AnyfEPdu4/fzSxs27huhs639dJ8vdXO+NQ+7/c+Rv5+uc7Z2gmyfL7dc6BG/WvzlrqJPnkt99d6f5w1c75jpeu0ttXded3O+MYc9/TOWxl/Fmd9zUmyYzS+eIvnbFTpZskK536P5Xu/5ywRqX7hdVOr3STZP3rOvNoXzi68/m558jvVLpJMnndzpnoA1/u/L4lyeqXds6oOOkHnfHl9Y49tNJNkqfO2rXSHffZzpk2t12zf6WbJG/fsjMHetyCP6l0k+QLqx1Q6X7y2c6ZzI+N77zTO0nmW7ezf/TpqztzoN95dvNKN0lO3ezUSveYZXpn+m6+cOd904t+oLPOY52DflTpJsmvftGZR1v+fzrzRlPeO6HSTZL11u6MI37xxt6z++q/7cwJH/bh79w6d+7c//ihdaO1Rs+99vQJ8/x6nrq098yx6LKds88O3rpzvuOFj/XeP3/MZV+qdKf98tpKN0l+teudle7Wwzv7kdd9x8GVbpJcOrIzL/SnKzrrnpdcrfOdmSQnj/1MpfvyN6ZXukly3aude7ULLup8xn1rq94ZO7sc2hkn/N0Tnb0d111dOpA5yaY/65zLdeZ9n650k2TLJTprT5bfuzPG+6sfX1fpJsk553bOeDziU51xleOO3KfSTZKNXuvsW7z3L53vviT5/hZfr3SPvvqESvfkYT+odJPkkk1fq3Tf+pnOM/9N+3bWDSXJxPM649KfHNdZw5gkJ13feX5Y6M7O2Z/3v6t37vx2V3SeK69dqnOWylbL9daKjv9mZ2/VmmN79/ibfLuzduGyKZ0x+u1/0nt2v3yjzruJ3je2M0d92M97n3GTT+/cY+x0XO99IOdc2PnbfuaoznvStl/uT5Vuknz7l3dUuh9cp3OG+7GH9+abnn17Z7xo05c6zw5Jssbk/SrdA87qrI8c/XjvfOMfLto5c2jfn3XezTDmQ3tUukny2FWfr3TPf7VzBnGSDPv+myvdcz/RuS9a4qTOGahJstGozl6Xkad01tq/+7JPVbpJcsr/dPYpLbtg71yNXU/8VKU7+sA/VLq/mdb7LPrImzt/148f3DkDfOb6nTNRkuTYcZ3927M/1psf2OSEiyrdx/borO85aOI6lW6SfPaYd1S6f/pGZ2/Hyqv1zlf94KGddRw3b9J5t0aSTDx65Ur3pJuWrnT3+HJvTOfcuzvvVVxp3d9UusN2680HbzO7c3bXnot39h8myV0f6Yzr7Pmtf1W6izzTW+s77ved+fwjXuvsZxjz1c67lJLk+LEvVLo3f6H3XtPTd/l5pfumhTtzzZ9du/dexY++NrnS/etFV1W6H/vp+yvdJHnbAp+tdOcc/YlKN0kuurPztz3fZZ13o7wwqXe/vNRA530SX3+xc6biGZv2zn7a8frOewpXHNeZd0iSu0ZNqHTfNf0L/9W659WXHT73hI/P+7Pm1tnzmHne/Lddjzqo0n3f2t+qdFdbs7e/cJ/fd+Z7f/fH3hnV1+349kr3u0d31jHuOuWoSjdJfjB33Ur31h931sHtsFtnHitJJm/QOQNmq+V7f39P7dl5P96zl3TGeF8Z2dtrudRRnXVw5w/rnBF488md8e4keXatznfUjSf35uu/9q7OXORz93bOr/vEW0+tdJNk+qTOu30nv6MzXvrJfTtnZiTJB2/ujMWun845xEly4a866zgOKi2jun3v93TCSWatsVelO2f3UyvdGSd09uAmyaF/75xt8c/fT650k2S3czrvpzz0+c55+bu+1vte/czJnTVJB367c57Ddp/v7PlJkktP6uzT/eNif6x0k+SNC3XWXh56eufdAT9ab+9KN0mu/XhnbGzgjZ1z+HfLIZVukjx5XOdM+5Fr9PYdfHtkZ5/1H1bo3C9vdtqRlW6SzH9hZ+zlF5f9vtK94+O9dRznfGubSneLcx6qdJPkK7t3zll9fpXOGP0R93XWDSXJh7/eWQcwYtXOvNAj5/TG5HZ5tXPNDxwzvtJNkhMf6MwX/vljnc/7H8/prV04+fDO/oA37f5opXvF7p1xzyS5Ye5PK90fz9eb4zxnYuf8i+u/1Fkf+eznj650k+Sc3Tr7iZa6r/NMOWuVn1W6SfLaOzt7w59fd89KN0l+MHtapfvGd3aed7ZPZ29Akhzzcme9zIn3dM7r+NlCb6l0k+TmAzvr4a+6uLcG4et7fLHSveSczntMfr12bw50r3U67+cbdXpnn+eW3+r9Xox/c+fd0NfvO6XSTZJrtvlapfvmY5erdJ/f5vhKN0nu/0Fn7POpkzvjGH9/c2+t6NdGvVTpPrTjEpVukjxzxyKV7s5v6Hz/fW+bzr1Lkpyzx0KV7rkPd863+8Vr91S6SbLVHadVul++pPcehTdu0vnbnv1iZ53Ossv07pc//2TnfaxH39I5N3bPCzrrwpJk47n3Vbp7H9M5RylJPvjZzp7z96553/9x3fNA5f8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4vMzDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDDiP/mP586dk9kzps3zi5g1d+Q8b/7bjIHple7cDKt0X5v5bKWbJJNKP+Y5ayzVCSeZb8Xhle5CA4tUuhk5p9NNMmPW1Ep3wWGdn/GsmbMq3SRZZ7P1Kt0Fhy1Q6SbJ7LGd37nnR877z+QkGdv8XO58fGaDLTaudO988PJKN0k2XWzvSvelF16tdJNk5QnrVroLj/mPbkn+12YuuFqlmySffdMWle7lF19W6Z596TWVbpIMH9n5Lpk7e6DSTZJhpa/sgemd778FFxhX6SbJcit27uW2ntD5G7nt9rsr3SRZc/EVK92Jj/fui2Ytc2+le86Zf6h0X5gypdJNkressESlu/aGy1e6qy7zxko3Se6+7rZKd5sNJlS6SXLxJXdVutNe7HxHffPIkyvdJNn3kHdVurNmdp4dlhm+YKWbJEsOdP79VhmzdKWbJBsuNKHSXWhg/kp3zMhON0kWHLtwpTtqRGesb9Ts3pjAmOFzK93pM8dUukmy0IKdcYHG2HKSzBq5UKWbJANzxla6YxfoPO8893hvfHnixM6/3/zLlwaLkjz9m6sq3bUnzq50nyk+72y4eud++alpoyrdSc+/UOkmyerLLlvpzhy2SaWbJNOnPVfpLjLu9Ur3ld5jcF6f2hnUGb9EZ3x5YLHePcZT93eesVfbbJlKN0mmPjex0n31lc791gIjeuOTD734UqU7eoHO79yLD/yl0k2S4aWf87TpvXnbF6fNqHTnTu18Ls96uXePOGvyI5Xu6MXWqXR/f+JvK90kmTWt84y27ITS2oYkd97zWKX7rwc7vxcjh/XGod60bue58oUnOn9/66/dew5eetHOM9pLj3TGgJNk+OjOGNekF/9R6a6w/JaVbpKMmNb5Xh0oDUPNndVZJ5AkI0bOV+nOnl184BlVmnef0Xl2f33Oy5Vukjx+58OV7uv331Hpzjels64vScYM64xPThvWG18eOWdmofrffz/Nv/wzWfvH352H1/L/uOgnO87z5r89N3bxSnedi1audF9/y+2VbpJcckvnOWmhw8ZXukmywR5PVrrff8e/Kt1nJ/TG6F/Z/qlK95nJ91e6r1zTGTtOksUu6dyzDuzW+zy/cP3OOsb9l9u50r31tt7z87B1Os92G4zYpdK9YHRvLGiZdbeudN905E8r3SQZf/7bK92/n9tZnzxx5POVbpJ8YbePVbrP/K1z/35aeutmL53R+fzc4/XeNb/5gc540MqjT6h0zzjuB5Vukvxk286YzevHz/vnhiT507+2q3STZNobOs+Mdyz0hko3SQ5/qPP5ecaxV1e6y/y1M96dJN95oTOvt9S7Out7nl3rJ5Vukiz5rcMr3VvX3KDSTZLdv/63Svcf7zio0j3nb71nh3fu3tk3Mt9pnTnZV77Wm2NZ+JpDKt1lnzy90k2STV7/TKX7/td3qHQv2/LxSjdJjv7H2ZXusqO3r3SXH9vbPzrhfZ32Mqe9Vukmyf4LPVDpPnNB577o1SmdMeAk2XTglkr3rv0+V+l+87pzKt0kOWHV0nPw25esdJNkyc8cWeneeu7PKt3lz+3MQybJFYd11hquMb4z9nLfh4p7O77aWQewx98WrXSTZMZAZ9/WBr/r/Pv96bFDK90k+cnSnefV59Y+oNJd/bzevNHjMzp/1x9a/rpKN0kemN3Z53nUg51xqJUe6I1jPL9x51yUcX/p7GU/s/RMkiRPrrBCpfvqUp1xzyR5YtyfK90XLv5Ipbvi82dWukny2CbnVbojPvymSvfoPd9T6SbJNqd35oOXOGFypZsk936wM+/3sxc6a1MeGPnRSjdJllnmtEp37IOdua6tz/6fSjdJLvpo5xys5XecUOkmyVWPTqp057yns09pn806P+Mk+dl3xle6X5ve2XO35dTOfuUkOf+5OyrdZRftXfP0d3+h0l36a5311APDz6t0k2T4fb+pdKevvWGlO3fMHZVukhz0WmdM9Ys3VbJJkqvfM+/XwE45679bW/7PRVfI5h84aR5fTXLnJp3nmCS5e9vOPMiPZnTusX92a+estiTZ5Z3bVbq3Hdfbg3T2OatWum/56fhK9+4lOufAJcnRSxxc6c6/bWf/+wXbdcYdk2TtxTpnLpwxf28cb8evbFrpzjr8nkr39zd19nUkyWNndM6bXeyezrqFDSf1zgpecb3O2OO7Pt9bJ/rlLb5d6c65prOec9Q621W6SbLiThdVut95Z2fPyBce+V2lmySfObezT+Lh1TvjE0my0nmTK91PHXxupTvqhc4zXZKssmNnz8j8n7mv0r1qzF6VbpJ8/bjOeM3uJ/b2eP7jc52/7be9/OVK94sn9vZ8v3zAmyvdve7crdJd+S2dc1SS5NXzO/Njv7uxNw77/Pc763zX3/uoSvelxy+odJPk9q8+WOlOP6uzBu71B9eudJPk4+M747v3P9Tbc7Dar26udHe7pjOnt+A7eusMb/7ZLyvdbT90Q6V71nd7Z/C/NOqrle4tz55X6SbJ2RM7896Pf6xzj3jR+D9WuklyxE2dMbkz/nBepbvSX3r72Bc8v/Nd8v4ddq10k2T8Xzv34rsctXul+4nLeuPLu2/32Up34SuOrnQf//J3Kt0kuWjWnpXuJ9/88Uo3Sb79Wud5533v+2Sle95LnXc+JMnKx3XeR/DG+86rdG94xymVbpKc9s1fVLpTfvr7SjdJFn53Z33W7lv8tdJ9cLHed9Qmf96g0v3z3zvzto+s0rknSpKzp3Xm89+9yv6VbpIM36fzDqjdtu6MvVzz1R9XukmyxVqdZ6mNV+usR5qzbGd/Z5KMOaDzbo2tLu/8LJLklb937j8nnrNcpfs/13fuPZPktwd29h++47jOeXwvXtsZ90ySqX/vjAns99tjK90k2eqMzhjltv/o3Hu+fPhalW6SvP+PZ1W6pz8+udL9ylcurXST5PM//mCle+PcznxGkrzpr5372qNGn1Hp3rzU5pVukvxmm/dWuqN2H1/pLjP5U5Vuknzl2537lzd9uve8uv3X3l/pHpb/brxoykur5Npz/jSPryY5/DuddZdJcuSUzv6KqxZ+W6X78/fsVekmyRcOPa/SPX3jzvtlkuRjO3bWO33x4ko214zu3ac9tHTnbIvhn+08c3zu5M48VpJ8ao2lKt2jX+ydUbbk5Z2zW1dZe71K99W9eufOT5rUOfts1cM6vxfXvtJ7//UFB3XmC8+a/USlmyRzzvlhpTtl3a0q3Uuf6e2zPPrBzr3Agsd31sOffWXvZ7HTpp39ASv+7rhKN0mWfaizjvHZL3X25uxzVecM4iSZu9DnK90PXnB+pXv9DztntSXJab8+sNJ9aNvO50WSXHthZ77wnNM7+8E+9bk7Kt0kufaoKyrdy9/ZeX/58bd1xruT5Kwr96t0P/3D3jqOFW4unek7obNv5IaDOvf3SbLcCldUun/bqzMWe+NynbH/JPncgZ2H91+P7OzlS5JDd++8q3OJpztn+v70mc4+iSR5bvvOPeL3v7tNpfv1/T9V6SbJwut05r5/f86LlW6S/HH6HpXuNy+e92PLSbL/t3vvPPrc3Z0xrvcv9fVK928jeuf4vfe2fSvdn/2hdxbBvV/r7A3/w2GdZ7+VN+q9J+bdp3Xui2695opK991v7e2tuuSEzvq6G/fuvLsySZZbtbMm6doNr6x0jz2rd77qwcd15mF+fF4lmzW37+1l3+LDnXXry5zeu18+5OzOvPo+z+9U6X72vJ9Xukmy/yHPVLoPTWm8Szp54areusuP/uzpSvenB3TGdJJk34c675b6x9GdPVsvHNl592+SXPlYZxxqxJGdv79LZnfuaZPkwcU671976h3vq3STZME9O3OV1+3RedfB2t/vnf300XGd/UQDa21X6R40X+9n8YvPL1jp/vEnvfUYBx/fOV/8h5evWekedvnoSjdJPrpz54yt427urC1a9ou9/b8X/fy3le7IE/9Z6SbJmSd+qNI9fN+VKt1R2/Z+l7/74c7Yy73v77zjdecnO2e7Jsly83Xua/farzM3niRff7lzPmgu/O/+ZyNfWC1Lnzzvn0c3Prx3/uDknTrvlxl5d+fdlIvu+8VKN0l2/XvnYPLVvtL5bkuS3b6xbaV78yGdM4d2/0jnHNsk+dqJnfftfPTizvs0j7j8hUo3SfZesHNv8vmVeu/du/NvIyrdUy7prIPbZdnLK90k2Wfdzp66pQ7u3EOsvHDvLLhDDuus7/nu2Z13zibJNz7QGX/cb8/OONObltyn0k2SA9/8tUr3ouV3rnQfProzDpsk14/snGu4+8zOebNJsuN7Ou/xuX14Z8xm3Vu+V+kmyXpHX1/pbn5V5zNuxqd775+/99zOmV+/P6d3Ttnod3SeGXd+snMu84tr3FjpJsnHf9N519yD93TmZM9+oHdm1LjvddZ+DTzQe/b7/XdPrHR/8NFjKt3N/rhdpZsk5/2ycxbj8T/rvLfqx/d+s9JNkhdO7qzde+s/O+f3JMkpb36q0j17xDcq3R2X6X2vPnLkqZXuKUd23k+05b69cw3X+VpnHc6PTu+to9rgi517xJ1/1pnLeuzSzrhLknztt509GO+d0nmH11Vf762HH3tL59/ve6f3zo/8w9zO/fLen5tV6c7YvndGzC+Pemul+90fds6Z2//F3vlnSz7x6Ur32++5o9JNkvnO7pxF8M0Ddqh0V3qw8z6sJDn8J+tXuvM91llrf+2hvZ/Fmqd23uG10i96Z36946UJle6B736o0t39+csq3SSZf7nO2MsOW3b2po5c4/lKN0k226ezhv+EkzrffUmy0C5fr3Rve6bznsnZG3U+L5LkA5/utMd8uXP22nve2nv/9ptmdOYU/2fN3rsxJz7a2dOw0nqddev37/fuSjdJ7vp45zPjvNs6e2ln3Fg8b3aZzrsK1x/dWZucJL8/r/O+kfkfPrXSfX6J3pjOZRMXr3R3O/LXle7O+/bewXbGLudVuhtu2ftdfvqIzrrns97ZWQN09U2dM32TZO8pnfasCZ13IK64ZmefRJKM2+Irle7L3+mcL5kkb8v3S+X/87sxB0r/bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5WBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCEf/JfzwnszN1YPI8v4iRw8bM8+b/3/RplezE+YZVus/Mt0ClmySPrLFIpTv/wpVskmShp/9R6b40bValO2bMzEo3SZZcedlOd8FlKt3MP7rTTfL43XdXutOmTql0k2TJxTp/28ss8IZKd9rMzt9Ikkx9ZmKlO2b23Ep3/JilKt0kmTn6P/oa/l+bPW54pZskI4ctVunOl7Uq3af/cWWlmyRLLPrmSnerrd5U6T7x9CuVbpI88thDle4zkydXukny4gudz6JZs6dXuiNndu49k2TG653uuef+qdJdZNGlK90kGTZ/57lk1vDHKt0kufDsOyvdSU+9VOnO7Xz1JUn+8Ie/VrrPPdz5jtpt5xmVbpIsOWGVSvepSb3vkrsffKDSvewLH6h050yfXekmycqjO88Om41bu9JdbFRvTGf4nM4z2qLjVqh0k2Tp4Z2xlwVHzal0h2W5SjdJRs3t/PvNmdMZe5k1q/MzTpIRozrP2AsP7/39jchCle70jKt0509vHOOF1x+sdAfmdMatFx4xvtJNkukLdcb7/jL1tUo3SdZad41Kd8T1z1a68815odJNkmdnd/79xi7a+SxaYtWtK90kWWmFCZXuK0+9Wukmydprb1jpjl1yu0p37oK9Z/frrv97pbvqDjtUunl9UqebZM6UzqDOq5Mr2STJhBU2qXTnm925D3/yzr9UuknyyuRHKt2Jk+6tdIfP7s07PPp8Z0x12LDePcbUWVMr3fvu7tx7zhnR+/d7ffr4Svfya86udKdM6c3nr7FWZ7xh0qu9cag3b79LpXvP7Z2xvgmr9NbTbLnXIZXu8091xvB33ebTlW6STPzXbZXusLm9+6Jl131bpTvw1H2V7sjXe2tTXh49f6U76rXOd9/8i3TWHyTJzJmdz8+5xcmugWmd343Zc0dWulNe7X2vzp7UmatccMZApTsznTVLSbJAaXHmqOGjKt0kGTF83v/ODQz77//tnn98ZH78sXm/xu4HMzprZZJk6nmdsZXrV+s8c1w84vpKN0n+/rnlK90Dd3p/pZskt175+0r3hT88X+k+cEhnviJJVilNy85eeu9Kd+Xdb650k2SBzTrzCu8f2VkHkCTvPX27SvfCHTr/fge9v7c+68zjLqx019xvm0r3hm921jolyabf73z/LVn6vE+Sv13S6a659jcr3eWeKs1XJDnqhc5802/Gdfb8LLr6GyvdJDls5r6V7oadP+skybhXOt8lEx/fvNL9+PjSPqUkb72qM/5/1MadvQFj7v9GpZskNxzTmaPe6acrV7pJ8viXv1Dpbrr/7yrdSWvsV+kmySqvnVzprv5a53nnoH3fUukmya5bddYx/uTG3vrIK57o3L/MOrwzF/K9HXrrOEbvvW2le+ifJ1e6H320cx+QJJdc8ZNKd4UPdj7jkmSN+Y6sdH+3b2dN2W9v743Jnbvk+ZXu6Fnfq3QfWevpSjdJ9r2sM0b/+3/2nldv3rezB3jzZRasdNd+8plKN0nue+Bfle78Dy1a6X7yDb21ok986qhK97qTlqh0k2TKjZMr3RHjvlLpDt+gN9a+zYqduciXHtio0l3jwC9Wukky4403VLrLPd9b9zxuqV0r3TH7dO7xt31m3Uo3SS669vhKd7tVx1a6f9rnuko3Sfa6ddNK94xNO+cyJMlLv+qse/7pLZ17zyvP73zGJcnPv9hZ4/Piqp3n1WVnHlvpJsmGC3TGPk//V+/f74Jpt1a6H/nzdyvdl17o3W+tve6Ole5bNuysu/zTq73f5cfPnlzpLjqzM9aeJMcc3FmfvNW376l0v73jk5Vukqz76c662R8+vk+l+6kjevfLV95xUaX7/Zeeq3STZOXL9qp0Hz++s09+pe/fWOkmyeFjO5+fS7znsEp36ny9tQ1rntZZ2/fs+3vztpee/vZK95KtD69093zyHZVukryyYWd+4FsLfrvSnf/BzjqBJHntoY0r3YOW7qyfTJJff367ed7c4S//3VqatV97JDff8N55fDXJId9aZ543/22JpU+rdH99Xucz5sStt690k+TnR3Tu0d72SufvKkluLy1VW36VzjjQduedUukmyVeHrVrpvvHizj7Zq7/U2//+jtc6f39f+nJvcd2sM66qdPc/u9Pddtz3K90kWfMTnX1vX/jaryrde07t7WU4/FuducIfv9Z7XjzsoM789F9ndvYWjj35k5VukvzioPkq3ZUO/0yl+4+V9qp0k2TUXzrXvON3Jle6SfL8jHMr3eMe6ZwrM3XPPSrdJFnlis4+55+u1DlfdaFf9dZwjB/b+f57erdrK90k+euSnbN3dzv3jEr3scd3qnST5NAfdZ7Lv/DdztrkQ//RmQ9KkoXO7LwP5Jelse4kufyRWyrd/a88odJdIl+qdJPk6c919gguMfxjle4f9+yMlSbJqfN3zj5b4AO979WNFumsu3zuB50BkguPXLHSTZJf7tH5nZtzyBaV7skHdt4ZkCT7n9NZw3j+wb3zja+5qrO2/Iuf6NxvvbxhZ21Iknz79M69wIFXdf6uj/5kZ39nkhySD1a6L325twbniKU682O339R5F916i/yt0k2SM9/dOXNotfP3qnT/+cJulW6S7LV0Z0x1tT/01iN976yVKt0vnfqjSvfcI3rnta0y68RKd8awzt61ay/vna967syfVrq/XLV3ps29P++cPbjszzvjwLdt0Hv2e/YDnXOffnFP5x7xh6t17u+TZLH9vlrpPr5l5wzbJLn3S5+qdC995LJKd6Ozt6t0k+QrP+3cf771ps5a3Ll7T650k+SrX/1apfvnfc+pdJNk9Oe/XumueXrn2WGlI3rPDnfNebTS/f4Jf6h0v/Js52z/JPnVsz+rdJe8oHdu+ZNrn1rp3nlH59zdi5bo3MclyTsu64zpfGOFt1a6e93U2XuYJBtc3Fnb+oWvbFDpJsnY57ardD80+aZK9+SJu1e6SbL3pZ25kmUu6axN/tFiEyrdJDnsvHdXuu8YuX+lmyQrXbhBrf3fGDlqTpZddd6fBbfAVcfM8+a/rTK3M3+z0tv2qnQfnto7B26hH3bOaH/1ud7fwJE3d87eXXnXuyrdqw77TqWbJItO7hz2/OwNR1e6h9za2z89c9xJle6Dq/XeqbL4hp315Zuf2FnfuuqCn6p0k2TBGzrrW4/9ROd83PsmnlfpJskJa65f6T5VeC/Dv437WWc/6+27/aLS3Wm53tlnH917QqV776addQB/3mtypZske/ym8329/3qds8+S5O0TO3Nku19+RaX7m8WXrXSTZJXtO+c6vfNjnbG8925SvF8+orNW7fzZne++JPnXqM4exFXf27nH+Oi7eu/9uuX8zprctU7trF1Y/qCvV7pJssoSq1S6U97SW7d+2kc6Z4pOvKFzpuEy93Tm6pPk0c075+Ld+4bOmYa/OaPzjvEkmXBy53l1n0m9czQX+sELle7DB3yr0h3/vs4ZxEmywFOd87O+ee0Gle4fD+nNNx07/o+V7k3bdNbtJcmVS3Tmha7Z6OOV7qc/35m7SZKBrQ+tdP/4lq0q3dNeK70wLsnDW+9V6X7obz+odJPk64c9XuneseQdle7Kn1yz0k2Sexe8tNJd/JDO/dbfFuk9O/x038693N5X9d7n8o1LO2Nc1/6rM9Z3xfzXVLpJss2czvzOKW+8utL92Vt667N+985xle6RJ3XOTU6SL7+9syZ3iaXHV7pHf7pzJlGSHL1HZx7tDat3zoZ/8uedddpJ8tr5nb3Qn/9M73t1zzs6e6De9+7OPs8P3tq5D0+SL931uUr3a8v9qdJ9/YTeGRXvXKSz1nevx3v7t9ddv7PWfrtjOuehb/xA70zR1x7r/F2//7bOvv6Vx/T2vK71jfGV7qXPdN7ZkSTj3tk5F2W9Uzrvudv/pc65lUmy1Z875zVOeKLzzrgbN+zMJybJyQt2zj5800Bnb06SXPz4E5Xu77brnKl91kG9dwmeunvnfeE7rX9wpXvCAZ21bEnyiy92xkheX+qXlW6SjJxQ+t248L/bF/7U+JH50tvn/TntH/nEavO8+W9nbNaZI/vk2z9c6T6/VuedAEny1Qc651KedkHvXN+jLuysY9xoSudv63vL3FHpJslW2aDS/cZBl1S6J1/fewfa9XevUel+YvXOuYZJcs0WH6p077u6M5Yw/c0HVLpJcvCczjmdl67VOfPkhB33rnST5DuTple6j1zR29/75EGde7UT3tBZe/KXOb098GN+1ZljecOVnbW+n96wd+bQ25/vnMG016u9d0pM+uG2le4HJnSezT94fu/s+Yvf21nvdO7hnXmFs4/vnRl13Uc6n8t/La4V/V0urnRfHtFZx7jMmZ2z1pPk5ZM656kcP6zzTHLWAb3PuIPP6Lzf8Fs39O6XNzpyfKW7+EKdcbGffbn3fpRlZnbGSP5yeKd7zou99zHef8SLle72a3Tmm5LknW+5oNL9wgadNcTzfaCz/zBJVvpKZ/5mxE6ds/y+vdsVlW6SnHR755yd9w37VKWbJO/dvbNeZvRHT690X3i19w7Jo8/uvDdu/MqdfUr52oGdbpIdT+istZ/4r84a8CQ58IXzKt0LVxlW6Y75V2dOPUlm7NtZhzrhpc7Z5VvMOK7STZJ/vL+z12X07N6Y3A8e76wdOv33ne+o1548oNJNku8v2Xnv2Kef6OwNmLRf7+/6kC06Z9mucMVmlW6SvP6Zr1S6n/nFbyrdjx+7ZKWbJOPe2BlTHXnpmZXutRv27jFO+Wrn7+99z1xX6SbJz/7YORf9ru8eVOnue2zvXI1tzu7s75i1Yuf9v/f9ofTC6SQTjtmz0l3zsZ9Xukky6S0LVLpvP7gzn7jFnzvXmyRTP9X5/Nx7287eqof2+mGlmyTXHr5dpXvXpVdUukmyw4zOPsEPTNun0j3iW533FCbJet88tdIdfVZnbvVzJ/fWYzy9WOcsieWeK43pJPnT2/5Z6V7xp87egElH9tbNvmHBzufndjt2/v4ued/qlW6SPPN45zn4XW/7UaWbJEt8qjO/8/+mcxowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxfZmCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCYXPnzv1f/8frjJsw95zNvzrPL2LOqy/O8+a/jV5om0p38uzbKt171nq90k2SRxdZpNKdO+fBSjdJZgxbptKdNumZSnfVVVasdJNk2OyXKt0V11y/0l1sqXGVbpKMGNn5Xb7n9msr3SR5feLsSnfxlZaqdBdbdKFKN0mmTH6g0n3ssamV7vDZvd/lVTfs/C5Pm9b7Lpk9a+FK96n7L690n3l1cqWbJBNW6Hx+znz+4Up3ypze78X1N99e6d5w1T8q3SRZ4g1LVro3/+PuSnfWnGGVbpKMWWC+Snf61BmV7hu33LTSTZKx4+ZUulddfEelmyRz5s6sdAcGhle6B37o/ZVuktx1d+ez6K4b7q10F11sdKWbJPu97e2V7krLjKp0k+Sv13S+/x657b5Kd+VRvXvExeZ2fs6rj+ncew50HnWSJKNHja90xw8sWOkmyfzDZlW6pY/ljB07ohNOMnP29Ep3+LQVKt25ox+pdJNk7ozO+NaUaU9UukkyZnTnc2709M5n3Nhxa1W6SbLIEp375UkvvVLpTpv+vx/v/08tdPahle5qS46sdJPk+89Pq3SXeKAzDnXDSYdUukkyYeUlKt01196w0r3qhusq3SR505u2rXRnvNS5D0iS6a8+Vulu+L7O79xT9zxU6SbJtNc63ZHTX650N97ujZVukrwy8dlK97kne/cYiy3VeS6Z/PwLle7EOy+qdJNksUU794j3XHdZpTtikTdUukkycmznHvG8iztjOkkybm7n/mW3HTpzMI9N7n1HzXq1c7/8wL8er3TveO7JSjdJ1ll97Up3+ZUXq3STZN01dqh0X5zeeaac8cRdlW6SjF10gUr3jdvsXOkuMLfzrJMkmdhZm/LijN5n0ZipnTGuMUt2nt2HTysN9iUZv/Dile58A52xvvkW6Kx5SXprPV6f0ZkDTZL5F+nMHc2e3hnIf+iOzjNJktz3m9Mr3deenlTpjklv3m/cqM791og5nW6SzDds3t8vf+SBs3L/1Of/q4UTqwxfde4PFjhuXl9SNjuk8z2fJDfe0FmTu/mkzpjb7gePr3STZNPNOuudPrtmZw1xknz/R517k2HLdtY6vXPmFpVuksyZdU+lO25U52ex1oq9dbM7LDOx0t34rDUq3SS5/IGvVLqfveytle5WX5hc6SbJr9caW+muM7sz9n/HpKcq3ST58ITNKt2bnu88lyfJks92xh+fu7vzPPPgUr35wuXWe1ul+/YFO+PHD53XG8v71M2nVrqX/L03frXSZ3erdO894I5Kd4mBzjxIkkzY/PlKd+xLnXuBK/fuzRcePrIzl3Xlyb1rvn6zNSvdNVfv3LssvcWulW6STJja2Y8ybZ/fVLoXHdrZo5skX1px0Ur3wPV6a8r+5/I3Vboz7z250p064tVKN0kmLbJSpfv1+Tp7O/45orOvMUnW+HVnPfzId3bWZyXJRUt39h1seueFle726/fuEV9fqnP/ct3kzmfcVq/3nqNW2aBzX/vsbctVukly/qKdz4xhYzv/fl+5dUKlmySvrr9lpXvT8p11HPd9r/e7fOA1q1S6/1q2tz7y5Fe+V+mO+Neple4V93+z0k2SN8/t/P0ttXVnHOPyE2+pdJNkz6nfrXRv3bT39/fSpmdVur998Z2V7mendMYakuS5FVevdJea+atK96Nj9q90k2TUmM46jlEvnFHpJsmMcctWug/8rvO9+uyux1e6SXLHr75V6W62xJ8r3ZueOanSTZJxUzvr61rPDkny6D87a7/ef8b4SveZI3v7f2dP6PxdP/5CZ+3Q9LXHV7pJcsNjnTN+1lxjg0o3ST60Smeu+ep/dtYELjblL5Vukky6+9OV7j5nde4Rtzlh3p9Z+W8TV/pSpXvaG8+sdJNkzNWddWf77N45i+fjN95f6SbJD2Z2vqP+MbazVvTlDXtri46fMrnSPe3O3jq5CW/dvtK9+B+d56iVf9nbfz91bOdnccPxnX39G+14SaWbJA/f3TlT+F97/U+lmyRfOOVv87y58ctn5ZZZ//m658UXGDF3r3XGz/Pr+e4Tm8zz5r+tPffgSvekpTr79K7a+H2VbpKsuOUFle5V9+5V6SbJrSd11rbueVBnHPaTO3+80k2SI37000r3A99/S6V75nM7VbpJ8uQTnTMNV/3slZVukix2R2eM/pM7dc4vWKq4NfTiRzvPMl/6TWlM5bje/Mq6n++cdzmw1VGVbpL87Zj3Vrq7HHNCpbvkXt+udJPkoc0786Zfv78zD3LAjp17oiTZfJHOs+gpP/x9pZskK6/7p0r39W921sw+/vPePcYbnuzMKVywW+cdGJPW+HulmyR7vt45X/wd1/bOp97jNwOV7h1v6Zwf8vTc3l6Ue2+aXOmucUXnTLxnH+udN/SBJTvrtGct+NFKN0nO2vmqSnffWzrnF5z5gd47FPZ4oLO3/uGj9q50P/fA7yrdJDnquH0r3WMn9P7+3jV/Zz38yqd1fhZbL9V7Dl7jgc441LqHds6rGfa2wyvdJNn/U501VDd9sLMPM0luPLCzPuRDn+/Mg7xzqV0q3STZbZ/OvqoP39WZT3/7pr218OOu68x7b3B877yvXT62e6X748U7z6uzD+p8dibJR2d1xtq3XK0z771kbxt0Vtv35kp3iaXfXekmycSHV610N37L5yrdd3+ps0ciSd6z048q3UNP2aPSveh7nXHrJFnx7Ocq3UUm995tM+7WT1S6f/nsTZXuyE2vr3STZN17O/f4CzzT2eN57MO9cxifvaAzpzH1kM65yUkyeePOmRrHvd4ZOzvzxs4YYpI8u+BGle7fntq40v3c8N57Ri7b+phKd6NfvLnSTZJvL9qZq9z4j7dWugds2zvD7KZnOhPk233lhkp39sTemtkDf9JZ63HPhutUukly33f/WunOPfuwSveQO3vP7k9/vLOX4bFfd8Z0Dtp2+Uo3SW55oPMu3bN/d1ulmyS/fdeple7NJ/6s0r3if35R6SbJFSt39tKecn5nPnj9WVdUukly6kKdM7VXPKVztmSSbPbuzpkaP7r+nFvnzp37H98oDlt0xNzsMu+fda8c2Vtgt8iZnfupP47/fKX75o0635lJ8rENjq5017/2s5Vukrz1js5Z3Uctf3Wlu+Syvc/zyd/rjB+ftt7PK92PjL640k2Sl/br7A2dM39vXHqDRTrP/Ddc+uFKd/IZZ1e6SbLVJ6dUur9a5LxK941v3afSTZIvbd1Z03L/q509b0ny+ZPPqXS/tNQnK92j3r5fpZskR725c87HMZM6z/xrPNpbQ/zdhzvjhAt/r7e+da+rO2s6H9u5s5/o0Jm9cxj3XrIznrD5uM6apGUn3V7pJskXxnTWl+/z6d6Zoief1zkXaLcTO9/XF27aeX9Jktyyf+fZ7/y3d34WO7y5956Y2ZveXemu/Jfes9/Ba3fe6bfInzsvwL58qc6erSTZ9DvnV7rf3KNz7vxOe/W+ow7br3Pe5c3v6r1DYf9Pdc5LvOiyzjqAa4d17u+T5PG3dMZif/WhzrzQQS/2xnhXe/S8SveuTTt7c5Lk0bk/qXQ3GvbDSnfHJzr7XJLk/rd3znD/wOWdfcX3T51a6SbJmYd2PuMWO6mzDiBJ1vvpHyrdvyze+fvbdePe2XVfnvjrSner5TprZbb8Ym89/KkPPlrp/vAvxXeul86ue+alzju793jqB5Vukmz+m86z1MuvdvY2/vXn4yvdJDntqM67BP9+Yuf3Ikl2fa5zj3jnaZ3zLl8aO6bSTZI/f2/HSneHvTrnX0z5UGfcM0lWmNJ559iFW/fW173ro1+sdF/5Rees7q9d2huTe/8+nWe06ad+p9Jd/YXOnpEk+dy1ne+SI179WKWbJAes3PnMWOfqDSrdd1zd28+w/9Xz/r33SbL6lzaodC/dvDPPnCQXf7ozdjb8g73vkknv7Ox53eWVzpm+px3UexfkqCU690VX73xapfuhDe+odJNk6dJ7Rs58vnNuZZJceF9nn/ynt++MYxwzrPfOo2/O7byn6YRTOucb//mLnfu4JBn2ts4avGNW6JwbmyQXrd85c2X1Oa/8V+ueRyw6fu74Xef9Z+/5vaOBctqfO+epDLu385z0wIjO/GaSbD2zM1//vW/sWekmyU9P78xx7v6Zzjq4OQuvUOkmyfgPdeaoJ+7fObPmR9f0vufv/k3nzMSjp3fWXSbJ03M671ebdntnH9IPX92r0k2SdS7uPCft+Y7O+7ke/vgplW6SHPx05yzid32lt4Z/8wnrVrqjt/tUpbvvuZ13oCXJrE925r7vOrPzefHylr171v0O+1ql+8jlne++JLnlJ53Pz8W+1NkDte43evNN16zXWSOy9f2dn8Vhx/fO6Pzw88dWulOm9c4G2uepzlrR7bfonPm16id667O2e3Pn3KGrZu1a6V6xU2+M/o6fdNYOrb70ByvdJHnntzu/c1sdc16lu9eKp1e6SbL9hZ17ucM+/K5K9+3nds5VS5Inf3xFpTv3kM4Zj0my6IKd9ckX3NjZT3T7siMq3SR5/22dvez7rXdfpZsTOuv2kmTOWZ0958NOHlvpJslJ4zv3cmcuXHrv37eO6HSTbHPHDpXushueXOnudOUilW6SnPL3zvqsI07o/IyT5KLXOs/CH1uxM0d9/Xu/XukmyRHrdeYLb515UKW7yXt6e14/cvqFle6elz5V6SbJ9z5zRaV7wvBOd8QPO+9sTJK/7dZ5B9tph3bWh2w9/sBKN0kmLdb5nVtugc754kmy5+zO+si3XbVBpXvKxb1nhykLdu5fjhzo/I2s9LanK90kOXTCGZXuj6b39un+Y5XOOo71Rz9S6V7wp97+7b2Hd87u+sR7f1vpXj6pd17wOsd13q+x/oud8xKTZLm7Or8bX/1w515g7g1/q3ST5MRfd97NPvWAzjk8O/+6866KJDnxQ53P5X1Gdd51kCQ3rtfZp/v4bp17uR9c3xkTSJIPfm/JSvePy3T2We9wYGcNapJs+enOmYq7vLv3ntdXl+rMSU29trMGfKe1n6h0k2TDXVeudDd/0+aV7ojnOnsDkuSqbU+tdDf8Ze8sgm9c33kvwUsbPfF/XPfce7sJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3lWQ+AAEAAElEQVQAAAAAAAAAAAAAAAAAAAAAAPxfZGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWDEf/QfD4zIwmMWm+cX8cSrw+Z5899W2HBKpfv6ImtUumu+eeFKN0k2mjOu0p09/yaVbpLMmj6r0p02cmylO3vu65Vukjz5z39Uuv/4532V7loj1610k2TYyH9VuosvvVSlmyQTB16pdGdO6fyNTBk1o9JNklFLrVfpLrdQ5/P+8VsfrHST5LEHp1a6S60wX6WbJLMmT650733w0Up36vDezyIj76pk3zB2kUr37lvvqXSTZJOVd650Fx6xTKWbJHc8emOlu/Va61S61z3xQKWbJFMnz+2ER46uZF+eMrvSTZLbb7i50h2YNVDpJsmwkf/RI93/2sc/flCle+LxJ1e6SbLlTltXul884uOV7t139j6XF16881k0euElK90kGbPAM5Xu2GUXqHQXfLHzt5cky883ptJdYNjMSnfOwIKVbpLMnjqn0h09flqlmyQvzZxc6Q681hlvWHDMhEo3SSa92vk7WXyBzrPfmFmLV7pJ8vL0zjUvPmbRSjdJhs/tPJfMv0DnHnHu1Ncq3SSZ82rn2X38uIUq3Vde7d17zh7WuRe/Z2pvTPWwhadXuu+57DeV7k5rbVjpJskiG61Y6c54oTP2sumW+1a6SbLaaitUupMnPlvpJsmjd3TGKEc++XSlu8T4zud9kkx6rfO5PGNu597zlYeerHSTZNrszrPD7LG9ucoxszvtBZbuPJeMemWfSjdJ5izYeQ4euXTn8/75l/9Z6SbJQqO3qHSXX3XpSjdJVl1miUr3nw/fW+kuv968X+PxbyPmdH7O9734QqX75QOPrXST5KUXOn/Xw2d0xnSSZMbUzvzAmqt0nleffrbzfJ0ki71hZKU7/ZnO2oaZC69W6SbJ5Cc7a1MWW7azZilJ5pvWua99/YXO+PIyi/bGVGe99nKlO/+Y0jqr6b3PuOFzO+t0Zs/tfF4kydTpnbU6878yudKd9VRvTG7Wy52f83yzO+usxozq/I0kydxp81e6s4b3nlfHzjfv13r8f1lhPGv8iLy4y7yfAzj4qt/P8+a//XnXzu/qpaseUukeu/JVlW6SXLldZyzh5Ycvq3ST5Kd/6IzTX/mTzSrdmTs/Vukmyaanv1jpfvHqzjPjzFGdv5Ek+ezzZ1a6K07t3U+tvMXGle7mb/xrpXvzdQ9Vukmy9nb7VbovntEZS99pmd7z83Uf+Hulu9jonSrdJHn0uM7n8qNbn1Tpnv/3pyrdJFnqK2dVuov+oLO+7vvPdZ7Lk+TTXz+60n37qh+udJNk8w06e132Or4zTnHBuzvjYkkye9/OGp9V1z2/0n38iY9Wukly+ibXV7qLrdJbe/KZJzr3+L848pRK9+Dv9dbwr/Dmr1a6W9/RGWOa+PgtlW6SvHW3zu/cTx/p3WPsPPWISnehbe+vdH910Wcq3STZZoPOOqqTR3X2pn531sRKN0l+fvibKt0vXtkZE0iS9d66W6U7fmTns+jpy46vdJPk968tV+nutfVtle4myxxY6SbJWQ89Uek+++JalW6SjNv+qEr3U3/sjBd9c1JvP8pbnj+n0n30nrdUuout2PuO2n6Fmyrdv03ozReuvUBnvv6GQzvPDrvM6qznTJJ9Ntmh0l1qauc7atI7t6p0k+QPz3TOAjnkvt6/332X/rrS3WWFzlq1t/7/2PvPYL3KAuzfPrOTkIQaOqH3XkKTLk3pIIiiKE0BKYoUC4ogIoiogHQURVBAEBUFQVCk9yZVqkBC74Re0t4vr9+e/8yjk3MyeeY4Pjr4mzU7e9/3WldbYz9a6SbJxZM6+0bm+l1nHHjwD+6pdJPk9zd05qiHbdbZM5Ikc93e+c4e2K+zBvWLt/bO1bhwy9Mr3ftu7qyDe32RhSvdJHnwtu9Xuu9f8bVKN0lW+GxnTO75mztjZxttdlylmySvzf3TSveYX3aed/70ZOc+PEm+eGhnTO6c1TvjI0lyxWmd9ZGfu66ztuHCzTrPJEnynZU6+w4Gn7FypXvGO9dUuknyk+GHVLo7fLVzPlqSLLfqZZXuXy7p3Lt88d7rKt0kGfbdzn7aORfdpNKdfNefK90kufryzufycemsp06Sd3/eWcP13vc74/jv/HaxSjdJjv5BZ959k4915hP/9cDilW6SrL1ipz3/zWdVuknyi8LZyq+89b/t13rl/dnzy4c+O4WvJhk6snde1KBDO2O8w1f7QaU796/uqnSTZNSYzvzKKyd1zkVIkqNunfK/b0ly+Imd+5011umdj/vsja9Xur88+shKd2Dv3hqOL/7psEp3i691xkqT5JAjO+vJ/nxk53ttx7l732u/uvwvle6Rh32y0j16Yuc83yQ5Y60NKt3l7zu80k2SuVfrrPPdaY0vV7rP3LdSpZskx/1j0Up3jUs647DHntg7y+GEHTv713a/r7P+LUl+t+qBle5CL69a6R5+dG/9/umndb6zZ3qicx+3ztmdccckeXmfzjnEx896aqWbJJ8/s7MGZ4nVOuucHhr+aqWbJHf8tDOusstmnf1aa26xZqWbJI9/bf1Kd72D/lbpJsmKr91T6V79rUsr3V8/sHClmyRPbtFZJ7rrTJ3nnU8f/s1KN0mWu60zjn7QMZ11yUly5PQ/r3QveqHzmfHCHN+pdJPkzov/UOku/7snKt0rP/azSjdJfvvtMZXuWn/t/S5/8sXOeaUbrj6y0l3i8t7arDfX66x1enCFzlzTXlt1zkpMksmTO+eLrHj3/ZVukhzwfOe8y7t26JxP/fKZS1S6STLHTp3vklP+2Ll3mf+736t0k2Tcp7eudM/76Z8r3SRZ7mOd+6LtFjij0t3j4N5ZwdtvO6bS3eetzjji9pfuWOkmySbz31DpTh7bO3f+lY2PqHQnLPqNSvfgt3vjy/N+o3P/+ZkvDat0X9uit0507t93nqOG3DV3pZskT6zdmZPaa9KfKt3LfrF7pZsky57fWaf95fc655a8/3TnHXdJsv2znfX7c3+rN6a69/y/qXRv/uGLle7Rz/2w0k2SR48eXOnu/kJnPc1n3/9MpZskF616cKU75o7e+T4T1nyy0r3x9s5c1wvbdvbnJskiB3Z+57Y8oXMG5B3H9vaOLv92Z1/jxeN2qXSTZL6ZOufm/e3Qtyrdl17tzMEkyXGnX1HpbvBYZz3Gjcd13o+dJMeM7oxD3b5uZ49Sktz7p84zWlb73+bGlxhYKSfNeNMUvphk5VOXm+LN/7j2O2tXuof9/ROV7oPTd7pJcvoxnc/dOUb03s18/6pnV7obL9LZ873SKp1zxJJk5w0679FaZd5tKt3BO/beG7XzsndXunN/ozOWkCQ/uaTzrrl9j+1c82aLH1XpJslBh/+90r17w86c+vm7d8b+k+T6P3bu4d8Y11u7cMACnT3fd93ZOXvwkAt/UekmyQb7d8bo596xs2d46G6ddXtJ8oNDOnslvnHfuEo3Scbu2fk7+cy/Omfwvzes8xmXJD87pvOd/cxy21e6T6zTG8s76x+duawtXu+9D+SMv21V6a65zm6V7omTe3NkY3e4stJdfOJtle5pW/X2KS23cefMjGMuvLbSTZI3Rl5U6W5yXGef0m9v682dPr14Z6/Lv+b7XKW765d7e3OeHdHZszzH93tn8D+z++qV7hq3T6x0P3FcZ7w7SS7svA4kiz64TKV7y+c7++KS5PnnO/vMdtm7swY1Sd77sPPzePfuztzbeifvXOkmyYa/7/wyP7R0Z1//eT/ftdJNkg2/9u1K96ireu/ZmuX4zvfUnv/szGlcObb3HTV43s5e9gV+c0+lu9r7nfuAJFlhjs45qPtf0lm3lyT7rN95H/i9EztzaMfn2ko3SdbeZUyle82tnbNLnl6986yTJGfeP+XnbJPkrpN7655HPtPZZ73X+M77QD67XO8czbfv7qzdW/mDzn6Uuy5YuNJNkq/s1VnH8eLtvfdNHzCss4ftvk1fqnR/O9B7H8j+v+vMafxixc4ahHf3vLXSTZI1/9I5r+qrt/beTTTolNkr3at327DSPWSn3jma85zdWWt/7Sydd469d9KYSjdJNvrsepXu2sv13gW57mE3V7of/3vnHTTvPXdPpZskW+3S2fM6csZ/VLpHnNObK7lgns5ZSuMf7b1z7POndN6bs+XEzlkS9xze+7v+cPnOd8mj3+zsOd/ylqMr3SQ5a63O2pT95t+o0k2SjUeU9ne887+dtb70AhPyh59O+Xv4zy10xxRv/sdxr5xc6a73xjuV7swn9eYrvjbxz5XufsftV+kmyVPXdd7r8O7anTNgrn+0d3b/I8Ofr3Tv2bqzPmSDQ3v7WHYd3Vmr/eiNnW6SjDqns793yyPHVLqf+G1nn3qSXPirzvsi5it9l3xuZO/Mr5WW7YyLzbF/b3/ogk/uVOm+eOLZle78e/T2p3156c5Y7MOf7Zw5NHSbzpmwSTLv7zs/iweHdD4vkmTtfc+vdO/6YWde6Nmv987rvvTWzvuk992ks/bkiT0HVbpJ8s3L5qt0x/2xt09wtXs7e2geeKPzeX/PB72zZfb7VOc9Qot+obNufanfdt7/mSTjluqcXX7/QZ0x+iS57/qTKt1D1uyMCey0zxaVbpKM+LCzjmrQs521QwuM6Oz5SZKTLui8A/TfWarSTZKVt9y70v3DZadVut/dprcf5Q+PHF/p/mWOzv3WvXvvWekmyWc/6HyvPvPFj1e6SXLknJ1xncXW7tx7nrtv73N5w6913kOz20md9ZGXX9h7n+C5n/hIpbvzRTNUukmy6gOde4xffaPzDr17br6+0k2So47snMvwxh2dtYbr/uN/e2/p/41J5/yo0n333tMr3ST54fYPVbqvb7dOpfu7+TvnzSbJVkd0ztxb+8edfQfDf9SbQ3vpus5ate2Pv6TSTZKXDni/0n1wSGcd4xJPde5pk2T0SZ1r3vUbe1W6V17e+10+4Dudcw4+OKm3hn/+f3feffS7fTtn5H5zxd7Z5Z89tfNOgqE/fa7SveuLnf0XSTLpjc6Y+KAZes/uX72/83dyy2c79y5zf7KzNyBJLll/80r3mEU6Zz9t/YvOmbBJ8qVFOu/N+dnnOufbJcnQJzrr1vec1Hkf1kMbd86nTpKPrdpZk/v2yftUuqef2FnPmSSn3fCtSveJbTpn/SXJvDt2zju6+OkDKt2Vv35ipZskG43vnD8z4ZjOONTqb/bmsP+xQGc9/Lob936XDx/UWY94QJb+P/7vvZMEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFow5L/6rwcGMmS66af4RYyad/wUb/7Hk5M77WcWn7nSXWj8QKWbJLONfL/SnTR+aKWbJJNm7bRfea/zezHLkEGVbpIMWXqZSnfO+d+rdIdOP6zSTZIF5pi30n359Vcq3SR59tlnK91JH1SymXPOuTrhJBM+7PzODRvf+WEMHfRQpZskd93xQqW74bC1K90keeG5ByvdVVdbq9I94zcnVLpJsv5q36h0h0/sfJesPbr3ff1C6fNzw822qHST5OFT/13pzrfQjJXu9HP0vldfHz/l7++TZKEF5qt0b7np9ko3SYYOjKh0Z11knko3SRYZ1fk5v/5m59lhsWXmrHSTZJPlP1Lpvv3ea5XuOx88Xekmyak//0ml+4XPbVnpJsnIpzu/c7O9PkulO7w3jJHpBzqf+W+n8zNeba5FKt0kmVAa0xn2Qe++aORMnfGidwbeqnSHTur9LOYeNl0n/OGkSnbwjP/dMOl/Y47pBle6QybNVukmycBA5+cxw7DO79yQmXtjqkOHdH4WAxM69+EvfPB2pZsko4Z0rnm6STNVuknyr3feqXTXmmv1SneBpXo3GQMzz17pvjWpM+45/9yjKt0keXv8u5Xu3POUvvuSfLjUwpXu+Dc7/37vD+r8jJNkntnnr3Rffe75SnfS0M7fXpLMNXJCpbv43AtWukny0vNPVrpvj+s8+70yuPMzTpJZB3e+/9598/VK96Vnez+L6YY+U+mOXnG9SjdJll6uM4920djOuPXci3y20k2S5+9/tNJdaPbO5+d0Iz6sdJNkvgU7YyRj7v1bpZskyy8ya6U71wKde4Hxjw6vdJNk0hud+6Jh83TmbSe/3BtfHj688+w3fSebJBk6vHOPOMMbnXGod957qdJNktlGdH4WgwY6Yy8T3n2z0k2SScNL83MjJna6SSa80lmP8dZbnWt+7V9PVLpJ8sbrYyrdmQc6zw6Z0FkLlSQD05UWh03szWFPHPTGlI8O+t9/j2edNCGffn/Kr2s54+XeuOZ7f+v8fZ3zzIGV7qhZV6t0k+TYe0ZWuov8bEylmyRL/PSoSnfCxMMr3V0vuKbSTZLj3uyMeX9t9IqV7l07fbrSTZIZH+ncw4/baLNKN0nePPOvle7xz6xf6X7vG5379yR5bPDkSnfWQ5erdF+4obPOPknu+8LYSnfJOTrrqZNk6es6Y25XrvD9SneV5XpjsYvvuG6lO2yhzrrnrT64tdJNkvcfearSvfyzvf1ER7zZWd/67JVrVLq/uHKDSjdJnvnkEZXuxC919gasvkNvP8odmy5d6a64ye8q3SR5ZparKt1TXumsj5xxtY9VuknyicXPq3TfGdf5vNh2287ayCQ58W8/q3QXW2ibSjdJZnquM8d53n2dvVWZfFmnm2SLsc9Vuiu9sHGl+9xLu1W6SbLUZzuf+Vf97PeVbpIsMqzz7HfZm/dVuoftfHKlmyRfG7V3pTvPkl+vdE+bYVylmyQLXdLZ9zNykd76utuP2rTSvW3Zzuf9+JG9ydOZPuiMXS+93h8q3bv/0hn3TJKfPHxppTvq2iUr3ST56zudZ7RNnuzMZd3wQO/f76EtOmv4Hzvl/Ep3oS939owkyar3dsb7xm16Q6WbJGNu7Ix9jrriU5Xur5c7o9JNkm1Wu6LSvXvgz5XuwLwzVLpJsuBnO2tE5v1Xb63oSkt11kc+/05n3fpzY7audJPk2S+XPpev/EKl+97JvX2C743u7OtfbevO81mSbPCZfSrdF3750Ur3vT1OrXST5L2FO3PNF5X2E621zoWVbpJcNKnze7H24725kpWu7Pz9PXz2ApXuZlfOUekmyRde68yjXbZw53d5mWHXVbpJ8ql/dp5XHz5i80o3SV5dqLM3/LpzvlTpHrjQDpVukqx4bWcP1F9P7oyJnz58ZKWbJNsvv3Clu8z43p7zj895d6W7+Fc73yXr3ndnpZskW4zprKGc/oWNKt1xo3rrMQ55qrOfYckde/PuK5x+9RRvDh743/72lspbOWPy9VP4apJtF+zNm94w55S/3iRZ7JbdK92/z/NwpZsk++7T2Q/y0sje2MfNj99T6b50Tmcc9r6flfaDJDn1sc4ajpVXubLSffwrlWySZMIxnX+/G5besNJNkvt36ZzXNvHeznP58K92zsFJkl+e0jkj8NazOvObf//WbZVukuxxQ2f9/mdO6q2hOvK8zj3riJ92zvhYa7/FKt0k2fJnnfX7Z79wYqW79Dd74/ODD+w8b6z5lc65yUlyyjOd58Wzru6s51zpuc6aoST59q+3q3RPmPyZSvf0k86tdJPk7R06+9S3/rAzbpwk3ziscy/whxV3rXQn5KxKN0mGzdb5OT+w428r3X8s3NtvN+uO3650p7vsrko3Sa5ec6VK95Uvd9ZGvrR27375grGdPSO7jH2g0n3gsMJ+/f+/Qye/WOles1TvzIXdZus8uy8/6PhKd82rd650k+Qb23bmN08c23mOWnZC53yrJDn+1M49/idm7p2l8q/9v1rpfv26zvkh187Wm/e+7ROdff3Hn92539prnwsq3SQ5crZfVrrD1+6dPXjQu53nklOeKH1+HtfZa54ku5zS+f679M9frnT3X7l3puGKD3TeWfXQap09/Umy/Q6df78L51i+0h1/V+esjiR54e0fVLqfOejHle6n9ug8UybJ5gdsX+mu93xvrusfd3bO0XxvzU0q3S0Heu8I3flHG1S6ay/V+b6+7bLO/uokWf3AzrPfhE/31nActtg/K91ffbzz+Tnb3cdVuknywAyd9ZyDhuxU6T6250GVbpLM/3ZnPdnr21xe6SbJ9Dt09knMu/X3Kt0Dz/1mpZskRy7aGRcY+vI6le6g3XrvZvjuL75Y6Z53ZW/s5Z6zOnt0TxpzSKX707Gd8fAk+ea6nTV4l97SmdO44MLee6znv7PzvPPhO73f5Uc+vXClu9H1f6p0j1h0r0o3SWaZZ8dKd51NO2uTr1zj6Eo3SR4evVCl+5GHO++YTJLPnNs5n/B/PY12hlfuzVo/n/Jj02td3HtP9ZlDO+dynTZ0l0r3os07c0JJcsksnXX/e6+9aKWbJMt+t7NGa9PpO+d9Tbq+95y0zaOddeuL/mW/Sne9HXv7p793xCmV7sfm7a0VfepHe1a670/ojF/9asnemqRTzuzcm7w7a2fd7KyDe+dFHf1KZ17ojz++v9JNkrVHd/azDj2vs2f45dN7e/ZPfLazpmzudzr7ZDdZoTN3kySDX+l8Fp15/MqVbpJcPM93K91dv9c5h3He5R+pdJPkpbU697U333pYpTv2gN7f9eZ7d9bNPjlDb5/gvf8cXekudGhn7uby+3pzp/8e8r1Kd8ufdt57ecy+36l0k+Scn3bGKT53ZG/tyU9+2bnnOnvRzhjvpN2OrHSTZKN1O+fOH/tQZ8/rpof29m/P8sXOvMJqM3TOl0uSh8euUOkObNJZa3/W0N669bcf7JxxdfiXT6h0V36ss843Sf54aWe8YdAGvTnOj9zS2Stx5M92q3SPOvAflW6SPP+7zvPO5at23us24Vudc0CS5DOludMdXl+80k2SB775tUr30b913o2yykqddXtJsuenO2u11xzbeRfWdi+NqXST5LY9R1a65+7UGd9KkukGTfkzkpLktW915o2+NH9nPiNJzjm1s0/w7D06+yTmPqTz/oQk+fU6nTMCXzi/N1f5+elv6nTX6jxTfmZi70zKEd/pnEUw2xadM35+u9pPK90kefP0zvffniv15iqXeqzzropjpu/cb130RO8doQvduEGl+7UvdN5x98vbemvVTv3TryvdL1zd2TOZJF/f9YNKd/mDO3uWfzBmrko3SQ4Yv0Sle9NhnbVqXxp1TqWbJGdednOlu8yOW1S6SXLH3p21lzf+vTPX9cCne+vkblyw817vgaM6a4hX3PdblW6SfO6zne+/he48tNJNkq8vuXqle/2Qzr6R4QeNrHST5F8f79yL3/WLiyvdg392baWbJFvf1tnD9tElOu9IS5LZt+zsR9ntwmX/p//faw+/k/PWmvJr3m/49Y+mePM/Fni+c4bIqtt37i3/9vXOvqkkuf6mj1e6S+60SKWbJFt/rfN5fuhnO+cFvzJD71zKRY7onDn714M691O7TVq40k2SC/d8t9Jd7sxVKt0k+cIZn6x0Tzyh827DZz81d6WbJEcs2flum+75ztkWe2/eOy948uTOvv2PvdV7b+IVYzv/fusf33k2P+XR3t/1et/cqtKdY0Jnfc8Ga/fuWYcv01kTuPkPO+fDJ8molZ6rdIeM3rbS/fgNx1a6SXLkDJ1z3BfftXNO2fgR4yrdJFl5o8775+8756RKN0nWWvk3le63vt3Z27jLJmMr3SQZf2Rn7ckm23Xu8R/9xecr3SSZ5+OdZ7T9F+29H2Xw8y9Vupvu1vk573ty74zVCxbrfGZsfXVnP8Om2/TO6Hx0o8677R+7uTPflCRbjTqt0j1kyc5zyXtf+N/GCP9vfOGvnbms04/qrBV9vXdccLYa3nk/ym9GdvayJ8m2e3fOy9/++ydXure/90ylmyRDh3butwZ9pLO2fKnnxlS6STLTxM4ZnS9vf3ClmyQT51y40t38uc46nN1G9s7ZOXbE6Ep34mude/yVNujsK06SK2/vfF9/f6bO+fBJssMRnbGzk5/tnEv54wXvqHST5O0jO+s4Dt96ZKV72+d663t2eLSz1v7YMzvndSTJp1/6RaW75UGdc5lH7dxbHznh8M5+zH8f3BkTWGGB6yrdJLm9tO8g3+qd3bXyOftWusec2dkL/cv7emM6ixz1eKV7yGtHVLrv3XFLpZskC67x90r3hFl6z+7vrtqZa3509zMq3beO672D7Rcndsbknpulcybf4se8VukmSTbtnDG+50m9OezVv94Zx9hydOedSv/cvrf/fqY7OmcpLbft/pXuV0/vvWdyjnU7n8vvfKGzbjZJLn2t896/n//+X5XuQd/+aKWbJLd8uTPesNHozv7Dsz52aqWbJGNv26jS/eqivXcWn7feY5XuAf8f/3vnrc4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P+Ygal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCIf/Nfzw5yQeZOMUv4qlB70zx5n+8udyoSnfo4Cn/c0iSTDfQ6SZ5f8KESnfC0MmVbpK89c57le6773X+/d4ZPEulmySzjRhW6c4418yV7nRD/quPl//KiIF3K90hMw6vdJNk8sTO39/ATOMr3bF3PVrpJsnodVaodF8Z9H6l+9w7z1e6STLXXEtUurPMumilmyR333xnpfvWI1dXunNMt2ClmySP3n9NpbvW2p+pdN8dGFzpJskZx/240j3lJ2dVukny0fXmrnRnmmGRSvf8i2+sdJNk2NAPKt2HHn+20n3q6TGVbpJMKt2Kvzim913y1ouvd8IjBlWy0w8bWekmya8vubDSff/tSjaPj328E06SQZ1nh4svu77STZIdP/qxSveZ6+6odMdP6H2vvp8PK905S39/T7/6YqWbJHMO6zyvTl989pt+cOd3Y/Dw2SrdoQMzVrpJMnPpu2RCXqt0B2eGSjdJBobOVOm+PuHhSjdJZsrSle7ED0pjOpN6/36Dh81R6Q6Z0LnJGDRz53qT5NpnO2O1B112b6WbJPfu3xmTe+Lhv1W66679iUo3Se685b5Kd9K7r1S6s0/XG2t/a+JLle5077xZ6SbJpNc7P+cxz3TulxdcYqNKN0lendgZxxg0c+f7+qUnn6h0k+StBTrjy288/WClmyQLzTJvpTtkeOdvZIY5e/O2b73auRd4+a1Jle7CS6xV6SbJsEGdua4hgzq/F0kyw4glK92llty00h0xY+93efo5Os+VH5lr7Up39hVXqXST5MO7b6h0l1im8/uWJHPO0flcfuGxzrztyJk7czBJMmFg9kr39Wc7Y6ozzNL7XJ5/kbkq3dfH9uZKZhr+RqU741zzV7rvT+j8viXJu0M78wND3uj8jIfP3LneJBk8orM2bCC9a37z1c7Y2YcfduYdxr35QKWbJBPe74xDjR9Rui8amLXTTTJ48ohKd+ahnTH8JMnAlJ/fGZT/ff5l0luT8s61U/4Z7NhRv5/izf94dYuDK93XVvx4pfvm86tXukmy5Ha/rHTHXTqy0k2SJ1ZfptKd+7xbKt0bPnFipZskVz36q0r31bFPV7qDJ/yg0k2SRR5/stJ9eExnvDtJpltxxUr380PHVrqn/WuXSjdJPrF8Z+50ocs7802HDOndm2wycqVKd+JSl1e6STLzm2Mq3cXX6DybH3rRfpVukjz49l8r3TteOLnSfXGV3u/Fj4/5SaV769I/rXST5EejSnORp55Ryd6763OVbpIs90RnHdXrG91V6f5stksr3SQ5esJCle5DP+mNf+y46I6V7izzdp53Nl23cx+eJDf8cHSlu8TW01W6J+1zeqWbJA//pvO9uskSN1W6STLrzp37z9GXbVHpHnz7JZVukpzy+c4c9cuvdr5L3p+380ySJEOu6MxlrT1s1Uo3ST64ubOG/9jlO3Nkj77Q+yyafv8vVbpXfv1fle6eozqf90lyx7ad+63H3r6i0k2ShZbfutKd5cXOOoBLHuzsa0ySgfXHdcKPdz7jPj/xyko3SS5ba5NK97NLPVLpJsnXz7yn0v3iUZ2/kdt/+pdKN0nOOqyzJn6xtZevdOe5a7NKN0kee6RzL7f4m71xxF1n6syV3LtWZ639Akt35qOS5P7x91e6Q+85v9K9ZMdfV7pJ8o0/dM5POGbHznxUktz0889Xun9dq/NdstY8i1W6SfLWzZ19Bwds/7VK98/PdO5pk+T2xTrr69Z6q7e+7pkDO/s7Xjt5zUp38Vl6e+PO3K4z3rD+Dp31dePWWrfSTZI9Hz+70n3j7t7z6kX7rlHpLrZvZ9595vM65zMlyYkzz1fp7vXVzr3A4SdeUOkmyV/eP7rS/eKde1W6SfKTuzrztlvts3ulO/awtyrdJLlzg8745DUfXlzpbnNt5+yLJLny+YUr3RHX3F7pJsm8X9q40h2+Vme8YZ9zF650k2TQE531DW++vmelu+AKve/rX23bad9905aVbpLcOM+Unx//4IWb/6f/3/BZR2XpT3xrCl9NcvntX53izf8Y2PKiSvcXd3e+Lxc8tze++8yWnbGPz13QG7t6/aXO8+J8p3Y+F595fqdKN0n2WaKzt/60WT9X6S60du8sjtuGduYUnv1SZ49Ekuz3RufnvMmSnTmFX23ZWYubJDt/5dBKd9unOmdmHPfR71e6SXLMqM75uB+scWqlmyQ/XbazBmfSnzrn7W19aW9t3StPde7/hg7pPDvf9KPdKt0k2Xqnzv3WtuN6Z1yd8ETnXSP/uOXwSvePvyq9ZyTJFw7tzFes+ZXOOYzbPNy5p02Sw//RWc/53ed756B+77Up/3yWJI/v39nL8Oyg3v3WXJcfU+ked2xnPdLlF19V6SbJUyPXq3RXXPablW6SzPX1zrkyl0/3qUr3vZePqnST5LlNdqh0z7i7M1Y61/d+W+kmyQl/3KfS3fuK0jn5ST5xwd8r3W+t/tFK992He+fOz3j3zpXugx/vjOl8d+5DKt0k2W/s3pXumAd76/f3vqizR/DDdzasdD+3yYGVbpK88WjnM/8vz3TWszy8eudMtSS5/9DOPeIPvtL7+3vkgs7cw4SDO+vsd5h3nUo3SU7cvrNub9wuy1a6W5/TmYNMkk2v7Kz7+sL8vT2CPzi3c97KcxNHVrprzfjlSjdJrvz91yvdWe7eo9I9e8benv49jli/0h20V+9dnrN9bYNKd6a/d+49b9p9u0o3SQ5/rTPet+RFnXvE1Sb8rNJNkkue6qyBG7fRU5Vuksx7Xuf+ZcFPdc56PuzLvbOev3Fd5x00d687ptJd/93OOwqTZOTznbnKdT/aeR9BkrzzZmceZo8R36t037ut8673JDl4r847FH48qrNuYqOBzpxtkmx+yshK9/gD9q90k2SRKxaudK/esfOOyVk7R2AlSUaf2/le3fmNzjt6f/vJP1e6SfLiJZ11Lz9bpfMcnCSfXLdzxsgdY3atdMe+3ftcvvuazpzUSaW9DPOu/5tKN0lO/HFnn8THL++M9SXJjtf21g3+LyYPXy4TFp7yZ2l+bdXefNOcn+iccXXavZ11HI9c2juj5dv/7MxxHn9N75l/yDads1t3/G7nHLHvvdI77+sL6bwfaPIVnTWoF/2l987g2444odJ9a43OecxJcuydnWf+T8+2YKV7+qy956RvbXFZpfu7Yzr3Jsv86AuVbpL8eqXO78WIzXrv5/rjdZ3fuT0GddYQ7/fj3n66Sa8PrXSfHdl5/+5S63fOBEqSIU+XxmwOuKbSTZLzPtEZ25zjlM67KXdfr7PnJ0nO/7Dzcz728c494ntzdt4nliQvTO7sM1t+rdGVbpKsseMCle4yN3fOFB0xYnKlmyTDhnfGpY/c4k+V7oMn9NYavvqZT1e6B9zbmXtLkp1O7bxHa5Xv3Fvp7rtob/zq2vc748eXLdn5Lrl17t57fmZ+rXN+yAH3985BXWqtzjq4Qed1zsTbZOt5Kt0k2W6LznfJZZt0zsS7dOfeWcFr/r1zPu5ha7xQ6SbJ8Yt21n7N8+DoSvfrwx6tdJNk1MHbV7rPXtvZv7b9d3rzyFd86dhK9/RbemdJPLhwZx3c0vt29mMOPP5ypZskeb3zmf+VHTtzJUu+3hnrS5LBM3TmSvbdr3f24PZ/7fzO7bLoM5Xufvt03r+bJNvOP77SXX2D+yrdcz62b6WbJNvt3DmTcrXlOud+JsnLD3bmQad79YRK95rpOmfaJMmZf+/Mge5yYee96Mvv3zv3esOLt6p0z3u4t/9+1Iqd842POKWzbnaDrV+pdJPktZc657rd9ZvOWu3NHju+0k2Sec84s9K9/rbeOYz33tg5h3iW0fdUuntc9EClmyQfHtc5B/WJEzsLXIfe3XsP+cmbd/bQ/OSyznxGkjy6aGdv40VXblDpnvf92SvdJPnX0DGV7k9/fFyne33v7KAfzd55D/lZH+2cb5ckJ93zXqW779MHVbq/O653VuraX+rsE/zptp2z8t8/ZEylmyQrv9CZQ9v9973v1cW+8Won/D9uR5l9uRHZ7eYpP5c8+tzee0Q+85nOWtH9Vuqs6Vxuj39Wukny2mmdsfTXfts5pyVJtpunc57RlZ/YrdI9YmLvzK/fv915tlvvc521Tu/ut2ilmySHPtB5B+9jV3TWtCTJxud1rnm3CZ29ej/6SueeNUneurtz/tmbnx5c6Q56/w+VbpI8vk1nHc4m3+mNpR8wpjOvPtNTnWeOlb7dea99kuzx8856mb0HFq50H/vc7yvdJLlwi87z6LK/6K092fqszpj3S3d13lXx8Wc78yBJ8rGRne+/nT+xdqX713933mufJONu6pzNtcRPvlHpJslMR3f23W2/7gGV7goX9OZY9py1M857zu6deaynD+qdX3f/m7tVus8d3TuEYvVbO+8OmDj6tEr3jS931uMmyTUHdsYJb9qrc1/75t0rV7pJMsc8nXWM967wu0o3SS7YpvPv9+D3OnvuvnTzXZVukvz5qc5+sH0f+WylO3qB3lq177w6stK9evne3sYPh3X+Tn6/RWfs7KD3e/t/X9+/c679Hpd01vdM2qzzeZEkY87vzDcdPLkzp5cki8/6yUr3/MU/qHS3nqczbpYki5zaORto9Rf/XOn+evfOeGqSHPhIZz/YyR90zhhJkj9e3Pk7+cW2J1S635qj8xyVJGcd1dmP+eN/dt6ht/LdvXPAt763812yznK959XLjjyg0h10WudcvKOOWKjSTZIt7+nci59+Sufs1h+sc0qlmySn7tHZW7zDL3vPfltv8cVKd9fbOme5HHXTZpVukmwxobNPd65dvlLpHnToNpVuklx74ayV7tB/d/bSJsnnlh1T6Q475epKd+NV/lzpJsm1M3XuMe74RGc97rPHnFvpJskj13feh7z3n2aodJNk0dLZXR8s23kf1qqX9c7ku3WnOSvdP5zdOS947872wyTJqgt19oZ/cdnO+GSSjPmwM6e48rc79wIn73BppZskH7m58+6O9ffuvHNzu4vHVbpJ8pmLz6t0r/pO5/MiSf52VGfP8v+X3ttNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBYMmT578f/0fLzXT/JPPWPWrU/wiHhz94hRv/sfjg1+vdGceMkulu8SiH6l0k2T+ZeardN9+85VKN0kWnH+FSve+Bx+odN96d2KlmyRLL7NgpbvAbCMr3YkDH1a6SfLBpM7P+ennX6h0k2TI5Okr3Tff/qDSHf5ffDf8tyYMeqrSveG2xyrdjyy9TKWbJE8//q9K94UXxla6SbLg6EUq3ZceeL7SnWPuzvd1ksw6fIlK97Rzj6l0N1h340o3SUZkpkr38lv/UekmyW5bf6bSnX+heSvdsy8+o9JNkrGPd75XX3x7XKX7zNOdz4skmTix8/03cu5ZK90kmX/ehSrdRx74Z6U7YULvHmPQoMGV7nRDh1S6oxbufKcmyVILzVPpDp3wVqWbJJfeeEelu+R0c1W6B666aaWbJHO+OqnSHTZ4hkp3YKBzvUkyw+Rhle7Eib1n9zlmnrnSnTh5QqX7wfuzV7pJMnxQpzt+oDOOOHxY79lhcul3efL701W6STJkRGe8YWBgeKU703Sdv70kmTSp055h5s49xv3Td8agkmSZszvPlRMGvV3pJslcD51c6R79p9kq3fmG9p4d3purcy/+2pjbK91xr7xW6SbJWsstXulO/0HnfitJMvjNSnbcS517jJGLdp7PkmT+5UdXunff8EilO+/CIyvdJBk0vnMvN7w0vpUko+YYqHSffeTqSjfTL9zpJnnmic7333uDO2O1S8y1XKWbJK++8EylO/sCpYeSJAsv0LmXe/LhznPJHCt2/vaS5JWxnWeHBy77WaW76TafrHST5Npr/lbpzjP/ipVukixZ+l598ZG7K93pZ+iN6Uz8sPN3Mn5SpztxYudzKEmmW3SxSnfw20Mr3SQZ+t4Tle50QzrfJR9OfKnSTZJZJnTmB2adZ+5Kd8j0oyrdJMnQzjPapEnjKt0kmfDy+5Xua0+/Uelef/qJlW6SfPBG53Nu3uk6Yy8zDu3MRyXJiKHjKt3pMqLSTZJ33pvyzyV7P3leHnnvxf/pg3mlkUtO/vu6J03pS8pBEzrPMklywCJrVrp/fvLKSnet1besdJNk23Gd+6lbz7iz0k2S2b7bmUv+0YTO+sj19+qsD0mSRS4/qtPduzMuvfmtD1W6SfLlFTq/y/O+1psje/CozrqW1dJZB/fhVz9R6SbJvy8/rNJ9+C9bVbpnrt5b37PD9OMr3dEXvFPpJsn5h3XWap/wSmdc7HeDO/cBSbLJIy9Xuj//9qWV7iw/26bSTZKrrl620j18pg0q3SRZdpc/VbozvfBwpbvCL3vPjNM/uVKlO+e8K1e6M77T21v19iN/r3QXmX6PSjdJxmzWuRd/9exvV7pLLrxrpZskHw7pfP8tMmNnjGmutxatdJPk3JGjK92zc0OlmyQHPtPZs7z7W529Eh//7Fcq3SR55YbOuPTIxW6pdBdZrrc+K/9YuJI994Xes99ca3aeS5Z887eV7sLzrVPpJsmw9zq/c3ff3Zk7/egWnXVfSTL2+V0q3bsX6f0ub/rLOSvdixb+S6V72ObLV7pJsv15nXn1vS7vzN387cTeHMtV151Q6e6+3J8r3ST5/Ew/qHQ3XaYzJrD8U735gXV27ZxfMumEzvqsBcZ31vkmydVL/qHSXWOpznrqJJk49/qV7gUvHF/pLjFms0o3SWbcobOGf82RnTURN916TaWbJEtM+nGl+8xSnefgJPnCkNUr3Z9edW6lu/fHx1W6SXLma5255pXf3b7S/fPIzp6fJPnqNY9XunNssH+lmyQLfPyISve8BZeqdNf59rcq3ST568rnVbqzPtAZRxy5zgmVbpLc89tzKt3Z59260k2SQ2ftzLuvucFzle7xY3prEIb9c7VK99irO5/3cy7d2/O62iG7V7pz7NI5+yJJ/r1VZ074hEUfrHRvHdr57kuSK55au9IdslJnL/ucT/f23A2auEOl+/7g71a6STLXhM6c/mnrd+ZKHn5vvUo3STbfvrPOasvXO3MwZy3bW8O/+qydeZhL5ul9l2x+3ZT//vvSPQ/kkbfe/q/XPS85dNTkk2bbbYpfz/tf33mKN//jt1d31qpt+4+PVrqHLLBnpZskJ17ZGW879aHvV7pJMnjUryvdI37QueaV9u+tEz12/c4ess32O7DSnfnk6yrdJDn63vsr3YnjD6p0k+T+r3TGPi46rfMZN36O3tjVrtN3zrFd4tHOXoYhd/T2Wb79785ZDkct0xk3TpJrzvtOpTv/luMq3Tff26DSTZJxKy9d6R50wwWV7piTe/v0Lju4s+fn7Rc7a3GTZOvpOms4xt3TmRO6Y77eepZlrj670n3vtM5z6JMX9u49R63XWXcyaIPeuTK/P7sz9n/YW9+rdGca15lPT5Jjzrut0r39kr0q3Y+c1Vl/kyRvXNNZW/fIW6tUukmy2Vuda37pJ517zzc27Zx3kiRX79RZ27rYup21Ibvd29tvN+/zX6x0Z9qqc05+kvzrk7dWuttu35l3m37f3pjm28d09niO2q/zzpX7Xtmp0k2Sr890ZKV7zxGd774kOXq6LSrdixfvvE/pxZ/0nh2++7H7Kt0DX+ickXT8zfdWukly4nudta0H7tB7F+QP71ig0j1theMq3WNu6P0sbrmxM6Zz9qxT/v2gSbLFc72zchbc5PpKd9exvfeBfObGDSrdX6zX+bv+yajeORL3b9f5nLt498668pf37Ny7JMmvTuqsM/zU21+rdJNk7QU67SW2GV3pXpIDKt0kef2RZyvdGTfsrLnccLvOWQFJMteozpzimpN678U8/d+d552N5+/sNz/8mk0q3SRZYu7O+6bX3PkXle5P5t280k2S01/t7F97/3uHV7pJ8rVf71bpXrJuZ4/1jT/une/z1bU645OrXdb5vN92/c5YUZJctVlnnc5P5u3sj0+SJR/prLX65BfGVLrrn9M7X2SB5TufGbts3DkvYJUbOu+pSJJrZ+/MB1926SmVbpLsOryzhvLSbTrff9/+a2/v7x3XlM5kWPtXle7Era6tdJPkiTefrHR3/KD3PokZ1urMz70+8Vd3TZ48+b/+ElxpphkmXz56yr+/ZomrOmO8SbLadzprOtdavDOvcMfqvXXPd31wZqW78jW9d+I8uc/Nle4TT3X2Cr16ZW++9/rJV1S6q938k0r34Pu/VOkmyd63dfapz3l67yyVo9e7qdJd7dDOWaV/O+mzlW6S7Dpj5x28b5/ZeU7a6PTOuw2TZM3vHVzp/uF3H6l0k+SRfdaodC8bcnqlO9PMvc/l6SaMrHS337Bz/sutX+ztRzn055196usf0Fu78IftOucQX/P7zh6aRZ//UaWbJMtedWqlO+LyznlDd53zsUo3SbZ6ZcNK9/lJnefnJLnpW505luu/11mT9IN5O+fLJck+X+msSfrjyO0q3U2uOKDSTZJH1u+M0Q+c+fNKN0l2e6Kz3vAX/+6cz7n8OiMr3SQ5/8udd2A8e8OwSvf6ezpnXSbJ7od0xjVnfPvRSjdJNnppv0p3pkM6eyV23b933tcP/9A5o2zTDa+qdAcW7ew5SJJ5zpy/0j3n2M47n5Nkvw866xhfnrBWpfvsjZ1xsyTZckRnP9/YU5+udJdaorfn7ql1O3ORH37m8ko3SZ69cHSlu+ERnefV83fuvJc5SV7aqHMu3ufn+Eale/n0vfeXHzyis+75mFV773N56SudvVVv3dV5Rrtplhcq3SSZfE1n3u/g5Trr1m/fvje+vO2ozrzfGX/t7dPd6KopP8+cJAuef3Kl+6uf9d7zs98R11a6X1/+l5Xuy3/vvednpvM677l7/mfnV7pJssSVnfMTPr7QvpXuPgf11iCsckHnjMcHv75kpfvWL39Y6SbJHemcYzt03t669UsW73z/7fH3znsxv/vl3hrwy77WOTNgrucOrXTvOWZ0pZskL27Vmfcb2Lw39vKXjTprRTe/4L1K96a1e7/Lb13WWY/xg+k7zw6/mq6zrzhJbjtpg0p3zpk7c3NJ8oNtOmPXJ7/UOYd4mQU+X+kmyb7f6DxLLbJJZy/muPM6f3tJcuZRnf20Y05+t9JNkgs+ckile+Z5i/xP654XW2LOyT86acqvNxy0XmdNRJK8MaTzntw7L+vslf3XTL2xvAX+3jl/8O5x11a6SbLRXzvva9n7/s65sBOu6o3lHTaqcy7s71fpnAt72Sudc7mS5KDSe6pHLNj79/voLJ01nXc92bmHWPy3vfmmLRftzIVkeGeM6exre2MJg/bfuNLdcNu9K90kGXxc530tmx7cebfozl/qrfX98X6dMe/tt+2c9/zyDp33dCbJmfd35t5G7/j7SjdJDvzeWZXukbs8UOkO26W3bnbiTzrvd1rlzs45Se/e3FlPliR77dwZ8/5w8oWVbpLsVzrz8o6TOvuJ9vtq528vSQa9dG2l+6ePnVTp/nHb31S6SXLHVZ17uYMX6az7SpLlP9U5E2DVxTrdHz63fKWbJN/7W+c9Cv+cvrNvf4VtOusWkmTMfRdXuits9kalmyTbXTxXpfvJ7Trff7ss3BnfSpJVJnfWXj614p8r3XFDemO85w/vzAvdulpvTdK/3+28U+KJvw2udCfe0TsbaOW3Ov9+ayza2U+05AL3VLpJssl2nfNbB07u7JNIkp+f2bnmH8zbGR+587rePrO9zu+8j/jMJ86odDfc/dJKN0kWO7qzBnz8ob01ZWte1RlveOrezjqODf/YO0vzos937muHTddZT/3pBTvPlEmyzmnPVbrHb9NZ95Ukj+3Umd+5fa7OnPr5Qzt77pLkxb931mf97ewZK91fLtn7WUx3dmeucr2zOusuk+SpdY+qdG/Ybv9K9wfz9fYsbzb02kp37BOd+/Dxy3b+RpJkpUmdfZ5HXLh7pZsk727dGSP5+lyjK921D+s9+817Wudz+d+7dt4LvfC/e++t2u30f1S6m1/bmQNNksOW76zhX//CznndXx48e6WbJB/9fmetzp4Ldd6n9NjjvfOOjv9O5xzWc+b7ZqWbJAc+9WGlO/Njb1a6T+7UeQdNkpxzfGeucuXbOu/J3v/dEyrdJLlv4c5Y+/j9L6p0k2TiGmtXuotuu9P/cd1z79ReAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPh/yMDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMmjx58v/1fzzfDLNO3nfZjaf4Rby/+jpTvPkfA9M/V+nOPN/ile6wd8dVukky/WyLVrqLrzpPpZskc88wqtJ95qWxle7TY9+odJNknsWXrHSXXnDGSndQBlW6SfL2m29VumPGjKl0k+SD91+udCe/NXulO93IIZVukjz34IOV7rAZJ1W6t9/2r0o3ST6/06aV7r8fuqvSTZJH7h9X6Y774MVKd4Y556p0k2Se4Z2/kxmH/N/fm/03Js/c+1yef/aVK93JE8ZUukly+/3vV7rLLjFfpXvdzbdUukly/yOdv79HX+/cb7377geVbpJMGP9hpTtpUuf3LUkmvDOh0h00eGilmwnjO90krdvPFddYvdKd+O7ESjdJXnn1hUr3pec73SRZb8P1K91ZZx1e6T50/UOVbpJ8eovVKt2lH5mu0p1vwhyVbpJ8ML7zjD209RmXZOigTntoOr/Lk4e8WekmyXSTOx/MwyfNXem+nd7P4t33Ble6Mw6bqdJNkumnf73SHTpo/kp30sTez2KWmWeodCdO7DxTPrXJCpVukuyzxjuV7ldmW6zSTZI9Jt9f6f7hqc7vxdg7fl/pJsnya29d6U549ZVK91//vKjSTZIZZli+0h00rjcmN2iGzu/cO+M639czdi43STL/SmtUuh8+3/ldfv7VRyrdJBk/+b1Kd/bJ81a6STLdAqtWui8/e2Wl++b7vWeHpddZrtJdaNaPVbo3P39zpZskK8/T+VlMGOjc0ybJ8EGdMbk3JnbmbYfN1BkTSJLh73TGuB69ufP5Occ8vb/rGWefudJ9f2hnDjRJxr/Y+febdbrSOOIMc3a6ScY92nl2ePaVzjjigvP3nv2eefG1SnfJRUZWuknyxthXK90FFluk0p1xrqUr3SSZYVjnO2roDJ2fxeDBnbm5JBmczvfq5CG9MfF3Xurcvzx+8U2V7p2XnV/pJslsA51x4DlnnK3SnTy+Nwc6+4yl+YFJA5VukgydOOXXvezy7z/mwXdf/p8GMpaeYbbJv1p2kyl9Sbl4x7WnePM/3nizcw8/3e2dz93Pb9O7T3v1yhGV7r/v6z0bjH+qs3bopC0vqHQ3Orq3hn/ES89UugfuOOX3MiTJ+9fuW+kmybOHH13pLrdL795kxLtHVLrvvbxHpXviyN46jpduGFbpLj66M/7xxKW97/mlP9r5WYxKZ29Akkw8q/M99fIB21a6Tz13SaWbJDO8c16lu/f8C1S6Ny7cecZNks0u7OyBuuTaMZVukgw9vrOOccSVnfnCtT75h0o3SXZZbnSl++ARv6t0PzL2o5Vuksww/olK986He2tFnx3aeTa//qF/VrqjV+usL0iSq+5/qdIdt9U2le4V16xZ6SbJnz9+ZKU74v7OeHeSrLNG52/7/bn+WOk+vNN+lW6SrPTlv1W6fx37nUr3iTmfqnSTZOXF3610b1ul97v8l1s6n3NrLNH5LBp7de/fb8zLnefK4a9uWeluvEFnHD1Jxt71xUp3hVG9+6Jxgzv7rD+1Ymcd1X1X9fZvf/Bh5/yLP690Z6W7wed748tfHN1ZXzfq+u9XuknyjY9dXenentMr3b+c/HClmyRHH9u5R3z4tytWuoNL85tJcumynfmBOe67rtJNkq3++mSl+8qFC1W6j3+y83ydJDn3k5XsdH85qdKd/rzOeQFJ8uR8nfGi0at0fsZJ8swGnTVaL+13R6V73cy9OezffXX6SvenG3T236+/V2c8NUm23LWzb+SGTT5e6SbJy2N3q3Rne6uzH2yRsb2fxWPPdL5LHpjp2Ep31Lu9zTmDplul0t1ri3sr3SQ55YndKt0vPHF2pXvVu537+yQ5a/pHK901/vmXSne2Ib+tdJPkxqGdZ7/FR+9Y6SbJ8o9cW+mOGtc5x2z8P3rzRivu0vn3u2L+9SrdjT9xfaWbJHM/vFSlO+Ke3nfJLTd31jnOOrSzz3O3C26sdJPk6ec6Z2x945jLKt3RZ3bOdk2Sy16YpdLdZobDK90keWr5n0/x5l63X5NH3nz9v16QMedSC03e9vRvT/HrOWvPzpqvJJn5z525mxsO7eytuGe63pj0Ht/v/P4vs0tv7PHRhXerdH929chKd44NO2txk+SiT3fOev7DFzvPoV98/4pKN0l+ednmle6vD53yn7f/cd1pm1W6i33t2kr3uJt76783P2D3SvfHE46pdP90UW+f5UYXdcb+//nkyEo3STbdfcrfByTJb3bbudJdd/KnK90kuWLkNZXuD2bqnJmx/uc7z+RJcsiwzhjF3etuX+kmycNvd56fF/9sZ970zDc7e5GTZK5zO+dEfOGYzvj82qdM+T2Y/7Hstt+sdFc961uVbpKs9Ernvmj/zTvffzuns0Y7Sda8t3Ou0/pLdsaOT/tq5+yXJNn5vM5ezOfn7LyzI0l+87nOc+VL63+i0l1+hc6exiQ5cLvOeaXr39kZHzlmlgsr3STZ44POZ/48O/Xmxyau+3il+8m1d610N/nm1yvdJPn5852zk3f8TueZ5J7Lemc9D1zV+cxY5sbO83WSHPRu5/nhmRkPqXQPPqQ3b7rrZzrvzxv9hc5z8EmndrpJ8srNnZ/Fxf84sdJNkitX7HxmnHVA56zSh5bq/fttvWHnOXjRUZ39knde0tnvkySv/rLzbo27nu2cQZwkwy/8fKV7/2M/qHT/8bkFK90kWW38bZXub+77RqV75GWd/VpJcvrXjq90N1r6sUo3Sa7ZpbNf+anDOufwzPfyOZVukty36sWV7lcXOarSPXn+4yrdJNn5kM441MYrnVDpJsmcv+rM6d9yUGf/0wUPd55Vk2SpGzt7t996ZZlK95MHPl3pJsnOu3f2bs/+6d67bT4Y9GylO/+PD6h0Z7i5N9b+7fc68zt7je/sgz57rQMr3SQ561v3VLqnP9f5fUuSf290VqW7+0c6Z2psfP3tlW6SvHFJ5zn48U919m5vNVNv7+8tp3fW9m37WO9MlFse2qLS3eaCzjk8cz7WG18+bc9zK92nZ/5qpbvgeZ1nyiR55yuddyH/9sVbK90kWeHrZ1a6e123zF2TJ0/+rwd2Vl1q3sm3/fxLU/x6Tpq793mQ8T+uZAfP1zmv5oVNOnvJk+Ssf3fW5J48+O+VbpJc8pPO3PcLX+q8y/2CuXrvn//RHp3Pmh0+2dnbu9YFvTXgu3+0s5/1tgV3qHST5E8f69xnH3RVZ1xsk2937h+SZJ1d/lrpbjiq896hOd7rrUn65UOHVrp/fq04X39hZyxv32Gd75Ib7urs7UiSX5/S+bue/YPOGdLHX9l5f0KSbPb5zrlc3z++dz71Rx96udL94KXOWSqHv997Tnrh6M6ZGcte1lmr/cHwAyrdJDnmy5+qdC//Su8cxvXu7MyfnjGy827tVdbtncN43BGd9z7M/9Clle6eV/bOSPrY4M5+vn/M1Rv/+PslnfcGjH37N5XuXqM3qnST5NwRnbVD1w7pfK9+Y/neWsM5T/tepXvEG73f5XPf7txzbfTyCZXu9kf0zuD/9HmdPVCv/GN0pTvjqb0xgZvP7qxVW+D4zh7rJNnkss6cxQM3d86Qvnux3s9ij5t/Ueleulvn/fPf3bj3/vJjX+7sEzz3iztVukny2wXPrnSfOaUzJvf9fXrrAPY563uV7pAVO5/3C559UaWbJP8c/k6l+6mLDq50k+SGizrvgtz5iM7ZWSeu+aNKN0nue63zXtNdN+88U475TWetRZKccvNKle5m285f6SbJ6g/tWen+cZd9Kt3hc/bGJ2c6tLPG56uXdM72X23Tzrtjk2ST0zrvXF/8vt7ZkVvu9+tK9/xLO2taZp+8baWbJMd/ubMf7JjhnX3WI0b0xmpPGtI5t3yN+zvzGUly5zKnVrpn7dV5N8rCSzxX6SbJuXt21jfMsFFnD80Ze3XOREmS137aOdP32Zd670bZqfQ+iZsf6+zHfOrHnWeSJJl/m87Za1ud2Nlzd/SfOmsjk2TI0Z1zWCft2jvjZ9G9f1np3vRgZ53c4I905laT5PD5N6x0F9xs/0r32FM6c+5Jkhc73yUPH9NZZ5Uk67/TOdP+tx+8+j+te1562DyTfznflD9v4ORNOuNiSbLQlZ3Px5vv/rDSvfEfa1W6SXL5TjdUuote0ltHNfuyp3S6s3bmFTZatbe+7tQ1OvcQXxvVGXM7fr3eGZ2PfKrzfpnj/9i5f0iSZxbsvGtuzs91ztkZtHpvT90SN3XObPvxTp29liu82DtjdZfhnb/rsTMNr3STZN8NOuNB21zRmaO+6ejeGceHrbhHpbvgxp09nLsN6+3Nmf/BzpqyZf/cO3dhhZ901p4cu9b6le7SM/fGr54+44FK99LlO2u1F9iotz5rwYO2rXQPOWLhSjdJfn5u557rw9+dUenOu/pWlW6S7LVH573B763XOf/s3HN6v8v3frWzn/YvY3tryq57Ynylu97zV1W6v56vtw7gxbM7aw0vu++1SneWzU6odJPkimGddagnnD+00k2SeT48udL93NOd7jof65yJniRnH/SPSvenb3b2CT6/b2e8O0lWWPlrle7q1/bW4Ry3fOfMvW9d1RlL//L3e2d+HT9yiUp37K86Y+Ibn9V5Z1ySjPphZ476nyN766gevLZz3vpxP+yMyS2yRW/d89s7du4F3ry9c87cGmt2zktMkvm+1pl3ePCc3nzvCXv8rNI9+YXO+vIflc5bSZK/ztIZB972u52xl1cG9847OuSSzlrt808dXOkmyey/7TxLnXxkZ0x1qRc663GTZMdTBirdY8d9odLdZfPtKt0kWesvnbNcvrVpZy97kmw/sXNG088/PuXPoEuSW77RO4f/7lU7+6E/853O++ffXf/8SjdJtjyi8736sWU6czBJ8uuVO+uT9/n3G5XuI5sfVukmySq7fK7S3evhzrj1wKjO/oskOfHvnXcHvH5qb936cTvOWunOenZnz9Zqt+1W6SbJV7b8V6W79R53VLq/2vq9SjdJ5r+rs+55yMGdNYNJ8uYxnbW+p17QWQM0xwu98eV7Hz+h0n3+lHGV7tsHn13pJsma83fmNI4e1JvrmuO5WSrdSbNd/H9c99x5ugIAAAAAAAAAAAAAAAAAAAAAgP8fe/8ZrVddqH3bZ1YKpBJ6CSUU6R0RRHpVQWlKEQtFBVFAcSM2FEFURAFFRBEUUQFRqgVRVECaIC3Sm/QWOiFASHk/3K/f7ucZe/vkHGusPY7jM/6cY2Wt65rz3yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP8yA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBSP+J//xPAstmGU+8v65fhGrrLriXG/+25yRMyrdp55/vtKdd9acSjdJZrw6rNIdl0Ur3STJvJ2fxyLjxlW6L014tdJNkhGzXqx0R49cuNIdN7KSTZIsOGqg0n3smd7f3z23/bPSHT9umUr3uYfvqnSTZOkF16p0H3755kr36huvqHST5Mbbbqh0d9vjHZVukkxacslO+NGXKtnhw1+rdJNk3NiVO+Hhj1eyzz79cKWbJPfe+0Kl+9RTT1a6SbLfew+rdKc+3/n3W2jxCZVuksx4+F+V7tTbO/9+w2d37gOSZNhA515g9Pj5K90keWXghUp3zpzOc1SGD+90k6y+yqqV7rix81W6j754f6WbJK++MavSnTS5dB+Q5Oq//a3SHeg8Bmfnd23VCSe5bVrnufL+hR6qdDdZZMFKN0kWn7pIpbvAG6VfjCQzni3df86ZVsmOHhhf6SbJrJmvVLovvN75WYyfpzeQMWyeUZXu2DFjK90kmfFa555r2PDOz2LeEZ3ftyR5/dXOvfg8Izv3RQttsXilmyQ/WmpipbvWxN6Y3EMnv1HpPjzQeY5aZP7es9+IJzrPaLc+1PlZjB8zs9JNkkWXLv2cJ0zqdJO88nLnHvH5OZ3usHG9e4xxw5eudJ8pTWq89PCfK90kWXLVDSvd++98oNJNkjVff7rSffLlZyvdxRd9U6WbJAPPdj6Lbn38L5XuImM784lJ8sKMzvf1xGG9ccTh84+pdJ+8+vpK99VRvTG5TbfdttJdfHLne/XRR/5U6SbJQw89UulOHOiMjyTJ4kssVulOH79EpTvr8bsr3SR59dXXK92Fltqk0n36qc5YX5KMHd65R7zh+gcr3STZYI2VKt2Ji0yudAfmzFvpJsmrr3TGSObM7HzGjZ3Q+bxIkmEjO/cCs6d31gwmyWtPPVXpPvvg7ZXuPGOWqnSTZPhAZ65yVjr3nmNHT6x0k2TmsNGV7pyRnXU6STJixNwfB57z/+H+/skJS+Tr235pLl7N/3HBpN5Y0LUTOv8+j+56TaX7j223qHSTZIVv3FvpfnDFzrrLJJnnsO0r3VE/uazSXffySyrdJHl94854wgp/+B9tf/hvW/Qf36p0k2SegyZXulMuuajSTZJtZ3fuTXZd/aZKd607flTpJsnCYzq/G0+M/1Wle9ymnc/OJHn9rM748f7v/3almyTT39N5Zlzs8c9Uus+MXqHSTZIN712v0r3nlc649PknddbtJckVy3XW2o/d4neVbpIctMpxle6dT/260j330AMq3SS545XO/o6HfvjWSnf7Q35T6SbJfAd0ns0XPP2zlW6S3LrEbyvdDRfq3OOvcO55lW6S3L1pZ+3XSh/+YKU7fdoxlW6S/O20dSvdpX//tko3SRZaYfdKd+O931Lpbj2+N1943nqdefUTJy1X6Z6yyPqVbpL89sXOs/sVL3R+L5JkiS06Y1yTb++MQ210162VbpI8e/B7Kt1fnntupfvi85Mr3SS5a0ZnPfzW67y90k2SV+Z09ue8/ptHK90FFurMvSXJ1M06e9jGbNb5vF9wuY0q3ST58ZWdfQdPTv5wpZskL3xrzUp3+vu+XukutUJvb85ff3ZbpfvcNftXupu/9PNKN0l2mvFcpfvk3Z29HUnyyLGdtScPH9ZZk/vG+7ardJNky+lbV7rHvN757pu0zIGVbpLsvF5nfPKj155W6SbJ+bt31pRdvEpnDm3LXXvnMvzysc5a7e0v66yDe3qFzvk+SfKPCZ1ntMe+OaXSTZLVnlm+0p123LKV7tHPdb77kmTbiztzD2PO64xD3fzi+ZVukmw2ZWKl+70pF1S6STJi3c5ZBNe92Hl2v2fzztkXSbL/NztjJBes25lrPuyy3u/yt7f4SKV76T69uZLZ7+yMQ62xR2fe4bxNe3PY11w1tdLdaP4jKt2rjuqd6fbyip11z6fN7q31fer9nc+M7U7trNP51IudvdBJsvM2nb+/gW/vU+mOu6v37PC2CZ1n7D8/1NsPtvyphTHKbf+zsyWHPz8sC5w39/c6T1lol7ne/LfHNumsZ1n8vZ3v4gXX6K1nue7LJ1e6f32jt+/mx+M6+za+ukdn39S7Nrml0k2S5/bsrKfe6JbOOpn1F+w8HyXJwzd3PjM2ubRzJl6STLi+c37BJfufWened1zvvKid/3BPpfuRKZ3Pi0lL9861uGvdzn66qxftnDWbJHfuukqlu/i3OvfC7/hj7yyOS97aObPm6U3urHQfOaS3//3FlT9e6Y4Y09unvtq3O3s4By7szDU9d1RnnVqSXLpNZ33BpFM659Vs/97O90iSzHtoZ93Qxz7feSZJkkPO+UCl+7GHv1npzj+zt5dor1NPqnTH79IZnx+/Y2+u4qN73lfpLj7+9Eo3SSYN78wVfvPBztq6437SG58//tHOM9o2h8/9PexJ8vGFPlTpJskiP++8q2Knz1xc6SbJF+7rzPVeuW1nzd7jP/t9pZskd9/yj0p345s661kemvz9SjdJ3rfrxEr3qrU6e3+TZNQpG1S6f1rsE5XuRQd31r8lyUvLdOYUPvnRzSvdi77dOXcwSXaYsEOlu9mKO1a6SfKDz21Z6Y5+W2fd13xXdJ5Vk+TMzTrngD83+upK9yOr9fZBn3NvZ/3wh9/0nUo3SbYZf2Wle/munX0d+7y793f9yB8754CsdMzOle6cfRaqdJPkghs783NnTLml0k2SHNx5z+SGF3TmpM4c9ulKN0lmXfGuSve37+j8zk2d1ltnePkvO5/LXzyxdz7MMot05tEO/GBn7Gzx5Xvrvy85r7Pu8qTtOuczrf+Tzp7iJNn74s47zjd5vfN8nSQ/fLazPuUvwzr72He9tbfOcIuXOmOfS7x5p0r3gr/2nv0OfLjzcx62Yuk9uknuf8s6le6vz3yi0n3fSb0z6EbM6TxLzTm287166DffV+kmyUnf7jw7jL+o947lk35+QqW7wEOdv79NrurMjSfJXjO+Wulef3NnTGf/BXvzDmvc0nnn0YlLLVrpJsmKU99ba/9Hnp2VmT+d++e037h853y5JDl6984Z3x9esdN9ZoNjK90kOWV2Z93lMp/9Y6WbJOM+ObnS3efpzrP5B5/vfM4kyYbLd+bfjjy+s2f/uw9sXOkmySs/7KzpnL5B711XF/y28/e34fyfq3Rv2vadlW6SrPto50zt6UecUen+4v2dc1uT5PCVOu9Gn/p4b63vMUecVen+erclK92j3npkpZskx2/Z2Xe66CEPVroDi3Q+L5LkSzd13uOzwgqds8WTZL13dObrt91lj0r34Ue+UOkmyX2f6Xxnf/cDnfe2nXPqY5Vukiw2ubMO4FsrH1LpJsnsGc9UumOmdeZuvnjty5Vukuy/zImV7mbDTql0/+uN3rnJ227910p3h5/1vksOeLlzzsBuZ3bO+Ljlwc6+4iT52N6dvVUDW3Teh7rcs1dVukmy20pfqXTfs0fvHMbPP3xhpfu5lzrzspce1PnuS5I1ftN53rnwL0dVutM36Ow/TJKFH+vMfR/56x9Xukly6rTOs/BnN/2vSvfV8Z37+yS58vDPV7pHDru80l39nb318L9785GV7lo/7ZwXlSRbz+6co3n3C5194fMMdNagJsmZf+usXRj/ts53ycE/6ey/SJLjT++cNbvwuZ11e0my206d37mL9uysibhh5875ckly/z2dfZ6LLdk5F2XXh3t72Udv2dkPtsznO/dbSbLWWZ33Hn19ub0q3Yvv6e1l32hW57nkjFc74xhnH9obk/vx+M7ZTxuv8r1KN0nmXb5zJvPh23bGEb/y4958/v6/6Ty7Xzy5826N2bseXekmyY0HduZKRu3UW8N/zdTOd8nZr3X2ubz5B7152/H7dNrbnNg5e+bDq3XOBEuSnX4xp9J9cpufVLpJMvOoBSvdj97WWc92yk298cnXN+s87yx01LhKd711eucTzvdM552NC329s546SR784icr3XV26ZwddOBhvf0op+zUmcO++8cLVLq/3Xj7SjdJ/rhmZ2/jJc/13k00fkznfUrJL/6j/9X0EfPnpoV2m8vXkly1Q++M4wemvLvSPfUDnfu/D63euze5d3bnnXAHvaV3zVvu2znPb+Qunbnv1Rb4QaWbJIcs0nm/4Rk7v1jpLnHo4ZVukjw0vPO+gW+us1mlmyRXH9fZ7/W50zv7OGdfeGKlmySfOLDznvjL/tB55t9voHfe8zWnddYkLXB+55yIJPnYBzrn+Z2/7A8r3Y0W6e0hO3WezrjmH27p7Gn99Ljeu5IWeKxzlua/Luycy5UkJx/XOatlk4M642LjDtu90k2S7d/onPWx+9md92u8OKy3N+eE856qdE86r7NnMkm+fvf1le5Le3XWXR7+t87zWZJsuWbnnMdtFu2sg/vSA6dWukly9BKHVrorP9A7b/3er99S6Q7fu3OGwUM39d5JsNanOvtGDvpl595lqb91xo6TZMoXO/MV267WO4/jtj0674kfeX5nLP2ya3rfUSu/5bZK92Nndc5i/NKvz650k2SJ3Tpjcquf3Pm8SJJN3tc59+TiQzpjqlvf0Tuve9QJnX1m2522YaW71p87c+pJsuDMzrr1R444stJNknFndfaQnvCHzr/flqf0zjhee9HOmQ97f7Uzx7ntl3s/i+Pv6nyXTHx120o3SV56ojOuc8uHbq50F1i/t5/o+1fuX+keNbozPrLbw715hwU3W7fSPWKN3hnH513eObP0uRM7a3If3az3rp/dX/pupfv0czdWuvtuOr3STZJpny28/zrJrgMjKt0kOWRYZ3/HOhd0zls58IHe3pyffL1zfsIH1ug8O3zs4c6+8CR5crfOeN8uq3XWoCbJrSd2xriWnfhSpful095a6SbJ5cM7Y6ornNY5r+rJW3p7oSd+uTPvvtZ2IyvdJPnwK51xqFv2mlnp3vGL3v3yFWdeWuk+tX/nveyXr9d7J8F8v+ycPTrpos45Lklyykqddyr9cvnOPeLVr7xQ6SbJh5fvnLe+xmqddxavfOrHKt0kueyyzvzAnkt11gwmyZgDv1bpTsv//azN3kmnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/yMBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GI/8l/PGzYzIwceH6uX8TsecbM9ea/LTTfG5XuvKMXqXSHjxpV6SbJ7Jmd7jzzvNIJJ8ms0ZXsjGHzVLqLv2n5SjdJlplvZKU738hZle70ma9VuknyzEvTKt0xYzt/10my4CLLVbpTH3+g0h0/pnO9STJzTud37smbnql0d3z3NpVukvzzjtsq3Ssvv6PSTZLtN1660n3+lamV7sCsCZVukox94/pK9+nXh1W6M2d1ukmy4VobVrpTbr6y0k2S4WMerXQXHv10pbv07BUq3STJ326qZAeGdT7vB4YNr3STZNbs2ZXu9Dc69y5JMnJU5752YNb/6FHxv23k2Hkr3SQZs8ASle7zT79c6b78/IxKN0lWWrHzXHLDtVdXukmS4aXnnfkWrHTvfuzFSjdJps/sjGOMmt75XP79Nb+odJNk4w1WrHR3W/rNlW6SrDCic/85q3O7nBlvTO+Ek7TuPkeO7vyNvJbe5/Kogc49xvMvPFvpJsnYCXMq3YFhnd+5WQMLVLpJMmrEq5XuG/N0PpfnW3F8pZskwwc6vxc33977Xn3g6Rcq3dfGdj7lxkzo3LskyU03nV/pThq3SqX7+qxxlW6SjJ32YKU7p/QdlSSTlt660h0Yfm2l+69pT1a6SfLmxRatdEeUpgfemL5OJ5zkths748vzz9sbR5y+yORKd8E3OuOTwxZ9U6WbJHfe9tdKd/1Nt6p0X59VHN+a3XngGbNgb67r9efvqnSHT3+q0l1u+d5z8AO33FzpPvVA57tkxKjePcb113Tua9dZpTfXtdhynfH2CS921nk8+GrvfnlMaT3Gzdf/qtKd+UrnZ5wkI8d2xhvWWmPtSjdJRpfWcL06u/PsPm9xruu5FzvfJaNe78yVjFiyN44xYnjn5/zsvzrzwUky9dZ/VbqjXu7c44+YU1qMmGTOjM4aoFGjO98ls2f31k+OmNOZD55TGrdOktdnzv3fjTn5z8cmF1lodg7a5/W5eDX/x19e74wdJ8mD63e+67c/trM+eep3OuM1SfLY80tVurO+d3GlmyR33LRLpbvA15+rdJ+Z9clKN0l2fXfnmX+1Zzr3f/c/c06lmyS7j+usl3lo8kClmyR7H9MZ8767NHdz38InVbpJMnLP31W6j2899/flJMknl/lqpZskU475UKU7+7ze9+rBW3230v3b5zrPz/Ou0Lu3/Oc7O+O861zxlkp37I69z7iPpvP8del9vf0oL9/ceeafsEjn+Xn59/bWis5/zIOV7rgdOmO8U9/decZNktf+3Fkvs/BP7610k2TzDz5R6f7qou0r3bcc8M5KN0mWm96Zs3j8pU73ybGfrHST5IBJnb+/v71+XqWbJA+OP7jSfXjR6yrdwztTekmS+ed09v38ceZule4/lurtuZvyo8mV7s/eum6lmyRnP9/ZN3Lb+p1nykvf8c9KN0mm/vWGSvdtW85f6d717EOVbpKsde8ele7vR11a6SbJ9N91xhGP/+CFle6Vz3y50k2Sp1b/YaX71W931lFtftYhlW6S/P2Mn1W6Y1++v9JNklHjOnORz449tdJd+Me99VlXH3BjpTtmy/dUug8+21tDvN5rt1S6yzzXW9+61EOdOakPr9q5X576TGc9bpJ8+8zOZ9Ety3TWzV41/NBKN0mun/61SvdDo39f6SbJJY93xsTXXvWoSvf683vrnseO/ESlu+6RnbHaWRd11mknybDTb6l052zZW8M/bGZnHfEF261a6a6+Qu/Zb8t/db5LLpp+TaW78KiJlW6S7PODyyvdA87eodJNkk2mHVjpXjHslkp3qRt7e5YnTO3MDzxzTWdufI8FOnMDSZK7Onvu3ndC5+ySJFnx/LUq3cOH/6PSPXjtD1S6SfLQPJ1zKq7/ysKV7karLlPpJsmpG3bmgz9x/dxfO/lvP1iic3bXlrftXOkuOay3ZvC6CyZXulN3u6rSHZ/emMCLI8+udD9/9maVbpKctcjc/zuZ8+p/tk577LB5s97Ilefy1STrfaM3Pv/Gzp11lzes2FmP9Ltp61W6SbL+TgdUutN26k32rvvXt1e6zy3RGft45Ne98wt2Pe2xSneh915U6b708OqVbpJcu1JnD8sh5y5U6SbJyJXWrnSnHfveSvcfG3TmppPk5z/8TqV7yRqd58W7z/9opZskv/r62Er3K/P9vdJNkis/1ZnHOumoX1a64z9wXKWbJEcc39mnNO7Eztjxde+9tdJNkuXX74z9/7m09ylJ1juzc807b/uTSvfDV3WeQ5PkmOs7f9dn7dnZ27vHOWtWukmy3F6d779TTu2tO3nw5Fsq3YOm/KbS3eD7nfOGkuQr93bWh/zr6M6c0MLPHVHpJsm8n7yk0t16hc75gEny6oTO2OOWkzpn12028uRKN0mu3LOzt+OmlTtrnnf8UO+MpLU/e3mlO+8Th1W6SfLtHTv3iNvccEqle8vtd1a6SfK333feVbH3z75Q6f7rgM67XJJkrS93/v5+tF5n72+SbPPoCZXufpsfVOmeNP0blW6SXPDtzt/fUpt3xq0f/nDn+TpJXv1h5375hJ16/35bfehzle7E/TrrIY76yPcq3SS548XOuMDJ3+is2Ru1R289xCUTO/ufHj+5s/cpSWZNmFjpjt2ts9/8m5t2xmqT5LY/du4xlhnWuS/69hufqnSTZJ1ZF1a6e27dGbdOktUmdd4l+J3tOvvXnry3c75jknx6/JaV7m2bdfbRTnqmt0fp/vs7z2jvOfr7lW6SrPDFztm7G93y20r34DW/WOkmyTlXdc44WP7gzr7GC1burd+fsWXn2e/64z5d6SbJkvd23u226qR3V7r3/GSNSjdJnnuxs+7rkbs69wJ/O/K0SjdJ/rX4HyvdL6/2rUo3Sd62yY6V7gN/WqzSHf293lnB9y19RqV70PDOWWMXj+2dW37HrZ3zqR/5RG9Mbr5PdO5ftt6rc77x43f3zlNc/ZrO2aCv/GVSpXviZr2/69s3+VOlu9ptj1S6SXL31z5f6Y7c6T/bRztzqXF59vhN5/LVJK/du+Rcb/7b397TGScc9vSele762/T2pj05vDNff+lA75n/hbU7z3YHXPjtSve6kztnDCRJRvygkl158sOV7mof7ewNSJIJF3Xem/j4qM7caZJ8cttO+6ZpnfNxF3nffJVukpzzemddxLC3XV7p3nVU73zOW9fo3Kcdfk7n/j1JZi3XGRvbJp+tdD+9UOfzPkkuXa0zTnHalp09gFtd1VkDlyQ7X793pfvu/XrrWz/83N2V7pyN96p07zyztzfnnAe2q3Q3PHmnSnffz7+r0k2Sc0Z2/q7fuX5v7cnJ93bO+bj48s5ZwZss0BkjTJLvvqmz7+DSEzr3nr88/MRKN0n++Prjle47ftA5YyBJfjd9i0p3rcP+8/dd/b/50+zefpQZ3+rcy/3iyM488jaH9/6un7i+s0/3iXV7cyxvHH1Ppfv6LZVsNrrg+E44yaxtO/Oyzz9yX6X78sKdd84myc3f7uyB2uqpzrrLJFnuuM57Hyac0/n7m/LZmyrdJNl0wrmV7tlndsatX3iy986qM7fuzEX+5tHemPhXZr9W6e7+rSMr3dmr9NaAn/9E57yvS/fufH7Os+o2lW6SfOfozjlwG+/b2xv3r7efWene+v0HKt2BaZdVukly+jGdZ/ef7NJ5t81yn/1xpZsk1y53QaW7y2qdfalJss6jnfUy132oc97Rd07undX9+L9+Wun+cu3O2Z873LZ/pZskMx7onGe/0Xc+WOkmyXt27ty/LHJQ5x7/wJV7+38vmtaZN9phn855Y7tc2Bur3fvtnTPd5t+y9y7IJbfv7IFa5czOu1H+sGhnbXmS/HGpztqvPy6/e6U78j29+63937V+pbvKB3rPq6sc1nle3e2Vzj3ikTt03n2YJD/YqjPe8LlXp1e6B9/RO1PxhW905kpW3eIjlW6SHPWNzpk5x5T+rkce3dlzkCSrn/OHSvdDWyxe6c5aenKlmyS77tt5jtr9nb19gu8+p3P276/+w2OvJ7zxYLZ5Yu4/Hzx6VucsnCS5+I7OmPdHt++cH/m2SZ1x2CSZ/ufO/dT3num8KylJznv/tpXuVnt09odO/ftGlW6S3HNk54zjH8/urC0ffcNdlW6SXHhZZyzh9M92zhlIkr99ufMMfd8ZnTNr7vlo74zV3x/WWcfxr6U7awKfubxzz5MkU6Z03vv12DeOqXSTZPH5O2Mri57b2Te8x329c5LWff+yle7bn/9MpXvBi73zAO79QGde79h9e+NXD35/80p3nz07ZwP96HdjKt0kWemYzt6q7V7prKM6ZPUrKt0kuTxnVLoP7Nj7LPrM9M67c466u/M+27OmnVXpJsnLH+/cFz17a2e8dKnlOmdqJ8kXvt/5zL/z0C9Vukmy282dPRhHvrVzRvWJB02udJPk5fU7e+OO3mhKpfuDozrvDUiSldfuPLuf/9He5/Lsq0+vdNe7o/MOr41u7D3vPD+jswfxJ3e/tdK96/AXKt0k+efKG1e6qy/Re+/Y2/fovPvo2ZU6Y5/7XNk5syZJ3jmus2fyrIM756p94bWvVLpJcspKnf1E957XeR9Pktz0nsMr3Z2v7Zwzd+Cw3n6UFw7t7M1557Odubed3tk5kzlJLnuws8966x165w/uN3LFSvdDOz1Y6T5zX2///YzLN6h0b/tmZx3HRlf3zlv5+mqdc7X3uLa3n2iBz3V+N87ZdutKd4PJnWeSJLlv779Uuocs3rl3eeKa3pqWTS58W6V79CmdM+aSZK81jq1011jj1Up39k7/2fvA/zsmvtSZ07jhA529Vest81KlmyTH/6lzX/uj41erdJPkrE069xjzLdh5Xv3OFr014F+5r3Mu0fp/ea7S3eaTnT26SXLx6OGV7qMPdM6+SJJjluy8D3ntZTvvlHjTH9eudJPk6MM68zv/+HhnbvwDGxxZ6SbJj5/tfF8v88neeetX7nBgpfvVoztz2DfP37mPS5JvfLfzjLbhDZ33diy8du9dP29+cO1K99kLl6l0k+TsaZ191v9PJ6QNVP7fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/mYHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKRvxP/uPhI0ZnvoVXnesXMZCn53rz32bMHF3pjho9rNIdmPNapZskMwZGVrpvvNr5WSTJsDGd7riJ81W6E+fp/SxGDnS6z73yaqX72uuvV7pJ8sRTnfas156pdJPk1Zmda55nzFKV7kILzqh0k2T61Fsq3U13eHele/vd91W6SfKmxZ6qdF8dNbzSTZKr7nmy0n3TApMr3RvvubvSTZLb/tn5/Fx+mUUr3fXfVPpSTbLEqIUr3YcXWbHSTZL7bniw0r32vlsr3ZXXXr3STZIJ83buizKnc+85c87sSjdJxo4fV+lOnz690k2SGaWfx/jRnZ/F7NlzKt0kufXGqyvdFVfv/P3tu99+lW6SnPD1oyvdYcM7z9dJsuEWm1a6E+ebv9K9/86bK90kGTmy8/f3/MzOZ9GLLz5b6SbJXfc9Ueme/Gzn8yJJ3j5+iUp3k3nWrXRnzOj8jJNk+GtLV7qjRk+rdMdnYqWbJC9PH1Xpjhvf+14dkc41v/7GzEp3wuhFKt0kGT78sUp35vQJle7YMW9Uuklyym8641uHbD6x0k2SR3Z4W6X7wiUXVbqvzHih0v0/8bGV7Dxv6oxDDR+5UqWbJIuvsEKle++UCyvdJLnnnssq3QUmdMZ0dtzq0Eo3Saa98q9K98l//r3SXWLx3pjcnBFLVrpPP9gbe1lsoc7zzgrjV6l0733xrko3SeaduHyl++yd11a6A2N7c9ivzRhf6T456h+VbpJMu+3+Snf+JVaudO+//apKN0kmLLBepbvQAgtWui+O7M2BbvTOHSrd5x66p9JNkjtvuaLSXWHZlyrd50p/e0ly+yud550l1tm+0h148aZKN0nmm/0/Wkr237bowp3PiyQZPrazoGbEnM6z+/TXO/PMSfLiM1Mr3aWX6jyjvfxCZ6woSfLGA53sY6UFXEkGnnm80p1a6i4wqjPWkCTTp89b6c6Y+UKlO2LEPJVukrw2+8VO+PXe39+IYYWfx5z/D+sypz+ROTceNfeu5f9v0WffNdeb/7bw42+vdIfdsHil+5G7e88cty97eaX73K0TK90kybSDK9l77+/cQxy67s8q3ST5wzGdOeq11+38jBd5ovSZm+SyyzavdH82tXfNa/y1M378+I6d7/l5J1xZ6SbJTh+/vdJd4iMfr3SvGPHbSjdJln28s8bg9w8fVOkmydiHOvPqs1Y4vdK9ZsYZlW6SLPuTzlzIla9eWOn++IW3VrpJcss6W1e6A2/et9JNklNfubDSve/Mzr3ciLf3njleXq0z/njDL56vdFfZfO9KN0mWe6izB+p3E/9Q6SbJwOXLVbobHvztSnexpdaudJPkj399sNK9+6S5v/c3ST63zZ6VbpK8NObUSnfzx/6r0k2SZxbpzNdvs0Xnu2TF8Z+tdJPksZc6z6u/PGWZSnfBOydWuklywc77V7rrL/vTSjdJvvxo599v6Uc6e173Wqm3Z3mzW++odOd765qV7qr/XKPSTZK/X9V5Dt7ikY0q3SSZ/7o3V7qrndC5X35t6Vcq3ST51Z87870f2b4zFzJ20b9Wukly69Gd9RYzTuisA0iSGZvvU+le9s/NK91PndRb0/LCdZ21Qyv//PJKd+kTe5/Lq/6tM751+r6d56gkuejWyZXu7kutVek+uGZnrChJdnxqYqX72SmnVLr/tWjnHIkkue3GzpzUxtd3Pi+SZNIunf33w9b7WKX79KiHKt0kGfPACZXuVffcW+mevddplW6S/OKczrPDdyd3fhZJ8q8jD6l0t1j1g5XuHU/27hHvfrYzxvW++T9f6V466chKN0kO2W9SpfvG7M4+iSTJO79UyS43q3Pmw5grLqx0k+TWt3TO2JrzcGfc86crdcb6kuS+Kzvf1z/duLMvNUne9HRnjOv8Vzp7Ax69ZvNKN0n2nNZZq33Y3h+udDdcrTOfkSTfGdEZU71qlV9Vukky+fud7uX3dcYbnlmmNz75xmoXVLpXTe2c8TPrsc7fXpJ889OddaoTL+rsK06SDfac++N9Yy/8z/7ths03LSPeMffPwxmzTGeePkku/3XnHM0Jz3fWRg5c3zv3esXDO7+nF1/0x0o3Sa47++FK9+T3fKTSXfh9X610k2S1L3T+/Sac1rkXnnr53yrdJFni4537ylGlc+CSZOyfO2OEb1rszEp3jVN732s7LNA5u/XGOzrrFjZ/bmKlmyRvLZ2d9aH7emfhHHV+57nglkM7zwWrHt37XB77xUsr3Rs/0TkT77g511e6SXL+fZ177EV/0XtevH39zpmi/9jlm5XuL6d/o9JNkkNX6jwvXvvjznlfL7/j55Vukqw2qXMWztMH9K75oPkfqXTf+pfOORG7Xdg79/rnt3eu+eX3dvZVTRt7Z6WbJD/6xCcr3RlL9s7HHblnZ5/ZrHd01rMs8P3OuQhJ8tghn6l033XvWyrdraZ0zmpLktGb/K7S/dT276l0k+Rji3Tmbs75Y+cso2vO+0WlmySjjj+v0j3tC9dVuius1/tZbL3KTpXuAi93nh2S5Pgdb6h0t/l5p7vyAp2xoiT52SF7V7oHfaZzzcut/+tKN0kuG90Zx3jkgt5eoh+f0Fk3O3l6Z53hCfv19v6ufUtn3eVSf+v8jHe5qrPOKUk+eV9nHvKWBzpn8CTJX+79S6W7woXbVrrrrfHDSjdJJr2ts3f750etXeneutCnKt0kmefczpzGVdt1noOT5Oh3dva5bP39zhnun/3lWZVuktz3lc786nlHd8ZUD12md+7THdN2rnTHrdpZm5UkP9i6Mw/6j4s7C53Ofq4zN54kN/2hs39m+Rs7z36vL9F7d/Om33q50v3S1N56mpV3mlXp7vbK7pXuHc/1xlS//OGTK90/rdsZk1t5n87ZTEny3BHvqHTX/0znnjZJHl3qgEp3rRM2rHQ/d8iPKt0kWXnTzl7MHx3Zmff74qqdn3GS/PXnnXnbl47qvUd+wp2ddXKXv7+zX2veL3y90k2SnS77aKX75v07Z/P+du3eO48W2vQ3le4HlurN73z7XUfU2v+Jl4e/kSsnzP25veN26f0N/PhTnbM4jp6/c80nn9WbYzniS50zAuf9fe+9iXs+0nn3wsj7N690v3Rw7xy/by3UOQd1u50649JP7NVZD5gks7fovIdipwlrV7pJ8sGZnbW+u6x6dqW7+BInVbpJcuyTX6x03/hd5xzbs27qnFWaJE98v/Pv9/utNqh0k+TEiztjsRP/0VnHsdzanTWMSTLsF513lV03ujPf+5ZvdsaukuT+b3Wec6ccekylmySnr9V5Zpx3787448pvdO6JkuT+bf5U6Z57ZGet4buW6517vcmZnbWGB7/aef91krxv8QMr3Yd+01kTcdKfevs833zCApXulFmdtSev79dbN/v5zTv3cmu+7Z2VbpLsuOiDle6hEzr3cj/foTPGlCSb39CZ7/3gKZ2x9AfO7Oy/SJIdru2s6dz+K719np+65n2V7n7v+1Cl+9ARnTmhJDnl0k77su903jN+wNTeuynHvWtypXvemb29VR/YpDPmvfs8nXWMuy7eex/BDrd3zq7bdFbnd+7sc8+vdJPkil9sVen+4bjNKt0k2WyLuf/uyiT57vtXqXQfvq03pnPetMmV7vaHdsYxbh6zWqWbJF89vbT/9xOd8wGTZOdzO+dyHX7lzZXulp/sfRZdfM0PKt11nj2u0p28808q3SS56ytnVLq/XKg39z3qoc6asr1e6jzvvL5z7x2hX92/M47xqbU75yd89fPnVrpJcsVnOp8ZVxzd+bxPkvv/2jkH9ZFHnu10n+89+y0/s3OO7WdP7ew72Gjx3vvn77urswfxM7/t/L4lyW0XduZXl1yqc83vP6F3j/jSYVtUuh88vvPOqms/3/td3nzXRSvd507pXfO+W02rdG/Y+/hK99iFO/dESfLI451x/P3W6OyFXmv1nSrdJNl03s45WLdudHmlmyQrPtr5nfvd1f+odPd8X2fNRJJ8b3TnvJyjR3230p3yh977n75wx7KV7u/36azzSJKLHzi40v3Vf7jM6tH5ZuUz28/974rXLjhxrjf/baf51q10P/LgHpXuuB9sWekmyagtOu8e2ug74yvdJFnwoc47QI85u7OP5c1Xd54LkmTZz3X2Z/9s1c5ap6P/a0qlmySH/b6zpvqYzTaudJPkyw/PW+ne9JvJle4lEzvnLyXJWfN31q0PbPjLSveO73T2zyTJUu+6sdL95em9OZYjRu1S6T76X5+sdDd8tHMmepLsM7zzmX/JHp0x+uOv7p0HsNYunfGPDy25TaWbJDee0HkGW/jdne+/3/6lN/7xwmKdd3W+44OfrHQv3KV35tfYXTpr7c+76sFKN0lO2rezp+GMfXetdG96dPNKN0n2fKVztszFH+mcGfXc7b13Br/roM49/l6f7TyfJcnLj3fOvPzrxi9Uuj88tbPWKUlmfLyzjmPTlTtrks5+57GVbpL87LdvrnTPvrUzrpkkBx3RGSM5ZqfO+4ifzGWVbpK8d77O38mPbursB/voR75W6SbJkeM75xp++viLK90kOX3p1Svd1R/pfF9f/4kvV7pJ8uDunWep++YZU+k+etU1lW6S5IovVLK3vqdzPnySXDW+c4/x9SsOqnRP/lLn/ZVJ8q9fdM5JuvXqzlkuh1zeW1938pmde4FHvtD5GSfJyIsXq3S/tvYlle67d1+n0k2STV7qnKU5/tiFKt1Je/bm0Db8YufMh5OvfqLSTZJ/XXdkpbvhMp2/69mXH1bpJskK63fmsNd8pLMf7L6Fe+cafuirnfNyjrmgs9YiSWYd2Llf3u3VzrmU6z/bOyN3x7d19pxvMOXPle6Uvz5W6SbJI7d35vMf/UJnDjRJLliw87s85Q+d8YbNL+qcnZwkZ+zbWVM95aXOmQGn3LJjpZskd23Vef/vL3br7CtOknmPPKXSff7znbWGX1+3sx43SUaV9qM8u8zoSvfUEa9Wukly2gGddxYPH9Gb39l36867TR98qNNd5l29Mbk1T7qw0j36x50zTV/adGSlmyTz/L2zBmHku46sdJPkN6f2xnX+b3qnmgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/yIDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFI/4n//GMGa/nsYfvnesXMWrOcnO9+W/TF3+p0p04Zv5K9/nnXqx0k2SeBRatdAdee73STZIXX3q10h0+bHalO22hzs84SSbMnlXpjh4zT6U7MLqSTZKMntDp3nnb451wklenDlS64xZesNLNqJmdbpKHH36s0l1y1AOV7jyzOt0kefyhZyvdmx6c+9/V/zZ5viUq3Umrdj7jtlp/9Uo3SV6c/Xyl+/crOr9z01ddttJNkvum3lbpLrvoUpVukowePq7SHXbflEp3sRGLVLpJsuYKkyrd555fudKd5/67K90kmfFy5/tvYHjnPiBJBoYNq3TnDO/cI06cd2ylmyRjl12s0n3j9emV7rePPbrSTZI5I/5Hj/r/bft84AOVbpK89Mq0Sve6f1xZ6U5a7E2VbpI8+8Kjle4T991f6WZgVKebZN5xnfYSSy1f6SbJLa++VunO+6Y7Kt21rxlZ6SbJvPO+XOm+9mrpmgc6zyRJMmKezmfc7NmlMYEkr8x8qtKdd0zn3mXG8Ocq3SSZb9ZGle49pXHg+V/ofS6/a8PO/fLPb3u60k2SlefvDFLO80ZnTGfOggtUukmywZpLd8Lzd553Xpm380yZJA8/25nTmPVq55kkSdZZvjOu8/QznbHaF2Y+WekmySsvduaNxizYeQ5++q7O/X2SZGbnM3/0xN53ySuPXl/pLrjmdpXuzL//ttJNkukLd37Oo8Z3xhGfvfeZSjdJFl9+/Ur35Tm9553L/3FJpfupY/esdG+66meVbpK8+lDn7/rmWx6sdDfeaadKN0n+8XRn7OWV6Z1nyiR5ZuZ8le6ii3TW6ay43qqVbpIsM7NzL3DP409UunPSuSdKkq02O7DSnTZnTqWbJKOmd+7xZ0ybWunOGd5bZzVx/MROeGTn+XrEvJ2/vSR55sbhle6oZztjwEky7aHOnNTIGZ1rHjHQmY9KkjmzOu0RpTm0eUf25kBHj+7c1454oze+XPmNG/afj0G9OHWBXHrq++bixfwfe7x38lxv/tta9z5c6d67x/hK95gTX6h0k+TlYV+rdK+ZdmilmySnrPjRSnehq3aqdJ//XWcNVZK88MPOmrLXznpvp7vozZVukiy1+e8q3Q1P6D0bLDrP7pXue6+9vNJd4O2dOb0kmT389kr3sVFrVbpP/LU3973V4p25kKuXnrfSTZIpJ25V6S7+jXMr3c+/snalmyR3/bqzJneZez5Y6Z75Ym9vx37D/1HpnvNq7znp1Kc6e6B+sunile6ocb15hdmjOhuKFj55lUp36oOXVbpJsvKinbULr/+gt1b7N4d05rImr/XxSveOkZ25mySZ9Nople7ENW6tdP/6pc7POEme3G+lSnftT/fGPxYcd2yle9sdv6h0P7H6OyrdJLnzgc6z1IRJnTHe7z7aWxOx8Hm/rHQ/vcuJlW6SXPWed1e6Xz2rc4/xiYd7a/hf+ti2le4/v9dZXzd9286zapIs+9ZOd9Qbvf33bxxzQKV71bWd+/Dffbx3lsRnJ3+x0+1sZ8jL93Q+75Pko1tOrHR//Na7Kt0k2fOawyrdgaXfX+muf3ZvfeTbj+x85j+zVOezaNwP36h0k+SKFTt/J2+6YbNKN0luW6KzLuLVdX5S6W5yQm9Ny03P7VHpfnDDzt6AJx7prQHPFmdWsueNfE+lmyTHPP+hSveOBTvjWzdcuGmlmySfWq6zb+vqs1esdFeadEalmyTrTDqo0l3spM5eviT5xV37VrorfHCZSnelt3bWJifJ2LvOqXR32vGGSvfwTbapdJNk0ladv+vZN3Y+75PkoqM76172OfD8Svcvy3XOJ0ySG1f6TaW74VWdua6H0xmDSpJjV12y0r3s1IUq3SS576nO/fKftnlbpfvum39U6SbJSatMrnSfXvDble7Fr32h0k2SHNiZH7h1oDMHkyTnPvT3SneBSZ19I7vu2Vtndcv7PlLp/u5711S6Hx99RaWbJH88u/P999C0XSvdJBk+31lzvfly/rN7rXHTR2bTKXN/fdZvluic/ZIk31joy5XuW0d0fk//fvYfK90k2ee4zr6N3RbpnHWZJNdd0PluG7dW53nj2qV6nwXfWKuzn+7i+b5S6W673R8q3ST5r106/37/vLwzH5sk85/cOYtjn0M/XOnuvNSdlW6SfOxNnb+TBTfo7OvYefHOPG+S/GqBT1W60ya9pdJNki8d01kDftxpnTmhxf/2sUo3Sa66oDOmedhxnb+RSQuMqXST5Myvd57LP/+Fzh6XJNlu5wcr3Zt+emqlu97CnXHjJBl5+ORKd8bNx1W6C95wS6WbJI+P7IxRzP/oLpVukrxlu8645q+274wPvrT/5ZVukiy77mcq3SnL7V3p/nbGxEo3ST74zc5n/ttn9NaTPfbxT1e6k/bo3Lss8u6zK90k2e5bnTmFMTt0zuo+Z/feHPKen/5LpfuxFX9Q6SbJSy90nt03/mVn3vtzP+ysh0iSZ2+7qNLd8vbO+NbXZ/Se/V44cadK94Zje7/L803rnDd7zbf2qXRHFffFPfNIZ83z/t95pNJd5IeddeVJ8tlF9650//bN3rz3Oo92PjMOOrqz327pLY+sdJNk8hGd+emFv9lZz7LZ2Z256ST56AFfqnR32+6MSjdJrn2ucyb6ET/du9LdY8veO163WP7Xle7rK19Y6T41oXOGRJKMfKpzpui+x3++0k2SP22xd6W70l1vrnTfm96+nCNu7ZwD8qetvlrpPv/73vr9Fc/s7D9c4onSy2OT7PqLzpk2z5zf2Zdz7fa9swdv37IzPvn4I52z0Y5du/dujWGLrVvp7vXVn1a6SfKTaZ3nkmH3l/b0f/ETlW6SHPrw5pXuP9/duebfHNRb//27RTaodD98cGfcM0n+uO4PK93Tp/2z0t3y6jMq3STZ9/7O99+Th15X6e59/4OVbpJc88fO2OedZ/TWrB/ynb0r3a9e0XlH9tumds6zSZL9dur8Xd/8pc4e6w8v3tnfmSTnfq0zB3rKYb33FX/thd+Xyv/Z+cePPjgzh+8399cbnntWbz/dnnt11hjs8ljnPbk7H9i5F06SYw/rrNVeab7OfEWS3PWTztx3duu8H+8fp21Y6SbJdp++p9Ld+J/HV7rv/8KalW6SXLH1wZXuMd/snV9w4s6ddeA33t8Z4/3u86dXukny3qU613zbHzrrszbeqref4aRvdfYMD5/eW7vwyZs6c047n9N5Ttp/mdK73JN84LjJle7kL3Q+7ze9vDOOniR7bvHNSnfJj/feu7fuqZ0ztUd/uTOvN2Vm7x7jD/d23mH36a92xo8XX7T3Gffccp15hQ/u3NsneNjlnWepRb43qdL90MvLV7pJcuC6nfO+7jm1s5/or0euVukmyYkzOmtavrpQ7x2SO17UOUf6h7d09tJ+8fTPVrpJ8sO7OuuTr7uu87u85oad37ckGXlG551HWaAzX5Ekx9zaOdR32Dad56hL1ul8dibJLYdPqXTf+umFK901b+ns2UqSzdY8sdJd7MXPVbpJsuijnXHpC67sfBZd23k1Q5Jk6imdfdYLb3Napfv93XrPfvts1tmbetOPXqh0k+QjV3W+s9d8rbNn8pmNet+rN57deR/xlRM77xwbdVJvn9lfpnfeGXfkrM5Ye5LssnPnnY1nfayzpuUnp3fObU2Sh87ojJ1dPrlz7vX7F+3NlXz3iM65KCuv3Nl/mCRXvOO8SvfPf+js+5l/g95a36Ou/WSle+4+nf2Hu/30sUo3SVa4rXMv/uwXO/vXkmSVxTtnt27zWOdM0Wv3PbLSTZKXTvpzpfvENzr7+g/4dOf5OkkGDupc80Zv6Y0jLrfDhZXuR2d3zgRbbtgRlW6S7Duz84y26FGd+agJ842sdJNkvrs7Z7d+/6AfV7pJ8uq5nTVcJxwwo9Ld672d93gmyUlHDKt0z31bZ63vz47snBWXJLNe7Lw3YMENe+/efvkdnXWOl3yiM59/yz978/mrXnRJpbv3oVtWuvOf39mLmSRbv6uzF3qbS9apdJPkqa1b54L9Z+tfp495U25ea+6fNbf2Eb13ld1w2BqV7m8emljp3nhYZ39Fkjx0WWcf4BfffXmlmyR3r/KnSvefJ3Te4/P9vTv3Ukny0/k774k/eccHK90tVu/t6dnt9M5LQA9atLcn8uTbOucj/HbsC5XuxJ/39squM//Fle7Vb+6Mpc/77d55s5OP27nS/e6lvfO6Hz28M0f96yU6z+YPbffJSjdJzp/SuU97+O7OfNP++x1Z6SbJpQtMr3RP/lRv7cnVr06tdM/91wmV7sgpnffMJckHHuqcu7DkFzrrk0fdc0almyS/eqGzh2blWzprGJPklwd03nW11kqd9T03r9g5Ez1JjtjhxEr3Oz/cq9K99mudufokeeTjS1S662/wRKWbJGP27owfP757Z//hOxbqrQN4356dPYjLL9u5R1z6SytUuknyjjU6+7dvPGb7SjdJFvnODp3u1zrr63b8eu/Z/U/HdtaXD5t6X6W7y4TO+SFJ8ttlO+eAn/bR3u/yBX+5qRM+fbtK9vyf3l3pJsn3jujcv7zn752fxfCfvaPSTZLrPrp+pfvjD3fWyiTJ9tOvqnQf2vrRSnfsZb21or94e+cecfaZnbnT2zvHSCdJpv7qyEp38anfrXST5JRzH6p0D15800p3sUc6z6pJ8uQxe1e6d/6gM4a/8Gd6Zyfvsldnn+DyX+m9p3qN075T6e5+aOc91Usd0RkfSZKvLfCNSneeZS+tdL9+Ve8cs0fP3rPSXXn+91e6SfL8fPtXug8vvnGle+FbO+c9JMlNb+usl/nIhzr3RTtPf1OlmyS//0znefVDUzt7rJPksX0764iXuKWzH3O/rXtj7cd98MJK9x1jO88OVxzYmU9MkoW3P7PSPXCe3jjUkkduUumOm9rZaL3aK721YSdM6bwf7PwH9qt09xzb+U5NkpV26bzzfe1P9d7psvk2nfcoLLNYZ258/Zt67ySYflLn/vNjr3T2xv19zd6eybdt3jmj4t7Le2vDHv/8tZXulz/3f3+m7J1cDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/iwwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P9j77+iLasKtX/3rVUFFShyKDIUOWclSXKDiiCSRERUMCAqAgIiBpQgKkHFABgAkSBZEBDJQZKSVXLORc5VhEr/i3O8+047W0+9Z7X1tee53A1/e7RZa445Rh+99wEAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDDiP/mPp7w7Mc8/ddsMP4j7Hrljhjf/bd33f7DSnTxqYqU74anHK90kme3d6ZXuuPnnqHSTZPK7L1W6w6YNr3RffOaJSjdJ5l5soUr3jXemVrqvvv1OpZskI2cqdeeatRNOMnrq5Ep30qSnK91551+i0k2SueaZudK99Y7bK921V3lfpZsk41fodCcPdP7ekiTT/qNLh/+1J17vnO8np3OOS5Ixw+atdLf94AaV7u339K63lltudKU74aWXK90kWXqB+Svd5RdYvtKdec45Kt0kGbdw57NYtVJNPvrBtUvl5O4nO39zDz54X6WbJNNmGlvpvjmxc+8w6c3OtUuSDB/eucZ/8P5HKt3p06ZVukmy4yc/Uem+9lbvvPzyG69UujMN7/xGTXy1d7/zxKOd78mYWcdUuutstGGlmyTzjp5S6U6aNlDpJskC881e6V72wIuV7txLdcYakmTRpzpjZyNGjKp0p0x9q9JNkmFTO9+/d6Y/WOkmydjRC1a60zpf60ydNqwTTvL65Ccr3WEzv1DpzjJH6UNOssjEzvdvjjG98/L0MZ1xgeXHLVzpbvQ/vfud+/56cqX71IP/qnTfu/2WlW6SPPT3GyrdcSuVBvuSZNE1K9mxUzv3O9Pemq3STZKxc3euX5587rVKd/wHN610k+SOK06rdJdf6cOVbpLcf+cZle7EYbdUui+++2qlmyRrjFum0h292Ecr3XELPF/pJsmz991Y6S625Icq3STZ/2fnVbpXXXxwpTt6rs6ciSR5+MnrKt3VP7JxpTvhuQcq3SRZbLbFKt2pYzpjAkmy1jqdc8az/+hcI059d1KlmySjR3aery49X+d8P/9S76l0k2SWmRaodN98895KN0lef7jzHGbKLJ1n42PHdZ4zJ8m0KZ1/vylvd75/k57oPc8feKnz3OHNB3vXRWNHduYtDZ+nM9Y36e3ev9/YUZ3nO6OHdZ6tTpvae2406e3O2OeIYb3nfsMHGp/zf//8eviYFzP76ifNuEP5f7vlra1mePPf3nqmc66ZeM73K92Xnj690k2S3Zf6Y6X764/fWekmyepfOqHS/fDsf6h0b3vuqUo3SSYe25k9dOYGq1S6P/7dPZVukrx7Q2dOy5vnHVvpJsm4zTq/b7fONGelu+mY3rzZc1f/VKX76ITOGNOxM3eueZLk7OlrVLor3tqZA54ki398ZKV7/o1nVboT/9q753jvqetVusud2XlGdvfENyvdJDl99858p/lPvqjSTZJzHhhf6b53wiGV7r3rdZ7dJMlHdu6M837y8lcr3b/87OuVbpIcNvqgSneL3TvP1JNkpqWWqnQ/XFp38MUje/OeV12hM19m+efurnRHD3+30k2SfS/7ZKU77K7e7+py23bORXtc1zl/7nvTXpVukrwyqfPM4vXHSp/FfnNXukmyz4MrV7r3zzWh0k2SBZ87tdKdZbttK92lDu+cL5Lkll0610XPzTtPpXv99N78nh8/0VknP2r93rz1qy/pfM5/6kwpy3ETevfuV9zztUr3voU7Y+LLbfnpSjdJ3hm9caX75A1/r3ST5PnPL1rpLrpXZxzqtq8uUukmybTTbq50V1n3pEp3wx2vqHST5JaRP6p0r7y8tGFHkkV32L/SffH6zp4Pr43r3futtXPnb/kvd3aeGx36/q0r3ST5yujOc5hHvthZs5Uk55+wbKW78kDnuuiWcZ25Tkny4HKd+53tl52l0n3k7cUr3SSZ+PxRle5ii/XOyx/b9Y1Kd8LdnXl7Y361X6WbJKefuGelu/sfO2t+Ln/o4Uo3SV566fVKd+VDl6x0k2TvdOY9bzKqM/a5/tlrVbpJ8umRR1a682+3b6X7oXTmMCbJFa90xsRXXvWxSjdJtjv+mkr3ty927tHW+kJvruFJv/hWpbvB653z8pO3bl/pJsnDkzrrUeac5x+VbpJstnxnrs7T13TmYxx59+6VbpJsunhnbsq33t95prHBBzerdJPkVz/p/JbMfX7neUaSHLLcjJ/b98xM/+X871dezvQzzpyxB5Pk8Qm9Oc+f2Hm5SvfRS75T6Z6y7scr3SQ5aNI6le4Ov3x/pZsks6/+1Ur32FHbVbo7jv5upZsk336187dx5gKfrXTPv6ozPpEkN3/4p5XuZm99rtJNkm02vLrS/cwNnX1lTtv1oUo3SX52fWdu1kde76wZ/sDKz1W6SbLdnJ3nY+td2LvfH/ft4yrdfdfv7Lmw6XG9OQBnb9oZn5/l+L9Vusvf/milmySXP9jZY26pIzrXAUny8y06v6tbTO7Mx33fiX+qdJPk9zt01vzsdOW6le5mr3au75PkwBM68+zX3Km3/8QFN3e+fz846C+V7oWf+FmlmyQXnNW5Llri+501Lh88pbMfc5LctmhnHPbjI3p7+l4wU2ccb+Nxnb3P7v70HJVukjw3/ueV7vgfdcYEHlv/C5Vukqzz1DWV7szH9/bb2+47nWdCj6/Qmc9y/9a956Z7PtbZo+zXRx5f6W77r95ewYtP6/z7HbF+b0/fFbbrzAP45j6d/R4u+FRnnkWSrPNoZ7zhlZ90vn/z/72zv0GSfGGBzj4Ek8b25vnucUFnLdHZl3bmsxz5+84alyQZ9cH3VrrbrHFBpbvEpHMq3SS5f+r5le6Uib392hbaqjMfaZsln6l0v7JV5zo8SZ6e69JK96hrO8f8zU+tWOkmyZ+P6pyLtr+3816wJLnrnc656L5HO5/zmV8pji9P27nSPXnY0ZXuqR/cvNJNklvn/V6l+8VvfaXSTZKHZ+6cl6fueUCl++4781W6SfKBtz9W6Z780G8r3a+efH+lmyQT1/xSpXvtKb1jXvaXnevlaWt15tY9+M5GlW6SzPnGjH/vfZIs+IU9Kt39V+q9J2b8pzvrOh5e51eVbpKctlbnGvFXR/ym0r10/84zmCT59vZbV7qTf71DpfvjHXrjW69t2vleb/niTyrdJDlx5IWV7odX7fxe/2HX3vjyHPt29gb910udceBZb+6so02SNZfsjIlffkPnnexJcu3je5fKf/2v/leLvDkiP7hhjhl7KEnOurT3vPdnB3SeFx78Smff5JPu78znTJILL+3cJ31u997a0GtOObTSXfsnnXdnnPn5X1S6STLmPZ13YC+0d+eZ7Eev6u2xc/MdnTUsEw7ctdJNkr/N0xlze/nVzr3Byu98udJNkktu6+yRdMh2nfmRf9v8pEo3SY7cuPNOqk037syzT5IV7+qse/vK7J194P604caVbpIcu2BnT+Y7vtNZDzbir71np6dv2NlH+nvX9uYu7DN357nQlxbrnOMW2bo313fNX3XGKU6+7PeV7rtX9a6Xj72l8z25/5LevjLL3965xr/sqM5498sTH690k+TI2Tvfk20mdN6/e/XZxfUMf+0c8/f+2bvGWPKUzjV+5r6ykr3rjc7+ckky7tzOvlyf/vSBle5r43v74w7/Uaf99hK957273NOZ63vHgZ21Ob88uDO+lSSblOYOnXdYZxzjlbs6Y1BJctSozn72O8zTefaWJNcv3JnfuvmC/9249P83h83cex/I9Ks7+6uO/HPnPccb7dV7H8FJ/9NZJ/+d73XmwCXJdm921rAtdnpn77q59tmy0k2SU17sjJ09u2Fn7smWP/x1pZskRz68U6V7+SadMfwkWXyXzty9hxfuXOPPf2VnzV2SbL1W5/v3yC6ddcXnP917z/Gn7u/8/h25wxyVbpJMuq8z3+LZi9avdF/9fWevxCT53bGd+eUHH9h57j7ri535ZEmyx46XV7qv/q33jt5Df9u5d3/35537qNvu7O1j9sGvL1/p/uHtzv3O9mdvXekmycbjTq5099m0t6foSbt2xjHWnN7Z+3PY+3rvm35inc5nce35nd++K986u9JNkoVX6KyN++wqvXeOLf+bzt6Vf9ijcx2+xy9HV7pJMt92nXcenXFD5/nceVsvUekmybObdPaRXnK73p6Yo5ftzCFZ6Xud9/Gss2DnPRVJ8tTdx1S6C2x9WKW7wpd7YzrzPNC53pq6am9t48bDW3vc/XdjnzNPezeLvjPj7w9uPKv32/bPCZ39Iyfd29lLbO6fdObgJMnzr3aeV7yzSG+fpFcX77xr7pZzO/vM3bdEZ3/9JBn5/O8q3UvHdOb6fus7s1e6SbLvhzrvLz/ie709KI5Zp7MnwGb7dPYLHv/V6yvdJFlp4POV7qPHdPbIHfbmY5Vuknx73Acq3VO/3FsfesCPO++B+cXEzjXP8hv0xmLPHNbZP/mqWzrrALc6uLdWdtr4zrPIEXP27hl/d2ln/OqPM91e6S4xz2cq3SR58b0bV7qvTOk8+17jkd7anJU+3tmn7KjNe+vBzry3c87/zjad/RzWvKO33/OLm89T6U5atvPs7atrd8Yek2Sul3asdA9Zs7OXUZIc8r3O+OPf9+7MNZy839aVbpL86pXOOePE7TtzOj//p94c/lm22KLSfWWZayrdJDlmkc7+15d/sPNc4f5nO+fOJDnh0gmV7i++3Xne+9uvHlTpJsnJf52t0r1/nk43SR5c4KRK90M3rFbpbrdg5141SX4yrjPXfs7fnVvpzrzxapVukmzyVOda7vejnqx0k+SK4Z35MnufO3Ole91FJ1a6SXLiK5355U9OWrnS/ePtnTW6SfLT1zvXiFe/1ZuTtOfsnX3Rl/pYZ07nj/9xeKWbJE/s1bmXmjyps+fXnqeNq3ST5LkzOuuJLjx5pUo3SQ54tzOvZZmvduZxjFy+twbjY/NNrXS/c1xnX8MvzfNYpZskww4dX+m+tWhnH6wkuWqXBSrd9Y/4SKW7wMVHVrpJ8vO1Ot/rP53SOS9vO3a1SjdJ3v/rzp6Jq+7dWcuXJA/9uHONONsP16h0F7y4s1d+krx/z8711jaTO+OeZ97/cqWbJHds2dnv7+srdt5FniQv79WZxzjt6F9Wuo/OemalmyTzp/NuxbvO6jx3+NTbP6h0k+TDq3Xmvcx7zKhKN0lW/EtnnfzaZ3T24f/XPzp7uiXJ7z78w0p33FyddUpzfGzxSjdJDvzcVZXu/TdOrHSTZOu1Ou/uyDf/z//nzkxCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPi/zMBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GI/+Q/HjvnfNlguy/P8IN48an7Z3jz3xaYfVwnPGpKJTv81Zcr3SR59tFXKt2Rw2epdJNk0fkWrHRfm/RGpTt11NuVbpK8NWVapTtlyuRKd9YRM1W6STLziHcq3VGzzlbpJsm0twYq3elTX690H777+ko3SWYdM3elu9qKC1e6r772WqWbJGuOX6rSXWbBhSrdJHllysROeNrUSna20Z2/tyS5+5FHK93hs/5Hl2f/a6ssu0ylmyRvvtL5nrz08qRKN0nmmX3pSnfepRapdKdM6fyOJMksYxavdF+e+Eilu+6a61e6SbLMymMr3YcfXbTSTZJ5xi1e6T701HOV7sUXXF7pJsnomTvXy3PP07mnnGeeFSvdJLnh+psr3WHFc9G4RTrnz7df7/yWTJ+jc0+SJJuss0mlu+CCnb/l8cuvVOkmyaNP31Ppzjemcx2QJG+9+mClO/sss1e6f52zdH2fZLNX56h053r+rUp36kBvfGuWgc79zkzpjWNMercz3jBm2JhKd8qwYZVukkwc1WmPHtY5L5+18xmVbpKscdh2le6Hlu+MTybJLQ927rFfe31CpfvsS89Uukny/ItvVrqLLr9GpfvoPU9Wukmy6ErvrXRffenpSjdJZhlV+p4s0rnGHzEwutJNkrEjR1a67yzRGaud+uSzlW6SLLv2lpXumzP3rjFGzbpmpfv0851zxkrv/USlmyT3PPyXSnet+V+sdKe82DsvL7ZG57z88gtPVbpJ8uRf/1rpzrXg+Ep32lu98/L8S3SuBYZl1kp3/CrLVbpJcsUFF1a68886vNJNkheeeanSnWmmznXR2BG9sfbhozvfkzlKU5ZGvtO7xnghneerk17o3e88++Tzle5Ms89V6Q6f0rlXTZKB4Q9Uum+/1LmOe2dC5/46SSbe91ClO/L13nl59LDOXKvJkzu/q1MmP1bpJklGdO79pqfzPHjE6M4YfpLMls7Y9bvvdua/JsmI4TN+HOP/lxGMKbMtnhc3O3GGHcu/LXHrXTO8+W9zLt35Pb5h5DyV7uoXdObtJcl5466sdGc59jeVbpIsf9NGle4/XvlupTtq129Uukky+59/WOnOe9ePK931H+vdP585a2eM96PTO3NlkuT8FzasdEddXpqTtPCdlW6STB/Wed6737KdOS0nz39RpZskF2bjSneV4R+pdJNk2Ep/rHTnvO6Lle4iK/+r0k2StXYvrWdYrTPm9sTMP6l0k2TsIfNVup+4ceNKN0nGfurdSveFYaU5nQ/0xmIHtuk8Y5m4W2d+8ocO/X2lmyQHbrxapTvtE73z8qZ3r1fp7rHmbyvdVb7ZW+d5/eqduYYP7Ns5x924++2VbpKMWfCaSveqFTvzcZNk5gM6Y96fObEzv3y5q39U6SbJVz/buUfbZL0TKt0tVt+50k2SCR9/otJ988bO2pwk2XZy5371p492xh/PuPbgSjdJ1nmrsz7ge5t3uvf85c5KN0nGLtW5lpv89948nDUnfbjS3WKHzljffG93xvqS5O7pnc95tdM7f8v77N+5b0+Sd793caX7z7Mfr3ST5Io/dZ4XbnzcC5XuG0svUOkmyVIzdT7ng9//lUr3jOt6+2r8dWxnrHaD+TatdJPk9xM74w0jxnbOy4sv1nmOnCRvvNL591vt+c7anAfe7swnS5Jxn/9dpXvrVTdVukkydWrnb27VpTrzezY+ozM/JEmuXvukSveaZ8+pdOdc/tpKN0k2v3n5SvfBzpZgSZJnN+08k1rhrjsr3Ue+35uf9cn5Omurbj+ts+ZulSU7Y4hJMuuvOuf8X2VUpZskO87eGTu76OnOOOLyTx1R6SbJvW93xvHHrH1dpfv4LItXukmyzvN/q3TPXfqxSjdJdlx9h0r3uJd+UenesWdnPmeSLLrBpZXu7bd3njXPvUHvB/tzwzpjtcd8tLfHz+xf65znfvz7znPbTY9/uNJNkgkjOnPtnz2+M4f46K917imTZMXrZvx83STZ55reueibs+4z45tv3fFf/e+eWGp09rh4xt9z3LVRZ3wiSTb/Rmc93QUD0yvdzbbvPE9Pkoknd57pPfb9b1a6SfK+da+odBeZ2Jlb/uvXevvKXLPILyvd33+gs+Ztke0Xq3STZJtzOve46+7emT+cJBsc3jnmZT/ZmSd69YHnVrpJcsMznTXfV43vfP+eeuWnlW6SnHD4Vyvd78/82Uo3ST57VGcN9RGbddZZjjv7oEo3Sc4bc02le+h+nb1Ubl+6M8c3SaZsvH+le8xrnXNnknzxrMMr3QUP6+x7/YsFe3tSjluqc424xUa7V7p//lPvvDzljc6Y2FxTZvz7cv7tmi33rXRfm75npbvf0RtUukmy3zfnr3TfGPWHSjdznd/pJnnfyO9Xuq8M68xnSZJVn+3Mh5/rgc7eSxOe/+/GVf43fveBYyvdC25YpdL92h29dR2Pndc5L3/qo3dWukkyfHrnWmD8z66qdDf7RWduSJIsteZ3Kt3f/aWzZuSS03vrJd8d8e1Kd6mv9dbFTVyh87xiw+c2r3SvPbk3B+D2Z7eodKfu8aFO98bOXqVJcu5Tnffyrbh77z0/+z/b+Z6cNUvn+diXv7ttpZskt479dKW706877+zY9qFfVbpJcvH5nXVVSx18dKWbJFMf7YzrvL3HPyrdzzx7cqWbJJ84snNfec7HO+8wmeXGzmecJF9d75RKd4cPd8bwk+Tgq75Q6d68XGft9okPde7PkuS+izrrlF5bsjO+vMHAxyrdJLlkhR9Uuvd/96RKN0nGL9gZx5h9k85zvwsn9OasPzZPZ1xg91s7zx3OOf5rlW6SvHZSZ13HmAdXq3ST5Ltf2anS/dfMnT0Ef/tG5/4sSe5YtnOee+CMayrdj6ezt3+SzLnyCpXu+qd25i8myR6XHVLpnnBMZ++LA9/6QKWbJLsu2xlv+PZbnT1Hxz7UGcNPkkPW6qwFe/HvR1e6SfLDWzp7bW6yRmf+3WYzdZ65J8nk7Tv3fpd8vzPPfo0/9tZL3rzNBZXuJW99q9JNktO23awT/i//5AbemTdjH5vx19qPbtj7DJ/ct/NcYdRAZ23app/tPWP5wa0frXTXPLCzr0WS7DH+1kp3+judZ9RPf7j3bt+dD+jshb/qKQtVuhcd3tuXZPhJl1S6m53V+SySZNfjO+8NfmHmztrsC079U6WbJLOO2LjS/fyxnfuk80+/rdJNksPu7cyJuP+crSrdJLnkM509rmb9a2d+5BY731vpJslHzu90r7ijcy5a9NyTKt0kWeWazvdv6t69sdjlP9RZt3jPHJ3r96lrrFzpJsnLh3auxXc+t/McecIXeuflg/d+u9I9+qcHVLpJcvf+nffYbbBHZz3RjsN7a6u+Mb6zj+2dUzrzno845oZKN0l2vupLle4VW3Tur5Nksw909vJb7LwDK92Hz+zt1/bKRu+pdO9+6a1Kd8/1emur9jzy5kr3gDG9vZ6/dH7nu33OHZ3fkoMO6M3DufrPne/fW0f8vdL97rq990ks+Erp/V1XH1XpJsmYDTvr5De/qvMsa7kH16l0k+Qr+3X2x73ly513YV1wcucd8UkyecQnK92lf9zZQzpJtjmrsw/qnTd1/uZe/1BnH7gkOX/CMpXuL57crdI95OrOuTNJNrxy10p3oys7c9WSZNT4zrtRbvroQZXupze/v9JNkmN+0NlH+qB97ql0nz1or0o3SXa5rfO7Ot++R1a6SfL23R+vdB8/oLOP32rfWbbSTZLNl+v8Zt9yy9mV7ru3j690k2TBDTvz4Rff+clKN0nuuKSz9+enruu8I/uKo3rvafpWaf+gvSd23jd9z827VLpJ8twhnfYyh3bGipLk5h89Vume9uASle7953SuiZJk2SV/XunuvfaWle5Oi3bmMCbJpw/szFtfdKt5K90k2XB6Z37KsaU9YU8fs3GlmyS7rNh5bnvQmZ1793lmW7LSTZKnj+i87/1D37m70k2S757duX/4+azrVrp3DOvsw5Mke118VqV7z68617Uvfr73e737cp35NAd0hvqSJAt/sPM+ifyXWwYsMvOT+fHCM/77teKSnff5JcnHHun8th1yQue9iZ87rreOZbVFOr8Vz885Z6WbJO9bu/Nc9oUtOl/c2UY+XekmySEr7V3p7vSXMyrd15f4XKWbJD+9uDMuvducvb3Lrzn86Er3yT07e+9e9NSISjdJHv9i512PT3+iMz/rhlG9Z6cTTu3s3/q9r/f2Yjzt1531eiuf3TnfP/zH91e6SfLEp+aodF+5sHP9N+m5zvqZJNng9M7v37dPf1+lmyQX7dl5D8wX9u/MCbzxQ4dWukly/Nc667Nvua2zX/DfLziv0k2S+x7v7K222Fd664kW/V5n/7rDturcP3/5Z725Cy99vDN+ddijnXmXkzY5rtJNkgX27HzON53Qez/Rx97/aKW7+Dc78y7f+6He3jKjTuusYbv1lPMr3fvW6OwzkCTbvq9zX/nAhF9Xukky02yd9Sh7zNEZMz3izRn/nrl/m+XuuSrdH93WuXaZfGbv72LXSzvfk9s+0nnvQ5Ksd/RApbv8HZ37knEHd+bAJcldH9mj0l14hc57L1c9pfeumCu/fVCl+9ipnX3xkmTiLJ31ATtPuKbSXfuAznz4JFnj3s55+YWLOp/x7S/O+HeP/ttry3bmqr27T2+/9cP27+y3ftrunXczPzlX771HR2/X2UPr8zmo0l11js67wJNkpvVfr3Qve6zzXu0kWep9nflOu23feXfAKZd21hUnyc/26Kx1+db+nfdB7r1u530uSbLiXzr3JZ/cvPfO9dPGHVzp3rl7Z/3hVp/urOVLknv+enyle/mkzv4Xm6Wzd2uSvHB4Zx/wHefuvBc6Scac0lnPPvcxnXnPG/65MwcuSc74wJRK99ZTO+9nuH/D3vy6VU7tfM6Xbdy7xlhk4Zkr3cW+vn2lu/Glvb/lme/qzMc49wtXV7r5dGeefZKcf33nHHf6Dr33ozz7cGdt3DWPd9Z27HBxZ6w2SVZds7O2cfZFO8/9Nl1qvUo3Sb51TGd++Ymv9tYsP3TW3rX2/0lnNBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/i8zMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMGz69On/6/94ldVWmf7nyy+a4Qfx6nNPz/Dmv00cmFbpDrw9Z6X70rPPVLpJ8swzb1e6q6y4RKWbJHOOm7XSHTtyUqX72htTKt0keXbSxEp3odnnqnTfmvZGpZskj02YUOn+4/pHK90kWXmVJSvdgeEjKt0rLzyu0k2SDdffstK97spTK92VF92g0k2S4TM9Wemee9ldlW6SrLHyspXucy90fqM222i1SjdJnnqtc86Y9tywSneuuWeudJNk9lk7vyWzjOpdY7w2tfM5DwzvdF9+8Z1KN0nemvxypfvYSy9Vussu2TkPJcmjT/yr0p0woXO+T5Jllt+o0n3qpUcq3Ttvv6PSTZJXp3Xu/RZbaNVKd/55et/rq6+8qdJ9+rne3/Icc46rdD+87baV7qSpoyvdJFl3qaUq3Qcev7HSXWz8JpVuktx8z9WV7puvv1LpJslCo8dXurPOMVOlO3Lyi5Vuktx+8bWV7m7zrlbpjpnY+YyTZP5ZF6h0J789udJNkoF0xriGTR1Z6Y6dde5KN0nenPhmpTvL6Nkr3RfferfSTZJH83ql+9q6nWvaJHlk+jWV7lx5odLdaNMPVLpJ8viNF1a6C62zXaU77wq9e783Xnut033pqUo3SVZasHONMXWugUr3tZc6n3GSjBkzqtKdPrlzvn/50Scq3SQZtkBn7OyFN3rXGOus+d5K9/EnOs+NXnqyc75PkleffLDSHfH4Y5Xuert+qtJNkofe6NyXvHX/PyvdJBkzd+d6+an7Os9Knn/u3ko3SWYa0RkTX2LR91S6k2fufMZJMuGBxyrdia/2nrsvv3pn3ss7D06tdEfO3vtdfffNzjONueddpdKda/7O9WGSzDRy3kr3zdc7155J8tD9M34uW5JMf3VMpTt+8cUq3SR5+7XO2OfYN1eodF968G+VbpKMnNCZczbLTL3z8vTpnefub7/bGS96/t1nK90kGZt5OuERnfl300b0znHzjOnM9Xjtjd7f8qwjZ/y4zqfuOib3vPn0f3XxueiSY6fv/6PVZvARJad8dtMZ3vy3H1+2X6U79sHOWMLLS3bmnSTJ88MPr3RfX+b9lW6S7HXd/35e/n/i8K92xhLGXb1cpZskuy13YqV73q++Wuk++czYSjdJNti+M4/jrz/v3fPPNWvn+c345TpzfS+/qjN2nCS377p0pTvu8M5c34fW6TzTS5L33tIZi535zqsq3SS5babdKt0dR75V6b42c2feUJKM3P7uSvfU8Z1nLNs82JlPliSLTO/8Xdy48TWVbpLMNMsale7I1y+odJeevzcn6eRbOn9z6x27TaX7zol3VrpJMvfeV1a698706Uo3SWbbtDMXYNLNnfH/Y184stJNkgem3V/pbrnItyrdK5ft3fttd99Ole6oszerdJPkx2vOVuletfPJle6/lup0k+SVWTr3Uj++8IZK99jb/1jpJskq699W6Z7/3M2VbpK88Uzn2ff7pj3Q6V7YeXaTJMd+sTP2MnbezrXLt5/t/I4kybyjj6h0nzh/rUo3SRZ46ZJK940lO2uLrxzWe/a9zOjOuq25xnXW0Ex+unfv98IinXXyp3y0NyZ308QfVLqz39C5llt54Q9XuklywKKddZ7vbth5jjz8ztUq3SSZML7z/Xvguocr3SRZfaPOtcDUtz5Z6X594IRKN0kOerDzPVltv+cq3SfO/UilmyQzz9/5nN8a93ylmyQfnb5zpXvzo53z8p3v9n6j7hn5WKW73q86zyoX/9oilW6S/GTVznOYVc7t3e987IHOMV8y99mV7kxPdJ7BJMkj83auMWZao/OscvjbnT0OkmS+62+pdKdt3NsjZsX1OvOej96nsw/dVbtcXukmybXT1690R5/XGfccOU9nr7EkeXGpzrzn+67q3bvPsWlnPs1tF+xY6a6y1PyVbpJccvtPK92NPvvjSnfuzxTH2j/TufcbcWpv/f3dE0+rdP/2kc6zrk8fdU+lmySLbdnZh+77Y9apdO9cqHPfniTnDOvsEfPsK509KpLk3fGfmOHNL5//i9z/wlP/8bzn1eaZbfoVW609w49nv2/2xvGmHt5ZU7DKXzrzfKds/LFKN0luntyZD/jpab25dTMv3fk8Fv9IZ63Q157rnct32bbzW/y5lzv3SH85/IpKN0m+Pe0nle57Nzyr0k2SvUv77Lyy3hmV7g926qxtSpL7jvtKpXvEEf+odGe/tbNPd5IsMeKaSvelPx1T6SbJT1btrPV6+c6/VLrjj+ntxbH/POdUuvdd21kL9sWVO/fkSXL4+EMq3R/e2Zuz/vjsnXP+XqcdUOnO+cO9Kt0kuedrR1W6Hz6wc43/6L86n3GS3LRPZ27PuL92xtqS5NvP/7nS3W9iZ9/kp67vjJUmyfhddqh0/7L9rZXub77bG0f45fKdNYKrfb23P/UbG3TmzX5p2xk/ppIkn71j+0o3Sb621Z8q3aeW/Gyle8t3e3u4b3n/ryrdW9/fWROeJItd3zkXPbftypXuReP3rHST5N3Sde2Zx3feR3DJUd+vdJPkNz/qfP+Om/f0SjdJPjKmc8w7vTFHpbvBvb093D+w7vBKd9iznXXs+z/XuXZJknv27+zpO/GezpzZJNl7oLPm4LiTOtcCN/yq8163JPnJpPMq3VPn6vz77bLz1pVukixwdud6+affua/STZIbX+qMvTx14YKV7i7rLFTpJsmLu75a6Z65V+e377fX9eapvef6znyWm57qPSs5dPiMf86cJLft39nT95D7evvDvHtX51nzq6933vNz8E693+t7N+mM96075teVbpKcc/31le5Se3au5b58WW8tw6+P6jyH+fqRi1e6s07p7NWRJB/esjOHcfYPfrfSTZJdV+jsz/TwE5132wzb7XeVbpKc/83OuuIvLPjbSveQe3rv+blmyc5zozPvWb3STZLtj+t8t/+y5Bcr3RGf7L3b5q8rd+bjHnVLZ8/KTXbYotJNkqOu6/xG/e3m3jX++nusVOk+seF3Kt1Fb96n0k2SOf/emY9x2U8XrXRPOqazdi1Jpu/bWb926KTOWF+SvHBK53fqU1ufeNv06dP/4x/t5eYbmH7CdjN+3G2pBTp7JSbJ8U/sWuleNHNnzGbt4zprNpJk5+067406fZ/eWPpOp3Xmt86ycWfvs13e7O1f8PUF9q50Nz+os0fSe/bbt9JNkq0W7RzzJgv15uFsu/jBle4Pz+8c8yXH9cY1v/aHhSvd9Q7/e6V79RadtchJMtsanXkAe43uvCspSe46cM1K951FO9dTGx7feQdakvzhy5355cedu0ul+7VXe+8Heum1bSvda27vvI8gSd6/6mWV7s++2XmusMxznT0GkuQXS3Tml7+19+8r3ev27b23bY1dV6t0b/hy7xnZPSd29kv8yaKdffzu+FFnD9QkuezNzn4Au+3aWZuz3Be+UOkmyUHv68zD+fCPrql0k+Tx5zrvx3t6386937Z/7MzHTZK7Fj2s0n3gq539vs5+q7OHdJJs+KfOnszTd+2Nxd59VWfPk8+s1HnG8qdfPVPpJsmTB3R+s2/4SucZy5836Kw3T5LHru18zn+Z0rm/TpKF9+nMLz/vps66g1Wf6rzLNkkePa0zDnzt2VtVul9cvzM3Mkl+/ZvOPdrS5/d+S845pvO8frWvdPYCuWT3BSrdJHlg8c7eg/Nd2jkvn7Nvb97sGQ99u9L99YI/r3ST5JoNOu+W2myn9Srdr4zovPswSY46tHMtd8oLh1a6r77xqUo3ST79z90r3eF/7F1j3PlA5/nOPm915sG99N1rK90kOeC+zuc88vTO/OStP995NpAkb07q7IN1wru9c9FJT51Z6Z7+/c6zkkPHfbnSTZI7x3Su8QdO7oxjjJ2r85uaJBPu68wv323OzjOYJBn/1c5eIJN27szbu+5Hvfk0uwxfrNL9yBWd+TQL3fDxSjdJDrq4M6dz5A69dQcL/G2+Sve73+yMb317995zv9WWXLzS3f+7nTlAG/yjtyffRfN0zkV7jJ6j0k2SZz/b2dN+7W0/UOmuM/uPKt0kufKWmSrdhzft7F3y++mddXFJcu4Vn6l0D/z+Y5Vuknzu+Q0r3c/stfh/Ne95jUVWn37DvtfM8OP52ey9sbzRD3W+Ays927lnXOY9vTngex3Wefa2ylK950LLPdd5H/i3Vuvsi/fU946tdJPkuNc6Y2PjR8xV6T60Xe858gaPdsbyjj59/0o3SW5epfP79uVvdfYJ/PPKnXc6JMne13Xmfv14js4cxoe/11k/kyQ3vaezh8iFB/TWfd99S2fM7VuPda4tJ9/SG8ub+brO+MdZj51b6d44vPf++QdW7qwvfOCM3ruuFhnR+Twevqvzfo0jr16j0k2S+3/W2Yv4kOc7c2VOGtXbB/zbM3XmLtz3s94c/gkf7OzZ9vYfOuMU3xrfOy/fNOF9le4bK3TOF19ctfN8LEl2+W3nfRXz/KE3lr7mk529Bs55uDN34ZXVX610k+T9n+j8LX/oU533ET+9fuf5WJJklc57Z0eO7s1dePvGzhyty27ozFW7ZO9xlW6SfGKHzrOQ/b/VWZt6xAqdeV9JcvqGnfWYh17Y21tmj7c781D3Wqizx+PILX5Z6SbJRld0nr99ZePOOPBZp/f+lpfYsbNn4kalvT+T5Iilb690xx24WaV71nqd5xlJssX6nbmGOz3Webfb9Tt8vtJNklM274wjrv/nzj7uSfLYxM4zjZHf6LxT4vq/954b3X9951nJL27q3F9v96nevpSzrtl5JvWNuzavdJPk7mFzVro7p7PHyLqX7VbpJsnr0zt7Ke33086+DFds1Ftndv2rL1W6636ks0Y+SWb9w8WV7pvjOnscHLp2b1+UB7buzAmcdZNLK92Pf3SZSjdJvj3X1Er3S0t39gtOkoNO6xzzPv/TWSuxxiHHV7pJ8tR8nTG5W3b9ZqX77K6duTRJ8uQ/O+N9z/yt97f899dLe3dt1BlHPHC3hyvdJDnt2s77WOe+vXO+f/FznfvrJJlljc6Y6lWz9O79fv6vzjXXqqM67xb+0jmdc1ySfHGhzrsxjz9/jkr3oXV679dYa+fXKt1L15qn0k2Szb/VGVN9/w++9H+c9zxQ+f8GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XGRjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgxH/yH0+dPC0vT5g0ww9ipuELzfDmv42b+cVKd9qoYZXupEnzVbpJstoSM1W6r774WqWbJIuOnrvSHTUwstJ9c/LzlW6SzDNT55gnPdX5jgwbPqbSTZJZJ0+pdBcbPuPPb//2xkudv43Fxi9c6f7PhzatdJPk3juvqXRfeHNapfvg049Vukny+CsPVLpzzN07L2fixEp24blnrnSfee65SjdJJr/9ZqV7wdX3V7orjZ+10k2S/3nvxpXu5KnTK90keXfg7Ur3jYkvV7p/u+bmSjdJFl9lfKU7MLzze/2H80+udJNkzKxzVLqjJneu45Lk7PPPrHSXW2HpSnfY8LGVbpKsudxile7YdI75rkceq3ST5PHHHqx0Zx7euadMkg9s/LlKd521Vqh0xy//nko3SUaO7HzOD/7qkUp3zjl6fxerr7RqpXvyMT+rdJNkxNKda67XX36l0n351ccr3SQZttjsle6r4zq/qzdf37k/S5LNBzpjJKOK4xhTp3bu0eYYNbzSnTL9X5VukowdNW+l+9rkzvlztrGd8dQkWWVaZ0z8ymvPr3STZL5NOuPtSyyyWaX79M3XV7pJMmbsuEp37qXXqHSnvNL57UuScfN2vn9jZ+6NiT/19guV7tinR1e6k16aUOkmyfQxnWOeMrHzGY+cZcFKN0mmTe3cr85T+o4kyQ1XXVTpzjP3IpXuq88+VOkmybIrLF/pvrBsZ3zk+WG9sdq3Huqc8594tzcmPvrGKyvdEZ3LrUx98aVOOMnweSdXum9M6hzzvbf3rrfWWHmlSveBNx6rdJNk2sTOXJ3ZSpdFL738biecZOKbneerCy70VqU7bJbXK90kmf5W5/z59HO9c9EbL3fGSOabrTMONfm1pSrdJHnr7hsq3ZdfuLHSHf5i59lqkgzM/h9Ni/xfe/s/m275H5lp2NRKd1RprG/41N69w8gxnfPcsMxV6b72eu+8PHl05xw3ZubOZ5Ekw4Y35tP89/PChj+ycGb9+OEz8Fj+Xy46ac4Z3vy3C//VmdOy+b0/qHSHLbJkpZsk+03qjH/86N5bK90k+dcGW1W6q3/tnkr34skXVrpJcvytl1W6M9300Up31Wm9ZyzvzNUZM33fM09Wuklyxvt+Wun+c0rnXLTbDn+udJNk1Lc6/35zbtC5z33PrAOVbpJc92Dn2vLCD3yy0k2SP75wfKW777jVK91rX9+g0k2SX950eaU74sz5K91n1uj9Xs/80d0r3csu6MyzT5IjD+10/3XzJpXuw4f9qtJNkimrvlHp/v39t1S6P/3NNZVukhxaehQ5232dOeBJ8o2zbqp0P/K5ZyvdD52+TKWbJHtt2rmX+sCznRPGAf9cq9JNknd+uFel+9TVT1e6SXL8AgdUuosfcHWl+8OzvlTpJsl9r65X6f7++f0q3U/87KxKN0lOfrvz7O3iz3eu45Lkfct17rH3nLhcpTvfBhdUukny1S91rms3OWmfSvdzE0oXiEnmfO2zle7nZz6k0k2SP67fmddy1Hs6z8iev7F3vfXcnJ3ron/9o7P+8LU3ep/FxCkHVrpzHdiZQ5wk39t45Ur3hTk649aLL3BGpZska/+tcy1+zbRtK93F5r+40k2S23bbptJd4szes+/jFlm80j3k+511/Vt99uOVbpLMdv1VnfBdnfP9xIsfrnSTZJ57O+s8H9umc+2SJH99+JhK9x9vdJ7Xv/pWb3x5uYU6A1ELfP+uSveVdzrztJNkwm86cw1ff6azLjxJXlup8xxt2MuPVrqTn3lvpZsk92+wY6W764mduaKvfOSJSjdJHlu7M7418o7OfXCSTHq8cy2+41wfrnSXPq8zHzBJ/vbXzv3q6/t09k/40at3VLpJcttWW1a6p075W6WbJIv8trMGarWFnqp0py/cGetLkkXO+mCl++J5nTXnv/5OZ6/GJPnYoZ217Gu/09tLYuqHO/dSG13ceb7z+qh7K90kmXjdapXufgt19q18Y/KdlW6STJvSWY/yhbl7c4v2/NdvZnjz7bf+u/Uzd49YKCvOe9gMPprk6wcvPsOb/zb/HidUukf9sjO3YPFTO9fBSXLxdT+vdDecp7MnV5KccN4Sle7sh3TGHh+4sjN/MUm2Ovj3le4nT9y+0t3tt729Zh/fozMm9uXlvl3pJslOB36/0t3yN53vyD+X2LzSTZIFzu/sn3XHpM7cyMM/1pkbkiQ7rvD5SndgfGd8KUl+ufH7Kt1lP9rZ4+Pjn+ytGf7bpZ11VSd+rbOWYau/936vlxzZGSPccKvOHIAkWenA0yrdN0d21rh848zemPS+n7u20r16ljUr3QMfnq3STZL57tip0l1ky97cyK026sxZX3mjLSrdi578cqWbJO85oTNXbcvpnb3WD9m893dx6m8696u3X9157pYkl9/UGZM+9JGDKt15N+3sVZok/xx9eqW73J86cyOXWXedSjdJPrdN5x57geV6czgu2ruzr9peC/6o0t1m1d4e/Jd9sbNJ2ZyrdsZh91iqs79jkqy25Tcr3Q2P7FwHJMkZXz+20j3n66tVupc81xuTm7TIVyrdY0p7zL31hd5es+857dOV7udX6MylTpJZ/9V518Gxu3+t0t3uJ705s1/6wl8r3V+e+0ylu8oRnXkySTLi1M78kEUfL23QmWT7KzpjJL+/oLMW8xN/7O1x9fVVOvutvPtUZ0+8gz/Ue3/XfZNKz9Au7a2rOmnuRSvdZb/U2SPwfV88tdJNkq3+tWylu9gLnfHln1/QG1++d8/S/eqc11W6SXLbcp19sJb6SOc9FYf9sfNuhiQ5aOm1K91fLNJZE77PtM9UukmyzEWddTm/nOcflW6STDzsL5Xum7t31uWM+EZvr+e5PttZ2zH9u53nOz/ZsjOGnyTHHnB2pTv8w721KJu93Jnf8OlzVql0F1qgM08nSd74WGevv8nzdt7LN27ezt5oSTJ90V9UujuN6+wTlyRvpPMcZtgFG1e6d/yx9++3xdGd+Rin3H90pfvqtzv7xCXJiht21jIcsv2Mnwf8b8/+ovMOjP/WsJeXy8DZf5jh3U8u/s8Z3vy3rz33xUp3/+M6ezns/khn3kmSjLqqc502duve897H17iv0v3Gw3tWurvt/q1KN0mOuqUztvL2zRtXuk//oLcn5U9v6MyXeeHd3lzRg4+cpdL94293qHSfT+eZbJI8+HDnGnD3Jzv7UP1s9c76vyT5wc87z5seX7YzXpok2x6zdKW76UpfrXTX/eS5lW6S/DmdvYx2Hejcfx3yg847xpPkzGs6z5v2/mxnfk+SrH3k+yvd9T/XWSe77Rq9e8bjn+yMpe+4bee8vPkiu1a6SfKndzvvFBs3onfPuN46nc/jnHc6Y/TL/bOzj1iSbDqms+fCGZt09juZ5y+9fUnGXn1EpXvx53vv9v3ADzvjvHft3rkuevu9nTGBJNl5wWxWhAABAABJREFU5isq3Se+3plrv/p3Or8jSbLTa521Vdd8v7OWNkmeX6Mz3/C77/lJpbvINZ39mJNkjqU7n8VKL3TWdrzzxMcq3STZdHTnvLz18NJel0l2W73zXPa633+n0j385t7chR9t39nTfo/PdMYn1/xHZ95Jktz99S9Uuud+fIFKN0lO+GxnvsVFl3X20Txzntsr3SQ5fPefVboLfaOzd91h85RexpNknhM+Ven+5Sed9WtJ8tWXOvufbXVsZ23HRvt/oNJNkolndc7LXzups9/e9N32rXST5PTNO/vPrHFA712QD/6psxfcNvNeU+kuem9nzU+SvLlTZxxj/hVHVbrffaHznCtJHhs54/eBS5L71rmt0k2Sn689R6U70xYHV7pb7tDbt/zTC3TGJ796ROfv4uXde2smf7BWZz3RBT/srY3b/B+ddQd3XdjZg3+zNzrX4Umy446dc/7fL96l0p1wRWffwyQ57rbOmrtfvdZ7vjPLpM6z5q+s/uNK92PrdJ4HJ8kFz3fem/PiLp29Zje6sNNNkk2OXrzSvWOt3nqwpbftXHPtdurkSvf8Nzt7QCbJqbt35lAeuFhnbvkfz+g9Q1vzW513YHx9yVcr3SR54dbePuD/jRffeD7HF347H/he771tT5x4dKV77WydeRxbHfD3SjdJnvzenyrdqZ+6tdJNkoe37uwJcOTkzrlmlus67/pIkq03/W6le8Qpnef1667+XKWbJKtdfEqlO7DTJZVukiz3cmfu7AN/6qwvvHOg966ypR/vfM5/f2L/Sneb3/eu097zZue8fN0bvbmij6y0daV7zbkzVbrTVursHZkk553a2S943e+fWel+5sDOmv0k+cS6pfVg7/T29V3g2s6Y6Q9P7ozlXf6+zr1Mkhz0mc6cwCl/+m2l+/tfXlbpJsk+k/+n0l14wSMr3ST51pc7exwv98Y9le7Ss/Tucbe5sLNf91qXd+537vhzZw5ckqx+bmcv21tOm/HroP/tsb935rdeuuvRle6Ge/WeK3z0pc5z2ZOu6DxTv36WzhyqJJl0/HmV7hEn9dYs77/fuEr3e0929nOYfZdXK90kOfGFzntLB2bu7OV3whydOahJsvixe1e6h63a2csvSc54p/Puo7Vm6tyvPjh6zko3Se7dvzO/fLZvdN4NO/csvb3g7hv7y0r3wfd29i5Jksf2H1npzv3rxSvdhdbsvR9lkdMXr3QXvaezBur2e56tdJPk2a0ernR/fXJvj9xLLt+50p24fmc/qrM+eX6lmyR3fqJzL3XN8p138919U2+u6O1zr1/pfuXG3hqM55bvPB/40HmdNWzvHNbZ4yBJLp+7c1109e867+T55xmdd1UkyeJPfa/S/dJGnXvKJLlo4c53+5sndOZRfemc4vttxnT2+Jnz+s78rI+++MdKN0nuu7szvnzIMr252jf+qDO/dcS8nXvsHd/uXSNeenFnPdg+63fOn5cf8UqlmyTvnNQZbxj31IqVbpL8cOlO+9endd7dse+1nf21kuTjzxxd6c5ybWe/9aMv68wtT5IF/tk556+wem8c8c1lOnOA9rmvs0fFxZv33imxxV2da4G9fteZj7HtPvdXukmy3yqdvbvOe3q1SjdJph/U2VPx/5OB/7/+fwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAIWpgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAACA/4e9/4rWqy7Yvu0zKyQQEkhC7116B5EqvYhIERFEUAQLFsQGIjbwBgsiFkARGyhKR6o0RVSkSJEuPfReAiG9vRvP6977jXHrl3NkrGccxzb+nGNlreua898mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGA3P7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBiY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBPP/Jfzx16rQ8/thTc/4qxgyd883/17wzp1e6C41ZrNJdYMyClW6STJvwUqU78aXxlW6S3D3lgUp37OKLVLqj5puv0k2SFx65p9J9/qkple7kSRMq3SRZYOx/9NH1v7bg2IUq3SSZOWSlSnfc/Z2/60ce+EelmyQLjXlLpbvFOgtUuk+/8HylmySjho+udGdPmlXpJsk8Izufc9OnvdrpTuz9XS++9KhK9yN77FTpDptviUo3SWYOzFvpvjq9910yMKPz/ffM3Y9VugtNnlnpJslLf36k0p065I1Kd/nRvWeH1197s9KdOLXzs0iSEZlR6b7w5BOV7qYbbl/pJslrr3auefy8nc+iWbOHVbpJMjB7dqW7xAqrVbpJstLqK1S6o+ZfptJ97vkXKt0kGTZ/599v/bduUemOmb9zH5AkD9z+p0p39913r3ST5Oe/PLvSXXDEiEr3HbvtUukmycw3n650bxz/bKW77YorV7pJMnl853l1yJQhlW6SjBzRea58c8b8le7sSb2fxfwLdP795pn9cqU7YvZApZskE2YuXOmuPrwzVpskj03tzA9Mfe3xSvfVV8ZXukmy9e67VroDMzq/y0uO7dwTJcmMSZ3nyicfKMyf/b8mzpxc6c678nKV7qhMqnSTZN6RwyvdWZM7vxeTh3bGoJJk3oHO398CpZ9Fkjz3cme8/fWBzrj1mIV7n0UZ2mnPfrYzVjRy6d7PYmBI5zNu+EuvV7pJ8uqUzrjO/POWxhvm680brbDw5pXuEkt05ndefHpspZskD/7rX5XueqttUukmydBpnfvlZyc9WOkusEDnPuD/tDeodIfM23mOWmBEZ9wzSZ55ekyle/vtV1W6SbLJaqtUuqNHrVrpvnHnQ5Vukkx6YmKlOzClc48/fGhn/V2SjB02stKdMmNqpZskM6Z0vrNHjOrMNS86s/MzTpKppZ/zsHk797VDp/fG5F4r/ZxHD+08OyTJjGlz/n559uz/fgx4+MrJst+b8//2z6788Bxv/tvqm/y10n3wi517y1UXPLzSTZKzpp1X6d74cGd9T5Ks8O0LKt2zT1200r1jyn6VbpLMGuis9T390Jsr3Um/fGulmySX/7Yzfnzr/m+vdJNkvjHrVrrvPmdapTtxk84auCQZeUBnLP2a5TpznHf9vjfGu+MHO2O8W/6m98x4556fr3R3PrHzufynI8+sdJNk2LIfqnSPHtUZCzr7D8tWukky4vrO2pNvd7aMJEn+9pU1K90Rb/9bpfviWUtWuknywCrrVbpf3LQzr3fQQptWukny0Vc3q3RvHnJLpZskez7W2Tfy8I3/rHS/vuu7K90kuXRq5zt79KTPVrrP3nlDpZskf92i83vxsfd0xniTZOmH/17pPn7XyZXuDQ/31i7s+/yTle5xH+usm733/t6eyQ8+9udK97qd9690k+S6X32t0p007auV7ga/6t1wjft9Z038okudVukuvtanK90kWfao71W6T69/UaWbJMs/+v5K9/KFO+NFl6735Uo3SXYauXal+8iszlrfza7sPOskyePLd8bE99q797s87vWPV7o7jO/MOzx2QW8N+F826KyLuHutpSvdg1Y+stJNkp9+ptMd8WxnrVOSrHj5vZXun37a+f6b9+OvVLpJsvbqnXUAk4Z39gnOt1Xn+SxJ/pHOmPitb7+y0k2Su77VmdO487nOfe33t/htpZsky+zUuce/48blK91V3uiMASfJyEVurHTf9qfed8lKz32h0r1hlc46nGl3dv72kuSA3T9S6V62Wee+aJ0remO1aw+/u9Kd/vznKt0k2fmEzpqycx7ujMlt+o4VKt0kueKhznPlmuteXOmevVHvjJH7n+ys3XvfI70zYkau3mlft+++le7MuzvPlEly6iqdZ7+DOlOgOePJ3tqU4ct07hF/sVVvP9GiDyxV6Z6zc+eMkd3+1jt7bcHDO+sRZ6+zTqX70sudZ8okGTJvZ378j2/2/v42nTDnx1RfnPncf/W/W2vSfPnTbXP+bKdP/bl3LtBPNjui0v3kqp29hSt//fJKN0kuua2ztm7g0t5c4U/n/WKle8vLnTWXm07ujE8kyQvD96p093/3IZXuAw905hOSZO9XO/Obv12hN7+5wAM/q3T3nHFCpfuDr/yl0k2Sh/btzG9u8rvOubtfu+l/Kt0k2eiuzjlwf3myt8955w93zmvbeNHO/OZPnui9Q+HABTtj/++884pK9+zVVqx0k2TEI511hj9dsLdPdoMrPlXp/mqHX1a6t3z4E5VuktxxcGdfzrojO+eWH7pT5/M+SRZ616WV7sQTzqh0k+TXEzt/2z/a+P5Kd42RvbPPPnr5Nyrd65Y7q9Kdvktv3nuJlTv3WwvstnqlmyTr/7CzHveMb3TGrvb7yG8q3STZ90frV7rrXdV558rP39f57kuSb36kM4e87Ed6Z/p+74jdKt07dv5BpXv1RT+sdJNk3IKdv+uvL9q5RzzqrM47H5Lk3pc6v3Mnz9N7H8h5Hzm+0r13m60q3TdG7FHpJsklHzmw0p3562Mq3Uc/flOlmyQHPNL5Wby+WG+u8K6Hdq501/pLZ07joxv1zkg6/pTOOYxrf+vCSve0S3t7txd+vDOm84vvd9Z/J8mkT/6g0j3giPsq3Q0PH1fpJsmT83WeSzZ7f2d+bqW9e78XC59wSqX7nT16++I2fK4z9vmWkzvnXv/sR533NSbJxod1zqeeOqaz5mu5b/T2/j68W2ccauwzvfmdz5z6zUp3yAc7n0WHXNt5PkuSMYt/q9Kd7wfHVrqHLP2OSjdJTp6vs/770Mm9Oew8ckYlu87xnd+5y7bu/S5/43OdccTLLu6s2Ru9duec7iS59c7Oepr3H3xYpZskn3z9F5Xu04dfXeluuOe5lW6SnPjRByrdt93ZuRc4c0jv2W/adzpruA55b+dvJEm+/aPOGOUb+3eeo966/p6VbpJ8brfOc+XFQztzaF/4yJaVbpKcfMVPK92fDTmg0k2SL43tzK/+t54e9liOWvS9c7x74qc+Oceb//auxUtncZzb+dw96N29NS0/+HZnHcf3Tjim0k2Su3fozFncu31nXPPyr3fO5EqS11bqrEP90IGd5/IVt+6de33+hzrnq6586MaVbpLsO6HzPLrQEZ33fYyYvEOlmyT3nj6m0t1n+DOV7qkvdvYiJ8nOF3Xmvu+9sPcOyW8e2vmcW/XLR1W6/1yzt8953Qc698PDDn600l1g5Rcr3STZ94R3VrqT1/tKpZsk8y/S+Tkv+FLnHL8fHdpZQ5Uk9+xzRqX7wsd2r3RPeLMzxpQkG+69fqX7lYHOOflJcv93Ovs81zylc77jumfeWekmyQk/7ez72e+kzvjxNtu+rdJNkgkLddbk3rxabyz2u1t01td9d3Jn/+Gll3XWFyTJc4/eVenesmPn3PI/L/PBSjdJztizM9/0nts7zw5J8tLK361019mgc7+8/RG/rnST5JHH9650//jVzv77aVt9u9JNklP26NwXvfWY0vuvk5z1m4Mq3TXO7TwH/+vOzrtsk2STVT5a6a50ROccsZU37e15ve6oOX8mSpIscf9PKt0k+eQ6nfOpT/zR+yrdLTbunRFz19V3Vrp7H/WDSveap3tnxBy9QGd95GMndp7PkuSTO3f2mq0w0Hm39iUb9N5TfdbznffEPHrqWpXuQmc/UekmycJ/6Zz3tdHh4yvdJDnruM7n583bbVPpbnH9tpVukqxwVee5ZKMvvlbpTp7e6SbJFz/bua9dYIetK90k2ehHB1e6z/7pw5XujNV+XOkmyZ9P7nzOHbRFZ+xssxs77/tLkgP+0vleHXdzb9/BKot9p9K9/M7O9/XbTl2g0k2SK57s7EHcYf8xle4mL3y/0k2SB7/RWcN1+szOu3+TZOCHB1W6O2zTmV9dZlhvreFVJ3TOh//mjZ3Dnu/bu/ccvO9hnbUCv/ifCyrdJFlqyEmV7ojrOuupv3te7xy6q67tnAN5/YadtWFHLvDfnUP8v3HGyZ3f5dErddZTJ8mdszvnzv+3Xh21ZM7ecs6vP7nwH71zRe//5s8r3VOW/FGle9j8x1S6SXLJ2p33Sd+5Wec8gCS5eVbn3VEf/nJnr/of7uzNF67wmc45V+esvWGl+4eVZlS6SXJeOu9I+NAenffBJcmCD6xR6b77tM57vzbbrnOmfZJc8q7OuohPHLljpbvU586odJPk0r8fXulOuGGFSjdJjtyiMxe5yMc6Zzu9fnzv/UDf/Z/rKt1rp3Se+e+a9MdKN0l2XabzbvvZV/T2fe+/aWcN/8RRnfPPTjh/YqWbJHsc3fn+u+78zpk1Bx9yaqWbJAMfvrPSvXlI775olVmdOaeDF/9YpTvmrmsr3SRZ5c3OOXO3Hdh5T/wWb55X6SbJhuPfU+kecVFnL22SXPRoZ93z2TtdUunucl3nfTxJctUanfcmvv7I1yrdrad29qUmyWuldainndw7r/uCx3etdHdf7feV7r826sxDJslmQztz1Dvu3LkXeNcVv6p0k2TCQp1zmRe5boNKN0n2fM9Lle4hM7epdEdc9nilmyTjxtxZ6W7y8867+XZfsXe/vP7qnbHaT1zW29s49GOde7mv7tyZd9hx584e6yR5deXO3uLPTuvcb/3lvM64dZLs/6HOWtF3HdjZ/5Qko77emXv46JTOOo7d39d7v8ZSO3TWcXxq+8563Ot/1XunRMadUcmudEjnXaxJ8tEZnc+i3UrHl+y+xy6dcJJ3v9E5l2jU6b+rdCcv/IFKN0ne80Bn7OzgRzp7oZPkgpU75wftNKMzP3f25jdXukmy43c77zY95n2d+fw7RnXef5gkV76zc5b0t28/qNJNkqM373xm/KP0btNVVqhkkyQ3XtDZM7ngsZ13P9yx86GVbpLsv9E/K90Npl5V6SbJ7w7o3C9vNL6zn+Fj03tzJWc92Dlf8g9bdvaPHnzqUpVukhy9/T2V7tb39PYTXbZ/53fulas75z2/un/vHMHLDpi/0v34KZ39RNt+vzPWlyT/XLxzXtVqe/TO7trxmtbzw//3+f4Dpf83AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPi/ysDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDMztCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwWBgbl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGA3P7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBiY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBwNy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAbm9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAwMLcvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg4G5fQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGMzzn/zH06ZMzpMP3TfHL+KNCTPmePPfRi88ttIdMd+rle5qG69d6SbJ0FnDKt0xC4+pdJPk2ScfrXSfeOSFSnfs2OGVbpK8MXNapbvISotWuvf/8YZKN0mWmj1vpbvkwptWukmyxCITKt1xTz1X6S652IqVbpKstuQale7MGfNXug88+GKlmyT77rJdpfvYY89Xuklyx4OPV7r33NX5vF9w0Vcq3STZ8s3O7/KqK3e+rxcas0ylmySvvjax0n345usr3SQZNnNqpTvv85Mr3cUX7HxfJ8mQdO5rX35tkUp33gU73SR54Y0nK91Jb75e6SbJegstVek+N2xkpXvd36+sdJNkxpCZle4jTzxT6Y4f37mPS5K3brVZpbvcyptXukkyeXLnnuuFZzr3iBtuslalmyQXX3RRpTtk9vRK9777bqp0k2SpFTvPfiuN7P37rbHC0pXuXf96pNI97/xfVrpJ8vkPHlzpPvDavyrdJ5bt3MclyexnOvcYS827YKWbJDOmdT4/5xn6WqU7MP9ClW6SzJzWed6ZNX1KpTtx1huVbpJMnda55lfS+RknyeSXXq50H3j94Up3o9VWrnSTJEM6nxmvTOo8X4/p3AYkSV58pfNZNM8ioyvdJFl8xOqV7i1XnF3pjpmv9xw8/3yd5+DFxqxQ6U6d1rkPSJKFl++MTz67SG8c6unH7650Fxza+Y6a+UxnTCBJxo+6oxMe1fkbefBvvWe/ZVfujGMMLNQZ30qS6bfeX+lOe21WpbvCW3prEKZM6syBXv+nv1S6oxb6j5bI/EfmmTqi0h01T+9+OUMXq2SXXaTzWTR8/mUr3SQZlkmV7oIjF6h0xz//ZqWbJLPSGRMYPmp8pZsk8yzduRdfMJ3f5clLVLJJkmH3ddYKzDvP0E53eG+d1aRpnWe/YUN698uzM18nXJobHzJp4Uo3SeYd3vlcnjWj8+wwovNx/3/M6KwhGcioSjdJZs9b+Pv7/2MueOqYWRn3rjn/O3XDMR+b481/W//48yrd0U935pu+vvbtlW6SnDDij53wby/pdJNc9/m9K91bFup8nk/+wl8r3SRZ4/2ddQBfO22HSvfmc0+pdJPk0b3Wq3T/MXTjSjdJtr27s6bzxsU6v8uzZ69W6SbJXmPfXeluuugFle4P5+uNi33w2c7aod8f1xv/uO60cyrd0Yt05mUvGX9npZskH/zbfpXulcd1xmze9f3e7/Kz+3We+b+7amfuLUm2HXpCpfvB4zvjKr/Yc7lKN0k+85nOfe0tEzprkpa/4cBKN0nOv+cPle68e/TuMVZ8pLM+cso8H6l0777k6ko3Sca+uE6l+8xK11S6P3y8tz5rxbWOrnTPHPuJSjdJXlx1zu+xTpJFntyz0n3vKjtXuknyyVturnTH/ut3le6Dz55Z6SbJP5b5aqW74dq9+fp/vvn5SneJ8Z3xhjff1Vm3lyQfWfjESvep6zvPlM8uvFKlmyTbP95Za/i+DT9Z6SbJP17q3MsN69xuZcgu7+iEk1wzZnylO2TaLyrdv6y3VaWbJLus8FSl+7dv9tYEjtr82kp3+uc7z8GPLdVZD5gkT73c2fez/KWd9Vl7HNybd1hnw846jvfv2vkbSZKP/PQDle5dm15X6S578ZBKN0nuW6JzltK8d3fWff3499dXukly8q77VLpr3TG70k2SDxx/bqV74nKddQATrxxT6SbJ3e/oPO+sOF9nIdW5Y3tz2NeM26bS/dQne8+r59/UGXvZeNHrK91XN/5HpZsks3bqfP+tdk1nbvy1WaU1E0lenNoZUx21+S2VbpI8fPOnKt0XDrmr0n1zynsq3SQZsW9n3mjhoz5a6S7wvWMq3SQZt2ZnrcDli/220k2S9zz2s0r3oOc7c2jT/9WbHzht+O8r3Ru32L7SvfzMzhhikjy/Quczf6PVeucITv9DZ23RPpM7Y6q79o6SyF9v6KxvWGT9L1e6tx7/tko3SRb/wIOV7piHOmdKJck9+8/59WzbvfjfjUHNWOTFvPChU+fw1SS3Xt6ba7pzUuf+/a+L/LrS3eCN3vm4h03o3Ev9aLPO+YBJ8v1Lv1vpfvSazrkIj/31fyrdJPnQQZ3Pr9/97OOV7v1/uK3STZLtft/Zy3DgqZ2/6ySZcUpnHuumz7yz0r3w+t732k0Pdq55rx/vUulesGTnOSZJzh7emVPf7uM7VrpJMnWJznjpP2d0zoEbvkJvzey0F75X6U7+3Fsq3fsm9fblnH9Y5x0KFx5+RqWbJH986KhK98nRZ1S62x/R2zN89GEnV7qHXdvZS77Rh++pdJPk5GNvrXSvfL0zDpQka8zfWbewwxF7VLr3nbl+pZskm/yp896OK1/vjKkMu6yz/iZJJn2nM767zWGdZ5IkuWOL91a6x9/fORdogws7a+GTZN21P1TpXj3qi5XuVh/onG2cJG/ucVyle+6N61a6SbL8775R6X7wlW9Xunuv+vVKN0kW3+veSnfBXd5f6d4zb2/v9pkvHlTp/njGKpVukjx2SufnfO4vOusMNxn4eaWbJOsc0JnHes8Sh1W6r1+3fqWbJJv8fdtKd6WVe+doHrVU53757Kmd550T/9E7h3HUDZ3zova5pvMc9dUfdd5TkSS73dmZh5l25sWVbpIcuG5n3dekL3T2a6140Qcr3ST57PBfVbqnztP5Xd70os668iR57NjOvvA/P9Nbg/O7P3XOtD90g86avSvP7sxnJMlqzz5R6Z74h86+nHWX6YyHJ8mde3bO2zt9emfeIUnueKpz1vprq3bW79/28d748j/X64xjPP32wyvdFUb31qltsWpnndpd08+odJPknJceqnTv+vPyle697/5ppZskd+zUObf89HGdl5gM/WVvH/v3z/9BpbvT/r2/v8O+O7bSnf75ztn+u853SKWbJL88srPh/NO3du4xVty29x7rjPhaJXvsOSdVukly+wc67c8NdMbaT7r+n5Vukvx4zc7959kHdt5L+9sv9t53u93+nXu5Kza9vNJNkg0P6Mwd/bcrgUdkRNbNnB93e/a4C+d489+2/MJele6ywzpn9888YrdKN0kOXfPiSnfbT3U+G5PkxPk7+yGPXPq0Sverb+2cnZUkd0/qrGP841Kdc5NP/XjnnO4kGb5KZw3x4et1zohIkiVLexquf6Oz1vfnz3b2SSTJicM745rrje7sc97mzc5cb5Js8pXO+tZJJ/fO+zrhV1+pdB9avzN384MrO+txk2Spgzu/c7MP3qbSHbpSZ4wpSS59qXP+y6c2eq7STZJ3HDWu0r1yg8440z5/3KbSTZLFV1y/0l3jlO0q3SWvelelmyQv3d5pv+OszhrUJPnZQGcN/6+HdNYkLbRTb753420fq3S/8rnOWtGPXn99pZskX961c/7SkId6Z9d94JDOfOExwzr7fmat93SlmyTfX7Gz7+DL265f6c7Xu13OE9d29rC985bOmpYk2WWgM8fyvbd19ul+cdXeuvVs1zmT8rGbO99RG4++vtJNkhOP6pwZsM8XemdJfHGjzufyW+/pjG+N3b23PvLVhTrzb09f0llr+LaJvfU9Pz+887PY7JHrK90kufuizprqU8/qvH/tsq8vUukmyW/n65y9u/mRnXd2HDdP5wzUJPn1tZ31PWd9o7OmJUluP6Zzpv1PjuqccbDvnb3PokUe6ay3WPvczvqCn47uncvw3O867/x7eoXemb5vn3Fkpfu7AzrzRit9+qBKN0keGui8i3WDzTrnaS/7ud4+pZGlV0sddG9v7cmeX+qcV/rahp3PojGX9eaw93u6M/by6C5fqHS/fnBvb86CJ/y40p31mZ0q3SQZucaqle5paz5b6f7kK71zy89f7vVKd+L8nfPivjW8c75dkrzrM53PoueP6Yx7JskPP9o5s2Oty+apdJ97tfcuwd9+6vhK9w8nrVnpjpvdeUdaknz6C521KScv2zuf+vFPb1jpLrt451yNzz7de8/PVtfdWOk+dFBnfPkD03p7Jl8dt2ul+/IDF1e6SbLbhhvU2v+Nt4x8OVdudsYc7/7ke70z26656/FKd7ufd86sOfzit1a6SfKTsz5d6Z7ykWmVbpLc8YPO+e9rvL2zB/7JNbesdJPkcyd39td/4oHNKt3Tz+rNvX3kV5171vMP6b237U/Xd+ZCtrqttO554b9Xukly5yc757ifvmFnD+7Xbv1cpZskZ43ojBNuem9n7DhJjrmu837Ra8d2vlev/nLn+StJztyvc7bMukd0xktHrdYbl/7cLzpjpkfe0FlrkSQHH9nZd3Dl45311Hvce2ylmyRnrdZ51+Oqq5xR6X59nc6cUJLs86vOfswR63belZQkR946ptL96AuddXBXTu/tjfvjTftVuh95pbOG/8Xze3uot7ioc7988Im992Bc/3TnefWu93b2Hayycuc9gUmy/+87e2j2vL7zGffEkr25t09usHulu+aGnfU9STJ8wYsr3eOe77y//O8fXLbSTZJvndwZ4zp/vc77bG/44eaVbpKs+M3Rle70pbeqdJPkx8t33nt58u8vqHS/utHFlW6SXD3pzkr3iWs6f9fzr9gbXz78qr9Vusvc3jvnauuHOs+rx3zv/Er3wps7c+pJct0W4yvdZRZ8pdLd5I3ec9QJhy9Z6f780733o7xv4TGV7htvds7i+ezY3vttXlq2c8bIZ3fovGfyqRt767O+dUpnfOvAjXvrOIadvmelO37+qyrdtd/4V6WbJFv+rHOu1PQvdM7eveN7nfWASXLF1Z3zVva66M+VbpJc/7nO79zGi3fm3R889TeVbpKMm9V5z/I1L3fGER/evXO+eJLc/q33VbpTvtp7b9XGCxxR6Z58c2eu62drdPaCJck2965Q6f5m/847w0d/qLeG/5IdO2u1h5zemVtNko/8bblK91cXdH7OG3+t8xyVJDe82Blf3vZnL1e6+/9tsUo3Sa4e0Vn3/OHbfljpJslRF3c+87/wRmfsZcoCvYNRblnjzkp3h//pfBZN3LX3Dq+d/6ezn+GJs1+qdJPkqus7z5U7rfr/ved1oPL/BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lxmY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBwNy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAbm9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAwMLcvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg4G5fQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAzM7QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMFgYG5fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgNz+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAYmNsXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDwcDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDJk9e/b/+j9ec621Z//u7PPm+EU89chTc7z5b3c9dEelO+PVoZXu9ttvWukmyexFF610F5p/UqWbJOOefL3SnTWj8+/3xH0PV7pJMnXK05Xu/IssUukuPHLlSjdJMv3xSnbcA49UukmyxAoLVbqTXny+0p0ytHO9SfKvu26sdF+bOKPS3XD1NSrdJFlx4c7fyb/euLfSTZIFpkyvdJdaovMd9cC4NyrdJFlk8QUr3bcstHGlO2HSQ5VukszKUpXuQ9ddVukmychnp1S6S44cXenOnj1PpZskU2d0fhajhlWyGf9G5/M+SSZP7fyc11mic7+VJIvON6rSHV/6Mf/kgT91wklmzTt/pTtk8c5n3MiVe/dbT0ztPDustMLmlW6SPPvwvyrd9x76sUp30REjKt0kufi6myrdqy/6eaU7fJ7O/WGSrLv22yrdHTftdJNk3vk63yWHHHl4pTtkYL5KN0m23mzDSnet1deqdBebVckmSUY9f0+l+5anVql0k2S+SZ2xs+HzVrIZPqtzT5Qko5fsfOY/93xn3HP+YQtXukkyZdJjle7UhcZUukly62qlcYwNtqx019hi7Uo3SRZetPO78fyjnfHJxRftPQcPmdj5vZg0tfe8esv1N1S6K67SGZ/8x923VLpJsv7qq1a6s2YNqXQnPnpNpZskozZ6R6U7YVznOypJJk3qfGcPXaQzVzli2NhKN0leeO32Svel11+qdDdbeutKN0mee/G+Snft3d9Z6SbJ5GdfqHSfufUfle6YsetWuknywpOd76jnp3bmbTdees1KN0kmvD6t0l148d49xhLLrVjpvvBo57No1CKrVbpJMmLeBSrdISMmV7qLLNK5J0qSP/+hc/8yer7OfFSSrLL8FpXusw91xq1nPVrJJklmPPpypTvvsM74yMC03u/F5Imda15kTG8gcZ55R1a6w6YPr3RnDX210k2SqaXliFPT+b2YMLH3sxg2ovN7MWN65zsqSUYtOOfviw6689L8a8LL/9XD+1s2WGH29//8lTl9Sbnjl7353jWnDFS6L93fGctb5so3K90k+e2dB1a6xz/ZGe9Oklff6MwLzUhnzGb0TZ0xiiQ5c+vOmsAz3/LJSvdTT95d6SbJpB91fufeuen6lW6SrL1s59n84WGdn8VV43trwJe/v7Mm6Ziz//f7eP4TKx7yvko3Sc5cs7PG4PJv/bTSTZKXD+k8Jy1zwXKd7mm/r3ST5PsP7V3pHvFUZ77iT7d09oIlyUJb7l7pXrfAsZVuknz8uM6Y22X3rV7prrDFMpVukmz4dGc/ytVvjql0V3qid7/8wPZTK933P/VApZsk2XmvSnbm7N9Uup8+vjdfuNt7l6107/7r4pXu2AM6/3ZJ8sRrH650l52n9726+IanVLqf/cSvKt0/nH9+pZskR57TeV5d4oN/qHQXOO/JSjdJVnp4p0p3/i8fXOkmybbrdZ6Fj1zj7Er3/r1+VOkmyfZvfrrSHZ8NKt1dN+s8kyTJkLU7+2m3O7l3FsEbm3d+l8cd+1yl+/xfexOGXzi681xy35Z/rXRXuaa3n+GpRTv3AktP3LnSTZIL/ueZSveT4zp/f69s2Fuf9dIBH610lz755kr3+S2vq3STZJ3fdu633rHQVpVukmz6fGd93bbzdP79LhvV23//vcU+VelecXvns2jEjM9Wuknyi1U617zLvL+sdJNkodc6P4+XHunsH33o/WMq3SR59e93VroLX9JZ97X8xT+rdJNkn6/uX+neP7Z39trqO3XWzp77Yuf7b8IF+1S6SbLp0p0xnVumd/a87v62wyrdJLn0yM669W2/8nilmySH7PZipfuLn3Tmmqdt3BkDTpJRi3+g0l1jvtMr3ZN3/nqlmyT7f/T9le4CYztjOkkycfXOHtJXt7qi0l3+lN5+lMd+1RmvHb5GZ63vX+a/vNJNkmVf6sznL/lcZy1ikry8SGeMcuONOvdbd93U2/O61rUTKt15f/73Snexb/b2Vh26Xecc3VOevLTSTZJzN5jz6yaOvuS4PPbS4//xuudlN1x49uF/33WOX89Xdu59r+34js4634Mf6pzDuPxSZ1S6STLji509+8e97cFKN0l+esyXKt09lt6k0n1s65Uq3ST5w4YbVbp/Hn91pbvB+p01Q0my4JcvrnTHX3dSpZskf3p354zAgz7TOXvp7VM661qT5Oitzq10f7b/WZXubd/tjX2s8fXOXobl9vtnpZskX9ywcy/11/06e9OuvuP6SjdJzplwZ6V770Wd9Uiv7NI7X3XqjM53yZZ7lQ6CS7LNgZ1njvd+7dpKd/Lve3uGd12rMw/52ws769TWWW/fSjdJDl7p85Xuypf3zp3f55tvr3RP/2XnGW3UKx+qdJNkg1U6Y0wLz9vZV7XtFzrPlEmy5+e/X+nO3q13RtkZMzpn+R3543dVuncv/0qlmyTPfLazHvf7m3fuBZ48qXeP8dIfOudFbTWjsw8zSab8tTO/8vynb610n/39nZVukgz5Yues57f9tbOec91D5/w5D/+275aduaZTL+udg7rq9UtXuuv+rnOuzC+2v77STZLnnhhX6R6xUmes7/vz985hfHXgq5XuuA/31ok+ts+XK91l9zui0v3zDqdWuknyhzV+W+ke/7POeQHX/6JzH54kC9/fOa/tL1f0ziFY+ued779jz+3cy738/e0r3SS5/sHXKt0Pn9r5vLhqTGesKElO2LNz7vx6O/au+fUnO+sWrt2hs//pLct9otJNkr2X7+wR/PoBnbXw3/5p790aa+323Ur31g93xtqT5JPzdMYFvvFsZ3zyyVGdfWBJ8uYjnTMq9j7qO5XuObM/V+kmyZCzO+cQHLp2p5sko17o3H+edlXnfJ+V7+2MjyTJey/ufJdM3n2xSnfc45059yQZ/9POs9/ap1xS6SbJZkt23oW8wic7Z2pfPq337PD66M44xrlXdPZIXHtp79nh5AuOqnSXObLzXsUk+dZSnXMPr/li5zPj8aN691urzO48O8z+c2cvww0rf6bSTZL139d5yfLMn15Y6SbJT6Z03ku76VMDt8+ePfs/nmRda4XlZv/uy0fO8es598HeWsNlpnXuWyfc2JlTP3zrHSvdJBm6z/KV7jzLduaRk+SUxzp79n/1P5171k88fkClmySnvG/9SvfCx7apdMe82nuX+/e276wRue2Nznh3klx57pz/7EySdWZ11pQNO6gzXpokBz1/ZqU77tC7Kt19/th7Z/BH/tAZp5h8aW9v4WtndfZann5T52z/Xab09uZ8/EOdd6O/e4u/VLrffsd7K90kOfbjm1e67/nxbpVukrx3l84+9UfHbVbp3vj7MyrdJFn9+f0q3YtO6ow/vjKxtx7+Zxt2zmGcNLKzzyVJvvPybZXu82d0fhaj//lEpZskV9zSWcN//K8677/+wvt7Zxre+sXO+7lW+lfvjKS1juh85g9dtvM7N+643t/1uK06f9ev7tA5y2GlG3trRbe5qTPfu8Q1nbN7kuSz7++sW3/sN5332Z61au95Z9T+nXM0v/FkZ7z02Es6ZyckydrLd85V++xJvfvll07o/DxePP7oSnfF286odJNkxRU7Z8zllM47V1a7v7MeMEn2+mXn+2/KKp31uEnync91zhxa+5DOs/tFd5xR6SbJOheuUOku/OvO+4g3+GlvfPIXm3bedbDY/b29cV/eqDNXMvrBr1W6rz48utJNklu+3hkXWH/Pzjlwj5zbOyPm3aM6Z8IefkLvvLYPzz/nz9dKkuu+3jlD+jevd/5GkmTHD3T2Yx61XefdRGd/sLcefrErOvuJXv9G53zVJFnu7M4+z+/O7pwx8qVnxlS6SXLLM52znj/8wc75aPNf3hvHOPH4zjjiMX8bX+kmyfGH/6DSnW/Lt1S62ww5p9JNko1v66wVfW2fzru3D/hY59zDJFl4QufZ/flTe/f4636y8/d37ZTOHPZX9u+9s2rfyZ2z1ve65rRK9/MPdb77kmT71T5e6R54c++9mD/bsXOm/Yd/3+mOnq/z2Zkkn/lQZ0x1laU670b5xgc7a5aS5MEvP1vp/mXfyyrdJPn0Cp1n4f3f9d7/at3zvGPmn73U2+f8fMiqB/XedbXaKZ19ZD/ctfN9/OzI3v6mq0/pnNk27IzePqR/XNl5hn78nM642Nq39965fvSEzru1lz+5ks3Zz3XOrEmSB8+8v9K9eMy7K90kuXGnQyrdR97onDWw/EGdubck2eCGzn3rhPk656pt988VKt0k2e/8zjPjwjt8sdJNkhlL/aLSXfej61e6p137x0o3SUY81LkXOPS0zufFRy7rvJc5Sfa56qBK91+fuqDSTZI/7fjjSvfqhQ6qdLf+cGe+IkluP7RzM/D4G+tUus+c0XlvR5LM93xn/Gqnt79a6SbJtqM68/Vnnv7rSnf1ezvrLpNk75Gd9a1PfXOPSvc9e3fWcybJO7c8tNKd/sPO+xmS5NjrflXpXvGlj1W6KyzdO4PixfM6a0VnfKdzRuCmq/aeHb6/5u2V7mJPd85zSJKNx3Tmvm/asXP29d+/2VmrliSvX39lpXvd8537ol1+2zl/KUl+cXZnvOjDR3bOWE2Sw5f+VqX7xtWdOZaj/6f3DrbNT+qcf7bCHp0zE8dO3K7STZKz9u2cA37MOp3n4CR5x5TOGUy3/7WzjuPAd3bOOEiSSed13hv3rRNvqnRP+sZClW6SfP7KMZXuLndsU+kmyfIbdM7LX+SS5yvda4/orfX95uc7a0T2+kfn/LrnflDaP5Pk7Dn/yuAkyWbz9ta3jn18mUp31lWdd22tulxnfU+SrDTh+Ep34w0+Wul+drOJlW6SHD26s97ijR0672JNku8PmVzpHnNC5xz+a57szKElycVTvlnprrth53nn5Zs7Z38myVbPHVfpfnXJ3j3+Pnd39kOvcWvnM+OKmb0x1R882VlTNu87fljpXvDeiyvdJPniS501nWdO7K2PPHLD5SrdtW6eVukuuWhnrDZJlnnvtyvdH+23YKW7ydjeOyUmHdnZc/f6mZ0x/CTZZkLn8/OgT3f2bz+wz+8q3SR5aePOesS3bvf3Svf19ReodJNkgz06YzrTHunMByfJr7fdpdJ95OQ1/z/XPfdOhwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4sMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAzM7QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMFgYG5fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgNz+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAYmNsXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDwcDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDMztCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwWBgbl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGA3P7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBiY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBPP/Jfzx79oxMnvbaHL+I0YuNnePNf1tnxFaV7rD5J1a6M0YtVOkmyYqLjal0R84zqtJNktlDR3a6A/NWumMWGVPpJsnM8Z3fjWcfm13pvvLIzZVukkwa8mylu8JbRle6STJj6qRKd+rsWZXuk09dV+kmyazhnc/8hV+fUene/uB9lW6SrLXjipXuFqMWrnST5MWpr1S6o+cZXumut3bnZ5wki81epdJ9dfYzle6ECXP+Hu7fhubFSnexeResdJNkvuH/0W3w/9qC0zv3GMPm7/1dDxk6UOnOmPVSpTtyWOfzIklGjx5T6Y6dt9NNkhFDRlS6o4YPqXQPXGnXSjdJHnnt4Up36Oyple7j93c+O5Nk6ozO399q6yxZ6SbJq8Ofr3SHTu/ce74+q/M9kiSrrdq55j+PHFbpPnL3g5VukjwxujP2ctudveedTdZcv9L9wO47VLrnXviXSjdJ/nnnPZXuQ3c/Uuke8IF3VbpJMnLZ1SrdpydPr3STZKXnS/e1QxetdEcu0Pm+TpIp4ydUuovN07nHf2PGk5VukgwbUXrGnjyz002y8NOPV7or7TC00n36ms5nZ5LcP6XzvbrWOzerdKe8Or7STZKBdO6LJg90xtqTZOk11650x786pdLdePN3VrpJctuVP6p0d9jpg5XuM8t1/kaS5NUHOt9Riy86f6WbJK/PuLXSnfDaMpXua5M6Y7VJcvlt/6p0p77YGRNY/MDVK90kWXDkspXuXX+5q9JNkulvPFTpLjt28Ur3lTd641DzL9AZn1x6kc533wvje/eeiy6yfKU7e3Zn3CxJxr/SmXdfdOGVK92RYzrPlEkyaXZn7mHe0j3iAsMXq3STZOHRnZ/zshtvXukmydQnO3NdLz/ZeUYb8XhnbUOSzDOts4Zk6Oz5Kt2JEztraZJk9OjOXNe0mb1/vyHTOuMNM4a8XOlmZu97dfbAIpXuzCmdccShwzr3REkyNW9WuvMM9ObdJ0+Z8+tJZ8367/8+pk0Yk6f++u45eDX/x3umXzvHm/825bDLKt113tiv0p30wd4a4j0X76xVm37GOyrdJNn9y7+vdL9xxcaV7pTDH6t0k2SvX95S6S635zqV7l8WvaLSTZLlPv3PSneN+dasdJPk6OX/XOm++PvOM+Pqz/XGNRdd96pK95ANO3sDzn7xu5Vukux9698q3U9t3VsfufBy91a6o7f9eKX7yCm9e8uP3d35/By/UeeedalnemuS3nhqt0p3nXTmm5JkytKdOZb3r7NApbvCm53ftySZeXVnTcude3fmWFZdoTfftPguV1e624y+vNJNkleffKDSvWPWdyrdD50yrtJNkkmPXl/pbr5R5/Pzlpmd+bEkefnpzn3tpI+eUOkmyYzZnXVUh956RKW77SInVbpJcv5HL6l0zz6ms97inLHXV7pJ8uwLc34MKklG7/3lSjdJ5l+5M1+/8Rc694j7nfv+SjdJXnnfLyvdmVetUek+f8aRlW6SfOXppyrdc1fuzX2//Y9vr3Tvv7YzL7TbmC0q3SQ5b/PfVrrbX7d3pfvQoj+udJNk4MVtK91JV/TWLjzz7psq3WMO/VClu8K7Hq10k+RnP+yMvex/VmeO8zNvX7fSTZIbV9qo0v3TlzvrcZPkhd909iD+anJnz92Ys39a6SbJo9t3xmuXG/mbSnfYAftWuknylivuqHSffGKtSjdJXn62My7w4MRXK93xd/Q+iyb9/ZxK98ktOmPi97+4fqWbJK9u2pmTenn8gZVukix48Q2V7vAnN6x0d11690o3SSa+dGylu9ynO/uUjvv2WyvdJFlyq69XuivffmqlmyRbDN+g0p2wbOdz+XOTlq50k+Sh+8dXut9dYedKd+2bet/XF53wlUr38FXfU+kmyVXPdNY9L/T+4yvdfyy/TaWbJAuv1hkXOPrppSrda57dstJNkqcX68zb3rZFZ59Skkx+qjN2Nub44yrdVfbprQG/bdfOGWkzH/hcpXvn+z9c6SbJWnd15sdPn693VvH2E+f8eakjZ/53e/pfmDRfTrp9zs8rHPfOF+Z489+e3rqz12TahkdVurO/0Ftb99LqnTVwx1/WWxs57vBPV7ovn7RqpXvrip359CS55cJNK91xG4+pdLdNZ89Uknzod51zpP+5V2f9cJK8+Z4/VLrn3ndnpfvM6p1zqJJk6fs6a9YPuuItle6BT3Xm05PkR/N1zggc/a+fVbpJstXb/1jpbj3h8Ur3nUv3PouO+Wlnb+9TW3bOKt3qps53apL84tOd/ZBXbrlPpZskd7zZOQvn3J8eU+nOmnZjpZskv7i7M2/6lhU7Z3G8+7je2WcXvL2zf2atJXrnlr/vy50xpu9/+PZK9+7rO+eIJcmBB3bGKBY6snM+9VZ/7Y3vvueB91W6v7uocz5gksy35dGV7u+PXb/SPf0dvb1EX1v9wkp3vUX2qHSff6k3h7xq6b0rG51zeqWbJJNe6OwN+OVXOnvkv3NYZ+9akvx+wc45LfvtemelO8+kpyvdJPnLpM75Sx/Y77xKN0kuWrmzR/cn+3+/0t3l9Dsr3SQ5ZM3OGsZ57++cpfLeLXv7oFd65txK90d3984FeveTr3fC13TWk627S+89TS+d0DmHYNg9nX0d15xXfP/a4p2zcn68Uu99IL857OxKd5t1O2vgrvzB2yrdJPnxSp3f5W++r/MOhZ0/0DmfLEk2faZzj/Hdq3pndT+/UmcdwBc/1Pn83Pmmzmdckqz7929Uuk9+rnO/te/vDq50k+Tbe3fut67+Z2ddeZKsPLLz7H7HPodVumN/eUilmyTrjv1CpfvVPbaudLd77wqVbpJ898DOPpc99uutodpux878wL2/va3S3fui3n7XeXfr7De/7MTO3Gr+1pv3O+qKyZXu33bunXV0xGOd96QtPmmTSvfob3bOekiSLz9/WqV70V6dZ4cjJl5f6SbJ8CU6+zredv9nK90kmTGis4byH2909kmc82zvvYrD/tS5xz9jr8531EUHXFnpJskzMzpn5a+82vmVbpKMPLl0jtl/eYTS6wtNyFXvu36OXkqSfP3Czr76JJnv0M49/Gt/2qvSvWGP3s9in/2XqHRve7wz3p0kGx+/XaV7x7p/rXQXeqn33bbcFzv7m5aZ0Hnm//Efeme4j9m1s7fw8Y0778lNknsOfqPSffaCzhr+o+/5UqWbJM+/s7MGfJ3fde7fJx/U2/++8WmdtV+bXtjZ85MkY0/qvOtg1e99u9L99jqdM2yT5HPve7zSHX9C5571ogd7P4sVr+7sO1jtX5+qdJPkvst3rHT3uqHzPuklD+iMqyTJGpftUulOPKtzjuawWb2zgn99868q3QO37PyMk2Tgf75V6Z60TWft16G//XmlmyQ7nNa5R/zmaZ397+d8sHdu+Tovd9bBfeBr0yrdJDm0NB708Ic7azoP/HPnTKck+fQRnTOHvr1mZ072zyf09kLv/c/O2Z/Pf6qzrzhJTvnhiZXuxyZ09mC8dWJv3fNpL3XOHpy6Smfs7K6NemP0F9/V+S6547bOmpYk2fkHX610Nz79A5XuF7bqPJMkyc/OXq7SXf2Oznnom5zY+4569yc6+wTve7YzvpUk3/ld5x0K143szDts+u7OedpJssbfDq10l7its8/loT0763yT5Au7bV/pLvfu3r6Du17rrAlcbb3OOZrzL93Zb54kXzq9cy7Rid8+udI94ZLeGuI3Nuy8f3TPgd5ZID98qLP25KijO+/svuJTnbP9k2Sz73Xm0RY9+i+V7r6Ldd7PmyRbP9o5/+K2i3vvczlp184emkfn6bz34d6Leu88evyi/6l0n121s+f8y1vsX+kmyU6LdO4xhn+uc8ZBkrzzhc7719bY7ZOV7iVbd85bSZIz7+o8V37lH5+vdG++uHcuw1Lv7LzL7E8L9+a6PnnT/ZXu5xfprEF9+YizKt0kGf/JznjRzrt3ntFuvKS3r3+nJzvPO1uN7K3HeGDrzvzA0uf+sNL9eel8wiS568RPVLpPnNR5f96zs3vnHa160j863U90xieTZJUXO/tR/lvDZq2ZpSbO+TXvby2+f/6YzTv/7gff2plTP/+Qzj1Pkhw7vXM+wueP7ZxNkiQLfKnz7pNn1+is1X7Ho511J0ly4o6dd3LMP7PzGfa3UZ09gEky7MLOe3x+fO03K90k2fzpzntLP/Hh91a639ii866dJDnj8c7c6ZDdflfprnt+77t49Rc75yMccOg1lW6S7DWrM38z4cjnKt33zPudSjdJDjvlmEr30IHOs91pxz5Q6SbJHjOurnRXm9lbK3rRMZ05lofX6cxX/PWwzvkvSXLXuM7aoVWvurfSveeK3jlJ1x/dOZvrqW07Y7xJst99nbVDpy/Q+Y46fNHe+8s//1rnjOrjHv9MpXv1uN6eydFXdNZEHHdq5542SU55pnO22mGf6byT591Lda43SV7fbvVK9/ejOuMjzwx09ngmyRGdrdA59pJ1OuEk7x/ZGf8fu2VnjnO/93XWaSfJE+M79+JbDOucDfTwSZ13ESfJhm+5oNIdeXPv/LpLj+ici37EMp33M4z7eW9M54olOnMsT67auQ9/9ure/dbhU39d6c6/c2efRJJ84V2d+5c3r++8y/0df9yz0k2SNS7frNJ96pzOWYzTT3ul0k2ST1ywcaV71Ead8a0kecfYzr7JM9fpvF/q4Hl659eNn9LZj3n+s51zrv6xW2cMP0kOuapzLuWH3tkbezl32OWV7tKv/rnSfeRP21S6SfLQvzrrLXbfbptK9/Kde+8zG3dr5/yLfTfpvaf306d2/v02OHR2pbv9c73P5Yce6OyH3n3puyvdA17vzRtN/ENnP8p5929V6SbJdWd05v3OP74zdnbiMZ3zxZPknnd1noM/u19nrfbyX+qtAX/Xkr+pdE/YrvM+syRZ+KDOms6bRj5U6X51dm9M54/zdeYqz35HZw7mR2/v3B8myQt7du4xrvhl713yP/nZ+Er3E1/qnG+30Rd6e+MOPqKzt+qe7x9e6X7jks4zSZKccWHnPZP77DK+0k2SF45+qdJ95P/HluXOqkoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+L/MwNy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAbm9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAwMLcvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg4G5fQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAzM7QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMFgYG5fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgNz+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAYmNsXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDwcDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDMztCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwWCe/+Q/nj1rSKZP/o/+J/8rU6dNn+PNfxsyY2ilO33CxEr3kbv/VukmyfQNN6l0xy60QKWbJG9MHKh0Z898ptJddMElKt0keeipVyvd16aMr3QfeO7vlW6SbLTq3pXu6889WekmybJLr1zpjllqRqX78hud37ckWXb06Ep35AZLV7q/Ou+CSjdJJk7rfBa9Pn2hSjdJFprR+ZwbP+mJSndo6fctSV4d/kKlO2LUqEr3thsfqXSTZINlF690F3hldqWbJEOmzlfpzjO887MYNnlypZsk8wzv3MuNGLpkpTtkwc53X5KMnGdYpbvg8JGVbpLMGtJ5lhox0PksWnnYvJVukiy/eOd+681KNVlrnmmlcjJtyFsr3dnX3FfpJsnaa6xe6b70l7sr3SmL9X6X/zHu9kr38fv+VenOM7T3fT1z1vOV7jOFsa1/u+SZ6yrdbdZbp9KdkkmVbpLkzSGV7JThMyvd75z000o3SQ7YeZtK96Vn36h0k2S/SetXuiss0Pm7Hj5t/ko3SWbO7Hzmz0zp32/62p1ukpTul199/elKN0leH9n5nnr+zc444i33/LnSTZKBCa9Uuutv1bmPGzmmN741LZ3nykcfHlfpJsnqy3XG5KYv2HmmHDJP5z4gSbbe+ZBKd8YCsyrdsbM3rnSTZPbQuyrdR9/o3SPec/f4Sne1VVeodO+4/c5KN0lWWn5MpXvzfXd2urdcW+kmydLLbFXpzpzcufdMkq3XW7/SPe+3v6x037XvQZVukmTygpXspef8sdJdceXOPW2SDB/3cKc7tDVCmey6bWcNyez5O3MaQ4ZPqHSTZJH53lLpzrNQZ65k3FMPVrpJsvlue1a6rzzRmVtNkpcnvl7pzvNM53du5sTe/db883Xmx2ems4Zk6NDOurAkyZTOz2Ke+XvXPGx253d56uzOfPCwmb01g0NKP+YZIzprSYdO7TxTJsmE6Z0x8ZnprUEYNXPROd4cmP3f/1KMnTWQfSbN+TUiUz/0+Bxv/tvdl21a6W41rjOucviW51W6SfK9IZ212q9u/atKN0ku/mvns+ZLu15e6d549dsq3ST53Z03VLrjD+o8M2439tOVbpLcOutDle5rU39e6SbJijd8oNI9dqeXK92fXv14pZskX3ns8Ep35aXHVLrzTOitaTlw099Uuhde955KN0k+vuYale6lK9xU6U5bYNdKN0lWX+nqSve8EddXusu+9GKlmySXj9u+0n3P4/dXukkyYupGle7UzTtr1U7/TWc9Z5K85X1TKt0lXrm10h27Wmc9bpI89fjHK935R65S6SbJuIc6z7nLDF2x0p31cOeZJElWXvJble5NKxxX6X7muWcr3SQZscnule6WF3Seo5LksHfuVunOf1vnfvnFGXtUukny7Us7zw5LbdiZO93gjjMq3SS5Z9k1K93xi/f2vP5ydGft1/Lf79xjPPalLSvdJFn2ji9Vun+c2Zkj2+y86yvdJFn/g9+sdM97eplKN0km3N6ZY1l2qwcq3VWW6nzeJ8lDT3f2LD/9ZGdMYMoii1W6SfLaQp3f5Q2P2LDSTZKpa3XGSK7fubO3+NXHL610k2TVazvPfnt89OBK9+KjO886SbLd1p2/68O+uEWlmyTn3Dem0r1xnc76ngcO/3GlmyQjH92l0r12p+9VunuOnVrpJsk/F+mMnS336Kcq3SR512Odtdpr7D++0v3cX3vPDttsO7zSvfC4eyrdfcf2ziJ44p7NKt171zqr0k2Sqw/rjInvuXln3mHiFUdWukky7ded9eV/W/djle5nXzyp0k2SG5bs7Lk7dvHOvv4k+dornXuBS8d01pDcfVNnfCRJVlyzs1fp6vWuqnR3/sZnK90kWffQfSvdX8zunMuQJPtMearSfd+xnc+4/c/pnUO3+adXrXT3Xq/zeXHfKb05tLePeajS3WPiVyvdJLn5Z535gftO7PxezLxwpUo3SR76Ymc/0Qf+2rn3fHbHd1a6STLq9521Dafu3lsn98obc/7syhkz/7uxovlGLJQ1191vDl9NsuIOG8zx5r/96czOZ8Hfnju50r3+N2+vdJPk6ekfrHTHn9ibqz90vc6+mzO276zzPeRnn690k+Rb63Q+y9/c6pL/h73/jParLNi97TMrpBBa6L33Kk1BkSbSkSoKiEhRpKnYFQWliApSVKSoKCIiCAhIrwIC0gm9KL1D6Akh/f2wX7/tZzz79sk5MrLHcXy8h/zuOVbW+v/nvOZVKt2vfOgHlW6S/GTt0yvdQ687stJNko/M0nlfMcf3O+Nt+3a2QE2SbLdCZ5+Pfz/+iUp34NKTKt0kefmre1a6q+/ZmVuQJPff03l388f1Ou+9nzi3Nzdy520vqHQ3H/FEpfv0Dzrjg0nygS9uWekuc+W5lW6S/GmpznP5/PM+Xeke8+flK90kWfG7nTMUNt3zS5XuBkf39vE77cTOPLVjv9r5WSTJjw87sNL9xZudeSf/XKL3fmyJxTrrUq/4+pyV7jrf6cylTpIf/fvMSvfbk3pnYGy6W+dd4e1PdMbxdjm8c85Ikpyfz1e6j8x+W6W7ydTe/rgvP/XNSne+Qzrr45Nk3Oi7Kt0DHt+x0n1o5s5nXJLctUHnd+Pwn3fej110QW8+xI77dD7jTtx9nko3Sdaa9YpKd8TMu1W63369Nw41co7OfLI/LNpZr3X8QG9Pww226Jxt8435zql0k+SolTrrGte/uDPv5MHOcp8kydw7dsZUTzl050p3/os67yCTZNyn/1rpfmjL3vfqM5+c9nskJclN93fOkzjm1e0r3ST52jadMa65Hu7cC0w6tzPukiQbXt3ZE/2je/bm1p1/f2f/s4EXOnvN/mJoZ9wzSRa7p/Oucr9rO3vCPnVw73P56Us7c2WW+9evKt0kmXv5zu/G8LN+XekecfiDlW6SXH3CzJXu6Dc787RfmdRbb/edqzvrch77eW8PukWP6nwuj139wkr3ixf11hKt/YnOmruV3v5Cpbv0uN57h59+sHOu94XFc02P+8Uhle5sB3b295m4du9cxeXm68zf3/1PnTXFP9vsmEo3Sc6Yq/N3PXHZ3jjGhR85vNIdfvhLle4HT+mtl/zaeudVupOunbvSXXZ8bw+zgU07e0rt9cABlW6S3HtV70yC/8bLE8fnx69M+7mXX5i9M78gSY5avnNu8LJbdK75pfc78xaS5CvzdeYO3XZM7zzbm+brPDM+eExnX5JF5tm80k2Sa4/ozFtf/YXOuMpuu3+k0k2SnV/v7F03ct/e+Mcf/9yZF/GZ3TpnU+75869VukkyaZ7OurePTunskXTrqN56hq9/6OeV7oRTflHpJsk2+3X+ts+a2Pn3m7RpZw5ckgx+u3MvsNGznfcKY+7tvOtNkp9uslml+8FbO+8rkuTL3+vMMRix8qaV7qMP9f79tv5D5+/kb2ffUelOvKp3nsQq83bmiLx3cm/86qK3Ou+yJnx/40p395N67wt336GzX+kn/t6Z33Pasb31KH955pRK95HFjq10k+Ta1zuHlf1lls6ehhefvnqlmyQb7XhrpfvKAqMq3fVGf7DSTZJP39p5rzff3Z37gCRZdY7OOOG855xQ6e7z987vW5KsuV3n2WHnr71W6R4/vje/58tb31Ppnje5NyZ3/Wc75/GcuvVhle5z5/TWM4x8v/O7seH9nf1xb1rxM5Vuknz2x513LPes2dtX5nvfvqbSneXoznvICY/13pG9vvE3Kt1Jn+6sM9tqu8586iSZeP63K91v/rq3r81rn+zsX3Lx7Z3Pz1/O0dlrL0kWuq6zF8+n7+6M9b37y95Zgovu1LmvPfBTnf3sk+T4/e+tdE/+Tef9zoQv9u6XZ7n645Xu/G/fWOl+5yuXVLpJ8rvvd/a1ueKgzhzUJFl80gKV7oJ3fqDS3e2szu9FkoybaWSlu8ikzj50P1yhMx8wSbZesLOH+9fv6K2h2XPRgyvd5dK55ncP6L03+sEboyrdd9M5V/HeQ/etdJNkzEc7e6JfMvd+lW6SjPp65/zf5f/Q+S75/WmdeTpJcubenT3Shp7V2bvr4m8tXukmyXkDnf1xL76/d/b2OqU9O1Zc+kOV7prpvA9OkmO/0VnnudOoiZXudUt39nZNkqk7jax053+1M08nSVbZvLRnx2/+u/9s9iWTTc6e9mshvnvi6tO8+R8v/r3zebDyXzvnxI89vbNmP0lW+dA6le5NB+xQ6SbJThd9qtK94InOnIh5lu2dYzDXHJ13ySct2nmPfNmfentbLP90Z93pxQf1nhnnfbTzXu/kJTt7Jn726ssr3SS57aw3K937JneevxaZ0plnnyQf/mlnHdldB3TOfE6Sv631vUp3uac670Lu2r8zRpgkk7/QOW9nsVmPqHTXXqJzhlaSHH16Z8+oA2fpvDtNks//cpVKd/vfdda53Pyr3vPzdu+O7HQP7IxfHT5X7x5jveGdM3iv3LR3/vw3Bt1Q6f74/EUr3W+e8udKN0l2veDESvdns+9V6V6yWucMjCRZeOh/+dD//2LQkZ351Elyybc675KHXdnZv+6iUYtVuklyy5XbVbq//mBnjHf+IUMq3SRZaXTnDMKX9/97pZsk887feXa/+N7O3mpffeTgSjdJjl5/vkr3nfM639dr/rE3V3Tl835X6V5/ZmcOeJJ8/5nO3MsPbdZ5RvvuHzt7zCXJ2YM6634mbdg5Q2j8jS9Uuknyy/MvrXR3XL4zVpQkl+x/faX76GqdOcR7r9Yb07nv8Scr3cG/6MwBf3TLzlrMJJlj+8773p+usHulmySXLt0ZFzj88Nkq3fsHfazSTZJ11+3s+bDM1M7eQWtc0ZnbmiRvfO87le5z+/Xmtz5yy02V7sfe6OzXPefbnfk9SXLASZ3PuTNv7YypHj259w707h935uResn7vzPUFF+78POZ+pLN/6+xrr1jpJsnYvTrrUba4ofN8/ZdfXVbpJsmPr+7sK/rYEZ39ApLkwsGdtWbPTuzsMTLohs7eM0my12ydtamXf2HrSveBP/T2MXtjaGeu9hy33VDpJsnEwZ35kdtM6uxFsMDZd1e6SfLgjp3PjMd/3pk3sdjHOnvFJclpr3TOjbvst72955detDMf6tQ7OgdM/Wqd3v6gP3nj6kp35Zs76xl237E373n+F3etdFe8vTeOuPZHeus7/nd6d0sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H+Rgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCmf4n/+NJE6dk9CvvTfOLGBg6cZo3/2OuhRaodO+5/tlKd9CweSrdJLnu0qsr3RGzLVbpJskCc0+odMe+M7XSHTbHg5Vuktxz87WV7labfrbS/cgeK1a6SfLMIy9Uuu8MH1HpJsmUcZ3PudffeKbSXXmeWSvdJFli8XUq3VHP3VXprrLQXJVukvzzwX9XussvsFClmyTvzTpbpbvkEqtWuu+NHV/pJsn4sW9WumOndr771l5uyUo3SZ6/44lKd83hy1e6STLzrO9UulMmdj7vh83yP7pt/5+1M6jSnXnQ0Ep30vuzVLpJMjC09XPu/fsNnzKy0h0/8d1Kd4F5l650k2Tc+Fcq3dne73wuD51t9ko3ScZOHl3pTh7b+y6Z+Pxrle78L75e6U54sPMZlyTDl5y70j1v6uRKd2rn8fr/r/MdNWhi52eRJLPO0Xl+GP3mtB+PS5IPLrxcpZskd77QuUfMhNYvXef3LUleGT2m0r33qScr3STZef75K91BKT2vTpnS6SbJ5Jkr2cFDO59FA0PfqHSTJFM639fzztr5GSfJ84sPr3Sv+mtnrHbO0s84SUa/3bmvffLBByrdZT64XqWbJO/P1Pn7W3nxxSvdJHnpuc444uILdt6hTZ5toNJNknsf+lelu+Saa1a6b7/YGcNPkjff6HxmDJtrlUo3Sfb73s8q3Veee7rSnTRy3ko3SYa/1xm7vm/BRyvduWZauNJNknvuvqjSnWVQ7737o/c+XOkuOV9nHPHccy6odJNksaU647WLLbNIpfvKq89Xukkyz7yd96tvv94bX772mocq3TVX6Pz7Lb5abxxjltmHVLqDBneeSRaee9FKN0kmvje40p00uTcfY9y/3q50x7zc6S48R+f3LUkGv98Z45o4dVKlO2TYsEo3SSYN6rw3mjW9e8Sk8+5hYGLnu+T9cZ3PiyQZNrLTHTKo87s8Pp3PiySZWprnOHhYbz7U2CHTfm7tlEH//djW20Nfz2UL/WEaXs3/ssJym03z5n/M+aPOv/vJc3y+0t35+lGVbpJcdlznHdkTe/fmPa+46Icr3e1uGVfpLnLpmZVukrw0/1uV7kL7XFrpLjz7xyvdJJn4TOd785/XfKrSTZJtx36o0r3i/PMr3Xk/3pu3/o8lX6x0TxzbGb9a7eo1Kt0kGb3aUpXusPV/W+kmyZTrOu9Yjtmmswbj9pWeqnSTZP5Z9q1013ylMwd8pYH3K90kufn0UyrdWU/cr9JNkiPf6vyd/OHSpyvd9dKb6/vq/MtUuj95ZqtK93Mf6K2Z3OKuzvjjncv11qNM3KUz3+LUL65W6c67zfaVbpJs9ExnnHCOUV+rdNde8wOVbpJcds8PK92nh3TWjCTJvNd35susuGjnHnHYIsdVukly+Zx/r3Q/eG1nfOTZ13r3yw88e1alu/FCvfe9oxe4odI9Y53OM/YpS/TGYif+rTPfae01OnPV5nphhUo3SQ6YY7tK98+P31zpJskTa3S+p/Z4tvN9/e5A72dxyWyd8ckvfbhz7zlmk9682Y9f8v1K94YhX690k2TogydXut+4qvNZdPQdneezJNnqIwtWulMWu77S3WS1zhzUJJm80m6V7uqfvrDSTZLVTrmu0n3w7c479WXP+1ilmyT7fbgzh3/NV46tdCf/44xKN0nmXL7zmb/t9pVskmTyAttWugsssEOle9huF1W6SfLA47tUuksv/stKd4MFe3MND/jsaZXuBj/s3Rcd+4urKt355u2soblr9978rIf2fqzS3X7LEyrdff7W2y/nU1+4tdJdcmLnZ5EkV47vjOvMuuBBle5rU7apdJPk1rVuqnRPfLc073KLlSvdJFnv8fkq3afe6e1FcPITnXkvO6y4ZaU7bt3eOMaLc3Sed5aZeGOlO/93KtkkyYvXd/afGX3b8ZVukiz89WUr3SdP6fz9nbhJZy5Ukmw1V2dO7qD9P1jpzr/JOZVuknz+8511I5+cbcdKN0mue+0b07w5cdJ/93s807sPZs5rp/3f1oI3/WmaN//jlHM699hjDj+80j3vrx+pdJNk1Vk784ae2eDblW6S7LPcHZXuOe/NUenuffzZlW6SnP5OZ67an8Z+tdL96m69Nd/DX+/Mmd34yJcr3ST57JmdtR33f2LXSnfrbX5d6SbJ3J/rzJW58B+dsdLVT/lMpZskpzx/RqX752xU6SbJcm92fje+e2lnfPCU3XtzZkd+v7N33Rvf+WalO9e/O5+dSXL0sA0r3cv26byrSJJD3+uM4x2+4VuV7qVf7z1vHPfuJpXubVd23psefdYtlW6SPDWys+bn7W16ZyhsW5ofsu9jnbH/C7fvzTM859TOO6Etz96n0n1+9A2VbpIMHdu59zz69d590bf26My7nHv8EpXusvd1fi+S5Pzttq90T1h1ZKW78O86a4qT5OvHd9p3TOiNQ/36nXUr3UMuvqbSHb1zb3/cd5d4q9J9cvD9le56q077fR7+Y6lzOvsFTF6td49x8b+/VOn+8J9XVLorfekTlW6SPP34FyrdJQ7p3IdfcGRnXmuSzDvyxEp39IYXVbpJssXvOvO+vnV1Zx/NUXd1zkhLki9s2ZmPu98cH610Z1q28w4ySXZ7d/1K98Qtey/rV1ig85lxyRKdc7buWGvvSjdJfvJu513JRXvcXul+dN3eWoZP7bJzpfvvn65e6SbJtS937pe/+1DnjNC5Vujt1T1+Ymd/nws+3Nm39Y67nqt0k+SAhTeodD81qbf34MWn/6XSvebKv1W69x79lUo3SR48pbM//J6Xz1npPrv77pVuktx9Yefe857RvbVgX/rSxpXuSZ/fvNLd8pzez+LxTTv7Pq21bOcZbdXjOu/Gk2TN9Tr3L6v+uHMfniRb//XySveOLTrzDNe5u7cf37PPdp7Rvrt7533+KhM7ewUkyW9/3nl2GDRz71zM9Rc8qtL9zUOda55zls66jiT55zydtR2jjju10l3knd5Y+3nf7exp89A6vXMDNjugdbbiqP/qv1r04QXzg9UOm7aXkmT1DU6f5s3/2PDMzt5ni5zdOSf3iBeurnSTZPRnOufkvjxfZ4+BJDn91s47ltV/dVule9X9nbNakuSmn79U6W7/7QMr3XM32qjSTZJXz++MJXztqt55mjdv1pkfefNPOmPpa+/Xuze59MwvVrqjn+2M5W31zd6a709ec3Gl+9wpvd/lG0rzyx8/ujNX7YmX/1rpJsnXD12r0r376M6cwF/v19kHJ0lefbbT/uJi91a6SXLl9zprcP+SzvPXlrt09v1MkqvP73zOzffBzvv6sSf0xhJGLPbpSverJ3X2i0qSQwbvUel+ca3OnM5555725xn9x2wLPF7pzvV6573QhXP29ti5d/jPK915R71a6SbJred29uBf8OwfVbonrdzbq/vamTvPfqvvPVul+9uze3OSvnxyZ6/n7ff9SaWbJKM+2tkffvm/dPZSWe/e1SvdJFns+51zAzY4bIlKd6Uf9eY933ZHZ53SqE90nkmSZMJfOnuU7XhH5zyejbZer9JNknOu6Iyd7Tu1s+/1kbOPrnST5Gff65wHft6CnTnESbLtSp05Bo+/25nT+cTlnXdvSTLHA51nqX2W6qxnOHnJzn1ckiw/04OV7plf7X0WvTqs8/l52tc6c4deHjGm0k2SH/608/m58Rafq3R//PHOnPUk2fiNnSrd4x/vPDskye0r/6vSnX3s/JXuOw/vWekmyQbndu4xlly58z5q7zt731FbTn6y0t3vO533+Uky60Gdd5Wff7iz98zqZ3fWuSTJGV/+VaX723SeKefevDMGnCS/H9uZU/2DT3bOIU+SS6Z0Pj/3P6Pz/bfPUb0zXu+4sPOZcfHWnT0qBt3XO/v3sH911v389I3e2rhLpnbWgw0/pjOO+PD+netNks9d0Rnj2n++zpj4x/7Ze5+/3cGdfTxf325YpZskK67fOb9yo5k6520+92BvbdV3b+mMCyx4WeeZcruLz6h0k2TJAzvnKY2Z1NknP0kWOrAzDnXxb/67PZDneezu7PPRaX/23nVbd55lkuQ3T3fOnX3qtUcq3UGX9Z4Zdzy/s6/vimdP+z3J/2Ofn3b2oBgY8d1Kd4fD1650k+S8MzrnAvzrqWMq3fdn+WOlmyRv/7DTPnbK7yvdJJlv284c/iv+3VmD+8U/fqvSTZLN3h5Z6f79k5398s9crTf+8fpSnTPhdvhHb2+ZlXbqPPPfMfOVle5yQzvzQ5Jkob93vv++fFZn3cErH+jt0bnd8513WXs9/rNKN0nG3dDZ73niDp1njkWO7t0vj3+ts6/2GU92zgL/8LKdPdGT5OChnfOvD127N/fk+KU631OzfPjNSvcHf+uNa770XmcPiplmerrSXWTMTJVukhywc+dnscjDvX2ufjqos6/986t05vBf+6neWU2vnNuZt37Bdzv7cfzo3c75n0lyyMxPV7pf+uCmlW6SLPfVzn4qm074ZKW77MoPV7pJcvpvl650F72qcwboqWt05qwnycnndfYzGrbVTyvdJPnLwZ11d29/szPe/c9H/1npJsm/Z+usWZ78VGfcevPRvfPMvn1eZ07EPcuvUOkmyR6jOmvjtj2lc77NE7P05hr+ZYvOuMDXftu55rnX6uxllCQf+m3n3vPmRSZVukky7wKjKt1zbz+j0j1lv857hyQZvmRnj/+t9+qMtf9sn94ZbP+6/ulK9/YxvfuiQ17pjEP97rXOPoG7X97bV/SaTc6odI/YdNrvYZYk47/U22/ls6v+otLd72tHVrpJ8sOzzq10px7Sucf41Qo3VLpJstb5W1e6X7+xszbu+Md7a6HPPqrzHfX3n/TW33/4uc5c7S+e01mb85WDP1vpJsnzE1+rdDdbcv9K9/Cbep9xZ1zT+f579Ize2abLPt+ZK3rTB0rnxx7TWf+UJPeM7+y5cuqkzj3iL3fqnBeeJN8cP7nSPX373nvbaz/XOfvhnPGddeHLrtV71/XZEzpri294dlSle9WsnXfjSXL7Wp17gSdm2qjSTZI11yqNcf0/3CIOdP6/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/XQam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCGb6n/yPx459J3fddu00v4gnnn5+mjf/Y5utd6l0l11rg0p3+CzvVLpJMv+LIyrd158ZW+kmyXwjZ610h8w7qdK9+4EHK90kufe+xyvdN175WaW72QabVrpJstQqK3bCrw7tdJPMNXJYpfvo449UukssvlSlmySvvPlEpTt8bOfvevDU2SrdJHnhqUcr3UWGLFjpJskaI5apdEcMH1zpThw+T6WbJJPHja50h018v9Id+6/e9/WyQ+ardEcMmVDpJsmw/9lt8P+xmUrdTOr9LEYMzF7pDhkxtdKdfVDvZzEwdWSlO2hKJfu/2hlX6Q4e0vlenTTmrUo3Sd6f1LnfmmVE529k8OB3K90kefu9zt/fXMN73yVvTB1S6U59b65Kd/zkzn1Akiz0ROfvesrUzofR4CGdf7skmTKxdc2DKt0kGft253djkTVWrnQXW2hkpZsk957bGceYPGSg0h0xvPe7/NgznfG+zWbvPbvPObjzjDbToM7Yy7CZOr8XSTJ1YudnMXjI8Ep3YFJnDDhJJmVypfvcu70xuXne6ozr/OvxWyvdBWefudJNkiXm6fxuvDO1c82DZ+v9XkwdO6bSfeWNtyvdJFlpmSUr3XFD5qx0X3vu2Uo3SZZaYaVKd+jcnd+5V269vdJNkkUX37rSnW2RhSvdJLn2sssr3WVW6fxeLLF4cXz5jU531rmWqHTvvPe+SjdJhs/R+Tkvt3bpfWKSO27tvBO+65m3Kt2hA71xqMnPzFvpfmjNFSrdWefuvUObOrXzh732autXukky00yvVroLLbtlpTv0/d745PARnbkp497r3GMM7t0uZ8ygNyvdl27r/L4lyXM3XVjpDh/aGZ989fXOGHCSzD9z55djjpnmqHSn9oZqM3lCZ7xoTF6rdJNkltk7z2gZ1JmDMHRo591ckgwa1/n7Gzpz573f+1N631HDZu38Lk/u3SJm+PBp/35uYNB/P077+pgp+eNt703Dq/lfJm32vWne/I/D/3J+pTvP4R+rdLeZfblKN0muX6Yzd2GB60rze5K8/aHOs8HhS95U6X5kkc58ziT5w9Wdn8UaL/6y0s3Zx3a6SQ4b0nnHcu/ML1e6SfLomGsq3RsXWaTS3XzBzudFkpz68sRKd+F1Or/Lt7/SuedJktl/83Sl+9WVtql0k+SyhbetdAcv2Xm2m+WOznN5ktxw2TqV7surnlzpPvNE7933AYt/sNKd98A7Kt0k+dihq1e6L3+981n0zojOPW2SbLbx05XuvjN15mf95qu93+VjN+/8zv3h7o9WukmyyXOdOQaHXbtqpXvb8Z33m0nywOc7n/lz3b9FpTvfk7+udJPksqX3rnR3ev/KSjdJxqQzj2PMiM6csotu6n1HLTC18/7tyi1vrHT/usF2lW6SXHv5npXuKuPHV7pJcs3w/SvdJRc6s9K98OOdd3pJ8tmxi1W6c4y6tNJdsDe9J/Oc23mOWvj5nSrdJPnKQi9UuoNGrlvpjvhwZ6woSTY76hOV7ju/6bzvXevfnd+3JBk74SuV7rKz9P4AZ/r6Nyrdnc+7otL9yIjnKt0kueC11yvdeZ/eo9JdeKXOvIUkmeW5iyvdNY96uNJNklnX6aw5HzSy8x553Fy99URnLb9epTt0ZOear9jtX5Vukvy5dO/5k717v8sDD3Xmgd/9oc6951oTes/uC038e6X7wseuq3TvP6Uzbp0k7/xm+Up31W0/WekmyZkv/7nSnXPcApXuRtveWekmydyPv1LpDh6yZ6V75TlrVLpJcsQynTkIX55rs0o3SWbeujO+/MglT1W6yy9zWqWbJEct2rmv/eIis1S6Cz3aWRuQJLfN2Zn3ctKzvXddk977TKU7930XVLoXvNnZLyBJ3l6v0x5+d2dfovefuKXSTZL5JmxV6b66T2892JkXPVbpHrND533+xx85o9JNkvHbdPa1eX74qEp33CW9OeAvfrIzXnTvIb31KDMdeug0bw56/r+7Dxjx4jz54A+n/Vj6H9btzRNdd1hnPfnMpbGPof/4W6WbJJt+Y2Sl+9kLrq90k+TJqzvj3e/u21mD9MbNnTH0JJl4Tude+JAdfl7p7j6qM6aSJAsssGalu/8unXnJSXL5Xzr3f++ccH+l++zznXkySTL3+Z3v+Tcv7qxNm/jgcZVukrzz+t2V7hq399airL9k5+9kofs7c3D+9NSOlW6SrL55Z7+2r912SaW71Dsfr3STZNP9O3/XLz3a+b1Iktv+3VlntuG2nXknd534k0o3SXaY8vVK94PndX6Xf5BfVLpJsuWY/Srdb8zfW9v749POq3QXuXPDSvfBSc9Uukly+VOdscerJ/yw0t1h4E+VbpL8bevOc/Ady/bOc3nu5M9Wuhf//juV7luv71bpJsldwzv7ta3x3e9Xuu8v1/uO+sCbV1W6iy25V6WbJB+c99uV7r37/6XSvfHw3vuVXR87t9Lde/ZO99Nvd/ZtTZLXf9OZX3DlfaMq3SQ5577OHOL7V/1dpTvHNWdXukly4T23VbobHPB0pfvSDp+vdJPkjC/NXelu+43OuVJJsuhznXmiizzTeVe47Oo7VLpJcuwuh1S6n/pZ52d8waW9/VX32uuiSveZPXvXPPByZ37IQud29qeeemDnPjxJnr6iMx9w7+92xhHv2fXeSjdJPvV8Zxz4+wf15on+7O/T/kzhJJn58513zZfs03kHkyQH3Nd5p3jJGgdWuvMN63z3JclJX+6csfyhn/+h0k2SZ3btnGV90MGd+cNvfrq379OOX+rM871z7866nIln9jYVfffVab9/YJJsdvcPKt0kuW/8RZXuGbt1xs6W3rf37PDjtTvvuuY5pbMu9cLBvXGM3+3UmT+8xMm9934XfnTPSnflOztjn4+M7Y2p7jN7Zw7Xoct1xht2uaQzHp4kkxc9pdJd44zee/cDzvlNpfvVezrzrO7cuzdncIMfdd51zf2jzl5Vg09Zu9JNkhN+/GSlO9uea1W6SXLTBZ3v1eEZ9V/9d8OWHZalTl962l5Mkj3vKp5BeEznb+Bzv+p8zhx7eG/84+0vd+YEnjG4sy9Cknzh0y9VujOf1bmfWu3Y3t6D293440p3tc0775Fnu7Ez9pgka23T2fts0Fa9celfX/7NSneZXb5Q6a6zWWe/miTZ/N+HVbpffKCzB/8hS/fOjXpsaGf848MvnlXpJsk6Qz5Q6S7yuc5n0U7b985QGDtxk0r30Fk7++39flxn74kk+c77nb/rtc7rrcFY8/rOPeLZd3eezUcdtkSlmyQL/KOzJ/NfH+iMix32t39Uukly+iud/Y3P2OiHlW6STJqvcz7D0FserXQ/kM68vST5+IjOO4s9duncx41YvHNmR5LssUZnzd0K+/yw0k2SI7ft3L/Msv8Dle5tD25e6SbJ02919pVZa7cDKt3tZ/l0pZsk857SOWDt9FVvqHSTZPjKnbkAQ87rjMVOfGffSjdJzt63M6f6Mxt1nt0n/K2zv1WSLHV/Z67h7C/23tf/c5vOPh8TTu3MXfjxJgdXuklyyCGdcahPHde5F5h6SW/979f/0Jnfc+09q1e6SZJt76lkL7m4c87dlcOmVrpJsvocnTGuJ77fuY97ddPeXsEr3tqZq33oRb33hbse/MdK99FFOvcuky/prFNKklu32LnS/fTCnfHJgx44odJNkqs+2Xk/N2GN3nqihwc6+z9NHdSZAz7xiwdVukmyx6jO2v7Vnu+ciz74vt4Zrz/fvrM27lP79OZRzb5X5wyoeY7u7Kn9w5M7Yw1JssXuv610V77z6kr33ZG9vZ6//3xnf86pd/a+Sy6Z2pnfsO6BnXvPR67szQH/7hGdfVFm37kzH+rnx3+30k2S6352c6V72a69c5r2mXpSpfv8U511I4PO6O1vvNDFq1S6k0Y9WOkef0Hn/j5J7j+hM1f00ONerHSTZOYXO3PiP/2RzmfRkXP37pcn3tQ5N2eX0zqfcTc+fFGlmyT7b9CZUz1s995+Y9ud3frd+NJ/9V9NXW6VTLhk2j9D/3CR3nmaRzxweqV77dDOmUbbrbN4pZsktx/Rmbsw5KjfV7pJ8oNtO892c1/WWTc82+6VbJJknxU7v8tPztn5nBk1qbOXWJJ87pTOfJk3Ntmm0k2SO87fpdJd7SedZ/4Xru7sY5skP72tM1f0wAM7Ywkrf7kz1yJJVvr+7JXucv/ozHVKkvMv6+zF+MadnXMTv7FR7x5ji8c7cwxm/XTnnnW2P/XGpR/bo/MZt/qsvf3WF12tM19tg88fX+meM19v3f6u13f2Hzz/2c5+Kve++1almyRXbdb5Xt3xkXkr3STZa9POvtoPXjax0t3o0d5n0Uv7rFTp7vnn1SvdL3ywtw/4l9/u7Nk213ajKt0kWWC2SyvdFa55utL96G4jK90k2X+1zlj6Np/6Z6X7lWN6cyK2n9BZc3fV33vnod7ySOds5i8OdLoz739GpZskf/pa59lhgR915mrPmd7v8iWXd+aATxnSOSctSSYdWzor93ed8w6mPNX793tnrc7v3DLXDK107/xRZx+JJPnAhM7eQNv+qrcv7Ha3dH43dri983d9xzpfrXST5BOXdwav/3TiDZXuLWM6Z9kmyckbdc5c/97NS1a6SfKx0Z2zc9a4orOXxB0Pd+YNJcmywzrvui48tzNWu/XF61S6SbLI0M5a6K1u6+3ru/mSnbHrEw7uPEd9dJMfVbpJMvi+yyrdzx9UOhvs9701d9v88/BK99XLeuf07rNH553GWYM6eyb+Y4OnK90k+dTYzh7jbzzXmZP068GdOXBJ8v2zOnMQ1lrkl5Vukiw8c2e+0/nHdMahXp218545Sc59pvOu6/DOsuIsc1pnjW6SbDbmc5XuGzf29sR8doHO+emLlY7BWHdyb67h5cM6e6+NOvPCSvewx3r7gC/1u9cq3S1+fHSlmySnrtc5W3jeL3TWjfxqmc78ySQZ88fO+vtbN+q8t73ynN5eqesc1VnXP+EzX650k+S4n5X2D/rT/34f9943DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2Rgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIZvqf/I/Hvz8m/3rspml+EU++NXGaN//j2VefqHRfHD2h0l1g4SGVbpIMmTq40r3x9l9XukkyZULn57Hskh+udFdbu9NNks/vMEul+8BLd1a6s8wyvNJNkkGv/Y8+uv6PzT/XrJVukjz17MOV7rhx4yrdsTMtUOkmyeTRL1e6U0bMXOkut1zvc3mel1aodIfOPmelmyTvLfBGpTtpQucz4/03Ot/XSZIpc1Wy/772mkp3wSkjK90kmWvYbJXu4Pc7n/dJMjid37nBg4ZVurMNWaTSTZLxgzp/11PfH1HpDs3QSjdJxg5MrXTnnNLpJsn4dD7npr7X+V4dNGhSpZskQ2eeXOmOe/+ZSvfdtxetdJNk5tk6P4vXJr5e6SbJTIMXrHRHzPpIpTvzlIUq3SR5+e3Ov99ms3V+xkvNtXilmySrbb9vpXv9X35Q6SbJW6OfrXSv+WfneXXkyNkr3ST59OIrV7rjX+t8lwwe0vu+XnBc5+e83PDev9+cs3TGBWYa6NwjDkzqjWMMHvJKpfvGm29WuoMHlqh0k2Se2VesdLf/4HKVbpL84pq/VLqrLNa5l3v2tScr3SSZZfmlK92R8wxUumPGjK90k2T+2Tufn7OMHVPpJsmYd16sdAeXvkrmnqf3fmDe+TvPq1Mnz1vp/mvIwpVukiy0TOez6PEn7ql0k2SRWTs/j6kZW+nONrjzbi5Jnp86utJdcK5Ble6eB51a6SbJhZd02rfc1HkHmiQjS0PXgwZ13knNNcfclW6S3PnIQ5XulMmdcc/FVuqNYzz5+L8q3Vlm6r33W3HFj1a6wxfq/M69/uTzlW6SzDbhnUp3llnmqXQHFb+jJk6YUulOWX1kpZsksz+4fKU79ZnHK90hs3bGR5Jk8JDO2NmYyZ3fi9nSec+cJJOGdcZ0hgxaqtJNkrff7rxrHpj8XqU7ZKa3Kt0kmWP2zt/JuHc74xgzTenNOXtzUuf7b/BA7+9v6Jhp/+83dcp//283bMzYLH3ztH8++OrDvXff/zjpg5XufH/7fKV7yoaVbJJk8tyduYaPvdaZB5Ak+U1n7tf3j/hOpTv7vG9Xukny9ta7VbpvXPv3Svf8b25c6SbJqG07nxnz5uZKN0muuqIzzvTgkhdXugc91/mMS5Lb3+08c7ywUuezaMR1vXcsi+x+S6X7yN3bVrpJsvzyn6p0Rz3SuWedsEbn+StJXlq986W98FdPq3S3nqcz1ylJZpuj83Medsa0X2/3H7s/t0Ole+2tnfdCyyz3j0o3Sc54qXO/ddk/vlnpzv2x3jqz0SuvUul+bPFzK90k+efXO3/b+250daX7z/l7zw5Xbd+Z7zTP5Z35BQ+N7s0h3vNDX6l0n1qwd48x6drbK92nRixW6a6VzvrDJHlurWUr3ev+1Jl78tAO61S6SbLBFzvvyM76e2euYZK8P/82le7nxm1Q6Z7++pqVbpLs9LnORIBnN9q+0p3t0c49UZJsvf4hle6Dj3eeKZNkr+xZ6Z675FuV7r23dMbNkmTBuc+qdAdt0Rm3/vuKJ1e6SbL/8531KKO/fWulmyQvn/iRSvczj3bWuQzbvvcdteb8nfW0l685R6W702Zfq3ST5L0jOvOTV5z8m0o3SWYe2fmcu/73G1W6q6/5WqWbJFnwhUr2+j917gUe2rb3Hvmi1zrPOws801mLmST/Xuz4SneZq75Y6U7d+L5KN0nmXOSASnfwvzrz63bdo7fHyMSr1690zzqzM6aTJLMM68x3mvxOZz3YlkP+WekmySGjO3Ny17/l2Ep3783WqnSTZK17O2vuTp2td4+/xgKbV7qbf3H/Svevb/R+FvPc2JlT9vKKnXdov16uc0+UJAtM6Ly3XWtw591ckqw37t+V7sIrdd7BfPmA3hz+1ef9Y6V75/0nVroj5uusn0mSbT97dKX73u/2qXST5Pj7O3vHLnnY9yvdWTb9bqWbJKMHOvfiIy7drNLd4rLO3rxJcvOJnT1pJ448sNJNkn8/Nu3XeU58/7/776Ys+lbe/fmF0/Zikix00HrTvPkfV1/cWZv21hKd/TlvXGrHSjdJrnj9e5XuEt//baWbJFu/dXmle8g1e1a6v9rwQ5Vukiw9cF2l+7X1H6t0lzh150o3Sb78zB8q3Y9t3/l9S5Lv7btdpfuD+zvjpXM8t32lmyTjn+48b1zyuc79w6f+8dNKN0meWr3zXL7i05091ZJk+ZWOqnS/dUpnP/RL0tt/4iOzdsaB7v9JZ0zzrAX+yxvA/wNbHdeZj/Sbp66tdJPkZ19eo9K94bjOe+9NpvT2nzj6K6tXuhtc9FKl+6XjO2PdSfLIsp35SMe+eWOlmyTL7PXZSvdLW/+k0n3pjI0q3SR5bVRn/fsc+3yu0t03m1a6SXLM3zvzDO/ctzd2NdeIzr5cR+/T2Qduk206fyNJ8tBRnffTz405s9JdZrNvVbpJ8onHzq50r9yqMx8iSZa9u3O//IHS3ksT5u2cC5Yki9zd2dvimJ909uI45dzOHqhJMsvVn6h0n7q9s49Ykmy0x/mV7sdveqvS/cMRq1e6STJkns67t00mPlrpnrtxZwwxSebf+a+V7t6n71XpJsnKB29Z6R7z3AmV7huf7J1t84dD76h0L16283n/zlOd+8Mk+ch7nb/rtZfuPbtfMdfqle7Lo79d6R73y/kq3ST5/ec7Y6p/u6CzX+IWq3XuaZPklTGdz6JvHdI5MydJnrro+kp3u9+U1tG+9aVKN0lOOr2zp+/4CzapdEefs26lmyTfXPCKSvff2/TmRv52499Xuttf1HlePejpzlhDkow5szM+Oevkzhrdy049vdJNkvU27/zOLV4a60uSHy/V2aNirzs76+IGVuysCU+Sf554f6X7yKcOr3TvGHxipZsk2192aKV7/0p3VbpJMuSFzrmmi4/urFfOo1d1uklu/dwlle4nRnXua087uLP2KUn2fK6z7+Gme/beYa+0dWeN7s5bdO7x1324MxcxSb7xbGev7tPe6MyzOvYfnetNkvUu7ey1ssci81e6SXL1qr/shC/77/6zKWPG5r1bp/1z4yu/umiaN//jE/t01rCcenFnrszsEztrK5Lk+h//udJ96MedseMk2flznTll9z3YmTc76snefdr+n+w8g/1juS0q3VdO6p35PNednX1lFvpC73ygS9fo3PfsfdJOle6bP1qt0k2Sv63V2WPnxLdKawN+vWulmyQ7TX6g0p3pid47lk1e3KXS/eXCa1e6W33yA5Vukvz65s45MPdd/LFKd8gqvXHNS+/pzKketX7nfitJVj2hs6fvHT/p7GW07tW9/Y1febPzDHbboZ3Pzw892Pu7fv/6zprhtf/U23d+/lU7v3OXf+erle7tg06sdJPknd2+XOnet3Bn76UXLj640k2Ss2/r/PvNO/bnlW6SfHlMZ93k20t19gB/6ojOXgBJ8q1Pdd5RX3LDKZXufPv2zsldZ7fO2aIbfLiz5i5J7vllZ63Lh17t/F2P3OkXlW6S7PF253t1w3M7f3/3rd87W/S933XWWT90QG8fzaMenbfSXWTpzruQbZY6rNJNkqdO/FOl+9pKF1S6H12z9+708Uc7a4vn+HDnnJEk+cwtnTO8lv9FZ4+y/WZ+sNJNkiX+0ZnHse65nfXbj3ysNL8gyW0/eKvSffjAzvyeJLnnjW9Uuocs3VlD8/IPl6l0k2SuUe9Wuj/9Xmd88htndNaFJ8mU33bmis76+G2VbpIM+uEnK92Rnx1V6Y4/rvN7kSRbr905I3TMnp114Vsc1Fv/+4fzO2tdDv1zZw5ckrz7+c6z3/zrd+6X919tq0o3SUat2zkPa7dvH1Hp3j+o93297UWdPe7O2qW3P+7s93fOeF3whRUr3d+d3Du7ebYtOuPA+13f2VPxyO06Z7kkyTe327vSffX13rmYX9n37kr37IM7cwInztE7W+MPH+is7Z/0r877uatGH1fpJsln9+jMTdl4g86+DEly1T8788A/vU7nzJX9vtLbk+/Er3bmY/xk8SUq3V0O7J2reMYWP6t019y2M26WJCvfObLW/m+8+O7rOfymab8/0Lpb99ZaXjjp4Er3yCs764bvuqN3psqG/+x8V5x4XWducpLsfEPnGeyycZ15e2t8tffv98sznqt0/7zGk5Xurld29lVLks8s31kfsOK6veekbc7tzNW+brXOOQaT3uvtDbTPHhtWuh9a7pxK9/23emdT7npKZw+f55/urTsYf3hnD4PXflwaC1q2sx45SfZerLPP1RW3dt4XfvzbvXWnP12ns0fu62/2zt27/+qPV7qnLdS53/rIQa9XuknysyGdd2QnX9/Zl/I7W21f6SbJfc911o18f9HO2YZJ8ou1Fq10D1iks558gTPOqHST5JxrOnNExk/urO1Y4Y7eOas3f7Hzjuyl0Z35uEmy4oZ/r3T3vPngSnfqt3tnxYxaZeFK9/fDn6501/3J25VuknzwqM4eFMPf6831PXLFzt/fu0M69y5ffXHan+v2H2t+qrMe5d2vdeZRfeCu3n6zD63UeXY4/9TeerAtN+qc1TT3RZ05EUfP0tt7fqn3Oz/nn/1o40r3qK/2zqP79DFfqXQX+ndvL4njp3R+l1e4pjN34fCNb610k+SkjTrrMY86prN/ws3ffKvSTZKPHNg5M3j4sLcq3SQ58p7ONa/6cufd6aCNOvsaJsmvvn9ipbvy0525C985u7d+9PDTOmvjXn2497yz/lI/qHQf+nRnL7GjXuydOzbloc4+FZv/ozO3fPN1euPL907pvNM4b5dJlW6SHLTKWZXulg91zh07YeN7K90k+eWbnfWYEw/7eqV7y0VfqHST5HcndN77/fWgzryvJJn/M8Mr3VWWGVXpbvLH2SvdJFlxr87vxnEHdfbLf3hcZ/5Bknz3S531tKPe6u039ugPO/u37vLNzpkgH1y4dz7KoI93noPPWqrzDvu1/To/4yRZ6OnO3ofXbdsbX37iE5337ucc3xkTOH7DIyvdJDltuc7+JaNOe6vSPW5I5zyXJDnyA6tXuhcd0Zsb9vF9env//u/0ViMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9FBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIZvqf/I/nmHv+bPvZr0/zi3j77benefM/nnxiVKU7dVCne9LPr6x0k2RgyMhKd8NdPl7pJsltF1xW6T7y2LhK963XX690k2T7HbepdN999M1K999P/LvSTZLrXrqu0t1xxw0q3SR58Y2XKt3VP/qhSve1J/9V6SbJgguvVumOfe+FSjdvzdPpJlniAytVuvMuPFulmyTvjx9S6T5+712VbsZN6nSTLDX7UpXuXG/PX+nONnyWSjdJhk2aWOkOH9T5fUuSuWefq9IdPLXzs8iUKZ1ukpkGDa90B6Z2/v4Gj5i30k2SOfJepTtsau/vL1M6v3MTho2pdAdmm1DpJsm4sVMr3aGTlq90R458t9JNkqmDFq50Z5r8fqWbJBOn/o+GJ/6PDcv6le77A6Mr3SRZYJY5K90vLbtDpbvro3+udJNk/lGdMYHW13WSLLHchyvdKRM6f9cvPf1cpZskE5fr3C+vMbmSzcJD5uuEkyw812KV7ojxnfGtJBk8aOZKd9ahnXvPiePeqHSTZMjsnZ/z3BMWqXRnmnlYpZski629SqX71ssvV7pJsuj8nXv8sx55uNJdcsnev9/l13fGXpZfY5dKd8E5euNbz734VKW70Ny9ax42oTNGMmmmzmfcq2+XvrCTPHX/s5Xu8IU7Yy+zzbtopZskjz9yX6U7Ylzv2W/cyM7n3L9uuqDSXWvFNSrdJHnutqsr3Z3X67zr+sd151e6SbLt5jtXuo8/ckylmySzzzZrpTt1bOfe5cnXevdbSyzaGWt/6OnOe79Xx/cGBZZccIFK954nO/cuSfLK2+Mr3amTBle68yywdKWbJK++/EylO/f8gyrdWQd64xgTpnbuPYfnrUo3SWb6aGfs7O3XO/Mmho/vPfuNn9B5DzNiSOd3eejw4mDtuLkr2UGDX6t0k2TWwXNUugMpfd6PGFHpJsnUCZ13zTMN67xPfH9c52ecJDNN7IzVDh7Wm0+TIYVx4P8PH0NvzDcy5xy4/TS7lP9YpvNKL0my2LH3V7p/mK/zzP/eVmtVukmy3H7fqnQfHd2buzDp9w9Wur9c82eV7sbXdt5vJskRfx9a6T6wwhKV7pfv+GqlmyR/nPeDle733ti80k2SBXc6sdI9/VOdec93zPGXSjdJ9v9TZ67vX07fsNLd64GtKt0kGbX+kZXuk9t/qdJNkuueO67SXfW9yyvd9d49udJNkgVv6bzjHLP0EpXuvc/0xoLGvfmTSvepV26sdJPklWc786h+9eHOje1a13fWjCTJP5Z5vNKd6cDOuPRKN65c6SbJJYd1PoteemCvSjdJXtnvnEr38lU649Ln/a73vvAjK7xV6b46/J5Kd/Z11q10k+TKVw+odJd9flSlmyR/vXadSvdjs91e6S7y0bcq3SSZa3hnXHOXOX5Y6R4xovM5lCQjD+g8o913Wm890SM/6Vzz0id1PpcPnqWzFjpJRn+kM4/jm5d8o9J976UVKt0k2eIDP610f/hQ57MzSbZ68apKd9NbOu+Rz999p0o3SeY7ofO7MWT0nZXuk+fuX+kmySK7dt59/2Sv3pjcJhtfXOneu1zn2WGdob31v784rrNnx4jFTq90v/1AZ95Ckvz2gc5Y+9uLX1HpJsnCz3Tmtay380Cl+9i9nXUSSbLcr++tdFebtzPf4tWX9ql0k2TwCe9UulOWO6vSTZKN1ruw0h38wt8q3Rf++qNKN0mWfvnWSvfhuTv/fmcv+nylmyTb7tRZQ/Pal8+sdJPkkV93Pj9Xe7gzP/mXg2evdJNk9Xc7cwV+tnbn2WHKOZ29qpJk2JKd9b/PvdZ777fKVY9Wuk9+/CuV7vMn/7zSTZLhgx6qdF/es7M24NBjevOe35/Q2fvwiVV63yVP/OitSnffhTvvuva8fLdKN0nmnL0zh+S6PTtzRW8Z3Xv2O2708ZXu0i/2fpffWm7LTnhyZ87gjS/3xuQ+P6YzB+Hcj3f2JRq09U2VbpKMnX+ZSnfRl3rjGN/7wbTf72/0sP/uvvPdNwZy85+n/brFM7fpzY086M7O++krj/97pbvXm73PgsvXeKLSXXLLkZVuksx2eWcewN8W7cxH+tOKvTk4mx7WGYcd9vvO2tAzv93by+GUczrr1Aef0puzPv6OzhrACWM/Uuku/KXed/GWW3fWIH1tniUq3TEPfLfSTZIfrdq5fzjv8zdXukly9OudfbkWmtC55meO7P1dX37TbZXuy3t+u9I9a7cXK90kOfG7nbky+y30uUo3SSaO7sw7ufaJznykU3Y+u9JNkjtW/WSle+prnXnafzikt6/FmRevWekussCoSjdJJh3VOZNg4pDOmMot43trvk+8s/N+8xsvdtZIXPCZJSrdJPnVq501I6Pn6OxXkyQnH3VapbvH1zvzIc7aqvezWGXuzjztN/7YeYe868y9OQDDT+zsi/evFTpzQ5LkuY07771/staoSvfy9XrvTRfcrfNO4Y+7dubJPH7kZyvdJFnhyM77sXfX+USlmyRbXntEpXvLrZ378Ot3/WKlmyQf+kBn79ZJJ+1Z6e508wmVbpKMfq5zZuPt83fO1kiS64d2xl5uOq0z1veF0zrvIJNkj5fHVrp3/qxz5t9eq91Q6SbJfQt27gXO2L+3p+/EdzvrGR6eelGle9gOnfuAJLlx685ZIy8/+kCle9jrnflvSTLfCZ19lG4+uPe8c8PvOt9T63y4c83/vm3ZSjdJ5r75A5XuHlv+sNJ9dNFVK90k+dXz/6x0D126t6fG54/sjANfPW9nTPy7N/bWxY3btzPecPBLnfn7n5qzODdl689Xuqfu29uHcYM/dtb8PDnX9yrdfVbt7aO54cyd55Kv/qnzXbLEe53x8CSZ5+zOGfVvLtNbb37Spp2128tu9LFKd5UNj610k+TNozpzddbdsTN2duviX6t0k+QL63TOZlhxaO+z6MRbD6901xveGRPY7bBTK90keeb2znfUlluvWOleMV9v3/LlTuycjbLrsZ01Ekly/l37lsr/3XfUhMnD88Lr0/47+Xdndfa6TJKv3bl7pXv+sp1nmRuP6bzrTZI9H+48j/7t753zxJJkuZuernR/cXTn/OTffuuvlW6S3P7UJpXux751XaX75f07ayGT5KovdvZX/ff7nTH6JDn0C52x2M881ll/e9fXOufvJsmp53TOAz/98c583I9c29tv6MTXP1rpzvTRznNdksz8Wmc90UoHdfYy+tf8J1W6SbLrWZ3PjHGLbFrpvrt4b4x+/UePqnQvvLK37/wfVu+c+3DCLZ1xzTcu7Xx2JsnMe/+q0n3j+7NUuneu1dsr+JqHOnPAP/Lrzud9kkzc9MRK98Ghnfvl0y7szKFKkpNe2rbSXfi6zru3e174baWbJA+82zl39juH9/YPyfKdvVtHfaEz73n+2zr390nyndU7a163ev+xSnf12zpnriTJxnd09nX6/Fydd7JJ8ti6nb13j7+js5Z9+ws79/dJ8trvN6t0L3ylc4/xzMgdK90kefWpzs/ic7/q3SNueXTnvuiWbTtzDQ84tnNmaZLsef5Ble5ld3We/b67U29Pwyeu6Mx7Hn9ep5sky36oM99pt807e59te0jn8yJJJs3W2eNxp7fWr3R//WJnv4ckmXRp5zPuBzt09l5Kkv3/3DkX86Mrd+a0jDu0M9cpSe59uPO+fqUVOvPr7tj52ko3SX4+pTPX/s0vdJ6Dk+TNNzp/J9cfPKbS3enF3rP7zw/frtJd+i/HVLov39B5H5Ukf7uss/fuYaX9VZPks9/pzNG6dErnDIUv7NvZnzNJfrzBk5Xuei/uV+kevW7n/IskmTClc48x95u9M6vePLYzJ36/0zrnPsyy7LmVbpJ847zOXkqv/b6zd8mp2/TOZD/qR505uYfP1tu767h3O2durr5A53du3aN/X+kmyVXz7lHp3vR4Z87SO5Om/X6w/7H1uj+udA/+VeeMuyQ5ZY3Oc8l1g/5Q6S5/Q+f7Okn2/0Rn3vo3RnX2t1t1tT0r3ST5wFKdfcFGXHhgpZskr4/pPKP9t8YNmZAHF5z2c1yfPf/Sad78j6u/3dkb792nOmfY/eKmzju9JPnbQ53vza/t0/nOTJLv/aIz3+KwsZ05uc8euFWlmyTbfq3zXf+rrTpzAjce1bs3eWCXVyvdb655faWbJCvv03nu2Gnzzjv1BxddqNJNkt/M2jkv4nPndNYdjPjG0pVukvxu7+0r3a/f1tk/K0lmurtzjsg31uzscbzZir3Povtv7YzR//zvnX0+dj61t5ffoet19nlc9Qu7VrpJ8rGTOp/5g/7a2SP+0x/rra267+XOfIsFduycY7LFPL29Scb/qHPewff+/HSlmyQDv7il0n3rhs9Uuhcs0zsrabOPdf7+ltyls+77hGU7Z9AkySvvbVzpvvrxzu9bkozZoTPfadOrO+/19riss99skmx12y8q3f1m69wXvXxVZ4+5JPn12Z13pzsu0vv3u2zhzvmUe2zSOV9q5OOd/amT5MhXd6h0D3q683ux4kyds92SZI4/dM6tuvGxzryvJFlql7sr3V/s3Tm39IEJnXdvSTLu8M5+Rutu21n/e/2k3jmrDyzRmV939I69OWUHHNV5f/OJp/5Y6R6+d+dc+yS56pedd5z3b95ZT3Ts/J09DpLkslNWr3Tf3rM3jrjK050x1ZN/3bl32fbN3pkEz990XKV7+vWd56gXb++sxUyS1x/pvKvc5sGTK90kmePKznraCw75U6U71y6d9U9J8sgqnX0Z5tl1uUr3vb06+10myfMvf6fSXf+Lq1e6STLP8FMq3Z+dsX2lu8a3e2cSnL1r513z9Qd05pD8ae5zKt0kmf2YRSrd1ab29i6f+K37K92nr+nMKZtwTu93ecwn7qx0d/3I0ZXuY5v09qi49oXOHOLPHHFipZskLx3fGce/4WedtcUDgyrZJMl7376k0v3QUp2ztr4xrjM+kiR7T+qs/z1izt7+rp/d8IxKd7cnO+/zV3u4txfBkW9dU+levkVnv+5Pfb93psRtIzp7mv5+gQMq3SQZ/+m7Kt3f/D/833tvOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/yID0/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBGMDC9LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgQD0/sCAAAAAPj/sXen0b7Ohf//X2ef+ZiOeZ7nIWOEZMiUKVSilKRkjpBKAyUKSSVRISVlChEhMs8UmTLP88wxnOMM/xvf1b3ff63ft3Vea6/9W4/HzZae61r77P35XNd7ugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGPG/+Y8nT5qYl598dLpfxCyzLjTdm/+x4077VbpfPXDHSvflF16udJNkyeU6P+cPrbRhpZsku39ml0r3tr9dV+l+ZIutKt0keeHZhyrdVRdYp9KdvNCESjdJVn195kr3phueqnST5MW3X6p0p02YWunOONOwSjdJXnv78Ur3jUcnVrpjxnR+xkky6wwDle6YEfNVukny6oTbKt2ZZxpe6T5532OVbpI89tLTle6ck0dXusPefbXSTZLhWaTSHTeu9/f39pud76nRM89d6Y4a2fv3G3hzbKX73rDONU95891KN0lmGNH5XJ40elqlmyRTp46sdKdMmr3Tndi73xo9YpZKd1jp92LalFGVbpKMnDql0p02Q+c+PEmGvfVcpTuQdyrdsaNmrXST5N13O88OC45duNIdOazz+5YkN1z1p0p3WHrPOxPHd55LRo3pfBZNTud6k+S8G26odNddYrtKd/TUzn14kox4t3MvMGbUuEo3SQbSaU+b9lalmxFvd7pJpr7buS8aNq3zdz3/Wu+vdJPk1YmvVLqP3HdfpZskD7zxQKX7wuude4w1Zp6/0k2SO57qPGPPMkfn8/Oma/9c6SbJ3DN2/q6feeyNSjdJUhoXGDGuM47x5hu9+YF3JnTGl+d/b3Kle98Nl1e6SXL5zddWuhuttkmlmyT/fviESnfBpTpj4ueed2+lmySrrPShSvfK26+vdOcZ6IzhJ8ndFx1f6c4ybFKlmyTzzNX5Lllj3lUr3b/demulmyTvTuqMC4yfvfNM8uLzpWeSJFMnPlPpjpt3TKWbJG890RkXmDjnhZXuKi99sNJNktnHdT4zVhnbeXYYPnfnPi5JXn2p8+z37LOdudUkueqmyyrd7VbbtNJ99+bOs2qSDB/ofGZMm9oZU504rTNPmSTTRnTG2kdN7c2VTB3Z+cyYOqnzGTftnfcq3SQZGN653xpVmtMYGNmbwx72Zud3efRMc1a6STLDtOk/XjSQ/348dfm33slFt901Ha/mf1w69tPTvfkfb/xx30r35YPXqnSvWeH3lW6SbD1ixkr3Y8vtUOkmyU73du5bzzygcw/4gwX+V1sJ/lcW/XTnHmLUnzrfxxO3/lalmyRb3f7XSvfvj79W6SbJaf+6qdJdebGlKt09PrNMpZskx028utJ95t+d7/k73z/9v/f+Y+m/7VXpPrRUbyx23S8vXumufmfnd+7sL59R6SbJiut15pvG/qPz/LzO4jdWukkyfIFHKt1Vzuns+UmSny/RWR/5qx0Or3SfHNO5p02SO1/qjD/ONKFz73L9HpdWukny9JvTf49nkiw/a2e8LUleemvdSndg+c584fG/+WGlmyRzzNKZl117lr9Vug+ueEClmyTPzNxZb7HIS72577/M2PnM/+TnOp8Z1/669+y3zjUPV7oTR6xS6T5//GyVbpK8NUdnHcAtt3aeKZNkkd/OW+lu/vTWle5SV89T6SbJKQ8sUOk+Ps/7Kt0Pv/HLSjdJjhm7UaW71shPVLpJsu62nc/PBy7rfH5O3fvvlW6S/PPqzmfR8OfurHQX2623puWp8Z+rdN8+42eVbpIcfnbnvmjH3TardCfP1nlWTZIr3r6j0v34tzvPqxtd3xkfSZITl+l8xu150smVbpLk/Z0xrp8+dU6l+90ne3vjTnjvlkr3IxuvXOne94feOMaEhe6odK+/+wOVbpJscf4PKt0Fd+msibjw771nhzWuXLvSveCrR1a6i/7rV5Vukvz2oc78+OMndNYNJcnEhw+udLdc84lK93tH3FHpJsmt/1i50l14gysr3S3uPKTSTZKpi/6u0n0xP610k+SJp5eodO/5zgaV7lyv9+a65t28swfqwxd11qCO2nHJSjdJNjv9G5XuXjd2PjuT5NWvLFjp7vKBGSrd33/5hUo3STZ8uzOnscxra1a6qz7W+bdLkrde6HzGPTbiL5Vukmx5d+f8hMO365zlsmp698sv3t1ZQ7LE83NVujO/21sPv8vznfVQT329N758/EXTf378kFf/u3X27766bO4994rpfDXJQT/vjJUmyX4X/6jSfWzKPZXudef1xue/VZo3neeB3t7CB07rfGf+6I/fr3TXe70z75YkFx7d2bP//a22rXT/Nr63t/AHy/+i0p31D729oRvc2JnfPP6ZzrlAhx/YGwfa+dzOPdrTP1mk0t300s9Uukly7DrnVbo/fHn/SjdJNv7CHyrdL8zRuV895YBPVbpJcs81X6x0L/tz5wz+MZf37rfWPf6ISvfAY3rz3t+Z8aRK98Dfds4l+cV8vXejzL5aZ35l/LDOz+KuGXtnnz23+NKV7tZHds6wTZIVD+rcC8w5796V7kmLd/bOJMmwb3X2X2y6ypmV7vGvbFzpJsnfLu7Mr6ywyQqVbpKsdmHnfUo//GpnrcUG+9xf6SbJWetP/3GXJLny/Z3vvjPH9c7nvOt9nTN9nx32ZqWbJP+4qLPf/LDfdeb0fj6is+YySVa4atlK95EHPlvp/u47nc/OJPn1Ep39ynO9fnalmySXT+mcOXTgxIsq3UPWX7nSTZILftl5Dv7pBb+tdCc82Jm3SZKdf94Zax9xTm+u/qBzOueAf/nLv6l0X/zka5Vukqx4e2ed9p++1/n8nHDHzZVukjx9/PKV7uE/673n5/Ttv1DpLvDDOyrdlZ7Zs9JNktOO6nyXvLBE6UyGjY+qdJPksOu2qXRn+Unv/WtvbND5/PzEzp1z1T48a2duLklW3bFzdsk5f9ui0v3avL130R150d2V7m2f78wzJ8nsS9xe6X7sNzNVuvud1rtHXGXOLSvdedbtrI2ccFhnXWuSvDHvopXuWa90xq2T5MmPddaWP3bR0ZXuk4d3ztNOkudHvFbpfv6xj1e6K/zm25Vukry88/mV7nb39N5/eMuTnXHEWbft/C6fclRnPDxJfr9w5/7ls9d11swuvvrOlW6S/OiTu3e6T3y10k2SHyzZ2TP56Cc7v3PDTuo9u++11QWV7tnH/aPS/ejXNq90k+Sma0vrHH/UO6vq8OM797X5L7dLThw1NY8sMv3Xwh1/RGc9epJsfl3nHcpbnfqTSnePbx5a6SbJLHt2/m4X2vpflW6SnPlq517trLm3r3TTe2V3PvbgLpXub07rvC/iu8d0zltIku++eFyle/SHe+cw/mOnzjqc3X7b+V2+/Ged/ZtJ8r0Pds6HP/jWUyrdPNl7D8Wq93bWBP575947u1dZtLMmd5EDOmcPbvV073zcmb7eOXNoYLvO+uRVDu2d0XLlpp1z/H4+rHMGcZIMW7zzu7zvyp01Sc/t0TvLYdzsnfXlh7x7VaV74xd7Z9et84vO3/WfN+q9Z/yAZTpryh4854ZKd7kne3uG977wn5XuLld01qDOtsW5lW6SfHjfzjkDp2/am69/Z5XSXPIPOs8Ox+zX27M/5tLO/oAxH/1wpTvrcr19Slvf1LnmEx5bsdJNkm0f/nKlO88BnX3yO+3z3Uo3Sf5+Uufdbmc+19lnffmcvfOGVli78w7JWZbZptJNkolbdfZWrTexc2754c99s9JNkhlmfKzS/dvPOude7332hpVuklw5sbOfaMoFvbMIdt+qM/dwwzmde8SrrunNNx35o85+2t+u1/m8X3XH3rtRNpuns59h3e+Nq3ST5N2zO5/L89/Y+b14+jO9dyhcu+blle43b+6sKbv0D73f5SV2fbzS/fHEzj6JJPnHgsdWujdf3dl3cPVavXcePfNMZz/RDZd1fudunbWztjVJLpih8/l5wfDOvtQkWXPHzvskTlmsM6dx4h69d1Yd91hn3ews312p0t1r2c47aZNkpWM7Y2e7b/2TSjdJLruqs+/g6k+vV+kuf2DnfY1JMnWf1SrdIzY8odLd9rrTK90kWW/9/Srdmfft3AckyQuHH1bpbvHdEyvdvdfsnaux9vj9Kt0t3vxjpbv1O1dVukky/qLOe0aO2rlzplSSfGjmzhz26Nc+WukedNyhlW6SXH1i5+9683l/Xen++prO30iS3Ht75wz36x/pvQvyxv2+V+nu/V++Jm3MY2Oz5OeXm74Xk2SNr/X2Qdz0fGftwqyXde4hvr/2nJVuktye0yrdbTfr3AsnyQk3dp5H57q/syf57O92xkuTZN0Z9qp09//MqpXuMUt25nqTZON5OufM7f9qb/zqsPHXV7on79A5r3vJ+79S6SbJ+E+uVen+5fLOc9Kln/93pZsk783aWYczYvWbKt0k+eVKnWewS5bvjLkd8F7n9y1Jxq/YWV++4TKd9/hcdUjn3YZJctos81W6X9qyc5ZfkjxwwPOV7kN/75zlN8/Bvfutuc7qbNza8ILOmSef2rO3t2PMagdVui+u33sH6AVjO+cEPjwwsdJd/OTO2uQkeeKdSyrdXz7deYfdJaXnsyT5wuTOevj1n7qm0k2S51/tnIezwXl3VbrDfthb0zJ8VOfchS98pPN8/YXFOu8iTpL5rujMNx224SuVbpKcsMSPK90v7dE5K2KWKzrrcZNkk7U6Y2er39o582SzqxeudJNks2U6+/keOqgzVpQkM+zcGa9d/L3OfOGc8z9b6SbJNjN2ztW+/A+dc8rO+V3vHmO/Zzrff3/as/NutyQ5Y+nOePvmi3XW1338rt0q3SS5aKbOfNOV3+6std9qSmc9YJJ8ab/OZ9Fvl+6d9/yrKZ3nkhkO6qzPuvzazhq4JFnljM77+Q6+vPN5P/8yT1a6SfLOzh+pdMfNfFalmyRb3dc54+d7y3fWah8+X+85+Jg/7lrp7jhX57NoiZN7c9hbztq5Fz/x7Om/ruE/XtivM1f57006ZxH/ftHemNzZW3XOXnv1kJ9Uupvv9HqlmyTPL/utSneHyZ37gCTZ9gOdZ79NZ+uckTvskg0q3STZ7HudccSvbte5F/jt2M7+pyT57Sc673y/4eDe2fNPL/WdSne5Q1avdM97vHNPlCQn79s5c+WaIzvn2uy5au+dqRsu0Tlj5Oo3e2dJ7HVAZw3JN57ovKN+mcV698un/bmzb+TBZTvrBHbcu7POI0lGLPCxSnfmHUZWukky8yOtdUv/53d4dXaLAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/YwYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGPG/+Y+nTZuaSZPenu4X8crLL0735n/ccdVfKt3PfHbPSneGUb+qdJPkAx/YrdJdf/UVK90kefeVCZXumutsXenOO9O0SjdJZps2X6V72aN/q3QnvjxzpZsks8/5gUp3i3VeqXST5LFXnq50R7w7vtIdM+PoSjdJXn3hkUp38UVmqHSnTV2h0k2S995+qdKd8FTvd/mF5/9V6c789vKV7rjnBirdJJlz2oyV7sDwYZXuuKnzV7pJklFTK9n3Bqb/fed/jJuh8+837d3O33Umz9rpJsmY/9Ujwf+1kZNmqnQnD7xb6SbJ6LGd7793h71X6SbJyIysdEePe6HSHZg6W6WbJCNGTKl035v2TqU700y9+62J771W6U55q/PZmSTjxs5T6b73ZiWb4aPf6ISTjBu9cKU7cqBzzT+Yb9tKN0m+Nua8SnfCpN6/35SBzr34xPc6n/eZ2rmPS5J5xy9U6b737luV7kzF5+CReb3SHT5ijko3ScZMK41xTes8ow2MLH3gJ5k8oXO/vOiHNqp0R0/pXG+SzPDsk5Xuq+N6/353P9yZe3hrYudv5P7HOp9xSTJ1ROfv7/BvH13pjh4xvNJNknWXnrPSfeG1znxGksw+c2e8/b2Rnfuid94dVekmyaMvPlPpLv/++yvdJx/rjU9OGbZgpbvGDp+vdJNk/kdWqXRffLFzX7vgyqX78CSvvjm20r33utMq3U2O6c1h/+tPf6p0V5xlYqWbJJfde1ulO3xKZ3xrhSU6Yw1Jcsu111e6m234/kr34ad79xhT33u+0p13od6/37V/v6fSnXL7U5XutGWvqXSTZPNVtqp0H3m+Mz+w6My9cYx3pnU+ix558KFKN0nmnWtMpTt67c4ahOHv9dZZPX3FnZXuArNXsnntld5z8KxzdOYqM7Uzh5YkwyaW5vRHd8YRJ0/qzYFOS+dz7o1pz1W6b73eG2ufe97OHNo7b3Y+75NkzIzTf+xlYOC/H/d8btzsOWKVz07Hq/kfd7968XRv/se2v/lIpXv4UrtUup+f74JKN0l22OZ9le5rm3TWgCfJ2U+dUukePWm9SvfKmTq/b0ny3OTjK91X7v9xpTvro72xoCnzdv79tl/2Q5Vuksw1yxcr3YtnX7XSPWr0XyvdJPnSk511Eedtd3ul+966i1S6STLn1FMr3e8+vX+lmySf3uOkSnfCFp3vqOu2+HelmyRz/3v3SnfZZTvjxy8vvkOlmyTXnNwZp3h2rvsq3SR59r2VKt1dftcZp3h5fGceK0n+vmDn32+zcZ0xwhkWXa3STZJ/3Tm50n302s54W5JM+OKkSvftmy+rdE/a4YxKN0nW+NyPKt07rt+g0t34scsr3SS5as7OeosZr9y00k2SMw89u9JdbLfO38h7m3eez5Lkmdf+WekOzPatSvf1vb9Z6SbJwetfUun+/sHOGGGSbDL6iUp3/KWdvXGfvuerlW6SvO9TnbnkNR66qNJ93yonVrpJMnzJdSvd93++d4/x7ksPVrpvH7BNpTvhkhsq3SSZ5bOd8YYNd+isSXrt5M78ZpLMccMRle6JH+jt0x3xaOcsgq/8rrOeevfV5q10k2TnhzrjtTfN/0Cl+7fzPl7pJskRD89d6e6/0hqVbpJselpn7dBLzy9X6a6973GVbpJscP6XK937h3fWMN558jmVbpKsssmOle7ntlm00k2SZ3aaq9J9b47O+vLV19240k2SDe7brNI9dLuPVbonHd45nylJjjuzs+f1ncc/VekmybaLdp6lHr2mc4+xzvqHVrpJctUynTO2Nllrlkr37jG/qHSTZMlFO/MOn1qpMzeeJJ+99jeV7kdGd/Y2fmTTlSvdJBmx/Gcq3fUu6TxT/nnv/SrdJLl+h99Xul/dcZ9KN0leHtHZp7txOn/Xf1+sd97Rbj/p7EF8dMXOutn3jbix0k2Sc+8qjZ2tsmynm+SUrTpnbL1/pQUq3Ulz9vajLD96p0r3oZeWrnQP3aR0PlqSR0Z21vCv9KfOXswk2bRwZs6xz/53639mG/Fwdhg//Z+TPvrNLaZ78z9e2qdzlsoGn1yn0n1w4bsr3SRZ8pbOPssb1uo8hybJWeM71/xyOvPe+2/dmYNMkrP+1lnfs+Bbt1a6e369d47fx3beudI9ep69K90kOWHPzpz6kVuNr3SffbXzN5IkC6w3/ffOJMnmj3XGSi/+cm/99z7vddZQnb/yw5Vukmxz7A8r3ftveq3SfXzezv7bJLlumc563BXO76wz3H7SYpVukoz8YedMwwv26fxdJ8k5O3TOK719xc5esG2P7MxhJcm8K3fmhFZcqzMOe+kvz6x0k2TySp1zZT61Y2fNUJIcsl1nTn333Tv34QffuUmlmyR//VTnXnz1WzvnDCy9TWd8KUlWXq6zznCOXTtr9pJksWV2rnTPX6Hz7D5wVulgiyQLPXpFpXvko7dUuruffnClmyRPvtz5zDh5pc68TZK8sGVnvPvk93Xmx1Z46sOVbpJcPa5zjt9Fa3Seo+aZobO/M0kmf6azTvu5F3rv+fnAqZ17ge8s1/ksenauztx0kvxifOdZ6vSfds5O2ODgxyvdJPniRzvvw9rvZ0dWukly+kqddV/P/33DSvfMeXrzpq/97qeV7l9mO73SnfEfnfeNJcmBzy9R6X7o8kMr3SQZ+EVn3dewp++tdO99rHeP+NNVd650D1/7wEr32HcWqXSTZMq3Op/5a67SOSsnSdb7Rud8mIVv7pyrNutDV1e6SXLgLztzJR+/ozMO9daTnXPyk+Tm+TtnuN99W2/s5YDZf1DpLrReZw3ccx/tnXv9u107+8IXu/7VSvfjE7epdJPkrUsOqHQnHdkbXx5zcufv5Lp5O+c9LP2H3v6LMyd37ot+9v3DK91l/trbb7fRZzv7L753We95den9Ont0HzzrD5Xuedd8odJNkrN36YwjrvTRzt7RLQ7tnckw94ud80Uee+QnlW6SbHlzZ4/nJv/o/P39cIVTK90kufCZzlnP45bu7Cn+7WK9vdtj1+qcafPS0511tUkyZbEta+3/xshnHs0835n+ay4u2+KR6d78j23/2Tkb4eZT1650T32u8w6tJDnpp52f89nDe3sVNn6n8368scseWumufWrv3b6nDh9X6X52yc49zyrjeuNiw47srLe47be9dc+vvrFvpbvcuZ+sdA/4Y+dMtSQ5Z7bOOy5u+U1njGmbC3rrnpdecftKd8Pjbq50k2TD1Ttz1Bsc3Xm2+8Xhf690k+S6q0+tdDfe65eV7kNL934vTjrh5Er3nG901ockya2PdNYnT9n52Ur3F6suWekmydpHdP6uV766szd0xPqPVrpJ8t0dOu8Z/9Z9ne+oJNng/M67Hp87rrN/eupDnbUWSbLGdzrn+8+2cWcd3OZzH1PpJsnlF3fWBP5r9d77ND8/uXPmwuHrvV3pnjy6sx4wSRbc99OV7o/e6VzzIad3nlWT5KgrOs/Y+43vvU9zru074xjTHuq8m+jrX++9p3qtzY+qdN/Z7KpKd6Ylens7jj618z6eFX+/X6WbJNe91PndWOWMzr3nfKf2nh3+8MhVle4Nm3fWMO67bG99zwVf/3qle8R2nfGtJHlg9c4Zq5vO2Xn/0+UPdNYDJslNe5bODLiuc1b+JT/s3WP8a5VlKt0lx3W++5Lk2nkPqXS3fe0bne7He/uJ5jviwkr37F9+r9Jdar7eGRVLX9YZe3n/m50zwJNk0cseq3S3fLOzbn39fXrvX5v7C6tXun/+e+cM/t+n956fK87szM/Nc1PnDOIkuXfuznmXx2/fWR/yufmurXST5K+f76xv+OctnbNKhy3W6SbJth/o7P+dca7euSjHHd/ZN7LvKj+vdFd9vLP/MEmu+VRn3cTA5M53yS8W7r2H/MWNOvdFV37i0ko3Scad3Vm3fvKGnTX8nz374ko3SW7558qV7lXPnl/p7n9WZ248Sfaa56BKd/j2nTm0JLnj06dWuvMs0RkvuvKLvTnQezbp/G6sulfn3TbbjOn9Lq/51f0q3Zl27j3vXHNv57skOfe/+n/NssCEbHn49D9b/s5HO+M1SfLN1w+tdKf9oHPm0Jqr/nf/Nv83Rv+w81mz/vd679Pc87XO/t4drryy0t343t46gN3uWqTSffbCzpqIR1fovKM6SbYa2KPSHXivd7bMSzd25hXev1dnfc+aq4yvdJNkiz06z/zXr7pXpXv6Hj+qdJNk2v1/7HT/9I9KN0le+m7nnd3r39G55k0m9ta0nHDNLpXuTYd9tNK94uTOe32T5PhZO/OFr0/tzKknyTb3de4Ftj61M/5416qTK90kmXXnzhnHB97bmeM89+3es8OJr+xW6T7zl86eySRZfOL5le7Rj3TeB7f65p3PuCR5d2RnHdULy32i0n3pia0r3ST5yUsvV7rHPXlBpZskt+zdeef6rv/sfP89eG7vvUfvvNFZu/Do4Z13SK58SGd+LElWevnQSnfNC3vnXG10WGddy2Yj/lzpbvpSZz11kvzmlc7Z859Y56xKd/axnTWMSXLhfZ1n919Puq3STZJnPzOt0n3p0s57js8a13lvTpLMs1vnbKB9Tji/0t3xvlMr3SS5/cXOvOy/F9q10k2Sp/bqrPF57JLOe3Pmeb73zuclju+cDXTrXp0z0c/7fOcssSRZ5zedd/C+/OETKt0k+e39nTWBw4/trHv+2CGdz/skOePgzrsxv3xLZxzq5WM7ezGTZGDkdpXu+fe9U+kmyS0TOu8AfvC8MyrdU2b/fqWbJBvvdkql+/jKnffEX3FiZww4SU76SueMiq9t3Jur3PjY0yrdPd/eudLd4MjevNHtS3bOQp3pd5219hd/tzOfmCQf/kJnvOGLx/d+l1/7QOdZ+NiVO89Rt77SWduaJPNNOb/SPXrtzrk21/95v0o3SZZ/sjMn9f1PrlTpJsm753XGgQ8/uHOm27vX9vajTFmvM6fx3DNfq3Q/sOTvKt0kOW735yrdiRftXOkmya/f6JzlfvfbnffpLrNCbw57zYlXVbqrfbHzezHiqO9Wukky5wWds25X3KJzXkCSPP+J0vqU/5/p4M5IHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8P2ZgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgxP/mP54w4e1ce8M/p/tFLLDgMtO9+R8jRrxZ6a643EqV7swzjK90k2Rg4lOV7lwzDKt0k+T+hx+vdKdM+3el+/yYBSvdJHniwWcr3fkXWKvSnWnR8ZVukkwbM7nSffPBzu9bkiwyX+d3Y8IbUyrd4W9OqHSTZMLkeTvhdxapZN8Y8VClmyRPvfJkpTvHwAuVbpLMOjB/pfvgLbdUunNNHV3pJsmMY0dVumOHd6555NT3Kt0kGTtDpz1q0kKVbpJMnfpKpTtubOdvZNrkFyvdJBk5bc5Kd2Dm5yrdsa3vkSRTJnf+/mYY2/m+TpJJUydWusNHTqt0M7lzvf9joFKdYWznZzFx2NRKN0mmTRtf6Y4ofd4nSaZ07vHHzz+80p0wYXylmyTDR3Z+zpPfqmTzvoGlOuEkJ6/1vUr3nJnvqnST5F//vKPSfWVK5/PzxWceqHSTZK75O9/Zw94tfX52Pi6SJMNGzFzpDkycodJNkhGjZql0pw28WumOHFis0k2SBTf4SKU7eWrnHuP1p16vdJPkzqc6Y6qXPnFZpZsk90/sjKm+k84X68ixlWySZMoznWve9jNbV7ovPfVYpZsk8y7ZeXafc0LpOSrJa5M6v8tvPj9bpTt21tLNZ5K15l6h0l10qUUr3eUW6M2h3X5f5/fiuUefr3STZK4l3lfpPv30/ZXufEsuV+kmycrj36l0J724RqX71uNvV7pJMmbWzpzUC6/0vlgXLI2pjh7o/P2tuMbKlW6SvG+Rzu/co49fW+nOl87cXJKMm7PzXTJz6W8kSVZZrvPs/sQrnd/l88+/utJNkkmlZ+yNFu98982+QOf5LElef/3lSnfkyM7capJkYml+dcxLle4cW36w0k2SGeYYU+k+dWHn72+Wcb05tGnvdu7lpo7o3RcNDP9fLeX8vzZsaucZbfikzpx7krw3bu5Kd8yIzmfRmLl6c6Bvln7lZpthgU44yZsTp//v8tSp//3z9YuvPpeTzv7hdLya/7HriqtM9+Z/fP6n81S6N633j0p31AYjK90kue+1zvjVbIt01qolyVbndCadFn3/ByrdTx28dqWbJAds3Bmz+coxnXHpC4/crdJNklnWPrXSvW/SrpVuksw+dY5Kd/XdHqt0T7tvu0o3SQ6ZsfNsPvbG0jzyW71nxsu+9Wil+7mNvlHpJsnntuzMK2x3c2ef0s8f3qjSTZL53zqt0p3nic74x34Xn1fpJslnD9+30v3rHp15yCQZuKWzpvrcR16rdF/f8aeVbpLc+czGle5LubDSnXpLbx556lWd9eUTtu08lyfJyAU7a78uWX6DSvejX/t1pZsk193x6Up37EM3VbrzzNrZl5okbyzduX9Z7N7rKt0kefuR1Svd+a5erdI9btTmlW6SfHpi5x7j1ds79/hnvTVfpZskk1/7cKW7x07rV7pJ8urY6T9uliQTNvhdpTvyqUmVbpL8+p8fqnS/uH3nHvHZhXq/y8vf0RlLv+fRQyrdJJlxic5a3zd/3rkPX3/H3nzTr2b8VKU7//Y3V7rnvtkbn7zo+s7P+Yrn96p0k+T6jTrjfTPfdWqlu/Q9O1S6SXLD8M7c9+abddaH7Phk5/4wSQ5edNVK9/QtDq10k+TItTq/yy9/9VeV7pLje/fLX/9cZ37u4vU79y6ffGnWSjdJLrm5M0f952V7e+M+MXHPSvf5v3fWcdz0+huVbpIsNbxzX7vRd3epdLea5cBKN0n+/r7O+rrV1rq30k2S+w/qPK9u/NPOM9rcIzrrBJLkweXXrXSX//19le4d8/X2j84/12aV7v2vfb3STZLl9v52pfvk3udXuree9ttKN0l22/XuSvePI0+sdJ/fsrc3Z4ZXD6t053ykt0/3mfc659Atu25nPdv3N+rdL1918cOV7k7Xn1npbvPBxyrdJFlkw84exBev642pfmjtlTvhZzvn/Z3yx85eviS5Y7HO+Ql57fpKdrsbbq10k+ThGztr+86c/2+VbpJ85pfTfw3s5P/ygJ8XFpgnxx990HS+mmTWV3rzpsOmfavSvf7FJSrdC+ftfa+tu0Ln5zx89qsq3SQ56KHOPvUtJoyrdEf9rXdW8PgNH6t0N/nhLyvdD/6hs34qSb74SGfP6a8nfLnSTZK/j3uw0j3qzI9Wul84sjMmliSLb/ylSneuSZ01s7ed0Ntzesim61W6689wY6WbJLf+vLNPfbW1z650z7vz9ko3SVZ/oHNOxJJf78ynvzVhxUo3SZb5Q2dfzj926Y1dzfaNsyrdazb6QqX7p8+Nr3STZNXnn650Xzj0+5XulqOm/7tn/uOuQzp/J1fv01uPtPcHj6p0/3xP517uI7PvV+kmyVeXWr7SfXiuztqCLQ45vdJNkisW7Iwx3X/VAZVukmz0fOf+86CvdOaaTttkn0o3SYbfeHSl+6tbO+sWTp7jhko3SdZfq7O+4IfPrFzpJsmNC3XO+9r99c5z1K1rdMbNkmTn9T5f6b59e+eMnXW27/yMk+TJlzvzkM8u2FkLnyRf/foRle7sV+xR6e69/uGVbpKMPrNzL3Dmrzrryn/8rc5ze5K8vH7nd3mjr/f23u8/0Nl7v8FfO/uVH1+2s/cwSZa57M5Kd+mzTqp03/tX737r6G99rdId9cve39/qR5xf6f74qs45Etus3fv3O+bYzv3Lwgd01rM8sMCSlW6S3HhQ53zVb5/eW6e965ad8/0v+03nvQ+f2by3hmOb4zvrvx//aOfsize27O2r+sFpnZ/zAR/qzBslyX2vdc5+Wu2YzlqBhTZ7rdJNku0u7Ywv7/uJOyrduf7aeV9cknzg7r0r3c/e99lKN0nGPPxEpXvQ4537rVdW/U2lmyQTjuzsn7lyvc6a58d2vLLSTZJXd+3c157/rZMr3SR59cjOc8mPf9259/zkk721Kfscd26lO88mnXNsxz7Ted9fksyw68GV7lV7LlzpJslr53Xmup7bo7P+7qh/zFXpJskM93TOYJ2w6WuV7qyPdM4PTJIv7NuZn3vort76/QOX6Iwv/7emLT5rJp+y7XTv7vzV3jP/y7+YsdI9bmpnXuHHt3bOEUuSn83ZeWfw8Jk65yIkyR+ndvZB3L19Z+3JTVuvXOkmycduPr/S/ek891S6C36nt3/623d3/q63nKOzbi9JVlyoMy97926dMw1P/MQZlW6SfHVs53vz1S919umddGVnv36SHDSqM1/4sX9vWukmyX1H3lbpHn1G5901C8/UO+t56+s773xedPIxle6Pru+cu5skx/61cw7xhx/tzRc+O29nbHPifZ19Zudd2hmjSJLP7dR55tjlwU9WulvO2DvX4pgtOutwTnuq9z7bJ677aqW78ed/XOmO6byaMkly262dszgeP7LzeXHUWb01/Asu1Rmj//DPP17pJsm913X2gy2+QOes529/aPqPjfzHGi929nlesmZnP9hn/9g5tzVJzh3VOdfpvrmPrXST5IzlO+ue/7Jq5wN03mM6Z7QkyeWbdJ6l9hnRWQcw8047VrpJctCmnTUiL3+4s2cySfb8fGcu+eKPX1Xpzn5hb//9zw7trP367i2dM/G+NLH3Pont1jq/0v3DWZ3n6yS5buurKt01Ful8fl48R28Pxm0f7HwWbbJV551j35yhd17OA+t3vq/3PuFnlW6SrHhLZz/R6WeW1qA+9UylmyRXHdYZhzrkg+tUuqf/onN2QpJ8bnJnn+BNi3TmYJLkjK06c4qbbd9ZA37mgb33r537VueMradX7axhPHy33nfUTIdtUuk+tGln3VCSHPJ0510xv3t/6Z1jH9qv0k2SY9d9r9I9aenOWO1RT4yvdJPk2Xs66y5fvK93RtMdl3TuEb9xWGcc/+ofrVXpJslxC36s0h23bWefyw0H9NZdnrRSZ655xMSdK90keeXQzvnU3/v3FpXudnd01o8kySKvdr6zP/tiZ51APtI5gzhJXvz4/pXuTs/25m2326ezdvbhQzpzaNd+7f2VbpLc9+/O/oBzL5/+Z/4myY5r9c5lOH/Lzj7B064cXekmyRxnLdUJ/5dDcjNPfD0feeSi6XstSeY6rbO/IkmmLrZIpbvwI515hS2La5KeP/cnle6wQy+odJPkhY06fwOn/7VzDzh5tVMr3SQZO+6qSvelv3fup268ofcOwnOvP7TSvXipD1S6SfKp5Tr3ENv8trM/9KFle+ued/lF59n8xccfrXQ/Oay3N2eRJzpn4+3/694Zx9/4Tac9wxGd8atZvtJZK5Mkl+/cOYv40bl+XuluuHfnXbZJ8q1Nv1Lp/uWHnXUASXL0Ap1zh9aapfNs/tJHe+fwDz+jM/6/zmqlPXev9fZ9L7vJFyvdLVbs/F0nyYEPdeZClr6n827fz63Ve3/5Wyd09rr8ZM1XKt2bf9FZa5EkR958RaW7xhvfqXST5C8zd9ZU/+Hbf650L7qxc6Z9kvz5+M5n/i/u7KyHv+vAZSvdJJl6XOfMvZte+mulmyRjf9OZC7lv08553Sv9qHMmepLc8a19K90vrdX5vN9h685ze5JsdNKLle4nftx7P8pPHu78zk0d0zk7+ffv68033fdCZw/Uqlc+VumOXmGbSjdJ1jq8sz55xGb/qHSTZNFFO+/2/dIxne/Vf819SqWbJJM/3Bnv+9J+nX397365sxcsSY6afHGle972vfMHl16js474rdU677U/7muds8SS5LPvdO5f3vrgqZXus9/qnPeQJIuV3hu3ykIzVLpJ8udP3VXp/vuPnXH8h9fpvD82Sb73lc4z9qrLb1npnnF+bxzj9Cs7e4svOba3t+rSL+5U6X5hhc5Y7ZeP7JzJnCR3fu5Xle4Cb3bOiDltz5kq3ST5yO6dd4Jc/cXeu7befqmzPmWXrTvvlLhmpZ0r3SRZ8bedPVDzLzd7pfu1VTvPOknyh7s676E5f6vO2uQkuXrBDSvdv368Mz6y3dzXV7pJ8vTxP6h0j5vSOUdptom9846OPLGzhvjWazr7n5Lk8evHV7oTSuuh/vmR6b+O9D/+um7n2X3C/MtUup/62NaVbpIcvHBnHHieZTt7A5Jkp191Pj/zx//z/9x7owcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D9kYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoIR/5v/eNLkSXn6xSen+0Ususyi0735H/+6+7ZK949nnlHpjptpzko3SUYPzF7p3nr1g5VukkwdP7XSHTXhnUp35MSJlW6SLLjIEpXu2JlHVrr33P9ApZsk49+apdJ98a05Kt0kef7BGyrduWfufGa8+uZLlW6SvJ3xle47k56pdPN653MoSRYdN3elOzC28zeSJK89/I9Kd85hYyrdeUfNVOkmydgMr3RHDxtV6Y4ZManSTZJxE+evdKeOHlbpJsnwqZ2/k+GTW9fc+RknyfDhkyvdacP+V48a/9cGBt6sdJNkYPiUSnfSpN7n8vDhr1e67056t9IdMWqg0k2SgREzVrqTJnaeo8bM0HkmSZIpA52f87Dhb1e6STJt2rhK970pnXu5qe++VekmyUyzz1PpDh/o3G8tOLbTTZIV3uvcbz34ROezM0muf73z+TnP/J3vkinvLFzpJsnWMy5U6S7ybucef/bRne+RJJl9yjKV7siZJlS6STJtcud3eeTYzvfqLEu/v9JNkonvdu4R3335+Ur38edur3ST5PYX7qx0H5zwWqWbJDONm6HSnfudznPU48+8Wukmyd5f/Fil+96k1yrd8Z1/uiTJ6Fc7n3FjZu+M9SXJE489VemOHNF5Lrn/wUcr3STZevvlK93Z51+20n3u5d5Y+/LLd+5fnn27N45438WXVLrzzdWZ37n4lF9Xukmy8PLzVbrTJs1V6V527QWVbpIsukRnrmvOmV6sdJNkgcVmrnRffOq9SnfSE70xnXsfurDSXW7V91W6I+ZcrdJNktvu+1elO2pUb35gkcU63yWPPD791xUlycJzdMbNkmT+uTvrlh7rTPvljRvP74STLDPHhpXuTHN1xoqS5JGXOn9/Tz16b6U784qd+4AkmfcjK1a6L93zeKU77dnO50WSTMlzle60afNWukkyMKrznT1twrRKN8N648sDwzv3cu+V5m3fea9zH5ckMwzvDJJMGta7R5w8fPqv4Zo27L8fz5n3jVHZ7dIFp+PV/I9/TeiMHSfJ6J91voO+vOOmle7cc32j0k2SrTbvjJk+f/2qlW6SvL32IpXuB189u9J997SlKt0kmf/czlrD616YtdLd4me/q3ST5NjtOt/HT12wS6WbJLM92FkHt8VSx1e619x8X6WbJKMndD6LNl578Ur3s490vkeSZLOvLlfp/vArnXHNJDn68s7ak13fvarSfWxab4z+9/9YpdLd4cOdcZWLd9+o0k2ShcfdWOkeOtsLlW6SjFjtsEr3lDv2rXTH/fzTlW6SfG3PzvzbbJPWrnSXePG1SjdJrh2xSKX7xz+fU+kmyRy3db5Ldpup83m/9pwrVbpJsuneV1a6L63RmTs9/pe9Pa/zvdNZX/fmgp3vviRZeFLneWfgsLsq3fdv2HsOPnOJdSvd60/ozNevs8JslW6SLP3YI5Xuq7/fotJNkuN+/qlKd9gSG1e6q6z1dKWbJP/YvDPf9IU7O3PfD7x5baWbJK/ds1mlu9Doj1a6SfLXL3f2yW9213cr3dELdtZaJMn3jr6l0t3zMw9XurNPLs1jJcmOJ1Sy4y+/vtJNkh2X7NwvT3nfXyrde0r7UpPk6QO/Vuke9qGxle4VT/6w0k2SRW4aX+m+eFtvHcecq3Q+l5f424cq3SvW661d+Mklz1a6y9/Zud96b/Pe3PecS3bWwU2Z7wOVbpKM+P2lle6rK59f6V55e+9+a+QPrqh097y3s0/w6ntOqXST5OF/rl7pLrDEdZVukmxxUGfsc59Dzqx07975nko3Sa78a+d++f5vfabS3fOuzvdIkjxxwZ8r3b7ZRQgAAQAASURBVKX3OLzSTZITnv5lpXvUtJsr3ZGz7V7pJsmcwzrrGPd6qHNmwIY39MZ03vh6Z2/HR/bpzdvePNutle7AO505jQ8cdVGlmyRnndQZ47r68AUq3TnmW7LSTZK/XLZIpXvvyldXukly34yd76kPXdTZS/vS1gdWukmy4W6dn/M+K3fO7hq92raVbpLstN7Kle7dD91U6SbJfSssNt2b2zz1t//q/zfba89mi/OPmM5Xk7x14veme/M/pize+S6eZcvO/OZSn/lmpZskr3+wM4f868lfqnST5OkLOvdp+9/b2Wsy8+47VLpJ8qU1O+Pdxy24W6W79q6ds42T5IZNOmNie9/89Uo3Sba77MOV7uhv/rvSfe7o3n3JJrMdWulusVFnzfpuR/fWQzx9QGdt5Nd/0psfm2nFzjjs4j9eo9K9/Yjenv2FPtg5v2erz51V6W76w975uGc+3NlL9JUnO+85SJLZNjy20p37h51zEa79V2esNEmOuLCzT2L2A96odHe8tHd23fmPHFTp/v74OyrdJDn5z3dXupOO6uxzXvq40yrdJFn2lJ0q3RlGdO49f/Oj3jl+C872wUr35ceOqnSTZLEVd610z55/zUp30i2frHST5IqXz690Jy41vtJd/cLHKt0kmWnrzl6GE3/7i0o3ST582FaV7vf26qxz+tjpnXVqSTLnDp2zd0/5+7cq3VEz9s5NvmSXLSvdfY/8aaWbJF98r3Ou078++ONK94lvd94ZkCS/Obuzzvfw5zpjZ+/eUjpILMmDT3250l3rmd57mi557quV7u+366wzPOqW3u/ykm907mtf2q/zTPn4Q51xsyTZ/7udvWD77D79zwz6jyO3/Hulu8kpne/VBz/f27t98Q6XV7pXL3xMpXvYnr3zYfb9zA8q3bVGdvYeJsnme3TONbxylbUq3S8v3HkmSZIF3u3cI37u+M5+5UVW691jLPX1Iyvd597trBNIkoP+2fnM3/ONzr3n3185sdJNkgt+0jlH8/xtO+8ZOX3/0rtjk5x4Rmc97uG/7L0X8/kPds5EeXjXzllVh/609x7yRT/emVP87Nc69xj3zfyVSjdJNtm/M6a64k92rnST5PKzO5/LXzj99Er3t7/r7b9Y/pDOWoGVV+/8jNffrDOfmCSf+EJnX/hLr+5V6SbJtLOPq3Tvv6bzzpwT1u19ry4wd2f/zKRRnfX7tw6sV+kmyfBZOnsxLzu2d1bVQRd25ge+kf/uvuiNh9/KZVtP//0xc17ReZ9Rkty9aOdM5ucf377SnWnNzjhskkz6TWe907If7IyrJMmNm3fOYbzngM7aoR8NO7TSTZIbP/K5SnfyhM77r3da5U+VbpLs/YnOs8G68/bOQX3q9c44064LvlLpbvaj3vfxCUt03uF6x9c6Y/T7rnNwpZskB/6zs3/648/35guXX72zjmOrOTp7A/69yfcr3SQ557DOfuQL7uica/HVU3ovh31mmc6ZsF84tbdP/ZkPnFHpXrlXZ17oR4t27omS5E8/7+x//86tnfn6gyd2xruTZObTr6l0b93vsko3SV5eoDPOe+OpnbH0Tz/aeQdakjy4zD8r3a2/0hn/WPf7v6p0k+S4GTrnAh16YucM2yTZdszoSvecO96qdE8ff2ilmyRHzt9Za7j68Z0x+h9s3rtfPnn+zv3yzKv1zkH9/S878+o3vNGZCznsgN791tmf6ewH2+fG31e6p7/UWQ+YJA9/Y+VK9+AlOmvgkuSdGTpnPhx298cq3QuP671b4y8/2bHS/eoanXOvv7ZC7x7j8+d01q3/Ze7zK90k+fRznXm9l07snMt10/2dvXxJMnnFzlzJk290nh2+tGTvXXQ7H/mdSnfU3p+vdJPkyUM65y/94InOz+K+ZTvvKEySxf7QeS7Z5KDO+p53vtvbc/fO+5eudC/fvfPskCTbTvlEpbvHrp0zDZ+69IlKN0meH9359zv1z50xuUfPm73STZI7jujM2146tvPOlSQ5aJHOnOLdn9660p36UO/dKH99Zmql+6dfdM7uuuG2ZSvdJPnZdp0xge0/3NkzkiSfuryzjnGNGTtz45u+0VvDP2LNzvq6X53cucfY6fjOe1iT5IwRnT1sW+/fOZ8wSdZ7tbPv4A93d86zP+KV3mfR+id29io9+oPO9+o8i59a6SbJAV/rzOdPm/HcSjdJbvpFZ5/n7Dd33ot5+a+n/3m+/7Htar+pdBdaobPPeqdJf6x0k+TyfTrnEp1zd2+d3DYXde4//9u/vidHLJZ95pj+Y5v7r9gblz5t3wcq3Xce+2yle/R6nf10SXLqV46udP+9f2e+IkmO2qoz3/vPH79e6e6y9ZRKN0l2WLSzv/f4B9avdBcd23kvc5K8vkRnnOnYh1+rdJPk1lk668CPPKZzFuPbPz+/0k2Say/vnD942/Gd8Y8x6/feYffI2Z1xihtu76ybTZLNvtlZO7Tocp13zn79rhcr3SQ56xedsz72WrhzTtLyY3rvn9/+hM5atb/8ZXylmyQbPdp5Blt0g85nxq3Xdd4RnyS//lFnf8DoT3e+r8+a/7FKN0n2H9/5XH5y+977uS5d8eVKd8t/dPYG/Hydj1e6SfK1C/9a6X7xC51zM+bbs/du0XPn6sydzjlj5zkqSXZ4t/Nd8tM5Ov9+Bx1wfqWbJL/9Xec76rbdO3vO339M7/3Xf3m4syZ3jzX3qHSTZL9Z/lLpfv6Cxyrdo+a+oNJNkoFfdva8XrBo53dug7k7e/mS5NJdOntTx2ze+/db55TOWcTjD+mch3P0p3p7c3b6UGfu9MEzOuvWf/a7zudQkmy+X+f8s5NW7KyBS5JV3uqsnT1i4Z9UuqO+s3+lmyTPvtd5H+R5x3TW8K+4SOfdbkky4bTO+91uPbF3Rszt93XeVbjU0gdUujdv1Xk+S5K/7NhZw/+vFa6vdCeMP7nSTZIfLd3ZJ/jH1zpnXyTJclt0zhP7zpjXKt2Vnuh0k+TuD3bmx58b13l/+YHrdObGk+S+YzrvE/zpEr37ot/P11nHuORVnXvPLe/qrBtKkrlf7Lzf7cg9OuNQn9iu9x0150FzVro7Xdlb9/z+/Tvr1l8aNU+le+G2nfPFk2Tbdd+udC/7VudM+1OP6awtT5K1Zlqx0l125d57Xv/2Vud9urP+rvPexsfWu7jSTZLvnN55xj7/5Osq3Re+3ftdfmGBznvOLx7Vm/c7fNcxle7D23Y+77d6o7NHN0m+sX9n3dluF3W+o/7xTu/c323376zT2WvUa5Vukux+ZGevxP/fGxA7p74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9jBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAA/j/27jNKs7pg9/Td1ZkmNLEl5ygZAUEyIlEBEQUUyYgJRVREAUUxgyACBpIKKiooSFDJIoIIEgXJqcmxSR3oNB9m/DZnzXmdvletOuu6Pp4lv7Pf6qrn2fufNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GI/8n/eJ5x47LJhuvO8Yu4+MIL53jzP16d9Eql+9LrL1W6m2y4S6WbJOtuukmle/75P6x0k2TTbXatdNfdcMVKd/ElFq10k2TSlDcq3b9fd1ul+8xzEyvdJHk1C1W6N99+YaWbJNPeeKrSHb7KmpXuwLT/0dfD/8iExeapdOcdN77SXWi+xSrdJBk7ckalO+P1kZVukjx6zRWV7pLTJ1S6w2f1fhbzjFiw0h0xs/N7MXru+SvdJBkxu/OZMXz4k5Vukoyde8lK983XZ1e6AyOmVbpJMlD695s9vfN5n4HJnW6SmQOzKt1hs3v3RcNGj610R89eutKdPWtKpZskI0aMq3SnD+s8U06ZPKzSTZK5Rk6vdN+c0btHnDWz8/MYOWPeSnfc+OGVbpLMmtn5LBpd+liePblzvUkycuHO3/Xec29c6SbJ7gvuUum+OfvFSnfmoqMq3SSZd9SYSnfKyJcr3fnHzlfpJsn00mf+yN5HUeYa03mWGrHaypVu8UeR6S907sUnPd8ZK7r7hYcq3SS5e/LTle7UUW9Wukky7s3O59ziIzrP2JOH9+63Fl6g8yx14z8frHR32v49lW6SvDGtc4+/yOhKNkny2NOdm7l1N9ux0l3u9dcq3SRZdPHFK915l+l0Z87V+8WYNqFzjzHqlc4caJJccdm/Kt2939v5zFhu7bdVuknyxqRXK92Xp3ful3fYc+9KN0kyufO881jxJnGl5eb8mokkGTnyxkr3L3/7c6WbJOuttUKlu+oine65f76k0k2SddZfvdJdZLnOd1SSjBjWeUYbNbVzX3vfE49Xukly/V9vqXQ333qdSve+B3rjy0tMeKHSfenVSZVukjz13MxKd+6RnbUpY0b15m1njejcYyzw7vUr3edP7d17zjN357lkrs50cJJkyqxOfNS40nqMGb1nv2mlMZ2RszrrMeYe0/kcSpJX31i20p1/9HOVbpKMGj7n7+WGDfv/8Xw9ctHMXvzoOXcx/48VTttmjjf/Y4klnq10H5l8VaV7xKc6a3CSZPTozlrf+/54Q6WbJH+dd6DSPfJdq1a6/3j21ko3Sda+5C2V7m/mua7SPXnmMpVuklx1/cOV7p8v7N1brjjphEp3hYc6657X37HzLJMkhzzVmfve8si5K909z9q00k2SdbfqjJlefndvrfaER66tdJ+8fYdKd/qSP6p0k+STO3fWy0xa7NFK99HbO/ufkuSlN++vdOed2FuH89Kqj1S6fx39+0p3rXd2xsWS5GezLq50b/pL59/v0bd11sAlyWtrdtYnf2CVd1W6STJt4O5K919/7fyct3rypko3Sf6Vzj3GCovtVOle8r7vVrpJ8r6nOvNCf3jtnEo3SU6bskul+63StOyUZTtjTEnyzb909v9e+UJnTecqp3X2SSTJfj+6sNJd+wvPV7pJ8soynfGGkUd9tdJ9aOUPVbpJMnbCYZXuP5feoNL95H1PVLpJct8inT0YL04cX+kmySKndNY9z/5A597l3imdfalJMnG7Cyrdv096vdKdeM3PK90keWns9yvday7vraOaccQHK90DXv1WpXvM/JtXukly3rKd8y9uP+5vle6hu/TuMa7fpbMf8+kVes+rfz+usxbgy0d09pyP+fRulW6SrLHGRpXuUpvvU+keevP1lW6SrP794yvdDY7estJNkos/+PFKd+37Oj+LI97szK0myeMXd+ZAL15wtUr302/p7RNc8ps/rXQn3LFSpZskD671/kr37M/fU+l+fYXeOpxDFlmq0v3c/VtVutefvl2lmyR7bzhXpfubxXv7t/d+vLPu+dUPfqbS3fHeayrdJPnVzzp7Uz95a2fe6Mw/dJ5Vk+Szv++sj1zgjd4c9uv3dp6x/7FA5/vvpbM6vxdJcuA9n690r9y8s7bo3hs6n51Jcv82P610T5vZO+PnhN911k2s/FpnPfzEo/5Y6SbJ4id09t9Pem/nZ7HhfJ091kkyZmznc/n3S3XWWSXJ7a8ePMebMwZ+8V/9d4tnVL4+fM5/B225285zvPkfV578WKW750ZXVrqrnzep0k2S4Zd1xms+O7u3H/Kg++6qdJ9e9ZuV7trX9NYjXfHVhSvdve7pPG8sfOZ/9znzv2Ovj3TW2U95eJlKN0nunNR5Rtpvj87arOP376xfTJIT1+2MJez8mUmV7hmr9OaaDt2oM6f3/OqduaYk2e49G1a6+077a6X7wkW99SznfO/rle6nDt2r0l34wj0q3SQ5a1Jnz+lGH+3s60iS43+1TKU7bFhnTuj2v/+y0k2SN9/ozN387aqfVbqHzdyv0k2Si9f6YqW72+m9scfvv9hZA/fUUR+odNdcrXePuPo5a1S6Ix6a8/t+k+SSb59S6SbJO7fvnLf3noc650UlycdX6KwTPfWUL1S6G8zdOYcqSQ647oFKd53hnTU4l2xxR6WbJG/+vrOe7I55emfwj9r2V5XuHevtUuneulDnnjZJnjqxc3brLd+5udIdP6y3NuvYxTprnnec9INKN0k2mW/fSveSbbaudE85s/N5kSSXr3VUpfu7H55e6V40rffs97fvdc4XuWWP3iFJV77eWYOz3yarVLqjL+vtV/71Q53P5Xfsc0alO+GxYyvdJMminXnThbZdvtJNkr8f33n/2ktf6szV73NpZ391knxgSmcv5u1TOmflv/hS59zIJHnwN531IbsdMqnSTZJ/vKvzWfT1tTvPfuuu1dk7kyQ/u+LQSvflFTrrTvbeord++MS9O+2n739fpZskfxreeX74zGm/rXTP+VRvzfqZR3X2H+5+6WmV7vC/9tamnPPtzjPa9h/uvQPjkoHOuMCzJ3XOLf/AFr09ZrsM67yP4Np5Onu3j924d6bGyb/p7Jf8+R13VrpJ8u2FOufb7fPWzvla/1zwzEo3SVZfufN38rkTO+MNNz797ko3SXbdqXMm+rC39s7t+uGTnc+iTb7bmcM+4VedtfBJssc+nfX7D43trE3ZcoveuU9/G9255pOf6J0jMfXJ4yrdI//L/+7VuRfI5ZvO+c+xp+/qrRUdfkbnOfeGh8+rdI+e+EalmyR3nnlWpfvpS3pn1213SOeMq4W+19l/u/wz36h0k+TGVTvjxwc8fXWlO/wXnbN7kuSry3fOX7rpsM5amSQ5dqntK90Xj+78zm2yWGceOUkWfKbzvoiP7dV5V+C+d3TeEZ8ko+f/TqX72cc6Zy8lyc7v6+w72OHczv379XN9uNJNkpdve6bS3eWyzlqZg1+aVOkmyVmfvqzSPf0TvXuMDffpzKt/Zvvxle7YszvvnE2Speb5d6U7fLVzK92Z1/f+rn8w5UuV7il39OZ73358Z632F99+UKV74Bd+XekmyfqfWKLS/cQPOvOQ+/+gs/8wSVZ6T2e+8IMLdNaHJMlJW+5e6W63QueMq7ne97FKN0k+/rNPVbrvvvqkSvfwM3v3y9t86U+V7kvf6o0/njC+8w6vKQOd8cfX1+utex62fmlvzvjO78Uui/XOzvrXhp3vv1037rxnNUmW+G7n8/PBw7aodP/60945mh95oDNG8pNbO3vOD7xt0Uo3SdY/rjPf++VzO2vgkmT05p33TK7yWucz49VDevs8P/qlzllGa27W+V0+8Q+d8fAkec8/O59xKx/WWauWJJ8c1hkHHvebzvjW8CfWqnSTZNw9syrdn2/eWfd89PK9/QyL3t/5zFj2h513HiXJnht1zuyYa/7OveenNv10pZsk3/t4Z+3CR8/sjNU+sGtvDfjo8zrnXX5pic77S5Lkd6M73yW3XtLZp/vo7h+tdJPkzg91PosW2ujySndg9877lZPkpGE/rXQfGt45LydJfvehzpkrvzi3M/Z505mdcw+T5NNzd+4xjt3zI5Xuptt+pdJNkhU2X7zSne/szpqJJDn48521Vp+7sPOOyT1u+2mlmySbP95ZN/HCqZ1nh40+0BvTOXhcZ6x2hwP/UekmyZY3ddZwfeadnc/PNz7SWZucJAue/udK95y1OucnbL1OZ89Pkvz2pM6Zivtv3ZsfuPatpfG+35/6X/1nC80anQMnz/n96m/O6Oy7SZL11uy8++SmG/67n+H/l+/v3zujc+DlzrrnI449v9JNkkXW6ZxxvMOKnXcCPPZGbx3OI8t17i0vH9753D3+ot5ey8Xf25lX/8SkL1e6SfLrdX5X6Q77SWfd3olP9taATzi8M0d91j6d9T0/n7s3XzHvsBcq3Zcv741L73Z3Z9/PNX+8qNL95Yd7+/aX+lRnvnf4LY9Wup9/ufNcniQjlu+c6/uxT3bOgkuStU/trCl728qdd8N+fI3ee7++8bPOHPWCEzvPX1eu13sf42Jnd+abnj7zh5Vukvzxkc65J48s11mf9c55OutOkuSV1TrnWyzxRGcP/A479fYzfHzVkyvdW2f/pNJNks/d3rn/3HuTn1a6W8zVO7Ptu9t+rtJ9ywPfq3Q/+ETvnc/rvdmZi5y+Umd+OkleWr4zr37XjM74//i/dPalJsnSi3TOrVnrthMr3SnrdPZiJsl7Tul8Lp/8QGdONknW2qTzu7zcap3n4D/t29mjmyTTH5qn0l1wzc7v3MhH31npJslmB3bONfzIib13guz/bOce4/SLOvfLtyzUW7e+4FtHVLofvKdzttPU61eodJPkyrcPr3R/8bZ/VrpJ8uFDjq90vzuuc477pBV654ru/cvJle6HznpbpfvwXZ378CQ56bLPVrpTb+qcSZQkZ3+nsyZ+owc7YwKvfPrvlW6SfHWxznjDP7/f2TN57hnrVrpJ8tjzj1S6p+zTe//8KU8uUOl+f57OeTm/LJ4RM27hb1e6Lx32m0r3rht648u/Oq7zHbXrs733jq12Uefv5N5HHq9033h75918SXLRvp133X1nzc4c2snP9ebQRt7SOQtkr7929pklybeO6qwVWHzuzvfqsBN7n8s/PWftSveLD3T2Yr7xbO+dqa/c1TlvbN+xnTOlkuSayZ3zXc9+onN20Ht/1Hsf5LZ7dv6uL3iss+blIxv2zst55pFDKt19F1q60k2Sm/borJPL/+IY6YHO/28AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H+WgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGghH/k//xmzNn5KlJL8zxi5h77pFzvPkfayyzfqW71XbbV7r33XR5pZskq6+1RqW7/ts2qHSTZMLwaZXu0y9OrXQfn/lYpZsk8y28RKX7XMZXuuNmPFjpJskDT/2t0l1m6RUr3SQZl2Ur3dkTple6b1t5t0o3SUbP1fn7GzF7vkp3YPrwSjdJXnvuX5XupGdeqnSTZL4ZC1W6s2e9WemOGhhd6SbJ7IGBSnfU6Pkr3eGZXOkmycxZnd+LWdM79wFJMmLYqEp36pszKt2RA69WukmSWZ3PzxnTx1W648bMVekmSWbOU8mOGuhd85Q35vzzWZKMHt35XJ48tfPZmSTzzOz8/Q0b0bkXGDHXvJVuksyaOrPSHTWy97k8JbMq3YERnfvlkaN6v8tTJnV+FtMnv1Hppjekkxlvdr6vh0/uXfSE8Z3PotbzzqRXe7/L847ufP9NmtX5G5l73LBKN0mGzd95Lpn8ZO9zeeQqy1W6s4d1vleHT51S6SbJs089X+ne8tj1le4jU1+sdJNk1ozO38lbR46vdJNk1pj/0RTI/7bnZ75e6d42vXMflyQ3X3t7pbvWup35gecmPVXpJsmSY+eudF+a2Hk+S5JnH+mMC9w//PZK963bbVnpJsm4RcZXum++2Rm3XmSRzlhfkgwb3mkvNWyZSjdJbr39okp3wRWXrHSfvefhSjdJVlx8nUr3H9d15uf+dPkFlW6SLD1P53lnyZXeWukmyeilVqp0lxre+Vk88O8nK90keeWZByrdp59cpNLdeJdtKt0kefXRuyvdYcOWqnST5PUZz1S6z0x7utJ96J7nKt0kWWmtZSrdZRZcudL95zOvVLpJctujj1e6rz/fGTdLkqWX6DxLjV668+zw+pu9+fyXnurM71xz5y2V7oR5euusVpq6QqU7bXhv3n10aU5qzPDOM+WU2b2x9mGzF6h0R4/tfJe8/ub4SjdJRo/ojAMPzOzceybJzBmF+8/Z//3n27RxD+bhDXadgxfzf/v37hPmePM/Jr1rw0r36AsPrXTHn/GTSjdJ5r7pnZXuGo/35hUOXWOfSne3pTv3PK/98NlKN0n+uMHile4Xbjuw0t3qojn/WfEfL+3bWSt66v2d78wkuemRL1S6V3+rks3Gv+r9Lt926Lsq3c3efm+lO/HMznhpkjyw9qOV7rKf6IwdJ8n1A3+udJdaovNssOjfNqt0k2TrbXaudC/7aGceeeqR/6x0k2TeVTvrOF54tbcmcPkLv1Hp3j7hg5XuYt+bVOkmyfPrd9ZFzFqtcx/3yuWdseMkmbhzZ5/ZEs/35usvfuvESnfDsfdUulcvvnalmyS77H5jpXvtFYdVupM+39ubc/LEP1a6c31zTKWbJCuf2bkXuPecX1W615+7SqWbJNetvHmle+lunZ/F2W9fvdJNkgOOvrbS/fWlO1a6SXLj26+pdO9c+5xK95ppV1e6SbLfb66qdO/auDMO9ewCX6p0k+TlgT9Vuq93llokSRaYp3MvPt/ZnbVD521zU6WbJKu9cmqle9upb6l0Z+zeGUNMkokPdsZ09t6vN7584SGTKt2Z/96v0p39+NqVbpI8d+V5le7La36i0v396Nsq3SR528zOM9oje/XmC3ffu7P2ZNIJnXHEt6/Z+YxLktv36Ky9XGPEDyvd0392baWbJBuO7JwR85U9Dq50k+Qvv35Ppfv8Dp1zGeZ+S2+t6LgFtq50F1/g95XuYf+8pNJNkuVu6IzVjlvq15Vukqyxcuez6PS/dM5eG3tX73nn+s06+8GOX+qySvcXGx9T6SbJa0+cXuku9uHe9+qMk+6vdFcf2fkbueK0zlhDkix8eGdO8flrO/uKl7yrs546SU64dO9Kd9ddO/dbSfLpGZ3nyq0mPFrpDlx7eKWbJPNufWmlu84376t0f/HYrZVukrw05r2V7mWLdNaWJ8msF6+tdH+5W+fsp2+t1Xt2P3jdTSrdfXfszGks+LXOnG2SLLfDSZXu8Kt6835P7PW5Od6c9Y8n/rv/bmBE3phr4Tl8NckKj580x5v/sdu/v1/pblbaTrfRlp1x4yR53xf3r3QX2bDzHZEkB47bvdL9UTpjFDMf+0OlmyRvTt+00t3mwc7arKPHLFjpJskJC3XWJq99ducshyQ5rvNYnhOf6pxnf9IxJ1S6SfLOkzt7RhbetjN29Ydtl690k2SBn3d+Fost+NlKN0lW+eqRle7v/r1opXvFab3z2s5a7qRK98EDO+d93bL9UZVukhzwq85n/u23dcYHk+T5h75T6d5wamc92YyX/1LpJsl8uxxR6a7/8S0q3c90/umSJE+88O9Kd+zo3trWV/7YGbs6+LDOWPct2xxf6SbJct/rPJdfNXdnDvL4+a+odJPkhO8fW+mOuqezjzZJ1h3oPGSfOH/nzJMFDuzcxyXJc4d3vlefO/SsSnfKlzq/b0nyjfG/rXR3vbE3v3LnlM597QsHblHp/nJc71yZf93dWfc1bJXOnoP7Humcb5Ukz37sH5XuZt+5sNJNkp9c3NkL/YVrOuOIC23f26/86Zc6ayOP2bFzDsH+Z3yq0k2SnS/t/F58I721da/84TeV7i47d75XvzH5r5Vukux4z1cr3a+M76yhGjj3oUo3SRa+qXMm8w2P9c4hePZHP650tzmgM9b+wAZnV7pJ8tndOu99uGnjznzi6Vf27pc/9dHO/oupM75W6SbJwAc6+83f/ZevVLqrXdVbg7PkWzrn2N65Ruce46vv6o1PfuTnc349RJI8uW/v3+++rXeqdD/xj857Kv6y9Gcq3SSZufrbKt1bz+vs6f/Tt4+rdJNk/zXHVrofu603vvzNazr7qj67SeesqssX6zxfJ8n3v1Y6X/zwzruw7v9gZ9wsST65/GqV7uGH9/7+dvhqZz/Dxn/prKd53xK9/crP7X1dpbvCip39Ty+NPLrSTZLrrt240v3oV0uHEyaZ/MGfVbonH9g5a/3Ln1+x0k2SMy/qnE/93iM7a8Ouv+bDlW6SfG2Zzl6iz144qdJNknNO66xZz385dLbUrNfypalz/gyYLZYcP8eb/7HUiM5erwN/2jkX6F8DnbNDkmT0NZ13JT3/ZGdNRJJ8bJ0fVLpPHNGZC7n8nb2fxYrf7vzOfee0b1a6Gy3/aKWbJEtv3bm3/PNLp1W6SfLb2zr7IVdarjOPfNCPe8/PK1735Up30S935oX+8ck5v9/nP/ZcoDMuPeKGkyvdJLlnh845A7vs2tmP/NChj1S6SfLKPJ1/v1M/2DlDetrlnXNUkmTd4Z37lx/u1xtL/+Wry1a6R27ceX5e6c3O3FuSbP6LRyvdw6/q7OdbYuPOO8aTZPO1zq10Fx7fOXspSX7+m8798ke277wDdNvNe++2WfLqztz3H3ftvMPk8B8OVLpJMs+LnXczXDTmwko3ST78mc6/3zPLdz4/P7VKZz18kkw7sXPOwMXv6JwLdMTbemsNP3d4ZwPpHX/p7Ts4ZfVHK93nV+r8+839WGdMIEnmPfcXle75n+qsQb3rXx+rdJPkJ+M6z1GrFN+ft+gBnbnIpzfqjOksclpn3UmS3Hhl5705f/5n5z0HB3+29/75B5e9uNJ99e7e2oVPXbNYpbv54Z33gXz5ns5Zl0ny9lPXqHSnz96z0p1yyQ6VbpKM+0nn3RpfXbx3rs20WZ11OOd8p7PeYtldO999STLfaw9UulO36jxfX77VuEo3SR76bud9EreM751FcNkOnXXg35vUeQnGQd+6q9JNkl8d2rkvesdmnXOU3nbwzZVuksx7fufves+FO2sNk+T1kzvnl/z+/s5n0RXv7qzHTZLvTtii0t1upc6z3xbznV/pJskxZ89d6X5ntU9Wukly/ac794j3rtu5R3z05d7enN0mvVbpfuOYzp7JV17rra/b4qbO9/WIfXpndT/5z8sr3Q8c2/n7+9OM71W6SXLsVzv7Ue4+uTMm8MuFe+8SfPgbnfuteaf03iN/6G4nVrpHfr2znm33T4yqdJPk4UPWqnSv36xzBuvje25b6SbJV9bsrPV44cre2qL3L75hrf3fmDnPxEzadM6fabTaGb3/O9ff7vZKd6sjOvNCE7/6o0o3Sa6Z/KFKd+lZnf0VSTJswsuV7s8/2ZlX+OLPe3Ona4/tvBfgPU+9v9J9cc3xlW6S/PvWzvPXrZf01iT99aZtKt1lH5ld6R4zvjN3kyS/+17nLL9D7+ysp/7XKp2/kST57rWdsZWPv9j5vUiSRf7cOWvnj492zqx5+YLeu0VXvrnz/HzIxW+vdMdu3FnnmyRbzui8Q/LBdy1d6SbJzrM7e2Vv2aZz3vMWL/bG8hZ5o3P+7o4Td6t033ps7/3XIxbo7KEZ9evOPW2SHDTz2kr3mic6+xl2G9d5JkmSCTd3zviftUbnXWVHrdFbB7DGtzoHo8++oHfe8xq/7py3fth++1S6v93/zko3SQ6bvzM2dv5bO2c8vji5c+58kqz7hc46nAXWHV/pJsmXnuw8r15wf2e86POr9NbhrHdJZ+xlpZ0665P/edTwSjdJFv5WZw/NuZN775C840edeb0jp3X2WS/w286Zvkny8Fc659aM2bqz1veRZztnPCbJFptMqnRfu6W3T3fNtUpryj7aedfWJ847s9JNkm3P6bzP9tpbp1W6J+3fe1fMn995R6X79z917gOSZKfFf1fpXjbQ2ad061G7VLpJ8p4NV6h0p57Ved7Za5OfVrpJsvipnbMkjnxv54zHJJk8d+d5dYN/d9Yn3zrhyko3SU6b1rnHOHR454yfpzsf90mSd+3T+f478mvzVrpJctxhp1S62x15T6W7yP29Z7+lnuzs7b/8ns6Yzgnr9d6PstpnOmOfFw7rvXP6qvd2fpfH7NR59rv4yc7cTpKc8XDn2eHRYZ09d3ue2bk/TJId1ujsLd55684caJLs++A1le4xt3b2M6yyQ+e9OUkyfL/OutmT79iu0v3Dmb11Okf984xKd6n7O2fPJMnPfn1jpfuZXTr7Ucb96ulKN0l23L0zj/bH7z5R6R51Tucd9Uny/pM7a1POP+27lW6SLPDV1hrK8/5f/197p00BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9BBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgY8T/6Hw8fmQXGLzbHL2Lq9AfnePM/dtrloEp3/LzPV7prHvjRSjdJbrngJ5XuOu9cp9JNktXesmWlO3H0U5Xu65NHVrpJMtfkVyrdh/9xWaW76tLTK90kWW7Jt1S6M2b9jz4S/0cmPvpwpbvBuu+rdOedZ3SlmyQDI4ZVujNKfyOzRkypdJNkxPA3K90xwyvZJMmMF6ZVujNnTa50h41etNJNkoGRr1a6I4Z3fpdHZMVKN0lm5ZlKd/S8YyvdJJk15aVKd+GFOtc8bfrclW6SDJs1tRMeGKhkZ6Z3jzF21OxKd1h636tjBhaodGcP63z/jR0xrtJNkukjRlW6017rfN6PHNn5fUuS4WNndbpvzlfpJsnYeWdUutPfeK3SzbDez2L46M494qxxnZvEUa/PU+kmyZjRne/VgbcsXukmyfSXO7/Lmd35LFpkqWUq3SR5c8akSnfemWMq3RmzOs86STL7+c79ywIbrlfpJsms51+vdKdPe7nSffrRFyvdJLnjudsr3UdffbrSfWL2s5VukiwwasFKd8l5l6x0k2Ta1M7zzqIzOn/Xrw3v/S4//WbnfnnedMb6Xrz5lko3SZ4e03lGmz3vMpVuksy/UmlMdVjn3vNPv/lxpZskKX1nz5jZeUZb7e0fqnSTZOHxnXvxcQv25rrWX+ddle6o4QtVuvOOK42bJXn52c5c80Zb7l3pvvrMQ5Vukkwa1nl2f2riG5Vukkz8962V7hOTO+PWH/nQvpVuklx59SmV7kNP/bnS3WyxwyrdJHl8oc6Y+Lxj5/wanf945dHO79wyCyxV6d407+OVbpKMHd0ZUx1I57vk2Wc7c3NJssCI+SvdJScsV+kmye03X1Hpbv5S5+f83LRVKt0kufCyiyrdG267vdKd9mLncyhJjpi78+y3xPyLVLpJMiOd9VCZ3PksemPghUo3ScYM64yJT5k1vtIdNnZSpZsk88zqPK8OH90bkxt4szAnNfu/H9uaOn2u3PvsWnPwYv5vY+/77Rxv/se5x3670h234O8q3TE/PK3STZKLn/9TpbvPI4dXukly//vv6nS374z/jzx8mUo3SZb78bmV7pdvnavSfeQjvbG82ROvq3TX2XX3SjdJLrhn20p3j+efqHTfeWhn7i1JHpnRuTf5+iuddRzbfuuvlW6S/O6UnSvdRd77y0o3Sab/catK9/qZnbGE1d/fW4fzxGqd9ck37PLHSnfrDd9a6SbJyR/o/F2v8bvOWoskufOViZXuc6925guvv7AzD5Ik575rl0r39Gs79y7f2fngSjdJFr39D5XutXt11mclycE/WbvS/cNSC1e6IyYuXekmyRH/vqbSXfLAzu/coz87o9JNkqtXXb7S3fN9nW6SPPL7tSvdmyZ17sM3ePuVlW6S3Fdab3HI6M76yKemr1/pJsnrq06qdP/03s4zZZIMW+z8Snf9qzqfGc/s2lsfOXmjzjqAny+wTKX7/kc69wFJcvoznTX8Pz7+w5Vukmzw6c4c2aStO/fhi0zq3Lskyc2zrq90d15pUqW71zs7P+Mk2fCq0n6id/Sedza99+ZK983rO9e8zojO+EiS3HzHByvdZ1fp7G1c6NHe3Omq7+qstxi1b+/fb8xLnd+5+WZ3zkU56s+frHST5NVpnXmjq9K5D//W6p3zHpLk2rd9vtJ98Re9tScHv9JZb3j4TZ2zZz70lt748syVnqx0j/jBbpXuWfv1fpfvn7uzf/T8R/evdJNk4q87awXWvvOxSveLv9+z0k2SGw87rtJdZNqple4BG3yi0k2SP2y2S6X76ec766mTZNJj81a6M+ftnOVy+WdXqnST5OtTOnNdC7/WOaPpmZGddQJJsspBnfnx9Z9cvdJNknXP/2ele9KLN1a6457pnatxwwHHVrp/+dcale43r+7s8UySiRvfW+nuv+xVlW6SXPfmryrd99/Sua9dcLWfVbpJstBGnfvPK87pjPUtNuGOSjdJbpjROYtg8uIfq3STZOK0Of+7/PH/8rH9gXnmy/Zb7jhnLybJM/POnOPN/zhqpwcq3U8MnFTpnjO591kwsNGc/7dLkmc//fVKN0nW/OxNle7G+3Z+zge846hKN0kOOas0P5bPVLq7zfh7pZskB0zcotI94dbefsixT+5b6b78+ImV7inf6d1jv/uWYyrdN57dptJ9y0bvrXSTZLGTOvfYD63Q20u01vzrVrp3TD250r3p1AMr3STZf6/O39/SZ3TWk33hW72zZkfNvqfS/fXdnWfnJBn/j87vxkGT96h0v/eOH1W6SbL2vzeodCd9+b5Kd51XOt8jSbLXVodUurf+rjMHmSQzNuuMd39mic5c00GHdc5eSpL5Tu6cizdu987Y1Y3v/0qlmyQLHN35nfvb0atVukly67DOWWITbu688+jEvTrnkyXJWqM642IzPt/5GX/+0t46w92O+0Glu9YXNq10k2TR0Z2f89aXXVrp3v+3T1W6SXLkLZtVuoud1nnn2P73Tqh0k+QX53yu0j1neqebJDd/orNWZoUvdvZfrHn17yvdJDlw1Tl/BkiS3LRl52fx60N658C9++TOOP4lJ3TWJSfJ0Qd1PpevfH6FSnfXP/T+/f40ovMcvPflH6h0Pz+y916+a1/orIHb6YjeOMall3bGBd6z1jcr3cMXXLvSTZKXdr640l31PQdUun9asTPumSQnXr95pXv/be+udJNkxPc7835Hv2fNSvewP/bON9726vdUurdv1zkH9cKre+8ZuWt0Zw3cQ3u9vdJNkoPX78wpnnR356z8S/frfF8nycK/6NzLLfa5vSrd+67u7emfPbNzXuK7f9N7L+Y3juqsJ7s+nfGiseM7ZxAnyX6zOnuhj9yss37/0St7e/qP37pzVv4PN+/tN7/pu53x2g2Xf67SnXJ/by/KhGM6c5U/WrSztuH8Jc+udJPka/d2zmp8c/fzKt0kee69nfc3v/XdnfX7bz+9t/f30kmd37ll/9EZE99wcmcfZpLscn/nfvnyZzvnliTJY5M7ewT/W+PGTcgGb5vzayQfO7Izd5MkF9zTOcd2l9md8dKZf7ik0k2SpSd3vjc3+8lTlW6SHHJG5zyARXbq3Jt88YwvVLpJMnH1jSvdbffcqNKdvWJvz+lxJ3XGjy9e/c5KN0m2Wr0zZnrEXdtVunvf2DtfdakN/1Lp/vW7+1S6I87oXG+SnH37EZXuGQ93zpBOkp/OvKHSnXrIryvdqx/v/ft9+Y1/dcJnHlTJvv7wo5Vukmw0szO2cvsHSz/jJAct2XkGW2SpzvuBvjrsh5Vuksz/nc584Udnd+brbz+28zmUJMv/8rZK96BNO88kSXLfE531kWev19k/evi1vTmyPz3VOV/86D07a31/NXfvd/mauzpjNi8d90ilmyR//UbnTNGJf+uMP37qii9WukmyyRmdue815uvsU/r6Pb33z9//ygKV7nd/0znTMEk+Mr0zjnHO+R+vdF/57YOVbpIsu2jnDP67v/ZypbvXXb3v61kfnVLp/uqcb1S6SfKHyZ11EWv/vHNfe8DnT690k+SUP3feLXrKJZ2zutd/uvN8nSQ/3u6zle4+X+7MySbJ8Ac751Q8vGbn3mWlc3vvOX7szc79587XdH6X9x/fGR9JkoWW7ZxPvdo7d6p0k2Thq7audM9+W2dN54IHdfZYJ8n4mZ1z5z+9X+fsrHkO75xtnCTr3dS539pmz/dXukny0bNXrnT3+l7n3++RTXvPO2t9vzPXtceZ76x0J08+vtJNkjUe6Kxj3HDtzlmJSbLsoZ33/Ly8z5GV7vemrl3pJskJX+zMYT/12FKV7sO39O4xXnyqcw7dEgt39mImyZ+P7bzX+1uHd96Xuvx2vXPnf7x95/yEe5/6SKW7y2d6725+54Gdn/POJyxb6SbJFhd19m8ff/mZle5f9ui9F3OTCZdXumfN3zmTefhXO/92SfL4BZ3v1UOKz34b3NXZA7z07p37rf336bxXKkn2HPntSvegkZ3vqOe2672PYMP9O2dXrnd0Z94oSS4a3nkX6397V/TYi6NzyC/n/P63xXbr7dsf+4HOe8Y3W/d9le7La21S6SbJw+csUenO/kFvT9a9j3bGYj/w/c5a7b+f3XvP8cAGnTP3nj7+b5XufD/qvYPw/aUxm+Ef7L237bWzOr/L09fp7El+5u5VK90k+fsxne/jd36q8+/3/um99T07Pdt5fr58lc6ZGUmy7uc6c1nfn6vzrqRH/t75GSfJltO+W+lusPvBle6Ex3aodJPkpMs76543vLR3ztVxX5le6Z67ytqV7l373F7pJslDX/9lpfv8RzvffR/dsfOMlCSHXP/HSnfl1cdUuknysYG3Vbrjl+6cWbPEe3vfqw+O67w38Y2nO9f8hbOurnSTZIUR61e6x5/TG8t7YtMvVbpbpfMejFO3mlbpJslrB3TGpV949cuV7po39X4v9tui8x31wAa9M0T2ubezt/inzzxb6W6wV+/f74/Hd8alZ5+3VaU7X++YpGx4aWf+ZvFte/f4p/+4897LzU8fVeleffbtlW6STLy8896jMVvuXeleuXnvvUd/m7Bvpbvpjzo/iyRZY8H9Kt3rZ/+00l3lw533XyfJDl/snO200C87+8y2+Fjvfvlna3fOT9j4vb3zBx/8yp8r3c3u6qy132+D3lzJV4/ozMt+97XfVLpnXtRb0/LnWZ09r/98qbOGOEmmHbxlpfvzz3f2b1/41s6Z6Ely8Xadc9wv2vWCSvftf++s802Sy0Z29qN8bp7Od1+SXHpX57z1y95crtK9bkpn3WWS7Lvao5XudrcMr3RvPrYzt5MkV23V+V4de0pvriQzOu9AnHhM511N7xvW+b5Oko+d2tl///RBnXP4v7hhby/7n37+i0p32U067wlNkjPX7Pz9nXZq5+e89dW9vXHPrtg5l2Geb3Ter/HR0zp7+ZJk3+veUek+8lBnrD1Jlv9IZxxx/ts780aPvNG733pgyc58/k4b3lXp7jylM+6ZJGf+YPtK9yt3d+YdkuTzny+dJf2/uBXonc4KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8HGRjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBjxP/kfjx4+OiuMX36OX8Tc75w2x5v/cee/r6x055/vzUr3hYsur3ST5BNf2LfSHfb6K5Vukrw27I1Kd8KYBSrdl9K53iS5/vLrKt0VFur8Ls8z34RKN0nGzrNQpbvI/ItVukmyzJqrVrozZk2vdJ+ZNKvSTZJRIzp/J/MNn7/SnTFlZKWbJFNfH17pTrz9r5VukoxO5+c8ZsTCle6wEZ2/kSQZPtD5nJs+e3alO2Kg97s8fFTn32/G1Ncr3SQZPnp8pfvK8zMr3TFjRlW6SZKBeSrZmTNeq3SHZXSlmyTTpg1UuiPH9D6LZqRzzWMGOvdbs+fqXG+SzE7n/mXM3GMr3dEjxlS6STJ7VOceY/qo3j3itOkzKt35Fup8X8+Y1XmOSpLpUzpjJHPNnrfSnTV2rko3SWaVPjJmvTa1E04ybsH/0VDb/77Znc/lSU/9u9JNkunTxle6883Tua8dNm1YpZskw9dcodKdOa03pjpzeOe+9ukHnql0H3vloUo3SSZOur/SnTSq8+y39MBbKt0kmbc0pjp2oPOzSJJxYzvPUq+Uxq1XHza+0k2S+d+xc6U7ddTTle7qG65T6SbJJeefVekutdCjlW6STFiic18794Kd77/Fl1ui0k2S5yY+X+mOH9/5/Hzqkfsq3SS54KZLKt2N1l6r0k2SaaM69y8DkztjL8usvEqlmySvTeo8V772aGdM7rWpUyrdJHntmc5zyUrLLl3pJsm/R0ysdLdfa6tK97aHOmsmkmTCsjtUuiNHPVvpXnHHHZVukqy72OKVbmk6MUnywnMPVrqTZo6vdOeb1fth3Hn3U53wmM7f36gRnef2JHnqyRcr3eU23aTSTZKF3rJ6pfuXmzvPfnMvdG2lmyR/u+Pvle49jz1W6c6a2Zt3+Mobl1W633/LRyvdJJl7Sufvb+qs0hzaiN46q4GBzjj+7JmdsaKBdMbNkmRYaanAC9Pu7YSTjBhVuOhh//1c4thRw7La4nN+buHl3cfP8eZ/3PjrL1S61z0059d/J8k79j6i0k2SQ96/bqU74qmLK90kyU86Y7Hj331Gpbvyy517qST52KKdcYqRq3TGgna/56VKN0lmbb1gpfvKyr05zj1uurXSfXS5zvPX1f+4vdJNkpkLvK/Sfdu/b6x0l3nhI5Vukuy51U8r3c3+vlqlmyTv/VRnnOmZo99d6a55xCKVbpKM/NOfK91FpnXuBY5/+6mVbpJsfPRnKt2/vfF4pZskq7zeeeafMXq/SvfGSw+tdJPkc9d31p5c+dKrle4e2/6s0k2SW8Z31vAvd/HLlW6S/OPqLSrdlffv3MuNOeC5SjdJBn66WaX7/Fydcc091zyg0k2S85/rrNU+5tYPVLpJsu0mR1e6/8zXK90xG3+20k2SK8+6pdJd5v2dZ7+57uj8viXJyN8eU+musunJlW6SvHRyZ/7m+nmfrHQnnNG5p02Sf81as9J9bfymle4bK3a+R5Lk+pU667MW/tw9lW6S/OqszjrUC37Qeab81rE/r3STZL3FOmu/Dhv1x0r36wevWOkmybwTO+PLj2ze2xu3yO86z2jnv6vz97flDb39KLOv7rTnu66z52fqGttUukly5nu+XOneu/vbKt0kOXrxyZXuj+b+QaX7of0OqXSTJP/qjIlv9O3OuURvPfuBSjdJljyss272Q4f15neuXaAzRnLwsp15h4Vf3afSTZKV/tH5nTvlrZ3nncmTHql0k2TBlztr9z6x/Nsr3SSZd2znLInHT5i70v3pF/5W6SbJH67tPLsf9IF/Vbq3v9A7I+aoxTv7fs7f/8eVbpIs9IebK93rp3bWBC5/bSWbJLn0051/vy0fvavSHfFg7xy6my7r7Adb/QfXVrpJ8p2vd+5fxj/83kr3b/PfXekmyZ+ndtazTbn10kr3iZV652octOAVle4DG3fGdJLkwVc6Y3Lvn3pspfv4or1xqKnPdO7lFr6ic1806aOdsy+SZKCzTC5THu6tQbhmj23nePO1Uf/dGOLir0zN1y+b82u8b1upc15Gksw166uV7vu23b7SXeu6b1a6SfKXZVaudPc65/hKN0nOe74z3rb9LedVui+dXjzj6urOOPrff9xZtzD9sBsq3SQZ/ssPVbrD1u2NPc7ztc79X97bOfNk08s7a7STZIkJnWekxe7/SaX74QsuqnSTZMErv1HpXnZs70zY8Yt19sDvPaPzff3cZzesdJNk5yc6+yx/denale6D6/T2v8//Qud3brdXO3OQSXLgfn+qdG9480eV7vZnP1zpJskHhnXGa557uvNMvu+iH6x0k+R3H9+70r3miP0r3SQ5/4rO3uxHF+o8l/9whd55bYs+2NmL+ezW76h0L/r8+ZVuksw/ubPW4pKneueHbPtQZ2/OBr/ozGPd/NdzKt0kufWasyvdnw/bs9L90EG/q3ST5A/z7lrpXveW4tjLjp2/vwl3f7HSfXFGZ6woSf62VWef0qGf7HwWrbhrZ81Ckkw5uvN3vcH3O89RSbL8WctVuket0Fm3MO2Z3rqFQ+7orN+fa9XOWZcL7tG7X75vh4Mr3b/P7NyHJ8mXlurshb58i6Mq3X1O/22lmyS77NLZs/WO5U+sdO/4TWfcJUl2HtE503CthTpnXSbJrR/s7H/a6ZudMYE7D+nM7STJat/ozHt/e6CzfniNMZ0z8ZLkj+/qjF2PuerqSjdJRv16o0p3i9923pf64Pt6n8sbndcZL9p+j99Uujs82vkZJ8nOXzuu0r3ne729RLe8q/OO11uW67zn55kLv1LpJsmSG3Y+i9a7urOneNTcvbOORr/ZGe+7+DOdswKS5K4vdc5BffmmzhqgQ/7U+bxIkp8Nu77SfffynfGtjQ7unee25sOdd1VsP/ydlW6SDP9lZy/Rva91xqE2XKG3R/CamX+pdI897B+V7pXveGulmyQ77ddZ2/fGh/9Q6SbJnod31oat/NbONe93b+cMlyR5Y8XOORJbfrRzvsFaS/X2onx7Wmdt8tgbr6p0k2TVv3f2bp/7X/53b0x4ODcdvsccvZYk+fxDvXc+P7VX56zgmW923r+7/sc6Z5UmyU/26uwh+/Chnf3TSbLNOzpnDo3/a2dN5+b39M7x2+ekznfb7kd2xvLWvrzzDp8kGT7XGpXur5fvnHWZJKdM6Pz7PTb7F5Xu19brrc9acrfvVrrnPd55Fv3k3IdVukmy414/rHTn37V3pu+Wx3yi0n34hs5Zz/fe11uHM/mpzv3wc1t3znpecJ7O30iSvLJwZ4x3h0M658AlySrXrV3pHv6jzntyd1tifKWbJH9fY6lK9/d3d/ZW3fBIbx55iSs/Xem+57avVLpJ8tl7flrpvrRT590ou/3mhUo3SQ69ovOZ/4HRnXVU873YOztr77d29mActWPn+zpJvvexznu0prx77Ur3xlmdMw2T5CcPd96Dtud661W6+x2wdqWbJPtesFule9ClW1e6SfLNXTvntBx+Y+fZYdZvO/ObSXLkjtdWug+N7sxR3/dkb8/kvVM6Z558b//PVbpJssTTnTVa3z+mc3bdVb/8XqWbJNeceUKle8XLnf1rx6x5ZKWbJIve9vlK98s/+WelmyRnzezsO7jyls66vd//u3eWxII7LFnpXvvLznkP427dpdJNkr88P77SveZzvefVtzy5e6X7g+MnVrp3XtyZj0qS/T7Qed45aO/Od8lvd7qm0k2SbebtnEP8nV99v9JNkolXdua+N1jizkr3b7N6aw0v+M2cP/ssSY5+vvNd8q+remvAN936lEr32D2+XekmyXW/7cxhb7ldZ05qwet774lZ4lvfqXTvvK3zLsH9F+vN+y1d2ndw9/d7e5YfO6NzJuzBu3Se/R7bu/MzTpLlj+u8f3TnRTrfJcec1xlPTZJFP9zZ53nygR+vdJPk5dK+gz3OK51PeGrvrOBvjuuMfR5390OV7gY3fK3STZLz9u48l3xsg94ZMW9uU5rrOrMzb/uuVXv/fq9v3jnH7KTRnT0YP5vZWaedJBfc0xmTu+8LT1e6SXLBZ1avtf8biyw6PAcfOe8c7256TWfuLUnGHThfpTv/o50zYH67wrhKN0ne9Xhnrdqth3XOTk6SI1fozDm9snhnXu/ePSZVuknygbd09gc8/uMtKt0P39M5CydJ7pyvMy72zXk6e6iT5OVvnlbp7vdyZx3Aka/31j1/Y5HPVLqjdu2cubfjAp1xlST58azOmZe7D/TOEFl/dmeNz5t3vlLpfuvI3jqAExcaU+lu98zCle55U3vnPQ//w+hK94vrfbLSTZIjTu/MRa73lg9XupetulOlmySXXtf5zNh88pzfL5kkq1/S+45a95nOv9+mEzpndCbJagdPqXRnz9N579fxD/f25lxzTueM1d882FnTcuBeJ1W6STLXfJ332X51g967fvY/9/RKd7e7On8jOy7ZewfhjKM7Zybev19nb85Gx/XeP3/38519B9Nf6535NXHXwyvdh5fuvN/mxB0/Vukmye+P6swXfuGX76p0dzugc45mkvz8rC0q3Znv6J0hcsmEztqv9RfcrtLdZIHOfUCSPHNhZ1zghTU670++9t+dd0slySI/7Mwjb71378y9TSd25shuvrizT/fqj3W+r5Nk+GGd81vPvaPzjLb+uN6ZX1Omjq905zr/oEo3Sba4esdO+H3HVLJf+3pnTjZJPrh758yVrT/xqUr3F4923oeVJM9u35l3OOyAzr1nkly7Ymdc4IEtpla6VxzXO+Pnnh06n/nT/tHZc/et3/5375P+33HG/p3Pogt/3FuTdPuyneedD13cOe/osDM7a1CT5IHPdNonvNg513DFT3beQZMkpz3y00r3O1t2zm5Nkm//+oJK96k1Os+rty7XO4fu8Fs75xK9bevOvpH51+ztmfzxNr+udNe4pPMZlyQTZnXmmj93R2d8edMrOvPBSXL8Ep37rU1/0Vm/de/rvd/lZ7+wQaX74Ld64xiHj9ql0r3y5M4z2nEf753Df9Hdnb0S15/QeUf9uc/0fhYffltnTOCYB3tnl595cGeu63+l97QCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8HGRjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/i73/jNarKsD+3Ts7hTQgoXdC7006CFIEQQFpghWwI4KiKKhYQUUpCggKKIooIEoTARFBOiKK0ntHeguQkISUfT78j9/OOePVk3tk5B3X9Rl+Y42d51nPWnPNORcAAAAwNxj23/zHE199MRdd8vPZfhCPPPPibG/+x6QXXql0F11kVKX7xY+9r9JNkilTplS6w6aOq3ST5I0336h0J1WqyU0X/q5UTv793JOV7ts327zSHTPPYpVukiy82OhKd9aQsZVukiwz3/hKd4Ex81e6gyP+q5+H/8qrb3SO+fXn/13pjpg5s9JNklvOP7fSfeOZaZVukiw8Zb5Kd3DEjEp3nsHe93rWmE535rTO7/XM4RMr3SQZNmxopTti1JBKN0lmTu185maO7Jw/pw++WekmyYjhnfbodD4XgwPjKt0kGT5saqU75M0RlW6SDJtneqU7c2bnbzFrsHTyTDJyTOd7PWPGPJXurBGde8okefXFzvd6/nGd36gkGdH6zR7S+TsPvtH5vCXJYOnyc7D129f7WufNN5+vdIfO6p2XJ7/auRYfMbRzXh4+0Lm/TpL5Fu3cBw9On9zprr5KpZskM1/rfP+mv/pSpZskk559odJ9etJDle5z056udJPkjVmDle7CIxeudEcN6Y0JjBzROekPmd67xph33pGV7tBZnX+/V2Z2xsOT5LmnO9+/bffes9L91tc/VekmyfjStfjDr3TGJ5NklbXXrHQff/WxSnfUa0tUukmy4opbVrorbLxppTvt8d7v9dZ771Hp/vWKyyrdJJn82FOV7mk/+0GlO2Rq59ozSTZee/tKd9T8nTGBCautW+kmyfilduiEpz7X6SbZZLm1K92X7u+cM4YUn4E++9rjle6Igc4xr7nSupVukjz00K2V7soTOtcBSbL0MitWuouO6ozpPHj3kpVuktxx74OV7nPPdOYsvX2bD1a6SfKHC39a6f7i7J9Vukmy7ZZrVLp/uem6SvfVl3vjk/c/cXelO6l06z5ySG9uyriVxlW6q32tcx2XJE8ce2+lO+vFTndI7xF2hg7tjJEMDHZmDc4YXKjSTZJpo1+vdMfM6MzfSpJp0xpjqgP/8//5+pKTc913/jEbj+X/8ZbxnTlUSXLVxNMq3SmTNql0t9tr1Uo3SV7fb+lK99zBb1a6SbLOl86rdDfboXMOO/C5MyvdJNly7dsq3TfXnFDpXv/QUpVukqz0gY9Uur/7Ued3IkkOWrTz95g6pDO//LFVenN993m48yzyslUeqXT/9Oq3K90kee6Yzpjp5AVerXST5NkXJlS6txzfGUtfa73Oc5AkuXG/zr3B/nt0xj9+cPFylW6S3H9RZ23OuPk7Y4RJ8tIRK1S6i976/Up3u617c5J+N+XySneZ45apdG/bap9KN0keGPKXSner53vzW588sPP7N89WD1e6r1+2daWbJCOOe7bS3Wzi4pXurQ/2nn3fO/5/v+///2WeTd5R6SbJsIc7zxXu2bFzj3b/4737nd2e/kSl+9JzD1S6Lz50Z6WbJCOf/GOlO/SBztqcJNnukd9WuqdtvmClu+fb5q10k+TMWZ2/xV43d35Xn1i9kk2SXLJY5wHA1fd0fqOSZMMlj690n79unUp3cPne9fIia3bOGX/5eWd+1h7v/GalmyS3LP2xSnf05XdUukny9NjbK907Ry9a6W6WjSrdJHl66xsr3a0/vXKlu+57O3NlkuSg+TrzZfZ6alylmyT3rLNZpTtqYFalO+Wmt1W6STLfzvdVupc/1Jmr/dJgbz3KohdsUelOePCTlW6SnHhL57n6RZtsVene/tHeb9RSe55S6R5Ump88ffFxlW6S3PvT9Srddx3YG1++eIvOtfjrl06sdEevd2ClmyQH7dN5nv/i7zvjGAcu++FKN0n2HvmbSvc9s75W6SbJwKjOmOrGI8dVujMf6K1nmPe3nT1G/nhrZ6z9kO06a7aS5MePHVXp3rTBpyvdJPnGee+tdH940x8q3ZPXOqPSTZJDfrtTpXv/a515cstOvaTSTZJVHl2k0l38ph9Xukmy+ladMdULz+jMRxz9zE2VbpI8u3dnbc7Ut3fmWZ0x4YlKN0mOOKszn+3SRXq/JV88YoPZ3vzjGxf9T//fyMnJajfN/men9/3pmdne/I/hx3bmDZ39m845d7HP7lXpJsmhx3Tm4Izf9+BKN0l2vfTRSvexW46rdM//9QmVbpIcuMJrle4fbuusv/3h33sbfm16Vue59zwX9vYPOWVGZ27djEs7z1f2Pay3NnSJGZ3x0ocmbVvp3vPP3prhZad39ocfuVRnH6Mk+ccDnfvFg9/YrdI9aMPeM4WNn+iMUSz6g4sq3bN27c3tmbb9kZXui3t8vtJNko2u6qwbPmTodpXu4hf8utJNkmPHdP4W/35n5xp/y1U7a9ST5Lk1O+f8vz/5mUo3SQ5Z5Z+V7g9v/1ulu/7ivb3PHtvsS5XuW4Z03sfzzuXfVekmyVbjO3sP3nxn791EZ57QOX++slHpWf1enX0/k+SwTTvze14/vzO+u80yvbXbnziqM8/3ho/3nnvP8/Lyle5Lp29c6a7xq974/Hc/0rl3uOgzF1e6BxzcWQeWJLve3VmLctk6nfGtJFlwgb0r3Z9ccVelO+223p4af/t0Z4+5p7/8lkp3z6t757gzju3sWTN23867NZLkd492/s47LNj5jXpis84eLkmy9xGd595T7u3Mmb1ijbdXuklyxwUHV7pLfqaz726SnL1H53p5k1U618sf++HplW6SXPhoZ23AhIfHVbpfvqs3JjD2hs73+l03n1rpJskG4zvvdlvtyM5eORPX78x/S5I9f9OZZ//ZD87+9zYnyUev7c25fOk9R1e6F2yxTaWbJCv+u3POX/zuzr3f1476UaWbJLdeu1alO/3fnefBu/6ms1dHkmz0t2Mr3R1/3ZlzmSSnn3xBpfv5hW6pdDd87eBKN0kOLd27/37Bzr5B75zROd8nyRZLfq/SfeCDX6x0k+T2n3XeJ/Hhu3apdBd48fxKN0lu/0lnzvo6QzrzMX44srO3eJKc+tqlle7Te3SeoSXJN07unIs+cvfnKt3np/yi0k2Sj96xe6V7y12dOQg3bvFYpZskJ565YaW7y72d95ckyaqLXl9r/y8mPb14rv3aIbO9+9IF98/25n/c+Y/OnkNfWvueSnfhg3tjeR/9ceeecewBvXk4L5zZGU9Y69Fxle6fl+rdJy1xUmf88V2f37fS/d5GnXm+SfK2IVdUupc+0tnfMUmWHNF5LrTPwp1nLCd87U+VbpLs+FDpfS0rd+bhfP7vnfd/Jsk8fzu50j1p3t55ecubOmu+v/fg5pXuZYdfU+kmyQe2+2qle/U9nXcwzfPd1SrdJFl/no9WuuvM07vP/euBnTmBPx7SmTf7r7/M/mvw/9hhu86+eJu/t/MsZP+Pf7nSTZI1T+isRznyouIzljUPq3Rf/HZnLfmla0yodJPke1t0zkVXLPNypbvu1zpzI5Nk9cs756JPb9SZa5gkB7+78zu13MjOfPgTFursN5Qkn9mm8yxy+kudOYx7DRbPy9/prNO9/vnOPmJJ8sz1nfeuPLBb5371lB16+5afO/rCSnfRVzrzqDbfojMHJ0l2u+bFSvfVd59T6SbJd6d39tQe/fHO8/pzT+u81y1Jhr/xlUr31O9dXemOfXDZSjdJvnbAQZXuuvd1zvdJcu8unfPnwu/v/P4tu19v4/lh7+880zhnwxsq3e2W7IwBJ8kiN15T6Z62e29fm68++I1O+J0XVbKnT+vNAzjohs47oO49ojPuucL4AyrdJNl2kfdXulvc2pl3mSQb39Z518Hzp3Wuw5d4tjNXLUnWXrFzH7zeSZ3z51GldalJMnhwZ+7JFb+8rtJNkg+80FmD8drznblqb3uss04iSYZ84txK94lPd+5X//jr3nyMuy7u7MVz6Rq9537r7d+5lvvndp1795cu6b1z7KZHO++PvWjTPSvdb7zcec6cJO//UueYB/fsjb1s9OXOOPDqj3TWeV5yTuedD0lyxDmdeRNX7jGj0j37/N745M0/6OwLNmvytyrdJHnmgs7f+TNrdN73Pm1y5x1bSbLyHzv7Nb57+85v34UbdNb8JMnF3++882ifaVMq3SS5fKnePu7/i4WffCGf+PxPZnv3oodPmu3N/5h3g875fPPdO9dTx3y0N5aw2/WduXsvz9ebx/G7j3eeke19cmft29rnddZ6JclHHj670r308A9Vutsu29vbYuo6765039z2oko3Sb71Uufvce5hnXlwv9izNI6e5JkXO/tbHLVNZ67TOWN61yZfuLZz/nx1z864WJJcdW3nXWUf3b8zB/V9h3fmJifJ0e/+bqX7tfGd50LfL70bL0kOvLrz7Pvka3q/JXsc3FlfuMuIzn44n37lO5VuknzrO+Mq3Y3v7rw38fm/dM4XSbL+cZ29r+9YtPPelSS5/sHOO8W+fkBnzGatC3rzAA5cq/Oe3G0W6+xle9GfO5+3JPngBzrz1j+9Z++d6yuP6uxN+eGvdD4Xi733X5Vukpy78BmV7vKPdcbFrjqw83lLkt0/PqHS/fUyy1W6SXL8ip13rS6z+FmV7s73dPYXT5JPb9d55/pON3Seqe84b2986+Y7OnNyH7ux8w6oJDn6q1dVuufs2dl/6aV5x1e6STK43wKV7h8f7Lzb9yOf6L1b9LPHdtY23vK5yZVukiw3f+ce+6zJ61S6N17Qe5/g9L915gGMTmd8ZOuRnXnaSXLazM4aqH3u+VilmyTvWbbz7/fXVTt7+X3ow705SWvee0el+/NrO/vDr39y573MSfKVX61f6V5zTGeP1ST544TOPnM/vaEzJ3f0ob15szMWvrHS3foXN1e6T+b4SjdJ/nB+Z53g2AN6z7o+NWlCpTtk08785Af/0Htu9K15Ou/zPOI9nb27fvtY5/15SXLV5Z1nihctP7HSTZJPH9S5L/nE0Z0x1YOHnVHpJsnOy71R6a6/Vefe/bYDOsebJCe9pfO7+tyevfco/OHD91a6z+zzYKW76Nq9ec+PPN3ZU/GEIZ3uF5br3JMkyeFf7Xzm/vme3j62D79vQqW7wpqdceAtz/h9pZskk9bqjONPHtYZb1jns733sn94186aybu/0tvf9fijO++t+nH+Pz8r6eyUDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lxmY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODYf/Nfzz1zRm5/4kXZ/tBzDv/0Nne/I/dPvz+SnfN5RaodFdfabNKN0nGZ3il+9QC0yvdJBk20DnmUTM7n7nV3r5VpZskS919e6W72PwrVrrzLrFgpZskg7OmVrozh4yudJNk9MxZle4r06ZUuq8+P6nSTZKhQzvfv8FhnfPFlNK5M0kWW2L5SveOf/yt0k2SRcZ1vttjx8ysdCdPG1LpJsk8g89XuvPPv0il+8YLlWySZPi4zt95yqTXK90kGZLOMc83dlSlO2PquEo3SQYH36x0h47q/K7OLF0HJEmGdn6vh/Z+SjJz1mClO3Rm51w0esxrlW6SzJg+rtIdMtA5F02Z1vtbjBg6ttIdOtDpJsmUWfNUusNffqXSHRzeG8fIQOe3ZHD+eSvdmW92/sZJMs+bnc/FwNiRlW6SDJ3S+V0dNrrzuzp0nmmVbpLM6NyuZtgai1a6Q96oZJMkQ9+cUem+8Urvt+TZ1ydWuk9Pur/SfXZKbxxj9LwLV7rDpnUuEkfMU/ryJZlnyHyV7nxjevfuk6d3fksyovP9W2ps5zo8SbY89JOV7ik/+Galu/s7Nqx0k2TY0MUq3ZmjVql0k2SBMf+sdMeMW7LSvfGff690k2TmqGcq3VuO/32lO2/xemuZ+9eudJdYauNKN0lGL9j5/o0a3/mNWmml9SvdJLnwvPMq3eUHO/c7L016sNJNksFXOmPtSyza+yy/8fizle66b9u80r3n9tI1UZL7/vbbSnezreevdN8cvUGlmyQbbbBnpXv3kw9Vukkyc2rns3H3fS9Xuq9MubPSTZI3JnV+s595pDOf5l8zLqp0k2RgoDOO+NxrT1S6SfLQs53z8iqr7VDpnv7rUyrdJBkyozN2PXyw8zx/YJ7Os7kkOfHrn610h4zpPR9Y/IBtKt0XvtP5LZk02Lk/S5IxQwYq3SHpjL0MGeiMASfJ4Bulh81De8/dhw4ZN9ubQ/K/fybmuX9qJmx712w8mv/Hv17pPW9652Gd34ptd9qq0v3nt1eqdJNkixmd79di8/yw0k2SRb+9c6W7zGvLVbp7X7tmpZskkxa8otJdc8HONeuM4ydXukky9szvVLrj1umMtyXJv+/Zt9Jde8mvVrrTt++N5Z347c7ky0eHr1vprvZg53yRJNe8cmWl+44r76h0k+TR8Z3PxgqvdZ7dPPSNzj1uksz/wdUq3dcHJ1S6z159c6WbJMMmdZ73vr7vJpVukmx13GmV7ksbfKDSvejGzthxkiyxbueZxbRjj690h53U6SbJEjt+pdKdvuRVlW6SvLlHZz3KjZM64yob//1HlW6SLPa3P1S6r93ws0r3tuUXr3STZLdtb6x077tmt0o3SXa9e+lK95qlnqt0D3zy3ko3SX67WWfu3mKTV69019jy3Eo3SYbeslel+6PXe+u3F9n1kUp3oyefqnT/tcSYSjdJZrzQuXcYtslvKt3prx9c6SbJavN15vpOf2ahSjdJrn/1253wPZ3xySHzX1rpJsl6l3eutxZd8J5Kd6e7Os/0kuTMZTv3lTsd1LvfWexXnd+/IT98stId//E1Kt0kWf6Wiyvd6ft8vtK9b5/OGs8kedtfOnsRLL/vNyvdJJm57hmV7vJf6oxvPfPa9yrdJLnh153x5fGvdObN7rNYp5skE6+9sNK96pR1K90kWXLJznjflOcOqHR3+si7K90kOeaFzvy6J17ujI+s/Y/OPUmSHLXRMpXukEc3rXSTZMim/6h0V12s81l+8+/3VbpJcs2lr1a6b3l7Z57A5sXPxRHrd+YQL3v+2ZVuklz5ns4zjUWP+0SlO+4TnT3dkuSlix+odP/8UKe75uG9uQ2f/cP4SnfyTh+qdJPk1R0Pq3QvOfuSSvfAz/XWLC9+aGcNxrKX31bpjli7002S5W46sNKd7/LeuWjDd+xS6Y74Zee8PLjhCpVukvz1ss7auCkTVq5095nW2RMlSR6Y77hKd5GZO1a6SfLctl+e7c3p1/xv839eHTMsf9h09o+lv+Xvd8/25n/c9K+NKt2Dr+5cP2yw+KGVbpJc+oPOefGcl/erdJNk4a92xtE33razf8haY/erdJNk7UU7cy3OuHLVSve3b/bGPn5yZGfd1JfH9n5/hvz+tkr3fVd17pGW/kZn76wkOeLqj1S677jto53uzz9W6SbJUqeuU+kuPe9fKt0k+dDenWvh09bv3HtdMl9vXc744zvvZ9hgxnaV7kFLdc4XSfLgTz9Y6X7tmT9Xuklyz8OdtUS//uzsXx+YJG+c1hmrSZKrPvmFSvf8F8dVule8vbdm+Kz3n1Xp7nL1UZVukiy3fmeu4XbPds4ZZ7zZ+bwlyWZ3dn5Xzz6hs0bi6F1vrXST5KTJnXu/e7brXS9vsXFnH80NT+28/2nkF0tzAZN8bZGDKt1Xf9DZb2/JV3r7+P3kwHMq3bVHb1XpJsl8v/hUpbvQXSdVul/+Re9+Z+Wfd/bofP7nlWw+fVXvWeHxh3TuHfZeq7cn7P3bXlvpTjz945Xulev/oNJNkpenXl/p3jf8zEr3/e/p/NslyXqTO9/rGSf31ps/fnxnHPGEkzvPvW+d1bkOSJJv7NNZs7XuBZ09pDe4qbeP3/qXda5fjvlOb0z8i7MOrnQ/v99nKt1zXj6m0k2SMTt0LgaW/Ml+le4WT7+v0k2STS/6cKU7ZFRnfCtJjp238/27+rXOOto7D+mMhyfJg4t3nlVus0JnH82HLnxXpZskN9zXWQs2ZvveGsFFb/16pbvRlZ11VQtd1/mOJMmft+2skZ/4sc56169/rLcPwZEjO+skztm9t7/P9e/rzG3db4u9K90dD+jtIXjS6M6eKBN+29kr+MzlO2PASXLhqZ11cZMP6O07v/GbnbVEQz80rtKdf+fOep8kWeT9N1W6n7y383zgsbN6f4snp7+t0v37vzv7BiXJKZt1rvE/+8l3Vrpn/7zzbC5JfvNiZw7JgvN1rl0uWemQSjdJtvrZlpXuTsf09kQZcf3BpfL/Nqa66PwDOXSX2b8v89mXfXO2N//jQzOuqXR/+OLhle4iE3rvVPniBp051TtvsValmyT7rN/ZF+/D73u80j36G701EN++v3M/ute5J1e6NxzT25fkmJs7ayXG7tqZt5ckJ97WuWd8fIXOs5t3f633XOHQRV+qdG+a/HSl+4H33VLpJsk1X3+90l33jN57KOZZ8a2V7kpf68w1fPqMzrspk+SuP3XGYjcb3nkW8sVnbq90k+SyQ79Y6c46tfdcYa/DO3tHfmaFznsTt1mgN2/2/CM7ew/+cbfOHnO/P3WLSjdJjnt8VKV75pa9dc7nnfinSnfg8R9Xuj+d2Ht/+aUXdt4Nu8/OIyrdLZZ4o9JNkmOu64wTvvvit1e6SfLvR7audJfbvfPevbX3e7TSTZI/bPdKpXvrgZ13E53+1d6YwE/W6+zJfNSpvXWeg3udWun+bN7OXvmL39zZmzpJdvtN533EJ364s3fdqImd/TKS5JRvd/blmviH71a6SXLQxp35aqs/25l7cvdGvT3c79y9M9f36cO/Wel+4q4TKt0k+fmFnTGB+0b3fkvufLSz1/PSf+nsNfvafJ01d0my5Kqd8cl99vxlpTtqSG9d/x33Plzprv7T7SvdJLn/X513ph4wq7Pf3qF3f6nSTZK3HnF0pTv/L16udO86YddKN0mOGts5x33lgs5aviRZ6W+d8fYfvWupSvfXe/fe33XH/p33r12/Suf8+dHDOvv5JsnQm0vvVVylMwc8SQ686deV7i3PdvYEW3HH0nvRk7x17OmV7hLHdvZ3XPiQzl5jSXL4q513sZ73jz0q3SS54OLHKt3lJr5Y6f5x0W0r3STZ+rhPV7pLrNnZu2uDDTvvmk6S9Q/rzCF5Y8ne/LrxX+o8Oxpx+OaV7pOb9/YY+f5b/lbpnrvy+ZXuadNLmxwkWfWRJSrdD6zae+fYpkt25oY9e1VnrcSPjlq30k2SI5+9qNI96tTOPnTbLNybA37R0Z25Hutu3ptbNHGD0r3U/zhU+9y8S+W4LWf//tM/fGvnvjxJtr2788xizGuduSeHfq332zZht89Vusuv2HmmlyQXXtzZ62Ot/Tv7R3596d7chQuP7DzX+8b576l0H1ivsxdVknz8u505gVsO6Z3Pz1uk836g0z/cOeaZx3XWnSbJhZt11uG+7eDOuwIvf6Kz/1KSnLB0Z9+MbR7qjJcmyaI7d8byfndLZ97ebZ/ozBtKkl8f1BmnuGSvznzcAz/Re9608/OdNZETFul0k2Sr5zrrQz9254RK9zfH7F/pJsk1p3TWjfxurc6zkNMv6F1vDRzVuc+9f0JnPm6SjF+8s//gxIU789b3Prv3G7XX87dVujetO7rSvXXkvJVukpx+zrhKd+bvent+TV+ycy2w/XbXVLrP39mb03L5tzr7wl78t857cm+9uLNPRJI8v0fnud6HN+mtOb9z+xsr3R9eeVml+63S880keeRTnfG+j//qukr3h2ctX+kmyeOfuq3SHTryV5VukhwxtfOu1XEf6Twju/qTvf0Hb36wMy6w5Bqdsdrnf93bc2j9e26odD/9qd7+dR/ZrXNeHn3DTpXuCmf0xtq/+9P3VronL9TZz2jiLzpzZZLk6ddeq3Qve7az30OSnLFeZ4/cT107WOn+6tO95wMfmtGZL7PHkH9Vuis+fFGlmySv7tb5nnzj+t7zgWlf7bxvZMrZp1S6T5b2AUmS914wUOneMey3le7eTz9W6SbJ0LOOr3R/uHHneitJDjzpwEr39At3r3QXnNjbF2W3iZ13uoz/58WV7rRpnb1LkuTQJzr7Bb9xcGdfhiS56EPfr3Rv//GVle5WO/feFXPUdZ13d6xx/IRK91NX9J6Bfn6Tznqitc7rrF9LkrU27qz72fTUzn3UKR9boNJNkov+2lln9tMPdM73r23S+4366V87e/xseFTnPipJfv7JzrsxH3q2c/6cPL63P+jPH+nM1T74hAmV7iP39PYi+PMunb/FCt/o7EmUJK/uWno+fvb/5z0VO3dXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/mYE5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgyGDg4P/x//xkksuPrj/AR+e7QdxxYV/n+3N/9hv900r3WUWX67SHbvQ9Eo3SaYPjqx051lgXKWbJOOGjqp0Jw0f2+lOfaPSTZKJjz9U6a6+7jKV7ugZS1e6SfLPuzrnjAnLrVTpJsn8ozuf5YHhne6M6UMr3SSZPH1KpfvG669UujOe7Z2XX/37/ZXu7eddXOkmyTJjl610xw/v/EbNP3+nmySjZs5X6Y4Z83qlO2PKsEo3SUaUfldnTu2di0aOnqfSHRjS+cxNnzSj0k2SUWP+z+8H/hsDI4dXuiMGZ1W6SZKRnc/ciOm979/UjKh0Zw52zkXzjpq/0k2SqXmz0h0xz7yV7rQpkyvdJHlzZud7Mv98vd/VGdM7xzxiSulctNgilW6STHzhyUp3xNBxle7QEUMq3SQZMbJzvTVz2kuVbpJM75yKMnxY59plWjrXAUkysHDnezJ8TOf3evrTL1e6STLp2c73+pFXH6h0k+SlVzvH/ODEVyvd4cN71xjzDe98sYcN7RzzmIHe9fLw0aMr3SHFS/xpU16rdCfN7JyXpy/TGetLkvnf/7ZK97fn/6jSXWDMuEo3SVbdaPtKd94pj1e6STJ1zPOV7rMvdsY+h5fGgJPkhec77SmvdsZe5hk1rdJNkqnDOueMp17qnDuTZJEFxle6L71yX6U7dEbvGmPxBTrt9bZaodJ9+J7OGHCSLLFcZ4xk0iu95zuPPTCx0t16+/dVum8M9O53ll6k85m7+qpTK915pyxc6SbJyMU6Y6orr7tdpZskT9wysdKdOLlz7fLzs86sdJNk0pude7/37rhhpbvGpktVuknyu8s74w2TXp9a6SbJqot3flc/+MmvVLo/O/6KSjdJLvzTCZXuessvUOkefsiOlW6SrLvWtpXu8GG979/o4Z1nUo9f0XlW8vTvTq90k2TU8M5vyYgZC1W6wwYXrXSTZHBY5znMiIHOc+YkmTJ19o8D73PPKbl38lP/0x9j3LKjBt962PKz+5Cy+okHzvbmf4xarzNo+uSmnXGxt23QGSNMksXHXFTpvjTktko3Sd5fGjO9fcn9K90V5rut0k2S+37fGb8a8cPfV7qX37R+pZskHxrdmVN98zZ3V7pJsvzlH+2E3/2nSvYbJ25Z6SbJmVt35uT+ftzGle5Dh/aeN00edU2l+9efnFjpJskB3+yMB6125/GV7h9fvrfSTZJjX3uu0j1q9bMq3Xc/2vtej9u4c701bGxvrujjw3aqdP8+3+8q3cd+sHilmyS/mqdznnvugAmV7qM/7KwFS5JVHlir0l18rR9Uukny7Kc+W+m+eN5ile5iI2+vdJPkiUmd79/yx3Sesdx46E8r3SQZvf+HKt33ndKb9/yJpf9Y6a6zXGf88dHRj1a6SbL38E77/F/tXOmut0LvczHiY++pdJ/9xdGVbpIsMaozTv/4hp31vzMe+XelmyT/XnS1Sve9r3TmGh61+BOVbpJMWPi3le7S58z+cdr/mDhwR6V7zSOdtbSvrfRUpZsk603qzLVfadN9K917XnxrpZskF//6pEr3fU905sMnyWNrLFHprnTDkpXuDUd9q9JNkp3e9vNK9/LDT6l0r9689xu17qc6YySrXDux0k2SzVbtzMk9YrCzzmXF37xY6SbJm+/sjJH8duj7K91Pnd77Xr+20dqV7uX/eLbSTZIF9/xHpfv1UzvPjU4benmlmyTbPrxRpXvBx1asdD+7VGevsSQ5Y8nO/OTPPnpBpZsk396ws4b0O8uvUeneM0+nmyRv3vZ0pbvEJb+sdB/d98hKN0lWu+wnle4/jl690k2SZ0Z3nq/etWfn/Hn16N4+dIv9vjO/YbG9OueLd63bmbeXJDOP7szTOWVM71nXUUttVulO+9zmle5ra3T22kySU1/etdKd733bVLqf3OO9lW6S7HfgypXu+HV6854fP7gzb+lfr3Q+c0+evGelmyQrbDmx0n12VmfcevCq2b+X8H+sstWDle41i/XWNr7rvEdme/M9b5yVu2Y+91/Pe15m7RUGD7149j8Xmj6+M2coSebd4dZK94z1OvcFH9/l15Vukhz4g856nq/+rbcea/trOmMUV33vS5Xurl/7ZKWbJH9d+y2V7kN7d+43fjq5s2YxSSaO7aynmzKiNx/wj5/prHsbvumYSnf873p7dS/+m87ziv1vPLbSXfRdnXlOSfK2Rb9Y6b70SG+/tmEvdOY8v3fDdSvdm1fpXWOPXaazfuatI75a6T79Rme/kyRZ6rjSMR80UOkmydvO6ewHsOoG76x0P3rllyvdJFns4jsr3UlL7VXpvuc9vevleWd05i288oveOvXnfrtgpbvEUp37qINP6T1rWmTRf1a67x3eGdM8/LIbKt0kOXz9zjXiQzd15r8lycALnWv8k/bdpNKd7+TeGs+7v94Zezx43c5vydu+9e5KN0mOWu/4SvcrDx1S6SbJFwY61/jf3uJrle6jP+7Ms0iSwQ1/Vemue1zn2mXzz+xX6SbJp//ZOeevuGRnP/QkWfsPnbmth23UmVu33Vc686eSZMTSnfudf292bqX7+ts61y5J8vIfO2vvt3hLby3Kett21uZcfFlnveRTn+2sz02SUTd3fqOGrNzZk/LSyQ9Xukly/D2d6+W/Pt4ZA06S93z/iEr3wo939nB/Zo3evcNtU3evdLde4vpKd/u/994z8pt3dn5L9ru2MzckSZ57pnPvvtDxW1S6T1/Ye0fo2t++stJ9+MrOep8LF+q8MyBJ9r+iM1dgh1U745NJMnhBZy37jk921rFPWqQzhpgkax82qdK9cu3Ob98XlurMS06Sk382sdK95I7OOvYkefjYzrXAZct13nXwxoTeNeLFV3a+fz/88DqV7o5f6+3ndvbPOnvC7rpq59olSZZcqHMt992jr6p0F39fb+3vaZ/6SKU7+v7OnMt379Zb1/H7FzrPmg/7fOeeMknu+XDnGvHpHa6tdFc+sjdndty//1rpHvj2zty+R3+wTKWbJJd8tPO9Hn7OPpVukqx0zkGV7vBhB906ODi4wX/7/y03bMzgN8YW5vuO7s17Pnz56yrdI76zR6U7+Mve/ddVp3XuZz50a++ef8bVnecKn/r27F9PkCRH3di7Txr3085v/S8v63z/vv7aRZVukpxwzLcr3Xvu7/zOJ8mQMzt7Pe886nOV7jJf6b2z+70Hd/YcOu7PnXv+h2/4RqWbJDu9p3PNOnyw957xa4/tvFPlg6905mpvsltvbc4XTrqm0h1/WWe/r3U26M3P+uXunbm+G77a2xP2PZfeX+k+P6yzHnnn7/6i0k2So2Z8oNI96K+ddbJff+SYSjdJZl7fWSd42Su9e/4JO3buS1ZYpTP35IiZ36x0k+TVpQ6odFe44bRK98vHfbDSTZK1dul8Tz570I8r3SRZ9rHOXlSj/9m5lnt61j2VbpL85Q+HVrqvbdGZK/r+n/T2Vx39lZsq3V2/0FnbkSQ/26Izp3ql63epdM//c2cP6SSZ74+dfYHeulTnszzto71z3LbjO3tnzXt8Z81Wkqz3g867Yde9qHONf93WvXWe37+3sxfVpld29r0+/+O9/aIOuKNzXfvO946vdJPkt292fktmXTSl0v3oSudUuknyqa933of18zs68+F3eH6/SjdJTvlh51rggRN744i3f+q7le7Zp3a6O93Vm8N/zi6vVLrrj+u8P/mE3b9T6SbJj0+/qNI9/aOfqnST5O57O+vZr0vns3zlIqtWuknyy1U614jP3NbZN3n4sOMr3SS5cMvO8/zbX+vNKVtxsPOepl9+trNfx3s/dWmlmyQXXHpGpfuJ1zvPxse9tzNunSQP3dl5b8DKH+mM4SfJRaXtgofd1LmuPex9vXmzHziyM1f7zIc7e0ptcd3JlW6SLL7aGZXu05N7c4vGntyZA7TekZ2xl7Pe13lnR5I8VXptx4Nb/avS/c0RvXdW3XlUZ67AtU901pklyVV/63xPxs/b2ZfhlCt7+15/8eTOvKV9v9qZJ/fX83rvIxi6d+caY+lle88qR7yrM7fv/i23/5/mPc+32OqDG+4z+6+1/zWlNw/nq5t35vo+9tPOGOH3d+99B659f+ezOn5MZ4w3SS478vOV7vs/eFGl+9tRvWenl13R2Zvra4t2LnoevLu3vvDrJ3bWUJ/yj0Ur3SQ5/PbO+5J+fcdjle7Hzl2l0k2SMTM6+zx+54+frXTPueiWSjdJbl2wc/5c7/N/qXST5KPzdMb///nlzm/Ucp95V6WbJNe+uzNGP/23nT1g/vVUZw1ukgyZd71K95d79eb67rnp3pXuOpOvrnRHLtYZF0uSnXbovAdjg2U78y7f8qHO2H+SbHt1Z33vpY/9sdJNkrtHdObLPDf6/Ep3g6c679VOkr/v0Nnn8a57fljp3ndK711X7zigM5aw1dm9fWHfOu+Nle7Cu3TmJz9wZG+/4Ge276w7OPX3x1e6e4/r7IWTJNv+qjMn95ULO/u0JMn2+z1U6W75h85+pR/5d29+5BEbdO4ddtj3+Er37Tv35rT87raPV7qHH7tCpZskj+3Q6T69eWcO6s2XXVTpJskPduusbXzXJZ13Hdx5e+95xfWnfr3S/dHq21W6SXLtkM7cr6UnHVjpnnxlb1+G3W64otId+ey4SveYl3t7lx92/GKV7t9X7u2lOf1th1e6m3/17ZXuDuM7z2ST5C1Ldv79Hp3euXdY8ITe+xk2eqDzW/Lm94+rdJPkM2922sfs0rlHu3eH3jXipKU6v9m7r/KJSvfjV/f2qFjx5hMr3Sl79cZUt/xSZ8+9bUY+Vuk+vc4fKt0k2XdqZ83rBu/o7KX55S16ez/t/pXvV7pvm9HZLydJvrPc2ZXuuw7o/F5/5/PjKt0k2XNoZz7GiD935tfdPrw3JnDtip1rxEvX7b03boMTO89XV76q83feavCoSjdJ/j61M/a5wBOdZ6BXbNx7N+aWu+9W6X714tcq3SRZ9r2ddZ7r7N/5Xf3wj3vzHDf40H89tfX/yHfe1bn3W/PDvT35fvbGsZXucxecWukmyfqrdNY0vPLuB/4/znvuvUkcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4vMjCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gbD/pv/ePLrk3PLVX+b7Qfxzt1Xne3N/xgxctFKd9g8lWyGDe0cb5LMGjVY6U56uZJNkrw58r/6iP4fm5WXKt3J0zt/4yQZMXrpSnfUkGUq3cFhvQ/GKmt2zhnjxy1V6SbJCy8+WemOGT680h0yOLXSTZIpk2dUusOmjq10hw5MqnST5KXHHq90F1pgwUo3SUbMGuiEh3Q+yzOnTKx0k2Se0aVz/ozO+X7oyOcr3SQZnFb6W8zT+10deHNopTts9LRKd8iYIZVukmTkzEp2YEjngnnImFGVbpJMe3FKpTs4X+cclyRDZ3X+/YaNHlnpzhw6utJNkhEzSp+5wc5v35AZvc/ymNGdY571Zuk6IElmzFvJDhn/WqX72ovPVbpJMnRE53sy4803K903XupdL48a3bmvHDWsN/YydHTnvDwknXPcqBV798GTBjufuZmP/LvSnf7sq5Vukjz90lOV7suv98ZennrjjUp3vrGd69qRxXGMeUcvUekOzOycPweGLlDpJsmIoZ0xneenTa50k2TekZ3f1bHzdu5Xp2+/Y6WbJP+8/aZKd+WlFq90xy23QaWbJJl4TyV7/7OPVrpJMnVY5xpj2eWXrXTnG7VipZskY0Z2zp+vTuv8ltz/wMOVbpIss9yESndw1GOVbpLMVxq7XmrxrSvdkcM7Y7VJ8ve/XVvpTr/62Up34stPVLpJ8sYrEyrd+ZZYqNJNkuWW6VxjDBnaGbceObhwpZskr73QuUdbbul3VLq33n5NpZskz113f6U7elTv32/KrM5nbuLA9Er32Wm9e/eVFu2M1+609eaV7rT5l6x0k2TaYOe3ZGDq65Vuksw7vjNXYPoTD1W679lpvUo3SVZfbpNKd73V1ql0V5mwVqWbJENGzFfpTprRGR9Jkifu6dyvrvzW1Srd56/ozOtLklkzO+e5aTNLc5aGdp5HJcmQgdJ8miHPVLpJMmKe2X9eHhjyv4/HDQ6ZN9OHv202Hs3/Y+tPPzLbm/9xytB/VrrbrT2h0r315t6zt89/4JRKd4WP9a6z//Wtzljsv3a4vNK95tDO/JAkWXWZGyvdd008t9J9ce99Kt0kufu1zrjmtPu+UOkmyUvLbV/pLn5c59ry+cc735Ek+feD21a6qy3bueZ55BeXVbpJstxuf6l0N1+pd5/73BKd53q/HPHBSvfbp3290k2S93278yz5Lwt3vtcvPLpypZskDy86odJ94sbeXO2Vd/9hpbvaY517u6Wf6o1/fOxDnbl7q5x3cqW7+Sc/W+kmyZ8/cVulu8Byq1e6STLP5J9XuodOeG+l+5d3zap0k2Sbe7epdD92Z+ezPPUtnfkhSXL3fr+udM/79Xsq3SRZ/uE1Kt0/LtI5L495vLN+LUlum7VSpbva1p35BVfd1PnuJcmbX9+t0l1m+c54d5I8tMvtle7iD4yvdNebr/McMkmeXqIz3+nRqzvjiFs92rv2PGvhCZXuv5b6c6WbJOs8vkOlu8yEiyvdf/9rr0o3STbapnO9/Pqvjq10Xxx7SKWbJHvs25mTu/HTnfmcSTJ+v841xhWHnF3pPrPm4ZVukkz8cWfu5ePv73yvt9vy45VukrztN5259n+a1lkzkiQnT+jMqZ7yy868veXffkKlmyRXnH9dpXvaWx+rdM9doTMeniSvvXBDpbv9op05cEnyfOlZyc8/09njZ+r8nfGRJBnYojMnaciDnevl5wc6z5mTZNVxnWuBF7Z/X6WbJON+3Jnre+h+v6x0t3j8xEo3SSaM2LPSvXvbzjOYk2/5UaWbJNc/1ZlTNvKI5SvdJHnuPZ3x2nfO6Pz7PXVeZ++ZJBm6dWcc+LhNO3OWdnupMzcySZbYZYVKd4VXJla6SXLyGp15S6fs8GCl+9Cdnd+RJFnuE5+qdNc8tnPtuc0jnfv2JJm09rqV7tm/783hH8h9le6h1+5c6X5y7C6VbpKsNG/n+fg8YztzEYf8qrMHa5Lk0c7ajmMuuK3STZLPLbXZbG+OfOx/W6P02sBzuWLM7J8fssTWv5ntzf/Y+zudNZxHXfWxSves3/T2L9j58W9XuivNc3SlmyQv/LTzHHmVpzrzTpY6rTcf6ZKNj6p055vUuV49acErK90k+cdunevVsWutWekmyWq3/LXSHbvE9yrdxcbuUekmyfkzVql0j3pg30p3+H2da/ckeeqskyrd2457S6WbJJ86/MuV7q+/8uFK93MLdX6vk+TWaZ1z/u4jO3Phz/54b++zg965f6V70vu/VukmyZ1Xb1HpnvnMRyvdi079faWbJL/6d2fNwfN7vFDpfuWAvSvdJHn1zc4z5Okb9vb0PfDkzvfkipc676n4x8O9a4ybtu6suXv1gc7Y8eEX31LpJskPbvlFpXvlzp059knymScOqnQfmHhapTvpL73fqO8ffGCle8efO+fPKWt19vNNkg2X7cwz3P6SjSvdJHnLocdXus8//uNK95CnenOe//5GZ97lFUd33v+07tXfr3ST5APHdu6Dj3uqt3fknru8v9Id/Ftnje6E3/ferfH9SzvvI7h8/c5ciwt2OLjSTZK73np6pfudN7ardJPk5Ld29sr/xJ86c9avuG/9SjdJvnd1Z+xzsU9+qdJd4ejetefbDuispb1ueucZcpK85aDOvMvdP9551rvH4M8q3SS54NxPVLrnbPavSneHOw+rdJNkxCude78rju+s40uSq4/rPN/56mad+fvzPnVcpZskY67btdI96pENK93Tr7ur0k2SGSt27h2+e+QDlW6SPPHQByrdyQ99rtL97qTOXOokOfz6zhr5J9f6ZKV7xoKzf/7Nf7w4cE6lu9oqnflvSXLbB9audHfa+YpKd9X9e+8cu2mJcZXuOg92zsu/ndSZ/5MkR754fqU7dZPOtUuSTH1+XKW79wGd/R5eWaV3H7zDtM47x35z9SKV7rKb9/bH3ewtV1W6r+/QW9e4/sjOtcBTx3fe5fnSMt+pdJNk32FnVLrfPbDzG/WPJ3vXW8f/tTP/9XPzvVjpJsmjpWP+X41cblhW+8Hsvx/9xRWduWpJ8qWLj690n32lM8Z04KV/r3STZJPlf1XpPrvMqZVukty1WmefnRt/35lrOGyJayrdJBlxd+f+ec/tOutv1/j6hEo3Saav0JkTcfiuvX1lTrius77j7Vt3jvnnB+5a6SbJRWd35qGe/UJnLP2Q33feW5Mkgw/O/vcnJMnnN+ytLbz+gc781lvf3nmWtccvrq50k+TclTr7Xh+/a2e/tn8M+UOlmySDP+7MEdlv695e3Uu+o3MumnViZw/pC7e+s9JNkvu37zzj3HX0AZXuFbt/utJNku/c/Y1Kd/cP9dYJPn1T53r5yg909syY/u/eOrMTP985fy45pbNO4s0pvX3g9l+ks0fL5y/q/a4evs2Wle75dx1R6X75N733ab5jwkcq3QWO7OwBvtjavbmG5yzbeZ/0sAt6856PO7Ozp/bTa55R6a60yYcq3STZ5o7OmvMXv7pppbvKE539MpLkuR077cvW+VulmyQPfbyz/v6Bhb9Y6e5/TmfNVpJcv+5jle775+9ce566UmeNfJL86LmDK917N+u9C3L+yzrvM7v1F513Nv7hY71rjOETL6h0P3hIZz3DCvN15jolybNv6az//fDbO/MAkmSvMztzT+5dsPN84IBDensFn3Rf51pu7X07e0hvu3jv9/rcgzvjk7ut1NtX4zM7dd5hfuz0zhqMf27WWUubJA98qzMucMX8nfvrTU7orDlIkp9+a6tK91tv7+29tsyQMyvdLV7qrHm9asEplW6S/Hz+P1W6r426u9JdfvvOM/ck+eCIiZXud6/tPE9MkhO3WqrSfdc1nb14dvx8Z6w2ST7y6847j97xq84zmANOOabSTZIVftrZy2X/DTvvu02SgX92xgXmmdxZK3H6G505S0lyxXaddXdnHNN5t8b1C3XepZQk6/2y9Ezjss6+DEly0Oqd5ztf/nFprP3szvytJFnsvM76jr0/0VnPd+Aneu/W2OmwzpjqFR/qjWMMXbjzrPl/fUPojPmm5ZW3PzY7DyVJMmXD3vtQj3mysxfj9td+pdL9zOp3VLpJMv6yzprkIVv03lN9/JGd/XCWv/O7le76V3SeVyTJmem853jR0zvjx+du/8dKN0l2HNeZ33PHF39b6SbJ6p8aV+m+5Xed55C/WO/QSjdJDlj11kr3m+/vzAk8ZNXOXkZJ8uh811e6P/hSbw+Rpd/R2fdkyj87+w8eem3nvUNJstgRnWdkp6zeWff25lf/UekmSZbt7AW34ZK9d80t+PZOd83bL6l0v7tT5x0YSXLp6Msq3aX37+wfOe7bvXHp2372u0p3r8s7n4sk+f5nOnM6n/jnNZXuh37Ye+/ew7/rjP8fsuATle5hh11T6SbJdqU9Eyf9+JuVbpL86zOd+8ofv3pjpbvdGr1x6TVH3FvpLvelzpjASUceX+kmyUJf7Lzr8TeL7ljpJsmwhzrjRT//aecZ9YW/6+0t8/h5nXkRR57cmTt0+KKdtQFJct6j91e61zzUW6c78sTO3kBn3dt5H9Zfnul895Jk2y07z1je9YOtKt3Tvrh7pZskhx7dGTs7b8HemNxXvtXZs+MrH+8809h1td56ovNnddo7fbnz7PSM5Tpzy5Pk0H/tVOl+6/FLK90k+eZpnXH8XZ7tjAlseW7vs3zva0tUunfe3+ku+5HOfXuSXPBI5/nAmb/q7fd8921PV7onndgZt57/1U0q3SSZfmNnrv23luusc7n00N4enY+u2Rlr/8avTqh0k+SY5zr3Uhd+s7POZfEv9/797ty4M9736jWdeZd3ffOaSjdJvvuPzjrdy47p7EmUJAs+13m+us1ZnfnUq6/Xu3c/dIPOvcO6F7270l1rnd7e5Z+8uXOOu+XK3jrPHy7WGTv79E4HV7qHrdibH/n8rp13Fa72s847i6/YpvPehyT52wqdd6VNmXVkpZskj7+7c1+5y/N7Vbqf3PtblW6S/O09y1a6DzzVeR581s0vV7pJcsdfP1Ppfu/I3v3qEyt0nvv9f3szX2dHcwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4v8zAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucGw/+Y/HjJ0SOYZ91/9L/9HfnLCFbO9+R/v3PK5Snff9+1Z6Y4cM2+lmyRTX59U6c7Km5Vukgy+2Tnm4QOdv/OU51+udJNk1LxjK93BgamV7qjRi1S6STJ86mCl+9yz/650k2SBsUMr3amvvljpvj6s83lLkumTX690X5vUORcNPN75HUmSR+6/s9JddNZilW6SzBwyrdIdPmr2X18kyWDmqXSTZOobwyvdEWMerHRHzlyx0k2SYaXfkuHDOueLJJk1vHMt8PrkFyrdkcN6v6tDZnX+FgOzZlS6w2f0rj2Hztf5/Zs6pZJNkgyOGFLpDp8+qtKdNaL37zdsZumYB2dVum9M653jRg8d0emOGlPpJsnUgdLfY2rnbzGQzncvSQYGBirdYaM6n+Vpr82sdJNkWuavdKdP7l3jjxq3VKU7bfzoSnfYm29Uukky/LnO33nic89Uuq+81BvTeWbKU5XuY68/XekmydgRy1S6Y4Z3PnOjhnbuKZNk/tGl+8qZne5Air/XMzvfkwnzL1zpJsms6Z3PxqvTOte1S665YKWbJPeXThnDxq5a6Y5fpHcfvNhbVq50R9/9cKWbJC+9ck+lO/n51yrdWeN75+WRYzvnjKWWXLzSXWjC6pVukszTeeyQBZ/q/futMKFzXTt01LKV7vyjes9KVl1/oUp31IzOPcmDD/+10k2SP118WaW70tTeddHro1+pdOdd+I5K95WXHqt0k2SZ8Z3P8gLj16l0l1qi8x1Jktde79z7TXu+89whSRZcZatK944//rbSXW+9dSvdJFlz8c5437ARnXPR3+9+rNJNkgfv/Gelu/lbV6p0k2TZVVepdJ+b0vn3G5zZG5NbcbktK90FF+lch0+a0vlNTZLJr3eeG73+dG9u0YJjO+MNT87q/EYt+OltK90kmfn3zt/ixSs681SnD3bmOCbJ0JnjO92B3tyiYVMnz/bmrP8/HnONmDk5E177x+w7mP+3Iy7vjKskyUub7VrpHju9M0i4+4wDKt0kuf+Jb1W6h235lUo3SX5907OV7vaffHel++pm3610k2T4kp3f4xkXfKnSXeSK3rj08/N25i4sdPO/Kt0kmTDPE5XuLd/oXL9/8bKdK90kefKWayrdBdc7vtIdfVdvstrIxTvzAH40bulKN0kmXNK5B9v15c5n7soPfaPSTZLNJ3XWHex4ZWeM8PpxC1S6SbLzky9VusstcFelmyRTTli00h223Hsq3bGLn1fpJsnD0ztz4tc6vtMdedtjlW6SLDurs+5gueXfV+kmyR2vv63SPWu71SrdBS7uzIdPklM32bjS3ebMNSrdv6zRmU+WJKO+1Dln3LxkZ65FkpyywM2V7icX6zyvv+rVxyvdJLlkwq6V7vXzXVTpDt7z50o3SQYe/2Wle1XeXukmyVfPva/SnfZGZ/zxlztuUukmybhFOueiwQU6z1jOv/KxSjdJFti387t6z196c0+mjb6m0l3y7s6zt61Gn17pJslx295Q6X7khSMq3QmLnVnpJslCI39Q6V7yvc4YcJKs8pdjK93FN++M1X706N46wXN/1RmHWujNvSvdw9fcrtJNkr/u/EClu9up4yrdJFl5oc7Yy8Nj/1DpXr/nNpVukiz/yt8r3ZsW68yvW3hk598uSdY6qDMOfN0lvbWNH7ipc/253Kude+x/LNJb87rs+9audHd4ojO+PGLs9ZVukjx1xqWV7urXda7jkmSR9R6tdI/4xVmV7mnHdOagJsnZt99Y6e7+10Mq3Q333rTSTZKTnv5ZpbvL8509iZJk1Dt2rHS/eXJnrO+e6b05CKus89VKd+Mh61a6Zw15V6WbJNuf/qdKd8vlO/vbJcm7V/9dpfvmgZ09MSc+dnilmyRf+vLxle5bnjql0r163+Mr3SSZOO66SnfEjftUukmy8mad537fH/ejSvf9/9ip0k2SSZf9rdJ9+dzOc6P5Tr+70k2Sqz/WaZ/1YucZaJL8ZLvZf8zPn/e/7cc3eurCWfeBj83mo0n+MWG52d78j8NO6+yj+dFNPlDpbvu7KyvdJHn4/M4zhUmf6ZxjkuSBxw6qdN9+9CWV7vbjHqp0k+SkhTvn3BtePbLSfefuvX3Lh234w0r32YGvVbpJ8uYinfu6l757QqV732K9tSjTVli/0n3XZzv3Xp8b6N1vbL7gOyrdtY79eaWbJJv+rrOe9clLO+tyzh/We1b4t691nvU+NHP7Svfne/R+r58/bq9Kd4+lOuPzSXLo8M645gevOL/S3eXaYyrdJPnkBzvPkb8wb+c36sQ7Dq50k2TbH3T2LV/tXbtVukly502fr3RPWrPz77fnkTtUukly6eWdZwof/t2Jle6OX/pEpZske933xUr3qcXmq3STZMtdO3vWLHHM7ZXuLk901rgkyaIbddZLjn10q0p33W073SQ5+Xs/rnRXvOdDlW6STN6tM6dl43d31mtd+0rnO5IkX/pe577yCz/prHFZcdb7K90k2Wi+zvnzvM9eU+kmyWqv31Tp/nODdSvdx6Y/VukmyfCXOntRrbjAxEr36C/M/vH7//j9IZ2x9mvvv6XSTZI1T+pc4z98QWfe15v7dsbwk2SzD3T26v5cZ5pTVtu/M/80Sb62Qmct0Rdu6u1R9qNlO3t/nr9LZz7ZpvP29so5prTH3J7TO/eUXzx+yUo3Sb67T2dMdb81R1a6SbLWdldVuofsf2ilu9KmH650k2T+9Tr3fj++uTN/+NINbqt0k2T1Bzt7iv7qT4dVukny8NIbVbo/ermz9+Abl/eelex8R2ee4Rfv6bwD4+h931rpJsn4wc45f4PnOvuhJ8n39irtg7VxZ13Ohl//QqWbJM9v0Fk/c+3JH610R57fW4ty91Kd+Zw77tHZKyBJXj30nEp3jc9dXukev2hvf9Vr9uvsSfS9q2b/HqlJsubhnbnUSfKndMZqD7ym8zw/SY4e2bnGWPCt76x0X/hmb3/jK17qrMW8YOPO+3g+Obn3/q4fXNLZU/vPp/yl0k2STSZ11hL9rybO+3ou3ubq2d694frjZnvzP4Ye2hnL+/Tozl5Gn9uiNyfihc91nhd+6ZDe+4G+t23nWVbW+34l+/ieve/s2td2xq+eeqWzR9nRMztz4JJkmX06ewTudXvvnUYvXndqpbvPWzrXPPfv0HtP7sC4DSrdLQ/qrHk78crO3vBJMumdnXHNU8b39p0/6bLPdMKXduaU3T7Y2+/r2Xc+Wenutez+le4XJ/T2+zrkS52x9Nv/2pv3PO+eneuiL57UeU/11xbtjWuuO7Yz/jHfvzpzF+788sRKN0nO+01nrcsaR2xe6SbJ8bM64xRHv72z/n2j/xd7dx7t61z4/f919pmcYzqOeT7mRBxUMkumSFQIKYoklTSHBiUlUYZUlK9ZQiJziIwJyUxmmcdjPM78++O+++++1+/+ts5r7bW/6/H4s1XPrrXP3p/Pdb2na8nSoogkH5/VaS/8emdv1arz98YSnry7MxZ02l7nV7pJ8v6vdb6zv3TfYpXuZi907j2T5KOf6+z/PWTxzljsJ5fq3S9feGpnvdOFY5+rdJNk1W911lS/+enOOoCDT9+p0k2S16/qjBfds1xnLH2Zn/be5X78yp25099e0rvH+NXKnfdhHXBi53zVGT9ctdJNkrvv6fwsdtj8yEr3vD16c99feddple6BP36l0k2Sd89zRqX79Kc6a1qufWdvHcDI5Ttr4h8+oHPe0IhxvTXgWx376Ur3nUv1xpe337WzjuOyDQ6qdL+8V+8M9/Uv65wfdP6YSyrdF256R6WbJNvuNrbS/flPX6t0k2TLt3Xeu7LXW533mh4xqjdXcuD2nXMZvvzVzpmUq995f6WbJLMO7PxebHlo7/3zH/tn5/7lA3OdVOl+48LOeR1J8vL9nXOk93t+/0p34NDOnp8k+cJVnXdWvXvhX1e6SXLy5e+tdL+wb+fdDOsv0NmXmiTvurv0d7Le7F9jlSTH7tx5d2WSLLp5Z05q9PDefrCHtz+30p06ujM3/rGje3urHj+g8z6Crx/5qUr3gPs760eSZIGj/1Hp/vjA3lzJyj/rvLPqPRd11ma+cnrvrOBtbul8R+11x7hK97Tv984O+smPPlPpvnPY7pVuksw8r7NX4j+16DxzZv/NZv+7hw6/u7PXK0lefKGzv3fFkZ052XXH9+a+P/BGZ33rbo/PrHST5EPTO/N6t3ys8969TX7beWdpktz38MRK96N7d9b33D+psx4wSZ44p3O22lv7H1vpJslFX96u0t3jvzpj9Kt+qTOOniRbzOi8t+0Dz/680p336d470FZY/G2V7lUXfrbSTZK9n+msHVp44xUr3V/v3lmPmyRbntmZyzrkrs5336FLd9YXJMl6P+r8Lu/01d7ahau37ayp/tDmnWfRBS/u3S+vvGPn/nP+ZzrjV1f94q5KN0kO3azzGfe5H51a6SbJLvd31lGd/eMzK93Vf9sZF0uSr53fWdMy8eDOXMhndp+v0k2Se57pvA/19d/05guv+Vpnn+ce63Q+M8Z8pncO/2ovdPYz/O2Ezh6oT0+fVOkmyREHH1LpTv3quEo3SeZZonNO0nHbdPY2/m5a55kySW5YtnOG1kG/f6HSvXre3rspP7heZx3qhiv0ziLYee3xle6Zv+ysXXjko71zKZ8bs2al+4GBzjV/eek1Kt0keXD+ztzplh/vnBGYJGc/1nm/29tu7Hx+vvzdCZVuklz21ImV7lErTqx09/rhspVukpy1defZfaV5e59FR9/d2esy7YTOO6CWfKH3/vljljms0v39SbN//jNJPrtW54zAJLntpnsr3Xed23k+S5K1d+08o9060DmXaLnLemvAf7ZE54yfb72zs+7yimmdta1JcvExG1S6c628bqWbJBs82lm3/ubUzvuwTlv10Uo3SS5dqPN+jcO+3JkrOXuX3rtGTnvsyEp3yfGdOZgkGVi6M160zcqdPecXr977LPrMlZ13d7y5fue9HX/euvcOrzeW3bXSXfKi5SrdJFl6585ZEvPtNqHSvXh8711NK005vtKddFBnPcY/Frm60k2SE7fsnF/yzl91zsFKkr0+3vmeevi571S6Xzm6927T76z6uUp31Amdv79dHu/sP0ySa1fprPW48Qu9cwQP+XHnsyj/l6+ogc7/GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8zzIw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAw4r/zX55zzOisvdrys/0iJr06a7Y3/+3xx5+sdKdUqsl8I2aWysmkl5+odIcPLFLpJsm8S81f6T43o/MvOHXsG5VukoyZNUelO/XFUZXuq69OrnSTZO55xle648d3ft+S5M1XXqh0J88aWelOeuX1Svd/mdbJvjK9kn30ofsr3SR5/bXOZ8aCo3rfJdNHvdUJT5tQyc4x9vlKN0nGztH5nZs1Y0ylO3VY73N5WMZWutMnd7pJMmZM5+9kzJiFKt1Z6XzeJ8nkN9+sdEfNM1elm2HDO90kU6d2nksGBoZVukkyYthApTtrROdnMXbUuEo3SSZPe6nSHZHOv9+oORaodJNk5MzO3/WwUfNUukkyYlLn/nPGQp3v1bzeuQ9IksnPP1Ppjpm38xw13yLzVbpJMuPNzs95yoSlKt0kGVb6Oc/xVufvOq+93Okmee2xzjjUq290Pu+feOXxSjdJXpjR+TkvMNfclW6SzDWic88159jOZ8ZbU3vPwW++1mmPHdP5Xh02qvR5kWSO4QtWuqNGdD4vkmT66GU64Tc741tzLN579hsx52KV7h13nFvpbv/ut1W6STLvgp2fxRsL98Ze7rnlkkp3tfU2qXTHTFix0k2SvDWjkh07sjNv9MyDd1a6STLfvJ17gbettnalmyTDS3Mlj75wd6U7dWRpfCvJa5M7zzvPTn+t0h09vvOskyS7fv6zle5VF1xU6SbJzJc6zw/PP9GZq1x0kd7vcutzecFRnWeSp6f1xpfnW6Bzjz96nt441JvprBVYZIHOvcClt15a6SbJ2NdfrXTf3LwzDvzM5Lsq3SRZfKHOPcbKi69a6SbJlVffVOnu8NHONV/zxwcr3SR54JHO38m+n1yz0l1uxXdUukky6bnOvefVV91Q6SbJ+0rPwv+87ulK96lnr6l0k2T7rQ+qdJd+x66V7pt/6/yMk2TGY53nypde7Dw7JMmUYQ/P9ub0gf/8uX1g8sjMec+is/Fq/pf5XumtNXz7Bzpryp65unM/fPf9t1a6SfLeZTrPX0c+fl6lmyR/+lxnnPDOyZ1x6QV///ZKN0m2WKAzL3vPxM4zx9jlT610k+S+s75V6Y67sPNclyTXb/X7SnepY+6rdF+fq7d2YakPdNa0nHHJGpXux953TqWbJJfdNbHS3ebJ3hzLBvONrnR/8b4rKt0vXb5TpZskr+35VKV7+5Kde9Zhq1xV6SbJJRfvX+luNO6sSjdJnn1+60p394U6fyPzfGK1SjdJjn3jD5Xury98X6X7yusfq3ST5M2FHqt0b735yko3SeZ9+8cr3UdGb1rpLvXaKZVuktxzd2ef4IQ1Os+rH3r27Eo3SUYv1pnLuvDJVyrdJJn0uc4c2cMPrFDp/mr0epVukuz2p85c1qQ1b6t0PzBxh0o3Sc6b2BnTefeof1a6SXLRvzrfq/M/v0ul+8qfP1/pJsnKv+6cRXDdzOcq3Zfn/0WlmyRX/em7le47R3yv0k2SW8dcXOnOtUJnDerLz/f2vO72x30r3dvO79xvHfSpPSrdJDnzus791vqL9/Zg/OWR3SvdeT9TyeZtN27XCSf53pi/Vbp33NIZbzj1X+tUukky+tg/V7qz9lq80k2SQ8ZvU+nusuWESvcrf72l0k2Siz7dGdMZP6Vzv3zFo5tXukmy6zc74w0b7Nn5jkqSOad05jQueGbhSnfte06qdJPk+rc6835r7LBFpfvgLXdUukmyyYmde/zb7t+x0k2SJe86vdL94CadtWo/eumrlW6S7PXbzvPO6+d3fhb3LTpnpZsk92/bmR84bc3eeVVrj+z8Lv962w9Vul/7+yGVbpK850eddcSTDu2sFT3wzl9Vukly0KjZv1YtSXZ993sr3SQ57i+dc4kuXbbT3eynnTUvSbJOjqp0L92sM7+z0vfHVbpJcvz4znPJe/74/ko3SS678x+V7vUjO9f86/M+UukmyS5HXljpLv9SZ9z6z5N7Y+0rfb1zzfNP+V2lmyRLXTX718COeu0/uyeaZ66R2eI9s3/N8yNP/Hi2N//tnMlLV7oLjzyy0p21/3WVbpK88crESvfV73660k2SOTc7rNI9dM6ple6kk3trZl9d6N2V7kqPdQbob9x7u0o3SQ6a9a5Kd4V9Os8bSXLB+39T6c46/MOV7g6vdj47k+TiD3f26h3+wI8q3S136TzTJcmyY/5br1z4f7b5a717qdN/3Lln3f/Ezv73cy46uNJNklOP/lyl+5Utj6l0x03orRN94SudPYAPbTX73zHyb+tOPLbSvecHK1e6k1brPTuvNbNzlsrr23fO6n5s/s4ZqEnymY078yAX7tI7o2yZBc6sdGd9qjO/eczBnWfyJDni9s6cwrAvddaGHP/B3nqIY9/x7Ur3yc3/Xukmydx3dc5SefH4zl6+Cft2fi+S5IHPrlTpjr/j2Ur3X3N21vgmyfsW6Jz9+cvh21W6SfLDSzrPlSeN6ZzveOeWnXNbk+RTl3XOght1UWdfwPiLep9x93z9jEr3qHN6Y3K57MZK9up5f1vpznd453qTZOasznqkfa4/vNLd6V/fr3STZNPdd690b7i7s482SeZffd1K94ydOusMzz+rMwacJAfP11l3cvnenWf3oxfsrQHYZuoRle4yj3bOi0qSHy7SOSPwu7ceVOlucd9plW6SHLNr53djh0U6Zx198Iud91QkyRNXd97Lt/lzvbPrNnvpvEr3uIu3q3TfM3/v3PILP9vZy7DjpM6953UHdeZsk2SpXY6vdP+4Ve8cgiOO6+zZOnD3znmJby10eaWbJN/+VOedcQt9vnNewMvndvbHJ8nOiy9b6b59jd463yl/6Mz7Xf7gpyrdFR/snalx7eOdd8YNv6dz1sqHV+ytU5t/y848zLZz/LDSTZKPH9sZR/zuNx+qdI8Z2Xtn1S3rdsaun/3dxpXun9/WOx/mhBM688EPX9Xbbz7nY517/Dn+8KdK989fuaDSTZIVjt6z0n3/zp3ua587odJNkmsO6Ixv/fzjvfcV//lnvXPA/xMLvTArn//N7D8/cu6njpvtzX/banLnZ/jQp/5S6R6w2RKVbpJc+dMjK93HLu88PyfJIdvOW+k+/WznjKRZi/d+FhNuvbnSPXvaxpXuqNU73xNJsv0vOu8gvPGM7SvdJFlho39VumfM7DzbbbFe750qz77V+a5f/HudNZ3HHH5/pZskUz7z9Up3oXt6+9QPmKezhv/Uud9T6a42aqNKN0m+ss1ule7jt25Y6b52w8aVbpLMt0Nnvv7GJ3q/y9u/9YVK97knOvtRfrFeZ89Wkuy9V+c8gItO7KxJ+u1dnbOXkmTOVzt7aHb5/fWVbpLssG5nXmHjFzpnR07/xX6VbpKsObzzu/H9WzrrZv82V2fPT5KMXa6zJuJL83Weo5Lkku93zmvb+Z0bVLpbH/mdSjdJ5v7cQKW7zSud9wZsNKazZj1JFr63Mxb7q4U639dJMuepm1W6n16kM5b+1l879+FJ8uLJV1e63zt450r3K3f33nl0/hyd+ZsD9z+/0k2S5TfuzMuu9tORle6U9/680k2S+f60SqU7cPu1le7j+3XuD5PklkU7YyQbXdNZD58kBx/SGVM96s+dMYG/Hd07h/HsfZerdH+4xkcr3Z/P6L0jdOfNO2c9v+17vfMTPrx2p/3kLw+sdI8d3rknSpL37NwZL7rxgJ9UupfM0zn7IkkePqZzxshO83bOCk6S1ffszB3tfkjnHLj7pvT2xj27Qud83B1u7azvefyM3rka25/Uef/8vKV3YSXJW3d19rNvdVhnL/S3t+nt3z5g7vUr3SXfvKnSXeJvnT0HSXLbrntXum/b5IFKN0kW27QzjvjQ5Z1n7KdO6dyHJ8k37u3s77jmzM7euC3277xHN0lWndYZa5+xZ2+t9rRtflbpvrVEZ+xspyM7ZwclyTlH/bXS/c2+nXMZbvzJFyvdJNlgi869+Hu2XrvSTZKHJ3X2Qy/7oSUr3c1X66x5SZK3jnh7pfvy3J05mJ8v2Ntn9vd/dubQNpl3UqWbJCttv0Yn/B8en/DKI/fnwo/P/rU4G0z4xmxv/ttnx3XeHXXHrzvrLt9/Y2c9WZL86IjOWcTXndg7p2yFRTprRJ5+rbNv8ZiF96l0k2SuCzvvUH79XZ0xpvU7296SJH86pPP+6z0/3Fvre+jyEyrdq0deVum+uvi4SjdJBs7sjKWf89TGle7OYyZUuklyVOndsJ/9Sef3Ikm23rLzrsDd/9aZI9v+9N4ZuR9eofNdcu0vX6l0v7NH7wyDx26fWOnO/ffe3riHX7qo0t1reud55vzle2cxfvXFHSrdBZf/ZqW7110/qHSTZL3LO++wu/qbq1a6SXL2/p11qBtu0DlH+rVNevO9r7/R2YO446qLVLqP/6m3vm6P3TvrqOY8qbdW9KAbf1np/nWRD1a6u2zR24Oxx1trVbr3rtFZd7nbb6dUukny2RWnVbr7rNb5jEuSS5/p3AuM//06le4nJ3XOwkmSg57ofK9OvKXz3rjVR3TegZEk694yqdI97JD/qnST5OBrO79zW0w5t9Jdf8vOGHCSnLx9Zy/7BWM6783Z/cu982Zv3b8zj7ziAx+vdJNkpxs6+zxnXt1Zw7/Jbr3993us1ZmXnXZmZ+3J9bf03gF11muddz5vsu7VlW6SPPGnzrPf48d15tRn7LhfpZskl93TOQtk2hWd8xMuObT3br6bp3Tmd26Y2Xuny7sv7jxLfeaKzljfiyf2nv22+fzTle6t65TeZ3bfXpVuktz9u19Uuu86uPe8s/+Iztl4T833+0p3v8u3rHST5IANO2vtF3moc/butVPvrnSTZLU1L650X9i483uRJB+brzPXteicX650p97dO/t6g+92xuS+82JnbfnPjuqsWUqSMw7tPK+efX9nPjhJLjqis7/jxt03rnTvPrXzDpokmbZ5Z655zCmvV7pPLtNZC5Uk097TmSt5/9s774VOkr3m6ayJ32WlzjsJXty9d/b1ISd39t19YuZ9le7iW3fGEJPk6N0790VXPN17j8Iix3X+/Q7Nif/H/7yzmh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ocZGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWDEf+e/PGz4iAyfa6HZfhG7vn+O2d78t5nptGdMn1rpTs1clW6SLDJhnkr3lVdGV7pJ8urMWZXu+FEzKt1R88xX6SbJPHMOq3TfmPv1SnehUQtWukkydfS0SnfEtP/WR+J/y5tvvVXpPvXU5Eo3A53ftySZ8krn5zzsxYcq3Qf+dlelmyTjx8xb6c41ppJNkiwwonPNY0bOrHRHjZhQ6SbJ1FmvVbojUvr8nNr57kuSKaMHKt05RpY+45K8OaPz85g5rXPvOf/cvfut4QOjKt2Z0zvffdNG9O6Xh4+cUumOmtn5GSfJGzM7zyUjSx8ZM2d2nkmSZFbnny/DR3c+i0aN7X1hT3+zc48/fVLn9y1JRo5eoNKd8ULnZzFjVOczLklGjOx8zg0fPmelO2Vk5/ksScYsu1SlO2xc77No2L9ernRnzer8zr3w4MOVbpK8+PoLle4Trz9X6b40/ZlKN0nmGd35+ys9RiVJRrVuX97qfMaNHV26EUgyuvSZP2pk53v1ramd8dQkmTql80v35pQlK90kma/0u7zg3OMr3TkGOt0kGT1wb6W71LJLV7ojx3buD5PkqccerXTHL75EpZskq79vs0649Bw8/NnnK90kGb1o515uxksPVLorLLN8pZsk887VGcef9cpLlW6S/GvYPzrhNxepZB98onPvmSQrv/dDle7Ci3U+Px+68fJKN0lmje7cv6y2ZO9zedyiq1W6zz3TeS555eEnKt0kWextnb+/56ZeV+mOma831j7i/lcr3Wnz9h7+xr++aKX7zJO3VLpjZvTGoR548pVKd/h8IyvdNVdeudJNkuHTOg9Sfzrrj5Vukiz5jsUq3Yce7twLzLfIi5Vukjx8c+ce/6QL/lHpfmfvTSrdJBk7o/P9N3p0Z9wzSaa/Nb3SXXm5zjWvueZ2lW6STB3Rea4ctnznfnlg8eUq3SQ5/YzOfdEq71m10k2Ss/7rqtnefG7Gfz6eOmvuOTNtw7Vn49X8L2+78NezvflvX3joqUr3kjl+WunudtDNlW6SPDxrlUp3xb++r9JNkpkr/K3S/cEpnd+LH33hXZVukrz8u869yRPvP7/Sffv1q1e6STL6hUcq3XvX6DyLJsmCj36t0n38zp9Uuifs0JsvnOcjb1a6672/c2/yxxN66+vePvb2SnfalM58U5IsXEp/8NX3V7rj1p1Y6SbJyRv9pdI96OXO/fvUy8ZWukly2KGdcaal7uite17miicr3evv6qwBv29Cb5/gNhusW+lOOqWzcPb+ha+odJNk3XPeUekesmtn7D9Jvjm5M7Z51fU3VLrjFurceybJXPNvXelOevb0Svf+53vj0n9bpbQe/o+9a95s5AaV7mWP/6zSHbip9+yw0oSrK90/fmPNSve+375R6SbJ8s99uNIdkb9XuklyyfDOZ9HkcY9VuhNfObnSTZLF3vOtSveU6Z+vdB/9YGfcLEnGfvCaSnfa5v+qdJNktUmde7nXS/MVJ43vra9b68XOOOIHpnTmFW5+dY1KN0n+un1nfd2Ef3TWFyTJdvtMqnSf+sfdle49981f6SbJ6addXenuuuYWle6zY3epdJPkjgM7awxu2H6lSjdJzr+1M47x1yU76+HPGfGRSjdJ3vHzGyvdGzbu7Jnc+NGJlW6S/OMPnWe/pb/UGbdOkltXerDSXWJ05/ySgSt6v8sfmGOrSvd3T7670l3xkc6/XZJsNO2QSveRWcV9BxP3qHTXuLYz73DXk72/61d3/3Glu8qqnXUCc36sN++w5xKdZ/ebXuyNvcx7b+dZ+ODHZ/9apyS58tO9s9cuOqWzN3zseeMq3QN+0Dvv6O7dOvtGzr32hEo3SV56rLPn/LuLXlzpvjR2x0o3SZb95cKV7qEf6uyTmPHezvq7JPn1WZ3fuTlHdb6jkmTxjTrPlZu8cF6l+/TqnXvaJDnr+mMr3Z2OPbfS/c5v1690k+QHd3TGlx9apbe26MQfzP772if+07PtHhqRGdvP/rOef7/RbrO9+W8n/KTzWXDe/Z15003ylUo3Sf659EGV7oOL9NZQfXaXzvf8vZ/srC1fculnK90keaF0lNg9x+9Z6X7pxkcr3SQ5Y3xnHHbLfx5Z6SbJ14Z11sCNvKpzj3biKr3x+Rvu6Kyte/Wgzu/Fb1fbvdJNksO+3FkPsdZLv6l0k+SKH25a6d71cmdv4Xl39tazTFjhlEr3+2tdVOn+a3Rvz/Ca2bDSfXLtL1W6STJ6q+0q3ffceHale+R+36l0k2SeSzvnqi392/sr3Vsn9J4XLz/jwEr3qwf3zoRdZ58LKt3TN/9dpbv8ZXNXukkyc1Jn//sXdu58933o7t4ZLe/Y6rRKd4kFeu9GGXFA5375sD8dUeneO/wHlW6SDDy7T6V7zp8764Y2ub+zzilJVtmzs0/i9G90zhtKknyrsx7+uD93zjyZ+xO3VrpJsufGB1W6Zy+2VqW73oZ7VbpJcunHzqt0b1vs8Uo3SVbbs/P9N33EOpXu5d/rrVtY4MyNKt1P/PMTle4eF3Sez5Lktn+8p9K96kO7VrpJss25v690P71ZZxzqmid6z8E/mDb7z7NJktUOfnul+8trOj/jJBkY3Zl32GW53mfRTm/uUOlu9VjnmXKfK39U6SbJOa939gb8Ykznu2+NI0+qdJNk2407957rLNU5dyZJLh53VqX75JOfq3Rv/nbv3Ovnn/1tpTtprQMq3ZM23rbSTZKLf9x5r+J3Tzym0k2SFw/unOm2yE6dc+dvvaS3L278S53zOrbbrjPvvtG1vffy3Ta5swbh+ENuqnSTZJ97O+d2jfjMxyvdUz/6zko3Sf74rs66ickrd84Q/OouJ1W6SXL+G511hr9ftLdf+UunnFnpPvHrzpk228xxYqWbJLd/5FeV7g6/7dx7Hv2Tzvv+kuT98yxe6W4y6fBKN0k2vLEzd/TOdTvrfLf5fGctfJLMOKuzr3HS3J2/vzVHdPZIJMncm3XmND798xUr3SRZ+F2lz7k//Wf7Uic/tURu/+6XZ/PFJLNO6r3bd991/1zp/vmJzl6T+TY5uNJNkmGX31PpHrdXZ89pkuy9yQqV7o7Xdj53r1iscy+cJFsd/6lKd+vHOp8ze5y8XaWbJBef3ZnXm7b3OZVuknz6+k53pdM696yHfWz/SjdJLv5l51ygJ8Z19pDdfFbve37HX3XON3769ocq3STZ6azO+4E+sm1nvvfsuXtjsefe3Nnz/fA5nfeTnPBq5xyqJDn18M75Ibs+1lkDniRX73Rcpbv/2Z13G07ZvvMsmiRfO377Svejn+2MHz8ysnNGRJJ85/HOz2LSq71320w9unPW+llf/Vile9/xP690k+Sy/TtzLMtO6Mypj91w30o3SU6Z0DnL4c4jO3t+kmTTNT9Y6a60/MaV7vY7d/a5JMmW7+jc4x/14c662Q9+uDN2nCQnbdg57+uo3Xvj0rPW7ezPmbRO53nnXZN6Z7iv8q6vVrqnfLlzBv8Nl/X2Vp2/SGde9prjJla6SbLn3N+odH921Wcq3SW27b1b49drd8YFXv3hJZXurH175w2N3LCzBnzuczvrcZPk6OGdNT5XbNcZt57xcuddZkmy5OOdtYbfm3pUpfvzxTtjUEky+dbOevh3Xdm75r+e0pk/PX6v+yrdS9/Z+bxIkrPm75wpuuO6p1a67xvZe45677OdfdZrTN280k2SD53Smev62k2dv79bfr5spZskK921TKV75V2dcajV3uiN6ez2x19Wuu9dr7O3I0mWfKCzV+meYZ31rSN2/malmyTPHfjdSve3e3bOFx+9aeddWEly+tWXVrrnfr73vukdT3y60l11sZ0r3XlGdPbcJckDq3TWFt20aecM4svmPanSTZLllvx0pTvh0SMr3SQ5ZJnO999Nt3fGajfY6xeVbpKcfGznjLv/+m3nLJBZ3+qM9SXJNd/rrJv4/Q+eq3STZO6FOmdhrfRg5zvqU/NvU+kmya/f7KzNfPS+0ZXu+17vzWG/cE1nrD3XvtzpJjl4RudefO//8H/30rzD87ut5p2t15Ikh+7SO79urSeXq3TfdU3n/dcbf2+nSjdJFtuy866dJz49+38n/u2L3+gsFv3Wn8ZXupO37bwDLUnWeH9nTfUze3T+/S5/rneew4P5r0r3O1t/qNJNkruvfaLSfXbjztz3eu+8o9JNki3v7zyP3jy283e98aW9+Yq1Fv5Dpbv1nL31ddMe6qxr2fK1v1a6v3io93d90OdOqnTfe3jn/n2r5y6vdJNkngM6ey23XKWzNjlJfvqjzvu5vr9I52y1nU/vnIuXJJt8oHNm1HmXd/79frFH71zRM//Z+Tv53eKdM+2TZOb3O+/OOWynTvfJk3v7UT7yj87P+ZwXOnNv39uqt75u/qM6z5VnndG7x19zjs4912OrdH6X19mn887SJHn8zs68+g8/+6dK95zvd+bqk2ThPTt7Js/600GVbpJsu1TnWWrNz3Tmvkf9vTPenSTLT+/8Xb/8tc6ZJy9/e2SlmyTbfrAzr77xwFOVbpJ8/oD9Kt1fr116b+KZvXf7Ttyhs8/z5Z2/Xun++NTOur0kOXHMuEr3be/5dqWbJIduPrXSPfP3nXdt/XxG732C3711s0p3xx06z37zrfH9SjdJjjumc/+yw9ad92skyTVf7ZxfMuaOzvffj9ftzffetkrnLM3nr+qccfDk/p0ziZLkiIO/WOl+f4fe2eVr/vyMSvfT09erdI/b+l+VbpJMOHSuSve5Ezt7O+a8ufc+s10u6az9OmWD3rkaK3+js4f0vRt19h++9HRnPipJ7pivc8bP5sd3zr4++bneGuJ3/HD3Sveqp3vPq8+f2/lcHjZ/Z03Zlcd21sMnyWNf6+znW+6Uzr3LqTt23lGfJPOs0TmHf6HnvlfpJsmkLSZUurfdel6l+4nVe+9W/PBp81S6OyzTOaPp2rs7749Nkj+c2nl2H7H1ZZVukqw9Z2c91PWn3lnpLrRm73f5+m07axD2vXD3SnfJLb9V6SbJE9d2/k7e/vXOHvkkWWTOzpxU8n8eH+m8VRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ocZGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGPHf+S/PmDErr74xbbZfxPITVp7tzX+be55FK90RM9+sdCe//HKlmyQZM1clO26OkZVukjz11H2V7sJLr1DpLr7oQpVuksyYOb3SHTZrSqU7682plW6SzJw6rNJ94MVXKt0keeyBJyvdORcZX+k+c+/tlW6SZMqclewjV95a6c4xbcFKN0nmzsxKd+yM2f9d/W+jR42tdGfM6Hz/TRs+udJNkoFpnc/8geHPVLrDxs1d6SbJ8Mmd+6IZMzqfcUnyxhzDK915Bzq/cy/PeKvSTZLhM+eodF+f+nqlu9CIUZVukozo3GJkyqhZnXCSEW/NV+kOzOx8Lk9+5flKN0mGj+x8zk2f3nneGT6r89mZJNNHdH4WY3p/fpk5rPM5NzC1c180R+apdJPkzXk7z2ijZnb+AUcvv2KlmyTTXup8Fg1/o3MfniTTJ79U6U568ulK9+VJz1W6SXL/i3dWutPn6DyTzDO2d+85elTn3nP0rDGVbpIMH1m6MRrZGXsZM6wz7pkkM9L59xs5fN5Kd2BG7zNu/IKdn/OUVzvffUkycs7/1hTI/7MZc3S+Vxeau/fssPRqG1W6Fx9xaKW7/vs/VukmyRILLV3pTp7We3ZfdNWJle6/7nyi0p02ujOfkSQP3HpzpbvgnAOV7uIrdrpJMuu1zjjUs089UukmyZvTx1W6C5emKsctvUonnGTyGzMq3Tmmd7qj5l6i0k2SUa92nv1mLdSb37n17zdVus8+0xk723q9DSrdJMnwhSvZ1v3yYvN0xq2T5N557610x47tze8sOn/nu2SNpReodP/1YmeeOUmmTe88+738Ruce8a2ZnbmBJHnqmc441LD5evO2M2d1nlfnfKPzcz7jgssr3SR5/c3O3MOwyctUuiPn7DyfJcnzr3eeSzZe7yOVbpKMHNUZk5syqTNeNCK9tSmjRpbua6d2/kZGjO6tk9ty++0q3Stvub7STZJVPrDdbG/eesqj//H/duS0BbLgM7vNvov53z508rKzvflvF739T5XuygefV+k+dk9vXGzyZ1ardPf/a+8++7Unjq50j5zjgEp35/l638evL9F5Bjv9Z5171iO33q/STZK5f/HzSvf2OXtrF2ZuslWl+8h111S6E054sNJNkrn36IzzHnFyZ93zt65cqtJNksV26qyHv/au3jP/1iesUelOPeW2Sve3j91S6SbJmf/sXPPNb3V+5254pjfGu9kPO/uU/vJS5/ctSVaePPvvaZNk6dU731F/W3rVSjdJbvhhp3vWwptVuo9P/U6lmyRXrblzpfvJlXqfRZcePLrSfXzV3Svd347tjP0nyTovdNbuDbvv45XufAu9s9JNks2ffrTSPXLbkyrdJLntjs5+6M2fWLPS/dmL61e6SXLa2zvzekd8sjMmsPsnOs+USTJzz39Wusdv8+lKN0mW/+hXK925v/2hSvfwLXaodJPksb/9rdJdbfQWle5cCxxR6SbJmJ8dVOnOPbW3//6W25asdDde+aJKd+VFOuvsk2T+pztz31/99BuV7sqP9cbaP7XsjZXudU90Pu+T5L0Tdqx0H3qiM++w5Iqd56gk+eDXO2sMvveT31S6h+7R+1ye7yude7l9Fv1rpZskz79jpUr3kac6a9X++eZjlW6SvDRq00p35Wm/r3SfHPv9SjdJtvzquyrdA759TqWbJBPX+XGlO8+Un1a6S+77/ko3SR75x0OV7gGLTqp0b1i0c++SJLe/pzM/t8iqvXGok479c6W7xj2ddTi/WmixSjdJrrzmzEr3iXM76yYmXrB5pZskPzrza5Xui4t1zstJks98uHMuyi1LXlDpLnN6Z89Bksx4e2cd49ZbnV7p7rtk5wzIJJm617aV7sqP/73STZIt5+lcc1br7Hn9+S6d+/AkmbVtZ972kCkPVLpXLHp4pZskN4/vrGd7aONDKt0kuW9qZ33yF/7VuQ+/ap67Kt0kWeknn6x0Jz70j0r3jYd75x3Nv+nFle7Td/+o0k2STfab/eNQ55z26//ofzdyoVFZYr/Zv6Zz1X2Omu3Nf7vxpl9Vuicf/WKl+8AvK9kkycrjO3NNm+317ko3SaYv3xk7fmGFzjqnr24wqdJNksXvv7vSXe9t51e6S3/y0ko3SW4484VK99GPb13pJsmGr3XGCD99aucZd5Erevdoq93fGWO67ILOPssvzPHlSjdJtj3+HZXut37WGV9Kkrf9ZvtKd9TPD650z1m7twbn90915r1//fvOuU7j3vpupZskh2/WOefjfd/vPDsnyZMrfabSfWXPznrcXW7vjcPes3jnmue/ujOnt/sfO2M1STLX1Z+tdEfv2huT/v0316p0L3uts5b66q9dUekmyeqnde7x/7bZyZXubcf09jJs+43O2p5Vr+itJ1vj6M5amfFffW+lO/dWvXHYlfft7Pl54SOdM8reuvk9lW6SzPfxzhzyvw7s7QW784CzK92fLLVlpbvG/Z1x4yRZYJ/Od8n0b11d6d7xVO+MliNW74wJrDhf7xyCmWd21p3Md0ZnrcV1X+3Nez+5aGdf6m9e+USle9zDa1e6SfK9zvRYJrzc23+xye6d88XPvWmPSnfU1BMq3ST58Q2dd7sdddQfKt0Pn9tZC5gkn3v0m5XuJ+fq/F4kyYdOP6jS3XGLzvrhz+xySaWbJN981z2V7h5v75zB8+c3N650k2TqlMcr3au/0TlPO0mO2bczDnX0FZ1n9/uufV+lmyRfPa5zjt/Ixzt71/7ykc4YVJI8P7qzL3XZGb3f5dcX2qnSnWvDzrqhZ7//4Uo3Sd57cucdULeM65zvuPqhnfOIkuS5KzprIx/+TOeslSQ5bb/O398OG3X28i3z3kcr3ST5y16d+bk7Dr+h0j3q8B9Uukny6cs76/e/+qfee+Q/+Y7OORLXPtRZT/OREzpn5iXJn77cmUd7boPOOrkLb+udNfuhBTrz+T9cvfMclSTT19630l12x8531DITevP5J77e2ZfzjSc769mu+UhnzUuS/OOMzt/fBTd3xvCT5JxFe38n/4kX3zF/Tr169o/H7vHy/rO9+W/HnPCLSvfYHx1W6X7k9k9Vukmy1E3LVbqffat3Xv2PluycubD6fJ3n3GXmvbLSTZKpt3XG8jb4QWeO849/eLbSTZKdH++8j/HxUcdWukmy3Bc65xC/e9aule7hx3TGeJPkh2t0PpdHfLezjmPDT/bmTo86vrNP/ZfPfqXSTZJdR3bee3nnpT+rdCfO7MxjJcmzv+6c8/G9n3Z+L45cv7emZf9bOnvYrp2wd6WbJDu/+xuV7t+f78zXX/nxzt9ekjyzcucz4zsPdM6xXeCxUyvdJDn86c75nM8c2/v3O+rFzlrfczYYX+k+8q3XKt0k+a/T9qp0tzikcz7u0d/qzMkmyXfv6HxH/XSN1SvdJFlvxr8q3VW+2Xnv3qsH9M5XPXyRzpm+Dx3fWay23Qd674b92vOdNeDH73pcpZskK1/UueaBFTrPlKvu9vlKN0nm/0Jnb+r0yztnGR14UOe9YEmy1AWdc2zfMXGbSjdJnr+rc82ff6xzxsG1U7erdJPk3m0Wr3R3P7Kz3mKrq3t7q/K5zrulvj33FyrdJNlmWGcP1M9P7Fzzket3xj2TZP3nOvOF132hsx/sm1t31i0kyVGLdJ5LDtnu0Eo3SXYf82ilO339D1S629zzfKWbJKe/PLHS/dAt61W6dyzRGxNYedlJle6PZnXmQJNk/T065ye8vMsCle55e7690k2SBffqrG8dO6t07u47O+uGkuSqxzrjWwcv1RkTSJL1t+7sDf/VFZ194ROX/XalmyTTVu88V/5pns78wFMr99Zn/WaZCZXu/PP+Z+ca/r941wGdg/le/dCkSvcLwzapdJPkkd07Zyq+c4vOOrjXXz6o0k2S8w/prHs59iOd/b9J8sknvlXpHvZ0Z9/I3Ed19iklybT17q9033df57yH5xadWukmyXInd96HNWGT3n6UW6/orBV98MIJle6s2z9Y6SbJny/uzOcvM1fne/Xvv+89R823X2ed1VFTOu8PSpK19jqw1v5PrDbHfLli5dk//7b8lr1nxrkO+Hqlu9DfL6x099ins28xSRbbqPMOu7mWvKbSTZK9d/pHpbvIEZ0zKJ5crfMsmiTfP69zNtBuhxxf6X7lgt67rr41f+dn8bZjeu9tW+iwsyrdLT/WOX/ptXfPVekmyQULd87S/Oz4ztkIN+7aOWMuSW5csbMH/s0dD6p0k+TbMzvfJasfcl2lu/Qind+3JHnks51z+K9bofPer/0e6b3LfeFbO3NZm+7d+b1Ikm99cc9Kd9pfF6l011i79z7Nhe7o3NduecA6le7WH+/db01dtPN+oCe26u1HueFvnTPbtt6wsyZi7omd8xKTZPLnx1W6a2/eeQ/Gvg/29nbMNbNz//L4Nr21J1e856lK94P/6OxtvPTo3ntyt3pmUqW72caddzW9d1znHOIkOfhDnbULT3xhSqWbJJdd0pkjO+XYzvff9/75aKWbJDvN21n7dczxnf0oD7/UOb8nSX656x2V7mHP9PZg7H1k5zPjh7/rnFnzx4N7cyxHXtfZZ33aZp21hte/1bmnTZLVjr680n3luc67YpJkneM7exsP+nzn72/723v7GUZ+pLM+ecU3OucnfPHgjSvdJDnom51zDk5YdbtKN0lW/nDnd/mC7TrvCT0mnfdsJcnNW3bGgc87vzOm8/V7Tqt0k+Rj23TezbfOp3vvZr7qrM75keMfeLXSfWxUb972om+tXOnudEbnjIoVfnxKpZskBy79xUr3/df3zq878f1XV7pnbtB5B+mfxveeHR771JhKd6NzOueY3fCBzpxtkrx+ynmV7gqzOvNGSTJs6WMq3ble6ryfaNLVneezJLn3F50xrlOu7KxZ+ukiv690k+SnC3fWAB27T++9VZ+4t7NnecmVbqt017jpj5Vukvxz/g0q3cvu6pwx/ouHe+9vvum5zhk/h31p40o3SX77wIRKd/6Pdc7hP3Xj3nvHNnlv51z0z5/WWZ+8/oyrK90kOXbtz1W639mnc9Zmkoz/7hGV7gv/l/98oPL/BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wwwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBSM+O/8l19+6ZX87ow/zvaLGNhmq9ne/Lf11ppc6Y6ab55K94XX7qt0kyQvLV7JzrHQjEo3SeYZu1ylO3lmJZsFZ77VCSd5fdTwSnf49M41jxg9ptJNkldmzlvpTpl6f6WbJMNHd37OL9z9QqX72nNPVLpJMiqd3+VHH7qr0l1+YM5KN0lGju18Lo8eM3+lmyRvzhhV6c4/x9hKd8rMqZVukgyf0fn7GzlH59/viZG9v+tXpnV+zovNGl3pJskrw/9bt8H/z+YcNqzSHTd9eqWbJAMDnfY8ozo/41cmv1npJsn8Y+ardKdPnlLpJsnMaZ3PolGl29o5xvXuEafM7PycZ0zr/F1PndL7ux45Z6c9bFZ0UOG4AAEAAElEQVTnPi5Jprw1UOmOmTmr0p1e+uxMklFzdT6LZozuPEcNvPFapZsksya9Wum+PuWRSjdJJv3r9Ur3tTc7zzv/fH1apZsks0Z1PvPHj5qr0p08bFKlmyQDr3eeK0eP7txvJckco0dWuqNGdb6vZw1brNJNkuGzOp9Fs9IZtx49eoFKN0kGOr8WGTVn8ZrT+Z17a3rn+/rxO5+pdJNk3JKLVrpvvfV8pfvqfb25ktErT6x0X3rl6Uo3ScYvsHClO2HFpSrdyS/37pcnLNEZR/zXA5dVuo8P7zyTJMmKb+vMoS36js0r3SQZdv0tle5a602odB98pPP7liTjllqk0n15emcMf8rTd1e6STJs7ByV7pyje+MYcw9/pdK948nOM/aFF15c6SbJRz6+S6U76skHK90Xhj1X6SbJpFc7n/nj5xhX6SbJsDGdv5OFF39fpfvMxYdXuknymR03qHRHTOncI774WGduIEkuuezPle6SC3fGJ5Nk1bWWrnSXXrbzd/3cc71/vzXeuVKl+9GPfKDSfbM4n//6pM5zybSxvXVyC8/TGXyZd4FVKt3pM5+sdJPkldGdMZ2B5zufy69N6T37DRvZmbid/ETv72/j971ztjfPPfc/n3OY9caDmXnzdrPvYv63H77xk9ne/Lebb/tBpXvxgXdUusOvv7HSTZI73nq50n15z/GVbpKs90ZnLPaSLU6rdH9zwR6VbpL8Y/nOz+LsEZ0x+qdv68zJJsnCYztznA/deWmlmySvnHFmpfu+1b5b6T52T+8+e6WrOms6lzm4c592zmGHVbpJstCX16p0lxvVmZNNkmtP6LRHnvZwpfv2jTqfcUlyym2fqHRf/UhnzG3KJ3qfcb+86dlK9/qLP1fpJslyV15Y6Z5xYGfd3iM7LFPpJskqw5+qdDca2xkvXWXB3vPXSlMvqHT/uOrESjdJltnxPZXu6jeeV+lestpnK90keePOmyrdm3f9Z6V7zd96ayJWvLezvm7Bmb31dVPe9mKl+49bO59xS73rpUo3SeaYa/lK97lhnfutG//WW0M8ZtVtK92bF+rchyfJ9w44vdL97q2nVLrjju+NS0/92z2V7lwz9q10Hzzt6Eo3SZ5+9lOV7nv3m7vSTZLRH/xtpTv/hitXug9f9uVKN0nuXvbKSnffSWtUuuNe6601XO6uzmfGzXd2vvuS5J9b3Vnp3rv/NZXuko91/vaSZNI6nf18w0b/q9K95ZmLKt0kWWX98yrdG8b8pdJNkoknd+7x79q18+y+/1wLVbpJcvjNv6t0h7/eWSv67mFvVLpJstMPxlW6u2/y/ko3SZZ7sjO+/OwbEyvdtebt7A1Ikj+s0PndOOeTnfmdvTfrreO44JnOHprVr+h0k+TRdMaBnx/z90p3o4U+VukmyZF7d8Ybfvj42yvdk7bqnG+XJNtu1FkDvvmNv6x0k+QPpbUCH1y2M9b+6/vPqnSTZKtlOuPAd29yYKU7bq9dK90kOXPuzhrix9ft3RdtO+/ESnfEsZ21DX++pfe9+tNDVqt0F77++5XuHcuvX+kmyWIvfLHSXfJjnbUpSfL0mp3zn664/uOV7qTX313pJslyJ3+60r3y7s5Y7WMP9fYJvjX9D5Xu6c92xreS5PjX3jXbm1dOPuM/+t+NeuLOLPm12f/dNuO23vj8PMd8rdJd54VxlW72em+nm+SXdx1V6f7grs767yS56SeddbObHvDRSveCtTpzm0lywru+Wul+avIHK92/XjKp0k2SfZ/v7AHc+wOdPW9JsuF1nX3qG/6uswbgwo/0zmHc4cOrV7r7fKPzjHvVyF9Xukly9ru/XunucVZnDitJlp/QeUZ6+NXOM+65O76t0k2S437X+fe7benOnN6v3t0b01x+lc5nxsTremcPjh3onAX3juc6e3t/tUbv/InFPtFZ/73MPd+pdN//em+P4Nnf7KyBm+OR4t7ezTprcL47d2lt+cK99fsLrX1QpbvcXzrrys9f69FKN0n+tWRn3ddcJ2xT6SbJCd+5vNJ9cevOvpwNnv1epZskl17bOb/g5IUuqXS3XGqJSjdJPnt7Zxz9F5uXDitNMmWjztrkp+7tPPuNu6lzPlmS7Pze6yrdbZbuzKdvnc7cZpLsdPQxle5au/XmN7++c2cNx3b7dNbjzjnhoEo3SYbv1Flf8My+H6p0t1n+1Eo3SU79YWfN5V/Om1DpJsm5p3f20o75wEGV7lNjensEz1ptx0r3zGWOrHS/MePxSjdJzl3tG5Xuavv37hFvOqfznsJdn9qp0v3h8p218Eny55d+VOn+4PnOeQFn3/ulSjdJfvrGDZXuyMt68wMX/eaTle4aW3XOyhn5za0r3SS548bOz/nAa1etdDc6q3NOd5IceU1nHGrMptdWukmy9ds7n3Pr/HXZSvfCb83+NSf/9oXvd8Yxnvri7pXuwhN664fvX6fzvbrd5M6avSS5+eHOnNTkPTp7Rv457ZBKN0kWHnNkpbvydx6tdO9cobd+f/yTnbmuXe/unY/7tfk7339LnNuZX/3R8z+sdJPk58+cWOmu/UDnHb33rND7jvrZ6M7fyeJ79860GXNKZw3qpps9WumO/1LnbPgk2fuFjSrdOTbrjLWf+NyhlW6SbPjHjSvdiXt3zqdIkhVu6v08/hNvPjsj/zhi9p9n9MmVH5vtzX/7zcadsaDrl+6c/7LR0p3vnyRZ6bDOfNPFk3pnde/7q79Vuidu3Nmz+PERvd/lZSZ29ma/eXDnfurCmYtXuknysa9sWOlesUjvnSoPzb1OpbvpXp3PuFd37pyJlySjNuusKXv2E539WLefv3almySn3t+5h9/v0s7+6ST5+vmdNQbXrfbNSvfwl4+odJPkMyfcXum+622d88WfnfCVSjdJvvbcuEp34dM6aw2TZLdfdtYELrFr5x7xt5e9XukmyTEDP650H1qyM378wfl688ib3NTZT37qDb3zC2Zc+PlK98wFN650l3qrswY1Se6/cp9K99KTvl3pvnTkfpVukuz2aGdN5367d/Y/Jclr62xZ6U47tzPe/YOvdvaMJMn473c+P1+b0XmO+sb0znknSfLaXzpz1Jdc2HkfXJIcdVznnI93fKqzb2TdPz1a6SbJxHPurXQfOKUzDvXipe+odJPkqc9tWukuvcrPK90kWeqqztjZh37fOYvgua3/Wukmydx/6IwXXbX1AZXuBR88vtJNkltW2aHSfXLxZyrdJPnxRzvvgtztqnMq3eOP+lmlmyQbnNvZv33HHzv/fnPteXWlmyQPbNE5P2HblfasdJPklXd33iV49Z2dd66s93RvP9G9i3fGdJ79ybhK96U1O+9hTZKBCzrj+Jdf3Vurfdh+nffnfXNqZx3cctd0zt1Nkmfmm1zp7r3g3pXurf/qnLWXJMuf3Tl3ftJBvc/lBbfpnPEz9+qd/b+PbdT7LHrfXZ3n1XPO7swnLnJeZ/9Mkix7QOfdKCt9unO+Y5KcdPt/dmbi/59Dtp/977VPkn/8fclKN0nWPOLkSveI/Tr3W6d98dxKN0m2+lrnXu6oo3tz2Net0vn++8DbO3/XNxy4eaWbJAsufnile9GXOmvA19p8v0o3SbY8vrNP8KRRnfu4JBm/9X6V7lajO2Ptuyzc+7seeVhnb+qDN3f2Qn/x3M4cTJIc/ePOXvZP3X1cpZsknzi18263I//Do0CmDzyXl+ac/eeT7Hvo2bO9+W/PLtKZy5p6def9JAte1dmrkCSPntJZI3LQz9ardJPkW6M795a7/XGzSneHn/T21C1/aGdP5PTNO/esty7Rew/Fprt35iIP+mLvvPW9/tY5W+bxE1+rdJ/7zV6VbpKs9snOZ9ESi3bOuVp97c7YVZKs+2xn7dCfj+2dX/fihZ1rHn3XCpXuLxbvvIMpSfZa7PeV7u4Tf1Pp/uXdnbWRSbLwGZ3zOPY5u/c+2+nXduZYvnJKZ3359rd39gYkyWkPduYL592+s39tl6175zms+0hn7nuuEzrjbUlyzkPnV7o7TOzswdj7mN57jidO6Jzj/u0/dN7te9xnO+sBk+SuhTvjjzt+YcFKN0l+81jn3JqtX+uM/x/2wS9UukmyxdWdNeAbb39apfujqb0x3r3/0plXWOj2znh3khy3cede4O8Xdu63dt78nko3Se7ZqPPexBcOGlfp3vGtn1a6SbL3motUuveM3K/STZIZE2+qdH8ysXPv8rELO+c9JMkZUx6tdJc9pLO2fNgtnXULSXLrzZ11s7d/pbeH5pd7blHpbrp+Z335ip9/vtJNkl+f3zk/4fJrn6h019uh9xz82UvXqHT/sEBn3V6S7DvxhEp3v60773SZckRvP8Pym3XOFd1wj87fyDuHXV3pJskFl3TOqNjq/Z05tCS59fQ7K9073tt5p8Te+3TGBJJk08M7eyYPf3ZUpbvu3r33TL7vPZ0zmjb5+26VbpJcuFVnHc7MtWdWuntd1znXMEmm/6qzVmDEq9+tdA84sPc+uueu68wpXv+z/SvdJFn8D5333k58vPMemkVL72xMkmcu6pyf8LGv71vp7r9p7+ynrf7ZeW/cnV/snGObJAs83llD8ud3fKbSnfxm57yVJNn+vzrvQ77+1Tcr3f86pLOeM0lOX7+zh23z7/X2Ey2zbOeMn51P7pzL/OsHe2sG5/nUxZXutpt21j2fuU9vfPmJdMYbNi2enffobp3zg/75fxle7ry9EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+hxkY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAD+P/buK0izumD79T09CZgBhjjknARFsmQQyQiCIFHFFxBRVEyIihExYAIUJAiKiYwkCQpKEMlIDiI5hwGGNMPkfbDLs2/XfrXmrq7+6rqO4VererqfZ61/WgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAw4j/5j6dNn5rnXnxitl/EeX/602xv/tvm63280p01dXylO3Lk3JVukkyY8HCl+8a/hle6SbLIQqMq3dcmTa90Xxi2YKWbJLMmTa10n3/+pUp3xdXXrnST5NF776l0Z06aVOkmyYLzLFrpzjHshUp3rrErVbpJcv2ZV1S6y86Yp9IdOWauSjdJxg7vfMZNmTWr0k2SkcP+o1uH/7Xh81aymfbsG51wkszd+bv+xeTO93VeKHWTLL3aKpXu1c/cUekmyZjRnc+MYS91fucWGdX5fUuSMSPeqnTnmTK60l1uzPyVbpJMe6vz7zfX8M7PIkkypfMBOmvsm5XusMmlD/wkw2a9VulOHT6s0p1zTOc+IEmGD0yrdGdOH1npJsnoYZ3nyhnzlO7lFlus000yx6wple60tzrPwbOeeLrSTZLnn+jcvwwMdP6uk+TFNzrP7q9P7dyHjxk1udJNkhkzO/dbc40ZqHTHlJ4pk2TMqIUr3ekjZ1a6STJ8Zud7aur0OSrd8fN2vvuS5LWJnfG+seM6f9dT3+zc3yfJiNK/31wL9O4xXnul0x47V+e75J7rXqx0k2SBDy5U6e763q0r3d/84TeVbpJsuMnESvdta/fGxCe/9XqlO2J653l1zPji/dbDnWe/5198qtJddFTnby9JRgzrjJGMfPPJSjdJVlyyc4/xxL2PVrqPP9sbU11+g09Vug/dWfpeHdGbK7nhoSsr3WUXWLrSTZKx8yxS6X7p0HUq3UlvdMYEkmTm8M6Y6tglOusmxs5cs9JNkrVXvr7SHTu89/c3eo7O7/LCy3XuBVZYftlKN0kWGrdCpfvUffdWuvfd3xvTeev1zr3nJvu8p9JNktXX3KLSveH2f1W6a661RqWbJBtv3VnrsfDbNq50Z07qjWMs/Y7lKt3rL+7cuyTJa4t05gfmW2DlSnfEjM6asyQZO6szJvf68Jcr3bHjl690k+T1t16pdD9+4PaVbpLcftPs//6bNf2/v6ed541Z2epvs/+e+MhbjpvtzX87/xtHVbqPvNAZl56x9naVbpLMe+4Dle52G/bW1z15/pyV7lardp6T7lj3L5Vukmy6+Hsr3fsWXbXS3f7M3u/Ft269pdJdZJ3e/dSKU0+odC9/9blK9+alO/esSfLIyb+udL/4uasq3f/52OKVbpJ8dpHOXMhFD/Y+i16eu/Sce0Dnd27MEr15hZcmdv6uD1moMy699Au9z7gPfXqHSvdfn5n9++3+7Zp3dJ4NVn6x8+/3+n5fqHSTZNo8u1a6M6/5TqU7ebPO9SbJsbd3ns3/elRvXHrGCkdXulct/I5Kd50JvX1mN7z0TKW7Q2mb7tP/7KwtT5J71u58/62wTO/fb6mv3V3prvlUZy/0g7v3/q5/uNS7Kt3j9rq90t39mmcr3SQ55YLO+PHopY+pdJNkl7nPr3TX2vX5SveVhd5W6SbJhjM6vxt3v//7le53Tug9+z28YmceecrwztxNkvzo4TGV7uN7du4xFnmrs74gSRZap/P9N/kfl1S6k5bureN4/IrOs/sjX+3t85z+1gWV7q4f6XwWfeVjvXUA31ulc/+57w8648tfPaXz3J4k63318Ep3uYM/W+kmyUVHr1bp7rNVZ65rodffXekmyS6/PKTSfezJyyrda1fsjJslyaHnPVTpbvpa594lSc6e9Filu/Irnd/ln5/e+bxPkseP6ZyxtfJGP6l0TxlxbqWbJLeu1FmrtvkZF1e6SXLGiM79y++/0jk76BPDO/vXkuRPz3y+0j35xd9Wup9f9LZKN0l+VroXeOrozt91kix7x+6V7h1LTKh0t9m/MzeeJNvN/6VK9+KTOp9F/7j4wko3Sd69Uucz4+59euMYO32o81xy+d9+V+nudfTNlW6SLDq+81y59Cc6++//fGlnbidJ1vnq2ZXuLy/8aaWbJOufsnOlO2lKZw/G6ltdXukmyevPde4xJj/S2Yu561a9M2I2fLizB+PM7/XW9r1yyuz/Oc+6/b/bV/XwsiOz229n//j/2u9carY3/22jLb5V6U7YunMvfMxp/6h0k2SjdPYqnLf2LpVukrzt3Z15kCMP/m6l+7czevdoTz7YuX/fauHO/Mpv7u2NST9xYOd7bb7Pnl7pJsnHjurc83z5nP0r3Wv27D0vjr+4s7d30l/2rnT/tVPvDPddb++swbn6Gz+sdJPkyuUOqHSvOftDle4d819d6SbJSV/rnKWy31Gdz7gVf9bbZ3nOoZ3Pz+Ov2LbSTZJjfts5S2XWbZ112iPWnVHpJsl2F32y0t3jic494qvf6q1HWn2rzhrGo+55Z6WbJCdN6vydfGavnSvdMWf+rNJNknsP6azz/fv2nfGaX23dmY9NktWePrjS/eQznfn0JLlmcucsv5fP7jzvXPTJ3l6UGz/fWdt680abVbrjvtt5bk+Sf57z/kp34Nzes/sjv++c5/DD+zrjW+t2thskSbZZpzN2/LmdO+eg7v2zzn14kuyx++qV7uH79MbkVrj4mEp3u591nqOumdrZX50kE1frfP+dcv3XKt3v/KO33/XOL1xQ6V55Sme/ZJK8+vYHK921x3fON/7Dr3tnUk6ZeUOle+dDnbH2/fe6qdJNki/s21kPscHy51S6SbLOTp01xC8eOLbSnWezP1a6SbL9zvdVuqcc2vm73njaFyvdJBl30KWV7tefPqPSTZLpkzpr64Y903kX3TE/ObLSTZKpv++8w+SA/e6sdJdfZVylmyQfeUdnT/+Mn36s0k2SjX/XeS7ZcvHTKt0f/bG3BmGd4YdVunNftlel+8JxvbNyntmu87v8uR3/WukmyT+u7Zzj8tEXflzpvvr231e6SXLZOp3vkoNu6sxhH/iB3hlm163deV793PadMyuTJCtfW8n+dP/OWWNrnt75G0mS08Z1DnJ519jjK93xx/f22w18r/MOhXO/uWOlmyS/GX1RpXvtQGefxJwTemfwP3xN59zyC3/ySKV7xfKd5+skOXdc517ghaV7c9inzts5TzH/5fDW/PMle+0++9er3bN0b03LpB939p1+9d7HK92ff6F33teON3T2FFx0UWeMKUk+9onOXoWzvnJqpbv+Wx+tdJNkoR937ocP+/IHK90/rtF5R3WSrPPChyvdQ57ozSucOearle7p551S6U743MRKN0ke/2pnfetF+8xb6Y69pPPOxCS5/csnV7pX/b13rsyLh3beffLar16tdI97X+cM8CR56bzOd8kvJnbWt+7zy8771pNkxiud5+fdt/lBpZskd83R+V59ffvOGXPHrNdbU/bkAp29vffc19mn/vifr650k2SO7Tv3At8tnf2SJH+7vPPenC9+sbMQ7uRtSs+4Sb7+4tsr3WP/1Dlf/Libe+9mmP+Azprq0Xt0zrVIkomHvFDpHvz2zrjYgmM7Y49J8tA8nXu56yd25t7W3uQblW6SHLRiZ8z0x/t31mclybBtOmu1H5i1fqW72aObV7pJcuHIznfJDsM785A73vDzSjdJbtqpc67T9lf09sb96qSTKt2zjuw8O9w6pncG//1vfrvS3eSGznvdpi3f22f2tdU7c2SPnN95f2uS3LLJoZXud2d03iW4wUKd7+skWel3a1S6S7/7qUr3il+vV+kmyW5bL1zpjl2stz5y+KzOezE3fKazV2LrA+ardJNk8R90xlTH3dBZ93X6T3vvn79+RmcP1JPHrljpJslXv9dZI7L1kp33jPz6T539h0nywhyd8eVvXNT5Waxyc++8lccOXabS/eLfexs9T3pv5x5j3Xk7Y7V7Te29v/yBSZ2f8/Fv75y3ss9qvXmHbz3SOSt41/f19ulu+IPOGq2Jn/hDpbvoPzp/e0ly6hKdPZN/3qMzpvPlTXv7Rw84pjOnuPjkzlmNSbL/HzvnBd+1fGfe7/hNOs9RSbL+VZ1zPIf98NhK94g7evtHF7qt817Ft77feX9Qkmywa+fnsd7FneeSn63bW0/zsfs7Y6q/fGdnn/UWj/Xm0G5aq3MWz6mLds6KS5JfH/PlWvu/Mfr+JbLUmkfM9u7ql/XO7p9xdOd+eMddO8+iu326d599xB6dMfoTnuncsybJqCM76zjOvafz3qg9JvTO2fnpRp13+168d2fd18VLbVDpJsm3T/5RpXvreb09kctd2nnfxyef7ewN+NO9nfcyJ8lxWaDSXeX6zn3aOit1zvlIko/f0vmef9dSnb05SbLw6Z1nu88s31kTOMexvTVJy9/SmSP70lq/rHSvOanz3ZckN5/Uef/1P//SObMmSTa5uLPeaWCvb1a6hy/eeX9rkjx5SuddnV87YM9K91f3dc6OTJJHNu18Zrz9qk9Uukmy5pWdsfRLP9cZf3z5l50zHpNks6W/V+lOv7ezpuW9b3a+U5Pke9d39n2v+1RnDVySvLxcZ+3e6hM/Xem+e9vePrOfjemMed/3hc67Yh44o3NeW5IcvFZnP8r0H3bOZE6Sv321sybpoWGde7kfHb15pZskJ63ZOWdnwkqdechV3+ico5kk8y7RGf+/+TO9s4HmPL3zO/fsjqV3CH2wd57KQT/tvBPr1lHTKt13juyd03LUtzr3iO87o3PGQZJ8/Cuddz9clc6euweP651d/tZlnTMDlr5xsUp389+fVukmyX3bdd4j9LP3n1jpJsnqh3U+i264pzPXdcnevTPbdr3w/kp3vZVKZzwu1PkZJ8mXXvpFpXvm33vz9b/YYotKd+zmnTMD1jqxd/bTLe/qzPs9PLEzv/OL43t77k4654pK99Y1emPiD7zemdNf5cW1Kt0Tb+jMJybJhRd1xvv2WbbzWXTFBzvn2CbJ5/d9rNJ95wO99XVfWq7zDue7/tIZn1xi3p0r3SS58eTOOYJ77zex0l3sQw9Xukmy1Yad8b6fLtK5D0iSbz3WebfpvOt05t2fe6Lznskk2WyNzjjUG4ftUek+cvlPKt0kuWndzlzzue96o9JNkoX277zv4Ohhnfeyj9/yoEo3SU6cr7PWfumtdqp0j9yt852aJL866QOV7jEze+d1f/qm6ZXu6fk/v/O28zYdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPi/zMBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GwWbNm/a//4yUWm2/Wwfu/Z7ZfxJln3zfbm/927De+U+m+lrcq3VF5pdJNksefeKjSnX++1SrdJFlimbkq3eHTO925x8xR6SbJhMmPVbpvvbxQpTtpzrGVbpK8MWVGpXvrjRdXukky/a2Rle7CC8xf6Y6bNrzSTZK//frPle5KozvXPGZ05/MiSeYb3vn3W2n+BSrdJJk8z+RK98XH/vf3I/+JqUu8WukmyR+HD6t0x2RapTt91HyVbpJMev3NSnf68OmVbpK89uJzle68Izrfq29OfKnSTZI3ZnTua982rPO7vNacq1a6SbLBuEUq3YXnWKrSTZLMGqhk5xw5otMdPabSTZKRwzufRcOmdO7xp43ufKcmyehhnfuXScM6vxdJMm7VFSrd6a9Xshk+pRROkpmd+6LJE56udKe8PqnSTZKJkzvX/OSUJyvdJBk1vPOZMX3Y6Ep35ozO71uSLDi6c/85bdqUSnfE6M79fZIMm9oZExg7elylmyQDpY/80QOd76jJr/d+l+dfpHO/9dZbnfvwOdK795w0qvOMtuiC81S6SfLqC53vqeczodK9f7He+PLIHTo/52lTOr8XMyb25kquuu7ySve2B3rXfNDHPlbpjluy84y28LjemOrUFzpjOg/c9UCl+8arj1a6SfKe9dasdMeO7YyPJMnEBx6sdB964rZK98mXeuMY23/gU5Xu1Lk697UTJnTuXZLk5j+fWOnOv1jvHn/qa517roFhEyvdOUZ0ukmywuLbVbozp9xZ6Q6fe5lKN0n++WDnHnHBuRatdJNk6gJrVLpH/eSLle7Ky4+vdJNk0YHOeN/oldatdE89+4RKN0kmvv5GpXvYB2f/erN/W2urfSvdX/3qZ5XumhssX+kmyZbbHlLpDozsjMlNvOWflW6SLLTSipXuHTf21jne8ZczKt3dPvDlSvep52+pdJNksZU633+jxpbWIBTnsF977uVKd8455qx0k+T5f87+Z+Gvn/T9PPrM4//VTf7K8y486+QNdpvdl5Tr5uw9c0w7bt5K93sHj6t0Txy9f6WbJHdv+kSlO2xm57MxSRba4YhKd/2xUyvds+e8t9JNkj0f6dxDrHL5SpXutnv31hpuess+le4NP/pCpZsk6710XqW7z1LvrXTP+9hhlW6SjPp8Z6/EObd21hpusGJn7DFJ3jm88zy6xv69OZY7nliv0p108cKV7q079NbNjh/ozIVMHfauSnfRJzr3AUnyrlmdMd6r1+vtwfjJmXNXur//yMRK99ozHqt0k+Qv13b2xu3+7c531EaXP1vpJsnqS4+rdN8cvkGlmyTTZt1c6S645PqV7rgFeutwlp56dqU79tp3VrozF+2t71lpwZ0q3T/NPK3STZKrR3bmkqdtu3Kl+4uH7650k+TGaUtUuuMmdcYf3/rmWpVukty73fWV7uvprdV+aMYLle5dxy9Z6S522Lsr3ST50IjOuvXrxv+p0l3i3K0q3SQ5b/tHKt0NH+qsp06SUUt11g4t8khnXu/OF75S6SbJa/PsUunOt+Nple4hXz6q0k2SH39ps0p32GK9eaFbR3TWxD9x3rcr3XW+u3almyRvn3FrpXv/TRtXulN3W6zSTZILz96r0l3+8j0r3STZ5pjOeNGqT/+j0h39Ru+8nCkbdOYHHr/8yEp3+ivjKt0kufKdnbVf257fuY9LknHj7q90L9+2cxbI7XP9odJNkk88eG0nvPjfKtlFHnlHpZskx115T6X7hfWurHST5Puvde7xV3xb5zNu7ms7ew6SZPxOnXn38/+6dKW7yPq9e4yJP+ysFRi70x6VbpKsuMJjle7mn7up0j10lc6+1CSZME/nmheeozMONevZrSvdJNnllu9Xuncs/rlKN0mGfW3bSneNX/+g0r18j97f9dajtq90F9us8xl31Rm9s5/Gj+zsO1jsjesq3SQ5cuFvVbp7jv9SpfvQpa9Vukmy4A6d8dqFFj6p0n3oiU9Xukmy7Q2d/SiztuzsP0ySS2bN/me0M791ep5/9Pn/eKHxAuNXnbXtnr+f7ddz4j2dvTFJcvNBnfOzllj/7ZXuC5f15lcWuqyzH/KLi29T6SbJ/gvtXOl+/5PHVrrLr95Zc5IkHzu5M9f09bs7z3Xvv+/gSjdJ7hrVeXaecFdv7GrkAp3vnx3+pzOm+cQCnfWnSTLhZ53PjOGfXafSPfCgzr6AJHl8Ques59Pm6nzeJ8nHP9wZI/zDHKtUugdf11tn+Pm5OmtmHxr/u0r3ucc7+0KTZINJnXULZ+3R+RtJkq1O7qyJ2OLUzhq4ZTd+W6WbJLv9qzNGMe0rh1a677qmt3/6SytdWOkusV5nPi9JdpjZ+cz4zT/HVbrTJ3bGB5Nkiyc7P4uvzzi10j16vcUr3SSZdvD3Kt1Jd/XejTLmL53v1QMu6axn2XDZ3tq6FR/trG392dLvr3S/sOKPKt0kuX6uyyrdFR9/rNJNkoN/0hmj/849t1e6Ox6/RaWbJPlT50zKB9KZU/jHsp39BknyzAc6517Pt3TnHLEk2ey2zvniNw3vfP+tNrJ3LsnIdMb7Vljsg5Xubl/v3Xsu/o3OGqq5Hu+dAzJwWuf+85QjOvNYX9yrNz651HmdfcW3HNA56+GJgd6YzheOvarSverF3jmM27zYOd/n3kc2qnTXP+KKSjdJRlzSmZ9ebuNTKt3lF+ms5UySDTfqzA/cfEZnrD1Jzr7umkp3qTtXr3QvOq/3WfTu0zvni5y6cGd85MWlOutPk+T68/9Y6b7trscr3ST51CWd54fdD+ysjbxik9Mq3SS57rTOHutPjOh8fg7s1NlfnSR/3KUzJjftrd4Zgq9/vjMn/Pq5nTVAGy39cKWbJJdu0LmXu+5jnbOq5v585zztJHn2oc745NZbdM7qSJJ3favzLHXIWZ33dpywUeedHUky9cXOOSCXz9mZa/5cOu+BTJJ/bXB4pTvPZctUukly83qdz7mNj+rs6T/r1d5+yZn3da558692ulvs19sj+Nc/dNZjLHZpZ0wnSeb48+mV7nvmHnfbrFmz/uOH1lHzjp41fsPZfw//5HGjZnvz3+5f/6uV7u+e6czJfuJzvTXEe93UWQd33l699XVbzzn7zxZPkrH7d85XXfXczndmkuz3QmdN4I9+0Vlrv/+Y3ljQq/f8ttL98s2d+78kuXWv2b9nJEkOOu/Hle62K25a6SbJ1856qtI9dq/OvvqlPnhupZska07snOXw4jK9fc4Pn9w53/gHL3XeLfquRc+pdJPkXW8eUOlet2fnmfH8jT9e6SbJe77cmW8avuuNlW6SfPOkDSvdaw/ofGbc/1xn3VCSHHJA5/PzhHUvqHQf+5/Ouq8kmWfKDpXu69/urdW+5VOd+891HuiM/y88vncG/4+mdO6XL/pa57y2c8b01hDv9rbO2a1nFN+N8p3Hz690H32q8/k58JPeO48efrgzl7zvjzpnuF993/OVbpI8uvtdle6Z1/bG0t+xfOceY9pBnb3Fz19+ZqWbJIdevXml+9O9O/sZ5ntP50y1JPnB/p+sdC+c2HuHwq9OuqjSfeKEzlndS13Q2yc475ad9+R++uhPVLpHLbdzpZskq67aWev75vjOPpckGbtL5/15S47trOPY7NJvVLpJctDkzprAfad01tpvc3fv3Qy3/6WzjmrjPSZWuknynTM7+35uerGzZ+vwlXv3GDfs2HnXyLWTO3Ndz264Y6WbJHv/ujM/8K1reue1rblp515gpZs65+UcdMRZlW6SLL7lTyrdbT7Vef/1ma/3zn46eKHOnNRG5/TmKg/784KV7rHrdT6Lht374Uo3Sc49+OhK9+qVO2dKLTil926U2xbo3GMM/3nn/SVJcuaez1W6a73ZOUdpj3U6560kyXL7dX6XP/DQtEr3vHV6Z81OfLkzvnXpFp11e0ky//s655csfnVnfHn4xM58VJJsvV/nrO7zR3bWdB64TO/d209+8YZKd/nLOucmJ8keL3d+5373j84c9oSLe/uJvvrLIyrdlf7V2Re+w0O9M9z/uEDnDPAbF++d0fTSlImV7ofuPvu/Wve8zgJrzbp5u9m/D3e9+0+e7c1/W/fITnv0QadVundt8nqlmyQblc7Deezbc1W6SbL8/J152SX+3Dk7efnRl1S6SbLjVZ3zxGbu/fVK99zdO3sDkmTkzzrrZm/8Wm993Z4zP1Dp/vy1ZSvd+d/sjNckyVsHdfZxXvvhzntWh7/Zu2dd6Aedz+UXT/lOpZskR03rfC4v+6OdK93tNvhFpZsk6+zQ+f7b9frOPOR2H+29v3zVPTpzWa9+vnPmSZK8f3hn3/c2s/ardHd6X2fdSZJsOaxzttp3v7JIpXv4IndUukly+AKdeYWDru2cWZMk07bo/G48s1ln/+GS6/fO/Dr1w52/68/d2Tn/7Jqbe++N2ugXne+Sle7o7aFZ5YLOO7vHvL1zxvG45Xp74C+5vXO//NuLO/t/P7pHb63oGQd0zoo4LL09r5MeGlnp7nxu6T2rX+mNa9694h2V7vQPdN6vceO7O8/XSbLPpM5z5ZUf6u3B2PyjnbOIzzp980r3wUc6955Jsv3xnXv844/v7I1b4qOdOaEk2fD6znnPf3qp002SfTfvnKF13HsuqHTnXWVmpZsk3168c//5rn1vrXR/9ePe/t8jTj+y0v3ajp3PziTZYOxfK92zb+jcC7xy1aqVbpLMe3NnHep2v/1spXv+Ap13bibJG7/pnP+53HGdtU5JcusenbOIvzCi8xl30IWdObQkOXTsdpXup87vrCk7f1ZvPnitnTvnMqx6cOf9zUlyzp6dc9FvfKqzz/N9F3TGt5JkvnTOe75ofOc9hd+4qTef/4kDO+udPnpaZw1xkqy62Dcr3ZeP75yJ/sNJx1e6SbLAG53Pz1sP74w3rLtUZ81Ekpzzhc5eibtu6OxfS5JvbNVZe7n2luMq3aWf6Z33vOxHOmekffnqzl7ow47r7f/d4med/WBPf+vvlW6S/H3RzvvdtjykM6b68SN64xg3/a1zXs4Jl3TWDD60RW8ObcdlOuN9XyutJU2SHVfv3C8veuPb/o/rnnunQwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/0UGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBg2a9as//V/vMIyy876wde/OdsvYo6ZL8z25r+NmHuhSveNN96sdN+a+EalmyRvjBpe6S4590ClmyTzj1uy0p054tVKd86xS1W6SfLs8y9WujNmjap0H3nwlko3Sd6cNbnSverKmyrdJLnn8acr3XVXXbfSnfXcS5Vukox/YXqlO+/AnJXupPmHVbpJ8o5ZS1e6oxYcWekmyZjxc1S6N73W+Tnf9daESjdJ5p6785k/ZcYzle6bU/7393z/qeeffbjSnTJlWqWbJBNferzSnXOOeSvdKW/2fpfHTO/cyy09auFK99PLLFHpJskic3U+l+cdtmqlmyQjZnT+tuea+7VKd2DaXJVukmTWuEp2jmEzK925xs5T6SbJqKUWrXSHzdG530qSTOt85k9+sfP5OfnliZVukgykc81vvNz5vH8rr1S6SfLClImV7rARnefgJBk2vXMvPtdcnc+iGW8sWOkmycCYztjLmHQ+P4fP0RnrS5KRA52f87AZnd+LJBk1MKLSnXvM2Ep3+szOuGeSDJur8xw8asbUSnd68ft6jhGdn8VbMztjRUky6ZXOOOILpWf3u4b1xuSef3vn5zxmvnGV7kKLLF/pJsm0UaXxrTsuq3ST5G9/ubbS3X2n91a6q63ZGbdOkgXHd8YbHrruwkp3yujemNwCL3c+M+aap/ddMm5852/7tRc6czB//uuVlW6SPP7spEr3pJPPqnSfm/B8pZskjz1wQ6V77z+fqnSTZOLEztjZ4kuOq3Sffe71SjdJMqXzc15u+c4czKQn5q50k+Rv191Z6Q6bMbHSTZJhy6xY6V53698q3QXn7twHJMmKyy5b6U54rrPO418TH6l0kyRzdO5fTjj8K5Vukjw5aUalO7k0VrvcyttXukkyK29Vuvdf+/tKd/09P13pJsnIqaW1Hq+/3Okm+fkXvl/pDkzvjPVNGT6l0k2SxZbo3AsstnJnfmDNtXapdJPk1dc741uZ3huHmnPU7L/nOuSHR+RfTzz2X/1hL7rkCrP+5/M/nN2XlK+9XPq3SXL+G5tWus/tdU+lu/nunWekJLnqO517k83+OH+lmyTX7H9epbvoCr+tdOc96sxKN0lmfPKhSnfck49Wug8+ulelmyTfv/XoSneL13rfxwM/ebDS3eyyzjPjs5/5YqWbJM/MfXOlO22+vSvd9/zrR5Vukqz77mMq3VvfPrrSTZKnb7ui0r1/685ap9Mv76xBTZJVt3mu0n2pNC625iGrVbpJssS3O/u2Trztvko3SSYttHKl+9J8x1a6H3lofKWbJPcsvnGlu+e0zvq67ebpXG+SPPxiZ+57o30+UOkmyZOnnF3pDtt49Ur36XGd75EkGTPzM5Xu7mf9udK9c/veevhtxi1e6f7u571162t88txK9461On9/8x3d2799+30HVLoPLdN5Dn5k2F8r3STZcsHOZ/5u6TwHJ8nR811f6Z48ZpVK93uPLFDpJsmFoztjZwe9sEKlu9hGvTHexZfdsNK9/uLe9+r6u32p0n14rs6aiLPv6uxrTJI3l35npfvrEYdWulc933nWSZLFN+98Zix9aue7L0lu2rKzjmquO46qdK//SOf3IknGXfqrSnfOBTprT/7xg849bZK8ftVWle78fzq90k2SE0f/utI9fObHKt1XO8t7kiSrHLJHpXva+Z2/v9UXf0elmyQbbTCm0v3TofdWukmywU6ddS3/PKnz9zfqrc79fZL8YebfK93ffqqzvnXsPL3fi+Mu+2ql+9pjb690k2T0mM44/pT1PlLpHv3yCZVukhz108539sAfSueYndN5pkySn9/Vufe856nFKt0kuWDhzlqPE+bp/M7d+GLv7/qSuzrzOz9be8dK97I7d610k+R9i3bmB+ad0ukmyVof7JxFMGyfH1e6b03cv9JNknvu6twLzP94Z83Lhw7rnIeZJG+9/PVK99PTO/vMkuQ9m1xT6f7xgM59+AqnHF7pJslKb1+p0h3z48649fw/6/1dD9u181yyxBGdMyqS5IIjZ//f9ulf+06ef+Tx/3jd8+jllpi16LcPme3Xs+Ss3rkyhz/eWR9yw5qdNXBnndI7K/gLe61d6S65VGf/X5L85KudOaF9t+2sgXvtgd5n+VorduZX/r7dBZXuPM/0zi9Y+do7Kt1//u2flW6SvP2bnfu/i6/unDMw7uqdKt0kmbT1npXunTt11p9e9uF3V7pJMuGDV1e6p0w6v9JNkvGHXFfp7vryPyrdt338k5Vukry636mV7rGf7Oxz/tEf7qp0k2TEdZ39rF9Z+7ZKN0l+eGLnTN/P/LnzWXT6853zapJkvsmdvb3/XLcz7/3lJZerdJPkjK0/Wun+4hO9+6Jz7jux0n3v5M49xoee7pwjliRHbrp7pfutRZ6sdH96du8M97U36nxfT/vRgZVukty//BGV7rSjO+da3DZHZ94tSV5epLMeabWPfq/S/et9O1S6SXL6TZ3PjMUeObjSTZIVx19e6X5s/Y0q3cuu6e2rOnut91S6pzyxTKW74NM/r3STZP5fds6nnvfO3rnlU35dOnt3bGdt8skvv63STZJF33tBpbvXBp2f8ZPf2LLSTZJ1t+iMqT63/mOVbpI8ee8+le7Pl+2882jcHzvn+SbJXRt3zpG4bNnjKt0T/9pZV54kq+56R6W7xGud57Mk+d6ZnTNRFl2wc4/4yEBv0fO3bujsvV9ny86YwI1X9t6Xevp8G1S6F6y8WaWbJKsOfLfSvXJqZ23P0Vf09v4+Vnq3xllPfaLSvfm0cyrdJJn0ic45jKce1jkbLUneWr/zPrrJr3f2mB3wnfkq3ST54nc7Z7ot9NXO+OQd63TWOSXJjp/pzCkuPf8DlW6SvLDZkZXuvaPXq3T32Lm3Nut9L3XWXa5+4uaV7lZndsbDk+SoEzpjqpc81NlvlyT7/XiZSnfEdZ3z3N4o7ddKkhk/75xR8Z5/dNbT3LJSZ11Ykvzwb5119mP2+E6lmyTvW61z1uaei+5W6S6+ce8Ms3M37ZwddNYz/1PpzrPQuEo3SeZepbNu4h1je2eDXrX5dpXuAguvedusWbPW+U//v7ErrzPrnSfdNNuvZ72LemcFv7Bp5/yeT32qs771iYN6e1guGeg886/7u49Xukny5n6d+fpP/uKqSvdb23bGEpJkk091xh8XnqtzPuASC3b2HyXJX9/Zeb/M9y7er9JNkpe2/VClu9K1ne+2jZe/tdJNktt/0tmP9fEXO+eL3zKyc+5gkhz2ZOd+6q0HT650k2TxBztr+H87tXMWwMmPda43Sa4+qDPfe+Evt6l0f3ZZb5/SYp++uNI99F+9PRi339BZO/u1HTrzkMt9sLMXOUlW3v3Dle6Iv65Z6S6RzhqqJPnWL9evdO/ZpnOWQ5Kse0tnjdbLy8/+d/wkyaJ7d97fmiST5uzMN73v1M748b6bjqt0k+SED3bW2q84Zt9KN0nmP77zvLPTc++vdHf7XW8c46Z3d/ZZ37NvZyz2ynN+UekmyYSZnfZGm55R6SbJ3JduW+mO/33nPeP3fbGzFyxJrvrOpyrdA2/pnEF8y/DOu1CTZPKozj7PPVb+YKWbJJd845hKd97pb1a6i+/cW1N24uKd91Pu+47OuOf7d+mdfbZjOu9G+fY/v13pJsl1Z3TW7n3y7G9VupN+2JlTT5JXt++8A+pL3/ldpTvq6s56ziQ5dLPOeYmnztWZ00uSr1/1x0r3o3/uvH/tXWufVukmyRnLdM7R/MNzMyvdwy75QqWbJKM276wDuPSXvXd273feuyrd3y/bWbe39I69dRxbzddZ93zslzpj7atctm6lmyS3LnJMpbvoib1xxOv+0Rlv3+2szn3RCvP01pQt95vOmM5Kp3bGJ49dpfcZd9Ipv6x0p/2h956mw+5cptL9+xGdsfapz/fO0Tz+uc6a3Pvueb7S/dz1vfcVnz3fSZXuwpeeVukmybkndPb2n3NR51yG939x7ko3Se79QOe5cq/vdvb/Tl2qM9aXJLfu1XmuPPyy91W6SbLNup2x6wf+0dlbvM2VnTNYk+T4Oy6tdG/4n857H15ZqvNMkiQ73LdzpTvlp5Mr3ST5zE864xj3bfU//9W655VHLDjr5/PO/jn7Wb/urEFNkkMXvbvSfWv+Ryrd43fp/T69vtzoSnfk6531PUmy3lmddahvntj523rq0t7+0Afn6YyNfe7Qznnr//OZNSrdJJl37s592u5LdO7fk+Tirx9T6e72yhqV7sSbe+/EWeygzn3P3064vdKddGxn7iZJBvbrrD1Zb+veu5l33bdzD3hL6R2uy7zWO5tky6c77zSae0xn3fPyr3W++5LkrOU78+r3fP6LlW6SvHOlzvkIjz7Q2YMxYf7Oe4eSZMmFOs/Py57VmRe6ZcfOerIkufC8ztz3uev19hP94IzO2fMHX9DZT77N3hdVuklyzNWdszS3XPhfle4Kp/fmC2d97S+V7vvu663jePjZCyrdc5ftnL27wd69d0rM+HJnfd0Z63X2b7/v6513EyXJMT/t7Jm84MFbKt0kufmqznlGR4z8TKW72rDO/HSSfOJ3nXc/PLBGZ75w2WM7Zzwmye/m6JzLfN3EP1e6SXLFTZ25kJNu7cxX7PPt3pqWNd/deYfkmnt09intdGFnz0GSbPl85x1ey23SWUOcJH96YVylu8z+nXHrJ1fozfd+5uHOORXjZnae/U5eoHTufJL3vdI5V/SzH+ut4T901jOV7oQvd87rXvqoztrWJLn0xc64wPxbd87Ln/DTj1S6SfLNJztnrJ53cO+9VQ9d2tmrNPH5ztjnp+7tnfd88U865zL8YsXtK9137tAba9/ir53xol/9pXeP+OQ5neeHzx/XmXf/QXEPxoc/1XlX4Yc37jzv7P1iZwwxSX40qvN+mz8/3zmvNEleeavzXfLzXRapdM95ftFKN0nm+uk3Kt35tzmk0l1ps89Vukny+Tc7vxcH79abd39tSuf54f2Ld9bNXjhX737rxB98ptLdYe/OuaNrbNA7H/TUuzpnpI1bqPP+5iQ5ckxnrvKmI6ZWuitdPa7STZLdrtqi0t1soc69y8CeO1e6STJlwc5+osuP6a2Te3pUZ6/EHyYc/H9c99w7FQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/i8yMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMOI/+q8HBjJ89Fyz/SJefGX+2d78t5UXGFnpTp5zZqU74aHHKt0kGbfoApXurFf+s1+j/8RrI97qhEcuXMk+9sKblW6SvDW187OYZ+S8le7Cyy5X6SZJXnqykl1hj70q3SS54pqrK92/3HRbpbvqa73P5cw5RyU7fZG5K90XX3240k2SR8bMU+kuscIalW6SXHnffZXu3VM7n5/LLrNkpZskz730r0r3zYmvVLovv/x0pZsk880zrtJ95bXnK90kGTYwUOm++foLle7Igd791nzDOvcCq4zsfN4/+PrrlW6STJzyTKW7xKjZ/wz1bwvNNbrSnXPyfJXuzJETK90kmTxjWKW75DobV7pT03mmTJJpc3Y+MwZefK3STZLhL3W+/2a+3rnmNyZ2nkmSZNq0zu/yyzMmV7qzRk2qdP/feOc7anh6z+5zju08u48o3bsMzNn7WcwzuvTvN3NWqbtIpZskA8OmVLrDZnW+r5Nk5OjSz3nsmEp3jpGd5+skmT5jeqU7bHrn836O6XNWukkyY1jnu2RU6TMuSZ4tjTeMGOj8+83fe9zJ1JU3rHTHjOrc1555zE8q3SR594e2q3R32f4jlW6SzDN28Ur3kgvPrnSnz5pQ6SbJSqtsW+mOXfIdlW5e+Genm+T+1ztzoItO73z3JckVd19a6Y4f2bl3mTWr97NYYJ5Rle70Fzvj1nOP7sytJsnDz3d+znc82Pv7W2rxsZXu/f/8R6W78bq7VrpJ8tQTL1a6M1+ZUened2dnnitJhr3yaqW76VcOqXST5LlnO3May7y98706c2LvHuPGP/6p0p35Hy7L+t8aPbnz3ZckM2Z2nncmTXi00k2S5ZffsdIdMb7zeT9loPe7PHJS53N56307n0WzpnbGEJPk6Vc6c80vPPhUpZsk71xrxUp36o2dcfzJb7xR6SbJ9Dc731GP3tu5x3j0wuMq3SQZGOh85r85s/N5kSSvvT77f84T3njuv/5/xy4wKRvsM/vvtT/+6LjZ3vy3A4e/VOkuPOHOSveubTpjV0ny9uVOrnQnbLxYpZsk+z+1dKX7kwnnVLrvmP5gpZskrz3QGf+47eVlK90NL+p8TyTJF7b/eaU7+aaLK90kuXi1zrqIW+brzBce/nrvmX/ULp2x2IuGnVLpLrJt5xkpSY7/5ZmV7vve31lrmCQXv/lQpXvFywdUuj/c95pKN0lOKy0xeOOwzpzsy6MfqHST5PIFOmvVZqy2VqWbJO945uZKd+lxnfGP1yb8T6WbJPMu/IVKd65nOt+ruxzdG8tb4bxVK91V/tj7LLpj7KaV7vIL/qXSfec8ve/V+R6/tdL90rsOrHTnPKQ3ljD57M69wEcf+mulmySXPfu+Sne173b2M9wzfpVKN0k+8dgZle7XpnTGeL9xQG//6NnHdL7/Tll/+0o3STZ7srOm7MBNL6p0j5j8+Uo3SX5//Xcr3X++7b2V7iUbdtZQJcnwX3Xu8ecdt36lmyRjLu88Y49cYmKl+8lles/BS/x+hUr39p063X1e2LLSTZIbPtFZu/D4V86tdJPk3O8Mr3RHf2SLSnepX36j0k2Std/5/Ur39e90nqOOOuCblW6SrP/ElyrdbVY6ttJNkuse3abSvfe2v1e6O7yt83yWJPnz3ZXs0fN05kpemvm2SjdJvn9AZ95hp9+uUekmyV9/fV2le93qnTnQTY7tjUPtvNuHK92Hpn6t0l1k+JqVbpLMO7qzH+W85ztriJNkh9Le4tvHP1HpfmbEVyvdJHlmh87Y2fZX7lvp3nbH5ZVuknxswc5a0ekf2qjSTZKrs0Gle/jUznqMJ3pHxORj13fGrv95+8uV7sBLne/UJJlnk87Y9fJf6Yx7JskbFx1V6a6xcmcc6qwvdtZ5JMnOoztn3L3wiVsq3ace+WClmyTvWfPISveEr3fGBJLk1W9PrHTfO+uESnf9O3pnEdz4Qud37nef7owVLbJ8Zww/SX6+0xGV7klr9facv7TW32Z7c/rM/+47ddSbA1n6ttl/VsSwKXvP9ua/3fqLzt7QNz57YaU78czOuFWSXHTN7ZXud07pnR9y1LKd+aZdH/hspXvRKZ3viCTZ+8jOuqHbTrii0r3ypa0q3STZ97Od8Zpf/fX4SjdJPrtJZ3/aj7/YGa/ZdfXOWQBJsui/Omtmj17i15XuIqf0xvHuvP3wSnfWTy6odJPk0AU7n3Mzllyp0t1nXO9z+bpjn610t16k8/k538d/W+kmyUp/6pwLtFhnCjJJcveOnfU9d51fWneyQ+8dCo9u1dlbv/Veu1S63xvfOS8jSX62e2eu6cxjxle6SfKlOTrrLhf9/nqV7stfOazSTZJb5u2ce33WmjtVul98trMWMEnGXParSnej23trqJ5duLNOdNXDO/Nu6yxxWqWbJHMf8tFKd5Mb31XpzrfWTZVuknx4iZ0r3a3v/nqlmyRPndCZB1ll3s7z6np/Oq/STZLDv/6bSvenl3Y+75e/fLdKN0kOfrSz33Xx+9eodJPkpUUeq3R/N+HaSne3d3Y+O5PkgAc7+xqv/+hdle5RB61e6SbJY9/onAv0qd/9vtJNkuVW77wDasznO7/LB57UGbdOkjEXddZmnT++c0D1cZf2zj6b8asvV7qHrPqBSjdJ8tE7KtnHJr+n0n3XuM69Z5JMeGKTSnf+BTo/i6t/85VKN0lOfX2/Sve6E3pnit43rrPfddwDP6x0Fzjwjko3SRb8UGdt3S5Ldeb9Tl20d47fn/fs7Et9/NgLKt0kWfLlfSrdcdd03t383G6dsaIked+Znd/l3dfuzFXusm5vbd1c7+jcLx+9ae/shK+e/7tK941bOvMDq6z+qUo3SR7+Uef+5a5dOutPt/j0UpVukmy9bWcObd8jOudpJ8mVr3SehV874nOV7iMP7l7pJskpt3V+zqvt1lnn8ee5Lqt0k2T8IwdVuu9ZsjfXNe/yj1S6y+7deS/0NUv3zpH4w2tXV7rve+6CSvetuf9Y6SbJIq909nUsscn+lW6SLPfOzpr1/9bCD7+ST+12/mzvzlqjd77qwKPrVLoTVu/sJd95gd4z42Y3ds642mT1H1S6SbLJkZ+pdLfer7P25DebdMYSkuTK+zvt/V8+tdL9yIjTKt0k+eaJnbGElY9au9JNkmUP7uzt/frmnbnTMb/pnQm79Dc7Z8xdfNG6le7DI6ZVuknyuzs/Xel+Y43eHNmzR3TWaJ292rcr3fN/1Rujv3vdzn3aZjd29mYf+FpnPVmSPDuts7fwjFm9M0W3vbIzzvvV46ZWukde3fkeSZItfvPNSnfn92xe6Y47/+OVbpL8a5nOz3ny3r1F/Ltc2Hk3yn5/6KxvffgXvWf+Xx3950r34GU742IP/6n37DDqB7P/uT1Jjtmud67M2w/s/P3N+4fOHNntt/6y0k2SPb/fWXt53o8698vPv9xZW54kd73SmSO7fM/ee7Z2OvGxSvevkzr3GAc+2tuzPOWDnfneMad35ptW+XjnvVJJct4tnXvxlQ7o/S6fdlznfRLL7NF5Rnv6vt775z/7085n0d9/2XkX1ouX9OaR/7HOzpXuGn/q7JNIksOu79wL3PC1znzv9Pt67zza4Pud97nseE3nvLbHH/9kpZskC50ws9Ldfq7OuQxJcternX3W+63eebfGuif33gV50f88Xume9b7OPPIGT/TmHU5ZqDO+tfffe3vOX9i5swdx8g6dd/TuNrXzjvEkue/Lnc+idY7qrJV59u47Kt0kmWv1zn7MLT/ceXZIkl2+1fn7+/GXO+9TeuqZ3hk/OaLzPvcjxnbeMfnDN3u/Fw+8rbOm+guTeufjHjbvHpXukXd0noN3v6t3vvHSK3bWzT5yaGdv3Non9s5UPHDlxyrdx66/utJNknkmdt5t8/lnOud4rvGuzvqtJNngzs56qKUX6zwHbzDQe45a/60lKt1Tr+jtRxl/xmKV7pYf6ZypuOwenXUeSfLDr3fWvcy6fudKd8VneuNbl5eWJ2+6wxc74STbrHNapXvff/n/PTP3zHxr09l/JsDCP35stjf/7eAVO+/ROu9jnTnOV77Z29Pz3lGde8t1t7iq0k2SF2/pjG2++PfOvOwhO3b2QybJhq/8qNJ9+/mdZ5knPjmu0k2SM77WeSfc2vN9r9JNkrsXX6bSvfy2zrsXdvvUapVukvxxgZ9VukdMeXelO+VPnetNkhdO6KwvP/H8zpkZSXLsoc9Vugud2hnjXWDVlSvdJNl578cq3dcu7LxbdMzpvXMNP7JH5x5+v606z6JJMmb1zr796We+VOmOWLjzrpEk+cqfP1Tpfm77zjqcKTvMV+kmybXPd86WOXDHzrsqkuSufTtrcudd4Z5K92+X9NaKLjC6c7bTz+/onJ914Ud7v8t3b31KpbtFaW9HkjyzYOd9tjOuO7rS3XvjzvnwSXLjb35a6R72kc58/ZuX9N6bM/+Dneedoz+7a6WbJP+at7O/Y7W9O/fhf/n1XJVukiyxy8GV7hXPdsboV/xU52ecJLd+vPOuwCff6L2DbbkRnXv87RfdvNK9bfs5Kt0kWeKQzpmzm/+qczbXWm929psnyW+ufHule8XOvXNRtvlK5yXYx1zf+bu+/7jeGbl7Ldy5x/jDLZ3v1YU/1Ft3ueJ8nfGiX9/VO3Pv9r+9v9Ld7T2dPRhLH7RIpZsk6+31i0r3x/t15h2On9Vb07Ls8Z+pdLd9d+/fb/ftT6503zazM9Z+1zcPqHST5PuLddYk/Xq1QyvdSfd0/kaS5KJNj6l0fztv750S+36+M+/+zC6lMx5f6Y0v/+HszvkJ4z/eOTvoC3MOVLpJMs/inTMDdlrr5ko3SQaW6bwfZfknL690Nxp1b6WbJG+c1Flrf8BenXXP2+7T+1m8Of5jle4xn9yz0k2Spw8/ptLd+6wLKt3JR/TG5I56q3PGyBmHdPbIf/rl3p7JxWZ0xvHfOrAz75AkCy7emV+ddXFn38hBN21W6SbJAk93zpV6a+tvVrrXbvTfrsj9//fgxZ31yeeMP6fSTZJpp3feD/aH/48jfnp3eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5GBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAgP+HvfsK1qwq2Hb99OpEdxOanKPkHAUEkZwRzAhIMIsiggEDKigqGIiCoARBPgUFBJQoSUAlZwTJOYduYufeB7s8+3ftT6ufWrX+uq5jvJ21+n3fOeeYY4wJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDBs5syZ/+v/eNkll575k298d5YfxMuvT5vlzX8bv+C8le6wvFHpPvnirZVukrz60MuV7nJLLlnpJslsiyxd6b458e1Kd7bRnb9xkkyeMqXSvfu+hyrduedYoNJNkpEjOp+LJRddsNJNkusuOrfSfeTGhyvddcatWekmyb2v3VvpzrfM7JXuE2+MqnSTZLl1l69077r/lko3SYYtuHalO/PNVyvdtzJQ6SbJW6/cXemOnGeNSnf65Kcq3SR58tFOe/qkzvk6ScbP2fnNmPjGi5XuqGHjKt0kGTWjcy0+5e23Kt13jl6q0k2SrebqXNcut9B8lW6SLDBq7kp3xpRhle46a+9U6SbJjNk7f+fJoydVulOffaHSTZI5RnQ+Fy88emelmyTDJr1S6b711myV7otvd65dkuStYY9XumNHLVzpTp3Z+Y4kybiZ4yvdmaMnVLpJMmr0jEp3zLBFK90RM3vnqBEzOmNnAyM64yMzRvXu/WYfmKvSHTF753ydJKPGLFbpTh09sdId9vLwSjdJxi45T6X7xktPVrozp3XudZJk+LDOPfbDj3fGJ5Nk5ugnKt0pAytWuq9Of6bSTZI7l+6coxZeZs5K97mpnd/7JPnHrX+qdJ97fnKlmyR7f/Hrle5jD9xc6d55zRWVbpKssNRCle6SK2xT6Q4M3F/pJsnc0zvnqHtfq2STJA/eeG2le/fT/6p05xvduadMknlnG13pHvLFHSvdN7NCpZskL01+sNI99bfXVbpJssLSnfPUmquuV+mOHzu+0k2Sc08/u9Ld76AjKt0//7LzzDZJXnig89x2g49/vNJNkpfGTqh053yg0/3r+X+vdJNkxrTOGNcr0ztzSCaNmlrpJsm0SZ3fuD1326HSTZI1N9ut0p0487lK9+10xvCTZMy8nfG+Sa93rrcG5u3NORszrPNZPvqHx1e6SfL8yxMq3YNW37bSfeKuGyrdJBn3Zme8duJ/MFf2PzGp+Nxo6pTOvd/Egd7N3ytvz/rfzwtfezgvTXv7vxoUX36RpWce9+lDZvERJee+8dIsb/7bSwd35jFu+6POGOFDo56udJNk+Nyd+VlbLd159pYkc//xo5XuxSv/pNJd+rlVK90keWXbCyrdS67szE9e+qklKt0kWWm5zr3drqt35hckyScu+Gmlu/CvOr9Fc7y/c1+QJBf8dtavn0mShbbpnI+Xv63zrDdJHtzkA5Xu9Bs7z5GTZMI3O/OeJ83ctdIdf+XulW6SzPWbzlzRCft15rc+MFfvN27qjM4c/lVv640/rvrsapXuPcvMUen+/Q+duTJJ8sPdO3MMPvLrSjZ7PTW+E05y4V6d36Lbl+/d7yz2SmdO2XPDx1a662+zWaWbJP8YtUqlu9PqnbWpv/9sZw5Okiz8ic46wZvPG1PpJsk+e3XuV4/8Vee+5MMTe2ur7vvgtyrdZc84stK9ed3LKt0keWnhznz4T97TG0t/fOVlK90n3/HOSneTqzvrUpPk6/d01kCdv+Klle6JC3TmMCbJNrO/u9KdfHDv32/nr3bGoR5cc5NKd6H7e2urfj6s81zhlOWPrXRPu3OZSjdJXlrtH5XuA8duXukmyWab/bnSvXKVzprl+y+dUOkmyclbdJ6VnLFFZ+zluBs/UekmyfAZa1a6953S2+Nn80/9sNIdWG6dSvdXxz5Q6SbJZxe5uNKd8NPDK92Vr/5apZskL/35C5XuxDd/VukmyVd36lxjrPbs0ZXuQs+sXOkmyY43dOZUz/uT1SvddVdfpNJNktM+0bnGeG6d3tq4udf+W6W72C2HVrq/7AwVJUned2VnTufnru/8+31yxPcr3STZ8LOnV7ov3dZb27jb0p3r5W8+1plfN9c/z690k2TB33TmdB79njsq3S9/rHeO2uj4zlzDq36/ZaWbJHvM0xm7Xuupzr3fUyv31nlOnrszDrXejb+tdP+yUm8cY/fHO3ulznN273r5mUU6+4K9PEfnd/mHY/5Y6SbJy8d21krMPbozpjrHpN66/tfm+Eqlu84zS1W6SXLuhLVmefOyzTfLy7ff/h/Pe15xrZVmnvLXWX+ddtufentS7vvV8yrdI9/sXD8s/L3OvghJ8sx1nXGEj0/cotJNkvd+/NlKd8x1nbkWH/jQJZVukoxZtbM2+3frdtY533XgRpVuklz42L6V7psr9cYeJ2/YmROx4pc6z5C3Gd/bX/Xls0+udC8c0bneuWX+znVwkvzs+kcr3d1/8M9KN0k++JPOuuGrTv51pbvO5zrPQJJkv6c7+/esf2xnbvJzV3yp0k2S+TfpzCebecLPK90k2WnJUyvdz3+wM1dmqXn2qXST5Jo1T6l03/vMbZXuCdcfXekmydeen1Dpjlh2uUo3SU74RWeu4QHbrFTp7rnClZVukuy+4Dcq3XdP/Uul+6/v99ZVLXBnZ/+J7xz5/ko3SXaed7tO+Hed8d295+/d7xz5rs4awfM373yvf713bx30jXN0zlELP9hbf3HQZp19gcZevUul+6Ufddb7JMm4lTp7Ziy7yCOV7nfe8a5KN0kW/kdnPtmW7/lQpZskp17R+S26ecHO/IJP39h759idn+nsw7jwP++qdL93+omVbpJsO/DtSnfKsp3PW5LsveFjle4/P9J5b8f+x/yu0k2SP7406581Jclvnu3cu1809r2VbpI8uFZnvfnoO3rzTq5fa8NK9ztPTah07zy6M2cvSZY5f+NKd8fjO/PJvjPzqEo3Sb58X2d/1Tv37oxbJ8mBRyxe6U7/+4GV7j6n3lfpJsmGP+7s4b7RdzrPVpeb3tn3Ikke+FlnH5fvrvHLSjdJfvJ6Z3/qGdt31vz8tPNoLknynfk78/YWv/s9le7TG59f6SbJpWM6+wat8K1PV7pJstdvO3tK7fStzj4Su6/XmfOSJKcu0Nmj85y19qp0t/za+yrdJNl6ykmV7srf7z0reWijzj3alZffU+mucHdvPsYvTu2s5fvDtM6zynsO7937bTzQ2d9n9dG9eb5r/KHz2bjvgs4+EofP1pvnu9qBnbHP89YcWen+/dadK90k+eCIzv7iv/x273f5F6M78zF2/9Ayt86cOXPd//R/N3651WZufOSsv474wCOd71aSzLj09kp3ofs634Gfjbq80k2Sz6/dGfN+8NjOc8gkOeu7nWcWmz/WOU8st/PRlW6S/H3Dzprhf67c2Tf5hUt7Y0HXfvbHle7wk/eudJPkHyvsUumeN88Gle6PT+3NAf/EYcdVur/etfO84rQXD6l0k+Tqgc5Y0HJ/7O2Fs8d+nXfbP/6ezm/GOjd31tUnyU7Xdq5b57jpV5XuRu/uvb/8yh913qFwzzs6azuSZI6ff6/Sfc9i36l0x6/Zex/jn/fatNKdOryzZuucX3S+I0ly/b6fqXS3/lBnDlyS3LJzZ93PZm/tWenueWBvfuTZ7+7MI/70Zb+udPc7vvf+6xUu6OxrseFZnblOSfKvYz5S6Y7b7+hK92sPnFbpJskOq3XWE817UWdv+CW3ebLSTZJpK3TWj249ubP3WZI8vExnH+m5tu/sj/vYM4dUukky897O/uLT/94Zx7hnoemVbpJscETnWeS2q/Wuiz52X2eOyLbjO9eIR3zrqko3SfZ8u7O2+Ntb7VHpXvbRZyrdJDl6rV9Xus9+tLPvdZIsvHRn7OyfS3fev3bbcr+odJPkqdPOqXS3Wbiz99mzz69X6SbJSft05l0utlnnb5wknz/rhEr3+Ls6157XXLFNpZskW69wQKX7gQs711ufuPaOSjdJfrRX5z7q7NFXVLpJ8th//HT6f+dL53T2aFrzgM6eeEmy3aadd8btvnLnGnGp7TvvNE2SZ5bqzLcY8bH5K90kuWxcZ7z9p6vtX+muMfazlW6SvD7qpkr3moM6a5af/Uhnn/wk2fON8ZXu3Zv21une+u3OOzfn+Hpn7Gxgvs7zqCR54JCHK93b5u2MFd21RefZQJJsOqrz73fyN3t7SZxZ2mNy66c7YzoXHtjb7+ipvTvziBd+4cZK98RffK7STZKx53Q+cw+c27t3v/19V1e6l8zo/N5/7eU/VbpJct87J1S6U87orAufXNqDNUk+WXpf+I0brlDpJsmzH+u8D+Tow2/8r+Y9z7bKijOXPHvW3ytttPyas7z5b/P9uTOuedhKS1W6s3+wty/lx+e6qNI9cKFDKt0kWfPszjOWxW/qjIvNeV1nPWSS/OHSzrzna77TuRfd+2+dv3GS7Ln4wpXuChv33qkyT+ndNcf9cESle8pfetcmJ72zsx5lwXWfrnSP/NYqlW6SbDG1sz70g1/s7ff8tVtXq3R/+URn7snnL+3N4T91zc4c8I/9ofPeqG9P7/zeJ8nlS3XeQThq0d5zhcnzd57rXXz565XuO77emR+SJOv8tfMehR8f05nfOufZW1e6SbL/QxdWunef1VvrfM4bnfnJKwzvjJn+6Au9tc73ntFZzzDj2s78gt3HdN5HlSTLHdF5T/w5R/Wecc73od0q3T23uLvSXeLUznV4kuxxYmfdz8nrjK90V/hB57czSW5YrHOPfduSvXlUC+y0aqW74g86e4h89eed80iSTF+xM2/92Us648ejR3f2EkuSuaZ0nt8cuvXRlW6SLPDRzv6ts8/VWZtz4IRdKt0kWeqCzjnq2V068y6P/2Nn78gk+Vvnlc/Z6Qud83WSPHf6f/zay/+Vl3fo/BYdvWLv3YrPnXxYpfu58zvzC7Y/q7NmK0n+eW3nmD8+sTcO9bNtO+OIr21xR6V7/JfXr3STZNtvvlTpDj/n+Ur3Lxd/uNJNknnfu1Slu9PneuvBRl/e+Z2bOrHzPtYXf9Sb0/Ln6Z1xgX9u2XnWNXnPzpqtJFlp3c48jq988WOVbpJcudCESvfy7TrvdvvwHQtWuklywVmdd/Kc+L3OM41nf7pfpZskJ0zu3GNP/05vfut+F3bud+7arbMP1rPDXqx0k+TqezrjAnO8r7On/U673l/pJsld7z6/0p35SOe9R0ly8vc679i4boPO88RT5i8tBkuy5Y4HV7o///Qule7Bn+99Lg75xBmV7qeW7czfSpJz9u5cc201d2dP9Nsf680N23f+zvs1PpXPV7pLr/vVSjdJtruhM1f7wkN6+x29+7TfVLrbPbr4/3Hec+dpBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2ZgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGghH/0X89MDMD42bO8oMYOXzOWd78tzEjple6l/79skp31PC5Kt0kWWj+/+yf+39rxIzev9+Lzz5S6S6/+saV7v033VzpJslSy7yn0n1jyt8q3d+dc2WlmySLLLR4pbv6wvNXuknyzK0PVborjHhHpTt92NOVbpK8Pt/USvfpyW9Vukutuk6lmyT3v/xqpfvqjN5n+eUH/17prrnGepXuc0/8s9JNktHjl6t0X370xkr3rbemVLpJMunNNyvdUaMHKt0kmTpiWKU7dq4lKt3pb71c6SbJa2+8VumOGF7JZqGRvevlySMnV7ovvfR2pZskm2+9W6U7YsQ8le60mZ3fiySZ+foble6Itzvdya++UukmycQJj1a609/u3F8nyZszOn+PCTM6578x40dXukky7a3xle6IkZ3v32wz5610k2TsmM44xuiBRSrdJBk7YmylO2L0tEp36sxZP873b6MGOufsSZMq2YyZbbZOOMmIMRMq3ZGzLV3p/r/xzrX4qNk744gjx89e6SbJtOder3SnvNT5jZs08oVKN0mmT+6cV4eN6lxvJcnIaWtVutPSGdMZObN3jTHXvZ0xuZlbrFHp3njaMZVukrw6rHO+Xnjp3rOSI773zUr34/t8pNJdZ9sdKt0k+edfrq50B+a+odJddKHO/XWSPPbak5XuPAPjK90k2WLbd1W6Cz84ptJdYNS4SjdJHp3QucafZ+XO88SHrul8R5JkruU7zwfes3ZvHOOF5zrPHl55+eFKd+GxW1e6STKtdB88akRnrHbrXT5e6SbJiwt3rrde+sNjlW6SvHfL7SvdM64/otJdeHTx+cDoUZXunNM656jp6XxHkuSNUTMq3QtOv6nSTZLH7+ycVz/2s4Mq3ade74zhJ8nIEZ1x4JlzL1Xpzr9ob3z50vM718tvD3R+75Nku41XrHQX2XndSnf4d3vjy8+O6FxvLfBW5xpx6oxlKt0kGZijM3b96ITSYHuSOeddaJY3R7/1xH/9vx0+x/TMuemsnxfx5HOduRZJsue9c1S6F6/yfKX7jmPPrXSTZOHtO/MY//r3zlyLJDlny69VuqfOu3Ole+8rvfGPxebqjGtOf73z73fdcZ1zcZKc8/tLK93bftP5vUiS21+Yu9I98MOd+5k//uv0SjdJjvj4+pXuCrd8qNLd8wO9c9Rsj3eu4e/d978/1///WfCIKyrdTT+6YKX7/Tt7v0XnLdt5xnLGUp1rgUuuWr3STZLDbunMHXrgpHdWuklyzJqd8Y81xz1V6c6zRW89w4R7O+eSTWbrrFNaYvFzKt0k+fN8nXPUPY/tWukmyQ5bbFPpjhvdud95eKHHK90kGbVu5zN30s86n4sN99yl0k2SZ3/9q0r3iMXvqnSTZKEjt6t0d1ux81m+41O936I5LppQ6f7us89Uul88rXPuS5LFp3Su5Xa87L2VbpIste+Fle6CN/6r0n1l89JCpSSHzN35zO07qnNde/9qvTHe0y4cWenu8f3O/VmS3D7sokp37is6n+VrNujMoUqSiWNPqXQfv6fzjOWpjTtr75Nk3DP3V7rD9+kd8xlPb1Lpzve7zlranWfuU+kmyfw3XVfpXvS1zj3lmAt798GjnvxDpTthg7Ur3ST59kOfrHRP/Mtqle6uq69c6SbJ5Js611v3fbFz7bLUBidXukny4nyddfKLTuz9Lj/wUOdabvOFOnPKVl1qi0o3Sc5bcNVK9+fzfKzSfevsr1a6STJ+56sq3Uf+cWylmyQbLflApXvDJp05Saec31tnduSL+1W6r57w00r3rCf+XOkmyc2LdO6xJz3Qmx95+EqdOQgHTTyk0j33+d5eEhueM77SvepdS1a6C33rxUo3SS7a4gOV7rtv7FxvJcnSq3bmXj77lc9VugNv9L7Xj47qjNf+bvyple46n/yfSjdJfv/Vzt55x6zf2+NnnzMPq3Tfc23nuvaEX3TGipLkD4t15vouNqKz19+Tl/fGJ7d432cq3Qves2mlmyTvPHbW73V73eT/7vdtxOtjM+8Vs35vhHfseOYsb/7bvr/q/Jv/z9I/qXQPf+N9lW6SjLuz8xzkT5/s7Qn7xSOPq3RHXnRPpbvZj79U6SbJ0386tNI95POdMZV3bdRZi5wkS3yusz/1Bct0xo2T5NDbO/u/LHLtXyrdiSf2fos+uMbCle69O/y+0n1q3OWVbpKcN72z/9ISW+5e6SbJiEN2rHSvf2xipTv+1d9Wuklyy0Wd/b6+v2Pnd/nV5z9a6SbJ2gd8pdK9fu7OftpJ8sOBznqGOzb8bKW7xoF7VLpJssjA2ZXuQWM76zruPKn3uXjPSp37/VGdaclJkhWu7jwrvPq9nfGa7WfeUekmyd6H7l3prvm9zpjYZz7/i0o3SZ7+2YOV7jP7dv4WSfL65Z13mKxxcmccfbNbevO/n92vs5bovXt29vGb94/vrnST5OFl/1jpbrF2b13VXd/vnEsmf3ClSveNn3fWHibJo1f+ptLdeP+tKt0HPtP7XCz55mmV7iee/lKlmyQrn71/pbv2yE0r3Qdv7M1n2fG1r1e6v3tqz0r3qtN2qXST5OZbOvcODz5+SaWbJPsf0DlP/WLbzlj7pPf21uXsf/tOle6Z555f6e5wcO9GaoFRJ1W6cxzRe+fYMl/vtJ/4YOc9dydu1plzmSSLLPmPSvfJkzrXnjsOu77STZL5SnNmH3qj91t0+c8714irn92Z97X9/QtUukmy8gKdNQejv/y7Sner9Xvf64NX6Ozvf9he21a6SXLRzM737+kHO9cY/7PPzyvdJLnpiAMq3XOu7szH+PC+nev7JPnQlp35329e2Jsnev7lnXejfPRXR1W6pxXfa3r8cp25rY9d8aNK97WVemvMfvjbzruJtv1w7xn2V97f2ZN58TM7e60sdlBnz7wkWem5zvOdL9z74Up3n+06ay+S5O29OvOHf/2lzrs1kuRzB95Z6d6yWGddzhd+0xuTe+Dgzj6pG1zWWZd69Y879zpJsvyxv650t7ygty7u2kPXrLX/G8u+cV8u/MesfwZw0OGdz2mSHHfFBZXuXd/rrC18fNp8lW6SfGSzKyvdm27pvRPnupOOrHRX+1tnrvaj6dx/Jckv1+usU3/XzM9XusvM19v77J4Nv1zpzr117x2EX/7yRpXuZ1fs3H+d/vb4SjdJLn2os9f6yQvdWOm+9EJnznqSfPtvnbU5k8Z25sMnybhjSutkF+rMdXpoj86+CEny45mdd/q9/PvOnM6TR/fek7vPlp2x9LsHOvvAJcmZx21c6W65Q+faZZ0Xe3u4r7ZT57x6we+WqnRXmd7b0/DAKZ1z1IWf7a353vKpzrrhz63amQf35T3urXST5APzdvaf2Gm+zp4LK6/QG9dcZOPzK92T/tWZT50kP92rc149+JjOmOnaN/bWVm1wVmeccPjHO+MYq9xXySZJvvTsIZXuWXtcXOkmyTyrdfYc+uMOnf0n5v9V513SSfL+Gzvrab+7ZOez/NXDO/O+kmTdH3TeoXzD6p395ZJk/gs735O3v9bZO3Kh+Tvv1U6SRa/ujF0vs0bnfnWpb/TW9S96/JqV7rELrlHpJsklb3X28jvhI531RFsdfHOlmyQ/O7UzprPFfZ1n33/6ffE3bu3O/LqjHug9H1j1gs556qg5O3tUzHfcCZVukvxjh+Mr3SNG/rLS3e/DnWcwSbLyjM613Jff6uxJlCQfvPK5SnerUzpr2L4w/FOVbpIs+LHOvnhzL9xZi/ncBb3nwedf1Xn//DufXKHSTZI7djmi0r1o+Hcq3Ydf6+yVmCTTPtC5xv/hikdXur/+SOddLkny2R901izfN6oztzxJDn2+86zkgHH7Vrprzt8bk/vOKrdVuid/ozOHcbnDevcOM27srBP8y+ydOeBJcty7Os9KTvnRhpXu1iN774mZskFnru9Wp3XeC3bDCctUuklyxuydOYPnHPz9SjdJHhnXWYP4p5U7934fu+PgSjdJjlywM6b6xas7a+MevqRzHZck+2zWuX558aDOdyRJDryg827FozPHf/W/W+HlgVx+2uyz+GiS7b/e2bs1SdYbv1ml+5t3/KzSPXRc73nTHmd/r9Ld4k+9uQsPj+rMw7nvN+dVune+2nlnaZI8/XxnHe7hEzvvkv7brr31DFvP/q1K95bne2uypk7pjKU/dHznt2iHZSvZJMn9q3Tmfi1xV+dZyIbf743R/+GVhSrdtb66aaWbJNdNP6TSXf+Zzjlq1Muz/rrl3y44u7Ov/WEnd/aC23fx3v51n3iyMw/1G3N11nYkyQtbdp5RLzmy83t/35yd8bYkufTozr5D43btfK8nPNPZ1ylJvndsZ47IVdt33iWdJPt9srNua8UnOnvu/frqcZVukhx0XGf845WjOte1K87d2UczSc7+9Bcr3U3n6k1wfenSzjt5Pn97Z0/0UTv27v3u3KgzD27+8XdUuufP3RvXPG3+czvdsT+odJNk/xc679i46IDOHsd/+3RnDnGSHL/fFyrdxZ+/rNK9bf3nK90keeb+6ZXuIx/o7acy8bnOOP3Ej3Xeu/KP7Tv310ny0y/N+vcxJskTP+g8x9rpG71np2NHbl7pznFx53udJB+as/MemiP/0Zm3d2Y6a2mT5PR9O2v7F/xaZx7cbkf17qPWvrqzBnGZpTpzWpJk7cOvqnQf3qSzz9XcG3Te5Z4kW/2oM99pwcM6Y0VrLNeZp50kt13dWb99wEBnH+Ik2e6Szp6l3zqlcx/8+yd66xlOWvxXle7bL3fOq+ecs0mlmySnXtfZV3uHk1apdJNk6/M6z/S/+KnOXrb3vNiZ25okL+y1ZqV77nc741A773x1pZskI+b6dKV7y7c69yRJcuTtnf0vNh3Z2Yt4mxN61xhfXLtzLXDB3p09Vn95XOcdvUly6w87a1MX+UFvTG6X1TrzUJfY/IeV7gOfeazSTZKfbbBBpXvhOp17tAPv7YwhJsmxv/9upfvJ5zvjI0myws87c8N+P64zXvTmvYtWukly7m/OqnT337XzDrbxr/d+4/ZepDPvZckVeufVEZ8vvY/8/+NV5AOd/zcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+L/LwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwYj/5D+e+MYbuei662f5Qayy2JqzvPlvtz1/V6U7dua4SvfpJ/9W6SbJ3MttUOne+PzDlW6SrLTKvJXuFRf+qtJ99plplW6SjBv3WqW75pLvrHRnrr9ApZskZ11weaU77N7XK90kWSGzV7rzzjWm0n107NuVbpLc+cQLle7YReavdF+++8pKN0lWWGnNSnfJVZaudJNkoTcXrnRffPaxSnfShN5n+Y3X76t0pw7vnEtGjx5b6SbJuHnnq3TfnvBKpZsk096eUOm+9dbMSndgWu8cNW3KlEp38bFzVrrD8malmyR7r7lfpTvnvItUukkyeq7ZKt1JrzxW6WZ677do8sRnO91X3qp0p73R+417a/rLle6b00ZWukkyZXTn7zxz5qRK981JwyvdJBk7anqlO9uwzr3DHGM61wFJMmXGU5XumOnvqHSTZGB0599vSuejnBFjOtcuSTL5zRmV7tj5Op/lETNGV7pJMnzM4pXujLl6xzzprc4116jS9fLMGb3r5ceeerLSHT975zpu8qTeffCwGZ1rgelvLljpJsmYuTs/oHOO74xbLzypcx+VJKucsnOl+48/dcbO3rf7ZyrdJDnnvCMq3bnHdMbNkmT0HJ37nTNO+k2lu/xyq1S6SbLYCotWui8+1Ln2HPZW73d5jgXmrnTnn6dzTZskeb3TvvrqByvdnT+wSaWbJLO/9Wile8crneutBVfdqNJNklFzdO4r33rr3Eo3SeZdbMlKd+aMZyrdqaMmVLpJMmHyxEr30QevqnRHzly+0k2SBV5eu9IdsUlv7OWuSy+odMe93hnrW3C2gUo3SZ4pjWNkZmdMfPrM3ljtHKM7f4u5Rs9V6SbJ84/cU+k+85e/Vrrv2KF3jfHiK29UunMv0BkTf+qBznkkSS7/6y8r3S02XK3STZKNN3pPJ/x2Z0x14fV798FvXtK5Xh410Pn9fH2gNIifZOqk5yrdcQO9eY5T3pz1579hM/7764CXXn0tp/5h1s833H6+TWd5899Ou/nxSvfSV/5V6X56187YVZLMsczBle5KZ/SekX37jc414KVPds7zr4y7v9JNks+vuX6lu/FVn610//XpqZVukvz+wQsr3RuvfrrSTZJnR3fmOx30uc5zyG037IyrJMmhD3TGNcev35kPv94ly1S6SfKLfe6tdBc6q3dtMsfqm1e6T992ZqW77Xt+XukmydJ3XFrpzljpk5Xubqv17r/ePeW6SvftBTrXcUmy1cOrVrp/GNcZy/vy8Mcq3SR5x5udOfw/n62zZmvyQitWukmy6Wq/rXRPPao3lvfd01eudO/drHMu+cD3/1HpJsmdM2f9Gt0kGfZCZ+7JQveeVukmyV4Xn1Hp3r3ptpVuklw9/yWV7sS/dsaC7l+2t87zgLs+Uuk+v2VnvGH4RzvrwpNk0jOd5xV37t57XnjDWndUuk9d3Rkz3f623tqchTZ8d6X7wLVPVLqrT9uj0k2SzR58tdL91Mo/qXSTZPrmnfPqcrO/VOnOPP0HlW6SLPXg5Er33vdtV+lu9GZnDmOS3PLa3pXuGo+tUekmycC0OyvdK9/6cKW7wuHXVLpJ8uz6nTmd7/hZ5z7qT5euU+kmyRPnbF/pbnD5QZVuktz/x84YyTFndK7lnj2mMzc5Sd63Ume+00sPdtYG3Db2pko3Sf619Xcr3feNLT4feGmOSnfmXZ3PxRyjPl/pJsmz079V6T66wVaV7tUr9uaKfvTXx1e6t291RaWbJIsd0LnH3uVdne4Pt+jsfZEka/72XZXug3+4o9KdvllvLfTzT3bOq7f+onN/liSfXKczv/XyFTv7VS37rt6+GsMe/GKle/+rv6h0H16+97s85rOdZ10Lv6ezfjRJVhv1QKV71xW/q3QfnWuFSjdJ1liv83ce9lLnucPTv++t6//ptzerdD+9/qcq3SRZ/ju3V7qrT+rMbRg79eOVbpIMn3FOpTtjdGfOy+SNPlfpJsmLwzvz2dZbqjfn87kVZv1c+5mzDfuv/nfTRzybifMdNouPJrnv3s7c/CT5/ead64dhf/tOpXvfJkdXukmyxkc7axW2uKC3D+qfPll6pvdW5/rv+tv+WOkmyZ1bd+aznLD9NpXuPif0zmvPP9K5Xt3tu2tVukly65iTK925ju/cL/54q846ryT5c2k+0oV7rFfpHvbxzrOxJNnoys447OGzd+YPJ8kJEzvz9o58uDOmue0vO79xSXLWaZ159pf+eNNK9xdbdeYMJckph/y50t1m5wmVbpJ86Xuda4HvbNlZ83PzqN6z3jXu68wvuPnmr1S63/pRbx+4vVftzJV518TOtUuSPH9+5znI8Xd/rdL9yLc78yGSZKc9JlS6X5+7M2/hp2f9odJNkvHbd9Y1HvrQNZVuklxx8aGV7vf+2FmvPHtpLmeS/Gnuzm/GQit05rbOte0plW6SXD2ys67q9i9/qdJNkt1um/XjZkmy7TpHVbojD+it/X1i9dsq3d027ex38qNxnfmnSbLro529B7+17kmVbpIcclHnnQS/+HTnuenAep+udJNk/3PPrnTfN9c+le4CX/5xpZskV789vtIdu+GalW6SrP6eznjfWk93PhdXrdQ59yXJp0/trNnad/3OWpRj37ym0k2Su89Ys9J95J7OO1eS5PNbHlPpvm9sZ3/HT52+V6WbJJe9u3S/897OWPseH+qNYxw36euV7lxf7+3vc8KtH6p0R2+7e6V74S97c7OOnv+hSnezLV+sdA/ZvLfedcXrN650D1uus1dwkhx7SOe9ARvf9pdK91+nLlXpJsl5F/yw0v3uiB9Vup85rzNunSQP/6EzVrvzvb1nldfddnOlO/cT81S6wx7rzd+/85jO3+LQRXetdP84oTN/MUl+u0ZnH6V93/v7SjdJrnvfFyrdD+/c+Vwsf/nfK90kOfJ7nfHaf2x+QKW7+xydMfwkmXJv5x77xM/11s/s9tfOPdo9r3f26t7ngN5n+fXld6l079+xs4f7ogf09g163ys3VrqTnvpSpZskS3+vM7f2pPx313KPzD8+H/3MTrP4aJIP/6C3l8Nqq3beo3Xi7HtWukfO6IwRJslXVu6Mi635Wmd/wCSZ9J7OevIxP+us21jp3b35dRNu7My3ePSe8yvdd53Wmzd7ySWdd8NO2HXTSjdJPr3o0ZXu+MmdtQFXzPb+SjdJrpn9o5XuKTtdVumefnjvnRy//EjnPbmHvPz9SjdJ1vlkZy7AklM73+tHxnT2VEuSD37w8Er3ySu2qHQvPL333q8j/nRtpXvso51xsSS58/edeRxfH9H5juywW+e+IEl2/Me+le7xR/+q0j3xl7397Of7dueYJ36pt87z2mGdvS3+cmnn3ny2xTr3JEly6oKdMbdLlunMD/n7uRtUukny6T07ayaferhz7kuS0Vt8o9LdbMvOfIsfrbtSpZskX3/HOyvdE+/YsdK985Te84qP/PGDle5+Uzvv1kiSP+7a2WP1yN917rF3vrU3h3+Z0r5OYzf8U6V75MjeHjvnLfbeSvcTEzv3Dkky/audubOrntlZZzZitU0r3SSZckDnXSOrH9W5Rjz74t5nebuvdO6xb711v0o3SdaZuzNfZssPjap0z3tnZw/UJLno9s4+fh98sDNXbemD/1bpJsmwlTvrPJd+tHe9fO4Cnfc+f32vGyrdxbft/S2uHP7NSve6R3aodH+0VG8fxp9c3Ll33/AXnWegSTJi985z0EM26Tz3e32FzrhZkjxzbeddI6d9d3yle/zOx1a6SfKpYzvrfzdas7ceZbPvLFfpbnRjZ3xru70770FOkn/e1HkHxg5rda5rx7zaed9Ykgz7Vmfsc5tx51e6STKQzlzRPw90/s7PrNmZq5YkixzReUfoo093nmlc9f3OPhJJcsyVnbmip23Smys6ecfHKt3Zv3h0pfvHrTvfvSR57/7PV7rbfHXdSvehK3p7bf7hlc45atrI1yvdJNn4N513u625aec+6p3XdfaoSJLH3vdmpXveIp19ic4+qTP/J0mGnfzlSneRRRerdJPkqZ/d0gmv+d/9z/4529NZdZVZ/76d8z7Vm8dxxxf2r3SHHTmh0v3om735WXs83XmPz8rr9+YErvW5znqTg3/aefb2lxM6709Okv3P76zPfmrDztqbOf7aeaaQJDe91pkT8T/PnlfpJskO8x1Z6R559+qV7jxbdtapJ8mLW3fmnsz+jqUr3RtOPr3STZJ1Jv+60p3waGcOapKcdWrnXWUPfaDz73foZ3vvY9z39fGV7hsjO+PH5z7bO18fc8b0SveFN7esdJPknqmdPWBOmtK5fl/2wd471y++rPN+oG8e3/kbT3q897zpyI0737/3r9o5XyfJXI911hPddFTnc/Hy853fiyQ5a9gJle4bV3XmlL38+lmVbpJstmlnTufuqx5c6SbJVUt23ie92Wmdub7T3tvZuzVJpuzb2U9lj1GdPYeOPL8z9pgkd13T2YNpk2m9tVVzL9sZf/zqxzvj0pt/8cJKN0lWW3pCpfvDr71Q6X78xd767b8/1nlvzkaH9vZi3PZXnf0H3zzxl5XuKTtNrnST5Kf3dc6rH1mksyf6o6923oeVJF+Z2pmTNG2Z3nVR1vp5JfvnCZ05SSPX7T0j23Djzvzkq57o7D/4k29dXOkmyfZzlD5zR3TW9SfJXqt8rNK9/ZXOfJmnvjV3pZsk267aWTeywFqdtY0XTOqNte/+SmfN5O9u6LwrJkkOu70zrvM/fz6t0r1kkc7+WkkyffwXK92pp8xX6V78+GuVbpKsc1Rnj595N1600k2S4x7qvNt+7PQzKt15/7BUpZskS184odL9xrfWrnQ/OltvftY2J3fe/7vaPZ19XJJkj/M64zrfHdvZi+eer/TGJ6/erTNX4LxHP1PpLnVJZ3/4JJnng529COYb3RkDTpJtv3J0pXvk5p252meOHFnpJsl8y3f2hd3g8dsr3ROf6q1T+smznfGtgTd7e0ksvG3ns/HNgc57c6b8falKN0l2O6fzrpiZpw+rdDf/xyGVbpIsunln7/mzju/swZokN3V+ipL8n9fG9XYBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/iwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBSM+E/+44mvv55L/nrNLD+IV5Z6cZY3/22RpcZWurc99lilu/i4hSrdJBk96u1Kd7P11610k2TmpH9WumMWX7rS3e6di1S6STJt9H/0df1f++f9UyvdJRZdsNJNki1XWL7SHfXY9Eo3SeaZfXilO3GhmZXuXa++XOkmyRt5o9JdfvE1Kt0XX5tR6SbJwNh5Kt2Xn3mq0k2S+x68ptJdcanOuWTeeeaudJNk0tg5Kt2XXrmn0p0ycXKlmyRTpkypdIePrmSTJK++2vnNH5j0ZqX71sxJlW6SrDpy0Ur3nM2OqXQXX2iuSjdJRs3W+dBNndS5DkiSKS+9UOm+8MCrle7C83XuSZLkjWeeqXRfm9Q55hFjOtf3SfL29M59yeRRD1a6STJqxrRKd/iwcZXu3CPnrHSTJGM659Uxw+atdEeNHFPpJsnso1fohIf3fpenTelcc41I57M8fXrn85Yksy/cOWePGte5j5o+461KN0kydVQlO21C5/46SWa8/HqlO2lq5zvy5OtPV7pJMm5s53fuzWmdv8X4OXtjcsOmd+6jho8aVukmyYzpEyrd0dM6v59Txs5X6SbJ/J2vdVZ55+qV7j23/qPSTZJVV1yv0n3yifsq3SRZdYHO+W/2dVasdC+9/O+VbpJMn9o55iWWXLjSfXvCs5Vukiy0YGdM5+XXXql0k+SNyZ3rlyXW7dw7jO4NL2ex0ctVunPO7Nxf3/yPGyvdJJlr9s5Y+5zzdOYJJMmcM16qdGcOdK6Lxo7oDbbvv9f7Kt2/XHVzpbv+mr17v9U226jSHX5K57lRktx+z2OV7phhpbGX6QOdbpIFW3N1ZnT+FlOHdeZ5JMlA6X71pamd5w5JMnl0Zxzqst+cVenuvUTn2jNJFlznHZXuE893PsszckelmySf++yule566/Tmyb32xMRK94XpnUGBEZstWekmych77690X3/myUp32vTefIzXZ3b+/Wak99x9+ojnZ3lzZv77e505X5+SLa+Z9WPI9yz021ne/LfZV3xnpXvSg+dWujcv+LlKN0nm/9fRle7GR3b+xklyza9nq3RXvrn0jPp3m3W6SV6+p3MNf8ZDs1e63930rko3SRa4dY9K9y/f680p23K+zjX8XyZ35uS+o/SsPknuPeOKSvejPzmt0r3syj9VuknyucveU+lO/nvvnvE3l36s0v3mNzufi9P/9NlKN0kufnWnSnfZG06pdB84f7tKN0mWWKyzTmn6NxevdJPkpmd/Wen++OOd3+W3dny80k2SOSd1ngtt8qG7K937V+lchyfJi3+4pdL9n5+U5u0ledd1Z1a6z57WGTM9e5VlK90kmeeszrj0nfN3/v2eGt5ZG5AkJ+27faV7xla9dYLrrdsZM91wyx0r3a8v/1ilmyQPbbxUpTvxjQcq3QemHVrpJsm4xx6tdBdd9eJKN0mG/2qfSnf2Tz1c6V5+fO8a8fUlOsc8957/qnQveerySjdJVtyyc404/U8bVLpJcu1KnWu5l3/Z2Yvggec68wGT5NolH6t031iiM1fmip8sVukmydprdObXPTjluko3Sca+2nleeOIKx1a635+xaaWbJB955wmV7pNXHVfpPvzBVSrdJPn+739V6R4+vnfMn1y98xxm8R06x3zgjMMq3SR5eKePV7rvvrvzHPmq83t7VOyyRmeOwfzFcaglb+zcVz467CuV7t/W2KvSTZJDT+/c77x20jKV7kOPdq5dkmSFKWtXup8a2Zsfec+pt1e68zzY+TufuH3neUaSvPhk52/x5qWd37ijl7ym0k2Skw7vPHeYf7neOsFT3/WZSnereTqfuTcn9Ob6jp2/c7385wevrnSPn7vz25kkP5700Up32ru/XekmyWee7Kx1OenQWT9vL0kOOaIzvpUk5279m0r3e2d27t1/c0JvneB87/pgpbvJvidWukky6rcPVbp/P7hz7Xn/IqdXukky9p7OmOqOK3UWN/7+F1+vdJNkue/dWukes8QfKt0k2fGGC2Z5c/Sb/90eWG/M/mauf/dNs/hoknffXtpkIMnfNumMw+71ic46vTM/9fNKN0lem23Wf5aSZN6je/eLa1/2kUp3tSuuqnTvPq03B+fhj3SeQy6xU2e/tjX+56RKN0k2P6rzrGLJr/T22zv7y515lz+884ZKd44lV6p0k2TL/TrzfB9eq/PegAVX65xHkmT/yzrPKka8+q5KN0l+skqnve0Nl1W6XzzpwEo3SR54vbN/wb53/azSPXW+BSrdJJnzjP+pdM/crfOsIkkuOef8Svecj3X2mPvygZ37mCTZ+cbnKt1xr3euMeY+rrPHR5LMuVNn/dNr+/2+0k2SV77UuS/f95zO3mfbT+79LV44Z5tKd9urO3MjP/SjzjyZJFn/rs68r/X27PxeJMmkdTrXRUt8da1K99mxT1S6SXLnNp1r8edX7uyp9rNTz6l0k2TcqvtWuk/P05t3csXBnefT217b2c/+twf35n8PfKizrnGJtTvjsCP37uy1lyS3D3Serzx0am8vjlNe6Hw25rm889ztZ6f9rtJNkl2P6bxbar19f1jpXvxIb++6s5/r3GOvNaH3fOzgZTt7rY/9fme/xL8+1Ntf5JBL9qx0n112fKX7yGa9cYx9Hl+q0p3r2FMr3SS5eO/OXnDXzNZZI3j5Lr25dR/6e+f7d93KnXlDy7zY+17/5PTO/c5BX7uz0k2SE87ozAdc5/LO9fInrr+20k2SD1/Wmc/y/M6d9z7seUjnb5wkhy/ZmTd0/Ym9dVV3/Lpz/7Daru+tdD+zwdaVbpK8fVnnnWN3T/tQpXvZEbN+vsu/vb7hAZXuFU/29u16+srOOxTm/8HRle7ut+xd6SbJx3fsPGt+ffgPKt0n/3hhpZsk20ztXMttO98mlW6SzHX/Lyrds77aGVPd/t7eWoZLJnbG5DZ5bZ1K94SFO/smJMkD9+/e6e56VKWbJPs/2Xm++tYtd1S6D3+o8zwxSS7YtdNe5KEvV7qvfK73zpzLvtT5/m1+aGeeTpI8eGZnH578l1vwz3PPwtl9uYNn7bEkOWrB3n5fP97lyEp35mud8asThvXW83zgkM78rNMv7PweJMn0N7esdPc9qrOP7bF/vbTSTZJDDrqy0p35l87chTGvLF/pJskrX+j8nt9wfWdtQJLsd1Vn/HH+7Tprm76dL1a6SXLU+M65/uPbdX6Xv3PpJZVukiz/VufdJ19bo7NOL0nGfLFzD7bE6M737+xlOmPHSXLC+zvvZ7hrsc56sE/+sbPmJ0nmObVzP/qbV3rX2b9etXOfe/HVO1e6l/+lM96WJIv8vDNX+4NrdeZbHHfUzEo3SYbt2HkWMv7a3nqi5ffuzHf60/TOPJwl/9wby7t+rc7zph9Nvb7S3fLoxyrdJLn2ic57xheY7/xKN0k+9UrnHVCn7tv5zN366GuVbpKsOFtnHsBhL3Tu3dd5+huVbpIcuG/nud7lp3Xm9yTJJ47rvLfjxAXGVbrvP7/0ztkkN8zs7J284y/vqHQ/+O7e9fK5F3fGMf51UG8P/o8deHale/wyne7kq/evdJNkk20fq3SP/0bnt+ipG3r7c17zjc7z3j2+el+lmySH/aozJrf/Hp29CFb/SGcP4iS5aLFdKt0jb/pqpbvggp15X0myxwc644gnjhpZ6SbJjjd03oe1zvWd9fdHjuv9Lp84svNuvlXO6Ow984tHe+tRPjnbFyrddx7+iUo3SdY9eZdKd+u9d6t09zyhd4348o6ddT+vPP6pSneDvXrzLlef1nnP1qbb/bTSTZKtDty70t3kw539jY/5bWctZpK8/zvzV7oXHbpLpbvLdr29g/5+7RaV7joL9t7Re98qG1e6N83Zmd96wpXfr3ST5IwtO/MmBpbqjL1sd2dvr+fdFuuMtf98rd66g2ue7OxDd9q6nT3dvr9wb1+NdS7orCfa+pnO9++x29+udJPk52f+vdKd/aDOPPskGX9k51rgzDOXqHTXX6Kzx0GSrP3LlyvdnffpzAH6xojevOdPT+m843W1Bz5Q6SbJHjddVGv/N2bOtWxmbjfr1wxd/Z7efdLSC3bem/jS939S6a563ycr3SR57pedd4qtsG7n+XSS7P7atyrdM+bq7NPy46c7558keWHFzn4cy+zf+f7tu1RvTc96l3XetfP4OZ018Eny2G87axpeva+ztmPBvTrrJJIkb3f26979tM5Y7NSP9d75fNANnfeB/+pHnfmcSXLbAVtVupdf1LkGnHRi77doywc6zxU2vmHzSvfNOXprc154tvO88J4rOs+xkuSWJzvXXKud2/lcfGGpzvtbk+TUszrrAza6qTMH/Pdnde7Lk+SHh3XmR45YqTcW+7PNOvue/GiFzj7uq36y97t8606dvfyufaSztv6vTx1f6SbJ+gfdW+kuvtjslW6SLH/ZeZXuFR89ptLd4ZnO8SbJxa931v+e9krnOdZrT0yrdJNkj7PGV7pTBjrnqCQ546R/VLo7rXRbpfuR1Xtr2ZcZ0xmXfuy0XSrdd4/vvLM0SfY9uDOOMeG9vfPqyZ9ftdJ9a9POmMD8C/TWxq29U2e86Mu/6syD2/D5/3LTk/+FFefr7PO47AvvrnST5MVPb1DpLvZiZ8+H917SWWOdJMOO7DyXXWv7RyrdYT/u/S1mu6gzh/+r7+ys7UiSDRfYtdKd7fo5K92PPtJbv73pUZ13/fz0ms6cwM9u2XuH18SvbVvp3rls793MH7uh836UDfbtzAk8+7DevihnXtjZ1+bQH65Z6V74UmeNbpIssnnnOczpK3fGapPkC9d31kPPuX3n+7fLLZ31M0my3rjjKt3xi3fG8Eed0nl/XpJ8ZvMXKt0truqsZ0iSaWM741Bj/6fzfrBF//ThSjdJLvlpZ4+mmyfcXenO9UDnOi5Jzrzy8Er3U9t05iwlya8WuLrSnefczljfG0u8v9JNkq88f1qlu8NXO89tVzyyc9+eJM9e99FK97CjevuifHKTzrsD3ri+Mzfl2RM73ST5xX4jKt2jF+jsHXTyxO9Wuknyu48tVeku/9Y/K90k+fUBpfXs/x+P/QY6/28AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H+XgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGApG/Cf/8ZixY7La6ivN8oOYOX3aLG/+20sTh1W6y44d3+muunalmyRzjx1e6d50ww2VbpKsMv/ile5so1+sdB9/anKlmyTzveMdle4SS25d6Q6f+4lKN0lWW2+bSnf86HGVbpI88MhTle7FN/6h0n316bcq3SSZmRmV7sRJne/f4ostW+kmyYMPX1/pLrvMmpVukmy8wEc64VFLVrLXXX58pZskM96YWem+Nb3zWV5i8WUq3SR547WnK93pU3u/y8Onv1DpDhvW+VxctdFJlW6SrLdU5xpj7Lgxle60YW9XukmSYZ1z1NuPPlfpJsnM6a9UuuNGT6x0X36p83uRJDOmTKl0p4yqZDO1dxuc6aNer3RHTl6s0k2SOWab1AkPn62SHZUFKt0kmTH81Up3ttk659UZw6ZWukkybHJnHGPM/8Pef0XrVRbs3/aZlU5CDb1Ll96kdxBBRVCRJigioBQRG6KgYANBilJVREBUFFBQRKpIryIdqdKlQwiEhNRv4/l8t97y6Mg5MvIfx7ENvzHHylr3PefV5pjZK90kmTz0Pxpq+18bmKPzvZp3hne6SYbN2fkAnTal8zs3bNSYSjdJ3ni6MyYw+2ylL6kkQ+fo/G7864Xxle6cc/Y+l+eafbZOeHDnc3nwoKGVbpJMm9C595xriYUq3SR5c+xcle7AbJ3PoqnjO88kSXL3/ldUuuO26IxjLLTSXJVukqw6f+czY9qgf1W6SfLauLkr3Tv+2pnfWWPphSvdJPnbk3dXuo+/OEelu/66M35e9d9uuPneSnfRhRaodJNkmVVXrHQHXrun0p13eOdvL0neTGd88rY77qt05xgxb6WbJBPH/7PSfW5sZ6woSZZYsjPe/tarnTGBaYN698vzDHTGlxdc5KlK9/5nOusEkuRd93fG5F55alylmyTDB3WeK+cY0Rl7mTh9oNJNkunpXPOU4Y9UunNO7P1dTxrc+VkMGtIZ60uSKZM7z2ivTeiM9Z115I8r3STZ8/hDKt2ll+k8u78zbNVKN0leKC3huueBzndUkgwf0vn7GzlHZw578OuddZlJsvzntq10b//mJZXusxPvr3STZJ4Rnc/86SN7c9iLDVtyhjeHv/zQf/3/vjRoRE4fsuwMvJr/Md87vX/3BebszNfftNKSle60JTrPMkmy6pAvV7q33f6xSjdJRo7/U6U7fP0bKt2hZ02tdJPkunk+UOlePmiRSnfQho9Vukky99SDK90vjux8tyXJ7z7znkr3tQ/+qNI96tTeWNAvDz240l157H///fb/5rn3PF/pJkmW6cwrvPTEOZVuknx1p5sr3b8tNU+lO/mwzjh6kmy7yf6V7qD5v1LpLrXEKZVukowYfnSle9U6C1a6SbLem505p4EHOp9FP9y898yxzqhzK91h6x9V6b5y5Q8q3SSZ+Oh6le7k3berdJNk8I2ddVTrb/6uSndS3qp0k+TRIX+sdO+Z9Eylu9izW1a6STLp7Usr3c2f+FylmyTLf7/zu/HwdVdVumOe36nSTZJ7BnXGMa7d9pOV7pNzfrrSTZKdlt2x0n3PG739YHdv3Rk//kHpM+PLW/6l0k2S+y87otI9arMzKt2tXu7M1SfJ7QfeVumOv720HjfJBid29gDPv0Lnb+T2uV+pdJPksX90/v4mP752pTts129Xukny8beurXTfXrN3za9f1xlv//2wkyvdOS57oNJNkqcPOrPS/cNPjqx0j1z12Eo3SZYedUylu8Xvnqx0k2STeY6sdD8yb2feaKNHe2Pth918caX73mxe6e651waVbpL89NedMZJVP9IZq02Sdd7VOf/pjTP+UeluM+LJSjdJXhzVWYgzZNjhle4Gz/f2vH7ks50zfsZeu0almyQPvNFZe/KlJ8dWuje93JvremOVzvkz4w88qNK95IDe+OR7D++se15mt79XukmyyyWdNQi3TumsL1/2hd4c9r5jO78bv96ks9Z3qdt2r3ST5Isr/rrS/fYe+1a6SbLueZ1x4LcvuLDSPfDw3l72nV/u3Is/+r7Ofe1SO3c+O5Pkwik3VbqL/Kx3zVcceFelO3bxzjl0Y0fsXekmyY0HdPZjLv1Q57Poz1/onDuaJG9u1ZnD3u5PvXMEX/7tjH/emTLhv2u+Mnlaznpxxn/PP31XZy9rkkx9d+es4D2+9atKd/p8vXnTdb/VGZ8/fM3O31WSHLTWoZXuK8cuXul+5aO9sxw+dOaM32+QJP+6uLNO5jPXf7bSTZJFN9mq0j3wd531LEly4Dc6Y49/+kzn2ev5mz9R6SbJZW919hycefL5le427+6NI7zx92sr3VHPds5FSJKPnnJkpXvC/J3n0A3/dlmlmyRff+PiSvfCtTpr4Zd9ufc+iWm3ddY8v3vV3rnzE/bq7K1fa/XOuoUrj+mdK/POoM488gK/7pzb+vMVO/vqk+SBbe+udFdf4FuVbpJMeqyzNnKP/T9f6e53Q+/ZYfy4zs/51J907j23/0NvneGjL3Tm3X578scr3SRZZ67fV7qbfagz9r/HuzprcZPkgK0frnTf3GafSvfJ6b0zKY+7ZXSl+9cDe+v3f7LuFyvdnU/q/F78fthmlW6SfP0rnfnpeaZ/p9IdueZalW6S/GyeXSvdte/Yq9JNknd9tNP9296d9aen7PLTSjdJHjy9M/Y/YYn5Kt2B2TvPJEmy5xydMfGHz+ucVZokX7i8s57z4XT20b60wA6VbpLMt01njOu3S3T+RsY91FmXnCQrr9M5B3WzH3Xmo5LkJ3d0ntHWndTZC3b0Kp29T0myzsKdvXyXHNcZxzhtp87nUJKcfXpnz8g/jlil0k2SNZ7qrC949bOdPWbnHvXzSjdJ9nlX512QL37nU5Xut1/rnNWRJGvt1LnmdaecVukmyVeuvbPSveR3nbHPScN753b9ZY/O38mRe3bGBPZ97sBKN0mmLd85h2eFl3vvrDp7t86a5xGrbV/p/m6/JyvdJNn3xL9Wuvcd2vlePfv3vT1KLyy+bqX7x3c2qnST5O7zflvpnn53Zz3bpd/r/O0lyVfO7byf4cHtD650f/ZE7z3yrzzSWXP28RtPqnSTZPvlO2d1T/1mZ07jhAXeX+kmyeUL7lbpHr1m5wzBDz64aaWbJLvf0jnfbvrE3j3iwredVyr/d+PAw8Y8m4U/POOfac48ZqUZ3vy3T/2ts771tcU674Pb6Lnenu8dN36x0l3s6t4ZSQfOvn6le9HxnXejP3XEeyvdJNn/o5292ete2VlHNfGiRyvdJDliq8744y33duaRk+TwI7aodO94qDMve/ElvXclnXtwZ17ooO0650U9Nrzz/t0kuSyde5Of/64zlpAk8+5wfaX7p+M7a78WfqGzhipJLrqjs8/5tF92Pu+/umXnvJokufPjnf0MqzzTW/f82IUXVbpH7NAZV/nxdztzskkyz2ud+6L1Nuusg7thx857KpJk9ys68zef+8gOlW6SnPtIZ936cT/6cKX72bl7Z9d95v0frHQvG9Y5P2Tenf9Q6SbJC5NPqHRP+HLv3+993+rsEzx6rlcr3Su2XrnSTZIvr9I5b/aROTvnymw1qvP+mSQZekrnGfuCVU+sdJPk0cs7a7Tu3nBkpfuVC3rnG59/Tme+cI5v3F7pHnXia5Vuklwx5muV7r0DvX26gzddodK987odKt37v917h8IXnn2u0p3vyM778546/NpKN0nuPLfzXHLRHp19qUkybJs5Kt1rll2u0n3iL70z3Bf/4sGV7uaXdsZqNzu68/6SJPn+fF+tdL/5887PIklOuq2zdvbcNb9X6a63Q2t+M7n0gM55pR/YqTOfuMq9vffy/eb7nXNtxm7fO6/qyYU640W7PtF5B82Ot3T2ryXJF3frtMe9tkmlu9ONO1S6SXLMtM6eyS8e3Xt2X+zqztq9y87qrEl6687e/fLElzrjDR88s/O7fPjuvTGBNx/YrNIdM0fvLIINbu2c6/aFr3bOaDr7552z4ZNk2w3uqHTv+tqVle4PPtbbp7T48Z29Oa88MVDpJsmJ/+x8Fv36C53zVlb+3i6VbpJs9OfOWVjbT+iMCey8T2cMMUk2PrKzT+nI0b159y136ezzPHTpzvPqiUc+WOkmydcf6KzJ/eNFnbUNf9m5856DJLl0q86z+0qPf6nSTZJ3bd55H89/a+TTj+bd+287w7trfa83Rv/hjTt/t5ef0jn05KV9OvtukuQXpfNwLj7/sEo3SX7/uc45nQ9/v7PW8J/f6j0/73HmTyrd25ZcvtJd854fV7pJ8tNVF6x0D32wd7bMzmt11midtlDne2K7yZ2fcZJs91pnr/pry3TGbOZYr/ee3O1276wvP+/IsyvdJHltuc652nt9sbMO4NOje/vTvrfBXJXu/aUzcj+0Te/8ulc266y7/NPLc1W6SXLdJp15oS3fdX+lO/XUzlqLJHnmmc590blTO3vV//aP3r7vHy7WeffQ1od19pMnyckf6MzX/+Tkzr3c0kf23o8y9J3Os9Qti32o0r31nWsr3SRZ8ZXOWu2lTuyNpb+98XaV7riRnffZ/uzazhmdSfLoyp31rY893ZlT/84+nXfuJclRx3fWt973tVUr3STZ9qOddTivPXNGpbvU8yMq3ST5zIc762V23adzv7z35b0zv2b/dWfu9KtX9dZHHrNiZ43WJ9MZ3zrg5s6zapLcMdC55it/2rkvmvyH3s9i9oUPqHR/u27v3cwnPd85/3PeRzpnrA59oDM+kiSb7NQ5i+CCL/+m0n3uW/dUuknypWOfrHTnvKH3PsGPvNh5d8dZP++czTXPxb35gcNf6+wh/dwlnbO5nl9l/0o3SS44prP25J5dr650k+STb3bW+OyybWfP1j/O2a/STZIljuysMdjpn511HL8e2RlDTJK1rz690j3+xN5+lCuW7pw/uMDVnXMZ3pjcGWtIkr/N2xmv3XfijH8vepKMPnrjSjdJjtynsx5+ta17759//sjOOtTrHuzch387nfdsJcnpozprPX54+9BK98e/6D07HPzxzs95zIhrKt0kGTx0VKX7sU939h/+a9/OeR1JcuFl21S6J245rNLd4JrOfEaSzLlCZ7zh3om99yw/PFfn+2/L3+9d6b60U+9d8he/2Flndfu5nd+LjbZfp9JNkoEtrq10V9tmSqWbJJ9erfMejP+nt0v1dtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9BBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKhvwn//H8o+fMAZt9YIZfxKNvPDnDm/92y61PVLpvjB6odN9+7a1KN0nmGT600l18kcGVbpLc+9LfK92F5lio0l1g4Xkr3SSZNG10pbvEEpMq3Wlzv6/STZLZR3euedC0aZVukqyw7rKV7sYfXLPSff3NSjZJcs3vflPpnvCLMyrdieNer3STZMJbIyvdKfPPVukmyTKbdj4/f3PSWZXumy+9VOkmyVobb1PpPnbfrZXuuOf/VekmyduD36h0J419utJNkod2+nOlO++0znfUqPlmr3STZOqI4ZXuq6++UukOf/61SjdJpkycUOlOHej8XiTJmxM6n3NDRw6rdMe99U6lmyTTR/xHj7f/a8MndZ6j3pzSud4kmW/Ui5XusNlXrnSTZHpeqHQH3uk8Rw2fbUqlmyTTB3XuEacP7nzez1b6vEiSgcXmqnSnjH270k2SjJ6rkh06ZUSlO3lM799v0MSJle6kd6ZXulOn9u4xhg/tfOa/8dbUSjdJBqXz7zfPnKMq3enTOtebJOMnjq9055h7TKU7dVJvfHnwgp0xgdde6N0vzzZ75+9v0utjK923B3U+45JkkdL955vTO89+t11+UaWbJAutsG2lO+iVhSvdJBl469FKd6m13l3pPnTXw5Vukkx9dXKnO19nTPWph3rjy6utsFilO/cCneeoJHnowTsq3XmGd+4FFpy7M1aUJE89vWCle/9D91W6a6+1QKWbJK8817nfmndI5/MiScYNGlfpvjChM1d52enfqXST5Mv7fbbSfez+xyrdtZfvfHYmydDBnTmNF1/u3AckyaipnfHaoXN31k0MfX1QpZskg2fvrAGaMGHRSnfyQGduLklGD+38nEdOnrPSTZKpA53nnWEjXq50x6b3HPyHI0+odA+48PRKd2BIb0xnvsGdceAxcy9T6SbJxNI82vCRneedt0aPrXSTZPCUzufyWt8orfP48j8r3SQZmNAZB153mc5atiSZbdCM/8wf+dR/P2c7b0Znr8GbzMCr+R/3LrHUDG/+X+05x1a6C65xU6X78Vt+WekmybxP31npvvSvCyrdJHl0eGeNz5P/7Mzr7XVQ7zNs5F2d56RFf96ZU39kjs49T5K8fPVyle4/Fj+/0k2SaZM6v8ufvHWXSvfvr9xb6SbJ51fv/J3cf/kOle4cz32/0k2SMY915rIu+Vhv/GOL3Tp7XX77s874/yY3XFrpJsmjp21f6Z5/Wme+8NNzd9bAJcmwBTasdA/+Ym/tyRyrX1np3jhwWqV7ymyLV7pJcvdAZw/NLeM/XekOlNYXJMk1K29Q6X70MxtVukkyNFtVuoef27nHeNexJ1e6SXL3yM7n8tar7FrpnrT82Eo3STbc+8JKd+/75ql0k+SVj6xQ6V4w6cOV7tUf7Yx3J8my/3yq0v3lfZ35ioERB1W6SfLshy+vdL/2z/kq3SSZOrbT/sFzN1e667zZ2xt34Cqd9U7n/uKSSvfRR/5R6SbJlk+sUeke97He/fLDU9epdMf/ozP3dttVnXnkJHlz287Y9U5Drq50N7z81Uo3SY7apPPs8MjgByrdJFnrnc7n50tHr1rpvvZw5/k6SSZP6swXTnuys09w6k9/UOkmyf0jflfp/n373j7PecZ01gS+7+C9Kt0HBnfGXZLkjEU7ezCGbHtjpTvb52f8vOq/rTKls15msb/01nH8+d1nVrpzjut8R40+7JxKN0kmHNLZm/rNGzpry78+bvVKN0nyi7kr2S0e6X0WnfXpnSvdzy/6x0p33GEPVbpJstWjj1e6z+/eWcN/06b7VrpJct+6nX1b/zjpkUo3SaYs2JmT+tjgd1W6d9/TWauWJMctUjoYbMnO+QknLPCLSjdJltu4Mx+8wU96ezBe+EfnzI7Rz6xS6S73TO98ySef6ZyX87cDO+PLv1muMx6eJLcM2anS3eTieyrdJLnlmCUr3R2vOrHSPXW/zv19kpx3Suf8hEduvKHS/caNnbP+kuQPL3XmShZea6VKN0mGLL/uDG8OveK/O/944cGjcuScM34dwKRFe2NXK5/fmeu99IHbK90vnHVApZsk1z60fqU79pTtKt0kWf+hr1a6++72YKX7k0Mvq3ST5P5VPlPp3vPnznrAF3c9t9JNkgfm6jxvLPvV3h6W6Y901hqef3FnP+RdB/6o0k2S7y/RmYc88ltHVLpzXXV9pZskJx/Wued5aJ/eeqSj53yy0l3r5o0r3QMnde4DkmTh2c6udMeWzn+Z746TKt0kOWjUnpXub7/wbKWbJJ+/ojMne+DqX6p0/7xaZw4kSZY57m+V7sADf6h0H9y+s84pSV4+abdK9z2n/qTSTZIJN3bOlXnzU50zyna/aL9KN0mGPvnRSvfCgz5X6d6/X2fcP0m2WKkzv3LU0Z150ySZ95TOPf62d3SesT++R+f9JUly9S86e6wvH9c5R+zZR3pnJP3j1521WS+/1Tt78JJDOvskXrmxMybwoUPWqnST5K19l690//iNT1W6Wx/ZO4fx7Ps665F2mq1zvkGSTPj7XZXuOVd01mn/fs3OOrUkuWD7QyvdD32iNFb0YOd7JEmu/Ng3K937r/tZpZskl210eKW75X2dfY2fXq0zH5skU3brjMkNu2DHSnf8lp19tEmy906dtU43bd17F+QTUzufc/v8qXP2xU4X9e4Rb/5B5+yS7/6pMz9w7ea9cwgWma+z327FS3prI/+18VyV7kEPdcaX5/ts73zjbwzrnHX0rz2Pq3S/sEdn/WmSrPboKZXujrt9rNJNklcnr1fp3rT+NyrdeV/vjamesN8Wle5ml3bWk1364Scr3SS5YmJnzeXuZ1xb6SbJCu/u3H/u/dnOOrVbL+iN6Tz+gSMr3Xdv3HlH9oVPdvbRJsnpS15T6e50VG/e9nOHdd6le/zNnfc+/OGQzrhZkly2Wuf+c6WbSudJ3drbu/3U0M739fWLbl7pJsmXtuycWzmhdOzhavt9pRNOsuKQzmfROYvuU+kecWrv7/oLf+7si/vS+M77sZNkn9/05oT/G9OnvJ2pr874Me/Dh/XevTD/Q3tWuk++1FmPe89qnXHYJLn29M645k5b99679/OPdtZojX9y90r3+UP3rnSTZKmJnfvWU5/r/PvNd2nvnvXE5zvnSB+8Qm8sb5UpnfGEB/f8XqW71QudM/GSZNS7f17p3jWhs+9g7gU65w4mycO3ddbBDfrE1yvdJPndSxdXumfN1zlfda4HO2eVJsmjfz+j0l19g/sr3ZVf+3ilmyR/X/riSneLPXtrFxbcfbNK92vf65zJvPaQzp6tJLli979Wuq+UfuW2fX/nuy9JNtyu8x6tZb/XOzty/9d+WOle8PXOmQtLndU7L+rzg1asdIf+sDP3fd7BnXVDSXLCzzvvI/7I52+rdJPknPU+Uen+fdiSle7Lr3TW4ybJFkd0zni88+TOPf5J2/V+l//67s77sE6Y75ZKN0m22r5zDvgHj5i/0t1jq8678ZJk6R3+VOmeen3n3N3j9us9+13w5c7n5+Gl82qSZPDrnbW+9/xsy0r3tYc6e36S5JQbOmvin/lT51yuQ0c+X+kmydaf3bbSfd8nOuc7JsmJR3beGbfBup353rv+3BtT/eM/O2Mv52zaeUbb++LOe+2T5HdndsaBT7u9847JJPnFfZ3xvqd/0/le/dGo3rrn2/f+cqX74Ss67yicenHnOzVJxpzfmXd4dWjnmTJJxi3b+V2+86DOGeBrfK1ztn+SLHLWjyvdlfbpnJcz5+jOO7aSZL+f7Fnpfnjj3tqT31/800p357M6n0U3bveeSjdJRp+0SKU73wNXVLofP7Pzft4kmbZJ5375gSs7331Jsturnf0du01+f6X7tdk7+8KT5JcPjqh0f/zu0lrt+Tp775Pk/BWPqnRv/0JnnU6SbLdY5+zkbXc/u9Ld4JDefqJ7l+vsTd30r29VuqdM+mKlmyRL39wZX/7u3L3nnc0mdsbOdvpT50y+NeftvY/ggx/pfObf+I3OmWBbr947t3yrNTv3Rave8d5KN0m+vWDpXQf/5f+37PQlctn0Gb9G6+h9e9/Hhzz0+Up3jsM717zCiM5eryTZeMXOPfzyv+j9DWz5jc7f7bpLP1PpzrF27/yz2w/sfNcP/2tnfdY53+ntb7pt2aUr3f1+2XkHU5L88ROdPQ3X3bpEpfuuD/Xme1f4VOdsww8s3FnfesU8vXHpyy7tnM11+NTeuwM2eqrz7oyb/zyk0j3ngd7Z8795fYdKd4MPdN7P8NRA5z2PSfKr1U+rdDed/dRKN0nu/NN5le6Zp3y70t1qbGeMKUnOPLTzzvVbLuucbbHOMSdXukly9uGdz6JXVu+cI50kH5/e2Ssx18jvV7rXjOt8jyTJHzbrvO9g/W06z1HT/9A5IzBJFtmtc82H7th7V9Pfx3fOQt33oM6eu/Ev/7cjK//fPnH+jH/vV5Ks+aPO+Mivj3ih0k2SnZfco9LdeLnePs/TduycT/K3FztjvO9bqXPmSZLsfEJnDfibq3eerz90fme8O0m+vdD4SneXtXpzLFN/sWSle/InO+e0HPbxztrWJHn3FmtXujsf3zmLYN+zO2twkuTNL3XOst39u513KybJdsd1zpI+7o/vVLpXH927x3jP1M4ejDX366y1v+fn11a6SbLaS8dXupv+ove9uuz756h053yjM4547nadNahJsshav6103zu1s59v7A69PZO3n995jtrvht6e8/0uHVPprvDpzpqWbxf3xv1kuc4ejN+ccU6le+bWvXGMl+ftvHN90/G986rWfLtz/ucHlu/MSX1y19748phfd87uWnFkZ63olt+8oNJNknfe98NK96odeu+N++1FnXWoj23fOfvpyPd0xs2S5Ifndt67uco9nXP4r/pE53z4JDnpzM6eya0+33s35tDNJ1e6i321s4Z4/eV6+zxfW7yzDvWCn+1Z6Y7bsPNvlySvH9s5i+ep0hrUJDn+8Vcq3WN/0JnPf3X+zpx7kqx9WmcN3pOf6zw7jB/SWX+XJIfM1tknv+VfOnNoSbLehZ33Nub/Yaqy9+QNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8HGZjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4Ih/9l/PTSD5ll4hl/EhNefn+HNfxs/Ymylu+gc81e6Tz/9cKWbJK9MGVXpPvPYA5Vukoyac85Kd+rA7JXu2EefrXSTZL7lhla6s43u/CxGDX+l0k2S4SNGVLpzzzFvpZskb46fXOkOHxhT6S429/RKN0k2fe+Wle5Sy85R6X7m89+udJNk+rDO5/LL4xaqdJPkgZ/cUOlOmzy20l11g/dVukny+kuPVLqDpv5nt2f/W1MGvVnpJsn5ax5d6W66+AqVbpKMGDO40p08uPNZNPmV3vfqO8+8UekODJlS6U4ZOrLSTZLXxj3VCQ90/q6T5K1Jne7s6dyHTx42UOkmydAhYyvdYQOde895ir/Ls40YVukOHzK10k2SyRM7n58DozvPUUOGdr5HkmT6tM6/39DBnX+/wbPNV+kmybTxnQ+5gbnmrnSTZNjs81S6Q6d0niknD/Q+l6e81rkXyPQJleykNzv3REkyLaMr3cmTetc8cnjns2jIyM7n59RBne+RJJltaOdeoPQXkqlDep9x08aOq3SnDur8XSfJO1M791yDhnZ+zkOnvFDpJskbIzqfRcMmzFbpjip99yXJ3+/8VaW7+gYbVbpJ8tykzpzUsw/+vdJdY8WlKt0kGTy087uxxEKdn/E7k9+udJPkt1dfU+luvu26lW6SLDVf53djkRUXq3QfffGdSjdJllum8+xw3xMvVbrLLr9mpZsk4169otJ9z2ofqXST5Irbrq90V5mvc++y3t69ua63J3XmuqbPsXile88zEyvdJPnYuzr3Ao9O6q3HmDZkfKU75fXOmM7wkZ17zySZMqHzvDPHiM7Yy7RhnXuXJJk8qPN78c6Q4pjqoM4YyRxTOmOfo7NApZskkyd3Pufu+ullle5qB2xd6SbJi693xhuGzd0bk5t33s494qvjO/cY77xamltNMnlaZw3XkHk7454f+eZnKt0kmfjTGyvdUdM6455JMmhwY37uv/8embjQ5Dz41Rm/RvnWp1ae4c1/2+nu91e6f//77ZXuslt1xpiS5KBX5qp033fztEo3SV5afWylu+ZG91W6c5/VWc+ZJD963yWV7hzH7Vnpnv/3FyvdJDnksHMq3WEH7F7pJslsd/+y0t39s501Safttk+lmyS7fKezbvauX75e6c65xtOVbpJ8dZPOZ8alk+6sdJPkz++/utLd8IDOfOGdz69e6SbJSvdtWum+9bnO+uR3r/exSjdJ1v9OZ93zpw7vzMkmydK77lrpzj37o5Xu8qf2xq+GLNv595v4auce8Ykxvfut3RfprE++d//Od1+SfHvoXJXuggutX+mO2a43ljctf610X/tm53v1ooFVK90k+cCVnXvE8/7+t0o3SSYd1Rl/XPutzjzktT9YrtJNko1m74yl/2nHzh6aTw/qre+5/ubO3vBdR3TuA5Jk3tsfqnQ/sct2le76c15Y6SbJd0+4qdL9yrKdfZ4/e723puX5d71a6Y58f2ceMknG3tA5p+KAv3eed0497V2VbpIMTOp8l2z5nrUr3R/f0FkfkiRrP9GZY3nhrRMr3SS5crNjKt0tdu7MvY1duzOGmCRDX3m80t1rq20q3W+s1vu7/sdCnc+4kxfoze/8ZOpule5iX/ljpXv9rzpzc0ky3+DOutlv3LNIpXvUBr297OOP64xdjy51k+Sj4z5Q6e66Q+cZ+6fH9v6uh+2/SaX7rgv+WenusN5elW6STBn500p36ic63SS5ct9/VLqbb9j5jHv8qR0r3SR583ud9XXDXuism/3ViV+qdJPkkAmd5+Dr3/WhSjdJBr/a+V0+66HXKt3p23T2SSTJGRt8vtI96v7fVborLLhKpZsksy3UWR/5hd++XOkmyUXv+1ele/MNnTW5i5zbOy/n0hV/X+muOW7FSnfRX/f2sj8/unMWyIPf6oyPJMk/Zu+shzphjkGV7iZXdD7jkuT0wWdUuu87vvOM9sJGm1W6SbJ+6RFthXGdeYck2fDNGb+m+nuT/rvPtxcnzZMfPrHTDL6aZP+pB87w5r89cOPXKt3vrHtdpXvqYr1n5wkPdOYhvzZb73zqP29yeqV774GdZ68XV+isc0qSuc5YvtI94bnOfPrv31iw0k2SaWd01so8O7mzTiZJ/vmtZSvdVQZ1vouP2LEzH5Qkv1iisx7+h39dvdKdZ8nOv12SrHPNlyvdr53Vu6/87MunVbqXPrNOpfulF3rzK4ef2xl7fM/P/1Lp7nbiNyrdJPnSVzvPdTe+fmulmySHfrdzj/jC5D0q3evu/lalmyTrztPZm73RThdVusuP37DSTZIvrzW80v3JvUtXukmyynXnVrpnztb5Xb75wK9Xukmy6KKfqHSfOOWASvfBSy6vdJNkp4OOqnR3e6u333XSJXtXut9c8q1Kd+vLe3s8l12rc//yzOR7Kt3DV9qs0k2Sp87vzK+8uendlW6SPLtbZ63a6nd0znXa/bnO+qkk+eYTnXnT1f/UGet+ccODK90kufGHnXuM8976dKWbJMccv1KlO2RyZ7zo+tXfXekmyQZ/7Lzn59Lfdj7jHp9yXKWbJGP276yN/PAWvXXaz7730Er3vbfeUeku/0TnOSpJLt3pyUr33G0757UNPfFTlW6SbPZq5xyeFd7o7SVa6qbOGMneb3fm5w58rHNuQpLcvOhjle7pX92+0v3xt39b6SbJeyd0nnc+ekZnLW6SDFmrM3Z96PTOHOguc/b2S571w/0r3S0OfKLSne3Q3jkEV8zR+S5Zd9PeXMmgQzpnwi7y4c4bQeb5XOc+LknO37MzXvTRr/6h0l3kmLkq3SQZ+8vO2SXrfaL3XswNz+uclT/6hs736oR9OuuSk+TEJTrnPVx+eWct/LlrdeaZk2T3uzt/f/Nc0dtvPmb5zlqrQa90fufePKU31v7bb9xS6Q5fv/POlZum7lzpJsnP5um8d+WaMzp/I0ly56md81a2u+z8SveKVzv77ZLkBwetXunuW7pFfOzd63XCSe4Z3FmnM8f++1a6STLosNZ7Jn/zX/1fk5cclhfPXHLGXkqSIYdeNcOb//b+izrnv6x3cefzYIUvd+Yhk+TEaZ2z1Cc91dtbOPn4zljeLf86vtK9+ne9saBtBnXGVhY65M+V7qSVemeKTlmqM3e66alnVbpJ8thhn6t097qtM3618omd602SL+3Q2bf41NOdNah/fXjJSjdJph58UKU7ZqXec9K+37qt0v31yp3ze5b92t2VbpLcfXTnLKpVT+jcs26x/2qVbpJsdF3nHXY7PnF2pZskLxzTOd94+ic7c99/ubh3LslnrunMy676Zme9xZWZvdJNkved/2yle/v7t610k+Tuf3bOa7tixc4z2s/W6T0/z31F590oF53V2Sex3rHfq3STZNdLO3v2lznmuUo3SR7bbo1K9+V3d9bL3H7lpZVukqx/1uGV7qqXdMYbPp/W2FWy+Xs6Y95z7tf7LvnDi53zQ+aa0nmf9KBlO+fuJsmHftU5b2/byZ3xkc2v/VmlmyTZonMG+Nev6+0HG7F2Z03uda903i212gq9d0h+4eDOu9HnO6yzz+xLt3bmIZPk4lu+W+metOePK90kWfONH1S6Tz+9QaW756a99ZEv7tqZ09jrQ519nrst/8FKN0kmPtKZo17jO73x5Tt/1nnP3c8e63z/zX5Q5wzwJMmaJ1Wyh93Xef/MhqOPrXST5EPXnVLpXrpk7+zBrYf9sNI94aDOWsPhD3b2ryXJjk931iRtelznPnzlBXvjGN9f7uJK97C/dP5GkmSdwzpjqh/50a8r3c+e2DuXYfrxX6x0R5fm/Tacq3Nua5LMNqIzVrvRDmdWuklybWlK//H1O+tbv7JT79nhg7t0vv+uWqMzH/XDUb39v9OO7Mx1LXhy5505SfLgJetWum/u1Pm7fn7hlyrdJNl5p19VunPd1lknsMI+veeo+Rf6aqV7xvDOfH6SPPb3zl6lf/2h886VE57tvEspSbY5rjM+uezIzrPfuXv31oA/9ffOvv6T9uuMmyXJty/qnc3w33hhkSdyzPdm/Dkwz1zfea99kiywVWdP+dYHdObePn1hb77pa0d35mXvWbxz/kuSrDO4s9d59J2dz7BNz+jsh0ySH73dGfOeZ/7OHPV9C/XuTRYYv3Gl+7ObemdUP3hXZx/uP6/tnE2y/BG99xj89qTOHNn4NzvnRy70x8474pPk2B3HVrpzfGbJSjdJvv3pzvl1157SOY/jqN17ZxgsuUjnDIott+qsW1/j8d457vc90xkY2/CxIyrdJBmxZ+dsw48cdXOlu+ctn610k2Tp+eaqdJ/6VWfu5sazOu+cTZKRi3bGr964codKN0l+sXtnXm+lTW6vdH/QW5KUw6/pzL99857OefkbzNU5kzlJzvhD53l1061754o+uGNnvnCPmzrP2Euf1pmHTJLHd+58R13/1c7z6qBvdebUk+T9n7qh0h28TOes/CT56di7Kt0jF+ysj9xw48450kny5bkXrXRv2LBzntFLj/beR7fnqp3PjJe3fF+lmyS3jumcH/ntfTvvk95ipd7zzpLjO+fv3lt6XN3my4d0wknW27hzIM4vP9pbE3jsT39U6W4+fYlK92Nz9tYavmfxzj3GzXN2zmU4L731da/u8qdK9+0HOnv5kuS7L3XeB7nS5zvjUE8ts0ylmyQDu+5Z6Z7/+85ZIAsU1wHsckZnHcDWX1qy0k2SVS98tdI9eIUTKt3rr92r0k2SP1zZOUvpjMs6z2ifGtPZF54k/zysc3byb6/9RaWbJOM27fz7LbtcZ9792NV7eyYPvbRzL3DOJZ354A/O23s/w21nrV3pHjNlTKWbJDuu869Kd6tf/bzS/c2GvXeCfH/zzrmw8248vtIdNaz3ntAD9+qsp/neJ3tnVP/6yM6Zij/8ROddIwts11uD8KWfdtatn/batZXu+5fvnbX5xaGd8b5Jy59d6SbJS/OPqHS3fv61SnfK2Z378CRZcePrKt1tX+uMvfwxr1S6SbLv8V+pdBfZpXcm5ojXdiqV/+/38/VO6AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4MMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMmj59+v/6P15i8cWmH/alL87wi/jbY/fN8Oa/jX99fKW7wFxzVrqvPv9CpZskQ4aPrHQHxk2tdJNk4sCLnfCIYZXsxLeGV7pJMnLMkEr3PZt8rNJddsUVKt0kWXC++TrhaW91ukmef2VcpTt40v/+M/w/8dYrL1e6STLvkktWuv964JZK98EH/1HpJslxp51T6Q4M6XxeJMm88y5Y6c42fKFK9/WXHq90k+Slt1+vdA9cbJtK97sbfaLSTZLBI+aodIeOGFzpJsnAK517xLGvd+5dRg4dVOkmyWsvda55ytSBSnf6O53v1CSZPGRKpdup/o93pnbuPwcPHVrpDp82e6WbJNNne7XSHTm58+wweFDn+SxJhgzvfGYMGdH5vUiSgYFOe1DpvmjwpN7n8sDozjVPmzqq0h1e+rxIknfm6Iw3jBqzcKWbJFOndK55+qBOd8rzve/VqaX75UlvT6p0pw+ZUOkmycQJIyrdeRaet9JNkmmTOncws80xW6Xbut4kmTYwsdIdmD5PpTt5yuRKN0kGBqZVupOHdn7GSTLpjc6z38CQzvzAG+PernSTZHA67Ye2/Hul+9zzr1W6SfLwY49UuhOnz1XpJskq64ypdO/8W+f7esKE3vjyUssuXum+Pbkz1n7/o89VukkyfkpnTuOFF3vzfqus1pk7ev25zmfcoV/5SqWbJE8+2Rm7/uN1P6903/5XZ6wvST7+qY9Xum+8/mSl+z/x5yvZUeNeqnRXWe9dlW6SzDWwZqV70q9/WukOn9C5j0uSjRbfrtKdese9lW6SDE1nHmbQ9M5nxpBhvXmj6dM7z1KDpnfGEWebPLrSTZIJg0vPaNN644hT0rl/GTak87v8xtjec/Dg0Z2xs9GjFql0Nz5jz0o3SSaN7Iy1P/H82Eo3SZ6e2nmWWmPxRSvdN9/prZOb8ELnd3nqO/+sdAfN0bvHeOPEuyvdqU+9UekmyaCJM/5++cDHLsgjb7/0X32xLrPoctN/8PlTZvQl5dZbfjvDm/922VWd9ZH77dkZV7l3rr9Uukmy4lOduayHn1yq0k2SifccX+levvKule7eW/Y+w1a4vrMm6exPfanS/diw3lje+zfcutKd88zVK90kuWXbzv3UuCc69zwPjP9xpZsk2w2sVek++bmxle7C37mp0k2SfY75RaX78AWdOfUk2fFDv6x0R618YqV79q23VbpJss41nbVDG6zTGf8478tfq3STZOKNnb/rh3e4q9JNkrcX6oyNLfVQZ1zlpysvWekmyXZX7lzpPvFsZ15o0T2urXST5I6rO+tmp73w/ko3SfZ4tTO2+faOnX0uD/+6tx/lQ3M/UeneMf/qle66f6hkkySPr9oZs3l6wd7c990vr1bpbjmiM378zsRVKt0kuWftzr679a7pjBE+fPIClW6S/Pi4znqnw9fbtNJNknct05kLWWdI5/PznO+W9psn2f7YzpqyH13TeQ4e/tizlW6S5LnO3Pfb+3fWwCXJiq90xijf83hnHPiV4TdUukly08PLV7p7zddZK/q3x++vdJPk0T07Y+137H19pZsko7/W+Z4aM7EzvrzSG71zUYbP80Cl+4Vpj1W67325sx43SSb/qfP99+Ch61e6STJ67hsr3Xmu7DyY/OD+pyvdJDl0oy0q3ec23KnSvfgvvefgyYueWeludWxn3ihJFtz9yUr3qvnX63R37a0pe+qFD1e6K13YWVt+0osfrHSTZMRSnb2pD63Xm7f9yJyde7lrfrtqpTv56T9Vukny0ffO+HPzkuSc4WdXug8/1Fm3lyT7P9L5nTt97DuVbpJstfVile4H/tpZa3/DEp2xhiTZ5COd9TTP7N+5j5u60fsq3ST507jOPt1Vbv9bpZskoxbrzNs+Nf8Sle4H9+39Lk/+Tmc+/1+LnV3p7nBOb//2oj9ft9I9ZOPev98l665d6X57Umfs7NZpvfvlZ97bGWv/4OcfrXRfWqKzFyxJ/nlNZ7zo+es661+TZPgiM34c+ORbzs2zb7zwHy+oGTZqsenzrzTj71lf/GBvTPOYDTvnh9zycGet+3oH9D7Lh/++cy/1xhs3V7pJMvbT+1e6y218aaX7g417z4sbrnBFpbvrSZ1/v8u+smOlmySvLNt53n/xxrMr3SS55ced/cgLffLoSvfUl3qfy/nQGpXsA7/prE3+3BdWr3STZIXPdD7zH/3sPZVuknxs+jcq3al7Hlfpnrz0TyrdJHn80asr3R8e37lf/eycvb0Mz/5wmUr3o188otJNkvvGd+a9P3zVNZXunE/cUekmyTOXr17pbvKN/SrdrcecV+kmycCfO2udtlm/s648Sda//aJKd/krOmPStz7dGUdIknGjOntGRr7aeTfDR9/bObsnSQbW7Ow5WG+tzrrkJDn2+R9Vur/aqzOOPteC36l0k2Sl33TO0dzukx+qdM/+wZ8r3ST5wemd7+tXRvfm6p864alK96Tvd579Pv9IZ+9hkpw1bJdKd8jmnfWny971hUo3Se7/cmfs5SPz9M6nPvGKztzpXV88pNJd9vze+yT2X+mkSveJDTvzbnN9tfM9kiSzLfXDSnfOp/audJPky7t0xpff+tnGne5HOnvXkmTdpTvPJa9e3Pku+Xquq3ST5M2fdO6L1jmo911yzV2ddSf/+Okzle5nN9yn0k2SOb7SGTs78ejlKt35V+/MZyTJmSt0xsTHLfD1SjdJDlyxszfg2UNXrnSXeu+SlW6SXDy+dCbs4Z0zUS74zecq3ST51nW/r3SXGPm7SjdJLj5iq0p3r206P+edHunc0ybJ0LU66/c/fHnn92LHdzp7wpPkxv07c2gHfah3juYTJ+9b6W7zw86cxvsu7J3Bf+9rnb187xn/3Ur3KyveWekmyTqjx1a6V+7be1/x/c8/WOke/qFvVbq737h0pZskN63W+f7b9eud/Reb7NjZx5ck6y9+QKW7zPW9c0B+9sHPVLoLXvdkpfv1955W6SbJarddUOke84nOfq1LN+qsRUySwbd0zsqZ9sETKt0kOeQPnfmB7z9z0J3Tp0//jzcHLDlk1PQj5pjx+0OnP9975lhp3c76unvf6Twb7PVab33WDuM77wcaOLG3T3bY3zr3PXdP6Yy5nTe6t2d/lTs791NTr92s0n3mkisr3SS5/tLOfp677tqt0k2Sp5fv/C5fvULnvXtrHN2bV/jKM3NVuseM3KHSnXPQZyvdJDngPZ09w3tf3lu3/s9dvlnpXvdM54ydla57b6WbJOfe03lOOnDTzr6RL36k8869JBnz4FyV7q+X6Z2396G3OueAv2/XztlZYyd1zlRLki+9/7JK97ILOudzfv3ezjNSkrz9g85zyVqH3V7pJsl5v+rMy956T2deYbfP9O63jttoWKX7ndk6Z3V/7AOdNYxJMuef/ljpbvTt3tz3QeMeqnQPnK9zdt28t2xZ6SbJR8Z0fpeP+2lnTdItt59d6SbJ/ld1nndOHtV73rnwLz+odK8+dZ1Kd/55e2v4h/yjszfuwAU66wBeOqPzLp4keeaCzjlwV73cmVNPkuFTOmPeo7fvfH7+8V2dcbMkWewDh1e6xyxUut86pDeOcdamYyvdI749d6WbJP+4vbMO/OCXO+suz/9Lb8/rY493fudGrd05H/DqrTr3h0ly4MGdtaLzfbf3zrj9/9HZG77s2p11OBe/3pv3e+0LYyvds7b5RKX70Zc6++KS5DendPYzPHRb5/MiSb56RWeuZLktvl/pfv/2hyvdJBl6xF8r3Qe37VzzxSt9pNJNklEf6IwXbb9557yVJPntoM7a2X9ufHKl++cPds79TJJPntnZQ/PuP0ypdJ+Z1lv3/PjXO/sOdlt9j0o3SQYd3DnL5Re7dPYGnLRH5/M+Se48uPO+6ZMW7Zxdcv/ve3ur/np+5/yZqcf+utJNkq8e1FkPdfr8ne/VB/fsjBUlyecuuKTSnTZ4qUr3+vd33guWJL//2t2V7qr39t6fN/nNuSrdFad3xs7mO7NzVlySHHRDZ031NT/qvBtlte/15o3OmLez1v7RNX9Y6SbJRjd1ztXY7J6l/6t1z8uttPT0U399zAy/noVv6owlJMnWwzrf9Uus3vlue2Slzln1SfJkOmPe84/sPH8lyarrd8ZML5/+q0p32hmdM+aSZLuFO+silt35wkr3uOU689NJcvrDc1W6U0vvLE2Smx/Ys9J96dXOWYyvXHFkpZsku8x2VaX7xZM654qu89HO51CSPPSLzrsCj/rx2Eo3Sba864lK99gvdcbFPvdo77zg03fpnNd9zJ87z4zjtzy70k2SA/b6aKX7l+17Z7Y9tvoOle7c93Tui+Y9rXeew8i9O+8E2e34zrPdbr8YWekmyWUrnlrpnvyt+yrdJHnn1M4ZBud8vvMZ9+Bz7650k+T94zvrk0+9/ZVK97bSv12SfHKPzhqDn4ztncV4/Dmds4FuvuPgSvePF2xY6SbJ44d31hgcf1rn/J6bF+ycUZYkdx98f6W76qfvqnST5Ox3d57dz7jqlkp33c919gYkyfwf7uyZXOud31S6j67aeyfBm8939kwOe+70SjdJtpl7lUr32t03rXTPO22lSjdJDnyt867Oy17ujAkcc1Pv/dcPLtw5/+LNjXrr604Ztk2lu/fGP6903zj4sEo3SSYe/r1K99sHd/b13/6uzn14ktzzamf/6COf7D27v3XVJpXuPh/orO85+pDeWsM5t+6sFT3um9tWus98ZYtKN0l+/YPOWUp7H9u590ySrX/Xma9f8pOd+6JPfuDsSjdJvvxOZ9/dp9fsvL987XM6ZxwkyemLdNa0HL1c5/3NSfKp+zvPUoe9dWulu8b+nbMjk+TeSzpnMX7zkHsr3W8d0BuT2//Bzvjyw6scWekmyfcv63xmzL1X5zvqod/11tOscXhn3v3t33XWTfz4kbUq3SQ5ZJvOPeLAhN78wNaLPVnpXr/265Xuj5/u7DlIkmOP6+xtPHpa5375oNmnVrpJ8ptBnc+Mv43pzEclyT8vvbvSXeKizvkJa23RmXdIkr9+svOdffOp81a6X1vvL5Vukuy6cGeu+cqLO+NmSXLE/p37olvXnv5/u+65c4IqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwfZmBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAWbIAkQABAABJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYMh/8h+/M2lKHv3XizP8IqZOnG+GN/9t2qCJle7YiW9VunPPPqbSTZI3ho+vdOebZ45KN0mee2pcpTtlYGilO2G2CZVukowYvkSlO23SlEr37VfeqHST5JFnX650R8+5aKWbJHMv0Pk7eWPg+Uo3wzqfnUnyyl1PV7qjhy1f6a699PRKN0mGzTat0p30RuezM0nGvzW40n3x6Ucr3cUX7Hx2JsmfNzu70l1y9s590eh5Ov92STLx7YFKd+wrT1W6STL51c41T3/tlUr35UGDKt0kmW1S55rHZ3SlO3x05z4uSd4a1/k7GT1yaqWbJLPP1fmeGjxtgUp32oRXK90kGTQwe6U7ZOScle7A4OGVbpLMMWfn72Tc1N6/34iBuSvdt0rP7sOHz1bpJkkGhnW6pY/P8Z2P+yTJ4Dfe7oTfebPTTTJ43pGV7tS3O98lw0b+R0OD/5lRnc/PIa+/XulOG+j9XQ8bNX+lO33wpEo3SUbN1hnHmDa686Hx9uude9okGT14RKU7bVzn73rQ4N745Dul++WRc/a+TAaN6lzzwMR3Kt25Bvd+FmPX79wXjRk8b6U72zK9n8Wrr3XGlx996p+VbpJcetkLle6YMZ3vqAUXm6vSTZK5Ry1T6b7w7IOV7tLLLljpJsnU8Z0xgUefurPSTZLr/3p1pbvbTh+sdM+68EeVbpI8/lBnfud7X/tMpXvTHTN+jcC/zTOsNFY7rfR8neTtdzrfq0ts+KFKd0rxeeeqv15e6W6/+Zcr3bueu6jSTZJn7u18fi7Qe/TLvPN0xuQmjOvMVXY+Lf7HoKmdMZ1BgzuDctNHTK50k2TuYaMq3UkTetc8eXrn2X1Y6eNz+JDOfMb/xDs/5+kTOz/j2/b7XaWbJJuet0elu/zy81S6SbLKoM7n8mvTOmN9I0Z2Pi+S5Lo776t0371M5z5uxKDFKt0kGfK5NSrdW7/850o3SZ5/dcb/+7015b8f9xw74bn86b7DZuDV/P+7W60yw5v/NvKNzvjVLe90nu3GXL1QpZskNy7RuYffZq+VKt0kOf27K1e6C49asdIdefFLlW6SrLpZZ/xx1Dad9a3TJ/Z+l6+78vFK910bdz4vkmRgaGeNyAJrdNYBbD35e5Vukkyb0BmXvuvaznz9CjfeW+kmyRHvu6vSXfaBJSvdJNl/6UMr3ZV/dXulu9tKnW6SbH7D3yrdob/ZqNL91ZhLKt0k+f0Sl1a6by//nko3Sf61a6e7+BI3V7pr3dhbt77N7CtUuvdusEmle8Nz7650k2Tz0zpjNvPu+HClmyQvzvNIpXv5hZ21Cys/35lHTpIbf9W5L5r/lM7aoafW7axbSJJJy3Tut2Z/e9lKN0kumdbZq/TWqp31rce83ZmrT5Il3uj8bowb/9VKd82Lb6h0k2TUTZ3Pog/utEWlmyR3rPrtSneLNTo/i0nH9sZi7/rHJyrdOQaX1sqsdVulmyT7fGrdSneRn/b2CT6++5cq3ZNLw0UrP9pbw7/lxhdUuhPHdNbNThjW+72Y6/p9Kt2BhQ6vdJPkths76+D2POgPle7lv+vt87xyi87ak/U+Vslm5PWd75EkeXJoZ+570OAzKt0keXXy2ZXuP/bpzA8s99x2lW6SLDh2yUr3nb93xs7mn9g7O2jEs52xsweWOLvSTZIz11+k0t1j1+cq3aHHdcaKkmTrUedWukd/4f2V7mNvfbjSTZInbt+00l169Kcr3SR5dr3Ovdx6YzrPq9NW/FSlmyR/u+CcSvcTCz9Z6U5frHf2078W7NzLTbqxM4afJDte31mv9sgWx1a6r1+wXKWbJIdN6Jyx9f1PrVnpzn1k56yxJHnzju9Xuiuvd0ilmyRPT+6MC3xk+saV7gd3ur/STZLrzus8Y/9rpc46ncMP3KXSTZLtvtMZiBqzYWefRJLs94vOvq0DP/yNSnfxSXNVukky+lOfr3RfWGyzSnf+EatWukkyYuPO/MDPj9qt0k2Sjy484/ezD5rw350VN2juIRn84Rn/M1zh61fM8Oa/XbbWDyrd48/urIGbtvOOlW6STJjUOUts3NaLV7pJ8tsvva/Sve2tZyrdJ97bWduTJAc+15mHnO1bnTGx5zb9bKWbJHsc0FmP++Ane7/L553euWf9xqDO8+KDn+itrdtn04Mr3V9M6ozXHLVT5949SZ55q3NG2TfP7/0uv3NdZ8/+12brrAFY95eds0qT5POHL1XpnvCpr1S6p32od37BV+fr7LPc9t7eWet/mvu7le51J3fu5dbe6r2VbpI8ev5+le4P1uuM7278hd443ukf7JwU8cDRvc/ltyZ1xiiGr9g5l+Rvf+ydW777aZ31nCef3zmr9JEv9z6Xj7+jM6e3xuTemvXVnuncC/xgrxsr3eMW7f0s3tn3hEr34fU6a5PvfHX/SjdJzvn17pXumeedXOkmycSdOt9/q83TWUv9re/29l8cvsF3Kt2/LtBZW3DLNb09/flMZ//Mp9fYt9JNkuGbd8a4Pv3UmZXubv88ptJNkqOv6+yfWeH5zr/fXjseX+kmydAzOnuUxny3N+899/YfrXR33L6zNusz8/XWk33xrs444rRpr1W6X/v6zpVuklz0/i0r3e/8tffOsSM27ZwX/Pr7OuMY2/yy9xy870trV7r7l97n8vCNvXOfVt/wyUp3wnO99/zMe1XnfvmsMzrPfrft2bvHePGRzlj7Sh/pvNd0zet7+zpeOvuOSvfRbz5U6SbJmxt09sU9tOnFle4Gj3fONEySd57vjE9ufEjnvmjitM67R5Nk4hNPVLoHzH5lpZskd63aOSDm5zt3xmof+HbvTNGlft853+6e1Q6sdJ/YpHN+YJIseMdVle5Zy2xW6SbJltv/qdL9yYGdPUrfmb9zzliS7LL4Byrd39zXWfPyhW8fWekmyfZf6KxB/d43z6t0k2SXz11Y6f5w1A6V7tx/3bzSTZKXb+uMyf3sqM5+1wuX6b1b473fPajSXXJk73nn8LGldwj98r/738auOjQXXz/jn5UO+8YOM7z5b6uO+3Gl+6/rTq90P7d6b/zjhZtOrHQXnnOvSjdJ5vlEZ17vjDk674t4fzrrhpLk0+d0njne98qzle5v3uqtVbto3s6a6q8c1dknlCTLH9tZx/H6Ov+odHe6d9tKN0nG7HF2pbverZ3zcVdbvvfetsXn+nml+8DsYyrdJMnVYyvZYZvNVenefUrvfahf2ebuSnfyI9dWuiuN7Ny7JMlxe3bOFP3a3J356SR56JedM67e/3xnvHvLtX5R6SbJYt/r3L+cdHNn38i0kZ33dCbJqKM655KseWDnWTRJfvKTzjtMPn5F5wz38w7YptJNkmWW+W2lu9TgTnelrz1W6SbJex87oNI9fZ7embBXXNd5P9eJ63T2mW186mWVbpKcuXznu+ScQ/eudJf5ee8e4zvzlc7KH9/bp/viVatXukt9qXPv8qupnfNqkuTUBW6tdPdZcqdK98tTOmsYk+QnP/5cpbvgFzvvfEiSB/+4Q6U794jOvND1V/fOSNri+53v1Z8d0HmH5OAfd866TJIFP9+Zeztri84Z0knyzdL51Met2vmOmvvJzrtsk2TFIzrvErz8150xuZNK71tPktlWOanS3fTs3pj4XQd3zts75N2dsyOfvqP37PDLO06tdO9doXOPsdXjvTGBu0ZcU+mOf763H2W7oZ32397prLtc+PEfVbpJcvQRnT3Lj398/Ur38g9PrnST5K5TO2c0Xf2l3jjU917ovMtzwremVboX/PTJSjdJPv3LuSrdbx3UeR/PXef2zjTc/Jb/ciHO/4cxC3XO4UmSt+/vvAt52dKZD8s/0nkvUZJc9GZn3nbd2Tv7XN67XG+f4B7HTq10l/7WUZVukrx3qaMr3ZU3eaXS/doSf690k2Sb1zpnSaw+pjOms8CDnfNMk2TXe35f6V49trO3I0mGbNs5t/xXF3bm3S/5W+/Z7/mvd75L/rp/53zeR+ftjDUkyZQ9Ou3HjvhjpZsk2y3W+Sz6bw0eeCqjR8/4dQa3juu8aydJfrVnZx/gFx/v7I/Z98O9d+3Ml87n7oZf7J3ZdtIFnX0F8z2wQ6X7gYn3VLpJ8vyZnbGgBT/QWdPy4rG9s0mGXtd5n+18u3f2BiTJ0T/6eKU75NnOuvWdHv9NpZskO6/RuYefvbS/99THOusLkmSNd3XWAWS/3ruZv3F0Z43WV8/vnBN46tDOuz6SZJ+XO++XOX6pzhzLei/11tddt29n3fPVu3T2kyfJkpf+/9i7zyDN6kLt1/f0RIYZGEByjpIli2QEiSJJkhhQQEVUwCwGFAkmFAUURAliQqKogJEBREAk5wyS88AAMzChz4dTfnvfOlvP3NXVu67r4y757VU93c+z1j+tzt/fb37SOZf59x/snWGw/vs75+wc+ZvO3ri77t6v0k2S7d/fOZfyglP2q3STZNJ5nbNaJt3RWev7z5165/C//erDKt3vlt4tesvk3h7qNS48vtIdKLyP6t8O+fP7Kt27vt55xv7VuM55pUlyxUc672p6921XV7of/GxvP8oLd3bWVJ91S+fs3ST5+MWd9U6n3NiZu/nSFzpnDiXJsmd25mWX/tqkSvf+L/bWRExauDPecPbU3r/fDdM6a+LX2qczX3jsj3r7UfbecZtK94rfd/Yf7vZSZ519kqzz8qRKd63ter/LP/lG5wytI//eeY76/Xter3ST5PTtO9f8ifNOqXQ/9eXemfY3bN9ZK7rmUp172iS5cPXOOxC/sHhnfeTgYG9+4G0X/qPS/dHunfePHntCb3z5jpU7a0WXWbbzrpgkOe3+ztnzH92s866KhQ/tnGmTJHvv93il+6HNO/M7v54+s9JNkjF3dMYb3nfkRpVuktz2wAOV7pFrd9baH/zuzh7rJNln3c5ZxB+9szMf/JXB3n6G+U4/vdI9cN9xlW6S3Di6876KZ95yYqW7xzGdMfwkWe8PnfOe37Vr5375gY/01qasdEXnefX6Wb33E33lkM73353//GqlO+WgzhkVSfLn/Tr77k77YeeMpjF/763hv+mBzvt/d3xX5/M+SUbN1Xnv7XIHdc5hXfsdlWyS5IC7O++pP3xS5xyefHmtTjfJmxe/qdI982OdPT9J8ok/d+4F9sz/+YyKzludAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/mYGhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgORgwODv6P/8cTJ8w3uNZaW83xi1h1zaXnePPfFphreqX7/EuvVLovvTqt0k2S1Vddt9J94aVHKt0keeWlzs9j5Khxle4D9z1V6SbJmEmvVborLbJ6pTt64jyVbpI89FDn5zxiwnyVbpJsu9HGle48846pdGfO7n0WPXDD7ZXuhJEjO90lF650k+Tph6+tdD9/zI8q3SSZf9IbK93B6Q9XupN3+3mlmyRLjZm70n19dOfeZeKogUo3SZ6+f2ql+/Kz91W6STJuoPO9+sqrnXuMsSM7955J8lrpZ5FxkyrZ0aMr2STJwGDnZzFmYP5KN0kGZ42odEeP7nzGzcyLlW6SzDVuVKU7a+asSnfM6N6954wRnXu5uUaOr3STJPN12iOndf5GXp/5aqWbJKMGSt/Z4zvPaKPm7v1ejHylc1/02rjeNY8ofRaNGNd59nvt2Wcq3SSZb/5FK92pzz9b6Y6e2nsOnjFjZqU7et6xlW6SjBjT+V2eOfJ/Phb9nxiY1RkTSJLnHnio0l1o4SUr3cExnd+3JJn9euf34pWXH6t0k2T82M69+IyxEyvd1+Z/vdJNkvsWuLnSfX1gRqU7YtzzlW6S3HZLZ3x58g2/q3ST5LXBhSrdR5/u3G9Nnd35vE+STbddqROe1blHfOipByrdJFlx7lUq3c037nST5MorO/MDCy/+cqV775NPV7pJsvqKb65077vpiUp3yfU79y5Jsuiyy1W666+xaqWbJE/f23kuefnuyZXu473HneSlzr3chuttX+nOHuzN5z9y0r2V7rjRb6h0k2TCyM5z5azZnfHlgZGd+agkKd3WZmBUaax95oRKN0nmnaczXvT6tBUq3SQZOeaFSndgROczY3B657svSQYndv5OZrTGXkZ0xhqSZIE9N6x0l3p36ZkkyazpneeSy2+6q9JdaKneWPupPzi30j3ggJ0q3enPduYTk2TBzlRX5prQG4e6/hc3zPHmZ355XO576pH/6qexwPi5B7dbceU5fUm5c+sd5njz35Za68lO96Z7Kt2x1y9W6SbJaju8u9I9++7jK90keWSeoyrdDQd+VumeOaG3puV915xf6V6xd2cN4+fm3bbSTZIffaFzb7nTKVMq3SRZdfp+le7sf3TW1814qDP2mCSPvv63SveZqztjbgt/sXfP+uuHOuMfD33ruEo3SVaa/olKd/CV1SrdEw7/V6WbJGs83NnPcOumkyrdNebpjYtN/tnZle6Ml3esdJNk4VX3rXSnvrBOpbv0+M69Z5JMvOttle6oZzvPub/ce3KlmyTvvaazn++Je3rPO/ds37mXe+tCl1W6D1zxpko3SW5YdYlKd5sbdql0d37HTyvdJDnvlZsq3RV/vmalmyQvH9KZSz7tnytWumstclOlmyQvXtIZ55174846gCU2nPPjRP/2wPdmV7oT91m20k2SNy3VWTt091Wd9fA7LvVgpZskDy7Xed6ZcGlnTefkZ3rnMtw/79aV7orTT650k2Sd3Q+qdB/5dme84fEtNqh0k+SGc95b6X5r7c7z9Zdv/WOlmySHzbN4pXvHeutXukmywT2dedlH3rF8pbvCG2+qdJPk6vMXrHQXWOnXle4/pvXmC3/6QOe75JLLv1/pJsmtE9eudHdctLOG/5WHOmNFSbLy9zpjcsuc0VkU+NjqnfMekmTMlP0r3S1X+nilmyS/OP/4SnePrTrry1988f5KN0lWnHRApXvgH/9e6W76/t7+7U2e2bvTfXiuSjdJZm3QGUdc+4gvV7q7L9abt93sI6dXug+c0/nue8vevfOOFj6js//37oV7awJvO+zoSvedb35fpXvLJYtUukmy1oGdsc/JC3TOtVnxqt7enJc/0dlz9+CzvTMV37Fc555rtbs768s/+LdjK90kOX/pr1e6t0zvrFsfXLO3hv/eLTpzzXt887lKN0muvXDTSvfGpzs/5xkTrq50k+SaczrPqx/eoXOO4IQpvTm0u17r7Lnb86DO93WSjP7Mh+d48+WTzsusx57+j9c9r7H6uoMXnDPnn5PGfa93X3nOXB+rdHe/9T2V7jefOrDSTZITP9xZTzZr0T9Uukny55W/Uul+9KDO/c7o93bWhiTJTit1xnhPvuHWSvfxhSZXukny6R98pdJ980md8cEkWWadznjp3W/vrN9/5JSPVrpJkiX+UsnOeqzTXfKU3u/F8hveWenu9lLvs2jC5zprGMf9rTNv+ocjvlDpJsmpf+38LDZ4c2fN7CbfOKHSTZL3Xz3n9+klya43H1npJslue3fuudb/+JaV7g9P+HGlmyQ7f7EzrrLXC51nr81+3DtvaMXrP1LpTjhxcqWbJJ9bvLMX7F2r3lLprv6RH1S6SfKlzb9U6f5ir878ysqrduY2k+Sf676z0r1hm941rzD74Ep33bU6+wJ+esAllW6SzLthZxxj5tpnVrp3L9XZn5sko17ufP89+e7ePeIDIzvPJbfd0LlfvnWX3vm4f7ntO5XulKmdgy3eueNhlW6SfP+IPSrdRz7TO7DtuzfM2wmv+9dK9ojPdO7jkmTqdp29AZ99S+d37tIzOnPTSfK52y6udI8/q3fW8+ZrdvbI73vXnpXuRef15gfG3dZZt3fBlp01zx8ddUSlmyQfevyCSvekJ99f6SbJT2/vPJfsdNmkSvdtB/TW1k3fZ59Kd5ON7qh0N/3ARpVukpzw1c5eolXe0tlTnCQ3n9AZUz390esq3cVW7+xpTJK3/rCzPmSjX+9S6e45tXPubpKs+KXOs998U3r7Z44+sHOPv9WEztkXf9iucx+XJBttc0Wl+9LhnfHl0/ftzK0mybifvLXSXeOyzndUkty/RWeMa6MPd+aklnrfByvdJHlswYsq3U892FlXvunKW1S6SXLGXZ1ziPdZtPdZNLjTLpXub7ftjMk9v01vL9E183TWcw4c2jm3/PfzdN6PnSRfndZZj/iP539Y6SbJAn/+faX7p106n/czTl2j0k2Sn/ygszbz1Js7Y/gvvXxOpZskv/5j55o/tmznfitJpr/SWbO+3TsfvX5wcHC9//S/W2fkpMGrxs/5PQVXHdz7PN/7zs45EX99sfM+uAsGeu/k+MKUzlrfN1/UO0fzqG0673A9dpHOvclnP716pZskD17Q+W478aLOfqzLXr6y0k2Sr764VaU77eLeWt9tr/5zpbvArT+vdNfYvLf//TM/v63SfWWdYyrdxzbsvDMgSa7YtPPMf92femsCb3y8M/448S+dOfW1z+69H2iet3X2jdy1292V7gqbdb5Tk2TpnTtzkWd/qHeP+JttO/fwK53fec496MTO+Y5Jct4m81S6qyze2Rt37oS1Kt0kGXnaFpXuvr/rnQs04q7HK921Pt/Z/37Np3vv9n3ncY9WuntN7ZxXc/nRvXWX6z7a2TfykY+/VOkmyfKTf1Lp/mOpvSrdSSv03q0x+Py3K91px2xR6c61eOes0iTZ/9rO+59++LHOeRlJcvqpnReiLnJHZ/z4mgV76wBu3f3QSnf12/7jIc3/kREXdfavJclrC3f2Nu5zauedHUmyyoudd6NP2bLzNzL/Pw+vdJPk51t01td9+urOXug93t7ZS5Qkr67ZWVO27Gm9vXGz9vhepXvQcp+qdE//fenF2klOOrczXnTtdp+vdH+8U/EzbufO/MBOt5f2jCRZ5S+d+frVd+7cyz25zOcq3ST559s68703HN45H/fcK3rPfs+f3tkPtvMSC1S6SfKdSzvnla70y7dUut+a9rVKN0l+/GjnfTyLbtl53rljTG9MIPlGpTr5ts58YpI8eObkSnefb3X2Bnx2nt748rHv7bwb5Q/7v7nSvf2X3610k+S4a0dXuotc3Ll3SZIj/3JapbvSAptVuou/q7O2IUk+cUvnrPWB+66qdD/61s56siS5YP/OOP4xx/b+/j74pc6+rZtum1zp/uqYdSvdJHnLsp13KIxZtHMOz68+09s/+pHP7Fbpnnv8FpVukvzw4s4Y1/d+ulal+/NFOmNFSTIlnf1E2xzauS966a2dd2wlyanPrVrpnjmwUqWbJNt9u/Muz8N+/cH/at3zvJMWG9xk8zl/7uV923Xu35Nk6Y931medvHNnvHTqoedWukmy1OAvK93JJ3T2cCbJo9f9ttL9w9ad8f+LL9mk0k2Sk/51RqW77cKdPT07T7yp0k2SM6/qvEP5V1d2np+T5F9zd/ZnP/3EMpXunWM/XekmyVEX7VLpfnS/znvi7/h67/0k9x/dOWP1oiM75xomyXcO7Lzj4pRH317pXvh07wyKz15xfaW77rGd+/cnJ/TeD7RM6Sy4t794aqWbJO8/eJlK98itOn8j9153V6WbJLd+stN97qOd8yOPOW73SjdJ3n1r5/14U865tNJNkgMO6swrfP6YzvmRi2y8eaWbJLt/uzOW98iszhjThzfvzMkmyffP6zyvrvFkZ042Se49v7M/4JDJnb+/Tb52VqWbJPu8t3MvcOOpnXHpk37TOT8kScZO6KzJXfXF3jU/ecAZle6KB3XWfm150Jsq3SS587nO/NulLy1V6V5wzR8r3STZ6tdjK91pf5y/0k2SXd/fGeNa53cnV7pn7do5XzxJfjf20Er3qdI50o+c+VClmyRbDXbGiwa/1nvX1i1zdeaFHh3XeQ7+4RkbV7pJsseEzjq427bq7Fm+8dRlK90keXVW54yKL9zR2TOSJJ9cccVKd6vnL6x0//bb3lmaJ7/Y+cw4ZkJnz912+3bWaSfJptd29h0sOfdrlW6SLPvhzv3nPg919oVfsXtvfHLkLbtUuuct+FClu96Izln5STJmhc4ZP7es13mfWZK8f8nO+w5+NqtzDtY6G36l0k2Svfb8W6W7xW2ddRPLLv58pZskL+zXGZ/cePvee17HnnZTpbvNmp01nQe+v/feo28uMKnS/flvO2uWxl37eqWbJBus1nnG/sK5vfPGXnxnZ93zJ7/6aqX7w6c660eSZMI/T6x0x36us+fuwl07Z6Ikya+37vyd7HxJ77yjv7+j87t81Im/qHT32r93vuS/Vri80n3/c5372hu+39v/u/YmnX0jB6zTeX9skhz95V0q3fvOWev/uO65t8sPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4XGRjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBj1n/yPB0fMyuDA83P8Iqa+OGGON/9tscXWrHQXnXew0h3/wkOVbpKMHP/GSneN9batdJPk+MMPqnTnf8PCle6YMW+odJNkrvkWrHTve+aZSvfOyy6vdJNkxsxXKt1/PfJkpZskt9wwudLdeZs9Kt0VVlqi0k2S0ePHVLp/uf2vle7bJ76z0k2SBce2PotmV7pJMveoKZXu2WsfWemuNG6eSjdJps1+udKd9VLn32/q853P+ySZ8VLn83P26zMr3SSZmpGV7uyxIyrdESPGVbpJMmPmXJXumFkDle70GZ1/uyQZN6LzOzdz7KuVbpKMm6vz7zdY+lnMNbL3uTxq5uhKd9bsWZXua4O93+WJE8dXurPTe3YfGNW55pljX690x4/q/SymTX+x0h09qvO7PCIzKt0kGTHQ+S4ZGOx0kyQvd37nRr7eGYcal87zWZJMHew8u2dW5zvqlZG9z+Xx83S+o15/tvNMkiTjFlug0h1I5+/vheeeqnSTZN4F56t0XyvdYwxM733GjZzVua8dO2pipZskMwc6n3OjXnmt0v3r3BdWukny6o2d76ixC3U+l5+b2RvHePyZlyrdN8zTG1OdOdD5OY9L57Po9cHOd1+S3H7rE5Xu2it25tC2XKUzT5kkL73euRcYnNi7R1xhmSUr3RdHde49N1x9tUo3SV6aOb3SvfXxeyvdpUd07g+T5O6b/1bpPjH5pko3Sa6+555Kd60lO3PNj93zcKWbJAu9MKnSff0vF1e6y0xYvNJNkonjOvN+s2d37uOSZGBWZ+5h3MTOs8PgrN6z+4S5On9/02d05o1Gj+/db82euWylO378tEo3SUYMduZKZsxatNIdO3fvd3lUOr/Ls2d0xvBfKc2tJsmNp/2h0l1sx6Ur3SQZPXdnvH3LtTrff6+O7I3p7LXfnpXufAt0rvnRB66qdJNk6sKdz7iBKZ1xzyTZ4J1vmuPN8Zf+959DM2cN5oWX5vzf1zmXXTLHm//23pWOrnQ32PeWSvf60XdUukmy4GOdsdg1Jny90k2SP1339kp3xZd2qHS3Lo7F7nrYRyvdpc55rNK95LmTK90kmb7xvJXu4SseWukmyRZbnVfpTvx+59/vky8cVukmyaLbT6l0L3ml87N4/onO2FWSfHbRFSrdS1dZqtJNkoff8L1K96IP7FvpvrbYSpVukoydu/Nzvmfw6kr38vs6z6JJsvyIDSrdZaffXukmyWWDnXH6FefudH998Xsr3SRZcvR9le6H3/H3Svc3l32y0k2SO6f8R9tC/8dG7d/Zy5ckYy89qtK9/NlnK915Hup0k2TzC56udO++fnKle+rpneezJFl1vs56pylbdn7GSTLzss7fyZtfeFel+/dpvbnvS/frfBatMf3ASnflb0yudJPklp06+2lfGP1opZskrzzTWRN/1OyTKt1v3P/zSjdJNhh3Y6U75o2d+/Cnllmu0k2SgdmldVQze3Msi7zp0Ep3k507/35/u7i3l/0tq3bOIjjpwbUq3S2+vk6lmySPP35tpfvIH3tj4pePfaHSffLYzn3Rcmt2Pu+T5ITS+PLKL15Q6T7w8s6VbpJMe/6sSvdzb+2sNUyS3dZ+c6X7wGFjK90Zq/TWRz713r0r3Qs/2Flbvvri21W6STL+gYcq3R2f/W2lmySHvamzPvnYK99f6a73p5sq3SS5/TOd7muLLFPpLvpkb03E9Y91zrV58IXfVbpJ8ui57+iEF9+6kh2/8pRKN0nmP2ONSvfHv+nMu6+2R+f+PkmWWLKzZ/npV8+tdJNkk291xmtnbtLZD7b9NftVukly51uurHQf/1tnffLmp/b2Kd1wV2evxNordPa5JMnLl7610j13h8733wljOutHkmT7F95S6U6d0nl2n+/d21e6SXLWd75U6Q4c+dVKN0neMc+xle4/5u08l2z1bGcvbZIc+fbOc+Xvl7qh0j1sZO/c2Ns37qzhv/Sfnfn8JLnvDVPmePPIc/78X/13z975SE5ff86vg/vSQbvM8ea/vXxTZ3/MeiutV+l+84iHKt0k+eBTnfHd56/5U6WbJPP+6FuV7kb37lrpzvu3hSrdJFn2tHUr3Zu/emelu/rXP1bpJsnUd6xY6f78mt6Y9Od2+VylO3rGryvd5Q9/pNJNkpET5vw7A5LkhGc664beNbbzt5ck++7fOe/yV4v01i188eH3VLon39qZt1n42N6/3zc26syPfWLfMyrd49bsncH/2Z93fs43fbe3Tvvor3X25iy33KRK9xMbdM72T5Jz1+r8XS+84xaV7u7r9saBjrzqE5Xu6scfUekmyffP6YwlbL1mZ+/odUf31uCsvtxile5Lv3ug0v3oDZ39nUly8ao/rHR3OOTmSjdJ3vfjjSvdD2zaOQvgl/t1zu5Jksmf7IzxvjpP5zlqxGd7v8t7vDDnzwJIkg9/oLMWPknWu60zPzZ1ZGeu98zDeuu/P/V059lvuXTOizr6oJ9Vukly3OzOeNGn39MZ00mSkcf8tNJ95GfbVLqfOnnHSjdJvnPkbpXuLud01ml/fufO+tMkWXREZxz4hkN/UukmyfLLr1rpXvTGzSvdwRM7331JcvnXOud9/fBDnbXwv7uid4b75w7dstL9wL69ucLHp3fuP2896yuV7sgf9cahbp/eOZNo+qWd+6JbVuudAf787Z3vvzfc1pl3SJJ7L7ur0n3kXZ17xPcffXClmyTrbNWZqzzrnl0q3QlL9c5hvPa4zs/i/J/33k20xxc7Z63fde4ile4yW21U6SbJgdM6+5Tu+mbnPPTFn+3tRXl9+87+tRtPOKTSTZKd/9G5x5j/6M736vuv7qxrTZIlzu7sv3jPxM7PYte3zl3pJsmJB3+h0j38ms4YcJJ8f4fDK9375urs1xp9dWnzU5KRN2xa6e5xSmeu5C9X9s4Xee/jnTVnr71yd6WbJEvdvGGl++UPdp6DDzq+t2Z94pTOc8kPLrqo0l3pI51z4pJkp1901go8vN/HK90k+fbRrbOv5/+v/qsXVl0m55w/58cgH3qydy7JcVt8s9K98+XO+ON6X+3tx/rQvp37nk1v7+3HGrNyZ3/FkqU9+1/doXd+wePv6ZwJe8ejnbMj33DqFpVukqy2e+d3bu+pnXdJJ8k+r3TGKRZ4vHM/ddYGnbGEJPng2p2zz7687P2V7ouLd+bqk2Tj93TW7j1za+e9Q0ly7PZ7VboHTvlapTv65c47S5PkLYd15t+W+MNple5ai19Y6SbJG3/8g054Ru+9bXu97aFK9+3Lnl7prnVg5zz7JDlony9WuhPf2XmH69NfPLPSTZJP/Kpz1uzN13y70k2SFffqrB1a/6DOv9/vVlmr0k2ST43dpNLd8Hedn8VGI3u/F5eM69zjf/IbvfWt7/vaPyrdTTe7rtJ9z496axcWOLizjvGwdMYfd5h1TaWbJOsc32n/4k+rVLpJ8vm/dtZbvP35P1a6G1/8lUo3Sbb6ZOe+9kPv76xb3/r6D1W6SfLYFZ05sqkPdM5+SZJ5vt65/9z65G9Uujss2ntn9zcf6rxDYeVJnff8LPpibw3x/t/qnFH2t8/01voufcAyle7nHu7MkV39Yu876i3LdPawHTez81m06g9741unX9A5f2nBAzv7JJJkzCc698vXrt0Zt7556d65Gru/o3PGyN5LTK50D7ln+Uo3SWZPXrvSPfSYzl7aJNn/6v0r3V9dOrnSffHeKyrdJPnqhedXuv+8szNXct0evXe87nBb5xzbHQ/rncN45Umd9yltelNnfm7EQs9Vukky9p7OewP+smNnrf32a76v0k2S73WO1ciU807shJO8+7ud86nP+k5n/+EVP+3MZyTJTUv8uNL98LjO887jK3T2NSbJZd/t3ItvP3hkpZskfziwc6bvJ8/+dKV79ZTembAnLt45r2q1UzrjGO/6cG+t6Ltu6bx/bcHle/t0nxvZGcd/5oO3Vbov/bx3Xs5Rn+q8z2XXBTtn6B59bed7JElOOfjLle6GF/T2ozz5SG8/7X9jybyQb4+Y8+dFvLxBb45sx8k/qnSP/PZ/d2b2/5evv33lSjdJfnZl5/n5iJM779VOklOX7DyDrbdOZx555Pc6zwVJcvgRnX37q7/4gUr3Nxf0ztl59NzO+52e2KezHjdJXpnVWS+z3M86448LnN+Zh0ySO3/1r0r3irM772C6eKHefMWkT3Xup075Y+e9NUkyecfOeUbr7tI55+OulXrnuJ935exK9zsLdJ6Tfr1m7/lro4M7a33Hn9Rbx3H0pp3Pok/8ofNuw8e27pwzkCQXrdE5y+9zy32n0t3ie533oifJkg929sa9+Nfe3qqN/tiZ45z48SmV7tPf791vLXNn59l8xmmd8z9fPuazlW6S3PinzljQqGd7872vHNX5zH9gUue+6IFf9s5Y/cbYT1W6d5x5aqV74r6dz/skOe6KfSrdr23e2+f5+JadOYvRb+2cab/s5zrnfCTJdtt39vZ/5fOdc1rOvar3HHz7LzpnPjy9We/8uqc+MqrSHXdOZ+zsunVvqnST5Bvf7Xx+bjyjc49x3XbvrHSTZMGfd84J/MH5nfHJJFnj2Scq3ZNHd55LXn/+4ko3SbZbojNXMmqBmyrdb9z89Uo3SX4/pfP99+y7v1LpJsmKa3ber3jVHZ2xvsv+uUylmyQf2LPz/XfQlzvn+v7mls6+1CTZ/cTOebOPHdl7d8A/3nxopbvztzu/y9tu0xtfPne3yZXuSht35oNvu22lSjdJvjbu85Xupbt33nuUJLuud0Cle9XDnTMvT7rlbZVukrw8X2esfflT/7uz/P6/bPbGRSvdJDn3hM7ZQe/cujfvN22TzjrUnxzW+Z07/uZxlW6S7L9d57Noyje/W+ne8eodlW6S/Ok9S1a6vzuh8y7dJLn9iM4Y5V6rddaKfvCXJ1S6SXLAI537z5tX7Jxbuc1mnfONk2T+cZ375fl/1Zv3u/DtD1W6S/76sEp39Pqd9VtJMt8lEyvdMy7pnPfw5OmdOfckOfgjnZ/zk3t21ukkyaZ3dr6z7/u//N87J1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP8yA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMByMGBwf/x//juSeMH1x5zRXm+EUsudhac7z5b1tvtlmlO3rcXJXuo489Xukmyb+efKrSXWrF3SvdJLn2iuMq3ZVWW6rSff651yvdJJk09+KV7sOP/qPSnfrirEo3SZ5/8bFK98F77q90k+RN6+5a6Y7JS5Xum1aev9JNkm23eV+le+3lF1a6C84zX6WbJG9ccpFKd9+DD650k+SstQ6odDdcbqtKd2Bw7ko3SWbNeLHSfXXa1Ep35tRXKt0kGZzR+cx/debTlW6SzB69WKU7ZkTnZzE48HylmyRjR0yodAdHjKl055qn002SEa+N7YRnzux0k4yaq/PzGJHXKt2JCyxf6SbJqy8/V+mOnjCx0n1l5vRKN0kmDYyvdGcN9p53Mqbzc86rnZ/zrIHOfXiSzJ7d+fvLrHGV7MDozvhIksx4vfP5OWGJN1S6SfJ66b5o3Hydv5HiR1Fmz+7EB6Z3/kZmzRpZ6SbJK090xvvGTex83ifJyNGd37mBuTt/I6+98GqlmySDozqfc+NGTqt0M7p0T5vk5Zc6P+d53rBQpZskrz7duUe856XOM9rvJ/yy0k2S6VMGKt01Vu7cY9zxr95cyXwTOz+LV9N79ttts87Y2Yzn561055mvM9aQJDPGdb7/Hnm+83f97AtTKt0kGbvwgpXuvQ/dW+kmybPPPFvpzh7dGaud9viISjdJ3rT6myvdNd68YaV7z6NPVLpJsujEzs958h9/VekmyexnOt9/Tz/YmQNd9NXePeLqC8/59SNJMjCz84w2YVTvOWr8yM41zz3yf76m5z81fu7Od8mYETMq3ZGj5ql0k2Rwduffb+SozjjGqMHOfVySzCj9+82e1vteHTmq87k8+/XO+NaYuUdVukky7eVOe675Ot8lr7ze+1nc/cgNle6Li/TmB/Y84zOV7osDoyvdV6f11iAs+obOuqVb7uw8k0yf9mSlmyQT5u78+80zujM+kiQjps/5MbldDvhUbr3rvv/qy+QNk8YNvn2TOb9e9MFV95vjzX97zzIPV7qrz+zcm/z48dmVbpIsMbE05jazs7Y8SZ595oOV7vUDe1W641foPXO8Y6CzpmXsr1eqdH87+qZKN0mmLPOzSvfhk5epdJNk7Ic6a33nu+ehSnfjGe+qdJNkrwsfrHRvOqnz/HXxgp37hyTZ9/7OPeB+VxxU6SbJzU99rdJ9ZbFPVborb91bw//QX35b6S6xcmet9gU3fKTSTZK9tzmy0v3HMr01STf86JpKd8G3rljpfmpy57MzSX45pjNmc92Nb6p0N11nlUo3SbZa85xK97zrJlW6SbLUfJ11OE9s1FmTtMADnc/7JFnj3mMq3cce6tzjP7zGWpVukmx86EWV7iIvdf6uk2TV+5asdB8d6My9bfPcjyvdJPnxq529xfOv2rmvnfiXkyvdJJn82Ccr3ZV2uL7STZKRi3X2Vt3z9yUq3fHL9OZ7T16r0z79/E9Uuuet2XluT5KVbuvMnV4z2FnPmSQr37Bfpfumt3fuw68szrE8Ov6oSneppd5R6a70+vqVbpLM/+Adle4rS29f6SbJJTO+V+nuMU9nXvaQB3tzZHPd+tNKd/5VO8/BK6zU+e5LknNO7/yc37DSjZVukuy1ygcq3aM27axP3nGnmyvdJFn+js6ZD1N+sk6lO/m+zr1LkgzseGCl++zbP1vpJsnV23buBTYYs0el+/T8vb05G+zXeQ5+573bVbqXPfpMpZskC6zR2dtx1pWdbpKsefUyle7Uf5xQ6X5hxzUr3SQ5fsmPVbrLvKmzpvOFyYdUukmSWydXsgf/5spKN0mu/23nvuifsx6pdE99ZM9KN0m+MaZz/7L2U7dWuleN+EalmyQb73hapfuHs39f6SbJPh/6cqW793OducoT5vlNpZskvz1tgUp33ZU6cyXjz/tnpZski23QmVN8rHj22vZXdc5U/Nt5nXm/R264s9JNkpe2XavSXWpm5z789T911o8kyRXHd8bal//d0pVukqx/87lzvLnd0T/JzQ898R+ve154lQmD7zpzjTl+PVMefcscb/7bAaftVOme+bvOvdQT525c6SbJmBO2qXTvObg3jnfTFVtWumu995JK99erbFDpJsn7ju/cSy335N6V7tP/6q1TO+lrnT1kCyx/RqWbJG9b4/JKd//vPFTp3vH3+yrdJPnwi501EUd+pbNnf7M9Op9DSXLxDu+udFd+08KVbpJM//Zhle7WF3bu0X699e2VbpI89eHOM9Lp/+iM4z03oTNvkyQjXuu8N2DtL3bGd5Pk4/ccW+nus/+XKt1HD3tPpZsk6x/bObv122M79xg7TD2i0k2SKcd1xo7nO/niSjdJXpznj5XuHnt01g//YERvX84b7+6s+7p2cL9K91Mr9s4leedZP6x0V16oN1d48YKdtcl7v955b8DX5u3NNd0y+eOV7pObrF7pnnBab4/ZfhseWunOvXhnv1aSHHdHZ23kR1f7dKW77YTNK90keWCezhqcPzz79Ur3/Kmd862SZK3fnF/pbnv4BZVukozZrnPW84rPvVzpnjy5d3bdxn/qfObvuNmFle7Ci/S+r/8wvjOHvMEyV1W6SXL7s5318H9buNPdYfSfKt0kOfCMzjmoo/48pdL9yps674FMkm1WPbzS3W3HMyrdJHnyD501jPvP6Lwj9Nqv987UWGuws/9i9PfPqHR/ePpDlW6SrPOm71a623+qd97Xfcd3xnVeH5xU6S688F2VbpLsuE9n7uGW/3wJwP/IOgt1/vaS5IaxnTWoIy7pnfW88wKdZ/elR3bm5/af2VuPdOe3Ovufln++8x7k+zfvjS+vekrn3KDDpry30k2S2fd/sdLd6eXOvcBxD/T2eP7umpsq3d+P6ozpjFikc4Ztkmx/e2c9zfYH7VjpJsn0tTvrOafuumql+/wrnXnKJHl179Uq3fUf6MxpfGHiopVukqx2f2cvw7kLr1vpJskDb+q8G+wdX+t8R617WuczLkkOHtl53jlraud8nz1P6r0z546Bzjkud47r7K9Okp3P7qyBnWuJ5a8fHBxc7z/970YssOZgtp3zZ0adclRvb+GjW3+n0j3vDV+tdH+8/ucr3ST52cwzK93btuydxbHKOzu/G29drDOW96OzFql0kyRPXFHJfv2Pne/jo7/z60o3SZ5ftDMve+UyvTN913xL53fu4Amds7offLi3H+XMLTt/J9+ceWil+917e/uxHvlT5zz7j224b6WbJBet9/1K9/Advlnpbj59/0o3SQ6Zu7PuebWzOmsYt9yvt+f7Nxd33rWz1p6PVrpJ8q3SHPXHf3Jtpfv3Ey+rdJNkl7HLVbqnr9BZT/3z9J4dlrq/M5b3nuM7vxdJMvfEzhmBoxecWumO+cnnKt0k+fDbtq50t1uos8/z4iV6YwkrXt6Z11v24Z9Uukmy+5KddVTv+Hvn7LqBL3W++5Lkl1/rvE9pz3TOL1jyic59XJIc97FvV7ovTeydH7Lvpj+odEeN7rxz/elpnbGGJPnyYOd9Zsde1DmrdJdZnf1rSTLXIZ318C/8pTP3liQ3H975XT7/mM5+vhN26J3XdvgtnWe0MVd0zgre4sDeefZPr9PZy37pT3vrcN61cmef7vcnn1fpHvRi56zSJHnilbUr3U/M7owDr3by5Eo3SZZ/rrOvf/n5eu85XubNm1a6G1/aeV49Y8O3VbpJsthRf690n7iuc3bQlBG9e4xfPd/5WZw9vnOmVJKc+u3OGv4PvLZhpfvwrD9Uukny3MTOWSCnXt253/rSqM7vW5KcOLFzvvhxj3XeEZokg5+eXOl+YWZnn+eLB3fOW0mSw4/ovD/vE3t2/v6+9eXefP7qpfNKt/pOb2/j/pt03kmw395HV7pHnNV7/9qNx3TGXk646heV7j8uOKnSTZI9du/sx1xkdm/P8inHdc6d3+6OzpzG7JmdZ9UkefctnfMaLxm7UaV73iOd+cQk+fo+nXNR9n/26ko3Sb449YxKd953XVfpTlysN290wRIPVLq//Ffn7KeND++MuyTJGb/ojJ196NTOeTlJ8tL1nfOOtjtr7v9q3fOio5ca/MACc/65Y4GpnTNPkuTSk5aqdNf88xmV7nybdNYtJMn37+nsifzLhr3zB2c80FkHfti1J1a6o37V+1lsuETnc3ePVTp7Wr9xTecZN0nGvdoZv/ri9Ccq3ST58JTO7/LEqzrvyf3CEp31IUnyhnk76+vmWasz9zZtSu8suDvX7XzP3/ir3r7v79/QWRP/5ec7axeuObl3ruhjV3bGbL7xUmd98vg3dfZwJsk5h/6t0t3w8t67yq68vLP39MafdcY1F1mxMyeUJLPO76wjfmxMZw3jUSd07gOS5ICHOmeMH3V07wyRfS/vvPf5+vGbVLoXTumte37gs3N+j26S7PfPmZXuAhM6z6pJstBHO39/D46bVOkmyVJbd9bOfvDEzp7l5ad3ns+SZN2731jpHjG2c9bAWqvsU+kmyf4rPFbp3rx3bz/RMUu9udL9xgc6v3Pzrr9YpZskd57WmX87/7zOXMgRg73n4DWf6JyZOOWfZ1e6SfLXcw6odK+/9ueV7iVTenteN93p0Er3Iw9fWOlu+fptlW6STH9ml0p3p4ser3STZI9//KvSffNanbMYdzm/t59hy/k6vxsf+8snK93HZ79a6SbJrybO+feaJskXj+6tKVvppM6a+KcW7ezzvPHdC1W6SXLqxM49/omHnV7pbrZkbz/Do9d1nh1uHbFspZskn/jFmEp39YM7c6AHz+qtzxrz8c6Zl6uf9uFKd9akhyvdJBlzSufs5B888dFKN0luP+ruSneFz7+z0r3krVMq3SS5bMGdK90Nz/lepXvB6b13893+ls7Y9Xqbn1HpJsm+d/6o0v37qstUusee0jkvIElee6Zz9torg50zqj/cewVUrtq18+6AhefufHYmyRIvddYKLPmB0pluB/Tmbads11mfPP4fnd+L+e7rrBNIkk99oDOHPfjb31W6SbLm1Z19uudt0lnDde+SvX2e7366Mz9w9V/2q3T/+KbTKt0kWf9HnbPLJ+zT+yz61zlfqHRXvOkd/8d1z723FgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/yIDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHIz6T/7Ho0ePyZILLzXHL2LSyLFzvPlvoyd0ugtMWrLSfWLKuEo3SR585LJK9+VZi1a6SbLOultXuqPHd37Oiy30eqWbJLNeG1npLvKGnSvd12ZPrXSTZNrLsyvd21e4rtJNkvv/+Wilu/H2m1W69z7e+1lMuvWOSve++6+vdMevvEGlmyTPvtz5LDpi1X0q3STZaLVdK91xI8ZUui88+kilmySzZz1V6U57blalm1H/0W3ff2TaayMq3VHje/eIM2cOVLpjSrdyAyM615skI0bN0+nO6Pwuj5k5f6WbJGPm7VzztGmlv+skY+aa1OmOH13pZvC1TjfJ2HnHV7ozX61kM2pgZiec5PXxnQfhgYHOfXiSzB492OmOmlbpjpnV+X1LkunPz6h0B+bpfEm9PqtzH5Akc43t3L/MfvnFSjdJRoyYr9Kd/Wrnu2TEyOI9xuzOOMas0jVPe+bpSjdJxo7p/C7Pmtn7Xh0xvfOZP2r8pEr3ted641DzLt65/5yZzr3AjGc73yNJMqv0fT39yfsq3SSZMb3zc349nc+MOx+cXukmyfILLV/pPvFwZ+xlwflKkztJ3rv7uyrdkc+uUOkmSZ7ufObfd/VDle6MZTv3REky642d+9qlFluu0l1k4eI9xiKd55LxI3rzfoNLdu4xBl+5p9KduvgrlW6STBw5d6U7+PDlle6yI3pz2HPP6jzvjHxwYqWbJFMeurfSXecNy1a6cxXHl+cZ6PxuzDdpwUp3YHbnnjZJRg525rrmma83JjfXjM491+gJne+oGc/1noNfG92ZKxk/snPNM14tjeEnmXti53f5tcxV6SbJqNc6a3VeHej8+40b2xtfHjPQGa+dPr0z1jcw86VKN0kWmLvzd/LMI701CINTOvdFs+bq/CymDXQ+L5LkznseqHSXXWyBSvfl13rPUePm6owvv/bsE5Vukkwbv/Qcbw7+//h9e330jDy2xJNz8Gr+XzPyzzne/Ldlxn6l0r3x4X9UuncuemOlmyTXLtyZ7x331ZUq3SRZacuTKt2DVtq+0n1wns4YRZKcMunxSvegFRapdDef8dZKN0lee2ynSveP5/bmFZ6ZOqnS3eGT76l0/3bqxZVuktx5eqe7zds7938zf9tbk3TVh+f893ySnH/xryrdJHnHwatXupM36IzF/v6Wzp6fJNlz07dUuvd97rBKd5EVf1jpJsnVP+jcD697SO/fb8WrNql0B7btzLG8d+7OvWeS7L7GoZXueYueW+mueFFnL1GS5LnOfe0bbuj9+y00936V7sd/3/kbmb3ozyvdJPnCGs9VukdddXil+93V/lTpJsm4u75W6b6+cO959YZVl6l0Zz7fmYe8cK7ePeJTj15b6f56qc76npWX7nxeJMl623Se0R7+buc+PElWO7izb2ujdc6rdG+85x2VbpK8d0pnHOOnC36o0h314GOVbpKMvrLz+fn4CutUuknyyuDHK92bd+vss35gnRcq3ST5wLfOrnR/clXn+3qpLVeudJPkqwt25rKOPak3jvHU9M6ZD5dv1RnHOHmjzrhnkkwfvLnSXflvm1a61/ytt6blpM901uTevesOlW6S5JS1Ktmv7/bXSveFt/6s0k2S59/55Up3n6M7z+6fWPBblW6SLHB957tk3pt7/367feb7le6qf+zc4//xbZ11l0ky85HO5+fUdTtjLzs+11mPmyTnvXBIpTvw2JqVbpIsstwfKt0ndtit0v3yHSdUukmyxIt/qXR3W2q7Svecrd9d6SbJW7bqnFd148+/WukmySa7v6HSfeHatSrd41f/SaWbJLce2HkO/ugiH6t0r1+xd4+x0pmdMdU/z71VpZskl+zy90r3ol1ur3S//sHe7/IHXu/sLb56dmfd5YYje8/BP775ykr3wW078/lJcsGTnbHPW1e4odJd85NLVLpJcvwynfXJB5XmYJbZozcmd8seK1a6U56+ptJNktfGzfm9LoP/5V6+qQ+9msvfd9OcvZgkdy++zBxv/tvjR3SeN5a48tZKd/tb96p0k2SVw7eodMe92tvbu9crB1e6H/9N57P840ddWukmydnvWbXSXW7JUyrdi67qjQNd/anOON597+nc7yTJS7/v7PU66LbOmvW3vtxb/z3r3cdXumu8szOOcPzbemdxfHahAyvdyz/QO0tl/290Fq1vefCple4tozv7fZJkz63urnRv3+jkSverM86vdJPkz6utVumO/df9lW6S/PGDV1S6S+zSGbt67pLeWQ6vrflspfuVd3+n0l1r32Mr3ST57j1fqHQ3ObH3XfLtRTrjeP+cb0qlO/mo3rnz7317570PX1ywc87A7kd09q4lySXvuKvSvW7Bzrxbkuz7ZGc95+Vr/bLSvWnlzrkWSfLyjp31BfMs39kXsOuTc/6dYP8233Kd34tbLl+/0k2Sn47ofObf/4fOs8OS8/bOuNrk1j9Xugevu0ale+b6vfXfq814f6X78z/1zpVZ4/7OeNF3d3tjpTvl1s7ewyTZrbS8YN5v71vpjvxS7x5jhS90xoEP2HfOn7Pyb0/vvGele8P8n6t0f79g7xyCHa/rnOu08RGdvWBP3955D2SSHLj1byrd1dbqjOEnyS73d87FG/XtzhzMIwd21k8lyT1/6/zOHf/TPSrd1e/YqNJNks2X7ZzPedMLkyrdJBn7u87Y5z9f75wD94FVOs9RSbL+jzpnwd35y85Y+9JTP1rpJsknVt6v0l1tj846tSRZ7k27V7pfOqEzB/O2t3bOcEmSv9zd2fNz7jad5+ubb+it//7KOztnzT43aqFKN0nOPLszjj/5+M5a+Iu+11mXnCSXnd1ZJ/rL8w6qdO956axKN0m+ddmkSvcH3zu60k2SHf/+cKW78kudMzwPWroz7pIkS7/3qEr3nk9+qdJ9evnevo695+2sLdrt+s4cTJK89Yudfam/Pr4zN/7qF3vnPp15XWdt+evzd+aaHz3sqko3SW5+8aFKd8MPdfbHJ8nLv+qdgfzfWHzg8XxswhFzvPvUa711HKtsvV6l+/5lO2vod/92b5/ssTvsWuke9Ujvmq/7Xmd/2qFf7MydXvC33rrZ566eUunudnDn3Rk3XNV7l/vxh3fWrX9os84ZtknyzUs654Cf9d3OvOznt+6d1/bwrb+rdD+2Y2cP2XLf7ZyJlyRH79U5c+GhC/ardJNkr307z0m/f7pzL3DFCt+odJNk2h4/rXQ/P6XzGbfeBzpnlSbJF976x0p33PadsaAkWX77ztqhn1/TOUfsmFM/UOkmyfvm7eytf+HSIyvdfx3TeTdXknznwKcq3U9+trdn/5sfenOle9fH3lbpXvuZ3j7BNZftfJdMu3ndSnf9hzpzskky5cXOmqTPzeqs70mSz/5rm0r3kFW2rXT3PqU3R/aZhzpj3ovPc2al+9Q9nXcpJcmNR3beM37IjGcq3SQ57fzOWWKvrdk54+Mtp+5T6SbJcot1zmtb/CtbVLof2qlz75IkX1qqs59v7E9XqHSTZNG5Oudobndl54yKX53T+/d79bFO+7Fpnb+/Q7brrCdLki23v6jSvWyrqZVukuxwRme9xZ53vlzpjvh9Z491kuz5z84ag6XfXjrf+JnPdrpJ3nJ3Z95o1Fd77+y+a+POObZ339p5B82/durdI47fpbPndURp3ey69/b+rhe7ojMOddOvOu85SJJZb/5Xpfu+EZ11HDMP6a31vXOLeSrdTd63WKU7euKLlW6SfPddnbNcllz9w5Vukjz03c77D/92e+fstaWu6NyHJ8lth3b+rs//SOddkMd/qbeG+PWDO3tdLvz9pEo3SfbauzNG8r5tj690jz6kd1b3sZ/rtL/8TOfzfpH5On97SXLQ2Z2zlP68e2//9iVH7l3pPrHu8ZXu8fv03hNz3F5rV7rH7Ns5O2+PH15S6SbJ9C911nr8edPeO8fu/03n++/jUzvrkzfdrfN8liQfu7vzXsVlvv9Qpfv1ZTvngCTJ+Hs6ZzLfMrl3juDqN/T+tv8bT680IiecPefXGax64pZzvPlvow/rnD/4ypvPqXRP/nTnnI8kmbBA5/y6Oy/vvZv57g32q3QvPHdipfuz3XvvOb4wnTHTMX/q7HX+yAqd/ZBJ8um/nlvpPvDD/SrdJHl2s855KodNPbHSveS+31a6SbLQxp15oeu+2rn/+9xivXvWg27ttN9fOqclSe5YoLP25NRlO/tD1zyyc+ZJkvzkljsq3dvW63x+bvuj3lq1f83/YKW70gtvrXSTZLW/d9bEL3VS52ynmzb5SKWbJGdu+ftKd9fvdN5ZeuYZvTO/Njqzc87OsZ86qdJNkucP6awVveTg4yrd93yns4YqST4+q7Nv5IqNl6l0r/ryhZVukhx0bee5crVnN650k+SoQzrrWiau3Dn/c781J1e6SfLhY35d6V669KOV7t1z984DmPyjznPwA7t2fsZJ8qedOntdrrugc2bUMl86rdJNkmnrd85lXm/vzu/c6u/vnKuWJO89qrP2a4WlO/fhSbLgvWMq3Vt23rHS/cKqnbPyk2TRBzrvR9l9gc4e+ce+23sH2yqnde7lpm7Wewfo1PU67y29dvPrKt0vHtW7X37/VztjL7sf2Vlrf/nXO3uJkuSWOzvn+h75XO/vb+8FOs+Vjy89o9J95IBvV7pJctesznndZ5VeL/XQtM47aJLkss067+7Y/Yne5/LsXTtnuSw/ufP+67O/0Fu7cPDmm1a6k9/ZOVPqlnG9+eD7t+/s3175uN4+wZ0OeqzSnXLAAZXulza5qdJNkpe26rzP+sc/7JzXseCqvbWiU2d03jXyyTd39rkkyRvHdZ5Lbn2s86607z/fW4+xxJmdeaPBUzr7Rja6v3f29WNXdc4C2ev4znNUkjy1Z2cN1xPLdtYgfGnF3jsJXnz2E5Xurp/q/F2P3qz37LfjvhtUunNd2Xt2v+m9N1W6r/6wc/b1/Nt0vkeS5D2TO+MYDx3ZOXvtEz/onW/8wcs76172Prezli1Jzj+4NKf4fznebqDz/w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ncZGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP+HvfuKtqwq1LX91apMBYqckRwkBwEBlaQkAyAGDAgSVBAFA2YRN4JiAlEQRQwblaQCCqggopKD5CSScy6qoHLV+i9O4+5cbPdfX1ttnfY81/C20VbNOccYffTeBwAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcjBgcHPwf/8dTpiw6uN3rtl7oB7H6Gssv9OYrFl906Up37sjXVLrjlp5T6SbJ+Wf9d6X7yBMvV7pJctinvlPpzn7myUp3yuQRlW6SPPfCI5XutEefq3SXWf1VlW6SzHm2c8wvzHym0k2S52aOq3RfmP5spbvoglGVbpLc+/iDle6KS86tdNdeeZVKN0m2vHuJSne7iWtXukkyZtToSveZZ56udOfP7J2jBuf+z6+h/hMz5j9V6c4euVKlmyRjxnS6c+f1rosWW2SRTnjupEp29ITeZ3l06Xs9crDzuzxm4pRKN0lGDEwudTt/iyTJ+LGV7MgFneutUSMXr3STZMa8WZXupImLVbqze7cOGT+y88M8v3jMC+bMrnRHZqDSzajO70WSTH3o9kp3YOyile7IMQsq3SSZ/8zzle6YZZapdJNkTOkaY2Dy+Eo3EzrnkSSZ8cT0Snf0gs51+PTnnqh0k2Ts/E73pWm9Y56yXOe+cv7AyEp3RDrnkf+j8z2ZObUzpjNmdOncl2TOgs5v/twFpfuzJGPmvlDpzhvsfObGL94ZQ0ySMSu+utPdqHO9PP3Gznh4ksx5fmalu2Bs5/OWJHMfn1jpzp7VGXt5YbBzHZckj03vfDZW2WjLSveaey6sdJNk3nMvVrrPTu9cxyXJmImd8+qrX7tVpfvQ3VMr3SRZ4tWdc8n6u+9U6c5+uXfvcMcPzqp0R87u3bsvO6rzHG2J+Z2bh+kDvWvEJcdOqXRHpvMMLaN75+tFR06pdGf+B3N6/lPjR5euP0s3wvNfqmSTJAvmdn6XB0Z3rpfHjiwNNiQZHNW5X83c3hyEUaM7Y2fTZ3buVwcHOvckSTJyoPO9XvBS51nl04MPVbpJMuelzt95dOdxcJJkg1W2r3Snf3CjSnfmOp2xviQZfOqWSnf0Yp35bDOn9/4WK63W6b74TO8Z9j13PLrQmwcf8dHcfe+//ldPK1dfYunBY3d9+8I+pExbe8eF3nzFmCm3Vbovr/XxSnfrG8+udJNkm5suqHRHzevdG5x/4B8r3TnPX1zpHv/YNyvdJPna/SdVuueN/kul++539/4Wt372uEr30W12rnST5KW5/6h0b53Vuf8aNaNz/5UkL038bqW74ZOd+T1j9ntPpZskH/vHlZXuwEvvrnST5NUXdX4zfnf3NpXuOht3fi+S5Kk7V610719is0p314E3VLpJ8uvzOs++t7n+7ko3SZa9qnOemnrfRyrdD43dvNJNkpO3fqDSXWve8ZXuy1tsW+kmyaS/dZ6FfO+lQyrdJPnWERtUumde96dKd40f3FrpJsnKW3aev5284T8r3cOX36/STZJ/n9WZ07nSVttVukmy1j9/U+k+tGGne/P4D1S6SfKbe5ardN8+++ZK9947OvOpk+TFozq/ReM+ckqlmyTv/8ZXKt2Lv7RkpXvd6r1xzTc93vks/3zPzrXnZ04uPVNPcufA7yvdh9fvzSnb4/6vVrqj559X6f5t2d682elrdT4be619cqU7o3SvkySbLnVRpfumKetVuknyrpM7Y9ePLdO5X93/a70xuSUu6qyzXnf7j1W6pz3R+e1MkjX+3fn3O3PGGpVukmz10uOV7kXXr17pbrx9b37klcv/qNKd8eFDK92l53y/0k2SUZ/rzE/+w4LOtWeSvH+Lzvdk6zs7awMuXbs3b/apPb5X6b7prM513G1v/WmlmyRvPuy9le5P7p1a6SbJk2t11mCsPfGeSnetm/atdJNk9OevrXQnnLNHpbvJtp1nMEnyjdM6a1Pfs29nfCtJTpi3Sqd7yYRK99p1Fv4cqlfMntB57jfxj51rzwu/3pv3vPdSa1W6G922caWbJGd/qjOO+MU1OtfhJ7yuMwc1SVadeWale92GB1W6i07o7OGZJIM/6cy1n7ZFb+LzCq/qrMe8bY3O2NmLG/XGdFbYvvP923lE59/v8kt7cz6f2KrzfPyt9/6u0k2SB+/fb6E33/W5d+WO++74j+c9L/GqNQd3/szC33t3t+9+faE3X3HS0W+pdDc/qTM3ZItHOms2kuSSGZ15vvsd37l3TpKxv+mci/c6rXO984tPT6t0k+SUV3f2vf7cIp3rhzef0Jtbd+9lnbH/Pb/3mUo3Sdbf76OV7vZfuKrSPfXon1e6SXLHvbtUujfd3pmz/r3VOnsMJMnAB2+odH/1lU9Wukkyen7nnP2Dk/aodJ/9S+fdDEmy3PGdcbEZY35b6R74mn0q3SRZ6fg7K93H7ujdI634UGf/l7PffFSl+82Xe+9QuPPAIyrdgT8dXOkesGJvs9l9ftl51nTDZb09yhYZ8bNK994VOnOobnp/Zx+qJNnjhc735MJNzql0f7dyZww9Se4c3/n+rbNFaa/ZJGuM7swhfvq4L1e6N03o3F8nybiDt6h0L/vhDpXu4/O3q3STZKXfdq7xl/78wl/P/4pPlObgrHPAqZXuy1v1/hZXzPlSpTv9bZ35EDccfXqlmySPbrZ+pXvGNm+rdJPk9D9+uNL9yds7G5N89vKbKt0kOe+SAyrdfX7eWXNw8GW9/UXW+UhnDupFGy5b6SbJV4/5dqX7mcs7156n7tN5tpkkZ7+jMzfysx/s7Dtz3NzO71CSPH1m57x65rFvqnST5JdHdZ5vHv3bFSvd/Qd7+/j964DOuMDlEzpjqh89vbMuIEnOuqizRvfasetWukny6NXnV7obv7fzfPXq279W6SbJOzbrfDY2e91+le7fpnfGPZPkG3tcWukedM3KlW6SvOeE/SvdZZ7srGP/2Vd6zwdW/uz9le6v9t6j0j33k7110ItPP7LS3enfnXuSJJm1VWdtzn3j/qvSnfDysZVukty+7ic63fXurXSPvKgz/zRJPv3PzjPsxT/+/ko3STY5pbPm7m+ndN6lu+DQzrsrk2TL7e6qdJf/dufe/bPPnFvpJsn+h3fWbC2+be/e/cfLd+Ymb3nUOyrd/16mt2/XhlM7e3V/+J+dMZ3xy3SuiZLk15d0xreO+XBv7f1H3/WTSvege9e/cXBw8D/+4C2zxqaD7z7+7wv9eI4/p7N+Okne9KbOOO/Iz3fW9l687Acr3SRZbJ/OOWje3r09rtZaqfO+nUd/1LlmPfCB3nOFby/960r38zd35pRNO6z3btG5D3yr0r36zt744z1vGV3p7n98Z3/HI8/tzeGffljnfLzRyZ17u0/N6P0uL39gZ3/qh9/Se8HTdmt3xvLG/rozrvnc4ktVukmy8TXLV7qr7dUZo3/7e3vPkb/xxc46yx8ft1ulmyQzzuysrdr48529/b80a/FKN0luu2fhX98nyeRFO/sbP7nBVyrdJLlzjc5v0a4Xdt4TkyQ/flVn/OPY5Tt7L6165XWVbpL8ZZvOMf/XmM5Y+g6f7l1jXHVv51nWxPNeX+kmyfe+21lD8+7lOmvutny8s34mSR77W2cN1NTVOueoNxz3rko3Sc4+++pKd9+9e3su3PloZ37rpQd37v1ee8mfK90kWfe3nT0CL7mic130lyv/WukmyVPTOs+oL57deaaeJNs/tmalu9ozD1a6U7frvJcoSb51wFcq3ZfvuKzSffDx3n5Rq9/ReW/HxLEXVrpJssa+V1S6i52wYaW7yJu+WOkmyXsGOmsbV//TFyrd6xZ05kYmyYqHd96TdsIDvXczP/xyZz3YAc919o788LjOdXiS7LlaZxzqlt0618sbXPC+SjdJBs7p7Lfy5KQZlW6STFvlmUp3i291xrd+c0Tn/ixJTt++cy/1hmlPVrrrXddZP5Mkn9/1zZXu4Dm9vbt2/WHnM/f3n91c6U79cO97/amDO2vO11y1s073kONXqXST5NQvdNYT3bjLCpVuktz/i9dWuhsfcEele9sF36h0k2TuvZ291j95duc9P296tPfc6IjO9MgcsWzn9yJJLlr3xEp3h8mda8/vPN57T9Naf+w8E17lks6zrlM3652jtl6r817oFa7srSf60m8648tHrDZY6f5qyd79zn0/2qnS3fwtnbm+R23RewY68YbO3IbzJ/fWo7zm+511kxscutr/at7zRkuvM/jndyz8udhTjjxtoTdfsc6RnTUWf/xRZ03WqsddUukmyU/Xv6/S/f53O/eiSfLB/S6odE87vzN3Yc2Hz6h0k+T8Fztzcn+6RWeflt0f+UilmySn3Dq10n3Px3prZf/0lc590mOHdsaPX3fyc5Vukvxs8g8q3Z3+a16l+9srOu//TJIlPtX5LXp4lwcr3SQ5davOPdhma3bGbFYd3ZmbnCSn79iZX3f0dd+tdJ9bqzeH+ENPdX6L7rr4hEo3SR74eucafvbkWyrdC178V6WbJHcedlKle9cinX1hPz2nM0aYJJ9ZtDP367H7bqx0k+QXV3Xe/fDr146rdNfdrjNXJkmW/V7n+nP/lferdCc/2lkLliRvOKvzXPbRNTaudJNk/3s/W+l+8fud662zf9xZ15gkd3638+x7u/UXrXTv/P07K90k+ckdneutdx/f2SciSQ44oPPeseV36owXfebS3t/ie6NPqHR3/WpnfusH/tb5t0uSZU7sPIv8yM96+4pe85bOOOJ5N3X2637kK73P8vQvddb2f/7ZzjuENvvDxEo3SY54e+d6+Zuv6+wPnySvvrszP/mAB7epdN/7h84z9ST5xPmdebOfn/SLSvf3+3TeBZ4k7/hd53r5gOU675lMkmd26oypnvnzzjql5X7de957222HV7r/PKPzrOuKz/feFfO1CzpzIrbfedNKN0lm7d25LhrcurOP+57n9s5Rh/zl+Ep34vOdvWznXNXbb+Xqr3SuX1Y7uLd/5OvvmlLpHvxAZ6z9Dzt29rRJkvVP6azH/MZyne/1xWe8rtJNktWnrFPpfmPpzjPQJHn3satUutc+35nnseLVnfeyJ8nTu3XeebvT6zvPKq/8aO96a4nNOvNmL/lE59ozSXZ9ufPujl9s0XkGs8f03vf6wOV3rXS/tUrne/2FL3XWSSTJlvMXVLrrp7cP5F+32rrSve59nfW/Ox306ko3SR6e33kP1Kf/3HkGev86vX3cD3pHZy+XK9/0bKWbJKvdelal+8CPXvi/znvu7KwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+PGRjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgxODg4P/4P564yOTBDdbafKEfxBY7vmOhN1/xqqUWqXTvf+jeSnex5VeudJPkz386p9J98vEnK90kWWzKWpXuNru+v9JdYuK0SjdJFp+0VKX7zP33VbpLzHip0k2SmS++UOlOmrug0k2S5ResWelOWXLZSnfunIFKN0nGjXiu0l1j3GqV7uQFcyrdJBkofeamP/FwpZsk42bPqnSfnfFipftyet/r+ZlU6c6c81ilu+i4FSvdJBmZ6ZXuxFGTK90kGTV+VKU7dlTnfD1vRO8aY+KExSrdwbnzK91RS0ysdJNk5ILOvcPg/BGVbpLMXdD5/Ry3SOf3c8GozuctSRbMnVfpjpg1t9IdHNv5HUqSwfGjK92xs/7n4wf/qTkDnX+/gQWdv8XMWVMr3SQZP75zjbFg5suV7ugVOvckSTLvsWc63XTOUUmyyOQple6cMWMr3RnPdu7PkmTiohMq3cGZnXu0uXM635EkmTlzdqU7dm7vGmNg0fGV7ux5nX+/SeMXrXSTZFZmVLpj5nXOUQsW9M7X86bNrHQHR3SuaZNk5oyRle6YRTrfkfmDnXuSJBnX+l6/0BlfHj3Qub9OkhdL55LZMzr3DkkyeenO9fKCWZ3PxajxvfHlWbM6v8tPP/10pTtqYm98a+7czn3ltJnPVrpJMn905+88d0bnvDpmTOc7kiQzXrV0pTvyic7fePWN1qh0k2Ta3Z1r8Ynze9cYc0r3lYssskSlO2pG5zySJCPHdcYR55bG+iaN6tyfJcnIiYtXugte7o2Jjx7XuX6ZW7otmTShd+835+XOb9G8EZ1nq3P/g7le/6nRk8ZUuiMHO3+LJJk/s/M9mTO7c701an7v3mHGzKmV7oL5pfHJ0vEmyayxnXuHNZefUukmyZjFO3OLZs7rjNWe/8JfKt0k2eW7b6105y/ojKnedm/nOjxJ1lt3pUp3/IjO5yJJnn9q4Y8X7bXvwbntzrv/V/+Ay08eOXjQa8Yt7EPKJtP2W+jNV6xxcOcz9YmV31bp7j2rM28oSS669+xKd4WTzq90k+SZdT9e6S4z5b8q3VUn3F3pJsn0bd5Y6T70oVsq3UX2vr7STZJrX+q0Pzt+lUo3SRZdZJ1Kd8FSnXGmx7f7WaWbJCPv2KzTvXbtSvfIpf5R6SbJDddvWul+6u7ePI5DN92u0l1m6pmV7rVv6j1jmfv1zhyf9Ra7vdLdeL+HKt0kefbKAyvd29bqPWMZcc9Vle6ma3euXeZu/5lKN0lGn3t4pTt1ye9UupuM/mSlmyQvfOKvle7KZ+9a6SbJLav8oNL9xD82qnR/8ejNlW6SbPGazr3575fsjCWsOLBkpZskmdR5rjfp6c5cpyR5aqkVKt0777ym0j3igWMq3ST5xxqdY/71MZ1x6Td98oJKN0kmzP1ApXvHY+dWukly1WHrVbp7n/FIpbv6Np3xrSRZ9OHLKt1nv9/5LC82ZWqlmyTTln+w0r1o3+0q3SRZ/led89Tj5/y40l3psiMq3STZaaWLK92//rgzDvz+XQ+vdJPkO1/tXHtutHxvHPGh5Tr7alz6o8cr3Wn79J4P7LhDZ+7QatO2r3SfmNabXzf3H535ThNv6j0feHLrTSrdldf5Z6W74rRVKt0k+cvynTk+Ly3ozG+d8ljnb5wkGblfJfvtb+1c6SbJju98XaX771M6azDWf/9rKt0kWfYjnbl7u/z8hkp3+qTOc8okGXVq5++84IeHVrpJsuSKR1W6v/zZXpXuyq/unEeSZIWpW1S660+4o9L955LfrHST5PHdOs9hJl30VKWbJPdM7Xw21lzQGUfcfPnOWG2SPPLUzZXuv95wRaX7j9907nWS5M27HFfpbnv9qZVukrx4++qV7oIlOn+L5R/v3e/88Q2duQKbXtdZm/OnqZ1xlyRZ7NojK93Nt9m70k2Srx7Vee6+U+lU8ve7L+qEkxyx3rcq3Vnbd/bavObyqZVukozeqzNetEE6Y+1JsvyTC/9aYPP9v5Eb7nr4P573PHGJ1QY33v3YhX48i++650JvvmL+aztzZe4/vXPtN2Ze7955nxc715XrXNfbc+HKz99T6d47ar9Kd6srP1TpJslH/tH5nTnt4c75culrO9c7STLvyO9Wuted+NVKN0n2/kJnHH3tsQt///0k+fHpvX0YP3jhlZXuzlt19hf/2um9vRze8ZfO52Kzo99b6SbJ2W/pzOG4aeq3K91Vj+2tpzvmd50xio98tLMW+Xc/711jLHlkZ37B5hv19i9Y+bCfV7pfXK/zTOHBK06pdJPk0L2nVrr/Pb6zF8BFnzy80k2Szc55oNKd/8WtK90ked8TC39NapIc+NvO/NOv/bN3jXj03stVut8b1bnG32ux7SrdJPnQpf9d6V5/a+f+LEl2+uTVle7Nh/yk0j3iun0r3SQ55OjzOt1PdubM/nriOyvdJLlybuda/LQNe3Prxn+189z7jH9dV+leeG5v77MJH3u00p1x8rsr3RMP6qyJS5Jzjuns3brpxN6zwv2mddZ4PveJX1W6P/rNiZVuklzyh/Mq3dNfv2ql+9bzenuA//5Hn6p0z5nSu/e775SfVbrvfbjzDPnrz/XOUZfsflalu+w/v1Hp/uucj1S6SfL2D3y+0l3nX73r5YMu7+z3dcrhnXnaXx/XWdOfJJ/coXOP9sW1OuOec0/szVP7xxlfqHTXObVz7Zkkc5ZavtJd7aTOerunX+78dibJpNK8vd9csEGle/yVr690k2TXR++sdC/6xNGVbpKcu2pnftbef+vMwXnsvt4eZlO/3Rlv2ObMzv6OA7v19sqZv6Dzzsa5B/6h0k2SOTdeXun+81MPVrpXfqc3z/fmFTrPKq89tjO+dcd3e/PU7nqyc8y/++/O3oRJ8uMF+1W6g6/p/J3fcVtvD/47Xte535m/7xOV7nuL83ROOLez19Gr1u/t1X3T7ttVuhfc/LtK9y2fO7zSTZLVj+3M8/3MzpdXuhu9+vRKN0mW+UbnfueSL/bWbu/3p9dWuq97z6tvHBwc/I8ny62z8iqDP/7Ulxb68Wy+fO8Z2Ruv67zD7sG7b6t0H/nYNpVukpx5YGf9+8YPLVPpJske63fO9Z8c+5tK97Dzevu1bXFrZz3yDVt13jv07p07370kWe3rnb3Ptn7vQZVukmxwbme/4A3ndPZV+/QXH650k+TUqzq/c4+/3NlD+so5vf0LxkxbrdI9/SPvqXST5Mul+ZG/3fScSvcny/f2Cr7ho505Bsd9tvMemLfu/8tKN0leflNnb4Qbv/vbSjdJBl7dWXcwYqnO3v4Hb79hpZskNz/QuX5Z7e2d+bhHrNibA37rjD9Xuu94rLeP5ipnHV/pXjCmc+3y4VErVrpJstb+nfGrlz7cGb+adG3vfZp/uWCXSnfnO5+sdJPke/fdVOlevUPnGv+jP9+t0k2SYy7prOfbcZWPVbpb3/a5SjdJlliu81z9vju3rXSTZNqVnfcmvm/TzpzAp5Z4Q6WbJGc81Zm7sOoanWM+aVTvGcuTp3TmVH9y095+bTd/s/PO9XVO6rwz+NcrXlLpJslPd+jcu7/q0DmV7keu6O19Nmfrzly1Leb15mqfO7PzvP6LL3XmMf7luEMq3SS5+9F9Kt0f/+D9le6n9/9jpZskf9zg5kp3h8t7+85PWXPHSvemJTv7EE+6vvPbmSRHb9zZd36Xj3WeI+/2y5Ur3SRZ58ed536b7/aLSjdJrlm9c++3+9Od57a/2LQ3jnHAGltVupv/orMG45Gv9MZqH/tVZy30d96+e6WbJD+/uXNfufQ3O/uX/PDx3vjy0hd01kDdsG9nfGvJXTrvqUiSb/7u0kp3xCmdvS6T5Ec/67xb8Z5ZnTVbrz62t1f3tV/rvDdgx+3uqnRPeWNnH5ckeea1G1e6N9zVuadMkqPu7jy3/eCpnX1sX/pAb6x9kzvfUel+/Q+dMfE3r9rZ9zBJXtx5u0p3/pQplW6SbDytM170xM6dNVA/mdh7BnrowAmV7tXnPVjprrtu5/3mSfKq0zvrMT92euf9M0nysas741BLHvnt/9W8543WGzt48VkL//5u8tm9dfsn39mZO/7Qkp33l8/e7pZKN0lGb/ZYpXvGS713XX34zs68ljdu/adKd/t5X6t0k2SJMbMq3Sdu+2ylu9ZNvfVpHxrZOc/Pev7rlW6SXHZ05958n9935j3f9O/nK90kmXZ953uyylGfqHS/d26nmyRPnteZU3bk9Z1zX5J8YtsHK90vr9tZK7HlS505jEky8g2ddfs/mNV55/Oi+3SeCSXJJoMfrXRnrdN7P9BRB3TWhx65Ymc/lfFLHl7pJsnIiZ3fuasvvrHSPe9tnXehJsnfN9+o0v3RJr2x2AULOuuJdv9h597hzcv0np3O2rfzvOmJfTetdL95Ymd/+CTZ8dud9Qz3rvGWSjdJXrN5Z2zlipmdOahZ+++dbpKzdunsZ7TBw51n38e97d+VbpKc/Ozhle6im1xe6SbJJqd15qv99JTDK92D7ulcEyXJxnM6z2UfeUNnHtUZn/51pZskn/n2vyrd8zft7BecJL+6urNO/hMH7VHpHr12p5skh/ywsy/6sT/trHPZ+YrOPsRJstgZX650x43u7bd+05RO99vTOu+w3O3xzntXkuSJj3bGJ3/4TOf9Gmds+MFKN0lW/e37Kt2lP/mBSjdJpm/b2ZvyF1d2np3utWfn85YkF3yxs0fMPa/vXMddde53Kt0k2XNyZ8/Eo8asXekmyaZf6YxdXzx5QqX72us7c+CSZLU//7TS/fSBnfGR/a/vvD82SRY5rzOH/7i9e/tV/ePYznO0U9/fmVN27MGd+bhJctkPOnsbXnJdZ6x29Y921ngmyVG/PqPS/cHBr6p0k+TDe+9R6X57pc7v/UVbdd4hlCRXPDq60j1ozc7eJfvstHilmySrvbvz+7ncJqMq3SRZN89Vukde23m38IWX9d57tN6xnTkIn16qszb1fdv15mOstW/nPdk7fL/3fOeaPxxX6S51TOedPL8ZfWSlmySLbth5v8Z5P+jsd3T7BZ114UkyZsLPKt1tH+y8PzZJbvr7rpXu+vO+9H+d99x7owcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D9kYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYNR/8h8vWDAvs2Y+u9AP4uVnXljozVcss+Vmle7UZ5+udBe8+FClmyTLrLRepfv4E52/RZLMm/FEpTvtrksr3ckT1q50k2TV1ZepdDcauWylu8iCsZVukkwYnN7pjhhX6SbJSsuMrHRfntnpjhz1H50e/jMLFq9kX3zipUr3pZnPV7pJMjDnxUp39rxKNkny1Pw5le60WY9VumMmd347k2TCgrmV7vixr6p0R87tfTCmTFyx0h0/fkylmySDGax0R4xYUOlOWnK5SjdJ6S+RDM6ZWemOHl38XLw8u9Md3zlfJ8nAuCmV7qjRA5Xu7Kmd80iSjJrYuf4cHN+5RhyR3udi5pzOOWrkqM53JEky2Pl7zJ3Q6U4Yu3ylmySzZz9X6S4ytvO9nvdgb0xgxKKd7/WIdP4WSTJvfOfMOnqw8/s5aaneffDMubMq3dELOn/jufN74xijRo+odAcmtK7kklHzOuMCA4uMrnQXFM+rg9M6xzx3VOc7Mn9u554kSaa90DlHTVxhYqWbJKMWdO5LJq3ZGVNdcO9TlW6SPJ3ONeLYwUmV7qhRnd/OJFlqmSmV7rRne/9+E8d3xrhmD3TG2hcs6N07LLrIhEp35NIrVLrzi4O1CxbMqHSnjFmy0k2SEZPHV7pzFulc44+cs0ilmyTzSo8exoztPINZfFbn9z5JJo/uXMsNTOyNI44vPVOcOzC/0s34znVAksyc1TlnTx7ZOa+OmdT5jiTJ4PzO52KRJXr37nNnl8bORnTuKafP7j23HTupc44aM6fzmZs/u3NPmSRzny/dY/d+ljNvfue6dnB+59pzxLjOvWqSLDKyc8zz5nfGG8aOX6LSTZIxIzvXtWMX7T23HTm28+83Op17tMlTK9kkydOPvlzpDpbOUSu9qjc35f7S32LDFXpzw5ZbauGPnY3+/zGXbdSCJbPUy+9aiEfzf+w7af2F3nzFXU9vWOmu/O9LKt1FPrRYpZsky3+iM+/5mG/3nheusFznfuZtH/1RpbvkO3rjVxPnH1fpvu0nD1a6m1+1aqWbJN9ff4dK9+BNe8/rDz/rl5XuZ8YtXek+/eDKlW6SvGG5zvn4pBm/q3T/mN4Y7x1T76t0L1vrwUo3SY588o+V7i2jO/fm89Zdq9JNkt22+1el+9RHOtcCc649pNJNksVu/VWlu9zyvWOe+rbTK91/X3RopbvfOp1r2iS5aPXOb9Gu925b6V65yk8q3SRZ/bTONcYffvPPSjdJln1d55iXHv+3SnfUqw+qdJPkL4t17h2mHdt5rnDzT/esdJNkiTu+U+k+uHLvfmfmzM7z+ndeukWle/DrTqp0k+SHV95W6Y49adFKd8VRq1e6SXLT7Lsq3fV27X2Wd7m8c8zvXf3Vle6t/+qNxS663uGV7vy9X1Pp7nrBdZVukrw8dddKd8ILN1S6STLlo53z30bvm1LpPjvqwko3SW5faoNKd73V7690H57wX5VuknzoH/dUur/7bu954dhtz650P3vCiZXu+Td0xreSZIXSer5HHuisB3voxSsr3SRZPD+udKfs+rFKN0mWfblz/Xn7mM7eQROvvrzSTZJ79tm70v3DC7dXusfcvF2lmyQjBs6sdP/+/v0q3ST5zvK3VrpTD/pMpbvHCndUukly3bWd5zBX7NS5Dz5k5d682Ws2/UOl+9Cqa1S6SfLtHR+udN8+bvdK9+wZn6t0k2TuvJ9VurdO6pyjfv6XzvOMJPneLQdUuve+rrPmLkmWe9XJle5qP96q0n1kp97v8lbLdfYlevrmzvf67j2vqXST5MXHF/68sCS5cn7v3+/Z9Tr3aFdMLO0vObsztzVJbn+6c1/5p5nbV7pvPPwNlW6S/Hv9zj6sT3zoh5Vuknx19i2V7sXzPljpfvre3lr2l//y/Up36Y06z9COPqQ3N+W/rintMfLcWZVukly7xZsWenPm6FP/V//fGvOfzPlTv7GQjyYZOPawhd58xXuv6YzxHvho59/8sdd2nm0myVtu7MwBOPTR3jzRe8ccXun+8/o7K9373/yhSjdJVtxhn0r3uVd/u9K98pbevjJn/H3h/w4lyaIbPFjpJsn+l/y60v37hatVuufv0DsXnzP255XuvAs7a9Nmf35ypZskn5t/TKV74Qc7Y21Jcv+/O9fY0zY6odK9+enefl+LbVEa+3h9Z97Q+26+rNJNktXXfKDSXXexztysJHl5ud9Wuhct+7NKd831nqx0k+TE4ztzW1d4672V7v6jNq10k+TZ4zvXyx9fqrcP48Hf6qwzu/Q7b6l0v1XariZJfrnEwn8vUZJccEZnLcPqp3bm+CbJ42/5S6V734d7+6Bu+9abKt1dN+t86Jb9VW+/rxt+2plb97m/dOaJXnlzb57a107szMedel3vWeHXT+rMA/j01zrXRQ//qDOXOkkuPafz/q43//xLle60wzvvn0mSxXd4e6V76pc6f4skee+OnTHV33zqi5XuWVd25g8nyUYf7nS/9KU/VbqHL/hCpZsk3/3r1ZXuEYevUukmyQ1XdeZGfvDZztyQjOqNqd7zhW9Vuqft8s5K95/X/LXSTZIDL+18sff6fm8Oxzf/3hkHnrVEZ0/DF0d31hskyTt/17kvOfThzrXA9JdWqnSTZOTNnfnD6zy0ZqWbJH86pDO/4OZfb17pbrZD59olSSae1FkvucxnOvd+p5zUW4ty3cjOfpc7TuiNiY+c8dFK9+xN96h0j7qr977pVc8+otL9xUGda4HpDzxa6SbJG0vDwI9N7v37zb3g6Er3gGM737+3v/t1lW6SHLZ4Z7/Z6Zv/u9Kd9lJnb7Qk+dRPf1DprrL7wZVukhz0cOea608HdfZx+cYGG1e6SXLRxZ25yU+82FnveuPpvef5nz3r/Er31Ed69zsbrNF5X/jZr+8c8+Gnr13pJsmpS3fWr33hqfdVupvvelGlmySfO7OzH+2vLv9IpZskX7irs+/a/9aDk2bngzsu/DHkD3+yd22557vOqXTv+2fnXuZ9B3fWvCXJk3M6z7I2/U1v/PGSGzprs59f9rOV7l0/77wDLUnWer5zzzHh/s561sdu7ay/TZLn7ti30v3w9M58ziR5/YWdudrXn7h/pXvRLzpznZJkly921roceUZnvPStX+i962rHce+odDe8pfMOnyQ5bJuFvx4rSe4Y03mHwo03dOZaJMltL3aecX5h98748WK7PF7pJsn5v+8M5p337mmVbpIccnnnfS377tjZd/eIRc+tdJPkwTXfVum++c7O5+LvP+o8k02Sq266vNL90UHrVrpJsvO4znPZsZ/4dKX70Nd7z05XPrMzLn30pzq/RRsu25uf9fmZG1W6y+9+Y6WbJDd+rjMeNHKFznXRxh88rdJNknce3plruNr7OnPLv/KR7SrdJDn2+c7cvd9v2nn/TJJ8+Jud9ezrndnZ++yxh3trc7ac2JmrvdOhf690J2353ko3SU78UGd9wG/v6+3Vvfp5nT2jfvqLlyrdN6zbWW+eJBu8o3NddPGiu1S61+/Vm3e55y87zyuuWaazLjVJrpzaef72wxd2rHTv6g3p5HubdeYEPvnMGZXue17qvYvuseU670Z/pPSeiiTZ4ZHOGuB33tx5B80hN/auMc794+GV7nWrf7LS3W6p4yvdJFl0XGdfousu78xpSZJZ37q70j3pN519/P75+t5c37UP2brSXfBkZx7cWyZ09gFJkhEbdMZe7n1n59lckhz1pc47ei/8zJGV7q/G9+ZnvWGLzj32G+7u7Blw/XG9PcAv27qzd+uH7untEbPB3p13vM75eWfe3uqndJ6tJslPFu3Mm33n5N0q3Z0GOnsSJcnKf+tce37gd71nJVN/19lr/eSJX650D1r7qEo3SVZYa51Kd7+PPFjp/vFPvT3dLvvx+pXuXXt17h2S5Lmpnbl9q364817hZxfZudJNkpsO/X2l+6mDOmvO9/5m7323E9/V2Z93ycHeu7ef3ue7nfD/8nL57mnL5LWXHL5QDyVJ3npo7x2Sv7nk85Xu0lM7+4oO/rL3ntzvfL4zJ3Ds63p7oT40vvNc9shHO/cGg0d21lckyY4zO3vk7rlY515mu+V675///sude/41ztyv0k2SKe8rzZeZ+GCle9I9nbXZSfKh132g0j3huM4+LSuM7eyFkyRLndMZ/7joO53vSJK8uMwJle62v+ysR/n+jb3fooPX7uzNNemZByvdvT/ee0/uIYd3zn/bH7ZXpZsk61/ReQf2Lnd/rdL96sO99zsd8JXOHINf7dhZQ/2mM3pzku7/Q+ddc2uV1sAnycPf75xLbnp1Z23jo5/pzLNPkj9u29nveae9Vql0rzqss+YnSa7+bGd99vhFH6l0k2TnI6+qdFc77b8r3Z+N7expnyRff6DzHqEPPtcZczt4z86z3iS5Z85zle5nLu293+bEuZ1zydwtO+v5DvxO77P8uZO2qXSX3HrJSvc9s99d6SbJ83/pzIf/6/K9fZIWXNf5zK31s87zis2OnFrpJskxb7y40l3y/s57O2b8rfPOyyT54gmd92Ds91RnXWqSrPRIZ8+AD3yvcx3+rosOrHSTZNHOI87cdH1nTtm2b3um0k2SB9btjOls87fOO7yS5KIpnXf7zv9cZ97zsVN6v0V7/LKz7uCe5zv7zV7yxt6z791P/2qle9cWK1a6SXL2iZ09fk5erfP92+GbvT1idlqks8fI51b5aaV74MOd9TNJcvNOnfnlX1/vE5VuknzhsM59yax1O3MQjlu3Nz9ykws659XTnu9cx/3o6k43ST6w4xWV7m6fGlfpJsnKj3be3XHs4p31vweML72QJ8mpUzp7rsx9unMdt+rXO/M8kmTG7Z3ntjuf1Xsh5D/u/Fel+5kD1qt0X/tfvXlyR+eNle6HPtbZB/xPb+/MZUuSW/d4V6X7xs939kpNkuNGdfblW+SBzty+J97SGTdLkg127ew/c9W8fSrdXy/RewfbBpt09pe8ef/e+PKjX53XCV/yf38HYm/GJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8P2RgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgxODg4P/4P15u7KKD+y//2oV+EGPXeMtCb75ihw9uWenedc3lle68F2dWukkyYc4Sle49911V6SbJ7OnPV7obrPC6Sne1SStUukmy1uJrVLqjp4ysdMePHFfpJsnLj99R6Y4aMb7STZL5Ly2odEcMTKl0R83t/RbNmv1CpTtjzuOV7gvTJla6STJ75HOV7qx58yvdJJk7e26lu8ykzjlqbuerlyRZYdIyle7A+KmV7thRS1a6STJyRKc7K71/wEXGds5TY8d0fjPmdU7XSZLB+Z34/Nn/8/uM/8TAxDmVbpIMjly8053VO+Y5I6ZXupOXXanSnfNS59yXJIOzO3/nUaMnVLqjx4+udJNk5tSXKt2Rs2ZVukkyMGFspTt/5KhKN5MHOt0kgy93fpdHzu2csBfM6PwOJcnApM7fedSC3r3fnJmde6lxy3SuXQYXWazSTZKZ93Xu0RZkXqU7/8XZlW6SjBvT6U4f7F1jTJq8dKW7YM60SndwfOn3Pkle7twHzxmYUemOHNP7jVuwoHONP/fl3vdvYMTkSnfUqNJ10dzezd/A4p3f/MEXO7/3AyN7Y3IZ6FwvjxnRO+aZ8zr3D6PTOUnNLN2fJcmYkZ3fjLmlgcQFIzqftyTJ+KUq2QUv9a7xJ0/pnKfmzer8fj4/vXO+TpLJ4zv3O9NX6PzeT3m8cx2XJLMHOufVMQsmVbpJsmBk5znM+NK9w4szemPto0Z0xhvGTe783g+O6N0HZ2bn93NgVOeaNkkyrnONMTjv5Up35IjevcOc6Z2xl1nzS+NbE3vnqBEvddojRnbur5NkdOk56DNPdD7LEyb05tOMGtX595s5v/Mbt+jodSrdJFmwyNRKd9yiy1a6STJ7ROc3Y8EL91S6F917X6WbJD957PRK99Q/n1/pTl58SqWbJM/P7ox9jnvylko3SZZYe4OF3tx2h93yz5tv+V9dfI7dbPHBFa/ZeWEfUr63y+4LvfmKzdZ5ttK94g+dsbzJO/yj0k2SSddtVOn+c43rKt0kWe5bnTnxr/rM5pXuaS/uWukmyf5TLq50F9+iMxY7cHdnbnmSrD/6lEr3hq2+WOkmyQund871Kx84tdJd/vGbKt0kGXHh+pXus8/8tdK9Zc3LK90k2W30Gyrdu3btXLMmyTU/64wHffqbe1e6t+/6t0o3SSa+vzMW9MYbn6p0735VZw5jktzzQOf++c8Xr1rpJsmLy3ae1+/2nYMq3bGje9eI65/+cKV7y6jSZ/ldpYn2Sba99bFKd8sR76x0k+SsJzrn7Ne9d6dK9985odJNkkv/2rl3OH6p7Svdx//x35Vuktw/YsNK96xne8++D3jDzZXuD+a8sdI9c5crK90kOfv6zSrddW9Yq9L9+82/qnSTZOWDvlzpPvDykZVuktw39dZKd/fl31rpvmGpP1e6SfLTyZ3nTc/P71wLvHhmb13/2xe8utL96XK9+ZGvX3/jSvfkZ1+sdD+9Yu9vsfETne4tg50xgSlPn1zpJsnl16xW6d6w7XqVbpIc9PxZle5v521V6b7tzB9Xukky4/TOfcm997+t0t3kX73xyUdmdcYRl5/VGxPfcMVXVbo/fWPn+c6zD/TmJM36/XaV7qsmfq7SXeOFD1S6SfLkBzvn1ftXXqTSTZIVP9KZ47PhR2+rdG+6912VbpK8uN4Vle5rX+ycr8dc8+FKN0nue9fHKt1JdxXHEUv3aA9O+WOlu8JpvXnrv9nyhkp3nynvrXSvuqHzb5ckO+75wUp33tTeb9Etv+2s3x5YqzOPaukbO3tUJMmE13fGxL8wubMG6vC8ptJNkiXmdX4zLvjx5ZVukow565FK9+bblqt0X/Pab1a6SfKar3yq0p03+KdKd4lnvlDpJsnN+/+l0r3xjetWukmy23V3VrqL3XxhpXvaw5397ZLkbc/8u9J9+N0nVrrbb9WbQ/zcnI9Xupf/szNPJ0net9cBC7354N7vz8zb7/yPL/JHLTdqcNIHFv6ayPV+3hl3TJK//rizzvnoFY6pdC/5/s8r3STZ/8ovVbojVu89U5j74haV7scvO6fS/d1jvc/yMS90/s6Xvf93le6G/93b++ypUzoPm362bWctQ5Lc/2Jn78jLL+rsAf7aV3eON0m+8p3OM4VdFuncL27yt97fYvTHOvMBl84zlW6SPDauM67566unVLr73dDb72vulftWugeWnkEeeHHnnJokR//++5Xu17/2w0o3SY78Ved9Egs2uavSffh7nWvaJDl4+p6V7obnHFXpvvPYzlzAJLnyHfdWuj94urcubsG/OnMi3nBnZ43Z+//d23/i2t2/0+ne29mj7Kpv9Ob2zHhN590ac8f23huw7+mnVbpj/tRZ+/vTExf+WM0rpr7nmkr306NOrXRvPKazpjhJrjp2lUp3p5NurnST5MYNzqh0r/hsZ++zD6zTeZ6eJKt8qHOP9olPdcZHdlu1t0bpyGOPrXQn37zw38n3isdGnl3pXj53r0r3ue92zn1JMvmoznz4d16yR6V76NWdZ5tJsvTRW1e609Pbn3r2FzpjlOes2Nl3/oAbevvjPnNy528x66HO3ksn3Vba7DLJ7J0766C3Wb43Z/3L4zrr1za/pvO7/JWJX6t0k+TYcZ2xz5eO6axdu+uF3nyWt57YeS/mVdv1foumPtF5B9TxMz5d6U48tfes6+2TLq10r/5C5xz1ml073STZ5kOd799v9u/sJ5Uk429dvdI97PzO+ORB1+9f6SbJrD935g29+0+d78jNn/h8pZskq53fmWf/0LGHVLpJ8pppx1e6F93Y2Qd1jS168/eXO71zjvr62Ksr3Ut+1VvHfskqm1a6E6/s7ad45r2d/YJv2K6zn9snF319pZskE+7ujCMusWZn37XbLuzMxU2Sf8/ojIlvPaWzn1SSjN+5s3503u86zx1+vVpvjefHzuj8Zpx9e+cddxu8rbcH3U/O69yjjb7v/ko3Sfb4eOe6aMsZ+904ODj4Hz+YWnPJFQZPfOuhC/14PjjlxoXefMXMuzv3o/tM7rzXfsQtnf3lkmTUCZ3P6sTr31fpJsn3j+qM5R2wQedZ1oNLdvb4SJKHn9+k0t333521oV9848LfF/4VXzqkM99i3M/eXekmyYt7d8ZsFv1pZ77FiTd3fuOS5HsXdq7TDjmz836uTf74k0o3SW5b9aFK9/wNHqx0k+Thr5fmMW658K8vkmTsgwdXuklyzls7Y+nPbNX5zN1w7+2VbpJMfXNn/OOYF3vvA3n/CZ212See0Zkr+sbfdvarSZJlD+/ccxxxbee8etpBv6x0k+TWbVasdC+be16lmyS3p7MP6jOz/17pbn/d4ZVuknz6zM56lNdv25lHNe/W3jvsVh7bmW/xnoljK90kmX/W5ZXuYXt29n9Z/tDeXMN5V19W6f7xQ519y3c+e+G/p+wVl+67caX77e+fV+kmySNrd64x9nrbo5XuX5/drdJNkjG7LVrpnrtrZ/+Js5fq7Sl62oT9Kt0Tb/tQpZskb12zM49xme939vG7+c+rVLpJcvtenTWTN+5femfpqb31KLes+kCl+8zMJyvdJLnp7Lsr3a9v+ZlKd8VnO90kmfdYZ77TeVdfUun+dXbvb/GDJzpz1d4/aX6lmyQ3fuzNle7Vf+ucV3+9W2cMMUlWOb0z9+voKz5Z6U76WO+dOVd8ovMMbYOvdNYGJMkRj3b2OXj65c67DsZ9o/PcIUmWWrOzR9N2A525Q1/+cm9/3F/8qzM/65s3fqPSTZLfTy/NiT+oc1+yzeW9fRg3Pr4zV/uOIzq/RX979yqVbpLM36/zPH/H1XrPbZcqzQk8ZNTkSnf7m3rznn8xo/Pc/frRf6h0tzi5891Lkv1v77w/77C3FZ/bntGZaz+6tGzktQ935sMnye2XdfYtX/Pxzlzfs0/rrbnbZUJn/4SV3tWb2zfj/j0q3fkbdd4Hsvyuvd+iN++5Y6W7zwq/r3RX+m3vc3HqzedWuheO/GilmyS3/+JHle6qT9/2v5r3PGWz5QZfd/XC/1G/tjg/600bd96vdtPHOu8d+q8Tnq50k+TKrTv7BL72Hb09jkcd2Glv/3Jnr4hJe/bGgn54bmet5c4XblPpfmfRzl5GSfLct7asdD/yUG/Pto/8sXN+G/GrzntEbl+qtz7tbWt0Psuvf0vnGdlZS/Y+yyfv1nle+OxxC//dDK/Y/Rud7996m3yr0j33kt4+7odM7OwfOfjxzpjNW/7Se8/xWld0vtdLfKA313fTCZ39B9deufNOsZHpzOdMkg/v3rmuPW56Z67MsZceWekmyQMrdb7XMw/r3NclyW13dd6jtcWHO/uAj9ivNw/gnpHXd8J7dPZzuGJGbx7H4MTO2qp3bP7VSjdJ9jlidKW7xi2dv/PcnTrvU0qSjTbsrBO8ZK/OO7sPe3H5SjdJ3rRMZ83r+dt25hAnybte6txLfWO3zu/nA1t23oueJPes3RmHunifzgOni8b29uN472UfqXTfv0dv/faeK3SeK9x20WKV7kPf61zHJckNZ3TeU33j3zrvYHvf395e6SbJzi901tCs8v7eGprfHdVZT7vCBudXuu8udZNk+slfqXQfOqazlvbfX+6MmyXJcRM76wMOfW3nvQ9J8tGfdJ5pHLNkZ1+Un/yg9871q0/pXNd+9vedOUkPnbJqpZskd3ynM/ay9JTevfs7r+j85q+6U2e+zMmLnFDpJskxR3b2yD3oyM5v3Ft/3ZmbnCTrv9g55iUHe+90Wfnnnf0v/vjLzlzD+ZOK855/3nlP9lee7szhH73gvyvdJFn25M47CY76cufzliRfenvnHXo7nt15vnrx451rlyR53zWddVsv7d7ZR+no8zrr4pLk34eW1lmv07t3f+GCzjji9q/t7HH8Xz/t7ZH7yVM698E7rtjZB+uJW3pjAvO//apKd+Knj6t0k2Sr6zvvIz9m1aMr3V0uvaHSTZJvPNwZn3zgiM748rq7vVzpJsled3bGSD6+RecclSQ3D3bWFi928Df/r/Oee2/qAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/hwwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx/7P1XtGVVwf7rvjUrV1FUkQTJkiVIEAElKyCoICAKoiKYRQExg1lRzKCYQUUBFVQEAyiIoIKgREEyEiTnoqi4Kqx9sY/nap/d1FNvW2392/Nc4+8b36o5xxyjj977YDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAbj/pv/eMakadlvgxct9YMYmvCMpd78t9Xu/q/+X/yPzZg7vdKduvqzK90kGbrxiUp3j833r3ST5OknF1a6K620WqX79OKZlW6SzH7ogUp3yqzJle7QwgWVbpIsGVqz0l2w4O5KN0kWDD1Z6c5ZdHelu2jhmEo3SWYtmVvpLj+xc76fk8cr3SSZNqnzW7LaxBmVbpIML+l8tydOmljpjh8eVLpJMm78+Ep3eGznumj8uN711pipnc/FtMWd64AkGTthmUp37sIJle6EifMq3SQZv6TTHTul870emjCt0k2SCXPnVLpDE4uf5YWdf8DFszrXLuPHTap0k2TJxM73b8yizvdvzFPzK90kmbjsjEp3yfTOuTNJhkvXcuNnz650hx4vnTyTTCqdmIeGhyvdxVM75/skyZLOfcn8BU9XukkyZdkVK92hWZ37qMVP3FvpJsnCuZ3z3PipMyrdMVNnVbpJMjSmcy0wtXRPmSTDi4cq3fGDzj3a0LzeOMbihYs64UnLVrKDod5v1PCisZXuCit1rgOSZOiRzjHPW9D5Xk+Y3BlrSJLJUzqfjccf7Pz7TV6282+XJKXbqMwf6o2JT1q+c821YGbn93ritM5zhyRZMrfz/VsypvNbMmFKbxxjwZMzK90Jy06tdJNkUPp7TOgMCWTGhM51eJJkcecebdX5nfPyrN5PVCaUnmksWdi79xte0jkvzx/uXHuOG/R+V8dP6nw4Fj/RGZNbMq33vR6a3/leT+vd+mXh7JmV7vyZnXvK5Z+xQqWbJEPpfDamlMb6Zj/UeZ6RJNNW7tyvDs/vXS/Pmj+z0p28bOffb9xw7959zKDTXmbZzjyd8WNL4y5JBpOW74RLcxuSZMGDnblhC5/s/C3GzL+60k2STRevVeme9sYvV7r7/vrkSjdJZt34j0r3yT/+s9JNkq0HS38O7OIF//u11grXLJuDp+yxFI/m/zb2zF8u9ea/TTrpzkp37oyPV7oTt35upZskK2/YOYe9YLUPVbpJMv9zh1e6xx/0tkr32dctrnST5N5Hf17pzj7tVZXuBi+6rdJNkttWeGalu/a3v1fpJsnMxz9W6V73s80q3eH1N6l0k2TB8KmV7l826/wt1jj3qEo3Sa7c56xKd8mNveeFh+zduc7+8wdvqnS3Orj3jOWUuzrP6x+a0Rn7v+SWzm9fkkx7d+czt/Fndqt0k2Tsc/apdDeZd0Kle8eKneuAJPnF9odVujf9/uJK94V/PqTSTZIp6+xe6c558PeVbpKs+Lp1Kt27b/lBpXvG5t+vdJNk97WeV+m+94HOZ265SX+vdJNk8ZpXVbo7HbhXpZsky67zSKW7zxcerHS3vfPhSjdJ/jirM857yrOurXSX3bu3nuHQZb5U6b728d4zsjVuWbvSPX/NlSrdr13WWeeSJNPWWbXSvWPlvSvdXZ/zrEo3SRbe2ZmIs9IlneuAJFn3tX+pdO88s3MftersdSvdJLl2nc595eIzrql0l//YqZVuktz2rM9Vuocu6ZwvkuS6xzvP63d8qHPtsslm+1W6SXL94TtVuov+eWWlu2S7jSvdJHnnuRdUuh/arrdHzKkXnFfpLnpVZ0xn4fkvrnSTZLP1/lTpTt34C5Xupc/uPSt5+VfOrXSfuf3bK90kWevKzh5Nm+/fmWNw8a6lCdVJZqzf2afi1ks7a5bXf/4rK90kufwfnefjq415qtJNkitvmVnpPmfHzr/f1MFDlW6S/GH4+ZXujx77daV71+veVOkmyeXT3lHprr1Rb4+mG1a8otJd6erOnMA/7t0b03n2I51noFv/tPMM9Mp9f1XpJsl7XnVOpbv+2I9Wukny8MGd79/xm3bOn9f/sTNPJ0l2HOqMY/x1zRdUuvdt07vGGNzww0r3sAW9MdUHftPZx3O7X7yv0h2c2vv3e+4HSs/9fn5ipbvLgjMr3ST5+JLvVrorPNR5hpYkV19+/VJv7jD7f1ujtPHD6+U3J35nKR9N8tC03jrnJad11mO9YZ31K93TZvWu0Y74XueZ0DZn3VzpJsk9Y79R6V658Y6V7v1H/KLSTZLNvv/NSvcNf/1ZpTv3iA9Wukly8wOd595/fe8nK90kOXnPznz45e77SqW7ztiZlW6SbHvSayrdx07ojD1+csXe/eLlf+s8B/ntx3rPFBZe9pJK9ytf7swHfMkve9cYpz7cORdd/tw/V7pndG4JkiSP7dT5W9yy/66VbpIcfFrnDzJmn/dXuqdsd2ylmyS//0Pnemv8GZ31dpte3Jsn+uRXO/uSPP14Z6/ZJHnf/ttWuue/qDOf5fO3vqzSTZIfTu08N73xhg0q3ZlrfLHSTZIF39i50v3Dl3prvl/9pc5n45jfdJ5jPXnHiZVuknzz2s447IdX7zw3PeH0ztrDJPn+/p1rxP1f/NNKN0lOGvfhSnezizpzW08+/WuVbpJ85uSlP6aZJCcs/mylu9W0zlzAJPntaR+pdKc+u/M8L0lWm9yZA3f9rOsq3Rfe2htTvXWFzSvdp97Q2ePq8M1PqXST5Ntv6Dyr//DOj1a6SfL6LTrPkT/1z40q3afX66xRSpJbh1epdJf9Tmcc6ojfvLzSTZL1J95X6T78sc59VJLsskZnL6orduiMnf3l+733xDy5Q+ez8chz/1DpbrPMWyrdJDlvx861wGXvWq7STZL1N+ncuy88+a2V7gEXb1rpJsk677u10p1449qV7qMnd8agkuS7+59U6Z6305GVbpKs96PO/J7zVu3sybz4tUv/fd7/tuHKe1a6yz7SWde477jeXs97PtF5Pr7Ldr13E+2wxvGV7g0rfqLSvWCT3ntNX3frKyrdne85rtL93lm9PbC+ceBjle6tr+/tO//+KzvrL/78dGe96+p/6e17ff607Srdb17YeT73ozU780eS5Jcv6Mzh+tiH3ljpJskFz1v68zKT5I6ZnbnUVz7YWYeZJC9ZqbNv+XHrdK7Db/jiqZVukhwy99WV7n7n/rHSTZIXfbf0HOZ//FNMXG1c1v7U0h9DPmun3pyyf/61s9fzPp/vzPWdeeQOlW6SXLFuZ63J4f/o/M4nyR/vnlHpfnm3zrjY8df1xoLu3fHGSveeYzr3jAsHZ1e6SbLSTzt7tOz2yt6evn/5bGc9+RWzLqt0j3ii866IJNl+7c597ior3FLpbvCJzjhskhxxbOc6++kjOnOdkuSqD3XmJF003Fkne+2fevfPTz7YmdP56Pc69+XvPaaz72eS/Oyezpjbflv31nz/bdYBle49Cw+tdE/5dW/vwQPOX/rvl0mSH/zxdZXuxacs/XfP/NtV5x5U6W57VO/dKB9Zck6l+9QenXdg7Pnr11e6SbLTup35Tisd15kHd/Qz1qt0k+S3R3Xe27H+Zb3rohfP6jwXesED51S6z9ijc02bJP+c13kH6N8+25mf9ac9Omt+kmTzSzrvx3vVC3vXiMe9rPMO5ePP7uzRstPDvX1lLvx+59npexZ25mo/dk5vTsTrJh5T6b7zoa0r3SRZ47TVK91nrtnZi2Dr6b29644/o7Pu4MGnOi+qPugfnXeuJMmPv975/dtwiw0r3ST50A5bVrrXvqNzj73XQb35dSec+ttK97Uv69y7f/eY3lr2W9Z5baW7/G69Yx4zv/Mcbe6vOu+2WfC5zju2kuSD94ypdId27Mx7PmeXznV4kjz/xM7zgdW36OzDkyT3/66z9/XNy3Q+c7fe/bdKN0lWHtvZX/y69Tvr+k+d2Vs/+q4PzKt0XzKld4243ps67zp47sad969ts1nvvZi7faMzpjpmh8668Hs/un2lmyS/nNB57nDkFadWukmy3gp3Vbr7bnN3pbvKs3rvbv7tO95c6W7+z053zua95w6/3PjTle6em8yvdJNk1pGdd/PtO2erSne3r7600k2SZR74TKU7brnO3vBvPKvz25ckLzylM4drkyN7e/o+Z/rnK91D9urcUz55+/2VbpLs8svOOrP9xna+f5ef05vb8MT57610n/+ev1a6SfLk3kd3wt99w//0P5v12LxccMrS36vlh+v11iFt8Z1PVbr3/qVzzTplbG994eHv6uyZ+Pl5vbkLS87t3DM+Z1Fn3vN6l3aueZLkp69/W6X70OtPrXRv/Fbv2fdJt3Xejb75fZ09a5LklYceWOle9KbOXmLnbNmZQ5wkv9mis6/o6gd09uHf8a+99/ktOWntSvdrz+/sjZAkH9y2s7faqjt3njfd+43evrDLvrozJ+k3f+2MPx5xbG+t5QdXeU+lu/tdnfXISbLn+M4zpw89clilu+GGvXf7Tti283f+3EWdtc5vWdLZoyxJLj5hzUr3yEcXVbpJ8o8LL6x0V7/68kp34+07z0GS5KUf7qxN/czRne/f4IwZlW6S3PTTztqqTY7938YS/hNPfPy6SvelR/y40v3X2N7751/5rQ9Uunv8rjPXcKM/9PYLPvmoznv31ju+dy46M513Ks1Y8/RK99gde2uWf/Gvzprl8zqPZPP6pzvzhpLkss935lucPP+rlW6SHDq3M8Z1+qt/Weke967OPUmSnPbeCyrd5Tbv7Lm3afatdJNk8h+/Xeketm3n2jNJ/n5hZy+JoV+sXOm+fXFvHGPotM685wU/76y/X2OrVSvdJDlq7c46wZvf3bn2TJJzbuvM9f3Ghx+vdNc/vPduzH32+3qlu8I2u1W6m1/bWeeSJD/8Zud7feaGnXcdJMnsVTv7P12zUefv/LkHe+/XWO+Rzjyck9/bGet77JW9MYG1rumMif98/d5ejLs9tzO/7qeDuyvdbb/S23t+xnWd5+4HrNB5J8gWG/XW9b9jg5Mr3Zeetm+lmyTT7+28o+GjPz610n106871fZLcuHrnvnLSpZ29Z77wo49Vukny7ed25nDtf2Rn/VOSbPDNzvtRbtr+0Er30hf3/v2u+VVnPeYjT95Q6Z5yZm9M7pVfuqjS/eWg871OksljOvNerr+8s+7g4mPOqHSTZN99OmMksw7snIuOfKyz9j5JPnJ5Zx/w71zb2fs6SVZdrzXv7P95/eig9H8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6PMhjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAbj/pv/eMzw2IxdMnWpH8QqYx5e6s1/m/334Up3ldWeUekufrKSTZLMWOGZle6SWbMr3SRZbvi/+oj+x2bf9Uilu2j+hEo3SSaNmVXpLnpyTqX7+JxON0mGck+lO2lq799vwaLO32MwofMdmTp+mUo3STJvbCU7bdKKle5yy8ytdJNk3GBGpTt2/IJKN0kWLZle6U6dOrnSXTCucx2QJKWvdTKYWMkuM3VMpZskw1M656IsmNLpJpkz1Ll+mTRjfKWbRZM63STzFi6pdAfzhyrdKcv2/hbz53Z+oyYNKtkkyXA654xMXFTJDs3unZfHDXfai8YsrHQXTlj699b/Nmlu5xw3ZkLvt2Tx+M45f3hC5xp//HDxi126xh/M7VzXjhnqfEeSZMJyy1a6iwe9e7+54+ZXuuMHnc/c4gWd832SLChdby0ZnlfpLprf+yyPHd8550+Z1vmOJMmi0t95/tjOb8lgce+8PFz6bEyevkqlu2RBZwwxSYYXdv7OC57oXWMsmfRUpTtt3PKV7vAyve/1gsc6f4tlV+6c44bnd+7PkmTRmM441OJB75iHFnbG+5ad3rkOXzS3dy6aOb9zXTtpYudzURopSpIsmdEZE5j3WOc6IEkmTOl8T4aHO9e1k6fMqHSTZObEztjZ4oc6A9fjJvY+zcMLStdb03rjiGOGOn+PoTGd8a3B4sWVbpJkUedcNJjYuUacPLnznCtJBmM611sZXxoDTpIFnXv3aauXnvvN6f1GLV70RCc86HyWZ6xQPC+XxifnPP1QpZskE4Y7c7gmTe/8LYZLY31JsmRO6Xd1SudcNPzfTV38rwxW7NzvzH+qdL5PMr50B7Fg0WOVboZK584kmy3Xmec49Gjnt2TCAcdVuknynGduVume/tc/VLpJ8sCvfr/UmzPvufd//t8uN2FhDlzl/qV4NP+3P97UO4eN3/Xnle7zbr+y0j3wltJ5JsmnjuqMPz66WW9+3esOelGle8x5nXGx865/d6WbJJ944VqV7hn331Lp/vnnne9ekmy68VGV7kU/+FClmyTzDvhqpfv7y75d6Z6w72WVbpJc8L3fVrprrdn5/m34ut7zpieHO+e4s376r0o3ScY/46pK9xm7Hl7pPnHrtyrdJNlz0d6V7j+f2fn+Tdz0gko3Sf58Y2eM/rnTzqh0k+SpN7220r1gUWdtzk4PdOZQJcm6z/pipXvo7vtXumvu0Lv/Wu/WtSvd5e7YqNJNkkvOeFalu+jlT1e6+37+NZVuktwxbpdK9+jS8OMla13XCSdZ+eHOGraLb+09VzjnwdUq3S0326XSvf6271e6SbLsU51xwr3f0Hn2fd2tO1a6SfLQkUt/DCpJHn3VDyrdJHnurGmV7v0rPFrpXrhqZ95ekjxw9uOV7jM36KzZum3rX1S6SfLb9Ttjn+sMdqh0k+Rjv9y40r3+ipdXuoOjT6t0k+T2T3yz0v3um95W6V54YWesKEkW7nFfpfvRcVdXuknywz9/o9L91UZHVLpXTO/cRyXJs/52XqU79RmbVLrjnvh7pZskf1/n9ZXur7d+daWbJE8/szPH4GVXd56VPGvyZyrdJFl2/nMr3Utu7GxMtOkveut/b93p/ZXu04+sVOkmybjTtqh0v/rL71a6Q2dvWukmyc3z76h0976vM6ZzypOd+/Yk2eHlnb/z5YPeOOIRMztzOu9b2JkrcPHWa1a6SbLRM3atdIf+8opKd8zmS38Ozr9dPe/cSnfoA739xtZfvfP9W2aFlSvdM/btrTOb+cHOvJcL1uici2av/5xKN0k+9L6XVrorbP2mSjdJdjm889xv+uLOs+ZHfv28SjdJ3ji2c1/5k+U68+SmPtCbp3P7tM4z7M9N7u1rs93c7Srdf3ziwUr3rB/0rhEPvKbzW3LwBZ3rrQ2O2LrSTZJxP+7cr562X2esL0muOOWBpd6857H/7V7n8YlDOW29pf+86ZlbvHipN//txld37svXObozB+fMj/+l0k2S7y/sXGO/fo2zKt0k+fRDP6p0Z321M45w8eEvrHST5IDzNq9037FrZ0zsXefMqHST5LKzO/MBb5vXmf+dJI8f31mP9Yazv1zpnnvuFZVukty2uHP9d+BDW1W6X9jlV5Vukrz4l525kQuOvKHSTZIfDf5Y6b76tM79/rWv7s0TvX7PYyvdTY7639en/b/55od7914XvL3ztzh26qcq3SR5xYRLK91T/9YZ697qiM41UZLsvH/nuuiY73a6Zz/V29fixV/vrHPZa4Olf0/3b8e8/K+V7oof7czZO2T33jjeBvt31uzvd1TnmdAh446vdJNk8Ghnj5YvfffISjdJ3rjehyvdC++bWemOf2ZvDsdrf9uZ8/zJnfatdM/apLeOfeeDLql0T5/05ko3SX6/Xufvset7f1fprrH3VyrdJHn0n51z/mc/1bl3X+H5J1W6SfLyPTvn5b1u7v37fenSiyrdP/+rM28he3aySbLtdZ1nes+489ZK90vr936jXnDiXpXu1O/0ntVfc8kHK91nHLNzpbviAZ3r8CRZYUnnuffVB3fm4Hx0td4Xe4frD65013xrb41gXt4ZL/rFL95e6X7oQ52/cZJ84pTOvdRuB3XGEed/rDOemiRveO81le4j6/ZeTDv+851z0br3X1zpTpnWWa+VJLNWeUOle/JpnTUjd25yTqWbJBuv1JnbM+OE3rrG1+7/y0r30LGd+9WN7u3tlfOVwzrrlf/8SOf++qr9evdRn1r1ZZXudW9/dqWbJJ/a+dBK9+Y/d/ZamT2u99z2BX+/qdI97OjOb8mjb3lPpZskU//eGdP5wcdvq3STZPrzO3Nbd35R5/v31EW95/mzJ3V+V088ufO5ePySnSrdJDnghtMr3dd/tTNWlCRbzVu10v3C453uEzPOrnST5NbP/qnSPfhNP6x03/bd3t6gb3z4nZXukSv9udJNknd/qnMt/sn/8X83/9b5ueNFS/+3/tIje/t9fekla1e6t885rNJd7m2d9UdJ8sQqnWuI2dd19n5Jkm+9rjNfJr/sPC/8wit7a75337az1uRLu3bOM9/+51sq3SR52XBnv6ivvqazb2uSzP96Z2zzlIM7e+Fc+r3e+vcnzvt4pfuR1TvjH49s9etKN0mGfvveSvfTt21R6SbJPW/tvIfp509vUOl+7dTdK90k+d2VnfcwbbVmZ7+2Jw/vXbPmn1+rZF/yvt5e3Ted0rk3OOToj1S6e/6gN+/57JM61xhHrPG/3nX8v7v0t5098ZJk7Oc768F+mJ9WuknyxP7bVrrn7d555/qL9++dl9/yq8572z6xY2e+xcRPd96fkCTnfrXze73uQx+tdJPk1uvWr3SP+2VnnfW03/TmZy3a8QOV7nH7v6rSXebUt1a6SXJw7q50j72htw/j88/srG38yWHvq3Q/+KneNeIa3+x8/xbt0Znr9NUVO+9CTZI53+3s87H2tp3xkSTZY6VzKt2nxnTWNn7vzIcr3SRZ77EJle4ON3T21dj8tM77P5PkI7d1zhkbfqvzjrskeXrnd1S6Rz27M9fwoMW9661ffGq/SnfWnp390G9bt7eW/ey7OvvP3Dyht37755M7+19ce3Vnv5yrPrdCpZsk7zqxc87f56+dNT+nvLk3H/6Ea/5W6a69U2dtTpLs9+bOMZ9xT+cdJs+4YHqlmyTzJryg0v3ofp2x2qcP6qyTSJL3HNuZ67vcDb39cY945JBK94LzO3v8vGwws9JNklt+35n7tefJnXe573Vq5/46SU77Vue5+4St96h0k+RdG3aew5y7Weca/5kvuq7STZI3rN2ZR/yXezvvgpy0TmeefZKs/uS+le4mCzpzGJPk1u8trnTnf7LzzrifLNd7t8ZhizvPmnd5Y2e84YszvlPpJsm9B3bORcfu33vP1ude2nmOtuY7dql0Tzq+t6fipNd27h1W/NXPKt2TfteZP5Ik2598YaX70+/15vb96ozOOxvzP77mZ6X7x+fADy/9vcm/8JV/LvXmv+3+3ZMr3dOu6Dyv2GRcbyzhL9M7e8FNvm9SpZskd79xm0r365+6s9J9xVOdd2glycyfd97rsN7rO/Oz3rnjhpVuknxulV0q3XOPfqTSTZKv7bdbpTv/pM77ZZ6zTO+e/56xnXeuH7TTxyrd5Y/4SaWbJGcf1Fnr8vdrLql0k2TR8Z13nxx59HKV7tDZnXdeJsmJ22xf6Y6fWXof4wd6a3NO3qYzxvvmdObAJcmTl21Z6d7xmc4+0u+8t7MeOUmmH3t+pbvr8zrjKmv+qfMcMkneUXrX1Wv+OLPSTZJlD+h85g4pvU76jON641e/fvjUSvf+199e6f7tC539jZPk5T88oNJd++zOGFOSfPuEzp4Ot0zufK8/ukJvTtm+b3hWpfvhQztzWqb+9dFKN0nevX5nft3H7zyh0k2SK37aud+ZeGlnru+8Oy+pdJNkhbs67z3a/BmduWrrLd/bP2u/7TtrXdZ627qVbpL8cMvOGoyTLunsH/nwRndVukly8ZOdsZe/v6gzPnnizp13YCTJrOd35s3udF/vHWwrXnNQpTt0ZOez/KFZnb0jk+TDu3f2HXrhZXMr3V/e0PtbTH9zZ/+zxbf39ty74I+dOYGnbf69Sve+3/XeX77hfqtXuud9/alK95CfnlfpJskqv+/sw7/fFy6odJPkFZ/vPK+/5CWdOcTbnd3ZOyFJfvPpIyrd1x7VmZ/1oh98vNJNkoXHdd55+/UxvTHxJQ933inxpt/tWOn+/cb/7X3g/4mfPdp5b9Uee3280t387N6+DPsc8+NK9/UvXLnSTZI17zu60v3N/JmV7gnFPXIXHdt5bvSmd3X2Ebzpwc77QJLkwn+tU+m+/8u99xM9cX9nzevFa3TWH973lc4YYpJ8+W2dOVw/+FPn/PmjOZ1zZ5JcNWuNSvfsZTvP5pLk43M7D+g++qovVLrX3NXZNzZJ5tzXmU9z68qdZ83bfbDzPDFJbnxfZ23x9Yf23o359q929jL78v+PKVyDyv81AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPg/zGCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBqMGR4e/o//4w2nrDb8jfUPX+oHMWHMMku9+W+rr71CpTt7zH/+d/tvLH56UqWbJFMHSyrdcUOdbpLMmj+30h2boUp33vCYSjdJ5sydU+nOWHZspZvxpW6SKcNTK90Z0xdVukkyZ2HnnDFmzMqV7tiFCyvdJBk/tvN3HpR+SxaP7Xz3kmTZFTu/UWMWDSrdJBme+HSlO2H88pXu0JjFlW6SjJnd+Z5MmDqj0h0zNL/STZJFy3W6g/kTOuEki0t/j4ljx1W68xf3/v2WjO1cy02YPKXSnf/w7Eo3SSausmylO1jcuy5q/WQPlnTO982/xaJB595h/lDpmCdO7HSTTCjdl5ROF0mS4WU7f49xpUuB4WV6/35Z2LleHvN05z54aErv2nPsPaVzfvPfb9C5flkyf1alO25853yfJE890vnMTZjRGTtbMvREpZsk48Z2rjGGxvc+y4OF4yvdKct27t2XDPU+yxnXucYfXtQ534+d3htfHje7c8zzxvTGVMdPm1zpLpmzoNIdDPd+V5POPdpg6LFKd3FvqDZj/4vnYv+NRUt6/35jJnbuS5aU7ncWLu58R5Jk0YROe9G8zt9i2rKd39QkGV7Uud4an941xtzJnXP+hCc7N6yD5TvXAUmyYEHnRDc8v9NdNLF3jTFhUel3dXJvHGrs7M5nY3FpIGPJwt748uIxne/f2PGd67hx6V1kzJ7T+febOr1zHZcki+aVflcXdo557ITOGHCSTBjfOc8tHJpZ6Q4/3TvHjZnWuRbo3fklYyeUzhml8eUlE3rnovGTOmMvY0vnz4W9x/lZPNz5Xg8XD3re051x4KE5nXkvf3/kT5VukswvzZObNKXz3GHrNQ6sdJNkfGkOyS/+9rNKN0lWKvyUvOuun+X2eY/8Tz8nq2+y8vBRZx28tA8pLzno8aXe/Ldxt65U6R7w/OdWupfc1JsDfuNqnbmi12x6f6WbJHvffnulO2mLl1S6511+ZaWbJNPv7Dw7fdWznlnpTnzeo5Vukpz09c416yu26I3lHTCtM5b+iWXOrXTHPHpQpZsk2/zz7kp3wWPvqHRv/tobK90kGXzh15XuMmv8qtJNks3v2KjSvXvCNpXuZXu/s9JNkilnz6t0bz3wbZXuc++9rdJNkuEPde4Ndv71hpVuktx643cr3c3ufW+lu+64zvk+SR7dvHP9OeaRnSrdrTb/Y6WbJH+7+JeV7uNv7P2WnHfNTZXuS1Zbo9Ld9aa1Kt0k+dk9nXHem9e7vtKd9YzO3zhJtnryzkr3LQs71+FJ8t4XPrvS3eZvl1a6M3b+Z6WbJJc/tkel+6+V/lrpLvfnL1S6STJus7Mq3VWf6IwVJckzL+s8f1v19M6czrVf1PkdSZKv7/ZwpTs89jWV7qtW6q15Xf/azkKl92y6V6WbJEfc8KlK98crde79llnQub9Oki3OeV+le+5BP6109154caWbJINxne/fJc97pNJNks1/u1Wlu9XYb1S6u17VG5+8fdXPV7oPfqxzj/bTt3TmcybJFvt05n4turyzR0WS/Ol1neuig0/avdLd/mWdPQ6S5IJfdcbafz6p83v9kS3+UekmyTEbPVXpvvP8N1S6SbLDfr+pdM+4dttK9+5re8/9llnSGa/d7uUvqHQfKf2Nk+Tby51X6X7xWatUukly9ZwnK92F18+odJ/zUGnzkiRv3+rGSnfL53WewWzy60Mq3ST5wl3XVrqH771ipZsk91x5d6X7/CsuqnT/+K3efJo33LdnpXv5HzaudHeffHWlmyQ/ub+zNnxojxMq3SQZ8527Kt33rf/ZSvf1d/fmzR64T2c+1CP/OrHSzUvX7HST3P3Dl1a6u639rUo3Sa69tHMtt+ZbOt1zbnlhpZskB17RmUd8zpJ7K93N0zvHrXrPjyrd323zYKWbJH/e4Iql3vzJr/+Uhx+b+V/Pe56+xvrDOxz9laV+PI++rrcG6YNfuqbSnfil/SvdVafsV+kmyRn3nFjp/vbMznyWJLngy0v/858kO/3k1Er3HRN6ezm8atPO2Mfr5v640n3q7bdWukly7M87z0FWekvneV6SHDh8TKV73jJ/r3SfOK7zDCtJ7tq58xx5lxfvUOnus2dvv6/lb+7MbX3jj15X6SbJ7Pd35nNe8vyPVLqnnLZjpZskG276wUr39av9rtJ95qt716ubjN2u0n3PWzaodJPk0h90xuiv/2jnOciUf7660k2Ssa+4pNJ9w7c6x/zmI3tzOCafsFqlu8be0yvdJHnPxPUq3YPunVnpbva20yvdJPnZzp3z8mcu6sxZ/+0NveutHd/aWaP77e/0Psvr39255lpttxdXujuc3rt3eOwdnbUB97y5s5Zor43/XOkmyVG/6KzRHfxy9Uo3SV5+1PGV7sfftmule/IRvU3cf7NX5zP3iQ93ngndvnXvevm9h3f2zppyR+d5bJLc9fUPV7pXrPTxSveaW7evdJNkz5teXul+dK/OfdQ3j+6s90mS3S/apNK9aqO7K90kefG276p0L5zwmUp3/78dVekmyavuPrvSPXvutEr3Nzv15nCsUNr77AXvfnelmyTHTehc409fsbP+Ysu17qh0k2S/XTevdB++s7PXw5QHDq10k+Thk4+rdDc74MRKN0led8XSf6dwkgxtt0Wlu9ZxvTVmyy3szFvY8j2defb7rN6ZJ5Mk92zRWTt60HM76zCT5NsPrlvpbvLPzvjyd7bsrav6yrmduU4/PrC018MVvWfYW77+/ZXuGS/vzLlMkl33uK/Sve9dnb0Tpn/+Y5Vukjz7fZ21RB941lcr3df9pXNPkiR3zunMB9xh5c780yS5+4bOHK6F3+2si3vHoT+sdJPkHbO/U+n+/W+de7S1ftP5jiTJQVM661IP3rr37vSv7rhLpfuXNTq7rV9y84xKN0k2K72XfdzGnXuS3y/qrZe84urzK93dt+7tz3TEdpdUuutNOOnq4eHhrf/b/90Gy28x/LU9Lljqx3PvY/su9ea//fnkByrd7+/9+kp32fecUekmyZWnfbrSvevm3ljeu+7r/PttP7/Tfd/KnfuCJPndKzu/QSc80hnjPeHUzv5ySfLEhh+odA+b39u7brOfddap37Vv5x2Sa3/4lko3SbbpXGbnm1t25g7dO7sz1yJJpr7jtZXunM07c5OT5MTBlyrdb+z/5Up37K29/SfeuaDz/Obyhzv7F5z6+d7aqh1u68xbv/Kzvd/VB07q7AX3+NzO5+LYBzt7zSbJq7fozK/b/lmdOYEHbrJqpZskR15+eaW76Jv/qnST5Hu7df79Ntymsy/Cycf29nrefXpnv9mvndJ5jvXSJzv3lEnywhc8r9J9zp9+XukmyQHDnbl7//p5Z8z00bV67zm+8ODOe1c2uvK3le52V3yu0k2Sdd/Q2SPw7us+WukmyTNf1Zm7cOdVnc/c+Yt7e1wdMafz/G2dOzvf66FfdPbBSZK91+pcy01f9F8P7/7Hrrm6826+t/y9826Nw1bojWP85dHOO4Sm79iZX/e+I0+qdJNk3i4zKt0vju/sm5wkN32gM6fzeb/rrKF55Z1fq3ST5HNndeaUHXb/1yvdZ11/YqWbJDe9u/Pejh98sren6Brv6ux9vf86nfVEb5qwb6WbJOe9vfNezPv26axf++y9N1S6SfLAqs+vdJ/1h946z52v76w5P+m+zrPKdc/q/I2T5MeXd77XG5zY2VP0vKuOrHSTZJUvdp51rXTjzEo3SV6Z0yrd71y3dqW73xWdz0WSrH9r5/lOvtDZe+2aL7yy0k2SHcZ3rj3Xfltnn/wk2emMznjRvHs7z20P/HFvf9XD55xc6Z6ycecdd2t/cEqlmySbnNV5T9OG1/bmY0w4fnyle8aCzjtXxn+i926N923bGS/63Bmd78jRX+qtZ5j+vM7586FtenNFz9+1857C9326s2/s8w6/v9JNkot+01ln/ZmJnfPyIR/prDdPkr9M66xBPOzXnfmTSbLnnZ13jv3h0gX/07zn9aZsOPyl9Zf+dcTjr9h7qTf/7ZztO3NPtvnSoZXu+w7pze8Z3Ns5N559UW8sb/ZrO/sOvWrLzhzwAzbrzUna5r7Oe/cOO+aqSveaOzrPepPk9u931qq/cGZnjD5Jzl/SmUd17Ns7zyH3fn9vHse8L3+i0j36Y511358bs36lmyTzX9FZx7n5mb09DM765M8q3TcOOt399+3tF/yCWZ1rwJP3/WSle+5ze3t0bnz1ryrdvzz+1ko3SRas8oxK983bdNZKfGxaZ81Pkrxty85c+1cu29nX8MWfPbPSTZIbftt53vv2t3Te25EkP7ymM3d2g+U6e3ReM+ncSjdJZr33HZXumpM6z94mrNyZa5Ekr5hyXaV7+2dnV7pJsstlnbGxt369M9f+gct676keM6Ozt8wDL+ysDXj2TZ2xhiT5zCs71+LfGN/5XifJGu/pjMUOfbfz7PTX63bes5UkP/1NZ+7QRzfp3O8c/47OnhlJ8pMtZ1W6D3/50Uo3SZZ/c2fu0CFvvqzS/cnBnXXFSXLUxIMr3ReetPTfq5gkh57Wu4/6x7ePrXSP36C3T9n8VTrvgVr3gM4+ZWdd33lHfJJ8Z+IfKt1bX9hZV7ziPzt7oifJmlt11glec0hvHs6kn21a6W6954qV7rRNOu9sTJKVfrJHpXvyK79Y6a5/9BaVbpLMfmVnTu4TX+7sqZ0kV13QedfPc0rPB47ec/dKN0lWe6yzT8UWR3T2AV/n+xdVuknynq935s2+ft/OPUmS/OjrnX1973jonEr3C8/ujS//8N2HVrrbf70zH3fu23rv+jlmVudafPqk3jtBrjmvM4/qk+d27h1uOKm3BuOkMzrXtUevck6lO+6zy1W6STLl7Z29XO47uXMdniTX3dPZV+PGww6sdC/ffp9KN0kmv6dzzv/0mLGV7mPfu7bSTZLdhzp7d/3m+N7auIPf2nm398N/3KXSPeCtb650k2SZpzrvT5/+yc6458+/ckylmyTPOePoSve1b+m9z/P2L3f2W//Mr/7y/zjveVD5vwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/4cZjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAZjhoeH/+P/eN3Jzxw+fu03LvWDWHnGwqXe/Lepk9aodJcML650hxdPq3STZPjp+ZXuxGWHKt0kGQxNrHTHTRxX6U6c3PlcJMm4obGV7rz5nc/cMsv+5+eW/9bUsYsq3XljOt0kmTRuaik8qGTHLVym0k2SJdMmV7pjhp6sdCdMmlDpJsnYsZ3PxaKJnfNFkkxdUvr+LVxS6Q7N7n2vp0zvnD8HSzr/fvPH9K63BoPSuWhJ75gXLuxcv8wbjKl0Z0zsnDuTZGh25zd74fjOv9+USb1z3KLFnXPRxPG935KhOZ3uhGmd7/WChb3r5aHHZla6Y8ZXshk3tXe91brfGTOhd42/aF7n+7dkXOezPGla7959aPbTle5gQedzsXBMb0xg4QMzK91x40tf7CSD0v3OYPxjne6slSrdJBla/GClOzyYV+kOxk2qdJNk3rxOe9kVZlS6SbJoXue7vWDQuUdbZsKylW6SzJv3UKU7cZnlKt1xg+K9w6KnOuHJveui+Y/OrXSnTJ9S6Q4Nda6JkmRC6Vp80djOPdpgeEGlmyRDM2dVustO6TzPSJL5kzv3lYufeKLSTWmsKEkyuXMtNzxU+syN75zvk2Ts+NJY7ezO88Qkmb7MCp3w1M7fYslQ77O8eEnnHntc6Xw/b1FvTGDi+NLzgSW98/JgbOe6aMG8zrloyjIzKt0kWTSvc701KD0DnfNo77nRjBU7z/2Gx3SeOyTJgoWdv/PCuTMr3bFjZ1S6SbJk0Pn+TSyNT85f3PnuJcnwws5nbtq0GZVukiwZ0/n3Gww613JLFnbGt5JkeFzpud+SznX4uNJ5KEmWlM6fixaW7qOSLHzygUr30Tmd8aIH599Y6SbJzKfuq3TXXW6DSnf99XaudJNkQTrjUBf+7SeVbpKsuNzSPy8fftPPc+ucR/6nL/ZyK60wvMt+L17ah5QfP7TRUm/+24NrPqvSvfSOZ1a6g89tXekmyZof64xTbPb3syvdJFlwaeee8aKf31vpvvbX61e6SXLvBs+vdG/+xNWV7lrv6l1nH/xE53fzm8dvV+kmyfJnblrp7nL17Er3Wxv3/v2237QzP/mOH11Y6b7wJQdWukly7bXXVroHbPnpSjdJnhg6t9I9/ZK/VrqPPK83v+7oDTu/2Tfc+9xK9zlnde4LkmS9z3bap/+yN7919iNrVrq3P9S5Ltr12EMr3SRZ/7JTKt0b7t+90p08uXMdniR3btMZS5h++Qsq3SS5+M6HK90jtz6v0p1/dmcsIUkeXPPKSnfR+q+pdF/8r3Uq3SS5dJ+TKt3vX9ibw//2V3fm5F75j/dXusPr/bLSTZJt/3VbpTv7vZVsbtxhp044yWbrdcbc1rhlZqWbJGP36XyWb7iwM+/5vtfcXOkmyZ9uPKjS3XDnHSrdT96zbqWbJA8c1zkvTzp4t0o3SW5++F+V7uJH16t0n7d9b4z+yac6n7mz/1HJ5nlv7P1eT73w0Ur3ss2vr3STZOV7Ovclr7yi81x21ef05rScs3zne73VGq+qdGf/9VOVbpLcu91bK90ZP/1ZpZskx0/pnD83e7Azj+M1606vdJPkwF0764m+flpn3HPWnr3z8rybt6l0t1+n89whSW6buVmlO+MFV1W6q31xy0o3Sd69xpcr3ZOf2K/SffW2l1W6SbLG2K0q3a3Hds6dSfLQ775V6U4+rvO9vvGm3vys3e7rjOMvN/P8SvfB4zv37Uky7fhPVro3Dt9U6SbJ1U931oO9/MkZle43t+s96zr5lM7anDM37XSffF3vs7zl6Z05uVuPu6PSTZJvlaY3bHv9UZXu1MWdOUtJ8sb1O3MFrh7XmU/z2nsfqXST5O1v/VClO+/kzm9Ukrxi/J8r3V8e9spK986rj650k2Ta4AOV7sLrf17p3vqCzvV9kqz30mMr3UsO6+0F8ppttl3qzR2veE+umXXHfz14ttJ6Ww/v//ml/xz52Q+sttSb//a5v3bmuj8596JKd+09vlnpJsk7b+qsKZi2Yu/f77Y7Oufya87pzHM68/2rVLpJ8q3BpZXuwZt05mbN3K3zPCFJ/nr4FpXu/IcvqHSTZL+bO+eizzze+V1b74zev99W+3fWojz0xs4eZc972f6VbpIcMWtmpbv7rzvXq0ky5qgrKt1rpl5c6c646tRKN0muHfOWSvfe9Trj829+6w8r3SQZrHdApbvSE709yva458RKd+EynbUMD3ypM88iSc5b8fZKd95Tf6t0333c6pVuknzxxV+tdFdeufOsKUnOnNGZqzbn7i9Vuvdcv3KlmyRrPjGj0t1v+hcr3aO27aw3SJLn39y53xm+++OVbpJsNPOeSvf+c55X6f749CMr3SS5/bafVrpjb+88d/vHBZ31IknygTd21v6ufUhvL5WvvPWwSvfY1W6tdP9wVG9M52Mf7qyxPvRNK1a6nxvz+0o3SU55/+OV7g8u3rHSTZKD3vX3SneHnTrzDOeuXFrYkeQr63SeI9913I8r3ZP26pyHkmTh6Z3nm3t/+NWVbpK88/hjKt0fjO08997z97dUuklyyU86c5Nvm98ZE9/7oydWukky5zMzK92Vd+1dY/x4pbUq3ce+O6PS/d5dvbVEj0x6WaW7xi6dMfEFX+7NU9tnxQ0r3St2+1WlmyRTT+7MAf/78p21YHP37exPkSQHvLYzxnXfuztjOq94rPfOo19f0RkH3u2TnXlOSXLR3EMq3Ueu66wdPfq6zrzWJHnvMZ37ys1mddaOTn64tz/Fv97Qeb5z0e97683fc1pnLcq3ho6odN970faVbpJc8ZqzKt3l/toZb7jsxs0r3SQ56OzO2vsvTe89Hzjhgt9Uurdu2dn3cL+H3lnpJsnMGZ3nfsdd3tmb8OzNvl3pJsmPjtu30r3lpN565fsXfKLSvXdRZ27YM97Quw/+5lsPrnRf8I/rKt3r9/pCpZskH3u8sz/Th67trD1MkkmXdeZ8fnLVR64eHh7+rzcoXG6jKcO7nrz076Gf3L4zxpskO27SOZ9ffXZnfv6En/6x0k2SV/y+8yzyE1f03ru35au+Uulutk5nTsvZu/TG6Df7Tmcf1IUndsaYDpvc+1xse+fGle5D63X2IE6S19/whkp3+vs715aX3dZ5r3aSfHuHpb+eJ0ne/rvOvcFNP+5cVybJm27rPMta7eTeXt0v3/lPle7gs509MzbfuTOukiTzr/topTu8Ueczt9HnevvKXLVxZ7+oyz/fm4fztR0689YP/lvn3doPvrj3PpCfnfyDSvecMzvvtX/0k3+odJNkg9901gme+I2PV7pJ8vy3dfab3fRlnb1wvrx55/0XSbL3MZ01GIev2Fmztf/Lf1TpJsleF3b2mNv60s54d5Ls8rFnVLrbXNJ5Drl5eu/JffUHOnsjPOutnf2iDn3LByvdJPnuPZ17v8+d9bFKN0mOOrgzV/ueyZ19UG/b4C+VbpIMvaiz39d79npfpfu1px6qdJMkP+0813v+m0qbBSc5eXFnH9uVf9R5pv7uT/XW/944p/Nc4djvdc73a98+o9JNkveUHt+8Z53eeXnuxM7aqs/9ee9K94kX9dZMfuKMznraxV/uXG8tM+P+SjdJnj2t87x3+S921v8myYe37Mwj/uqtneeQr5nz0ko3Sc54qPN8Z4MzP1Lp7nlHZw5qkjy1uPP+p91u6ex7nSRff9bLK93nXnVdpfuxaZ39OpLk0TfMrHR3+FpnrOiJUzr3lEny2TU6+/sveKwzhzFJjtip83zn1tU7v3+nbv21SjdJvnhd577ygo06z0Af+uc1lW6SnHRq59rzG1d03suXJOeeuUml+/u/dJ513fjoryvdJFn2qs4a0o+v2lmzNfZrnXd2JMmOU06odK99R2dtR5Icfsjxle7UD95V6b53amddapLsdndnruibj+q8/+nh5/SeO5z/ls6czunbbVTpJsn+L/9dpXv5zM5vyW1HdvbhSZK3XdnZ/+L2Qzp7Kq60/3cr3SQ5eq3OXpuPPvxnmGUAAQAASURBVNa7xv/GpM4x7/71H/xP854nzlhxeJUd9lnqx/OGrXvPFR74zTsq3d+9pDM/67Yvfr/STZLJY2dUun9aqXfPf/tNnXuw6et19us+YdfeM5aHtu3Mo1r8vc7ckzU26+x3mSRvHu68u+Z1m59R6SbJH3/82k73+M74xyef0dsX9t7jO9dTX9irs2fUidv19mL8+6uX/jsUkuSrh3y90k2S76/QuYe+cO1DK90J/+i96+rmuZ31ve+8rbO3zM6P9t5h95q/d/bjuH7QOXcmyVqbdtYHbPH5zhziHz/W24f/bx/tzM/a+Wude8ZvbtCbK7rLcztjpnut9+JKN0kOv6nzPdlrp846l5XO7K3zHP/czlj6l0/fpdI99/Teu342OHmDSnfaCZ33PiTJlp/p7Cs69azFle7nr+y9k+DGgzt7Sb/ttM7z3juP6bybKElOW6nzfsPJQ52x4yQ5ecXOM4vP3PymSne/9/b2P5u7eufvfNnDZ1a6U6/trTO7eNtvVLrTP9V7b9Wrruo8s9hq8Wcr3eVf3dt7fnjvf1a6lz67s0736nV76/p3/vGFle5Pz+jtXf7UYZ1j3uKdnXUH0zfqzOdMkkM2H6p0j31tZ1/Yr/ykt7bq2Z96d6X7013XqHST5Du7zKx0X7Lwukp35Y06584kWX9+Z4zr03eV9kxcufc+wb98+xeV7hk7dNY/Jclr3rpHpXv++ztjZz9avje/btWvdZ4JT1vm7ZXu2E937kmSZLmFd1a6u+xyeqWbJCde1Xlu++ZVv1XpXnRw5308SfKmKzvXtXed35mf/NSqve/1Om88tdK9/y13VLpJ8qEbD690v//bzlzDMx7o7UM3d1zn/HnH9OMq3RtP37XSTZKj1uy89+itF3T2y0mStW7ujOsc/4POPdrYSzpzzpLkR7/trEf5+Y2de7+FizrvSUuSy77S2S9n06t6ezRd/7fOeN9hl3UWs+/8kzdXukmy+/jOetpbXzKz0l3ze8tXukmSizr7au/44s4erEmy9k7nV7oX7PnH/8d5z727WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4P8hgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAajPtv/uMxGc7EzF/qB7Fk7GCpN/+/7blL/3iTZDB2caW7ZMGCSjdJpi47o9IdP25spZskYxZ12oPB+Ep3ciZWukkymDxc6Y6buLDSnTJ1+Uo3ScaOW1LpLnlqUqWbJAunzK10J03+r07j/7GJ0zvfkSSZN7tznhu/6BmVbpb0fqOGx3Q+y4sXLKp0k2TJcp3P3GBO53d1/Iq98/LTQ53z58JFne/I5ClTKt0kGZPO32LJMstUukkyZknnGnHG/NJ3ZGHndyRJxk8cU+lOmDGj0h0s6Z3jhp6cV+nOmzer0k2SRelcv4x5snTtOa13jbFoSufeYdy46ZXuhEWdz1uSLJjbucYYu3zxt2Rs57s9dbjzuXhs9pxKN0mWHd/6nnSutyYM9b7XY1fqfP8WPPxkpZskE1ac0AmP6dzvLJ5QvMYY6txLPTVvaqU7ZZneeXns5M7v9YSFQ5VukixY0LleHj+2c++woHjvPnbitEp3/qzO7/XkcTMr3SQZnjSj0h0/t3e9PHZc5zM3f17n3n3ilBmVbpIsmtO5xs+yne6ixb1z3MKJnfb84d796rgJneuiuaXnO4uLz7qGF3XGXsYu7IwjTl1pZqWbJFnQOeYJE5atdJNkMKNz//DUk53f1SnDnW6SjBvbuXeYO9y5xl8y1DvHLRrf+VtMGFv67UuyKJ1xgXFjn1npLlzc+/cbP75zvbyk9Ls6ceXSfXuSxcOdv8WCeY9XukkydsLkSnfyhFUq3XkLOuNbSTJhSucacd7czrXL8JjemNxwSueMQe/7N5zO32NxOr8lg4m9sfaxYzvjUK3fvqHFnXudJJmw+MFKd+FTvXHEhek8t31i7v2VboY6x5skU8d3zp+rrbJmpTtmYm+sfWppauYqUzrXnkkyNP/epd78/+f2bLWxk3P8clsuvYP5/zh9Zu/aZNt5nTHvVZ/4UqW73B4bVbpJ8uget1W6Y6buU+kmyS1vWrnSXe6RAyvd87e+sdJNkmz8VCW7zr5rVbor798bl86tnecVu5zZm8P/vb9dVOku3G/zSnfnE3rj0uv+cYdK97Idlqt0H1plx0o3SeZc2fn9+8bchyvdJFk87o5K94jFnXPR3bf0nn3PTuecsdX9j1a6V4/rfPeSZO5t/6p05/9s00o3SbbZ++xKd/Jmr6l0b3xm5zuSJL9ffttKd8YWr650153zuUo3SRb9acVK9+rbZle6STJx+asq3cVPblzp/nqbWyrdJLn2mq0q3QPXu73SPWHwj0o3SWZc3Rmz+cDTvWff1/6iMxa72R6HVroT3tkZb0uSx/Z9caW75lueVenOOeR7lW6S3D7+05XunWv8qdJNkt9+78OV7tovu7jSfejeN1W6SfKqwX2V7odO+GGle92UzrkzSa562Z6V7n1DnfGtJJl9wLmV7r2f7tw7fGlCZ3wkSbZdvH+l+9AKf6h0h5/8RqWbJOc/90eV7rY3dn6jkuTzD/6s0j1tyicq3Vl3HFfpJsm7v79zpbvqN+6udK9e47WVbpJ84J8nVbpX77tdpZskG2SPSvf4b59V6X78hs54eJJs/dRPKt0fXn9Mpbtku10q3SR5bPXO+PKdy/TGMVb8RudZ17+eu3Wlu93qvXGMoz7w5kr3vsP+XOmu+2hvrtotm11W6e52zxcr3STZa3ZnHPiP53fGJ2df2xtTvevuD1a6M1Y4ttK98aLefPiHLuiMIz7n3b1xqDOf6oxDrXzz6ZXuhd87otJNkn0O6lwL/ONHpfkYd/Xmil7/oicq3Quv71zHJclj835R6U5Z6y2V7oVv6XST5MmPvarSff7bNql0X33VnZVukqx6+dcr3dU+0nu+c8nbOvMGr3iwcx+85tWddS5JMuuZ+1a6U57TufZcefqXK90k2fCyzr3DF8Z9t9JNkvsf/udSbw79j3sIrjDxybx23aU/P+ShBztj3Ukyc6/OON7vz/1VpXvb33pze26c/pdKd/CMwyvdJLn4t7tXun8/69BKd9tFned5SbL2ybtWuuu98EWV7l0z313p5v9i7z+jNasKtV33qVm5ioIiKTlniQYQBAkSJQgCEgQMBFEQRAVRUVBEERUUMCAKSJCkgiAiSZAoOUgUREDJGSpQ+fz4tufX3u18y13Pma2+dl0/V2Pda6ya7zveMfrovY8kxzzRuZZaab5jK90kuXCdzvqmmdd2nglteG1v/4Irl9y+0l19u8794k7PdsZqkuTvFz5U6Z782G2VbpLc+c1vV7rznfPNSvf8D5xe6SbJcXd37pEWntpZM3L2J2f/Wrr/2P/5ztjxY2/11smue/CRle6Ga3T2cvjL1Z258Ely+8mdvSNX3/CUSvecB3tzs6Ysd1ylO8+ozpyhJFnm82dVup/YuXNf8rEzFqt0k+Toxz9e6V77h6sr3T9e9r5KN0lePaKzRmmvk39R6SbJrI07z9Q3/EFnrsUNL3290k2SER84oNL9wK/vrnRvfXqTSjdJzpnQeaa+9lW9+fsrrdkZe5m+Tufa8/q5O8ebJKs/0HkO+f6DOt+RG37RebaZJH9Y8nOV7jM7dMbNkmTVYzrz9i6c2flef2PyQZVukmx15/aV7j6LdvaReM+tvXGMfY/rjCPO9WDvmA/5+g8r3QMnLlrprrR2b4+dZ9bszFl/9w86+32NurKz72CSHLFmZx30E0dVskmSLffq3GP/5LHOvjPP//ZLlW6SvHzLHyvd8befW+n+bNXnKt0kuXyDzrq4b5zfe3/emB0714if/ekjle6Fj99S6SbJ96d0PstjPvHzSvd7z/eeGx3++8613E/POKPSTZIXr7mq0j3v053nA/ve3Vv7++1zOmsDLk3nfLHC4Z155UmyygO7Vrq/2P6SSjdJvjdmp0r3I0d25gD98brOPn9JcvIt76l0J2/buV7e/OTeOuiXju6M9y130Ocq3ST5wQkHV7rbrN8ZU/3TaZtWukly64jOPhLvvn3ZSne9GzvzT5Pknvd35nAt9sZ8lW6S3DWhs87lnL06z2C2/Uznty9J5l18uUr3jS+8VOke8vsFK90k+c7XVqx0T1j3t5Vukpx/ZOcaI/nv9jeYNnGVPHfH7N9LbN31Os9kk+SBVTr7ff3o5s7chRXW7fwWJ8nIdMYpfjKtdz116OadvS1WuqTzvPDSFTvnxiRZdnJnzO1H7+2sQXpq3ZMr3ST5x4Gd+a03b71XpZskq07/WKW756+WqnQHjrqv0k2SC3fr7Euy29dXrnSf+mZv3+sT3tnZh/i8a3v7Au1y/VaV7pnf6Yxrbr1bb/+CG45cvtJd+vDOeXnpr/2t0k2SLZbtvF/tgV17zzjHbt/Zl/KSuTvnuPv36r0P5OCVzq90f7TrapXu90fcWOkmyVN7dq5fLtr9g5Vukrz72s46z9MHbq90P3D7/pVukpz9m87+Ewft+0yl+7PHems7VlukM6f6kjVm/7rs/zh/oXUr3Qce6Mwd2uB9nb1mk2SzWzvn5V1v7rzD5JJreu/J/evGnWdZ8+7w/ko3SS7crfMsefJXf1bp3ja2M26WJJ/crvPZ+MJFX6t037/tMpVukhz17c5nbtUfL1XpJslVm3S+f3fvdmKlu8zmne9Ikly2ZGeu6FMPddYsL/urNyvdJDnlbZ01bEe80ZtTtvzIzvObN3/bufYc+pmxlW6S/PjYzjOyVy/rfC6uerS3TmmBUUdXuudvcEilmySrztUZXx53euedcfOf2dvref3dn6h0P3dvZx7c4Rv+s9JNkqdv6eyXOG7T3rno3vU7e/ltf/SDle69P+q8+zdJjv55Zx7cmld03t914uGHVrpJssC3fljpXvLH3jvX3/nezhyt3U7u7CH9ib/13r39s9cXqXTHn9LZL3HBX3TmMCbJWwt33ld8zaqdfVyS5NxX7qp0x/xohUp3ix/29jva7YDO/tQPP9wZB971mt47Qj+2cWeu4Yem9fZU/OKOnfXs177ZOX9+4ZDOPWWSPHxuZ++1ZYe/VuluvNWdlW6S3P+TznrM0S/33n9429md+Sk7lfb23/V9vTWT//hZZ/+Liz/bea/bBT/sfS7uOXh4pTspvblhr359/k74x7/6r/7Xxsw7Ju/Zea3ZfDDJWi933hGfJLdtcWql+8O/dX6PX/t6b8+vj36+s17oJ4905gEkyfL/WLPS3ffnnXeuXz12fKWbJFud1VmHdMKNne/fMj/v/bbtOrTzvpYf7tJ5N2WSzDfs6Ur3V5/qvLftmrM6+0QkyW57dfYQOeF981a6X56vs3drkjx2aOcZ5917dPasSZKJ73yy0v3rtjtWuvN/dYdKN0m+e0Pn9++Tp+1Z6U5eefZfw/3H9udcV+nedNQnK90k2XfTMZXuV6/tjIttt+uHKt0kmeeOzn3u6lt1xlUO/VjvXVe3XdwZW7luzd689Ut26jwju+W5zv6D3zis8xwySTY4sbNP0ga/67wXfdGljqh0k2TFtTtzF57/zFcr3ST55audOdXH7fbpSnf3FXp7y/z82c414paf7Yw3rLV6Z9wlSe5bsnOP9uxLvfcT7TeiM6csT3bGYn+6Te/dsOc8dXmle9RnOr/XW36qt+fXFcM7e9nO91+O8f7v+Mc1nXGBrX7VeXazw6ze+1GWHtN5d84fn+1cu/zpN511cUnyh+M776Nb9p63Kt0kuf3N7SvdHZ5aqtJ9/4W9dYJ3/b4zjnHP8p1rjNOu6M0VXfu1zv6Do2b09uH/4GuduZfvuqqzv/8mv9y20k2Shx55odJ98i9/qXRHf733b/Gz6zrr7/80vjPvMkke26Kzf+RvR3T26Hxqrt5+OTv+vvOurW1Hd+Zn3XNeby30dqt09h886/beOt3LvtR5b9yxb4yqdE++pDem8+ADnXcSfOr6r1S6Wb3zt0uSR+fpzMnd45OdMfwkeXDu9Srdb5UO+emRnXfQJMnbb+ys77h1o8457qVtOmsDkmSRv1xR6Y78fmfORJLc+8vxle6EIzrzGH/+s94c8BdX/Emle9canfePHvpsbz3D3p/t3KNddGbvHXrDt+w8k5rV2UY6f1r/gk44ydnXdOYWvXZV5310+4zsvD82SaY/2Nk7eeu9e3sqDvnFhZXulfm/v3fv7DoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+HGRjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmBAODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAkGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYEA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDnBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMM+5/8x0OGzMqwkdNm+0FMnzJitjf/Y8rwFyrdcUPnq3SHDhtT6SbJqBFvVbpvvDaj0k2ScWPnqnTHlj5yU2Z2/o2TZIH55610pw0bXekOGTKk0k2SgRlDK90FFptV6SbJwMjxle6smQOV7vRhvb9fpk2tZKePnVjpjl1wZKWbJDNndr5/ozK20k2S1194qdIdM+J/dEnyv2346N7fb+Krr1W6846du9KdNWT2X8P9f82cXskOmdQ75lmzZla6U2d0znGzhg2vdJNk+NjStcCszudieiebJBk6snONMTC9+PcrXX9OmdC5Lho1T+fzliTDZ3XuS4aVzp+vlL4jSbLA2xeodKfMmlLpJr3vyfRxnXvsqf/qjDUkyZS3d+6Dp7/4fKU7Y0bneJNkxoTOMY9ZbKFKN0mmDu98lkcPdK6Xh0zr/UZNndE55hHDSuNQxc/yyBGde7SZo3vjGCNGz1PpDpne+S2ZOrV3jTEwrDPeMDBrUqU7bWZvrH3krNK15+TeZ3loOue5ISM63YHSuTNJps7qjPeNLQ29TJ/U+7cYNtfbK93Jk1+pdJNk5utPV7pjBjrnz7dG9cbkhs/q3KMNn2dypfvW1PGVbpKMGFe6d+899svM1ztjZ2OGdf4tRpbGipJk4qTOb/Zcc3eua2cO7TyPSpIZA52x2mlv9cYxJk3p/JbM27kMz6S3es+wZ43qfJanTS9duwzvzcd47Y0XK93hQ3vX+MOnd77bE2Y9V+kOK/79ZkzvXAuMHN35Nx42sjemM2Vy5zM3bIHevXve6Pz9hpeuMSa/1fntS5JZ6fxbjHijc5E4fdqzlW6STB/e+fsNGdG7Rpw1qfPZGDK1c86YNqw4T27IMpXumNFLVrqZ1fuNev7JznjDQvP0xsRfmjz7r+UG/l/8pD610IgccNhis+9g/i/L7XLKbG/+xz/H7FLpvuuu8yrdDec5uNJNkpE/+GilO9/eC1e6SXLfzT+udJfas/O86aMP/6PSTZKX112t0n3bRu+udFdc4NFKN0kW/nbn3+LVAzvPsZJkrWOWr3Rvf6Bzb/DbHXrf6yOnPVXpLjNlQqW7yCV/rHST5O7Jn6h0txy4odJNklX3HlXpPvL4CpXuxtN6c1q+uMpVle5Xn+zMLZ/3rdsq3STZa/TLle5pO15a6SbJuI2eqXRf/VLnfub+535T6SbJWyutXum+66LjK937Vty40k2S9d57ZaW70HJ3VrpJ8txvOuflSfN2ruVW2WLdSjdJlv5b51nWvyf+qtKdsdKalW6SjJu8QaX7hXd25mclyeMnd8b/31zjhEp3vnWOrnSTZOTAtZXu8/N0fq9n/er6SjdJnn3mmEp3lY0er3STZI0TD6l0Lzl7q0p36u968wC+NvGSSvfwBRasdI9cdodKN0nWG9XZP2GFF75S6SbJhIc76w4mT+08+x43aeVKN0mumPDrSnfBVzvPhZa+80OVbpI8+kzn2emNT19X6SbJDmM+XOm+a//O32+1Ce+qdJPkrj92vtfvXqzzjPrCdMZHkuRfF21X6b56b++66ILJ/6p0P/+2pSrdS6YcW+kmyeLv+lKlO3Ljz1a6bz93+0o3SWZt/kCl+9jyvXnr7zjpvZXu9Zf8tNL926u98/Kky+6tdH913Dsq3T1+13nOlSTfGnFhpXvvsxdUukmy9qf2rHTneb0zvvzCO75W6SbJP/51S6W74pKd88WKv32k0k2SS3bv3JccfsVPKt0kmfulzl48dy/fmUe15fSzKt0kOf+936t0j9nowUr3d9d3nrknyW+O78ybWG/P3mf5+KX+XulOeHzLSvelY39e6SbJLdstUunuc17nGuPHC71R6SbJeYd02vOe1ntW8uqenb/f6Ft2r3Qv+GBvPs2+N36j0n31mc7zqOVW2LfSTZJ5Fuj8Rn3ptocr3SRZavjis705eev/bi71K69MyHkXzv4xm08/3LtfnHDTRpXuqZt25rY+uEpvT8ODz+s8UzjomM55MUl+O3KfSne/mTdXuqN++ttKN0kWmrxWpbv/Dp05AMOO6fz2JMnrT59R6V6z9cWVbpIMPfvySvfODx1V6X52kW0q3ST59f7rV7r7rfHlSvc353bG2pLkuU1n/zqiJLn5Q7+vdJNkrns7c6h2uf5nle7Ty71Z6SbJKtd8rNJ99qTO/gVHfOxPlW6SHL9vZ27yA5d3fq+T5IvndY75pwOddZYjf39HpZsky2/R2UBkjUO+U+mud0lp/W2SHY6+uNJ9/OPnV7pJcsrPOuNiWzzaWddx+Gr7VbpJsv/ynfVPb9v+85XugXP19mh59rLO32/mjktUukly3z8785GO/soXK92ZX/tApZskD/2zs/5wnimd9T6nHbNJpZskh76zcy331om3VrpJcvBlnTmoKzzY+ftNm7hXpZsky6zQuZe6f1hnzvrLfzu90k2Sv1zQWXv/5WW+Xekmyce/2rn3e/CTnbWYr1x5UKWbJCf/YqNKd7MPHVDpvmOzT1W6SfLl1TrzAd+3W2/vyC3u7ewXvHo610Wn3Xx2pZskT2zZWUu053c718u/W+d9lW6SPHRLZ5727xdYs9JNkrP/2llzt+eC4yrd6bf13iV4xQ6dtXxP/quzrup3X+/M2UuSR0+4sdLd7R+z/9n0f2z4qc6Y3HvX6dxHXfHlzrO5JBl3cOc52gsnvFrp3n/eUZVuklx0wfsr3RNW3KzSTZK9P9TZL+BLO3fWHGxwSmefuCR59PqHKt219+k8N1py5z9Uukly6yc/WOkudU5v/v7B23XWEi21audddPdt0psnusc8nTV3N228a6V7x3WdubhJcttfjqx0Zy3TW1e1ykmdeXuv/uYLle71v+2NL9/zcue534TbLq50//i3znz1JJm2Y2c/xauv7u2HeeYfOu+TeN/1O1e6m33nI5Vukhx3dmdMZ9pznbnwmx7XWUeUJI9OubjSPfhrZ1S6SfKDJ3p7z/w3Fhz9VPZfdfaPbd76fGdPtSRZ/I+d8YQjD/9+pfvJP29R6SbJqr/u7Is35HudteRJcseOnb3glv/QE5XuFzft3TN+a7lzK92RG3Su3+c6p7dv+QtDN6x0d/725pVukuz0ZGdP+39c1Jkvs8hNT1S6STJi184eZfsd39n3+pG531bpJslvFums2X/48t615dEvds4ZfzjyW5XuKUM77xNLkjfWPLPSveWwznX2ztf17hk/OLkzJ2nc9p01W0ly87Wdd8PO/fbO+51mvtB5N0OSfPErnd+oD/2i8xu1wcje9fJJJ3f22DnlG53nTUmy0Xqd78n5B3XGbM78Z2ddY5JsdNbhle7+b+88Rz7ruOI7CG/pjJnOv81ylW6SXHvb3pXuySPuqXQ/t0Rn388k2eqznXdLfXGzzr/x9cd33jOXJBdP6Yw3XP7YoZVukqx4aOd9Lttd2lkz+fKTnfeCJcl5t3SefX9qw87+Iavs1VmjmyTbDO3sRXXj6Gsq3STZ+87HKt0Dlz650r1ro19Wukny69c7a0j/sHxn3vqUb9xX6SbJUQueU+k+dvH4SjdJ1vlL5/w5Y1hnf8d/Ltzbq3vDlTtzDE44ofO93vqAzh4HSXLt5M5zo9UXvK7STZLz/tTZ5+BjA533P632sd5zv7d2GV/pzthx0Ur3kqO+XukmyfXbdL5/X/r2epVukmw6/6aV7m++flqlu1VnqkWS5NqNO++WWvaGzjvX/z36wEo3ST7/k8441OtL9OYEXrNrZ1+3R97W2V/1knN774Kc8t7ONcbZ23b2Arn5is4a+SS5bHTnnY1nXHZSpZskOy3RWU/0wF3XVbpbTu6t89x/8uuV7isHdebNnn/F1ZVukky9qbM//CKnduZzJsnW4zrvGpl39877ipc4uPOeiiT52uGd+a2P7tGZ0zn8kM53JElGj+3sl3PN0tMr3SR5YbHO+/Mu3fy6SvevUzp7JyTJEQt0xnR2OamzLnyPyzrvaEqSgeMvqnSPuvg9lW6SfP7wj5fK/92zrqGTxmWee2f/Pj4fPuSy2d78jzsO64xLf+Xxzh7HK+7U2RcvSX5wcOf5zRo/763J2vbjnbGVpx7pjAW96xOzKt0k+cc8nfmR295Tei50Xu89Bhcue3Gl+5kTe9cmq1/d2cPgeyv/uNJd4ju9/Z6HbNBZh3vTzM5cwztO7Vw/JMkhv7u/0v3Xmr1rk4mPde4NTv9oZ5+diSv3xug/P6WzBuqEuzr3Bi9t3fu9nrZiZ+7Qt+brPa9f+oDOXhEn/GZUpfu+D3bO90ly6OGdcc3lV+jMLb9/1GuVbpKc/ZvOPnPXb3BIpZsku0zr7IfzidW2rnQPXfeuSjdJ8q/Oefk33+/89j02sFClmyTHf71zjXHB6b1x6d3u6Owt8+2lOvsvXfD73jskD3r91Ep37ls7ezHue25v/7qfHnpcpbvrRlMr3SSZtktnb8pjlu/s4/7s3r31v1v/qbMv5U6Hd94N+6nlOuPoSfLT+TvrdM+c3pnTkiRP79PZm+ulr3bmJN1/Sm8f9yUP69xLjdu9s8762rl7Y3K37/vxSneLb3au45Lk9Bs641C/Xbrzvf7TTc9XuknywA8698G3ndzZL//yf/+10k2SM+7rvEfh6Q/13ju2x+7LVroPXtXZF++I73TuVZNk3S+/s9JdYtnOWui95v13pZskQzfprBNc/4u99UTzTO1MJP7zilMq3ft/27mnTJKr7rmz0l3i1s513IZv6z03+u3Rn6t0H15lqUo3SW7a5dpKd7nVjqh0D92ot6/GUt/o/P4N+0NnDvHHbu50k+QHC3bGt/58cm9+69Vf7czR+tvCne6IPTvvoEmSgamd9QGT3uzsMb7+NztjRUny7JHrVLpfv+WMSjdJfvDrzp4dGy7VWZsz/7DOGH6S/PDZznlunXs718u/eU9n/WGSrPmvzr42X5uv9z7PQ97ROebtLlqq0r1i8c5+K0my4cadcYwrduq8p3CHWZ17kiQZ9anOuwNOGnd5pZskt2+/fKV7/P/DKa73NjkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+D/IwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gQDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmBAODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAkGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDPuf/MdDB4ZnnlELzfaDGDpz2mxv/sfIIZMr3RlvdboDw8dWukny2qtDKt155hpf6SbJ0P/ZR/R/3/BOd9SQmZVukkybOrTSnTqr81keMbH0t0sydcTwSnfU+OmVbpLMyjyV7szhMyrdkTM73f/V7vz9pgwZWelOf7GSTZIMnbtzXn5roHcuGjt+rkp3oHOKy6yZve/1XGM7v9nDx4+qdCe/NqXSTZIRIzt/wBkZqHSTZMSkTntgeOffeXpGVLpJMuutzrX468+/XOnOs8z8lW6STJ3a+bcYNXx0pZskE16YVOmOXnDuSndg1tRKN0mmj1mg0p0xqvO5mPvFWZVuksx8481Kd/r8nd+oJBkxqnNenvrma5VuxvTud6Y//XSlO/X1zjX+kKGd81CSjBzXOReNHN77XR0YPb7SnTWsc/6cNr14Xp7QOX8OHdW5v541vXftOWVm5xpx+NDOb9//anfuK2eMHlPpjpzQu/ebOaV0LVe6dxgY6F17zpj6WqU7dMS4SjdJps7onOdGDe185mZO6927T5tWuvd7eWKlO3xU71nJ0IkTKt1Rw3qf5ZkzOsec0pjqyBG9a8QhMzrXiNOndca3hg68VekmyfSpnb/flKmd50ZJMm6+zrjOtNc657iZA73r5WHpfOZmTe38lkwpjtVmSOd+9a1pve/f6JGda4HpM0rPHYZ1zhdJMrT03G/ErM49ybRJvXPcsLGdsbOhU3rjGNNmdv49Ro4cX+kOK87HmDKtM94wpHTMM6f27oNHjRtf6c58qTc3bOiszrloWmkYeOio3md5YFppDsLQzrloyJDOPWWSTH3tlUp35uTeZ/mN6aX7ktGdf+fRU3vPjRYaP1+lO2ruzvlzWnFuytgxpWvPSZ3zRZLMGtJo//fNBR+clU+vOfv/HR9/cofZ3vyP/T85vtJ9bv1LKt2/TVm80k2SZw5/qtJdYr2bK90kWXbGbpXuXGd0xtyO/dD3Kt0kee8ZB1W6Fy47+9cyJMklv7+30k2SFxb9dKX7to16zxUGjvxjpbv1G++qdH/yob9Xuknyrkc71/CT3v6XSndg4i6VbpKMO+PVSve886+udJNkhdsWrHTX2eYPle6FF32g0k2Shc/qPMt6/Z+rVLpLb/9EpZskj037RaX7j5curHST5NkHO9dFd665SKU79puPVbpJssaBl1e6Z73SGQxaY+VbK90kefrWzvdv2DnfqnSTZOLiP+l0N9qz0t3glqMr3SSZ9tXOOf/6Uz9X6X78oZMr3ST5/ZIHVrp3T/9lpZskCx+waaX7zBt3VLpnLHhGpZskjz/Wma+2xDZPVLorz/tIpZskRy72eqX70kbbVLpJMuqUn1W6S3181Up3yR3eXekmyQ2/OKDSfeGAByrdX/cuPfPQuzr/FmMf7VyHJ8n8K3fWYAx8+qFK99o7F610k+S1pTtzfCbP27n2fGa7H1e6SfLFK2+vdH+/8hWVbpJcfPpXK91Fckalu/YL61W6SXL0Nb+qdG/asjNXZsm7Pl/pJsmrGz5f6S7w42cq3SQ59Zud5wP33H92pfvKvJ3n00ly00BnTuCLt3+m0l3/nZ3fviQZM/mTle6bz3yn0k2S+f/YeVby4oTlKt31h9xT6SbJyzt0noGO+17nevmJeS+udJNktxs63+v3vXlMpZskr4w+s9J988+d5+6PzeqtRxn/xU0q3QnDOmMCy3+n9zz4n0/9s9Jd9sntKt0kuW7rztqqpxbprFN6YadKNkmy+y0fqXSvfnqfSvd9C75U6SbJvsffUunOd1pnDDhJvr7UspXuQU9fWekuvl3nmXuSzDd6+Up38gKdZxoLrn1ipZskS9xzXaV7y4TeZ/mXC3ee+x07tvP32/yMj1a6SfLvlX9b6b5jVOc++L7zj690k+TJ9Upzw477UKWbJLt+YvaPF8146b+bbzb+tUWzw8XHzuajSeZ964XZ3vyPxU5buNL93vT3VrozLl2p0k2SVYYdV+n+ftl9K90k+ctDnT1Fd1t5y0p3yy169xuLPb1YpftIac3wd/bsXZfcd8bXKt2ffqUzZzZJFvzWrpXuEju8VulOXvamSjdJJuz+p0p32ec6e4oud/h3K90kWfQbnblZ3xo4tdJNkvtv2LnS/fHHO3uUPXh2b/7+pyd15l0u82pnbtbPFr670k2S3T/0pUp3uxefq3ST5KGfnlPp3ndd5xnkXivtX+kmyb9u6NzLfOUXnbmRFwztrNdPkt882Fm/Nu6p0ob2Scbe3lmnPuKczrPCTQ/s3e8883JnPflPF7is0v3CIp3nNkny3L2dOc/nz31RpZsknz7s4Ur3tF3fWeleOL2zdi1JdphxaKW73PK/q3S3fq4zzyJJvvHUBpXuMw907imTZOC6zpz1G/7w5Up32XffUOkmyaNPdcZeRh92WKW77D7jK90k2Xe/zryhYbf01uh+6TsbVrqfOnPvSveqd3SeByXJ+Sd15iMd/u7OtecLO3fuz5Jk2vydZzfbX79WpZskRz7SWefyl9s6v9c7Xv6PSjdJ1vhZZ1+u91/ceb7z1oTeu1E+u/jFle63Ttqi0k2SRw74c6V76kvvqXSX36nTTZLTjuo8n7vnI3dWul878veVbpJc997NK93rz+rMzUqSs3borLG+5UO/rnT3Wm+FSjdJ1t25s/fuC1/pzKF6z6zOfmBJcsDanTVK136+t1f3iectUemecMBvKt2v39Fbe7/g5M7+dvvf1NkDa/F9e/smv7D5jpXujHM6aw+TZJUF5610t93865Xuit+9q9JNkjsvOr3S3WSTz1a6Uzdfp9JNkh1W+Hal+/tXvl/pJsmv1uuMXX93tWcr3XW+13tPzF9u6axL3X+XzvOoI47oPI9Kknn+2tnf+PWTO+eLJNl+VOe+8pDr31fpvufW3nrlZb7amQP0hRc78wTm/nbvemvKkp3xrUvP7Ox7kSRPL/BErf3fmHf4tOy80Oz///ekR3rrLFd5onPPePnOR1S6l5TGu5PkoA927r8e3uIrlW6SzL1U5/y42WNrVLrvmtF5pp4kBw7rXKet+rvOHh8fGNr7t9hnrSMr3bGzvlHpJsmui99f6a5+6zsq3fVf2L7STZLbjuzs8/HG2Esr3e0+/2KlmySv/7gzh3jzYYdXuklyxJCfVrrPH98Z11x92Tcq3SS5bXJnTu46nWlfefPJ3prTJT/YeRby9b+W3t+aZIsjrql0l7q3s6fvYQf33sd473md/Qvuvetzle4Vl3a6SfLZ0nalq+7a2wf18KM67zR6fd23V7rbPNx7H8juh3XeQfjBJzp7Zjx5b29tx8Cozjnu1pU654skefeCa1a6I4/pPFP/wdyd/cmS5OA9O+OP+612caW7y0u9TXYmHtmZK7rMyb09ribe0dnbYtWvdd41d+d77ql0k+TVL3aefZ84pTPGO/LPnfv2JLlwm84amq3u6cyzT5JHj+jsg3rIq53PxfJr9sZ0Flqv81xvjwuXqnS/9LHOPO0k+fKinfcUXvnzztqOJHnkzB9Vuu8et3al+5m/9/YK/t1pq3W6H+lcu/xzvxsr3SRZYq7OntpXfKu3P+66d3bmJL2y61GV7rMf7XST5OI7OusO5jtjTKX72a913rGVJPcd29n7aeShnedGSbLySZ3z3PhNO/clF3y6t3fXw//uXONftEVnncThK/berbHCOp3x5S0/8GSlmySrX9p57v7ZrUvvXDnjuko3SX71rc4+qGM3/WGl+66/dt5RmCTrL9KZ2zB5bHHvrtM617WXXNZZJz/6mz+sdJNk+Oad8dpj73+w0v3M93rXnp+5v/N8YOCVTjdJNvnWxZ3usM7coivn7a3z/NzEzpzOYVt25k0suUDvPTG/W7KzBuP5eXrHvNhXPlHprntgZ+xsyM3XV7pJcsmLne/fDvN29iW65KreO9mvXLHz3O8Pm5xX6SbJTqOurbX/GxOmvZobn539L3y8bbnO3uFJ8r75O+2jvtDZJ+m+HTvvNkySsY88Uel+fHpnjClJDj3u/ZXuWtd31sc8sE9vLOi+m/eqdBf5W+f+a/6nOutukuT5bTr7Ue39zs664SQ56u+d5wpfevVtle6P3tV7t+jE2zq/bQts19lj/LaHeuPS11zVeb/TkH935sAlyfKHdvZZ/fCinTGblT72w0o3SVbd+wuV7sordfbmOvOOCyrdJHn0y515jB/9TuddB0ly7JjO++cX2HGhSvfdD+9X6SbJr4/tvDdx97M6c5KW27Wz/iJJ7vnObZXu8Cm9a4zF5u88r1/o1537nW/9rfPO4CSZ++zO9eeUb3b2tlhlid4zlh3T+SyfeFtnj9Uk+f6VW1W6W7z7F5Xunsf09nN4+ymdOdX7XP2pSveuD3Te55Iku+3TWfdz1ejO5yJJ1nrX45XurZ//a6U79u7eHrnfPfzDle6ImzpjvFff23uO/KuvdObhHH1LZz51kjz41sGV7tiVNqp0/3hdbx/+t8Z33qf5+AGfq3Tv/2ZnXXGSHHTcWZXu88t27qOS5C8Hde4rP/z3oyrdHzz3QKWbJKPfGqh0b7qr81zvr//szCdLkj1Xe6LSvfGAzvyCJHn00M79ztU7dvaZW2Du3jv0fvSlzvzIF5/8YKX7/G2999E98UxnTGe+hzr3lEny8lfPr3T3/FbnnbcX339KpZskG3+1s5f0uht19jje5qI3K90k+dGNnX3c7/hKbxzxok903ml2zuWdeXAzz16/0k2SA5ft/DsfdV5n7+vbh9xS6SbJ5AM772A7afveOxDvXKWzHuXOd3fmqk1+qbf+95P7dr7XH92hM/Yyz46d58xJcuDGnc/FuT97otJNkl1L57lNxj9U6Y59tneNuMm8R1W6+x3aeafLhlN77xO8b+/OHvGPLvPvSjdJxi/cmat90T6d39VNT+rNe97znM58ts/e2nkf5D2rb1vpJsmkf3Sew3z9vs7z/CS5+ued99D8P+mMegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/2EGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYEA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDnBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gQDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxg2P/kPx7IkIwZMnq2H8TAmImzvfkfU2ctUumOmTJQ6c4cmKvSTZJ5xg2pdMdmXKWbJLOGT610hw55q9Md2vlcJMn06Z1jHj3qf3Qa+N82c+yYSjdJRg3v/Fu88cqISjdJxswzvdIdMb3zvZ42c0almyTT5ukc88h0vn9T3uqch5Jk+pvDK90x8/bORa8/1/n3mGvhoZXukFHjK90kGT7wRqU7fWBCpTtm3nkq3SSZPLFzzLM6p4skyYzRnXP+6JGd39XhMzrniySZNm1KpTvv2zqfuekTOtcBSTJ8SudcNHnqK5VukowY17nmGjajcy3w5oTO5y1Jho3qtGdM7Jwvhozr3fsNL13jD3tzWqWbJDNndf5+MyfOqnTzVue3L0lmtP4tBjr3JFOmTap0k2T0lM5vycwZxc/ypM718vChne7Y4SMr3SR5c665K90Zr75Z6Y5eoHe9PGboApXurAm979/U0hjXsNL45NSByZVukkx99eVKd+SC4zvdUb3xrZnDFq10J73yaqWbJLNKlwJTpnc+cyOG9G6Eh4/r/GOMGTu+0n1rYm98cth8pfvVKb1xxGlTS/fCE2dWsgMjxla6STJsymuV7pCBznXR9BG9z/LYwjPbJMmYzuciSSZNLI2pli7x5xrW+12d8nrnGmPI8M5z29FjO/eUSTJ1VmlMfNS8lW6SzJjauRaf/GbnczFtWO/fYsTIzvXLmOGlC7m5e3Mb5hnWOebJA717v8lvdu79RpWGziYWn9sOHdN5PjCz1B3eug5IMmNm53s9vHeJmGnTOtcvMyZ1ujOnl85xSUaUnoHOeKNz7z555ouVbpLMmPJspTts+sKVbpJMeqtzzFOmdj7L88zT+ywvsORSle70IZ1rgc7Z/n+ZMuX1SnfW8N5z2yFTGvMb/vvfp4GZkzNq0r2z8Vj+l2NW7jwHSZKHN+/8cN53VWfuybGrr17pJsk/n3lbpfvWUg9WukmywIq3VrpXb7xMpbvE85dVukkyfqk/Vrrj7lmy0t3wHb3PxZn3/7XSPecbvfukF9d7R6V7zAW3V7p7Tlu50k2S8QPPV7q/mm/DSvcPV+1V6SZJ7uqcM/Z54+OVbpJMvuTGSnf6Pz9d6U5erXNfkCQvX9m5Z3x2/a0q3aNvu6TSTZIbR+xQ6S677R8q3ST5/Q1HVrrjJ1xR6W58/pqVbpI8PPfale5Kt99Q6f7t6t4Y/b8+vUKlu/LPV6p0k+S5K5+udDd6pDOn7NARL1W6SbL2Df+udD/84ccq3Seu/2almyQ7rf75Sveah8+rdJNkgbW+X+leME9n/HHTe1asdJNkytDO6Ng8ly1W6T7y1tKVbpLcPvquSne51w+udJPksoU/W+neen3nPurGNTv3lEmy7Bp3Vrpjbu9cL09Mb53Z1q+fX+kePbW3BmPjJ35S6W57TWdMbtX37l/pJsl1Ezvt99/2XKX71w/0xpdnvbpGpTt+5e0q3SSZMeyBSnfSL8dXuj9c6KeVbpKsv01nTueYKbtWupPG9da8zvPk45Xu0hf0rvG3eOzmSve3m3680t3p/N7zgVfn74xP/qA0b+/fn+j89iXJjtfcU+m+Y9+1Kt0kufVPy1a6P1ut8wxt6N9HVbpJcu0XL6x0l3x/57fvtXt76wQPXWjbSveYD/ee2945V+fe/fpLOvNbJ+yyQaWbJDddfXWl+6mNOuOTT53cmTeUJG9M7YxDXfWj31e6SbLV246qdIdMu6DS/ccBvXv3kWM757nP7dF5pvHndXrrlBb99Zcr3W++o3e/+ujKv6x03/jbqpXu469dW+kmyejSXgQLvtBZm/P724+udJPkkiXPqHSHTO+s5UuSEyZ1npW8uNBJle6Io5+pdJNkg59sXum+vMdHKt3FXurMmUiSZ687s9K9dLVtKt0keehbs//e/cP/5ezy0dPvzcovzP55sz/52PKzvfkfd+Z3le6JZ+xS6X74h/tVuklyyWL3VLrvXbo37/++8/9W6Q7bsXOP+8d/nV3pJsnElzrrLL998G8q3T/fO3+lmyRXHt8Z07zg48dVukny7Xd/otI9aJktK92rV+nNRzrj551NF9Z9uDPnebGZnbkhSbLiJ++odDdZonct9cF3d9pHHtpZczDktd490u7LddadPrXFqZXuhuc+VOkmyTbLde5xv3pgb+/B0X/vjJfe92BnbehZd3T2bU2SY9b+Vye8fee5zdFjO2PoSfLqfqX3Bnyg96xw3dUeqXQP26TzHXlhoLeP35lHd+asz1r4XZXuXts/Wekmyb5LdfYAP+7Yf1S6SfLQ8537yitPfk+lu+p7j6p0k+T+uzpzI3fdfL5Kd9pKV1W6SbLr07+qdBfeuLfX8343d9YGPPX3zjO9rc55e6WbJJvt975K962pnTmX9/71W5Vuknxp6h6V7mFDO8/dkmTGl2+qdN/zpc499lGn9fZhvGnkPpXu8V89pdK95QP7VrpJssAanXP+myM613FJMt9DnTG5sQd11hU/fcf1lW6SHHBZ5371pNVPrHTPOfEvlW6SnHRs5/n0Ez+5rtJNkkWv+UCle8ydnTGBew7qzCtPkmeWXaXSPXmtzvjWrld29nBJkh+ucUulO+LUoyrdJNnj4KUq3VeX7KwFe3busyrdJNng6s47oH658LGV7qdv6I3JnfDodZXu71fuzLlMkkmf6aw33++5zjjGXLsfWOkmyU23/6LSXfnIzt52K2z2RKWbJJdN6ozJjX5H5z44SX7/086Y+JM/6IxD7fvNzjy1JLl7jR9VunON6IwJjNu2t6b/J9t0rsVvOvXySjdJjvliZ++So9YZX+nudN19lW6SfHRY57p2xq87c4sGTurM5UyShZ7t7FX1g12/VOkmyXO3HV/pfv60zvy7S1/s7YmyyDUfr3T/8npnz9il9j200k2SpSZ13iv8th17zwfev1Nnbc5H3vnf/e89ODJZY5nZv9Z56UV673ye66DOfKeFt/5KpbvQ2Z+pdJNk/CX/5R/+/4eZX+vNoxp7aGdvi9+f0Tmf/+29nXNjkvzhnM4cgxUO/3qlO2SjzvVDkqz/w6Uq3V3vPr3STZKP7N7Z6/nOT+1Z6Z68cOf5dJJ8cv4fV7rzDFxa6Z504kWVbpKcdUtnfcAiB/T2SNrnT50xm7sv7+yFc836W1e6SXLLVZ17xpu3/VCle/m4dSrdJHntor0r3T1v6z2vv+yLx1S6b7urMyfpS+/v7XG158XfrnQfOKYzV+3vH+69t22PxztzFzY45oxKN0lu+OLESveWFzt7iu79zd6cpC1P6aynXf/EH1a6N2z67ko3Sc479oeV7rOvdubAJcnVH+jsXXfFpp3v9ZbTF6x0k2SLBzp7OYxaqrN+dPOLe3NFX7/jsEp36LkfrHSTZO1nN6t0/zS+c721+m6dz0WS3Hl2Z53ulF0+XulO2Kzzb5wkd356fKV76eqdvcWT5PNHds6fU//YuV/d8le9/b4OPG5ypfunGw+odDc6oTOfOkk2XnLjSvfrh/XGoaY+39lv9sQPrVnpbnZR792wO2/eud5a5Py7K90VZ3280k2S7z11ZaW76P69uQu3rd6Z47Phdp19dw84pbdfzk2/6OxFdc8Znb3PHv1Kb83ruV/pjJGMeF/nty9JPrjXNyrdA57t7IO1/v69d4RO2q7Tnm/jzv7U4zbvXLskyRPLdvbnvGOt71W6SbLIVzvvRtl4985neYdnOvMBk+TNMzvrto7a6+RKd9GxnXWNSTLyfZ33x77vX719y1+c1ZmPseP4zj3a4r/rzQHf77nOtdxqy3be+7DPEr3x5Yff8d5K9y8jPlXpJskFN3bWNo7YrLM/9cjl/lzpJsnjB99W6a7yh846ie+nsydYknx5rs4+xH86rbee6IUVOvsSnb7aa5XuWn/uvKciSX61XGd9x5rzdfb2n7l/bw/3797eGe+79le95wM3b3Vdrf3fWHbBoblg//GzvfvE5p05EUny5Y06z76XWblzPn/zlc7+7ElyxDrXVLrbvqsz7ytJFtl6gUp3n60681u/8oWdKt0kOeQXh1S6651yf6X7g32+UOkmyY3HdtY3XT29Mx8+SZ58T+c3aPldOp+Lb6zSu7Y85pjOngBrP9wZI9xm+EGVbpI8c2nneeGzL/T2Lr9oq6cr3a0v6ZzvHxra2XMhSe7+97OV7nnrb1TpHvGN3rPT5Y9ev9LdbIXeerBh93TWJI9bs7T/0u2dd40kyc8X7zwjm3R+Z679n5bqvb984J7OnlH7vf7PSjdJTt3p4Up3keM6Y247H9bbx/3c7TrrMfc75geV7slb9tbcjfly577k1p89UekmyWkf6Jw/3/OXRyvdL5zcm7tw3Fmd9WDnv+Nnle5nL1+p0k2SFyYuVekuf/PPK90k2efczrjOl1fuzC//6Z13VbpJsu9xnWvxvffufOYuf2vlSjdJFj+yMx9+qZ1uqHST5LxpnXkcb47qvBPkQyv19nH/6hWd/SN3/mFn/do7H++9g+2luZesdL98QGedRJJ8ZHJnj+Pbhn200h37lc67wZLk7Ut29mzb82edPWJeumt6pZskEz/Yud+5ZPMfVrpJ8rElOs+kPn389pXuo6esXekmycC6nfmR807q7J387C976/o/u3NnvtO6kzatdJNkj+M78xi/elhnnfUyS+5e6SbJi8+8UOkeceHHKt25vtl5N1GSnPvnzvys3zzfG5O74R2d36lPfrzz3GGhC3trc3YZfWSl++LZC1e6fx1xT6WbJKuP7XxPHtmxtxfI9l/qnIs+f9TOle7JIzvvYk2S8Zd07ne+en1n/dorD/T2m314s846s6dW7TwbT5Ll3tfZM3ipUZ25Aosd/cNKN0luW60zdvbYYqtVunt8pLO/XZKcuvK9le4pY3prMB4+t7Nu5Bfv3aDSHX5ub87gXzborMfc8Ued9xMt/+qvK90kWfQLnTmfE0/r7IOVJPf9u3Nfktz6f/s/7YyaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/YQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gQDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmBAODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAkGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYEw/4n//GQJCOGzv6DGDuw8OyP/l/eHDa90p1r5JuV7rRhnW6SjHhjwUp3wqTnK90kWWzVpSrdoVNHVrqTM7XSTZLpk2ZUumPmHVXpznxzVqWbJNNHDlS6c02rZJMkI1+dWem+NmJypTswpHCy/7+Mmjmm0h0yfGKlO23qlEo3SeYaNrzSnfJy53ORJPPNP1elO3Vy5ws4c9oLlW6SDBs1vtKd9eaQSnfGsN5necTwzjlj1tDOdVySTH2l8z2ZnrGVbkZ0fkeSZMZbnfPn0HnGV7qvvDyp0k2SccM6n4uR4xaodJMkE16uZKfNNW+lO3pG71w0Y6BzLpo+s3NenjWx891LkknDRle6o0Z2rl2SZNrkzr/HW2++VukOzOjd+82a2bkuGjGmcx03fv7FK90kmTXlpU53WmdMIEmGL9i5X506UPotmdm7dxj1Vuf6ZdZCpeutWb1BgWkzOmMkr016tdJNkvkWWLTSnTzlrUp32PDe93rU3J3f1VkzOvc7M3o/15n+dGcceMjw/9Fjiv+RsXN1xj6nTuycM6bN6p2Xhw/MV+kOGdK5Xs7U3r3fkNL3b9RcnfNFkkx7q/P7N3xM55hnzOzd7wwbM6LSnTCp85kbM3x8pZskKd2vvvVG7+83a2TnN3vuBTvjGDOm9cYnR40eV+nOmPpipfvW9N741pDhnedGM6Z1xs2SZPTw+SvdGUM6Y2dj5uo995sxvXO9NWtE5xpx5lu9MZ0J6fw7D6T33H3kkM69++QZEyrdEW/vnDuTZMxA5xpj0qTSvcOI3n3wiHT+ftNndM73STIw0DlnzBrX6Q55tfesZOqEf1e6w0Z1zp9TnivdUyYZO2yxSndi6TuSJEOmdOYNzj135/nAfKNXrnSTZMb0eSrdMcM799dvTu08z0iSWTNK9+6zegOJAyNn/zjUkP8Xc9lGLzCQ1faY/dcRs+5YcbY3/+P0Y+6sdJdcvnNuHLr0vyrdJFn7b53zwQKLPVHpJsm1L+5V6a76aOdcc9o/T6x0k+Sf6y9f6S457axKd9L961S6SbLRHn+pdKede0ilmyTDpv+00p1ycGf8cdvfzV3pJskDb3aOea1lO+e4udY4uNJNkmv/umyle/cWZ1a6SXLdcp1z0TF/OK3SnWtS55lekkz96D6V7uLjzq50L17pqUo3SeZ9rTN+PN9VnTU/SXLgfD+odB8/snNvsMn0zr1okrz/l7+pdB88fLdKd4EnO+eLJHny/kcr3SWGfbDSTZK33/hYpTtxYP1Kd6utTq10k2TMMqtWurfev2ml+/eRnWvaJPnd8Fcq3WXnWqHSTZI7b1qt0l32VxdUupf+tvMdSZIJ93WeZZ0573sq3TVfOqrSTZL5N+qMvdzz3cMq3STJh66sZEeN7dw7LDrtuUo3SR7+Vee50EuXdu6v39ypkk2SjFy/M0ayxCr3VLpJcs+s3Svdie/pjNUuNbM3pnP2M52/33vWebLSXfz6hyvdJDlwiZUq3SWn/K3STZLVv9ZZD738OzvXRTO/0Lt3eHTJfSvdWfPuUuk+Pv3iSjdJJiz4WqU79MLemuW7x91b6U66sDOm8/penbVgSTL15HdVulu+szNX9P4vblTpJsmZn+qc80ed2Jvr+6fFvlLp7vjQUZXupVv35ke+9OS1le6Ri3a+I79+sbdO8J0Dt1a6j3z/kUo3SRZaozNeu+sxy1W6y65+f6WbJCfe0JnHeMvcd1W6Sz58d6WbJP9++yWV7uvjflvpJsk1D5xX6c5Y+7OV7nMnduY2JMmOP16i0j1/6c785KXO7e2peO3xnXGoWef0ng/cc9N2le5OR3fG2me9vl6lmyQTf9B5bvT2pRapdF+7/sJKN0l2HtL5+z22dG9/0FWf6ox9/nK9zrPxj/+ls8dBkrxRWrO8yS2dufZzzbdupZsk739nZz3D40ftV+kmyT0nzP4xuUmn/nfzPV+ZtXTOn/H92Xw0yQMr7j/bm/9x/TZLVrrz7fTjSveKe75Z6SbJv5c8udLddVbn3yJJ3nZLZ1xsnb3fV+leNL03DvTYWZ3fiUc+3blHOmZGb3/VWTPPrXSXXO+XlW6SHHTydyrdgUc+Uum+Y+pFlW6S7LH+ZyrdE27vXLt/8NqtK90kufSWzlyLw5/t7Stz/Eqd+dTvOqWznvUjB21U6SbJ754rrdU7vXMuWm653r3z6185vNJ99tWDKt0kWemOX1W6C3xii0r3Y9/tjPsnybve3Xmm9+Sud1S6H3tv53yfJJPu6Tyrn/fqEyrdJJn1+n2V7nc/8YdK96lP9tYIjn3oHZXunUfdUuk+eHjv3mFg+86zin3e6D1TuPemzt4I047drNK99wOdfYyS5NuTv1fp7rXoOZXuF57vfEeSZPMZj1e63377dyvdJLnp7Ksq3d+ee2Cle/zind++JNl+n84+H1ev1fmObHx5b0/RyYu+rdK97LbeZ/mUf3aegwz/2E2V7tpvfLTSTZKp63fmOq2/S2cfsdWO2rjSTZKr9+zsAX7zoxtWuknysfs7n7mfjv5SpTt6yU0q3STZ8qI9Kt17frFrpfu5CZ1nO0ny7VMvq3R/skdnbk+SPDd9m0r30l931t5/5uXOPLUkuXfyKZXuRaOXqXRXf633e/3iLzqLtn48vLcnypan/6PSnXFLZ6+On2754Uo3SRaerzNn/Y8H3VPpfv+53p6iM7/7k0r3iG0/VukmybMXdNYpfXjWg5Xu3tdXskmSh5/foNJ9aavO9dYit79e6SbJjh/tXHse/npvPuC/S3PrRr/QmWf/2dVuqHST5IxzO++o33D7zvO5u4/pvOcgST64wfsr3RlvdNZXJ8nV9+9d6V6yVue5+36jO/NHkuRLEzrP0Zba7N2V7rp/6sxlS5LhZz5R6T5y/Z8q3SRZ732d8/Lpw4+rdB/4TW9dzoh5OmvBPnn3tyrd9/+1002S3W97e6X73OjNK90k2fO5zjjGf2u+ZyZn12/O/uuTyet31lYkycqTtq90Z33viUr3xns693VJsu++t1W6a7/t6Uo3SXa+ovMsa9EFO88VVljw55Vukgy5472V7gJ3X17p3v2vzt49SbLsA52x2Ke+9LVKN0lWfOgLle5q63WeCy3/i4sr3ST51MWdcc2l7luo0n1o594eLQevvVGle9ffOvPhk2TVxbesdHc7r/Mb9fPrPlnpJsm3/9HZH/f0ZTp7XT500kmVbpKs+kRnzG3i5/5c6SbJJR/s7CW25a6d35LHtt2z0k2SY2/szOO44epOd72/9+ZxbH1j5/plwku9tb3/2ugDle4h31uz0t15bG8s7/AbO79Rt67WWRvwk2N757ivfrwz9+T1fx9f6SbJK+d1rrnOeK6zNuDYR3t7JH19j87auC0e/nyl+9xxvfUoK+x1XaV7wEDvHZLfm7tzXt7+2s77k/d+qrN3T5Jss/vSle5ef+7sNXvoFd+odJNk6jyd53onXtjZRyxJHl6v8/cbdl1n7Oyaz3TGBJJkxuKdsc9NH+jsf7HyO+6pdJPkzCM7c4dWO7+z12WSzHzo0kr30i93zkU3fuSZSjdJvrJ4Z63S07t33i21/wa936ifHfJapbvRjp3r8CQ5+iedc8a9P+6Mna3y28mVbpK8slNnX4YTOz992XnIpzvhJKOe6uwBPv6s3rz1107vjBft8emrK91NFu2ssU6Se+btvDdgxA/+Xukue1tnT6IkuWH7znjRwlf8tdJNkpO+11mDscLRnXu/3b7S+11d67LONcb5N3b+fne/1pvb8Jn1OmPXn7mk9y7P56d05qt9/3ud8/3XVuo965r4cun8+WznN2r5PY6sdJPk1ClfrXQ/8/0nKt0kuXf7zjXi5ft13pmz3RadffKT5It3dPa1ueywznq+U+ftjKcmyd5zd/ZEn3fz3v7Gty59XaV7w2ad9/JNva83pvrpD3TGdCb+vfP+teuP6I3Vfu6JsZXuikf09pK48dLxtfZ/47m8nO/OOH22dz83pTf+MWbrzt/n8LU7z/UuPuxDlW6SLPvjbSvdL5TWwCfJbxfqrHW+/O2d++etn+vM006Sebb6RaX7yi4HVLpnnN57p8rDG3TuGb/15d5+Kpcs09kz+NprOu9q+fHne+8WffOtzh6rW1/dWfc9be8vV7pJsvqpnXP+5658oNJNkuN+1JlTfcyPO3uhvm/+zly1JLny2s77Kp7+ZmeMcL2Xent0jrmqM3fojWt65+WhJ3fW7f9r5c46l0Wu6syHT5Kh129f6V47pvO9/tZavfUon/5XZx/3qR/p7AOeJKc+2dkLfIkr1q50p67Zm2v4/ONrVbpv7NCZe7L4B3vzZuea75pK99rdrqh0k+QTL3b2e756uc675g7bpDN2nCRn39dZA//GZztj/5NP6K1nOP3zh1a6R/+7c45LkiUv6qzBWOuIzv3Oth/vvatp8h86635u3rTzDqFPnflypZsko+7vXNcedk9n79YkeelnnTXnW+9xcaW7ye4TK90kmf+Q+SrdM8Z0xl6WWuehSjdJ9tqv871eekJnj84kWWpCZ1/fD/ym8x35+hq9d4Kc9FBn/8HNVut8R77x8M2VbpL8coeLK90X9t+n0k2SO47orEE844TtK93VflR6T1qSz324s7Zx5EKd/Uo36k1pyV4ffbTS3fCoTjdJ9vtt533So3fsvMPy7C/39r4+flrnnL/AJp37nUt/sFGlmyQTnu/sWXr6yb2/385/7fz9zr+0c43x0IaduTJJ8uTXOu8nWmureSrdx07sPBtPkiXWHFfpnnTgHyvdJNn3yc788usf7ywoemmv3rsV17y98z7WlTK+0l3gpDcq3STZ7djOc5iz3rtDpZskS2/WeU/9e07vvO9ghSvXqHSTZImvn1bpzn1T531my4/ufa+/dktn7/Jdf9p7Z/iif+jMqV5nfGcO8WZ/7d07TN2l8+/8ncc641sTDuntdXvt90rv9r7ikU43yayP/KXW/r8z8P/X/2sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMIcaGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8f9i706hdy8H//5/72vPezfM8qDRookmiyRDSQGWqUDIkChlTZEiFIpIGRfmSUCKiURGlNA8UadA87trzdO//g+/y7Pdf68fan3Wv+7der8f1Xue693Wd13ke53EcJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPB2P/sP1+YzJ+3yA9izvBii7z5b+MnLNEKV7JLLpxc6SbJ8GJTKt3Jy06sdJNk1qw5le5gzKDSHT9uuUo3ScYvM1zpzpo2VOkm40vdZMK8MZ3wYr1z0bShWZXuuPmdf7+JSy5d6SbJ7Keer3QHKy5V6U6cO6PSTZLMnl/JDib9hz/v/4HpTzxW6U4avKDSnTtlQaWbJHNnPFHpTlxq5Up37tzOb1+SzJ+3sNIdO6P1G5VMXnzJSnfegs75Ps8/1+kmGTO2dM6YMb2SXWJi7xw3ZrhzXTt71jOVbpIMxneu8RcMd649B5lU6SbJ2Imda8Qxj3auXYam9K49h2aX/v2GOtcuSTI87clKd9702ZXumHG939XWeXnClM74yLOP/73STZLx8zrnjAlrFL9/Czr/fgtndL4jM8f0flfnjOncS42Z3xmTWzCn970eO2lupbvcEstXukmyYGznGn/8UGe8aPi5zvk+SWamc40xfqjzmZs/dVqlmyTzBp1/vwmdr3WSZOa0zmdj3nBnvGH8+N55eXhu575yxnOdv8WE3q1Dnnn80Up38Xm9a4wF4zrjGJPGdsZe5sxYvNJNknHpjL1MXHrZSnfujN5v1GDxzjjGhLGdz1uSLFjYua9c8FynO2fQ+/fLxM711tSnOuflFSf0xtpnzyr9Xi/sjJslyWBh51nJhCmrVbqz5z1d6SbJhDGd35K5Uzufi6HFlql0k2TcUOc+eGioN4dk4Zhxle7iS3V+o+Yu7N27Z1znmMdP6FzjDzr/dP9rcmcccdy43hyS+U91vn9z53XOcWOHes/9hhd0zp+zSsMNEyf0njvMmN35Xs9b2PsCjpvSuS/J2M741sRxxZPRhNJcgYmdsdqF03p/i+emd+amTBrbeZ6YJOOHFv1nbij//Wdixqwxuf6vi36s4t7nl1rkzX9be4MtKt0vbbxSpbvJ+l+pdJNkycFvKt0Vbzuz0k2SbZc/p9K9alrnevixo79f6SbJRp+6otJ9YLcXVborrf2nSjdJnv/1qpXujjt05tknyRVPr1vpHnb+ZpXubqvMrHST5CV3d64tFzzR6f5hpc53JEnWvveeSvc3D/aup6Zt+LdK9/Bj31rp/mKb31e6SfKmL/6z0p0+rnNteeaLf1npJsnmc5+tdDd5ZutKN0l+vELnfuZ9Vzxc6Z51wR2VbpJcu0lnHtWLblu/0l1x/O8q3SQ546vnVrqXHNn5vCXJjsduW+ne89TPKt0rnvlkpZske//kmkr3wSU75+XlN3pPpZskwzP2rHRnT/pEpZskMx58qNL91T6vqXT3mfeWSjdJ/v6x4yrdVdbasdJd/rjSmp8kx166R6X7pR+fWOkmyQkPr1npXnzXxpXunxfvrd9+cpvOvcMrf/3qSvd9e/TWKa19eWdOy50P7lbpJsnEjb9f6W60ZOe8fOG8LSvdJHlsg19XupP/+Uilu8eW7610k+SoWzvf65tuL+1xkOT87dapdO9ctvPvt9sPf1rpJsn3Tnl9pXv4v66sdN8w985KN0mO/tlWle6mT3euaZNk4v47Vrp3/K4zvvW316xV6SbJ4oNFvz9Tkty7QmfN64qTL610k+SJezvPNL7+xOaVbpLsvcKnKt0lHu7MKZv++85vX5Ks8q7tK93bTr6q0l15s941xrXTO893bl/2hko3SdZYufMcdIXFnqp0H1+/M7chSa4/p/Pv94bDt6l0Ly6NpybJpjefWumOe8XRlW6SfG6/71e6H3v+9kr3zjV6i+PuOPSwSvfRsXtVuk9e3bsPfvqQf1S6RzxR2rcyyXvWfUel+8uL3lTpfm5uby+JB+Z0JiifsXdnbsq+d/S+1w8/eF2le+ByvTUYt/ylc+++zPjOGrbH1u6NY2zz5Ecq3cev6Owl8fRHfl7pJsnl53660v3g9N6zyhX+ueiP+djp/90z2yU2H5ddrl/0+w++777OuH+S7PTGD1e6t93bGdNc7/nO87wk+Vs6m2Yccmfvufd7ruy0P7LUByvd2444otJNkmvW7uyNcPa2nbW9Z+7dm1v38WkbVroPj7270k2S+779qkp34bJ/rXTnzXphpZskB2zYmQP33l91xuf/fGHvN+rRqzpjYov/pDM+nyTD13XG6Lf+9Rsr3YW7vrPSTZJtfnt/pXvXFp29VGYf+JlKN0lW+13nXubAf3XGVJLkjR/t3C8+e9yBle5de51X6SbJluetUOm+4yvvqnRnHN1Z+5Qkd+3UuUbc+sjbKt0k+VfpGv+kczrPFPbauTPWnSTLHdqZT/2a90ytdPd+82mVbpLct9jFle7Xzzqh0k2S217VWRsw77TOPhFXTe/NmV1iZmct9BGnda4xDp6+VKWbJB858qBKd+aK36t0k2Sj73XmoG5y3CqV7swXnlzpJslrr+/MM9zu5h9Wunce0dk3IUmev68zvjVp0ssq3SQ5d4fOfKStju88K/zmbkdVukmy78pvq3SPW7fzGzV7zBcr3ST5xFs/Vul+Z9ve/tTnrt15n9l17z+g0p13fW8t0QVXHV3pHrRTZz7Zd/fsrem/ZFzneuvyd91f6SbJi/68aaV78oGdZ1KfWaV3jfGq4zrrwn/6us5e3Zsd3FsvOf2Izn4duz7T+y1Z77LOvIU3nnt9pXv95F0r3SR5fr1XVLpPfrtzjXjiRidVukly6Cbvr3Sv/Wbv+c7B53bGzn5wTuf56ksv6cy5TJJX/r2zj9Ldsw6vdHc/5rOVbpLsN7FzvfzxGatXukly7wkfqnRfdWtn/um9v+ydix44tDM++ZO/d/bnXHrLb1W6SXLLmzvPSm74fm8OyQsv2LHSHRz+20p3t6N7878/8bPOHMbvvqszz/egr/5PpZskO0/u7LO55M9fWukmybIXdu7Rzrm281vyymVWrHST5Lg/duZDfecLn6t0jz6z9/6upw/v3GOveEdvD8E/f7lzzD/Lwf/V/zfm6SWy5FmLfj+V2cs9vsib/3beyZ1xiu9/onOftO2XL6x0k+S3f+jsfbbyzu+rdJPkkDd01g2/5DudMdN5b+ntj7v0cfdVuvtte2Gl+/Wre5+Lv7+l8yzrzuV6c5JOnPHuSveSFS+sdJ/c9eZKN0m+/NLzK91tTu3sh37cF3avdJNkgyU7c+3v2L6zF0CSrPGaP1S6G03ZudId9KY9Z/eJned6z1zcGbN5z/bfrHST5L3/7Jw/75rde2f3hw/t7L+08VBn3uW0y3rv09z1ZZ252jt+rPM+xp1f3ls/ffanOvsb77VkZw/wJHnbvZ25l6te1Flzt/WfOuPoSbLitzr7lq9+d2ePub2P6b3Dbuoab690T9q4s4dtknz+sH0r3R/e1bkYeNf5vf2+VhzqnPO/8ERn3vOTO21X6SbJ0OzO9fJtz3WevSXJNdduXuluuddFle7+n+3MTU6SvbbrjAv86fHOWOzWO/yl0k2SBX/9TqU79dO95wqnf7qzTnfhnzu/UZf/rPdZvm73zvrtNX/eebfvbb+6v9JNkkNW6cyDu/od91e6SfK1ezprXrdepjMP7qwLevOeT3h8rUp3/LOd+T3v3L7zXrAk2fiizjjUKbv23m3z8SdeXOl+d7jz3odxU3vXiNu+p7NH5zXrdp7BTNiyt2byxFd3jnmfXTrvZkiSLZbtPHs44qOdsc/Tjv94pZska17TWVt84+Od98QMX9bbB2vu5Z39L44b6r1LcJcnO5/lj08/ttJ93es684aS5ORTbq10hz/XuQ/+5HqdNZ5JMvbrnTn82z3ZWSeRJGev8LpK9+JNOu8juGBW5/4sSa68qjOP+G+bdt6X+rfje/sdrXJHZz7GUUf13jl25lWd8eXc0ZnPNript7bqgL1fUul++HMPVrr3XdJ7Z87075xS6b7tJZ018kny0O1rVLpfvfZdle7rTunNTdlr/yMr3e0WO77S/djSnT0OkmSDEzrvSfvK9RdUukly+TOd53P/7UyBGVPWy/XbLvp9Hj+7TWfsP0m2f6bzWzF59867DZ/51YWVbpJ8e+XOu5mP/uFHK90kGTq7c9369huOqXRPHfTWp+2z8+aV7vaDzu/8qXdcXekmyc/GdJ6RvXzSCyrdJPnqpM7z0yPP7qyPWf5DnfHSJHnHdZ31hWes3bnnWP3y3vs0D92ks7fFYeN611O/eHtnX+ZH1+vM/brzL5152kny1cc7ewM9+o8/Vrrnv7m3HmXuRZ3nej99ZHKlmyQ7r7Zepbtgic5n+dc/ObvSTZKDv9h5LvTz70+vdC+9vfe5eNnanb00H1xml0o3SQ64tTP35M9f66x1PmOHSjZJ8vF9OmN5B67a2X/wK0cs+jXF/7bmaZ05nWv/o7efyqdf2nmn0rr7du537nyktzbuE2t39vj/4nDnGuPYDc6odJPkW+t8o9Ld6i+dPWuSZLfVOnO/nvlTZ8+hOQf3fqO+/ZkNKt2p93TWvD4/dGWlmyQ/eVWnfe4LO3NakmSp8Z13mm1/YWfe3kXf7u1/NmaDzvjkox/tvAv8nkHve73Yh15e6d72XOcdJkmyyi87z0+v/tj+le6+n+ztPX/NbzrXiJfc3vnMrf6OQyrdJDlv/ccq3V1e3nnvQ5Lcultn7HqXF/yo0l332v9u/6X/G4ec03lP9fnXd95H/Nf5vfe8PrV959n3lxb0/v3OPq8z9/Km5c6qdPdbvDc/8l0nHlbp7vGdzn4dd7+7c7xJMjius/7+xs16z/02GdN5h977F3bmPd+wU28f/r9+5AuV7n4f76zB+OhuUyvdJFn/iXUr3bUP6Iw1JMnqS3fm01y3Tuc+avzcrSrdJHnvl6+qdO/9202V7jIndN6FnCQ/eWtn3vovd+ic75PkytKyyT+edGilO/O+fSrdJNl3i8499mZv6ezLPPWbvWfYi+/T2dN0/C/WqnST5EtTOu8x2W/bzjjGkpetVOkmyac+dnqlu3Dpzj5YO13UeTaeJEsc3vktOf6k3h5N/3iwsz7gKwf9n9e59HZOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/hwxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPB0MKFC/+v/+ONl1hr4U+2/uwiP4iFCxYs8ua/DQ0PV7qLTRpX6c5fsFilmySLj59U6Y4p/S2SZPzE8ZXunHlzKt1Jk3r/fuOX6Pz7zZw2o9KduHjneJNkeOj//rz1nxjM6X2W586YWekumDCv0h03v/PdS5LBUkOV7vinOp/l2en9Rs0Z1/k7L7b8UpVukix4tnP+nDvc+V6Pm9f5jiTJmKXHVLoLnp5f6Y5Ztndenj9nbqU7WKp3zIPZnWMemtX5zA1N7HzekmTW9M5nbsKgc8zTpz9f6SbJxMU713KDQecclySZP6hkx0/sXBfNfurJSjdJhiYvXukOdy5dMmHc5E44ycz5z1a64xaMrXSTZPbTD1a602d2/s5jJvWuEScMJlS645adUulOXrhspZskc+c+XumOXWX5Svd/453rl/nTO9cuE5aZWOkmydzHn6m1GwYLemMCmTOrkp2+sHfMSy7faQ8POtcus57vXSOOmdO5xh+fzt94xtzO+SJJBrM717VzFkyvdJNk8RWXqnTndb7WmTDojCEmydBiK1S6Y0rnz1nzer8jY0tfk7kznuqEk8yfsHSlO3mxzrXAvJm98/Jg0jKV7oI50yrdCWN6v9fjJnSegQ6P7/yNk2TBs1Mr3YVjO/c7WTi1000yf7BkpTthbOd3ddozvd/r4bGdc9HYod6Y6sRlOvfuc57r/EiNHdMb05lXut8ZUxqTmzipNyY3d0bnoIcm9z7LCxd0/v3GDjp/i+HxvX+/4QWdZyVjx3fOFykdb5IMT+kc86B0H5Uk86d3xmtnz3+60p0/vTcfY3hB575yMNSZjzFnenEMcXzn7zx9wexKN0lmzevcP6w0oTNuvcyaq1S6STJmfOd6edyUJSrdZx7rPJtLkjlT7610Z5eu45Jk6txF/z3Z75av567p//qvLjLGrbjawmXeftiiPqR8a+4mi7z5b6sPX1fp/v0PL650979mr0o3SWbt941Kd7D2qpVuknx5rc5Y3qrLdLpvvbdznkmSXf64WqV75Ps73Q0/eHulmyTLv7HzW/HTfV9Q6SbJq8/5e6W7/dRbK90nXrF7pZskP7p010r35du+utJd/65ON0nuXe11le7wMjdWuknypo33qXTfd+Z5le7Hn3hfpZskty/duQcbu/Ldle4mT5xc6SbJ0m9Zv9Idc0tpYDPJzSe8pdJ9/ui/VrrX3bJOpZskL374z5Xu3I02qnSveeiflW6SvGLz+yrdxa/pXHsmyQ+f7jwXOnmVzvf6k7t05lokycQP/6HS3eNLnfm4c57auNJNktlrdL4nK1zWu0acu87xle5Sn9+x0j3/mMsr3STZ/MHVK93bz9yt0l3qA1tWukmy0gGdZ1kbX/StSjdJHli/MxZ7zbXbVbrb3v3HSjdJ7nztY5Xuy1+9RaX7x0PPr3STZKVNOv9+Ly7Nm02Sf01aqdJdfOPO7999C3v3O6vOfKDS/fNyL6t0X3Jv73nTL/7WWY+yzdjO+FaSrL7aupXunXd11kzutGnnOjxJ7l3l15Xuzy//QKV70DrXV7pJMuXmV1W6573iS5Vukqy24JFKd+bNe1a66yzReTaXJHlzZ67vyn/ojHs++cSvKt0kWX7nOyvdXU7tjG8lyRV7fLXSnbZrZ07LU79dudJNkksf/UGlu+fi91e6L7vt4Eo3SW68eo1Kd85HHq50k2TJ9Trn/NW+t22l+6sdN6x0k2TxRzrPSvZc5b2V7hX/+HGlmySfHdOZ6/HaZ3trG7feqXMvfOXlnWeVpwy/qNJNki+84UeV7sf/dlSle9MlvWcls7/amfc8887OOS5Jhj/UueZa862dtXHLbNWbg/DcPzt7xHxg1c5nebfFt6p0k2T1ebdUuptf9Y5KN0l+tXlnrdkGO3R+r99+zpqVbpKc+8gTle69Uzvj1os/t16lmySvX7aztuOPG3R++5LkxhmL/r7y8JtuzT+mTf+PJ5EsttKGCzfb96xFfjzv/mlv3vj8B75d6f5i50U/9ztJth3Tu8b+4Uadz//aM26odJPk1FMvrXSPXuueSvdFP9yg0k2S617ROeceP/3YSveS03rjeI/97ieV7hLHlfYCSPLak35Z6V7y2U530gd73+sfb915Drn3UZ3zxcWf6s3hmDJls0r3ny/at9JNkvf/tLPm59ovdsaufrB95zuSJM+fuUOle9ahnX3EXrlO53l6kmy3fWdcZckHevsXPHJh55x//J9+Uenue/MxlW6SrHj9RZXui9b9V6V74d86c6mTZNsHPl3pnrrLBZVukiyc+sZKd4d1Os/Tj7r7oUo3Sc4469BKd/E7O/cOG/zye5Vukrx/bOf8efyPevuWP/tUZ67TY3/5UKU7tM8PK90k2ef0zty6Hz11aqU7fbEzKt0kmZmLK93jN317pZsk7/h+55z/+/d21ozsvVdv7fbJ13XmrM/82hsq3SsW78ylTpJj3tl5drPyVn+qdJNkja07exyM3bCz1/MX/3B0pZskr/vTjpXuGX/szFM77S+99xFcvkxnzvPEV/f2wpn/rnMr3dce8tZKN3v19ov681s657nx6YwJHPtcb6/g11zYWfv7zCpnV7pJcuGszn4d79m4M//08Tf05tZdsXRnPu4pj3Tm7094e+/eb8VtOutcztqrt9fzTYt3rjF2vavzt9hufu/f77ATOs80tj70kkp3q8m9a4xD1zqh0n3XuN5eRz94a+d39Zwtv1HpXvnZb1a6SbL7I515X+9/QWcO1Xkbnl7pJslBz3eeKZ71/k9Uukmy1/FrVbrnPNJ5N9hqg9656JIPdea2PrXP2yrdS3b4fKWbJD/57BWV7pn3dp4bJckjCz5c6S54fee50RXHfqrSTZLN1r6t0j1yj84apYvu7uzVkSQPXdI5Z3z/kJ9Xukky68tfrHTv2OGISvf3h/WeGx27fmedxLd/e0il+8cp7690k2TM1zpjZ6/dvLdX1W92+Vqle9jnf3XjwoUL/+OLrhdN2nzhuWtduciP55Wv7nyekuToa75f6Z75jc4eEc/f1hvL2+bkzrqbyUf31tNtsH6n/ZJfdcalx/6k97zpZ1/vHPPdN3b2ETt9Zu9zceKRnfvRAxd7U6WbJH/YtDNXdLBF5z0ix4zv7Qt00/qdfWxXnN7Z3/GF+/c+yz/ds7PO8nUP9/Y3XuPGzvq0Fff4eKV7du/RaV77oc5167uf7HyvH/lEZw5jkuw66XeV7h6n71zpJskvdumMB51759RKd8Ibe3PA9zz5H5XuF6/o7A+47oZzKt0k+eXvOmMJX/lJZ2//JJn2SGdP9JuX6OzB/8vPd+ZpJ8nDszp71y18snMftfPevfXv1w93xmLHf6zzDrQkmfH9zvPCsz7buUY8apPO/JAkueR1e1a6b510f6V7+sc74yNJsszNnfvVT3+mNy693Gqd/f0/sfzVle6KT/eeff/zY51r/Hsnn1LpPvP1FSvdJDnyxM7+4te999pKN0k2ueK4SveOoc46z5OmP1fpJsnrXtbZw/2JrTrPIV+760mVbpJ8YK/Ofcn6g9796s6dYag88L3O895xTxxQ6SbJDZd39iIY3NpZ23Hr/adVukmy/y6dPWHHfLKzJ1eS3Pu1ayrdB2d/pNI9aYXemuWD/tC5Rnzym517yq8v0XtnzlnXdvbUnvy23hz+FW74baU7s7Tf5Tpbdt5dmSQ3rNBZT/TH9b9e6W79jd46wfn3dsb7NtiqtxfBGufsXekevVHnM/erX3TO90ly3nbfqHTv+3TnHXfPfGhspZske32+sy/YHUv11sbN2ODLle6uYzvvRlnvR70xnd03+0Klu9b5nWuBD2y3RKWbJHtv1dm766Etf1PpJsme8zs3fwfv3LneOvP8qZVuknzu+c4chDHH3l/p/u3Qzrt4kuTcpTrP/ebf0dljJEleVZrD/92Jnb275m/fOxfN/GDn+/fK5TrP5770l864Z5Jct/fhle7vp3T2C0iSJVc/sdL99PaP/Vfznjd74UYLf/OtRf++nYNf1Ntj9Q1ndO7B/nJLZz+jFyzojUu/4OLO5K8rHu49Vzj8gM760D+8vHNufM3unfUxSXLVVYt+r/UkmXzDXyrdj6zZ2ZcrSc4+7bJK98+39Pb13f3SmyrdyyZ39ug87fTOtXCSPHdbZ77MGRetVekusVnvvPzZuzv/ft/89jsr3SS57oVPVrpT7u48F/rmg711+y/ctPPs+93f78xB/fVZ36h0k+QXe3X2KTvlm1dVukny+gs661FOeENn/88Pndd5P0OSfOHQF1a613z075XunYd0jjdJPrNT53v9lf1697l/3LLz3ueFK3f2//zw8Fcq3SQ5+Oude7R3X9d5z/jde21f6SbJdQd1xq9u+MYnK90k+cApnXPGxL07zyFPPKYztzVJHt+8866fJWd19qx5+qhFvz7+3y7c/8BKd/V/9vYQOekFnXe4LrdE599v+u9eWukmyfu269xLffpvn610f/TV3nl53pTOGppjftV5H1aSfOza11e6W27amcP/mn/eX+kmyQcmdt71+Mwnb6901ztmZqWbJLf/4NFK99svO7PSTZIr3vSdSvcLB3XeNTK8X2cf2yRZdbvOnpffW+ucSnfJ23rnuD0mdPaynfWlzpqRJLlotc540c5v6Jzvd1+39/7yn3a2yM1bj/lMpTt93d5z5Dd+vvN+ooN/3dvjZ4mlO3sbTn3vXpXueff05uHcetQrK90dz+vcux9zXuf+LEm2e7QzvvzFzQ+udJPkyQmd+4eJW3TWxl29cW8Nxm+/3Lmufe1TnbHaJ7forJFPkvM2erDSffznnefMSfLT8zvP9I/er/Nu4dfu2bmnTJJd3te5Xj6itOb8C7f0rrd+/IodK913vPq1lW6S/GzVv1W6187tzIfffvPe+9OvmtM5L796w59WupscXrrAT7LLLp33Qb7+tM51eJJ8d9Ople7Fd3XeM7njj0rvw0pyz8qdz8b4SzrP8486t3N/nSQXTvlopbvdpM572ZPk1td35qlOOOjs/+O8585bBgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/zGDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WDsf/RfL1yQLHh2kR/E5Cy7yJv/NnGp2ZXu/OfGVbqLLf2f/ZP8J+bPXVDpDobGVLpJMmda55iHJpeOecr4TjfJnKnzK90xSy2sdDOuc7xJMn9+53symP94pZskY1ZZtdOd8WSlOzyz9LlIMndW5/s3ftnlOt3MqXSTZPyCuZXutIeeq3STZPE1lqp0BzNnVLpzp02sdJMks+dVsvMmdn5LFg5XskmSodIpY/4z0zrhJHOmDirdsRM61y5jMlTpJsm4Qac9c2HnHDd5whKVbpLMfLLzmRu75ORKN0nGTur8rs4u/fuNXWnlSjdJZj05vdKdtHTnt2Tu81Mr3f+Nd+5XZ8zonZcnLN7pLla6lBtefLFOOMnY4Qmd7vjONcbzzz9V6SbJlCVWqHQXjO+NvWT2rEp2wlDnHnvsE737nfmLTal0Zz/XOeaF6V0wD4/tXDBPWNAZ90ySwcLONcZw6To8M3uf5XmzOsc8N5179zGD3jlu7lDnHLdwqHe9POf5znXtuHGdz9yM+b1xjOGpnbGXSRM7n7mJpWuiJBks1bl3nzNpzUo3SQbTZla6zz3VucZYeaUVK90kmT2n87cYN25SpTu396gkCxZ2jjlDnb9xkkxcujOOP+OpJyrdsWN656IMd/7OU2d1xkeGJvV+r8cv6FxjDBX//cYu6IypDk/o3LvPn9u7Xp48oXMuGjNUGpMb07k+TJLBpM41xvCgd786lM79zpjJS1a6C+b0fljHTezcB48Z6pyL5szvzU2ZW7qPmjxcvDAa2znPjVvQGbiemecr3SRZuLD0vR7q3PstHF96OJBk5tzO9cvc2b0x8RWndL4nE5fuPDcaGtcbxxg7ufPvN+2pRT/3NUnG9qZP5vFZnd+SwfziQc9/sBH9r//PjccP56rVF/25d9lf/mSRN//twu0+WOn+aJXO93a3tX9V6SbJlE927hnf8qPNK90kufjqayrds17YOYdNWHelSjdJbt52y0p3tROernRfsGdvftZOOzxT6f7zQ6tXukkydODlle7wmFMr3Vu+1plPnSSTlz240n3BjT+udFeec1SlmyRX739xpXv88b1jXmPc6ZXue9boXL+fP/msSjdJxg2urXQHa99V6R7/z96ciA/f2ZnHuMoPevNb//KOyyrdR05/tNI97LBDKt0kOev68yrdLV7fmRN41Fe2qHST5OqHt6l0N1/q+Eo3Sa5d8/WV7v6bTK10Z13Xe8Zy75GdOQbbPHdVpfvtyW+sdJNkzt871xgL5t5e6SbJFit25lRf9p3OM5ZDftGbx/HoCp0x77+f1xhjSrYc9MZ0Trq/8+x0+2V2qHSTZPVnOuOPf53ZGeP9+7M/qnSTZJs3ddYWP/v7znfk3Nd9odJNkiN/eFCle8Vbb6h0k+Sx5z5U6U67e79Kd9w9q1S6SXL/GlMr3b3vv6fSnXVTb97zCp99oNL9/A1LVbpJsnC5T1a6M0rf6ztXf6jSTZKxq/+r0t1iiTsr3U2e7s2JOPf336t0x3xg10o3SfZd7nOV7m9edWOl+9eht1W6SfLisy+odFdcoXPvMCm7VLpJcvuj61S6L1zlVZVukvxo587auH++97BKd8Y2r6l0k+QnO3Sul/c/fd9Kd+Ul7q50k+TGs7audN90wacq3ST55iqdZ4rDU9avdPe+4x+VbpI8st1bKt3fDT5R6U56aKNKN0lO26dzvXzlA50x/CSZ+OzVle7Ga25S6Z6xae95/jJ/PanSnbl8Z6z26c919mdKki2/u3mlO3OriyrdJHnVGzvj7X+7rPO7+uPF9q50k2Td7f5c6R52x7aV7ju36szHTZIrl+/cY//1zs6cpSQZ+nPn32+DIzrzHM/avLfObNoxG1S6L/l65/nAj/b/a6WbJBfd0mlfdd+rK90kufjyRb8/6LPz7vuv/r/Fpz2XHa/+zSI+muQl6319kTf/beplu1e6Wx/4cKX75pd39oNNkht+27l+OG21TSvdJFntJZ3nFXef03lWf9+4z1e6SfKPMzvdew7/eKW74gmdZ2NJsvUXHql0F1zztUo3Sd681Tsr3fEv+lile877pla6SfL2/TrjsL/7budZ4SOrdf7tkuSGX3fW5Vy0Vuc6OEnW363zTOGjc75T6Z559qcr3ST5zg+/UunusfNxle5z44+pdJPksjGdNYBvfaTzbDpJnj32q5XuvPU2r3QPXvqUSjdJXvK6zSvdG2b/odLd+hXvqXST5Gd3dZ4hv3XHznq7JNl25858wHXX64zvPnHszZVukly+cuczN/Oioyvd5x/vzbmcf3pnLcrp415W6SbJxEf+2en+qnMtcOOmvXmGD++zV6W79jqvq3R3fFNnzkKSPP/lznPILTburTe/dt/OOrNtPtlZY73z+N7zla+e8ZdK96GHNq50P/eVEyrdJLn52M4eO2t/avlKN0kuekPnXnjOzFsr3bN/+NJKN0k+ms5v1E0rdp4JvXOz3nrXc6Z32r/+9tRKN0l2ve+9le5TQ0tXuiukMzckSSZ+ojPesOGpnWvEUz70xUo3SYbG/6zSfeq336p0k+SYz3fWCP5+z876pyPfcmilmyQ/X6ezLnzDy35b6X56kx0r3SSZ9evOPLUzXnpkpZskbz7jlZXuGx7r7IP6P8v39hc58IWd52iHv+dFle6zE3trt7+9cWd/6nev3nsv5kvu7cyzn3DonpXutj+7rtJNkr3v/Gale9bXOteeP9znTZVukuz41c4xP/5Q797v94d25nM+slpnD/7XrdzZmylJjn/itkr3/HM666p2P7Pz/oQkOebbp1W6V2/bmb+VJBvOf6zS/dZHOtcY55/Y2ZswSf742I6V7lq3bFjpDn2ut67qDV/u/F5//LEfVrpJ8qol3lDprrNe5xnaLX/qjJslyVYf/nClO3ONzjXiUZf39gZ9+IEDK90v3tobEz/4yjMq3cPy3z0DXZBnMnXMuYv4aJL7t+ytk916xc5e+J+d0Zmf9fP9enOId/hX57x7+32dvWaT5IaDjq50f/o/x1a6Bz7Xe+/Xb57vjPNeu2tnP+3F3tvZAzVJNhrbmet76reXqXSTZIWrj6h0n/3tKyrd7717qUo3Sc5fobMGcPvfddaS/+mfW1W6SfKysZ1xzcN+3nn2liRzb7+i0j37xD0q3Q/++AeVbpJcOKMz5n3kgs586q1v7+17vdtenT1rfv/K3j6aH173/Er3u5d21nasumxvv68vHdlZg/jyKzv/fgeu9+VKN0luObuz99mJN/Wul3/58M8r3X8e0XmHwl0/7M3j+MAjnTUYz61/YqV7+x86c+CS5LJ/LVXpXvlsZ4wwST7yXGf/pXvSuZb73lZrVbpJctMenT0Xjv38Nyrd9b7YW8t+2VWd/f03+HPvvXtLTDig0j3+idUq3TMu6V1vnfz6P1W6Kz7W2Z9z8tq9/eynH9KZt77ny/avdJPkzTd+uNL99k87a6uWuKv3PpArluy8q+LkRzpjfVv/+NuVbpLM2agzD+7aKzp7GibJI8909t794AGduUPbfKbzHCtJvnNTZy37mLd27q+3XbU3vvWC8zvzOG79RG+d57THO+9Q/vq/OnsPnvDC3SrdJPndOzrrfz+9Y2cviSmf7Ow9kyRTx3fuo46+dK1KN0ku/9I3Kt3rl+vM9Z3y096ayfMP6rwX88kPf6TSfeM5nfccJMkGR59T6e77undXukny462PrnSnndAZL7ruuc7vdZJsM9SZ3/CjWZ29no/4zD6VbpK85DWd+5Jv/azzjskk2eGlO1a6227d2W9s1t69c9Gla3Q+Gwe8vvNbsv3SR1e6SXLqBxb9vLAkOfIry1a6SXLDjM6z5mNe2rkOP/vk3hz+p1dZodL9+hlvr3S/snVvbcfW93X+zlct09mrMUkmnffTSvddO3X+zvvN66zRTZJbP7ro9+ZNkisP6/yNX/bgayvdJDn6pM57Yta8vbMnWJJ8YnLvXcj/jScWezYnv3zRr4Nfc6veu8rOn97ZW+3d7+msvTn9T7+sdJPkE4d09kLd5JbO2uwkufv7nfGgycvdX+l+eYXe88JffOeOSvfV63XGeL/8tTUq3SR5zxGdfcCvXbK3r+ij629e6f7okM4+V8t+v/M7nySnnN6Zn7zF6zvrGX59X2dtQJLcvlRnD5F/7vmlSjdJLjmusw5wm+M7c8q2mtRbN3z49zrznrc6YadK98IXdPZcSJJbf9EZi/3lJ3r3BqtscXal+4+lOmMJp8zuvRt25c90rj/X3rOzr9o7Xnx0pZske162ZqW72zad832SXPDNzjziF+7d+S25e+PevrCzl+q832a54aUq3Vvf3nvX1f1rdOYYLHxpbyxvytzOXjsfm9SZx/jWZzrn+yR50Ys6ew2Mf/1ile7/fLr33pzdv9wZb/jVn3uf5c+/9BuV7s8+3tnXcM83dNbcJckPnujsc/Do1p09YN4xb91KN0ke+mTn7/yzd1xZ6SbJKTd07ku+c2JnPcrk5Xvn5U2+8fJK9/RLOue4DS9+YaWbJLP26bxDecxRvTG55w9eWOnuMv4Lle4XDu7tF7zMkhdWum/ep7Mv3tfO6e33/OllOuOTO+3RWfOTJBtf33nX5EvX6jyHfPaYzh6PSfLJjXasdC9b95ZKd5Nv9t7z+oGnO3s/HXxuZ6w2Sd52bGe+zA6Pj610v3tzb37kHQs6+8Ke+ZrOmq1tnnuw0k2SD508udI98Ije7+q3Z95f6c49q7PO7Kj3d94BlSRbfaTzrsKvndGZw/+xlV5S6SbJxOmduV/P395b83rApttUulev2nnXyAVPdt6TliRTZnfe07vRjM7znUPe2Vvz+qpvddaD3XJ9bw7/Q8fOqnS3n9VZQ3P18u+rdJPkPQe/q9KdvvrDle53XvLHSjdJVt+vM1500/G9tVWT03k/2JTjFlS6x+3Tm8P/6us7vyWfvqMzf/LEt3TWYibJ+Js6e0l/7m29fQQnX9Wat/R/nufR220KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4fMhjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAZj/5P/eGEWZt784UV+EGOWnLHIm/+24NmhSnfcUpVshgZjOuEk8xdMqHTHDc+udJNk/rgFle6UictVuhMXG1fpJsnChZ3u0IzOMS9YtnTAScYPLfrzUJIML7VqpZsk459/vtKdtfjile64iZVskmTMvM55ecGCuZXumKUmV7pJMv2xzjFnyn/08/4fGZ7eOWcsXHGFSnd4qHeNMWb2zEp37PjFKt3hyfMq3SQZO78UHp5SCidTJs6qdIcHne/IhIm9a4zhCZ3z8sR5neu4GY91/u2SZNIqnd/Vobm966LheZ0v4JgZnd+SBcv37h0Gg87feeGCzrXn0OzWyTOZO6vzGzVm4rRKN0nmlL7a8ybPqXSXnNA5XyTJgnSOeWhe57p20tjOWEOSzC9dik9cOL4TTjJvuHS/OtQ5Z8yc27v5mz39mU540PkbL5zdu14entD5XZ1Q+o1KkuEFnTHK6c8/WumOnTeodJNkzGKTKt0FMzvX+LNnP1npJsnw/M7fecxipfNFkoXDy1e6wwuWqnQXH9s7F41fpnPOf/yRzrjnYKnemMC4uZ3P8oLZT1S6STJY2Pl7TCwN6syeVxr3TDJj9iOV7pJLv6DSrT3cSbJwQWfsJXN61/hz50+vdAel8a3h9K63xpfGPidM6vyN5y/o3Ksmyey5neutCeN6379pM5+udCeOXbrSTeleNUnmTe7c78yY2RlHnDjUOV8kydzhzrXc4ot3nhslSeZ1zkXzSs9tJ0/uPSuZXZo3MW7Jzudi7HDvHDcozAtLkjkLevc7c6Z2zhkLF3Y+y88/U3zWNbYz9jluYue5+/jxvXlyQ+P+VekOxq5Y6SbJ3HS+J8svtl6lO2lc795h+vznKt2xYzp/42lP9L7Xy0/pHPNzMzrPE5NkwrhFf107NPTfny9mT1spf/3dJxfh0fyvc9a4fZE3/22zS/9Q6b53t85ndcxDr6h0k+Shvy1R6U786N8q3SR58tytK92rJ95R6S7YZpNKN0k2PHzjSnefmVdXuuPetW6lmyRPXtmZb/GD9TasdJNk1fF7Vro3//6qSvf5bVerdJPkDUMbVLozln9vpfuDLU+rdJPkvT9/Q6U7dsMTK90k+ebLrql0j3/o+Ep36CW967Qnb/91J3zbspXsFlO3qHST5OU/6HQPO/jhTjjJBjM6zyKHtu6Mq5w/s/MdSZI1J3fu+Vf8Zmdc5ZMb7FrpJsnl2/2y0r3ie1+pdJPkscdeVOmu/vfOZ3nV45epdJNk3o2d8ceJV72x0n3P3F9Uukny3IKtKt0VvvBApZskP36wszZ18MfOWOyYzXpzRU/bpvPsdO37O91xy/Xmw4+//guV7ombXV/pJskqa3a6jz34w0p39ZN6z3uf3rHTXWyXzmd5v/0+VekmyQZ/7lzj33rxFyvdJDlts8595d2XfabS/d2UmyrdJNlnQWfu0NMLt6t0//GySyrdJLn5u51jftnvesd855s6N6xLHdL5LVl6lacq3SS5/zfbVrqz7+5cIz68du9ZyW4H3Vjp/mb9gyvdJFl4S2dB2GIrdD4Xs57qXLskyV922KvS/fuczjjw4sOd/R6SZIUNHqt0F5u/ZaWbJMeesmSlu9hr1qp0F973uko3SW7/aeczd93Czvzkk5frjek8funNle5lu3XuHZJks0s77Ze/rbM2Z3DWEZVukjwxoTNvdv6Pd6p0z/9YZzw1Sdb+5uGV7lvf3LtGvHToI5Xuln85s9IdO6e0NiDJhM5yvpyyWue3b8kHer/XX37X/ZXuK3/buXZJkhWe7LRvfvsFle4a63fmLCXJ88932p/fo/M8cfNPvr/STZIJP+is83x84+sq3SRZbM09Kt35m3fWTO517N6VbpI8cNrnO+GVO3/jTd/Ze+6w5cc6cxv+POHVlW6SrL7mnxZ588Yn/rvP8cT1F2S93y/6Z1k7XPo/i7z5b3MuuLTS3XXnzlzc9c7ufZbOntR5pvCalXvPhH6+R2fdxqS/nF7pHvnu3r/fDnt35qw/f9B+le4W2x1T6SbJE6/vzJld4UOdz0WSXPX+QyvdwZdWqnSfOPHISjdJHjrsykp3iVM7YxTnrXxUpZskG/78wkp36PDO5yJJvnfxByvdnW9ZudI9bNXevkC7btTZP+uj53TWhl6+0vsq3SR59hOducnnrNMZH0ySVzxyaqU7/V+dOZcHvKfzPDZJnn7fol/TmCSveedBle4ZD+9c6SbJG07p7Bf1+3uvqnST5H9236HSfcF71ql0p+7SG5/f6P7ONeL1e3Xmfz8696+VbpIcs0xnb4Qv3vXKSjdJ5p1zTqV7+i6ddY0PvL/zO5Ik31rnHZXupFk/q3QX/uQvlW6S7DG3Myawz3avqnST5AUTO3suHPRI5/nK9Td+t9JNkjHv3KbS/emZl1e6b/vTIZVukuz3ZGc+53H7d86dSXLv/3TG/n/xss565Z/s3XufxCsP7szv+cK/Os9B1vxm77npsjM79+4v/lxnP+YkueS69SvdPX/deaZ3xS29ObNP7tr5zB14wGaV7peu74ynJsnpx3fudy6Y1JsbOXe7znjt4NcnVbq7n9Y5XyTJ4Vd0zssnL9nZ0+aRs3p71/3oyc444ptnfanSTZL7vtLZh+e6T3Xm768xrThPdL/OnlJnrbRjpbvRl3pjtXdNe3Ol+9VHe/uAbP/9n1S6S6zV2Stns7/35mNcPvnCSvedb/lzpXvqPfdXuklyza4vrnT/9IHeHoK/2errle5q23fm+Z7zrt5zv3WW7exbvuyGh1W667/3tZVukhx+TGcfgo+ueU+lmySbntKZ67HJip3P8gue763dPvyEzvjyb67sjBXdtNXalW6SvHr1zp5SBwx3zp1J8olbOvNTDnhjZy3KZu9/U6WbJL85qLMn0YvHd/bwnHxgafFMklN276xr/MOYzjyBJPnIqfd3wv/llkTTxg7y+2UX/XryTef29vG74zOdPdofWva3le7mL7u70k2Sk5d7W6V70i2dPfGS5LI9vlzpfmP1j1e6m9x0QKWbJH/6YGdP0dtu6Lw3auGMfSvdJJk2qXPP8br7euvUN5p0Z6V743OfrXSve2PvnmPaqzrzZZZ/d+eY11nyG5Vukqz+xc67fWe+orM3fJKc97UXVrrffN/Zle5uN/aeF778xWtVuvfMurbSXeXazlynJPnuwvdUuhfP6r3n+DPfO6HSvefyztyTz72jt1fw9ms9Xun+5Sud502f+Xpn/WGS/PzRzljC5cd25iYnycrv6MxreeWmUyvdPV7WOxcdc3Nng9Wrn+08o/7B5b31o7OePrDS3ehdv6t0k+T4z3TmxK/y+I6V7qX7XlTpJsnBt5xc6d5wTWcN1Kv+9elKN0l+ukLnHTQXf/fCSjdJdj1k8Ur34fM6v9cf/lhnjXySXHRBZ234alv9o9Ld4cDefl/Lb9C5Fnh4i30q3STZcrXOO5SnLtP5vf7UsqUX0CQZ84FjK92dHuvsVXrxa26pdJPktyd35s2utG1vTPX5azrPB5ba6eeV7tzfvb3STZKdd+yMtf/pxs583Dc/3Jk3lCTrPn5rpfvOJV5S6SbJlR/t/K5e/cHOepSvXtDZhypJhp/qrNva49cfrXSP3Li3tuPqD3bWII69pTNXJkmeW+NHle7F66xa6a7+7V0q3STZaefO/iUXrPixSnfm6Z19QJLkops682Wuf7b0vsYkBz3b2S/xgS91rmvXf8VtlW6SXLthZ9/rndYfV+meOOj9Xl/087Uq3U8+9o1KN0lO3qrzTOo3hxxX6f7ytZ35uEmy8o8eqnRft39nPs2bn+m9h/zd13feu/LaFXvzIx84tbOvzW4ndNa5XP+K3vu7vjv9A5XuzTd03l/5pwNeWukmyWU/e32l+6t131npJskPJnTGl59ar/Mu3aOO7PyNk2Trf3WegQ7f1dlD98Z976p0k+Rll7+70t3zsc5ctiT54gc64w0fPvG/G6tdcN+0TNv/qkV7MEn2/2xn/5ckmX78fZXuJrM7e+/OOaK3jmW1e+6tdI+6+wWVbpL84d7Ong5PTemczyds3Xu377fe2VkvdMCczvXfMktuWukmyZlnbF/pfuMrnfdbJMnPl+2sw337GZ1rnmV/2pu3fvk951a6l76wM9fwHe9+V6WbJJu+s3PdM3X5zSvdJPnYlA9Vult/5a2V7gXze+/sHjxwXqU7v7Qv5cl/6u1/ttKSnbXqX/plb63zVV/oPL9Z+vzOc8iV9+08u0mSibd01o0c/JfOGowTv9rZ4zFJrnywM/4/dc6vKt0kWfavl1W693y+8x0Zntx7p8Tw3b+vdNe6qvNuvFU/uFylmyQfmvX3Snd4k97e84/tdnSl+50zO2Pph+5wSqWbJGtf07nGv+6TnfnJ167UWeeSJAce2Jkr+sy7O+ufkuQbO3Tmao/ZofNZPnXSWpVukuz6+c67Hnf727sq3ZXf0Fv/u/synXHE13znO5Vukhzy0s59yVJLdf4WLz9+u0o3Sc65vPP87eGTOntUfODg3rtFd9vpq5Xuhud25tknycx09ix98yXXVLqvfXXv3uHM5Tpr2B7duzOH+MEPdMYQk2T9LXeqdM/Zc1DpJsmDX+7shTr/0s5emqvu1HmOnCS7LdnZF+WtB/6x0l3hvfdXukmy80mdOQavvbfzrookWfGgznf76if2r3Q/d0Nv7/nf7dvZ12av3Ttzy3Pyon9H9b9dvWHn/Lnhy2+odJNk3wdXqXTf8t0VKt27h5atdJPk008fXele9P3NK90bf9Ob27DKbp3v9bJf6r1r67C/d97beNLszvysnW7qrXm96r7O/hd3Xtz57Zu7f+8Z2jKndNbJf+vjnfc+JEne2nl29PjEzjtIJ93YW/978Sc6+6K/Zc3OeMNKn+3sj5YkR6zzz0r3mm913nuUJJ9+vDNv8MTXd8Ybbjqls49Lkuy0fue57fqlZ6uH3NnZRzpJfjmj8w7ZfV7d2Ss1SU49qLMe+v/vl6Q3IgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/w8ZjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAA8P+x959BmlUF2799Tk8OwMAMGclJQEWiCkpSUUwEBcSMAQMCigpmFFRQFEyoiGICQZEoiqhIkCQSFCWJ5CRxYJjY3dP/D0/5fnreKrXmrK5+6jg+3oW/e1fPde1r7bXXXhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWBgtA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaCgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYC8aNjIz8x//xpsuuOfLTrT+81A9i0qLxS735/2tPmlLpTpw2odIdNzKr0k2SZadMqnTHT3260k2S8dM6f4/Fi/7zz/1/Y/LUzuctSQZnLFfpThy3uNJdMr/TTZKBCZ1/v/FLxlW6STIwqdNeNHNepTt4f++zPG5kqBNeZmolOzCv+Fle1Pn3G5m0QqWbJDPGd75/8xcvqHQXPLGk0k2SGcsOdMKzZlSyw4ODlW6SjMx5rNIdP21ypZsk8xZ1zsvTp3XOn0smLKx0k2T8YGcsvnhC599v3FDnfJEkI/M6v1ETZvU+ywODnTH+yNz5le7idH5HkmTcQOmcP7fz/Xvk8TmVbpJMnDCt0h03UBrHJVlupeUr3cEn/lXpjp/dG2+NlH6yxy8crnQnzu782yXJwiWd8fKE6Z3xVpIMlOYbxqczdhme1/kbJ8lIOuPlJaW/8YTpnbm+JBmY1/ldzezO+T5JBud2/h4Ln7670p22bO97vfipzvlz0VBp7DLcu/bLQGceeHB+b355udnrV7qLhjrn5UmTJ1a6SbJk4dxOd2pnXDRteiWbJFky2PktGUjvXtfCBZ1r4WlTS9cOE3vXfsNLOr9Rg6WB+JTOz0iSZPFwZ75hwuTePNSCOQ9VuuOGl610hxb07g+ML91rHhzp/PtNGu59r8dP7tzfmTi197uaSaX7A6Wh3JLS9VmSDJemiyZMKl3vjO/dNxpOpz1QmhNIkon/xXqh/8bQQOnDPNwbbw2O65wzBsZ3vn+TJvf+FkNPlu7bPv1UpZsk4/JkpTtxoHPf76m5nXnrJBkZ6syRLBnqXLvPHezddxgujV+mTOh9/2avskqlO3nqzEp34nLFi/fhzlhgcP6cSveR+x+vdJNkwcI5le7IUKebJAsmLv3rkv2u/WZumnvf/zQwGhi38sikvGFpH1Km77vyUm/+223XXFnpnrn7rpXuJqs8WukmycmfOLvS/fk2P6t0k+SGfTvzFGv+6/5K9+ofdtZ9Jcmeb31upbvKhGsr3Z8MvbjSTZIbbr+q0n3zsjtVukmy9oJlKt07X3hApbvx7Z+vdJPk7n89UelevsWtle6U1f9e6SbJjScu/WeJkuSlH+gd87aXPljprv/czrXoz87r/I4kycIHr6l0b19n1Ur3Ocv05ujPfapzzbjH/DUr3SS5c/5mle59z7m00l1yUWdMmyQL7ulcM87a/HmV7vEb7lPpJsmiW86sdA/cubfueZuZne/2R67sXJufM/GBSjdJZg/OrHQfPa1zv/D0j/bWGr5vbue65Iqne2vKfr95Z55363NeX+muP/GuSjdJbtpyt0p3+Se/Uukeu1Pv3un+Z7+t0r1nRueaMkl+sslfK90/ztmo0j3jd5tWuknyluHOHP23Z51d6W52f2+MMemhsyvdx17bex5sj2U656ILb/5kpbvNtdtUuknym9lvrXSnrPPzSnfeU8+udJPkG0Od+YafrtS733vSfS+pdHfddVGlO3uzzvxWkgwe9YxK9+7Bv1W6j666RqWbJJdsvValW9p6Jkmy3bIrVrp3/unXle6z1rir0k2SzUZ2rHSftUpnTu7m73buRyXJORu+qdJdZe6PKt0kGV77H5Xu3J9vWemu/LbO/FaSrLv4/Er33I/eW+k+tnfn3Jkk31q78/v37dmvrnST5Krhzv3xLWZtXOk+8/7eePnaS8+udKePf7jSHdzhT5Vukqy+7acr3QVfn1npJsnKy5TGtVM790qy1tadbpLbn+is3dvrn501CF993zmVbpLs8oFO9/nb/bMTTvKHx35T6d7/ic79xHtu6Yw9k2Twl5212ivM6TzLvtLmL610k+Tq+75T6Q4M9NYWrTjceQbjc1eeWOleseEPK90kuXKl6yrdkZs690qu23v3SjdJnjqjM0ey3IanVLpJsv1N6yz15s73nJQbFj7wX6973nzL9UZ+d9UXl/rxLNjijqXe/LfBw2dWumtecn2le/ETR1a6SbL8s39R6d71097+1DfffWile/iSfSvd86/do9JNkj3O6MwlvHu3j1W6Rw/dUukmybmX/KrS/en1vXP5YXv8rtJd7+DbKt33rfPuSjdJ3v6S3Svdbx77tUr3pk/1vtfjH7640j348d6a9Szfma+59pbOHNPzN3lWpZsk73ygc3/6yLU7v9cf2bnzvEGSHPbLzprL993f+/59eePO3PHjH7+r0n3HlW+sdJPk6EtfWek+PaszX3PwU3Mq3SRZ/cTOPoyTpr6j0k2Scdd3xkUb7b/0n3VNkgOXnFTpJsnKD55X6b7gb5016y/5RGneP8k3D3tmpfvSGRtUukmy3bTOWpnlf35npXvjjz9R6SbJOkN/qXSPf1Fn3n/ZJw+qdJNk8k0nV7pvXKd3r/e1H+s8z3D92zrj5QPe1HuO/cOnddbWHfC9vSvd+a/vPCORJC+b37lZuOvLO3slJsmtP/lopfv1Izt7n71+ud5975s/2nlG94YvdJ4Zed42H6x0k2TrmzvzW/ss/8tKN0keu6tzXr7gY53rnd9s35mrTZLvXvftSvdte+5c6Z4+tbOWM0mecXdnjP/mLTvP+yTJ4Q911u0teGVnX7U/vqW3znCjuzv7XZ55ZGe8vPURl1S6SfLL5ferdH//3N57A/56aWdfvA+u9dNKd8Y33lrpJsl3XnlIpXvFW75a6V54V+f6OklOfWNn75J/HHpcpZskc87rzCPe8tXOnE6ufWunm2T3f1xc6R62V2ct/J1XzKx0k+T2VTv7oM56Vm+M+NYNP17pTv1CZz+ws3bp3St5w6c691dP+0bnenXNzk9fkmSV406odFd92UqVbpLMevl6le5Nv7ig0p3yxs68WZKc9tXvVrpDb7iw0n3Hvr09+D+2Z+f+3Mm/7ewVkCTrnNfZ++L6Uzr353Y4sHftsHijj1S6/3jx7ZXuZR/cttJNkj9s3RnjP/ya3r55mx/2vkp399M+dO3IyMhW/+3/btxak0cmHLb0521mXtq5p54k5y3uzK3cM/iqSneXhWtXuklyxAqdseXrr+jtufD2T3fWfv1gm859oaGXfqPSTZJDvtF5Bul7b9qk0v3Ah3apdJNk1ks690L+8N7OHH2STN6rs6fvwHteWOmO3NPZUy1Jdv1jZ57i2jU6z3kd9sCPK90keWSHGyvdv36n92zhvse8pdI9+czOvmp7veLPlW6SzPrWnpXuiWd1xi4/+sj+lW6SbLv1EZXudrteXukmyQGP3lXpnn/s+yvdVf75oUo3Sa69v/P7t+nbZ1e6N//xs5Vukkyb2Pm9/v7Vnd+oJJm9Teecf/jjp1e652zUW1N2xFVnV7r77dN5t8Ymf+ytFX3TY513E83b7QeVbpK88o1XVLo/fknn2bidd+7NS39w3c4a8H1ndfb2/8wenX3yk2SZ13bWRJyz1Q6VbpKMHN1ZhzN8Z2dN0uqv6Ny7SZJzVju30l1l187n4uObv67STZIlm3b2wvnGOb37CufMPbXS3eD4zpzcmj/s3AdJkm+s3PldvfPEzj31m9/YWw9/+h6dsdzO+95U6SbJgtXeW+lO+lTn3Rp3ndZbA77iA6tVuhde1rl3+pa1d690k+Rlh3TGRYcv09sT9poXd945tvMjnX3gzr7j5ko3SXZ7pDP3cvOzf1DpvuzTnfNQkqx4dOedm68f/4JKN0m2XeHYSvftJ0+odH99SudZsCSZt1JnX5v91+jMtb/x4s57bZLkXW/r7Av2r28eXOkmyaELv17pfnFeZ3/jd13Ue377oD02rHT/dmznN2r+/M7vSJJMnt55zmzXbT9X6SbJeR/o7Jlz+AVnV7rzh3rvPNro0T9Wuldd0Hk29YG9jqh0k2SHfTrvgrz0ztIm0klGbuhcl/z8mZ1x+LyB3jPLOb+ztujeLTvjuC9v3rsfvNm7O89vP3xiZ5/8JNnsT09Vutee3LnXNf+a3nj5stv2qnSvf13nGm2H3uu7MvnI31a6X9+w97v6vAc6944u/PiO/9O652kbrj2ywTeX/j6P39zxtKXe/Lct11630l30ms7zoVde0nk2NElO+Hbn+uvoBc+pdJPkL195fqX7xrs7e9me9p7nVrpJst0vOvcLZ36kc4/socO/WekmyevHdeZsZh57daWbJL9bo/Petp0u7Yx5Nnti+0o3STae01kHd/vczvMoG+zZ24tx9bd3niM7e3bnmZEkOfb7nbnNuTM74+Hf7z230k2SQ//eeT77sZs772P83aTOuoUkWfk7nbXa633iiEo3SW6/vLNn4vQHO8/A33Fq5zmJJDniUz+pdFfasHOP7KiPdt5RnSTvvPa/vkT6z7rP7sx3J8nsZ3yh0t15p86aiLVW7t1j+dj9X6p0z/hh592Gn9y0MyZKki3P7bx378QD3lzpJsnV3+2sKXvxFZ05+vfv19sv+PwVO3sD3fyiLSrdTzy7s9YiSTbe6qhK98d/WFjpJskFA533471kn85c7BqvObzSTZKFO3TGAsP/nFTpDj7VmUNMktXf+GClO2Xl3t4yO/65s/bk+CM772C7cfPO+3iSZOpbO/9+9x/bWZ/807s7Y5ckmTzSeVfaEa/srXs+fl7nfYIPfahzHbzqzM45Lkl2vLwzD/zeMzrPea58Te+G4QmDnfU9l1/ZGcclyQeW27zSnXXc0n/Ha5Ks+53O3slJ8sV/rVjpbjtt90r37OV7z+YcdHBnjuT+L3R+r5PkPX+/rNJ99OrOXi7/Oqozb5Ykn/hiZy/wF350zUr3ktt6ewedsejsSvfzE3tjjCNmdt5nve4r7q903/uO3j5mJ8/r7BO46ls77ync9473VLpJMn9aZ33WFid1fvuSZNXFnXXg07foPOf52OqdfVCTZNeLOu8EWf/oznzDiq/v7QO+51ad90xuc1TnWfYkeda/Vq90t31FZ77hhq905hCTZJsnOterfxvsrFt//MDe5uU/e7r0rp/v9PaBHLdC533WU+//QaV7xNc699yT5F2PdeauP//yzrqJoz/feeYgSR6+tvNOkJ0P6rxzM0n+cEFn/HnNee/4v6577rxZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+HzMw2gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPBwGgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBQOjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMjPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMDDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgwMNoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjwcBoHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAUDo30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDIz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDAw2gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPBwGgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBQOjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMjPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMDDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgw4b/5j0dGlmRwaP5SP4jxE2cu9ea/LR5YUukOLRqqdGdkYaWbJAsHhivdaVMmVrpJkuFxlez4KZ3PxciyUyvdJJm4cF6lu3j4vzoN/McmL+l9LsZPm1Lpzrvv3ko3SaZPWq7SHff05Ep38uSBSjdJJs5YptIdN65zjlu0qPMdSZIlSzqfi4HJS/+3+t/mT5/U6d7X+f2buFzxN2pi5+/85JPLVrozlu99ryeXzsuLJs6odJNkxoTS92TB05Xsosmd80WSTB3fGdeOLFhU6Q6VxvdJMmly53d1wlO9Y860wU53Qud8v/iJRyrdJBk30PnNHliyuNNd3BnfJ8n0ZWdWulOXmVbpJsnwcOdcNGmtNSvdicMjlW6SLB7pfK8nLtu5vp4wvnPuTJKpE0rthaVzZ5KM72RHxnfCE6f0xluLFnTOc0sGFlS6i8fNqnSTZNranfaSub3f1ZF0/s4Th6ZXuk8/1DneJBma/GilO325Z1S6ix/pnO//j845Y9aqK1W6STI40jl/TprQmW8YWNyb05my2qqV7shjT1a6Q4t6v1HjS1MkSwZ6Y4zpy6xQ6S4Z6ozDBxZ35mqTZPGSuZXu9Fmd3+vFT3S+I0kyfmLpnuK8znVwkgwt7vydx09/rNIdWdK7PzAyvnNdOXFxZywwecbylW6SjAx1PnPDg7058QWPdf79pszsjF2GSvMuSTJ5aueYx410fkua88tZWPpel+atk2R4Yuf7N2Fc51xUWj7yf9pDnXPGxPmdMeLQ/DmVbpIsKc1DLVnS+/4NPtUZLz+x5IFKd8aM3t9i8ZLOF2X+UOccN+6/W7r4X5kxubOGa8r00iRwkokjnWNeUhp7TiiuGRyc15nvG5zfGWNMLa0fSZIlg5377k8Pdu4HJ8mEwaV/LTxu5H8/d64/eUm+tsZTS/Fo/o+t7+/9DYdmH1HpvvCDf6x0//bq2yrdJDlky49Xuh/e+epKN0nOPevOSvfTr9iw0v3dC/erdJPkR1d15qUfeN0vKt3Vpv2l0k2StZbfvNK9/bw3VrpJct0qH610b5p1YqW796V3VLpJsu5mj1e6F9/0YKX77Ks2rXST5C2zjq50z7rsl5VuklxzycxKd+S0zj3Oe3b/YaWbJH9a4exKd53nHlLpTrq5d/38nFe+ptLd8MJbKt0k+dPyd1W68+/orIl45ISjKt0kecaPjql0b320M0d44ha9+Y8H511W6a7y930q3SS5/g+d+3rXLNtZK/qTPXtrF0Y2/lmlu8rju1e6f/nFypVukky+8O5Kd8ZxvbW+K/713ZXuktWvqXSvWG2dSjdJdp/2vkr33h++sNJ94q7O3H+SPGPdzmfutlt2rHST5EVTO88qLZi+9OfjkuSW6SdXukly2ks635NJv+v8jYdm3VXpJslzt1yv0r16q868WZJc+o6LK937Nuz8/t34nN6asrk3dq4rZw3tUume/ILOmChJTrjupZXubXMur3STZLj0/Vvj0rUr3XPO2rjSTZK9tuzMcW273Dcr3Ud23LbSTZIpJ21W6Z75r5sr3STZeOThSvfrL+2Mt176y96ipFXu7qzd+1E695Fv3+JrlW6SrHn5hyvdL/zgvko3SU4/tbPnwzVv6cx9/uqxYyvdJNnswQsr3Yve+d5K9+TBKyrdJLlr+c59282u6tzPT5JrJ69d6a61fuf8OW5K5z5zkpy0+0mV7qybXl7p3vy7zvxIknxiuHN//MzhZ1e6STKy6W8q3U2f2r3SPfXRWyvdJLltl8748+iBf1S67/9Fb33dn4/ujIu2PPavlW6SnHTRcZXu17/6k0r3Zaf31mNMX/OVle6j23bW06x629aVbpIMLd9ZD//GiZ17aEky7cLOWODU9V9d6V6wbG+M+LdXdp77mfHgOyvdT359dqWbJJ981pmV7up/7exbmSQLtvnzUm+OPPq/7bUy4bYZmfXi5y/lo0mOueBFS735b5u/5P5Kd5u7O+sXN/pQb1+LI07/WKX7jk/31jxPvHCPSvdTJ3bWUK37sd618+cWdK6RNnx3577NlGs/VekmyWWv37PSfdWsr1a6SbLGRZ1x5QveVFqP9JreM9/3v61zzD/66hcr3Z9Oe3GlmyRPvOOsSvfkx86pdJPk18f9uNL9/su/VOmefGdvD/e9n3pmpbvRBp25xyNu771P4ksXb1np/uGvne91krzstTtXuvd8e2ale8ytvbmrzVbdvBN+YMdK9jePH1bpJslZN3bOn6fu1tkPPUne/OwbKt2vfKFzvX/ScZ1nJJJkqwt2qHTvGuw8s3/mTr3fqC/s+rpK9/p9n1PpJsm4Y26vdHd5V2eM/9ev9J7d/sfZb6l0dx/urD/9/F6953Je+5nO2rr3HNG73pl76fsr3VUfeUOle+tDZ1S6SbLFgr9Vuju8trOebLeTf1fpJsnuZ36+0n1B8Z1x6z7zXZXu1Y901tn/66uvrXST5Ny/d/7Oa2zaeY790+/tfZbvPbnzXOM5H7y40k2Sze5ZvdL941WdtVmbLNOZd0mSHx/YeX7mIx8/sNL9xzI7VbpJ8prPz6l0d9itM9eQJD/d8XmV7vOO74wFDjy3swdPkrxzxc563Em3de5H3fr2zr2BJNnprM484ud2Xvr3pv/tmG98o9Ld6c7fdrr7da6vk+R3q3bmG9Y+7aBK98oze/OTZy3u/K6+f+3OOsMkOfJDnd+pP5/Rmd96xQGdMVGSnHB+59mAt1/V2evy2s91nr1IkrMOnlPpPvP7nTUvSTJ1l87587p7L6l0757Rex/BFb99R6W7x5EXVLrHP6O3v+qsPT9T6f56j+sr3SQ55pGrKt0XbPORSvcf8++pdJPkVYd21uqcObEzh//h+ztr2ZJkve069+dufbwzp5Mkbys98/Poizr7zpz1/F9Vuknyzzs77x89dbCzTm5oYItKN0lecNDSX6+bJD9bu/e88hEzeveO/hfLz1w2u+659L9fn1zcuXeTJHtf/e1Kd5uB0yvd69ftzKskyW3p7P353Jf23gE6/7LdK91rn92ZP77j7pdVukly3Yp7Vbrb3rt7pXvKFb1rxntv78yZ3rjRSyrdJLn5/M47XFf8ZOdcNGen3t6Dn3jV+pXu/CsPrXRXfG3nu5ckE37Tee5tjy/23tv2seu/XOl+/FnfqnTvuq23vu7WtTrXSYdv1nmW/FWXzKl0k+Q7E79T6d526UOVbpK89MDOs0oT392Z///gMr01Sbcc9L1K90c/6+wjdtKHeu/TvPDQAyrdNX7XOXcmycTfdsYvX9qis3/B+5brXTtctUbnvuzJe29S6a4zbY1KN0k22aVzX/2dz+m9G+Xbd11a6U74fGePq0fP7cz9J8kHV39BpXvYVodUuk9e9vdKN0n2/2dnvuj9qx1R6SbJNRd05ky/9oPOdfAWy/XORZdfcUile/72b6p0t/5jb0/DK/borDF44pLe+tavPuOfle4r7j6+0t1+rd57fvZasbNf1NHTO/tT7/OJT1e6SfKbI39U6d490jvm2+48pNI9+qTO/rgfuL7zzEiSbLtf5z0xt7z5GZXuczc8odJNkiPW6+y1Pm3x/7bn0H9i8JbOGPGNR6xd6U7cv7MPVZKc/tLOdfAJT21Q6b74mN69kjVmbl/pvunyzv6OSfKlw39d6V63S+ea8uMr996fN3Bd5/7Ola/r7C8+sTMMT5JcvXlnr+CXPdxbX7fGeZ1z/tpndp6zvnGDzh4HSbLCcGdOfP+t317pPvq7iyvdJMlPOt/roT+9p9JNkvdt3llfvt+871a6t1x5V6WbJCfN6+zReeiRnfsO35zUe//a4js6z5yfdt6ulW6SrPzBtSrdrU/tnIuueElvDX/27ly7n3RCZ37kc5/r7U+4246rVLqP7PuHSjdJVntjZyww/cedeeDfH9z5HUmShau8tdJd5fCvVLo7fmfHSjdJnndnZw3JUQf9tNJNksE151a6/+s3ZKUH5+XAI5f+3r6/Pa6zx2OSLPOjzj5Jr726s4Z49o86+yUmyXve2nn3yZc+0HuO5ZFTdqt07/pVZ33kyg//qdJNkmed1Vl7+f0rO8+qX37nbZVukrzygM7eQG/4YOedl0lyz99K69af09lDZMavj650k2SP13ae9zpgnc45btIjvX127ji6M0+x4uTeb8lRL+ysVztg+876rOcv2znfJ8kr5nTmr/a6pLOn/d739+bo9z20sybpHWf21nEcOvjBSnfcA6+odHd8Xe/ZnDWfGKx0r9ilsy/s5ut39p9Ikl/e3rmB84ZzOs92JMnf/9b5/Xt56d3Ml/zwyko3SU68rzNn87zjt6p0D5l8XqWbJJvPmVDpPnlmZ7/gJPngtZ391j+3budZien79t5V9s7FnTUtH35m5xmM17/riUo3SW67vPMMzQGzn650k+SKDTrPYDz3ks5etouP6LzPLEl23razbnbxzzvPxp31/c5apyRZZf3OvobvPqC3n8r4FTp7c/1u5c5YboPHHqx0k+TvX+vMA+/1+8484mMHfL3STZKDZ1xb6f5h+ccr3SS5+6G7K92fz+3cr99lUWdNRJJc+FTn7zzz9Z1noZ++qLO/cZLstmVnjcjVD3TWwyfJXw7t7JM0Z/oxle7Vt/f2uTpltc481EFndd5teu05vc/y6R/p7BP48DkXVbpJcuzpnfvqK+/X+VzctEfv2u+k2zrvpn3eGztz4j8pzum88PDOeOuLs3r78H9lq877PLdbbkGl+8GdLqx0k2SHHTvPIN5/YWcct/63Ovd2kmTG2zprG66/eLNKN0k+/tpbK90Nnz+z0r38wYsr3SS58K7Oms7vT+y8n+Hz93bG4Uny23U6+0v+/oudsWeSfPsrp1W6D/ygM1e77c8719dJcvb2nbmzM87o3Pe784O9fRlOOb2zHnGHB3r/fo/vP1zpvvi0zlztnId6942W3bqzp+LUxZ1z0Xqn9cbL17yu8zzRddvsX+kmyb53HFHpXvP/5//e2x0SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4fMjDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgwMNoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjwcBoHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAUDo30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDIz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDAw2gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPBwGgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBQOjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMjPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMDDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgwMNoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjwcBoHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAUDo30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDIz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDBuZGTkP/6PnzljzZGTNztsqR/E8ssOL/Xmv01aPLvSHcqjle60SatVukkydcqESndgmZmVbpJMmrp8pbv4iccr3WmzZla6SbJkwuJKd8LwpEp3/tBgpZskkwc63YVPzOmEk0xYdUalOzK39L2ePr7STZLFw53P8oyJ//nv2X9jaH7vN2r85M7fedL0zrkzSUaG51a6cxctqnRHFi6pdJMkA53z57R1l610c/+CTjfJwqdKv1HLLKx0k2TcpHGV7vihaZXuE/M6f+MkmbHsxEp3/HDnHLdkpc6/XZIsuaPzW7I4nd/rJJk8/q5Kd/z4VSvdp+5/oNJNkiWTO5+NyRM7n+WJvY9Fpq4ws9J9ujMMSJJMW356pbtwsPNbMn3JlEo3SYZK6aGFnb/FyNBQpZskw63fkvSuVycMdq4fWtdRy0zrjAOS5KHHO+PPGZM6kwITpnfOQ0kydbllKt0nHnyq0k2S4XlzKt1JA51zxoSJpcmiJJOXn1XpLpjT+V6PDPT+FsPzH6x0RyaUroOTTJve+WFdUvpdHTe197d4+unOeXnZqZ35kZHWJHCSJROnVroTR3rzGMPzO3Nn84c6460pU4v/fvM73QkrdD4Xwwt788tzH3ui0p25XGd+K0kWlT7Lk6dMrnQHnyjeH+gMETO46MlKd2hy7zp43FDnnDFtXO9ctHj5zvlzRml+edHi3vxy6y7MxEmdcdG48Z054CTJhM6P1Ejxs7xkeIVKd8Kkzrho4ZOdc1ySTJzWmRdYULp0nzh5Tiec5NG7StfupXtzSTJlfGfCfWi4MxZYsOi2SjdJlizsjIuWjOucPyeN740xpi7b+V7PmNmZK0qSSVM65/zFQ501SxNm9Obax410/hYLFsypdOc90FuPsWjB05Xu3NL8VpIMD92/1Jv73XJSbpr/wP/0Y7LZ7NVHznzNe5f2IWXVX/e+A7dv9fJK9183n17pfmzj3pj1k+u8oNJ9ePmtKt0kOXD8lpXuC588vNI9/LnvqnSTZNVvf6LSfe56e1e6q0zsnHOT5Kyb1qt0D9ypt/jksFd2xj3Pv+nnle7iI9eqdJNkw1/dXumefFFnXvrGP2xR6SbJc57Vmf/46ip/r3STZLm8stL92j1Lf3yRJMs8dnalmyTrDvyq0h1+2ZGV7rf+8PlKN0kO/lvnHsuf51xc6SbJXoduWuneMf1Ple7dl69e6SbJyuM7Y7lbLt6t0n1os2sq3SR51aqd+wq3/2mVSjdJnj+uM/948vrLVbqXzri80k2S5f58VqX7yx0654vDHl+30k2SbR5ev9KdNOmeSjdJBjfbuNJd/pe/qXQXzP1XpZskV27dOec/vsKLK92tN+rN8f7tgs6c24R5vUX8D952V6W78gmdm2QbX1dca3hL51mXC6beXOlusfCoSjdJDlvtrkr3D9d8tdJNkvvW2KDSXXP5XSrddR/dr9JNkr+OHFLp/rp072bNZ3auSZLkvkc6a9W2HnlTpZskqzzdWeOzyrM69zR+f/Z9lW6SzL51r0p34is6f4s739oZ3yfJjQeuXOnu8lTveZRbttys0l1l0U2V7mY7dM4XSTJ8ZGet4R9f8MZK99z7rqt0k+Q9z+2Mi5a5cZ1KN0kmP9G57/ebd3+t0n3T7b37fts+45OV7pv+2PktuW/LD1S6SfKRUy/pdCd2nutPki/P26jS3eDDnb27bnyyt6Zlo/vmVLpDczvniyfSm58cntuZb1jlpbtWukny5JzOPeEJ039W6d55U+9eyebLXlHpnvH0XZXuyMLe/PI9cztjxI1Gdqp0k2TTizvnjM3e9YxK9+/fPKfSTZJfvbRzXXLHrY9Uuitt1fkbJ8k2q3U+Fy+Y93ClmyQTHu2c57489I9K96Ate88TzTiyM9767QnzKt3rTuqsJU2SF6/5vEr32ut637/Bta5a6s33/PFbuXXO/f/1uudV1txk5A0f+fFSP57b7ujtC3Tu6Z1nvfY/8sJKd9cPnVTpJsmj91xa6b7i93+pdJNk/Hf2rXTveMMfKt0/D99d6SbJ8HDns3zItz9U6Z6+6fMr3SRZ47yfVLqPnvjWSjdJFpzf+Wwc/tnO/PwTK3a+e0ly/rGd+8hv+0RnHnbxwh9WuknyqV07T8B/Y8rbK90k2fVZ91a6rxj5aKW77ttXrHST5LcPb1PpjtzfGQtsd2zv+fdz/tp5zvkNn+6trdt0l856zvf8qfO7euczv1LpJslDn1r673JJkpes0bmncNJunXeuJMmxJ11W6d5/+0OVbpKss0vnXPT5pz9V6Z5z0Hsq3SS55gXPqnSfsUPnntAyt/XW7x93cWdctOKNp1W6SbL2935b6X750osr3W0e6e1b/qqLO2vVDtuncx/k8it6e7T8/LOdc/6L5nbGAUly+vqdDds2ffqdle7bDnxFpZskT+3w4Ur3pT/orI380lqdMVGSPHrKcyvdRzbqHfPRv+/cn/7tRZ1n5N9xzHmVbpKc/JPOHNdx4zvv/PvHUb+sdJPknx/7WKV7/ipnVLpJsv9anftYBzzVWU/21IHHVbpJcuRe36t0B8/tXPtd+7PdK90kuWeHpb/fUJIc94WDKt0kufX8nSvdbf7WWQ/xwBZzKt0kGTm4M0a8aeOvV7oP/6KzZihJrjj9lkr3zZ/6VqWbJGtM78ydHX5RZ53ob/brrf+e8rE7Kt09L+n8Xt/w5V9Xukky/5zOsww/fkVnri9JfrFvZ63aNy7prDvZ6Xlvq3ST5Lh/duZI3jGts9fKq4Y6z90nycc+d1el+/VlOuvUkmTNDTt7P33sM2+pdA9Y4fWVbpJsfUHnmC8+orOWenj62ZVukszasTN3duv3O3sQJ8kFF3T2Lb93/c73795fdubDk2TNszrrG17z/M79nY3P7uxbkiRbfa9zf/zln+2dl3c8sTN+2Wq9zljg1dv3njH72ZRDKt29x3f2cbl7u86YNkmOX/Fzle5je3XuMyfJ5KH3Vbpv3HS/a0dGRv7rTd0GVlxmZMLuS3/cs8HFFy315r996OQTKt2H/t7ZF+EZW/bWqu153wGV7rKndT6nSbJo8PeV7sEjnf0njnuwty/QC7/bOYf95tenVrq7rdbZgzhJNpv/mUr3qDmd9zEmyQdu6XxP9lu/M0c49P7O3uJJ8q53d9aAv/jt+1S6796qN5e3zNYzK91dt35/pZskB76vsxfVVmf9tdI9ZfMdKt0kefTrnX1s337B+ZXuO4/q7FeTJBtc0rlmPOqx3nXub197cKV7xA86Y8Qp5/Xm8m6f0Vl7udvpnT2kj57UeX4tSS6+onOPbL9DO+sLkuSFv+y8n2vT/SZWulsd+6VKN0leutUmle5zluus9Z09tfOO+CQ59aOd9ZGfv7szDk+S1z/cWRP4hW929gK49Y7eu2G3WfeQSveuY2ZXuucetmOlmyT/mtMZ4593yqsr3ST51JOdPcp2u6Vzj+ykszvvBUuSrV/zo0r3Uxd21pb/cZPO3sZJstJK36x0/3LN2ZVukmzy5TdUuve/qLN368iLemsX9tm0s75ur9f+otKd/Mreb1Tu7MxPfuuecyvdJDnvy5tXuu9ar/M+pRmnv67STZItf9oZC1z4upmV7vPe1XvO7Pw9jq90D/7FPyvdJJlz8Y2V7gH3dZ45P+Llvb/FKX/evNJ9+YLOM+fzdl+p0k2SL//gmEr3iENuqHST5BXvfFGl+8WnO/tV3fS3NSvdJLno1Z37trtc2Hnm5yvb9PY0nP3nzr7XJ9y6daWbJKs/q7MXyD73dvaH/+nHO3vDJ8kqK3ben/ezr3bmBA48tPfOnAtKz/+euW1vr/WJf+zc65p63JWV7rcf6ew1mySfmdeZn7xsk85zEue9vfOOwiR52+KjK91vr9k75sGP7FnpbvSczudi+5/29pdc8NrO87R/PqOzNmXVLTasdJPknFM+W+n+5og1Kt0kWe95nTHG7Z/rvI/nq5/v7FuZJPfeV3q328c672T//WVLfy/hfzvlJZ05ki9f1XtOcNV3d+aXt/vcsv/TuueVVlhnZK9dP73Uj+dln+udD6Zu35nn3es7necVdj1zx0o3SaYf3ZlL2HCk973d9OLbKt2dftdZE7jPob29Za6c845K99jTOnsY/OtrvbWG3zimM04b+khvbHnNgZ17yd/ernNf9unv9PYuf9lzO++uufyAzr23b19/ZKWbJJdf01kTeM/zeveFZn7pJZXuyJWd9SH/Orr3/vI8o/NM5PRLOve+b/1W5/5mkpz/08cq3WNu6qxVS5K9zuqsPfnZrC9Wuod+7/pKN0n2/lnnfv2PV+/ce9tkj95zw687/FWV7pVf6MyrJMklI519Hp+/5ymV7m9K7+1Ikj2+t22l++kHO8+v7XZRZ/+QJNnh0M7zDPvuvEulmyQ/e/9rKt2r93pppXvbhp01qEmy/8s6z0rcsn9nXLTJL3rv8Dp1qPM+6a9s0rv3fcKH1650/7l5Z1/t9d7UW+t7ztc6z/afM6XznNmWT/XGy+//Ted+7+nv6Jw7k+Tti5b+OwiT5JCZnbHc6Yd1PhdJctq7O/f1tn7ejpXuDgOdPbWT5NqbO+fltY7qPdt41Yp3Vro37HB7pbvg/M5atST53c8656Jtnv+rSvfg5Xvv+pl9fOc561X36L1T4sZZnfs7bzm48z7BH137hUo3ST57zPaV7i/26sxDTf9k55okSa7ZtXONtvu7es+83jH90Er3o+/qvKfwXSd01p0kyf3vv6HS/fYdnc/FXRf19ujc7LjOPlg3Xdl5h1eSDA129k+Y+bnO/v7Tdrur0k2SbUtr7Z/9lq9VurN36e3j/uDMznzf2fd3Pm9J8vjDnXcAH3LRlpXur6f+rdJNkgM36KzJveA9nX34L/vVZpVuknzp3M5+64um9555/fzPOvsH7ftAZ37rsz/tPPOTJCvO7dyT2unXnb0PL/p87/ntY1/duV799oZTK90kuX3S0l+XmSQv+3zneb6Bkzr3VpNknSM6a8Me/0zn+cP9fthZ45gkh91xSKV7/Pmd832S/Gu3V1a6rz39jP/ruufODo4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P+YgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwZG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwYGO0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICxYGC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWBgtA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaCgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwZG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwYGO0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICxYGC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAvGjYyM/Mf/8cbTVxv53ibvWOoHMXlg6lJv/tvUSUOV7vglq1W6EyZNrnSTZOq0aZXutOkDlW6SPP14p73cqjMr3SlTl1S6STJueFInPHVKJbto8fxKN0kmpvO3GF6m87dIkqGHH+2El+0c84zpvXPR0IIFle6C+Z3zxcSpMyrdJFn85FOV7tQp//lv+39r0ozlK93B8Ysq3eE5g5VukqT0d56woPNZXjyh93u9ZGhepTtlmc7YJUmWLO585iZM7hzz4JLeGGPJws73ZHDhwkp3YNz0SjdJRpZ0fqOmzxxf6SbJE/c+XemOjDxe6U6dsWalmyRz5v6r0p01ZcVKd8HEOZVuksxYYXalOzJQuiZJMjIy3OkOT6h0py43sdJNksWLOr+rExZ1xgILHn+s0k2SucOd+aKFE3u/q1Pmd87LS+Z1PsvLrta79lvY+VnNyEDn+nq5ZdeqdJNkcFFpjmRS77O86JEnK93hdD7L4wd718Ej08ZVulOndsa144c7x5skg4OdL/aieb15xPHTV6h0p0zp/K4ODPQ+y3MenlvpTpm9bKU7eXJvTm7+3DmV7sTeEDEj05ardCcv7Hwuhkd6c+3jJneuHZY81fldnTClNyewcFznbzH0dOdzkSSPPvVApbvasmtUuknvb/H03M5nbtr0zrh2yfCcSjdJJk/pjIuGS+eLJJk42Pluj5vSuQ5eNNiZq01646LhdH5YhxZ3rtuTZNKEmZXuuAmdNS9JkiWdv/Pi4c59h3GLep/lRYOd79/AuM4xT5rau47KYOe8/NSczr3xJFm0+J+V7oR07o0vTu8e9shI5zO38OnO52KZ5XvzGBPTuVcyOG5xpZskK63VuSe1eGFnXDQwoffvN7403lpY+lvMeey+SjdJhocernTndaaAkySLliz9z8abbzkuN82/938KP2vawMi5Gy39+yE3bfD5pd78tydm/bHS3eipt1W6t/75zZVukmzw7BMr3eevWskmSe69uHNO2HiL51a6T07qdJPkqtXPrXS3e7rzD/jHS+6pdJPkgNfvUumefPsdlW6SrHDzMZXu8HqfrXQnrd2bC3po1Ucq3euX2bvS/dB3Lqx0k2Sr5bardO957ncr3SQZ/+MXVLq/fl3nc7HVfb1nq25deFul+9SMzrrZWc/s/UY99s1bKt31X7lMpZsksx/fuNK9faPvVLqP33FwpZskd75onUp39bs6f4vn3NqbS7hiXue++qbb9+YfL7v1xkp35LHO+fMlT3Xma5Jk//U68/+/zqxK95Hlbqh0k2Rk/gsr3RX26K2PXPOMzrXfZ5bdqNLdYuXeOo6/Xb9ppbv7wC8q3dv+3BnHJcnDG61c6W48o7UmIjl/k846jm2v6pzvNyl+ry/63kcr3bs/3JkfefEXvl3pJsmMz32k0n34qM44Lkm+9pafVbqvOa+zxmDdx19S6SbJc1Z+RqV77tOd58EWX/3uSjdJttn05ZXuMqtsUekmyZ0rdNbaPzH995Xuxss9UekmyV1Dq1e6u/yks+75xGdcW+kmydDfOvcLn9px/0o3STZ//Z8r3TU//rFK98q9e2tFNxro/GY/9vDOle5Kf+7NT6747M490LsP65wvkmTTozvPWd9xyJ2V7uMv7ozvk+TeVXaqdPfc85mV7rKzrqt0k2SNMzvXftft0hnTJsmvr9+h0l240vqV7odeen6lmySn/nq9SnfxKp17JRvd1ZvHWPDCV1e6zzn59Eo3Seb/qLMO9Yafde7BLP5nZ94zSZ61fuc8t/hPnXPc8Ft7n4vrDv1cpbvNhFdUuklyx303VbpbvaHzW/LXn/fudd228lcq3dmHdq7dN/raBpVuklyxcWc91Far9q7dZ/+is8fPct/orBW4fULvAeA1J3au3e86/ppK98aVOvuuJcn9D/y90t3lhm0r3SSZ+cqlP5bb6dzP5vpH7/qv1z0/c6UtRn60z6VL/Xh2XaPzWUqSlaa+qtK95s2d9YDnv+7XlW6SHPp0577pdzfu7HudJHe86ZJKd8vPdNYwbvCi3l4cN5z+pkr39ksuqHQnntG5B5IkL3tmZ23rRy/9ZKWbJNvtvUqlO/ldx1W6V7+ityfs1d+ZU+ked0fnM7fXgt6elG+546hK9/jXfqjSTZL3PLRupfvJQzrj1anrvLHSTZLtXnB1pTtwwvcq3Q0vfl6lmyRfWK8z97juGZ11akly5HqdddprH75Vpbvfxp3nDZLksY/8qdI9crXnVLpf+9AplW6SvHaXv1W6c2Z37k0nyZJVO885779H5/w5fpWfV7pJstWizlju6qtvrXS/8vvefl8HnfvNSvfFJ+9W6SbJGc87vNJdY6gzXv7gnWdWukny7AeOrHQvXeutle5VZ3Tu0yfJvIs6a1vnfbYzjkuSV075QKV790/uqnRfO7/3DoVXvf6Dle7Ltuncw1ruM5dVukkyMuP9le5BF/X24N9y5tcq3e3WO6jSvfwNvefYH9i+s077Wz/q7JV/3nG9/aLWueL5le7OC95e6SbJPWd1/s4/2r9zvfrDLXt7uG97+rMq3V/e1DnHXXFj7zpqhQ9t0gm/pbfH1SUPdtYXvLN0WXLQb3vPMix4sHPtvsE/D6h0D9rnsEo3SfY5srM/zMj0zp6GSXLR+zv3hD/1iy9Xumvu1Pte379p57rk0e931p1cd13vOvgbf/lLpXvpVr3rnd3/0vk7b//CzljuE2+9vNJNkj2v7YwFNrq7c+33mzd8ptJNkltW65wzfvPM3pzcld/u/D3+9O3Ob9RLp/fulWz92UMr3ZsXd54xu/NrneuzJHno7M56qH1P7N3f2eXizl5xa+zfeefRGz54WqWbJLNX7rwnbfc3dN4/8+FndZ6jTZLtNtus0l37ni9Uukny4F869/S3X7RhpXviZZ1nGpPkthU6+5bfMqGzZv3t/5hT6SbJ/rd3nr94z4t61+6PXnZ8pTt8+exrR0ZG/utFGWssN3vkwO1eudSP54T8aKk3/+3E+zvdh67v7LGz5A+9eyw7rnJXpXvUMb1r/mWX3afSfe9Re1S671irsw9ckhz7ic4a8LM++ddK97Dbf1jpJsm7Tumsu1zyid6czeCkmyvdg7bvjHn2fvOvKt0kecvszvMdn5jVuS+03uTOPHqSLHtJ570Bx+3TWZ+VJHft0JnzPnzPzvz/Zg/21td98NSlPyZKkj2O6fyNT7/7W5WWMZn9AAEAAElEQVRukpz1nhsq3Yt//OxKN0l2WaWzx+Pl+7yu0p11wTcq3SR54bvnVLprr9W5Tpr5kc7a8iR51r6d9ZFvTW/twnbv6TxD894tO/NiW/yyM75Pki/e1dl/4tCHO/sMzNzt4ko3Sa7frbOXw3PPvLjSTZJPvvnYSvfmWzt7nvz1W721C6f/o7Nv+cIXdtYnf+LQztrIJPn7P6+vdB+d3Btj/PbHnT2H7pv0vkp3v8PeUukmyfbP67zPbPLj76h0r7ls10o3SRZ97O5K95O3dfY4SJLrVu2sw1n1w53n7/d5Ue9+041/7IyLjriwsyfezbv19sdd47bOePmK7/XmEQfW7jxPNHRdZx3AP7/zg0o3Sb650xGV7gkf66w1PGF2b3/Oq+7onOPe+qoXV7pJstlvO/s6TX9GZ+zy2PzSzbkkJzzZ2aNzrYM79+t/dUPn+ZkkeeDJztzn9Lf09q7b7JTOXvnbv7/zvd7msSsr3ST57oKTKt3LZ/200h3ar3cdtfPVnX0Z5uzTe+b8kEM6z99f+p7OOsZr3tJ7efOBg539jbdfu/Pbt92jnWcxk+Srf+7MY5y5XucdhUny2WmdPR73O+7BSvfzbzu+0k2Su9OZUx38dOf9T9tPPafSTZJ9T+vsN7bxKrMr3ST54j2dvUB+vXpnjLHwrb09MXd67GWV7j4T9qp0v/PIyZVukmz4oc4Y4+QdOue4JJlzROf3b8Vfdf7Or35LZ0+3JHnG0Z13hO7+kxMr3Y9+9NRKN0mWfVPpvR3f7e3VfcCnO89A/enUWf/TuufN1lxm5IyPLP09z9e58N6l3vy3N8w9u9I9eKfO/j17v/A1lW6SrL7e9yvd+37ZW4ez8qKrKt39P95Zg3rEp3r3Cw/8+faV7qLtOuup731/b17sc5NuqHSffMOelW6S3Puizv3eO2/u/M6ftWrnuiBJfvX8ztzY45/qzD8+9IK1Kt0kyWs78xS3vrdzHzJJjvt+Z8+9Zxx6cKX7nXGdfZ2SZP81P1XpPvj9zvXzix6/q9JNkhOW66wBf/q0EyrdJFn+eZ39B1f/S2eP4+9/rTfeemCr2yvdhc/qHPMZvVeL5vdLXl/pnvKHX1S6SXLDBzrPbd36UGd9+a9W7r0TZO5wZ57p1mM7+6ns++OPVrpJctuSzjzT4NO9McafV+68p/r4M86qdK/71vGVbpIsvLdzLfXMf3b2VfvsY51r1SSZtWVnjcjOd6xU6SbJ/jt0nrM+bvfOs417/+JdlW6S3H9ZZ47+3Ac791gOurJzrZMkH/lc59nixUO9/Z4fv7FzLnrZ+ztzffP+1JuH2uifL6l03/e8zvtsp03bstJNkuVP7uzttMGc3jqci5/qrCk7b9K+le4VP+28czZJXrVDZ1/tyyd25s5+/e4dK90kGb+oMxbf6bbOb1+SXHRQ59p9gxs778Y8+MDOGrgk+dzqnWeg1vxy5/f67CM776hOklds+OlK91+n9u7Xz9m5s5f7d9f8cKV7yu6dZ2mTZNXtOvuCPfabzru1L7uydw9t+S919m/d7PrefmPfOv4nle65y3XWZ915zORKN0m2OqEzJ3fSXZ1x7c7PfXelmyQr3NF5Tn7ajetXukly51s7e+R+dIPOHrmX/r6zd0KSbHlq57rypN0681t7b9V7tuOHy3WeWV584O8q3ST56hadc9ENh3T2C/7pUZ33HybJdQ903kV+zCc6czrrTui8VzhJfrpr5znB7X8zs9JNko/t0nnO85kTO+vZFt5wfKWbJJ8d19kj5sKNOt/rnP+PTjfJrl88ptI9dI3OszlJcvXMjSvd2zb94P913fNA5f8bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPw/ZmC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWBgtA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaCgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwZG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwYGO0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICxYGC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWDCf/Vfj5uQkQmzl/pBTJm+cKk3/+3puStVurMnDVe6kyctqHSTZPy4aZXuhM6fIkmy3EpTKt3FSzp/54kLJ1W6SbJw8bxKd2RwsNKdNGVipZsk45fvtAcWzq90k2TCckv/3JkkA+Mr2Qw+/UQnnGRksHPQ08YvqXRHhhdVukkyebXOeXnJgt6Jebh0Lhoe7PydRyZMrnSTZMnczvhl/Aqd377M7423BqZ2jnloZHGlmyQL53c+G8tNHlfpLhns/fuNm9Q55ilLOn/jCRN64+WFC6dWuo8seLzSTZIlUzpjuelTVqh0Bx95pNJNkhVXXrnSHTdloNIdn+Ur3SQZP/zfXer/pxYN9b5/EyeVfkumd64dlgx1xp5JMjLcOebhyZ1x+Pjh3md5wvDcSnfSYG+MMXFh53syefVZle7Ikt7fYtLkzm/UxEmrVLrD03rXDhMmdH5LnrzvX5Vukkya0DnPLZnXufabvELnO5Ikg6V54HHjO5+5eU/1fqMmj1+u053QuSZJkqF0/v0mlqZeFvb++TJ+mc4YY+jppyvdKTN6f4wpk0qTquN6c+JTFg1VuoPTZ1S6/x97fx7221j4f/+v69rzgG2eh5DMZCaVuaSBkigJ6VMplZJEhVBKgzQKGRtQScmQmUxFhswzmceNPU/X74/713/3fdyfuvfr2Mf+Ho/H3zyPdVz7/V7vtc51nueaM6V37zAwpfNbMmL8ApXuzGm9663RczqfixlDnWuXJFlisRU64Zmdv8XQQO8aY8y4zmd5YFhnHGrMhN7fYs6Mzr/fsMHeNcbsBTvn/BFzOsc8Kr3fqDml79/MEZ0x8YHSnIkkyZjO9cvsOZ2xviSZM6tzLho52Blrn1N6hJYkI4c617UZ6PyNn3+6dLxJxozoXMvNGD6x0k2SoRmdMcpZ0zvXRa9O7c1BWHSxzvdvxOihSneBUb1rjGGlW7/BBTvP0JJk+EDnWmAonfuSOaVn7kkyK53v38DszpyXmdN6154Z6nxPRo7vzQ2bM2PuX78M/H+4vn9hoSVz4tv2nnsH8//39tvum+vNf9v8rj0q3atGdK4htntgy0o3SZZc9V+V7p/XWK3STZKXbtq+0n34ua0q3QefvKbSTZKtV9+80t3+ws7NwRpr9z4XD/7t4Up3u2UfqnSTZKV3fqvSPf2Zzljsym/ozUk6+MLO9/rmtf5U6f5k5BaVbpJcuNw9le5nnuqMMSXJsW+9utKdkzsq3S/c9rlKN0k2HrtNpfvrMbdUunPu61wHJMlCH/5opbvZ5Esr3SS5cFbnnDFhwa9Vugu+pXRjnuRjZz5a6R69YmfM5s6N7qx0k+T+B9ardDfb86JKN0le2GONSneZT72+0l1t7xcq3SS57qbOde0mJ3eOeeqPJlS6SfKH/3lTpXv3MQdXuknyjg2+W+lOyfmV7la3rV3pJskpT3TOcz/YsTP+uP76i1e6SfLUwA6V7t0XrlTpJslaE66rdK/dbqNK9y/7nVfpJsnHP/yLSveWuzvXRTM265wvkuTxk75T6R40/opKN0neP7tzv/PR/3Abjv+tSQO/rHST5IKX3lrpTlhu5Ur30VXeXekmyYynlq90z1/o1Uo3ST405S+V7t8ue6LSvWLDzuctSSbfsmqle8fKnd+SoU16z75f23yzSneLOb0x1Xv+0fn3G/9i5zvy3ptur3ST5IJXP1zpLvflv1e6695wWaWbJMsvvVule/dHfljpJsnETVevdGf/tTM+ssjyX6h0k+St45erdE+/rHMuetPqvTG5CStvUuku9ERn3leSDCz2ukr3G//oXBeddmNnrC9Jxn2gM3do1V91nkctsMqOlW6SDLzaGRN/btOVKt0keWa/znd7+jad8aL1Zt1a6SbJ9Y/cXOkuM6Nz77fZFydUukkyae3jKt1nD+isZU+Sv13cOWfM/viFle7WD/bWxl0z8PtKd+cfbFrpfu9tN1S6SfLJN32o0n3ytN9Vukny/Gad5zB3Tn260h1zyYqVbpKc/kxnf8kvL3FBpfv47N4+WMfd9YFKd8YqnTlLSXLvpAfnenPaf7nP7bjpD2XDB98/l48mWezW3tjHAd9/c6U7dvetK917D+rNh/jGu39T6b7xxbn/mfi3Wz7YGde8ZczESvd/Xlur0k2Sbz3480p3zfPfVemOvb039nHbM1dWujd8qrf/xLGTOtfYP7/vz5Xu6BN+UukmyUZTTqh0nztrwUr3Xzc+V+kmyaTDJ1S6nx/zyUo3SfZ8V2cN56Fv6JzvF3j49Eo3SX6zx+OV7uJ7nFbprnbxZyvdJJlwzd6V7tDyvXXqz21a2lfmI7dVsss83+kmye++2Xk3yoXTz6x0Dxi3c6WbJMef2PnM3Xfp2yvdJPnpeatUuqd/vbO/6jW/WLrSTZJR63auX24c+1ile8zyG1S6SbLAjP0r3e8f3Fuz//BNnTX7nz36D5Xu7RcfWekmycVf/n6lu88716l03/rD3hqlMz/cWVd82bTemPTv1uvsl3jjl46tdLc7dJ9KN0n+OLMzH+mq0nPvT0+8qtJNkps364w3XDm786wiSR771hmV7sC3O79/X3y2ty5njd078+F/MeGsSvfrX+2sfUqS9fY/pdL9/peXqXST5PKf313pnv1o51y0/x5/q3ST5Ju7dOYDfmj9N1a6hx/d6SbJwd+6q9K95p23VbpJcs8pnWdH91z0jkp34fUOqXST5B0vdH6j1nrXVyrdF646udJNko8s3rleXuvQ91a6SXLDv7ardJe6vTPXYvjLnefBSfKZDTvXRS9+a2Klu+janbG+JHnHE515hps+1Hn/TJJccfsXK90d7ty10r1umd6eKGcOdNbPDPt0Z0x1rQ8dUekmyUGPdq5rv3VObz7GKRNPrHRfWLUzPjJ8oLNPXJIsctT7Kt2Vj3mx0v3lNp318Uly9RtPrXS3XfySSjdJ1ly7s0b30Z3/UOludWJnrC9JNtr8/kp3sVf3rXRX3qn3LrMZozpj7fdt2Hvut9Mqnf0e3vrjzrnogd7UsJz9gc492meXO6fS/fjQQZVukpy/VGctynnnddZ1JMmdu21V6f7Pf7ntzKKjX8xHVp3747Gzvt3b7+vpn3Tm0S/7QueZ+pwje/uSrPfjCZXuW97aGaNPkjc9++lKd6MZX690//KuztqmJNnzhimV7m3HdvZD//NJvb/F6Nd15sv86o2d+SFJcvJ2+1W6fxz+SqX789f39i0/54ed/b6+uv5Wle6RO3fm2SfJl1Y+rNI98lOfqHSTZMcDO+eMHY7ujHc//UpvL4f1Nu48V3//mztjTGdevHulmySTju7Mj7z9bStVukmy4e865+UNz+u8w+6lP/fGpb/7h87eFm++r7Pnwmon997nt+Mxb6h0DxgaV+kmyQce6zyv/+DfvlHpbveeznsqkmS/fUproL74kUr3o0O9+6gZN3+p0r16eO95/V9P6Fzjr3xNZ7+o59e5vNJNkqce7KxH+eAfO/NDPnntHyvdJPnSqM7z3sXG956x3Djy85Xujis+Wukuf0tnbUeSHHFTZ/+Jw+7vrAvfc2Tn/jpJhrboXL8896Heu5lffLGzD+qUb3f2dTrkXZ3r+yQ5cr/OeO2oEZ1rzyf26730+Uc/6exJ+c+LH610k+SQ3TvXAje+2tl391N33VbpJslppz5V6d6++VWV7i+O7+3jt9RvDq90T12/ty/KCyM6x3zt5D0r3d8PbFzpJsmGR3bWd0xcs/MuyAc/fXSlmyQfWrXzu3rvgXtVukly60ad+cn//GVnrtra23ys0k2S4z7WmZ/11B8680O+uGTnXTxJcuakzjsUFtu1M28vSe7JzpXuXxf9R6X7pos7Yw1J8qdPdvY3nvDWt1W6b/tqZ0+bJHnDLp3nO0ut80ilmySPfb7zLtZRB3SeG+22WO89MTcu3xnHfyKd54nbLtvZayxJNrvryUr3oNL+Wkmy8RadZ9i3r9l5b8fwQ3rP83/6uW9Wune9vfNesMW3mVbpJsmcvbasdNd6qDcmPvmLnc/c5z7RWb991pWddS5JctbinTG5z7yuMzds7Td09qpKkqmf7sx7XvKBznVAkhx9fWfe2X97VzJy/EpZdsu5f39w/g2d/UqTZNeBzvOmb/zp25Xud7/amSuTJAtu21m3f9RjF1e6SXLakZ2/82WPd55lrflKb8+ou1btrHH627GddWQXzOiM1yTJUuM74xQfOOHXlW6S3PGvzpjpgYd9r9KdtvGXK90keXjl0yrdN7/S+T3+8y4PV7pJ8urynTlJL086tNJNkl89NbLSvfrs2ZXuNR/5VaWbJDec/rlKd+P1Ou9NXPOdnXlDSbLDDzrPQt55XmceQJJceepHK91HXteZO7T9o729y18+tvP9++U7O9eIM77XG0v40dIHVrrv+Wxpf/EkXzqkc8+/yWOd8as/HNh5b1SSvLF0Llp0Sucacb/TPlPpJsn4L3X2ozr7y5358Emyw76dfRemLNGZn3zSGydUukmy0WDnfdKLTuzMiXj61rdUuknyjwc7ayZ3P7J3Ljpmzc6c3P1X7zzvPXrPoyrdJPnmCp0xuQ8v2dk3Y9El/lTpJsmvPtz5nhx2SWdueZIcd2pnL/dx63Wu8S/+5zGVbpI8NbLzDr39T+zsP/iVsb3r5YX+1bn2/NDLvfccf+2AzhjX0d/o7Ley+Dad9zMkyRqrdd4Nu/nqW1W66y+3S6WbJGe9v7OX9GZr9ebX7V9aK7HzbzvvjdvpvoUq3SRZ9ZXOs66nj+6spX3+ks68oST56+gfVbrXze789iXJxOs67zD/zCc79+7fX/SBSjdJTt6n8wz0E799udJdfEpvX8N97uzcR91+Q+89r2vu1tkzZ8pGnf3Wb1u3M9aQJIf8dKVKd53vdu797lp1yUo3SRb/bOf7t+U/e+sOrju6c434zA2d+XUHLd/b7/mkpyZUuuf9dPtKd8tv9s7La/7z9ZXud3f/WqWbJL97tTMP/MydO+sZ9lptzUo3SY7/Y+da/GcDnWvPDZftzD9Iksu36KzrX/kzvfudF/60eqV7xN2d8aKrTuw967rvxc6eDy+N6rwD8fpdemurHh77TKV79mX3VbpJMmp65/nO/5POW2UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P8wg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHA0NDQ//r/3iN8SsOnbr+YXP9IIZmPDvXm/82Ztj4SnfUgp3uyKkDlW6SjB73v/+3/k+MnLVwpZskwxcZXumOGLVApZvpYzvdJLNHdbrDM73SHcjkSjdJpk+bUemOGDeh0k2SseM735OBEbMr3ZlDg5VuksyY1PlsjB3XOV9Mn9b7Wwwb0ekODJTCSYaGjax0B4Y656LXXnm50k2SUSM7n40xszvdWQuWfkiSzH5tTqU7debMSjdJFhzf+c2eNLxzXh49dVilmyRDpc9yprxQyU6ftWClmyTDF5hW6c6Z3PlcJMmI4Z3v9vCxnc/F7OJv1OxXS+eM4bM63cHe32JwTud3dc7Q6Eo3ScaMK52LBjr32EMzO9eeSZKxnfacSa9VupNf6pw7k2Rw8sRKd/Zg799v9pzO32PEmM75ftKszuciSRZecPFKd2DBzj3J4OTetefIBTrjUFNf6I29zJzZuZcaM36xSnfWrM64Z5KMHt2538lg53s9eVLp2iXJpJefr3QHJlWySZIFVl660p09a0qlOzhQ+rwlmflqpz1+sc414vTXet/rmcM67RHDes93ZpWu8QdTui4aPabTTTJsqPObPWty5zsyfHjv2nPO0MRKd/ZrneutJBk+ofP9mzOl83ceGtY7L48a0bkWmDW7Mw41Y07xbzG8c44bMbZ3LhoaXrquzcROd2rxWdeoztj1yHGdc9GU4jjGAot07v3mTCleI84s3VeOKF0XzemNqc6Y+GqlO3XKxEp35uze32LkUGu8qPf9mz5zXKU7fmzphrX0O5Iks6aX5oYt0PnMTZ08tdJNkgml8clhY3vn5dmzOs+whw/vHPOcOb0x1dcmddpzpneuPadM7IybJcm0wc73ZPac3tjL7Dlz/3f1g7f9LHe99uR/dZHxxkVWGLp62y/M7UPK7fcvMteb/7bguDdUuosPu7vSvXTBGyvdJNlk4v9UumOW7c1bf9/Uzr35vmt05qAednvv2nLhYU9Uuk8tdFGle88mvTHeJYbtXOk+cO49lW6SfHLbjSvdaxfvfEc+8ffO3PIk2ffhCyrdJT5zQqU7cOVdlW6SbL3x1ZXuQpPfXOkmySO3vq7Sfd/QryvdI2asWukmyYtnTah07/vSS5Xu0Qv2xhImLb9zpXvL2f+odJPkA2/trGGbvELnXvTv1z5T6SbJUkt2xrzPeeG6Snf5Ua9Uukmy7gIbVbo3r9I7L8+5sXMtcO8VD1W6uxzySKWbJHed27n3m3XlMZXu5A13rXSTZLWTOtfiD1/5aKWbJDss//5K98kjvlfpTttvi0o3Sa49+a2V7up7XF/pLn/iUpVukiyy3t6V7t3Pdv7GSbLNQ53r5Rve2TnHjXmgN6bz8nuXq3SfvLQzpjPuM/dXukly3mVvrHR/M/2OSjdJ/nJZ57ne8iPuq3TXf/N3K90kuevWUyrdt9/0xUr3N2v/sNJNkjEPrVTpnrhd5zo8SXZe7blK943/6DwfuGSTv1e6SbLwcstXumtd3Rm3fuLlT1e6STJnZOf3+r5cUekmyY3bdK7l9ryzMz9ky2V69+7fPv7zle6um/2o0l3z7v0q3SS5bdN9K90PPvqNSjdJrnrrjyvdZx7tPGv+y2OPV7pJssg6H6h093nl9kr38J22rHSTZIVzOn/nGW9fodJNkl2e6lwvvzLtrEp3cnH97/2Lda5rV72583t92VDn+jBJ3j/2wkp3iZ1WrnST5NLnVql0R59zb6X7uvf11uY8ukHnt2TUN8+pdCcufFWlmyQf+VfnN+qjG+9Z6SbJ1rv+q9J97KzO93rNW1avdJPk3klPVbprbLpBpbvPFsdWukly04HHVbqnvrczvpUkb373nyvd0bdvVumuckdv77XrVuw8X520ybWV7qVXdsaAk2Sd+4+vdBd/ujcmN2vC3P8s73X3Jbln8kv/8UPQYSuPHRr99dXm+vHsMe2oud78t5PP7owDHfjCzpXuqb+c+3tp/9uzm+1V6S5ySW9u5BED51W6l4/prJva+p5TK90k2X3Y3yrdt5/e2S9xSnrree54qrM2+/Inr6l0k2TkoadVurf+9NBKd+1tet/r2X/s7Bf1g1c76/TeuXNv7GPmOntUutM2/1ClmySb791Z23Hydp1nhcse/MFKN0nO3/PsSve6t95a6X4tvflIm1yxTqV76bveUekmyQY7/KDS/dxJnWeyaz09sdJNkv2ve6DSnb7cdpXuy3N2rHST5OvXHF/pjtr7n5Vukhy2+26V7vG3nlvpjrqnt/fgx2f8pNLd67rO3MiFdu6sC0iSpa7apNI9ZqfeeuWh93TuS+67pvP9u/yFznq7JPnywp01W2fMOr3S3e2Xnfv2JBm/+kGV7rtGv7fSTZJ1/9K5L9n7O517h9sX74w1JMmXP9DZF2jt9V+sdE876OuVbpIMLdS5Xv7ZHZ13ayTJMv/oPPf+9Qc+WelO+VVvPtJnPtRZC3bjrJ0r3YUu6q0dHTt12Ur3Ny909thJknc/3pmD84VjO2OfP/vnnZVuklz8r858zk8cdWmle/Pbe/NZRhx5cKU765HSOyaTbDi7M4dj948fUum+6eMPV7pJ8sy+f610D/32uyvdOe/9SqWbJJf+sbNfx7C/nljpJsnFn+nMAV90+IaV7p239K6XD/t1Z0zufTf9vtI9ebvTKt0kOf+8zl45z+8ysdJNkh8f23lW+dytned+N2zSm/O85M2/qXRv3r2zJ+Xm9/ee5x827uOV7iff2Fvj+fp7OuM6z+zy80r3o+/sPHdIkmu/29mv49XfdMZ0VrpnvUo3SR66rPO7esu7evvDPPvhzpq7gSs6+6veeHtvHGP7zk9JNv9k5/nc+ht3rsOT5LvrX1Lpnrpdb27r6tM76xoP/kNnH+JZg519g5Lkn3c9Wumeeedale6Rg3+sdJNkzps7818/P7a37/zPxnTGXhY7dYNbhoaG/uPJ2usvu/DQX/bfdq4fz88v7I0FHbnR7yrdbU/Zu9J94fObV7pJcv4unff5bbhmZ51Jknz3kc4946/W6zxv+ti5vfcYvLjQmyrdUSfcVuk+P7s37/mSczp/50eHeuuxLn71a5Xu0GufqHT/Nbvzm5kkhx/Zuee4esnOXpc//Xpnf7IkOf91nb1UPn3lLyrdJFllUmcvuBff3pn3fNdpvf1xt/x6Z67h0dt3xv733vK0SjdJdt34y5Xu+47uzXuePLJzjfGO1Tp7Z63z/d4ajJ+es3alu8xZnfHSH1x7caWbJOsf99lK95btd6l0k2T1ziOynHD9NpXub1/fuXZJkvv27jxXH/+Gzl7BG3y6s8dHkvz0sc7v6g5DvXejbLN+Z8ztTTt21kBt9NXOdVySDH6088W+cHxnz4VvLtcbl95+7c4ajKtveKzSTZK17+28z2X9rx1R6Q7e1tvL4Z4jf1npnvGHzjjiV+/rXXtefndnT8qvvakzVy1JLl+4szfD82e8vdIdeK1zTZskR+zW2ZPy2i92/hZ3Hti5jkuSd/+qM3fvLW/u7fd172qdNRgrHtTZF+j0nxxf6SbJHmd3znNrXNHZ33jW8qV3SSd5bmRnHHjqpN4amlmPbV3pXp7O2OfCz/b2+7r8ks7+JY98ofPOnG2vuKzSTZJnR3Xm7l0xYe6/9/ff3ndXZ3x56NrbKt0Xj+zMIU6Sxf/aeW/H7F+uVOmOWrH3zqqtbv5IpfuNHxxZ6SbJsQ9PqXTHTOrMIV74hQcr3SQ5ZWzn3+/tx9xW6X52hc5+6Enytv2Or3S//bE1K90k2ev8zprXp6/svGPyU6W1HUky7ied378t/tD5Gy/4ZG+/o8Gdnq50Xz34t5Vukpz9uc4+xHsv2Xmn946nbVXpJsl6F3feZ/bgYjdUutMOmFDpJsnlS3XuVye8u7OHdJJc+JXOHoVbnNWZT/PMzyZWukky/MLO+8ye+FNnDv+mO3aeMyfJCT/v7On28G+frHST5Du/6YxD/WDq1v/VvOflR28w9NkV5/7zmzcd0JtreMu1N1a6J9zRuba86E/rV7pJcsxJ+1e6f3xPb4/qVad03hu8/22da5PfHvynSjdJLjmu8x6YaR/qzFs/4ajeHgZDD55f6X714c7+Z0ny2MTOXIAlLuuMma61Um+t7BFfWqjSfeCozjPO+7/T2TMjSR7ealqle/82vT333n9YZ9+FXRbsrBv+yaKdfZ2SZLXPduZejjz9qkr37q903geXJAd9p7M310vvOLPSTZIdn+iMS4/bc+dKd8ZbO/OGkuTRRTr7il779gmV7jp3lyb6Jrn/ys5+HMMv6XST5ITHOnNEvvazzjljnw/21rzu8eP1K933/8+wSveJ43r7Z214bGf970nX99Z9v//srSrdNf7cud766Vm9+51PLtjZQ2TkgZ1rxOWuOanSTZKX39DZV/TcLXpzAu+5vLO/xYWrds5FzyzTeT6dJNcf1xkz/fYRnf3W1//wPpVuknzmb5291aaO663BOP/izjycyYd01jPcdV9nv9kk2fTQP1S6J32ts5b2sX/2xrcuv+zySvctXxpb6SbJ68a/r9L9zV92qHTPP6Pz3o4kOf63nfW0793n+Er35L1683tG/6SzBurPx/bWeZ4wurPm/NANOuvvj7itN7/uJ9d05vh8atPOe+722qXzDqEkOeCCzpyk8zfozaPa9tDO+yAXva9zLXfI9Fcr3SQ5bcfO9+83E39d6Z6yVW8f/mMO3rnSfcMLneutJDls885z94+t2Hl/83u37DyDSZIfjuy8r+Kgva+qdP++w82VbpLsf8E3K929X+j9+71/+8481Nsu73xHzvhEby37Lzfs3Dvc/OfOO3ke+Wvv3Xz3rtS5Lnrpnt79zutWO6DSXfaGzvrDC5/urSfa/uDO2PUxh3Wu8X94Qme9cpJMGdd5VvK1b3SerSbJX37QmcN/7a5bVrr3XNDbr2qZ0zp7Sax3Zuee5LdXXVXpJsmouzvv0z1hlaMr3SQ5c3TnPa/n/nir/9t5z50VVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5jBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GP6f/MdzhmZn2rSJc/0gFlxg9lxv/tu4OXMq3emvzKx0M/4/+if5j8ycOqrSHb/YApVukgxN7/ydp8werHQHhk+qdJNkgXHLVrojBidWulOnjKt0k2TYwORKd9Tw3vdv6qyXKt0Zk0p/i6EVKt0kGTmh89mYXDovjxo/vtJNkhmvvFzpjhg5o9JNkhmznql0B2ePrXQXGjur0k2SmbM7n+WZw0ZWujOmdM4XSTIwMFTpLjS983udJDMW6Hzmxj7/SqU7e1zndyRJZr3U+VuMGt/pjpnTu3cYNqtzzJNHv1rpJsnU16ZXuuOHj650B9L79xs+unPvNzBrRKU7OKySTZLMGb9IpTti8muVbpJMndb5gwwf3/ksj1ig83lLkpmPd875U6Y8V+nOnD5Q6SbJsMEple7Lkzvf6yQZPaJz/TJiTKc76rWFK90kGRjdac8e6lx7DozrjelMfuH5SnfYQO96OYOdcahZk0rnz/G9661p0zpjqhOnTKx0F1isc0+ZJGMGx1S6C67Y+RsnyaQ5nTGSYZ3L8GRk7zdqeGkYf8aUzvlz9pzO/VmSjBzVufack9JzoyQjBxeqdAdHde7RZr7Wu3cYuVBnTG72mM7fYs7k3ljtrFmdsc9xE3o3rNNK934zpk+tdMeM693vTC+NfY4q/ZbMKo7JZaBzLVAatk6SzJr2YqU7fLDztxg9vvi9ntL5bAwrPc9fYMEFK90kmT2l8/s3NNS7xh8xu3OemzW781mePbx37zcwu/McbbA0BWHU0AudcJLZWbwTHuhdL48a1TlnzJjR+f6NG96bg5AxnXHgObM6P6wLL7pcpZskM1/ujC/PGOo9HxhXuhWePaPzHZk6tTcfY3Co9L2eM63SHRzRu3eYPaXzrGv2iN4chFFDc/9aYGDov/8b3zd6KFuuMfd/h4559s9zvflv613bmXvy3I6dcYpV37xGpZsk//rq+pXui2/4XaWbJA+te2Olu+jA7pXu/Wu0BryTt939ZKV7xrBPVbovP9eb9zxyvZMq3XW3fUelmyR/vWanSnfauKsq3ZN3ubvSTZKHzn1Xpbv8natWujPW+VGlmySX3/SeSveRSbdXukmy/8SfVbqX77p+pfuzG3rn5duPnVDpbrPK45XuUaffV+kmyRVPX1npbvCXVSrdJPncqM796KcnbVrprjmu94zsul/9qtKdtXfn/mvGlb3r5YV326bS3WHgr5Vuknxv6a0r3fHb31Xp3n9r7xnZKht0xlZeN6bz2/dYzqh0k+Sxqzv3OysMvaHSTZL3PNwZzFvhf9apdP9y7FWVbpIsu13ne/LC3Z1z3ELP98byDl77E5XuVpO3rXST5MydO88V1r/v/kp3m716zxVOeuzjle6Tq36n0v3cE731v7c9sUGlO/CWH1S6SbLKYOd+dYUpB1a6f33llEo3SdZcd59K9+tPdcat/7Tq8pVukrx/x8781oN3Oa3STZLPT+6cP9e6oPOM7Onxne9ekux4wjKV7n1Ld+aHLPX4o5Vukjz5+c44xhLX3VPpJslOH3tTpbv7p06odF9epneNsdaOv6h0F1+5M4/jsvt6cyIWWbuzHmXqmCsq3SS56+yPVrqnf6wz73nHkb37neefOLrS/csynfHJhX7XW3P3tnVuqHSPf/S3lW6STHlivUr3gV07z0DfMPyrlW6STL6zcy1+94OdZyUHfLSzLjVJ7j/5m5XuZsM78wSS5JmFf1/pTju0c+3y13MvqXSTZOFL/17pDr/+7ZXuIx/szD9IkuXO/26l+8f9V6t0k2TrPz9Y6c5eZqlKd8nXb1bpJsm4qw6udKdM7OxxcOSRm1e6STJx6fUr3aVn966X1/56Z4zyb0d25k3cu3JnfCtJfn5DZ976R0/qXAts/Lp/VLpJsv1vOs/dD/90b23Vrk/P/fUdwwb+u7V8S742mP+5Zu7PYzxmi864cZKss+0mle6ElzrrIUds0XkGmSTXn9zZzOGRU66udJNkyQs2qnTXuuTcSve11zrjg0myxO/XrHQ/+MJnK90DzuzNU9vhs51rqafX+nmlmySfXvFjle5Vh7+10r18385YaZIstmTnWdPjb+zMTV5/x/dXuknyhZs7x3zG7zvjCEmyy5XfrnT/ekTnWur1H+x9r0c92Dl/7vCJzjjC7bceU+kmyfIH/LrSvW2wN16z4i9+U+kesnLnWcXPx/Xu95d84M2V7qY3deb5Hv+p3vOVcat3xkt3O2KXSjdJdrv84kp30wsvqHRffWtvzfAaH/lKpbvXyG9UulOvmVDpJskdG3bm+V6yx4RKN0kundGZH/LcIVdVups91NuL46yvP1vp7vPKbpXuZ8a+sdJNkvWe7azZmvRib+/Iez//9Ur3gRs7c6nPunzvSjdJ/jS8872e/aXOmPSWf+qNzw9eeEilu/xrD1S6SbLsqpdWuq9fsPOs/htzen+Ls17qfDbu+cnqle6za3X2kEiSPa7vzBuaflxvjeC6x32w0n321Tsr3RsOvrnSTZLfXbBxpXvBtzpzQ17b7H8q3STZc53OWtpZgwdVuklyw0HXV7onv68zN2To0C9UuknyyV90nht9L509Nb5zQW/vs3NO6Lyb4YEf966Xt3mm86zkneP3q3TXXuOTlW6SrPC+8yrd9Q/4TKX73AG9Mbk9PrNrpfv0Zzvr7ZLkuWc6z3eu3bozt2GF5TvXREmy84Gdc9H5E66qdBc6tJJNknz3jscq3SXP3aLSTZLpR7+30t1wxQ9Uut9O7xnoqSd25tkve+3Sle5v1+6MFSXJyp/v7MPzxUc7z6OS5D2//XKl+4ctflnpHrVo77nRV0buX+k+sfFile6xf+yMmyXJMmt11oJNOajzDCZJDr+uM2f9/e/ozN//7tuWqHST5Pwb7qh0DzixsyfRE7fcW+kmyVlrdN4z8odj9qh0k2SbT/TWbP037ljwtSy/w1VzvXv9ah+e681/+8QWnblDJ00/ttJdZvS7K90kuefsHSrdq8Z09l5Kkhc+/LVKd+k1flrpfiqd8e4kuXSFzj7EJyzTuU674NLjKt0k+cH4Ryvdt93d+z3e5L7OfomzZ3T2zNjpvs58ziRZ6JlO+445nX+//T50W6WbJJ9bs7O/6rQjenPK9ntj57N8+Dc6YzZ7fr0zHzBJXtyk87x32k2dfWV+vV1nPmCSfOu/XFP3/+azd/T2SLr08M6zkPuv66ztffHLnfnUSTLxwc462RcWu7XS/f1KvffPj32o8/xm+EGdefZJstT9p1e6R0w4qtL9wMzOfM4kyRIrVbKH/Lgz1+knT/XeXz7jwztWuqN/2dlbPEke/3Vn3d1FT32x0v3L9b3nTS++uXPOv2vFLSvd067ct9JNkp+d8pZK91tr/qvSTZIll+pcC/zz0c78nvNHX1XpJskaf+jMMVjtm531YGte1nkvUZKc/UrnecUbTly50k2Sk/7W2Qvusv+ZWOke/ljnmjZJTh/T2a/te6t35vD/4/WVbJJk91c7ew+estiHKt0kOfO1H1a6D+x1QKW7zl2d9eZJcuBrnfXQH//ylyrdw7/Vm1+34/Wd/WeuP/vkSjdJtjmpM8b18orPVLpTvtp5r32SPPKTzj4VTx7eWdd/1Os6c9aT5MIbLqp0l1nxW5Vukmw4rTPHZ4krO/sd7b57Z9wzSY7+eOf7d+6TnfPFou/pPQ++9brOXLULtui8cyVJtniyc7969vGdMYGTj+qMhyfJUid19lq/7eDOu20+ek/nOi5J7n1P5xrjzI0673VLko9e0blG3OOBzt5560zvrSfa9rvfr3TP/V7nHLfi1Q9Xukly9PqdtY3Hvdh7B8apt02odL/wYuddkJtM7Ky5S5Ifr90ZEz/n/M6czj32OLvSTZJjR3X27Jh4zPaVbpKctXxnPe1OF3Tenzf++t48q0MP6cz5PPzazvq1hY8+vtJNki1X6zyfO+n23p6Yi99XWt/xX26H/tysV/PD5y+bu8eSZMIhj8z15r/d/PLbKt0Fj+6cdw99amKlmyRnXHFEpbvvHp29W5NkgRs7cwyuP3jRSvedNy9e6SbJjacuVOkuNNS5L989D1W6SXLz6U9Xul98408q3SQ579jOnqU//8Vple73Z/bWhz569FmV7icf6VyzPvxKbw7xPa91vn+H7nVapZsk5/3itkp38q+Pr3SX/lhvfuRVMzrvq/jKyo9WuhOWmFnpJslGj83968MkeffPXq50k2T0hM77bFde9cRK95v77lXpJsliX+u8U2zP+zvPm27/eG8f8EsP6VzjX3N7Z1wsSXa8oLOe75JNO/sZLbN9Z95Qklz+985n46TlO+9ZPeSuzthjkgzf/vhKd49XO2P0SfL5vTvvi7ltjc68yx336+3n8Ow/O2ugFvl05/d6j03WrnST5OZRt1W6C3yrs59Dkix8UWcsdo3vde6xF9mid7110G6TK90tX+ncr24/bP1KN0l2X6DT/tKyvWffHzr1iEr3vFMPq3Rf2by3zvPPa3d+/x5buvO8d4PbOnscJMlXftuZe3Lp8N5c0Qmfn1bpXn7WEZXuhp/qzGFMkq9OeV2l+/zlnf26T96hsw9qkpz9o848uOHPds5xSTJn884zzntP3LPSfWDr3ntyP3Z152/x0K6dPQ62/GZnDlWSvDqtMw713Ga9a4xznn6h0v30wp01bB/curc27iPPdua3LvHtzl6a376h866KJDn3nrdXuq+/sPOugyT56LadZ5WLP9V51vzM2sdXukny0nOdsfaFfjKh0l1m9d741ufu7qy5O+O6zvvokuTE33feZ73x+zr7xR3xh846pSR5+dud68+rN+mscznl9t5zo/Uvu63S3fblj1S6SfLHd3f+zve+rzOn8/5TenMNhy3T+c0++KPDK93vzOrNIX7Hwp25KcvM6u1FcPsRnTU0057t7J389+t714izf9FZq/S52Z21Oafu9blKN0muuGj9SneLrb5X6SbJaT/s7O/6/6S3eh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/g8yOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4w/D/6r4eGMmfW9Ll+ENNfnvvNfxsaPaLSXWCBmZXu4JwVKt0kGTW60x05a1onnGTG8GGV7qILjKl0p86cXekmydDUZyvd2bPGVbpjFul895Jk9sBQpzus9CVJMnNi57MxeuR/dhr/3xoa9WqlmyTTX5xc6Y4YGF/pznnthUo3SUbMmVXpzpnT+VwkyfDRC1a6g0MLVLpTZjxZ6SbJAoODle7koc73b9jQyEo3Saa9+GInPK53Xp7zcuezMWtE5/s3OKn3u5pJr1Syswc71xijllio0k2SqU9MrHRHLDC20k2SMcPnVLqzhgYq3WFzOtdxSTI0vfO3mDO+c08yfFznNzVJhl6eUunOGtf5vU6SkWM6f+fZUzvXngNPzah0k2R2Op/lgWGd8+fslK4Dkgyb1fldHTnYuQ5PkvHjOuMNMyd1xs6Gz5pY6SbJ6AkrVrrTXnmt0s1Q5zyUJBOf6HxPxi/V+y0ZHOoc84jFl6p0X53S+/cbmjGx0l184eUq3elDL1W6/1e8M741fXjvfmf4iM69+4iFR1W6E59/qtJNknFDpTHx1zrPB8Yv0xsTGBjTuV8dmtR7PpCBzjOpzGrdo3W+I0kya2bnez04fWqlO7v0nCtJMlQaEy9+lAdHLFnpDp95b6c7ZuFKN0mGdz7KGZzT+cyN7dyqJkmmDOuMQ42cVXxWOTSp0h0+vPOZGxjqjWOMGNv5zR4+rPMlmTW7d16eUhqfHDnQm08zs/P1y+wpnXvKgcHONW2STB3q/ACOHNX5LE+ZUjzHTX2u0h0Y2xvHGDes8/eYOtg5L08b7N27D0zrnJcXGN+5j5o1o/cbNXaRzr/frMHOdUCSzJpR+v2b1hlTnT25Nzdl5rDOb8mwWZ3P3IvFa4yB4Y9VuuPHLl/pJsmMxnXR4H//N17ghQnZ+tT3zMWD+b+sv8wdc735b/csuXSle+vye1e67zz6mUo3SdZZ7cuV7uIb71DpJsmDd+5c6d4/852V7qxJu1e6SXLq6z5S6b647TmV7tbnTah0k2RiPlvp3nbPA5Vukix+2x8q3ZUX+0elu9E1d1W6SXLzR/eqdDd44uuV7hl5uNJNktW2XbfSfdNBF1a6STJx187chYcfOrDSPX/xTSrdJNn0qW9Vuq87ZZlK99w9r610k2TiE3+vdG88oTdXdLF/vKHS/f3Q0ZXudef3zkWHPf7PSveHP7qn0r3jzZ3nY0ky8dHOOe6Sx3vrDrZZ/UeV7v3LPVjprnNpbyx24uTOIP1pK3TWQK0/vjdG/8MbO+MfS6/Sm7f+seXur3QvmnFrpbvYmDUr3SS5Z/3OuObiP+38jWduMbHSTZIvf6Mz9+RDa11W6SbJzJWWqHT/vmlnHGP5b3+/0k2Sv3zm+Ep36+U68+tu/3XpYW+SKc/8rtNdfb1KN0neuOCPK91fPda5rh3++KWVbpK8+nznvmTC+zvzWx85tnMeSpIl17mt0n3k6s69Q5JM2eK0Svf1Lz1S6W57YW98+cw3vqvSHTG5M3fhkRW+W+kmyf2/64xDffbBayrdJHn08JUq3ZfX/06l+82f/arSTZKlZ3WuEU9ZqLSeYdxRlW6SjLy089xo8n5nVLpJ8s4RV1a6T89cp9J91zMPVbpJcs4K+1S6i9zYuV5+7E2LVbpJcvUTP6h0F3vD2yvdJBk98IlKd+e/va/SvXPxSjZJMvyazlzRG9ftXIdfOdBb3DF6jSMr3T/+a41KN0kWWvDGSvfGyZ15VEvc1Zl3mSTveUtnfvm1UzvjDbe81BnDT5If7fb6SvfivS+qdJPk71vsWemucXnn+cDt3/9rpZsky614WKU7cdJtle6aMzrz+pLkhj1PqnSXHt5bj3LFPzrziNc4YfVKd/ywzrPxJPnl0p1nJW+58s2V7nGbnV/pJsnl3+zsJfHApM4+Skny+8/N/bk6Ew/978aAB0YkI5ae+7/Hh+3WmzM78IHO/f4WD/2w0r3ui6dWuknymwt+W+leNKVz7ZAkq9zamY+03PDO79r77uyMGyfJDWNuqXSvX77zTGj0F3vXqy+8rnO/+P2/duYPJ8l733x6pTtwQGfsatX1eueiJ57rjIt9fLudKt3b3vKvSjdJdnlL5x53+4N797hT7up8Ty5b8apK96LJa1W6SfLsQGk93T87c55vWu/xSjdJhj64W6V7zugrKt0kmTy2M2f9p3/qzLNf8pr9K90kWWffzrzLh395fKW7wpf/VOkmyeEbf6DS3fm43m/JgdvP/TWpSXLeDp1rxK3e1ZsnetNbflLp3v2dzrzy19/QW/O98m8798FDf/lQpZsk//jDNpXu+kt3nq/85bFzK90kec++36t0d/v+Wyrdn32ps14kSY6a0Hk+vetxvbHHPT+3faV78NjOA+qz9+2tJVr3lM613CEHdtZrHfCl0yrdJJlyxsaV7hm7XFzpJsnVj2xX6Z6w55sq3YvO+FylmyQfuOiNle4Xv935G8/5zdqVbpIsvF5nf+qPLN4bR3zzml+pdE9+tbMnw8dv3brSTZLvpHO99dflvljpfvKKbSvdJBmxYedZyWMTO9dbSXL8DZ15ol97ofMM+aLzfl/pJsnwy1ardC9c+ueV7pq7d873SbLCw519QLY/9/ZKN0lO/Ow3K92pYztzZS487eBKN0l22r1znhu3cGd/xzf/rbOONkle+3xnfPL2b3WerSbJLot11vKNXeRvle4m/9P57iXJV97aGeP61tGd/dxuGtFZ35kk1wx2njtccF/nOjxJdprduUbM1p01urvs07tGfG6Fzl7da9/R2Q/sb6v0fq+XvalzzMu/0ntxwEVPddY1Tjuv83z1oQM6Y8BJcst3V610b16is8Zz318fVOkmyYiVOvclp+z44Uo3ST6yfmcO5e9uOaLS3W/GHyvdJNnx5csr3TPP3azSPfikv1S6STLpss57fs5br/fu9N0u27UTPvm/+9/WfXjhXL7bLnP3WJJ87dPHzPXmvz22R2cs/eyf3l3pjvlRZ/1mktyyUWceQP7c24vjuNMerXRvOrMzP2u/xzqftyR5/Vqd9TwP/rTzO3HCpk9Uukny9AcWrXSHnunsA5ckT192SaX74Qu/Vumu976XK90kuWLdzrq3Ue/tdNdftvNe9CTZbeisSvfCg3rvkLx50c47Cc6Z01lzesvpnf3sk2TpP61c6X5l4S0q3e3227fSTZJN1+q8B2bS2E0r3ST5xeWde/5P7NdZzzrlPZ3vSJK89bdfqHQ3/FRnncQde3XWryXJEo929ou66prOtWeSvLByZ672aw92rhE/sdinKt0k2XXOTZXuX1bqPGP5+PGd5yBJcuN+W1W60+7qrUdZYL/O3rv/Wr4z1+nQ8b1z0Tu/19k/5CdfWLbS/doJnT2Ik2TdCztj3rf/8LpKN0l+eUlnjOvKFTvrR/fZsLOWL0ke2KWzL9Ckt/+s0j3ztNJLxpMcMufXle5Hv7hRpZsk77rj+Er3C490rpcn/qm39+AGm3TmDv3zB509Kb9bOt8nyZM7d9ZA7ftqb1+N1R7/RaX766U682bX+kpvneBJvz670v3h53esdHe6YsNKN0nWOr6zbuSrIzp7JSbJU3e8tdJd/XfHVbrjp/XGVJ9et/Ms+Zvf/Halu/jVnfN9klx5cmfu3p8GetdFz3ypswbx7d/p7F035p2dMeAkWeWxvSvdHy0zq9LdfdnO+T5J3n39+yvdHy7Ye//aY5/t3K/uNafzrPnERTp7uiXJ7/b5UqX75V067314flZvT8MPbNxZQ/ORSb13p6839bRK9+LlO3s/jdy1s/4wSZ5c47lK929rde6D9/9t73v9sT921vVf/tM9Kt0k+cLXbqh0Lz64s27kn4927lWT5KYvdPbYuuTFzrlo/F6d+XdJsuVhnXPRVkf15opu+/6rK92Dbur8++39q9cq3SQ59tTO/sZzlt2q0l3pxs68sCR5wx6de+wRB/Su8Qe2e6BU/u/27lp89sR8+pUL5vKxJOd+oDcP5/ybO8+ST/x+Z03dYvvfXOkmyaZPdd5VNul3vT0Mfrfai5XuYY93zueb/uyDlW6S7PqWMyvdr76zMz/5suM693VJstP4zlzR6+7Yu9JNkt/f3FnvdeXH7qt0Dzytd5/0s1+8Uul+9NXO/mdHnd/bJ+kPC3bWUP/hZ719RU+8qjMn8BsHbF7pHndoZ91bkkz+7mmV7m//0JmDevine/Pht1mrs8/Omv/o7BmVJI8vdlel+5a/dp6xXHNx570BSfLcSp35Wfu/rrPnyRVblvafSPKrAzv/ft85une9PPZtO1e6n/7NtZXu+7/VeZd7kuxwR2e+zMJLda5dTlm8M78gSW59T+d7PebLIyrdJJlz4e8q3a9N7YwfL/uJ3h6r//hT5/u31hOd/SOfKc7hn/FQ5xnLIz/ar9JNkjtX6Dwj++QOnWvEW7Y9tNJNkjN2erbS3WipztqAe1bqrDdPku1/2Zm7cPkCkyrdJLl2uW9Uumdc1Dl/3rbKnyvdJJnxq3dUut/aujNX+y239N7P8Ks/dd6t/YZdevvXrfKezt4ye32o8/1bf4dPVLpJcvxXOnO1P/6pzvPe2b+f+8+i/m3YiFMq3cdm997t+4v3dO53njn3+Ur32WF3VrpJ8sLnOsc8++2HVLpfTueaKEn+utzrKt271+nsF5Akvz74+5Xu+ld05jrN3H1ipZskG+zXGYcauL9zHffwzzv78CTJlbd05kQscWJn7+QkWeg7YyvdHx7U2eNg1Xf35oDv8ePO92/FDTrjDUcd3ltzd8XDnXeQ3vqr3lzR7/z1kUr3nC88Xekee0Bn74QkWeGDnb1sT/vGxyvd95/37ko3SZ4ufS72veSqSjdJPrRP592Y24/qXCOe/q/Ofh1Jss/Vt1W6153T+Rv/cY/e+PLCkydWuoud33nXSJKct9M+le7nH+j8nfc9v/e7+vtJnf1d771ooUp3swm9/Z4Pf90PKt2Pzpj7+x//29glF6m1/+/0Vu8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9BBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBgaGjof/0frz5uqaFfrLXXXD+IGdOWmevNfxs/cnSlu+CCIyrdJcYvVekmyeCoOZXurGnDKt0kyZhZleyIwZGV7tCUGZVukswa6PydB4b9788B/4mxg2Mq3SSZPrLz/Vtw7AKVbpI898xTle6ohcd2unM635EkmTOu8z2Z9VqnO2J4728xNHN6pTs5oyrdJBk5YlqlO27UopXutFemVrpJMjRicqU7bVLn93rRRTvnziSZkc75c3Cwcx2QJIOvzqx0p02YXekOTR1e6SbJ8OGda4yps6dUurOG9X6vxw/rfOZmzep83pJkzAKdv8es6S9VujNnjq90k2T4mM5nefhA57w85YHO3zhJhi83rtIdPWahSjdJZsx6rdIdNazz+zdzSudzkSTTZneut6ZPfLXSTXrXW7Nnd77X48b37leHz+78lgyN73zmpr7QuadMkgVWWrjSHSx9LqbNGah0k2RgysRKd85Q7/s3bKAzpjowovMbNTS797cYMatzLT5zbOczNzCnM9aQJIMDnXPGzGGd+6gkGRzoXH8Om1W6Xx3o/S2GpnTas0rnohETeuNbQyMXrHQHJ75Q6SbJ4IjO9cvQrM6Y6uT0nhuNmt25x546eWKlO3ZY5/OWJEODkyrdlyf3xqEWLA23jxzbOWdMmd75GyfJmFGd39WRi3T+yDNf6n0uho3qnDPmDOtd40+b3nk+MH7xxSrdya8Wr5dLz5rnzOl8LsaU5o8kyazSM43ZL3f+xkkyJ53z3KsvtOZ59J4bzSzdV06f0ekOTut9r0cvMqHSnfpa799vxJjO/c4CC3XGMeYUn+cPjC6NN0zrHPPoBXrPHaaXns8NlZ4zJ8lQabx9+LjO5+L551+udJNk1PjOZ27OjM6/36zJnWc7STJzoPPcfeSwCZVukrwyc+5/lj9w81G569VH/6sP80oLLzp02DZvn9uHlLUX33yuN//t9qmdeVQTt9uo0v3wjQ9VukkyavwVle7A8UdWuknyzO8frXRXf7Lzd35k/8cr3ST569veW+lutPglle4+D7+v0k2SLw49U+m++2295wov3b12pTtsi8sq3dWX6vxmJslzxy5e6U444tlK9xdn9+aK7vDKfZXuqs+uWOkmyT+Wfn2lu+5QZyxvwed75+UbdvlnpTv7sSUr3af+9bpKN0kmvGmNSnfhod5zhS3u/XOle/sSnfk9a998W6WbJFetv0ul+1LpOdbWc1bohJPMOGWJSvf58z9X6SbJ41d/sNJd5P43VrqvXHFKpZskW52/SqV79rHLV7pr/KV3jXHv849Uuh/ZuXMdniS/md25lltvxc711uTZnTGBJHly6raV7luX6/yu3njICZVuktx41JaV7o53ds73SbLk5o9WusMfXKfSXWTZayvdJPnxwvtWuic8fUul++cn31bpJsmdgw9WurMnP1npJsmRL3aeq1+63kmV7jPr98ahjvpWZ97snsffWOmO+ecfK90kee+9u1W6N7+4WaWbJOvu+HCle+Ob96h0Nz+rNz/yjtKeAcsv+I1K98IXe+flLy/SeSZ1+7KXV7pJstzzL1a6M2/t3GNf+3Lv2fcHR3X+zr98/cqV7k6vTqh0k2S3FTrXApvMWa7STZLtS/MNf5vOnNy3LNG73hr+4qqV7kcmdeZn/erBznkoSTbfqfPc6KQHn690k2TmhM55bqf7OutcXp11UKWbJCuueEilu/NT36x0P7jyjyrdJNngz51z0W8+1ZtHdfzznb27pv1s40r3qpU7z8aT5NmFOuf8e7/Z2f/i7V/vXLskycvH7Vrpjv/WXyvdJJlxR+ec/+FR91e6F3++txfBq7/ojCPesNI2le7+Ezrz+pIkT3TGXm6f09tX45nxnXP+giMvqnQnHtlbTzTsM521Em/5UGfPgJ9e01snuNXVb6p073y+tw/k35+Z+89Bv/fC/vnXjPv+43nPG40fP3TT2uvP9eMZ9lrv/LXw1zvzWS6+8OpKd9/Le+uxXlugc135yE7XVbpJ8pEnOr8Tl6QzB+Bza5xT6SbJg+v+uNJd4fQrK90Tz+ncHyXJNfscVuneuNjRlW6S/Ga9zrOb01fszFNb4aHe87GbFursab/oHe+pdO967/sr3SRZ7M7OMf/zl53r1SS5ZUpnT9F9Fjqm0r3jmOMr3SS5fmZnHG+/Dx9a6S69672VbpKc8PvOddEKx3TmhiTJN9btfLevfflTle6+71it0k2S4zbvzGF8evPO3IJZR3eeByXJqI07z+o/8rb/qXSTZO17bqt0l//4E5XuRcd15iUnyU1v26rS/fZvOs9Bpp7aGTdOkpN/dkelu86zvT0XJh6wQaV76Xeeq3Qff0NnLnyS3PxwZ7+ol69ft9L9xtMfqnSTZMm3dcY0R/7z5Eo3SX7y4c58zic27cwtv3rT4yrdJLn2fzpjJJO/0nlW8dDLt1W6SXLr5M7Y56Nf6IwVJcnZkzepdH+25WCle/f5nXcGJMmG93TWsY/+y/6V7qtnfLjSTZJnX+uskX/wod6esOuu+LdK97YNOvMLXplQySZJ3v1UZ83dS4t9q9J98f4PVLpJsuJenTG5kXd3rsOT5NEPd9bI3/zL7SvdOTf+utJNkqMW6oyJn3LnTyrdtb/UW5ez81KdZ11Hn/ynSjdJ3rr/Wyrdrd/WeTfKqdv39n1a4sjOOPDbj/98pXv7sN9Vukly48inK92PLnZ4pZsks27utP+2XedZybYvdtakJskt4zt7olz1YGd/n1f/3Jszu/uBn6h0/3ZWZw+zJPnHhkdUusuO+Wql+5GrevP39/5MZ7zh8XU6Y+3LnHpXpZskq+3VuQ+evtd6lW6SPP6OnSvdj628UqW7wUNnV7pJstfrPlbpHnxPZ6xv3MGda9okmfPjr1W6V7+nNx/qlCO3rnSPGNlZF7D2YOfzliTf/tyGle7e13TG5A44vzf/9Ue7d+aWr/zyXpVukty06sGV7vZf+vItQ0ND//HGRGuvsdbQ70+f++fexfbvrZNd+MCvVLqTxnb2G/r2N06sdJPknW/tPOP8y5ZnVbpJMuLHnX0pr7rqN5XuK1O3q3STZPTRnfGP7Z/sPEfe9+rW+5OTm5fozAP445K9sbyt1u5cA+485oeV7vJPdvbES5KjTzug0t3uPZ093A94w+8r3ST50a87ewS+99CdK90kWeXFqyrdJz/VmW9x2jt/VekmyWdPO6PSvWTbzr3BRqMerXSTZL2HO2slzvvzxyvdJJn6oy9Wuhu/ozOPY4WzO2sOkuSmR6+qdNc/s7MP41b3dJ5jJckH3t55H/H3j9m00k2SndfsPBe6vTSfeu2zOp+LJJm2e+ff78ZlP1fpbv/mPSvdJHnpyc57Yl5dZYdKN0mW+fndle4jD+xe6f5qwd56hh0eO77SPe7n+1W6Sx3dW3M36wOdeYzf/mJnflaSbPJw53nvqgd25qA++4be+zQXv7qzj/R5P36g0j3sn533zyTJM4t21latedXtlW6SnDnY2RN9/Xd17t2XuaV37/7C7Z29d3/xvc5cwzsO7ewXkCSHbvjJSveWz51e6SbJO895Z6W75Cc69+5L7Nqbu/DCmfdUuoc/1tmT+acXd/ZOSJI3HLZMpbvEuN6+5atO6IypzrixM7614ku/rXST5MhfduZUX/ejzrrws9brvDMgST66eGd+3dBm7650k2Tp2zvv5lt8370r3XV3m1DpJsm7p3bGxL+6cGdfhssf6117jvp6pztrsDcm97vrOvuM/HDzzvPV23bprVm+eI/OtdxCl3eerX5jqLNeOUkm/6IzJ3fEzcdWukmywgXfrXTPW7LzW7LmuM47CpPk+zM7+ydstWjnWuCSb/bejTJswc7f4vsXd9avJclqc46qdH+/SWff5HPv6uwBniQjLrqq0v3F+Z09YQfTWSeRJPv9rbMW+q3ndO4pk+TIC35Z6W5wc2esb5f7v1PpJsmzZ15c6W71zCuV7q+2+3mlmyQ/3KSz1/PJx3TeC5Yk04/p7J13x2tn/Ffznl8/fHDohAXm/n7cE6f23snxk406z0IOPGlipbvztM67WpJkib9dVel+9oe9d5X98vudOUn7rjG70v3hExMr3SR5cVpnXcjhpXkAx83u/c5/8MDO+7lWXr639ua1hTrjCV99T+f6fed/dJ4JJcn2e36m0l3+4c7z+nuf/2elmyTrPt7ZH+H8czv3oklywJ2dNZHnvnBNpfupJT5S6SbJVzfuzG89b9XO/j0f3qKzZitJDn1HZ2D6wW/35gTuns7cvfOO6oxTbD/Um581Z//O+2yfHrtWpXvCGZ0xiiR5aL/O/mdrH9Nb2/j/Y+/Ow3YdC/3/f9b9rJllLWOmSpSZkBJlnpJEKSmhNGiQaC4VRakQKWnSgAa0DSVbplAUUmSWeQiZFsuah+f3xz76bx/Hb9exPsdzPN/j9fpb733tZ933dV/XeZ3neZ19ZOeccc7x51S6f5i0W6WbJI/e3nkn1Srv7szPyj29d12d8qXOfjgffXNnXCxJ9l+q8x6aq89ct9J926mdPQKTZOPPde53fn9z55n65Os6a6yTZMKczt5qN36/s89Okmx/6dcr3Wnf6Xyvz3jgsUo3Sa6YeEKle8o7Out0n/+83n3wwXf/26/d+z/Z4pzeOwjXndPZ137SLzrvQ/3shZ171ST58t3nVrrrP3tKpXvkrzvrXJJk/x913pvzhdu/UekmyazTplW6Oy7d2dd32pK991R/b0zneuvlty1d6eahzrukk+SJpTt7SZ92+PmVbpJc+NnOGtKHX1Ba9zNuWqebZKfDLq10H112l0r3U9/7S6WbJH+5tfNOnqmXdOYXJMnab+08O3rDRZ177Bcd2BuTW/qRzhz+F93Y2Yf468/0rjE2WrrzzuLBg509pZLks8t0nu/c+oHO/pHfeqy3x8jZlz5Y6b52q85+K4cf19mTKEl+MKHzrqabXnBfpZskH35rZ679wqc773R5fMvOPO0kuea3nT1nj1+x8xv1ufk/rHSTZKfxne/Jn9fqzfX96y8610Vb/6jz7/f0xb29yzc7rjNP7k/rd/brfuN+a1e6SXLo051jPvq83vttPvjrztjLRi/uvHPzPX/t7GmTJNeednylO2OXzprlLbbsfa9/flBnzeubPzGp0k2Sv990bqV7zK6n/6/znjuzdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/zGDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMGZ4ePj//B+vNXmF4e+tuddiP4gVlt1gsTf/ZXyWqnQXLZpb6U6ZvEKlmyRD4wed8IL/+2fo3zWYOKnSnfn0okp30nIzKt0kmfX0mEp3hRU635GFC3ufi6GhcZXu/PlPV7pJMmHSMpXu3DlPVbpDYzufiySZP9T5ngzNmlDpDgaTK90kWTD/uUp3aPLYSjdJZjz2SKU7acpKle7YBfMq3SRJ6aPxzKzO+XPaUgsr3SSZPa/zxxg/aX6lmyRZ0MkODXeuMWYtKp6Lnn640p0wYUqlu8SkTjdJFmROpbtoqSUq3SRZOL/zYR47mF3pDg161xiL0rnfGT/cuQ4fntK5p0ySMTOGKt2Fg845LklS+jsPDUr3DnM654v/iXeysxc9VOlOmP3CSjdJZs77e6W7aDC+0k2SCRM6937jp3Wu8Ydm9s5Fc4cnVrpjSuNbg7m9v8Wi4c4xD0/snDuTZNwSnTG5MQtKn4tZvTGdRQs7v3+DJTvX+INBb0xu/txZle74FVetdJNkwexnKt1xpXv3WbOK5+UF/6x0p0xeutIdHuqcL5Jk0cLStcBQ8RpxbOeYh2d3xs7GjOuNT2Z2Z0x11qzO/fXQ+M71YZKMHer8/s2b2RtHHDf+eZXuYPBEpTt+Qud4k2TM2M5v1MIFnc/ygkWl58xJxg53xs4WDvWulycs2RlvyMLO9db8MaXjTdL6M89f2PktGTfU+ywP5nd+V4uXiFliuPPc9onnOr8li4Z711uDhZ0/9DOlf79JE3r3fhOHOveri0rPxpNkzFDn2cPYJUpjAvOXrHSTZMJQ6fn4+NIxT+yN1S6aXfr3K86HytjSs8r5nd/V2Qt63+vnSvdogzGd662FQ737qMmLpla6D814stJNkhUmL/7z8m7XfCZ/e/bu/+jqc9zSKw4vvd3+i/uQ8l8377rYm/+y192d9m9f/ptKd4mNV650k2TZG26udMe8/bZKN0mWP37tSvfJezr3M3NOW7PSTZKH3tB5lvzEZp05jO9e7vJKN0lWvm6rSvfHE3vrDjbf98ZK96mrOt/rR6ZsXOkmyew1Xlbpzp1zWKU75bnNK90kuXn9zjnjS5ecUukmyVG/PqPSHfOqzr3BljteUOkmySo331vpnj7vhkp3zef3BsbumHpwpbvvozdUukly1OqdZxavfcnMSveeG86pdJNkz4t3r3T/MHxtpfuBtfaudJPktFu2qHRfsl3n3iFJDpy4WaV7+NNnVrq3L3xppZskL5/WmcM/dePOPI7Td7+v0k2St36o033R5Ls64SQ3brz411gnybJPdMaCrp/4X5Vuklz9z8693453bFjp3rjc4ZVukux5xrqd8Gqd+ZxJMnmX1SvdI66+v9LdacPOHLgkOfx3nbn2fzyqcx33j6teXekmyeWTL6x03/Tpt1a6SXLzMc9Wuh+6s7Oe4YR7t6x0k+TeuZ2xs8GOa1S6L1rlsko3STa4p/O7Orzu8yvdJJn5oldUuvff+49Kd3j6LyvdJLl9Tmce8cce/3mlu+cN7610k2S3l29U6U5/Qe/eb/nrXlTpXrtV59pl4dMnVrpJssVjb6x0V1r+VZXurGXOqnSTZL2bX1Dpfvd5nfvrJNlk5ksq3ZX//J1K9/y9zq90k2SNZzo37xOf7sxdWGbyyyvdJLnv7J0q3V037831fWT2jyvdW1f5SKW7xXKde8okuWtqZ976/Hs6z0BfO9zZLyBJnhrXeYZ91PzTK90keem9nbGXVe7/aaV749C2lW6S7PDYnyrdk2Z25l1uvEtv76C9Hlyt0n3yC721cX85pDOOsdzund+/Ta++otJNkmuWO7DSXXrzztywSb/t7PWXJI+v/bpK92+r/qLSTZLV7unco909q3OO2+u2QyrdJLnyxssr3dNffHKlu++NH610k+Ts9TapdFda79hKN0nesPFrFnvz1Se/LX95+JZ/e97zumtOHv7ZiYt/DurzH1tusTf/Zd0T3l/pnvG6zv7Unzi7t0fSzct3xih2n9xbq3Dqo53nIOfc3Dl/PfKGIyvdJPn7LX+pdP+y1HqV7k23v7vSTZJ1fvOGSvd17+2s50mSPU7sPHs76YHVKt1Dt+/tpXLOuzr7T3x1ygmV7j07/7DSTZIffa1zL/qqr/yt0k2Sbb/+tkr325seX+leeWZnTCxJdj9960r3vT/tjAMdMeXTlW6SvO+Czl4q71vQWSORJK9ebp1K91Ob/ajS3fCw3jzDDe7tzPv63o2d/drWPqfzHUmSV9/dmUP1mi16azzfcupbKt0HN+08q7jml73r5X1/2Plen7BzZxz91Yf2nhXOX9SZ27rW7r1r/EXPdMY1Z57VmUP1sb9+rtJNko/tfXele1XpudsX9/tzpZsk7zug83fe7XO99eaL/quzl8oyR5xQ6Z53xdsr3STJU501nk+s2BnfOnjTxb/Pw7/8/pFtKt2X7vWtSjdJltqns9/XjY925p9O32ObSjdJnnlV5979Q+t1viO/+EZn3CxJHhn/9Ur3kDd15lInybMfuanSXeWid1W6487rzc264fDOPO25UzrraE8d+l6lmyQ/GN8ZL7rt6c49SZK8Yeoqle6t44+udG/YofMdSZLhxzr3aIeednWlu+FVnbm4SXL5uRdVumfM6axjT5Itb92v0v371KMq3Ssu6vz2JcmSp3W+Jyef1blG3OyWzt4+SfLNN25X6W508vqVbpJcsF7nud8Jf+7co/1j630r3STZa9nOOeO/Dv5BpXvo5M71YZIc/PbO/rjbLOw969rl3edWujve9IdKd+W1O8/mkuRN+3bWbn//953z56oHlF5qmuTox79b6b7myd6esF/4Xede6tj1vlLpXrzpFyrdJPnBe75R6f7upp0r3devsGKlmyR7XfGOSveYY/5a6SbJh1/7nkr3+V/pzHvZcePe84EVVu/MZxve6cuV7vrTv1jpJsmXN1u+0l3/nEcr3SR5/5cfrHRf/oXvXj88PLzpv/u/W26jccOvu2jxv4vpsDM79+VJ8rn7OmP0L7+x8xxy7ra9fS12Pv3sSvfJd/TmUe2yYmfPoaHPfL/S3fy/envszLils9brnft21qlv+t4TKt0kWfITnXvzDZfpvWvu2fM6z09Pf2tnndevd1+p0k2S/76qsw/qExM782bX/lVps8Qke03vjHlfdnnnb5wkfzmwMy798OWdOZ1PbtBZ55IkVx/6+kp3+nBnL5xH996m0k2SrWZ39ufcZonrKt0kufrRzvjxRm/vzG/dZEFnjDBJZvz5x5XuE9/ovOtq/bGd55BJsuoyn69037lMb672Fh/v7H/2+kc7+wI98EBvzfDUe7avdP/7nZ298v/22H2VbpJcN7OzZ8a7d+68fzdJhj7SWVv19Z92rhEP+scRlW6SvOGrnTG3172zMx/+iB17Y7zz3vnZSnflqzrvL0mSW5b4eKW72QOdcYzvz/lZpZskk4/oPCO7fMvOuejV3+vsL5ck/9i7M9d+u616937fe0lnTO67ubLSffFQbx7Hoa/tvGvk22t31tzdMbNz7kySfUv7cy71/d47FPZ48Gud7iadd8Zdv+OHK90k+eGCzj4HR/+iM2497led+bhJ8rtPrFXpHnFa7z1b372gsz/8zhd09hdfuGvve33KkZ2x6x9d2Hn/4S2/7O3PeeuunWffB36ity/KqZM7e2qfM7nzDGaTP3Xuo5Lkhvd25uRee1tn3cj5Y3rrt1//9869+8fe35kPnyQrf6wzx+f4D3b2pFzisd7aqizZeVb5tuU6czq//3TnndBJ8pEfddZMvvw1vfVgU5bs7L22882duV9XfrDzeUuSM57oPKt88LJrKt3ttu/sNZYkqzzW2ftwpTs6+zEnyYfv6Iy9PDats/5wy8+sVukmyQee7rwX+ukXd/YHXeu8zjvSkuSPMw+pdL99708q3ST53DkPVLofOalz73Dp0p39aJPkmYM778D4zaTOPjwf+VXvnewfvPable5HftV7vnPZrzrzMa554If/0bznTZeZOvznnV+52I/njxd2xgiTZKkz51S6603vrAM8ZcPOs94kec0fLqh0V9jg9ko3SXZa9ZhK9ycPdZ4XfuHW2ZVukjy8e+cebPO3/L7S/env76h0k2S/Fx5Q6X7h3Z13AiTJweM74xQ/WfmSSnfca3v3SU998qBK94eTX1vpTrint7bjvvd/otJ9waabVbpJ8uDbNq90n/1G5xy386l/rHST5LDjOs/I9rmss//SN7/R+Y4kycOLOs9CFlzSu87+zuzOWrPd/9aZn/y8N3feZZskZ7xot0r3pnVeWul+5vDOb1+SXLOos1b9tis6a+uT5Iw5nWfJl1++S6V77Rd7e2meOfXySvfa8zv7qbzuPb39HL66V2dt8Tcv6a1ZXvNbh1S6792tM2b6zbU76ySS5Ju7l54LbdMZb1iwZWddeJJsvlnnWciNJ3XWyCfJEct2rgXmH3pPpfvYn3v3Dmeds2yle9CBnTU/c9/dez/DP2d0xuRu36jz3ock2WjZzrjOtu/p7EV87Ea9+53pb39xpTtl7c41xo6H9vZO/u0HOmNnv9mys497kvz+rM6ahjed2dmj86Urdua2Jskyp3Tm5F66X+eZ7Dd+2tvL77M7dtacv/F5vb0Yf7dh550SP92o866tc9/Zm5911tevqnQnXPfVSnf97/Xe2b3EVw6rdH/5o95c7fUv7Iz3LfnGTve5Cb33VJ/75c414uYndtaZXXxNZ51Ekrz216dVum/doDf3ZM33ds75X5jXmav9qZU654sk+eEmnTmBO024tNJ97bad/TqSZKXfd75/1x/emyt6x61vqnQ/fPXif699kly6X2ctZpK88JTPVLoX3tDZ4+fYPTvvTk+SD7ygM4f4hat29m5Nkt2HO8+wv7xy552pl/yzN5/mrzf8uNJd4erOGpp/rtOZ15ckS+y9RaU79ZrrK90kOWFGZz3Ypu8cU+luveeplW6S7POTP1W6y3x5z0p3j/s6f+MkeeNunfvV6+b23k/0p+1PqnRfcMac/3Xec29lGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8P2Qw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNxv47//G4wZJZfslXLfaDeOrpZxd7819WXmJMpbv8qitWuoNK9X8MzxmudGeNn1TpJsnEcQsq3fHLj6t0J49fttJNkglLzqt05y/s/C1mPf2PSjdJJk2cUukOl7pJMnvOwkp37JjOv9/w2FmVbpIMzymdM6YuXckOzXqs0k2SBfPmV7pj0vlcJMkyK61Z6S4cnlvpDoY61wH/Y1GluvzEoUp33oIZlW6SjEvn7zx28G9dqv5bZj33RKU7edrzK91pE2dXukkyfV7n92/i2M6/3/CEzvkiSYbmTK50xzz3TKWbJGOnLV/pzpm+ZKU7tETvGmPC5KmV7piJnevw4RlLVbpJMnfCk5Xu8JjxlW6SZGHnenn2Pzt/i7FjOveqSTJvqHPOnzWjc404f8rMSjdJlp38vEp3zsLeNeL0uZ1z/pi5nd/recO9MZ1xc0vXn3M7vyVDq6xe6SbJYF7nnLHEpM69Q5LMm9E5L48pDb1Mf6x3vbzEmAmV7tipnevlQXGA+bm5nfiUMb1r/DljOn/nBRPmVLqLZvQ+y8882nk+MH6lzjlu8rTemMDQgs7fYsyKnXvKJJl5f+l3ddA53y+a0xk3S5JFizrHPH9B57O85LTO8f6Pzg/r+CV61xiDdK6XZz7VGWvPot6Yzryhzj325HQ+czMWds6dSTKtdI04ofeoJMPPdT5zsxd0zp8TxvcuEocndY553hOde7/B0r3xreG5nevaicXnfo/P7rQnTex8LubM6lyHJ8nY+Z3v9aTxnc/c8JgVKt0kmbngoUp3aKg3n2bZyZ2/c2ueR8b1PssZt0QlO37yxEp39rze32KJCZ3r2tmlsb4kWTC3dC886MzNHJ7bGTdLkuHBI5Xuc4s6Y+LLjOl8R5LkydLv3zITe9cY88cs/muB4fzn9ySTZy2Zl12/+WI8mv/xwPzfLfbmv5x+xScr3fWu6vzO33PaVZVukvxp1X9WujP+vmelmyQPvb3zzOnKl51R6Z7xsW0r3SRZ65TOZ+PX225Y6Z5+Q28s6IWn/LTS/f03Vql0k+T2hdtUujMnb1rpXn7drZVukuz8qgsq3Utv+Fmlu9aCrSvdJHnBPWtUute98UOVbpKc9LZNKt3XveTDle4Oz65f6SbJ1S+7ttLd8Jb9Kt21//6NSjdJvvb0Nyvd29dZp9JNkrEPde75n5u1cqU75bGdK90kGbtyZ33HP5c9sNI98oD7Kt0k2fCoz1a6U9frPe/90j++X+nOnvh4pTtm6XdUukmy29CnK93vLvXaSnfi4RdXukkydZ37K91Jz3tLpZskdwyfW+lefFXnemvixr37nYO36/yuPjx3u0p3izN3q3ST5LntOs/Vr9jswUo3SbY75+ZKd58td6x0712zN2/9d5t1xmLvXuLble4uYzvr4pLkwPe8oNI95fDO+EiSrL1+55h/ccsfK93v7dSba/iFZzv3Dtff9ItK9+FVP1jpJsm5l36v0n3x89atdJPkqTU7zzhffMqdle4Pt7yn0k2Sne7q7OVyxeyjKt3BmJdXukny3VecX+ku9dRLKt0kuX3LF1e6/3XRmyrdlZY/utJNkr027Jzz17jyS5XuzyfuUOkmyU3bdtbpznv6wko3Sfaf1tlX46FN3lXpbnFU77N897adZ83X3nVRpfvwSzv3Okmy7qBzv/r7+3q/q7dsfXulO3jyz5Xu0TedXOkmydLPbFXpPvyXhyvd2e89oNJNkjH3nVTp7nlrbz3Ytzb7YqX7sQWd8+c9q3euw5Pk6Vmde7/VHjik0l3+u517yiT52O7rVbqvv/1blW6STDmi83zuppM76xkeXae3F8EmMzpjnzv9sDO/9fRJ7690k+RFh3TGoc77xE6VbpLctsbvK911rurMb71gSmesKEm2OKzzPZnxQGee3Af3/22lmyTPvv6jle5Lb+jd70z6zeK//hw885/NfZ3/9JJ5+NwtFvPRJM//1nGLvfkvZy7f2Rdo5r6dOV+DH/buN/bav3OPNNjupZVuknxjlR9XutNP26XS/eaZnb32kuStt59d6V65f+e65IrP9cbEnv+pzjjQHue/udJNkhc90RnX/OzFnbnJwyccXukmydCrt690v31iZ6x0w117z5BvO3v/SneXozvznJLk5Bd21uBe+9nOmv3vzNy30k2S5d/+8Up38LuvVrrzZ/93pZska2/0zkr3g7/vrZNdbUpnzdY1/+zsvTR3l0cr3ST55fqd5xVLvqZzjb/P2p3nsUkyf0pnfPeBjXvzTsY8eH2le+mqP6p0P35Tb73kJWd25ol+/J7rKt3dBp1x4yT5+ws668k/cGTnniRJ/vbSF1W6k4+4rNKdvXlv7fbWTx9T6Z49e/GvYU+Sb/3oL5Vukhx+cudZ/dDHe8c86ebOddF2D72j0t3+Q517kiTZ+vrOHJw73/z6SveiuzrvOUiSiRN+UOk++Z7zKt0kuW2H1Srdt1/4jkp34UF/rXSTZId1O/eV09frfJZPv7/zm5okB4z9daV73tGdOUNJMmv/zvvobtuzcx8179qNKt0kuWKFzhzifR/oPIPceOrLKt0keebezjz7Me/vPR+4/4BPVboXH9QZR3z913rv+Vn+g5dXunut+vdK9+wje/ORjryoM097s5/dUukmyVEPH1Tp/mKrzu/1hAc7+1Mkybqf6qzLOX27znyIl/3j0Eo3STb/W+d7svYbflXpJsn+j3au5Va9/ieV7iXrdJ5nJMnsCzp7B624dWc+2RWb9N6Lec2Xzqp0f39Ob0x8+pqd9a5TvvGKSnf8SztjfUly72mdsc/lju3Mx9h/Zu/d29O+0Hme/4rH3lvpJsleS3XeBfmjF+xa6c558spKN0ne+4GbKt0H5n+u0r3jV52/cZI8vGtnT7Cb39zbn/oX3+u8v/JjS3XWjp69qPPcIUmmvKvzfOB7YzvzMQafW6bSTZJPX3Zfpbv1qq+pdJNk9e/eVip/9z/6X00eOyYbL7f4f5P3erSzrj5Jxi7VmZ/86yO/Vume/cMNKt0keeSwzt5nRy/f23swW3aupxb8snP/vO9qnfUgSfKWj3T2bl1peLlKd41f9p5XjC/taXjJ7X+odJNk4vs649JXHPqJSvev46dXuknyrk911jnn6s46l7fs1rnmSZI17nxbpXvSfb29I5ef2Nm79ZhDOuMfN262dqWbJA/96LRK910Xd/aO/EZnWWiS5EObddZPr/T2H1e6SbL6WztzOte9vnMtsOGvO3sMJMmfP9xZ3/HuSzt7qVx9TmfsP0nOPO/cSvfvL+mtoblru3dXuh/buLPObPuX/bjSTZIdXtrZY+5Pf+6sc15/1lOVbpIs8aN3VLrznj690k2Sn/+h81ty49md+6j9Nu2t2b/yDZ1rgae26zzH+tPynWcKSbLX9p3f1eNf+cJKN0l2XrUz3+KYp/eodF/9ld4c/rEXHFLprvOSpSvd1S/p3Tt88o7PV7pbbXVupZskr7q581xh+GWdtXGPfaY3v+6CMzvvyR03bXal+9FTe/tqbDz9DZXuVe/sjDUkyc9P7Myve8Uxnb2zbry4t+/1jrM78zgu/3Rnv8Stzri70k2SwcTOOqW/HNq5P0uSqR/qPIv82S2ddwlef0lv77NPTeuMfR5/QOeYN96qN6flga905i7s8vne9fL17z+x0v3uazvrUebes1KlmyTfe3tnD/fdv3ZOpXvw9u+rdJNk2XTe3fzg766odJNk2+935jEevlbn3c0Pvb30bC7J0xttU+n+6j2dcag1e8PL2ewfnXVbj37ykUo3SR7dsbNua/m9O++x3m67zvufkuTCZzrvRpn5us51+Fsnd55TJsn4JTu/UePPPLXSTZJ7bu+s+9njLZ3PxTkHdvZbSZI3vfHqSvdL/+iswXj21G0r3STZeMfOngHHvbG35nX/ac9Vusvt0zkX7fiC3jyrv07p7E/94Vd2fkuuOLa3HuWvN06rdJ85rvfv95aTO+tpN8oP/6P/3U1jV8gayy7+Z4Z3f/OIxd78lyfW6OxhsMnlnfesbn1u5/3JSXLcip35FkPv6rwLPEkeWbBqpbvVR/epdDfYt7fue/ZPN650t31/5+bug6X1rEnykS91xhLevUTvnv9993b289v49M53ZOhNvXXfb1vz2Ep3wk6dd66/aNE1lW6S3H9Bp/v6uzr7gCfJdzbpzIs49srOWN7k83rrUT72ws7anL3e0xn7P/Xz51a6SXL29p3rove+szNXLUnWObnz7odTT3680n3/+zr7qiXJRT84odJd4k2dvXcnXd57N+y8+Q9Uunue0FmnlCSPrdpZ1PCm151Z6Z78q1dVukmy5yZ/qnR33W6dSvfP1xWfV3yx87x+jed6++Hss0Jn/Hilgz5c6X51+d645kp3dNZ5/nT+9Er3M3/8QKWbJJ//TuezvNkt/9l+AP8XZ/25M3foiLU7e9mutm3vHV6XvXT9Snfr6Z3roknf7nz3kuT8z3bWvE7ZcKNKN0lOv6Tz7oCFQ53vyNHv6u2lmR90xms/sFpnj9UTr+nsV5okrzzy1ZXuoZv01m/vMbWzB9ORP+jsZ/TsDr3f1UXXHFzprnZE535nlbf2rj2vPqyzz9zsJTtzLZLk59/qXBcd8fpBpTvjtt4+V3M/2Ll+eXjDzlz7v4/prAtPkvd8c2Gle/FuiyrdJPnt4515VCuM+Xql+/J97610k+Toj3T2ORgs15krM+XWzv5aSXL2tndUuje+sjcmt/cn51a6D3xpj0r3E+f21nkudWRnTtkzD3aeO7xqTOd5VJJcvW3nfufwLXpzfb++V+d36vafXlLp/uy9vXVmn/3TmEr3t8u8vdJ9eu/LK90kuXao83znjntWq3ST5DeXd+79XrZyZz3R13/du/db88edffj33qbz2/f603vrBH9ceu73m717c8OWvavzbvab3tcZ65txX2deZpI88sbjO+Fvd475ju9Mq3ST5A0v7rzrZ/ozvf2eb35lac+cM/73831ndAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/h8zGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA3G/lv/8dhBlps2abEfxNSpyyz25r8ss8S/9f/i/9miKZMr3THzFla6STJm6YmV7pILZ1a6STJnduffb/yg033u3/tK/VvGLDu+0p08ZqjSXTBp5Uo3ScZMml/pzn+m8x1JknHjOt1Fg+FKd2hyp5skSy3V+cwtXDCj0l2wcGqlmyTz5j9T6Q6NXarSTZJxE5+rdBdMn1Dpzp7b+Vwkydhx0yvd4aEXVbqTl1r813D/8viD/6h0Jw1NqXSTZNKk5SrdGdOnV7rFS4yMHZpb6T6xoJLNuOfmdcJJllqmcy2wcPYSlW6SzH/26Up3fOlSYDCm9xs1Z/asSnfRvE538rjSlyTJ2NJ95aLh3vXy3OmPVLoTlliy0h0zKF3gJxme3/kCLrNk555y4dCg0k2SZ2Z1/hZjxvXGXpaZ0rnGmDPo/P6Nm9O5Dk+SZ2Y/0AmP64zJLT+zd+8w+7nOfdSc+b3f1aGJnc/Ggicfr3SXmNj7Xk9YtTMuMPPJzvjWYFFn3CVJJo1bVOnOm9O7xhgelMauF5au8Yd6Y+1Tly59NhZ2rgXmzxpT6SbJ3Mmda/GFD/b+/ZZcdulKd8Fzsyvd6bM6v31JMmly55w/aXLnd3XO3Mcq3SQZO7RspTthXG/sZcyczt95Uu25Q+f3OkmmlG6l5i4s3VNOLt4HD3fORWPGFJ/blq6Xs7D0dx7buY5LUrsWGDel8/1btKD3rGTmzNJ436Le2MvEsZ174XnzOuei2bN6n+VxEzvX+ONL48uLxj1V6SbJuHGdOVxjxvXu/RYNOs+6skTnvDx2YW9MbjChc8wLFnS+1+MW9s7LT855ttKdPLZ3Xp45u3NeHprceVYycVLvemvGrM5cgUVzO/c7z/aG5DJz7r2V7lKTN6x0k2R+aT7Uf2rG+An53WovWezdL7/qwcXe/JeXf7pzPnjeRp3zwQkve1+lmySbjP9JpbvNEztWuknyk3t+U+keO7tznXbCpr+odJNk+ks65/PdV7qk0t37+tUr3SS57CfbVLprr9u7tswxnd+gUz74x0r3u/dfVekmyc4LX1rpvnKTkyrdZc7bodJNkl1nnFjpPjzn85Vukqy+5g8r3a+9oPNZvmqlayrdJBn+zOK/JkqS2T+7utKd9sd3VLpJ8qofXl7pDl/RuzmY+urzKt2//HO1Sneldf9Z6SbJIa/o3Jvf/3Dn3+/zSz6/0k2SDTpTiPOjj5zbCSe55eud39U9l3lVpXv6Qw9Xukly1OzOurtlxp5f6S59y+2VbpI8sFVn/HH+sfdXukkyZ43OPMbXvO+ySvepvx9Q6SbJPsc+Wule/rf1Kt0Dzup0k+SZU+ZUuj9cszQfN8nNz72g0h2zxt8q3RXGvaLSTZJnH+qMcd3+rW0q3Xe+fbdKN0le9MnOPLhp63TOF0my5ndLn+XdN6t037Vdb07ZLm+5s9L9wJc6z9RP+a/OOpck2eWTR1W6v1lylUo3STa59pZK96I1Ot1XP3+7SjdJrj/qvkp3iw06a36e2/uuSjdJ5k6/rtK9+L9Kcy2SHPzBzvP6d+7x2Ur34Yv+VOkmybiHX1vpHrLGrpXucbd0fkeSZPXfdY75gYd7x/yzQ26udOfc0hlf/tVuh1S6SXLxtp21VSf9fK9Kd8cLOufOJHnl2p21Eqs82Zurfe9vOvdSrzy0c++36MremOrKL+4803h6+8745PEXlgaBk8x5tDO34ZlXrlTpJsnLn7u00n14/c7f4o4H1650k2TGmM5cgXtmHFLp3rRFZx+lJBm36ZmV7nNXH1HpJsnL7ryp0v3DzM73b/5avWfYWfXySvbkP5bmeWzVOV8kyennvLDSPWT+ryrdJHnk0vdWussc8MtKd/7DvTXLf7i7M95325IfrXSvvLPzPDFJXr1y57M89b7OnMEkWWrK1xd7c9bwtf/R/27BpPF5av3FP979uXcdutib/7LZ1Z3fn1U/1nmmt+/5e1a6SbLpFp1nFVdc17vG/uWmh1S6u53YmbO38BWd+W9JsvLPO3Mj99my8wz5B9seXekmyVFbfLrSXeqR3rl822c+XukeNeatle7nt+l8R5LklDGvrnR/dGTnmcJrluytRdn1hM5eHL99csVKN0lm3db5e/z5c51rtJ9s/vtKN0k2/8qHK91vvLnzvT7nqTsq3SR56bRvVLqDy86udJPk/vd01sAv+dHOWr6TTj6i0k2StS/u/Pv95sLOtectK19R6SbJL0p7cXxk4bGVbpJcffgxle7tZ/2l0t3hz9+udJPknZ/7XaV7zg8665yP26+z9iJJtvxCZ/3h1l89q9JNknXmvKHSnfXyznX4aZd35nwlyfSLf1bpTnnwvkp35tm9/ez/vnXnWmD6m/avdJNk3madz8bfvtIZh/3OYx+qdJNk78909qQcbPS9SveZFW6odJPkE/t/rtK96qe9fTS33b3z7PTMtTrPhK56rvfOsZvXPKfS/e0nbqh0l7vpbZVuklwwtfO7+rkzNq50k+TnP+vsXbLg3M5ahhtv7K3LeWL1zvPpNffpvLNj1+f/udJNkidOnVbpPrthZ85Qkvz88s4cuLP3WPzPIJPk6d/uUekmyVNf/3Kl+7MPH1jpvvDWT1S6SXLWu39U6U58vLeuau7s1Srd09b+e6X73EM7VbpJctlHO3M4xvzlyUp34vgjK90kWXR45/ncnlfsXOkmyTv+1BnXOf7YeyrdpTfpzSe7Yt/O32L7fTvPjWZc0BkPT5K77u/8rs6+7aBKN0k++9kfVLoXvuo7le5NV/xnc53+L6av1FlLtPWaF1a6P7q99zz4U5uX9sddvvM3TpI3T39npbvJ1NI8w8/27v1+vU9n/eicNU+udB/+XG+966pTOr9/O2y0QqWbJA+d2nm3zbNnd+bpvOz2j1S6SfKu33a+J59ad61K94pfd+4pk+SoLTrXGC9Y+Y2VbpI8+Z23VLr/6a5rjzy1fr7ysz8s1mNJkrN+3BkXS5LX7NTZS33hKsdXuj99pjPXKUlOvryz394BS+1b6SbJdduvW+l++MjOWPryx7250k2SiS/s/J2H3/aVSvfglXvvFt1p7ysr3Ye36u2v/7IXdr5/d+3SeaZ+/bQtKt0keeCkzr6Ge+/2hUp3zmq9vWYHK/610l1x4VaVbpJ88vMbVLpH3ve1SneVX15f6SbJPvd2xv+vXauzZ8btv+vtXfe6n3fmAVwx7fBKN0m+skdnf+M7H7mt0r3q8t48jtc93HnGcvMx3690T/ntPpVuklz7pc4x/6I4P/KYX3T25fr4ip29HK7+46mVbpK878udsdi3vbbzntWLVumtf//+iztjsce8r7MPVZKsc2BnbPPdNz5U6e445V2VbpKsss1Fle6TS3Xmih47tGmlmySbze3sFzXzxctXukmyz187e1FtcdT0Svevn+jMx02S61brXGOcdMDWle6uczvvnE2Sb296Q6W79MQ1K90k2ey2zrOsQ9/X2R/3irt6c5I2uemnle7wxqdVul/a5eeVbpKceHFnTsuJ3+mNL9//s867Kn51yWsq3R127L3b99jOlsy59YDO3JMdl+it7Th5v077wAV3V7pJsuZqm1e6b9ix87x3+y917imT5Kel9/F88bHOuOdbbunM+0qSN/61cy1+5w5vr3ST5F37dvZYPXJiZ07ZuI1614jHze+8s3HSbZ1jPvUPnTXySTLmH539Ve/asTe/db+vdt4T+rFD9650j9qzc75Pkltu6jyHOX6os2/5+EteXukmyX6f7/xGHXdiZx+XJNn/451r8dWvOL3Sveau3lj7jDs6a0jv+HTn2nPjLXpzU5a5r7Nv8k7v7+0Ded0B+1W6C0/qnOPW+lBnDmOSXLBv55nw2w7r7LX+rYN611vTt+x8lj91UW+u6B/Xv7XSfftXO/t47vds730Sm0/qzEHY5cud/Y5WX/6MSjdJ1n1n59rzbcd3rj2T5Kt7ltZ3/IfDDStM/Uc+tPMXF++xJLn2kM66xSQ54cv3Vrr37dd5JvuDF/feXz7xWxdXulu9sje/dc2xL6t0V3pTZ1/Y5T/cmQ+fJAfv3tm/Ltt0uhee3NsPYLXnplW6Z+z3sUo3STa7q7NH/OErduaAD53bmYOaJL/84xqV7nmPd9YzDK3ROd4kWe+Czp6J49d4caWbJD9+/+sr3esO6ly/73vRYZVukjx7W+fZ6XPrdd4BuvexvX1Fp1/YmWu/zjW9fX3fude0SnfpUzrvJPjp32ZUukkyWKJzn7TuPp191Z7/XG8exzlfPKLSPXRSb23Vb/bqzMn95W8658/TrvtFpZsk23+/896v1fbt3KO97d29fQ0XfKFzv/PZh3v37hdd2Xkf8dXHdfYYf+hD76h0k2Tv4c5+cB+7q7Nu5EN39uaAX7tyZy/Nzw+fUukmyXmzOmv7pxzdufZc/tDOdy9JHn2u8yxrxbGdz/Ls1XvXWz+c0dn7+n13dsb6kmSn121T6f73KZ09H+7+9PRKN0l2PbxzjX/K5zvzOFbc5apKN0lOnNQZa//cbr319+df3HkPxo+P6zw7/c3vtq10k+TgX3TmVK95yAcr3Tcs3dsnaYehGyrdN3+os84sSb5ybmefpCUv3rLSXf3Wzm9fkvxshc718keGO/soDS/dW7993hd2qXS3u663F8ELZ3busde9uPOuiu/v2hl3SZKvvaxz7/6dTT5T6T7vq0tVuknyql917t0Xfrsz7pkkr7yos2fikR/srLlbcbPOfMAkefO6nbUuv129887pWxcs/n3+/uVFJ3bej7LFKyvZJMmhD3V+V3896Dyr3OG+3h6rK07urO949gud9yy/ZLvO+SJJDh103jVy4pG99/Su9fPO/cM3dziu0t11/gWVbpL87fLOPnRzN++MCXz+n51rlyQ57O+dsbOP/L13XbTqZzvP3V97UmePmNe/fo9KN0netnHn3cI/uaTzrHncZ3p7X++x8R6V7tardtYfJskvvthbt/W/6ex6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/jxmM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDMcPDw//n/3jj5dcevmKP7y32gxgMJi325r+MX3pypTv34Wcq3aFJEyrdJJk/PLfSnThtyUo3SYbG/98/n/+ORdM73TljF1S6STL/yemV7oSpS1e6w72vdcbNXVTpjllYySZJhseMqXQXLpxf6TZNSOe8nKU7/4Azpz9X6SbJwuc6x7zkUstWukky68lHK93JUydWurNm9b7YC+bNrnQnj++cQGfNnVnpJknGds7LC4qHPH5S5+88Jp3P3LNPP1HpJsmSyz6v0h0/fqjSnf3o05VukiyxynKV7rgJ4yvdJJk9s3Mumjixc18yf+68SjdJhiZ1rjHmz+r8jRcMetdxS07o3KPNfqbzt0iSoUWd9mBi5zp8fuk6IEmGhpapdOeVrgUWze+c75NkyvKd78mc55aodJNkeN6Tle7YiStWunOfvbvSTZJFYwaV7uwZnTGdyVNL96pJJi3dud6aP7t3XTRufOdcND6d8+esZzrjnkkyaaXO2FnmzapkZ8+cU+kmydCEztjnhNJ3JEkWzRtb6c59rvOZGz/onOOS5KnWmM6EzvlzwvN6v9eZ17nGGD/UGxSfNaMz3rBwdudZ19x0rgOSZErpN2rMUp2/8ZwnewNc8+d3flenTJpS6SbJ0JKd70nrSmBs7/FA5g//s9IdmrRCpbtw9vRKN0kG4zrjGGMW9cZe5qYz3jdpWqf778wJ+XeNWdh5PpCFnWvPhQt6cxuG80ilu+C5cZVukiwsDessmNP5XIwdPFvpJsm8eZ3vyYRlOtcuC//Z+5EaLNP5niyc3fssLzGt85kbzCs90xjTmxs2PKHTXtR6cDu/Nya3YLjzWzK/+Nx9wdjOv9+4hZ3xomdm9q63hid0znPjF3TuV8eUxhqSZFZpEt6isb0x1WXGLv5xnZ3/+Onc+Mzd/9GDv5cts8nwn3a+cnEfUtZdv3c+//2E31e6F928bqU797Les9N3r9yZBzf1FZdUuknynUmdMbd3r7xTpXvFL/9Q6SbJPvM783AGH59e6f7XCbdVukny9QWdsaB/bHtUpZskx6x3baX7u6NuqHRX3nLrSjdJhvZ9T6X7up8v/nU5SbLCM70x+rO3u7TS3fnud1e6SfLrCd+pdDef94ZK95+PnVnpJsl6f3htpfuXmzvn+xd98neVbpKsPrPzmbti3b9Xuknyj1Mfr3Rf/cmfVro3/+CjlW6SrLjZJyrdeS/ep9J99afvqHST5OJXdO5HN52yV6WbJLdtfm+l+5KFMyrdGx58WaWbJCv8qTN+vMpuJ1W6vz+7MwcnSe5ervN33uKZVSrdJHl6q59Uuk/dtGWlO3mNByvdJHni3pUr3T1XuqXS/eXc3r3DX6fdWOleOaa3HuXMK1eqdO+f/KpK9x2bXFTpJsmcJTvj/4ef3hnvPvB9+1a6SXLizMcq3fUGnXvKJFl26c698Mzvd84ZM1/Vm8M/WHOXSvfpR75Z6b76xuUr3SS5dpXOM+pXbdm5P0uSJS7r/D3+ucOdle4NX+qMhyfJA8925pcfukXnfueaifdXukmy9Ys7czqXm31XpZskP1u+swZqlbMurHSXGd8Z30qSG1d4RaV7wrJTK93v3N/7jZr7vDUr3cHzv1HpJsmKp3fGMc5/xc6V7usvPKzSTZLpx3XGGx58X+e3ZOVdH6p0k+TCF3+y0t3gzt7ck6kvvqrSnTTUmdM564Le/c5T23aej195Tefe4bhdPl3pJskt/9i10t34g9+qdJPk41d2PhsHXtpZc/fzdZ+qdJNkg9911rw+t8S0Svexi3p/i/Gve7jSnbpww0o3SXaY9etKd50XvLTS3Wf73jy5pR/vzGfb8t7OMS+3c2fcLEl++f6bK901Pv2aSjdJrrmzM973yQ3XqnSfOqnz3CFJvjmv871ea/b7Kt099+r89iXJFTmm0t3lz9+vdJPk4WcW/7OHLe45O9fPfvzfnve8wQrrDp/9ltMX+/Es/c53LPbmv5x/6R6V7qG3dX7jtz14g0o3ST61zw2V7t479p5v7v3Czhy4Lx/Xuf4749LePN/bruo8Xzn/V5+rdH/xk97874M+emqlu8T39qt0k+ST7zu00t3i1M73b90H1650k+RrMzuLhtef17lHeuUr3lzpJskyH55W6V6+8cmVbpJMWKUzz3e7b76u0j122851cJK86dkDK939d+jMOzlw6bdUukkyZoXO882nbumMIyTJNie/sdL9yLI3VLqv2rY3B2DRmZ3vycKhzvPY5039YKWbJOsd2DkXXfv+znObJHnDjzvdJ57ozK370369c9HkjTpz6944/rpKd4U3ddbxJckzn+k839zyeZ3nNklyz037V7onbX5Epfv+eZ11fEly3uNnV7pHf+6ISveTbz+40k2SSU909lI5bELnPSNJ8t7H/ljpvnpsZy71Bz/Ru3c//e53Vrpfffjble7HJvX+Fpuv1Tln3PnH3nyyVz7yoUr3id067zBZdMzelW6S3PHGzpjcR5/fuS56ySWlvamTHL1HZ+/IA3/SGWtPktUnnFvpnvfhzl7ru17dm1u3/NjOXJk3vbVzH3Xrc51190ny1dv2qHTfsGJnD54kefx3u1e6M7Y8p9J9zbwfV7pJsvXJnb0vlvxOZ6/n1yzsPE9PkgmTr6l0Pz1n8T8L/petHu7Midjrqs495Z2HX17pJsmH1u2sy1npPZ1rl1V+05ubdelBb690d1ix8ww0SX77VGevsfOmdvaRuPqwTSvdJPnWvp3ntq//2imV7tXv6a2DPmzD/6p0p/6jt6fGpz/aaa+4WedZ1/pf+EGlmyRrD3Xm6ix9x2qV7kvS+72euHTn+fhDb+mNyR223/WV7kFbv7jSHfOp3tzI4bM775ba76zOXNyLj+7dB7/0iM5a2n/O6ezBkyR/XL3z3oDXPnt8pXvtzN5ewR/e61OV7o823bbSffuZD1S6SXLq7WdVuge/cLVKN0mW+sNNle4/fn/Y9cPDw//2xe3GG642fMX5i/98s913e+9eWOnXV1e6d8xZr9J94hedteRJsvDSznP151/V2ZMrSX7wqc492Apbd64Brx3bOecmyXaXdfZV++h2nfkhL9+lt4/fUm/q7JlxzSGd58hJcuS3O3v5HfXPzh5zW83uvVt03S92jvn4Vc+rdM/f54xKN0lOGr640t19cmc+bpJ8fo3OeMJdq3fuRZd4b2ef9SRZ5fgLKt3Pf/eQSvegXx9b6SbJf2/eed70tg16a6uu/U5nTucP7n9rpbvdYS+odJPk/KtPqHQnfG1apbvXnZ3nIElyxVs7azs2+lRvf9yd3tqZ43POp6+odL+xyzqVbpJcdkbnPWhf/Upn3+t7f9q5dkmSscd2/s7Tn+rtCXvTXZ09rtZZ+2uV7oYzX1jpJskWz/9YpfvopzrzcH68x8aVbpLMP6Yzljd95d41xmfTmZN02ZS/VLp/n9+bt/7SMztroJZ5y3/0Crv/X2ft1Xs3ymuX78xvffIDnf0dk+TK0ouOF366s2b57Md6+7UdMLFzXfT8Mz5S6b5lbu/dKCt+51eV7oxPd377kmTuKrtVuvfP+GWlO+NPnfk9SXLLvmtUutc/1NkT9uLzO/fXSfL53z+/0j1vw87z6SQ58OLPVLr33bJnpfvujadVuklywL2duQsr5h+V7ozje9db6x3a2ePniN9Mq3STZMyWnXUjV/2s83z1sgd6zwdOe2r7SvfEPTvXLu95U2+Pit8u6HyWd357bw/+73+us07wM298R6W7/Tad374kuX7tzrjAeTd11la9d05vPvwHnuvs7/+NB3vzI5c7qPNM/yMLOvNml1in926Uk7/VmQO04G/vqHSHxvT24L/+u8dVuie9+YBKN0k2/NR/V7qvP7qzj9IuR/X2xJw34buV7maXdfZkPvrbvb/FpGs6v9dvXaK3/n75p5aqdN+4U2ev4Bc92NnHJUluuO/lle617zq/0p334957fh55srOedp8DO5+LJJm0d+c9Wz++5Yj/aN7zSmNXGH5n4f3MG2zRe/fCs8t8pdK9ar2jK92Df92ZQ5Uk68z9eKV7wAcXVbpJ8u73dd5ne/+JR1S6Z31j80o3Sb73gc44xa4PdX6D1nxLZ91bkow9tzN379TbTqt0k+ScBzr3o49v17k33+B1vb1J/vyFzn5U23+nsx55m+HOdy9JThh3WaW7zH6d374kWeeSzrr96et25i6stFVvL8YNTuvs5bfCcp1jPuRlCyrdJJl1UOd6+Md3dfasSZK53+vMIz5nnR9Vutc/3Hveu8E1nTllD3ykszfX3y/r7Wk/7YB3Vbqvf6hz/5wkX9lmuNL90Fqd798Va3fGCJNkxdU684g///POddzw9N67RgYPdfZH2PLxzn4OSXLWdZ3fqTFndc7L/7yq996vL574gUp33Pqda5dVduit/53+ss492uN3/6bSTZITju9c4z+1xw2V7rVTf17pJslnft9Zz7BBaa7vhfd35mknybUf26zSPWbQG8d47LBzK92DL+7sRfzTk3vrPFdZYYtK9+4tOteI5+/be4fXBsd25pR9984/VbpJcvlHO/MtXrDo85Xuz2/rvSf3Tyt05uSutENnTueGf+i9H+XxI66qdPf9RW+d4Nxd7qx0n12qsy/RQQ9MqnST5EsrdvYLPvCVnf0Hv/ma6ZVuklyzd+d7MvyXztzyJNnzqM557tN/7uzXfd4ZnTlUSXLpWudWupve33lX2oRlL6l0k+TY875a6W5yWec6PEl+fVln/6DHj+7MIX5o687+TEly9hadPR8ef6Szrvjoh3pziH948+GV7ia7995P9Oz+nXlUe1zQee439NPOO2iS5P1X317p7vynzp58k27ovCctSa45vfO7etzNvec7M19zQ6W75lnrV7qv2bE3H+Pi/TtzDW/d/7ZK940HdPYkSpJZB99a6X7rpoMq3ST56hqd+YgbHNoZt16wWeedf0ly/FuPqnQv2XGtSveip3pzU44567eV7q5fOLfSTZK3zX93pfvoxw76X+c9Dyr/1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/zGDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAACA/4+9/wy2rCrY/e27V+dAzlGSSBZBJCoICAgSFFAQTKiYFQPmgKKigopZ4BEBAxgQRAlKkiwCChIEJCsg0EB3Q+fevd8Pp/x/Om+do9V37dqnruvjU/h7Zu1ea645xxxjTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDDuP/mPB2MHmbD0Ukv8IIbGjF3izX8bZEylOzxluNLNxP/on+Q/MmVoYqU7b+EzlW6STBy3fCc8aX4lO3locqWbJFNW6nw2Fk/ofC7GDg0q3SRZNKbzmRs7sfS9TjI0d1GlO27Q+VwMzev9LZ4q/S0mL3y60p06cVqlmyRDUzq/UYtmL6x0k2Txws53e/HQpEp30YJ5lW6SZLhzzh8eu7jSzZjeNcbUyZ2/xbwJz1a6STI+ne/20OLO92/i1BUq3SSZOK5zLT52Yucct8x6UyvdJBk3mFLpLlowu9JNksHMWZXu0JjSdXjn0jNJMm6oc84fO77z27dwfu96eeb06ZXu1GWGKt0kmZfxle6kQec3auHC3vXy+Imdv/OSH835X+bMn1AqJ0NPlu6jluqNQy0cWlDpDs2dU+lOXLpzHZ4kcxeUxhsWzah0Fy2cW+kmyYK5nXGMwaD1zU7GDnf+HvMXde53Jm+1bKWbJOOmd84Zs2d3rpdTuiZKknkzO7/XU1fpdJNkzlDn32+Qzt955lMPVrpJMiVLV7qLhzvf66HZvevlMcPLVLrzxnSuA5JkzpzOeMOY0vO5pTp/4iTJmIWd79/Q/M7Y2Zgpvc/y+NJN9oLSdUCSpPSZmziuc++3aOJTlW6SLB7uXAsMLe7cU44tHW+SLHi289x2eELv+7f0Sp3rl2dnzah0hxb3/hbTJnXuS+Yv7Hzmpgx3xlOTZHjsspXus3mk0k2ScYs64wKLhzrXiIsnFMehOsNQeebJGZXu5Cm9C66xrWHgsb3v3+IFnXPRYGrnXLR4qHcfvHD2zEp38aBzTzl2XG8cY25pHHHscO+5e57tPHsYM/nxSnfqlFUr3SR56pknKt1xEzuf5UVjOmP4SbL8sp37qAXze88HnimMFy3Of//9uGPsrXn+UustwaP5X24ef9MSb/7bVf/cqdJ9y/CZle7fP9D5biXJ7YturXQfmPapSjdJ1l/4cKU7PPOble76415a6SbJva/6c6W77phXVbr7Du9c6SbJ1Rt2bjo2eP69lW6SrH9057s99OEXVLrvP7N3LvrtwX+qdH9z1t8q3b+/76pKN0muHmxU6Z7zvH9Uukmy6zdfUuk+9+PbVrrT53y00k2SF+7ZuQd7cNZtle5br3lRpZskJz3nu5XuWrefXekmyRqzt6l0f/vm9Svd5+/xl0o3Sdb+5xcr3StX27DSPfklP6t0k2SbBzvXcu9d67xKN0kuOf/mSvfpmd+pdFf87G8r3SRZ4czO92+b8WtUuissfV+lmyQz7u6MBZ3/5J2VbpJs8ZLO9cs2a3Se6x13wVqVbpK85/OdBwub/GzHSnfs8+6pdJNkrwVfqXR/+JfOmECS3F+a7rTHM53v342r/aDSTZInlr6+0n3t1p+udG+9ZEalmyQ77NkZ+5x095qVbpJcdd1Wle7Vh3Sehbx02d7anFcc/8tK95/zV69079yrMwacJEOXdn5LZm++SaWbJPPuWrHSnfH0jEp3l003q3ST5PkL/lXpXnpmZ672Dh9a8s+i/j9f6YxP3rZSZ35BktyzRef+Ye1Vtqx0n3NKb97sckd3ntd/d7gz9+QPm/T21Zj2l09Uuk8/v3devvk7u1e6L/vVmyvdKUe+p9JNkjN++YdK987Pfr/S/dNenbnJSfLl319T6f5zcm9fjd9s05l7uXh651nJvFUerXST5HM3ddZg3LdV51nJtOd2fkeS5JG//qjSHf/6HSrdJLnnic6Y6mnjz690N1ql8zuSJJuv05mDcPSGG1e631+7Nwd87Xmd35IPHFGaXJ7kkee+t9I98fTOHjFvmtM53yfJfs98rNI9/srnVLo/v68zPpIk07fu/EYd+dBRlW6S/OuXr690NzmiM/9uxh87c5aS5NCf71/p/ukrq1S6N3ztM5Vukjy0d2fe81f+3lu/PXvlzy3x5lD++F/97+Yt83Du3nvJ3z9v8eg3lnjz316/0XKV7o5XXlbprvmx3pjYvNmdZ/Xbbt6530iSc7/7skp3pf1OrXRP/Wjnb5wkq8y8odL9yFc684YGf9ug0k2SP459caX7+AtfWOkmyecf7VwLb3xQZw3Zzz/dmyf6+d8uW+mu8qa7Kt3vvr8353n+zHMr3TV+88lKN0ke3vgVle5qn+7MPz32U++qdJNk9Wc7a36eu1Zn7OMXN51S6SbJ57bpzLXY4eA9Kt0kOXHHzt95490737/jN+jdI12+XmfsY9Odf1/p/vjA3rOKt2/cGWO6bMHXKt0k+cv3/6fSXW+F2yvdXe7prJFIkpV+dkSle8N2nTGxU97XW/N92uc6+8Bd9JtzK90kueqZzns77lujM2/hwDN64xhnHntgpfuFVR+odA8/f69KN0mOvq7z7OZ5G/Wej33szDdUuhc9+a1Kd/b7e+8j2PHazpqtVU7pPB87bfXOs+kkmTl+tUr3w/t01rEnyd9W6KxfO/Hwzt/5xl/+pNJNkhs/3Hm+suykzvOVMx47uNJNktsPubLSfe9+11a6SfKez3eO+Zuf63xHtl1+l0o3Sd5zamc+2SODD1a673qot9/Q+Gc648vb/LR3jX/ORZ0xuem3vrLS/cp1Z1W6SbLd9zvrXF50X2cu/P5Lf6nSTZK9vnxzpXvkhN4+BHdssHelu9mCX1W6O35lu0o3SVYYf0Gle9yFP650P3Px3ZVukvz6hsMr3RsX9Z51rblL5979zG+8ptLd57TenqJDR3Xu0W6a25kn8Lt1v1fpJsnXvr5npbve67audJPk7qmvrXS/P70zPnLS09tXukly+3M7c4C+t0xn7eEnV+rNbZjxh87+dn++unfMx8/o7H1xwqc7v1E5pbeu6i+7dtZC7/iDzrzyoy/vres49fWnV7qfvrp373ftFZ3P3Gue6ezJ8MHVOvv8JcnZu3WeVV5+0omV7qq/6u3JcOubO/MxrjvwdZVukhzz/M4Y5dn/5RSue8b8K/tMWPL77Ox+SOd3Pkl2fd46le6FFyz5+ehJsuzs3vvL3/3ZzvqYR6f0zmGHfrqzNnvVc19e6T70bG/e+qFzO3O119q0sw/cdqf1zo2/W6MzD+7bn3xTpZskd825v9I9J8dVul9/rDcWtPLqnbl7Xz+r8+93zbzO2GOS7DqrM8dgyic7z5uS5DfP6azNXun8n1a6sz7R2ZMrSfa8pnMPdv9zO/OTfzjmq5Vukpyw3bGV7oXLHFDpJsl7NunMb/3E9ztziN+7fe9502Wb/7DSPWFxZ37rT9/a21N0+8v/Xune+9neHleHfqIzZrP+GzvjKlu9urfH1ZgVjql0b/pAZ67h5Yf01uYM3ju90l1xQm9/3K/ef3yl+7cNO++D+/uZ+1S6SfKXb3eecW5w02OV7kvffFilmyRnDnf2Cv7e73rvDdjhgc78yIsf6owRXnziQ5VukozburMXwTdP7jwXuuSwz1a6SXLEwRdWuvtu3Vune9qxN1e6B17TWefy8s88v9JNkpNuubnS/eDMcyrdH79s5Uo3SaZc1Lkuuvbk3vrtC+7trJNf5fHONf6j73pupZskx236kUr3ntccWem+Ym5vftaM6zpz7Z+7bmfvpSR5+fv+u/2M/k+O3ebble7Ts3rXGPtcfWOl+0Bpe+N3br52J5zkjS/unJc3u7J3vbz5aZ17qbf+oXO9dfkbTqp0k2RoXufdfGf8vnMfvPUPb650k+Tz90ypdL/28TMq3SSZ+PD7Kt3DJvy10j3/is4zmCSZ8L3O2PV5c/5Z6b7r2511qUny0V89UuleeHZvL4m7HunMIx7aqvN8btune+tRnvll57Oxym2dd0w+teLmlW6S7HhZZz3YB3/QeXdzkpz0qc6+5Xt9tvNum9UefXelmySDCZ37ylN2PabSXWPH3l4Eb9+t877bz/16v0o3SdbZtvNZXv3ed1a6x23VG1M9ZlznvHzZtzrnuKnrd84XSXLZ0p13sp+32y6VbpLseG1pfsN/uQ3r8FJrZ/5Ll/yeRqse9qEl3vy3E3b7c6V76dc7694OXuO0SjdJvnD1mEr3vX/rzLtMkjsO7lwDXvfazvq0g1fu7LeXJBuu0VnTus77O3M6z9/n4ko3SW5a4YpK96CFnd/5JLl8m848qv1O6awnP/Vdy1a6SXL+BYdWurt/tHO+3/1Tvb3Lv/WLXSvd/a/o7ZP0yY905stMOOOiSvfWP3f2D0mSG07qjAUdsuEBle5jx/Tm8H/8e53r7F+8p7e2aoOdTq509/r95ZXuyb/uvMs2SaZcfGmlu3jvMyvdddfr/I2T5LtHdebwT9qr80w2SV77qSW/LjVJxm7WOX9e8q7ONVGS3LjM1ZXuU1t21mK+Y63O+1yS5JVjzqt09/vEdZVukozbcl6l+7aNtqh01/jsjpVuknz44mcq3fv3+XSlu9oWvTkRZwx39inbd7e1Kt0kee7O7690f/xoZx7A4p17+yQd/kBnjGSTm/9Q6W59RmdfpyT55pc696tXXdTb1/edu3T2U3l07d9Vuq/9ykqVbpL87IKbK92TP9qZg/rOWzq/qUly7Wk3V7pHbtm5p0ySj6/defbwnlU679e4YNXOWrAkWeakzr4Mv/xgZ3zrV0d17lWT5PyTO3uMrPD9znOHJJmybmfu3pYzO/MuD/vO2yvdJHl2lwMq3V8fc3Ol+8cnDql0k+TQWZ1nGm/6Y2d/8SQ56dDOup9LZ9xR6e44dpdKN0luW/qoSvepCzr7Ha3+1AmVbpLcO/HOSnfZl/T2Rdn/R529GfYa01kbcNnrVq10k+SpT3ae+939ZOd664rVZlW6SfKNzR6vdM/8bmfcOkn2WKazPuebH5tR6S6/Ym/v+U+e1NmX6JI9OvsonXBh5126SfKGP3e+fx+b29lfK0luPbmzTnD70zvn5ad/1Nsj5rAvdd5F/p3PdfY0ff9Tvd+ooz/b+Vz84A+99UQfuL6zX/f7vt1Z6Hn963vvajrg4c4z4QeP68xNefSS71e6SbLgS539ui9aoTNWmySTv7VGrf2/09n1HwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+HzMY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDcYMDw//X//HW6+66fC1r//pEj+IcWMnL/Hmvw3GzKl0x4xbptJdMPOZSjdJFuX//t/6P7FgztOVbpIMxk2tdMeOG1vpLprX+bwlycRM6ISXn1bJDs+fV+kmybihTnvOrImVbpIMxne6EwZDne7kuZVuksyf3fk7z5re6U5Z6rFKN0nGTV250p0/d3almyTjlu105z/d+SxnbOnLl2Tc4k573oL5le7UZSvZJMmYxWMq3fmzer+rY6YurnSnTOr8rg4Nl74jSRY/0/nMTZq8ZqU7f/H0SjdJxoydVekOhlepdJNksHTnunb2vf+sdCevtXylmyQLZ3V+/xaP71xjjF3cOQ8lyfCizr3f2DG96+WF4zvX+Atndq5rx0+qZJMkg3Gd+PihBZXuosc73SRZvMq4TndubxxqzOJnO+GJg0p23pOd67gkmTC10x5a+GSl+8zMzuctSZZZatlKd+5QbxxxyuTO32PRos5Y38TeT1SmrLxapTtnzsOV7rynOt0kmTShM44xeYW1Kt0kWTS+c100+7H7K935sxdVukmy1JQVKt2FCzvXAhOW6n2xx5V+/hYs6t27z366c42x1LTOOMbchaVroiSLh5eudJdaoXOPNn966dlOknGTOmM6Gdv7/o2f1hlTXVB6JDV5au9+Z/5TnXGMmY8+UemusOZzKt0keXZ2Z0xu0pTeZ3liaRx4eHHnnLF4ce+57YLhzg/rpEmdv8UzM3rPQCcv1TnHDc19pNJNkvlzO/doQ4s695STxnfOF0kyY97CSnfK2M4Y/nIrdZ7BJMmzczu/JYPhpSrdJJkwtjQfatA5Zwwt6P1GjR3qjH0OLS49g0ln3DNJxg53xs6eHXQ+b0kytKBzXzm0qHOPNnVqZ6whSWY93fn3mzKlc40xd17vemt4Yed7PWmpzm9UkowZXvLnjL2v/mz+OvP+/+ric/IG6w+v99XjlvQh5eTN9lzizX+bef9zK90df39GpbvhBVtVuknyw5d/rdLd/KZtK90keXrf7SvdzR46rNIdt/g7lW6S3HpU595g3G/XqXQPf+buSjdJfrB5555x2q96z1hOuPfUSvfoCW+qdA985HuVbpJcuNk2le60Rb+pdOdv/P5KN0n2/uf1le4yW9xR6SbJ6Tm40h3zQOf37yXT7ql0k2SpmZ05gQ8uvU6lO/e23nn59jU6czr/euaFlW6SrLn/hpXuXX97ZaX7pm0+XekmybUr7lrpPnen7SrdO097oNJNkiNefUWle+3vN690k+SZyzr3/Jd8bEql++I/9uZxrDGnM/749ykXVLqnPdS5JkqSn45ZvdKdt21n/W+SzL+/85v9paWvrHQ3Ht660k2SscvsXekueOKvle6Hntqo0k2SW5bufJYnnfvrSjdJ7r+h87zwpVt+vNK9/23vrnSTZIVvdX6j7jyys/5+tZlHVLpJMnO4c++w8Le95/Urf6PzjOWZL/+t0p223wsq3SRZ+LfOs5AXr/2vSvf9JzxY6SbJ7u9dp9Ldfl5vrvYv1u3M1Z5zRmeOwZp79dZgjHm6cy66Z6nOmMCY6b1n3+Mn/U+le+Gct1W6SXLQNZ1nnPe+acVKd83r/1jpJsn2m3fW094+o/P9G9ponUo3SV588+OV7uSnO/M5k+Se0tTZm2d35nGsfe8vK90k+dtzOmteXzP+6Er3c9fdVukmyboPd36j1pn28ko3SaYddn6lu+ou61e6vx7XufZMkgdO3KzSPWOX+yrd3/700ko3SVY94thKd71z31XpJslv7t2r0t31C7dWuue99dxKN0nW+ukrKt1/nbVGpfv3NTvdJNl2nc448G6zz6l0k+SBqVtWuk9e1JnP9p2VHqh0k+T4DTvrtsaMv6HSnbpC7/f6J59cu9Jdd91zK90kefnMzvPxr23TmSc3dXJvrP36tTq/fx8Z37kumnTXZZVukpw4vEGlu98jvX3obrxxyY+dvWv2kbl76K7/eN7z2LWmDk9535K/Zv3n7r1r7H9c1VlTcN/UztjVtuedXOkmyVN//GCl+4kv9J7V339L59z4sTU7v8Wrv/+QSjdJfr7J5yvdH//0gEr3jc/2nlUsc89HK901V+2MTyTJ9hd/odI94y2d59P3/Ko3h+Mjr+qsW3xm4ocr3aFzOnNOkuTLn+nMO7ntA7tUukly2wN3Vbo3T9630v3tD0+sdJPkeZeeW+lu8a0vVrqbffGNlW6SbDqj8xxrn3N2rHST5OlVn6p0D9nmzEr38jNOrHSTZOLVS35NY5Lc9vItK90t5vX2SFp1229Vuj/9+Dsr3SQ56kWdf7/t7/xApbvlGp1zXJIs/7zONf5LLvhLpXvRTx+odJPkvpdfU+l+eOcZlW6SvGrKaZXucR98VaX7vqPfW+kmyRt+3Rm7GvuNzpyvn7+odx98wLOdua2XnPfVSjdJ7h3TOeajHumsPbxl6tmVbpJs+IvO9+/UD/y90n38lM53JElevvCUSveFr++NqZ65zQsr3Y9P7Jwzrn13730gB3xoy0r3RavcXOme+I/eb9Rek5ardP+8YNlKN0k+d11njfU7xp5V6R4791OVbpI8WHp/3iUXn1bpHnxYb27Pcft39pGYeH1nfDJJXn1EZxzj9J9fXule9dHenhof+l5nbt2WP+/MubzxsWUr3SS576n3Vbov+lTvWcmG55Xm436o81ne792l/bSTXLrilyrdLd++T6V7zp86Y1BJcu3bbq903/SNzlzOJNlum855+dR9O89AH3zxdyvdJPn4iz9X6Z63bOcZ6AYf6DyzTZKFEzr7a939x9796s+e3LTSnfHIqpXuARu9odJNkrHbdL4nT+3cOd+vcnhv3+uV/vrlSnfTi3v7wxw56Owj/Y5zLq50n/NMb9+1zOqsnxk6c/9Kd80FnWc7SbLV8zrz99+w+Y2VbpJscf1Rle4fl9m50n399r1957/3yj9Xumt+vbOf/Xo/661jf2BwbaV7+gO935I9XvaiSveIK7e/aXh4+D8evJ681CrD62916BI/nqfO7o0FDW/VOZ9v/trO+tsbDu3sL5cki67orI+59hNvrnSTZNY7Ou8K/OlhP6x0v7nReZVukvx+t+9Xuq95Q2fvpfWX/kmlmyQrbNb5/r151aMq3SQ59vL1Kt3br9qv0v3gY511Xkly1Oc71/AfO6JznfbFTW+udJNk5Y++ptL968G7V7pJcvLKnd/szY7szLVf/K7evtcXHtn591v9npdWuits8+pKN0ke+lnn3uDQaz9S6SbJWttcV+mO36wzfvXEos7e1Ely6uJvV7qrXvGPSveuR3vvSrriRZ3f1SNf3Zu78NrNP1Tp/uvLnf1Vxz7Ym4dzyfM7e0dut29nP/QFPzqg0k2SS5brrNv65kYzK90kuXDekh9rSJIvfqqzl8N2F/feR7Dro51np8uu0dlUbc7nNql0k+SbRz9Z6Z5xXGesIUk+cu+vKt137/6OSnfZub09Kc8q7dOy+ecPr3QPv+r3lW6SzNxucaX7xgd774a9YVZnb5L739DZl+GWL3f+xknyzY91zvl3r/CJSvd7J/b2SLrgFZ09rk48uvO+vyQ5dK2VKt1djv1FpXvY2b3nvbsf8dNKd+/VOu9cX7x05zc1Se748UWV7uw/9z7LW4ztvE9p71t+V+k+cnFvX42/r9K5X/3Taz5Z6b5q/955+ciXdt778LId9qh0k+RP53WeD6x1d+d6+bs79eZnfWa7znO/Vb/Vmat2zy2d988kyb/e3xkTv2Srzl6zSfKyD3fejbLmQZ11uqu+pLO/VpIcsn/nHVB7HN6Zj7vJ8p1/uySZcWRn3vr9bzu90k2SVbfsvL9y3bM618tzvvm8SjdJVtq0M7/10Xs67yue+2TnXSBJcs6Knb27jhvfuSdJkn9O+Vqle+yEztyij+7eW4/ynt90nmGf/90zKt3l9nhdpZskR2x3daX7lzd11hUnycVvX1jpLjW2s9/RhVv13vPz7ZU799hvW+5jle7LXvD8SjdJvvaSzr/fyYd1xvqS5MUrdJ5hb/+qRf/VvOdxk6cOL7PBxkv8eN5U2j8kSY5eo/Nbsee+nefIJ9/YWR+TJDN263wHpu3Uu7Z891Wd8f+57+usO138184YYZLsvGfnPvcrr35Zpfvw5r35dbtf0dn/7DMPd97nlyRjT+m8s3vCTZ31Tf/63kGVbpK84ZnO3K85d+5U6Y5/dWf9TJLs8LPOWpd/nvr2SjdJNlpxi0r37p06+1Je97zeuOb1T3fmy4x7Q2cex8O3de7rkuSlm3T2MDj+B51zZ5Kce13n3++8IzvzI299uDN2nCTXvrXz7o6vf7ozD+fnXzug0k2SD7+j857cMRc+VukmySE/6cwFeMu6nfeWHr1f792wu27V2WP1+J06a372Oan3G/XAyzrzAA78YG+t+jYr3Vvp7vGrzl5+P72l8+wmSa44vLPP1R6bdfa0H//r3jvsFk3vPL+Zf+qDlW6SjDukM06/2aqdc9H5D/XW5pxzzG6V7pxPdr5/653c2bs1SV6zb2d8a+2tO+t/k2Ttnz9U6f7PLZ05Bq8c11ub87L3zqh0X3lt59nNzuv31o/+/O2deXDztu+8fzdJLtm1c15+3uOdc8bnL+zNAzjmH509S6888ueV7l3bTq10k+TzB3eeG+26sLevzT/e0HmP0AEndb7Xn9/u65Vukhy7XGfu0Fc27exrM/HWr1S6SfKJjTp7EeSi3tq4F5/Z2Zf5G3/vzM/a84AXVLpJctuCztqqg7forPmZfEZn3leSPPHlN1a6n9nqFZVuksy5v3Ne3vY3P6p0t5jQm1/30Vmd92ssfrCz5ufHx3WecyXJMldeWulucHHvPRif3K3zu7rWtp+udC99be89oWe9uTO/YcPXd/79frF0by30Ead3nhu98Eede4ckGT78wEr3NUevW+nO2Ge1SjdJfvLVztr+3c7oPENb/Se9/XKWXquzx8hlm91Z6SbJdrd11mAs/2hnru/ct3Te954kX57ZWfezzI/fU+mef8ecSjdJ3vHczrno5ev0xqEOf1dn3tktK8z73857HlT+vwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/2MGI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYNx/9F+PGZPB2MlL/CCGx49Z4s1/Wzx7QqW7aGh2pTs0ZkGlmyQTp06qdIcWL1/pJsmYBUOV7rPTZ1W6y6+6QqWbJLPnd7rjHnu60h2ePKh0k2TiUhMr3QXTH6l0k2RownKV7vBQ5+88d3bv32/ScCk8dU4lO3/xtEo3SRbMfarSHTd+caWbJHOnd35LpkzsnOQWlL4jSTI0qXMtMC1jK92pk3q/17MenlvpTlxpyV93/tukSZ327BkzK92hof/ssv0/MXF853p5zODJSnfR3N45LhOXrmTHDXd+o5Jk6OnOddGya69c6c599plKN0kmTFmq0l3Y+ueb+2wpnAyW7vyWLFgwr9JNkklDnWMet1TnWm5cOufOJMmUzt9iaFbn/nrOuM75PkkWPNH5Aq6wUuumJMnizvXy7BkzKt1xS/eul6ct0/n+zXyqc76fNm5GpZskQ3m00p08YdVKN0kWzFtU6Y5N5z5qeJllKt0kGVrYuX5ZNKPzuzpmqPcbteg/fJzwf2vsgt6YeIY7zx6GB52/xaB4u/PMrMcq3WVX6oyJLxhTGhBPMrd0W7J40LneSpIpUzrtMcOd66KlxhavtyaVnvvN7zw3mrZMb3xrXjrXW3Oe7PwtkmS5KZ3utAmd8ILFvWfYYyaMr3RXXqvzt5g1pzcmMKH0Z148v3PtmSRDUzvdxc92zp/DS/WeYY8d6oxxzZnZOd/PmdN5NpckGep8rxcv7j0fGDeYUekuXNAZX54zrvMMJkkmlu53ni7NWVo85u5KN0mmjF+n0h07sXfvt2hcZ0x17HDn32/sxM6znSSZN+uJSne4NIbfGg9PkrmzO+2J43uf5bljOhdGQ4tK48BzevfB40rzJhYs6gwKPDunN6iz1ITOmPi/nug9q1xlhcb96n//OX7u7Pm54Pr7l+Cx/C9TLv/TEm/+28MLzq50h9ftnGcuHXddpZskJzy6W6W7zc69uaIH3tZ5xnnrpn+odFf+y8sr3SSZcOkVle7Bx1xW6Z55xPaVbpIc+OCWle5f7uiNf7xtw99Wuo/99cZK94D9Dqx0k2R4/E6V7sbTP1HpXnB/bx7Aaa/uXEMs/5MXV7pJstl6nd+/2x9/oNL9xPK98Y+dVv5xpfucPx1U6U56YN1KN0lmbtG5txvaeeNKN0nGr9hZ97PTlp3z8iUrr1LpJsnld3WuMR5b4feV7q7r/q7STZL3/mHFSnfBdr1z0Rq7v7vS/fs5/1Pp7r+gs04iSS5ZtdN+9qrOM+qFU3vPvqd88hWV7vUfPLPSTZJpy3bWCeY5G1SyKz6wVqWbJOu94BeV7gu2OaDSnXb7zyrdJPnT43+rdKfveW2lmyTX/majSnfo/Z+sdLf6678q3SS5es81K93LxnfO95f97dhKN0lumtu5j/rAKZ159kmycO/nVbrH/PyVle7aD3auPZPk1vs714hn3d+Zb/HCA/9Q6SbJ9Fmbd7ozeuMYu159R6U7ftB5RnbBU73v9VZPrV/pvnbVzvye/eaUJpQl2fHFnb/zX275aaWbJB88rjN36Lwpq1e6n9ztD5Vukkw/ff9Kd+oynfVEj97YeQaTJDPHd9b9TF9pyT8L/rcntr6r0n3khkMq3e2/ckSlmySr3tVZ3zH769tVuq9arvc8+N5zv1nprvuyX1e6SXLbjM4+I9+77PuV7umr7VzpJsmH1nu40l3/2s6zyjueOrHSTZLfXtC5dx/7vM6z1ST5x3qd66LfX7NLpbv+WZ1r2iT58rGXVLqn7NwZB/7Xn3rnuM/c17n2nLVZb/32M4937v3OXqaz58NLZ3fuo5Jk/z/vUek+ueiFle72a/690k2S6e8+vtLd+tZtK90kWX2NTnuLZdapdNd46AeVbpJMOesnle4vJryo0l3tlt56hlU/0hkjuebvvd/VdV7ytSXeHH/1f3dOft7EjfLTDa5cwkeTXPz3dZZ4899es9eXKt01T+yMXb19zFsq3SQ5btd7Kt2FG99S6SbJWy/vrEc+4ZP3VbqnvOqGSjdJhs77VKV74bc6z5APXuZllW6SXPPRznjNMp/trSFb6ZudOXBr/qpz/fDpdTvz35Jk11UPqHQvmX5Tpfvca3q/8d95W2fvrHMWdj5vSfLLWzv3SMue8N1K96zTrql0k2TdY95Y6d46edlK9/R1e2tO5+zSmXdyzGrbVLpJcu4mN1e6X7y6M0/0zBffWukmyR82mV7pvvfDnd+SX5zS+73e+ozvVLpv2fh7lW6SPHpuZ57ogld0xttmz+7cnyXJZ9/fmYPz0c9fUOk++aXe3lmb7tE550/7be+8fMQynbUd/7qhs8blin3Pq3ST5Ffrd56DbLH3Nyrdm/PnSjdJVnuosyflNeOWrXSTZNrH16h0/3nTvZXu5pv8qNJNkkduOb3S3WilXSrd26d13vmQJNO+35k/vON7O/eUSZLvPlTJ/uH+cyvdo377kko3SYbPelel+62HO+td91m9t17yzZt2xj4vmtDZtyRJ1r+jMyb+89915uzdO//LlW6SfOJPe1W6v/voHyvdw/7Q2yPpqMWdNUoXfKD3nq0DnvxLpTvn953nO0tddGSlmySf/sirK90xO72n0v3B8p299pLkxtd3nqm/42e9e79t1utcf167cmcu/Fe/8e1KN0let9xXKt2vnH5OpbvLzltWuknywGVfr3RPXL+3p8bwNadVunOfvL3Snfqdzjq+JPnhtb+qdF81+FalO2aHzuctSW54xccq3Q+/rDO3IUnedl5nHPH7Uztj4u97fec6IEl+9mhnv5VfnXBcpfvPwzt7HibJznttWOkuNf2BSjdJfn5QZ0zuBYs71wI7PvjFSjdJzjyk89zv0a915pXff3jxfan3dNZYP/2rd1a6SfLrfTtrwd71ys6YzgPH9e4dDv5AZ++E52/6+Ur3z/v05ukcc39nH56N5vXe5/L8sZ29Qf9bK0yblTfssOTXN73zos65MUl+P6OzF9XzVu2cd8f+aZ1KN0kuuvofle7qb+5c8yTJWX/v7AN+44qdvc9mvqJz/5Ukp67f+W37zkc67+TY6djePccNKz1Y6T77sc7zpiS5fJ3O/czz99y10v1CaR+qJHn3mZ0xm5N3P6PS3e+BoyrdJJmw7scr3emf7cy7TJID1/9IpfuD4zv7DDy64UmVbpJc9ZOLKt37X71spbvF2r15s2/YsXNddNbuF1a6SfLIPZ33wHxnpc78kEPf25n3lSTbPHtypXvjpzu/q7/f7/WVbpJ86cjOu2F3/mPpBa5Jvv6B31S6t5zdeR/BaQ929gJIknfP7Vwvf/lznc/ckQveVukmyas36Tz7Pne73t51Ky7sjEuful1nX4R79uyt87ztHXtWup89erNKd8f39taZzb+ts6/TKcf33rs36budsZddnry+0t3y4k43SRbt+4VKd/svdX6vfzm9927YWe/tzAl8+d2d+VlJ8qE3d/b7uupvne/fTXftXekmyf/846OV7rTHOu8v/9OunfmcSbLcJ4+udHe77K+VbpJcMKGzPmD6pzr72V81tXMdkCTnrd95VvKmzx9T6W752udXukly8V8792jTi+/ZOuaJ8yvdfa/v3JccsWdnr9IkOf6BzpykQ97S2Zfos/v39oG7ct0HOt3dtqp0k2T7+zr7Up70aOeZ+pmXde6jkuS6l3bmJ2/0w8463Q/9ap1KN0nOnn1zpbvG1r3v3727dPZxf+nZnfnJB2373Eo3SXLfzZXsb6/4bKV78k97a17f8p7Ou6XO2Kr3/vmzH+185n5wZ+e69tTH3lrpJsnTHzq00n3nvzpzUFf5QOedHUky/MfO852Jk7eudJPkdzM7cy9f9L59K93HPt5ZM5Ikhxy+T6V7+AmdPcB3fMu5lW6SHH5A595933U6a6GT5KKvdcZU33TOSyvdda/u3KsmyYkLOu8pfOT3nfPnxmN778Xc7XUfqHR3OKSz73WSrP3C1r58H/6v/lcbrjicH715yR/T4JRLl3jz3w7aoDOWt+fkN1a6g116v/Pf+mjnt23LXb9a6SbJjsu+ttLd+vHOfIuzf9ub0/KN+Z3zwc33rFTpXvba3vOmby+3Q6X7l9t697m7fLuzl+2+EzvzQ743/1WVbpIctFHnHSWbH9tZa7n2+b15HO/ctTM/+aTfdPY1TJLxszvjx88e2tnXcPsNt6x0k+TGnTvr6ydeueTf9ZEkr9m2sydzkvzsis47VXa8tve7et+LOuOE89/cmWv4/qM7+80myTml89ynz9qy0l3hfZ2x4yS57tudPe13f3z7SjdJXnJMZ1/tt5zWuc+96l29PY4/emznPLf6Gzr7L920em/PoWWf7tzvDB27bKWbJD844x2V7qvf1jl/jjl0UOkmyYdu7uxrv9wJ/91Y0P/J8b97TaWbJJts1Xnv0Yte1ttzb/glp1S627yw8xzy+Vf39oxaeY/OvqKvuudzle63hzt7MifJgu91xqWvW6937z5rh844xmozO9fh11/Z24tg5TvPrXR/fMinK937D+rNIf7Q8cdUuvud05lbniSnLN05f95+Zuccd/r8zl5USbLvBzv7Xyz1UGdf5uvfNL/STZITtuns87jtvPdVukly6xs66+5OWakzjviD03vnosHYztyTXR/vPCvZ85TOeuUkeWBhZw74cj99U6WbJE+8qDMn9443d77X31m7N6flH8d03umy074nVLq3HtybE7H0W/5Q6R6y7LGVbpJc+YbOHuO3P/n2SvcnT/b2Fb1nmc7+JS/8TmdMddH0zp42SfI/t3f2pdzuis7z4CR54oHOGuAf3nBzpTvvhb39cl77/M55+ajPHl/prnhJ77nDL/7YeafSU/t01lgnyc/P6uzrdvLczvvTT3/tZyrdJNnztM517avmdN5vs8bVnb3+kuSuE3asdH+x+mmVbpKs957Ou37ec3jnufv1W6xW6SbJI0d2xlS/efOqle6nt+ocb5L8Ylzne3LzS3trMD51W+dZ1/+/lTm9p3YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P+QwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgw7j/6r8ckY8YPL/GDGJq3YIk3/z8Tx1ayE8YvVenOnrGw0k2SxZP/s3/u/1sTBvMr3SQZGreo0p00cUKlu3hx728xfkanO2HFaZXu7KfnVbpJMjzU6S6z1PKdcJIFCzoHvXjWs5XuvOHFlW6STFppmUp36UlzKt05s5ardJNk3KTOOW7RcOe3L0nGjut8t+fOGVPpTpza+1u0fv7GTJlc6c6Z1fm8Jcni5TvXL+PTuy5auLhzLTBhmc5vyYJZMyvdJJk4eelK98npj1e601ZasdJNkgnPdr4ng4lL/h7q356d3TkZzZnfOS8vXji+0k2S+XM7v1ETlu+cL8aPn1LpJsmM2XMr3Um9n9WMGT+odIdnzq50x67YuaZNkpnPdM6fY4ZLYwJLda5dkmT8UOeYF8ztdJNk7jNPV7pjJ3W+I9MGK1W6STLjyc55efzk0pjO0r17v3nPPlHpjpva+bwlyYSJnWvEQTrn5cGi3md5aGHnemvRws4P69DCznckSQbjOuNbi5bq3a+Ond05f06a2/n9mzX0cKWbJNMmd+5Xh4Y75/uhOb1rjCmTJ1W605/u/ftNWbZz/TmnM7yc8RM6370kmTSmc86Y/eyMSncwqXcfPBgzsdIdN7H37/fss53xviljnql0x07uPA9OkoXjOn+LubM611vjpvY+y2MWda5fBp2vSJJk4ROzKt1x4zrXtfPn955hj53feaY4ceJjle5SS69V6SbJs093jnls6dolSZ4pPTsaO7UzvjU+K1e6SfLs7M499vJTO9fLgwlrVrpJsnCoc85YMLd377fM2M71y7yFne6Y0vEmycLFnWdSi+Z3rjGGn+nd+y0e15mPODa9Yx5a2LlJmzqlM/Y5t/R5S5JB6Wsyc3bn2mWFFXrPsAeLOmNyS48vTcBLsnBoyV8LDOe//x15aP7yefe9hy7Bo/lfbtu197zpylnXVLoLbupcTw2/rjfv8vIxnb/zzDG7VrpJMu3ACyvdhy+4qtK969lVKt0kmfSPpyrd+bt3rt+fc3fneJPk2OkPVbpXrdu7T9pylxmV7tLTOnOSdnnwO5Vukuy4XOd7fUlpfs/9v1y70k2SPZd+eaU7btXPVLpJ8pf5F1e6j018bqX74cd79/xznunc2y3coXMv88RBH650k+TKG7aodF+14daVbpKsPnXfSvf25TrzGHe59BeVbpI8tXfnmcXCb9xR6Z42+3WVbpIcdsj1le5yf+ldI155+Y6V7pfe2nle+P3be+sZ7tumc8z7bb1Tpfu7yb31v9/8n29Uug+s27neSpLdlnpppXvdOvdUuhMnXF7pJsmzz7y50n3/2VdXusNX3FrpJsnGN65b6T7yzjsr3SR5zT2bV7oX3fL9SvfAxW+sdJNkrcf3rnTvm357pfucTVavdJPkLz//U6X7nUM71+FJMuYrnWeRu77g6Er3qkcOq3ST5Iuz/6fSPfrdnXHgib/tXXtOm9O5d190eGd8JEm2+1RnHONLr3x+pbvOqr3rrUWrzqh0X1Ba27FsaZ59kmx9bmce4y+f7YzVJskjy3a+27sueLDS/dZKe1S6SfL3VTvdRy/4S6X7t+V648sr7925Xp5//xqVbpIsmvKvSnfjzTrXWzffMr3STZLxV+1T6d534t2V7tRLOtcBSbLH9zq/q8vv+bVKN0k2f7Tz93ho5eMq3WN/cHalmyQLt1un0l16k1sq3Y1X7YwVJcnE+6ZWuj9Z9+eVbpLsd3/nmP96bmes74WPvqjSTZIfb7lRpfvnv19R6V45c69KN0leN+1jle5VM99f6SbJnbd/pNLdfFJnEc02K/S+19fPeKDSfd4eN1e65z2wfaWbJAee9IJKd8zmF1S6SfLjO75d6T7zyq9Xun89/4+VbpJcPaUz1r7vvZ1n2Hc83Vtnds+sH1a6W6zd2+Pn7M2W/HjfrD//d/M9/zb+79lq1SU/P2Tiwb15Czf9/KuV7iMrPa/SXfqmIyvdJDmotIbz09f/stJNkrN26txzvHLVz1W6O+zfmYubJPe+7q+V7rkbd+a2XrL9byvdJNn27BUq3Us37Y3Dzt2+s8/Hp07pfEfe8f3eNdrL/9yZHzL9pztUuhNf8d1KN0nWG3N/pbvL2p215Ely72s79/vLbNMZn1+83ecr3SQ58R+duclv/PF5le5PLu2MLyXJLfvdWOke96lzKt0k+fil11a6L1391ZXuoat8r9JNkvteckCle9d2nWd6nz6tNw509W6dZwqbfOI9lW6SvHrVznOsp3fuPETe5+T1K90keeFvOtfLKOhc7wAAD9ZJREFUM3f+Q6X7o3N6Gyff/7lvVbpH3vTPSjdJnt2ms1753i3fV+lmr87nLUmWGtOZKzN2p8517dHHnlvpJskpCztzne6865BKN0nGf/OYSneli06tdJ/54WaVbpJst07nfufeDTrXtSd8trcO+m0/OKDSPW6Fzn1Ukqx+auca4/XnnFDp7vqFzvypJHnXs3+odMd8uPMM+aurHV/pJsnLNru50j3jD515Tkmy/yOdc/4Vu59R6e671ycr3SSZNejMpz708bdVuvNv6qxpTJJp+1xZ6d6w8SmVbpJc+8HOeN/hL+08Qz7jfZ3rgCR57Ts6c+DOnvH6Sne1SztzqZPkXyt11hVf/53efMCHxtxW6a79qc510a0H/rrSTZKfXdi5Dx7ao7O/6q9361wfJsnMt7+k0h237qsq3STZ5nede6k/PdlZi7L3ep2xoiS55NWde7RTH+vMQXj4g5376yTZe6nOHNT1Pt67xtjxJ3dVuvMXf7HS3f9Tvb26X/muzryvde7ujDcc+YrePKv5G3TOn29ZrXeN8b5VOnPDzt/i5kr3I8v33p0+7vTOeMNJ561W6b7wu50985LkSzM6e++u+6IvVLpJcv2szj4Sp1zf2ffpua/rrOtIkp9ecWale9VZnf2kbhzbmUudJPtv1DnHvfQTvXmON774mE74v5xyNmPu83L2bUt+b4Stfty5x02SD23wm0r3D3d0rofff/tplW6SjN23M7/1tN3PrXST5Mpl31npnrDfkt+zPEkuPuaDlW6SfOHt91W6123d2QN8qLTGOUl22b2zj+2kmzt7nyXJ3R/erdJd/pM/q3Tf82RnnVCS3L9jZ23azvd3xjV/9D/bVrpJ8s0zt6p0T93n5ko3SfZ/T+e+423ndMZV9rzj2Eo3Sf4x3FkPec/0zljCqw/q7X32lZM681t3/9IDlW6STL3hukr3snf/o9K9Yb3OnoZJcsulnTnVY096WaX7o7e/t9JNkk9eu3Gle/lhB1S6SfK7PTrzI1/8ss6aybdt2Hv2ffRLO3tHHrbmOpXu4hf25mfducvHK91/3b90pZskW5WmXi71ts75/jn3fqXSTZI/fr3zu/rEyztrtq65fr1KN0n+cmhnf8491uit3/7Gyzt7wl6yb2cc49CP9dbGLfOxzvfkE+t23ln1/i/25rT8z6ad/f03feullW6S/O3rnfdTvuPRj1a6H/1Nbw74Tgd39rGd+fgLK92Nf9lZF54kH7+1827tX+7Q2c8+ST7/YGeu6I37n17p/n6lP1e6STJ/885Y+7mrdK7DH7j/jZVukiz3WGf/i+9t2tn7Ikk22avzOzXuG53v368275wvkuSaDTrjfR87vvPOuPvX7V1vLfuLzrsZ3vqbzvkiSd7y5kcr3YUHddZM3n1L7xn2y47ofJY/9IrOXMOhg3r7lm+4SmcvpbV/0JknkCT7ndHZr/TSyZ090m6a1dsf99wxv6t0/3z/7pXurV/8VKWbJCtu9GSl+4anO9eeSXL8GZ1rgavf09kHa98XvbHSTZIXDTrrA143qfPc7yXb3lvpJsnww7+vdJ96+SWVbpK85rLOng8Xjt2k0j3zibdWuknymXVa79bofC7+tHRnDmqS3L1UZw3iS3fvXSNuvWnnmuvRRzu/f69/tHMdkCR3Hjen0n3RWkdVuneu1ukmySGv6LzHep2vv7vSTZLXbHJ4J/y3/+4d55OnLJPNtthvCR9MMvfSzjsBkuSRDd5U6V51Z2et5UY79p5XTDunszfXd0rX70ny5e935s6u9P3OGoszjnxOpZskHzmvs+/CUef/d+eD/5MdNp5c6SbJYXM+UOm+dYcZlW6SnP/8zvj/TsOduWpH7tDZUztJ/rj3WZXuaw/qPFM/7su95xVffeTLle6G2/Xe2X3fmzvvAH37CztzF67asbdu/wtbdvYsffgHm1a6T250bqWbJKe+qnP/vPiXnf2zkuSEOzrvp9z6npMq3eXed26lmyTT3trZP/mfe7+40l3221Mq3SQ5aG5nbdUF53XeX54kbz22s27k9Ec73f0P7a2tWvHazhrEO9abVemude2tlW6SDF3Z2cPgdad0xniTZONZnXcQ/vgdnb3L7/3NyZVuktz3aGdvmS1O6bzz+dl7z690k+SqdTv3lV/+bucdXkly7L6dMa5rfvRApXv82N67Yl5wf2e+zJzTOu/XOL2zDWqS5MS/dt6bs8mgd43x69J7qr9/2Wsq3bVf8otKN0kemNfZs+0jMztrG5/4Qm/e8+Y3dK7xj/t4Z/1okmy5YeedZuu8rbNH57XXLFvpJskzd3bWQP1uv1dUuj++7IZKN0luO66zr/b0FXt7Oy28vHP9+Yl9OvP2nliutxfBW5/s7Mvwps909sV76mtfq3ST5PpXdNamHvjKoyrdJLnrgs47zD+9dGdd+I+P7b0b81dTO8+aP/v2Yyrdw37dWeOZJD96feca/6jf9J4PnPSdyyrdTb7RWcv+4k/03nt01NhjKt2nX35zpXvChZ+tdJPkkr07430PTHplpZsk79zu4Ep3sGfnPaHTLu7tkTtrh8656NxTD6h0d35b73n+mbd15ief/87e4MvOC46odOf9sPM88cAneu9P32b5znPb77zzkUp3/vMOqnSTZJmbd650x6zVmWeVJM+/svMOy8OmdcZqv7JMb83rtyZuV+l+ecXOGP4K63TudZLklJP/Vum+4LTec9tVduhcCyRb/2//r4PS/zcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+H/KYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAD/v3bt2AZhAAaiqOMdqNl/LGqGMAtQoEjEOem92pb+AAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAgt4OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEvR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmOmfn9+DjeVfX6Xw4AAAAAAAAAAAAAQFVVPWfmcebR7hkAAAAAAAAAAAAAuMip3bPNMwAAAAAAAAAAAABwIbtnAAAAAAAAAAAAAODu7J4BAAAAAAAAAAAAgLv7uns+ZmYjBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACi9HYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTo7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASNDbAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQoLcDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBBbwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQILeDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACABL0dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJejsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABL0dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJPgAop2Qe2uDH7UAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot([get_noisy_image(x_start, Tensor([t])) for t in [0, 50, 100, 150, 199]])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "这意味着我们现在可以定义给定模型的损失函数,如下所示:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def p_losses(unet_model, x_start, t, noise=None):\n", - " if noise is None:\n", - " noise = randn_like(x_start)\n", - " x_noisy = q_sample(x_start=x_start, t=t, noise=noise)\n", - " predicted_noise = unet_model(x_noisy, t)\n", - "\n", - " loss = nn.SmoothL1Loss()(noise, predicted_noise)# todo\n", - " loss = loss.reshape(loss.shape[0], -1)\n", - " loss = loss * extract(p2_loss_weight, t, loss.shape)\n", - " return loss.mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "`denoise_model`将是我们上面定义的U-Net。我们将在真实噪声和预测噪声之间使用Huber损失。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 数据准备与处理\n", - "\n", - "在这里我们定义一个正则数据集。数据集可以来自简单的真实数据集的图像组成,如Fashion-MNIST、CIFAR-10或ImageNet,其中线性缩放为 $[−1, 1]$。\n", - "\n", - "每个图像的大小都会调整为相同的大小。有趣的是,图像也是随机水平翻转的。根据论文内容:我们在CIFAR10的训练中使用了随机水平翻转;我们尝试了有翻转和没有翻转的训练,并发现翻转可以稍微提高样本质量。\n", - "\n", - "本实验我们选用Fashion_MNIST数据集,我们使用download下载并解压Fashion_MNIST数据集到指定路径。此数据集由已经具有相同分辨率的图像组成,即28x28。" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip (29.4 MB)\n", - "\n", - "file_sizes: 100%|██████████████████████████| 30.9M/30.9M [00:00<00:00, 43.4MB/s]\n", - "Extracting zip file...\n", - "Successfully downloaded / unzipped to ./\n" - ] - } - ], - "source": [ - "# 下载MNIST数据集\n", - "url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip'\n", - "path = download(url, './', kind=\"zip\", replace=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "from mindspore.dataset import FashionMnistDataset\n", - "\n", - "image_size = 28\n", - "channels = 1\n", - "batch_size = 16\n", - "\n", - "fashion_mnist_dataset_dir = \"./dataset\"\n", - "dataset = FashionMnistDataset(dataset_dir=fashion_mnist_dataset_dir, usage=\"train\", num_parallel_workers=cpu_count(), shuffle=True, num_shards=1, shard_id=0)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "接下来,我们定义一个transform操作,将在整个数据集上动态应用该操作。该操作应用一些基本的图像预处理:随机水平翻转、重新调整,最后使它们的值在 $[-1,1]$ 范围内。" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "transforms = [\n", - " RandomHorizontalFlip(),\n", - " ToTensor(),\n", - " lambda t: (t * 2) - 1\n", - "]\n", - "\n", - "\n", - "dataset = dataset.project('image')\n", - "dataset = dataset.shuffle(64)\n", - "dataset = dataset.map(transforms, 'image')\n", - "dataset = dataset.batch(16, drop_remainder=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dict_keys(['image'])\n" - ] - } - ], - "source": [ - "x = next(dataset.create_dict_iterator())\n", - "print(x.keys())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 采样\n", - "\n", - "由于我们将在训练期间从模型中采样(以便跟踪进度),我们定义了下面的代码。采样在本文中总结为算法2:\n", - "\n", - "![Image-5](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_5.png)\n", - "\n", - "从扩散模型生成新图像是通过反转扩散过程来实现的:我们从$T$开始,我们从高斯分布中采样纯噪声,然后使用我们的神经网络逐渐去噪(使用它所学习的条件概率),直到我们最终在时间步$t = 0$结束。如上图所示,我们可以通过使用我们的噪声预测器插入平均值的重新参数化,导出一个降噪程度较低的图像\n", - "$\\mathbf{x}_{t-1 }$。请注意,方差是提前知道的。\n", - "\n", - "理想情况下,我们最终会得到一个看起来像是来自真实数据分布的图像。\n", - "\n", - "下面的代码实现了这一点。" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def p_sample(model, x, t, t_index):\n", - " betas_t = extract(betas, t, x.shape)\n", - " sqrt_one_minus_alphas_cumprod_t = extract(\n", - " sqrt_one_minus_alphas_cumprod, t, x.shape\n", - " )\n", - " sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)\n", - " model_mean = sqrt_recip_alphas_t * (x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t)\n", - "\n", - " if t_index == 0:\n", - " return model_mean\n", - " posterior_variance_t = extract(posterior_variance, t, x.shape)\n", - " noise = randn_like(x)\n", - " return model_mean + ops.sqrt(posterior_variance_t) * noise\n", - "\n", - "def p_sample_loop(model, shape):\n", - " b = shape[0]\n", - " # 从纯噪声开始\n", - " img = randn(shape, dtype=None)\n", - " imgs = []\n", - "\n", - " for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step', total=timesteps):\n", - " img = p_sample(model, img, ms.numpy.full((b,), i, dtype=mstype.int32), i)\n", - " imgs.append(img.asnumpy())\n", - " return imgs\n", - "\n", - "def sample(model, image_size, batch_size=16, channels=3):\n", - " return p_sample_loop(model, shape=(batch_size, channels, image_size, image_size))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "请注意,上面的代码是原始实现的简化版本。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 训练过程" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "下面,我们开始训练吧!" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "# 定义动态学习率\n", - "lr = nn.cosine_decay_lr(min_lr=1e-7, max_lr=1e-4, total_step=10*3750, step_per_epoch=3750, decay_epoch=10)\n", - "\n", - "# 定义 Unet模型\n", - "unet_model = Unet(\n", - " dim=image_size,\n", - " channels=channels,\n", - " dim_mults=(1, 2, 4,)\n", - ")\n", - "\n", - "name_list = []\n", - "for (name, par) in list(unet_model.parameters_and_names()):\n", - " name_list.append(name)\n", - "i = 0\n", - "for item in list(unet_model.trainable_params()):\n", - " item.name = name_list[i]\n", - " i += 1\n", - "\n", - "# 定义优化器\n", - "optimizer = nn.Adam(unet_model.trainable_params(), learning_rate=lr)\n", - "loss_scaler = DynamicLossScaler(65536, 2, 1000)\n", - "\n", - "# 定义前向过程\n", - "def forward_fn(data, t, noise=None):\n", - " loss = p_losses(unet_model, data, t, noise)\n", - " return loss\n", - "\n", - "# 计算梯度\n", - "grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=False)\n", - "\n", - "# 梯度更新\n", - "def train_step(data, t, noise):\n", - " loss, grads = grad_fn(data, t, noise)\n", - " optimizer(grads)\n", - " return loss" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " epoch: 0 step: 0 Loss: 0.43375123\n", - " epoch: 0 step: 500 Loss: 0.113769315\n", - " epoch: 0 step: 1000 Loss: 0.08649178\n", - " epoch: 0 step: 1500 Loss: 0.067664884\n", - " epoch: 0 step: 2000 Loss: 0.07234038\n", - " epoch: 0 step: 2500 Loss: 0.043936778\n", - " epoch: 0 step: 3000 Loss: 0.058127824\n", - " epoch: 0 step: 3500 Loss: 0.049789283\n", - "training time: 922.3438229560852 s\n", - " epoch: 1 step: 0 Loss: 0.05088563\n", - " epoch: 1 step: 500 Loss: 0.051174678\n", - " epoch: 1 step: 1000 Loss: 0.04455947\n", - " epoch: 1 step: 1500 Loss: 0.055165425\n", - " epoch: 1 step: 2000 Loss: 0.043942295\n", - " epoch: 1 step: 2500 Loss: 0.03274461\n", - " epoch: 1 step: 3000 Loss: 0.048117325\n", - " epoch: 1 step: 3500 Loss: 0.063063145\n", - "training time: 937.5596783161163 s\n", - " epoch: 2 step: 0 Loss: 0.052893892\n", - " epoch: 2 step: 500 Loss: 0.05721748\n", - " epoch: 2 step: 1000 Loss: 0.057248186\n", - " epoch: 2 step: 1500 Loss: 0.048806388\n", - " epoch: 2 step: 2000 Loss: 0.05007638\n", - " epoch: 2 step: 2500 Loss: 0.04337231\n", - " epoch: 2 step: 3000 Loss: 0.043207955\n", - " epoch: 2 step: 3500 Loss: 0.034530163\n", - "training time: 947.6374666690826 s\n", - " epoch: 3 step: 0 Loss: 0.04867614\n", - " epoch: 3 step: 500 Loss: 0.051636297\n", - " epoch: 3 step: 1000 Loss: 0.03338969\n", - " epoch: 3 step: 1500 Loss: 0.0420174\n", - " epoch: 3 step: 2000 Loss: 0.052145053\n", - " epoch: 3 step: 2500 Loss: 0.03905913\n", - " epoch: 3 step: 3000 Loss: 0.07621498\n", - " epoch: 3 step: 3500 Loss: 0.06484105\n", - "training time: 957.7780408859253 s\n", - " epoch: 4 step: 0 Loss: 0.046281893\n", - " epoch: 4 step: 500 Loss: 0.03783619\n", - " epoch: 4 step: 1000 Loss: 0.0587488\n", - " epoch: 4 step: 1500 Loss: 0.06974746\n", - " epoch: 4 step: 2000 Loss: 0.04299112\n", - " epoch: 4 step: 2500 Loss: 0.027945498\n", - " epoch: 4 step: 3000 Loss: 0.045338146\n", - " epoch: 4 step: 3500 Loss: 0.06362417\n", - "training time: 955.6116819381714 s\n", - " epoch: 5 step: 0 Loss: 0.04781142\n", - " epoch: 5 step: 500 Loss: 0.032488734\n", - " epoch: 5 step: 1000 Loss: 0.061507083\n", - " epoch: 5 step: 1500 Loss: 0.039130375\n", - " epoch: 5 step: 2000 Loss: 0.034972396\n", - " epoch: 5 step: 2500 Loss: 0.039485026\n", - " epoch: 5 step: 3000 Loss: 0.06690869\n", - " epoch: 5 step: 3500 Loss: 0.05355365\n", - "training time: 951.7758958339691 s\n", - " epoch: 6 step: 0 Loss: 0.04807706\n", - " epoch: 6 step: 500 Loss: 0.021469856\n", - " epoch: 6 step: 1000 Loss: 0.035354104\n", - " epoch: 6 step: 1500 Loss: 0.044303045\n", - " epoch: 6 step: 2000 Loss: 0.040063944\n", - " epoch: 6 step: 2500 Loss: 0.02970439\n", - " epoch: 6 step: 3000 Loss: 0.041152682\n", - " epoch: 6 step: 3500 Loss: 0.02062454\n", - "training time: 955.2220208644867 s\n", - " epoch: 7 step: 0 Loss: 0.029668871\n", - " epoch: 7 step: 500 Loss: 0.028485576\n", - " epoch: 7 step: 1000 Loss: 0.029675964\n", - " epoch: 7 step: 1500 Loss: 0.052743085\n", - " epoch: 7 step: 2000 Loss: 0.03664278\n", - " epoch: 7 step: 2500 Loss: 0.04454907\n", - " epoch: 7 step: 3000 Loss: 0.043067697\n", - " epoch: 7 step: 3500 Loss: 0.0619511\n", - "training time: 952.6654670238495 s\n", - " epoch: 8 step: 0 Loss: 0.055328347\n", - " epoch: 8 step: 500 Loss: 0.035807922\n", - " epoch: 8 step: 1000 Loss: 0.026412832\n", - " epoch: 8 step: 1500 Loss: 0.051044375\n", - " epoch: 8 step: 2000 Loss: 0.05474911\n", - " epoch: 8 step: 2500 Loss: 0.044595096\n", - " epoch: 8 step: 3000 Loss: 0.034082986\n", - " epoch: 8 step: 3500 Loss: 0.02653109\n", - "training time: 961.9374921321869 s\n", - " epoch: 9 step: 0 Loss: 0.039675284\n", - " epoch: 9 step: 500 Loss: 0.046295933\n", - " epoch: 9 step: 1000 Loss: 0.031403508\n", - " epoch: 9 step: 1500 Loss: 0.028816734\n", - " epoch: 9 step: 2000 Loss: 0.06530296\n", - " epoch: 9 step: 2500 Loss: 0.051451046\n", - " epoch: 9 step: 3000 Loss: 0.037913296\n", - " epoch: 9 step: 3500 Loss: 0.030541396\n", - "training time: 974.643147945404 s\n", - "Training Success!\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAATgElEQVR4nO3dW2xV55UH8P+yMTebGAzGcbgMlxhFMFJo5JBIRVEiFEQhElRRovJQUSka96GVWomHiTKKyMtIUTRtpw9RFRhQ6ahDVaklQVEUlSKUqFFShUQMNzcDg3CwMXbAXIzBXMyaB286DvFey5x9ztkHr/9PQjZn+Tvn87aX9zln7fV9oqogovGvKu8JEFF5MNmJgmCyEwXBZCcKgslOFMSEcj6YiGhVVeF/X6zKgYgUfL+lVlNTY8br6uoyjZ8wIf3HWFtba469ceOGGR8cHDTj9fX1Ztz6ed+8edMcOzAwYMbPnTtnxoeGhlJj47UKdfv2bajqqMmQKdlFZA2AXwKoBvAfqvq69fVVVVWYPHlywY+XJdm9uPfDt8Z79z1nzhwz/uSTT5rxuXPnmvFZs2alxlasWGGOPXnypBk/fvy4GV+3bp0Znzp1amrs7Nmz5thPPvnEjG/fvt2MX7p0KTV2/fp1c+z9yvrjXPBpVkSqAbwJ4DsAlgLYKCJLC70/IiqtLK/ZVwA4oaonVfUGgN8BWF+caRFRsWVJ9jkATo/4f2dy29eISJuIHBCRA+P1dRLR/aDkb9Cp6lYAWwGgurqa2U6Ukyxn9i4A80b8f25yGxFVoCzJ/imAFhFZKCITAXwPwJ7iTIuIik2yvI4WkbUA/h3Dpbcdqvqv1tdXV1erVXrLUv4qNauEtWrVKnOsV4ueNGmSGbdKawBw/vz51Nj8+fPNsc3NzWZ8wYIFZtwrzTU2NqbGOjs7Cx4LAIcPHzbjb7/9dmps9+7d5ljvd7FS338aHBzE0NBQ8evsqvoegPey3AcRlQcvlyUKgslOFASTnSgIJjtREEx2oiCY7ERBZKqz3yuvzp5F1hbXDRs2mPEnnngiNeb16Ft1cMDv666uri447h1v776nT59uxleuXGnG33///dSY97t3+fJlM261zwL2NQJbtmwxx3qtv1mv+ShV3ll1dp7ZiYJgshMFwWQnCoLJThQEk50oCCY7URDjpvQ2hsc246+++qoZt1bt9JY89o6xd0y85Z6tMlBTU5M51lum2vvevOM6bdq0gu/bOy59fX1m/OrVq6kxb8XeN99804yXsjSXJSdZeiMiJjtRFEx2oiCY7ERBMNmJgmCyEwXBZCcKoqxbNufJq3t62yZbNWGvxdWrm1pbCwP+tslTpkxJjR09etQc+8wzz5jxlpYWM75r1y4z/tRTT6XGHnzwQXPsxx9/bMazbBfttc8+++yzZvytt94y45W41DTP7ERBMNmJgmCyEwXBZCcKgslOFASTnSgIJjtREGHq7LNnzzbjXq3c6in3esK9fnSr7xoALl26ZMZv376dGrt27Zo59o033jDj3pbN3pbP27ZtS4298MIL5tilS5eacU9HR0dq7OLFi+ZYb5vsSt5ePE2mZBeRUwD6AQwBuKWqrcWYFBEVXzHO7M+o6rki3A8RlRBfsxMFkTXZFcCfROQzEWkb7QtEpE1EDojIgUq8XpgoiqxP41eqapeIzAawV0T+pqofjvwCVd0KYCswvOBkxscjogJlOrOralfysRfAbgArijEpIiq+gpNdRGpFZNqdzwGsBnCkWBMjouLK8jS+CcDupJ44AcB/qWr6/rw5W7RokRn36qJWHd4bW1tba8avXLlixjs7O8249fhejd9be/3gwYNmfOPGjWbc2urae+zHHnvMjH/00Udm3FonwFrPHgAmTpxoxrOuYZCHgpNdVU8CeLSIcyGiEmLpjSgIJjtREEx2oiCY7ERBMNmJghg3La5e+ctrcfXaSCdNmnTPc7rDWyp6wgT7x3DhwgUzbi01vXDhQnOsV97yjpvVRgrYS1k///zz5tj337crudYS2gAwc+bM1JjVFgz4y3d7P7ObN2+a8TzwzE4UBJOdKAgmO1EQTHaiIJjsREEw2YmCYLITBTFu6uxeS2FjY6MZ97bwnTp1amrMa5f84osvzLi3XfT06dMLjnvts17ca/Xs7e0141Z77qFDh8yx3nHxro24detWasxbKjrLNtkA6+xElCMmO1EQTHaiIJjsREEw2YmCYLITBcFkJwpi3NTZPV692Os5t2q2Xq971u19vZ70c+fS99X0tmy2vi/Av/7A6+tevHhxasxbSrq/v9+M19fXm3Hr+oPq6mpz7MDAgBn3xlcintmJgmCyEwXBZCcKgslOFASTnSgIJjtREEx2oiDC1Nm9WrdXN7Xijz5qb2b77rvvmvF169aZ8fb2djNu1aO9WrR3fUFLS4sZ965fsHr9vV76np4eM+6Nt3rOs1xXAfhrDHjXEHjXVpSCe2YXkR0i0isiR0bc1iAie0XkePJxRmmnSURZjeVp/K8BrLnrtpcB7FPVFgD7kv8TUQVzk11VPwRw93OS9QB2Jp/vBLChuNMiomIr9DV7k6p2J5+fBdCU9oUi0gagLfm8wIcjoqwyvxuvw+98pb77papbVbVVVVuZ7ET5KTTZe0SkGQCSj/YSo0SUu0KTfQ+ATcnnmwC8U5zpEFGpuK/ZRWQXgKcBzBKRTgBbALwO4Pci8hKADgAvlnKSxeC9hPD6sq2e9fPnz5tjvTXEvfXTvb3Er1+/nhpbtmyZObahocGMP/DAA2b89OnTZtyqlXvr7Xs1/Cw95d7vg3d9gjf3SuQmu6puTAmtKvJciKiEeLksURBMdqIgmOxEQTDZiYJgshMFcV+1uFptql7prKrK/rvmlceslkZv6+DNmzeb8WPHjpnx+fPnm/E1a+7uU/p/XnustRX1WMbPmzfPjFs/lxs3bphjH3/8cTP+wQcfmPHm5ubU2KlTp8yxkydPNuP3Y+mNZ3aiIJjsREEw2YmCYLITBcFkJwqCyU4UBJOdKIiy1tlV1ayVe22HVjzrKjjessTW0sJffvmlOXb//v1m3Gsj9e7finttohcvXjTjXi3ca5G1Hn/27NnmWG+55xkz7EWNFy1alBrzavRLliwx4157bSWuysQzO1EQTHaiIJjsREEw2YmCYLITBcFkJwqCyU4URFnr7CJSsvpjTU2NGa+rqzPj165dM+PW9QHWUs6A3zPu1ZPnzJljxq06vddrb9WiAaC3197/w7t/qw7v1fC9awRWr15txq0luL0tmb06uvf7Vol4ZicKgslOFASTnSgIJjtREEx2oiCY7ERBMNmJgriv1o23NDY2mnFvHXBvW2QrPmXKFHOsF/dqvt6a+NbcvFq1V0f3rovI0tftjfVq+NZ20ADw3HPPpcZmzZpljvXmZl13UancM7uI7BCRXhE5MuK210SkS0QOJv/WlnaaRJTVWJ7G/xrAaFuO/EJVlyf/3ivutIio2NxkV9UPAfSVYS5EVEJZ3qD7sYgcSp7mpy4GJiJtInJARA7cj69ziMaLQpP9VwAWA1gOoBvAz9K+UFW3qmqrqrZW4iJ8RFEUlOyq2qOqQ6p6G8A2ACuKOy0iKraCkl1ERu6F+10AR9K+logqg1tnF5FdAJ4GMEtEOgFsAfC0iCwHoABOAfhh6aY4Nt7a614t2+tPtmrdM2fONMf29dnvb06aNMmMe/3uVj+9V2e/evWqGff2rffmbr1P483Ne4+no6PDjFt7ATzyyCOZHturw1ciN9lVdeMoN28vwVyIqIR4uSxREEx2oiCY7ERBMNmJgmCyEwUxblpc6+vrzbhXvsqydPDAwIA51mtR9R7bW3LZanEdHBw0x3rLXPf395tx73uzrpr02opra2vNeHd3txm3luD2Smve9+WVDb2rRfO4dJxndqIgmOxEQTDZiYJgshMFwWQnCoLJThQEk50oiHFTZ8/Saglkq3V79WKv5urFq6rsv8lW3Pu+vdbfrOOtY+O113o/0xMnTphx67h6NXzv2gmvpboS8cxOFASTnSgIJjtREEx2oiCY7ERBMNmJgmCyEwUxbursXl+21xPusfqbvXpx1t7pLL3RWa8v8NYByLIMtnffdXV1ZtzrZz9z5kxqzNtG+/z582Z8+vTpZpz97ESUGyY7URBMdqIgmOxEQTDZiYJgshMFwWQnCuK+qrNn6U/2es69eKnGAv41AFlq5d765l6te/LkyQU/NpBt3fisWzofPnw4NebV2bu6usy4t8aAN3dvPf9ScM/sIjJPRPaLyDEROSoiP0lubxCRvSJyPPk4o/TTJaJCjeVp/C0Am1V1KYAnAfxIRJYCeBnAPlVtAbAv+T8RVSg32VW1W1U/Tz7vB9AOYA6A9QB2Jl+2E8CGEs2RiIrgnl6zi8gCAN8C8FcATap65+LkswCaUsa0AWhLPi94okSUzZjfjReROgB/APBTVb08MqbD75SM+m6Jqm5V1VZVbWWyE+VnTMkuIjUYTvTfquofk5t7RKQ5iTcD6C3NFImoGNyn8TJ8Ot4OoF1Vfz4itAfAJgCvJx/fKckMvz6X1JjXDukteey1LFq8Ms7FixfNuFfG8dpIrePilcZu3rxZ8H0Dfnuudf9eyXHatGlmvLGx0Yxbc/PKft7PxPuZe0tN51F6G8tr9m8D+D6AwyJyMLntFQwn+e9F5CUAHQBeLMkMiago3GRX1b8ASPvzvqq40yGiUuHlskRBMNmJgmCyEwXBZCcKgslOFMR91eJq8eqi3lLT9fX1Ztyqdff19Zljvbl5siw77NWD+/v7zbhXZ/daZK3vPevPzKuznz59OjU2Y4bdpOkdN29u3nUfPT09qbFSXWnKMztREEx2oiCY7ERBMNmJgmCyEwXBZCcKgslOFERF1dlLuY2td99evfjChQupsStXrphjs/aMe6y5X7t2LdN919TUFPzYgN1T7i3/feTIETPuLXP91VdfpcYaGhrMsV4/+vXr1814JeKZnSgIJjtREEx2oiCY7ERBMNmJgmCyEwXBZCcKoqLq7Fnqzd4WuV5d1KvDW33fXi+8V2fPWrO1jpu3Xr5Xq/bm5o231ob31rT3esa9tf6tnnTv98XrZ/fWnfe+tyys31UrxjM7URBMdqIgmOxEQTDZiYJgshMFwWQnCoLJThTEWPZnnwfgNwCaACiArar6SxF5DcA/AbjTNPyKqr5XqokC9jrjS5YsMcf29vaaca8uavWsezVXj7d+ulcrt+buXbvg7ZFeyjUGvO/L28O8ubnZjJ85cyY1NnfuXHOsd1y8x/a+tyysn6kVG8tFNbcAbFbVz0VkGoDPRGRvEvuFqv7bvUyUiPIxlv3ZuwF0J5/3i0g7gDmlnhgRFdc9vWYXkQUAvgXgr8lNPxaRQyKyQ0RG3U9HRNpE5ICIHCjlU0Iiso052UWkDsAfAPxUVS8D+BWAxQCWY/jM/7PRxqnqVlVtVdXWUu1hRUS+MSW7iNRgONF/q6p/BABV7VHVIVW9DWAbgBWlmyYRZeUmuwyfjrcDaFfVn4+4feTbkd8FYC8FSkS5Gsu78d8G8H0Ah0XkYHLbKwA2ishyDJfjTgH4YQnm9zVWiaujo8Mc65VKvFZNawter4XVe6/CK/N4ZUGrHdMr63lzy9rKaR03b9tkr8V1YGDAjFutxw8//LA51loCG/BbZL0lvPN4STuWd+P/AmC0mZW0pk5ExcUr6IiCYLITBcFkJwqCyU4UBJOdKAgmO1EQUs7r1auqqtSrZ1us2qS3tbBXV122bJkZt+rJDz30kDnWq9l6NVevlm3V6b1WS68On2VLZgC4dOlSasy7PqGnp8eMW1syA0B7e7sZz8L7fbOWHgfs6xey1OAHBwcxNDQ06h3wzE4UBJOdKAgmO1EQTHaiIJjsREEw2YmCYLITBVHWOruIfAVgZOP5LADnyjaBe1Opc6vUeQGcW6GKObd/UNXG0QJlTfZvPPjwIpStuU3AUKlzq9R5AZxboco1Nz6NJwqCyU4URN7JvjXnx7dU6twqdV4A51aosswt19fsRFQ+eZ/ZiahMmOxEQeSS7CKyRkS+EJETIvJyHnNIIyKnROSwiBwUkQM5z2WHiPSKyJERtzWIyF4ROZ58tBdfL+/cXhORruTYHRSRtTnNbZ6I7BeRYyJyVER+ktye67Ez5lWW41b21+wiUg3gfwA8C6ATwKcANqrqsbJOJIWInALQqqq5X4AhIk8BuALgN6r6j8ltbwDoU9XXkz+UM1T1nytkbq8BuJL3Nt7JbkXNI7cZB7ABwA+Q47Ez5vUiynDc8jizrwBwQlVPquoNAL8DsD6HeVQ8Vf0QQN9dN68HsDP5fCeGf1nKLmVuFUFVu1X18+TzfgB3thnP9dgZ8yqLPJJ9DoDTI/7ficra710B/ElEPhORtrwnM4omVe1OPj8LoCnPyYzC3ca7nO7aZrxijl0h259nxTfovmmlqj4G4DsAfpQ8Xa1IOvwarJJqp2PaxrtcRtlm/O/yPHaFbn+eVR7J3gVg3oj/z01uqwiq2pV87AWwG5W3FXXPnR10k4+9Oc/n7yppG+/RthlHBRy7PLc/zyPZPwXQIiILRWQigO8B2JPDPL5BRGqTN04gIrUAVqPytqLeA2BT8vkmAO/kOJevqZRtvNO2GUfOxy737c9Vtez/AKzF8Dvy/wvgX/KYQ8q8FgH47+Tf0bznBmAXhp/W3cTwexsvAZgJYB+A4wD+DKChgub2nwAOAziE4cRqzmluKzH8FP0QgIPJv7V5HztjXmU5brxcligIvkFHFASTnSgIJjtREEx2oiCY7ERBMNmJgmCyEwXxf6WpwXV/0VtrAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import time\n", - "\n", - "epochs = 10\n", - "\n", - "iterator = dataset.create_tuple_iterator(num_epochs=epochs)\n", - "for epoch in range(epochs):\n", - " begin_time = time.time()\n", - " for step, batch in enumerate(iterator):\n", - " unet_model.set_train()\n", - " batch_size = batch[0].shape[0]\n", - " t = randint(0, timesteps, (batch_size,), dtype=ms.int32)\n", - " noise = randn_like(batch[0])\n", - " loss = train_step(batch[0], t, noise)\n", - "\n", - " if step % 500 == 0:\n", - " print(\" epoch: \", epoch, \" step: \", step, \" Loss: \", loss)\n", - " end_time = time.time()\n", - " times = end_time - begin_time\n", - " print(\"training time:\", times, \"s\")\n", - " # 展示随机采样效果\n", - " unet_model.set_train(False)\n", - " samples = sample(unet_model, image_size=image_size, batch_size=64, channels=channels)\n", - " plt.imshow(samples[-1][5].reshape(image_size, image_size, channels), cmap=\"gray\")\n", - "print(\"Training Success!\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 推理过程(从模型中采样)\n", - "\n", - "要从模型中采样,我们可以只使用上面定义的采样函数:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4641cfe838584e8b84e3ba83a8872e2b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "sampling loop time step: 0%| | 0/200 [00:00" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_diffusion.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_diffusion.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/diffusion.ipynb)\n", + "\n", + "# Diffusion扩散模型\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "本文基于[Hugging Face:The Annotated Diffusion Model](https://huggingface.co/blog/annotated-diffusion)一文翻译迁移而来,同时参考了[由浅入深了解Diffusion Model](https://zhuanlan.zhihu.com/p/525106459)一文。\n", + "\n", + "> 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件,执行Python文件时,请确保执行环境安装了GUI界面。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "关于扩散模型(Diffusion Models)有很多种理解,本文的介绍是基于denoising diffusion probabilistic model(DDPM),DDPM已经在(无)条件图像/音频/视频生成领域取得了较多显著的成果,现有的比较受欢迎的例子包括由OpenAI主导的[GLIDE](https://arxiv.org/abs/2112.10741)和[DALL-E 2](https://openai.com/dall-e-2/)、由海德堡大学主导的[潜在扩散](https://github.com/CompVis/latent-diffusion)和由Google Brain主导的[图像生成](https://imagen.research.google/)。\n", + "\n", + "实际上生成模型的扩散概念已经在([Sohl-Dickstein et al., 2015](https://arxiv.org/abs/1503.03585))中介绍过。然而,直到([Song et al., 2019](https://arxiv.org/abs/1907.05600))(斯坦福大学)和([Ho et al., 2020](https://arxiv.org/abs/2006.11239))(在Google Brain)才各自独立地改进了这种方法。\n", + "\n", + "本文是在Phil Wang[基于PyTorch框架的复现](https://github.com/lucidrains/denoising-diffusion-pytorch)的基础上(而它本身又是基于[TensorFlow实现](https://github.com/hojonathanho/diffusion)),迁移到MindSpore AI框架上实现的。\n", + "\n", + "![Image-1](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_1.png)\n", + "\n", + "实验中我们采用离散时间(潜在变量模型)的观点,另外,读者也可以查看有关于扩散模型的其他[几个观点](https://twitter.com/sedielem/status/1530894256168222722?s=20&t=mfv4afx1GcNQU5fZklpACw)!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "实验开始之前请确保安装并导入所需的库(假设您已经安装了[MindSpore](https://mindspore.cn/install)、download、dataset、matplotlib以及tqdm)。" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "import math\n", + "from functools import partial\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "from tqdm.auto import tqdm\n", + "import numpy as np\n", + "from multiprocessing import cpu_count\n", + "from download import download\n", + "\n", + "import mindspore as ms\n", + "import mindspore.nn as nn\n", + "import mindspore.ops as ops\n", + "from mindspore import Tensor, Parameter\n", + "from mindspore import dtype as mstype\n", + "from mindspore.dataset.vision import Resize, Inter, CenterCrop, ToTensor, RandomHorizontalFlip, ToPIL\n", + "from mindspore.common.initializer import initializer\n", + "from mindspore.amp import DynamicLossScaler\n", + "\n", + "ms.set_seed(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## 模型简介\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### 什么是Diffusion Model?\n", + "\n", + "如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。\n", + "Diffusion对于图像的处理包括以下两个过程:\n", + "\n", + "- 我们选择的固定(或预定义)正向扩散过程 $q$ :它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声\n", + "\n", + "- 一个学习的反向去噪的扩散过程 $p_\\theta$ :通过训练神经网络从纯噪声开始逐渐对图像去噪,直到最终得到一个实际的图像\n", + "\n", + "![Image-2](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_2.png)\n", + "\n", + "由 $t$ 索引的正向和反向过程都发生在某些有限时间步长 $T$(DDPM作者使用 $T=1000$)内。从$t=0$开始,在数据分布中采样真实图像 $\\mathbf{x}_0$(本文使用一张来自ImageNet的猫图像形象的展示了diffusion正向添加噪声的过程),正向过程在每个时间步长 $t$ 都从高斯分布中采样一些噪声,再添加到上一个时刻的图像中。假定给定一个足够大的 $T$ 和一个在每个时间步长添加噪声的良好时间表,您最终会在 $t=T$ 通过渐进的过程得到所谓的[各向同性的高斯分布](https://math.stackexchange.com/questions/1991961/gaussian-distribution-is-isotropic)。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### 扩散模型实现原理\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "#### Diffusion前向过程\n", + "\n", + "所谓前向过程,即向图片上加噪声的过程。虽然这个步骤无法做到图片生成,但这是理解diffusion model以及构建训练样本至关重要的一步。\n", + "首先我们需要一个可控的损失函数,并运用神经网络对其进行优化。\n", + "\n", + "设 $q(x_0)$ 是真实数据分布,由于 $x_0 \\sim q(x_0)$ ,所以我们可以从这个分布中采样以获得图像 $x_0$ 。接下来我们定义前向扩散过程 $q(x_t | x_{t-1})$ ,在前向过程中我们会根据已知的方差 ${0}<\\beta_{1}<\\beta_{2}< ... <\\beta_{T}<{1}$ 在每个时间步长 t 添加高斯噪声,由于前向过程的每个时刻 t 只与时刻 t-1 有关,所以也可以看做马尔科夫过程:\n", + "\n", + "$$\n", + "q(\\mathbf{x}_t | \\mathbf{x}_{t-1}) = \\mathcal{N}(\\mathbf{x}_t; \\sqrt{1 - \\beta_t} \\mathbf{x}_{t-1}, \\beta_t \\mathbf{I})\n", + "$$\n", + "\n", + "回想一下,正态分布(也称为高斯分布)由两个参数定义:平均值 $\\mu$ 和方差 $\\sigma^2 \\geq 0$ 。基本上,在每个时间步长 $t$ 处的产生的每个新的(轻微噪声)图像都是从条件高斯分布中绘制的,其中\n", + "\n", + "$$\n", + "q(\\mathbf{\\mu}_t) = \\sqrt{1 - \\beta_t} \\mathbf{x}_{t-1}\n", + "$$\n", + "\n", + "我们可以通过采样 $\\mathbf{\\epsilon} \\sim \\mathcal{N}(\\mathbf{0}, \\mathbf{I})$ 然后设置\n", + "\n", + "$$\n", + "q(\\mathbf{x}_t) = \\sqrt{1 - \\beta_t} \\mathbf{x}_{t-1} + \\sqrt{\\beta_t} \\mathbf{\\epsilon}\n", + "$$\n", + "\n", + "请注意, $\\beta_t$ 在每个时间步长 $t$ (因此是下标)不是恒定的:事实上,我们定义了一个所谓的“动态方差”的方法,使得每个时间步长的 $\\beta_t$ 可以是线性的、二次的、余弦的等(有点像动态学习率方法)。\n", + "\n", + "因此,如果我们适当设置时间表,从 $\\mathbf{x}_0$ 开始,我们最终得到 $\\mathbf{x}_1, ..., \\mathbf{x}_t, ..., \\mathbf{x}_T$,即随着 $t$ 的增大 $\\mathbf{x}_t$ 会越来越接近纯噪声,而 $\\mathbf{x}_T$ 就是纯高斯噪声。\n", + "\n", + "那么,如果我们知道条件概率分布 $p(\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ ,我们就可以反向运行这个过程:通过采样一些随机高斯噪声 $\\mathbf{x}_T$,然后逐渐去噪它,最终得到真实分布 $\\mathbf{x}_0$ 中的样本。但是,我们不知道条件概率分布 $p(\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ 。这很棘手,因为需要知道所有可能图像的分布,才能计算这个条件概率。\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Diffusion逆向过程\n", + "\n", + "为了解决上述问题,我们将利用神经网络来近似(学习)这个条件概率分布 $p_\\theta (\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ ,其中 $\\theta$ 是神经网络的参数。如果说前向过程(forward)是加噪的过程,那么逆向过程(reverse)就是diffusion的去噪推断过程,而通过神经网络学习并表示 $p_\\theta (\\mathbf{x}_{t-1} | \\mathbf{x}_t)$ 的过程就是Diffusion逆向去噪的核心。\n", + "\n", + "现在,我们知道了需要一个神经网络来学习逆向过程的(条件)概率分布。我们假设这个反向过程也是高斯的,任何高斯分布都由2个参数定义:\n", + "\n", + "- 由 $\\mu_\\theta$ 参数化的平均值\n", + "\n", + "- 由 $\\mu_\\theta$ 参数化的方差\n", + "\n", + "综上,我们可以将逆向过程公式化为\n", + "\n", + "$$\n", + "p_\\theta (\\mathbf{x}_{t-1} | \\mathbf{x}_t) = \\mathcal{N}(\\mathbf{x}_{t-1};\\mu_\\theta(\\mathbf{x}_{t},t), \\Sigma_\\theta (\\mathbf{x}_{t},t))\n", + "$$\n", + "\n", + "其中平均值和方差也取决于噪声水平 $t$ ,神经网络需要通过学习来表示这些均值和方差。\n", + "\n", + "- 注意,DDPM的作者决定保持方差固定,让神经网络只学习(表示)这个条件概率分布的平均值 $\\mu_\\theta$ 。\n", + "\n", + "- 本文我们同样假设神经网络只需要学习(表示)这个条件概率分布的平均值 $\\mu_\\theta$ 。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "为了导出一个目标函数来学习反向过程的平均值,作者观察到 $q$ 和 $p_\\theta$ 的组合可以被视为变分自动编码器(VAE)。因此,变分下界(也称为ELBO)可用于最小化真值数据样本 $\\mathbf{x}_0$ 的似然负对数(有关ELBO的详细信息,请参阅VAE论文[(Kingma等人,2013年)](https://arxiv.org/abs/1312.6114)),该过程的ELBO是每个时间步长的损失之和 $L=L_0+L_1+...+L_T$ ,其中,每项的损失 $L_t$(除了 $L_0$ )实际上是2个高斯分布之间的KL发散,可以明确地写为相对于均值的L2-loss!\n", + "\n", + "如Sohl-Dickstein等人所示,构建Diffusion正向过程的直接结果是我们可以在条件是 $\\mathbf{x}_0$ (因为高斯和也是高斯)的情况下,在任意噪声水平上采样 $\\mathbf{x}_t$ ,而不需要重复应用 $q$ 去采样 $\\mathbf{x}_t$ ,这非常方便。使用\n", + "\n", + "$$\n", + "\\\\\\alpha_t := 1 - \\beta_t\\\\\\\\\\bar{\\alpha}t := \\Pi_{s=1}^{t} \\alpha_s\\\\\n", + "$$\n", + "\n", + "我们就有\n", + "\n", + "$$ \n", + "q(\\mathbf{x}_t | \\mathbf{x}_0) = \\cal{N}(\\mathbf{x}_t; \\sqrt{\\bar{\\alpha}_t} \\mathbf{x}_0, (1- \\bar{\\alpha}_t) \\mathbf{I})\n", + "$$\n", + "\n", + "这意味着我们可以采样高斯噪声并适当地缩放它,然后将其添加到 $\\mathbf{x}_0$ 中,直接获得 $\\mathbf{x}_t$ 。\n", + "\n", + "请注意,$\\bar{\\alpha}_t$ 是已知 $\\beta_t$ 方差计划的函数,因此也是已知的,可以预先计算。这允许我们在训练期间优化损失函数 $L$ 的随机项。或者换句话说,在训练期间随机采样 $t$ 并优化 $L_t$ 。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "正如Ho等人所展示的那样,这种性质的另一个优点是可以重新参数化平均值,使神经网络学习(预测)构成损失的KL项中噪声的附加噪声。这意味着我们的神经网络变成了噪声预测器,而不是(直接)均值预测器。其中,平均值可以按如下方式计算:\n", + "\n", + "$$ \\mathbf{\\mu}_\\theta(\\mathbf{x}_t, t) = \\frac{1}{\\sqrt{\\alpha_t}} \\left( \\mathbf{x}_t - \\frac{\\beta_t}{\\sqrt{1- \\bar{\\alpha}_t}} \\mathbf{\\epsilon}_\\theta(\\mathbf{x}_t, t) \\right) $$\n", + "\n", + "最终的目标函数 ${L}_{t}$ 如下(随机步长 t 由 $({\\epsilon} \\sim N(\\mathbf{0}, \\mathbf{I}))$ 给定):\n", + "\n", + "$$ \\| \\mathbf{\\epsilon} - \\mathbf{\\epsilon}_\\theta(\\mathbf{x}_t, t) \\|^2 = \\| \\mathbf{\\epsilon} - \\mathbf{\\epsilon}_\\theta( \\sqrt{\\bar{\\alpha}_t} \\mathbf{x}_0 + \\sqrt{(1- \\bar{\\alpha}_t) } \\mathbf{\\epsilon}, t) \\|^2$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "在这里, $\\mathbf{x}_0$ 是初始(真实,未损坏)图像, $\\mathbf{\\epsilon}$ 是在时间步长 $t$ 采样的纯噪声,$\\mathbf{\\epsilon}_\\theta (\\mathbf{x}_t, t)$是我们的神经网络。神经网络是基于真实噪声和预测高斯噪声之间的简单均方误差(MSE)进行优化的。\n", + "\n", + "训练算法现在如下所示:\n", + "\n", + "![Image-3](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_3.png)\n", + "\n", + "换句话说:\n", + "\n", + "- 我们从真实未知和可能复杂的数据分布中随机抽取一个样本 $q(\\mathbf{x}_0)$\n", + "\n", + "- 我们均匀地采样$1$和$T$之间的噪声水平$t$(即,随机时间步长)\n", + "\n", + "- 我们从高斯分布中采样一些噪声,并使用上面定义的属性在 $t$ 时间步上破坏输入\n", + "\n", + "- 神经网络被训练以基于损坏的图像 $\\mathbf{x}_t$ 来预测这种噪声,即基于已知的时间表 $\\mathbf{x}_t$ 上施加的噪声\n", + "\n", + "实际上,所有这些都是在批数据上使用随机梯度下降来优化神经网络完成的。\n", + "\n", + "#### U-Net神经网络预测噪声\n", + "\n", + "神经网络需要在特定时间步长接收带噪声的图像,并返回预测的噪声。请注意,预测噪声是与输入图像具有相同大小/分辨率的张量。因此,从技术上讲,网络接受并输出相同形状的张量。那么我们可以用什么类型的神经网络来实现呢?\n", + "\n", + "这里通常使用的是非常相似的[自动编码器](https://en.wikipedia.org/wiki/Autoencoder),您可能还记得典型的\"深度学习入门\"教程。自动编码器在编码器和解码器之间有一个所谓的\"bottleneck\"层。编码器首先将图像编码为一个称为\"bottleneck\"的较小的隐藏表示,然后解码器将该隐藏表示解码回实际图像。这迫使网络只保留bottleneck层中最重要的信息。\n", + "\n", + "在模型结构方面,DDPM的作者选择了U-Net,出自([Ronneberger et al.,2015](https://arxiv.org/abs/1505.04597))(当时,它在医学图像分割方面取得了最先进的结果)。这个网络就像任何自动编码器一样,在中间由一个bottleneck组成,确保网络只学习最重要的信息。重要的是,它在编码器和解码器之间引入了残差连接,极大地改善了梯度流(灵感来自于([He et al., 2015](https://arxiv.org/abs/1512.03385)))。\n", + "\n", + "![Image-4](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_4.jpg)\n", + "\n", + "可以看出,U-Net模型首先对输入进行下采样(即,在空间分辨率方面使输入更小),之后执行上采样。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## 构建Diffusion模型\n", + "\n", + "下面,我们逐步构建Diffusion模型。\n", + "\n", + "首先,我们定义了一些帮助函数和类,这些函数和类将在实现神经网络时使用。" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def rearrange(head, inputs):\n", + " b, hc, x, y = inputs.shape\n", + " c = hc // head\n", + " return inputs.reshape((b, head, c, x * y))\n", + "\n", + "def rsqrt(x):\n", + " res = ops.sqrt(x)\n", + " return ops.inv(res)\n", + "\n", + "def randn_like(x, dtype=None):\n", + " if dtype is None:\n", + " dtype = x.dtype\n", + " res = ops.standard_normal(x.shape).astype(dtype)\n", + " return res\n", + "\n", + "def randn(shape, dtype=None):\n", + " if dtype is None:\n", + " dtype = ms.float32\n", + " res = ops.standard_normal(shape).astype(dtype)\n", + " return res\n", + "\n", + "def randint(low, high, size, dtype=ms.int32):\n", + " res = ops.uniform(size, Tensor(low, dtype), Tensor(high, dtype), dtype=dtype)\n", + " return res\n", + "\n", + "def exists(x):\n", + " return x is not None\n", + "\n", + "def default(val, d):\n", + " if exists(val):\n", + " return val\n", + " return d() if callable(d) else d\n", + "\n", + "def _check_dtype(d1, d2):\n", + " if ms.float32 in (d1, d2):\n", + " return ms.float32\n", + " if d1 == d2:\n", + " return d1\n", + " raise ValueError('dtype is not supported.')\n", + "\n", + "class Residual(nn.Cell):\n", + " def __init__(self, fn):\n", + " super().__init__()\n", + " self.fn = fn\n", + "\n", + " def construct(self, x, *args, **kwargs):\n", + " return self.fn(x, *args, **kwargs) + x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "我们还定义了上采样和下采样操作的别名。" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def Upsample(dim):\n", + " return nn.Conv2dTranspose(dim, dim, 4, 2, pad_mode=\"pad\", padding=1)\n", + "\n", + "def Downsample(dim):\n", + " return nn.Conv2d(dim, dim, 4, 2, pad_mode=\"pad\", padding=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### 位置向量\n", + "\n", + "由于神经网络的参数在时间(噪声水平)上共享,作者使用正弦位置嵌入来编码$t$,灵感来自Transformer([Vaswani et al., 2017](https://arxiv.org/abs/1706.03762))。对于批处理中的每一张图像,神经网络\"知道\"它在哪个特定时间步长(噪声水平)上运行。\n", + "\n", + "`SinusoidalPositionEmbeddings`模块采用`(batch_size, 1)`形状的张量作为输入(即批处理中几个有噪声图像的噪声水平),并将其转换为`(batch_size, dim)`形状的张量,其中`dim`是位置嵌入的尺寸。然后,我们将其添加到每个剩余块中。" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "class SinusoidalPositionEmbeddings(nn.Cell):\n", + " def __init__(self, dim):\n", + " super().__init__()\n", + " self.dim = dim\n", + " half_dim = self.dim // 2\n", + " emb = math.log(10000) / (half_dim - 1)\n", + " emb = np.exp(np.arange(half_dim) * - emb)\n", + " self.emb = Tensor(emb, ms.float32)\n", + "\n", + " def construct(self, x):\n", + " emb = x[:, None] * self.emb[None, :]\n", + " emb = ops.concat((ops.sin(emb), ops.cos(emb)), axis=-1)\n", + " return emb" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### ResNet/ConvNeXT块\n", + "\n", + "接下来,我们定义U-Net模型的核心构建块。DDPM作者使用了一个Wide ResNet块([Zagoruyko et al., 2016](https://arxiv.org/abs/1605.07146)),但Phil Wang决定添加ConvNeXT([Liu et al., 2022](https://arxiv.org/abs/2201.03545))替换ResNet,因为后者在图像领域取得了巨大成功。\n", + "\n", + "在最终的U-Net架构中,可以选择其中一个或另一个,本文选择ConvNeXT块构建U-Net模型。" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "class Block(nn.Cell):\n", + " def __init__(self, dim, dim_out, groups=1):\n", + " super().__init__()\n", + " self.proj = nn.Conv2d(dim, dim_out, 3, pad_mode=\"pad\", padding=1)\n", + " self.proj = c(dim, dim_out, 3, padding=1, pad_mode='pad')\n", + " self.norm = nn.GroupNorm(groups, dim_out)\n", + " self.act = nn.SiLU()\n", + "\n", + " def construct(self, x, scale_shift=None):\n", + " x = self.proj(x)\n", + " x = self.norm(x)\n", + "\n", + " if exists(scale_shift):\n", + " scale, shift = scale_shift\n", + " x = x * (scale + 1) + shift\n", + "\n", + " x = self.act(x)\n", + " return x\n", + "\n", + "class ConvNextBlock(nn.Cell):\n", + " def __init__(self, dim, dim_out, *, time_emb_dim=None, mult=2, norm=True):\n", + " super().__init__()\n", + " self.mlp = (\n", + " nn.SequentialCell(nn.GELU(), nn.Dense(time_emb_dim, dim))\n", + " if exists(time_emb_dim)\n", + " else None\n", + " )\n", + "\n", + " self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, group=dim, pad_mode=\"pad\")\n", + " self.net = nn.SequentialCell(\n", + " nn.GroupNorm(1, dim) if norm else nn.Identity(),\n", + " nn.Conv2d(dim, dim_out * mult, 3, padding=1, pad_mode=\"pad\"),\n", + " nn.GELU(),\n", + " nn.GroupNorm(1, dim_out * mult),\n", + " nn.Conv2d(dim_out * mult, dim_out, 3, padding=1, pad_mode=\"pad\"),\n", + " )\n", + "\n", + " self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()\n", + "\n", + " def construct(self, x, time_emb=None):\n", + " h = self.ds_conv(x)\n", + " if exists(self.mlp) and exists(time_emb):\n", + " assert exists(time_emb), \"time embedding must be passed in\"\n", + " condition = self.mlp(time_emb)\n", + " condition = condition.expand_dims(-1).expand_dims(-1)\n", + " h = h + condition\n", + "\n", + " h = self.net(h)\n", + " return h + self.res_conv(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### Attention模块\n", + "\n", + "接下来,我们定义Attention模块,DDPM作者将其添加到卷积块之间。Attention是著名的Transformer架构([Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)),在人工智能的各个领域都取得了巨大的成功,从NLP到[蛋白质折叠](https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology)。Phil Wang使用了两种注意力变体:一种是常规的multi-head self-attention(多头自注意力机制,如Transformer中使用的),另一种是[LinearAttention](https://github.com/lucidrains/linear-attention-transformer)([Shen et al., 2018](https://arxiv.org/abs/1812.01243)),其时间和内存要求在序列长度上线性缩放,而不是在常规注意力中缩放。\n", + "要想对Attention机制进行深入的了解,请参照Jay Allamar的[精彩的博文](https://jalammar.github.io/illustrated-transformer/)。" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "class Attention(nn.Cell):\n", + " def __init__(self, dim, heads=4, dim_head=32):\n", + " super().__init__()\n", + " self.scale = dim_head ** -0.5\n", + " self.heads = heads\n", + " hidden_dim = dim_head * heads\n", + "\n", + " self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)\n", + " self.to_out = nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True)\n", + " self.map = ops.Map()\n", + " self.partial = ops.Partial()\n", + "\n", + " def construct(self, x):\n", + " b, _, h, w = x.shape\n", + " qkv = self.to_qkv(x).chunk(3, 1)\n", + " q, k, v = self.map(self.partial(rearrange, self.heads), qkv)\n", + "\n", + " q = q * self.scale\n", + "\n", + " # 'b h d i, b h d j -> b h i j'\n", + " sim = ops.bmm(q.swapaxes(2, 3), k)\n", + " attn = ops.softmax(sim, axis=-1)\n", + " # 'b h i j, b h d j -> b h i d'\n", + " out = ops.bmm(attn, v.swapaxes(2, 3))\n", + " out = out.swapaxes(-1, -2).reshape((b, -1, h, w))\n", + "\n", + " return self.to_out(out)\n", + "\n", + "\n", + "class LayerNorm(nn.Cell):\n", + " def __init__(self, dim):\n", + " super().__init__()\n", + " self.g = Parameter(initializer('ones', (1, dim, 1, 1)), name='g')\n", + "\n", + " def construct(self, x):\n", + " eps = 1e-5\n", + " var = x.var(1, keepdims=True)\n", + " mean = x.mean(1, keep_dims=True)\n", + " return (x - mean) * rsqrt((var + eps)) * self.g\n", + "\n", + "\n", + "class LinearAttention(nn.Cell):\n", + " def __init__(self, dim, heads=4, dim_head=32):\n", + " super().__init__()\n", + " self.scale = dim_head ** -0.5\n", + " self.heads = heads\n", + " hidden_dim = dim_head * heads\n", + " self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)\n", + "\n", + " self.to_out = nn.SequentialCell(\n", + " nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True),\n", + " LayerNorm(dim)\n", + " )\n", + "\n", + " self.map = ops.Map()\n", + " self.partial = ops.Partial()\n", + "\n", + " def construct(self, x):\n", + " b, _, h, w = x.shape\n", + " qkv = self.to_qkv(x).chunk(3, 1)\n", + " q, k, v = self.map(self.partial(rearrange, self.heads), qkv)\n", + "\n", + " q = ops.softmax(q, -2)\n", + " k = ops.softmax(k, -1)\n", + "\n", + " q = q * self.scale\n", + " v = v / (h * w)\n", + "\n", + " # 'b h d n, b h e n -> b h d e'\n", + " context = ops.bmm(k, v.swapaxes(2, 3))\n", + " # 'b h d e, b h d n -> b h e n'\n", + " out = ops.bmm(context.swapaxes(2, 3), q)\n", + "\n", + " out = out.reshape((b, -1, h, w))\n", + " return self.to_out(out)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### 组归一化\n", + "\n", + "DDPM作者将U-Net的卷积/注意层与群归一化([Wu et al., 2018](https://arxiv.org/abs/1803.08494))。下面,我们定义一个`PreNorm`类,将用于在注意层之前应用groupnorm。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "class PreNorm(nn.Cell):\n", + " def __init__(self, dim, fn):\n", + " super().__init__()\n", + " self.fn = fn\n", + " self.norm = nn.GroupNorm(1, dim)\n", + "\n", + " def construct(self, x):\n", + " x = self.norm(x)\n", + " return self.fn(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### 条件U-Net\n", + "\n", + "我们已经定义了所有的构建块(位置嵌入、ResNet/ConvNeXT块、Attention和组归一化),现在需要定义整个神经网络了。请记住,网络 $\\mathbf{\\epsilon}_\\theta(\\mathbf{x}_t, t)$ 的工作是接收一批噪声图像+噪声水平,并输出添加到输入中的噪声。\n", + "\n", + "更具体的:\n", + "网络获取了一批`(batch_size, num_channels, height, width)`形状的噪声图像和一批`(batch_size, 1)`形状的噪音水平作为输入,并返回`(batch_size, num_channels, height, width)`形状的张量。\n", + "\n", + "网络构建过程如下:\n", + "\n", + "- 首先,将卷积层应用于噪声图像批上,并计算噪声水平的位置\n", + "\n", + "- 接下来,应用一系列下采样级。每个下采样阶段由2个ResNet/ConvNeXT块 + groupnorm + attention + 残差连接 + 一个下采样操作组成\n", + "\n", + "- 在网络的中间,再次应用ResNet或ConvNeXT块,并与attention交织\n", + "\n", + "- 接下来,应用一系列上采样级。每个上采样级由2个ResNet/ConvNeXT块+ groupnorm + attention + 残差连接 + 一个上采样操作组成\n", + "\n", + "- 最后,应用ResNet/ConvNeXT块,然后应用卷积层\n", + "\n", + "最终,神经网络将层堆叠起来,就像它们是乐高积木一样(但重要的是[了解它们是如何工作的](http://karpathy.github.io/2019/04/25/recipe/))。" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "class Unet(nn.Cell):\n", + " def __init__(\n", + " self,\n", + " dim,\n", + " init_dim=None,\n", + " out_dim=None,\n", + " dim_mults=(1, 2, 4, 8),\n", + " channels=3,\n", + " with_time_emb=True,\n", + " convnext_mult=2,\n", + " ):\n", + " super().__init__()\n", + "\n", + " self.channels = channels\n", + "\n", + " init_dim = default(init_dim, dim // 3 * 2)\n", + " self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3, pad_mode=\"pad\", has_bias=True)\n", + "\n", + " dims = [init_dim, *map(lambda m: dim * m, dim_mults)]\n", + " in_out = list(zip(dims[:-1], dims[1:]))\n", + "\n", + " block_klass = partial(ConvNextBlock, mult=convnext_mult)\n", + "\n", + " if with_time_emb:\n", + " time_dim = dim * 4\n", + " self.time_mlp = nn.SequentialCell(\n", + " SinusoidalPositionEmbeddings(dim),\n", + " nn.Dense(dim, time_dim),\n", + " nn.GELU(),\n", + " nn.Dense(time_dim, time_dim),\n", + " )\n", + " else:\n", + " time_dim = None\n", + " self.time_mlp = None\n", + "\n", + " self.downs = nn.CellList([])\n", + " self.ups = nn.CellList([])\n", + " num_resolutions = len(in_out)\n", + "\n", + " for ind, (dim_in, dim_out) in enumerate(in_out):\n", + " is_last = ind >= (num_resolutions - 1)\n", + "\n", + " self.downs.append(\n", + " nn.CellList(\n", + " [\n", + " block_klass(dim_in, dim_out, time_emb_dim=time_dim),\n", + " block_klass(dim_out, dim_out, time_emb_dim=time_dim),\n", + " Residual(PreNorm(dim_out, LinearAttention(dim_out))),\n", + " Downsample(dim_out) if not is_last else nn.Identity(),\n", + " ]\n", + " )\n", + " )\n", + "\n", + " mid_dim = dims[-1]\n", + " self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)\n", + " self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))\n", + " self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)\n", + "\n", + " for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):\n", + " is_last = ind >= (num_resolutions - 1)\n", + "\n", + " self.ups.append(\n", + " nn.CellList(\n", + " [\n", + " block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),\n", + " block_klass(dim_in, dim_in, time_emb_dim=time_dim),\n", + " Residual(PreNorm(dim_in, LinearAttention(dim_in))),\n", + " Upsample(dim_in) if not is_last else nn.Identity(),\n", + " ]\n", + " )\n", + " )\n", + "\n", + " out_dim = default(out_dim, channels)\n", + " self.final_conv = nn.SequentialCell(\n", + " block_klass(dim, dim), nn.Conv2d(dim, out_dim, 1)\n", + " )\n", + "\n", + " def construct(self, x, time):\n", + " x = self.init_conv(x)\n", + "\n", + " t = self.time_mlp(time) if exists(self.time_mlp) else None\n", + "\n", + " h = []\n", + "\n", + " for block1, block2, attn, downsample in self.downs:\n", + " x = block1(x, t)\n", + " x = block2(x, t)\n", + " x = attn(x)\n", + " h.append(x)\n", + "\n", + " x = downsample(x)\n", + "\n", + " x = self.mid_block1(x, t)\n", + " x = self.mid_attn(x)\n", + " x = self.mid_block2(x, t)\n", + "\n", + " len_h = len(h) - 1\n", + " for block1, block2, attn, upsample in self.ups:\n", + " x = ops.concat((x, h[len_h]), 1)\n", + " len_h -= 1\n", + " x = block1(x, t)\n", + " x = block2(x, t)\n", + " x = attn(x)\n", + "\n", + " x = upsample(x)\n", + " return self.final_conv(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### 正向扩散\n", + "\n", + "我们已经知道正向扩散过程在多个时间步长$T$中,从实际分布逐渐向图像添加噪声,根据差异计划进行正向扩散。最初的DDPM作者采用了线性时间表:\n", + "\n", + "- 我们将正向过程方差设置为常数,从$\\beta_1 = 10^{−4}$线性增加到$\\beta_T = 0.02$。\n", + "\n", + "- 但是,它在([Nichol et al., 2021](https://arxiv.org/abs/2102.09672))中表明,当使用余弦调度时,可以获得更好的结果。\n", + "\n", + "下面,我们定义了$T$时间步的时间表。" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def linear_beta_schedule(timesteps):\n", + " beta_start = 0.0001\n", + " beta_end = 0.02\n", + " return np.linspace(beta_start, beta_end, timesteps).astype(np.float32)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "首先,让我们使用 $T=200$ 时间步长的线性计划,并定义我们需要的 $\\\\β_t$ 中的各种变量,例如方差 $\\bar{\\alpha}_t$ 的累积乘积。下面的每个变量都只是一维张量,存储从 $t$ 到 $T$ 的值。重要的是,我们还定义了`extract`函数,它将允许我们提取一批适当的 $t$ 索引。" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# 扩散200步\n", + "timesteps = 200\n", + "\n", + "# 定义 beta schedule\n", + "betas = linear_beta_schedule(timesteps=timesteps)\n", + "\n", + "# 定义 alphas\n", + "alphas = 1. - betas\n", + "alphas_cumprod = np.cumprod(alphas, axis=0)\n", + "alphas_cumprod_prev = np.pad(alphas_cumprod[:-1], (1, 0), constant_values=1)\n", + "\n", + "sqrt_recip_alphas = Tensor(np.sqrt(1. / alphas))\n", + "sqrt_alphas_cumprod = Tensor(np.sqrt(alphas_cumprod))\n", + "sqrt_one_minus_alphas_cumprod = Tensor(np.sqrt(1. - alphas_cumprod))\n", + "\n", + "# 计算 q(x_{t-1} | x_t, x_0)\n", + "posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)\n", + "\n", + "p2_loss_weight = (1 + alphas_cumprod / (1 - alphas_cumprod)) ** -0.\n", + "p2_loss_weight = Tensor(p2_loss_weight)\n", + "\n", + "def extract(a, t, x_shape):\n", + " b = t.shape[0]\n", + " out = Tensor(a).gather(t, -1)\n", + " return out.reshape(b, *((1,) * (len(x_shape) - 1)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "我们将用猫图像说明如何在扩散过程的每个时间步骤中添加噪音。" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip (170 kB)\n", + "\n", + "file_sizes: 100%|████████████████████████████| 174k/174k [00:00<00:00, 1.45MB/s]\n", + "Extracting zip file...\n", + "Successfully downloaded / unzipped to ./\n" + ] + } + ], + "source": [ + "# 下载猫猫图像\n", + "url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip'\n", + "path = download(url, './', kind=\"zip\", replace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB4CAIAAAD6wG44AACez0lEQVR4nDT9V7CsW3IeiGXmWuu35av2ru3N8eeec71vh0Y3PEAABDgghwwqSM6IIjWhiXmTFCETcg+KCUVIEcOY0INGQ0Gh4RAkgOEQjkB3A2h7u/vac849/mzvau/yVb9dK1MP+2JH1Mt+KLP+XJlffpn5Jf4/Vr7sia/IIBpNWGKpJdAIijRRgYIEHgOQCCAACAASqVKS0gGK06g1GkJHZECBEyZmKyyiEByBAGpABHAghRNEIKN84QwJNPqAvhLnFCOU7ECjAVCIBMjgQCEIoJMSUYQRAAhBBBEdCDEAiygAQkfiAZaEClAjOECFkhdMRVkUWABoAhEBEHf5M1icEAkjohRsQViARcChoDCBZkAFUqBNbJ4zl2ytWBFxYkt2FpCAHDgCC6CdYCEWUSyDQTGgfUIAyEVYwDFYzh9Jci7lZ/m8SnRTBUTki26QaqnAI1MwlFCGqKroBeQxCoP1EA0pASUCIMIoAOgYrVhBYQEEdMAWrQHlhBgcAAAIA7GwoIigFsESHaMmdACEqEkBCQgKMKFSQEoLEhCrQphIRESIFAIDK4eiSQSNQmRixQa1NaIK55C0CIhYRb6AIPhKxAkIIUFAqJiYlDgWAEVEIiwgBOzIomhQjHBpJZ4TBxqYLYNCEkREFgClABVZJ1pQDPoAisUq8qzN5izOlUgsrIGERZiQBVC+eDl2QASAguAABIiAiRQAKQAGnnM+sUXhCgSwwA7AoXMASPryuEmIxZToLIhCFhFfe6EoQMcCpbAFEABHfCZ24OyRKwFlQemcKBSoKoVAKbCP2DDKic8gFiVHVijEpgQBUEYBiTj+4rGIQh/YMZbIIoyICnwLAOhA8ItHLhaJLAuh1RmjUcxcGkIWEREUFAINxhKgU8hzrTwRTeIhcim5CIIoLUoIneSlOI2qhAKYAKw4UAoI2QkLIjCKWGDWxISACBqIQZCIxSKUgCCOHQvK5QkqcUxAgmKhJFAAFhFBnBNARABBBwCAIIhsbamQgHwrSiQDULNyljsnUhBqZgBkYUBwANoxExp0OSM5EODMsoJLkwNEIhALgGNbjl2Sco7iEJQAlmJZSBBYBAVKKQm0FWtBgBGRFRhNqAAYJUdmcQSaQTLgGdvHbt6X8oKLCioDilkQqRCJlTZoUnEEVCHSoBQJoHIioAQBhMWBQmQBYXGIKIgCGtESgAMEERTrQFjAoRiEUhhEAwAhgiid2MQHTyMgaCQEQOsKxyLaKGASEPRKZiUOpSAyIGDBwd8cORGIkAgzGmDn2AJoyxZRA3MpBQmzmEsPIMCktGMGQsvWAbEtAQlFMZdAyjEoQBFQ6BgNYgHCAoTIDAiCAqVitgIFpBo8DYoFmUg5YbKFy9PSgggTMyjFpQASKARywiAlCrGUBYtCcOAAEMEKIQCj0MhmuS2mrmBwJEJEDrQTAbFO0AJbKRgciHIMjCWKU4gGFYlBVCziEFhczqJAp2JLcXORZ+X8RMoLVyBKncxMXAXFR2UQS8GQtIfsGFMsFXAEhtEiEAGwWACVS6ZYGyJFyAKKxaEwEF2aFxAAghQsjgEyIRAAKYAuzYP0wM7qGMYUFKhAlAbfSg6iuMwQhdCggEYRKsEZEmc5IzIEUIpFwFKYxKGAFSAAB2y5UGiJ0QKikEMNTEZsTpaEtM1RhY4tQslMllADlMKOSy2EoEooAFGEAUqRyzcREafIoLDlhMGzXIIYJmTUhAUDlK5gax1ZInAiAIrAijgEcmIFGcBjEARhKRgYBAmQQBipsEXCdl6mhVhGAhAEYAQrYp21ACCOQayIA0YBRCREJYCoiBgEHKBA6QBKd3mZMIeiEAS251zuuiQBFpEYlQX2BADBAfpIodIOnAUMURQQo0uEYwxFCiDU6CEWnhiHGqUAVATKoXPABAoECcGKvfwpxA5BOwErjgFRHDMAie6ViUNkhRUgB+hheWk+gJdBGoRdIU6D0sqh8wQARRkBhQGgAFgQVwIBFwq0A3RSlk4QSkBtUAkxsSvEWWZiImBkJgICZGDtTCZlCaWwteAMkiUCcVrQSYEEGkMSEmBxpSCwowKtMKNidLqkFCAH8CxbQuNYachKUSJOAYuQkEVBBnScI2gBB6wQyUoOwqmUiXMZM7MAMgOBIABasE7QClspmRGQBUREEEGTFiEGUQiMZAWVSAZFycACCOIEErEluJzdOefPbTZlewl+NOKcXUlUA3IABWAoVqNmwJwBiX1UgpRC6aPGS2gqHoEDYQTlhElERCFeHoFzjI6VkAgwAwkwiGhEJ8wMACgMeuJmVDpPAIFCMYygCRU661JFAboCARRpABQWSzmAUpwWgChEBIyIJMTsQCWcGhRBLegUKkINgARshUvHFq1iUETCqEQAiMBZLAtmxJKFWEqFikQL2ByNAmAGDZYACdEBK0EkQBFF2krpIGVLVqwQa0AnDgEKcISIiACKgEsgESeMKOKwQMDClSW4xKW54wLYitOoGAhdKYhOUIgdk4gFFEFgZA0agBlFEFmEgQmUoDBYJ2AFcmALzAIFcCacuHLI5QHnUwVhJVzyg1oQIcDO2TGXzrGcYg5ACq0GQsIAlSZwgJk4T0CQc0AFJYjySAkAorAwC5SCAgWIcuIQCUhYWEQcgBULAIIELA4YQQABxOqplOBQiSqFSx2GpIwEmhwhinOaEECzlA4UA4IIiXLIlwkLu1KhJiQLhXM2c1KQI3I+GUHK2aE4dJBJjgTAYBGtMEJhWRBRvnBuVhwwWEIQYAIicVa4JFACojAg34EAl5aFSJyAZZexY7GEqNFDcSLkwCokAiodowLrGNCyIIMTAOfAcmGFSy5yLlkQSBgQQSwTAgt8cUmFkUCciKCAaIWXoQcREACBgIQZhEUYwAIUYi3zBIqRc0NXDNlOxCXIOvAXWs2FZuXKQrdZjdLpuBGRQeVIH5310rIcJbMh6hZ5iyoKSXtKKVAoAIiXcYZQFyKIVokmABSlgJmUCCCjgEUARCRgxyKCAAQggsxAKIyABFrPmQUsS1IIl8yiPU+Lx9qQEixFCEQ0aiulRqWFWBgUCqNBQCSWMmcBFIQv0lMneWKZgJ0AIjsGAYeMDMgAII5QOc4BEAAU+ohiJQfRCEqTFSgISIMhBtRGhFM7Z8FSCuvoMtRd5mkaUQAtMFvnUICFSBR6LAIlO3AMxFw6QMvWiWUBBiRAJCLRIiLoFGiLwiAIJCICiCgliyVQQIRy+bUZRMSSqEubEJACOGE3ctm5y89cORRLnhYfF7tLxWQKWR77XqxpsVFvLXb6g+H+/uFKq7a+1D45HdX8duCZYW92MJgeZfnY5jUKGux7qGIyERgAJlSIhRI2QAyXgUZImAWdFIDogAkIgewX1IFRwA6FBZUgIyAgg2BX6Q6pCngV1FUV1JVfU35EnlHGA0OEikiBEUAFchk7CbWQJTAIlgFFEFEUkmObX7IFCCJ0GekdsgVU4FiwhAJFkDQIXHpUg8CCxRd+TzzylDiHoMkQlCweCFuwIBZEAxIBO7BfpCWoBQBBWS4VICIgMIBBQYACCFiIGZ0UguAcMzKCspwxKAcI4hQignLiLFsGBkTLiIotOxAgRAQqQQQERRi0k1KBK0XGUvZdeVgm5+TQ96txtNSqVGuRH1Z39k4ms1klDhQSiFtp1LqrS7XO+kmvP7540Qy0BgUisVGNahR61Z3nJz95+MzasgamolRMJiZVwcCQ0iiE2kNSLEKAwErAgmJxArmIuURJjAKMgu4S4bOQA1AggigCuseuEGhiXiCn4DIuMi4rFITihQhGwIDSAprIgVxmK8gMDISlgANgJT4hCqEDl0spQBoUIOYuQ3AM5ESIsQAnIgAsXDIoENTgCmTHismCkADknBlF4gAcC1hFgCACCKJJgNA5FAHtobIgVkBfMjwIl24VAEWcoBVBFAQpHbMDARYELNk5KCwrACfgNGonYqF0wu6LT3GCGoSA2DISoBVrRRCUlbKA3ApOOR9ycWaLc5e311deWu5uLi93a36jEk5zTJytNppl6ZY6tYtpAs7lo/Hh2ehKJXjn3dd7J+sHLx6LHY3mecHaq7iNlW671RVP752cnZ4PUpfnjjNRKbBHKkRjSBAsgPLAgFh1SR4BCmgHTgGxCIuwlCIGABwwgICQQxEBAkYABBQNqBA1kgGMUS2Q3yLTVlFTexX0DHmC6CMqVIqUQmJwIiQIIIioNTAjM1LqUhFEQELF4JhZoSfoCraFc1oBCuIXMJWA8xJIEBQAIJMQIilEhXRJihKgIgUABA4BGYAARdCBkDhGp1GLAAgBKo2uEAfCpWNGQlaAxSXScOwEmBFIHAOJIAERiiBbIRYLgIKXME2JiBWx4FjACZdgGTBlO5VyzPmE7bkt0PffeuvV9dXFqhe0mvUwMGmejMbT894wTaZh7HXqzUq9Uau1RFTOcni001lcRAoA5Omjp08ffV4PqVOrv//ee4H2z3YezlP55OnuaDyXwqZJYgDraGrKC1AZJI1gwChEB2JA8PLkAQWcMPIXkVEUkhMhREDnWDRokRLh8g+BANtKA4NBEhAN4CH4qGP0Y9IV1JFSPno++oFCny5DphYUAPziA4lKgdzNURyiQlQsyklpxYm4y7ABSCRESAXnIswiAIKoENGggktvCEiIAWkRBERD4kQsi4C9BBPMDIIMlkHx3zAhhJSzzV0p4gwqjwwCayBBcOJIAEBpAL7ESWIZgS+zC2EHiIgkYIFLcSwql9wK5OjmXOTMM7FzcVN2KfP2+urNK1evXl9nl1dCbzzJnr7YG/bPrS195ZVlbjyz3o6cQ7+ir6wvbV1/6XRsdg9Pz86Pbl5ZcaDGo2T3ybPt1e5bb76dZcnu/Y/ai60PP3sWxn46xaf7+1macFFWSPsgFTQxeR6SkBArIgdCSlCAAcAJIJICdMAKycnllWUAQgGDhJdIjAXapLrKCwSrZLQgIV0yW4zkxDKgE2EQQUIghQgoPpkAyaBRKAikUSMJMDsWQmagnKUES8JyaULiABUQeIJAqEQ5sYWUChUCGVLCFpSgEKBSggxiASwIiAPgUqQUEmTLjgFZ0IJTSBpJxNnSgoniRrsS1bPpOJucaQKF7IFCBkAnqFD4MiVFIQfWAapLDIWgAS2AA87Flsy5SCYuR5s4lwCnwiWzE9haW37/ndeurK8KALF68PCzTx89L9JiaanRjoNEnKBZalXaUZjO7DSdLEb2xks3440vnSd5NrP955+QTlsrV6ajWasRXFm9Mx6fDc6PBdWDh3tLbbPUWJym5fFpf39vb6fXT4ssZGDLAaEGjJE81ASiGRHAEXqAl3S6iAgCyuUjFQJEAELQBkmjZIAtMhGqNpqA0AfPkPZQEziF5m/YWhZBh5dhFRxiIY5ZSnAp2JJFCAt2DOzkMqRxARYAHQoAgCAgEIAC1AJIZEAzOAFnUBkE5QwRoqOc84zLQtgCIAgICKIDtmwZpHTsUJMxBiH0wtzZIAyTrHjvm7/+i7/129WVtc7Kks7T//f/9f/03d//3dD4WohQAPgyfXQAClCAS5BL5yWIGhEEGcAhz9ml4nJxqYgDKYSt8CXru7m29qUvv73c7jqxy2u3xqOLSnNxqTseD6eNasCWqtUaE2mtxfMyw+3qQjEb7h71376hry9szabpwmLt/PDh0vINkT0kt3/0uB4HC8vbmSh9NDnrP7+z0bly7XYUHy23Q+/FycSlszQ7PhnsDwdxGIIrtONQec243omrJ/3z0mY+kg+gEI1oBSCCgOSJILLPSiNCgIpBKqQjQJ90DNon8shTgISewtJDg6CFnBZNAEAogiQoxAziREqGAoixcGJzBgHFAhZKBkK4pAycgAOAAtyld7UigMCsGKAELNjlnObOlSBOQIBLYBY0KKVAAa4WtKqVZliJr956Q+yEKTjp7S00G9WFThjFt1/+0ktvv/7iOF1aX19brizG1a13Nn7397IYHAIgyqVpowgAMgIAM4gICH5RBAWAQrgQLuGyuARWBADkb8zgrVduf+MbP5/Oho2Gl7M+7T/vLt+8aqJm1Xv6/EVWFnGgWSDL8bQoeqMkB9TUGqZmMQTFBboJgmq1V2ajM1tmQRwMTg7y0Wm50G4vIKgomZ7tH563KrsLk2I+T0jhSqveLbXpLryoVD64n/lROJvPvUrs19s33n4DnPfxt//DfDIjFGQ2iD6QBghQRagDwADJgdUxUgUIUZoY1BUtqjhEZQA9pR2zIoMQKEQBIAwVOAECBERRqCxbJ6SUsICAsuADOyZy6EphlpCALVgBRSiX0YKBheWSVHPIVhABLJcWnBWwIjmwAAuAuwS7ICVLXOt88+/94/W7V4v5/MYbd4dHT/r90af3w0p7Na7hyuJGrdH64U8/6968o5RrebZ/evy9b397BpxcogwGuSRfLyGlfIFEBYDhMrFFARH44t8CAAKXfNglF/7Gq6/+7d/+TXTF0/sf7DzJmF2rFYRkrlx7I0DorN08PT6fjA539w6dX+kuXVHksmTkAjXtWeknR88/bnRXgtZ2VG2TmMNnP51k+XTG2Wx2djFuHZ8uLKzOk1lu4afPjq9mrJT4qhborGReWWzW4/pWvVaSdzrNd3sn3eVup1bNS7PSXT7TOp1NbZEUyhTAriwRLEJukAyAh3h5a8mBVBTVKeroWIMGcgY0kdIkAEbgkunWIs4CgICIY2AApQgREKlApwwygjgQ7awGRCERKZFYhAQEFaAFBhZxeAnOkAmBFBA5sSxkhRnFCbMAszilHDPFwev/+B9u/+b7tZGrhCuBThrtSChfXmiUsffoxYPdJx9fvf5Wdenl2I2DMhz0Z3/w//uXn337++vKv7ygJCIIBHRZZOTLUiOg/Zu7m4ETAQZwX1iCCKGAKMCZc9VO5+333+z3jj786LPTk9N6AKHxI6X7J8eNxmJn7UouZvVG9dmjB7q5L2jffvfnh+fHDz7/QObD0/N+vRL9+N6TV4tRBxHBY057SbKz3/ONv95dOtjbz92ws7IGyp9mBZDpTTKbFwYToMJTnlN7kdduNoPNjVtaBw/3d3cvznd290rQmbNFkQtAVG+zc64owIGIFRAflQIRIN1AZVApxBh1RenwC6TpIZImuHRhiBqECMkhGSkERFhZaxUyiLGoQIfKDzkIxa/EUQWCQAUR+b7zQjLaak0KAHUJQlwIO2HLhS2T2fz5J/Ozxx55SpQCRhQBLISiuN6+vtLZXE9mafP6W/5//tVHrdnaj8Yv647CUbWiLi4m82xscCrZ/P7OwfrWK203dmfDLEi+++Huv/oX/40pQGmlgRCI0AEqAgBhBBQQAgBUFhgALXDdYclOAATJEREhoyiheZnX1zZ+4Ve+ee/jT7P5+LSfRkahiaJaQ4W1ae7mWdmu1OpxjOxu3Lx+4+bV0ei40wxcau6+9Ore86eVyl41kEniPr53sHCRbl3LhzO2UB2N9rY2alZsEOjzwXRegjb+UqszSWbno3G73R3NEg3+bDBH9v1mkp9cLC0vRPHGtbWFq0vN54e9s1Hf1gJJK3lZWlRWiGWuQGzuQGTJRNe8JgjoFvkKkQQNBrGKKqoqYBE8hJLQIUYAyG7umBA8pQx4C1Cr6dYCtZew06bFpmp1uFGTOPRqkWlEO2cjT+nEYKS1LXM2hspyIrJZr0T1UBzzZa2DweZ58nzn/n/5v5zsPDHKeIgAkFkXLC28+Vu/vv76XVLAYq0tLv7sL/K3FnaXoq2D806otQ7DsH5yMaiFto5Zt+m9ePTR2sry/t7xn33r9053Dg4PjkOtCYQAFLBCuoSUBpQAEsAXGFO4BLRcRMs36xt32Zjp8YuTvU+VlCRq5kpstr70tS89fvrisD9XpVOeWd/aurq9sXH1FeX7cdyQIqnG8Xx0nswulCHgLCaYnu4dPrvvEPNieOP6Vjntp2lxdD7PXL/WPmstXSmYr1zZjENllAbPW928HkeVd9/+xr3PfrS3/2IubnVtwVCldOW9Tz+xBoppsXN4cfXoaL177fQs292/32l3b2+sXVkXizddwWfD2b3HT5/P+kU6v/RKI5u1oqgKgfZQhahyJZqgruOaCRBYoxLxmRAFbAm8/Dbeua02N2Gtq7stV49Tj8hTvWnWqviD6Ux5+vnJYMlh0yoTYRxQHPpGKSUeCxgd5AVXIq3IAQIzlOKUJrRltNqlN9/ee/STqhd7wAhaNZrB7WXv+iq14tBoRVDOxqefHcn/9/ujt69fhNdWqzf9atvr7f3C13/2v/u9P5jOLjSUe7sn06x45Y3Xnj49uv/Z574CAAkEEYUFDCqNQEKAqAFICMARACMWLl985evX3/k5HTUIQeTdh/dvPfjOf4dclvXa3/0n//T+gw+PLuar61exnHY7C93Fxa//6u+U1iGL73n5tDe6OHt6/wchZp6h2XTcXLwySGRw0RuOR+D5vg4xqpEuPM+zaX50sLeyfGVjab0s0fD8xrWXB3M9GZ1d34467euIeml1Mx2PmhW6df1qfzy/2Hu+vNDeP5kdDSezLK2HpphNk0miO3klqnTqG7Mi0360fcN785VXHz3b/+Th5+Pp2BZ2SQxmooW0DxiSDhEDUh4qEgAQFnGX5HbJ+uf/rv9Pf6fnMZR2pVudpPnRyaR/USxFXlAJhlnx19999Hd++fVXt5fnJRtP/WZz98GkceZV0NnUlewomxdTYQ/jZtO7BFmogAWRFWYldDo7nHTQNBcXF7e3woVK4es/++s/WVle3Vjf3lheqzSqt776q9Xnxwd7By+8o3Wzulav5f3nK+2Vf/xP/t7/+v/4X3pSLnYWd3af7x48L3Jpd1qnp+cBO0SlAT0iD1FANJISRBQkJlGIlNhcqs0b7/wK+IFIyUVhWe7cfPnp0x/v7Hz8m7/4W9fu3J2XReGfXFlutButRme1ojmKfAXsknQ8Okvmo4v+ydmgj3nCeRbVK9ksHw0uJuOTeq0ehPUkKXZ6F9e3u4sL28eHZydnx8+f37vz0vsvX9uu1Vobm1eDanXv2X49zBcWlyuNpXI2efbs6Ysn31+q+NlUdRdqt67ffHr4g2bo39lYTZNxNZbXXlpeXlwZ5RL5ueeHrIK4tVppNG+/8u5vsMvyrLRysff0+OmBetrTMeqY1FDAA6p7foR++UWziAZHcvO9xv/0twYffi6vbcexUcCE2Iz8xYWoEfjnWX7wef/v/Na7f/hnP/6l129V2nHDp+8FV6Y5T0ZZNVJCJvSUX/frDHGoheALPgZAMZIxGGvLGUeV6195/7W3XznrDY9Pdxtx99qVdxCzp/svRsPJ8vJKq1W//uqtrXKrnGb9s14xm1Xi9uDwMDHef/HP/mf/9o/+eDo6I9BJmqdZ3l1sng1GSVZWEAlJAQCAB9pHIhQFQECMgiApcLWz1F1ZVuSJ0ixlOZspTbX2ws3KK7/6t39n0B+SkqXFjvKrncV2rV2bn58eP/u0qkmK9Kh3lsxGlr0sZ8dqnGPXRWVWvNjfr3n+YquBQoPzc1/B+WC+vFpZWcqXFjqHp+cfffLjbre90v1GENgajm9stbUrAsVKTzJfby4u94+7/UHPWVms09ZSba3RuPvlG1sbaw8+f9BuLyhVPRvOd076i+vzarQYNSviKLeuVq+BTSjupPOytra6+c57H/3J9zUgGvIdpx7qiPxQ6VBA0BOAUgC+8RVYiUy+Fta9IgWjlE+QevrgIpGq5ErNRjk4ePX6dmshdrFflMVeIlWEu9cblrmwLstdlhTT1NpULSzVWIDQKA0oXBDsPfvJ44++v7K5cTod1KqLW1du/sl/OOt0N9u16oP794d5Pp+VojwBNRn+JI6wHgehyoYDG/rUWb/1o/ufr27U/if/6J/8b/83/6tOaAiNMpyUrlqrzWA6KJwRZxAIyCATggcKBRFBX3LdAp2lzai9ICCZdVkyx1b1wc6zxkLlS+/9zuLKCoJpng98ml5Mxy92ZvWLc5wObKwpjhyULs/D0BcnrYUlMkE470V+BM5trS62orjbWppng4315dW1WjqfEDsVtcqy2NxaLcBQrZVLrfdsN7qyWfFYKaKiiIyxFmo+aO09ePJIWT0czZ/vPDNqcm1rc+eg16iqOzeviL/5kx/fv+gN+uN+vZEtbVK1zm1/c+6HymZS9eKFuhfQfHB69eVr2gPRqBwzERrlecowi1xWgZBgqUVx0Ly9pOa5VaUyJNaWpb22UqtGel3p1s/d/r1/d+8f/Py1fuEGuxcmDt6TdNTP7pXoOZc7jAOflG4048CALfP56KJ3cna6v3P49OHOw3uY8H/y9/9hMj/613/wbz5/8fkddb29sP7s2cdK2a1rd8KLw0ZrKc/S0+FZp9alpORsVjGBodlknqP23n77/TBun/V3WrUIgCfTeRhUwHEcxUmanaZpSqbJsARgyJAGBNAoRAaFSwAE6Xa3n45GWMxbi6vHs+lqt31wvvva3TtXrt2dDScmbi6tXXPzvn1+P0mzs/HIhywKWk/3jv1646jX075ZbjW7jZqKG8GUa5WKLuAoPdeBYc3VVndx/RVBt/v44zwbl0VeqXSDyERR3O0uVGMIsOtHdQ8cZgPNRaAj0aWrxBurNxXKxfw8YHN+kd+++XombntFb3fv1DrLDtUv/MaXvvQzX3n+4vinP/3JZ9//qLEQv4IlpYsq1DU/LIt0PBhWwnD59roO0AuRrFiD4OSy2UgUKYviEQEZYhEL7MABKZLAqErDPx4l3ggmAhtx+Ld+9jr4+uRkvt2pbWw2y7OR+LzZrhgssmSeXhydH+0+eP7k4PGTwUlvenGUzmbTaX8ymbx6963/7H/+z7vLdS/oPHr4yXe/+8FCe+HOjevHh8++852/uHvn1ZW17ueffxpVulduLM+z6YwT7fLtrc3YRlqHFLaN71+/vrHfe1qWZZbDxvLqef8CAIs8t0XxytWtl1+6k+XJ7KgnvTlMZh5pFFbAQICMhrz25vVpHLfrzblvapU6AyxEZm2p3eouudlseatRa8a9k+hm6B8dnuy8+KhTMT7685DnBR8e9trr67Y3rTfUrNdHmfpqI83ZN9hu+Nr4jcX17urmxcHO6vadk+PDi8HjSlTpNq4YValFTZyfda/eiAPfzWcuS6KowqDqIVElvhl2jB/OPv/2q3c3VhbXvPZ6kkrW+yyqB6RNkZZRlNdWO6sbt97/8mvPnpx/5w/+3V/9v/6QYrty5crNN9/QlTCKw8rSreH5UPuoEXUOYCiMKKp4vnOMSBa5JOBh4iuQEspInZ0XygmyDMdFO4yiSHU9avt+GGOW8Jfv+kUyPfn84eDk8Gzv+cGzJwd7z88O9wZnJ7PROPCC11595xtf/cWrN1Y9lxdp+mLvWeB7+08/2NvRN65ceeX6xvd++PFZ76xdx7W1FaGQ0dz//OHtW2+3W2006uxkT6FZrPmfffrTN25cN2GtxLgaxWlZtDrLk3nx5p2rReHIxf3JNEkSRVSL4oWKr6L4InGpo3QyVqA1GY0IIg7FM151adXGUS1ShQXyo3zSW6mp4ekJvppJcnHxPNGN+vpq80zLyvZWIzIVGQv42WxWr7SCwwMwfm1heTLta7DT0Wwn3/ejJlhvO2wY0pEvs+kQbHHjxq3xxaBeWxUduaJY2+oWs35cQeWsy4ZSAoGQDkkFINJAH1umF4Z2Nqx79WarjTGFhnZ2KEnOlYr8MAQrzmWBX6k1GvVO7aU7/9mn3373+7//7/e//eB0vzAL3UExft69Pzk81TEFDEoQia0mZ1CAwAmiiFBpP/y09Q/fKGJlLHS7NetTbPC1a0GZ5slsMtrtfXZ8ePbs2cnui+P9573j3dFFL5mOy6Ig4AB0SGal1r75ta/cfv2V1956q92JDTltPNTmpdfuJIPB3rMfPXj6+L/93ncqflDk8w8/+sn50SIbff3GKy+//s6Tx/cePvpodWV7eWUdsV5mQ6wACT9+8nD7+nv7R/vt2uYs7Y/OjkJjGnHzja++9L0ffPJk78eRZ4osU7ns3T+grDzdfdFA1VJ+iBoJDKADJWKVF0RLC+cFeqFPqXVKValoBpxm6fzZ/QDtixeDuL6wfOVKALS42Aze+dLhx99Li9naS696JjZhLIidxe5k0D/YvdfprA5G5y929zv1cK83Wu9ugYqS2UxMcLG/q4qzlXZYbS81mwsYhq7f8yorkCfKbzGnYqcIHVBIYsQGNstsCeXcaW0rYVhkMD7eDyMw0JpfnJlabCrLpLWKqyoOFIKOoi//zs+uvHz1u3/wpwcfPkw+ebEVLTdO/VkZa1/BCc89IE1U0bHGUOlMhBhIG8o//Un6X62Vv/HGxM56h8eTwax/9Hzvwb3p0eFF7yAZDjhN0FoDHJNa1v4G6ShYiaMgVCok7RoRXll+51d+bf3aFceJJtBRwxU55hNwid+IPE9ttNsPHz3+/sPdas0/PDg4O7sobXF8Pny6+0wrpVEdnhyR51crcbO2tnvwcNY/2erGeTKcJrx7cDg7fbR7dmiLpN6sqzA4mwwR3CxNKc/1LGmaaHJ2vu1FAZMi8FELiBYgkBIgrjS8WpMvBn7kc8azyWAx30vGh61YFaN9bUJORsfjQbXZXLxyezIYtJfai9/85aOHH4YrC0VedpdfSqdZpVJJ62F3sZ2mxbPdXec1l1p1KUvUZIKwsbA46Q1ePH0wOH4WBjTrPVl46+uDvYti+Hxl4y5BHpjAqhSDNjoFosirOEEuC61grdMKADUGSZ4fHzybznuheqlMEjXNwtVOplJrCvCtCSNjPAztlZc3rr7yz88Ozx/+4OO9Dx6efX62ohraJ5XaaUOHhr3I8zSRs0pACAEBPWXLf/NvZn/0h8d2/PzicFLMnEtjxmXtv+n5zehKXNce+hFpjaTRMqhSnOWyVCq4eSP4+uu0WvfiWm1pcXC+8/iTj15590txq15O4Wz/JEl6YbN7dv9Bo9HM+Gh0OvEDPZ+Ot1a7oVZxqM+O+52l5Y3Vtdlssr+7g1DGBp4/eSZlNwg+vhiG02Fwuv/5oyc7WVKMTvceFlM3SeIw8oTM3PlJIW5UKZ2vtFKAgswOSLSJmqZRpbpa2+h2241OI7dFYIcAo6z/KJ0NJ+J5nvManZUazKDuXGECVW8szMYT4+PWrZvKj8uiLF222Gqiw14+0636ih/VO615Utgs0aTKrBfGrZOdneHwRMeRxfanDz71lNy985p2UWXl9TIpMAioyDQhebEQmrAm4GkopITJ+VlZDEWv5GXZOxuPRnZyYD/deZJjiRHeenuhIc0sOS9ybna7xrgwIOV7wNzd7Cxs/vzkl95/9NfPf///8n/XNYpnbljzfF9hLAqcZVDMrgAGVkwFk47y/HXGlxubAqhIfPQ1MhAqREBmLgGoYGApCmdHtiyi6HRRxa83Vrt6Y2u1Xqt6aP3FxR3P/fQHf37n5TdWtq4Abt774M+1quq47aSvlSrKLC8KJ3x0NuoPMtTBe2+8NU5HP/3x94i8xaUNALz35MFqvW5L4NIi6tNpMZnjQrVDFvpHh+lwUAn8rZXl+x/eWyDPL7m085CIBDzUgal2w26k46VaI/KrYP1+p1Uq+Om9p1c3uswG0gtyaS1g67QteToZtprNPEsnh8+G1Ya6ejMMvNn5QRAHDV8ST/scKHGsje9VmFxUq1ZLGwVxmnlRJazGV9Kz03pcsxYnXvb87IeHU7jZjThPASznWTmz0lgmwlLFQGiCGmmfkQSIHbErK1G1LKvpVM4+P+59f88kXDqX2DRT5Qef/wm1Gqt3r6y+dDubTiuLrVat6RF6Hs0LNZlcbF3pNv729p/+/l9qT3sZlxGQp0KtIyXOQyXGOnEiCpFBnCOxzhJ4QMjyN3NiAMDOgRAoC05BWQrlldi/cZ3fuLXejPyKt/PswWcf/fjtd76yeWUNUN9988sf/vUf7jx9GHYWkRQGtVH//K0335tlo+rnT88HE3YOENm5aiucJ6OP7v303r3PHXivvvamBlzf2l5qeX/4h//+137mnUqlpmY2neW/8Cv/wGj5r/5v/zvO+MW47GX29ORs1amG8j2WkLxu2GpGrbZuNsO4oiNPhUioVFw461VrtWp49/b2YCNO1hr+LuwenddrVG86raPSymA4yTmaFgPz/CPHZWt106/VstOnw1GpgqaJAmfqmnzMh5a0Mh0ggLIoJxd+bXPc2z95/KMwqENWTI4PPFWyoB/GwKw1aDGeuhwwM8bziURrgi+aU8VmeYTB/o59eO+T02DXXWQ33VJQ0b42tpRSynnO8/3ZcP/xkz/7cO2tq6/93NfK1RW/VW02GkASRjGZaDQvNl5a1+DsxOVFMbWBIySlBcUXdpqCEpzjQgmxgAa4bJ4hACdEaAEISTO7L4yOywKteuvd9m+8Gy5WAz/UWu68fOujD3/y5NG9wPe7G6vNVmd1+9buvfvD3mmRS3vxyt7+we6Pf1jqSq1ab9SywWgizOPJNC0K73wYhEG10rh+Y7vWCLevbGgDf/qXP1hbXr+6eUdccX3BIfgf/PhHUWPx+upLuzv3f3q07zOsKH/JeEtedSteXgyaa3FHofaMIXQokTLKw4glICxMHE0439nQns1PfvqB3rnXSyYnqfdKEJRBMMsYTQbgTUFRIvVkXvWIc5llRXLy1A9NWQr4cRiH2TR18dJhlvVePFLK9zQfjZ8dPX8qbv7xg4NZlkBur2+srS+93orAC8NQhUrr0K+Ss8iFF1aRERwBsbNpNktOP39+9O2PKqe2AWGsXGCqKkQg0qgMic86NggYr7p8nLUGP5l875Pf50X/K//k1/St1yy4MOTBzslkZN/4+k3th90r5ThnTp3M8iQ2WmDu2KJkgsYCF5wDk7BDNIAWEBGcBUQpWMCC5FBmAmd2Mr1ztfbyoid5aD3RTNrXBFevX4mscmGVNSXzycLy+vGLp/2zfnt5NRnl9UrNCxc2t64utRr/6n/4o2mSOuvYORAI48rN7Y2ci7OzXrXauBj0Hjz47N6DR3dfuun7dnX1yvjkxXITP733+caatZ7/4mSwrSrrQeVmuLDsN67Ey5FRsRd5FGgAIgT0PEJFnoKQBJxGNDhvhPuT/o1H6fwnD+J83l3Z7s+KWenC9lY6nhqPrNfZWurqcBljf5LZiqY0U5rC/Z0XaZKwy51Y7dcn5aei62kyTvNZ7tSjp3uryw1javvn+SjJbq00N67d1KVbXfBCI76nW50tZVNFyOIUM2AogMAk1s4Hs9HDXdMfxxAGRnukNaG+HHhjUUiogMkHdgZVUIWGrczycnA4evQv/mz89bPO22/oCmyuL1UXouIs0DcW33115Wups57WnvGYdTWuMju2VimxRWYBlDFFOmfJrS2dnRMJu9KCiE09ZZy4Cc4frjYmrTJ49EHttNlqtzc2Nle2tqPIS0eT6bQfRiGuNNnlw+MDYyLwA79ZLYrEb3TT0/3RYHD7pVd/I0uDv/ju7tHZvCyT+bzMk+c7u7N5cvXmNaXcX37rz58+eRHGlePexf/5X/w333z37i+8/yV2xcWo96MPfrAC4c9Wt7b9VtPEHVMNjd/QkSEVfDF7zihaRKw451IgRkQpJQqjq239k6Fv6qbi4dTK3VsvLaFf9wrw/c3VO1SpmsaSp1UYxdl87AQss1epeP6S7p2ltphPzkEHTx48LUu7sla3zsyT7OB00pukC4udlbXlq7m/f3y4tbmaluVbb74XCbikHzc7GsBTkaiAy0IcEwgDI4kTGh2e5ad7xrIhDCkMtCZSGjUAAijnSlGigYSAxGcS42Hg5ZUwzrJ88kePioNCrYe1b1J/qB797nd05HcCpKrnBUEQeJq078Wx0qoonYJSgFAZ8sDlzs6nqCErShBApKLICAC0X2rJbvBrr4SzIgNFeWl9Mof7R8OL0ZXbV+oLrcmsfXKwj77XWmz6reUwQy4KmyYgWAn8nhL01MnRfqUeffVL78n3fmAFjnr98+F4IuMorlh2f/2Xf3160ut2V775zfdPeqcPH+78hx8+KBL17ptvb1/b5mF6c6avBq2uX/fB8wC1SMGlBkqK1AorFHFglPG18TE0VPO8aowwqS7Unfyjpda/hfnSra0lb9TduCGoFxdiD82sP1re3GRlsnSuXL9TUeiFLoGw1cREe7Xmaug/K7L2ysYFtE05x3xSb7UqtXKWMwSNlZWthe6S9mtvvvaGnh43FxejMKjFC2nft+PTQolfiz1QYnMpEhGfkclTdp4OHr+wg1mAFGkTKKUFCTWKT1SIJkBD1hNhhVrpQERAjPJqvkIfp1XO558djz9xTz8+c+xHhxe6FoRiS6UkzybIVS8i4VJQTKCRL8c2AMnoABUGRVGEQcTISgcqMahBjFdsKfNe5eXNhufpQlwuYgjOe82d58fzVGqBanaWuURXWksYNVqN2ehw97DSjMlmaT497/X8ylK3sXzyuF+Nq7/x67/5H771J9f0Qi0KSojjRu3k4GDY77c63XfffzvLsuV25+2/e7vISkOeCcJqRsulXjRhgwJPoOaZCoZAAgAEzKgiNJ7WVhU+BYGuBl6sKQiNIsIiDoRVy/NuTnofnh2+8/aXyZio2qxVtMGCsHDznjOhHY59PfHrC1Y0+cqjMHGmuv765PAe6+Bier6+srbYrBy8eNzdvtY/msTx7Bu/+duhZ+bnx69c3Wy0Vs8+P6l3TBRWs3EPceb5WnEJnCupaeWJzaxLSh/cYJoP7ez42CaFVp5CzV9M6jtAZieErIFIoSARKgJA9Bxrn3XVizOvNk77HpYLWstYkdbUuq4D46k4REFnGUCYia0orZBRRb6UeTGZpek0z7O5zRUZ43mh9lQFUdiWMOmkx9fr1ZbnGyEqDIAtcmt1s7MUNrueUp2qObkojp+NMFDsIPRVURbDyXl80SzmR5PRuEinOJ/XlpcWurUPP/nsG1/5tV/+2a/OptMffno/xzAI4p1nD+NazRh91jtdaNQVlf3z3l//4OP9w5Nf+9JXr2SVmq77pVMAPnmxjipeGCrPiThxngoVkkfKYcVBrpE81L4ihcqxM3XvWztFXbtKXOk2OzqIijLHMhGpJcNzOz6Y9ibVlZtxfUESm6RJ3G7OkwyKnD0PK63hnDJQ5bBYWazUFxZNWF+8ensw/MGtO68uL2/aed9EUSWOXTasVmMjqF2KSjkXGl+FAL5BJLbZlLRV1abYfHZ6f95Tw6M9cJnyPERLGCpCBQYJRSqIllE7SYk8Ao1ASGCwdOCJlDUdxdW1fjIt3UVkPKUqWkR7fiCkSaEfgwgQRl41BCUqDDAgKXwvCHCs5seH03TOjqtRnKOOy6JgOOLh/aWB9BeW/a7CdfZKoWA4Ho0G6cb2RrvmK8I0zRl0dWE1GWe9nePCzWr1OgE/f/Txxsbq/tFuLe5omn300x9UaobK8ic//qvb17cajZZ89mmaJCdnF0VZ2GROLTObpScH+xeD0WXP7dbqlq56R2bOKnktWqq4sOJXPK0IEZFCTVZQE4GUAoLiK7zsAwQQjQgOyNTj3gQiPZDjv1bJ6HS/HJ4foU02Nq5U3Wkym2SzRJtQdWKbOZvNJ+O5Vw0NiXM8uEj8latr8UIUGuJMG6/RXQGLWzfvDg8/9FSaDA4r9aofRfnwJGotaL9RFFMRzwpo0KJVVubOzYMg8qMuGa3KuaFGOh5AaQ0YQ75HgUekERnAOVaUCxgCK+ghEAvCZUOS9sU56wiZPS9YrS8O5jiZ9zxfAYVaLCMxKoWkEC+5C4eXA/ieJ55WRgu7qN5soLLiAu15YYSoxrPTT/zdx3kKn5/2zo+G/cny1Y1OJ2Shcb93UWt0Gita2VmSzvtDoySIA4NpcXb60f3da9fuKHf++NlD3/eTZBSohuRDlzW//u57z3YeP3m2+9qdK6ut7llv7/j4hEhFlcDa7MnDR2VZIKn17e3Q82sV/69+8mHp4PXtq5NGrZoFXuJTjiwudzmwT0oxO2At6IByDaHSKKRKcSQBKMkaZnVr+CUzPLt4cqAW095+NW71D/aOn2cRTrSnkiyl3XvtIp2MhpwnaCpe4Mf1hcOdx157ubF8myhUCjyEArLID5nUyuaa7e/MTh8HcTVqrJazsfbDctJL+mezZFqrX2XJ5yW7mlepdTSQihaQfGCn/Irz1k+fPHFJUTU1dTnsC8xsUAGREJIIXbajaNFMFiEk0SCgkIXBqYIF2NWWKiuOvUmyB36u2WVIMdkCSAsaCBBRAFFSh74oDwUYUYIwts7ZLPfCivbVLJ8+jWfm/bu/9vJ1W8x7w74SrXQQVOOuB9msqxRo0vVAi4Nng3u944tqpTbNR3EQvHhx/wc//uTXvvneYr2xM9pPplkyz7fXuqPx8PnuC8e0td6xRd5otbygb8sCEV1p2blLwYxGs91aWExno2c7B0AIZfHpzvPK+417fP6l1Y1XijV1lqoUS1sY0J4OHRQsTAAIVpwnwEozoWMS24kf9qdvDfXz0S/WWy/8unK6AtOw1eoWIxtqTOa51Yt5bvJCDQdnKiorZW3/+FMLoo6ee17Nj5phvW1ng1prddK/QI2mEirPS8YDTTM3u/B9FbWu5fnFaJblOY1H98tsXK+GrfobQVATFFdkigJAn3Oe7k3PnxxIyRiIIaO1h0KKEEEziggjFCSgUIMKCJGECREIgH0iQBFx1vK8BLNa7wLQcLanlfK5ZFCeK3JlDJJDICEEdJLmqH0BIG1UrH2OlFJAmBfFMc/kncXNu9vb11cVpUvzZbFMRBqcRWwvLS3U46oPLMxg26tbh7u7h3svvKg26qetztLJxbN/960f/dz7L7XqejjF0aQ/Tens4mJjZZtzXl1o93pn9VpzNOmXeY4gyhg/quSzmVJmcWnF06EL7cp68PTh5+zcletXh/N8f+/sZDT9y3DnF7dffSXpmKOJyy1zKoSX6hqOGXUhCAAamItK3F4I/1lnEf7ld6e9fbPlXxw8VUrbogzsqFrXYOomLVW1vXjzHXW0lxfpPJkVFR/izVqzMTl5Me8f1VvLUkwCz3hasounutoeHtN8Nj09HYwvDq+uddY2tsDmpto20/5xbwecXWjqbmfVi5tClel4lA93mt1rRHq8cz6498IU1icTkqdQsy1R+Y4vBy34cp5PsRblwJUEiMoTYSwVIotSThCBiR2USJBttNqanAYAHSFwZnNhsgo8EY2IQCSWOSlAg6AmFZgIQKjMigubHK9nnxw/f/vuluOcwNVCrZUS5sLZ0A/ataDqC0s5TsuT8+lsMGl2ljVRsx7Ox2ebKyv1yH+2s/PDT+7fXF8l4R/8+J7Wwc+998q1tfXedJwl08ncWYuaEBBJEQBkyVRAFhaWmYTB1avN+5/8BACvvXRnZWV1NhpUqrWdw6NP+v1U6YPGwleri20LzpEGIGAAuZzXAiaH4KSUhXho9P6T86u/8+XzPw/g2Y9ro7Pm2mKtea3Sqma9p5Nk3Fnd7qxfJ5xEgV3rVM77RW7d+spGxjbzDYLMLx4oxMTZo4cDTseV7kar2kHPby+tWa6f9J7XKieE1d1HT3f2D8piutQIOgu3W80Vz6umqZsNThr1SjKcUF6kz3qTZ89gnkbKFywtO0ClQBgJCRUECjVicCmbRAhfqHJBKAoJRUgDZIihOHLMWeEQ7WpzWYMyijyHKYNFy1IgK0sWKDTCTnIGIUBWGoG1GDeeJAdwfK88bi9vprPz8xOoNeqZm4Hzo6o/myZF7uq1alkLA0MFKOUHF73+4eHhysr6LD3sDycAMOqfXpydDyZp26grm6v1WnxxPprPk8H4PIwWRsPTyTxZWli+vb2aZ+Xh6ZkxXl5kxvPYltPhODD63k8/iCqVX/rlXzWhf3p60uws6Mmo//FJu7NYqzSeFgkt9F8vTHcSs1OGlGJEosIVSIHRacFgN2vbC/79w+mf/OhZcvwisOnaRrdg61Wa1ott0OHZ0LlZoVx5PgzQTdKUMKtUlmt1RecX1nNBWGeo9c/2w0br0e7x1tr68f6L6XSqMY5qHS/KBuNgnBixz9uLi4Xz0uT05RvXu2u3lHWYpeJy368ov225XhxOi9O5SsqATElirSJPtEJNBlFpAsQKIRMqQlSkgBUQASoCQ6BBlSKoKGJRQA6BCpdiZom1NoFGBcr5TjlX5rbQZAIhBQiokecloCIggctR22IqyYfuWffW27W6/+CTHw36t26+enPeP0sLvXFjqxRJsllqC4ZWFAaJtZ5vTKXqmShJZrVKezh+1qjG16+9jOD1ByPUXpYVrTi+stQ8vxhcXFyIKRcb1ZV20Govv/XaW2sb11xpD84uRqPBrHTzJAWki95FnqXvf+3rtUb12c6LvRc7a+ub/bPjazdu3r7zSqdZzbLZ4+lsoOBvN2owKEiMk5IkR1SWJ2kZo5SjsxMu3M3VqlEyHrTX6nmj2dr59K+Wb9Ytq8bG9hxeziZToFqhQscJNa4GlSRqLmaz+fDiWPIDXWnUl7eUMRQ0b725yOlgkOqT5/vthlfjIkReXQyX11/KT+5Henxts6PNlaXuMiFNTh+Jm0O4RNQsMrGH/eLRmTs+99lY41vnjADhpabQpbidrzBXqAWtAt+CKG1JYhBBcKIY2EN0CjwEA1ggE2kpuUztRCP65BORCLgyTcuiVNpDKCQjDBXoywLipUAJpUW27yerb759/dXXai3TvbJV5q4aR7aITl6chqf1rSvdOPRcYRVKWhSe1lymQRhtbt/s9Z5cXMyWV5Y4LxYbtdpL2493zrrddhRGvYt5GIUvXak8fHGQTrDbvLq81mLAVnO11PEbd9/YP3yGIBfJ5Dt//cMkSZUyq+tbw8ns+YsfeZ4RJ0XB77z31Ua92Wi2RtOxH8aASne8B8PkzkRDweQ5zZpQBKAAawjKH93/i/99+PJ/+jNXlurf+/6QFvR0MirEBx3HVT8wGqzSYRhGFaqDK0yGE2/xdv9soOOguXo3HzVMGBMU1fYiA9lJD6rRdvW1J/m0vrhIoKfJKJJQ5meRT9UwopAC4yuFSVZeDPv5dFyJuVrnIm3kh2fl/j7NSl98RkkpD8iQDjQZBZpAFDIAOPQVKEYgUMKCaJ0YRAfioQgisZCIEChSogAQdWFZO5uSxAjkhVUiKnNkZGaGpFDKR09JYUVEHJeFGwv3a+PzIr6KeqHTbHXi6TxlUKVrROFQ2CKozcX2ZDaZZ+KRE1cOeuf906Nmq7O0fuX555+UZeGX5fBi/9nRWZ7QfLL75huv1pr05MXRart+df1mrbI9R386T8rS+SrwlL73+MHF2V7q0I+qtWpllqSbm9sbm9sfffJB7/To7mtf/e2//0/RDyLFo36ftTd3Q4KotrihXPGjk8fVTnvhyNXzsOJVFSARIWLJru3F9juffvvx3ujGMqoH3Njs7T5W7c1wYdlgjq6s+wC1CjtdZANfptHCIlUr4NRkPqlUF2rL68XwVCnl15bm/WOBSciV4/N73bpZrFcm07RGttZsS5E6KycHT+rVRrTuEbTzWTJMs2Zciyut4rRMDh/D4JzmqS8hIitSkfI98ghBWEBZEcNCSikEg0QIWisW9BWARhJQgIqtcxaJrFa+u9TJAVGXGlhlUVChMYhUSIoNICjUl/oPPE2xEog2AAxsLdgLHI5DWl3dsOVs/9TFgSbQypcwMHffuDueTmxhUcigymentmRQflGOlU3yybS12Gg3gs8+f1Ex6unJyWg279Yqq92FZDzwFB4e7yXj6vuvdEEUkRuen/V2j1VkRvl0b3iRzOcOsNZo57ksL610l1dPeqfPPv/c5vlXv/rzr7795ajdSPrD8+OzSsOcf7v32WeftZr1axvLYb3yJEtcBG7MofZIhSIgPBMMAHE5qNDZ6KHr177eHp7tT7Pszt0vKy6qlXA4mIlidCEWA1NOEclFcZGU2td2xI5H1ahWkkTd7Xw6LxMZnp3n+GJyflGpL4/Pj4bD89XVNSpGRsdFXo7HSRT6QCTMw8G4fzquLC1lJWSPBvZ4HFgMlM/ICoxRGHm+CIlDR4hSKtIKAIAICYkMEIrHAgJaEIk0oUVSDrAEKwAaDYo4YEGlDGltVJkVyvMIffYjrXNExQDAzICY5mI8QhCAXpIMuubKG694dT063T94XnrVMK7FcVwNKmGtAeC4d3IyGgzq7Upi+XRvp392sthZWltZccL7j+/1Tk9e29qYJ4P5vOFrciWdnA/2Ds/u3tr+5ltfq9SWlAn7owub2dnjPbwYFFnuB1GDoBxmzbimk3Jlc1P7elQUD+59mKbJV7/xa92lxWQ4S9PSlhmCFKPezfXu7iP8qz//s/xL79zeWjnLT9ZXm16p06JUpCx6yBoJbDlRplXRtWh2cHE0c8VFu9v0Ql3xQYMolvHFhdihJzlSDOWYw5HvVUfJvEzSems1Hx8g6HTUywYjW2Zxdd2NPou8QCMWSdqsN/LpYL29kE9GYOzq+rVWqxqFC4MZPXz2olOrdNdvp8/m6X4/cEgqJDSX4pQkJaqgYOsIEB1AQECAmkDTpQwBEjKIiGjRgARWiSJliLh07JwTZKMNgFboEEGjUmDFFqhiRGLQHgFB4cD3wRUAgq5gQOv4Qo/u28fx6faC160vdor+dJZNjx/uIcry+o3N62tRtTaf7u7cf15rtubJyAT+rCxHO49bje6VzY0sOa+Eyijv6GT6+q03iU+OziaDi9G9x/uBqb5ysxPFrUk6PXryiPfGUYaLOgD081zXkvmqbd7xFk0R/esf/uR5PisQAmN+9ud+qdpa2H3+YmlxKdL0l9/9y+H52dHJo3dee/VXvvb23rPHP/jeD7r1X2g0a31XLq8Zb9day6itJsWSK6DC9hmreT6cDtKVl15ee+mNPBMbEmRpYROHwdHuREs/MpHWyjeP1ZWvXBw8VrVoMk9Hhy+8wKvM+hqFyKu3q7m61lqSwclhUozqcYXTwuiZ34kgbaiwEsY+i1fks3qQbF+/Y/yKRfHFGGJPoRJQoAgBIQSwQJSzda4UVarLSqcYEYugSRMgICti0AoBEVEZDUoFwH5uMSkmrkh98sFoZtE6MFRa5kJKjwDkkuXQ5gtB5QJFAYrbH55+YJ+bK6316+ut1U6rWdm6ofJs/PDTz45OLzzjA3mNShRuXW8srQ9Ph3lykZ6Pl9pLXM6n4/PdJ+NkMp1lw8fPXvT6w4XGMpcpFOmbL925vX2HrQ3j5UH/zJaMvSw4zRajOCg9o4KsmNd5seqH18M2SPBNO+jM923kLdx5aaRkwpglU1L+ZDTr98++8xf/LkmmoUDnvVd/+Rtv/T9/9/e//8FPX7l1u35teY9nNzu18sJq1CBCRJcqNSBpJ4wrt64t3X4tbLTzIrOCioyOOrN+L1jc4nJpPr+IyFr2i1EfAz+HajIaHSc0OzlbbmXNVrVqnBc1dRi7MmMplIF8nsWeQ0JPk2mEQf166eZ+rRlO9e2X3oyj7vDZfvqor0kZNCQekCFRDKJJXco+kaicBSE1FILyQHwAjwBRCEkxKo0lkhbmS9Fcx6CVCQPy/cXpbD4uRyFqX0canKDyFIOUpRiFqACFPAQLjAq1BcGkKPeDYvHW9eU3uvN0fnFy6qmuDowtytbKWmv9KrqCGXw/sEIVQl4g36Pdh58f7z5sxNiqtImCIp+c9AeaTLNecQK3tq/0B+fJbB7H3ajSyvN0/+BZE8NO7sdhM0CvaiKDyhrth7rutapeDbj8cufmjeripCjO7w0uwMrqIlyP7GBcX+r0z3ujwbmU5fc/+MlnDz5/aXv1ynr3+f7JD6ez8/OtN66v+M3wWt8FEiARiyjWonxBKqczYjk/2nnyR/+f17/yzVbjTUPg+/7i6nI275OrTC8IXJkkJj05t7r+0Qffj+LW8dnBxcXJcadx6/pNT7Dbmkzn06oXe/Hy0/s/bDWatchT5/311ZWg0g7C0FCgg1rQosbK+sXOyfz5VPoTn0ShAWAiJAVKIzog8IhAQapBiRgQg+gRsUJQBIJAeClkp4UFQSFfKtPmTIhW/MD3Gk2cqsn8nA3pPElNUCECVPoLWQoHqJxjQG1AE7KdTPOel9bX1pXW5/05BMHBj364sLjeWW4j+YPz053HD6uN7b2FRqUSl3mulZv395e6q6GX2/G5y3Pf4+W6X7++qlX90cHhp48fOpcs15bjqmbhPCkcumw0HZ0NNtNabEyIfkDGKB15FaOqoac9UKhxUXuNIC5KKbh0rFxa8As1OvjpqBM0Cy6zDBHn02mapD7SK9fXXxz0JpPRR5992q3EEnPDxm0KSCEwgSJE8h2Ik4O9XT5JDh4/DOLq8rVXEmWANLhxIwBnalmeQVD1LsL+rD9Myu7mqwzZdqX65NEzA3ZHBaXIs8cW3NSvVLaXl1JXe3Q4CAkuYiHGjSvNsMa12qITt7S4PJk7mXruYK5TNCZCKBUpQmDRqswdEEmktOhSo/QtZ9Yaq0QRC+VEESIig+Dl9BwpJewQkFEUMCOyLQvP+J120/e8/qinbZYLgwlCcoUoH8UhKSeA8EW1EUq+gNGn7uHaGbxx4527bzbB4CcfHHz0wV+urG/GtdbaxtatVxoWeHA24LQAtqPB4b2Pv7vSXX3pxg2/3gl9RZydHx53ml3Pq9l8ms1Hpwdec5sWWq+i9kfnp0b5W/FSNjkKmaqe54HWWvkQeMr4iMgEKMCgKVBKe4BAztq8YMwTRyyNafqujX6fiJmV0kqpIPQXG+1uHB8Nh6T144NDMnVfX1dIGrWQIfKdg5Lzrc7V3Wz3o08+u9I1vfP+cJ7G1RCsrccVz2v0LgZIxg/DUXpeidurt7ZtiePRyDPkEE+efXb/3sOl1dbImXQ6tmVvMJteXdua7HFzuVKrtRJxTkIUNF7oA82dTE7Toz//EMdzrUBYSAUohCgAuWAA4FAVSjRiRqSRWdAhs5BG8AEVACjFqLQThSzAl1JngugYCBwTJlbY6LjVagR+pGfziSrDKoIiUUIQawFEIlEWyzK1ckqze2tJK2gcHD9f3FnOimFUaa6uXT88ePb7/+Z3W4vbv/Arv768toI2mw13Huzs37j1sh95i+3u2cnu9fUbi93lIptM5xeTWWaMmya7i53q+Dy2pdV+xIq5KJDT2cFpuTtqOi9WOoDIkGeAiBSAupRFgUtFN7HWFgTAVhMZEQa0kSZFwW1udP2qW1i5/urP/vjP/9vd/T1PqTfXryzmhxmUyxN6q9LqhJGmQKEh9FgUAIfV9ebS9u89/8A5W1LQqLU73cWyyDyXeZoFNaJp1IN5ltTbS9Hidl4kiF4UVdrNuNtuNqrvmbh53jsK6wEhTsfn9x8ee361sb50PjjqdrrV7tWSOuN5FjcteKG1FmIvaFXLkyOAgMg6B0orBq3Qs4DERqEl8jQbhUqElAAiGEWkCdABGwdKOdIKULFzCi5VBoEInEOwTIAWihy0HzcrujfreaYmzjUEGNA3EQYCRJzBNMue5r1vBZ8+mh4ZMdu37h4ePev3B76Gi+GJ8vyf/5XfmkznDz//+Lt/9cfTabK00Hr45PNv/eVfvfP2uz//lff3nqmnTz4+Pqmub3bLDOJGHZDrjQUoi+qtSnNhtV7tDAbD0cmg6Qfz54P4Iq97tYiCUIWI7OkQxSIQIGnRSMAWHOdOGMEQAqHvK0TQhIjKbJj1d6pbzzc3EJ02/sLm9Ud7TxdvRr++fbsyVotBfSmq14O6Rz6CgMyNq6BfXbt1ZzLqHx2f1zb93qjUK4ROXGlFCTrGclYJqcitUShxZXaxV5Rl7gxMz3tHkg5Oulu3iOcG1c7e40D70xyduAdPdqvVQaNWORhn1bbvN3zPj7JyFnm+Ig+CefW1jcnhIU1KREWKNGlSgGIAGVQJZJQUl6peCMyIQD6jUSWg0aAIWAGwWMPoCVqtNDvngBgACIDRgQWbUzZXKtTM46SYMs+slA1oE2pNGjSUIn3IP2kevZieLSysjcf9waD32utvv/Xe+9PJ4Cc/+WGzWms2Fu+8uv7w0Y/+xz/87/uj7D/5p//FP//Pf/v0bH+5tXxlvb7QrI4GRyene2cX497pRTPkTsM1PG8wHjdrK53OpiszxdLf25mdl42RaqkwwthTARGhQRJWIoikkJAYUDkpgYTEKAyIrEKl0NMAQJ4o1UDzjfYrf/zjfw2ovSCo1JdAnv7wyeN3rnxts9Jt+5W6Fxs0mhwwoIgyZunmXe14/+jpaDzo9Vzoew1250fPY5qn6XzkCi+KszThcjKe88NnT/b2j5YWN/rnF1AmXq1Wq9Xvf+fz1dVlTvpvvHQrK900S7WvsxJ3D89Xlvj4/KdJ6crg/fk4hdnF2oYuTXs6Gn1y8uDa1Y5+mkCeXjZWiXgITOKIkIAAS0ABJo3gK8+g1iBKGyKDpBBZAV76NiLNCi+l1BUIIjkFTghYyjLH1NcsYF0yt7lgXjjbKSFCAF9loC5M4ro1TkT7tW/8wpd753uPnjwUgVF6kc3HF/NpmSZK6+2Vm7/9H/3Wk+dnb77x5s2rK1e6C7evLl0ML6aDE9Lh7Rtv9S/2FJeL9UXgMbisUasHvk5G83Tan/bH/lCCM1v3Kj4GGoGoAGRlNYoIGU1Ka4NgBZhIk5AyHqAoMkjATpEOQAgRHNHPLL3+93X/dx/+2Xw0f37v+4qUNh6I8oh8IgJfgSXngRSa6q3rr/naP91/+sHpTy6yJB27Rk1+8sEH/d0Xb95cyJN5oxaUInlSDrNklJWjVJWlbN1Z3mh3E/QbjUbS6wUO0lx76fDBx3ubm5tbq6uD0enWlWu7h2PtW8emPxj/4IMfNUP/V7/8tSb4WTI/OjnqDR/eefvrcXxl/sE9kFwQBEoCC1hxwMgWKWBnAZPYrxisgCgASwQaBYUvRw4QCRBQ2DIRatTgLChBEAESIhKCMp9qZnEsJWcuu5SDdzFnUb0x9f17dP74/OD2S1/p9fbOz0dvvv1e//xg5+lutdP88MMfDcbFO2++259NY1Ot1xZWFt1LN9brYXZ6dHTRc1mSR3G70VjO8/mqLpa6G+l0ns+KPLNkKpN0Oj/dr6jOYGfHnM+7QaNCQaw8TUqxp5XS6COBQkPkUDxARSCAgKgUaVSCROKAEFAhKRBUZHmB439W+xl3N/zr8QMnmCaTQOmQBNiRAg+tD54ST9BbuPVWEFf7ey8+OPzgg+HDvp2FGAN5b75yl2c9INNYWokj/XznZDjOdaWx+crt6yYEZa7euHv//kfXbt7itFSkNm9cP3/2cRDFfHBa8SY3brx9ftwZ9A836sqE9dbS+qPPHz65/5nz/Ns37mjjh7FfcFkJTVTNlv7W1jCMxn/5Q3ROKQOoAEExIqGgRRJPK00BCFlMlTSYldClnBvipdiXAidK8aVCnwDA5fNHZkZApZ2grgXNQXYG4Cb5KJMyABsmrBRMK2H8+krrqM+F+8o3fnE6Oz98cdjoVLorC0cHhz/7y7/x53/yPx6dnrDB//CjP3NWNtbX/+T3f+/NN1+nLOU8b7UX64iHR8dg6eAsSUdHnpbZPGNxLjtp+dWF5nIxmat+1oJqVYW+8gzpgDxFxpCnkBCNIqtQkwCQAlGkWACFgNCg8OWSAiWKDCLoEiBAvqIW/1P/fWXdZ7ODkUtvep0rsrgYNJq6E3mhFmQw9as3w2ptfrT78OSnH1w8Os5ndR2kuSwsNt945ebJ83R1scHkTfOMFUbN2svvfH1h6/bp/mFroZUUgNnsfP+5sErno/k5ZWkRV4PNtYpHiqezZpguXF+bHPaGszHNq4163Zbp1rUrT0/PDo4O39pe9+NmgsF573hza9D95e304JCf7Yk4Rg9BhJWgQWYUq1EbFVihS41cNBbFI00AxEhKMzAiITosCIkUI8OlWjdc6s4yiNKtSpvJDee9lItJ2p/bWUTOGA1RvbbYvh6mH338ycLZ+t23bz7+5MP7n+wFEdbDRkXyl2/efXaw88f/wx+Mx9POwtJ77/+8tUcvHj56/ytfandXcpRnDz8fnZ1xkj9+9MF0NLq2vtpqrlbqzcjz69UOOXX22WfTMVYprujA074hzyfSCEo5EEK6lLG3X6gKKi2oCDQSiRIApRyLAJBCQhDQCoUManu7bP0fVn7j3E3neVFXpkYmQPQQUZhQ+Ve2/VolPb54fvz04/7OfnYRKLUM1WPJGlo9/+iDW69erdY7RTI47o/vvv5+sHS10V5ypNavXtdGz/YPp+m4ubRWaazi2UEQegvBjaS339m+m0/mDx9/cnu1sbG08GyarDBfubq9mscnB7vtOD49PVhf3rzIMk8nk0kuqgRNKibvS9emh6eYZ4Y8QCKNiBlIqMky+ASkUJUIogBEoSIRRYYJnHBEwIqYtVIMKA4cilhUSkiVrjQggqRbq5umXycTZcMHecFZUSbj08DBfOanJ/jSa3duvPZyEHiVij5u+v/9v/q3T5+cfOUrP3Pt6vVrt9/84Yc/Nb7/j//B33v5ztXCpq+/+RuNUBG50eDCr9Yyq7LpYHCx325U243uysbWzes34ygiJ9k8Pd85yM6moYS+MqQCoyONCsUgAl7uTWR7KYdMSABAQiIOyaAgMuDl+ggRIIWkEYFLAC0KFJEKwLTEg4oRZGCL5NAKs++vL6oozM/6hwdP71/cP0jO6ira8JszV2TlZDyZV0Pf5qUtJyIwnRZPHnx6xa9V6nUviGoLzckk63SXX3n3F2r19sX5UJlQHE8n4/rSaq272Xt+YPb3ynR2drJzbfu6ddr4fuSFmoLJ4GJxbU1rbzCzPibEo2pjY1aUp/tP/vTT7y4mvbdo3TlrEPlyKoUzwuByHZ9AiQAEpBCEFCCCqEvmi0GDMCnQmlzJl2q6zDmEMSSXebFov93WYSWYVRDt4eDFRTGdudE5RbQQBqY82N0v8rTRWVy7uhhXOteu3pxOmYyngmoUwJuvvHx0dPzGy9c1cTsK5ifP1m7fzQoL7GyRH+88DGfn7VocVpZE1PLa1aASaXaFzUUKhaYcZ9qh9jQRaRCFpFEUkVw2kQDhJWPDSikkRCajAIQY0YAD0ApRAwkgCGpQVoCUMqAJBYVRpEQkEAHygUr/6roiU5yfHx09udf/aH/eA5CtuFPVvgVWSXDqhd27r+70Lg56A4UUt5tc5A9//Ocf//BbflRtdtarzfbVW6+2G20wutWqeQqS6YCyfHgxGowyBWp7dfl8/x54uitcbbRmoLLZsNpqH+y/aHaqNmg92T/+8js/l+Z83h9Yffpn3/7pH3//+/HU1lrmVtRVCCJWcSgkgkKogJ0wshiWwkKslEaGyw2QiILAIA5ACYtWihkcamRLScGX63U0ahVo8FQ1VJvqZVQBT/fTdAALaze/9HJrDS/OzvafDy56/SQt1692fuabv/Llr/zqyXlvOB4U53Blde309OAvv/+tqs6+8d6vbN1dJpspTceD/tPvfkcmvdryYmNxpdVeAR2J0mlhc8eqhNlFevGoN94fNihUxEQgpFBQlHYsWhkEA8KgCEUREqAGEKU1ikKtLvEjAggwkQ8IKE7YKaVIaRBgKFBpKB2QZkWKtN5YQqPL8/7Zye6T84f7s14OshZ0YhOGxhTOrXtFHGzUl16bebvf++s/TSan7773xsba9UZXe2HVau/gxeHeix/e/+S74FSzvfL6+28RmzCM04ujagyl0sXg3Greuv1OXKvMhdzsIqhfGyTn9Ug9zfMHj569+363N5i+2Hkc1hZ+8OlxECXf+uFPnu/tF9b++erSy1det7tDTxO7HEkLWeSAwYoogowhBhQsnTJGAAkBUWtwzgGDQ3HaGNSoxSSZY2GtvdKBkVwjeuQzAFda7VXL4kG/N0+rAXrkeV7om5W1zcXNLguUNq3VWn5YXVhf/v1/+7t/+u//WJgnk+lyu/mbX//q4mJQpFNE48Xx+dHh8c79V27cWVi8XmtX/cA0KnUdhtbBfDYr5uPZYPLwu9+Lp74fROAQlcbLvbFSEgYgpSAKkAICUgBaEQApBCVKaaVBCWolOSq4XEJBIhZRX2p7c1mKs6gRkNFZ7UWq20YAdzE4P9zdHz06mh0L41LYjoxBFAVkEGqm5oLKwtLCowd/1ahX1lbvEPknvb3xcNrpbnXXNm9e2wi/9OXBxeDHP/zOw88/ffbgk83NxeXVlbB5tb2yXpblkJ2ydNY7WGtVq9XFdN5TostirLlMZumcRQk3Q+9P/+JPNjZWNIU/+tb3e6OLNMsDg1/6lTc2v/7N3f/6p9nOrqdZRDErBEYAwUxYnDgBvlyjQooQNSA5FobSOQRCjWQCTwqrNJZOyBaEyrHSbC2iFuOjcpWFhTaXnrLxG1cGk/Onf33eqjW3r7bnkyH61XqzynEQ+TqdFV/7xs9+9OEPL46HN6+s/84vfe3m2tV6q8WoclCeM8ubN3yhbqfRXFx0TEYFDDJN8jQtbZm63JmggaKkLMFnQQ0ASHPBQMAXyUSEMEBgEAYkJBEBRZc9tILiGAwA/c22AoeEQB6IAwQWCwikjAAAaTSxXukAoL3o9w6f7w32XoyPMnD1oBrrqiJLCBpVqYA9vvrz7zx58IMKTe5++asLi+uz0c5573Q6uDjd+/x85xNlFEUt5Vc7TW9r+a3pdFyPTFlYNdo/KadR3Kg3OmG4sn9wOB0nSjIAzIqiP1P3H+3Nk8QLKfaEPI6qwXAy/jt/6+8+2e29ONwLPfPbP3f7l77+rr+InV955fBfnkja14gGAgc+SooYsGSKmR2iRmAkDULG2ZKLFJVSHtpC2DoyZLyYmYtiatkGBgG0BvqbbdJKqdhPvdhd2y5qpr93PMuzja0t0Pjs4/vHvenGlW0S9kMGp63N/qPf/o+Hh099omsbm4tLy6BcWjiCtHDggKLOemu15QEPslIApHRR4JeeJKl1Gcz7STWoI6bIAaEFSEFVQNgxIoKAZhGNlzubBQ0QGUAWrREUKCTSIAwKgTQwiQJwhJfLY2wJmkCQQFSlge06SOl6/dHp0fFg72hykIs0gkaModFGkw9KHLN2iJ1qbbl2+sOPS+ZhsJsPDhWhT3T91lvnZ88Uq8EsFxUcH+xbx3FwZItiGJm1pSUJ5uNZLw4aSyvXddC58+p7H/34Oy/cfrdTubZdU+SfT9IXh+f/4Nfeur7R/fGDk+lksr22sL5Y+4d/9z+m7OjXvnLtN3/9VyuV5SQvotsqevul8be+7fuWBACnCsU5C8Sl2MK60iNSGkEACmEnCBoFwFdYFEVJqjQhKeUrnbDNAQ0SaGQRYAQAwSIre+G837SSJ81G9aWN255nZ/Oys7bm9OEHP/ijvYO9eWqrcX2l26xF3vD8KCDz0sZNUCgQsxR5Whqrer1RvdkKvTDyJKgFpYMkGU2TvCxoNs1VgdOjk2Q4a1D4xdCNRGAjANAkSjGKIkIBz4HWir7Yq0AGgJDUpd4ziAayIADqi7QfFAALeAQORVB3WtRuQJKV/cHo9HR/sHM4O05EmkE9VqGnUJGQ8gVyRu2A1PrKjFmhevPrP6vATC/2z3u7TNQxXmiqCUulYuJatNpttWu1IGyOxxeT1B28eKZsVmk1DRfTwcV0fNyqLaxs3fzpB98fjXqNuOkHsXjUaEXvvn4tjNpJkha22FhpzN10fWn5f/GP/t6tKy3jN2alnfWOI69o/tx2On89v7/rkpEmn9AAOJCsZDImYzbiFCMiM7AgiSggdgQkiM5ZVRgNSEJOtLWkkDVfFqkIbVr0OXnSSNOAisloMlEs+fPnT65de/3dL7/06ut3rt249u1v/fnnn3384PN7h7vhtWsbEbq/+MEPthZXbt25Ncuy6cWkurgAWjHb8cU0X656fpWQ8jTTYnJnp2VZlm50ePHs/gNOEi+ISIlWBtEK56I1gyEJkUgEgTShUkQgwKBIvkDWgoJf7JBQiARC7BCgBOsASBktANRsU6sCLrfjwfDk8Hh4cDA5S9k1gzjyAgW+p5SvHAMwVhEoE4kqzQRomIor8vW7L89arcH4vNlZ6m5c3w7jaXoxP78wYlvVupLcb3jN5vJ0Nl9a/vL58e7+051h77S0w267wZm/FNe7nVbvdK9w5ayEVrPbOzskUx9OgV1y5dp2phq9YTKdHzz//MFi9w3lhxeT4vzFo41rN07PBuErRWf7nfEPnhfDCypQspKACxybwuTooRgATZebk8QgalCKbVI6q40nIIiIgFZKAwAq1G6aKgoAsbByGnFWR8IsiHzf1MK48v7XvtruNC3YZCrtxeWv/eyvdBc3VjYejUand67fXgz55WsrS+16xqUfoh94uSviOKzV6xokzVNS4GlTjePD/njQT1GCbFaePXg+OOitUOBrz9eeUUaTT0qBAItjdAAekUJxeJkDoVFAii4vsObLxXokIiTA4ADVF4tSSClRhjpNDA1medm7GJy8OBkd7k8PLUrLj0MvMKiVRo8IUCnUBNqBocDXC7VGbBBdvLiKOgirndbSaqXZjvzY81Sj4KW1hUYUJKPh2dnZ2aDnnOts3vVRN6uv17xoeLY/6k9SYL8om81O0ycbG88I55LMRmluZznGpSwtLfTPh0dHB7deuvNi98m3P/g8Nurv/fYvDXvnJ/3TaoDldN7evGauVpfe+cUHP35aHF3MPvr8O4+/+yzrvb/00qu1azdwo821yARskZBJAuUh6CDJJi4dNXQDKALUpc19HWrl6+mwH5u6aN9pdB7FjWpcrZ6dnTlwnaWuH8LJ2dmTv3iapHm9VUGwDx8+OO3tI6j+cLZaW3n3zU0il4zm1XZcX4z6g5KKcnt9mdkqKTyxjs1Jb3h0PC7yJB0lJ7s75x99VmeKdegpIlQlOwQmcHi5KA98EUXqcgAHmLRGAUIHSKU4ZdExoIgoVIqdQ9JQijCS0lSJ6f9f1Hs925Zd530jzbnCDiefm/v27ds5o0GCyFEACFGBLFsSpaLJslV6sGRXuazyo6sc/gHbL35wlWVbsixLlETSlEiRNAASDAgNoNE53b5988nn7LjCnGMMP+xr+33Xrr3WXmvMEb7x+zbXgBmWTXd0cHx/f3965/7yABBGsao4BI5CHDFEKdyZKDgTmjgwDtZzRb5Muc/kNN7eeP6z3zq+d6eZLk4OFmvF8sLFbehmi8Wka3GM5dzr7QtPLSf7J3ff31xfX5zurY8GwxjXBgNC2B1W81MZBxnv7Jw99+w77384b2ebhV5/9PEbb//epXPr4DRbNkdn8xt3zzrbGK35yy++yNptbBcxBg4pDBt4bPx/vfPDrRfWFmuPfevlv3rjw6P/9b2f/Nrl8SM3ztaXpWA1LOrsUDGyVIGLlPu2X8YiMgsCRiGhIAenh2P1amvUVYUVwIGLMp6/dCkrnB3tvf7ma2czu3xubTq9+dY7952lX5799Mevtovle29euPf887/6za8+cnVLvd27e1ZtbROymQk5hQjKhjZNeHB8ND8+TK3OTj/ee+fD+Z3D86OtECtGRsjqUVWd44HMG4d18gRdCYMaqAQfqGQUgEyZlIlTViBCBlXklS2OAGSKJa+NcWMNUspnJ/3pyeTg5r3p8VGasBSlDErmAmJkYi4YCiEEj8SViKBxdp5NjEe79cb66d2PrzzypCZl4uF4Z4ZH6PNmOj2S7sKFq8NhsS3jnfXLR0soRxs3X/sz7Cbj0Yb2Jz/40fsX16pvfuOvQMaaOTIMxSzGAIMLm/UjWxf6Zf/ma2/tH+0//9yFSMXbb719cWftL33jC1LtHt4/Xt9cqwaBfEES592Utd8q6Su/8MLpYvrKMxc3t3c38M07b+ejc3j90qPv/6s/HhfhKj1WI+cO2JHQW9WmVc2LKBVjUcQooZLJ/EZrs3G83A8355Fny6UVUq8VzXxxdjy7cvmZLz9/7fy59cX0+KMPPvrJT14riuLFFz7xs5/8cDE7+b0/+LfPXNl59NpXMWzOjz48/fhOGdbHw2LZLyCnZtlsXrx2cnTcTc6G46LTSZsk3ztZwyKiBCeC4BSyKzD+lO/dTc24GjZ+osw8XW5odbEcDGzjXKi3OEYuGRidANRIEdhTQ1CiJhoPZGvHmX22TCdHy7PD08nx4eJworPAMTIWWBRMgQshYQkRawJiEcIiSOEkBnJy5wwW61/52lf/6Hf+6fHx6Uu/8JXzVy+W41LKDWxnR/PFmvSja2PVZshy98OfjR//xHoxEh/sn93omoPRoPzki09cuniO2YKUUo42x2MKAx4MuWsev3iRsr71wTvf/u53r13f/epXf/ntjw4EF9/6a19/+dNfJw3l+u6dW++euzAquKhK6LWPG+tQ4rNPXfzwfZD24+5osjh572uffnxY9rJmiS1SVFRHz6CQWzB1sF6zQVsUcVCtMUcUlrabNKinbVmMN/I6bow3Y+0nRwcff/SRydYnPvPcaK34/p+/+tqPf7K5deGVn//y9rmtQdBf+tY39m689i//xT9rl03b+GJ22vUN9jLaKly7NOkztCcndtgcT84OPnzrbSrG60XZHc/y8WK7WneWQjhzPuS8zMs3C71BbRzE+fK465q0XNiiEzPS7nFa/+bWi0V9cWAsno2YV17fmMgJR7VsreFw5G2rZ0fN8WR5eni8vHeUlgm0LGJEjhwF60C54IqoDEIMXIQCuUAuUQgx9l2en0znN+6dv/rsF3/p137w57/3e7/3m5/94jcfffIxJtxc25hyOD05Or77Xl2dP713942334H7zVd3HnvmhZ87+KM3u9Q7xK2dWFRrAlFSruM45I356dbx0XTv7lHFWzfeO/13f/aDo+nsK+efDlDcff8nX/7qJ776rV9plp12k90Luz/9kx/cevPt6888XY5gbbOCIrV9PWkXoxiR19bPPz6Z0XqpJ6fzj994NwBtjM6PivOMhQEmTcmMEMF7omjoo+GQXMxdFpbMNJQoGxFHcThIXV6sbe18YneL4qjXxR/9uzd/+P1v33j3dQ7y458++/Wv/ZVXXr6+s72VTi/8R3/nNyaHB0nTyf59dmTqAhl4NgxnU1003fzkrfv37/zk9R8cz/sKy42D+SPOztQhzEjPKt/P03crXY4GhOXe9OzkaH+xmHaLiQOkfjmG8OhgiLmftlMTiIqRQJDQQjkYxwvnwnDkbnZ61p0ctadH0/n0LJ/OVImKIWMRBDwXtB4ZYxgGigRlIQFZuBTCEkUcXVOe943n04/eOquPb5XrG9/8lb/309d+9C/+93/0+c997hc+9xmUQspikcp7H3+4PlYSUtSf/PkfXX3syme+8PXpMy/94Md/UEUWXN+/t3/SvrO1/sjJffjhn/346S/Gs2xN3z+4f3f/xr3p4f5aHT///NP96dELzz99/vqzi4PJ/OjGtRd+LqM8//zL//q/e/XWj2+tndsabL3x/Oe+wDI6vH9vbVTuXL68PJrtbu+mWfPRt//0yh5/6txLO4MrCJVaa9bn7OYGAIyhlEqo5lCau3uS1ru4trHx/CO2WYRaeC06hels1ji3zfyDm6eTZb509bEiwjtvvfrWT79Dlhy+tVaZnZ3sjKUshxxLNTw9vX9xZ71fnLZwfu/guOu6cR3WRmVxYX3jy1/5zh9/7/UfvLNNuzJeP/bmxPR4bf3j5uReUKnGpPl4f69ZnuSUmmbS9A2aFgbnQtnp7KenHzw9uHCh3hr0RSU8HJ7fuHKt3Fg3V22X6eSsOd1bLqfT5WLu8wQWRCJJCBxJhEcF1YEKFhIMHMpQFsCBgoCDmqWumy2Xy7TU6bQ4W6tfuvzGd38nl4MnX/75z3/5F3/w3d9tl4c//5lfLNauAdrd07P37706OZ5htwzc33n9Tz/z0kuzebr9YLE+4PVBKstB7303X775Z+9AtxxdeGR+64Ox4XzRH5+dbSDWcVS04dErV7bk6UU7K+Bo7dqTRvVs3v345juPPXY5v/ugOT6aAPzFz34rlNXJ5LCFXkM47ebDanTJNj5VXf/stVfqolbllJu27/p2EWIEIAGu6mFR1CEUGTG7oqmAW7s8Ovnwo/7WneLJC7bNDaeTxcnBssc42Lp4/blXNtfWv7CcnfzoT7/9T/63f/TGa38yObt3+cLFl598bE2qqqgWiyzlxry/tViCc+4We5Tng1h8ePODvYPZhfOXtocDOlq+Qucu1BsH2J1AE3Z2oeo+nJ4Vg/NliPfv3My5zQ5t36eUyYFJmOVmOttrpzCEy7FetLy2cX3n4vXx1iUqSKfz3My7s5P27GzeLSfaLFNPrEJcCkWJAWMIMdKwEAYkkTIUgesh8qoTALldtMu2aefTftH2LTOO7kxsohuXn/zhT77z3ofvffKzX37ls5+/8fZPdPmvH3v2k8tZ6mjtLPTvHj64f//+Rj14qbAbN986Orsz2ji/t3/z2rWnNur1Ozl95ktfOrthR5yJZehFtYhJ66L0mbZN6t/84QcvPP+lat3i2iDDMLeTsL51eDz5t9/5gy88fuXLn/rUyZs3s6ZFSl07L3N11NlZf4a526jLbzzy0suXPxGktJRVl8u2XbSnAJ3AduCyCqNBqCAUOSNFdffctzIsqtPZ4a039tset4+f3Pnii+OrQxrA5N7JrcMzxQdB07C6vLm59clPfa5vO3AbDkaDSO10huVaDsXByf6bb/w4MA3L8RLa8YZMmsXOWlXI8sdv/eD0z+Hp8UZ5b/HYYOdAmrfaM9ze3tnenM6OqFpfW9863L+VcjebnqRlQ2gxFjlEVFx2k7adDmVYGdRh95nHPnPx8mNUFnky6yez5uQsL6fNcrbQfmGtYQoBAxcV11HKUmKgACKBK2ZkYYqllDWwOIN2mud9u1h22vSpY5C1+lzMy3JrOHv00f3mkEPFlP/N7/zLZ59/bvfKYwe331t0y/PnLkXxi9ub8vyT43Gxsb5z/XNfvXs6Off4i73c43ZfLJvFN96+9elXTl/5ypdu951NurV+dH/+YEeGQ+SFVS2l4w/3/+3//M//+n/y66Phxqyfj7evtbn8/W9/99JO/Pmvffpc+1j30b52y8jSZYrcFcyRfBvsCxc/9/T2MzFwTtanvs867866PK/jKHI9LschFhAK8+DYgqPmTnUpV9af0+mN49ntaXc6+WAx3aYNvN5WtLW+uXvl+nA0rNeGFGgxb0Zrm3/tb/x7XdOd7J2+9fqPvv3Hf3jt0qUnHrl2b//+5HB/Yyjt5lBEp/dPj48nuHNhWI0/9exzv/3b3z28PXt5eMHXy3fm+x93023eCovTejjuYXZycH8+OVhOZ0yBakTHnJrcLXPfLtv5GOjLmy//2jN/9ZOPvixVqd2snx53R2fdctE3i86aJbStGWMOTJGqgoZVJeKBMEghxAVHkVAgR4wRIkF275puNl/MmzbnWGBgqWNNsYgdjn7uifUnt27fLp97/uXXX/3j0ah847Wfra2vPf3YxeO9/UEody9sE1S9B6jXpZbsQLuXmhab+f65c1s5Je3nBaYP3/r+s6/85SvTC/u335nevFd2bVUMGg1JUxJvXY8+vPvDf/oHX//Pfl22NnukG29+WMfJr/y9v3t+97ofLtefvX720w8EcgJHSGBQc/HK7rMvbT87LiWnpu1o1k2Wy0WfTphkENfXBiPi0hwEzEzNurbV3HUptbK7cY2lDDx4b/LePWi0PQtExXgNBwMVmjXd3QeHZri5PT5/Ye34470f/sX33nj9p7c/ev9w//Dg3t1uOVPPMZbb53a2xjwuNODg8YtXLIxu7x1dv/LIL3/pC3BrErF6K03ePLvHZT2dnG1deHS+mHXLs36pVb2xWLRdO4WMAG5u83apzezF0fV/+Ozf+uWnvjheW+v6rj85bs9OczNt5/Pe28ZcuXekkjBgUUhRhlJCLVIwEAoyM8ZKygKlAFAwtJTTsuuX07aZgcOojhIrMJNQImGUUXOU0knzxKMXJ/tvX716JdzdG5Tx9Gzyxrt3nrm+e7z3oO31/IWNeXO2sTYusP/4w/dCfa5rm9xNN+t17RYXLp/7yhe+euejD64296pm5O8f43I2jKWjF1BiAHNb5GXF9PGrb/7on/zWF//TX9tfTq9eqZ5+8TdGo83jgzMf4dpffb6dnZ68/m4Cb7VFtE9tP/XC5kt1GKScZ106mp5MmrvoWnO9OX5kWKwBR2BGsmyW+kWf25zalFsgktH59VhyCBXHInQfLc4W85NuY7eYLBans37v6N6PXv3ewd7R1WvPVJUsph9/+P57njL03Te/8Knrjz1y5+jIkl7cXd9dX9du/uD4YHt7q9HpaDx46rlPhuH4U98cMOLJ8dnFD9/p/nDjvQ/ezVnb2SlAGI136gvrb/70uyeH+6PRFsUwXx63y+nz1cW/99zf/VtPfX17c6fPy8XpcT89ayeL3M2zNr15D6iESEVBIVCIGGIsJKBIpMAca6ICA2EQCtE0uaFqp9n6dp66Hl1GdYRYSSgBMlANllFzuHm2+N79Y37v0YvXDo72di/u3vz4tnb9Wdd8/42zn3vqGjfzt985K4UUl489e322XGK3nw1S26yNNhfTxc2b9zbqzZOTyc9+/OOrlGE2HYbaAdgxM4AnQiopDHKcYProO6/uXLny8q9+ZeqlSpktjTfK6UHTD5cX//Zn7zw4OLr18fogPrH22LXx0xJklhbTbnnv6PayP6zKers4vzW4UpdbXBBJgZCyYWqXfVp0ObubgxCg8GhQopyv6rKOxXJrb3jWU27npxYHu5cvrV3cooAfv/vG2+/+6PToVKhzR3D92md+/ltf/gJXw/TGW0dH985Oj8aBvD87Ojzan+VLVx7hSobmYbi2ublWV8W1R6++8skXvvXNX/zd3/qtf/R//POP33/94iNPrW2u3Xz/B/PJ5JGrT09mx2cnDx4L2//xi//B33nu65uDoXpuFpP+7KQ/PevaZdZlb5BAQQgQCohRuOBKhISFAhNGDoHLgoqaYgHowOxZPWlu+77rLLeGFsuANAxVRSzAAlmzGgBlBda+uNnMws8mxdpLzz/9w+//qK7DcH24f2tvWG299s6ti5e2X37uSbbEaX7/3uHWpWtIKP1kOBpIDEVZd91i4+ITp7O0pVBQbDsIMZALoLmTuYBnCRSIIuvSqhu/9RdPvvLi+gvn9k6Py82NajiChM1Mi836+t/8Avzj/umwvTu8lLLtt6d3Z/f3Z/cZ7Fy9e35wcb2+OKzXQ1GIQFLXrH3T9TpPpgbAHkSAwQWFqY6h4HU69/hwU7p7t05bvBgHo9HJfLF3dBxk/OLPf+0zX/66WMu4OHqwtzlau3J5l1o9nk1PZ0dGMJ03t+7f7rtZTkbd6dHCLlzBfnBuZ9TxWL2HyXzifQ+An/70p7Gf/7f//f9499Z788kxAF68dPXg+EHR4X/+6C//gxf++sWd8+ptOz3pZ9NuumiXC81tbykjGjlQSZxLCgUOYgBmZg4chJnNhEKkUEAocFAAI6rnru2XS+tbBJQiIkqoSkAmInA0M8WVrEANEgBPfB7rwdHHNzCEF5+60vz0g40L1aWddTfaP57sHR69e3twdffC8y9+ZVCv/+a//GdJF7/4xS8n7Zt+kWcnVy9dXM7mUFbrW+fppEJ39iAkjsgIYIV6FwAj59p4DJS0//Cffu/T/82vbq1t758uFwMo6qA2OjuZbb3yiNz+bPXqSdM2x8uTG7O7Z8uTcSx2qnOX1h/d3bxUh4rjIGXPfdvlvmu7PiVHiEGQgEDI2VeqLGtaV4rj4SB1gbbizjKzHRztv/7ejZu335tNjxHp81/4y1/98s/XZetPPF2Uxb0Pb+7dvXvv8MFi1m4Maq+51yVXrJ6WZmenpw3gxoXH1/OF44PprOgMdXF22h5MRuPB09eu/6VPfeI3f/87fbso4rBNy0+Pn/uvPv0ffubak87edPP+8LQ/O23bJnez7GhomYiJVsNuZiklErJISRFZSiSynEAEJGJgN0MRR9BlA+poKFEglIjEEpCDu5opZABQz+poiLEUbwoNT87OxUfvnJzdfO+tMN6uKqnLogr1aFh/PNobHhV//r1X966eS5DHo93nX36iWSxmuWe15dnx009e392+8tOfvP7UU1eaxfHkxvscjIXBXAgJmAMSFMnRtDI2Agn1Wn+z2/uD9y/+8stNnYtxsTYc34LqxhvvvfDidfjG8w/u/fD+j3+61z9o+uXFcuOx0SOP7zy7MbpARW3ZUtv0fTZIqVeDzBEIy8BB2B3Ze6VggsKA0M9aqUoRroq6on6vWRydLUI9fO4Tnx9V+d7tj9YG5f7evZT04sWtV//sT/7gd3532bXnz105tz120j7j5tbFjeHaZDnH+Wk+Wyzm/YM7HxMWt+7fHq9ffP6ZR+u6au309utvXNzd/doXv/z9n70+bcEg/dpj3/gvX/r186Nxyn06mS1OjtJsmvIipU4JPUQACcBRkCUQEBNGYQ4RBJkKKgeek4EjOEcGdxKyrG4Z3FAC16VnBgmMggyA7l12cyAEIBKC1CORx3L61McpzAdVfOLyhb37e+++9t5Z70nkc595/u5Hd5DDs1ev5NTvDAo9OjycndRr40vnrrPjJ1765P0PR7dvf3jwoKuL8NT1a5PbZ7OT44AFugqJoAhHJkHn4AABTBVgEKINi/rBb7+99sLlR3/hymyp90/bO/fndyaLl2Lp4eTqb7x0SpPTb994YnTumfXrO/WlothocsbUg/bZMpKrI5KWLBxqBjI0QkIH5awOgjEgYTOb9NPFcH00lnpN8KDbKyNf3jp/8ZFH5mf3b3148423fvrbv/3G2nh9enpwdnxYRV92nYFs7uyc272A8bCotoeXnnrtO/9cFcajDadwe//sp+/+/t27Hzet/tyLn/jSl78+rnzv+NZk2T13ce3LP/eJ3/q/f/Q3t3/hv372b2+NBk2/7I9P29PjbjZLuVFkl+AkzILgkVFYisjgURhRKo6MBIBMVYDeMYPnBIiQs2OGbGgEHAEzWXAk0+xkKMFyzn1PgsgRgb3vQIJl3B/vvXHy43TYQcwHx6eF23p06Jc9Dw/2T0Kk81uDnPpf+tKX7ty6e//ocLPeOj6ZfjB9c21Y17nbv3PA/ez+4f5Gw+MPEx7E2FIUKThGDqUMYCV4dkQSBCFxQCmE3Utcdm/9T9/59NP/vpRxHH1tTK989ucfHOkAFMfFl/7B1y4/sg3fvc/AizxpJinGeiAjcCISBGIE4ShcEqMDgwG5A2akwj0LEJEwIByd3Z/qzm48NwijnXNaCPTVzng97t9Zhmh7925NT2/f+ehN7Zuvf/bzTz/76J//7K07dw+dyq2dq63Z0elx9+B0feeJfn6ohlU1ODq8M5uesOByMfvo3j383h88//gTz7/0ys9++Hq4MLh2+fJfX1/+F0/+jc160JycNGfTbnqWuyZpm5idXIiYWAIJUoDIMYggiqBE4gCxIHMkQQxObj7X1FMaaM7kHZclMmAsTIncc7/MbUeSAwm4kggJI2bT5JmM3XL33f0f7oW9ccyzxUy9Ob9Rv/D49WEcVcPNruKm78zjrO9u3Lg1WZxtbow2ysH1a09JEYOm2++83U7P3v3Z7UcWg8v1ueX9xbiGcVUVYVRLGWUQSBDAncEzUiAIZkpCngMIVbXfeP21d/7ND174G59vza9fGqltvfPWh1CPDJuE3ct/57O3mw8f/Mn3c6CCOnAsoGQOwhmBiERYCAwwuCuRqQkYAiEmEESnug5D6Q8nR7P5YrdsZSyhIKnWtkZd211+7MknnnsK8uTO+2+cnexvyODqxYv3Do8Gw9trg8W4qqmoLl557nTx2p07N5566gXql7EowPtnnnpp2S7u791+5703miUnoI/uH61vXZicHpwtLuY7y7//xK+c3zq3ODluzk66xaTPKYNlVOMYEZExSogSWWKITBQhCKEDRzKmWCKLWwZECMh94QhmalkRAJJCUbo7MRgSmmEGTY0QU10gORJ5Js+9oUHbdZzfPbp1jAeP75Rbm+tPXf+5x899cjDbvPeTo9TT+i/sdAM9PTucdamO90MApuQAhE6pXR9tZqxffePWS/3WtbXzW4P1EW9WEmOIpYwLDMxOyIBC4ODmyOyoHgCIgiRLkDWavP2//N71zz6zqOPxg7PNjdETT1zQdgl90eZu6o28sDn5o8UWDlDIaJm0ZAKwCkAQTRWR0ZXdGSCBZQcGUiEQYMIoZT2oq+Htw4+O72WqLp1N41HR7/3stbaLj1za2T63Trl54qlPYjfT01MzmHSL4+OTC+fOb+9u3L//4JFHn0eKH771pxtrlx975EIVpM9dO58SVrvrV/BJPjyeuWyo8Xf/5NVNHB784MEv5U+9cOHa4viwmy66ftJb13iBYoRScihiKCQKEocgRSApgAOSEOtD0FNgAAUkclIll5ICYmBSdSS3jClDYFNHQicDSIQOiJYc0IHINQG4a59zC9n/5uAzusnnnjy/Xu/waWzv2WxvHqeiB3b/wV3fLU+Ojg7u31DK1W49WN8uN6vdp6/0CU9/dtffgC+GZ7bG42GoCxkWVBZMkUsWYhYAQwdDEQBkdHMCYVBVZKTcoWo7jnKu26XfPArfuGJ9gtEZ8fZwbei5mu/vx8BXP3fp7d+9mj66A7EmQ80AopoNsEcIGVRNmDswdk/AUc2JxBkEFDxQGI9G1VaUjx5MPq5OhzAsD0/uPphP6vLc9//s1dPp8XOPP/fR+hhdB368f3dPykFa5jaGjc1rae/jxdnRYnYynx3/8R/+U//arz722GNVGORuFo8PBov2Uj/eKZ8spCB1rq5covG5HAeFzU/3l5O2sVljABRC8ILLksogdSxFBFkiBcYYCQtEREQPgTggORCDk6XkroiMokSVmdFogGqA6GboAcnBEzJLXYOjIaIrSeHmZtld3TMisPPTmy9giPZ21qQJp6AeCYtBPVQdTr076wZ5fdee7nKbbubsquv95L3jcne4+a48Ur9QrgfCEMFX6rEoQBxRA7E5ATqs9L8GCA4ETE6Qwa0XwAKKc4NLVy5fDnfD5H/4Wfy19fWnrt68d0JCV87vFBJCXcx1Ta5c6vb2Isc67kYsUBhdASWrArkD9C2QZDMiTMii2RCSWKdYIYVic7y1drx1Ny2WQ995fPfT9aUJx65N6k+98ep3Do9vnO61O+sbJ4tpmk8O7p8UfVo0e6pxc7jRL2dDDOOqTpPF6c++35421648cc53d4uLg0UzDFy7UBc4BCDv27abHR3MFpPutFVDgaLAkkZVkIKLUAQhRhGpKiJwEkQAJBQCQRIBQFdzdTAnBKCVh1DtfbtS0gECEq5W08wN1NzFMQM6EWMM7mCa3QGBUACxIPVMfQgCXaYABAGhI47InHMfJAINc99rjsnQSQkCDhETiQ5xexS044AAvMJLui85FERiToKiao49mgATatKUV8pt4KU4menaYFDW5+vNHSAeNPav/vHvfOPyrwcBrPjo4HhrVFM5/OhHd17/0Z8+2ugnrn5yGHb7lNT7h3phZXAFJOVsXrBoNmBQ96xKAgaQCdDjuD63duH26dlkena0v72smYbja49fqSq/cm6jCFZhWuztf/jGa/1k+9IBD6w0te07TTWsp/fP1ua7T1z4bMOzR8PVy4tz5+6X25trzADktoQ+99422a1pTxd90+XcYw/mZVnWXJYxVEUsypoQHElCJCmdyVc08BVGxhDNXB1A0RDckdiRkZAyuhhgAGAwRSIgXoF5rOs8W06tt0uKBUYGNzd17RwBCEUGOXdICC4IBQYi7QCQMRgDAboIgSJRqCrHCFmBGYBoWBqYmPtIVs6wiOhImg0ciYQICNiRJTioqPlKGsgRkUiTMUVXj3VRlnUYDKCo82IZoP/gT94KV3/zN/7h3785k9s333jks9fu3tQP/vX39O6tjZ1rG1sXQzmmo8miy2YeWKBgdAIKbKurVzJzQPLgmATa3owwuQQ5v3X+/PTB/OZ+F9bb6/VgNJhP23o4vHD1ylqhdz68vZh0j199ur19nAq6XG+OQx33ufCKnFw2w/hR2eCyWEMBnc/7W8egmlKnfdP3bWeWLCEZIhQlb8cdACkCM7MIsxQUhIIjRZS4sgtCBgBHYjd1QTAGJugUCBAIwBEZAz2kRFEGBA8lqAEzuGlufblMfbbcAhgwkZBrxuyYCJmAlKhgR0QDFgJwyKu1LpNAgK5GhCDBDTiIO0AQAnRAqgrLCdpMK24CkSOAKWF2IxIBZyADzW4R0RASgJnCau+ThN0il8bDdQklCLp77vq2656rtz/6P//s9/DR609+8eAvPvjea3eP/uJ29/5bL25ef3T9RYLAgyL6ej7y+WxiqQmDsXDBjA5iSYnZPAMSaNCEkpct9oJMQFyN157cfqLfp9zIGXASmhwftIvTPs0x68V1GUDeHuwso/XlGTVRqAgH8wLWhCIoiyZf9u3piWrXdfM+9ymrMxIRMrDEigqhogjCxDEIRgZHjohGq8hJkQijIwIrICOgm5sZIoKaI2MyQLCsFAXAHBwMUQidHAmTuWdkBM/WZ+tSbpfaN8zBPYKTm6KDAiAhREYS14f78igFIK7uvoMRB8uKkEEzIjkaiEJyNEEijADgmAxYUDMJOaCaI5gDorgDUAB3IUUMbinBSr8vorknZqHgVaBSQl0BoCFpk1LbNu18oyiesHX5nT9//PmLk7uLd/7w9y/UW2vD3Uo2xnFMxJ5A6roa5tz1k6btmvmorIlqZMASCBxsQJCBHEkEzC0bmRsBlkVdD69vXl8u+/I4Hj8el6nP/WRQ8iOPX6wgtYsZdHrn7Q/mH90+V5xrZTwsF2F+VlYDaDMYaA8OhqCAGISLclAwiSARF6Emy1gEIkFyCaUTMjkgghMQgQOggikyAzI4OgASekZ3REbPhmhuq/84URBEAibAhxgtNCdm77P12XKGnLRPgILMQMxC4GKgCAZMSIzCbhkxghAXEdRc2ZTBsnsGc0/qaI6GUIAqObsQREF2SBkAAQgkAKw8M9QdgY0oYE6IBOLO4AqOwbRFFEeQIgAyYuAicCwAyR0g5dQscztvuq5APF9vPH/hE2FQb1TjC+Pd7XJYho3cZ8NGywqXS6kGYTSsU9OnxbxfzCCPnLmsnJwVEBKgACIhCjAgqRtgclcPIW4OBiMfbRRrH2zK0ex0Y/Pycnq6f2u/zF05adrZ/HB/3/qmlzaLJGfqvG2VYsBkRQhAVnApwEFirIVRgEUKZESHgREzZwREKl0AUUENOHhWFFmZSAI6KiKDMyMAuYOZZwBDYwckNyUGMPKCERwMgAncwNEata53UAB2BCQCUBAiB0BAB8eVK24ijOj2sDoFNHdXJ47OaeVX5ICA7m4kgqaIvCopgWjlAmqgDurAAADQuSECIbKjQYiACMkAHQwBjYSBGHIPWBARFxEpuBOou2lue11Ocz9rdMGO28X69tYlB2QjxoIljMu1VpvJyf6ovDfa2bHU47CM4/GgozTbny+mrkdj2wyxdhbCDOaOBogCwp7NsnHBrh4Cu0Yix1Y3BhtHk8N7t27u377Rzg6HOVzfXG/3Zkc3P368PB8oE2TUBCAiSdxYOKCGEIULCcRShaKggBSJHB0YEZhYJAIgIPmKnytsfQfgCG4EwIEMgMDdEBwcgYJDNkvgK+euDCTIiIRICMwIYNm8771LfZMJMlcRWRycQqm5ATeQAYIBKREBMHryvsUYHNkQUB2dkBzckbKTeJcdMiAgIiQCQgcgJnBiEGewrBAYlcEUDM0M3IEZMSApImvOCOAO7j0YEqEjcShIGCSiRGRyc1fQPud+rv2i6c20EabN0cWiXk89RKSKomUMXHsRz+b7pyd79Wid6wBd5ipW6wP1Uc5t087MuDaoiiqjMCkiAKCgg/WOCJ4cCSlEyY6IrLYGsra7canYvLhTvPb9b4cmh7A7mTdrsrYWBwOpS6mIhKADBYIASELCFESwiIIlMAAFJmZzRiE0d4BVUAUidEVAJABaeRM4mK9s44EBMoKjZkURV3c3CgJgZohkDvwQl+zuCt52eT7XtlfPVNcYI4XgBJQBgNEDy8qHhlECgLkzuAMSaiIiNwUzBwLPQOwpAwGYgQi4u6ZV2e0IhGrEQI7CoGYOvjI8UERc8bcBLbgbEbs7qgITqoMbk7EUGNkhYpCHlKu+zX2XmlYzNLnN1g2o3hzuUqy8XQTAgtjACLEq6sVSJ/P765OtcfmodwZCPCrLdnOQsJ22bXecPatvFiG6EGskNiFhw84JtM8kjMBSVd7nnmGhWlX1ld3yns6uXnxcFqmoxyEerHM1jtVAtoaRyUSQEJiIWIg5PDT+RCITZ7a8As+juzvh6jUBRSJSUzSniBgCEII7Z1zRnsjB2V0N0T136AKKQAiuiAEsAROYAZJl8KbL80W/bNQ0REQiogjChE59CYrIRDG6OgV56DvEEVEByYABAAU8tw5oZqCKQmbmKSAkJMDVrxdFKkAICUEBViHcUs4ZHcASMiGWoAymToYYAbN5RjKgQIGZEIXRAzBCzrBydOv71J1p16Su7/ISSTcH24ONTQOwnBFNeKQwNadCQpT1eX98eLxfjdZjvekLgyqEtXLYx9RvThcnTTNVs2G5XnlN0qccBQJTVUBKqetz5+YaSiZELKkDrwIvmoW5ReF5msaurquBhqKS8SCWAVmCIIErl6GIDFSUghBCBCrchBkAwJOBOpUCjmDuSCSimt2dmcHBSRAUkbwksB4dVR0RIKsLQAbgTAzggMiGiTAgACB4ztanNFu2i1N2pCJQrAgRA0IMkJGKAEkhCHJ0bSG7R0Ra/QxxMLPk5izs2ZzMDXD16DhR4ZjFDNxb5JIwgDs6gyMAOmRIZqDgPejq1CbImQWdFA2BHNwJA6hSEdARYgQgZwJ3d7KUNS3VkrUKObfWZegr2NysLoXB2AyyZnSMjEtl0D6U63U1btvD2fLe7HRnsxwDCKbEhYTBsNacctLO225hGXOZqrIS7AWcqAhmzkXOjTXTSe7rUEagIUSZNS2TlEVhnKazk3PDCw1xYA5csHAwZmQHKoJEESlCKCKiSFECEgVxNRICQwOyPiOKgwJI7ltGdiEzRFVkc2RgRHB0BnZC9NQDEKgjuD3sTq0afgHUIQE4uOW8mPaTpWqWuoqDgasbEAgDo2dEDlA4AVlOgKteMLiZmboDmGvOCK5Krr0rUyQ01T4RB2DGSNglgMKQEVyCwGrhzdQcAc16ByUDBFNmck9m5OpIiADghGgkTDGCIa5gFA6e3E0tdald5r4z67Jbb4quw2pzvLEOEjGZ5oSUhEu0zoiYnahgHuQ8mcwORxu7YTC2XolQBnXZq3YpecLO+jQ3aDNujDgIGEDB6FHAczfnEJbdEru2f3w4aRcYVcGZ69Ha+X68cORW+04BsBCMxOwOgYVCLRJZCmZxZiwKZnEDDIgIACzolggJ1IzdMZtFwZwfplpE0CUXXpGMQZMTAomjuwIAkaoxga14YI4VW6OgXW67djrNCriaLHIEAIqr2gsR0VCQkxuurJGpAmTxnN0cPHuftGmpiuTg6kjKXjobBzLrEUskQnZbRX0kBAEm6LKRo9mKv+1A7h6KwpFwZVvr6ACgGZmAhInNCHnVOXPLDuiacm66lHpIjefcuylokGp9vBkHGyis2czALSNJYAxCzDHGjFQIwbw9Pjve3ylqZLE+U4ixLEwH2Wxm1NskWZeaE4gjWdUnyIELKwa1mbYznXfdrOimy7xV1+MBzyfT6dnJiq7QzFOfXdWyQclqWBBhIRCKgooCUVZZFRJDQOSHsQqQUQATCBVI6AyIhgpYshm4qRMRrsZpBgBo6IJoiugZjIAIxdndHbI7OgLkvtd2CaZEKFXBQWjFrpQCXUEJNIMpZDDLSIxMgGjJ1CynjNprVoOFd4qFAAtxgIDohEVERc+grrziwyMaiAMhYoaMGdzVszoQoq1AT8iOmgEJiJGcmAEJGR0JyMAZCE3RUzLtLeWcG03qGdWo1wRm42JzOFjHsnIj7bOjGzKRrZgyjoQiIdSaQtfPJov99W4nDNYhI6BTESQN6kot9wB5mVKXu4nNxbu0OtyAmMZFxdjrpM/NvDtLzYhp4C5Na207ZbAYyKxpctN7h1YnEbYEWgEHR0RgFEQhAyQmAnARRlg1zhzDKh90QrDVfJodHBghdSsrN3d1N0J2dWQ0QCSErMgRmSApIDiCJfO+T02buyUwF4NKipqLQpOSCBWCCG5unXvbW1ZEBM0UC3DXptG+09STkyUFEFRHAqKA7KAAgYHZWwDOmI1Cqd47B2JBzd47ojuapgwO4AYgJOCujOz0//GcM5hRWNGAkBzdwUHB3LxPXe+5Ve0sK1hSN/McYzEcroVyjARuCqnH3LqjeRZGJHEAAhaJgIV5t2hOpqdnG0XtRKv8katAfRmLgSL1MMuuOSexLuu8wRAoEA8LlDAaD/qcsrZdS47rTd+b5ipUHtSdisFgCt4rZM+SiZEMNXUeKYAbohAAijgjMkJKzhHQNGUnQBAEdwNDQGdgQAdLBhQB1G1V+6KRo4CrIRgSIwgGNDVngOxImBdtWi77vkUpBusDNKQygiMBIZOvPMNydkvuDoDATDGQsDZdbmaWMzk5qHsiBhBCXOFdVhcVSAhELAGyOBF7BQzg7o6m2VVNES27RMiKBEgByVwVREARCYgjsgD8//Aud3Qj12RZNfWmnVsmzsm8M2fmOlR1PcZSXEnNVTEZOKghggUCcnc0RKocAzq1/fx08mAwGoXB2ME8KVJgkRAqN1BQdGp8IRDJOrNl5+4w7YphjRKqenBweK87vwFwadm0qc9GFYWWmaKHwNynNpUFOz2UieSUugXGAQLSavIDpMkxo6NB37sjETopupj1iIzk1hgJITiggSIG8p7cCdHRfXW2AQEwWUYwdXdPydRy1+W+FQnleMixfMh6QAKOiAS9WcoOK64ugBtyhChukPtO+wSAGIywBAMKBkAYxPoOA1IdsCdQAwASATMAAyJkNjPQDJpUe1BwIPIVsj2sUidkfgifIEZCdPcgQAoO6OTqmDq1lFOvubNs4FndkioxRirruuZQIgsI+EItdeBqAJ6dGB0wGytmJlOJlkrP80lzvDadbw1qhwiOgEoEIbK7lFwzuRMKjwsnT6dpuTzr+hwXy2o0LqvqvZ+93Q6uPPHcs9s79cmS42A0HK7FBrvlIpsKac6ojjEoJIKoBqrJKahlx9CZMjm5w6oSweBgDORmagZEeUUyc1c3d2cExGTojMHcBdzBFZEQAwk+/FTuc59S0wtTqKpiPCIRClE1oxMKuYPlbEh5NgPiUK1mAogACKhNq22nahILFCYsAMFShyuhFpD3CZ0hwkOQj5uhs6BlIHN0zpbMHFfXlcGZsZBVaxwYHQMCrOxxfIXxQjLD1WFuCqlTy9p3CUw1mxv0KTtAZK7rKlZjLgWcXJMbZHQ3MANzEBB0hNyCq5MGiUaQGbs8P5sfrbW7VCFARpRVQURaBSJzHHovxDGuCeIiYzE77I5PHvDZ6fnd7flscu8uEXMpUtVhwDmqAGrCpIbqYD5316S1k6a8DFJg6qknYOGAqGZuxOy2Cp3B2dAd0IiRhE0NCTyBIyMqAho8pE+iGRJAYE9m2Tybq1vKqelBgYVjHakuiAMSOhhydFAU9C5bn3olTUsw5sgPcyAmSFnbRrsOgVkix4jo2AskRQ6QUdnQAjis8jhERCcC9wQk4DkDsTuAZTMCUA+AhKs+MwAjCAAgr0BujowI5Nqjibtbds29pdZy69blnNzNKLMQOxchchhiCCiFpd4RVM1SMkjgOQAzluBirtlALSCgk4BGzdNps991V+uB5ISsDgTIRAKWQwiOKOKdYRQZD+pAm8rNwfz+2a0Hi7tjjGdSSsTZomESQuibtqRa6qrTBiwh1A4FuppFBXA38gxmHszdERxB3B3Z8SGyPrr1bg6BLWUkB2QgIwTLyIVbn5wKyOpESLQC9UOf3Q3ZvfdYleAmRYBAWARIBsbEoGBMtKKda5utXZj2LMFzB1wgMxJpr+YJEEWIoiAjQnBIQAkZMSAmAAfNyiW4oyVFQBdAXzGa0NqMZgAMK9cHJIJiFRscwRgJiZjcYWX2uhplAmTXbGraJ82dap9XJbgDQORIATnGmqVAZM+GjqnLOXWuqp4d0DmgFIYMEIEyCRqJIzmBGy3a0+l8Uo7G5o7OiAKQgTwQJwVhknQyDaMaSgnD4fhSdMrL1Hx8fKPO6YWr17vlctosfXmyPJv6vFmvwRlbaxaa18EdMGuKQZkq8OwWwHtQAjQsAkAHRkBoyABuqIjimFdWA26rZhS7K4tb50ZMlr3PEFiTIwJycDAScVApSirIUyZhR4KMAACwupcEhmaqXZe6uWMPBm6ekwVyrsWSQuo8KwBSOSAuwbODEaMhIQUUIVfNhmAr8DIAKDqqAYq7mmY3cO1NgYTV9aGZFQAAIRgqYAAHAjeIZNlJCAE1qznkvs+pT6kBB1AFNGIQjECRY+BYkgR3A8s5g+WkXXY3IzHMBBgQ2NSoNTVCIKoMY4YGgbt+cbY82O4v+yCAKhIjAjqTZwDM7jJ5sF9OB8VwyOPI9WDt0vnHKLbaH89955HH9/aO+unJRu1d38yPP06LdqrTWFPKTdIcfC7CCL1bACvdCfLDGa/l7EpYBMoGplSwN9lIGB2yuSo+JPEJYNIZYMlkbl0GVJ/3GKNbCyRI7ITgtkIuEYH7KuECIIKAboDC3jRuObWLrL1nV4eC0XrHikHFcmu9goJE4cDIAMZmsCKqScGIMYESZlVwzSgRyNDY0SEnB3fNau7gxBmAhd3BwTrEAtCAgrsxCKA9VOqCuqKZWzZL2TQb9LYyS3QAZODIzIQemDlEAFp1wj2DJnXokrdmbsgxAGB0gj6pQwY3IRcJKbkZZMez+XHbLgsZmAOIIgWkzkwRlNxkmXKezpfLJpwU9Uaqdte2L209hy+kk/GkoMPDj6d7B6Mnngr1uDE/e/DRwdFyKAQ5u5qBphRKFqIyxJIZHMi0o14zMDoERncEBOsSGiB7NiV0UHQ3F6SclR29914AwDWBI2QDyADgpMSuWSUEXyGlDYEMiVydyS0DCXnbgeU8X6ZOwcEdhFZw0uSu1ifNZjm5UCgKRAZwzcZBXA0UgBkIKJP2Bu5uuhqKIKibqzqgWq+ICZ3Q2VeceXLAsBpJuRtxdHBwRCYgBxcH9Ww5ZW37nLPl1sEtKxMSERByEERCikjBHFzNNAO4QZMtmTsgRgmITEJGQbV3VXd0N/REElAZNM2Wh2ezw904NMwEokSKYu6mlrPJYGvDu7Zpln3fNPP5aN4NLo43d7eeXIs/9NT3aTk7O5nsUZYwHL/74Z2S1gRVgNx6YinCsCw2Kykp1CxOIa4eWAQFjNpmIARUN+dQQMrI5oqewdkwq/bgCMDoOSNm6xEDOIP2SsQkauAIBNpRERAIANzJ3ZHcgQiy92qKqe1yl8gzkmRaEjNxRPA877hGSAnJSRgkgJO2CcFhtZwUEUmQ2R0c3VLilfbPEAE1deYMWR0BbDXFKsESCSLK6gvAkJhWZGM3JFBzRlNQz71q1mydpuxMnpfMER3ApQgBqAR0FAEhyjmbGljqNatpMjcnAKQICEFKUELkHoyILGkCdCyIOzBZ6PR0frK1ec0NsVOM5GRIKxXiUoKUWAqGaF3Tt4u9ozv1dLS+tUuXQttOykKGw9G8a5p5W6Tm/slpXsw/X2yOYBgkCq8PqrUyFkVRsCBAQAhUMLNAyijRc+8ohIykqj0JgwE6ISYHRw4q+SFnElZGfA+DmLMZABGAFcBuGFAZeQU7NDCEwGBuqq6Y20abpWNvJALEGHwluGTMi0anWQaCyCIRDMyz5p5X+orVQDqyJwcF7bO5SQYPAASaAUmga8DMnYjFAJASUHKP2YhXmZagGaKvXCXAQSGjuZKZ5uxp6a6e+5yNqSQkFGQIQAW4CQVk8pzBwLIbZM85ZesgA4IEUstMBbgjqkOH4OCkaAaG0DgNkOeW8lFzcKVbENeSENBBxcCUSBFFNXOQclhbXcKsbOxk1p3lg/Z4tJGK8uRgOiir8eYu5YM12djdWPvjH//kl85/YTzaXq+2t4bbZT0Q5FhF4ODmaA5R0BGL2pNBLGjVaQ4FZAUmN0F2sBI0eREYfLXmZwCg2c2ZUFO/agCaIzIROaIDmBoQCiIDGZibKRjkvkl9h+CAJMYohDiggMQAJm6575eONVHgAJgzAHjupVq33nNPyOwKAGKeUpuIFRjcEAjdkjs4IjB5RiBjCW49Q6XuqNkBnYScwDMArIo7cHTtESS1q56XWbYMRkQEmTgAEUsEZgJHwv83G1CgpF3uTc0TmSrYyg6NkW3V9gFBlGzZXRE4O6Q8BeZkdrJ40OR2JMFNHlojPyzjXbKB970HllBW6wzCi+mk6zswGY+37rx69pe/8EkrZHLc5IWf27jy1fHsqcG1tXLr3Nal4foWB/acwYkqBsAVUBSIkcFzdjMMSEoAhixmRgjuAGyqRIosAm6aMkoAZoIlKAILIzg5I7EI5B5EHrYt1ZwNAF0d1Po2w8oDKgTyAIQIjGxgZAZAyjG2y7N+jtWo9NwDBNdMHKEI3ixdO4qFG4L3llabDxGcQDMooqHmZMDkjuymwOzMgULhnQKm7EoZPAEHcjdCAlA3dHO3Hrx1Q0cz85W6yKyIwgY1irMbcHQA184N3XKfUpczgjJR7wSeDU2iEJCt+qRgAJnJSSJrnzJnW/bgJNTkxbKbjuuhu5lmRGI0QjQsRcFSnwon8BirEEoYS5jPzmzvrPk3e4Sx2Lrw4ODgT19767HR2tV05RcunXtk7drmeHO4sS51RBLwpE1GIjUTIVcAIk8KJFwxaHJSMAcCdHRa3T4lIUsdSTR1R0ZLxAJSKCXy6JrRnUQMFCjISjimTkimRm7mqG1DYA4WiuCmCILWmyoFNs1uZp0ik4TQd23JPVilOQNkHAYwBcfUtlRVq2cdvOPVoQAARgZmOeVkEh00rjTtmpXKApi4ZG0V1F0zOikhE4FmI6KVRCT3DmTWaHZiIw/JTITNhGVlJKKAaAarcYLl1GuPpoqQVRkzEAuSOxg5GJgaACJBzs7ugYueB8TzdnnYeWpNl32rq9ZfAy6QHdU8uQoDdsbQZVR2tiAEsUTagEXz6K1F9ZXPTfryeH85ffPm5d3Pv0yPXtsdjdaGg80hFkTMgGiJqCJ09JwsGyKBZ1dDZs8ZVF3BCR7O78jdAUycVo9EMmJyIQqaew5RVi96DLDqGDpCZNNEwm7uaLiqkcA5rFTNadVCAgRSAXQHQVLLDo6uILHomnnf9DwMpp05lFB6Au2TmaG5O4BnM8uU2RkdHNW0y30mMvCIoohkKTOs/FARhSgGblpTyJ6JAyo5CAGog0NvltzNSVc8XEdzc2Q0RqZVqohgKysrs9z6SvrtppkcnDEAC7mZOVpOxIpuauoAAIqAADEI2Pp0MZ+ns0b7WZppVmGwaK7s7mqeYCkSmHNGsN46bWNgKisvygAOT4QL5/cG+3/S1O+lp9b+yrm0OSoGEgZFWTIzUABBdANEEgJHDoU1GTA7kylRNgdF5NUoicjcnNDMAQXQFAITuiugu6pyGaB3KISRVxUKkaE5IJm7GwCiWwJ/KFfDyJ7dbSWfM0RUFyT1PrmrZTPtirpirGPTeN9aX+bOmM0VzPvUtA/jnqkmM1dLrgVmzUSkKTOag4M7UQDLJAExeF4px5CkxJKUEqS5a3JHBFdCyNnMbVVLgRiag0I2JnZTQQE30wzoYI5qml0JTLNjNnQmIyfH7IBGpWYF1JyVmZ3RclYiVVI0JFAp68FGnU8P+6OzvJ/lRfQcPDoh5KQOpiwGzoTauxTuqVPFhCgRhYUI14/beKvfybs4dEKtippALLk2KiGCoxsS4mpJh5gwgmXEnMF0JQd3N08dIJiIKz7MklEcUVzNkICRVtNwQkmryYAHpOzIQbMxwmopwYgY2DRjiMxkrohIxKoJ4WEgU80OnWVLfSoCIkVkCNXIuk5z76CACKZglFNyU02K4NAlTwaOlsHVARCyOhmAIGTE6MyeFdHAIfdJisCrMVNkwNqygmpWY3fL6OiekRySoVpmUgBm64mDZQMEpp6I1VDNzBIo55xXCi4AAzS3oFmBHRyMMqC7q+oqhwH2rJbNiSmVMe4MN8/y5HhxMm1PJrlp+24chrN2dm9+67g5+H8AXINXCQwiIicAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from PIL import Image\n", + "\n", + "image = Image.open('./image_cat/jpg/000000039769.jpg')\n", + "base_width = 160\n", + "image = image.resize((base_width, int(float(image.size[1]) * float(base_width / float(image.size[0])))))\n", + "image.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "噪声被添加到mindspore张量中,而不是Pillow图像。我们将首先定义图像转换,允许我们从PIL图像转换到mindspore张量(我们可以在其上添加噪声),反之亦然。\n", + "\n", + "这些转换相当简单:我们首先通过除以$255$来标准化图像(使它们在 $[0,1]$ 范围内),然后确保它们在 $[-1, 1]$ 范围内。DPPM论文中有介绍到:\n", + "\n", + "> 假设图像数据由 $\\{0, 1, ... , 255\\}$ 中的整数组成,线性缩放为 $[−1, 1]$ , 这确保了神经网络反向过程在从标准正常先验 $p(\\mathbf{x}_T )$开始的一致缩放输入上运行。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 3, 128, 128)\n" + ] + } + ], + "source": [ + "from mindspore.dataset import ImageFolderDataset\n", + "\n", + "image_size = 128\n", + "transforms = [\n", + " Resize(image_size, Inter.BILINEAR),\n", + " CenterCrop(image_size),\n", + " ToTensor(),\n", + " lambda t: (t * 2) - 1\n", + "]\n", + "\n", + "\n", + "path = './image_cat'\n", + "dataset = ImageFolderDataset(dataset_dir=path, num_parallel_workers=cpu_count(),\n", + " extensions=['.jpg', '.jpeg', '.png', '.tiff'],\n", + " num_shards=1, shard_id=0, shuffle=False, decode=True)\n", + "dataset = dataset.project('image')\n", + "transforms.insert(1, RandomHorizontalFlip())\n", + "dataset_1 = dataset.map(transforms, 'image')\n", + "dataset_2 = dataset_1.batch(1, drop_remainder=True)\n", + "x_start = next(dataset_2.create_tuple_iterator())[0]\n", + "print(x_start.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "我们还定义了反向变换,它接收一个包含 $[-1, 1]$ 中的张量,并将它们转回 PIL 图像:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "reverse_transform = [\n", + " lambda t: (t + 1) / 2,\n", + " lambda t: ops.permute(t, (1, 2, 0)), # CHW to HWC\n", + " lambda t: t * 255.,\n", + " lambda t: t.asnumpy().astype(np.uint8),\n", + " ToPIL()\n", + "]\n", + "\n", + "def compose(transform, x):\n", + " for d in transform:\n", + " x = d(x)\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "让我们验证一下:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAACacklEQVR4nDT694Ok6UFYjT7xzZWruqs65+7JOc/mvNJqV1msQBIIGeELBvMZ21zfaww2xoAxYDJYgACBEqtV2KBNs7szu5PzdE/n3F3VlcOb3yd8P3z3nj/hnF8P/Pv+ZyhSTIyZoAK6lMYiUFZgCkTQFhwJHxKJI4shpmAksCNCLqRACBOYJlgE3FFohLmhqPGAuwJDKj0naCW0uJBJKCkmnmNLhUBKaBBEQHUppy6L0lqPGzUklAA6INIEEkISFUGAfe5amLoEYUBh5ApAoII4knpHMC48ibjgGECu4JjrOggiTIEAvgSqkI6ITKR5EccgQl7k61pk+0DDKkCMg0ABlg+9kEuX+Q7zMSaRZBridc8jWGVSIqxKEEAZIGjxKGpjZiIUMIExQ4yaFCOEOAOeDCIgGIsAEP8S1GpSSIBSEPQCYkGCsZZFKIk1DStuyDzkGNJKURLHqs8hRIxzJqk0AZTYRABijpBDAKeRQvoQ9EmUAIJ6gJmqz5UgHu8VCoDE8xlBFKlmnKgZX2pccakKKUxRQj1VcyImkcQMI2lg0h34cYpCYrTaHUG0tqoAxj2I2zLsjhAixLTpfCgjhAlClCieRJRAgtWAYRjRECoYkAzACKiKYSgO4WUuQp9zGQKhIcVH0PJ4m1haCAM3chl0Q84jLKXmhdwSsuWwAKsEIkAUA6tQNyzNUgIQ1qW/7W1FhAPCBREOqHaEAQkEGEqIMOJYAIi0ADMXBDFkuDzECMZAwsASANAKvJb0OSIWQkjwu9w9jpIAAAHEhGowohBTzSLoyNCGTECZ0I0CTmoo35ZOEyGhRiHhCKtxqHOoSs6IAnWPewaJfCVOvarrRQGAJhAKVgGCMcVoBw0ObSlNw2ScxSXaVkiWqhyFMccNMJQsMiALjKzrdwgQxOEBRT7QSBiZXARAapBYLdYhpEdGLaBtKiDtsjLraKl0wnWazA8JtiiCQI2iyBKiDLEJAQnBDhAxzvRyZHusZSihBzEQEYSIsFjg20TDrl8mNKmCeiSBgCrzbAERZK7QDIXGIa1BKFHk6CjTDsUOcxkQzPMoMRiXEaMht6lMYSVCXNoAU8w5kB3gYIBZRAiVAvIUSUgiYWBHVIm4h6iCIArDoMIkUfSq51zkdQ6ABcB25MeBKgLuKzgLYoJDDwsgeYyQOGpjVECUeq5AlCMcOoKpIE4phn838DHTMDhnKiJRpGPchAwyLDAgoQgB1CiOvCjEkUAq5RxqlEQ+wBRC4TKmURUhTAMuNUoDZlOGCGk5ACHhA9kNga0qxAt1VRM4UJEmw6AtAFKoDkKDoxYEgQAGwy0piCKFFFmCGhSpCMdc7nHmMiYxVT1uc+aZihEBoHAgkRWxKkJaGLkEYz9SMGIAi0AwDbCIQA1YXEAF02pY4kzZkR3EPREJhahcMIgsBH0uZRBKRj0ACAJ6yGyOgIQQigBKXcWAR5JSCoCgCLgQQh4iqUYggkA0I98R4s2wEQDOJKAA7KeJDeakiZIVUCOaiWiKmgqGrhfGiIIBt3AqAg6AWIWGDxoUokgqAQkJl6HHJEQUREKSJoCaJ6osYDrNQuJBiJiAXBiSRFAopsIc5qmKxpmLoapYhIcMyQjjgAGFMMCoYjNAYRpSCcIOkwqQBGOihKiNbY2bIRcaVmFAXNGCoIaiNFfrzCGqSjCICdniACpIC0XD9X0hIkgRha4AnOJEGDaQ0ByMdNRmXAXEphRFAknaCTwAkaJRi4cRJTQSfsDsDccPIokVR0TQUBSfME9wFQJHuJBFDggooFwSxEOGIhURJgCSzNBTfuBjJgHATbdh6kYz4CEQOtJ86TqCKxJ4QLwdtApUnYtcAIAO8BLvpCWNJCM0GVOoAlUWcQixrutEhr6EHLQo0HUMgOAKVlno6yRAXCMQQsExd6IIAKAwFUUJLVenZYeFwIljbAsc00iFA10CxLnOhKPokQRKyLkIypLrIuKmnrPbFU3pBqLlhSqmEQmlgDkRVZi0AfIcYVKaY1GDSxEKTKAdkB0sCgg7PGQYZhynHJoBRhHz4y1QUyHEklCNBqHoSJOANosiqeimpvh22AkZUUzJzI4EiDu6YYbIBVxw2PYpbkelwIccCsYgJgHnVEW87UVAoT6RoRMKghiUKlQCIBBjAiCVowgBFcoQKF7EpRQeAhGQKrbaXEjOJAI15lMiQwgkYEuh64Boi3EIoAQyCWFbigYO+4Daga7iKZgwCFQiaBRKiIFBhBsCRfeZ1KAMsORUU/yAqtRBCCIgqBWzBGeK1D3utP2yDiRAHlcdJZZUqCOEqhsURszFIQfIt1Hdq4c44mHSBx2JULsdSkhaYqbj+VHYdkTgYe5E6x7wnSjlSFKFzA/CMIoMnTDQdoFq4l7EJZY6hwoDvmqpjKF2hCIj4CCKUBhKvRPYdhRh4UTCFlIiT/W8CKOAMZ9HjKEAgiCSzHMFw1EH2ktObTuoRhwF0GAIQRg5EcAk3omCNggj3xORExoyhDKuxxlzLEkhkoIDjmAABBYUKUgTEAhJJBYKtAGXIPIJcQG0QbDJWStk74nmHRhwiG0JAJAIgAaEHJEA0LaECjMjhBAxFEWNmE8VFgHoMGlgLWLC4zCIJGey0QGURJFvwb8aeIygSHIVIghC4iHGAKaYEWEQrCQTuFyzCRIIyhD4OCIcBB5SLem5kqpIKIoRBAxRyXgQRUij2AcBAZGQXEM5CL1IcFNPs8hjEhnSkBSFQR2ImKrWhFQgIwhAB3k8UqT0oVA5bYBQUxRKsC2iBEEmpjRiPgQhkNCOWhBLiBUkOGMAIuyGrgtYEECkMMEAULnkahC5GkKQghAh4MGIupzrkvuEKAhhP7A1xeRRyCgQEqsImACVRZCRWkv6lIeM6oHgXLAQiYhxX/IaDzuCbwCvzaWiKQfGR1nU7M+Mpy2yUW9eundXZ7DDOYHSEqhb0TJQSRGDhjCuE8qxhNAHLGkaYcelGkCRKhEzMGZch3+Wf0wATyFWADCCEYDShTXgJKiCFUB1jbZcx9CoG4RIAQIGkCtQRAxQBH2MYjCykWJx6UVchcANBQKcQQENJcERC5kLBKAExZAlqK/ARMAciqAbMCoiHykRlFJAlTIJIBIQI0Rl5AsF4oAzhAUhkArMGGBCOFwqQnIhKJJuxJEHEEQs5D6CMmQ+gpqHgE4w4L5ESSZ9wH3CiQ8hRRGXMoREwSCMgMTA4KIDKBGOSlWfR4pAPgVUABtALHkr9BACvkAbYbuCZZX7vpQYUy6YpilxLWOm8ekDRwm2o7rfbJYxJgdGR67Obzr1nUS258r1OwaCCUh6qGYCDSNAEI1jAweR0AjiQtNUKQgRgYgogUTTqBYwgSTgEUbEBZHFAFMAa0vhe0xC1GEtP8QqpiG3ITAgSzhkNRkNOrTjhD6FXBEAgpap5ALeoQRJrnqoLXikoQRjHoDtiKQJYI4vfOZFOEJQMJQ0sYMQtAOfexrUqeeDZMyvtqFmVIVvQBoGjGm6SRliOApDBRCTsx2EqFBU7HaEkEjTSIAhAqaWYcx3RQhCi6pK4EUSAENVOjQUvoC4i8tmx7V1jFVd4xHzEQbMFRjYQgAEAHAgUxxJPenVmL0R+quAhRBoqpmKKYOx7K6Rkdm55aWtraxlCODv7SlIib1IXS5vbpfaX3rqSK3WbDbC/oK6trX18NhwG4Co4ay264K5XUhXpN0idoZgGmkUauV2PaYCxFUFh/B/5h8ByEcyjSGGgmFqIuntRCVLlZJpEiHOAYZJJh038jWkS+bYhGHhQKJCISyc8WRbcAXDHYEKTLocB64rDGgQSBDhUGCOXYh7UFSUIMHRehxmndAC0FeUiEfI5a5FdSkkRIZOkBC+F0YUKxK5GkwySAiKGGzwEGFsBp6NVM2XHelTrHuCGSGLIAb1wMuRGECRYMyBgQEzEoad0FNUrdOpxWI650jDFHHZwVhGDKuqG4QABVyqSLgRwZ3I246CiuTr3IMqmUjl02kDe51kf27P/of+9m//j2nFgEILiVRHNPJ6YXF+Zmpvz9HHfsqubpbL606lnB+wVu/XMknNt73TR49uLqy9eu6WDQJVAA2QNFJVSGK6xjhLBshKJqIoMLAkgQKZtLUAQqVXiBYT1UAgKYkTCoIAANIRTRWIQACB6q5QmGqCCARYVUPgStwJShAaMQLaMi6jjkSBCCiETArgqx0VaAAhBwiNlSDFvutaam8jkBoJGMZ+5EMtkxRqwAKGLU1GduBrislQQLAvMOkEHiEdL0wLqWsIBGHHkZHu6YLgCAoUGpG0BVBABGI0xgWKEGAYhEKIsIG1BIQw5IGqZ9yIYxS1JUQYdoIOggrwg5A5IYGK4EUZtEK/TUmROREiTz58JB7Pj/f0tZztsZFj73/4pqryif17RNB59vFn37px4ZFdx91SPYLttugJm0s9PQcqRTvfG7+/ep37rT7zhBqr6imzMNb3uAJ2as7FOwtN33F5lMS047gW0RFVbKfBAVeFhP+l+yBERAIAeFLBDkNR5LuORBDpisCAAsYCgS0NyICLALSwVCXyfIY0HEFhSey6fgdCiyuGYB4CGCNXxQhJgwU+VE0FQB8FCpIUGpIrWDQxUVkYSip0aDQ5hMhVQuGTQMOWZAoCAmALAd9nLsJI+DzAVEURYNgHgEIJgYywiHhAINYQchjWoQow4rKFOABYhkINhA8kYxARCBSsuYxxCQRgkRBSykAGEONW5LQFsoEfSViSAYdkfGzoC595Yb2+k2DS1BO1Tnu7Mmca6tJKye0EA0NaSu9VDc2IZ/r6cgl97+2VD0xLm755/8S+s6Eqz733Zml5O2uhpGGceuAsoNBeW8WEvHFlGoTACX2n3QKhUDmwqB6TioahCiH8lcwRQnVAIh4CwCKCEVZQuyMIYj5tAUEJVCRTGGQRt13PpVRXVVOwQKoQR1QAwIAXIQ4DoQM1wKGJDC4kxlQSgSXypadHOYRDSQQAXJXUFkEUeRBDFVKOhR9wrBDIfUA0IaHrhSoVAiABgSf+n8ZtEyhcehRBk+guYyELFY4VRacSBAhGQUAVM4pCTn3KkYdEJCXACDMUQ3pLtCEmYSh86FOkdoBn89ALghaCEQLtKIoQRMT63CNnuEo4bp954MjKylpzHb126RVTSx0YGzA5WCxuU5zIZX2v0/RYfGgodeJwdr0+/MHlOYCxCpyzp6aMXH7m1tyda/cOHx09dugjxZ0PV66vnTp7+Bsvv9Y/khI1rdaA06VZ4nW8KFJ0nBcKFggep3GFKEmpUQQVHOkyryu+F3IpIywVSaNI8ADgUAZY6EHUMqjBEeccRwQbwodEIRIjJjrcBUjTkRJJRyWa57cBQhoihGgC+ZzhUEAbiAQQLhAaQs2AqYrqSyYBlFAIQHweKBARSSARGFAJhI+53fEpEGlDhZIHHJgIa1IlCIUw4FwCKRDGGGPBmCTS84EQgEJJMMUIAgzckCKFdYKOAMgDrB1FDPIAAEFwMwoEQFwCneLjx6eSicKu/tToocnV68WXX397u1PSsTy4e7K4XDTTcSOZEjzcU8hrirg8uxLnwemTY+nRM3fXSp/47Iv//I1/SIRhqXxPMfdAdTOjD5x56InFuUt21Y9b/XdWZuxO+bkzD9y8eG387Nm/+cP/le0evjk/hyCHkSCTao4x4VGIOfO51hRlKZRO0Iww5Jy7HCqR4EQCASPUhJDwwJcQQRjFAqIiLHmAuUxi3REhBywpVUJAyJjUTUWgauSysBkyGUAOqKJLWfFDSqiAIqLIZW0FoFDqGDOTKgSbLdaOGV1trxYg+PU37xm5unRIMhtzmvgLRwpmSJoKQNwBWAohACRAcsFDICUSgmMIAQaEcw4BDygkwJcSAh7Juoh8KCLOfQgiKZgULGQAIYyIFNHkgeHhwd0xE40fGuu0od6DDxwZta/aBJChvqTXCft6B3ZYpwsaPoqvV0sPnd3PK535pc7Hz2ZAss8pB1/64q/euPZarlOIfGNheWf/2IOvvP/DiUS6r//RUuPO4YPHvvndP3Obw0fPjjTd6qnTZwb6MlURaEmv7ilkEMeAxm0WqVANpAzVGAYdn+T8KCCK4cpIECYABEBiiAEiXAYikhyGECCEQYC4gLDJfZ2oMoxaiHksaEAGQulBASXEEknAAg4FdwmmHRDqABgyTUJ25sQnYt1dO9sr3YNTly6e33dgzOjONBvlXN/p554/vL68YFkDk+lsVwpUnfVl5mOMEgHCCHMgAZAEcMQ55IATGADGIJCRxAJyyTGiPPShBG0QCQCkRAGURMJQCvD/BwGgU/n5L381n+w6uK//7vTm0nbzyP6pOze8/Nipnx3Tljbhldm5qcJkG9utnc5yvbVnd7TVqWdXE6G0r61u7p25PHb4k+Xqwszy1Z6eo9KbLwztjaBYXL8bFYtt7DLyUk/2odnFyxs7nUtztxUtGwmgMm5zM2Z4ewt72s0qUQlzoiAmiaCaiVUuuRspJgkCGBe4afmJgPoahxzakaQUiYBZWAMYUgmwlIKHDtRAxAIJdaQwN/QjhvoJpQg3QwciBLGQgESCM4k6oNOn9A8P9b/4y/9OMfxkdpDFQPXeQtldaXRymdFsob+3VbH2P3T6lVcXPv6vnrm7WDszhmkUcgAjRDqMNQGTHAAOIIACBBgCAKFgEkAAQgAAkBwAAKAICQAcAAEABpADASQIgfz/qUdECA4leezhw3tH+q59cO6D85udNjfjWA9tjvWhodH5a4u7ju6t7wjX3Sm2bWoaJx56VFH8id69G27LbzJNa9RbnerCjfiksRPAcrE4e2/ONFYbLUWDqc36ZstmKgVnTizemrlt6Hxmyd1VWKyy1MDwGCGJXb3dbqf8wCPPEh4RS1VUHg+JzQMfUyVlAuAbNnAJj8Gk4XhSx8CDaRh5BlQ0qmBCMeAU8Q4PucAyggpCCFGKtLjBQmYx7kdSWlqSYwYkAoBELGJIJATZve/M/s88lehJ+QinCtBuhLE00hMTI/3zXYO7bi7fHbT03/r1L/3kV3/7G//4LWok+anMnfmNf/2FB7oZkSIMAKIQSwAYkBqhQgiCsB8FWCIMZAgRQFADuMV9BgEAQADAEIASQgkkBAghQ6IOkB6Cf/Knv1HeWnrrpbdu15ZMLxRIOTjQU16YNwq92+0PJh54YrB/T27k+NzMdLpWvHL+/QMHPja//vZKKewbiH3rwuVOWM/OmJ2d4m50dKpwOsC8vDq0Xp2v7Whq0kmkRu7cu9afnKyIzsTg4dVyowFlAEd8Xrt74/q1AOZHSX3D7t18lQCKCFRt6EMOGApgqIQMAow1mA1Q23CFFIkAIExVTXiKghBOO0RGoQykY0LBVMf1ABSuhgOb+6o0Ve6rBLsiQBy2OY9pMR97o6NjIWaI64987Q+uDKyVbefgFYgNK8kr2Ohbv7cay2Wq5QV7e/2fbt37+Z/5fDJsDyXASDI2c+9Gc37aWWY6RoDo8QhGCCIQQkEUDnyINIBMamDAsMRcSkYw4FKhBhGcS+BDACEWIKQQhRBIIRAADcFf+Ojj3/7H1+OaP7+5TZBKYQeqfetNoPCwN4X3792VHRitFLePHj+4eP3aiYMHerpS3f2KH/TlsxrtVE1NT5OeWqk+C+PBh7d7B1e1/qc2trYgGVhYv7hbz+eHuyU7ODu31GwMrXQqBolLGF68cytuJQpjEyuL0+Ox8enKnYW5kCRkn2fGU71ToDCmTew3R5KsT4eqRKpEKoocR9WxG4ZuqOhRvaXEzYCbKSXwCYBcAoQgEowz12+88nrjb35P4A6gGol8gLHLOVDw5JljAw8foVrCSHZo1Lf85j8bD1nVwV3L4Xyvz5wOS5vJC+X5W9evHz0+MZr1YsePXj5399TDHvKVSrA+s+n+w3//kzhHEUVIAoyhCiGBRgS4hDINEUAAC4iBwjASQmJJOAVSBB7QY7FCJCOvXfQBwAgbEkIMioB/7iee39han1kvdyvGRqMzNZLPxQbUOIkbhaljJ3cqG8IsjHXnp7cbFz84/9CDU81GZAAc5xGpLkOjK8BAY142bfgO6DTZhYWN4yBR0O/khrun763mUqZmZkIXG0l3z6GH6rXqcGEvDpT69vqOhbXhbE/cnFdEaaPtojbTekjfK//UAS4JAYPs5lbd9Ff3xg/rmvPf/uHdn3/6zPUlEe+LcjS25drH+gdvlDaOD+Yll0kTeRKELMQCEAVQAMMHH77/d7+eDQCC3NSoCGyBE9lDE+YDe/JHD4AQAywBB4PhYuObr3pnlotdPbVmMR8fsQMaVIKJg4N/8823nzp5xK/NbTbcH7+79q9+9tf+y2/9fzSqVoMwgFQXUpeUYwkZQFBiCCmHHgG6AFICRiQSQCKJOBPS2/Op/5BR0yCFSE1vUPcH3/ptxetgQtaZ8+wXv9R2GssbjZjRZaa1ibQetpxP/uyvhZCXnOaRM/uWbuYHR3suXTq/MHdzuF9fuWqWW+/1FB65eu0tYSt3b10MJTx8/LRX85VJtnxjYWwoXSqVUdYfSh//yGO7VlZLzdbF0aGHFzc0Vek6e/awgvOpKD6r8pnLrRzke/bu2XWwb+bGjcZOxkylyDKNYg5+9Vbr4xMJlZi79g+8t771WFfu3Fd2vxrgpwbyUDCo4DEea0f1qf6sEkaqFceSxQHhgng+QwK3HDcAvhwZXJ69kxSkxnXTymSO9d9vNBvXPgSqp/LeviEJ9S51+CBslNzv3esc2W6kDhd27Y4puF25+vlf+O8TY2d++3d/t0/VND2FPePXf+1XYnl1+s4yNFTfZ4qQAmPKAZdSQVSyAEKShUrIIoKRLoknmIkUBwX5M4/GUzmsJpVkmouiGdWf/pnf+Oaf/r8Q5y5GJ48++u7b32+5/IVPnw2bRa6mJ9MFmhFWfPhAngYeGD3UVy3udOxOvbbmbtckkJ122JbVJEreWH6vL59jQusd7X9r5Xuj8YmR0R6LdjFRdusNc9IuFaPHn3ziw3Pp7MhALHvqww8/zFjJeGIo9+Lw1Ozugd0btLyVic9ZsQMbtGtgWBybfIwMShXmfcUC6j4tc9VJGfihoSE1E81vcZqmy7VmebNYrvs9A4OGCItuKzc+AkkkpASACcGBZEwFSVPFjiHiepkF2vjoI4+c2HEdyPnTpx+d3Sjfmm/7jc0D+tHBTCeRST/66E8/8khzbXarGETxze1sr/6xZ85MX/728LHjJ448dO78uZ945Oy7lz5M5GOLyxuHdudnlhuu34xDJDhAGCuQAcwVCSnGEIAEJZHkAPAYUdoiDIXcffanTRiEWMEs8KlRa+ZTWelymEiRP/n9v7S9YHjXACcxzMipAye7xg7PXn9D2K7T+bBo9wdBVN4ue0Gj0aq22qBSZ/H8YO9IjCva3OwtaoFmdRN3j2+V1zVuKiB0NCNSPO6Ymq7dvTb3yKMf2Vq5/fAju8cn94GotXf3R0cKmchvVjqsZ2Jvr+JfAMXWMho4013oHSjEJaGIxLvg779x69ODe994b3vj1Q8mfuszt+9sPHy4583swFCL7kqbk30WE4RCTBBnTAjOIw4RIYxziIimA8lFoGvAYgv3pvcc3LvnwIGJ3Y/tVsN//PZfBwg9cOCjnc5M3Uq+f+mVA4PH8rlaTMslC2pm3Ot1rbW5ZRztknCseyz2F//jD7/81V85efbkr//Wf53oijWdyLKy62U3AqGHsS2EhgWUkEjEOUqpmgg5pgByqUhCIAhZaFDUAChGIIwNZmEkkKqITjJnwmYrmU48/5EHjFS2kEVr87eQ6jJgziytcMNqNb1ldimj+Tmh1vyGbM/0JA5tb68jH598+KmLd+945Uq8g5tI2dszlckRzMit2fWTj5x+6+U3Hn/+CURC12tTH0yvOt955V/i8R6q9hFwsb9vNEk6rRqwBKfNhprQabanUG9vOvXNtdm1pcVdQ1pGbRLHpR+dGH9zq/XpvUll/7MmlY5qrW81J/sTRhaUQLMHpWste2un4bRsF+fjrcaBB7uAwABBKEEIhSVQ1a997Xe+8omnn1tev3l3enZi6FAsZ490D/QP7Q8Vtxlxu+Hu2f2AjMJIoyHQ1ldu6ysGEo3BgaGdlemaJ4YTG//Xb/7+0s3pg4cnC11Ww3EiAQhKjvQX6pGcuXO1THTCIAiFkDyJkeu6hko1pgSIqFhIhExE2zKkzM/1WZu1tWzP1A9mZw+F/nR6ZP7+d5574YX+fG/CUjmzcgPjhw7sPX/jsg3l5soNwrCl9Hs7i8uVu35Skf5+L98+u294rX9fd19/dnk28tWjh3YtLX04c3vh5MOPx5J63365J/Fx9onk9tYd7IGBXfv9aO6ZkwfNnn22v8mMbBhs+UHQ39MPHMlaja64ZStAVtZiWeX6D1aSerMVtpfXGh/MLhOoyPHhnu/MTzulxNvNdqu5NtY/OjagJF/98IPC/lvt4iP78EqV7x3tUkgXjAJOenzBeGl5/dbKO29+d+76ObvhNOzWy98679Pyc+7jv/eXv7VYm+kjPUN79v/TP/7tyO7dTz31mSC2ttG8kk4lX3v5+vEHT+koClN4iPbUaiLXm2osvB/1Hwk71cOnHqqW7j104tjrb7xRboCJSa3BBIyEwKZw2ptCljC1BJtEMk10IGEAIxVTyKCGiCsk4lJR4xsNuFqngwPq4b6J/V14c87Jeamf+6V/e+5Hrwe1qGsiYS2q2zVcSOa8INqs22RnI55QVzfqQ93d11crOavFZsHe7r2sWaplZehWB/bu1/3GVH+fpthr21chOvjRB7/s1ba82yuTY3tW7rw/Mkht6yMbqz9yVuv5vsLpA54V368HQW3bU2WZAKFIIxvVo9GU7KS//PlfXNy5tu+A0Dz7yZFJcn2nsXm78RvPTIXIH151Yj0TakpChTQ/fmKMoX3KwBYD/bI09+6VmctvzV27WNpc4VwXwE6m+hOW4XuyKzP89b/4jXZzOp6L0VT+0NTe11+/+tyzD+weG3zw1PE7t27+3m/+2k/+zCdrRZ3zwlOfPFFaXjOsrtaOe37z0sPPPBFsb49PPml7AY/j/nzS5/kLN6+X62hqbGjm3v3e7q4QcIpgTzL1qWceLWSzDadZWymt3ipSp2pCkzPfosRDkcIxQqSTzcy17ERM08zk/Zn1qWS/5dXMVMNpbx188ITSbmrIm9qzL9Uz9sFb74z29377B1/ryadMAvUk44kkXy3NyZqlqixo5bI9q+dXdu/dt7VRdw0uW24mHT84Omn1Ddecle7C+AMHH/cLhYXlO53FrbtLl0+fekhPWe6yx0FQSBKoayJy3W2eTKtQy1Bf5NWYZsQjxtOd/qj82tSePYk0JY8OpTuFhIAyBOTARM73WKfSunN5ef36B/N3Ls4u3W52mn4gJeZRKOKa+bGPvPjgyYdHd3XTWLBxuxhLpK5dObdVWrtw6dt7J0aH84MHRgf+8buvh8GpSm29MNoTUO/x/NGmtxpyML536uIb508dGb+/cLtvqK93ePLS+StPn3pyp70VS+3vS6dWtjbMZHxpeu1zLzzbbDXOTD7159/+EYNIoTiAYqfchCLaXK3Bus2dMpKSSUelOpHYEpgT3GF4z6EHT546xLjjcZeDFgjSVWc6m+++df7S5MljldU7jVIXN3GhL4uQmx3pfuETX7Kn3++dPFR1OM0Wuqd4+daF7Wbw3NGzwisldXjnzkoun2h0Os1m8diZJ+1yi4pK0FTeuPqX+6ZOpqSzd9exzOSuo9llSNWR4an3bv7DBM44fhm0GdbylNRh1I1oh0HKiGUpIJ1I3qkWd1qdh1MFK9ZN6sXt0p2V4s1379+5dvP+pWqtLSQSOCCRyZATQ9hE2hCI6ap+9Jmnxo7v6x/cQ7PM9otJlJg4M66GWnLo+cr1rRPj/bVm8/dfeqc/kctmYj964/tdeqZr0BjOj08d6ZH+1O/85m8BwvpTmYh2qVpG9USHF4nHz334T7nCie+8/de/+os/zdttd6Uczw+cf//yH//x773/4c3dU1O1Wq1qt5AXgbp7+dqCQVy1xbqwZhBMQoYkIIBLRImQDRCefeFnd2zDbTvHd+dOTR0od9wj+bhaLzfrPtmc1nnrztLKYHKk2jPbrWS47yeMGMvvml+8wxOFsT0Tjzz53B/9Qeu/f/UXtrcWm42MqUV+pF7+4Hyj5UwOTKxMb+W7D6g63F5fnxh+zGXE235H9ZlSqipaKjtgukVl3/HHyvcrqQOxbFe2EymUMUyZwAmKOxgZrkOYX5NCzYW9RDYQHCW/eHKSCEUX3NTMEYSPWL0aU3zpJUxNRDRtxBQaC5JhKxWbOnJ8ZKRHidkqiyl9+73KZsikF25ELT+9N7m5E8TMNOT+9dX7mChNx1fyxuwHW9fT699950J3LH3gyP6FxbXxJw9V2wtnHzh+Z3r55uXv9CeP9nWLQjccTg1fvDrNNu/X/e2BdCtp7vrw+uvlFtp2tx3HDVwvA1UtCvf1ZP2NKlJDGkECQ0NNB9LRSJwHfqhgCHH35OR7i9fe+sY/Dfy/f/XDm0uH+sJOaZ45cw+MZTvNUIt6LNBY21lLLg4de+Spq3fP5Ub6npg6+8FLne4xTbrliHR97vM/hYSbSRtxOYJSYbko8r2HZHz1wJmHgRN5NYo0d3BPX5pY5dXWW1fueuFyTZnZYeyhhx/54EdfP3ZqfPTpzwpvnWrpJC8Hag7APIlCYnRHEgtR4ULryhLmC1MCFarkP6ROmCqJQJAFaUVDmEONKh0RMeD7PgtiCu3fqzx1qnd3tuVgo0cllFz6wXcOHDwdHzIyar640ahVSyk6kswOFxc2tKTVrIVO1e3qTiwurE6O9yRpYteZ/ZWyc/X2jWee/OTC4uVEcvwPXv+T3oFULDn2yruvfeG5B1cWp3eakq+012anr8wuwo42sN/3W+Hm7LoptGMn9l95/1JOQNWT7laJEpBAeqSEQOghcCACnaBtEXN/5mzCsHGv9rx68PP/a/+lpdWnj/Y5y193mwF38drStp5d4fHu4XRQ8gdrbGGrMjQy3O+2vBv1+ZFnj7p1T9cA8mSiG3UXejY2jWJ7LYy83u7+sb2D9arTKG8VhvLvLZ472P/81u35b7zzxtGTg089+VN/9fXf3KmsZnqcVPZTyYlEbPfo0s163yixq2UFAS1uSK9KcuMS6VYgnYD6wfb6yjzjjf1qv++0yKneMcp1N3IMGkVIC0NXIQAGYTnAKtGKw6DrbD496tKkMtyXTOHAc+HY0QN3Pnx3l3dM9gbZgcHmTrFdubVVb9R8nkzEvOYKprRSaTAu1jYba7y55Qdf+MQvPPzAifcuXaoUS4Ve8fBjn774wUvLq2tPnT50a6n4bJclQl6XCAgUtryxfrNaayfmF2bvL5w5cvq18x/GeZQk8Xp5W0MCI0VKqSAYcjwYG01AcyTdZ0Mvlxjb8Ro6hX/1xq1DcRfHeo2BTPU84tFayoI0YTDu1raXBge7LVyqbFfqVmHy5Im+XHL2zgysp3p1T9VygS6aLRKFYaYrDqIunDIMnCmVtgOnky3kEunE537q80GtkUsZz33qGSbQBx+8ZTO4UF3/6EhvZHeGxvfKymx1vbVraCqZiDXdkKIYiekQK5KgMORAAs9XVEAKenezDRKaikxXJ6FvACY5DLxaEIblDmhCoR+a6vybLw8+/SVrfP8Pvv/e29/4x/LsUtn1hW9nevv7xg7dm/lnO0KOV4/lcz/+8YXuTO+Ln/lFEfBMNh1FkZQSYQQhOnJ471hv193ZH/7ln/zjD77zTqUKktbAe++89fBjDx87OPDS+5efPn60w2hfV2+jUX/s6S9887sXbVfRZPXO/MqhI8f+8dU3orCTIxmT0JSgVOpIwQPZiSnj5AuTT+7PDR4aOKiosax5UOOhxKFA4KsfP0KGphKP7bmJoUm3Z2ZrWjzaqN5PqfkwiNcqIPS4V2GbN99dubMwt7ztCgHFztrt95fmrlU3Lw0o1Gs1nK1iUOkUix2iBo7nD48POrUtu+E0nOK1c68E4c7G6nm7OkOildKGn0z25rondxamw83V2OCDhfw00gWXUFFNQBHSpEQCAEAVwUKuSjwxsGvmknf/m+eu/M23CdGZBFwnpuNzkyDGGolCTjz2KfPR1JSVV4nW1sI9e3/lxofXbt18fVdwenRkwkCo/+DwhXP2rnLbixANUd/oxMvvXNy7sF53w0I3YTJdqVQBAJ1O5/rtO17EU/Fsw648cPhxElfMtHjy8UeEt3rutWuje6fm1jdM1Rue0pZuh+c+fCeRjsNOSdUHp3dWLm2cN6naDYDFPBUZB/L7FKpmtZgmaEgFRnUoB5kSWDDGQcv2VSw0GUasoPV05f/Xu1cP3Lu8dHObp3turzRzes2JVNsynPY2EoNKJtto8vrc1X0jj3YpMRKVAntbhJtIiV1Zu96dOx5wVt/c3EHEBUebd25eecfJpeIJC1fvr5XWru9UZtfXVxQ/1mxt/fK//pkfvXJhz8Sx4eHRxk7RlKSCUlgCGfq6mcTIEFxijEDocg87ncb6B3ebt24UOq2eqA/AiHAWhBHhJAQQtsJikyKxq4eOoARKISoD3o5JwgTYf2zvKjBkLLWD/DinXMhDp05Oz507dub5Wr09PLwnpeMwNv6rp06/9eM3S9UPIEWASSml6wWmlRga7n1o5OSNa9NT2dGdjYAXpr/97W9XHefJ/sLugwNj/YemP7h++sDgW2/fcavgN//H1z79lZ9gUdRPzC5Axo3uo4kRC2lxqltWUgGBAk1OBGeGGSM8CKSCkEiaMbyzXd4p+VqvsfPP7+0uR6Vb04fGs9uRVt2pjw30c3Ii7JTSMa8d4cCTycJRmNW27zsTp3q9UqXVApaGFstN0zLuL72KEXJD0fQY8nzW3g4by2Zu37f+8htRqPYPZe7c2bq/uKij5Ml9yfp2+cCuWD4Dqut3ka7Xa3cH+07RUFAL8ggAhQrBoKRcCI931m4s2jM3jKav43goNSIxCWQDUR0GQVFBRaqt7c5oSRHfmq77QUzn+ZGevNknIV6bvuf5nW5k9Vl5n4WdjZohRczo9jUqLUWBOSrh9swH3V0PPfDwg5vl1sqKtdWq1atVIbjvO77Dv/fdl5PpPqxqAG5//7s3Kxt1ieA3v/uj0vqujz7hF0bGtyrtO3Pz77z3RRFEQ6p5Jrkvq5mIdfLxwW6SNqnAuKBKXxAuQglUFsMWkfEIAypZ1VvEapgm8SClvep39u+ZoO1tyitFrpspvWvo5OTIcHPb2TV1JJF/KIr3Xb30zvhDj8iwLjqO3QSDg8fp6fTm7Vc6rbVqYwZzvFYJpXR85szcWQAUuX7i3fPfdexo157Bahs+9NhTN2/eHx1Xzj7/lWpx+ukzv9xavCFEfXDPR2TxvuLZLb1Lcx0tleJcAI5A4AqIbTsS7UYiggFgBk2rSKeKQuL5j0m7pvc+iNmN9j7XSqc4W6yxruLM9MjoSPP6NTYRZQvJkcndM/4H6/ObvmTZRJyxSgsXVDNpYZcmAxZlWsVbWjbOJGKd7See2nvpSmS/Xx/ft//KzL0oihaXpqWQI1MFO9h65UfXJY8wxl/6yhfv3bn13of37q+sv/jcx8d6rD0jYyvNaCqeSAl13EyiUBrmWAKYQEYBB5ZScnlI3V5O15Ff2LQ3TKuhuipN7B3t667U214MdCn4d5T07+a0A5PJqxdITyE7tffgOx9e9PfEYcrotJbGXvjq1vTqvj1nvOLsidNH2s1SaW0B80wjrDed5u6De+5+WELprqke43tvTMeF+ezj6fUGk46msOwtvgmJnulWerPJX/sv/9PfuhfWth987CcN5MS7hlqpgWCtqeQtEaCMkYXQB6ELBY3CCGV0FLHWpuMsLnu2Y5E4JRBxj3JM0lZmowP6jzhuctfuR5PHpBVpx1gkQmRx6a7P3rs7O7dbOUDpfHdXoSTbrMXaaqT17+5PtTZurqwtuoUBLO36zNKyh3Sg38jHcncu3Ts2+nSC9N5Zvvjwrt0fri/4bQaw3rT5zQ+uQo4gwb/4b77yV3/ytTNPP/Cff+MX7tyYzmZ3q4ley9y0+gyrgvo13QRMknjkMj0Z1Fgbe05MH2w4KG25cZltuG4ulsI8o8S1yHGitozH09CWArC7Hfv/Skeff/sbT0ydyBwdCKr0gQc/Nz7W367srNxYpNubXUml4TLXF+21DY8bzMxoMNPTFVdHP83NEukdKbVmU+xY/1jPRG/37Mq9/r1ZBRama6X/9MU/qNWLNGC+xydGc6WS05UjYWkhTI42N7ez/XHk7/gVPZWzIrdBDYtFTOE2A5iHgdJq8A2PN6nCQlPPilBluKiAXoSonuszV7i3Nq4YDKdjYRdQczHFhKygweGJ3fuPHjVT8eGhMStr+bzT9j0trQsv0FlI4Oz1Ky97xa3N5feOHXpg5s77Y/n9XXrvA4ePB0r50SefUmSuf6jw2LG9D5w587lPPR9Vq5io3cP9x46faTajocnux/ed4K5tB+v/+6/+5/LyufiGd7iaSnPL4IrH2WRX/0RXdwIlx5O9WbVHBUpBTdCAQQVl00SnSVNV4qbS1Q00TYkx1QnCGDW6eXqmkzjZfbTnyFErOU6yev9g3uZOtkB6J4eCVilsLXWlUAyUGWHZVHRy34BQKk5T1FEIccxpNypb3HO3Du174MgDZ22gdI/8RODmBzM5xQr6+4c8d3GoQPp7ve6sxjpFxYjRyoZpmJYGta7eFLV8t6FDiSARXjOQGBqSl+/b1c3a3K1mYxnCGPdcQmzEuyLcRCFkm9Dd3hdXKScKdCPmkKjqOR23UXJAwtR7C13dybSOoGJqSDDNFBu3Z7MpQ5poxyl2d49Y6dHimnPlw7cztH/+3jt6Mqck+v/8a19TdfORM12Hju6rVAGIvPmlzbWt9TBixZXNezdvL63PJ/Xk37/8rb//9juvvX5/q9H+3qvvDewblSoTKPRRGKPJrXKFhz7RFRORuJEmIJPWrYSJNKBqNBXABQmZCFwZcQiyGDgonnt329v3p/eylC3dfz3XZS7euFe6M+u3GtXyijs/xyu1tZkfakBUfQ8mjery0nbb/+Dy/aiTxlpDy5GO41Q6cHj8hKF2EVQzzMTExNOmiY1E7PiR05lDhzVRGts90Z3KF5dCKz6UiI03Ns9HFBeGu+1iyBo7ZlpHWjrAuteqShhQixFJ/GrHc9ud+j3u+wFvAwVAqcZ1qUALnnvod2YP1pZR1VTi40MnB3b32p3KQO++u/fvddxobGpoMJ3kOAiF2CzuYKh1WqECJAdr719aOL5r9+byvdLmxsCxwZ17O7lMLK2P/8k//fYjZ57QgPXq5bd/+rnP9A8Uvv6Dv1pZinY6na3NIucskc309Q/P3rvKIwAAJgrpHxrcNTgIRf2Vd69PKpl/e+yZXE2oyERYmELjgmfj8UjyIMroAkSopGtxLlQQKlgNKNRNPQ6YZSaUm7q55+8e49DOT//v3/xBqp+mO12itXK1Waue3jWuBiaincZOmB0mPYcOXXt3tn8gKaK0OdTbnaHb829Aa3RjoeOT+ER2d2VnMzMgh/rI6lw6ewCVl73pV//iqY998tz5H/f27pvYfXB77qZlCR7AUELOqTo8hlyi+MsUIMF34lEhXshhsw8RjUubVZzGRvvcX/xx2IT9NG2qWY10VKR6doxcsK+E/mk9Js3CaLW+5t+jY0e7sIIzectd73hSRQbBkAadDvdCx90GboolyPZ0a28uee71t1/8/NMrSXb/YqXByj7Avn7nix95Flm4kNt/aL915U47kYhllaEtVPKippmIB2Hgup3pm9cQ+n/WKbn3yEHWDm/cu1cqVh5+9JFEyvj99y/8xEeOTc55PVHGC9uKSlquoxAFwRWGoQ57HL/u+cTSYhTVEOrzXGBZ3LE94/TEk5du/EJ69Mv04b3HzLWr39oz9LHAtGZvvVRuGqB+lcSsVhs5y0BY9ThBs7evSOClZ3qLPYcqW0utcG3qzL7J5AOXtt4/NHGQiVqpEfqpZqWl6xqPdT0wv1ad2v94oMK5hbW0yiKlq7F2a6s40zd8cPnc7dHeVHmzOjAyYOX2qkoo9AwEHSgEwmkG6fb1abfqJ2WOmHE/sC1q8BAZ1CPDP/dTu3ZNcCWsNJqU88hHJshBXXRZsU7cV4VtqAWLspRKSrXl+3fvJo2ByurMUPbAemfx/NV3r9279rnPPt3fXwAbNiZezJqCcKtS25xfbu2Ut3/6M7/aqG/HuxLB6nqlWIQAQgjNWDyCXAgGANi964BpxLcay34k+oZ63n/3PMbwE889ftv2F3KbD2Vz3eVcOkJhwxfS13GcMacZNGOqghRsUiPwIMKqQjtRYBGK0o/1/HV/7GCSbPxpsI52sukE2d6+s74cM1h3XwLH++yOXwE+NC2d9PoW9tbe7t19cm565TCvbDvVfPeUrJr3im/mjEI7DGIIY4VUblx1CDn71JO9w33rm69vrBfjMtvT1+0avXxrzvXC3NADldKmhp1rV9dOHphMZEehUDwnlHLLiPUCgJnXdkuV+tqMYfZRwQUP4npSAJ0rDkaEENTgmpFLhZqRpUSVQijUlZHBCO0bGRlIKRYJgyiotDxVz6dzw9WtlZg+FnJRvFb+xAtP3Z65d/69mY88ONB2SoCnLHZ5J0SciVMHj9+6cZ7oG+nu6ggfBR/cAEAAiITgTuBQlUKG9ZhuZXKNSqfd8Camxq9cuAApjaUyc8W2EwaqK155/+8eOr37U8NHRhSLV4HHOxhKRReB8ChR6u26mRAAeQCmEPG5GqRGYyqBN+41V0otLw4NK3vj5r8UjH2MW6a3DrSwp+8xQT7YaNeO5nvUHAztQzPX7sY04GZHM4FDuiYWps8dPPs4Bw5mdSs74DXmpFcZ3XVk/ead4nIRkdjlD+YO77G6R9R4x1hzk1aMXr/8vcjTqblzaO9hTc36gGkQNTpVpdImgwkEYWulvHNjTXUgZlLKkqLs4cxVkEqICFiE4ukpDEu+h3SNEOQByCMPMgIsMzGQsSjBLS9stsNi1Q2atZAHqtGTzTMe3H7gYx9T1fx4d653RH9/vpTvGt7cLP34w43WTjiVpAUlk86Nzl9f+6dvf9i22zEtBgGWQmi6KYIgCjyikZCJG9c+xJr46S9/5cqFCxAppx959OQDj/nNHRXARtRptxozixt/dv39N717Po37uO36CYkiU4uFYdyKqxTEwlBDOIdxkbtMjYV//2ZnbChBnzvVciterS4cU+8h2uBk967jTuBeXHgTGbHnn/+FgC1v33qvp2Ds3tunkP6ujHZqao+OFnKJ8dbMZWfzamn+6p1r37nx/e/hKLY0c77eCDLZFMwZZ5552sPW/N13Wu6dxvSlDy9eyu15emA8MZbPd3UdwXEDiqQTRq1KSU8OdWpBa2s53HZRbaNaKqYoAlwLeT3kYcDaQRBAqaKtzYXGFq97bc/lWzutdkTtMNrcrm2Xy8VO2GhFEcBCU9SYtb245ZWxqecB7Vnb1Dv1RTVa3toon3vrfH1m3bYrjx3b+8TDYzulHU9Tlip3B7oHc4U9AKAu0rV/tP/gxCTG2PdChAjGlGAlYcTHJnYx1/v93/5vgNAvfulL+XTq9o33ktl+221sLy0hSFRL6xkcv0351V33XQcJzQ48bAeCKDaQ1GFVSFuM3NKisY0qBS3y0ZPon2eq8aSuhjUey5zaNZJLwXj3rmKNRV73wdHjpiprrNZuB1pW25nf4GWupVCneE0tDMqFpUhfiLqUrbW2ak5GZO97N2ZGzhzgrOpuXXv/R9+J8/RGpVhst1Zq8bbXGj86cebUqbBZsaVz/KFf0LP9GuqO7BJmK/FYRlJNianNNRJWfXvDJzxAIogEJYhqmm5YiqXlAdRIZePm3MLNk08+7WtOcWMj2Qu6ehJR4CKBdnbWU4P9tseavqcrSM3EFc7sYCOrDGdz6qVbN04fPDvmSQYFFMpGs8EEN3D3p544fXn63t5dxma1NV7omezeayQThYHCAQief+b09EZ14f6sUCzbkba9hShduDsNJP/sT36h7TUanYaiqJ2Gv7W+bcWtEw+ezRrMZSifT72xUE2N9w1t+JhSzAIB9YAvm3pBMhgFqME2oLpjJkG/rSd1BEww1d334OMnZ9/9++Lc8rFPfmTx2gfde/eAgcOx2Zz0Yka2Z6vUGHnysRtv/tPUnqfnbn7bk5cqdvPw1JQ68smu3lLp/qWB0Sf/4x++8s4Pf13PPr48ff7wRx4ulhb7471Crxw58fzO3RnhO4YWjObGeyaOmUrB6dzrLM5Ghmp0pSHv54Fbn5W4UnPnyjE1hrIFzw1TqqkRS7LQ9SFBFQLj8Pzlxdrm/UJXP9D40tK83TEHx3t7c1az05YwyiZTnCGIkILdmeUtt2S3mwvtzk5cy0qwE9ixoaTSCrwm9yTjMTM1s7y2v78ntGvNamejzianTiXSSUxItdX68dW3n3v4ST1mri7fS3cPLm/tvPLDHxtJZXO9nM2lW20bMtgzOLgyf1dPdk/19hZ6ukZ3713ZvpfQJu32YnXHjnWLx5eS6ZKvU1OjCAsEgNCwDiggpMuDYKmQPvjfPpkuRDfm0cpLf3H84aML7/0gP5F36cG+4XyzsmGNDzqlTYS6LcWoNjb1VstLqi5J16/cLLHN/WOHl5ZePXTqc821VWug0Kz51aUFaUYyGHCDalcime5LvvH9V3vicPfBvaB+NUkHkW4qcUsVgVD2dKq3t2/Na4lULjsKSEPBh4OlkjO9pDSFhg0/dMvuOoQkTpKKZcSFGUSMEIYGhsjYeBZmPIC1tJklCKU0Q9WMkT6rKxEr2R1NARw4M9vb964v6Zl4z+SJre2trp6+hfuzcaA03I3vvvp+rdicn6nGqdbfq9d3moqmj+3a9bHHnu/uymqa2mkyEIaTvbsgtO5P31pe3mi2sOv56VTCEfjoiadPnDxACC7XN5fX5z/yEy+efPr5Zz7+WaNbJ8m+Jlent2+FIjs4PtZtZb6+ccFNMh/7qhqTmCCEGccK7rZdRxeoe2Hnw8/9zj//++uvfO13d5orrXYz9Juhsbdn31hHCgfInMsL/X2W4etxv7+XINW3MmkIw2e++jNPvfAzJDbY1fVo6a2rh888jVP9GrMnjnTFRMpvXlLlSspSmV2bGugmQIeiFraG2v56ae1Df6eIYcKkgWXuBVnkOhLhKKqGcKXlLt2mTRjHDhIcQUKwnkAFQFkUuJC2AlGWKEsaO4GGCjmlITToOl0HxtRGvT5kpFWQ9KJaF1Xd7RokepyH/Tjo1CpDI72PPvPo3M33S21Jt9fXqvOJVBO5fiGDio2acOyX35rbOxZ/7OQDgZS+jOzGzuX3Lw3sG0KYf/N7XzfiCRqp//LStyf3jCBsnNgzafDYvcXVjeVFSvAzj/zciROTI1MnFEoX/mo1nVAP7zvw9T/+QzpptZvNRnMND6Sa3fqlC/PPpg2deALghEZDfi+hZ1ohTZmJOMDn3nsp/1h+ZOCJ4pUPNKsnO3pUNuvZDDWpvuXVzEB3amWhEW43tES3CI1sLnXh3Ctdmb56eXliandjfKiChLdU3Ypi2qW3oQS83kQ5bjvV2bnzR3bvmeusQv+BpCKqjchttAYGfRTvcD++uVO0637OMqLGqD9XapYvwXI5llFcphAAdI4pwzTWhjzlOE0/FmlKEqEWWV1cxSmMJUtZ3fFkPLTL9o59x51LdqUtVS2t3CtteIFrx1I4mU4yNLQ6U1mYvZJJjJ/Zb21WSjElwX2JDBr5TdbJdPfHvvzxp3StwABtRm0Y+tt3F5Iur727HMB2fxw2arYX2SbyyqtrJ448VW8sNfUOQQoCrDC8Z3hyMKYPbG+XVAMfPH46YWjzV994/hMf/+uv/UNctZ594WnWWf+wtvXI8IjfNqAnLYPbgSEkgIaFZEVDwolyE2puxedBbaVaazz8sY8AXutOcenDrdntNmv3jQ+bvKMacelCF7garpk+2a5stLGaTDGAJdtmZh+AMKDlVsMnOqlAhQ+lT/f0pKsb6fsz84emjpPI33TnYjElETskadrUB7Y3zKvXXz8+MZmMjbZvz7mrNnFcjXRZ0AxQwENGLZBSzEiEyBCS41aoWYhJliAbC/dbTphIZnSjtuvIPiRwOhvfWlteXyzGM2onjDLDuZl3PuiFSj5+Op+1V9Z3Cl1j4327QKjPLpQ/88yjy6s7N+YWp28smPnqA86uiVGaSfbWW/bCxXcp85ViMBrLQVSrNTKqzFaaG7bT2pvpr1Dt7Qs/ZEQuLG3U26VjD5waHjvt+TulbePY8b0vvfQdKPn03UuFIWVUy+0dHLw9s/DNb/3Nv/viz8xVp9cGHHFpvcdIsNDApEHVWMRczgLbtX03rEPHq9TnW97ByVEA4g3fyVBYqTdxzsyrY1de+WZSbxtqvisxHERrytCu7XR2e+NeEoXhznZ79ZY0uucuXOofOUaSo4vXZoOmHBrfF/qtc2+eM5OERqpBXaB0DWYKJDZEgB3XE81iR0BVNZpKXzwGeqIuEN0rKoRQTQuiGoVdACqIRdDO6oYThr5uQiw1JFREG+j0M0/sO7C35Vc2lrZZox5hM5OjZj6fHixsr1eqy/c2lub3Tn00aU7M3r80v3itUZzxWPiNl//sT//lh92ZrtIGWHfqo7nYz33ho8fGd1vZjInGS5U7XuDzRh3M1PoZitU8rS1HlSixsdXtKC/kdj0YG3zE7+pZavetRY/2HvnCxz5vGqZF9XuXL+W6zE6p5Ef4u9/6+vLCXGdLKWjpr3z+RS+sdhr8nas3M4NjKJbr7CuFOIzCDhMe8GA8Tn0AGKdcLvWmQpnSjp99bu8Ln7EO7FUECZGSiKdTZu/dC1fG9j+24vSQ/GSdmOXy9Cprly7d042zEYvpPadKAt3dnAZB/sr514ycHDt4NGn0EDTYKBd9Yg+me/IZywvKVqYdoRDpUIv3BgbIDk4sr187NDg2oPTXVi/x7VWdcj2mY8nslkWhq8UjVaHxbBFDmwASdSAIfcerCtGGH147zzzacBjWbCveM5TLmFRst2yElWrNlq3F7SXeLN7z4HZvT5IHWqVSWynes90k2eEV0vnik8/psFJyq0mlO1Di3XK0DtZrOxtIRN7tprHpJZGi6znIccTLIDDiZjytJwyoAQnnneZ8Yx5qwZrApWjrwGe/cvHO7U994WcxUjYbN/7ij/9w8e5NGuvuzcIj+w7GVfhP/3LOSOoGMX7yi891hcJcCEe3DQtnDSOMQluNUi25DlBfBMRMdnXfz3y0uCEcpzP17GkjbGCodCCvVzpOOUwUUtd+/MePP/7F7fJyuwG6UsZa47ojepHvvXLlplvZ+ckXX7Ck4RMZdeYGYoVG2yByPaCCtFg2l1dx1YixOBzRMkORpAR1ersPXXj3jb4jp/gmXnjrVWUhIL5tkZTnNONJDQmmkDSEdQYEijK2zyPsBcAmQkMEoMhVgpBBD/KOf+eD8/NrlZWaW2ujUqWUjJs1u9HwNmY2P8iaBzslnDRGRnoOxqz+vT09h586s11tOsHWjp1IRXtbZU+6oh6WdCV+5cJ8uOHFa1iLDB30ERdoknaRnnwsllNJApsEAUM1RxTlse7RE4mpj5nDP5X+6L437/98YoK/N+3du3v5/SvL03cRBFGnvLlR/cEb726vlQMYuG5YC+zf/b2/vDG3/L3NOxt24INiFDpSKh6xkdwNYHetE3UiuW2vX7rzjelbX1PcmmUksa4ubZa7u5N9wyAeQw89/tNRDMWzh2M5uuh7N+81YUSvXLs2Mhhv7mx+cPWd+6XG/NJcf/7od17+kZrTSSz+ystXb67fO3/1wrtXr0FOhe5D2k7Fk6m+yZXS7OmnP2aEkrWbaLMtO3WF6gI1EIHSy0BYQMATPEH9Xog1RTEIICjShPQMbsHvvnQOoSDbX7j1zjmgZre2N8xYfzYdeW2pJIMbH7z50ce/MDhM1+5v2l4lhbprlWWqVgf7T9/evHr90owZN3d19+GYNZgZ9/wwsFvc0NzZ1a3Li4esCYPbIrBilqTAUAHhITEMaKopyo2QteOprOOUOGNYiXmiKpxkqFUjrPgMrw6JF//hN6SUAAAIUdzKjBWyyGdXt5YgBwDBJ44cvXF//ne6zo7Hcwa1OLOIBqIIAlEJgXZ9r32nuhoXlVqLfezz/3r8yClfYZTRna25oa48T6q3z1/tO3CgubZdLy3I1K6jZ0+V11Zvz8+pHfYPL/35yck99zdu6aSLu9FAV1RsqsOjMenTanU1k85GdbsnqR+b6Bk8+FQ2O4QSFnE8QLvqO82tN3c23vhOT4LAMMlEmyBKEIrRbggDzkjoWkoMSNz2o0q7JbEWx8oWun7hzW/9/TfW7m2MHHlg7/Hew8cmMpYsJK2xCa2+vXDn5sI/fOP3rr570+xKxfRCqsuqNe8rarxSX1LajMj4xvL9Tp0P8nHTQCTZRRCLhQFf6owoXRqKVILjCkYcGDKmKnpKFyZMQgGh9KAimduOfEXRUpoSRL40dZ9IjdgJ4ISFZUdKiQkBAEEEO3Y9X+g9enY/lRJgaRrk/nLjydhIkkJCNVWBJiAaMTWYwzBTbMcL9fz8/MZWBXfH9Q5QYUKTgldrO3tGhlCmt7HtDU/t0bu08vaHhcGT47t2vfWj120BhvqzmULeygxduXqLRV2T+6YcDm9ttZvt8spKuyufG548YWZypx59duzInt4jP4GZppqW8AnDagu3ilfKG+9/R1FZpe5JacdozIA6CnSHVaAuAQ21eITDgIqkFKaeiEsPKChDFhfeX6qHq8XVjR3W26MoEJ6/9BdBoE4Nn9x39PTPfta4vXHVjKmwQnPp1MrmXdt1fZQPa0UUNyfHaTq+RzFTQb4qIsOrhYgl5999p5snstQkPiXCwJTEaF/EmzBUJdJtARKMRUBIVw0IUzQWBFu1co9ihfXQVlBejy1oPL/Tgo/HCivpwUOf/Fdvf+s/N0qbb128mM4kPje4N6wHAIFCmJjSE2krj4WJWY9Uiq3GloKG04nxA8cm/vdb39kzNLC5vZQcH08lFc/181bCcN12e4cmYDZD0tmYFLkFo78w2ju/cKffKEDuxJCxBmrdafjTv/BXP3jlLy6+ey1BIZR6OpG+eP8Oj6KBfYMrc7MmSe3ddZoWso2121bYillZhIyIAb4vmZrZBZbncUpFAvpCGsQCuEzhYKehChEqtJZIxDwnwtJoudsIxoSnked/6t81G42VxduC3P7TP/oRwulHPvv49Zd/NH/fr1Xrn3zhI03aWFxaeHvrjU9+8oFSrXTk7Mny2lJP717b30BKZnjf7kxvIgjR/M3rwBMj8cFMM5dQDZUzDdFcPAdRIKWgiAoRKVq3Ah0FWJGwudYiBnM9gMFoIuFI0KuhwBOKJh4KUCVnyF+c+MSLs98o3XiVhWhw6iQLm6WV1eD0yEEBe0iuN9VnsIBAw1S10K9YlpMN+4mhDBzdXy8WB7v8b9ydHh1WfvjO5dHDn+224hvlpd60qUaUE6/SEp3SnN7L48n+hfu39cD307mFD/7l0OShzYs//uTphy6c+/azj39ydvp34rE46Nir9eLoQGZ6baPKosGe3ptrS1XbkRIku0ZqlXUIkE4yISMaqiun+pvbiwozQuYaFGoGh04K0QZFMQhCacREyCnxAx6hUEdGBIlGKhsryXT/i1/4pV/99z9Z22mM7x168MijX/3Sl6+99eEzzz5TLq4eHnhI9LUPOPGLHxYrbh20ZSzG295KYyUyNBGzsEK76q3rVgxv3V9b2tnIcgOCBpJDusltp2nEuwlqSk8R0LM7vqnhiAghFBHmImWTEgtJIgShQAAtKfwigIFKYyKs9usDFIgL774EgAxDV1OIhOFLFz54ePwzOlBJAHXNwlKHwhXQFWEaSNR74njTra3MzM6153c6/vFU3/Vtmciql89/LxdLbS3ZEDdJrLvTtr3OWiEM7195++0P33/02FNzC38+MJ5/6eW5I4fOXLjxQRdG9179c5PynlzyyMFDb126HDGZzpnFYlsGTO0xvDXfT79yaOdszQp1NcA9D7V26qXt4jsf/vgzx55yLi8pKgUchVyVuIpEXCAPhaHwQkxzWEQIu4JXTJQzoUZCz2lUKrcuvPKTP/WvDfX/nDj5sw+d2O9VvZOnn+s2QDLf9dbS6149kc2eePaB+lp9m/hx1VAblZWxPlOSvZFXtrda1eK9mL/bKOFurkOEDVlAJIpQEDPiwq8KnoKKgsMEJ76qaUxEBClS36YihWDEiBfXdD9ogNAytHzgQFVtIjJIif3bvS/86sbLrt9mnYanKkKI3sRQGHQMQ0WwCUlOlRwigNR21EbDZz5JGdLK5brRubO83Qn43IotCPzt//z7BOEHd2UrTScdizHaCEJ9aWd9z5H5jRXI0MDxz/5M79KRSo31HCR1W7/3/t//2z/4P3e//d1Dlv/mvZunAdw3OXL5/AdPPn54eY1IVikMD3zw1nQki2Lq3Wf6n1/eiYbi1AV8ZX6xN6epD+g02L3x7r3+rGzW3HgmgWAZer1Sz7Ewgpy2QNWug55Cd+BwjWbIhcu3Cv2TGuns3X0wYSaAv5kzlbnF+0J6Ja1vfbHUO3DaGk4JNbSXV4cKPa7NQctxeEFGQ225tFXbSqN6AvQsXLraLdSYoShQVWWgmUwJ+jisG9qgZGWK0iBWJrwgmKqohIU+VqFkHkCKoTJfUgSSUGVSilQXcoMU0QV3+EE0+ffH/+u3Undv3bjTlF5lY6a3L49dAAkgOIEDndIkF00FDfU/+hSXsL1t3924/8bmO4t+NQQ+0UFUdD7x+U9UtlZ7xvu6XNH0tqo7o0rMOZ15ZnBqeNcguj67XVwpdo/t2dqaHT+2+3DKD8on7XWbdrmlptKPcxTu7D/+xP7BY8sbF/rIhpoZSSSd/Xt61hul7790Lgrjj47szfbPN9tlTBUlUlStGv/YQ2bW2Hj1vViMwXAPIx2MMWYOiGo+KWhUUQqR7aKE0eP6CG2WNzWd3V64+h//078/d2lhZWn22rszTcb9tqcEYf/gyNjIZNVusAaptLM3bl5tVzZXKotlUVkJLtTrm0NaVyI5GLRrXYB2q5YqiYZUXYFW1EM1rKAkCgEGvQhSjDQEHUTsKFIIDSPmCSQIJWGQjxENYp0ogCCTAxK6vqkbhpEt9OYeA/FDa0274RbMZCo18tH4wAAqdNFEDk0lYjEIPV1Ld+9/Jgq5t729VHzvauX2vF22NCOL1NVi45f+1We9qJowudLyrVjcdgBWncWV5e798WzPLpTK7t8zXrSjC6+9njDt1//ur99/7W3Jsm+ef9nX07k4OHY6JtuYb9j3b399ZNQ8PHXUb6+GZXVoKCVa0VC+t6d7cIPCS5dfUuq6mRtu+JWNpVmsLxWe3asPDwOocLAjeIHTwA9CKIcIakjfcmxoEJ1LN6Tz5NSpwz/8/nebjXbDqT//wMcPPfDAd7/9Vw888fyhk5OFQt4O7AvnblTq6wmQvXzrZdfeprv3k0Ar5BPxmJGNDRqqH3a0tXNv9LIuleGEkgGA64pJpELQtqr1Bh4nNIRCQcyQIAilxHBDYF1ho0B0sGIyaNsOUJRIRJRzoHArnqRchnocIQ/QmPaicfpTmU+GshL1qSmqdEizS4tFLoRExpQ02TUOCOSVsF4p36su37fXA8RNrgwoKR/jroRz8drSs88+H4T1lILWNePwAx8d9e18oTcx1BfpGuuWpNl8+5XbP/XZ54f3H7Fbdj1sPvviF2W7sY7hxNihJXr53Ic/PrJnfE/36N+/8cODR/fnR3oQmFRCNLe58cF7Vx98/PDcEuo/W6nbje2SMJUM1lIRcZLPHq3+RT1m2DoEHheKliWi4wcGgSxmMNseSVhVHY2Rcq1qWtq+walHnn527trre/buP3rkWLfCdireNl+O5/prOKmzpdnt88PD4wYbgfno6NTHNS1EIIkj3Ny52yqux1kGiICQmKBYIzECXc67OPcIVCPGALYpjwdRzFAtgiyMVT+oadj3I4wkUzBSknERCA4DJjhWBFKhX4E+sKEGcUhxoOSTPpSJThtbioq5NGISpFS3GNG9w4JiErjVYv3q+vnVsCw43k1TwsAV1roRwivvXT94+OROY2vAiNXXKuUVew7e2f3sQ1YuE4VuV3ca48TgILx28HvZ4YEdb2Vq4MiVtxde+/F3R8xUYXK31jvRj5LzMxvt8vLGZv7MJ55sL92XqN9h5WJYXJ4ujx0cGUxP3NhuX19b96rBQL/Q+qyO12xWo3fvX8vFVya98ZB4Koaa6to+RjCj0rIbpCiJMLC42CDJVMGN5j/yia8kY9UDX/7XN773l4cfO5LpeXiLbHZ8RfPai5de3zPoT/YPMEE21xaOHPlUzNQxIcxrA+KrlKsIsUbImAP1AkZtipsYjEO5RQ2NRbVs2gh8C+IIYMiB1DUJANFJCoJAl3oEFGa3JJNIkZDHjYQInDYFMWxGUsfEjmmKibv6wiYjsJXr7494Pc5VDiJRZunjR0TN5V6juNq4s3Nrtbm+IesJLTlgDvrMK4hcR9bKAdmQsHLtasnSgDGcnMRMBm996y85CxmQe068mEkljKR68uAzlHbHLL9WLB579PNOZa0pWzsb9ub8tU278XM/+cW33/6zle03Hur9txtdMK4X2muNodTwldiGpgkKw3KllKLJ3tzY7atv+q1KJdz98qvf/+DWzaDc+LW43pvKEiUP2kGAKxQ6vogDrR4PJaYDKEDwd//LHxWb04yRZCKsLDR/8Vd/GjjtdHaqw6IGc9c/vOW2FjJ9Wc3KZFP9No8iSAyQUWgnDjI8aNslf+6d8/JWJwYUSwcJ3K0QoYMsJAFgHiaUu0BTKKLUD20qNaoiomDOoKJbUEJJOOJMoarEMOIwElHMigsRRUGDkjiTBlaUsN3QLCIBdapbLEqaJsXCh5MjkIHIcYqL25v1hdnG7eWoESc0oaUUrFApal6thmHixU9GtBSLF175l7/p74oXenK9mUJgsuJ6LZbKRjJx8eIrpw4fYdTZu+fJ/OSeRn3DWadVf7u9dWtiZOheY+f0wGPl9TcxGtDU7eUd52jPgOztXbx8ucJTVy686QO47/BIqRlZEXrwwY/N3ng1HletbOw73zt3d3mDMzakGX+476txT0ApkJIiIEDAEICbGNejOgUKPHl0//JmtVNr9nRp/+FnP3fokYdJYCYyiQbE7730D5uV9UdPnLX0QteAIUEyHkslrDhQkO0FnfIaavG3/+pb4baXbcbjCkipKU1NYe6aOI4o0nTOAhRIrEpBVQQ5gChNUIQAhYQBACXSFU0wgRXFaNWCWMwjMAYti9ltzluEG5ER56JBfUVIgYgQLtNT3TzswKlBaYe81WiXKsu12U2ntNWuQ4XqwFeVDIw8I6V3WtGqdN0Hxx/5zKd+8zd+Po1ogOynH3qy2to0aV/vwK7Rkyf9tao+2X3xzVfraxvX7rwPQuf0gae0eNg/dRjF+lC4k+zqbS40uD9TbrUVZIwOjW0tXp8486y9uhzpte99597t2YXdhwcff+QnXvne15oOfPKh/e988E6nod5bveX5QhHk+FT+W3/2zY3/eR/X71NRwLiGJOA4R5SW5KbPGUznemMmevapp/YNZnZNHu/tUncUlqZ9UMA1e7k9fWOscDjem5Es5MjMqGpkqPV6h0LMpAdaYun75+7+6OJwfLQnLrgfT2o8F+9y6lC1FMEaUMq4ZUR+GtNQVfRIcAIRwZTLiIg8MRzGDEE6XErhalYCBgGlMhCUSBFg3Yr8NokQNWJR6CmGwRmDjob3GCJUiOc3iltrO6WF6sVi0Nb0DPEVpLk6ysVxy5WazTt+In72b/+vv/yD/5rv1ggpCG0yY9wMQnbxxpWx/r7tZTuu+f0j+5M9JzuYl5bvT44deem7/zLSpQ4esARP9WRPgWBn8tSZ2Zu333j5W2cfS6e7nu5H1r3KIvfg3PKd6btvzs4Evb36vr79W344u7F+8sS4pYz8n3/8cyAjGUVEB+f/5vf6Rs6E5Wzpt/6aC2YQLEROIUxGHBAuZRL98i9/oS+7+/Bg70T3lKLUS/W6EiIU1jwRGiRhpAbjk5Zu5ue2SpEEDsQyIjGjK0Ka60i7HqlmnkAIpQxcwzCJArKhaAGlIwEDPK5pXRFLR74AEodAKAIgAyEgJTR9tA0BELiBVE1KyakrFYE0FyOoZzMcMBAAXU/q+R5EOaQKEIAhRY6mAYqzplNZXV0qzmw3bpfsQIXdMS4thWRpKqUTqqQVJlSR1C196dJsvVguztVisb5CNC1Yq9ro7O8dtIu+wqQI4cLi0r98/8/vnvvOzI3vvPzN/96fKO8+qZaXVJWU15a++877P5y7dttltRe/8tWl5frsu29duP+NbK8ZNaIkSc3OeG4QHd0zefjJnKvY2ZwBfPuTn3v+k0/9G8Dp8bHCd//3zxQGBxCWyV7P/MRPtyV05U7ES35EAqALmXSjFrn29sWPfny3buSgLlTcHRncbsmIUiarHhNY6TdEPwD1iYmpbKanXN6mGEMRhk6AwximdnVpJZPo1gQEAjG/jg0G2RDVypIJQJAMETEiYEGgCAwoSmpuxVMtHWKuUIUjnUoVSsCFrlqQhwQIA8Ydp1pRFEuEvFWrGW5Dpd1UFwgSdWQggAFb2QxKzZ3aVqVV33a9mIVU4CbMHsgdCOKKInc6bUvX4zEQPv7srVsXx3q7M0OHZGNmvrjuk3BgZDhhDFu63XCD+fmFwZGhyFxOZDKFnkc03HflyrvBu8V2fc1pDVp92cE+HRKkwa5OdWN48Mkbd86VLixaWtYWqIPDStgZzWsfeeisn+yNZBEGdjpjRev3P/vM4amBE8f3HB4Z3gMVq8PY+vLs+OldpdeUkPURySBuIUk5bhNpEBKnf/JHr3/kodKXPvcZxYg7nTaXYRR5KrIqlaphxQQOVSuX8UVxayNlEq9ddXHcd12/FaDN0ur8dBfLBdCLqxRBLfBVqc8bYgwhnxAbSLPdqup6FvEEgBGJIjMe932AFY6RBWkoucEhd4KWiXTdpIFsM1+FHEoKqQ6ctgh0M+zsaPE+mTRIaKNKuV0sViv1Tbu4Ya+b6pBJXZXgpK4DrgEQi8LGUKpLRqQVhv17u2bLAMenkvl8d2GXNrvUqt7zK02ZJrre1Zu3ciO7FQjjJTLWZ2JjIKGbE4e7EyA/N3f5zR+/OhTGXL2ezNyrN5cGkt3J1IG+7sFWuxSUy/mJh6Zf+/bhwwf29GKqm1fvLc/fvnH6ofGBsT07UVyG3tjoQ+munOu0QqK3N7eSsXBdxHK/+Gh0LWq88UbEHQBSRHTDwEEnD45P7RvbWNsOIVBI5DQ3eAdpsURTg0x3AfSitl0tlT0mMpls2xMBVxtNJ8QB9ML1pXnbtkUAOXRhmFMx102GheYJh3Hd97oAEHoshwn2QhsQRWKNcY4wIAhLAhQtybiNoKfqSSwgpBa2CUqqyEBBrcR9lu7OGVDQkQGSS1MhUa1pr2227cpae7UWVbNWKhOHaTOjSMvvCCgMhdqqllFpjcYUBJDVRxSj5/bceUtXEvmebK5ne3k9P3Jo4ODD6fHdXQNdarCaVKoP7D3RIwt+/V5t5769ubiwdl/pzrz41Z8PeKdd36htLeZNCwRhnsIER6lsnMRDV6j5/MTcYml5esbh6ZK32ZM39/buffP9izwu3ru48Kff/P5G5TYw6c5O5fVz71WqrUuvfvDS9/+rtk/t/3cvZk49FR/QXGrX6AqisdyLz+791GceY8INhZUdSKpxxRYoQaN0MpXrBo7uZSxTahGWJPS9ta2G13TtLdypLC9cmU7ShBkH3UZaj0tNGY2EBsCgDI0IQKL4nnB9N1QI1qgmmB9xBBHXqYyEL1gggAASEO6rBgTSdps7QFVFzQu5j7EFqBoqgAwPqt05WHeA41XmV3aq1dVyucPLcUWzINUgQK6pUy2mM03hIhJhW9bbfUoHZWIJBaUImB0cHFLNbHFlNdbXd/DRx7HJ8E7VMiPWWhwbHh8d7DFQs0xuSTc5d38nNfjI4QcfszqBCDt7hnsffeSFOCX1ja244e94H5pxlxSbke1YQU9p4yqBbH6nSRP08NSeBx987NVv/SDG/JXlnWSuuloJ/vb7t0InF4sCRduJnGjXcPWjT74QqHUxpolPjv5zplP8yMRf1FZRsx3lMrtGhs8owHLbDcCMhE7d4qxFtInCYEYvWMCM/Ii3/IWNren7xVBFK8u3t7dnL79+lYSZJMoaghNicl73ZIlFMQZ3QMKHoB6Fig0Mqsl2GIUSNANb8hACGQABRRYI5rUrCCksslDgcMXUNEyoj4RnSYskLUUqxtiUBBLYIvJqjcWFeqO8ULzdlg1LS1i6YRopTdGw0YopGCGsooQBs91d6Twx1IRhmPHumBw59NDNy7cwwb35QYh4z75DnPWFCE/fvNYodyyKRNMvF5fcVqJA+bHBfdIWOouUVMGyUSbXdf3a1Ss37w10jahkWFX25lM5NaabRiyf8Q4N5sZ7R/v6BmqeH8r4dqlE4l4EVL2TefmVd2y7KT2qxgbrKP/o2U/HC3lO0gqONCUikWtq9Wc+/fEFsbP7k8+hb33z+zfvLYpwSTP8qne9vFVvcjtpDQVMKMIHiuQiohR4JBGyOlI71dmKXdz0GouLC/d5Z56gQFHjXkgpykRciVhD4vg63bpNituKs6EEy4A3QNTgHCu4ZftQmDyUQViTDte4BiSPuHDaHIgQgcj3BBSSYY5iSZDPCdcWzY63ea+ytlNq3p9vbQFDSyomkCG0hcqIBZW0QXW1J65mCfZ1La5SZBo5g+skyq5OF2O9BS+qNGdnW82gXiyJtjI80R9L9A/2HKzvVFaWpqmJ8nufyDiZg4f3ZDODB0ayUWgGWzMha5pEJrBd3mz86Ec/dJEntxZrtemGw9N6Aqso3/dkaef+px49Rv3t6vrM66++0eZ075HhoXFWruwc2jX42U9/rCNCr8GqAUcGSmZ2RzrqUL9RKW6sVYG77GyHZ47vR1vF9X95/S2KKA/zCt3d7jR3FjrC7nS8etVj7XZrabniqtmlpTmn4mZj/dku0Ds2vnx5eYwlkBYzJGUQcIRwWsDQ5qr1f/zl15fnNnL4n6Ob78OZHzauvu2sXYpuXWyub4nKjr/uizrzcUiDIADcsVno6hZRkQ8iSAGQVgwM9KopTUrO1tZ2Fm+3N7er7UqVAUMVOooZBs7pVsbqU0wDyRgL45YRYJZN6H0aRCrXUlkkZczS0Pb5WiyGPvXM01//3t9dff99jGMh63i+NPPYa9rF1qbfQqqS0pzt0SF1c3plbf7ldEaplwmg1oXZtzdrS0Yi/x///ZOf/dLjWNpmn9nf89SRyREDm5qezQ6Pjo8MZ2JjG/fvT19ddmznwcdO7tv/6I3VjSOHD519Ym9h9wnpsb79I2v3S3Nzy9vNsF5rcAfbvGb0ZCJV//kvfyRs1Miv/dJT//Ste1LkKnZVIY12ayuTS9OMrfiGorhlbwV46dv3ljq+eu3Km9zD3ZlsUsDifHtcQaqEHQTzVPNizelFEfbbP0RlS3KeHZwvNYGKW5tLCbX7Rul2m7u7MD+qTJ1M92ZJP4Q2CBSkBgQHJLLCsI2w6UiU2D0gHIHrzYgDv7rt2Z3Ar234W4qqY65wRLqMOItCRTUgCyycRDrSkGHXRbab+b5nKH2uEllWmvudilt2a2a0IHr2P/7loSPnzr/2w7df/+q/+vlUP4hLfXAo7rVPF9urTn3LiPfWa9sLq9e26vrEip/L+Ag8mJ2/L2lI0fDMvZZK2qO9x2DljozXkJtt1Ltr98Pf/b3fGh/vuvjmJWP86GuXXuYAxB0bemzmg9cePDvy2INfRiSo3VvIjY9Brfu9l//p059+YKO43jMVKHrk2NzeRsuVYrDegC997W9VUaOxTMdz/brjUtxvwWSmj+OmaQ1vFcsSKIsLl3wZvfXWxZnlzaN7TshKPV8MkshwU2gPGDaySMnrVzvyttdIxHt9WbRtXi6tBFHQqG7qWsxzGhYDAzT3y2MD3XQwSScoh5rl4kCHMq5iYRpxPNRDFQ1EzKlW/UYLy3K7Bn3YLAcNRHQssW6IqJUjRlvHcaK0FZiTnCuUxvQY4xAZOpJMarpCFRaJVsur8Y07sr5zQOjZZFd2hKvalRuvv//WO5954WN7Dh5LF3JL538YajLZqJqWns6PtUvbr7/z483N4M/+5p/L1Z2Vmcv3FtbbjVbPYHp7q43CtaHR8XBDf+/CHRk1ydDE+9feycXyYyPD1VJlobEqVPGXv/6ftmxuw+rY1NNCBjPvf+PMT/wb7AFpt/7iV34bMxzgoKe/L79LP3TkE82WJ2VZJ3GCVLNcE1NdyBWgXF3OdedEB7XVDCD59bLt+n5SjRUGxmRj++c+/eLrF869e+HqbjcNNCPqie3UlvREonfywMXp6enAGR0eLNUW2tV2o7meiKfsZhki5HYqRJI0jO9RzLmq0zKKParerSl6kOawxSTo3X82xEIYNCw3UbXJ3YbdKIUcNCJXEheDJAKOZkQUE2i4MT0OuVBAAeIIyqSqABIzdBKPGEPQh1zjwKMEukGLAJpxQDh+wlTBd/7wfz38U08/99wXY/HuV7733UhUxqaejvXvdUqz8x3aHbG377yWphBKkUkgWVmOKemlnfDOwkx/PjY7e+PM8U9vLe+AZnjv5jps1B/8j79U2qkM7dsjmrUPf/AawIricQmgU18eGX4Od5shbFJ7++mf+iXJksVWcXtuc//xsfCi63YcOV9em2HLL/0RUUA7qrY7EQJtN/L5VstiPAaz2tzcSt3nbR4Ud1ZRdJuwlUvXvrF4f2a9nhI0Z7h00kseTBxteJELmg4p+Lv6Xr7+aiWRTcXipWqzvTOvpnLpQvdOuRaEPGbEIISYkprivdRauFi3bRdKYkssd5zGwNTjQyeedi0aNlpajTdWluvlxUbVq9rhtr+GMBAMmVBRKdSw1GV3XO1ThaZjjBVu0nQ8R+O5QakT7kZ6PhGhKMQMAmV+aT0Q8y4wCSGNS7f4+tLxjz759ls//M//7ucHRibPfOzpS+/eu/La360uNet2sz/Rteh2Ly35X3/r9odLzqYj17Y/XN5Y7Bni7QBFsH78zBNWQt69s3b4sY9ne/LpZMKKcLpXGeNi+517vUq3CcRAMt4Htda2n6SKqG1GVSKtI6WVuYqzYyXCV9965eWZpX1nD/YW0LiZHYv1DEGY89N5mU8TSoApVBrTqHjz/BuIxPM5Sni8Wlqf2H169vq3BofP2uzDb3z7jb6+wX35ru2rixNklMuNdi7a8L2hfSdmGrW2yFXmzx84eGph9R5NT1SWrzmO7/suoSjCQE8OM7fccaoEo4IS91FQq/pPPP0spAkufNFyFdJxGo1aa4U7whGNJivpSSW0DUTcOM7oGqa0z8QqpixCUoVx3wGGbhCjSZVhQLEaS6KUyct2VKOBshN4AaAOYQeRaFBkJu76/NG9l//uT1rSyA/F/ttv/KevfPGzh596Yuat91DmUm93erW+lUbWE8+c7Z0zcqq+1gTpPY8svncxPnrkgUNhuXK/UVvp1p8MVQ3T4Mnnf7rWwxrfWX3+yWf/7m/+R5eaCKkXF7oQgUPEy1+/vHGb/+T//A9b7RWKbZEazvUn33i55CL/2TO7ep4/Qn9TbJOZgsN8Yxgr6nLTsxJ59OqF841S5Y3zb6rArC5dCFxyZW0Jq/LNH33t6vV6rdbZN3j0ubOPz91YufvmUi40M7pRMsCtUmU78K/ee1PVRP/u4d37TlRK637Tby3OeMJXTL2rb1BVTR602q1t12mFIctTDQPvy4e+/Lknf57Ek1GwLb1OVFlpzK572zvtVrHu1zrIBtD2fGbq0kJ6OpZDwNZ5AhM1DAmFIHKFldYIJUjt40niQCfsuKy1s7A+E+F64LkQSOB2Ud1J9GQm04UXXvnFdGi/8OLPJYwoG+syTe3v//Ifb527ld3VV17YLK6UhAIyXUILxLn35j0zaanNO1WZ33c20T3k+Ztd+SHJDK60Wl5zZfrdpncj3cDZR7I3X/+eYXuDihIXIAP0jIgVFGMoVdhZvLv95oXh7JAqjEJKK805b57780dPHnz4Y8/D0MwdLyRdXcVJgmXolw0E1NCAA2PDx0b29g7p99dW+qzsrvGuXZNHhDfXaWm93T1CVe/PLzU9dvvtS3iZ5U1K+rrOVYsz23NHTz1Y7oTjo3vqO6WZhbd2j5z0Qz/wzHJ9mrU5IQhquNFoAt+OgL+H9H3nmT8Y7sogXRUBBmG9vFDszqrlzWIn8LBGfGb5aImIUAoc17JEDXSUpiSLqQQQcxDASOMgMLtTqpqOhIeYEko/rDlSuLV20VL1gJJUrEuGwg4glA0aM0OSKvzWg5te+c7Vyzfv39xcvW+33Xh/12uvfXBwbPfAcIp0dvon9kFadVzn2nJ07EBXl0cnHnzi+uUbSSPp1OeSoB2BaNfUIb9Teevc9RP7Ro5+9Od2/vbqjfP3wkYLqVAgAhmKCEPcr/ptDyFFZV/6//6KfmR0o4Qb7K4P8fEDR+ub9UrbVgSv/dGbnY21MAhs3gmjlM924LOf+qjKmaamEn599MDRrE4Wluf3ZfqhVouwnh0aC4JJmlrloj+paEtLmz+68r0b5+dLjZXJg6eyXaMb/3dB8B20/ZoXBv26vlf/1fu+n/r2855etrLLLrC0EBYIJbIGMSo4RI1jZjKOmRCjo8k4cY3+4YDOwEw0jBmxEEpUhAwunQ1l2YVt7J49Z08/b3vep9ztV65+ff18Hnzp2Sc+QECAvPv7v/UzOJA5hZu3707be0Ca7e4eyfE3P/Yz33D3aWNUAY+STS9vc1kjbpKf4uyvgADyzCWdRdNYikaxU1TrVtYImQSqjlaYAjQyeV33KiUUptvff7cyOsZw/nijVVm0LREVUIHTRpycTnsPKmQHr23c8N1z/UL3zldf+eLVF9Y79ue/96cnN44/98Ybvek+9tEXN+/sblw/feb9d3/7//vKD3zfc0N4XPCpFvro3nxwdfktT97Yn+/vvPSBZl784Vd+YRemf+3bfvL8lz5z9s6Z9t4iEmgDf127k8zkRK5CimvHknQ//tM/efDsdcfyY0cuLs+lajWf2A46KJ/9B7/+8PzlhTxI9NGRvAZ/+zu//9s//L405b2B+XJH8nz7Bv/y7ouPp6y6w4D17dv+2p3ve/59z1575sYP/vXv/m//6//u//zVX/qHf+fv3n/nq2+//tnpikXXPvGh23/0e/9sOD9/4UMfamsyPbo/2fHq/NWv/tCvPP7hX/7Ye57SK72druY33p3+/GvZvb3fvh7LeDXYQYHK0nvZmfXx0UoZVouurqKWhjCtm7p+8hqWBFUny0ocLTBDDsUNa8XYNGXrw2pRCa4HN4AQIXt67druKgghyt65MF0vlJarP/2N/5XUB4zegv345Ieeu392mbaRRvP2y9u7t28e32y//tU/PdTba8tZ+pOvfekrib+x3g7HKu3peObTP/0nn2TN669/5Y3bjCv25tnjN+p8pVeqFtWyZw3eAWENTyvSHbCT4xpbCP/yH/50C1XDxZHJLz3z1PWDxY2T0+amkifVh/7B9zteMZc/cvOF9x7fAnp0wxIzm3Xbrd699+oX77/xW3/4mXfPNg/s8Orr9x6uL65ma6eLmGLdLoa5KFjdPjj4zu/+np/95N+7ePfNcf/WxfbN/+d/+sUS1x/81r+yefR1iCLC/Mvf+I83P/E7T9wx+smjMNnptUd0OxVirsL5Lo6DJ/PcRHFKgItKL5ddLW9UOmjayJpTw6WsOEdmVjghW63UwSlbGS5ZtL4E69ePQ0brrwRkrqlq6/7oRgIgYhm3Q0pXMU+EtRxnaxS3psH8xc//H+99qn7m+Mhdnb3vPU/furN44ZlTWedf/M3f/vrl2eLomY985/d+/Xz5xHM3wVTPPvsBpccPf/gTL9+Dm4fmP/wb/8j6Z/Pq7pfe8TfvfnsXF0x0cRMrA8VOiyov9LEyCBXj1W4lT27qZ/p0+IWf+5QEZbdzdPvlqg60DZv1uMdyLH74H/0H73vyqSZfA9LDvbPX3np4f6GWFWsSN9MWVvI9mPTDh9svv/7gjz/3mVfO00hpYNXjcf31h/dfeee1z/zJ56JekFz/J3/zJ5J1L3/+05D90fLF+y9/4evv3vvrp9/67r/+83/5xffolcELP7/8Ju52+/U708XD7eWrhSSfXRH1jNkACEZlwQoLz6ogEXrBFGeZCsWI7MGTVHHZr1BSJ2h8vEtu8Nsx5TxNoT++xmSn2iNtGsKi5BXQIoxpThYluiLZWHqFu3n5Gu0PcF/+6FOf72/kG+1NMW9+5Lu+8YVnVlKRF186+fxn33zrbPOrv/HHH/mGj6/HdhPf/Omf/vlbL338y+dfvtPO8/rNqv3iUT9w+pih/NQ/+71ILYBQWlEAKTkib4jWpVli2+D1la51IAdMDH9yjztyfXVjvCJ/9uqrFR3N8QulHIRhLE8s7cn1hzN7cHlGf/Lv/2fbS9jHd4zCRZQbba/x5sG797OhQ/ar9s6HPvxtN2/czD42/Z3+CPf2sT1bw7oSosn2lR//Bz9pB9ssl9N6f/v41i9980/dag+XCwieTvsHeUvK1f09pTpcjqQSmoxTqXXRLeX5dvYXVDEJC8ZM3YipXGh24tyopaFCIaexZmQ/NPqAHrTFBxI8gA/7fSExkSOuk8GWLur9/qrmgFvI4LyjplGRegjeebP/yMOL6mEw9k8/94XX3nrj3FcHhyerI7x5+P5X7r0iWogD/uqnP5fD7t/60R+83Myvf+3BJ/+Lv/VHnzt7/7Ory3sP/O6rT3/Dxxteff63f/2Z53/ki/f+hfyyPL3HTpZHdj9QTWjWAJzTpJTJLgRkwuSSNWW5hIZo8R2/8ONeoSB5k1vE+g9+96svPvWahpe2dv+nf+/XHzz8I/rt3/bXXnzv3ZWZr/bT4OaXnvvIbv/WfpeZEm+/9ki2+enrz8uue+ftS2La7/nYd/QLntG+8fmv1BT6W6dn9z77n3/yn65Wz2X39qd/+H+7pZokXcv51VvbzeO3jHDzZDi1gY0gVlwBI1bCCpEzpgvZ1VqEjIr1iVrBa9YbFqgPk2SsqI53BkYfjKJagZb+4qI9OnWXl3RyySV9oIDzBIQUuHzjreOTm0UiejaPD7Q6LLJ2h/G11ZeCyFQ+/ou/OPv9z/5GJEf3r8I+pW/73ucp1m8+fOPp7vm//LEXP/3prx1c2739+OLFZ775tS/cu/3R29fuPv2Rl154/Pp6ePW3H1tRpvvf/A3fl8rjBz/zqlYHtdCp1IxMkDKwNhfT1bvoblO5A7ik/gmshxAF4fzoRz98+995IXnzB1985ehm/b/8k1/+9/7GD7ircihoZcLn/vkX6Ld/+3deu/nEiy99gJS4vbx3fOe7brz4xP/wX/5Hy+WpNqvFjRO3P3/5q18Nfrr34OK5F176xPf86JPPnG4e3v/jr/z+D3zoEzC/87f/m//quL/xz5/7ux98/oM2Td4XOF8P40M3xQS0cCXAxwyggCQp6cwFq6uqYKUUI547kpkUdVsI1NRUKQZTcLJb2fdUahZI4hWlkQGPIdGVzJdDdkXVNF3O6voyUbY7e9xJjkwCAoSQciCqB5c+dfpr9szxI7/LV28/2F8NOyRhs5ldEZfKvP/Z524cmH3cf+ADH3381YuNsse63UT3a//yd//qJ751s1t3m/ozX3/1fbeOHnztnZOr1Wll7jbXGlORkCu+FK0nnhq1Cl5IwUtmwAIDCNlzaBUAxnoE+vr08g/8X39LVjxTOmP15Xce3T7p7v3ZH9an1WLsdI18jBfO3161DTcmZPrKK3844cnR9VvPvnjr6sr3phsuXzk+Oj7fPBRgm+rWH/zJpzbbxfd+/Ce2F28P+7eeu3EqcvnZJ77/qevX3H5MfhNmm8Y5J5bFFeHXJUvIbAt1KbzqGcSTUgIwwZit+6ec3yxMPwQreJNTIIVyB5HtOMlxO4HE4GJ9Q8dcYKnELFMIQgnBYLx4UFVVnhJTqZY80UqCJVIOIS0PT8f11RvjxZfP3pi3+N4T887Dy8UK9KL64e/4obRumr7Nxry7Xl9tRnm8euON187Hq+J256+RD73w0Z/+5E+9ce/RR5+G3/nNX3jv4vr5F+/fnhYvnjwhUSgwujBjhFaNppK2HUVoZRKkTiRGVwshDEapuR1YtWLUi3pdfuXf/8f/5s/9/UGIeXz0LU8fffnlK1gcM5BwQIJd81vHdw+FZjVZLW+fr9XbD35nLNc/+MHvknV9euKzJ9dWf9WRcdqWrz37mdf+7OG3ft+3vXn+uc9+5Wuvv/bn9fMfvpj1J9/7Y9/8/Cc0k+sH79D02K6xCD4HIioTEyrFY6GUdkCyIivWFe+pMgteGcxZNlWcCvAYtWFSI5TMZh5MnBLvdcpUGxmnLeFdmTLhjCWagfjNhWI8JAcelezs1bS8tko0+suInLir15MNlq7/4p35+eNnz95+9/Cw+3f/2o/xy7vlMr75x2+mO6vygrhz/e71oytx3bTkWr5Nintld2vueYtv/cFtXrcxwVv9/s1XPnj0dIVkIfVSnTLMlMhFj7I0qjZxE71oKuXTJKtWelAshjknrbSg1FlO89AbcfHmQ9yVVKGl5uVXXn/ixuHgTo3h/vLMVXfoJ37o+28/de2wP0r8o9Wh/79/5efv3Z/+4//0p/zl2bKFi8t7u0fr07u34ma9ni7WwVztzpdZvProjVuH5fmbd7/p68vvqJ7hUm7Oz+NsC0Xnzx3cVBI88UupsbRKWSEYIV53K076TD0zmua1FAdTmJv2wDFSEZ4pYIoMkfBmd+9lohZcxXSxVYdHoq5ZVxMjx4udinS4eqQSDsP58vSZIikmz6gat5dKMI8lFSPSJpFQLbS48YJ6/2r75/fy1iG/ig9b58OGrO9t7j/5Dd/02Vd+3a+3F5vJLOTzH/mWd1/bLF8K7/nB73Kj/OrP/qJy/QkXSxJGCgdqJcsB4Zuad4FgJRqicppTdpHxpRSZsEvMXLB6nkXigQPPkztP98I8iRbfc+svDX/zA/YZyBdfVMs7dpR37pLdZfza1+7Tb3rfX/rox/+NJ46r1998fXXr9m996pfP7j9cLJ772F/5scN26pvDqzdfWzlrN5s65hv02dXiOASu6cXT1VNdcSzg7tE95cNm2owkF9LYdLbQtyjZdnzBFFfqoOBQVYsciziqOTEkgsetMoSIBfpCgiNSFc25z4VmVvjg9royZA7q5nG4f4EEVd8FqfzlVdXWJfowz946GQGWOqXU6NYSzyOjBPNkc9lPE5NGI231Qoart4AeDc47F7qjhK5imjk3Xlyc86oNiQ/uMonLPAhh9HT7Gj87e+oDT22/Zpt8lQkx1QGfApWYSu6kZ+agzJVQMRTs2oUb5wJTRBS1ZCVgbNzMIGfrt6UoO29mPj1z40CtnrJY/7+Xv/t9/+MPlUy/9PrFSy/crsBcnr3Fw3w1Pd4cfeOH1pfnuHnj+PTF+w/Okj3fv/I7ff38U08cvZdf67LSZehBni65j4wKTnA1PJ7G6YrHdcj8sXNDeKC7k6oUo29Aiov6tqo5RUoo9gcnmVASrJQKx5gqYHIpFPhNZI0mRlOgycfEkRSeKt6ba3G+YhriO5fQy4AsK8JKqA4rF71IJGfNJIqW0sSZURkBB5GVKy4PV7vqupF5ap69S149vyhekVZJctj3w/qs1UeeTrn43hg4vkN8KHRckANommiAxSpcoZCLg2nZcmA1l8wUkkBJF6iGx7o+zFHqQx0s1FQOdmMaTeIhOhu3AjmNecLSgJlrVhUkxqyO6YHsr0ndJTu3O3z8YCRU3L5z8vb98aVrcOPomH883qjOF7eRTZamqX5K3H7pZB23V+/Z3XySdE+f9XLRm6UZ5pc1EfPjiLxhyXm/TeHR5bZxYhtjTHM8XDyZHR4sj5gYJD8GwFyK0FqZNiKSxEgUwdqiV3QOdtqJa3eKvEzjVohaakWsI9HTSlFXfJdJrElmBTeMZFNkuLDqSNN6xd66HynmKdQyDT43TZP9WAQjNMY80bqqdetnx/nx9O4jKlkremIeFKZKvOr7pYtUwoHLgcJUCcxQaHVLDkPfn6bEttP+QPLpxl32aMuboslBFlgLOsxZKKxaUeiS0YFRXXeLnMYWujCpmDnrAriZQtb89OpsEmzJpXVxaqpnUA/CLFwmZXgYB/w7P/Jv/9xv/lrX9pLz4f6XDl58iX724/990LdvftOz+7c+W59eD3+xaU4at/GHJ9dGP9jHrlaapIThsPi3U7icUg6RDsmuDNu70LXtQqwyOiO1oEwokYFwdsorl0tSysxRaONoZshoFFraOWAqKWjTFS4QM4uOJyhth7QQzcg4RxsV5zGXBEizwDSY5jjmKYfZ76xqevTniUbBl0AkQ58yD2FEbTjmUkS7KOFC2bxWqpIn7fatK92alLexKNl3ZZtkpZOdsqe8SX7neVPVfUuQ2vGSIKma42G45LLOfgDKkJXsuDSA44h1HcbctG2Msx3C6mjpJss57tf79niBbh5SZDkJogjPUC8MMygldPX+wVnakk/f/60/Pvvs4rmnPvEv/ufdl15e/6t/9ZEf/EH6hY//TKfp3ByeXjNxFjrzvJ0IKXbE5DmHC4xiM0wOgqm4DyNXTNPW2tA3hwomznpgPmbR9XXghUwEmey6mtU5e2bjrPqexFx8gpzlURu2VtBUIqNdCjNnuSBxRdaS0CIQjSal0BlFpfLofAjVqo42ZkE4FrffussrwXRMTvCmPTn03maKNFE6bdjprZKGYik4CmzD1BLahV9vmY4kClfmEKSqsZI6TW67H40w3GDMOO/i4rTGnLiu9yLxcyI1LSGoBkiSkfpiE5Calq1aHM1uUmYZt5d8IfNUwrjmjDIhRNMNVw8LOaxbkSmUOaqDjhLgy9rtbdq44fzqD9/6Dcucjfk7b71w8/r7f/5z/7uokF9dbAZS334inr8Zwk5VvIhUdrNl1Dmkk7XLDkjHV9h2XZrDgsI1HsNqmYCaxHl3tCARUOyl7DkpBaxqFjT6pCkrXBMjXPbZE5ZFW40P1vq0JUVlh8JHRhGZdZEhFiSUe0JE4pnkA5PmiEDoSoV31rQywEVyk5QhFUlaycOO83qa9qRwXTW5DLQ/TPOWd5XK2csC7a0yz+gmbnoSLnNMFeMKkBXmdxkLmE76kQiQmqb6QM8M+U4SVdSQkBdHjGI0ZMIDUhAkx8h2IBsyDd5GRneZ0nDJibSiOiR560caSWLiRBoFmSAN8nBJacaY7YWjkXjnkNO+rkWkJ8Ye9O/NtK3x6KgAX3t30k0XW1EKEqztxqouMqKYUkvlD/QipUorbEWxkXa1oTyJ0qa2ArfpmwaJjobXRboS44iy66DARJmYBGaHMY0i1qoKU5lLrFZNdgk4ozFD3dIU45owUQQBJgWRJPkUhVSEpWwp4WC9TUFMBRoNZqTjCa/OaB5A9dZC1zVxytYPtWqcvdLdAlOV2Jrpdj7f133jY+ZpRt4QSG6/rYxIQuJuTQVnhBs5lbQigk3T3MpDuBHREsU1JzjnzCXkrJLZp8lXbe/9zEQY13FxWCOhBVVKa45dokGzNtRjibbtloQEwjqWafIxZ8IyKTSFuC324XY0vDJ4dX5j8aLploFqBVpVAXQJyEt2jpSZuKuulTW0hksJvIJV3RjT5KZuoV4keiuClpWWB5L4meWDnDuSeAkZa2Ccy4W2OZ+HGaUqJNOupquqMR2NUfJcHS65MdkTv9+7mNPOMqBEcVEteM5pZ0kSAEwV3EwTEZyozIqoDhcpOtCEqeMi9kJQ66tCA6+BxVCcZcl6b5ky45DLdIlkQaeZ8WTnDVcMfSkSCvdOxZBnJpUTMDs7jRhnyeS+JC9kJzoxbwAzpUSMaLOdMwIDhDxydpQQBG+xyPrEEFpb5wlBw48xaQlsCqIkWQgUwTOrIy8oDVctqVlih1Bs3s+p4Nbew4FWSh4f3KDS1dJfr64VB5ybkLxM4rwmhxyUVm7YxLppaqVCDv1qkbgiwGimh7co8CUhNCEFQUo764UhhFfEbC+vGilYo/KD7bLpaIlIAzqOqXgMBEAuqpIiZuSKYeJ1tn4uhigORZIwlNgeHcYcGAhSV9W75+mkTmeXueg0nVc3TzPjggshdMCgWITQgzZEo9ANlpidoWxicUzEyGy9L4iCaUYJBKoajiHytjmZ5/W0fmRAJqM4RuhdmJdmQTBg2gfFE9faWdF1XWQk01JCHKeTgxVaZ1HJHGlF2mFeCyYZAU/OGTcpOi1r0CLNIJYmjrPhzFpE4vk+l3i/8EIZpwlp4IXZA3q3re9Q2l4+XJ8s2ivHoDenFdQGIdsROdluaVWtBDGUMaN59jRml3YhuCS4A9kSbriAijCCdd5SjNwX0i1a2hiGuW5qtTApZ2CCABWJKggMSLZ+vP+YCZJLYVyPu8wPOoJI9SobXgWKw1gUp5q5/Q4rGe49sPuQvBNdK3it6h5rHioRUgDTF2ZicRlaIQ01vTQCYkUFAapynrhUwFAAkhhjsLvNphCK475mrQFJaSVVBtnnWFPmQiCzd1CJlFlKlmPIfg4kFBpctEavUwpUVEC0oBDsBFoD1TkHrntRAaUNAKOJ6EWPlxmczFlySTmSxGSWyQ0Xxe62DqgZK66vLQ5Fj5QlrQNDShBBE2NMLOqGJKeFLBd110AvlQRwjGGkjgMIY2qDw04W70VCdOh6MDWNJIUpa5r2F55CLqoTLQt0MIsuEyi0BCOprrlpsZB+tUjzDB7cuBVtI3LY74eShzxj6A00FVifhrnsYt4MJYVCvbU75jETW2yAKRmpWNsVt1ctbRfH1Lk0ekZLon7aXnBZyV6xxUmMMWPx6CE52dGu72kivF+ipBl8DPvAZPFbmoAACqLrRk/zEKLDKP20DQPTUCCNtaiRVuNuPY42zIkiiqbtmo7qHBLFPc4XKWfMjABUORFSkSIw2RTGhJSl3Txu184+ypHO4Sw6rFs8un03YcWQB7dnzCEqUIC9vCl56Vfbqn0gMI3jZX/Ud/USpCgR2xWrBUHDGgVqR6b9mFyurCCzSy4oEvPaLlcNHWmaHlGtyFhjSAIYV0jsUCIpmIh3aMx2oJk5Ux+IOGduKkEIsAwlTW5OgQGnIbnhKtld9lm35vCpF2GhIWq24GF5hLWpRFudnFAuY8KL/RqUst5zIUyjsGARGB5cQM61abjDWAIrGpFl73G2UshMFdctpMCNcsUK1TACbj1Ti83BEZVS8gry2gVamPZpXXHDiaoNpyBBNcHFaUqQCWcY0MoDU68qkrinkpA5IgLn0EigKe4eiOrSDUTjTYcB09D0YqlfyLRVUFlnMZtUJKgFJwXDxLVuMjEd0WiqamW8tUxwpQ9UjfNACREqc9pWE51ZAtUv/OUOThcqT3mORUF4/LAST6IM2V5Afxp9ygmZL6ZpY/ZkP1AGOE29YRTp7LagVSkIRDEl+MM97VtmE1Popsdx8FkTBoqbbn/2dZErdbtQBLK/cMCwOEZFtoUbf7Q8RoYGVNjPDkFSktb7CEIr8IP1pWjFchymIcmKbs7ut6FhopGa26HN1JvFYRon1mm9XObsyt5HYrOmw6NyIEu0LhYV05mobqS4EYy5neN6KdiEYCRnupcRgIAWKgIHqlumZNqM1hNBplSc32Ot8zzTQJlSK8p5pSQKVmShO7YbH2tFJRUAVVsk5miB8DlrIRUVRFWLjByZ1s2KFKY7QYwmkVCHSdKwG+CQi/M1cXPgha9q0awmucWARNbp4RWQREukSxkwkJCoMSHTknDe7mPOQimgokFC5l0ZQumMlCKk2U6z3w0FZUZGCSMlHCyfrirCFMeMJYGoNKcScxFCUxsHRxgnCBwZEayIAuiKsG68PAdDBDcCo+n7pj5FKher6ynEnGjmBMRM+zoFJ1lF0VKjaKTIKKdeEHV8Y+XtEJMSANBfC+hB1rEEykCyFBzPheQScymUimDnLIDklAmmvfcOStiOGz5tdaHoxy2RY8bBl34Jq251IBiAMBnIYlETSikKoGWnAZbLAlF3jQw5EyB2SJQxZrjdBuhIESXxEuyluLGSEpGXZIGuFuKgMzWb7m/4UmtdClPoczAiFiAF4+VgH3pri4+FA3c0a92Gyyk4BE4deHl6PbvCjYr7fZnFdD7xhikOqm21bJjWgztn3QlKRmOQJfLLvahVKjLQGIEItFhyGVOaQtnzcb/NMXhwBCs/BobDlOWw24e8Z6h4z8nhEwz57io3/SHDZJhJnGbsQ3FyuQrzhFmS4HbTgKYRzAIQkanQDHIxSteqz4JQVQgEwohuGkpRVEwxGagKAxbrKJkZqyLGiFAyLbKz9iA6cSJL3QkqNa/NdLEGSjdWhVjT8hhcxKjdtMm0LUgwoSExZu65anktda3M1FAQnFK+vM42+1K1cqGE5qUkqGvroDQqz5IeH2MtM/WC81IXAEZYZSoQVGgleadkpWcb1fVeSlZ8pJcyFV8YYETifXQjq3ZhRqdsJVhpAgm84jJURKDIsRRBnFfubAdhwO02O89LwcLt7hxsoLUAsgyzTY5QsYFMM+k1h+WJGXaWCMTAizsvBSuIIUU/n4FRquaMRZ54tKOQmKEwahaaaeZyqphg+2kNBXzOgfEhBvQkp6SN0OYgZ9BaESdBZSGKZDFistsQ9nbYTdkWUmYp0TTvmrqNoPTiaSk6F0bGrd1eHelAhJNyyRkTZQAAQwuJQS9qoLo01SK5mAZWupaTXEZHJRMp0FazbnIPFUkBekPWE8coaC8whHeHvMu60fRAgSt5vhB1NXJSVyaBBUuR6+qwlDGwI01jVehUdkRIEjf79W7HWENytzzq3fqx55JFTG5fHS79PCVKaC4ssZj3TLHsGV9WZLJiacKESK04aNJ+DCQxQZGNaZyr42MXIzKeHmxktaCCxgCVPHV5NnUHPLH2rsWiEy1FExbjcIalD8mjIskDK0krIpgQZoWxVKLBiLJpkBZFZUqEgS2QcyTEGOeIMDL5lIMXzZ5RtSSbktuU4jSVRISh++XJMaEzctB5GdhVSJP3gNklRiFSnxlFkWYfMDgbJ5IFZkoVQqWFdWGMrAih23m/ww3Sd6VSTB91tQQuBEALZvZt2YeJdQWlG3YcJZOmyqzqGgFhF6MpXObJh1Kg1myXGUmcST8NbvCp+BRspdXhQYupmCduN0qDlrKrKNd11bFAKaNZMVX1OZGCLhEhb19DUjJanqrp8TTlh1UvaFG01IfX7iKHRisefHX9tCWueA6EIwt1uyAIJXIXpqquU0mM78HuS1ih2jHAQjwUrJoDoCIm2J2VVCC4ALIQggWwhMyAF0YZp4zxHAo4n9YXSGMq2W77q4ud4JkwDIEAI61s+0WveFuAUi0QxzSg5o6zuSQByUOyjZAJUk2yRZI5oQVqQpt4hWQsJfkqE+9dutriPs4m5AgpUns1pMHFyVEVuDwUMVedILT4UrdPIJ99cISWbUZPRR2mqWCURspjU2Y5piYODyLS5FJOjnB+cvO0u1kHqtTRomRCoVJtS7Swbpz3fp5t3Ezz+QVN2904ICU8zSWG/Sa73R4hSM0PTl5IzsiuBpaGOTCA7Eeiqs07m0QElpg5EkGi3ezszpGpWAjOR6rW5zYxWYSXdMW9EkQXEvZhmGIk1vKTKIAzDtETLCCyEjXNEBIuEbWbPWMkRFVIeXxv9gMHKoy8ttvGeTuViLroSjd1fU1UisQmjZ4gIWZOKEpWBXn2ETI+3u8mV15PQfvkfMLip8t771ANhKzBl6wIFYFwEE+eptHnJmlDtCrThKzq7Tan9RqwUqoGZpRE8sYcPE0sUdlSxwkTVatJoH67z+9iKWNdj+O2Gh6/bparmJIsrSMpEdCdjjlToshCIA2MCpwnN8dtyNN+sOc4paJk7cvItLGXW6MzpTlm8Inu11tZZS6pEj1xMVpCq4rxTJLzFLjSYTvmweW2ayXwLOVS5O0sS6oXtXfDeniYgiPtfru7YvQaeKikIU2lZ1VAFSKk4QjFxjX6mmbB8xxsogjzlmAeOM3XThsmss1fKfgYdEcNJlC0AkLV1bAnSiLYlEPwEVMd0kz5muYhliVHdmC0n+3NpYhcWQqVyNiv2oguOBGjJTEJJaBj1Lu2X6KgcdphglokzE5cr8qU0Y8lRkpVmpJYAh1nLlTxKXjV1rS4RCTRSQIbna/Wdp9FNP2Bvzw/PD6ligq6gsICWqFM0QJ9KYmDooz0kEYeHE9O3moQHZdRiOOipSB0fHDGeMq2mMOjIDKisjPRYKQgBQiPkFghrUzzgF1RSlDKpU2prvLsyBR129rJCiwE2eroBoaCuKzrAHxvmmXKgXDMRomCirKcc2IOaEV1LASKt4o1kVJRBlLi47NJiznQPcWls3Rv/cGhUgT6ekE5besFEMIh4cQSwRLG7CDRA9XssufAmdkPXtB91jxNkMNmnHOKVnIAJ0E0CimE7fjOu/N+BlooyaDaTAmtRC5YpkwZy6IhpoppIjLDEEStSKLOhmbBhhwYCkgqJzvOFalmRWDZrOp20d29k5D6UHjmIToSOEMUzuNUmJRoXSxWuqGJpADkYdzvdgwqYhLZbCRgVbeU0vb6MTDoOCjFhCa7+d157YQ2DkLGBJa0XRMuSfA5Zb/zO7+dCmEgxbyZGLJAxugoB8QsSyla1ZTKcTemMAKJjOpAZhdzoaAbk3NhoFkGEjHBUChNnoy7CSlPwfIYCrKqnW7cPAXSNKvl4DzlGlj0rlCqiSDeTS4kykOCISJDsQbnNqKJtShpCChKcLyqF6yAm8ARV1WdajkVx8AXteDWbYbLh25LlTF2A4Ibv/c4u7C7H7djxSIpvHDl5pngtPAYoqovCkmXYbNnykieDBomyOQtDamEIBUqAgqI6JdSlNnTxBU74v5yPV89ctNlpMPlMPqQUHOdl6CXBdtSwbzZABkZvVVGTdBZi+fnG1pbs+gPXmyi9JABQPBexXkqGRlnBIiinTSaTJMQHCuSfMhjMsuCM4l+ltT66DkApYmBJISUecMSqypOEqGZN8s++X3OCAjFaigD0BFk1nRTZEOYMg0rSQuslPIp+uXRrTQQOxYOjESwU4ACKUfGSnY6kUlTAzHHtE6Dn1W9ZVhXRnGcCsVFp6XUyZ2VifEKdF0SUW5kGoCJnb26gBLitJYl5JyE6qRZOE9M4alMrHC7Gyfh0/bMC1ccw3GXJ69Xct6OkHQjVCxASHFTiorSuitbX/RCd6bkgI92lBCki4SZFM15qhqVZ8fzmeoqCIUmurv3yMaA5JwdiZlQH/cHq2OGBFKIUYqi1KKapw1Y59dONUW2SiJSiCRlQJUDAecIi8hbEjkVN5mceW10S7gQFYcIiFlk4jmrKWGqUQBAKLEOi7eBYp6vwsC8T0LymCFtr3IyDFUkx66sc1RGdNFHs+plZbJH64Y8CBv3vLhdokU/0HpZWMMN3bl8nWdNsu6bBdTZzoAarR/K7D1Sxmbp6iREq+UwXIa+llEwk70bJVE5+8kWFcbaMDqpiW/8Pnenom4PgWbiiq8DTkIdrOY07i9DY2TxXnY1+rX3RlYSsGy++Ja6UalAwzBLBiFiSMHt9wyKTbhcVSwXNMTNh3m/5YS5YPrrNzNYgirtZo3AyGEoEwRUepFIBtDOp7o5Ia6wFStcADOII1OM+BAV5Dh7a2veUJgvN7TXb5tmMQ77StTsMKYrqUFSoMUHtsJxHzmj2ScjlalN2hdKxv1IACZEnAdLfTLLxk05wrjsaKI9lyUHodo6BF/2tJRR1jDsz4XUJZGWFaTHvLQDmcGX+fjI9F1PCYuIyatCAUu7PpfZUBdQtG1iKIDsxnvdQVfKkCH64CAy6nkMYASx55txM5LkCEDkNKXoRu+jdcKWMUVCNmf3YU6LEMg0UA3jOIVMJIOSCgmieU8npMrRAqGUQCGJJc5bV/Nbglg7zL5UIHrTUnc1uXnA/UWJiVAt24pyCbGUPLACIE3Ms+wOKfcqJze7MdyTopSYyjBmBilnn5EzQkMiWQVaIyGSYYbDEJORN0EIt/GZ2BJIsFGb3u8migQIYsIcE84+hCizJyxkdCU7n4H2iqJQOjHS+0LQ8zITynhKrkQESkDTOAulGzvE6HzipeKnj+epZS0cNx/b7QhEODk5Nj2TFCM0SsfjU+jlsqkMFm43l3aYGC68Q044sql4RdtV4ROlAThdXX9WVpqvpJDs6KBKhCAgVzxME5dd12XRNEJyBM9oTYdJV1V2BwSobnqxEhBWQabMWOawu7wq0yaQC7eFSc7LxWnVLl3aO+c9KgwTDufs+IC3bde34IswbJwscYQzIShLlgsZKOFFZ5an3TkJU+JcyESr0y7bSCBm63PJIQapEmVte3Rg2n10MblxmhmZcbAkq6wqwBDCGJllhJK4cdG7ODtZ8GJkWjMglpUsDRZyMsStp33V8hJYYVbw2tQih1zzUiDlWSDZ5yQKuZwQDTPn1i6U9Jj5Ya8Xy+Wq4rkzEBF61SXrE4fCJ8r5sdSZp1s3mAxxLwUvCFpUYBY0xjHnzrstIytmBrcVKTjOdlE+oRtztX3EWVOZ5X67nybkPK4tSh7aXgWv87ARAARrO484B6MkLwiZT9v7xvRMZOJn0fHCYG8zCtJ1q0Qjc2o/v0tkeziOdhx5qUGatHlcy6JuHkxXgVEqec4jJ1BKMIVNXc8SYdwxJwre27RHB2GY9uPeVLmuOxcuOBxQsMQ1pmMlxJoRl+lSSMyOUE6FRCoBEkaQbSlJzNazkjWbgy/WZq6MDB75upJL4JKQRAxXhRMF0RFW1MbvJaOTn1ldVxIm3ycfBkNm+06/en/OG6iuHy2uHco7p8Qh6CqmrJarxbWlaCuseZhGK1B2SmLddCCM4kxlz8vc8b5NKslKa0P3m1kvCmPG55rmeXdxyWs+j9ZFojS4/RZot1w0MDOKTNdGgVSmSTFxDiTifhxZ0nY/CaIpJGcnwvqMLDnaHaLiJs97VvoQ3xJaltlOu43sDmdnoyeUy1hktkWpEOctMofckwR5DkrWqVCeC1RRUl9Vlb0Y3HogSEU6qg4MDW2chzJw0CSzipTOxonxNs6heO4tTmMWShbJCRSOgoFsu8BFQGGAmKZVHIu6diqyBN3mrFHpGikwVihLeZ9LZMicdUTXMrmLYVtY6gwzcVpUT1p/obgC1tWk1QgUK0YFq6VxdixZFyVqofrDQ9U1itSEM+AUciIgiGfrXbFn6xqkrmo/p5JESSokhqQmFIGK2ixUL3RTg9KmPWAchIb2bsWaGjDnzYwFwWQaZ0W4SGz78FyKfSCkUBWzAsi1Ro7MbwkIVlgi06R6TVXDZAnBBzcBbWgJOaD5UC84TR4Y8W4AyllGigSH7f2GVRFo8oykFiOb5xwIND1FHuJcQHPeqCTcTJJkNJk94ZCxINJkk0+5Xcg4bOfNRBILhIq8Y2zhyaYkl6NlQhcw0/matJUoyGAggZOWohJhGkKuC9gg1oVGmGzGi0rrZC0hzJa0WLpGa0cSMBBaKcZye3JCGU2cpsnNm33xwc7bMM255JwtQT9vqYsUMpre921wlwu3X2eUMTl9Xbkw8xqMauYk5LImQEsQGXZVw5uTCigKckKSzvExYaZ6/obfrZnWMSQvInJaHTQojtTCeDdKnQlg5oTHkTS0BKREl7q4dcWTVop5K9CWadw4t3MOp7+wmVfIvUsbrYHMjEvq4wWlHCojCiMYkc0hDiUOjZFuCNNcuHTEayiCkEZyE0KpKgUFhntvaa0SOMWReDTisNUipmSM3HuSKUoNFDjlDc050tlItlz1RcxSVYKR6GOwjmND/ZwcSksTo1m5vSMggmQVF0IIubuoCGESAoAQhNPsuPdzxshrLuoDBmK+3Buz9Kx2Z5tovZDK+0eO+UjSPCGllLTOkcbbC1B+uiiMeSwY1LbmoaratKXVga77QztHP2UKLJPLZGmOdU5T3Pj+5kkZrTA1iYbaSCWN2bLMVNtJdSCanuDCMzpczErNRtfF7nnn20MCqquUz/nMiCpNghbPFUM7pslR1AE5iQFCpoyXDOP+TDSQibX74EOsm0QxV0D6SoQYTFeIquatZcVXypBcU7k4uX1n9E7QkuOUYZ/seeKG0TxtqZ13dr+LlpGyK57bvNfod1O4vHiFpQWDUmhmVAkhg7/EbJGnOYDKCQshhVObKeEuboYpMk4frYeMBiijyTqUVKqWOFYycCiURWFExsC2oe3rbCnuyKJdNj7j1W5e24KpMzMEw7gqqLgOfiaSovGUVa3fRXaQAX1OSR+shOSy63eDY6vKUK2EKiHMMZUo5r1jVdFdZYcChTBK035iUo/jlUfHG6Oa1s9st14XhAoOtxsqlKB1l2NG2PCqgBhZUTmH7FiKguSY20xzlk7FNNe6L+iLVaaq52FEWdtAIqWElWkeUvYsR1XRaYjebkmhyMg0z8oAlZrVPJwPNOli5zwXoR5fv35DEGK0zlGw5rxmh26CziQtb6TsrYuMAA2UIk+Y5zBP5zEGzEGnEI1uHWMMyDSSg9WRNqRvaMyX/z+8sJfXTa/cmgAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reverse_image = compose(reverse_transform, x_start[0])\n", + "reverse_image.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "我们现在可以定义前向扩散过程,如本文所示:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def q_sample(x_start, t, noise=None):\n", + " if noise is None:\n", + " noise = randn_like(x_start)\n", + " return (extract(sqrt_alphas_cumprod, t, x_start.shape) * x_start +\n", + " extract(sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "让我们在特定的时间步长上测试它:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def get_noisy_image(x_start, t):\n", + " # 添加噪音\n", + " x_noisy = q_sample(x_start, t=t)\n", + "\n", + " # 转换为 PIL 图像\n", + " noisy_image = compose(reverse_transform, x_noisy[0])\n", + "\n", + " return noisy_image" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAAC7/klEQVR4nATBBWATBgIAwHjSuKeRJrWklrq7GxR3d9nYGDDm+8HGhBkMGDLc3Vug7u7ulsYbd0/+DijOu34HWhMwMYUeANt9RSq8D60L0JcpC0ZmDGpAa8ZAlYmywACYvEU8o7Ps0yEaYiHLgvtbB/CLa6+ReuZjql8PRJnEHn/dvDs1FH9xqvqUjYfkBWDk17omYmAxCqbps3bciHf/oMBVGB1IdTrfjFo8tO55dZQffJ0E+joMipH2IjMKVS96yAHh0LUjEbVrhtUaf1VUn9+sxXyTzo0JEHoPF6dNnvsTQIqFuufdoY6W0bhjlnEtEvJslrFzFXDwFA/KvjaY6IFrqBj89JLs1MZdvrqzVv1k21Iod1ryrccndDnz4GRVP4UPVl3QuI+g3oKq6fJwFinW+fpqOPjwCLjGtJRheFy/Mhr2x28Dy2MKujY5kO3+kkjQkpcAFGVqwivcG9VhDgqYIXdCJ4kIXyt1ljA/pUkP7n1qaDm4QLtgUyR6LxPZkdKgflRdFpXLHJqg5CGksmQFQhugVICo2YGqfpkXgS0HNPijtDTICsMMzhMPav2sNk7vLcEl2PeTdN4ELB8tLTC5VadqAdXwaWXf0g4GDmX5MA8cy4bTdSJYIE4eKoTxkH1E93fziNrHfbOOYTwn/x0/xo0mAAhnvNJryIJShEVXeFhMJdn7sgcFLWG9ZADXz+hhKoxPJkykgEytQU4x+y1abyULQt2A/MjcvEmUxpH0Adlj7cu/wXoiAzqeUScX1PW+LsytTtxkQA9x8V16AGYeMpDPIhB0XE7IuNJOtcCsScEvfdpLEcVfhGyd86L47egL8vFQVFqTaPNNR0NzUTPH0TfokhXOsDd2VNX6J5TatTP68FLNPDZGvxuwQPO+cxwOiD2NuhsUgeJ9LQ40rvm28mTaPyH4KETO0+LAIYdyUte3tRyTSQCG6/S29TJw9/Coyz/UVlseKSC8RBmiBDDimn59mULGzDjgY1COTdSkygtCXYRNCxow3UZNNdF7NDgJBRU1XgiYiPNnuOC1Yb5LGaWfGB+1EXENvCHglfzIOXPWSluHTZamrBgUppuMhhX+wfcnJ2LBQV0bE1I9Zx+/cxLTAiFDxqRWimApxRQP739m+JS7SIATuuMw0AGbWZmAoHWAh1zIDIJikK4tKLM+/CyO1S9PloT9CrWFU+foOATBDBycNWNhFlW4j7prcam4FYnIhXBHOtGmQqh/pW2RtpAkYQ+rZ32iDVafMBOVkEB0Oo/3YwgyydI85ED5GFiKR3K9gbJwefwJIJ6PG08djhrxUFz4ERlTFpyAaynrmlUfHCK8PilNUB3Rt0/pA58OjDPiUYWZCPSs96iIM1/+WpjMDTjmmr8UgrSbsbIBcVwlQRClntlspL+h0gqs/uORXpRLd8awWvhcOGmd3gkRJvApp6pTEgNm4dMrBZNNRApGgoW4/ZppwANJ1eeqXiETS0Lejlh4EIIYU3XgUfFgO3TIewpuGA+RRMoM+vHIoKKGfnpeXv8AOph7som01/fzYUEWCC41CQPIp0H9L1eeHRGag64jbBP6pHHKHmNCzANGBMF+oDnMjGxsFU+FfKtIoGk0bGpKe36H2szf3Dqas0an4pClMpT/M/OAghWBSDQjaFSlA+yg8JyTptbNPrgej2EUe9pi2CV5MtROiT9l80iIBor9FcVitjuO++iJfhmzKYFlwrg+YULHkPyVOo6UYl9EFkssLos22EGPqcdWnDbdp05MUf2eLphqrINLYVt07pg2tOMoExzSMwieCP/gM9GzXo1SgBfPujwtdLExg48P80oTjbEknjv6jRKKIT4/QLcQCSzLfQ5/Inr4TJ6SSIU4XlzD2sjv5ytwIL432BU4ouTwfDyIdh8t4AWm1n23uim2CLNkrTPIoulA1acjllcYiwTIRkQEBGLFxjYlHXm3BjA5oScvnn/9qhIE1OKNTbR7qVi29QQ38NOHa6dGy+3kBhPiIXChSwNvD6RWuklmZ0/XAyOq2dy+Wi49G/g7jRMlH+ckRvW7W0DOgNIfyG7Pg18q/D5ixqyP+8/ZMFnYdGkxry3HvwPFp9hSqdOf0bZ0/SgFeB3AAQ3s0a+ZxexuAMAOnPdhz+JiMp1wiGIptw/LjW8cwIG8h5AGYeWMuz5WUWxLCmkxa3fioqZ/zM60idUJUmlIGYI3rgzUr/1PISTNtIPBsh88Pb7ZM3mWRmsvTsBND58lgCcUUEH3TEXKN5zDGQVPCA8x+iuMnqI2sD/bGk5bXOPr6JhfmpLi2x+EsMErh+UZ6ua9EBP72Re5DDjw7CpxDNGKCsHrfpyYB3f2CnHD9heaVmZdcnl63iLNOwloS5UuSNqx2Usan49PqNv2RTh9BaShxiRXeytmdIl3DiU3Yar72YhUL4LzBle3Z19Wg2nYKlDfTd/xHxH+Gcr/0KbBuDXPQskWNXVG7U8HR6Bkn/2iUhLP6QEzYB2now9AnluV7tlohNPtvM7ibsOmvvUST85y8dwbdlBRU8rCqJL0LDZiIyk6EjIFvIk7uN7+GdD94ytVYee6P0JH8bE4sxnknPMOBfajegXu6cyYRPJdkoqGBIG0DgUFI5V1JgfxOGJJf2G40P2B+7zZmuz/2czq3+RDccFLZbI+B0o0i9Cv4wVJXPBeQXgMGDQhLZOGwckIzt5x9xc+wDVtHxCBQb/q9ud0vLHCbfalAtYCCoXjVgVovIQsvKgujMYl9ROep0uw2vDiRYcQA2Dm21r/7YXlMtOkrIGhcg5Lz3Xy7HCGji9uV7P9wWyVZAYBUPkafa8vaIK2zyR7SO+VYd4vZhfV8YSCyikxkJjMyL/UdGJLSN4HEzSq2w5LmVCic7rf9iSlYM5LUg/BytCwJacLaEu1ZrufO7Ch9kWgJHyCrrOz3AGvVgQb/2n5BCCqtmtPpkb11NEFTybLfSEULHwx3BQmIWC31tLrohsx8fGR0Uiv2xPeiBEwM0HmJqOptaEdS95GOKFkSrF6QXFdo0IGmP0JZG4ZJSZm5LEY5O2t6wm6dHpN/qJ/057Z5f5jy6+7Y1sWuzC+ky88c5w84Cf4d8WzgGf+wf/BouNfEh+MRGJ4fOjcMD1G1fcusTLwDfLImqnoagkNt6hoV5Gm28K98CZSV0jZO/ppSLujAeIcqRMg5wMGl3m3m9+B3HQxQET8TYpAHkPnkmKtmtkFB8OX7AkbrBmF9mh3Dk4GUg7NRtmgLlZxRKUHSn0fx8IRZ0Wv61avzoiZGq4j9LpOJjPz9WcI5Lf+iXML89RcJbrFLxzrMXyr7O/vMzqGpec1dWa8pe1KM0PNhZ51vDNK6nWysYW/VhatuYwjDvkBjKvI/4xPd3fOhyZFj+lXraeOCEPimBsHDv6vZ6m6flf3uCWH4zduBkJtsboJ5eBSgOjTcWcN2MuWYT52v+KquX0y2kY67Mn3QqLQpvHghFlh7iNnLh8usy2+eVpG2AUEJEVMqVpuKcBTfKVcEPYZHi9tHRezp5MzWhcnA5Z3SSaZrW3j6i4O8PNJqhc/wG96OW3JYQ7wkz8IqDCEbGFAn01JiMt48Pp+GJY/LZcQ3FmS8BbVBzFtuzDtl+wXoUP5xwLPjbm8m/T+AfOfwknn5mnhUJ6/UTTsP2mz7+e2l4K3zlPu8t5D5lRRsFCFxR2V0nR7eMmnKaNzcOaWBuD9VeuFjXMkJwjqUBjwSp/kwfkhDkPT2ZvMJv/L4n0Lm1fTw2uAj2UTm6K8R6FaZMcIaOm26nJkoO9ln43euR2whVJbVx4gtZQ6us/5snmCrTNS+KtrxlrTHUYLcAqn+RQb+MGVRhTeI8QjF3G45Frp1VnyJHB+CXmle5qSsXKkXjJm16+XRIlJjEZUIzOK6ZwCofiEmao6TRzJrdYtnQ5ZNFa2riIHTE3Bxl0Eb7LeWXnHEPgRrDWCsUw/N0pNfUyMK5+Ye1N3rzPaJwl2YGCmCdrREPuXFnqBwNoQY10cD5Vo+sc3R2p4WugRR/pWIr8Pfz5PyhjwSvIhqi0ezSTwgSMIB4dMpRRaXSOnFGGnOfXhZtfoO6Z5I8TwrJ7pm5SQ3/V8NJA4h5+cgK9cHnrzaXPk5W53c7HG0RkXQ2T1aufN+PdCGh83BHdsJqLfznjgKDRrqB7K3S7xc6/o72rdlAVqf5uCSXsZNptcmqSI6B0B4LH3DOzQ967MbwF9vV79avVXmu7HFFq405xNDa1kJfreaxQkGKdgQ5DFfXSlMHNJxaKIdleG2zCWOuBXOxdpj1RodPO+2kmd/SOy7W0YSDllAwmWQCJH/UieULiz6WkHf5bHAwSfjcfmKV5TvIAyWocnbBvqDRPNtrTKHZFq9wJSASwC+tzt7aVjAVhficZbxMClcsWR3GxZc6VjrgtvCYhzX58D8fRatbhoGiKSe5rySEtoBOIIRnwIndrrO7AOmPWXvXfZO11R3Ppb9qsqT/mQ5HfH+NSKyWe3chN2g4Y+IFGpgkSh7GEcIYjC8FmMD9E1vu+NTsqZbUYzvaX1WND7nWuUHj9NwKQhdHpj71vyMI86pxav8afIfwiOZVHU9GtSCDyhXTG2mPg9eLzp9HI30fmI5AoYigs+MzPl/3yS6fRygfVgliYB4idYMC5y4qQB088TsSrLmEgFaFlGdNZ+GHJ4vbXNku+crV1fJ2wHc6Yf9ufUzpvi7M7B977S2k1K8atif53eMRIZ/aUDYQee64RDTFJMKOnjOvtdmA+pSwxyDSWvTmVh/x1kK7wDdayHQEd1MEYSg737xhvk243OhyRmB5Qt0TtnaoSEKoXSGU31YyqWvorrGNaGaUMiXMHTYQNdg3donvLkYXefgsptEnI80IVB0MogPlGYeVaNR1JWhU8alIPI1X+pO+8HMI7qBc9QCXGt2aNE6Uq7zBuD2hkigkJkCbSeXCVk1jH/cXv0/57N2N4B5Yn8Z8CBzhlrxGQg1dy6YUkb+hP4VlL+2B2mtS10niRMzUs1+Fszl/FGxxdArQXZPQQskm9tdTOkC8CvfTic4cWhrbHpdYhWUmIczG3HdcKq2hnpBDfIc5//KbqzmjYdvjxlRi2DLhoLJjSVOrQPJacU/vN407ofsle0D9+ZdQQEFsZL2x4aOQIK1CR+mS48oI97okw0ATRcOIToqokgbOxT3aI47dToxOFWXZA3CgRPROJqBmA8Ztd5Im1PhxwAXK4nN7zU6lcGiLxAF3iYbyZEP7ta37tSKKD0KfmTWcaoNI3F+JCSYpgV6h2VIbafNGEoWVM7NC9aOXY3BhLfOMqCbgabxgwRDdURifDfsIYkG9pNWRyepAdGLqOXvudECWDjR+ZEv7zLgX4zs3IQqSgcA89G0UXy33CiA5Xy17g8aPOlhPi4tvW6z+VWt3N9nWvhYztOsfvkf0W7ArYqfYGRnGnULccwCjdK0WfHBnlv2R5n1Hz5RXPwGoIFCLDbtDunpf1CMi7lI5H9Cai5rEFE8vGHSCRavmlKgon+yqPXRwWfAw0R5Wb/rnxvqg34d9gSmJrUNw0PPUaBTPXD59xAjRHrq1OJpiTgpSkKfTVpzuFZ3mVs44Sgg0FvWo2ZIbF1l9/G76GzA30HiWcQ770Zy0KVw4AReXI2+20oavOlqpktX+KfCscjm3WBvtnJ2rs9tI0a67fIuzGAA44RgXdJINCuzX3Z/w4QEhsq0/YHGfJ8SGM2v8BBGxgj7VZDM/ioWhhHMfc4JAvr+zT1eoGMEg20VmKjcwYYPxjUUSjJZC/aqk9de58g++PWEI0+7oeEo+a3eUHnrpFmw+aZ5Bx0Ivrh9SfBYEwockaXHTGr8+N7TZgeW7SB/maTFeWZGOOTl1sWqrE8Za812EMdoEdq574dhMEKOGtWRZIkErsEezB3x7OPm7y/QYNHdGJ/0AI+7ljlm+urMjnrAYKSi6YoBwYOQX51ct8ZxYxnzPmh8npmoiU3s/jKff265V6ciThAXhvt9MtVQARMMx+bhE0hSKuff1REuedliX8j7uewfEnjQ8CPd+8Ov6zVcJihhlvQpdmN2r76u2BLiSLlfRomth+SHPfimWE70ofr9UsFg+RI3ZG8oH4tK8sZ/HuSX+YtUavHOOqVsgCwRfpoQm7Pomx4z1IstT0JAUTX+iyAWtP3M2FPfQYz5F53luwLeCjQwioz0O62CEyGO8hVrhVrsB4Ck5pue3jkFmTfugBG/6wRsbMdUgm2elz+9nwxe3KVqf6kOWutc2oy86BsSMD26qkE2ZnNILPTBx3jau/VcIlEynacvVu6ag6uBplUDpRaFpEfK9MsYkmptvFWmQgLC3SbFVR4m2lsm42pFZsikNWNjdy+MPDnKdjvawbWZBE6emsxgOwQr+gv9junF2ItSII/Vr9gqW6YYE7Odn0F3HeIO5w7QCLM9H9+bOXDEBe/adqUByEOB43Tq6BPtznymsUzD3DSfmlL6AQvGksJ5e8yMJuEiOmgIVql5bnajAdTmWDAY8KzTo37HwaoNTKhkDCqV1MlwFP0lAfOxhTprmgfbSh94qEWEGOnNtoV6/UTPZMxyhDtgt5BDoIbXD66JYv6Iw0ZmT9ZW+ZdAVc8V5mjT5HRZawuuIO9Amd95u1yLy62uAmp0GCqsibdFhlDTrSPy2qQtp5UJe1W4NiybqYo4AeU4yvIfJJG92yTmXZ/CVInTIjH2MXM0cEn3CXzloR/zOfLtew8K73fOoqDEFBM/WRph7LoaAKxlNMd05CBbLsKgsBdO2+8vHRvzWaUcaEx0pIvmOivTU8wxTizXk5Q4YoriM25yjoPRzwwLF6jiX6MCgsiCUzkeyNNN1nEcg2n9eDC8g65wlkbs5ii9HSh/dbJnFH7Q3DX4zV7fo41uweCt8u78KInfytCSShGAABv0wkGfZRxZJpGMPsi1HaQuX8omOXbOnR8qOzleCj7fKehLzc40duAU0NuTlfbptZvPMSd7RjUzZkwAVKDTopi6Ts6e97Z83LALRZisFrcAscJitpidAQaMNTZkwDY0+rTF6jbM4N/GqcNjYIrLWC5BjwVFLmuaW4GNYly5MOdj2EvmOZQeCRuqqmNUHVaUzCcUUBQLszgS7wmnxWBpF/5u3y6Bkp2rJ/vCGGDXO3t32l9qWzwEl/HDZ7mdJv3U7k/rEovJYIwIFzOrpuY+c1t4w6N1uPIpDla+nWuJI45cjzkfFyV0DfsYCNWDkIB5cpy4PUw2KUUsOH9lgnO3bwBYjsbB6YSPEBltCVoQRBiH35uAwHjclrt2lPzmoWIFJJa/krqDXd2EkCkgdyp4m4619nm+LBdkq1RqTz9FmtQLTyIrzrxPKQ4gadyjPpAVDhG77UfCq7KwkciCCmKz8f6H+dU/XM/Tap+4S1LA8Ya/JqEocHpQ2sFPQbKJhEj2T1V+maDbZUhnwF1J1xkS4t9PD2NTlp/Qgbi/IQczgleMy4wHb5oen+vOWA+EA8I/Vlz3xaKi8FEPNY++rY58UlNPWgzElQhGJNV48M2AbcxE5vtXktbFgQJEGtQWKARNtu1YEzrc/2Jep+i3U0ElE70HgcVl5fMsdA5vXKBfD5Es7Oj0E2y3RsPBaeM4lcWpO970xq/VaUfTqLAlVZp57Dvvhy4aMFWF2oMGLnT0FqSxmzg+0qHY7+zQa8oH33SJav7OU9mleTVoF+iZXHeFQjDN3Lf0HHJXqZ+rxaQLaQ1emPsz04suMnKBCFIuQlgF/kv6+oKXI8jvE2H5iLNEViOj0r62y2obNNtrnP5apDnLTd1fWffOFfsbOqRhiRjZCoikYLEO7vGs93slj1t7G57CyLb6fXBU7ZK4meL0AVdFgiWFFY28qeirV8sZWZHUcc2bQmq+6vZGcWpmCXIBC+XWSbCfHc88JRrS5fjGBauH6Mv2G2sGdxuXa9VNao3y+ypmVgocuNw/JvliwzZfN1CEdVS9VL153Tk3b/vPNLDDjINBJemWxWFH3N9viEhM6+PNYQ2PJyX5sg7drinZMIUXAEc+DB5thy3OwTiJJTJ3m4R8LvN9ZVU30KseHJiGWHDtHqBHQmdhLcsVhF6eZysIA7RIw7oNc9FpLzxmk262qLmgTAhga0maYo4Hay9AF23bOCpTQwS+39vgL+GztlZLEJb1cQQHnbAZajmmzLFUdPmeVCMAo0URe3fmzus84fQfkyt5RRvijgwNyjyL6J1KHXrtx+NWhzo73H9lB4yfszN+TejtxK77fF6yXhlhDPuMkmkndd9xx4FDDExweJ+6yFZhIio6DOI/NYmDF4ZS/h40PyCP6YMCaC/jwkCXwLs577a+p911SnmTU/Rraf3pg7EeMrYMPJMmyd55Y7kdavYCh+/9KcNdVqmOXM6wjmuUntj/oK1bJ5AX/TuKQKuBAOaBq4H5a+deAkVIExLvRmoEOjDsXF6Pi2Dvye6zZyUWVNz7qPElbrKrbr0m7eGNEvF1mst+jzAyTBNdfcmmcR6fPBs7MqITcCZ5+9CC73y/QNe/m9ee/Yo4r9qInC7eAlS2O+thuP24xQRQDhPTyjLFXL6UFIBvAU5GMrG4haGqvgHMvur46RjQ0XhYzfliLwwFGEEKGY8JjjWyuHeBKwKtrDEpP5HxKVwBNlS7UON9XBJRCsW1nd9JI9GgUSxx0ZP45Bk02iUgs7wMDdVHh14KYPGbsRmGND9zTnqxAP/W6PP+L6oECMhWIvD4hafjQb/dszQU4cK+yQtpP7KCc1nBwqnfBp9qtGZINJEInDY3AHfm1B4CVHFGknrCfxjwrMxdMaAtXiagjI2zNQ7sODp+oCla2f68fwRiy1ytJkbgLl7mbPlW1RLBYqs0PuvVMzZ8oGFwT+5o9SOq2Z+8LbjxLOhdt13Vs4iDAzxLOulteSX94u8pO0yz2K6f6YkUcd9stjpE8zB1YHu4w3+HbmRvzhT+qn+zKZrApb3ns65UxRUNuSvx8KMOAFsOsVpmQ+nr4lLKrfcba/kQQUci6XrrB9zDE0bppJ856u6cdyziWjgF7gkEEwAQMXHWzTgiImuTl70+gBI+cAzaisGwRp8vfPjhL+V2lWosMXuXgUqlDVpDIbIHq8KPjJR9gRMjp7Fd4oatNb4nCAc1SLspwd1AadBw9Jgv2QLYmZ6LC4mQdir9HL4SlIq8S0s3yU5WIDi8MGVag5xzBTwt6H70WIlAoFAvp55u3wq3Tui46JxUtHK5mUS1rf3EzFL3V/sMCbXbPX71cd6WxT7UZn2+zB0ctT1SNQWVOkwIgzhQSyOdqMjI5ZO9HUPY+Ex0bXNmdvx0guw8Xz8SDM2A+TfzJvVBQUESsaUShmWa+KCKQ1zY4R4ojL2YbmC1azrb4C37ZtG12oUUzwMO9cQ8tdKUM6covBjX8Oz47FEx69Fj1evff2VZ/zI7mq98UCAbCeEeXf730MZTCW/MNcin0DGf+3g7FwJvlh3Vt3u+7f1Te5nOyg9D8H97OtvdJ+f9J6MJZTMSb4tINqao9c/kA5bwDpzZ9J2lkI13iFLzAV+u/LbmfIbaX7R9ukuGc6YA4lrm+2b2ZfDfuZCWRordQUZKzX9Q+iMUUGvKpPhC3Bv9gNNTWHVTHnIjX1lpHFO+vtgcaaEOe++JgeQeXjfFovWC2dPh8ar2+q8tiXUzeLztOIBh4jstqBSIuh7P5mKRqx+4+XaodPX+LEihcEibYdZ/fCf7lC+e7Ku/xUt/M+xANuuuXHptih/rJ9DbbRMbvnjYAzUBgPSVxhmXlIxC1OJKFTDPZB1vTYwfJIJB4EGSjR2JVn9rta8PGK1rvQlKRUod5K1TJ81rxfGd7GGRmns8ecM6gqdvDI7PO03nW1HcWoQnAsaKnVHjfXPQHEv/e3J+pagFfzhoRVFEayQFhT+n4TI2y1sX+EtsH1lm/Cmdzj7Jbl+PTPdOOFz4PSmpcOJdZbaQxl2c3IuWSdLyIruvO4Xneo4PXolFZ7ni6SX7qQMflJJXAVdqfTtgn8IxOD0d0f7/ZKjOpLepc6GNuXCTbINOSrgCRZp2h5Mo3Kj6YktrGTaPvvXA17XjUbfPem26krjLrDmZHzT8jqDJW2rrnN+UQeJK/QCzfbIuO/9VC3lwsX1fG0/SOpRE4szLkKKd2ibqoNafZC7tdUyjNGhoGk3rsfqg/azcbn66a/r80sMNCZTBpwKowc3NAZDmVARjbF6THZXUGV+uiWB0FvhqoRGRbWO26KSNYG00JDpEantyu+9n4h+fBiTT4Sp+x0Hcj9Ymr17/d1TBrptfUVBWc9g3HO6j9ev/tLTrU0TC6EzXV2byFZbJJ5uiNINZSp3/LbYEARcFFh9i3lLrmBPHfzb3+d6irPlpULI7A4eVvYtX8GReELyME9UoDzkT0ugHXaz0i+Pvrpnrhvrec1PPAciXhG8aKCl//rEforsTGJB2n5eD/4ioaIM6xss8n6vbtunTcmOJ10oZrp0ZXnz4ve00PQXZlehrr43C7N0FAZeauj9SdgEnwVEpiguR2785odF7YlF7NvhOmhJICT59KyOM+qaXTaSeBU+KcXQ3ecsK/OiL50p8SZs3pxxo3mCMP/9NdI7fxI0OIref1VCSGOYBteOM1NT/r1YR44bILGJj0tHaOmXKmQ7Ck8yYkgfGvNByj1pvWGvfQoC0wXFkQG+WBoN2BLy3UqWfqijXT0+tdU0IFvxPR0lojySOwj2Rou2YyW3/kJPZor39HCdDO2EdtTcyRP9+XLlaPysRgkrHM3JBSC77JCcl2AnLWILf1Zo8Pc2qtqoJo0va0ZIty9+yYDwXmdoSj7k5oX8hU/VIPIgJWktTJI/eyPcyv26pJA2Apw+EW3bBK7tMs5D2sSh2X4omu+6nAkT8/Xh/Bkwvrvd/AuXFTKv/DPFtd7Dv+gyPw7S57yS/5c79iRwR+SNN1+ungl+Un1LpM35seMO3YRYDfUsrpzfpVb4dTlbfRypYjEz50IN4OlQ2Xxcym784R9Fr93noCW2IO6Q4/wc5KK4FBx8LN/KOVzjbYB22mDEntRPLKAb5Cpug6VfJZH+tsjlxRTPxX7wv6lvCfzx1p29+IvByYE0lFUYggAts9zAvTeEJHq8apUWh30bMlR4/uv8OA0C1/lUThcQRIapmHw1Vq5CrbizP82wS5SN+dI72me+VhotHpifBdWuCR6ygWP5AZt9taLWmtC/vj62OHXbd9+mUUvgjLNvN3n5viVfMO8+8ZqES1LBCP8jv5wjSj3K2Y+MxPCumfwgIxFP0PnPFouaIJq/wUlTzTqTNXkSlFhsFUPbWlCgpjF9V3x/fU1UKzYzN80LZNZFGgk8H3yEyd+Wk11WMy262SOhO4nTSYiIJNxzZHByYkD0L6qqlFM7FS8trwQDidyN/Epci4MJ+E0nFd89EXjVHNFkmae9H7mvnBlZBTwxs3zIuDC13f/A16kBtMPbwIjO/LgJwWcC9/6W6HikrQYKMj3x7QzP/vzjvNCw1VWWtu2Ro45rXilLSpdEFvK5oCV3HmwdGi7wx0KUywJARZN7dvgsWXkVdNCxnhsBJS25u+Jzw+KYVJcycpi4ut8Fd5iCcai8cmklQjdZLzZCxwawvoAp7iNCb+buXSMwqbF1+uRCh2t90/ebirflfgqNnA4gQahj8zc8k7i9b/JSo4JB9Azostg6fPY7iOzpgzultTVjg1fl4c8iy/9XVBQUinyHkfzy8OyHQC3tbDAJ09TIRLCrQzOQKvvaxY367rveSb6tkoF1yFh27JJ5qPifcrPT5BMmph6JB+2ZmEUjTTERrl2klnBbNw2H0vkQLNwELG4lwpCWlf7eN3hfBuJKEouhAAisRXGEDvPsuDAyLGr/pTOnw4vCvAiW7NXjzSzzOPtS4aHx7T5sHjv52juA9Ailrxv45hd9VMe6zHN5pbdyBkXW6Fr1QspcJmqH5PkQCLb00eLFV6ZpZHWSMxSn7+yA3eRbgAbb5cXw4PNv50KHhaTpBzGbU4JjTu3mxX6aF/jsZw/j6/6+2JYlGwl4qmxDdMAEEwAOtfvPbiIMpQwJ7gJrLS+fP7RTkZSRHNX8P4MXg3bUyUQ854Fp3vO1fkvq3N1+dMGgbB0DZEYx2wwLlCyij17YrQzHsyHEinZvHa+v0M7xU2knent3nc9zpPjjxNide+J9PWtvVr3QaY0/bEnxVDe8MO+MaGgczvFnF+tEj12JJZEJ0Pp68FYfxCsETBEp/Hl+P7zuy2gy5QuVibnt9O5lB0PtFcaJkibhUw4eNlJHCd/ascAQRjjTOr178Nc5uHX5CqAQmvgI+abEyEYH+DyhBJY4Oxba0Qs23w+b0W8Kyemp9i4BPxT63j0R64w8fvh1Sfy8ZeC7ldeNl5SVi8C3c/j0Yy8nwteUDL1UtTD6i8PcsVJel5ceCR12yza91VThhisFicuwjj4xIiSXjZp7auN8h4eNsvHe7h6jIBrhefvatiKNNJthjeud9K/VdcY66xapQyP5a6MgS4vDl2RzFwwzlTqnDcUsqKrxibj7pGmv11vEMFJ58qf4Yytv1xyZ+1LyI/CLtxGUyc6GHUR82PyakZF91jDevHiZhoAnGneF0evMUrdINycRQ0Dp9dX4zCgBEk8LSOEYhl0aVb2FGxpEdw3NQDE14AODGzPfFUjSzhPHNMm+p50JiutIxXoPLJK1qAwLkP7YA8jAYg3WQ/Bbg5B5TMgs2C2o1ZABBqwPacS/GbuQNiz8OpA8uBchmP/jy6X+aG+dpkGh2+1D6XZFFqgbnrlf1QSm5r3yha6vw3dCa37w45935fNnzqP8wspmvPOWjVh6A/zmR9+5+fvLlxMWVxEYhGfv1FEadEsmIRx7clgZHTrZzojZps2n2l7f/JrAy7tdk7Y7vQnaA++IP7Ob9vrXx8VZgHP9nFVwi5lsoTEH3k1/XZwjfTEwP1w7vTPEp5wn8B+J9edEYFJkQ+rbcsgF+ovnWGMtDBBoSy6ES8pQmV6LnRH+KcMWJZ/ugWUNJ7Q8n0t+njTCdPaje5Ywops/emFIUF25qzoT+6z1xoo+joAYRgIhs0sTCJ7pPinlhlepmWfa2lkkVbkWfeLPYD6+IvvruHLRd+lLLVS2W7zvldSZi2802aZ65yH8Fxr03OXuyznLvjl6JOHWI+bbLz9bcq74dspRK0Fy/8suDW9+F4YmrLpV1oTy9UGz8L5eIAyW4lwj/nhR3jYPktzWtf8L8yrJAsWpQRj0aw0gqbglZH9Z+8qQ2RhU+JTIKBhh2bvv4YMs7Nm3jsUhxYHoczijXafUBBmoMtQNTWnA1N8kPHxSU7+Rb/Z65qRi2/5OJs/g5FNEyntVeA1WtwmI7ysJZGsu1H4t+XxfuuCH1WJ7T6of3jtKss3mGt8U6xl4DH9hgAmFpT81amWqkaEOOnigY1L9Uw+kDZyM0v3balgYVlZidnCJ3pIs6NAIf0D09l+rojvBefs1X6bwGpn6zp9OvhVhdTChgV2fC0CgD3m2cYCtnkYNsuU/AJ7LH5C1JNl7FprNm9/X61I8Id6p2zYWjtL/icrJX7clkp6bBcKdX3zVCfieRClMr4qrI5feI23eDvbb1wP7y7F1I+uLFWvAeuEXHmzSCuXH+VXP8rdKnyffS+fvWXbhn4JfEM+u0p+0gMR4+IYv6mwu5VQvOeITenDqkrOVLIt2YxIUxP2EJOj/c8Md/PLEhYX558GMr2Er+zKjWE4mLyH5bdtbkd0E7jJU+73gWaI5yojxjSsRNpXCNTA0jI4vyZnEiifLx2+MRYkNNE5PzD3ivitx68N2Lw9eFydvwxKSTRIWDbwYHZjeC2aGhytI/PO2gl9l+SNBpJxGjlLyhPEBBR5lyRYi8v3n3xu3tLBjfZOJz8p13Wnb8pf8QItftfO3DF+Dxj0lCIz1XmuUph95hgmlb3q8lTIhvlX9mo2Ej+s/XfcNXLjQKyD1f8uHvGPuS/8pzbZF4Nv14WEcOTM4A7CvXIPsx1hr3+s+2XaY5HvQKt5NDwxG2/FxuZ9YY84jJ1Z2TMDOBUX+WrPuY8oYKN5N6UC4tGFxltc4MeBLXS/wzbNwtLccXNjkL2VKxLoPRPZkn7Wgd/A6Udp1fzVjQEzDR9endka07oSaK2ZQYVuS1i5X50X9S5tJ7RAfXqQv8Vd/0STfHjID+dVLiKQalliIb989Ze9iEMp3Qotblk9kDGDvZZMXbL8efHrbf+/b3oVk0AKovzuLt89F63/iGkpExEtqLXrqNtpXv1DIRwPocTsBxoht28tUBHrnRBWkRX8PfTQNchiu/WtjKrMf1eJD4E12VL5p8mEGlbCeTxcfAf6mTkQUtBTNzk483+Z3wvR5gRq2mrfw6KxO991HCU1nu6x+0+wFMycgcmacnR2sH0/oIYj/G5rmfeu95ak60u/OuHyJdmBaguVuNAxc72sViKBE1JEYorGV08BvE4kKfcEaJhg8J+MZTQ7f4OzUhFlLQuvkuYjlKTOwXh+xQTcd8siKzEdz2Enqyp6Ja4xYYLYBJWcthCwxjQuVbT2FuyQjncWT4msRvhs10D7xw/rTHcMnjn7lY0QDr42qI9uqHt7smKBFBXd++VxLHcaaE7G4rhcQX1O1vjAnOKCfY/RjjWRzjkUbvNojQSvQPoooEly9LqbvJ24ibGqBPpocgDj59Ah8SErttdYmbvW8VLVtbYDVRRYcjKK1BHOjI0nrn/97Z2oQhs4dcbF37RapmlfKAWCprOkQH9pdm+LOGVU92bfvhzdt/n74nh8fvyJ3Vx75fvdgmWHyxP2ffb9nBX/qpAYWnN73Oq0zP/Y4VLqS8c6qJ0TZ+VCAeT5wLMQZTpLbVYyN1Jy9HwZ/fzZ+IW1FC71FPYqC+YZNfqSrwPqmRgCOvpusdkym8m230RmncpWTnaGwz31Gfp+HZNxB/hmj2UD3p+4467WUfXH9Z4fp3+goKa8rOEgPOu7DlmZ97JvlvVQKfQP1uMLaTXAozehja9vfzeJs/YEq3cSkT1o4XrsUltJPnPPqagzCZoB5e9PT69Q+HGprde/Ezk5Gg86GyAiZ6B3LpHIutf68+FKVeD5YhMoDfXbYHpb86en3f4693TX+grjrImGDcW5pcMf+1JnsFWk/o/z3g6LcBv+5AiPGgMet/BycOruE7F+xNglePpv36QuvvRClX+fzYTwJvHIr7chT2upWyOhAyTPNHY8Pba6++9WeJ9PbFD+klQpJjAh3u8KIzhxpKo/GLa3VIn6AdlFPCMaERCmPMdqOf+Y20nqO3dK3j1TZLUFJpw3UG0SjYRMkKe4cpNC1qwUc9N2DpyydGXQ6NJCzmJxupsRlG/Rhu22YYGizYAjHJiBmAmhsdMWX8OYDq13st5iYXhH0DITsYBcOMA9BQluCEiBvUG8XWViK5eXo6g2nNdefhwds8yQY17khhWmZNu3U4z1+Z7iXcUMI00cyoS89LCxtesAb9kUaKPIC5M4h/3dag8NA4rgxKynC+6a/w9zDDRY79Z2dfvkE4DVGpH9YvSe3d5ydHuANk8khdZyWaxOyRp4h+nGoU7bH7U+bgW1YAAAb7TB90iYFNuX7zdb3wM0x6USkbckVX+ePcFyHnU4OvWRo+cicqvfvqRqDzVOsiT5AHOdY9VHnVs+CS1+wEIiyHnL4ZQVEpV2dgC43DFSIdJgD3hrB/Zlv0aJuwT3nVM5tQ8M+OXYqrRY2uyMyUL4hlvf4g4RDo63KUV9cmA5kfK3xDPpLZZ4Z6uWFqa8+HggBrnx5YywyPelNZe/pyJ4ljQxGiTk6IVl10kyAjdLiM+5Xlm2mdAGh38WC9D90s1ZsrFQ0GJlEf/T90u4CxnJ5oJzPdwmDAkK60PWvvax1DV10QGVkRnyp1KRCV3TPGmxTGZjtORMMGEwoO9o96igKU/YMA1O2BmDN5tonfNqXRjeKEdg2Q9TXSlxczqSzJiV9TjqJyuxD6UKitMz5GzW4LwNAQMyTf7u/29XXNF5y+kb9J5+Ex0hWbW8OpjMjEJ3voo8Mshuu+Huy7uaLdxP8GVxA2BilE+9IHOC3hVlgRgYi0+G5kzwNOdHyCmyPu8pfvg0E9AKd42RfU64HxE9DrGn8k53tDPcnxNXtoPZJOoTMmB5L0nnnkMZ9Xn8K5y0+LeYhpaxRYOy2McjFDS0X65SzJgpuVa9FerW+7eIXehlnfMLb08CTp1BgimWC/hq+CVJePR5zoFOY/e3RTUs+/8GxV4byoTeLiv22KG3GX8HVNQnbGhS7tIipcFYI6D87Mi819TK60G6OfGtI0juhtpfBm35vkfSvRAAeB6b6OkYn8uThGySW8UyOtZHnIoO+XLudsYeXGB2FTQr/bj5wfrmaAL53dDlh1Lgd1XA5zNcxZ5tAQFh/iw8lEiFPY/vVnlmEwF/bK+y9JlyLKQsPG9v0UQiyWlbZt040nqFTcmZXdoHSoMX7l45BfXjstQvrUME+ricSa7G5Dx0MG3MkPi6CXf0uNTrqQ8nf+SORDe7b8IWIv66rVRQWckwSgtpJVb37SOjcChVJgjNmZH0YF9JABxrJc7RCGHBGJXb9o54MZQDmwseC7TNhshEmsJW6DUMEz3SFD24XJz511PLe7R3NuZHr7U8CylZuwGH0Esgs7LTIGdYa/mlstoGI90px63FTJsubU9fzb8dDZSooYMOtQ0XILUcLWPYrz/68o3FJp/U4JVqHdPl2xfidZYQiZ53GV84zUU9jauhhe/MjdzsmSldryG95boHs/vEN35oWmxp6+rSVfpt/OoaTh1SWL9Xopeo4E8u6eaSy6ZLX1CPV1ofO0n2ueMe3Kt8FoHbYh+ZLPtjjf4+uC6RpteYS1ewt5pKirHeKznvfCSQ1QkkqiT4cY7D/PnWzv91QvMuH+Fct9etPfTtvdv64IvE73VmLOHgBQjn9I1lh5+AbgSE+yNM38EfWlY/eOcfcLapkP2ATgbYpf3289tgIcGpxqjVdJWj3bOTEy++N13CjNoRXP7wPK1ASB6f/XMLDESb+930RkPP6rWLNNiJNhvuAHOYA9v9QgL7sDg0dfpjFZPummhA1QTxD61/QMbem/16p8rUWmGWY0oJQMn9ogTDgJDRuzsLlX72I30xkSQN89/PXnErVgWMTg+7Rln/1ZElc5L7O67RzkzO1JBEmPpQBvRGzClTXQqLZNs+PEHxL0ksHTqo6OgQQBkxZA+SLsKLBzKxWYLDDXjtyvgP85PTyS5Hv0T5f8rD2rQnqNH/Ps3Xy8qb32gi0tRemnwxMQHwRdzjji/vvZvMaLvYQQGGI4W/hH6qvTI3IT5rkPTYx3rU2Ce3kVDr01K2xLiHnMe6b2NooKsPHCMEsdrvoCa4KtkD70tPtoUfHxH4ieC4j75xqmauryfSLFf77Ckg3jt960e6swb2o6J0s38Gj95TwF3UHfWEKp4LPfG+EegVQGjvSK6C/zV8ZJb3yl9tf296NtV8evgwSHbCN3dpDtmGxM7DZkVjHjPDxtdsDpeWdd8pPrPT74U38LAsw4orDRD3MKV6vhGrpmsj1W7/5aL5qGJQwcdW+le1uCi2tjK3gTDwwzk12doDnJ5wg7Cb/juxTeCtwInLtQMeoAJNVlDHSIQojiLDSDQEZS8EdUfl8ErGld2ydkXSCkrK6DR4BfTkaZ9bM0Hi5Tdbe8JfGDl/ZrZxlGZk1mz/TXg0Q44WREUuGWTnC1zmTD7qe6cTPjH5Xw6RiCc3aTTwViW32n3MuonGr+U4CJjL26vgvgQ+8yHvoZ+Iz5ilQ8SA12fW+ZtBJiL95NKgLdDM08cp4W9hqBgW0wopeUPzvo6yLly3rNiveIFIYbpeGL9s72fNz2K4MP2lQH1g3BZcwbaSR9llU807QfEnNm8oJ3GTY4KKEIbJ6cu3E5mUKgA9mybzzb7uSIs4iY/txMX57ENB3WoKzaH94xwuzzvWlkJKddqV/cT1Jsz+Ev3RCtFskPYlAxPl6RkJ0mNZIevofwsOM6J+x5Xo5+YWkCfchqfwT4qr9lH0qhgT3Cjvo1RS873dvYJ83gNUTKI+AGCeBMaHR80v/yWglYckpuIEPJ05c0xU6hpk17MEsIVQRwFMKQWNkS1p8YqJDb/k9rQ9SfXelqiEKcdMucY4z5S3f5HqmWJmSK/4aDPxUD3MxgIlZtWUCVxaFKjDGfQ9y9W6ZhPL7owIRcf6SON8nXR8d9X3x+JcAKZ1lT1wV8BVvuN+tRPCdRJeqMkfZGSpGG7Z4xilYqbwtjGSaekc7K22X3/7wvLPtGj3DU29dO948cGoNOeXr7Z4XoECfS68JQdtY/BvmsI3AtgWvgMOMUDWlwE+M0ZGWPsbJTCWBVdURr51Nrs7ldMmi02FRCA1+i99e8Ht1fNWe1JCAQP1bAKLBHlK6k0hlH0eCyA2hrk3UDUUJuUdJzqZeP82rkCKdO2hQy8dQA3PNrxCvGWVwToqYo9nS/49R/+ETN0NV21mjwkR2tJjlf3QY5ysN5FftgQABP+JGM16Y7/bJSvqmL/kG2NdrPLL56yJ4ZgJpjsj1QCpypomtMjumuYpsiLnFlrqX3n3+5r57OutYlD18KayL3GZBzwQHRuncOKAed2KGQh4My/6C+Xhz/EpsLSg8q7yy2RCaG+PRzPrPdExv+x4x4psumpWjZB9eP2Wc2J7e9N6k2aDiTxl62pMjI0RBCmo7ppFYjgWlWlwMmwnOse2vWEwfHi8XfbNOdekr8h8BE0Aj1ZWf9oOG6IDX3pqZ4zujJuUrVp+4xJ/xjA1EenRf9P/UlWbq5baW1Qt5JGjGPQDJP54IB0pCPImzwa3wp+sxVJk8B91lCvSDGQKvagFrxCobh6ofnOdlS8GJ+TkL1ld6rkmx7+fYCOKeWhHeWthdyl7Vmcf5FHwDOlMiSQHbBwweE2Zb0TLPkKR1u0s1T9y/FzY2Eek4J4BGXQ+pjK19i8pJWTx8X7Q1ByeKrhq5zXKFxUGlChQTBiEJK99fxsZ81mQEW9sS2zssXw60pw6aCqLdF1JKVs6mjD2/k/a9bupRLHGTN7AiKFdqng1jW36wUCXloaWsKlo3zIUAglA/7p9spUamQIbQofk1qi6eA4Q5mCHzFZT40u5lhu5MUv5XFKrOoYQUxexN2/7RdLo87uPHL6/N2Bnr1rffCycyP/2DOdM4nLuckgtUhzPG41NvkowsoX97aoy4hjxp4NvxD5Mu9p8d34SxhAcM5k7tkBwbOLdjtz+UEjgh85EJ5f/8qVQQ8ENp6nUJN/96fz+zpukb9prQvNUSpT+CGNqs7EiLTYu4HvTD+gi7CAyPgfMeKvQcZ4oqes5MNKIQZdsm3PnDLuahNjiDBKVCuPBAiky1vLkc+y+EsOzBJAvVnNVimrhYHGtBlHxl/k41ShXobJswR/fAC2mnU5mc4LDYNWZQxGxCZ62ye2zucxTg6d/B8VCFv8+dKNtYZbWQW0o4SH0cMKUf9evIoKuTupGUxu9RVMqyR+SQj1Z8wGXswx24N/lB1fedMO7Vi31Pny1bV+nXRrmV7MVTLwaHvpBOznmCIY72PBmZPEK4/Vb4MvNDOMBoTga23m3r7rSucmREyNJ5YU1zNYwa6sIMSFGBwAWleUe/WATChyWyh1FG2kIYc4N22oBY/DGCY5r8MmfViqUfnPPkNRYfcF9TJ9M7zjEPeu3/uUHANo4vHdQA5OLMvjvUk8zBl6cVY2Fda7Bb4rChUSM7zu1aC9CMcAYf8zKKw7NHr+CtKpcyVRpF5l5/vcM3GAByp9Bzf+ofmn7U6fgd8g1aeXLT5djgf7sPbB/4vYJNhju3Dnvpc2CJfXPMNDfPKVyXfie4LJXT7Jhoqluf3DHDCeeX4kjiOAtova9jN4r2dr0J59o8PT0VKLvcmDV8Y3KXX0w3L7I4bWeG5Ha4jdXA8NZV6tsHF0vh6+q9Q5fKZJDNpNDU0GDMTATIZxmiOfbrojn/7OA3A76d9pf1yV+4R1NZMyJ5Ued3JF7TWdfCPOLj2NXpn6E+BJFlrMG9sce3lcHcBqtGf4LAe5oY6C4D9W92+9o1/6rI4zUFT9FDEOt3FJ9beQvec2SoS7X6swcs0X+OwDDXh35mbI8P1gWzcUD3OFheSc9Ttp/CL9SLUwT2F/2pFydJcgbq3kNEldCPIpOp6bhIU/OShIWoMVcs6ajvXHmNCLQuUjhAiADYnnMZwFSfk+Wmlu/v0ybuRWkMRXFRks8+6t42KGaEFJm28pCYnqcWbJ3kSS+xDpTIr9D8r1cpEnePmk8X+EgqmytKlauC3910m99WVXPoa0NMcG/xeTrZ9Cyb0vuBWL08O9I0K4apY1csOaUo+zjxn9fvXKSIa0nkqbCE/o6L0URbpiTqQ9ci13gBtqyN4Tuqe5FeNiG/7S13HQoBib1fet3qeKMbMnBg85Wq8+it6yRTNxYiDcNct1wWU1g9dOLBQN+yJ3PCKR6aw0ceG4Rb/+xOTu9PC0rgnBFAV3rnBFjX1phnph3WGf4GbkGGwtB9gbybua5EAJsDfKC6AsLhfHLHi9vmWPDQOGuD05rraHEmx7T5IB1kRG6b7rVPQ7HIYgqrhSyuH//WOsbeIL/9ePEpqV+FQNk/g3JDgdp9hccX/MgJvI04YiOD5x8KH/7yYdnJwq/vGITB1rTYwO0Je6aIbYPmMejttmFunMAhZTgJKkfv/Kw9hWirfCOBJerg+gAzxQpGGXhNrn0ve1d/RD7kyNzX8OulDWftFud/ZWeC/Yr/rf+En5w1U4YZiUJuw4kqJuxktZngLTY9N8+dWHHA0q/QZTWLDrjnfvl6a3ycor7B9FHYvCyLgalkO5YTWeUm6kcyyz04i801SJS/h5Z9G0Du7ksZttG5ntr1aDzNtedBD2AyedumyIlQvLJ07Wav4GtrbS//rApdVALce0HqwN4InRdVaq2DA/F5Fw7/fnbwU6YN4Yqt2vSO/4LsZxOIOJbBUTMOoAvgrxbRYQEDcGae7YIIvivdYHlPXfu/b1t2fnG0af6rUwJuddp25fC3JECymzqITxum/BIA2xXlxkxBzy4jrXsDlvRUBbLh1qTJT2/uHD/mJAHudv9n91NLttT/D5D1EzivkXWP2rpmfF21wgj86uPtftX4AKKyMyPJ5DTDVlN2j8a8imMecg6sLZvbezCeOjCxDUpqQSaNSpupwvk2RJER3b6h3Sb3DF2P/hCV8DnaIai7ILVPkxHxHRGuyP7ef9Z9fXdgAL/MIp4GNtcJs7yx15Kua7ZDfF39uNq0Q2uR+Seao0hBU8nvxbJgehHQZj5Espcih7zafl6XI+kIRNpGWRT/AFJ+yKgsYnJ8xss0m7Dce17o9xlDVdpoBWzWEf7TvF06BfL96JMml8Dp9Z47w9TpxWsY1wEAHw+J8xrsiLp3lWcG127Jz3xOuNXwuilcWsijKxSTtiGOPFBKcPxL9fmHJgSMnJlkzJswndHMv5t6CJtlK6HfhkB9FjVdG4PxzobuH7Zui9bfUZhTUhmNT+9ivZmSbDOrIzuIZbgvfy0ZDVk/Mn4Rbp0PY3MzewMH48FYMy0NLleQGdOYEmaf001j8EMkgwheJibk1udtYeZgxC3evU+4sVIxuGDzCnT96FAkKJIbn/1038LJrbny7JPmYN7AcsmWiiIzC+l488MvQWKbIH9TajNvo2EcLS3Z+oaJMkPewZ5+Vfkxc2qltPuy6enuhz11y51LuQl8BIuWF9iTdjLXbu5+Zu58eLbxn+mofFacrnc04VkOXE14MRt2KlKXKs9Hs7raKDw6OpC0IVUZ9u8GQE/jDJeX3RdR+ujykWqLmkg+vwNfbb04EUe5Gw2yfcQ1TnUuRDr973wwLi4d+mAcGgiWfgHPTtfNzThnzUuF2cEcb1jmp+NjPIyRnIwfOd7wmzm0xMOe18gsZYO2olVeMaHrwdrcIXbqtGoujEO0xz3ITooMMvXc/49s+XNu0py5gAhs2P62Bd18agz5VfkfjIH4sfd0hHfH7b4b8Nonv04ObKiATOklT+qAl0aqStUTTk9gUoBgniOOTNrJNLv5j4u6F6ttNKHRl/GxKoKT5ZBFsW8t+PzGSiP5dPdebzqBJvw9LM1/y/KJggYYl+ToX0nvDUUxZ+2g4QGDHh+y3ECQfWIiXdTA1krDnNdCp0Ui/BPZdDCmMUsxqkK7njlIk9b64yLAnJdC7Re2xvxwuO0RYt2ajGQcC/B8fVo9uZ18G9U2+zTm5muqDWTBxB/eZ4rlcfSjNmLpihMRLXS92wi1UKATBJj0ESrzBGOpEhbDBYDAeWTorMyxZ1k7GOV4P9GZ/31kE5hBc22rWZgklQy++OCwTwOh2hQHLoh/yjeWSFWEUeyRXA2uXdc78Vc52t/H0LwgkA/A/R60M/l8RGj0rClcXrGifX76hijOeO4UBvaifaBOJvtjkLi4F+S/MdTYOlQIAUAAcLwdEfdu3DCbGWoIPLo/zn91OePSDyKlJi6+6MTC5cogVnqcx7LEAumKSFxhV9RHT07L3Z9WVmCtjRjJDOxdu8gtIoWzAx4eBLu6Hf0VQu8/08gW2KL20vvpQ73QBy42irCw7JLU2UhnU/otDxRKLNWLWxAr0sC5s1ajP0vntXAxQQH6IhYTNHWF/Ok8OoMOMx7Knx3Ksz5/ngrUsmpS1RWfRNXfyVfzXiUHuW1pMA1WQWpROv7bH5Uf/o7N2NCGptVOysWJurL3I4kq2lMsZS5iVvjTV9zRacWII6SPK9J8KNukr2kw+I154QQKuncGx5hOFLS5kZQm7Nvr8q6L3UPv92mP/0B4hmyrwKyPOmPChnwxPvwvfg2kA0+KHJQMjL344tWXAVKjSCcwch89nyUq1z7x5wSCbe+jjZeQgOkev06ActHA44cUtqEhlkedhu6G6O216c/eU7sWgkPId+zDLF5OSOoZ1hilofSVUPv96mXoz+hjhGcXVBvhDbBV3o2ZQbKfTDuTI7Ch3etZ/qF1ZbXdHebbC69u/1J9b6MK5yIhp7palIqAyNwl1+OK1uj54TZV09HdL+f7y1vJL7b+iycZyujKed0ErCXHolhuzZ55LeQ4B8dCWEsXSOUGnOJRCgaOgMmM/YSa7OaVC6/V29oA/r0HzwaH9DUDT/eezZzn0G3wd27/TWxPr7sihoN9Z+T3gLTH7EkkIM469apyk8urFw+pHDtrguflgZntINeEqyPpDbZNKWuYnsC6CGyTtSjzwKOUVuI/PfqgtLxcwvuo1LUKr+Tgm89eBiebE86Pl4TDna87JgVNWcyUhikI0xkk8RrngQ4oCV3abpmjRJMUtAyOUIAUUwmkVW8QZ6DX9d0zrrXXMAiIz/TrgP0xLeSOfTywCF0UFtMPKnsNjAq3DdpV4Utjl1kMIxrSkHWNfVgJbEVXxzByLknNuLZ3r4aPfAS22xdfyfdAF52Ri8cd+5ZZ/D2kXnTYgrXHirU1KWaTlNYPNUWRSwqP7Fj/zc2V8Qzq3OQ9X8psP3P3orCj/Myaujsd34/Dt2hFs21Fb34+Rf82dNGIDD6chf2vP9UFD1va9gHbOP/qJXwNL8IEc1hP26VRQiAjj+EcWj/sR0f9/IwegkI99XQuea6SjKtxcdEosAfm1gRxLF1RUXAd8PKZDTSAKCI+ZU7KxNuTZPZS+y871Xl+2/+5/+J+DG9raNT8QE+VNH0t+DMBN2juv0CMV5uNAxpi3Zh7tON7P1XvXNvPHf7hDl/HSteq7nKLabPLXw91LpV6GsjusDree6WpGgmAloRzbv6VgoiUBrKY73s+c1rzuY7xFcQVpYz3lY01IfPPUBd7A65U6dkMB3h8fow0OWHZkQz0AEvWWV0tUAGRu1rIyK61qyjfubq3oYq8MgdwtcFLM2cGXVTne5ZfIqu6eyAybfSEvQbQGNwTy81q/Wbfo8AL1578NV/gu4Hod1cy3h+r+6GeVGoyYEOvjWw6tvjQAA5HiY4vHPpyxeSfuyxHYX0fkIcyCiz+jHKBv7Rlf+6KXSPYorSUxzV/xSjetWPjzGyUeMbI9wkE5uIo0CsDmlCDEqtCqgonUNM/BwfUCSFYSy1xrrWhZBW9dbMorkqzGMZe2f5wU+f2bK+hGnG4pQRIAS12GVkFGwEjrV11oxPb0cDpCyOdK2s080uQanh6D9qI7qn5FJ8CQLp+hansfVFwrjCPYYU7pf0TzDxfYctToVK8CFhYg/xhBL5VNlPCAGXi6Oe6OJsQmdcwj7KudHxY7vdTPGhlHesYpnZqlU8+UEMtR4EwAmmTRfxX4Yc60JeTglE8iTv2DAIXP3tHh1r7yAl8kSRmarda/W/zp0bnOVy6TRNbvGkB7o/I/au7a3NYwDzs9rY5L3H310sYt/tYE4n3l8gON1stcb4SYdMuP9WV6OXmhNkVVS1o7jpWLGXbwI1XqKB3hqiQjjGXBJkVw2LhppqWCzx1yw4w274xmD6joYUgVmNNB4rAzfkUB2+tOXmNEtdHRH/eLdmbuPuhEl4LH0iRj73P8wBfL46nSA8/0b9J35rIwUIe/3uWXbcXcZK7YvZKBoF/QzdB9gR4+dDtG0Ndr796bcrIMJIR2mkIQftx8PJf6+syr8d2IKcikw0PpsaIFLkV4fX5YHCN2oVPIS+Csij2PqBBda3MblpDD6qsA3u5IGOCxCJ2uTl0DdtWamRl9vzUv4FH+xAbHdPWXzVUT8kptsNfCN7LvY6C+o49ig/dYKGwX7xYzMqIgAy2JGeg65DOV5Oo01CXluZPa3V7XZdE/qgvQ8bg5013XbWETTk3Tejkx8fy9v16u+8iEwyyVzhIAXEBNEFjaYUe4KGqtYlPThq6VuVDZscHO5GE0TEFeqiTT0bG8Isb8SiRYLA5cP5/UlxdnE+sz386LL5QsPaVl6o4klipnprv0UTP84FQS0R+jnrfs/aPN6ZNz/SliHjRf614J8EGEM6iqFv89ABDsquzsz9ysQDUcXHg6+98Kz6QEvI7bXLDGTfTt6tXM/ODMqb3Z4j+EnQkfMLljPV+frPXry065hcv4FR16eUp5/KdIHUdUxuHZiH9Lu0ufTO3XD0ImFw1Cz/VPxSxFWiuiJk2zhyfA2T8F3Zj1z0mkHVP6cnIIpXW0Bl0MZIMwM+hBTI1G9PeQyoElZL22D1bhelKdhy+k72ObcMtukvS5hQWkoXUp+MfRNaTrOF+TU2MaompuRMPxkl2he4YhE0Od8QxWjiGT0UfqXvrx+3VAWZ3Zyq0e9ASsu0ynPGYaFcp0jxTm/0v5Ikbm07fKP7gIfAlDVeL3n6e7im+f6TIZIoZq6AT2CkCe9K43loxIpl9alleUmrR8JdwhWr2N/IUI5z1P0vez6Wcd4XqMvM0uLfe0zCRos44oeP0cLT23zbL+123KIsmjalV2mJT+kaGxPH4M76KG+2Xax6EHt7Xriljouecawr0UlN0awOWndshEU6jQO6OhMhP/WvE01PbcNufgYSI1X1CwdDi3CPK5FySmZkSbT4ZMvyyuxcz8u7h8HDfb928hXC7FTrT07lY+3VInt19Gax0X+Sy83kQ1XPm/1iPz+BA3lzriyARUakd6A/HoAE6FXFvbXrCqZs1HNKH0Rko0f/5gCx85gkxcmJuEDt4d4QQKYJyi2M7tKCIp69MbTUt/gBNs7ei8YduwJu+6od3tDWXRo6NeBllp8WP29qaT/fr7vCmCX5rhgHV9xafvST3VuACyIXqzvtblD/kpA+tk8EfbKlwXXt8yjbleyaVb/+kKmjQkMCZ+HO//j4B3okh/2ukvZ0OaLWqXRaVahoCSd803PEbmgGIGgpEVLeP+Q2DoEx/VZSdgNolFasSJKSx7LdHy41B4ZKvD+J/3mSunnvYRAy0p4SOKbFmgD34tlz+80NfDlJsHfOZg6mrtx2fsQr54zPGMEP6vlc2oxel+VKCShW7Oi5k1U2Ax2Yq9m66+eeA9oYv4O8+r8/vnp9EtDUrTKnjAYA94EeUF7uJ1cpdERFxI3GhQOh/mDkGpjE9CMx0i8HSKV2T3dK7Am+n5jeBPm7V8uAhuKLQb1t9fzXAptWUv+Jdzwbl4hG/R+0qISuLwuTGv2FesLMy08+b3hGMqmTQE/aPEPbaXlQodQXggnKpw29zJOmDgCAwzwJDMMBPv+0NBZ6wxf4cXNktP8qIUXkDlj0/fahkTbGw1zmQr8+S66Atj0+DI3dvBwPYKcL3D1PQwqnR3d7gZqtmcKhgP07zl/iWcBHDqZImh2YMoIKTdsGKo6dGxO6Jt3qf5ilbzM4R+0wMWKCBJl5buI//nbu4n56EAnAS5TBB39unipWiwfuGzZmp08zMPbRofHh8wMHA6/tLosVx7z6MsLZoQqL2DrbsOnLzW7S5runUCtFM9bnIgj+PPEpLPi6Wtioz4kSCTmamJ+BZx2vScj8PlCRPgFIGf4kfzHRsSd4JlYbGhWWVBf7m0+0e2srM/K6r5kNgadgCIavVG1g0kSHaXM3Coh8dn4k+0A+ZIuHRSAQl1UPFhvrGWydG7BLZtZHo9dFfz1MZoI9XZu4pc1siRo1WfZ5NJ07hcgpnQDNCS2c+eJINevvNu8PhmzhBPm4E9sP5G3Tt7tmpSspH8pXDfBQcMK+XeY1z5vPcCzfG0QEykDNhKR+unpoDcY4wvELXE+qqht9T+JPQqdnrtN8K9+wYM/tSkuc2/dX7uRbenrhrFcsf9KRFddqjNhBqOzJ7Aia3v5uqHyP/MVMDu+035/7e47f+Mw46RrKyhOxt66u9BWQ5JmwNtnIKvs41BdWU3pAvH3NDrbowYVh6AjnwXTL9OVjyvjdzNty3KTkqKNwJ5+yQLn3e/SuFm+j8d84GWN3VWj6HgDt0wYvtWn7Q9ytcNRTD8NkJBEjt84tmsaM4UEqc1xAjcsxjgQIb8fluId43jM4MFetbeKWAhJCNeyIKPvY1Mn2Z4Kfym0hYXp2/Ys/njstMMTLlYkYeOHliSZjZlnwtjy0ltQxtrfMhZSSnn9qutIw8J79cCGyvh08iZKO0I4pNxCpaXsT8Wz/g8ZkbvMjHGqqRYFzhK2o3LWpdO2koxxJKKItB6lVLVnrSV6jtkr4XogFOmnpL7m31diC91ePKrRW5oTNF3tMAs6VR6FiaMeEdiI9SiiS6d8vBwEW49UEn3Vj/W+SStaUE4z9Wn2vR0v1mnFIFfKi+UTAL5rwhX5x7p6AJQnM2Yu3TkulX870UAw7cA3EEdnMz92yM3PgAXifsEqWmyH0VqVQTV1o7uJj3VNlpl0MbDJS5ePI5L/qcx9ovmrSJi3lUaBks1w/7fhY7kg40VkyLk+ne09NVPrDoVUsXOzqSPypi4d7MeoWc/qn26dkunwOGJGUs2boAS8DLuoA9uhF0B/1Cz1JltyLWYCfBCGTLEu6cWKUpf57DChtjcVVYqdRwJHPwn5ykh65Cv7L3hI93R5nHZiWSrxjawrH51alZiJb4F5I4zjf39OOd3s0uLBtirWhqjz0ySi1vH9Rabx98ffreVE2SYLgn43PDl1tMZb8hujBe5Fl/NbmSrCKhS0KUbd+PC+86ksfzalZA8qQx6d5P+94jzctR7defiFetBG2WjPwvM3GxZ0GYyCUsnuGLN1cwzGNv7UWfh0jKIzPDfl28oHyzneStp2SCpFebw90PN/gthzQMsivfPBkYzhMom8W3x9SvvoRlvxJzn6eB8uGOHNy3mJfKYgMuHfN5yOpTSOKaM1s3zXbe9yO+k+7yk3bljVn1pSETpDI8q8LO+KQahMDiqsYjF5BA0hJurxNwz7NoYIaHrmIiQt1fk+vNEdjiIG9P/5poTwLHDEGlBaHjl3W7vjHEU/vgdRMb2v5qrPjzZSj2NevEQndbgxnxDFG7onloCOZGCHgRa3Z/76hcqOt5Uv5vy5jj4SmR2MZglNw7ip4GlNF55YDHJbVAmfVN0J7mCcolvmh0muCg2b0bXHHrVx5lyqYRk6nxrDvUKyORlHALUo/HAO63BwMUmOofz/4PNui/QGlqd1YtkQ3GmiKhqcc2zKr81C5t4vM3DW186Xvo0wdt7Ysp/uuj4k6mBsJ+HAWy0zt7q1lZ4Wx0eNwySZiiASs1MkMGlMpSlz2gjphh9nmFgULAqvjP9M46xRdbbgCsmfCV9i+x0CQkOgVYed0xIby7kjB8Qj235POdb06+waEKuf1S0jHMYKi9dc2H7VuSslMS23yGAu7Je4tdrhE/afOFveF/30I0G99pmVJj87dk16upnYhfg+FlbjV21GobZb6teL5vOb05WVGuI4bqzUszypWzm8eTzfZOMDiSE97hDousRREnHsr3r1yUUhJswvaEvurnzG/Y9cN+67lxL56qt3z3TV40MvYBAImabIxJyXIUzs55++Gej8C4gL552w/u/TeCM5/LHgQo9BZBkAAFZq2lW56/BLNYi4sJguxOCctd0OcUlxAwzN3WHRYZMCa+pb1+kZ4aDwc7gYoT/ea1TKVdONfR7706+buRZTWYy3ZNcJ28v7HleQLg3Cxif8x0cq96yEWqNX54WfTz3X5/gt0wHTVVU4s8tAPESgKAUHvRbHUkwmi0QJUmfGYIfrbmQkFj6akNeMslCHsDUzVskKTNUMYDwwlA1bBjIZq6ZB7e6eNcHHmyhMc8ZwYdmkVfAr2mfP905HHVFnSO6ghQVJ4Ss2d3Uq9xqwAz4MN63/zBKRiqufXrSP/kE7R/PFLSaI12V+c6DlT36YmvIFg357S6Muvy0x/9+OyUk3a704yYybEixm+ifwv/dTtlYYidSPSiJKQjF5e60ha3ewNCvuBu6dRij3MmG7cMVQQfoxexKIEjC6pJ3/NBn6CBo8QCmkL6+lICtZUPFsP6JsZ5m7R2jk5teEFq5eSExBTo0c1KCLoX+ML570rGx1L7jghEovwgmTfLkXQmg8LCN/rT2Pz82P2jY8OXTiPE83VyDmIx923abqnU3mEsPDpOWijAzoAgKaER1rzgTtDHnOPHJOHHFZ3zUHttz5tV4xtotu8WK3aZ6qJDCglUNg1PirD+e7XPHA1zEyjj5Ijtl1atpw+HYfyDwdJpXGJBrIxTLF2drQpivZkMQc//5Ua9fzdhWLpaOkqQMwKXv/3AT/Raklk4GlaFRhma6L3eQTPB7M/a+orXNkae2RbtB9zGT1PQJNysHfQoSu5CEdTZ+athBAhpt0CP/jzn7EAMgOAv891XpGyejkrvlH77YezOGucvopgRRAoUdkrEBdGaooCfLCIG1rdpyqMPeakyq8p+9qH1tq+DeU0mDLQpvfZOUBzYhOfLRH8C4Y2P9K7D5iAjCwPCz4LMUDnt/rDFL6ic1bcej5y0BuZMcK9E1Ok82T7irYRpUY/W+vfp8eVpiAyEuduzIhfEQ0qbq46ZAGNfpndCb3yKPuHnOzSq4IPGo1ErRqWouSAOJvPYgWrNJqRz43uXBkSkwql/Mr2hrkjnoR7l/AQqZqOApFND5Kzu4EhSveQDCbV9YvyqZ44dAOGmpXltefQses6dFL/W0PPLLY+BtRDcJ5zklRZ3rF/OTzxMfVY4FP8CkJR1sTAgvHsrUHUZtSGlf8JCiSWL3uDMuPmxH1oIQB0jwsa1GhQETKp8/j1exfLsghrcpU81wan+ucGtM0xvjQryrPUxbT5j1UYVKHHt/2KXv4hQ+0/xRjOrDhbcPtQlV7/eHNAz9uu36Nklmw/6whP+9tw4NPU5Yf6vyFpFCfuHafaRwFF83j+2eKp4OnhhC7W4jxff8jDNaj3dcT0vhuDfGbAkNqrJBtZGLv0mOo29A6rJqiuJeg2whHN2urMv+01Powzdp6bmpP2e0eSY8agReBTHrY8HiWYSd+LRaSyOj8u23D+CYyEPuo4eN/iMyeO+3BUFfzsbJ53+aMPaqaPxM1HiXxOv+csQNoI9leU94/0rbLH16yFLKDAUYC7jhfJjFWcUOHfH41cGed0v87rdtg4avpPGHR0ggIaF2te4eTv4bkO1MoDS3wOZswLDHJw3fyzcqkvpOh9QBO/r/4cecRgiFixQR2JCd43lVKdmH6wUCeubHlqNWrwY+/3QwrOo6y9RYeE9PwZwW7zYc5gVwSV1dxDL0FRKucrL1xWgn/cPOo9ejZnafh9Yxex+l4erM4Ic84iRMJH27nDA+vYAaqEFXk4F/vHXMQ0x4Z9YeuaenytND5Zk3c08Zs3mBfWUjqxKPPA62O775017QMa07JXwFHIwqy/aNwbu48NvXZijANqDxcsZSzx9RBVU7Ct4NPk1N4xcXh64c1W+ka5xR7dDgCZMNdGuWAQAomJDgX/56Lf4CqdG9y5z/z5BwVOdK8h0YaFEe31C5oMZaBFsbeOP7TFEicDJM5Nn0Gk7GeQf/lPcawx6lD/3rBGrnKPs57MqvHZnHSA6rSpDTIz2lYYpto2voKRNyWY3L0dZZpZ+/d3c6R/0PY8fOksZq3cd2Pnuv4iDT7fChkZTeDO2K/66U/OitxloiBsJmqvLxLecvVsBkpyI+bmpqY0cAB/p6P+ImlDKANn88LHVE8MLxHDEhLxgblpB1AznYMkdOrV2EmRa4Q8sl9Ge+7vXEzaUFi9ITRGMqM9dwPl/P/zCqIL+Lzh65vPN0nV0b/V3kXzf+ulWYkynVRf7CrGYrKOVNAapaBOYCVPvzhGQFDE8kghyWboJs67n5aWJ99cfkmgTMuRZqJUNdzL8YgtMJtjq+ZaEQemMfNCbfDHlviqOvtZHN1NiIQYFzu71y9n181LVUyI1yj7cdZdFpPml6nuoy8hoEbXJA3ru1zSnMahSjUS03zJokALKVX/lZX5xjZn/R8uc9YvJiIzG7s67rZFnejlpPtZ39A3d2zTL7rE7vd/AYmdCV2dFaafsP+m94nKgV1skorjwWCy6v88xEoZCBAtEyka6DbloEaWR2MRwuN4/I9B8+C4nkut8dAa4YFEaboc+VyM2nj/NHuSO//Tz5Vea/u/uvTqAKD2/t2rS+t0L9/Chl0cbSU2ptbjsTkAJeMWB9ckBBNWyT39c+MnSV/Xtz+nrpfnwjFUSC38xw16UDcprc98NPeKdnh3kS9ekQNNy3B3hvnEfMwF3ZfxxlbO7Yop4sT6vey5CUieIg1RsuUB1hUBixv6ZamZ2foi0INqHPJedQOhL4vi2OxdZns4UJAsfBpqnYrEjwKKIGHqiT5gthJ+9u/LuNyqfiPMdCWNZHtRHYFCsBPIiF0p/8Ez62XbRm4W0MZ6Q/FH/9PUq8vdLeAnScKbtimNuqCZ6NYypjKqTBLxdkMVTtStw1LchvmJJH8oUSoIUw/e8njzG27q9vXcqaWASfrBktiklYPzs80SslyM+zdrMTYp6IoX5vvMB5nZiyWavpHJ69RZ7A/w2eQwkZfSQ+CNtz4xbpiV1uunyR0XLvknwaDHQwMxl/+X/dwzu49OX3mEc8i8sCniGQoFVFmz34KfDZNXisx6t69ZqzQ+2kB2gsEC6ABWDlfewh2kvzK9z6PRFFBvF2bwbZWuR1Ff4bY2kchOb6zf5x9fkjvddbeqTfv45+FZJ+8cQ8dHh4/4n8EGxDcYxfGmFF55NJU+YeBH1Qymi6v9ZHJajW46Zc7qLMJsf94viGlj3lXW/b98RZvpyhBU7cs4IlIqQuO2Ufo0hEoWCDTFMTjvYi4wNnhG3VC2yN1IG36P2gwLxrT7OvQsv+4uOEO/E4Vjt49g659RfVaIZA7w9S6hSmKkEG+cSCOgHf4i/PtGXJsS+zrRx8MMgw39zYtm8aFdREJVYYXs/M4r0sWZA2dgzqkV3BXg6ZwWOx02aqV/4KWOVp+YFAVvj7ZQEaxa2Eb3r7H67l0/Cs8r0SjxbcKk21CxKPTSms0y7x9C6zm8rrf0vD6lWpu9bHsw8xxowpU2Pv3/mx+5a/03C+kCVTT2mRqnpQ/81m51o93RXdR4geWtDmPuwbZ575o/NL697hz9gRnj8qN1fgECn46GyuNJZLtvg0s77I0vUHitwphQjDKIDidQ+P6Zhq3Hnh2Zs87HKfuad8+uP/iF5JmLRuw6dXaTz0venbe6KFdyqgQCG4BfaSQf4u1hETUtCULeQpelfqyYtYJe/V7NmR46Wrq7Ik/k99zfzpzWG+iPPJaf2wL4OHke1z1CIDBU0zhBha3J7Ge1vOBN+3h3xAeBgeXYmHYumhxKbgJdWfv0texLd2TONodKhcUcC1/bJuo9y4rb8IXat/LJi23NTS9Jr1p21Ml7Lh18bqV4r9hIXUJGbFCQgg1VPuL5GXTQgKlCZ+Ozn3qbIbP8a/DuP+Ht3bCm7F0aZxE7aSSORbwuXpUY2a85E90XO5+MUXlfi+Cd7MffEvwdyjyDCKVjLOLKv1QGMgvqBpf0DrCjyDIfUixNzVKqNunCrfl46O6/K9V1frXvXY1zOxNcRmWtyFZ+ONayjlRDNmbTVCwQu6MKdpqiaeuEMXsiqVmmhDqMZ3CFM5ZXErlsE1i2LOplrvlmjzxWOVwODaRHO2BZYOi5aF3Tl0eDOlPCethdWFyUTlfM64iTDtKRigvLaLvkQzFo42QM9Fqy77HdT4auETN0tun6t7mbh1lY2P0Ag+YM8WtcGyp+56/x8B+xPTPZ33MXrF3vkY98caMKIxdItQPPLqME/L3wGMCroi0/CImIqJFTrzlrfl9xDYSCRa/KMe1Pe4pzKCxi071B/dcv6iKFgeAMw9BQh+e4ZQvNAuN/caOyGTFJlTeNvHTZfRvf084skCC13dA/p9wtiRglSF+q+yfX9uks34uMr10Ke3DUNjZiSiwXzbL63uNrPtO6xl/pgic+5r81x6ynE4SpQerByUk/KhraIO3aDVii1WnESDvjOS73KGokGLU6iJ9HYUMuNSO/Dw4Zh2Otm2958NAFgrV6jRVQSjC79Eg90eABUn8pfWfniBmMFVTNNd/hT+RwsttmjT567/YJBxR0oH4MqRkHkbPtIE4AzqTNRHbErwxNo8VPbSXxxpunfX+47PN8kruR562Vkb3Tu4CjicxJMCrutu6m5GJO1x0tsEKxbmHrR7aXz86nxnf0sYEOyaQo4M7njlY8fxrrsJ2dQD+i8fuqgjvvsq3558fMW31zy2M7gf07RFQe6NSbcc6C3h61OKliWZ+4f+K4WujSBFvPH3MvNX3FlR4I9HSDb9gpIemrEW0TXoiMrGK4UfHDXgQIGMq35Pgnhd4sLW1dEfMpruf4utsb74aSvvlne8cYQ5A3urUJX/4FjR/pYYrsiZkxTW/3BPG+fnNAfuxHnJMqGBqVvdXyksT9Ixcar57iAJpl80zfp7JLJxbZSbHgCP84iiNZ7ucdQAeSwLljJOkLxPwUjk+G5OqR/SBIv6YkB/MgthwjRA1UiYZ7SOccUxY5vW5H2ePCm3YsX8pcB8AFMg61EGcckfEqJF7w0u5nLGzMiRyn7O8Lcz73FzwnjwzWb+3//bzx1MTDPPbUvxp3xRfZ3ruUrA8ghz6whE5GSv9aW1nXsbyoM+fzzxAdKTwK4v3Rg5rcNzU9fP5XPSgaJRkPOfgKdkRnaNZSZvAx4KFYGshdzIEz549/lbw7Dlu9einpdDhg7mEhP42Mp2QtIWOAbb09Buo5EZwc9czI8TW32BBF0y5/dCheWDfrg23634saI+X8/3/9iyDCZAfoy3ifCgvkEJNWjZV/TRuJBKlrZB7RJlc80BYAiokDfSmN9AQ0fRMr+kWbMp1+OvNkBD85iyqAvdGO6iy9TBGQi/7vc5Ng9WUvN28TLkFFeLark/14ktSYgTuW4mMzOL4KfVxDBLRfwLYTfTF4+OGZZ8vuhhe1oAqiSwD2sDSRcjklc52UHgv9b39WK8iUQf8eHjP9qUbWiwGN+HGdzEiMPnkQfD9wpAXYb1ioRQ3Bn++/sgGNdhqaAII84xTRZh6jxc7Ln/Cfa2z9zhJo9lLCsPLC2UrjXYXAun4R/oDdpXMvBgmUNxvi8C5gO2jPkI8iENyF3ycOcPKGA+vTi8a4Q1yTglfbCc2iG10YglxDVDM/2QdJnS3/7+J2zBd18tX10wjTCIz9Dk+UcTPqCoRHhP/3GVzewOQl/pccz+tnfu5HZgpnD2dYqqCSO06+N4xmHMsvcs72G2I9KBADP/Ny4aW6ZGt7pUCx+b/xlQfNmhnoOj/409NJiFR+VaUzqr5lAMUl+G4y+cRq2J52Jtw32cKxBIIPo4PdDpzdcq+k6clkR/AF/S7vJiqsfKb/w0wJpUvPn60fI3eUH2iP+gvi60w0b+TeNGesWP+KAcqg61YgHDJC9+8Uiq6RigG60qFRaWr3oq1lHWS/A8lRjfkM6Q8giFaPr5GhL3iwqheriR0sw6otiTZC/0W/9rungK090r+nAKP4FB36g8ZTX+CdRvn4vnEWTTJlibStYRIQRX+m6sKEBEtZnw08/Ni5/8JJorO762JtIdwXjvGaWSm6BINXj/fINPv0Ukta/aDra0TMeGgCCW+4uxSY80tsx5xi1K6KDjt/5Y/KPNeh6LGhZMEU+LkKQuPOffre5FUA9Efa+vfh9TJ2H1lR17tOOk7bK59M1d/EdOMMvCzmi/OKI4yLVYTCvJeTXzh9FBHn1n1UQGAcySdk/4zVITwUEOD1RboUP+UTkaRG172m7JJp37vLr7rHTBc8brC3Nvg8rc2EZ267RBl+YhlGJJP86mV/ZcO3XygM+pHGhA2/WyguAtrUUpzrjbLgJ7hWJoCQfdS8Xcb/rYB6gBo9Lp1/ilRqaYmd0FntQRaQOjZjYcci437urIIyE5e0Syx9yRXz1292XXXK4txQi9gmPpQ1ciFjHr4FZ9SNZoUMmcoi3KVjvagp3s1ssI8Slm6xAUlTKSOk1DZs5BEUuYyzUb5r0/rowyWvwWHjKR7ZxNJMob1SMhFdnW860uWpBgRCkFoCHs2jQN8nF+x5dbSWYfHfjyro3riIpbr1xQ4q/YVxrLoPbNLgVqkUVkYDwh3ACrC8A9MK+ZzpumlfgQ9L9k81JiU6BZXOb0LrNe+Ssi4GB3KPrsqcmaq8Ec6tai4C/0W3zdKZiUKqltzvmTZ6Bf1ik6wJyhJ812G7DHVr2v8eTFPEvu/lH8GtSeUPct/L6l/NR4NbXJurVNydnDxehnwRxNR/AxYMO9bqYDOHyr5qO8fJsYFUzFBH68vtv0vy8frmxl1/518xSPB0wnDLsq3EulSpeQtdwxstGQTepGZdkE57w0EBQ+GGE4GPhq+uGc2FQm6yb7DeVPuOMn0QGy0ph/QNn+5lr/Fz1wNcf+6yl4GvfFsCED/7VFzkKx3yztZR2vgIyaurmZB0sDIU7b32XDJ8K4VFd048G3RDfYIHCodXmrfxgXqw4V3B+JPvZjPfraK9KnRGx6kQXPh1/NmH+03S9jNFJs0zZk6LDtmZ5Dt6yGCVJMPBUgNjgNdBpyWh7TM3cgIGsaHuFXmh6DQKN1Gqe9/8prHYFDHvBV4T2ZDLmowijqMbaCO/jYNO8/84Zrd9YB3ab0zaNb1BKBYg8sGyYbkJXydd4WKj2d95XM3+2E7t2dd/78qsh6Y1ttT89snAZsEmmS7WlChgco3oiHvvpClXS0HpDHgyff9T8tuOrsKkfftvkN82g/KjyGLrePzAs7Ftly8jdYfJZB56N2RNCVqMLt3nHx30mdr8KTUz580LWYAxp6+jmkrPz0P8dAVqv+Y2FI6NUXZHrZwv69VcGCW8lwG208Pyfo8O0FChD50NYAzGES7k/A/VHgCMtdJP9JilybZJfV5DcWJ6+UXN1LCotmgmSxnUq/puUpy4DXFSdnrwY8tbu48vDUdpafCN/tl7wKD9jGsvKvXdlh+qrHdGfnjNqVtfMvePqICGeYl1PlToDLfIK3Jxd8qD5VbGkAY2+8o+6OQpRTeRHJ77hv9osCBB67I1OHG9kZih4Xe5L+fW9fqecLToOX+8kWNwy9QgKtHxa/sfsYpNIxAHxyt44t6dqzKEBjt4Zf7xUBpjKtAt6Sr5rqkY+2lEmqSZBvUMGEyU41ZTl7gJ3JEwrrzde/jKoloEcvf3aNW6zOoR4/oEFTlk4LwBxYLQrh4sZEdgK+f7K1ETW4FjM/q/dD90LtIF5u2JithU901e4P0YnZFonxD8L613D/vV3Dj+fRl3pPrvQPdUWHzUUGmTFRL+HnEnqLNi7KzCcBdFABQuPl/orx85wWvL+HXkw9anfkimyopFdtYyZgQV1pPl+Xn33DURrdK4OD1jUyvoAjXyIF74Dz/rLwQgWNst90UyTdK1/zRwWyG9RDktUff3wp5gl0XJHvVP9kRybPA0FjImKbqLOAri4gQ3t1WJowUV8h+P9f2M8Q993Iap50jK/nEz/hPqCBeyKjBwa4bhdWlb3oBiN9yi24Kev3sDMY7hihHX6Xby0RPOaUgXMiBY5YWrfEhB96LuRo+VtcwSRAQHqa6yfBPRPUJWAPV5N8zonT4bnecdnZlGTOvxdqMFIMmXhq01K16Uyx6faelV4mCqBgwYTfCE9FI44I1EHNGELaQCMLTndv2zC4mphrhZvTEMd2MX+be+qzyL8j3/c45N5vWQdddnhpDW8hkedwe1iof9w6Y1L/0EvyYXvyJoODjBNJ6NMjvtZ7oO7uyYOJESX2AxDepF7eujtI/Uhatx8foG3mcDp4eRgcJzCqKn3z3+aNpWWTqjjJ6o/31soyNZ5Hf30K3J0WScg3hkf+ULh1IKysMsCJfunh8bn/GVV44tPY5yDphA4xJJK0PLp9V7i1W2vhQMSeo1ou4QVWLlLrmQuw81QAPVvagZ7QYwOYE/n9A9BA0lYo09GR22dNLkvuUiAbhSq4uWYkE84upb8ZpVo0efY7c5XoJ/6yRJ1wzsJ+J/k3X5y1gw4ZGxK9yN7Y5OSZO37KaApND94+oM6FbMca/J2a9zaGVlQHVQYpdv68byaNlWlpuL5XhV84F9sW/4IHN09AwgDTD+7C27v0hxv9ZPrG81zug+9x1xnY7N5UHwC4M6WiPzXzcLHd/hT0qdtO3h5P3MfV+a0JUSBWdNIcACZ89YHCUkk38hCQaTnvqMAXhn4Dy7gxFEyySo8d91Fnxr2FOOanouS5VB1ZEA0ZnJrjMcRnuHtmLVRc3Kztidd3fRYUOQ0NY3JJ0f46CjyrqCbf/QYYa4LkyNX+yoJPGFLDicT0dVuKp+bf5B4oexL+Xvd1l7CNics3W/d6R+u4PkzppegjXL1joLA/ZB1uivTDxFbt0WauwIpg0gTluEL4OWm/bJwfO9CQZAwPf6x00UbFNAsZZdJH+p8MLGARiz62KhNbSNNI4/xcbrvtIHxiUbgt9ycJWP9leIx9vq1/NfGQrgGldbv2rt9mKG8Dp4niAN8HWr2m1rWMJPqGLdnkw6FiHix/CS/DkxE94SbnYZoVf6pmyXRkj0XEDFgn2hArKlhIAMG25ceD/Eut4invb3Tq0RPlhOLXL4MKMtPsWdrSEvHoVRZaLBsDVqGbKcccjG74Ya5Zegr+J4NW5i4X8yQyI1pL3sqYz76bBViwyjcwtyz9msMXo6JCWeFuwNMQkScfmv77dCIHsYf5m+oX+SrZGZdzOaMD2NTmSzyXETbuIyROQpe8gRCbKzVo9XgSi8At6l9ZvaTYn1bi09kkm7V0e++D/fU3gq1DSC8vT5bf0u83+fq6d7ixZQHV9nIyeDO6oh/0c+3LJ+RmwtZkHTZt8wlG66rqc7Lo2LggTvH+WQIy+ZtTV23xGHrH7wcyfTd30P6PccDqgB2wP2h3mBvTBPA43mv5S17MUH9klD2Fib3aex8SfJXsbGq29EK/4hUQhuwH0tyUYaSujiikKHPUbZ242Z/8JggdyS2DHlr5RwNBwvpQgwfjURW5jJALYAFKEl4JhVwyUHVCQTlA/x1GRqVvGDO9z9N46d55SXNX9xkRdCCgV7mmb6ejnEDxrN5sPu+WkIRiHV+BQlSUFkwyNa1YE/ZZ+iRxwTae6gmv2YPo4ggFU+TDWEVKmtxkOjnHEmvqefkcfbDN3EgpENaJWJhKE5n4DX7o/kaQRQ2NytjTVKj/7RnCZDMrb8QrVlVi9r48zrMh3sN5vXzsBbDrSkGq7shIHRpYowfHvZz82DW8MwHSlEs3ZEMcrxbGNDdKA38dTpn7kq0ona4bWopK9s/NPPP5op14j5uWFLWvh/PG8qvIQMQoYsfQPEfC6tvtTqL1uVldzi1iAcRAwF/UZEzIPTV6ch/lDykD1mzePXlm4VAeJcn+Y/2cPG490RmqqsoiRaPZsSCx6Z9aKbbP/mxfv3hJcw5ipS0+6nfB8+N5LRnztiH5y4cIU5Q09BbsqHMbap0J1CIzJU7n7tHlI4FyoVcuKl77+TkwXkNLOVQBE31hDPQPaPWdeT5n7cjGyIMd9Vjfmtr3sAnkmxGEgeHnRjP+g/CexInHsO2qhpGB5bNOWUN/f82KDuQBGH0Z5NRsg9g37AOhj3vY8FcZVa0xMdqQ0d5OxmYnjkDi4cORkeH5pqdnhRPdzDW2F/CgzXfNmL6J0BSw0gKcYyrPWHCnEotShAxbP8+rIz/2JEdXD5yqOgXI3bPvymea05tdwzc0M6KniP7kX5rjiGVDvze4/V6RveLfpncgvMLYaNhTozUTXn/FnbmG6O2st9Hff/2zWJgWgbFmOdfltr6L4CcgvqukEcF2UU6r+Yu4pQrs9ny1I+3JtgbPwuuQdHlkNDqWxC9V3406E/IMf+F2ruG2r6a0eOB5O7u6EmC7HnmmxVIxmzle4Om+WlXZQt4l40cGQDd9sXa7JicX/QIv/4enmwaLnYFsShG8Ap/Z+qnA+DV9uuEZf5Bxxsl9xd+GxGNnv7qUXWo6QrY++q8wzoIE6u7AmAmzW8qB/piGCo2COl4uX2N3hSpH0r//o/xe74DfoP/TToHg2AisMpH7PskvgdTOyoeRqHCfuN6a2ooYWmFmXQxVODtJY219Iw74OTW8Sv+wRANYtKOBntaxMK0OH7BY4WH8GaPxOoVQPD7ps2XCdm9OihuR9OY3QnRvJpnAaZuBsbb0XxcY3BlZ5XQTfeA+Qj8wy3p+h/MckDPtQrsWPQVH7wMP95z9Ry3Suks/pwgP0+OQOkmcCZ7hF8iH4dn1lsHiQfFhAJbLruJ5lGhvM+VEWB5LkxqGm9XIjGxOWZrPD/oVBc3HXjzDDtmJbWl4qE6CnRnQ0t7F4o6D5gF+zSzfZXSy5CVgAf5wE++3WD68kn2+FWTCO7WjIQBUJhoS4APeWYyx68aDI2t/Kd1XWLwTSAR2dgjKasSHMmenTVkSB+Um6aKVcGMdEZ3/iJpjCW1Jh/T6m72pLn/msBuWczk2xdpg0NtcLeUDTk40vbQzxhj8MXo0r+y8AUYOtPvuruZAt3CdUPDRjp6ws0OX2/OjIkbmyPzeD7vUvapmZ/g5GjboDovJuxjeYsW7r1dt2JKWMmftgn2hwhUgDjX4rhbvxIQ2vZODktJ9tbJZWApfgrGpqDS45dfON89snSCBSuo8cfu5PbNIiE3O780zgdtOlgAUtPs29zuFy7pxQf4Lc3L0Y3BcaVNj2Cyl9O1sKnE4o88y4mcMZZtoNGKHH4RjuF/MWregsDi1vNGmojp8LcWYsBQGDUs4ovf+GBTAD5JuSnm6eUPR+WikT3/84qL+/yvT858ggj0bS5LGm/4V+ZFFwRKMDNN9w9s3HGS2tLV90PC1tvWJgfas44S0Il1zlQD5/+6+r6YzDC/k/WaxdIdxeheEMntcRbxnHBvsuCWl8LoB7v0EFqNff9D1XCXScEN5tX/ROXsEMS0mKDrvIJaIya8e2L4B2fJ5b+e95B3JHrX4tFFMlC7TTu6+Vxw1l5T5CWV/jdZUjTqYeYiFLYuLlaf+7i5lRu5LttR16guWbbWYdTr5T56UTcqNdYbLICQRt9UBS31eP4G2LgSECgmYaV6oM19vtbDL0DooCaLpJ9tHAss+DvQ1blgiPALDVO23QgvKZSPINRkI43yZsyZTVLNWCaGfBtVINATY3K+F8QaNjAoQntdtFIOG9KSz8/ZVca5z3qGcMd53n3A6Zyl9vlO9uyPLW9p0xOnm0+Hz238hPZDwn+JrgnN0DbW+ICIOiqNLwgclc4oGxZlRsAq2qu1/bzkiOICvvtdy0t2XXN1xn/nPoM4vUyoFiomV8OETS/uzltTPg/YW9j4/YE/b6b2w8vQ1pykdfiMTnfQOersm1Wjgtc5R0BDXJjm50dI9To0j8sz/bGAc7fhK4JJSiyu+UpMm2YM59vmcyzefhvHJOMOfizNf/dfWbiP+RAygFA4q/65fyhWHwpadnz6cJPLlbVtVYSk2mFsht2fnrHPiebZX9qYNmnrv0l6l7DJHrDWUsISm00X3+oRcdi8AYrLD4/2HWqZCyeZ00gQyApn0uQUekoIOWPqFEGm0RVZH0SyyPsy7aMyPWCKt9zHJDTVftKBJHjFkbBfDzl6641cgi3KPfJMgJEofmvwloAZ6CFp5aqdTmHgRJBK5tNT7NqiOMaQPZlOgONpO7/6OuQYwPe3CmHtz16Se1x2wV8RYDEOxEK8eX8KP99h68qFrlO2ebW8zR+2Vpdss15Rvi0TDwD+lR1ZFG6ZcytNzYvK8Arjxt+vEhvoH32+NSuH7Bw5ObqkgFoVyAgddW38nlgYyYrb4pWGWuZrP/bld4wO/11/ZyIDSeRsLpqHysoLpnNPgx42Q348ev7t2l2q139/Fwt88NmNKqHB58C8WVkMGple7n/T9q7Ia5OluTrBjjBEsd6Mvv8wcfR8UL9JiQ7A9P08+ZO3h4dbGLYBd0EsBK+lIcLX5zU4v8tox5fmSAaiw4PlE8cWBrSVzkUqNSRfibF1TJWHQ5Nt1s6nn/JuRPTZOL7NEr8IlULK2frLR3Gey81RnKZu3RLcdtqwtn/qjTMR0fDI+mNp+dNNMBNmSRWD9VX90JzaM5hkjDsYND7YCEDF50t6BNmRHBHCIbAgRoK4hYC3xIbsxaWK+a5mGI1lf+YAr7G7XvrMeGoBii3HRcYqEWC9rjV+w42E/u8icMrXg2msFbxFAMyBfFUyGPp+wAlVD1yMA2/RmfuP7zmuU8wDBuDPp8e8Z3wD/lFhQvGXi/p/eRJf/QAS8ViG2r6fF/W42gE2bkM5YxpuP43yKpSGzcNTz4AdzoNxXvWeCCVB93tLWxloOW1ZiO5H/sUXRMv1/YGKf8xzZsQSn5hbwIrMKVo5vws4tQmUFIj/ap0nRF+sn1/AcGsWy6JECR5CPYOHc5gLamHAXUpelnX1J1caTreKvneXz1rWqkrCfDz+ze6FkXRxzv80K9jwNf34LU3N1vr3VmP+dLPIYKLf53JHEGwio3NixJgpXWkIZBkni48Z3DXcLe/bcuHJKw6H/PjF6obRa81JMYaHE3kNNFn5mTH2wwUubPiDJ51subQbK8wHs6gJTKtz8ACfhdqcFr6BWerpV5663ybv8VkFdYagJsgxNCjGKJ6JvRGlQs1TMeo6LR0En3Fn6WnOltkVAi4iyJsbVhoyWouasSN46JObezPv9DJjsoruP5P97hxB0khgUYEqC4UC8GyfZLgcyxXxKmiCewDXdyIjMCGvHggzGIyaLnCc2EB1xRynZ892ZpdiDHrYyfk/nHpgtWZ2zz9HqtLmahccqee/8cAunQCkn5S5EhcoC8xgGAQvefaL9MY+3Z6fGazE4o+/+QiMsdb7P93glWdH+FHHUME8AOjolbvXenP+7R7Ua69UjLaN4QtQihm128cS86N6sqCsseNoHplRvMsyNBT11ucMDmF94/siq35qAmDmPZ2JqIjXy6K/9CRlEMI/K5dsoZjLFniv3msXfScRG0LHzt5H7LmLkQcOE8SNkysWHxnnu0XgDV/LbyR7O7yeTlLloyGqVyKVJ79qwuDSxtj+vD9ul7aPz04FetB3bdjp6HdsZ5CPYNGs1G6aqKBcrZ1tzRxpfR2csI0CN1SOa2K75N4so9gH9ALbcytZ/dwpWM7FdOAclFBIGeGwTwWS6f90FxvYGP7RmjuNe+ZF8CAb8q/wrubAKR1hzwyxAaYhLWS6Oume3C5NF8LrabovHAYxaCBpKcXRDbPIuVLucSb+e/OOhpCabTyj+PUgpD1+NjEk3dXxrGGUItbGUcAxKruTg/y4AIsR/401zVi9hl9U/Rq6YH7lcBfNOYXhz1HdGwI3myu+LVvMmO3yxyC9bHU+s0wOyFSDiia0tUmADIWLdSATrg33Zt3D2OLQAL/grbwCS8jhcceynYsh7Veq+k6wB66XGeelqaErLwwyN81e+iPbGc/xCzF4WVwr9a76konWTm58xYona0cTLXr7+PkngztTN7/sMRzcY77S96H2Ue6ekN8N1pufhYuipj5148Ypi01tYOJMSPWWOdCkJlyTKJNfD01bN/ttbfNuY9QzfnIoVeAYQNKhAA7ZzPGKuR+rM0xXr55WI6LY+TK1C5v+zbtt/9Ce3GlHjq+XAHuHYinombF4FSz8y8w+xRmQ81C2jX1pooHqoNWFiMqQY6OFmvaTWkCbswYL+hhT+v16WlGBX0xRpDxFK4C78xdiK+7ehKUUTBZO5pxYlnHVNHZ1bVraf6ViudIsNEMYO+TLO7K6ek7B9gb/JN8wWm9v6YagSd+/SOepq7MDnIYxiyuAPhKKMlbYlQra5Jsd/zq8Ho6CFUDt7xVKZNqXxZKp8+hmh27Qx7vG0w/o1kNHW73FExXSlR9rgJSi73ahv+qD/l0cYOlOK+DKm3e1oecCrHPwirlQiHdfIhRNzk/3G2n7f0FwAdgGgSgANO6eJmmk8TT1pu46ade5u28Mxg0OjgOOf8ABdzDkbsAGDN2YS6ft2q5d29XdNZVY42nc/b/ntwYzbAjDkPYT1zfUyUDAu1tW7todiHlEDFatMHEmLxb56PyLYaPdRGR8jqpuvuesKBjsD4H11js1jXtF3l5SSSJ4eUCjTpgS3UrteLMT1QLjZ+uI0qYr7cfiJeM4TtFzmJwFxzPNncmbKx5+76+uKQUbwxpsPybaf97+ydelduLthKhNai3V8PrcC28vJrqYhiu2rvRc6hhL/HZ8qHvAw/GFhgz0Gpn/xnFBzOw17sudc9Wa6N9jkW3f/L1WAyHNMh8Sk79AHb/1MjUBGXFzYOZSfpq/sibn7nnfrznyn1IeZGrxY4g7esHvuV8lfX6I+xZ/NK4/du+m13cdfzNnR/+Ogq9H2kDjvzx9Qwibt/m6FJb0lf7qsylDI6zpOK3oE5+MUnVt0+UXb3+JOumTAn0qM6fPG8+ArB7svjE0f9qTaVfeuK1rmTLya8SyCwtFfODjZ0fle0oulzx5BTkqZSPeyVz779HguvZbj7a+WthIz9++DKPveJpQusU2CKCm8TajEA6H/7fxS13fft4xhQLHMVdkjJwPDuapSnrq8S+RxcJoUps0KmTXeaPmvsYXt54mAtPpUANarzEbk0lAFV+RaN4ypx6dM2THgTAhYkdohGUGz51m9PwSScZY2IBthSl6rcLw5XpYuZm2iwhiTbvN5Kcvp+hZnLfJpDbvOs/oJEDRYFxLyB0uh64zk4bH4tL83wwWpDPA2AbqwnF4QBI68PhpRziGyUG4GwtMhye/7Xpze/pnF54Pq0Kqg6Uzt0dIzf6nu8JpadtOoh//ZHmFRP2BYU1GpVaAEGg7eGYZ4P9oqu0uYs9pWHMXgU9T6v6dtfNX+1tXJo9tvJG8/J8j/nhEqCtHl9h9I/7QW+phgSOnCR+gdEvJa/zk75DDCZQQzgj59peJFwB1huNaL+vs0uLgbm2B78h7Si1pxsoeea3Z3jV4tAb05+JfgA8t47rv6xTOvrCIRL75YirvCBHz8bhhFyVr5JWhTVKKNW2TJI2WDwitYjXxLEeBLjC1TPBiwfJrdeM/ffjjDAT/34OUC6T1bz75Zb4Qiu7DNiOIvQ5Tj+ZkTFVydkURQDbrp/kmnknF1cnD9qvMrhkGhNZvxKdTQd2RJGF4K172NUsgoPHDT8WgBBwHNiYyMsc3ms29UKfYsI4iUvdnBbHWjczBRTnCr0BEqGyb4Q57W8HiPSUwZ0SMPHQZGTjkHi/oIN3bBS/8FYNkh0cyWUBQpG22f9tc5lCpcN3z0F39k/OJ5/ZCHkn+tXJ/47a55k9WOQm7tMkxjaqGN+Pd8/qSS5mcjYCB0y7x4MNm/Fc/o9SzVTjlM0veEfkjU+xfSfngT398Q0hkNL126/ixL48XrH7f1R0fXVsMzTSDm91l5tHBhGK+9aiHfMm67ItyiDdQj/4OPN948sGtlWIqD1Y929LBD4CJRc0rnN1R3ZWeqfsLgvlSInEceOPfuww/Zam3DQTICYNGrYQoK+woT1V//5/dm3z9S6/ic5pfOcCzdmZV3cR7b8Z6Cvytt5aRDBLd8EcdF5j508l/1B2uEiBn+TECYvcd6VBV8Gw6txC/+UcAPRYQ38j7UXMxISTWlgmco4N60lDSDHEuvlpe90AAiYXvRucwLWQTzz0In99hWzfxRu2y7//ydJ/H/myB5FIgdHHwgdWf+KlpUzdeOd8b6Mq2sRUQKlA6ncrEK8lgihMPXaYxN/iW6KagNMxWF/WM4YtPhJDESfMLp3+h6tmMToUeyPpSYp28JsUNqCzErUS3Upf4UUnfh+eh9jfy/vXix7VT+R6cslDKOJ/labh2ff6Z3vHnN+N88bkcBisRMdXzYDCRmEl3URf26KY7RlVjzhTR3g6DEkdG0qzAp/FUiX/gEShvPYckmwWv4Ft3ilYiEG3dbAzfGYHkXXizwEj4aCbtnf5IQLSaNZgiPjYC82Rcj1EIfP9umUfGABcGgAVf/bcIxbJcsB5658VEv/w+On99kDo7apr/zgP9aWKHE/Xo9NGfU6H+px22vFPLtgS7arJKO66ChcUFJPOILfvEvxEIjYQds7IAkRSnXio/gFWVQ+BKG2MaZDlu6Z7h7JRpnoJ7LT0lofScBM1EkkT7eHlPLjRMqWpwq9cZ/ia3VUhL+HQnb6OUIysevT9buDl6hYDJjQShwbOq6JPcVaANRJoF6re6aKqKsVA9AkMJEyqh1/YzrWvul1JfpaPuOOYr1JX+nEWbI2Czcxe8sHxiF2b+PeQ7S4Kj03MZk/u7Bi/Py9WWlbS4OM+XPH+jJ6fJ7V0D6gJyKbcvltg0J9h/X4ORpXKh2OWPkyp+txZXhq2LIbmCpgICBBV0ckPtj7u87/wN1nIS5ky/RHdnxwdsz3tR41zNJzG2p56swrUwIJjcPqkDQpCH7vG+YyyfzDKFZ7I5d/8Bn07jzQfb9PXCYHK8Z6LLgcIeT0t4CFf3HOxcBbFA1O9vBteSBO8pf5vFngcHtoujmyjJokLwfgUOc9OijBza0ej5sklx/mv4xNuXIPfHqijCazX7JhfEP7QqWqnZF9+7mG0OQvL2b8RyOvcdMsoLx2ukofjY1OVq1D9rYWsmhxE9EeWdba+uUPbMOSzzJs5c/GsoENWObhpVsSYAwb9mE33IplJQdHlJKJMztxytnfe4s1fEyHmuRWZKRkQ1mXBHoJ+0AeCF/fHk7p4s+ibsLqH6YXLo99VEwW5o2pJ9go4DXEnxa8o9gsWZbY36kwnj8RZpHqsr9+vex4irZPXW2nQymtElC+tmbavDl+52qSPTBVxNzJCsNoDc8U1043db18RF89ZEBzDKyL4PjJbgzJwGEpuQKVFHmNMvxibt6XfpkLjpL9t6gXpsb8U2VzTXrx5fG9izsiWQzD2TYV3GAcNfSasenjtHMT3dBS7nEkMb0xjZKMPbT42CqImM2uPJ2Smy912eWKIQkvXSW7SrrPxPv0gT6IAbb1Wafq04/SnbpDGQ7o01VUryMol397RydYM+0c6NXFY9Q/3MWJcEezRXl5t0iraN+hFiK3zXae/5lFv/XHdRb7+6Y/cbqp27B2LPJIAEM0dNhwYhGqlWR4NwlNwXt8akR1kVczpBRRn8RXOEMzzSoHi4O6bUTvw8863rkyzkXJ2gavGWl//3UUq/KJQR0d3CVwQBkPHJutfOoWMbS8ZdHmZz7hOK9UvJcKABdve7jKTmpZHcHTHp52O/jPMdgqh7/AHKKmw1eYiJCI+MlVRiYYpuV1sVsEg6telXyKCfqAt10kARVVavTMEhsfSL42pEFBKBF5buw2Uu8helIdIZSKjLhAVRQOs9Uz9/s/hy0+unPSPMZLmj/4n01T2xT2IgE5dsZ9FjuALmmBWCJhcxffNhOB7j2UpYfZmG1TfGi6KphYU3Jw0esUrbH/3Ywh7nMMWNU5Dq4ftT53pPimYM13ZpcYw4ZAcPOKiCoA0RvVctmz5a8i1w/4mDPv6O1IVeUnnyY+KDtj+2nMnOkv3QX3Qm4Eu1Tvu3A+/9ET6yHL7YoxoyJQBPQrdp+GWZpSVVqB9++xkHPKLNP9j4+Y95paclrzsnoEA+XANVc9ojOvRkGGq525Wwf/dNLrJSRgjT/+TZbe2m1wleaQFeCGGGyZrDyuAmLe0YnJ+4xdjaSayLG3qlRB2cPgmYVMdYZf5MIbL41pXbFWuTM5PYS8YFdygA8cBDPFjHOHs9SqkbUJOAue59S62/3drDy1oWxhe9HOmKUnEV4jGlmm0z21VXLha7dkHiEBPdPfH08Xt7nr4pfS4+SKnrMO7bjvhixHxUEZNyDP7wX+crMdEX9/HjgP3kS7gPl0DXXMTXM62Xah+YCMinohylF/guxhUPz/5t8hEE9iaIafVBA7HLYbGApKhmulq8QRkGK9OT1xCp8B+VOw7QLPLAsl7m8awv6mx5q2QLS/T2wQ3i3fe/qiO9lj1ybYVuWQYI4v0lg8ef5gI3nf5IAqLsysG3+6vR7Lrr5+sA0diS/QdyMObv2u5mbT+uWzEylIb+HbKXn2HghuBWJB9OmA1m5T113/8S9prydEveTk5K2gWc8nM/WO4XMfwtbONpTP7TWUB/yL0RMRGqhIcvQ8cnTbzUeD6Elpm62qEycJgnpslSAGxvQdwPxlHHPClnN0FhCXgJ7VpjVS4piOoAqY5Zm+6Y92u50tRvp4SHd94ft5GgNVknZfGO/pcBMvoCyvTGkvEPY1FFTr1WkVFessk70TUTqCvLTG1X6XHf6LvsFMAweFFS+p3Z8YEnHXUe+H6S/Asn803rYO1gctUrCWMz42FQdA282N3mejbzkJi4xR95EIUbbwL/elrEjHbdkZmujgKXcpIOyPDSWUr5qx0zX72Tffu2/gncwti/xjpjLYB3RXsl/0sDFIA8vOCQsiC8brXaYuvSgnNxPk2WjfhrwI7p045Wffx+bAw7Abixnda/cdZWtw1MfAkimMbAyUbg7q01GZTIVByWYxfa0vdcbvhe+8v8+1//wzNKysQZvXyCCtxKF7/BG77uWhxGp5nal3JOb5Rfv2aSGcFOrviSEfVa5bHFiYYTTOH+lX4IBFvcfPxx4EHyGvtlqfgtSYyxSYM448p84jalLS6t42OG4f0Ocv1Z4SdPx8+EV+zQU5039P5sDiH5Q5rxbVUGQO1v8KveE7AngG0P7R9mgdaRmX+D+FKY+KbJhcxV2DKVsBKPE4LqcZp4Xw8P4up3TsYh/pM17FODW8NA9cxq0ckcVweR3zKho8tAoDf2b1Kfl00ktHjk6TWikeWCAw/uXTia5ZHXlWrxhhipORmsfW+BdNqFJ+fIhpwvdpZ+7IozvhowHn61n7O7cHLDOcqS3HpnIkZUY8sN5UC9iK5QqBo0EoZTzep6Goyn5T0lrn3DdEMuTOXc8zA2BSaSzaUfm+PPQB/vaOV+t+m6w3MSEZcbnFjzIeVgv+WxShDz/g18bY4inuj6yaSqBu4u+gydvSqKkh2mbx0bPmte/1/d7oxjXqvgXydk7hCrm6Rc8GSmLLr6oNwShdF9VMd+IlxYG0arUw6Dtq7idaMbBrUfg8doMTZIv8NHzYcEwu1IPpf+osIEjsTj2lyk+Ellu4v6qNp+Dlf4MQD8u3/gwEwNh7rUl2mdat14Dnn5MSFnwzH/y3sVgg1TXfdizVkdokkuk6HqnGPtXWUn5uvHh2QP2TUbJ+p/OuQkaYhs80JOEHzdEZOejQJiBFw40nVHFzkSNMriyHXtE2I6nAFYmsTRkWpqVSkLqwe81xfYnKDTZcdW/GRw8JHdHQ7SVgBIOf8iwKGvrM2J+V2eWajVvIw2oBckJ6cYF7/hM7u9iYKUGZZ19aX0wJtj0jm88GWqOgGi4ATSRLkr5Kvlv8d+7A7+S499zg1l4HSTIg7OGokLUo2GgAg4BH+JvnbKjQtj8V1wQaLl0aZdu5TA5U+WPH99jWC3WvXKSN+GSrQy62fEXdDq7fH2THPS2/FU7t/CAW3aiZ0FozbvMsfyvzb90p8pdeTtoBuaroKkstSS8Zw9ZaZtw8nn1LAylXbnx9mrHc+Vv1w59idiFeJd1T/euk4P98+KyGVciO5lKEjWNk7t28yPqjL5v+VVNCG46Xi1aXjiGD2/abTtl+qdypjVqq3GeyxJD/jwhUuu7vD9Rb9co+ur6d0IJlLYRpIgXdkSE72vgI/lSSgRFIrsOYkrrrxuQJl2IbTwwuykOz6wYLZd9mSenDCHVM9oBc2B0nnMfAFUR9tmN5pl3G75uJ1iMmTzaJJQMOBFKTb7h/SG9d/5k7zeYv6rF5IR6MIEF9B3dAYnmuDDm956VXjjWWgDTSB9DZBK9jlmRSm7k0H6iuwK+7TE7oUSeCH5gHxO/I2AjMYeZs8+3Lws4GNgCN5L0eZEYs5T2Ni0ebI94H+0luy4vl9CYhPjfa6ZskPX2E6IetNRKx8Lg/bSnUJ+HmApNWRN/VJ0GPieZ3MGjwf89Eg4enn+yknmXPdY4X8cn61lvbmB7a/4ilErqynsV1LXWeW1jEkeVFjtLJlBG9Sf3mj5x3LVzxkkxMQD4XyeKy4ywozLoGGOxJnb+7SIXJIkCKxj6uMjOBAfNoMGYJbh5/orMIWDUkbUbUpr6Wjflo59QC8iBaIqVO+ecd8dBFUgTcgX9ADinVK/AB6NtI5PcA0FwCIAtYCmIvC9375MskMlRmdvWUTBKFjLHA78bsQnQoyUihmCsyS3Dn0lOo6FE5TUL8SJhWUPi5aEFllpifCDodnLL4bv7dvJ0a8IhpmAvQTDg1UIow+fRJyo3YLdPwdqV6ARNEeNp+3b8O/5hpr+zP20JSeXE3K/itlzH/Ak4F4LwytGo9PhYWd4fWmKNy3Y9cPgt/60gVT4UtSj8Tk5eWja46ehLPZo9OjakYELObgKw9hCXyU9yhfv+1HE3V4PkuN+Ir/JGVqW3h//9jcpVL+qP4o//GbUWgM6cjJdn527YyRvlz7pTI5Fwobvpv5+4Necsn9s2iOE9FDhXd+PKIyyelCRDV4EbB84Ovbl0sVJXcJw8eMkvLVdxvh4V/JeLAS3QUSE+5M1abxcZh4nfhN5JAoBPbUW6BdeXnGcf0qQx5S3V7Q0y5AdCxspLf9yuDY49wICmT7RalA66/PNi+j5K0u7vkVVFE0ReAx0gqI7lJpbnpKdG2E4By+NSH/sBm63Ld1Qm78mLCCQyRLBlDsgsSws4Xf240dKVL0vFfHTwq2p9PKOV6x3H3tjxz6GNiJUyzjttjMj3cczS/rO5CR7Gc82tDzptTEcM/dU6X6i2AQekIem3BuF/QLw1Bj2rB76EA07tk9LL4HniBk1hG8sXTPxOgup3+WjCbCK6DZCjH1QaZwGSGKQp/c9nSSUkwYmqVputJslZO0bHsqvgDt7aGfOXAN56WtAEEblsSHL6Md+sEVUB5lXz/w1Rp47aCq/8vDWVuQy9AzukD5RUQmcKvqalA+WJEfqSNucFD+124xccoAVYZJSbU0wFuiqPwNjxH2+mHSjvkPPS/IFj+MXbgyTwixhDosGRhpQJhuRppMWlln80v0Dr6gQ9XDTjWfV64QvYmJ0lmnBwo4NxwH/sNg/tY8+jJ7NmXG2xdfbbejjCXTMJKydZsaj5mWaagx7wRmMIXdkIvNbSwyomcKBeB+9/qVnYx61Wx0by4I7GMs93SSo90+gO4/tOmEh/QJzVdE3/GwdfZWadSswSUYUi9DLqoJxibpy2qi7Pku4oPKxk3nXDbbUeB6U9iHxQvWzIz60XcpgJ/gruif/ZIlSI6Ud/HFUAwy109TfSNtWYC95gZxCTMRcEn62w7aznGvJdft89sl21y4hGB/IqF1R5C9CNeQkd/X8QYFooOfnacLfUQTFfU32bkhtdIGDBy0JEuhP4LgKyH81tHOmIQgzXEFZbTIcmWIuGG99GV4hUpe4nnwhDBiA1NQt/Bw8uwi8WHC61CUBqApid5hmn0yHyoypP2Caj4i4RusQLGuz/18yzNaUeBytY+7HPEsuYgtCdBfU81Z5z7Pvctd9l7N8pzeb8vfxX57RmwDi2kPPpH/OlQKzHYN0bjCNrb3nEmYGj6n6ByMUF7MLD2QOksYzUHy6/l153LGVRXzcCsro8CLguIr19EF/zPSsP8Yo/z8ipRvHgVPL0uqbngDtjgwQxb9L9Oov3d8WYmcDPV5nDt8vDTNKzTOBTbvsrU/Fu57NEFk764VPTbtqykdHkFpLj8tJt1GlqQhynGyDK+gx6yIDxT2xEhNdGkA+XzHH7GBGNcBOePSf+EDiiuNFBJ0DUBkD7vnFiKEyFRlScONT79xV2KdM+1/Pzm8yuxj+bps1KY58Ydgp2rCa4dmjg71kQXXxXv5IQRSkDI8j6aU9qG42agNuNohehhoQAwxathMs8UgEufK7IfK2H2fXJujobhC1+yUNW+GkH9xfsufklweyC4E/lL5+rj86WjAfs3gILIpCdBvMqX/wl3K0G/Ttt4nlkUXSbqGmcekIe9VlR1upfEqj/o93PmcpFErz52huPJYfWvlfUXrJCCtba1hipwRhZEPGVEl0YMHDtOJCa92xt+AJlauTKpY/eJWVRJnF4NfTeT29ogUoPjHlD+rlVDD6sWvdWUD/czhrPBj6LJ7cDwPivG2hHvJcoPDE4OPr2WL+VjTmOr0z7Um5jHFXIrf20HaWxxtwrGT48soAI+yK9MFVvJx0RntPcij9M5RhO8PvcaCKiwMzt6GpmqS+jRisZ2l7x8Qn5eJ4zE/KwL6dnasm13zf+o3pAI3L7g7EWNThdaSF/DRgrYyyEYR4blFPBOFyVvgnt7LRe2QjR9Fn6xrGV2VxhzVaPrzphQJ7MALzg9B3il2r3blgSt45yJAmDRDfUDdfttMCW2HBgAZ33FSPk86go0EDFXprE5KysvzyR9iN/1ir48K1AP5P6nndTEUHaDtbrDuVIpOvacnLC4+pfz1zLS4e3hDzp0MZl/7W/EqSLzAvaTwGeUBhGAvj3Azto/3Veai+A7xplJ910PQFWpQC2QrUZnNXiRVQ5655zjb5SlvH1CO15UmEv7hZiSRiX17DaWHc9znfvC9HVeOBhZ/cR4NJ9kTSiGsVH0xzWrzsyK8NwjBknNyFhD1/TDbeR8300kdBwgxubEcRHSCDItV5D/OjZ5l5CjUzvT0DZE3QfacsbkjzGzqswk6Efvy1dKfzl1oMFvW//PHtKJBBF/YsIpQPk1JKfeMi+YH46UgY8pBnA0S4gS8OSNAQry5E2A1JrxfWwkDQRA8snJ2m8QrKe1UUatnCLzwlHL0tacqxJxOgas+4TfzOP+uU0oix0zPKlQOxyy9nSC44a0hAZqT4yvxlRrmjIOb6Ai4hRd4BSn0LsrKaj94eC8pXa81p8JiwyBYgAqWkxAkBKjdIOsrapKKVe6pUqeWvB7Ce4EAWSNqkMWmatrFRu+Hzw2jFxatg81AAiSdXcHI4VnIyMcG9HNz70yZdKdRUK2kLbPMm/aRtuWnGd+YwqWMYBUhHOyUe2nw1G+3WQAgrPbonwBrqO0lvy/Ydz+dO/WMB4wmvey0Mdaa8ifxmkqRo9o8+5AhD0DZSzJxNtGiem3SpKzsC63TdO228paoVw953PKGMbJxpnXJk2AO642EFe2HdA93DFfqosT4Vlom3sje9TxoIbs2zA2pN4VOc/jApxme8YV//xloGy3f4B4vvLtwcl5OYCxGgVC3kBfYOT79q8Xao01tWQmm+Yf1abhuFt+9fnRpBTNTo98jxqL5qZCBwp/9Xh90M1cgQ5ZL7eabhXkDWvpYpzLMK8gcJV1TFwQz3etLechVXDhrZUBF7jkMLE1y31a2qYczxvaGzEWuw6VcpkNHp6SYgaN3f1A9ip0845BIpOj7lufZLH6L5efptWd15fRTDP0k+jQMGR6VxyUZKmIEFrXLJKy+osukKiEbBEWz7RpkZL3binftNs7WLwiBmUa4q6tJCb3JuX60/hJVob9ZcLQol7Ln6WFaqZWLBdwVjQf/M5jtlg+7rkQhhfuvxdIsP2rr68F8LiOFBSRntmS0G61PGG3Wg57r/aWzE2bJTLh5b5qsdzAh16EX0dL8o7m9z+Zzdd+E4AjPAufpReM3NL5eAdKICOu2KX1E41iMOkWWtEi8HyfcbpLptgKctf8O9Tqm3pjAqqEX4mLxQftrNSphaPwV/eaiMlqsroq0x/sIJayxDQujCxrohrbZhXeIkCF8/VBW7qVC3Sz5QgI1NdWwqzpRPagTUq7E3V4PwDa8RIQnLI7KkkamM9QEQYx0pfg/VkpUb9FCjzfJAQtCmivlxZnNrkzRJ5j855cMBXVp0zCl50nwUjBpEaOkfpXQRwkYDVwFaYhb175iK/J6XHaRJ/e3sdHrs4438lc/ws+/zc6bos6KLvmwNM+49BYQCUNwC2SFeSTX/BbNWQ2Hwt+HRw5jpnoOHUPcxvYWRZhxMXJD4YJPoSzwg5ujWNiwy8rdJBukmTSE4WTa4aZsyTB3rWGUmNOdHl7tLEQgQR9BzY6UD71cve+CLSqFTixHGg5674EXHx+a3xLFybcxCeJ+oc5CAeyc0j+UtFXe5ku2ahbinPuPGXMf8ITYZVRj+GWmHZP60pto7U++gGyriiLKo8/gIsWe5kI9egfnq0IXavB/0SSLMVP13lyA+GpAAOec3ZPnDk9Qbl48ukCqUuo27ADnVtwsHOPMKZVoIxnsPscMpDoPaoH9iIFezDly0148KIXC5ZmRuhRUTWEcd15AURayuU2V4p8WyLGNA4XWO377wkxuGGdjam4tjsY1S33T6wZUO4daP0tGzzRo+xMPCpa2WHnfHr1/1JAF29N9i0ALgordMdjWeJd13Ozgf1wUnc4DnLRhrRXSL/h65sb9gU1nqCK4AfEDwvmxlnOwTWspbMkA7sxb4KBOZD+gN/27493NylapnSbUcS3TufBwajP7MGsx5X551W+RVE7T+ZiHq8mvFuP8C8i0vgPoXdZ4o3vwqSqFnmOGHtyLAyog6TvqR/0wWhlqxfN4DR4CMXXwdoah7wjVNNCoyNsugs93PAl4iys95HrMOnURuiM+aWYQkxxBQZ+YWcevg/fNeS6gmh1kVRWlQ5Yjd6cQ9HFPAt61EyBKAbXOGYgpfvfYIJOR9a1T89CUWz4HDcEqjXqvuinsTypeg0JFWYcEA3tIx6Hg2Wzw7JiOg3pzixxnerLmU0bV9vyy+1PDC6/EdxYKDw3+6ZaU8ALFVAkmgp1ONpXCZGt150JGqfJq5kALCBMrapi1pjDE1tsSSfXxHDJcmf+TP08x/JzVEiKfnmtkpmb7AXA93vAFIOQ/3wh8Oyuay59o9ImYvZMdiuwaJrAA9lwI+N+oWgLI+B1t8N0q4cQPHyBkGy+e/qpzGr2aPVNWf84KmVUn3hqwnK5hiy4GY5ARscul7J5YC/q0GWXIKVfL3pZTZfs3C+rjS1NW4fOSUruqrC4sS321bkcUCl43Ax5NomD67eCDPDAeuPgBjxqc6gIO2loUg/fCwfjAnf2+PN/7GVG7ni3KYYynGpSD8I3XtySgFxs5KqjOqMhw584tV2It+bEqBh9k8cx0KqBsuGPPzvgtDZQgvdXIRC7zir5DcRZH5QwHpXIsdPjMbvbbw/fJkvCfD52KESuYBEJ/RwNzGrNT4nsQQSrMPhUHtx/DhesfMncL/w6766looKqQO8UOSW3tpzzAWciq0rB9YGFuXxavb4iemmUmrC4+eHWQA4+Jcuo8S56X91fIHU2kG3SIsbZcP4gVnLlusvJTpECS9Q74+imf2CpHrHWP7grGzpQjElWJ+dIfXwoDHUS4E/9g7ZJhDyYPiLhWl4nhsNDLi8sWbQWS8xo2P4mRbVskba4jbHmMtui39s1xG+G7e76fZqaBMdA6PEv6py04ODk2HtAzeI6zV1xugbshfxksWlRaKzyn67x/Gx+wjY7EkanYj7byojVcgMazjqIhbl7b573uBJe2FrT4ANHJlhDmTMcfZYKgp1cXMHczIGtHNqnx1oMqkjPA/GHa5ITa+4kZy7x2MgTQehE8T1DGJvcJzQFmceuyBLF5RJUZwSRX7LiFbJrAPH8SCNWfS5iLzK6bPwg62GUmig2hxXCEpBhnrWeO8Q5eKAEVqCuQeUk7AI4dDG3Pv4vktKNj5j8eM7Ms0PQq19t/RpbaE8M51aM02nvy3UdI8MjZPim9KtYlD/15rkFH/RQRCjIFcyv5MgvIep8ULScwD66oprrR/+0+kQkg6GQwIsUPMufCalgTuhNK3riyC5S5RbL33teApKMb541PJ5vkFtYo4vt87tH7c2PcDDryjsO7JcrJRn3dzdN3D+sm/tceEJoTAdJdfnXtZ4lNM/AG+4Db5rzOq45pqrDj7mIoPJP9f28smKgfXZKJAMChSmzzzDL3TZgAAyToLeiNiYa+H+F+bKCsp8x6rh/ADCo5xpga6CdsLxrd5ed9WyKmP0sbhCnFN8mjkeYGRCurAAbUoYLoVxDWosRnwhwJ7JmAOOHXKq+mCeBqCh/fYbsZkoAJFdvMf1bEld9gKnHJ5fbv/fxJztoHw/WrwbvKEPnMjfCnsBKEifXOQ0r9DnL+pFTQWx0/A5JiCAE5YMTlDlUJ8Qrpjc1hU7w4RUqPPX9ZyweGkKfLL6gAqzhzu5BEpbmmkNEv4m89ICzjGQIGKJH5mfEKL77Pd//fe89xH1FPJzhEtJZhnFy/lTVs7QBw8IUKDL3bTUWm3C3T9A1mZ9FtbTEfHXPj32GN3sF7FitPV8gL5bknsCPE5hVrIWyM4e8O8/Qg0OBYEc8DxDUAAUzWlg1JZal0fMTstqUO+WozwJawqLrqYU8hWWlK0mHjyxEN87Rl1duLM9zdBOZP8Hu5j0GrtRCfhmlKVIe5JtYRh8QXdAT/TiSVcp2bGxTT54z4neBOWnEO8//HHiFuo+bYy6JPKk0rpvvD/hacl7kZr1kcyFD1SP781VF2P38JHk1/upvJOEKf8zN3jgAh9PMH/u1MGSYZzVDjAwcmXE4WrI7UbUbYqNLUb4oRqJ5MsbsdGCH7QWlppPke0fOYrUw74xmNpdq0WkwGoirOqIpvhKVP5DBIYol6J/EzkGGz4IdauVpy9775CTtfcGNXLEqf3U5LRzjTfda6Y28Tyro2dHVOVFfYw9e/YWkKi2NfxcHGS0wZT59SW3kNPx9fkwi+TwtFUNdVrtDmeU6zZKzReP9bsK5lsPkuHDSTlFJpEnNf6jBOLxfNf9elX2dAUUgzowz2pI8lBmnIX2LAwdWPoPTK76N0FUQAv6vXHp8gLRntJGPS0EWbBKTvH1Fjp1Abe88YIk7qBWbOu8J1N3ynhlpZCKaK5YORJSjqG0w4b272WAjKnOMpJW0N6vS7V82QWc6poW7II51eDDwTwlsD6F9tyQhBqjhbvy1zVkewVg3QzP/3lZOvEH2mk5M0Y8Cm0rOz0YrlIMLby4ue4mM6r0bnojYY/IW6XOXWCNLig62/C7P224usfaQPBuE0qboCvPiDa17L6V82+QPSKYbuHww+QIA0GIk9Y97LEvSnrA6bGmMGa/jmAoMOYENGvzxXklemkwn1DA9OdvhHbrdxHGoyIyN3WQJmluGPiWGpKnucjsnb3f9OvW2ZM5l+isGg60PddhMbYAKsPulebc/ZWy2IJ1pz6KfX44uLwBsQp+kpbCD0120QRENjzk94eMiWc2Rgy9ieNJU/IWIbrrixYIObnSa12kZSAPfOAjSrMNjMP6Ln2kSZ8NJQ69T2XpUreEGdU+7GYNvpG4wLCA4L315ZexeplyxU/KVPYTkb6CekR+shnc9kdiJ5F2aWiYRG6qREXy2FLKpdxl5tM7wy7FunE0Q9rw8De+A4tcrpMUOZXtPlPMrCNtiwJbQFVOQxV52JyQg1jcckKB3ROeoaB3JKUWmR8fihOdMlKCiCPp0Nql9xKgm6JRrWCICT3WEWXXwRf6FVs5G3JqsNMOheQFUA2B+82efv1kCKfu00kIjvP08cPoaFL2JQUKK53RM/1mZHI7jFMVqU38WfjjTdyX4MRWVk9zokn+sBbz/T2DEqMMYaIJQVoX8Ky34+8bI3wyj6aj55dfspNTIkI/AsTuiVPODYolVMpBAA8jl+4AqrvBVOKe6zQAZn/9OlUlUUOIk0jnHt6516KhGzrrJ1/KEdLCDquyuYiqUfj5AjakkMMm5rGh4a9XsDYOR3sblFKZCUCKSSnmiza+33R0m/A+g9AlYdO0P75xtUzqcRAfA77wwziO46x0D3aHzVNH+uzSs2S/yKuJgYPDXz7Mv/1BqP+VAys26gV9xllRGwGEVCJ5TWZ0hCk1t1czu1lYwsZtz6EhdyFGkFk0IzQEANrvTMDMpm/Ctm51cMZ0YW5sSTpInrsWy1kGeZAT36VAR7Iq3AZG3ipSTdcxkoIVhK4o/iTQIWmvhTaZnH+roJ9i+/qi8XPcf9UCPxq1BX2s6lXOgKwfQ1g14yht1oVj3KUyWcwuXbWwhaaWCJsmGYoVSUEtjojEzC7wY6nUyLk5O1nV/RT4vaFq+FVydlYo+6vIDdf06j9MZww1Bi8Cf+tYXYy8sNsLxfdg91r43k+nfZGGqjBkDcEqwhLBGbgsHDsBxVz/q8fXipl0jMAhwS+myoLfj68UP9aXTwurUojB2igJA/UfivpBoaXniiO9IXQi6bpWOLgykH/ErUvxL+T9GliTCTZROINsdpiZ51PcUeOCsVWJC0dbvWMTH2O2Ywmrl0ygRKvHVc8/8IhypkUddbcUTDe8r3LVIGarxGwrz3v66lUkOR3k7kB/3T5G5UsrgnFqxdOs6dkeN/4VdNvHE3k1WDbnFFLFlgaQPVptQuvmH2ZYbpDv1LJwNY+Kbis6Bum+ybE/pGkf7NgFrcBeAgnNHgffRPd8zAES/VghroGgNJO9ubpbnAz4/PXR5//rOtpGep+OMY+mPJUCNOzFXuDIpV8M4J87VStKbMItjord3KekPaEdWQs+5cl6+W5eF+bDjiwvtMTwGsZoH1SrBDXfOimA2bTH2W+KKa45mIGXkv5V99MXamktHQZHjEvvOuyNBhe2XdEblAAs/SG0v8IU2GmWawFjOdhNfLtodn3Zs7OnvhoQRp7xxQ+jw7AHe5yXVKPKo6Foq4bKW8Z9C1H8x2iRFt0uq/or4Ynzulx9GEtZIUX6jD2DtOuWf6S+YlVu7YtbywH3gZ2qAs0Wn8i4GCLx8U0znhhFl+rTZGxYp8uT3MDBbKVX/4uoWfxFm/DVr3YdYQGJ+jIpCMGnfCD6tEbKObk/MJIwQRnno1fucGkfpOLMYtc6YPJWZzKPWWs/61O8lCODYrxgW+O6uKAzxL/3BElLrqGZWZQIX8PdEP7r/fV/91ydhk0TeKBV66sAGBl3sTWlaPl03jjq3PayeFSQoFnk9//wKl/ORVJLc5CT74oqIEA7/i/R+bytH4/S/NXSvEf4LFD88aBXpmuEMskfRUItCEVC4w49xVi5NgUzuGg//rm6KbfySNpSKGSRzdMmfb6sjycSCItMjy+DUB2TFLaupPk+/o0Sa4VBTVprKWfjD+LxKqZVNl1BmdjYEk9jfEsr8RFchx8CdxUC46oxVt3t7f3oJB2seeILjp4YAj+52bnEo8aXRiNegkcUZT6kLWGbGjbmp8+dUdjowzDwRt49LnOekwKQW/xmjPeZI81NB1lMS6aaGRABuGtqO638DqgwYbQxj0fvX2kNGwtejc03AqbMlsYaZjgvETouw9HJDa2WQnxUQoxO448OHPN0QoqyU9U6smPk3BrhSHENAWRq1xkCBM6YUGMamyQZgoZaZaUVN2SLa8ZZHODxIftD/yjSjeZejTC4vY/MSyf2pVyTnrTQgkxh8PaFI5lwz/J0UTicXjVhT+kLzeQJpy87s13bjk9SuMaiS++vptbqHtxuwLHgedD7yVlL5fIcAf7WtxwzA8219r1b6cDsmJre1NdQ0ouM4ogSOaTdYcMCj/w/e6yeXdGrsL/ug0dj5PYXgzPdxnG7o5N1QfqHaw/iKOUtF9810GR0QDnikFSszclDJp1goYSdXK63YkwJ+GS7OGYYy1MBxGlmItW00QZS/0qkgiE6XCvIjBINP1GWe6ifBY2h8gpBZlicZ4bbj6mzxSa1fapNEmFSWFi52LlHZu3l1c5nlvDt72qcwzflIUKdVGsNku7NvXn598qBP6u6/nYpTEr6pQIDdy0I/LnAN2+wD2MAwVX4qDZshfgmKGBej4TI+PpSFKpxgDuLoNuqT7vyWlxsdfNZYy4LUfFMOJgbKo0tpcbnUviB/KdeekY6lEpMqMDIy/0xPFBclBrcqID/XlNRW+W09ZClJ+bfIre59+fEBVr4GkJvngPPEuBnJ1Y60nLKxQOCBIOqWtNk3D2g6qFfYIxGRG9FTBYxF76+BP/VpZfAphnXzWbHgd4Zgh+Pdk2N/H77GRW4vZn1ywlygkSMFrOzDfN1BosZQ+vYaaLds1Hkja3rtcH8LUZzOw5EcOJ9+HiePMsPQpQdDOXiIuxJ7rcdB687/LPXkVq0MgpepJUluXFFSqEpALQjoBdYiiROwozqa2Lu4zOCq3XFuM4dJpEHfXJnw0wu4kURtg+jNCRJFI2Kp5rTK/6Eh9rI7r90sme9KWybT3rA4hYq/4vL1RLwbsnJgm5niTp8yTwseewbumBY3nAgFP315sY79H1i/r8s5AJF0NH8hZx7cmx66SI/tTHYTPCbEgnxqsV0eUiSyZuEaC4AKHDjdwS/XqKLJT7fd4I/K1JiNU222xBbAb61igfp+Fl0iRt/6NIf0mFPvXuBCoAcjyMkz2Ja29uvFgJ7ogTRzdr415JJWb99APGdL1sTsVdrgwz7cvr8/pi2WNQc7W16c/54ZFGnuIVC+9OlyZvWHehCOAcc31w6KKDzXVLNsvX5svfHZsKdQ2DCNRLQQ+JiGiReq2Vc0UMys2UWXvPrYKUE8z5+IXpGLgZQfhc6UA3jtnSFTMRng+FF+8yJpkUs2aDcSVnItWm7YilBUxxprQSf6Z2eB4XB0qq8AR6u+8i5O3t9Mb8elDcb5Xr55F/nqA+ywX3JO4mel67Pfegn4KooQpXtMKAfhcC8vM00IAbZGesDFBUVTklXJQqKy+vobEi8gA1AITTR0suxoQmM9O7BB7n1qYDGDNZU0jTaYHRxcnxU6cWpjuALKsHYZIiwU+1ZOK8VERsah+s6K58ILCCs0Nb/9hnk0gPByHtUgYl2f89MaJOyqCyJfwYiRuVkZxQSsNqqncdxcw7h3KXFjywmLLwr7GQxRRG42KCZMvboSMg57jT/C46MyTJatEzOqC8xoA02Kn49a97uwbO/up1PI2eHahZV/+VTTi5GKsVTjyuzsN9IhSjKsYQtLxY3OgxRs2vk+SVI340f/Fu4/ToMh/voOYXSU6WRrk68X/WktH8icUA+/CcarrlfiFd3rr7P+1t93bSQlsZqGf9tmf/8hgaCeC+RQmENcNqqXIreK2ctXBkPDB5LG7OX1jS9hFHhwk7G0KrZQwfvgvccffTAFCYxuNQ0ChuD2+neikb3dR3MRKbNjwRUK669wxLoGfXD0x4dqYuiVaAotUK6l8AtqQDggBxc9DAEq8W9yrWPIOMZVA0CBg7GR6OO+NiW0oIAdTAnIWzlEYraomMh5bJB66AFbj1wT+VX4a3D9iYUl5Yi/uoBPxcJAx0Iimxc9nSdfr56iXjUmHD17MlnR2tyeIHuO/A5CsYnDTp24HOEPmGq6plcvzxJE7W3Tg6iH1RunUIwJpvQiLfuJ0QN+x+DaW8GwfIawIuVV8aIcTXqJoVZWXeZ9azo9Jnn5yt+Sn7DcBvaQVWIc3H0HpbQkVLxEdUD/1MiNxjGiXwypOqOEF/mNC5OorkmsxDjhtm8Z84dYeOsS55/BbvKFs5YcolTLbFvTNlsZNnZeLFRH6MarySLRq16elu51BFtuZ6M47ksiyx3zm5x/JyzEijWS1qGHz8BTOF4OMn2XoN7fbU4oxouyEVtfpd1fR7dniD3MJFv5Pq1z5eNbTsG0lZRlf5DqsCIAe0d3sLoO2cZ/oLVEJSAC3UoGnwezZCFvcvgwMt2yK96O1Hl396iYcE0NlY6XIkz+pbjKBZNTptA1GZhu5aWjpMw4KssRZImBJ8AD9UJV30mq+l80ijSVW06W+T2a8/0HuzLT8ssd7OzVrq7YYY7YPpvtLBuDS6s2PA/iIdgxDycqbbcN6iUZqZgyrIEvTFKIXXUy/vUW8CiQJXVgX5WL1BzS9Ety07s7239ZQ8TSNxADWe+C4AOHbz1tzrNj4MlnA0R/yZuf3renJTsTrbzlsFY2FZkOagt2x5gcpMidpBTqET3Rmk4VBzDoOOj6bjypXWXxTQtRtnavnsYmwwKG3snXl9Q0KKx/kOkcYGwmmd06h0ekk2s2F0FmeCBmDCGK/LzZzDqUtAWQ9jTTufV77cPc592Lt4nMB6nLtwivh+5/e/SPNhCLyh35EMXO09K4r0QDZubtB8mhQ4YJ5JN5d9lsCR6SY/oK6ImVXfDtyRfJDT83VGlmQa3MObsC8XFtLCK6xxnCnNikJjmvoHdVuQa9xpmh7YznB4URzU6wv8PmZR5OHtvQZod5qpx1QcY1wgRnl4MGTUC+gujHyhbX0PkfKmg5Sil3Jd+KuMnDTh3z34LOpzfktGHk7yoCYdNnh33tb+N62lXhCbw4aEiIC5CUvMqnwg9v208RcAUYbD5k5bD0I1W3ryudUr8B4XUbhO2vaCElmRpArnoRC1/vmv9PVE58R+ChuoWds0twKpOjqLQ+6Utjp4p+NV18a5WEI7fiaTJTGQJ2RSjvsHX8GGp7jCq9F5gz3jgvaBiPSP5bxazhKB1zCHoRY9247MGr0YXVTodn0kzAt7OhA5BvPdXiU1aRUfU7bcMY3bC7DLuWT05BgbcUpBmZSOrKIO8+gvgLr1jlQ/guzHPgHNxHs2QGpdseXNU+Z4usMST8ffgkELwJ7WG7Ky9xPQY3BFn1qzCe+8a94pjJulD/To0r94n/v4l0FX5GKI+vkeTO9XkF1ipGKNhLnY1Y0Dbu5kjTkV+lce0leLt/QGr2Z6XDQE/kHS2nUTw0a4k00MdcY9PTz7l36Bz6JzO1B5SYALbQQxz2Ri+jY9CLf9B8T9gb3sVxZUxImI/UsmepChp7eumwm/AABAFy3Y4xfjpBei36SZLkzKdXMqP/FsKdrShJimVxXD/nCQjmXGgJczHnW2kkxFPpBjhu4oj2t4SQigFjjQ4ZJk4g1t1GDYdBQYriImIBrDaGQHzaT7MTHxtH4BJSgR1HuHY9V9HlGqpL23paAyiUyiDgWhOUlq09SKdZiCfIYA/CXvblmt93f+umq935tIsM4L8PEwe3S1C9cjmgwndVR4Y+0D6f0I/XYAcmw12vtK7IeaZ1L9rrq1nvVDBjj+mQjyAaQuVoF+UMUDImIPXxwcIeVDs29O1510YUipCo1qv/6sMXnUPf2o1O4ZysldblCySqQNHYyS8UDe+ld+eqrk7v7z7J687+oiiXDxoDnTgmk4RZ577gKLCMWeLleatX0kb6OYDmwk2nMctjQF7rdE7UqzdfN+dJ/0gwOK8zJzopmFTgcv2bIkoLuTfaJ8xVK/OF4xVAiNW8IW4XRL0FL4tAVLUwbsG0XWK6DM5FQvsK+Z4coIBkyYKB9p7G+16ATLZBk/sq6s4N7yKWLW7/La5xv3woVTki+RefF5T8sXFnm14rtROmQ/Um/BQyeuCQs55o4EtmBsoVWsAz6ve1A5p+BoBc/1E9WylEdZFKr1MezdN1Jb5wMQiTe1VfnQiUUk5nQLL+xzSyCQvRj5ZSvLWacU0NhbMLDbpcSqp41kPUKJdPcGN6bVdHKXZ/oUWUg9TFCMmhFG6S3UPurH8bwT3ePutVszh6cgKUEVGGMFW449wffCGhezMgODDCXFkkir0Gom4USjo3LExN39rs1X/8Pj5c3rIG4qBj1DkEs30BbtY1lL4CRvNeyJmgG3uzG6MJRuy5xik3kx2pYLMzvFhysTuy/MfPIP8VdTAJhcBgqIcoiKK+H7SY7PEI67urzSxTvNaxCnNeduiKW3xdwPFm9JFAUY1I0J9Ik5ztx6N1A+PRJ1BDv7qbyyhAg1kWC4JTbuUsQ9yBOAXI58pxIGLOszDq5JBKM14S5LErZVL7dTaa/oDUPsBH6XFcw74o7cY6og9XjBbpjWT64GSi/2L+cTtP7ibZOdOIVJLwJ4KEIbUmEfzHczGxlAH3Rw8UIpFtBOJJDOzN35HlOUSFNhV1IHQNKBQOzm8aKCNaOPm4kChQ2YTH/GBPk0j/4CldzWIrFaqP/ET7sYeXc/2sAsHxQ/yYnJdbbRsALLAIgQ6StDPu179NWDS2v4mCfpXRCn6Fp6fKxt0eCaEs6wBLvl00N91eUbH1w2kt/AFV/nGIThJ4ncIsWAAAf21U+iSC6mGfvI4Qzmr0mrQ2u2WXKiobBTvjIt5ydU3Q6A3kWGvoWMEWMObpiwNfGfY4nMJR/0pP2FKbM8vCQDpApGplIwiq+QieuLHxK6xEsYPsw2asF4kvA8+WNaQsQqF69SIxuhr9+413jylPdmdUjw4eaBKJJavgH05xfhv4OI/3Xy8KOAvAKCcTb2L0XaZ+A/1jzJXGH9y5/21Qt51vImA/HxKFjn0dP5aS7MqtoOz9wHI/1P5BX5FiN9SB05cTMMckc7V8wlP7T0psCt6yFxHaPLyE93zNbqIeHVtK1sU4hf8z9gzhsIGX78BW4wSglSlcd4y32mSjHEa9DeBU58x2f+OL+mEBoFez0Oy60f8OTN0D1q7Qg+BshMZEx2qbLQaKuox/rL7pbSsWp1elCsK6kjvQz7EtfYXOXZrofhxW0vyNPCEbcuV48qzUFHkjnPm16gza/oLJ3ulWZxwX9SHZfJPMjDCEU5v8UlGdqNFC9eAS2hJr/Y0f2TM8sudyYiStE25acCT5LdIuoTJ2csmZMmR8Ulr3+dOJ+6QraQh7RS0OHSaNMsOGWeP24jbYMkPM9xCweD7fSnPF5GQ7t2x+KCPGG5HMIcTsyKb9IQMyPdVKKQPWXwxseP6swWK6RgXXihtxif/NCpWysIdRIWDVJLLCOdFOIh/C1q04kt9D71FEljpU+xAWdghpc15plaUralZX4NkvUzMVrKfTqwYcO2y/H4lIhToOfNqldsXoZdfM/VNE44USh25Nc9m8jcURWg/ca6vrcv8zpR/L1y+KtyjWhYDlqg/KlTEXhh3mbEOZTzMhROxQjRWc/UHtLMhxdpqCieKSXL7pIzHmw4mTqQ9cRl5kNJOhg/Zq4TRcidMrmcmLW+Bbtj0qOnwGPQ9NZ3ceF1Ousy1/0Qls0O2+YOV6KZNQaehDPxbWcq6NYSJFroD3ey+kOF+xMC4S8Ah3LB7vTRHISFMnkEmPhJx2+RTQ1F6XO3lqMGnXOyWQxIHPzeRdu33LPXZijlPpb27RwbT+LUj7YyAEGG4t8ex+i2sPrDKZByXjmRqbOsv2HkPtmLmrPR/ozVY6385updcuw2l0nyppJNswF0q1U57cKsvSJG2Ie0+sQJaVVkxjHEy1nIWuKcA5pTbl9ZLSFGNNU5GbCQswTi6SIssuhPNHPF7n1FlftAD16ZkIrYY8mIdSiANloKWnLvP1G+DNBw/zk/MYNTmovJGHOtT7mPEUlbKF5J5BH/yJhHP45cWpvJBY8qgk8rewuGiU9xXOnldxbjOgVzRzb/P7tDa8WEL2T0AAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 设置 time step\n", + "t = Tensor([40])\n", + "noisy_image = get_noisy_image(x_start, t)\n", + "print(noisy_image)\n", + "noisy_image.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "让我们为不同的时间步骤可视化此情况:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot(imgs, with_orig=False, row_title=None, **imshow_kwargs):\n", + " if not isinstance(imgs[0], list):\n", + " imgs = [imgs]\n", + "\n", + " num_rows = len(imgs)\n", + " num_cols = len(imgs[0]) + with_orig\n", + " _, axs = plt.subplots(figsize=(200, 200), nrows=num_rows, ncols=num_cols, squeeze=False)\n", + " for row_idx, row in enumerate(imgs):\n", + " row = [image] + row if with_orig else row\n", + " for col_idx, img in enumerate(row):\n", + " ax = axs[row_idx, col_idx]\n", + " ax.imshow(np.asarray(img), **imshow_kwargs)\n", + " ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])\n", + "\n", + " if with_orig:\n", + " axs[0, 0].set(title='Original image')\n", + " axs[0, 0].title.set_size(8)\n", + " if row_title is not None:\n", + " for row_idx in range(num_rows):\n", + " axs[row_idx, 0].set(ylabel=row_title[row_idx])\n", + "\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAODgAAAtBCAYAAAAUBZm0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Z7SeVdk24J7rWWtlhSSQ0HvvUgQUEUUFEVEUBcTe8BXFhr0rir0j9q7YCyooYgNRsQFKFZRO6BAQAulZbf/4tv++vcerI+fIyDeO43c4ucez7jLLNeccmp6eDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw/99gdV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwJBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCweq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYEwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBCP/yT9ee3jG9IYjaxUuY6iQ+X8Ml7Knatc8VcpNhoaGS8Hjndwk/+Et+r833Ymdmi4FJxmaLt0bg869PDTde65bT8lgqHfN05lsBZdii/dyLXe0kzvU+y2mSs9185qHSn/BoaHO+36q+F1tGSpd89RU6T2UZHi41MaYLuUmSes7NSj9/Xp/vrQ+f0Ol4OlieytDnb/foNgumix9s0eGOt/VqenezVz8YldSm+3lVvR08ZpL3ZLUeg/Nb9RQ5zlpteOKQzqpvTJ6N1wGtbdR55oni5/V6dbz1+rvFN9xra9UbawvydRU6ftXSW0GF+/lNXB8ufb9K/WjkqTWfZhqzTv0fovBoPNjlF4XGcqgE5zUviW990UyKD1/U6V+cLPr3npOJksXXWuHpzeO32vTJhOtNsZQ553RnCtJ6Zp7E0dr4Bx28WXUGpNrdVenmrdyq79T6qO1xq2T4mNdbOJPlf5+rdzmc9165y8sDXBN5EGV3P/jwkpqcUQ1M0ptrkFtbrzX32n9ziOl9+eg+FtMlT6Ak6V+VJIMT3d+j+HS36+Vm/Q+f60r7s5ht/p+Tav+bbRwamWWTk38V3/C2aPD0+vOWPXXND254SrP/Lf7t7ivkjvnls6XYsaGcyq5STJj/SWV3OlrZ1Zyk2R0ePNK7sT4lZXcxdNjldwkWbf0rb9yTude3uLeRZXcpDeWvu7sYk3g5IxK7rIVnb/fgj179/L6V95VyV06mFfJnTu3945buXBFJ3fQe/7GB+tWctef+lcld9HKTSu5SbJ05uJK7qx5nedvbNFmldwkyfKbKrErJnot7dHSPTc01Gm7jLY+fkmGxm6r5C4dbFHJnTPWW3M3vFnn+bvvqrsruUkya63OczI+3nnHrbVj5zuSJFMjnZGKxVeV6gBWdtoBSbLWhp37YmR8eSU3Se5ZvHEld1Y6bc+1d+msDUiSy24q1bQM71DJ3Wb8/kpukgwmVlZyJxf1rnn2vLUruQtXlK55+969PO+azjjU1aU18lsWa1pWruiMN4yuNa+SmyRTo5328galceBbJu6p5CZJpravxG48eXsld+HM3nO9bFnnXTRr3fUquUkydv/SSu6y4U6/ZGKwrJKbJGtPdO6NhRO7VnLnZkElN0mGhzp9tIk9e/M7s27ofFfvL/VLZozvVclNkuk9bqjkDq6oxOauB/Se66HpnSu56159fSU3SUZWlvqVk419u5L7du60A5JkxQ3XVnJXzuyMvcyY6vSvk2R0y7mV3Ok77qjkJsnKlbMqudNLOs/IzD17bcQ58zvP38qlnTqPlRt17rckWX5fp7+68WRvTG7hZGcccfmMzjjU2MT8Sm6STI527rlF45024sQDevN+66y4qpK7uPPpS5JM77ZHJXf2xaX5/L1vruQmyeCazjVPLd+pkjsy1Wt7rjXSeRdNrOxd8/LS9qDjo505tI126vRVk2Tsxs5Y+53LJyq5Wxb3jV2xU2fs+r6VvTq5qcE6qzxz+a3LsvLelf/xzbzB0NzprQYbrfLruWKjzhxWkmw8ozOWMLSk85JZd9NV//v+23V3deqRtlq7V4NzzZLOvTFj7U4N49QNvdVpI+t0+qJLl3TGPuau06sTXefuayq5w2OdOoskmb9eZ65wrFSnPbi+VzO7eI9ODepG95fG2xb1arMm1+1kb7Oo1BBOsmDOdZXcqTtnV3JHxjvjE0myeKjTxt689OdbUaoZSpIFW3b+fmtd1VsXN3tup78/tHapzikXV3KTZJNS8+Wmm7ep5A7vdkslN0k2G+/MVdx8Y29+c7BT51uy5B+dsY+11+2tq9qi1Ba49QGd9+c6y9ev5CbJ8hs77a3RLTpt2iS5Y3HnZTTvlk6d09JZvXG8zSc7Y8d3zu7U1jXrhzddtzNvunxBb13Vso06bYyNFnS+USt36bTjkuTO4c49t8U/Otd8+5xee3nL2Z3x7kXj21Vyk+SGsc444p6zO3+/a1b01hLNnlpYyb1vZafWYp2VvZrL2aWh6xuLm9dN39QZ49p21841r31rb+32ik063+zrlnR+i63u7Xz7kmR46b2V3KHNen2/BXd3xq432bAzdjZ/Ua+9tevczhrrRTd1auHvG+2tg95sdNtK7uT9xXHE3Tv1Bevc1RkfuW1erwZgu9FbK7n/+Oe8Su5or0w0I6U5jdHZnTZtkmw+rzOus/DGzlq+RdtsXclNksU3dPruG2/WKY4cn9X5jiTJYE7nuV50VW/efeeZnf7DgnSuefl6vb7fnLs6teXLVna+fcume2Ny683u9Evu+1enHZ4kE9vvUsnd8NqLKrm37dXr78wr7YM1e53Od/XO+3uNjF1u7Mw1XzrWmytZZ5OFldyF93TWmz+gVCeQJHdPdeZ31rmqM1e5dK3OPmNJsrz0Ldm0uAn/4pmd8Pl3r7h7enr6P3645647Nr3Rpqv+fl15fac+JElGdujUit4xvzOWt3Tn3prTPe7asZK7bHFvL5x7VnZ+j62WzqvkXrVpb53s8pHO+3zd6RsruRst651jcPXGnedv8xXbVHKT5J7Fnb2e55bKZW4r7uM3OrMzZrPe7Z3+89rz5lVyk+T2+zv7aM5d0ltDdsd4p580PbezB//0up26oSTZeqwznnDvPZ0265zbejX8KzbvjDNttXavzz9/7O+V3PWWde65G6/qzZ3OnNX5rm6/TqctcO098yq5SbLWUGf/giXLe2urxkr1Fkvv67wzVi7vzRfOm9sZT5ixsDPGOzzVe67XG++MH4/O6+0f8s/bOvPqM7fo7Jmx7XTvu/r3tRdWcmcs6exrMetfvb7Dyu064w3rprc27vb5pbUSQ5361oXbdtY1Jsl293ZqF269r/Mu2mxRZ411koyXikXvHXTqC5Jk6badNsYeizu5Nw/3xlRXzOjMv01e3hkTn7d1b+5tw0VbVXJv2Kg3jrh+qV102+zO92/XBZ3zg5LkmkWd2suVm3Xa+FvP6rU9b5jqjE9uX9onP0lm39wZI7l7pLQAf0HxnJ+dSuuJpjrjk5veUTzjdUlnHnn5xhtUcpNk0e2d9/LCGZ3ahQ036O07P357Z952av3OuvD17+7VGl69WacOdbsNO3vDJ8n4jZ36urkzO+MY/yw9I0my45I7K7lXzdqzkjv3rl7fYXSyM1c5sl6vjurOTUuTzfd36uAeMLtX63vNjZ3s6aFOn3L9id6ZORuNdn6L5p6iK5Z23kUb7t5pL//jX536kSTZfP3ON3tiqlNDPFbaxyVJlpX2AllaXHM+Z4POup9bbuq08XfbqNd3nxrqjF1fd3dpDH+4t05peHlnL557ZvXGl8dnd87Nmbr10v+q7nl4rZnTI3NX/Xjsyrm99/no/Z0x01mDzrdtbMHCSm6SzNyq02adc9vCSm6SLN+q83zNn+60AWfNubqSmyTblsYT7hrrzH0vHunNfU9MdmpEBqObVHKTZN78zpj31NLO93j5dr31KOOl6OnbOv2vpRv09s/a8LbO/q1L53TG25Jkq0WdsbHxOf+s5E6M9dpps9frfFeHrurM3dyyXm8f9+kNOr/FVp3S5CTJ+Nqd/uht63b6z6N39calN9y+sz779n912luLlvXmkbcc7ZwNu86y3v51C7Za9ecDJcmKyc5878Lx3rr9na7pNDIWb1Haj2NeZ/+XJJm4vzP+uNGs3hzL3PFOTeD47M47Y3Bzr40xf6gz/rjN7M7zd889nbqhJBndfmEl9777OrlJsvWdnfXQC0r91Yl5vW/U2vd33p9DpfWHw4NeP/imBZ120VZDCyu5STJrt05N0vzrOuvBVi7qnQ07/cC9Krlr3d2po5pxb6+9vGjdzjjiVut39mVIkvFFnfmBO+Z3fottx0rnmSUZX9npO1w72qld2K23xUiu2rmzBmrLq3pnsE2l8zvfNqfTFpi5aW8cY/k/OjUtW6zotPFnrdurSbpxuPP+nDfcO5t22bJOG2OT6c7anOUb9+pmb7+5M6a64cxOn3J43d73+p65nXfcwhu3rOQmye5rd2pPrp/ujL1suWC3Sm6SLBjvtGtHt+yMb22wfm8Oe/61nd9iw417+9Bdv7DzzpixdWccauNbe/sF37yiM+8+tbTTsN174975GreVjqu4d6tef3Xn6c786uUzO23E3e7o9M+S5NqNOnMPW5b2R7t1ca9WdOmSTvtlaGjXSm6SrFvaSmn4zksruYPlvW/URlt11sZde1Vn/eiW6Z0Tumjj0prXmZ09WJNk2WjnPbf0mlv+r3XPQ9PT//ubcbuxudPv3ezhq/TCkmQw3RvNmjPc+fAvn+wUbg8NehuAjZZOI5oYdIp9kmR4qLNBwNDKzmDkkqneQWCDiVKHbEbnGRkd7w1yrixtuj826G00MzXS2eR3qtSgmExnsjpJRoc6v/NQOgOzoyO9RagrJzv3xehI7+83NNXphIzNmFfJXT7da2hOl+7lGem87xcv721yuM6cUkd9oniS4lSn/Tk8o9OWW9KrYc+M0c6E5+hIadHEyt4G91Njnb/fzMneiUGLJjvfqfXGOovtl63ovYsmB53fYmioMwAwVGwvT5W+URPTvXt5rZFSG3Go0xaYWNYbpB4a7Vzz6KDT9yveFpnqNJeT0mFrSTI21HoXdcah7pvoDVJPtQZ9hzptl8nJ3uTh0KDTRxsdmlfJTZLFS0v91daYwGjv7zdRupcH0522wNSg1w+eWtFZLDCYVTxIoPSaGyztfEuWTfY21pyxVid72dLOjzw20jsQamio068cH/Tu5bHJzhjJ0tKc1PhUb6HV8tJcyaLSgYgjg94c6IrSvbxWen+/e5Z2+tgjo5328kRpAUKSDGZ03nNTU533/VDxGzU86PSxpyd687b3lYrtZo102hgrJor38nBpfHll5/251ozefPDwWOfvN10sMFuSzrO9crpzX0xN9uZAJ0vP9WnjCyu5dxd/iwx3npN5k71Fg1sOd7JnTXWe65EZvU021ivVvaw31KkTWGtmb+PUxYs6z/WS0V5t35zJThtxvbHOd3Wd4d7fb9lUZ7xvaND5Rk2PF+ewSwvQZ/eaGMnwqt+U7osLr8ltE0v/q5fcFrNnTL9891W/2cz4vS9e5Zn/dvZHflnJfeTrOod0bP7SR1Vyk2SL515QyZ0+qnMoU5JsMvv9ldy77tq/kvvHlb3f4mmlzfH3e0RnvuLjP/pDJTdJFpc2dX/awxZWcpNk9v2djQf+fl3n7/e5G3v38rMO+Fwl9++zj6jkPv6w3kbK80/rHFhy81q/qeQmye2znlrJPWb51yu558w/oZKbJJfs/OdK7oOeUtpA6uwTK7lJMn3tKyq58+/o9ZM2WfGdSu7Q4H2V3C1X9moXBtu9s5J70VofreQ+ctvehrnz3tt5/s484KuV3CTZe69Ov+SW239Xyd3rF0+r5CbJ0nU7tUPnPqozJzt5U+ewriTZ4+Wd32Ld2zttlyT5/h9fXcnda7rT9jz4D72D+LZ4ZWlB/DpnVnK/duevKrlJstY9nc057j/r7EpukjzoKQdWcs+4ttTGP7V3CNKRh59XyT1wqrMx1SeKNS03XbOwkrvZXk+u5CbJsk2/Vcl9wf3HVXLfcNe3K7lJMrT49Erua+87sZJ7+s6bV3KT5PLLO+/PvY5+ViU3SXb4zV8ruf9Yu7NJ84I5nYPCkuRRd3Y2wDzjns77/rCpz1Ryk2TuWl+q5N49/2GV3CR54PM78ztnzZ9fyd32jt7GfivmP7eSO/sBnXmHL1zc2WQtSYbGf1fJffohz6nkJsmGN13eCb5vj0rsT8/9cSU3Sa5/7uGV3Jt3fUYld8tFn67kJslmn3pSJXfig52x2iSZf+ODKrnTF1xTyd3xttJOkkke9j+djaVv+mtnvOHWVx1ayU2Sq37R2dT9tff1DqD+0b869XXXbHdGJXfbO59fyU2S+7bo3HO/u/URldx/XfL2Sm6SPOb6R1dyz3tib93B+BWdsev91u4cBHHj4ldVcpNk5hOur+Qu/2dnfHK9pc+s5CbJ7hv+pJJ79/zeXNc1nbMPctvGnXmj43/7l0pukmz34oMruSf9s9Nf/eTwLZXcJLnut52a6jNuXljJTZIVsx67yjPPP+q83H/5ff/xx2Sf4R2n/zjnE6v8enZ/ReeQ7SR57eaXVXJHL+jsKfrUE15WyU2SI79wfCX3kwf21vYe/pfOt3irR3cOM1/8nN6elOs/tjOnfvH5R1dyH//Y3sFJj/3yqn8vJsnaO7ymkpskL3r6Nyq5Ozykc9DvzGf0atb/dNObK7kv+8UXK7kjv3tKJTdJ7ju6k/2lP5Yawkk+vd9RldxlJ3fWoqx3R6e2J0n+Mtbp77+3MySW+Xf1Dmf81Mn7VXJ3O+DlldwkefATOmPHo485qJJ7Znp7ir6pdLb7S1/ZqfOdd+WbKrlJ8u479qzkvvrFpfm8JDN/1fmWnL9XZ833QU/r1JUnyYd/3altPeHSzkGjh/yzM0+fJFe89C2V3M0+0Ksn+8if5lVyn/TmCyu5l+7VqZ9Kkvfef1Yl9yP7vauSu+h3vfV27zhq90ruFZ/urBdJkstf2RnHeOXJnW/Uzed12uFJ8vF13l3J/fA+nbbne/fvjU+e/LDOOWln3/K9Sm6SPHe7V1dyb9lv30ru4fM7z16SPGTRaZXcM296QiX3Mbf1ai73fWlnfvq4tDb3T6aO/30l95TzO/s6HfT2TjsuSa59S6eN8fQLOmsEP33qgyu5STL34k4N48g7LqnkJsmnv9IZu37Ty39Ryf2fs1f9nk7/9pfDP1zJ/d3xnfHlX274tUpukrxrs84apft+1WsXfer6zpqRgz/dmes68YiFldwk+cGmnf06HviQTi31Jof16tQ2OqczKL7Rwzp7dSTJ+59wTCX3J8d12vi/PaUzbpYkf352Z83Ba97VuZdv2/sjldwkWecRnbbcbw7ctZKbJH/Y5YBK7ifT2V/rqmf05roe9rl/VnKvuOmeSu6l0701/c95SKee+sxv/KiSmyT/+n6nvuG4Izt7Mp+4YK9KbpIccW5nTO4hh3bmbU8667BKbpL84bjONW++fW+vo4Nf11kzcvp3n17JveRTD63kJskpiy6p5B584HaV3Ev27OwzliRX3dzpR7117d75eX/cqVOEcMyXr71wenr6Px402vEB601/8jurvt7wxqcduMoz/23DMzr1yR96YeesqwvP6eyJlyQ3fO7nldzL/tI7O+N78z9Qyf3MJUdWch/51t4eSddsdFEl9+jxF1Vyj7+id27bQa/t7Hf5oat644/fPX/bSu6hz+mcvXDiHVdWcpNk4x07+6s+932d9QwHPPmISm6SfODszrq3J1zQW0P2gds7eyOMH9apXZg46reV3CT50k6d+cJTv72gkvuIE3s1/Fd/sLN++lOP2KeSmyQv3qEz5vaMyzr3xbGP6tXN7rZvZ77+hwd15kKe9IPO+osk2X2ks+fC3/7xukpukmxzYadG5MIzO/sC3Xp1b7+vJz3hPZXcLU57ayV3/WV/r+QmydNu/2Eld/MjOr9xkjzk7fMrubuc1Hn+Thk/opKbJNs8sjOuufXfOvta7PONqyq5SXLrdzv7Fxw53anvSZL3v6izP/Uhw6dWck/7Zm+v4O+d2lmP+fafd+Zu3nVOb7+v2/fv7N/zo5mdtQFJcuF3Om2MG87t7J/wmnU6Y4hJcu3Wj6/kLtqxs1/Nk7/aOUspSY77bWePx+e8vHfOz/Nu7cyrv2u/zvfvr595byU3SR77u8687M3v7NRxfGHvXtvzeSs6taKnbtTJTZKHvbazp+iX1l+3kjv4bG/vs0W/7JwB9fulD6/kvv1jvTNetzm/s57vyte+sJKbJOe8u9NfPX2bTu3Cy1/Y23f+1vd1+iWLn/OFSu7zvtw7/+mQd3XqUH9wXG/N+W0v6Zx18MSdO32HB2/dmadMkl+c/7FK7oH7dNaPPu4LnfUzSbL5PZ25yvWee2IlN0lOftPzKrlTv+2sYfv7fp05mCQ55EW/ruROjD6xkvuCe3pn5rxsk8436pc3L6rkJsm1F55UyX3p1Z21OXt/Y5tKbpK869mdcyYXruic37X1sZ05mCS58mEfrORedENvzfnDj+2M177uZZ298q98Ta/vvnSkMyf8lC/eXMk9ZO4DKrlJMvuqTtvzBw/qrF9Lktsf2llzvuiN6/9Xdc9jm2w4vcVzj1jl13PD47Za5Zn/ttk5Myu5e4+tV8nd8VOnV3KTZOfPd95hD3/7Tyu5SXLl5zvzN89f1jkjYd9HdvZ4TJKvf2V+JfdLO3Tm1M9dtzf3fc99nRqRsU1eX8lNkqOO7Yx5L72os6b1qu915t6S5I5HT1dyl7+z0xe99Jje/lnHntjZv/XvB3TaPEnyqT90xsZuf2in7nnBjr225X5P64wFjT2qM5b3+mefW8lNkvFjO7/F57brvC+S5PZHleayjuysDdjsK9tXcpPkJT/srHX+wCnPruT+5h+nVHKT5JObdNZKHHTZykpuknzmU4+p5N6wqLP/5+m3dfY1TJJfHXZgJff8j3ZqtS85oncG4T2/eHEl9xX79NaqP/G2zrzeHft36ntmvKqz926SvHCkszb1q/t3zs35/nc79bhJsvGPSnus/qxTA54kX/z45pXcz27W6a/eeXjvDK8Dz+6s5xvbtrOf0Zw5nfVPSXL8Jzv1Fp+d2XlGkuSBl/+gkvuCp7yxknvLOZ1z7pJkfMG9ldzdvtqpo9rq+50zx5Lk3Kd2xoE/8/xjK7lJcsdvO2e4fviYzvP39Z2+VMlNkjuu7/Qdnrz5fZXcSzuf1CTJo3/TqeP42EEbVHKTZMl0p778xEd09uve+e29cYxrHvjJSu5HbuiMIz7w6M74SJK8dHbn/Xn43N4euf+4vFP3/Mbxz1Zyr3zNcyq5SfK+N7ygkvviHTvzwXOf9pJKbpJ85wmdb8lPX9R5XyTJNY/szMM8Y/zESu5Jn+7tq/HZ2zu/86af6tTXveA5vRr+Fzyxs07wxa/t9d2fdUbnXbTF5zr7db/+rZ3vSJK85vpOHdzSSzau5N732lmV3CR5Z2m7uNM+2VsneM54Z23cLrt0agIv+2BnrDZJjjy+U0f80TveUcl92597e9pf9JdO+2Wtmb3zII96bSd3nZM6e1TMuqq3V+rxn+isjXvyozv7EJ883Tl/NEnOefXcSu5Vu3b2YE2SKzbp1J399dDX/1/rnns7VwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/0MGq/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBNMFjdFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa4LB6r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgTDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE0wWN0XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrgsHqvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWBMMVvcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCaYLC6LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1gSD1X0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAmGKzuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANcFgdV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwJBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCkf/kH09nKOPTw6v8IoYHqz7z3xYPpiu5w4OJSu5YNq3kJsn0YEEld7Bi3UpukmTGWCV22dDySu7skWWV3CRZNLKykrvezO0quYuWLKrkJslg6L5K7vKJeZXcJBlbq/OemzGyViV3crz3Xl6yovP8jY117rnZo7MquUkyvWT9Su7ozHsruUmyaHJOJXd6vPNdHRrutAOSZHhyRiV3KINO7ljnepNkxbJO9pyZ45XcJJme2flm33dP5+83c1avjTE66DzXE8s67/vpkaWV3CQZLN+skrtiZGElN0lmDHWevyXDV1Vyx9PrO6w13GkXTU93fuNB8V5ePrR2JXfGZK+NOJjRacutnB7q5I6sqOQmyVqj/9FQzf/a8GC9Su7UYGElN0nGZ3W+q7NGO/dFktyfzr2xfHHpXbRispKbJJnZ+S1G0mm7DI0WxzEmOs/f0unO+EiSjM3p9IWXL+38ztPFe3l0dmdMbmJ8tJI7Ndx7x2W008afmJhdyU2Siek7KrnLpzptzxkzOu2AJMl05708PHOdSu5g0HuuZ84otZeHO22XJFm6sPP3u2e681wvXvqvSm6SzJnV6VdOT3XGESdHe/fy0vF7Krnj05tXcpNkaLQz3jc0UuqvTvSe65Hpzj033brlRjvfviRZkc59sXy8N6Y6e0bn+7d0/P5K7ozhzpx7kqw91Ok7TI92/n7DQ7321n1LO+N9E+mNyY2W3p9zpjr9koWTvef68lINyUOGO++LsyZ7fb8Vpb/fTjN7fb/7pzofwBmlOo/1J6YquUmyeLqTvXi4M44xUhyenLd2p/0yb0Xvuzox1Onv3D99cyV3aqjXRhwZ6bQRJ4c67fCx9OoxOiPiyUSprvb/m17I/O+vd86yGTng71uuwmv5Py7d/s+rPPPfnvL2zgvyudd1nttrTvhbJTdJzj3v1EruWkM7VXKT5J5FG1Zy97nu8ZXcLfefV8lNktHxjSq5H3nNtyu5f7psn0pukmy3/68qub/69laV3CR5yOZ3V3IHg05N0p5PmVvJTZLc2Plu3rrWoyq5N/3hlEpukuy3aONK7uVbPrySmyRbT91Syb3ygmMquVv9pDd+tWyH2yu5W2/SWY/y2z99oJKbJDPXP7+S+4fFnfqCJJn3uv0ruc+///eV3L2/2Pstzv/TRyq5k9/9ViV360/0xni//LjDKrm/W6fXLtroxk4bY/0X7F3JHXtqbwBr6PzOb7Htxp2+38wn/raSmyS//t7RldzxW/ao5CbJ0Y+cX8n9ypVXVnK3P+zNldwk+deKt1dyz5g6uJK77p96taJr7dZ5f1689/xKbpJcdHdp3eQdu1Vidz76wEpukpx56C8ruR94Y+dbcug+76nkJsk6T724kvvcda6t5CbJBn/aq5L7xe91fovXPWXfSm6S/Oy2r1Zyf3TvDpXc2euu+vH7f1tvs5squYe98UOV3CT5+S8648Azhzvv+3/dMK+SmyS/n/GKSu4W53XG5GYf/MBKbpLcOrtTD3/ZrjtWcpNkj+v+Xsn949GnVHLHb+iMuyTJxPqdMZKb06ldeOaBP6rkJsmXzn5tJffkub+u5CbJXr/svPOv3bHzXK/c50GV3CTZcK9O7d6Wyz5fyR0Z9NbcXbhZ5++36Rm9fW0OHOrUBM7fqLNHzBV7d9b8JMntQ522+M6P7tSgXn/mrZXcJDl4+NxK7tXX9mp9T3vkAZXcp/5li0ruXzbaupKbJA+6pdNf3XlJp08yfuMLKrlJ8rXSHj+HrOzVBM4+qlNPs/2czjdqj413ruQmye8X31jJnbi9U9vwiDdeX8lNkhf+6d2V3DNWXlPJTZL9l3banz99xp8quTtu3qsBX7hpZ+5hp+vuquSePKdXp7P8kT+r5K6/6YcruUky6/xV/5yMLL3ov/rvLp+6JzssXfX1kR88+52rPPPfPvrFTq3FjBuPquQOjj6nkpskjz6882y95gOvrOQmyWsO7oyX/uCBnbn6XdOr/z7h+mMruQf/pFObdcWc11Ryk+Ta2ztjmgc+eJNKbpL8ZNmlldzzHtGpRzr7xZ29LpPkc6/fq5L7zn91altf95vfVHKT5JRdO/OQj16r81wnyaYbdeoLLn/OTyq5D77iaZXcJNn/hZ3cJS9+YyV3MLdT55QkZ73iKZXc39/5qUpukhz1ks6eGY+Z25mDfOuiv1Ryk+Tpr+/0Zd5170MqubcNnlvJTZK37HJbJfe4DTpzkEny+yM66xrvfUFnjGKTV/XWeH7p1Z15002WPKmSe8A+vef6q1+4rJJ7zqs6tdRJstn6363kXvuI8yq5Cxd+oZKbJD/bu7P+8LR1Ouufdrv/h5XcJMlRL67Ezryys44vSZ4/95BK7l5LOnOFNz7+E5XcJNnr3CdXclc8tbPmYN9fdfrtSXLqdZ2/3x5P/mAlN0m2Xf+hldyvf/6pldwDX/fPSm6S/GBBZ+7tRRs8q5K7YLfeWpRlC75WyX32Tx9TyU2S/Z/cqZvd6bKFldxTvnJhJTdJ5tzZ+UZ95qxfVHJ/cc3lldwkufq8R1dyn/uSF1Vyk2SbT3Z+j3/c0JmD+d2n/lrJTZJPfeqsSu76r+icy3f9xzpt2iQ54xWddTlz33BnJTdJFu3y1kru1I2dOvuLVnTW+yTJJWcdUck99aWdNdYHbN2rzTrk8s6Y3K3f/J9KbpK850WdfUC2/3lnf8eDHv2HSm6SvO5/OvfGsgM788FHPrm3V87LbursnfCNkZ9XcpPk5Nc9s5L7/I98p5J72qt7e6Ks/aaDKrnPW3Z1Jfcxr35EJTdJdvhSZ23ABtv02oi/Hum0Mc7e7NWV3P0u7K2L2/upL63kPnTBZyq5W/y+N758/s2dNsbsC3t1okc9bddK7i1f6LSLNhw6uZKbJLe8sNMP/sMzX1/JPfK8zrcvSb551/GV3I/d3mnTJsm7/97ZwzP57/YBmTm+NDve/N/VTP//88IPdvY0TJJn79LJ/vP9nXXOJxzSqxW99e1nVnIPeV9vL5wL9+2c93HJNp3ak2PuPLmSmyQX3H9BJXfjyzvfzFnndNbGJMkDHto5X+1H+7beuclrP/iWSu6+5726kjt01O6V3CR5/t6d+vIbNurUOj3qoSdVcpPkY9/Ys5J7y829Wu1PHPq+TvD//LQSe/rTOrVOSXL7WZ16p+Ne3xm/OvDeTj1uknzr1M4+A59+6dsquUly1fM7tQAX/7DTlnvB4b15hR9t36lP3vgXnedvxwP2q+QmyZ53d84MfsU/51Vyk+Sp886u5C4a6swXLturs0dLkrz+9Z3v39u/2XlGZv1Pb9/ke79/eiV39md7+5b/+Po3VXK32K3zvd78hk49fJJcfcRHK7k/u6yz5u4FbzulkpskW+y0aSX35gN6e3Fc29mSOedv0dm/54K9e23EO0c62d/56Q8qub87qNcP3neT0jdqWW9/47GdOueBzNu0Mw612TN6e8LelM64wCnve14l96Gf/1IlN0nuO7zzW1yxU+88zbUP7dQuXLRJZ0x85wM7fZIkee5fO2dWvXx+Z0/Dt9y9bSU3SVau87FK7inf79TNJsnjpzp7lB01/b1K7t+v7v0W+39wSSV3z3WPrOTetE1vH8aLH9bZ5+DuIzrrXJJkh/s6Nbl/e29nf86P/aQzJpAkHzyuVJ88szM/98leOXx2Oa0zXrTsob29QP5+TOdc2pN/09l7Zu3NDq/kJsm87xxayV1+xjsquXfv1lkLliQXLeu0Xx78sy9WcpNk6ec7NVpXbNLZ/2LHtXv9nUd/rLOn7/EP7MxHvfSm3nzwTetOVXK3/HrvXv7I0c+u5G7zxk5t2Jkf79RCJcnnb/5kJXfLz3XOtjnnMZ1nL0lu+kSnAXPCPp12QJI88c/Pr+ROPLmzR8Vzl3b2t0uSPR7Syd799cdVcl+2+MuV3CR59cGdM0Lv+2avjbjs+/Nq2f+NuRMzctg9W63y3Pfu0ln3liTTj+zUy7xw5rsquet9ozeWd/m5nT2jZn28N36VMzvvsDft3Nmz5qB5vXOqn7RRZ2/Dr99+TyX3fXN7ZyUN7u+cP/+kL3bWBiTJD47r7EGx1ZxODerTX9s5aydJ7nzuZyu5RzyhM3586X6dfl2SHL/yYZXcM6/pvO+T5AOvXVDJfdSRnXv52B/3ztMc3qPTbt13987ZARNf6tXXnXdaZ2+gJ71icSU3SU7a/XGV3E+9pnM+w06fL20wnmTL4U6Nz7vP7uw59Ouv9ube/vmeTn35Hzbv1fr++gur/jyeJPnBWZ15hWd9o7fP1WlvvKSSe94/OvtmvP/g3rlf49efUcn9+Y96azA+dlxnf4S/bdgZI/zRO3rvoi/8vtMWGPtkp9ZwbM/eHMsXft05h2b9R3Vq4JLkt3d01ufsd0pnf/8HH92rr9vsBe+v5H75fZ2zRpbse2IlN0m2O6xTQ/yIH3d+4yQ54LqvVHJvnN3Z3/+OU3u1C8e/sXNO7o0v6Oy3fvANvX0N99z5sZXca2f8q5KbJI84tjP3/ZtzOmcgXlHaKz9JBkd25uu/9NnOGozPfqrXj9phWee+2GTykZXcJPn0e/5Ryf3ubp338jmf6JxBkyT7/qyzTvCPD+zMwVwx2anTTpJtDp9TyX3HLr09mmbM63xLXrVXZ7+c1724d071LxZ15tFmvKeznuhBL+msGUmS78/urGHb8h+9fW1e88JZldxdrru5knvtB++t5CbJ+cs69XXf+9oJldzH/P7rldwk+duCzu98ya86YzpJ8rNXdr5TF9/TaRft8b3evO3MPVf9HpBJcs6DOn3KW+f3ziI/bf/O+3POWZ097ZPkd/d2aqrn3dE5X+qyp/Tu5cnvb1PJ3XvJ7yq5o2d1vqlJ8u3jT6/k/vnITps2Sc7/QqcOdd7lnTqd732qN9d18gs79Wzju86s5N653fcruUny3occUMk94f1bV3KT5IPXnFjJ/f+10+ag8n8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP/HDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE0wWN0XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrgsHqvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWBMMVvcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCaYLC6LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1gSD1X0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAmGKzuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANcFgdV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwJBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCweq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYEwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBIPVfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCYYrO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1wWB1XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArAmGpqen/9f/eLux9abft8VjVvlFLJ9cscoz/23ujJWV3OWjcyq5a01UYpMkS5cur+SuyP/+HvpPrTO6ViV3MDpSyR0Z6txvSTI9c1DJXTFZic3k8iWd4CQZmlWJnTmjdy9PTXTuuenhuyq5Y5PrVXKTZGqk884fXtl5Ly+fWlbJTZIZGavkDg1VYpMkKyc7H6q111tayV2+tPPuTJLh8bmV3KXp3HNjg969PDzc+Z0H0+tUcpNkcmRxJXfl4nmV3Jnzxiu5STK+svNbDGeLSu7k8vmV3CRJqb01c2j9Sm6SLFm+oJI7OTRayV1v7saV3CRZtOzeSu7E0k4bf8Zo7x03NtRp5E/NqMT+H+Ode25yqtNenszsSm6SzBl02ogT050xgenR3m8xvqTTxp/I/ZXcJFkyfnsld/asmZXcJUuHK7lJMhgqtT+H5lViZwxPVXKTZOWKzrdkaFZvHGP5yk4fbWxo7Uru6GBhJTdJJic6v/PE0EaV3MmJ+yq5SVIaRsxwadwsSVbO7IxjjEx02nIja3XaLkkyMt15zy1f0elHrTOj14+6f6pzNy+YuLOSmyQT051xgYnlnWdkeqj3jRod7rwzlpYmS8aHe2NyI9OdTtrojF7nb+WKzndq5aDTd5hOb0xuZNAZyF883unvDI/0vteT453s4ZHexPvIdKcvPGvQ+a5OFOeNZox3+g4rS/P5UxO9+fyJoU4fezDde/6WTXTmbccnOt/V0bHeN+qcZZ223HXjpd84vXGMOem8i9Yf6Y1DrZPOczJ3uDNuPXu0MwacJBumM444Ufqsjs3ozeev1fr7TfXey7NHOn2p4eHOfTEo1fUlyfJFCyu5kzM6789eLzgZTHX6JWPpzVU2ug+fu+fq3Dq+9L9q2W6+/ubTLzv0Jav6kvLUda9e5Zn/Nv++z1Vyr/zISyu583Z4QCU3STZ5+Jmd4Bv+2clNsufcdSu5Z+6zSyX3AZfeVMlNkqVzv1fJ/eRFh1RyH7Tpryq5SbLuRn+q5M74V+97vO4PT6zkLpvVGVfZ+ID9KrlJMlb6nf/12844xYZv7o1//OHTnZbP49/SG4u9YL0tK7nrbXRHJXfhgt5871FvPKyS++OPvKmSu9OlvZb2jEcdU8mdvP4rldwk2WjRKyu5J37vlkruc96zfyU3Sa7/TKct/sBDN6zk/n3B3ZXcJNlok057+bGDoyq5SfKlB9xcyT3qt+dXcu/f+PBKbpJc/OaPVXLnvuR1ldw5C0+r5CbJYx7yqkrudzf/QSU3SXY9qdN++emhT6vkrjfVqVVLkpec85lK7lt2376S+6hbdqrkJsnj9t2qkvvhZd+o5CbJvt/+VyV3h2Mvr+T+6cPHVXKTZKMP3VjJPf+2zljs477Sq4m4ebzzXf3qc/es5CbJM39zYCX3uxt9vZJ7yBEHVHKT5O/nXVvJfeuiTvHJ987do5KbJO879JxK7pV39tbG/fVFt1VyP/GDzvrDd1z41Epukuz6nM7anPOWdGo6b7qtV0P8pId0xki++NVHVnKT5Mjjzq3knnFhZ3x5w59cXMlNkot22aaSe+hjd67k/vHCT1dyk2TWri+u5N56xm8quUmy67Gdd/56pbHPi+fvXslNkl3HOu3aq/aYX8kd+ev3K7lJkgdsW4m9Y6N7KrlJsvG8J1Vyz/9Tpw7usJ1aK9iS8y/tzOc/4NJOrdruO3e+qUly2uc77aKpJ19SyU2S3Z7eGbvefU6n1vcjW3bGzZJk6d+eXsndcrpT6/ubb+xdyU2SBdd/oZL7whfsVslNki+f8dhK7kG7dWoFjtm69y761eLOt2TvSzvvuGUvfGglN0lm3NIZnzz7N50xgSR5/74LK7kbjh9RyZ2cvqqSmyTL7urs3fXjF/2ikrvxH19eyU2SRXd0fuftHtYbR1x741W//8X7zzorN95zz388qLrLBrtPf/nwVT/HeeWpr1nlmf82vbAzXvPkN7+lkvuX33b6dEny3ts7/Y2VL+n06ZLk4+d12sKnL+i0K1/x1t7atKV/2LeSu+DLnXrA/e7q7fU848rvVnLXed0zKrlJ8q1fv72S+6afHlrJ/fEJnX5MknzmsZ11b/8YfVsl95N39Pa9fuGgU0P1+JHOb5EkJ37mDZXcv3yiMwf5t9Fe3cKFp/+oknv0QztrDl763I9UcpNko3OOrOR+69NHV3KTZK8nb13JPej2z1Zy9/tQp++VJCdNHlvJfd3hN1Ry935wb43gBg/frJL7wCfsWMlNkrct7dQBHH9rp4/2y6f+oZKbJK+8oNOufcDrn1DJPfLZvXv5Fce8opK7dJ/O2sMk+cq/Ov3KLT/+10ruM0/4ciU3SX60pDNfsdlrOu/lVy98QSU3SdZZ8cVK7uuHHl7JTZKrPtvpr95yXKe/+tjrOvvkJ8n0T75dyb335Z2x7oOmejUc513YuZevv6/zGyfJbX/+aSX354/t1MC94voPVnKT5CebdGqorvhHp43/24f16gzveGdnHftpPz+vkpskb3tbpwZ18I/OWsw5j+79/Z676wsruQ99duf5e/fzemsEt9rieZXcux7Zed8nyVfvflQl948LO+uV97yrsz43ST55aWcflxO2/3El9+4tT6rkJsnVd3fGJ7f/9YMquUmy+R6d99zoRs+u5I59rbNeJEm+9tjXV3Kf8tZOLfwt67+zkpsk75nXOeP1vV9d9Xu5/duPT59Xyf3HkddXch/97M77PkkedvmVldwfPbuz5mDnl76jkpskB67fGXs59r2/rOQmyfZjnbXQDzykc1+85cBebdG+V72skrvnws5v/MFbeuugjz7xgZXcZ7/5J5XcJHn3tzrvuV3fu08l98OHddqeSfK2Ex5fyb3ohZ0xucu27ayPT5L7xzo1CEfue0IlN0ku3aPT9/vIw4+o5K71pU79ZJLM/3rnXOHHLO68P//y985epkly8MxODd7fpz5fyU2S/e45uZL7gvz1wunp6Qf/p//d2B6zpzf/6aqfmz3/QZ1+eZIsOKnTtvzwizt77Cwf79VnXbFbZz35G4/sfCeSZIu3vqiSu86lF1Zyr17WGS9NkntmdPY+u+2He1Vyt7xgm0puksx7cuespHUX98Zs9nxjZ4+yNz2vs3fddo88sZKbJAef3FmP8o9jdqjkrvXZ3llJ177xW5Xc2648o5KbJD8c7+yf9citOrW+H37IiZXcJDnnos4+xJv+pLOW/JYPds6tSZKXf6EzR/3sR/Rqtfd/cGfOYvH676rkfmLX3pr9d1/cWXd3+2lnVXI3fG5vT8o/L+jsQ7zFo3v7tW006OyVf/RrO/2oLz6gVwM++cXOWOwtO3Xuiztu7p0n8cUjO9+SOW/rnaHwyx06azA+PPzhSu67hzv18Emy4LzOPpp/27sz3/uYzY+v5CbJzz7e2T/ksb/apJKbJN+5ofPOf/MRnf32Dv9N5yzwJLn5xFsruc/69gWV3Gfu3JlTSJLnndepPVm2ce9ePmXXIyq55/+yc4bk977WqzW85YJO++Xa/R9Syb1g595ZZuf+pTPfO/9x//FUxf/aFdOd5+T6F3yykrtiv84+VEly9UM7dQAzSnuKrtjkQ5XcJLnmvM7vfMrc3tqq627fppK7176dNZP7Hv7DSm6SjL23s0fM3Yd12p7bXNI7V/Hoh3ee63k79eoj3/Dy9Su5W73qA5Xcxzy1t+/1K37VaYsfdNwGldz3fHt+JTdJdtqzc5buttv2akXXu7dTo/WmHTt7BO50T+lM6CSb3dmpWz/glZ0zx37/4o9WcpPk7id21kw+4qUXVXKT5JRfdfah+/hnj6jkbvr83r08/7z3VXKXL3tKJXerR21eyU2SkSsfU8m9+093VXKT5Flv6ey9u93vOuP4v/p0Z/1Tkuz9ns4a0nNf/+tK7mGn9WqID31Jp7Zo42M7YzpJ8rZB52yUGz/U2VfjpL/29ure+q+d/SVnnbtpJfdrG5xSyU2SFa/rnGFy6IeWV3KT5Khnd2oFPvOLJf9V3fPwA7aanvmNVX/u+g/+0qmBS5LFfz61kjvrmW+u5B72wd5Y0E3P67SHH/2N3rj05rsdU8l91R87e/j84eO988uf+dbOfhxHn9fJ/clhf6zkJsmXJjtrnV/2w39UcpNk0XM656Hednynb/7AL/TWh774HZ056k2e1dm79WUH9PaWOfO7nfqePV7TqYFLks/d1enbfeEznfGrryx6ciU3SYbvOrGSe9vbO/W4H13YqQdMkq99bFDJnXX71ZXcJNllUeeaj3/RLZXcxdd33hdJstX6p1dyv3NCZ+/r8YlV3x/5t1l3dn7nX849vZKbJFMTnedk23TWEz3x1ydXcpPkXbM6Y97rvaKzh8FzdurMKSTJjOefUsk9e6hTQ5wkL/hK5zt1+uM7exHPeVBnT98k2fBbnfX1J7+kM1/xm106a36S5A1f6uyzs/97e3+/TV7Q2d/iQ8d31kJvdWfnzMskWXp6p/byw0d31mLO/lCn354kt/20cz7KWd/sjcnt+4FO9jGnduYhL556ViU3ST62Y6fe6dO/6KyR3+Ezvb7fK9/aGYf6yGv/XslNklc+/leV3D98t/POeMOxvf2eL7q1sy/Khr98fyX3x+/qrBlJknf+ofM77/nbzvs+SVZe11l39+a3dM4QetmSznlKSfKx/T9RyZ25badub+dXdsbDk+TdB3fqI3/4s95+Vcve/p1K7i5rdfY/u+GdnTr7JHnKRzp9qZM+3RmTu/aMx1Zyk+T0j3fey2cf/NZKbpKMXNAZkxt7ZqcOZ5NLejUtu/2gM6b6rpWduZJ5Gx9TyU2SA87v1KFOvau3f+TRN3fO5zts97MruR9+Y28vifs33LWS+5e5nTMJHj5r7Upukrzt1Z2zof/ypN6+Gk+bvqySe/gjDqrkXvTH3hz2d7/XOW/k1mf8pZK7y8XvqeQmycn/07kvXrDrSyu5SXLIgZ21/bMWb1nJ/dHXr6vkJsmZT/1MJfdFl51Syb37tNFKbpLc+vBOe/mqlZ3ahiSZsaCzX+OrNt72/1r33Kn+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/xwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBIPVfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCYYrO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1wWB1XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArAkGq/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBNMFjdFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa4LB6r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgTDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE0wWN0XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrgsHqvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWBMMVvcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCaYLC6LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1gSD1X0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAmGKzuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANcHQ9PT0//ofbzc2b/o9mzxqlV/E2OzZqzzz36YmVlZyR2eMVHInl69VyU2SoaGFldzBxKCSmyTjo+OV3JHp0UruyunO9SbJUMYquYPhzjWvHO88e0kymBjqBM+Y0clNMjU1VckdK72LJpb+778N/6mRsc7fbzCxvJI7Pj6rkpskM8Y6v/PUaO9bMlF6tmeNdn7npdP3V3KTZHS88/0bHtxXyV02KL07kwxNLavkTk9sUslNkgwWV2JnzRiu5C4f7z3XM2Z13kWDpZ321vDYRCU3ScZXLq3kTkz2nr8ZY52+1PRUJ3dicG8lN0lGplZUcldOdZ6/qRm9b9RU6Rs1lt69nMkNK7Ejg7sruTOGO/2zJBkerF3JXTrU+V6Pr+g8e0kyMdnpR80Y7fSjkmTxZOdbMrWy8/ebM7M3Jjc+2cmd0bktMjHo/RYTk5130cjwzEpukqxc2eljzxjufKMWTXTankkyOtxpf06Xfotl47338lqDzgM4OVJ6sJOMTc+r5E6VxoFHRnptjIUrbqvkjo93rvnOdL59STKYKn2vl/fu5dHS2PXkdOcdNzTcadMmydB06d4oDYkvHe/dF5Ol8a2h4rtoZLIzDrx8YlEld6o4pjox6PRLBtOdd9zweK/tOTrS+Z0npnrztjPSGS8aDDrXPFTsB68sjRdNT3bmo4bTmw9u1QoMpdTBTnJvqe+3bKpzzb+ZWFjJTZLlpfn8if+gJus/0esFJ7uNza3k3jy5pJKbJOuVnu1NBp2++2hxTGfOUOedv16pjd9qByTJ4tLY9TpDvW/JyEjnW7JO1q3krij23YeGO/PuY+k8f8tKdZlJMjrdeRetGOr1/ZYPVn0b4wf33pwF48v/q5fGjnvvPH3SOZ9f1ZeU2zb4zSrP/LfxoRsquWtNXV7JvfSAAyu5SfK8+66t5N57cK/PeNB376nkXviyp1RyX/X831dyk+Td+3R+57+++pBK7kPfcnUlN0lO2bLzPT5hl79XcpPkoZduVcl9xTXPreRusP1rKrlJsvv08yq5f3rohyu58y/YoJKbJLuNv6iSe+7feu+iZ37uAZXcfa7v1H5t+8APVHKT5PezDq/kDl92ayV3xqJdK7lJct8fOnOny9butOOS5PYrO+/ldY7YrJJ79xZzKrlJ8t4NOuMUJ119fSV375+uV8lNkgue+ZBK7v1331nJTZJ9Sn3oO0fPq+T+60m9uvVnnd95Ti6+vTMuvfTSvSq5SfL7dTvjx0+6bb9KbpLcvfuXKrmDpVdWcu+4uPdevmivTh/tIfdvW8ndcOqXldwkOeDhnfbWht+5ppKbJLfvf1Ul94TrX1jJfeqDOt/rJFnvgk67aGz+9yu5v5zYoZKbJDtu3/mWnLFl5xlJkp02eWcl99Av7ljJveG49Su5STJjZmfs+ohPdca3nnLdLpXcJFnw2s69/KENe3PfPxx0npN9/tmZl12297mV3CT58+TpldzRiw6t5F553yWV3CR50cKNK7nXT7+9kpsk9844sZJ72Nc7YwLn/Okfldwk2ewjnbmu6bvWqeRu/pzHVnKT5Kzp6yq5v9+8U+uUJMcNd8bbrzq5M45x5qa/ruQmye47d9pbh53V+ZZMD/X2O/rL4AmV3OsO7vXdX7K4Uyv61Td36qmf9ZTvVnKTZK158yq5f92/816+feve+PKKn1xSyV36+PMruUnymHMPquR+e1mnv/PrC3u1hrcd2hlveNKiTlvgj2ddUMlNkt2+uncn9+Ref2fR5PMruYu3+04ld/PFu1Vyk+S2B/2rknvUbzp1Hpe9ozcmcPCX/lzJXbB37++36eWdWqslG36wknv7nqu+jvTftn/3/pXc6UWd9+f0SO9e3vOVnbnm91/Q2ZMoSZ4yeMYqzzxp6bdy8+Qd//Gg3A5Dm01/bOjFq/x6xr730VWe+W9bbNSZe9vtZ8dXcr/7w1MruUkyusE3K7l7r9OrE731/a+r5M765BmV3DOf2duvbYPDvlrJfePHv1bJPe3b367kJsnE8zpttBvSqwd89T874+j3b9Xp173rR3+p5CbJfh9/fyX3z1/vrBl+0HmdfXeT5PdHdOYhX3hZb83BohsPrOQe++3O3mevX/aGSm6SbPjtTr/ur+e+uZJ76uDYSm6SLPnENyq5Nz/l45XcJPnURp01I6++ujMmtunDOvVvSXLp+y+s5H5lxxMquY9e9qFKbpIcPNEZe7z22Z+p5CbJ0Q/orHN+52md9TPXfqY3Jn30KZ26k81W7FnJve2C3vjuskFnHvKPU71576eu21nves0BP6zk/uSI3nkEO0x11sWt/PHOldyn7f3KSm6SvPZX76jkXrpdZx17kpy26yWV3D/f1anf/9iySyq5SfKqh3XWbj/kz++p5O7ynOMquUnynI93ambf9dZePdmvxjvj6Dd/8G+V3CfcuurH0P/tiL9eUsnddNtOu/bwzvLOJMmxH+2MtS/7dW9M7oSvdvb+vPyBnXnT//nCgkpuknxh660ruaePvraSm7Me1slN8rdzO2sxJ99/YiU3Sb7+/N0ruQcc26nn/OPLevOm153VyR193UMruY97Yqe2IEkOel6nXbToxdtUcpPkqm92dqb81vM783MPefADK7lJMu/hnT3m/nz4JZXcx35030pukmy7Uedd9Ol9H1PJTZIP79fZt/z6qzq5+z/7B5XcJJk7Mq+S+7lbOvWLD3/djyq5SfLtP/62krv4DUdXcpNkdNuLKrk/3aqz1+yjjuitVz7/aZ35namvPbiSu/OHe2drfPaHr6/kHr9/Z01/kqyzT2dM9QN/vrSS+/YF76vkJskRX3t1JffuG46s5K57616V3CS56vZ5ldx/fPV3ldwkGX985zyXr05vWsl94Ga9sfYf/rQzpnryWy+r5G5xRW9/ip/v2dm3fN27ezXr8w/v9NFGX/LKC6enp//jj+u6szaYPnCHVb/W8ld3dPYHTJKZl72qkvvquZ06qoVH/6ySmySfOLPTzj51WW+v58dv0vluzvrwOZXcHT/TO0lk86d23mEHP+4Lldzhl/fWsLzh17dUck/4Yed+S5KPrd25N1Z+uDPmdvLSp1dyk2TJnp2azj995cRK7l4v/J9KbpJ89uGdNfu/ndNZJ5EkJ77kiZXczx3U2QfuB1v2xq9Gpjt7lI3t+opK7nef2Hl3JslDDums23r5ib09RU952pMruSe8rHNfHDi2UyU3Sb62e2d/452P6jx/t93yq0pukjz9SZ1zA+645ZJKbpL88yOdd/7z/35MJfcn83uFOGfO6Lw/79r0mZXc3+3S+fYlyaFbnVzJ3flhnTWTSXLqFzvrBHc6qLOn73decUolN0k2OfnTldzfv+NTldyFr3hTJTdJBvc/opK7/06/q+QmyfandfZOPubBnT7lSY/orDdPkluP6LQ/r3pKZ1x616vvreQmyYO/2qkRmbjuOZXcJNlx6rOV3H3mdOrgnnJ0px2eJN/8Rmf/nr/9vLP+d8ZJL6vkJskbtzqgknvQSGdOPUkuPq3TFjhy887a4idv3Vuz/OTvdPYUveIDnT0Odnr9aZXcJPn5SU+r5G52fqfWIkmOu32vSu7dj3tLJffqh3XOckmSxW/qrPP8+vqbV3IPPbuz9j5J/vrrThv/Ydv1xhEP+WynxueEqzp7lX7j6b2/3zvf3+nvPHbXzuKAs0/t7Wc/c87sSu7Qq3vvogePdNqfUzd09pD+/b29mqQ9HvrzSu4fNursvfa+751dyU2S0/fprB/9/UNvr+QmycSWndrZoW06e4H8ZslhldwkufryT1Ry3/De0yu5Yx/rrItLkm++bVkl97df7azrT5LTP9zZl2/6YVtWch/59lW/5+i/Hb19Z/+Sbx7SqQ37/NJOmyhJHvHDznM9cUbnPIIkWe+8znvuzIs7NbmXH/DSSm6S3PCmzjk/Z5zaaQvccFHvnJEzXtipT37AGUdUcpNk4Us7c8KH7X7Rf1X3vMOs4emP7Lzqa7SOeVqn1iJJDrmmsw5wm/d39v88/G2dvYyS5NQDv1zJfdDrenXPy37X2fPrynfuUcnd6qJLKrlJ8uyZnb37FzzxqZXc387oPHtJcsxdnXm9E5d1ap2S5HFjx1RyX7/JxZXcR/6uN9/00u916iPfcOHSSu65m3bWvSXJnK3+UMn93WW952/Xt3TOLf3B6BaV3H3f/K5KbpJc/LfOGppj7+isgdr5pgdUcpPk1GWdvWU+vU7v73fE2p39k/90dGc930n7dep7kuSi4c4+nZte16njeNsWvX0Nn7HXjZXcP+/YW9u49/xnV3LvW9Dpl3zqss9VcpPkjZ/v9NFe+ebOOrNrz+/t437gFlOV3K/94XuV3CT5wruuquQ+4ppOP+rob3XOZU6Ss+f/rpL7o4s7Z4seu0HvPM3Bpzvtrdcs7e2H84qLO2ur1ntZ56yRrR7e22fn+is6NS2fed5YJXfeDzr7BSTJO/f8SSX3kyd+rJKbJJ9/xk8ruQeedkwl99VndvaxTZKj/tz5ljztkzdVcsf/2Fk/kyS7vLKzL/MG7+uczZckx+/2qEruJ17aqZtd56LOfpdJMnVTZy7y78/rrPnZ9Gn/rOQmyYWXdPb13eNfvfXbd13Yqak++2GdPR/W+nPvrJiXntc5R+j1D+7s9/DVj59cyU2Sd459sZL73iM6e38mydV3ddq1efcLKrF7v713zutxm9xQyf3gwZ2/3z2TvRrwtz/ykkru535/YiU3SR5yRWf/z2/O6vR3jv9F77m+/5BbK7kfH/pkJfee3b9SyU2Sv+zS2aNi/jXvruQmychBnbUSG/6mMw61zns6a7aSZMXFnX3dNp7V2a90w8t6+/A/cu1O3+G6n/XeRa/+0UmV3Ccc8tZK7sfX7pynlCSDb3TmB6b3OLGSO/OYUyq5SfL3ZW+r5H7o952zFZPkyQs6Z7O/8rudOqs3P+GYSm6SnP2Ozjqzw57R+S3OfF6nT5IkH/3asyq5r/t5b4/qV35sr0ruy+5+2/+17nlQ+b8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9jBqv7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTTBY3RcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuCweq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYEwxW9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpgsLovAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWBIPVfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCYYrO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1wWB1XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArAkGq/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBNMFjdFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa4LB6r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgTDFb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmmCwui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYEg9V9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJhis7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXBYHVfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQar+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/8Pef0VZVhZs2/ZVq6sTNDlHyUEFQVBAJShBggiCiAEVHwUUFFAxoSIYUMyKqBgRA5JRURHEAEpQoCULkpOSY+euqm/j+/223o1H/75GjXrHcWz26HGOOVatNcM973lPAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwWC8NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoLBeG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwEw//Jfx4dG8ucsfmLfCNGFo4u8ua/DYYmV7oLZ3e2eTDl8Uo3SSYNTa9058x/pNJNkgVzRyrdqVmu0p00bdH/Pv4/Y4NKdsHoUKU7Mjqj0k2ShcOd78VgdFKlmySLTe5s85yFcyrdaVOmVbpJsnDh7Ep3eGyxSnfqkpVskmTB/LFKdzidzzhJhoYXVrrzJ3WOq5NndT7jJBmd3tl/ziqdF00e7Rz7kmRo0tKd7ugzlW6SjIxNrXTnDzrH66FB55w2SSbN6WzzrOGnKt3FRnrnGPPmd47X06f0tjkL/qNLuv+1eaOtc/zO9yJJxsaW7nQnP1bpjjw9pdJNkqnTO9d+w6OdbpIMjTxa6Y4Md/ZxGfQ+i3lDnd/JM7M654ijI53zwyQZKl2WDI91zuOSZCydcYFpw0tXunPn98ahBqOd861nBp2/39RJT1e6STJ/XufLPDqld748mNr5nOeOds5dhib3/n5z53Q+i+FB57OYPnnxSjdJRuYvqHQnT+qdF40MOvvlZ+Y9Wek+8czcSjdJSn++DE/tfMajC3tjOtOndq6x500ufchJZo90xoumDnX2cXMWFMcnS1/mWUPzKt3Jw539fZIsHOrsP4fmdz6LJJlVOl+ePtz5LIq3sDNpQee7PH3xzjjwgsyqdJNkUmkfNxjtnWM8MdoZx5hROpd7Zk7vGDV/qPP3mzboXEctGOtdR80e64wvD4+UxreSzE5nm/8wvzO+teKk3pjcbYPOd2NotHNeO7k0FypJ7lzQ+fstV9wvL5zcGaMclMbklpzcm48xtTTeML90jjiW3vdi+rTO5zw82psbNn+k8/d7ePiJSnfaWO8e6OKlceCMdc5dhtP7XS8Y6VxjLz7ojb0MCp/H4P+Pezsj192Rp9Z67SLcmv/Xk0OrLPLmv62w/X6V7oxpL690N7/ii5Vukvx217Ur3eff+7JKN0m+9JI7K90F37+m0j1h5oqVbpLc92BnX7PawSdXuhvds02lmyQbb35ppfuJm3eodJNkq2d1jpsbrHR6pbvaaGd/kSR3P3BBpbvKrntUui/f81WVbpLcdOlhle6z3tObuzBj/kaV7o9u/Uulu88Gx1e6SXLHcjtVuu/8bWe89IJJa1a6SXLHJr+vdB/Z9puVbpI8ut+Jle5br7u50r394tsq3SR5zfadff6SUzrnLrOeWa3STZKxO79e6a6+sLdffundnXPxb6z+vEr38dfeUOkmyZnXLl/pvvS7nTG3x3fu7DuTZPFL16h0P7PX+ZVukhx66/qV7lOP7FLpPvDd3pykhW++p9LddY3OHNSLn9f52yXJ9ed0rh3+8O3nVLpJcuF731np7jTj55Xu2Y/0xmKPX3qtSve2t3e6r/nmryvdJFlt+y0r3TvPPKbSTZKdltyw0r15//0r3cmP/6DSTZLvbLBZpfutV3+p0l1jqNNNkj+c3Zkv8+AHi88sX9D5bd+33t8r3SXm3F/pJskm3+t8zle89KZKd+W39ebw335e577RMsueVukmydoXdT6Px7f8cKV7z4GvrHSTZJVZ+1S6C/dcutJd+brObyRJbhjp7DNW/eN6lW6SrLzpuZXuM69dodI9bI3e/LpfL9c5F79l3wMq3cHwsyvdJHnZzZ1j1PKrd66vk+TEf3XuYe910BaV7unPLFXpJslLZnW2eanLOnPKFr76F5Vukjw9tGyle9sZvWv3c17wwkr3tCfPrnRfuk1n3DNJLv5HZ6z9u6s8WOnufPtmlW6SPPmJzpj4FsP3VrpJsvxqnTn8y83szA17cI8rK90k2eeZdSvd2Tmy0n3z0adWukly6rHbV7rv2nbVSjdJTtqzc+9hpdM74xjb3LtxpZsk1x79w0p3xfceXele/qfLK90keWDbzuc8efPeg54/WP47i7z56B/+u2eUZm32VK78428X8dYkP9z444u8+W+PL9U5Tqw2tXO+c9mWvXGg7e/pzKE6YPC7SjdJDl/7iEp37Nedc/cXHXJspZskH7nvq5Xux1+zeaX7nGd2q3ST5MTdvl3pfv/Czj3IJPnOVp31Ejf78Nsq3eN/9KxKN0k+8KL3VrofO6ez1vMmJ15X6SbJlPe9qdI99H29tVQ+eWTn/G/ebp3nb7e+/jOVbpKcdWjnHGP6UZ3rutfu3rte/PaOneu6T71gnUo3Sc74W2eMYs57Op/F1Vd01vZPki226ozxXrp+Z/2J9YdnVrpJ8ryPbFbpPvPDzpyhJDnzZZ3nzP4x1HlmZLnleutFbf2vcyrdZe4/qtK94brevYq3Te4813Hyab35gEt9pPP874m3HF7prnHRVZVukrzytoMq3Vfcu+ifYU+SSZM/VOkmyXf2v7vSvesrJ1W6SXLwzZ3rko036Yw9Lj+p8xknyUYr/bjSff0FP6l0r/zU5yrdJNnsqM68k89/t/cs2IXnds7Ff/HkjyrdJxdfq9JNklcu9/xK9+lfX1bp3rlzZ3+fJDcd9ZtKd/cvd+5hJcnKh/+p0j10/09Xuue/uDcH59odO/NDPrDXHyvd83brrRf1u3d0nuX7/u82qHST5EP7d9a4uveEzvF65ac7z64lyRHv+lel+/SjnXsa712xt9bRA584pNI99cO9FyBO32v3SnebUzardE9asfNMeJJceUjn+dHdztyh0h29oHcP7b3HdebAvWnw5ko3Sa66o3NP/+frdOYmb3rOZpVuknxuQWdNonM+1VnHdvbzO+vZJMmRrzqw0j2k+Lz5vw7pPHNwwaXnVbp7bLFrpZskz3qg87te/fjO/YFfn3ZtpZskH/pJ57mOs7brjI8kyXJPdq537j+0c0/jlFPfU+kmyUVLfL/SPXiJzjyB7+3VmaOdJPc8fVel+9dP9p4Fe/qJzud855al+RiP/bLSTZLf/O0jle4tG3eu/Z5evrdfPuAbnWu0fZ7X+/utv2nnmYP/1qz1V8lVF3x0kXe3WatzXZ4k++za+btfuXhn7cG1N+3MB0yS05bsjDPNPKazpmGSHDBtq0r3tPe+sdL9yoqfqnST5HXvfH2le/QGr6t0Tz659V705C0nde6RbdJ7PVDesd8Vle5KMzv3bo55rPMZJ8lrd39BpfvEip137Rx3Re+dKg+8ofNs7/devOifmfr/2j/urDc7ZVpnHeJbi3OS9tugc/7yood+WunuX7x3+uiPX1HpnrVL772J6z3WeQf2X/a8q9JdYe3ePIATduiscbXmGr+qdE9aubOeb5J8fY/O72T7uW+vdJPk1CfPrHTXP6gz7/ntP+u9Q/KeM/etdFfavfMb+dJPO+u2JsnZv+88W/z0eZ31MpLkkzceWOn+7v2dNfH+cUBvDf7739BZB/yiF3aur6/a8tBKN0ne/fJbK9033t8be3ls/Rsr3Vs/3lkj8GMjm1W6SfLJlTvXJUdc27knu8lxnev2JNlvo7Mq3Vm79N45tuQJm1a6e/2isw7jjZ/rDerc/LzOPMaZj65e6W79vBMq3ST5wYOdsfZlfvLPSjdJzjmicy/rkc92ng340mp7VbpJ8tsvds5rfzGzMx/+mqm97/LUz3WehV7/4B0r3ST50d8769p8aJnlKt3cPKnTTXLWnp05ItNu7Jxv/fnDnWcxk+ThOZ35WTsd0ZnDmCRvOrLzXd7xQ1tXunfd2htrP+Xt76h0P/DdzpyymZf21i3f8PHO86N/X7239tqyX3trpbvECzvzZV7++t47x1bbrjPX8BuPd77Lx816aaWbJLvd9mSlu+y5vWden3pF57zon3u/uNI9/gW9dQT/8L3OdcmGp3TWy9nrqd6YwCdO7vyu37ZCb63nJzftzE+5atWDK93PH7tDpZsk3/9H517Jbl+/sNLd/TW98+Vlr+mMvfxwpPPOnCRZ/AOd56yXPfELle4K3+vM006Sn31riUp3hZ07z2L+4e7hSjdJlpnZue/wyuuvrnSTZOOzW/eE/7t3eT600YycdMmiX0/sxNf1xq8OeeTiSvexhzvrL026sffets8d+ddK9/kP99avu2nxzjXY6R/qjFOc+MXenJYPrtGZ07JJ6RWSHxrqXTO++pKNKt3Bdr11RXf9SecdoL/5S+cZjJ8+2HtP7vZrd86nfvjyzt/vJSv2Potthjvzns/9R+f6K0k+eUfnmvHyQzrngE+v3XtP7gMXds7hl39b5z7yUdf2nhue98nO/MhX7vWuSjdJTn560T/LlyRL3NhZ9+TuI3r3vr+wTmfdoSU37dzHet17enNFd1qhszbehe/8eqWbJPu8pTOP8YrPd94h+cZVO88pJcmpsxf9u4mSZO7Cznr5Z+7eebdNkhz31s4z1Dff9EClmyQj7/5KpXvUDzrzcA7/eO+9Rxte2HkH76ydO+uVHnj0gZVukvxhydMr3e9/+WeVbpL86FWd5zyXW7JzHv6zz3XuQybJWdecUum+4NudZ+6+8dzOex6T5Iavde5XXH/V/1S6SbLjezvzODZ5b2cO6kZ/6py7JMn/HNF5R8NlS51c6U55sPf870H7nVvp3vGvznzcJFny0M71w4vX6TwDdebjnXeDJcnm31mv0n3tVT+odNe5p3fu+dDdnWu0i3+6d6WbJKce3JljcMxZnffGbXxZb3zyU5/orPd887o7V7r/c2DnmJok29zaeW5rnz927qknyZeetU+l+8J3H1fpzv5VZ9wzSd5w5GGV7k+37XzGL76k002S1S/orDP3jbEbKt0kWePUzjnXDb/q3EN7sPhdfttrO89Mnn17Z+2ns7bsrT14xXZvqHQf3qb3/Pa7V+ysS/Tp0c77wa4cXaXSTZKD7/pzpTt32VdXuuuv3JknkCSfOL/z3s2Zi29R6SbJ/qvuWemuNbPznPWDu/eOUb/7eud9yN/8Xedd8v+zXec8PEn+tkJnbtgHr/9upZskq+3XeffR5b/prF/y8j/3xlQPXr4z9vnmF3bmT55/8naVbpI8ctTSle5XN+nMLU+SnXbuzHs+9LT/878XlzoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP97DMZ7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgIhiM9wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQwGO8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICJYDDeGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8FgvDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaCwXhvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMBIPx3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmAgG470BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDMZ7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgIhiM9wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQwGO8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICJYDDeGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8FgvDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaCwXhvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMBIPx3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmAgG470BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDMZ7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgIhiM9wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQwGO8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICJYDDeGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8FgvDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaCobGxsf/1f15rylJjx6z84kW+EZMmTV3kzX8bmbew0h3L5Ep3MH2k0k2S4cGUSnfx4c5nkSRPjD5c6Y4sWKzSHZo7XOkmyaRJsyrdscGMSnfq8KOVbpKMDDp/v7HRaZVukkwfnl7pzp7f+Y1MX6y4X547qdIdHevsP0cHT1W6STI00vlejI2OVrpJMm3qcpXu7NmPVbqLDa9Y6SbJ6OTHK92n5nb+fosNevu4KcNDle7QUOcYlSQL5j3SCQ/NrWQnTel0k2RstLPPH568UqU7OtrZXyTJws6lQ4aHluiEkwwPza90n86/Kt3Jo6tXukkyyDOV7sKRzu9veND5jSTJvHkPVbqTi+eIk4Y6P8CF85epdEfHOt+3JJk0aJU74eGptQ3OvNKYTtI7xxjkyUp3/kjnfCuT//fjgv+pGdM7135zZ3e+F/MXdo6pSTJpylKV7khav5FkdH7numTSUGf/OX1K5/o6SeaOdLa5dR4+lAWVbpLMGe3s858Z61xfJ8m8OZ3x2oWlz3lBa3+f3rXD0FBnvKH5XZ41UvospnTuwSTJnNIhe3hO53pndErvHGNktHOOMWmos83zxnpjtcMjnTHxscm9e13DpWPJyH9wv/s/MWnQ2y+PjHU+i8Hk0j2YBb3xydavZKx0bzxJJqXz+5s10vk0Bgt7f7+Fpd/JM6X9xdTiMap0uZpB6R5oktw+t3O9c2NpTHWx0v2oJHlmtHRcTWebVx/0jtdPDTrn4tNKn0WSrFKawzV1Ume8Yfmx3jFqqdIA8yCdcYypk3v3HYbmd75zw5N744iLDXW2eW5pk6fO6N0fmDK0eKU7PNo5FxgUxzEmD3fOEefM7/3+pgzPXuTNbz9+Xx5YMPe/+pFsuuJSY+e/ZutFvUn53p9esMib//aS5TtjbrffdUmlO/1Pm1e6STL1g1dXuqu99ahKN0muOvu8SnfVDS6sdGe8trPPTZJL1lur0t1i4aWV7uyHXlHpJslTn9q00l38O0tXuknyqnW+Xum+Z6QzB3XNkXmVbpIs+cgbKt1/rn9xpbv4J39U6SbJmhuuW+luslbnN5Ikd261TaV7wq/Oq3Q/sGxvTtn1S3TGgm69rvMbWe0lnd9Ikrzkd9dUurd87vmVbpIsfWxn7uVTS9xY6e6/fW+u7007dp4POO/IeyvdBxdfq9JNkjd9/K5K95Fvv6nSTZJrNuzMb917ZucZtkfuur3STZInj+ycfz761+9WumtM3rXSTZKn5l1Z6c5+6DmVbpJc8MD3Kt2T9t6t0v3R29esdJPkxfvsXun+6R2rVro73HZQpZsk/9qkc79+5as3rnST5EU3dO6xHD7vgUr3yHf17p3m+tJzIz++qdIdmbFnpZskU1fsfJeHV+7Ne77oFZ17LA8f1xlveGC3RT+O/m87b7FKpTv3hr9Wur+5tTe/bvONO2Of112/Q6WbJL9b5Y+V7rsvWrLSnbRYb07SyDWd78Y5J3Se81zl6udVukmyzcV/r3RvPWjpSjdJ8osfVrILlntZpbvXgh0r3SR59L5TKt1Pf/CJSnfH32xS6SbJK9ft7JfnXbRapZski611RqX7u7+/ttJ91kanVLpJsvZq91W6szbrjOk8+bofVLpJstYBV1S677+5cz8/Sd40szOmes8ST1e6a+7a2d8nyQrz313pnnX1lpXuYGHvfv4ar+7Mo7q8tMZIkqzw0BaV7mM/+Vml+6d33lrpJslVv+7cN1piq853brO1Vqh0k+T+L3T2y4P3vqTSTZLP/aQz9/LOl5SepT2mN9fwiRM7x5LND3xVpbv6setXukky86bO+cvfO0PtSZJXrdTZ5p136FxjX3r8fpVukqz+rVsq3e9fu16lO/264yrdJHnm0UMq3ad6S8Rk5/sW/Tzwk7e9Lg9c88x/PHD9nKElxs4YXvRzcj9z/3WLvPlvP/hgZ7xtve99qdJ96k1vqXSTZK8tOvO/X/LkHpVuklz/5vsr3efd9GCle9h1/6x0k+Saz15Q6Q6+dX2lu9G5P690k+TK056odI941UaVbpJsfnPnmZ5D11+r0l1p9d6zhV85rzPeduAenWukmb/5aqWbJA9e1bnGnfPcF1a6SXLjsZ05VB+7rzOH40fnfafSTZLRszv36i+69LJK9w2X/bnSTZIbnujMef7I0533HCTJr/7wqUr3tGf/pdL96Yt795p+M6szz37BDp1x9J88eVWlmyQHf6TT3va83vXOq97feTZno2xf6a63TWfd3ST5xIqdewon/KUzprnpL9audJNksSd/V+me8rEvVrpJcuISnc/jgNFTKt2/ndEZ90+Snd+0d6X77q9/qNK96KdzKt0k+fKGnXtNh0/7daWbJEsc0pmPdPrz3lbprnLLPpVukjz89c7xb8ORDSrdI2f0vssfe+uxle6dJ3bmUifJhkfcUOm+86cnVLovvP7YSjdJxt58eaV77+Gvq3R/vnJnzleSPPm6Yyrdi6afW+kmyZJvOr3SffqPnXkne67dey7ulq32r3T3+ELnfvoHv9G77z3rotdUuuv/eJ1KN0nu2/awSveQX3XWJFrjzs5zfEly3XKddVxOO/t/Kt1dDnpPpZsk7z268y6zY67s7C+S5JH1O2Piy3yxM+9rsLA3T/TWNz+30n35DndUurvc+rVKN0kWzOp8Fue8vzf2sux3O89ifvCT/6h0D/tpZw2lJLnla515e8cs3Vnf58yHn6h0k+RDn+t8FruNdtZkSJKnN++cf/7xzZ13Hj15YecdhUny4W13qHSfe/fvK93vfvm9lW6SHPHw5yvdjc45u9JNks8/cXClu9MOv6p0t9mqs25Ckuy7b+fZ3zMe7NzfuWXJb1W6SXLl+p31Oh7drze37/pPv7nSXfXSzue823W9Ncyu/V1nbtFHNu3c9zv1gx+pdJPkq1t+s9L90T2vrnST5JDZnevVpx898uqxsbH/+OG4FZeaOrbvixf9PafLv/LyRd78t4NL0+jvW9AZ+9/7kd46jHv+T2d94x/87huVbpIstkxn/H/2WvtWukd8qHMfOUmOOKozp/PEj3aun/d9/YaVbpL85pWd+xWv2Ksz7zJJfnZpZ/2CKf9Yo9Kd8fzeZ7HmQZ3x4+Mv6ayb/ONJvbmiUzf4fqW73R6debNJctmOnfUnrnnmE5Xuzd++udJNknec0pkj8p2fd+aHfOvcX1a6SfK5F3WeU/rHCb211sdmblbpPv7qUyrdyz7Vmzd7/m86z2bft/+xle5WS3WukZLkhIs7Y+mT7+2sAZ4kZ/60s67hR67rXJufuGFnTcMkWXvxzmex2xbLV7pfvb+31uwKR3beIXTCdr35dU/d0ble/conj6909z1m70o3SR64ufOc9fIXdNan3vvUV1a6SfKH33RevHfAIb21up931d2V7s3v6ry/65tXdcZLk+TET99V6d7+7V0q3a2vX7rSTZKLRjtrcbzjqM76ckkyckHn+Y7lvtoZO9v37u0q3SS54l+d9XFv++QBle60O3vzLv+wUmf/ufkmvXssl76tcy63898793vvem5ne5Pk1bO3qnRP/PyZle6cdJ4rTpLt53XG5N77+d778+ZM+XClu8XCzvO/B365Mzc5SY7ar7OWy7WHde5VvuK+syrdJFnnnU9Uuh/8Q+czTpIdt+6sS/S18zvjiFd/tXN+nySXTz+00v3ooZ11lFY97jOVbpL8cLfO/YEnDu88s5Ukq659YqW76/zFKt1jdzyy0k2Stzz06Ur3A99cttJ9z8c688mS5KmjOuuXfOxlnTkTSXL34533Mxzzp85EnUdf9s5KN0lWfX/nmP3Pww+sdDc6vfN+3iT57c6dtbpPfGSvSjdJ7p//cKX7y6s7ax+uMtaZM5EkBx3YGRfYd4POmgHPfHrrSjdJLn11Z73GJU7qLfb8+ZHOvMG9duq8x/rot3bGBJJkxzd/rtI9fOvOnLMf/773zqNDftUZ+3zOJr33Ta801plfvuRxe/5X85433mzq2A8uWvTznj98U+d58iQ5aErnHuf7pnXWQp2z91OVbpIseeb5le5Nh3Y+4yQZfkdnTtll+3TW7v/0BudUukny6GGd+U7bldaAeWBGbyzhghs6z9Rtekpvza/vvvaDle4bjphZ6U4uvcs2ST71z85axKfM74xrvvk5nXm+SbLuYZ13uZ9/fmf9lyT52eGdtTQvfbLz7pPtPlDJJkn2e85ple6W0ztzhz5x4Ucr3SR5+LudeQC/f+UnK90kWfEPnfdV3Hb8RZXuap/sPWf24QWdddGverhzvvXuX3XmOiXJ6S/8aaV70Nm95/Zv3bXzPOaVr+5co6133T2VbpJc8Y3O9fNu0ztrUFzzzt775+c93Vkj94dX994N+/DDd1W6v75g6Ur3vM/01uF/0YzO+9Xu2eQPle4/ftxb+3rexm+tdF9xWufeTZJ88B2deXCvv72zNtA1q/feQXjH3Icq3Vu+23n+95PP9MYnb7yvc7x+xfk/qXSTZO2fddaNWnh7510jRy7oHPuS5D0f6Tx38LbVOnPAt9zkb5Vukqx/YWdMZ93DeuuKbn1I5/7bSRd27tePLt0Z60uSv6zTWf/zoE07c9Wu/ssmlW6SPPsNnWv38y7urVF9/yadOfFrXtc537rllb1nXj93Yuf498+9O+9Pnv6d3vnW1p/u/K4nfeCuSjdJ7v95Z8D2Wet0njm//UsHVrpJssqHOnM6P7/UrZXu+vf33q0448qlK90tV+mtvbbx7Z13Yx52U2e9/D/f0BtTvfN7nXmol9/fWS//opM67+hNkrEtV6l0t9ql927aD9/cebZxya98vNK98+EvV7pJst4/Ou8gfc2+nd/1Ji/rrKmdJNNf2lkj919Dg0o3STb50Y8r3Yu274wjXj6t84x8khz67s441LvW6MwN++3kzvt4kuRHn+8857nHs4+udJNky9d25iefc2zne/HKt61V6SbJ0S/onL9M3/bFle4fPtt7n9nccztz+/Y+Y6NKN0lWXekLle67rlvr/zjvuXeEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/iwzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPB0NjY2P/6P681damxj6364kW+EaNDMxZ5899mTBmudJ9+/JlKd9r0xSrdJJk/9FSlOyULKt0kGZo8WunOHp1c6Y4srGSTJDOmLVXpjow8XekOjVSySZJpS06qdOc9Nqh0k2R0sSmV7vz5nX3RcOk3kiSz5z1W6S62eOc3Mmnu1Eo3SeZMebDSnTrWO66OLFiy0h0Mza50Fwz/q9JNkuEFy1S6sxd2DibTpi1R6SbJlMmd/fLCBU9UukkyMtrZ5w+NLF3pjk17pNJNkgWjnfPlpUZXqHQHebTSTZLFF++ci8+a0ztfHk1nvzx9cmeb5y/onN//vzrtBUPzKt3ByLRKN0mmTOls85zi9c6C0sXU5OmdY9TIrN6HMWlS6XcytlwlO2/wcKWbJAvnd65LZkztjb2MjHY+j7F5peudQec3kiRj0zrf5aGRzrXD7HlzKt0kmTp52Up3dLi3zaMj//sx4//EggWdY9TUod71zshiT1a6c+bNr3QfmtXpJslY59Ih0yf1xl7mjXbG5EbT+f0Nze+dY8wd6QzYLjG1Mz7y9LzOuFmSzB7tfM5Tx4Yq3SQZmdLZL48OOj/s+SO9z2L5qZ2xz6ee7oy9TB/0zj3nDneu3Ufm9c4Rhyd1vhvPDDq/keVK42ZJMm96Z5unLugc++YtmFXpJslw6X7+M8O9+34L5nfOuYZK9wfmDHqfxcKxzjbPGutcO8wqXgcPzev8rm9O535+kjySzt9vrDQk3jvDSIbSOV8eKp0jTp/U2d83TRrq7YtWHOu0Vx7ujMlNGerdN1pxaue+0bShznduZH5nrC9Jpk3rjDeM9oZeMjyp892Yms49qbHid3l0sHilO2VBZ5unDPfugc6d2+ku0fmIkyTz5i3679wPZt+af43M/q8OrKtutsrYwRe/dVFvUv445/ZF3vy3s6auW+n+aM9TKt05F7+20k2S83e7odLd/eHVK90kybq/r2T3+84hle6J+99Y6SbJ1uv+s9KdfNGLKt1zHjq30k2S/e++utK9ZZV3VbpJst5TT1S6923WGf9fevXe8fivZ3fmwR28wUaV7scP+H6lmyQv+OGGle7ay+1T6SbJd+/vzD05cve7Kt3PTbqy0k2S/X9zfaV708Odz3iXtx5W6SbJ4NSfVrqXL9Mb/9hm5U0r3dO2Wb/SPfi2+yrdJJn58P2V7ia371fp/mq791S6SfKKBz9c6d60wncr3SR57vM71w8//2PnGu3Py3Se2UqSb1zaua9w3op/qXT3O7tzTZIkD2/320r3qV/07vfeu+Male6cDTrz4F7+8AOVbpJcMKPzOS/2u868vde9+8JKN0mmz35hpfu+JV9S6SbJ5N3+VOk+/aHOtcPr77qo0k2S6XtsVenees/MSnelDxxa6SbJ7TNPrnSnntL5XiTJjLHOeN/P9uuMF6178UqVbpJssezvKt0Nf/upSve2Z/XufX/h8c7vZJUttqx0k2T6nBUr3fVmd+b6fmKXWyrdJDn98s75yxmlOZ1H3r5epZsk335R517JZecfVOkmydo7dW5G3li6eXrszzvXJEnyr+90vsvXf7QzpvrP73fGzZJkjUM3qHSXeuquSjdJ7nz+yyvdnaecX+nOX+6llW6SXHNZ59phdLOlK93dl7i50k2SB47ojNXeOak3V3TBe9eqdJe6rnON9vjOO1S6SbLMmZ0xrqk7XVHpPnxeb37dA/PvrHSnPnBHpZskj+9ybaX72106n8XMH3620k2SUyZ35iefMLmz/3zxk73xyRVHOvcqb723N3N93kqdbb7ixZ21JD75ouUr3ST5xb86z9/vfl1nns5Fz+1d++30aOeZyXU2vqTSTZKHn+xc+/1o0Hl+e80leufLHz+/8zzK15/3q0p36kfeUukmyf6bnlHp3vrR3iT+C+9a9Pfn/vb3WXlm9n/+oPXKi684dsCz91/k23PPpLUWefPfTrluz0p32qAz9nHv13vnqx/46I8r3V32vLfSTZLDr+ys5bfxlzrjQJde33lmKkl+t9+HKt2RtfeodJc7vDcfab9tnlXp7vHhvSrdJHnvEZ05HKOPvb7S/dK3O+erSbLTNt+pdF95Zmctjlue6O2X13vt2yrd0zf8dKWbJAec0Hnu7XPn3F3pHv78lSvdJPnNqzpziM/NRyrdrR47uNJNkvfPW6XSPWS08yxDkkz5xN8q3b1+35lb96s7P1jpJsk9j3T2n5cte16lO//ozjltkrzi0s7Yx/nv+FylmyRH7t1Zm+TLN3WOJb8e661xdeEenfPl+//6o0r3iB2fXekmydi8dSrdmxbvXDskyZM/eajS3fyd21a6B9+7Y6WbJJtf09nPve/4zrN8L921t18+9iWdedrP3NabJ/rrh7epdF90/HWV7iEv7K2ves3mnefY33z/qZXu0Rf1nv294i1fqXQv3LXzGSfJtaOvq3S/tv0Fle78P61Z6SbJE885sdK99qTOnOf3v/WJSjdJ/vjPznyW763aO8c461Wd7j8HP6l0l/lO73nJj71ji0p31+/8rNKdfknnPC5Jltnr8Er3ra86ptJNks0/d1Kle8geu1W6c47srLWSJPduslqlO5iySaW79HKd5+OT5NS1vlfp/vCA3jsUfnxF5/zllrU65wLnvrUztyBJpjxxZKW7zWadMfxvr9Bb92m7gzpz4F55TWeeWpKsN/aNSvf68zrz1G48tLNucpJ84Lg3VrovXKbzXX71jb3xyV/PPKLSXbBzbx2CSft1nlNacdPO2OfD+/Xmpmz9ls45/v2bd/ZF+/65M+clSTZYszPncvnSOn9JMnJ+Zw7q8ucu+jlySXJLb2pkHt2pM973+c8fWOn+c2TrSjdJThvuPD9z5NKd/UWSfGioM0by8uU74/g7nNJZTypJVri4My5w8vmd4+qLVuutTfj0t75e6a5xzEcr3STZ+2V/q3T//savXz02NvYfL6AwvPrqYzOOeOci356lju+sA5ckv/tCZ/2et7zg/ZXuHTu9o9JNkgWPn17p/mKNuyrdJPner2+tdGdud3Gle/q2m1W6SbLY4/+odDf+5gcq3Vfd3rkuT5IvrvbHSne9dZ6odJNkpYs7x7fhGZ31Q571mt46jOvP7TzPuvOHOucmhx/wi0o3SX7/p69Wuof9srdG2eyXd65H7zivs+bC2Ps663Mmyc7rdeZFXPCx7Svd52zTG9d89yGnVLpH/LU3/rjVap15jA892XnO5ZJfnlPpJskq+3TGr3620+aV7pIv6zwbkCQ/Oe5/Kt37N+hciybJGTP/Xukes2fn2d7vvq8zby9JDv3+Dyvd9z/Uucey4MDe/LorL+2ci5/9/I0r3SS56a2dNR53OqNzHj5ty86YQJKM7dC5Z3HXtzrn4ZPX+1qlmyQHbPOlSvfDdy/6sa1/u/jnnXkRfzqg82zqvQuPrnST5Dsn/7XSffzxzu/6ypsfr3ST5K8Ln1fpvm7h2ZVukmy5QefZuCVvva3S/cPKnTlwSfLbQzv33za8anqle9Q9neefkmT4/Z3PeZWX9db7euu+nc/jmPWeqnTX2qXz/uQk2fVz7610l3xu59zlkEd6zzOsMvvLle5ax/Tmrc/8aec795LhzjXlzFVfVukmyQ33d57BOP5fnflZa7618/6LJLn/oM44/meXuqnSTZJvTu7si2au2VnD/Ztv6LxvM0kuOb9zT/itU39e6W70ts65S5KsuV3nmde/fqXzXrAk2fEtH690b/lNZ63Szx67S6WbJB/5Ref4t9dVnbnlv96g8xtJks+8urN+yWdfcFalmyQjR3TmdL5qxc5v5Acbd+6tJsnmb+y8//CU2Z3zrcO/37kHkyQ//VpnTe0N3v/8SjdJznu6Myd+9l6d6+DRRz5f6SbJKqd13oHx6xd25iydMquzH0qS6ad23v+0yzt69yr3+udrKt2f3NM5Ru29dW+NkU/fsmulu/R71q10Zz/RWd8nSW4//YBKd/6HeseSxX9xYKW71A8/81/Ne15uzWlju79vrUW+Pfu+qneevfV6nWfqTvluZ5xi67d21rFNkhPO7Owbz9qrtw87/4vPrXQ3X7pznfuuj/beQTjlls412M9vf0Gl+82jP1bpJsnXzu3MCfzJZb11rp6+q/N+rke32bvSXXHb3rqUS93QmWNw+N6d98Gt/dZ9K90kmTyzs8+4dffeu+YePbYzd2/BcqdVugc/q/d86D5v7GzzX+7oHK8nfeYzlW6S/OC2zr23g8/u7DuT5Ief7Ly37cZjO2tpfnSD31S6SbLRJb+sdE94yXmV7uN7nFDpJsnPH+yc1+78q841SZIc9/zOOeK+f+o83/vB9NaFfcuf/1bpfvnEznjpcq8/ttJNkrfv3Bn/P2BeZy24JDn6H09Uul+/+geV7o3L9dYm2eqezrqi3/h5Z334s2/qPc/w12078y0Gx3be55ckF32xs+beUOm06Fc7dL4XSbLVoNP98Q877yRYev3ee3KPPaOziM9mb+7dFzp7w86Y99rrdH5/x8/rrH2RJBvf2nlOcMdXduZ9HblK5556krzyjs5+ef9nLq90k+Tta3TmBN4zZWalu/oRz6l0k+TvX+ust37WI9+sdD9/67cq3SRZ7DWv7nRnds7jkmS9BzonA3t8oPOc0iuGp1S6SfLweV+odPd53t8q3V0nvaHSTZLlT++srbbqlzvvJEiSs19/faV76Yl3Vbr7PHl8pZskO1w/rdJ97XM6z6996Y+d9wYkyelv7Mwd2u7SzvE6Sb7/js5zP0t/p/Mu948++O1KN0nu2b3zu/7qxzrPo3zgbb17aCd8q/Nc/yUPr13pJsklH7+o0j38nZ252l9ZrvM+pSS5/YN/rnTPntpZn/BLC3rXftPO7dzrOnPnzvyfJFl53846I8u8pDM/ctpqvbUkNri/85176qjO9fUdv+y9v/nu2Z17GvcfvFKlmyQ5cOlK9lM7LF/pLvx4aRA4ye2rdeatP/vWzjPnO1/Ye5b92UccV+n+40O986KPTu6sN/aTdd78f5z33PsmAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/RQbjvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMxnsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAiGIz3BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDAY7w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwWC8NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoLBeG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwEg/HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYCAbjvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMxnsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAiGIz3BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDAY7w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwWC8NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoLBeG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwEg/HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYCAbjvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMxnsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAiGIz3BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARDAY7w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIlgMN4bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwdDY2Nj/+j+vNXXJsY+s+oJFvhGTsnCRN/9tNFMr3eHBoNIdm9vpJsmssdFKd+HwpEo3SaYOFlS6gwWLVbpThocr3SRZcunJle7DjzxV6U7qfRSZNNTpzhub3QknGZ7f+Z2MDM2vdGcPd/adSTJjtPM5zxmZUulOnjRS6SbJ1KmLV7rz5na+F0kymNL5Ac4f6ezvFy4o7TCSLDG1s19+ZmxupTt5bF6lmySjI53fybTh5SvdJBkbdD6PsQWdz2L6jGUq3SQZmd/5LOaNdH5/MzKt0k2S0cmd4/XC+Y9XukkytnCJSnfKlEcr3bGh3kni0MLOfnkone/FU4NZlW6SDC3o/E5GR4rbPOicf45NeqLSHZnf2xdNndZpDw89XemOLFiq0k2SKZM61+6DyZ39RZLMn985l5uU0rnLWG8cavbCxzrh0phcJveOUZNK54gLx3rXO5nUucaeM6ezL5qV3mcxd17n7zc8vTMmPrKw97seTO5cu4+Mdvb3STJvpPOdW2y0s88YmdIZw0+ShYPOee2gc+jL3Mm9c8+UvnOjo72xl8FQ53x5cmmXMWteb6x92vTOmOrIvM6Y6ujk3jFqZKzzu546/L+/d/yfmrGw83k8ONb5+y1fulZNkqfG5lS6k+d19kXzp3R+e0kyL53j30ipmyTzx0rn+KOd863Z83u/60fTORmYM9o5X75nUunkJcmT8zqf8+RpvX3RFuuvU+nOW9AZE19juQ0q3SRZtrSbu+exZyrdK266vtJNkiVK15VPjfT2y4N09sszSqdyK07qHVeXK107LFWaQzJ1YW/O2ZLTSufLC3vjiK303IWd38hSi0+vdJNk9JnSWPuMzr5oMLv3WWTQ+fstXpr/kyTzFy76z+MHT/09/1o4+7/a6BU3XW1s/18esqg3KUsu0zl/T5JVZpxa6S657O6V7sKRrSvdJNnijadUupc+2JuHs/6Fd1W6j+y8a6X74HCnmyQvGHlHJ3zllpXsXU+vUOkmyfKrdu5X3HDnPZVuksxab8VK9x9veaDS3X+xpSvdJBn96Isq3VNnfaHS3W2/3vXzjFUvqnSv/cV+lW6SPPHEw5XuC/6wZKW7zpt+WukmyV/uX7fS3eyo+yvdc1+3SaWbJNcd+9JKd6mLzqh0k2SfG1ardF+4Xec66fwl7qp0k2Ty6p25X88a3bnSvWdm73i9YPNPVbq7/ukblW6SnHla577eQZt0zjGueEnv2mFswRaV7k35bKW7+U2bV7pJMuu6rSrd6X/u3SO7+IdXV7o7fu83le7j23TOPZNk1l9/W+nuuGFnjPDkV3Sev0iSta97e6W75v0PVrpJ8p1Zb610t9j7Q5Xua3/QOb9Pkn8se1ul+/iczljsAc9dv9JNkuNv+WulO2mwUaWbJGusuHGlO2v7n1S6t57d+yy2333RrwOSJItNPa/SHdz+sko3SZ5a4k+V7hkzOuOTSfKWr3XuPdz1thMr3TnL9caXH520dqW7/iU/q3T/enlvTG6L4asq3ds26j1b9ehzOtcPd5/zykp365FvV7pJsvRtK1e6T6zT+Yyv+XhnbmuSvPvLnXOMy97dOfYlycvO+Fel+5tJd1e6m2z0kko3SU5aq/N8wPtm/rHS/fwTveeUNpy9YaV76bN/V+kmyRtu72zzvZP+WenevX5vHOraiz5T6a6/WGeu2uxJe1e6SXL7zM481E+t07mfkSQnbfe+SvdHW3Xm6Rz1x879xCTZbV5nHuqDf+7MAfr8cz5S6SbJRo917u+8cOnOeUCSPNlZyiX3rNw5l1uvOD9yzZd2xvEv/tYNle66z1u90k2SFdZ6baW79pKXVLpJMnXbV1W61+1xeaU7+bOvqHSTZOsn3lLpfv2SzryJ2Yv1ftf3PHVcpfunRztjtUnyyCsX/XnRO656OLc8Nf8/vkGw5XOnjl111qqLfHu+ue0Oi7z5bx+4ujMH58yrvljpfvwbvfHdr378K5Xul/75hko3SQ4//ZZK94KLO5/zZ2fuVekmyRd2ubHS3fzp11S6V13Uu3Z+yQc760VdPvLGSjdJ1pvbWf/slc/pjO8e87w7Kt0k2eiazn3Ib13beeZ7o8ufqHSTZPenOnPrjv3beZVukuz87M51+XbDnXPhg+d2nlFPkod+0pnDuN/oppXuC+/apdJNki3/+MtK99rPHFzpJsklV32y0n3hWkdWuvef37u/8v2LvlnprrlY57v8zL29a+dvXPGDSnedN3e6SfL+G46vdG/a/KhK94qF+1S6SXLgw53v3AHzO2Mff75v0T9P/G/HrX1Qpfvl7XvPVb3lbZ255Z/es7P+xBHb937XD599SqX7oQfvrXTfvt7zK90kOfz+zhplxy7ofBZJ8vNXzqx0r556YKX7wOs+VukmyVZr7FnpfvSA7SvdZe9/V6WbJMvu2ZlneOk776t0k+TSD3eeN//82zv33Ta/vTN/MUk2u2inSveGGzvzFk56c+d5gySZ/5w3V7rL3v/lSjdJ1l3YGcc48VWdNXY+8ufXVbpJ8pZvdNaoePYDnf397S9f9Pei/u21Czrz1Bbe0Xv+Ytc5nWfBnvvRzrnA6re/uNJNksHvO/ORFtu9817Mm37ae0ZwswfOrXS//eHnVbpJssvpO1S6163240r3nlffVOkmyW6ndO6vvuO+zvOSUx/prSm6+OylK93rpmxT6SbJet/sPLv9t6s6z2Ke9aLetcM7znl9pfvRDTvn4cNn9sYn9zn/y5XuJ5/9P5VukvwgO1S6z9q+c3/umc/21tS48pnOM55v3LVzHnfZzy6tdJPkodU6azJ8/bjeWkefuKhzLnf18k9Wuu/ZakalmyT7T+/Mkzvg453nXf/wvN61w8xB51jy09etV+kmyS9X7Mxnu/FVZ1a6W+/bub5Okquv6KzJ8PfrO+MNL13voUo3SR6+q/OM9ek/6TxHmyRnDXWeizv81FdfPTY29h//UNbedMrYsb9c9GNjh+7ZW0vlDc++vdKd+YrOGO+rh3r7xn3O7IyZPv3dzj29JLl6xc716N1TPlrprnXZsyrdJNnhgc7adSdu37kvdPm2vXUtVvjLCyvdV13SWQcuSQ7ZrzMn97XLLl/pXrnbeyvdJHnoPZ3zqdd/uzM/cvVnd9Y7SZIXDzr7zzPe0HvX1f7v7FxDf2F651zg1O+/vNJNks3e9elK9/CvdcaCDpt3cqWbJM//Z+fZjmWGeuuHXPO5zjnXj//cef52+3d/tdJNkk02u7LS3fMvlWw+88beGi2/vrBzjj/l+7252h9/Q+e4eu9fOt+Ld83tPTO5/t6dz/noD3XGCB+d3/teXHdRZ1z6gPf/vNJNku3/2rlG2/C3nXV3z/tB5/0lSfLaCzvn4sce9PdKd4dfv7vSTZIXfaZzvrzuWO+7vN23OvvPr/75TZXuZ27+RaWbJHe/8Q+V7vUHPrfSfWTh0ZVuksx+e2eOwUqP9f5+73is89zkC//SGce48N1nV7pJcsjHOmsOvfF1J1W6W+51YKWbJEeu3hmTe8kZnTUpk+Sz5+1d6R7+7M61wzbze2Ny16/cWTvysbmdMfzPHN65t5Mky/yu89zBV1btrNuaJLvf0Fmz42dH31zp/mXP3n75gu935uS+8bTOGldfHuqtRbDH7M49qeEvdtYkSpLl7j+v0p18TWd85MFle9fu5+zztUp36ZmzKt379uuMhyfJWc/vrB35k31PqHST5C1LdY5TX0hnHb+ZF/y+0k2SZ32ps//86fmfr3RvO7c3jvH09Z2xz5X/0nsebP7HO937lu5cO1xyW+/vt+G1nWdIN3nN0pXuS9bv3fd74Z86++Uf/rj0hUsytPF2le7jf+qchy+56bWVbpIsu1JnrvYfT+9cO7zsxGUr3SR52z2dMfGvLrZZpZsks9bdrdLd5bR3VLovOKyzJlGSXPv9zny2Fac+U+leuVRnnkCSnHPVnZXum0/oPef5rFd9oNI9/end/qt5z5MmLT82fdqiv747+5eXLfLmvz32vs47sE+5+P2V7j6v7r1/fvl1v17pvnbdL1e6STL7g9+rdL+yf2eNx2OO7l0/z72ms3b/Phd31i7f9NDe+zQvLT3HefNxvXk4J7278xzZEWt01v+cdvL+lW6SLLvThyvdq/fsvJt5jZ/8utJNku+Wxkw3uKhznpYkj/288270NY49ttLd6kW9d0geeUbneZRbju2cs/56hXMq3STJuZ37Cqct21mLKkn2PKMz/nHiTo9Uuift/ZxKN0ku/l7nnUZLndwZl/7Fcp1xlST58/6dY8nvP9F5T2CS/H2LzjtB7px0SqX7w7/11nPY6cEfVbpvWmb3SvfGy/5c6SbJgb/qXFcOdupcOyTJydM7343VvtSZE/j9zxxZ6SbJ7Ud21q+75cOddZm3vKm3rugxj3eu/R5bune/8Hkv66z59a4bO/dYHvlr5zwgSa74dOf4d9j3OnPV3nV55/w+ST552Zcr3S8/elilmyRnvLwzJ/e8gzrvJNj7gs577ZPk96dcWOn+7DmrVLq/P+7ASjdJhq5eqdLd/KvfqnST5K6PddbQuv3pzpzAjX/cW7PtRaeOVrpfObYzb32/o3vruH/tpZ3zosu26O2L1nzDVpXu/qOdv99xv+2dI375G1dUuqNf+GGl+6OfddaHT5Jrl+28j+7JnTrrUibJ/DU668/84qxjKt1PnTCt0k2SbQ7+W6W73fGDSnebT3bu2SbJ6vseWen+5eNLVrpJkld37j2cu+4Dle5+a3XmTCTJ8W/szHd66qTOefikn69b6SbJ0Ac67/rZ4FcbVLpJ8tzpnfPlaUd1jiU7rXxWpZskvx3qzAG6+ezO2q2Hf7k3v+7Sz3fWRd95l95990su6/z+Br/tjONP/XxvjdXHjv9KpfupZzrrjU1dZudKN0n2+ktnLYJdf/mJSjdJjj+8867Cn/1P5/j3sUO3rXST5NQd31npPnhI5xx/4YadcbMkWe3OzjX2H9/fmb+VJH+c849K97QTLvk/znvuXAUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9lBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWAw3hsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPBYLw3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmgsF4bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATASD8d4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgIBuO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEQzGewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCIYjPcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBEMBjvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiWBobGzsf/2f15yy5NgHln9BYStmLfrm/8/w8DKV7oKRoUp3MLSw0k2SDP3v/9b/idlDj1S6STI2Z6lKd/JwJZupg+mdcJJp0yZVuo/Nml3pLjl9cqWbJLPmzKt0B1M6v5EkGRseqXQHCwaV7shIZ3uTZGxoSqU7GCsdS4aX7nSTDC98utIdTFmy0k2SkZHONi8Ym1bpDhXPMeaPlPZzCxZUskPpnLskyfRJne/cyOTRSjdJ5i/sHP8y1jmXmzrc2XcmyYzMqHTnTe58xosPdc4Pk2TewjmVbuvcM0memdvZZ0wb7ZwLzJ3U+y7PHyvtM8Y651tTJ82vdJOkdLmaSaO9Y8mkSZ0fypSxznd59kjne5Ekw8OdY8n80lduylDv2m8w1rkOHi1e+y0c7Vyvji7sdMeKf78Fo51j1MjI1Ep3MKl0fphkpPPny6zh3r5oUum4Om+sc76V/2CM+z81UvoDjg0618FzR3ufxeJTSvuMkd7vb2zSspXuwtHOeMPQaO8ccVA6r50z2vleTB4q7TzT22XMH/TOl6cMOn+/uQtL2zzojeksXvoDPp3ONcnwaG8fN21y51gye0Hv9zclpX3RpE53yqB3XG19M4YXdn5/jy3ofZcnpfM5zyv9rpPk7nlPVbqPlk63Hl4wtxNOMneo850bLl2vjqQ3H2Nq6X7+UlNXrnSTZPqynd/fts/dstIdTH6m0k2SeY90jn9PPvlQpTsY7o3pbLb22pXuX2+9r9JNkmeefLjSXWaZVSrdK6+9ttJNkiVKp/hLDXWOqytNXbzSTZLFSnMQhov33acOOp/z4sOlz6J0nzJJxqZ2zvGHSuOe06cuVukmyWjpOmpSaQw/SRbOW/TnRT9+5tY8ODL7v/oBrjY0deztg0W/Tx9su9Iib/7bx9d6Y6W7/0lHVrpHbb5FpZsk2z7r7kr358v3/n7TL1y60v3ZIxtXum86+uRKN0nueHL5SveuO95Q6Y5e3LmuS5Lrljqj0l1hpDf+cevO61W6y93d+S5fecNplW6SPG/uHpXuumveVulm7vqdbpI7rv5epfv2l29U6SbJv366SaV72cs7z43MH/pbpZskWz2rMxZ0y7WdOZ3fXfhkpZskJz2ncw7/94tXqHST5KGNOve+H33nbyrdtT/ykko3SVbb66ZK98Hfr1XpPvel/6h0k+S3s3avdGf9ufds3LM2e2elu+Lft6105z30/Eo3SWZM7lzvPL7qKyrdQ5/oPZvz7XX/UukuOb9zTy9J7l7+kkp3w1s6v+vLx5ardJNkpVM75wJ37tb5zm14fed58yQZvHzVSnedR35c6SbJlBW2qnSXvLFzHXzh+gdUukly9Lqd65JLlvxopXvbbzv39JLk72u9tNLd+97OWFGSHLTCvZXuyet/v9K9Z+mjKt0k+eOl36l0l96qM1b02JmVbJJk+9d1xoHvOe6BSjdJvrv9XZXuhev8q9Od2RmrTZJ/TOncr791j/dUuq/6wwsr3SSZccOfK93LN31vpZskK93aua8+d41vVboz1+vMO0mSBU9+pdLd4JOde993Htsbx/jMnldXur+9rDMGnCQPLdO5fpg6455Kd9tZvXnPp673q0p3sW+/tdK9+sEbK90kGd25c69rjTt6zwnundMr3dePdM4FVlztzko3SZad3Hlu65dfOqzSXX6HWyrdJNlmyc6c6tufOKvSTZIdXtDZfy7xrJdVumtcukulmyQL9ryy0n3OeZ2xvsuf21mrKkmWXKozP/nW0x+vdJPkygM7Y9f7zf1spXvStw+qdJNkk407689s9ou3V7rrvfEnlW6S7DKjsLZrkpuK3+UHdl630l1q98419gUn98bal3343ZXuhtucU+k+57zfV7pJ8uyDOseSv9+1VqWbJKv+YdE/n/PO/W/IrTc+8x8PkGyw8hpjJ77xyEW+PZtf2lvva/l/dq4LXnzM+yrdfODZnW6Sj673w0r33ptvr3ST5IyfnlfpHvb2TnfqSrdWukny7R076zD+6F2dMc1jvnJBpZsk7/1rZxzotHeuVekmycJv/KjSnfP7FSvdX7506Uo3SWbc0vmd7PG2zn3TxY7bp9JNkvs/0rkPMvmimZVukrxsaMNK92f/+ECl++Dvd6x0k2Tfv19a6U7dfq9K98M799aL+sKjb650Rx44otJNkvtvP6bSvenDnecvTj739ZVukhw2u7POx++XPbXSXXyV3lrPx+7U2S+fedL7K90k+e3rO+f4nzis88zPtPf15i384MnOOOy6/+rMJ9t6id6zDAuu7+zjXnTS8yrdJPn1GptXulf8ebtK99XbdLpJcv6rL6t0rzrwC5XugUdtUOkmybZ/+0alu/kSb6p0k/+HvT+N+nUs/P//1772bNzmeSZEyJwSITITKUJIlAaS9KFJylQRFakkNEiUqYnMiszzPFPmYRv2PFz/G7/V/9Z3rd+nfvu1rrW/6/G42dJzneva7/f5Ps/jPI7jTCZt0Vlz8NAhnUmMi57+XKWbJMd/vDMu8LYP/LTSvfcnW1S6SfLnJztzW69euDeOeO1Wx1e6y25xRKV78cq9z/KDL3fOGRO+sUylu8E+vc/Fmud27v1eXKazPj5Jvnx253dqwWvXqHRXWaD3t7h2ZKd99IjOHIA/HndFpZskU3/VGV+efHFv78H5LuiMkRx5RGf+/q/m6MyHSJJX39/ZF+/RYzv31wNz9vaBO++szpqfRbfozTvZYZOPVLqv/+L0Snfrozv3UUky6qCTKt2Dj3qh0l3vq1tXuknyz706+3VsvGpv78h5nu/Mjdzx8M7803df9uFKN0lW+WrnuuiGmzrzPPa7d/tKN0mmj+msN//9H/epdJPkXft1nmms+sZ3Kt0btt+30k2SdZZeutJ9+I7OvnlbjVmr0k2S4ee/u9Ld6xcnV7pJcuV2nWfCC+14QKX7g+c7a/qTZLdXOmu3P//0vzrd23audJNk05939nvYobj2fv4jO88ett3jqEr35s1KexMmeeP9nfmIY9bvrL2/85zOfihJ8pdFOnPhnzigMxcxSb54auf3b8V55rltcHDwP36pxOLvXHbwgGu+MsuPZ8T2ve/A50Z19vv68tadPXZeW3uTSjdJHvt4Z4z+5ps+V+kmyddevb3SXeEjj1e6P9r8+5Vukmx3UWcfv9FrdfZ3vG3jzry9JFl5y+Mq3ZNO7+2RtMmhB1W6B6/ZGWd6+F3zVLpJMnhoZ1+8X/+88/7ym888q9JNkncOv7TS3ffyzthxktx+4u6V7mvLd56pb3Jjb37dCst33h215b6d51h3X3ZJpZska6+8eqV7526dNSNJsvv0zu/qsC91nhdu+tYtlW6S/OCTH6h0v7N9Z3/jd2zZeT6dJEde0Nkb4aAzO2NMSbLDhZ3xjyc/2tmX5PKzeuPSGxzfGae49oTOvkDHvd65Dk+S3x/duRY/a+3OfNwkWeNzF1e6W729sxfO5fP05rTsvnhnDcaSz3b2Wh+18VKVbpIMnH5VpTvjt71j/vEmnf2CL9m1M9f3H4d2ruOSZPhZnTU0ix7R2av05jGdd3YkyT8X7eyP+8fneu+z3XHc5ZXuGXN07v22uq+3BmO9x06tdKdO6+wp+pljO/vuJsmv3/pepfultx9b6SbJUut+ttJ948DO+ORVl/TWYCyxYWc90XKLdOb3LDWpt/fZ4T/9WaW7+NTeu2GfXL7zTGPlX3Se1++3VO939dwLOnM6l3ypc15+YKDzXvskWfB9nXejHH5ob/32K5t15g5986jOmNw88+xU6SbJDhd15uG8fHBnr8t7X+y9F3PDL3V+/9Y+6W+VbpJMO3bTSvd3n+3sZ7/7O3vvK75phc499g5v77wL8pdH9+aqHfiRzjvjDlus9/17bfd7Kt0vXNY5F828p7PfSpJs/bHO/v6r7blfpXv09b1rjIVOe6DSPfhLneu4JNnpfZ111jf/trN30NNjO2vukuSUl95f6Y4q7QXy9hU2rXST5JpPd54bbTips599kkzabZdK91tvdvbiWXqJzv52SbL/ueMr3V3PuLDSvexPnfdjJ8nFX+rsT73YLydVukly2YHnVrpnP7jJfzXvecmFVxn89C6zfjxo17t671y///HOvqLrj+rMez7sid477H52bufdvicN743l7bls551Gn9+gc23564V2qnST5K09O8/15tmo81zo2d178+uW37jzXGH/S3vzqB64tHNvt8GOnbG89bft/I2T5MM/f7LSfXz3zrrTxR7u7St64T87c5IOPqWzX2KSvOvuzjsZ93/t7Ep3ix913iWdJJMWO7rSne+R+Svd628bV+kmyWdP7aztOOzhWyvdJLnyM513EO68ZOee8U9v9e45tlu0s+5uh5VGVLo/va73btEXftjZ62PvH/bWo7x7tc7+u5PPnvXrXZPkvV/o/UZdfH1nrv15C3fmqp11yUWVbpKssX5nnOnlj/b2nt/lH9+tdJc8vbO+/qCVe3PKjnqrs75+/3k717VHf6e39/UzR3f25lrkV535IUmy3W2bVroH7dj5vf7MuV+vdJPkrJU6a2heWK/zvOLL3+7M50ySref/UKX7vtd6c/gf/NtvKt1zrr6u0l3u1s7eCUmy8RydPR+O2Wf5Sve603pjcov9ozN36Gf7rVbpJsm2f+/M4b/sPZ3v9S8O6KxLTZJ3fLtzjXj76Z13Bs/3gWsr3SRZav3OWPsfnu2sf0qSQ5c7pNL97N9frnRXfrqzZiRJFt6g8/t3zzmduWpzX957N9/Y33T2Cz5j7b9Xukny+h6dvcBPHtOZR/XEgp0xxCTZ+dq9Kt1rx3Tm4bxniw0r3SQZnLvzG3XH05159kky1w867yV4Ye3Onva7PX1gpZsk+3+/Mz9r3wfGVbpvfqfzLt0kueEHnXevfOiW3vfv0ec7z6Tu+lFnj84Re3fWgiXJt1foHPPex3+r0n37xb33Hj2yQufdD4f9pLf3/IM7d+7Rrlzrtkr30/N8qtJNktUf6Yz3fX7j/6l0b/9Cp5skK561f6X70v2d67gkmXfzzrnooA07f4tTBh+qdJNkte8fUun+bpNlK93b/9T7Xg/O0Vnbscj9nXfpJslZ9+1Q6a56x5X/x3nPnV2sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/MgNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4OBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgdDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNnBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHYwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjDiP/mPh2UgAwNjZ/lBjBozepY3/23K1MFKd/jwgUp32rThlW6SDB94q9IdNm2OSjdJZgxO64RLf+bxMzvdJBkzsXPQAwPDKt03pr9W6SbJlGn/0anrf23UiJGVbpJMmfRmJzzQ+f4NnzZ3pZskb414stKdb/ryle7U9D7Lb0ydXOmOGdY7GQ2f3mmPGOh8R+YYuWClmySTZ0yodEeO6pyXh0/vXW9NHlk6x02f0ukmGTkwrtKdMa11zKW/cZKpI8dVuqMGO9cuEyfPqHSTZPL0iZXulJGla9okwwc75+UJMzvXAmNHdv7GSTKsdF37Vun3evqkMZVukmRs55w/sXdazoLzdP7OL4/vjAmMnqv3WZ45tXSNn875c/zUzlhDkoyZc65Kd/TUSjZJMmNE55w/cUbnd3XEsN65aPpg5/plIJ1792nDe2MCw4d1viczp3Z++5Jk2Jydv8eIqaXxrRG9MdVho2f9eHiSZFrnfDFl+KRKN0kGS79Ro0bPW+kmydTJnZP+zGGd79+cxWclb87oXG8NTp1e6Q4vjulMmjG+0n1rcu+6aPSwznl5zJyda4GppXNckkwaVjrnT++cP2f2fqLy5szSGEnxmKcNdr4nAzM7v1ETSuNbSW8c6sVpnXHrf87s/I4kyVMzOr8lU0u/10kyduQ8le7883bmIKww1wKVbpKssPwKle7Djz5a6T7x9LOVbpIsNGdnTHVmetf4qy+6WKU7c6Bz/pw8tXe9/PjLnc/Gs8+/Uenut8ValW6SvPrq+Er3tTd614jLLjqq0n3iuX9VuputuFylmyRvzCjNZ3ujcx335PiXKt0kGT6tc8wLjuzNkxtI57pobGk+4oIjOvO3kmTU1M6Y3MjhnX+/5ye8UukmyTwjOs+DB2Z2nsEkycgRhWvx/w9zoYa/c2TmvXbJWXgw/49dPtF7xvLxo5+sdP+857aV7rpP9h4k3/1w5/s1beY7Kt0k+cxK91S6c6/1vUr34bc/VekmyYfO7Nyb/+aNzm/mxFW+U+kmyW9/c3qlO+cnDqp0k+R71/6i0n3htrdVuhuNWLzSTZJ7P9q5NplyZ+ezvPrLnTHCJJmw6pcr3T/PWKTSTZLX1ru50l1/Rufacv6FV690k+T+z9xY6c6/Ref++WcrLVvpJskyt3V+ryd9eKVKN0n+ssESle7Wu46rdG/99Y6VbpIsf1lnLO/B0k/Jy7f3rpdvnfpQpXv//KW5Mkn2fHWLSvfRD3W+IxPWur3STZKDP7ZKpXvbHQdXuqc80Pm3S5L5V9qw0r11js71VpJMnNg5aVzx0rqV7he/eX2lmySnrdO5r9zygk9Uulnykk43yX3PLVrpTny1kk2SbPDMbZXuFUuMq3TXWbTzHDlJDp5370r3g68uVem+a+EVK90k+dePO/cOV2//eqWbJLst25nHccxd11W6S6x3S6WbJLs+23lG9qeF3lPp3j6pdx+1wfm/rHS32GjVSjdJ1h/+gUr3e8PWqnTnW6I3P+uexf5W6a62ROce7dX3vq/STZL5F/5Kpftiaf1Tkiz5ub9XupOfObTS3ejo3tyF5f8wvtL9wdZrV7pnnNZ7jvzYrzrrPEcs1puH89gVV1a6nxzRGRPYftTTlW6SfOjCznjDc7/ojOE/M39nPlmSzD35Z5Xu1T/pfZZf/fD+le7+Cz1Y6a61cu+53y6Lf7TS/cE3/qfSfXjj3prXw0ePr3S3WaAzbzZJdnzbJyvdIw9Yo9Jdbu7efIy57umMff556ouV7vsmrFXpJslhC7y70t3mO5dVuknyhbOfq3SHHXRUpbvfrmdXukmy0Audz/LT712m0l3urc54apIsfF9n3dauH9is0k2StW+9vNLdfMvOHJK13vxSpZsk49bsXG+t93jnAcHle/TmPV/z6F2V7sR398bkttpr1l8LTH3ivxuDGvH6tCz8l1n/O3HRXV+c5c1/+83vt6t0V534QqW77Iw1K90k+doenT0zDvrs3ZVukpywb2eu2i8/+3ylO9exvbl1X7uvs+Z76bd35lAt8v0TK90kOeXCzt959cMPqHSTZNFPdtbdrHtMZy711fP1zkVnbN95VrjtJ56pdHdc4auVbpIs/a/DKt059jqm0k2Shw5fq9J937s781nm/3Nv/vcBl3fuZY7coLMXwNeuPKPSTZI3J3f2ifjG+3pjV98d0/lub3RR5xw3+tpPV7pJstUh11S6v5vv+Er3na907vWT5NRHS+Owl/fWgp15+jmV7gZ/7zyr3/3wcZVuknzttvGV7k8f6vyNHzhznUo3SS44fI9K96PLPF7pJsnm93y+0n1rpc718soXzVnpJsm8f+nc+x12x1mV7sJXd9aLJMleO3f+zpfO13vWe8Mr91e6Px1xQqW78vG9Pa7uGXNvpfvQiM7z2JMu7cyLTJLFTuvMAZh6Qu89P/9z4aWV7pRvnVXprvzeztyeJDl6+sqV7iNXHFjp/uX2z1a6SfLEk++qdFea3Jl/miTjpnbW3O27VGfNwcOP9/Y3Pu07nXu0zW7o3Lu/fkZvPsS8946rdJd9+26VbpJ899P3VboPLdBZi7nDRzpztJPklNIeFT+c0jkvX7JQ73r51w9eXOneOeGsSjdJ3rXDPpXu8Yt09pFYYlJvT5R9Tv12pXvFXJ01B0cd3pubdfOSnb/F2o+eW+kmyeWfvajS3ecru1S6wyZ1nsEkyTLf65w/1zz+gkr37K1618t7bffbSveoxXr3fl/6aGevuAe/dXilO+2g3hrP+T/T2Qf1ip3vrHSvX6X3MrPX/vLHSnfqCr1rxHdu2Hk+/tp9nbH2H5zbG5N79nN/qnRP/HtnLcqmG5xZ6SbJayd39vfZbbkvVLpJMnWuj1W6by3xrUr3F6t3ruOS5IQ1T6t0b5q0e6X7r48/XOkmyVozv1bpXrzdTpVukkz6c2c+1H9rzqljs84zq83y7p9+PsuT/3/LffqiSnev5zpzIkZ+v7P+KEmWfU/n3aKfHtfbb2+NDzxQ6T50SeeeY+RjneebSbLWL46odK94qrOG5cgLzq90k2TkOZ39cU+7/+pKN0meXKyzPm3VEzp7L708obcvycdKL0c/54nOXrP73vfTSjdJVn+l836Z1U/s7JeRJEv+sXP+vODCznqic8f13nV12m2dz/I3b3ii0r3zjl9Xukly4G0frnS32Kc3Lr3/pPUr3XX2fq3SXfbuD1W6SXL1GZ3v9fVbLF/pbnFpZ3/AJLn2T5358Kdv1Ju78Myv/1zpXrbh5yrd/7mhkk2SzHHvFZXuHl/pvDP44EU6Y0xJcvjWnd+/Debu7U8932Od37/fb9eZtzfxvN6z72UO6ZznTnzhg5XuJsf9pNJNkg8/t1Gl+8NP7VrpJsnLp3U+yx/+VWcO+B2Ljqt0k2TO33f2Obj8/Z1/vzVP7s2v2+Lbnb1b3/2Ozp6USXL7Yp25e18Z7MzbW//x3rno5K935nS+9OZ5le6VN11U6SbJ+x7srM3ZaUzv3bA7XNhZW3zjOzrnoh13+n6lmyTH39NZs/zlwzvf62/+tjcm96l9O8/Vh8/bW3N+8jad5wOfuLqz99ndO3TeUZgkT921QqX7/IGdZyXPzd97x+Tv9/hupfuXxXrPd2Z+pTMOfOOXO9dyxx3Q2+Pnhhs7e7f+7IbS+t8Pvb3STZJ99ul8lm9duLf32k+WeKzSveW0lyvdZy/t7CGdJOvt2nmH0Ff+0Nl77dsX936jDl+4M79uiRe2rnSTZKl7Ou9Teuw9nb0khn9iXKWbJL9ds/Pc76obO/smX3FHZ25ykqz9y875829vduYQJ8nqr3b2DNjszE53wy9+pNJNks+8bZtKd567OnuC/XJMJZsk+eu5nfGtS9e/s9JNkp+d2Fmfs83fv17pLnxL7z0/J3+j8/68j6y3bKU739t648ufuqWzrv+x13r7U//+t52xz/yXU3bnGP961rl01j9XP/lfvT1yf352Zy79L9frzC+Yc8mzKt0k2f2EznsMPjt+y0o3Sb6wf+eccOmkzvPC087uzPtKkjV26byfa8c9O5+LKUf29tl5+flvVroXb9l7rvDzQzp7A61w1Xsr3bX+1NtLc74Pd/ZbH1yvc0G8yzq99Wmf+8LHK927vtx5H1yS/GDZhSvdNX7amUd1/2K9vfz+8VxnTd2au3b2Xzrh1t6856OPOLrS/e4Zvf2ev33ADyrd0zfojBFe8K0lK90kOW2xUyrdk3b/VKU77MjrK90kOWDFzntnJ2zQe154yD/fWeludsnJle4Jl8z6dbT/NuKdG1a6R83RmR8y52XbV7pJcsDYd1S6w0rvpkySuwY7eyae+/xvKt2ll5u/0k2Sj+zb2Vvmcxd35g5tuW7vemvCrWMr3TPuXrfSTZKl7t2z0t3x7539jOb/eGd8K0l2eaWz7uD1r25V6d68y3GVbpJ84aizKt29Xh5X6SbJ5Wt3xs7unflIpfuHBzatdJNk7/k6e5f/YL7OmrtVzzq00k2SZa8/qdK9Zvve2qqnV+jM8Vmn9Ixz8cs7c4iT5AMHd56Rbf6VznPkk8/vjLskyV+P6MxpGfXsYKWbJOu/2bnm+sZW+1S6396ytxfjhZ/vrJX4+LWduYb7Tuy9j+6jB+1d6R5/yO8r3SRZ/bT1Kt3fXP+7SvfXj3TeTZQkC5zfeR/4g39bqNKd/NPeuzEv+ckmle4F7+3sEZgkn9qs87t6/jqd9Xw/W2e/SjdJ9hicr9J9+enOHj9zXdG7xvjxqctUuvv9ojRvKMn7F++80+WpfTv3fpe9pzPWlySfO6az99qel3d+r584orc256J1O8f8hTl770e5+9Od+9Uzr++sbdx2187+dkmy+mad945dvV7nGeg+A729kx9YZ9NK95sr955VnnpTZw7X8yd23qE3x++PrHST5KmTOvu4P35qZ53g9OUnVbpJcua5nd/V353fe2477ZnW9csG/8f/tbPrJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2ZgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNnBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHYwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYHQwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MGxwcPB//R8vNWruwUMWWrdwGFMLzf/HsGHzVbojBwcq3WGD0yrdJBkYPmelO2zYpEo3SV6Y8kKlO/eYmZXujJljK90kybD//Xf1PzJ9RCU7bGDeSjdJps+YUOlOnD650k2SsSM6n42ZUydWum+N6J2LRszsnDMGR4yudIfNLH33ksw1svMbNWnG65VuksycOarSHTnsxUp3xsASlW6STJv5VqU7Y0TnOzKxc+pMksw10DnHDaTzeUuS4SOnl8qda8QZA53zfZIMlL4nw6Y+X+lm2FydbpLpA/+sdOfJ/JVukkyc1rnmGiydi0YX7/2mDw6vdN+c3jmBzjvQuT9LkpnpXMuNGOh9/8aO7NyXTJvR+SxPmTyj0k2S0SNHVrqt35KxxXu/qcM6n4uRzXPRsM61+IzpnXPc8OG9661pkzqfuWFj5qh0J8x8s9JNkoHJnc/ywNjemNy0KZ1z/rSZne/f8BGdsb4keXXSlEp3/tJY0YjOz0iSZOa0ztjZm2ndnyVzDitdiw/rXG+9URrrS5KBUZ3P3MS3Xq5055ln7ko3SWbM7JwzRg70fldHTO+MUb45onONMWxa73s9ULpenjit870eHOhde86Y2flbDJ/Ze1YypfORy4TBzu/1Pyf1/v1eHuzcVz6T0m9J6buXJCvPv2ilO/+CnXuHJBmY0Ll/GLfkgpXuaqtvWukmydlnn1Hpjp1znkp32KjeZ3nRBTrP/SZMf6nSTZIFxy5e6T728IOV7mqrdc4XSbLeFntVuq+9/K9K99UXn6l0k+SN55+tdBddZlylmyTPPPhKpTv/uDGV7uS3etdbG63fmNeXPP3gE5XuFdfcUekmyevTO9f4Y4b35pCMTOeCef5hnc/y6OL48pyjO3OAZpSeD8w/sTMGnCRzztd5pjh1eu9Z19yZ9d+T37z+TF6YPnnYf/P/XeQdCw5+9MIdZ/Uh5W0T/j7Lm//2yEHjKt2lXuvcM949qvP7kyQrDetcT63+81Uq3SQ54p13V7qXfOKqSvfmYzaqdJNk8kqd8+NJr25e6e7yp869TJLc/LPOdfZa542rdJNkmyU647z/Wu7pSve257ardJNk/lV+UOk+cMWWle4G71mg0k2SkfMdVum+/ufTKt0keWP6w5XuipM74yoXLNyZm5wkKy51ZKW7xDJrVrpjH+3M50ySu2/br9K9eZHO3yJJ5t27c5/79p8+UOlOfevySjdJdprr7Er3kZ0vrnT/cd67Kt0kuXRc5/rl5Fs6a/mS5O5p4yrdsZscVOle98WjKt0kGXtuZ8xmh5s7/37nfGClSjdJ1rzi95XusL2Wr3STZLUlOs/1Bv7ced5059y9+52PXlJas7zbjZXu8DmWq3ST5CvDOvdRey20YaWbJIs+tVile993f13pLrpEb83kA7tvU+mufsGtle6bRy5d6SbJdV96T6W722ZnVbpJMtfj7610r96qc/686bed832SzP3GTpXuHiO+Vun+9ePvrHST5KF7Otdbtz74VKWbJA999H2V7o9/3xnTGb5G71x0zwadZw/3nti591t/92Mq3SRZ/LK7Kt0xc/bm101c492V7qvfOLXSHXbiIpVuktxz5m6V7pLLfa/SPWdK73v9sac65+UX5+rNCXzqb525e9uP7qzHvGZ4Z21Hkvzup+tUugse2dmL4PP3duaTJckCX+/MYzx67s69Q5Lscsdzle6oNT9R6a5z4UKVbpJc+0xnPeaW+3XuV28c6H0u5nt4h0r36B17c8o+utz5le4HL+w8T5xjysaVbpK8dmDnGuMdL3XmFv14k9711tPf+U2lu8mCvTn8N097rdKdfP96le7/PLRCpZsku13RuS46/Jed3+sN7vplpZskv5rvskr34oHeOt0Dbutc49/75uqV7gor/bXSTZIPT+vMRzzvsc6z5psW6lwfJsnyc3TGG+ad3rtGXGPvWb/34U8vuCfPvvjWfzzvedycowffu9qSs/x4lpxY2gcuyXzj/6vp3f+v9v5mZ97QRld9t9JNkuve2XlW+ORJx1W6SXLZAndWuofN0/lc3HzObZVukmz99a0q3auvu6DSfXzP6yvdJHn5T1+sdJe59OpKN0kmvtUZ+x+z8Z6V7hrrnVfpJsl5ixxR6W65+ecr3RP26a1t+v7CnXV6p+SblW6S3PbFzm/2xn/7c6U79tr7Kt0kmWPszZXuo6tdWulefF5vzux+x6xV6d68VG8OzsGb/6nSHbbmspXur2+6stJNkj8t0dmf+uD5O/NOvrVwb73dJ77dWYu57hc6z7CS5PD7OvNEz/3ngZXu0xf31jLcuf3+le7X3ttZV7X3bV+udJNkz392/s4PLNG79/vrHp31Mz/coLNX6RUHz/qxkX/72XadfRhPWPSmSveu3T5Q6SbJlMf3qHR3u6HzDDlJrnt0XKX72Zm7V7qvje+sNU+SP4/tXGNsutUale4c9/TuHZZ/x2OV7mFz/6HSTZIX7uvMs1/uuM7a+xGHdf7GSbL3bldUuqcM3lnpLr3SuEo3SW48vXON+Njavbl1m951YqX7yRffUeme87veHu4H/+SDle6ec3XGoV7+1jKVbpJ8fY2VK93D7u7N0z5gyl8q3YU378znvGOVz1S6SfLmrzv74k1fuXPtecAWB1e6SXJkZ2pdnlm6t0fZEed25g1d/d3TK91F1unNJ3t1zs6eDJPu6DyfO2e93l4rH/heZw7OYhuvXekmyftGdZ4prv+HbSvdj1/Xm48x/yEnV7ov7tC53vrV9zrnoST56oSvV7p/uLTzuUiSU97qzPuafNXele6ZF/Teq7jlMZ1xgSkDnf34Hn++9wx7+nt/Vul+7qXeOOLUR4+qdJ/+TGfexPgjenuDbv/WhyrdwVs6658+ve34SjdJzr+nM140Yt3bK90kWeOy71e6x06+p9Jd8ebO3IYkefZjP690P31HZ9+go0/bp9JNkjX27qx/uvHICyvdJFlofGc+xsd/+dfbBgcH/+OF/WvOtfDgZWvM+vVNf3+0d8+x5Qc781tvOqrzHbgnh1S6SfLp8zpzcnd9/EeVbpL8befOeNB7P7FBpfvqsr3r7KlzdPbqfuKMnSrdab/7RqWbJHMffUmlu9ZvvlXpJskHzuhcQ2x3a+eadZtbO89BkmSVn32q0l1wlc5cmU9t09l7KUkWeXXnSvfrJ/aus8ec39kXb6mXOvccoxbvfZYn/b0z136/FzpzfR9Z822VbpLcdFZnPdgnJvbmPR+2eWfuwl3bdPZB3fQnnfk9SfLWi505/Fd9rbNO6ZEVeu+wO2/hT1e6796o927fDVfYutI9ZpfOd+SszcdXukly7oWdMdNtpnTmt3706d46sx0P+W2lu+uo3jXGfVd+p9L9wnKd+VmHPrZppZskB+3T2Tt59xU6n7lfLNB7Z9Xar55T6e7y084c8CR5+l+dvYz2vfC6Svf0z/bmGn7k/M7+Wdet3dkr+JXle++TOP8rnffEHLztmZVuksw4tfOe6ttmdObD//jeX1S6SXLMnp1rgb8f19k769qXO+OeSTL6r0dVujtd01nzkyQvHt+Zu/fm+1etdCee2xuf/PL2x1e6X32+80z2x5t05ockycGbLFHpbju69w6MCad+uNJd8h+ddfJfXr7zfDNJ7tyns4btpFc77+x+613/qHST5IbLOu9pWv/G4nqUD3bGiz5/9Bcq3fff0ZvDf8SUznsxLzq089t35Jf3qnSTZOe/dJ6hffA94yvdJLl+685eBCfc2rkP3mqNfSvdJJl5ZmfPgA1vOKHS3e7wzt84SdbZtbO//1pH9c7Lm2/cee53wcKdd7wu/KvOPkpJMufcO1W6m+7R2Uvijk16726+/C/bV7q3bbhppZsk5z/QGSMZO9f7K93ffPCUSjdJfnFC5902t9/UWWd2zFudcbMkee3Azl7rO03q/Zbs8Exn3cHE+x+qdC/5XO+9mF+96NFK96QZW1S6Sy11UaWbJL85sHPvftnSvT2a9t2486z57IWf/6/mPS887h2Du2466/csffy6qbO8+W8rrHdIpXvssM685zUGO+8aSJKlPtaZEzjHfb21G399qDOn7McTOnO/Hr6pc/2eJEtdvWKlu+Q1nfHumzbs7Tm0/tTOHPAtb+5c/yXJ1ZteVOketPzMSnf3x+6tdJNk5yO/Xeku+Uxnrswnp3X26k6Sx7fp/M5f+e3OGFOS/P3HnWPedcvO9dT+3+y8yz1JNj+9s8/ONUt09km64dSlKt0keWi+zrj0jQ921rkkycnf6ryP+KN/+mOlu8HH1q90k+SZgzt7tax1zCcr3XfveW2lmyTvO6yzz9WFn96n0k2SaXN3nr/tvnHnnUbrn98bo9//pztWujdf3JkTscPnO3OdkuQ3v+is/93/Xb15HE9d/0Kl++M9nqp0lzj7I5Vukpz3Umeu6N7HdOYnv+f5H1e6SfLeb7y90t12emeuRZK8ba/Ou5reeUhnHOp3gwdUukmy4Fmd9+59/uVxle4tvz200k2SVW49utK9dc7OnsxJ8sK1nf3yz5i8WKV73q3XVLpJ8sq7T610X1v+/kp30l29MbkjP915Xn/VAXdUukny5T067x3b/ludfXY2uKv3PtTTD+ms7V9o1c5c0fEb997PMOfFnfccf+3E3vvnn/tX5zf7R6tOqHS/ccnfKt0k+fLa51e631+oM4f45S17v9e/vKCzlv0Xm9xZ6SbJB/fvXGPMNXmfSveFzXrveb3j/pMq3RnzdL4jS6zQ+426duX/qXQvvaa3F+rre3Tud/41pTP2csB+K1W6STLqw53fqIX36Tx3P2je3rr+4zb8XKU7+ZDfVbpJ8thpnfdLPXRi572Nw+75eKWbJJ/aunPv/tqaP610l31H552bSTLn9m9Wuj/dsrNfcJKc+uPO79+6q3XeQ3Pv9zvvfUiSR47qrE392t3vqXR/slTvs7zMeeMq3e9d0JmbnCTnbNR59rDpjFm/z22SDF7Wm5uy6nc685OPGNfZX/JPR3bur5PkivM635Nlftnbu2vZazrPhD+0+kf/j/OeO7ttAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/ZQaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHYwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYHQwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4OBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgdDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GDEf/Ifzxw2LJNHDJ/lBzFz5luzvPlvo2bMrHSHj1im0p0x7blKN0mGDb5a6U4dHFbpJslgRlW6b02bUekO9P4UGT58ZKU7adj4SnfktM53L0mmpPOHHhze+Y4kyVtTx1S6M0Z3uoOlc2eSTBjR+SyPmTpY6U7pZJMkb016sRMeObrTTTLv8M4f5I3BeSvdGTN61xgZnFTJzpzS+Y4MDJ9Y6SbJzBmdz9y0sa9Xukkyembn/JnSb9SEmb2T0eiZnevPYaP/o1uN/7XJE6dUukky54glK93XSteeSTLHqM7fY+qI0r/flN6/3+Do+Srd+Uu/q1Om9/4W0wY7f4sRw3rH/NbkNyvd0WM61xhTR7xW6SbJ8GGda/GZozrf6/GTOtdESTJmROdabvzMznckSQYHO+MYY0sDDlMm966X35rZ+f0b+1bnumjGyFk/5vlvU4d1/v2GTxlb6SbJlIHOeXlgZuc7MmP6QKWbJPOMmqvSnTHYOeYpmVzpJsngQOeYp5XOF0ny1tRXKt3hY8ZVuhne+yxPm9kZFxgzdoFKd2JprC9JBgZL91Eje/9+w4d3vidvTp5Q6Q6k97s6WBp7mVr6W0wb3XtwNHJ653PxQmncM0lenTa10p0wqvOZe3aw87lIkqkDnfGG92+yTqU7z9hFK90kWXnJpSrd1998ptJNkuWXX7/Sve6GKyvd0aN711tvW2u1SnfqpM7zge222rbSTZIrbvl7pbvu27eqdJNk4gudMa4Zg51rz9dnLljpJsnkV56odJdY5B2V7qvPdu7bk2SxpTr3wQ/8885KN0mmTel8lpcYu0GlO3buzr1qkoyZZ45Kd7EVl6103zfQm5vy7PjOde1t9zxc6SbJa1M615+TZ3b+zvOm99xowsTO2PXYEZ0x1VGje2MCEyZ0zvkzB6dXuknyRmb9uM7Uwf/+mnbUvQNZaqVZf368fKnPz/Lmvx0xx7GV7vJzfbzS/fWDF1e6SbLyjp3fzcV2bc0bSk5dqXN+PGn/D1a6C6/5UKWbJHO9uzM/8oxdd610z7+uc7+fJB+Zv3M+/+vKvbHYizbojNmMuO0Ple5Om/XmR5522h2V7vg1H6l0/zD+hko3Se44anylu+8SnbHjJFnvR9dVus+tvVele/gCvTH6W3JXpfvUcTtVuh96T28saMYenbnaq2z6w0o3SUZPOKPSXW7Dzvdv4+V7c1revdrbK91NHyid71funeM+vM4Lle4FR7670k2S4dedV+mufdfvK925F3+50k2SbW6bu9K9ZolPV7qrDH+g0k2Sx+bo3O8sNrb3uzriHZdUum+/5yOV7gKP/7PSTZLvHN2Zk7vU3NtXulPf2KPSTZKVpv2x0l3i0iUq3SSZc9nOGMl8825e6f5hxL6VbpIMv+dHle733n1YpbvbmKcr3SR56YPXV7qPXzZnpZskZ6/XOc/tc+88le46L7630k2SeXc+q9K9bExnHGOVOw6vdJPkHV/u7Bkwx4q/rHST5PgNO+O1W729c41xxLW96+UFj1u+0t10uc4zmNHPdeadJMlyq19Q6f7zvA9Uukmy9uY/rnSvO6UzJ/eCR6ZVuklyyKGdMfE7lp6/0l1vvrUq3SRZebXLKt1H/t6ZN5sk677/L5XuVVcsUumOfc96lW6SfOT631S6243cotK9/cLOOpckWXh05xno/lP3rnSTZNud31fpXr1MZ0xgh6NXqnSTJBd1nhtdN9g5Xxx+1KmVbpLst2rnucOpWy9b6SbJnvt0nh19cd41K923HdUbk1t7jeUq3bkW6dxHPbxUb67hF7brzNUe/UhvDsLXv3prpXvrHzt/i0l7/avSTZIjT1i90t32uV9VunePflulmyR/vaYzdr3uUrdUukly5xxvVLqvvuexSnfRuz9a6SbJ5OGda4xb5umcL1bf5qhKN0m2f6TzW3LHdSdXukny2qqzfuxsxmv/3VjDiOmDmf/lWf+7ud3enf2GkuSihzrj3X8Z1fksHbf0/ZVuknxo386zwim3/7rSTZKdT+zc1637409Uus//s7OPWJL848mlK93Hz+t85o67coVKN0ne3PrSSvewG8+qdJPk5R13r3QnbXlTpfvE8T+vdJPkn1seUelee1nneueXm/fWv/944c7atGV37MwBSJKDbli30r1/ic784dv37azrSJI7x3+x0n11zs6Y9DE/6d0vHnpVZ/+C37z5p0o3SbaZ2XnWe+AjnXnay23a+R1Jkp/t8edK9+LrO3Nw5p2js99Jkpw8+dpK9639vlHpJsk/ftx5pj7iHztUuof/4shKN0lWvKszz/CmKztjYnte39lbPEkmHntPpbv5Z66pdJNku43vq3RH3NgZE/jde3tr9n+9fmctyrGLjKt0p8z33Uo3SXZ5oHOPff5rnWvaJPn1Ap0xkvW++OVK9/ipf6t0k+RfkzrzAZ857V2V7o1L9p6bnn/OyZXu91/uXWM8vM4xle6ri21Z6d55dW+e4XceuKbS3fXsQyvdFy47pdJNkptGdOZcHvmTJyvdJLl7vs595Rvzd/aO/MaKnXWYSXLizZ05OF99rLNf4rAVO88zkuRvb3XGEV8/6sOVbpLsf0dn77qj5+ns97D9TZ155Uly33c69zu3bdy5Rzviu5dXukmy/8qd79+yP3i20k2SNz98UaW79C876xrfvPFTlW6S7DVfZxzqw3/p/EbN/4nO+vgkuXCHzh4Hnz2nt9f6vy48pNJd+ouda4Fxx3WeJybJjDEbVrpf/EJn7e/whTardJPkpot3rnTfOa3zHvIk+eEvO3NQf3bU1ZXujYt37kmSZK1VOvPs33dvZ034Bj/ctNJNkmUW/3qlu/i5veui5975nkp35j2dNT/zzXN2pZskKw129qo69ced53NXfbR37/DqHzvt3b7b+V4nyUF/76yL+/OenT1RzhvZGetLkkPv6szHeGuTzu/qbWv/ttJNkl+N3q3Sne+7D1a6SXLDyGU74f9y64QRKy6YBS6a9XvArHhKZw5xkpy450mV7k9u7/y2rfuF3j5+Uw/rzAN44W+996FefPvzle4c3/5WpXvlQVdVukny9KGdsbx88rhKdu0JvT127jiks+7moqMurHST5LJ1Fqp0D15t60p3/U92xhKS5KqLf1rpjt+0M05x94d742K7n9HZX3zOd3Xuy5Pk+ZM6a77XefD7le5d6/b2a7vjmc6cwPec2dlL5fBLO2MUSfK9qzvPC79/QWfeV5LccEBnfvkWT3fm90w6szc/6+Vbf1LpPrHtwpXuhyb21tzt/b4dK91rT+2MUSTJTU90xq/u3azz3tJ5Vz2k0k2S27/QmRex8aGd/QsO3aTzHUmSJSZ21iBOf3rPSjdJ3v/dzrqR67/SWee50Ud6e9ct9EJnjsFSP+7cOxz06S9Vukmy/Qc745rrf+vblW6S/Gu5n1W63xrWuadc4+LO+rUk+cXbrql073v+uUr3O4utWOkmybxf/Uel+/2je+s8t1my0568e2ff3fUf7a2tev2Gzr3fqOMOrHRPP7pzvkiSN8euWun+8nu7VLpJcthNnXlwF/+p8y66bVbs7ZH0+2M614j3bN7Zt3yX575a6SbJOTd1/harfPXkSjdJnrplv0r3I+t2nqG9fY3eezF/ekRnL6Wnn+/sOz9qz94e7g+81XmfxA1XdMYEkuR3H+nMSdrk5c79zn6bdfZKTJKdl+/sI736OQdXuuc+1Nvr+a+ndPaf2e3M3vOBTb/Sme/07g9/rtL91M9/V+kmyY7Hd97f9dBzB1W6ow/vnIeS5MmvdtZA/WbvGyvdJJl+Yefeb8z1nbWpL63Ue4/8fqvdVum+7ZrOv9/bP3ZapZskx/+ls6/N+ef13idx7WfPr3Tnfr7zPH/y1v9T6SbJCdt23sX63Okfq3QfP3WTSjdJfrB15xr/2zt0ns0lybvm6bw/dsU1Vq50j1m7c0+SJGs/vX+lu+TV+1S6Z67xyUo3Sf55d2fO50aPd8a3kuTP0w+pdM/Of3f+fHPcs7l6+6/M4qNJrj+g927R0Y93usNW71zz/Haj3tz/d17VOeaXHrio0k2SqXeeW+mudkZnreWIgzvPQZLkgIHOmM3Cf/xspbviJndWukly0WnfqXSXm9Dbr/uYNzvvunrm8K9Vuud/pvee4ysmdPYVXeHhzljCgpf39k6+ccfO/J47l+/th3P8c531KJ//4zaV7sCts/665d++cuoJle4qm3aehRz2uU0r3SRZ8EOdMfqB929U6SbJfDc8WulefNuyle6D3zqz0k2SezbqrOPc+Yg5Kt0XJ/XuHZ7Yu/P7d/K7O+NiSfKHPU6udBfavrNO8KERnWf1SbLqzM6+6Fss1TkvP/V6Z+wqSSb8vLOHweIf6e1B8bUtO2vNfvelzvPep7/S2Xs3STb4xWCl+4WlOmNu172vd718+H0HVLpPvO/wSjdJjhrZeX66zeTOde2UX3b2+UiSP+3YWQ+92Lydd0ie8Hpnv8skuW9aZ63ET+7pPIdMkg327fxOnfyxlyrdXUZ03p+cJD/4YmffmhH3d+6jfjrY25fhZ4t11kzu+8DalW6SvH+OVyrdj4zu7FFxyaTO/J4kefyU9SvdjVfpvFtxt8XPq3ST5PQT16p0T/713JVukpw0vrOGZt+NX690V/1FZ51Skiz7+c6Y3AovPVDpHrhxb07EUfN35opOXrQ3V/ujW3WeD9xyXWfN6+8f6axTSpI5ftc5z3117c6+KHee1Xl/XpJM3a2zz8HNx3aerSbJbmt1rj/vOumQSvemC1epdJPkwGc7c6rHPn5FpTv/P3vP0D43pXO/utRyvXeG//oHnfXbG55/TqX75k69cYx9Jp1V6R6wbGc90RzrdK6JkuSWf3W6F53Um0+z1emde+zxp91Z6U6/tDfX99eHdq4xLjpv8Ur34vf23nn7patXq3RfeGl6pZskP9qt8xxm6XM/VOnOv2vnHTRJcvU5nTn8v1r+/ZXu2Wd03qGQJFu+2RlTnXvK8ZVukky6ubfH//9J7y2tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/kYGhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmB0MDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2cHAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYHQwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDsYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB2MDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4OBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgdDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7GBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOxg2ODj4v/6PFx85x+ABC6486w9ixPBZ3vy3mTM73YHp81W6wwcmVLpJMnP41Ep3xqTeMU/IyEp3xkCnO3pmp5skw0YPq3RnTul8LqaPHFPpJsmY/+C89Z+Yms7fOEmmzHij0h0xc3SlOzi8972eOKNzzp9j5IxKN9Pn6HSTzBzW+TtPmDKx0k2S4QNjK90ZI0t/5xmTO90kM2d2Pssjhk+qdMeO6p3jhs2cs9KdPLnzt0iSEaM7n7mRg53PxeQRUyrdJBmTzgXzyGGda4EZpd++JBk+OL7SHTHQO+ZpUzq/f8Pm7HTHTu9dI75WOi+ndF4eNWl6pZskU0Z2rvHnHDF3pZskM6aNqHRHDOt8lmcMn7fSTZKBwc613OQZne7AiN41xuCkzm/UpBG9c9EcwzrXnzOmdsYbpgzr3F8nyfARnX+/ETNKYwK9IZ1Mn945L48sjmOMGdXpTpg8UOmOLn6vZ6ZzjTGQ8ZVuZnR+U5MkwzvXL1On966Xpw7rfP8yOK2Snd47LWf4sM73b8SIzr/fxJmlf7skM6d3viczB3rHPKOUnjG883s9dXpvTG6w9Ezx9Wmde783B3u/1xPTOeZpM3vH/Hw6n42ZpeeJKyy/fKWbJHt/ZIdK98nXX6h0x00tPXRPMveYzj32ixM6z+aS5PkXHql055yr87v62KOdz0WSvDmhM3a97LKda/xxYxatdJNk7JjOMY+aZ6FKN0mWWXr+Snfc2NUr3TuevLHSTZK55+z8+913ywOV7oZrvafSTZKpYzs3JlddfXmlmyQvPP58pTv/vJ37qHnGdJ65J8l7Nil9NkqXiBP++VQnnCTDO/d+V95yX6WbJIPTOt+/iaW5YW++3rveGiwNkoyZ1rmunXt4b27RXOlcI44d6A1EjRo+608a109+OeNnTv2vwqsOHzX487Gz/prqbw+Nn+XNf7turYMq3cWHn1LpbnD76ZVukixxYOeYX/j93yrdJLlhmTUq3Tn/tValO7hcbw7/EunMMXh62t2V7oJv7VTpJsnvVun8LdZ/fdNKN0lemPalSvfGyZ17g/mv7D0j2+djb69053y5cw3xhyvnqXSTZKuFnq50xx/Qe66w67WLV7rffWqdSneH3S+qdJPklRs756KB2zsTDAaWeK7STZLznn53pTvlwDsr3SRZa3Rn/Gr63J178wuf63xHkuQDz15T6c71UGcewBofWqrSTZKLv9f5jRqXX1W6SfLygt+rdHd8+ruV7rHLvV7pJsn31umci746vtOd9PDvK90k+cSaW1e6Z93VG5deY77Os5DF/9q5lpu8Qm/e+gIrLVDpHvHIgZXuLRsdW+kmyV9Gdcbon7+18xwkSV558aFK971zX1XpXv7oEbRDkgABAABJREFUhyvdJHlup7Mr3a1Hdn6vt7h3fKWbJJfOuWKlO/cyf6p0k+T2jTprG+c7bbdK96nne2sml+yclvPSwmdUuhsMblnpJsn5a3bGMY56tHeNeNodnTG5JbbtjJ1d+/KXK90kWW6lWb+nTZL8z5R1K90fv9x79jblms7ckzlWXrbSTZI707kX3uWOzrPTm469rtJNkrlPHl/pPn3SPZXuFt/9ZKWbJJfc9fFKd6NlPlTpJsnvJn2s0t3+HT+pdO/c+sVKN0k+cPtele6yO2xb6d54ae/3+kOr/r3S/fziK1S6STJt5o8q3W890rmu/ckPe+u3379RZyLcsyMer3TveH/nniRJNlj35Up3ifsXrnST5K1VOtdcq7/RGW/4+Yc6584kOeCgt1W6p6+0fqX7xbn/p9JNkgeW/Gul+53fvlTpJslqj19a6S74+iuV7twP9p51XfX771S62z93TaX7zDy9a4w1HuyMb117w46VbpI8+dCyle760zrrlC7cet9KN0k2eP6KSvc907erdCf9vXPtkiQTF+ysU5r/iVcr3SQ5f7M3Z3lz/HPPZ9qU/3ze89hhSw+uOOyLs/x4PjWm96zpHZ84sdL95jfHV7oXbrFNpZskk8Z15rbee/KDlW6SfH7DLSrdg27p3BessFBn3DhJLtrk4Up3u6c7cwC22vzblW6STH/+85XufJN3qXST5IUZnflIb1zUeY518tIfqHST5LIrPlXpLn9c53rnz+M7z22S5J1f69wj3XPQ9ZVukry12p2V7ohrv1npPnVoZxwhSR5/W+d5xfu26jyrWH+13rqcr/+4szfCzyZ2viNJcu4Lm1e62+7TmQM34rhzK90kWf+oztj/y8t11gwvc2Vv/v6MH3TW2623Ye9+Z59TOnPLv/bKqZXuM4Nfr3ST5Fef/Eul+94TOn/jhzc9vNJNkp2u6swzXGHDxSrdJLl8j84cxm+/q7Mu7tj7zqp0k+Tjx3euBeZ+56wfX0qSz5+8SqWbJBtt09kz46Fzz690k2Rwk19WuhPWWqvSXXPfOyrdJDno7m9Uuqsc25k/fMaOi1S6SfKVY79W6S6/7aqVbpI8d3XnN3u3cZ2x2vumd+bJJMmU37+z0n3r/M48w+Uu+XWlmyS3/6wz3rDH0r3nmzcu0Xmmd+aJa1a6F2zeuaZNknd+cqNKd4OD/lnpLvGj0qbzSa74QudZ4Yn79J5vbvmR31S6H32yMya34A86c06SZMw+nX0IPnjBhpXuLQcX9w26o7MWZeYJx1W6SfLIXjdVurts35l/+sI+vee2L718VKW742ad/cBO+fZblW6STP3MkZXur37Ye2674Yqde/dv7t+Zd3LyV3v/fgvMM+vnjyTJB5a6rNIdeVVvD7q7z++cP3c98/2VbpKMur6z3+XCO3XuV+e9/tFKN0kO+0Rn75LP3P/ZSvf9e91Z6SbJj7bo7K/1tgU6ewUkyZRbO880ttjog5XuQzv0xidPHf3bSveMBzvvObj+1c5vapLM+/STle5Fl3W+10kyeqXO9fIj8/+s0v3ZrZ2xviT5ypXnVLqTFuzsG3TvI5tWukly+Ic769e2Xqv33Pbrm3Wej19y6h63DQ4O/scTuVZ4x/DBEy6e9fvirfh4b/+JYXPuXumuN2dnr8vvj+2tOf3JVp3n9cftcG2lmyQPXts57w788l+V7p0f6MyhSpLxi69U6U4d2Zmf/LF7es8Lbzmys+5t9ZufrHSTZKlLO7+b+3y2s4f7Hq/31nzvd/N8le6v1/pcpXvvLzrPN5PkSwd0/s4fvqDzuUiSI097stJd/anOM857x3e+e0my5dOdMe/HT+v8Xu++7CaVbpLsdGRn78hF7uitoXlxt9Mq3aWW2L/S/eDlT1S6SfL173Xmra93/66V7jrv6TzHSpL33dy5f87qnXegJcn5h3fmqy02Y4lK98Cv9vYUHTbxvEr38x/o7Mk8be1bKt0kGXFjZ93PRif3zss7/7XzOzV+tc463VNX7M1pWf+5j1S6tx7WmVv+nT16cw0ffmbtSvfwdXu/JfstfUCle9jHOs9u7lqht/53zFud9wasOv+nK92t3vhMpZsk00d21vN96YXeuej8ezprGnZZ/v5K9+hf9a63rn5jtUp39/d21jYO/Lo3j2P0K525Jz994L2VbpI8dVtnfvLfTurs/bnxtM5zhyT5XWkviadmdI55/X177y8/afHO2rgfrtfbO/If+59V6R6wdGc90WX7995FN//ZnecDO1zcuV/d7vz9Kt0kOWaJzruJ5liy9F70JMd+o3P9edi5nfevfWLZ3vf6kxd31hOtOtDZB/XWv32l0k2SX5zc2W9v5VH/qHST5BsvdvZYfemGGyrdd53d2e8hSU54qnON8dcvduZT7zBvZ81Wkmz08pOV7vS9O3u4J8kP9u3clzx7ZWct9CvndM73SXLLuM76+x1XOqnSffdmvefBL63VGdN59Pne9+/k186sdCcev32lu8JXO+NbSbLvk+Mq3U8e1tmrcY3xnXd2JMk3H+pcy31/Qmd8K0m2+Hnn2dGrB3b2tZl35d5nedTpnfmkj0zr7Bkw47LOutQkefKTnfGt+z7a2xdljRM71/inrPS2/2re8yIrLDf4keOOmuXH84+5e++6+v6fO/d22554dKX73Mud9eRJcu9mF1a6/3isN2az71Wd9xyfP3JCpfuny3rPFfae0Bnn/dYTnfe2/WafiyrdJHny/s5cw58f03lncJLsPabzfsrtnt6q0n18dO+37azpnWuTcdd15gTesdSzlW6SnHTSnyvdv53Vez/Q5Ld1rlu/fFTnGvDOsZ212Uny+hGdPRN/+WTnee+Bt2xa6SbJFxbrvOvqgLfdVekmyfDNOvvar7ZGZ+7JAwv05gE8+63OHtUXrtaZE3HW8r19Db+9+guV7uOHd9YGJMmWB11Q6a7wbOd8f8NZvb3LV7v3o5Xuxd97R6X72ct7n4slnuns5bdcOvvYJsmKCy5f6e554JKV7s6H31npJslNB15T6e75ZGeMaYNjL6l0k2TcCZ29Bvbf5neVbpIceHZnPftyK3Xmw5+/a+c5VpJ8fb7OGoyXP9953jvqxt4+/B/dtrM30OUDx1a6SbLcEZ1rjDH7HVbpjl++sxY6SZ7YubOv6N2f6nwuDligt9/zY2t3zhmTivvXvfKbznq+N0d0fqMOf7Vzf50k31z5D5Xub/f6UqX72LEXVbpJ8tlD9qh0v/Fab37kZYd29r9+7NzOO5+XfKC3r+h7Xuysx/zD2zvr+Xb4UOc5V5Lc+/o6le6xd/XWVp31nc4+/H984T9+zfH/ygtH9tZvf3alznO/a+frvHNzqa+8rdJNkm1P6YzV/s/03tyTNf/Rmbd+1yudeXtnf7AzVpQkN93cmd/w8zs7+4ou8/BRlW6SfKczBSEf/M2VnXCSd1/S2X934AOdsfbXd+o9z//GH/audD+2WWevxvfe39lrLEm+smJnTPW513rP/S7Zb8FK98btO5/lP93em+t7ytGd/Rp/u1lnH6WTi+8JveYnnWvxDVbuvR/l7Ks6z213/tbdle4zl3f2GkuSsbd19gs++6XOuPUtq3fe25Ek+4ztjJ3dkM6csyTZ5d2dMbk1Dv3g/3Hec29XDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4v8jAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgdjAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALODgaE+AAAAAAAAAAAAAAAAAP5/7P1p2K5j4f9/f9a1BotlHpZ5JjPLmCkhIiQUQhqQBspYEUUlDYY0UuobKkMhJVNKppCZZJ7n2TIsljVd94P77tnv3v7f+q/Pdm3Xb3u9HvPeju1a53mcx7Ef+74fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcjBgcHPxf/8cLjRo3uMfcK8/0gxg1MHamN/9txpgple7g1BGV7sDUtyvdJBkxZnSlO2p052+RJK+9/r//fP4nRg10PhdvjX610k2SzBhTyY5KpztjWufzliRTB6Z1wtPe7HSTvDZ5UqU7dvS4Snf0qE43SWbMmFzpDo4dqHTHTBtV6SbJ1OnTK90ZA73fkskDUyvdEaWv37jM0gknmVy6xhg3crZKd1rp1Jkko0aVfktG9T7Lo6Z3zhmTS9+/sVMXqHSTZORA57w8YqBzHTfjP7h/+U+NHTGy0n1jRufcmSRTppfud0r/fuNGNK8RO7+rkyd3/hYjR/euMUaMeKvSHRw5a6WbJOn882Xym53v38ixpQNOMli6xR4c0fntmzS1cx5KkhGZvdIdHHi90k2SOQY63+2pg53v9eiB3nl59tJ43+Rpnc/c5Bm9z/LY6a0xuc51eJKMmt65Lpo+uvO7OmVy8d6hNPYypXT+nD6m97cYM7X0WzLLjEo3SWZM7XzmBkd2/hYjpvTG2ueapXMt99rU1yrdwdJvapJMmdr5zE0ujmPMMqIzxvXqjM41xhvTiuOTUzrjGK+N7HzmpozojWO8WvotmTqydy4aPapzjb/LJhtWutNm611vTRvoPFN898ZrV7oPPPZ4pZskrz3W+Z5cesPFlW6SzDrrfJXu6ssuXunO0bvcyoPPPF3pjspcle748b3fqEmvT6x035rW+VskydJLzFHprrdW55nG4y8vXekmyfX/uK8TLo0Dj0nnOjxJNtlglUp3tgXGV7pJcvft91e6t918d6W79lq9z/I6a21b6T7//HWV7sM3PVrpJskGm3Sui379+z9Xukmy+LJzV7rTn+9c174ysTM+kiR3P3dPpTtqcmdyyqRpvedGYztTSDJ+em8+zcgZM/++8l9vv5ZJM6b9V+Fllxk9+K1vzPxr+Ct/vvBMb/7bGyNWrHTfnOehSvc9N65e6SbJSwMXVrqn3Ne55kmSk57uPBe6cZu/VLr3vLBgpZskRzy1WKX70AbrVrqnr9y5rkySVS5fqNJddqnnK90k+cvVl1e6C0x5V6W7xueeqnSTZN4zNql0T5vvA5Xu22OPr3STZNln7uqEV+ldmzx+TecacJt55610x638RqWbJPO/sESl++fbS2PpS9zY6SZZasRyle5lc2xQ6SbJs0v8vdLd/fEXKt3T5++tzdnpqc0r3VVfWb/SvXnSCZVukjz2gWUq3WuvfK7STZIPzdqZu3fTOzrj3XM9u3ylmyT3LPXjSvdLfzyo0v3j3FdUukmy49zbVbqPr9l73vvkk535yZNWfqbSXeOO3hj98u/tjJEccfAfKt1Zi+sEN9y9s3Brxo2d58hJsvEcnXGBK0d0xngXWvflSjdJzh61U6X7ju/+qdKdZ1LvHLfscZ3P3OoLbl3pJskd53XGSKbNcm6lu8DrvevlaS92xl7GbPzLSnf8qL0r3SR5+oHOXMMHn/p+pZskf1/k5Ep3p9m/UenedG/nOjxJltn5gUp36wc71y5ff6H3rGSjzTrPIl8qzcdNkklTOvMj1/htZ67aYa+9o9JNks/uOfP3Z0qS+0d05sFdcuellW6SvGOVzhyDd/3xmko3Sf64y28q3c9t0nluNOn63l4E89x6fqW79c0fq3QvPuOlSjdJrpzz1kr3j1f09iI4+sU5K90Fb1+k0t1ty/+pdJPkE+M7f4uFZ3Tuo86/5clKN0nmGNP5jXru8dMq3SQ5da4jK931P99Zd/DslM5zhyT53cWPVro3vP1EpbvyNmtWukky9y2duaKjN35fpZsk54w9ttLd9nedf7/JG3+60k2SfVbatdKd/bud8YbzFru50k2S9ZfozIc6985/VrpJss/cnblW55y+ZaW71H2deZlJ8ssN/1bpLr1IZ27Rny46q9JNkm/s2Vnn+cyinedGSXL7czN/f9AnH9o4k9+69T+e9zzPQnMMbv6RdWb68Vz4+h9nevPfPnxtZz7ZHAt1xj7+vvYelW6SfP2znTXfN82+ZKWbJAftMLHSHXVO57n3O6f15n9PWOXgSneuOTvfvxcu6cyfSpLf7tp5JrT7fb1n9XdutV+lu89pnf2G7runMyaWJIe/2blGG7H/xpXu3p/pzc3abr5XKt2vzt9b27vxeZ3PxsfHvVjpnnr1qpVukrzvtc583FMf7qwlf2bv+SvdJPnUnPtXupM+07tfvPXDnXVVH/9k53Mx78hzKt0keWCgs+ZggYcPqHSvzZWVbpIcf8h6le5Dix1X6SbJZ69fo9J9+uOfqnQ/Nu/OlW6STPpBZ5+BRT7yiUp33p921s4kyTKrdebg/PyZ3jG/cu9Rle7yh3fmWnzwkd9Vukly6is/q3RH/PLMSneLy35U6SbJ9yZ2xh4XvqqzJ1eSLPr2DZXukbv+qtL93lydvfaSZLV3vr/SPe64znXRRQ+eXukmyYGzde4rv33XJZVuklxaWovy3H2duXXzXN97H8Ec53ee1b+ybGft2g1HPlzpJsnnvtO5R1tm09Mq3SS58M3Ouv7BozaqdB9bt3MdniTrj+t8r99T2kfs6Zd641s/vGybSvfMq79Q6SbJ9ht+rtL9n1Vm/jO/JFnzA71xjCVO2q3S3fCYzt4JH7it97fYbKUJle5lq/XWCL7vhN9Xut+8v/O+zXO+cFmlmySLXNZZuz1w+QqV7pHn9D4X5554WqV7+fmPVLpJcvOeX690P/3ezvjWm6/sWOkmyX5X31LpvrFV555yr73urXSTZPHzO2u2dry28ww0ST70kc5680lf6OyB9c3jOnMmkuQ3X+uMtS/zeue535Yb9fYwO/HBzrqqPW/r3EclyUsbd8YbVlmsM8/+jOu/Vekmyd0zOmNc+2/SGcc4defOflJJ8sl1PlPprrtSZ6w9SRa4qvM7tcYdnX0a193m45Vukhy13aGV7qkXfLfSHXNY53likuz/Que50QZf63wukmTF5X9a6Y4f+9wtg4OD//FgxviFxg5+8CMzf7/Zr0z58Exv/ttDX+h8pr40R2dfkv3u7KzfTJJb3+qsGV71Z53zQZKcunbn2vJD3+k8U39mxd519grf6sxPfm7/zr3oPNN712mbLHJ7pTt9tgmVbpLstkhnL44v/fyDle4XLui98/lDx3f26Fz+7c6zt690tidLktw8rbM27Yl3dcb+k2SXcZ1xwhO/3plvccBjvWuM1a7/YaX7m8+eXeluf2JvPcpGu3WecS42+c5KN0nmu7ozlnfAWp1xzcWu6u1fcOyP3lvpfuqwzj3/hc/09mG861ed5woX7L19pZskK/6us9f6t87urJm847ne/hO7rtXZB/VDEzprO1a+v/N8LElyXuc36u65O3slJsk/Fu9cIx5zX2cN1FdP7X2vHzr/2Ur3B7cdXukusX7nXVhJMvGBOyrdpe7p7FeTJK8/1Nk78qu3dcYft5+3MyaQJHs99oNK9/3Xda5rlx/RGYNKkh+u09nf/6hlLqh0k2TNOzrXnz+Zs/O52HRk59yZJLffuWel+9kVO/slnrPY7pVukhx43mGV7o+v771nfNtJnb2MDn6ms5b2/kO+V+kmyV7zdubXHXnweyrddz750Uo3ST71TGed7sVjO8/0kmSbN66vdD/zamcvnotm/LrSTZLllr260j1vs845brsXOvsDJsmPf/bZSveEd3+p0k2Sj87eWYM4z4UXVbpb7dHb9/q3V3cePhx7S+dc9MDtnb9xkhw82Pn+3fnB0svAkzzx09sr3Q9v03ln44qP9OZHHn1v5308D1w7o9J9ecGvVLpJ8u2Tf1vpnvfgtZVukjzwfGetxElPd475/tUuqHSTZMYJnX1R9ti0s5b9C3tuVekmyRt3dta6/P77vT2aVvxqZw7X6St09u66e7XOWEOSzH9NZ8+O7S/aotK9863Os50kOeX1zjy5pd51TKWbJL+b3tkTfdct3lnpvveY3l4Ei83oPB+499DO+1wWnOXCSjdJnrm9M46/5HK9+9Xpf+rs2XHml6/+r+Y9L7fo0oMnfuZrM/145ru+d/+8UDrPQq5ZvjMW+7vd/1XpJskqP+rszXXdY0tVukkyYcnOu792e3bfSvfW1TpzW5Pkw1t3xhOu2KKz3+wrGy5a6SbJY18+r9L9y4Wd9w4lyXWnd95vOO6JzjFPe6qzN0KS3PxiZx3n0Xd1rv8uWbw3p+XWRz5S6X75GydVukmy4jzHV7prjtir0j1j8lWVbpIc+pvOPdhR155a6b7y295ecLcs1LnO3vjo3j78T1zaGU94x+adz9zW7+jtP7j5Q51n38ds3Vmz9fBBvTlJm2zy7Ur398X9I7f+9EmV7pHf68wVHfVab37dX+7rvOvn74d3nguttXVnjDBJtv1+Z07EEcd3xv6T5Nc3d+bBzfGOzvPCw7fvPVc4ZrsJle7Bd3fGNSfd3tsn6YIpnfPnLZd0PhdJ8sLNf650f7BHZ5315nv31lZtusOXK91bV3qs0l1uk977/N5Y5pOV7vl/vqDSTZI5l+68r2KzWTvjW3PN3VlXnCRvntV5H/gFP96l0r1u796a1zG7dPY5+MldnfWjSXLS0TtUuvee33kf8RK79d4nONd5C1W62/64Myfi4YeWrnST5MWlN610z5irs0dFkmz/yWUq3Yu/1dlX+/J7Zql0k+RT/+qsu1vojB0q3Yv3vb3STZKnZv9rpfv5K3rXy7uf3nlX2qY3nlbp7nNKb4+R3Vb5UKW79cmdtdBnfrQ3vrzu4p19+Fc789ZKN0m+9vg+le7LS3XGl382eYdKN0ku/XFnXGChTTtrq8bNt2mlmyRLbbhDpbv+vltXukmyx186+whu8/fOc4e/faz3fpsJC3bm143/9thK9z0n3V3pJsmyy3TuV8d+4vlKN0nm+W5nbdUzd3S+IwOHdcbwk+RnD3feRb7fZbdVujsed0ilmySvz79kpXvqI705CJdv1FmPMnrKzN/nNkkG1+ztl3PwMfNUuqsd29mj6fZFO+tSk2TzTTrPx3/05969+1Gbd86faz75pf/jvOfOmwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P8yA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB6P+k//4jemT8/dX75/5BzFm9Exv/tvcb4ytdEeNGlHpjs30SjdJZpk2vtKdbZa3Kt0keWvGYKU7fcbUSnfk253PW5IMjHm70p00rdOdPGKg0k2SqaV/v4GpvX+/tzOt0p0xvfO3mD7ylUo3SWZM65w/p7w9stKdbcZrlW6SDAx0fv9G/2c/7/9Z+61Oe2ImVbpvpXcummVG52/x0rRXK90xo2epdJPkzTdfrHQHOpcBSZKxozr/fgNjZq10p+bJSjdJpkztfE+mz+ic718d7F0vz1P60E0anFHpJslsIzuf5Rff6lwjjh09W6WbJG/PmFLpTu18lDNyWuf6MEkGS9cYb03p3fuNmdH5noweWfr9m9H79xs1o/PvN31E5xw3ZXTnu5ckk15/vdIdWfq8Jcl8YzvXAiNGdO793ip+luccMbnSHZvOb8mIGb3r5YmlMZ1pU3vfvxHTO9dcI0v3USPH9O79Zkx9udIdHN05F735Zm9MYMpg5zM369Tezd/IkZ3f1dZfecSo3t/iqcmla7nRne/f61MnVrpJkumdf8FJg53zfZK8MbUzdjZtoHMuent67xpj+pgxle7EKZ1rlxGDxWclg53P8rgxnbH2JFln7aUr3ddLf+ZVxneu75NkyXUmVLpP3Ph0pfu3y2+vdJPkmdeeq3RnG1ka1EmyyqLzV7pP3vdIpTvr3HNXukky1/wLVrrTBju/JYvPt0SlmyRjF+7cR/3jgQcr3SR55YmXKt03F5270l1u6fkq3SSZnHdUutvvskul+9uzfl3pJsmklzrjUA/cc2mlmySjZ1+50l3nnZ1z3HzjOvO3kmSRReasdCdN6nSXWbXzb5ckb02dp9JdfpXVK90keevV5yvd7bZ9V6V72/U3VrpJssNHDqx0T//RiZXufAv2rjFuv+++SvfFkb3x5cEpM/+6aOr/i2fur886LVev9sJMPJr/r3cv0zuf33borZXulY/P/PnfSXLDT6+odJNkj+0vq3QHsmqlmyRPrtS5VhuxY2csb8F/zVXpJsmi/+ica/a+4KBKd+fVV6l0k2T00p35yfM9O2+lmyQvXdt5fnr3vtdWuvcf2LtOm3W/2yrdXZc7rdL9/dwfqXSTZMyCH610X1ntt5VukryyXuff73dbHFXpznrZ3yvdJJmy88WV7ojV16p0593wfZVukixwzx8q3TVHd+aAJ8nf//RmpfvQAV+vdA+99NhKN0keWXqNSndw93GV7gXnbFvpJsm8b3buc6dceHClmyQPfOwXle6cF+5a6X5g9s6z+iSZ8EbneuvU2Tqf5XHjOs8UkuSmm+6sdGdbsTdXdIV3d+4r7/7bhEr3D+M71y5JMmq+jSvdTY5YvtL927QfVrpJMsu4ztyh27f4eaWbJE+c3Bl/nPH+9Srdiyb9ptJNklmndY55sbU7z94uH//+SjdJHn3hvEr3hdX/WekmyVOvPFTpzrV051rgga/cUukmycdufKbSPffBT1a65y/8RqWbJB9fs/OMer4nO3OdkmT5bR+tdB+4onOOO2CHzrriJLlpnr0q3SeuOabSHf3u1SrdJHl8oc517QqHPlbpJsmfV+nMdxq1+OyV7hvnPV7pJsl5f3xPpbvhVgtVuku/sEilmySf+Ftn7tdlM3pjch9+prMG46/Pd8Yx1lv2rko3Sd447ppKd64vLl7pXvtCZy1Ykhz/17Ur3V8csXmlmyR3l8aun3rntyvdJ0eeW+kmydvf7Yy1/3jrzvy6j93Zmw9/0HGdv8VGP9q60k2SFT60c6U7+1/nqHTXXLZzjkuSawY6n42B879f6S76pZsq3SRZdlRnndmzf+6NQ02Y3jlnTHj+c5Xur9a9udJNktnH/azSfX3PzvXW4j/vnDuT5JTtdqp0F3ytt0fM20t2nvt9+Tc7VLr3/6H3DHvf/X5U6U5coNP90CefqnST5Kk/bVfpLrPgHpVukty7xsy/xn/njEf/q/9v3MAyeeesZ8/cg0kyz/6/nOnNf5t7i79UujM+2pmn/ZOvbFPpJsnuv+/MR3rX1M6YWJJ8+dbOOoj3HdRZJ/udEZ1r9yRZ4sLfV7rz7nhApbvA5jtUuknykVs6z1dGndZ7Vv/gvZ3nm1P36swB2O/B3nl5s806698f2qbzuVj6ZxMr3SR5ZKMtK90Lf3ldpZskNy93WKW7++Bile4vr7+90k2SQ0/o3CPNM6Oz5vTQvb9c6SbJYrN1rrFvO/V/Kt0k2fqgMyrdZw7uXGNst15nrCZJTtmrcy96yJGd8Zpfb/OrSjdJXr6uMzd517G9NYLXrvnBSneVQzrzTi67v7d33dwf7vyurn5B5/n0Utv19vv6wZjO+ovj9u7M+UqS/XbpXH9+eNKVle4Xv96ZD5EkD37g+kp3/ZNn/hr2JLnshMMr3SRZ5uLOWszjPt97vrLBUZ1n6vsd0uk+/ad/VbpJsvvLH6h0b3+oc+0yYo/9K90kufPPnXHE5T7U20di9Ko/qHQ/8O7OmoNnz/1YpZsk+214fqW72vKdvXBu/0FnD80kuX6tzr37cfe9t9JNkr3efW+le8fcnTXhD73dmf+WJDc/3pm3MOnazv4UO7+9QqWbJM8t2JlP9olnOvckSXLZc511jQtv+edK9+Y1evvOf+TyDSrdz3+/M9din1t741vj/qfzfHrv0zvniyTZ+I3jK93lF+ms67hs3969+/eP6ewddO8n16x0x3/ynZVukiyxXue+cmCw917TJb//2Up3xTs6z4MHFu7NQVjtCxMr3V985ouV7lVLb1XpJsnUX3bmpsy/e29PjRNGdq6Xt998s0r3vctOqHSTZNZLt6h0V53SmQO3+Pm9fZOv2r8zJrDkXF+odJPk2pcOrHRP+kdnHGqRlVesdJNkzIlHV7o//fpple721/TGt154X+f371trdtaLJMnKZ3be//udX3Seja+zam/9xckHLFDpHv+NzlqUK350aKWbJL/drPO3WHRs795v/5U7+/sk/938u1ffmiOX3LPpzD2UJIuf2ttHc/y9f6t0tx3VmUM85ozec+S3fte5/zpg729Wukmy5AadPZJ2+saBle7Wm3Q+F0nyw4mddVPLL9wZYzpj584cuCT5wFqdv/Pme/fuGX/+kc5v0Krnda6z5yjta5Ekx25+QqV7+kud/XF3+EnnXahJsuQBH69071+59z7N+Y7r7CvztXlPqnQvXaq3l8rjZ8/8tWBJ8uj/dJ6x/GT/qyvdJFlyl2Ur3QMv6+wvlyQnrNm577hkYucct+Mcnc9bkpxyZOe50GYrdt6N8qWlL6h0k+SlH3bm4fzpk733O631p844/RLPdT5zJy7TeZ9fkhyy04WV7ns26lwvT1ypN7/ufZ/9SaW7+U96+6A+k86csiV26rwP9aatNq10k2TuIzrPWHb97B8r3fHX995ZdcY8nXPR3Ru1xtuSa1f+TqW73xWdMZ2/H3x3pZskn9/24Up36Wc6e0fOs/gdlW6SLL7IPpXuQt9Zp9JNko8t07kuOnLxTSvdk/75vUo3SW4+YmKlO/lTnWuMz07vvP8iSa65tDMmt+kjvX01Rs/euRaY/wNPV7q7bNCbU7bNYZ3xvm0/1JlD/PiV36h0k+QTb3TmGCxxzpcq3SQ5fpXO/c5PPth5h8mmh+5b6SbJ0+ufXOl+9a7LK93jl+3tW/7GPp3v9Zee7+xnnySfPqQzdj332K9WuuOW7b0Xc9dvdp6B/s8inXdMrnZzb07Spu9YrtKdVNqTMklOWryz9/VTu59U6U74Vu939fa7OvMbRqWz7+46f5i70k2SFzddtNI9asfOu5uTZPv3dMaXj/1RZ1+Gf/6x926UJU7p7D+z8wc7cw0P+nXv3dv37rRjpbvXGr330r70187fedEHOs9AX7ls1ko3ST513K2V7r03dN6X+pcRvd+ow/51SaW7+2W9MfELPnpcpXvNpzpj7T84aP1KN0mO/HDnb/HM1Z0xnRN36L2veI0/fKbSPWSP3l4SJ+xR2jPnv9zub/KYUblnyXln7rEkue7mzn1dkiw+z9GV7pVXXVvpLv2J3h6d37uk8+z73ks7Y0FJsuSWnf2MFvpm59rklwc/X+kmyfEvdvZz+MBdnXGxc17oHG+S/PZ7nWvAo37SW4Oxze//VOl+6OzXKt33b9+bt37chp3xxwPOXrDSPeUzX6l0k+TcvTrryFZ6b+c3Kklu+2LnvuPXa3TGYufd8YhKN0kW/3tnLPakezrPsd7c8tlKN0kOe/ieSne3g3rzI3//mc693Y/OOavS/dRDs1W6SbLw4p3fkgPn7sz1PfArnT3Rk2SO/+m8T/OCo8+sdJNkwuGda/EPfqVz/3zAbr33ae57cWfPr1t2vKzSzVudOYxJcviznTG3Je6e+eMB//bFr3TOn7c+2Nmba9uVTq90k+S6rTv7Obxzhc4z2RXe3dvPYeMFzql0V+wNP+aJ7Tp7lm77kT0r3blfnFrpJsmIIzrXtfv8+neV7nc26v0tDt+gs8/V7vv1nvdeNr4zd2/LlTr/fr/eqXfvPv5rkyrdn72zs55o+8mfqnST5MxRnffGjb299+6A387ynkr3kEc791HPXNVbG3f4fZ33E22wXmeP6pUu6awFS5LjPtXZi/iFV39c6SbJy3/u3O+8eWdnDcbK79+k0k2Sb1zb2Xv+sSs6z+e+sVtnjWeSTPvm9Er33mm935IRN3fG8Q/b8oZKd/C9nfuoJNn5js45f51Dd690D/hk77N87ZTO/MijftjZkyhJVlh5QqX73HtL91HPlca3kqz03s41xnVnda4xLl2/8zwqSZZZpHPvt8hSnefMSXLwjZ05JN++7bRK9+ivfr7STZInD+uMvZx9/WOV7pJL977XeyzSuY968PHeXNFrtn13pfv4L1audL93Xm/N5Ea7XFDpTtiks+/ob2/tvG86SeZY5chK98UVlq90k2TFUzrv5Lnkts7v6rZTent3vfJo5x77zc063T8+1XuGvebXO+/EOnZ8bw3GxheP7IT//yxN7b2pBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+LzIw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwYjBwcH/9X8838ixg9uOW2ymH8SUqf/7Y/iP26NGVroj83alO23GqEo3SSbPmFzpThs5ttJNkjemvFLpThsYUelOnzqt0k2St8Z0Phujpk6vdDNQ6iaZMThQ6U4d2fv3GzGy8+83/e0Zle7gQO9cNGJE5/w5btroSnfsQOfzliQzxnTaY6Z1PhdJMteIWSvdSVM7v1EzOh+LJMmcg53fv9GzdD4XA9M7v31JMm1Upz12RO9c9PLbb1a60zOl0p06rffvN3nk1E541CyV7KzTe/cOr73d+VuMHt37LA+mc801vXQf9caMtyrdJGmd8mfM6Pz2ZaD3ez176d5h9IjZK90kmTTl1Up3ztlm/hhGkkx886VKN0mmjO58mn/559sr3XHzde7bk2RwUudcNM8Cc1S6SfL6q51ruU+s2fkszzq1d78ztfT7N3pq57po5NjeNcbUaaXxhuK9++Bg5xpjsPSnGFG6JkqS1rdk2kDnHJcRvXuHlMbOZgyW/hZJZszoXHONLX3/Bqb3rhHfbn02Sv98r03v3F8nyZuDnb/zlOm9c9HkkZ1jnlZ6Pjctxed+IzrtkSM6H+YRpW6STB3sjGOsvuY7Kt0kWesdq1e6c87e+cVeY+3e3+L1Vzu/JW+8+Uyle9c/H6x0k+SGG/9Z6Y5s/Ugl2WrjZSvdu++eWOkuvuiilW6SPDPYGRdYsDQmN9ucC1e6SfLsi09UumutPL7STZJpL71W6T750qRKd6eP71zpJsnTk8ZVuovNs1SlO88ii1e6SXLHrRdVum+99mylmyRvv9X597vn4Wsr3a3W2K3STZJrH7600l1hrnkq3TnnfnelmyTPv9y5xph93gUq3SQ5+5yTK909t9y40p1z3s53L0kmvtl51nzvnY9Wuksu0XvucM5Vd1S6s8zZ+b1OklfeHDPTmw/d90jeevOt/2qAa+RaowZnu2rm/xsdtUzvnvEvJzxe6d71vfUr3cHHd6x0k2TWEUdWuhsc2huLveaYFyrdzV85sNJ9+OobKt0kmW+LiyvdD9w0X6X7nU/vUOkmyRULd+5H933yc5Vuklxxz3qV7jqvdMYpFtx8oUo3SU4e7MwR2fpHt1W6U/b+QKWbJKO/eVml+88L/1XpJskHT+h0H51j30p3pSXur3ST5Lbpnee924/ozAl8+dLeGO+kTa+vdO9ed9VKN0mWeWbmX2cnyeJXdJ5xXjV+7Uo3SS55onNeXmbB71e6E5ft3T+/+7XPV7oPLH5spZskS6/wg0r3orturHTXWXTOSjdJnpmjc557/bnOMe/2u955+dzlXq50F1+5c02bJCtu0Hnee8dPO93V3nFTpZsky5zV+Wxs+r7OGP3A5Z+odJNkwbeuqHTHv9bpJskSA2tUuu84aYNKd57d7qp0k+SEw+6tdL8w+M5Kd/Jcb1S6STLrs53rl/kHV6h0k+TiaatVulu9dnelu+ijf6l0k2TMcntWunMv+tNKd4Urnq50k+SK1ZevdO+7fIlKN0lGrXBepbvVdp01W5c+sUilmyTT7ug8Sx6/dGfcepetPlPpJsmuP7y80p24ysRKN0luWvi6SvfYIzrPpO6cZblKN0ne2LUzj2PerbasdOc55bFKN0leWmWjSveqRzrPVpPk2/d8tNK97MzOmPhpS3X2cUmSw0Z0vn/r3/PnSve1N3pj7Y/97bRK96UFO88dkuSva3aerx52emfe7N0T1qp0k2T/XTpz4h/qTLvMs++aqxNO8viozpzAOZ5eutJNkm+++stK99wVt6p059mkN299qR/PXem++L3O8/yVLnq+0k2SZ7fesNJd7rhbKt0kGXX/PZXuxXe+XumO3uVdlW6SvLV4Z37keyd3noE+PW7XSjdJbr6vc1270UBv7GWf+zvridaY7/xK94hRP6t0k+TO1WardC/+148r3VXf2ds7aO4vnF3pnvyzzlhfkiw8deY/q7zrG09m0qNv/8fznkcusNLguJ3OmOnH87kpv5npzX/74QXnVLrXjdu70j3xp71r7MseOqDS/fIxnefpSbL/sl+pdH88dbtK94+r965Lbnh1nUr3Jzv9qNK967zvVrpJ8vOjf1vpTvnA3JVukrxrhc56rCte+0Wlu/KECZVukix9buc55KM3d+Yvznio8zw9SeZf8SeV7g6PrljpJsmvf39hpTtmameuzDwP9tYMr/xQZ83Pw7/qrAE8drnShPUkW/zs65XuM9/sff9OO6szRv+lbx9U6X74ozP/GvzfrprUOX8++LFHKt3ltj+00k2Std7szG1ddf6DK90kuWWfzp6wK3/h75XualfuVOkmyW7f7ox9zL1CZ2/4T/ywc02bJAfu01mLucJJd1a6SfL2/Z+tdL99+aaV7tSPde7PkmSDzTvXcrMf0jl/zrnzVyvdJDl3y4mV7npf+kalmyQ3Hnh8pXv99p1z0dWndbpJcvoOt1e637pl5Up3o+V6z5An3vS3SveGRXt7iu78Umeu2lU/7qxFeX7R31e6SbLh5jdXupPHHlbpnrZh55ooSUYc2dnLaPY7rql0k+RvJ+5X6X5rwc796lnf79xTJskv9/tTpTt6u878/RNP6I1jHLxnZ7/Ez35380o3ST7z8c55bvsrv1jpvmuJzp5qSbLJ9Z39fS5+ofPce6Pre/te3/Dwlyrdsx/q7BWcJF/5fWcOzqGnfLzSfeTc3lqUMSd0nhv99dTO3pE7XdqZ85Uklx15ZqV79VadNalJ8pN5O2t+Ru3cmWf/1vHfqXST5NX1OvMu55993kp36oRNK90kuf+kzjtCV75yr0o3SebccWKl++E5Dql0b3u6986qDd/u3Ls/9q7O/gZ7v7u0MCDJRSPmr3TPuK7z3CFJpkzszDX8yUad/cWvnNb797v8uX0q3WueXKbSvWS93jjGUYt21vxscHRnr4ckefC1zj7u92zReT532FM/rHST5DtrdN6t8cc9OuPAf9/vH5Vukhw58teV7lXv7tyTJMnYQzt7avx2vt1vGRwc/I8f0i2+2qyDB50/8//td9279+6Fl5a4vdJdbFznvVFvjluw0k2Sz3ymc5+020f/p9JNkgW/3JmTe+Y+nb04dlrxg5Vuktx5w6cq3eWu373S3WbnzhyqJLlguc6YzeClvef1Hzyuc5392PjOHmXHnj2h0k2So27sfOb+/v3OOzk+sEDvfZqnXtTZn3O9n/TuGU/5/ORK91c/7+zrdMbIoyvdJFnpqc4zsu0P7exvvO7821a6SXLK1p01UJd9+phKN0nu/EXnnLHcSl+odJ8a/eFKN0n2uqrzt1jgL53x7p0X6u1L8sLenfnJ751360o3SZ6f0Hk37Bb3v6fS3f7Qzt7wSbLPZz5Z6U7e9WuV7glr9MaCnv/impXuOw7vvadpi+931hZ/64DO3/mFpTv7IiTJdzbv7Du/0zqdvbqPPeLRSjdJ3vhBZx7Vl87orTk/+4hzK90v/Kyztvib83fOF0ky7i+dPXb+eWxn77o9p/+10k2SRZ/7SKX7zF29ccQflqYbfmuZzvuTD598daWbJFtttGmle8GIzr4M7/nGFpVukmx1cOe6duCgzpyIJPnrZp252otd9u1Kd8LYztzkJNnsjN9Vur9evjPecOEDnXvVJLnoss67PK/YqrcG4/0jdqh0F/j5f/Vq2P9HK9zZGR9Jknl3v6TSvfbkzvPe9eborf9d/Ied53ODs3T2UUqSv+/9vUr3gyt0rhE3/mhn3mWSfPu2ztyFax5dqdL9zdje++fv37AzP/lrS3bmJifJDy/dvtK9b4nO84FL13xvpZsk1wyeVOn+6qjO+X78vBMr3SS55KXO33mHhZ+sdJNkxSc6+yf85etPVboHnNh7n8R2r3au8f840Bn33H3B3tqOJY/ovBvln4d+s9JNkhdO+1ClO9vYzv6qC7+jt87s1NM795WPLLFupbv453tjAs+d2dnreb8XPl3pJsnEgzrzoeac0Zl/99UFOvN/kuSqy0+rdEf8oDPwucsxnffaJMlZd3bedbDrS53f6yRZZnRnXGC7JS79r+Y9r736yMF//Gnmv5Pxwu/19sg9ZoPOPNQL/9K5F13lyN4+LUdt01mH9Pc5e3u0z7ln5x0XH/hVZ4/HH9/cuzbJOZ33aZ5yfefdC0td0ttj9Y7Xl6x0t9yuMxaUJHPd05mTNOq3Z1W6037be4fkj3btnJc3m9bZf2nKxFMq3SR59OudeQBTPte7tpz1u532sbfsUunu/vZJlW6SzDqh8yz5gVs6c5Ie2qz3Ps3F1zui0v3Vgr33VM/6YOecv89gZ7/utSf19gue8+nOs+/vHNNZ23jeJb13oO20amdf7Yue/HilmyR7z3pVpfvAFzt7k7x+UWdfriQ5b4nO+8v3uaTzjOzbmx9d6SbJ2Z/vzN372ey9uSe3ntNZW7XFdp01bKss0tvz6/33dd4JcuUnOnv5vW+J3t7XV7zUea5w+m8WqnST5LWJnWdkqy/V2X9w/z/0npGdsFNn7sk/vtaZn/XSTzv37Uly1K2PVrqHXNL57UuSaUt29gZ6x52dOfyffF9vruijK3X2b/3TBztzZf78TGdueZJ88I6PV7qPTuzsfZ0kJ/+g857xWVbpvKvigLd6935nb9F5b+mGX5xQ6a73md55+eG5Xqp0v/xMb37k1W919qP6yB2deYyvj++NTz4yaZNK9+0v3VTpvnB1710/p/ytMw/u2qs7+z0kyQl7frnSvfDAzrsD7vpVZ95Xkqy6R2cN28QpnfVg57ze2Qc1ST6/duf9Uhvv0VlnliTjH+usB7vrV535WQve39lHKUn2W7fzPfnLXzvjy+vNWKXSTZLRG3TmDm12V2/99iwTOvvwP7n62pXuRtt05kwkycpTO78ln7q486xri50mVrpJ8p4JnfeDzXdA7/02N616YKX7h+0610UPbLNDpZskmy3dGUe8/czO8+Dnb+6tU9pyrc59yVc36+zjniTj7vpVpXvQBp3xhgnrdj5vSbLGgTN/jmqSjLigs9/YmWtOrHST5D2/6KzffvL03jvY9ni9c117/1/v+D/Oe+69EQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/i8yMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMGJwcPB//R8vPGq2wb1mX2HmH8SYGTO9+W+Tpk6tdMdMH1HpTp7e+1tMGzum0h2VNyrdJJk0bWSlO3n6tEp3zMAslW6SvDWj81meMdDpTpvR+bf7/9Ur1VlGjqp0k2R6Ot+/6SPe7nQn/+9/G/7j9sjJle7A1M5nbmD0QKWbJFPSOedPK3WTZOL0KZXurKXz5/Rpne9IkkxP55wxufS9fnWwc+5MkpROGW9meiecZEQ63+3R/8G19X9iRvF7/fZgpz299Hs9etTYSjdJXi/dO4wd1fv3G5d5K91Rpe/fhutuXekmybjxC1a6Lz77UKU7/xIrVbpJcuNNV1e6a626XKWbJLMuOH+l+/IrL1S64xfZoNJNkg/ssFal+8wznevlOVZdqtJNkhXmWaDSXWR877ropcefqHRXX+Udle6okb17vzmmde6DZxnRGZObUromSpIRozvHPGqwN/YyWLoUHzm1dL08pvdZnjyjc86YNrLzuci03t9iZOkjN31675hHD46udKcOdL4kM1o32EneaI0vt05FM0rfkSST0zovV7JJkqm136lOd0Zp3CVJBkp/5xEDnbG+cWN7v9d7fmLvSnf8fJ37syRZa9UlKt077nqy0p084tVKN0kmrDHzn7knyT9v6oxjvD5t1ko3SeYdcWul+8jjvd+SO+99sNJdYdHlK903B16rdJPk6Wc735MXX36l0l155cUq3SR55oWXK90JCyxT6SbJlHSO+aa7n650P7lzb0xu+XV2rHSff7EzPvniGy9Wukmy2MLrVbovPfH7SjdJ5pt/40r3wYfurXRnvN6bZ/XkY7dUuosuNmelO+s8ved+C829SaV734M3VLpJctbFf650t1hj6Up35GxzV7pJMmVG5x5tlsmd8ZGFllio0k2Sa265qdJdbbEVK90kefW1mf87deGN/8yLr73xX13kLzLvXIN7bzHzryOevni2md78tzXf9Wwn/OrjlexDU3v3jFeN2rTS3eOqhyvdJLl2lvMr3ZXmXqPSvf3tuyvdJHn6vQdUuqNO/mile8cOn610k2Tna26udB9barNKN0nWnbUzd+G1xc6qdJc8YotKN0leP6Iz7/mVZ0+udJ+7572VbpKs8enHKt3rj+udi9aa2pmvduKUeyrdndbs3Sf9abFHKt311u/8rk74V+c8lCQXzV6a3/rD+SrdJHlug86cpDF3dz5zC+z0UqWbJIvPv2ilO8tNf6h0rz1v50o3Se49v/O32Pjc2yrdJNnz8vGV7onzde7R3nndIpVukhxy0sqV7u9Wv7/SvXTt4yrdJHn5muMr3bGLzVPpJsn+f+x85l5e52+V7i9f2rLSTZIZq51Y6Z41vrN+bdKOl1S6SbLgvV+rdA/YqfO5SJI/XPXPSnfP/TvPZee981uVbpLcP8c5le4/rjq00p28zDaVbpL8a5b3V7rvfqo3jjHy9X9Vuot98O+V7htPXF/pJsn2s61b6e4/o3Pt8tWte9dbJ57Zeca52WXvqnST5I0vfb3SXfuCznjRDTM6370kmTedZxoLrd6Zn/XUzZ379iT5w4jVKt2vztV57pAkx3/6O5Xuqk907oNHXt37jZp0/+mV7uwbHF7p3vhKb6z24I2OqnTPHujN9f3UBZ3nO2v/YVylO+aiRyvdJJlztbkq3bnnvK/S/fVtP6l0k2TWXc6odF8763eVbpKsendn/f0C876z0p191c7vdZLc8KfO/NZXpnaeoe24UWedRJJ8d4HOHhXr/qr3uzpquR9Uuqf/8y+V7k17f6jSTZKn5v5xpfvk/qX5yfue1ukm2XueL1a6/1jhm5Vukpy91U6V7ip7X1zpPrNkbz3Kinc9Wuleu84qle694zrdJDlwlc55+VsX/LbSTZI73uysYfvYY51n2K+u2TlfJMkLk6+tdE8a15lbfvXGB1a6SXLdPX+sdOcdM3elmyRnPT7zr7nevOmpTH/t7f943vOICSsOjvjLz2b68Rz71WNmevPfpt7UmTf0p1mfqnQ/N64zfypJzvpMZ63QQY/sUekmySkPduY6LbrzmpXuhXvsV+kmyXYLdn4nZtzfGdMc99RWlW6SXPh255n645svVekmyeWrd9adLvatPSvdC086pdJNkt9d0JlnP8cKz1S6f9q5sydQknzr4KMr3XP27j0fe/jY71a6D+7T2eNj48c666eTZN9bF690l9/qpEr308909n5Jko/d1zkvXzF/77P8+ITOc5AX5+nskfTeJ3tzZt9zXmc+5+Xrdp6PvT61c3+bJPc+ekSlO/Gvh1W6SXLFB9+sdNe/sPOsYoOLemuG136y86xp5bWPrHS/8M3efkNb3No5x618R+9c9OFpS1W6n75m/0r3hJcvqnST5I9vdObjLnp8Z572LL/trTG772+d8aKvH39NpZsk0+f8SqU7+2N3Vbqf+E7vez3r4qdVup84pvMMa7mVeu+J+es6nTGB3W+7o9JNkgkndv4eDx93SKW7/r69PUUf/Oiule6uy6xa6b66Tue3L0kuuKpz7/fGfb+odJPkzJc676q44ebO3oO3/+rYSjdJNlhr5j/bSZLrb+nsQ3D2bJ299pJk6/O2rXRneXH2SjdJrrmu8xxm21+dV+l+9LO9597bHNK5ljv35isr3TPuP7DSTZJ9Huns+/TY4b1rjKsv6qw5+N1infHl95y6b6WbJJ9a8OOV7k3Hd9Yrv/+szrOdJFnmoc5z29/8+VOVbpJcM29nH80TL1270l1m/t7+Pp8Z0RnH+Ptz21W6F07p7RV8yvqd/f03/823K90kmXdUZxz4/OU7aw4eWaIzfzFJnrmyc42Y4zrr2Jc5ozNPIEnWnr3z/q6fjHmu0k2SXd78eaV70yc64w0vHbR+pZskN+zb2Tdv+/U7L12Z5ZTO8SbJ0r/8R6X7/Nm7V7pJ8tctO+MNh47vzEdcYePrKt0kOXGLzrXcjNc71y4n39a5J0mSa0/p7J0w6ZO9OZ+fP7qzxnPWdx1+y+Dg4Dr/8f83doXBpZeY+WNjc+zW+f1Jkv0/39l78JMLdK6H5/vN/1S6SXLrhzrtWf/1+Uo3SS5YsbOX31de76whe/PJzp5qSbLvlRtWumd8sfP9e3S13prh9x7bmau9wOTOc+QkeevM1yvdN9bq/E5c88Xe+2VWv6TzvV7hpo9Uuru/0Hv2ffhDp1a6G5/S2cshSX72t86+XOe/9L1Kd4He64Eyy0EPVLr3b9I5Fy19ypmVbpJsfFFn77o1p3bm7SXJIj/drdI9ad/OmM11n5tQ6SbJsRt3xmLv3Lpzvfz82W9Vukkyeb/O+MfV6x5d6SbJXHN1rhFXWfrCSveEgd79zimf3KXSXWDMxEp3vt0+WekmydkHd+Zn3fJaZx+xJHns7M7chVvv7sz9emn9zjVRkjyxbuf8ucTpnTVbB2/dWXOQJMeM7aw7+MfWvbnac6zWmXuy0VmdNTRzH/jDSjdJrtn7pEp3lbk670k76x2XVbpJ8vi+nbXhq/7gS5Vukmy//vOV7qHr7VPpbnTynyrdJPnosZ33Yf3t3Fkq3d8c3psTcfsZP6p0Hz+l9z6XF3/+5Ur3ux/tvGf1+e/15opu/pHOddFxn+3MVZv+lc64WZK8e+qmle66H+itJ3p4zs67UUZ9tLOP5pHrd57VJ8n3l+7sg7rGG5156y8/9/1KN0km7NR5r+Ihc15e6SbJazt21kA9P6qzbuQjP+rNz3rrrc55+TuHdZ7PffPo3jqzHdfsvCd+6aV64xh7bdwZkzv2xM6853XX6+3xM/mqznXRled05iQdt0BvbdWer3T2fDjtW715VDv+rfPvd9+KnX00f/GFTSvdJPnQaZ39qd88oLN31xd37d07fGHBzv3qel/sPFtNkt2+2fktueL7N1a69xza28P95zt01h08f2Nn/faJ2/TmY5z4dOedR49+eOlKN0kOf09n/6ctf9pZF77xqK9Wukmyx16deS9/+EXnnnL5aZ33ICfJfId03huw/2pnV7pJ8tK+nWddsx6z/X8173n5BRcdPGm3mb+f7ZtHHjTTm/92zYc78+DOmevlSvdLX+nt97zkZZ3rtEWO/kalmyRf3H/7SvfD23beWzr1+715zyd/urO+/l97Tah0V/ls72/xo3M7Y97f/vz5lW6SLPJw5xnLDVd+utL98aO9d6rM9bXOWNCid15Z6f5o1d642EdP7bw74G8fPbrSTZLNv9X5bKw8d+c67eTDe/vwn3nMryvdu1deqdL95G0frHSTZI7bO2vgl/xy513ESfLPUzpzqnf/2gWV7hIXdvblSpLX1u38Zv90vR0q3c/v1pmDkyRjruiMUwye3PtdXemxznzD047t7Ll3xF5fq3STZNXPdubL3Pnhzvy6Txy1VKWbJB9fvfNuylUOXKrSTZKND+k8FzrsI53f1XO36exRliTjT51a6b51Vue5woajP1zpJsnPT/qPh67+V378fG8vxsml8eM5lu1cu6zxm956ou/u0Zlv8eyozu/q6+PvrXST5DODnWdZW67c29vpxN919mq5ZkJn/fZ7vteZT50kv9ik011x/F6V7q+f6zyHTJIRf+28H+Wy/+msc0mS20/qrDV7cmJnv5XXf/mdSjdJLniucy3+wxvOrXSvPbo3D+D4czvvmTy59J67JLn5e+tWuhs931kPtujtn610k2S9vTvP1a98rvPeuFuP3LzSTZIf3vOtSveNr/TWNr79xc7eDCtfenCle+Mfnqh0k+SQkw+odI89vzMP7sj7emNygw931nkefFrvXDTvm521Lt9ebuFK9xcvjq90k+RDZ9xe6a477fRKd+HPL1XpJsmx83bG8T9xSW+u9ufm6cxP/v73OnOdRm/ZG4eadnhnX7BnD++MyV26+pyVbpKs8lRnrPZDY3rPbXe6pfNbcs2Dnb/FsVv03r9909TO9/p3y91c6c450Ht/85Mvd8aXr9ujMwacJP+8rXOPdugsnXPcNmv15lntOfDXSnfHP15Z6Z486cFKN0lmee2CSvf2VVavdJPkyBunV7qrP/PY/3Hec2+VJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2RgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAOD/w95/BVtWF+we7tuzM9DQ5JwzSpAkOYiAIpIFxCxBUTEARkwIEowoiooBRBARQUFBRBQRBSRHyTnn3Ll7nYtzvNunamv1W6vWrue5/Ap/36jVa805xj8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQbDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMhvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGAz3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDAY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEY/6b/3gwaijzjJ0x1y/i1Wkz53rzP+bJoNIdGj9PpbvY6PGVbpJMHzWr0521YKWbJPOMmVbpzsh8le7ssS9Vukky79QFKt0Zozt/fxPHDFW6STJr9guV7ozZvb+/MWNmV7oz5sxb6Y6eb06lmySD2Qt1wuM7n/ezhzqfnUmS6VMr2VG9X+UsOWt6pTs0emKlO2ZM79/v5dlTKt05M0dXurPG/Ve3ff+Vselc8wszX6l0k2TUUOfnMRjd+byfM7r37zdjdueaZ2dUpfvy0MuVbpIsM3bpSnf5VZapdJPkHR8+vNIdN2/nM26BxVaqdJNk1qTO/eezN91d6T4144FKN0men9K531po1cUq3SRZYuklK92Fn+48+6237aaVbpL84cJ7K93dD9y+0r31/ucr3STZbPXO79zYWb17xBljOt9/M0d1nndendm5D0iS5+d0nh1GpfN5PyfN5+DO/fLs9P79xpR+54bGdu5rh2b1fhYp/c5ldqc7NKbz+5b0fs6jhjq/b0kylM5n/tjSNc+c3ftZlKZKUnoMbv2J/P90fi9mZGylmySlR+wMlX6Xx5a+R5JkzqjOL8foQeead9hmvUo3SV6zUmcc47or/1rpJsmVl/2q0n35xc693LyTen/X42d25hTnDDpj7Ssut1qlmyR33nBPpbvahmtUukny9JOd7pQpj1W6jz7feT5LkrGTJlS6G225baU7YVxn/UGSrLHMayvdh19+rtJNkqnPdz4/J4x/odJ98cUXK90kefqumyrd+dbq/I089UDvfuvJxx6tdG+/9c5KN0kmzfNQpfvsi517gXlG99ZZPfz8I5Xus68uXulOGFd62EkyaeP7K90bb7ml0k2SSRM7n8s33t/5/lt7ic7POEmemtVZJ7f8iqtXuoPR81e6SbLW0p25kpdferrSTZIttn3LXG9eevv//lk/5/lxmfLb5ebi1fx/jVv7vLne/I/v3NeZo152kc0r3YmPrVfpJsmbl/1FpTvYarNKN0n+MnOXSvemZfardNd++HOVbpLsuHZnffKk2SdXuq+9v7em5U0zdq50p91/V6WbJL+dMK7SvffOjSrdlQ69tdJNkgvXWL7S3XnRH1a6iy33eKWbJKtt01mHs9IavfHHB/fprDf84HEbVrqTFuyN5f1t9qRK94ef2KDS/cWX3lXpJsnu3z6+0r3pwc79VpKMW6zzbPfZJQ+odB+4fXKlmyS3zHq10n1x72Mr3WcP7IwdJ8morTr7UXZcqXPvmSRrXdC5//zcmzv7PNffpTf+8dnlj650t7j335Xut1b8SaWbJOuesUile8Ya11S6SfKOvTtz3298unPvstdSnTHeJHlqm69Vui9s2Hn2W3PmHyrdJFl/xyUq3V8801kHkCQTZnae3R/+6rqV7mPfeLDSTZJXB1tVuhPf15nHumavL1a6SfKexzvzFfds3tsP9sKSl1S6W1zR+Y56YtSBlW6S/GuRnSrdO56e++PsSfKTl5+pdJNkvtM763B+vfKVlW6SbD6p83ey0DtKa0X/tGKlmyTzT3tvpfvAnZ09UP9+7Vsr3SSZ8VRn3fP9E/eqdJNkvdnvrnQXfaGz9uSqOZ2xviSZZ+2PVLq3339BpXvMvt+rdJPkfcffUel+9cu9NUkz1t6t0v3E+zrPUZtN6G3C2G7iOyvd+YY649b7L3BhpZskj9/d2Rv30IzenuV/Lds5gGbJy26rdK/ftjfXtVAernTXPXOPSvfWA5atdJPkc/t1xgTWPP/0SjdJvnNXZ67yfZ9YpdLda83eXvZrH/lUpXvE5Z37oqFv9ub9Tv5pZ7zvjpv3rXST5Pnlz650p32wM78z6Vedz/skufylFyrd0Ut0xreWe7pzT5skXzi1swZ8z/G979XJK3d+Hje86ZBK9xOXfavSTZIbnu/MKX7w6fUq3c+/6YxKN0levaTz9zdm7Osr3ST52mFz//vvuLv+t5/x+mOG8q+F5/592npL/XGuN/9jqeM74/OXH7drpbvd9TdXukny9S/9vNJd5uHe2YOHvr6zh/OJx35W6a5232cr3ST56pfPqnR/emjnXviq/LnSTZLdv/23SveMZZeqdJPklOM666mv2qwzP7bLuC0q3STZ5ck1K93BvzvrtEcv98ZKN0mmnNdZD3j74utVukny2ff/pdJ9ZYPO/eqvvtbZp5ck75/YWQO39e876xdfc+ralW6SnP3tzpjYqm/prcE58ZTOnq0v3dRZD3HWK53xwSR5Yc/Os+iv/v6jSvfhNT5Z6SbJGv/q3L989p+9Pd9LfP+ISnel8zpnPd+wxLOVbpIc+GrnHRgrTeisE53x8EmVbpLM+5nOfrt1Vu2shU+SSet+o9Kdc/bFle5BW3bOoUqSL3y984w2es3O2fC7f7L3d/2rN5xW6T5+/amVbpJ889Nvq3RvWv0Nle5l655b6SbJD1/onHEwddbHK90fXfOPSjdJfvjtzr6qT03tjBUlyVJLdMa4Zt+yaKU748HeuSRztu3sK/753zvjy9/7em8f9DP/6qyhevLO3nqkD+3w+Ur36s+sX+l+bbnevrjlL+l8Fn3+8t9XuhfvdUKlmyQnrtOZn37zrStXukny5Hs7ezzf9v3OeVF3/uv7lW6S7D2n87zz+sPeXOl+767OeHiS7PSuzt7RbVf5TqWbJPu8rfO8s/4Kt1e6O5y0f6WbJEfvuF6l+8Tr3lfpLvKd3n7XoaU7a2b3fO9hlW6STHixMz/wzzs6e1zecVPvfJjjX7600r3/J3P/HeRJct3nO+OeSbLqGp21Kd/5fO9909du0rkvesOozvPqpt/s7FFKkkOW7+y9P3D65ZXulF2/XukmyRe36qxN/siZvX1x0+/p7KXd/oY3VboHP/uFSjdJPvyxrSvdMV9dr9Ld7treftd5v9xZ9zL7L7159y336eyZnLBlZw772ZmdszqS5JpHL6p0b/5JZ3xk6132rnST5MAvduYUbxn99ko3Sdae2rlHTP63ceuFlhqXd3557q8LnPm+zhhFkrxv9FqV7lcn/K3SXXr2C5Vuknx6zc56i3s+2Hv//M4/7pzDON+bO2carvCr6yrdJLnwzG9Xunt8tzOW9/BXOu8aSJJ5J/yu0v3s5N680EPnd84Sm/HAlyrdYw/pvQ/12W9/uNJ994qd+79XtuvtbXrTTzvtA5++vtJNkpd+2Hm2+/QTnbNwbvtu7wz+Q/7Qef/8mg99oNI98WOdsf8kWff6z1S6z5/Tm2M56uLO78ZRV5xQ6d5y2tWVbpL8fOnfVbo7rdS5D9/4G717z4emdc4Xf+Og9w6F097SmeP87Wc7nxnfHdM5LyNJxtzRWV/3jZ06c7IHv7O3Z/LGD+5Q6S72me0q3ST50086c5EPXtdZkzv/Q7335N63feedVUNv7IwRXntTZ91Xknz/iM56+O0+1nkOTpIxe3TORD91vt0q3SMP7T0Hv/eYzrkk917WOdN3rT167wx+8i2ddYyb/r637vnzt3f2hh/w5JGV7ozv9X6XPzKpM8Z19lade4Hld+qt49jhR7tXug+f3rvHuO/BKyrd9SZ09ll//vzOHvkk2fVjnbX2X7vnlEr3sld6e6HXveaESvf8FXvvZj5sylGV7sLf75wPf9Fb96l0k+TqK99b6V6/auc9Ff/8xDsq3ST55c2d55JDPvWaSjdJlv9r5xzpT63UOSPmO0ueUOkmyQ6f7XxmPLV3Z03LjZNvqHST5HsXdO6Xbz6nt6bsrhM766hWOL7zLsiT3//3SjdJ1vllZw70Dw+vWulOObkzPpIka5zVOWPktkd7a8puOa2zvmHeP3TWBP7uH53fiyS5887fVLpbvOHaSvewRTrnfibJISt33rP1zrs6n3FJ8s3Dl650H5rnY5XuRbN76+S23L9zftDZF3TeubLaNp09I0nygbVXqHTPeqm3NmzzH/2i0p1wRGd85JKjxla6STL+U+dXuoe8+N5K94cbfKXSTZIj/rhQpfv38b31NLtv3Pn3+1+9+MLi+eN5c/8z/cITe38DF90zodJ9dXznXMNnT+ud/f6Rfyxf6b70RO+87tVOv6rSnf7Vznujpp/b+Z5Pkjc/1DkL/4TfdM4h3nXbX1e6SbLJkZ322mf2zvU9Y6jzbPDyRzvzFVsse06lmyS/XavzbHD6cZ25t8EVr6t0k2TLCZ29lodd1TmnJUn+MatzZuKcFTt7cC9/64cq3ST53k9K71R5trO+4LzvH1PpJsmj13TGNWdf0HkfXJKse9EDle7Bm3Teu/fcd3rvbfvRtM47QBf+8zcr3Qsm9ubepq50cKW78hd68wp/37CzB+ONZx5Q6X5m3c467STZ70Od93NNPqPzrpgvPN3Z45kkd7y1s7fq+G8tWekmyd3z/rLSvfSUzjUft3vv7Pldxy1Y6V7xi87euD0e7JzvnySvefpfle4Rs3rvZn7NoT+udK9YvnPOzu4n7VjpJsmFp3TO6/7oVzvvI17z+M4YYpLc90JnTdKRX+jsk0iSrU7tPFeuusj2le6dF/XeLXrrk53uWw/onKey6Fq9ue+fLt9518ikz3200k2SOx/vzD2suWrnvY3vXHqdSjdJfnxM51yUZbfurJt9daXO71uS7HpkZ43Bx+97otJNkqM36qwF2H6fzhkx+53YmdtJkl0X6pyhdd4VnT13Dz0zvtJNkjnbdT7zF3ml83yWJIuceGilu+yxnXd4/fumzrulkmTmcwdVujd8uLMe99nLOucbJ8mlp3Tul58dfVylmySv/KFzL77CuZ29cTc+/5ZKN0kefUNnvHa9U8+sdAc/7uxXTpLDj+i8M/UznS0jSZKj9+i8G3Nov865GgvP15s3+uP8v610v35y575o9kW9e88XN+qstf/+GZ37gCT522c6a7iuWaPzrrRJr/TmSg5Yv3O//JHPddYJHP+v3rsVT169c2bHlstuUukmyZknd+7xz9+pszfgwld762ZP2KtzzsFdb+3MO1y0f+esxiTZcfYyle5R7+qsWUqSa57pvEchj/+f56QGnf9vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD/lsFwXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjASD4b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBsN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgyG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQYDPcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMBjuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkWAw3BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPBYLgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGgsFwXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjASD4b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBsN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgyG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQYDPcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMBjuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkWAw3BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPBYLgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGgsFwXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjASD4b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBsN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgyG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQYDPcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMOa/+Y+H5ozK9Blj5/pFTBw/bq43/2PCnPkr3eljXq10Z06dUukmybixnZ/z+PGjKt0kGTV93kp3WqZVuoNZnetNklmTJ1S6U6d2/v3mGT1U6SbJlDGLVrqjZ06tdJNkwujO39+c2Z3uqMHc/6z/jzGjZ1W6g0ElmylzpnfCSWYOlX7OszvZJBlX+kGPGoyudMeM7Xx2Jsl8mVHpTp/VueY5MzrXmyTTR3U+8ydNWKjSTZKZo0t/20P/1e31f6HVTWbO6Hwuzxkzs9KdNKfzeZEka62zeaW77p47VLpJMv+yC1a6U0ctXOnOv1Tv2WHqc6Xfucmd37lxWaPSTZJVlrqr0l146dUq3SS55YHbKt0VJs1T6R71hf0r3SR5zwePqXR/cfrZle7ESb3v69kbd579brnnoUo3SQ5+z5aV7pJzOs8Oc2b3Hh6mje585o8rPUfNSe/ZYfboznPUxKHeONScdMYbBqXxyWmzes/urbvPQak8c07v2WFo7PhKd+LsiZVukrw0uzPeN2toTqWbMb375Rmt9KATHjXU+1kMpTSQOKp3zYNRnc/PpYc6P4sJKf2NJBnM6Tz7/eCkIyvdJx65r9JNkkt+95dK9+bn7q10k2TC1M783KhRne+otZdfpNJNkifu7vyc511s8Ur38Rf/UekmyRpbbF/pLrv0ayrdJFlkxc444t2331LpLvzsY5Vuklz9zysq3fXX37nSveuBzmdnktz3ZGceZpnlO2tekuTXV15X6b487blK98pbO2N9SfL8k3+sdF87aqNKd60lN610k+SVQWe86InJK1e6SfLws3dUus892RkvGr9Qb23KApNXqHRvvfXmSneZhXu/F0/NeqXSXWWl11W6SfLg8y9VulOGOn/XUwcrVrpJMnP2M5XuLdd2vvuuH+qtk1timc5437OPdf5GkmTZRy6Y680ZM1/8n/+3Sy8wO8dt87//7///uX7sa+d68z8+9Mz3K93HF9+m0r3q+d580wIXvb7SfeJTV1e6SXLY3p315TfPmq/SXelNC1S6SXLf1M5c8mu3XKnSvXeD3hjvDz7150p35atfrnSTZOiBznfQMs93np/vvuaGSjdJvj2zM85096c6+0b+cfKylW6S/P60zrP5lF8uU+kmyezxO1a6e62weqV7/Vt/Xukmybgzv1zpbv+Gzhjhu+bpjWse8aYVKt2Dz3yi0k2Sy55ev9L9/eOVbBaa582dcJKzJ2xQ6X73oT0r3SvveL7STZI/va+z1vDor/fGbB56/uFKd50Dnqp0z7qr83yWJB/4emcs/ZVZV1a6S//g/ZVukhyx7+GV7k4Pb1jpJslXhzprDHa4q7Pv4MSLf1jpJsn7l/1KpTtr1gmV7h23rlLpJskGSxxV6f5z5tOVbpKM3fKUSnfWLZ059fHXd+YrkmSbGzrjApe+b9tKd/LPOs86SbL0D9epdFd/ovPskCSP//vgSnetV++udCdd2Zv7XvxPv6x071t8s0p3nYV7a/iX3aXz+bn625avdJPk9omltSdTOnNZZ4/rzTdtNrXzmb/7v9aqdDcZ9NbXLfJc53f5hTu3q3STZO/XdtY7PfJKZ05jmed+X+kmyXMTO/t05/nG6ZXua9b6d6WbJKf9rTM/d+8De1e6STJlzw9Vuqt8vLO3eK+te/vvF7/iokp30ps6e5YvW7u0ZyTJgfNtUumOXnyrSjdJXppye6X7xK87Yy9rnFIauE4yNLnzu/H8CZ01JDtseFalmyR3TOncF11zXm8N/6IPds5FuX3ZJSrdPS/orG1NkvdP2bjSvXHRzr7+V67p7TN7brBTpbvj4NhKN0meOqGzb2TPvTvndWy3+Fsr3SRZ4M+PVLpHbNqZN7rgtt46q/V/1Tkz4OyfvaHSTZL7pne+S/LVzlzz3YddVekmyS8f78zvvG7MC5Xu2Yf3vq8f372zBvy5XFbpJslbJ879+YGZg/9t3fKzsx/ML17+wFy+muRjH+mtzdp2k79Xuhv8dXKle/O+ve+10+btfE8cusabKt0k2WjGpyvdjefrrHP692IXV7pJssuTnZ/FNrscX+neflXvTMOb39MZI9xjnRcq3SRZ+vg9Kt3JH++sAZixyKmVbpLMf33nWfTHC7690v3Aa0+odJNk6bd/o9I9f1xnDjlJDpuzVKU77tSfVLrfXXPVSjdJtn9icqW76T77VLorPfqHSjdJPrf/byvd1X7VWVuQJN+67JpKd96cVOmOurS3BufRX65Q6X5j3ksq3f3u6uyJS5I3zts5c+G2S5eudJNk0pmdcZVj9+uM/f9y/c661iQ5b/FO+41XdNbJbHx9b/3+e/7YOedj5vXPVrpJsucWZ1S6x+57QKX7lrV2qXST5Owv/6DSPfaJzt/1Sjd21pwkyfP/+m6le94jX6h0k+Tjr39Xpfup13b2QW/6j49Uukmy4x87a2X2/XrnvujuJXtrs8Yd0fm7fseDJ1e6SfKB7TvzIDs81dnHvvCBvX1Vn9+yM167wD86ayOP+dWplW6S7P9kZ950u1//qNJNku2/dGKl+497O3sZjvvpfpVukgze/e5Kd7HXLFfpjpmntx5i689/tdL912c/W+kmyRFPvq/S3XGbFyrdO1a7vNJNklGDd1S6G253RKV72qXXVrpJ8vrnO2suV/zYoZVukvzlw3dWuovd25k3WvCO3r/fQXsdXenec0rnHRgz7uicgZok336+826i/YYmVbpJctoTu1a6a4/9TaW7wrjOfGKSnD2zMz75kSs73bPHd/YbJMkyH36h0r0sb6x0k2SF286vdP/8dGdMZ6fHv1XpJskZ13fOAb/6us783Bp/PrDSTZJP/6TzO/f+vb9c6SbJ7655tNLdYrXOfuUb9uqdL7L3Zp01CFde0Nk7+vKVve+o1Z46rtKdf/POM2WS3L5d56yqKy/vzO9c/oG5f57vf+x82Nsq3e/9ZotK9761emeDXrPheyrdgz/be5fnF0/tvT/2f7HEQ9PyyQ/N/Xflrnpdb8/+Tot05k4HMyZXundO643lfaY0L3TFA705lnPP6+x7O/yAzvf8kQf33pN7zns7Y/QfO6dzjthVP++tu7x8/s57v95zVO/dCwdc0FkLMGHQubf82A2dc3eT5KipnT2AO32yMyd72Z29+7R9l7i10n3Dkp+pdJNk/5s6v8tffqizHn6Zn3XuhZPk0CU7Z6lct0znjLLJK3aekZJk9M8+XumOv6S3bn2Jj32x0r0qnfesvu6Hn6h0k+S0+x6sdEc90rmvnfyO3vkFG184ttKd8d7eOYznbdH5Xn3p8c6YzR2Pdb77kuSaizrry79yeWd95MKP9c6z32353SvdB47/TqWbJLvddVOlu+3dnXWMp23b+R5JksP/0HmHyTWf6zwH5/WdM/GSZJ6j9q90X7y3d47mqCM6+6wP+tkKle7Ff+3NF27xxs45EdtM6ow3/PN7nfeiJ8nGx3XGPrfevXPeUJL87A+dPTTvf7z0ns69t6l0k+TZnTvzChvf01lH9cMxvTMNHzv385XuH77cm69f8JOd/R13vKazt+ND23fWwCXJQpd1xq7f8Upn3PoXu51Q6SbJw1/p7Hk98Xudc/KTZP6bO+/ynHdaZ2/xR1fuzDskySfW2bLSPez5zu/Fy5d2zutIkqev6ezzPHTv3j7Ptz3WuS+adsMKle46S/f2/x73686z36mXPlDp/uR1H650k+SIn3fO2PrN4b0x8T8c1Tn/abuDOudeb/PN3pjqRn/u7Ns66jed/UR/2aJzbl6SLPLBznl/txTnKn+5y9xf/5Mkl/288x7kl/fvXG+SLP3Bt1S6R2/W2X+41D+XrHSTZO/5O58Zp/ymt+f1KwvfWOnes0dnrmvT7/fOLd/g5c6ZmJ85tHMe+j+mdcZTk+Qv63fWyX3zjN7Yy58u6axzfGzXzjtCr/9r5520SXLLnZ1nqS3P7rzn4DuPdPYrJ8nL23TWcG27wtcq3STZ6qe9+fH/xXzz3JxN1lt2rnff+eiX5nrzPx778OKV7sqTPlnp/uiLvXeqLLJDZ1x6yhadd4EnyRev3rrSXf/Ezvvg/vXRnSvdJHlkeuf5eaNP7lvpvv3jH690k+TsqetWuuuc03lXUpI8+IfO+wYu2vqDle72j/XOpbxlnc66iE8/c1Cle/xmnTNrkmT5f3T2yu7xoc5nZ5IsO6rzrtwPbdB55ph0ZGevXpKM++phle5bx7+/0j3pfZ29AUlyyCGdc8r+cNVilW6SbLB6Z47l4a91zj3ZfM3OebNJMvpLnb3On9ils6bz2xv03g908n1PVrqzVumMUSTJpX/qjP8/e8Iple5yvz+30k2Sy+/vPPud9nRnHnmLJ3vzFT98tPMOwo/+vnOWWJIcfMSCle6WF3XmFWbc2Dvz66zF96x0H1uqM4/8+IG9c/ivfbGzvvVTJ/XGYv85qvP5+elD/lrpXvzOzp67JNlz/s77bJ+9db5Kd92PdD4vkmT+635c6T732D2VbpKc9t3O59ybduy8d+UdB8yudJPknV/pnHG812pTK91nduud0XnFnp35m+NPLO3NSfLpXTt7oM46qnOW7Qnn/7TSTZJZ23TmqN/23c56i3/t+PVKN0l+flnnPLErX5z770v9j6VP+V2lu/+Yzvfq8mf0noOn7NnZ9zPvLdMq3WO22K3STZI/dbYdZMpS53TCSX569mOV7pSPd8atN/1C74yY3b9zYaX7nd925jRe3aSzXzlJdp7ReW/O2W8bXekmyd+HOvfiH317Z35n7a90zlpPkm1e7Iz3feAfnXWXH/1t792Y37+lc48/6ZudvTlJss1WnbUCe7zcOa/jO+efVukmSU7trNVZfqXOWsO3nd35HkmSpc5ZudJ98VO9PedfP+Bzle71P+qcy7DhKZ29AUlyzIKd79XnH16p0v3YnIsr3SR59Oed+fxVS+/XSJJ3n/fRSvfav3fej/LHfTvnVibJI3/qnJ+8yaudM8Ge3Ks3vrzmnzpruBac/LdKN0n2f+ZnpfL/eQ/NoPT/DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+nzIY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEg+G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQbDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMhvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGAz3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDAY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEg+G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCQbDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIMhvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGAz3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDAY7gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFgMNwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjwWC4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoLBcF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwEY/6r/3owKoNxo+f6RYwbjJ3rzf94ZdT0SnfUnFGVbsZ1rjdJpk+b0AnPmtXpJsm4zu/G2DELVbrTR71Y6SbJPFOGKt1Rs+erdGcODSrdJBk3pvSZMbP391f6VU7GLFrJvjpmdqWbJDNmdT4/R81+pdKdd9TkSjdJhsZPqXRffrXzefH/1fk7GTfodGfM6PxeJMnoQefzc/yM0r3L2P/utu+/MTR7ZqU7euaMSjdJppU+5uafME+lO33U1Eo3SZZbaaVKd8bo0u/FrHkr3STZ9kffqHSvWeHRSjdJnnn51Up3vWvnVLoTxvf+/cZPmlbpjl55mUr3odserHSTZP5FFql0n3/63ko3SV5++OFK94xbbqt0D3zPvpVuksw3vfNcucrkuT+ekyQrLNi5J0qS2/99baX7/N23VLpJMuXezvffhFGlcaiJpbGiJJNLY2fTBp3nnTGD3r1nZnd+zmNG957dp5f+/SaUhhHnG9e7xxjM7jyjjR41sdKdPapzH5cks0Z3vktGjeqNY4wf0/meGjWr83MeGur9+03v/PMlszrhOaM79/dJMn5OZ7B2em9IPENDnb+T0XM63eeKv8u77bh9pXvmaRdWupMn9u4x7nr0iU541LhON8n4oc547dCEzrP7I89XskmS0XM6n3MrTep8xq267uqVbpIssvQqle6zTz5S6SbJhq9fr9K974arK92NN9iw0k2SpRbvzLsvsVxnrH3atOUq3SRZbNHOs9+EV56udJNk3omdz/yFR3c+l599qvfBfFdp3m/alTdXuksvd1+lmyQTl39zpfvQI50x4CQZlH7n7n2o87m8xvjFKt0kWWLlJSrd2TPXqXTvvKf3u/zSCy9Vug++9GylmyQTR0+qdOeM6gzKXXlz5zMuSeafb4FKd+lVVqt0b7urMx+VJKsu0Lnmf99wU6WbJHffMfefd6ZP/d/HGu57aWr2uXDu/xutt9kH5nrzPxY4/c+V7hIbd+55Jgwer3ST5KfLrVHpvnmtZyrdJJkxc/1K9/2rXVPpHvnwRpVukhzw5K8r3eU26syRrbzpgZVukrzmO53nr3vOen2lmyRf2v6iSnfJH61Y6X7q31tVukny1is7n59vmW+pSnf2a3t7c16/TGf849qdlq50k+TYQzrj0j/64WOV7neO26zSTZLTbt+p0r1zqc6zzGkbv1DpJsmi331dpXvV9i9Xukny3HOd779N9j+00v3i7N9WuknyiedvqHTPf7gzln7ifr01xDsduWyl+/W//LXSTZL5F9y60t1yy86E/SEnnVfpJsllm29Z6b79I53vvvdv3/l9S5J3LPLGSvcPd2xR6SbJxemsXZha2gs98/TOeGmSLLV453fjmkU766m/udj5lW6SjH3rPZXu9b+9s9JNktWnnF7p/m3TN1W6F/6x002SR8b+rNL93J8q2SxyfW8/yl37vavS3eyybSrdJHl08wMq3WXu+UKlO2WdhSvdJDm1tD1g7W917sMP/n1vreG116xZ6Y4edX+lmyQbP7JqpbviG+evdA9fs3euxpuW7oyp/mxUZ753hbt6a5LGT+6cJfH0lN444sfW2KbSPenazrzsmPXfWukmyee3fFul++vn/1jpzvnt5Eo3SYbe1rkxWnK5zn1Akix77HOV7p+f6ZwZ8O7Fe7/Ll9zYGfs8/NXO3Orei3TWJifJio915sdPX7szN54ky667QqX7yiM/qXSnnNzbJ7j3dp3PjBe3eKDSnXh+bw34q+NXrnRX2aI3b3vKfe+rdOcf3Zmf2+zWznxwksxacNdK9/aJf690/7JHb95hvZM798u/2OjdlW6SzH7miEr3Jxd39tDMe2MlmyTZ+5T3VrqH7dw57+G++X5T6SbJUZM2rnQvmdn5G0mSY0rHNe7/4865NtOueEOlmyT7T/9wpfuOff9W6Z78rs5YUZL8fYHOHsRvHdOZg0mSuy7+w1xvThv7v63rm3bnnNy25dzfk7zBJp15+iRZZYXOuqEND+ms056yQu8wgB0P6FzzfR/prHNKkrdM6dwL33/AXZXus4u8ttJNkrVvu67S/dD3jqt013jt7pVukqyy+JKV7gUb9s6EvfrEbSvdb/1zj0r37iU+XekmyVNLHlXp7jpv57No6OXOHvUkOXDNzr/f5EM7n3FJsuE9nXmQlW/crdL9/BG983FHv/DZSvfFGWtXujNW6a3//tZ1C1a6Yw75aaWbJK97+8WV7hkHXFHpnvjjD1a6SXLN6Z37z9U+1Fkccu9venMVJ37rgkr3wNvurnST5KpffK7S/fFFnfXD05ZZvNJNkgvm+3mlu8q9e1a68xx9TKWbJBv+tDNXMWH93trWWR/YpdJ9+zWde4HbT++cA5ckt+/emfd+67mdMemD/vZQpZsk576ps374qhsfqHSTZLOP/7PSnWdMZ23yx67sfPclya/+1FmDuubmnXOdvr/L7yrdJFnhoM7Pef+Le2etH3fr/pXu5Ff2qnQ/cdbXKt0k+eaMr1a6n519SqX757s/VOkmyQ9X74x9vuO1nXvaJFnmyM76kFW+1Nn/tOXW21S6SfLInp3zxcdfcGSlu/69vXnT6/fpvLfj3Fd7f3+3feyjle6ph3fGt1batfPZmSSnv66zJuLmy86sdL992ZOVbpLM2OcHle4Bxx5d6SbJLWM6c0c7j92t0r3mh701AG/+cue+6LYnOvtnfrr8eyvdJNn0rM75nEOzevvi3jzn1Er3ubX3q3Q/9+XS+4OSrPzmzufyMq87o9L93Uc67/tLkuVX6pzvc8jPt6l0k+TMu0+qdP/0wc5+ybP3/WSlmyTjp3fWRm642Ecq3anPfL/STZKF3tA5Q3DFP06udJNk6fU6ayOff6XzWTThc73zMHf99lqV7lu27owvH7H7jyrdJDnlrZ2zgs8c35kPTpI9/9m5F/j7azp7fu6/9i+VbpLsuEdn3uiYD32q0t1p9d65yY8f0tkX/qmNO+cRJckxH+gs4P/pL/+3/939g/nzjnnm/plRW8/prJVJklM/tHele/mFnTMitjn85Eo3SUbf9v5Kd6WHe+fjfmuZub/uP0lW+Vvn8/zjb+ide33vFzp7AGcec1Clu/7ynfG2JJnwzfGV7m4/2q7STZKpV3TGCbdc5B2V7rXHTa50k2TxczpnDo0+rXMWx7su+R+/NP8vHHzY8ZXuPbM74ypJ8up7rq90L/3BJZXuntceXukmyTlXdc5wv/1bnfV1e5zTeR9Vkky+rXO++I/+0XtmvGl8551U7/zUlZXuEa9+pdJNknt//1Slu+WMyyrd0X8pHbaXZNROnT37T17W2YuZJGdv8t1Kd+m7OuP/vzy2M46eJJ9coXO/fMr151a6+6x9a6WbJGfc1hn/+PernXuXJLnlos5+lLPn6dwvn3ZX594zSXbdpvPsvswjh1S6m53bWwN+076dPYijfvTlSjdJfrblJpXu68/unB35+EdeU+kmyevv6ow3XPzmzrzeVgd33gWSJG/6Rmdv4w6Ldd7/lCT7HdQZ75v6tVcr3SUOW77STZLbz+2Mcf3pxs5z8E179d7lvtunOvu23v/m3r/fz0d9otLdZWxnDeoXPtv7uz74TZ35+nM++PlK99AF96l0k+TC0zvjy8c83jm7JEkO2WqHSvfoI/9W6c78cW9vzvxHdN7P8PSqnfNxj/5AZ29AkkzZtTN2veKunfu4JLngHZ13YDx2XGfP+WuO6J2Xc8TFnb2Nfzioswb1q+f2xtq3ee7tle7GO3fm85Nky/d1zp3/3PTOWvs/nto5AzVJNl+zc9bzGkOdd7nPObRzXkCSbLtEZ0xg5yV2rHST5LzPds6033STzh62k478UqWbJM+9rrM25ce3PlDp7rBrZ512kpy82ImV7p836dyHJ8kvp3fmFOfM6MyVXPTWzll/SXL4rM441Li7OmfPbPSv0uHGSX41oTOOccJpnT1bSXLIxp0xkt326KzTWee63rztrJ90zvvbduXO2Nn715hV6SbJqLU6fycHH9N7B8bxv+6dmfO/GDN65Sy64Nwf573hz73zOJ7bu3Mu5SGHP1Dp/uaQ3j6If57bGdc8cHLvjOpx13ee+cec2TkbaO2tOnuzk+SulTvzvZev0XmW+eWHzqp0k2Twm8599i4v984wePHVzlrRLffp3Jt8er7OGG+SbFI6N+Pn+3bOtD/p3Z11e0ly3/2dtaL3v9D7Lnnx3s5Z4O+c2dnHed3uvbPLPz6n85lx0wWHVbonPtvZC5YkG+zcGTP99VWdd7UkyTb7dPYuvrRAZ/xx2zccWOkmySVbdd5p9INjOu9X2+2izvxYkhw+4ReV7l6f6j3v/PTmTnvJwztnwa2/Wu8Mg6HnPlbpHvhc55yk7/2zN645fffTKt0lz+nNC+26QWec6eAPnVPprv/Hznr4JJl8cOdnsfRRnX3Wj2zSOf8lSV75Wme9xTvO27zSTZIVLj670v3N2M45gSvd0XkfT5K8c/ZGle7BJ3XeW3XV/eMq3SS56Tel8xO+/M5KN0lu/MGNle7Vp3fWtExdsLembM8DOvf4Wyza2efyuX1777/+wbmdv+ujxnbO70mS9b/yQqV75w++WOluvGVn3DNJrn65sybpzB0650fu8JHee3OuWLxzv3zzPE9Xukmy1w0bVLofm7ZKpXv5Xw+udJPkj0919iCesvT9le70LXpnfh2/bGdO6tUjevP1127decb+xR6dccR9Fr+j0k2SKx78VaW7/+qdvdDHzN97n+CYeTt/Jwcd1TsjZqWfd86peONvOu9dufUXvbPnp93buV8+7u03V7ofOrtzXmmSfGfOeyrd5/afXOkmyV5zOmt9z/v17yvd2Sf23vP6zwU662k+c+Gxle70zTtjUEmy5Fs787YX7tkbXz56tcmV7vFHdNYgPLzzeZVukvz17tK65+93zk84/7e9d8Xs+/7O/MC/Ttim0k2Sb73QWVv0kcM6e3Meeqh3Dv9tR9xe6a72iSUq3bGf7r0Dasc9tq50/35Cb23fXz/Q2Sux+aH/5/97b/UqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPw/ZDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAlGDQ0N/V//x8uOmTx06AJbzfWLmLrgAnO9+R/zLLlGJ7zUypXsvKusV+kmyfhVOj/noSXmqXSTZNTEOZ3whP/73/v/xqjxoyrdJJn10pRKd+Kk0ZXuKzNmVrpJMmVK55rnmfNCpZskL4yZv9Kdb9asSnfi5AmVbpJMn9b59xtkdqU7Z9Sg0k2SwaDzmTFnRuf3IkmGpkyvdJ+84OJK96FTv1bpJsnYQedzbmj0xEp39MzOv12SzBrb+V6dPrXzd50kM8aNqXQ33Wa7SnfJrdevdJNk3Dyd76iJ879a6U6YsXSlmyT3vHR/pfvc1r3v1WdWWKvSXfGSeyrdN6y2XKWbJC893Xl2mH/+SZXuhZecX+kmyZV/v7TS3eD1q1S6SfL0Y09Uuk+8tGClO/W53vfqZtt0fs6zXhlb6c47X6ebJE/PeaXSPf3okyrdJJl/ZufnMWNc5x5/MLs3jjE2nXbraWfCmM6zapLMmNX5jhrq/fNl3jmdZ+Gh0nPwmOIPY9B53MmM0u9c63qTZHRpqHZm788vQ0OdZ/ep6TxTzjNxqUo3SaaPmtHpvvhopTt10BsTGD0YV+mOndW75jml37knRnf+Rt6y986VbpI8/PADle7tDzxT6S4+oTeHdt9Tj1W6a664aqWbJAvN1xkjmbBA5z580oQlK90kWWuTzSrdp55+sNJdfZXVKt0k2Xzjzs/i1uv/XekmyYtzOmOfKy3TGat94fneOMZ99z5U6a66Smd85K6r/1TpJsns+RaudKfP6T3vnH/W6ZXuQgvOW+lOf7X3u5xRnXvEl59/odJ9/XqvrXSTZPE1Ot9/U2b11pDcekvns+il55+rdJdbvjdXsvD8nd/lKVM7z37TZ3XW3yXJxLGdf79JC6xe6SbJIw/eVek+82jnHvGhl1+sdJNkiRU7fydrLLJspfvPW6+sdJNkxQWWr3T/fe8tlW6SbLbB3J/D/suVt+a5F1/9n26MFp1n3NCeqy86ty8prz4+ba43/2PztX5V6S651A2V7sQ3b1vpJsk1K65Q6e4zzyOVbpKcMbszUL/aIeMr3SVPeKnSTZI/L9kZC9pt4c7P+PILr610k2SR9+9Z6U6d+nSlmyRPnXVJpXvKOp21X/v9Y3KlmyTXT+usz/rwe26rdF85ZvFKN0mGZp9R6a73gzdXukny0/k7awJv3eW7le7qX5uv0k2S1y97daU79tHO+rozZq5d6SbJ00u+XOku/3TvmXH7lTpzTg9/vrPWcIl7O58XSbLZbk9Wuo/c1nl+3u6xPSrdJDn+uZsr3RkLdv5GkmSxn3b2xq165B2V7pr79/a8Dg7p/F2/uF7nfuvLv3u+0k2Scat21lu8+dXePf7m+3Y+P086qzP3ffuUzj6XJFlzqR0q3Zdmde6XF1l8+0o3SRa6+JuV7tcf+V6lmyQT/7VppXvvOn+tdJe/eqVKN0nOfsNile4n5ntNpXvXnb3xrcPP68zrfWWJ3t6qzQd/rnTvWmPrSveFZXtz35su11nTMvOVzu/ys/dcX+kmyf5vfqHS/eLvevP1b5rWGcf47sqdvamv3a2z7jJJNv165772oLHXVLqrvNgb09l+oc5n/j3L9MYxPrFCZ/50ymc798vPHH9MpZskiz1yXqU7btwGle4/ll630k2S1X6xV6X716WOq3STZNP3/LzSvWFO53N5nZs7Y7VJssemb690/7pmZ//vtPN641v7HLhFpTvj4YUq3SS5c+xPKt23btnZ6Xn+S531PUnyzas7n/nH7XdipTtz619Xukmy1lt2qXQvnfGpSjdJbr704Ur31bHvqnQXGvudSjdJnn1757lk6x931q0vvdCXK90k2XXcVyrdL2+7UaWbJIte19kn+OJiV1S651zbO+9opVUW6XQf/0ul+6tNe+cd7fdAZwP3S5t1zutIkuuf7JwRM/REZ2/Aktf3/q6nfL3zs3jbSZ19ShfeeFOlmySvWX73Sneh6b19grNWnPtzD7++5NI89dzz//UX6+jJSwxN2Oo9c/16tlz83rne/I8lVjmk0v3gQrdXujdu84tKN0leuf6dle74j1eySZKFPvfGSveRmzv7kR87qDdX+OK0zjzyw7fsWOleP0/ve+1b63bWQ9x1+2cq3ST59Xrvr3Qn3viNSveY7TpjNUny3Y9OrXTfMeFLle5JW3+/0k2Sk8/qjEl/+D0rVrpJ8pYdOs91V2zbOZfkngUuqHST5Ia/fLLS/fYSnXWGl3/zyEo3SXJbZ67i76d11hYkyZnH/a7SfcPNb6t037fyZyvdJNnrW5318I+t0VmDs9CET1e6SfL7LTpr66acM/efof5j+qadOdmzl9mt0v3Zz3vj85sd0Dnff+mrO3N6jxzZ+1z+5OzOmud33tKZg0ySfe/oPD98dcIHKt017uztMbty48Mq3fcs3llDddOZvfVIn3xL517ujnefUukmyXx3dPZfnLJf53d52WfOrXST5OCtflrpbrpgZ95tkavXqXSTZNIBL1S6j+3S+y45/uHOuVwfPL0zDvzCeb0zNZ77UWfedMI/O+cQ7PfqxyvdJFlh9MGV7jxLdZ6Dk2TplTqfRafv11l/utMLnbMekuQfi+5f6b60cmfN3htmdp6vk2SDCZ29vxfO6J31/M59OveI//7gvyrd4/bs7ClOkjuP6MzVH7J2Z0z8e9t9sNJNknF3313pXvpqZ51akmy7UedzboPFOush1t22d3bdVz/6m0r3X1u/r9K9aPvOM0mSLLphZ7zv4pV687Y5rjPvt8uj7610Fz2ycz5nknx+Tufs5Cv+/VSl+8ZZnbnxJFlwqc563Pft/ctKN0neu1Vnfvz+dTv3Rfv/+oRKN0mOnXhypbvCi5Mr3a9+srP3MEn+uf1ple5G+xTXQ93fGcf/+cc7P+efbdaZj0qSOf/ozBttuXJnz8huH+6tLdr9M1+sdHc4pTeHfdItK1S6i3zphEr3Ld/du9JNkj13/mql+/G7OnMaez3Su/f8+6FfqHT333WnSjdJ3nTZPpXu2Z854rqhoaEN/9v/3YQN1h9a/l+Xz/Xrec2s3n6s5ZbotBf/7G6V7lVje2fN3vd05yyVO7/24Uo3ST6ydmcu8icLd/ZZLnDf5pVuksy/48cq3e3+0vlZfGuN3vqsm1bvrAG/6j1HVbpJMnWhOyvd2Yf+rtKdstM/Kt0k2eIva1a6n1q382xw75O99XXn/Luzbvbtg7Mq3SRZ6Cuvr3R/+q4fV7ofem/nXR9Jsu30N1S6i5zypkr36d/23ifx1PyduZBHH7ys0k2SdY68p9Idc9d6le4SX7iv0k2S3Z7ovFB6kfE3Vrpvm3BspZskB3+zsyZwmdm9++Wr7uu0F9yocxbVU8d25t6SZPOxh1a6G13U2Uv7vj16a0V3/H1n7nux23vnF+x/Zuf9Gud8oXMm80dP+3ilmyTfuLzznb3l2Z3Pix+9s/du2ANXm1zpLnHpHyvdJHnkA519ggd9s/Nz/sO2vTmyyc903nl08l6d875Ovrjzb5cku+3cuffc7/fvrnST5AMf7YxLnzPl25Xu327ojHsmyZo3/7bSPfNbnTWdL9/ae5/EJse8t9Ld867emNxxTy9T6V56Y+ce8dmrP1TpJsmxP+rMZZ1QOovgyX/3vqNed3fnrPWFx32i0k2SWw74aKV7wwXHV7qfX/q6SjdJXvpM590oq97cObvutm17z36LntB55/POz/X2LK/z08mV7h7v6ezBOOeSzl6wJJn5+s57aae+ZpVKd+Jpnf2HSfLwzzvnG281q7PPLEl2eve4Svf0+Tpjcgvv0Dv76U//6LyncN/bOmM6U1b8Q6WbJM/u8EKle/6PO+9LTZJTbzyo0r3um529jafNPLXSTZIvvr/znsI7tu/MrS5bWpucJJ++sDM/d/YjB1a6SXLmDidVuuf8fWKl++6zBpVukqz3vc7ZrZcc3bkvWuyI3hz2nAc7Z60futBulW6SfO+6zvrWd4/urE2Z5+HevO03Lu2Mif9+q87enL1e25vPP2v3znjDUcWzJG6cp3NG2p+/efr/tO557GoLDS140tzf/3bc0SvM9eZ/vGX7zplfE+7unO303lN3rnSTZK2jL6p0l/5x795k/s901pQdtH/n9+Lg7/b2bpy7V2eP0xde7OxDunbMLZVukuxyUOedVE/94FeVbpL8Zp3OZ8ZJa59d6S54TWeMN0mePb5zNsn1X3uh0j3+wt645pJLdZ5zv39g7zlpi5M6Z3Odf1LnHbzXffjGSjdJVvr2WpXuKq/pzIUstWRvHcC6R+9X6W70aO+d3e9dtjPHucbunc+MBUrnLyXJNz74g0p3p7M+X+k+8HTnjLIkGf3hzvuBvjeq957qm17fOevjrnGd81Q+skTnfPgkecsznX2CG72mM/Z//tdmVLpJ8rd1Ou+3OWPDzrsqkmTSeZ2fx6ZXd/YW73N2b33Wj//emRd63bTOHNmTZ79U6SbJeRd3rnnnX/beO/aNoztnaA1+3DnX8JLpve+ohV7q7GdYd8P/ekjz/667Y2c9WZK8clvn57zgnZ13QCXJE1/tPKN9ZqHO2oXDfjW20k2SD59a+ju5/rxKdvmbe3Pfo9NZA/7e506odJPk+Fs684WLf/L+Svd1+3X2BiTJ397f+VxecekbKt0r9tqk0k2Sy04ojV1P+HKnm+T0Dx9e6d57bmdv45U7rVDpJsla/+68s3vhz3f2SRwx1DsH/J7ZnWe0H6+/b6WbJH88p7PW/r5PL1HpPrB874yR3ffoPK8ud3dnfc+1a/feFXP3k51nv10Pu7jSTZLDd+vMVR50c+ce8fKP9tY9P7bxzEr3O9M7Z3ed+7rXVrpJsvUHOvNzm8/oncM/9ujO2fM3Tp375ykmySKTOnsDkuTUXTrjAqud33nXyLmXd57PkuTwqzrPDqu/rndG7v63dc7rfufozrsffn5s50zmJLmutB3zd+ufWukedNwPK90kmXRb5z00z769s5YtSQ76WOdMxWM/+ddKd74ZX650k2TZXTu/zA/++pxKd6ExvbODVvzCVpXu2C90zpRKklVL5188c/2E/+O6594qKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4f8hguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBgM9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEgwGO4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRYDDcFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8FguC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaCwXBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBIPhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkGw30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASDIb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJBjz3/zH41ZdKcv+7My5fhEvDb0y15v/MXpWpzt7did845MvVLpJMs+0+yvd105ev9JNkokTp1S6x/ziskr34B03q3ST5Or7Zle6k5eaXukuPG6BSjdJHn31+Up342WXr3ST5N6nH6x0N152qUp3aNZQpZskC80zqtJ9ddDpTp/e+1mMndO55jnj/quv9//KYNTMSneBbbeudO885chKN0kWmj6n0h076HQnTBhX6SbJnKkvd7qj5690k2Sx9VetdMdtuValu+QG61S6STJqVuczY9Sozu9yeh/LWe7+uyvdF868sNJNkmlbdO4xnlhsyUr36Wceq3STZIn5V6x0X5o5utKd9vTUSjdJVlxvmUr3lLM6z1FJsv3GG1a6M5+/vdJ99LkZlW6SXPzXByrdAw/4fKX7lWM73SQZM+jcvzw7vfMcnCTTSwNR8w6NrXTHjup8xiXJjFGDSnfC7M4zyZhONkkyu/Pol/HFa371/8Pef0brVRds3+6ZRUiDhNA7hF5FmvSOFEERUZqISlMRBURBuVFEAbEAghWl2imCiIAoSO+99xJC76EESEh5P9zbb/vd+9GRc2TkGcfx0SG/McfKWtc157/NIZ2brlGte7niPeLkWTrxwVM7fyNTZ+n9YgxMKT07THm30k2SlXf4aqU799B5Kt3M2ftlnuXV4ZXu60M736sXnP29SjdJhrxdmpOatTf28tx7EyrdLT+7e6U74Y3XK90keXzc+Ep39OzzVbojRvV+L5YdNbTSnfRmb972E3t/vdKdOLUzDvXiO+Mr3SRZY93OOOLDt3fGdMYs2ekmyU23XFfpPnr/7ZVukiy2yIhKd+xzne6Lr/XGdBZYZPNK97ZbLq90p77VuQ9PkvvuuaHSfa801J4kK6+1TqX73kude8TBy3TWTCTJ43c9Vukuvfjcle6zz79Q6SbJoPk7z2hLzPmBSjdJtt1yhUr3iUdeqnRff/PGSjdJxiy2UaU79qnOd9SwKfNWukmywQadeYdZZl2g0k2SR9+brdK9b0jn8/PBW3rPDvOX1qasvFLn82Ll93Xm5pLk/jvuqHRfe2n+SjdJZp9r9HRvDgz+78cmF1hgnnz14L2m49X8rxuWW3m6N//t8tk762b3emT2Sve+ezt/W0ly2yovV7rrrdJb63vwO1dUupsc0hlz2/OW3nPSA1m70n14pz9XutsO/UKlmyR3PPK5SvcTj3R+xkly+wdPrHT/5+5XKt2vjnxfpZskp07pPDOeveLyle7Bf9+l0k2SJ8ddVOkO+0hv38HspcUAiz57YaV7+uhfV7pJctWiH6x0l717zkp3gW/dVukmycfevb7S/dUGnfXwSXL2hw6vdD8+fmSlu8JynfnNJLnj1s741UZ731rp3nxDb75w4cGdNWXLntH5G0mSwx9+f6W7/qTOGvBZH+7MySbJUnMeVunOMrGzpmXOdX5c6SbJ8HM7z1G3vdZZZ58k/7qmM/f92lK7VroPn7JtpZskKy7a+cw46PgDKt1z/twbx7juxe9Xurdc1xtLX3OR1SrdoR/uzAv9YrPec/C+d3X2B3zwqfsq3aFv9+4x/r5SZ45z49V7ezCWW7iz7+570xardD895zWVbpKs9PvO2PVvlnyx0n190qKVbpKc/XZnvnDZ5zardJNk/WOHVbqHn9aZ+7719N6/348OvaXSPXy2fSrd2cfsUekmyT2Pf7LSPW6Jzt91kvzqqqUr3e2+sGOlO3Twc5Vukgz/SGd8+eJ9OuMj+17U2aObJN/84BmV7i6r9Mah9tvk5Er38bk76/b+/ug/K90kGfLFTnf5K8+udNfb7fhKN0lenLPzHTXnK70xuUEPdsaLxjx/f6U7+8bT/2y7fztklrsq3eE//k2le8UGb1S6STLfc3+rdJ+aqzMHmiSzLfyZSvfeA56qdJ85sXcm3wGndb6zx75+WqX7+h69dTqTh29f6Y6f0nk+S5J/zd2ZK1ljziMq3U8O6swzJ8mlz3fGdCZt2Bn3PGxSb2/Vp5bfoNJ9a8feONS2Zy1b6Z51/b8q3X8897tKN0ne+vZKle6hs3f2yG/ykc59XJLcv+ToSnfuB3vnJ+zx7uPTvXn5oP9uPHyheQflq5+b/ms6lzyvs84pSc65cP1K95hZO8/OK551fqWbJG8u1Bmv+fZuvf10J/ztB5Xu3yZ3PnMvfKE0QJFk9MSjK93nT++cffbd7/bOi9rvwZ9Vumds0xkrTZJ1nzul0t1jbGd+5fIbevssVzpst0p36yGddUPvTOvtbbpo7c7Pec6tenNCgz/Y2Ut0+30PVbovfH7nSjdJVtuhswbn+FM664b+8YPOZ2eSnHJ1Zy/Y+e/29kPePetSle5Z15/Q6d7R+179y4GHVrq/f7OzF2zIG719VXvf1pnHGrrxeZVukqx/QOeaT73y2Er3bx8+v9JNkvF371vpLv+9DSvd9X7/w0o3SQZd9N1K9/SDnq50k+SQyZ2DUB+6Z5NKd7adD6p0k+SNm9etdHd5s7OXaPBp21e6SfLbv95U6e6zQmeNfZI8tcQ5le5GQztjAseu+nylmySL3do5f2LZpx6udO9d4pBKN0nOOKWz5vnQFXv7XQ//83GV7kfeurnSXXZa57yhJHnrqM41n7tFp/vLN3t7Ub5+Y+e8oVtn76yTSZK9T+08S+3/1Kcq3Wvv76w/TZIdb++cv3Tcnp17l38s1ZmDTJL7tuvsl7z6jN7Yyxmrde5fdjzpr5XutIm9z6JbF+78nKdt1pmrPOToZyrdJFnopc7fycNn9w4VfWTtzvffR6/ujGO8eGxvj+CdnxxX6b7y4865u8/tOLbSTZI5RnbGMV46srNmKEnGPNMZ19nqwM9Xuv9ao3OedpJsudyDle7uf+rsvf/HoZ2zHpJk6EudedudThxd6SbJz0/vrJs9aLfOM9p+F0z/9VP/dscv/ljp7rlV5/v6vj+cVOkmyXpXd85TPG/jr1S6SbL8Wp29AXPc+vFKd5V3l6x0k+THB3XmNB5ZujMfdde3e5/La07rrIU/4U+/qnST5KNDO/tHh0/rvIt1tZvurnST5ORtO2s93ry/Mx918yG9vb9Pr9CZz1/vxc53X5LMfnFr/+9/N6Yz5+1PZ8fhX5vO15Is9fvOvt4kOf+HnfGrwf/T2Se75xy9/dOf3XnLSvcr14yudJNkg28uXOkOfW3vSvfhdXt70964uLO/YvLRnfmKL+x2ZqWbJKv8tnOW0dy3nVXpJslFX3mz0p1j3876nmHL9r6Pb5l1h0p3jZs6vxdbDNmq0k2S2e/4ZaX7r4tLL1BOcuO5nb/tbw50xj+mvFrJJknmH7VdpXv1Mp25mxX36Iw9JsnbS3T20Dyy5LmVbpL8YfHfV7ofPfyySvfzJ19c6SbJ3l/r7MFY9NLOedoPfaWzbihJxqzQ2ad031G9875+NKmzvnzZ8Z09+++N7XSTZK0X9q90P/f9zvjjXhd1zipNko++2Jl7e+GJ3prA7TbbvtJ9c+3O38gl532j0k2SY888ptIduU3nvfbPvdkZd0mStZ7q7E3dZbVplW6SrLlgZ2/cemd1zrV47VOd602SL3ynM6++7pyXVro7frFz75IkN/14vkr3vtM659UkyYZ/mf5jwEny1Pydd6N85fLeuSTjd+3M945ftvNesOWHPVHpJslRm3bOeh5+wIcq3SR5eIHOOo6LB32r0p1lsXsr3ST50v98utL94o87Z5cc98D2lW6SzPf7zvvztlq8d97ed/fpzJV847LOWO3pd/TeuT5x987Zn4M+/YlKd+GlOu8YT5JL9+zsjVv/jt44xm2HdM5BnevznTmN47/XOe8hSd578OeV7tTlNql0V7t5+r8P+t8e37bzroMLV1+u0k2SXx99Q6X723k6+3+XGtN73pm46rcr3Q1/2jmH7sW9e2cRfG/9zvrIHU78R6WbJMsdO6rSPe+hzh6MDc/urGFMks1P73wu//POzvPqqiN7Z/LtP3h8pfvzD3yz0k2Sy8+/utJdbIfOv9+un+vchyfJult21sTf9K3Os/t6f1mj0k2SZ+fpPEeddOn4SjdJxl/UOUd6kfk7a5bO+/XESjdJhi91eaV7xu6dfbo7Tuzde17/s84ZWzf/bb9KN0lG/ODgUvm/W+ex8KzD8835pv88y6VnbD/dm/920K87Y24Dq+5U6R726d46jgXv6txbXnPtHyrdJJmwduf7+NqjOvtDJ1zRO7t/2Ke3rnR/OLIzlv7CxM7e+iRZ/q7OOOGr+9xa6SbJD+fszPduvt6mle79d3fWRCTJRit03lX2gds78xU7D5xR6SbJZvt+ttId8URnr16S7PtEZ1z60SM67/E59+e9s2U+ftomle5q3+2sW1/tm1+udJNk3H1nVLobnNFbh/PA3pdUum8OW6bSve+wzlqLJBn+4c77iH+84ucq3b1e7rw3IEkenK1z7sL39+zsM0uS007s/Dz+tWXnd/mddM73T5JRS3fOmfvb653P5dOf7p0D/vNDOusjp8y+e6WbJMvf37nHP+3czpmJ63z6L5Vukky8ovOupm99vTOP/NuDP1LpJsmaV3XOc3h+RG9N0hO3dfZj/uNXnf2Yi/9tTKWbJL99sPMO5W1OfF+le/BdnXH0JFn2wc7v8iIP3V7pJslBH+2sBdj7+c687E8P6L1zfdx6nXMq3pryaKW73CWdNetJcsH7Omde/uDd3tqFX657RaV768qdvTm7r94Z60uSw+fas9LdY0RpDf9NnX3FSfL81p3v1W9O7qybTZIDj5q30l1xg86Y6qVvtc51Stb78vmV7jE7Dq50Tzu9s/c+Sd436fxK94DfrV7pJsnsT3feVbjCVzrztkPH9s5luPG2CyrdA87trM+atsU2lW6SvDS6sw5nyUN6e+PGLt1Zr/bytztnxK85R2+t4aQ1Ov9+c691UaV7zzWrVLpJss/RnfVOb53ZGetLkjP/+slKd/vBne+SpW45v9JNkgMWP6PSnfSpzjnud23fWaedJNvu2Hn3w5hbevO2f5n1X5Xui2d1xmpnX6d3XtWR83Tek/2bj3U+7z/0Tm9869N/7bz36NfPdt5HlyR7nNs5c+XljTpz42Nv7pyPliTjj+qMcX329J9Uuped2Vs/Of5nnfng7Q6/vtJNkgMv6pzx/83/l4+MzilIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/mYEZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg4EZfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDMYmNEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg8H/yf954qCpeWzWidP9Ika+M2S6N//t73e8Wuluv+yoSnfI4BGVbpKsuPKYSvfqp56rdJNks/nmrnQv33v5SvfiyQOVbpJsvdiCle4smVrpTh08rdJNkmUnz17pvj719Uo3SVYYOl+lO+zdKZXu0FG9z6JM6/zOzTZL55pnK3zv/duESZ2/k+GT36t0k+S1tzvtd6a8W+lOWXqhSjdJnnzgnkp31JT/6Pbs/9ykzmdnkowc2fm+nusDC1e6SXL/+Ncq3VdvvrHSHTR0QqWbJEMmL1LpLrLELJXuoOHzVrpJMnSJVSvdQa89X+kmyTvn31vpTljjmUr3tdGrV7pJssDcK1W6Iwd1PpffeP7WSjdJPvPloyvdFZbZsNJNkh8c+6NKd5Ehwyrd4UPnrHSTZJZ3Zqt0v/0/B1W6I+cbXukmyf33PFnpTpuj83uRJO++2blfHjal8+w36+DeOMYsUzrPfpNLz5QjBpfuw5NMfq/zvDMwqHO/lSTzTev8bb83rfOzGFT6vk6SEdM6P+d3pk2qdIdN633GvTHQ+fdbeN2NKt0kGTl3Z0xu0JDOc/CQOeaodJNk2tTOc8mIaS9Wult+5shKN0nOOWnfSnfQlN6Y+FtDBlW6662+RaV75aV/rXST5I33OvcCm39w3Ur33ZdfqHSTZPLw0ZXuCnP3xlRnnavTnW3kYpXuagstU+kmydvvdu7Fl1lt1kr3led788FvvPVGpfvKa09Vukny1rOdNQhTZ+k8+70+vjfX9cbAy5XubIM690V3PH5VpZskiy44T6U78b3O33WSLLJkZ37g0scvrHSXmWOpSjdJllxi/kp39KwLVLoTp/XmHSa83JlDG7H0W5VukrzwbGdMboutNq90b7iuN74879Kdv+uR83ful2+69vpKN0nmHtX5Lhk5aolKN0nm3WXxSnfFh99X6S6xYu9+a5aXOu15Z3uo0p1tjt4c6NNDOvcYiy7aW1u01nLT//Pz8ivv+6//2ycHj86+831sOl7N/9p03IrTvflvb914V6U7bttVKt2b5hha6SbJUdcsWel+77wfV7pJ8tcDPlLpnn7ME5XuyJG9Z/5r/rRqpbvcy49Wuq9N+EelmyTr/+mlSvfatU+qdJPkzis69xDL/KEzLvahDe+vdJPk9iU7axe++pdNK91Lnn+w0k2SYa907nuuGHNBpZske17VWTv7pSFjK93F5vlypZskz0zu7Nt6/Bc/qHR3emnNSjdJXpmvM/e29A69+cIr/3BKpbvNG51rfvQrne/rJHnlms76yNv/0ZkjW/iFyZVuktz7ZGcu662nNq50k+S9wy6qdP+6yg2V7rVP71TpJslJX+3ciz/4YGdv1RKf6/1df/3gzv6AFwdtV+kmyYObHVLp3nNsZ//ohLd7ezAePeLgSveAL55Q6a5+5n6VbpJcc8UVle5iA53fiyTZ9ZbVKt2ztr650v3RvCMr3SS5ct3OWOweN3auee61enOnW1zeGe879dKzKt0kWXVwZ+3sTo92/v2W2v3tSjdJFnhvuUp3rjk7eyYXWKs3X7Hyq7dUui985qhKN0kG3dNZH7n6op35gT/u0JlTT5LlftpZ37r2Hg9Uuud99uRKN0kWX3OPSve15f/7+bf/f77ydGdN4F+27IwD3/ZA5/MiSY4/vjMusOugzn3c+Fd+XekmydiPdp5Xt/x4b63vP27tnD/zjQU6v3Of+P3+lW6S/H54Z+7h66uvX+l+bI3fVbpJsuUjnbHrk3+8bKWbJEuP64wDf2aXzhriZS/t7Y1b/LFdK93VHu7ch7+yZef+MElme6CzHv5DH+ism02SEUuMq3Qf+05nrPZ9j/bWGt79P501uaPe6aybeOWY3u/yb/cZXenutXhnPjFJlljxn5XuR1fpjBedtNInKt0k+f34wyrdezf4TqX7l8OvqXSTZKPTP1/pvvWTztrkJNnoY53P5SmDO+MN37urN2/0iQc+WeluNO+ele5K8+5T6SbJ3Td2nv3uPf3iSjdJrn/0junefOv2Hf6r/274uIWz4peOmc5Xk1ywemf/bZJcPH/nvK+Hd+w8h55a2kuXJJMHdZ4Xv775epVukgw/7XuV7v2zr1zpnjKkt4Zj/ps7ayP//MLnKt39x3XOJ0uSOZ96ttKdtNollW6SHLZb5x57iw+9Weluc27njJYk+eAeu1S6G53dGW/bbuvOuYNJ8tm3OntR9rq/Mz6fJB++tPO7/MjNnbHHDY77VqWbJBe80lmPNHJKp/uD0T+rdJPkkyuMrnQXGHxbpZskv7tvrUr3J7d3vqM+9MxelW6SfOKKzvkFD67QmR/be4mvVbpJsuxXO58ZJ3+idw7qQV/ozE+v/1RnfP4r43rnynz+1jMr3ZFHd/bFbfWPVSvdJHlmlQ9Xuo/u1zmTMkkmPdJZHzJ8tscr3SUO7a3NWmq9cyvdIXN29vs89/hvK90keW7DzpjOwqM7Y91J8sjX1qh0V5/aGXt8+C+99/yMnqszJ3vebp+udG98tTeHvPoVnc+MP9zZG5Ne/lOdsbOdl7yz0v3RBZ190Ely2KOfqnTf3bSzX/mOT/Xutz630zqV7rwL9daTXfftzj6zFS47vdJd6Sed8x2T5IlF7q50dxq3W6W75MW9sfZ/TemslTn7lc6Zhkky9V/vVLq/+MUPK90v3bZNpZskX9vwj5XuwOiPV7rf37uzpzhJFni0M+836cTOOflJMvssnXUADzzX+cy45ie9MZ0JwzvfJZt9685Kd7ne13VGrNQZb5jjvt590dxvdc6l3G78qpXuB9fvjJslyfu+8Eqle/0znTG5pb/w/Uo3SRY5pbPnYLb9e+fmzb7L2Er30ec797WHL3VipZsk3z/7M5Xug9sfXunOP6n3/qfbtu+s4TpnzI6VbpLsu2FnX9zCZ3bmVzcbu22lmyQjfnd7pbvPCp3n683uv7LSTZIl957+axyT5O6lP1DpJsnmf+7MlVy7eWfs7LpvdvY+Jck7846tdAft2hmTu26W3jq5fKwzdv3amN5Z6+fvs0Kle/rV/91/t9Dcw/LNbaf/nNOU3/fmCy/7U+ezZtVd/l7pHnZvbyzv/T/vrONYaNu1K90k2Xilzn3Pmd87tNLd9IGfV7pJsvsjnXPL/7Fd52e8y6FPV7pJstvozs9i0zXHVrpJcvQunfeBz/lSZ93zXhd/qdJNkrsP7Jxje/HyYyrdY+fuvY/xewtvXek+Ps9plW6SDP9t55yBZS7t7O0dfENvb9XR/+icXXfUJp3n5+//qLOGKkn+umfnrOBNb/9NpZskx0/r7A19/f2duawlXu+9f37t311W6e5x/52V7iGL9p4dbln2nkp389N655YfudRHK91Xd+qcu3vvVr31kT86sjN3+tpbnb0Br6Tz/osk2WnTSyvdk065stJNkqc/1Tn/bO8vfqjSvehXl1e6SbLObZ13VSx9aOeMnb1euq7STZJtTumcSXnxh3vnh+w1V+ce45rrv9DprtDbG/eP8Z0zki48v/MO14dL729NkqXW6Pwsxqz950o3Sf65Smdv6ipHdeZujvjLvyrdJNlg2E2V7t/XuLfS3eTTP610k+R7a3d+L766Xe+dVS9s0dnP/sbpoyrdC9/XGStKks2+2Bkv+ujJnTWoZ9z1wUo3Sb6ya+fss/t/2zlDOkmmHdUZOzv+5BMq3VNX6p2v+qvJncWXv7j8yEr3++v37j3nXKvze3HD1Ecq3ST5xTydsbMJn/h9pbvbFsdWukmy0xOd8y8Gn955L9jD8/feWbX3vp0xgXevPK/STZJjRnbWzu65dede4Nd/6Z2XM/L8ztrLFTbrrJW5/Pu9z+Wdf9Y5y+Wb93bOikuSb7yyb6X7rUU77ya64KXePcZqc3XO+1v5j535uY327u3//dew71a66918QKWbJIcftlWle/acnTmYye9NqHST5JkzF650n7+2cy7REx/pnVt+yH6d86lPW7KzrzhJlvldZ9/drk91PpfHrdA7u+uM/Ttj18v8vTOmuu+mP650k2TQXg9Vujdu1nkXXZKcdmVnPdt/u2J32qDZ896Q6f9df/GJvfV187y+aqV7xmc6c5zzLdebb/rUqZ3zjA6a1lnPmST73tX5rhg5ubOn58LFemcDvb7W8ZXu0X/svJNjgX1+UekmyaHrHlTpjnu6czZJkgx6rHOG1gr3dMbc9jug9w676y7rfH5+Zt73VboHXXttpZskv05nHdyBX9ys0k2S5W7uvAdtl8s794DPjevtLxzzyc45/D+/r7Mf5biv98aCjnuosybpwJ/vXekmyQt7d8YfJ93ZWQN+wU9fqnSTZNBqnd+NFa/sjP3Pfm3vmfGgFzvz9X/4Ue99tqc/slGle9cZnTUGN+/XWVueJGf9sHPG8bnrddbB3f+93t/17r+Yt9Jd5ZUtK90k+elTnXHeby22c6X7/sN7a1q+Neqrle7aV3TOK/3GKZ0zmZPksCc6Zyc/uM2QSjdJzvpdZ47stOvGVrrv+3DvnKudftH5Lpl33s55l88P9MZ0rtyms8bgkrXeq3STZN3fds45+Nd7nfdLrXpT53z/JBm2ZOe9pQuN79zXTv3EfpVukmTWOSrZw3fsncM/5frOWoBzjvp2pbvn6r01/B9c6YlKd/7HOmdUDD/knEo3SY7e/MBKd93ren9/l9zXGfs8adTYSvfg7/bGJx+4pXOPcegnO2fu3XNvbw504Xk77zO77o+d8a0kOXO3zr/fZg931uHcscPGlW6SvDBlg0r3tkGdM1a/8L45K90kOXpIZ5/ncof31q3Pv0qne+AunXmH9x3X27M820udeZhfH9rZG/flDV6vdJNks6+NrnSXXrx33vOcW3Z+zpuO6Jwfud8mJ1S6SfK5dNbBff/RzlkEk87uvI8nSdZa685K9+u/7P397f565375xs06e16POvOblW6SDP17Z0x8r8c7e3OO2+tXlW6SPLD57pXuBVd01lMnyYmvdeYqnxrZOd9uyzc74yNJcvDfO3MPB50/vtI9Zv7e3/XRx3bmKq95ad1KN0k2mLVzxtb/m94pcgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5GBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGJjRFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4OBGX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzGPyf/J+HTBvIYlOGT/eLGJj33ene/LfBIwdVusNXnq3SnffWiZVukowaMVDpbrz4YpVukgydZ3Kl+/BzUyrdwXMNqXST5IlXX6t0X3zy+Ur3udfeqXSTZNHFxlS6I6ZMqnST5Pl3JlS68y6zZKU7bUjnby9Jpk2dVukOTOl8fk4ZPLXSTZIh77xX6U4a1vm8T5K53pv+9wFJMuuIzs956mwjKt0keWFy5+9k2DJLV7obb/yBSjdJnn+385k/eErvs+hD625W6T7w3EuV7p0PvlHpJsm742+qdFedbc1Kd7E5Xq90k2Rgvrkq3U0226PSTZLNNun8PJ544KlK97mJne++JBk57plKd+4FZ690t/3QepVuktx90zmV7pJrrV3pJsmaq25U6V553TWV7ic/tlKlmyRX3tj5XB41f2cc49Enx1W6SbLaigtWuvc+3vtefTudZ/dRlWoydWLn+SxJhg3+j4Yd/48NDHSuedBA795zyCydZ7QhA71xqEEDnWe0OabOWulOHtT7Xc60zs9i5Cyd5+sJU3tj7VNKQyTLbdC7X559UGe8b9Kss1S6s7zXmx+YMGvnd+7lV+erdOeas/d3PWFK53N51KjOfFSS/PT40yvdt97pjOmMWX6RSjdJNhnaGe8bmNL5Xl1njXUq3SSZf6k1Kt0Hb/tHpZsk097qzJW8++b1le7zby9a6SbJxEmd+8/nxr1S6b773suVbpK89lqn/dobvXv8yS93vrNHLjim0l1kiZGVbpJk6NBK9rH77qx0h47s3WO8/PzTle6sC3bmg5PkmRc6Y6rDpgyrdGcd6M3nTxreGQeeOKTz3TdlQmesL0lmK91v3Xvrw5Vukmy62TaV7tNP3lvpbrrJCpVukiyx7Cqd8MTOmOoqK25b6SbJMvN35v3emdAbX37prc7gy2LLvr/SXXBobxzqmkHPVrqvj+uM6Sy67ryVbpLMv9Dine5svfVQswwt/JwH/vtxl/kmPZr9xn50Ol7M/3prRGe8O0l+u96Ble4aH/1ppfu+w+esdJPk2c0vrHQ3X/LjlW6SrLLWSZXukAU7z6Lj/9xbB7DZ7J2503fv6fws7h7890o3Sdba7dFKd/SpvXvL+6Z1xhPW+HSnO+aR8yvdJFnhu49Xusd/vfP5Oefy81e6SbLr6uMr3RHP7V7pJskvV+qMmZ56VWd91pqv3V/pJsm7b11d6c6yamc/yvu22L7STZJB9+5W6W5+zz6VbpLMckjn/vOnvx1b6S71VG+f2SvzdcaZPvN2Z059wdk63SSZumNnfeQcC3X23CXJGVv9sNJ95pG5K90r7v58pZskV/3jlkp37sXvqHQ3+MXKlW6STLv5vkr3J4e+Wukmyd9Gdb5LFnyt8zu35qTeOoD5rzqs0j35h515vUkrrVbpJskn1tmq0t3vpc7cW5IMn3JzpXvNrZ31WQ+v3nve+cXIzrj0Eyu8UOl+9aB5Kt0kOWBiZ45zlnU6a52S5NLlO89+L532YKW786je3OlDO19W6R59c+dz+ed7bVLpJslzUzq/F6/ecXalmyRP51eV7p8vXqbSHfO13j7P/V44pdI9Z4nO8877BxaodJPk0kc76+A+PnKJSjdJZrukc4941LlrVbp/3+KRSjdJ9troN5XunAt31j0vvmhnrUWSXL/OCZXuG5cdWekmvXMqjnj+ykp34O3OXr4kmWfxv1S6G//h0Ep37bPurnSTZMILp1W6Y5/ZvNJNkuHXdcbkPv7PSyvdvz7Qud4k2XDHzlkg81/ZWWv49u2dtclJcuRanc/85X/ZWc+ZJC/+sjPX9dCZlWxOuuiKTjjJCXsuX+lOm9RZp3PDWqtWukkycUrn7/r161+sdJNk/Nc3rHQHTvlbpXv06C9Uukmy1FGd/ZgPDe487+x2YW+f4ItrdJ5X5/pq5zsqSdaar7Pu5Z65f1Lpvr3sJyvdJLluu86c1MNnb13prrFWZ6woSW4a11n3MnTXVSvdJFlu7un/uzzsxf/u+ezVhe/MmUdO//u0e0++cro3/22BPa+tdEdv0fnMvfITvfXDB939wUr3q6t15vOSZI1bd650L/9I5/5hqVl6Y5qvTfxRpbvenztzvZfe1rtfvWOWznf8OS/1zoR9dKvOeZeX3NT5Wdy63Zcr3SRZZ53bKt1bz+p8fh7xwXUr3SR5bO8bKt1frjC+0k2SKz9xeKU7+fDO+S8fOLb3WXTY2509I/+c7RuV7kFf7YyhJ8kiR3Tm6jf4TmdtSJLsekhnfmy/QZ0xldX/+olKN0nGbfD9SnfQVv+qdJ97ujMfmyTrvtT5WbwzS2d8MEmu3X2/Sne9uzvdJT7QO+t5tzU743g3rNs5YXXqX8+vdJPkysM647Anf/u8SjdJ7v14Z539uHM6c72bXHJVpZsk60zonHv9ypud79VHT2ydQpz8Yp3OfslTX/5jpZsks77YmR+75InOvdwyB/XOFP1lOmd/fvzqzh7rh6+7p9JNklH7du4993q49+y+3unfrHRHrNw5S+WHC/fO+1ru9fMr3RX/1Nl7v+B1vfVIb3z3M5Xu21M3qXSTZLs/v1XpvnZL51ynid/p7fF8/ttHV7onDel89915VW+P4B27dPbFbbV3b7/rXyZ1zr7Y8rn1K92bruqcZ5Mklx/XOQvuL+cfWOkOWbCzXytJNnix83Pe7I/HVLpJ8pVtO3uJvrj3tyrdP330d5Vuknxzq87+0bl+2Jl3WO3d71a6SfL88p3n1SuW7Y3JPXZ+Z7/5nV+9qNKdckJvTG7YhM6ercv/1dnXOHxo7wzwe+fqfK9euuuKlW6SfOuBzvvMph7120r3qRFnVLpJMnhY5x0Yu903/c+VTJJnf95bW3T/Db+vdO/4ZufZIUmOXa1z//LHjVavdB84qXe+6v6Hda554893zjd477MXV7pJcui1nXHEz/y69+y3+NU/r3SPuKmzD3q+7x1R6SbJc0t39oJ9ae0zKt2hx3fmM5Jkm0XHVLp/f+PrlW6SrDWi966K/8aTk57Ovs98bbp3F5+y3HRv/ttH97yk0n31r53npCcH997nd8rTnXOBVrh740o3SX505BGV7kFndPYML/X13vkTP3lnfKV7wI4fqXSvuLAzV58kWz81ttK95oT/qXST5NPHd8alH7+gs7fpvVd77+z+4iWde8B9zujsR7ntzd7ewoMv3bXS/fLVW1S6SXL7rdP/PiBJ1juyszdnw/1PrnSTZIeTO/cvR11zRqU7ctXe3PfdpXv4hT69aaWbJA9udnmlu/vtT1W6X9yxs5cvSc54ctVKd+RmnfU96w3tvTN49LWddw998N7euUBfW2XZSnfXnTqf90cfskOlmyR3b9d5j9ahYztjQQcf+0SlmyS73vS+Snfv3b9Y6SbJ/At21lH9esXO3tTLB/feh3rIF8dWuvPMvn2l+91z36x0k+SUdUvjGCN75+OeP7Xz/bfI4p+rdI/drrM+JEkGnu2cCXv2q5353o+e3VuT9OclOuNFK1zd+13+wsTO886lj/yz0t19na9UuknyqWe2q3Qfe7TzLrPtf3ZipZskL3+uc2bNeqXzHpJkti0655Xu+1Jnrf0L9/TmB/ZbunOO30aXduZkv/3cGZVuknzygs5a0R0O6Ny7JMmdx3X2mm159p2V7tGn/KHSTZJ9n+s8O9y8U+fzc+xRnfcSJclrm3bmuv56ZGf/WpL8/GOdZ6nPHtJ5T9ODH++NQ33y8u9Uugvt1pkbP2R0Zz11kpy7Wefec9cVemuSjjm2s47jTwtfWeleeFHn8yJJDjum896OdZ7szNvOembvOerxwQtXumft0vtdXuiQsZXuRQd0ztH82wK9NeC/fr6z7+6tz3b2Hdw1ond20C8uvbLSfeGY4yvdJLl7vmMr3bm36Kz1PXibzlljSbL1ZmMr3d0/0Nk/uvjcvTPcH7m4s7d4xc/31q2PeuRnle6Pvr14pfuF3/feJ3H5ap13ZO+/zlcr3WUf+2WlmyRX7dw5X3KPOWerdJPk8we/vxP+L3/l3njknfxrmwem77UkeeHS3jqObVZ9u9Jd9rs/rXR3uGZMpZsktz7TeQfvJW/3nvkfXq5zBszWt3bW133xny9Xukly9hNjK93nT+3cT+0+W2++4rLfdtYuvHZT54zVJDn1xrUr3UX/Z2in++fOZ2eSjDigM9/0sUU+W+lOPre3N2enHTtjNq9O660p+92Nnb/tG67t7JU4cYM9K90kuXNsZy7ypEM6a32P+NMvKt0k+eOzN1W6z+3Q2QOfJKc82lmfPN96nf0oa67Rma9IkueXHlPpjl6lks1vPnBjJ5xklS915iKPGPvpSjdJvrFuZ73hsX/vrEkacW7nXLwkufZPnXU4v1yiMw+58sjOGY9JMnpQZ9/Pp2bvnbvww5069+JD91+o0n320c77r5PkTwt21ohc9bXFKt2vbD2m0k2SXy/XGfM+ZO2DKt0kmWufzn3RMrN01hjctUnvHPdD1t290h1zUedctQ9d09vX/8bIzntorv/SCZVukvzi9M5ZmtfN3jm7/KADz6l0k+SvP/5spXv+bPNXuret1xlPTZI7H+qcn7XPXb13Bxy7xk6V7rj9Omd0nrBM7z25E8Z3xuTm2qOzt+OtC3vnMrzxSqe9xDGPVLpJMnzBznq1YaM694jvbtJZm5wkd+/UOcvlJz/p7B9dbNneuYa/37jzGXfuZ0qDOkkeWf3JSve+Zzpzzb/8XOd9WEly37IHV7oLnHpnpXvPT2etdJPk8VVeq3R3PLZ3j/HsgZ01Iku/vzO+/Ph5h1W6SfKbp79d6f7qys4a4hsO7Yz1JckR7+/sLd559d5c5R/37Ly3ca+NOmdULPq1zjvjkuTkNzrvAL7rtnkq3atn6Z3jfv6UztqiKUd33veeJPf8uHP+001jP1bpPrV477zuHb/ceT/Yvht31oAvs+RZlW6SXHhk5+ygxe7s/f0d+a/OWt85zuvc4x9waG9tytkrdfZMXn9d53z/Fb/U2z865/qdtR43X9h779hds3fW9g37f/nfezvRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBgMz+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYwMKMvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmBoP/o//zrMmcC03/i/jhP++Z/tH/j10WW6HSveSa5yrdZy66ttJNkuWO2bHSvePepyrdJNlk5CKV7j/nWbTSXeK1oZVukiw/akSlu+zas1W6U6b9Rx8v/5HBmbXTHZhc6SbJe1MHVboDk6dUuhOnTKt0k2SWgYFK971BUyvdWYu/y4OGd37OQzq/FkmSd2YbXulOe6fz9/f4gw9Wukmy4vtXrHRXWO39le6yq2xd6SbJykPeqXR/e+avKt0keXtQ5297w/d/qNJ9+63e7/JrI0dXulfecHGlu+qia1W6SbLAS69WuiOHzVXpJsnohTufy3MvP7HSXfjNzr1nkjz12BOV7iyTlq90B82ybKWbJPMu03l2+OX3f1bpJsmenz+o0l134/Uq3e8cdWSlmyRLzzOy0n39nfcq3VGzz1/pJslTL71b6U4e6HzGJcnE0vPO21M6zztDh3SeVZNkWueSM3jQLJXulPc63SSZc9iwSnfSpNIPOcmss5R+N6Z1HlgHpnbGipJk1tKPYtLkzmfRkNYFJ3l1auc5atTQzmdnkgyaffFKd67ah9yQTjfJsKmvV7qj5p290p3l9Vcq3SQZNbrzjPbRbTv3nkky29xzVroL/2fThP/Hxj14V6WbJBnydiU7eUrn3vPBR56sdJNk0PDOs98b4ztjfUny2NQbKt15hnWuee6pnZ9xkrw0sfQ59+Z9leyio1evdJPk+XfHVboDb/fmbdfaeNtK9+Z7b6t0H3+x89mZJKPe6Nx/vj7QucdfcZHlKt0kmWeuzvfqLJN7c5V3PdT5+1t7k8590eXnX1bpJskHt9+i0h0YPKnSffvt1yrdJBnybucZ7d5xnWeSJDn7b+dWuqPm6KxZmnVoYfHdv02+rpIds9DSle4cg9+sdJPktc60X4ZP7Y3JDX1jfKU7ZI7OfOLAnL35gQVGLlHpPvdm5xfj2Sd78/lPPfFopbvcIp1x6ySZd8j0/znPOui/X1c0bcjsmbz4utPxav7X0RN3ne7Nf/vZp+apdC/59T8q3Rv+MrbSTZKhW6xf6V529tmVbpIs/f41K917j/xlpfuPZ3tjed9YrfNs8MTgznfb0HdOrXST5N4pH6x0Xx+9cKWbJNss0Xk2X2to5znpho915iuSZOJfH6t0D1z7u5XuDTd21ockyasTr6h0V1rj8Uo3ScZe2hmn//OnOvN6q/+997N4Z6nOmPf67/90pfvcgp3v1CSZbbnO+Mef3zit0k2S95+3WqV7zNcXq3TH3d15lkmSya9PqHR/+aujK93vnX17pZsk99z6QqX710V6e6tOH9e5Fx/8SOczbtFRd1e6SbLtpKcr3ZGvb1bp7jr8jEo3SbYavm+l+/VfHVPpJsnv1vhRpTvu71tWutt/rdNNkjXX6zyXDF26M68w4si5K90kGfbLjSvdMedfXukmyTyDr690V119qUr3ymmd774kWWCXNSrdScd31i58ffneBtLdzu3ciz8/rHO/lSTDbvtypbv0Yp19Li8t3rkPT5Kn7v9YpfuleTvPq+98sjeOceAVX6p053/12Eo3SR787AOV7jkvfr7Sffa0f1a6SfLWb7ardKeddGWlu9ULvfU9fxjYvtJd5EOd34sk+Z89xlS6t+7YWQO+8JDez+K8RztjJNv+9c5K9671d6l0k2SOaX+udIee3BuHuvsLnbOUvvT3znPJg/N/stJNkrcW6ZyLsud6B1S6244/vNJNkuPevKjSXfHtzh75JPn8eZ351SMePKfSXTF/q3ST5JabOuudLnnpmUp32uPbV7pJ8tq2nTMflt+/szcnSRY/rzMOvPW3O8/B5+3eO5Pv1XPnq3TnurLTXeex3rrLJV7uzOdPuPj3lW6SvDT5U5XujSt25h02f+MTlW6SXPfDBSvd1y/sjHtOfKO3bvah026pdJ9abJlKN0kWP7Cz7mz4p39d6T6xVm9MddILnf18c7zdmVu9YfdVKt0kmfDRsZXuEl/uPDskyePLfW66Nyfe8d+tV5r01HIZd+CfpvPVJKec3FmbnySX3nN6pbv54M45flsPurnSTZIV/9HZc/qNvY+odJPkT1/8V6X7+qmde6mfL/mRSjdJFvnmw5XuOfvPUeles3Tn3y5JfvbJnSrdq1/tjA8mycDHj6p05/laZ23yfF+5utJNkguOnP7fa0ly554/qXSPu6C3/vvxkw+pdLf4Su/8gtPe6sxDLvW1lSvd3+3RWdeaJH/+zIGV7vI7dc6Yu2zfhyrdJPnXIZ0zykbd0Pm7TpKzvn9hpfu3479R6e54fu9M2B0Gd/YSHXZ4Z/3ieRutXekmyX7f77zP5XNzdvbVJ8nBw0+qdDe8/4hK96pDe/uc/7RKZ+7tm0M6zw4nr9Gb9/791G9Wut97uHPeUJIsN6KzJuI7l3bWrG99Quf9QUnyqw+dUen+fsnOHPIf9zyx0k2Sb326M/ayxUmd8+WSZOVHO2MvBxz8UqV709IvVrpJstB5nTMprz2x8/e3/6O9NZcb/KZzj3jksN55bb/Y7aOV7rSnOuPA696wc6WbJMfd2llPPefrnXuBWc6+stJNkjmW6NwLXDq2N6b6vWmdd0E+90pnDdzlI/+n0k2ST+5/WKV7/Sade89rzu/cxyXJ3Qd17j0vOaHzM06SgdLe+2X2+E6lO3Bfbw3OeZd0xhF/ObRzPuBOJ/fWZu1z0z6V7hPznlnpJsmNK3S+V5fYsTMmPumoSyvdJNni2hsr3Vmv7lzzbvv33nm06Mqdc6QnfKp3j7/NThdUuqsus1Gle9gmvTXP9z/SWbd39Badc4Nu3LQzBpwkPz5+80p3med662l+c0Fnj+dDd3TmV9efOKbSTZLlBx1Y6V7x8c590TaXblDpJslr13TOENzkleMq3SQ54dnO3oDFnumc+/Tc+N5cyTo3nlfpnrZi5/NirWM6Z0gnyaBVD650L7q3c1ZHkvzyI539ylmsM5+/8kDvfuuuIddUugdc1zmb9wsn/b3STZJTvt45u2SzVb5d6SbJBy4bW+ne81/+d6NHDM5HVp/+ZydP+WpvXHqOpZ+tdD+y2PQ/8zpJBk3cptJNku9/9g+V7pMr9s4PufaHv6l0v71uZ+7t3fftWekmycRlO2v3Tvr9hp3uyr01/KvOv0Cle/y1vbMjr/rG/ZXu707ao9L9+1md8dIk+fOWnWfzLZbu/Iz//vXOXvIkuXSdOyvd5X/wvUo3SYZe2pm/mbRDJZvv7lZ6cU2Sxz/VeeY/Z5POmWqnfae3bvbwlzt79jd9uPRcl+T8WTv7c469tHPe3ugpvbnvNzbonDOwy186Z/oefWnv/ddTv/TzSvfRkb09GGtu1jmz5ub5O+fOz3pqb//7j2/evtIdfktnHuvVh3rvDF5yp86+g7/9+K1KN0mW/1lnvnfi4p3vvzu36b1/fvhnOuc6vXraxZXuPJ9atdJNkgNHdNa0jPt8bw3/01f+pdJd8C+d7pPr9PaZrTG5M5c8z5Wd76gDluyMjyTJp674eKU7ZlhvHOOEEzpjcidN6dzjH7hhZ491khzw085ZwRsfuHule/WSnfGRJDn+w517gT9tsH2lmyR/vL+zh+ZzG3fuMS487PuVbpIssXjnM3+eNzvrLb46pLNmPUkumtCZh1l2wvsq3SRZ6fHOezse+UVn/+jSa55Q6SbJR0/r/C6vc1dn3u8HX+idNfvKnztrqn97fW++frujO/u3nz1yt0r3jkc6955JsvOsoyrdD684rtL92Wy98eVPHNE50/D5q3vnzt+w3JhKd9Ej/9uVHP+/Lbj73pVuknzlnM7avXm26qyD+9iqnfHwJJn8/OKV7iIrja50k2Suizr/fhMmdM7nPPmjvb05R5z440r3r8d2ztHc5qqRlW6S7PmnzpkBI+5Zp9JNkt3e37kveuPBzjqrH43vnSP41DGd948u+q3OXOXanxlT6SbJym+fUOl++qbpv3by3y5euDPvvt5lnfWTN2zc21t1+vydueYnV+mcUfGJHXrvrFpx3s65NuNefq3STZIxT3XeX/nfmrDAa7n+kOl/HzH8m509BUmy322defWdPtI5Z27dD/XOgtt6885n45qnHlrpJsm6v+t05xneGadYcOneGvAtd+l8V1y3/CuV7uc/u3+lmyTfvafzPLrJqM4YU5LMs2lnnOKIMzvr695+7KuVbpK8emHnM2PTH3fWty7zVm9NywG/6/xdr3lu7znpvtIZ/7sv+JlKd/8be2eXn7d/Z5ziwcU6Ywn3PfaVSjdJPnJ453d5/iG98atRd3bG/6dsfUel+/11jq90k+ShV/5Y6X5umc77rz90YqebJNP22aTSvfsTnb31SbLEH35R6b79pc57jjdbrXMWXJJMO6GzpuzLT3XOSdrhs5292Ukyy3c7a4gv3njfSjdJZnm+s47q+q+tVOlufvAjlW6SDP51Z17ow4//qtL99NjO+pAkuWKezjlJf72zs7Y8Sfa4trNebeGtzqp0lzutd8bq0C+dUukevs9vK90z7um8Fz1Jjn6gs4dmybN68/XbHdgZ///Hi53Pz+U/e2WlmyS/X7BzNtCS+3XOxfvb/uMr3SQ5ZsNbK90fThtW6SbJ/gd2vqe+vGXnZ/GrYb13gqz1xTcr3d9u1ZkjG7xK5+yLJHliw846ql3W6M0PXDbQOYNprdU64w337dk5nzpJPvTAqZXuPsd11vBP+VRn/1qSnPp85yyeex7u/f2tumHnXN+hN3+t0v3EXr0zfiZ8+apK9+z9OvNzt3zkB5VukkzavbMObvu5Or9vSbLa+p3vkr/+9LOV7leW7cxTJsmCwzrzq9/aqrOG+HcnP1/pJslR7xxR6f5kUmcMOEkuu2KNSnfMMZ0zHw6f0DmTKEnWeevOSveixTufRafc2FtDvPLrnfGi3U8+udJNkr9d0nku+exVnTVn4zdestJNkt2Gdn7O19zbeaY8677OfuUkuerqzlj7BS/03if4ua935ucmrNV5Xv3O3tdXukmyxOQrK913Vui8X+O5v3fu75NkzD2dvdCHDu2dJfG1Xf/RCf940/+v/3Pv5DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+L/IwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnBwIy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYGQzM6AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnB4P/k/zx56qCMn/Af/Sf/Rz6y5JLTvflv/3hufKW704pzVbpD379VpZskwwcPVLrvDB1Z6SbJk0+9Vukuu/ioSne2eQZVukny4qDOz2KBwfNUuq+++kalmyTPvuGTAfIAAQAASURBVPBCpfvWm29WukkyYdACle7oN16vdFfZYM5KN0mmTZ210h1U+oyblt7f9dTJne7wabN0wklefPflSveUH+xV6e6w1baVbpI88uRdle599z5Q6a4wZrVKN0kGzdP5/FxywcUq3SRZZOn3V7qThr1T6b762tRKN0neHP9WpbvKihtVutMmv1vpJsl7Q6f/s06STB6YrdJNkqcfu73SHTK2c80Dkzv3tEkyZuExle7z4zqfy6++M7HSTZIl5niy0v3qd35U6SbJ43fcV+mu9v5lK93555290k2S1yZ0vkumDHS+SwYyR6WbJEsu0nmOmnfye5Vuktx7952V7nPDhla6A8Vnh1nemVbpTp3W6c4565RKN0nefbvz9zdiWOfeJUlmndh5dn9vcOd3btgsvX+/QQOdax4ydXil+/q03v3y4CkTKt25Ful9l7z08rhKd7YFl690L3ioc++ZJO9/r3P/+eDozvzOQw+dXekmyXYf+3ClO2a+hSvdJBk1fFil+97UzlzJ3IsvU+kmyarzvK/SveG2GyrdzqjL/3rysTsq3SFTemPisw9dtNJ9+/lHKt2xL9xd6SbJO3MNqXSnvrdKpTtheO+3ef33db5Lxi3SGQNOknkWXajSnfOJeyrdSe927j2TZLXVV6p0xz5yXaX70J0PV7pJMmrjrSvdOUd3xgSSZJFVO93lR32s0p32sdGVbpI8+2zn72+gND6y2Eqdz/skeXdy5+9ky7VWr3STZOSiK1e6b094ttKdMryzTidJ3nv3qUr3nUmd8YbFS3M7STLlzc448JTSOp0kGTGyMz/3+rDOZ9GgV56pdJNk5Hydsc+/XtiZQxs1ovd7Mf7dznqMseNeqXST5PoHpv93yauv//c/4yGPj8+Ynf86Ha/mf612y1ene/Pfjrll7kp3joU7a502e/hrlW6S3Prw7yrdld/praO6Y9POvNDO93+80p197LWVbpIcMv7tSneH7f9V6S4/R28dx3EHdNZd7rn8zyvdJPnRoM6z3ez/6Hy3LfRsZ04oSV65rbMO9baBRyvdN198tdJNksF3dr6jFr27N2az/ugbK92DDti+0p1jcG8/wxWzrFHpLj6xs9Z3gcWXq3ST5MKhnbm3e2++t9JNknku2KXSXeSTneeZ2+/urV0Y8WpnjuX5b/yk0n32ys5nZ5Ksv+Yile5Pn+itj7zkte9WuiOnduYh19mq9x1127X7VLqjH7up0t1ovm9Uukly6XU/rXQX/v7RlW6S/Pr1zt7iY9/pjEvvPLz3uzxtsc736jnTxle6F6y6aaWbJB8szasfd/D4SjdJxt/zvUp3yws+UOnu/NSqlW6SLLzo2Er3+nQ+7/ee9VeVbpJc+c8LK90Pje+t47hjwoqV7tBlP1np3vaX3j6zZZ4YUemutPO8le76I/5W6SbJFQOdNZ3/s88RlW6SzLHwyZXu+St2xlTv+fgFlW6SrPL6CpXuXrN2xs6uOn7BSjdJFh7Zea6c/MnOfVyS3LjT2pXum+9uVunOc+3ulW6SHP6jzufn4Gc7ayJ+uMpDlW6SLHJu54yYdQ7sjYmv+tCele7oRTprOn9/xvOVbpL89pv3V7o/ebMzb3vhYp25uSRZbZ/jKt0N/3RbpZskD2zReUZb/MbOXNdmj6xZ6SbJwIajK93bZu3sP3zzzMUr3SQ5/JdrVbpvz95ZA54kV03p7CHd6/HOmOqPxnT2bCXJ586a/muhkuTAhzp7Jr+8cSWbJNnwoiUq3c3P/HGlmyTbjftTpbv848dXunfd1TuLYKktO/uJpq60dKU7cegPKt0kmX9sZ3xrmVfOr3STZI+1O3OKc3yqs07ug7v8odJNkrs++GKl++07OvdFwyf8vdJNkqfGXVPpjvhp7xzBVx+c/nuW33z6v9uvvOgKj+X4i6f/38C9n//SdG/+27sjO8+iT7zUWZt85J69NbP7XFVazzn0g51ukuN27qzB2esLnefFOy9+vNJNknuW7Jx58tI+nXUyX7ykN1f4s4U6Y1fz/bJ39uDpv7q80p3wVOd5492Vj6p0k+Rz13a+509/rjM+/4Hbe+dFXThr5xl31416e/ZHju6c9/WNIzvnh3z5c51xxyRZ72O7Vbrvf7nzd73o8t+sdJPknD2+XenOt9NHK90kWWDDD1W6v+sMfWT1id/qhJNsecv5le5Jr89X6X7u4d747sY3Pl3pnrRsb67w11d31uB8ct/OGS3XbNXbL7nwpM49xro/65wRsfa6vXfmfGnTzjP2Rkt07l2S5GdDO+tEb39910r3B4t39kgkyTM/6axneejyzvkv829zS6WbJB94orM28sy/XVHpJskt6ZwLtNDGnfH51RfboNJNkjGHfL/SHbdcZ83z6ce9VOkmyXGPdcZI1ny6t4Zjljm2qXR/tH9nPe5lF42vdJPktFk7+0df+vwvKt2/Hdu5P0ySda7vjE/ut21vj+AOz3fWRj5x8/mV7lVL9M4K/unh21W6283emSvc+L3OGSBJsshPO/vtLry/d97eiNuOqXS/uXlnbc8+3+it8/3+Dl+sdO+8qXMm3jk/7LyjMEl+c2TnTO2lXu28ly9JJixX2ku7Y2fv/Zpz9M6qGvOJztjnr1/q7IPefmLvHL91f9LZ87PaOb3Pop9+q/PvN3DA+pXuiTv29rF/cvnrK91pc3TWNvzqst7e0WPu+Gylu+IFvX+/cw+6rNK98dL9Kt0jTu+dlbPHv/aodN+77aBK9+Ibe2fwH7lr54yD5f7UmyvZ9aarKt2TJ3TeEzP8E50xgSRZ48LOOrkfz3d4pfvKD3tnaowY1zm7ZIXf9N5Z9cZHOudgbfS+DSvd0+7evtJNkrtf7axb2u+0zn7lO/bbudJNkpUf7Lz34Z8L9vab37ly7z2F/43XX1swfz/369O9e8BXOvu8kuRv+3bO+Vhs1x0q3YkP9/amfexjnfnCny3bO3/i7R92zpt95oU/V7pfnKN3Xtsb+3bWdK78oc7n7vtP633PD5zWWcdx4CWTKt0kGf71WyvdB/b9SKX7+Xs674NLkq8s1hmL/fSJnfXJC489pdJNksEXdc48ufUbvbULF660U6W7/786i0X/9uuLK90kWXGDdSrdAz/eWbe3zdjOGqokueylvSvd05+4tNJNkhd/2BlnWvu1zr3ck6V3MCXJ2+k8cywx+rBK954VenurZr+lM69347qdfWZJcsyjnfvlD/2zM+b2mQ9uVekmydKbdPaNLPaFzvf1z3fqjdFf9vCDle5zH+48UybJOvffV+luMKnzbtG3V+x9Fq31tU9XuuO26ozlTfjdRZVukrxwRGft0Md+fXClmyT33X9Cp/vnzvmcX96scwZxkjxzS2fd7KnLd/bQ3HJF73N59cc6e1M/+uHOWbNJ8s51nfV1t/28M5a+8RrHVrpJ8oUrO+cvfXCdzn6+Yxb5QqWbJGsc17mXO+uwzlqLJFn1w501Iou+11kv89b8vXNRvr1QZ9/WL0d1xicP3q/3Gffw2Ok/z5UkJ+/w+0o3SW7d7Y+V7qmTflPpfnxS77yjI+7vzMMsctkhle68g3triGcfN6HSXeyxzr7wJPn6h86vdHd4c3Sle/txvX1mv1m883ey0uqdfZ4rfKnzXvQk+dJsnXNRfrRZ5/1PSfL2sp29Zr9dtrO24Y733VzpJsmIdPayf/nEzvjykZf21iQ9O64z9jLbSr09GL9bdpNKd577Dq10d3iht59hxF6d82fuuuyHle4R83feaZokB67e+fzc+sSTKt0kefnpSyrd7Y76Z6W75Sad9ysnyYjfXl3p/uSKzrqJIf/qjU8uv2PnvaYPXnR7pZskhx/Ted/0ur+5u9IdumPnHKwkOfU7nbGzrbbunEt0ypTOWXFJsv/PFqp0z3/xq5Vukiw+R+dzOX/a8r/6z8aMmDc/X33f6Xwxyb4n9MY/Vri8Mxey2oqdcxc2H9Xbq3fkzp3PsAe+0hlvS5J9lliq0j1n+c76ujv3/06lmySj7uj8ncw+6vxK99snXlnpJsnc53bekXD+rztn+SXJbWd21iQd/5fOmpbNxnfOMkqSC57sjBP+aEJnvHuvw9+pdJPknw+cUOnecMLESjdJvnBB57z8KbucUemu/4POWetJctXnO+/0u3KbzrkZZ57ZO7/uz3d31ohcPq4z35QkAy92nhmHfursSndE6Z2zSfL02Z3xqy0WOLfS/fB9B1a6SXL+QGef0qwPdcZVkmT4Ip1zmU//RmfMbb2tO/vUk+SLb9xZ6S56ROcMirk+2Jtv+siJnXXr247+S6WbJAdd15lz2v3Zzljs2B/11tcdfG3nXY8vfa9zruGU7/beNXLYa5159fkP7I2lz3VmZy5knQf3r3QPP/q5SjdJXv5/2LvPaL3Kwt3XdxYJoSf03glVOkhvIiqIiojSVKoCoiAgFkRAEbEiTQGpihTFAqgg0qT33pFeQocESCBAkvPhHL+dPfb+M3KPNdYe1/XRob8xXVnrfed85lPm73yXTPxnZz3RHzfqnad5+zc7e2neONcrlW6SbL1HZw3GhJM66w8XyguVbpKcNv6wSve12TrPq98f3znzMkl+sGPne3W9z/beD4w+orNuZPNRnWe0u0/rjS/v/PvOer5Fb+3MSTpxscMr3SRZ9bvT/pzVJFn/N737op1P7nyXzL3Go5Xu41OWrnSTZMfNOnN8lv9L537r3K1648ubH9TZV+rKgzasdJPkG9/qjJGcsFFnft3v5+qtzfnDiNMr3TFf7KxHuXimzhm9STL1rM66n80PWqTSTZKDJ6xb6V5x6Wcr3Q2++nilmySrPXR8pbvuOZ372os37/1dP3JTZz7GRw7uzJtNkjFTO+tzLl7n/Z1B/78z8kdHV7pJsv18nTHVW9bonJ/+qe/13jvcdVVnTuDYgzrrXJLkpNM79y8XbNJ5p7HxtZ011kmyzxrHVLrj1tq30j3lmQcq3ST59qmdeTp/Xb733n3JdTtnNS2wxAmV7nILde7Dk+TVv3TGrje85TeV7n3p7Z388iyde4xFt++cNZIkO/14iUr3f/WJ0TtpCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+LzIw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwfD/yX95YFgy/f/of/F/Zsml5pv20f/PeY/fV+lOeGH2Svey8RMr3SQZP/6pSneZhZasdJNkmSVnrHRH/e26Svf6BVardJPkjvEvVLqbrDii0n3s1cmVbpKssOQ8le6MA51ukgy80/nbnjx95/Pzzffeq3STZOorT1e6T97+cKV7+WV/qXST5JE7/l3pvv7Km5VukoyfML7SveDsqyvdCdM/X+kmyRZvfbjS/fmJR1S6D73cuSdKkoWHLVDpLrHCKpVukpzz+9Mr3UVWWLrS/ehmO1S6SfLubE9WumPH3Vjpjpp9jko3SS6+8PZKd40N1q10k2Tmgc539gxzjKx0F59lwUo3SV57dWqlO++Cs1W64x68ptJNkncX6jyXvPP6S5Vukqy2zoaV7ssv3FvpbrjWWpVuklxyyb8q3ZfHTal0xyw9Q6WbJOOndv6u8/awTjfJ5BGdcYypEyZUus9M6T27Pz+iM94w86R3K92lRvR+l+ce3vm9mDy197uc6To/5+mnm67Sne69gUo3SabP9JXuWwOdv7+Bzj9dkmT6GUdVumOL44iPje98Fi20cOd+efWFl610k2SFuTrdZx/qjHvOPaHzDiZJdj9s/0r36r917uOSZNJrnb+TeZbqPO/MNkPnszNJnn2u0517tnkr3bff6X0wjx3XuUccPrYzhp8kM4/q3HM9+cyrle6icxZejP9/bh/3YqU7z6yvV7r/ebj33milOVaudCe9UfrASPLanJ2fxzsTXq50F1tplUo3SWZ6+7VKd8ziC1W608/Ue4f21POdMfGBEatWukmy+Xq7V7qTXunMTbnh7scr3SRZZonlKt0n7u2MAy+5UG8cY8JMW1S6zz7x90o3SR55onMvMP9C81e666zSmxs262ydz4yR77xV6b70dO9zefrhr1S6I0rjZkkyw+TOOOJc73a+r99dYnSlmySTJ3TeCe/6+b0r3cfG3lbpJsmKK3be78z4dufZIUk+ssTy07x5x8NHve//7cCYYZnpjGn/fDf242tO8+Z/Tf7W9ZXua6t0xj8Wn31cpZskz77ZGdhceY6NKt0kmfh8Z2xztrOurHSvfaM3p2zxTTvPz8/d0Jmr9tZf1690k2Sfz3aekx4et0almyTfnqXzmTEwz0mV7rjxvZ/FUqN+Xun+5bHOPes7B/Sen1c4pfNst/T8S1W6SfL8b39d6e522bhK98uvdP5GkuSas5+pdOf64x8r3a+/clilmyRHLv5spbvosZ1njiR5+O4DKt0f/uanle7xJ32q0k2Spw+5o9L95St3VrqTNvtTpZskF/544Ur3iRlXqHSTZNkvbFPpPrNDZ37rAhN7ayZfvaCzhmat725Q6S61beedQpIsvu/infD14zrdJHssun2le8x2P6x0Pz1px0o3SY65/JFKd59nx1a6c83y6Uo3SZ4a9UClu+ofNqt0k+SKm06rdO+ZszNX9KrFOvdxSfKpG1asdF8edmal+9eZx1W6STJirc6ayRePWr3STZLHP99ZdzDDwp3nqLe3780BX+pfnTmBM/y587P4Y2cIKkmy0EuddZ6XvXRnpZskJ73Xmd966lIrVbqzXdH7XH7x0c540eXzd+aqjd2+N9Z+4E2dZ4eHHuusZU+Sf5x8T6W75Pa/qXRfWHDmSjdJZhrZWYNx/ZevqnQ3OeI/lW6STLy/9HO+rjf3ZPKhnXeK3z+u84y9/MpfqXST5Jp1flvpTrdx533w2z9atNJNkqm/7oyJL3TPxpVukkzcsTPfacUv/a7SvXOvzhhikqyz6SyV7savdj6L3vtO5z1Xkpz6RmfdyCcnLFLpJsnLS+xX6d52cWd+1sIbde7vk2TlxfesdA974R+V7grL/rjSTZJHXum80/jme7375ZfO+0ylu+8WnXHgc7/X+ywaWLDzvfrNezv7KP1p+q0q3SQZPf/xle7Gj85d6SbJJct1xvsev+z8SvfIdQ6vdJPk9Qs7793/dlbnHdrqV/6g0k2S5576UaX71Xt6c/hX+/I507z5wLHvb43L62+8m8uumPb7zc709w9O8+Z/3X9aZ67TiIs647vHf/zPlW6SfOnWKyrdZx/+aqWbJFN+dkule+Qx51e6X57/oko3SZb6bmet3luf7qxZfHn73tyeBzfs7L274Z867yqS5EPzddb0nP6pzj5+q7zbe0YaeXlnbvKBp3f2ev79rZ21dEny9f3vrnT3/mBv7OOIEzrzhi5YbutKd42lOnN7kuSkyzrvFBb67CmV7uiJN1W6STL3PdP+fjVJnn27d83Pn/vLSveATTvjg5vv3pubtc+pnee6jdf5XqU7/JeTKt0kWeaZtyvdkz7R+Y5KkhtW7swvuHeF0ZXugyffWekmyVN/7owxffXZzl7B893f2ds4SZZYabtKd+Hdt6x0k2TsTJ35gMtv2Rlvu2K1TSrdJDlli87ZGoft1fldvun3nXOJkuTGM46tdF974gOVbpL86bDOfrO/e7wzifHiJ3vrqjacYZVK941PfrTS3f+W3l4c79zcWcu3/uje39+SA53xhitf66yrGv7j3rvCVR/u7BG4wWWd75KHPt15bk+S067q7C9y1Wc780+TZLd9OuczzHtVZxz/a3PfWukmyVw3dsaLVpvw70p3jU067waSZP6NOs8OX/957yzBbcZ05sqsu+Bdle5LS/bOaRq3ROcszwkHXlrprr7CJZVuksxwfWcc8bEXO2ekJcknzz+k0p17audzeeZLe+uqFrmus4/m1G92xrfmu643PvmXMZ39Kfb602WVbpK88saule4n88VK95R1O/NkkuQfz3feYd81/zqV7k6X956DR37+Y5Xugb/tPfsdsWrnO3vyOp19y0eN6P37/WncTyrd4/7YWUe71pzfrHST5M+HdP6uf/Hd3vudT+zd+fv7wXmdZ/c1N+/MsU+S/W8/rNI94ZzOuqq7n++td735vM664gt+3jmzI0nWOLezXvnmTTp7/X39ts77jCQ5/YHO+9W51uusZXhqpt455J99ZONK99r7O3uAJ8kaq2xc6e6W9/fsPv1Sz2bhcw6axleTHLlaZ51Xkqx89rWV7s+/s0Sle/L0nWekJNlwgRsq3aU++lClmySPHthZD/nNH61S6f7ivt78rBd3OrvSvWZ4593prx/r7c+50hknVLq3n9Y7n+u5n4yrdO86rjNvdu0X1q50k+Tq4Z15qPOe39mfc/evdM7DSZJzFz6s0t3m3701+/Ms05nre+iHO3ue/Gqu0gGuSVYcsUqlO+W+4yrd43/aOyf3qdU7c4d+vWtv3/IVb3ys0r15pc6/38Th/650k2Sb/XeudG/YtvMe67cHdd5vJsn5I2+vdCdt1hkvTZLL1/x4pXvu651n/p1P7eyBmiQ/eqkztvLKDZ17jHm/1zuDcJvzTq10b3q0t7bxP4d39s8a8dqDle6Hl+/tr3rjvp3vki8t1tnjY8o/Os9nSXL11zrvONe/c0SlmyTbfKszxvXk6519LaZbq/deYeqPOvdbk+75RaX71bU6806S5OS7OuOIK+7bmZucJKfN05lH/KvpOuOIL5TuA5LkrJ93nisf+Wtn7tBeC3f2B0ySBXbfq9L99KjeBtXbLtN5r37v3DtVugtv39tjZKV3P1TpfuiEr1e6C8w3X6WbJOvcfX+lu9rOnXX9SfLdLTvz1lcd03nGPnK93v3WRSeeW+n+9KPrVronPN+bK7rDg511WyNG7FDpJskjMz1R6W47b2dt3FYLnVjpJsnxYztnpk7cqPN+4NsPdd5HJcn1l3bOc5my4uhKN0lW2Luz1uw3l3TOf/rVpCcq3SS5eXhnfsOl/3ir0r32AzNVukmyyuude4H9ru08ByfJjMM695+b/qyzHmXJCZdXuklyz8Gdd1KHvnRwpfvTkzrzf5LkmD07++Xc/Ghv765nvtHZB3y1hR6tdPc6dt9KN0k2efj8Svehz3bO9H5h694c4pPv/VKle8kmvT19Vz17q0p34VsurHQ/9oNdKt0kuXt8Zz3YvYv8u9L95GbnVbpJcs5dnXP59pj/C5Vukjzz6kK19vsxctyrWeKCaf+ebL/5vz3Nm/81/w6dMfpDVu3Mz1rg+M6ezElyydOjK90tt+vtk3T62rNXus8d3nkX8s0f/b7STZK1Duyce/mtCzr374u++PdKN0mWP7Lzd73LLBMr3SRZ8pnOuQBXHLFppbvUqIsr3SRZ6MzOvpQrfn63SnfCIZ1ukiw3Y2dN8vkH9PYu/+f1nbG8xz7emV931L7LV7pJ8rPtOs9Jf5qns3/Pv67unbUz69udteo/WrezN0mSfOzgzvjHHV/4a6U75qDOXvlJsug9nbkLe177iUr35S+uWukmyefPObrS3fF3vbWy743v7Kv9weU6Z84+M9OfKt0kufTi71e6X/r08Ep3kcWfqnSTZLc/duZx7PSPkZVuktzy6c6+vsdO15kDvvN3O2usk2TKNzrP2G+v/a9Kd4+l76h0k+Tp2Tvn0HzzjM4c4iS5buMjK91vXd95X/jIlM45aUlyytjOu+Tlv9rZ5+OCM3pneD33cGcPpq9c0zlbNEl2/2pnLP22Nzt7ic3+QO88wf8837n/PGaTVSrdhRcZV+kmyVnrdN7XXze6MwacJP/8/R6V7lH3dPa+3mvN3vjyxnN39qm464HOWSP3n987J3fguCcq3Z8v1htTnelDEyrdk6b/ZKW77Gm9eTiPje48ry6y1RqV7k57ja50k2TTBTt72o/dojO+lSTXX9553vnJM52fxeE3PlHpJsnkgzprq57frjMncIdDe3MN37i1szfeOuM+X+kmyQkbdeba/23vf1e63920N9d3h+U74w2bzbpVpTvi651x6yQ5ZLnOOvlD9untH3nJgZ1rfmBcZ6z27NV7azD2O62zR/VX9+589y3zZOfdapK8cnvnO+qgu9+pdJPk7I93xgUOP6azX/4spXdzSbLLpjdWup+4s7NHzG7fX6/STZL1f/r1Svfzm/TO2nrsZ3+odDdd4IFK9/VLO+MuSXLi1l+rdP/5cmcO0DlHdOaSJsn6F3TOMdlh2d6Y6o/GdubTHP+/+M87J3ECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9lBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCob/T/7LE96dnNteHDfNL+Kpu6Z9878O23z5SnfSsLcr3UWfHqh0k2TU/MtWujPMPrXSTZIMdH4e4z6zdqW71HvTVbpJssqIhSvdJycNq3QXmTK20k2S/1x5Y6V7/w1XVLpJ8sCd11e6Lzz9ZKWbyTN1ukkmTx1f6Y6eY5FKd9aZZ650k+StiZ3Pz3lKP4skOf2E71e6r4+7r9KdZZ7ev9/0o+ardFdbboVK95//vLXSTZKPf3z9Sne5Mb1/v3XW7dwL3HvHbZXuUYd/p9JNkh123abSfeGZznfJpKnzV7pJ8pHPrFXpPv9I6fs6ySyjO59Fbzz/RqV77di7Kt0k2fCjH6p033qmc1+7zHKbVbpJMv6tdyrdqaNGVLpJssC8s1W6b73X+cy4/s5bKt0keem1TnfZMUtXuvffd2+lmySLzDdXpfv21N44xsipnXGM2WcbXel+dotNK90kmWfuOSrd1748rtJ9ecNnKt0kefzulyvdkW++WOkmyawDs1S6705+q9KdafjISjdJJg3rfK+OeO9/NDT/f2zG6Xvf1+PnnL3SffjViZVuksw2c+fnMXKWUZXuAw8+VekmydKjOuPLs739bKU70+ydMcQkeWv805XuqhusWekmyfAJnZvEGYd1PpfHrLBypZskc847ptK94Yp/VbpLLNr520uS8y78TaW70Dyd+7gkmbn03m+WWSdXupNnn7PSTZIpdz9f6T703KuV7kwje/dbt711XaU791wLVLpJctfVj1e6y664UqX7zJOvVLpJMnHWzv3ye+M731FzzdG5j0uSlZfsjL3MvMASlW6SvDrxP5Xu/At0fhYbrPzhSjdJ3p5n3kr3P0/fU+m+8WjvvcPdj11b6W6wTmcMP0lmGN15p/jmo53PoslTJ1W6STLfqM54w9SZR1e6ebs3JjDx+fcq3Rnn6o29TJ2pc/85/Vud+/B5Z5m10k2SGUvt9ya/W+nOOb737PfeyxdXusus0JlXmySj5pj2n0XTjXj/cxxfmzIsf3p7+ml4Nf+vOw7pzAdMkj+stEylu8qKnX/3p858rtJNkpMXvb3S/fRsf6h0k2T+63evdO/9Yufd6VyHdH7fkuSL895Q6Y547bOV7kEr/bPSTZJHt7uo0l1h4/Mq3SQ56s7OPcQKN11e6X5vyhOVbpLct+rvKt0bz1iq0n3zwt6clmf36TzPfH66zs8iSf746LhKd+DYlyrdWw76SqWbJA9v0lnr8ok5rqx0dz2u9329zOjOXNEdP3BipZskiw7frtLd8uE/VbpnHPSlSjdJXl+1M8408/WLVbo7PrdrpZskh6zSGT8+//bTKt0kmfKLGSvdNSZ25q3f8p87Kt0k+cBKX6x0fza+M0b40d22qHSTZNL9nfUoiy/YW1v1w1U7Y+k/f6nzHnmLv3TWjybJTx49v9I96vAfVbprfKTTTZIl5lmo0h374E2VbpJMmaezVmnTtw+rdH+2UO+z6FN7PFzpPjR/55pHrt1733TfS53PjPeW3L7STZIr1t6v0v3cm511nrP/5fxKN0nu3mzJSnf51z5d6U7ZuXN/mCRr7XlnpbvuandXukmy9tc74+03btOZNzvykAcq3ST52OInVboXPN0ZB350xQ0r3SSZ8LfO9/VGo3rz1r846+hK9587dPYYWeanO1a6STLDxM6czm8dsUqle/5Sb1a6SfLnfx5T6c442y6VbpJ86vX1Kt1LPt2Zaz96ls67uSQ5b7PFKt2Xt+rs3XX6/hdUuknyi5NXr3QXueuRSjdJzv5SZ8+AL97eWSd/yxbnVLpJsuw9nXfNR97ZmWu42FW9dUqHzHtnpTv7Mx+odJNk6i87c3L//G5n3sQ2H9y50k2SX3y48yx17c2d550vb9VZf5Ekb63460r32U2+VekmyWZfOqjS/eTVne+Sf43vfPclyQfe6IyJf/601yvdGR5bpdJNkpVGd+ZNTH/TDyrdJJl3lbMq3cnndOaXrze59w70owOdtTnzvXhppTvP7J+qdJNk780PrXSffLi3J+a6c0z7++VhM76/+7h3nl45z+wz7d9DXvJE7/3YGw917tHWX72zL9DX7juj0k2SA3btfJafskzn+zJJZtq88+7mNz/ufM5Mt9GBlW6S7LdlZ97eo6ueUOm+OsMZlW6SvPu3IyrdDf/Q2Q89Sc6975BKd8sjOu96D//C1ZVukvz8iM575EMW7LyPHbVIZ55Fkmx+UWddx4Uf66yrT5IvDevsf/bvb3+z0t3x+M4eLUnyz1k78/cPuqbzvPiFPzxW6SbJi//o7BX855V6v8tbXNx5ltlxq/sr3TmW6rxPT5IZtu7s07LqJp3PuDe+0fm3S5KRX1yt0n3+qDMr3STZ4KjOO4V75/txpTviqN9XukmyzNKdcfQDD+usv5hlm9GVbpL8528HV7o/mPFzlW6SfPWKzr5OD/+z8zv3uVH7VrpJcudenf2pF530+Up39x0vrHSTZLYHOnvW/OuIL1S6SXLORqdUunNNOr7SvXn8VZVukuz7RmePndve6Xz3fXi5v1S6SXLolZ2zDj449WuVbpIcvGLnPcj9a55c6X7lk733pud8+xeV7p8f7qz3+dIHO+tok+Tg8Z0zMJa7rDMXPklW2Lwzv+f5XTv7G+xw1R6VbpJ879bOXkbrzdFZ4/K53jExuXXtb1e6P5m4YKWbJPued2Sl+5v5L6l0H1i+tw/BCxM794ir/rSzh/Tce3fWxyfJ/ed27sW/8vhxlW6SXPudzt4XF6zWGV++8pd/rXST5KzDOnOoPjS8Mxf+45/eqtJNkvnn6expuMz2vefVr2ze2cd2oWc6e1988dTOuHWSHP32sZXu2ut35nyd+tvOu/EkOeH1zr3AkUf39pGY67bOmOrpW3TmD6+za2evhyR5Z/kdKt0Pr7JVpfvGMeMq3SS5+J7OeNGJ715W6SbJe6M77ypH3b9zpTtxpz9Wukmy6g869y+zX9uZZ3XP+N739fH77Vnp/mPh3j4Sm57UmYOwyLDOPPuvX9Bb47n5PFtVuuP2f7DS/di94yrdJNnyzs531A5n3VzpJsnnDu3so7Tb+/zfjZ40OVs9Ou3PFXvg4t46y/FjOvswPn9SZz3Wv7/w90o3ScYc1Hl/848tO/vuJsl3z+p8B81y+xWV7t+P7I1r/me9X1W6673SeWY8etnOev0kWWXczpXumif+rNJNkumP7qzN3uR3UyrdyYf2zro6dUpnL44xO3X2a1t25c7YVZJs+82tK925TuzN1d5ln60q3WOf74z/f2bX0ZVukjz0WucZbJu99650r7+4d57fT8d25lRP2rNzVkuSLLpnZx7czDd1Xswe9G5n75Ak+eTbnfnJS/3mhUp3w7V656zu8+XOM+OqS55a6SbJ1Xd01t09+HBnfvkSe3fOZU6SWz88W6X7seErVrqHLd+b37Pyc519r9/ZrDf+sc4cnc/leW7pfH5uu3NvfuQnP9jZS2zULZ31o8d1jt9Nksy5UOd3ecULXq50k2TVX6xR6a59Q+c76pCPdPYLSJKdS0dAXfndzhqMNQ4+o9JNkkdX37jS/eEne/PWTzntqEr3mOM+VukOO7j3vfqpqzrrwXYt7XH112M/UekmyRIzddac7/Nep5sk35hznUr3Mwt1zl/73Bu/rHSTZNHFd650v7Z655z4WR7rjI8kyZF/6uzxuPnnO+dKJckyc3f21Vjrr09Uujd/8PuVbpIccWPn2eG7u3bWhR91fG9/1Ynf36rSXeLLvf2qfrdkZ23/U5M777pePLN3ZvdrH+iczbf/AZ1nylv3+EylmySnr9lZp/vrbTv3tEky2yPXVLr33N15V7nk4p2zzJLkD8t3zhJc/K+lM3N+cVilmyRHH9PZh+7SRXrP7nvM0OnOMqVzRugDZ/Te5++09caV7gmlMfHFT+6sJUqSuz7cWdv455PWrXSTZJ3bO/uVHn3rcpXuZ+Z/vzP3/vcW2n/VSneXo/9d6U54a6dKN0nGr9eZ6/udnFvpJsljj3f+/V77Wmd/+HEHHlDpJsmC++9f6c713c7z6tQ9e/PkTvxR5zP/rF933sEkyb8u6u2J/n48/9pi+fGfpv3e5Efv9+Fp3vyv1+/onPcx36Gd/Ze+v3Nv7/fln+mc6bDcrp191JPksC939if57ENzVbr3rtEZR0+SLxzSOdPv9nTWZH3o7s54TZIc9vPOHOIZD/tupZskdz7Y+d3Yb9aNKt1XxnfGCJPk8rc749KfunNEpbvb3vtUukkyw2mduQtXfK2z5idJPvxMZ7/urXfprPtZa9+dK90kycOd7+yPHdfZG2HM3r1xzbGf77yvX3zMXpVuklz4nc47p8n73F7prrpd75zjZa7v7AHz+w/NV+mePKr37LD9OtNXuuOm6+3XfceHOmejL3hu5wy7j32mNw9g86M6+3U/fF9n/eHKL3TOEEqSJdb5baW7/6y7VrpJcvwinbUSn5rttkp34k978wBOLO0nNuy171W6l4/tvJ9Oko/f3tl/8PmtOvsMJMmH9vlGpfvr2TrPq0/t3Zm3lyS/+GPnXdYP5+7cL2+wcOe7L0k2f7kzP/m8q3rrdI9buTO//Itff6LSfeyRRyvdJFlxic6YzgLp7A00YZ7O3PIkGXNu517glyd39jVMkjG7LF/pzjd2XKV77vDFKt0kWe3VzmfRcZ/o7L173Sd6777fGfW3SveI8b19fU8Ys0ule+lmnfvl+Y6+r9JNku1f3LTSXWKpeSrdj218eqWbJIv8rvN+5/dTZ6l0k2SWjTprU8/6eWdOxF7bdM5dSZLJnW0p8/fnz690l9mu97n8kVM682Zn3b+3l8QbM3b2v/jlUl+tdBdd8KlKN0lWW6OzF/E+H+mcjfn3dzvj4Uly/Kc79xirfb8zBpwkj32sMx9jg8911t/POr5zZlySHP1S5xn76Xu/U+l+e5UfVrpJsv7WnXGog2btvXc/rbRH7qh7O3vxPPf5zn6zSXLmctt2wgOdNa/DR3TuaZNk3fGdOfy7je6c4ZUkl+7bmQ91+a86z35vLHpSpZsky+47d6W7xxr/rnRXv6UzFzFJdpjxo5XuJ47onfWz9jaldw83jv7//Y87J7MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9lBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCob/T/7Ls46cLpssOnqaX8Qb80/75n9NHZhS6b43MF2lu/ric1a6SfLWpMmV7uuvvFnpJsndNz5c6T5zx/WV7kN33lLpJsmDT95e6b4+/o1K9+1J71W6STJleOfv+u13O38jSTJ6hlkq3U98dNtKd6N1N6l0k2SxZeetdGeebVKl++Sdz1a6STLzqLkq3dtvu7LSTZLnx3Z+HtfdfE6lu8KYJSrdJFlsgcUr3ZUXX6TSPeu8SyvdJHm39Jn/yivPVLpJstASc1e6U4YvU+luNv+alW6SvDLxiUr33anDKt2lVli60k2SG/91XaW77mpLVbpJ8sDDnXvEBRdboNQdU+kmyY3XdO7Ft1h3s0r3udfGVrpJMsvsq1a6C8w+W6WbJE8/17nHmHV055ofuffJSjdJtvvk5pXua+PGV7rrL7NppZskJ/zxn5Xuu+l8RyXJiOn/R0Nt/8fe6jwGZ+zYVzrhJO+9+06l+9xTL1a6eW1Cp5skE16qZIdNKf1iJJk0pfPzmH7kTJXudJM7f3tJMsuwTvvd4QOV7uTJvc+4VVbeoNJdY72VK90kmTJ5YqU7cXLnb+S9qeMq3STJ23NUsi9OuKfSnXuBzhhiktx1zc2V7jLrfrDSTZJXH7+z0h03tvPs994snc+4JFlwoc57tIG8VenOuVjvd/kTW+1a6U6455pKN0kWXn71SveVzuuBjJh7nk44yTzLdi76pbturHSfH1f6ISdZZo2NKt2pE3rjy7PN3LnnuuvuJyrdeecdVekmycuvd+63XhvX+fdba70tKt0kmfj8uEp35JQXKt0keee1hSvdf918aqW70rK9+63ZBzq/yysts1alO+eY3ruSD87dGfucOmL6SjdJFlms837u2js777CXma43N2zipOc64Tc782lGjJiv0k2S6ad7udKd7u35K90kGT5jZw7eO9N1/v7em37mSjdJOqOIyeyzdP7+7nzl6ko3SZ4b3xmH2mh073d55lmm/bPw8IER7/t/O9sMC+TDS39zGl7N/+u56T4wzZv/NedA513ICw90ng0+tei4SjdJdn9jpUp3xi+cVukmya826LTf+u2/K90t/31FpZsky73WmWs/9+6d++GXd9y/0k2SRV5Zo9IdPvuBlW6SXLJFZyz92E06/35HfrszHzdJvnjVuZXuUVd2PpdPfumpSjdJ9nymM1f0rNu+XOkmyTk3HlnpPjzq35XufMO+V+kmyS4vv1vpjpvrW5XurLd+tNJNkilr/6TSHTvQm8M/+SNPV7qfffD1Svedd/aqdJPkyqXu6oRf74xTbDR3Z7w0Sfaf+flKd+GHjql0k+TeMZ3n3Jn+c1Olu8wTP650k+SN6f5R6c4y1wqV7ttPddYfJslqt3be1/9rkd78ugvn/Hil+6XbO2P0oy/rzeP40HXfqHSvv27BSnfCxutUukly68HLVbpzb3JopZskmx4+tdJ9/gudtRJP7dP7Wfxohc5n/oIXfKfSXWrB3v3ybQ913rFMmuOHlW6S/PKOzlzt8at2fpc/OupTlW6SLLbXjpXuY399tNJd5LgvVbpJsuK3Pl3pTnd4b07grdN3nqWG3Xt2pTt+od4eI9dv2Jnj86FfvFrpnv1a7375wqcfqXTX22u1SjdJbj7nwUr3++t07l32f7nzTJkkO369c7+8+O8641vbzNZ7h/bcJWdUuiuP/H6lmyS7PvL1Snfx+2esdDd4+W+VbpLc8cvOPeJCv1+s0v3B3FtXukly2586c09u3/SLlW6S7HFiZx7js/N15jasPk/vfvmYBzvjUP/ZqXMvcNHcvb/ridedUOmucURr5ley3N2dv797P3xfpXvHQ49VukmywyuddxobzNmZj3vZpr19zHZe/e5K9+kHb6t0k+S9b3ee0W47/o+V7u5PFdejfLQzh+T1HTtjfU+92lvL/upfOveIo1fs7KOUJGtO6swjfnz52SvdmZ++v9JNkvtGrljpPj/wm0r34KV/VOkmySw/6OyxdfgCH6t0k+S2Lx01zZsTh7+/tWCzLnJXNvrhtF/TuurWF0/z5n/99o1xle50v+h8Li62dW+e2mU/7qzZn3XJ3p6+G6x9fKX7ux0/XOl+98LlK90k2ac0H3eHpTvzybZ4ovNvlyTDz/xLpXvkkQ9Uukny3S0PqHT/ekpnH9u1v3xKpZskj/+zM5/zl29+u9Idd8AfKt0keWzjfSvdlX51QaWbJMee1Zm3d8OyV1W6GzzUWZedJMfM+7NK99MbblnpPrFYby+OXz94YqW76aje3oMnHNyZJ/rgJp19Ea5YoTef5cUvdvbe/fOf/17pbv9g7x5jr2tPqnS32+/ySjdJLr698+7mtLk+X+nuvlhvL47F9+zM77lpj05357um/Xri/9pgme9WuovO3Zl/miTrX9h5P7bGU53n4H+st2SlmyTZprO2Y7fPdvZy2OnM3nvT7/92q0r3L4v+q9JNkvNW6swbOuufO1W6e3+3t65qi7U6fyfbvtP5jNtyld7a3xtn68z7uungzrh/kvzpG5178TvP6qyTOPOGzvzFJNlxXOc95FO7dc6TuOOQzrhnkmy27+6V7gNPdcbNkuTQQzt7VEy3f2fe13ondvZjTpLdVziu0r1vxs7+Bsu/19sH7vYr9650d166M9aXJGN+1vl5nHF6Z0z1vM/0fhYX7XZWpfvbT3TW5ax78Fcq3SRZ9IzOOT+TburNed7s353zeG76due75IKF/1rpJsk2O59c6X7ti4dXuhuc0ds3+cgbL6p0P3PvtZVukhx9eOfMxrkmdtYeHvuZT1a6SfKpA/asdK/5wH8q3SvHXVLpJslBj/680t39l7132O+M6dx//nabzv4Gm53e2Y8oSf61fOfZb5l9L6t0X9q8s1dHkuww9Y5Kd4O7evsbzz72iEr346M6Yzrzr9jbd22l31xY6e73i85Y0UHbd+aPJMkeF3TOmJwhvXcl2w5bt9K95PLOOtp7v9U7P2/MRzrnYn71z51xxANm7n1HPbZOZw7Xomt29jdIkl/stWGp/P4+4wZenimznrHsNL6W5KPn9tYgzXJi5zzwF7bvzIl49KnO2ookeXLLzrz/Fw/sjHcnySuvd9ZjnXl6Z+7JAgvvU+kmyfPzdJ5zN7ius8f+wjedXukmyVzndNYKPXzPYZVuksy6/icq3Wtn7ryj/vKcveeki7Y6qNK9Y7WvVbo7fbozXpMkG17SmUe1y6a990L/XKSzNnSjy56odMfO1tmbOkm+tcp5le7en+zMaXn4lN5cwyNu7uy5cP9vH690k+SBfTvrZMcs2ZmrdsMJvfeFv7z6kEp3u9913t3M/U5v/fvam3T2ifjJov+udJPk5W0776i/sE9nncus+3bOL0mS7126XaX7ses6+xd8Z9ne/gVfXXiVSve3242sdJPkwU901o3c9VLn2e8763fO302S+Q7szAG/d6vO+TMfur7z3J4kZ8zReXY4/7EZKt0k+dDEzs/jpMs77yteW783FvuDMztjpqtu1BnjPevJX1a6SXLOmgdXurt/pLeXxKh1F610r73iB5XuTx/qzRX9/oc7n/k33dr5jLvlg51ukoz+Wmdtx8x/6Dw7JMmrJ3TOo1t2ic494vW399bmbHdWZ+7efed1xmrn/31nb/8kmbhSZ++6yTt1ns+S5OTfdtaNbLBS573D65N7+14/fXfnXNNDXuzsEXPySZ09pJNkzz07f3+rnN15n5Eku502rtLd987O2o57976m0k2S753TeT/++b3Pr3Rn3KJzllKSrPl0Z9/kCS99tdJNkk3X77x7OGaNVSrdw1fonYv52YXWq3S/PGtnTOfAc3tj7Xss1XkOvmCe3rPfV/bvjNfe8o3O9/VRn9mh0k2S4Y907vG/unRn3vP9u3fWEiXJW3/ozDU8flRvPs0mYzrnKV17XmcO/zqzduZvJck6s29a6Z4+y7BKd/rpOuOeSbL6Qp3n4E1GddZMJsnImzpjJA/f1zkH+VMzjq90k+TIN39f6b657Z2V7l9PO7/STZJ3rums85xhpZ0r3ST5/hud80dPf5/bQM6y+NNZ74xp/z204ba9z7DtR3TGE56+u/MZ9ok5e+eT/OzQj1S6H1/lM5Vuktz7uc54wvJ/6Kyvf3jH3jyOB1brzDX80g6d9WmzTtebw7/FDp3zBr76xuhKN0n2eLyzP8KdR3bGxea48p1KN0l2fL5zHvjPZumMSx/z8Wm/3ue/3r2+s4fBrt/pzFVLkg2efrjSPfTczt7JM/28Nydpgf0747yz7trZ82uN68ZVukly24w7V7qf+HrvTImb516l0n37ss689T0u7o1/7Ld75zz3LU/6R6W72BKrVLpJssRznfuizdbtrKFOkmdO6oxtXn15Z1/tzYdvXOkmyRqf7ozFzrfhLZXut7/de194/25TKt0lvtB5X5Ekm7/eefab45YnKt2HekeCZJFtO3to3b7a9ZXuH87p7PGYJH/4TWc95gkbdtYpJcn35hlR6f5qamfsZfvSOqUk+czmnXu5757R+Rnfu0vv2WHC4Z2zO77w9c7510my/N7HVroLH955phyxzBaVbpIstWdn3d3bF3bGapf43R6VbpKcs3dnndIr7/Tui068/t5K94Ylpv05nUly1d97Y6oTjty50j1nXOcMy6+92NoXKFn13Z0r3SMO7ezLlSTrrfL+znH93znwtc736vVf783DWXt8Z23/Pj+ftdLd4MnOs2qSfOvUzhl6d335tUo3SVY89MxKd9tP7VLpjv3Em5Vukox++flKd9UlOveImw/0zvp5e4HOvcBRY5+rdJNk5Q/uWOl+Y8E/VbpPTtd7h33SvJ0zLG/463WV7icuXqXSTZItT+7M1T5zUm9f0YN/0hmT+8LvOv9+A0d1zl1JknMu7szPmn1MZ67hvg93zoJMkt2u+Ualu82kzrrUJJmy/BmV7srX/a3S3XnKfJVuksx0RmfvyvuW7JwdMMf9vfM1fn5OZx/B7Y/oncE2/sTOZ/64hzvj+L95ujem+uavOu+61rqwc376Od/szGVLkuG/7jxXrnf0fZVukpy00aWV7gb/i/+8MxMNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4vMzDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPB8P/Jf3nyu+/m1Reen+YX8dw9T0zz5n+9cPvlle59995R6d51/02VbpK89NKrle7UYf+jX6P/kXeHT6p0R06atdJ9b7o3K90kmWXYdJXuTMOnr3QXmzpbpZskI0fMXOmuscVmlW6SLL3mByrdBRddvtKdbs6plW6SvPXW2Ep35LDRle5S6y1b6SbJjO+MrHTnXPSTlW6SPH/7c5XummMWqXRfeX1cpZskv7jwtEp3oVnmqnTnnnOmSjdJ/nHphZXuvDPMWekmyTyLzFjpLjr/MpXusqvOX+kmSd4ZU8n++PAjK90p079T6SbJIqPnqHTfHdHpJsn0M3Q+M0ZO7Nx7vp6nK90kGf5Wp3vltWdVunPNv06lmyR/ufKESnffr+1a6SbJsJfHV7oTHnul0h0930KVbpJce11nXOC4Y39c6V5z3d2VbpIss2znO2rcK69Xukny8pud9vC33650h705odJNkpvveqTSnWnYxEp3xgnvVrpJMnc64xizjhyodJNkunc6P49hU4dVuiMHev9+kwc6Y2cjJ3d+Fq9O6d0vr/ep3SvdF9/ojNUmyZtvdsZrP7jc3JXuusutWukmyUvjOz+LNebr/PuNfOWFSjdJxr3aeXgY8dR9lW6SzPRu5zv77qevr3QXmWPJSjdJXpn/gUp37uk7f9eT3+6850qS0TN03sNMWWC5SjdJHny483713VnnrXTHLLd0pZskG2/WGcc/7pdvVLo/2nPvSjdJnnz20Ur3jfGjKt0kmXnE5Er3rfc6741uuuaqSjdJxo/v/M4tu3Dn/dzjdz9T6SbJPPOtVOmOmLEzVpskY596otJdaqlNK903p/Z+FgOPd+YWjZjU+byY/oXOuGeSTBrZuceYa+Hes99bz3Xe+62wxsaV7osPvlzpJskcK3V+znPN13lvO+7tzr9dkoyY3LkXn2663jjUe8M7/34jpu88U04d1puDMHHCiEr3vbc7n58Dk2eodJNkvnc6cwWmmzqu0k2SYWnMm3j/4+HjXhiWC3857ee4zv/QcdO8+V/Pv7tApXvq4p339ate3nvf9LM3/ljpPn3C6Eo3SU5Y4TOV7kLLdMbcbn2081yeJM98qnMPv8J1nff1U5+7stJNkpFXdn7Ot+zUGUtIkntW/3WlO3KZzvyQ1e9frdJNkiO3frzSvWXsnyrdS177eKWbJGef/16l+5Nf/rzSTZLLL72t0v3H0p3fubv/3XuvcNBLJ1a6Oz7Z+fycd8tvVrpJsuyDH650r3+wM78gSZae77FK96q1plS6j261VKWbJMuu+LlK9+zff6vSXW7heyvdJPnm+TtVuu9cVJqQm+SiWzrPJVvd1Rmj3/uNzthxkuzx3oOV7sYnXFzp/uqrO1e6SXLQ3odUugcusmalmyS/emzrSnehSzpjQS8f2VnzkySfe+jMSvdDFx1f6X7wglUq3SSZ6dZfVro/XfSHlW6SrHnZzyrdG86/v9L9210bVrpJctikzpz4kTPsW+muOa4ztzxJ1j2vsxb6qS/05nGMGtt5L/uVxzvvTp9K57svSZ44s/MsNemwzpzORU5/uNJNkjGLXFLpLpLOWEOSXPl2Z+zsJ4t8otJ9apnO316SPH/hi5XuRasuVule+MZXK90k+dE7H6x0J77Sm+s777c7c8rWXHra73WUJF+ecVylmyRXPvWlSnfP4+epdJ//duc+LklefLqzFvqDo5aodJPkwmOeqHTnvblzzW8c0bn3TJK95+j8Xa+41r8q3eNX64ybJcnOn+qMtV/2s96csuk27jxXTt30yUr36vf+UekmyVsvdMYRv31hZ97Xrzfv7TGy8Mp/q3THrHx0pZskMx7XeV49YJ1jKt0LPtZ5n5Ekj35t/0r3yp13rnT32ezZSjdJZlqis67/+4t2vvuS5O/X3lnpvnhxZ1+GWUYcWOkmyaXPfb3S3XfCupXuMXOtV+kmyUUDnXGoX27YmfOSJGc91/meen3M2pXua6+uX+kmSd7srHnd86mfVrpfOXb1SjdJFv7QqZXuUyN7a2gmvrzFNG9Oee/9rZN4Z9KyeeaRP0zjq0muXuycad78r/2+3FlDdtg7X690V734iEo3SWa6orOG8549/1rpJsm5H+/sP3H9HZ0xsf0O6s0n2/PFTvvxr3fuS5Z/ZodKN0me3ea7le55ozt72CbJpYt29lr/zdyd/aJGXNTZ1yJJDv5cZ27W/Gt8o9L9xuudeRZJsuBFnXupiy4+pdJNkke2+k+lu9HPz610v/veKpVuktw7Z2et3t+GdfZw/8qBnZ9xksx4T+ezaOymR1W6SfK1f3TmF2y48rWV7gMndPYWT5IHSvNODh3b2aNs2ct6axnGTuiscznr8V9Uuknyo4mde65Nd+usxXz8x715hk9e1ln/NGXR0Z3uk2dUukmy046dMcJXf9ZZy5AkX/t8Z37I+ecfUOnOfWrvPJAjD/hNpfuHJTrPUbud3pnjmySvrnRLpTtupXGVbpLMMMPtle5SR3Xu5cb9rTNPJkkuPHvnSvebp+1Y6X7pO717jL+t+/1Kd/Fvf6/STZIfPt7Z3//UTTaodJffbo1KN0lOv2Laj4cnyZTHO2NFr77S+77+7CadtQzH3tk5pyJJ3r7zmkr33lc684bOnL3zGZckOy3S+Y466sLO8/V+281e6SbJpid25tb9fetdKt0kWevSzufcBZt3/v7OWPngSjdJTr3rY5Xuelt31vRvNON1lW6SfHrjzrPDzSP+XOkmyWWbdZ5Ltl6usw/B0fN/vdJNkvMfvKET3mbhSvb2GTvjLkly+Qud9WuXrtNbi3Lpmp0z/1Z9pHNm3JxHd+bCJ8nVj5XePey/cSX7zPjOmrgkGXlg597zsh/PUukmyYTVnqh099/30kp31N6dfT+T5CfvdN7D3PR0573DpWf19r2+a+E9Kt1n/t4bRxz2jc9Wurd8tnOW2ZH/XrHSTZLH1/9KpfvPlTrjWyMu7p1l9sbinT0ODl+yswdPkpw287GV7oK/7uzV/equ3650k+TEHyxe6e55Rud8+jvP6uwVkCRX3tfZE2zeHXrnbI28oTM387C8vz2J3pnydp56a9rvFXHtmM7/zyR5+Iude8BlDu7cv89zZO/cqMN/0NkzY55Teus21p26YKW7/b8680P2mtAZr0mS36czFnv0E53vifvv6JyNlySHvnp0pfvugv+sdJPk88uOrnS/dUhnLH2XDXv7lt8/U2cf4gse6oz9n3Fh793b9bNsV+kutNGtlW6SXLVMZ232yRc+VOluuE9vT8rv3fGhSndg+Ysq3eVP73ynJskDZ3Y+M87dvDdm8+RvO+OPj+7XeebY5W+d8ZokWX1E5/7lzFM691tr/aL37m3ln3TOGX/v2d7ck8fPm/brZJPkjZ3Pq3RX3L1zFk+S/ODTnb/r9RfrjH/cc+ZWlW6SLPzjzt6tu23VeY+cJBv9ojPH57aXtql0jzrh6Eo3SX6zc2cvlb/8tjMu/a91eufErDqss1/bWVd23lckyeR1O+/I9p6hc37QQp+bWukmyQPf6cxJGr1m5xltia176wTXerRzL3fK453zu5Lk/Gs6+2c9/XrnvdClX+isxUySb27SuX9Zf6vRle4vPtiZX5AkFy/V2bNm4KdXVLpJcuq4zrmz932pM+95uzGdtQFJ8sb8u1W6W056rdIdf2xnPmeS7LJtZ+7e2od19rpMkpfP7MxjPHOezv7iH32zs34tSQa+fEele8KvOnuqXbpgZw5jktx3YWePken37Oz7mSSH7d/Z82HFBTprzq/a5+hKN0nWP7+z5vygn3XGard7sHfG6ymTOvutnHzRryrdJFl9l0Uq3e/88epK94GtO/vwJMlsX3qp0j17pc7fyBu39vbkW3jrzpjAQm92xmqTZM51O5+fp97QuQ9/aaXtK90k+dyqd1a6Ly7wyUr3zQN6Z4Se/ZX9Kt25n+7tA3nX7H+sdD93Xeecn+nu7s2P/P7Gnf3iFn+qs05pntc6v29JssOUzpzqMS925hAnyUyzdea9XL9HZ7zh0Z/09pK4ZIcLKt3zt+x8Xiz12y0r3SRZaqnOs9+/pu/M/0mSUxforKF5v4aPfS9zHjLt97Z+Zfhi07z5X/v+9fBK98UtP1LpHvlU77vtyL91nr/uuGmvSjdJhv26M6/lmE//vtL9/j2deSdJ8rkfr1LpnvJiZ/xx1t/19gu+6onjKt0fbtUbi534pc5c35lf/3Kle818vb1Jdjm0s2fUb0d3vjNveKoz1ylJ7nyns+7nmls6n3FJss2VnTlJb93WmR+509K9z6Kxb4+rdLc5pbMHzMjVe/txvDlL5/tvkWU7Z1UkyXJPdJ75Z/jWxZXu2QfcVekmyevPdZ7tXntkhUp34b9eVukmyXx7ddYHPDfrVpVukky5rbNXy9ZvdZ6jlp7t/a3B/T8x3yY/rnT/8NpNle6Pl+ydGTzD9w+tdCfc11mLmSRL/7azBuPqszt7of5sp87vRZIcls6/381X/6XSvWCg8346SZ4b3rnHX2ivnSvdJFlgs40r3Q9f3Xleffd7nb1bk+QzB7+/8+b+dy56uHOPMefuEyvdJJl4Rmdt1dHF9URXPfTVSvemX3f20lzowY9Wukny8yU777Ie+XXnff3bI3v7apw3Y+ec+P326p1Tfex6nbknG3/usEr33ke+VukmyQon/qTS3f6TnXOq7zqld+7RZ+buvC886aBpv2/Qf33yss6eHRdN7uwD/rGxvfHJbS/+TqX7jVGf6XT/2Xv3/fM7O+f+3bpe55kkSSZM6ox9Prlg5wy2Ob7XWyc49+mdM9juPeD4SvfZCxetdJPk9tk675oPma03j+P1TTtjJAf864uV7sV//GClmyQrD+v8nG/55kGV7pubdfbhSZKfXXB6pXvvtr3v1fvPfKrSXfLLnXnrz36ts8dBknzoC53nnXOeOrvSfXD+zj1tkuy3xY2V7qRje3uXP3R/5x7jzRHTfo5ckmyxRGdtQJKcssDOle7iB3TuPcds0Hv2W//KztneL13dO59oq4+eX+l+4WsrV7pLrd87P/25K5eudLf4Tmf99vJTOnvaJMkWz32q0v3AAp0xnSSZ991nau3/P72d4wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/yIDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D/s3Ve0XnXB9us7K41AIKH3Lr2KdEUjCILSEaSJgKBSpYqgqCigYgFBRFEQEQWkKUWkvEhVuqD0Gukt9BpIsk+2++g7eHXnHmusb1zXoQN/Y46VtZ5nzn+bAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBiP/kP37svruzz1pLT/eLGDXtP7qM/8jIKZ3u2NFjKt3Fhg9UukmyyiwLVbqjJ/f+/d6e9lalO37WGSrd9yYvUOkmyexjxlW6o0fNWOm+Peu7lW6SvDZubKW75MprVLpJssRic1e6I2Z+o9KdYerMlW6SjJh/pUr3nRef6nSnlL5Ikrz51mOV7pTXe39/s604a6X75OWdz/txM85e6SZJ3p1cyd458b5Kd2B457svSV56q/OzGD1375rv/tuTle7YWR+vdC+46vpKN0lmm6Xzd73iKitWuo88NLHSTZIl11u50n3hlUcr3ST54DqrV7p33/dIpXvb9TdVukky32wrV7oLzz6s0p17vt5z1MKPL1rp3n7zPZVukrz1VOf776U3O5/3C87WuQ9PkvFjlqp0b7jtikr3uVdHVrpJ8sybz1W6b776eqWbJO+82bkvmnVYZ7xo9FvvVbpJstJcc1S6bz/1UqU7bOSblW6SjHpvWqc77J1KN0lmGDlbpTt5oPNzHjHQGTdLkhHvvF3pvju6c48xMKI3pjPX0stUun958OZKN0n+59dnVroLHf7lSvf6Wx+qdJNk5UU631FvPNO55nffeKDSTZJ1luyM1b7+YufzIklGTZm30h0/pfO9+uRzEyvdJJntoUUq3dXX3ajSveWuv1S6STLn4vNVuusvu3almyTXn/9apTvPEp1xxClvvlDpJsl7w1+sdD+97Y6V7pQpvc+4uebozPuNz/hKN0kGxnV+Hs8905mTmnf+91e6SZJxEyvZldb+cKWbN3vPwW9N6nwWjRzdG8dYdLkFK93ZRnb+rp+f2PnsTJI/3/LPSvftdzpj7c+PXLzSTZLn3uuMN3xk3Y9Wukly3UW/rnRXW2OJSnfxT3660k2SqW935ipHDO+M9c027JlKN0neGTVPpTt1RKebJAPvTa10h880V6U7bWpvfmDqlM7vxpRhne/ruWfvrfl8+93OPeKYYZ3ftyQZM2L4dG8O/P8YTn1+3sfyk8P2nn4X8/9aaNvVpnvz3yZd2pnXe++1fSrdcR/YuNJNkkU/0Xn++s0KnfHuJMn2s1SyByx4W6V79QLrV7pJsuukCZXu6kt2xkvn/tBylW6SZKDzO7fs/K9Wukky/AOdcfpT/7JnpXvWh/5Q6SbJqsOeqHRvvLkzXzHzrq9Uukky7uYJle48N/210k2SWV7qPI9+ZuETKt2T/2fOSjdJjj93m0r3qOdOqXRXfmD3SjdJblzye5Xux4cfU+kmyU8fnqnSXX9CZ63afb/+WqWbJIt+cJ1K96znnq50Nxvxvko3ST4xX2d93Wxjes+MI175caV72cB5le7iSx9e6SbJ0+901g5N/fSSle7wxTvzkEmy0G7zV7r37N4Z10yS2b69YaV75v2dtV8DH+nc0ybJgY90xkheHNZZu3D+bWtWukky04OdsbxlZ9i/0k2Sp+78ZKW76Wmdn8XHDu7sn0mSx27vjL2sveqoSnfJn3X2hSfJZaXtmOut2ZmTTZIbXu3cF730fGdvzvBVFql0k2TNrSZWum+s0tkLfeUHOvdESXL7H9erdL/6q96awEVO+GOlu9/rnT1sc/y2N46RqzprDR9Y9aRK9+p1emtaJt/TGRPY6/SFK90kuXfFzvjy8td35o2+8kbvZ7HGMZ39RMdc1/m7Pvrru1W6SfKvzTtzaN8a+E6lmyQjt3mw0v3q6p2zQFZ54EeVbpL8YMPOmPhN63bWt9506aRKN0kumKcz7771AtN/rcW/zTih8/ww/orxle4Pl3i20k2S+Za8v9Ldf+bfVrp7nHBnpZskP/xy54ymVX5yd6WbJKst07nHv+PGzr6R+a/p/S6ftdDESnfy+RdVuo+cdWmlmyTnXtsZR9x1396e5au/cUClu+pKnTm0R5b6fqWbJKv/o7O3+LL9v1rpPnXnWZVuknxknc6ZfJee3Nl/mCQLPdsZk5v1pc540R/mv6DSTZI73+7MlZww0Nl3MGWgM2ebJBdcuUKlu8FHOvv6k2Tm2ab/PNrwEf/deMDkNx7KxFs2m85Xk1z70n7Tvflvr/x0i0r3vZvGV7pP39vZf5Qky67zu0r35At7Yx873dpZT3bp0p35lXc/u1+lmyQPvtu55vOOvLDSPeFb/6h0k+Rrpf1Yc63zpUo3SWZZ/9uV7onXbVXpHrNT7xlpvsdvr3SfOumQSvf+i3p7GVY74mOV7sb7dD4vkuSkbTvnGv5wxc56wAfP6s31vvDevZXujLd11jy/s9UHK90kOerZzpzCkQ/uVOkmyVsf77yfYdi/nq90t72h80yeJK9e0Bn72P2ZzvkFax7/80o3SeZ/srO394sjSueSJLlmlc443i9v78yPbXDS+ZVukmx5zmmd7tGdsy7fWaW3ZvZPX/5upfvptzrrZJLktO/8tNJd4+rOuRa/fbB33tevx3QWR563z2cr3bMO377STZKzf7FLpfvGrzvrnJLk8Vs7e342WuWoSvfc2T5Q6SbJfp/8VKW7x7FfrHRvXHb6n/Pw/7Uv6jyvHrl+by/KVtstVukutW7n3nOlM3rvXxt+x86V7szD9qh05333lko3ST5/fue8jh2W7ZzJkCRf3WF8pfvTvW+sdL/1+x9Wukny4BGd8wL+vkZnzfOPv9+bd9tuSueaV1i1d4+x/A6HVbrb33NHpXvpDA9Xukmy9Oc663xXv+GuSvfgp3prLldb/+xK9/0L9M5n+tIMnXf+XT6is2Z2qQV77zx648O/rHTX276z1uK1OX5Q6SbJKjt25jReOupblW6SvHhz5xyQXzzdOS9x6g69dyjcedWvKt3T5ux8Lh89X+ffLkkenLfznpGjBzr3AUny8jeuqXSv/9wZle4BP+g978x01yKV7jl/7IxP/u3CEyvdJLn79s5Z3TON75wVkCSfWrezhvjYcZ2znvebpzNWlCRLzP+ZSvfjG3fOtDl9086apSQ5+9rOOya/el5vzfNXr+ncy+31nc7n8l0LfKLSTZK3Lpz+a1ST5F/TOveeizzUO2dz7Kad8/2/sEHv/WvrfuPPtfZ/49W5l8kV+5w73bvfuXvf6d78t7236DzPHPH7iyvdI7/VGaNIkoUu7Iwfn7jKgZVuknzsxM7578ct21nHOPVDnfPJkuSLX+icnbzKBZ1/vznO6t2zbjDh4Ep3qzVOrXST5M4jO88dL27T2U/3pS178wrfHds5V22VBxaqdP92Su9zeb1VDq10z/hGZ+w/Sc66urNP/ZUJnb31t9w1odJNkvff0FkX8fsTO89JY075XKWbJIs+3FkH9+LGd1S6SbLQYptUuufcfGulO3X/3t7QP63dWd86cM8XKt1FR3fO+EiSDU/s7DuY+fK/V7pJsmo6a6oP3qqzpnPGTXvvQ/3i6Ksr3YdW7azVXvyDv690k2SBmTtnAVwyQ2++/pzTO/fL69zfOTvy8e/31tdNHrVDpXvyQ1+vdA//+uaVbpJ8a+POOxQWXay3DmfFSzpzITcf/4tK988LLFvpJsnGt3b2g/3z0c9Xun9apnd23fd/1lnfM3GRzr1Lkuw3pjOX/K3bb6h0F161MyaQJPv8vfOukZWv7bxP4vlRa1S6SfLSZzrncr3y/t45qF/96phK94q7O/dFv/xoZ94hSV7b5M1K96YRnfc+bPPV3rkMuz05sdJd9rWvVLpJcvHtnXNtrnyuM464x/2dvQFJcsPkzn7or+/e+Z376K2993ftulHn2f3Pk3rrqGZfoPN3cuBA57tkyu6d9SFJstXUzu/GuNM63317rdYZa0iSdYd11tfd9WznHJckue8vnXu5397VWS+z/1OdMeAkWX/xzj3GUdt9o9L9/sGdceskufdjnXvEuad2xhqS5Lj7Ou9n2GnOzrkoV4zrrB9Jkpm+1xm7/tzpi1S6X/nbTyrdJFn6hc6YwA339PZvb3dM5zNjwkyd76jRx/fmB4a92NnPcMK74yvdA1dbq9JNkpWf7Lz/6ZnRnTPBkuSEeR+tdC8/qLMGaNwtV1W6STJhUucsl3kf7dzX3npt50yUJNnu2c46xx8d3FlzliRP793aT3v8f/X/Gjl6sSyw+PQfW/nKuCene/Pf1tm5c9/ztRM6e29emdBbK7rXiR+tdEe+3BuX3vjO0nf9Ep1zpN934jGVbpLcdmLnHdgfPLszLn3Kr1esdJPksl06Z0Y9ekbv3bAnHtvZn33uXZ392T9atzfHcsrIzrn2EzbszJ3e8/3Oc0GSbLl6Z+/UXvf0xvJ2/VVnT+SnJv6r0v36er0zVs/6Uec94/9curO+ddR1nXX2SXL2RZ01gUc/33vX3H4jOt/Z6zx8UKX7lZteqXST5NQZOr8bV780odJ9+dTeebMzH9X5Xd7l5Eo2SXLzjp3xoB+c3lkruvfBnXfjJcmnHu6Mxa71TOdsmRfGLV/pJsn4Szrn1231fGf/YZJcNrozZjP61533Hfzqqc7nfZKc+IeJle735u7MN31l09Mr3SR56Ued9XW/3/O0SjdJtr2kM0d93/OjK90N1+68yz1Jxn65836iea/snG3x8ITemMC233iv0r1xQm9N4G1Pjqp0//rA7pXuk2d03vOYJLs/3hmHOnugs45qxr07+ySSZNaDO+8kWOK53lkEi2z1m0p32V92zpI4Ys/e9+qZZ69a6S6zV+f5+jt/PLrSTZIpm3fme5/btjNWlCRTD+m8z/3q/+mcUf3JKZ0z7ZNk5P2d9zYeOlNnj/yo23pr1R7a6ZJKd8ld76h0k+S2O66tdNc7v7NPfpaXet+rV9zaORf2Xy927l0+9eL1lW6SPPC7ztjLqB1774O84oKlK91D3uzsc9nhJ71nvzvn7Fzz5ld3zpI4aLneGTGPntqZX9187qsr3SS5+MXOHuC7ftg5B3zH4b01CN/ZuTNeO9+JnX0H6545udJNkj3P6vydnH/bM5Vuksx/59aV7rjrO+9gu+zj0//M0X/bb8POHsQvLLZOpTvD40dUukny3YM690VLlPYzJMlRD25e6Y4/v/OukeETbqt0k+TdGzrPwXOkswboQ2t3xq2T5Iq1Ouc1Hv+TzlhRkqyxfues4vnn/z+ve+7tjAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4sMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDBs2rRp/+v/eIGRM0/70myrTPeLmHXM8One/Lc3p7xb6c4xMFelO8PoKZVukmTKQCU708gZKt0keX3Ke5Xu5IE3Kt23355a6SbJ5LEjK93RCy5b6Q5ssFalmyQLLj1npfvaW8Mq3SSZdYHRle6IkSMq3Vv+eF6lmyQrrPzBSneWhWesdMfPMH+lmyTPP3Z3pfv4449Uukky51xLVLpPPvyXSve+hx6vdJPk6ptvqnTvmPhypTv5lbcr3SSZc65ZKt0Xnnmh0k2SJZecr9KdZeS4SnfJDy5f6SbJpKffrHQfevzRSnfDj21V6SbJs8/dW+nONOv7Kt0kuee2Gyrd+RYcX+mOmtq5v0+S667pfC5/dtPOvcscc4+vdJPkH490nitnL17zv+69vdK96YGHK92Rr3Xu75NktRXmqXQXW2ahSvefdz5Z6SbJfY8/Ueku/77OPW2S3HTtLZXufFM7z6srL7pYpZskrz/5TKU7qjO8lVmGdZ4pk+TddL7/hk3pjUOVfsx5rxSe1rvFyNgRYyvdJebs3GPMOtNrlW6SzHPhbyrdN55/pdJNkrEjO5+fNz74WKU7x9Te3/Ubj/yq0n3+oc4czNtvTKx0k2TBcQtXumPn7H0YzTSuMyY+ctjLle7T7yxe6SbJDHN1/q4XWWH9SneG0b050Ndfm1zpTp3yTqWbJPMu2BlHfOOlzjXPOOZ/P4/+nxpRmlN8b0Tnc3meeReodJPksSdfqnSffKzzTJkkU0d1xtvHDuvMSY0qjeEnycuTXq10X3ju6Up3gflnr3ST5Lorrq90N9l6k0o3SZ6588FK9/Kr/lbprrZWZ3wrSeYY0fk7+cUZR1a6U17ofUfNOVdnPc0Ou32t0k2SO//WmWt+/4fXrnTfnNSbN5p3sc6837yj5qh0Rw3v3S+PHN25Rxz2du/Zb+ScS1a604aPqXQH3up9Fj076cVK9/FnO2tI/nbl7yvdJHk3nXmYT2zw6Uo3STJs1ume3P7Qw3LPww//V4MCcy43ZtoWZy46vS8ps2/fWc+ZJLNf3fkb+PsXd650P7vA1yvdJDnt0c7Pebt3V610k+SDS29a6R5x0TWV7pZbd9agJslc13T+/Y4/v3OfduqDu1a6SXLIWRdUuqt9vDf3vfy7nTmnG+ft3AP+4ObOPEiSTFr5o5XuN+edqdJdbc7PVLpJMvmczrPd6w+uV+kmycZPvVXpHnvxTyrdP2yzWqWbJBf97opK94UXJ1a6271yR6WbJPdv9sVKd+qN91e6SfLETJ31ydvu8Y9Kd+5331/pJskc/+iMBd1487yV7sYb7lLpJsm4ZzprtU/ZqLc+8roTOvsxF5mwTKW79t0nVbpJ8s0/dNbN/v3cgyrdX97zfKWbJGtP2rDSvXW23vjVUmt0/rbvXX7mSvfxiZ0xwiT5/oXPVbp/++CXK91jTzqi0k2SWSd19tMut3zn+zpJLp/cWbv3vnf2q3QnTes8RyXJ2hcfX+lutGVn/9ojr4+vdJNkpis745PzbtSZx0qS23/VWQsw76iXK93Xdv17pZskbzy1U6X74ff2qXT/Z75TK90k2eeyKyvd9SZ39kkkycVTO+uoLv5X5yyJD/3hG5Vukpy77r8q3eUv6/yM5yvuH312pel/vk+SrHrRxZVuklw3+4qV7rx3X1Tp3rv0cZVuknz13c482ugfduaj/vXWnpVuktz0gc75JbOc35u3Hft6Z73a2HGTKt0FLryx0k2SF7/bGcd/5oDOGsYPn9LZo5skl32v8/c309TOM0mSXD1/Z7xvlnVKa3K/3duPMnyZzvPOO6931qqtus4GlW6SHPzpzvrW7+78yUo3SSa/1Vmrfe4xnX3hq+zZuSdKkl3m6Kzp3OuXp1S6c13450o3SVbad8FK99xFLq10k2TjF7ardN+ZZb9K98NLLlXpJsm48YdUulvP1BkHvvWTnWfKJHnwt51x/PU+3ZvDvu/0zvzO5Lk698uLTOnMByfJ317s3L+c8r7Od9/YFX9c6SbJc1/qnIO1/0qdeaMkWXXv2aZ7c9J638y7dzz6H697XmLYvNOOz/Rfx7jUcb1/8/1/vVylu+0lO1S6l0/r7L9NklmW6BymstwNe1W6STLu6W0r3eev+0Kl+/aanXm3JHltu8642NLP/LHS3eWrnbHSJDlguVGV7l2fnrvSTZIJC3R+5+ZYsnN23fPzHFDpJsmk0lnrJ+/z80r3i2f0fpe/vtrple7qn26dypUcck9n3eW64zrrkSbc9IlKN0mWPO93le5WX9u40r16lc6YSpLMMGmlSve03U+odJNk17c6cwrDP3JUpfvZszrjE0my9PzTf09jklw99/R/jkmSR15cutJNks0f7Mzprfn5zn6fJDlr7Acq3bsmfrvS/cy1vTUA6y7XWbew/tyd82r2Pq13v/Wb8Z1ntEUO790vL7XcGZXumZt2PjN+/mJvv+uRd3bOGXjrR69XukcOdJ5JkmSvtX9Y6b7Tm6rP+EM+Vunuukvn7MH3Rv+z0k2SH62zW6X7u7k686Yrz957jlrhn53nnRE79t4Zd/v7O+Pd67x+SaV7+32dc8SSZO8DOucwrrV/5z0Vn1+z9+yw3p86awC+sOU6lW6SHL9nZ7/r7/furC/40Ud7/35nn3dnpfvgnZ2f8frL9NbvHzuxs4Zq85G99wa8/o3OZ/7pIzr3nmPGd84tSZL/2aazx+wvp3eu+fD1Ovtzk+TEO39d6Y5d+9hKN0mePa5z9sxO4zpr4P70WO+sqlW/33l2WGfDnSvdiYd1zlBKkh0u7OwLX3famZVuktx9c2cv0SaXfbzSPX3T3lndH/tG59lh590798t/GbNZpZskU37R+VlMe6S3x/NDCx5Y6V563F2V7nKL9t4RusEunfVkvzmks//ioHN7Y+3b79GZ39lo330r3STZ6dLO2SWPvfbdSvfHB/TWf596V+dMm61u27/S3WKbzudQkuywZmdM7txFevN+r5/cmZP6+2zfr3Rv+3hvL9EWZ3TGrrf7XOes7g9v3ds7uuh3O78XP7q3dwbkipcdWulecvTdt02bNu0/PqB31JID0+b6yfT/N7r/9M7+vyRZ+JcTKt1Tlj2s0r3xs73xj5M+21m7t8YevfP2Dh3ovLftF9/rnB8yfs/eM8cPVr+s0r3i150ziMft3jtr9hevTax03yrtOU2SP2xwa6U7bIXzK927Ft680k2S+362Y6U7x+GrV7p//3Bvn+VKp3f2Fo7ft3cO4++XeaDSvfGPnf2QI77Se+a/Y8XOvsU5L+qMd//+kN739c6/79yzHrR+Zz1ukvx8Quf779Cnlq9031izs0c9SY7er/O5fPEvVq50t/hZZ042ST5/f2f8cbveUHomfayz3mLJczprIuZ5rbPnJ0l+92pnzPQPlz5V6d4/0Ftf95sdOutbD96rt45j8qKd+frDv9I5D/2jN/XWcax3cud9IIeM/3Cl+8xBnX+7JJmwRecZ+9VHe2N5+5/eeRYeM6ZzPvXSV/Q+lw/8cWdeYYM/d87OeuPXvXGMNebqvDNntU16e2g+/vefVrrbb9T5/hu36n2VbpKsckDnd+63D3fGdEYctHWlmyRrHbtypbvcN2+rdJNkj8U6z5UjxnX2389wae+d6/Pd8PlKd8YPTKh0D/hE72dx5aKdNZ1Xz9S530qS2y7dvtL94KU/q3Rnn/mOSjdJdt+9856mv365s8/sniufqHST5MFxG1W6Hzj+S5Vukvzm253n1dPW6azpvOq1zphAkuz+xc7v8i6/7JzLcNdfOutxk+SLO3bOL9nwE71rfuepzj7dJ7btnB10y76dcyOT5Iirz610v/y5zlmzr83Vm89f7vOda95s1xkq3ST5/Jydd3mecl9n0/lvdxpb6SbJxas8Xekufdb4Sne2i4prwG/t/J1sfnbvefWKFTt74449oDP2eddGvb/rnR/uzKM990JnPfz2S3+r0k2SGRbr7L8/eduzK90k+fiKnXvEUcd0zrfb6rjeWcFzPNVZqz3PYZ39DNv/tnd20ExPrVDpHnNr7x7x4J07fyc/Oe/E/2rd88JzDZ926FbT/z7igIV6ezcO/Xjn3bB7fGOWSvfwmXpz3w8s3/kOOueEv1a6SXL4Hp1zyn68Wee77fOjevtY5t2387uxyVmdMwInfqbzPqokWWzSaZXuoad33p+cJDt+s3MPf/hRnXPmdrmqM3eTJNvO3hlnemPZzprAa47orPNNkh0f7TyP7r1qbx3OqT/vnBE/5tud9cmbTeytA/jjBktWugv8rjMXcvtXZ610k+SpmTs/59+W1kQkyQGLf7DSvXWxr1a6Jw7rnAOeJNc90FkDft2KnbUyO32p8/7WJNl4oHPm0MqrdNaWJ8l5v/ptpbvPbp2zLbY99k+VbpK8dH7nXu7WbTpznMc80JnHSpJ5f35cpTt1g867DpJk87931n5NOXLhSnf4jJ+qdJPkwB90/q5nn2HnSveW43pndH7qhvGV7nOXdc6lTJK7J3fOg9vmwM75dZf/qDffu8NHOvvuNvp45znqjTt6eztOemT3SvcXL/bOe/7u5Z31Ts9tfEWl+/Vrbq50k+Q7F3R+Fsd/qfNZ9N0NO8+qSbL5yPkr3cXHddYNJcmje95b6b5vh84emnUX7H0uv7VoZx3Ojet0xs5+umXvnd37nT+h0v3FSZ19Sklyw7Gd9ckr3tjZv/3MMd+pdJPkuqc7Z6sdfXnnOfiMVXrzDt/e/O5K94B9dq50k+RDX+vss77qe51zYX/zid57Xk89baFKd/PbO/tGXpjYOyNm/g927hGf/XLvncV73XpEpbvRzp2zNLd5vnf+4N+v77zr56r5O2dUvPyH3vsEf/F4Z03Zsg+Or3ST5OpvP1vpzrtJZ2787dV77wRZ4orOeUe7r9CZ07j5sTsq3SR5YqF1K90XPtk5oyJJTh24ttK964HO2OdPJ/+40k2SPy/yvkp3gV931oqeuu/wSjdJNjqvc3bXwwv1zi7f7sjRle6aH7u80j3xU733b2/0g29WuhOO/o+XzP6vfPbM3plu9/6psx5x1LOd9zMkyffS2U90603f+z+ue+6tLAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4sMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUjPhP/uOxo2bIBxdYcrpfxMgpo6Z789/efPfNSnfG0e9VulOmzlTpJsnb771a6Y4aPlDpJknenVLJPvf2f/Sr/782dsToSjdJHlxkaqU714fnrXTnXfytSjdJRs3e+TkvOPO4SjdJZsu7le6bb3d+Lxb9wIqVbpLc+de/VLrLvrFmpTt1gXcq3SSZdeHFK91Jzz1d6SbJ68/fXuk+8XznO+qFtzp/e0kyftZZKt3Jf/9XpTswsne/9cKLL1e670zr3AckycQnX6p0h015udJ9+u23K90k2W6LvSvdCRM6f9fX/+2mSjdJnn32mUp33tL3dZKs+7EtK93rr72o0p34xGOVbpJsuFbn/uWOh56rdD8xZ+d7JEmmvtv5/nt52vBKN0kGpnbaU17pfH4utlDv2X3SC69XuuMeerTSve+e+yvdJFl71Q9Vun++4a+VbpKMfa/z/DDbqJkr3UnPdT7jkmSGgWGV7rCBzjjUtPS+r0dOm1bpvjdlZKWbJAuNW7TSHTu88/m5+Kyd8a0keSOd75I5Z1mi0n36zUmVbpLM0Pmzzk///I9OOMkHZu7MD4ycdf5Kd6aF5qh0k2TS9Z3PjCnvdO4FZpulN+8ww/jOvfi7UzrPlEky6cmHK935F+p8fs6cxyvdJHnusRcr3Vlmmq/SXWr1tSrdJFlw7tkq3Xvv/GelmyR5ZXwlO9/YznPUmBnmqnST5O0xnXvEl1+ZXOlOfqd3vzzrnOMr3amTOz+LJBmYecZKd5ZRnb/rp59+qtJNkrdfe63SnXOezn3RLON788Fb77h9pfv2yy9Uukky2/jO7/ImW3+y0p3aWaaTJLnhxqsq3ddKU5UPvfBkJ5zkE4t0nnfee70zb5Qkiy25fKU77Jl7K90Xnnil0k2SJRdaptKdde7Oc9RLb/bm80cM73zGjZixNz8wbETn2X1qaUznvdIYcJJkSmdc4M13xlS6owd6Y7Vzjpyn0n3l1d6/3/gZpv/PY9j/j1/kGV8ZyMp/nv7/9tuu1BvL++e+t1S6+56+V6U75+e+UekmyZkDZ1e6c7y7XqWbJHdf8ptKd/eL9690f/WR3jqAt1burBEZc8bPKt2Jn/lKpZsk9xy0caW7wiO3VrpJMuOiO1e6Lx13T6V7w16dvQFJstWPvlfpvnXI7JXu85feV+kmyY4f2b3SfXXV0yvdJLnnhqUr3RMv7NynXT3u15Vukqy5dOc596V7lqt0H1xxzko3SS497LJKd8Z1rql0k2ThJzapdEes3lkf8vgevfVZv9/q95XuQtuuVuled1xvTcTMs02odLe5pLNWLUlm26zzPDrpnFMq3Ys+0Js7XevcjSrdBX7QuRfYeYvPVLpJ8tjCnXuB1yf2nt3fnfGASvf4H11X6W4yx6yVbpLcfVbnvujRfc6rdMc/f1ClmyRjV+k87zxyXW8d1fwjO78bx2/RWd/z2N82qHST5LrDvl7pzj7nCZXu5ZfvUekmyUc+/d1K9/bf/6TSTZJlP//jSve5dzr7f7fZtTc++eZVm1a6997X2dd/yr96+8w+Vtr3c+Bfbqh0k+TB0Z2fx/j7O2uH3rdt5z4gSTY4bL9K99YHO+vglnvryEo3SV4+rzNv9NrIBSvdJBn9Smfseso+nbG+y649qdJNkoXHjK10j7qvs9bp3Yd6+1GWOuPySveCZ3trAt9crLOmc+OzO2tablix8/uWJFtNurLSvefUzjPJuLvPr3STZJVjO/f4r2+6WaWbJIeO6Mxhn33LqpXuiyt3/kaSZOnFOuvLzxj38Up3udmfr3ST5MabOmd2bPZcb0zu+HPGV7pfuezgSnfihZ354CQ5/4+nVbqjnt+z0v3Wbp31P0my/6c694ifWODOSjdJZt+nM+8+cs/PVbpz/bwzbp0kL474dqX7m7M7n0V/vak3VjvjKp1xjOFn9/Y2PvN0Z335jistVOmeMcu1lW6SPDeuc0bTrhM7v3Oz7tM5dy1JRq67eqV71vsOqXST5O7jjp3uzfWe++/OzZsy/N28NMsT0/lqkiXv/uV0b/7bOVt8otL9yI6dtcl7rjv9z9L+t/nn7qz7+sIqvXuppf7ZmQfZ6dTOZ+4Fp/yq0k2Sj4y7rdLdacUHKt2XvtVZ15ok14/pjH2ccNX0/3z7t3lHdvb2brfDpyrd6z/UO1P07t929gaseVHn8/Pqn3TWAibJLsM6c3pfXq03733bhzpzQvP9sDN2vMbBnb3ISfK5f3bOxdvlhR0r3R2fX7nSTZJlZvxDpXvURzvnGCXJby7onD+x6Be/WenucExvHHalBzr3Ahv8/bhK94sjVqp0k+S4r5xZ6a68YW9f4xcO7Yz9LzJ75ztqqcMr2STJwet39mxdunVnTOzIMzvnDibJTXd2fhbTLp+70k2SWZ9YodJ9eeKple7nFuuNw576xEcq3cMO6pwNv8bad1e6SfKrV35U6e731O8q3ST58nc+Vumu+olLKt3Zdv1apZsk+57R+S55aN7OGVf7XLNupZskWyzXWbdwyam/qHSTZLPXO2dGvXpkZ0zgx68uVekmyaYndNYZPjupc484bb/eu+jWW6qzl/bzH9yh0k2Ss8fvV+ked/wule5uf+zNlexy7vsr3XWO74y1f+bN3vrvE47snH326HW9/RcjXu3spb1l/87a1klTenu3T76is57zT//qnJXz4MnfqXST5P5ffKDSffPs3sP7FV/7U6V74KdfrnR/M8+2lW6S/HDFqyvdRR/q7LE+fPnOuRdJss2eC1S6C23SGTdLknMuOrnS3XWDn1e6Kz3dO7d86707exmWf7Sz5vKjNz5b6SbJmPM7n8ufGd4763nKDCtXuivv1tlHe+k1nT1KSbLTOp3PomMnd9bMvvNUZ11rkly01VmV7lrvdc6TSpIH3+ncY+z3j84Zghcc0RmrTZKj3umcPfP2EZ31nCfe+WClmyTf+Po6le6Dp/ful3ec2DkH/NvXja9093qrt/d33gU6n0UXLN9ZD/XEC53PiyT5wJUTKt0rzvpjpZskV63R2aOb/HdrgOYZGJUDZ5r+a/+P+mvnTK4k+d31ne/6t49apdL9wvs6z0hJssEynffEH/un4yvdJDnq/M5cyI2Hd+Yr7rtg10o3SR5b9MuV7tHf7uwlH7tJb2/a4iddXel+9N7OOWJJsuUlX6h0p/z29kr3lyf2ztE8e4X1K91vPt85R2y1w3rnMO60Vmf8ao7dO/d/SXLh9p39HV946uVK96IZeuNXjz34pUr3fzqvY8xx3+i9z++GH3Z+zt//7BGVbpL8/ded89puW3C7SvfBIzrjYknywBc7a/j/vE9nTdmd1x9W6SbJP9b+aKX7rT/0zq67Y//OuwJ3P6PzPuLjxvbeVbbDAxMr3d9e/HKl+52FO+ehJ8neO3de9rjg13v7Ua7ZtvPs/r0X36l0j9yqNy6948866zj23LDze/GLDXvvOf7XYxMr3SO37L0D9PGDOvvu/vCrzpnaW77Uu8c4avanK90dt+/McZ77k87e+yRZ8AtbV7pff+2MSjdJtpurs1b7jWs6a7/O2XTzSjdJzvtaZ87i0Pc6z1GzXd7Z85MkR+zTGce/45DO83WSbHZu5xz3FW/vvBvl5d9fUekmyfuW64wjbnJXZ079s689UukmycVXd/aZ/ebjy1a6STL3iZ17jBmGddaXv3pkZzw8SX64w8WV7qI7dfbcfXiLSjZJsvsM91e6F521U6WbJJuv1NlDs9uNnTPKPjtfb2/Otrd3xl5+t1NnHGr+gR9Wukny9Dqdc4j3236+SjdJXjmlM4c931GXVrqP3/fZSjdJ1vhBZ371l4d2/v7Gj+qsjUySC6/vjDd8/PLemqRb3u6M902c1vld/sCaf6t0k+SxzvLILPL15Svdk2+6utJNkgnrdsZUDzut986xfT53TqX75rKd8yW/dULnPZ5J8tR9nfbqj/2h0h1+fefctSRZ51udsw+nLNTbszz2o509pGsv1Rkv2iu998hPOadzFsicL3Xe37XaC70zRpY6arFKd45neu+M+/gx0zrh//K1pk+NGJEj5pj+74w44I/zTvfmv818cmff/nk7d9ZE7DXPaZVukhz0lc4+wE13691b7jVf5/zP9b7aGb8697refNNCU/5S6f76x5212mP/0pnfTJJZt+rMyz4wpbcm6cUzO+9r2WO/zgPY7jv23rt37Qe/X+ku+G5njPBja3TeG5Aky/zqw5Xu7tt11nMmyXKPdNZqr3h855njrZ90zsJJkpt/d2Glu99HO+fNzv50b2/VlfN23hU467aduZsk+Z81O+Mfn1z+mUr3X6f21md9/P7OuPQxx25S6V5zQufMhSQZeXTn2W63w7epdJNkxrGd9eXvv+G4TvfMzj71JPngWZ014H/apXOPMeemN1a6SfLCBp1z3K87oXfG8bdK31N/u7Mzlv7wCr2/663n6pxndPbfOmeXX3J5Z4wwSZ5cq/P9t+utX610k2SjmztzyYfu29mb+saU/SrdJLlnSucMmF99ubPP7J8rdcYQk+SAczpjnytN7tzTJskS13b2TX5pls7czZIT/ssB7/+FOa7vrGlZftk1Kt33Vu6t41jz8JUr3Qe/8PlKN0mWvaDzPfXSCp0zE+8978+VbpLMOEtnHOqM33c+P5d95rhKN0lu+W7n73qn4zrr7JPkxdJc8vu/1BnH33ex3lkSV63Yma9f9WsnVrq/ubn3HLzw5zpnJi51RO9zecL3OmMvbyz/m0r3ikN736uf/tnele5Fm7xc6b43c28++C9zdsaXD3x8w0o3SX5wceeMmCdXWLvSnXzZXZVukuy7zh2V7jnXdTaOLHZe5z1NSTJHOveea57QOz9yy5Gd9ZF3rt454/FH3+2tQVjlzM5eiVdP6qzT2f2Q0kFKSf44a2cNwl9+uUilmyRbLNFZH7nGRUdVuhdu0luP8c+vj6l0f35R5xylX27We2/OyHs766GmfqE37z5+785ZBJfN0dlLe9xWp1e6SbLRLp2zlI6bq/Pdd8Vpvfe8HnFlZ+zlru90ft+SZOZJpXXPN33v//g/92YwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IgODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAXDpk2b9r/+j5cdM/e03y326el+EVPz1nRv/tuUvNsJD3Syr733Wiec5L0pnYt+591RlW6SvD2687sxsMwSle6LH/5opZskMw2fUukOzD+m0v3LJedUukky/4wzVLprrfvxSjdJZllkzkp33JtTK92XZ+x0k+Rff3+i0n360bMr3fev88VKN0lmmWNEpfva873vkrNPOb7SXf2Da1e6SyzT+1z+zlF7Vbq33vdMpfv8iy9WukkyfFjnd3lKOt99STLjmJkq3ZVXXKbSnXH08Eo3ScaMnbHSvf/epyrdBx56rNJNksWXXbbSnbDWOpVuktz/wEOV7gYbr1bp3nnrVZVuklx77W2V7td3/Wyl++a0NyrdJHnl7Vkr3ftf6nxHJcn67/9Ipbv0CmtVuvvvsXWlmyQLzDSp0p30emd8ZIElV6l0k+S8P/2l0h0/spJNkiw5ME+lO9eI//343X9i9vR+GO9N7dy/jBxbyeZ9s7yvE04yy5vjK93F55690k2SKe+9U+nOPnq+SvfNyZMr3SQZKF3zmOGdZ/eJkzvfI0mywIXfq3Qnv9L5fUuSOx/u/DzGrrJApXv/w89Xukmy8Pn7V7pXXPdwpbvOR8ZVukky6dXRle5KC65Y6SbJE892fjdmG9cZa586vDeO8czLnfGGsSM7z1ELfWSLSjdJZpp1tkr3zddeqnSTZLE5O3OKLz18c6U7fHzn8z5JRs/ceUZbcvyale7Tw3rzDm+90um++kLvml+ZufNgsuQSnWfK++99stJNkrnn7syBPnzfLZXu7HMtWukmyahZOs/ud//piko3SZZeZsFK97GnOvPBY2aeu9JNknv+eW2le94511W6maF3v7X5h5eqdJeYrTeOMWpYZ93LEut8uNJ9/sE/VrpJssTKW1W6c4/rjJ1NTuf5LElGDu98Lg8f0fv7GzaqM4c9bUTn5zyiOCb3ZGlM54nnOveIrz15a6WbJNf94cZKd+FZevMDI6dM/7+/I2+7MhNfe3HYf/P/XWXYQtOuzyHT+5Iy9aGbpnvz357ebI5K9+pPdT5nHj+58yyaJJstdkalO+9KvbH0N67urBG5btFnK9215vlcpZskJ72/8x2023vvr3Rvvn7XSjdJzntz3kr3yn2/UekmyW/3+lulu9PpnbVOj6zY24/y8pWzVLpXPX9ZpfvJhXp/12fOfUel+5VLVq90k2Szh79a6U6Y/1OV7pRP9+bILjmnM1/4zmWdMZuLriuNqySZ+6XOfNPSM79a6SbJ2Qt25pz22aGzVvveazprLZLk3WEvVLrj7umMf9w8a2lfY5L95u/M633yYwdXukly7pU/rnS3OKrznPs/3+79XV/xUGdN7irbd+ZCll+nt89s6pubVrp3XHZfpZskB279XqV7wxK/qnT/+v7OWEOSLLdq53fu+hk6a2U2WbyzfyZJrjmksw7uge07331JssXxn6x0n99h5Up3wkPHVrpJ8tpunTnOPx3dWZN07Fq9tWrbXNm55gf27D27n33TSpXu3Xt07gX2vHe/SjdJ1n7nkkr3gvM741tPLzWx0k2S5+84tNLd+Ine3sYL0xkXmHOOzt/fiRd1xvqS5Dv3dfYg/nhYZ63Tng+dXOkmybC5l6t0556ht47jl2909t197tk7K90z136u0k2S7/2j813y3bF3VbrjP9UbExg2fEKlu/aw31a6SXLp/p01SUtd1vkuGXNdb6x9plc761DfnLJwpTvm7+Mr3ST5wFadMZK7t+mtw7n2zs683xbXH1jpnvu13lkEr36787yz4EudNWXDt+2NyV22+NKV7qI7b1bpJsmn9uvM6R9zeWfsbOVnTq10k+StGzpzGvvv84tK97CtO+txk2SOVZ6udOd8vDf28sjPO/N+hz3wP5Xul1fu3HsmyY53/7LSXXnBByvdTbfqnan4u8M/U+les3hv3fOHFujMdc34Zufsp+HLvVzpJsk1J3X26c45trPp7qZHe+sxfvdQ5/7luNk797RJMvXa6X//ucNL7+aed6f+x+ueh8298LQR207/cc2Db+zsrUiS8bP9oxM+8IJKdsZdOmvzk+TnO+5W6f7+zz+pdJNk51WPqnS/+fYule7zM3yo0k2Sf73S2We56D6HV7qrn9fbm/bpmzprcOZceoVKN0mWOKzznXn/XRtVupdu3Pu7XuYvnTGmHT58faV7wFd75+M+d2Bnn/rkWTpnfCTJh7/0QKW79QqdcaB3PtR73j/6/kcq3XcW6NxjHPLK5yvdJJl9gc5c/W+G984veOa40gEit/+8kt1tvs6+jiS55HcbVroP79BZp/bkW729DH9dtvPv97NVDqt0k+Tgv3bm1F98Znylu8e8vXOv19+psx7+2E901hYcdkFvbc+M63a+/049pjMmliR7PtPZ//uNLy1Z6f5swfUq3SS577jO2vJJP12o0n3wgRMq3SS5/dzOOMZi7+u9T2KnXTp7Jvf+62KV7ilfX6PSTZI/n/ujSveiL3fmTZ97sHeuzIXn7F3pXvaP3hllB29wZKW72+86n/e73995L1GSvP21H1S6ay/75Up3yyt6a+tuvLqzFv7Ov32r0k2ST5/WWXf51GeWr3SPWK2z/jRJXr5sk0r32P1/Wuk+eHtnbjNJvrR8512QW323c75Iknx5sc4e+R336ryz6pn9vlnpJsk2121Q6f5zxt9Uunvf11m/mCSLX9AZq/305N45mhsc0XmW+uUee1a6R3z99Uo3Sd7/s847FHZ7pTOOcdTs3610k+Qf13SeS255oveeprUu7Dyjnf3jAyrdq//Ze5/ET7bvPEv95Mzp/w7yJLlq3955fD86qHNu3txXblzpJsmUSZ37oh8u9oFKd6aP9cban726M6Yz9sTOvctiO3TWnybJRVveX+mu+4fePcYft/5hpbvVT79f6f5uaucdd0ly0m1HV7r77dt5H8FNt/2h0k2STU/pvJvh6Vd6a0h+MX/nHfWP/Wyg0l3hrc6e4iT544md9s5r71Dp/mTTfSvdJJl9zs7ahndX7Jx5mCTf+U7nXaw7377rbdOmTVv1P/3/DR+22LQxw6f/GOTUZ3rPHN864GOV7h5jO3On73y5966rgw/r7BWabasbKt0kmfvPV1a6P1u0M8ey55kTK90kmXmuzh7cWbbsPDOO3Kh3bvlBB3fOV51//c5apyR56q+dtXvffbLzfpld7+2cY5Qkyz7SeTbY9O8nVbrzPdB5n1GSDDu6s7fwuLl7Z/C/s09nvdMPJ3fGmR68ujcu/fDWnfm3r1yyXaW75ph7Kt0kOeTxzvPXxce9WekmyXtbTqx077u7c+71Uyd8p9JNkjWf6Jy1vtjRnbMj379Yb77w5y939ux/+sDOzzhJdjmg8/l5yFoXVbp3Pr97pZskf9urc//y1hqdM66WP693DtwFR3X2o2x89huVbpK8PKYzlv7e9zrPJSuf2XlPYJLs/P1HK92vfbSzz3rgnd7P4tSnP1Hp7ntMZ61hkty/Rmd93Vw/75zt/92zp/873f5tj899pdJ97OSXK92fz9c7k/Lwozv77//1fOfzIkleXOe4SnfJne6tdC+aozOPlSQ/+GVnz+u7P+7cu+zxUu/Z4bpzOveIJ8zemx/4wqmde7kf3NE5r230rr3nnS+dOaHS/cJGnZ/x2xv9tdJNkoO/0nkX5EI//I+n3f7Xnvtx56z1Tf/yzUp316tWqXSTZNYjOuP4Fz70s0r357/eo9JNkk8s2TkreIYP9c4e/PGjne/VS17snFF2zYG9553P79m55gWeHFXpzrDUjpVuklzx9c6+kX32m6vSTZIP79aZwz51ky9Wuhut3vkeSZL9l+yMT865Zaf70B29tYa3bNZ5LtlyeOcdhUny0dM7c0dP/n1Cpbv4/Z31P0my4ps7V7qL3dTZ27HRQWtXukly+gnfrnQn/biz5y5JfrTca5XuUdM66yNP+uKfK90k2ebIzrPU8et3zrc76cC7K90keee60yvd1fbpze+M26QzJv7FeW6rdJe9qvdujRmv7/z7fW3Zzr7+8W919hwkySE7/LPS/cewzrNDkvxoweMq3a1Om/hfrXuea+blpm2z8u+m+/V8fr/OGZ1J8swunb2nH/pNZyxv9O6dd0UkyTrzdcZsbjrpS5Vuktx36WmV7vA9OnPqz93U2beYJDu+8tlKd8s/d95/fcXTvXGx0TOMqHQ/c0rvnSo7LNw5t+YP3++MU+xy9O2VbpI8e++vK93FvzWh0r3j5P/49Qj/a/OX1uGssF5vvvCr23fGH9d7sXOGwV6nds6HT5LJp3TOgPngtM57E3f6ZmefepJcdEynu/f8nXerJclv71+k0r3o9c4Zxx8Z3tvPcMOvN690x07ufF+feGhnPXWS7P5E5/yzb658dqWbJFd9pjM2dty+nTMel5+xs74gSc6et7N26IyPdNb6fuCYzjm2STJlu874/4yH9tYEPv/imZXuQeMWqXR/sVvnvfZJ8vUrOmOm2/zzvUp32Kqd93YkyYi9Omt9h3/85Eo3SfY/bJZKd8dLX6h0Tzyu887LJDns+c736qjDO++qeHJY528kSV76XOc8qoPW6n0WXXbdnJXu+YfuXOmO2b2zFzpJfnVyZ33Wl1btjE9ucVznbyRJPvXujJXuD0/4QqWbJCOu7Jyf/Iv7O+8aefP0zj6JJFng2gmV7vW3n1Hpbr5h57yOJNnyz533hP74e725kpkvPajSXWH2xyvdIxe8utJNkiUO7OynvWShX1W6Hyi+f37lw9avdJ/cp7MvPEmuXatzX7v1UZ3vv3+8tXilmySPzLNwpXvDUp138vxrWu+MzkkLdJ79Nj6t80ySJEdt31l78sarnc/7Zaf13q240CtXV7oHbPanSvfOO3vre2bZavtK99Z5jqt0k+SWDTvnf3558c588M8v7p09/7lpnX0H3/hVZ93s3bOeW+kmyWPLXVzpnrld5z13SXLf+M78wDoPbV7pTtqzd3bXRmv+vtL9/Syd37nRP7250k2SQ2++vNKd++ZTKt0k2WylzrjATvd2xj4vXqG3//cHW3bOKJx5t8765FPP26jSTZLRV3X+rn/w1hGVbpIs9WbnM2OPGUf/H9c9d+5oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/MgODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/8Pef0XrVRds3/aZlYSQEEKo0gm9F+kgTRBpUkTEggoit4LYsaBiF0UFFEVRBERQVJoIWCjSe28iIL1DCAQIIT3fxjv8tp53jFvfnGON9Yzj2Mafc6ysdV1z/tsEAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCYXPnzv1f/8frjFli7pmr7TPPL2Jups3z5r8NH5i/0p0663//c/tPzJ4ztdJNkldmvljpjlhsuUo3SWbtsEOlO3aHRTrdBZaqdJNk1PBRle7L88+sdOfPsEo3SW67/uZK99kHO90kWXOdrSrdlVZYtdKdNrqSTZLMnt35zD/jx9+sdHfa6UOVbpLMXXREpTtiRiWbJLn5+ksq3Vv+cX+lu/ayS1e6SfL3mzufGa9Pn1TpPvXsnEo3SSZO6lxz0vmOSpK5c4dXuuMWGFPpTp89vdJNkvHj3lDpTnr5+Up3q7V3rHSTZGB8535r3Y0nVLpJsvjYlSrdubMfrXR/euwplW6SrLjOapXuZistWemOme/1SjdJJqy9cqV75e0vVLpJktmd+6I937ZnpXvM4R+rdJNkhcWWrXQveejJSve1GVMq3SRZYM5ApbvcsN7z6rJzRla64+dfoNLdavE3VrpJMnK+zv3WYvOPr3Tnn9O53iR5fVbnXnyRMb2/v1nTJ1S6Yxbp/JzHTO/8jSTJnDmdf79XZ3QGX17O5Eo3SZY478uV7vSFOvfhSfLC3M4917FX3FXprnfPTZVukky8/KxKd/qohSvdJRZ8udJNksVHdT4/115lxUo3SR6f2pnrytSXKtkR6TyrJsl8i3bu5V55uTMOteJSy1S6SbL+zp05tOEze/fLI2c/W+k+cfdlle7AfJVskmSBUQtWuq/MfKXSfcNim1W6STJj9uxK95knnqh0k+S5uZ1xjPGrbVLpvnTHrZVukjw1sXO/tfiinb+RldfqfV+/+OSjle79t11e6SbJQOle7pHHHqx055/Ze/Z7+dXOd9QOu7+j0r3gvKsq3STZb4+tK90VVl6l0k2Sl559utJdYcLyle4jD3buXZJk7Q23rXQXHT2h0h0YvVClmyQZ0RlvGNa5dfl/2iNLz36ldTqzp/bGVB9+6OFK99aL7650X7u9d781Z0rnO2rFUcU1n8NnzfPmZx+4KA9OnfRfPbCusdiqc3+557Hz+pKy95K9+d4/nvm7SvfKpTvrk1ddZUKlmyTL3Nr54F103c73fJJc/mrn7+vYtT5Q6V5zTO+Z49Wz16p0F36psyZpgY073xNJcsvk0ufu3//S6SaZOq2z1n7WMm+tdEd/5J+VbpKsNNBZu/DNnQ+vdPfc4keVbpJM7yyPzKiL3tIJJ7lzyc6Y24jXOmuSNni4t47jru0/Wume+pPOz3jWar+qdJPkDY+vXuneMvPRSjdJ/rbm7pXu+66YWOkOvP/XlW6SjDvgpEr3pb07c+qj1+/NfX9l1fdUun/Ys7OGMUmOKo3zfm+p31e6D7+ptznnX6euUOl+8rTOHMvyG61Z6SbJQ0dsWumufvrFlW6SfHzlGyrdUxftfK9+cOfe3OmW23bGG479XGcdxydWO6/STZLHt7yg0n3TUsdXukny1G2dNQZ3LtT5jDtgmacq3ST5xqzO3qqrJz1U6b641IGVbpLcM3Nypfv8j2+pdJPkwjO/WOl+acPS+OSNt1W6STL+jR+pdHc7srPP+sbVe/PIO3/qnZXum3Zev9JNkoM//Eyle9s3O3vjRv/yh5Vukox9fPFK99MDnXVfW8zsPKsmyXuu6nxf/+5976p0k2TdVzpzDyMO7awDmPm7OyrdJLn0jZ09GLsutGilu/7drfMCknX/Z+NK98Er1qt0k2TMep1x/GEndNZb3LXB2pVukmw4rbMH41+7dMahPvnQc5Vukvzg2c4ejEUuuqPSTZLZm3fm55bc89FKd8ave+NQMx/qzDVPfkfns2ipA8ZVukmy1ilXVLpXHXBNpZskt2/cWW+43R6ddc83PHxmpZskf32ic8bWx7767Ur37jM66w+S5OuT7ql0Z5/xaKWbJLe/v7O3+NVTO38jC/72xko3SaaM6cyPf/z2zj3GCbv0Ppf3fGKDSvee+a6odJNk3RU6nxl33H5GpXv5U2Mr3SQZP9AZ01nll52fxc/Gd8ZHkmTBsd+rdHdeujeOcc0f5/0z2imv/DrPzHrmP173vOG4MXOv3mzenyt62fa/nefNf3vtulMr3Se3faDSXXHWJyvdJPnkwZ3v+K2Hf6PSTZJznvtqpXvPz8+vdE/+eGefSZL8ZVJnT8g3H76+0p3y1s58UJK877J5v/ciSbZ6798r3STZc3bnfNxNZ3bG2757SW/N+tr/03kWvW2JzjV/96bOfoMk+emkVyvdFfc7sdJNkkfuebzS/eAHOmP/M5/unLWXJD/epnNe4kcv6+y/WG+N3nlRz+z950p3zWM65+QnyXJv2a3SnbNn59/vqpG958XVR19Z6Q77Umf/zI5HfbfSTZJb/rJRpTv1Y53x3SQ5Z9OPV7pLbdY5i+rJX3yl0k2Si+6/vdJd/cH3VbrP/64zPpEk5/66cxZHNvlgp5vknL90xvFuOO1zle65Z3X21SfJ5zec9/vfk+SkyzvvrDrnwM58UJL8bVbnnVX77txbw7HvtzvjsC/d1NkX8MNPX1jpJskBC3XOz/rx7Y9Uurd86L2VbpJcOb2zL26HD/X2gq23fmfd5aYXdPZ1TNu897yz9suddYYnPnNYpTutNJ6aJE+9dnWle/GuvfHlgyZ39q9N/XLnnX9r3ddbG7nhJp29RGvf1LnHeGLP3jmMX/9w5zP/uQs6Z4AnyfEPdu4/fzSxs27huhs639dJ8vdXO+NQ+7/c+Rv5+uc7Z2gmyfL7dc6BG/WvzlrqJPnkt99d6f5w1c75jpeu0ttXded3O+MYc9/TOWxl/Fmd9zUmyYzS+eIvnbFTpZskK536P5Xu/5ywRqX7hdVOr3STZP3rOvNoXzi68/m558jvVLpJMnndzpnoA1/u/L4lyeqXds6oOOkHnfHl9Y49tNJNkqfO2rXSHffZzpk2t12zf6WbJG/fsjMHetyCP6l0k+QLqx1Q6X7y2c6ZzI+N77zTO0nmW7ezf/TpqztzoN95dvNKN0lO3ezUSveYZXpn+m6+cOd904t+oLPOY52DflTpJsmvftGZR1v+fzrzRlPeO6HSTZL11u6MI37xxt6z++q/7cwJH/bh79w6d+7c//ihdaO1Rs+99vQJ8/x6nrq098yx6LKds88O3rpzvuOFj/XeP3/MZV+qdKf98tpKN0l+teudle7Wwzv7kdd9x8GVbpJcOrIzL/SnKzrrnpdcrfOdmSQnj/1MpfvyN6ZXukly3aude7ULLup8xn1rq94ZO7sc2hkn/N0Tnb0d111dOpA5yaY/65zLdeZ9n650k2TLJTprT5bfuzPG+6sfX1fpJsk553bOeDziU51xleOO3KfSTZKNXuvsW7z3L53vviT5/hZfr3SPvvqESvfkYT+odJPkkk1fq3Tf+pnOM/9N+3bWDSXJxPM649KfHNdZw5gkJ13feX5Y6M7O2Z/3v6t37vx2V3SeK69dqnOWylbL9daKjv9mZ2/VmmN79/ibfLuzduGyKZ0x+u1/0nt2v3yjzruJ3je2M0d92M97n3GTT+/cY+x0XO99IOdc2PnbfuaoznvStl/uT5Vuknz7l3dUuh9cp3OG+7GH9+abnn17Z7xo05c6zw5Jssbk/SrdA87qrI8c/XjvfOMfLto5c2jfn3XezTDmQ3tUukny2FWfr3TPf7VzBnGSDPv+myvdcz/RuS9a4qTOGahJstGozl6Xkad01tq/+7JPVbpJcsr/dPYpLbtg71yNXU/8VKU7+sA/VLq/mdb7LPrImzt/148f3DkDfOb6nTNRkuTYcZ3927M/1psf2OSEiyrdx/borO85aOI6lW6SfPaYd1S6f/pGZ2/Hyqv1zlf94KGddRw3b9J5t0aSTDx65Ur3pJuWrnT3+HJvTOfcuzvvVVxp3d9UusN2680HbzO7c3bXnot39h8myV0f6Yzr7Pmtf1W6izzTW+s77ved+fwjXuvsZxjz1c67lJLk+LEvVLo3f6H3XtPTd/l5pfumhTtzzZ9du/dexY++NrnS/etFV1W6H/vp+yvdJHnbAp+tdOcc/YlKN0kuurPztz3fZZ13o7wwqXe/vNRA530SX3+xc6biGZv2zn7a8frOewpXHNeZd0iSu0ZNqHTfNf0L/9W659WXHT73hI/P+7Pm1tnzmHne/Lddjzqo0n3f2t+qdFdbs7e/cJ/fd+Z7f/fH3hnV1+349kr3u0d31jHuOuWoSjdJfjB33Ur31h931sHtsFtnHitJJm/QOQNmq+V7f39P7dl5P96zl3TGeF8Z2dtrudRRnXVw5w/rnBF488md8e4keXatznfUjSf35uu/9q7OXORz93bOr/vEW0+tdJNk+qTOu30nv6MzXvrJfTtnZiTJB2/ujMWun845xEly4a866zgOKi2jun3v93TCSWatsVelO2f3UyvdGSd09uAmyaF/75xt8c/fT650k2S3czrvpzz0+c55+bu+1vte/czJnTVJB367c57Ddp/v7PlJkktP6uzT/eNif6x0k+SNC3XWXh56eufdAT9ab+9KN0mu/XhnbGzgjZ1z+HfLIZVukjx5XOdM+5Fr9PYdfHtkZ5/1H1bo3C9vdtqRlW6SzH9hZ+zlF5f9vtK94+O9dRznfGubSneLcx6qdJPkK7t3zll9fpXOGP0R93XWDSXJh7/eWQcwYtXOvNAj5/TG5HZ5tXPNDxwzvtJNkhMf6MwX/vljnc/7H8/prV04+fDO/oA37f5opXvF7p1xzyS5Ye5PK90fz9eb4zxnYuf8i+u/1Fkf+eznj650k+Sc3Tr7iZa6r/NMOWuVn1W6SfLaOzt7w59fd89KN0l+MHtapfvGd3aed7ZPZ29Akhzzcme9zIn3dM7r+NlCb6l0k+TmAzvr4a+6uLcG4et7fLHSveSczntMfr12bw50r3U67+cbdXpnn+eW3+r9Xox/c+fd0NfvO6XSTZJrtvlapfvmY5erdJ/f5vhKN0nu/0Fn7POpkzvjGH9/c2+t6NdGvVTpPrTjEpVukjxzxyKV7s5v6Hz/fW+bzr1Lkpyzx0KV7rkPd863+8Vr91S6SbLVHadVul++pPcehTdu0vnbnv1iZ53Ossv07pc//2TnfaxH39I5N3bPCzrrwpJk47n3Vbp7H9M5RylJPvjZzp7z96553/9x3fNA5f8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4vMzDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDDiP/mP586dk9kzps3zi5g1d+Q8b/7bjIHple7cDKt0X5v5bKWbJJNKP+Y5ayzVCSeZb8Xhle5CA4tUuhk5p9NNMmPW1Ep3wWGdn/GsmbMq3SRZZ7P1Kt0Fhy1Q6SbJ7LGd37nnR877z+QkGdv8XO58fGaDLTaudO988PJKN0k2XWzvSvelF16tdJNk5QnrVroLj/mPbkn+12YuuFqlmySffdMWle7lF19W6Z596TWVbpIMH9n5Lpk7e6DSTZJhpa/sgemd778FFxhX6SbJcit27uW2ntD5G7nt9rsr3SRZc/EVK92Jj/fui2Ytc2+le86Zf6h0X5gypdJNkressESlu/aGy1e6qy7zxko3Se6+7rZKd5sNJlS6SXLxJXdVutNe7HxHffPIkyvdJNn3kHdVurNmdp4dlhm+YKWbJEsOdP79VhmzdKWbJBsuNKHSXWhg/kp3zMhON0kWHLtwpTtqRGesb9Ts3pjAmOFzK93pM8dUukmy0IKdcYHG2HKSzBq5UKWbJANzxla6YxfoPO8893hvfHnixM6/3/zLlwaLkjz9m6sq3bUnzq50nyk+72y4eud++alpoyrdSc+/UOkmyerLLlvpzhy2SaWbJNOnPVfpLjLu9Ur3ld5jcF6f2hnUGb9EZ3x5YLHePcZT93eesVfbbJlKN0mmPjex0n31lc791gIjeuOTD734UqU7eoHO79yLD/yl0k2S4aWf87TpvXnbF6fNqHTnTu18Ls96uXePOGvyI5Xu6MXWqXR/f+JvK90kmTWt84y27ITS2oYkd97zWKX7rwc7vxcjh/XGod60bue58oUnOn9/66/dew5eetHOM9pLj3TGgJNk+OjOGNekF/9R6a6w/JaVbpKMmNb5Xh0oDUPNndVZJ5AkI0bOV+nOnl184BlVmnef0Xl2f33Oy5Vukjx+58OV7uv331Hpzjels64vScYM64xPThvWG18eOWdmofrffz/Nv/wzWfvH352H1/L/uOgnO87z5r89N3bxSnedi1audF9/y+2VbpJcckvnOWmhw8ZXukmywR5PVrrff8e/Kt1nJ/TG6F/Z/qlK95nJ91e6r1zTGTtOksUu6dyzDuzW+zy/cP3OOsb9l9u50r31tt7z87B1Os92G4zYpdK9YHRvLGiZdbeudN905E8r3SQZf/7bK92/n9tZnzxx5POVbpJ8YbePVbrP/K1z/35aeutmL53R+fzc4/XeNb/5gc540MqjT6h0zzjuB5Vukvxk286YzevHz/vnhiT507+2q3STZNobOs+Mdyz0hko3SQ5/qPP5ecaxV1e6y/y1M96dJN95oTOvt9S7Out7nl3rJ5Vukiz5rcMr3VvX3KDSTZLdv/63Svcf7zio0j3nb71nh3fu3tk3Mt9pnTnZV77Wm2NZ+JpDKt1lnzy90k2STV7/TKX7/td3qHQv2/LxSjdJjv7H2ZXusqO3r3SXH9vbPzrhfZ32Mqe9Vukmyf4LPVDpPnNB577o1SmdMeAk2XTglkr3rv0+V+l+87pzKt0kOWHV0nPw25esdJNkyc8cWeneeu7PKt3lz+3MQybJFYd11hquMb4z9nLfh4p7O77aWQewx98WrXSTZMZAZ9/WBr/r/Pv96bFDK90k+cnSnefV59Y+oNJd/bzevNHjMzp/1x9a/rpKN0kemN3Z53nUg51xqJUe6I1jPL9x51yUcX/p7GU/s/RMkiRPrrBCpfvqUp1xzyR5YtyfK90XLv5Ipbvi82dWukny2CbnVbojPvymSvfoPd9T6SbJNqd35oOXOGFypZsk936wM+/3sxc6a1MeGPnRSjdJllnmtEp37IOdua6tz/6fSjdJLvpo5xys5XecUOkmyVWPTqp057yns09pn806P+Mk+dl3xle6X5ve2XO35dTOfuUkOf+5OyrdZRftXfP0d3+h0l36a5311APDz6t0k2T4fb+pdKevvWGlO3fMHZVukhz0WmdM9Ys3VbJJkqvfM+/XwE45679bW/7PRVfI5h84aR5fTXLnJp3nmCS5e9vOPMiPZnTusX92a+estiTZ5Z3bVbq3Hdfbg3T2OatWum/56fhK9+4lOufAJcnRSxxc6c6/bWf/+wXbdcYdk2TtxTpnLpwxf28cb8evbFrpzjr8nkr39zd19nUkyWNndM6bXeyezrqFDSf1zgpecb3O2OO7Pt9bJ/rlLb5d6c65prOec9Q621W6SbLiThdVut95Z2fPyBce+V2lmySfObezT+Lh1TvjE0my0nmTK91PHXxupTvqhc4zXZKssmNnz8j8n7mv0r1qzF6VbpJ8/bjOeM3uJ/b2eP7jc52/7be9/OVK94sn9vZ8v3zAmyvdve7crdJd+S2dc1SS5NXzO/Njv7uxNw77/Pc763zX3/uoSvelxy+odJPk9q8+WOlOP6uzBu71B9eudJPk4+M747v3P9Tbc7Dar26udHe7pjOnt+A7eusMb/7ZLyvdbT90Q6V71nd7Z/C/NOqrle4tz55X6SbJ2RM7896Pf6xzj3jR+D9WuklyxE2dMbkz/nBepbvSX3r72Bc8v/Nd8v4ddq10k2T8Xzv34rsctXul+4nLeuPLu2/32Up34SuOrnQf//J3Kt0kuWjWnpXuJ9/88Uo3Sb79Wud5533v+2Sle95LnXc+JMnKx3XeR/DG+86rdG94xymVbpKc9s1fVLpTfvr7SjdJFn53Z33W7lv8tdJ9cLHed9Qmf96g0v3z3zvzto+s0rknSpKzp3Xm89+9yv6VbpIM36fzDqjdtu6MvVzz1R9XukmyxVqdZ6mNV+usR5qzbGd/Z5KMOaDzbo2tLu/8LJLklb937j8nnrNcpfs/13fuPZPktwd29h++47jOeXwvXtsZ90ySqX/vjAns99tjK90k2eqMzhjltv/o3Hu+fPhalW6SvP+PZ1W6pz8+udL9ylcurXST5PM//mCle+PcznxGkrzpr5372qNGn1Hp3rzU5pVukvxmm/dWuqN2H1/pLjP5U5Vuknzl2537lzd9uve8uv3X3l/pHpb/brxoykur5Npz/jSPryY5/DuddZdJcuSUzv6KqxZ+W6X78/fsVekmyRcOPa/SPX3jzvtlkuRjO3bWO33x4ko214zu3ac9tHTnbIvhn+08c3zu5M48VpJ8ao2lKt2jX+ydUbbk5Z2zW1dZe71K99W9eufOT5rUOfts1cM6vxfXvtJ7//UFB3XmC8+a/USlmyRzzvlhpTtl3a0q3Uuf6e2zPPrBzr3Agsd31sOffWXvZ7HTpp39ASv+7rhKN0mWfaizjvHZL3X25uxzVecM4iSZu9DnK90PXnB+pXv9DztntSXJab8+sNJ9aNvO50WSXHthZ77wnNM7+8E+9bk7Kt0kufaoKyrdy9/ZeX/58bd1xruT5Kwr96t0P/3D3jqOFW4unek7obNv5IaDOvf3SbLcCldUun/bqzMWe+NynbH/JPncgZ2H91+P7OzlS5JDd++8q3OJpztn+v70mc4+iSR5bvvOPeL3v7tNpfv1/T9V6SbJwut05r5/f86LlW6S/HH6HpXuNy+e92PLSbL/t3vvPPrc3Z0xrvcv9fVK928jeuf4vfe2fSvdn/2hdxbBvV/r7A3/w2GdZ7+VN+q9J+bdp3Xui2695opK991v7e2tuuSEzvq6G/fuvLsySZZbtbMm6doNr6x0jz2rd77qwcd15mF+fF4lmzW37+1l3+LDnXXry5zeu18+5OzOvPo+z+9U6X72vJ9Xukmy/yHPVLoPTWm8Szp54areusuP/uzpSvenB3TGdJJk34c675b6x9GdPVsvHNl592+SXPlYZxxqxJGdv79LZnfuaZPkwcU671976h3vq3STZME9O3OV1+3RedfB2t/vnf300XGd/UQDa21X6R40X+9n8YvPL1jp/vEnvfUYBx/fOV/8h5evWekedvnoSjdJPrpz54yt427urC1a9ou9/b8X/fy3le7IE/9Z6SbJmSd+qNI9fN+VKt1R2/Z+l7/74c7Yy73v77zjdecnO2e7Jsly83Xua/farzM3niRff7lzPmgu/O/+ZyNfWC1Lnzzvn0c3Prx3/uDknTrvlxl5d+fdlIvu+8VKN0l2/XvnYPLVvtL5bkuS3b6xbaV78yGdM4d2/0jnHNsk+dqJnfftfPTizvs0j7j8hUo3SfZesHNv8vmVeu/du/NvIyrdUy7prIPbZdnLK90k2Wfdzp66pQ7u3EOsvHDvLLhDDuus7/nu2Z13zibJNz7QGX/cb8/OONObltyn0k2SA9/8tUr3ouV3rnQfProzDpsk14/snGu4+8zOebNJsuN7Ou/xuX14Z8xm3Vu+V+kmyXpHX1/pbn5V5zNuxqd775+/99zOmV+/P6d3Ttnod3SeGXd+snMu84tr3FjpJsnHf9N519yD93TmZM9+oHdm1LjvddZ+DTzQe/b7/XdPrHR/8NFjKt3N/rhdpZsk5/2ycxbj8T/rvLfqx/d+s9JNkhdO7qzde+s/O+f3JMkpb36q0j17xDcq3R2X6X2vPnLkqZXuKUd23k+05b69cw3X+VpnHc6PTu+to9rgi517xJ1/1pnLeuzSzrhLknztt509GO+d0nmH11Vf762HH3tL59/ve6f3zo/8w9zO/fLen5tV6c7YvndGzC+Pemul+90fds6Z2//F3vlnSz7x6Ur32++5o9JNkvnO7pxF8M0Ddqh0V3qw8z6sJDn8J+tXuvM91llrf+2hvZ/Fmqd23uG10i96Z36946UJle6B736o0t39+csq3SSZf7nO2MsOW3b2po5c4/lKN0k226ezhv+EkzrffUmy0C5fr3Rve6bznsnZG3U+L5LkA5/utMd8uXP22nve2nv/9ptmdOYU/2fN3rsxJz7a2dOw0nqddev37/fuSjdJ7vp45zPjvNs6e2ln3Fg8b3aZzrsK1x/dWZucJL8/r/O+kfkfPrXSfX6J3pjOZRMXr3R3O/LXle7O+/bewXbGLudVuhtu2ftdfvqIzrrns97ZWQN09U2dM32TZO8pnfasCZ13IK64ZmefRJKM2+Irle7L3+mcL5kkb8v3S+X/87sxB0r/bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5WBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCEf/JfzwnszN1YPI8v4iRw8bM8+b/3/RplezE+YZVus/Mt0ClmySPrLFIpTv/wpVskmShp/9R6b40bValO2bMzEo3SZZcedlOd8FlKt3MP7rTTfL43XdXutOmTql0k2TJxTp/28ss8IZKd9rMzt9Ikkx9ZmKlO2b23Ep3/JilKt0kmTn6P/oa/l+bPW54pZskI4ctVunOl7Uq3af/cWWlmyRLLPrmSnerrd5U6T7x9CuVbpI88thDle4zkydXukny4gudz6JZs6dXuiNndu49k2TG653uuef+qdJdZNGlK90kGTZ/57lk1vDHKt0kufDsOyvdSU+9VOnO7Xz1JUn+8Ie/VrrPPdz5jtpt5xmVbpIsOWGVSvepSb3vkrsffKDSvewLH6h050yfXekmycqjO88Om41bu9JdbFRvTGf4nM4z2qLjVqh0k2Tp4Z2xlwVHzal0h2W5SjdJRs3t/PvNmdMZe5k1q/MzTpIRozrP2AsP7/39jchCle70jKt0509vHOOF1x+sdAfmdMatFx4xvtJNkukLdcb7/jL1tUo3SdZad41Kd8T1z1a68815odJNkmdnd/79xi7a+SxaYtWtK90kWWmFCZXuK0+9Wukmydprb1jpjl1yu0p37oK9Z/frrv97pbvqDjtUunl9UqebZM6UzqDOq5Mr2STJhBU2qXTnm925D3/yzr9UuknyyuRHKt2Jk+6tdIfP7s07PPp8Z0x12LDePcbUWVMr3fvu7tx7zhnR+/d7ffr4Svfya86udKdM6c3nr7FWZ7xh0qu9cag3b79LpXvP7Z2xvgmr9NbTbLnXIZXu8091xvB33ebTlW6STPzXbZXusLm9+6Jl131bpTvw1H2V7sjXe2tTXh49f6U76rXOd9/8i3TWHyTJzJmdz8+5xcmugWmd343Zc0dWulNe7X2vzp7UmatccMZApTsznTVLSbJAaXHmqOGjKt0kGTF83v/ODQz77//tnn98ZH78sXm/xu4HMzprZZJk6nmdsZXrV+s8c1w84vpKN0n+/rnlK90Dd3p/pZskt175+0r3hT88X+k+cEhnviJJVilNy85eeu9Kd+Xdb650k2SBzTrzCu8f2VkHkCTvPX27SvfCHTr/fge9v7c+68zjLqx019xvm0r3hm921jolyabf73z/LVn6vE+Sv13S6a659jcr3eWeKs1XJDnqhc5802/Gdfb8LLr6GyvdJDls5r6V7oadP+skybhXOt8lEx/fvNL9+PjSPqUkb72qM/5/1MadvQFj7v9GpZskNxzTmaPe6acrV7pJ8viXv1Dpbrr/7yrdSWvsV+kmySqvnVzprv5a53nnoH3fUukmya5bddYx/uTG3vrIK57o3L/MOrwzF/K9HXrrOEbvvW2le+ifJ1e6H320cx+QJJdc8ZNKd4UPdj7jkmSN+Y6sdH+3b2dN2W9v743Jnbvk+ZXu6Fnfq3QfWevpSjdJ9r2sM0b/+3/2nldv3rezB3jzZRasdNd+8plKN0nue+Bfle78Dy1a6X7yDb21ok986qhK97qTlqh0k2TKjZMr3RHjvlLpDt+gN9a+zYqduciXHtio0l3jwC9Wukky4403VLrLPd9b9zxuqV0r3TH7dO7xt31m3Uo3SS669vhKd7tVx1a6f9rnuko3Sfa6ddNK94xNO+cyJMlLv+qse/7pLZ17zyvP73zGJcnPv9hZ4/Piqp3n1WVnHlvpJsmGC3TGPk//V+/f74Jpt1a6H/nzdyvdl17o3W+tve6Ole5bNuysu/zTq73f5cfPnlzpLjqzM9aeJMcc3FmfvNW376l0v73jk5Vukqz76c662R8+vk+l+6kjevfLV95xUaX7/Zeeq3STZOXL9qp0Hz++s09+pe/fWOkmyeFjO5+fS7znsEp36ny9tQ1rntZZ2/fs+3vztpee/vZK95KtD69093zyHZVukryyYWd+4FsLfrvSnf/BzjqBJHntoY0r3YOW7qyfTJJff367ed7c4S//3VqatV97JDff8N55fDXJId9aZ543/22JpU+rdH99Xucz5sStt690k+TnR3Tu0d72SufvKkluLy1VW36VzjjQduedUukmyVeHrVrpvvHizj7Zq7/U2//+jtc6f39f+nJvcd2sM66qdPc/u9Pddtz3K90kWfMTnX1vX/jaryrde07t7WU4/FuducIfv9Z7XjzsoM789F9ndvYWjj35k5VukvzioPkq3ZUO/0yl+4+V9qp0k2TUXzrXvON3Jle6SfL8jHMr3eMe6ZwrM3XPPSrdJFnlis4+55+u1DlfdaFf9dZwjB/b+f57erdrK90k+euSnbN3dzv3jEr3scd3qnST5NAfdZ7Lv/DdztrkQ//RmQ9KkoXO7LwP5Jelse4kufyRWyrd/a88odJdIl+qdJPk6c919gguMfxjle4f9+yMlSbJqfN3zj5b4AO979WNFumsu3zuB50BkguPXLHSTZJf7tH5nZtzyBaV7skHdt4ZkCT7n9NZw3j+wb3zja+5qrO2/Iuf6NxvvbxhZ21Iknz79M69wIFXdf6uj/5kZ39nkhySD1a6L325twbniKU682O339R5F916i/yt0k2SM9/dOXNotfP3qnT/+cJulW6S7LV0Z0x1tT/01iN976yVKt0vnfqjSvfcI3rnta0y68RKd8awzt61ay/vna967syfVrq/XLV3ps29P++cPbjszzvjwLdt0Hv2e/YDnXOffnFP5x7xh6t17u+TZLH9vlrpPr5l5wzbJLn3S5+qdC995LJKd6Ozt6t0k+QrP+3cf771ps5a3Ll7T650k+SrX/1apfvnfc+pdJNk9Oe/XumueXrn2WGlI3rPDnfNebTS/f4Jf6h0v/Js52z/JPnVsz+rdJe8oHdu+ZNrn1rp3nlH59zdi5bo3MclyTsu64zpfGOFt1a6e93U2XuYJBtc3Fnb+oWvbFDpJsnY57ardD80+aZK9+SJu1e6SbL3pZ25kmUu6axN/tFiEyrdJDnsvHdXuu8YuX+lmyQrXbhBrf3fGDlqTpZddd6fBbfAVcfM8+a/rTK3M3+z0tv2qnQfnto7B26hH3bOaH/1ud7fwJE3d87eXXnXuyrdqw77TqWbJItO7hz2/OwNR1e6h9za2z89c9xJle6Dq/XeqbL4hp315Zuf2FnfuuqCn6p0k2TBGzrrW4/9ROd83PsmnlfpJskJa65f6T5VeC/Dv437WWc/6+27/aLS3Wm53tlnH917QqV776addQB/3mtypZske/ym8329/3qds8+S5O0TO3Nku19+RaX7m8WXrXSTZJXtO+c6vfNjnbG8925SvF8+orNW7fzZne++JPnXqM4exFXf27nH+Oi7eu/9uuX8zprctU7trF1Y/qCvV7pJssoSq1S6U97SW7d+2kc6Z4pOvKFzpuEy93Tm6pPk0c075+Ld+4bOmYa/OaPzjvEkmXBy53l1n0m9czQX+sELle7DB3yr0h3/vs4ZxEmywFOd87O+ee0Gle4fD+nNNx07/o+V7k3bdNbtJcmVS3Tmha7Z6OOV7qc/35m7SZKBrQ+tdP/4lq0q3dNeK70wLsnDW+9V6X7obz+odJPk64c9XuneseQdle7Kn1yz0k2Sexe8tNJd/JDO/dbfFuk9O/x038693N5X9d7n8o1LO2Nc1/6rM9Z3xfzXVLpJss2czvzOKW+8utL92Vt667N+985xle6RJ3XOTU6SL7+9syZ3iaXHV7pHf7pzJlGSHL1HZx7tDat3zoZ/8uedddpJ8tr5nb3Qn/9M73t1zzs6e6De9+7OPs8P3tq5D0+SL931uUr3a8v9qdJ9/YTeGRXvXKSz1nevx3v7t9ddv7PWfrtjOuehb/xA70zR1x7r/F2//7bOvv6Vx/T2vK71jfGV7qXPdN7ZkSTj3tk5F2W9Uzrvudv/pc65lUmy1Z875zVOeKLzzrgbN+zMJybJyQt2zj5800Bnb06SXPz4E5Xu77brnKl91kG9dwmeunvnfeE7rX9wpXvCAZ21bEnyiy92xkheX+qXlW6SjJxQ+t248L/bF/7U+JH50tvn/TntH/nEavO8+W9nbNaZI/vk2z9c6T6/VuedAEny1Qc651KedkHvXN+jLuysY9xoSudv63vL3FHpJslW2aDS/cZBl1S6J1/fewfa9XevUel+YvXOuYZJcs0WH6p077u6M5Yw/c0HVLpJcvCczjmdl67VOfPkhB33rnST5DuTple6j1zR29/75EGde7UT3tBZe/KXOb098GN+1ZljecOVnbW+n96wd+bQ25/vnMG016u9d0pM+uG2le4HJnSezT94fu/s+Yvf21nvdO7hnXmFs4/vnRl13Uc6n8t/La4V/V0urnRfHtFZx7jMmZ2z1pPk5ZM656kcP6zzTHLWAb3PuIPP6Lzf8Fs39O6XNzpyfKW7+EKdcbGffbn3fpRlZnbGSP5yeKd7zou99zHef8SLle72a3Tmm5LknW+5oNL9wgadNcTzfaCz/zBJVvpKZ/5mxE6ds/y+vdsVlW6SnHR755yd9w37VKWbJO/dvbNeZvRHT690X3i19w7Jo8/uvDdu/MqdfUr52oGdbpIdT+istZ/4r84a8CQ58IXzKt0LVxlW6Y75V2dOPUlm7NtZhzrhpc7Z5VvMOK7STZJ/vL+z12X07N6Y3A8e76wdOv33ne+o1548oNJNku8v2Xnv2Kef6OwNmLRf7+/6kC06Z9mucMVmlW6SvP6Zr1S6n/nFbyrdjx+7ZKWbJOPe2BlTHXnpmZXutRv27jFO+Wrn7+99z1xX6SbJz/7YORf9ru8eVOnue2zvXI1tzu7s75i1Yuf9v/f9ofTC6SQTjtmz0l3zsZ9Xukky6S0LVLpvP7gzn7jFnzvXmyRTP9X5/Nx7287eqof2+mGlmyTXHr5dpXvXpVdUukmyw4zOPsEPTNun0j3iW533FCbJet88tdIdfVZnbvVzJ/fWYzy9WOcsieWeK43pJPnT2/5Z6V7xp87egElH9tbNvmHBzufndjt2/v4ued/qlW6SPPN45zn4XW/7UaWbJEt8qjO/8/+mcxowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxfZmCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCYXPnzv1f/8frjJsw95zNvzrPL2LOqy/O8+a/jV5om0p38uzbKt171nq90k2SRxdZpNKdO+fBSjdJZgxbptKdNumZSnfVVVasdJNk2OyXKt0V11y/0l1sqXGVbpKMGNn5Xb7n9msr3SR5feLsSnfxlZaqdBdbdKFKN0mmTH6g0n3ssamV7vDZvd/lVTfs/C5Pm9b7Lpk9a+FK96n7L690n3l1cqWbJBNW6Hx+znz+4Up3ypze78X1N99e6d5w1T8q3SRZ4g1LVro3/+PuSnfWnGGVbpKMWWC+Snf61BmV7hu33LTSTZKx4+ZUulddfEelmyRz5s6sdAcGhle6B37o/ZVuktx1d+ez6K4b7q10F11sdKWbJPu97e2V7krLjKp0k+Sv13S+/x657b5Kd+VRvXvExeZ2fs6rj+ncew50HnWSJKNHja90xw8sWOkmyfzDZlW6pY/ljB07ohNOMnP29Ep3+LQVKt25ox+pdJNk7ozO+NaUaU9UukkyZnTnc2709M5n3Nhxa1W6SbLIEp375UkvvVLpTpv+vx/v/08tdPahle5qS46sdJPk+89Pq3SXeKAzDnXDSYdUukkyYeUlKt01196w0r3qhusq3SR505u2rXRnvNS5D0iS6a8+Vulu+L7O79xT9zxU6SbJtNc63ZHTX650N97ujZVukrwy8dlK97kne/cYiy3VeS6Z/PwLle7EOy+qdJNksUU794j3XHdZpTtikTdUukkycmznHvG8iztjOkkybm7n/mW3HTpzMI9N7n1HzXq1c7/8wL8er3TveO7JSjdJ1ll97Up3+ZUXq3STZN01dqh0X5zeeaac8cRdlW6SjF10gUr3jdvsXOkuMLfzrJMkmdhZm/LijN5n0ZipnTGuMUt2nt2HTysN9iUZv/Dile58A52xvvkW6Kx5SXprPV6f0ZkDTZL5F+nMHc2e3hnIf+iOzjNJktz3m9Mr3deenlTpjklv3m/cqM791og5nW6SzDds3t8vf+SBs3L/1Of/q4UTqwxfde4PFjhuXl9SNjuk8z2fJDfe0FmTu/mkzpjb7gePr3STZNPNOuudPrtmZw1xknz/R517k2HLdtY6vXPmFpVuksyZdU+lO25U52ex1oq9dbM7LDOx0t34rDUq3SS5/IGvVLqfveytle5WX5hc6SbJr9caW+muM7sz9n/HpKcq3ST58ITNKt2bnu88lyfJks92xh+fu7vzPPPgUr35wuXWe1ul+/YFO+PHD53XG8v71M2nVrqX/L03frXSZ3erdO894I5Kd4mBzjxIkkzY/PlKd+xLnXuBK/fuzRcePrIzl3Xlyb1rvn6zNSvdNVfv3LssvcWulW6STJja2Y8ybZ/fVLoXHdrZo5skX1px0Ur3wPV6a8r+5/I3Vboz7z250p064tVKN0kmLbJSpfv1+Tp7O/45orOvMUnW+HVnPfzId3bWZyXJRUt39h1seueFle726/fuEV9fqnP/ct3kzmfcVq/3nqNW2aBzX/vsbctVukly/qKdz4xhYzv/fl+5dUKlmySvrr9lpXvT8p11HPd9r/e7fOA1q1S6/1q2tz7y5Fe+V+mO+Neple4V93+z0k2SN8/t/P0ttXVnHOPyE2+pdJNkz6nfrXRv3bT39/fSpmdVur998Z2V7mendMYakuS5FVevdJea+atK96Nj9q90k2TUmM46jlEvnFHpJsmMcctWug/8rvO9+uyux1e6SXLHr75V6W62xJ8r3ZueOanSTZJxUzvr61rPDkny6D87a7/ef8b4SveZI3v7f2dP6PxdP/5CZ+3Q9LXHV7pJcsNjnTN+1lxjg0o3ST60Smeu+ep/dtYELjblL5Vukky6+9OV7j5nde4Rtzlh3p9Z+W8TV/pSpXvaG8+sdJNkzNWddWf77N45i+fjN95f6SbJD2Z2vqP+MbazVvTlDXtri46fMrnSPe3O3jq5CW/dvtK9+B+d56iVf9nbfz91bOdnccPxnX39G+14SaWbJA/f3TlT+F97/U+lmyRfOOVv87y58ctn5ZZZ//m658UXGDF3r3XGz/Pr+e4Tm8zz5r+tPffgSvekpTr79K7a+H2VbpKsuOUFle5V9+5V6SbJrSd11rbueVBnHPaTO3+80k2SI37000r3A99/S6V75nM7VbpJ8uQTnTMNV/3slZVukix2R2eM/pM7dc4vWKq4NfTiRzvPMl/6TWlM5bje/Mq6n++cdzmw1VGVbpL87Zj3Vrq7HHNCpbvkXt+udJPkoc0786Zfv78zD3LAjp17oiTZfJHOs+gpP/x9pZskK6/7p0r39W921sw+/vPePcYbnuzMKVywW+cdGJPW+HulmyR7vt45X/wd1/bOp97jNwOV7h1v6Zwf8vTc3l6Ue2+aXOmucUXnTLxnH+udN/SBJTvrtGct+NFKN0nO2vmqSnffWzrnF5z5gd47FPZ4oLO3/uGj9q50P/fA7yrdJDnquH0r3WMn9P7+3jV/Zz38yqd1fhZbL9V7Dl7jgc441LqHds6rGfa2wyvdJNn/U501VDd9sLMPM0luPLCzPuRDn+/Mg7xzqV0q3STZbZ/OvqoP39WZT3/7pr218OOu68x7b3B877yvXT62e6X748U7z6uzD+p8dibJR2d1xtq3XK0z771kbxt0Vtv35kp3iaXfXekmycSHV610N37L5yrdd3+ps0ciSd6z048q3UNP2aPSveh7nXHrJFnx7Ocq3UUm995tM+7WT1S6f/nsTZXuyE2vr3STZN17O/f4CzzT2eN57MO9cxifvaAzpzH1kM65yUkyeePOmRrHvd4ZOzvzxs4YYpI8u+BGle7fntq40v3c8N57Ri7b+phKd6NfvLnSTZJvL9qZq9z4j7dWugds2zvD7KZnOhPk233lhkp39sTemtkDf9JZ63HPhutUukly33f/WunOPfuwSveQO3vP7k9/vLOX4bFfd8Z0Dtp2+Uo3SW55oPMu3bN/d1ulmyS/fdeple7NJ/6s0r3if35R6SbJFSt39tKecn5nPnj9WVdUukly6kKdM7VXPKVztmSSbPbuzpkaP7r+nFvnzp37H98oDlt0xNzsMu+fda8c2Vtgt8iZnfupP47/fKX75o0635lJ8rENjq5017/2s5Vukrz1js5Z3Uctf3Wlu+Syvc/zyd/rjB+ftt7PK92PjL640k2Sl/br7A2dM39vXHqDRTrP/Ddc+uFKd/IZZ1e6SbLVJ6dUur9a5LxK941v3afSTZIvbd1Z03L/q509b0ny+ZPPqXS/tNQnK92j3r5fpZskR725c87HMZM6z/xrPNpbQ/zdhzvjhAt/r7e+da+rO2s6H9u5s5/o0Jm9cxj3XrIznrD5uM6apGUn3V7pJskXxnTWl+/z6d6Zoief1zkXaLcTO9/XF27aeX9Jktyyf+fZ7/y3d34WO7y5956Y2ZveXemu/Jfes9/Ba3fe6bfInzsvwL58qc6erSTZ9DvnV7rf3KNz7vxOe/W+ow7br3Pe5c3v6r1DYf9Pdc5LvOiyzjqAa4d17u+T5PG3dMZif/WhzrzQQS/2xnhXe/S8SveuTTt7c5Lk0bk/qXQ3GvbDSnfHJzr7XJLk/rd3znD/wOWdfcX3T51a6SbJmYd2PuMWO6mzDiBJ1vvpHyrdvyze+fvbdePe2XVfnvjrSner5TprZbb8Ym89/KkPPlrp/vAvxXeul86ue+alzju793jqB5Vukmz+m86z1MuvdvY2/vXn4yvdJDntqM67BP9+Yuf3Ikl2fa5zj3jnaZ3zLl8aO6bSTZI/f2/HSneHvTrnX0z5UGfcM0lWmNJ559iFW/fW173ro1+sdF/5Rees7q9d2huTe/8+nWe06ad+p9Jd/YXOnpEk+dy1ne+SI179WKWbJAes3PnMWOfqDSrdd1zd28+w/9Xz/r33SbL6lzaodC/dvDPPnCQXf7ozdjb8g73vkknv7Ox53eWVzpm+px3UexfkqCU690VX73xapfuhDe+odJNk6dJ7Rs58vnNuZZJceF9nn/ynt++MYxwzrPfOo2/O7byn6YRTOucb//mLnfu4JBn2ts4avGNW6JwbmyQXrd85c2X1Oa/8V+ueRyw6fu74Xef9Z+/5vaOBctqfO+epDLu385z0wIjO/GaSbD2zM1//vW/sWekmyU9P78xx7v6Zzjq4OQuvUOkmyfgPdeaoJ+7fObPmR9f0vufv/k3nzMSjp3fWXSbJ03M671ebdntnH9IPX92r0k2SdS7uPCft+Y7O+7ke/vgplW6SHPx05yzid32lt4Z/8wnrVrqjt/tUpbvvuZ13oCXJrE925r7vOrPzefHylr171v0O+1ql+8jlne++JLnlJ53Pz8W+1NkDte43evNN16zXWSOy9f2dn8Vhx/fO6Pzw88dWulOm9c4G2uepzlrR7bfonPm16id667O2e3Pn3KGrZu1a6V6xU2+M/o6fdNYOrb70ByvdJHnntzu/c1sdc16lu9eKp1e6SbL9hZ17ucM+/K5K9+3nds5VS5Inf3xFpTv3kM4Zj0my6IKd9ckX3NjZT3T7siMq3SR5/22dvez7rXdfpZsTOuv2kmTOWZ0958NOHlvpJslJ4zv3cmcuXHrv37eO6HSTbHPHDpXushueXOnudOUilW6SnPL3zvqsI07o/IyT5KLXOs/CH1uxM0d9/Xu/XukmyRHrdeYLb515UKW7yXt6e14/cvqFle6elz5V6SbJ9z5zRaV7wvBOd8QPO+9sTJK/7dZ5B9tph3bWh2w9/sBKN0kmLdb5nVtugc754kmy5+zO+si3XbVBpXvKxb1nhykLdu5fjhzo/I2s9LanK90kOXTCGZXuj6b39un+Y5XOOo71Rz9S6V7wp97+7b2Hd87u+sR7f1vpXj6pd17wOsd13q+x/oud8xKTZLm7Or8bX/1w515g7g1/q3ST5MRfd97NPvWAzjk8O/+6866KJDnxQ53P5X1Gdd51kCQ3rtfZp/v4bp17uR9c3xkTSJIPfm/JSvePy3T2We9wYGcNapJs+enOmYq7vLv3ntdXl+rMSU29trMGfKe1n6h0k2TDXVeudDd/0+aV7ojnOnsDkuSqbU+tdDf8Ze8sgm9c33kvwUsbPfF/XPfce7sJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3lWQ+AAEAAElEQVQAAAAAAAAAAAAAAAAAAAAAAPxfZGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWDEf/QfD4zIwmMWm+cX8cSrw+Z5899W2HBKpfv6ImtUumu+eeFKN0k2mjOu0p09/yaVbpLMmj6r0p02cmylO3vu65Vukjz5z39Uuv/4532V7loj1610k2TYyH9VuosvvVSlmyQTB16pdGdO6fyNTBk1o9JNklFLrVfpLrdQ5/P+8VsfrHST5LEHp1a6S60wX6WbJLMmT650733w0Up36vDezyIj76pk3zB2kUr37lvvqXSTZJOVd650Fx6xTKWbJHc8emOlu/Va61S61z3xQKWbJFMnz+2ER46uZF+eMrvSTZLbb7i50h2YNVDpJsmwkf/RI93/2sc/flCle+LxJ1e6SbLlTltXul884uOV7t139j6XF16881k0euElK90kGbPAM5Xu2GUXqHQXfLHzt5cky883ptJdYNjMSnfOwIKVbpLMnjqn0h09flqlmyQvzZxc6Q681hlvWHDMhEo3SSa92vk7WXyBzrPfmFmLV7pJ8vL0zjUvPmbRSjdJhs/tPJfMv0DnHnHu1Ncq3SSZ82rn2X38uIUq3Vde7d17zh7WuRe/Z2pvTPWwhadXuu+57DeV7k5rbVjpJskiG61Y6c54oTP2sumW+1a6SbLaaitUupMnPlvpJsmjd3TGKEc++XSlu8T4zud9kkx6rfO5PGNu597zlYeerHSTZNrszrPD7LG9ucoxszvtBZbuPJeMemWfSjdJ5izYeQ4euXTn8/75l/9Z6SbJQqO3qHSXX3XpSjdJVl1miUr3nw/fW+kuv968X+PxbyPmdH7O9734QqX75QOPrXST5KUXOn/Xw2d0xnSSZMbUzvzAmqt0nleffrbzfJ0ki71hZKU7/ZnO2oaZC69W6SbJ5Cc7a1MWW7azZilJ5pvWua99/YXO+PIyi/bGVGe99nKlO/+Y0jqr6b3PuOFzO+t0Zs/tfF4kydTpnbU6878yudKd9VRvTG7Wy52f83yzO+usxozq/I0kydxp81e6s4b3nlfHzjfv13r8f1lhPGv8iLy4y7yfAzj4qt/P8+a//XnXzu/qpaseUukeu/JVlW6SXLldZyzh5Ycvq3ST5Kd/6IzTX/mTzSrdmTs/Vukmyaanv1jpfvHqzjPjzFGdv5Ek+ezzZ1a6K07t3U+tvMXGle7mb/xrpXvzdQ9Vukmy9nb7VbovntEZS99pmd7z83Uf+Hulu9jonSrdJHn0uM7n8qNbn1Tpnv/3pyrdJFnqK2dVuov+oLO+7vvPdZ7Lk+TTXz+60n37qh+udJNk8w06e132Or4zTnHBuzvjYkkye9/OGp9V1z2/0n38iY9Wukly+ibXV7qLrdJbe/KZJzr3+L848pRK9+Dv9dbwr/Dmr1a6W9/RGWOa+PgtlW6SvHW3zu/cTx/p3WPsPPWISnehbe+vdH910Wcq3STZZoPOOqqTR3X2pn531sRKN0l+fvibKt0vXtkZE0iS9d66W6U7fmTns+jpy46vdJPk968tV+nutfVtle4myxxY6SbJWQ89Uek+++JalW6SjNv+qEr3U3/sjBd9c1JvP8pbnj+n0n30nrdUuout2PuO2n6Fmyrdv03ozReuvUBnvv6GQzvPDrvM6qznTJJ9Ntmh0l1qauc7atI7t6p0k+QPz3TOAjnkvt6/332X/rrS3WWFzlq1t/7/2PvPYL3KAuzfPrOTkIQaOqH3XkKTLk3pIIiiKE0BKYoUC4ogIoiogHQURVBAEBUFQVCk9yZVqkBC74Re0t4vr9+e/8yjk3MyeeY4Pjr4mzU7e9/3WldbYz9a6SbJxZM6+0bm+l1nHHjwD+6pdJPk9zd05qiHbdbZM5Ikc93e+c4e2K+zBvWLt/bO1bhwy9Mr3ftu7qyDe32RhSvdJHnwtu9Xuu9f8bVKN0lW+GxnTO75mztjZxttdlylmySvzf3TSveYX3aed/70ZOc+PEm+eGhnTO6c1TvjI0lyxWmd9ZGfu66ztuHCzTrPJEnynZU6+w4Gn7FypXvGO9dUuknyk+GHVLo7fLVzPlqSLLfqZZXuXy7p3Lt88d7rKt0kGfbdzn7aORfdpNKdfNefK90kufryzufycemsp06Sd3/eWcP13vc74/jv/HaxSjdJjv5BZ959k4915hP/9cDilW6SrL1ipz3/zWdVuknyi8LZyq+89b/t13rl/dnzy4c+O4WvJhk6snde1KBDO2O8w1f7QaU796/uqnSTZNSYzvzKKyd1zkVIkqNunfK/b0ly+Imd+5011umdj/vsja9Xur88+shKd2Dv3hqOL/7psEp3i691xkqT5JAjO+vJ/nxk53ttx7l732u/uvwvle6Rh32y0j16Yuc83yQ5Y60NKt3l7zu80k2SuVfrrPPdaY0vV7rP3LdSpZskx/1j0Up3jUs647DHntg7y+GEHTv713a/r7P+LUl+t+qBle5CL69a6R5+dG/9/umndb6zZ3qicx+3ztmdccckeXmfzjnEx896aqWbJJ8/s7MGZ4nVOuucHhr+aqWbJHf8tDOusstmnf1aa26xZqWbJI9/bf1Kd72D/lbpJsmKr91T6V79rUsr3V8/sHClmyRPbtFZJ7rrTJ3nnU8f/s1KN0mWu60zjn7QMZ11yUly5PQ/r3QveqHzmfHCHN+pdJPkzov/UOku/7snKt0rP/azSjdJfvvtMZXuWn/t/S5/8sXOeaUbrj6y0l3i8t7arDfX66x1enCFzlzTXlt1zkpMksmTO+eLrHj3/ZVukhzwfOe8y7t26JxP/fKZS1S6STLHTp3vklP+2Ll3mf+736t0k2Tcp7eudM/76Z8r3SRZ7mOd+6LtFjij0t3j4N5ZwdtvO6bS3eetzjji9pfuWOkmySbz31DpTh7bO3f+lY2PqHQnLPqNSvfgt3vjy/N+o3P/+ZkvDat0X9uit0507t93nqOG3DV3pZskT6zdmZPaa9KfKt3LfrF7pZsky57fWaf95fc655a8/3TnHXdJsv2znfX7c3+rN6a69/y/qXRv/uGLle7Rz/2w0k2SR48eXOnu/kJnPc1n3/9MpZskF616cKU75o7e+T4T1nyy0r3x9s5c1wvbdvbnJskiB3Z+57Y8oXMG5B3H9vaOLv92Z1/jxeN2qXSTZL6ZOufm/e3Qtyrdl17tzMEkyXGnX1HpbvBYZz3Gjcd13o+dJMeM7oxD3b5uZ49Sktz7p84zWlb73+bGlxhYKSfNeNMUvphk5VOXm+LN/7j2O2tXuof9/ROV7oPTd7pJcvoxnc/dOUb03s18/6pnV7obL9LZ873SKp1zxJJk5w0679FaZd5tKt3BO/beG7XzsndXunN/ozOWkCQ/uaTzrrl9j+1c82aLH1XpJslBh/+90r17w86c+vm7d8b+k+T6P3bu4d8Y11u7cMACnT3fd93ZOXvwkAt/UekmyQb7d8bo596xs2d46G6ddXtJ8oNDOnslvnHfuEo3Scbu2fk7+cy/Omfwvzes8xmXJD87pvOd/cxy21e6T6zTG8s76x+duawtXu+9D+SMv21V6a65zm6V7omTe3NkY3e4stJdfOJtle5pW/X2KS23cefMjGMuvLbSTZI3Rl5U6W5yXGef0m9v682dPr14Z6/Lv+b7XKW765d7e3OeHdHZszzH93tn8D+z++qV7hq3T6x0P3FcZ7w7SS7svA4kiz64TKV7y+c7++KS5PnnO/vMdtm7swY1Sd77sPPzePfuztzbeifvXOkmyYa/7/wyP7R0Z1//eT/ftdJNkg2/9u1K96ireu/ZmuX4zvfUnv/szGlcObb3HTV43s5e9gV+c0+lu9r7nfuAJFlhjs45qPtf0lm3lyT7rN95H/i9EztzaMfn2ko3SdbeZUyle82tnbNLnl6986yTJGfeP+XnbJPkrpN7655HPtPZZ73X+M77QD67XO8czbfv7qzdW/mDzn6Uuy5YuNJNkq/s1VnH8eLtvfdNHzCss4ftvk1fqnR/O9B7H8j+v+vMafxixc4ahHf3vLXSTZI1/9I5r+qrt/beTTTolNkr3at327DSPWSn3jma85zdWWt/7Sydd469d9KYSjdJNvrsepXu2sv13gW57mE3V7of/3vnHTTvPXdPpZskW+3S2fM6csZ/VLpHnNObK7lgns5ZSuMf7b1z7POndN6bs+XEzlkS9xze+7v+cPnOd8mj3+zsOd/ylqMr3SQ5a63O2pT95t+o0k2SjUeU9ne887+dtb70AhPyh59O+Xv4zy10xxRv/sdxr5xc6a73xjuV7swn9eYrvjbxz5XufsftV+kmyVPXdd7r8O7anTNgrn+0d3b/I8Ofr3Tv2bqzPmSDQ3v7WHYd3Vmr/eiNnW6SjDqns793yyPHVLqf+G1nn3qSXPirzvsi5it9l3xuZO/Mr5WW7YyLzbF/b3/ogk/uVOm+eOLZle78e/T2p3156c5Y7MOf7Zw5NHSbzpmwSTLv7zs/iweHdD4vkmTtfc+vdO/6YWde6Nmv987rvvTWzvuk992ks/bkiT0HVbpJ8s3L5qt0x/2xt09wtXs7e2geeKPzeX/PB72zZfb7VOc9Qot+obNufanfdt7/mSTjluqcXX7/QZ0x+iS57/qTKt1D1uyMCey0zxaVbpKM+LCzjmrQs521QwuM6Oz5SZKTLui8A/TfWarSTZKVt9y70v3DZadVut/dprcf5Q+PHF/p/mWOzv3WvXvvWekmyWc/6HyvPvPFj1e6SXLknJ1xncXW7tx7nrtv73N5w6913kOz20md9ZGXX9h7n+C5n/hIpbvzRTNUukmy6gOde4xffaPzDr17br6+0k2So47snMvwxh2dtYbr/uN/e2/p/41J5/yo0n333tMr3ST54fYPVbqvb7dOpfu7+TvnzSbJVkd0ztxb+8edfQfDf9SbQ3vpus5ate2Pv6TSTZKXDni/0n1wSGcd4xJPde5pk2T0SZ1r3vUbe1W6V17e+10+4Dudcw4+OKm3hn/+f3feffS7fTtn5H5zxd7Z5Z89tfNOgqE/fa7SveuLnf0XSTLpjc6Y+KAZes/uX72/83dyy2c79y5zf7KzNyBJLll/80r3mEU6Zz9t/YvOmbBJ8qVFOu/N+dnnOufbJcnQJzrr1vec1Hkf1kMbd86nTpKPrdpZk/v2yftUuqef2FnPmSSn3fCtSveJbTpn/SXJvDt2zju6+OkDKt2Vv35ipZskG43vnD8z4ZjOONTqb/bmsP+xQGc9/Lob936XDx/UWY94QJb+P/7vvZMEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFow5L/6rwcGMmS66af4RYyad/wUb/7Hk5M77WcWn7nSXWj8QKWbJLONfL/SnTR+aKWbJJNm7bRfea/zezHLkEGVbpIMWXqZSnfO+d+rdIdOP6zSTZIF5pi30n359Vcq3SR59tlnK91JH1SymXPOuTrhJBM+7PzODRvf+WEMHfRQpZskd93xQqW74bC1K90keeG5ByvdVVdbq9I94zcnVLpJsv5q36h0h0/sfJesPbr3ff1C6fNzw822qHST5OFT/13pzrfQjJXu9HP0vldfHz/l7++TZKEF5qt0b7np9ko3SYYOjKh0Z11knko3SRYZ1fk5v/5m59lhsWXmrHSTZJPlP1Lpvv3ea5XuOx88Xekmyak//0ml+4XPbVnpJsnIpzu/c7O9PkulO7w3jJHpBzqf+W+n8zNeba5FKt0kmVAa0xn2Qe++aORMnfGidwbeqnSHTur9LOYeNl0n/OGkSnbwjP/dMOl/Y47pBle6QybNVukmycBA5+cxw7DO79yQmXtjqkOHdH4WAxM69+EvfPB2pZsko4Z0rnm6STNVuknyr3feqXTXmmv1SneBpXo3GQMzz17pvjWpM+45/9yjKt0keXv8u5Xu3POUvvuSfLjUwpXu+Dc7/37vD+r8jJNkntnnr3Rffe75SnfS0M7fXpLMNXJCpbv43AtWukny0vNPVrpvj+s8+70yuPMzTpJZB3e+/9598/VK96Vnez+L6YY+U+mOXnG9SjdJll6uM4920djOuPXci3y20k2S5+9/tNJdaPbO5+d0Iz6sdJNkvgU7YyRj7v1bpZskyy8ya6U71wKde4Hxjw6vdJNk0hud+6Jh83TmbSe/3BtfHj688+w3fSebJBk6vHOPOMMbnXGod957qdJNktlGdH4WgwY6Yy8T3n2z0k2SScNL83MjJna6SSa80lmP8dZbnWt+7V9PVLpJ8sbrYyrdmQc6zw6Z0FkLlSQD05UWh03szWFPHPTGlI8O+t9/j2edNCGffn/Kr2s54+XeuOZ7f+v8fZ3zzIGV7qhZV6t0k+TYe0ZWuov8bEylmyRL/PSoSnfCxMMr3V0vuKbSTZLj3uyMeX9t9IqV7l07fbrSTZIZH+ncw4/baLNKN0nePPOvle7xz6xf6X7vG5379yR5bPDkSnfWQ5erdF+4obPOPknu+8LYSnfJOTrrqZNk6es6Y25XrvD9SneV5XpjsYvvuG6lO2yhzrrnrT64tdJNkvcfearSvfyzvf1ER7zZWd/67JVrVLq/uHKDSjdJnvnkEZXuxC919gasvkNvP8odmy5d6a64ye8q3SR5ZparKt1TXumsj5xxtY9VuknyicXPq3TfGdf5vNh2287ayCQ58W8/q3QXW2ibSjdJZnquM8d53n2dvVWZfFmnm2SLsc9Vuiu9sHGl+9xLu1W6SbLUZzuf+Vf97PeVbpIsMqzz7HfZm/dVuoftfHKlmyRfG7V3pTvPkl+vdE+bYVylmyQLXdLZ9zNykd76utuP2rTSvW3Zzuf9+JG9ydOZPuiMXS+93h8q3bv/0hn3TJKfPHxppTvq2iUr3ST56zudZ7RNnuzMZd3wQO/f76EtOmv4Hzvl/Ep3oS939owkyar3dsb7xm16Q6WbJGNu7Ix9jrriU5Xur5c7o9JNkm1Wu6LSvXvgz5XuwLwzVLpJsuBnO2tE5v1Xb63oSkt11kc+/05n3fpzY7audJPk2S+XPpev/EKl+97JvX2C743u7OtfbevO81mSbPCZfSrdF3750Ur3vT1OrXST5L2FO3PNF5X2E621zoWVbpJcNKnze7H24725kpWu7Pz9PXz2ApXuZlfOUekmyRde68yjXbZw53d5mWHXVbpJ8ql/dp5XHz5i80o3SV5dqLM3/LpzvlTpHrjQDpVukqx4bWcP1F9P7oyJnz58ZKWbJNsvv3Clu8z43p7zj895d6W7+Fc73yXr3ndnpZskW4zprKGc/oWNKt1xo3rrMQ55qrOfYckde/PuK5x+9RRvDh743/72lspbOWPy9VP4apJtF+zNm94w55S/3iRZ7JbdK92/z/NwpZsk++7T2Q/y0sje2MfNj99T6b50Tmcc9r6flfaDJDn1sc4ajpVXubLSffwrlWySZMIxnX+/G5besNJNkvt36ZzXNvHeznP58K92zsFJkl+e0jkj8NazOvObf//WbZVukuxxQ2f9/mdO6q2hOvK8zj3riJ92zvhYa7/FKt0k2fJnnfX7Z79wYqW79Dd74/ODD+w8b6z5lc65yUlyyjOd58Wzru6s51zpuc6aoST59q+3q3RPmPyZSvf0k86tdJPk7R06+9S3/rAzbpwk3ziscy/whxV3rXQn5KxKN0mGzdb5OT+w428r3X8s3NtvN+uO3650p7vsrko3Sa5ec6VK95Uvd9ZGvrR27375grGdPSO7jH2g0n3gsMJ+/f+/Qye/WOles1TvzIXdZus8uy8/6PhKd82rd650k+Qb23bmN08c23mOWnZC53yrJDn+1M49/idm7p2l8q/9v1rpfv26zvkh187Wm/e+7ROdff3Hn92539prnwsq3SQ5crZfVrrD1+6dPXjQu53nklOeKH1+HtfZa54ku5zS+f679M9frnT3X7l3puGKD3TeWfXQap09/Umy/Q6df78L51i+0h1/V+esjiR54e0fVLqfOejHle6n9ug8UybJ5gdsX+mu93xvrusfd3bO0XxvzU0q3S0Heu8I3flHG1S6ay/V+b6+7bLO/uokWf3AzrPfhE/31nActtg/K91ffbzz+Tnb3cdVuknywAyd9ZyDhuxU6T6250GVbpLM/3ZnPdnr21xe6SbJ9Dt09knMu/X3Kt0Dz/1mpZskRy7aGRcY+vI6le6g3XrvZvjuL75Y6Z53ZW/s5Z6zOnt0TxpzSKX707Gd8fAk+ea6nTV4l97SmdO44MLee6znv7PzvPPhO73f5Uc+vXClu9H1f6p0j1h0r0o3SWaZZ8dKd51NO2uTr1zj6Eo3SR4evVCl+5GHO++YTJLPnNs5n/B/PY12hlfuzVo/n/Jj02td3HtP9ZlDO+dynTZ0l0r3os07c0JJcsksnXX/e6+9aKWbJMt+t7NGa9PpO+d9Tbq+95y0zaOddeuL/mW/Sne9HXv7p793xCmV7sfm7a0VfepHe1a670/ojF/9asnemqRTzuzcm7w7a2fd7KyDe+dFHf1KZ17ojz++v9JNkrVHd/azDj2vs2f45dN7e/ZPfLazpmzudzr7ZDdZoTN3kySDX+l8Fp15/MqVbpJcPM93K91dv9c5h3He5R+pdJPkpbU697U333pYpTv2gN7f9eZ7d9bNPjlDb5/gvf8cXekudGhn7uby+3pzp/8e8r1Kd8ufdt57ecy+36l0k+Scn3bGKT53ZG/tyU9+2bnnOnvRzhjvpN2OrHSTZKN1O+fOH/tQZ8/rpof29m/P8sXOvMJqM3TOl0uSh8euUOkObNJZa3/W0N669bcf7JxxdfiXT6h0V36ss843Sf54aWe8YdAGvTnOj9zS2Stx5M92q3SPOvAflW6SPP+7zvPO5at23us24Vudc0CS5DOludMdXl+80k2SB775tUr30b913o2yykqddXtJsuenO2u11xzbeRfWdi+NqXST5LY9R1a65+7UGd9KkukGTfkzkpLktW915o2+NH9nPiNJzjm1s0/w7D06+yTmPqTz/oQk+fU6nTMCXzi/N1f5+elv6nTX6jxTfmZi70zKEd/pnEUw2xadM35+u9pPK90kefP0zvffniv15iqXeqzzropjpu/cb130RO8doQvduEGl+7UvdN5x98vbemvVTv3TryvdL1zd2TOZJF/f9YNKd/mDO3uWfzBmrko3SQ4Yv0Sle9NhnbVqXxp1TqWbJGdednOlu8yOW1S6SXLH3p21lzf+vTPX9cCne+vkblyw817vgaM6a4hX3PdblW6SfO6zne+/he48tNJNkq8vuXqle/2Qzr6R4QeNrHST5F8f79yL3/WLiyvdg392baWbJFvf1tnD9tElOu9IS5LZt+zsR9ntwmX/p//faw+/k/PWmvJr3m/49Y+mePM/Fni+c4bIqtt37i3/9vXOvqkkuf6mj1e6S+60SKWbJFt/rfN5fuhnO+cFvzJD71zKRY7onDn714M691O7TVq40k2SC/d8t9Jd7sxVKt0k+cIZn6x0Tzyh827DZz81d6WbJEcs2flum+75ztkWe2/eOy948uTOvv2PvdV7b+IVYzv/fusf33k2P+XR3t/1et/cqtKdY0Jnfc8Ga/fuWYcv01kTuPkPO+fDJ8molZ6rdIeM3rbS/fgNx1a6SXLkDJ1z3BfftXNO2fgR4yrdJFl5o8775+8756RKN0nWWvk3le63vt3Z27jLJmMr3SQZf2Rn7ckm23Xu8R/9xecr3SSZ5+OdZ7T9F+29H2Xw8y9Vupvu1vk573ty74zVCxbrfGZsfXVnP8Om2/TO6Hx0o8677R+7uTPflCRbjTqt0j1kyc5zyXtf+N/GCP9vfOGvnbms04/qrBV9vXdccLYa3nk/ym9GdvayJ8m2e3fOy9/++ydXure/90ylmyRDh3butwZ9pLO2fKnnxlS6STLTxM4ZnS9vf3ClmyQT51y40t38uc46nN1G9s7ZOXbE6Ep34mude/yVNujsK06SK2/vfF9/f6bO+fBJssMRnbGzk5/tnEv54wXvqHST5O0jO+s4Dt96ZKV72+d663t2eLSz1v7YMzvndSTJp1/6RaW75UGdc5lH7dxbHznh8M5+zH8f3BkTWGGB6yrdJLm9tO8g3+qd3bXyOftWusec2dkL/cv7emM6ixz1eKV7yGtHVLrv3XFLpZskC67x90r3hFl6z+7vrtqZa3509zMq3beO672D7Rcndsbknpulcybf4se8VukmSTbtnDG+50m9OezVv94Zx9hydOedSv/cvrf/fqY7OmcpLbft/pXuV0/vvWdyjnU7n8vvfKGzbjZJLn2t896/n//+X5XuQd/+aKWbJLd8uTPesNHozv7Dsz52aqWbJGNv26jS/eqivXcWn7feY5XuAf8f/3vnrc4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P+Ygal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCgal9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLRiY2hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANOCIf/Nfzw5yQeZOMUv4qlB70zx5n+8udyoSnfo4Cn/c0iSTDfQ6SZ5f8KESnfC0MmVbpK89c57le6773X+/d4ZPEulmySzjRhW6c4418yV7nRD/quPl//KiIF3K90hMw6vdJNk8sTO39/ATOMr3bF3PVrpJsnodVaodF8Z9H6l+9w7z1e6STLXXEtUurPMumilmyR333xnpfvWI1dXunNMt2ClmySP3n9NpbvW2p+pdN8dGFzpJskZx/240j3lJ2dVukny0fXmrnRnmmGRSvf8i2+sdJNk2NAPKt2HHn+20n3q6TGVbpJMKt2Kvzim913y1ouvd8IjBlWy0w8bWekmya8vubDSff/tSjaPj328E06SQZ1nh4svu77STZIdP/qxSveZ6+6odMdP6H2vvp8PK905S39/T7/6YqWbJHMO6zyvTl989pt+cOd3Y/Dw2SrdoQMzVrpJMnPpu2RCXqt0B2eGSjdJBobOVOm+PuHhSjdJZsrSle7ED0pjOpN6/36Dh81R6Q6Z0LnJGDRz53qT5NpnO2O1B112b6WbJPfu3xmTe+Lhv1W66679iUo3Se685b5Kd9K7r1S6s0/XG2t/a+JLle5077xZ6SbJpNc7P+cxz3TulxdcYqNKN0lendgZxxg0c+f7+qUnn6h0k+StBTrjy288/WClmyQLzTJvpTtkeOdvZIY5e/O2b73auRd4+a1Jle7CS6xV6SbJsEGdua4hgzq/F0kyw4glK92llty00h0xY+93efo5Os+VH5lr7Up39hVXqXST5MO7b6h0l1im8/uWJHPO0flcfuGxzrztyJk7czBJMmFg9kr39Wc7Y6ozzNL7XJ5/kbkq3dfH9uZKZhr+RqU741zzV7rvT+j8viXJu0M78wND3uj8jIfP3LneJBk8orM2bCC9a37z1c7Y2YcfduYdxr35QKWbJBPe74xDjR9Rui8amLXTTTJ48ohKd+ahnTH8JMnAlJ/fGZT/ff5l0luT8s61U/4Z7NhRv5/izf94dYuDK93XVvx4pfvm86tXukmy5Ha/rHTHXTqy0k2SJ1ZfptKd+7xbKt0bPnFipZskVz36q0r31bFPV7qDJ/yg0k2SRR5/stJ9eExnvDtJpltxxUr380PHVrqn/WuXSjdJPrF8Z+50ocs7802HDOndm2wycqVKd+JSl1e6STLzm2Mq3cXX6DybH3rRfpVukjz49l8r3TteOLnSfXGV3u/Fj4/5SaV769I/rXST5EejSnORp55Ryd6763OVbpIs90RnHdXrG91V6f5stksr3SQ5esJCle5DP+mNf+y46I6V7izzdp53Nl23cx+eJDf8cHSlu8TW01W6J+1zeqWbJA//pvO9uskSN1W6STLrzp37z9GXbVHpHnz7JZVukpzy+c4c9cuvdr5L3p+380ySJEOu6MxlrT1s1Uo3ST64ubOG/9jlO3Nkj77Q+yyafv8vVbpXfv1fle6eozqf90lyx7ad+63H3r6i0k2ShZbfutKd5cXOOoBLHuzsa0ySgfXHdcKPdz7jPj/xyko3SS5ba5NK97NLPVLpJsnXz7yn0v3iUZ2/kdt/+pdKN0nOOqyzJn6xtZevdOe5a7NKN0kee6RzL7f4m71xxF1n6syV3LtWZ639Akt35qOS5P7x91e6Q+85v9K9ZMdfV7pJ8o0/dM5POGbHznxUktz0889Xun9dq/NdstY8i1W6SfLWzZ19Bwds/7VK98/PdO5pk+T2xTrr69Z6q7e+7pkDO/s7Xjt5zUp38Vl6e+PO3K4z3rD+Dp31dePWWrfSTZI9Hz+70n3j7t7z6kX7rlHpLrZvZ9595vM65zMlyYkzz1fp7vXVzr3A4SdeUOkmyV/eP7rS/eKde1W6SfKTuzrztlvts3ulO/awtyrdJLlzg8745DUfXlzpbnNt5+yLJLny+YUr3RHX3F7pJsm8X9q40h2+Vme8YZ9zF650k2TQE531DW++vmelu+AKve/rX23bad9905aVbpLcOM+Unx//4IWb/6f/3/BZR2XpT3xrCl9NcvntX53izf8Y2PKiSvcXd3e+Lxc8tze++8yWnbGPz13QG7t6/aXO8+J8p3Y+F595fqdKN0n2WaKzt/60WT9X6S60du8sjtuGduYUnv1SZ49Ekuz3RufnvMmSnTmFX23ZWYubJDt/5dBKd9unOmdmHPfR71e6SXLMqM75uB+scWqlmyQ/XbazBmfSnzrn7W19aW9t3StPde7/hg7pPDvf9KPdKt0k2Xqnzv3WtuN6Z1yd8ETnXSP/uOXwSvePvyq9ZyTJFw7tzFes+ZXOOYzbPNy5p02Sw//RWc/53ed756B+77Up/3yWJI/v39nL8Oyg3v3WXJcfU+ked2xnPdLlF19V6SbJUyPXq3RXXPablW6SzPX1zrkyl0/3qUr3vZePqnST5LlNdqh0z7i7M1Y61/d+W+kmyQl/3KfS3fuK0jn5ST5xwd8r3W+t/tFK992He+fOz3j3zpXugx/vjOl8d+5DKt0k2W/s3pXumAd76/f3vqizR/DDdzasdD+3yYGVbpK88WjnM/8vz3TWszy8eudMtSS5/9DOPeIPvtL7+3vkgs7cw4SDO+vsd5h3nUo3SU7cvrNub9wuy1a6W5/TmYNMkk2v7Kz7+sL8vT2CPzi3c97KcxNHVrprzfjlSjdJrvz91yvdWe7eo9I9e8benv49jli/0h20V+9dnrN9bYNKd6a/d+49b9p9u0o3SQ5/rTPet+RFnXvE1Sb8rNJNkkue6qyBG7fRU5Vuksx7Xuf+ZcFPdc56PuzLvbOev3Fd5x00d687ptJd/93OOwqTZOTznbnKdT/aeR9BkrzzZmceZo8R36t037ut8673JDl4r847FH48qrNuYqOBzpxtkmx+yshK9/gD9q90k2SRKxaudK/esfOOyVk7R2AlSUaf2/le3fmNzjt6f/vJP1e6SfLiJZ11Lz9bpfMcnCSfXLdzxsgdY3atdMe+3ftcvvuazpzUSaW9DPOu/5tKN0lO/HFnn8THL++M9SXJjtf21g3+LyYPXy4TFp7yZ2l+bdXefNOcn+iccXXavZ11HI9c2juj5dv/7MxxHn9N75l/yDads1t3/G7nHLHvvdI77+sL6bwfaPIVnTWoF/2l987g2444odJ9a43OecxJcuydnWf+T8+2YKV7+qy956RvbXFZpfu7Yzr3Jsv86AuVbpL8eqXO78WIzXrv5/rjdZ3fuT0GddYQ7/fj3n66Sa8PrXSfHdl5/+5S63fOBEqSIU+XxmwOuKbSTZLzPtEZ25zjlM67KXdfr7PnJ0nO/7Dzcz728c494ntzdt4nliQvTO7sM1t+rdGVbpKsseMCle4yN3fOFB0xYnKlmyTDhnfGpY/c4k+V7oMn9NYavvqZT1e6B9zbmXtLkp1O7bxHa5Xv3Fvp7rtob/zq2vc748eXLdn5Lrl17t57fmZ+rXN+yAH3985BXWqtzjq4Qed1zsTbZOt5Kt0k2W6LznfJZZt0zsS7dOfeWcFr/r1zPu5ha7xQ6SbJ8Yt21n7N8+DoSvfrwx6tdJNk1MHbV7rPXtvZv7b9d3rzyFd86dhK9/RbemdJPLhwZx3c0vt29mMOPP5ypZskeb3zmf+VHTtzJUu+3hnrS5LBM3TmSvbdr3f24PZ/7fzO7bLoM5Xufvt03r+bJNvOP77SXX2D+yrdcz62b6WbJNvt3DmTcrXlOud+JsnLD3bmQad79YRK95rpOmfaJMmZf+/Mge5yYee96Mvv3zv3esOLt6p0z3u4t/9+1Iqd842POKWzbnaDrV+pdJPktZc657rd9ZvOWu3NHju+0k2Sec84s9K9/rbeOYz33tg5h3iW0fdUuntc9EClmyQfHtc5B/WJEzsLXIfe3XsP+cmbd/bQ/OSyznxGkjy6aGdv40VXblDpnvf92SvdJPnX0DGV7k9/fFyne33v7KAfzd55D/lZH+2cb5ckJ93zXqW779MHVbq/O653VuraX+rsE/zptp2z8t8/ZEylmyQrv9CZQ9v9973v1cW+8Won/D9uR5l9uRHZ7eYpP5c8+tzee0Q+85nOWtH9Vuqs6Vxuj39Wukny2mmdsfTXfts5pyVJtpunc57RlZ/YrdI9YmLvzK/fv915tlvvc521Tu/ut2ilmySHPtB5B+9jV3TWtCTJxud1rnm3CZ29ej/6SueeNUneurtz/tmbnx5c6Q56/w+VbpI8vk1nHc4m3+mNpR8wpjOvPtNTnWeOlb7dea99kuzx8856mb0HFq50H/vc7yvdJLlwi87z6LK/6K092fqszpj3S3d13lXx8Wc78yBJ8rGRne+/nT+xdqX713933mufJONu6pzNtcRPvlHpJslMR3f23W2/7gGV7goX9OZY9py1M857zu6deaynD+qdX3f/m7tVus8d3TuEYvVbO+8OmDj6tEr3jS931uMmyTUHdsYJb9qrc1/75t0rV7pJMsc8nXWM967wu0o3SS7YpvPv9+D3OnvuvnTzXZVukvz5qc5+sH0f+WylO3qB3lq177w6stK9evne3sYPh3X+Tn6/RWfs7KD3e/t/X9+/c679Hpd01vdM2qzzeZEkY87vzDcdPLkzp5cki8/6yUr3/MU/qHS3nqczbpYki5zaORto9Rf/XOn+evfOeGqSHPhIZz/YyR90zhhJkj9e3Pk7+cW2J1S635qj8xyVJGcd1dmP+eN/dt6ht/LdvXPAt763812yznK959XLjjyg0h10WudcvKOOWKjSTZIt7+nci59+Sufs1h+sc0qlmySn7tHZW7zDL3vPfltv8cVKd9fbOme5HHXTZpVukmwxobNPd65dvlLpHnToNpVuklx74ayV7tB/d/bSJsnnlh1T6Q475epKd+NV/lzpJsm1M3XuMe74RGc97rPHnFvpJskj13feh7z3n2aodJNk0dLZXR8s23kf1qqX9c7ku3WnOSvdP5zdOS947872wyTJqgt19oZ/cdnO+GSSjPmwM6e48rc79wIn73BppZskH7m58+6O9ffuvHNzu4vHVbpJ8pmLz6t0r/pO5/MiSf52VGfP8v+X3ttNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/IQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBQNT+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFowMLUvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmBYMmT578f/0fLzXT/JPPWPWrU/wiHhz94hRv/sfjg1+vdGceMkulu8SiH6l0k2T+ZeardN9+85VKN0kWnH+FSve+Bx+odN96d2KlmyRLL7NgpbvAbCMr3YkDH1a6SfLBpM7P+ennX6h0k2TI5Okr3Tff/qDSHf5ffDf8tyYMeqrSveG2xyrdjyy9TKWbJE8//q9K94UXxla6SbLg6EUq3ZceeL7SnWPuzvd1ksw6fIlK97Rzj6l0N1h340o3SUZkpkr38lv/UekmyW5bf6bSnX+heSvdsy8+o9JNkrGPd75XX3x7XKX7zNOdz4skmTix8/03cu5ZK90kmX/ehSrdRx74Z6U7YULvHmPQoMGV7nRDh1S6oxbufKcmyVILzVPpDp3wVqWbJJfeeEelu+R0c1W6B666aaWbJHO+OqnSHTZ4hkp3YKBzvUkyw+Rhle7Eib1n9zlmnrnSnTh5QqX7wfuzV7pJMnxQpzt+oDOOOHxY79lhcul3efL701W6STJkRGe8YWBgeKU703Sdv70kmTSp055h5s49xv3Td8agkmSZszvPlRMGvV3pJslcD51c6R79p9kq3fmG9p4d3purcy/+2pjbK91xr7xW6SbJWsstXulO/0HnfitJMvjNSnbcS517jJGLdp7PkmT+5UdXunff8EilO+/CIyvdJBk0vnMvN7w0vpUko+YYqHSffeTqSjfTL9zpJnnmic7333uDO2O1S8y1XKWbJK++8EylO/sCpYeSJAsv0LmXe/LhznPJHCt2/vaS5JWxnWeHBy77WaW76TafrHST5Npr/lbpzjP/ipVukixZ+l598ZG7K93pZ+iN6Uz8sPN3Mn5SpztxYudzKEmmW3SxSnfw20Mr3SQZ+t4Tle50QzrfJR9OfKnSTZJZJnTmB2adZ+5Kd8j0oyrdJMnQzjPapEnjKt0kmfDy+5Xua0+/Uelef/qJlW6SfPBG53Nu3uk6Yy8zDu3MRyXJiKHjKt3pMqLSTZJ33pvyzyV7P3leHnnvxf/pg3mlkUtO/vu6J03pS8pBEzrPMklywCJrVrp/fvLKSnet1besdJNk23Gd+6lbz7iz0k2S2b7bmUv+0YTO+sj19+qsD0mSRS4/qtPduzMuvfmtD1W6SfLlFTq/y/O+1psje/CozrqW1dJZB/fhVz9R6SbJvy8/rNJ9+C9bVbpnrt5b37PD9OMr3dEXvFPpJsn5h3XWap/wSmdc7HeDO/cBSbLJIy9Xuj//9qWV7iw/26bSTZKrrl620j18pg0q3SRZdpc/VbozvfBwpbvCL3vPjNM/uVKlO+e8K1e6M77T21v19iN/r3QXmX6PSjdJxmzWuRd/9exvV7pLLrxrpZskHw7pfP8tMmNnjGmutxatdJPk3JGjK92zc0OlmyQHPtPZs7z7W529Eh//7Fcq3SR55YbOuPTIxW6pdBdZrrc+K/9YuJI994Xes99ca3aeS5Z887eV7sLzrVPpJsmw9zq/c3ff3Zk7/egWnXVfSTL2+V0q3bsX6f0ub/rLOSvdixb+S6V72ObLV7pJsv15nXn1vS7vzN387cTeHMtV151Q6e6+3J8r3ST5/Ew/qHQ3XaYzJrD8U735gXV27ZxfMumEzvqsBcZ31vkmydVL/qHSXWOpznrqJJk49/qV7gUvHF/pLjFms0o3SWbcobOGf82RnTURN916TaWbJEtM+nGl+8xSnefgJPnCkNUr3Z9edW6lu/fHx1W6SXLma5255pXf3b7S/fPIzp6fJPnqNY9XunNssH+lmyQLfPyISve8BZeqdNf59rcq3ST568rnVbqzPtAZRxy5zgmVbpLc89tzKt3Z59260k2SQ2ftzLuvucFzle7xY3prEIb9c7VK99irO5/3cy7d2/O62iG7V7pz7NI5+yJJ/r1VZ074hEUfrHRvHdr57kuSK55au9IdslJnL/ucT/f23A2auEOl+/7g71a6STLXhM6c/mnrd+ZKHn5vvUo3STbfvrPOasvXO3MwZy3bW8O/+qydeZhL5ul9l2x+3ZT//vvSPQ/kkbfe/q/XPS85dNTkk2bbbYpfz/tf33mKN//jt1d31qpt+4+PVrqHLLBnpZskJ17ZGW879aHvV7pJMnjUryvdI37QueaV9u+tEz12/c4ess32O7DSnfnk6yrdJDn63vsr3YnjD6p0k+T+r3TGPi46rfMZN36O3tjVrtN3zrFd4tHOXoYhd/T2Wb79785ZDkct0xk3TpJrzvtOpTv/luMq3Tff26DSTZJxKy9d6R50wwWV7piTe/v0Lju4s+fn7Rc7a3GTZOvpOms4xt3TmRO6Y77eepZlrj670n3vtM5z6JMX9u49R63XWXcyaIPeuTK/P7sz9n/YW9+rdGca15lPT5Jjzrut0r39kr0q3Y+c1Vl/kyRvXNNZW/fIW6tUukmy2Vuda37pJ517zzc27Zx3kiRX79RZ27rYup21Ibvd29tvN+/zX6x0Z9qqc05+kvzrk7dWuttu35l3m37f3pjm28d09niO2q/zzpX7Xtmp0k2Sr890ZKV7zxGd774kOXq6LSrdixfvvE/pxZ/0nh2++7H7Kt0DX+ickXT8zfdWukly4nudta0H7tB7F+QP71ig0j1theMq3WNu6P0sbrmxM6Zz9qxT/v2gSbLFc72zchbc5PpKd9exvfeBfObGDSrdX6zX+bv+yajeORL3b9f5nLt498668pf37Ny7JMmvTuqsM/zU21+rdJNk7QU67SW2GV3pXpIDKt0kef2RZyvdGTfsrLnccLvOWQFJMteozpzimpN678U8/d+d552N5+/sNz/8mk0q3SRZYu7O+6bX3PkXle5P5t280k2S01/t7F97/3uHV7pJ8rVf71bpXrJuZ4/1jT/une/z1bU645OrXdb5vN92/c5YUZJctVlnnc5P5u3sj0+SJR/prLX65BfGVLrrn9M7X2SB5TufGbts3DkvYJUbOu+pSJJrZ+/MB1926SmVbpLsOryzhvLSbTrff9/+a2/v7x3XlM5kWPtXle7Era6tdJPkiTefrHR3/KD3PokZ1urMz70+8Vd3TZ48+b/+ElxpphkmXz56yr+/ZomrOmO8SbLadzprOtdavDOvcMfqvXXPd31wZqW78jW9d+I8uc/Nle4TT3X2Cr16ZW++9/rJV1S6q938k0r34Pu/VOkmyd63dfapz3l67yyVo9e7qdJd7dDOWaV/O+mzlW6S7Dpj5x28b5/ZeU7a6PTOuw2TZM3vHVzp/uF3H6l0k+SRfdaodC8bcnqlO9PMvc/l6SaMrHS337Bz/sutX+ztRzn055196usf0Fu78IftOucQX/P7zh6aRZ//UaWbJMtedWqlO+LyznlDd53zsUo3SbZ6ZcNK9/lJnefnJLnpW505luu/11mT9IN5O+fLJck+X+msSfrjyO0q3U2uOKDSTZJH1u+M0Q+c+fNKN0l2e6Kz3vAX/+6cz7n8OiMr3SQ5/8udd2A8e8OwSvf6ezpnXSbJ7od0xjVnfPvRSjdJNnppv0p3pkM6eyV23b933tcP/9A5o2zTDa+qdAcW7ew5SJJ5zpy/0j3n2M47n5Nkvw866xhfnrBWpfvsjZ1xsyTZckRnP9/YU5+udJdaorfn7ql1O3ORH37m8ko3SZ69cHSlu+ERnefV83fuvJc5SV7aqHMu3ufn+Eale/n0vfeXHzyis+75mFV773N56SudvVVv3dV5Rrtplhcq3SSZfE1n3u/g5Trr1m/fvje+vO2ozrzfGX/t7dPd6KopP8+cJAuef3Kl+6uf9d7zs98R11a6X1/+l5Xuy3/vvednpvM677l7/mfnV7pJssSVnfMTPr7QvpXuPgf11iCsckHnjMcHv75kpfvWL39Y6SbJHemcYzt03t669UsW73z/7fH3znsxv/vl3hrwy77WOTNgrucOrXTvOWZ0pZskL27Vmfcb2Lw39vKXjTprRTe/4L1K96a1e7/Lb13WWY/xg+k7zw6/mq6zrzhJbjtpg0p3zpk7c3NJ8oNtOmPXJ7/UOYd4mQU+X+kmyb7f6DxLLbJJZy/muPM6f3tJcuZRnf20Y05+t9JNkgs+ckile+Z5i/xP654XW2LOyT86acqvNxy0XmdNRJK8MaTzntw7L+vslf3XTL2xvAX+3jl/8O5x11a6SbLRXzvva9n7/s65sBOu6o3lHTaqcy7s71fpnAt72Sudc7mS5KDSe6pHLNj79/voLJ01nXc92bmHWPy3vfmmLRftzIVkeGeM6exre2MJg/bfuNLdcNu9K90kGXxc530tmx7cebfozl/qrfX98X6dMe/tt+2c9/zyDp33dCbJmfd35t5G7/j7SjdJDvzeWZXukbs8UOkO26W3bnbiTzrvd1rlzs45Se/e3FlPliR77dwZ8/5w8oWVbpLsVzrz8o6TOvuJ9vtq528vSQa9dG2l+6ePnVTp/nHb31S6SXLHVZ17uYMX6az7SpLlP9U5E2DVxTrdHz63fKWbJN/7W+c9Cv+cvrNvf4VtOusWkmTMfRdXuits9kalmyTbXTxXpfvJ7Trff7ss3BnfSpJVJnfWXj614p8r3XFDemO85w/vzAvdulpvTdK/3+28U+KJvw2udCfe0TsbaOW3Ov9+ayza2U+05AL3VLpJssl2nfNbB07u7JNIkp+f2bnmH8zbGR+587rePrO9zu+8j/jMJ86odDfc/dJKN0kWO7qzBnz8ob01ZWte1RlveOrezjqODf/YO0vzos937muHTddZT/3pBTvPlEmyzmnPVbrHb9NZ95Ukj+3Umd+5fa7OnPr5Qzt77pLkxb931mf97ewZK91fLtn7WUx3dmeucr2zOusuk+SpdY+qdG/Ybv9K9wfz9fYsbzb02kp37BOd+/Dxy3b+RpJkpUmdfZ5HXLh7pZsk727dGSP5+lyjK921D+s9+817Wudz+d+7dt4LvfC/e++t2u30f1S6m1/bmQNNksOW76zhX//CznndXx48e6WbJB/9fmetzp4Ldd6n9NjjvfOOjv9O5xzWc+b7ZqWbJAc+9WGlO/Njb1a6T+7UeQdNkpxzfGeucuXbOu/J3v/dEyrdJLlv4c5Y+/j9L6p0k2TiGmtXuotuu9P/cd1z79ReAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPh/yMDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMTO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBpwcDUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBYMmjx58v/1fzzfDLNO3nfZjaf4Rby/+jpTvPkfA9M/V+nOPN/ile6wd8dVukky/WyLVrqLrzpPpZskc88wqtJ95qWxle7TY9+odJNknsWXrHSXXnDGSndQBlW6SfL2m29VumPGjKl0k+SD91+udCe/NXulO93IIZVukjz34IOV7rAZJ1W6t9/2r0o3ST6/06aV7r8fuqvSTZJH7h9X6Y774MVKd4Y556p0k2Se4Z2/kxmH/N/fm/03Js/c+1yef/aVK93JE8ZUukly+/3vV7rLLjFfpXvdzbdUukly/yOdv79HX+/cb7377geVbpJMGP9hpTtpUuf3LUkmvDOh0h00eGilmwnjO90krdvPFddYvdKd+O7ESjdJXnn1hUr3pec73SRZb8P1K91ZZx1e6T50/UOVbpJ8eovVKt2lH5mu0p1vwhyVbpJ8ML7zjD209RmXZOigTntoOr/Lk4e8WekmyXSTOx/MwyfNXem+nd7P4t33Ble6Mw6bqdJNkumnf73SHTpo/kp30sTez2KWmWeodCdO7DxTPrXJCpVukuyzxjuV7ldmW6zSTZI9Jt9f6f7hqc7vxdg7fl/pJsnya29d6U549ZVK91//vKjSTZIZZli+0h00rjcmN2iGzu/cO+M639czdi43STL/SmtUuh8+3/ldfv7VRyrdJBk/+b1Kd/bJ81a6STLdAqtWui8/e2Wl++b7vWeHpddZrtJdaNaPVbo3P39zpZskK8/T+VlMGOjc0ybJ8EGdMbk3JnbmbYfN1BkTSJLh73TGuB69ufP5Occ8vb/rGWefudJ9f2hnDjRJxr/Y+febdbrSOOIMc3a6ScY92nl2ePaVzjjigvP3nv2eefG1SnfJRUZWuknyxthXK90FFluk0p1xrqUr3SSZYVjnO2roDJ2fxeDBnbm5JBmczvfq5CG9MfF3Xurcvzx+8U2V7p2XnV/pJslsA51x4DlnnK3SnTy+Nwc6+4yl+YFJA5VukgydOOXXvezy7z/mwXdf/p8GMpaeYbbJv1p2kyl9Sbl4x7WnePM/3nizcw8/3e2dz93Pb9O7T3v1yhGV7r/v6z0bjH+qs3bopC0vqHQ3Orq3hn/ES89UugfuOOX3MiTJ+9fuW+kmybOHH13pLrdL795kxLtHVLrvvbxHpXviyN46jpduGFbpLj66M/7xxKW97/mlP9r5WYxKZ29Akkw8q/M99fIB21a6Tz13SaWbJDO8c16lu/f8C1S6Ny7cecZNks0u7OyBuuTaMZVukgw9vrOOccSVnfnCtT75h0o3SXZZbnSl++ARv6t0PzL2o5Vuksww/olK986He2tFnx3aeTa//qF/VrqjV+usL0iSq+5/qdIdt9U2le4V16xZ6SbJnz9+ZKU74v7OeHeSrLNG52/7/bn+WOk+vNN+lW6SrPTlv1W6fx37nUr3iTmfqnSTZOXF3610b1ul97v8l1s6n3NrLNH5LBp7de/fb8zLnefK4a9uWeluvEFnHD1Jxt71xUp3hVG9+6Jxgzv7rD+1Ymcd1X1X9fZvf/Bh5/yLP690Z6W7wed748tfHN1ZXzfq+u9XuknyjY9dXenentMr3b+c/HClmyRHH9u5R3z4tytWuoNL85tJcumynfmBOe67rtJNkq3++mSl+8qFC1W6j3+y83ydJDn3k5XsdH85qdKd/rzOeQFJ8uR8nfGi0at0fsZJ8swGnTVaL+13R6V73cy9OezffXX6SvenG3T236+/V2c8NUm23LWzb+SGTT5e6SbJy2N3q3Rne6uzH2yRsb2fxWPPdL5LHpjp2Ep31Lu9zTmDplul0t1ri3sr3SQ55YndKt0vPHF2pXvVu537+yQ5a/pHK901/vmXSne2Ib+tdJPkxqGdZ7/FR+9Y6SbJ8o9cW+mOGtc5x2z8P3rzRivu0vn3u2L+9SrdjT9xfaWbJHM/vFSlO+Ke3nfJLTd31jnOOrSzz3O3C26sdJPk6ec6Z2x945jLKt3RZ3bOdk2Sy16YpdLdZobDK90keWr5n0/x5l63X5NH3nz9v16QMedSC03e9vRvT/HrOWvPzpqvJJn5z525mxsO7eytuGe63pj0Ht/v/P4vs0tv7PHRhXerdH929chKd44NO2txk+SiT3fOev7DFzvPoV98/4pKN0l+ednmle6vD53yn7f/cd1pm1W6i33t2kr3uJt76783P2D3SvfHE46pdP90UW+f5UYXdcb+//nkyEo3STbdfcrfByTJb3bbudJdd/KnK90kuWLkNZXuD2bqnJmx/uc7z+RJcsiwzhjF3etuX+kmycNvd56fF/9sZ970zDc7e5GTZK5zO+dEfOGYzvj82qdM+T2Y/7Hstt+sdFc961uVbpKs9Ernvmj/zTvffzuns0Y7Sda8t3Ou0/pLdsaOT/tq5+yXJNn5vM5ezOfn7LyzI0l+87nOc+VL63+i0l1+hc6exiQ5cLvOeaXr39kZHzlmlgsr3STZ44POZ/48O/Xmxyau+3il+8m1d610N/nm1yvdJPn5852zk3f8TueZ5J7Lemc9D1zV+cxY5sbO83WSHPRu5/nhmRkPqXQPPqQ3b7rrZzrvzxv9hc5z8EmndrpJ8srNnZ/Fxf84sdJNkitX7HxmnHVA56zSh5bq/fttvWHnOXjRUZ39knde0tnvkySv/rLzbo27nu2cQZwkwy/8fKV7/2M/qHT/8bkFK90kWW38bZXub+77RqV75GWd/VpJcvrXjq90N1r6sUo3Sa7ZpbNf+anDOufwzPfyOZVukty36sWV7lcXOarSPXn+4yrdJNn5kM441MYrnVDpJsmcv+rM6d9yUGf/0wUPd55Vk2SpGzt7t996ZZlK95MHPl3pJsnOu3f2bs/+6d67bT4Y9GylO/+PD6h0Z7i5N9b+7fc68zt7je/sgz57rQMr3SQ561v3VLqnP9f5fUuSf290VqW7+0c6Z2psfP3tlW6SvHFJ5zn48U919m5vNVNv7+8tp3fW9m37WO9MlFse2qLS3eaCzjk8cz7WG18+bc9zK92nZ/5qpbvgeZ1nyiR55yuddyH/9sVbK90kWeHrZ1a6e123zF2TJ0/+rwd2Vl1q3sm3/fxLU/x6Tpq793mQ8T+uZAfP1zmv5oVNOnvJk+Ssf3fW5J48+O+VbpJc8pPO3PcLX+q8y/2CuXrvn//RHp3Pmh0+2dnbu9YFvTXgu3+0s5/1tgV3qHST5E8f69xnH3RVZ1xsk2937h+SZJ1d/lrpbjiq896hOd7rrUn65UOHVrp/fq04X39hZyxv32Gd75Ib7urs7UiSX5/S+bue/YPOGdLHX9l5f0KSbPb5zrlc3z++dz71Rx96udL94KXOWSqHv997Tnrh6M6ZGcte1lmr/cHwAyrdJDnmy5+qdC//Su8cxvXu7MyfnjGy827tVdbtncN43BGd9z7M/9Clle6eV/bOSPrY4M5+vn/M1Rv/+PslnfcGjH37N5XuXqM3qnST5NwRnbVD1w7pfK9+Y/neWsM5T/tepXvEG73f5XPf7txzbfTyCZXu9kf0zuD/9HmdPVCv/GN0pTvjqb0xgZvP7qxVW+D4zh7rJNnkss6cxQM3d86Qvnux3s9ij5t/Ueleulvn/fPf3bj3/vJjX+7sEzz3iztVukny2wXPrnSfOaUzJvf9fXrrAPY563uV7pAVO5/3C559UaWbJP8c/k6l+6mLDq50k+SGizrvgtz5iM7ZWSeu+aNKN0nue63zXtNdN+88U475TWetRZKccvNKle5m285f6SbJ6g/tWen+cZd9Kt3hc/bGJ2c6tLPG56uXdM72X23Tzrtjk2ST0zrvXF/8vt7ZkVvu9+tK9/xLO2taZp+8baWbJMd/ubMf7JjhnX3WI0b0xmpPGtI5t3yN+zvzGUly5zKnVrpn7dV5N8rCSzxX6SbJuXt21jfMsFFnD80Ze3XOREmS137aOdP32Zd670bZqfQ+iZsf6+zHfOrHnWeSJJl/m87Za1ud2Nlzd/SfOmsjk2TI0Z1zWCft2jvjZ9G9f1np3vRgZ53c4I905laT5PD5N6x0F9xs/0r32FM6c+5Jkhc73yUPH9NZZ5Uk67/TOdP+tx+8+j+te1562DyTfznflD9v4ORNOuNiSbLQlZ3Px5vv/rDSvfEfa1W6SXL5TjdUuote0ltHNfuyp3S6s3bmFTZatbe+7tQ1OvcQXxvVGXM7fr3eGZ2PfKrzfpnj/9i5f0iSZxbsvGtuzs91ztkZtHpvT90SN3XObPvxTp29liu82DtjdZfhnb/rsTMNr3STZN8NOuNB21zRmaO+6ejeGceHrbhHpbvgxp09nLsN6+3Nmf/BzpqyZf/cO3dhhZ901p4cu9b6le7SM/fGr54+44FK99LlO2u1F9iotz5rwYO2rXQPOWLhSjdJfn5u557rw9+dUenOu/pWlW6S7LVH573B763XOf/s3HN6v8v3frWzn/YvY3tryq57Ynylu97zV1W6v56vtw7gxbM7aw0vu++1SneWzU6odJPkimGddagnnD+00k2SeT48udL93NOd7jof65yJniRnH/SPSvenb3b2CT6/b2e8O0lWWPlrle7q1/bW4Ry3fOfMvW9d1RlL//L3e2d+HT9yiUp37K86Y+Ibn9V5Z1ySjPphZ476nyN766gevLZz3vpxP+yMyS2yRW/d89s7du4F3ry9c87cGmt2zktMkvm+1pl3ePCc3nzvCXv8rNI9+YXO+vIflc5bSZK/ztIZB972u52xl1cG9847OuSSzlrt808dXOkmyey/7TxLnXxkZ0x1qRc663GTZMdTBirdY8d9odLdZfPtKt0kWesvnbNcvrVpZy97kmw/sXNG088/PuXPoEuSW77RO4f/7lU7+6E/853O++ffXf/8SjdJtjyi8736sWU6czBJ8uuVO+uT9/n3G5XuI5sfVukmySq7fK7S3evhzrj1wKjO/oskOfHvnXcHvH5qb936cTvOWunOenZnz9Zqt+1W6SbJV7b8V6W79R53VLq/2vq9SjdJ5r+rs+55yMGdNYNJ8uYxnbW+p17QWQM0xwu98eV7Hz+h0n3+lHGV7tsHn13pJsma83fmNI4e1JvrmuO5WSrdSbNd/H9c99x5ugIAAAAAAAAAAAAAAAAAAAAAgP8fe/8ZrVddqH3bZ1YKpBJ6CSUU6R0RRHpVQWlKEQtFBVFAcSM2FEFURAFFRBEUUQFRqgVRVECaIC3Sm/QWOiFASHk/3K/f7ucZe/vkHGusPY7jM/6cY2Wt65rz3yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP8yA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBSP+J//xPAstmGU+8v65fhGrrLriXG/+25yRMyrdp55/vtKdd9acSjdJZrw6rNIdl0Ur3STJvJ2fxyLjxlW6L014tdJNkhGzXqx0R49cuNIdN7KSTZIsOGqg0n3smd7f3z23/bPSHT9umUr3uYfvqnSTZOkF16p0H3755kr36huvqHST5Mbbbqh0d9vjHZVukkxacslO+NGXKtnhw1+rdJNk3NiVO+Hhj1eyzz79cKWbJPfe+0Kl+9RTT1a6SbLfew+rdKc+3/n3W2jxCZVuksx4+F+V7tTbO/9+w2d37gOSZNhA515g9Pj5K90keWXghUp3zpzOc1SGD+90k6y+yqqV7rix81W6j754f6WbJK++MavSnTS5dB+Q5Oq//a3SHeg8Bmfnd23VCSe5bVrnufL+hR6qdDdZZMFKN0kWn7pIpbvAG6VfjCQzni3df86ZVsmOHhhf6SbJrJmvVLovvN75WYyfpzeQMWyeUZXu2DFjK90kmfFa555r2PDOz2LeEZ3ftyR5/dXOvfg8Izv3RQttsXilmyQ/WmpipbvWxN6Y3EMnv1HpPjzQeY5aZP7es9+IJzrPaLc+1PlZjB8zs9JNkkWXLv2cJ0zqdJO88nLnHvH5OZ3usHG9e4xxw5eudJ8pTWq89PCfK90kWXLVDSvd++98oNJNkjVff7rSffLlZyvdxRd9U6WbJAPPdj6Lbn38L5XuImM784lJ8sKMzvf1xGG9ccTh84+pdJ+8+vpK99VRvTG5TbfdttJdfHLne/XRR/5U6SbJQw89UulOHOiMjyTJ4kssVulOH79EpTvr8bsr3SR59dXXK92Fltqk0n36qc5YX5KMHd65R7zh+gcr3STZYI2VKt2Ji0yudAfmzFvpJsmrr3TGSObM7HzGjZ3Q+bxIkmEjO/cCs6d31gwmyWtPPVXpPvvg7ZXuPGOWqnSTZPhAZ65yVjr3nmNHT6x0k2TmsNGV7pyRnXU6STJixNwfB57z/+H+/skJS+Tr235pLl7N/3HBpN5Y0LUTOv8+j+56TaX7j223qHSTZIVv3FvpfnDFzrrLJJnnsO0r3VE/uazSXffySyrdJHl94854wgp/+B9tf/hvW/Qf36p0k2SegyZXulMuuajSTZJtZ3fuTXZd/aZKd607flTpJsnCYzq/G0+M/1Wle9ymnc/OJHn9rM748f7v/3almyTT39N5Zlzs8c9Uus+MXqHSTZIN712v0r3nlc649PknddbtJckVy3XW2o/d4neVbpIctMpxle6dT/260j330AMq3SS545XO/o6HfvjWSnf7Q35T6SbJfAd0ns0XPP2zlW6S3LrEbyvdDRfq3OOvcO55lW6S3L1pZ+3XSh/+YKU7fdoxlW6S/O20dSvdpX//tko3SRZaYfdKd+O931Lpbj2+N1943nqdefUTJy1X6Z6yyPqVbpL89sXOs/sVL3R+L5JkiS06Y1yTb++MQ210162VbpI8e/B7Kt1fnntupfvi85Mr3SS5a0ZnPfzW67y90k2SV+Z09ue8/ptHK90FFurMvSXJ1M06e9jGbNb5vF9wuY0q3ST58ZWdfQdPTv5wpZskL3xrzUp3+vu+XukutUJvb85ff3ZbpfvcNftXupu/9PNKN0l2mvFcpfvk3Z29HUnyyLGdtScPH9ZZk/vG+7ardJNky+lbV7rHvN757pu0zIGVbpLsvF5nfPKj155W6SbJ+bt31pRdvEpnDm3LXXvnMvzysc5a7e0v66yDe3qFzvk+SfKPCZ1ntMe+OaXSTZLVnlm+0p123LKV7tHPdb77kmTbiztzD2PO64xD3fzi+ZVukmw2ZWKl+70pF1S6STJi3c5ZBNe92Hl2v2fzztkXSbL/NztjJBes25lrPuyy3u/yt7f4SKV76T69uZLZ7+yMQ62xR2fe4bxNe3PY11w1tdLdaP4jKt2rjuqd6fbyip11z6fN7q31fer9nc+M7U7trNP51IudvdBJsvM2nb+/gW/vU+mOu6v37PC2CZ1n7D8/1NsPtvyphTHKbf+zsyWHPz8sC5w39/c6T1lol7ne/LfHNumsZ1n8vZ3v4gXX6K1nue7LJ1e6f32jt+/mx+M6+za+ukdn39S7Nrml0k2S5/bsrKfe6JbOOpn1F+w8HyXJwzd3PjM2ubRzJl6STLi+c37BJfufWened1zvvKid/3BPpfuRKZ3Pi0lL9861uGvdzn66qxftnDWbJHfuukqlu/i3OvfC7/hj7yyOS97aObPm6U3urHQfOaS3//3FlT9e6Y4Y09unvtq3O3s4By7szDU9d1RnnVqSXLpNZ33BpFM659Vs/97O90iSzHtoZ93Qxz7feSZJkkPO+UCl+7GHv1npzj+zt5dor1NPqnTH79IZnx+/Y2+u4qN73lfpLj7+9Eo3SSYN78wVfvPBztq6437SG58//tHOM9o2h8/9PexJ8vGFPlTpJskiP++8q2Knz1xc6SbJF+7rzPVeuW1nzd7jP/t9pZskd9/yj0p345s661kemvz9SjdJ3rfrxEr3qrU6e3+TZNQpG1S6f1rsE5XuRQd31r8lyUvLdOYUPvnRzSvdi77dOXcwSXaYsEOlu9mKO1a6SfKDz21Z6Y5+W2fd13xXdJ5Vk+TMzTrngD83+upK9yOr9fZBn3NvZ/3wh9/0nUo3SbYZf2Wle/munX0d+7y793f9yB8754CsdMzOle6cfRaqdJPkghs783NnTLml0k2SHNx5z+SGF3TmpM4c9ulKN0lmXfGuSve37+j8zk2d1ltnePkvO5/LXzyxdz7MMot05tEO/GBn7Gzx5Xvrvy85r7Pu8qTtOuczrf+Tzp7iJNn74s47zjd5vfN8nSQ/fLazPuUvwzr72He9tbfOcIuXOmOfS7x5p0r3gr/2nv0OfLjzcx62Yuk9uknuf8s6le6vz3yi0n3fSb0z6EbM6TxLzTm287166DffV+kmyUnf7jw7jL+o947lk35+QqW7wEOdv79NrurMjSfJXjO+Wulef3NnTGf/BXvzDmvc0nnn0YlLLVrpJsmKU99ba/9Hnp2VmT+d++e037h853y5JDl6984Z3x9esdN9ZoNjK90kOWV2Z93lMp/9Y6WbJOM+ObnS3efpzrP5B5/vfM4kyYbLd+bfjjy+s2f/uw9sXOkmySs/7KzpnL5B711XF/y28/e34fyfq3Rv2vadlW6SrPto50zt6UecUen+4v2dc1uT5PCVOu9Gn/p4b63vMUecVen+erclK92j3npkpZskx2/Z2Xe66CEPVroDi3Q+L5LkSzd13uOzwgqds8WTZL13dObrt91lj0r34Ue+UOkmyX2f6Xxnf/cDnfe2nXPqY5Vukiw2ubMO4FsrH1LpJsnsGc9UumOmdeZuvnjty5Vukuy/zImV7mbDTql0/+uN3rnJ227910p3h5/1vksOeLlzzsBuZ3bO+Ljlwc6+4iT52N6dvVUDW3Teh7rcs1dVukmy20pfqXTfs0fvHMbPP3xhpfu5lzrzspce1PnuS5I1ftN53rnwL0dVutM36Ow/TJKFH+vMfR/56x9Xukly6rTOs/BnN/2vSvfV8Z37+yS58vDPV7pHDru80l39nb318L9785GV7lo/7ZwXlSRbz+6co3n3C5194fMMdNagJsmZf+usXRj/ts53ycE/6ey/SJLjT++cNbvwuZ11e0my206d37mL9uysibhh5875ckly/z2dfZ6LLdk5F2XXh3t72Udv2dkPtsznO/dbSbLWWZ33Hn19ub0q3Yvv6e1l32hW57nkjFc74xhnH9obk/vx+M7ZTxuv8r1KN0nmXb5zJvPh23bGEb/y4958/v6/6Ty7Xzy5826N2bseXekmyY0HduZKRu3UW8N/zdTOd8nZr3X2ubz5B7152/H7dNrbnNg5e+bDq3XOBEuSnX4xp9J9cpufVLpJMvOoBSvdj97WWc92yk298cnXN+s87yx01LhKd711eucTzvdM552NC329s546SR784icr3XV26ZwddOBhvf0op+zUmcO++8cLVLq/3Xj7SjdJ/rhmZ2/jJc/13k00fkznfUrJL/6j/9X0EfPnpoV2m8vXkly1Q++M4wemvLvSPfUDnfu/D63euze5d3bnnXAHvaV3zVvu2znPb+Qunbnv1Rb4QaWbJIcs0nm/4Rk7v1jpLnHo4ZVukjw0vPO+gW+us1mlmyRXH9fZ7/W50zv7OGdfeGKlmySfOLDznvjL/tB55t9voHfe8zWnddYkLXB+55yIJPnYBzrn+Z2/7A8r3Y0W6e0hO3WezrjmH27p7Gn99Ljeu5IWeKxzlua/Luycy5UkJx/XOatlk4M642LjDtu90k2S7d/onPWx+9md92u8OKy3N+eE856qdE86r7NnMkm+fvf1le5Le3XWXR7+t87zWZJsuWbnnMdtFu2sg/vSA6dWukly9BKHVrorP9A7b/3er99S6Q7fu3OGwUM39d5JsNanOvtGDvpl595lqb91xo6TZMoXO/MV267WO4/jtj0674kfeX5nLP2ya3rfUSu/5bZK92Nndc5i/NKvz650k2SJ3Tpjcquf3Pm8SJJN3tc59+TiQzpjqlvf0Tuve9QJnX1m2522YaW71p87c+pJsuDMzrr1R444stJNknFndfaQnvCHzr/flqf0zjhee9HOmQ97f7Uzx7ntl3s/i+Pv6nyXTHx120o3SV56ojOuc8uHbq50F1i/t5/o+1fuX+keNbozPrLbw715hwU3W7fSPWKN3hnH513eObP0uRM7a3If3az3rp/dX/pupfv0czdWuvtuOr3STZJpny28/zrJrgMjKt0kOWRYZ3/HOhd0zls58IHe3pyffL1zfsIH1ug8O3zs4c6+8CR5crfOeN8uq3XWoCbJrSd2xriWnfhSpful095a6SbJ5cM7Y6ornNY5r+rJW3p7oSd+uTPvvtZ2IyvdJPnwK51xqFv2mlnp3vGL3v3yFWdeWuk+tX/nveyXr9d7J8F8v+ycPTrpos45Lklyykqddyr9cvnOPeLVr7xQ6SbJh5fvnLe+xmqddxavfOrHKt0kueyyzvzAnkt11gwmyZgDv1bpTsv//azN3kmnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/yMBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GI/8l/PGzYzIwceH6uX8TsecbM9ea/LTTfG5XuvKMXqXSHjxpV6SbJ7Jmd7jzzvNIJJ8ms0ZXsjGHzVLqLv2n5SjdJlplvZKU738hZle70ma9VuknyzEvTKt0xYzt/10my4CLLVbpTH3+g0h0/pnO9STJzTud37smbnql0d3z3NpVukvzzjtsq3Ssvv6PSTZLtN1660n3+lamV7sCsCZVukox94/pK9+nXh1W6M2d1ukmy4VobVrpTbr6y0k2S4WMerXQXHv10pbv07BUq3STJ326qZAeGdT7vB4YNr3STZNbs2ZXu9Dc69y5JMnJU5752YNb/6FHxv23k2Hkr3SQZs8ASle7zT79c6b78/IxKN0lWWrHzXHLDtVdXukmS4aXnnfkWrHTvfuzFSjdJps/sjGOMmt75XP79Nb+odJNk4w1WrHR3W/rNlW6SrDCic/85q3O7nBlvTO+Ek7TuPkeO7vyNvJbe5/Kogc49xvMvPFvpJsnYCXMq3YFhnd+5WQMLVLpJMmrEq5XuG/N0PpfnW3F8pZskwwc6vxc33977Xn3g6Rcq3dfGdj7lxkzo3LskyU03nV/pThq3SqX7+qxxlW6SjJ32YKU7p/QdlSSTlt660h0Yfm2l+69pT1a6SfLmxRatdEeUpgfemL5OJ5zkths748vzz9sbR5y+yORKd8E3OuOTwxZ9U6WbJHfe9tdKd/1Nt6p0X59VHN+a3XngGbNgb67r9efvqnSHT3+q0l1u+d5z8AO33FzpPvVA57tkxKjePcb113Tua9dZpTfXtdhynfH2CS921nk8+GrvfnlMaT3Gzdf/qtKd+UrnZ5wkI8d2xhvWWmPtSjdJRpfWcL06u/PsPm9xruu5FzvfJaNe78yVjFiyN44xYnjn5/zsvzrzwUky9dZ/VbqjXu7c44+YU1qMmGTOjM4aoFGjO98ls2f31k+OmNOZD55TGrdOktdnzv3fjTn5z8cmF1lodg7a5/W5eDX/x19e74wdJ8mD63e+67c/trM+eep3OuM1SfLY80tVurO+d3GlmyR33LRLpbvA15+rdJ+Z9clKN0l2fXfnmX+1Zzr3f/c/c06lmyS7j+usl3lo8kClmyR7H9MZ8767NHdz38InVbpJMnLP31W6j2899/flJMknl/lqpZskU475UKU7+7ze9+rBW3230v3b5zrPz/Ou0Lu3/Oc7O+O861zxlkp37I69z7iPpvP8del9vf0oL9/ceeafsEjn+Xn59/bWis5/zIOV7rgdOmO8U9/decZNktf+3Fkvs/BP7610k2TzDz5R6f7qou0r3bcc8M5KN0mWm96Zs3j8pU73ybGfrHST5IBJnb+/v71+XqWbJA+OP7jSfXjR6yrdwztTekmS+ed09v38ceZule4/lurtuZvyo8mV7s/eum6lmyRnP9/ZN3Lb+p1nykvf8c9KN0mm/vWGSvdtW85f6d717EOVbpKsde8ele7vR11a6SbJ9N91xhGP/+CFle6Vz3y50k2Sp1b/YaX71W931lFtftYhlW6S/P2Mn1W6Y1++v9JNklHjOnORz449tdJd+Me99VlXH3BjpTtmy/dUug8+21tDvN5rt1S6yzzXW9+61EOdOakPr9q5X576TGc9bpJ8+8zOZ9Ety3TWzV41/NBKN0mun/61SvdDo39f6SbJJY93xsTXXvWoSvf683vrnseO/ESlu+6RnbHaWRd11mknybDTb6l052zZW8M/bGZnHfEF261a6a6+Qu/Zb8t/db5LLpp+TaW78KiJlW6S7PODyyvdA87eodJNkk2mHVjpXjHslkp3qRt7e5YnTO3MDzxzTWdufI8FOnMDSZK7Onvu3ndC5+ySJFnx/LUq3cOH/6PSPXjtD1S6SfLQPJ1zKq7/ysKV7karLlPpJsmpG3bmgz9x/dxfO/lvP1iic3bXlrftXOkuOay3ZvC6CyZXulN3u6rSHZ/emMCLI8+udD9/9maVbpKctcjc/zuZ8+p/tk577LB5s97Ilefy1STrfaM3Pv/Gzp11lzes2FmP9Ltp61W6SbL+TgdUutN26k32rvvXt1e6zy3RGft45Ne98wt2Pe2xSneh915U6b708OqVbpJcu1JnD8sh5y5U6SbJyJXWrnSnHfveSvcfG3TmppPk5z/8TqV7yRqd58W7z/9opZskv/r62Er3K/P9vdJNkis/1ZnHOumoX1a64z9wXKWbJEcc39mnNO7Eztjxde+9tdJNkuXX74z9/7m09ylJ1juzc807b/uTSvfDV3WeQ5PkmOs7f9dn7dnZ27vHOWtWukmy3F6d779TTu2tO3nw5Fsq3YOm/KbS3eD7nfOGkuQr93bWh/zr6M6c0MLPHVHpJsm8n7yk0t16hc75gEny6oTO2OOWkzpn12028uRKN0mu3LOzt+OmlTtrnnf8UO+MpLU/e3mlO+8Th1W6SfLtHTv3iNvccEqle8vtd1a6SfK333feVbH3z75Q6f7rgM67XJJkrS93/v5+tF5n72+SbPPoCZXufpsfVOmeNP0blW6SXPDtzt/fUpt3xq0f/nDn+TpJXv1h5375hJ16/35bfehzle7E/TrrIY76yPcq3SS548XOuMDJ3+is2Ru1R289xCUTO/ufHj+5s/cpSWZNmFjpjt2ts9/8m5t2xmqT5LY/du4xlhnWuS/69hufqnSTZJ1ZF1a6e27dGbdOktUmdd4l+J3tOvvXnry3c75jknx6/JaV7m2bdfbRTnqmt0fp/vs7z2jvOfr7lW6SrPDFztm7G93y20r34DW/WOkmyTlXdc44WP7gzr7GC1burd+fsWXn2e/64z5d6SbJkvd23u226qR3V7r3/GSNSjdJnnuxs+7rkbs69wJ/O/K0SjdJ/rX4HyvdL6/2rUo3Sd62yY6V7gN/WqzSHf293lnB9y19RqV70PDOWWMXj+2dW37HrZ3zqR/5RG9Mbr5PdO5ftt6rc77x43f3zlNc/ZrO2aCv/GVSpXviZr2/69s3+VOlu9ptj1S6SXL31z5f6Y7c6T/bRztzqXF59vhN5/LVJK/du+Rcb/7b397TGScc9vSele762/T2pj05vDNff+lA75n/hbU7z3YHXPjtSve6kztnDCRJRvygkl158sOV7mof7ewNSJIJF3Xem/j4qM7caZJ8cttO+6ZpnfNxF3nffJVukpzzemddxLC3XV7p3nVU73zOW9fo3Kcdfk7n/j1JZi3XGRvbJp+tdD+9UOfzPkkuXa0zTnHalp09gFtd1VkDlyQ7X793pfvu/XrrWz/83N2V7pyN96p07zyztzfnnAe2q3Q3PHmnSnffz7+r0k2Sc0Z2/q7fuX5v7cnJ93bO+bj48s5ZwZss0BkjTJLvvqmz7+DSEzr3nr88/MRKN0n++Prjle47ftA5YyBJfjd9i0p3rcP+8/dd/b/50+zefpQZ3+rcy/3iyM488jaH9/6un7i+s0/3iXV7cyxvHH1Ppfv6LZVsNrrg+E44yaxtO/Oyzz9yX6X78sKdd84myc3f7uyB2uqpzrrLJFnuuM57Hyac0/n7m/LZmyrdJNl0wrmV7tlndsatX3iy986qM7fuzEX+5tHemPhXZr9W6e7+rSMr3dmr9NaAn/9E57yvS/fufH7Os+o2lW6SfOfozjlwG+/b2xv3r7efWene+v0HKt2BaZdVukly+jGdZ/ef7NJ5t81yn/1xpZsk1y53QaW7y2qdfalJss6jnfUy132oc97Rd07undX9+L9+Wun+cu3O2Z873LZ/pZskMx7onGe/0Xc+WOkmyXt27ty/LHJQ5x7/wJV7+38vmtaZN9phn855Y7tc2Bur3fvtnTPd5t+y9y7IJbfv7IFa5czOu1H+sGhnbXmS/HGpztqvPy6/e6U78j29+63937V+pbvKB3rPq6sc1nle3e2Vzj3ikTt03n2YJD/YqjPe8LlXp1e6B9/RO1PxhW905kpW3eIjlW6SHPWNzpk5x5T+rkce3dlzkCSrn/OHSvdDWyxe6c5aenKlmyS77tt5jtr9nb19gu8+p3P276/+w2OvJ7zxYLZ5Yu4/Hzx6VucsnCS5+I7OmPdHt++cH/m2SZ1x2CSZ/ufO/dT3num8KylJznv/tpXuVnt09odO/ftGlW6S3HNk54zjH8/urC0ffcNdlW6SXHhZZyzh9M92zhlIkr99ufMMfd8ZnTNr7vlo74zV3x/WWcfxr6U7awKfubxzz5MkU6Z03vv12DeOqXSTZPH5O2Mri57b2Te8x329c5LWff+yle7bn/9MpXvBi73zAO79QGde79h9e+NXD35/80p3nz07ZwP96HdjKt0kWemYzt6q7V7prKM6ZPUrKt0kuTxnVLoP7Nj7LPrM9M67c466u/M+27OmnVXpJsnLH+/cFz17a2e8dKnlOmdqJ8kXvt/5zL/z0C9Vukmy282dPRhHvrVzRvWJB02udJPk5fU7e+OO3mhKpfuDozrvDUiSldfuPLuf/9He5/Lsq0+vdNe7o/MOr41u7D3vPD+jswfxJ3e/tdK96/AXKt0k+efKG1e6qy/Re+/Y2/fovPvo2ZU6Y5/7XNk5syZJ3jmus2fyrIM756p94bWvVLpJcspKnf1E957XeR9Pktz0nsMr3Z2v7Zwzd+Cw3n6UFw7t7M1557Odubed3tk5kzlJLnuws8966x165w/uN3LFSvdDOz1Y6T5zX2///YzLN6h0b/tmZx3HRlf3zlv5+mqdc7X3uLa3n2iBz3V+N87ZdutKd4PJnWeSJLlv779Uuocs3rl3eeKa3pqWTS58W6V79CmdM+aSZK81jq1011jj1Up39k7/2fvA/zsmvtSZ07jhA529Vest81KlmyTH/6lzX/uj41erdJPkrE069xjzLdh5Xv3OFr014F+5r3Mu0fp/ea7S3eaTnT26SXLx6OGV7qMPdM6+SJJjluy8D3ntZTvvlHjTH9eudJPk6MM68zv/+HhnbvwDGxxZ6SbJj5/tfF8v88neeetX7nBgpfvVoztz2DfP37mPS5JvfLfzjLbhDZ33diy8du9dP29+cO1K99kLl6l0k+TsaZ191v9PJ6QNVP7fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/mYHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKRvxP/uPhI0ZnvoVXnesXMZCn53rz32bMHF3pjho9rNIdmPNapZskMwZGVrpvvNr5WSTJsDGd7riJ81W6E+fp/SxGDnS6z73yaqX72uuvV7pJ8sRTnfas156pdJPk1Zmda55nzFKV7kILzqh0k2T61Fsq3U13eHele/vd91W6SfKmxZ6qdF8dNbzSTZKr7nmy0n3TApMr3RvvubvSTZLb/tn5/Fx+mUUr3fXfVPpSTbLEqIUr3YcXWbHSTZL7bniw0r32vlsr3ZXXXr3STZIJ83buizKnc+85c87sSjdJxo4fV+lOnz690k2SGaWfx/jRnZ/F7NlzKt0kufXGqyvdFVfv/P3tu99+lW6SnPD1oyvdYcM7z9dJsuEWm1a6E+ebv9K9/86bK90kGTmy8/f3/MzOZ9GLLz5b6SbJXfc9Ueme/Gzn8yJJ3j5+iUp3k3nWrXRnzOj8jJNk+GtLV7qjRk+rdMdnYqWbJC9PH1Xpjhvf+14dkc41v/7GzEp3wuhFKt0kGT78sUp35vQJle7YMW9Uuklyym8641uHbD6x0k2SR3Z4W6X7wiUXVbqvzHih0v0/8bGV7Dxv6oxDDR+5UqWbJIuvsEKle++UCyvdJLnnnssq3QUmdMZ0dtzq0Eo3Saa98q9K98l//r3SXWLx3pjcnBFLVrpPP9gbe1lsoc7zzgrjV6l0733xrko3SeaduHyl++yd11a6A2N7c9ivzRhf6T456h+VbpJMu+3+Snf+JVaudO+//apKN0kmLLBepbvQAgtWui+O7M2BbvTOHSrd5x66p9JNkjtvuaLSXWHZlyrd50p/e0ly+yud550l1tm+0h148aZKN0nmm/0/Wkr237bowp3PiyQZPrazoGbEnM6z+/TXO/PMSfLiM1Mr3aWX6jyjvfxCZ6woSfLGA53sY6UFXEkGnnm80p1a6i4wqjPWkCTTp89b6c6Y+UKlO2LEPJVukrw2+8VO+PXe39+IYYWfx5z/D+sypz+ROTceNfeu5f9v0WffNdeb/7bw42+vdIfdsHil+5G7e88cty97eaX73K0TK90kybSDK9l77+/cQxy67s8q3ST5wzGdOeq11+38jBd5ovSZm+SyyzavdH82tXfNa/y1M378+I6d7/l5J1xZ6SbJTh+/vdJd4iMfr3SvGPHbSjdJln28s8bg9w8fVOkmydiHOvPqs1Y4vdK9ZsYZlW6SLPuTzlzIla9eWOn++IW3VrpJcss6W1e6A2/et9JNklNfubDSve/Mzr3ciLf3njleXq0z/njDL56vdFfZfO9KN0mWe6izB+p3E/9Q6SbJwOXLVbobHvztSnexpdaudJPkj399sNK9+6S5v/c3ST63zZ6VbpK8NObUSnfzx/6r0k2SZxbpzNdvs0Xnu2TF8Z+tdJPksZc6z6u/PGWZSnfBOydWuklywc77V7rrL/vTSjdJvvxo599v6Uc6e173Wqm3Z3mzW++odOd765qV7qr/XKPSTZK/X9V5Dt7ikY0q3SSZ/7o3V7qrndC5X35t6Vcq3ST51Z87870f2b4zFzJ20b9Wukly69Gd9RYzTuisA0iSGZvvU+le9s/NK91PndRb0/LCdZ21Qyv//PJKd+kTe5/Lq/6tM751+r6d56gkuejWyZXu7kutVek+uGZnrChJdnxqYqX72SmnVLr/tWjnHIkkue3GzpzUxtd3Pi+SZNIunf33w9b7WKX79KiHKt0kGfPACZXuVffcW+mevddplW6S/OKczrPDdyd3fhZJ8q8jD6l0t1j1g5XuHU/27hHvfrYzxvW++T9f6V466chKN0kO2W9SpfvG7M4+iSTJO79UyS43q3Pmw5grLqx0k+TWt3TO2JrzcGfc86crdcb6kuS+Kzvf1z/duLMvNUne9HRnjOv8Vzp7Ax69ZvNKN0n2nNZZq33Y3h+udDdcrTOfkSTfGdEZU71qlV9Vukky+fud7uX3dcYbnlmmNz75xmoXVLpXTe2c8TPrsc7fXpJ889OddaoTL+rsK06SDfac++N9Yy/8z/7ths03LSPeMffPwxmzTGeePkku/3XnHM0Jz3fWRg5c3zv3esXDO7+nF1/0x0o3Sa47++FK9+T3fKTSXfh9X610k2S1L3T+/Sac1rkXnnr53yrdJFni4537ylGlc+CSZOyfO2OEb1rszEp3jVN732s7LNA5u/XGOzrrFjZ/bmKlmyRvLZ2d9aH7emfhHHV+57nglkM7zwWrHt37XB77xUsr3Rs/0TkT77g511e6SXL+fZ177EV/0XtevH39zpmi/9jlm5XuL6d/o9JNkkNX6jwvXvvjznlfL7/j55Vukqw2qXMWztMH9K75oPkfqXTf+pfOORG7Xdg79/rnt3eu+eX3dvZVTRt7Z6WbJD/6xCcr3RlL9s7HHblnZ5/ZrHd01rMs8P3OuQhJ8tghn6l033XvWyrdraZ0zmpLktGb/K7S/dT276l0k+Rji3Tmbs75Y+cso2vO+0WlmySjjj+v0j3tC9dVuius1/tZbL3KTpXuAi93nh2S5Pgdb6h0t/l5p7vyAp2xoiT52SF7V7oHfaZzzcut/+tKN0kuG90Zx3jkgt5eoh+f0Fk3O3l6Z53hCfv19v6ufUtn3eVSf+v8jHe5qrPOKUk+eV9nHvKWBzpn8CTJX+79S6W7woXbVrrrrfHDSjdJJr2ts3f750etXeneutCnKt0kmefczpzGVdt1noOT5Oh3dva5bP39zhnun/3lWZVuktz3lc786nlHd8ZUD12md+7THdN2rnTHrdpZm5UkP9i6Mw/6j4s7C53Ofq4zN54kN/2hs39m+Rs7z36vL9F7d/Om33q50v3S1N56mpV3mlXp7vbK7pXuHc/1xlS//OGTK90/rdsZk1t5n87ZTEny3BHvqHTX/0znnjZJHl3qgEp3rRM2rHQ/d8iPKt0kWXnTzl7MHx3Zmff74qqdn3GS/PXnnXnbl47qvUd+wp2ddXKXv7+zX2veL3y90k2SnS77aKX75v07Z/P+du3eO48W2vQ3le4HlurN73z7XUfU2v+Jl4e/kSsnzP25veN26f0N/PhTnbM4jp6/c80nn9WbYzniS50zAuf9fe+9iXs+0nn3wsj7N690v3Rw7xy/by3UOQd1u50649JP7NVZD5gks7fovIdipwlrV7pJ8sGZnbW+u6x6dqW7+BInVbpJcuyTX6x03/hd5xzbs27qnFWaJE98v/Pv9/utNqh0k+TEiztjsRP/0VnHsdzanTWMSTLsF513lV03ujPf+5ZvdsaukuT+b3Wec6ccekylmySnr9V5Zpx3787448pvdO6JkuT+bf5U6Z57ZGet4buW6517vcmZnbWGB7/aef91krxv8QMr3Yd+01kTcdKfevs833zCApXulFmdtSev79dbN/v5zTv3cmu+7Z2VbpLsuOiDle6hEzr3cj/foTPGlCSb39CZ7/3gKZ2x9AfO7Oy/SJIdru2s6dz+K719np+65n2V7n7v+1Cl+9ARnTmhJDnl0k77su903jN+wNTeuynHvWtypXvemb29VR/YpDPmvfs8nXWMuy7eex/BDrd3zq7bdFbnd+7sc8+vdJPkil9sVen+4bjNKt0k2WyLuf/uyiT57vtXqXQfvq03pnPetMmV7vaHdsYxbh6zWqWbJF89vbT/9xOd8wGTZOdzO+dyHX7lzZXulp/sfRZdfM0PKt11nj2u0p28808q3SS56ytnVLq/XKg39z3qoc6asr1e6jzvvL5z7x2hX92/M47xqbU75yd89fPnVrpJcsVnOp8ZVxzd+bxPkvv/2jkH9ZFHnu10n+89+y0/s3OO7WdP7ew72Gjx3vvn77urswfxM7/t/L4lyW0XduZXl1yqc83vP6F3j/jSYVtUuh88vvPOqms/3/td3nzXRSvd507pXfO+W02rdG/Y+/hK99iFO/dESfLI451x/P3W6OyFXmv1nSrdJNl03s45WLdudHmlmyQrPtr5nfvd1f+odPd8X2fNRJJ8b3TnvJyjR3230p3yh977n75wx7KV7u/36azzSJKLHzi40v3Vf7jM6tH5ZuUz28/974rXLjhxrjf/baf51q10P/LgHpXuuB9sWekmyagtOu8e2ug74yvdJFnwoc47QI85u7OP5c1Xd54LkmTZz3X2Z/9s1c5ap6P/a0qlmySH/b6zpvqYzTaudJPkyw/PW+ne9JvJle4lEzvnLyXJWfN31q0PbPjLSveO73T2zyTJUu+6sdL95em9OZYjRu1S6T76X5+sdDd8tHMmepLsM7zzmX/JHp0x+uOv7p0HsNYunfGPDy25TaWbJDee0HkGW/jdne+/3/6lN/7xwmKdd3W+44OfrHQv3KV35tfYXTpr7c+76sFKN0lO2rezp+GMfXetdG96dPNKN0n2fKVztszFH+mcGfXc7b13Br/roM49/l6f7TyfJcnLj3fOvPzrxi9Uuj88tbPWKUlmfLyzjmPTlTtrks5+57GVbpL87LdvrnTPvrUzrpkkBx3RGSM5ZqfO+4ifzGWVbpK8d77O38mPbursB/voR75W6SbJkeM75xp++viLK90kOX3p1Svd1R/pfF9f/4kvV7pJ8uDunWep++YZU+k+etU1lW6S5IovVLK3vqdzPnySXDW+c4/x9SsOqnRP/lLn/ZVJ8q9fdM5JuvXqzlkuh1zeW1938pmde4FHvtD5GSfJyIsXq3S/tvYlle67d1+n0k2STV7qnKU5/tiFKt1Je/bm0Db8YufMh5OvfqLSTZJ/XXdkpbvhMp2/69mXH1bpJskK63fmsNd8pLMf7L6Fe+cafuirnfNyjrmgs9YiSWYd2Llf3u3VzrmU6z/bOyN3x7d19pxvMOXPle6Uvz5W6SbJI7d35vMf/UJnDjRJLliw87s85Q+d8YbNL+qcnZwkZ+zbWVM95aXOmQGn3LJjpZskd23Vef/vL3br7CtOknmPPKXSff7znbWGX1+3sx43SUaV9qM8u8zoSvfUEa9Wukly2gGddxYPH9Gb39l36867TR98qNNd5l29Mbk1T7qw0j36x50zTV/adGSlmyTz/L2zBmHku46sdJPkN6f2xnX+b3qnmgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/yIDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFI/4n//GMGa/nsYfvnesXMWrOcnO9+W/TF3+p0p04Zv5K9/nnXqx0k2SeBRatdAdee73STZIXX3q10h0+bHalO22hzs84SSbMnlXpjh4zT6U7MLqSTZKMntDp3nnb451wklenDlS64xZesNLNqJmdbpKHH36s0l1y1AOV7jyzOt0kefyhZyvdmx6c+9/V/zZ5viUq3Umrdj7jtlp/9Uo3SV6c/Xyl+/crOr9z01ddttJNkvum3lbpLrvoUpVukowePq7SHXbflEp3sRGLVLpJsuYKkyrd555fudKd5/67K90kmfFy5/tvYHjnPiBJBoYNq3TnDO/cI06cd2ylmyRjl12s0n3j9emV7rePPbrSTZI5I/5Hj/r/bft84AOVbpK89Mq0Sve6f1xZ6U5a7E2VbpI8+8Kjle4T991f6WZgVKebZN5xnfYSSy1f6SbJLa++VunO+6Y7Kt21rxlZ6SbJvPO+XOm+9mrpmgc6zyRJMmKezmfc7NmlMYEkr8x8qtKdd0zn3mXG8Ocq3SSZb9ZGle49pXHg+V/ofS6/a8PO/fLPb3u60k2SlefvDFLO80ZnTGfOggtUukmywZpLd8Lzd553Xpm380yZJA8/25nTmPVq55kkSdZZvjOu8/QznbHaF2Y+WekmySsvduaNxizYeQ5++q7O/X2SZGbnM3/0xN53ySuPXl/pLrjmdpXuzL//ttJNkukLd37Oo8Z3xhGfvfeZSjdJFl9+/Ur35Tm9553L/3FJpfupY/esdG+66meVbpK8+lDn7/rmWx6sdDfeaadKN0n+8XRn7OWV6Z1nyiR5ZuZ8le6ii3TW6ay43qqVbpIsM7NzL3DP409UunPSuSdKkq02O7DSnTZnTqWbJKOmd+7xZ0ybWunOGd5bZzVx/MROeGTn+XrEvJ2/vSR55sbhle6oZztjwEky7aHOnNTIGZ1rHjHQmY9KkjmzOu0RpTm0eUf25kBHj+7c1454oze+XPmNG/afj0G9OHWBXHrq++bixfwfe7x38lxv/tta9z5c6d67x/hK95gTX6h0k+TlYV+rdK+ZdmilmySnrPjRSnehq3aqdJ//XWcNVZK88MPOmrLXznpvp7vozZVukiy1+e8q3Q1P6D0bLDrP7pXue6+9vNJd4O2dOb0kmT389kr3sVFrVbpP/LU3973V4p25kKuXnrfSTZIpJ25V6S7+jXMr3c+/snalmyR3/bqzJneZez5Y6Z75Ym9vx37D/1HpnvNq7znp1Kc6e6B+sunile6ocb15hdmjOhuKFj55lUp36oOXVbpJsvKinbULr/+gt1b7N4d05rImr/XxSveOkZ25mySZ9Nople7ENW6tdP/6pc7POEme3G+lSnftT/fGPxYcd2yle9sdv6h0P7H6OyrdJLnzgc6z1IRJnTHe7z7aWxOx8Hm/rHQ/vcuJlW6SXPWed1e6Xz2rc4/xiYd7a/hf+ti2le4/v9dZXzd9286zapIs+9ZOd9Qbvf33bxxzQKV71bWd+/Dffbx3lsRnJ3+x0+1sZ8jL93Q+75Pko1tOrHR//Na7Kt0k2fOawyrdgaXfX+muf3ZvfeTbj+x85j+zVOezaNwP36h0k+SKFTt/J2+6YbNKN0luW6KzLuLVdX5S6W5yQm9Ny03P7VHpfnDDzt6AJx7prQHPFmdWsueNfE+lmyTHPP+hSveOBTvjWzdcuGmlmySfWq6zb+vqs1esdFeadEalmyTrTDqo0l3spM5eviT5xV37VrorfHCZSnelt3bWJifJ2LvOqXR32vGGSvfwTbapdJNk0ladv+vZN3Y+75PkoqM76172OfD8Svcvy3XOJ0ySG1f6TaW74VWdua6H0xmDSpJjV12y0r3s1IUq3SS576nO/fKftnlbpfvum39U6SbJSatMrnSfXvDble7Fr32h0k2SHNiZH7h1oDMHkyTnPvT3SneBSZ19I7vu2Vtndcv7PlLp/u5711S6Hx99RaWbJH88u/P999C0XSvdJBk+31lzvfly/rN7rXHTR2bTKXN/fdZvluic/ZIk31joy5XuW0d0fk//fvYfK90k2ee4zr6N3RbpnHWZJNdd0PluG7dW53nj2qV6nwXfWKuzn+7i+b5S6W673R8q3ST5r106/37/vLwzH5sk85/cOYtjn0M/XOnuvNSdlW6SfOxNnb+TBTfo7OvYefHOPG+S/GqBT1W60ya9pdJNki8d01kDftxpnTmhxf/2sUo3Sa66oDOmedhxnb+RSQuMqXST5Myvd57LP/+Fzh6XJNlu5wcr3Zt+emqlu97CnXHjJBl5+ORKd8bNx1W6C95wS6WbJI+P7IxRzP/oLpVukrxlu8645q+274wPvrT/5ZVukiy77mcq3SnL7V3p/nbGxEo3ST74zc5n/ttn9NaTPfbxT1e6k/bo3Lss8u6zK90k2e5bnTmFMTt0zuo+Z/feHPKen/5LpfuxFX9Q6SbJSy90nt03/mVn3vtzP+ysh0iSZ2+7qNLd8vbO+NbXZ/Se/V44cadK94Zje7/L803rnDd7zbf2qXRHFffFPfNIZ83z/t95pNJd5IeddeVJ8tlF9650//bN3rz3Oo92PjMOOrqz327pLY+sdJNk8hGd+emFv9lZz7LZ2Z256ST56AFfqnR32+6MSjdJrn2ucyb6ET/du9LdY8veO163WP7Xle7rK19Y6T41oXOGRJKMfKpzpui+x3++0k2SP22xd6W70l1vrnTfm96+nCNu7ZwD8qetvlrpPv/73vr9Fc/s7D9c4onSy2OT7PqLzpk2z5zf2Zdz7fa9swdv37IzPvn4I52z0Y5du/dujWGLrVvp7vXVn1a6SfKTaZ3nkmH3l/b0f/ETlW6SHPrw5pXuP9/duebfHNRb//27RTaodD98cGfcM0n+uO4PK93Tp/2z0t3y6jMq3STZ9/7O99+Th15X6e59/4OVbpJc88fO2OedZ/TWrB/ynb0r3a9e0XlH9tumds6zSZL9dur8Xd/8pc4e6w8v3tnfmSTnfq0zB3rKYb33FX/thd+Xyv/Z+cePPjgzh+8399cbnntWbz/dnnt11hjs8ljnPbk7H9i5F06SYw/rrNVeab7OfEWS3PWTztx3duu8H+8fp21Y6SbJdp++p9Ld+J/HV7rv/8KalW6SXLH1wZXuMd/snV9w4s6ddeA33t8Z4/3u86dXukny3qU613zbHzrrszbeqref4aRvdfYMD5/eW7vwyZs6c047n9N5Ttp/mdK73JN84LjJle7kL3Q+7ze9vDOOniR7bvHNSnfJj/feu7fuqZ0ztUd/uTOvN2Vm7x7jD/d23mH36a92xo8XX7T3Gffccp15hQ/u3NsneNjlnWepRb43qdL90MvLV7pJcuC6nfO+7jm1s5/or0euVukmyYkzOmtavrpQ7x2SO17UOUf6h7d09tJ+8fTPVrpJ8sO7OuuTr7uu87u85oad37ckGXlG551HWaAzX5Ekx9zaOdR32Dad56hL1ul8dibJLYdPqXTf+umFK901b+ns2UqSzdY8sdJd7MXPVbpJsuijnXHpC67sfBZd23k1Q5Jk6imdfdYLb3Napfv93XrPfvts1tmbetOPXqh0k+QjV3W+s9d8rbNn8pmNet+rN57deR/xlRM77xwbdVJvn9lfpnfeGXfkrM5Ye5LssnPnnY1nfayzpuUnp3fObU2Sh87ojJ1dPrlz7vX7F+3NlXz3iM65KCuv3Nl/mCRXvOO8SvfPf+js+5l/g95a36Ou/WSle+4+nf2Hu/30sUo3SVa4rXMv/uwXO/vXkmSVxTtnt27zWOdM0Wv3PbLSTZKXTvpzpfvENzr7+g/4dOf5OkkGDupc80Zv6Y0jLrfDhZXuR2d3zgRbbtgRlW6S7Duz84y26FGd+agJ842sdJNkvrs7Z7d+/6AfV7pJ8uq5nTVcJxwwo9Ld672d93gmyUlHDKt0z31bZ63vz47snBWXJLNe7Lw3YMENe+/efvkdnXWOl3yiM59/yz978/mrXnRJpbv3oVtWuvOf39mLmSRbv6uzF3qbS9apdJPkqa1b54L9Z+tfp495U25ea+6fNbf2Eb13ld1w2BqV7m8emljp3nhYZ39Fkjx0WWcf4BfffXmlmyR3r/KnSvefJ3Te4/P9vTv3Ukny0/k774k/eccHK90tVu/t6dnt9M5LQA9atLcn8uTbOucj/HbsC5XuxJ/39squM//Fle7Vb+6Mpc/77d55s5OP27nS/e6lvfO6Hz28M0f96yU6z+YPbffJSjdJzp/SuU97+O7OfNP++x1Z6SbJpQtMr3RP/lRv7cnVr06tdM/91wmV7sgpnffMJckHHuqcu7DkFzrrk0fdc0almyS/eqGzh2blWzprGJPklwd03nW11kqd9T03r9g5Ez1JjtjhxEr3Oz/cq9K99mudufokeeTjS1S662/wRKWbJGP27owfP757Z//hOxbqrQN4356dPYjLL9u5R1z6SytUuknyjjU6+7dvPGb7SjdJFvnODp3u1zrr63b8eu/Z/U/HdtaXD5t6X6W7y4TO+SFJ8ttlO+eAn/bR3u/yBX+5qRM+fbtK9vyf3l3pJsn3jujcv7zn752fxfCfvaPSTZLrPrp+pfvjD3fWyiTJ9tOvqnQf2vrRSnfsZb21or94e+cecfaZnbnT2zvHSCdJpv7qyEp38anfrXST5JRzH6p0D15800p3sUc6z6pJ8uQxe1e6d/6gM4a/8Gd6Zyfvsldnn+DyX+m9p3qN075T6e5+aOc91Usd0RkfSZKvLfCNSneeZS+tdL9+Ve8cs0fP3rPSXXn+91e6SfL8fPtXug8vvnGle+FbO+c9JMlNb+usl/nIhzr3RTtPf1OlmyS//0znefVDUzt7rJPksX0764iXuKWzH3O/rXtj7cd98MJK9x1jO88OVxzYmU9MkoW3P7PSPXCe3jjUkkduUumOm9rZaL3aK721YSdM6bwf7PwH9qt09xzb+U5NkpV26bzzfe1P9d7psvk2nfcoLLNYZ258/Zt67ySYflLn/vNjr3T2xv19zd6eybdt3jmj4t7Le2vDHv/8tZXulz/3f3+m7J1cDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/iwwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P9j77+iLasKtX/3rVUFFShyKDIUOWclSXKDiiCSRERUMCAqAgIiBpQgKkHFABgAkSBZEBDJQZKSVXLORc5VhEr/i3O8+047W0+9Z7X1tee53A1/e7RZa445Rh+99wEAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDDiP/mPp7w7Mc8/ddsMP4j7Hrljhjf/bd33f7DSnTxqYqU74anHK90kme3d6ZXuuPnnqHSTZPK7L1W6w6YNr3RffOaJSjdJ5l5soUr3jXemVrqvvv1OpZskI2cqdeeatRNOMnrq5Ep30qSnK91551+i0k2SueaZudK99Y7bK921V3lfpZsk41fodCcPdP7ekiTT/qNLh/+1J17vnO8np3OOS5Ixw+atdLf94AaV7u339K63lltudKU74aWXK90kWXqB+Svd5RdYvtKdec45Kt0kGbdw57NYtVJNPvrBtUvl5O4nO39zDz54X6WbJNNmGlvpvjmxc+8w6c3OtUuSDB/eucZ/8P5HKt3p06ZVukmy4yc/Uem+9lbvvPzyG69UujMN7/xGTXy1d7/zxKOd78mYWcdUuutstGGlmyTzjp5S6U6aNlDpJskC881e6V72wIuV7txLdcYakmTRpzpjZyNGjKp0p0x9q9JNkmFTO9+/d6Y/WOkmydjRC1a60zpf60ydNqwTTvL65Ccr3WEzv1DpzjJH6UNOssjEzvdvjjG98/L0MZ1xgeXHLVzpbvQ/vfud+/56cqX71IP/qnTfu/2WlW6SPPT3GyrdcSuVBvuSZNE1K9mxUzv3O9Pemq3STZKxc3euX5587rVKd/wHN610k+SOK06rdJdf6cOVbpLcf+cZle7EYbdUui+++2qlmyRrjFum0h292Ecr3XELPF/pJsmz991Y6S625Icq3STZ/2fnVbpXXXxwpTt6rs6ciSR5+MnrKt3VP7JxpTvhuQcq3SRZbLbFKt2pYzpjAkmy1jqdc8az/+hcI059d1KlmySjR3aery49X+d8P/9S76l0k2SWmRaodN98895KN0lef7jzHGbKLJ1n42PHdZ4zJ8m0KZ1/vylvd75/k57oPc8feKnz3OHNB3vXRWNHduYtDZ+nM9Y36e3ev9/YUZ3nO6OHdZ6tTpvae2406e3O2OeIYb3nfsMHGp/zf//8eviYFzP76ifNuEP5f7vlra1mePPf3nqmc66ZeM73K92Xnj690k2S3Zf6Y6X764/fWekmyepfOqHS/fDsf6h0b3vuqUo3SSYe25k9dOYGq1S6P/7dPZVukrx7Q2dOy5vnHVvpJsm4zTq/b7fONGelu+mY3rzZc1f/VKX76ITOGNOxM3eueZLk7OlrVLor3tqZA54ki398ZKV7/o1nVboT/9q753jvqetVusud2XlGdvfENyvdJDl99858p/lPvqjSTZJzHhhf6b53wiGV7r3rdZ7dJMlHdu6M837y8lcr3b/87OuVbpIcNvqgSneL3TvP1JNkpqWWqnQ/XFp38MUje/OeV12hM19m+efurnRHD3+30k2SfS/7ZKU77K7e7+py23bORXtc1zl/7nvTXpVukrwyqfPM4vXHSp/FfnNXukmyz4MrV7r3zzWh0k2SBZ87tdKdZbttK92lDu+cL5Lkll0610XPzTtPpXv99N78nh8/0VknP2r93rz1qy/pfM5/6kwpy3ETevfuV9zztUr3voU7Y+LLbfnpSjdJ3hm9caX75A1/r3ST5PnPL1rpLrpXZxzqtq8uUukmybTTbq50V1n3pEp3wx2vqHST5JaRP6p0r7y8tGFHkkV32L/SffH6zp4Pr43r3futtXPnb/kvd3aeGx36/q0r3ST5yujOc5hHvthZs5Uk55+wbKW78kDnuuiWcZ25Tkny4HKd+53tl52l0n3k7cUr3SSZ+PxRle5ii/XOyx/b9Y1Kd8LdnXl7Y361X6WbJKefuGelu/sfO2t+Ln/o4Uo3SV566fVKd+VDl6x0k2TvdOY9bzKqM/a5/tlrVbpJ8umRR1a682+3b6X7oXTmMCbJFa90xsRXXvWxSjdJtjv+mkr3ty927tHW+kJvruFJv/hWpbvB653z8pO3bl/pJsnDkzrrUeac5x+VbpJstnxnrs7T13TmYxx59+6VbpJsunhnbsq33t95prHBBzerdJPkVz/p/JbMfX7neUaSHLLcjJ/b98xM/+X871dezvQzzpyxB5Pk8Qm9Oc+f2Hm5SvfRS75T6Z6y7scr3SQ5aNI6le4Ov3x/pZsks6/+1Ur32FHbVbo7jv5upZsk336187dx5gKfrXTPv6ozPpEkN3/4p5XuZm99rtJNkm02vLrS/cwNnX1lTtv1oUo3SX52fWdu1kde76wZ/sDKz1W6SbLdnJ3nY+td2LvfH/ft4yrdfdfv7Lmw6XG9OQBnb9oZn5/l+L9Vusvf/milmySXP9jZY26pIzrXAUny8y06v6tbTO7Mx33fiX+qdJPk9zt01vzsdOW6le5mr3au75PkwBM68+zX3Km3/8QFN3e+fz846C+V7oWf+FmlmyQXnNW5Llri+501Lh88pbMfc5LctmhnHPbjI3p7+l4wU2ccb+Nxnb3P7v70HJVukjw3/ueV7vgfdcYEHlv/C5Vukqzz1DWV7szH9/bb2+47nWdCj6/Qmc9y/9a956Z7PtbZo+zXRx5f6W77r95ewYtP6/z7HbF+b0/fFbbrzAP45j6d/R4u+FRnnkWSrPNoZ7zhlZ90vn/z/72zv0GSfGGBzj4Ek8b25vnucUFnLdHZl3bmsxz5+84alyQZ9cH3VrrbrHFBpbvEpHMq3SS5f+r5le6Uib392hbaqjMfaZsln6l0v7JV5zo8SZ6e69JK96hrO8f8zU+tWOkmyZ+P6pyLtr+3816wJLnrnc656L5HO5/zmV8pji9P27nSPXnY0ZXuqR/cvNJNklvn/V6l+8VvfaXSTZKHZ+6cl6fueUCl++4781W6SfKBtz9W6Z780G8r3a+efH+lmyQT1/xSpXvtKb1jXvaXnevlaWt15tY9+M5GlW6SzPnGjH/vfZIs+IU9Kt39V+q9J2b8pzvrOh5e51eVbpKctlbnGvFXR/ym0r10/84zmCT59vZbV7qTf71DpfvjHXrjW69t2vleb/niTyrdJDlx5IWV7odX7fxe/2HX3vjyHPt29gb910udceBZb+6so02SNZfsjIlffkPnnexJcu3je5fKf/2v/leLvDkiP7hhjhl7KEnOurT3vPdnB3SeFx78Smff5JPu78znTJILL+3cJ31u997a0GtOObTSXfsnnXdnnPn5X1S6STLmPZ13YC+0d+eZ7Eev6u2xc/MdnTUsEw7ctdJNkr/N0xlze/nVzr3Byu98udJNkktu6+yRdMh2nfmRf9v8pEo3SY7cuPNOqk037syzT5IV7+qse/vK7J194P604caVbpIcu2BnT+Y7vtNZDzbir71np6dv2NlH+nvX9uYu7DN357nQlxbrnOMW2bo313fNX3XGKU6+7PeV7rtX9a6Xj72l8z25/5LevjLL3965xr/sqM5498sTH690k+TI2Tvfk20mdN6/e/XZxfUMf+0c8/f+2bvGWPKUzjV+5r6ykr3rjc7+ckky7tzOvlyf/vSBle5r43v74w7/Uaf99hK957273NOZ63vHgZ21Ob88uDO+lSSblOYOnXdYZxzjlbs6Y1BJctSozn72O8zTefaWJNcv3JnfuvmC/9249P83h83cex/I9Ks7+6uO/HPnPccb7dV7H8FJ/9NZJ/+d73XmwCXJdm921rAtdnpn77q59tmy0k2SU17sjJ09u2Fn7smWP/x1pZskRz68U6V7+SadMfwkWXyXzty9hxfuXOPPf2VnzV2SbL1W5/v3yC6ddcXnP917z/Gn7u/8/h25wxyVbpJMuq8z3+LZi9avdF/9fWevxCT53bGd+eUHH9h57j7ri535ZEmyx46XV7qv/q33jt5Df9u5d3/35537qNvu7O1j9sGvL1/p/uHtzv3O9mdvXekmycbjTq5099m0t6foSbt2xjHWnN7Z+3PY+3rvm35inc5nce35nd++K986u9JNkoVX6KyN++wqvXeOLf+bzt6Vf9ijcx2+xy9HV7pJMt92nXcenXFD5/nceVsvUekmybObdPaRXnK73p6Yo5ftzCFZ6Xud9/Gss2DnPRVJ8tTdx1S6C2x9WKW7wpd7YzrzPNC53pq6am9t48bDW3vc/XdjnzNPezeLvjPj7w9uPKv32/bPCZ39Iyfd29lLbO6fdObgJMnzr3aeV7yzSG+fpFcX77xr7pZzO/vM3bdEZ3/9JBn5/O8q3UvHdOb6fus7s1e6SbLvhzrvLz/ie709KI5Zp7MnwGb7dPYLHv/V6yvdJFlp4POV7qPHdPbIHfbmY5Vuknx73Acq3VO/3FsfesCPO++B+cXEzjXP8hv0xmLPHNbZP/mqWzrrALc6uLdWdtr4zrPIEXP27hl/d2ln/OqPM91e6S4xz2cq3SR58b0bV7qvTOk8+17jkd7anJU+3tmn7KjNe+vBzry3c87/zjad/RzWvKO33/OLm89T6U5atvPs7atrd8Yek2Sul3asdA9Zs7OXUZIc8r3O+OPf9+7MNZy839aVbpL86pXOOePE7TtzOj//p94c/lm22KLSfWWZayrdJDlmkc7+15d/sPNc4f5nO+fOJDnh0gmV7i++3Xne+9uvHlTpJsnJf52t0r1/nk43SR5c4KRK90M3rFbpbrdg5141SX4yrjPXfs7fnVvpzrzxapVukmzyVOda7vejnqx0k+SK4Z35MnufO3Ole91FJ1a6SXLiK5355U9OWrnS/ePtnTW6SfLT1zvXiFe/1ZuTtOfsnX3Rl/pYZ07nj/9xeKWbJE/s1bmXmjyps+fXnqeNq3ST5LkzOuuJLjx5pUo3SQ54tzOvZZmvduZxjFy+twbjY/NNrXS/c1xnX8MvzfNYpZskww4dX+m+tWhnH6wkuWqXBSrd9Y/4SKW7wMVHVrpJ8vO1Ot/rP53SOS9vO3a1SjdJ3v/rzp6Jq+7dWcuXJA/9uHONONsP16h0F7y4s1d+krx/z8711jaTO+OeZ97/cqWbJHds2dnv7+srdt5FniQv79WZxzjt6F9Wuo/OemalmyTzp/NuxbvO6jx3+NTbP6h0k+TDq3Xmvcx7zKhKN0lW/EtnnfzaZ3T24f/XPzp7uiXJ7z78w0p33FyddUpzfGzxSjdJDvzcVZXu/TdOrHSTZOu1Ou/uyDf/z//nzkxCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPi/zMBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GI/+Q/HjvnfNlguy/P8IN48an7Z3jz3xaYfVwnPGpKJTv81Zcr3SR59tFXKt2Rw2epdJNk0fkWrHRfm/RGpTt11NuVbpK8NWVapTtlyuRKd9YRM1W6STLziHcq3VGzzlbpJsm0twYq3elTX690H777+ko3SWYdM3elu9qKC1e6r772WqWbJGuOX6rSXWbBhSrdJHllysROeNrUSna20Z2/tyS5+5FHK93hs/5Hl2f/a6ssu0ylmyRvvtL5nrz08qRKN0nmmX3pSnfepRapdKdM6fyOJMksYxavdF+e+Eilu+6a61e6SbLMymMr3YcfXbTSTZJ5xi1e6T701HOV7sUXXF7pJsnomTvXy3PP07mnnGeeFSvdJLnh+psr3WHFc9G4RTrnz7df7/yWTJ+jc0+SJJuss0mlu+CCnb/l8cuvVOkmyaNP31Ppzjemcx2QJG+9+mClO/sss1e6f52zdH2fZLNX56h053r+rUp36kBvfGuWgc79zkzpjWNMercz3jBm2JhKd8qwYZVukkwc1WmPHtY5L5+18xmVbpKscdh2le6Hlu+MTybJLQ927rFfe31CpfvsS89Uukny/ItvVrqLLr9GpfvoPU9Wukmy6ErvrXRffenpSjdJZhlV+p4s0rnGHzEwutJNkrEjR1a67yzRGaud+uSzlW6SLLv2lpXumzP3rjFGzbpmpfv0851zxkrv/USlmyT3PPyXSnet+V+sdKe82DsvL7ZG57z88gtPVbpJ8uRf/1rpzrXg+Ep32lu98/L8S3SuBYZl1kp3/CrLVbpJcsUFF1a68886vNJNkheeeanSnWmmznXR2BG9sfbhozvfkzlKU5ZGvtO7xnghneerk17o3e88++Tzle5Ms89V6Q6f0rlXTZKB4Q9Uum+/1LmOe2dC5/46SSbe91ClO/L13nl59LDOXKvJkzu/q1MmP1bpJklGdO79pqfzPHjE6M4YfpLMls7Y9bvvdua/JsmI4TN+HOP/lxGMKbMtnhc3O3GGHcu/LXHrXTO8+W9zLt35Pb5h5DyV7uoXdObtJcl5466sdGc59jeVbpIsf9NGle4/XvlupTtq129Uukky+59/WOnOe9ePK931H+vdP585a2eM96PTO3NlkuT8FzasdEddXpqTtPCdlW6STB/Wed6737KdOS0nz39RpZskF2bjSneV4R+pdJNk2Ep/rHTnvO6Lle4iK/+r0k2StXYvrWdYrTPm9sTMP6l0k2TsIfNVup+4ceNKN0nGfurdSveFYaU5nQ/0xmIHtuk8Y5m4W2d+8ocO/X2lmyQHbrxapTvtE73z8qZ3r1fp7rHmbyvdVb7ZW+d5/eqduYYP7Ns5x924++2VbpKMWfCaSveqFTvzcZNk5gM6Y96fObEzv3y5q39U6SbJVz/buUfbZL0TKt0tVt+50k2SCR9/otJ988bO2pwk2XZy5371p492xh/PuPbgSjdJ1nmrsz7ge5t3uvf85c5KN0nGLtW5lpv89948nDUnfbjS3WKHzljffG93xvqS5O7pnc95tdM7f8v77N+5b0+Sd793caX7z7Mfr3ST5Io/dZ4XbnzcC5XuG0svUOkmyVIzdT7ng9//lUr3jOt6+2r8dWxnrHaD+TatdJPk9xM74w0jxnbOy4sv1nmOnCRvvNL591vt+c7anAfe7swnS5Jxn/9dpXvrVTdVukkydWrnb27VpTrzezY+ozM/JEmuXvukSveaZ8+pdOdc/tpKN0k2v3n5SvfBzpZgSZJnN+08k1rhrjsr3Ue+35uf9cn5Omurbj+ts+ZulSU7Y4hJMuuvOuf8X2VUpZskO87eGTu76OnOOOLyTx1R6SbJvW93xvHHrH1dpfv4LItXukmyzvN/q3TPXfqxSjdJdlx9h0r3uJd+UenesWdnPmeSLLrBpZXu7bd3njXPvUHvB/tzwzpjtcd8tLfHz+xf65znfvz7znPbTY9/uNJNkgkjOnPtnz2+M4f46K917imTZMXrZvx83STZ55reueibs+4z45tv3fFf/e+eWGp09rh4xt9z3LVRZ3wiSTb/Rmc93QUD0yvdzbbvPE9Pkoknd57pPfb9b1a6SfK+da+odBeZ2Jlb/uvXevvKXLPILyvd33+gs+Ztke0Xq3STZJtzOve46+7emT+cJBsc3jnmZT/ZmSd69YHnVrpJcsMznTXfV43vfP+eeuWnlW6SnHD4Vyvd78/82Uo3ST57VGcN9RGbddZZjjv7oEo3Sc4bc02le+h+nb1Ubl+6M8c3SaZsvH+le8xrnXNnknzxrMMr3QUP6+x7/YsFe3tSjluqc424xUa7V7p//lPvvDzljc6Y2FxTZvz7cv7tmi33rXRfm75npbvf0RtUukmy3zfnr3TfGPWHSjdznd/pJnnfyO9Xuq8M68xnSZJVn+3Mh5/rgc7eSxOe/+/GVf43fveBYyvdC25YpdL92h29dR2Pndc5L3/qo3dWukkyfHrnWmD8z66qdDf7RWduSJIsteZ3Kt3f/aWzZuSS03vrJd8d8e1Kd6mv9dbFTVyh87xiw+c2r3SvPbk3B+D2Z7eodKfu8aFO98bOXqVJcu5Tnffyrbh77z0/+z/b+Z6cNUvn+diXv7ttpZskt479dKW706877+zY9qFfVbpJcvH5nXVVSx18dKWbJFMf7YzrvL3HPyrdzzx7cqWbJJ84snNfec7HO+8wmeXGzmecJF9d75RKd4cPd8bwk+Tgq75Q6d68XGft9okPde7PkuS+izrrlF5bsjO+vMHAxyrdJLlkhR9Uuvd/96RKN0nGL9gZx5h9k85zvwsn9OasPzZPZ1xg91s7zx3OOf5rlW6SvHZSZ13HmAdXq3ST5Ltf2anS/dfMnT0Ef/tG5/4sSe5YtnOee+CMayrdj6ezt3+SzLnyCpXu+qd25i8myR6XHVLpnnBMZ++LA9/6QKWbJLsu2xlv+PZbnT1Hxz7UGcNPkkPW6qwFe/HvR1e6SfLDWzp7bW6yRmf+3WYzdZ65J8nk7Tv3fpd8vzPPfo0/9tZL3rzNBZXuJW99q9JNktO23awT/i//5AbemTdjH5vx19qPbtj7DJ/ct/NcYdRAZ23app/tPWP5wa0frXTXPLCzr0WS7DH+1kp3+judZ9RPf7j3bt+dD+jshb/qKQtVuhcd3tuXZPhJl1S6m53V+SySZNfjO+8NfmHmztrsC079U6WbJLOO2LjS/fyxnfuk80+/rdJNksPu7cyJuP+crSrdJLnkM509rmb9a2d+5BY731vpJslHzu90r7ijcy5a9NyTKt0kWeWazvdv6t69sdjlP9RZt3jPHJ3r96lrrFzpJsnLh3auxXc+t/McecIXeuflg/d+u9I9+qcHVLpJcvf+nffYbbBHZz3RjsN7a6u+Mb6zj+2dUzrzno845oZKN0l2vupLle4VW3Tur5Nksw909vJb7LwDK92Hz+zt1/bKRu+pdO9+6a1Kd8/1emur9jzy5kr3gDG9vZ6/dH7nu33OHZ3fkoMO6M3DufrPne/fW0f8vdL97rq990ks+Erp/V1XH1XpJsmYDTvr5De/qvMsa7kH16l0k+Qr+3X2x73ly513YV1wcucd8UkyecQnK92lf9zZQzpJtjmrsw/qnTd1/uZe/1BnH7gkOX/CMpXuL57crdI95OrOuTNJNrxy10p3oys7c9WSZNT4zrtRbvroQZXupze/v9JNkmN+0NlH+qB97ql0nz1or0o3SXa5rfO7Ot++R1a6SfL23R+vdB8/oLOP32rfWbbSTZLNl+v8Zt9yy9mV7ru3j690k2TBDTvz4Rff+clKN0nuuKSz9+enruu8I/uKo3rvafpWaf+gvSd23jd9z827VLpJ8twhnfYyh3bGipLk5h89Vume9uASle7953SuiZJk2SV/XunuvfaWle5Oi3bmMCbJpw/szFtfdKt5K90k2XB6Z37KsaU9YU8fs3GlmyS7rNh5bnvQmZ1793lmW7LSTZKnj+i87/1D37m70k2S757duX/4+azrVrp3DOvsw5Mke118VqV7z68617Uvfr73e737cp35NAd0hvqSJAt/sPM+ifyXWwYsMvOT+fHCM/77teKSnff5JcnHHun8th1yQue9iZ87rreOZbVFOr8Vz885Z6WbJO9bu/Nc9oUtOl/c2UY+XekmySEr7V3p7vSXMyrd15f4XKWbJD+9uDMuvducvb3Lrzn86Er3yT07e+9e9NSISjdJHv9i512PT3+iMz/rhlG9Z6cTTu3s3/q9r/f2Yjzt1531eiuf3TnfP/zH91e6SfLEp+aodF+5sHP9N+m5zvqZJNng9M7v37dPf1+lmyQX7dl5D8wX9u/MCbzxQ4dWukly/Nc667Nvua2zX/DfLziv0k2S+x7v7K222Fd664kW/V5n/7rDturcP3/5Z725Cy99vDN+ddijnXmXkzY5rtJNkgX27HzON53Qez/Rx97/aKW7+Dc78y7f+6He3jKjTuusYbv1lPMr3fvW6OwzkCTbvq9zX/nAhF9Xukky02yd9Sh7zNEZMz3izRn/nrl/m+XuuSrdH93WuXaZfGbv72LXSzvfk9s+0nnvQ5Ksd/RApbv8HZ37knEHd+bAJcldH9mj0l14hc57L1c9pfeumCu/fVCl+9ipnX3xkmTiLJ31ATtPuKbSXfuAznz4JFnj3s55+YWLOp/x7S/O+HeP/ttry3bmqr27T2+/9cP27+y3ftrunXczPzlX771HR2/X2UPr8zmo0l11js67wJNkpvVfr3Qve6zzXu0kWep9nflOu23feXfAKZd21hUnyc/26Kx1+db+nfdB7r1u530uSbLiXzr3JZ/cvPfO9dPGHVzp3rl7Z/3hVp/urOVLknv+enyle/mkzv4Xm6Wzd2uSvHB4Zx/wHefuvBc6Scac0lnPPvcxnXnPG/65MwcuSc74wJRK99ZTO+9nuH/D3vy6VU7tfM6Xbdy7xlhk4Zkr3cW+vn2lu/Glvb/lme/qzMc49wtXV7r5dGeefZKcf33nHHf6Dr33ozz7cGdt3DWPd9Z27HBxZ6w2SVZds7O2cfZFO8/9Nl1qvUo3Sb51TGd++Ymv9tYsP3TW3rX2/0lnNBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/i8zMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMGz69On/6/94ldVWmf7nyy+a4Qfx6nNPz/Dmv00cmFbpDrw9Z6X70rPPVLpJ8swzb1e6q6y4RKWbJHOOm7XSHTtyUqX72htTKt0keXbSxEp3odnnqnTfmvZGpZskj02YUOn+4/pHK90kWXmVJSvdgeEjKt0rLzyu0k2SDdffstK97spTK92VF92g0k2S4TM9Wemee9ldlW6SrLHyspXucy90fqM222i1SjdJnnqtc86Y9tywSneuuWeudJNk9lk7vyWzjOpdY7w2tfM5DwzvdF9+8Z1KN0nemvxypfvYSy9Vussu2TkPJcmjT/yr0p0woXO+T5Jllt+o0n3qpUcq3Ttvv6PSTZJXp3Xu/RZbaNVKd/55et/rq6+8qdJ9+rne3/Icc46rdD+87baV7qSpoyvdJFl3qaUq3Qcev7HSXWz8JpVuktx8z9WV7puvv1LpJslCo8dXurPOMVOlO3Lyi5Vuktx+8bWV7m7zrlbpjpnY+YyTZP5ZF6h0J789udJNkoF0xriGTR1Z6Y6dde5KN0nenPhmpTvL6Nkr3RfferfSTZJH83ql+9q6nWvaJHlk+jWV7lx5odLdaNMPVLpJ8viNF1a6C62zXaU77wq9e783Xnut033pqUo3SVZasHONMXWugUr3tZc6n3GSjBkzqtKdPrlzvn/50Scq3SQZtkBn7OyFN3rXGOus+d5K9/EnOs+NXnqyc75PkleffLDSHfH4Y5Xuert+qtJNkofe6NyXvHX/PyvdJBkzd+d6+an7Os9Knn/u3ko3SWYa0RkTX2LR91S6k2fufMZJMuGBxyrdia/2nrsvv3pn3ss7D06tdEfO3vtdfffNzjONueddpdKda/7O9WGSzDRy3kr3zdc7155J8tD9M34uW5JMf3VMpTt+8cUq3SR5+7XO2OfYN1eodF968G+VbpKMnNCZczbLTL3z8vTpnefub7/bGS96/t1nK90kGZt5OuERnfl300b0znHzjOnM9Xjtjd7f8qwjZ/y4zqfuOib3vPn0f3XxueiSY6fv/6PVZvARJad8dtMZ3vy3H1+2X6U79sHOWMLLS3bmnSTJ88MPr3RfX+b9lW6S7HXd/35e/n/i8K92xhLGXb1cpZskuy13YqV73q++Wuk++czYSjdJNti+M4/jrz/v3fPPNWvn+c345TpzfS+/qjN2nCS377p0pTvu8M5c34fW6TzTS5L33tIZi535zqsq3SS5babdKt0dR75V6b42c2feUJKM3P7uSvfU8Z1nLNs82JlPliSLTO/8Xdy48TWVbpLMNMsale7I1y+odJeevzcn6eRbOn9z6x27TaX7zol3VrpJMvfeV1a698706Uo3SWbbtDMXYNLNnfH/Y184stJNkgem3V/pbrnItyrdK5ft3fttd99Ole6oszerdJPkx2vOVuletfPJle6/lup0k+SVWTr3Uj++8IZK99jb/1jpJskq699W6Z7/3M2VbpK88Uzn2ff7pj3Q6V7YeXaTJMd+sTP2MnbezrXLt5/t/I4kybyjj6h0nzh/rUo3SRZ46ZJK940lO2uLrxzWe/a9zOjOuq25xnXW0Ex+unfv98IinXXyp3y0NyZ308QfVLqz39C5llt54Q9XuklywKKddZ7vbth5jjz8ztUq3SSZML7z/Xvguocr3SRZfaPOtcDUtz5Z6X594IRKN0kOerDzPVltv+cq3SfO/UilmyQzz9/5nN8a93ylmyQfnb5zpXvzo53z8p3v9n6j7hn5WKW73q86zyoX/9oilW6S/GTVznOYVc7t3e987IHOMV8y99mV7kxPdJ7BJMkj83auMWZao/OscvjbnT0OkmS+62+pdKdt3NsjZsX1OvOej96nsw/dVbtcXukmybXT1690R5/XGfccOU9nr7EkeXGpzrzn+67q3bvPsWlnPs1tF+xY6a6y1PyVbpJccvtPK92NPvvjSnfuzxTH2j/TufcbcWpv/f3dE0+rdP/2kc6zrk8fdU+lmySLbdnZh+77Y9apdO9cqHPfniTnDOvsEfPsK509KpLk3fGfmOHNL5//i9z/wlP/8bzn1eaZbfoVW609w49nv2/2xvGmHt5ZU7DKXzrzfKds/LFKN0luntyZD/jpab25dTMv3fk8Fv9IZ63Q157rnct32bbzW/y5lzv3SH85/IpKN0m+Pe0nle57Nzyr0k2SvUv77Lyy3hmV7g926qxtSpL7jvtKpXvEEf+odGe/tbNPd5IsMeKaSvelPx1T6SbJT1btrPV6+c6/VLrjj+ntxbH/POdUuvdd21kL9sWVO/fkSXL4+EMq3R/e2Zuz/vjsnXP+XqcdUOnO+cO9Kt0kuedrR1W6Hz6wc43/6L86n3GS3LRPZ27PuL92xtqS5NvP/7nS3W9iZ9/kp67vjJUmyfhddqh0/7L9rZXub77bG0f45fKdNYKrfb23P/UbG3TmzX5p2xk/ppIkn71j+0o3Sb621Z8q3aeW/Gyle8t3e3u4b3n/ryrdW9/fWROeJItd3zkXPbftypXuReP3rHST5N3Sde2Zx3feR3DJUd+vdJPkNz/qfP+Om/f0SjdJPjKmc8w7vTFHpbvBvb093D+w7vBKd9iznXXs+z/XuXZJknv27+zpO/GezpzZJNl7oLPm4LiTOtcCN/yq8163JPnJpPMq3VPn6vz77bLz1pVukixwdud6+affua/STZIbX+qMvTx14YKV7i7rLFTpJsmLu75a6Z65V+e377fX9eapvef6znyWm57qPSs5dPiMf86cJLft39nT95D7evvDvHtX51nzq6933vNz8E693+t7N+mM96075teVbpKcc/31le5Se3au5b58WW8tw6+P6jyH+fqRi1e6s07p7NWRJB/esjOHcfYPfrfSTZJdV+jsz/TwE5132wzb7XeVbpKc/83OuuIvLPjbSveQe3rv+blmyc5zozPvWb3STZLtj+t8t/+y5Bcr3RGf7L3b5q8rd+bjHnVLZ8/KTXbYotJNkqOu6/xG/e3m3jX++nusVOk+seF3Kt1Fb96n0k2SOf/emY9x2U8XrXRPOqazdi1Jpu/bWb926KTOWF+SvHBK53fqU1ufeNv06dP/4x/t5eYbmH7CdjN+3G2pBTp7JSbJ8U/sWuleNHNnzGbt4zprNpJk5+067406fZ/eWPpOp3Xmt86ycWfvs13e7O1f8PUF9q50Nz+os0fSe/bbt9JNkq0W7RzzJgv15uFsu/jBle4Pz+8c8yXH9cY1v/aHhSvd9Q7/e6V79RadtchJMtsanXkAe43uvCspSe46cM1K951FO9dTGx7feQdakvzhy5355cedu0ul+7VXe+8Heum1bSvda27vvI8gSd6/6mWV7s++2XmusMxznT0GkuQXS3Tml7+19+8r3ev27b23bY1dV6t0b/hy7xnZPSd29kv8yaKdffzu+FFnD9QkuezNzn4Au+3aWZuz3Be+UOkmyUHv68zD+fCPrql0k+Tx5zrvx3t6386937Z/7MzHTZK7Fj2s0n3gq539vs5+q7OHdJJs+KfOnszTd+2Nxd59VWfPk8+s1HnG8qdfPVPpJsmTB3R+s2/4SucZy5836Kw3T5LHru18zn+Z0rm/TpKF9+nMLz/vps66g1Wf6rzLNkkePa0zDnzt2VtVul9cvzM3Mkl+/ZvOPdrS5/d+S845pvO8frWvdPYCuWT3BSrdJHlg8c7eg/Nd2jkvn7Nvb97sGQ99u9L99YI/r3ST5JoNOu+W2myn9Srdr4zovPswSY46tHMtd8oLh1a6r77xqUo3ST79z90r3eF/7F1j3PlA5/nOPm915sG99N1rK90kOeC+zuc88vTO/OStP995NpAkb07q7IN1wru9c9FJT51Z6Z7+/c6zkkPHfbnSTZI7x3Su8QdO7oxjjJ2r85uaJBPu68wv323OzjOYJBn/1c5eIJN27szbu+5Hvfk0uwxfrNL9yBWd+TQL3fDxSjdJDrq4M6dz5A69dQcL/G2+Sve73+yMb317995zv9WWXLzS3f+7nTlAG/yjtyffRfN0zkV7jJ6j0k2SZz/b2dN+7W0/UOmuM/uPKt0kufKWmSrdhzft7F3y++mddXFJcu4Vn6l0D/z+Y5Vuknzu+Q0r3c/stfh/Ne95jUVWn37DvtfM8OP52ey9sbzRD3W+Ays927lnXOY9vTngex3Wefa2ylK950LLPdd5H/i3Vuvsi/fU946tdJPkuNc6Y2PjR8xV6T60Xe858gaPdsbyjj59/0o3SW5epfP79uVvdfYJ/PPKnXc6JMne13Xmfv14js4cxoe/11k/kyQ3vaezh8iFB/TWfd99S2fM7VuPda4tJ9/SG8ub+brO+MdZj51b6d44vPf++QdW7qwvfOCM3ruuFhnR+Twevqvzfo0jr16j0k2S+3/W2Yv4kOc7c2VOGtXbB/zbM3XmLtz3s94c/gkf7OzZ9vYfOuMU3xrfOy/fNOF9le4bK3TOF19ctfN8LEl2+W3nfRXz/KE3lr7mk529Bs55uDN34ZXVX610k+T9n+j8LX/oU533ET+9fuf5WJJklc57Z0eO7s1dePvGzhyty27ozFW7ZO9xlW6SfGKHzrOQ/b/VWZt6xAqdeV9JcvqGnfWYh17Y21tmj7c781D3Wqizx+PILX5Z6SbJRld0nr99ZePOOPBZp/f+lpfYsbNn4kalvT+T5Iilb690xx24WaV71nqd5xlJssX6nbmGOz3Webfb9Tt8vtJNklM274wjrv/nzj7uSfLYxM4zjZHf6LxT4vq/954b3X9951nJL27q3F9v96nevpSzrtl5JvWNuzavdJPk7mFzVro7p7PHyLqX7VbpJsnr0zt7Ke33086+DFds1Ftndv2rL1W6636ks0Y+SWb9w8WV7pvjOnscHLp2b1+UB7buzAmcdZNLK92Pf3SZSjdJvj3X1Er3S0t39gtOkoNO6xzzPv/TWSuxxiHHV7pJ8tR8nTG5W3b9ZqX77K6duTRJ8uQ/O+N9z/yt97f899dLe3dt1BlHPHC3hyvdJDnt2s77WOe+vXO+f/FznfvrJJlljc6Y6lWz9O79fv6vzjXXqqM67xb+0jmdc1ySfHGhzrsxjz9/jkr3oXV679dYa+fXKt1L15qn0k2Szb/VGVN9/w++9H+c9zxQ+f8GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XGRjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgxH/yH0+dPC0vT5g0ww9ipuELzfDmv42b+cVKd9qoYZXupEnzVbpJstoSM1W6r774WqWbJIuOnrvSHTUwstJ9c/LzlW6SzDNT55gnPdX5jgwbPqbSTZJZJ0+pdBcbPuPPb//2xkudv43Fxi9c6f7PhzatdJPk3juvqXRfeHNapfvg049Vukny+CsPVLpzzN07L2fixEp24blnrnSfee65SjdJJr/9ZqV7wdX3V7orjZ+10k2S/3nvxpXu5KnTK90keXfg7Ur3jYkvV7p/u+bmSjdJFl9lfKU7MLzze/2H80+udJNkzKxzVLqjJneu45Lk7PPPrHSXW2HpSnfY8LGVbpKsudxile7YdI75rkceq3ST5PHHHqx0Zx7euadMkg9s/LlKd521Vqh0xy//nko3SUaO7HzOD/7qkUp3zjl6fxerr7RqpXvyMT+rdJNkxNKda67XX36l0n351ccr3SQZttjsle6r4zq/qzdf37k/S5LNBzpjJKOK4xhTp3bu0eYYNbzSnTL9X5VukowdNW+l+9rkzvlztrGd8dQkWWVaZ0z8ymvPr3STZL5NOuPtSyyyWaX79M3XV7pJMmbsuEp37qXXqHSnvNL57UuScfN2vn9jZ+6NiT/19guV7tinR1e6k16aUOkmyfQxnWOeMrHzGY+cZcFKN0mmTe3cr85T+o4kyQ1XXVTpzjP3IpXuq88+VOkmybIrLF/pvrBsZ3zk+WG9sdq3Huqc8594tzcmPvrGKyvdEZ3LrUx98aVOOMnweSdXum9M6hzzvbf3rrfWWHmlSveBNx6rdJNk2sTOXJ3ZSpdFL738biecZOKbneerCy70VqU7bJbXK90kmf5W5/z59HO9c9EbL3fGSOabrTMONfm1pSrdJHnr7hsq3ZdfuLHSHf5i59lqkgzM/h9Ni/xfe/s/m275H5lp2NRKd1RprG/41N69w8gxnfPcsMxV6b72eu+8PHl05xw3ZubOZ5Ekw4Y35tP89/PChj+ycGb9+OEz8Fj+Xy46ac4Z3vy3C//VmdOy+b0/qHSHLbJkpZsk+03qjH/86N5bK90k+dcGW1W6q3/tnkr34skXVrpJcvytl1W6M9300Up31Wm9ZyzvzNUZM33fM09Wuklyxvt+Wun+c0rnXLTbDn+udJNk1Lc6/35zbtC5z33PrAOVbpJc92Dn2vLCD3yy0k2SP75wfKW777jVK91rX9+g0k2SX950eaU74sz5K91n1uj9Xs/80d0r3csu6MyzT5IjD+10/3XzJpXuw4f9qtJNkimrvlHp/v39t1S6P/3NNZVukhxaehQ5232dOeBJ8o2zbqp0P/K5ZyvdD52+TKWbJHtt2rmX+sCznRPGAf9cq9JNknd+uFel+9TVT1e6SXL8AgdUuosfcHWl+8OzvlTpJsl9r65X6f7++f0q3U/87KxKN0lOfrvz7O3iz3eu45Lkfct17rH3nLhcpTvfBhdUukny1S91rms3OWmfSvdzE0oXiEnmfO2zle7nZz6k0k2SP67fmddy1Hs6z8iev7F3vfXcnJ3ron/9o7P+8LU3ep/FxCkHVrpzHdiZQ5wk39t45Ur3hTk649aLL3BGpZska/+tcy1+zbRtK93F5r+40k2S23bbptJd4szes+/jFlm80j3k+511/Vt99uOVbpLMdv1VnfBdnfP9xIsfrnSTZJ57O+s8H9umc+2SJH99+JhK9x9vdJ7Xv/pWb3x5uYU6A1ELfP+uSveVdzrztJNkwm86cw1ff6azLjxJXlup8xxt2MuPVrqTn3lvpZsk92+wY6W764mduaKvfOSJSjdJHlu7M7418o7OfXCSTHq8cy2+41wfrnSXPq8zHzBJ/vbXzv3q6/t09k/40at3VLpJcttWW1a6p075W6WbJIv8trMGarWFnqp0py/cGetLkkXO+mCl++J5nTXnv/5OZ6/GJPnYoZ217Gu/09tLYuqHO/dSG13ceb7z+qh7K90kmXjdapXufgt19q18Y/KdlW6STJvSWY/yhbl7c4v2/NdvZnjz7bf+u/Uzd49YKCvOe9gMPprk6wcvPsOb/zb/HidUukf9sjO3YPFTO9fBSXLxdT+vdDecp7MnV5KccN4Sle7sh3TGHh+4sjN/MUm2Ovj3le4nT9y+0t3tt729Zh/fozMm9uXlvl3pJslOB36/0t3yN53vyD+X2LzSTZIFzu/sn3XHpM7cyMM/1pkbkiQ7rvD5SndgfGd8KUl+ufH7Kt1lP9rZ4+Pjn+ytGf7bpZ11VSd+rbOWYau/936vlxzZGSPccKvOHIAkWenA0yrdN0d21rh848zemPS+n7u20r16ljUr3QMfnq3STZL57tip0l1ky97cyK026sxZX3mjLSrdi578cqWbJO85oTNXbcvpnb3WD9m893dx6m8696u3X9157pYkl9/UGZM+9JGDKt15N+3sVZok/xx9eqW73J86cyOXWXedSjdJPrdN5x57geV6czgu2ruzr9peC/6o0t1m1d4e/Jd9sbNJ2ZyrdsZh91iqs79jkqy25Tcr3Q2P7FwHJMkZXz+20j3n66tVupc81xuTm7TIVyrdY0p7zL31hd5es+857dOV7udX6MylTpJZ/9V518Gxu3+t0t3uJ705s1/6wl8r3V+e+0ylu8oRnXkySTLi1M78kEUfL23QmWT7KzpjJL+/oLMW8xN/7O1x9fVVOvutvPtUZ0+8gz/Ue3/XfZNKz9Au7a2rOmnuRSvdZb/U2SPwfV88tdJNkq3+tWylu9gLnfHln1/QG1++d8/S/eqc11W6SXLbcp19sJb6SOc9FYf9sfNuhiQ5aOm1K91fLNJZE77PtM9UukmyzEWddTm/nOcflW6STDzsL5Xum7t31uWM+EZvr+e5PttZ2zH9u53nOz/ZsjOGnyTHHnB2pTv8w721KJu93Jnf8OlzVql0F1qgM08nSd74WGevv8nzdt7LN27ezt5oSTJ90V9UujuN6+wTlyRvpPMcZtgFG1e6d/yx9++3xdGd+Rin3H90pfvqtzv7xCXJiht21jIcsv2Mnwf8b8/+ovMOjP/WsJeXy8DZf5jh3U8u/s8Z3vy3rz33xUp3/+M6ezns/khn3kmSjLqqc502duve897H17iv0v3Gw3tWurvt/q1KN0mOuqUztvL2zRtXuk//oLcn5U9v6MyXeeHd3lzRg4+cpdL94293qHSfT+eZbJI8+HDnGnD3Jzv7UP1s9c76vyT5wc87z5seX7YzXpok2x6zdKW76UpfrXTX/eS5lW6S/DmdvYx2Hejcfx3yg847xpPkzGs6z5v2/mxnfk+SrH3k+yvd9T/XWSe77Rq9e8bjn+yMpe+4bee8vPkiu1a6SfKndzvvFBs3onfPuN46nc/jnHc6Y/TL/bOzj1iSbDqms+fCGZt09juZ5y+9fUnGXn1EpXvx53vv9v3ADzvjvHft3rkuevu9nTGBJNl5wWxWhAABAABJREFU5isq3Se+3plrv/p3Or8jSbLTa521Vdd8v7OWNkmeX6Mz3/C77/lJpbvINZ39mJNkjqU7n8VKL3TWdrzzxMcq3STZdHTnvLz18NJel0l2W73zXPa633+n0j385t7chR9t39nTfo/PdMYn1/xHZ95Jktz99S9Uuud+fIFKN0lO+GxnvsVFl3X20Txzntsr3SQ5fPefVboLfaOzd91h85RexpNknhM+Ven+5Sed9WtJ8tWXOvufbXVsZ23HRvt/oNJNkolndc7LXzups9/e9N32rXST5PTNO/vPrHFA712QD/6psxfcNvNeU+kuem9nzU+SvLlTZxxj/hVHVbrffaHznCtJHhs54/eBS5L71rmt0k2Sn689R6U70xYHV7pb7tDbt/zTC3TGJ796ROfv4uXde2smf7BWZz3RBT/srY3b/B+ddQd3XdjZg3+zNzrX4Umy446dc/7fL96l0p1wRWffwyQ57rbOmrtfvdZ7vjPLpM6z5q+s/uNK92PrdJ4HJ8kFz3fem/PiLp29Zje6sNNNkk2OXrzSvWOt3nqwpbftXHPtdurkSvf8Nzt7QCbJqbt35lAeuFhnbvkfz+g9Q1vzW513YHx9yVcr3SR54dbePuD/jRffeD7HF347H/he771tT5x4dKV77WydeRxbHfD3SjdJnvzenyrdqZ+6tdJNkoe37uwJcOTkzrlmlus67/pIkq03/W6le8Qpnef1667+XKWbJKtdfEqlO7DTJZVukiz3cmfu7AN/6qwvvHOg966ypR/vfM5/f2L/Sneb3/eu097zZue8fN0bvbmij6y0daV7zbkzVbrTVursHZkk553a2S943e+fWel+5sDOmv0k+cS6pfVg7/T29V3g2s6Y6Q9P7ozlXf6+zr1Mkhz0mc6cwCl/+m2l+/tfXlbpJsk+k/+n0l14wSMr3ST51pc7exwv98Y9le7Ss/Tucbe5sLNf91qXd+537vhzZw5ckqx+bmcv21tOm/HroP/tsb935rdeuuvRle6Ge/WeK3z0pc5z2ZOu6DxTv36WzhyqJJl0/HmV7hEn9dYs77/fuEr3e0929nOYfZdXK90kOfGFzntLB2bu7OV3whydOahJsvixe1e6h63a2csvSc54p/Puo7Vm6tyvPjh6zko3Se7dvzO/fLZvdN4NO/csvb3g7hv7y0r3wfd29i5Jksf2H1npzv3rxSvdhdbsvR9lkdMXr3QXvaezBur2e56tdJPk2a0ernR/fXJvj9xLLt+50p24fmc/qrM+eX6lmyR3fqJzL3XN8p138919U2+u6O1zr1/pfuXG3hqM55bvPB/40HmdNWzvHNbZ4yBJLp+7c1109e867+T55xmdd1UkyeJPfa/S/dJGnXvKJLlo4c53+5sndOZRfemc4vttxnT2+Jnz+s78rI+++MdKN0nuu7szvnzIMr252jf+qDO/dcS8nXvsHd/uXSNeenFnPdg+63fOn5cf8UqlmyTvnNQZbxj31IqVbpL8cOlO+9endd7dse+1nf21kuTjzxxd6c5ybWe/9aMv68wtT5IF/tk556+wem8c8c1lOnOA9rmvs0fFxZv33imxxV2da4G9fteZj7HtPvdXukmy3yqdvbvOe3q1SjdJph/U2VPx/5OB/7/+fwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAIWpgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAACA/4e9/4rWqy7Yvu0zKyQQEkhC7116B5EqvYhIERFEUAQLFsQGIjbwBgsiFkARGyhKR6o0RVSkSJEuPfReAiG9vRvP6977jXHrl3NkrGccxzb+nGNlreua898mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGA3P7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBiY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBPP/Jfzx16rQ8/thTc/4qxgyd883/17wzp1e6C41ZrNJdYMyClW6STJvwUqU78aXxlW6S3D3lgUp37OKLVLqj5puv0k2SFx65p9J9/qkple7kSRMq3SRZYOx/9NH1v7bg2IUq3SSZOWSlSnfc/Z2/60ce+EelmyQLjXlLpbvFOgtUuk+/8HylmySjho+udGdPmlXpJsk8Izufc9OnvdrpTuz9XS++9KhK9yN77FTpDptviUo3SWYOzFvpvjq9910yMKPz/ffM3Y9VugtNnlnpJslLf36k0p065I1Kd/nRvWeH1197s9KdOLXzs0iSEZlR6b7w5BOV7qYbbl/pJslrr3auefy8nc+iWbOHVbpJMjB7dqW7xAqrVbpJstLqK1S6o+ZfptJ97vkXKt0kGTZ/599v/bduUemOmb9zH5AkD9z+p0p39913r3ST5Oe/PLvSXXDEiEr3HbvtUukmycw3n650bxz/bKW77YorV7pJMnl853l1yJQhlW6SjBzRea58c8b8le7sSb2fxfwLdP795pn9cqU7YvZApZskE2YuXOmuPrwzVpskj03tzA9Mfe3xSvfVV8ZXukmy9e67VroDMzq/y0uO7dwTJcmMSZ3nyicfKMyf/b8mzpxc6c678nKV7qhMqnSTZN6RwyvdWZM7vxeTh3bGoJJk3oHO398CpZ9Fkjz3cme8/fWBzrj1mIV7n0UZ2mnPfrYzVjRy6d7PYmBI5zNu+EuvV7pJ8uqUzrjO/POWxhvm680brbDw5pXuEkt05ndefHpspZskD/7rX5XueqttUukmydBpnfvlZyc9WOkusEDnPuD/tDeodIfM23mOWmBEZ9wzSZ55ekyle/vtV1W6SbLJaqtUuqNHrVrpvnHnQ5Vukkx6YmKlOzClc48/fGhn/V2SjB02stKdMmNqpZskM6Z0vrNHjOrMNS86s/MzTpKppZ/zsHk797VDp/fG5F4r/ZxHD+08OyTJjGlz/n559uz/fgx4+MrJst+b8//2z6788Bxv/tvqm/y10n3wi517y1UXPLzSTZKzpp1X6d74cGd9T5Ks8O0LKt2zT1200r1jyn6VbpLMGuis9T390Jsr3Um/fGulmySX/7Yzfnzr/m+vdJNkvjHrVrrvPmdapTtxk84auCQZeUBnLP2a5TpznHf9vjfGu+MHO2O8W/6m98x4556fr3R3PrHzufynI8+sdJNk2LIfqnSPHtUZCzr7D8tWukky4vrO2pNvd7aMJEn+9pU1K90Rb/9bpfviWUtWuknywCrrVbpf3LQzr3fQQptWukny0Vc3q3RvHnJLpZskez7W2Tfy8I3/rHS/vuu7K90kuXRq5zt79KTPVrrP3nlDpZskf92i83vxsfd0xniTZOmH/17pPn7XyZXuDQ/31i7s+/yTle5xH+usm733/t6eyQ8+9udK97qd9690k+S6X32t0p007auV7ga/6t1wjft9Z038okudVukuvtanK90kWfao71W6T69/UaWbJMs/+v5K9/KFO+NFl6735Uo3SXYauXal+8iszlrfza7sPOskyePLd8bE99q797s87vWPV7o7jO/MOzx2QW8N+F826KyLuHutpSvdg1Y+stJNkp9+ptMd8WxnrVOSrHj5vZXun37a+f6b9+OvVLpJsvbqnXUAk4Z39gnOt1Xn+SxJ/pHOmPitb7+y0k2Su77VmdO487nOfe33t/htpZsky+zUuce/48blK91V3uiMASfJyEVurHTf9qfed8lKz32h0r1hlc46nGl3dv72kuSA3T9S6V62Wee+aJ0remO1aw+/u9Kd/vznKt0k2fmEzpqycx7ujMlt+o4VKt0kueKhznPlmuteXOmevVHvjJH7n+ys3XvfI70zYkau3mlft+++le7MuzvPlEly6iqdZ7+DOlOgOePJ3tqU4ct07hF/sVVvP9GiDyxV6Z6zc+eMkd3+1jt7bcHDO+sRZ6+zTqX70sudZ8okGTJvZ378j2/2/v42nTDnx1RfnPncf/W/W2vSfPnTbXP+bKdP/bl3LtBPNjui0v3kqp29hSt//fJKN0kuua2ztm7g0t5c4U/n/WKle8vLnTWXm07ujE8kyQvD96p093/3IZXuAw905hOSZO9XO/Obv12hN7+5wAM/q3T3nHFCpfuDr/yl0k2Sh/btzG9u8rvOubtfu+l/Kt0k2eiuzjlwf3myt8955w93zmvbeNHO/OZPnui9Q+HABTtj/++884pK9+zVVqx0k2TEI511hj9dsLdPdoMrPlXp/mqHX1a6t3z4E5VuktxxcGdfzrojO+eWH7pT5/M+SRZ616WV7sQTzqh0k+TXEzt/2z/a+P5Kd42RvbPPPnr5Nyrd65Y7q9Kdvktv3nuJlTv3WwvstnqlmyTr/7CzHveMb3TGrvb7yG8q3STZ90frV7rrXdV558rP39f57kuSb36kM4e87Ed6Z/p+74jdKt07dv5BpXv1RT+sdJNk3IKdv+uvL9q5RzzqrM47H5Lk3pc6v3Mnz9N7H8h5Hzm+0r13m60q3TdG7FHpJsklHzmw0p3562Mq3Uc/flOlmyQHPNL5Wby+WG+u8K6Hdq501/pLZ07joxv1zkg6/pTOOYxrf+vCSve0S3t7txd+vDOm84vvd9Z/J8mkT/6g0j3giPsq3Q0PH1fpJsmT83WeSzZ7f2d+bqW9e78XC59wSqX7nT16++I2fK4z9vmWkzvnXv/sR533NSbJxod1zqeeOqaz5mu5b/T2/j68W2ccauwzvfmdz5z6zUp3yAc7n0WHXNt5PkuSMYt/q9Kd7wfHVrqHLP2OSjdJTp6vs/770Mm9Oew8ckYlu87xnd+5y7bu/S5/43OdccTLLu6s2Ru9duec7iS59c7Oepr3H3xYpZskn3z9F5Xu04dfXeluuOe5lW6SnPjRByrdt93ZuRc4c0jv2W/adzpruA55b+dvJEm+/aPOGOUb+3eeo966/p6VbpJ8brfOc+XFQztzaF/4yJaVbpKcfMVPK92fDTmg0k2SL43tzK/+t54e9liOWvS9c7x74qc+Oceb//auxUtncZzb+dw96N29NS0/+HZnHcf3Tjim0k2Su3fozFncu31nXPPyr3fO5EqS11bqrEP90IGd5/IVt+6de33+hzrnq6586MaVbpLsO6HzPLrQEZ33fYyYvEOlmyT3nj6m0t1n+DOV7qkvdvYiJ8nOF3Xmvu+9sPcOyW8e2vmcW/XLR1W6/1yzt8953Qc698PDDn600l1g5Rcr3STZ94R3VrqT1/tKpZsk8y/S+Tkv+FLnHL8fHdpZQ5Uk9+xzRqX7wsd2r3RPeLMzxpQkG+69fqX7lYHOOflJcv93Ovs81zylc77jumfeWekmyQk/7ez72e+kzvjxNtu+rdJNkgkLddbk3rxabyz2u1t01td9d3Jn/+Gll3XWFyTJc4/eVenesmPn3PI/L/PBSjdJztizM9/0nts7zw5J8tLK361019mgc7+8/RG/rnST5JHH9650//jVzv77aVt9u9JNklP26NwXvfWY0vuvk5z1m4Mq3TXO7TwH/+vOzrtsk2STVT5a6a50ROccsZU37e15ve6oOX8mSpIscf9PKt0k+eQ6nfOpT/zR+yrdLTbunRFz19V3Vrp7H/WDSveap3tnxBy9QGd95GMndp7PkuSTO3f2mq0w0Hm39iUb9N5TfdbznffEPHrqWpXuQmc/UekmycJ/6Zz3tdHh4yvdJDnruM7n583bbVPpbnH9tpVukqxwVee5ZKMvvlbpTp7e6SbJFz/bua9dYIetK90k2ehHB1e6z/7pw5XujNV+XOkmyZ9P7nzOHbRFZ+xssxs77/tLkgP+0vleHXdzb9/BKot9p9K9/M7O9/XbTl2g0k2SK57s7EHcYf8xle4mL3y/0k2SB7/RWcN1+szOu3+TZOCHB1W6O2zTmV9dZlhvreFVJ3TOh//mjZ3Dnu/bu/ccvO9hnbUCv/ifCyrdJFlqyEmV7ojrOuupv3te7xy6q67tnAN5/YadtWFHLvDfnUP8v3HGyZ3f5dErddZTJ8mdszvnzv+3Xh21ZM7ecs6vP7nwH71zRe//5s8r3VOW/FGle9j8x1S6SXLJ2p33Sd+5Wec8gCS5eVbn3VEf/nJnr/of7uzNF67wmc45V+esvWGl+4eVZlS6SXJeOu9I+NAenffBJcmCD6xR6b77tM57vzbbrnOmfZJc8q7OuohPHLljpbvU586odJPk0r8fXulOuGGFSjdJjtyiMxe5yMc6Zzu9fnzv/UDf/Z/rKt1rp3Se+e+a9MdKN0l2XabzbvvZV/T2fe+/aWcN/8RRnfPPTjh/YqWbJHsc3fn+u+78zpk1Bx9yaqWbJAMfvrPSvXlI775olVmdOaeDF/9YpTvmrmsr3SRZ5c3OOXO3Hdh5T/wWb55X6SbJhuPfU+kecVFnL22SXPRoZ93z2TtdUunucl3nfTxJctUanfcmvv7I1yrdrad29qUmyWuldainndw7r/uCx3etdHdf7feV7r826sxDJslmQztz1Dvu3LkXeNcVv6p0k2TCQp1zmRe5boNKN0n2fM9Lle4hM7epdEdc9nilmyTjxtxZ6W7y8867+XZfsXe/vP7qnbHaT1zW29s49GOde7mv7tyZd9hx584e6yR5deXO3uLPTuvcb/3lvM64dZLs/6HOWtF3HdjZ/5Qko77emXv46JTOOo7d39d7v8ZSO3TWcXxq+8563Ot/1XunRMadUcmudEjnXaxJ8tEZnc+i3UrHl+y+xy6dcJJ3v9E5l2jU6b+rdCcv/IFKN0ne80Bn7OzgRzp7oZPkgpU75wftNKMzP3f25jdXukmy43c77zY95n2d+fw7RnXef5gkV76zc5b0t28/qNJNkqM373xm/KP0btNVVqhkkyQ3XtDZM7ngsZ13P9yx86GVbpLsv9E/K90Npl5V6SbJ7w7o3C9vNL6zn+Fj03tzJWc92Dlf8g9bdvaPHnzqUpVukhy9/T2V7tb39PYTXbZ/53fulas75z2/un/vHMHLDpi/0v34KZ39RNt+vzPWlyT/XLxzXtVqe/TO7trxmtbzw//3+f4Dpf83AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPi/ysDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDMztCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwWBgbl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGA3P7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBiY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBwNy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAbm9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAwMLcvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg4G5fQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGMzzn/zH06ZMzpMP3TfHL+KNCTPmePPfRi88ttIdMd+rle5qG69d6SbJ0FnDKt0xC4+pdJPk2ScfrXSfeOSFSnfs2OGVbpK8MXNapbvISotWuvf/8YZKN0mWmj1vpbvkwptWukmyxCITKt1xTz1X6S652IqVbpKstuQale7MGfNXug88+GKlmyT77rJdpfvYY89Xuklyx4OPV7r33NX5vF9w0Vcq3STZ8s3O7/KqK3e+rxcas0ylmySvvjax0n345usr3SQZNnNqpTvv85Mr3cUX7HxfJ8mQdO5rX35tkUp33gU73SR54Y0nK91Jb75e6SbJegstVek+N2xkpXvd36+sdJNkxpCZle4jTzxT6Y4f37mPS5K3brVZpbvcyptXukkyeXLnnuuFZzr3iBtuslalmyQXX3RRpTtk9vRK9777bqp0k2SpFTvPfiuN7P37rbHC0pXuXf96pNI97/xfVrpJ8vkPHlzpPvDavyrdJ5bt3MclyexnOvcYS827YKWbJDOmdT4/5xn6WqU7MP9ClW6SzJzWed6ZNX1KpTtx1huVbpJMnda55lfS+RknyeSXXq50H3j94Up3o9VWrnSTJEM6nxmvTOo8X4/p3AYkSV58pfNZNM8ioyvdJFl8xOqV7i1XnF3pjpmv9xw8/3yd5+DFxqxQ6U6d1rkPSJKFl++MTz67SG8c6unH7650Fxza+Y6a+UxnTCBJxo+6oxMe1fkbefBvvWe/ZVfujGMMLNQZ30qS6bfeX+lOe21WpbvCW3prEKZM6syBXv+nv1S6oxb6j5bI/EfmmTqi0h01T+9+OUMXq2SXXaTzWTR8/mUr3SQZlkmV7oIjF6h0xz//ZqWbJLPSGRMYPmp8pZsk8yzduRdfMJ3f5clLVLJJkmH3ddYKzDvP0E53eG+d1aRpnWe/YUN698uzM18nXJobHzJp4Uo3SeYd3vlcnjWj8+wwovNx/3/M6KwhGcioSjdJZs9b+Pv7/2MueOqYWRn3rjn/O3XDMR+b481/W//48yrd0U935pu+vvbtlW6SnDDij53wby/pdJNc9/m9K91bFup8nk/+wl8r3SRZ4/2ddQBfO22HSvfmc0+pdJPk0b3Wq3T/MXTjSjdJtr27s6bzxsU6v8uzZ69W6SbJXmPfXeluuugFle4P5+uNi33w2c7aod8f1xv/uO60cyrd0Yt05mUvGX9npZskH/zbfpXulcd1xmze9f3e7/Kz+3We+b+7amfuLUm2HXpCpfvB4zvjKr/Yc7lKN0k+85nOfe0tEzprkpa/4cBKN0nOv+cPle68e/TuMVZ8pLM+cso8H6l0777k6ko3Sca+uE6l+8xK11S6P3y8tz5rxbWOrnTPHPuJSjdJXlx1zu+xTpJFntyz0n3vKjtXuknyyVturnTH/ut3le6Dz55Z6SbJP5b5aqW74dq9+fp/vvn5SneJ8Z3xhjff1Vm3lyQfWfjESvep6zvPlM8uvFKlmyTbP95Za/i+DT9Z6SbJP17q3MsN69xuZcgu7+iEk1wzZnylO2TaLyrdv6y3VaWbJLus8FSl+7dv9tYEjtr82kp3+uc7z8GPLdVZD5gkT73c2fez/KWd9Vl7HNybd1hnw846jvfv2vkbSZKP/PQDle5dm15X6S578ZBKN0nuW6JzltK8d3fWff3499dXukly8q77VLpr3TG70k2SDxx/bqV74nKddQATrxxT6SbJ3e/oPO+sOF9nIdW5Y3tz2NeM26bS/dQne8+r59/UGXvZeNHrK91XN/5HpZsks3bqfP+tdk1nbvy1WaU1E0lenNoZUx21+S2VbpI8fPOnKt0XDrmr0n1zynsq3SQZsW9n3mjhoz5a6S7wvWMq3SQZt2ZnrcDli/220k2S9zz2s0r3oOc7c2jT/9WbHzht+O8r3Ru32L7SvfzMzhhikjy/Quczf6PVeucITv9DZ23RPpM7Y6q79o6SyF9v6KxvWGT9L1e6tx7/tko3SRb/wIOV7piHOmdKJck9+8/59WzbvfjfjUHNWOTFvPChU+fw1SS3Xt6ba7pzUuf+/a+L/LrS3eCN3vm4h03o3Ev9aLPO+YBJ8v1Lv1vpfvSazrkIj/31fyrdJPnQQZ3Pr9/97OOV7v1/uK3STZLtft/Zy3DgqZ2/6ySZcUpnHuumz7yz0r3w+t732k0Pdq55rx/vUulesGTnOSZJzh7emVPf7uM7VrpJMnWJznjpP2d0zoEbvkJvzey0F75X6U7+3Fsq3fsm9fblnH9Y5x0KFx5+RqWbJH986KhK98nRZ1S62x/R2zN89GEnV7qHXdvZS77Rh++pdJPk5GNvrXSvfL0zDpQka8zfWbewwxF7VLr3nbl+pZskm/yp896OK1/vjKkMu6yz/iZJJn2nM767zWGdZ5IkuWOL91a6x9/fORdogws7a+GTZN21P1TpXj3qi5XuVh/onG2cJG/ucVyle+6N61a6SbL8775R6X7wlW9Xunuv+vVKN0kW3+veSnfBXd5f6d4zb2/v9pkvHlTp/njGKpVukjx2SufnfO4vOusMNxn4eaWbJOsc0JnHes8Sh1W6r1+3fqWbJJv8fdtKd6WVe+doHrVU53757Kmd550T/9E7h3HUDZ3zova5pvMc9dUfdd5TkSS73dmZh5l25sWVbpIcuG5n3dekL3T2a6140Qcr3ST57PBfVbqnztP5Xd70os668iR57NjOvvA/P9Nbg/O7P3XOtD90g86avSvP7sxnJMlqzz5R6Z74h86+nHWX6YyHJ8mde3bO2zt9emfeIUnueKpz1vprq3bW79/28d748j/X64xjPP32wyvdFUb31qltsWpnndpd08+odJPknJceqnTv+vPyle697/5ppZskd+zUObf89HGdl5gM/WVvH/v3z/9BpbvT/r2/v8O+O7bSnf75ztn+u853SKWbJL88srPh/NO3du4xVty29x7rjPhaJXvsOSdVukly+wc67c8NdMbaT7r+n5Vukvx4zc7959kHdt5L+9sv9t53u93+nXu5Kza9vNJNkg0P6Mwd/bcrgUdkRNbNnB93e/a4C+d489+2/MJele6ywzpn9888YrdKN0kOXfPiSnfbT3U+G5PkxPk7+yGPXPq0Sverb+2cnZUkd0/qrGP841Kdc5NP/XjnnO4kGb5KZw3x4et1zohIkiVLexquf6Oz1vfnz3b2SSTJicM745rrje7sc97mzc5cb5Js8pXO+tZJJ/fO+zrhV1+pdB9avzN384MrO+txk2Spgzu/c7MP3qbSHbpSZ4wpSS59qXP+y6c2eq7STZJ3HDWu0r1yg8440z5/3KbSTZLFV1y/0l3jlO0q3SWvelelmyQv3d5pv+OszhrUJPnZQGcN/6+HdNYkLbRTb753420fq3S/8rnOWtGPXn99pZskX961c/7SkId6Z9d94JDOfOExwzr7fmat93SlmyTfX7Gz7+DL265f6c7Xu13OE9d29rC985bOmpYk2WWgM8fyvbd19ul+cdXeuvVs1zmT8rGbO99RG4++vtJNkhOP6pwZsM8XemdJfHGjzufyW+/pjG+N3b23PvLVhTrzb09f0llr+LaJvfU9Pz+887PY7JHrK90kufuizprqU8/qvH/tsq8vUukmyW/n65y9u/mRnXd2HDdP5wzUJPn1tZ31PWd9o7OmJUluP6Zzpv1PjuqccbDvnb3PokUe6ay3WPvczvqCn47uncvw3O867/x7eoXemb5vn3Fkpfu7AzrzRit9+qBKN0keGui8i3WDzTrnaS/7ud4+pZGlV0sddG9v7cmeX+qcV/rahp3PojGX9eaw93u6M/by6C5fqHS/fnBvb86CJ/y40p31mZ0q3SQZucaqle5paz5b6f7kK71zy89f7vVKd+L8nfPivjW8c75dkrzrM53PoueP6Yx7JskPP9o5s2Oty+apdJ97tfcuwd9+6vhK9w8nrVnpjpvdeUdaknz6C521KScv2zuf+vFPb1jpLrt451yNzz7de8/PVtfdWOk+dFBnfPkD03p7Jl8dt2ul+/IDF1e6SbLbhhvU2v+Nt4x8OVdudsYc7/7ke70z26656/FKd7ufd86sOfzit1a6SfKTsz5d6Z7ykWmVbpLc8YPO+e9rvL2zB/7JNbesdJPkcyd39td/4oHNKt3Tz+rNvX3kV5171vMP6b237U/Xd+ZCtrqttO554b9Xukly5yc757ifvmFnD+7Xbv1cpZskZ43ojBNuem9n7DhJjrmu837Ra8d2vlev/nLn+StJztyvc7bMukd0xktHrdYbl/7cLzpjpkfe0FlrkSQHH9nZd3Dl45311Hvce2ylmyRnrdZ51+Oqq5xR6X59nc6cUJLs86vOfswR63belZQkR946ptL96AuddXBXTu/tjfvjTftVuh95pbOG/8Xze3uot7ioc7988Im992Bc/3TnefWu93b2Hayycuc9gUmy/+87e2j2vL7zGffEkr25t09usHulu+aGnfU9STJ8wYsr3eOe77y//O8fXLbSTZJvndwZ4zp/vc77bG/44eaVbpKs+M3Rle70pbeqdJPkx8t33nt58u8vqHS/utHFlW6SXD3pzkr3iWs6f9fzr9gbXz78qr9Vusvc3jvnauuHOs+rx3zv/Er3wps7c+pJct0W4yvdZRZ8pdLd5I3ec9QJhy9Z6f780733o7xv4TGV7htvds7i+ezY3vttXlq2c8bIZ3fovGfyqRt767O+dUpnfOvAjXvrOIadvmelO37+qyrdtd/4V6WbJFv+rHOu1PQvdM7eveN7nfWASXLF1Z3zVva66M+VbpJc/7nO79zGi3fm3R889TeVbpKMm9V5z/I1L3fGER/evXO+eJLc/q33VbpTvtp7b9XGCxxR6Z58c2eu62drdPaCJck2965Q6f5m/847w0d/qLeG/5IdO2u1h5zemVtNko/8bblK91cXdH7OG3+t8xyVJDe82Blf3vZnL1e6+/9tsUo3Sa4e0Vn3/OHbfljpJslRF3c+87/wRmfsZcoCvYNRblnjzkp3h//pfBZN3LX3Dq+d/6ezn+GJs1+qdJPkqus7z5U7rfr/ved1oPL/BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lxmY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBwNy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAbm9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAwMLcvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg4G5fQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAzM7QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMFgYG5fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgNz+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAYmNsXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDwcDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDJk9e/b/+j9ec621Z//u7PPm+EU89chTc7z5b3c9dEelO+PVoZXu9ttvWukmyexFF610F5p/UqWbJOOefL3SnTWj8+/3xH0PV7pJMnXK05Xu/IssUukuPHLlSjdJMv3xSnbcA49UukmyxAoLVbqTXny+0p0ytHO9SfKvu26sdF+bOKPS3XD1NSrdJFlx4c7fyb/euLfSTZIFpkyvdJdaovMd9cC4NyrdJFlk8QUr3bcstHGlO2HSQ5VukszKUpXuQ9ddVukmychnp1S6S44cXenOnj1PpZskU2d0fhajhlWyGf9G5/M+SSZP7fyc11mic7+VJIvON6rSHV/6Mf/kgT91wklmzTt/pTtk8c5n3MiVe/dbT0ztPDustMLmlW6SPPvwvyrd9x76sUp30REjKt0kufi6myrdqy/6eaU7fJ7O/WGSrLv22yrdHTftdJNk3vk63yWHHHl4pTtkYL5KN0m23mzDSnet1deqdBebVckmSUY9f0+l+5anVql0k2S+SZ2xs+HzVrIZPqtzT5Qko5fsfOY/93xn3HP+YQtXukkyZdJjle7UhcZUukly62qlcYwNtqx019hi7Uo3SRZetPO78fyjnfHJxRftPQcPmdj5vZg0tfe8esv1N1S6K67SGZ/8x923VLpJsv7qq1a6s2YNqXQnPnpNpZskozZ6R6U7YVznOypJJk3qfGcPXaQzVzli2NhKN0leeO32Svel11+qdDdbeutKN0mee/G+Snft3d9Z6SbJ5GdfqHSfufUfle6YsetWuknywpOd76jnp3bmbTdees1KN0kmvD6t0l148d49xhLLrVjpvvBo57No1CKrVbpJMmLeBSrdISMmV7qLLNK5J0qSP/+hc/8yer7OfFSSrLL8FpXusw91xq1nPVrJJklmPPpypTvvsM74yMC03u/F5Imda15kTG8gcZ55R1a6w6YPr3RnDX210k2SqaXliFPT+b2YMLH3sxg2ovN7MWN65zsqSUYtOOfviw6689L8a8LL/9XD+1s2WGH29//8lTl9Sbnjl7353jWnDFS6L93fGctb5so3K90k+e2dB1a6xz/ZGe9Oklff6MwLzUhnzGb0TZ0xiiQ5c+vOmsAz3/LJSvdTT95d6SbJpB91fufeuen6lW6SrL1s59n84WGdn8VV43trwJe/v7Mm6Ziz//f7eP4TKx7yvko3Sc5cs7PG4PJv/bTSTZKXD+k8Jy1zwXKd7mm/r3ST5PsP7V3pHvFUZ77iT7d09oIlyUJb7l7pXrfAsZVuknz8uM6Y22X3rV7prrDFMpVukmz4dGc/ytVvjql0V3qid7/8wPZTK933P/VApZsk2XmvSnbm7N9Uup8+vjdfuNt7l6107/7r4pXu2AM6/3ZJ8sRrH650l52n9726+IanVLqf/cSvKt0/nH9+pZskR57TeV5d4oN/qHQXOO/JSjdJVnp4p0p3/i8fXOkmybbrdZ6Fj1zj7Er3/r1+VOkmyfZvfrrSHZ8NKt1dN+s8kyTJkLU7+2m3O7l3FsEbm3d+l8cd+1yl+/xfexOGXzi681xy35Z/rXRXuaa3n+GpRTv3AktP3LnSTZIL/ueZSveT4zp/f69s2Fuf9dIBH610lz755kr3+S2vq3STZJ3fdu633rHQVpVukmz6fGd93bbzdP79LhvV23//vcU+VelecXvns2jEjM9Wuknyi1U617zLvL+sdJNkodc6P4+XHunsH33o/WMq3SR59e93VroLX9JZ97X8xT+rdJNkn6/uX+neP7Z39trqO3XWzp77Yuf7b8IF+1S6SbLp0p0xnVumd/a87v62wyrdJLn0yM669W2/8nilmySH7PZipfuLn3Tmmqdt3BkDTpJRi3+g0l1jvtMr3ZN3/nqlmyT7f/T9le4CYztjOkkycfXOHtJXt7qi0l3+lN5+lMd+1RmvHb5GZ63vX+a/vNJNkmVf6sznL/lcZy1ikry8SGeMcuONOvdbd93U2/O61rUTKt15f/73Snexb/b2Vh26Xecc3VOevLTSTZJzN5jz6yaOvuS4PPbS4//xuudlN1x49uF/33WOX89Xdu59r+34js4634Mf6pzDuPxSZ1S6STLji509+8e97cFKN0l+esyXKt09lt6k0n1s65Uq3ST5w4YbVbp/Hn91pbvB+p01Q0my4JcvrnTHX3dSpZskf3p354zAgz7TOXvp7VM661qT5Oitzq10f7b/WZXubd/tjX2s8fXOXobl9vtnpZskX9ywcy/11/06e9OuvuP6SjdJzplwZ6V770Wd9Uiv7NI7X3XqjM53yZZ7lQ6CS7LNgZ1njvd+7dpKd/Lve3uGd12rMw/52ws769TWWW/fSjdJDl7p85Xuypf3zp3f55tvr3RP/2XnGW3UKx+qdJNkg1U6Y0wLz9vZV7XtFzrPlEmy5+e/X+nO3q13RtkZMzpn+R3543dVuncv/0qlmyTPfLazHvf7m3fuBZ48qXeP8dIfOudFbTWjsw8zSab8tTO/8vynb610n/39nZVukgz5Yues57f9tbOec91D5/w5D/+275aduaZTL+udg7rq9UtXuuv+rnOuzC+2v77STZLnnhhX6R6xUmes7/vz985hfHXgq5XuuA/31ok+ts+XK91l9zui0v3zDqdWuknyhzV+W+ke/7POeQHX/6JzH54kC9/fOa/tL1f0ziFY+ued779jz+3cy738/e0r3SS5/sHXKt0Pn9r5vLhqTGesKElO2LNz7vx6O/au+fUnO+sWrt2hs//pLct9otJNkr2X7+wR/PoBnbXw3/5p790aa+323Ur31g93xtqT5JPzdMYFvvFsZ3zyyVGdfWBJ8uYjnTMq9j7qO5XuObM/V+kmyZCzO+cQHLp2p5sko17o3H+edlXnfJ+V7+2MjyTJey/ufJdM3n2xSnfc45059yQZ/9POs9/ap1xS6SbJZkt23oW8wic7Z2pfPq337PD66M44xrlXdPZIXHtp79nh5AuOqnSXObLzXsUk+dZSnXMPr/li5zPj8aN691urzO48O8z+c2cvww0rf6bSTZL139d5yfLMn15Y6SbJT6Z03ku76VMDt8+ePfs/nmRda4XlZv/uy0fO8es598HeWsNlpnXuWyfc2JlTP3zrHSvdJBm6z/KV7jzLduaRk+SUxzp79n/1P5171k88fkClmySnvG/9SvfCx7apdMe82nuX+/e276wRue2Nznh3klx57pz/7EySdWZ11pQNO6gzXpokBz1/ZqU77tC7Kt19/th7Z/BH/tAZp5h8aW9v4WtndfZann5T52z/Xab09uZ8/EOdd6O/e4u/VLrffsd7K90kOfbjm1e67/nxbpVukrx3l84+9UfHbVbp3vj7MyrdJFn9+f0q3YtO6ow/vjKxtx7+Zxt2zmGcNLKzzyVJvvPybZXu82d0fhaj//lEpZskV9zSWcN//K8677/+wvt7Zxre+sXO+7lW+lfvjKS1juh85g9dtvM7N+643t/1uK06f9ev7tA5y2GlG3trRbe5qTPfu8Q1nbN7kuSz7++sW3/sN5332Z61au95Z9T+nXM0v/FkZ7z02Es6ZyckydrLd85V++xJvfvll07o/DxePP7oSnfF286odJNkxRU7Z8zllM47V1a7v7MeMEn2+mXn+2/KKp31uEnync91zhxa+5DOs/tFd5xR6SbJOheuUOku/OvO+4g3+GlvfPIXm3bedbDY/b29cV/eqDNXMvrBr1W6rz48utJNklu+3hkXWH/Pzjlwj5zbOyPm3aM6Z8IefkLvvLYPzz/nz9dKkuu+3jlD+jevd/5GkmTHD3T2Yx61XefdRGd/sLcefrErOvuJXv9G53zVJFnu7M4+z+/O7pwx8qVnxlS6SXLLM52znj/8wc75aPNf3hvHOPH4zjjiMX8bX+kmyfGH/6DSnW/Lt1S62ww5p9JNko1v66wVfW2fzru3D/hY59zDJFl4QufZ/flTe/f4636y8/d37ZTOHPZX9u+9s2rfyZ2z1ve65rRK9/MPdb77kmT71T5e6R54c++9mD/bsXOm/Yd/3+mOnq/z2Zkkn/lQZ0x1laU670b5xgc7a5aS5MEvP1vp/mXfyyrdJPn0Cp1n4f3f9d7/at3zvGPmn73U2+f8fMiqB/XedbXaKZ19ZD/ctfN9/OzI3v6mq0/pnNk27IzePqR/XNl5hn78nM642Nq39965fvSEzru1lz+5ks3Zz3XOrEmSB8+8v9K9eMy7K90kuXGnQyrdR97onDWw/EGdubck2eCGzn3rhPk656pt988VKt0k2e/8zjPjwjt8sdJNkhlL/aLSXfej61e6p137x0o3SUY81LkXOPS0zufFRy7rvJc5Sfa56qBK91+fuqDSTZI/7fjjSvfqhQ6qdLf+cGe+IkluP7RzM/D4G+tUus+c0XlvR5LM93xn/Gqnt79a6SbJtqM68/Vnnv7rSnf1ezvrLpNk75Gd9a1PfXOPSvc9e3fWcybJO7c8tNKd/sPO+xmS5NjrflXpXvGlj1W6KyzdO4PixfM6a0VnfKdzRuCmq/aeHb6/5u2V7mJPd85zSJKNx3Tmvm/asXP29d+/2VmrliSvX39lpXvd8537ol1+2zl/KUl+cXZnvOjDR3bOWE2Sw5f+VqX7xtWdOZaj/6f3DrbNT+qcf7bCHp0zE8dO3K7STZKz9u2cA37MOp3n4CR5x5TOGUy3/7WzjuPAd3bOOEiSSed13hv3rRNvqnRP+sZClW6SfP7KMZXuLndsU+kmyfIbdM7LX+SS5yvda4/orfX95uc7a0T2+kfn/LrnflDaP5Pk7Dn/yuAkyWbz9ta3jn18mUp31lWdd22tulxnfU+SrDTh+Ep34w0+Wul+drOJlW6SHD26s97ijR0672JNku8PmVzpHnNC5xz+a57szKElycVTvlnprrth53nn5Zs7Z38myVbPHVfpfnXJ3j3+Pnd39kOvcWvnM+OKmb0x1R882VlTNu87fljpXvDeiyvdJPniS501nWdO7K2PPHLD5SrdtW6eVukuuWhnrDZJlnnvtyvdH+23YKW7ydjeOyUmHdnZc/f6mZ0x/CTZZkLn8/OgT3f2bz+wz+8q3SR5aePOesS3bvf3Svf19ReodJNkgz06YzrTHunMByfJr7fdpdJ95OQ1/z/XPfdOhwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4sMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAzM7QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMFgYG5fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgNz+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAYmNsXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDwcDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDMztCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwWBgbl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGA3P7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBiY2xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPBPP/Jfzx79oxMnvbaHL+I0YuNnePNf1tnxFaV7rD5J1a6M0YtVOkmyYqLjal0R84zqtJNktlDR3a6A/NWumMWGVPpJsnM8Z3fjWcfm13pvvLIzZVukkwa8mylu8JbRle6STJj6qRKd+rsWZXuk09dV+kmyazhnc/8hV+fUene/uB9lW6SrLXjipXuFqMWrnST5MWpr1S6o+cZXumut3bnZ5wki81epdJ9dfYzle6ECXP+Hu7fhubFSnexeResdJNkvuH/0W3w/9qC0zv3GMPm7/1dDxk6UOnOmPVSpTtyWOfzIklGjx5T6Y6dt9NNkhFDRlS6o4YPqXQPXGnXSjdJHnnt4Up36Oyple7j93c+O5Nk6ozO399q6yxZ6SbJq8Ofr3SHTu/ce74+q/M9kiSrrdq55j+PHFbpPnL3g5VukjwxujP2ctudveedTdZcv9L9wO47VLrnXviXSjdJ/nnnPZXuQ3c/Uuke8IF3VbpJMnLZ1SrdpydPr3STZKXnS/e1QxetdEcu0Pm+TpIp4ydUuovN07nHf2PGk5VukgwbUXrGnjyz002y8NOPV7or7TC00n36ms5nZ5LcP6XzvbrWOzerdKe8Or7STZKBdO6LJg90xtqTZOk11650x786pdLdePN3VrpJctuVP6p0d9jpg5XuM8t1/kaS5NUHOt9Riy86f6WbJK/PuLXSnfDaMpXua5M6Y7VJcvlt/6p0p77YGRNY/MDVK90kWXDkspXuXX+5q9JNkulvPFTpLjt28Ur3lTd641DzL9AZn1x6kc533wvje/eeiy6yfKU7e3Zn3CxJxr/SmXdfdOGVK92RYzrPlEkyaXZn7mHe0j3iAsMXq3STZOHRnZ/zshtvXukmydQnO3NdLz/ZeUYb8XhnbUOSzDOts4Zk6Oz5Kt2JEztraZJk9OjOXNe0mb1/vyHTOuMNM4a8XOlmZu97dfbAIpXuzCmdccShwzr3REkyNW9WuvMM9ObdJ0+Z8+tJZ8367/8+pk0Yk6f++u45eDX/x3umXzvHm/825bDLKt113tiv0p30wd4a4j0X76xVm37GOyrdJNn9y7+vdL9xxcaV7pTDH6t0k2SvX95S6S635zqV7l8WvaLSTZLlPv3PSneN+dasdJPk6OX/XOm++PvOM+Pqz/XGNRdd96pK95ANO3sDzn7xu5Vukux9698q3U9t3VsfufBy91a6o7f9eKX7yCm9e8uP3d35/By/UeeedalnemuS3nhqt0p3nXTmm5JkytKdOZb3r7NApbvCm53ftySZeXVnTcude3fmWFZdoTfftPguV1e624y+vNJNkleffKDSvWPWdyrdD50yrtJNkkmPXl/pbr5R5/Pzlpmd+bEkefnpzn3tpI+eUOkmyYzZnXVUh956RKW77SInVbpJcv5HL6l0zz6ms97inLHXV7pJ8uwLc34MKklG7/3lSjdJ5l+5M1+/8Rc694j7nfv+SjdJXnnfLyvdmVetUek+f8aRlW6SfOXppyrdc1fuzX2//Y9vr3Tvv7YzL7TbmC0q3SQ5b/PfVrrbX7d3pfvQoj+udJNk4MVtK91JV/TWLjzz7psq3WMO/VClu8K7Hq10k+RnP+yMvex/VmeO8zNvX7fSTZIbV9qo0v3TlzvrcZPkhd909iD+anJnz92Ys39a6SbJo9t3xmuXG/mbSnfYAftWuknylivuqHSffGKtSjdJXn62My7w4MRXK93xd/Q+iyb9/ZxK98ktOmPi97+4fqWbJK9u2pmTenn8gZVukix48Q2V7vAnN6x0d11690o3SSa+dGylu9ynO/uUjvv2WyvdJFlyq69XuivffmqlmyRbDN+g0p2wbOdz+XOTlq50k+Sh+8dXut9dYedKd+2bet/XF53wlUr38FXfU+kmyVXPdNY9L/T+4yvdfyy/TaWbJAuv1hkXOPrppSrda57dstJNkqcX68zb3rZFZ59Skkx+qjN2Nub44yrdVfbprQG/bdfOGWkzH/hcpXvn+z9c6SbJWnd15sdPn693VvH2E+f8eakjZ/53e/pfmDRfTrp9zs8rHPfOF+Z489+e3rqz12TahkdVurO/0Ftb99LqnTVwx1/WWxs57vBPV7ovn7RqpXvrip359CS55cJNK91xG4+pdLdNZ89Uknzod51zpP+5V2f9cJK8+Z4/VLrn3ndnpfvM6p1zqJJk6fs6a9YPuuItle6BT3Xm05PkR/N1zggc/a+fVbpJstXb/1jpbj3h8Ur3nUv3PouO+Wlnb+9TW3bOKt3qps53apL84tOd/ZBXbrlPpZskd7zZOQvn3J8eU+nOmnZjpZskv7i7M2/6lhU7Z3G8+7je2WcXvL2zf2atJXrnlr/vy50xpu9/+PZK9+7rO+eIJcmBB3bGKBY6snM+9VZ/7Y3vvueB91W6v7uocz5gksy35dGV7u+PXb/SPf0dvb1EX1v9wkp3vUX2qHSff6k3h7xq6b0rG51zeqWbJJNe6OwN+OVXOnvkv3NYZ+9akvx+wc45LfvtemelO8+kpyvdJPnLpM75Sx/Y77xKN0kuWrmzR/cn+3+/0t3l9Dsr3SQ5ZM3OGsZ57++cpfLeLXv7oFd65txK90d3984FeveTr3fC13TWk627S+89TS+d0DmHYNg9nX0d15xXfP/a4p2zcn68Uu99IL857OxKd5t1O2vgrvzB2yrdJPnxSp3f5W++r/MOhZ0/0DmfLEk2faZzj/Hdq3pndT+/UmcdwBc/1Pn83Pmmzmdckqz7929Uuk9+rnO/te/vDq50k+Tbe3fut67+Z2ddeZKsPLLz7H7HPodVumN/eUilmyTrjv1CpfvVPbaudLd77wqVbpJ898DOPpc99uutodpux878wL2/va3S3fui3n7XeXfr7De/7MTO3Gr+1pv3O+qKyZXu33bunXV0xGOd96QtPmmTSvfob3bOekiSLz9/WqV70V6dZ4cjJl5f6SbJ8CU6+zredv9nK90kmTGis4byH2909kmc82zvvYrD/tS5xz9jr8531EUHXFnpJskzMzpn5a+82vmVbpKMPLl0jtl/eYTS6wtNyFXvu36OXkqSfP3Czr76JJnv0M49/Gt/2qvSvWGP3s9in/2XqHRve7wz3p0kGx+/XaV7x7p/rXQXeqn33bbcFzv7m5aZ0Hnm//Efeme4j9m1s7fw8Y0778lNknsOfqPSffaCzhr+o+/5UqWbJM+/s7MGfJ3fde7fJx/U2/++8WmdtV+bXtjZ85MkY0/qvOtg1e99u9L99jqdM2yT5HPve7zSHX9C5571ogd7P4sVr+7sO1jtX5+qdJPkvst3rHT3uqHzPuklD+iMqyTJGpftUulOPKtzjuawWb2zgn99868q3QO37PyMk2Tgf75V6Z60TWft16G//XmlmyQ7nNa5R/zmaZ397+d8sHdu+Tovd9bBfeBr0yrdJDm0NB708Ic7azoP/HPnTKck+fQRnTOHvr1mZ072zyf09kLv/c/O2Z/Pf6qzrzhJTvnhiZXuxyZ09mC8dWJv3fNpL3XOHpy6Smfs7K6NemP0F9/V+S6547bOmpYk2fkHX610Nz79A5XuF7bqPJMkyc/OXq7SXf2Oznnom5zY+4569yc6+wTve7YzvpUk3/ld5x0K143szDts+u7OedpJssbfDq10l7its8/loT0763yT5Au7bV/pLvfu3r6Du17rrAlcbb3OOZrzL93Zb54kXzq9cy7Rid8+udI94ZLeGuI3Nuy8f3TPgd5ZID98qLP25KijO+/svuJTnbP9k2Sz73Xm0RY9+i+V7r6Ldd7PmyRbP9o5/+K2i3vvczlp184emkfn6bz34d6Leu88evyi/6l0n121s+f8y1vsX+kmyU6LdO4xhn+uc8ZBkrzzhc7719bY7ZOV7iVbd85bSZIz7+o8V37lH5+vdG++uHcuw1Lv7LzL7E8L9+a6PnnT/ZXu5xfprEF9+YizKt0kGf/JznjRzrt3ntFuvKS3r3+nJzvPO1uN7K3HeGDrzvzA0uf+sNL9eel8wiS568RPVLpPnNR5f96zs3vnHa160j863U90xieTZJUXO/tR/lvDZq2ZpSbO+TXvby2+f/6YzTv/7gff2plTP/+Qzj1Pkhw7vXM+wueP7ZxNkiQLfKnz7pNn1+is1X7Ho511J0ly4o6dd3LMP7PzGfa3UZ09gEky7MLOe3x+fO03K90k2fzpzntLP/Hh91a639ii866dJDnj8c7c6ZDdflfprnt+77t49Rc75yMccOg1lW6S7DWrM38z4cjnKt33zPudSjdJDjvlmEr30IHOs91pxz5Q6SbJHjOurnRXm9lbK3rRMZ05lofX6cxX/PWwzvkvSXLXuM7aoVWvurfSveeK3jlJ1x/dOZvrqW07Y7xJst99nbVDpy/Q+Y46fNHe+8s//1rnjOrjHv9MpXv1uN6eydFXdNZEHHdq5542SU55pnO22mGf6byT591Lda43SV7fbvVK9/ejOuMjzwx09ngmyRGdrdA59pJ1OuEk7x/ZGf8fu2VnjnO/93XWaSfJE+M79+JbDOucDfTwSZ13ESfJhm+5oNIdeXPv/LpLj+ici37EMp33M4z7eW9M54olOnMsT67auQ9/9ure/dbhU39d6c6/c2efRJJ84V2d+5c3r++8y/0df9yz0k2SNS7frNJ96pzOWYzTT3ul0k2ST1ywcaV71Ead8a0kecfYzr7JM9fpvF/q4Hl659eNn9LZj3n+s51zrv6xW2cMP0kOuapzLuWH3tkbezl32OWV7tKv/rnSfeRP21S6SfLQvzrrLXbfbptK9/Kde+8zG3dr5/yLfTfpvaf306d2/v02OHR2pbv9c73P5Yce6OyH3n3puyvdA17vzRtN/ENnP8p5929V6SbJdWd05v3OP74zdnbiMZ3zxZPknnd1noM/u19nrfbyX+qtAX/Xkr+pdE/YrvM+syRZ+KDOms6bRj5U6X51dm9M54/zdeYqz35HZw7mR2/v3B8myQt7du4xrvhl713yP/nZ+Er3E1/qnG+30Rd6e+MOPqKzt+qe7x9e6X7jks4zSZKccWHnPZP77DK+0k2SF45+qdJ95P/HluXOqkoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+L/MwNy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAbm9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAwMLcvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg4G5fQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMzO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBYGBuXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDc/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwGJjbFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg8HA3L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMBub2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDAwty8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDgbl9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGAzM7QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMFgYG5fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgNz+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDAYmNsXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDwcDcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwG5vYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBgMDC3LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoOBuX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYDMztCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwWCe/+Q/nj1rSKZP/o/+J/8rU6dNn+PNfxsyY2ilO33CxEr3kbv/VukmyfQNN6l0xy60QKWbJG9MHKh0Z898ptJddMElKt0keeipVyvd16aMr3QfeO7vlW6SbLTq3pXu6889WekmybJLr1zpjllqRqX78hud37ckWXb06Ep35AZLV7q/Ou+CSjdJJk7rfBa9Pn2hSjdJFprR+ZwbP+mJSndo6fctSV4d/kKlO2LUqEr3thsfqXSTZINlF690F3hldqWbJEOmzlfpzjO887MYNnlypZsk8wzv3MuNGLpkpTtkwc53X5KMnGdYpbvg8JGVbpLMGtJ5lhox0PksWnnYvJVukiy/eOd+681KNVlrnmmlcjJtyFsr3dnX3FfpJsnaa6xe6b70l7sr3SmL9X6X/zHu9kr38fv+VenOM7T3fT1z1vOV7jOFsa1/u+SZ6yrdbdZbp9KdkkmVbpLkzSGV7JThMyvd75z000o3SQ7YeZtK96Vn36h0k2S/SetXuiss0Pm7Hj5t/ko3SWbO7Hzmz0zp32/62p1ukpTul199/elKN0leH9n5nnr+zc444i33/LnSTZKBCa9Uuutv1bmPGzmmN741LZ3nykcfHlfpJsnqy3XG5KYv2HmmHDJP5z4gSbbe+ZBKd8YCsyrdsbM3rnSTZPbQuyrdR9/o3SPec/f4Sne1VVeodO+4/c5KN0lWWn5MpXvzfXd2urdcW+kmydLLbFXpzpzcufdMkq3XW7/SPe+3v6x037XvQZVukmTygpXspef8sdJdceXOPW2SDB/3cKc7tDVCmey6bWcNyez5O3MaQ4ZPqHSTZJH53lLpzrNQZ65k3FMPVrpJsvlue1a6rzzRmVtNkpcnvl7pzvNM53du5sTe/db883Xmx2ems4Zk6NDOurAkyZTOz2Ke+XvXPGx253d56uzOfPCwmb01g0NKP+YZIzprSYdO7TxTJsmE6Z0x8ZnprUEYNXPROd4cmP3f/1KMnTWQfSbN+TUiUz/0+Bxv/tvdl21a6W41rjOucviW51W6SfK9IZ212q9u/atKN0ku/mvns+ZLu15e6d549dsq3ST53Z03VLrjD+o8M2439tOVbpLcOutDle5rU39e6SbJijd8oNI9dqeXK92fXv14pZskX3ns8Ep35aXHVLrzTOitaTlw099Uuhde955KN0k+vuYale6lK9xU6U5bYNdKN0lWX+nqSve8EddXusu+9GKlmySXj9u+0n3P4/dXukkyYupGle7UzTtr1U7/TWc9Z5K85X1TKt0lXrm10h27Wmc9bpI89fjHK935R65S6SbJuIc6z7nLDF2x0p31cOeZJElWXvJble5NKxxX6X7muWcr3SQZscnule6WF3Seo5LksHfuVunOf1vnfvnFGXtUukny7Us7zw5LbdiZO93gjjMq3SS5Z9k1K93xi/f2vP5ydGft1/Lf79xjPPalLSvdJFn2ji9Vun+c2Zkj2+y86yvdJFn/g9+sdM97eplKN0km3N6ZY1l2qwcq3VWW6nzeJ8lDT3f2LD/9ZGdMYMoii1W6SfLaQp3f5Q2P2LDSTZKpa3XGSK7fubO3+NXHL610k2TVazvPfnt89OBK9+KjO886SbLd1p2/68O+uEWlmyTn3Dem0r1xnc76ngcO/3GlmyQjH92l0r12p+9VunuOnVrpJsk/F+mMnS336Kcq3SR512Odtdpr7D++0v3cX3vPDttsO7zSvfC4eyrdfcf2ziJ44p7NKt171zqr0k2Sqw/rjInvuXln3mHiFUdWukky7ded9eV/W/djle5nXzyp0k2SG5bs7Lk7dvHOvv4k+dornXuBS8d01pDcfVNnfCRJVlyzs1fp6vWuqnR3/sZnK90kWffQfSvdX8zunMuQJPtMearSfd+xnc+4/c/pnUO3+adXrXT3Xq/zeXHfKb05tLePeajS3WPiVyvdJLn5Z535gftO7PxezLxwpUo3SR76Ymc/0Qf+2rn3fHbHd1a6STLq9521Dafu3lsn98obc/7syhkz/7uxovlGLJQ1191vDl9NsuIOG8zx5r/96czOZ8Hfnju50r3+N2+vdJPk6ekfrHTHn9ibqz90vc6+mzO276zzPeRnn690k+Rb63Q+y9/c6pL/h73/jParLNi97TMrpBBa6L33Kk1BkSbSkSoKiEhRpKnYFQWliApSVKSoKCIiCAhIrwIC0gm9KL1D6Akh/f2wX7/tZzz79sk5MrLHcXy8h/zuOVbW+v/nvOZVKt2vfOgHlW6S/GTt0yvdQ687stJNko/M0nlfMcf3O+Nt+3a2QE2SbLdCZ5+Pfz/+iUp34NKTKt0kefmre1a6q+/ZmVuQJPff03l388f1Ou+9nzi3Nzdy520vqHQ3H/FEpfv0Dzrjg0nygS9uWekuc+W5lW6S/GmpznP5/PM+Xeke8+flK90kWfG7nTMUNt3zS5XuBkf39vE77cTOPLVjv9r5WSTJjw87sNL9xZudeSf/XKL3fmyJxTrrUq/4+pyV7jrf6cylTpIf/fvMSvfbk3pnYGy6W+dd4e1PdMbxdjm8c85Ikpyfz1e6j8x+W6W7ydTe/rgvP/XNSne+Qzrr45Nk3Oi7Kt0DHt+x0n1o5s5nXJLctUHnd+Pwn3fej110QW8+xI77dD7jTtx9nko3Sdaa9YpKd8TMu1W63369Nw41co7OfLI/LNpZr3X8QG9Pww226Jxt8435zql0k+SolTrrGte/uDPv5MHOcp8kydw7dsZUTzl050p3/os67yCTZNyn/1rpfmjL3vfqM5+c9nskJclN93fOkzjm1e0r3ST52jadMa65Hu7cC0w6tzPukiQbXt3ZE/2je/bm1p1/f2f/s4EXOnvN/mJoZ9wzSRa7p/Oucr9rO3vCPnVw73P56Us7c2WW+9evKt0kmXv5zu/G8LN+XekecfiDlW6SXH3CzJXu6Dc787RfmdRbb/edqzvrch77eW8PukWP6nwuj139wkr3ixf11hKt/YnOmruV3v5Cpbv0uN57h59+sHOu94XFc02P+8Uhle5sB3b295m4du9cxeXm68zf3/1PnTXFP9vsmEo3Sc6Yq/N3PXHZ3jjGhR85vNIdfvhLle4HT+mtl/zaeudVupOunbvSXXZ8bw+zgU07e0rt9cABlW6S3HtV70yC/8bLE8fnx69M+7mXX5i9M78gSY5avnNu8LJbdK75pfc78xaS5CvzdeYO3XZM7zzbm+brPDM+eExnX5JF5tm80k2Sa4/ozFtf/YXOuMpuu3+k0k2SnV/v7F03ct/e+Mcf/9yZF/GZ3TpnU+75869VukkyaZ7OurePTunskXTrqN56hq9/6OeV7oRTflHpJsk2+3X+ts+a2Pn3m7RpZw5ckgx+u3MvsNGznfcKY+7tvOtNkp9uslml+8FbO+8rkuTL3+vMMRix8qaV7qMP9f79tv5D5+/kb2ffUelOvKp3nsQq83bmiLx3cm/86qK3Ou+yJnx/40p395N67wt336GzX+kn/t6Z33Pasb31KH955pRK95HFjq10k+Ta1zuHlf1lls6ehhefvnqlmyQb7XhrpfvKAqMq3fVGf7DSTZJP39p5rzff3Z37gCRZdY7OOOG855xQ6e7z987vW5KsuV3n2WHnr71W6R4/vje/58tb31Ppnje5NyZ3/Wc75/GcuvVhle5z5/TWM4x8v/O7seH9nf1xb1rxM5Vuknz2x513LPes2dtX5nvfvqbSneXoznvICY/13pG9vvE3Kt1Jn+6sM9tqu8586iSZeP63K91v/rq3r81rn+zsX3Lx7Z3Pz1/O0dlrL0kWuq6zF8+n7+6M9b37y95Zgovu1LmvPfBTnf3sk+T4/e+tdE/+Tef9zoQv9u6XZ7n645Xu/G/fWOl+5yuXVLpJ8rvvd/a1ueKgzhzUJFl80gKV7oJ3fqDS3e2szu9FkoybaWSlu8ikzj50P1yhMx8wSbZesLOH+9fv6K2h2XPRgyvd5dK55ncP6L03+sEboyrdd9M5V/HeQ/etdJNkzEc7e6JfMvd+lW6SjPp65/zf5f/Q+S75/WmdeTpJcubenT3Shp7V2bvr4m8tXukmyXkDnf1xL76/d/b2OqU9O1Zc+kOV7prpvA9OkmO/0VnnudOoiZXudUt39nZNkqk7jax053+1M08nSVbZvLRnx2/+u/9s9iWTTc6e9mshvnvi6tO8+R8v/r3zebDyXzvnxI89vbNmP0lW+dA6le5NB+xQ6SbJThd9qtK94InOnIh5lu2dYzDXHJ13ySct2nmPfNmfentbLP90Z93pxQf1nhnnfbTzXu/kJTt7Jn726ssr3SS57aw3K937JneevxaZ0plnnyQf/mlnHdldB3TOfE6Sv631vUp3uac670Lu2r8zRpgkk7/QOW9nsVmPqHTXXqJzhlaSHH16Z8+oA2fpvDtNks//cpVKd/vfdda53Pyr3vPzdu+O7HQP7IxfHT5X7x5jveGdM3iv3LR3/vw3Bt1Q6f74/EUr3W+e8udKN0l2veDESvdns+9V6V6yWucMjCRZeOh/+dD//2LQkZ351Elyybc675KHXdnZv+6iUYtVuklyy5XbVbq//mBnjHf+IUMq3SRZaXTnDMKX9/97pZsk887feXa/+N7O3mpffeTgSjdJjl5/vkr3nfM639dr/rE3V3Tl835X6V5/ZmcOeJJ8/5nO3MsPbdZ5RvvuHzt7zCXJ2YM6634mbdg5Q2j8jS9Uuknyy/MvrXR3XL4zVpQkl+x/faX76GqdOcR7r9Yb07nv8Scr3cG/6MwBf3TLzlrMJJlj+8773p+usHulmySXLt0ZFzj88Nkq3fsHfazSTZJ11+3s+bDM1M7eQWtc0ZnbmiRvfO87le5z+/Xmtz5yy02V7sfe6OzXPefbnfk9SXLASZ3PuTNv7YypHj259w707h935uResn7vzPUFF+78POZ+pLN/6+xrr1jpJsnYvTrrUba4ofN8/ZdfXVbpJsmPr+7sK/rYEZ39ApLkwsGdtWbPTuzsMTLohs7eM0my12ydtamXf2HrSveBP/T2MXtjaGeu9hy33VDpJsnEwZ35kdtM6uxFsMDZd1e6SfLgjp3PjMd/3pk3sdjHOnvFJclpr3TOjbvst72955detDMf6tQ7OgdM/Wqd3v6gP3nj6kp35Zs76xl237E373n+F3etdFe8vTeOuPZHeus7/nd6d0sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H+Rgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCgel9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxiY3hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOCmf4n/+NJE6dk9CvvTfOLGBg6cZo3/2OuhRaodO+5/tlKd9CweSrdJLnu0qsr3RGzLVbpJskCc0+odMe+M7XSHTbHg5Vuktxz87WV7labfrbS/cgeK1a6SfLMIy9Uuu8MH1HpJsmUcZ3PudffeKbSXXmeWSvdJFli8XUq3VHP3VXprrLQXJVukvzzwX9XussvsFClmyTvzTpbpbvkEqtWuu+NHV/pJsn4sW9WumOndr771l5uyUo3SZ6/44lKd83hy1e6STLzrO9UulMmdj7vh83yP7pt/5+1M6jSnXnQ0Ep30vuzVLpJMjC09XPu/fsNnzKy0h0/8d1Kd4F5l650k2Tc+Fcq3dne73wuD51t9ko3ScZOHl3pTh7b+y6Z+Pxrle78L75e6U54sPMZlyTDl5y70j1v6uRKd2rn8fr/r/MdNWhi52eRJLPO0Xl+GP3mtB+PS5IPLrxcpZskd77QuUfMhNYvXef3LUleGT2m0r33qScr3STZef75K91BKT2vTpnS6SbJ5Jkr2cFDO59FA0PfqHSTJFM639fzztr5GSfJ84sPr3Sv+mtnrHbO0s84SUa/3bmvffLBByrdZT64XqWbJO/P1Pn7W3nxxSvdJHnpuc444uILdt6hTZ5toNJNknsf+lelu+Saa1a6b7/YGcNPkjff6HxmDJtrlUo3Sfb73s8q3Veee7rSnTRy3ko3SYa/1xm7vm/BRyvduWZauNJNknvuvqjSnWVQ7737o/c+XOkuOV9nHPHccy6odJNksaU647WLLbNIpfvKq89Xukkyz7yd96tvv94bX772mocq3TVX6Pz7Lb5abxxjltmHVLqDBneeSRaee9FKN0kmvje40p00uTcfY9y/3q50x7zc6S48R+f3LUkGv98Z45o4dVKlO2TYsEo3SSYN6rw3mjW9e8Sk8+5hYGLnu+T9cZ3PiyQZNrLTHTKo87s8Pp3PiySZWprnOHhYbz7U2CHTfm7tlEH//djW20Nfz2UL/WEaXs3/ssJym03z5n/M+aPOv/vJc3y+0t35+lGVbpJcdlznHdkTe/fmPa+46Icr3e1uGVfpLnLpmZVukrw0/1uV7kL7XFrpLjz7xyvdJJn4TOd785/XfKrSTZJtx36o0r3i/PMr3Xk/3pu3/o8lX6x0TxzbGb9a7eo1Kt0kGb3aUpXusPV/W+kmyZTrOu9Yjtmmswbj9pWeqnSTZP5Z9q1013ylMwd8pYH3K90kufn0UyrdWU/cr9JNkiPf6vyd/OHSpyvd9dKb6/vq/MtUuj95ZqtK93Mf6K2Z3OKuzvjjncv11qNM3KUz3+LUL65W6c67zfaVbpJs9ExnnHCOUV+rdNde8wOVbpJcds8PK92nh3TWjCTJvNd35susuGjnHnHYIsdVukly+Zx/r3Q/eG1nfOTZ13r3yw88e1alu/FCvfe9oxe4odI9Y53OM/YpS/TGYif+rTPfae01OnPV5nphhUo3SQ6YY7tK98+P31zpJskTa3S+p/Z4tvN9/e5A72dxyWyd8ckvfbhz7zlmk9682Y9f8v1K94YhX690k2TogydXut+4qvNZdPQdneezJNnqIwtWulMWu77S3WS1zhzUJJm80m6V7uqfvrDSTZLVTrmu0n3w7c479WXP+1ilmyT7fbgzh3/NV46tdCf/44xKN0nmXL7zmb/t9pVskmTyAttWugsssEOle9huF1W6SfLA47tUuksv/stKd4MFe3MND/jsaZXuBj/s3Rcd+4urKt355u2soblr9978rIf2fqzS3X7LEyrdff7W2y/nU1+4tdJdcmLnZ5EkV47vjOvMuuBBle5rU7apdJPk1rVuqnRPfLc073KLlSvdJFnv8fkq3afe6e1FcPITnXkvO6y4ZaU7bt3eOMaLc3Sed5aZeGOlO/93KtkkyYvXd/afGX3b8ZVukiz89WUr3SdP6fz9nbhJZy5Ukmw1V2dO7qD9P1jpzr/JOZVuknz+8511I5+cbcdKN0mue+0b07w5cdJ/93s807sPZs5rp/3f1oI3/WmaN//jlHM699hjDj+80j3vrx+pdJNk1Vk784ae2eDblW6S7LPcHZXuOe/NUenuffzZlW6SnP5OZ67an8Z+tdL96m69Nd/DX+/Mmd34yJcr3ST57JmdtR33f2LXSnfrbX5d6SbJ3J/rzJW58B+dsdLVT/lMpZskpzx/RqX752xU6SbJcm92fje+e2lnfPCU3XtzZkd+v7N33Rvf+WalO9e/O5+dSXL0sA0r3cv26byrSJJD3+uM4x2+4VuV7qVf7z1vHPfuJpXubVd23psefdYtlW6SPDWys+bn7W16ZyhsW5ofsu9jnbH/C7fvzTM859TOO6Etz96n0n1+9A2VbpIMHdu59zz69d590bf26My7nHv8EpXusvd1fi+S5Pzttq90T1h1ZKW78O86a4qT5OvHd9p3TOiNQ/36nXUr3UMuvqbSHb1zb3/cd5d4q9J9cvD9le56q077fR7+Y6lzOvsFTF6td49x8b+/VOn+8J9XVLorfekTlW6SPP34FyrdJQ7p3IdfcGRnXmuSzDvyxEp39IYXVbpJssXvOvO+vnV1Zx/NUXd1zkhLki9s2ZmPu98cH610Z1q28w4ySXZ7d/1K98Qtey/rV1ig85lxyRKdc7buWGvvSjdJfvJu513JRXvcXul+dN3eWoZP7bJzpfvvn65e6SbJtS937pe/+1DnjNC5Vujt1T1+Ymd/nws+3Nm39Y67nqt0k+SAhTeodD81qbf34MWn/6XSvebKv1W69x79lUo3SR48pbM//J6Xz1npPrv77pVuktx9Yefe857RvbVgX/rSxpXuSZ/fvNLd8pzez+LxTTv7Pq21bOcZbdXjOu/Gk2TN9Tr3L6v+uHMfniRb//XySveOLTrzDNe5u7cf37PPdp7Rvrt7533+KhM7ewUkyW9/3nl2GDRz71zM9Rc8qtL9zUOda55zls66jiT55zydtR2jjju10l3knd5Y+3nf7exp89A6vXMDNjugdbbiqP/qv1r04QXzg9UOm7aXkmT1DU6f5s3/2PDMzt5ni5zdOSf3iBeurnSTZPRnOufkvjxfZ4+BJDn91s47ltV/dVule9X9nbNakuSmn79U6W7/7QMr3XM32qjSTZJXz++MJXztqt55mjdv1pkfefNPOmPpa+/Xuze59MwvVrqjn+2M5W31zd6a709ec3Gl+9wpvd/lG0rzyx8/ujNX7YmX/1rpJsnXD12r0r376M6cwF/v19kHJ0lefbbT/uJi91a6SXLl9zprcP+SzvPXlrt09v1MkqvP73zOzffBzvv6sSf0xhJGLPbpSverJ3X2i0qSQwbvUel+ca3OnM5555725xn9x2wLPF7pzvV6573QhXP29ti5d/jPK915R71a6SbJred29uBf8OwfVbonrdzbq/vamTvPfqvvPVul+9uze3OSvnxyZ6/n7ff9SaWbJKM+2tkffvm/dPZSWe/e1SvdJFns+51zAzY4bIlKd6Uf9eY933ZHZ53SqE90nkmSZMJfOnuU7XhH5zyejbZer9JNknOu6Iyd7Tu1s+/1kbOPrnST5Gff65wHft6CnTnESbLtSp05Bo+/25nT+cTlnXdvSTLHA51nqX2W6qxnOHnJzn1ckiw/04OV7plf7X0WvTqs8/l52tc6c4deHjGm0k2SH/608/m58Rafq3R//PHOnPUk2fiNnSrd4x/vPDskye0r/6vSnX3s/JXuOw/vWekmyQbndu4xlly58z5q7zt731FbTn6y0t3vO533+Uky60Gdd5Wff7iz98zqZ3fWuSTJGV/+VaX723SeKefevDMGnCS/H9uZU/2DT3bOIU+SS6Z0Pj/3P6Pz/bfPUb0zXu+4sPOZcfHWnT0qBt3XO/v3sH911v389I3e2rhLpnbWgw0/pjOO+PD+netNks9d0Rnj2n++zpj4x/7Ze5+/3cGdfTxf325YpZskK67fOb9yo5k6520+92BvbdV3b+mMCyx4WeeZcruLz6h0k2TJAzvnKY2Z1NknP0kWOrAzDnXxb/67PZDneezu7PPRaX/23nVbd55lkuQ3T3fOnX3qtUcq3UGX9Z4Zdzy/s6/vimdP+z3J/2Ofn3b2oBgY8d1Kd4fD1650k+S8MzrnAvzrqWMq3fdn+WOlmyRv/7DTPnbK7yvdJJlv284c/iv+3VmD+8U/fqvSTZLN3h5Z6f79k5398s9crTf+8fpSnTPhdvhHb2+ZlXbqPPPfMfOVle5yQzvzQ5Jkob93vv++fFZn3cErH+jt0bnd8513WXs9/rNKN0nG3dDZ73niDp1njkWO7t0vj3+ts6/2GU92zgL/8LKdPdGT5OChnfOvD127N/fk+KU631OzfPjNSvcHf+uNa770XmcPiplmerrSXWTMTJVukhywc+dnscjDvX2ufjqos6/986t05vBf+6neWU2vnNuZt37Bdzv7cfzo3c75n0lyyMxPV7pf+uCmlW6SLPfVzn4qm074ZKW77MoPV7pJcvpvl650F72qcwboqWt05qwnycnndfYzGrbVTyvdJPnLwZ11d29/szPe/c9H/1npJsm/Z+usWZ78VGfcevPRvfPMvn1eZ07EPcuvUOkmyR6jOmvjtj2lc77NE7P05hr+ZYvOuMDXftu55rnX6uxllCQf+m3n3vPmRSZVukky7wKjKt1zbz+j0j1lv857hyQZvmRnj/+t9+qMtf9sn94ZbP+6/ulK9/YxvfuiQ17pjEP97rXOPoG7X97bV/SaTc6odI/YdNrvYZYk47/U22/ls6v+otLd72tHVrpJ8sOzzq10px7Sucf41Qo3VLpJstb5W1e6X7+xszbu+Md7a6HPPqrzHfX3n/TW33/4uc5c7S+e01mb85WDP1vpJsnzE1+rdDdbcv9K9/Cbep9xZ1zT+f579Ize2abLPt+ZK3rTB0rnxx7TWf+UJPeM7+y5cuqkzj3iL3fqnBeeJN8cP7nSPX373nvbaz/XOfvhnPGddeHLrtV71/XZEzpri294dlSle9WsnXfjSXL7Wp17gSdm2qjSTZI11yqNcf0/3CIOdP6/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/XQam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCAam9wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIxgYHpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCGb6n/yPx459J3fddu00v4gnnn5+mjf/Y5utd6l0l11rg0p3+CzvVLpJMv+LIyrd158ZW+kmyXwjZ610h8w7qdK9+4EHK90kufe+xyvdN175WaW72QabVrpJstQqK3bCrw7tdJPMNXJYpfvo449UukssvlSlmySvvPlEpTt8bOfvevDU2SrdJHnhqUcr3UWGLFjpJskaI5apdEcMH1zpThw+T6WbJJPHja50h018v9Id+6/e9/WyQ+ardEcMmVDpJsmw/9lt8P+xmUrdTOr9LEYMzF7pDhkxtdKdfVDvZzEwdWSlO2hKJfu/2hlX6Q4e0vlenTTmrUo3Sd6f1LnfmmVE529k8OB3K90kefu9zt/fXMN73yVvTB1S6U59b65Kd/zkzn1Akiz0ROfvesrUzofR4CGdf7skmTKxdc2DKt0kGft253djkTVWrnQXW2hkpZsk957bGceYPGSg0h0xvPe7/NgznfG+zWbvPbvPObjzjDbToM7Yy7CZOr8XSTJ1YudnMXjI8Ep3YFJnDDhJJmVypfvcu70xuXne6ozr/OvxWyvdBWefudJNkiXm6fxuvDO1c82DZ+v9XkwdO6bSfeWNtyvdJFlpmSUr3XFD5qx0X3vu2Uo3SZZaYaVKd+jcnd+5V269vdJNkkUX37rSnW2RhSvdJLn2sssr3WVW6fxeLLF4cXz5jU531rmWqHTvvPe+SjdJhs/R+Tkvt3bpfWKSO27tvBO+65m3Kt2hA71xqMnPzFvpfmjNFSrdWefuvUObOrXzh732autXukky00yvVroLLbtlpTv0/d745PARnbkp497r3GMM7t0uZ8ygNyvdl27r/L4lyXM3XVjpDh/aGZ989fXOGHCSzD9z55djjpnmqHSn9oZqM3lCZ7xoTF6rdJNkltk7z2gZ1JmDMHRo591ckgwa1/n7Gzpz573f+1N631HDZu38Lk/u3SJm+PBp/35uYNB/P077+pgp+eNt703Dq/lfJm32vWne/I/D/3J+pTvP4R+rdLeZfblKN0muX6Yzd2GB60rze5K8/aHOs8HhS95U6X5kkc58ziT5w9Wdn8UaL/6y0s3Zx3a6SQ4b0nnHcu/ML1e6SfLomGsq3RsXWaTS3XzBzudFkpz68sRKd+F1Or/Lt7/SuedJktl/83Sl+9WVtql0k+SyhbetdAcv2Xm2m+WOznN5ktxw2TqV7surnlzpPvNE7933AYt/sNKd98A7Kt0k+dihq1e6L3+981n0zojOPW2SbLbx05XuvjN15mf95qu93+VjN+/8zv3h7o9WukmyyXOdOQaHXbtqpXvb8Z33m0nywOc7n/lz3b9FpTvfk7+udJPksqX3rnR3ev/KSjdJxqQzj2PMiM6csotu6n1HLTC18/7tyi1vrHT/usF2lW6SXHv5npXuKuPHV7pJcs3w/SvdJRc6s9K98OOdd3pJ8tmxi1W6c4y6tNJdsDe9J/Oc23mOWvj5nSrdJPnKQi9UuoNGrlvpjvhwZ6woSTY76hOV7ju/6bzvXevfnd+3JBk74SuV7rKz9P4AZ/r6Nyrdnc+7otL9yIjnKt0kueC11yvdeZ/eo9JdeKXOvIUkmeW5iyvdNY96uNJNklnX6aw5HzSy8x553Fy99URnLb9epTt0ZOear9jtX5Vukvy5dO/5k717v8sDD3Xmgd/9oc6951oTes/uC038e6X7wseuq3TvP6Uzbp0k7/xm+Up31W0/WekmyZkv/7nSnXPcApXuRtveWekmydyPv1LpDh6yZ6V75TlrVLpJcsQynTkIX55rs0o3SWbeujO+/MglT1W6yy9zWqWbJEct2rmv/eIis1S6Cz3aWRuQJLfN2Zn3ctKzvXddk977TKU7930XVLoXvNnZLyBJ3l6v0x5+d2dfovefuKXSTZL5JmxV6b66T2892JkXPVbpHrND533+xx85o9JNkvHbdPa1eX74qEp33CW9OeAvfrIzXnTvIb31KDMdeug0bw56/r+7Dxjx4jz54A+n/Vj6H9btzRNdd1hnPfnMpbGPof/4W6WbJJt+Y2Sl+9kLrq90k+TJqzvj3e/u21mD9MbNnTH0JJl4Tude+JAdfl7p7j6qM6aSJAsssGalu/8unXnJSXL5Xzr3f++ccH+l++zznXkySTL3+Z3v+Tcv7qxNm/jgcZVukrzz+t2V7hq399airL9k5+9kofs7c3D+9NSOlW6SrL55Z7+2r912SaW71Dsfr3STZNP9O3/XLz3a+b1Iktv+3VlntuG2nXknd534k0o3SXaY8vVK94PndX6Xf5BfVLpJsuWY/Srdb8zfW9v749POq3QXuXPDSvfBSc9Uukly+VOdscerJ/yw0t1h4E+VbpL8bevOc/Ady/bOc3nu5M9Wuhf//juV7luv71bpJsldwzv7ta3x3e9Xuu8v1/uO+sCbV1W6iy25V6WbJB+c99uV7r37/6XSvfHw3vuVXR87t9Lde/ZO99Nvd/ZtTZLXf9OZX3DlfaMq3SQ5577OHOL7V/1dpTvHNWdXukly4T23VbobHPB0pfvSDp+vdJPkjC/NXelu+43OuVJJsuhznXmiizzTeVe47Oo7VLpJcuwuh1S6n/pZ52d8waW9/VX32uuiSveZPXvXPPByZ37IQud29qeeemDnPjxJnr6iMx9w7+92xhHv2fXeSjdJPvV8Zxz4+wf15on+7O/T/kzhJJn58513zZfs03kHkyQH3Nd5p3jJGgdWuvMN63z3JclJX+6csfyhn/+h0k2SZ3btnGV90MGd+cNvfrq379OOX+rM871z7866nIln9jYVfffVab9/YJJsdvcPKt0kuW/8RZXuGbt1xs6W3rf37PDjtTvvuuY5pbMu9cLBvXGM3+3UmT+8xMm9934XfnTPSnflOztjn4+M7Y2p7jN7Zw7Xoct1xht2uaQzHp4kkxc9pdJd44zee/cDzvlNpfvVezrzrO7cuzdncIMfdd51zf2jzl5Vg09Zu9JNkhN+/GSlO9uea1W6SXLTBZ3v1eEZ9V/9d8OWHZalTl962l5Mkj3vKp5BeEznb+Bzv+p8zhx7eG/84+0vd+YEnjG4sy9Cknzh0y9VujOf1bmfWu3Y3t6D293440p3tc0775Fnu7Ez9pgka23T2fts0Fa9celfX/7NSneZXb5Q6a6zWWe/miTZ/N+HVbpffKCzB/8hS/fOjXpsaGf848MvnlXpJsk6Qz5Q6S7yuc5n0U7b985QGDtxk0r30Fk7++39flxn74kk+c77nb/rtc7rrcFY8/rOPeLZd3eezUcdtkSlmyQL/KOzJ/NfH+iMix32t39Uukly+iud/Y3P2OiHlW6STJqvcz7D0FserXQ/kM68vST5+IjOO4s9duncx41YvHNmR5LssUZnzd0K+/yw0k2SI7ft3L/Msv8Dle5tD25e6SbJ02919pVZa7cDKt3tZ/l0pZsk857SOWDt9FVvqHSTZPjKnbkAQ87rjMVOfGffSjdJzt63M6f6Mxt1nt0n/K2zv1WSLHV/Z67h7C/23tf/c5vOPh8TTu3MXfjxJgdXuklyyCGdcahPHde5F5h6SW/979f/0Jnfc+09q1e6SZJt76lkL7m4c87dlcOmVrpJsvocnTGuJ77fuY97ddPeXsEr3tqZq33oRb33hbse/MdK99FFOvcuky/prFNKklu32LnS/fTCnfHJgx44odJNkqs+2Xk/N2GN3nqihwc6+z9NHdSZAz7xiwdVukmyx6jO2v7Vnu+ciz74vt4Zrz/fvrM27lP79OZRzb5X5wyoeY7u7Kn9w5M7Yw1JssXuv610V77z6kr33ZG9vZ6//3xnf86pd/a+Sy6Z2pnfsO6BnXvPR67szQH/7hGdfVFm37kzH+rnx3+30k2S6352c6V72a69c5r2mXpSpfv8U511I4PO6O1vvNDFq1S6k0Y9WOkef0Hn/j5J7j+hM1f00ONerHSTZOYXO3PiP/2RzmfRkXP37pcn3tQ5N2eX0zqfcTc+fFGlmyT7b9CZUz1s995+Y9ud3frd+NJ/9V9NXW6VTLhk2j9D/3CR3nmaRzxweqV77dDOmUbbrbN4pZsktx/Rmbsw5KjfV7pJ8oNtO892c1/WWTc82+6VbJJknxU7v8tPztn5nBk1qbOXWJJ87pTOfJk3Ntmm0k2SO87fpdJd7SedZ/4Xru7sY5skP72tM1f0wAM7Ywkrf7kz1yJJVvr+7JXucv/ozHVKkvMv6+zF+MadnXMTv7FR7x5ji8c7cwxm/XTnnnW2P/XGpR/bo/MZt/qsvf3WF12tM19tg88fX+meM19v3f6u13f2Hzz/2c5+Kve++1almyRXbdb5Xt3xkXkr3STZa9POvtoPXjax0t3o0d5n0Uv7rFTp7vnn1SvdL3ywtw/4l9/u7Nk213ajKt0kWWC2SyvdFa55utL96G4jK90k2X+1zlj6Np/6Z6X7lWN6cyK2n9BZc3fV33vnod7ySOds5i8OdLoz739GpZskf/pa59lhgR915mrPmd7v8iWXd+aATxnSOSctSSYdWzor93ed8w6mPNX793tnrc7v3DLXDK107/xRZx+JJPnAhM7eQNv+qrcv7Ha3dH43dri983d9xzpfrXST5BOXdwav/3TiDZXuLWM6Z9kmyckbdc5c/97NS1a6SfKx0Z2zc9a4orOXxB0Pd+YNJcmywzrvui48tzNWu/XF61S6SbLI0M5a6K1u6+3ru/mSnbHrEw7uPEd9dJMfVbpJMvi+yyrdzx9UOhvs9701d9v88/BK99XLeuf07rNH553GWYM6eyb+Y4OnK90k+dTYzh7jbzzXmZP068GdOXBJ8v2zOnMQ1lrkl5Vukiw8c2e+0/nHdMahXp218545Sc59pvOu6/DOsuIsc1pnjW6SbDbmc5XuGzf29sR8doHO+emLlY7BWHdyb67h5cM6e6+NOvPCSvewx3r7gC/1u9cq3S1+fHSlmySnrtc5W3jeL3TWjfxqmc78ySQZ88fO+vtbN+q8t73ynN5eqesc1VnXP+EzX650k+S4n5X2D/rT/34f9943DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2Rgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIZvqf/I/Hvz8m/3rspml+EU++NXGaN//j2VefqHRfHD2h0l1g4SGVbpIMmTq40r3x9l9XukkyZULn57Hskh+udFdbu9NNks/vMEul+8BLd1a6s8wyvNJNkkGv/Y8+uv6PzT/XrJVukjz17MOV7rhx4yrdsTMtUOkmyeTRL1e6U0bMXOkut1zvc3mel1aodIfOPmelmyTvLfBGpTtpQucz4/03Ot/XSZIpc1Wy/772mkp3wSkjK90kmWvYbJXu4Pc7n/dJMjid37nBg4ZVurMNWaTSTZLxgzp/11PfH1HpDs3QSjdJxg5MrXTnnNLpJsn4dD7npr7X+V4dNGhSpZskQ2eeXOmOe/+ZSvfdtxetdJNk5tk6P4vXJr5e6SbJTIMXrHRHzPpIpTvzlIUq3SR5+e3Ov99ms3V+xkvNtXilmySrbb9vpXv9X35Q6SbJW6OfrXSv+WfneXXkyNkr3ST59OIrV7rjX+t8lwwe0vu+XnBc5+e83PDev9+cs3TGBWYa6NwjDkzqjWMMHvJKpfvGm29WuoMHlqh0k2Se2VesdLf/4HKVbpL84pq/VLqrLNa5l3v2tScr3SSZZfmlK92R8wxUumPGjK90k2T+2Tufn7OMHVPpJsmYd16sdAeXvkrmnqf3fmDe+TvPq1Mnz1vp/mvIwpVukiy0TOez6PEn7ql0k2SRWTs/j6kZW+nONrjzbi5Jnp86utJdcK5Ble6eB51a6SbJhZd02rfc1HkHmiQjS0PXgwZ13knNNcfclW6S3PnIQ5XulMmdcc/FVuqNYzz5+L8q3Vlm6r33W3HFj1a6wxfq/M69/uTzlW6SzDbhnUp3llnmqXQHFb+jJk6YUulOWX1kpZsksz+4fKU79ZnHK90hs3bGR5Jk8JDO2NmYyZ3fi9nSec+cJJOGdcZ0hgxaqtJNkrff7rxrHpj8XqU7ZKa3Kt0kmWP2zt/JuHc74xgzTenNOXtzUuf7b/BA7+9v6Jhp/+83dcp//283bMzYLH3ztH8++OrDvXff/zjpg5XufH/7fKV7yoaVbJJk8tyduYaPvdaZB5Ak+U1n7tf3j/hOpTv7vG9Xukny9ta7VbpvXPv3Svf8b25c6SbJqG07nxnz5uZKN0muuqIzzvTgkhdXugc91/mMS5Lb3+08c7ywUuezaMR1vXcsi+x+S6X7yN3bVrpJsvzyn6p0Rz3SuWedsEbn+StJXlq986W98FdPq3S3nqcz1ylJZpuj83Medsa0X2/3H7s/t0Ole+2tnfdCyyz3j0o3Sc54qXO/ddk/vlnpzv2x3jqz0SuvUul+bPFzK90k+efXO3/b+250daX7z/l7zw5Xbd+Z7zTP5Z35BQ+N7s0h3vNDX6l0n1qwd48x6drbK92nRixW6a6VzvrDJHlurWUr3ev+1Jl78tAO61S6SbLBFzvvyM76e2euYZK8P/82le7nxm1Q6Z7++pqVbpLs9LnORIBnN9q+0p3t0c49UZJsvf4hle6Dj3eeKZNkr+xZ6Z675FuV7r23dMbNkmTBuc+qdAdt0Rm3/vuKJ1e6SbL/8531KKO/fWulmyQvn/iRSvczj3bWuQzbvvcdteb8nfW0l685R6W702Zfq3ST5L0jOvOTV5z8m0o3SWYe2fmcu/73G1W6q6/5WqWbJFnwhUr2+j917gUe2rb3Hvmi1zrPOws801mLmST/Xuz4SneZq75Y6U7d+L5KN0nmXOSASnfwvzrz63bdo7fHyMSr1690zzqzM6aTJLMM68x3mvxOZz3YlkP+WekmySGjO3Ny17/l2Ep3783WqnSTZK17O2vuTp2td4+/xgKbV7qbf3H/Svevb/R+FvPc2JlT9vKKnXdov16uc0+UJAtM6Ly3XWtw591ckqw37t+V7sIrdd7BfPmA3hz+1ef9Y6V75/0nVroj5uusn0mSbT97dKX73u/2qXST5Pj7O3vHLnnY9yvdWTb9bqWbJKMHOvfiIy7drNLd4rLO3rxJcvOJnT1pJ448sNJNkn8/Nu3XeU58/7/776Ys+lbe/fmF0/Zikix00HrTvPkfV1/cWZv21hKd/TlvXGrHSjdJrnj9e5XuEt//baWbJFu/dXmle8g1e1a6v9rwQ5Vukiw9cF2l+7X1H6t0lzh150o3Sb78zB8q3Y9t3/l9S5Lv7btdpfuD+zvjpXM8t32lmyTjn+48b1zyuc79w6f+8dNKN0meWr3zXL7i05091ZJk+ZWOqnS/dUpnP/RL0tt/4iOzdsaB7v9JZ0zzrAX+yxvA/wNbHdeZj/Sbp66tdJPkZ19eo9K94bjOe+9NpvT2nzj6K6tXuhtc9FKl+6XjO2PdSfLIsp35SMe+eWOlmyTL7PXZSvdLW/+k0n3pjI0q3SR5bVRn/fsc+3yu0t03m1a6SXLM3zvzDO/ctzd2NdeIzr5cR+/T2Qduk206fyNJ8tBRnffTz405s9JdZrNvVbpJ8onHzq50r9yqMx8iSZa9u3O//IHS3ksT5u2cC5Yki9zd2dvimJ909uI45dzOHqhJMsvVn6h0n7q9s49Ykmy0x/mV7sdveqvS/cMRq1e6STJkns67t00mPlrpnrtxZwwxSebf+a+V7t6n71XpJsnKB29Z6R7z3AmV7huf7J1t84dD76h0L16283n/zlOd+8Mk+ch7nb/rtZfuPbtfMdfqle7Lo79d6R73y/kq3ST5/ec7Y6p/u6CzX+IWq3XuaZPklTGdz6JvHdI5MydJnrro+kp3u9+U1tG+9aVKN0lOOr2zp+/4CzapdEefs26lmyTfXPCKSvff2/TmRv52499Xuttf1HlePejpzlhDkow5szM+Oevkzhrdy049vdJNkvU27/zOLV4a60uSHy/V2aNirzs76+IGVuysCU+Sf554f6X7yKcOr3TvGHxipZsk2192aKV7/0p3VbpJMuSFzrmmi4/urFfOo1d1uklu/dwlle4nRnXua087uLP2KUn2fK6z7+Gme/beYa+0dWeN7s5bdO7x1324MxcxSb7xbGev7tPe6MyzOvYfnetNkvUu7ey1ssci81e6SXL1qr/shC/77/6zKWPG5r1bp/1z4yu/umiaN//jE/t01rCcenFnrszsEztrK5Lk+h//udJ96MedseMk2flznTll9z3YmTc76snefdr+n+w8g/1juS0q3VdO6p35PNednX1lFvpC73ygS9fo3PfsfdJOle6bP1qt0k2Sv63V2WPnxLdKawN+vWulmyQ7TX6g0p3pid47lk1e3KXS/eXCa1e6W33yA5Vukvz65s45MPdd/LFKd8gqvXHNS+/pzKketX7nfitJVj2hs6fvHT/p7GW07tW9/Y1febPzDHbboZ3Pzw892Pu7fv/6zprhtf/U23d+/lU7v3OXf+erle7tg06sdJPknd2+XOnet3Bn76UXLj640k2Ss2/r/PvNO/bnlW6SfHlMZ93k20t19gB/6ojOXgBJ8q1Pdd5RX3LDKZXufPv2zsldZ7fO2aIbfLiz5i5J7vllZ63Lh17t/F2P3OkXlW6S7PF253t1w3M7f3/3rd87W/S933XWWT90QG8fzaMenbfSXWTpzruQbZY6rNJNkqdO/FOl+9pKF1S6H12z9+708Uc7a4vn+HDnnJEk+cwtnTO8lv9FZ4+y/WZ+sNJNkiX+0ZnHse65nfXbj3ysNL8gyW0/eKvSffjAzvyeJLnnjW9Uuocs3VlD8/IPl6l0k2SuUe9Wuj/9Xmd88htndNaFJ8mU33bmis76+G2VbpIM+uEnK92Rnx1V6Y4/rvN7kSRbr905I3TMnp114Vsc1Fv/+4fzO2tdDv1zZw5ckrz7+c6z3/zrd+6X919tq0o3SUat2zkPa7dvH1Hp3j+o93297UWdPe7O2qW3P+7s93fOeF3whRUr3d+d3Du7ebYtOuPA+13f2VPxyO06Z7kkyTe327vSffX13rmYX9n37kr37IM7cwInztE7W+MPH+is7Z/0r877uatGH1fpJsln9+jMTdl4g86+DEly1T8788A/vU7nzJX9vtLbk+/Er3bmY/xk8SUq3V0O7J2reMYWP6t019y2M26WJCvfObLW/m+8+O7rOfymab8/0Lpb99ZaXjjp4Er3yCs764bvuqN3psqG/+x8V5x4XWducpLsfEPnGeyycZ15e2t8tffv98sznqt0/7zGk5Xurld29lVLks8s31kfsOK6veekbc7tzNW+brXOOQaT3uvtDbTPHhtWuh9a7pxK9/23emdT7npKZw+f55/urTsYf3hnD4PXflwaC1q2sx45SfZerLPP1RW3dt4XfvzbvXWnP12ns0fu62/2zt27/+qPV7qnLdS53/rIQa9XuknysyGdd2QnX9/Zl/I7W21f6SbJfc911o18f9HO2YZJ8ou1Fq10D1iks558gTPOqHST5JxrOnNExk/urO1Y4Y7eOas3f7Hzjuyl0Z35uEmy4oZ/r3T3vPngSnfqt3tnxYxaZeFK9/fDn6501/3J25VuknzwqM4eFMPf6831PXLFzt/fu0M69y5ffXHan+v2H2t+qrMe5d2vdeZRfeCu3n6zD63UeXY4/9TeerAtN+qc1TT3RZ05EUfP0tt7fqn3Oz/nn/1o40r3qK/2zqP79DFfqXQX+ndvL4njp3R+l1e4pjN34fCNb610k+SkjTrrMY86prN/ws3ffKvSTZKPHNg5M3j4sLcq3SQ58p7ONa/6cufd6aCNOvsaJsmvvn9ipbvy0525C985u7d+9PDTOmvjXn2497yz/lI/qHQf+nRnL7GjXuydOzbloc4+FZv/ozO3fPN1euPL907pvNM4b5dJlW6SHLTKWZXulg91zh07YeN7K90k+eWbnfWYEw/7eqV7y0VfqHST5HcndN77/fWgzryvJJn/M8Mr3VWWGVXpbvLH2SvdJFlxr87vxnEHdfbLf3hcZ/5Bknz3S531tKPe6u039ugPO/u37vLNzpkgH1y4dz7KoI93noPPWqrzDvu1/To/4yRZ6OnO3ofXbdsbX37iE5337ucc3xkTOH7DIyvdJDltuc7+JaNOe6vSPW5I5zyXJDnyA6tXuhcd0Zsb9vF9env//u/0ViMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9FBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIBqb3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjGBgel8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwIZvqf/I/nmHv+bPvZr0/zi3j77benefM/nnxiVKU7dVCne9LPr6x0k2RgyMhKd8NdPl7pJsltF1xW6T7y2LhK963XX690k2T7HbepdN999M1K999P/LvSTZLrXrqu0t1xxw0q3SR58Y2XKt3VP/qhSve1J/9V6SbJgguvVumOfe+FSjdvzdPpJlniAytVuvMuPFulmyTvjx9S6T5+712VbsZN6nSTLDX7UpXuXG/PX+nONnyWSjdJhk2aWOkOH9T5fUuSuWefq9IdPLXzs8iUKZ1ukpkGDa90B6Z2/v4Gj5i30k2SOfJepTtsau/vL1M6v3MTho2pdAdmm1DpJsm4sVMr3aGTlq90R458t9JNkqmDFq50Z5r8fqWbJBOn/o+GJ/6PDcv6le77A6Mr3SRZYJY5K90vLbtDpbvro3+udJNk/lGdMYHW13WSLLHchyvdKRM6f9cvPf1cpZskE5fr3C+vMbmSzcJD5uuEkyw812KV7ojxnfGtJBk8aOZKd9ahnXvPiePeqHSTZMjsnZ/z3BMWqXRnmnlYpZski629SqX71ssvV7pJsuj8nXv8sx55uNJdcsnev9/l13fGXpZfY5dKd8E5euNbz734VKW70Ny9ax42oTNGMmmmzmfcq2+XvrCTPHX/s5Xu8IU7Yy+zzbtopZskjz9yX6U7Ylzv2W/cyM7n3L9uuqDSXWvFNSrdJHnutqsr3Z3X67zr+sd151e6SbLt5jtXuo8/ckylmySzzzZrpTt1bOfe5cnXevdbSyzaGWt/6OnOe79Xx/cGBZZccIFK954nO/cuSfLK2+Mr3amTBle68yywdKWbJK++/EylO/f8gyrdWQd64xgTpnbuPYfnrUo3SWb6aGfs7O3XO/Mmho/vPfuNn9B5DzNiSOd3eejw4mDtuLkr2UGDX6t0k2TWwXNUugMpfd6PGFHpJsnUCZ13zTMN67xPfH9c52ecJDNN7IzVDh7Wm0+TIYVx4P8PH0NvzDcy5xy4/TS7lP9YpvNKL0my2LH3V7p/mK/zzP/eVmtVukmy3H7fqnQfHd2buzDp9w9Wur9c82eV7sbXdt5vJskRfx9a6T6wwhKV7pfv+GqlmyR/nPeDle733ti80k2SBXc6sdI9/VOdec93zPGXSjdJ9v9TZ67vX07fsNLd64GtKt0kGbX+kZXuk9t/qdJNkuueO67SXfW9yyvd9d49udJNkgVv6bzjHLP0EpXuvc/0xoLGvfmTSvepV26sdJPklWc786h+9eHOje1a13fWjCTJP5Z5vNKd6cDOuPRKN65c6SbJJYd1PoteemCvSjdJXtnvnEr38lU649Ln/a73vvAjK7xV6b46/J5Kd/Z11q10k+TKVw+odJd9flSlmyR/vXadSvdjs91e6S7y0bcq3SSZa3hnXHOXOX5Y6R4xovM5lCQjD+g8o913Wm890SM/6Vzz0id1PpcPnqWzFjpJRn+kM4/jm5d8o9J976UVKt0k2eIDP610f/hQ57MzSbZ68apKd9NbOu+Rz999p0o3SeY7ofO7MWT0nZXuk+fuX+kmySK7dt59/2Sv3pjcJhtfXOneu1zn2WGdob31v784rrNnx4jFTq90v/1AZ95Ckvz2gc5Y+9uLX1HpJsnCz3Tmtay380Cl+9i9nXUSSbLcr++tdFebtzPf4tWX9ql0k2TwCe9UulOWO6vSTZKN1ruw0h38wt8q3Rf++qNKN0mWfvnWSvfhuTv/fmcv+nylmyTb7tRZQ/Pal8+sdJPkkV93Pj9Xe7gzP/mXg2evdJNk9Xc7cwV+tnbn2WHKOZ29qpJk2JKd9b/PvdZ777fKVY9Wuk9+/CuV7vMn/7zSTZLhgx6qdF/es7M24NBjevOe35/Q2fvwiVV63yVP/OitSnffhTvvuva8fLdKN0nmnL0zh+S6PTtzRW8Z3Xv2O2708ZXu0i/2fpffWm7LTnhyZ87gjS/3xuQ+P6YzB+Hcj3f2JRq09U2VbpKMnX+ZSnfRl3rjGN/7wbTf72/0sP/uvvPdNwZy85+n/brFM7fpzY086M7O++krj/97pbvXm73PgsvXeKLSXXLLkZVuksx2eWcewN8W7cxH+tOKvTk4mx7WGYcd9vvO2tAzv93by+GUczrr1Aef0puzPv6OzhrACWM/Uuku/KXed/GWW3fWIH1tniUq3TEPfLfSTZIfrdq5fzjv8zdXukly9OudfbkWmtC55meO7P1dX37TbZXuy3t+u9I9a7cXK90kOfG7nbky+y30uUo3SSaO7sw7ufaJznykU3Y+u9JNkjtW/WSle+prnXnafzikt6/FmRevWekussCoSjdJJh3VOZNg4pDOmMot43trvk+8s/N+8xsvdtZIXPCZJSrdJPnVq501I6Pn6OxXkyQnH3VapbvH1zvzIc7aqvezWGXuzjztN/7YeYe868y9OQDDT+zsi/evFTpzQ5LkuY07771/staoSvfy9XrvTRfcrfNO4Y+7dubJPH7kZyvdJFnhyM77sXfX+USlmyRbXntEpXvLrZ378Ot3/WKlmyQf+kBn79ZJJ+1Z6e508wmVbpKMfq5zZuPt83fO1kiS64d2xl5uOq0z1veF0zrvIJNkj5fHVrp3/qxz5t9eq91Q6SbJfQt27gXO2L+3p+/EdzvrGR6eelGle9gOnfuAJLlx685ZIy8/+kCle9jrnflvSTLfCZ19lG4+uPe8c8PvOt9T63y4c83/vm3ZSjdJ5r75A5XuHlv+sNJ9dNFVK90k+dXz/6x0D126t6fG54/sjANfPW9nTPy7N/bWxY3btzPecPBLnfn7n5qzODdl689Xuqfu29uHcYM/dtb8PDnX9yrdfVbt7aO54cyd55Kv/qnzXbLEe53x8CSZ5+zOGfVvLtNbb37Spp2128tu9LFKd5UNj610k+TNozpzddbdsTN2duviX6t0k+QL63TOZlhxaO+z6MRbD6901xveGRPY7bBTK90keeb2znfUlluvWOleMV9v3/LlTuycjbLrsZ01Ekly/l37lsr/3XfUhMnD88Lr0/47+Xdndfa6TJKv3bl7pXv+sp1nmRuP6bzrTZI9H+48j/7t753zxJJkuZuernR/cXTn/OTffuuvlW6S3P7UJpXux751XaX75f07ayGT5KovdvZX/ff7nTH6JDn0C52x2M881ll/e9fXOufvJsmp53TOAz/98c583I9c29tv6MTXP1rpzvTRznNdksz8Wmc90UoHdfYy+tf8J1W6SbLrWZ3PjHGLbFrpvrt4b4x+/UePqnQvvLK37/wfVu+c+3DCLZ1xzTcu7Xx2JsnMe/+q0n3j+7NUuneu1dsr+JqHOnPAP/Lrzud9kkzc9MRK98Ghnfvl0y7szKFKkpNe2rbSXfi6zru3e174baWbJA+82zl39juH9/YPyfKdvVtHfaEz73n+2zr390nyndU7a163ev+xSnf12zpnriTJxnd09nX6/Fydd7JJ8ti6nb13j7+js5Z9+ws79/dJ8trvN6t0L3ylc4/xzMgdK90kefWpzs/ic7/q3SNueXTnvuiWbTtzDQ84tnNmaZLsef5Ble5ld3We/b67U29Pwyeu6Mx7Hn9ep5sky36oM99pt807e59te0jn8yJJJs3W2eNxp7fWr3R//WJnv4ckmXRp5zPuBzt09l5Kkv3/3DkX86Mrd+a0jDu0M9cpSe59uPO+fqUVOvPr7tj52ko3SX4+pTPX/s0vdJ6Dk+TNNzp/J9cfPKbS3enF3rP7zw/frtJd+i/HVLov39B5H5Ukf7uss/fuYaX9VZPks9/pzNG6dErnDIUv7NvZnzNJfrzBk5Xuei/uV+kevW7n/IskmTClc48x95u9M6vePLYzJ36/0zrnPsyy7LmVbpJ847zOXkqv/b6zd8mp2/TOZD/qR505uYfP1tu767h3O2durr5A53du3aN/X+kmyVXz7lHp3vR4Z87SO5Om/X6w/7H1uj+udA/+VeeMuyQ5ZY3Oc8l1g/5Q6S5/Q+f7Okn2/0Rn3vo3RnX2t1t1tT0r3ST5wFKdfcFGXHhgpZskr4/pPKP9t8YNmZAHF5z2c1yfPf/Sad78j6u/3dkb792nOmfY/eKmzju9JPnbQ53vza/t0/nOTJLv/aIz3+KwsZ05uc8euFWlmyTbfq3zXf+rrTpzAjce1bs3eWCXVyvdb655faWbJCvv03nu2Gnzzjv1BxddqNJNkt/M2jkv4nPndNYdjPjG0pVukvxu7+0r3a/f1tk/K0lmurtzjsg31uzscbzZir3Povtv7YzR//zvnX0+dj61t5ffoet19nlc9Qu7VrpJ8rGTOp/5g/7a2SP+0x/rra267+XOfIsFduycY7LFPL29Scb/qHPewff+/HSlmyQDv7il0n3rhs9Uuhcs0zsrabOPdf7+ltyls+77hGU7Z9AkySvvbVzpvvrxzu9bkozZoTPfadOrO+/19riss99skmx12y8q3f1m69wXvXxVZ4+5JPn12Z13pzsu0vv3u2zhzvmUe2zSOV9q5OOd/amT5MhXd6h0D3q683ux4kyds92SZI4/dM6tuvGxzryvJFlql7sr3V/s3Tm39IEJnXdvSTLu8M5+Rutu21n/e/2k3jmrDyzRmV939I69OWUHHNV5f/OJp/5Y6R6+d+dc+yS56pedd5z3b95ZT3Ts/J09DpLkslNWr3Tf3rM3jrjK050x1ZN/3bl32fbN3pkEz990XKV7+vWd56gXb++sxUyS1x/pvKvc5sGTK90kmePKznraCw75U6U71y6d9U9J8sgqnX0Z5tl1uUr3vb06+10myfMvf6fSXf+Lq1e6STLP8FMq3Z+dsX2lu8a3e2cSnL1r513z9Qd05pD8ae5zKt0kmf2YRSrd1ab29i6f+K37K92nr+nMKZtwTu93ecwn7qx0d/3I0ZXuY5v09qi49oXOHOLPHHFipZskLx3fGce/4WedtcUDgyrZJMl7376k0v3QUp2ztr4xrjM+kiR7T+qs/z1izt7+rp/d8IxKd7cnO+/zV3u4txfBkW9dU+levkVnv+5Pfb93psRtIzp7mv5+gQMq3SQZ/+m7Kt3f/D/833tvOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/yID0/sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBGMDC9LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZgQD0/sCAAAAAPj/sXen0b7Ohf//X2ef+ZiOeZ7nIWOEZMiUKVSilKRkjpBKAyUKSSVRISVlChEhMs8UmTLP88wxnOMM/xvf1b3ff63ft3Vea6/9W4/HzZae61r77P35XNd7ugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGPG/+Y8nT5qYl598dLpfxCyzLjTdm/+x4077VbpfPXDHSvflF16udJNkyeU6P+cPrbRhpZsku39ml0r3tr9dV+l+ZIutKt0keeHZhyrdVRdYp9KdvNCESjdJVn195kr3phueqnST5MW3X6p0p02YWunOONOwSjdJXnv78Ur3jUcnVrpjxnR+xkky6wwDle6YEfNVukny6oTbKt2ZZxpe6T5532OVbpI89tLTle6ck0dXusPefbXSTZLhWaTSHTeu9/f39pud76nRM89d6Y4a2fv3G3hzbKX73rDONU95891KN0lmGNH5XJ40elqlmyRTp46sdKdMmr3Tndi73xo9YpZKd1jp92LalFGVbpKMnDql0p02Q+c+PEmGvfVcpTuQdyrdsaNmrXST5N13O88OC45duNIdOazz+5YkN1z1p0p3WHrPOxPHd55LRo3pfBZNTud6k+S8G26odNddYrtKd/TUzn14kox4t3MvMGbUuEo3SQbSaU+b9lalmxFvd7pJpr7buS8aNq3zdz3/Wu+vdJPk1YmvVLqP3HdfpZskD7zxQKX7wuude4w1Zp6/0k2SO57qPGPPMkfn8/Oma/9c6SbJ3DN2/q6feeyNSjdJUhoXGDGuM47x5hu9+YF3JnTGl+d/b3Kle98Nl1e6SXL5zddWuhuttkmlmyT/fviESnfBpTpj4ueed2+lmySrrPShSvfK26+vdOcZ6IzhJ8ndFx1f6c4ybFKlmyTzzNX5Lllj3lUr3b/demulmyTvTuqMC4yfvfNM8uLzpWeSJFMnPlPpjpt3TKWbJG890RkXmDjnhZXuKi99sNJNktnHdT4zVhnbeXYYPnfnPi5JXn2p8+z37LOdudUkueqmyyrd7VbbtNJ99+bOs2qSDB/ofGZMm9oZU504rTNPmSTTRnTG2kdN7c2VTB3Z+cyYOqnzGTftnfcq3SQZGN653xpVmtMYGNmbwx72Zud3efRMc1a6STLDtOk/XjSQ/348dfm33slFt901Ha/mf1w69tPTvfkfb/xx30r35YPXqnSvWeH3lW6SbD1ixkr3Y8vtUOkmyU73du5bzzygcw/4gwX+V1sJ/lcW/XTnHmLUnzrfxxO3/lalmyRb3f7XSvfvj79W6SbJaf+6qdJdebGlKt09PrNMpZskx028utJ95t+d7/k73z/9v/f+Y+m/7VXpPrRUbyx23S8vXumufmfnd+7sL59R6SbJiut15pvG/qPz/LzO4jdWukkyfIFHKt1Vzuns+UmSny/RWR/5qx0Or3SfHNO5p02SO1/qjD/ONKFz73L9HpdWukny9JvTf49nkiw/a2e8LUleemvdSndg+c584fG/+WGlmyRzzNKZl117lr9Vug+ueEClmyTPzNxZb7HIS72577/M2PnM/+TnOp8Z1/669+y3zjUPV7oTR6xS6T5//GyVbpK8NUdnHcAtt3aeKZNkkd/OW+lu/vTWle5SV89T6SbJKQ8sUOk+Ps/7Kt0Pv/HLSjdJjhm7UaW71shPVLpJsu62nc/PBy7rfH5O3fvvlW6S/PPqzmfR8OfurHQX2623puWp8Z+rdN8+42eVbpIcfnbnvmjH3TardCfP1nlWTZIr3r6j0v34tzvPqxtd3xkfSZITl+l8xu150smVbpLk/Z0xrp8+dU6l+90ne3vjTnjvlkr3IxuvXOne94feOMaEhe6odK+/+wOVbpJscf4PKt0Fd+msibjw771nhzWuXLvSveCrR1a6i/7rV5Vukvz2oc78+OMndNYNJcnEhw+udLdc84lK93tH3FHpJsmt/1i50l14gysr3S3uPKTSTZKpi/6u0n0xP610k+SJp5eodO/5zgaV7lyv9+a65t28swfqwxd11qCO2nHJSjdJNjv9G5XuXjd2PjuT5NWvLFjp7vKBGSrd33/5hUo3STZ8uzOnscxra1a6qz7W+bdLkrde6HzGPTbiL5Vukmx5d+f8hMO365zlsmp698sv3t1ZQ7LE83NVujO/21sPv8vznfVQT329N758/EXTf378kFf/u3X27766bO4994rpfDXJQT/vjJUmyX4X/6jSfWzKPZXudef1xue/VZo3neeB3t7CB07rfGf+6I/fr3TXe70z75YkFx7d2bP//a22rXT/Nr63t/AHy/+i0p31D729oRvc2JnfPP6ZzrlAhx/YGwfa+dzOPdrTP1mk0t300s9Uukly7DrnVbo/fHn/SjdJNv7CHyrdL8zRuV895YBPVbpJcs81X6x0L/tz5wz+MZf37rfWPf6ISvfAY3rz3t+Z8aRK98Dfds4l+cV8vXejzL5aZ35l/LDOz+KuGXtnnz23+NKV7tZHds6wTZIVD+rcC8w5796V7kmLd/bOJMmwb3X2X2y6ypmV7vGvbFzpJsnfLu7Mr6ywyQqVbpKsdmHnfUo//GpnrcUG+9xf6SbJWetP/3GXJLny/Z3vvjPH9c7nvOt9nTN9nx32ZqWbJP+4qLPf/LDfdeb0fj6is+YySVa4atlK95EHPlvp/u47nc/OJPn1Ep39ynO9fnalmySXT+mcOXTgxIsq3UPWX7nSTZILftl5Dv7pBb+tdCc82Jm3SZKdf94Zax9xTm+u/qBzOueAf/nLv6l0X/zka5Vukqx4e2ed9p++1/n8nHDHzZVukjx9/PKV7uE/673n5/Ttv1DpLvDDOyrdlZ7Zs9JNktOO6nyXvLBE6UyGjY+qdJPksOu2qXRn+Unv/WtvbND5/PzEzp1z1T48a2duLklW3bFzdsk5f9ui0v3avL130R150d2V7m2f78wzJ8nsS9xe6X7sNzNVuvud1rtHXGXOLSvdedbtrI2ccFhnXWuSvDHvopXuWa90xq2T5MmPddaWP3bR0ZXuk4d3ztNOkudHvFbpfv6xj1e6K/zm25Vukry88/mV7nb39N5/eMuTnXHEWbft/C6fclRnPDxJfr9w5/7ls9d11swuvvrOlW6S/OiTu3e6T3y10k2SHyzZ2TP56Cc7v3PDTuo9u++11QWV7tnH/aPS/ejXNq90k+Sma0vrHH/UO6vq8OM797X5L7dLThw1NY8sMv3Xwh1/RGc9epJsfl3nHcpbnfqTSnePbx5a6SbJLHt2/m4X2vpflW6SnPlq517trLm3r3TTe2V3PvbgLpXub07rvC/iu8d0zltIku++eFyle/SHe+cw/mOnzjqc3X7b+V2+/Ged/ZtJ8r0Pds6HP/jWUyrdPNl7D8Wq93bWBP575947u1dZtLMmd5EDOmcPbvV073zcmb7eOXNoYLvO+uRVDu2d0XLlpp1z/H4+rHMGcZIMW7zzu7zvyp01Sc/t0TvLYdzsnfXlh7x7VaV74xd7Z9et84vO3/WfN+q9Z/yAZTpryh4854ZKd7kne3uG977wn5XuLld01qDOtsW5lW6SfHjfzjkDp2/am69/Z5XSXPIPOs8Ox+zX27M/5tLO/oAxH/1wpTvrcr19Slvf1LnmEx5bsdJNkm0f/nKlO88BnX3yO+3z3Uo3Sf5+Uufdbmc+19lnffmcvfOGVli78w7JWZbZptJNkolbdfZWrTexc2754c99s9JNkhlmfKzS/dvPOude7332hpVuklw5sbOfaMoFvbMIdt+qM/dwwzmde8SrrunNNx35o85+2t+u1/m8X3XH3rtRNpuns59h3e+Nq3ST5N2zO5/L89/Y+b14+jO9dyhcu+blle43b+6sKbv0D73f5SV2fbzS/fHEzj6JJPnHgsdWujdf3dl3cPVavXcePfNMZz/RDZd1fudunbWztjVJLpih8/l5wfDOvtQkWXPHzvskTlmsM6dx4h69d1Yd91hn3ews312p0t1r2c47aZNkpWM7Y2e7b/2TSjdJLruqs+/g6k+vV+kuf2DnfY1JMnWf1SrdIzY8odLd9rrTK90kWW/9/Srdmfft3AckyQuHH1bpbvHdEyvdvdfsnaux9vj9Kt0t3vxjpbv1O1dVukky/qLOe0aO2rlzplSSfGjmzhz26Nc+WukedNyhlW6SXH1i5+9683l/Xen++prO30iS3Ht75wz36x/pvQvyxv2+V+nu/V++Jm3MY2Oz5OeXm74Xk2SNr/X2Qdz0fGftwqyXde4hvr/2nJVuktye0yrdbTfr3AsnyQk3dp5H57q/syf57O92xkuTZN0Z9qp09//MqpXuMUt25nqTZON5OufM7f9qb/zqsPHXV7on79A5r3vJ+79S6SbJ+E+uVen+5fLOc9Kln/93pZsk783aWYczYvWbKt0k+eVKnWewS5bvjLkd8F7n9y1Jxq/YWV++4TKd9/hcdUjn3YZJctos81W6X9qyc5ZfkjxwwPOV7kN/75zlN8/Bvfutuc7qbNza8ILOmSef2rO3t2PMagdVui+u33sH6AVjO+cEPjwwsdJd/OTO2uQkeeKdSyrdXz7deYfdJaXnsyT5wuTOevj1n7qm0k2S51/tnIezwXl3VbrDfthb0zJ8VOfchS98pPN8/YXFOu8iTpL5rujMNx224SuVbpKcsMSPK90v7dE5K2KWKzrrcZNkk7U6Y2er39o582SzqxeudJNks2U6+/keOqgzVpQkM+zcGa9d/L3OfOGc8z9b6SbJNjN2ztW+/A+dc8rO+V3vHmO/Zzrff3/as/NutyQ5Y+nOePvmi3XW1338rt0q3SS5aKbOfNOV3+6std9qSmc9YJJ8ab/OZ9Fvl+6d9/yrKZ3nkhkO6qzPuvzazhq4JFnljM77+Q6+vPN5P/8yT1a6SfLOzh+pdMfNfFalmyRb3dc54+d7y3fWah8+X+85+Jg/7lrp7jhX57NoiZN7c9hbztq5Fz/x7Om/ruE/XtivM1f57006ZxH/ftHemNzZW3XOXnv1kJ9Uupvv9HqlmyTPL/utSneHyZ37gCTZ9gOdZ79NZ+uckTvskg0q3STZ7HudccSvbte5F/jt2M7+pyT57Sc673y/4eDe2fNPL/WdSne5Q1avdM97vHNPlCQn79s5c+WaIzvn2uy5au+dqRsu0Tlj5Oo3e2dJ7HVAZw3JN57ovKN+mcV698un/bmzb+TBZTvrBHbcu7POI0lGLPCxSnfmHUZWukky8yOtdUv/53d4dXaLAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/YwYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGPG/+Y+nTZuaSZPenu4X8crLL0735n/ccdVfKt3PfHbPSneGUb+qdJPkAx/YrdJdf/UVK90kefeVCZXumutsXenOO9O0SjdJZps2X6V72aN/q3QnvjxzpZsks8/5gUp3i3VeqXST5LFXnq50R7w7vtIdM+PoSjdJXn3hkUp38UVmqHSnTV2h0k2S995+qdKd8FTvd/mF5/9V6c789vKV7rjnBirdJJlz2oyV7sDwYZXuuKnzV7pJklFTK9n3Bqb/fed/jJuh8+837d3O33Umz9rpJsmY/9Ujwf+1kZNmqnQnD7xb6SbJ6LGd7793h71X6SbJyIysdEePe6HSHZg6W6WbJCNGTKl035v2TqU700y9+62J771W6U55q/PZmSTjxs5T6b73ZiWb4aPf6ISTjBu9cKU7cqBzzT+Yb9tKN0m+Nua8SnfCpN6/35SBzr34xPc6n/eZ2rmPS5J5xy9U6b737luV7kzF5+CReb3SHT5ijko3ScZMK41xTes8ow2MLH3gJ5k8oXO/vOiHNqp0R0/pXG+SzPDsk5Xuq+N6/353P9yZe3hrYudv5P7HOp9xSTJ1ROfv7/BvH13pjh4xvNJNknWXnrPSfeG1znxGksw+c2e8/b2Rnfuid94dVekmyaMvPlPpLv/++yvdJx/rjU9OGbZgpbvGDp+vdJNk/kdWqXRffLFzX7vgyqX78CSvvjm20r33utMq3U2O6c1h/+tPf6p0V5xlYqWbJJfde1ulO3xKZ3xrhSU6Yw1Jcsu111e6m234/kr34ad79xhT33u+0p13od6/37V/v6fSnXL7U5XutGWvqXSTZPNVtqp0H3m+Mz+w6My9cYx3pnU+ix558KFKN0nmnWtMpTt67c4ahOHv9dZZPX3FnZXuArNXsnntld5z8KxzdOYqM7Uzh5YkwyaW5vRHd8YRJ0/qzYFOS+dz7o1pz1W6b73eG2ufe97OHNo7b3Y+75NkzIzTf+xlYOC/H/d8btzsOWKVz07Hq/kfd7968XRv/se2v/lIpXv4UrtUup+f74JKN0l22OZ9le5rm3TWgCfJ2U+dUukePWm9SvfKmTq/b0ny3OTjK91X7v9xpTvro72xoCnzdv79tl/2Q5Vuksw1yxcr3YtnX7XSPWr0XyvdJPnSk511Eedtd3ul+966i1S6STLn1FMr3e8+vX+lmySf3uOkSnfCFp3vqOu2+HelmyRz/3v3SnfZZTvjxy8vvkOlmyTXnNwZp3h2rvsq3SR59r2VKt1dftcZp3h5fGceK0n+vmDn32+zcZ0xwhkWXa3STZJ/3Tm50n302s54W5JM+OKkSvftmy+rdE/a4YxKN0nW+NyPKt07rt+g0t34scsr3SS5as7OeosZr9y00k2SMw89u9JdbLfO38h7m3eez5Lkmdf+WekOzPatSvf1vb9Z6SbJwetfUun+/sHOGGGSbDL6iUp3/KWdvXGfvuerlW6SvO9TnbnkNR66qNJ93yonVrpJMnzJdSvd93++d4/x7ksPVrpvH7BNpTvhkhsq3SSZ5bOd8YYNd+isSXrt5M78ZpLMccMRle6JH+jt0x3xaOcsgq/8rrOeevfV5q10k2TnhzrjtTfN/0Cl+7fzPl7pJskRD89d6e6/0hqVbpJselpn7dBLzy9X6a6973GVbpJscP6XK937h3fWMN558jmVbpKsssmOle7ntlm00k2SZ3aaq9J9b47O+vLV19240k2SDe7brNI9dLuPVbonHd45nylJjjuzs+f1ncc/VekmybaLdp6lHr2mc4+xzvqHVrpJctUynTO2Nllrlkr37jG/qHSTZMlFO/MOn1qpMzeeJJ+99jeV7kdGd/Y2fmTTlSvdJBmx/Gcq3fUu6TxT/nnv/SrdJLl+h99Xul/dcZ9KN0leHtHZp7txOn/Xf1+sd97Rbj/p7EF8dMXOutn3jbix0k2Sc+8qjZ2tsmynm+SUrTpnbL1/pQUq3Ulz9vajLD96p0r3oZeWrnQP3aR0PlqSR0Z21vCv9KfOXswk2bRwZs6xz/53639mG/Fwdhg//Z+TPvrNLaZ78z9e2qdzlsoGn1yn0n1w4bsr3SRZ8pbOPssb1uo8hybJWeM71/xyOvPe+2/dmYNMkrP+1lnfs+Bbt1a6e369d47fx3beudI9ep69K90kOWHPzpz6kVuNr3SffbXzN5IkC6w3/ffOJMnmj3XGSi/+cm/99z7vddZQnb/yw5Vukmxz7A8r3ftveq3SfXzezv7bJLlumc563BXO76wz3H7SYpVukoz8YedMwwv26fxdJ8k5O3TOK719xc5esG2P7MxhJcm8K3fmhFZcqzMOe+kvz6x0k2TySp1zZT61Y2fNUJIcsl1nTn333Tv34QffuUmlmyR//VTnXnz1WzvnDCy9TWd8KUlWXq6zznCOXTtr9pJksWV2rnTPX6Hz7D5wVulgiyQLPXpFpXvko7dUuruffnClmyRPvtz5zDh5pc68TZK8sGVnvPvk93Xmx1Z46sOVbpJcPa5zjt9Fa3Seo+aZobO/M0kmf6azTvu5F3rv+fnAqZ17ge8s1/ksenauztx0kvxifOdZ6vSfds5O2ODgxyvdJPniRzvvw9rvZ0dWukly+kqddV/P/33DSvfMeXrzpq/97qeV7l9mO73SnfEfnfeNJcmBzy9R6X7o8kMr3SQZ+EVn3dewp++tdO99rHeP+NNVd650D1/7wEr32HcWqXSTZMq3Op/5a67SOSsnSdb7Rud8mIVv7pyrNutDV1e6SXLgLztzJR+/ozMO9daTnXPyk+Tm+TtnuN99W2/s5YDZf1DpLrReZw3ccx/tnXv9u107+8IXu/7VSvfjE7epdJPkrUsOqHQnHdkbXx5zcufv5Lp5O+c9LP2H3v6LMyd37ot+9v3DK91l/trbb7fRZzv7L753We95den9Ont0HzzrD5Xuedd8odJNkrN36YwjrvTRzt7RLQ7tnckw94ud80Uee+QnlW6SbHlzZ4/nJv/o/P39cIVTK90kufCZzlnP45bu7Cn+7WK9vdtj1+qcafPS0511tUkyZbEta+3/xshnHs0835n+ay4u2+KR6d78j23/2Tkb4eZT1650T32u8w6tJDnpp52f89nDe3sVNn6n8368scseWumufWrv3b6nDh9X6X52yc49zyrjeuNiw47srLe47be9dc+vvrFvpbvcuZ+sdA/4Y+dMtSQ5Z7bOOy5u+U1njGmbC3rrnpdecftKd8Pjbq50k2TD1Ttz1Bsc3Xm2+8Xhf690k+S6q0+tdDfe65eV7kNL934vTjrh5Er3nG901ockya2PdNYnT9n52Ur3F6suWekmydpHdP6uV766szd0xPqPVrpJ8t0dOu8Z/9Z9ne+oJNng/M67Hp87rrN/eupDnbUWSbLGdzrn+8+2cWcd3OZzH1PpJsnlF3fWBP5r9d77ND8/uXPmwuHrvV3pnjy6sx4wSRbc99OV7o/e6VzzIad3nlWT5KgrOs/Y+43vvU9zru074xjTHuq8m+jrX++9p3qtzY+qdN/Z7KpKd6Ylens7jj618z6eFX+/X6WbJNe91PndWOWMzr3nfKf2nh3+8MhVle4Nm3fWMO67bG99zwVf/3qle8R2nfGtJHlg9c4Zq5vO2Xn/0+UPdNYDJslNe5bODLiuc1b+JT/s3WP8a5VlKt0lx3W++5Lk2nkPqXS3fe0bne7He/uJ5jviwkr37F9+r9Jdar7eGRVLX9YZe3n/m50zwJNk0cseq3S3fLOzbn39fXrvX5v7C6tXun/+e+cM/t+n956fK87szM/Nc1PnDOIkuXfuznmXx2/fWR/yufmurXST5K+f76xv+OctnbNKhy3W6SbJth/o7P+dca7euSjHHd/ZN7LvKj+vdFd9vLP/MEmu+VRn3cTA5M53yS8W7r2H/MWNOvdFV37i0ko3Scad3Vm3fvKGnTX8nz374ko3SW7558qV7lXPnl/p7n9WZ248Sfaa56BKd/j2nTm0JLnj06dWuvMs0RkvuvKLvTnQezbp/G6sulfn3TbbjOn9Lq/51f0q3Zl27j3vXHNv57skOfe/+n/NssCEbHn49D9b/s5HO+M1SfLN1w+tdKf9oHPm0Jqr/nf/Nv83Rv+w81mz/vd679Pc87XO/t4drryy0t343t46gN3uWqTSffbCzpqIR1fovKM6SbYa2KPSHXivd7bMSzd25hXev1dnfc+aq4yvdJNkiz06z/zXr7pXpXv6Hj+qdJNk2v1/7HT/9I9KN0le+m7nnd3r39G55k0m9ta0nHDNLpXuTYd9tNK94uTOe32T5PhZO/OFr0/tzKknyTb3de4Ftj61M/5416qTK90kmXXnzhnHB97bmeM89+3es8OJr+xW6T7zl86eySRZfOL5le7Rj3TeB7f65p3PuCR5d2RnHdULy32i0n3pia0r3ST5yUsvV7rHPXlBpZskt+zdeef6rv/sfP89eG7vvUfvvNFZu/Do4Z13SK58SGd+LElWevnQSnfNC3vnXG10WGddy2Yj/lzpbvpSZz11kvzmlc7Z859Y56xKd/axnTWMSXLhfZ1n919Puq3STZJnPzOt0n3p0s57js8a13lvTpLMs1vnbKB9Tji/0t3xvlMr3SS5/cXOvOy/F9q10k2Sp/bqrPF57JLOe3Pmeb73zuclju+cDXTrXp0z0c/7fOcssSRZ5zedd/C+/OETKt0k+e39nTWBw4/trHv+2CGdz/skOePgzrsxv3xLZxzq5WM7ezGTZGDkdpXu+fe9U+kmyS0TOu8AfvC8MyrdU2b/fqWbJBvvdkql+/jKnffEX3FiZww4SU76SueMiq9t3Jur3PjY0yrdPd/eudLd4MjevNHtS3bOQp3pd5219hd/tzOfmCQf/kJnvOGLx/d+l1/7QOdZ+NiVO89Rt77SWduaJPNNOb/SPXrtzrk21/95v0o3SZZ/sjMn9f1PrlTpJsm753XGgQ8/uHOm27vX9vajTFmvM6fx3DNfq3Q/sOTvKt0kOW735yrdiRftXOkmya/f6JzlfvfbnffpLrNCbw57zYlXVbqrfbHzezHiqO9Wukky5wWds25X3KJzXkCSPP+J0vqU/5/p4M5IHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8P2ZgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgxP/mP54w4e1ce8M/p/tFLLDgMtO9+R8jRrxZ6a643EqV7swzjK90k2Rg4lOV7lwzDKt0k+T+hx+vdKdM+3el+/yYBSvdJHniwWcr3fkXWKvSnWnR8ZVukkwbM7nSffPBzu9bkiwyX+d3Y8IbUyrd4W9OqHSTZMLkeTvhdxapZN8Y8VClmyRPvfJkpTvHwAuVbpLMOjB/pfvgLbdUunNNHV3pJsmMY0dVumOHd6555NT3Kt0kGTtDpz1q0kKVbpJMnfpKpTtubOdvZNrkFyvdJBk5bc5Kd2Dm5yrdsa3vkSRTJnf+/mYY2/m+TpJJUydWusNHTqt0M7lzvf9joFKdYWznZzFx2NRKN0mmTRtf6Y4ofd4nSaZ07vHHzz+80p0wYXylmyTDR3Z+zpPfqmTzvoGlOuEkJ6/1vUr3nJnvqnST5F//vKPSfWVK5/PzxWceqHSTZK75O9/Zw94tfX52Pi6SJMNGzFzpDkycodJNkhGjZql0pw28WumOHFis0k2SBTf4SKU7eWrnHuP1p16vdJPkzqc6Y6qXPnFZpZsk90/sjKm+k84X68ixlWySZMoznWve9jNbV7ovPfVYpZsk8y7ZeXafc0LpOSrJa5M6v8tvPj9bpTt21tLNZ5K15l6h0l10qUUr3eUW6M2h3X5f5/fiuUefr3STZK4l3lfpPv30/ZXufEsuV+kmycrj36l0J724RqX71uNvV7pJMmbWzpzUC6/0vlgXLI2pjh7o/P2tuMbKlW6SvG+Rzu/co49fW+nOl87cXJKMm7PzXTJz6W8kSVZZrvPs/sQrnd/l88+/utJNkkmlZ+yNFu98982+QOf5LElef/3lSnfkyM7capJkYml+dcxLle4cW36w0k2SGeYYU+k+dWHn72+Wcb05tGnvdu7lpo7o3RcNDP9fLeX8vzZsaucZbfikzpx7krw3bu5Kd8yIzmfRmLl6c6Bvln7lZpthgU44yZsTp//v8tSp//3z9YuvPpeTzv7hdLya/7HriqtM9+Z/fP6n81S6N633j0p31AYjK90kue+1zvjVbIt01qolyVbndCadFn3/ByrdTx28dqWbJAds3Bmz+coxnXHpC4/crdJNklnWPrXSvW/SrpVuksw+dY5Kd/XdHqt0T7tvu0o3SQ6ZsfNsPvbG0jzyW71nxsu+9Wil+7mNvlHpJsnntuzMK2x3c2ef0s8f3qjSTZL53zqt0p3nic74x34Xn1fpJslnD9+30v3rHp15yCQZuKWzpvrcR16rdF/f8aeVbpLc+czGle5LubDSnXpLbx556lWd9eUTtu08lyfJyAU7a78uWX6DSvejX/t1pZsk193x6Up37EM3VbrzzNrZl5okbyzduX9Z7N7rKt0kefuR1Svd+a5erdI9btTmlW6SfHpi5x7j1ds79/hnvTVfpZskk1/7cKW7x07rV7pJ8urY6T9uliQTNvhdpTvyqUmVbpL8+p8fqnS/uH3nHvHZhXq/y8vf0RlLv+fRQyrdJJlxic5a3zd/3rkPX3/H3nzTr2b8VKU7//Y3V7rnvtkbn7zo+s7P+Yrn96p0k+T6jTrjfTPfdWqlu/Q9O1S6SXLD8M7c9+abddaH7Phk5/4wSQ5edNVK9/QtDq10k+TItTq/yy9/9VeV7pLje/fLX/9cZ37u4vU79y6ffGnWSjdJLrm5M0f952V7e+M+MXHPSvf5v3fWcdz0+huVbpIsNbxzX7vRd3epdLea5cBKN0n+/r7O+rrV1rq30k2S+w/qPK9u/NPOM9rcIzrrBJLkweXXrXSX//19le4d8/X2j84/12aV7v2vfb3STZLl9v52pfvk3udXuree9ttKN0l22/XuSvePI0+sdJ/fsrc3Z4ZXD6t053ykt0/3mfc659Atu25nPdv3N+rdL1918cOV7k7Xn1npbvPBxyrdJFlkw84exBev642pfmjtlTvhZzvn/Z3yx85eviS5Y7HO+Ql57fpKdrsbbq10k+ThGztr+86c/2+VbpJ85pfTfw3s5P/ygJ8XFpgnxx990HS+mmTWV3rzpsOmfavSvf7FJSrdC+ftfa+tu0Ln5zx89qsq3SQ56KHOPvUtJoyrdEf9rXdW8PgNH6t0N/nhLyvdD/6hs34qSb74SGfP6a8nfLnSTZK/j3uw0j3qzI9Wul84sjMmliSLb/ylSneuSZ01s7ed0Ntzesim61W6689wY6WbJLf+vLNPfbW1z650z7vz9ko3SVZ/oHNOxJJf78ynvzVhxUo3SZb5Q2dfzj926Y1dzfaNsyrdazb6QqX7p8+Nr3STZNXnn650Xzj0+5XulqOm/7tn/uOuQzp/J1fv01uPtPcHj6p0/3xP517uI7PvV+kmyVeXWr7SfXiuztqCLQ45vdJNkisW7Iwx3X/VAZVukmz0fOf+86CvdOaaTttkn0o3SYbfeHSl+6tbO+sWTp7jhko3SdZfq7O+4IfPrFzpJsmNC3XO+9r99c5z1K1rdMbNkmTn9T5f6b59e+eMnXW27/yMk+TJlzvzkM8u2FkLnyRf/foRle7sV+xR6e69/uGVbpKMPrNzL3Dmrzrryn/8rc5ze5K8vH7nd3mjr/f23u8/0Nl7v8FfO/uVH1+2s/cwSZa57M5Kd+mzTqp03/tX737r6G99rdId9cve39/qR5xf6f74qs45Etus3fv3O+bYzv3Lwgd01rM8sMCSlW6S3HhQ53zVb5/eW6e965ad8/0v+03nvQ+f2by3hmOb4zvrvx//aOfsize27O2r+sFpnZ/zAR/qzBslyX2vdc5+Wu2YzlqBhTZ7rdJNku0u7Ywv7/uJOyrduf7aeV9cknzg7r0r3c/e99lKN0nGPPxEpXvQ4537rVdW/U2lmyQTjuzsn7lyvc6a58d2vLLSTZJXd+3c157/rZMr3SR59cjOc8mPf9259/zkk721Kfscd26lO88mnXNsxz7Ted9fksyw68GV7lV7LlzpJslr53Xmup7bo7P+7qh/zFXpJskM93TOYJ2w6WuV7qyPdM4PTJIv7NuZn3vort76/QOX6Iwv/7emLT5rJp+y7XTv7vzV3jP/y7+YsdI9bmpnXuHHt3bOEUuSn83ZeWfw8Jk65yIkyR+ndvZB3L19Z+3JTVuvXOkmycduPr/S/ek891S6C36nt3/623d3/q63nKOzbi9JVlyoMy97926dMw1P/MQZlW6SfHVs53vz1S919umddGVnv36SHDSqM1/4sX9vWukmyX1H3lbpHn1G5901C8/UO+t56+s773xedPIxle6Pru+cu5skx/61cw7xhx/tzRc+O29nbHPifZ19Zudd2hmjSJLP7dR55tjlwU9WulvO2DvX4pgtOutwTnuq9z7bJ677aqW78ed/XOmO6byaMkly262dszgeP7LzeXHUWb01/Asu1Rmj//DPP17pJsm913X2gy2+QOes529/aPqPjfzHGi929nlesmZnP9hn/9g5tzVJzh3VOdfpvrmPrXST5IzlO+ue/7Jq5wN03mM6Z7QkyeWbdJ6l9hnRWQcw8047VrpJctCmnTUiL3+4s2cySfb8fGcu+eKPX1Xpzn5hb//9zw7trP367i2dM/G+NLH3Pont1jq/0v3DWZ3n6yS5buurKt01Ful8fl48R28Pxm0f7HwWbbJV551j35yhd17OA+t3vq/3PuFnlW6SrHhLZz/R6WeW1qA+9UylmyRXHdYZhzrkg+tUuqf/onN2QpJ8bnJnn+BNi3TmYJLkjK06c4qbbd9ZA37mgb33r537VueMradX7axhPHy33nfUTIdtUuk+tGln3VCSHPJ0510xv3t/6Z1jH9qv0k2SY9d9r9I9aenOWO1RT4yvdJPk2Xs66y5fvK93RtMdl3TuEb9xWGcc/+ofrVXpJslxC36s0h23bWefyw0H9NZdnrRSZ655xMSdK90keeXQzvnU3/v3FpXudnd01o8kySKvdr6zP/tiZ51APtI5gzhJXvz4/pXuTs/25m2326ezdvbhQzpzaNd+7f2VbpLc9+/O/oBzL5/+Z/4myY5r9c5lOH/Lzj7B064cXekmyRxnLdUJ/5dDcjNPfD0feeSi6XstSeY6rbO/IkmmLrZIpbvwI515hS2La5KeP/cnle6wQy+odJPkhY06fwOn/7VzDzh5tVMr3SQZO+6qSvelv3fup268ofcOwnOvP7TSvXipD1S6SfKp5Tr3ENv8trM/9KFle+ued/lF59n8xccfrXQ/Oay3N2eRJzpn4+3/694Zx9/4Tac9wxGd8atZvtJZK5Mkl+/cOYv40bl+XuluuHfnXbZJ8q1Nv1Lp/uWHnXUASXL0Ap1zh9aapfNs/tJHe+fwDz+jM/6/zmqlPXev9fZ9L7vJFyvdLVbs/F0nyYEPdeZClr6n827fz63Ve3/5Wyd09rr8ZM1XKt2bf9FZa5EkR958RaW7xhvfqXST5C8zd9ZU/+Hbf650L7qxc6Z9kvz5+M5n/i/u7KyHv+vAZSvdJJl6XOfMvZte+mulmyRjf9OZC7lv08553Sv9qHMmepLc8a19K90vrdX5vN9h685ze5JsdNKLle4nftx7P8pPHu78zk0d0zk7+ffv68033fdCZw/Uqlc+VumOXmGbSjdJ1jq8sz55xGb/qHSTZNFFO+/2/dIxne/Vf819SqWbJJM/3Bnv+9J+nX397365sxcsSY6afHGle972vfMHl16js474rdU677U/7muds8SS5LPvdO5f3vrgqZXus9/qnPeQJIuV3hu3ykIzVLpJ8udP3VXp/vuPnXH8h9fpvD82Sb73lc4z9qrLb1npnnF+bxzj9Cs7e4svOba3t+rSL+5U6X5hhc5Y7ZeP7JzJnCR3fu5Xle4Cb3bOiDltz5kq3ST5yO6dd4Jc/cXeu7befqmzPmWXrTvvlLhmpZ0r3SRZ8bedPVDzLzd7pfu1VTvPOknyh7s676E5f6vO2uQkuXrBDSvdv368Mz6y3dzXV7pJ8vTxP6h0j5vSOUdptom9846OPLGzhvjWazr7n5Lk8evHV7oTSuuh/vmR6b+O9D/+um7n2X3C/MtUup/62NaVbpIcvHBnHHieZTt7A5Jkp191Pj/zx//z/9x7owcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D9kYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoIR/5v/eNLkSXn6xSen+0Ususyi0735H/+6+7ZK949nnlHpjptpzko3SUYPzF7p3nr1g5VukkwdP7XSHTXhnUp35MSJlW6SLLjIEpXu2JlHVrr33P9ApZsk49+apdJ98a05Kt0kef7BGyrduWfufGa8+uZLlW6SvJ3xle47k56pdPN653MoSRYdN3elOzC28zeSJK89/I9Kd85hYyrdeUfNVOkmydgMr3RHDxtV6Y4ZManSTZJxE+evdKeOHlbpJsnwqZ2/k+GTW9fc+RknyfDhkyvdacP+V48a/9cGBt6sdJNkYPiUSnfSpN7n8vDhr1e67056t9IdMWqg0k2SgREzVrqTJnaeo8bM0HkmSZIpA52f87Dhb1e6STJt2rhK970pnXu5qe++VekmyUyzz1PpDh/o3G8tOLbTTZIV3uvcbz34ROezM0muf73z+TnP/J3vkinvLFzpJsnWMy5U6S7ybucef/bRne+RJJl9yjKV7siZJlS6STJtcud3eeTYzvfqLEu/v9JNkonvdu4R3335+Ur38edur3ST5PYX7qx0H5zwWqWbJDONm6HSnfudznPU48+8Wukmyd5f/Fil+96k1yrd8Z1/uiTJ6Fc7n3FjZu+M9SXJE489VemOHNF5Lrn/wUcr3STZevvlK93Z51+20n3u5d5Y+/LLd+5fnn27N45438WXVLrzzdWZ37n4lF9Xukmy8PLzVbrTJs1V6V527QWVbpIsukRnrmvOmV6sdJNkgcVmrnRffOq9SnfSE70xnXsfurDSXW7V91W6I+ZcrdJNktvu+1elO2pUb35gkcU63yWPPD791xUlycJzdMbNkmT+uTvrlh7rTPvljRvP74STLDPHhpXuTHN1xoqS5JGXOn9/Tz16b6U784qd+4AkmfcjK1a6L93zeKU77dnO50WSTMlzle60afNWukkyMKrznT1twrRKN8N648sDwzv3cu+V5m3fea9zH5ckMwzvDJJMGta7R5w8fPqv4Zo27L8fz5n3jVHZ7dIFp+PV/I9/TeiMHSfJ6J91voO+vOOmle7cc32j0k2SrTbvjJk+f/2qlW6SvL32IpXuB189u9J997SlKt0kmf/czlrD616YtdLd4me/q3ST5NjtOt/HT12wS6WbJLM92FkHt8VSx1e619x8X6WbJKMndD6LNl578Ur3s490vkeSZLOvLlfp/vArnXHNJDn68s7ak13fvarSfWxab4z+9/9YpdLd4cOdcZWLd9+o0k2ShcfdWOkeOtsLlW6SjFjtsEr3lDv2rXTH/fzTlW6SfG3PzvzbbJPWrnSXePG1SjdJrh2xSKX7xz+fU+kmyRy3db5Ldpup83m/9pwrVbpJsuneV1a6L63RmTs9/pe9Pa/zvdNZX/fmgp3vviRZeFLneWfgsLsq3fdv2HsOPnOJdSvd60/ozNevs8JslW6SLP3YI5Xuq7/fotJNkuN+/qlKd9gSG1e6q6z1dKWbJP/YvDPf9IU7O3PfD7x5baWbJK/ds1mlu9Doj1a6SfLXL3f2yW9213cr3dELdtZaJMn3jr6l0t3zMw9XurNPLs1jJcmOJ1Sy4y+/vtJNkh2X7NwvT3nfXyrde0r7UpPk6QO/Vuke9qGxle4VT/6w0k2SRW4aX+m+eFtvHcecq3Q+l5f424cq3SvW661d+Mklz1a6y9/Zud96b/Pe3PecS3bWwU2Z7wOVbpKM+P2lle6rK59f6V55e+9+a+QPrqh097y3s0/w6ntOqXST5OF/rl7pLrDEdZVukmxxUGfsc59Dzqx07975nko3Sa78a+d++f5vfabS3fOuzvdIkjxxwZ8r3b7ZRQgAAQAASURBVKX3OLzSTZITnv5lpXvUtJsr3ZGz7V7pJsmcwzrrGPd6qHNmwIY39MZ03vh6Z2/HR/bpzdvePNutle7AO505jQ8cdVGlmyRnndQZ47r68AUq3TnmW7LSTZK/XLZIpXvvyldXukly34yd76kPXdTZS/vS1gdWukmy4W6dn/M+K3fO7hq92raVbpLstN7Kle7dD91U6SbJfSssNt2b2zz1t//q/zfba89mi/OPmM5Xk7x14veme/M/pize+S6eZcvO/OZSn/lmpZskr3+wM4f868lfqnST5OkLOvdp+9/b2Wsy8+47VLpJ8qU1O+Pdxy24W6W79q6ds42T5IZNOmNie9/89Uo3Sba77MOV7uhv/rvSfe7o3n3JJrMdWulusVFnzfpuR/fWQzx9QGdt5Nd/0psfm2nFzjjs4j9eo9K9/Yjenv2FPtg5v2erz51V6W76w975uGc+3NlL9JUnO+85SJLZNjy20p37h51zEa79V2esNEmOuLCzT2L2A96odHe8tHd23fmPHFTp/v74OyrdJDn5z3dXupOO6uxzXvq40yrdJFn2lJ0q3RlGdO49f/Oj3jl+C872wUr35ceOqnSTZLEVd610z55/zUp30i2frHST5IqXz690Jy41vtJd/cLHKt0kmWnrzl6GE3/7i0o3ST582FaV7vf26qxz+tjpnXVqSTLnDp2zd0/5+7cq3VEz9s5NvmSXLSvdfY/8aaWbJF98r3Ou078++ONK94lvd94ZkCS/Obuzzvfw5zpjZ+/eUjpILMmDT3250l3rmd57mi557quV7u+366wzPOqW3u/ykm907mtf2q/zTPn4Q51xsyTZ/7udvWD77D79zwz6jyO3/Hulu8kpne/VBz/f27t98Q6XV7pXL3xMpXvYnr3zYfb9zA8q3bVGdvYeJsnme3TONbxylbUq3S8v3HkmSZIF3u3cI37u+M5+5UVW691jLPX1Iyvd597trBNIkoP+2fnM3/ONzr3n3185sdJNkgt+0jlH8/xtO+8ZOX3/0rtjk5x4Rmc97uG/7L0X8/kPds5EeXjXzllVh/609x7yRT/emVP87Nc69xj3zfyVSjdJNtm/M6a64k92rnST5PKzO5/LXzj99Er3t7/r7b9Y/pDOWoGVV+/8jNffrDOfmCSf+EJnX/hLr+5V6SbJtLOPq3Tvv6bzzpwT1u19ry4wd2f/zKRRnfX7tw6sV+kmyfBZOnsxLzu2d1bVQRd25ge+kf/uvuiNh9/KZVtP//0xc17ReZ9Rkty9aOdM5ucf377SnWnNzjhskkz6TWe907If7IyrJMmNm3fOYbzngM7aoR8NO7TSTZIbP/K5SnfyhM77r3da5U+VbpLs/YnOs8G68/bOQX3q9c44064LvlLpbvaj3vfxCUt03uF6x9c6Y/T7rnNwpZskB/6zs3/648/35guXX72zjmOrOTp7A/69yfcr3SQ557DOfuQL7uica/HVU3ovh31mmc6ZsF84tbdP/ZkPnFHpXrlXZ17oR4t27omS5E8/7+x//86tnfn6gyd2xruTZObTr6l0b93vsko3SV5eoDPOe+OpnbH0Tz/aeQdakjy4zD8r3a2/0hn/WPf7v6p0k+S4GTrnAh16YucM2yTZdszoSvecO96qdE8ff2ilmyRHzt9Za7j68Z0x+h9s3rtfPnn+zv3yzKv1zkH9/S878+o3vNGZCznsgN791tmf6ewH2+fG31e6p7/UWQ+YJA9/Y+VK9+AlOmvgkuSdGTpnPhx298cq3QuP671b4y8/2bHS/eoanXOvv7ZC7x7j8+d01q3/Ze7zK90k+fRznXm9l07snMt10/2dvXxJMnnFzlzJk290nh2+tGTvXXQ7H/mdSnfU3p+vdJPkyUM65y/94InOz+K+ZTvvKEySxf7QeS7Z5KDO+p53vtvbc/fO+5eudC/fvfPskCTbTvlEpbvHrp0zDZ+69IlKN0meH9359zv1z50xuUfPm73STZI7jujM2146tvPOlSQ5aJHOnOLdn9660p36UO/dKH99Zmql+6dfdM7uuuG2ZSvdJPnZdp0xge0/3NkzkiSfuryzjnGNGTtz45u+0VvDP2LNzvq6X53cucfY6fjOe1iT5IwRnT1sW+/fOZ8wSdZ7tbPv4A93d86zP+KV3mfR+id29io9+oPO9+o8i59a6SbJAV/rzOdPm/HcSjdJbvpFZ5/n7Dd33ot5+a+n/3m+/7Htar+pdBdaobPPeqdJf6x0k+TyfTrnEp1zd2+d3DYXde4//9u/vidHLJZ95pj+Y5v7r9gblz5t3wcq3Xce+2yle/R6nf10SXLqV46udP+9f2e+IkmO2qoz3/vPH79e6e6y9ZRKN0l2WLSzv/f4B9avdBcd23kvc5K8vkRnnOnYh1+rdJPk1lk668CPPKZzFuPbPz+/0k2Say/vnD942/Gd8Y8x6/feYffI2Z1xihtu76ybTZLNvtlZO7Tocp13zn79rhcr3SQ56xedsz72WrhzTtLyY3rvn9/+hM5atb/8ZXylmyQbPdp5Blt0g85nxq3Xdd4RnyS//lFnf8DoT3e+r8+a/7FKN0n2H9/5XH5y+977uS5d8eVKd8t/dPYG/Hydj1e6SfK1C/9a6X7xC51zM+bbs/du0XPn6sydzjlj5zkqSXZ4t/Nd8tM5Ov9+Bx1wfqWbJL/9Xec76rbdO3vO339M7/3Xf3m4syZ3jzX3qHSTZL9Z/lLpfv6Cxyrdo+a+oNJNkoFfdva8XrBo53dug7k7e/mS5NJdOntTx2ze+/db55TOWcTjD+mch3P0p3p7c3b6UGfu9MEzOuvWf/a7zudQkmy+X+f8s5NW7KyBS5JV3uqsnT1i4Z9UuqO+s3+lmyTPvtd5H+R5x3TW8K+4SOfdbkky4bTO+91uPbF3Rszt93XeVbjU0gdUujdv1Xk+S5K/7NhZw/+vFa6vdCeMP7nSTZIfLd3ZJ/jH1zpnXyTJclt0zhP7zpjXKt2Vnuh0k+TuD3bmx58b13l/+YHrdObGk+S+YzrvE/zpEr37ot/P11nHuORVnXvPLe/qrBtKkrlf7Lzf7cg9OuNQn9iu9x0150FzVro7Xdlb9/z+/Tvr1l8aNU+le+G2nfPFk2Tbdd+udC/7VudM+1OP6awtT5K1Zlqx0l125d57Xv/2Vud9urP+rvPexsfWu7jSTZLvnN55xj7/5Osq3Re+3ftdfmGBznvOLx7Vm/c7fNcxle7D23Y+77d6o7NHN0m+sX9n3dluF3W+o/7xTu/c323376zT2WvUa5Vukux+ZGevxP/fGxA7p74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9jBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAA/j/27jNKs7pg9/Td1ZkmNLEl5ygZAUEyIlEBEQUUyYgJRVREAUUxgyACBpIKKiooSFDJIoIIEgXJqcmxSR3oNB9m/DZnzXmdvletOuu6Pp4lv7Pf6qrn2fufNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GI/8n/eJ5x47LJhuvO8Yu4+MIL53jzP16d9Eql+9LrL1W6m2y4S6WbJOtuukmle/75P6x0k2TTbXatdNfdcMVKd/ElFq10k2TSlDcq3b9fd1ul+8xzEyvdJHk1C1W6N99+YaWbJNPeeKrSHb7KmpXuwLT/0dfD/8iExeapdOcdN77SXWi+xSrdJBk7ckalO+P1kZVukjx6zRWV7pLTJ1S6w2f1fhbzjFiw0h0xs/N7MXru+SvdJBkxu/OZMXz4k5Vukoyde8lK983XZ1e6AyOmVbpJMlD695s9vfN5n4HJnW6SmQOzKt1hs3v3RcNGj610R89eutKdPWtKpZskI0aMq3SnD+s8U06ZPKzSTZK5Rk6vdN+c0btHnDWz8/MYOWPeSnfc+OGVbpLMmtn5LBpd+liePblzvUkycuHO3/Xec29c6SbJ7gvuUum+OfvFSnfmoqMq3SSZd9SYSnfKyJcr3fnHzlfpJsn00mf+yN5HUeYa03mWGrHaypVu8UeR6S907sUnPd8ZK7r7hYcq3SS5e/LTle7UUW9Wukky7s3O59ziIzrP2JOH9+63Fl6g8yx14z8frHR32v49lW6SvDGtc4+/yOhKNkny2NOdm7l1N9ux0l3u9dcq3SRZdPHFK915l+l0Z87V+8WYNqFzjzHqlc4caJJccdm/Kt2939v5zFhu7bdVuknyxqRXK92Xp3ful3fYc+9KN0kyufO881jxJnGl5eb8mokkGTnyxkr3L3/7c6WbJOuttUKlu+oine65f76k0k2SddZfvdJdZLnOd1SSjBjWeUYbNbVzX3vfE49Xukly/V9vqXQ333qdSve+B3rjy0tMeKHSfenVSZVukjz13MxKd+6RnbUpY0b15m1njejcYyzw7vUr3edP7d17zjN357lkrs50cJJkyqxOfNS40nqMGb1nv2mlMZ2RszrrMeYe0/kcSpJX31i20p1/9HOVbpKMGj7n7+WGDfv/8Xw9ctHMXvzoOXcx/48VTttmjjf/Y4klnq10H5l8VaV7xKc6a3CSZPTozlrf+/54Q6WbJH+dd6DSPfJdq1a6/3j21ko3Sda+5C2V7m/mua7SPXnmMpVuklx1/cOV7p8v7N1brjjphEp3hYc6657X37HzLJMkhzzVmfve8si5K909z9q00k2SdbfqjJlefndvrfaER66tdJ+8fYdKd/qSP6p0k+STO3fWy0xa7NFK99HbO/ufkuSlN++vdOed2FuH89Kqj1S6fx39+0p3rXd2xsWS5GezLq50b/pL59/v0bd11sAlyWtrdtYnf2CVd1W6STJt4O5K919/7fyct3rypko3Sf6Vzj3GCovtVOle8r7vVrpJ8r6nOvNCf3jtnEo3SU6bskul+63StOyUZTtjTEnyzb909v9e+UJnTecqp3X2SSTJfj+6sNJd+wvPV7pJ8soynfGGkUd9tdJ9aOUPVbpJMnbCYZXuP5feoNL95H1PVLpJct8inT0YL04cX+kmySKndNY9z/5A597l3imdfalJMnG7Cyrdv096vdKdeM3PK90keWns9yvday7vraOaccQHK90DXv1WpXvM/JtXukly3rKd8y9uP+5vle6hu/TuMa7fpbMf8+kVes+rfz+usxbgy0d09pyP+fRulW6SrLHGRpXuUpvvU+keevP1lW6SrP794yvdDY7estJNkos/+PFKd+37Oj+LI97szK0myeMXd+ZAL15wtUr302/p7RNc8ps/rXQn3LFSpZskD671/kr37M/fU+l+fYXeOpxDFlmq0v3c/VtVutefvl2lmyR7bzhXpfubxXv7t/d+vLPu+dUPfqbS3fHeayrdJPnVzzp7Uz95a2fe6Mw/dJ5Vk+Szv++sj1zgjd4c9uv3dp6x/7FA5/vvpbM6vxdJcuA9n690r9y8s7bo3hs6n51Jcv82P610T5vZO+PnhN911k2s/FpnPfzEo/5Y6SbJ4id09t9Pem/nZ7HhfJ091kkyZmznc/n3S3XWWSXJ7a8ePMebMwZ+8V/9d4tnVL4+fM5/B225285zvPkfV578WKW750ZXVrqrnzep0k2S4Zd1xms+O7u3H/Kg++6qdJ9e9ZuV7trX9NYjXfHVhSvdve7pPG8sfOZ/9znzv2Ovj3TW2U95eJlKN0nunNR5Rtpvj87arOP376xfTJIT1+2MJez8mUmV7hmr9OaaDt2oM6f3/OqduaYk2e49G1a6+077a6X7wkW99SznfO/rle6nDt2r0l34wj0q3SQ5a1Jnz+lGH+3s60iS43+1TKU7bFhnTuj2v/+y0k2SN9/ozN387aqfVbqHzdyv0k2Si9f6YqW72+m9scfvv9hZA/fUUR+odNdcrXePuPo5a1S6Ix6a8/t+k+SSb59S6SbJO7fvnLf3noc650UlycdX6KwTPfWUL1S6G8zdOYcqSQ647oFKd53hnTU4l2xxR6WbJG/+vrOe7I55emfwj9r2V5XuHevtUuneulDnnjZJnjqxc3brLd+5udIdP6y3NuvYxTprnnec9INKN0k2mW/fSveSbbaudE85s/N5kSSXr3VUpfu7H55e6V40rffs97fvdc4XuWWP3iFJV77eWYOz3yarVLqjL+vtV/71Q53P5Xfsc0alO+GxYyvdJMminXnThbZdvtJNkr8f33n/2ktf6szV73NpZ391knxgSmcv5u1TOmflv/hS59zIJHnwN531IbsdMqnSTZJ/vKvzWfT1tTvPfuuu1dk7kyQ/u+LQSvflFTrrTvbeord++MS9O+2n739fpZskfxreeX74zGm/rXTP+VRvzfqZR3X2H+5+6WmV7vC/9tamnPPtzjPa9h/uvQPjkoHOuMCzJ3XOLf/AFr09ZrsM67yP4Np5Onu3j924d6bGyb/p7Jf8+R13VrpJ8u2FOufb7fPWzvla/1zwzEo3SVZfufN38rkTO+MNNz797ko3SXbdqXMm+rC39s7t+uGTnc+iTb7bmcM+4VedtfBJssc+nfX7D43trE3ZcoveuU9/G9255pOf6J0jMfXJ4yrdI//L/+7VuRfI5ZvO+c+xp+/qrRUdfkbnOfeGh8+rdI+e+EalmyR3nnlWpfvpS3pn1213SOeMq4W+19l/u/wz36h0k+TGVTvjxwc8fXWlO/wXnbN7kuSry3fOX7rpsM5amSQ5dqntK90Xj+78zm2yWGceOUkWfKbzvoiP7dV5V+C+d3TeEZ8ko+f/TqX72cc6Zy8lyc7v6+w72OHczv379XN9uNJNkpdve6bS3eWyzlqZg1+aVOkmyVmfvqzSPf0TvXuMDffpzKt/Zvvxle7YszvvnE2Speb5d6U7fLVzK92Z1/f+rn8w5UuV7il39OZ73358Z632F99+UKV74Bd+XekmyfqfWKLS/cQPOvOQ+/+gs/8wSVZ6T2e+8IMLdNaHJMlJW+5e6W63QueMq7ne97FKN0k+/rNPVbrvvvqkSvfwM3v3y9t86U+V7kvf6o0/njC+8w6vKQOd8cfX1+utex62fmlvzvjO78Uui/XOzvrXhp3vv1037rxnNUmW+G7n8/PBw7aodP/60945mh95oDNG8pNbO3vOD7xt0Uo3SdY/rjPf++VzO2vgkmT05p33TK7yWucz49VDevs8P/qlzllGa27W+V0+8Q+d8fAkec8/O59xKx/WWauWJJ8c1hkHHvebzvjW8CfWqnSTZNw9syrdn2/eWfd89PK9/QyL3t/5zFj2h513HiXJnht1zuyYa/7OveenNv10pZsk3/t4Z+3CR8/sjNU+sGtvDfjo8zrnXX5pic77S5Lkd6M73yW3XtLZp/vo7h+tdJPkzg91PosW2ujySndg9877lZPkpGE/rXQfGt45LydJfvehzpkrvzi3M/Z505mdcw+T5NNzd+4xjt3zI5Xuptt+pdJNkhU2X7zSne/szpqJJDn48521Vp+7sPOOyT1u+2mlmySbP95ZN/HCqZ1nh40+0BvTOXhcZ6x2hwP/UekmyZY3ddZwfeadnc/PNz7SWZucJAue/udK95y1OucnbL1OZ89Pkvz2pM6Zivtv3ZsfuPatpfG+35/6X/1nC80anQMnz/n96m/O6Oy7SZL11uy8++SmG/67n+H/l+/v3zujc+DlzrrnI449v9JNkkXW6ZxxvMOKnXcCPPZGbx3OI8t17i0vH9753D3+ot5ey8Xf25lX/8SkL1e6SfLrdX5X6Q77SWfd3olP9taATzi8M0d91j6d9T0/n7s3XzHvsBcq3Zcv741L73Z3Z9/PNX+8qNL95Yd7+/aX+lRnvnf4LY9Wup9/ufNcniQjlu+c6/uxT3bOgkuStU/trCl728qdd8N+fI3ee7++8bPOHPWCEzvPX1eu13sf42Jnd+abnj7zh5Vukvzxkc65J48s11mf9c55OutOkuSV1TrnWyzxRGcP/A479fYzfHzVkyvdW2f/pNJNks/d3rn/3HuTn1a6W8zVO7Ptu9t+rtJ9ywPfq3Q/+ETvnc/rvdmZi5y+Umd+OkleWr4zr37XjM74//i/dPalJsnSi3TOrVnrthMr3SnrdPZiJsl7Tul8Lp/8QGdONknW2qTzu7zcap3n4D/t29mjmyTTH5qn0l1wzc7v3MhH31npJslmB3bONfzIib13guz/bOce4/SLOvfLtyzUW7e+4FtHVLofvKdzttPU61eodJPkyrcPr3R/8bZ/VrpJ8uFDjq90vzuuc477pBV654ru/cvJle6HznpbpfvwXZ378CQ56bLPVrpTb+qcSZQkZ3+nsyZ+owc7YwKvfPrvlW6SfHWxznjDP7/f2TN57hnrVrpJ8tjzj1S6p+zTe//8KU8uUOl+f57OeTm/LJ4RM27hb1e6Lx32m0r3rht648u/Oq7zHbXrs733jq12Uefv5N5HHq9033h75918SXLRvp133X1nzc4c2snP9ebQRt7SOQtkr7929pklybeO6qwVWHzuzvfqsBN7n8s/PWftSveLD3T2Yr7xbO+dqa/c1TlvbN+xnTOlkuSayZ3zXc9+onN20Ht/1Hsf5LZ7dv6uL3iss+blIxv2zst55pFDKt19F1q60k2Sm/borJPL/+IY6YHO/28AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H+WgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGghH/k//xmzNn5KlJL8zxi5h77pFzvPkfayyzfqW71XbbV7r33XR5pZskq6+1RqW7/ts2qHSTZMLwaZXu0y9OrXQfn/lYpZsk8y28RKX7XMZXuuNmPFjpJskDT/2t0l1m6RUr3SQZl2Ur3dkTple6b1t5t0o3SUbP1fn7GzF7vkp3YPrwSjdJXnvuX5XupGdeqnSTZL4ZC1W6s2e9WemOGhhd6SbJ7IGBSnfU6Pkr3eGZXOkmycxZnd+LWdM79wFJMmLYqEp36pszKt2RA69WukmSWZ3PzxnTx1W648bMVekmSWbOU8mOGuhd85Q35vzzWZKMHt35XJ48tfPZmSTzzOz8/Q0b0bkXGDHXvJVuksyaOrPSHTWy97k8JbMq3YERnfvlkaN6v8tTJnV+FtMnv1Hppjekkxlvdr6vh0/uXfSE8Z3PotbzzqRXe7/L847ufP9NmtX5G5l73LBKN0mGzd95Lpn8ZO9zeeQqy1W6s4d1vleHT51S6SbJs089X+ne8tj1le4jU1+sdJNk1ozO38lbR46vdJNk1pj/0RTI/7bnZ75e6d42vXMflyQ3X3t7pbvWup35gecmPVXpJsmSY+eudF+a2Hk+S5JnH+mMC9w//PZK963bbVnpJsm4RcZXum++2Rm3XmSRzlhfkgwb3mkvNWyZSjdJbr39okp3wRWXrHSfvefhSjdJVlx8nUr3H9d15uf+dPkFlW6SLD1P53lnyZXeWukmyeilVqp0lxre+Vk88O8nK90keeWZByrdp59cpNLdeJdtKt0kefXRuyvdYcOWqnST5PUZz1S6z0x7utJ96J7nKt0kWWmtZSrdZRZcudL95zOvVLpJctujj1e6rz/fGTdLkqWX6DxLjV668+zw+pu9+fyXnurM71xz5y2V7oR5euusVpq6QqU7bXhv3n10aU5qzPDOM+WU2b2x9mGzF6h0R4/tfJe8/ub4SjdJRo/ojAMPzOzceybJzBmF+8/Z//3n27RxD+bhDXadgxfzf/v37hPmePM/Jr1rw0r36AsPrXTHn/GTSjdJ5r7pnZXuGo/35hUOXWOfSne3pTv3PK/98NlKN0n+uMHile4Xbjuw0t3qojn/WfEfL+3bWSt66v2d78wkuemRL1S6V3+rks3Gv+r9Lt926Lsq3c3efm+lO/HMznhpkjyw9qOV7rKf6IwdJ8n1A3+udJdaovNssOjfNqt0k2TrbXaudC/7aGceeeqR/6x0k2TeVTvrOF54tbcmcPkLv1Hp3j7hg5XuYt+bVOkmyfPrd9ZFzFqtcx/3yuWdseMkmbhzZ5/ZEs/35usvfuvESnfDsfdUulcvvnalmyS77H5jpXvtFYdVupM+39ubc/LEP1a6c31zTKWbJCuf2bkXuPecX1W615+7SqWbJNetvHmle+lunZ/F2W9fvdJNkgOOvrbS/fWlO1a6SXLj26+pdO9c+5xK95ppV1e6SbLfb66qdO/auDMO9ewCX6p0k+TlgT9Vuq93llokSRaYp3MvPt/ZnbVD521zU6WbJKu9cmqle9upb6l0Z+zeGUNMkokPdsZ09t6vN7584SGTKt2Z/96v0p39+NqVbpI8d+V5le7La36i0v396Nsq3SR528zOM9oje/XmC3ffu7P2ZNIJnXHEt6/Z+YxLktv36Ky9XGPEDyvd0392baWbJBuO7JwR85U9Dq50k+Qvv35Ppfv8Dp1zGeZ+S2+t6LgFtq50F1/g95XuYf+8pNJNkuVu6IzVjlvq15Vukqyxcuez6PS/dM5eG3tX73nn+s06+8GOX+qySvcXGx9T6SbJa0+cXuku9uHe9+qMk+6vdFcf2fkbueK0zlhDkix8eGdO8flrO/uKl7yrs546SU64dO9Kd9ddO/dbSfLpGZ3nyq0mPFrpDlx7eKWbJPNufWmlu84376t0f/HYrZVukrw05r2V7mWLdNaWJ8msF6+tdH+5W+fsp2+t1Xt2P3jdTSrdfXfszGks+LXOnG2SLLfDSZXu8Kt6835P7PW5Od6c9Y8n/rv/bmBE3phr4Tl8NckKj580x5v/sdu/v1/pblbaTrfRlp1x4yR53xf3r3QX2bDzHZEkB47bvdL9UTpjFDMf+0OlmyRvTt+00t3mwc7arKPHLFjpJskJC3XWJq99ducshyQ5rvNYnhOf6pxnf9IxJ1S6SfLOkzt7RhbetjN29Ydtl690k2SBn3d+Fost+NlKN0lW+eqRle7v/r1opXvFab3z2s5a7qRK98EDO+d93bL9UZVukhzwq85n/u23dcYHk+T5h75T6d5wamc92YyX/1LpJsl8uxxR6a7/8S0q3c90/umSJE+88O9Kd+zo3trWV/7YGbs6+LDOWPct2xxf6SbJct/rPJdfNXdnDvL4+a+odJPkhO8fW+mOuqezjzZJ1h3oPGSfOH/nzJMFDuzcxyXJc4d3vlefO/SsSnfKlzq/b0nyjfG/rXR3vbE3v3LnlM597QsHblHp/nJc71yZf93dWfc1bJXOnoP7Humcb5Ukz37sH5XuZt+5sNJNkp9c3NkL/YVrOuOIC23f26/86Zc6ayOP2bFzDsH+Z3yq0k2SnS/t/F58I721da/84TeV7i47d75XvzH5r5Vukux4z1cr3a+M76yhGjj3oUo3SRa+qXMm8w2P9c4hePZHP650tzmgM9b+wAZnV7pJ8tndOu99uGnjznzi6Vf27pc/9dHO/oupM75W6SbJwAc6+83f/ZevVLqrXdVbg7PkWzrn2N65Ruce46vv6o1PfuTnc349RJI8uW/v3+++rXeqdD/xj857Kv6y9Gcq3SSZufrbKt1bz+vs6f/Tt4+rdJNk/zXHVrofu603vvzNazr7qj67SeesqssX6zxfJ8n3v1Y6X/zwzruw7v9gZ9wsST65/GqV7uGH9/7+dvhqZz/Dxn/prKd53xK9/crP7X1dpbvCip39Ty+NPLrSTZLrrt240v3oV0uHEyaZ/MGfVbonH9g5a/3Ln1+x0k2SMy/qnE/93iM7a8Ouv+bDlW6SfG2Zzl6iz144qdJNknNO66xZz385dLbUrNfypalz/gyYLZYcP8eb/7HUiM5erwN/2jkX6F8DnbNDkmT0NZ13JT3/ZGdNRJJ8bJ0fVLpPHNGZC7n8nb2fxYrf7vzOfee0b1a6Gy3/aKWbJEtv3bm3/PNLp1W6SfLb2zr7IVdarjOPfNCPe8/PK1735Up30S935oX+8ck5v9/nP/ZcoDMuPeKGkyvdJLlnh845A7vs2tmP/NChj1S6SfLKPJ1/v1M/2DlDetrlnXNUkmTd4Z37lx/u1xtL/+Wry1a6R27ceX5e6c3O3FuSbP6LRyvdw6/q7OdbYuPOO8aTZPO1zq10Fx7fOXspSX7+m8798ke277wDdNvNe++2WfLqztz3H3ftvMPk8B8OVLpJMs+LnXczXDTmwko3ST78mc6/3zPLdz4/P7VKZz18kkw7sXPOwMXv6JwLdMTbemsNP3d4ZwPpHX/p7Ts4ZfVHK93nV+r8+839WGdMIEnmPfcXle75n+qsQb3rXx+rdJPkJ+M6z1GrFN+ft+gBnbnIpzfqjOksclpn3UmS3Hhl5705f/5n5z0HB3+29/75B5e9uNJ99e7e2oVPXbNYpbv54Z33gXz5ns5Zl0ny9lPXqHSnz96z0p1yyQ6VbpKM+0nn3RpfXbx3rs20WZ11OOd8p7PeYtldO999STLfaw9UulO36jxfX77VuEo3SR76bud9EreM751FcNkOnXXg35vUeQnGQd+6q9JNkl8d2rkvesdmnXOU3nbwzZVuksx7fufves+FO2sNk+T1kzvnl/z+/s5n0RXv7qzHTZLvTtii0t1upc6z3xbznV/pJskxZ89d6X5ntU9Wukly/ac794j3rtu5R3z05d7enN0mvVbpfuOYzp7JV17rra/b4qbO9/WIfXpndT/5z8sr3Q8c2/n7+9OM71W6SXLsVzv7Ue4+uTMm8MuFe+8SfPgbnfuteaf03iN/6G4nVrpHfr2znm33T4yqdJPk4UPWqnSv36xzBuvje25b6SbJV9bsrPV44cre2qL3L75hrf3fmDnPxEzadM6fabTaGb3/O9ff7vZKd6sjOvNCE7/6o0o3Sa6Z/KFKd+lZnf0VSTJswsuV7s8/2ZlX+OLPe3Ona4/tvBfgPU+9v9J9cc3xlW6S/PvWzvPXrZf01iT99aZtKt1lH5ld6R4zvjN3kyS/+17nLL9D7+ysp/7XKp2/kST57rWdsZWPv9j5vUiSRf7cOWvnj492zqx5+YLeu0VXvrnz/HzIxW+vdMdu3FnnmyRbzui8Q/LBdy1d6SbJzrM7e2Vv2aZz3vMWL/bG8hZ5o3P+7o4Td6t033ps7/3XIxbo7KEZ9evOPW2SHDTz2kr3mic6+xl2G9d5JkmSCTd3zviftUbnXWVHrdFbB7DGtzoHo8++oHfe8xq/7py3fth++1S6v93/zko3SQ6bvzM2dv5bO2c8vji5c+58kqz7hc46nAXWHV/pJsmXnuw8r15wf2e86POr9NbhrHdJZ+xlpZ0665P/edTwSjdJFv5WZw/NuZN775C840edeb0jp3X2WS/w286Zvkny8Fc659aM2bqz1veRZztnPCbJFptMqnRfu6W3T3fNtUpryj7aedfWJ847s9JNkm3P6bzP9tpbp1W6J+3fe1fMn995R6X79z917gOSZKfFf1fpXjbQ2ad061G7VLpJ8p4NV6h0p57Ved7Za5OfVrpJsvipnbMkjnxv54zHJJk8d+d5dYN/d9Yn3zrhyko3SU6b1rnHOHR454yfpzsf90mSd+3T+f478mvzVrpJctxhp1S62x15T6W7yP29Z7+lnuzs7b/8ns6Yzgnr9d6PstpnOmOfFw7rvXP6qvd2fpfH7NR59rv4yc7cTpKc8XDn2eHRYZ09d3ue2bk/TJId1ujsLd55684caJLs++A1le4xt3b2M6yyQ+e9OUkyfL/OutmT79iu0v3Dmb11Okf984xKd6n7O2fPJMnPfn1jpfuZXTr7Ucb96ulKN0l23L0zj/bH7z5R6R51Tucd9Uny/pM7a1POP+27lW6SLPDV1hrK8/5f/197p00BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9BBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgY8T/6Hw8fmQXGLzbHL2Lq9AfnePM/dtrloEp3/LzPV7prHvjRSjdJbrngJ5XuOu9cp9JNktXesmWlO3H0U5Xu65NHVrpJMtfkVyrdh/9xWaW76tLTK90kWW7Jt1S6M2b9jz4S/0cmPvpwpbvBuu+rdOedZ3SlmyQDI4ZVujNKfyOzRkypdJNkxPA3K90xwyvZJMmMF6ZVujNnTa50h41etNJNkoGRr1a6I4Z3fpdHZMVKN0lm5ZlKd/S8YyvdJJk15aVKd+GFOtc8bfrclW6SDJs1tRMeGKhkZ6Z3jzF21OxKd1h636tjBhaodGcP63z/jR0xrtJNkukjRlW6017rfN6PHNn5fUuS4WNndbpvzlfpJsnYeWdUutPfeK3SzbDez2L46M494qxxnZvEUa/PU+kmyZjRne/VgbcsXukmyfSXO7/Lmd35LFpkqWUq3SR5c8akSnfemWMq3RmzOs86STL7+c79ywIbrlfpJsms51+vdKdPe7nSffrRFyvdJLnjudsr3UdffbrSfWL2s5VukiwwasFKd8l5l6x0k2Ta1M7zzqIzOn/Xrw3v/S4//WbnfnnedMb6Xrz5lko3SZ4e03lGmz3vMpVuksy/UmlMdVjn3vNPv/lxpZskKX1nz5jZeUZb7e0fqnSTZOHxnXvxcQv25rrWX+ddle6o4QtVuvOOK42bJXn52c5c80Zb7l3pvvrMQ5Vukkwa1nl2f2riG5Vukkz8962V7hOTO+PWH/nQvpVuklx59SmV7kNP/bnS3WyxwyrdJHl8oc6Y+Lxj5/wanf945dHO79wyCyxV6d407+OVbpKMHd0ZUx1I57vk2Wc7c3NJssCI+SvdJScsV+kmye03X1Hpbv5S5+f83LRVKt0kufCyiyrdG267vdKd9mLncyhJjpi78+y3xPyLVLpJMiOd9VCZ3PksemPghUo3ScYM64yJT5k1vtIdNnZSpZsk88zqPK8OH90bkxt4szAnNfu/H9uaOn2u3PvsWnPwYv5vY+/77Rxv/se5x3670h234O8q3TE/PK3STZKLn/9TpbvPI4dXukly//vv6nS374z/jzx8mUo3SZb78bmV7pdvnavSfeQjvbG82ROvq3TX2XX3SjdJLrhn20p3j+efqHTfeWhn7i1JHpnRuTf5+iuddRzbfuuvlW6S/O6UnSvdRd77y0o3Sab/catK9/qZnbGE1d/fW4fzxGqd9ck37PLHSnfrDd9a6SbJyR/o/F2v8bvOWoskufOViZXuc6925guvv7AzD5Ik575rl0r39Gs79y7f2fngSjdJFr39D5XutXt11mclycE/WbvS/cNSC1e6IyYuXekmyRH/vqbSXfLAzu/coz87o9JNkqtXXb7S3fN9nW6SPPL7tSvdmyZ17sM3ePuVlW6S3Fdab3HI6M76yKemr1/pJsnrq06qdP/03s4zZZIMW+z8Snf9qzqfGc/s2lsfOXmjzjqAny+wTKX7/kc69wFJcvoznTX8Pz7+w5Vukmzw6c4c2aStO/fhi0zq3Lskyc2zrq90d15pUqW71zs7P+Mk2fCq0n6id/Sedza99+ZK983rO9e8zojO+EiS3HzHByvdZ1fp7G1c6NHe3Omq7+qstxi1b+/fb8xLnd+5+WZ3zkU56s+frHST5NVpnXmjq9K5D//W6p3zHpLk2rd9vtJ98Re9tScHv9JZb3j4TZ2zZz70lt748syVnqx0j/jBbpXuWfv1fpfvn7uzf/T8R/evdJNk4q87awXWvvOxSveLv9+z0k2SGw87rtJdZNqple4BG3yi0k2SP2y2S6X76ec766mTZNJj81a6M+ftnOVy+WdXqnST5OtTOnNdC7/WOaPpmZGddQJJsspBnfnx9Z9cvdJNknXP/2ele9KLN1a6457pnatxwwHHVrp/+dcale43r+7s8UySiRvfW+nuv+xVlW6SXPfmryrd99/Sua9dcLWfVbpJstBGnfvPK87pjPUtNuGOSjdJbpjROYtg8uIfq3STZOK0Of+7/PH/8rH9gXnmy/Zb7jhnLybJM/POnOPN/zhqpwcq3U8MnFTpnjO591kwsNGc/7dLkmc//fVKN0nW/OxNle7G+3Z+zge846hKN0kOOas0P5bPVLq7zfh7pZskB0zcotI94dbefsixT+5b6b78+ImV7inf6d1jv/uWYyrdN57dptJ9y0bvrXSTZLGTOvfYD63Q20u01vzrVrp3TD250r3p1AMr3STZf6/O39/SZ3TWk33hW72zZkfNvqfS/fXdnWfnJBn/j87vxkGT96h0v/eOH1W6SbL2vzeodCd9+b5Kd51XOt8jSbLXVodUurf+rjMHmSQzNuuMd39mic5c00GHdc5eSpL5Tu6cizdu987Y1Y3v/0qlmyQLHN35nfvb0atVukly67DOWWITbu688+jEvTrnkyXJWqM642IzPt/5GX/+0t46w92O+0Glu9YXNq10k2TR0Z2f89aXXVrp3v+3T1W6SXLkLZtVuoud1nnn2P73Tqh0k+QX53yu0j1neqebJDd/orNWZoUvdvZfrHn17yvdJDlw1Tl/BkiS3LRl52fx60N658C9++TOOP4lJ3TWJSfJ0Qd1PpevfH6FSnfXP/T+/f40ovMcvPflH6h0Pz+y916+a1/orIHb6YjeOMall3bGBd6z1jcr3cMXXLvSTZKXdr640l31PQdUun9asTPumSQnXr95pXv/be+udJNkxPc7835Hv2fNSvewP/bON9726vdUurdv1zkH9cKre+8ZuWt0Zw3cQ3u9vdJNkoPX78wpnnR356z8S/frfF8nycK/6NzLLfa5vSrd+67u7emfPbNzXuK7f9N7L+Y3juqsJ7s+nfGiseM7ZxAnyX6zOnuhj9yss37/0St7e/qP37pzVv4PN+/tN7/pu53x2g2Xf67SnXJ/by/KhGM6c5U/WrSztuH8Jc+udJPka/d2zmp8c/fzKt0kee69nfc3v/XdnfX7bz+9t/f30kmd37ll/9EZE99wcmcfZpLscn/nfvnyZzvnliTJY5M7ewT/W+PGTcgGb5vzayQfO7Izd5MkF9zTOcd2l9md8dKZf7ik0k2SpSd3vjc3+8lTlW6SHHJG5zyARXbq3Jt88YwvVLpJMnH1jSvdbffcqNKdvWJvz+lxJ3XGjy9e/c5KN0m2Wr0zZnrEXdtVunvf2DtfdakN/1Lp/vW7+1S6I87oXG+SnH37EZXuGQ93zpBOkp/OvKHSnXrIryvdqx/v/ft9+Y1/dcJnHlTJvv7wo5Vukmw0szO2cvsHSz/jJAct2XkGW2SpzvuBvjrsh5Vuksz/nc584Udnd+brbz+28zmUJMv/8rZK96BNO88kSXLfE531kWev19k/evi1vTmyPz3VOV/86D07a31/NXfvd/mauzpjNi8d90ilmyR//UbnTNGJf+uMP37qii9WukmyyRmdue815uvsU/r6Pb33z9//ygKV7nd/0znTMEk+Mr0zjnHO+R+vdF/57YOVbpIsu2jnDP67v/ZypbvXXb3v61kfnVLp/uqcb1S6SfKHyZ11EWv/vHNfe8DnT690k+SUP3feLXrKJZ2zutd/uvN8nSQ/3u6zle4+X+7MySbJ8Ac751Q8vGbn3mWlc3vvOX7szc79587XdH6X9x/fGR9JkoWW7ZxPvdo7d6p0k2Thq7audM9+W2dN54IHdfZYJ8n4mZ1z5z+9X+fsrHkO75xtnCTr3dS539pmz/dXukny0bNXrnT3+l7n3++RTXvPO2t9vzPXtceZ76x0J08+vtJNkjUe6Kxj3HDtzlmJSbLsoZ33/Ly8z5GV7vemrl3pJskJX+zMYT/12FKV7sO39O4xXnyqcw7dEgt39mImyZ+P7bzX+1uHd96Xuvx2vXPnf7x95/yEe5/6SKW7y2d6725+54Gdn/POJyxb6SbJFhd19m8ff/mZle5f9ui9F3OTCZdXumfN3zmTefhXO/92SfL4BZ3v1UOKz34b3NXZA7z07p37rf336bxXKkn2HPntSvegkZ3vqOe2672PYMP9O2dXrnd0Z94oSS4a3nkX6397V/TYi6NzyC/n/P63xXbr7dsf+4HOe8Y3W/d9le7La21S6SbJw+csUenO/kFvT9a9j3bGYj/w/c5a7b+f3XvP8cAGnTP3nj7+b5XufD/qvYPw/aUxm+Ef7L237bWzOr/L09fp7El+5u5VK90k+fsxne/jd36q8+/3/um99T07Pdt5fr58lc6ZGUmy7uc6c1nfn6vzrqRH/t75GSfJltO+W+lusPvBle6Ex3aodJPkpMs76543vLR3ztVxX5le6Z67ytqV7l373F7pJslDX/9lpfv8RzvffR/dsfOMlCSHXP/HSnfl1cdUuknysYG3Vbrjl+6cWbPEe3vfqw+O67w38Y2nO9f8hbOurnSTZIUR61e6x5/TG8t7YtMvVbpbpfMejFO3mlbpJslrB3TGpV949cuV7po39X4v9tui8x31wAa9M0T2ubezt/inzzxb6W6wV+/f74/Hd8alZ5+3VaU7X++YpGx4aWf+ZvFte/f4p/+4897LzU8fVeleffbtlW6STLy8896jMVvuXeleuXnvvUd/m7Bvpbvpjzo/iyRZY8H9Kt3rZ/+00l3lw533XyfJDl/snO200C87+8y2+Fjvfvlna3fOT9j4vb3zBx/8yp8r3c3u6qy132+D3lzJV4/ozMt+97XfVLpnXtRb0/LnWZ09r/98qbOGOEmmHbxlpfvzz3f2b1/41s6Z6Ely8Xadc9wv2vWCSvftf++s802Sy0Z29qN8bp7Od1+SXHpX57z1y95crtK9bkpn3WWS7Lvao5XudrcMr3RvPrYzt5MkV23V+V4de0pvriQzOu9AnHhM511N7xvW+b5Oko+d2tl///RBnXP4v7hhby/7n37+i0p32U067wlNkjPX7Pz9nXZq5+e89dW9vXHPrtg5l2Geb3Ter/HR0zp7+ZJk3+veUek+8lBnrD1Jlv9IZxxx/ts780aPvNG733pgyc58/k4b3lXp7jylM+6ZJGf+YPtK9yt3d+YdkuTzny+dJf2/uBXonc4KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8HGRjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBjxP/kfjx4+OiuMX36OX8Tc75w2x5v/cee/r6x055/vzUr3hYsur3ST5BNf2LfSHfb6K5Vukrw27I1Kd8KYBSrdl9K53iS5/vLrKt0VFur8Ls8z34RKN0nGzrNQpbvI/ItVukmyzJqrVrozZk2vdJ+ZNKvSTZJRIzp/J/MNn7/SnTFlZKWbJFNfH17pTrz9r5VukoxO5+c8ZsTCle6wEZ2/kSQZPtD5nJs+e3alO2Kg97s8fFTn32/G1Ncr3SQZPnp8pfvK8zMr3TFjRlW6SZKBeSrZmTNeq3SHZXSlmyTTpg1UuiPH9D6LZqRzzWMGOvdbs+fqXG+SzE7n/mXM3GMr3dEjxlS6STJ7VOceY/qo3j3itOkzKt35Fup8X8+Y1XmOSpLpUzpjJHPNnrfSnTV2rko3SWaVPjJmvTa1E04ybsH/0VDb/77Znc/lSU/9u9JNkunTxle6883Tua8dNm1YpZskw9dcodKdOa03pjpzeOe+9ukHnql0H3vloUo3SSZOur/SnTSq8+y39MBbKt0kmbc0pjp2oPOzSJJxYzvPUq+Uxq1XHza+0k2S+d+xc6U7ddTTle7qG65T6SbJJeefVekutdCjlW6STFiic18794Kd77/Fl1ui0k2S5yY+X+mOH9/5/Hzqkfsq3SS54KZLKt2N1l6r0k2SaaM69y8DkztjL8usvEqlmySvTeo8V772aGdM7rWpUyrdJHntmc5zyUrLLl3pJsm/R0ysdLdfa6tK97aHOmsmkmTCsjtUuiNHPVvpXnHHHZVukqy72OKVbmk6MUnywnMPVrqTZo6vdOeb1fth3Hn3U53wmM7f36gRnef2JHnqyRcr3eU23aTSTZKF3rJ6pfuXmzvPfnMvdG2lmyR/u+Pvle49jz1W6c6a2Zt3+Mobl1W633/LRyvdJJl7Sufvb+qs0hzaiN46q4GBzjj+7JmdsaKBdMbNkmRYaanAC9Pu7YSTjBhVuOhh//1c4thRw7La4nN+buHl3cfP8eZ/3PjrL1S61z0059d/J8k79j6i0k2SQ96/bqU74qmLK90kyU86Y7Hj331Gpbvyy517qST52KKdcYqRq3TGgna/56VKN0lmbb1gpfvKyr05zj1uurXSfXS5zvPX1f+4vdJNkpkLvK/Sfdu/b6x0l3nhI5Vukuy51U8r3c3+vlqlmyTv/VRnnOmZo99d6a55xCKVbpKM/NOfK91FpnXuBY5/+6mVbpJsfPRnKt2/vfF4pZskq7zeeeafMXq/SvfGSw+tdJPkc9d31p5c+dKrle4e2/6s0k2SW8Z31vAvd/HLlW6S/OPqLSrdlffv3MuNOeC5SjdJBn66WaX7/Fydcc091zyg0k2S85/rrNU+5tYPVLpJsu0mR1e6/8zXK90xG3+20k2SK8+6pdJd5v2dZ7+57uj8viXJyN8eU+musunJlW6SvHRyZ/7m+nmfrHQnnNG5p02Sf81as9J9bfymle4bK3a+R5Lk+pU667MW/tw9lW6S/OqszjrUC37Qeab81rE/r3STZL3FOmu/Dhv1x0r36wevWOkmybwTO+PLj2ze2xu3yO86z2jnv6vz97flDb39KLOv7rTnu66z52fqGttUukly5nu+XOneu/vbKt0kOXrxyZXuj+b+QaX7of0OqXSTJP/qjIlv9O3OuURvPfuBSjdJljyss272Q4f15neuXaAzRnLwsp15h4Vf3afSTZKV/tH5nTvlrZ3nncmTHql0k2TBlztr9z6x/Nsr3SSZd2znLInHT5i70v3pF/5W6SbJH67tPLsf9IF/Vbq3v9A7I+aoxTv7fs7f/8eVbpIs9IebK93rp3bWBC5/bSWbJLn0051/vy0fvavSHfFg7xy6my7r7Adb/QfXVrpJ8p2vd+5fxj/83kr3b/PfXekmyZ+ndtazTbn10kr3iZV652octOAVle4DG3fGdJLkwVc6Y3Lvn3pspfv4or1xqKnPdO7lFr6ic1806aOdsy+SZKCzTC5THu6tQbhmj23nePO1Uf/dGOLir0zN1y+b82u8b1upc15Gksw166uV7vu23b7SXeu6b1a6SfKXZVaudPc65/hKN0nOe74z3rb9LedVui+dXjzj6urOOPrff9xZtzD9sBsq3SQZ/ssPVbrD1u2NPc7ztc79X97bOfNk08s7a7STZIkJnWekxe7/SaX74QsuqnSTZMErv1HpXnZs70zY8Yt19sDvPaPzff3cZzesdJNk5yc6+yx/denale6D6/T2v8//Qud3brdXO3OQSXLgfn+qdG9480eV7vZnP1zpJskHhnXGa557uvNMvu+iH6x0k+R3H9+70r3miP0r3SQ5/4rO3uxHF+o8l/9whd55bYs+2NmL+ezW76h0L/r8+ZVuksw/ubPW4pKneueHbPtQZ2/OBr/ozGPd/NdzKt0kufWasyvdnw/bs9L90EG/q3ST5A/z7lrpXveW4tjLjp2/vwl3f7HSfXFGZ6woSf62VWef0qGf7HwWrbhrZ81Ckkw5uvN3vcH3O89RSbL8WctVuket0Fm3MO2Z3rqFQ+7orN+fa9XOWZcL7tG7X75vh4Mr3b/P7NyHJ8mXlurshb58i6Mq3X1O/22lmyS77NLZs/WO5U+sdO/4TWfcJUl2HtE503CthTpnXSbJrR/s7H/a6ZudMYE7D+nM7STJat/ozHt/e6CzfniNMZ0z8ZLkj+/qjF2PuerqSjdJRv16o0p3i9923pf64Pt6n8sbndcZL9p+j99Uujs82vkZJ8nOXzuu0r3ne729RLe8q/OO11uW67zn55kLv1LpJsmSG3Y+i9a7urOneNTcvbOORr/ZGe+7+DOdswKS5K4vdc5BffmmzhqgQ/7U+bxIkp8Nu77SfffynfGtjQ7unee25sOdd1VsP/ydlW6SDP9lZy/Rva91xqE2XKG3R/CamX+pdI897B+V7pXveGulmyQ77ddZ2/fGh/9Q6SbJnod31oat/NbONe93b+cMlyR5Y8XOORJbfrRzvsFaS/X2onx7Wmdt8tgbr6p0k2TVv3f2bp/7X/53b0x4ODcdvsccvZYk+fxDvXc+P7VX56zgmW923r+7/sc6Z5UmyU/26uwh+/Chnf3TSbLNOzpnDo3/a2dN5+b39M7x2+ekznfb7kd2xvLWvrzzDp8kGT7XGpXur5fvnHWZJKdM6Pz7PTb7F5Xu19brrc9acrfvVrrnPd55Fv3k3IdVukmy414/rHTn37V3pu+Wx3yi0n34hs5Zz/fe11uHM/mpzv3wc1t3znpecJ7O30iSvLJwZ4x3h0M658AlySrXrV3pHv6jzntyd1tifKWbJH9fY6lK9/d3d/ZW3fBIbx55iSs/Xem+57avVLpJ8tl7flrpvrRT590ou/3mhUo3SQ69ovOZ/4HRnXVU873YOztr77d29mActWPn+zpJvvexznu0prx77Ur3xlmdMw2T5CcPd96Dtud661W6+x2wdqWbJPtesFule9ClW1e6SfLNXTvntBx+Y+fZYdZvO/ObSXLkjtdWug+N7sxR3/dkb8/kvVM6Z558b//PVbpJssTTnTVa3z+mc3bdVb/8XqWbJNeceUKle8XLnf1rx6x5ZKWbJIve9vlK98s/+WelmyRnzezsO7jyls66vd//u3eWxII7LFnpXvvLznkP427dpdJNkr88P77SveZzvefVtzy5e6X7g+MnVrp3XtyZj0qS/T7Qed45aO/Od8lvd7qm0k2SbebtnEP8nV99v9JNkolXdua+N1jizkr3b7N6aw0v+M2cP/ssSY5+vvNd8q+remvAN936lEr32D2+XekmyXW/7cxhb7ldZ05qwet774lZ4lvfqXTvvK3zLsH9F+vN+y1d2ndw9/d7e5YfO6NzJuzBu3Se/R7bu/MzTpLlj+u8f3TnRTrfJcec1xlPTZJFP9zZ53nygR+vdJPk5dK+gz3OK51PeGrvrOBvjuuMfR5390OV7gY3fK3STZLz9u48l3xsg94ZMW9uU5rrOrMzb/uuVXv/fq9v3jnH7KTRnT0YP5vZWaedJBfc0xmTu+8LT1e6SXLBZ1avtf8biyw6PAcfOe8c7256TWfuLUnGHThfpTv/o50zYH67wrhKN0ne9Xhnrdqth3XOTk6SI1fozDm9snhnXu/ePSZVuknygbd09gc8/uMtKt0P39M5CydJ7pyvMy72zXk6e6iT5OVvnlbp7vdyZx3Aka/31j1/Y5HPVLqjdu2cubfjAp1xlST58azOmZe7D/TOEFl/dmeNz5t3vlLpfuvI3jqAExcaU+lu98zCle55U3vnPQ//w+hK94vrfbLSTZIjTu/MRa73lg9XupetulOlmySXXtf5zNh88pzfL5kkq1/S+45a95nOv9+mEzpndCbJagdPqXRnz9N579fxD/f25lxzTueM1d882FnTcuBeJ1W6STLXfJ332X51g967fvY/9/RKd7e7On8jOy7ZewfhjKM7Zybev19nb85Gx/XeP3/38519B9Nf6535NXHXwyvdh5fuvN/mxB0/Vukmye+P6swXfuGX76p0dzugc45mkvz8rC0q3Znv6J0hcsmEztqv9RfcrtLdZIHOfUCSPHNhZ1zghTU670++9t+dd0slySI/7Mwjb71378y9TSd25shuvrizT/fqj3W+r5Nk+GGd81vPvaPzjLb+uN6ZX1Omjq905zr/oEo3Sba4esdO+H3HVLJf+3pnTjZJPrh758yVrT/xqUr3F4923oeVJM9u35l3OOyAzr1nkly7Ymdc4IEtpla6VxzXO+Pnnh06n/nT/tHZc/et3/5375P+33HG/p3Pogt/3FuTdPuyneedD13cOe/osDM7a1CT5IHPdNonvNg513DFT3beQZMkpz3y00r3O1t2zm5Nkm//+oJK96k1Os+rty7XO4fu8Fs75xK9bevOvpH51+ztmfzxNr+udNe4pPMZlyQTZnXmmj93R2d8edMrOvPBSXL8Ep37rU1/0Vm/de/rvd/lZ7+wQaX74Ld64xiHj9ql0r3y5M4z2nEf753Df9Hdnb0S15/QeUf9uc/0fhYffltnTOCYB3tnl595cGeu63+l97QCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8HGRjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/i73/jNarKsD+3Ts7hTQgoXdC7006CFIEQQFpghWwI4KiKKhYQUUpCggKKIooIEoTARFBOiKK0ntHeguQkISUfT78j9/OOePVk3tk5B3X9Rl+Y42d51nPWnPNORcAAAAwNxj23/zHE199MRdd8vPZfhCPPPPibG/+x6QXXql0F11kVKX7xY+9r9JNkilTplS6w6aOq3ST5I0336h0J1WqyU0X/q5UTv793JOV7ts327zSHTPPYpVukiy82OhKd9aQsZVukiwz3/hKd4Ex81e6gyP+q5+H/8qrb3SO+fXn/13pjpg5s9JNklvOP7fSfeOZaZVukiw8Zb5Kd3DEjEp3nsHe93rWmE535rTO7/XM4RMr3SQZNmxopTti1JBKN0lmTu185maO7Jw/pw++WekmyYjhnfbodD4XgwPjKt0kGT5saqU75M0RlW6SDJtneqU7c2bnbzFrsHTyTDJyTOd7PWPGPJXurBGde8okefXFzvd6/nGd36gkGdH6zR7S+TsPvtH5vCXJYOnyc7D129f7WufNN5+vdIfO6p2XJ7/auRYfMbRzXh4+0Lm/TpL5Fu3cBw9On9zprr5KpZskM1/rfP+mv/pSpZskk559odJ9etJDle5z056udJPkjVmDle7CIxeudEcN6Y0JjBzROekPmd67xph33pGV7tBZnX+/V2Z2xsOT5LmnO9+/bffes9L91tc/VekmyfjStfjDr3TGJ5NklbXXrHQff/WxSnfUa0tUukmy4opbVrorbLxppTvt8d7v9dZ771Hp/vWKyyrdJJn82FOV7mk/+0GlO2Rq59ozSTZee/tKd9T8nTGBCautW+kmyfilduiEpz7X6SbZZLm1K92X7u+cM4YUn4E++9rjle6Igc4xr7nSupVukjz00K2V7soTOtcBSbL0MitWuouO6ozpPHj3kpVuktxx74OV7nPPdOYsvX2bD1a6SfKHC39a6f7i7J9Vukmy7ZZrVLp/uem6SvfVl3vjk/c/cXelO6l06z5ySG9uyriVxlW6q32tcx2XJE8ce2+lO+vFTndI7xF2hg7tjJEMDHZmDc4YXKjSTZJpo1+vdMfM6MzfSpJp0xpjqgP/8//5+pKTc913/jEbj+X/8ZbxnTlUSXLVxNMq3SmTNql0t9tr1Uo3SV7fb+lK99zBb1a6SbLOl86rdDfboXMOO/C5MyvdJNly7dsq3TfXnFDpXv/QUpVukqz0gY9Uur/7Ued3IkkOWrTz95g6pDO//LFVenN993m48yzyslUeqXT/9Oq3K90kee6Yzpjp5AVerXST5NkXJlS6txzfGUtfa73Oc5AkuXG/zr3B/nt0xj9+cPFylW6S3H9RZ23OuPk7Y4RJ8tIRK1S6i976/Up3u617c5J+N+XySneZ45apdG/bap9KN0keGPKXSner53vzW588sPP7N89WD1e6r1+2daWbJCOOe7bS3Wzi4pXurQ/2nn3fO/5/v+///2WeTd5R6SbJsIc7zxXu2bFzj3b/4737nd2e/kSl+9JzD1S6Lz50Z6WbJCOf/GOlO/SBztqcJNnukd9WuqdtvmClu+fb5q10k+TMWZ2/xV43d35Xn1i9kk2SXLJY5wHA1fd0fqOSZMMlj690n79unUp3cPne9fIia3bOGX/5eWd+1h7v/GalmyS3LP2xSnf05XdUukny9NjbK907Ry9a6W6WjSrdJHl66xsr3a0/vXKlu+57O3NlkuSg+TrzZfZ6alylmyT3rLNZpTtqYFalO+Wmt1W6STLfzvdVupc/1Jmr/dJgbz3KohdsUelOePCTlW6SnHhL57n6RZtsVene/tHeb9RSe55S6R5Ump88ffFxlW6S3PvT9Srddx3YG1++eIvOtfjrl06sdEevd2ClmyQH7dN5nv/i7zvjGAcu++FKN0n2HvmbSvc9s75W6SbJwKjOmOrGI8dVujMf6K1nmPe3nT1G/nhrZ6z9kO06a7aS5MePHVXp3rTBpyvdJPnGee+tdH940x8q3ZPXOqPSTZJDfrtTpXv/a515cstOvaTSTZJVHl2k0l38ph9Xukmy+ladMdULz+jMRxz9zE2VbpI8u3dnbc7Ut3fmWZ0x4YlKN0mOOKszn+3SRXq/JV88YoPZ3vzjGxf9T//fyMnJajfN/men9/3pmdne/I/hx3bmDZ39m845d7HP7lXpJsmhx3Tm4Izf9+BKN0l2vfTRSvexW46rdM//9QmVbpIcuMJrle4fbuusv/3h33sbfm16Vue59zwX9vYPOWVGZ27djEs7z1f2Pay3NnSJGZ3x0ocmbVvp3vPP3prhZad39ocfuVRnH6Mk+ccDnfvFg9/YrdI9aMPeM4WNn+iMUSz6g4sq3bN27c3tmbb9kZXui3t8vtJNko2u6qwbPmTodpXu4hf8utJNkmPHdP4W/35n5xp/y1U7a9ST5Lk1O+f8vz/5mUo3SQ5Z5Z+V7g9v/1ulu/7ivb3PHtvsS5XuW4Z03sfzzuXfVekmyVbjO3sP3nxn791EZ57QOX++slHpWf1enX0/k+SwTTvze14/vzO+u80yvbXbnziqM8/3ho/3nnvP8/Lyle5Lp29c6a7xq974/Hc/0rl3uOgzF1e6BxzcWQeWJLve3VmLctk6nfGtJFlwgb0r3Z9ccVelO+223p4af/t0Z4+5p7/8lkp3z6t757gzju3sWTN23867NZLkd492/s47LNj5jXpis84eLkmy9xGd595T7u3Mmb1ijbdXuklyxwUHV7pLfqaz726SnL1H53p5k1U618sf++HplW6SXPhoZ23AhIfHVbpfvqs3JjD2hs73+l03n1rpJskG4zvvdlvtyM5eORPX78x/S5I9f9OZZ//ZD87+9zYnyUev7c25fOk9R1e6F2yxTaWbJCv+u3POX/zuzr3f1476UaWbJLdeu1alO/3fnefBu/6ms1dHkmz0t2Mr3R1/3ZlzmSSnn3xBpfv5hW6pdDd87eBKN0kOLd27/37Bzr5B75zROd8nyRZLfq/SfeCDX6x0k+T2n3XeJ/Hhu3apdBd48fxKN0lu/0lnzvo6QzrzMX44srO3eJKc+tqlle7Te3SeoSXJN07unIs+cvfnKt3np/yi0k2Sj96xe6V7y12dOQg3bvFYpZskJ565YaW7y72d95ckyaqLXl9r/y8mPb14rv3aIbO9+9IF98/25n/c+Y/OnkNfWvueSnfhg3tjeR/9ceeecewBvXk4L5zZGU9Y69Fxle6fl+rdJy1xUmf88V2f37fS/d5GnXm+SfK2IVdUupc+0tnfMUmWHNF5LrTPwp1nLCd87U+VbpLs+FDpfS0rd+bhfP7vnfd/Jsk8fzu50j1p3t55ecubOmu+v/fg5pXuZYdfU+kmyQe2+2qle/U9nXcwzfPd1SrdJFl/no9WuuvM07vP/euBnTmBPx7SmTf7r7/M/mvw/9hhu86+eJu/t/MsZP+Pf7nSTZI1T+isRznyouIzljUPq3Rf/HZnLfmla0yodJPke1t0zkVXLPNypbvu1zpzI5Nk9cs756JPb9SZa5gkB7+78zu13MjOfPgTFursN5Qkn9mm8yxy+kudOYx7DRbPy9/prNO9/vnOPmJJ8sz1nfeuPLBb5371lB16+5afO/rCSnfRVzrzqDbfojMHJ0l2u+bFSvfVd59T6SbJd6d39tQe/fHO8/pzT+u81y1Jhr/xlUr31O9dXemOfXDZSjdJvnbAQZXuuvd1zvdJcu8unfPnwu/v/P4tu19v4/lh7+880zhnwxsq3e2W7IwBJ8kiN15T6Z62e29fm68++I1O+J0XVbKnT+vNAzjohs47oO49ojPuucL4AyrdJNl2kfdXulvc2pl3mSQb39Z518Hzp3Wuw5d4tjNXLUnWXrFzH7zeSZ3z51GldalJMnhwZ+7JFb+8rtJNkg+80FmD8drznblqb3uss04iSYZ84txK94lPd+5X//jr3nyMuy7u7MVz6Rq9537r7d+5lvvndp1795cu6b1z7KZHO++PvWjTPSvdb7zcec6cJO//UueYB/fsjb1s9OXOOPDqj3TWeV5yTuedD0lyxDmdeRNX7jGj0j37/N745M0/6OwLNmvytyrdJHnmgs7f+TNrdN73Pm1y5x1bSbLyHzv7Nb57+85v34UbdNb8JMnF3++882ifaVMq3SS5fKnePu7/i4WffCGf+PxPZnv3oodPmu3N/5h3g875fPPdO9dTx3y0N5aw2/WduXsvz9ebx/G7j3eeke19cmft29rnddZ6JclHHj670r308A9Vutsu29vbYuo6765039z2oko3Sb71Uufvce5hnXlwv9izNI6e5JkXO/tbHLVNZ67TOWN61yZfuLZz/nx1z864WJJcdW3nXWUf3b8zB/V9h3fmJifJ0e/+bqX7tfGd50LfL70bL0kOvLrz7Pvka3q/JXsc3FlfuMuIzn44n37lO5VuknzrO+Mq3Y3v7rw38fm/dM4XSbL+cZ29r+9YtPPelSS5/sHOO8W+fkBnzGatC3rzAA5cq/Oe3G0W6+xle9GfO5+3JPngBzrz1j+9Z++d6yuP6uxN+eGvdD4Xi733X5Vukpy78BmV7vKPdcbFrjqw83lLkt0/PqHS/fUyy1W6SXL8ip13rS6z+FmV7s73dPYXT5JPb9d55/pON3Seqe84b2986+Y7OnNyH7ux8w6oJDn6q1dVuufs2dl/6aV5x1e6STK43wKV7h8f7Lzb9yOf6L1b9LPHdtY23vK5yZVukiw3f+ce+6zJ61S6N17Qe5/g9L915gGMTmd8ZOuRnXnaSXLazM4aqH3u+VilmyTvWbbz7/fXVTt7+X3ow705SWvee0el+/NrO/vDr39y573MSfKVX61f6V5zTGeP1ST544TOPnM/vaEzJ3f0ob15szMWvrHS3foXN1e6T+b4SjdJ/nB+Z53g2AN6z7o+NWlCpTtk08785Af/0Htu9K15Ou/zPOI9nb27fvtY5/15SXLV5Z1nihctP7HSTZJPH9S5L/nE0Z0x1YOHnVHpJsnOy71R6a6/Vefe/bYDOsebJCe9pfO7+tyevfco/OHD91a6z+zzYKW76Nq9ec+PPN3ZU/GEIZ3uF5br3JMkyeFf7Xzm/vme3j62D79vQqW7wpqdceAtz/h9pZskk9bqjONPHtYZb1jns733sn94186aybu/0tvf9fijO++t+nH+Pz8r6eyUDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lxmY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODgTl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNxiY0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODYf/Nfzz1zRm5/4kXZ/tBzDv/0Nne/I/dPvz+SnfN5RaodFdfabNKN0nGZ3il+9QC0yvdJBk20DnmUTM7n7nV3r5VpZskS919e6W72PwrVrrzLrFgpZskg7OmVrozh4yudJNk9MxZle4r06ZUuq8+P6nSTZKhQzvfv8FhnfPFlNK5M0kWW2L5SveOf/yt0k2SRcZ1vttjx8ysdCdPG1LpJsk8g89XuvPPv0il+8YLlWySZPi4zt95yqTXK90kGZLOMc83dlSlO2PquEo3SQYH36x0h47q/K7OLF0HJEmGdn6vh/Z+SjJz1mClO3Rm51w0esxrlW6SzJg+rtIdMtA5F02Z1vtbjBg6ttIdOtDpJsmUWfNUusNffqXSHRzeG8fIQOe3ZHD+eSvdmW92/sZJMs+bnc/FwNiRlW6SDJ3S+V0dNrrzuzp0nmmVbpLM6NyuZtgai1a6Q96oZJMkQ9+cUem+8Urvt+TZ1ydWuk9Pur/SfXZKbxxj9LwLV7rDpnUuEkfMU/ryJZlnyHyV7nxjevfuk6d3fksyovP9W2ps5zo8SbY89JOV7ik/+Galu/s7Nqx0k2TY0MUq3ZmjVql0k2SBMf+sdMeMW7LSvfGff690k2TmqGcq3VuO/32lO2/xemuZ+9eudJdYauNKN0lGL9j5/o0a3/mNWmml9SvdJLnwvPMq3eUHO/c7L016sNJNksFXOmPtSyza+yy/8fizle66b9u80r3n9tI1UZL7/vbbSnezreevdN8cvUGlmyQbbbBnpXv3kw9Vukkyc2rns3H3fS9Xuq9MubPSTZI3JnV+s595pDOf5l8zLqp0k2RgoDOO+NxrT1S6SfLQs53z8iqr7VDpnv7rUyrdJBkyozN2PXyw8zx/YJ7Os7kkOfHrn610h4zpPR9Y/IBtKt0XvtP5LZk02Lk/S5IxQwYq3SHpjL0MGeiMASfJ4Bulh81De8/dhw4ZN9ubQ/K/fybmuX9qJmx712w8mv/Hv17pPW9652Gd34ptd9qq0v3nt1eqdJNkixmd79di8/yw0k2SRb+9c6W7zGvLVbp7X7tmpZskkxa8otJdc8HONeuM4ydXukky9szvVLrj1umMtyXJv+/Zt9Jde8mvVrrTt++N5Z347c7ky0eHr1vprvZg53yRJNe8cmWl+44r76h0k+TR8Z3PxgqvdZ7dPPSNzj1uksz/wdUq3dcHJ1S6z159c6WbJMMmdZ73vr7vJpVukmx13GmV7ksbfKDSvejGzthxkiyxbueZxbRjj690h53U6SbJEjt+pdKdvuRVlW6SvLlHZz3KjZM64yob//1HlW6SLPa3P1S6r93ws0r3tuUXr3STZLdtb6x077tmt0o3SXa9e+lK95qlnqt0D3zy3ko3SX67WWfu3mKTV69019jy3Eo3SYbeslel+6PXe+u3F9n1kUp3oyefqnT/tcSYSjdJZrzQuXcYtslvKt3prx9c6SbJavN15vpOf2ahSjdJrn/1253wPZ3xySHzX1rpJsl6l3eutxZd8J5Kd6e7Os/0kuTMZTv3lTsd1LvfWexXnd+/IT98stId//E1Kt0kWf6Wiyvd6ft8vtK9b5/OGs8kedtfOnsRLL/vNyvdJJm57hmV7vJf6oxvPfPa9yrdJLnh153x5fGvdObN7rNYp5skE6+9sNK96pR1K90kWXLJznjflOcOqHR3+si7K90kOeaFzvy6J17ujI+s/Y/OPUmSHLXRMpXukEc3rXSTZMim/6h0V12s81l+8+/3VbpJcs2lr1a6b3l7Z57A5sXPxRHrd+YQL3v+2ZVuklz5ns4zjUWP+0SlO+4TnT3dkuSlix+odP/8UKe75uG9uQ2f/cP4SnfyTh+qdJPk1R0Pq3QvOfuSSvfAz/XWLC9+aGcNxrKX31bpjli7002S5W46sNKd7/LeuWjDd+xS6Y74Zee8PLjhCpVukvz1ss7auCkTVq5095nW2RMlSR6Y77hKd5GZO1a6SfLctl+e7c3p1/xv839eHTMsf9h09o+lv+Xvd8/25n/c9K+NKt2Dr+5cP2yw+KGVbpJc+oPOefGcl/erdJNk4a92xtE33razf8haY/erdJNk7UU7cy3OuHLVSve3b/bGPn5yZGfd1JfH9n5/hvz+tkr3fVd17pGW/kZn76wkOeLqj1S677jto53uzz9W6SbJUqeuU+kuPe9fKt0k+dDenWvh09bv3HtdMl9vXc744zvvZ9hgxnaV7kFLdc4XSfLgTz9Y6X7tmT9Xuklyz8OdtUS//uzsXx+YJG+c1hmrSZKrPvmFSvf8F8dVule8vbdm+Kz3n1Xp7nL1UZVukiy3fmeu4XbPds4ZZ7zZ+bwlyWZ3dn5Xzz6hs0bi6F1vrXST5KTJnXu/e7brXS9vsXFnH80NT+28/2nkF0tzAZN8bZGDKt1Xf9DZb2/JV3r7+P3kwHMq3bVHb1XpJsl8v/hUpbvQXSdVul/+Re9+Z+Wfd/bofP7nlWw+fVXvWeHxh3TuHfZeq7cn7P3bXlvpTjz945Xulev/oNJNkpenXl/p3jf8zEr3/e/p/NslyXqTO9/rGSf31ps/fnxnHPGEkzvPvW+d1bkOSJJv7NNZs7XuBZ09pDe4qbeP3/qXda5fjvlOb0z8i7MOrnQ/v99nKt1zXj6m0k2SMTt0LgaW/Ml+le4WT7+v0k2STS/6cKU7ZFRnfCtJjp238/27+rXOOto7D+mMhyfJg4t3nlVus0JnH82HLnxXpZskN9zXWQs2ZvveGsFFb/16pbvRlZ11VQtd1/mOJMmft+2skZ/4sc56169/rLcPwZEjO+skztm9t7/P9e/rzG3db4u9K90dD+jtIXjS6M6eKBN+29kr+MzlO2PASXLhqZ11cZMP6O07v/GbnbVEQz80rtKdf+fOep8kWeT9N1W6n7y383zgsbN6f4snp7+t0v37vzv7BiXJKZt1rvE/+8l3Vrpn/7zzbC5JfvNiZw7JgvN1rl0uWemQSjdJtvrZlpXuTsf09kQZcf3BpfL/Nqa66PwDOXSX2b8v89mXfXO2N//jQzOuqXR/+OLhle4iE3rvVPniBp051TtvsValmyT7rN/ZF+/D73u80j36G701EN++v3M/ute5J1e6NxzT25fkmJs7ayXG7tqZt5ckJ97WuWd8fIXOs5t3f633XOHQRV+qdG+a/HSl+4H33VLpJsk1X3+90l33jN57KOZZ8a2V7kpf68w1fPqMzrspk+SuP3XGYjcb3nkW8sVnbq90k+SyQ79Y6c46tfdcYa/DO3tHfmaFznsTt1mgN2/2/CM7ew/+cbfOHnO/P3WLSjdJjnt8VKV75pa9dc7nnfinSnfg8R9Xuj+d2Ht/+aUXdt4Nu8/OIyrdLZZ4o9JNkmOu64wTvvvit1e6SfLvR7audJfbvfPevbX3e7TSTZI/bPdKpXvrgZ13E53+1d6YwE/W6+zJfNSpvXWeg3udWun+bN7OXvmL39zZmzpJdvtN533EJ364s3fdqImd/TKS5JRvd/blmviH71a6SXLQxp35aqs/25l7cvdGvT3c79y9M9f36cO/Wel+4q4TKt0k+fmFnTGB+0b3fkvufLSz1/PSf+nsNfvafJ01d0my5Kqd8cl99vxlpTtqSG9d/x33Plzprv7T7SvdJLn/X513ph4wq7Pf3qF3f6nSTZK3HnF0pTv/L16udO86YddKN0mOGts5x33lgs5aviRZ6W+d8fYfvWupSvfXe/fe33XH/p33r12/Suf8+dHDOvv5JsnQm0vvVVylMwc8SQ686deV7i3PdvYEW3HH0nvRk7x17OmV7hLHdvZ3XPiQzl5jSXL4q513sZ73jz0q3SS54OLHKt3lJr5Y6f5x0W0r3STZ+rhPV7pLrNnZu2uDDTvvmk6S9Q/rzCF5Y8ne/LrxX+o8Oxpx+OaV7pOb9/YY+f5b/lbpnrvy+ZXuadNLmxwkWfWRJSrdD6zae+fYpkt25oY9e1VnrcSPjlq30k2SI5+9qNI96tTOPnTbLNybA37R0Z25Hutu3ptbNHGD0r3U/zhU+9y8S+W4LWf//tM/fGvnvjxJtr2788xizGuduSeHfq332zZht89Vusuv2HmmlyQXXtzZ62Ot/Tv7R3596d7chQuP7DzX+8b576l0H1ivsxdVknz8u505gVsO6Z3Pz1uk836g0z/cOeaZx3XWnSbJhZt11uG+7eDOuwIvf6Kz/1KSnLB0Z9+MbR7qjJcmyaI7d8byfndLZ97ebZ/ozBtKkl8f1BmnuGSvznzcAz/Re9608/OdNZETFul0k2Sr5zrrQz9254RK9zfH7F/pJsk1p3TWjfxurc6zkNMv6F1vDRzVuc+9f0JnPm6SjF+8s//gxIU789b3Prv3G7XX87dVujetO7rSvXXkvJVukpx+zrhKd+bvent+TV+ycy2w/XbXVLrP39mb03L5tzr7wl78t857cm+9uLNPRJI8v0fnud6HN+mtOb9z+xsr3R9eeVml+63S880keeRTnfG+j//qukr3h2ctX+kmyeOfuq3SHTryV5VukhwxtfOu1XEf6Twju/qTvf0Hb36wMy6w5Bqdsdrnf93bc2j9e26odD/9qd7+dR/ZrXNeHn3DTpXuCmf0xtq/+9P3VronL9TZz2jiLzpzZZLk6ddeq3Qve7az30OSnLFeZ4/cT107WOn+6tO95wMfmtGZL7PHkH9Vuis+fFGlmySv7tb5nnzj+t7zgWlf7bxvZMrZp1S6T5b2AUmS914wUOneMey3le7eTz9W6SbJ0LOOr3R/uHHneitJDjzpwEr39At3r3QXnNjbF2W3iZ13uoz/58WV7rRpnb1LkuTQJzr7Bb9xcGdfhiS56EPfr3Rv//GVle5WO/feFXPUdZ13d6xx/IRK91NX9J6Bfn6Tznqitc7rrF9LkrU27qz72fTUzn3UKR9boNJNkov+2lln9tMPdM73r23S+4366V87e/xseFTnPipJfv7JzrsxH3q2c/6cPL63P+jPH+nM1T74hAmV7iP39PYi+PMunb/FCt/o7EmUJK/uWno+fvb/5z0VO3dXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/mYE5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzg4E5fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDcYmNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgyGDg4P/x//xkksuPrj/AR+e7QdxxYV/n+3N/9hv900r3WUWX67SHbvQ9Eo3SaYPjqx051lgXKWbJOOGjqp0Jw0f2+lOfaPSTZKJjz9U6a6+7jKV7ugZS1e6SfLPuzrnjAnLrVTpJsn8ozuf5YHhne6M6UMr3SSZPH1KpfvG669UujOe7Z2XX/37/ZXu7eddXOkmyTJjl610xw/v/EbNP3+nmySjZs5X6Y4Z83qlO2PKsEo3SUaUfldnTu2di0aOnqfSHRjS+cxNnzSj0k2SUWP+z+8H/hsDI4dXuiMGZ1W6SZKRnc/ciOm979/UjKh0Zw52zkXzjpq/0k2SqXmz0h0xz7yV7rQpkyvdJHlzZud7Mv98vd/VGdM7xzxiSulctNgilW6STHzhyUp3xNBxle7QEUMq3SQZMbJzvTVz2kuVbpJM75yKMnxY59plWjrXAUkysHDnezJ8TOf3evrTL1e6STLp2c73+pFXH6h0k+SlVzvH/ODEVyvd4cN71xjzDe98sYcN7RzzmIHe9fLw0aMr3SHFS/xpU16rdCfN7JyXpy/TGetLkvnf/7ZK97fn/6jSXWDMuEo3SVbdaPtKd94pj1e6STJ1zPOV7rMvdsY+h5fGgJPkhec77SmvdsZe5hk1rdJNkqnDOueMp17qnDuTZJEFxle6L71yX6U7dEbvGmPxBTrt9bZaodJ9+J7OGHCSLLFcZ4xk0iu95zuPPTCx0t16+/dVum8M9O53ll6k85m7+qpTK915pyxc6SbJyMU6Y6orr7tdpZskT9wysdKdOLlz7fLzs86sdJNk0pude7/37rhhpbvGpktVuknyu8s74w2TXp9a6SbJqot3flc/+MmvVLo/O/6KSjdJLvzTCZXuessvUOkefsiOlW6SrLvWtpXu8GG979/o4Z1nUo9f0XlW8vTvTq90k2TU8M5vyYgZC1W6wwYXrXSTZHBY5znMiIHOc+YkmTJ19o8D73PPKbl38lP/0x9j3LKjBt962PKz+5Cy+okHzvbmf4xarzNo+uSmnXGxt23QGSNMksXHXFTpvjTktko3Sd5fGjO9fcn9K90V5rut0k2S+37fGb8a8cPfV7qX37R+pZskHxrdmVN98zZ3V7pJsvzlH+2E3/2nSvYbJ25Z6SbJmVt35uT+ftzGle5Dh/aeN00edU2l+9efnFjpJskB3+yMB6125/GV7h9fvrfSTZJjX3uu0j1q9bMq3Xc/2vtej9u4c701bGxvrujjw3aqdP8+3+8q3cd+sHilmyS/mqdznnvugAmV7qM/7KwFS5JVHlir0l18rR9Uukny7Kc+W+m+eN5ile5iI2+vdJPkiUmd79/yx3Sesdx46E8r3SQZvf+HKt33ndKb9/yJpf9Y6a6zXGf88dHRj1a6SbL38E77/F/tXOmut0LvczHiY++pdJ/9xdGVbpIsMaozTv/4hp31vzMe+XelmyT/XnS1Sve9r3TmGh61+BOVbpJMWPi3le7S58z+cdr/mDhwR6V7zSOdtbSvrfRUpZsk603qzLVfadN9K917XnxrpZskF//6pEr3fU905sMnyWNrLFHprnTDkpXuDUd9q9JNkp3e9vNK9/LDT6l0r9689xu17qc6YySrXDux0k2SzVbtzMk9YrCzzmXF37xY6SbJm+/sjJH8duj7K91Pnd77Xr+20dqV7uX/eLbSTZIF9/xHpfv1UzvPjU4benmlmyTbPrxRpXvBx1asdD+7VGevsSQ5Y8nO/OTPPnpBpZsk396ws4b0O8uvUeneM0+nmyRv3vZ0pbvEJb+sdB/d98hKN0lWu+wnle4/jl690k2SZ0Z3nq/etWfn/Hn16N4+dIv9vjO/YbG9OueLd63bmbeXJDOP7szTOWVM71nXUUttVulO+9zmle5ra3T22kySU1/etdKd733bVLqf3OO9lW6S7HfgypXu+HV6854fP7gzb+lfr3Q+c0+evGelmyQrbDmx0n12VmfcevCq2b+X8H+sstWDle41i/XWNr7rvEdme/M9b5yVu2Y+91/Pe15m7RUGD7149j8Xmj6+M2coSebd4dZK94z1OvcFH9/l15Vukhz4g856nq/+rbcea/trOmMUV33vS5Xurl/7ZKWbJH9d+y2V7kN7d+43fjq5s2YxSSaO7aynmzKiNx/wj5/prHsbvumYSnf873p7dS/+m87ziv1vPLbSXfRdnXlOSfK2Rb9Y6b70SG+/tmEvdOY8v3fDdSvdm1fpXWOPXaazfuatI75a6T79Rme/kyRZ6rjSMR80UOkmydvO6ewHsOoG76x0P3rllyvdJFns4jsr3UlL7VXpvuc9vevleWd05i288oveOvXnfrtgpbvEUp37qINP6T1rWmTRf1a67x3eGdM8/LIbKt0kOXz9zjXiQzd15r8lycALnWv8k/bdpNKd7+TeGs+7v94Zezx43c5vydu+9e5KN0mOWu/4SvcrDx1S6SbJFwY61/jf3uJrle6jP+7Ms0iSwQ1/Vemue1zn2mXzz+xX6SbJp//ZOeevuGRnP/QkWfsPnbmth23UmVu33Vc686eSZMTSnfudf292bqX7+ts61y5J8vIfO2vvt3hLby3Kett21uZcfFlnveRTn+2sz02SUTd3fqOGrNzZk/LSyQ9Xukly/D2d6+W/Pt4ZA06S93z/iEr3wo939nB/Zo3evcNtU3evdLde4vpKd/u/994z8pt3dn5L9ru2MzckSZ57pnPvvtDxW1S6T1/Ye0fo2t++stJ9+MrOep8LF+q8MyBJ9r+iM1dgh1U745NJMnhBZy37jk921rFPWqQzhpgkax82qdK9cu3Ob98XlurMS06Sk382sdK95I7OOvYkefjYzrXAZct13nXwxoTeNeLFV3a+fz/88DqV7o5f6+3ndvbPOnvC7rpq59olSZZcqHMt992jr6p0F39fb+3vaZ/6SKU7+v7OnMt379Zb1/H7FzrPmg/7fOeeMknu+XDnGvHpHa6tdFc+sjdndty//1rpHvj2zty+R3+wTKWbJJd8tPO9Hn7OPpVukqx0zkGV7vBhB906ODi4wX/7/y03bMzgN8YW5vuO7s17Pnz56yrdI76zR6U7+Mve/ddVp3XuZz50a++ef8bVnecKn/r27F9PkCRH3di7Txr3085v/S8v63z/vv7aRZVukpxwzLcr3Xvu7/zOJ8mQMzt7Pe886nOV7jJf6b2z+70Hd/YcOu7PnXv+h2/4RqWbJDu9p3PNOnyw957xa4/tvFPlg6905mpvsltvbc4XTrqm0h1/WWe/r3U26M3P+uXunbm+G77a2xP2PZfeX+k+P6yzHnnn7/6i0k2So2Z8oNI96K+ddbJff+SYSjdJZl7fWSd42Su9e/4JO3buS1ZYpTP35IiZ36x0k+TVpQ6odFe44bRK98vHfbDSTZK1dul8Tz570I8r3SRZ9rHOXlSj/9m5lnt61j2VbpL85Q+HVrqvbdGZK/r+n/T2Vx39lZsq3V2/0FnbkSQ/26Izp3ql63epdM//c2cP6SSZ74+dfYHeulTnszzto71z3LbjO3tnzXt8Z81Wkqz3g867Yde9qHONf93WvXWe37+3sxfVpld29r0+/+O9/aIOuKNzXfvO946vdJPkt292fktmXTSl0v3oSudUuknyqa933of18zs68+F3eH6/SjdJTvlh51rggRN744i3f+q7le7Zp3a6O93Vm8N/zi6vVLrrj+u8P/mE3b9T6SbJj0+/qNI9/aOfqnST5O57O+vZr0vns3zlIqtWuknyy1U614jP3NbZN3n4sOMr3SS5cMvO8/zbX+vNKVtxsPOepl9+trNfx3s/dWmlmyQXXHpGpfuJ1zvPxse9tzNunSQP3dl5b8DKH+mM4SfJRaXtgofd1LmuPex9vXmzHziyM1f7zIc7e0ptcd3JlW6SLL7aGZXu05N7c4vGntyZA7TekZ2xl7Pe13lnR5I8VXptx4Nb/avS/c0RvXdW3XlUZ67AtU901pklyVV/63xPxs/b2ZfhlCt7+15/8eTOvKV9v9qZJ/fX83rvIxi6d+caY+lle88qR7yrM7fv/i23/5/mPc+32OqDG+4z+6+1/zWlNw/nq5t35vo+9tPOGOH3d+99B659f+ezOn5MZ4w3SS478vOV7vs/eFGl+9tRvWenl13R2Zvra4t2LnoevLu3vvDrJ3bWUJ/yj0Ur3SQ5/PbO+5J+fcdjle7Hzl2l0k2SMTM6+zx+54+frXTPueiWSjdJbl2wc/5c7/N/qXST5KPzdMb///nlzm/Ucp95V6WbJNe+uzNGP/23nT1g/vVUZw1ukgyZd71K95d79eb67rnp3pXuOpOvrnRHLtYZF0uSnXbovAdjg2U78y7f8qHO2H+SbHt1Z33vpY/9sdJNkrtHdObLPDf6/Ep3g6c679VOkr/v0Nnn8a57fljp3ndK711X7zigM5aw1dm9fWHfOu+Nle7Cu3TmJz9wZG+/4Ge276w7OPX3x1e6e4/r7IWTJNv+qjMn95ULO/u0JMn2+z1U6W75h85+pR/5d29+5BEbdO4ddtj3+Er37Tv35rT87raPV7qHH7tCpZskj+3Q6T69eWcO6s2XXVTpJskPduusbXzXJZ13Hdx5e+95xfWnfr3S/dHq21W6SXLtkM7cr6UnHVjpnnxlb1+G3W64otId+ey4SveYl3t7lx92/GKV7t9X7u2lOf1th1e6m3/17ZXuDuM7z2ST5C1Ldv79Hp3euXdY8ITe+xk2eqDzW/Lm94+rdJPkM2922sfs0rlHu3eH3jXipKU6v9m7r/KJSvfjV/f2qFjx5hMr3Sl79cZUt/xSZ8+9bUY+Vuk+vc4fKt0k2XdqZ83rBu/o7KX55S16ez/t/pXvV7pvm9HZLydJvrPc2ZXuuw7o/F5/5/PjKt0k2XNoZz7GiD935tfdPrw3JnDtip1rxEvX7b03boMTO89XV76q83feavCoSjdJ/j61M/a5wBOdZ6BXbNx7N+aWu+9W6X714tcq3SRZ9r2ddZ7r7N/5Xf3wj3vzHDf40H89tfX/yHfe1bn3W/PDvT35fvbGsZXucxecWukmyfqrdNY0vPLuB/4/znvuvUkcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4vMjCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gYDc/oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBuMDCnDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gbD/pv/ePLrk3PLVX+b7Qfxzt1Xne3N/xgxctFKd9g8lWyGDe0cb5LMGjVY6U56uZJNkrw58r/6iP4fm5WXKt3J0zt/4yQZMXrpSnfUkGUq3cFhvQ/GKmt2zhnjxy1V6SbJCy8+WemOGT680h0yOLXSTZIpk2dUusOmjq10hw5MqnST5KXHHq90F1pgwUo3SUbMGuiEh3Q+yzOnTKx0k2Se0aVz/ozO+X7oyOcr3SQZnFb6W8zT+10deHNopTts9LRKd8iYIZVukmTkzEp2YEjngnnImFGVbpJMe3FKpTs4X+cclyRDZ3X+/YaNHlnpzhw6utJNkhEzSp+5wc5v35AZvc/ymNGdY571Zuk6IElmzFvJDhn/WqX72ovPVbpJMnRE53sy4803K903XupdL48a3bmvHDWsN/YydHTnvDwknXPcqBV798GTBjufuZmP/LvSnf7sq5Vukjz90lOV7suv98ZennrjjUp3vrGd69qRxXGMeUcvUekOzOycPweGLlDpJsmIoZ0xneenTa50k2TekZ3f1bHzdu5Xp2+/Y6WbJP+8/aZKd+WlFq90xy23QaWbJJl4TyV7/7OPVrpJMnVY5xpj2eWXrXTnG7VipZskY0Z2zp+vTuv8ltz/wMOVbpIss9yESndw1GOVbpLMVxq7XmrxrSvdkcM7Y7VJ8ve/XVvpTr/62Up34stPVLpJ8sYrEyrd+ZZYqNJNkuWW6VxjDBnaGbceObhwpZskr73QuUdbbul3VLq33n5NpZskz113f6U7elTv32/KrM5nbuLA9Er32Wm9e/eVFu2M1+609eaV7rT5l6x0k2TaYOe3ZGDq65Vuksw7vjNXYPoTD1W679lpvUo3SVZfbpNKd73V1ql0V5mwVqWbJENGzFfpTprRGR9Jkifu6dyvrvzW1Srd56/ozOtLklkzO+e5aTNLc5aGdp5HJcmQgdJ8miHPVLpJMmKe2X9eHhjyv4/HDQ6ZN9OHv202Hs3/Y+tPPzLbm/9xytB/VrrbrT2h0r315t6zt89/4JRKd4WP9a6z//Wtzljsv3a4vNK95tDO/JAkWXWZGyvdd008t9J9ce99Kt0kufu1zrjmtPu+UOkmyUvLbV/pLn5c59ry+cc735Ek+feD21a6qy3bueZ55BeXVbpJstxuf6l0N1+pd5/73BKd53q/HPHBSvfbp3290k2S93278yz5Lwt3vtcvPLpypZskDy86odJ94sbeXO2Vd/9hpbvaY517u6Wf6o1/fOxDnbl7q5x3cqW7+Sc/W+kmyZ8/cVulu8Byq1e6STLP5J9XuodOeG+l+5d3zap0k2Sbe7epdD92Z+ezPPUtnfkhSXL3fr+udM/79Xsq3SRZ/uE1Kt0/LtI5L495vLN+LUlum7VSpbva1p35BVfd1PnuJcmbX9+t0l1m+c54d5I8tMvtle7iD4yvdNebr/McMkmeXqIz3+nRqzvjiFs92rv2PGvhCZXuv5b6c6WbJOs8vkOlu8yEiyvdf/9rr0o3STbapnO9/Pqvjq10Xxx7SKWbJHvs25mTu/HTnfmcSTJ+v841xhWHnF3pPrPm4ZVukkz8cWfu5ePv73yvt9vy45VukrztN5259n+a1lkzkiQnT+jMqZ7yy868veXffkKlmyRXnH9dpXvaWx+rdM9doTMeniSvvXBDpbv9op05cEnyfOlZyc8/09njZ+r8nfGRJBnYojMnaciDnevl5wc6z5mTZNVxnWuBF7Z/X6WbJON+3Jnre+h+v6x0t3j8xEo3SSaM2LPSvXvbzjOYk2/5UaWbJNc/1ZlTNvKI5SvdJHnuPZ3x2nfO6Pz7PXVeZ++ZJBm6dWcc+LhNO3OWdnupMzcySZbYZYVKd4VXJla6SXLyGp15S6fs8GCl+9Cdnd+RJFnuE5+qdNc8tnPtuc0jnfv2JJm09rqV7tm/783hH8h9le6h1+5c6X5y7C6VbpKsNG/n+fg8YztzEYf8qrMHa5Lk0c7ajmMuuK3STZLPLbXZbG+OfOx/W6P02sBzuWLM7J8fssTWv5ntzf/Y+zudNZxHXfWxSves3/T2L9j58W9XuivNc3SlmyQv/LTzHHmVpzrzTpY6rTcf6ZKNj6p055vUuV49acErK90k+cdunevVsWutWekmyWq3/LXSHbvE9yrdxcbuUekmyfkzVql0j3pg30p3+H2da/ckeeqskyrd2457S6WbJJ86/MuV7q+/8uFK93MLdX6vk+TWaZ1z/u4jO3Phz/54b++zg965f6V70vu/VukmyZ1Xb1HpnvnMRyvdi079faWbJL/6d2fNwfN7vFDpfuWAvSvdJHn1zc4z5Okb9vb0PfDkzvfkipc676n4x8O9a4ybtu6suXv1gc7Y8eEX31LpJskPbvlFpXvlzp059knymScOqnQfmHhapTvpL73fqO8ffGCle8efO+fPKWt19vNNkg2X7cwz3P6SjSvdJHnLocdXus8//uNK95CnenOe//5GZ97lFUd33v+07tXfr3ST5APHdu6Dj3uqt3fknru8v9Id/Ftnje6E3/ferfH9SzvvI7h8/c5ciwt2OLjSTZK73np6pfudN7ardJPk5Ld29sr/xJ86c9avuG/9SjdJvnd1Z+xzsU9+qdJd4ejetefbDuispb1ueucZcpK85aDOvMvdP9551rvH4M8q3SS54NxPVLrnbPavSneHOw+rdJNkxCude78rju+s40uSq4/rPN/56mad+fvzPnVcpZskY67btdI96pENK93Tr7ur0k2SGSt27h2+e+QDlW6SPPHQByrdyQ99rtL97qTOXOokOfz6zhr5J9f6ZKV7xoKzf/7Nf7w4cE6lu9oqnflvSXLbB9audHfa+YpKd9X9e+8cu2mJcZXuOg92zsu/ndSZ/5MkR754fqU7dZPOtUuSTH1+XKW79wGd/R5eWaV3H7zDtM47x35z9SKV7rKb9/bH3ewtV1W6r+/QW9e4/sjOtcBTx3fe5fnSMt+pdJNk32FnVLrfPbDzG/WPJ3vXW8f/tTP/9XPzvVjpJsmjpWP+X41cblhW+8Hsvx/9xRWduWpJ8qWLj690n32lM8Z04KV/r3STZJPlf1XpPrvMqZVukty1WmefnRt/35lrOGyJayrdJBlxd+f+ec/tOutv1/j6hEo3Saav0JkTcfiuvX1lTrius77j7Vt3jvnnB+5a6SbJRWd35qGe/UJnLP2Q33feW5Mkgw/O/vcnJMnnN+ytLbz+gc781lvf3nmWtccvrq50k+TclTr7Xh+/a2e/tn8M+UOlmySDP+7MEdlv695e3Uu+o3MumnViZw/pC7e+s9JNkvu37zzj3HX0AZXuFbt/utJNku/c/Y1Kd/cP9dYJPn1T53r5yg909syY/u/eOrMTP985fy45pbNO4s0pvX3g9l+ks0fL5y/q/a4evs2Wle75dx1R6X75N733ab5jwkcq3QWO7OwBvtjavbmG5yzbeZ/0sAt6856PO7Ozp/bTa55R6a60yYcq3STZ5o7OmvMXv7pppbvKE539MpLkuR077cvW+VulmyQPfbyz/v6Bhb9Y6e5/TmfNVpJcv+5jle775+9ce566UmeNfJL86LmDK917N+u9C3L+yzrvM7v1F513Nv7hY71rjOETL6h0P3hIZz3DCvN15jolybNv6az//fDbO/MAkmSvMztzT+5dsPN84IBDensFn3Rf51pu7X07e0hvu3jv9/rcgzvjk7ut1NtX4zM7dd5hfuz0zhqMf27WWUubJA98qzMucMX8nfvrTU7orDlIkp9+a6tK91tv7+29tsyQMyvdLV7qrHm9asEplW6S/Hz+P1W6r426u9JdfvvOM/ck+eCIiZXud6/tPE9MkhO3WqrSfdc1nb14dvx8Z6w2ST7y6847j97xq84zmANOOabSTZIVftrZy2X/DTvvu02SgX92xgXmmdxZK3H6G505S0lyxXaddXdnHNN5t8b1C3XepZQk6/2y9Ezjss6+DEly0Oqd5ztf/nFprP3szvytJFnsvM76jr0/0VnPd+Aneu/W2OmwzpjqFR/qjWMMXbjzrPl/fUPojPmm5ZW3PzY7DyVJMmXD3vtQj3mysxfj9td+pdL9zOp3VLpJMv6yzprkIVv03lN9/JGd/XCWv/O7le76V3SeVyTJmem853jR0zvjx+du/8dKN0l2HNeZ33PHF39b6SbJ6p8aV+m+5Xed55C/WO/QSjdJDlj11kr3m+/vzAk8ZNXOXkZJ8uh811e6P/hSbw+Rpd/R2fdkyj87+w8eem3nvUNJstgRnWdkp6zeWff25lf/UekmSZbt7AW34ZK9d80t+PZOd83bL6l0v7tT5x0YSXLp6Msq3aX37+wfOe7bvXHp2372u0p3r8s7n4sk+f5nOnM6n/jnNZXuh37Ye+/ew7/rjP8fsuATle5hh11T6SbJdqU9Eyf9+JuVbpL86zOd+8ofv3pjpbvdGr1x6TVH3FvpLvelzpjASUceX+kmyUJf7Lzr8TeL7ljpJsmwhzrjRT//aecZ9YW/6+0t8/h5nXkRR57cmTt0+KKdtQFJct6j91e61zzUW6c78sTO3kBn3dt5H9Zfnul895Jk2y07z1je9YOtKt3Tvrh7pZskhx7dGTs7b8HemNxXvtXZs+MrH+8809h1td56ovNnddo7fbnz7PSM5Tpzy5Pk0H/tVOl+6/FLK90k+eZpnXH8XZ7tjAlseW7vs3zva0tUunfe3+ku+5HOfXuSXPBI5/nAmb/q7fd8921PV7onndgZt57/1U0q3SSZfmNnrv23luusc7n00N4enY+u2Rlr/8avTqh0k+SY5zr3Uhd+s7POZfEv9/797ty4M9736jWdeZd3ffOaSjdJvvuPzjrdy47p7EmUJAs+13m+us1ZnfnUq6/Xu3c/dIPOvcO6F7270l1rnd7e5Z+8uXOOu+XK3jrPHy7WGTv79E4HV7qHrdibH/n8rp13Fa72s847i6/YpvPehyT52wqdd6VNmXVkpZskj7+7c1+5y/N7Vbqf3PtblW6S/O09y1a6DzzVeR581s0vV7pJcsdfP1Ppfu/I3v3qEyt0nvv9f3szX2dHcwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4v8zAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucHAnD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgbDMzpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAucGw/+Y/HjJ0SOYZ91/9L/9HfnLCFbO9+R/v3PK5Snff9+1Z6Y4cM2+lmyRTX59U6c7Km5Vukgy+2Tnm4QOdv/OU51+udJNk1LxjK93BgamV7qjRi1S6STJ86mCl+9yz/650k2SBsUMr3amvvljpvj6s83lLkumTX690X5vUORcNPN75HUmSR+6/s9JddNZilW6SzBwyrdIdPmr2X18kyWDmqXSTZOobwyvdEWMerHRHzlyx0k2SYaXfkuHDOueLJJk1vHMt8PrkFyrdkcN6v6tDZnX+FgOzZlS6w2f0rj2Hztf5/Zs6pZJNkgyOGFLpDp8+qtKdNaL37zdsZumYB2dVum9M653jRg8d0emOGlPpJsnUgdLfY2rnbzGQzncvSQYGBirdYaM6n+Vpr82sdJNkWuavdKdP7l3jjxq3VKU7bfzoSnfYm29Uukky/LnO33nic89Uuq+81BvTeWbKU5XuY68/XekmydgRy1S6Y4Z3PnOjhnbuKZNk/tGl+8qZne5Air/XMzvfkwnzL1zpJsms6Z3PxqvTOte1S665YKWbJPeXThnDxq5a6Y5fpHcfvNhbVq50R9/9cKWbJC+9ck+lO/n51yrdWeN75+WRYzvnjKWWXLzSXWjC6pVukszTeeyQBZ/q/futMKFzXTt01LKV7vyjes9KVl1/oUp31IzOPcmDD/+10k2SP118WaW70tTeddHro1+pdOdd+I5K95WXHqt0k2SZ8Z3P8gLj16l0l1qi8x1Jktde79z7TXu+89whSRZcZatK944//rbSXW+9dSvdJFlz8c5437ARnXPR3+9+rNJNkgfv/Gelu/lbV6p0k2TZVVepdJ+b0vn3G5zZG5NbcbktK90FF+lch0+a0vlNTZLJr3eeG73+dG9u0YJjO+MNT87q/EYt+OltK90kmfn3zt/ixSs681SnD3bmOCbJ0JnjO92B3tyiYVMnz/bmrP8/HnONmDk5E177x+w7mP+3Iy7vjKskyUub7VrpHju9M0i4+4wDKt0kuf+Jb1W6h235lUo3SX5907OV7vaffHel++pm3610k2T4kp3f4xkXfKnSXeSK3rj08/N25i4sdPO/Kt0kmTDPE5XuLd/oXL9/8bKdK90kefKWayrdBdc7vtIdfVdvstrIxTvzAH40bulKN0kmXNK5B9v15c5n7soPfaPSTZLNJ3XWHex4ZWeM8PpxC1S6SbLzky9VusstcFelmyRTTli00h223Hsq3bGLn1fpJsnD0ztz4tc6vtMdedtjlW6SLDurs+5gueXfV+kmyR2vv63SPWu71SrdBS7uzIdPklM32bjS3ebMNSrdv6zRmU+WJKO+1Dln3LxkZ65FkpyywM2V7icX6zyvv+rVxyvdJLlkwq6V7vXzXVTpDt7z50o3SQYe/2Wle1XeXukmyVfPva/SnfZGZ/zxlztuUukmybhFOueiwQU6z1jOv/KxSjdJFti387t6z196c0+mjb6m0l3y7s6zt61Gn17pJslx295Q6X7khSMq3QmLnVnpJslCI39Q6V7yvc4YcJKs8pdjK93FN++M1X706N46wXN/1RmHWujNvSvdw9fcrtJNkr/u/EClu9up4yrdJFl5oc7Yy8Nj/1DpXr/nNpVukiz/yt8r3ZsW68yvW3hk598uSdY6qDMOfN0lvbWNH7ipc/253Kude+x/LNJb87rs+9audHd4ojO+PGLs9ZVukjx1xqWV7urXda7jkmSR9R6tdI/4xVmV7mnHdOagJsnZt99Y6e7+10Mq3Q333rTSTZKTnv5ZpbvL8509iZJk1Dt2rHS/eXJnrO+e6b05CKus89VKd+Mh61a6Zw15V6WbJNuf/qdKd8vlO/vbJcm7V/9dpfvmgZ09MSc+dnilmyRf+vLxle5bnjql0r163+Mr3SSZOO66SnfEjftUukmy8mad537fH/ejSvf9/9ip0k2SSZf9rdJ9+dzOc6P5Tr+70k2Sqz/WaZ/1YucZaJL8ZLvZf8zPn/e/7cc3eurCWfeBj83mo0n+MWG52d78j8NO6+yj+dFNPlDpbvu7KyvdJHn4/M4zhUmf6ZxjkuSBxw6qdN9+9CWV7vbjHqp0k+SkhTvn3BtePbLSfefuvX3Lh234w0r32YGvVbpJ8uYinfu6l757QqV732K9tSjTVli/0n3XZzv3Xp8b6N1vbL7gOyrdtY79eaWbJJv+rrOe9clLO+tyzh/We1b4t691nvU+NHP7Svfne/R+r58/bq9Kd4+lOuPzSXLo8M645gevOL/S3eXaYyrdJPnkBzvPkb8wb+c36sQ7Dq50k2TbH3T2LV/tXbtVukly502fr3RPWrPz77fnkTtUukly6eWdZwof/t2Jle6OX/pEpZske933xUr3qcXmq3STZMtdO3vWLHHM7ZXuLk901rgkyaIbddZLjn10q0p33W073SQ5+Xs/rnRXvOdDlW6STN6tM6dl43d31mtd+0rnO5IkX/pe577yCz/prHFZcdb7K90k2Wi+zvnzvM9eU+kmyWqv31Tp/nODdSvdx6Y/VukmyfCXOntRrbjAxEr36C/M/vH7//j9IZ2x9mvvv6XSTZI1T+pc4z98QWfe15v7dsbwk2SzD3T26v5cZ5pTVtu/M/80Sb62Qmct0Rdu6u1R9qNlO3t/nr9LZz7ZpvP29so5prTH3J7TO/eUXzx+yUo3Sb67T2dMdb81R1a6SbLWdldVuofsf2ilu9KmH650k2T+9Tr3fj++uTN/+NINbqt0k2T1Bzt7iv7qT4dVukny8NIbVbo/ermz9+Abl/eelex8R2ee4Rfv6bwD4+h931rpJsn4wc45f4PnOvuhJ8n39irtg7VxZ13Ohl//QqWbJM9v0Fk/c+3JH610R57fW4ty91Kd+Zw77tHZKyBJXj30nEp3jc9dXukev2hvf9Vr9uvsSfS9q2b/HqlJsubhnbnUSfKndMZqD7ym8zw/SY4e2bnGWPCt76x0X/hmb3/jK17qrMW8YOPO+3g+Obn3/q4fXNLZU/vPp/yl0k2STSZ11hL9rybO+3ou3ubq2d694frjZnvzP4Ye2hnL+/Tozl5Gn9uiNyfihc91nhd+6ZDe+4G+t23nWVbW+34l+/ieve/s2td2xq+eeqWzR9nRMztz4JJkmX06ewTudXvvnUYvXndqpbvPWzrXPPfv0HtP7sC4DSrdLQ/qrHk78crO3vBJMumdnXHNU8b39p0/6bLPdMKXduaU3T7Y2+/r2Xc+Wenutez+le4XJ/T2+zrkS52x9Nv/2pv3PO+eneuiL57UeU/11xbtjWuuO7Yz/jHfvzpzF+788sRKN0nO+01nrcsaR2xe6SbJ8bM64xRHv72z/n2j/xd7dx7t61z4/f919pmcYzqOeT7mRBxUMkumSFQIKYoklTSHBiUlUYZUlK9ZQiJziIwJyUxmmcdjPM78++O+++++1+/+ts5r7bW/6/H4s1XPrrXP3p/Pdb2na8nSoogkH5/VaS/8emdv1arz98YSnry7MxZ02l7nV7pJ8v6vdb6zv3TfYpXuZi907j2T5KOf6+z/PWTxzljsJ5fq3S9feGpnvdOFY5+rdJNk1W911lS/+enOOoCDT9+p0k2S16/qjBfds1xnLH2Zn/be5X78yp25099e0rvH+NXKnfdhHXBi53zVGT9ctdJNkrvv6fwsdtj8yEr3vD16c99feddple6BP36l0k2Sd89zRqX79Kc6a1qufWdvHcDI5Ttr4h8+oHPe0IhxvTXgWx376Ur3nUv1xpe337WzjuOyDQ6qdL+8V+8M9/Uv65wfdP6YSyrdF256R6WbJNvuNrbS/flPX6t0k2TLt3Xeu7LXW533mh4xqjdXcuD2nXMZvvzVzpmUq995f6WbJLMO7PxebHlo7/3zH/tn5/7lA3OdVOl+48LOeR1J8vL9nXOk93t+/0p34NDOnp8k+cJVnXdWvXvhX1e6SXLy5e+tdL+wb+fdDOsv0NmXmiTvurv0d7Le7F9jlSTH7tx5d2WSLLp5Z05q9PDefrCHtz+30p06ujM3/rGje3urHj+g8z6Crx/5qUr3gPs760eSZIGj/1Hp/vjA3lzJyj/rvLPqPRd11ma+cnrvrOBtbul8R+11x7hK97Tv984O+smPPlPpvnPY7pVuksw8r7NX4j+16DxzZv/NZv+7hw6/u7PXK0lefKGzv3fFkZ052XXH9+a+P/BGZ33rbo/PrHST5EPTO/N6t3ys8969TX7beWdpktz38MRK96N7d9b33D+psx4wSZ44p3O22lv7H1vpJslFX96u0t3jvzpj9Kt+qTOOniRbzOi8t+0Dz/680p336d470FZY/G2V7lUXfrbSTZK9n+msHVp44xUr3V/v3lmPmyRbntmZyzrkrs5336FLd9YXJMl6P+r8Lu/01d7ahau37ayp/tDmnWfRBS/u3S+vvGPn/nP+ZzrjV1f94q5KN0kO3azzGfe5H51a6SbJLvd31lGd/eMzK93Vf9sZF0uSr53fWdMy8eDOXMhndp+v0k2Se57pvA/19d/05guv+Vpnn+ce63Q+M8Z8pncO/2ovdPYz/O2Ezh6oT0+fVOkmyREHH1LpTv3quEo3SeZZonNO0nHbdPY2/m5a55kySW5YtnOG1kG/f6HSvXre3rspP7heZx3qhiv0ziLYee3xle6Zv+ysXXjko71zKZ8bs2al+4GBzjV/eek1Kt0keXD+ztzplh/vnBGYJGc/1nm/29tu7Hx+vvzdCZVuklz21ImV7lErTqx09/rhspVukpy1defZfaV5e59FR9/d2esy7YTOO6CWfKH3/vljljms0v39SbN//jNJPrtW54zAJLntpnsr3Xed23k+S5K1d+08o9060DmXaLnLemvAf7ZE54yfb72zs+7yimmdta1JcvExG1S6c628bqWbJBs82lm3/ubUzvuwTlv10Uo3SS5dqPN+jcO+3JkrOXuX3rtGTnvsyEp3yfGdOZgkGVi6M160zcqdPecXr977LPrMlZ13d7y5fue9HX/euvcOrzeW3bXSXfKi5SrdJFl6585ZEvPtNqHSvXh8711NK005vtKddFBnPcY/Frm60k2SE7fsnF/yzl91zsFKkr0+3vmeevi571S6Xzm6927T76z6uUp31Amdv79dHu/sP0ySa1fprPW48Qu9cwQP+XHnsyj/l6+ogc7/GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8zzIw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAw4r/zX55zzOisvdrys/0iJr06a7Y3/+3xx5+sdKdUqsl8I2aWysmkl5+odIcPLFLpJsm8S81f6T43o/MvOHXsG5VukoyZNUelO/XFUZXuq69OrnSTZO55xle648d3ft+S5M1XXqh0J88aWelOeuX1Svd/mdbJvjK9kn30ofsr3SR5/bXOZ8aCo3rfJdNHvdUJT5tQyc4x9vlKN0nGztH5nZs1Y0ylO3VY73N5WMZWutMnd7pJMmZM5+9kzJiFKt1Z6XzeJ8nkN9+sdEfNM1elm2HDO90kU6d2nksGBoZVukkyYthApTtrROdnMXbUuEo3SSZPe6nSHZHOv9+oORaodJNk5MzO3/WwUfNUukkyYlLn/nPGQp3v1bzeuQ9IksnPP1Ppjpm38xw13yLzVbpJMuPNzs95yoSlKt0kGVb6Oc/xVufvOq+93Okmee2xzjjUq290Pu+feOXxSjdJXpjR+TkvMNfclW6SzDWic88159jOZ8ZbU3vPwW++1mmPHdP5Xh02qvR5kWSO4QtWuqNGdD4vkmT66GU64Tc741tzLN579hsx52KV7h13nFvpbv/ut1W6STLvgp2fxRsL98Ze7rnlkkp3tfU2qXTHTFix0k2SvDWjkh07sjNv9MyDd1a6STLfvJ17gbettnalmyTDS3Mlj75wd6U7dWRpfCvJa5M7zzvPTn+t0h09vvOskyS7fv6zle5VF1xU6SbJzJc6zw/PP9GZq1x0kd7vcutzecFRnWeSp6f1xpfnW6Bzjz96nt441JvprBVYZIHOvcClt15a6SbJ2NdfrXTf3LwzDvzM5Lsq3SRZfKHOPcbKi69a6SbJlVffVOnu8NHONV/zxwcr3SR54JHO38m+n1yz0l1uxXdUukky6bnOvefVV91Q6SbJ+0rPwv+87ulK96lnr6l0k2T7rQ+qdJd+x66V7pt/6/yMk2TGY53nypde7Dw7JMmUYQ/P9ub0gf/8uX1g8sjMec+is/Fq/pf5XumtNXz7Bzpryp65unM/fPf9t1a6SfLeZTrPX0c+fl6lmyR/+lxnnPDOyZ1x6QV///ZKN0m2WKAzL3vPxM4zx9jlT610k+S+s75V6Y67sPNclyTXb/X7SnepY+6rdF+fq7d2YakPdNa0nHHJGpXux953TqWbJJfdNbHS3ebJ3hzLBvONrnR/8b4rKt0vXb5TpZskr+35VKV7+5Kde9Zhq1xV6SbJJRfvX+luNO6sSjdJnn1+60p394U6fyPzfGK1SjdJjn3jD5Xury98X6X7yusfq3ST5M2FHqt0b735yko3SeZ9+8cr3UdGb1rpLvXaKZVuktxzd2ef4IQ1Os+rH3r27Eo3SUYv1pnLuvDJVyrdJJn0uc4c2cMPrFDp/mr0epVukuz2p85c1qQ1b6t0PzBxh0o3Sc6b2BnTefeof1a6SXLRvzrfq/M/v0ul+8qfP1/pJsnKv+6cRXDdzOcq3Zfn/0WlmyRX/em7le47R3yv0k2SW8dcXOnOtUJnDerLz/f2vO72x30r3dvO79xvHfSpPSrdJDnzus791vqL9/Zg/OWR3SvdeT9TyeZtN27XCSf53pi/Vbp33NIZbzj1X+tUukky+tg/V7qz9lq80k2SQ8ZvU+nusuWESvcrf72l0k2Siz7dGdMZP6Vzv3zFo5tXukmy6zc74w0b7Nn5jkqSOad05jQueGbhSnfte06qdJPk+rc6835r7LBFpfvgLXdUukmyyYmde/zb7t+x0k2SJe86vdL94CadtWo/eumrlW6S7PXbzvPO6+d3fhb3LTpnpZsk92/bmR84bc3eeVVrj+z8Lv962w9Vul/7+yGVbpK850eddcSTDu2sFT3wzl9Vukly0KjZv1YtSXZ993sr3SQ57i+dc4kuXbbT3eynnTUvSbJOjqp0L92sM7+z0vfHVbpJcvz4znPJe/74/ko3SS678x+V7vUjO9f86/M+UukmyS5HXljpLv9SZ9z6z5N7Y+0rfb1zzfNP+V2lmyRLXTX718COeu0/uyeaZ66R2eI9s3/N8yNP/Hi2N//tnMlLV7oLjzyy0p21/3WVbpK88crESvfV73660k2SOTc7rNI9dM6ple6kk3trZl9d6N2V7kqPdQbob9x7u0o3SQ6a9a5Kd4V9Os8bSXLB+39T6c46/MOV7g6vdj47k+TiD3f26h3+wI8q3S136TzTJcmyY/5br1z4f7b5a717qdN/3Lln3f/Ezv73cy46uNJNklOP/lyl+5Utj6l0x03orRN94SudPYAPbTX73zHyb+tOPLbSvecHK1e6k1brPTuvNbNzlsrr23fO6n5s/s4ZqEnymY078yAX7tI7o2yZBc6sdGd9qjO/eczBnWfyJDni9s6cwrAvddaGHP/B3nqIY9/x7Ur3yc3/Xukmydx3dc5SefH4zl6+Cft2fi+S5IHPrlTpjr/j2Ur3X3N21vgmyfsW6Jz9+cvh21W6SfLDSzrPlSeN6ZzveOeWnXNbk+RTl3XOght1UWdfwPiLep9x93z9jEr3qHN6Y3K57MZK9up5f1vpznd453qTZOasznqkfa4/vNLd6V/fr3STZNPdd690b7i7s482SeZffd1K94ydOusMzz+rMwacJAfP11l3cvnenWf3oxfsrQHYZuoRle4yj3bOi0qSHy7SOSPwu7ceVOlucd9plW6SHLNr53djh0U6Zx198Iud91QkyRNXd97Lt/lzvbPrNnvpvEr3uIu3q3TfM3/v3PILP9vZy7DjpM6953UHdeZsk2SpXY6vdP+4Ve8cgiOO6+zZOnD3znmJby10eaWbJN/+VOedcQt9vnNewMvndvbHJ8nOiy9b6b59jd463yl/6Mz7Xf7gpyrdFR/snalx7eOdd8YNv6dz1sqHV+ytU5t/y848zLZz/LDSTZKPH9sZR/zuNx+qdI8Z2Xtn1S3rdsaun/3dxpXun9/WOx/mhBM688EPX9Xbbz7nY517/Dn+8KdK989fuaDSTZIVjt6z0n3/zp3ua587odJNkmsO6Ixv/fzjvfcV//lnvXPA/xMLvTArn//N7D8/cu6njpvtzX/banLnZ/jQp/5S6R6w2RKVbpJc+dMjK93HLu88PyfJIdvOW+k+/WznjKRZi/d+FhNuvbnSPXvaxpXuqNU73xNJsv0vOu8gvPGM7SvdJFlho39VumfM7DzbbbFe750qz77V+a5f/HudNZ3HHH5/pZskUz7z9Up3oXt6+9QPmKezhv/Uud9T6a42aqNKN0m+ss1ule7jt25Y6b52w8aVbpLMt0Nnvv7GJ3q/y9u/9YVK97knOvtRfrFeZ89Wkuy9V+c8gItO7KxJ+u1dnbOXkmTOVzt7aHb5/fWVbpLssG5nXmHjFzpnR07/xX6VbpKsObzzu/H9WzrrZv82V2fPT5KMXa6zJuJL83Weo5Lkku93zmvb+Z0bVLpbH/mdSjdJ5v7cQKW7zSud9wZsNKazZj1JFr63Mxb7q4U639dJMuepm1W6n16kM5b+1l879+FJ8uLJV1e63zt450r3K3f33nl0/hyd+ZsD9z+/0k2S5TfuzMuu9tORle6U9/680k2S+f60SqU7cPu1le7j+3XuD5PklkU7YyQbXdNZD58kBx/SGVM96s+dMYG/Hd07h/HsfZerdH+4xkcr3Z/P6L0jdOfNO2c9v+17vfMTPrx2p/3kLw+sdI8d3rknSpL37NwZL7rxgJ9UupfM0zn7IkkePqZzxshO83bOCk6S1ffszB3tfkjnHLj7pvT2xj27Qud83B1u7azvefyM3rka25/Uef/8vKV3YSXJW3d19rNvdVhnL/S3t+nt3z5g7vUr3SXfvKnSXeJvnT0HSXLbrntXum/b5IFKN0kW27QzjvjQ5Z1n7KdO6dyHJ8k37u3s77jmzM7euC3277xHN0lWndYZa5+xZ2+t9rRtflbpvrVEZ+xspyM7ZwclyTlH/bXS/c2+nXMZbvzJFyvdJNlgi869+Hu2XrvSTZKHJ3X2Qy/7oSUr3c1X66x5SZK3jnh7pfvy3J05mJ8v2Ntn9vd/dubQNpl3UqWbJCttv0Yn/B8en/DKI/fnwo/P/rU4G0z4xmxv/ttnx3XeHXXHrzvrLt9/Y2c9WZL86IjOWcTXndg7p2yFRTprRJ5+rbNv8ZiF96l0k2SuCzvvUH79XZ0xpvU7296SJH86pPP+6z0/3Fvre+jyEyrdq0deVum+uvi4SjdJBs7sjKWf89TGle7OYyZUuklyVOndsJ/9Sef3Ikm23rLzrsDd/9aZI9v+9N4ZuR9eofNdcu0vX6l0v7NH7wyDx26fWOnO/ffe3riHX7qo0t1reud55vzle2cxfvXFHSrdBZf/ZqW7110/qHSTZL3LO++wu/qbq1a6SXL2/p11qBtu0DlH+rVNevO9r7/R2YO446qLVLqP/6m3vm6P3TvrqOY8qbdW9KAbf1np/nWRD1a6u2zR24Oxx1trVbr3rtFZd7nbb6dUukny2RWnVbr7rNb5jEuSS5/p3AuM//06le4nJ3XOwkmSg57ofK9OvKXz3rjVR3TegZEk694yqdI97JD/qnST5OBrO79zW0w5t9Jdf8vOGHCSnLx9Zy/7BWM6783Z/cu982Zv3b8zj7ziAx+vdJNkpxs6+zxnXt1Zw7/Jbr3993us1ZmXnXZmZ+3J9bf03gF11muddz5vsu7VlW6SPPGnzrPf48d15tRn7LhfpZskl93TOQtk2hWd8xMuObT3br6bp3Tmd26Y2Xuny7sv7jxLfeaKzljfiyf2nv22+fzTle6t65TeZ3bfXpVuktz9u19Uuu86uPe8s/+Iztl4T833+0p3v8u3rHST5IANO2vtF3moc/butVPvrnSTZLU1L650X9i483uRJB+brzPXteicX650p97dO/t6g+92xuS+82JnbfnPjuqsWUqSMw7tPK+efX9nPjhJLjqis7/jxt03rnTvPrXzDpokmbZ5Z655zCmvV7pPLtNZC5Uk097TmSt5/9s774VOkr3m6ayJ32WlzjsJXty9d/b1ISd39t19YuZ9le7iW3fGEJPk6N0790VXPN17j8Iix3X+/Q7Nif/H/7yzmh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ocZGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWDEf+e/PGz4iAyfa6HZfhG7vn+O2d78t5nptGdMn1rpTs1clW6SLDJhnkr3lVdGV7pJ8urMWZXu+FEzKt1R88xX6SbJPHMOq3TfmPv1SnehUQtWukkydfS0SnfEtP/WR+J/y5tvvVXpPvXU5Eo3A53ftySZ8krn5zzsxYcq3Qf+dlelmyTjx8xb6c41ppJNkiwwonPNY0bOrHRHjZhQ6SbJ1FmvVbojUvr8nNr57kuSKaMHKt05RpY+45K8OaPz85g5rXPvOf/cvfut4QOjKt2Z0zvffdNG9O6Xh4+cUumOmtn5GSfJGzM7zyUjSx8ZM2d2nkmSZFbnny/DR3c+i0aN7X1hT3+zc48/fVLn9y1JRo5eoNKd8ULnZzFjVOczLklGjOx8zg0fPmelO2Vk5/ksScYsu1SlO2xc77No2L9ernRnzer8zr3w4MOVbpK8+PoLle4Trz9X6b40/ZlKN0nmGd35+ys9RiVJRrVuX97qfMaNHV26EUgyuvSZP2pk53v1ramd8dQkmTql80v35pQlK90kma/0u7zg3OMr3TkGOt0kGT1wb6W71LJLV7ojx3buD5PkqccerXTHL75EpZskq79vs0649Bw8/NnnK90kGb1o515uxksPVLorLLN8pZsk887VGcef9cpLlW6S/GvYPzrhNxepZB98onPvmSQrv/dDle7Ci3U+Px+68fJKN0lmje7cv6y2ZO9zedyiq1W6zz3TeS555eEnKt0kWextnb+/56ZeV+mOma831j7i/lcr3Wnz9h7+xr++aKX7zJO3VLpjZvTGoR548pVKd/h8IyvdNVdeudJNkuHTOg9Sfzrrj5Vukiz5jsUq3Yce7twLzLfIi5Vukjx8c+ce/6QL/lHpfmfvTSrdJBk7o/P9N3p0Z9wzSaa/Nb3SXXm5zjWvueZ2lW6STB3Rea4ctnznfnlg8eUq3SQ5/YzOfdEq71m10k2Ss/7rqtnefG7Gfz6eOmvuOTNtw7Vn49X8L2+78NezvflvX3joqUr3kjl+WunudtDNlW6SPDxrlUp3xb++r9JNkpkr/K3S/cEpnd+LH33hXZVukrz8u869yRPvP7/Sffv1q1e6STL6hUcq3XvX6DyLJsmCj36t0n38zp9Uuifs0JsvnOcjb1a6672/c2/yxxN66+vePvb2SnfalM58U5IsXEp/8NX3V7rj1p1Y6SbJyRv9pdI96OXO/fvUy8ZWukly2KGdcaal7uite17miicr3evv6qwBv29Cb5/gNhusW+lOOqWzcPb+ha+odJNk3XPeUekesmtn7D9Jvjm5M7Z51fU3VLrjFurceybJXPNvXelOevb0Svf+53vj0n9bpbQe/o+9a95s5AaV7mWP/6zSHbip9+yw0oSrK90/fmPNSve+375R6SbJ8s99uNIdkb9XuklyyfDOZ9HkcY9VuhNfObnSTZLF3vOtSveU6Z+vdB/9YGfcLEnGfvCaSnfa5v+qdJNktUmde7nXS/MVJ43vra9b68XOOOIHpnTmFW5+dY1KN0n+un1nfd2Ef3TWFyTJdvtMqnSf+sfdle49981f6SbJ6addXenuuuYWle6zY3epdJPkjgM7awxu2H6lSjdJzr+1M47x1yU76+HPGfGRSjdJ3vHzGyvdGzbu7Jnc+NGJlW6S/OMPnWe/pb/UGbdOkltXerDSXWJ05/ySgSt6v8sfmGOrSvd3T7670l3xkc6/XZJsNO2QSveRWcV9BxP3qHTXuLYz73DXk72/61d3/3Glu8qqnXUCc36sN++w5xKdZ/ebXuyNvcx7b+dZ+ODHZ/9apyS58tO9s9cuOqWzN3zseeMq3QN+0Dvv6O7dOvtGzr32hEo3SV56rLPn/LuLXlzpvjR2x0o3SZb95cKV7qEf6uyTmPHezvq7JPn1WZ3fuTlHdb6jkmTxjTrPlZu8cF6l+/TqnXvaJDnr+mMr3Z2OPbfS/c5v1690k+QHd3TGlx9apbe26MQfzP772if+07PtHhqRGdvP/rOef7/RbrO9+W8n/KTzWXDe/Z15003ylUo3Sf659EGV7oOL9NZQfXaXzvf8vZ/srC1fculnK90keaF0lNg9x+9Z6X7pxkcr3SQ5Y3xnHHbLfx5Z6SbJ14Z11sCNvKpzj3biKr3x+Rvu6Kyte/Wgzu/Fb1fbvdJNksO+3FkPsdZLv6l0k+SKH25a6d71cmdv4Xl39tazTFjhlEr3+2tdVOn+a3Rvz/Ca2bDSfXLtL1W6STJ6q+0q3ffceHale+R+36l0k2SeSzvnqi392/sr3Vsn9J4XLz/jwEr3qwf3zoRdZ58LKt3TN/9dpbv8ZXNXukkyc1Jn//sXdu58933o7t4ZLe/Y6rRKd4kFeu9GGXFA5375sD8dUeneO/wHlW6SDDy7T6V7zp8764Y2ub+zzilJVtmzs0/i9G90zhtKknyrsx7+uD93zjyZ+xO3VrpJsufGB1W6Zy+2VqW73oZ7VbpJcunHzqt0b1vs8Uo3SVbbs/P9N33EOpXu5d/rrVtY4MyNKt1P/PMTle4eF3Sez5Lktn+8p9K96kO7VrpJss25v690P71ZZxzqmid6z8E/mDb7z7NJktUOfnul+8trOj/jJBkY3Zl32GW53mfRTm/uUOlu9VjnmXKfK39U6SbJOa939gb8Ykznu2+NI0+qdJNk2407957rLNU5dyZJLh53VqX75JOfq3Rv/nbv3Ovnn/1tpTtprQMq3ZM23rbSTZKLf9x5r+J3Tzym0k2SFw/unOm2yE6dc+dvvaS3L278S53zOrbbrjPvvtG1vffy3Ta5swbh+ENuqnSTZJ97O+d2jfjMxyvdUz/6zko3Sf74rs66ickrd84Q/OouJ1W6SXL+G511hr9ftLdf+UunnFnpPvHrzpk228xxYqWbJLd/5FeV7g6/7dx7Hv2Tzvv+kuT98yxe6W4y6fBKN0k2vLEzd/TOdTvrfLf5fGctfJLMOKuzr3HS3J2/vzVHdPZIJMncm3XmND798xUr3SRZ+F2lz7k//Wf7Uic/tURu/+6XZ/PFJLNO6r3bd991/1zp/vmJzl6T+TY5uNJNkmGX31PpHrdXZ89pkuy9yQqV7o7Xdj53r1iscy+cJFsd/6lKd+vHOp8ze5y8XaWbJBef3ZnXm7b3OZVuknz6+k53pdM696yHfWz/SjdJLv5l51ygJ8Z19pDdfFbve37HX3XON3769ocq3STZ6azO+4E+sm1nvvfsuXtjsefe3Nnz/fA5nfeTnPBq5xyqJDn18M75Ibs+1lkDniRX73Rcpbv/2Z13G07ZvvMsmiRfO377Svejn+2MHz8ysnNGRJJ85/HOz2LSq71320w9unPW+llf/Vile9/xP690k+Sy/TtzLMtO6Mypj91w30o3SU6Z0DnL4c4jO3t+kmTTNT9Y6a60/MaV7vY7d/a5JMmW7+jc4x/14c662Q9+uDN2nCQnbdg57+uo3Xvj0rPW7ezPmbRO53nnXZN6Z7iv8q6vVrqnfLlzBv8Nl/X2Vp2/SGde9prjJla6SbLn3N+odH921Wcq3SW27b1b49drd8YFXv3hJZXurH175w2N3LCzBnzuczvrcZPk6OGdNT5XbNcZt57xcuddZkmy5OOdtYbfm3pUpfvzxTtjUEky+dbOevh3Xdm75r+e0pk/PX6v+yrdS9/Z+bxIkrPm75wpuuO6p1a67xvZe45677OdfdZrTN280k2SD53Smev62k2dv79bfr5spZskK921TKV75V2dcajV3uiN6ez2x19Wuu9dr7O3I0mWfKCzV+meYZ31rSN2/malmyTPHfjdSve3e3bOFx+9aeddWEly+tWXVrrnfr73vukdT3y60l11sZ0r3XlGdPbcJckDq3TWFt20aecM4svmPanSTZLllvx0pTvh0SMr3SQ5ZJnO999Nt3fGajfY6xeVbpKcfGznjLv/+m3nLJBZ3+qM9SXJNd/rrJv4/Q+eq3STZO6FOmdhrfRg5zvqU/NvU+kmya/f7KzNfPS+0ZXu+17vzWG/cE1nrD3XvtzpJjl4RudefO//8H/30rzD87ut5p2t15Ikh+7SO79urSeXq3TfdU3n/dcbf2+nSjdJFtuy866dJz49+38n/u2L3+gsFv3Wn8ZXupO37bwDLUnWeH9nTfUze3T+/S5/rneew4P5r0r3O1t/qNJNkruvfaLSfXbjztz3eu+8o9JNki3v7zyP3jy283e98aW9+Yq1Fv5Dpbv1nL31ddMe6qxr2fK1v1a6v3io93d90OdOqnTfe3jn/n2r5y6vdJNkngM6ey23XKWzNjlJfvqjzvu5vr9I52y1nU/vnIuXJJt8oHNm1HmXd/79frFH71zRM//Z+Tv53eKdM+2TZOb3O+/OOWynTvfJk3v7UT7yj87P+ZwXOnNv39uqt75u/qM6z5VnndG7x19zjs4912OrdH6X19mn887SJHn8zs68+g8/+6dK95zvd+bqk2ThPTt7Js/600GVbpJsu1TnWWrNz3Tmvkf9vTPenSTLT+/8Xb/8tc6ZJy9/e2SlmyTbfrAzr77xwFOVbpJ8/oD9Kt1fr116b+KZvXf7Ttyhs8/z5Z2/Xun++NTOur0kOXHMuEr3be/5dqWbJIduPrXSPfP3nXdt/XxG732C3711s0p3xx06z37zrfH9SjdJjjumc/+yw9ad92skyTVf7ZxfMuaOzvffj9ftzffetkrnLM3nr+qccfDk/p0ziZLkiIO/WOl+f4fe2eVr/vyMSvfT09erdI/b+l+VbpJMOHSuSve5Ezt7O+a8ufc+s10u6az9OmWD3rkaK3+js4f0vRt19h++9HRnPipJ7pivc8bP5sd3zr4++bneGuJ3/HD3Sveqp3vPq8+f2/lcHjZ/Z03Zlcd21sMnyWNf6+znW+6Uzr3LqTt23lGfJPOs0TmHf6HnvlfpJsmkLSZUurfdel6l+4nVe+9W/PBp81S6OyzTOaPp2rs7749Nkj+c2nl2H7H1ZZVukqw9Z2c91PWn3lnpLrRm73f5+m07axD2vXD3SnfJLb9V6SbJE9d2/k7e/vXOHvkkWWTOzpxU8n8eH+m8VRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ocZGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGPHf+S/PmDErr74xbbZfxPITVp7tzX+be55FK90RM9+sdCe//HKlmyQZM1clO26OkZVukjz11H2V7sJLr1DpLr7oQpVuksyYOb3SHTZrSqU7682plW6SzJw6rNJ94MVXKt0keeyBJyvdORcZX+k+c+/tlW6SZMqclewjV95a6c4xbcFKN0nmzsxKd+yM2f9d/W+jR42tdGfM6Hz/TRs+udJNkoFpnc/8geHPVLrDxs1d6SbJ8Mmd+6IZMzqfcUnyxhzDK915Bzq/cy/PeKvSTZLhM+eodF+f+nqlu9CIUZVukozo3GJkyqhZnXCSEW/NV+kOzOx8Lk9+5flKN0mGj+x8zk2f3nneGT6r89mZJNNHdH4WY3p/fpk5rPM5NzC1c180R+apdJPkzXk7z2ijZnb+AUcvv2KlmyTTXup8Fg1/o3MfniTTJ79U6U568ulK9+VJz1W6SXL/i3dWutPn6DyTzDO2d+85elTn3nP0rDGVbpIMH1m6MRrZGXsZM6wz7pkkM9L59xs5fN5Kd2BG7zNu/IKdn/OUVzvffUkycs7/1hTI/7MZc3S+Vxeau/fssPRqG1W6Fx9xaKW7/vs/VukmyRILLV3pTp7We3ZfdNWJle6/7nyi0p02ujOfkSQP3HpzpbvgnAOV7uIrdrpJMuu1zjjUs089UukmyZvTx1W6C5emKsctvUonnGTyGzMq3Tmmd7qj5l6i0k2SUa92nv1mLdSb37n17zdVus8+0xk723q9DSrdJMnwhSvZ1v3yYvN0xq2T5N557610x47tze8sOn/nu2SNpReodP/1YmeeOUmmTe88+738Ruce8a2ZnbmBJHnqmc441LD5evO2M2d1nlfnfKPzcz7jgssr3SR5/c3O3MOwyctUuiPn7DyfJcnzr3eeSzZe7yOVbpKMHNUZk5syqTNeNCK9tSmjRpbua6d2/kZGjO6tk9ty++0q3Stvub7STZJVPrDdbG/eesqj//H/duS0BbLgM7vNvov53z508rKzvflvF739T5XuygefV+k+dk9vXGzyZ1ardPf/a+8++7Unjq50j5zjgEp35/l638evL9F5Bjv9Z5171iO33q/STZK5f/HzSvf2OXtrF2ZuslWl+8h111S6E054sNJNkrn36IzzHnFyZ93zt65cqtJNksV26qyHv/au3jP/1iesUelOPeW2Sve3j91S6SbJmf/sXPPNb3V+5254pjfGu9kPO/uU/vJS5/ctSVaePPvvaZNk6dU731F/W3rVSjdJbvhhp3vWwptVuo9P/U6lmyRXrblzpfvJlXqfRZcePLrSfXzV3Svd347tjP0nyTovdNbuDbvv45XufAu9s9JNks2ffrTSPXLbkyrdJLntjs5+6M2fWLPS/dmL61e6SXLa2zvzekd8sjMmsPsnOs+USTJzz39Wusdv8+lKN0mW/+hXK925v/2hSvfwLXaodJPksb/9rdJdbfQWle5cCxxR6SbJmJ8dVOnOPbW3//6W25asdDde+aJKd+VFOuvsk2T+pztz31/99BuV7sqP9cbaP7XsjZXudU90Pu+T5L0Tdqx0H3qiM++w5Iqd56gk+eDXO2sMvveT31S6h+7R+1ye7yude7l9Fv1rpZskz79jpUr3kac6a9X++eZjlW6SvDRq00p35Wm/r3SfHPv9SjdJtvzquyrdA759TqWbJBPX+XGlO8+Un1a6S+77/ko3SR75x0OV7gGLTqp0b1i0c++SJLe/pzM/t8iqvXGok479c6W7xj2ddTi/WmixSjdJrrzmzEr3iXM76yYmXrB5pZskPzrza5Xui4t1zstJks98uHMuyi1LXlDpLnN6Z89Bksx4e2cd49ZbnV7p7rtk5wzIJJm617aV7sqP/73STZIt5+lcc1br7Hn9+S6d+/AkmbVtZ972kCkPVLpXLHp4pZskN4/vrGd7aONDKt0kuW9qZ33yF/7VuQ+/ap67Kt0kWeknn6x0Jz70j0r3jYd75x3Nv+nFle7Td/+o0k2STfab/eNQ55z26//ofzdyoVFZYr/Zv6Zz1X2Omu3Nf7vxpl9Vuicf/WKl+8AvK9kkycrjO3NNm+317ko3SaYv3xk7fmGFzjqnr24wqdJNksXvv7vSXe9t51e6S3/y0ko3SW4484VK99GPb13pJsmGr3XGCD99aucZd5Erevdoq93fGWO67ILOPssvzPHlSjdJtj3+HZXut37WGV9Kkrf9ZvtKd9TPD650z1m7twbn90915r1//fvOuU7j3vpupZskh2/WOefjfd/vPDsnyZMrfabSfWXPznrcXW7vjcPes3jnmue/ujOnt/sfO2M1STLX1Z+tdEfv2huT/v0316p0L3uts5b66q9dUekmyeqnde7x/7bZyZXubcf09jJs+43O2p5Vr+itJ1vj6M5amfFffW+lO/dWvXHYlfft7Pl54SOdM8reuvk9lW6SzPfxzhzyvw7s7QW784CzK92fLLVlpbvG/Z1x4yRZYJ/Od8n0b11d6d7xVO+MliNW74wJrDhf7xyCmWd21p3Md0ZnrcV1X+3Nez+5aGdf6m9e+USle9zDa1e6SfK9zvRYJrzc23+xye6d88XPvWmPSnfU1BMq3ST58Q2dd7sdddQfKt0Pn9tZC5gkn3v0m5XuJ+fq/F4kyYdOP6jS3XGLzvrhz+xySaWbJN981z2V7h5v75zB8+c3N650k2TqlMcr3au/0TlPO0mO2bczDnX0FZ1n9/uufV+lmyRfPa5zjt/Ixzt71/7ykc4YVJI8P7qzL3XZGb3f5dcX2qnSnWvDzrqhZ7//4Uo3Sd57cucdULeM65zvuPqhnfOIkuS5KzprIx/+TOeslSQ5bb/O398OG3X28i3z3kcr3ST5y16d+bk7Dr+h0j3q8B9Uukny6cs76/e/+qfee+Q/+Y7OORLXPtRZT/OREzpn5iXJn77cmUd7boPOOrkLb+udNfuhBTrz+T9cvfMclSTT19630l12x8531DITevP5J77e2ZfzjSc769mu+UhnzUuS/OOMzt/fBTd3xvCT5JxFe38n/4kX3zF/Tr169o/H7vHy/rO9+W/HnPCLSvfYHx1W6X7k9k9Vukmy1E3LVbqffat3Xv2PluycubD6fJ3n3GXmvbLSTZKpt3XG8jb4QWeO849/eLbSTZKdH++8j/HxUcdWukmy3Bc65xC/e9aule7hx3TGeJPkh2t0PpdHfLezjmPDT/bmTo86vrNP/ZfPfqXSTZJdR3bee3nnpT+rdCfO7MxjJcmzv+6c8/G9n3Z+L45cv7emZf9bOnvYrp2wd6WbJDu/+xuV7t+f78zXX/nxzt9ekjyzcucz4zsPdM6xXeCxUyvdJDn86c75nM8c2/v3O+rFzlrfczYYX+k+8q3XKt0k+a/T9qp0tzikcz7u0d/qzMkmyXfv6HxH/XSN1SvdJFlvxr8q3VW+2Xnv3qsH9M5XPXyRzpm+Dx3fWay23Qd674b92vOdNeDH73pcpZskK1/UueaBFTrPlKvu9vlKN0nm/0Jnb+r0yztnGR14UOe9YEmy1AWdc2zfMXGbSjdJnr+rc82ff6xzxsG1U7erdJPk3m0Wr3R3P7Kz3mKrq3t7q/K5zrulvj33FyrdJNlmWGcP1M9P7Fzzket3xj2TZP3nOvOF132hsx/sm1t31i0kyVGLdJ5LDtnu0Eo3SXYf82ilO339D1S629zzfKWbJKe/PLHS/dAt61W6dyzRGxNYedlJle6PZnXmQJNk/T065ye8vMsCle55e7690k2SBffqrG8dO6t07u47O+uGkuSqxzrjWwcv1RkTSJL1t+7sDf/VFZ194ROX/XalmyTTVu88V/5pns78wFMr99Zn/WaZCZXu/PP+Z+ca/r941wGdg/le/dCkSvcLwzapdJPkkd07Zyq+c4vOOrjXXz6o0k2S8w/prHs59iOd/b9J8sknvlXpHvZ0Z9/I3Ed19iklybT17q9033df57yH5xadWukmyXInd96HNWGT3n6UW6/orBV98MIJle6s2z9Y6SbJny/uzOcvM1fne/Xvv+89R823X2ed1VFTOu8PSpK19jqw1v5PrDbHfLli5dk//7b8lr1nxrkO+Hqlu9DfL6x099ins28xSRbbqPMOu7mWvKbSTZK9d/pHpbvIEZ0zKJ5crfMsmiTfP69zNtBuhxxf6X7lgt67rr41f+dn8bZjeu9tW+iwsyrdLT/WOX/ptXfPVekmyQULd87S/Oz4ztkIN+7aOWMuSW5csbMH/s0dD6p0k+TbMzvfJasfcl2lu/Qind+3JHnks51z+K9bofPer/0e6b3LfeFbO3NZm+7d+b1Ikm99cc9Kd9pfF6l011i79z7Nhe7o3NduecA6le7WH+/db01dtPN+oCe26u1HueFvnTPbtt6wsyZi7omd8xKTZPLnx1W6a2/eeQ/Gvg/29nbMNbNz//L4Nr21J1e856lK94P/6OxtvPTo3ntyt3pmUqW72caddzW9d1znHOIkOfhDnbULT3xhSqWbJJdd0pkjO+XYzvff9/75aKWbJDvN21n7dczxnf0oD7/UOb8nSX656x2V7mHP9PZg7H1k5zPjh7/rnFnzx4N7cyxHXtfZZ33aZp21hte/1bmnTZLVjr680n3luc67YpJkneM7exsP+nzn72/723v7GUZ+pLM+ecU3OucnfPHgjSvdJDnom51zDk5YdbtKN0lW/nDnd/mC7TrvCT0mnfdsJcnNW3bGgc87vzOm8/V7Tqt0k+Rj23TezbfOp3vvZr7qrM75keMfeLXSfWxUb972om+tXOnudEbnjIoVfnxKpZskBy79xUr3/df3zq878f1XV7pnbtB5B+mfxveeHR771JhKd6NzOueY3fCBzpxtkrx+ynmV7gqzOvNGSTJs6WMq3ble6ryfaNLVneezJLn3F50xrlOu7KxZ+ukiv690k+SnC3fWAB27T++9VZ+4t7NnecmVbqt017jpj5Vukvxz/g0q3cvu6pwx/ouHe+9vvum5zhk/h31p40o3SX77wIRKd/6Pdc7hP3Xj3nvHNnlv51z0z5/WWZ+8/oyrK90kOXbtz1W639mnc9Zmkoz/7hGV7gv/l/98oPL/BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wwwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBSM+O/8l19+6ZX87ow/zvaLGNhmq9ne/Lf11ppc6Y6ab55K94XX7qt0kyQvLV7JzrHQjEo3SeYZu1ylO3lmJZsFZ77VCSd5fdTwSnf49M41jxg9ptJNkldmzlvpTpl6f6WbJMNHd37OL9z9QqX72nNPVLpJMiqd3+VHH7qr0l1+YM5KN0lGju18Lo8eM3+lmyRvzhhV6c4/x9hKd8rMqZVukgyf0fn7GzlH59/viZG9v+tXpnV+zovNGl3pJskrw/9bt8H/z+YcNqzSHTd9eqWbJAMDnfY8ozo/41cmv1npJsn8Y+ardKdPnlLpJsnMaZ3PolGl29o5xvXuEafM7PycZ0zr/F1PndL7ux45Z6c9bFZ0UOG4AAEAAElEQVTnPi5Jprw1UOmOmTmr0p1e+uxMklFzdT6LZozuPEcNvPFapZsksya9Wum+PuWRSjdJJv3r9Ur3tTc7zzv/fH1apZsks0Z1PvPHj5qr0p08bFKlmyQDr3eeK0eP7txvJckco0dWuqNGdb6vZw1brNJNkuGzOp9Fs9IZtx49eoFKN0kGOr8WGTVn8ZrT+Z17a3rn+/rxO5+pdJNk3JKLVrpvvfV8pfvqfb25ktErT6x0X3rl6Uo3ScYvsHClO2HFpSrdyS/37pcnLNEZR/zXA5dVuo8P7zyTJMmKb+vMoS36js0r3SQZdv0tle5a602odB98pPP7liTjllqk0n15emcMf8rTd1e6STJs7ByV7pyje+MYcw9/pdK948nOM/aFF15c6SbJRz6+S6U76skHK90Xhj1X6SbJpFc7n/nj5xhX6SbJsDGdv5OFF39fpfvMxYdXuknymR03qHRHTOncI774WGduIEkuuezPle6SC3fGJ5Nk1bWWrnSXXrbzd/3cc71/vzXeuVKl+9GPfKDSfbM4n//6pM5zybSxvXVyC8/TGXyZd4FVKt3pM5+sdJPkldGdMZ2B5zufy69N6T37DRvZmbid/ETv72/j971ztjfPPfc/n3OY9caDmXnzdrPvYv63H77xk9ne/Lebb/tBpXvxgXdUusOvv7HSTZI73nq50n15z/GVbpKs90ZnLPaSLU6rdH9zwR6VbpL8Y/nOz+LsEZ0x+qdv68zJJsnCYztznA/deWmlmySvnHFmpfu+1b5b6T52T+8+e6WrOms6lzm4c592zmGHVbpJstCX16p0lxvVmZNNkmtP6LRHnvZwpfv2jTqfcUlyym2fqHRf/UhnzG3KJ3qfcb+86dlK9/qLP1fpJslyV15Y6Z5xYGfd3iM7LFPpJskqw5+qdDca2xkvXWXB3vPXSlMvqHT/uOrESjdJltnxPZXu6jeeV+lestpnK90keePOmyrdm3f9Z6V7zd96ayJWvLezvm7Bmb31dVPe9mKl+49bO59xS73rpUo3SeaYa/lK97lhnfutG//WW0M8ZtVtK92bF+rchyfJ9w44vdL97q2nVLrjju+NS0/92z2V7lwz9q10Hzzt6Eo3SZ5+9lOV7nv3m7vSTZLRH/xtpTv/hitXug9f9uVKN0nuXvbKSnffSWtUuuNe6601XO6uzmfGzXd2vvuS5J9b3Vnp3rv/NZXuko91/vaSZNI6nf18w0b/q9K95ZmLKt0kWWX98yrdG8b8pdJNkoknd+7x79q18+y+/1wLVbpJcvjNv6t0h7/eWSv67mFvVLpJstMPxlW6u2/y/ko3SZZ7sjO+/OwbEyvdtebt7A1Ikj+s0PndOOeTnfmdvTfrreO44JnOHprVr+h0k+TRdMaBnx/z90p3o4U+VukmyZF7d8Ybfvj42yvdk7bqnG+XJNtu1FkDvvmNv6x0k+QPpbUCH1y2M9b+6/vPqnSTZKtlOuPAd29yYKU7bq9dK90kOXPuzhrix9ft3RdtO+/ESnfEsZ21DX++pfe9+tNDVqt0F77++5XuHcuvX+kmyWIvfLHSXfJjnbUpSfL0mp3zn664/uOV7qTX313pJslyJ3+60r3y7s5Y7WMP9fYJvjX9D5Xu6c92xreS5PjX3jXbm1dOPuM/+t+NeuLOLPm12f/dNuO23vj8PMd8rdJd54VxlW72em+nm+SXdx1V6f7grs767yS56SeddbObHvDRSveCtTpzm0lywru+Wul+avIHK92/XjKp0k2SfZ/v7AHc+wOdPW9JsuF1nX3qG/6uswbgwo/0zmHc4cOrV7r7fKPzjHvVyF9Xukly9ru/XunucVZnDitJlp/QeUZ6+NXOM+65O76t0k2S437X+fe7benOnN6v3t0b01x+lc5nxsTremcPjh3onAX3juc6e3t/tUbv/InFPtFZ/73MPd+pdN//em+P4Nnf7KyBm+OR4t7ezTprcL47d2lt+cK99fsLrX1QpbvcXzrrys9f69FKN0n+tWRn3ddcJ2xT6SbJCd+5vNJ9cevOvpwNnv1epZskl17bOb/g5IUuqXS3XGqJSjdJPnt7Zxz9F5uXDitNMmWjztrkp+7tPPuNu6lzPlmS7Pze6yrdbZbuzKdvnc7cZpLsdPQxle5au/XmN7++c2cNx3b7dNbjzjnhoEo3SYbv1Flf8My+H6p0t1n+1Eo3SU79YWfN5V/Om1DpJsm5p3f20o75wEGV7lNjensEz1ptx0r3zGWOrHS/MePxSjdJzl3tG5Xuavv37hFvOqfznsJdn9qp0v3h8p218Eny55d+VOn+4PnOeQFn3/ulSjdJfvrGDZXuyMt68wMX/eaTle4aW3XOyhn5za0r3SS548bOz/nAa1etdDc6q3NOd5IceU1nHGrMptdWukmy9ds7n3Pr/HXZSvfCb83+NSf/9oXvd8Yxnvri7pXuwhN664fvX6fzvbrd5M6avSS5+eHOnNTkPTp7Rv457ZBKN0kWHnNkpbvydx6tdO9cobd+f/yTnbmuXe/unY/7tfk7339LnNuZX/3R8z+sdJPk58+cWOmu/UDnHb33rND7jvrZ6M7fyeJ79860GXNKZw3qpps9WumO/1LnbPgk2fuFjSrdOTbrjLWf+NyhlW6SbPjHjSvdiXt3zqdIkhVu6v08/hNvPjsj/zhi9p9n9MmVH5vtzX/7zcadsaDrl+6c/7LR0p3vnyRZ6bDOfNPFk3pnde/7q79Vuidu3Nmz+PERvd/lZSZ29ma/eXDnfurCmYtXuknysa9sWOlesUjvnSoPzb1OpbvpXp3PuFd37pyJlySjNuusKXv2E539WLefv3almySn3t+5h9/v0s7+6ST5+vmdNQbXrfbNSvfwl4+odJPkMyfcXum+622d88WfnfCVSjdJvvbcuEp34dM6aw2TZLdfdtYELrFr5x7xt5e9XukmyTEDP650H1qyM378wfl688ib3NTZT37qDb3zC2Zc+PlK98wFN650l3qrswY1Se6/cp9K99KTvl3pvnTkfpVukuz2aGdN5367d/Y/Jclr62xZ6U47tzPe/YOvdvaMJMn473c+P1+b0XmO+sb0znknSfLaXzpz1Jdc2HkfXJIcdVznnI93fKqzb2TdPz1a6SbJxHPurXQfOKUzDvXipe+odJPkqc9tWukuvcrPK90kWeqqztjZh37fOYvgua3/Wukmydx/6IwXXbX1AZXuBR88vtJNkltW2aHSfXLxZyrdJPnxRzvvgtztqnMq3eOP+lmlmyQbnNvZv33HHzv/fnPteXWlmyQPbNE5P2HblfasdJPklXd33iV49Z2dd66s93RvP9G9i3fGdJ79ybhK96U1O+9hTZKBCzrj+Jdf3Vurfdh+nffnfXNqZx3cctd0zt1Nkmfmm1zp7r3g3pXurf/qnLWXJMuf3Tl3ftJBvc/lBbfpnPEz9+qd/b+PbdT7LHrfXZ3n1XPO7swnLnJeZ/9Mkix7QOfdKCt9unO+Y5KcdPt/dmbi/59Dtp/977VPkn/8fclKN0nWPOLkSveI/Tr3W6d98dxKN0m2+lrnXu6oo3tz2Net0vn++8DbO3/XNxy4eaWbJAsufnile9GXOmvA19p8v0o3SbY8vrNP8KRRnfu4JBm/9X6V7lajO2Ptuyzc+7seeVhnb+qDN3f2Qn/x3M4cTJIc/ePOXvZP3X1cpZsknzi18263I//Do0CmDzyXl+ac/eeT7Hvo2bO9+W/PLtKZy5p6def9JAte1dmrkCSPntJZI3LQz9ardJPkW6M795a7/XGzSneHn/T21C1/aGdP5PTNO/esty7Rew/Fprt35iIP+mLvvPW9/tY5W+bxE1+rdJ/7zV6VbpKs9snOZ9ESi3bOuVp97c7YVZKs+2xn7dCfj+2dX/fihZ1rHn3XCpXuLxbvvIMpSfZa7PeV7u4Tf1Pp/uXdnbWRSbLwGZ3zOPY5u/c+2+nXduZYvnJKZ3359rd39gYkyWkPduYL592+s39tl6175zms+0hn7nuuEzrjbUlyzkPnV7o7TOzswdj7mN57jidO6Jzj/u0/dN7te9xnO+sBk+SuhTvjjzt+YcFKN0l+81jn3JqtX+uM/x/2wS9UukmyxdWdNeAbb39apfujqb0x3r3/0plXWOj2znh3khy3cede4O8Xdu63dt78nko3Se7ZqPPexBcOGlfp3vGtn1a6SbL3motUuveM3K/STZIZE2+qdH8ysXPv8rELO+c9JMkZUx6tdJc9pLO2fNgtnXULSXLrzZ11s7d/pbeH5pd7blHpbrp+Z335ip9/vtJNkl+f3zk/4fJrn6h019uh9xz82UvXqHT/sEBn3V6S7DvxhEp3v60773SZckRvP8Pym3XOFd1wj87fyDuHXV3pJskFl3TOqNjq/Z05tCS59fQ7K9073tt5p8Te+3TGBJJk08M7eyYPf3ZUpbvu3r33TL7vPZ0zmjb5+26VbpJcuFVnHc7MtWdWuntd1znXMEmm/6qzVmDEq9+tdA84sPc+uueu68wpXv+z/SvdJFn8D5333k58vPMemkVL72xMkmcu6pyf8LGv71vp7r9p7+ynrf7ZeW/cnV/snGObJAs83llD8ud3fKbSnfxm57yVJNn+vzrvQ77+1Tcr3f86pLOeM0lOX7+zh23z7/X2Ey2zbOeMn51P7pzL/OsHe2sG5/nUxZXutpt21j2fuU9vfPmJdMYbNi2enffobp3zg/75fxle7ry9EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+hxkY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAD+P/buK0izumD79T09CZgBhjjknARFsmQQyQiCIFHFFxBRVEyIihExYAIUJAiKiYwkCQpKEMlIDiI5hwGGNMPkfbDLs2/XfrXmrq7+6rqO4VererqfZ61/WgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAw4j/5j6dNn5rnXnxitl/EeX/602xv/tvm63280p01dXylO3Lk3JVukkyY8HCl+8a/hle6SbLIQqMq3dcmTa90Xxi2YKWbJLMmTa10n3/+pUp3xdXXrnST5NF776l0Z06aVOkmyYLzLFrpzjHshUp3rrErVbpJcv2ZV1S6y86Yp9IdOWauSjdJxg7vfMZNmTWr0k2SkcP+o1uH/7Xh81aymfbsG51wkszd+bv+xeTO93VeKHWTLL3aKpXu1c/cUekmyZjRnc+MYS91fucWGdX5fUuSMSPeqnTnmTK60l1uzPyVbpJMe6vz7zfX8M7PIkkypfMBOmvsm5XusMmlD/wkw2a9VulOHT6s0p1zTOc+IEmGD0yrdGdOH1npJsnoYZ3nyhnzlO7lFlus000yx6wple60tzrPwbOeeLrSTZLnn+jcvwwMdP6uk+TFNzrP7q9P7dyHjxk1udJNkhkzO/dbc40ZqHTHlJ4pk2TMqIUr3ekjZ1a6STJ8Zud7aur0OSrd8fN2vvuS5LWJnfG+seM6f9dT3+zc3yfJiNK/31wL9O4xXnul0x47V+e75J7rXqx0k2SBDy5U6e763q0r3d/84TeVbpJsuMnESvdta/fGxCe/9XqlO2J653l1zPji/dbDnWe/5198qtJddFTnby9JRgzrjJGMfPPJSjdJVlyyc4/xxL2PVrqPP9sbU11+g09Vug/dWfpeHdGbK7nhoSsr3WUXWLrSTZKx8yxS6X7p0HUq3UlvdMYEkmTm8M6Y6tglOusmxs5cs9JNkrVXvr7SHTu89/c3eo7O7/LCy3XuBVZYftlKN0kWGrdCpfvUffdWuvfd3xvTeev1zr3nJvu8p9JNktXX3KLSveH2f1W6a661RqWbJBtv3VnrsfDbNq50Z07qjWMs/Y7lKt3rL+7cuyTJa4t05gfmW2DlSnfEjM6asyQZO6szJvf68Jcr3bHjl690k+T1t16pdD9+4PaVbpLcftPs//6bNf2/v6ed541Z2epvs/+e+MhbjpvtzX87/xtHVbqPvNAZl56x9naVbpLMe+4Dle52G/bW1z15/pyV7lardp6T7lj3L5Vukmy6+Hsr3fsWXbXS3f7M3u/Ft269pdJdZJ3e/dSKU0+odC9/9blK9+alO/esSfLIyb+udL/4uasq3f/52OKVbpJ8dpHOXMhFD/Y+i16eu/Sce0Dnd27MEr15hZcmdv6uD1moMy699Au9z7gPfXqHSvdfn5n9++3+7Zp3dJ4NVn6x8+/3+n5fqHSTZNo8u1a6M6/5TqU7ebPO9SbJsbd3ns3/elRvXHrGCkdXulct/I5Kd50JvX1mN7z0TKW7Q2mb7tP/7KwtT5J71u58/62wTO/fb6mv3V3prvlUZy/0g7v3/q5/uNS7Kt3j9rq90t39mmcr3SQ55YLO+PHopY+pdJNkl7nPr3TX2vX5SveVhd5W6SbJhjM6vxt3v//7le53Tug9+z28YmceecrwztxNkvzo4TGV7uN7du4xFnmrs74gSRZap/P9N/kfl1S6k5bureN4/IrOs/sjX+3t85z+1gWV7q4f6XwWfeVjvXUA31ulc/+57w8648tfPaXz3J4k63318Ep3uYM/W+kmyUVHr1bp7rNVZ65rodffXekmyS6/PKTSfezJyyrda1fsjJslyaHnPVTpbvpa594lSc6e9Filu/Irnd/ln5/e+bxPkseP6ZyxtfJGP6l0TxlxbqWbJLeu1FmrtvkZF1e6SXLGiM79y++/0jk76BPDO/vXkuRPz3y+0j35xd9Wup9f9LZKN0l+VroXeOrozt91kix7x+6V7h1LTKh0t9m/MzeeJNvN/6VK9+KTOp9F/7j4wko3Sd69Uucz4+59euMYO32o81xy+d9+V+nudfTNlW6SLDq+81y59Cc6++//fGlnbidJ1vnq2ZXuLy/8aaWbJOufsnOlO2lKZw/G6ltdXukmyevPde4xJj/S2Yu561a9M2I2fLizB+PM7/XW9r1yyuz/Oc+6/b/bV/XwsiOz229n//j/2u9carY3/22jLb5V6U7YunMvfMxp/6h0k2SjdPYqnLf2LpVukrzt3Z15kCMP/m6l+7czevdoTz7YuX/fauHO/Mpv7u2NST9xYOd7bb7Pnl7pJsnHjurc83z5nP0r3Wv27D0vjr+4s7d30l/2rnT/tVPvDPddb++swbn6Gz+sdJPkyuUOqHSvOftDle4d819d6SbJSV/rnKWy31Gdz7gVf9bbZ3nOoZ3Pz+Ov2LbSTZJjfts5S2XWbZ112iPWnVHpJsl2F32y0t3jic494qvf6q1HWn2rzhrGo+55Z6WbJCdN6vydfGavnSvdMWf+rNJNknsP6azz/fv2nfGaX23dmY9NktWePrjS/eQznfn0JLlmcucsv5fP7jzvXPTJ3l6UGz/fWdt680abVbrjvtt5bk+Sf57z/kp34Nzes/sjv++c5/DD+zrjW+t2thskSbZZpzN2/LmdO+eg7v2zzn14kuyx++qV7uH79MbkVrj4mEp3u591nqOumdrZX50kE1frfP+dcv3XKt3v/KO33/XOL1xQ6V55Sme/ZJK8+vYHK921x3fON/7Dr3tnUk6ZeUOle+dDnbH2/fe6qdJNki/s21kPscHy51S6SbLOTp01xC8eOLbSnWezP1a6SbL9zvdVuqcc2vm73njaFyvdJBl30KWV7tefPqPSTZLpkzpr64Y903kX3TE/ObLSTZKpv++8w+SA/e6sdJdfZVylmyQfeUdnT/+Mn36s0k2SjX/XeS7ZcvHTKt0f/bG3BmGd4YdVunNftlel+8JxvbNyntmu87v8uR3/WukmyT+u7Zzj8tEXflzpvvr231e6SXLZOp3vkoNu6sxhH/iB3hlm163deV793PadMyuTJCtfW8n+dP/OWWNrnt75G0mS08Z1DnJ519jjK93xx/f22w18r/MOhXO/uWOlmyS/GX1RpXvtQGefxJwTemfwP3xN59zyC3/ySKV7xfKd5+skOXdc517ghaV7c9inzts5TzH/5fDW/PMle+0++9er3bN0b03LpB939p1+9d7HK92ff6F33teON3T2FFx0UWeMKUk+9onOXoWzvnJqpbv+Wx+tdJNkoR937ocP+/IHK90/rtF5R3WSrPPChyvdQ57ozSucOearle7p551S6U743MRKN0ke/2pnfetF+8xb6Y69pPPOxCS5/csnV7pX/b13rsyLh3beffLar16tdI97X+cM8CR56bzOd8kvJnbWt+7zy8771pNkxiud5+fdt/lBpZskd83R+V59ffvOGXPHrNdbU/bkAp29vffc19mn/vifr650k2SO7Tv3At8tnf2SJH+7vPPenC9+sbMQ7uRtSs+4Sb7+4tsr3WP/1Dlf/Libe+9mmP+Azprq0Xt0zrVIkomHvFDpHvz2zrjYgmM7Y49J8tA8nXu56yd25t7W3uQblW6SHLRiZ8z0x/t31mclybBtOmu1H5i1fqW72aObV7pJcuHIznfJDsM785A73vDzSjdJbtqpc67T9lf09sb96qSTKt2zjuw8O9w6pncG//1vfrvS3eSGznvdpi3f22f2tdU7c2SPnN95f2uS3LLJoZXud2d03iW4wUKd7+skWel3a1S6S7/7qUr3il+vV+kmyW5bL1zpjl2stz5y+KzOezE3fKazV2LrA+ardJNk8R90xlTH3dBZ93X6T3vvn79+RmcP1JPHrljpJslXv9dZI7L1kp33jPz6T539h0nywhyd8eVvXNT5Waxyc++8lccOXabS/eLfexs9T3pv5x5j3Xk7Y7V7Te29v/yBSZ2f8/Fv75y3ss9qvXmHbz3SOSt41/f19ulu+IPOGq2Jn/hDpbvoPzp/e0ly6hKdPZN/3qMzpvPlTXv7Rw84pjOnuPjkzlmNSbL/HzvnBd+1fGfe7/hNOs9RSbL+VZ1zPIf98NhK94g7evtHF7qt817Ft77feX9Qkmywa+fnsd7FneeSn63bW0/zsfs7Y6q/fGdnn/UWj/Xm0G5aq3MWz6mLds6KS5JfH/PlWvu/Mfr+JbLUmkfM9u7ql/XO7p9xdOd+eMddO8+iu326d599xB6dMfoTnuncsybJqCM76zjOvafz3qg9JvTO2fnpRp13+168d2fd18VLbVDpJsm3T/5RpXvreb09kctd2nnfxyef7ewN+NO9nfcyJ8lxWaDSXeX6zn3aOit1zvlIko/f0vmef9dSnb05SbLw6Z1nu88s31kTOMexvTVJy9/SmSP70lq/rHSvOanz3ZckN5/Uef/1P//SObMmSTa5uLPeaWCvb1a6hy/eeX9rkjx5SuddnV87YM9K91f3dc6OTJJHNu18Zrz9qk9Uukmy5pWdsfRLP9cZf3z5l50zHpNks6W/V+lOv7ezpuW9b3a+U5Pke9d39n2v+1RnDVySvLxcZ+3e6hM/Xem+e9vePrOfjemMed/3hc67Yh44o3NeW5IcvFZnP8r0H3bOZE6Sv321sybpoWGde7kfHb15pZskJ63ZOWdnwkqdechV3+ico5kk8y7RGf+/+TO9s4HmPL3zO/fsjqV3CH2wd57KQT/tvBPr1lHTKt13juyd03LUtzr3iO87o3PGQZJ8/Cuddz9clc6euweP651d/tZlnTMDlr5xsUp389+fVukmyX3bdd4j9LP3n1jpJsnqh3U+i264pzPXdcnevTPbdr3w/kp3vZVKZzwu1PkZJ8mXXvpFpXvm33vz9b/YYotKd+zmnTMD1jqxd/bTLe/qzPs9PLEzv/OL43t77k4654pK99Y1emPiD7zemdNf5cW1Kt0Tb+jMJybJhRd1xvv2WbbzWXTFBzvn2CbJ5/d9rNJ95wO99XVfWq7zDue7/tIZn1xi3p0r3SS58eTOOYJ77zex0l3sQw9Xukmy1Yad8b6fLtK5D0iSbz3WebfpvOt05t2fe6Lznskk2WyNzjjUG4ftUek+cvlPKt0kuWndzlzzue96o9JNkoX277zv4Ohhnfeyj9/yoEo3SU6cr7PWfumtdqp0j9yt852aJL866QOV7jEze+d1f/qm6ZXu6fk/v/O28zYdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPi/zMBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8GwWbNm/a//4yUWm2/Wwfu/Z7ZfxJln3zfbm/927De+U+m+lrcq3VF5pdJNksefeKjSnX++1SrdJFlimbkq3eHTO925x8xR6SbJhMmPVbpvvbxQpTtpzrGVbpK8MWVGpXvrjRdXukky/a2Rle7CC8xf6Y6bNrzSTZK//frPle5KozvXPGZ05/MiSeYb3vn3W2n+BSrdJJk8z+RK98XH/vf3I/+JqUu8WukmyR+HD6t0x2RapTt91HyVbpJMev3NSnf68OmVbpK89uJzle68Izrfq29OfKnSTZI3ZnTua982rPO7vNacq1a6SbLBuEUq3YXnWKrSTZLMGqhk5xw5otMdPabSTZKRwzufRcOmdO7xp43ufKcmyehhnfuXScM6vxdJMm7VFSrd6a9Xshk+pRROkpmd+6LJE56udKe8PqnSTZKJkzvX/OSUJyvdJBk1vPOZMX3Y6Ep35ozO71uSLDi6c/85bdqUSnfE6M79fZIMm9oZExg7elylmyQDpY/80QOd76jJr/d+l+dfpHO/9dZbnfvwOdK795w0qvOMtuiC81S6SfLqC53vqeczodK9f7He+PLIHTo/52lTOr8XMyb25kquuu7ySve2B3rXfNDHPlbpjluy84y28LjemOrUFzpjOg/c9UCl+8arj1a6SfKe9dasdMeO7YyPJMnEBx6sdB964rZK98mXeuMY23/gU5Xu1Lk697UTJnTuXZLk5j+fWOnOv1jvHn/qa517roFhEyvdOUZ0ukmywuLbVbozp9xZ6Q6fe5lKN0n++WDnHnHBuRatdJNk6gJrVLpH/eSLle7Ky4+vdJNk0YHOeN/oldatdE89+4RKN0kmvv5GpXvYB2f/erN/W2urfSvdX/3qZ5XumhssX+kmyZbbHlLpDozsjMlNvOWflW6SLLTSipXuHTf21jne8ZczKt3dPvDlSvep52+pdJNksZU633+jxpbWIBTnsF977uVKd8455qx0k+T5f87+Z+Gvn/T9PPrM4//VTf7K8y486+QNdpvdl5Tr5uw9c0w7bt5K93sHj6t0Txy9f6WbJHdv+kSlO2xm57MxSRba4YhKd/2xUyvds+e8t9JNkj0f6dxDrHL5SpXutnv31hpuess+le4NP/pCpZsk6710XqW7z1LvrXTP+9hhlW6SjPp8Z6/EObd21hpusGJn7DFJ3jm88zy6xv69OZY7nliv0p108cKV7q079NbNjh/ozIVMHfauSnfRJzr3AUnyrlmdMd6r1+vtwfjJmXNXur//yMRK99ozHqt0k+Qv13b2xu3+7c531EaXP1vpJsnqS4+rdN8cvkGlmyTTZt1c6S645PqV7rgFeutwlp56dqU79tp3VrozF+2t71lpwZ0q3T/NPK3STZKrR3bmkqdtu3Kl+4uH7650k+TGaUtUuuMmdcYf3/rmWpVukty73fWV7uvprdV+aMYLle5dxy9Z6S522Lsr3ST50IjOuvXrxv+p0l3i3K0q3SQ5b/tHKt0NH+qsp06SUUt11g4t8khnXu/OF75S6SbJa/PsUunOt+Nple4hXz6q0k2SH39ps0p32GK9eaFbR3TWxD9x3rcr3XW+u3almyRvn3FrpXv/TRtXulN3W6zSTZILz96r0l3+8j0r3STZ5pjOeNGqT/+j0h39Ru+8nCkbdOYHHr/8yEp3+ivjKt0kufKdnbVf257fuY9LknHj7q90L9+2cxbI7XP9odJNkk88eG0nvPjfKtlFHnlHpZskx115T6X7hfWurHST5Puvde7xV3xb5zNu7ms7ew6SZPxOnXn38/+6dKW7yPq9e4yJP+ysFRi70x6VbpKsuMJjle7mn7up0j10lc6+1CSZME/nmheeozMONevZrSvdJNnllu9Xuncs/rlKN0mGfW3bSneNX/+g0r18j97f9dajtq90F9us8xl31Rm9s5/Gj+zsO1jsjesq3SQ5cuFvVbp7jv9SpfvQpa9Vukmy4A6d8dqFFj6p0n3oiU9Xukmy7Q2d/SiztuzsP0ySS2bN/me0M791ep5/9Pn/eKHxAuNXnbXtnr+f7ddz4j2dvTFJcvNBnfOzllj/7ZXuC5f15lcWuqyzH/KLi29T6SbJ/gvtXOl+/5PHVrrLr95Zc5IkHzu5M9f09bs7z3Xvv+/gSjdJ7hrVeXaecFdv7GrkAp3vnx3+pzOm+cQCnfWnSTLhZ53PjOGfXafSPfCgzr6AJHl8Ques59Pm6nzeJ8nHP9wZI/zDHKtUugdf11tn+Pm5OmtmHxr/u0r3ucc7+0KTZINJnXULZ+3R+RtJkq1O7qyJ2OLUzhq4ZTd+W6WbJLv9qzNGMe0rh1a677qmt3/6SytdWOkusV5nPi9JdpjZ+cz4zT/HVbrTJ3bGB5Nkiyc7P4uvzzi10j16vcUr3SSZdvD3Kt1Jd/XejTLmL53v1QMu6axn2XDZ3tq6FR/trG392dLvr3S/sOKPKt0kuX6uyyrdFR9/rNJNkoN/0hmj/849t1e6Ox6/RaWbJPlT50zKB9KZU/jHsp39BknyzAc6517Pt3TnHLEk2ey2zvniNw3vfP+tNrJ3LsnIdMb7Vljsg5Xubl/v3Xsu/o3OGqq5Hu+dAzJwWuf+85QjOvNYX9yrNz651HmdfcW3HNA56+GJgd6YzheOvarSverF3jmM27zYOd/n3kc2qnTXP+KKSjdJRlzSmZ9ebuNTKt3lF+ms5UySDTfqzA/cfEZnrD1Jzr7umkp3qTtXr3QvOq/3WfTu0zvni5y6cGd85MWlOutPk+T68/9Y6b7trscr3ST51CWd54fdD+ysjbxik9Mq3SS57rTOHutPjOh8fg7s1NlfnSR/3KUzJjftrd4Zgq9/vjMn/Pq5nTVAGy39cKWbJJdu0LmXu+5jnbOq5v585zztJHn2oc745NZbdM7qSJJ3favzLHXIWZ33dpywUeedHUky9cXOOSCXz9mZa/5cOu+BTJJ/bXB4pTvPZctUukly83qdz7mNj+rs6T/r1d5+yZn3da558692ulvs19sj+Nc/dNZjLHZpZ0wnSeb48+mV7nvmHnfbrFmz/uOH1lHzjp41fsPZfw//5HGjZnvz3+5f/6uV7u+e6czJfuJzvTXEe93UWQd33l699XVbzzn7zxZPkrH7d85XXfXczndmkuz3QmdN4I9+0Vlrv/+Y3ljQq/f8ttL98s2d+78kuXWv2b9nJEkOOu/Hle62K25a6SbJ1856qtI9dq/OvvqlPnhupZska07snOXw4jK9fc4Pn9w53/gHL3XeLfquRc+pdJPkXW8eUOlet2fnmfH8jT9e6SbJe77cmW8avuuNlW6SfPOkDSvdaw/ofGbc/1xn3VCSHHJA5/PzhHUvqHQf+5/Ouq8kmWfKDpXu69/urdW+5VOd+891HuiM/y88vncG/4+mdO6XL/pa57y2c8b01hDv9rbO2a1nFN+N8p3Hz690H32q8/k58JPeO48efrgzl7zvjzpnuF993/OVbpI8uvtdle6Z1/bG0t+xfOceY9pBnb3Fz19+ZqWbJIdevXml+9O9O/sZ5ntP50y1JPnB/p+sdC+c2HuHwq9OuqjSfeKEzlndS13Q2yc475ad9+R++uhPVLpHLbdzpZskq67aWev75vjOPpckGbtL5/15S47trOPY7NJvVLpJctDkzprAfad01tpvc3fv3Qy3/6WzjmrjPSZWuknynTM7+35uerGzZ+vwlXv3GDfs2HnXyLWTO3Ndz264Y6WbJHv/ujM/8K1reue1rblp515gpZs65+UcdMRZlW6SLL7lTyrdbT7Vef/1ma/3zn46eKHOnNRG5/TmKg/784KV7rHrdT6Lht374Uo3Sc49+OhK9+qVO2dKLTil926U2xbo3GMM/3nn/SVJcuaez1W6a73ZOUdpj3U6560kyXL7dX6XP/DQtEr3vHV6Z81OfLkzvnXpFp11e0ky//s655csfnVnfHn4xM58VJJsvV/nrO7zR3bWdB64TO/d209+8YZKd/nLOucmJ8keL3d+5373j84c9oSLe/uJvvrLIyrdlf7V2Re+w0O9M9z/uEDnDPAbF++d0fTSlImV7ofuPvu/Wve8zgJrzbp5u9m/D3e9+0+e7c1/W/fITnv0QadVundt8nqlmyQblc7Deezbc1W6SbL8/J152SX+3Dk7efnRl1S6SbLjVZ3zxGbu/fVK99zdO3sDkmTkzzrrZm/8Wm993Z4zP1Dp/vy1ZSvd+d/sjNckyVsHdfZxXvvhzntWh7/Zu2dd6Aedz+UXT/lOpZskR03rfC4v+6OdK93tNvhFpZsk6+zQ+f7b9frOPOR2H+29v3zVPTpzWa9+vnPmSZK8f3hn3/c2s/ardHd6X2fdSZJsOaxzttp3v7JIpXv4IndUukly+AKdeYWDru2cWZMk07bo/G48s1ln/+GS6/fO/Dr1w52/68/d2Tn/7Jqbe++N2ugXne+Sle7o7aFZ5YLOO7vHvL1zxvG45Xp74C+5vXO//NuLO/t/P7pHb63oGQd0zoo4LL09r5MeGlnp7nxu6T2rX+mNa9694h2V7vQPdN6vceO7O8/XSbLPpM5z5ZUf6u3B2PyjnbOIzzp980r3wUc6955Jsv3xnXv844/v7I1b4qOdOaEk2fD6znnPf3qp002SfTfvnKF13HsuqHTnXWVmpZsk3168c//5rn1vrXR/9ePe/t8jTj+y0v3ajp3PziTZYOxfK92zb+jcC7xy1aqVbpLMe3NnHep2v/1spXv+Ap13bibJG7/pnP+53HGdtU5JcusenbOIvzCi8xl30IWdObQkOXTsdpXup87vrCk7f1ZvPnitnTvnMqx6cOf9zUlyzp6dc9FvfKqzz/N9F3TGt5JkvnTOe75ofOc9hd+4qTef/4kDO+udPnpaZw1xkqy62Dcr3ZeP75yJ/sNJx1e6SbLAG53Pz1sP74w3rLtUZ81Ekpzzhc5eibtu6OxfS5JvbNVZe7n2luMq3aWf6Z33vOxHOmekffnqzl7ow47r7f/d4med/WBPf+vvlW6S/H3RzvvdtjykM6b68SN64xg3/a1zXs4Jl3TWDD60RW8ObcdlOuN9XyutJU2SHVfv3C8veuPb/o/rnnunQwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/0UGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBg2a9as//V/vMIyy876wde/OdsvYo6ZL8z25r+NmHuhSveNN96sdN+a+EalmyRvjBpe6S4590ClmyTzj1uy0p054tVKd86xS1W6SfLs8y9WujNmjap0H3nwlko3Sd6cNbnSverKmyrdJLnn8acr3XVXXbfSnfXcS5Vukox/YXqlO+/AnJXupPmHVbpJ8o5ZS1e6oxYcWekmyZjxc1S6N73W+Tnf9daESjdJ5p6785k/ZcYzle6bU/7393z/qeeffbjSnTJlWqWbJBNferzSnXOOeSvdKW/2fpfHTO/cyy09auFK99PLLFHpJskic3U+l+cdtmqlmyQjZnT+tuea+7VKd2DaXJVukmTWuEp2jmEzK925xs5T6SbJqKUWrXSHzdG530qSTOt85k9+sfP5OfnliZVukgykc81vvNz5vH8rr1S6SfLClImV7rARnefgJBk2vXMvPtdcnc+iGW8sWOkmycCYztjLmHQ+P4fP0RnrS5KRA52f87AZnd+LJBk1MKLSnXvM2Ep3+szOuGeSDJur8xw8asbUSnd68ft6jhGdn8VbMztjRUky6ZXOOOILpWf3u4b1xuSef3vn5zxmvnGV7kKLLF/pJsm0UaXxrTsuq3ST5G9/ubbS3X2n91a6q63ZGbdOkgXHd8YbHrruwkp3yujemNwCL3c+M+aap/ddMm5852/7tRc6czB//uuVlW6SPP7spEr3pJPPqnSfm/B8pZskjz1wQ6V77z+fqnSTZOLEztjZ4kuOq3Sffe71SjdJMqXzc15u+c4czKQn5q50k+Rv191Z6Q6bMbHSTZJhy6xY6V53698q3QXn7twHJMmKyy5b6U54rrPO418TH6l0kyRzdO5fTjj8K5Vukjw5aUalO7k0VrvcyttXukkyK29Vuvdf+/tKd/09P13pJsnIqaW1Hq+/3Okm+fkXvl/pDkzvjPVNGT6l0k2SxZbo3AsstnJnfmDNtXapdJPk1dc741uZ3huHmnPU7L/nOuSHR+RfTzz2X/1hL7rkCrP+5/M/nN2XlK+9XPq3SXL+G5tWus/tdU+lu/nunWekJLnqO517k83+OH+lmyTX7H9epbvoCr+tdOc96sxKN0lmfPKhSnfck49Wug8+ulelmyTfv/XoSneL13rfxwM/ebDS3eyyzjPjs5/5YqWbJM/MfXOlO22+vSvd9/zrR5Vukqz77mMq3VvfPrrSTZKnb7ui0r1/685ap9Mv76xBTZJVt3mu0n2pNC625iGrVbpJssS3O/u2Trztvko3SSYttHKl+9J8x1a6H3lofKWbJPcsvnGlu+e0zvq67ebpXG+SPPxiZ+57o30+UOkmyZOnnF3pDtt49Ur36XGd75EkGTPzM5Xu7mf9udK9c/veevhtxi1e6f7u571162t88txK9461On9/8x3d2799+30HVLoPLdN5Dn5k2F8r3STZcsHOZ/5u6TwHJ8nR811f6Z48ZpVK93uPLFDpJsmFoztjZwe9sEKlu9hGvTHexZfdsNK9/uLe9+r6u32p0n14rs6aiLPv6uxrTJI3l35npfvrEYdWulc933nWSZLFN+98Zix9aue7L0lu2rKzjmquO46qdK//SOf3IknGXfqrSnfOBTprT/7xg849bZK8ftVWle78fzq90k2SE0f/utI9fObHKt1XO8t7kiSrHLJHpXva+Z2/v9UXf0elmyQbbTCm0v3TofdWukmywU6ddS3/PKnz9zfqrc79fZL8YebfK93ffqqzvnXsPL3fi+Mu+2ql+9pjb690k2T0mM44/pT1PlLpHv3yCZVukhz108539sAfSueYndN5pkySn9/Vufe856nFKt0kuWDhzlqPE+bp/M7d+GLv7/qSuzrzOz9be8dK97I7d610k+R9i3bmB+ad0ukmyVof7JxFMGyfH1e6b03cv9JNknvu6twLzP94Z83Lhw7rnIeZJG+9/PVK99PTO/vMkuQ9m1xT6f7xgM59+AqnHF7pJslKb1+p0h3z48649fw/6/1dD9u181yyxBGdMyqS5IIjZ//f9ulf+06ef+Tx/3jd8+jllpi16LcPme3Xs+Ss3rkyhz/eWR9yw5qdNXBnndI7K/gLe61d6S65VGf/X5L85KudOaF9t+2sgXvtgd5n+VorduZX/r7dBZXuPM/0zi9Y+do7Kt1//u2flW6SvP2bnfu/i6/unDMw7uqdKt0kmbT1npXunTt11p9e9uF3V7pJMuGDV1e6p0w6v9JNkvGHXFfp7vryPyrdt338k5Vukry636mV7rGf7Oxz/tEf7qp0k2TEdZ39rF9Z+7ZKN0l+eGLnTN/P/LnzWXT6853zapJkvsmdvb3/XLcz7/3lJZerdJPkjK0/Wun+4hO9+6Jz7jux0n3v5M49xoee7pwjliRHbrp7pfutRZ6sdH96du8M97U36nxfT/vRgZVukty//BGV7rSjO+da3DZHZ94tSV5epLMeabWPfq/S/et9O1S6SXL6TZ3PjMUeObjSTZIVx19e6X5s/Y0q3cuu6e2rOnut91S6pzyxTKW74NM/r3STZP5fds6nnvfO3rnlU35dOnt3bGdt8skvv63STZJF33tBpbvXBp2f8ZPf2LLSTZJ1t+iMqT63/mOVbpI8ee8+le7Pl+2882jcHzvn+SbJXRt3zpG4bNnjKt0T/9pZV54kq+56R6W7xGud57Mk+d6ZnTNRFl2wc4/4yEBv0fO3bujsvV9ny86YwI1X9t6Xevp8G1S6F6y8WaWbJKsOfLfSvXJqZ23P0Vf09v4+Vnq3xllPfaLSvfm0cyrdJJn0ic45jKce1jkbLUneWr/zPrrJr3f2mB3wnfkq3ST54nc7Z7ot9NXO+OQd63TWOSXJjp/pzCkuPf8DlW6SvLDZkZXuvaPXq3T32Lm3Nut9L3XWXa5+4uaV7lZndsbDk+SoEzpjqpc81NlvlyT7/XiZSnfEdZ3z3N4o7ddKkhk/75xR8Z5/dNbT3LJSZ11Ykvzwb5119mP2+E6lmyTvW61z1uaei+5W6S6+ce8Ms3M37ZwddNYz/1PpzrPQuEo3SeZepbNu4h1je2eDXrX5dpXuAguvedusWbPW+U//v7ErrzPrnSfdNNuvZ72LemcFv7Bp5/yeT32qs771iYN6e1guGeg886/7u49Xukny5n6d+fpP/uKqSvdb23bGEpJkk091xh8XnqtzPuASC3b2HyXJX9/Zeb/M9y7er9JNkpe2/VClu9K1ne+2jZe/tdJNktt/0tmP9fEXO+eL3zKyc+5gkhz2ZOd+6q0HT650k2TxBztr+H87tXMWwMmPda43Sa4+qDPfe+Evt6l0f3ZZb5/SYp++uNI99F+9PRi339BZO/u1HTrzkMt9sLMXOUlW3v3Dle6Iv65Z6S6RzhqqJPnWL9evdO/ZpnOWQ5Kse0tnjdbLy8/+d/wkyaJ7d97fmiST5uzMN73v1M748b6bjqt0k+SED3bW2q84Zt9KN0nmP77zvLPTc++vdHf7XW8c46Z3d/ZZ37NvZyz2ynN+UekmyYSZnfZGm55R6SbJ3JduW+mO/33nPeP3fbGzFyxJrvrOpyrdA2/pnEF8y/DOu1CTZPKozj7PPVb+YKWbJJd845hKd97pb1a6i+/cW1N24uKd91Pu+47OuOf7d+mdfbZjOu9G+fY/v13pJsl1Z3TW7n3y7G9VupN+2JlTT5JXt++8A+pL3/ldpTvq6s56ziQ5dLPOeYmnztWZ00uSr1/1x0r3o3/uvH/tXWufVukmyRnLdM7R/MNzMyvdwy75QqWbJKM276wDuPSXvXd273feuyrd3y/bWbe39I69dRxbzddZ93zslzpj7atctm6lmyS3LnJMpbvoib1xxOv+0Rlv3+2szn3RCvP01pQt95vOmM5Kp3bGJ49dpfcZd9Ipv6x0p/2h956mw+5cptL9+xGdsfapz/fO0Tz+uc6a3Pvueb7S/dz1vfcVnz3fSZXuwpeeVukmybkndPb2n3NR51yG939x7ko3Se79QOe5cq/vdvb/Tl2qM9aXJLfu1XmuPPyy91W6SbLNup2x6wf+0dlbvM2VnTNYk+T4Oy6tdG/4n857H15ZqvNMkiQ73LdzpTvlp5Mr3ST5zE864xj3bfU//9W655VHLDjr5/PO/jn7Wb/urEFNkkMXvbvSfWv+Ryrd43fp/T69vtzoSnfk6531PUmy3lmddahvntj523rq0t7+0Afn6YyNfe7Qznnr//OZNSrdJJl37s592u5LdO7fk+Tirx9T6e72yhqV7sSbe+/EWeygzn3P3064vdKddGxn7iZJBvbrrD1Zb+veu5l33bdzD3hL6R2uy7zWO5tky6c77zSae0xn3fPyr3W++5LkrOU78+r3fP6LlW6SvHOlzvkIjz7Q2YMxYf7Oe4eSZMmFOs/Py57VmRe6ZcfOerIkufC8ztz3uev19hP94IzO2fMHX9DZT77N3hdVuklyzNWdszS3XPhfle4Kp/fmC2d97S+V7vvu663jePjZCyrdc5ftnL27wd69d0rM+HJnfd0Z63X2b7/v6513EyXJMT/t7Jm84MFbKt0kufmqznlGR4z8TKW72rDO/HSSfOJ3nXc/PLBGZ75w2WM7Zzwmye/m6JzLfN3EP1e6SXLFTZ25kJNu7cxX7PPt3pqWNd/deYfkmnt09intdGFnz0GSbPl85x1ey23SWUOcJH96YVylu8z+nXHrJ1fozfd+5uHOORXjZnae/U5eoHTufJL3vdI5V/SzH+ut4T901jOV7oQvd87rXvqoztrWJLn0xc64wPxbd87Ln/DTj1S6SfLNJztnrJ53cO+9VQ9d2tmrNPH5ztjnp+7tnfd88U865zL8YsXtK9137tAba9/ir53xol/9pXeP+OQ5neeHzx/XmXf/QXEPxoc/1XlX4Yc37jzv7P1iZwwxSX40qvN+mz8/3zmvNEleeavzXfLzXRapdM95ftFKN0nm+uk3Kt35tzmk0l1ps89Vukny+Tc7vxcH79abd39tSuf54f2Ld9bNXjhX737rxB98ptLdYe/OuaNrbNA7H/TUuzpnpI1bqPP+5iQ5ckxnrvKmI6ZWuitdPa7STZLdrtqi0t1soc69y8CeO1e6STJlwc5+osuP6a2Te3pUZ6/EHyYc/H9c99w7FQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/i8yMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMOI/+q8HBjJ89Fyz/SJefGX+2d78t5UXGFnpTp5zZqU74aHHKt0kGbfoApXurFf+s1+j/8RrI97qhEcuXMk+9sKblW6SvDW187OYZ+S8le7Cyy5X6SZJXnqykl1hj70q3SS54pqrK92/3HRbpbvqa73P5cw5RyU7fZG5K90XX3240k2SR8bMU+kuscIalW6SXHnffZXu3VM7n5/LLrNkpZskz730r0r3zYmvVLovv/x0pZsk880zrtJ95bXnK90kGTYwUOm++foLle7Igd791nzDOvcCq4zsfN4/+PrrlW6STJzyTKW7xKjZ/wz1bwvNNbrSnXPyfJXuzJETK90kmTxjWKW75DobV7pT03mmTJJpc3Y+MwZefK3STZLhL3W+/2a+3rnmNyZ2nkmSZNq0zu/yyzMmV7qzRk2qdP/feOc7anh6z+5zju08u48o3bsMzNn7WcwzuvTvN3NWqbtIpZskA8OmVLrDZnW+r5Nk5OjSz3nsmEp3jpGd5+skmT5jeqU7bHrn836O6XNWukkyY1jnu2RU6TMuSZ4tjTeMGOj8+83fe9zJ1JU3rHTHjOrc1555zE8q3SR594e2q3R32f4jlW6SzDN28Ur3kgvPrnSnz5pQ6SbJSqtsW+mOXfIdlW5e+Genm+T+1ztzoItO73z3JckVd19a6Y4f2bl3mTWr97NYYJ5Rle70Fzvj1nOP7sytJsnDz3d+znc82Pv7W2rxsZXu/f/8R6W78bq7VrpJ8tQTL1a6M1+ZUened2dnnitJhr3yaqW76VcOqXST5LlnO3May7y98706c2LvHuPGP/6p0p35Hy7L+t8aPbnz3ZckM2Z2nncmTXi00k2S5ZffsdIdMb7zeT9loPe7PHJS53N56307n0WzpnbGEJPk6Vc6c80vPPhUpZsk71xrxUp36o2dcfzJb7xR6SbJ9Dc731GP3tu5x3j0wuMq3SQZGOh85r85s/N5kSSvvT77f84T3njuv/5/xy4wKRvsM/vvtT/+6LjZ3vy3A4e/VOkuPOHOSveubTpjV0ny9uVOrnQnbLxYpZsk+z+1dKX7kwnnVLrvmP5gpZskrz3QGf+47eVlK90NL+p8TyTJF7b/eaU7+aaLK90kuXi1zrqIW+brzBce/nrvmX/ULp2x2IuGnVLpLrJt5xkpSY7/5ZmV7vve31lrmCQXv/lQpXvFywdUuj/c95pKN0lOKy0xeOOwzpzsy6MfqHST5PIFOmvVZqy2VqWbJO945uZKd+lxnfGP1yb8T6WbJPMu/IVKd65nOt+ruxzdG8tb4bxVK91V/tj7LLpj7KaV7vIL/qXSfec8ve/V+R6/tdL90rsOrHTnPKQ3ljD57M69wEcf+mulmySXPfu+Sne173b2M9wzfpVKN0k+8dgZle7XpnTGeL9xQG//6NnHdL7/Tll/+0o3STZ7srOm7MBNL6p0j5j8+Uo3SX5//Xcr3X++7b2V7iUbdtZQJcnwX3Xu8ecdt36lmyRjLu88Y49cYmKl+8lles/BS/x+hUr39p063X1e2LLSTZIbPtFZu/D4V86tdJPk3O8Mr3RHf2SLSnepX36j0k2Std/5/Ur39e90nqOOOuCblW6SrP/ElyrdbVY6ttJNkuse3abSvfe2v1e6O7yt83yWJPnz3ZXs0fN05kpemvm2SjdJvn9AZ95hp9+uUekmyV9/fV2le93qnTnQTY7tjUPtvNuHK92Hpn6t0l1k+JqVbpLMO7qzH+W85ztriJNkh9Le4tvHP1HpfmbEVyvdJHlmh87Y2fZX7lvp3nbH5ZVuknxswc5a0ekf2qjSTZKrs0Gle/jUznqMJ3pHxORj13fGrv95+8uV7sBLne/UJJlnk87Y9fJf6Yx7JskbFx1V6a6xcmcc6qwvdtZ5JMnOoztn3L3wiVsq3ace+WClmyTvWfPISveEr3fGBJLk1W9PrHTfO+uESnf9O3pnEdz4Qud37nef7owVLbJ8Zww/SX6+0xGV7klr9facv7TW32Z7c/rM/+47ddSbA1n6ttl/VsSwKXvP9ua/3fqLzt7QNz57YaU78czOuFWSXHTN7ZXud07pnR9y1LKd+aZdH/hspXvRKZ3viCTZ+8jOuqHbTrii0r3ypa0q3STZ97Od8Zpf/fX4SjdJPrtJZ3/aj7/YGa/ZdfXOWQBJsui/Omtmj17i15XuIqf0xvHuvP3wSnfWTy6odJPk0AU7n3Mzllyp0t1nXO9z+bpjn610t16k8/k538d/W+kmyUp/6pwLtFhnCjJJcveOnfU9d51fWneyQ+8dCo9u1dlbv/Veu1S63xvfOS8jSX62e2eu6cxjxle6SfKlOTrrLhf9/nqV7stfOazSTZJb5u2ce33WmjtVul98trMWMEnGXParSnej23trqJ5duLNOdNXDO/Nu6yxxWqWbJHMf8tFKd5Mb31XpzrfWTZVuknx4iZ0r3a3v/nqlmyRPndCZB1ll3s7z6np/Oq/STZLDv/6bSvenl3Y+75e/fLdKN0kOfrSz33Xx+9eodJPkpUUeq3R/N+HaSne3d3Y+O5PkgAc7+xqv/+hdle5RB61e6SbJY9/onAv0qd/9vtJNkuVW77wDasznO7/LB57UGbdOkjEXddZmnT++c0D1cZf2zj6b8asvV7qHrPqBSjdJ8tE7KtnHJr+n0n3XuM69Z5JMeGKTSnf+BTo/i6t/85VKN0lOfX2/Sve6E3pnit43rrPfddwDP6x0Fzjwjko3SRb8UGdt3S5Ldeb9Tl20d47fn/fs7Et9/NgLKt0kWfLlfSrdcdd03t383G6dsaIked+Znd/l3dfuzFXusm5vbd1c7+jcLx+9ae/shK+e/7tK941bOvMDq6z+qUo3SR7+Uef+5a5dOutPt/j0UpVukmy9bWcObd8jOudpJ8mVr3SehV874nOV7iMP7l7pJskpt3V+zqvt1lnn8ee5Lqt0k2T8IwdVuu9ZsjfXNe/yj1S6y+7deS/0NUv3zpH4w2tXV7rve+6CSvetuf9Y6SbJIq909nUsscn+lW6SLPfOzpr1/9bCD7+ST+12/mzvzlqjd77qwKPrVLoTVu/sJd95gd4z42Y3ds642mT1H1S6SbLJkZ+pdLfer7P25DebdMYSkuTK+zvt/V8+tdL9yIjTKt0k+eaJnbGElY9au9JNkmUP7uzt/frmnbnTMb/pnQm79Dc7Z8xdfNG6le7DI6ZVuknyuzs/Xel+Y43eHNmzR3TWaJ292rcr3fN/1Rujv3vdzn3aZjd29mYf+FpnPVmSPDuts7fwjFm9M0W3vbIzzvvV46ZWukde3fkeSZItfvPNSnfn92xe6Y47/+OVbpL8a5nOz3ny3r1F/Ltc2Hk3yn5/6KxvffgXvWf+Xx3950r34GU742IP/6n37DDqB7P/uT1Jjtmud67M2w/s/P3N+4fOHNntt/6y0k2SPb/fWXt53o8698vPv9xZW54kd73SmSO7fM/ee7Z2OvGxSvevkzr3GAc+2tuzPOWDnfneMad35ptW+XjnvVJJct4tnXvxlQ7o/S6fdlznfRLL7NF5Rnv6vt775z/7085n0d9/2XkX1ouX9OaR/7HOzpXuGn/q7JNIksOu79wL3PC1znzv9Pt67zza4Pud97nseE3nvLbHH/9kpZskC50ws9Ldfq7OuQxJcternX3W+63eebfGuif33gV50f88Xume9b7OPPIGT/TmHU5ZqDO+tfffe3vOX9i5swdx8g6dd/TuNrXzjvEkue/Lnc+idY7qrJV59u47Kt0kmWv1zn7MLT/ceXZIkl2+1fn7+/GXO+9TeuqZ3hk/OaLzPvcjxnbeMfnDN3u/Fw+8rbOm+guTeufjHjbvHpXukXd0noN3v6t3vvHSK3bWzT5yaGdv3Non9s5UPHDlxyrdx66/utJNknkmdt5t8/lnOud4rvGuzvqtJNngzs56qKUX6zwHbzDQe45a/60lKt1Tr+jtRxl/xmKV7pYf6ZypuOwenXUeSfLDr3fWvcy6fudKd8VneuNbl5eWJ2+6wxc74STbrHNapXvff/n/PTP3zHxr09l/JsDCP35stjf/7eAVO+/ROu9jnTnOV77Z29Pz3lGde8t1t7iq0k2SF2/pjG2++PfOvOwhO3b2QybJhq/8qNJ9+/mdZ5knPjmu0k2SM77WeSfc2vN9r9JNkrsXX6bSvfy2zrsXdvvUapVukvxxgZ9VukdMeXelO+VPnetNkhdO6KwvP/H8zpkZSXLsoc9Vugud2hnjXWDVlSvdJNl578cq3dcu7LxbdMzpvXMNP7JH5x5+v606z6JJMmb1zr796We+VOmOWLjzrpEk+cqfP1Tpfm77zjqcKTvMV+kmybXPd86WOXDHzrsqkuSufTtrcudd4Z5K92+X9NaKLjC6c7bTz+/onJ914Ud7v8t3b31KpbtFaW9HkjyzYOd9tjOuO7rS3XvjzvnwSXLjb35a6R72kc58/ZuX9N6bM/+Dneedoz+7a6WbJP+at7O/Y7W9O/fhf/n1XJVukiyxy8GV7hXPdsboV/xU52ecJLd+vPOuwCff6L2DbbkRnXv87RfdvNK9bfs5Kt0kWeKQzpmzm/+qczbXWm929psnyW+ufHule8XOvXNRtvlK5yXYx1zf+bu+/7jeGbl7Ldy5x/jDLZ3v1YU/1Ft3ueJ8nfGiX9/VO3Pv9r+9v9Ld7T2dPRhLH7RIpZsk6+31i0r3x/t15h2On9Vb07Ls8Z+pdLd9d+/fb/ftT6503zazM9Z+1zcPqHST5PuLddYk/Xq1QyvdSfd0/kaS5KJNj6l0fztv750S+36+M+/+zC6lMx5f6Y0v/+HszvkJ4z/eOTvoC3MOVLpJMs/inTMDdlrr5ko3SQaW6bwfZfknL690Nxp1b6WbJG+c1Flrf8BenXXP2+7T+1m8Of5jle4xn9yz0k2Spw8/ptLd+6wLKt3JR/TG5I56q3PGyBmHdPbIf/rl3p7JxWZ0xvHfOrAz75AkCy7emV+ddXFn38hBN21W6SbJAk93zpV6a+tvVrrXbvTfrsj9//fgxZ31yeeMP6fSTZJpp3feD/aH/48jfnp3eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5GBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AgAAAAAAgP+HvfsK1qwq2Hb99OpEdxOanKPkHAUEkZwRzAhIMIsiggEDKigqGIiCoARBPgUFBJQoSUAlZwTJOYduYufeB7s8+3ftT6ufWrX+uq5jvJ21+n3fOeeYY4wJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDBs5syZ/+v/eNkll575k298d5YfxMuvT5vlzX8bv+C8le6wvFHpPvnirZVukrz60MuV7nJLLlnpJslsiyxd6b458e1Kd7bRnb9xkkyeMqXSvfu+hyrduedYoNJNkpEjOp+LJRddsNJNkusuOrfSfeTGhyvddcatWekmyb2v3VvpzrfM7JXuE2+MqnSTZLl1l69077r/lko3SYYtuHalO/PNVyvdtzJQ6SbJW6/cXemOnGeNSnf65Kcq3SR58tFOe/qkzvk6ScbP2fnNmPjGi5XuqGHjKt0kGTWjcy0+5e23Kt13jl6q0k2SrebqXNcut9B8lW6SLDBq7kp3xpRhle46a+9U6SbJjNk7f+fJoydVulOffaHSTZI5RnQ+Fy88emelmyTDJr1S6b711myV7otvd65dkuStYY9XumNHLVzpTp3Z+Y4kybiZ4yvdmaMnVLpJMmr0jEp3zLBFK90RM3vnqBEzOmNnAyM64yMzRvXu/WYfmKvSHTF753ydJKPGLFbpTh09sdId9vLwSjdJxi45T6X7xktPVrozp3XudZJk+LDOPfbDj3fGJ5Nk5ugnKt0pAytWuq9Of6bSTZI7l+6coxZeZs5K97mpnd/7JPnHrX+qdJ97fnKlmyR7f/Hrle5jD9xc6d55zRWVbpKssNRCle6SK2xT6Q4M3F/pJsnc0zvnqHtfq2STJA/eeG2le/fT/6p05xvduadMknlnG13pHvLFHSvdN7NCpZskL01+sNI99bfXVbpJssLSnfPUmquuV+mOHzu+0k2Sc08/u9Ld76AjKt0//7LzzDZJXnig89x2g49/vNJNkpfGTqh053yg0/3r+X+vdJNkxrTOGNcr0ztzSCaNmlrpJsm0SZ3fuD1326HSTZI1N9ut0p0487lK9+10xvCTZMy8nfG+Sa93rrcG5u3NORszrPNZPvqHx1e6SfL8yxMq3YNW37bSfeKuGyrdJBn3Zme8duJ/MFf2PzGp+Nxo6pTOvd/Egd7N3ytvz/rfzwtfezgvTXv7vxoUX36RpWce9+lDZvERJee+8dIsb/7bSwd35jFu+6POGOFDo56udJNk+Nyd+VlbLd159pYkc//xo5XuxSv/pNJd+rlVK90keWXbCyrdS67szE9e+qklKt0kWWm5zr3drqt35hckyScu+Gmlu/CvOr9Fc7y/c1+QJBf8dtavn0mShbbpnI+Xv63zrDdJHtzkA5Xu9Bs7z5GTZMI3O/OeJ83ctdIdf+XulW6SzPWbzlzRCft15rc+MFfvN27qjM4c/lVv640/rvrsapXuPcvMUen+/Q+duTJJ8sPdO3MMPvLrSjZ7PTW+E05y4V6d36Lbl+/d7yz2SmdO2XPDx1a662+zWaWbJP8YtUqlu9PqnbWpv/9sZw5Okiz8ic46wZvPG1PpJsk+e3XuV4/8Vee+5MMTe2ur7vvgtyrdZc84stK9ed3LKt0keWnhznz4T97TG0t/fOVlK90n3/HOSneTqzvrUpPk6/d01kCdv+Klle6JC3TmMCbJNrO/u9KdfHDv32/nr3bGoR5cc5NKd6H7e2urfj6s81zhlOWPrXRPu3OZSjdJXlrtH5XuA8duXukmyWab/bnSvXKVzprl+y+dUOkmyclbdJ6VnLFFZ+zluBs/UekmyfAZa1a6953S2+Nn80/9sNIdWG6dSvdXxz5Q6SbJZxe5uNKd8NPDK92Vr/5apZskL/35C5XuxDd/VukmyVd36lxjrPbs0ZXuQs+sXOkmyY43dOZUz/uT1SvddVdfpNJNktM+0bnGeG6d3tq4udf+W6W72C2HVrq/7AwVJUned2VnTufnru/8+31yxPcr3STZ8LOnV7ov3dZb27jb0p3r5W8+1plfN9c/z690k2TB33TmdB79njsq3S9/rHeO2uj4zlzDq36/ZaWbJHvM0xm7Xuupzr3fUyv31nlOnrszDrXejb+tdP+yUm8cY/fHO3ulznN273r5mUU6+4K9PEfnd/mHY/5Y6SbJy8d21krMPbozpjrHpN66/tfm+Eqlu84zS1W6SXLuhLVmefOyzTfLy7ff/h/Pe15xrZVmnvLXWX+ddtufentS7vvV8yrdI9/sXD8s/L3OvghJ8sx1nXGEj0/cotJNkvd+/NlKd8x1nbkWH/jQJZVukoxZtbM2+3frdtY533XgRpVuklz42L6V7psr9cYeJ2/YmROx4pc6z5C3Gd/bX/Xls0+udC8c0bneuWX+znVwkvzs+kcr3d1/8M9KN0k++JPOuuGrTv51pbvO5zrPQJJkv6c7+/esf2xnbvJzV3yp0k2S+TfpzCebecLPK90k2WnJUyvdz3+wM1dmqXn2qXST5Jo1T6l03/vMbZXuCdcfXekmydeen1Dpjlh2uUo3SU74RWeu4QHbrFTp7rnClZVukuy+4Dcq3XdP/Uul+6/v99ZVLXBnZ/+J7xz5/ko3SXaed7tO+Hed8d295+/d7xz5rs4awfM373yvf713bx30jXN0zlELP9hbf3HQZp19gcZevUul+6Ufddb7JMm4lTp7Ziy7yCOV7nfe8a5KN0kW/kdnPtmW7/lQpZskp17R+S26ecHO/IJP39h759idn+nsw7jwP++qdL93+omVbpJsO/DtSnfKsp3PW5LsveFjle4/P9J5b8f+x/yu0k2SP7406581Jclvnu3cu1809r2VbpI8uFZnvfnoO3rzTq5fa8NK9ztPTah07zy6M2cvSZY5f+NKd8fjO/PJvjPzqEo3Sb58X2d/1Tv37oxbJ8mBRyxe6U7/+4GV7j6n3lfpJsmGP+7s4b7RdzrPVpeb3tn3Ikke+FlnH5fvrvHLSjdJfvJ6Z3/qGdt31vz8tPNoLknynfk78/YWv/s9le7TG59f6SbJpWM6+wat8K1PV7pJstdvO3tK7fStzj4Su6/XmfOSJKcu0Nmj85y19qp0t/za+yrdJNl6ykmV7srf7z0reWijzj3alZffU+mucHdvPsYvTu2s5fvDtM6zynsO7937bTzQ2d9n9dG9eb5r/KHz2bjvgs4+EofP1pvnu9qBnbHP89YcWen+/dadK90k+eCIzv7iv/x273f5F6M78zF2/9Ayt86cOXPd//R/N3651WZufOSsv474wCOd71aSzLj09kp3ofs634Gfjbq80k2Sz6/dGfN+8NjOc8gkOeu7nWcWmz/WOU8st/PRlW6S/H3Dzprhf67c2Tf5hUt7Y0HXfvbHle7wk/eudJPkHyvsUumeN88Gle6PT+3NAf/EYcdVur/etfO84rQXD6l0k+Tqgc5Y0HJ/7O2Fs8d+nXfbP/6ezm/GOjd31tUnyU7Xdq5b57jpV5XuRu/uvb/8yh913qFwzzs6azuSZI6ff6/Sfc9i36l0x6/Zex/jn/fatNKdOryzZuucX3S+I0ly/b6fqXS3/lBnDlyS3LJzZ93PZm/tWenueWBvfuTZ7+7MI/70Zb+udPc7vvf+6xUu6OxrseFZnblOSfKvYz5S6Y7b7+hK92sPnFbpJskOq3XWE817UWdv+CW3ebLSTZJpK3TWj249ubP3WZI8vExnH+m5tu/sj/vYM4dUukky897O/uLT/94Zx7hnoemVbpJscETnWeS2q/Wuiz52X2eOyLbjO9eIR3zrqko3SfZ8u7O2+Ntb7VHpXvbRZyrdJDl6rV9Xus9+tLPvdZIsvHRn7OyfS3fev3bbcr+odJPkqdPOqXS3Wbiz99mzz69X6SbJSft05l0utlnnb5wknz/rhEr3+Ls6157XXLFNpZskW69wQKX7gQs711ufuPaOSjdJfrRX5z7q7NFXVLpJ8th//HT6f+dL53T2aFrzgM6eeEmy3aadd8btvnLnGnGp7TvvNE2SZ5bqzLcY8bH5K90kuWxcZ7z9p6vtX+muMfazlW6SvD7qpkr3moM6a5af/Uhnn/wk2fON8ZXu3Zv21une+u3OOzfn+Hpn7Gxgvs7zqCR54JCHK93b5u2MFd21RefZQJJsOqrz73fyN3t7SZxZ2mNy66c7YzoXHtjb7+ipvTvziBd+4cZK98RffK7STZKx53Q+cw+c27t3v/19V1e6l8zo/N5/7eU/VbpJct87J1S6U87orAufXNqDNUk+WXpf+I0brlDpJsmzH+u8D+Tow2/8r+Y9z7bKijOXPHvW3ytttPyas7z5b/P9uTOuedhKS1W6s3+wty/lx+e6qNI9cKFDKt0kWfPszjOWxW/qjIvNeV1nPWSS/OHSzrzna77TuRfd+2+dv3GS7Ln4wpXuChv33qkyT+ndNcf9cESle8pfetcmJ72zsx5lwXWfrnSP/NYqlW6SbDG1sz70g1/s7ff8tVtXq3R/+URn7snnL+3N4T91zc4c8I/9ofPeqG9P7/zeJ8nlS3XeQThq0d5zhcnzd57rXXz565XuO77emR+SJOv8tfMehR8f05nfOufZW1e6SbL/QxdWunef1VvrfM4bnfnJKwzvjJn+6Au9tc73ntFZzzDj2s78gt3HdN5HlSTLHdF5T/w5R/Wecc73od0q3T23uLvSXeLUznV4kuxxYmfdz8nrjK90V/hB57czSW5YrHOPfduSvXlUC+y0aqW74g86e4h89eed80iSTF+xM2/92Us648ejR3f2EkuSuaZ0nt8cuvXRlW6SLPDRzv6ts8/VWZtz4IRdKt0kWeqCzjnq2V068y6P/2Nn78gk+Vvnlc/Z6Qud83WSPHf6f/zay/+Vl3fo/BYdvWLv3YrPnXxYpfu58zvzC7Y/q7NmK0n+eW3nmD8+sTcO9bNtO+OIr21xR6V7/JfXr3STZNtvvlTpDj/n+Ur3Lxd/uNJNknnfu1Slu9PneuvBRl/e+Z2bOrHzPtYXf9Sb0/Ln6Z1xgX9u2XnWNXnPzpqtJFlp3c48jq988WOVbpJcudCESvfy7TrvdvvwHQtWuklywVmdd/Kc+L3OM41nf7pfpZskJ0zu3GNP/05vfut+F3bud+7arbMP1rPDXqx0k+TqezrjAnO8r7On/U673l/pJsld7z6/0p35SOe9R0ly8vc679i4boPO88RT5i8tBkuy5Y4HV7o///Qule7Bn+99Lg75xBmV7qeW7czfSpJz9u5cc201d2dP9Nsf680N23f+zvs1PpXPV7pLr/vVSjdJtruhM1f7wkN6+x29+7TfVLrbPbr4/3Hec+dpBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X2ZgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGghH/0X89MDMD42bO8oMYOXzOWd78tzEjple6l/79skp31PC5Kt0kWWj+/+yf+39rxIzev9+Lzz5S6S6/+saV7v033VzpJslSy7yn0n1jyt8q3d+dc2WlmySLLLR4pbv6wvNXuknyzK0PVborjHhHpTt92NOVbpK8Pt/USvfpyW9Vukutuk6lmyT3v/xqpfvqjN5n+eUH/17prrnGepXuc0/8s9JNktHjl6t0X370xkr3rbemVLpJMunNNyvdUaMHKt0kmTpiWKU7dq4lKt3pb71c6SbJa2+8VumOGF7JZqGRvevlySMnV7ovvfR2pZskm2+9W6U7YsQ8le60mZ3fiySZ+foble6Itzvdya++UukmycQJj1a609/u3F8nyZszOn+PCTM6578x40dXukky7a3xle6IkZ3v32wz5610k2TsmM44xuiBRSrdJBk7YmylO2L0tEp36sxZP873b6MGOufsSZMq2YyZbbZOOMmIMRMq3ZGzLV3p/r/xzrX4qNk744gjx89e6SbJtOder3SnvNT5jZs08oVKN0mmT+6cV4eN6lxvJcnIaWtVutPSGdMZObN3jTHXvZ0xuZlbrFHp3njaMZVukrw6rHO+Xnjp3rOSI773zUr34/t8pNJdZ9sdKt0k+edfrq50B+a+odJddKHO/XWSPPbak5XuPAPjK90k2WLbd1W6Cz84ptJdYNS4SjdJHp3QucafZ+XO88SHrul8R5JkruU7zwfes3ZvHOOF5zrPHl55+eFKd+GxW1e6STKtdB88akRnrHbrXT5e6SbJiwt3rrde+sNjlW6SvHfL7SvdM64/otJdeHTx+cDoUZXunNM656jp6XxHkuSNUTMq3QtOv6nSTZLH7+ycVz/2s4Mq3ade74zhJ8nIEZ1x4JlzL1Xpzr9ob3z50vM718tvD3R+75Nku41XrHQX2XndSnf4d3vjy8+O6FxvLfBW5xpx6oxlKt0kGZijM3b96ITSYHuSOeddaJY3R7/1xH/9vx0+x/TMuemsnxfx5HOduRZJsue9c1S6F6/yfKX7jmPPrXSTZOHtO/MY//r3zlyLJDlny69VuqfOu3Ole+8rvfGPxebqjGtOf73z73fdcZ1zcZKc8/tLK93bftP5vUiS21+Yu9I98MOd+5k//uv0SjdJjvj4+pXuCrd8qNLd8wO9c9Rsj3eu4e/d978/1///WfCIKyrdTT+6YKX7/Tt7v0XnLdt5xnLGUp1rgUuuWr3STZLDbunMHXrgpHdWuklyzJqd8Y81xz1V6c6zRW89w4R7O+eSTWbrrFNaYvFzKt0k+fN8nXPUPY/tWukmyQ5bbFPpjhvdud95eKHHK90kGbVu5zN30s86n4sN99yl0k2SZ3/9q0r3iMXvqnSTZKEjt6t0d1ux81m+41O936I5LppQ6f7us89Uul88rXPuS5LFp3Su5Xa87L2VbpIste+Fle6CN/6r0n1l89JCpSSHzN35zO07qnNde/9qvTHe0y4cWenu8f3O/VmS3D7sokp37is6n+VrNujMoUqSiWNPqXQfv6fzjOWpjTtr75Nk3DP3V7rD9+kd8xlPb1Lpzve7zlranWfuU+kmyfw3XVfpXvS1zj3lmAt798GjnvxDpTthg7Ur3ST59kOfrHRP/Mtqle6uq69c6SbJ5Js611v3fbFz7bLUBidXukny4nyddfKLTuz9Lj/wUOdabvOFOnPKVl1qi0o3Sc5bcNVK9+fzfKzSfevsr1a6STJ+56sq3Uf+cWylmyQbLflApXvDJp05Saec31tnduSL+1W6r57w00r3rCf+XOkmyc2LdO6xJz3Qmx95+EqdOQgHTTyk0j33+d5eEhueM77SvepdS1a6C33rxUo3SS7a4gOV7rtv7FxvJcnSq3bmXj77lc9VugNv9L7Xj47qjNf+bvyple46n/yfSjdJfv/Vzt55x6zf2+NnnzMPq3Tfc23nuvaEX3TGipLkD4t15vouNqKz19+Tl/fGJ7d432cq3Qves2mlmyTvPHbW73V73eT/7vdtxOtjM+8Vs35vhHfseOYsb/7bvr/q/Jv/z9I/qXQPf+N9lW6SjLuz8xzkT5/s7Qn7xSOPq3RHXnRPpbvZj79U6SbJ0386tNI95POdMZV3bdRZi5wkS3yusz/1Bct0xo2T5NDbO/u/LHLtXyrdiSf2fos+uMbCle69O/y+0n1q3OWVbpKcN72z/9ISW+5e6SbJiEN2rHSvf2xipTv+1d9Wuklyy0Wd/b6+v2Pnd/nV5z9a6SbJ2gd8pdK9fu7OftpJ8sOBznqGOzb8bKW7xoF7VLpJssjA2ZXuQWM76zruPKn3uXjPSp37/VGdaclJkhWu7jwrvPq9nfGa7WfeUekmyd6H7l3prvm9zpjYZz7/i0o3SZ7+2YOV7jP7dv4WSfL65Z13mKxxcmccfbNbevO/n92vs5bovXt29vGb94/vrnST5OFl/1jpbrF2b13VXd/vnEsmf3ClSveNn3fWHibJo1f+ptLdeP+tKt0HPtP7XCz55mmV7iee/lKlmyQrn71/pbv2yE0r3Qdv7M1n2fG1r1e6v3tqz0r3qtN2qXST5OZbOvcODz5+SaWbJPsf0DlP/WLbzlj7pPf21uXsf/tOle6Z555f6e5wcO9GaoFRJ1W6cxzRe+fYMl/vtJ/4YOc9dydu1plzmSSLLPmPSvfJkzrXnjsOu77STZL5SnNmH3qj91t0+c8714irn92Z97X9/QtUukmy8gKdNQejv/y7Sner9Xvf64NX6Ozvf9he21a6SXLRzM737+kHO9cY/7PPzyvdJLnpiAMq3XOu7szH+PC+nev7JPnQlp35329e2Jsnev7lnXejfPRXR1W6pxXfa3r8cp25rY9d8aNK97WVemvMfvjbzruJtv1w7xn2V97f2ZN58TM7e60sdlBnz7wkWem5zvOdL9z74Up3n+06ay+S5O29OvOHf/2lzrs1kuRzB95Z6d6yWGddzhd+0xuTe+Dgzj6pG1zWWZd69Y879zpJsvyxv650t7ygty7u2kPXrLX/G8u+cV8u/MesfwZw0OGdz2mSHHfFBZXuXd/rrC18fNp8lW6SfGSzKyvdm27pvRPnupOOrHRX+1tnrvaj6dx/Jckv1+usU3/XzM9XusvM19v77J4Nv1zpzr117x2EX/7yRpXuZ1fs3H+d/vb4SjdJLn2os9f6yQvdWOm+9EJnznqSfPtvnbU5k8Z25sMnybhjSutkF+rMdXpoj86+CEny45mdd/q9/PvOnM6TR/fek7vPlp2x9LsHOvvAJcmZx21c6W65Q+faZZ0Xe3u4r7ZT57x6we+WqnRXmd7b0/DAKZ1z1IWf7a353vKpzrrhz63amQf35T3urXST5APzdvaf2Gm+zp4LK6/QG9dcZOPzK92T/tWZT50kP92rc149+JjOmOnaN/bWVm1wVmeccPjHO+MYq9xXySZJvvTsIZXuWXtcXOkmyTyrdfYc+uMOnf0n5v9V513SSfL+Gzvrab+7ZOez/NXDO/O+kmTdH3TeoXzD6p395ZJk/gs735O3v9bZO3Kh+Tvv1U6SRa/ujF0vs0bnfnWpb/TW9S96/JqV7rELrlHpJsklb3X28jvhI531RFsdfHOlmyQ/O7UzprPFfZ1n33/6ffE3bu3O/LqjHug9H1j1gs556qg5O3tUzHfcCZVukvxjh+Mr3SNG/rLS3e/DnWcwSbLyjM613Jff6uxJlCQfvPK5SnerUzpr2L4w/FOVbpIs+LHOvnhzL9xZi/ncBb3nwedf1Xn//DufXKHSTZI7djmi0r1o+Hcq3Ydf6+yVmCTTPtC5xv/hikdXur/+SOddLkny2R901izfN6oztzxJDn2+86zkgHH7Vrprzt8bk/vOKrdVuid/ozOHcbnDevcOM27srBP8y+ydOeBJcty7Os9KTvnRhpXu1iN774mZskFnru9Wp3XeC3bDCctUuklyxuydOYPnHPz9SjdJHhnXWYP4p5U7934fu+PgSjdJjlywM6b6xas7a+MevqRzHZck+2zWuX558aDOdyRJDryg827FozPHf/W/W+HlgVx+2uyz+GiS7b/e2bs1SdYbv1ml+5t3/KzSPXRc73nTHmd/r9Ld4k+9uQsPj+rMw7nvN+dVune+2nlnaZI8/XxnHe7hEzvvkv7brr31DFvP/q1K95bne2uypk7pjKU/dHznt2iHZSvZJMn9q3Tmfi1xV+dZyIbf743R/+GVhSrdtb66aaWbJNdNP6TSXf+Zzjlq1Muz/rrl3y44u7Ov/WEnd/aC23fx3v51n3iyMw/1G3N11nYkyQtbdp5RLzmy83t/35yd8bYkufTozr5D43btfK8nPNPZ1ylJvndsZ47IVdt33iWdJPt9srNua8UnOnvu/frqcZVukhx0XGf845WjOte1K87d2UczSc7+9Bcr3U3n6k1wfenSzjt5Pn97Z0/0UTv27v3u3KgzD27+8XdUuufP3RvXPG3+czvdsT+odJNk/xc679i46IDOHsd/+3RnDnGSHL/fFyrdxZ+/rNK9bf3nK90keeb+6ZXuIx/o7acy8bnOOP3Ej3Xeu/KP7Tv310ny0y/N+vcxJskTP+g8x9rpG71np2NHbl7pznFx53udJB+as/MemiP/0Zm3d2Y6a2mT5PR9O2v7F/xaZx7cbkf17qPWvrqzBnGZpTpzWpJk7cOvqnQf3qSzz9XcG3Te5Z4kW/2oM99pwcM6Y0VrLNeZp50kt13dWb99wEBnH+Ik2e6Szp6l3zqlcx/8+yd66xlOWvxXle7bL3fOq+ecs0mlmySnXtfZV3uHk1apdJNk6/M6z/S/+KnOXrb3vNiZ25okL+y1ZqV77nc741A773x1pZskI+b6dKV7y7c69yRJcuTtnf0vNh3Z2Yt4mxN61xhfXLtzLXDB3p09Vn95XOcdvUly6w87a1MX+UFvTG6X1TrzUJfY/IeV7gOfeazSTZKfbbBBpXvhOp17tAPv7YwhJsmxv/9upfvJ5zvjI0myws87c8N+P64zXvTmvYtWukly7m/OqnT337XzDrbxr/d+4/ZepDPvZckVeufVEZ8vvY/8/+NV5AOd/zcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+L/LwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwYj/5D+e+MYbuei662f5Qayy2JqzvPlvtz1/V6U7dua4SvfpJ/9W6SbJ3MttUOne+PzDlW6SrLTKvJXuFRf+qtJ99plplW6SjBv3WqW75pLvrHRnrr9ApZskZ11weaU77N7XK90kWSGzV7rzzjWm0n107NuVbpLc+cQLle7YReavdF+++8pKN0lWWGnNSnfJVZaudJNkoTcXrnRffPaxSnfShN5n+Y3X76t0pw7vnEtGjx5b6SbJuHnnq3TfnvBKpZsk096eUOm+9dbMSndgWu8cNW3KlEp38bFzVrrD8malmyR7r7lfpTvnvItUukkyeq7ZKt1JrzxW6WZ677do8sRnO91X3qp0p73R+417a/rLle6b00ZWukkyZXTn7zxz5qRK981JwyvdJBk7anqlO9uwzr3DHGM61wFJMmXGU5XumOnvqHSTZGB0599vSuejnBFjOtcuSTL5zRmV7tj5Op/lETNGV7pJMnzM4pXujLl6xzzprc4116jS9fLMGb3r5ceeerLSHT975zpu8qTeffCwGZ1rgelvLljpJsmYuTs/oHOO74xbLzypcx+VJKucsnOl+48/dcbO3rf7ZyrdJDnnvCMq3bnHdMbNkmT0HJ37nTNO+k2lu/xyq1S6SbLYCotWui8+1Ln2HPZW73d5jgXmrnTnn6dzTZskeb3TvvrqByvdnT+wSaWbJLO/9Wile8crneutBVfdqNJNklFzdO4r33rr3Eo3SeZdbMlKd+aMZyrdqaMmVLpJMmHyxEr30QevqnRHzly+0k2SBV5eu9IdsUlv7OWuSy+odMe93hnrW3C2gUo3SZ4pjWNkZmdMfPrM3ljtHKM7f4u5Rs9V6SbJ84/cU+k+85e/Vrrv2KF3jfHiK29UunMv0BkTf+qBznkkSS7/6y8r3S02XK3STZKNN3pPJ/x2Z0x14fV798FvXtK5Xh410Pn9fH2gNIifZOqk5yrdcQO9eY5T3pz1579hM/7764CXXn0tp/5h1s833H6+TWd5899Ou/nxSvfSV/5V6X56187YVZLMsczBle5KZ/SekX37jc414KVPds7zr4y7v9JNks+vuX6lu/FVn610//XpqZVukvz+wQsr3RuvfrrSTZJnR3fmOx30uc5zyG037IyrJMmhD3TGNcev35kPv94ly1S6SfKLfe6tdBc6q3dtMsfqm1e6T992ZqW77Xt+XukmydJ3XFrpzljpk5Xubqv17r/ePeW6SvftBTrXcUmy1cOrVrp/GNcZy/vy8Mcq3SR5x5udOfw/n62zZmvyQitWukmy6Wq/rXRPPao3lvfd01eudO/drHMu+cD3/1HpJsmdM2f9Gt0kGfZCZ+7JQveeVukmyV4Xn1Hp3r3ptpVuklw9/yWV7sS/dsaC7l+2t87zgLs+Uuk+v2VnvGH4RzvrwpNk0jOd5xV37t57XnjDWndUuk9d3Rkz3f623tqchTZ8d6X7wLVPVLqrT9uj0k2SzR58tdL91Mo/qXSTZPrmnfPqcrO/VOnOPP0HlW6SLPXg5Er33vdtV+lu9GZnDmOS3PLa3pXuGo+tUekmycC0OyvdK9/6cKW7wuHXVLpJ8uz6nTmd7/hZ5z7qT5euU+kmyRPnbF/pbnD5QZVuktz/x84YyTFndK7lnj2mMzc5Sd63Ume+00sPdtYG3Db2pko3Sf619Xcr3feNLT4feGmOSnfmXZ3PxRyjPl/pJsmz079V6T66wVaV7tUr9uaKfvTXx1e6t291RaWbJIsd0LnH3uVdne4Pt+jsfZEka/72XZXug3+4o9KdvllvLfTzT3bOq7f+onN/liSfXKczv/XyFTv7VS37rt6+GsMe/GKle/+rv6h0H16+97s85rOdZ10Lv6ezfjRJVhv1QKV71xW/q3QfnWuFSjdJ1liv83ce9lLnucPTv++t6//ptzerdD+9/qcq3SRZ/ju3V7qrT+rMbRg79eOVbpIMn3FOpTtjdGfOy+SNPlfpJsmLwzvz2dZbqjfn87kVZv1c+5mzDfuv/nfTRzybifMdNouPJrnv3s7c/CT5/ead64dhf/tOpXvfJkdXukmyxkc7axW2uKC3D+qfPll6pvdW5/rv+tv+WOkmyZ1bd+aznLD9NpXuPif0zmvPP9K5Xt3tu2tVukly65iTK925ju/cL/54q846ryT5c2k+0oV7rFfpHvbxzrOxJNnoys447OGzd+YPJ8kJEzvz9o58uDOmue0vO79xSXLWaZ159pf+eNNK9xdbdeYMJckph/y50t1m5wmVbpJ86Xuda4HvbNlZ83PzqN6z3jXu68wvuPnmr1S63/pRbx+4vVftzJV518TOtUuSPH9+5znI8Xd/rdL9yLc78yGSZKc9JlS6X5+7M2/hp2f9odJNkvHbd9Y1HvrQNZVuklxx8aGV7vf+2FmvPHtpLmeS/Gnuzm/GQit05rbOte0plW6SXD2ys67q9i9/qdJNkt1um/XjZkmy7TpHVbojD+it/X1i9dsq3d027ex38qNxnfmnSbLro529B7+17kmVbpIcclHnnQS/+HTnuenAep+udJNk/3PPrnTfN9c+le4CX/5xpZskV789vtIdu+GalW6SrP6eznjfWk93PhdXrdQ59yXJp0/trNnad/3OWpRj37ym0k2Su89Ys9J95J7OO1eS5PNbHlPpvm9sZ3/HT52+V6WbJJe9u3S/897OWPseH+qNYxw36euV7lxf7+3vc8KtH6p0R2+7e6V74S97c7OOnv+hSnezLV+sdA/ZvLfedcXrN650D1uus1dwkhx7SOe9ARvf9pdK91+nLlXpJsl5F/yw0v3uiB9Vup85rzNunSQP/6EzVrvzvb1nldfddnOlO/cT81S6wx7rzd+/85jO3+LQRXetdP84oTN/MUl+u0ZnH6V93/v7SjdJrnvfFyrdD+/c+Vwsf/nfK90kOfJ7nfHaf2x+QKW7+xydMfwkmXJv5x77xM/11s/s9tfOPdo9r3f26t7ngN5n+fXld6l079+xs4f7ogf09g163ys3VrqTnvpSpZskS3+vM7f2pPx313KPzD8+H/3MTrP4aJIP/6C3l8Nqq3beo3Xi7HtWukfO6IwRJslXVu6Mi635Wmd/wCSZ9J7OevIxP+us21jp3b35dRNu7My3ePSe8yvdd53Wmzd7ySWdd8NO2HXTSjdJPr3o0ZXu+MmdtQFXzPb+SjdJrpn9o5XuKTtdVumefnjvnRy//EjnPbmHvPz9SjdJ1vlkZy7AklM73+tHxnT2VEuSD37w8Er3ySu2qHQvPL333q8j/nRtpXvso51xsSS58/edeRxfH9H5juywW+e+IEl2/Me+le7xR/+q0j3xl7397Of7dueYJ36pt87z2mGdvS3+cmnn3ny2xTr3JEly6oKdMbdLlunMD/n7uRtUukny6T07ayaferhz7kuS0Vt8o9LdbMvOfIsfrbtSpZskX3/HOyvdE+/YsdK985Te84qP/PGDle5+Uzvv1kiSP+7a2WP1yN917rF3vrU3h3+Z0r5OYzf8U6V75MjeHjvnLfbeSvcTEzv3Dkky/audubOrntlZZzZitU0r3SSZckDnXSOrH9W5Rjz74t5nebuvdO6xb711v0o3SdaZuzNfZssPjap0z3tnZw/UJLno9s4+fh98sDNXbemD/1bpJsmwlTvrPJd+tHe9fO4Cnfc+f32vGyrdxbft/S2uHP7NSve6R3aodH+0VG8fxp9c3Ll33/AXnWegSTJi985z0EM26Tz3e32FzrhZkjxzbeddI6d9d3yle/zOx1a6SfKpYzvrfzdas7ceZbPvLFfpbnRjZ3xru70770FOkn/e1HkHxg5rda5rx7zaed9Ykgz7Vmfsc5tx51e6STKQzlzRPw90/s7PrNmZq5YkixzReUfoo093nmlc9f3OPhJJcsyVnbmip23Smys6ecfHKt3Zv3h0pfvHrTvfvSR57/7PV7rbfHXdSvehK3p7bf7hlc45atrI1yvdJNn4N513u625aec+6p3XdfaoSJLH3vdmpXveIp19ic4+qTP/J0mGnfzlSneRRRerdJPkqZ/d0gmv+d/9z/4529NZdZVZ/76d8z7Vm8dxxxf2r3SHHTmh0v3om735WXs83XmPz8rr9+YErvW5znqTg3/aefb2lxM6709Okv3P76zPfmrDztqbOf7aeaaQJDe91pkT8T/PnlfpJskO8x1Z6R559+qV7jxbdtapJ8mLW3fmnsz+jqUr3RtOPr3STZJ1Jv+60p3waGcOapKcdWrnXWUPfaDz73foZ3vvY9z39fGV7hsjO+PH5z7bO18fc8b0SveFN7esdJPknqmdPWBOmtK5fl/2wd471y++rPN+oG8e3/kbT3q897zpyI0737/3r9o5XyfJXI911hPddFTnc/Hy853fiyQ5a9gJle4bV3XmlL38+lmVbpJstmlnTufuqx5c6SbJVUt23ie92Wmdub7T3tvZuzVJpuzb2U9lj1GdPYeOPL8z9pgkd13T2YNpk2m9tVVzL9sZf/zqxzvj0pt/8cJKN0lWW3pCpfvDr71Q6X78xd767b8/1nlvzkaH9vZi3PZXnf0H3zzxl5XuKTtNrnST5Kf3dc6rH1mksyf6o6923oeVJF+Z2pmTNG2Z3nVR1vp5JfvnCZ05SSPX7T0j23Djzvzkq57o7D/4k29dXOkmyfZzlD5zR3TW9SfJXqt8rNK9/ZXOfJmnvjV3pZsk267aWTeywFqdtY0XTOqNte/+SmfN5O9u6LwrJkkOu70zrvM/fz6t0r1kkc7+WkkyffwXK92pp8xX6V78+GuVbpKsc1Rnj595N1600k2S4x7qvNt+7PQzKt15/7BUpZskS184odL9xrfWrnQ/OltvftY2J3fe/7vaPZ19XJJkj/M64zrfHdvZi+eer/TGJ6/erTNX4LxHP1PpLnVJZ3/4JJnng529COYb3RkDTpJtv3J0pXvk5p252meOHFnpJsl8y3f2hd3g8dsr3ROf6q1T+smznfGtgTd7e0ksvG3ns/HNgc57c6b8falKN0l2O6fzrpiZpw+rdDf/xyGVbpIsunln7/mzju/swZokN3V+ipL8n9fG9XYBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/iwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8HAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFAwMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDwcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUDAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBSM+E/+44mvv55L/nrNLD+IV5Z6cZY3/22RpcZWurc99lilu/i4hSrdJBk96u1Kd7P11610k2TmpH9WumMWX7rS3e6di1S6STJt9H/0df1f++f9UyvdJRZdsNJNki1XWL7SHfXY9Eo3SeaZfXilO3GhmZXuXa++XOkmyRt5o9JdfvE1Kt0XX5tR6SbJwNh5Kt2Xn3mq0k2S+x68ptJdcanOuWTeeeaudJNk0tg5Kt2XXrmn0p0ycXKlmyRTpkypdIePrmSTJK++2vnNH5j0ZqX71sxJlW6SrDpy0Ur3nM2OqXQXX2iuSjdJRs3W+dBNndS5DkiSKS+9UOm+8MCrle7C83XuSZLkjWeeqXRfm9Q55hFjOtf3SfL29M59yeRRD1a6STJqxrRKd/iwcZXu3CPnrHSTJGM659Uxw+atdEeNHFPpJsnso1fohIf3fpenTelcc41I57M8fXrn85Yksy/cOWePGte5j5o+461KN0kydVQlO21C5/46SWa8/HqlO2lq5zvy5OtPV7pJMm5s53fuzWmdv8X4OXtjcsOmd+6jho8aVukmyYzpEyrd0dM6v59Txs5X6SbJ/J2vdVZ55+qV7j23/qPSTZJVV1yv0n3yifsq3SRZdYHO+W/2dVasdC+9/O+VbpJMn9o55iWWXLjSfXvCs5Vukiy0YGdM5+XXXql0k+SNyZ3rlyXW7dw7jO4NL2ex0ctVunPO7Nxf3/yPGyvdJJlr9s5Y+5zzdOYJJMmcM16qdGcOdK6Lxo7oDbbvv9f7Kt2/XHVzpbv+mr17v9U226jSHX5K57lRktx+z2OV7phhpbGX6QOdbpIFW3N1ZnT+FlOHdeZ5JMlA6X71pamd5w5JMnl0Zxzqst+cVenuvUTn2jNJFlznHZXuE893PsszckelmySf++yule566/Tmyb32xMRK94XpnUGBEZstWekmych77690X3/myUp32vTefIzXZ3b+/Wak99x9+ojnZ3lzZv77e505X5+SLa+Z9WPI9yz021ne/LfZV3xnpXvSg+dWujcv+LlKN0nm/9fRle7GR3b+xklyza9nq3RXvrn0jPp3m3W6SV6+p3MNf8ZDs1e63930rko3SRa4dY9K9y/f680p23K+zjX8XyZ35uS+o/SsPknuPeOKSvejPzmt0r3syj9VuknyucveU+lO/nvvnvE3l36s0v3mNzufi9P/9NlKN0kufnWnSnfZG06pdB84f7tKN0mWWKyzTmn6NxevdJPkpmd/Wen++OOd3+W3dny80k2SOSd1ngtt8qG7K937V+lchyfJi3+4pdL9n5+U5u0ledd1Z1a6z57WGTM9e5VlK90kmeeszrj0nfN3/v2eGt5ZG5AkJ+27faV7xla9dYLrrdsZM91wyx0r3a8v/1ilmyQPbbxUpTvxjQcq3QemHVrpJsm4xx6tdBdd9eJKN0mG/2qfSnf2Tz1c6V5+fO8a8fUlOsc8957/qnQveerySjdJVtyyc404/U8bVLpJcu1KnWu5l3/Z2Yvggec68wGT5NolH6t031iiM1fmip8sVukmydprdObXPTjluko3Sca+2nleeOIKx1a635+xaaWbJB955wmV7pNXHVfpPvzBVSrdJPn+739V6R4+vnfMn1y98xxm8R06x3zgjMMq3SR5eKePV7rvvrvzHPmq83t7VOyyRmeOwfzFcaglb+zcVz467CuV7t/W2KvSTZJDT+/c77x20jKV7kOPdq5dkmSFKWtXup8a2Zsfec+pt1e68zzY+TufuH3neUaSvPhk52/x5qWd37ijl7ym0k2Skw7vPHeYf7neOsFT3/WZSnereTqfuTcn9Ob6jp2/c7385wevrnSPn7vz25kkP5700Up32ru/XekmyWee7Kx1OenQWT9vL0kOOaIzvpUk5279m0r3e2d27t1/c0JvneB87/pgpbvJvidWukky6rcPVbp/P7hz7Xn/IqdXukky9p7OmOqOK3UWN/7+F1+vdJNkue/dWukes8QfKt0k2fGGC2Z5c/Sb/90eWG/M/mauf/dNs/hoknffXtpkIMnfNumMw+71ic46vTM/9fNKN0lem23Wf5aSZN6je/eLa1/2kUp3tSuuqnTvPq03B+fhj3SeQy6xU2e/tjX+56RKN0k2P6rzrGLJr/T22zv7y515lz+884ZKd44lV6p0k2TL/TrzfB9eq/PegAVX65xHkmT/yzrPKka8+q5KN0l+skqnve0Nl1W6XzzpwEo3SR54vbN/wb53/azSPXW+BSrdJJnzjP+pdM/crfOsIkkuOef8Svecj3X2mPvygZ37mCTZ+cbnKt1xr3euMeY+rrPHR5LMuVNn/dNr+/2+0k2SV77UuS/f95zO3mfbT+79LV44Z5tKd9urO3MjP/SjzjyZJFn/rs68r/X27PxeJMmkdTrXRUt8da1K99mxT1S6SXLnNp1r8edX7uyp9rNTz6l0k2TcqvtWuk/P05t3csXBnefT217b2c/+twf35n8PfKizrnGJtTvjsCP37uy1lyS3D3Serzx0am8vjlNe6Hw25rm889ztZ6f9rtJNkl2P6bxbar19f1jpXvxIb++6s5/r3GOvNaH3fOzgZTt7rY/9fme/xL8+1Ntf5JBL9qx0n112fKX7yGa9cYx9Hl+q0p3r2FMr3SS5eO/OXnDXzNZZI3j5Lr25dR/6e+f7d93KnXlDy7zY+17/5PTO/c5BX7uz0k2SE87ozAdc5/LO9fInrr+20k2SD1/Wmc/y/M6d9z7seUjnb5wkhy/ZmTd0/Ym9dVV3/Lpz/7Daru+tdD+zwdaVbpK8fVnnnWN3T/tQpXvZEbN+vsu/vb7hAZXuFU/29u16+srOOxTm/8HRle7ut+xd6SbJx3fsPGt+ffgPKt0n/3hhpZsk20ztXMttO98mlW6SzHX/Lyrds77aGVPd/t7eWoZLJnbG5DZ5bZ1K94SFO/smJMkD9+/e6e56VKWbJPs/2Xm++tYtd1S6D3+o8zwxSS7YtdNe5KEvV7qvfK73zpzLvtT5/m1+aGeeTpI8eGZnH578l1vwz3PPwtl9uYNn7bEkOWrB3n5fP97lyEp35mud8asThvXW83zgkM78rNMv7PweJMn0N7esdPc9qrOP7bF/vbTSTZJDDrqy0p35l87chTGvLF/pJskrX+j8nt9wfWdtQJLsd1Vn/HH+7Tprm76dL1a6SXLU+M65/uPbdX6Xv3PpJZVukiz/VufdJ19bo7NOL0nGfLFzD7bE6M737+xlOmPHSXLC+zvvZ7hrsc56sE/+sbPmJ0nmObVzP/qbV3rX2b9etXOfe/HVO1e6l/+lM96WJIv8vDNX+4NrdeZbHHfUzEo3SYbt2HkWMv7a3nqi5ffuzHf60/TOPJwl/9wby7t+rc7zph9Nvb7S3fLoxyrdJLn2ic57xheY7/xKN0k+9UrnHVCn7tv5zN366GuVbpKsOFtnHsBhL3Tu3dd5+huVbpIcuG/nud7lp3Xm9yTJJ47rvLfjxAXGVbrvP7/0ztkkN8zs7J284y/vqHQ/+O7e9fK5F3fGMf51UG8P/o8deHale/wyne7kq/evdJNkk20fq3SP/0bnt+ipG3r7c17zjc7z3j2+el+lmySH/aozJrf/Hp29CFb/SGcP4iS5aLFdKt0jb/pqpbvggp15X0myxwc644gnjhpZ6SbJjjd03oe1zvWd9fdHjuv9Lp84svNuvlXO6Ow984tHe+tRPjnbFyrddx7+iUo3SdY9eZdKd+u9d6t09zyhd4348o6ddT+vPP6pSneDvXrzLlef1nnP1qbb/bTSTZKtDty70t3kw539jY/5bWctZpK8/zvzV7oXHbpLpbvLdr29g/5+7RaV7joL9t7Re98qG1e6N83Zmd96wpXfr3ST5IwtO/MmBpbqjL1sd2dvr+fdFuuMtf98rd66g2ue7OxDd9q6nT3dvr9wb1+NdS7orCfa+pnO9++x29+udJPk52f+vdKd/aDOPPskGX9k51rgzDOXqHTXX6Kzx0GSrP3LlyvdnffpzAH6xojevOdPT+m843W1Bz5Q6SbJHjddVGv/N2bOtWxmbjfr1wxd/Z7efdLSC3bem/jS939S6a563ycr3SR57pedd4qtsG7n+XSS7P7atyrdM+bq7NPy46c7558keWHFzn4cy+zf+f7tu1RvTc96l3XetfP4OZ018Eny2G87axpeva+ztmPBvTrrJJIkb3f26979tM5Y7NSP9d75fNANnfeB/+pHnfmcSXLbAVtVupdf1LkGnHRi77doywc6zxU2vmHzSvfNOXprc154tvO88J4rOs+xkuSWJzvXXKud2/lcfGGpzvtbk+TUszrrAza6qTMH/Pdnde7Lk+SHh3XmR45YqTcW+7PNOvue/GiFzj7uq36y97t8606dvfyufaSztv6vTx1f6SbJ+gfdW+kuvtjslW6SLH/ZeZXuFR89ptLd4ZnO8SbJxa931v+e9krnOdZrT0yrdJNkj7PGV7pTBjrnqCQ546R/VLo7rXRbpfuR1Xtr2ZcZ0xmXfuy0XSrdd4/vvLM0SfY9uDOOMeG9vfPqyZ9ftdJ9a9POmMD8C/TWxq29U2e86Mu/6syD2/D5/3LTk/+FFefr7PO47AvvrnST5MVPb1DpLvZiZ8+H917SWWOdJMOO7DyXXWv7RyrdYT/u/S1mu6gzh/+r7+ys7UiSDRfYtdKd7fo5K92PPtJbv73pUZ13/fz0ms6cwM9u2XuH18SvbVvp3rls793MH7uh836UDfbtzAk8+7DevihnXtjZ1+bQH65Z6V74UmeNbpIssnnnOczpK3fGapPkC9d31kPPuX3n+7fLLZ31M0my3rjjKt3xi3fG8Eed0nl/XpJ8ZvMXKt0truqsZ0iSaWM741Bj/6fzfrBF//ThSjdJLvlpZ4+mmyfcXenO9UDnOi5Jzrzy8Er3U9t05iwlya8WuLrSnefczljfG0u8v9JNkq88f1qlu8NXO89tVzyyc9+eJM9e99FK97CjevuifHKTzrsD3ri+Mzfl2RM73ST5xX4jKt2jF+jsHXTyxO9Wuknyu48tVeku/9Y/K90k+fUBpfXs/x+P/QY6/28AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H+XgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAoGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoWBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCgYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoKBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgKBgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKFgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGApG/Cf/8ZixY7La6ivN8oOYOX3aLG/+20sTh1W6y44d3+muunalmyRzjx1e6d50ww2VbpKsMv/ile5so1+sdB9/anKlmyTzveMdle4SS25d6Q6f+4lKN0lWW2+bSnf86HGVbpI88MhTle7FN/6h0n316bcq3SSZmRmV7sRJne/f4ostW+kmyYMPX1/pLrvMmpVukmy8wEc64VFLVrLXXX58pZskM96YWem+Nb3zWV5i8WUq3SR547WnK93pU3u/y8Onv1DpDhvW+VxctdFJlW6SrLdU5xpj7Lgxle60YW9XukmSYZ1z1NuPPlfpJsnM6a9UuuNGT6x0X36p83uRJDOmTKl0p4yqZDO1dxuc6aNer3RHTl6s0k2SOWab1AkPn62SHZUFKt0kmTH81Up3ttk659UZw6ZWukkybHJnHGPM/8Pef0XrVRbs3/aZlU5CDb1Ll96kdxBBRVCRJigioBQRG6KgYANBilJVREBUFFBQRKpIryIdqdKlQwiEhNRv4/l8t97y6Mg5MvIfx7ENvzHHylr3PefV5pjZK90kmTz0Pxpq+18bmKPzvZp3hne6SYbN2fkAnTal8zs3bNSYSjdJ3ni6MyYw+2ylL6kkQ+fo/G7864Xxle6cc/Y+l+eafbZOeHDnc3nwoKGVbpJMm9C595xriYUq3SR5c+xcle7AbJ3PoqnjO88kSXL3/ldUuuO26IxjLLTSXJVukqw6f+czY9qgf1W6SfLauLkr3Tv+2pnfWWPphSvdJPnbk3dXuo+/OEelu/66M35e9d9uuPneSnfRhRaodJNkmVVXrHQHXrun0p13eOdvL0neTGd88rY77qt05xgxb6WbJBPH/7PSfW5sZ6woSZZYsjPe/tarnTGBaYN698vzDHTGlxdc5KlK9/5nOusEkuRd93fG5F55alylmyTDB3WeK+cY0Rl7mTh9oNJNkunpXPOU4Y9UunNO7P1dTxrc+VkMGtIZ60uSKZM7z2ivTeiM9Z115I8r3STZ8/hDKt2ll+k8u78zbNVKN0leKC3huueBzndUkgwf0vn7GzlHZw578OuddZlJsvzntq10b//mJZXusxPvr3STZJ4Rnc/86SN7c9iLDVtyhjeHv/zQf/3/vjRoRE4fsuwMvJr/Md87vX/3BebszNfftNKSle60JTrPMkmy6pAvV7q33f6xSjdJRo7/U6U7fP0bKt2hZ02tdJPkunk+UOlePmiRSnfQho9Vukky99SDK90vjux8tyXJ7z7znkr3tQ/+qNI96tTeWNAvDz240l157H///fb/5rn3PF/pJkmW6cwrvPTEOZVuknx1p5sr3b8tNU+lO/mwzjh6kmy7yf6V7qD5v1LpLrXEKZVukowYfnSle9U6C1a6SbLem505p4EHOp9FP9y898yxzqhzK91h6x9V6b5y5Q8q3SSZ+Oh6le7k3berdJNk8I2ddVTrb/6uSndS3qp0k+TRIX+sdO+Z9Eylu9izW1a6STLp7Usr3c2f+FylmyTLf7/zu/HwdVdVumOe36nSTZJ7BnXGMa7d9pOV7pNzfrrSTZKdlt2x0n3PG739YHdv3Rk//kHpM+PLW/6l0k2S+y87otI9arMzKt2tXu7M1SfJ7QfeVumOv720HjfJBid29gDPv0Lnb+T2uV+pdJPksX90/v4mP752pTts129Xukny8beurXTfXrN3za9f1xlv//2wkyvdOS57oNJNkqcPOrPS/cNPjqx0j1z12Eo3SZYedUylu8Xvnqx0k2STeY6sdD8yb2feaKNHe2Pth918caX73mxe6e651waVbpL89NedMZJVP9IZq02Sdd7VOf/pjTP+UeluM+LJSjdJXhzVWYgzZNjhle4Gz/f2vH7ks50zfsZeu0almyQPvNFZe/KlJ8dWuje93JvremOVzvkz4w88qNK95IDe+OR7D++se15mt79XukmyyyWdNQi3TumsL1/2hd4c9r5jO78bv96ks9Z3qdt2r3ST5Isr/rrS/fYe+1a6SbLueZ1x4LcvuLDSPfDw3l72nV/u3Is/+r7Ofe1SO3c+O5Pkwik3VbqL/Kx3zVcceFelO3bxzjl0Y0fsXekmyY0HdPZjLv1Q57Poz1/onDuaJG9u1ZnD3u5PvXMEX/7tjH/emTLhv2u+Mnlaznpxxn/PP31XZy9rkkx9d+es4D2+9atKd/p8vXnTdb/VGZ8/fM3O31WSHLTWoZXuK8cuXul+5aO9sxw+dOaM32+QJP+6uLNO5jPXf7bSTZJFN9mq0j3wd531LEly4Dc6Y49/+kzn2ev5mz9R6SbJZW919hycefL5le427+6NI7zx92sr3VHPds5FSJKPnnJkpXvC/J3n0A3/dlmlmyRff+PiSvfCtTpr4Zd9ufc+iWm3ddY8v3vV3rnzE/bq7K1fa/XOuoUrj+mdK/POoM488gK/7pzb+vMVO/vqk+SBbe+udFdf4FuVbpJMeqyzNnKP/T9f6e53Q+/ZYfy4zs/51J907j23/0NvneGjL3Tm3X578scr3SRZZ67fV7qbfagz9r/HuzprcZPkgK0frnTf3GafSvfJ6b0zKY+7ZXSl+9cDe+v3f7LuFyvdnU/q/F78fthmlW6SfP0rnfnpeaZ/p9IdueZalW6S/GyeXSvdte/Yq9JNknd9tNP9296d9aen7PLTSjdJHjy9M/Y/YYn5Kt2B2TvPJEmy5xydMfGHz+ucVZokX7i8s57z4XT20b60wA6VbpLMt01njOu3S3T+RsY91FmXnCQrr9M5B3WzH3Xmo5LkJ3d0ntHWndTZC3b0Kp29T0myzsKdvXyXHNcZxzhtp87nUJKcfXpnz8g/jlil0k2SNZ7qrC949bOdPWbnHvXzSjdJ9nlX512QL37nU5Xut1/rnNWRJGvt1LnmdaecVukmyVeuvbPSveR3nbHPScN753b9ZY/O38mRe3bGBPZ97sBKN0mmLd85h2eFl3vvrDp7t86a5xGrbV/p/m6/JyvdJNn3xL9Wuvcd2vlePfv3vT1KLyy+bqX7x3c2qnST5O7zflvpnn53Zz3bpd/r/O0lyVfO7byf4cHtD650f/ZE7z3yrzzSWXP28RtPqnSTZPvlO2d1T/1mZ07jhAXeX+kmyeUL7lbpHr1m5wzBDz64aaWbJLvf0jnfbvrE3j3iwredVyr/d+PAw8Y8m4U/POOfac48ZqUZ3vy3T/2ts771tcU674Pb6Lnenu8dN36x0l3s6t4ZSQfOvn6le9HxnXejP3XEeyvdJNn/o5292ete2VlHNfGiRyvdJDliq8744y33duaRk+TwI7aodO94qDMve/ElvXclnXtwZ17ooO0650U9Nrzz/t0kuSyde5Of/64zlpAk8+5wfaX7p+M7a78WfqGzhipJLrqjs8/5tF92Pu+/umXnvJokufPjnf0MqzzTW/f82IUXVbpH7NAZV/nxdztzskkyz2ud+6L1Nuusg7thx857KpJk9ys68zef+8gOlW6SnPtIZ936cT/6cKX72bl7Z9d95v0frHQvG9Y5P2Tenf9Q6SbJC5NPqHRP+HLv3+993+rsEzx6rlcr3Su2XrnSTZIvr9I5b/aROTvnymw1qvP+mSQZekrnGfuCVU+sdJPk0cs7a7Tu3nBkpfuVC3rnG59/Tme+cI5v3F7pHnXia5Vuklwx5muV7r0DvX26gzddodK987odKt37v917h8IXnn2u0p3vyM778546/NpKN0nuPLfzXHLRHp19qUkybJs5Kt1rll2u0n3iL70z3Bf/4sGV7uaXdsZqNzu68/6SJPn+fF+tdL/5887PIklOuq2zdvbcNb9X6a63Q2t+M7n0gM55pR/YqTOfuMq9vffy/eb7nXNtxm7fO6/qyYU640W7PtF5B82Ot3T2ryXJF3frtMe9tkmlu9ONO1S6SXLMtM6eyS8e3Xt2X+zqztq9y87qrEl6687e/fLElzrjDR88s/O7fPjuvTGBNx/YrNIdM0fvLIINbu2c6/aFr3bOaDr7552z4ZNk2w3uqHTv+tqVle4PPtbbp7T48Z29Oa88MVDpJsmJ/+x8Fv36C53zVlb+3i6VbpJs9OfOWVjbT+iMCey8T2cMMUk2PrKzT+nI0b159y136ezzPHTpzvPqiUc+WOkmydcf6KzJ/eNFnbUNf9m5856DJLl0q86z+0qPf6nSTZJ3bd55H89/a+TTj+bd+287w7trfa83Rv/hjTt/t5ef0jn05KV9OvtukuQXpfNwLj7/sEo3SX7/uc45nQ9/v7PW8J/f6j0/73HmTyrd25ZcvtJd854fV7pJ8tNVF6x0D32wd7bMzmt11midtlDne2K7yZ2fcZJs91pnr/pry3TGbOZYr/ee3O1276wvP+/IsyvdJHltuc652nt9sbMO4NOje/vTvrfBXJXu/aUzcj+0Te/8ulc266y7/NPLc1W6SXLdJp15oS3fdX+lO/XUzlqLJHnmmc590blTO3vV//aP3r7vHy7WeffQ1od19pMnyckf6MzX/+Tkzr3c0kf23o8y9J3Os9Qti32o0r31nWsr3SRZ8ZXOWu2lTuyNpb+98XaV7riRnffZ/uzazhmdSfLoyp31rY893ZlT/84+nXfuJclRx3fWt973tVUr3STZ9qOddTivPXNGpbvU8yMq3ST5zIc762V23adzv7z35b0zv2b/dWfu9KtX9dZHHrNiZ43WJ9MZ3zrg5s6zapLcMdC55it/2rkvmvyH3s9i9oUPqHR/u27v3cwnPd85/3PeRzpnrA59oDM+kiSb7NQ5i+CCL/+m0n3uW/dUuknypWOfrHTnvKH3PsGPvNh5d8dZP++czTXPxb35gcNf6+wh/dwlnbO5nl9l/0o3SS44prP25J5dr650k+STb3bW+OyybWfP1j/O2a/STZIljuysMdjpn511HL8e2RlDTJK1rz690j3+xN5+lCuW7pw/uMDVnXMZ3pjcGWtIkr/N2xmv3XfijH8vepKMPnrjSjdJjtynsx5+ta17759//sjOOtTrHuzch387nfdsJcnpozprPX54+9BK98e/6D07HPzxzs95zIhrKt0kGTx0VKX7sU939h/+a9/OeR1JcuFl21S6J245rNLd4JrOfEaSzLlCZ7zh3om99yw/PFfn+2/L3+9d6b60U+9d8he/2Flndfu5nd+LjbZfp9JNkoEtrq10V9tmSqWbJJ9erfMejP+nt0v1dtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9BBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKBmb2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGBgZl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwKhvwn//H8o+fMAZt9YIZfxKNvPDnDm/92y61PVLpvjB6odN9+7a1KN0nmGT600l18kcGVbpLc+9LfK92F5lio0l1g4Xkr3SSZNG10pbvEEpMq3Wlzv6/STZLZR3euedC0aZVukqyw7rKV7sYfXLPSff3NSjZJcs3vflPpnvCLMyrdieNer3STZMJbIyvdKfPPVukmyTKbdj4/f3PSWZXumy+9VOkmyVobb1PpPnbfrZXuuOf/VekmyduD36h0J419utJNkod2+nOlO++0znfUqPlmr3STZOqI4ZXuq6++UukOf/61SjdJpkycUOlOHej8XiTJmxM6n3NDRw6rdMe99U6lmyTTR/xHj7f/a8MndZ6j3pzSud4kmW/Ui5XusNlXrnSTZHpeqHQH3uk8Rw2fbUqlmyTTB3XuEacP7nzez1b6vEiSgcXmqnSnjH270k2SjJ6rkh06ZUSlO3lM799v0MSJle6kd6ZXulOn9u4xhg/tfOa/8dbUSjdJBqXz7zfPnKMq3enTOtebJOMnjq9055h7TKU7dVJvfHnwgp0xgdde6N0vzzZ75+9v0utjK923B3U+45JkkdL955vTO89+t11+UaWbJAutsG2lO+iVhSvdJBl469FKd6m13l3pPnTXw5Vukkx9dXKnO19nTPWph3rjy6utsFilO/cCneeoJHnowTsq3XmGd+4FFpy7M1aUJE89vWCle/9D91W6a6+1QKWbJK8817nfmndI5/MiScYNGlfpvjChM1d52enfqXST5Mv7fbbSfez+xyrdtZfvfHYmydDBnTmNF1/u3AckyaipnfHaoXN31k0MfX1QpZskg2fvrAGaMGHRSnfyQGduLklGD+38nEdOnrPSTZKpA53nnWEjXq50x6b3HPyHI0+odA+48PRKd2BIb0xnvsGdceAxcy9T6SbJxNI82vCRneedt0aPrXSTZPCUzufyWt8orfP48j8r3SQZmNAZB153mc5atiSZbdCM/8wf+dR/P2c7b0Znr8GbzMCr+R/3LrHUDG/+X+05x1a6C65xU6X78Vt+WekmybxP31npvvSvCyrdJHl0eGeNz5P/7Mzr7XVQ7zNs5F2d56RFf96ZU39kjs49T5K8fPVyle4/Fj+/0k2SaZM6v8ufvHWXSvfvr9xb6SbJ51fv/J3cf/kOle4cz32/0k2SMY915rIu+Vhv/GOL3Tp7XX77s874/yY3XFrpJsmjp21f6Z5/Wme+8NNzd9bAJcmwBTasdA/+Ym/tyRyrX1np3jhwWqV7ymyLV7pJcvdAZw/NLeM/XekOlNYXJMk1K29Q6X70MxtVukkyNFtVuoef27nHeNexJ1e6SXL3yM7n8tar7FrpnrT82Eo3STbc+8JKd+/75ql0k+SVj6xQ6V4w6cOV7tUf7Yx3J8my/3yq0v3lfZ35ioERB1W6SfLshy+vdL/2z/kq3SSZOrbT/sFzN1e667zZ2xt34Cqd9U7n/uKSSvfRR/5R6SbJlk+sUeke97He/fLDU9epdMf/ozP3dttVnXnkJHlz287Y9U5Drq50N7z81Uo3SY7apPPs8MjgByrdJFnrnc7n50tHr1rpvvZw5/k6SSZP6swXTnuys09w6k9/UOkmyf0jflfp/n373j7PecZ01gS+7+C9Kt0HBnfGXZLkjEU7ezCGbHtjpTvb52f8vOq/rTKls15msb/01nH8+d1nVrpzjut8R40+7JxKN0kmHNLZm/rNGzpry78+bvVKN0nyi7kr2S0e6X0WnfXpnSvdzy/6x0p33GEPVbpJstWjj1e6z+/eWcN/06b7VrpJct+6nX1b/zjpkUo3SaYs2JmT+tjgd1W6d9/TWauWJMctUjoYbMnO+QknLPCLSjdJltu4Mx+8wU96ezBe+EfnzI7Rz6xS6S73TO98ySef6ZyX87cDO+PLv1muMx6eJLcM2anS3eTieyrdJLnlmCUr3R2vOrHSPXW/zv19kpx3Suf8hEduvKHS/caNnbP+kuQPL3XmShZea6VKN0mGLL/uDG8OveK/O/944cGjcuScM34dwKRFe2NXK5/fmeu99IHbK90vnHVApZsk1z60fqU79pTtKt0kWf+hr1a6++72YKX7k0Mvq3ST5P5VPlPp3vPnznrAF3c9t9JNkgfm6jxvLPvV3h6W6Y901hqef3FnP+RdB/6o0k2S7y/RmYc88ltHVLpzXXV9pZskJx/Wued5aJ/eeqSj53yy0l3r5o0r3QMnde4DkmTh2c6udMeWzn+Z746TKt0kOWjUnpXub7/wbKWbJJ+/ojMne+DqX6p0/7xaZw4kSZY57m+V7sADf6h0H9y+s84pSV4+abdK9z2n/qTSTZIJN3bOlXnzU50zyna/aL9KN0mGPvnRSvfCgz5X6d6/X2fcP0m2WKkzv3LU0Z150ySZ95TOPf62d3SesT++R+f9JUly9S86e6wvH9c5R+zZR3pnJP3j1521WS+/1Tt78JJDOvskXrmxMybwoUPWqnST5K19l690//iNT1W6Wx/ZO4fx7Ps665F2mq1zvkGSTPj7XZXuOVd01mn/fs3OOrUkuWD7QyvdD32iNFb0YOd7JEmu/Ng3K937r/tZpZskl210eKW75X2dfY2fXq0zH5skU3brjMkNu2DHSnf8lp19tEmy906dtU43bd17F+QTUzufc/v8qXP2xU4X9e4Rb/5B5+yS7/6pMz9w7ea9cwgWma+z327FS3prI/+18VyV7kEPdcaX5/ts73zjbwzrnHX0rz2Pq3S/sEdn/WmSrPboKZXujrt9rNJNklcnr1fp3rT+NyrdeV/vjamesN8Wle5ml3bWk1364Scr3SS5YmJnzeXuZ1xb6SbJCu/u3H/u/dnOOrVbL+iN6Tz+gSMr3Xdv3HlH9oVPdvbRJsnpS15T6e50VG/e9nOHdd6le/zNnfc+/OGQzrhZkly2Wuf+c6WbSudJ3drbu/3U0M739fWLbl7pJsmXtuycWzmhdOzhavt9pRNOsuKQzmfROYvuU+kecWrv7/oLf+7si/vS+M77sZNkn9/05oT/G9OnvJ2pr874Me/Dh/XevTD/Q3tWuk++1FmPe89qnXHYJLn29M645k5b99679/OPdtZojX9y90r3+UP3rnSTZKmJnfvWU5/r/PvNd2nvnvXE5zvnSB+8Qm8sb5UpnfGEB/f8XqW71QudM/GSZNS7f17p3jWhs+9g7gU65w4mycO3ddbBDfrE1yvdJPndSxdXumfN1zlfda4HO2eVJsmjfz+j0l19g/sr3ZVf+3ilmyR/X/riSneLPXtrFxbcfbNK92vf65zJvPaQzp6tJLli979Wuq+UfuW2fX/nuy9JNtyu8x6tZb/XOzty/9d+WOle8PXOmQtLndU7L+rzg1asdIf+sDP3fd7BnXVDSXLCzzvvI/7I52+rdJPknPU+Uen+fdiSle7Lr3TW4ybJFkd0zni88+TOPf5J2/V+l//67s77sE6Y75ZKN0m22r5zDvgHj5i/0t1jq8678ZJk6R3+VOmeen3n3N3j9us9+13w5c7n5+Gl82qSZPDrnbW+9/xsy0r3tYc6e36S5JQbOmvin/lT51yuQ0c+X+kmydaf3bbSfd8nOuc7JsmJR3beGbfBup353rv+3BtT/eM/O2Mv52zaeUbb++LOe+2T5HdndsaBT7u9847JJPnFfZ3xvqd/0/le/dGo3rrn2/f+cqX74Ss67yicenHnOzVJxpzfmXd4dWjnmTJJxi3b+V2+86DOGeBrfK1ztn+SLHLWjyvdlfbpnJcz5+jOO7aSZL+f7Fnpfnjj3tqT31/800p357M6n0U3bveeSjdJRp+0SKU73wNXVLofP7Pzft4kmbZJ5375gSs7331Jsturnf0du01+f6X7tdk7+8KT5JcPjqh0f/zu0lrt+Tp775Pk/BWPqnRv/0JnnU6SbLdY5+zkbXc/u9Ld4JDefqJ7l+vsTd30r29VuqdM+mKlmyRL39wZX/7u3L3nnc0mdsbOdvpT50y+NeftvY/ggx/pfObf+I3OmWBbr947t3yrNTv3Rave8d5KN0m+vWDpXQf/5f+37PQlctn0Gb9G6+h9e9/Hhzz0+Up3jsM717zCiM5eryTZeMXOPfzyv+j9DWz5jc7f7bpLP1PpzrF27/yz2w/sfNcP/2tnfdY53+ntb7pt2aUr3f1+2XkHU5L88ROdPQ3X3bpEpfuuD/Xme1f4VOdsww8s3FnfesU8vXHpyy7tnM11+NTeuwM2eqrz7oyb/zyk0j3ngd7Z8795fYdKd4MPdN7P8NRA5z2PSfKr1U+rdDed/dRKN0nu/NN5le6Zp3y70t1qbGeMKUnOPLTzzvVbLuucbbHOMSdXukly9uGdz6JXVu+cI50kH5/e2Ssx18jvV7rXjOt8jyTJHzbrvO9g/W06z1HT/9A5IzBJFtmtc82H7th7V9Pfx3fOQt33oM6eu/Ev/7cjK//fPnH+jH/vV5Ks+aPO+Mivj3ih0k2SnZfco9LdeLnePs/TduycT/K3FztjvO9bqXPmSZLsfEJnDfibq3eerz90fme8O0m+vdD4SneXtXpzLFN/sWSle/InO+e0HPbxztrWJHn3FmtXujsf3zmLYN+zO2twkuTNL3XOst39u513KybJdsd1zpI+7o/vVLpXH927x3jP1M4ejDX366y1v+fn11a6SbLaS8dXupv+ove9uuz756h053yjM4547nadNahJsshav6103zu1s59v7A69PZO3n995jtrvht6e8/0uHVPprvDpzpqWbxf3xv1kuc4ejN+ccU6le+bWvXGMl+ftvHN90/G986rWfLtz/ucHlu/MSX1y19748phfd87uWnFkZ63olt+8oNJNknfe98NK96odeu+N++1FnXWoj23fOfvpyPd0xs2S5Ifndt67uco9nXP4r/pE53z4JDnpzM6eya0+33s35tDNJ1e6i321s4Z4/eV6+zxfW7yzDvWCn+1Z6Y7bsPNvlySvH9s5i+ep0hrUJDn+8Vcq3WN/0JnPf3X+zpx7kqx9WmcN3pOf6zw7jB/SWX+XJIfM1tknv+VfOnNoSbLehZ33Nub/Yaqy9+QNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8HGZjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4KBmX0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArGJjZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs4Ih/9l/PTSD5ll4hl/EhNefn+HNfxs/Ymylu+gc81e6Tz/9cKWbJK9MGVXpPvPYA5Vukoyac85Kd+rA7JXu2EefrXSTZL7lhla6s43u/CxGDX+l0k2S4SNGVLpzzzFvpZskb46fXOkOHxhT6S429/RKN0k2fe+Wle5Sy85R6X7m89+udJNk+rDO5/LL4xaqdJPkgZ/cUOlOmzy20l11g/dVukny+kuPVLqDpv5nt2f/W1MGvVnpJsn5ax5d6W66+AqVbpKMGDO40p08uPNZNPmV3vfqO8+8UekODJlS6U4ZOrLSTZLXxj3VCQ90/q6T5K1Jne7s6dyHTx42UOkmydAhYyvdYQOde895ir/Ls40YVukOHzK10k2SyRM7n58DozvPUUOGdr5HkmT6tM6/39DBnX+/wbPNV+kmybTxnQ+5gbnmrnSTZNjs81S6Q6d0niknD/Q+l6e81rkXyPQJleykNzv3REkyLaMr3cmTetc8cnjns2jIyM7n59RBne+RJJltaOdeoPQXkqlDep9x08aOq3SnDur8XSfJO1M791yDhnZ+zkOnvFDpJskbIzqfRcMmzFbpjip99yXJ3+/8VaW7+gYbVbpJ8tykzpzUsw/+vdJdY8WlKt0kGTy087uxxEKdn/E7k9+udJPkt1dfU+luvu26lW6SLDVf53djkRUXq3QfffGdSjdJllum8+xw3xMvVbrLLr9mpZsk4169otJ9z2ofqXST5Irbrq90V5mvc++y3t69ua63J3XmuqbPsXile88zEyvdJPnYuzr3Ao9O6q3HmDZkfKU75fXOmM7wkZ17zySZMqHzvDPHiM7Yy7RhnXuXJJk8qPN78c6Q4pjqoM4YyRxTOmOfo7NApZskkyd3Pufu+ullle5qB2xd6SbJi693xhuGzd0bk5t33s494qvjO/cY77xamltNMnlaZw3XkHk7454f+eZnKt0kmfjTGyvdUdM6455JMmhwY37uv/8embjQ5Dz41Rm/RvnWp1ae4c1/2+nu91e6f//77ZXuslt1xpiS5KBX5qp033fztEo3SV5afWylu+ZG91W6c5/VWc+ZJD963yWV7hzH7Vnpnv/3FyvdJDnksHMq3WEH7F7pJslsd/+y0t39s501Safttk+lmyS7fKezbvauX75e6c65xtOVbpJ8dZPOZ8alk+6sdJPkz++/utLd8IDOfOGdz69e6SbJSvdtWum+9bnO+uR3r/exSjdJ1v9OZ93zpw7vzMkmydK77lrpzj37o5Xu8qf2xq+GLNv595v4auce8Ykxvfut3RfprE++d//Od1+SfHvoXJXuggutX+mO2a43ljctf610X/tm53v1ooFVK90k+cCVnXvE8/7+t0o3SSYd1Rl/XPutzjzktT9YrtJNko1m74yl/2nHzh6aTw/qre+5/ubO3vBdR3TuA5Jk3tsfqnQ/sct2le76c15Y6SbJd0+4qdL9yrKdfZ4/e723puX5d71a6Y58f2ceMknG3tA5p+KAv3eed0497V2VbpIMTOp8l2z5nrUr3R/f0FkfkiRrP9GZY3nhrRMr3SS5crNjKt0tdu7MvY1duzOGmCRDX3m80t1rq20q3W+s1vu7/sdCnc+4kxfoze/8ZOpule5iX/ljpXv9rzpzc0ky3+DOutlv3LNIpXvUBr297OOP64xdjy51k+Sj4z5Q6e66Q+cZ+6fH9v6uh+2/SaX7rgv+WenusN5elW6STBn500p36ic63SS5ct9/VLqbb9j5jHv8qR0r3SR583ud9XXDXuism/3ViV+qdJPkkAmd5+Dr3/WhSjdJBr/a+V0+66HXKt3p23T2SSTJGRt8vtI96v7fVborLLhKpZsksy3UWR/5hd++XOkmyUXv+1ele/MNnTW5i5zbOy/n0hV/X+muOW7FSnfRX/f2sj8/unMWyIPf6oyPJMk/Zu+shzphjkGV7iZXdD7jkuT0wWdUuu87vvOM9sJGm1W6SbJ+6RFthXGdeYck2fDNGb+m+nuT/rvPtxcnzZMfPrHTDL6aZP+pB87w5r89cOPXKt3vrHtdpXvqYr1n5wkPdOYhvzZb73zqP29yeqV774GdZ68XV+isc0qSuc5YvtI94bnOfPrv31iw0k2SaWd01so8O7mzTiZJ/vmtZSvdVQZ1vouP2LEzH5Qkv1iisx7+h39dvdKdZ8nOv12SrHPNlyvdr53Vu6/87MunVbqXPrNOpfulF3rzK4ef2xl7fM/P/1Lp7nbiNyrdJPnSVzvPdTe+fmulmySHfrdzj/jC5D0q3evu/lalmyTrztPZm73RThdVusuP37DSTZIvrzW80v3JvUtXukmyynXnVrpnztb5Xb75wK9Xukmy6KKfqHSfOOWASvfBSy6vdJNkp4OOqnR3e6u333XSJXtXut9c8q1Kd+vLe3s8l12rc//yzOR7Kt3DV9qs0k2Sp87vzK+8uendlW6SPLtbZ63a6nd0znXa/bnO+qkk+eYTnXnT1f/UGet+ccODK90kufGHnXuM8976dKWbJMccv1KlO2RyZ7zo+tXfXekmyQZ/7Lzn59Lfdj7jHp9yXKWbJGP276yN/PAWvXXaz7730Er3vbfeUeku/0TnOSpJLt3pyUr33G0757UNPfFTlW6SbPZq5xyeFd7o7SVa6qbOGMneb3fm5w58rHNuQpLcvOhjle7pX92+0v3xt39b6SbJeyd0nnc+ekZnLW6SDFmrM3Z96PTOHOguc/b2S571w/0r3S0OfKLSne3Q3jkEV8zR+S5Zd9PeXMmgQzpnwi7y4c4bQeb5XOc+LknO37MzXvTRr/6h0l3kmLkq3SQZ+8vO2SXrfaL3XswNz+uclT/6hs736oR9OuuSk+TEJTrnPVx+eWct/LlrdeaZk2T3uzt/f/Nc0dtvPmb5zlqrQa90fufePKU31v7bb9xS6Q5fv/POlZum7lzpJsnP5um8d+WaMzp/I0ly56md81a2u+z8SveKVzv77ZLkBwetXunuW7pFfOzd63XCSe4Z3FmnM8f++1a6STLosNZ7Jn/zX/1fk5cclhfPXHLGXkqSIYdeNcOb//b+izrnv6x3cefzYIUvd+Yhk+TEaZ2z1Cc91dtbOPn4zljeLf86vtK9+ne9saBtBnXGVhY65M+V7qSVemeKTlmqM3e66alnVbpJ8thhn6t097qtM3618omd602SL+3Q2bf41NOdNah/fXjJSjdJph58UKU7ZqXec9K+37qt0v31yp3ze5b92t2VbpLcfXTnLKpVT+jcs26x/2qVbpJsdF3nHXY7PnF2pZskLxzTOd94+ic7c99/ubh3LslnrunMy676Zme9xZWZvdJNkved/2yle/v7t610k+Tuf3bOa7tixc4z2s/W6T0/z31F590oF53V2Sex3rHfq3STZNdLO3v2lznmuUo3SR7bbo1K9+V3d9bL3H7lpZVukqx/1uGV7qqXdMYbPp/W2FWy+Xs6Y95z7tf7LvnDi53zQ+aa0nmf9KBlO+fuJsmHftU5b2/byZ3xkc2v/VmlmyTZonMG+Nev6+0HG7F2Z03uda903i212gq9d0h+4eDOu9HnO6yzz+xLt3bmIZPk4lu+W+metOePK90kWfONH1S6Tz+9QaW756a99ZEv7tqZ09jrQ519nrst/8FKN0kmPtKZo17jO73x5Tt/1nnP3c8e63z/zX5Q5wzwJMmaJ1Wyh93Xef/MhqOPrXST5EPXnVLpXrpk7+zBrYf9sNI94aDOWsPhD3b2ryXJjk931iRtelznPnzlBXvjGN9f7uJK97C/dP5GkmSdwzpjqh/50a8r3c+e2DuXYfrxX6x0R5fm/Tacq3Nua5LMNqIzVrvRDmdWuklybWlK//H1O+tbv7JT79nhg7t0vv+uWqMzH/XDUb39v9OO7Mx1LXhy5505SfLgJetWum/u1Pm7fn7hlyrdJNl5p19VunPd1lknsMI+veeo+Rf6aqV7xvDOfH6SPPb3zl6lf/2h886VE57tvEspSbY5rjM+uezIzrPfuXv31oA/9ffOvv6T9uuMmyXJty/qnc3w33hhkSdyzPdm/Dkwz1zfea99kiywVWdP+dYHdObePn1hb77pa0d35mXvWbxz/kuSrDO4s9d59J2dz7BNz+jsh0ySH73dGfOeZ/7OHPV9C/XuTRYYv3Gl+7ObemdUP3hXZx/uP6/tnE2y/BG99xj89qTOHNn4NzvnRy70x8474pPk2B3HVrpzfGbJSjdJvv3pzvl1157SOY/jqN17ZxgsuUjnDIott+qsW1/j8d457vc90xkY2/CxIyrdJBmxZ+dsw48cdXOlu+ctn610k2Tp+eaqdJ/6VWfu5sazOu+cTZKRi3bGr964codKN0l+sXtnXm+lTW6vdH/QW5KUw6/pzL99857OefkbzNU5kzlJzvhD53l1061754o+uGNnvnCPmzrP2Euf1pmHTJLHd+58R13/1c7z6qBvdebUk+T9n7qh0h28TOes/CT56di7Kt0jF+ysj9xw48450kny5bkXrXRv2LBzntFLj/beR7fnqp3PjJe3fF+lmyS3jumcH/ntfTvvk95ipd7zzpLjO+fv3lt6XN3my4d0wknW27hzIM4vP9pbE3jsT39U6W4+fYlK92Nz9tYavmfxzj3GzXN2zmU4L731da/u8qdK9+0HOnv5kuS7L3XeB7nS5zvjUE8ts0ylmyQDu+5Z6Z7/+85ZIAsU1wHsckZnHcDWX1qy0k2SVS98tdI9eIUTKt3rr92r0k2SP1zZOUvpjMs6z2ifGtPZF54k/zysc3byb6/9RaWbJOM27fz7LbtcZ9792NV7eyYPvbRzL3DOJZ354A/O23s/w21nrV3pHjNlTKWbJDuu869Kd6tf/bzS/c2GvXeCfH/zzrmw8248vtIdNaz3ntAD9+qsp/neJ3tnVP/6yM6Zij/8ROddIwts11uD8KWfdtatn/batZXu+5fvnbX5xaGd8b5Jy59d6SbJS/OPqHS3fv61SnfK2Z378CRZcePrKt1tX+uMvfwxr1S6SbLv8V+pdBfZpXcm5ojXdiqV/+/38/VO6AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4MMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMzOwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZwcDMvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBUMmj59+v/6P15i8cWmH/alL87wi/jbY/fN8Oa/jX99fKW7wFxzVrqvPv9CpZskQ4aPrHQHxk2tdJNk4sCLnfCIYZXsxLeGV7pJMnLMkEr3PZt8rNJddsUVKt0kWXC++TrhaW91ukmef2VcpTt40v/+M/w/8dYrL1e6STLvkktWuv964JZK98EH/1HpJslxp51T6Q4M6XxeJMm88y5Y6c42fKFK9/WXHq90k+Slt1+vdA9cbJtK97sbfaLSTZLBI+aodIeOGFzpJsnAK517xLGvd+5dRg4dVOkmyWsvda55ytSBSnf6O53v1CSZPGRKpdup/o93pnbuPwcPHVrpDp82e6WbJNNne7XSHTm58+wweFDn+SxJhgzvfGYMGdH5vUiSgYFOe1DpvmjwpN7n8sDozjVPmzqq0h1e+rxIknfm6Iw3jBqzcKWbJFOndK55+qBOd8rzve/VqaX75UlvT6p0pw+ZUOkmycQJIyrdeRaet9JNkmmTOncws80xW6Xbut4kmTYwsdIdmD5PpTt5yuRKN0kGBqZVupOHdn7GSTLpjc6z38CQzvzAG+PernSTZHA67Ye2/Hul+9zzr1W6SfLwY49UuhOnz1XpJskq64ypdO/8W+f7esKE3vjyUssuXum+Pbkz1n7/o89VukkyfkpnTuOFF3vzfqus1pk7ev25zmfcoV/5SqWbJE8+2Rm7/uN1P6903/5XZ6wvST7+qY9Xum+8/mSl+z/x5yvZUeNeqnRXWe9dlW6SzDWwZqV70q9/WukOn9C5j0uSjRbfrtKdese9lW6SDE1nHmbQ9M5nxpBhvXmj6dM7z1KDpnfGEWebPLrSTZIJg0vPaNN644hT0rl/GTak87v8xtjec/Dg0Z2xs9GjFql0Nz5jz0o3SSaN7Iy1P/H82Eo3SZ6e2nmWWmPxRSvdN9/prZOb8ELnd3nqO/+sdAfN0bvHeOPEuyvdqU+9UekmyaCJM/5++cDHLsgjb7/0X32xLrPoctN/8PlTZvQl5dZbfjvDm/922VWd9ZH77dkZV7l3rr9Uukmy4lOduayHn1yq0k2SifccX+levvKule7eW/Y+w1a4vrMm6exPfanS/diw3lje+zfcutKd88zVK90kuWXbzv3UuCc69zwPjP9xpZsk2w2sVek++bmxle7C37mp0k2SfY75RaX78AWdOfUk2fFDv6x0R618YqV79q23VbpJss41nbVDG6zTGf8478tfq3STZOKNnb/rh3e4q9JNkrcX6oyNLfVQZ1zlpysvWekmyXZX7lzpPvFsZ15o0T2urXST5I6rO+tmp73w/ko3SfZ4tTO2+faOnX0uD/+6tx/lQ3M/UeneMf/qle66f6hkkySPr9oZs3l6wd7c990vr1bpbjmiM378zsRVKt0kuWftzr679a7pjBE+fPIClW6S/Pi4znqnw9fbtNJNknct05kLWWdI5/PznO+W9psn2f7YzpqyH13TeQ4e/tizlW6S5LnO3Pfb+3fWwCXJiq90xijf83hnHPiV4TdUukly08PLV7p7zddZK/q3x++vdJPk0T07Y+137H19pZsko7/W+Z4aM7EzvrzSG71zUYbP80Cl+4Vpj1W67325sx43SSb/qfP99+Ch61e6STJ67hsr3Xmu7DyY/OD+pyvdJDl0oy0q3ec23KnSvfgvvefgyYueWeludWxn3ihJFtz9yUr3qvnX63R37a0pe+qFD1e6K13YWVt+0osfrHSTZMRSnb2pD63Xm7f9yJyde7lrfrtqpTv56T9Vukny0ffO+HPzkuSc4WdXug8/1Fm3lyT7P9L5nTt97DuVbpJstfVile4H/tpZa3/DEp2xhiTZ5COd9TTP7N+5j5u60fsq3ST507jOPt1Vbv9bpZskoxbrzNs+Nf8Sle4H9+39Lk/+Tmc+/1+LnV3p7nBOb//2oj9ft9I9ZOPev98l665d6X57Umfs7NZpvfvlZ97bGWv/4OcfrXRfWqKzFyxJ/nlNZ7zo+es661+TZPgiM34c+ORbzs2zb7zwHy+oGTZqsenzrzTj71lf/GBvTPOYDTvnh9zycGet+3oH9D7Lh/++cy/1xhs3V7pJMvbT+1e6y218aaX7g417z4sbrnBFpbvrSZ1/v8u+smOlmySvLNt53n/xxrMr3SS55ced/cgLffLoSvfUl3qfy/nQGpXsA7/prE3+3BdWr3STZIXPdD7zH/3sPZVuknxs+jcq3al7Hlfpnrz0TyrdJHn80asr3R8e37lf/eycvb0Mz/5wmUr3o188otJNkvvGd+a9P3zVNZXunE/cUekmyTOXr17pbvKN/SrdrcecV+kmycCfO2udtlm/s648Sda//aJKd/krOmPStz7dGUdIknGjOntGRr7aeTfDR9/bObsnSQbW7Ow5WG+tzrrkJDn2+R9Vur/aqzOOPteC36l0k2Sl33TO0dzukx+qdM/+wZ8r3ST5wemd7+tXRvfm6p864alK96Tvd579Pv9IZ+9hkpw1bJdKd8jmnfWny971hUo3Se7/cmfs5SPz9M6nPvGKztzpXV88pNJd9vze+yT2X+mkSveJDTvzbnN9tfM9kiSzLfXDSnfOp/audJPky7t0xpff+tnGne5HOnvXkmTdpTvPJa9e3Pku+Xquq3ST5M2fdO6L1jmo911yzV2ddSf/+Okzle5nN9yn0k2SOb7SGTs78ejlKt35V+/MZyTJmSt0xsTHLfD1SjdJDlyxszfg2UNXrnSXeu+SlW6SXDy+dCbs4Z0zUS74zecq3ST51nW/r3SXGPm7SjdJLj5iq0p3r206P+edHunc0ybJ0LU66/c/fHnn92LHdzp7wpPkxv07c2gHfah3juYTJ+9b6W7zw86cxvsu7J3Bf+9rnb187xn/3Ur3KyveWekmyTqjx1a6V+7be1/x/c8/WOke/qFvVbq737h0pZskN63W+f7b9eud/Reb7NjZx5ck6y9+QKW7zPW9c0B+9sHPVLoLXvdkpfv1955W6SbJarddUOke84nOfq1LN+qsRUySwbd0zsqZ9sETKt0kOeQPnfmB7z9z0J3Tp0//jzcHLDlk1PQj5pjx+0OnP9975lhp3c76unvf6Twb7PVab33WDuM77wcaOLG3T3bY3zr3PXdP6Yy5nTe6t2d/lTs791NTr92s0n3mkisr3SS5/tLOfp677tqt0k2Sp5fv/C5fvULnvXtrHN2bV/jKM3NVuseM3KHSnXPQZyvdJDngPZ09w3tf3lu3/s9dvlnpXvdM54ydla57b6WbJOfe03lOOnDTzr6RL36k8869JBnz4FyV7q+X6Z2396G3OueAv2/XztlZYyd1zlRLki+9/7JK97ILOudzfv3ezjNSkrz9g85zyVqH3V7pJsl5v+rMy956T2deYbfP9O63jttoWKX7ndk6Z3V/7AOdNYxJMuef/ljpbvTt3tz3QeMeqnQPnK9zdt28t2xZ6SbJR8Z0fpeP+2lnTdItt59d6SbJ/ld1nndOHtV73rnwLz+odK8+dZ1Kd/55e2v4h/yjszfuwAU66wBeOqPzLp4keeaCzjlwV73cmVNPkuFTOmPeo7fvfH7+8V2dcbMkWewDh1e6xyxUut86pDeOcdamYyvdI749d6WbJP+4vbMO/OCXO+suz/9Lb8/rY493fudGrd05H/DqrTr3h0ly4MGdtaLzfbf3zrj9/9HZG77s2p11OBe/3pv3e+0LYyvds7b5RKX70Zc6++KS5DendPYzPHRb5/MiSb56RWeuZLktvl/pfv/2hyvdJBl6xF8r3Qe37VzzxSt9pNJNklEf6IwXbb9557yVJPntoM7a2X9ufHKl++cPds79TJJPntnZQ/PuP0ypdJ+Z1lv3/PjXO/sOdlt9j0o3SQYd3DnL5Re7dPYGnLRH5/M+Se48uPO+6ZMW7Zxdcv/ve3ur/np+5/yZqcf+utJNkq8e1FkPdfr8ne/VB/fsjBUlyecuuKTSnTZ4qUr3+vd33guWJL//2t2V7qr39t6fN/nNuSrdFad3xs7mO7NzVlySHHRDZ031NT/qvBtlte/15o3OmLez1v7RNX9Y6SbJRjd1ztXY7J6l/6t1z8uttPT0U399zAy/noVv6owlJMnWwzrf9Uus3vlue2Slzln1SfJkOmPe84/sPH8lyarrd8ZML5/+q0p32hmdM+aSZLuFO+silt35wkr3uOU689NJcvrDc1W6U0vvLE2Smx/Ys9J96dXOWYyvXHFkpZsku8x2VaX7xZM654qu89HO51CSPPSLzrsCj/rx2Eo3Sba864lK99gvdcbFPvdo77zg03fpnNd9zJ87z4zjtzy70k2SA/b6aKX7l+17Z7Y9tvoOle7c93Tui+Y9rXeew8i9O+8E2e34zrPdbr8YWekmyWUrnlrpnvyt+yrdJHnn1M4ZBud8vvMZ9+Bz7650k+T94zvrk0+9/ZVK97bSv12SfHKPzhqDn4ztncV4/Dmds4FuvuPgSvePF2xY6SbJ44d31hgcf1rn/J6bF+ycUZYkdx98f6W76qfvqnST5Ox3d57dz7jqlkp33c919gYkyfwf7uyZXOud31S6j67aeyfBm8939kwOe+70SjdJtpl7lUr32t03rXTPO22lSjdJDnyt867Oy17ujAkcc1Pv/dcPLtw5/+LNjXrr604Ztk2lu/fGP6903zj4sEo3SSYe/r1K99sHd/b13/6uzn14ktzzamf/6COf7D27v3XVJpXuPh/orO85+pDeWsM5t+6sFT3um9tWus98ZYtKN0l+/YPOWUp7H9u590ySrX/Xma9f8pOd+6JPfuDsSjdJvvxOZ9/dp9fsvL987XM6ZxwkyemLdNa0HL1c5/3NSfKp+zvPUoe9dWulu8b+nbMjk+TeSzpnMX7zkHsr3W8d0BuT2//Bzvjyw6scWekmyfcv63xmzL1X5zvqod/11tOscXhn3v3t33XWTfz4kbUq3SQ5ZJvOPeLAhN78wNaLPVnpXr/265Xuj5/u7DlIkmOP6+xtPHpa5375oNmnVrpJ8ptBnc+Mv43pzEclyT8vvbvSXeKizvkJa23RmXdIkr9+svOdffOp81a6X1vvL5Vukuy6cGeu+cqLO+NmSXLE/p37olvXnv5/u+65c4IqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwfZmBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAWbIAkQABAABJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYGBmXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAoGZvYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCsYMh/8h+/M2lKHv3XizP8IqZOnG+GN/9t2qCJle7YiW9VunPPPqbSTZI3ho+vdOebZ45KN0mee2pcpTtlYGilO2G2CZVukowYvkSlO23SlEr37VfeqHST5JFnX650R8+5aKWbJHMv0Pk7eWPg+Uo3wzqfnUnyyl1PV7qjhy1f6a699PRKN0mGzTat0p30RuezM0nGvzW40n3x6Ucr3cUX7Hx2JsmfNzu70l1y9s590eh5Ov92STLx7YFKd+wrT1W6STL51c41T3/tlUr35UGDKt0kmW1S55rHZ3SlO3x05z4uSd4a1/k7GT1yaqWbJLPP1fmeGjxtgUp32oRXK90kGTQwe6U7ZOScle7A4OGVbpLMMWfn72Tc1N6/34iBuSvdt0rP7sOHz1bpJkkGhnW6pY/P8Z2P+yTJ4Dfe7oTfebPTTTJ43pGV7tS3O98lw0b+R0OD/5lRnc/PIa+/XulOG+j9XQ8bNX+lO33wpEo3SUbN1hnHmDa686Hx9uude9okGT14RKU7bVzn73rQ4N745Dul++WRc/a+TAaN6lzzwMR3Kt25Bvd+FmPX79wXjRk8b6U72zK9n8Wrr3XGlx996p+VbpJcetkLle6YMZ3vqAUXm6vSTZK5Ry1T6b7w7IOV7tLLLljpJsnU8Z0xgUefurPSTZLr/3p1pbvbTh+sdM+68EeVbpI8/lBnfud7X/tMpXvTHTN+jcC/zTOsNFY7rfR8neTtdzrfq0ts+KFKd0rxeeeqv15e6W6/+Zcr3bueu6jSTZJn7u18fi7Qe/TLvPN0xuQmjOvMVXY+Lf7HoKmdMZ1BgzuDctNHTK50k2TuYaMq3UkTetc8eXrn2X1Y6eNz+JDOfMb/xDs/5+kTOz/j2/b7XaWbJJuet0elu/zy81S6SbLKoM7n8mvTOmN9I0Z2Pi+S5Lo776t0371M5z5uxKDFKt0kGfK5NSrdW7/850o3SZ5/dcb/+7015b8f9xw74bn86b7DZuDV/P+7W60yw5v/NvKNzvjVLe90nu3GXL1QpZskNy7RuYffZq+VKt0kOf27K1e6C49asdIdefFLlW6SrLpZZ/xx1Dad9a3TJ/Z+l6+78vFK910bdz4vkmRgaGeNyAJrdNYBbD35e5Vukkyb0BmXvuvaznz9CjfeW+kmyRHvu6vSXfaBJSvdJNl/6UMr3ZV/dXulu9tKnW6SbH7D3yrdob/ZqNL91ZhLKt0k+f0Sl1a6by//nko3Sf61a6e7+BI3V7pr3dhbt77N7CtUuvdusEmle8Nz7650k2Tz0zpjNvPu+HClmyQvzvNIpXv5hZ21Cys/35lHTpIbf9W5L5r/lM7aoafW7axbSJJJy3Tut2Z/e9lKN0kumdbZq/TWqp31rce83ZmrT5Il3uj8bowb/9VKd82Lb6h0k2TUTZ3Pog/utEWlmyR3rPrtSneLNTo/i0nH9sZi7/rHJyrdOQaX1sqsdVulmyT7fGrdSneRn/b2CT6++5cq3ZNLw0UrP9pbw7/lxhdUuhPHdNbNThjW+72Y6/p9Kt2BhQ6vdJPkths76+D2POgPle7lv+vt87xyi87ak/U+Vslm5PWd75EkeXJoZ+570OAzKt0keXXy2ZXuP/bpzA8s99x2lW6SLDh2yUr3nb93xs7mn9g7O2jEs52xsweWOLvSTZIz11+k0t1j1+cq3aHHdcaKkmTrUedWukd/4f2V7mNvfbjSTZInbt+00l169Kcr3SR5dr3Ovdx6YzrPq9NW/FSlmyR/u+CcSvcTCz9Z6U5frHf2078W7NzLTbqxM4afJDte31mv9sgWx1a6r1+wXKWbJIdN6Jyx9f1PrVnpzn1k56yxJHnzju9Xuiuvd0ilmyRPT+6MC3xk+saV7gd3ur/STZLrzus8Y/9rpc46ncMP3KXSTZLtvtMZiBqzYWefRJLs94vOvq0DP/yNSnfxSXNVukky+lOfr3RfWGyzSnf+EatWukkyYuPO/MDPj9qt0k2Sjy484/ezD5rw350VN2juIRn84Rn/M1zh61fM8Oa/XbbWDyrd48/urIGbtvOOlW6STJjUOUts3NaLV7pJ8tsvva/Sve2tZyrdJ97bWduTJAc+15mHnO1bnTGx5zb9bKWbJHsc0FmP++Ane7/L553euWf9xqDO8+KDn+itrdtn04Mr3V9M6ozXHLVT5949SZ55q3NG2TfP7/0uv3NdZ8/+12brrAFY95eds0qT5POHL1XpnvCpr1S6p32od37BV+fr7LPc9t7eWet/mvu7le51J3fu5dbe6r2VbpI8ev5+le4P1uuM7278hd443ukf7JwU8cDRvc/ltyZ1xiiGr9g5l+Rvf+ydW777aZ31nCef3zmr9JEv9z6Xj7+jM6e3xuTemvXVnuncC/xgrxsr3eMW7f0s3tn3hEr34fU6a5PvfHX/SjdJzvn17pXumeedXOkmycSdOt9/q83TWUv9re/29l8cvsF3Kt2/LtBZW3DLNb09/flMZ//Mp9fYt9JNkuGbd8a4Pv3UmZXubv88ptJNkqOv6+yfWeH5zr/fXjseX+kmydAzOnuUxny3N+899/YfrXR33L6zNusz8/XWk33xrs444rRpr1W6X/v6zpVuklz0/i0r3e/8tffOsSM27ZwX/Pr7OuMY2/yy9xy870trV7r7l97n8vCNvXOfVt/wyUp3wnO99/zMe1XnfvmsMzrPfrft2bvHePGRzlj7Sh/pvNd0zet7+zpeOvuOSvfRbz5U6SbJmxt09sU9tOnFle4Gj3fONEySd57vjE9ufEjnvmjitM67R5Nk4hNPVLoHzH5lpZskd63aOSDm5zt3xmof+HbvTNGlft853+6e1Q6sdJ/YpHN+YJIseMdVle5Zy2xW6SbJltv/qdL9yYGdPUrfmb9zzliS7LL4Byrd39zXWfPyhW8fWekmyfZf6KxB/d43z6t0k2SXz11Y6f5w1A6V7tx/3bzSTZKXb+uMyf3sqM5+1wuX6b1b473fPajSXXJk73nn8LGldwj98r/738auOjQXXz/jn5UO+8YOM7z5b6uO+3Gl+6/rTq90P7d6b/zjhZtOrHQXnnOvSjdJ5vlEZ17vjDk674t4fzrrhpLk0+d0njne98qzle5v3uqtVbto3s6a6q8c1dknlCTLH9tZx/H6Ov+odHe6d9tKN0nG7HF2pbverZ3zcVdbvvfetsXn+nml+8DsYyrdJMnVYyvZYZvNVenefUrvfahf2ebuSnfyI9dWuiuN7Ny7JMlxe3bOFP3a3J356SR56JedM67e/3xnvHvLtX5R6SbJYt/r3L+cdHNn38i0kZ33dCbJqKM655KseWDnWTRJfvKTzjtMPn5F5wz38w7YptJNkmWW+W2lu9TgTnelrz1W6SbJex87oNI9fZ7embBXXNd5P9eJ63T2mW186mWVbpKcuXznu+ScQ/eudJf5ee8e4zvzlc7KH9/bp/viVatXukt9qXPv8qupnfNqkuTUBW6tdPdZcqdK98tTOmsYk+QnP/5cpbvgFzvvfEiSB/+4Q6U794jOvND1V/fOSNri+53v1Z8d0HmH5OAfd866TJIFP9+Zeztri84Z0knyzdL51Met2vmOmvvJzrtsk2TFIzrvErz8150xuZNK71tPktlWOanS3fTs3pj4XQd3zts75N2dsyOfvqP37PDLO06tdO9doXOPsdXjvTGBu0ZcU+mOf763H2W7oZ32397prLtc+PEfVbpJcvQRnT3Lj398/Ur38g9PrnST5K5TO2c0Xf2l3jjU917ovMtzwremVboX/PTJSjdJPv3LuSrdbx3UeR/PXef2zjTc/Jb/ciHO/4cxC3XO4UmSt+/vvAt52dKZD8s/0nkvUZJc9GZn3nbd2Tv7XN67XG+f4B7HTq10l/7WUZVukrx3qaMr3ZU3eaXS/doSf690k2Sb1zpnSaw+pjOms8CDnfNMk2TXe35f6V49trO3I0mGbNs5t/xXF3bm3S/5W+/Z7/mvd75L/rp/53zeR+ftjDUkyZQ9Ou3HjvhjpZsk2y3W+Sz6bw0eeCqjR8/4dQa3juu8aydJfrVnZx/gFx/v7I/Z98O9d+3Ml87n7oZf7J3ZdtIFnX0F8z2wQ6X7gYn3VLpJ8vyZnbGgBT/QWdPy4rG9s0mGXtd5n+18u3f2BiTJ0T/6eKU75NnOuvWdHv9NpZskO6/RuYefvbS/99THOusLkmSNd3XWAWS/3ruZv3F0Z43WV8/vnBN46tDOuz6SZJ+XO++XOX6pzhzLei/11tddt29n3fPVu3T2kyfJkpf+/9i7zyDN6kLt1/f0RIYZGEByjpIli2QEiSJJkhhQQEVUwCwGFAkmFAUURAliQqKogJEBREAk5wyS88AAMzChz4dTfnvfOlvP3NXVu67r4y757VU93c+z1j+tzt/fb37SOZf59x/snWGw/vs75+wc+ZvO3ri77t6v0k2S7d/fOZfyglP2q3STZNJ5nbNaJt3RWev7z5165/C//erDKt3vlt4tesvk3h7qNS48vtIdKLyP6t8O+fP7Kt27vt55xv7VuM55pUlyxUc672p6921XV7of/GxvP8oLd3bWVJ91S+fs3ST5+MWd9U6n3NiZu/nSFzpnDiXJsmd25mWX/tqkSvf+L/bWRExauDPecPbU3r/fDdM6a+LX2qczX3jsj3r7UfbecZtK94rfd/Yf7vZSZ519kqzz8qRKd63ter/LP/lG5wytI//eeY76/Xter3ST5PTtO9f8ifNOqXQ/9eXemfY3bN9ZK7rmUp172iS5cPXOOxC/sHhnfeTgYG9+4G0X/qPS/dHunfePHntCb3z5jpU7a0WXWbbzrpgkOe3+ztnzH92s866KhQ/tnGmTJHvv93il+6HNO/M7v54+s9JNkjF3dMYb3nfkRpVuktz2wAOV7pFrd9baH/zuzh7rJNln3c5ZxB+9szMf/JXB3n6G+U4/vdI9cN9xlW6S3Di6876KZ95yYqW7xzGdMfwkWe8PnfOe37Vr5375gY/01qasdEXnefX6Wb33E33lkM73353//GqlO+WgzhkVSfLn/Tr77k77YeeMpjF/763hv+mBzvt/d3xX5/M+SUbN1Xnv7XIHdc5hXfsdlWyS5IC7O++pP3xS5xyefHmtTjfJmxe/qdI982OdPT9J8ok/d+4F9sz/+YyKzludAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/mYGhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgORgwODv6P/8cTJ8w3uNZaW83xi1h1zaXnePPfFphreqX7/EuvVLovvTqt0k2S1Vddt9J94aVHKt0keeWlzs9j5Khxle4D9z1V6SbJmEmvVborLbJ6pTt64jyVbpI89FDn5zxiwnyVbpJsu9HGle48846pdGfO7n0WPXDD7ZXuhJEjO90lF650k+Tph6+tdD9/zI8q3SSZf9IbK93B6Q9XupN3+3mlmyRLjZm70n19dOfeZeKogUo3SZ6+f2ql+/Kz91W6STJuoPO9+sqrnXuMsSM7955J8lrpZ5FxkyrZ0aMr2STJwGDnZzFmYP5KN0kGZ42odEeP7nzGzcyLlW6SzDVuVKU7a+asSnfM6N6954wRnXu5uUaOr3STJPN12iOndf5GXp/5aqWbJKMGSt/Z4zvPaKPm7v1ejHylc1/02rjeNY8ofRaNGNd59nvt2Wcq3SSZb/5FK92pzz9b6Y6e2nsOnjFjZqU7et6xlW6SjBjT+V2eOfJ/Phb9nxiY1RkTSJLnHnio0l1o4SUr3cExnd+3JJn9euf34pWXH6t0k2T82M69+IyxEyvd1+Z/vdJNkvsWuLnSfX1gRqU7YtzzlW6S3HZLZ3x58g2/q3ST5LXBhSrdR5/u3G9Nnd35vE+STbddqROe1blHfOipByrdJFlx7lUq3c037nST5MorO/MDCy/+cqV775NPV7pJsvqKb65077vpiUp3yfU79y5Jsuiyy1W666+xaqWbJE/f23kuefnuyZXu473HneSlzr3chuttX+nOHuzN5z9y0r2V7rjRb6h0k2TCyM5z5azZnfHlgZGd+agkKd3WZmBUaax95oRKN0nmnaczXvT6tBUq3SQZOeaFSndgROczY3B657svSQYndv5OZrTGXkZ0xhqSZIE9N6x0l3p36ZkkyazpneeSy2+6q9JdaKneWPupPzi30j3ggJ0q3enPduYTk2TBzlRX5prQG4e6/hc3zPHmZ355XO576pH/6qexwPi5B7dbceU5fUm5c+sd5njz35Za68lO96Z7Kt2x1y9W6SbJaju8u9I9++7jK90keWSeoyrdDQd+VumeOaG3puV915xf6V6xd2cN4+fm3bbSTZIffaFzb7nTKVMq3SRZdfp+le7sf3TW1814qDP2mCSPvv63SveZqztjbgt/sXfP+uuHOuMfD33ruEo3SVaa/olKd/CV1SrdEw7/V6WbJGs83NnPcOumkyrdNebpjYtN/tnZle6Ml3esdJNk4VX3rXSnvrBOpbv0+M69Z5JMvOttle6oZzvPub/ce3KlmyTvvaazn++Je3rPO/ds37mXe+tCl1W6D1zxpko3SW5YdYlKd5sbdql0d37HTyvdJDnvlZsq3RV/vmalmyQvH9KZSz7tnytWumstclOlmyQvXtIZ55174846gCU2nPPjRP/2wPdmV7oT91m20k2SNy3VWTt091Wd9fA7LvVgpZskDy7Xed6ZcGlnTefkZ3rnMtw/79aV7orTT650k2Sd3Q+qdB/5dme84fEtNqh0k+SGc95b6X5r7c7z9Zdv/WOlmySHzbN4pXvHeutXukmywT2dedlH3rF8pbvCG2+qdJPk6vMXrHQXWOnXle4/pvXmC3/6QOe75JLLv1/pJsmtE9eudHdctLOG/5WHOmNFSbLy9zpjcsuc0VkU+NjqnfMekmTMlP0r3S1X+nilmyS/OP/4SnePrTrry1988f5KN0lWnHRApXvgH/9e6W76/t7+7U2e2bvTfXiuSjdJZm3QGUdc+4gvV7q7L9abt93sI6dXug+c0/nue8vevfOOFj6js//37oV7awJvO+zoSvedb35fpXvLJYtUukmy1oGdsc/JC3TOtVnxqt7enJc/0dlz9+CzvTMV37Fc555rtbs768s/+LdjK90kOX/pr1e6t0zvrFsfXLO3hv/eLTpzzXt887lKN0muvXDTSvfGpzs/5xkTrq50k+SaczrPqx/eoXOO4IQpvTm0u17r7Lnb86DO93WSjP7Mh+d48+WTzsusx57+j9c9r7H6uoMXnDPnn5PGfa93X3nOXB+rdHe/9T2V7jefOrDSTZITP9xZTzZr0T9Uukny55W/Uul+9KDO/c7o93bWhiTJTit1xnhPvuHWSvfxhSZXukny6R98pdJ980md8cEkWWadznjp3W/vrN9/5JSPVrpJkiX+UsnOeqzTXfKU3u/F8hveWenu9lLvs2jC5zprGMf9rTNv+ocjvlDpJsmpf+38LDZ4c2fN7CbfOKHSTZL3Xz3n9+klya43H1npJslue3fuudb/+JaV7g9P+HGlmyQ7f7EzrrLXC51nr81+3DtvaMXrP1LpTjhxcqWbJJ9bvLMX7F2r3lLprv6RH1S6SfKlzb9U6f5ir878ysqrduY2k+Sf676z0r1hm941rzD74Ep33bU6+wJ+esAllW6SzLthZxxj5tpnVrp3L9XZn5sko17ufP89+e7ePeIDIzvPJbfd0LlfvnWX3vm4f7ntO5XulKmdgy3eueNhlW6SfP+IPSrdRz7TO7DtuzfM2wmv+9dK9ojPdO7jkmTqdp29AZ99S+d37tIzOnPTSfK52y6udI8/q3fW8+ZrdvbI73vXnpXuRef15gfG3dZZt3fBlp01zx8ddUSlmyQfevyCSvekJ99f6SbJT2/vPJfsdNmkSvdtB/TW1k3fZ59Kd5ON7qh0N/3ARpVukpzw1c5eolXe0tlTnCQ3n9AZUz390esq3cVW7+xpTJK3/rCzPmSjX+9S6e45tXPubpKs+KXOs998U3r7Z44+sHOPv9WEztkXf9iucx+XJBttc0Wl+9LhnfHl0/ftzK0mybifvLXSXeOyzndUkty/RWeMa6MPd+aklnrfByvdJHlswYsq3U892FlXvunKW1S6SXLGXZ1ziPdZtPdZNLjTLpXub7ftjMk9v01vL9E183TWcw4c2jm3/PfzdN6PnSRfndZZj/iP539Y6SbJAn/+faX7p106n/czTl2j0k2Sn/ygszbz1Js7Y/gvvXxOpZskv/5j55o/tmznfitJpr/SWbO+3TsfvX5wcHC9//S/W2fkpMGrxs/5PQVXHdz7PN/7zs45EX99sfM+uAsGeu/k+MKUzlrfN1/UO0fzqG0673A9dpHOvclnP716pZskD17Q+W478aLOfqzLXr6y0k2Sr764VaU77eLeWt9tr/5zpbvArT+vdNfYvLf//TM/v63SfWWdYyrdxzbsvDMgSa7YtPPMf92femsCb3y8M/448S+dOfW1z+69H2iet3X2jdy1292V7gqbdb5Tk2TpnTtzkWd/qHeP+JttO/fwK53fec496MTO+Y5Jct4m81S6qyze2Rt37oS1Kt0kGXnaFpXuvr/rnQs04q7HK921Pt/Z/37Np3vv9n3ncY9WuntN7ZxXc/nRvXWX6z7a2TfykY+/VOkmyfKTf1Lp/mOpvSrdSSv03q0x+Py3K91px2xR6c61eOes0iTZ/9rO+59++LHOeRlJcvqpnReiLnJHZ/z4mgV76wBu3f3QSnf12/7jIc3/kREXdfavJclrC3f2Nu5zauedHUmyyoudd6NP2bLzNzL/Pw+vdJPk51t01td9+urOXug93t7ZS5Qkr67ZWVO27Gm9vXGz9vhepXvQcp+qdE//fenF2klOOrczXnTtdp+vdH+8U/EzbufO/MBOt5f2jCRZ5S+d+frVd+7cyz25zOcq3ST559s68703HN45H/fcK3rPfs+f3tkPtvMSC1S6SfKdSzvnla70y7dUut+a9rVKN0l+/GjnfTyLbtl53rljTG9MIPlGpTr5ts58YpI8eObkSnefb3X2Bnx2nt748rHv7bwb5Q/7v7nSvf2X3610k+S4a0dXuotc3Ll3SZIj/3JapbvSAptVuou/q7O2IUk+cUvnrPWB+66qdD/61s56siS5YP/OOP4xx/b+/j74pc6+rZtum1zp/uqYdSvdJHnLsp13KIxZtHMOz68+09s/+pHP7Fbpnnv8FpVukvzw4s4Y1/d+ulal+/NFOmNFSTIlnf1E2xzauS966a2dd2wlyanPrVrpnjmwUqWbJNt9u/Muz8N+/cH/at3zvJMWG9xk8zl/7uV923Xu35Nk6Y931medvHNnvHTqoedWukmy1OAvK93JJ3T2cCbJo9f9ttL9w9ad8f+LL9mk0k2Sk/51RqW77cKdPT07T7yp0k2SM6/qvEP5V1d2np+T5F9zd/ZnP/3EMpXunWM/XekmyVEX7VLpfnS/znvi7/h67/0k9x/dOWP1oiM75xomyXcO7Lzj4pRH317pXvh07wyKz15xfaW77rGd+/cnJ/TeD7RM6Sy4t794aqWbJO8/eJlK98itOn8j9153V6WbJLd+stN97qOd8yOPOW73SjdJ3n1r5/14U865tNJNkgMO6swrfP6YzvmRi2y8eaWbJLt/uzOW98iszhjThzfvzMkmyffP6zyvrvFkZ042Se49v7M/4JDJnb+/Tb52VqWbJPu8t3MvcOOpnXHpk37TOT8kScZO6KzJXfXF3jU/ecAZle6KB3XWfm150Jsq3SS587nO/NulLy1V6V5wzR8r3STZ6tdjK91pf5y/0k2SXd/fGeNa53cnV7pn7do5XzxJfjf20Er3qdI50o+c+VClmyRbDXbGiwa/1nvX1i1zdeaFHh3XeQ7+4RkbV7pJsseEzjq427bq7Fm+8dRlK90keXVW54yKL9zR2TOSJJ9cccVKd6vnL6x0//bb3lmaJ7/Y+cw4ZkJnz912+3bWaSfJptd29h0sOfdrlW6SLPvhzv3nPg919oVfsXtvfHLkLbtUuuct+FClu96Izln5STJmhc4ZP7es13mfWZK8f8nO+w5+NqtzDtY6G36l0k2Svfb8W6W7xW2ddRPLLv58pZskL+zXGZ/cePvee17HnnZTpbvNmp01nQe+v/feo28uMKnS/flvO2uWxl37eqWbJBus1nnG/sK5vfPGXnxnZ93zJ7/6aqX7w6c660eSZMI/T6x0x36us+fuwl07Z6Ikya+37vyd7HxJ77yjv7+j87t81Im/qHT32r93vuS/Vri80n3/c5372hu+39v/u/YmnX0jB6zTeX9skhz95V0q3fvOWev/uO65t8sPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4XGRjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBj1n/yPB0fMyuDA83P8Iqa+OGGON/9tscXWrHQXnXew0h3/wkOVbpKMHP/GSneN9batdJPk+MMPqnTnf8PCle6YMW+odJNkrvkWrHTve+aZSvfOyy6vdJNkxsxXKt1/PfJkpZskt9wwudLdeZs9Kt0VVlqi0k2S0ePHVLp/uf2vle7bJ76z0k2SBce2PotmV7pJMveoKZXu2WsfWemuNG6eSjdJps1+udKd9VLn32/q853P+ySZ8VLn83P26zMr3SSZmpGV7uyxIyrdESPGVbpJMmPmXJXumFkDle70GZ1/uyQZN6LzOzdz7KuVbpKMm6vz7zdY+lnMNbL3uTxq5uhKd9bsWZXua4O93+WJE8dXurPTe3YfGNW55pljX690x4/q/SymTX+x0h09qvO7PCIzKt0kGTHQ+S4ZGOx0kyQvd37nRr7eGYcal87zWZJMHew8u2dW5zvqlZG9z+Xx83S+o15/tvNMkiTjFlug0h1I5+/vheeeqnSTZN4F56t0XyvdYwxM733GjZzVua8dO2pipZskMwc6n3OjXnmt0v3r3BdWukny6o2d76ixC3U+l5+b2RvHePyZlyrdN8zTG1OdOdD5OY9L57Po9cHOd1+S3H7rE5Xu2it25tC2XKUzT5kkL73euRcYnNi7R1xhmSUr3RdHde49N1x9tUo3SV6aOb3SvfXxeyvdpUd07g+T5O6b/1bpPjH5pko3Sa6+555Kd60lO3PNj93zcKWbJAu9MKnSff0vF1e6y0xYvNJNkonjOvN+s2d37uOSZGBWZ+5h3MTOs8PgrN6z+4S5On9/02d05o1Gj+/db82euWylO378tEo3SUYMduZKZsxatNIdO3fvd3lUOr/Ls2d0xvBfKc2tJsmNp/2h0l1sx6Ur3SQZPXdnvH3LtTrff6+O7I3p7LXfnpXufAt0rvnRB66qdJNk6sKdz7iBKZ1xzyTZ4J1vmuPN8Zf+959DM2cN5oWX5vzf1zmXXTLHm//23pWOrnQ32PeWSvf60XdUukmy4GOdsdg1Jny90k2SP1339kp3xZd2qHS3Lo7F7nrYRyvdpc55rNK95LmTK90kmb7xvJXu4SseWukmyRZbnVfpTvx+59/vky8cVukmyaLbT6l0L3ml87N4/onO2FWSfHbRFSrdS1dZqtJNkoff8L1K96IP7FvpvrbYSpVukoydu/Nzvmfw6kr38vs6z6JJsvyIDSrdZaffXukmyWWDnXH6FefudH998Xsr3SRZcvR9le6H3/H3Svc3l32y0k2SO6f8R9tC/8dG7d/Zy5ckYy89qtK9/NlnK915Hup0k2TzC56udO++fnKle+rpneezJFl1vs56pylbdn7GSTLzss7fyZtfeFel+/dpvbnvS/frfBatMf3ASnflb0yudJPklp06+2lfGP1opZskrzzTWRN/1OyTKt1v3P/zSjdJNhh3Y6U75o2d+/Cnllmu0k2SgdmldVQze3Msi7zp0Ep3k507/35/u7i3l/0tq3bOIjjpwbUq3S2+vk6lmySPP35tpfvIH3tj4pePfaHSffLYzn3Rcmt2Pu+T5ITS+PLKL15Q6T7w8s6VbpJMe/6sSvdzb+2sNUyS3dZ+c6X7wGFjK90Zq/TWRz713r0r3Qs/2Flbvvri21W6STL+gYcq3R2f/W2lmySHvamzPvnYK99f6a73p5sq3SS5/TOd7muLLFPpLvpkb03E9Y91zrV58IXfVbpJ8ui57+iEF9+6kh2/8pRKN0nmP2ONSvfHv+nMu6+2R+f+PkmWWLKzZ/npV8+tdJNkk291xmtnbtLZD7b9NftVukly51uurHQf/1tnffLmp/b2Kd1wV2evxNordPa5JMnLl7610j13h8733wljOutHkmT7F95S6U6d0nl2n+/d21e6SXLWd75U6Q4c+dVKN0neMc+xle4/5u08l2z1bGcvbZIc+fbOc+Xvl7qh0j1sZO/c2Ns37qzhv/Sfnfn8JLnvDVPmePPIc/78X/13z975SE5ff86vg/vSQbvM8ea/vXxTZ3/MeiutV+l+84iHKt0k+eBTnfHd56/5U6WbJPP+6FuV7kb37lrpzvu3hSrdJFn2tHUr3Zu/emelu/rXP1bpJsnUd6xY6f78mt6Y9Od2+VylO3rGryvd5Q9/pNJNkpET5vw7A5LkhGc664beNbbzt5ck++7fOe/yV4v01i188eH3VLon39qZt1n42N6/3zc26syPfWLfMyrd49bsncH/2Z93fs43fbe3Tvvor3X25iy33KRK9xMbdM72T5Jz1+r8XS+84xaV7u7r9saBjrzqE5Xu6scfUekmyffP6YwlbL1mZ+/odUf31uCsvtxile5Lv3ug0v3oDZ39nUly8ao/rHR3OOTmSjdJ3vfjjSvdD2zaOQvgl/t1zu5Jksmf7IzxvjpP5zlqxGd7v8t7vDDnzwJIkg9/oLMWPknWu60zPzZ1ZGeu98zDeuu/P/V059lvuXTOizr6oJ9Vukly3OzOeNGn39MZ00mSkcf8tNJ95GfbVLqfOnnHSjdJvnPkbpXuLud01ml/fufO+tMkWXREZxz4hkN/UukmyfLLr1rpXvTGzSvdwRM7331JcvnXOud9/fBDnbXwv7uid4b75w7dstL9wL69ucLHp3fuP2896yuV7sgf9cahbp/eOZNo+qWd+6JbVuudAf787Z3vvzfc1pl3SJJ7L7ur0n3kXZ17xPcffXClmyTrbNWZqzzrnl0q3QlL9c5hvPa4zs/i/J/33k20xxc7Z63fde4ile4yW21U6SbJgdM6+5Tu+mbnPPTFn+3tRXl9+87+tRtPOKTSTZKd/9G5x5j/6M736vuv7qxrTZIlzu7sv3jPxM7PYte3zl3pJsmJB3+h0j38ms4YcJJ8f4fDK9375urs1xp9dWnzU5KRN2xa6e5xSmeu5C9X9s4Xee/jnTVnr71yd6WbJEvdvGGl++UPdp6DDzq+t2Z94pTOc8kPLrqo0l3pI51z4pJkp1901go8vN/HK90k+fbRrbOv5/+v/qsXVl0m55w/58cgH3qydy7JcVt8s9K98+XO+ON6X+3tx/rQvp37nk1v7+3HGrNyZ3/FkqU9+1/doXd+wePv6ZwJe8ejnbMj33DqFpVukqy2e+d3bu+pnXdJJ8k+r3TGKRZ4vHM/ddYGnbGEJPng2p2zz7687P2V7ouLd+bqk2Tj93TW7j1za+e9Q0ly7PZ7VboHTvlapTv65c47S5PkLYd15t+W+MNple5ai19Y6SbJG3/8g054Ru+9bXu97aFK9+3Lnl7prnVg5zz7JDlony9WuhPf2XmH69NfPLPSTZJP/Kpz1uzN13y70k2SFffqrB1a/6DOv9/vVlmr0k2ST43dpNLd8Hedn8VGI3u/F5eM69zjf/IbvfWt7/vaPyrdTTe7rtJ9z496axcWOLizjvGwdMYfd5h1TaWbJOsc32n/4k+rVLpJ8vm/dtZbvP35P1a6G1/8lUo3Sbb6ZOe+9kPv76xb3/r6D1W6SfLYFZ05sqkPdM5+SZJ5vt65/9z65G9Uujss2ntn9zcf6rxDYeVJnff8LPpibw3x/t/qnFH2t8/01voufcAyle7nHu7MkV39Yu876i3LdPawHTez81m06g9741unX9A5f2nBAzv7JJJkzCc698vXrt0Zt7556d65Gru/o3PGyN5LTK50D7ln+Uo3SWZPXrvSPfSYzl7aJNn/6v0r3V9dOrnSffHeKyrdJPnqhedXuv+8szNXct0evXe87nBb5xzbHQ/rncN45Umd9yltelNnfm7EQs9Vukky9p7OewP+smNnrf32a76v0k2S73WO1ciU807shJO8+7ud86nP+k5n/+EVP+3MZyTJTUv8uNL98LjO887jK3T2NSbJZd/t3ItvP3hkpZskfziwc6bvJ8/+dKV79ZTembAnLt45r2q1UzrjGO/6cG+t6Ltu6bx/bcHle/t0nxvZGcd/5oO3Vbov/bx3Xs5Rn+q8z2XXBTtn6B59bed7JElOOfjLle6GF/T2ozz5SG8/7X9jybyQb4+Y8+dFvLxBb45sx8k/qnSP/PZ/d2b2/5evv33lSjdJfnZl5/n5iJM779VOklOX7DyDrbdOZx555Pc6zwVJcvgRnX37q7/4gUr3Nxf0ztl59NzO+52e2KezHjdJXpnVWS+z3M86448LnN+Zh0ySO3/1r0r3irM772C6eKHefMWkT3Xup075Y+e9NUkyecfOeUbr7tI55+OulXrnuJ935exK9zsLdJ6Tfr1m7/lro4M7a33Hn9Rbx3H0pp3Pok/8ofNuw8e27pwzkCQXrdE5y+9zy32n0t3ie533oifJkg929sa9+Nfe3qqN/tiZ45z48SmV7tPf791vLXNn59l8xmmd8z9fPuazlW6S3PinzljQqGd7872vHNX5zH9gUue+6IFf9s5Y/cbYT1W6d5x5aqV74r6dz/skOe6KfSrdr23e2+f5+JadOYvRb+2cab/s5zrnfCTJdtt39vZ/5fOdc1rOvar3HHz7LzpnPjy9We/8uqc+MqrSHXdOZ+zsunVvqnST5Bvf7Xx+bjyjc49x3XbvrHSTZMGfd84J/MH5nfHJJFnj2Scq3ZNHd55LXn/+4ko3SbZbojNXMmqBmyrdb9z89Uo3SX4/pfP99+y7v1LpJsmKa3ber3jVHZ2xvsv+uUylmyQf2LPz/XfQlzvn+v7mls6+1CTZ/cTOebOPHdl7d8A/3nxopbvztzu/y9tu0xtfPne3yZXuSht35oNvu22lSjdJvjbu85Xupbt33nuUJLuud0Cle9XDnTMvT7rlbZVukrw8X2esfflT/7uz/P6/bPbGRSvdJDn3hM7ZQe/cujfvN22TzjrUnxzW+Z07/uZxlW6S7L9d57Noyje/W+ne8eodlW6S/Ok9S1a6vzuh8y7dJLn9iM4Y5V6rddaKfvCXJ1S6SXLAI537z5tX7Jxbuc1mnfONk2T+cZ375fl/1Zv3u/DtD1W6S/76sEp39Pqd9VtJMt8lEyvdMy7pnPfw5OmdOfckOfgjnZ/zk3t21ukkyaZ3dr6z7/u//N87J1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP8yA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMByMGBwf/x//juSeMH1x5zRXm+EUsudhac7z5b1tvtlmlO3rcXJXuo489Xukmyb+efKrSXWrF3SvdJLn2iuMq3ZVWW6rSff651yvdJJk09+KV7sOP/qPSnfrirEo3SZ5/8bFK98F77q90k+RN6+5a6Y7JS5Xum1aev9JNkm23eV+le+3lF1a6C84zX6WbJG9ccpFKd9+DD650k+SstQ6odDdcbqtKd2Bw7ko3SWbNeLHSfXXa1Ep35tRXKt0kGZzR+cx/debTlW6SzB69WKU7ZkTnZzE48HylmyRjR0yodAdHjKl055qn002SEa+N7YRnzux0k4yaq/PzGJHXKt2JCyxf6SbJqy8/V+mOnjCx0n1l5vRKN0kmDYyvdGcN9p53Mqbzc86rnZ/zrIHOfXiSzJ7d+fvLrHGV7MDozvhIksx4vfP5OWGJN1S6SfJ66b5o3Hydv5HiR1Fmz+7EB6Z3/kZmzRpZ6SbJK090xvvGTex83ifJyNGd37mBuTt/I6+98GqlmySDozqfc+NGTqt0M7p0T5vk5Zc6P+d53rBQpZskrz7duUe856XOM9rvJ/yy0k2S6VMGKt01Vu7cY9zxr95cyXwTOz+LV9N79ttts87Y2Yzn561055mvM9aQJDPGdb7/Hnm+83f97AtTKt0kGbvwgpXuvQ/dW+kmybPPPFvpzh7dGaud9viISjdJ3rT6myvdNd68YaV7z6NPVLpJsujEzs958h9/VekmyexnOt9/Tz/YmQNd9NXePeLqC8/59SNJMjCz84w2YVTvOWr8yM41zz3yf76m5z81fu7Od8mYETMq3ZGj5ql0k2Rwduffb+SozjjGqMHOfVySzCj9+82e1vteHTmq87k8+/XO+NaYuUdVukky7eVOe675Ot8lr7ze+1nc/cgNle6Li/TmB/Y84zOV7osDoyvdV6f11iAs+obOuqVb7uw8k0yf9mSlmyQT5u78+80zujM+kiQjps/5MbldDvhUbr3rvv/qy+QNk8YNvn2TOb9e9MFV95vjzX97zzIPV7qrz+zcm/z48dmVbpIsMbE05jazs7Y8SZ595oOV7vUDe1W641foPXO8Y6CzpmXsr1eqdH87+qZKN0mmLPOzSvfhk5epdJNk7Ic6a33nu+ehSnfjGe+qdJNkrwsfrHRvOqnz/HXxgp37hyTZ9/7OPeB+VxxU6SbJzU99rdJ9ZbFPVborb91bw//QX35b6S6xcmet9gU3fKTSTZK9tzmy0v3HMr01STf86JpKd8G3rljpfmpy57MzSX45pjNmc92Nb6p0N11nlUo3SbZa85xK97zrJlW6SbLUfJ11OE9s1FmTtMADnc/7JFnj3mMq3cce6tzjP7zGWpVukmx86EWV7iIvdf6uk2TV+5asdB8d6My9bfPcjyvdJPnxq529xfOv2rmvnfiXkyvdJJn82Ccr3ZV2uL7STZKRi3X2Vt3z9yUq3fHL9OZ7T16r0z79/E9Uuuet2XluT5KVbuvMnV4z2FnPmSQr37Bfpfumt3fuw68szrE8Ov6oSneppd5R6a70+vqVbpLM/+Adle4rS29f6SbJJTO+V+nuMU9nXvaQB3tzZHPd+tNKd/5VO8/BK6zU+e5LknNO7/yc37DSjZVukuy1ygcq3aM27axP3nGnmyvdJFn+js6ZD1N+sk6lO/m+zr1LkgzseGCl++zbP1vpJsnV23buBTYYs0el+/T8vb05G+zXeQ5+573bVbqXPfpMpZskC6zR2dtx1pWdbpKsefUyle7Uf5xQ6X5hxzUr3SQ5fsmPVbrLvKmzpvOFyYdUukmSWydXsgf/5spKN0mu/23nvuifsx6pdE99ZM9KN0m+MaZz/7L2U7dWuleN+EalmyQb73hapfuHs39f6SbJPh/6cqW793OducoT5vlNpZskvz1tgUp33ZU6cyXjz/tnpZski23QmVN8rHj22vZXdc5U/Nt5nXm/R264s9JNkpe2XavSXWpm5z789T911o8kyRXHd8bal//d0pVukqx/87lzvLnd0T/JzQ898R+ve154lQmD7zpzjTl+PVMefcscb/7bAaftVOme+bvOvdQT525c6SbJmBO2qXTvObg3jnfTFVtWumu995JK99erbFDpJsn7ju/cSy335N6V7tP/6q1TO+lrnT1kCyx/RqWbJG9b4/JKd//vPFTp3vH3+yrdJPnwi501EUd+pbNnf7M9Op9DSXLxDu+udFd+08KVbpJM//Zhle7WF3bu0X699e2VbpI89eHOM9Lp/+iM4z03oTNvkyQjXuu8N2DtL3bGd5Pk4/ccW+nus/+XKt1HD3tPpZsk6x/bObv122M79xg7TD2i0k2SKcd1xo7nO/niSjdJXpznj5XuHnt01g//YERvX84b7+6s+7p2cL9K91Mr9s4leedZP6x0V16oN1d48YKdtcl7v955b8DX5u3NNd0y+eOV7pObrF7pnnBab4/ZfhseWunOvXhnv1aSHHdHZ23kR1f7dKW77YTNK90keWCezhqcPzz79Ur3/Kmd862SZK3fnF/pbnv4BZVukozZrnPW84rPvVzpnjy5d3bdxn/qfObvuNmFle7Ci/S+r/8wvjOHvMEyV1W6SXL7s5318H9buNPdYfSfKt0kOfCMzjmoo/48pdL9yps674FMkm1WPbzS3W3HMyrdJHnyD501jPvP6Lwj9Nqv987UWGuws/9i9PfPqHR/ePpDlW6SrPOm71a623+qd97Xfcd3xnVeH5xU6S688F2VbpLsuE9n7uGW/3wJwP/IOgt1/vaS5IaxnTWoIy7pnfW88wKdZ/elR3bm5/af2VuPdOe3Ovufln++8x7k+zfvjS+vekrn3KDDpry30k2S2fd/sdLd6eXOvcBxD/T2eP7umpsq3d+P6ozpjFikc4Ztkmx/e2c9zfYH7VjpJsn0tTvrOafuumql+/wrnXnKJHl179Uq3fUf6MxpfGHiopVukqx2f2cvw7kLr1vpJskDb+q8G+wdX+t8R617WuczLkkOHtl53jlraud8nz1P6r0z546Bzjkud47r7K9Okp3P7qyBnWuJ5a8fHBxc7z/970YssOZgtp3zZ0adclRvb+GjW3+n0j3vDV+tdH+8/ucr3ST52cwzK93btuydxbHKOzu/G29drDOW96OzFql0kyRPXFHJfv2Pne/jo7/z60o3SZ5ftDMve+UyvTN913xL53fu4Amds7offLi3H+XMLTt/J9+ceWil+917e/uxHvlT5zz7j224b6WbJBet9/1K9/Advlnpbj59/0o3SQ6Zu7PuebWzOmsYt9yvt+f7Nxd33rWz1p6PVrpJ8q3SHPXHf3Jtpfv3Ey+rdJNkl7HLVbqnr9BZT/3z9J4dlrq/M5b3nuM7vxdJMvfEzhmBoxecWumO+cnnKt0k+fDbtq50t1uos8/z4iV6YwkrXt6Z11v24Z9Uukmy+5KddVTv+Hvn7LqBL3W++5Lkl1/rvE9pz3TOL1jyic59XJIc97FvV7ovTeydH7Lvpj+odEeN7rxz/elpnbGGJPnyYOd9Zsde1DmrdJdZnf1rSTLXIZ318C/8pTP3liQ3H975XT7/mM5+vhN26J3XdvgtnWe0MVd0zgre4sDeefZPr9PZy37pT3vrcN61cmef7vcnn1fpHvRi56zSJHnilbUr3U/M7owDr3by5Eo3SZZ/rrOvf/n5eu85XubNm1a6G1/aeV49Y8O3VbpJsthRf690n7iuc3bQlBG9e4xfPd/5WZw9vnOmVJKc+u3OGv4PvLZhpfvwrD9Uukny3MTOWSCnXt253/rSqM7vW5KcOLFzvvhxj3XeEZokg5+eXOl+YWZnn+eLB3fOW0mSw4/ovD/vE3t2/v6+9eXefP7qpfNKt/pOb2/j/pt03kmw395HV7pHnNV7/9qNx3TGXk646heV7j8uOKnSTZI9du/sx1xkdm/P8inHdc6d3+6OzpzG7JmdZ9UkefctnfMaLxm7UaV73iOd+cQk+fo+nXNR9n/26ko3Sb449YxKd953XVfpTlysN290wRIPVLq//Ffn7KeND++MuyTJGb/ojJ196NTOeTlJ8tL1nfOOtjtr7v9q3fOio5ca/MACc/65Y4GpnTNPkuTSk5aqdNf88xmV7nybdNYtJMn37+nsifzLhr3zB2c80FkHfti1J1a6o37V+1lsuETnc3ePVTp7Wr9xTecZN0nGvdoZv/ri9Ccq3ST58JTO7/LEqzrvyf3CEp31IUnyhnk76+vmWasz9zZtSu8suDvX7XzP3/ir3r7v79/QWRP/5ec7axeuObl3ruhjV3bGbL7xUmd98vg3dfZwJsk5h/6t0t3w8t67yq68vLP39MafdcY1F1mxMyeUJLPO76wjfmxMZw3jUSd07gOS5ICHOmeMH3V07wyRfS/vvPf5+vGbVLoXTumte37gs3N+j26S7PfPmZXuAhM6z6pJstBHO39/D46bVOkmyVJbd9bOfvDEzp7l5ad3ns+SZN2731jpHjG2c9bAWqvsU+kmyf4rPFbp3rx3bz/RMUu9udL9xgc6v3Pzrr9YpZskd57WmX87/7zOXMgRg73n4DWf6JyZOOWfZ1e6SfLXcw6odK+/9ueV7iVTenteN93p0Er3Iw9fWOlu+fptlW6STH9ml0p3p4ser3STZI9//KvSffNanbMYdzm/t59hy/k6vxsf+8snK93HZ79a6SbJrybO+feaJskXj+6tKVvppM6a+KcW7ezzvPHdC1W6SXLqxM49/omHnV7pbrZkbz/Do9d1nh1uHbFspZskn/jFmEp39YM7c6AHz+qtzxrz8c6Zl6uf9uFKd9akhyvdJBlzSufs5B888dFKN0luP+ruSneFz7+z0r3krVMq3SS5bMGdK90Nz/lepXvB6b13893+ls7Y9Xqbn1HpJsm+d/6o0v37qstUusee0jkvIElee6Zz9torg50zqj/cewVUrtq18+6AhefufHYmyRIvddYKLPmB0pluB/Tmbads11mfPP4fnd+L+e7rrBNIkk99oDOHPfjb31W6SbLm1Z19uudt0lnDde+SvX2e7366Mz9w9V/2q3T/+KbTKt0kWf9HnbPLJ+zT+yz61zlfqHRXvOkd/8d1z723FgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/yIDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHIz6T/7Ho0ePyZILLzXHL2LSyLFzvPlvoyd0ugtMWrLSfWLKuEo3SR585LJK9+VZi1a6SbLOultXuqPHd37Oiy30eqWbJLNeG1npLvKGnSvd12ZPrXSTZNrLsyvd21e4rtJNkvv/+Wilu/H2m1W69z7e+1lMuvWOSve++6+vdMevvEGlmyTPvtz5LDpi1X0q3STZaLVdK91xI8ZUui88+kilmySzZz1V6U57blalm1H/0W3ff2TaayMq3VHje/eIM2cOVLpjSrdyAyM615skI0bN0+nO6Pwuj5k5f6WbJGPm7VzztGmlv+skY+aa1OmOH13pZvC1TjfJ2HnHV7ozX61kM2pgZiec5PXxnQfhgYHOfXiSzB492OmOmlbpjpnV+X1LkunPz6h0B+bpfEm9PqtzH5Akc43t3L/MfvnFSjdJRoyYr9Kd/Wrnu2TEyOI9xuzOOMas0jVPe+bpSjdJxo7p/C7Pmtn7Xh0xvfOZP2r8pEr3ted641DzLt65/5yZzr3AjGc73yNJMqv0fT39yfsq3SSZMb3zc349nc+MOx+cXukmyfILLV/pPvFwZ+xlwflKkztJ3rv7uyrdkc+uUOkmSZ7ufObfd/VDle6MZTv3REky642d+9qlFluu0l1k4eI9xiKd55LxI3rzfoNLdu4xBl+5p9KduvgrlW6STBw5d6U7+PDlle6yI3pz2HPP6jzvjHxwYqWbJFMeurfSXecNy1a6cxXHl+cZ6PxuzDdpwUp3YHbnnjZJRg525rrmma83JjfXjM491+gJne+oGc/1noNfG92ZKxk/snPNM14tjeEnmXti53f5tcxV6SbJqNc6a3VeHej8+40b2xtfHjPQGa+dPr0z1jcw86VKN0kWmLvzd/LMI701CINTOvdFs+bq/CymDXQ+L5LkznseqHSXXWyBSvfl13rPUePm6owvv/bsE5Vukkwbv/Qcbw7+//h9e330jDy2xJNz8Gr+XzPyzzne/Ldlxn6l0r3x4X9UuncuemOlmyTXLtyZ7x331ZUq3SRZacuTKt2DVtq+0n1wns4YRZKcMunxSvegFRapdDef8dZKN0lee2ynSveP5/bmFZ6ZOqnS3eGT76l0/3bqxZVuktx5eqe7zds7938zf9tbk3TVh+f893ySnH/xryrdJHnHwatXupM36IzF/v6Wzp6fJNlz07dUuvd97rBKd5EVf1jpJsnVP+jcD697SO/fb8WrNql0B7btzLG8d+7OvWeS7L7GoZXueYueW+mueFFnL1GS5LnOfe0bbuj9+y00936V7sd/3/kbmb3ozyvdJPnCGs9VukdddXil+93V/lTpJsm4u75W6b6+cO959YZVl6l0Zz7fmYe8cK7ePeJTj15b6f56qc76npWX7nxeJMl623Se0R7+buc+PElWO7izb2ujdc6rdG+85x2VbpK8d0pnHOOnC36o0h314GOVbpKMvrLz+fn4CutUuknyyuDHK92bd+vss35gnRcq3ST5wLfOrnR/clXn+3qpLVeudJPkqwt25rKOPak3jvHU9M6ZD5dv1RnHOHmjzrhnkkwfvLnSXflvm1a61/ytt6blpM901uTevesOlW6S5JS1Ktmv7/bXSveFt/6s0k2S59/55Up3n6M7z+6fWPBblW6SLHB957tk3pt7/367feb7le6qf+zc4//xbZ11l0ky85HO5+fUdTtjLzs+11mPmyTnvXBIpTvw2JqVbpIsstwfKt0ndtit0v3yHSdUukmyxIt/qXR3W2q7Svecrd9d6SbJW7bqnFd148+/WukmySa7v6HSfeHatSrd41f/SaWbJLce2HkO/ugiH6t0r1+xd4+x0pmdMdU/z71VpZskl+zy90r3ol1ur3S//sHe7/IHXu/sLb56dmfd5YYje8/BP775ykr3wW078/lJcsGTnbHPW1e4odJd85NLVLpJcvwynfXJB5XmYJbZozcmd8seK1a6U56+ptJNktfGzfm9LoP/5V6+qQ+9msvfd9OcvZgkdy++zBxv/tvjR3SeN5a48tZKd/tb96p0k2SVw7eodMe92tvbu9crB1e6H/9N57P840ddWukmydnvWbXSXW7JUyrdi67qjQNd/anOON597+nc7yTJS7/v7PU66LbOmvW3vtxb/z3r3cdXumu8szOOcPzbemdxfHahAyvdyz/QO0tl/290Fq1vefCple4tozv7fZJkz63urnRv3+jkSverM86vdJPkz6utVumO/df9lW6S/PGDV1S6S+zSGbt67pLeWQ6vrflspfuVd3+n0l1r32Mr3ST57j1fqHQ3ObH3XfLtRTrjeP+cb0qlO/mo3rnz7317570PX1ywc87A7kd09q4lySXvuKvSvW7Bzrxbkuz7ZGc95+Vr/bLSvWnlzrkWSfLyjp31BfMs39kXsOuTc/6dYP8233Kd34tbLl+/0k2Sn47ofObf/4fOs8OS8/bOuNrk1j9Xugevu0ale+b6vfXfq814f6X78z/1zpVZ4/7OeNF3d3tjpTvl1s7ewyTZrbS8YN5v71vpjvxS7x5jhS90xoEP2HfOn7Pyb0/vvGele8P8n6t0f79g7xyCHa/rnOu08RGdvWBP3955D2SSHLj1byrd1dbqjOEnyS73d87FG/XtzhzMIwd21k8lyT1/6/zOHf/TPSrd1e/YqNJNks2X7ZzPedMLkyrdJBn7u87Y5z9f75wD94FVOs9RSbL+jzpnwd35y85Y+9JTP1rpJsknVt6v0l1tj846tSRZ7k27V7pfOqEzB/O2t3bOcEmSv9zd2fNz7jad5+ubb+it//7KOztnzT43aqFKN0nOPLszjj/5+M5a+Iu+11mXnCSXnd1ZJ/rL8w6qdO956axKN0m+ddmkSvcH3zu60k2SHf/+cKW78kudMzwPWroz7pIkS7/3qEr3nk9+qdJ9evnevo695+2sLdrt+s4cTJK89Yudfam/Pr4zN/7qF3vnPp15XWdt+evzd+aaHz3sqko3SW5+8aFKd8MPdfbHJ8nLv+qdgfzfWHzg8XxswhFzvPvUa711HKtsvV6l+/5lO2vod/92b5/ssTvsWuke9Ujvmq/7Xmd/2qFf7MydXvC33rrZ566eUunudnDn3Rk3XNV7l/vxh3fWrX9os84ZtknyzUs654Cf9d3OvOznt+6d1/bwrb+rdD+2Y2cP2XLf7ZyJlyRH79U5c+GhC/ardJNkr307z0m/f7pzL3DFCt+odJNk2h4/rXQ/P6XzGbfeBzpnlSbJF976x0p33PadsaAkWX77ztqhn1/TOUfsmFM/UOkmyfvm7eytf+HSIyvdfx3TeTdXknznwKcq3U9+trdn/5sfenOle9fH3lbpXvuZ3j7BNZftfJdMu3ndSnf9hzpzskky5cXOmqTPzeqs70mSz/5rm0r3kFW2rXT3PqU3R/aZhzpj3ovPc2al+9Q9nXcpJcmNR3beM37IjGcq3SQ57fzOWWKvrdk54+Mtp+5T6SbJcot1zmtb/CtbVLof2qlz75IkX1qqs59v7E9XqHSTZNG5Oudobndl54yKX53T+/d79bFO+7Fpnb+/Q7brrCdLki23v6jSvWyrqZVukuxwRme9xZ53vlzpjvh9Z491kuz5z84ag6XfXjrf+JnPdrpJ3nJ3Z95o1Fd77+y+a+POObZ339p5B82/durdI47fpbPndURp3ey69/b+rhe7ojMOddOvOu85SJJZb/5Xpfu+EZ11HDMP6a31vXOLeSrdTd63WKU7euKLlW6SfPddnbNcllz9w5Vukjz03c77D/92e+fstaWu6NyHJ8lth3b+rs//SOddkMd/qbeG+PWDO3tdLvz9pEo3SfbauzNG8r5tj690jz6kd1b3sZ/rtL/8TOfzfpH5On97SXLQ2Z2zlP68e2//9iVH7l3pPrHu8ZXu8fv03hNz3F5rV7rH7Ns5O2+PH15S6SbJ9C911nr8edPeO8fu/03n++/jUzvrkzfdrfN8liQfu7vzXsVlvv9Qpfv1ZTvngCTJ+Hs6ZzLfMrl3juDqN/T+tv8bT680IiecPefXGax64pZzvPlvow/rnD/4ypvPqXRP/nTnnI8kmbBA5/y6Oy/vvZv57g32q3QvPHdipfuz3XvvOb4wnTHTMX/q7HX+yAqd/ZBJ8um/nlvpPvDD/SrdJHl2s855KodNPbHSveS+31a6SbLQxp15oeu+2rn/+9xivXvWg27ttN9fOqclSe5YoLP25NRlO/tD1zyyc+ZJkvzkljsq3dvW63x+bvuj3lq1f83/YKW70gtvrXSTZLW/d9bEL3VS52ynmzb5SKWbJGdu+ftKd9fvdN5ZeuYZvTO/Njqzc87OsZ86qdJNkucP6awVveTg4yrd93yns4YqST4+q7Nv5IqNl6l0r/ryhZVukhx0bee5crVnN650k+SoQzrrWiau3Dn/c781J1e6SfLhY35d6V669KOV7t1z984DmPyjznPwA7t2fsZJ8qedOntdrrugc2bUMl86rdJNkmnrd85lXm/vzu/c6u/vnKuWJO89qrP2a4WlO/fhSbLgvWMq3Vt23rHS/cKqnbPyk2TRBzrvR9l9gc4e+ce+23sH2yqnde7lpm7Wewfo1PU67y29dvPrKt0vHtW7X37/VztjL7sf2Vlrf/nXO3uJkuSWOzvn+h75XO/vb+8FOs+Vjy89o9J95IBvV7pJctesznndZ5VeL/XQtM47aJLkss067+7Y/Yne5/LsXTtnuSw/ufP+67O/0Fu7cPDmm1a6k9/ZOVPqlnG9+eD7t+/s3175uN4+wZ0OeqzSnXLAAZXulza5qdJNkpe26rzP+sc/7JzXseCqvbWiU2d03jXyyTd39rkkyRvHdZ5Lbn2s86607z/fW4+xxJmdeaPBUzr7Rja6v3f29WNXdc4C2ev4znNUkjy1Z2cN1xPLdtYgfGnF3jsJXnz2E5Xurp/q/F2P3qz37LfjvhtUunNd2Xt2v+m9N1W6r/6wc/b1/Nt0vkeS5D2TO+MYDx3ZOXvtEz/onW/8wcs76172Prezli1Jzj+4NKf4fznebqDz/w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ncZGOoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBob4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP+HvfuKtqwq1LX91apMBYqckRwkBwEBlaQkAyAGDAgSVBAFA2YRN4JiAlEQRQwblaQCCqggopKD5CSScy6qoHLV+i9O4+5cbPdfX1ttnfY81/C20VbNOccYffTeBwAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcjBgcHPwf/8dTpiw6uN3rtl7oB7H6Gssv9OYrFl906Up37sjXVLrjlp5T6SbJ+Wf9d6X7yBMvV7pJctinvlPpzn7myUp3yuQRlW6SPPfCI5XutEefq3SXWf1VlW6SzHm2c8wvzHym0k2S52aOq3RfmP5spbvoglGVbpLc+/iDle6KS86tdNdeeZVKN0m2vHuJSne7iWtXukkyZtToSveZZ56udOfP7J2jBuf+z6+h/hMz5j9V6c4euVKlmyRjxnS6c+f1rosWW2SRTnjupEp29ITeZ3l06Xs9crDzuzxm4pRKN0lGDEwudTt/iyTJ+LGV7MgFneutUSMXr3STZMa8WZXupImLVbqze7cOGT+y88M8v3jMC+bMrnRHZqDSzajO70WSTH3o9kp3YOyile7IMQsq3SSZ/8zzle6YZZapdJNkTOkaY2Dy+Eo3EzrnkSSZ8cT0Snf0gs51+PTnnqh0k2Ts/E73pWm9Y56yXOe+cv7AyEp3RDrnkf+j8z2ZObUzpjNmdOncl2TOgs5v/twFpfuzJGPmvlDpzhvsfObGL94ZQ0ySMSu+utPdqHO9PP3Gznh4ksx5fmalu2Bs5/OWJHMfn1jpzp7VGXt5YbBzHZckj03vfDZW2WjLSveaey6sdJNk3nMvVrrPTu9cxyXJmImd8+qrX7tVpfvQ3VMr3SRZ4tWdc8n6u+9U6c5+uXfvcMcPzqp0R87u3bsvO6rzHG2J+Z2bh+kDvWvEJcdOqXRHpvMMLaN75+tFR06pdGf+B3N6/lPjR5euP0s3wvNfqmSTJAvmdn6XB0Z3rpfHjiwNNiQZHNW5X83c3hyEUaM7Y2fTZ3buVwcHOvckSTJyoPO9XvBS51nl04MPVbpJMuelzt95dOdxcJJkg1W2r3Snf3CjSnfmOp2xviQZfOqWSnf0Yp35bDOn9/4WK63W6b74TO8Z9j13PLrQmwcf8dHcfe+//ldPK1dfYunBY3d9+8I+pExbe8eF3nzFmCm3Vbovr/XxSnfrG8+udJNkm5suqHRHzevdG5x/4B8r3TnPX1zpHv/YNyvdJPna/SdVuueN/kul++539/4Wt372uEr30W12rnST5KW5/6h0b53Vuf8aNaNz/5UkL038bqW74ZOd+T1j9ntPpZskH/vHlZXuwEvvrnST5NUXdX4zfnf3NpXuOht3fi+S5Kk7V610719is0p314E3VLpJ8uvzOs++t7n+7ko3SZa9qnOemnrfRyrdD43dvNJNkpO3fqDSXWve8ZXuy1tsW+kmyaS/dZ6FfO+lQyrdJPnWERtUumde96dKd40f3FrpJsnKW3aev5284T8r3cOX36/STZJ/n9WZ07nSVttVukmy1j9/U+k+tGGne/P4D1S6SfKbe5ardN8+++ZK9947OvOpk+TFozq/ReM+ckqlmyTv/8ZXKt2Lv7RkpXvd6r1xzTc93vks/3zPzrXnZ04uPVNPcufA7yvdh9fvzSnb4/6vVrqj559X6f5t2d682elrdT4be619cqU7o3SvkySbLnVRpfumKetVuknyrpM7Y9ePLdO5X93/a70xuSUu6qyzXnf7j1W6pz3R+e1MkjX+3fn3O3PGGpVukmz10uOV7kXXr17pbrx9b37klcv/qNKd8eFDK92l53y/0k2SUZ/rzE/+w4LOtWeSvH+Lzvdk6zs7awMuXbs3b/apPb5X6b7prM513G1v/WmlmyRvPuy9le5P7p1a6SbJk2t11mCsPfGeSnetm/atdJNk9OevrXQnnLNHpbvJtp1nMEnyjdM6a1Pfs29nfCtJTpi3Sqd7yYRK99p1Fv4cqlfMntB57jfxj51rzwu/3pv3vPdSa1W6G922caWbJGd/qjOO+MU1OtfhJ7yuMwc1SVadeWale92GB1W6i07o7OGZJIM/6cy1n7ZFb+LzCq/qrMe8bY3O2NmLG/XGdFbYvvP923lE59/v8kt7cz6f2KrzfPyt9/6u0k2SB+/fb6E33/W5d+WO++74j+c9L/GqNQd3/szC33t3t+9+faE3X3HS0W+pdDc/qTM3ZItHOms2kuSSGZ15vvsd37l3TpKxv+mci/c6rXO984tPT6t0k+SUV3f2vf7cIp3rhzef0Jtbd+9lnbH/Pb/3mUo3Sdbf76OV7vZfuKrSPfXon1e6SXLHvbtUujfd3pmz/r3VOnsMJMnAB2+odH/1lU9Wukkyen7nnP2Dk/aodJ/9S+fdDEmy3PGdcbEZY35b6R74mn0q3SRZ6fg7K93H7ujdI634UGf/l7PffFSl+82Xe+9QuPPAIyrdgT8dXOkesGJvs9l9ftl51nTDZb09yhYZ8bNK994VOnOobnp/Zx+qJNnjhc735MJNzql0f7dyZww9Se4c3/n+rbNFaa/ZJGuM7swhfvq4L1e6N03o3F8nybiDt6h0L/vhDpXu4/O3q3STZKXfdq7xl/78wl/P/4pPlObgrHPAqZXuy1v1/hZXzPlSpTv9bZ35EDccfXqlmySPbrZ+pXvGNm+rdJPk9D9+uNL9yds7G5N89vKbKt0kOe+SAyrdfX7eWXNw8GW9/UXW+UhnDupFGy5b6SbJV4/5dqX7mcs7156n7tN5tpkkZ7+jMzfysx/s7Dtz3NzO71CSPH1m57x65rFvqnST5JdHdZ5vHv3bFSvd/Qd7+/j964DOuMDlEzpjqh89vbMuIEnOuqizRvfasetWukny6NXnV7obv7fzfPXq279W6SbJOzbrfDY2e91+le7fpnfGPZPkG3tcWukedM3KlW6SvOeE/SvdZZ7srGP/2Vd6zwdW/uz9le6v9t6j0j33k7110ItPP7LS3enfnXuSJJm1VWdtzn3j/qvSnfDysZVukty+7ic63fXurXSPvKgz/zRJPv3PzjPsxT/+/ko3STY5pbPm7m+ndN6lu+DQzrsrk2TL7e6qdJf/dufe/bPPnFvpJsn+h3fWbC2+be/e/cfLd+Ymb3nUOyrd/16mt2/XhlM7e3V/+J+dMZ3xy3SuiZLk15d0xreO+XBv7f1H3/WTSvege9e/cXBw8D/+4C2zxqaD7z7+7wv9eI4/p7N+Okne9KbOOO/Iz3fW9l687Acr3SRZbJ/OOWje3r09rtZaqfO+nUd/1LlmPfCB3nOFby/960r38zd35pRNO6z3btG5D3yr0r36zt744z1vGV3p7n98Z3/HI8/tzeGffljnfLzRyZ17u0/N6P0uL39gZ3/qh9/Se8HTdmt3xvLG/rozrvnc4ktVukmy8TXLV7qr7dUZo3/7e3vPkb/xxc46yx8ft1ulmyQzzuysrdr48529/b80a/FKN0luu2fhX98nyeRFO/sbP7nBVyrdJLlzjc5v0a4Xdt4TkyQ/flVn/OPY5Tt7L6165XWVbpL8ZZvOMf/XmM5Y+g6f7l1jXHVv51nWxPNeX+kmyfe+21lD8+7lOmvutny8s34mSR77W2cN1NTVOueoNxz3rko3Sc4+++pKd9+9e3su3PloZ37rpQd37v1ee8mfK90kWfe3nT0CL7mic130lyv/WukmyVPTOs+oL57deaaeJNs/tmalu9ozD1a6U7frvJcoSb51wFcq3ZfvuKzSffDx3n5Rq9/ReW/HxLEXVrpJssa+V1S6i52wYaW7yJu+WOkmyXsGOmsbV//TFyrd6xZ05kYmyYqHd96TdsIDvXczP/xyZz3YAc919o788LjOdXiS7LlaZxzqlt0618sbXPC+SjdJBs7p7Lfy5KQZlW6STFvlmUp3i291xrd+c0Tn/ixJTt++cy/1hmlPVrrrXddZP5Mkn9/1zZXu4Dm9vbt2/WHnM/f3n91c6U79cO97/amDO2vO11y1s073kONXqXST5NQvdNYT3bjLCpVuktz/i9dWuhsfcEele9sF36h0k2TuvZ291j95duc9P296tPfc6IjO9MgcsWzn9yJJLlr3xEp3h8mda8/vPN57T9Naf+w8E17lks6zrlM3652jtl6r817oFa7srSf60m8648tHrDZY6f5qyd79zn0/2qnS3fwtnbm+R23RewY68YbO3IbzJ/fWo7zm+511kxscutr/at7zRkuvM/jndyz8udhTjjxtoTdfsc6RnTUWf/xRZ03WqsddUukmyU/Xv6/S/f53O/eiSfLB/S6odE87vzN3Yc2Hz6h0k+T8Fztzcn+6RWeflt0f+UilmySn3Dq10n3Px3prZf/0lc590mOHdsaPX3fyc5Vukvxs8g8q3Z3+a16l+9srOu//TJIlPtX5LXp4lwcr3SQ5davOPdhma3bGbFYd3ZmbnCSn79iZX3f0dd+tdJ9bqzeH+ENPdX6L7rr4hEo3SR74eucafvbkWyrdC178V6WbJHcedlKle9cinX1hPz2nM0aYJJ9ZtDP367H7bqx0k+QXV3Xe/fDr146rdNfdrjNXJkmW/V7n+nP/lferdCc/2lkLliRvOKvzXPbRNTaudJNk/3s/W+l+8fud662zf9xZ15gkd3638+x7u/UXrXTv/P07K90k+ckdneutdx/f2SciSQ44oPPeseV36owXfebS3t/ie6NPqHR3/WpnfusH/tb5t0uSZU7sPIv8yM96+4pe85bOOOJ5N3X2637kK73P8vQvddb2f/7ZzjuENvvDxEo3SY54e+d6+Zuv6+wPnySvvrszP/mAB7epdN/7h84z9ST5xPmdebOfn/SLSvf3+3TeBZ4k7/hd53r5gOU675lMkmd26oypnvnzzjql5X7de957222HV7r/PKPzrOuKz/feFfO1CzpzIrbfedNKN0lm7d25LhrcurOP+57n9s5Rh/zl+Ep34vOdvWznXNXbb+Xqr3SuX1Y7uLd/5OvvmlLpHvxAZ6z9Dzt29rRJkvVP6azH/MZyne/1xWe8rtJNktWnrFPpfmPpzjPQJHn3satUutc+35nnseLVnfeyJ8nTu3XeebvT6zvPKq/8aO96a4nNOvNmL/lE59ozSXZ9ufPujl9s0XkGs8f03vf6wOV3rXS/tUrne/2FL3XWSSTJlvMXVLrrp7cP5F+32rrSve59nfW/Ox306ko3SR6e33kP1Kf/3HkGev86vX3cD3pHZy+XK9/0bKWbJKvdelal+8CPXvi/znvu7KwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+PGRjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgxODg4P/4P564yOTBDdbafKEfxBY7vmOhN1/xqqUWqXTvf+jeSnex5VeudJPkz386p9J98vEnK90kWWzKWpXuNru+v9JdYuK0SjdJFp+0VKX7zP33VbpLzHip0k2SmS++UOlOmrug0k2S5ResWelOWXLZSnfunIFKN0nGjXiu0l1j3GqV7uQFcyrdJBkofeamP/FwpZsk42bPqnSfnfFipftyet/r+ZlU6c6c81ilu+i4FSvdJBmZ6ZXuxFGTK90kGTV+VKU7dlTnfD1vRO8aY+KExSrdwbnzK91RS0ysdJNk5ILOvcPg/BGVbpLMXdD5/Ry3SOf3c8GozuctSRbMnVfpjpg1t9IdHNv5HUqSwfGjK92xs/7n4wf/qTkDnX+/gQWdv8XMWVMr3SQZP75zjbFg5suV7ugVOvckSTLvsWc63XTOUUmyyOQple6cMWMr3RnPdu7PkmTiohMq3cGZnXu0uXM635EkmTlzdqU7dm7vGmNg0fGV7ux5nX+/SeMXrXSTZFZmVLpj5nXOUQsW9M7X86bNrHQHR3SuaZNk5oyRle6YRTrfkfmDnXuSJBnX+l6/0BlfHj3Qub9OkhdL55LZMzr3DkkyeenO9fKCWZ3PxajxvfHlWbM6v8tPP/10pTtqYm98a+7czn3ltJnPVrpJMn905+88d0bnvDpmTOc7kiQzXrV0pTvyic7fePWN1qh0k2Ta3Z1r8Ynze9cYc0r3lYssskSlO2pG5zySJCPHdcYR55bG+iaN6tyfJcnIiYtXugte7o2Jjx7XuX6ZW7otmTShd+835+XOb9G8EZ1nq3P/g7le/6nRk8ZUuiMHO3+LJJk/s/M9mTO7c701an7v3mHGzKmV7oL5pfHJ0vEmyayxnXuHNZefUukmyZjFO3OLZs7rjNWe/8JfKt0k2eW7b6105y/ojKnedm/nOjxJ1lt3pUp3/IjO5yJJnn9q4Y8X7bXvwbntzrv/V/+Ay08eOXjQa8Yt7EPKJtP2W+jNV6xxcOcz9YmV31bp7j2rM28oSS669+xKd4WTzq90k+SZdT9e6S4z5b8q3VUn3F3pJsn0bd5Y6T70oVsq3UX2vr7STZJrX+q0Pzt+lUo3SRZdZJ1Kd8FSnXGmx7f7WaWbJCPv2KzTvXbtSvfIpf5R6SbJDddvWul+6u7ePI5DN92u0l1m6pmV7rVv6j1jmfv1zhyf9Ra7vdLdeL+HKt0kefbKAyvd29bqPWMZcc9Vle6ma3euXeZu/5lKN0lGn3t4pTt1ye9UupuM/mSlmyQvfOKvle7KZ+9a6SbJLav8oNL9xD82qnR/8ejNlW6SbPGazr3575fsjCWsOLBkpZskmdR5rjfp6c5cpyR5aqkVKt0777ym0j3igWMq3ST5xxqdY/71MZ1x6Td98oJKN0kmzP1ApXvHY+dWukly1WHrVbp7n/FIpbv6Np3xrSRZ9OHLKt1nv9/5LC82ZWqlmyTTln+w0r1o3+0q3SRZ/led89Tj5/y40l3psiMq3STZaaWLK92//rgzDvz+XQ+vdJPkO1/tXHtutHxvHPGh5Tr7alz6o8cr3Wn79J4P7LhDZ+7QatO2r3SfmNabXzf3H535ThNv6j0feHLrTSrdldf5Z6W74rRVKt0k+cvynTk+Ly3ozG+d8ljnb5wkGblfJfvtb+1c6SbJju98XaX771M6azDWf/9rKt0kWfYjnbl7u/z8hkp3+qTOc8okGXVq5++84IeHVrpJsuSKR1W6v/zZXpXuyq/unEeSZIWpW1S660+4o9L955LfrHST5PHdOs9hJl30VKWbJPdM7Xw21lzQGUfcfPnOWG2SPPLUzZXuv95wRaX7j9907nWS5M27HFfpbnv9qZVukrx4++qV7oIlOn+L5R/v3e/88Q2duQKbXtdZm/OnqZ1xlyRZ7NojK93Nt9m70k2Srx7Vee6+U+lU8ve7L+qEkxyx3rcq3Vnbd/bavObyqZVukozeqzNetEE6Y+1JsvyTC/9aYPP9v5Eb7nr4P573PHGJ1QY33v3YhX48i++650JvvmL+aztzZe4/vXPtN2Ze7955nxc715XrXNfbc+HKz99T6d47ar9Kd6srP1TpJslH/tH5nTnt4c75culrO9c7STLvyO9Wuted+NVKN0n2/kJnHH3tsQt///0k+fHpvX0YP3jhlZXuzlt19hf/2um9vRze8ZfO52Kzo99b6SbJ2W/pzOG4aeq3K91Vj+2tpzvmd50xio98tLMW+Xc/711jLHlkZ37B5hv19i9Y+bCfV7pfXK/zTOHBK06pdJPk0L2nVrr/Pb6zF8BFnzy80k2Szc55oNKd/8WtK90ked8TC39NapIc+NvO/NOv/bN3jXj03stVut8b1bnG32ux7SrdJPnQpf9d6V5/a+f+LEl2+uTVle7Nh/yk0j3iun0r3SQ55OjzOt1PdubM/nriOyvdJLlybuda/LQNe3Prxn+189z7jH9dV+leeG5v77MJH3u00p1x8rsr3RMP6qyJS5Jzjuns3brpxN6zwv2mddZ4PveJX1W6P/rNiZVuklzyh/Mq3dNfv2ql+9bzenuA//5Hn6p0z5nSu/e775SfVbrvfbjzDPnrz/XOUZfsflalu+w/v1Hp/uucj1S6SfL2D3y+0l3nX73r5YMu7+z3dcrhnXnaXx/XWdOfJJ/coXOP9sW1OuOec0/szVP7xxlfqHTXObVz7Zkkc5ZavtJd7aTOerunX+78dibJpNK8vd9csEGle/yVr690k2TXR++sdC/6xNGVbpKcu2pnftbef+vMwXnsvt4eZlO/3Rlv2ObMzv6OA7v19sqZv6Dzzsa5B/6h0k2SOTdeXun+81MPVrpXfqc3z/fmFTrPKq89tjO+dcd3e/PU7nqyc8y/++/O3oRJ8uMF+1W6g6/p/J3fcVtvD/47Xte535m/7xOV7nuL83ROOLez19Gr1u/t1X3T7ttVuhfc/LtK9y2fO7zSTZLVj+3M8/3MzpdXuhu9+vRKN0mW+UbnfueSL/bWbu/3p9dWuq97z6tvHBwc/I8ny62z8iqDP/7Ulxb68Wy+fO8Z2Ruv67zD7sG7b6t0H/nYNpVukpx5YGf9+8YPLVPpJske63fO9Z8c+5tK97Dzevu1bXFrZz3yDVt13jv07p07370kWe3rnb3Ptn7vQZVukmxwbme/4A3ndPZV+/QXH650k+TUqzq/c4+/3NlD+so5vf0LxkxbrdI9/SPvqXST5Mul+ZG/3fScSvcny/f2Cr7ho505Bsd9tvMemLfu/8tKN0leflNnb4Qbv/vbSjdJBl7dWXcwYqnO3v4Hb79hpZskNz/QuX5Z7e2d+bhHrNibA37rjD9Xuu94rLeP5ipnHV/pXjCmc+3y4VErVrpJstb+nfGrlz7cGb+adG3vfZp/uWCXSnfnO5+sdJPke/fdVOlevUPnGv+jP9+t0k2SYy7prOfbcZWPVbpb3/a5SjdJlliu81z9vju3rXSTZNqVnfcmvm/TzpzAp5Z4Q6WbJGc81Zm7sOoanWM+aVTvGcuTp3TmVH9y095+bTd/s/PO9XVO6rwz+NcrXlLpJslPd+jcu7/q0DmV7keu6O19Nmfrzly1Leb15mqfO7PzvP6LL3XmMf7luEMq3SS5+9F9Kt0f/+D9le6n9/9jpZskf9zg5kp3h8t7+85PWXPHSvemJTv7EE+6vvPbmSRHb9zZd36Xj3WeI+/2y5Ur3SRZ58ed536b7/aLSjdJrlm9c++3+9Od57a/2LQ3jnHAGltVupv/orMG45Gv9MZqH/tVZy30d96+e6WbJD+/uXNfufQ3O/uX/PDx3vjy0hd01kDdsG9nfGvJXTrvqUiSb/7u0kp3xCmdvS6T5Ec/67xb8Z5ZnTVbrz62t1f3tV/rvDdgx+3uqnRPeWNnH5ckeea1G1e6N9zVuadMkqPu7jy3/eCpnX1sX/pAb6x9kzvfUel+/Q+dMfE3r9rZ9zBJXtx5u0p3/pQplW6SbDytM170xM6dNVA/mdh7BnrowAmV7tXnPVjprrtu5/3mSfKq0zvrMT92euf9M0nysas741BLHvnt/9W8543WGzt48VkL//5u8tm9dfsn39mZO/7Qkp33l8/e7pZKN0lGb/ZYpXvGS713XX34zs68ljdu/adKd/t5X6t0k2SJMbMq3Sdu+2ylu9ZNvfVpHxrZOc/Pev7rlW6SXHZ05958n9935j3f9O/nK90kmXZ953uyylGfqHS/d26nmyRPnteZU3bk9Z1zX5J8YtsHK90vr9tZK7HlS505jEky8g2ddfs/mNV55/Oi+3SeCSXJJoMfrXRnrdN7P9BRB3TWhx65Ymc/lfFLHl7pJsnIiZ3fuasvvrHSPe9tnXehJsnfN9+o0v3RJr2x2AULOuuJdv9h597hzcv0np3O2rfzvOmJfTetdL95Ymd/+CTZ8dud9Qz3rvGWSjdJXrN5Z2zlipmdOahZ+++dbpKzdunsZ7TBw51n38e97d+VbpKc/Ozhle6im1xe6SbJJqd15qv99JTDK92D7ulcEyXJxnM6z2UfeUNnHtUZn/51pZskn/n2vyrd8zft7BecJL+6urNO/hMH7VHpHr12p5skh/ywsy/6sT/trHPZ+YrOPsRJstgZX650x43u7bd+05RO99vTOu+w3O3xzntXkuSJj3bGJ3/4TOf9Gmds+MFKN0lW/e37Kt2lP/mBSjdJpm/b2ZvyF1d2np3utWfn85YkF3yxs0fMPa/vXMddde53Kt0k2XNyZ8/Eo8asXekmyaZf6YxdXzx5QqX72us7c+CSZLU//7TS/fSBnfGR/a/vvD82SRY5rzOH/7i9e/tV/ePYznO0U9/fmVN27MGd+bhJctkPOnsbXnJdZ6x29Y921ngmyVG/PqPS/cHBr6p0k+TDe+9R6X57pc7v/UVbdd4hlCRXPDq60j1ozc7eJfvstHilmySrvbvz+7ncJqMq3SRZN89Vukde23m38IWX9d57tN6xnTkIn16qszb1fdv15mOstW/nPdk7fL/3fOeaPxxX6S51TOedPL8ZfWSlmySLbth5v8Z5P+jsd3T7BZ114UkyZsLPKt1tH+y8PzZJbvr7rpXu+vO+9H+d99x7owcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D9kYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYNR/8h8vWDAvs2Y+u9AP4uVnXljozVcss+Vmle7UZ5+udBe8+FClmyTLrLRepfv4E52/RZLMm/FEpTvtrksr3ckT1q50k2TV1ZepdDcauWylu8iCsZVukkwYnN7pjhhX6SbJSsuMrHRfntnpjhz1H50e/jMLFq9kX3zipUr3pZnPV7pJMjDnxUp39rxKNkny1Pw5le60WY9VumMmd347k2TCgrmV7vixr6p0R87tfTCmTFyx0h0/fkylmySDGax0R4xYUOlOWnK5SjdJ6S+RDM6ZWemOHl38XLw8u9Md3zlfJ8nAuCmV7qjRA5Xu7Kmd80iSjJrYuf4cHN+5RhyR3udi5pzOOWrkqM53JEky2Pl7zJ3Q6U4Yu3ylmySzZz9X6S4ytvO9nvdgb0xgxKKd7/WIdP4WSTJvfOfMOnqw8/s5aaneffDMubMq3dELOn/jufN74xijRo+odAcmtK7kklHzOuMCA4uMrnQXFM+rg9M6xzx3VOc7Mn9u554kSaa90DlHTVxhYqWbJKMWdO5LJq3ZGVNdcO9TlW6SPJ3ONeLYwUmV7qhRnd/OJFlqmSmV7rRne/9+E8d3xrhmD3TG2hcs6N07LLrIhEp35NIrVLrzi4O1CxbMqHSnjFmy0k2SEZPHV7pzFulc44+cs0ilmyTzSo8exoztPINZfFbn9z5JJo/uXMsNTOyNI44vPVOcOzC/0s34znVAksyc1TlnTx7ZOa+OmdT5jiTJ4PzO52KRJXr37nNnl8bORnTuKafP7j23HTupc44aM6fzmZs/u3NPmSRzny/dY/d+ljNvfue6dnB+59pzxLjOvWqSLDKyc8zz5nfGG8aOX6LSTZIxIzvXtWMX7T23HTm28+83Op17tMlTK9kkydOPvlzpDpbOUSu9qjc35f7S32LDFXpzw5ZbauGPnY3+/zGXbdSCJbPUy+9aiEfzf+w7af2F3nzFXU9vWOmu/O9LKt1FPrRYpZsky3+iM+/5mG/3nheusFznfuZtH/1RpbvkO3rjVxPnH1fpvu0nD1a6m1+1aqWbJN9ff4dK9+BNe8/rDz/rl5XuZ8YtXek+/eDKlW6SvGG5zvn4pBm/q3T/mN4Y7x1T76t0L1vrwUo3SY588o+V7i2jO/fm89Zdq9JNkt22+1el+9RHOtcCc649pNJNksVu/VWlu9zyvWOe+rbTK91/X3RopbvfOp1r2iS5aPXOb9Gu925b6V65yk8q3SRZ/bTONcYffvPPSjdJln1d55iXHv+3SnfUqw+qdJPkL4t17h2mHdt5rnDzT/esdJNkiTu+U+k+uHLvfmfmzM7z+ndeukWle/DrTqp0k+SHV95W6Y49adFKd8VRq1e6SXLT7Lsq3fV27X2Wd7m8c8zvXf3Vle6t/+qNxS663uGV7vy9X1Pp7nrBdZVukrw8dddKd8ILN1S6STLlo53z30bvm1LpPjvqwko3SW5faoNKd73V7690H57wX5VuknzoH/dUur/7bu954dhtz650P3vCiZXu+Td0xreSZIXSer5HHuisB3voxSsr3SRZPD+udKfs+rFKN0mWfblz/Xn7mM7eQROvvrzSTZJ79tm70v3DC7dXusfcvF2lmyQjBs6sdP/+/v0q3ST5zvK3VrpTD/pMpbvHCndUukly3bWd5zBX7NS5Dz5k5d682Ws2/UOl+9Cqa1S6SfLtHR+udN8+bvdK9+wZn6t0k2TuvJ9VurdO6pyjfv6XzvOMJPneLQdUuve+rrPmLkmWe9XJle5qP96q0n1kp97v8lbLdfYlevrmzvf67j2vqXST5MXHF/68sCS5cn7v3+/Z9Tr3aFdMLO0vObsztzVJbn+6c1/5p5nbV7pvPPwNlW6S/Hv9zj6sT3zoh5Vuknx19i2V7sXzPljpfvre3lr2l//y/Up36Y06z9COPqQ3N+W/rintMfLcWZVukly7xZsWenPm6FP/V//fGvOfzPlTv7GQjyYZOPawhd58xXuv6YzxHvho59/8sdd2nm0myVtu7MwBOPTR3jzRe8ccXun+8/o7K9373/yhSjdJVtxhn0r3uVd/u9K98pbevjJn/H3h/w4lyaIbPFjpJsn+l/y60v37hatVuufv0DsXnzP255XuvAs7a9Nmf35ypZskn5t/TKV74Qc7Y21Jcv+/O9fY0zY6odK9+enefl+LbVEa+3h9Z97Q+26+rNJNktXXfKDSXXexztysJHl5ud9Wuhct+7NKd831nqx0k+TE4ztzW1d4672V7v6jNq10k+TZ4zvXyx9fqrcP48Hf6qwzu/Q7b6l0v1XariZJfrnEwn8vUZJccEZnLcPqp3bm+CbJ42/5S6V734d7+6Bu+9abKt1dN+t86Jb9VW+/rxt+2plb97m/dOaJXnlzb57a107szMedel3vWeHXT+rMA/j01zrXRQ//qDOXOkkuPafz/q43//xLle60wzvvn0mSxXd4e6V76pc6f4skee+OnTHV33zqi5XuWVd25g8nyUYf7nS/9KU/VbqHL/hCpZsk3/3r1ZXuEYevUukmyQ1XdeZGfvDZztyQjOqNqd7zhW9Vuqft8s5K95/X/LXSTZIDL+18sff6fm8Oxzf/3hkHnrVEZ0/DF0d31hskyTt/17kvOfThzrXA9JdWqnSTZOTNnfnD6zy0ZqWbJH86pDO/4OZfb17pbrZD59olSSae1FkvucxnOvd+p5zUW4ty3cjOfpc7TuiNiY+c8dFK9+xN96h0j7qr977pVc8+otL9xUGda4HpDzxa6SbJG0vDwI9N7v37zb3g6Er3gGM737+3v/t1lW6SHLZ4Z7/Z6Zv/u9Kd9lJnb7Qk+dRPf1DprrL7wZVukhz0cOea608HdfZx+cYGG1e6SXLRxZ25yU+82FnveuPpvef5nz3r/Er31Ed69zsbrNF5X/jZr+8c8+Gnr13pJsmpS3fWr33hqfdVupvvelGlmySfO7OzH+2vLv9IpZskX7irs+/a/9aDk2bngzsu/DHkD3+yd22557vOqXTv+2fnXuZ9B3fWvCXJk3M6z7I2/U1v/PGSGzprs59f9rOV7l0/77wDLUnWer5zzzHh/s561sdu7ay/TZLn7ti30v3w9M58ziR5/YWdudrXn7h/pXvRLzpznZJkly921roceUZnvPStX+i962rHce+odDe8pfMOnyQ5bJuFvx4rSe4Y03mHwo03dOZaJMltL3aecX5h98748WK7PF7pJsn5v+8M5p337mmVbpIccnnnfS377tjZd/eIRc+tdJPkwTXfVum++c7O5+LvP+o8k02Sq266vNL90UHrVrpJsvO4znPZsZ/4dKX70Nd7z05XPrMzLn30pzq/RRsu25uf9fmZG1W6y+9+Y6WbJDd+rjMeNHKFznXRxh88rdJNknce3plruNr7OnPLv/KR7SrdJDn2+c7cvd9v2nn/TJJ8+Jud9ezrndnZ++yxh3trc7ac2JmrvdOhf690J2353ko3SU78UGd9wG/v6+3Vvfp5nT2jfvqLlyrdN6zbWW+eJBu8o3NddPGiu1S61+/Vm3e55y87zyuuWaazLjVJrpzaef72wxd2rHTv6g3p5HubdeYEPvnMGZXue17qvYvuseU670Z/pPSeiiTZ4ZHOGuB33tx5B80hN/auMc794+GV7nWrf7LS3W6p4yvdJFl0XGdfousu78xpSZJZ37q70j3pN519/P75+t5c37UP2brSXfBkZx7cWyZ09gFJkhEbdMZe7n1n59lckhz1pc47ei/8zJGV7q/G9+ZnvWGLzj32G+7u7Blw/XG9PcAv27qzd+uH7untEbPB3p13vM75eWfe3uqndJ6tJslPFu3Mm33n5N0q3Z0GOnsSJcnKf+tce37gd71nJVN/19lr/eSJX650D1r7qEo3SVZYa51Kd7+PPFjp/vFPvT3dLvvx+pXuXXt17h2S5Lmpnbl9q364817hZxfZudJNkpsO/X2l+6mDOmvO9/5m7323E9/V2Z93ycHeu7ef3ue7nfD/8nL57mnL5LWXHL5QDyVJ3npo7x2Sv7nk85Xu0lM7+4oO/rL3ntzvfL4zJ3Ds63p7oT40vvNc9shHO/cGg0d21lckyY4zO3vk7rlY515mu+V675///sude/41ztyv0k2SKe8rzZeZ+GCle9I9nbXZSfKh132g0j3huM4+LSuM7eyFkyRLndMZ/7joO53vSJK8uMwJle62v+ysR/n+jb3fooPX7uzNNemZByvdvT/ee0/uIYd3zn/bH7ZXpZsk61/ReQf2Lnd/rdL96sO99zsd8JXOHINf7dhZQ/2mM3pzku7/Q+ddc2uV1sAnycPf75xLbnp1Z23jo5/pzLNPkj9u29nveae9Vql0rzqss+YnSa7+bGd99vhFH6l0k2TnI6+qdFc77b8r3Z+N7expnyRff6DzHqEPPtcZczt4z86z3iS5Z85zle5nLu293+bEuZ1zydwtO+v5DvxO77P8uZO2qXSX3HrJSvc9s99d6SbJ83/pzIf/6/K9fZIWXNf5zK31s87zis2OnFrpJskxb7y40l3y/s57O2b8rfPOyyT54gmd92Ds91RnXWqSrPRIZ8+AD3yvcx3+rosOrHSTZNHOI87cdH1nTtm2b3um0k2SB9btjOls87fOO7yS5KIpnXf7zv9cZ97zsVN6v0V7/LKz7uCe5zv7zV7yxt6z791P/2qle9cWK1a6SXL2iZ09fk5erfP92+GbvT1idlqks8fI51b5aaV74MOd9TNJcvNOnfnlX1/vE5VuknzhsM59yax1O3MQjlu3Nz9ykws659XTnu9cx/3o6k43ST6w4xWV7m6fGlfpJsnKj3be3XHs4p31vweML72QJ8mpUzp7rsx9unMdt+rXO/M8kmTG7Z3ntjuf1Xsh5D/u/Fel+5kD1qt0X/tfvXlyR+eNle6HPtbZB/xPb+/MZUuSW/d4V6X7xs939kpNkuNGdfblW+SBzty+J97SGTdLkg127ew/c9W8fSrdXy/RewfbBpt09pe8ef/e+PKjX53XCV/yf38HYm/GJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8P2RgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgYKgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGg4GhPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GhvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA4GBjqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4WBgqA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIaDgaE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgaG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDgYGOoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhYGCoDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhoOBoT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBob6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOBgY6gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOFgxODg4P/4P15u7KKD+y//2oV+EGPXeMtCb75ihw9uWenedc3lle68F2dWukkyYc4Sle49911V6SbJ7OnPV7obrPC6Sne1SStUukmy1uJrVLqjp4ysdMePHFfpJsnLj99R6Y4aMb7STZL5Ly2odEcMTKl0R83t/RbNmv1CpTtjzuOV7gvTJla6STJ75HOV7qx58yvdJJk7e26lu8ykzjlqbuerlyRZYdIyle7A+KmV7thRS1a6STJyRKc7K71/wEXGds5TY8d0fjPmdU7XSZLB+Z34/Nn/8/uM/8TAxDmVbpIMjly8053VO+Y5I6ZXupOXXanSnfNS59yXJIOzO3/nUaMnVLqjx4+udJNk5tSXKt2Rs2ZVukkyMGFspTt/5KhKN5MHOt0kgy93fpdHzu2csBfM6PwOJcnApM7fedSC3r3fnJmde6lxy3SuXQYXWazSTZKZ93Xu0RZkXqU7/8XZlW6SjBvT6U4f7F1jTJq8dKW7YM60SndwfOn3Pkle7twHzxmYUemOHNP7jVuwoHONP/fl3vdvYMTkSnfUqNJ10dzezd/A4p3f/MEXO7/3AyN7Y3IZ6FwvjxnRO+aZ8zr3D6PTOUnNLN2fJcmYkZ3fjLmlgcQFIzqftyTJ+KUq2QUv9a7xJ0/pnKfmzer8fj4/vXO+TpLJ4zv3O9NX6PzeT3m8cx2XJLMHOufVMQsmVbpJsmBk5znM+NK9w4szemPto0Z0xhvGTe783g+O6N0HZ2bn93NgVOeaNkkyrnONMTjv5Up35IjevcOc6Z2xl1nzS+NbE3vnqBEvddojRnbur5NkdOk56DNPdD7LEyb05tOMGtX595s5v/Mbt+jodSrdJFmwyNRKd9yiy1a6STJ7ROc3Y8EL91S6F917X6WbJD957PRK99Q/n1/pTl58SqWbJM/P7ox9jnvylko3SZZYe4OF3tx2h93yz5tv+V9dfI7dbPHBFa/ZeWEfUr63y+4LvfmKzdZ5ttK94g+dsbzJO/yj0k2SSddtVOn+c43rKt0kWe5bnTnxr/rM5pXuaS/uWukmyf5TLq50F9+iMxY7cHdnbnmSrD/6lEr3hq2+WOkmyQund871Kx84tdJd/vGbKt0kGXHh+pXus8/8tdK9Zc3LK90k2W30Gyrdu3btXLMmyTU/64wHffqbe1e6t+/6t0o3SSa+vzMW9MYbn6p0735VZw5jktzzQOf++c8Xr1rpJsmLy3ae1+/2nYMq3bGje9eI65/+cKV7y6jSZ/ldpYn2Sba99bFKd8sR76x0k+SsJzrn7Ne9d6dK9985odJNkkv/2rl3OH6p7Svdx//x35Vuktw/YsNK96xne8++D3jDzZXuD+a8sdI9c5crK90kOfv6zSrddW9Yq9L9+82/qnSTZOWDvlzpPvDykZVuktw39dZKd/fl31rpvmGpP1e6SfLTyZ3nTc/P71wLvHhmb13/2xe8utL96XK9+ZGvX3/jSvfkZ1+sdD+9Yu9vsfETne4tg50xgSlPn1zpJsnl16xW6d6w7XqVbpIc9PxZle5v521V6b7tzB9Xukky4/TOfcm997+t0t3kX73xyUdmdcYRl5/VGxPfcMVXVbo/fWPn+c6zD/TmJM36/XaV7qsmfq7SXeOFD1S6SfLkBzvn1ftXXqTSTZIVP9KZ47PhR2+rdG+6912VbpK8uN4Vle5rX+ycr8dc8+FKN0nue9fHKt1JdxXHEUv3aA9O+WOlu8JpvXnrv9nyhkp3nynvrXSvuqHzb5ckO+75wUp33tTeb9Etv+2s3x5YqzOPaukbO3tUJMmE13fGxL8wubMG6vC8ptJNkiXmdX4zLvjx5ZVukow565FK9+bblqt0X/Pab1a6SfKar3yq0p03+KdKd4lnvlDpJsnN+/+l0r3xjetWukmy23V3VrqL3XxhpXvaw5397ZLkbc/8u9J9+N0nVrrbb9WbQ/zcnI9Xupf/szNPJ0net9cBC7354N7vz8zb7/yPL/JHLTdqcNIHFv6ayPV+3hl3TJK//rizzvnoFY6pdC/5/s8r3STZ/8ovVbojVu89U5j74haV7scvO6fS/d1jvc/yMS90/s6Xvf93le6G/93b++ypUzoPm362bWctQ5Lc/2Jn78jLL+rsAf7aV3eON0m+8p3OM4VdFuncL27yt97fYvTHOvMBl84zlW6SPDauM67566unVLr73dDb72vulftWugeWnkEeeHHnnJokR//++5Xu17/2w0o3SY78Ved9Egs2uavSffh7nWvaJDl4+p6V7obnHFXpvvPYzlzAJLnyHfdWuj94urcubsG/OnMi3nBnZ43Z+//d23/i2t2/0+ne29mj7Kpv9Ob2zHhN590ac8f23huw7+mnVbpj/tRZ+/vTExf+WM0rpr7nmkr306NOrXRvPKazpjhJrjp2lUp3p5NurnST5MYNzqh0r/hsZ++zD6zTeZ6eJKt8qHOP9olPdcZHdlu1t0bpyGOPrXQn37zw38n3isdGnl3pXj53r0r3ue92zn1JMvmoznz4d16yR6V76NWdZ5tJsvTRW1e609Pbn3r2FzpjlOes2Nl3/oAbevvjPnNy528x66HO3ksn3Vba7DLJ7J0766C3Wb43Z/3L4zrr1za/pvO7/JWJX6t0k+TYcZ2xz5eO6axdu+uF3nyWt57YeS/mVdv1foumPtF5B9TxMz5d6U48tfes6+2TLq10r/5C5xz1ml073STZ5kOd799v9u/sJ5Uk429dvdI97PzO+ORB1+9f6SbJrD935g29+0+d78jNn/h8pZskq53fmWf/0LGHVLpJ8pppx1e6F93Y2Qd1jS168/eXO71zjvr62Ksr3Ut+1VvHfskqm1a6E6/s7ad45r2d/YJv2K6zn9snF319pZskE+7ujCMusWZn37XbLuzMxU2Sf8/ojIlvPaWzn1SSjN+5s3503u86zx1+vVpvjefHzuj8Zpx9e+cddxu8rbcH3U/O69yjjb7v/ko3Sfb4eOe6aMsZ+904ODj4Hz+YWnPJFQZPfOuhC/14PjjlxoXefMXMuzv3o/tM7rzXfsQtnf3lkmTUCZ3P6sTr31fpJsn3j+qM5R2wQedZ1oNLdvb4SJKHn9+k0t333521oV9848LfF/4VXzqkM99i3M/eXekmyYt7d8ZsFv1pZ77FiTd3fuOS5HsXdq7TDjmz836uTf74k0o3SW5b9aFK9/wNHqx0k+Thr5fmMW658K8vkmTsgwdXuklyzls7Y+nPbNX5zN1w7+2VbpJMfXNn/OOYF3vvA3n/CZ212See0Zkr+sbfdvarSZJlD+/ccxxxbee8etpBv6x0k+TWbVasdC+be16lmyS3p7MP6jOz/17pbn/d4ZVuknz6zM56lNdv25lHNe/W3jvsVh7bmW/xnoljK90kmX/W5ZXuYXt29n9Z/tDeXMN5V19W6f7xQ519y3c+e+G/p+wVl+67caX77e+fV+kmySNrd64x9nrbo5XuX5/drdJNkjG7LVrpnrtrZ/+Js5fq7Sl62oT9Kt0Tb/tQpZskb12zM49xme939vG7+c+rVLpJcvtenTWTN+5femfpqb31KLes+kCl+8zMJyvdJLnp7Lsr3a9v+ZlKd8VnO90kmfdYZ77TeVdfUun+dXbvb/GDJzpz1d4/aX6lmyQ3fuzNle7Vf+ucV3+9W2cMMUlWOb0z9+voKz5Z6U76WO+dOVd8ovMMbYOvdNYGJMkRj3b2OXj65c67DsZ9o/PcIUmWWrOzR9N2A525Q1/+cm9/3F/8qzM/65s3fqPSTZLfTy/NiT+oc1+yzeW9fRg3Pr4zV/uOIzq/RX979yqVbpLM36/zPH/H1XrPbZcqzQk8ZNTkSnf7m3rznn8xo/Pc/frRf6h0tzi5891Lkv1v77w/77C3FZ/bntGZaz+6tGzktQ935sMnye2XdfYtX/Pxzlzfs0/rrbnbZUJn/4SV3tWb2zfj/j0q3fkbdd4Hsvyuvd+iN++5Y6W7zwq/r3RX+m3vc3HqzedWuheO/GilmyS3/+JHle6qT9/2v5r3PGWz5QZfd/XC/1G/tjg/600bd96vdtPHOu8d+q8Tnq50k+TKrTv7BL72Hb09jkcd2Glv/3Jnr4hJe/bGgn54bmet5c4XblPpfmfRzl5GSfLct7asdD/yUG/Pto/8sXN+G/GrzntEbl+qtz7tbWt0Psuvf0vnGdlZS/Y+yyfv1nle+OxxC//dDK/Y/Rud7996m3yr0j33kt4+7odM7OwfOfjxzpjNW/7Se8/xWld0vtdLfKA313fTCZ39B9deufNOsZHpzOdMkg/v3rmuPW56Z67MsZceWekmyQMrdb7XMw/r3NclyW13dd6jtcWHO/uAj9ivNw/gnpHXd8J7dPZzuGJGbx7H4MTO2qp3bP7VSjdJ9jlidKW7xi2dv/PcnTrvU0qSjTbsrBO8ZK/OO7sPe3H5SjdJ3rRMZ83r+dt25hAnybte6txLfWO3zu/nA1t23oueJPes3RmHunifzgOni8b29uN472UfqXTfv0dv/faeK3SeK9x20WKV7kPf61zHJckNZ3TeU33j3zrvYHvf395e6SbJzi901tCs8v7eGprfHdVZT7vCBudXuu8udZNk+slfqXQfOqazlvbfX+6MmyXJcRM76wMOfW3nvQ9J8tGfdJ5pHLNkZ1+Un/yg9871q0/pXNd+9vedOUkPnbJqpZskd3ynM/ay9JTevfs7r+j85q+6U2e+zMmLnFDpJskxR3b2yD3oyM5v3Ft/3ZmbnCTrv9g55iUHe+90Wfnnnf0v/vjLzlzD+ZOK855/3nlP9lee7szhH73gvyvdJFn25M47CY76cufzliRfenvnHXo7nt15vnrx451rlyR53zWddVsv7d7ZR+no8zrr4pLk34eW1lmv07t3f+GCzjji9q/t7HH8Xz/t7ZH7yVM698E7rtjZB+uJW3pjAvO//apKd+Knj6t0k2Sr6zvvIz9m1aMr3V0uvaHSTZJvPNwZn3zgiM748rq7vVzpJsled3bGSD6+RecclSQ3D3bWFi928Df/r/Oee2/qAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/hwwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAz1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDAw1AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPBwFAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwNDfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBwMDDUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8HAUB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHA0N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwM9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHAwMNQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwcBQHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcDQ30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx/7P1XtGVVwf7rvjUrV1FUkQTJkiVIEAElKyCoICAKoiKYRQExg1lRzKCYQUUBFVQEAyiIoIKgREEyEiTnoqi4Kqx9sY/nap/d1FNvW2392/Nc4+8b36o5xxyjj977YDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAbj/pv/eMakadlvgxct9YMYmvCMpd78t9Xu/q/+X/yPzZg7vdKduvqzK90kGbrxiUp3j833r3ST5OknF1a6K620WqX79OKZlW6SzH7ogUp3yqzJle7QwgWVbpIsGVqz0l2w4O5KN0kWDD1Z6c5ZdHelu2jhmEo3SWYtmVvpLj+xc76fk8cr3SSZNqnzW7LaxBmVbpIML+l8tydOmljpjh8eVLpJMm78+Ep3eGznumj8uN711pipnc/FtMWd64AkGTthmUp37sIJle6EifMq3SQZv6TTHTul870emjCt0k2SCXPnVLpDE4uf5YWdf8DFszrXLuPHTap0k2TJxM73b8yizvdvzFPzK90kmbjsjEp3yfTOuTNJhkvXcuNnz650hx4vnTyTTCqdmIeGhyvdxVM75/skyZLOfcn8BU9XukkyZdkVK92hWZ37qMVP3FvpJsnCuZ3z3PipMyrdMVNnVbpJMjSmcy0wtXRPmSTDi4cq3fGDzj3a0LzeOMbihYs64UnLVrKDod5v1PCisZXuCit1rgOSZOiRzjHPW9D5Xk+Y3BlrSJLJUzqfjccf7Pz7TV6282+XJKXbqMwf6o2JT1q+c821YGbn93ritM5zhyRZMrfz/VsypvNbMmFKbxxjwZMzK90Jy06tdJNkUPp7TOgMCWTGhM51eJJkcecebdX5nfPyrN5PVCaUnmksWdi79xte0jkvzx/uXHuOG/R+V8dP6nw4Fj/RGZNbMq33vR6a3/leT+vd+mXh7JmV7vyZnXvK5Z+xQqWbJEPpfDamlMb6Zj/UeZ6RJNNW7tyvDs/vXS/Pmj+z0p28bOffb9xw7959zKDTXmbZzjyd8WNL4y5JBpOW74RLcxuSZMGDnblhC5/s/C3GzL+60k2STRevVeme9sYvV7r7/vrkSjdJZt34j0r3yT/+s9JNkq0HS38O7OIF//u11grXLJuDp+yxFI/m/zb2zF8u9ea/TTrpzkp37oyPV7oTt35upZskK2/YOYe9YLUPVbpJMv9zh1e6xx/0tkr32dctrnST5N5Hf17pzj7tVZXuBi+6rdJNkttWeGalu/a3v1fpJsnMxz9W6V73s80q3eH1N6l0k2TB8KmV7l826/wt1jj3qEo3Sa7c56xKd8mNveeFh+zduc7+8wdvqnS3Orj3jOWUuzrP6x+a0Rn7v+SWzm9fkkx7d+czt/Fndqt0k2Tsc/apdDeZd0Kle8eKneuAJPnF9odVujf9/uJK94V/PqTSTZIp6+xe6c558PeVbpKs+Lp1Kt27b/lBpXvG5t+vdJNk97WeV+m+94HOZ265SX+vdJNk8ZpXVbo7HbhXpZsky67zSKW7zxcerHS3vfPhSjdJ/jirM857yrOurXSX3bu3nuHQZb5U6b728d4zsjVuWbvSPX/NlSrdr13WWeeSJNPWWbXSvWPlvSvdXZ/zrEo3SRbe2ZmIs9IlneuAJFn3tX+pdO88s3MftersdSvdJLl2nc595eIzrql0l//YqZVuktz2rM9Vuocu6ZwvkuS6xzvP63d8qHPtsslm+1W6SXL94TtVuov+eWWlu2S7jSvdJHnnuRdUuh/arrdHzKkXnFfpLnpVZ0xn4fkvrnSTZLP1/lTpTt34C5Xupc/uPSt5+VfOrXSfuf3bK90kWevKzh5Nm+/fmWNw8a6lCdVJZqzf2afi1ks7a5bXf/4rK90kufwfnefjq415qtJNkitvmVnpPmfHzr/f1MFDlW6S/GH4+ZXujx77daV71+veVOkmyeXT3lHprr1Rb4+mG1a8otJd6erOnMA/7t0b03n2I51noFv/tPMM9Mp9f1XpJsl7XnVOpbv+2I9Wukny8MGd79/xm3bOn9f/sTNPJ0l2HOqMY/x1zRdUuvdt07vGGNzww0r3sAW9MdUHftPZx3O7X7yv0h2c2vv3e+4HSs/9fn5ipbvLgjMr3ST5+JLvVrorPNR5hpYkV19+/VJv7jD7f1ujtPHD6+U3J35nKR9N8tC03jrnJad11mO9YZ31K93TZvWu0Y74XueZ0DZn3VzpJsk9Y79R6V658Y6V7v1H/KLSTZLNvv/NSvcNf/1ZpTv3iA9Wukly8wOd595/fe8nK90kOXnPznz45e77SqW7ztiZlW6SbHvSayrdx07ojD1+csXe/eLlf+s8B/ntx3rPFBZe9pJK9ytf7swHfMkve9cYpz7cORdd/tw/V7pndG4JkiSP7dT5W9yy/66VbpIcfFrnDzJmn/dXuqdsd2ylmyS//0Pnemv8GZ31dpte3Jsn+uRXO/uSPP14Z6/ZJHnf/ttWuue/qDOf5fO3vqzSTZIfTu08N73xhg0q3ZlrfLHSTZIF39i50v3Dl3prvl/9pc5n45jfdJ5jPXnHiZVuknzz2s447IdX7zw3PeH0ztrDJPn+/p1rxP1f/NNKN0lOGvfhSnezizpzW08+/WuVbpJ85uSlP6aZJCcs/mylu9W0zlzAJPntaR+pdKc+u/M8L0lWm9yZA3f9rOsq3Rfe2htTvXWFzSvdp97Q2ePq8M1PqXST5Ntv6Dyr//DOj1a6SfL6LTrPkT/1z40q3afX66xRSpJbh1epdJf9Tmcc6ojfvLzSTZL1J95X6T78sc59VJLsskZnL6orduiMnf3l+733xDy5Q+ez8chz/1DpbrPMWyrdJDlvx861wGXvWq7STZL1N+ncuy88+a2V7gEXb1rpJsk677u10p1449qV7qMnd8agkuS7+59U6Z6305GVbpKs96PO/J7zVu3sybz4tUv/fd7/tuHKe1a6yz7SWde477jeXs97PtF5Pr7Ldr13E+2wxvGV7g0rfqLSvWCT3ntNX3frKyrdne85rtL93lm9PbC+ceBjle6tr+/tO//+KzvrL/78dGe96+p/6e17ff607Srdb17YeT73ozU780eS5Jcv6Mzh+tiH3ljpJskFz1v68zKT5I6ZnbnUVz7YWYeZJC9ZqbNv+XHrdK7Db/jiqZVukhwy99WV7n7n/rHSTZIXfbf0HOZ//FNMXG1c1v7U0h9DPmun3pyyf/61s9fzPp/vzPWdeeQOlW6SXLFuZ63J4f/o/M4nyR/vnlHpfnm3zrjY8df1xoLu3fHGSveeYzr3jAsHZ1e6SbLSTzt7tOz2yt6evn/5bGc9+RWzLqt0j3ii866IJNl+7c597ior3FLpbvCJzjhskhxxbOc6++kjOnOdkuSqD3XmJF003Fkne+2fevfPTz7YmdP56Pc69+XvPaaz72eS/Oyezpjbflv31nz/bdYBle49Cw+tdE/5dW/vwQPOX/rvl0mSH/zxdZXuxacs/XfP/NtV5x5U6W57VO/dKB9Zck6l+9QenXdg7Pnr11e6SbLTup35Tisd15kHd/Qz1qt0k+S3R3Xe27H+Zb3rohfP6jwXesED51S6z9ijc02bJP+c13kH6N8+25mf9ac9Omt+kmTzSzrvx3vVC3vXiMe9rPMO5ePP7uzRstPDvX1lLvx+59npexZ25mo/dk5vTsTrJh5T6b7zoa0r3SRZ47TVK91nrtnZi2Dr6b29644/o7Pu4MGnOi+qPugfnXeuJMmPv975/dtwiw0r3ST50A5bVrrXvqNzj73XQb35dSec+ttK97Uv69y7f/eY3lr2W9Z5baW7/G69Yx4zv/Mcbe6vOu+2WfC5zju2kuSD94ypdId27Mx7PmeXznV4kjz/xM7zgdW36OzDkyT3/66z9/XNy3Q+c7fe/bdKN0lWHtvZX/y69Tvr+k+d2Vs/+q4PzKt0XzKld4243ps67zp47sad969ts1nvvZi7faMzpjpmh8668Hs/un2lmyS/nNB57nDkFadWukmy3gp3Vbr7bnN3pbvKs3rvbv7tO95c6W7+z053zua95w6/3PjTle6em8yvdJNk1pGdd/PtO2erSne3r7600k2SZR74TKU7brnO3vBvPKvz25ckLzylM4drkyN7e/o+Z/rnK91D9urcUz55+/2VbpLs8svOOrP9xna+f5ef05vb8MT57610n/+ev1a6SfLk3kd3wt99w//0P5v12LxccMrS36vlh+v11iFt8Z1PVbr3/qVzzTplbG994eHv6uyZ+Pl5vbkLS87t3DM+Z1Fn3vN6l3aueZLkp69/W6X70OtPrXRv/Fbv2fdJt3Xejb75fZ09a5LklYceWOle9KbOXmLnbNmZQ5wkv9mis6/o6gd09uHf8a+99/ktOWntSvdrz+/sjZAkH9y2s7faqjt3njfd+43evrDLvrozJ+k3f+2MPx5xbG+t5QdXeU+lu/tdnfXISbLn+M4zpw89clilu+GGvXf7Tti283f+3EWdtc5vWdLZoyxJLj5hzUr3yEcXVbpJ8o8LL6x0V7/68kp34+07z0GS5KUf7qxN/czRne/f4IwZlW6S3PTTztqqTY7938YS/hNPfPy6SvelR/y40v3X2N7751/5rQ9Uunv8rjPXcKM/9PYLPvmoznv31ju+dy46M513Ks1Y8/RK99gde2uWf/Gvzprl8zqPZPP6pzvzhpLkss935lucPP+rlW6SHDq3M8Z1+qt/Weke967OPUmSnPbeCyrd5Tbv7Lm3afatdJNk8h+/Xeketm3n2jNJ/n5hZy+JoV+sXOm+fXFvHGPotM685wU/76y/X2OrVSvdJDlq7c46wZvf3bn2TJJzbuvM9f3Ghx+vdNc/vPduzH32+3qlu8I2u1W6m1/bWeeSJD/8Zud7feaGnXcdJMnsVTv7P12zUefv/LkHe+/XWO+Rzjyck9/bGet77JW9MYG1rumMif98/d5ejLs9tzO/7qeDuyvdbb/S23t+xnWd5+4HrNB5J8gWG/XW9b9jg5Mr3Zeetm+lmyTT7+28o+GjPz610n106871fZLcuHrnvnLSpZ29Z77wo49Vukny7ed25nDtf2Rn/VOSbPDNzvtRbtr+0Er30hf3/v2u+VVnPeYjT95Q6Z5yZm9M7pVfuqjS/eWg871OksljOvNerr+8s+7g4mPOqHSTZN99OmMksw7snIuOfKyz9j5JPnJ5Zx/w71zb2fs6SVZdrzXv7P95/eig9H8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6PMhjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAbj/pv/eMzw2IxdMnWpH8QqYx5e6s1/m/334Up3ldWeUekufrKSTZLMWOGZle6SWbMr3SRZbvi/+oj+x2bf9Uilu2j+hEo3SSaNmVXpLnpyTqX7+JxON0mGck+lO2lq799vwaLO32MwofMdmTp+mUo3STJvbCU7bdKKle5yy8ytdJNk3GBGpTt2/IJKN0kWLZle6U6dOrnSXTCucx2QJKWvdTKYWMkuM3VMpZskw1M656IsmNLpJpkz1Ll+mTRjfKWbRZM63STzFi6pdAfzhyrdKcv2/hbz53Z+oyYNKtkkyXA654xMXFTJDs3unZfHDXfai8YsrHQXTlj699b/Nmlu5xw3ZkLvt2Tx+M45f3hC5xp//HDxi126xh/M7VzXjhnqfEeSZMJyy1a6iwe9e7+54+ZXuuMHnc/c4gWd832SLChdby0ZnlfpLprf+yyPHd8550+Z1vmOJMmi0t95/tjOb8lgce+8PFz6bEyevkqlu2RBZwwxSYYXdv7OC57oXWMsmfRUpTtt3PKV7vAyve/1gsc6f4tlV+6c44bnd+7PkmTRmM441OJB75iHFnbG+5ad3rkOXzS3dy6aOb9zXTtpYudzURopSpIsmdEZE5j3WOc6IEkmTOl8T4aHO9e1k6fMqHSTZObEztjZ4oc6A9fjJvY+zcMLStdb03rjiGOGOn+PoTGd8a3B4sWVbpJkUedcNJjYuUacPLnznCtJBmM611sZXxoDTpIFnXv3aauXnvvN6f1GLV70RCc86HyWZ6xQPC+XxifnPP1QpZskE4Y7c7gmTe/8LYZLY31JsmRO6Xd1SudcNPzfTV38rwxW7NzvzH+qdL5PMr50B7Fg0WOVboZK584kmy3Xmec49Gjnt2TCAcdVuknynGduVume/tc/VLpJ8sCvfr/UmzPvufd//t8uN2FhDlzl/qV4NP+3P97UO4eN3/Xnle7zbr+y0j3wltJ5JsmnjuqMPz66WW9+3esOelGle8x5nXGx865/d6WbJJ944VqV7hn331Lp/vnnne9ekmy68VGV7kU/+FClmyTzDvhqpfv7y75d6Z6w72WVbpJc8L3fVrprrdn5/m34ut7zpieHO+e4s376r0o3ScY/46pK9xm7Hl7pPnHrtyrdJNlz0d6V7j+f2fn+Tdz0gko3Sf58Y2eM/rnTzqh0k+SpN7220r1gUWdtzk4PdOZQJcm6z/pipXvo7vtXumvu0Lv/Wu/WtSvd5e7YqNJNkkvOeFalu+jlT1e6+37+NZVuktwxbpdK9+jS8OMla13XCSdZ+eHOGraLb+09VzjnwdUq3S0326XSvf6271e6SbLsU51xwr3f0Hn2fd2tO1a6SfLQkUt/DCpJHn3VDyrdJHnurGmV7v0rPFrpXrhqZ95ekjxw9uOV7jM36KzZum3rX1S6SfLb9Ttjn+sMdqh0k+Rjv9y40r3+ipdXuoOjT6t0k+T2T3yz0v3um95W6V54YWesKEkW7nFfpfvRcVdXuknywz9/o9L91UZHVLpXTO/cRyXJs/52XqU79RmbVLrjnvh7pZskf1/n9ZXur7d+daWbJE8/szPH4GVXd56VPGvyZyrdJFl2/nMr3Utu7GxMtOkveut/b93p/ZXu04+sVOkmybjTtqh0v/rL71a6Q2dvWukmyc3z76h0976vM6ZzypOd+/Yk2eHlnb/z5YPeOOIRMztzOu9b2JkrcPHWa1a6SbLRM3atdIf+8opKd8zmS38Ozr9dPe/cSnfoA739xtZfvfP9W2aFlSvdM/btrTOb+cHOvJcL1uici2av/5xKN0k+9L6XVrorbP2mSjdJdjm889xv+uLOs+ZHfv28SjdJ3ji2c1/5k+U68+SmPtCbp3P7tM4z7M9N7u1rs93c7Srdf3ziwUr3rB/0rhEPvKbzW3LwBZ3rrQ2O2LrSTZJxP+7cr562X2esL0muOOWBpd6857H/7V7n8YlDOW29pf+86ZlbvHipN//txld37svXObozB+fMj/+l0k2S7y/sXGO/fo2zKt0k+fRDP6p0Z321M45w8eEvrHST5IDzNq9037FrZ0zsXefMqHST5LKzO/MBb5vXmf+dJI8f31mP9Yazv1zpnnvuFZVukty2uHP9d+BDW1W6X9jlV5Vukrz4l525kQuOvKHSTZIfDf5Y6b76tM79/rWv7s0TvX7PYyvdTY7639en/b/55od7914XvL3ztzh26qcq3SR5xYRLK91T/9YZ697qiM41UZLsvH/nuuiY73a6Zz/V29fixV/vrHPZa4Olf0/3b8e8/K+V7oof7czZO2T33jjeBvt31uzvd1TnmdAh446vdJNk8Ghnj5YvfffISjdJ3rjehyvdC++bWemOf2ZvDsdrf9uZ8/zJnfatdM/apLeOfeeDLql0T5/05ko3SX6/Xufvset7f1fprrH3VyrdJHn0n51z/mc/1bl3X+H5J1W6SfLyPTvn5b1u7v37fenSiyrdP/+rM28he3aySbLtdZ1nes+489ZK90vr936jXnDiXpXu1O/0ntVfc8kHK91nHLNzpbviAZ3r8CRZYUnnuffVB3fm4Hx0td4Xe4frD65013xrb41gXt4ZL/rFL95e6X7oQ52/cZJ84pTOvdRuB3XGEed/rDOemiRveO81le4j6/ZeTDv+851z0br3X1zpTpnWWa+VJLNWeUOle/JpnTUjd25yTqWbJBuv1JnbM+OE3rrG1+7/y0r30LGd+9WN7u3tlfOVwzrrlf/8SOf++qr9evdRn1r1ZZXudW9/dqWbJJ/a+dBK9+Y/d/ZamT2u99z2BX+/qdI97OjOb8mjb3lPpZskU//eGdP5wcdvq3STZPrzO3Nbd35R5/v31EW95/mzJ3V+V088ufO5ePySnSrdJDnghtMr3dd/tTNWlCRbzVu10v3C453uEzPOrnST5NbP/qnSPfhNP6x03/bd3t6gb3z4nZXukSv9udJNknd/qnMt/sn/8X83/9b5ueNFS/+3/tIje/t9fekla1e6t885rNJd7m2d9UdJ8sQqnWuI2dd19n5Jkm+9rjNfJr/sPC/8wit7a75337az1uRLu3bOM9/+51sq3SR52XBnv6ivvqazb2uSzP96Z2zzlIM7e+Fc+r3e+vcnzvt4pfuR1TvjH49s9etKN0mGfvveSvfTt21R6SbJPW/tvIfp509vUOl+7dTdK90k+d2VnfcwbbVmZ7+2Jw/vXbPmn1+rZF/yvt5e3Ted0rk3OOToj1S6e/6gN+/57JM61xhHrPG/3nX8v7v0t5098ZJk7Oc768F+mJ9WuknyxP7bVrrn7d555/qL9++dl9/yq8572z6xY2e+xcRPd96fkCTnfrXze73uQx+tdJPk1uvWr3SP+2VnnfW03/TmZy3a8QOV7nH7v6rSXebUt1a6SXJw7q50j72htw/j88/srG38yWHvq3Q/+KneNeIa3+x8/xbt0Znr9NUVO+9CTZI53+3s87H2tp3xkSTZY6VzKt2nxnTWNn7vzIcr3SRZ77EJle4ON3T21dj8tM77P5PkI7d1zhkbfqvzjrskeXrnd1S6Rz27M9fwoMW9661ffGq/SnfWnp390G9bt7eW/ey7OvvP3Dyht37755M7+19ce3Vnv5yrPrdCpZsk7zqxc87f56+dNT+nvLk3H/6Ea/5W6a69U2dtTpLs9+bOMZ9xT+cdJs+4YHqlmyTzJryg0v3ofp2x2qcP6qyTSJL3HNuZ67vcDb39cY945JBK94LzO3v8vGwws9JNklt+35n7tefJnXe573Vq5/46SU77Vue5+4St96h0k+RdG3aew5y7Weca/5kvuq7STZI3rN2ZR/yXezvvgpy0TmeefZKs/uS+le4mCzpzGJPk1u8trnTnf7LzzrifLNd7t8ZhizvPmnd5Y2e84YszvlPpJsm9B3bORcfu33vP1ude2nmOtuY7dql0Tzq+t6fipNd27h1W/NXPKt2TfteZP5Ik2598YaX70+/15vb96ozOOxvzP77mZ6X7x+fADy/9vcm/8JV/LvXmv+3+3ZMr3dOu6Dyv2GRcbyzhL9M7e8FNvm9SpZskd79xm0r365+6s9J9xVOdd2glycyfd97rsN7rO/Oz3rnjhpVuknxulV0q3XOPfqTSTZKv7bdbpTv/pM77ZZ6zTO+e/56xnXeuH7TTxyrd5Y/4SaWbJGcf1Fnr8vdrLql0k2TR8Z13nxx59HKV7tDZnXdeJsmJ22xf6Y6fWXof4wd6a3NO3qYzxvvmdObAJcmTl21Z6d7xmc4+0u+8t7MeOUmmH3t+pbvr8zrjKmv+qfMcMkneUXrX1Wv+OLPSTZJlD+h85g4pvU76jON641e/fvjUSvf+199e6f7tC539jZPk5T88oNJd++zOGFOSfPuEzp4Ot0zufK8/ukJvTtm+b3hWpfvhQztzWqb+9dFKN0nevX5nft3H7zyh0k2SK37aud+ZeGlnru+8Oy+pdJNkhbs67z3a/BmduWrrLd/bP2u/7TtrXdZ627qVbpL8cMvOGoyTLunsH/nwRndVukly8ZOdsZe/v6gzPnnizp13YCTJrOd35s3udF/vHWwrXnNQpTt0ZOez/KFZnb0jk+TDu3f2HXrhZXMr3V/e0PtbTH9zZ/+zxbf39ty74I+dOYGnbf69Sve+3/XeX77hfqtXuud9/alK95CfnlfpJskqv+/sw7/fFy6odJPkFZ/vPK+/5CWdOcTbnd3ZOyFJfvPpIyrd1x7VmZ/1oh98vNJNkoXHdd55+/UxvTHxJQ933inxpt/tWOn+/cb/7X3g/4mfPdp5b9Uee3280t387N6+DPsc8+NK9/UvXLnSTZI17zu60v3N/JmV7gnFPXIXHdt5bvSmd3X2Ebzpwc77QJLkwn+tU+m+/8u99xM9cX9nzevFa3TWH973lc4YYpJ8+W2dOVw/+FPn/PmjOZ1zZ5JcNWuNSvfsZTvP5pLk43M7D+g++qovVLrX3NXZNzZJ5tzXmU9z68qdZ83bfbDzPDFJbnxfZ23x9Yf23o359q929jL78v+PKVyDyv81AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPg/zGCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBqMGR4e/o//4w2nrDb8jfUPX+oHMWHMMku9+W+rr71CpTt7zH/+d/tvLH56UqWbJFMHSyrdcUOdbpLMmj+30h2boUp33vCYSjdJ5sydU+nOWHZspZvxpW6SKcNTK90Z0xdVukkyZ2HnnDFmzMqV7tiFCyvdJBk/tvN3HpR+SxaP7Xz3kmTZFTu/UWMWDSrdJBme+HSlO2H88pXu0JjFlW6SjJnd+Z5MmDqj0h0zNL/STZJFy3W6g/kTOuEki0t/j4ljx1W68xf3/v2WjO1cy02YPKXSnf/w7Eo3SSausmylO1jcuy5q/WQPlnTO982/xaJB595h/lDpmCdO7HSTTCjdl5ROF0mS4WU7f49xpUuB4WV6/35Z2LleHvN05z54aErv2nPsPaVzfvPfb9C5flkyf1alO25853yfJE890vnMTZjRGTtbMvREpZsk48Z2rjGGxvc+y4OF4yvdKct27t2XDPU+yxnXucYfXtQ534+d3htfHje7c8zzxvTGVMdPm1zpLpmzoNIdDPd+V5POPdpg6LFKd3FvqDZj/4vnYv+NRUt6/35jJnbuS5aU7ncWLu58R5Jk0YROe9G8zt9i2rKd39QkGV7Uud4an941xtzJnXP+hCc7N6yD5TvXAUmyYEHnRDc8v9NdNLF3jTFhUel3dXJvHGrs7M5nY3FpIGPJwt748uIxne/f2PGd67hx6V1kzJ7T+febOr1zHZcki+aVflcXdo557ITOGHCSTBjfOc8tHJpZ6Q4/3TvHjZnWuRbo3fklYyeUzhml8eUlE3rnovGTOmMvY0vnz4W9x/lZPNz5Xg8XD3re051x4KE5nXkvf3/kT5VukswvzZObNKXz3GHrNQ6sdJNkfGkOyS/+9rNKN0lWKvyUvOuun+X2eY/8Tz8nq2+y8vBRZx28tA8pLzno8aXe/Ldxt65U6R7w/OdWupfc1JsDfuNqnbmi12x6f6WbJHvffnulO2mLl1S6511+ZaWbJNPv7Dw7fdWznlnpTnzeo5Vukpz09c416yu26I3lHTCtM5b+iWXOrXTHPHpQpZsk2/zz7kp3wWPvqHRv/tobK90kGXzh15XuMmv8qtJNks3v2KjSvXvCNpXuZXu/s9JNkilnz6t0bz3wbZXuc++9rdJNkuEPde4Ndv71hpVuktx643cr3c3ufW+lu+64zvk+SR7dvHP9OeaRnSrdrTb/Y6WbJH+7+JeV7uNv7P2WnHfNTZXuS1Zbo9Ld9aa1Kt0k+dk9nXHem9e7vtKd9YzO3zhJtnryzkr3LQs71+FJ8t4XPrvS3eZvl1a6M3b+Z6WbJJc/tkel+6+V/lrpLvfnL1S6STJus7Mq3VWf6IwVJckzL+s8f1v19M6czrVf1PkdSZKv7/ZwpTs89jWV7qtW6q15Xf/azkKl92y6V6WbJEfc8KlK98crde79llnQub9Oki3OeV+le+5BP6109154caWbJINxne/fJc97pNJNks1/u1Wlu9XYb1S6u17VG5+8fdXPV7oPfqxzj/bTt3TmcybJFvt05n4turyzR0WS/Ol1neuig0/avdLd/mWdPQ6S5IJfdcbafz6p83v9kS3+UekmyTEbPVXpvvP8N1S6SbLDfr+pdM+4dttK9+5re8/9llnSGa/d7uUvqHQfKf2Nk+Tby51X6X7xWatUukly9ZwnK92F18+odJ/zUGnzkiRv3+rGSnfL53WewWzy60Mq3ST5wl3XVrqH771ipZsk91x5d6X7/CsuqnT/+K3efJo33LdnpXv5HzaudHeffHWlmyQ/ub+zNnxojxMq3SQZ8527Kt33rf/ZSvf1d/fmzR64T2c+1CP/OrHSzUvX7HST3P3Dl1a6u639rUo3Sa69tHMtt+ZbOt1zbnlhpZskB17RmUd8zpJ7K93N0zvHrXrPjyrd323zYKWbJH/e4Iql3vzJr/+Uhx+b+V/Pe56+xvrDOxz9laV+PI++rrcG6YNfuqbSnfil/SvdVafsV+kmyRn3nFjp/vbMznyWJLngy0v/858kO/3k1Er3HRN6ezm8atPO2Mfr5v640n3q7bdWukly7M87z0FWekvneV6SHDh8TKV73jJ/r3SfOK7zDCtJ7tq58xx5lxfvUOnus2dvv6/lb+7MbX3jj15X6SbJ7Pd35nNe8vyPVLqnnLZjpZskG276wUr39av9rtJ95qt716ubjN2u0n3PWzaodJPk0h90xuiv/2jnOciUf7660k2Ssa+4pNJ9w7c6x/zmI3tzOCafsFqlu8be0yvdJHnPxPUq3YPunVnpbva20yvdJPnZzp3z8mcu6sxZ/+0NveutHd/aWaP77e/0Psvr39255lpttxdXujuc3rt3eOwdnbUB97y5s5Zor43/XOkmyVG/6KzRHfxy9Uo3SV5+1PGV7sfftmule/IRvU3cf7NX5zP3iQ93ngndvnXvevm9h3f2zppyR+d5bJLc9fUPV7pXrPTxSveaW7evdJNkz5teXul+dK/OfdQ3j+6s90mS3S/apNK9aqO7K90kefG276p0L5zwmUp3/78dVekmyavuPrvSPXvutEr3Nzv15nCsUNr77AXvfnelmyTHTehc409fsbP+Ysu17qh0k2S/XTevdB++s7PXw5QHDq10k+Thk4+rdDc74MRKN0led8XSf6dwkgxtt0Wlu9ZxvTVmyy3szFvY8j2defb7rN6ZJ5Mk92zRWTt60HM76zCT5NsPrlvpbvLPzvjyd7bsrav6yrmduU4/PrC018MVvWfYW77+/ZXuGS/vzLlMkl33uK/Sve9dnb0Tpn/+Y5Vukjz7fZ21RB941lcr3df9pXNPkiR3zunMB9xh5c780yS5+4bOHK6F3+2si3vHoT+sdJPkHbO/U+n+/W+de7S1ftP5jiTJQVM661IP3rr37vSv7rhLpfuXNTq7rV9y84xKN0k2K72XfdzGnXuS3y/qrZe84urzK93dt+7tz3TEdpdUuutNOOnq4eHhrf/b/90Gy28x/LU9Lljqx3PvY/su9ea//fnkByrd7+/9+kp32fecUekmyZWnfbrSvevm3ljeu+7r/PttP7/Tfd/KnfuCJPndKzu/QSc80hnjPeHUzv5ySfLEhh+odA+b39u7brOfddap37Vv5x2Sa3/4lko3SbbpXGbnm1t25g7dO7sz1yJJpr7jtZXunM07c5OT5MTBlyrdb+z/5Up37K29/SfeuaDz/Obyhzv7F5z6+d7aqh1u68xbv/Kzvd/VB07q7AX3+NzO5+LYBzt7zSbJq7fozK/b/lmdOYEHbrJqpZskR15+eaW76Jv/qnST5Hu7df79Ntymsy/Cycf29nrefXpnv9mvndJ5jvXSJzv3lEnywhc8r9J9zp9+XukmyQHDnbl7//p5Z8z00bV67zm+8ODOe1c2uvK3le52V3yu0k2Sdd/Q2SPw7us+WukmyTNf1Zm7cOdVnc/c+Yt7e1wdMafz/G2dOzvf66FfdPbBSZK91+pcy01f9F8P7/7Hrrm6826+t/y9826Nw1bojWP85dHOO4Sm79iZX/e+I0+qdJNk3i4zKt0vju/sm5wkN32gM6fzeb/rrKF55Z1fq3ST5HNndeaUHXb/1yvdZ11/YqWbJDe9u/Pejh98sren6Brv6ux9vf86nfVEb5qwb6WbJOe9vfNezPv26axf++y9N1S6SfLAqs+vdJ/1h946z52v76w5P+m+zrPKdc/q/I2T5MeXd77XG5zY2VP0vKuOrHSTZJUvdp51rXTjzEo3SV6Z0yrd71y3dqW73xWdz0WSrH9r5/lOvtDZe+2aL7yy0k2SHcZ3rj3Xfltnn/wk2emMznjRvHs7z20P/HFvf9XD55xc6Z6ycecdd2t/cEqlmySbnNV5T9OG1/bmY0w4fnyle8aCzjtXxn+i926N923bGS/63Bmd78jRX+qtZ5j+vM7586FtenNFz9+1857C9326s2/s8w6/v9JNkot+01ln/ZmJnfPyIR/prDdPkr9M66xBPOzXnfmTSbLnnZ13jv3h0gX/07zn9aZsOPyl9Zf+dcTjr9h7qTf/7ZztO3NPtvnSoZXu+w7pze8Z3Ns5N559UW8sb/ZrO/sOvWrLzhzwAzbrzUna5r7Oe/cOO+aqSveaOzrPepPk9u931qq/cGZnjD5Jzl/SmUd17Ns7zyH3fn9vHse8L3+i0j36Y511358bs36lmyTzX9FZx7n5mb09DM765M8q3TcOOt399+3tF/yCWZ1rwJP3/WSle+5ze3t0bnz1ryrdvzz+1ko3SRas8oxK983bdNZKfGxaZ81Pkrxty85c+1cu29nX8MWfPbPSTZIbftt53vv2t3Te25EkP7ymM3d2g+U6e3ReM+ncSjdJZr33HZXumpM6z94mrNyZa5Ekr5hyXaV7+2dnV7pJsstlnbGxt369M9f+gct676keM6Ozt8wDL+ysDXj2TZ2xhiT5zCs71+LfGN/5XifJGu/pjMUOfbfz7PTX63bes5UkP/1NZ+7QRzfp3O8c/47OnhlJ8pMtZ1W6D3/50Uo3SZZ/c2fu0CFvvqzS/cnBnXXFSXLUxIMr3ReetPTfq5gkh57Wu4/6x7ePrXSP36C3T9n8VTrvgVr3gM4+ZWdd33lHfJJ8Z+IfKt1bX9hZV7ziPzt7oifJmlt11glec0hvHs6kn21a6W6954qV7rRNOu9sTJKVfrJHpXvyK79Y6a5/9BaVbpLMfmVnTu4TX+7sqZ0kV13QedfPc0rPB47ec/dKN0lWe6yzT8UWR3T2AV/n+xdVuknynq935s2+ft/OPUmS/OjrnX1973jonEr3C8/ujS//8N2HVrrbf70zH3fu23rv+jlmVudafPqk3jtBrjmvM4/qk+d27h1uOKm3BuOkMzrXtUevck6lO+6zy1W6STLl7Z29XO47uXMdniTX3dPZV+PGww6sdC/ffp9KN0kmv6dzzv/0mLGV7mPfu7bSTZLdhzp7d/3m+N7auIPf2nm398N/3KXSPeCtb650k2SZpzrvT5/+yc6458+/ckylmyTPOePoSve1b+m9z/P2L3f2W//Mr/7y/zjveVD5vwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/4cZjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAZjhoeH/+P/eN3Jzxw+fu03LvWDWHnGwqXe/Lepk9aodJcML650hxdPq3STZPjp+ZXuxGWHKt0kGQxNrHTHTRxX6U6c3PlcJMm4obGV7rz5nc/cMsv+5+eW/9bUsYsq3XljOt0kmTRuaik8qGTHLVym0k2SJdMmV7pjhp6sdCdMmlDpJsnYsZ3PxaKJnfNFkkxdUvr+LVxS6Q7N7n2vp0zvnD8HSzr/fvPH9K63BoPSuWhJ75gXLuxcv8wbjKl0Z0zsnDuTZGh25zd74fjOv9+USb1z3KLFnXPRxPG935KhOZ3uhGmd7/WChb3r5aHHZla6Y8ZXshk3tXe91brfGTOhd42/aF7n+7dkXOezPGla7959aPbTle5gQedzsXBMb0xg4QMzK91x40tf7CSD0v3OYPxjne6slSrdJBla/GClOzyYV+kOxk2qdJNk3rxOe9kVZlS6SbJoXue7vWDQuUdbZsKylW6SzJv3UKU7cZnlKt1xg+K9w6KnOuHJveui+Y/OrXSnTJ9S6Q4Nda6JkmRC6Vp80djOPdpgeEGlmyRDM2dVustO6TzPSJL5kzv3lYufeKLSTWmsKEkyuXMtNzxU+syN75zvk2Ts+NJY7ezO88Qkmb7MCp3w1M7fYslQ77O8eEnnHntc6Xw/b1FvTGDi+NLzgSW98/JgbOe6aMG8zrloyjIzKt0kWTSvc701KD0DnfNo77nRjBU7z/2Gx3SeOyTJgoWdv/PCuTMr3bFjZ1S6SbJk0Pn+TSyNT85f3PnuJcnwws5nbtq0GZVukiwZ0/n3Gww613JLFnbGt5JkeFzpud+SznX4uNJ5KEmWlM6fixaW7qOSLHzygUr30Tmd8aIH599Y6SbJzKfuq3TXXW6DSnf99XaudJNkQTrjUBf+7SeVbpKsuNzSPy8fftPPc+ucR/6nL/ZyK60wvMt+L17ah5QfP7TRUm/+24NrPqvSvfSOZ1a6g89tXekmyZof64xTbPb3syvdJFlwaeee8aKf31vpvvbX61e6SXLvBs+vdG/+xNWV7lrv6l1nH/xE53fzm8dvV+kmyfJnblrp7nL17Er3Wxv3/v2237QzP/mOH11Y6b7wJQdWukly7bXXVroHbPnpSjdJnhg6t9I9/ZK/VrqPPK83v+7oDTu/2Tfc+9xK9zlnde4LkmS9z3bap/+yN7919iNrVrq3P9S5Ltr12EMr3SRZ/7JTKt0b7t+90p08uXMdniR3btMZS5h++Qsq3SS5+M6HK90jtz6v0p1/dmcsIUkeXPPKSnfR+q+pdF/8r3Uq3SS5dJ+TKt3vX9ibw//2V3fm5F75j/dXusPr/bLSTZJt/3VbpTv7vZVsbtxhp044yWbrdcbc1rhlZqWbJGP36XyWb7iwM+/5vtfcXOkmyZ9uPKjS3XDnHSrdT96zbqWbJA8c1zkvTzp4t0o3SW5++F+V7uJH16t0n7d9b4z+yac6n7mz/1HJ5nlv7P1eT73w0Ur3ss2vr3STZOV7Ovclr7yi81x21ef05rScs3zne73VGq+qdGf/9VOVbpLcu91bK90ZP/1ZpZskx0/pnD83e7Azj+M1606vdJPkwF0764m+flpn3HPWnr3z8rybt6l0t1+n89whSW6buVmlO+MFV1W6q31xy0o3Sd69xpcr3ZOf2K/SffW2l1W6SbLG2K0q3a3Hds6dSfLQ775V6U4+rvO9vvGm3vys3e7rjOMvN/P8SvfB4zv37Uky7fhPVro3Dt9U6SbJ1U931oO9/MkZle43t+s96zr5lM7anDM37XSffF3vs7zl6Z05uVuPu6PSTZJvlaY3bHv9UZXu1MWdOUtJ8sb1O3MFrh7XmU/z2nsfqXST5O1v/VClO+/kzm9Ukrxi/J8r3V8e9spK986rj650k2Ta4AOV7sLrf17p3vqCzvV9kqz30mMr3UsO6+0F8ppttl3qzR2veE+umXXHfz14ttJ6Ww/v//ml/xz52Q+sttSb//a5v3bmuj8596JKd+09vlnpJsk7b+qsKZi2Yu/f77Y7Oufya87pzHM68/2rVLpJ8q3BpZXuwZt05mbN3K3zPCFJ/nr4FpXu/IcvqHSTZL+bO+eizzze+V1b74zev99W+3fWojz0xs4eZc972f6VbpIcMWtmpbv7rzvXq0ky5qgrKt1rpl5c6c646tRKN0muHfOWSvfe9Trj829+6w8r3SQZrHdApbvSE709yva458RKd+EynbUMD3ypM88iSc5b8fZKd95Tf6t0333c6pVuknzxxV+tdFdeufOsKUnOnNGZqzbn7i9Vuvdcv3KlmyRrPjGj0t1v+hcr3aO27aw3SJLn39y53xm+++OVbpJsNPOeSvf+c55X6f749CMr3SS5/bafVrpjb+88d/vHBZ31IknygTd21v6ufUhvL5WvvPWwSvfY1W6tdP9wVG9M52Mf7qyxPvRNK1a6nxvz+0o3SU55/+OV7g8u3rHSTZKD3vX3SneHnTrzDOeuXFrYkeQr63SeI9913I8r3ZP26pyHkmTh6Z3nm3t/+NWVbpK88/hjKt0fjO08997z97dUuklyyU86c5Nvm98ZE9/7oydWukky5zMzK92Vd+1dY/x4pbUq3ce+O6PS/d5dvbVEj0x6WaW7xi6dMfEFX+7NU9tnxQ0r3St2+1WlmyRTT+7MAf/78p21YHP37exPkSQHvLYzxnXfuztjOq94rPfOo19f0RkH3u2TnXlOSXLR3EMq3Ueu66wdPfq6zrzWJHnvMZ37ys1mddaOTn64tz/Fv97Qeb5z0e97683fc1pnLcq3ho6odN970faVbpJc8ZqzKt3l/toZb7jsxs0r3SQ56OzO2vsvTe89Hzjhgt9Uurdu2dn3cL+H3lnpJsnMGZ3nfsdd3tmb8OzNvl3pJsmPjtu30r3lpN565fsXfKLSvXdRZ27YM97Quw/+5lsPrnRf8I/rKt3r9/pCpZskH3u8sz/Th67trD1MkkmXdeZ8fnLVR64eHh7+rzcoXG6jKcO7nrz076Gf3L4zxpskO27SOZ9ffXZnfv6En/6x0k2SV/y+8yzyE1f03ru35au+Uulutk5nTsvZu/TG6Df7Tmcf1IUndsaYDpvc+1xse+fGle5D63X2IE6S19/whkp3+vs715aX3dZ5r3aSfHuHpb+eJ0ne/rvOvcFNP+5cVybJm27rPMta7eTeXt0v3/lPle7gs509MzbfuTOukiTzr/topTu8Ueczt9HnevvKXLVxZ7+oyz/fm4fztR0689YP/lvn3doPvrj3PpCfnfyDSvecMzvvtX/0k3+odJNkg9901gme+I2PV7pJ8vy3dfab3fRlnb1wvrx55/0XSbL3MZ01GIev2Fmztf/Lf1TpJsleF3b2mNv60s54d5Ls8rFnVLrbXNJ5Drl5eu/JffUHOnsjPOutnf2iDn3LByvdJPnuPZ17v8+d9bFKN0mOOrgzV/ueyZ19UG/b4C+VbpIMvaiz39d79npfpfu1px6qdJMkP+0813v+m0qbBSc5eXFnH9uVf9R5pv7uT/XW/944p/Nc4djvdc73a98+o9JNkveUHt+8Z53eeXnuxM7aqs/9ee9K94kX9dZMfuKMznraxV/uXG8tM+P+SjdJnj2t87x3+S921v8myYe37Mwj/uqtneeQr5nz0ko3Sc54qPN8Z4MzP1Lp7nlHZw5qkjy1uPP+p91u6ex7nSRff9bLK93nXnVdpfuxaZ39OpLk0TfMrHR3+FpnrOiJUzr3lEny2TU6+/sveKwzhzFJjtip83zn1tU7v3+nbv21SjdJvnhd577ygo06z0Af+uc1lW6SnHRq59rzG1d03suXJOeeuUml+/u/dJ513fjoryvdJFn2qs4a0o+v2lmzNfZrnXd2JMmOU06odK99R2dtR5Icfsjxle7UD95V6b53amddapLsdndnruibj+q8/+nh5/SeO5z/ls6czunbbVTpJsn+L/9dpXv5zM5vyW1HdvbhSZK3XdnZ/+L2Qzp7Kq60/3cr3SQ5eq3OXpuPPvxnmGUAAQAASURBVNa7xv/GpM4x7/71H/xP854nzlhxeJUd9lnqx/OGrXvPFR74zTsq3d+9pDM/67Yvfr/STZLJY2dUun9aqXfPf/tNnXuw6et19us+YdfeM5aHtu3Mo1r8vc7ckzU26+x3mSRvHu68u+Z1m59R6SbJH3/82k73+M74xyef0dsX9t7jO9dTX9irs2fUidv19mL8+6uX/jsUkuSrh3y90k2S76/QuYe+cO1DK90J/+i96+rmuZ31ve+8rbO3zM6P9t5h95q/d/bjuH7QOXcmyVqbdtYHbPH5zhziHz/W24f/bx/tzM/a+Wude8ZvbtCbK7rLcztjpnut9+JKN0kOv6nzPdlrp846l5XO7K3zHP/czlj6l0/fpdI99/Teu342OHmDSnfaCZ33PiTJlp/p7Cs69azFle7nr+y9k+DGgzt7Sb/ttM7z3juP6bybKElOW6nzfsPJQ52x4yQ5ecXOM4vP3PymSne/9/b2P5u7eufvfNnDZ1a6U6/trTO7eNtvVLrTP9V7b9Wrruo8s9hq8Wcr3eVf3dt7fnjvf1a6lz67s0736nV76/p3/vGFle5Pz+jtXf7UYZ1j3uKdnXUH0zfqzOdMkkM2H6p0j31tZ1/Yr/ykt7bq2Z96d6X7013XqHST5Du7zKx0X7Lwukp35Y06584kWX9+Z4zr03eV9kxcufc+wb98+xeV7hk7dNY/Jclr3rpHpXv++ztjZz9avje/btWvdZ4JT1vm7ZXu2E937kmSZLmFd1a6u+xyeqWbJCde1Xlu++ZVv1XpXnRw5308SfKmKzvXtXed35mf/NSqve/1Om88tdK9/y13VLpJ8qEbD690v//bzlzDMx7o7UM3d1zn/HnH9OMq3RtP37XSTZKj1uy89+itF3T2y0mStW7ujOsc/4POPdrYSzpzzpLkR7/trEf5+Y2de7+FizrvSUuSy77S2S9n06t6ezRd/7fOeN9hl3UWs+/8kzdXukmy+/jOetpbXzKz0l3ze8tXukmSizr7au/44s4erEmy9k7nV7oX7PnH/8d5z727WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4P8hgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAajPtv/uMxGc7EzF/qB7Fk7GCpN/+/7blL/3iTZDB2caW7ZMGCSjdJpi47o9IdP25spZskYxZ12oPB+Ep3ciZWukkymDxc6Y6buLDSnTJ1+Uo3ScaOW1LpLnlqUqWbJAunzK10J03+r07j/7GJ0zvfkSSZN7tznhu/6BmVbpb0fqOGx3Q+y4sXLKp0k2TJcp3P3GBO53d1/Iq98/LTQ53z58JFne/I5ClTKt0kGZPO32LJMstUukkyZknnGnHG/NJ3ZGHndyRJxk8cU+lOmDGj0h0s6Z3jhp6cV+nOmzer0k2SRelcv4x5snTtOa13jbFoSufeYdy46ZXuhEWdz1uSLJjbucYYu3zxt2Rs57s9dbjzuXhs9pxKN0mWHd/6nnSutyYM9b7XY1fqfP8WPPxkpZskE1ac0AmP6dzvLJ5QvMYY6txLPTVvaqU7ZZneeXns5M7v9YSFQ5VukixY0LleHj+2c++woHjvPnbitEp3/qzO7/XkcTMr3SQZnjSj0h0/t3e9PHZc5zM3f17n3n3ilBmVbpIsmtO5xs+yne6ixb1z3MKJnfb84d796rgJneuiuaXnO4uLz7qGF3XGXsYu7IwjTl1pZqWbJFnQOeYJE5atdJNkMKNz//DUk53f1SnDnW6SjBvbuXeYO9y5xl8y1DvHLRrf+VtMGFv67UuyKJ1xgXFjn1npLlzc+/cbP75zvbyk9Ls6ceXSfXuSxcOdv8WCeY9XukkydsLkSnfyhFUq3XkLOuNbSTJhSucacd7czrXL8JjemNxwSueMQe/7N5zO32NxOr8lg4m9sfaxYzvjUK3fvqHFnXudJJmw+MFKd+FTvXHEhek8t31i7v2VboY6x5skU8d3zp+rrbJmpTtmYm+sfWppauYqUzrXnkkyNP/epd78/+f2bLWxk3P8clsuvYP5/zh9Zu/aZNt5nTHvVZ/4UqW73B4bVbpJ8uget1W6Y6buU+kmyS1vWrnSXe6RAyvd87e+sdJNkmz8VCW7zr5rVbor798bl86tnecVu5zZm8P/vb9dVOku3G/zSnfnE3rj0uv+cYdK97Idlqt0H1plx0o3SeZc2fn9+8bchyvdJFk87o5K94jFnXPR3bf0nn3PTuecsdX9j1a6V4/rfPeSZO5t/6p05/9s00o3SbbZ++xKd/Jmr6l0b3xm5zuSJL9ffttKd8YWr650153zuUo3SRb9acVK9+rbZle6STJx+asq3cVPblzp/nqbWyrdJLn2mq0q3QPXu73SPWHwj0o3SWZc3Rmz+cDTvWff1/6iMxa72R6HVroT3tkZb0uSx/Z9caW75lueVenOOeR7lW6S3D7+05XunWv8qdJNkt9+78OV7tovu7jSfejeN1W6SfKqwX2V7odO+GGle92UzrkzSa562Z6V7n1DnfGtJJl9wLmV7r2f7tw7fGlCZ3wkSbZdvH+l+9AKf6h0h5/8RqWbJOc/90eV7rY3dn6jkuTzD/6s0j1tyicq3Vl3HFfpJsm7v79zpbvqN+6udK9e47WVbpJ84J8nVbpX77tdpZskG2SPSvf4b59V6X78hs54eJJs/dRPKt0fXn9Mpbtku10q3SR5bPXO+PKdy/TGMVb8RudZ17+eu3Wlu93qvXGMoz7w5kr3vsP+XOmu+2hvrtotm11W6e52zxcr3STZa3ZnHPiP53fGJ2df2xtTvevuD1a6M1Y4ttK98aLefPiHLuiMIz7n3b1xqDOf6oxDrXzz6ZXuhd87otJNkn0O6lwL/ONHpfkYd/Xmil7/oicq3Quv71zHJclj835R6U5Z6y2V7oVv6XST5MmPvarSff7bNql0X33VnZVukqx6+dcr3dU+0nu+c8nbOvMGr3iwcx+85tWddS5JMuuZ+1a6U57TufZcefqXK90k2fCyzr3DF8Z9t9JNkvsf/udSbw79j3sIrjDxybx23aU/P+ShBztj3Ukyc6/OON7vz/1VpXvb33pze26c/pdKd/CMwyvdJLn4t7tXun8/69BKd9tFned5SbL2ybtWuuu98EWV7l0z313p5v9i7z+jNasKtV33qVm5ioIiKTlniQYQBAkSJQgCEgQMBFEQRAVRUVBEERUUMCAKSJCkgiAiSZAoOUgUREDJGSpQ+fz4tufX3u18y13Pma2+dl0/V2Pda6ya7zveMfrovY8kxzzRuZZaab5jK90kuXCdzvqmmdd2nglteG1v/4Irl9y+0l19u8794k7PdsZqkuTvFz5U6Z782G2VbpLc+c1vV7rznfPNSvf8D5xe6SbJcXd37pEWntpZM3L2J2f/Wrr/2P/5ztjxY2/11smue/CRle6Ga3T2cvjL1Z258Ely+8mdvSNX3/CUSvecB3tzs6Ysd1ylO8+ozpyhJFnm82dVup/YuXNf8rEzFqt0k+Toxz9e6V77h6sr3T9e9r5KN0lePaKzRmmvk39R6SbJrI07z9Q3/EFnrsUNL3290k2SER84oNL9wK/vrnRvfXqTSjdJzpnQeaa+9lW9+fsrrdkZe5m+Tufa8/q5O8ebJKs/0HkO+f6DOt+RG37RebaZJH9Y8nOV7jM7dMbNkmTVYzrz9i6c2flef2PyQZVukmx15/aV7j6LdvaReM+tvXGMfY/rjCPO9WDvmA/5+g8r3QMnLlrprrR2b4+dZ9bszFl/9w86+32NurKz72CSHLFmZx30E0dVskmSLffq3GP/5LHOvjPP//ZLlW6SvHzLHyvd8befW+n+bNXnKt0kuXyDzrq4b5zfe3/emB0714if/ekjle6Fj99S6SbJ96d0PstjPvHzSvd7z/eeGx3++8613E/POKPSTZIXr7mq0j3v053nA/ve3Vv7++1zOmsDLk3nfLHC4Z155UmyygO7Vrq/2P6SSjdJvjdmp0r3I0d25gD98brOPn9JcvIt76l0J2/buV7e/OTeOuiXju6M9y130Ocq3ST5wQkHV7rbrN8ZU/3TaZtWukly64jOPhLvvn3ZSne9GzvzT5Pknvd35nAt9sZ8lW6S3DWhs87lnL06z2C2/Uznty9J5l18uUr3jS+8VOke8vsFK90k+c7XVqx0T1j3t5Vukpx/ZOcaI/nv9jeYNnGVPHfH7N9LbN31Os9kk+SBVTr7ff3o5s7chRXW7fwWJ8nIdMYpfjKtdz116OadvS1WuqTzvPDSFTvnxiRZdnJnzO1H7+2sQXpq3ZMr3ST5x4Gd+a03b71XpZskq07/WKW756+WqnQHjrqv0k2SC3fr7Euy29dXrnSf+mZv3+sT3tnZh/i8a3v7Au1y/VaV7pnf6Yxrbr1bb/+CG45cvtJd+vDOeXnpr/2t0k2SLZbtvF/tgV17zzjHbt/Zl/KSuTvnuPv36r0P5OCVzq90f7TrapXu90fcWOkmyVN7dq5fLtr9g5Vukrz72s46z9MHbq90P3D7/pVukpz9m87+Ewft+0yl+7PHems7VlukM6f6kjVm/7rs/zh/oXUr3Qce6Mwd2uB9nb1mk2SzWzvn5V1v7rzD5JJreu/J/evGnWdZ8+7w/ko3SS7crfMsefJXf1bp3ja2M26WJJ/crvPZ+MJFX6t037/tMpVukhz17c5nbtUfL1XpJslVm3S+f3fvdmKlu8zmne9Ikly2ZGeu6FMPddYsL/urNyvdJDnlbZ01bEe80ZtTtvzIzvObN3/bufYc+pmxlW6S/PjYzjOyVy/rfC6uerS3TmmBUUdXuudvcEilmySrztUZXx53euedcfOf2dvref3dn6h0P3dvZx7c4Rv+s9JNkqdv6eyXOG7T3rno3vU7e/ltf/SDle69P+q8+zdJjv55Zx7cmld03t914uGHVrpJssC3fljpXvLH3jvX3/nezhyt3U7u7CH9ib/13r39s9cXqXTHn9LZL3HBX3TmMCbJWwt33ld8zaqdfVyS5NxX7qp0x/xohUp3ix/29jva7YDO/tQPP9wZB971mt47Qj+2cWeu4Yem9fZU/OKOnfXs177ZOX9+4ZDOPWWSPHxuZ++1ZYe/VuluvNWdlW6S3P+TznrM0S/33n9429md+Sk7lfb23/V9vTWT//hZZ/+Liz/bea/bBT/sfS7uOXh4pTspvblhr359/k74x7/6r/7Xxsw7Ju/Zea3ZfDDJWi933hGfJLdtcWql+8O/dX6PX/t6b8+vj36+s17oJ4905gEkyfL/WLPS3ffnnXeuXz12fKWbJFud1VmHdMKNne/fMj/v/bbtOrTzvpYf7tJ5N2WSzDfs6Ur3V5/qvLftmrM6+0QkyW57dfYQOeF981a6X56vs3drkjx2aOcZ5917dPasSZKJ73yy0v3rtjtWuvN/dYdKN0m+e0Pn9++Tp+1Z6U5eefZfw/3H9udcV+nedNQnK90k2XfTMZXuV6/tjIttt+uHKt0kmeeOzn3u6lt1xlUO/VjvXVe3XdwZW7luzd689Ut26jwju+W5zv6D3zis8xwySTY4sbNP0ga/67wXfdGljqh0k2TFtTtzF57/zFcr3ST55audOdXH7fbpSnf3FXp7y/z82c414paf7Yw3rLV6Z9wlSe5bsnOP9uxLvfcT7TeiM6csT3bGYn+6Te/dsOc8dXmle9RnOr/XW36qt+fXFcM7e9nO91+O8f7v+Mc1nXGBrX7VeXazw6ze+1GWHtN5d84fn+1cu/zpN511cUnyh+M776Nb9p63Kt0kuf3N7SvdHZ5aqtJ9/4W9dYJ3/b4zjnHP8p1rjNOu6M0VXfu1zv6Do2b09uH/4GuduZfvuqqzv/8mv9y20k2Shx55odJ98i9/qXRHf733b/Gz6zrr7/80vjPvMkke26Kzf+RvR3T26Hxqrt5+OTv+vvOurW1Hd+Zn3XNeby30dqt09h886/beOt3LvtR5b9yxb4yqdE++pDem8+ADnXcSfOr6r1S6Wb3zt0uSR+fpzMnd45OdMfwkeXDu9Srdb5UO+emRnXfQJMnbb+ys77h1o8457qVtOmsDkmSRv1xR6Y78fmfORJLc+8vxle6EIzrzGH/+s94c8BdX/Emle9canfePHvpsbz3D3p/t3KNddGbvHXrDt+w8k5rV2UY6f1r/gk44ydnXdOYWvXZV5310+4zsvD82SaY/2Nk7eeu9e3sqDvnFhZXulfm/v3fv7DoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+HGRjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmBAODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAkGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYEA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDnBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMM+5/8x0OGzMqwkdNm+0FMnzJitjf/Y8rwFyrdcUPnq3SHDhtT6SbJqBFvVbpvvDaj0k2ScWPnqnTHlj5yU2Z2/o2TZIH55610pw0bXekOGTKk0k2SgRlDK90FFptV6SbJwMjxle6smQOV7vRhvb9fpk2tZKePnVjpjl1wZKWbJDNndr5/ozK20k2S1194qdIdM+J/dEnyv2346N7fb+Krr1W6846du9KdNWT2X8P9f82cXskOmdQ75lmzZla6U2d0znGzhg2vdJNk+NjStcCszudieiebJBk6snONMTC9+PcrXX9OmdC5Lho1T+fzliTDZ3XuS4aVzp+vlL4jSbLA2xeodKfMmlLpJr3vyfRxnXvsqf/qjDUkyZS3d+6Dp7/4fKU7Y0bneJNkxoTOMY9ZbKFKN0mmDu98lkcPdK6Xh0zr/UZNndE55hHDSuNQxc/yyBGde7SZo3vjGCNGz1PpDpne+S2ZOrV3jTEwrDPeMDBrUqU7bWZvrH3krNK15+TeZ3loOue5ISM63YHSuTNJps7qjPeNLQ29TJ/U+7cYNtfbK93Jk1+pdJNk5utPV7pjBjrnz7dG9cbkhs/q3KMNn2dypfvW1PGVbpKMGFe6d+899svM1ztjZ2OGdf4tRpbGipJk4qTOb/Zcc3eua2cO7TyPSpIZA52x2mlv9cYxJk3p/JbM27kMz6S3es+wZ43qfJanTS9duwzvzcd47Y0XK93hQ3vX+MOnd77bE2Y9V+kOK/79ZkzvXAuMHN35Nx42sjemM2Vy5zM3bIHevXve6Pz9hpeuMSa/1fntS5JZ6fxbjHijc5E4fdqzlW6STB/e+fsNGdG7Rpw1qfPZGDK1c86YNqw4T27IMpXumNFLVrqZ1fuNev7JznjDQvP0xsRfmjz7r+UG/l/8pD610IgccNhis+9g/i/L7XLKbG/+xz/H7FLpvuuu8yrdDec5uNJNkpE/+GilO9/eC1e6SXLfzT+udJfas/O86aMP/6PSTZKX112t0n3bRu+udFdc4NFKN0kW/nbn3+LVAzvPsZJkrWOWr3Rvf6Bzb/DbHXrf6yOnPVXpLjNlQqW7yCV/rHST5O7Jn6h0txy4odJNklX3HlXpPvL4CpXuxtN6c1q+uMpVle5Xn+zMLZ/3rdsq3STZa/TLle5pO15a6SbJuI2eqXRf/VLnfub+535T6SbJWyutXum+66LjK937Vty40k2S9d57ZaW70HJ3VrpJ8txvOuflSfN2ruVW2WLdSjdJlv5b51nWvyf+qtKdsdKalW6SjJu8QaX7hXd25mclyeMnd8b/31zjhEp3vnWOrnSTZOTAtZXu8/N0fq9n/er6SjdJnn3mmEp3lY0er3STZI0TD6l0Lzl7q0p36u968wC+NvGSSvfwBRasdI9cdodKN0nWG9XZP2GFF75S6SbJhIc76w4mT+08+x43aeVKN0mumPDrSnfBVzvPhZa+80OVbpI8+kzn2emNT19X6SbJDmM+XOm+a//O32+1Ce+qdJPkrj92vtfvXqzzjPrCdMZHkuRfF21X6b56b++66ILJ/6p0P/+2pSrdS6YcW+kmyeLv+lKlO3Ljz1a6bz93+0o3SWZt/kCl+9jyvXnr7zjpvZXu9Zf8tNL926u98/Kky+6tdH913Dsq3T1+13nOlSTfGnFhpXvvsxdUukmy9qf2rHTneb0zvvzCO75W6SbJP/51S6W74pKd88WKv32k0k2SS3bv3JccfsVPKt0kmfulzl48dy/fmUe15fSzKt0kOf+936t0j9nowUr3d9d3nrknyW+O78ybWG/P3mf5+KX+XulOeHzLSvelY39e6SbJLdstUunuc17nGuPHC71R6SbJeYd02vOe1ntW8uqenb/f6Ft2r3Qv+GBvPs2+N36j0n31mc7zqOVW2LfSTZJ5Fuj8Rn3ptocr3SRZavjis705eev/bi71K69MyHkXzv4xm08/3LtfnHDTRpXuqZt25rY+uEpvT8ODz+s8UzjomM55MUl+O3KfSne/mTdXuqN++ttKN0kWmrxWpbv/Dp05AMOO6fz2JMnrT59R6V6z9cWVbpIMPfvySvfODx1V6X52kW0q3ST59f7rV7r7rfHlSvc353bG2pLkuU1n/zqiJLn5Q7+vdJNkrns7c6h2uf5nle7Ty71Z6SbJKtd8rNJ99qTO/gVHfOxPlW6SHL9vZ27yA5d3fq+T5IvndY75pwOddZYjf39HpZsky2/R2UBkjUO+U+mud0lp/W2SHY6+uNJ9/OPnV7pJcsrPOuNiWzzaWddx+Gr7VbpJsv/ynfVPb9v+85XugXP19mh59rLO32/mjktUukly3z8785GO/soXK92ZX/tApZskD/2zs/5wnimd9T6nHbNJpZskh76zcy331om3VrpJcvBlnTmoKzzY+ftNm7hXpZsky6zQuZe6f1hnzvrLfzu90k2Sv1zQWXv/5WW+Xekmyce/2rn3e/CTnbWYr1x5UKWbJCf/YqNKd7MPHVDpvmOzT1W6SfLl1TrzAd+3W2/vyC3u7ewXvHo610Wn3Xx2pZskT2zZWUu053c718u/W+d9lW6SPHRLZ5727xdYs9JNkrP/2llzt+eC4yrd6bf13iV4xQ6dtXxP/quzrup3X+/M2UuSR0+4sdLd7R+z/9n0f2z4qc6Y3HvX6dxHXfHlzrO5JBl3cOc52gsnvFrp3n/eUZVuklx0wfsr3RNW3KzSTZK9P9TZL+BLO3fWHGxwSmefuCR59PqHKt219+k8N1py5z9Uukly6yc/WOkudU5v/v7B23XWEi21audddPdt0psnusc8nTV3N228a6V7x3WdubhJcttfjqx0Zy3TW1e1ykmdeXuv/uYLle71v+2NL9/zcue534TbLq50//i3znz1JJm2Y2c/xauv7u2HeeYfOu+TeN/1O1e6m33nI5Vukhx3dmdMZ9pznbnwmx7XWUeUJI9OubjSPfhrZ1S6SfKDJ3p7z/w3Fhz9VPZfdfaPbd76fGdPtSRZ/I+d8YQjD/9+pfvJP29R6SbJqr/u7Is35HudteRJcseOnb3glv/QE5XuFzft3TN+a7lzK92RG3Su3+c6p7dv+QtDN6x0d/725pVukuz0ZGdP+39c1Jkvs8hNT1S6STJi184eZfsd39n3+pG531bpJslvFums2X/48t615dEvds4ZfzjyW5XuKUM77xNLkjfWPLPSveWwznX2ztf17hk/OLkzJ2nc9p01W0ly87Wdd8PO/fbO+51mvtB5N0OSfPErnd+oD/2i8xu1wcje9fJJJ3f22DnlG53nTUmy0Xqd78n5B3XGbM78Z2ddY5JsdNbhle7+b+88Rz7ruOI7CG/pjJnOv81ylW6SXHvb3pXuySPuqXQ/t0Rn388k2eqznXdLfXGzzr/x9cd33jOXJBdP6Yw3XP7YoZVukqx4aOd9Lttd2lkz+fKTnfeCJcl5t3SefX9qw87+Iavs1VmjmyTbDO3sRXXj6Gsq3STZ+87HKt0Dlz650r1ro19Wukny69c7a0j/sHxn3vqUb9xX6SbJUQueU+k+dvH4SjdJ1vlL5/w5Y1hnf8d/Ltzbq3vDlTtzDE44ofO93vqAzh4HSXLt5M5zo9UXvK7STZLz/tTZ5+BjA533P632sd5zv7d2GV/pzthx0Ur3kqO+XukmyfXbdL5/X/r2epVukmw6/6aV7m++flqlu1VnqkWS5NqNO++WWvaGzjvX/z36wEo3ST7/k8441OtL9OYEXrNrZ1+3R97W2V/1knN774Kc8t7ONcbZ23b2Arn5is4a+SS5bHTnnY1nXHZSpZskOy3RWU/0wF3XVbpbTu6t89x/8uuV7isHdebNnn/F1ZVukky9qbM//CKnduZzJsnW4zrvGpl39877ipc4uPOeiiT52uGd+a2P7tGZ0zn8kM53JElGj+3sl3PN0tMr3SR5YbHO+/Mu3fy6SvevUzp7JyTJEQt0xnR2OamzLnyPyzrvaEqSgeMvqnSPuvg9lW6SfP7wj5fK/92zrqGTxmWee2f/Pj4fPuSy2d78jzsO64xLf+Xxzh7HK+7U2RcvSX5wcOf5zRo/763J2vbjnbGVpx7pjAW96xOzKt0k+cc8nfmR295Tei50Xu89Bhcue3Gl+5kTe9cmq1/d2cPgeyv/uNJd4ju9/Z6HbNBZh3vTzM5cwztO7Vw/JMkhv7u/0v3Xmr1rk4mPde4NTv9oZ5+diSv3xug/P6WzBuqEuzr3Bi9t3fu9nrZiZ+7Qt+brPa9f+oDOXhEn/GZUpfu+D3bO90ly6OGdcc3lV+jMLb9/1GuVbpKc/ZvOPnPXb3BIpZsku0zr7IfzidW2rnQPXfeuSjdJ8q/Oefk33+/89j02sFClmyTHf71zjXHB6b1x6d3u6Owt8+2lOvsvXfD73jskD3r91Ep37ls7ezHue25v/7qfHnpcpbvrRlMr3SSZtktnb8pjlu/s4/7s3r31v1v/qbMv5U6Hd94N+6nlOuPoSfLT+TvrdM+c3pnTkiRP79PZm+ulr3bmJN1/Sm8f9yUP69xLjdu9s8762rl7Y3K37/vxSneLb3au45Lk9Bs641C/Xbrzvf7TTc9XuknywA8698G3ndzZL//yf/+10k2SM+7rvEfh6Q/13ju2x+7LVroPXtXZF++I73TuVZNk3S+/s9JdYtnOWui95v13pZskQzfprBNc/4u99UTzTO1MJP7zilMq3ft/27mnTJKr7rmz0l3i1s513IZv6z03+u3Rn6t0H15lqUo3SW7a5dpKd7nVjqh0D92ot6/GUt/o/P4N+0NnDvHHbu50k+QHC3bGt/58cm9+69Vf7czR+tvCne6IPTvvoEmSgamd9QGT3uzsMb7+NztjRUny7JHrVLpfv+WMSjdJfvDrzp4dGy7VWZsz/7DOGH6S/PDZznlunXs718u/eU9n/WGSrPmvzr42X5uv9z7PQ97ROebtLlqq0r1i8c5+K0my4cadcYwrduq8p3CHWZ17kiQZ9anOuwNOGnd5pZskt2+/fKV7/P/DKa73NjkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+D/IwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gQDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmBAODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAkGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDPuf/MdDB4ZnnlELzfaDGDpz2mxv/sfIIZMr3RlvdboDw8dWukny2qtDKt155hpf6SbJ0P/ZR/R/3/BOd9SQmZVukkybOrTSnTqr81keMbH0t0sydcTwSnfU+OmVbpLMyjyV7szhMyrdkTM73f/V7vz9pgwZWelOf7GSTZIMnbtzXn5roHcuGjt+rkp3oHOKy6yZve/1XGM7v9nDx4+qdCe/NqXSTZIRIzt/wBkZqHSTZMSkTntgeOffeXpGVLpJMuutzrX468+/XOnOs8z8lW6STJ3a+bcYNXx0pZskE16YVOmOXnDuSndg1tRKN0mmj1mg0p0xqvO5mPvFWZVuksx8481Kd/r8nd+oJBkxqnNenvrma5VuxvTud6Y//XSlO/X1zjX+kKGd81CSjBzXOReNHN77XR0YPb7SnTWsc/6cNr14Xp7QOX8OHdW5v541vXftOWVm5xpx+NDOb9//anfuK2eMHlPpjpzQu/ebOaV0LVe6dxgY6F17zpj6WqU7dMS4SjdJps7onOdGDe185mZO6927T5tWuvd7eWKlO3xU71nJ0IkTKt1Rw3qf5ZkzOsec0pjqyBG9a8QhMzrXiNOndca3hg68VekmyfSpnb/flKmd50ZJMm6+zrjOtNc657iZA73r5WHpfOZmTe38lkwpjtVmSOd+9a1pve/f6JGda4HpM0rPHYZ1zhdJMrT03G/ErM49ybRJvXPcsLGdsbOhU3rjGNNmdv49Ro4cX+kOK87HmDKtM94wpHTMM6f27oNHjRtf6c58qTc3bOiszrloWmkYeOio3md5YFppDsLQzrloyJDOPWWSTH3tlUp35uTeZ/mN6aX7ktGdf+fRU3vPjRYaP1+lO2ruzvlzWnFuytgxpWvPSZ3zRZLMGtJo//fNBR+clU+vOfv/HR9/cofZ3vyP/T85vtJ9bv1LKt2/TVm80k2SZw5/qtJdYr2bK90kWXbGbpXuXGd0xtyO/dD3Kt0kee8ZB1W6Fy47+9cyJMklv7+30k2SFxb9dKX7to16zxUGjvxjpbv1G++qdH/yob9Xuknyrkc71/CT3v6XSndg4i6VbpKMO+PVSve886+udJNkhdsWrHTX2eYPle6FF32g0k2Shc/qPMt6/Z+rVLpLb/9EpZskj037RaX7j5curHST5NkHO9dFd665SKU79puPVbpJssaBl1e6Z73SGQxaY+VbK90kefrWzvdv2DnfqnSTZOLiP+l0N9qz0t3glqMr3SSZ9tXOOf/6Uz9X6X78oZMr3ST5/ZIHVrp3T/9lpZskCx+waaX7zBt3VLpnLHhGpZskjz/Wma+2xDZPVLorz/tIpZskRy72eqX70kbbVLpJMuqUn1W6S3181Up3yR3eXekmyQ2/OKDSfeGAByrdX/cuPfPQuzr/FmMf7VyHJ8n8K3fWYAx8+qFK99o7F610k+S1pTtzfCbP27n2fGa7H1e6SfLFK2+vdH+/8hWVbpJcfPpXK91Fckalu/YL61W6SXL0Nb+qdG/asjNXZsm7Pl/pJsmrGz5f6S7w42cq3SQ59Zud5wP33H92pfvKvJ3n00ly00BnTuCLt3+m0l3/nZ3fviQZM/mTle6bz3yn0k2S+f/YeVby4oTlKt31h9xT6SbJyzt0noGO+17nevmJeS+udJNktxs63+v3vXlMpZskr4w+s9J988+d5+6PzeqtRxn/xU0q3QnDOmMCy3+n9zz4n0/9s9Jd9sntKt0kuW7rztqqpxbprFN6YadKNkmy+y0fqXSvfnqfSvd9C75U6SbJvsffUunOd1pnDDhJvr7UspXuQU9fWekuvl3nmXuSzDd6+Up38gKdZxoLrn1ipZskS9xzXaV7y4TeZ/mXC3ee+x07tvP32/yMj1a6SfLvlX9b6b5jVOc++L7zj690k+TJ9Upzw477UKWbJLt+YvaPF8146b+bbzb+tUWzw8XHzuajSeZ964XZ3vyPxU5buNL93vT3VrozLl2p0k2SVYYdV+n+ftl9K90k+ctDnT1Fd1t5y0p3yy169xuLPb1YpftIac3wd/bsXZfcd8bXKt2ffqUzZzZJFvzWrpXuEju8VulOXvamSjdJJuz+p0p32ec6e4oud/h3K90kWfQbnblZ3xo4tdJNkvtv2LnS/fHHO3uUPXh2b/7+pyd15l0u82pnbtbPFr670k2S3T/0pUp3uxefq3ST5KGfnlPp3ndd5xnkXivtX+kmyb9u6NzLfOUXnbmRFwztrNdPkt882Fm/Nu6p0ob2Scbe3lmnPuKczrPCTQ/s3e8883JnPflPF7is0v3CIp3nNkny3L2dOc/nz31RpZsknz7s4Ur3tF3fWeleOL2zdi1JdphxaKW73PK/q3S3fq4zzyJJvvHUBpXuMw907imTZOC6zpz1G/7w5Up32XffUOkmyaNPdcZeRh92WKW77D7jK90k2Xe/zryhYbf01uh+6TsbVrqfOnPvSveqd3SeByXJ+Sd15iMd/u7OtecLO3fuz5Jk2vydZzfbX79WpZskRz7SWefyl9s6v9c7Xv6PSjdJ1vhZZ1+u91/ceb7z1oTeu1E+u/jFle63Ttqi0k2SRw74c6V76kvvqXSX36nTTZLTjuo8n7vnI3dWul878veVbpJc997NK93rz+rMzUqSs3borLG+5UO/rnT3Wm+FSjdJ1t25s/fuC1/pzKF6z6zOfmBJcsDanTVK136+t1f3iectUemecMBvKt2v39Fbe7/g5M7+dvvf1NkDa/F9e/smv7D5jpXujHM6aw+TZJUF5610t93865Xuit+9q9JNkjsvOr3S3WSTz1a6Uzdfp9JNkh1W+Hal+/tXvl/pJsmv1uuMXX93tWcr3XW+13tPzF9u6axL3X+XzvOoI47oPI9Kknn+2tnf+PWTO+eLJNl+VOe+8pDr31fpvufW3nrlZb7amQP0hRc78wTm/nbvemvKkp3xrUvP7Ox7kSRPL/BErf3fmHf4tOy80Oz///ekR3rrLFd5onPPePnOR1S6l5TGu5PkoA927r8e3uIrlW6SzL1U5/y42WNrVLrvmtF5pp4kBw7rXKet+rvOHh8fGNr7t9hnrSMr3bGzvlHpJsmui99f6a5+6zsq3fVf2L7STZLbjuzs8/HG2Esr3e0+/2KlmySv/7gzh3jzYYdXuklyxJCfVrrPH98Z11x92Tcq3SS5bXJnTu46nWlfefPJ3prTJT/YeRby9b+W3t+aZIsjrql0l7q3s6fvYQf33sd473md/Qvuvetzle4Vl3a6SfLZ0nalq+7a2wf18KM67zR6fd23V7rbPNx7H8juh3XeQfjBJzp7Zjx5b29tx8Cozjnu1pU654skefeCa1a6I4/pPFP/wdyd/cmS5OA9O+OP+612caW7y0u9TXYmHtmZK7rMyb09ribe0dnbYtWvdd41d+d77ql0k+TVL3aefZ84pTPGO/LPnfv2JLlwm84amq3u6cyzT5JHj+jsg3rIq53PxfJr9sZ0Flqv81xvjwuXqnS/9LHOPO0k+fKinfcUXvnzztqOJHnkzB9Vuu8et3al+5m/9/YK/t1pq3W6H+lcu/xzvxsr3SRZYq7OntpXfKu3P+66d3bmJL2y61GV7rMf7XST5OI7OusO5jtjTKX72a913rGVJPcd29n7aeShnedGSbLySZ3z3PhNO/clF3y6t3fXw//uXONftEVnncThK/berbHCOp3x5S0/8GSlmySrX9p57v7ZrUvvXDnjuko3SX71rc4+qGM3/WGl+66/dt5RmCTrL9KZ2zB5bHHvrtM617WXXNZZJz/6mz+sdJNk+Oad8dpj73+w0v3M93rXnp+5v/N8YOCVTjdJNvnWxZ3usM7coivn7a3z/NzEzpzOYVt25k0suUDvPTG/W7KzBuP5eXrHvNhXPlHprntgZ+xsyM3XV7pJcsmLne/fDvN29iW65KreO9mvXLHz3O8Pm5xX6SbJTqOurbX/GxOmvZobn539L3y8bbnO3uFJ8r75O+2jvtDZJ+m+HTvvNkySsY88Uel+fHpnjClJDj3u/ZXuWtd31sc8sE9vLOi+m/eqdBf5W+f+a/6nOutukuT5bTr7Ue39zs664SQ56u+d5wpfevVtle6P3tV7t+jE2zq/bQts19lj/LaHeuPS11zVeb/TkH935sAlyfKHdvZZ/fCinTGblT72w0o3SVbd+wuV7sordfbmOvOOCyrdJHn0y515jB/9TuddB0ly7JjO++cX2HGhSvfdD+9X6SbJr4/tvDdx97M6c5KW27Wz/iJJ7vnObZXu8Cm9a4zF5u88r1/o1537nW/9rfPO4CSZ++zO9eeUb3b2tlhlid4zlh3T+SyfeFtnj9Uk+f6VW1W6W7z7F5Xunsf09nN4+ymdOdX7XP2pSveuD3Te55Iku+3TWfdz1ejO5yJJ1nrX45XurZ//a6U79u7eHrnfPfzDle6ImzpjvFff23uO/KuvdObhHH1LZz51kjz41sGV7tiVNqp0/3hdbx/+t8Z33qf5+AGfq3Tv/2ZnXXGSHHTcWZXu88t27qOS5C8Hde4rP/z3oyrdHzz3QKWbJKPfGqh0b7qr81zvr//szCdLkj1Xe6LSvfGAzvyCJHn00M79ztU7dvaZW2Du3jv0fvSlzvzIF5/8YKX7/G2999E98UxnTGe+hzr3lEny8lfPr3T3/FbnnbcX339KpZskG3+1s5f0uht19jje5qI3K90k+dGNnX3c7/hKbxzxok903ml2zuWdeXAzz16/0k2SA5ft/DsfdV5n7+vbh9xS6SbJ5AM772A7afveOxDvXKWzHuXOd3fmqk1+qbf+95P7dr7XH92hM/Yyz46d58xJcuDGnc/FuT97otJNkl1L57lNxj9U6Y59tneNuMm8R1W6+x3aeafLhlN77xO8b+/OHvGPLvPvSjdJxi/cmat90T6d39VNT+rNe97znM58ts/e2nkf5D2rb1vpJsmkf3Sew3z9vs7z/CS5+ued99D8P+mMegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/2EGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYEA4N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgY7AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDnBwGAfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMCQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gQDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxg2P/kPx7IkIwZMnq2H8TAmImzvfkfU2ctUumOmTJQ6c4cmKvSTZJ5xg2pdMdmXKWbJLOGT610hw55q9Md2vlcJMn06Z1jHj3qf3Qa+N82c+yYSjdJRg3v/Fu88cqISjdJxswzvdIdMb3zvZ42c0almyTT5ukc88h0vn9T3uqch5Jk+pvDK90x8/bORa8/1/n3mGvhoZXukFHjK90kGT7wRqU7fWBCpTtm3nkq3SSZPLFzzLM6p4skyYzRnXP+6JGd39XhMzrniySZNm1KpTvv2zqfuekTOtcBSTJ8SudcNHnqK5VukowY17nmGjajcy3w5oTO5y1Jho3qtGdM7Jwvhozr3fsNL13jD3tzWqWbJDNndf5+MyfOqnTzVue3L0lmtP4tBjr3JFOmTap0k2T0lM5vycwZxc/ypM718vChne7Y4SMr3SR5c665K90Zr75Z6Y5eoHe9PGboApXurAm979/U0hjXsNL45NSByZVukkx99eVKd+SC4zvdUb3xrZnDFq10J73yaqWbJLNKlwJTpnc+cyOG9G6Eh4/r/GOMGTu+0n1rYm98cth8pfvVKb1xxGlTS/fCE2dWsgMjxla6STJsymuV7pCBznXR9BG9z/LYwjPbJMmYzuciSSZNLI2pli7x5xrW+12d8nrnGmPI8M5z29FjO/eUSTJ1VmlMfNS8lW6SzJjauRaf/GbnczFtWO/fYsTIzvXLmOGlC7m5e3Mb5hnWOebJA717v8lvdu79RpWGziYWn9sOHdN5PjCz1B3eug5IMmNm53s9vHeJmGnTOtcvMyZ1ujOnl85xSUaUnoHOeKNz7z555ouVbpLMmPJspTts+sKVbpJMeqtzzFOmdj7L88zT+ywvsORSle70IZ1rgc7Z/n+ZMuX1SnfW8N5z2yFTGvMb/vvfp4GZkzNq0r2z8Vj+l2NW7jwHSZKHN+/8cN53VWfuybGrr17pJsk/n3lbpfvWUg9WukmywIq3VrpXb7xMpbvE85dVukkyfqk/Vrrj7lmy0t3wHb3PxZn3/7XSPecbvfukF9d7R6V7zAW3V7p7Tlu50k2S8QPPV7q/mm/DSvcPV+1V6SZJ7uqcM/Z54+OVbpJMvuTGSnf6Pz9d6U5erXNfkCQvX9m5Z3x2/a0q3aNvu6TSTZIbR+xQ6S677R8q3ST5/Q1HVrrjJ1xR6W58/pqVbpI8PPfale5Kt99Q6f7t6t4Y/b8+vUKlu/LPV6p0k+S5K5+udDd6pDOn7NARL1W6SbL2Df+udD/84ccq3Seu/2almyQ7rf75Sveah8+rdJNkgbW+X+leME9n/HHTe1asdJNkytDO6Ng8ly1W6T7y1tKVbpLcPvquSne51w+udJPksoU/W+neen3nPurGNTv3lEmy7Bp3Vrpjbu9cL09Mb53Z1q+fX+kePbW3BmPjJ35S6W57TWdMbtX37l/pJsl1Ezvt99/2XKX71w/0xpdnvbpGpTt+5e0q3SSZMeyBSnfSL8dXuj9c6KeVbpKsv01nTueYKbtWupPG9da8zvPk45Xu0hf0rvG3eOzmSve3m3680t3p/N7zgVfn74xP/qA0b+/fn+j89iXJjtfcU+m+Y9+1Kt0kufVPy1a6P1ut8wxt6N9HVbpJcu0XL6x0l3x/57fvtXt76wQPXWjbSveYD/ee2945V+fe/fpLOvNbJ+yyQaWbJDddfXWl+6mNOuOTT53cmTeUJG9M7YxDXfWj31e6SbLV246qdIdMu6DS/ccBvXv3kWM757nP7dF5pvHndXrrlBb99Zcr3W++o3e/+ujKv6x03/jbqpXu469dW+kmyejSXgQLvtBZm/P724+udJPkkiXPqHSHTO+s5UuSEyZ1npW8uNBJle6Io5+pdJNkg59sXum+vMdHKt3FXurMmUiSZ687s9K9dLVtKt0keehbs//e/cP/5ezy0dPvzcovzP55sz/52PKzvfkfd+Z3le6JZ+xS6X74h/tVuklyyWL3VLrvXbo37/++8/9W6Q7bsXOP+8d/nV3pJsnElzrrLL998G8q3T/fO3+lmyRXHt8Z07zg48dVukny7Xd/otI9aJktK92rV+nNRzrj551NF9Z9uDPnebGZnbkhSbLiJ++odDdZonct9cF3d9pHHtpZczDktd490u7LddadPrXFqZXuhuc+VOkmyTbLde5xv3pgb+/B0X/vjJfe92BnbehZd3T2bU2SY9b+Vye8fee5zdFjO2PoSfLqfqX3Bnyg96xw3dUeqXQP26TzHXlhoLeP35lHd+asz1r4XZXuXts/Wekmyb5LdfYAP+7Yf1S6SfLQ8537yitPfk+lu+p7j6p0k+T+uzpzI3fdfL5Kd9pKV1W6SbLr07+qdBfeuLfX8343d9YGPPX3zjO9rc55e6WbJJvt975K962pnTmX9/71W5Vuknxp6h6V7mFDO8/dkmTGl2+qdN/zpc499lGn9fZhvGnkPpXu8V89pdK95QP7VrpJssAanXP+myM613FJMt9DnTG5sQd11hU/fcf1lW6SHHBZ5371pNVPrHTPOfEvlW6SnHRs5/n0Ez+5rtJNkkWv+UCle8ydnTGBew7qzCtPkmeWXaXSPXmtzvjWrld29nBJkh+ucUulO+LUoyrdJNnj4KUq3VeX7KwFe3busyrdJNng6s47oH658LGV7qdv6I3JnfDodZXu71fuzLlMkkmf6aw33++5zjjGXLsfWOkmyU23/6LSXfnIzt52K2z2RKWbJJdN6ozJjX5H5z44SX7/086Y+JM/6IxD7fvNzjy1JLl7jR9VunON6IwJjNu2t6b/J9t0rsVvOvXySjdJjvliZ++So9YZX+nudN19lW6SfHRY57p2xq87c4sGTurM5UyShZ7t7FX1g12/VOkmyXO3HV/pfv60zvy7S1/s7YmyyDUfr3T/8npnz9il9j200k2SpSZ13iv8th17zwfev1Nnbc5H3vnf/e89ODJZY5nZv9Z56UV673ye66DOfKeFt/5KpbvQ2Z+pdJNk/CX/5R/+/4eZX+vNoxp7aGdvi9+f0Tmf/+29nXNjkvzhnM4cgxUO/3qlO2SjzvVDkqz/w6Uq3V3vPr3STZKP7N7Z6/nOT+1Z6Z68cOf5dJJ8cv4fV7rzDFxa6Z504kWVbpKcdUtnfcAiB/T2SNrnT50xm7sv7+yFc836W1e6SXLLVZ17xpu3/VCle/m4dSrdJHntor0r3T1v6z2vv+yLx1S6b7urMyfpS+/v7XG158XfrnQfOKYzV+3vH+69t22PxztzFzY45oxKN0lu+OLESveWFzt7iu79zd6cpC1P6aynXf/EH1a6N2z67ko3Sc479oeV7rOvdubAJcnVH+jsXXfFpp3v9ZbTF6x0k2SLBzp7OYxaqrN+dPOLe3NFX7/jsEp36LkfrHSTZO1nN6t0/zS+c721+m6dz0WS3Hl2Z53ulF0+XulO2Kzzb5wkd356fKV76eqdvcWT5PNHds6fU//YuV/d8le9/b4OPG5ypfunGw+odDc6oTOfOkk2XnLjSvfrh/XGoaY+39lv9sQPrVnpbnZR792wO2/eud5a5Py7K90VZ3280k2S7z11ZaW76P69uQu3rd6Z47Phdp19dw84pbdfzk2/6OxFdc8Znb3PHv1Kb83ruV/pjJGMeF/nty9JPrjXNyrdA57t7IO1/v69d4RO2q7Tnm/jzv7U4zbvXLskyRPLdvbnvGOt71W6SbLIVzvvRtl4985neYdnOvMBk+TNMzvrto7a6+RKd9GxnXWNSTLyfZ33x77vX719y1+c1ZmPseP4zj3a4r/rzQHf77nOtdxqy3be+7DPEr3x5Yff8d5K9y8jPlXpJskFN3bWNo7YrLM/9cjl/lzpJsnjB99W6a7yh846ie+nsydYknx5rs4+xH86rbee6IUVOvsSnb7aa5XuWn/uvKciSX61XGd9x5rzdfb2n7l/bw/3797eGe+79le95wM3b3Vdrf3fWHbBoblg//GzvfvE5p05EUny5Y06z76XWblzPn/zlc7+7ElyxDrXVLrbvqsz7ytJFtl6gUp3n60681u/8oWdKt0kOeQXh1S6651yf6X7g32+UOkmyY3HdtY3XT29Mx8+SZ58T+c3aPldOp+Lb6zSu7Y85pjOngBrP9wZI9xm+EGVbpI8c2nneeGzL/T2Lr9oq6cr3a0v6ZzvHxra2XMhSe7+97OV7nnrb1TpHvGN3rPT5Y9ev9LdbIXeerBh93TWJI9bs7T/0u2dd40kyc8X7zwjm3R+Z679n5bqvb984J7OnlH7vf7PSjdJTt3p4Up3keM6Y247H9bbx/3c7TrrMfc75geV7slb9tbcjfly577k1p89UekmyWkf6Jw/3/OXRyvdL5zcm7tw3Fmd9WDnv+Nnle5nL1+p0k2SFyYuVekuf/PPK90k2efczrjOl1fuzC//6Z13VbpJsu9xnWvxvffufOYuf2vlSjdJFj+yMx9+qZ1uqHST5LxpnXkcb47qvBPkQyv19nH/6hWd/SN3/mFn/do7H++9g+2luZesdL98QGedRJJ8ZHJnj+Pbhn200h37lc67wZLk7Ut29mzb82edPWJeumt6pZskEz/Yud+5ZPMfVrpJ8rElOs+kPn389pXuo6esXekmycC6nfmR807q7J387C976/o/u3NnvtO6kzatdJNkj+M78xi/elhnnfUyS+5e6SbJi8+8UOkeceHHKt25vtl5N1GSnPvnzvys3zzfG5O74R2d36lPfrzz3GGhC3trc3YZfWSl++LZC1e6fx1xT6WbJKuP7XxPHtmxtxfI9l/qnIs+f9TOle7JIzvvYk2S8Zd07ne+en1n/dorD/T2m314s846s6dW7TwbT5Ll3tfZM3ipUZ25Aosd/cNKN0luW60zdvbYYqtVunt8pLO/XZKcuvK9le4pY3prMB4+t7Nu5Bfv3aDSHX5ub87gXzborMfc8Ued9xMt/+qvK90kWfQLnTmfE0/r7IOVJPf9u3Nfktz6f/s/7YyaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/YQYG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE4wMNgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzgoHBPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBMMDPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGCwDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5gQDg30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBjsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOcHAYB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwJBgb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgTjAw2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOCgcE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYEwwM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJxgYLAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmBAODfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCcYGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAkGBvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBOMDDYBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4KBwT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgTDAz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnGBgsA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYEw/4n//GQJCOGzv6DGDuw8OyP/l/eHDa90p1r5JuV7rRhnW6SjHhjwUp3wqTnK90kWWzVpSrdoVNHVrqTM7XSTZLpk2ZUumPmHVXpznxzVqWbJNNHDlS6c02rZJMkI1+dWem+NmJypTswpHCy/7+Mmjmm0h0yfGKlO23qlEo3SeYaNrzSnfJy53ORJPPNP1elO3Vy5ws4c9oLlW6SDBs1vtKd9eaQSnfGsN5necTwzjlj1tDOdVySTH2l8z2ZnrGVbkZ0fkeSZMZbnfPn0HnGV7qvvDyp0k2SccM6n4uR4xaodJMkE16uZKfNNW+lO3pG71w0Y6BzLpo+s3NenjWx891LkknDRle6o0Z2rl2SZNrkzr/HW2++VukOzOjd+82a2bkuGjGmcx03fv7FK90kmTXlpU53WmdMIEmGL9i5X506UPotmdm7dxj1Vuf6ZdZCpeutWb1BgWkzOmMkr016tdJNkvkWWLTSnTzlrUp32PDe93rU3J3f1VkzOvc7M3o/15n+dGcceMjw/9Fjiv+RsXN1xj6nTuycM6bN6p2Xhw/MV+kOGdK5Xs7U3r3fkNL3b9RcnfNFkkx7q/P7N3xM55hnzOzd7wwbM6LSnTCp85kbM3x8pZskKd2vvvVG7+83a2TnN3vuBTvjGDOm9cYnR40eV+nOmPpipfvW9N741pDhnedGM6Z1xs2SZPTw+SvdGUM6Y2dj5uo995sxvXO9NWtE5xpx5lu9MZ0J6fw7D6T33H3kkM69++QZEyrdEW/vnDuTZMxA5xpj0qTSvcOI3n3wiHT+ftNndM73STIw0DlnzBrX6Q55tfesZOqEf1e6w0Z1zp9TnivdUyYZO2yxSndi6TuSJEOmdOYNzj135/nAfKNXrnSTZMb0eSrdMcM799dvTu08z0iSWTNK9+6zegOJAyNn/zjUkP8Xc9lGLzCQ1faY/dcRs+5YcbY3/+P0Y+6sdJdcvnNuHLr0vyrdJFn7b53zwQKLPVHpJsm1L+5V6a76aOdcc9o/T6x0k+Sf6y9f6S457axKd9L961S6SbLRHn+pdKede0ilmyTDpv+00p1ycGf8cdvfzV3pJskDb3aOea1lO+e4udY4uNJNkmv/umyle/cWZ1a6SXLdcp1z0TF/OK3SnWtS55lekkz96D6V7uLjzq50L17pqUo3SeZ9rTN+PN9VnTU/SXLgfD+odB8/snNvsMn0zr1okrz/l7+pdB88fLdKd4EnO+eLJHny/kcr3SWGfbDSTZK33/hYpTtxYP1Kd6utTq10k2TMMqtWurfev2ml+/eRnWvaJPnd8Fcq3WXnWqHSTZI7b1qt0l32VxdUupf+tvMdSZIJ93WeZZ0573sq3TVfOqrSTZL5N+qMvdzz3cMq3STJh66sZEeN7dw7LDrtuUo3SR7+Vee50EuXdu6v39ypkk2SjFy/M0ayxCr3VLpJcs+s3Svdie/pjNUuNbM3pnP2M52/33vWebLSXfz6hyvdJDlwiZUq3SWn/K3STZLVv9ZZD738OzvXRTO/0Lt3eHTJfSvdWfPuUuk+Pv3iSjdJJiz4WqU79MLemuW7x91b6U66sDOm8/penbVgSTL15HdVulu+szNX9P4vblTpJsmZn+qc80ed2Jvr+6fFvlLp7vjQUZXupVv35ke+9OS1le6Ri3a+I79+sbdO8J0Dt1a6j3z/kUo3SRZaozNeu+sxy1W6y65+f6WbJCfe0JnHeMvcd1W6Sz58d6WbJP9++yWV7uvjflvpJsk1D5xX6c5Y+7OV7nMnduY2JMmOP16i0j1/6c785KXO7e2peO3xnXGoWef0ng/cc9N2le5OR3fG2me9vl6lmyQTf9B5bvT2pRapdF+7/sJKN0l2HtL5+z22dG9/0FWf6ox9/nK9zrPxj/+ls8dBkrxRWrO8yS2dufZzzbdupZsk739nZz3D40ftV+kmyT0nzP4xuUmn/nfzPV+ZtXTOn/H92Xw0yQMr7j/bm/9x/TZLVrrz7fTjSveKe75Z6SbJv5c8udLddVbn3yJJ3nZLZ1xsnb3fV+leNL03DvTYWZ3fiUc+3blHOmZGb3/VWTPPrXSXXO+XlW6SHHTydyrdgUc+Uum+Y+pFlW6S7LH+ZyrdE27vXLt/8NqtK90kufSWzlyLw5/t7Stz/Eqd+dTvOqWznvUjB21U6SbJ754rrdU7vXMuWm653r3z6185vNJ99tWDKt0kWemOX1W6C3xii0r3Y9/tjPsnybve3Xmm9+Sud1S6H3tv53yfJJPu6Tyrn/fqEyrdJJn1+n2V7nc/8YdK96lP9tYIjn3oHZXunUfdUuk+eHjv3mFg+86zin3e6D1TuPemzt4I047drNK99wOdfYyS5NuTv1fp7rXoOZXuF57vfEeSZPMZj1e63377dyvdJLnp7Ksq3d+ee2Cle/zind++JNl+n84+H1ev1fmObHx5b0/RyYu+rdK97LbeZ/mUf3aegwz/2E2V7tpvfLTSTZKp63fmOq2/S2cfsdWO2rjSTZKr9+zsAX7zoxtWuknysfs7n7mfjv5SpTt6yU0q3STZ8qI9Kt17frFrpfu5CZ1nO0ny7VMvq3R/skdnbk+SPDd9m0r30l931t5/5uXOPLUkuXfyKZXuRaOXqXRXf633e/3iLzqLtn48vLcnypan/6PSnXFLZ6+On2754Uo3SRaerzNn/Y8H3VPpfv+53p6iM7/7k0r3iG0/VukmybMXdNYpfXjWg5Xu3tdXskmSh5/foNJ9aavO9dYit79e6SbJjh/tXHse/npvPuC/S3PrRr/QmWf/2dVuqHST5IxzO++o33D7zvO5u4/pvOcgST64wfsr3RlvdNZXJ8nV9+9d6V6yVue5+36jO/NHkuRLEzrP0Zba7N2V7rp/6sxlS5LhZz5R6T5y/Z8q3SRZ732d8/Lpw4+rdB/4TW9dzoh5OmvBPnn3tyrd9/+1002S3W97e6X73OjNK90k2fO5zjjGf2u+ZyZn12/O/uuTyet31lYkycqTtq90Z33viUr3xns693VJsu++t1W6a7/t6Uo3SXa+ovMsa9EFO88VVljw55Vukgy5472V7gJ3X17p3v2vzt49SbLsA52x2Ke+9LVKN0lWfOgLle5q63WeCy3/i4sr3ST51MWdcc2l7luo0n1o594eLQevvVGle9ffOvPhk2TVxbesdHc7r/Mb9fPrPlnpJsm3/9HZH/f0ZTp7XT500kmVbpKs+kRnzG3i5/5c6SbJJR/s7CW25a6d35LHtt2z0k2SY2/szOO44epOd72/9+ZxbH1j5/plwku9tb3/2ugDle4h31uz0t15bG8s7/AbO79Rt67WWRvwk2N757ivfrwz9+T1fx9f6SbJK+d1rrnOeK6zNuDYR3t7JH19j87auC0e/nyl+9xxvfUoK+x1XaV7wEDvHZLfm7tzXt7+2s77k/d+qrN3T5Jss/vSle5ef+7sNXvoFd+odJNk6jyd53onXtjZRyxJHl6v8/cbdl1n7Oyaz3TGBJJkxuKdsc9NH+jsf7HyO+6pdJPkzCM7c4dWO7+z12WSzHzo0kr30i93zkU3fuSZSjdJvrJ4Z63S07t33i21/wa936ifHfJapbvRjp3r8CQ5+iedc8a9P+6Mna3y28mVbpK8slNnX4YTOz992XnIpzvhJKOe6uwBPv6s3rz1107vjBft8emrK91NFu2ssU6Se+btvDdgxA/+Xukue1tnT6IkuWH7znjRwlf8tdJNkpO+11mDscLRnXu/3b7S+11d67LONcb5N3b+fne/1pvb8Jn1OmPXn7mk9y7P56d05qt9/3ud8/3XVuo965r4cun8+WznN2r5PY6sdJPk1ClfrXQ/8/0nKt0kuXf7zjXi5ft13pmz3RadffKT5It3dPa1ueywznq+U+ftjKcmyd5zd/ZEn3fz3v7Gty59XaV7w2ad9/JNva83pvrpD3TGdCb+vfP+teuP6I3Vfu6JsZXuikf09pK48dLxtfZ/47m8nO/OOH22dz83pTf+MWbrzt/n8LU7z/UuPuxDlW6SLPvjbSvdL5TWwCfJbxfqrHW+/O2d++etn+vM006Sebb6RaX7yi4HVLpnnN57p8rDG3TuGb/15d5+Kpcs09kz+NprOu9q+fHne+8WffOtzh6rW1/dWfc9be8vV7pJsvqpnXP+5658oNJNkuN+1JlTfcyPO3uhvm/+zly1JLny2s77Kp7+ZmeMcL2Xent0jrmqM3fojWt65+WhJ3fW7f9r5c46l0Wu6syHT5Kh129f6V47pvO9/tZavfUon/5XZx/3qR/p7AOeJKc+2dkLfIkr1q50p67Zm2v4/ONrVbpv7NCZe7L4B3vzZuea75pK99rdrqh0k+QTL3b2e756uc675g7bpDN2nCRn39dZA//GZztj/5NP6K1nOP3zh1a6R/+7c45LkiUv6qzBWOuIzv3Oth/vvatp8h86635u3rTzDqFPnflypZsko+7vXNcedk9n79YkeelnnTXnW+9xcaW7ye4TK90kmf+Q+SrdM8Z0xl6WWuehSjdJ9tqv871eekJnj84kWWpCZ1/fD/ym8x35+hq9d4Kc9FBn/8HNVut8R77x8M2VbpL8coeLK90X9t+n0k2SO47orEE844TtK93VflR6T1qSz324s7Zx5EKd/Uo36k1pyV4ffbTS3fCoTjdJ9vtt533So3fsvMPy7C/39r4+flrnnL/AJp37nUt/sFGlmyQTnu/sWXr6yb2/385/7fz9zr+0c43x0IaduTJJ8uTXOu8nWmureSrdx07sPBtPkiXWHFfpnnTgHyvdJNn3yc788usf7ywoemmv3rsV17y98z7WlTK+0l3gpDcq3STZ7djOc5iz3rtDpZskS2/WeU/9e07vvO9ghSvXqHSTZImvn1bpzn1T531my4/ufa+/dktn7/Jdf9p7Z/iif+jMqV5nfGcO8WZ/7d07TN2l8+/8ncc641sTDuntdXvt90rv9r7ikU43yayP/KXW/r8z8P/X/2sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMIcaGOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5wcBgHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8f9i706hdy8H//5/72vPezfM8qDRookmiyRDSQGWqUDIkChlTZEiFIpIGRfmSUCKiURGlNA8UadA87trzdO//g+/y7Pdf68fan3Wv+7der8f1Xue693Wd13ke53EcJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPB2P/sP1+YzJ+3yA9izvBii7z5b+MnLNEKV7JLLpxc6SbJ8GJTKt3Jy06sdJNk1qw5le5gzKDSHT9uuUo3ScYvM1zpzpo2VOkm40vdZMK8MZ3wYr1z0bShWZXuuPmdf7+JSy5d6SbJ7Keer3QHKy5V6U6cO6PSTZLMnl/JDib9hz/v/4HpTzxW6U4avKDSnTtlQaWbJHNnPFHpTlxq5Up37tzOb1+SzJ+3sNIdO6P1G5VMXnzJSnfegs75Ps8/1+kmGTO2dM6YMb2SXWJi7xw3ZrhzXTt71jOVbpIMxneu8RcMd649B5lU6SbJ2Imda8Qxj3auXYam9K49h2aX/v2GOtcuSTI87clKd9702ZXumHG939XWeXnClM74yLOP/73STZLx8zrnjAlrFL9/Czr/fgtndL4jM8f0flfnjOncS42Z3xmTWzCn970eO2lupbvcEstXukmyYGznGn/8UGe8aPi5zvk+SWamc40xfqjzmZs/dVqlmyTzBp1/vwmdr3WSZOa0zmdj3nBnvGH8+N55eXhu575yxnOdv8WE3q1Dnnn80Up38Xm9a4wF4zrjGJPGdsZe5sxYvNJNknHpjL1MXHrZSnfujN5v1GDxzjjGhLGdz1uSLFjYua9c8FynO2fQ+/fLxM711tSnOuflFSf0xtpnzyr9Xi/sjJslyWBh51nJhCmrVbqz5z1d6SbJhDGd35K5Uzufi6HFlql0k2TcUOc+eGioN4dk4Zhxle7iS3V+o+Yu7N27Z1znmMdP6FzjDzr/dP9rcmcccdy43hyS+U91vn9z53XOcWOHes/9hhd0zp+zSsMNEyf0njvMmN35Xs9b2PsCjpvSuS/J2M741sRxxZPRhNJcgYmdsdqF03p/i+emd+amTBrbeZ6YJOOHFv1nbij//Wdixqwxuf6vi36s4t7nl1rkzX9be4MtKt0vbbxSpbvJ+l+pdJNkycFvKt0Vbzuz0k2SbZc/p9K9alrnevixo79f6SbJRp+6otJ9YLcXVborrf2nSjdJnv/1qpXujjt05tknyRVPr1vpHnb+ZpXubqvMrHST5CV3d64tFzzR6f5hpc53JEnWvveeSvc3D/aup6Zt+LdK9/Bj31rp/mKb31e6SfKmL/6z0p0+rnNteeaLf1npJsnmc5+tdDd5ZutKN0l+vELnfuZ9Vzxc6Z51wR2VbpJcu0lnHtWLblu/0l1x/O8q3SQ546vnVrqXHNn5vCXJjsduW+ne89TPKt0rnvlkpZske//kmkr3wSU75+XlN3pPpZskwzP2rHRnT/pEpZskMx58qNL91T6vqXT3mfeWSjdJ/v6x4yrdVdbasdJd/rjSmp8kx166R6X7pR+fWOkmyQkPr1npXnzXxpXunxfvrd9+cpvOvcMrf/3qSvd9e/TWKa19eWdOy50P7lbpJsnEjb9f6W60ZOe8fOG8LSvdJHlsg19XupP/+Uilu8eW7610k+SoWzvf65tuL+1xkOT87dapdO9ctvPvt9sPf1rpJsn3Tnl9pXv4v66sdN8w985KN0mO/tlWle6mT3euaZNk4v47Vrp3/K4zvvW316xV6SbJ4oNFvz9Tkty7QmfN64qTL610k+SJezvPNL7+xOaVbpLsvcKnKt0lHu7MKZv++85vX5Ks8q7tK93bTr6q0l15s941xrXTO893bl/2hko3SdZYufMcdIXFnqp0H1+/M7chSa4/p/Pv94bDt6l0Ly6NpybJpjefWumOe8XRlW6SfG6/71e6H3v+9kr3zjV6i+PuOPSwSvfRsXtVuk9e3bsPfvqQf1S6RzxR2rcyyXvWfUel+8uL3lTpfm5uby+JB+Z0JiifsXdnbsq+d/S+1w8/eF2le+ByvTUYt/ylc+++zPjOGrbH1u6NY2zz5Ecq3cev6Owl8fRHfl7pJsnl53660v3g9N6zyhX+ueiP+djp/90z2yU2H5ddrl/0+w++777OuH+S7PTGD1e6t93bGdNc7/nO87wk+Vs6m2Yccmfvufd7ruy0P7LUByvd2444otJNkmvW7uyNcPa2nbW9Z+7dm1v38WkbVroPj7270k2S+779qkp34bJ/rXTnzXphpZskB2zYmQP33l91xuf/fGHvN+rRqzpjYov/pDM+nyTD13XG6Lf+9Rsr3YW7vrPSTZJtfnt/pXvXFp29VGYf+JlKN0lW+13nXubAf3XGVJLkjR/t3C8+e9yBle5de51X6SbJluetUOm+4yvvqnRnHN1Z+5Qkd+3UuUbc+sjbKt0k+VfpGv+kczrPFPbauTPWnSTLHdqZT/2a90ytdPd+82mVbpLct9jFle7Xzzqh0k2S217VWRsw77TOPhFXTe/NmV1iZmct9BGnda4xDp6+VKWbJB858qBKd+aK36t0k2Sj73XmoG5y3CqV7swXnlzpJslrr+/MM9zu5h9Wunce0dk3IUmev68zvjVp0ssq3SQ5d4fOfKStju88K/zmbkdVukmy78pvq3SPW7fzGzV7zBcr3ST5xFs/Vul+Z9ve/tTnrt15n9l17z+g0p13fW8t0QVXHV3pHrRTZz7Zd/fsrem/ZFzneuvyd91f6SbJi/68aaV78oGdZ1KfWaV3jfGq4zrrwn/6us5e3Zsd3FsvOf2Izn4duz7T+y1Z77LOvIU3nnt9pXv95F0r3SR5fr1XVLpPfrtzjXjiRidVukly6Cbvr3Sv/Wbv+c7B53bGzn5wTuf56ksv6cy5TJJX/r2zj9Ldsw6vdHc/5rOVbpLsN7FzvfzxGatXukly7wkfqnRfdWtn/um9v+ydix44tDM++ZO/d/bnXHrLb1W6SXLLmzvPSm74fm8OyQsv2LHSHRz+20p3t6N7878/8bPOHMbvvqszz/egr/5PpZskO0/u7LO55M9fWukmybIXdu7Rzrm281vyymVWrHST5Lg/duZDfecLn6t0jz6z9/6upw/v3GOveEdvD8E/f7lzzD/Lwf/V/zfm6SWy5FmLfj+V2cs9vsib/3beyZ1xiu9/onOftO2XL6x0k+S3f+jsfbbyzu+rdJPkkDd01g2/5DudMdN5b+ntj7v0cfdVuvtte2Gl+/Wre5+Lv7+l8yzrzuV6c5JOnPHuSveSFS+sdJ/c9eZKN0m+/NLzK91tTu3sh37cF3avdJNkgyU7c+3v2L6zF0CSrPGaP1S6G03ZudId9KY9Z/eJned6z1zcGbN5z/bfrHST5L3/7Jw/75rde2f3hw/t7L+08VBn3uW0y3rv09z1ZZ252jt+rPM+xp1f3ls/ffanOvsb77VkZw/wJHnbvZ25l6te1Flzt/WfOuPoSbLitzr7lq9+d2ePub2P6b3Dbuoab690T9q4s4dtknz+sH0r3R/e1bkYeNf5vf2+VhzqnPO/8ERn3vOTO21X6SbJ0OzO9fJtz3WevSXJNdduXuluuddFle7+n+3MTU6SvbbrjAv86fHOWOzWO/yl0k2SBX/9TqU79dO95wqnf7qzTnfhnzu/UZf/rPdZvm73zvrtNX/eebfvbb+6v9JNkkNW6cyDu/od91e6SfK1ezprXrdepjMP7qwLevOeT3h8rUp3/LOd+T3v3L7zXrAk2fiizjjUKbv23m3z8SdeXOl+d7jz3odxU3vXiNu+p7NH5zXrdp7BTNiyt2byxFd3jnmfXTrvZkiSLZbtPHs44qOdsc/Tjv94pZska17TWVt84+Od98QMX9bbB2vu5Z39L44b6r1LcJcnO5/lj08/ttJ93es684aS5ORTbq10hz/XuQ/+5HqdNZ5JMvbrnTn82z3ZWSeRJGev8LpK9+JNOu8juGBW5/4sSa68qjOP+G+bdt6X+rfje/sdrXJHZz7GUUf13jl25lWd8eXc0ZnPNript7bqgL1fUul++HMPVrr3XdJ7Z87075xS6b7tJZ018kny0O1rVLpfvfZdle7rTunNTdlr/yMr3e0WO77S/djSnT0OkmSDEzrvSfvK9RdUukly+TOd53P/7UyBGVPWy/XbLvp9Hj+7TWfsP0m2f6bzWzF59867DZ/51YWVbpJ8e+XOu5mP/uFHK90kGTq7c9369huOqXRPHfTWp+2z8+aV7vaDzu/8qXdcXekmyc/GdJ6RvXzSCyrdJPnqpM7z0yPP7qyPWf5DnfHSJHnHdZ31hWes3bnnWP3y3vs0D92ks7fFYeN611O/eHtnX+ZH1+vM/brzL5152kny1cc7ewM9+o8/Vrrnv7m3HmXuRZ3nej99ZHKlmyQ7r7Zepbtgic5n+dc/ObvSTZKDv9h5LvTz70+vdC+9vfe5eNnanb00H1xml0o3SQ64tTP35M9f66x1PmOHSjZJ8vF9OmN5B67a2X/wK0cs+jXF/7bmaZ05nWv/o7efyqdf2nmn0rr7du537nyktzbuE2t39vj/4nDnGuPYDc6odJPkW+t8o9Ld6i+dPWuSZLfVOnO/nvlTZ8+hOQf3fqO+/ZkNKt2p93TWvD4/dGWlmyQ/eVWnfe4LO3NakmSp8Z13mm1/YWfe3kXf7u1/NmaDzvjkox/tvAv8nkHve73Yh15e6d72XOcdJkmyyi87z0+v/tj+le6+n+ztPX/NbzrXiJfc3vnMrf6OQyrdJDlv/ccq3V1e3nnvQ5Lcultn7HqXF/yo0l332v9u/6X/G4ec03lP9fnXd95H/Nf5vfe8PrV959n3lxb0/v3OPq8z9/Km5c6qdPdbvDc/8l0nHlbp7vGdzn4dd7+7c7xJMjius/7+xs16z/02GdN5h977F3bmPd+wU28f/r9+5AuV7n4f76zB+OhuUyvdJFn/iXUr3bUP6Iw1JMnqS3fm01y3Tuc+avzcrSrdJHnvl6+qdO/9202V7jIndN6FnCQ/eWtn3vovd+ic75PkytKyyT+edGilO/O+fSrdJNl3i8499mZv6ezLPPWbvWfYi+/T2dN0/C/WqnST5EtTOu8x2W/bzjjGkpetVOkmyac+dnqlu3Dpzj5YO13UeTaeJEsc3vktOf6k3h5N/3iwsz7gKwf9n9e59HZOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/hwxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPB0MKFC/+v/+ONl1hr4U+2/uwiP4iFCxYs8ua/DQ0PV7qLTRpX6c5fsFilmySLj59U6Y4p/S2SZPzE8ZXunHlzKt1Jk3r/fuOX6Pz7zZw2o9KduHjneJNkeOj//rz1nxjM6X2W586YWekumDCv0h03v/PdS5LBUkOV7vinOp/l2en9Rs0Z1/k7L7b8UpVukix4tnP+nDvc+V6Pm9f5jiTJmKXHVLoLnp5f6Y5Ztndenj9nbqU7WKp3zIPZnWMemtX5zA1N7HzekmTW9M5nbsKgc8zTpz9f6SbJxMU713KDQecclySZP6hkx0/sXBfNfurJSjdJhiYvXukOdy5dMmHc5E44ycz5z1a64xaMrXSTZPbTD1a602d2/s5jJvWuEScMJlS645adUulOXrhspZskc+c+XumOXWX5Svd/453rl/nTO9cuE5aZWOkmydzHn6m1GwYLemMCmTOrkp2+sHfMSy7faQ8POtcus57vXSOOmdO5xh+fzt94xtzO+SJJBrM717VzFkyvdJNk8RWXqnTndb7WmTDojCEmydBiK1S6Y0rnz1nzer8jY0tfk7kznuqEk8yfsHSlO3mxzrXAvJm98/Jg0jKV7oI50yrdCWN6v9fjJnSegQ6P7/yNk2TBs1Mr3YVjO/c7WTi1000yf7BkpTthbOd3ddozvd/r4bGdc9HYod6Y6sRlOvfuc57r/EiNHdMb05lXut8ZUxqTmzipNyY3d0bnoIcm9z7LCxd0/v3GDjp/i+HxvX+/4QWdZyVjx3fOFykdb5IMT+kc86B0H5Uk86d3xmtnz3+60p0/vTcfY3hB575yMNSZjzFnenEMcXzn7zx9wexKN0lmzevcP6w0oTNuvcyaq1S6STJmfOd6edyUJSrdZx7rPJtLkjlT7610Z5eu45Jk6txF/z3Z75av567p//qvLjLGrbjawmXeftiiPqR8a+4mi7z5b6sPX1fp/v0PL650979mr0o3SWbt941Kd7D2qpVuknx5rc5Y3qrLdLpvvbdznkmSXf64WqV75Ps73Q0/eHulmyTLv7HzW/HTfV9Q6SbJq8/5e6W7/dRbK90nXrF7pZskP7p010r35du+utJd/65ON0nuXe11le7wMjdWuknypo33qXTfd+Z5le7Hn3hfpZskty/duQcbu/Ldle4mT5xc6SbJ0m9Zv9Idc0tpYDPJzSe8pdJ9/ui/VrrX3bJOpZskL374z5Xu3I02qnSveeiflW6SvGLz+yrdxa/pXHsmyQ+f7jwXOnmVzvf6k7t05lokycQP/6HS3eNLnfm4c57auNJNktlrdL4nK1zWu0acu87xle5Sn9+x0j3/mMsr3STZ/MHVK93bz9yt0l3qA1tWukmy0gGdZ1kbX/StSjdJHli/MxZ7zbXbVbrb3v3HSjdJ7nztY5Xuy1+9RaX7x0PPr3STZKVNOv9+Ly7Nm02Sf01aqdJdfOPO7999C3v3O6vOfKDS/fNyL6t0X3Jv73nTL/7WWY+yzdjO+FaSrL7aupXunXd11kzutGnnOjxJ7l3l15Xuzy//QKV70DrXV7pJMuXmV1W6573iS5Vukqy24JFKd+bNe1a66yzReTaXJHlzZ67vyn/ojHs++cSvKt0kWX7nOyvdXU7tjG8lyRV7fLXSnbZrZ07LU79dudJNkksf/UGlu+fi91e6L7vt4Eo3SW68eo1Kd85HHq50k2TJ9Trn/NW+t22l+6sdN6x0k2TxRzrPSvZc5b2V7hX/+HGlmySfHdOZ6/HaZ3trG7feqXMvfOXlnWeVpwy/qNJNki+84UeV7sf/dlSle9MlvWcls7/amfc8887OOS5Jhj/UueZa862dtXHLbNWbg/DcPzt7xHxg1c5nebfFt6p0k2T1ebdUuptf9Y5KN0l+tXlnrdkGO3R+r99+zpqVbpKc+8gTle69Uzvj1os/t16lmySvX7aztuOPG3R++5LkxhmL/r7y8JtuzT+mTf+PJ5EsttKGCzfb96xFfjzv/mlv3vj8B75d6f5i50U/9ztJth3Tu8b+4Uadz//aM26odJPk1FMvrXSPXuueSvdFP9yg0k2S617ROeceP/3YSveS03rjeI/97ieV7hLHlfYCSPLak35Z6V7y2U530gd73+sfb915Drn3UZ3zxcWf6s3hmDJls0r3ny/at9JNkvf/tLPm59ovdsaufrB95zuSJM+fuUOle9ahnX3EXrlO53l6kmy3fWdcZckHevsXPHJh55x//J9+Uenue/MxlW6SrHj9RZXui9b9V6V74d86c6mTZNsHPl3pnrrLBZVukiyc+sZKd4d1Os/Tj7r7oUo3Sc4469BKd/E7O/cOG/zye5Vukrx/bOf8efyPevuWP/tUZ67TY3/5UKU7tM8PK90k2ef0zty6Hz11aqU7fbEzKt0kmZmLK93jN317pZsk7/h+55z/+/d21ozsvVdv7fbJ13XmrM/82hsq3SsW78ylTpJj3tl5drPyVn+qdJNkja07exyM3bCz1/MX/3B0pZskr/vTjpXuGX/szFM77S+99xFcvkxnzvPEV/f2wpn/rnMr3dce8tZKN3v19ov681s657nx6YwJHPtcb6/g11zYWfv7zCpnV7pJcuGszn4d79m4M//08Tf05tZdsXRnPu4pj3Tm7094e+/eb8VtOutcztqrt9fzTYt3rjF2vavzt9hufu/f77ATOs80tj70kkp3q8m9a4xD1zqh0n3XuN5eRz94a+d39Zwtv1HpXvnZb1a6SbL7I515X+9/QWcO1Xkbnl7pJslBz3eeKZ71/k9Uukmy1/FrVbrnPNJ5N9hqg9656JIPdea2PrXP2yrdS3b4fKWbJD/57BWV7pn3dp4bJckjCz5c6S54fee50RXHfqrSTZLN1r6t0j1yj84apYvu7uzVkSQPXdI5Z3z/kJ9Xukky68tfrHTv2OGISvf3h/WeGx27fmedxLd/e0il+8cp7690k2TM1zpjZ6/dvLdX1W92+Vqle9jnf3XjwoUL/+OLrhdN2nzhuWtduciP55Wv7nyekuToa75f6Z75jc4eEc/f1hvL2+bkzrqbyUf31tNtsH6n/ZJfdcalx/6k97zpZ1/vHPPdN3b2ETt9Zu9zceKRnfvRAxd7U6WbJH/YtDNXdLBF5z0ix4zv7Qt00/qdfWxXnN7Z3/GF+/c+yz/ds7PO8nUP9/Y3XuPGzvq0Fff4eKV7du/RaV77oc5167uf7HyvH/lEZw5jkuw66XeV7h6n71zpJskvdumMB51759RKd8Ibe3PA9zz5H5XuF6/o7A+47oZzKt0k+eXvOmMJX/lJZ2//JJn2SGdP9JuX6OzB/8vPd+ZpJ8nDszp71y18snMftfPevfXv1w93xmLHf6zzDrQkmfH9zvPCsz7buUY8apPO/JAkueR1e1a6b510f6V7+sc74yNJsszNnfvVT3+mNy693Gqd/f0/sfzVle6KT/eeff/zY51r/Hsnn1LpPvP1FSvdJDnyxM7+4te999pKN0k2ueK4SveOoc46z5OmP1fpJsnrXtbZw/2JrTrPIV+760mVbpJ8YK/Ofcn6g9796s6dYag88L3O895xTxxQ6SbJDZd39iIY3NpZ23Hr/adVukmy/y6dPWHHfLKzJ1eS3Pu1ayrdB2d/pNI9aYXemuWD/tC5Rnzym517yq8v0XtnzlnXdvbUnvy23hz+FW74baU7s7Tf5Tpbdt5dmSQ3rNBZT/TH9b9e6W79jd46wfn3dsb7NtiqtxfBGufsXekevVHnM/erX3TO90ly3nbfqHTv+3TnHXfPfGhspZske32+sy/YHUv11sbN2ODLle6uYzvvRlnvR70xnd03+0Klu9b5nWuBD2y3RKWbJHtv1dm766Etf1PpJsme8zs3fwfv3LneOvP8qZVuknzu+c4chDHH3l/p/u3Qzrt4kuTcpTrP/ebf0dljJEleVZrD/92Jnb275m/fOxfN/GDn+/fK5TrP5770l864Z5Jct/fhle7vp3T2C0iSJVc/sdL99PaP/Vfznjd74UYLf/OtRf++nYNf1Ntj9Q1ndO7B/nJLZz+jFyzojUu/4OLO5K8rHu49Vzj8gM760D+8vHNufM3unfUxSXLVVYt+r/UkmXzDXyrdj6zZ2ZcrSc4+7bJK98+39Pb13f3SmyrdyyZ39ug87fTOtXCSPHdbZ77MGRetVekusVnvvPzZuzv/ft/89jsr3SS57oVPVrpT7u48F/rmg711+y/ctPPs+93f78xB/fVZ36h0k+QXe3X2KTvlm1dVukny+gs661FOeENn/88Pndd5P0OSfOHQF1a613z075XunYd0jjdJPrNT53v9lf1697l/3LLz3ueFK3f2//zw8Fcq3SQ5+Oude7R3X9d5z/jde21f6SbJdQd1xq9u+MYnK90k+cApnXPGxL07zyFPPKYztzVJHt+8866fJWd19qx5+qhFvz7+3y7c/8BKd/V/9vYQOekFnXe4LrdE599v+u9eWukmyfu269xLffpvn610f/TV3nl53pTOGppjftV5H1aSfOza11e6W27amcP/mn/eX+kmyQcmdt71+Mwnb6901ztmZqWbJLf/4NFK99svO7PSTZIr3vSdSvcLB3XeNTK8X2cf2yRZdbvOnpffW+ucSnfJ23rnuD0mdPaynfWlzpqRJLlotc540c5v6Jzvd1+39/7yn3a2yM1bj/lMpTt93d5z5Dd+vvN+ooN/3dvjZ4mlO3sbTn3vXpXueff05uHcetQrK90dz+vcux9zXuf+LEm2e7QzvvzFzQ+udJPkyQmd+4eJW3TWxl29cW8Nxm+/3Lmufe1TnbHaJ7forJFPkvM2erDSffznnefMSfLT8zvP9I/er/Nu4dfu2bmnTJJd3te5Xj6itOb8C7f0rrd+/IodK913vPq1lW6S/GzVv1W6187tzIfffvPe+9OvmtM5L796w59WupscXrrAT7LLLp33Qb7+tM51eJJ8d9Ople7Fd3XeM7njj0rvw0pyz8qdz8b4SzrP8486t3N/nSQXTvlopbvdpM572ZPk1td35qlOOOjs/+O8585bBgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/zGDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WDsf/RfL1yQLHh2kR/E5Cy7yJv/NnGp2ZXu/OfGVbqLLf2f/ZP8J+bPXVDpDobGVLpJMmda55iHJpeOecr4TjfJnKnzK90xSy2sdDOuc7xJMn9+53symP94pZskY1ZZtdOd8WSlOzyz9LlIMndW5/s3ftnlOt3MqXSTZPyCuZXutIeeq3STZPE1lqp0BzNnVLpzp02sdJMks+dVsvMmdn5LFg5XskmSodIpY/4z0zrhJHOmDirdsRM61y5jMlTpJsm4Qac9c2HnHDd5whKVbpLMfLLzmRu75ORKN0nGTur8rs4u/fuNXWnlSjdJZj05vdKdtHTnt2Tu81Mr3f+Nd+5XZ8zonZcnLN7pLla6lBtefLFOOMnY4Qmd7vjONcbzzz9V6SbJlCVWqHQXjO+NvWT2rEp2wlDnHnvsE737nfmLTal0Zz/XOeaF6V0wD4/tXDBPWNAZ90ySwcLONcZw6To8M3uf5XmzOsc8N5179zGD3jlu7lDnHLdwqHe9POf5znXtuHGdz9yM+b1xjOGpnbGXSRM7n7mJpWuiJBks1bl3nzNpzUo3SQbTZla6zz3VucZYeaUVK90kmT2n87cYN25SpTu396gkCxZ2jjlDnb9xkkxcujOOP+OpJyrdsWN656IMd/7OU2d1xkeGJvV+r8cv6FxjDBX//cYu6IypDk/o3LvPn9u7Xp48oXMuGjNUGpMb07k+TJLBpM41xvCgd786lM79zpjJS1a6C+b0fljHTezcB48Z6pyL5szvzU2ZW7qPmjxcvDAa2znPjVvQGbiemecr3SRZuLD0vR7q3PstHF96OJBk5tzO9cvc2b0x8RWndL4nE5fuPDcaGtcbxxg7ufPvN+2pRT/3NUnG9qZP5vFZnd+SwfziQc9/sBH9r//PjccP56rVF/25d9lf/mSRN//twu0+WOn+aJXO93a3tX9V6SbJlE927hnf8qPNK90kufjqayrds17YOYdNWHelSjdJbt52y0p3tROernRfsGdvftZOOzxT6f7zQ6tXukkydODlle7wmFMr3Vu+1plPnSSTlz240n3BjT+udFeec1SlmyRX739xpXv88b1jXmPc6ZXue9boXL+fP/msSjdJxg2urXQHa99V6R7/z96ciA/f2ZnHuMoPevNb//KOyyrdR05/tNI97LBDKt0kOev68yrdLV7fmRN41Fe2qHST5OqHt6l0N1/q+Eo3Sa5d8/WV7v6bTK10Z13Xe8Zy75GdOQbbPHdVpfvtyW+sdJNkzt871xgL5t5e6SbJFit25lRf9p3OM5ZDftGbx/HoCp0x77+f1xhjSrYc9MZ0Trq/8+x0+2V2qHSTZPVnOuOPf53ZGeP9+7M/qnSTZJs3ddYWP/v7znfk3Nd9odJNkiN/eFCle8Vbb6h0k+Sx5z5U6U67e79Kd9w9q1S6SXL/GlMr3b3vv6fSnXVTb97zCp99oNL9/A1LVbpJsnC5T1a6M0rf6ztXf6jSTZKxq/+r0t1iiTsr3U2e7s2JOPf336t0x3xg10o3SfZd7nOV7m9edWOl+9eht1W6SfLisy+odFdcoXPvMCm7VLpJcvuj61S6L1zlVZVukvxo587auH++97BKd8Y2r6l0k+QnO3Sul/c/fd9Kd+Ul7q50k+TGs7audN90wacq3ST55iqdZ4rDU9avdPe+4x+VbpI8st1bKt3fDT5R6U56aKNKN0lO26dzvXzlA50x/CSZ+OzVle7Ga25S6Z6xae95/jJ/PanSnbl8Z6z26c919mdKki2/u3mlO3OriyrdJHnVGzvj7X+7rPO7+uPF9q50k2Td7f5c6R52x7aV7ju36szHTZIrl+/cY//1zs6cpSQZ+nPn32+DIzrzHM/avLfObNoxG1S6L/l65/nAj/b/a6WbJBfd0mlfdd+rK90kufjyRb8/6LPz7vuv/r/Fpz2XHa/+zSI+muQl6319kTf/beplu1e6Wx/4cKX75pd39oNNkht+27l+OG21TSvdJFntJZ3nFXef03lWf9+4z1e6SfKPMzvdew7/eKW74gmdZ2NJsvUXHql0F1zztUo3Sd681Tsr3fEv+lile877pla6SfL2/TrjsL/7budZ4SOrdf7tkuSGX3fW5Vy0Vuc6OEnW363zTOGjc75T6Z559qcr3ST5zg+/UunusfNxle5z44+pdJPksjGdNYBvfaTzbDpJnj32q5XuvPU2r3QPXvqUSjdJXvK6zSvdG2b/odLd+hXvqXST5Gd3dZ4hv3XHznq7JNl25858wHXX64zvPnHszZVukly+cuczN/Oioyvd5x/vzbmcf3pnLcrp415W6SbJxEf+2en+qnMtcOOmvXmGD++zV6W79jqvq3R3fFNnzkKSPP/lznPILTburTe/dt/OOrNtPtlZY73z+N7zla+e8ZdK96GHNq50P/eVEyrdJLn52M4eO2t/avlKN0kuekPnXnjOzFsr3bN/+NJKN0k+ms5v1E0rdp4JvXOz3nrXc6Z32r/+9tRKN0l2ve+9le5TQ0tXuiukMzckSSZ+ojPesOGpnWvEUz70xUo3SYbG/6zSfeq336p0k+SYz3fWCP5+z876pyPfcmilmyQ/X6ezLnzDy35b6X56kx0r3SSZ9evOPLUzXnpkpZskbz7jlZXuGx7r7IP6P8v39hc58IWd52iHv+dFle6zE3trt7+9cWd/6nev3nsv5kvu7cyzn3DonpXutj+7rtJNkr3v/Gale9bXOteeP9znTZVukuz41c4xP/5Q797v94d25nM+slpnD/7XrdzZmylJjn/itkr3/HM666p2P7Pz/oQkOebbp1W6V2/bmb+VJBvOf6zS/dZHOtcY55/Y2ZswSf742I6V7lq3bFjpDn2ut67qDV/u/F5//LEfVrpJ8qol3lDprrNe5xnaLX/qjJslyVYf/nClO3ONzjXiUZf39gZ9+IEDK90v3tobEz/4yjMq3cPy3z0DXZBnMnXMuYv4aJL7t+ytk916xc5e+J+d0Zmf9fP9enOId/hX57x7+32dvWaT5IaDjq50f/o/x1a6Bz7Xe+/Xb57vjPNeu2tnP+3F3tvZAzVJNhrbmet76reXqXSTZIWrj6h0n/3tKyrd7717qUo3Sc5fobMGcPvfddaS/+mfW1W6SfKysZ1xzcN+3nn2liRzb7+i0j37xD0q3Q/++AeVbpJcOKMz5n3kgs586q1v7+17vdtenT1rfv/K3j6aH173/Er3u5d21nasumxvv68vHdlZg/jyKzv/fgeu9+VKN0luObuz99mJN/Wul3/58M8r3X8e0XmHwl0/7M3j+MAjnTUYz61/YqV7+x86c+CS5LJ/LVXpXvlsZ4wwST7yXGf/pXvSuZb73lZrVbpJctMenT0Xjv38Nyrd9b7YW8t+2VWd/f03+HPvvXtLTDig0j3+idUq3TMu6V1vnfz6P1W6Kz7W2Z9z8tq9/eynH9KZt77ny/avdJPkzTd+uNL99k87a6uWuKv3PpArluy8q+LkRzpjfVv/+NuVbpLM2agzD+7aKzp7GibJI8909t794AGduUPbfKbzHCtJvnNTZy37mLd27q+3XbU3vvWC8zvzOG79RG+d57THO+9Q/vq/OnsPnvDC3SrdJPndOzrrfz+9Y2cviSmf7Ow9kyRTx3fuo46+dK1KN0ku/9I3Kt3rl+vM9Z3y096ayfMP6rwX88kPf6TSfeM5nfccJMkGR59T6e77undXukny462PrnSnndAZL7ruuc7vdZJsM9SZ3/CjWZ29no/4zD6VbpK85DWd+5Jv/azzjskk2eGlO1a6227d2W9s1t69c9Gla3Q+Gwe8vvNbsv3SR1e6SXLqBxb9vLAkOfIry1a6SXLDjM6z5mNe2rkOP/vk3hz+p1dZodL9+hlvr3S/snVvbcfW93X+zlct09mrMUkmnffTSvddO3X+zvvN66zRTZJbP7ro9+ZNkisP6/yNX/bgayvdJDn6pM57Yta8vbMnWJJ8YnLvXcj/jScWezYnv3zRr4Nfc6veu8rOn97ZW+3d7+msvTn9T7+sdJPkE4d09kLd5JbO2uwkufv7nfGgycvdX+l+eYXe88JffOeOSvfV63XGeL/8tTUq3SR5zxGdfcCvXbK3r+ij629e6f7okM4+V8t+v/M7nySnnN6Zn7zF6zvrGX59X2dtQJLcvlRnD5F/7vmlSjdJLjmusw5wm+M7c8q2mtRbN3z49zrznrc6YadK98IXdPZcSJJbf9EZi/3lJ3r3BqtscXal+4+lOmMJp8zuvRt25c90rj/X3rOzr9o7Xnx0pZske162ZqW72zad832SXPDNzjziF+7d+S25e+PevrCzl+q832a54aUq3Vvf3nvX1f1rdOYYLHxpbyxvytzOXjsfm9SZx/jWZzrn+yR50Ys6ew2Mf/1ile7/fLr33pzdv9wZb/jVn3uf5c+/9BuV7s8+3tnXcM83dNbcJckPnujsc/Do1p09YN4xb91KN0ke+mTn7/yzd1xZ6SbJKTd07ku+c2JnPcrk5Xvn5U2+8fJK9/RLOue4DS9+YaWbJLP26bxDecxRvTG55w9eWOnuMv4Lle4XDu7tF7zMkhdWum/ep7Mv3tfO6e33/OllOuOTO+3RWfOTJBtf33nX5EvX6jyHfPaYzh6PSfLJjXasdC9b95ZKd5Nv9t7z+oGnO3s/HXxuZ6w2Sd52bGe+zA6Pj610v3tzb37kHQs6+8Ke+ZrOmq1tnnuw0k2SD508udI98Ije7+q3Z95f6c49q7PO7Kj3d94BlSRbfaTzrsKvndGZw/+xlV5S6SbJxOmduV/P395b83rApttUulev2nnXyAVPdt6TliRTZnfe07vRjM7znUPe2Vvz+qpvddaD3XJ9bw7/Q8fOqnS3n9VZQ3P18u+rdJPkPQe/q9KdvvrDle53XvLHSjdJVt+vM1500/G9tVWT03k/2JTjFlS6x+3Tm8P/6us7vyWfvqMzf/LEt3TWYibJ+Js6e0l/7m29fQQnX9Wat/R/nufR220KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4fMhjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAZj/5P/eGEWZt784UV+EGOWnLHIm/+24NmhSnfcUpVshgZjOuEk8xdMqHTHDc+udJNk/rgFle6UictVuhMXG1fpJsnChZ3u0IzOMS9YtnTAScYPLfrzUJIML7VqpZsk459/vtKdtfjile64iZVskmTMvM55ecGCuZXumKUmV7pJMv2xzjFnyn/08/4fGZ7eOWcsXHGFSnd4qHeNMWb2zEp37PjFKt3hyfMq3SQZO78UHp5SCidTJs6qdIcHne/IhIm9a4zhCZ3z8sR5neu4GY91/u2SZNIqnd/Vobm966LheZ0v4JgZnd+SBcv37h0Gg87feeGCzrXn0OzWyTOZO6vzGzVm4rRKN0nmlL7a8ybPqXSXnNA5XyTJgnSOeWhe57p20tjOWEOSzC9dik9cOL4TTjJvuHS/OtQ5Z8yc27v5mz39mU540PkbL5zdu14entD5XZ1Q+o1KkuEFnTHK6c8/WumOnTeodJNkzGKTKt0FMzvX+LNnP1npJsnw/M7fecxipfNFkoXDy1e6wwuWqnQXH9s7F41fpnPOf/yRzrjnYKnemMC4uZ3P8oLZT1S6STJY2Pl7TCwN6syeVxr3TDJj9iOV7pJLv6DSrT3cSbJwQWfsJXN61/hz50+vdAel8a3h9K63xpfGPidM6vyN5y/o3Ksmyey5neutCeN6379pM5+udCeOXbrSTeleNUnmTe7c78yY2RlHnDjUOV8kydzhzrXc4ot3nhslSeZ1zkXzSs9tJ0/uPSuZXZo3MW7Jzudi7HDvHDcozAtLkjkLevc7c6Z2zhkLF3Y+y88/U3zWNbYz9jluYue5+/jxvXlyQ+P+VekOxq5Y6SbJ3HS+J8svtl6lO2lc795h+vznKt2xYzp/42lP9L7Xy0/pHPNzMzrPE5NkwrhFf107NPTfny9mT1spf/3dJxfh0fyvc9a4fZE3/22zS/9Q6b53t85ndcxDr6h0k+Shvy1R6U786N8q3SR58tytK92rJ95R6S7YZpNKN0k2PHzjSnefmVdXuuPetW6lmyRPXtmZb/GD9TasdJNk1fF7Vro3//6qSvf5bVerdJPkDUMbVLozln9vpfuDLU+rdJPkvT9/Q6U7dsMTK90k+ebLrql0j3/o+Ep36CW967Qnb/91J3zbspXsFlO3qHST5OU/6HQPO/jhTjjJBjM6zyKHtu6Mq5w/s/MdSZI1J3fu+Vf8Zmdc5ZMb7FrpJsnl2/2y0r3ie1+pdJPkscdeVOmu/vfOZ3nV45epdJNk3o2d8ceJV72x0n3P3F9Uukny3IKtKt0VvvBApZskP36wszZ18MfOWOyYzXpzRU/bpvPsdO37O91xy/Xmw4+//guV7ombXV/pJskqa3a6jz34w0p39ZN6z3uf3rHTXWyXzmd5v/0+VekmyQZ/7lzj33rxFyvdJDlts8595d2XfabS/d2UmyrdJNlnQWfu0NMLt6t0//GySyrdJLn5u51jftnvesd855s6N6xLHdL5LVl6lacq3SS5/zfbVrqz7+5cIz68du9ZyW4H3Vjp/mb9gyvdJFl4S2dB2GIrdD4Xs57qXLskyV922KvS/fuczjjw4sOd/R6SZIUNHqt0F5u/ZaWbJMeesmSlu9hr1qp0F973uko3SW7/aeczd93Czvzkk5frjek8funNle5lu3XuHZJks0s77Ze/rbM2Z3DWEZVukjwxoTNvdv6Pd6p0z/9YZzw1Sdb+5uGV7lvf3LtGvHToI5Xuln85s9IdO6e0NiDJhM5yvpyyWue3b8kHer/XX37X/ZXuK3/buXZJkhWe7LRvfvsFle4a63fmLCXJ88932p/fo/M8cfNPvr/STZIJP+is83x84+sq3SRZbM09Kt35m3fWTO517N6VbpI8cNrnO+GVO3/jTd/Ze+6w5cc6cxv+POHVlW6SrL7mnxZ588Yn/rvP8cT1F2S93y/6Z1k7XPo/i7z5b3MuuLTS3XXnzlzc9c7ufZbOntR5pvCalXvPhH6+R2fdxqS/nF7pHvnu3r/fDnt35qw/f9B+le4W2x1T6SbJE6/vzJld4UOdz0WSXPX+QyvdwZdWqnSfOPHISjdJHjrsykp3iVM7YxTnrXxUpZskG/78wkp36PDO5yJJvnfxByvdnW9ZudI9bNXevkC7btTZP+uj53TWhl6+0vsq3SR59hOducnnrNMZH0ySVzxyaqU7/V+dOZcHvKfzPDZJnn7fol/TmCSveedBle4ZD+9c6SbJG07p7Bf1+3uvqnST5H9236HSfcF71ql0p+7SG5/f6P7ONeL1e3Xmfz8696+VbpIcs0xnb4Qv3vXKSjdJ5p1zTqV7+i6ddY0PvL/zO5Ik31rnHZXupFk/q3QX/uQvlW6S7DG3Myawz3avqnST5AUTO3suHPRI5/nK9Td+t9JNkjHv3KbS/emZl1e6b/vTIZVukuz3ZGc+53H7d86dSXLv/3TG/n/xss565Z/s3XufxCsP7szv+cK/Os9B1vxm77npsjM79+4v/lxnP+YkueS69SvdPX/deaZ3xS29ObNP7tr5zB14wGaV7peu74ynJsnpx3fudy6Y1JsbOXe7znjt4NcnVbq7n9Y5XyTJ4Vd0zssnL9nZ0+aRs3p71/3oyc444ptnfanSTZL7vtLZh+e6T3Xm768xrThPdL/OnlJnrbRjpbvRl3pjtXdNe3Ol+9VHe/uAbP/9n1S6S6zV2Stns7/35mNcPvnCSvedb/lzpXvqPfdXuklyza4vrnT/9IHeHoK/2errle5q23fm+Z7zrt5zv3WW7exbvuyGh1W667/3tZVukhx+TGcfgo+ueU+lmySbntKZ67HJip3P8gue763dPvyEzvjyb67sjBXdtNXalW6SvHr1zp5SBwx3zp1J8olbOvNTDnhjZy3KZu9/U6WbJL85qLMn0YvHd/bwnHxgafFMklN276xr/MOYzjyBJPnIqfd3wv/llkTTxg7y+2UX/XryTef29vG74zOdPdofWva3le7mL7u70k2Sk5d7W6V70i2dPfGS5LI9vlzpfmP1j1e6m9x0QKWbJH/6YGdP0dtu6Lw3auGMfSvdJJk2qXPP8br7euvUN5p0Z6V743OfrXSve2PvnmPaqzrzZZZ/d+eY11nyG5Vukqz+xc67fWe+orM3fJKc97UXVrrffN/Zle5uN/aeF778xWtVuvfMurbSXeXazlynJPnuwvdUuhfP6r3n+DPfO6HSvefyztyTz72jt1fw9ms9Xun+5Sud502f+Xpn/WGS/PzRzljC5cd25iYnycrv6MxreeWmUyvdPV7WOxcdc3Nng9Wrn+08o/7B5b31o7OePrDS3ehdv6t0k+T4z3TmxK/y+I6V7qX7XlTpJsnBt5xc6d5wTWcN1Kv+9elKN0l+ukLnHTQXf/fCSjdJdj1k8Ur34fM6v9cf/lhnjXySXHRBZ234alv9o9Ld4cDefl/Lb9C5Fnh4i30q3STZcrXOO5SnLtP5vf7UsqUX0CQZ84FjK92dHuvsVXrxa26pdJPktyd35s2utG1vTPX5azrPB5ba6eeV7tzfvb3STZKdd+yMtf/pxs583Dc/3Jk3lCTrPn5rpfvOJV5S6SbJlR/t/K5e/cHOepSvXtDZhypJhp/qrNva49cfrXSP3Li3tuPqD3bWII69pTNXJkmeW+NHle7F66xa6a7+7V0q3STZaefO/iUXrPixSnfm6Z19QJLkops682Wuf7b0vsYkBz3b2S/xgS91rmvXf8VtlW6SXLthZ9/rndYfV+meOOj9Xl/087Uq3U8+9o1KN0lO3qrzTOo3hxxX6f7ytZ35uEmy8o8eqnRft39nPs2bn+m9h/zd13feu/LaFXvzIx84tbOvzW4ndNa5XP+K3vu7vjv9A5XuzTd03l/5pwNeWukmyWU/e32l+6t131npJskPJnTGl59ar/Mu3aOO7PyNk2Trf3WegQ7f1dlD98Z976p0k+Rll7+70t3zsc5ctiT54gc64w0fPvG/G6tdcN+0TNv/qkV7MEn2/2xn/5ckmX78fZXuJrM7e+/OOaK3jmW1e+6tdI+6+wWVbpL84d7Ong5PTemczyds3Xu377fe2VkvdMCczvXfMktuWukmyZlnbF/pfuMrnfdbJMnPl+2sw337GZ1rnmV/2pu3fvk951a6l76wM9fwHe9+V6WbJJu+s3PdM3X5zSvdJPnYlA9Vult/5a2V7gXze+/sHjxwXqU7v7Qv5cl/6u1/ttKSnbXqX/plb63zVV/oPL9Z+vzOc8iV9+08u0mSibd01o0c/JfOGowTv9rZ4zFJrnywM/4/dc6vKt0kWfavl1W693y+8x0Zntx7p8Tw3b+vdNe6qvNuvFU/uFylmyQfmvX3Snd4k97e84/tdnSl+50zO2Pph+5wSqWbJGtf07nGv+6TnfnJ167UWeeSJAce2Jkr+sy7O+ufkuQbO3Tmao/ZofNZPnXSWpVukuz6+c67Hnf727sq3ZXf0Fv/u/synXHE13znO5Vukhzy0s59yVJLdf4WLz9+u0o3Sc65vPP87eGTOntUfODg3rtFd9vpq5Xuhud25tknycx09ix98yXXVLqvfXXv3uHM5Tpr2B7duzOH+MEPdMYQk2T9LXeqdM/Zc1DpJsmDX+7shTr/0s5emqvu1HmOnCS7LdnZF+WtB/6x0l3hvfdXukmy80mdOQavvbfzrookWfGgznf76if2r3Q/d0Nv7/nf7dvZ12av3Ttzy3Pyon9H9b9dvWHn/Lnhy2+odJNk3wdXqXTf8t0VKt27h5atdJPk008fXele9P3NK90bf9Ob27DKbp3v9bJf6r1r67C/d97beNLszvysnW7qrXm96r7O/hd3Xtz57Zu7f+8Z2jKndNbJf+vjnfc+JEne2nl29PjEzjtIJ93YW/978Sc6+6K/Zc3OeMNKn+3sj5YkR6zzz0r3mm913nuUJJ9+vDNv8MTXd8Ybbjqls49Lkuy0fue57fqlZ6uH3NnZRzpJfjmj8w7ZfV7d2Ss1SU49qLMe+v/vl6Q3IgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/w8ZjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAA8P+x959BmlUF2799Tk8OwMAMGclJQEWiCkpSUUwEBcSMAQMCigpmFFRQFEyoiGICQZEoiqhIkCQSFCWJ5CRxYJjY3dP/D0/5fnreKrXmrK5+6jg+3oW/e1fPde1r7bXXXhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWBgtA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaCgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYC8aNjIz8x//xpsuuOfLTrT+81A9i0qLxS735/2tPmlLpTpw2odIdNzKr0k2SZadMqnTHT3260k2S8dM6f4/Fi/7zz/1/Y/LUzuctSQZnLFfpThy3uNJdMr/TTZKBCZ1/v/FLxlW6STIwqdNeNHNepTt4f++zPG5kqBNeZmolOzCv+Fle1Pn3G5m0QqWbJDPGd75/8xcvqHQXPLGk0k2SGcsOdMKzZlSyw4ODlW6SjMx5rNIdP21ypZsk8xZ1zsvTp3XOn0smLKx0k2T8YGcsvnhC599v3FDnfJEkI/M6v1ETZvU+ywODnTH+yNz5le7idH5HkmTcQOmcP7fz/Xvk8TmVbpJMnDCt0h03UBrHJVlupeUr3cEn/lXpjp/dG2+NlH6yxy8crnQnzu782yXJwiWd8fKE6Z3xVpIMlOYbxqczdhme1/kbJ8lIOuPlJaW/8YTpnbm+JBmY1/ldzezO+T5JBud2/h4Ln7670p22bO97vfipzvlz0VBp7DLcu/bLQGceeHB+b355udnrV7qLhjrn5UmTJ1a6SbJk4dxOd2pnXDRteiWbJFky2PktGUjvXtfCBZ1r4WlTS9cOE3vXfsNLOr9Rg6WB+JTOz0iSZPFwZ75hwuTePNSCOQ9VuuOGl610hxb07g+ML91rHhzp/PtNGu59r8dP7tzfmTi197uaSaX7A6Wh3JLS9VmSDJemiyZMKl3vjO/dNxpOpz1QmhNIkon/xXqh/8bQQOnDPNwbbw2O65wzBsZ3vn+TJvf+FkNPlu7bPv1UpZsk4/JkpTtxoHPf76m5nXnrJBkZ6syRLBnqXLvPHezddxgujV+mTOh9/2avskqlO3nqzEp34nLFi/fhzlhgcP6cSveR+x+vdJNkwcI5le7IUKebJAsmLv3rkv2u/WZumnvf/zQwGhi38sikvGFpH1Km77vyUm/+223XXFnpnrn7rpXuJqs8WukmycmfOLvS/fk2P6t0k+SGfTvzFGv+6/5K9+ofdtZ9Jcmeb31upbvKhGsr3Z8MvbjSTZIbbr+q0n3zsjtVukmy9oJlKt07X3hApbvx7Z+vdJPk7n89UelevsWtle6U1f9e6SbJjScu/WeJkuSlH+gd87aXPljprv/czrXoz87r/I4kycIHr6l0b19n1Ur3Ocv05ujPfapzzbjH/DUr3SS5c/5mle59z7m00l1yUWdMmyQL7ulcM87a/HmV7vEb7lPpJsmiW86sdA/cubfueZuZne/2R67sXJufM/GBSjdJZg/OrHQfPa1zv/D0j/bWGr5vbue65Iqne2vKfr95Z55363NeX+muP/GuSjdJbtpyt0p3+Se/Uukeu1Pv3un+Z7+t0r1nRueaMkl+sslfK90/ztmo0j3jd5tWuknyluHOHP23Z51d6W52f2+MMemhsyvdx17bex5sj2U656ILb/5kpbvNtdtUuknym9lvrXSnrPPzSnfeU8+udJPkG0Od+YafrtS733vSfS+pdHfddVGlO3uzzvxWkgwe9YxK9+7Bv1W6j666RqWbJJdsvValW9p6Jkmy3bIrVrp3/unXle6z1rir0k2SzUZ2rHSftUpnTu7m73buRyXJORu+qdJdZe6PKt0kGV77H5Xu3J9vWemu/LbO/FaSrLv4/Er33I/eW+k+tnfn3Jkk31q78/v37dmvrnST5Krhzv3xLWZtXOk+8/7eePnaS8+udKePf7jSHdzhT5Vukqy+7acr3QVfn1npJsnKy5TGtVM790qy1tadbpLbn+is3dvrn501CF993zmVbpLs8oFO9/nb/bMTTvKHx35T6d7/ic79xHtu6Yw9k2Twl5212ivM6TzLvtLmL610k+Tq+75T6Q4M9NYWrTjceQbjc1eeWOleseEPK90kuXKl6yrdkZs690qu23v3SjdJnjqjM0ey3IanVLpJsv1N6yz15s73nJQbFj7wX6973nzL9UZ+d9UXl/rxLNjijqXe/LfBw2dWumtecn2le/ETR1a6SbL8s39R6d71097+1DfffWile/iSfSvd86/do9JNkj3O6MwlvHu3j1W6Rw/dUukmybmX/KrS/en1vXP5YXv8rtJd7+DbKt33rfPuSjdJ3v6S3Svdbx77tUr3pk/1vtfjH7640j348d6a9Szfma+59pbOHNPzN3lWpZsk73ygc3/6yLU7v9cf2bnzvEGSHPbLzprL993f+/59eePO3PHjH7+r0n3HlW+sdJPk6EtfWek+PaszX3PwU3Mq3SRZ/cTOPoyTpr6j0k2Scdd3xkUb7b/0n3VNkgOXnFTpJsnKD55X6b7gb5016y/5RGneP8k3D3tmpfvSGRtUukmy3bTOWpnlf35npXvjjz9R6SbJOkN/qXSPf1Fn3n/ZJw+qdJNk8k0nV7pvXKd3r/e1H+s8z3D92zrj5QPe1HuO/cOnddbWHfC9vSvd+a/vPCORJC+b37lZuOvLO3slJsmtP/lopfv1Izt7n71+ud5975s/2nlG94YvdJ4Zed42H6x0k2TrmzvzW/ss/8tKN0keu6tzXr7gY53rnd9s35mrTZLvXvftSvdte+5c6Z4+tbOWM0mecXdnjP/mLTvP+yTJ4Q911u0teGVnX7U/vqW3znCjuzv7XZ55ZGe8vPURl1S6SfLL5ferdH//3N57A/56aWdfvA+u9dNKd8Y33lrpJsl3XnlIpXvFW75a6V54V+f6OklOfWNn75J/HHpcpZskc87rzCPe8tXOnE6ufWunm2T3f1xc6R62V2ct/J1XzKx0k+T2VTv7oM56Vm+M+NYNP17pTv1CZz+ws3bp3St5w6c691dP+0bnenXNzk9fkmSV406odFd92UqVbpLMevl6le5Nv7ig0p3yxs68WZKc9tXvVrpDb7iw0n3Hvr09+D+2Z+f+3Mm/7ewVkCTrnNfZ++L6Uzr353Y4sHftsHijj1S6/3jx7ZXuZR/cttJNkj9s3RnjP/ya3r55mx/2vkp399M+dO3IyMhW/+3/btxak0cmHLb0521mXtq5p54k5y3uzK3cM/iqSneXhWtXuklyxAqdseXrr+jtufD2T3fWfv1gm859oaGXfqPSTZJDvtF5Bul7b9qk0v3Ah3apdJNk1ks690L+8N7OHH2STN6rs6fvwHteWOmO3NPZUy1Jdv1jZ57i2jU6z3kd9sCPK90keWSHGyvdv36n92zhvse8pdI9+czOvmp7veLPlW6SzPrWnpXuiWd1xi4/+sj+lW6SbLv1EZXudrteXukmyQGP3lXpnn/s+yvdVf75oUo3Sa69v/P7t+nbZ1e6N//xs5Vukkyb2Pm9/v7Vnd+oJJm9Teecf/jjp1e652zUW1N2xFVnV7r77dN5t8Ymf+ytFX3TY513E83b7QeVbpK88o1XVLo/fknn2bidd+7NS39w3c4a8H1ndfb2/8wenX3yk2SZ13bWRJyz1Q6VbpKMHN1ZhzN8Z2dN0uqv6Ny7SZJzVju30l1l187n4uObv67STZIlm3b2wvnGOb37CufMPbXS3eD4zpzcmj/s3AdJkm+s3PldvfPEzj31m9/YWw9/+h6dsdzO+95U6SbJgtXeW+lO+lTn3Rp3ndZbA77iA6tVuhde1rl3+pa1d690k+Rlh3TGRYcv09sT9poXd945tvMjnX3gzr7j5ko3SXZ7pDP3cvOzf1DpvuzTnfNQkqx4dOedm68f/4JKN0m2XeHYSvftJ0+odH99SudZsCSZt1JnX5v91+jMtb/x4s57bZLkXW/r7Av2r28eXOkmyaELv17pfnFeZ3/jd13Ue377oD02rHT/dmznN2r+/M7vSJJMnt55zmzXbT9X6SbJeR/o7Jlz+AVnV7rzh3rvPNro0T9Wuldd0Hk29YG9jqh0k2SHfTrvgrz0ztIm0klGbuhcl/z8mZ1x+LyB3jPLOb+ztujeLTvjuC9v3rsfvNm7O89vP3xiZ5/8JNnsT09Vutee3LnXNf+a3nj5stv2qnSvf13nGm2H3uu7MvnI31a6X9+w97v6vAc6944u/PiO/9O652kbrj2ywTeX/j6P39zxtKXe/Lct11630l30ms7zoVde0nk2NElO+Hbn+uvoBc+pdJPkL195fqX7xrs7e9me9p7nVrpJst0vOvcLZ36kc4/socO/WekmyevHdeZsZh57daWbJL9bo/Petp0u7Yx5Nnti+0o3STae01kHd/vczvMoG+zZ24tx9bd3niM7e3bnmZEkOfb7nbnNuTM74+Hf7z230k2SQ//eeT77sZs772P83aTOuoUkWfk7nbXa633iiEo3SW6/vLNn4vQHO8/A33Fq5zmJJDniUz+pdFfasHOP7KiPdt5RnSTvvPa/vkT6z7rP7sx3J8nsZ3yh0t15p86aiLVW7t1j+dj9X6p0z/hh592Gn9y0MyZKki3P7bx378QD3lzpJsnV3+2sKXvxFZ05+vfv19sv+PwVO3sD3fyiLSrdTzy7s9YiSTbe6qhK98d/WFjpJskFA533471kn85c7BqvObzSTZKFO3TGAsP/nFTpDj7VmUNMktXf+GClO2Xl3t4yO/65s/bk+CM772C7cfPO+3iSZOpbO/9+9x/bWZ/807s7Y5ckmTzSeVfaEa/srXs+fl7nfYIPfahzHbzqzM45Lkl2vLwzD/zeMzrPea58Te+G4QmDnfU9l1/ZGcclyQeW27zSnXXc0n/Ha5Ks+53O3slJ8sV/rVjpbjtt90r37OV7z+YcdHBnjuT+L3R+r5PkPX+/rNJ99OrOXi7/Oqozb5Ykn/hiZy/wF350zUr3ktt6ewedsejsSvfzE3tjjCNmdt5nve4r7q903/uO3j5mJ8/r7BO46ls77ync9473VLpJMn9aZ33WFid1fvuSZNXFnXXg07foPOf52OqdfVCTZNeLOu8EWf/oznzDiq/v7QO+51ad90xuc1TnWfYkeda/Vq90t31FZ77hhq905hCTZJsnOterfxvsrFt//MDe5uU/e7r0rp/v9PaBHLdC533WU+//QaV7xNc699yT5F2PdeauP//yzrqJoz/feeYgSR6+tvNOkJ0P6rxzM0n+cEFn/HnNee/4v6577rxZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+HzMw2gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPBwGgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBQOjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMjPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMDDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgwMNoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjwcBoHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAUDo30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDIz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDAw2gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPBwGgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBQOjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMjPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMDDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgw4b/5j0dGlmRwaP5SP4jxE2cu9ea/LR5YUukOLRqqdGdkYaWbJAsHhivdaVMmVrpJkuFxlez4KZ3PxciyUyvdJJm4cF6lu3j4vzoN/McmL+l9LsZPm1Lpzrvv3ko3SaZPWq7SHff05Ep38uSBSjdJJs5YptIdN65zjlu0qPMdSZIlSzqfi4HJS/+3+t/mT5/U6d7X+f2buFzxN2pi5+/85JPLVrozlu99ryeXzsuLJs6odJNkxoTS92TB05Xsosmd80WSTB3fGdeOLFhU6Q6VxvdJMmly53d1wlO9Y860wU53Qud8v/iJRyrdJBk30PnNHliyuNNd3BnfJ8n0ZWdWulOXmVbpJsnwcOdcNGmtNSvdicMjlW6SLB7pfK8nLtu5vp4wvnPuTJKpE0rthaVzZ5KM72RHxnfCE6f0xluLFnTOc0sGFlS6i8fNqnSTZNranfaSub3f1ZF0/s4Th6ZXuk8/1DneJBma/GilO325Z1S6ix/pnO//j845Y9aqK1W6STI40jl/TprQmW8YWNyb05my2qqV7shjT1a6Q4t6v1HjS1MkSwZ6Y4zpy6xQ6S4Z6ozDBxZ35mqTZPGSuZXu9Fmd3+vFT3S+I0kyfmLpnuK8znVwkgwt7vydx09/rNIdWdK7PzAyvnNdOXFxZywwecbylW6SjAx1PnPDg7058QWPdf79pszsjF2GSvMuSTJ5aueYx410fkua88tZWPpel+atk2R4Yuf7N2Fc51xUWj7yf9pDnXPGxPmdMeLQ/DmVbpIsKc1DLVnS+/4NPtUZLz+x5IFKd8aM3t9i8ZLOF2X+UOccN+6/W7r4X5kxubOGa8r00iRwkokjnWNeUhp7TiiuGRyc15nvG5zfGWNMLa0fSZIlg5377k8Pdu4HJ8mEwaV/LTxu5H8/d64/eUm+tsZTS/Fo/o+t7+/9DYdmH1HpvvCDf6x0//bq2yrdJDlky49Xuh/e+epKN0nOPevOSvfTr9iw0v3dC/erdJPkR1d15qUfeN0vKt3Vpv2l0k2StZbfvNK9/bw3VrpJct0qH610b5p1YqW796V3VLpJsu5mj1e6F9/0YKX77Ks2rXST5C2zjq50z7rsl5VuklxzycxKd+S0zj3Oe3b/YaWbJH9a4exKd53nHlLpTrq5d/38nFe+ptLd8MJbKt0k+dPyd1W68+/orIl45ISjKt0kecaPjql0b320M0d44ha9+Y8H511W6a7y930q3SS5/g+d+3rXLNtZK/qTPXtrF0Y2/lmlu8rju1e6f/nFypVukky+8O5Kd8ZxvbW+K/713ZXuktWvqXSvWG2dSjdJdp/2vkr33h++sNJ94q7O3H+SPGPdzmfutlt2rHST5EVTO88qLZi+9OfjkuSW6SdXukly2ks635NJv+v8jYdm3VXpJslzt1yv0r16q868WZJc+o6LK937Nuz8/t34nN6asrk3dq4rZw3tUume/ILOmChJTrjupZXubXMur3STZLj0/Vvj0rUr3XPO2rjSTZK9tuzMcW273Dcr3Ud23LbSTZIpJ21W6Z75r5sr3STZeOThSvfrL+2Mt176y96ipFXu7qzd+1E695Fv3+JrlW6SrHn5hyvdL/zgvko3SU4/tbPnwzVv6cx9/uqxYyvdJNnswQsr3Yve+d5K9+TBKyrdJLlr+c59282u6tzPT5JrJ69d6a61fuf8OW5K5z5zkpy0+0mV7qybXl7p3vy7zvxIknxiuHN//MzhZ1e6STKy6W8q3U2f2r3SPfXRWyvdJLltl8748+iBf1S67/9Fb33dn4/ujIu2PPavlW6SnHTRcZXu17/6k0r3Zaf31mNMX/OVle6j23bW06x629aVbpIMLd9ZD//GiZ17aEky7cLOWODU9V9d6V6wbG+M+LdXdp77mfHgOyvdT359dqWbJJ981pmV7up/7exbmSQLtvnzUm+OPPq/7bUy4bYZmfXi5y/lo0mOueBFS735b5u/5P5Kd5u7O+sXN/pQb1+LI07/WKX7jk/31jxPvHCPSvdTJ3bWUK37sd618+cWdK6RNnx3577NlGs/VekmyWWv37PSfdWsr1a6SbLGRZ1x5QveVFqP9JreM9/3v61zzD/66hcr3Z9Oe3GlmyRPvOOsSvfkx86pdJPk18f9uNL9/su/VOmefGdvD/e9n3pmpbvRBp25xyNu771P4ksXb1np/uGvne91krzstTtXuvd8e2ale8ytvbmrzVbdvBN+YMdK9jePH1bpJslZN3bOn6fu1tkPPUne/OwbKt2vfKFzvX/ScZ1nJJJkqwt2qHTvGuw8s3/mTr3fqC/s+rpK9/p9n1PpJsm4Y26vdHd5V2eM/9ev9J7d/sfZb6l0dx/urD/9/F6953Je+5nO2rr3HNG73pl76fsr3VUfeUOle+tDZ1S6SbLFgr9Vuju8trOebLeTf1fpJsnuZ36+0n1B8Z1x6z7zXZXu1Y901tn/66uvrXST5Ny/d/7Oa2zaeY790+/tfZbvPbnzXOM5H7y40k2Sze5ZvdL941WdtVmbLNOZd0mSHx/YeX7mIx8/sNL9xzI7VbpJ8prPz6l0d9itM9eQJD/d8XmV7vOO74wFDjy3swdPkrxzxc563Em3de5H3fr2zr2BJNnprM484ud2Xvr3pv/tmG98o9Ld6c7fdrr7da6vk+R3q3bmG9Y+7aBK98oze/OTZy3u/K6+f+3OOsMkOfJDnd+pP5/Rmd96xQGdMVGSnHB+59mAt1/V2evy2s91nr1IkrMOnlPpPvP7nTUvSTJ1l87587p7L6l0757Rex/BFb99R6W7x5EXVLrHP6O3v+qsPT9T6f56j+sr3SQ55pGrKt0XbPORSvcf8++pdJPkVYd21uqcObEzh//h+ztr2ZJkve069+dufbwzp5Mkbys98/Poizr7zpz1/F9Vuknyzzs77x89dbCzTm5oYItKN0lecNDSX6+bJD9bu/e88hEzeveO/hfLz1w2u+659L9fn1zcuXeTJHtf/e1Kd5uB0yvd69ftzKskyW3p7P353Jf23gE6/7LdK91rn92ZP77j7pdVukly3Yp7Vbrb3rt7pXvKFb1rxntv78yZ3rjRSyrdJLn5/M47XFf8ZOdcNGen3t6Dn3jV+pXu/CsPrXRXfG3nu5ckE37Tee5tjy/23tv2seu/XOl+/FnfqnTvuq23vu7WtTrXSYdv1nmW/FWXzKl0k+Q7E79T6d526UOVbpK89MDOs0oT392Z///gMr01Sbcc9L1K90c/6+wjdtKHeu/TvPDQAyrdNX7XOXcmycTfdsYvX9qis3/B+5brXTtctUbnvuzJe29S6a4zbY1KN0k22aVzX/2dz+m9G+Xbd11a6U74fGePq0fP7cz9J8kHV39BpXvYVodUuk9e9vdKN0n2/2dnvuj9qx1R6SbJNRd05ky/9oPOdfAWy/XORZdfcUile/72b6p0t/5jb0/DK/borDF44pLe+tavPuOfle4r7j6+0t1+rd57fvZasbNf1NHTO/tT7/OJT1e6SfKbI39U6d490jvm2+48pNI9+qTO/rgfuL7zzEiSbLtf5z0xt7z5GZXuczc8odJNkiPW6+y1Pm3x/7bn0H9i8JbOGPGNR6xd6U7cv7MPVZKc/tLOdfAJT21Q6b74mN69kjVmbl/pvunyzv6OSfKlw39d6V63S+ea8uMr996fN3Bd5/7Ola/r7C8+sTMMT5JcvXlnr+CXPdxbX7fGeZ1z/tpndp6zvnGDzh4HSbLCcGdOfP+t317pPvq7iyvdJMlPOt/roT+9p9JNkvdt3llfvt+871a6t1x5V6WbJCfN6+zReeiRnfsO35zUe//a4js6z5yfdt6ulW6SrPzBtSrdrU/tnIuueElvDX/27ly7n3RCZ37kc5/r7U+4246rVLqP7PuHSjdJVntjZyww/cedeeDfH9z5HUmShau8tdJd5fCvVLo7fmfHSjdJnndnZw3JUQf9tNJNksE151a6/+s3ZKUH5+XAI5f+3r6/Pa6zx2OSLPOjzj5Jr726s4Z49o86+yUmyXve2nn3yZc+0HuO5ZFTdqt07/pVZ33kyg//qdJNkmed1Vl7+f0rO8+qX37nbZVukrzygM7eQG/4YOedl0lyz99K69af09lDZMavj650k2SP13ae9zpgnc45btIjvX127ji6M0+x4uTeb8lRL+ysVztg+876rOcv2znfJ8kr5nTmr/a6pLOn/d739+bo9z20sybpHWf21nEcOvjBSnfcA6+odHd8Xe/ZnDWfGKx0r9ilsy/s5ut39p9Ikl/e3rmB84ZzOs92JMnf/9b5/Xt56d3Ml/zwyko3SU68rzNn87zjt6p0D5l8XqWbJJvPmVDpPnlmZ7/gJPngtZ391j+3budZien79t5V9s7FnTUtH35m5xmM17/riUo3SW67vPMMzQGzn650k+SKDTrPYDz3ks5etouP6LzPLEl23razbnbxzzvPxp31/c5apyRZZf3OvobvPqC3n8r4FTp7c/1u5c5YboPHHqx0k+TvX+vMA+/1+8484mMHfL3STZKDZ1xb6f5h+ccr3SS5+6G7K92fz+3cr99lUWdNRJJc+FTn7zzz9Z1noZ++qLO/cZLstmVnjcjVD3TWwyfJXw7t7JM0Z/oxle7Vt/f2uTpltc481EFndd5teu05vc/y6R/p7BP48DkXVbpJcuzpnfvqK+/X+VzctEfv2u+k2zrvpn3eGztz4j8pzum88PDOeOuLs3r78H9lq877PLdbbkGl+8GdLqx0k2SHHTvPIN5/YWcct/63Ovd2kmTG2zprG66/eLNKN0k+/tpbK90Nnz+z0r38wYsr3SS58K7Oms7vT+y8n+Hz93bG4Uny23U6+0v+/oudsWeSfPsrp1W6D/ygM1e77c8719dJcvb2nbmzM87o3Pe784O9fRlOOb2zHnGHB3r/fo/vP1zpvvi0zlztnId6942W3bqzp+LUxZ1z0Xqn9cbL17yu8zzRddvsX+kmyb53HFHpXvP/5//e2x0SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4fMjDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgwMNoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjwcBoHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAUDo30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDIz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDAw2gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPBwGgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBQOjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMjPYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYMDDaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8HAaB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwFA6N9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgyM9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFgwMNoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjwcBoHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAUDo30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDIz2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWDBuZGTkP/6PnzljzZGTNztsqR/E8ssOL/Xmv01aPLvSHcqjle60SatVukkydcqESndgmZmVbpJMmrp8pbv4iccr3WmzZla6SbJkwuJKd8LwpEp3/tBgpZskkwc63YVPzOmEk0xYdUalOzK39L2ePr7STZLFw53P8oyJ//nv2X9jaH7vN2r85M7fedL0zrkzSUaG51a6cxctqnRHFi6pdJMkA53z57R1l610c/+CTjfJwqdKv1HLLKx0k2TcpHGV7vihaZXuE/M6f+MkmbHsxEp3/HDnHLdkpc6/XZIsuaPzW7I4nd/rJJk8/q5Kd/z4VSvdp+5/oNJNkiWTO5+NyRM7n+WJvY9Fpq4ws9J9ujMMSJJMW356pbtwsPNbMn3JlEo3SYZK6aGFnb/FyNBQpZskw63fkvSuVycMdq4fWtdRy0zrjAOS5KHHO+PPGZM6kwITpnfOQ0kydbllKt0nHnyq0k2S4XlzKt1JA51zxoSJpcmiJJOXn1XpLpjT+V6PDPT+FsPzH6x0RyaUroOTTJve+WFdUvpdHTe197d4+unOeXnZqZ35kZHWJHCSJROnVroTR3rzGMPzO3Nn84c6460pU4v/fvM73QkrdD4Xwwt788tzH3ui0p25XGd+K0kWlT7Lk6dMrnQHnyjeH+gMETO46MlKd2hy7zp43FDnnDFtXO9ctHj5zvlzRml+edHi3vxy6y7MxEmdcdG48Z054CTJhM6P1Ejxs7xkeIVKd8Kkzrho4ZOdc1ySTJzWmRdYULp0nzh5Tiec5NG7StfupXtzSTJlfGfCfWi4MxZYsOi2SjdJlizsjIuWjOucPyeN740xpi7b+V7PmNmZK0qSSVM65/zFQ501SxNm9Obax410/hYLFsypdOc90FuPsWjB05Xu3NL8VpIMD92/1Jv73XJSbpr/wP/0Y7LZ7NVHznzNe5f2IWXVX/e+A7dv9fJK9183n17pfmzj3pj1k+u8oNJ9ePmtKt0kOXD8lpXuC588vNI9/LnvqnSTZNVvf6LSfe56e1e6q0zsnHOT5Kyb1qt0D9ypt/jksFd2xj3Pv+nnle7iI9eqdJNkw1/dXumefFFnXvrGP2xR6SbJc57Vmf/46ip/r3STZLm8stL92j1Lf3yRJMs8dnalmyTrDvyq0h1+2ZGV7rf+8PlKN0kO/lvnHsuf51xc6SbJXoduWuneMf1Ple7dl69e6SbJyuM7Y7lbLt6t0n1os2sq3SR51aqd+wq3/2mVSjdJnj+uM/948vrLVbqXzri80k2S5f58VqX7yx0654vDHl+30k2SbR5ev9KdNOmeSjdJBjfbuNJd/pe/qXQXzP1XpZskV27dOec/vsKLK92tN+rN8f7tgs6c24R5vUX8D952V6W78gmdm2QbX1dca3hL51mXC6beXOlusfCoSjdJDlvtrkr3D9d8tdJNkvvW2KDSXXP5XSrddR/dr9JNkr+OHFLp/rp072bNZ3auSZLkvkc6a9W2HnlTpZskqzzdWeOzyrM69zR+f/Z9lW6SzL51r0p34is6f4s739oZ3yfJjQeuXOnu8lTveZRbttys0l1l0U2V7mY7dM4XSTJ8ZGet4R9f8MZK99z7rqt0k+Q9z+2Mi5a5cZ1KN0kmP9G57/ebd3+t0n3T7b37fts+45OV7pv+2PktuW/LD1S6SfKRUy/pdCd2nutPki/P26jS3eDDnb27bnyyt6Zlo/vmVLpDczvniyfSm58cntuZb1jlpbtWukny5JzOPeEJ039W6d55U+9eyebLXlHpnvH0XZXuyMLe/PI9cztjxI1Gdqp0k2TTizvnjM3e9YxK9+/fPKfSTZJfvbRzXXLHrY9Uuitt1fkbJ8k2q3U+Fy+Y93ClmyQTHu2c57489I9K96Ate88TzTiyM9767QnzKt3rTuqsJU2SF6/5vEr32ut637/Bta5a6s33/PFbuXXO/f/1uudV1txk5A0f+fFSP57b7ujtC3Tu6Z1nvfY/8sJKd9cPnVTpJsmj91xa6b7i93+pdJNk/Hf2rXTveMMfKt0/D99d6SbJ8HDns3zItz9U6Z6+6fMr3SRZ47yfVLqPnvjWSjdJFpzf+Wwc/tnO/PwTK3a+e0ly/rGd+8hv+0RnHnbxwh9WuknyqV07T8B/Y8rbK90k2fVZ91a6rxj5aKW77ttXrHST5LcPb1PpjtzfGQtsd2zv+fdz/tp5zvkNn+6trdt0l856zvf8qfO7euczv1LpJslDn1r673JJkpes0bmncNJunXeuJMmxJ11W6d5/+0OVbpKss0vnXPT5pz9V6Z5z0Hsq3SS55gXPqnSfsUPnntAyt/XW7x93cWdctOKNp1W6SbL2935b6X750osr3W0e6e1b/qqLO2vVDtuncx/k8it6e7T8/LOdc/6L5nbGAUly+vqdDds2ffqdle7bDnxFpZskT+3w4Ur3pT/orI380lqdMVGSPHrKcyvdRzbqHfPRv+/cn/7tRZ1n5N9xzHmVbpKc/JPOHNdx4zvv/PvHUb+sdJPknx/7WKV7/ipnVLpJsv9anftYBzzVWU/21IHHVbpJcuRe36t0B8/tXPtd+7PdK90kuWeHpb/fUJIc94WDKt0kufX8nSvdbf7WWQ/xwBZzKt0kGTm4M0a8aeOvV7oP/6KzZihJrjj9lkr3zZ/6VqWbJGtM78ydHX5RZ53ob/brrf+e8rE7Kt09L+n8Xt/w5V9Xukky/5zOsww/fkVnri9JfrFvZ63aNy7prDvZ6Xlvq3ST5Lh/duZI3jGts9fKq4Y6z90nycc+d1el+/VlOuvUkmTNDTt7P33sM2+pdA9Y4fWVbpJsfUHnmC8+orOWenj62ZVukszasTN3duv3O3sQJ8kFF3T2Lb93/c73795fdubDk2TNszrrG17z/M79nY3P7uxbkiRbfa9zf/zln+2dl3c8sTN+2Wq9zljg1dv3njH72ZRDKt29x3f2cbl7u86YNkmOX/Fzle5je3XuMyfJ5KH3Vbpv3HS/a0dGRv7rTd0GVlxmZMLuS3/cs8HFFy315r996OQTKt2H/t7ZF+EZW/bWqu153wGV7rKndT6nSbJo8PeV7sEjnf0njnuwty/QC7/bOYf95tenVrq7rdbZgzhJNpv/mUr3qDmd9zEmyQdu6XxP9lu/M0c49P7O3uJJ8q53d9aAv/jt+1S6796qN5e3zNYzK91dt35/pZskB76vsxfVVmf9tdI9ZfMdKt0kefTrnX1s337B+ZXuO4/q7FeTJBtc0rlmPOqx3nXub197cKV7xA86Y8Qp5/Xm8m6f0Vl7udvpnT2kj57UeX4tSS6+onOPbL9DO+sLkuSFv+y8n2vT/SZWulsd+6VKN0leutUmle5zluus9Z09tfOO+CQ59aOd9ZGfv7szDk+S1z/cWRP4hW929gK49Y7eu2G3WfeQSveuY2ZXuucetmOlmyT/mtMZ4593yqsr3ST51JOdPcp2u6Vzj+ykszvvBUuSrV/zo0r3Uxd21pb/cZPO3sZJstJK36x0/3LN2ZVukmzy5TdUuve/qLN368iLemsX9tm0s75ur9f+otKd/Mreb1Tu7MxPfuuecyvdJDnvy5tXuu9ar/M+pRmnv67STZItf9oZC1z4upmV7vPe1XvO7Pw9jq90D/7FPyvdJJlz8Y2V7gH3dZ45P+Llvb/FKX/evNJ9+YLOM+fzdl+p0k2SL//gmEr3iENuqHST5BXvfFGl+8WnO/tV3fS3NSvdJLno1Z37trtc2Hnm5yvb9PY0nP3nzr7XJ9y6daWbJKs/q7MXyD73dvaH/+nHO3vDJ8kqK3ben/ezr3bmBA48tPfOnAtKz/+euW1vr/WJf+zc65p63JWV7rcf6ew1mySfmdeZn7xsk85zEue9vfOOwiR52+KjK91vr9k75sGP7FnpbvSczudi+5/29pdc8NrO87R/PqOzNmXVLTasdJPknFM+W+n+5og1Kt0kWe95nTHG7Z/rvI/nq5/v7FuZJPfeV3q328c672T//WVLfy/hfzvlJZ05ki9f1XtOcNV3d+aXt/vcsv/TuueVVlhnZK9dP73Uj+dln+udD6Zu35nn3es7necVdj1zx0o3SaYf3ZlL2HCk973d9OLbKt2dftdZE7jPob29Za6c845K99jTOnsY/OtrvbWG3zimM04b+khvbHnNgZ17yd/ernNf9unv9PYuf9lzO++uufyAzr23b19/ZKWbJJdf01kTeM/zeveFZn7pJZXuyJWd9SH/Orr3/vI8o/NM5PRLOve+b/1W5/5mkpz/08cq3WNu6qxVS5K9zuqsPfnZrC9Wuod+7/pKN0n2/lnnfv2PV+/ce9tkj95zw687/FWV7pVf6MyrJMklI519Hp+/5ymV7m9K7+1Ikj2+t22l++kHO8+v7XZRZ/+QJNnh0M7zDPvuvEulmyQ/e/9rKt2r93pppXvbhp01qEmy/8s6z0rcsn9nXLTJL3rv8Dp1qPM+6a9s0rv3fcKH1650/7l5Z1/t9d7UW+t7ztc6z/afM6XznNmWT/XGy+//Ted+7+nv6Jw7k+Tti5b+OwiT5JCZnbHc6Yd1PhdJctq7O/f1tn7ejpXuDgOdPbWT5NqbO+fltY7qPdt41Yp3Vro37HB7pbvg/M5atST53c8656Jtnv+rSvfg5Xvv+pl9fOc561X36L1T4sZZnfs7bzm48z7BH137hUo3ST57zPaV7i/26sxDTf9k55okSa7ZtXONtvu7es+83jH90Er3o+/qvKfwXSd01p0kyf3vv6HS/fYdnc/FXRf19ujc7LjOPlg3Xdl5h1eSDA129k+Y+bnO/v7Tdrur0k2SbUtr7Z/9lq9VurN36e3j/uDMznzf2fd3Pm9J8vjDnXcAH3LRlpXur6f+rdJNkgM36KzJveA9nX34L/vVZpVuknzp3M5+64um9555/fzPOvsH7ftAZ37rsz/tPPOTJCvO7dyT2unXnb0PL/p87/ntY1/duV799oZTK90kuX3S0l+XmSQv+3zneb6Bkzr3VpNknSM6a8Me/0zn+cP9fthZ45gkh91xSKV7/Pmd832S/Gu3V1a6rz39jP/ruufODo4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P+YgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwZG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwYGO0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICxYGC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWBgtA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaCgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwZG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwYGO0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICxYGC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAvGjYyM/Mf/8cbTVxv53ibvWOoHMXlg6lJv/tvUSUOV7vglq1W6EyZNrnSTZOq0aZXutOkDlW6SPP14p73cqjMr3SlTl1S6STJueFInPHVKJbto8fxKN0kmpvO3GF6m87dIkqGHH+2El+0c84zpvXPR0IIFle6C+Z3zxcSpMyrdJFn85FOV7tQp//lv+39r0ozlK93B8Ysq3eE5g5VukqT0d56woPNZXjyh93u9ZGhepTtlmc7YJUmWLO585iZM7hzz4JLeGGPJws73ZHDhwkp3YNz0SjdJRpZ0fqOmzxxf6SbJE/c+XemOjDxe6U6dsWalmyRz5v6r0p01ZcVKd8HEOZVuksxYYXalOzJQuiZJMjIy3OkOT6h0py43sdJNksWLOr+rExZ1xgILHn+s0k2SucOd+aKFE3u/q1Pmd87LS+Z1PsvLrta79lvY+VnNyEDn+nq5ZdeqdJNkcFFpjmRS77O86JEnK93hdD7L4wd718Ej08ZVulOndsa144c7x5skg4OdL/aieb15xPHTV6h0p0zp/K4ODPQ+y3MenlvpTpm9bKU7eXJvTm7+3DmV7sTeEDEj05ardCcv7Hwuhkd6c+3jJneuHZY81fldnTClNyewcFznbzH0dOdzkSSPPvVApbvasmtUuknvb/H03M5nbtr0zrh2yfCcSjdJJk/pjIuGS+eLJJk42Pluj5vSuQ5eNNiZq01646LhdH5YhxZ3rtuTZNKEmZXuuAmdNS9JkiWdv/Pi4c59h3GLep/lRYOd79/AuM4xT5rau47KYOe8/NSczr3xJFm0+J+V7oR07o0vTu8e9shI5zO38OnO52KZ5XvzGBPTuVcyOG5xpZskK63VuSe1eGFnXDQwoffvN7403lpY+lvMeey+SjdJhocernTndaaAkySLliz9z8abbzkuN82/938KP2vawMi5Gy39+yE3bfD5pd78tydm/bHS3eipt1W6t/75zZVukmzw7BMr3eevWskmSe69uHNO2HiL51a6T07qdJPkqtXPrXS3e7rzD/jHS+6pdJPkgNfvUumefPsdlW6SrHDzMZXu8HqfrXQnrd2bC3po1Ucq3euX2bvS/dB3Lqx0k2Sr5bardO957ncr3SQZ/+MXVLq/fl3nc7HVfb1nq25deFul+9SMzrrZWc/s/UY99s1bKt31X7lMpZsksx/fuNK9faPvVLqP33FwpZskd75onUp39bs6f4vn3NqbS7hiXue++qbb9+YfL7v1xkp35LHO+fMlT3Xma5Jk//U68/+/zqxK95Hlbqh0k2Rk/gsr3RX26K2PXPOMzrXfZ5bdqNLdYuXeOo6/Xb9ppbv7wC8q3dv+3BnHJcnDG61c6W48o7UmIjl/k846jm2v6pzvNyl+ry/63kcr3bs/3JkfefEXvl3pJsmMz32k0n34qM44Lkm+9pafVbqvOa+zxmDdx19S6SbJc1Z+RqV77tOd58EWX/3uSjdJttn05ZXuMqtsUekmyZ0rdNbaPzH995Xuxss9UekmyV1Dq1e6u/yks+75xGdcW+kmydDfOvcLn9px/0o3STZ//Z8r3TU//rFK98q9e2tFNxro/GY/9vDOle5Kf+7NT6747M490LsP65wvkmTTozvPWd9xyJ2V7uMv7ozvk+TeVXaqdPfc85mV7rKzrqt0k2SNMzvXftft0hnTJsmvr9+h0l240vqV7odeen6lmySn/nq9SnfxKp17JRvd1ZvHWPDCV1e6zzn59Eo3Seb/qLMO9Yafde7BLP5nZ94zSZ61fuc8t/hPnXPc8Ft7n4vrDv1cpbvNhFdUuklyx303VbpbvaHzW/LXn/fudd228lcq3dmHdq7dN/raBpVuklyxcWc91Far9q7dZ/+is8fPct/orBW4fULvAeA1J3au3e86/ppK98aVOvuuJcn9D/y90t3lhm0r3SSZ+cqlP5bb6dzP5vpH7/qv1z0/c6UtRn60z6VL/Xh2XaPzWUqSlaa+qtK95s2d9YDnv+7XlW6SHPp0577pdzfu7HudJHe86ZJKd8vPdNYwbvCi3l4cN5z+pkr39ksuqHQnntG5B5IkL3tmZ23rRy/9ZKWbJNvtvUqlO/ldx1W6V7+ityfs1d+ZU+ked0fnM7fXgt6elG+546hK9/jXfqjSTZL3PLRupfvJQzrj1anrvLHSTZLtXnB1pTtwwvcq3Q0vfl6lmyRfWK8z97juGZ11akly5HqdddprH75Vpbvfxp3nDZLksY/8qdI9crXnVLpf+9AplW6SvHaXv1W6c2Z37k0nyZJVO885779H5/w5fpWfV7pJstWizlju6qtvrXS/8vvefl8HnfvNSvfFJ+9W6SbJGc87vNJdY6gzXv7gnWdWukny7AeOrHQvXeutle5VZ3Tu0yfJvIs6a1vnfbYzjkuSV075QKV790/uqnRfO7/3DoVXvf6Dle7Ltuncw1ruM5dVukkyMuP9le5BF/X24N9y5tcq3e3WO6jSvfwNvefYH9i+s077Wz/q7JV/3nG9/aLWueL5le7OC95e6SbJPWd1/s4/2r9zvfrDLXt7uG97+rMq3V/e1DnHXXFj7zpqhQ9t0gm/pbfH1SUPdtYXvLN0WXLQb3vPMix4sHPtvsE/D6h0D9rnsEo3SfY5srM/zMj0zp6GSXLR+zv3hD/1iy9Xumvu1Pte379p57rk0e931p1cd13vOvgbf/lLpXvpVr3rnd3/0vk7b//CzljuE2+9vNJNkj2v7YwFNrq7c+33mzd8ptJNkltW65wzfvPM3pzcld/u/D3+9O3Ob9RLp/fulWz92UMr3ZsXd54xu/NrneuzJHno7M56qH1P7N3f2eXizl5xa+zfeefRGz54WqWbJLNX7rwnbfc3dN4/8+FndZ6jTZLtNtus0l37ni9Uukny4F869/S3X7RhpXviZZ1nGpPkthU6+5bfMqGzZv3t/5hT6SbJ/rd3nr94z4t61+6PXnZ8pTt8+exrR0ZG/utFGWssN3vkwO1eudSP54T8aKk3/+3E+zvdh67v7LGz5A+9eyw7rnJXpXvUMb1r/mWX3afSfe9Re1S671irsw9ckhz7ic4a8LM++ddK97Dbf1jpJsm7Tumsu1zyid6czeCkmyvdg7bvjHn2fvOvKt0kecvszvMdn5jVuS+03uTOPHqSLHtJ570Bx+3TWZ+VJHft0JnzPnzPzvz/Zg/21td98NSlPyZKkj2O6fyNT7/7W5WWMZn9AAEAAElEQVRukpz1nhsq3Yt//OxKN0l2WaWzx+Pl+7yu0p11wTcq3SR54bvnVLprr9W5Tpr5kc7a8iR51r6d9ZFvTW/twnbv6TxD894tO/NiW/yyM75Pki/e1dl/4tCHO/sMzNzt4ko3Sa7frbOXw3PPvLjSTZJPvvnYSvfmWzt7nvz1W721C6f/o7Nv+cIXdtYnf+LQztrIJPn7P6+vdB+d3Btj/PbHnT2H7pv0vkp3v8PeUukmyfbP67zPbPLj76h0r7ls10o3SRZ97O5K95O3dfY4SJLrVu2sw1n1w53n7/d5Ue9+041/7IyLjriwsyfezbv19sdd47bOePmK7/XmEQfW7jxPNHRdZx3AP7/zg0o3Sb650xGV7gkf66w1PGF2b3/Oq+7onOPe+qoXV7pJstlvO/s6TX9GZ+zy2PzSzbkkJzzZ2aNzrYM79+t/dUPn+ZkkeeDJztzn9Lf09q7b7JTOXvnbv7/zvd7msSsr3ST57oKTKt3LZ/200h3ar3cdtfPVnX0Z5uzTe+b8kEM6z99f+p7OOsZr3tJ7efOBg539jbdfu/Pbt92jnWcxk+Srf+7MY5y5XucdhUny2WmdPR73O+7BSvfzbzu+0k2Su9OZUx38dOf9T9tPPafSTZJ9T+vsN7bxKrMr3ST54j2dvUB+vXpnjLHwrb09MXd67GWV7j4T9qp0v/PIyZVukmz4oc4Y4+QdOue4JJlzROf3b8Vfdf7Or35LZ0+3JHnG0Z13hO7+kxMr3Y9+9NRKN0mWfVPpvR3f7e3VfcCnO89A/enUWf/TuufN1lxm5IyPLP09z9e58N6l3vy3N8w9u9I9eKfO/j17v/A1lW6SrL7e9yvd+37ZW4ez8qKrKt39P95Zg3rEp3r3Cw/8+faV7qLtOuup731/b17sc5NuqHSffMOelW6S3Puizv3eO2/u/M6ftWrnuiBJfvX8ztzY45/qzD8+9IK1Kt0kyWs78xS3vrdzHzJJjvt+Z8+9Zxx6cKX7nXGdfZ2SZP81P1XpPvj9zvXzix6/q9JNkhOW66wBf/q0EyrdJFn+eZ39B1f/S2eP4+9/rTfeemCr2yvdhc/qHPMZvVeL5vdLXl/pnvKHX1S6SXLDBzrPbd36UGd9+a9W7r0TZO5wZ57p1mM7+6ns++OPVrpJctuSzjzT4NO9McafV+68p/r4M86qdK/71vGVbpIsvLdzLfXMf3b2VfvsY51r1SSZtWVnjcjOd6xU6SbJ/jt0nrM+bvfOs417/+JdlW6S3H9ZZ47+3Ac791gOurJzrZMkH/lc59nixUO9/Z4fv7FzLnrZ+ztzffP+1JuH2uifL6l03/e8zvtsp03bstJNkuVP7uzttMGc3jqci5/qrCk7b9K+le4VP+28czZJXrVDZ1/tyyd25s5+/e4dK90kGb+oMxbf6bbOb1+SXHRQ59p9gxs778Y8+MDOGrgk+dzqnWeg1vxy5/f67CM776hOklds+OlK91+n9u7Xz9m5s5f7d9f8cKV7yu6dZ2mTZNXtOvuCPfabzru1L7uydw9t+S919m/d7PrefmPfOv4nle65y3XWZ915zORKN0m2OqEzJ3fSXZ1x7c7PfXelmyQr3NF5Tn7ajetXukly51s7e+R+dIPOHrmX/r6zd0KSbHlq57rypN0681t7b9V7tuOHy3WeWV584O8q3ST56hadc9ENh3T2C/7pUZ33HybJdQ903kV+zCc6czrrTui8VzhJfrpr5znB7X8zs9JNko/t0nnO85kTO+vZFt5wfKWbJJ8d19kj5sKNOt/rnP+PTjfJrl88ptI9dI3OszlJcvXMjSvd2zb94P913fNA5f8bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPw/ZmC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWBgtA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaCgdE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwZG+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCwYGO0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICxYGC0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoKB0T4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBkb7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgLBgY7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFgYLQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGgoHRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGRvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAsGBjtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsWDCf/Vfj5uQkQmzl/pBTJm+cKk3/+3puStVurMnDVe6kyctqHSTZPy4aZXuhM6fIkmy3EpTKt3FSzp/54kLJ1W6SbJw8bxKd2RwsNKdNGVipZsk45fvtAcWzq90k2TCckv/3JkkA+Mr2Qw+/UQnnGRksHPQ08YvqXRHhhdVukkyebXOeXnJgt6Jebh0Lhoe7PydRyZMrnSTZMnczvhl/Aqd377M7423BqZ2jnloZHGlmyQL53c+G8tNHlfpLhns/fuNm9Q55ilLOn/jCRN64+WFC6dWuo8seLzSTZIlUzpjuelTVqh0Bx95pNJNkhVXXrnSHTdloNIdn+Ur3SQZP/zfXer/pxYN9b5/EyeVfkumd64dlgx1xp5JMjLcOebhyZ1x+Pjh3md5wvDcSnfSYG+MMXFh53syefVZle7Ikt7fYtLkzm/UxEmrVLrD03rXDhMmdH5LnrzvX5Vukkya0DnPLZnXufabvELnO5Ikg6V54HHjO5+5eU/1fqMmj1+u053QuSZJkqF0/v0mlqZeFvb++TJ+mc4YY+jppyvdKTN6f4wpk0qTquN6c+JTFg1VuoPTZ1S6/x97fx7221j4f/+v69rzgG2eh5DMZCaVuaSBkigJ6VMplZJEhVBKgzQKGRtQScmQmUxFhswzmceNPU/X74/713/3fdyfuvfr2Mf+Ho/H3zyPdVz7/V7vtc51nueaM6V37zAwpfNbMmL8ApXuzGm9663RczqfixlDnWuXJFlisRU64Zmdv8XQQO8aY8y4zmd5YFhnHGrMhN7fYs6Mzr/fsMHeNcbsBTvn/BFzOsc8Kr3fqDml79/MEZ0x8YHSnIkkyZjO9cvsOZ2xviSZM6tzLho52Blrn1N6hJYkI4c617UZ6PyNn3+6dLxJxozoXMvNGD6x0k2SoRmdMcpZ0zvXRa9O7c1BWHSxzvdvxOihSneBUb1rjGGlW7/BBTvP0JJk+EDnWmAonfuSOaVn7kkyK53v38DszpyXmdN6154Z6nxPRo7vzQ2bM2PuX78M/H+4vn9hoSVz4tv2nnsH8//39tvum+vNf9v8rj0q3atGdK4htntgy0o3SZZc9V+V7p/XWK3STZKXbtq+0n34ua0q3QefvKbSTZKtV9+80t3+ws7NwRpr9z4XD/7t4Up3u2UfqnSTZKV3fqvSPf2Zzljsym/ozUk6+MLO9/rmtf5U6f5k5BaVbpJcuNw9le5nnuqMMSXJsW+9utKdkzsq3S/c9rlKN0k2HrtNpfvrMbdUunPu61wHJMlCH/5opbvZ5Esr3SS5cFbnnDFhwa9Vugu+pXRjnuRjZz5a6R69YmfM5s6N7qx0k+T+B9ardDfb86JKN0le2GONSneZT72+0l1t7xcq3SS57qbOde0mJ3eOeeqPJlS6SfKH/3lTpXv3MQdXuknyjg2+W+lOyfmV7la3rV3pJskpT3TOcz/YsTP+uP76i1e6SfLUwA6V7t0XrlTpJslaE66rdK/dbqNK9y/7nVfpJsnHP/yLSveWuzvXRTM265wvkuTxk75T6R40/opKN0neP7tzv/PR/3Abjv+tSQO/rHST5IKX3lrpTlhu5Ur30VXeXekmyYynlq90z1/o1Uo3ST405S+V7t8ue6LSvWLDzuctSSbfsmqle8fKnd+SoU16z75f23yzSneLOb0x1Xv+0fn3G/9i5zvy3ptur3ST5IJXP1zpLvflv1e6695wWaWbJMsvvVule/dHfljpJsnETVevdGf/tTM+ssjyX6h0k+St45erdE+/rHMuetPqvTG5CStvUuku9ERn3leSDCz2ukr3G//oXBeddmNnrC9Jxn2gM3do1V91nkctsMqOlW6SDLzaGRN/btOVKt0keWa/znd7+jad8aL1Zt1a6SbJ9Y/cXOkuM6Nz77fZFydUukkyae3jKt1nD+isZU+Sv13cOWfM/viFle7WD/bWxl0z8PtKd+cfbFrpfu9tN1S6SfLJN32o0n3ytN9Vukny/Gad5zB3Tn260h1zyYqVbpKc/kxnf8kvL3FBpfv47N4+WMfd9YFKd8YqnTlLSXLvpAfnenPaf7nP7bjpD2XDB98/l48mWezW3tjHAd9/c6U7dvetK917D+rNh/jGu39T6b7xxbn/mfi3Wz7YGde8ZczESvd/Xlur0k2Sbz3480p3zfPfVemOvb039nHbM1dWujd8qrf/xLGTOtfYP7/vz5Xu6BN+UukmyUZTTqh0nztrwUr3Xzc+V+kmyaTDJ1S6nx/zyUo3SfZ8V2cN56Fv6JzvF3j49Eo3SX6zx+OV7uJ7nFbprnbxZyvdJJlwzd6V7tDyvXXqz21a2lfmI7dVsss83+kmye++2Xk3yoXTz6x0Dxi3c6WbJMef2PnM3Xfp2yvdJPnpeatUuqd/vbO/6jW/WLrSTZJR63auX24c+1ile8zyG1S6SbLAjP0r3e8f3Fuz//BNnTX7nz36D5Xu7RcfWekmycVf/n6lu88716l03/rD3hqlMz/cWVd82bTemPTv1uvsl3jjl46tdLc7dJ9KN0n+OLMzH+mq0nPvT0+8qtJNkps364w3XDm786wiSR771hmV7sC3O79/X3y2ty5njd078+F/MeGsSvfrX+2sfUqS9fY/pdL9/peXqXST5PKf313pnv1o51y0/x5/q3ST5Ju7dOYDfmj9N1a6hx/d6SbJwd+6q9K95p23VbpJcs8pnWdH91z0jkp34fUOqXST5B0vdH6j1nrXVyrdF646udJNko8s3rleXuvQ91a6SXLDv7ardJe6vTPXYvjLnefBSfKZDTvXRS9+a2Klu+janbG+JHnHE515hps+1Hn/TJJccfsXK90d7ty10r1umd6eKGcOdNbPDPt0Z0x1rQ8dUekmyUGPdq5rv3VObz7GKRNPrHRfWLUzPjJ8oLNPXJIsctT7Kt2Vj3mx0v3lNp318Uly9RtPrXS3XfySSjdJ1ly7s0b30Z3/UOludWJnrC9JNtr8/kp3sVf3rXRX3qn3LrMZozpj7fdt2Hvut9Mqnf0e3vrjzrnogd7UsJz9gc492meXO6fS/fjQQZVukpy/VGctynnnddZ1JMmdu21V6f7Pf7ntzKKjX8xHVp3747Gzvt3b7+vpn3Tm0S/7QueZ+pwje/uSrPfjCZXuW97aGaNPkjc9++lKd6MZX690//KuztqmJNnzhimV7m3HdvZD//NJvb/F6Nd15sv86o2d+SFJcvJ2+1W6fxz+SqX789f39i0/54ed/b6+uv5Wle6RO3fm2SfJl1Y+rNI98lOfqHSTZMcDO+eMHY7ujHc//UpvL4f1Nu48V3//mztjTGdevHulmySTju7Mj7z9bStVukmy4e865+UNz+u8w+6lP/fGpb/7h87eFm++r7Pnwmon997nt+Mxb6h0DxgaV+kmyQce6zyv/+DfvlHpbveeznsqkmS/fUproL74kUr3o0O9+6gZN3+p0r16eO95/V9P6Fzjr3xNZ7+o59e5vNJNkqce7KxH+eAfO/NDPnntHyvdJPnSqM7z3sXG956x3Djy85Xujis+Wukuf0tnbUeSHHFTZ/+Jw+7vrAvfc2Tn/jpJhrboXL8896Heu5lffLGzD+qUb3f2dTrkXZ3r+yQ5cr/OeO2oEZ1rzyf26730+Uc/6exJ+c+LH610k+SQ3TvXAje+2tl391N33VbpJslppz5V6d6++VWV7i+O7+3jt9RvDq90T12/ty/KCyM6x3zt5D0r3d8PbFzpJsmGR3bWd0xcs/MuyAc/fXSlmyQfWrXzu3rvgXtVukly60ad+cn//GVnrtra23ys0k2S4z7WmZ/11B8680O+uGTnXTxJcuakzjsUFtu1M28vSe7JzpXuXxf9R6X7pos7Yw1J8qdPdvY3nvDWt1W6b/tqZ0+bJHnDLp3nO0ut80ilmySPfb7zLtZRB3SeG+22WO89MTcu3xnHfyKd54nbLtvZayxJNrvryUr3oNL+Wkmy8RadZ9i3r9l5b8fwQ3rP83/6uW9Wune9vfNesMW3mVbpJsmcvbasdNd6qDcmPvmLnc/c5z7RWb991pWddS5JctbinTG5z7yuMzds7Td09qpKkqmf7sx7XvKBznVAkhx9fWfe2X97VzJy/EpZdsu5f39w/g2d/UqTZNeBzvOmb/zp25Xud7/amSuTJAtu21m3f9RjF1e6SXLakZ2/82WPd55lrflKb8+ou1btrHH627GddWQXzOiM1yTJUuM74xQfOOHXlW6S3PGvzpjpgYd9r9KdtvGXK90keXjl0yrdN7/S+T3+8y4PV7pJ8urynTlJL086tNJNkl89NbLSvfrs2ZXuNR/5VaWbJDec/rlKd+P1Ou9NXPOdnXlDSbLDDzrPQt55XmceQJJceepHK91HXteZO7T9o729y18+tvP9++U7O9eIM77XG0v40dIHVrrv+Wxpf/EkXzqkc8+/yWOd8as/HNh5b1SSvLF0Llp0Sucacb/TPlPpJsn4L3X2ozr7y5358Emyw76dfRemLNGZn3zSGydUukmy0WDnfdKLTuzMiXj61rdUuknyjwc7ayZ3P7J3Ljpmzc6c3P1X7zzvPXrPoyrdJPnmCp0xuQ8v2dk3Y9El/lTpJsmvPtz5nhx2SWdueZIcd2pnL/dx63Wu8S/+5zGVbpI8NbLzDr39T+zsP/iVsb3r5YX+1bn2/NDLvfccf+2AzhjX0d/o7Ley+Dad9zMkyRqrdd4Nu/nqW1W66y+3S6WbJGe9v7OX9GZr9ebX7V9aK7HzbzvvjdvpvoUq3SRZ9ZXOs66nj+6spX3+ks68oST56+gfVbrXze789iXJxOs67zD/zCc79+7fX/SBSjdJTt6n8wz0E799udJdfEpvX8N97uzcR91+Q+89r2vu1tkzZ8pGnf3Wb1u3M9aQJIf8dKVKd53vdu797lp1yUo3SRb/bOf7t+U/e+sOrju6c434zA2d+XUHLd/b7/mkpyZUuuf9dPtKd8tv9s7La/7z9ZXud3f/WqWbJL97tTMP/MydO+sZ9lptzUo3SY7/Y+da/GcDnWvPDZftzD9Iksu36KzrX/kzvfudF/60eqV7xN2d8aKrTuw967rvxc6eDy+N6rwD8fpdemurHh77TKV79mX3VbpJMmp65/nO/5POW2UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P8wg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHg/P6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgfjA4rw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYHA0NDQ//r/3iN8SsOnbr+YXP9IIZmPDvXm/82Ztj4SnfUgp3uyKkDlW6SjB73v/+3/k+MnLVwpZskwxcZXumOGLVApZvpYzvdJLNHdbrDM73SHcjkSjdJpk+bUemOGDeh0k2SseM735OBEbMr3ZlDg5VuksyY1PlsjB3XOV9Mn9b7Wwwb0ekODJTCSYaGjax0B4Y656LXXnm50k2SUSM7n40xszvdWQuWfkiSzH5tTqU7debMSjdJFhzf+c2eNLxzXh49dVilmyRDpc9yprxQyU6ftWClmyTDF5hW6c6Z3PlcJMmI4Z3v9vCxnc/F7OJv1OxXS+eM4bM63cHe32JwTud3dc7Q6Eo3ScaMK52LBjr32EMzO9eeSZKxnfacSa9VupNf6pw7k2Rw8sRKd/Zg799v9pzO32PEmM75ftKszuciSRZecPFKd2DBzj3J4OTetefIBTrjUFNf6I29zJzZuZcaM36xSnfWrM64Z5KMHt2538lg53s9eVLp2iXJpJefr3QHJlWySZIFVl660p09a0qlOzhQ+rwlmflqpz1+sc414vTXet/rmcM67RHDes93ZpWu8QdTui4aPabTTTJsqPObPWty5zsyfHjv2nPO0MRKd/ZrneutJBk+ofP9mzOl83ceGtY7L48a0bkWmDW7Mw41Y07xbzG8c44bMbZ3LhoaXrquzcROd2rxWdeoztj1yHGdc9GU4jjGAot07v3mTCleI84s3VeOKF0XzemNqc6Y+GqlO3XKxEp35uze32LkUGu8qPf9mz5zXKU7fmzphrX0O5Iks6aX5oYt0PnMTZ08tdJNkgml8clhY3vn5dmzOs+whw/vHPOcOb0x1dcmddpzpneuPadM7IybJcm0wc73ZPac3tjL7Dlz/3f1g7f9LHe99uR/dZHxxkVWGLp62y/M7UPK7fcvMteb/7bguDdUuosPu7vSvXTBGyvdJNlk4v9UumOW7c1bf9/Uzr35vmt05qAednvv2nLhYU9Uuk8tdFGle88mvTHeJYbtXOk+cO49lW6SfHLbjSvdaxfvfEc+8ffO3PIk2ffhCyrdJT5zQqU7cOVdlW6SbL3x1ZXuQpPfXOkmySO3vq7Sfd/QryvdI2asWukmyYtnTah07/vSS5Xu0Qv2xhImLb9zpXvL2f+odJPkA2/trGGbvELnXvTv1z5T6SbJUkt2xrzPeeG6Snf5Ua9Uukmy7gIbVbo3r9I7L8+5sXMtcO8VD1W6uxzySKWbJHed27n3m3XlMZXu5A13rXSTZLWTOtfiD1/5aKWbJDss//5K98kjvlfpTttvi0o3Sa49+a2V7up7XF/pLn/iUpVukiyy3t6V7t3Pdv7GSbLNQ53r5Rve2TnHjXmgN6bz8nuXq3SfvLQzpjPuM/dXukly3mVvrHR/M/2OSjdJ/nJZ57ne8iPuq3TXf/N3K90kuevWUyrdt9/0xUr3N2v/sNJNkjEPrVTpnrhd5zo8SXZe7blK943/6DwfuGSTv1e6SbLwcstXumtd3Rm3fuLlT1e6STJnZOf3+r5cUekmyY3bdK7l9ryzMz9ky2V69+7fPv7zle6um/2o0l3z7v0q3SS5bdN9K90PPvqNSjdJrnrrjyvdZx7tPGv+y2OPV7pJssg6H6h093nl9kr38J22rHSTZIVzOn/nGW9fodJNkl2e6lwvvzLtrEp3cnH97/2Lda5rV72583t92VDn+jBJ3j/2wkp3iZ1WrnST5NLnVql0R59zb6X7uvf11uY8ukHnt2TUN8+pdCcufFWlmyQf+VfnN+qjG+9Z6SbJ1rv+q9J97KzO93rNW1avdJPk3klPVbprbLpBpbvPFsdWukly04HHVbqnvrczvpUkb373nyvd0bdvVumuckdv77XrVuw8X520ybWV7qVXdsaAk2Sd+4+vdBd/ujcmN2vC3P8s73X3Jbln8kv/8UPQYSuPHRr99dXm+vHsMe2oud78t5PP7owDHfjCzpXuqb+c+3tp/9uzm+1V6S5ySW9u5BED51W6l4/prJva+p5TK90k2X3Y3yrdt5/e2S9xSnrree54qrM2+/Inr6l0k2TkoadVurf+9NBKd+1tet/r2X/s7Bf1g1c76/TeuXNv7GPmOntUutM2/1ClmySb791Z23Hydp1nhcse/MFKN0nO3/PsSve6t95a6X4tvflIm1yxTqV76bveUekmyQY7/KDS/dxJnWeyaz09sdJNkv2ve6DSnb7cdpXuy3N2rHST5OvXHF/pjtr7n5Vukhy2+26V7vG3nlvpjrqnt/fgx2f8pNLd67rO3MiFdu6sC0iSpa7apNI9ZqfeeuWh93TuS+67pvP9u/yFznq7JPnywp01W2fMOr3S3e2Xnfv2JBm/+kGV7rtGv7fSTZJ1/9K5L9n7O517h9sX74w1JMmXP9DZF2jt9V+sdE876OuVbpIMLdS5Xv7ZHZ13ayTJMv/oPPf+9Qc+WelO+VVvPtJnPtRZC3bjrJ0r3YUu6q0dHTt12Ur3Ny909thJknc/3pmD84VjO2OfP/vnnZVuklz8r858zk8cdWmle/Pbe/NZRhx5cKU765HSOyaTbDi7M4dj948fUum+6eMPV7pJ8sy+f610D/32uyvdOe/9SqWbJJf+sbNfx7C/nljpJsnFn+nMAV90+IaV7p239K6XD/t1Z0zufTf9vtI9ebvTKt0kOf+8zl45z+8ysdJNkh8f23lW+dytned+N2zSm/O85M2/qXRv3r2zJ+Xm9/ee5x827uOV7iff2Fvj+fp7OuM6z+zy80r3o+/sPHdIkmu/29mv49XfdMZ0VrpnvUo3SR66rPO7esu7evvDPPvhzpq7gSs6+6veeHtvHGP7zk9JNv9k5/nc+ht3rsOT5LvrX1Lpnrpdb27r6tM76xoP/kNnH+JZg519g5Lkn3c9Wumeeedale6Rg3+sdJNkzps7818/P7a37/zPxnTGXhY7dYNbhoaG/uPJ2usvu/DQX/bfdq4fz88v7I0FHbnR7yrdbU/Zu9J94fObV7pJcv4unff5bbhmZ51Jknz3kc4946/W6zxv+ti5vfcYvLjQmyrdUSfcVuk+P7s37/mSczp/50eHeuuxLn71a5Xu0GufqHT/Nbvzm5kkhx/Zuee4esnOXpc//Xpnf7IkOf91nb1UPn3lLyrdJFllUmcvuBff3pn3fNdpvf1xt/x6Z67h0dt3xv733vK0SjdJdt34y5Xu+47uzXuePLJzjfGO1Tp7Z63z/d4ajJ+es3alu8xZnfHSH1x7caWbJOsf99lK95btd6l0k2T1ziOynHD9NpXub1/fuXZJkvv27jxXH/+Gzl7BG3y6s8dHkvz0sc7v6g5DvXejbLN+Z8ztTTt21kBt9NXOdVySDH6088W+cHxnz4VvLtcbl95+7c4ajKtveKzSTZK17+28z2X9rx1R6Q7e1tvL4Z4jf1npnvGHzjjiV+/rXXtefndnT8qvvakzVy1JLl+4szfD82e8vdIdeK1zTZskR+zW2ZPy2i92/hZ3Hti5jkuSd/+qM3fvLW/u7fd172qdNRgrHtTZF+j0nxxf6SbJHmd3znNrXNHZ33jW8qV3SSd5bmRnHHjqpN4amlmPbV3pXp7O2OfCz/b2+7r8ks7+JY98ofPOnG2vuKzSTZJnR3Xm7l0xYe6/9/ff3ndXZ3x56NrbKt0Xj+zMIU6Sxf/aeW/H7F+uVOmOWrH3zqqtbv5IpfuNHxxZ6SbJsQ9PqXTHTOrMIV74hQcr3SQ5ZWzn3+/tx9xW6X52hc5+6Enytv2Or3S//bE1K90k2ev8zprXp6/svGPyU6W1HUky7ied378t/tD5Gy/4ZG+/o8Gdnq50Xz34t5Vukpz9uc4+xHsv2Xmn946nbVXpJsl6F3feZ/bgYjdUutMOmFDpJsnlS3XuVye8u7OHdJJc+JXOHoVbnNWZT/PMzyZWukky/MLO+8ye+FNnDv+mO3aeMyfJCT/v7On28G+frHST5Du/6YxD/WDq1v/VvOflR28w9NkV5/7zmzcd0JtreMu1N1a6J9zRuba86E/rV7pJcsxJ+1e6f3xPb4/qVad03hu8/22da5PfHvynSjdJLjmu8x6YaR/qzFs/4ajeHgZDD55f6X714c7+Z0ny2MTOXIAlLuuMma61Um+t7BFfWqjSfeCozjPO+7/T2TMjSR7ealqle/82vT333n9YZ9+FXRbsrBv+yaKdfZ2SZLXPduZejjz9qkr37q903geXJAd9p7M310vvOLPSTZIdn+iMS4/bc+dKd8ZbO/OGkuTRRTr7il779gmV7jp3lyb6Jrn/ys5+HMMv6XST5ITHOnNEvvazzjljnw/21rzu8eP1K933/8+wSveJ43r7Z214bGf970nX99Z9v//srSrdNf7cud766Vm9+51PLtjZQ2TkgZ1rxOWuOanSTZKX39DZV/TcLXpzAu+5vLO/xYWrds5FzyzTeT6dJNcf1xkz/fYRnf3W1//wPpVuknzmb5291aaO663BOP/izjycyYd01jPcdV9nv9kk2fTQP1S6J32ts5b2sX/2xrcuv+zySvctXxpb6SbJ68a/r9L9zV92qHTPP6Pz3o4kOf63nfW0793n+Er35L1683tG/6SzBurPx/bWeZ4wurPm/NANOuvvj7itN7/uJ9d05vh8atPOe+722qXzDqEkOeCCzpyk8zfozaPa9tDO+yAXva9zLXfI9Fcr3SQ5bcfO9+83E39d6Z6yVW8f/mMO3rnSfcMLneutJDls885z94+t2Hl/83u37DyDSZIfjuy8r+Kgva+qdP++w82VbpLsf8E3K929X+j9+71/+8481Nsu73xHzvhEby37Lzfs3Dvc/OfOO3ke+Wvv3Xz3rtS5Lnrpnt79zutWO6DSXfaGzvrDC5/urSfa/uDO2PUxh3Wu8X94Qme9cpJMGdd5VvK1b3SerSbJX37QmcN/7a5bVrr3XNDbr2qZ0zp7Sax3Zuee5LdXXVXpJsmouzvv0z1hlaMr3SQ5c3TnPa/n/nir/9t5z50VVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf5jBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GJzXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA84PBeX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GP6f/MdzhmZn2rSJc/0gFlxg9lxv/tu4OXMq3emvzKx0M/4/+if5j8ycOqrSHb/YApVukgxN7/ydp8werHQHhk+qdJNkgXHLVrojBidWulOnjKt0k2TYwORKd9Tw3vdv6qyXKt0Zk0p/i6EVKt0kGTmh89mYXDovjxo/vtJNkhmvvFzpjhg5o9JNkhmznql0B2ePrXQXGjur0k2SmbM7n+WZw0ZWujOmdM4XSTIwMFTpLjS983udJDMW6Hzmxj7/SqU7e1zndyRJZr3U+VuMGt/pjpnTu3cYNqtzzJNHv1rpJsnU16ZXuuOHj650B9L79xs+unPvNzBrRKU7OKySTZLMGb9IpTti8muVbpJMndb5gwwf3/ksj1ig83lLkpmPd875U6Y8V+nOnD5Q6SbJsMEple7Lkzvf6yQZPaJz/TJiTKc76rWFK90kGRjdac8e6lx7DozrjelMfuH5SnfYQO96OYOdcahZk0rnz/G9661p0zpjqhOnTKx0F1isc0+ZJGMGx1S6C67Y+RsnyaQ5nTGSYZ3L8GRk7zdqeGkYf8aUzvlz9pzO/VmSjBzVufack9JzoyQjBxeqdAdHde7RZr7Wu3cYuVBnTG72mM7fYs7k3ljtrFmdsc9xE3o3rNNK934zpk+tdMeM693vTC+NfY4q/ZbMKo7JZaBzLVAatk6SzJr2YqU7fLDztxg9vvi9ntL5bAwrPc9fYMEFK90kmT2l8/s3NNS7xh8xu3OemzW781mePbx37zcwu/McbbA0BWHU0AudcJLZWbwTHuhdL48a1TlnzJjR+f6NG96bg5AxnXHgObM6P6wLL7pcpZskM1/ujC/PGOo9HxhXuhWePaPzHZk6tTcfY3Co9L2eM63SHRzRu3eYPaXzrGv2iN4chFFDc/9aYGDov/8b3zd6KFuuMfd/h4559s9zvflv613bmXvy3I6dcYpV37xGpZsk//rq+pXui2/4XaWbJA+te2Olu+jA7pXu/Wu0BryTt939ZKV7xrBPVbovP9eb9zxyvZMq3XW3fUelmyR/vWanSnfauKsq3ZN3ubvSTZKHzn1Xpbv8natWujPW+VGlmySX3/SeSveRSbdXukmy/8SfVbqX77p+pfuzG3rn5duPnVDpbrPK45XuUaffV+kmyRVPX1npbvCXVSrdJPncqM796KcnbVrprjmu94zsul/9qtKdtXfn/mvGlb3r5YV326bS3WHgr5Vuknxv6a0r3fHb31Xp3n9r7xnZKht0xlZeN6bz2/dYzqh0k+Sxqzv3OysMvaHSTZL3PNwZzFvhf9apdP9y7FWVbpIsu13ne/LC3Z1z3ELP98byDl77E5XuVpO3rXST5MydO88V1r/v/kp3m716zxVOeuzjle6Tq36n0v3cE731v7c9sUGlO/CWH1S6SbLKYOd+dYUpB1a6f33llEo3SdZcd59K9+tPdcat/7Tq8pVukrx/x8781oN3Oa3STZLPT+6cP9e6oPOM7Onxne9ekux4wjKV7n1Ld+aHLPX4o5Vukjz5+c44xhLX3VPpJslOH3tTpbv7p06odF9epneNsdaOv6h0F1+5M4/jsvt6cyIWWbuzHmXqmCsq3SS56+yPVrqnf6wz73nHkb37neefOLrS/csynfHJhX7XW3P3tnVuqHSPf/S3lW6STHlivUr3gV07z0DfMPyrlW6STL6zcy1+94OdZyUHfLSzLjVJ7j/5m5XuZsM78wSS5JmFf1/pTju0c+3y13MvqXSTZOFL/17pDr/+7ZXuIx/szD9IkuXO/26l+8f9V6t0k2TrPz9Y6c5eZqlKd8nXb1bpJsm4qw6udKdM7OxxcOSRm1e6STJx6fUr3aVn966X1/56Z4zyb0d25k3cu3JnfCtJfn5DZ976R0/qXAts/Lp/VLpJsv1vOs/dD/90b23Vrk/P/fUdwwb+u7V8S742mP+5Zu7PYzxmi864cZKss+0mle6ElzrrIUds0XkGmSTXn9zZzOGRU66udJNkyQs2qnTXuuTcSve11zrjg0myxO/XrHQ/+MJnK90DzuzNU9vhs51rqafX+nmlmySfXvFjle5Vh7+10r18385YaZIstmTnWdPjb+zMTV5/x/dXuknyhZs7x3zG7zvjCEmyy5XfrnT/ekTnWur1H+x9r0c92Dl/7vCJzjjC7bceU+kmyfIH/LrSvW2wN16z4i9+U+kesnLnWcXPx/Xu95d84M2V7qY3deb5Hv+p3vOVcat3xkt3O2KXSjdJdrv84kp30wsvqHRffWtvzfAaH/lKpbvXyG9UulOvmVDpJskdG3bm+V6yx4RKN0kundGZH/LcIVdVups91NuL46yvP1vp7vPKbpXuZ8a+sdJNkvWe7azZmvRib+/Iez//9Ur3gRs7c6nPunzvSjdJ/jS8872e/aXOmPSWf+qNzw9eeEilu/xrD1S6SbLsqpdWuq9fsPOs/htzen+Ls17qfDbu+cnqle6za3X2kEiSPa7vzBuaflxvjeC6x32w0n321Tsr3RsOvrnSTZLfXbBxpXvBtzpzQ17b7H8q3STZc53OWtpZgwdVuklyw0HXV7onv68zN2To0C9UuknyyV90nht9L509Nb5zQW/vs3NO6Lyb4YEf966Xt3mm86zkneP3q3TXXuOTlW6SrPC+8yrd9Q/4TKX73AG9Mbk9PrNrpfv0Zzvr7ZLkuWc6z3eu3bozt2GF5TvXREmy84Gdc9H5E66qdBc6tJJNknz3jscq3SXP3aLSTZLpR7+30t1wxQ9Uut9O7xnoqSd25tkve+3Sle5v1+6MFSXJyp/v7MPzxUc7z6OS5D2//XKl+4ctflnpHrVo77nRV0buX+k+sfFile6xf+yMmyXJMmt11oJNOajzDCZJDr+uM2f9/e/ozN//7tuWqHST5Pwb7qh0DzixsyfRE7fcW+kmyVlrdN4z8odj9qh0k2SbT/TWbP037ljwtSy/w1VzvXv9ah+e681/+8QWnblDJ00/ttJdZvS7K90kuefsHSrdq8Z09l5Kkhc+/LVKd+k1flrpfiqd8e4kuXSFzj7EJyzTuU674NLjKt0k+cH4Ryvdt93d+z3e5L7OfomzZ3T2zNjpvs58ziRZ6JlO+445nX+//T50W6WbJJ9bs7O/6rQjenPK9ntj57N8+Dc6YzZ7fr0zHzBJXtyk87x32k2dfWV+vV1nPmCSfOu/XFP3/+azd/T2SLr08M6zkPuv66ztffHLnfnUSTLxwc462RcWu7XS/f1KvffPj32o8/xm+EGdefZJstT9p1e6R0w4qtL9wMzOfM4kyRIrVbKH/Lgz1+knT/XeXz7jwztWuqN/2dlbPEke/3Vn3d1FT32x0v3L9b3nTS++uXPOv2vFLSvd067ct9JNkp+d8pZK91tr/qvSTZIll+pcC/zz0c78nvNHX1XpJskaf+jMMVjtm531YGte1nkvUZKc/UrnecUbTly50k2Sk/7W2Qvusv+ZWOke/ljnmjZJTh/T2a/te6t35vD/4/WVbJJk91c7ew+estiHKt0kOfO1H1a6D+x1QKW7zl2d9eZJcuBrnfXQH//ylyrdw7/Vm1+34/Wd/WeuP/vkSjdJtjmpM8b18orPVLpTvtp5r32SPPKTzj4VTx7eWdd/1Os6c9aT5MIbLqp0l1nxW5Vukmw4rTPHZ4krO/sd7b57Z9wzSY7+eOf7d+6TnfPFou/pPQ++9brOXLULtui8cyVJtniyc7969vGdMYGTj+qMhyfJUid19lq/7eDOu20+ek/nOi5J7n1P5xrjzI0673VLko9e0blG3OOBzt5560zvrSfa9rvfr3TP/V7nHLfi1Q9Xukly9PqdtY3Hvdh7B8apt02odL/wYuddkJtM7Ky5S5Ifr90ZEz/n/M6czj32OLvSTZJjR3X27Jh4zPaVbpKctXxnPe1OF3Tenzf++t48q0MP6cz5PPzazvq1hY8+vtJNki1X6zyfO+n23p6Yi99XWt/xX26H/tysV/PD5y+bu8eSZMIhj8z15r/d/PLbKt0Fj+6cdw99amKlmyRnXHFEpbvvHp29W5NkgRs7cwyuP3jRSvedNy9e6SbJjacuVOkuNNS5L989D1W6SXLz6U9Xul98408q3SQ579jOnqU//8Vple73Z/bWhz569FmV7icf6VyzPvxKbw7xPa91vn+H7nVapZsk5/3itkp38q+Pr3SX/lhvfuRVMzrvq/jKyo9WuhOWmFnpJslGj83968MkeffPXq50k2T0hM77bFde9cRK95v77lXpJsliX+u8U2zP+zvPm27/eG8f8EsP6VzjX3N7Z1wsSXa8oLOe75JNO/sZLbN9Z95Qklz+985n46TlO+9ZPeSuzthjkgzf/vhKd49XO2P0SfL5vTvvi7ltjc68yx336+3n8Ow/O2ugFvl05/d6j03WrnST5OZRt1W6C3yrs59Dkix8UWcsdo3vde6xF9mid7110G6TK90tX+ncr24/bP1KN0l2X6DT/tKyvWffHzr1iEr3vFMPq3Rf2by3zvPPa3d+/x5buvO8d4PbOnscJMlXftuZe3Lp8N5c0Qmfn1bpXn7WEZXuhp/qzGFMkq9OeV2l+/zlnf26T96hsw9qkpz9o848uOHPds5xSTJn884zzntP3LPSfWDr3ntyP3Z152/x0K6dPQ62/GZnDlWSvDqtMw713Ga9a4xznn6h0v30wp01bB/curc27iPPdua3LvHtzl6a376h866KJDn3nrdXuq+/sPOugyT56LadZ5WLP9V51vzM2sdXukny0nOdsfaFfjKh0l1m9d741ufu7qy5O+O6zvvokuTE33feZ73x+zr7xR3xh846pSR5+dud68+rN+mscznl9t5zo/Uvu63S3fblj1S6SfLHd3f+zve+rzOn8/5TenMNhy3T+c0++KPDK93vzOrNIX7Hwp25KcvM6u1FcPsRnTU0057t7J389+t714izf9FZq/S52Z21Oafu9blKN0muuGj9SneLrb5X6SbJaT/s7O/6/6S3eh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/g8yOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4wOK8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmB4Pz+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH4w/D/6r4eGMmfW9Ll+ENNfnvvNfxsaPaLSXWCBmZXu4JwVKt0kGTW60x05a1onnGTG8GGV7qILjKl0p86cXekmydDUZyvd2bPGVbpjFul895Jk9sBQpzus9CVJMnNi57MxeuR/dhr/3xoa9WqlmyTTX5xc6Y4YGF/pznnthUo3SUbMmVXpzpnT+VwkyfDRC1a6g0MLVLpTZjxZ6SbJAoODle7koc73b9jQyEo3Saa9+GInPK53Xp7zcuezMWtE5/s3OKn3u5pJr1Syswc71xijllio0k2SqU9MrHRHLDC20k2SMcPnVLqzhgYq3WFzOtdxSTI0vfO3mDO+c08yfFznNzVJhl6eUunOGtf5vU6SkWM6f+fZUzvXngNPzah0k2R2Op/lgWGd8+fslK4Dkgyb1fldHTnYuQ5PkvHjOuMNMyd1xs6Gz5pY6SbJ6AkrVrrTXnmt0s1Q5zyUJBOf6HxPxi/V+y0ZHOoc84jFl6p0X53S+/cbmjGx0l184eUq3elDL1W6/1e8M741fXjvfmf4iM69+4iFR1W6E59/qtJNknFDpTHx1zrPB8Yv0xsTGBjTuV8dmtR7PpCBzjOpzGrdo3W+I0kya2bnez04fWqlO7v0nCtJMlQaEy9+lAdHLFnpDp95b6c7ZuFKN0mGdz7KGZzT+cyN7dyqJkmmDOuMQ42cVXxWOTSp0h0+vPOZGxjqjWOMGNv5zR4+rPMlmTW7d16eUhqfHDnQm08zs/P1y+wpnXvKgcHONW2STB3q/ACOHNX5LE+ZUjzHTX2u0h0Y2xvHGDes8/eYOtg5L08b7N27D0zrnJcXGN+5j5o1o/cbNXaRzr/frMHOdUCSzJpR+v2b1hlTnT25Nzdl5rDOb8mwWZ3P3IvFa4yB4Y9VuuPHLl/pJsmMxnXR4H//N17ghQnZ+tT3zMWD+b+sv8wdc735b/csuXSle+vye1e67zz6mUo3SdZZ7cuV7uIb71DpJsmDd+5c6d4/852V7qxJu1e6SXLq6z5S6b647TmV7tbnTah0k2RiPlvp3nbPA5Vukix+2x8q3ZUX+0elu9E1d1W6SXLzR/eqdDd44uuV7hl5uNJNktW2XbfSfdNBF1a6STJx187chYcfOrDSPX/xTSrdJNn0qW9Vuq87ZZlK99w9r610k2TiE3+vdG88oTdXdLF/vKHS/f3Q0ZXudef3zkWHPf7PSveHP7qn0r3jzZ3nY0ky8dHOOe6Sx3vrDrZZ/UeV7v3LPVjprnNpbyx24uTOIP1pK3TWQK0/vjdG/8MbO+MfS6/Sm7f+seXur3QvmnFrpbvYmDUr3SS5Z/3OuObiP+38jWduMbHSTZIvf6Mz9+RDa11W6SbJzJWWqHT/vmlnHGP5b3+/0k2Sv3zm+Ep36+U68+tu/3XpYW+SKc/8rtNdfb1KN0neuOCPK91fPda5rh3++KWVbpK8+nznvmTC+zvzWx85tnMeSpIl17mt0n3k6s69Q5JM2eK0Svf1Lz1S6W57YW98+cw3vqvSHTG5M3fhkRW+W+kmyf2/64xDffbBayrdJHn08JUq3ZfX/06l+82f/arSTZKlZ3WuEU9ZqLSeYdxRlW6SjLy089xo8n5nVLpJ8s4RV1a6T89cp9J91zMPVbpJcs4K+1S6i9zYuV5+7E2LVbpJcvUTP6h0F3vD2yvdJBk98IlKd+e/va/SvXPxSjZJMvyazlzRG9ftXIdfOdBb3DF6jSMr3T/+a41KN0kWWvDGSvfGyZ15VEvc1Zl3mSTveUtnfvm1UzvjDbe81BnDT5If7fb6SvfivS+qdJPk71vsWemucXnn+cDt3/9rpZsky614WKU7cdJtle6aMzrz+pLkhj1PqnSXHt5bj3LFPzrziNc4YfVKd/ywzrPxJPnl0p1nJW+58s2V7nGbnV/pJsnl3+zsJfHApM4+Skny+8/N/bk6Ew/978aAB0YkI5ae+7/Hh+3WmzM78IHO/f4WD/2w0r3ui6dWuknymwt+W+leNKVz7ZAkq9zamY+03PDO79r77uyMGyfJDWNuqXSvX77zTGj0F3vXqy+8rnO/+P2/duYPJ8l733x6pTtwQGfsatX1eueiJ57rjIt9fLudKt3b3vKvSjdJdnlL5x53+4N797hT7up8Ty5b8apK96LJa1W6SfLsQGk93T87c55vWu/xSjdJhj64W6V7zugrKt0kmTy2M2f9p3/qzLNf8pr9K90kWWffzrzLh395fKW7wpf/VOkmyeEbf6DS3fm43m/JgdvP/TWpSXLeDp1rxK3e1ZsnetNbflLp3v2dzrzy19/QW/O98m8798FDf/lQpZsk//jDNpXu+kt3nq/85bFzK90kec++36t0d/v+Wyrdn32ps14kSY6a0Hk+vetxvbHHPT+3faV78NjOA+qz9+2tJVr3lM613CEHdtZrHfCl0yrdJJlyxsaV7hm7XFzpJsnVj2xX6Z6w55sq3YvO+FylmyQfuOiNle4Xv935G8/5zdqVbpIsvF5nf+qPLN4bR3zzml+pdE9+tbMnw8dv3brSTZLvpHO99dflvljpfvKKbSvdJBmxYedZyWMTO9dbSXL8DZ15ol97ofMM+aLzfl/pJsnwy1ardC9c+ueV7pq7d873SbLCw519QLY/9/ZKN0lO/Ow3K92pYztzZS487eBKN0l22r1znhu3cGd/xzf/rbOONkle+3xnfPL2b3WerSbJLot11vKNXeRvle4m/9P57iXJV97aGeP61tGd/dxuGtFZ35kk1wx2njtccF/nOjxJdprduUbM1p01urvs07tGfG6Fzl7da9/R2Q/sb6v0fq+XvalzzMu/0ntxwEVPddY1Tjuv83z1oQM6Y8BJcst3V610b16is8Zz318fVOkmyYiVOvclp+z44Uo3ST6yfmcO5e9uOaLS3W/GHyvdJNnx5csr3TPP3azSPfikv1S6STLpss57fs5br/fu9N0u27UTPvm/+9/WfXjhXL7bLnP3WJJ87dPHzPXmvz22R2cs/eyf3l3pjvlRZ/1mktyyUWceQP7c24vjuNMerXRvOrMzP2u/xzqftyR5/Vqd9TwP/rTzO3HCpk9Uukny9AcWrXSHnunsA5ckT192SaX74Qu/Vumu976XK90kuWLdzrq3Ue/tdNdftvNe9CTZbeisSvfCg3rvkLx50c47Cc6Z01lzesvpnf3sk2TpP61c6X5l4S0q3e3227fSTZJN1+q8B2bS2E0r3ST5xeWde/5P7NdZzzrlPZ3vSJK89bdfqHQ3/FRnncQde3XWryXJEo929ou66prOtWeSvLByZ672aw92rhE/sdinKt0k2XXOTZXuX1bqPGP5+PGd5yBJcuN+W1W60+7qrUdZYL/O3rv/Wr4z1+nQ8b1z0Tu/19k/5CdfWLbS/doJnT2Ik2TdCztj3rf/8LpKN0l+eUlnjOvKFTvrR/fZsLOWL0ke2KWzL9Ckt/+s0j3ztNJLxpMcMufXle5Hv7hRpZsk77rj+Er3C490rpcn/qm39+AGm3TmDv3zB509Kb9bOt8nyZM7d9ZA7ftqb1+N1R7/RaX766U682bX+kpvneBJvz670v3h53esdHe6YsNKN0nWOr6zbuSrIzp7JSbJU3e8tdJd/XfHVbrjp/XGVJ9et/Ms+Zvf/Halu/jVnfN9klx5cmfu3p8GetdFz3ypswbx7d/p7F035p2dMeAkWeWxvSvdHy0zq9LdfdnO+T5J3n39+yvdHy7Ye//aY5/t3K/uNafzrPnERTp7uiXJ7/b5UqX75V067314flZvT8MPbNxZQ/ORSb13p6839bRK9+LlO3s/jdy1s/4wSZ5c47lK929rde6D9/9t73v9sT921vVf/tM9Kt0k+cLXbqh0Lz64s27kn4927lWT5KYvdPbYuuTFzrlo/F6d+XdJsuVhnXPRVkf15opu+/6rK92Dbur8++39q9cq3SQ59tTO/sZzlt2q0l3pxs68sCR5wx6de+wRB/Su8Qe2e6BU/u/27lp89sR8+pUL5vKxJOd+oDcP5/ybO8+ST/x+Z03dYvvfXOkmyaZPdd5VNul3vT0Mfrfai5XuYY93zueb/uyDlW6S7PqWMyvdr76zMz/5suM693VJstP4zlzR6+7Yu9JNkt/f3FnvdeXH7qt0Dzytd5/0s1+8Uul+9NXO/mdHnd/bJ+kPC3bWUP/hZ719RU+8qjMn8BsHbF7pHndoZ91bkkz+7mmV7m//0JmDevine/Pht1mrs8/Omv/o7BmVJI8vdlel+5a/dp6xXHNx570BSfLcSp35Wfu/rrPnyRVblvafSPKrAzv/ft85une9PPZtO1e6n/7NtZXu+7/VeZd7kuxwR2e+zMJLda5dTlm8M78gSW59T+d7PebLIyrdJJlz4e8q3a9N7YwfL/uJ3h6r//hT5/u31hOd/SOfKc7hn/FQ5xnLIz/ar9JNkjtX6Dwj++QOnWvEW7Y9tNJNkjN2erbS3WipztqAe1bqrDdPku1/2Zm7cPkCkyrdJLl2uW9Uumdc1Dl/3rbKnyvdJJnxq3dUut/aujNX+y239N7P8Ks/dd6t/YZdevvXrfKezt4ye32o8/1bf4dPVLpJcvxXOnO1P/6pzvPe2b+f+8+i/m3YiFMq3cdm997t+4v3dO53njn3+Ur32WF3VrpJ8sLnOsc8++2HVLpfTueaKEn+utzrKt271+nsF5Akvz74+5Xu+ld05jrN3H1ipZskG+zXGYcauL9zHffwzzv78CTJlbd05kQscWJn7+QkWeg7YyvdHx7U2eNg1Xf35oDv8ePO92/FDTrjDUcd3ltzd8XDnXeQ3vqr3lzR7/z1kUr3nC88Xekee0Bn74QkWeGDnb1sT/vGxyvd95/37ko3SZ4ufS72veSqSjdJPrRP592Y24/qXCOe/q/Ofh1Jss/Vt1W6153T+Rv/cY/e+PLCkydWuoud33nXSJKct9M+le7nH+j8nfc9v/e7+vtJnf1d771ooUp3swm9/Z4Pf90PKt2Pzpj7+x//29glF6m1/+/0Vu8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9BBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBwXh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwPBuf1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/GBgaGjof/0frz5uqaFfrLXXXD+IGdOWmevNfxs/cnSlu+CCIyrdJcYvVekmyeCoOZXurGnDKt0kyZhZleyIwZGV7tCUGZVukswa6PydB4b9788B/4mxg2Mq3SSZPrLz/Vtw7AKVbpI898xTle6ohcd2unM635EkmTOu8z2Z9VqnO2J4728xNHN6pTs5oyrdJBk5YlqlO27UopXutFemVrpJMjRicqU7bVLn93rRRTvnziSZkc75c3Cwcx2QJIOvzqx0p02YXekOTR1e6SbJ8OGda4yps6dUurOG9X6vxw/rfOZmzep83pJkzAKdv8es6S9VujNnjq90k2T4mM5nefhA57w85YHO3zhJhi83rtIdPWahSjdJZsx6rdIdNazz+zdzSudzkSTTZneut6ZPfLXSTXrXW7Nnd77X48b37leHz+78lgyN73zmpr7QuadMkgVWWrjSHSx9LqbNGah0k2RgysRKd85Q7/s3bKAzpjowovMbNTS797cYMatzLT5zbOczNzCnM9aQJIMDnXPGzGGd+6gkGRzoXH8Om1W6Xx3o/S2GpnTas0rnohETeuNbQyMXrHQHJ75Q6SbJ4IjO9cvQrM6Y6uT0nhuNmt25x546eWKlO3ZY5/OWJEODkyrdlyf3xqEWLA23jxzbOWdMmd75GyfJmFGd39WRi3T+yDNf6n0uho3qnDPmDOtd40+b3nk+MH7xxSrdya8Wr5dLz5rnzOl8LsaU5o8kyazSM43ZL3f+xkkyJ53z3KsvtOZ59J4bzSzdV06f0ekOTut9r0cvMqHSnfpa799vxJjO/c4CC3XGMeYUn+cPjC6NN0zrHPPoBXrPHaaXns8NlZ4zJ8lQabx9+LjO5+L551+udJNk1PjOZ27OjM6/36zJnWc7STJzoPPcfeSwCZVukrwyc+5/lj9w81G569VH/6sP80oLLzp02DZvn9uHlLUX33yuN//t9qmdeVQTt9uo0v3wjQ9VukkyavwVle7A8UdWuknyzO8frXRXf7Lzd35k/8cr3ST569veW+lutPglle4+D7+v0k2SLw49U+m++2295wov3b12pTtsi8sq3dWX6vxmJslzxy5e6U444tlK9xdn9+aK7vDKfZXuqs+uWOkmyT+Wfn2lu+5QZyxvwed75+UbdvlnpTv7sSUr3af+9bpKN0kmvGmNSnfhod5zhS3u/XOle/sSnfk9a998W6WbJFetv0ul+1LpOdbWc1bohJPMOGWJSvf58z9X6SbJ41d/sNJd5P43VrqvXHFKpZskW52/SqV79rHLV7pr/KV3jXHv849Uuh/ZuXMdniS/md25lltvxc711uTZnTGBJHly6raV7luX6/yu3njICZVuktx41JaV7o53ds73SbLk5o9WusMfXKfSXWTZayvdJPnxwvtWuic8fUul++cn31bpJsmdgw9WurMnP1npJsmRL3aeq1+63kmV7jPr98ahjvpWZ97snsffWOmO+ecfK90kee+9u1W6N7+4WaWbJOvu+HCle+Ob96h0Nz+rNz/yjtKeAcsv+I1K98IXe+flLy/SeSZ1+7KXV7pJstzzL1a6M2/t3GNf+3Lv2fcHR3X+zr98/cqV7k6vTqh0k2S3FTrXApvMWa7STZLtS/MNf5vOnNy3LNG73hr+4qqV7kcmdeZn/erBznkoSTbfqfPc6KQHn690k2TmhM55bqf7OutcXp11UKWbJCuueEilu/NT36x0P7jyjyrdJNngz51z0W8+1ZtHdfzznb27pv1s40r3qpU7z8aT5NmFOuf8e7/Z2f/i7V/vXLskycvH7Vrpjv/WXyvdJJlxR+ec/+FR91e6F3++txfBq7/ojCPesNI2le7+Ezrz+pIkT3TGXm6f09tX45nxnXP+giMvqnQnHtlbTzTsM521Em/5UGfPgJ9e01snuNXVb6p073y+tw/k35+Z+89Bv/fC/vnXjPv+43nPG40fP3TT2uvP9eMZ9lrv/LXw1zvzWS6+8OpKd9/Le+uxXlugc135yE7XVbpJ8pEnOr8Tl6QzB+Bza5xT6SbJg+v+uNJd4fQrK90Tz+ncHyXJNfscVuneuNjRlW6S/Ga9zrOb01fszFNb4aHe87GbFursab/oHe+pdO967/sr3SRZ7M7OMf/zl53r1SS5ZUpnT9F9Fjqm0r3jmOMr3SS5fmZnHG+/Dx9a6S69672VbpKc8PvOddEKx3TmhiTJN9btfLevfflTle6+71it0k2S4zbvzGF8evPO3IJZR3eeByXJqI07z+o/8rb/qXSTZO17bqt0l//4E5XuRcd15iUnyU1v26rS/fZvOs9Bpp7aGTdOkpN/dkelu86zvT0XJh6wQaV76Xeeq3Qff0NnLnyS3PxwZ7+ol69ft9L9xtMfqnSTZMm3dcY0R/7z5Eo3SX7y4c58zic27cwtv3rT4yrdJLn2fzpjJJO/0nlW8dDLt1W6SXLr5M7Y56Nf6IwVJcnZkzepdH+25WCle/f5nXcGJMmG93TWsY/+y/6V7qtnfLjSTZJnX+uskX/wod6esOuu+LdK97YNOvMLXplQySZJ3v1UZ83dS4t9q9J98f4PVLpJsuJenTG5kXd3rsOT5NEPd9bI3/zL7SvdOTf+utJNkqMW6oyJn3LnTyrdtb/UW5ez81KdZ11Hn/ynSjdJ3rr/Wyrdrd/WeTfKqdv39n1a4sjOOPDbj/98pXv7sN9Vukly48inK92PLnZ4pZsks27utP+2XedZybYvdtakJskt4zt7olz1YGd/n1f/3Jszu/uBn6h0/3ZWZw+zJPnHhkdUusuO+Wql+5GrevP39/5MZ7zh8XU6Y+3LnHpXpZskq+3VuQ+evtd6lW6SPP6OnSvdj628UqW7wUNnV7pJstfrPlbpHnxPZ6xv3MGda9okmfPjr1W6V7+nNx/qlCO3rnSPGNlZF7D2YOfzliTf/tyGle7e13TG5A44vzf/9Ue7d+aWr/zyXpVukty06sGV7vZf+vItQ0ND//HGRGuvsdbQ70+f++fexfbvrZNd+MCvVLqTxnb2G/r2N06sdJPknW/tPOP8y5ZnVbpJMuLHnX0pr7rqN5XuK1O3q3STZPTRnfGP7Z/sPEfe9+rW+5OTm5fozAP445K9sbyt1u5cA+485oeV7vJPdvbES5KjTzug0t3uPZ093A94w+8r3ST50a87ewS+99CdK90kWeXFqyrdJz/VmW9x2jt/VekmyWdPO6PSvWTbzr3BRqMerXSTZL2HO2slzvvzxyvdJJn6oy9Wuhu/ozOPY4WzO2sOkuSmR6+qdNc/s7MP41b3dJ5jJckH3t55H/H3j9m00k2SndfsPBe6vTSfeu2zOp+LJJm2e+ff78ZlP1fpbv/mPSvdJHnpyc57Yl5dZYdKN0mW+fndle4jD+xe6f5qwd56hh0eO77SPe7n+1W6Sx3dW3M36wOdeYzf/mJnflaSbPJw53nvqgd25qA++4be+zQXv7qzj/R5P36g0j3sn533zyTJM4t21latedXtlW6SnDnY2RN9/Xd17t2XuaV37/7C7Z29d3/xvc5cwzsO7ewXkCSHbvjJSveWz51e6SbJO895Z6W75Cc69+5L7Nqbu/DCmfdUuoc/1tmT+acXd/ZOSJI3HLZMpbvEuN6+5atO6IypzrixM7614ku/rXST5MhfduZUX/ejzrrws9brvDMgST66eGd+3dBm7650k2Tp2zvv5lt8370r3XV3m1DpJsm7p3bGxL+6cGdfhssf6117jvp6pztrsDcm97vrOvuM/HDzzvPV23bprVm+eI/OtdxCl3eerX5jqLNeOUkm/6IzJ3fEzcdWukmywgXfrXTPW7LzW7LmuM47CpPk+zM7+ydstWjnWuCSb/bejTJswc7f4vsXd9avJclqc46qdH+/SWff5HPv6uwBniQjLrqq0v3F+Z09YQfTWSeRJPv9rbMW+q3ndO4pk+TIC35Z6W5wc2esb5f7v1PpJsmzZ15c6W71zCuV7q+2+3mlmyQ/3KSz1/PJx3TeC5Yk04/p7J13x2tn/Ffznl8/fHDohAXm/n7cE6f23snxk406z0IOPGlipbvztM67WpJkib9dVel+9oe9d5X98vudOUn7rjG70v3hExMr3SR5cVpnXcjhpXkAx83u/c5/8MDO+7lWXr639ua1hTrjCV99T+f6fed/dJ4JJcn2e36m0l3+4c7z+nuf/2elmyTrPt7ZH+H8czv3oklywJ2dNZHnvnBNpfupJT5S6SbJVzfuzG89b9XO/j0f3qKzZitJDn1HZ2D6wW/35gTuns7cvfOO6oxTbD/Um581Z//O+2yfHrtWpXvCGZ0xiiR5aL/O/mdrH9Nb2/j/Y+/Ow3YdC/3/f9b9rJllLWOmSpSZkBJlnpJEKSmhNGiQaC4VRakQKWnSgAa0DSVbplAUUmSWeQiZFsuah+f3xz76bx/Hb9exPsdzPN/j9fpb733tZ933dV/XeZ3neZ19ZOeccc7x51S6f5i0W6WbJI/e3nkn1Srv7szPyj29d12d8qXOfjgffXNnXCxJ9l+q8x6aq89ct9J926mdPQKTZOPPde53fn9z55n65Os6a6yTZMKczt5qN36/s89Okmx/6dcr3Wnf6Xyvz3jgsUo3Sa6YeEKle8o7Out0n/+83n3wwXf/26/d+z/Z4pzeOwjXndPZ137SLzrvQ/3shZ171ST58t3nVrrrP3tKpXvkrzvrXJJk/x913pvzhdu/UekmyazTplW6Oy7d2dd32pK991R/b0zneuvlty1d6eahzrukk+SJpTt7SZ92+PmVbpJc+NnOGtKHX1Ba9zNuWqebZKfDLq10H112l0r3U9/7S6WbJH+5tfNOnqmXdOYXJMnab+08O3rDRZ177Bcd2BuTW/qRzhz+F93Y2Yf468/0rjE2WrrzzuLBg509pZLks8t0nu/c+oHO/pHfeqy3x8jZlz5Y6b52q85+K4cf19mTKEl+MKHzrqabXnBfpZskH35rZ679wqc773R5fMvOPO0kuea3nT1nj1+x8xv1ufk/rHSTZKfxne/Jn9fqzfX96y8610Vb/6jz7/f0xb29yzc7rjNP7k/rd/brfuN+a1e6SXLo051jPvq83vttPvjrztjLRi/uvHPzPX/t7GmTJNeednylO2OXzprlLbbsfa9/flBnzeubPzGp0k2Sv990bqV7zK6n/6/znjuzdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/zGDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMGZ4ePj//B+vNXmF4e+tuddiP4gVlt1gsTf/ZXyWqnQXLZpb6U6ZvEKlmyRD4wed8IL/+2fo3zWYOKnSnfn0okp30nIzKt0kmfX0mEp3hRU635GFC3ufi6GhcZXu/PlPV7pJMmHSMpXu3DlPVbpDYzufiySZP9T5ngzNmlDpDgaTK90kWTD/uUp3aPLYSjdJZjz2SKU7acpKle7YBfMq3SRJ6aPxzKzO+XPaUgsr3SSZPa/zxxg/aX6lmyRZ0MkODXeuMWYtKp6Lnn640p0wYUqlu8SkTjdJFmROpbtoqSUq3SRZOL/zYR47mF3pDg161xiL0rnfGT/cuQ4fntK5p0ySMTOGKt2Fg845LklS+jsPDUr3DnM654v/iXeysxc9VOlOmP3CSjdJZs77e6W7aDC+0k2SCRM6937jp3Wu8Ydm9s5Fc4cnVrpjSuNbg7m9v8Wi4c4xD0/snDuTZNwSnTG5MQtKn4tZvTGdRQs7v3+DJTvX+INBb0xu/txZle74FVetdJNkwexnKt1xpXv3WbOK5+UF/6x0p0xeutIdHuqcL5Jk0cLStcBQ8RpxbOeYh2d3xs7GjOuNT2Z2Z0x11qzO/fXQ+M71YZKMHer8/s2b2RtHHDf+eZXuYPBEpTt+Qud4k2TM2M5v1MIFnc/ygkWl58xJxg53xs4WDvWulycs2RlvyMLO9db8MaXjTdL6M89f2PktGTfU+ywP5nd+V4uXiFliuPPc9onnOr8li4Z711uDhZ0/9DOlf79JE3r3fhOHOveri0rPxpNkzFDn2cPYJUpjAvOXrHSTZMJQ6fn4+NIxT+yN1S6aXfr3K86HytjSs8r5nd/V2Qt63+vnSvdogzGd662FQ737qMmLpla6D814stJNkhUmL/7z8m7XfCZ/e/bu/+jqc9zSKw4vvd3+i/uQ8l8377rYm/+y192d9m9f/ptKd4mNV650k2TZG26udMe8/bZKN0mWP37tSvfJezr3M3NOW7PSTZKH3tB5lvzEZp05jO9e7vJKN0lWvm6rSvfHE3vrDjbf98ZK96mrOt/rR6ZsXOkmyew1Xlbpzp1zWKU75bnNK90kuXn9zjnjS5ecUukmyVG/PqPSHfOqzr3BljteUOkmySo331vpnj7vhkp3zef3BsbumHpwpbvvozdUukly1OqdZxavfcnMSveeG86pdJNkz4t3r3T/MHxtpfuBtfaudJPktFu2qHRfsl3n3iFJDpy4WaV7+NNnVrq3L3xppZskL5/WmcM/dePOPI7Td7+v0k2St36o033R5Ls64SQ3brz411gnybJPdMaCrp/4X5Vuklz9z8693453bFjp3rjc4ZVukux5xrqd8Gqd+ZxJMnmX1SvdI66+v9LdacPOHLgkOfx3nbn2fzyqcx33j6teXekmyeWTL6x03/Tpt1a6SXLzMc9Wuh+6s7Oe4YR7t6x0k+TeuZ2xs8GOa1S6L1rlsko3STa4p/O7Orzu8yvdJJn5oldUuvff+49Kd3j6LyvdJLl9Tmce8cce/3mlu+cN7610k2S3l29U6U5/Qe/eb/nrXlTpXrtV59pl4dMnVrpJssVjb6x0V1r+VZXurGXOqnSTZL2bX1Dpfvd5nfvrJNlk5ksq3ZX//J1K9/y9zq90k2SNZzo37xOf7sxdWGbyyyvdJLnv7J0q3V037831fWT2jyvdW1f5SKW7xXKde8okuWtqZ976/Hs6z0BfO9zZLyBJnhrXeYZ91PzTK90keem9nbGXVe7/aaV749C2lW6S7PDYnyrdk2Z25l1uvEtv76C9Hlyt0n3yC721cX85pDOOsdzund+/Ta++otJNkmuWO7DSXXrzztywSb/t7PWXJI+v/bpK92+r/qLSTZLV7unco909q3OO2+u2QyrdJLnyxssr3dNffHKlu++NH610k+Ts9TapdFda79hKN0nesPFrFnvz1Se/LX95+JZ/e97zumtOHv7ZiYt/DurzH1tusTf/Zd0T3l/pnvG6zv7Unzi7t0fSzct3xih2n9xbq3Dqo53nIOfc3Dl/PfKGIyvdJPn7LX+pdP+y1HqV7k23v7vSTZJ1fvOGSvd17+2s50mSPU7sPHs76YHVKt1Dt+/tpXLOuzr7T3x1ygmV7j07/7DSTZIffa1zL/qqr/yt0k2Sbb/+tkr325seX+leeWZnTCxJdj9960r3vT/tjAMdMeXTlW6SvO+Czl4q71vQWSORJK9ebp1K91Ob/ajS3fCw3jzDDe7tzPv63o2d/drWPqfzHUmSV9/dmUP1mi16azzfcupbKt0HN+08q7jml73r5X1/2Plen7BzZxz91Yf2nhXOX9SZ27rW7r1r/EXPdMY1Z57VmUP1sb9+rtJNko/tfXele1XpudsX9/tzpZsk7zug83fe7XO99eaL/quzl8oyR5xQ6Z53xdsr3STJU501nk+s2BnfOnjTxb/Pw7/8/pFtKt2X7vWtSjdJltqns9/XjY925p9O32ObSjdJnnlV5979Q+t1viO/+EZn3CxJHhn/9Ur3kDd15lInybMfuanSXeWid1W6487rzc264fDOPO25UzrraE8d+l6lmyQ/GN8ZL7rt6c49SZK8Yeoqle6t44+udG/YofMdSZLhxzr3aIeednWlu+FVnbm4SXL5uRdVumfM6axjT5Itb92v0v371KMq3Ssu6vz2JcmSp3W+Jyef1blG3OyWzt4+SfLNN25X6W508vqVbpJcsF7nud8Jf+7co/1j630r3STZa9nOOeO/Dv5BpXvo5M71YZIc/PbO/rjbLOw969rl3edWujve9IdKd+W1O8/mkuRN+3bWbn//953z56oHlF5qmuTox79b6b7myd6esF/4Xede6tj1vlLpXrzpFyrdJPnBe75R6f7upp0r3devsGKlmyR7XfGOSveYY/5a6SbJh1/7nkr3+V/pzHvZcePe84EVVu/MZxve6cuV7vrTv1jpJsmXN1u+0l3/nEcr3SR5/5cfrHRf/oXvXj88PLzpv/u/W26jccOvu2jxv4vpsDM79+VJ8rn7OmP0L7+x8xxy7ra9fS12Pv3sSvfJd/TmUe2yYmfPoaHPfL/S3fy/envszLils9brnft21qlv+t4TKt0kWfITnXvzDZfpvWvu2fM6z09Pf2tnndevd1+p0k2S/76qsw/qExM782bX/lVps8Qke03vjHlfdnnnb5wkfzmwMy798OWdOZ1PbtBZ55IkVx/6+kp3+nBnL5xH996m0k2SrWZ39ufcZonrKt0kufrRzvjxRm/vzG/dZEFnjDBJZvz5x5XuE9/ovOtq/bGd55BJsuoyn69037lMb672Fh/v7H/2+kc7+wI98EBvzfDUe7avdP/7nZ298v/22H2VbpJcN7OzZ8a7d+68fzdJhj7SWVv19Z92rhEP+scRlW6SvOGrnTG3172zMx/+iB17Y7zz3vnZSnflqzrvL0mSW5b4eKW72QOdcYzvz/lZpZskk4/oPCO7fMvOuejV3+vsL5ck/9i7M9d+u616937fe0lnTO67ubLSffFQbx7Hoa/tvGvk22t31tzdMbNz7kySfUv7cy71/d47FPZ48Gud7iadd8Zdv+OHK90k+eGCzj4HR/+iM2497led+bhJ8rtPrFXpHnFa7z1b372gsz/8zhd09hdfuGvve33KkZ2x6x9d2Hn/4S2/7O3PeeuunWffB36ity/KqZM7e2qfM7nzDGaTP3Xuo5Lkhvd25uRee1tn3cj5Y3rrt1//9869+8fe35kPnyQrf6wzx+f4D3b2pFzisd7aqizZeVb5tuU6czq//3TnndBJ8pEfddZMvvw1vfVgU5bs7L22882duV9XfrDzeUuSM57oPKt88LJrKt3ttu/sNZYkqzzW2ftwpTs6+zEnyYfv6Iy9PDats/5wy8+sVukmyQee7rwX+ukXd/YHXeu8zjvSkuSPMw+pdL99708q3ST53DkPVLofOalz73Dp0p39aJPkmYM778D4zaTOPjwf+VXvnewfvPable5HftV7vnPZrzrzMa554If/0bznTZeZOvznnV+52I/njxd2xgiTZKkz51S6603vrAM8ZcPOs94kec0fLqh0V9jg9ko3SXZa9ZhK9ycPdZ4XfuHW2ZVukjy8e+cebPO3/L7S/env76h0k2S/Fx5Q6X7h3Z13AiTJweM74xQ/WfmSSnfca3v3SU998qBK94eTX1vpTrint7bjvvd/otJ9waabVbpJ8uDbNq90n/1G5xy386l/rHST5LDjOs/I9rmss//SN7/R+Y4kycOLOs9CFlzSu87+zuzOWrPd/9aZn/y8N3feZZskZ7xot0r3pnVeWul+5vDOb1+SXLOos1b9tis6a+uT5Iw5nWfJl1++S6V77Rd7e2meOfXySvfa8zv7qbzuPb39HL66V2dt8Tcv6a1ZXvNbh1S6792tM2b6zbU76ySS5Ju7l54LbdMZb1iwZWddeJJsvlnnWciNJ3XWyCfJEct2rgXmH3pPpfvYn3v3Dmeds2yle9CBnTU/c9/dez/DP2d0xuRu36jz3ock2WjZzrjOtu/p7EV87Ea9+53pb39xpTtl7c41xo6H9vZO/u0HOmNnv9mys497kvz+rM6ahjed2dmj86Urdua2Jskyp3Tm5F66X+eZ7Dd+2tvL77M7dtacv/F5vb0Yf7dh550SP92o866tc9/Zm5911tevqnQnXPfVSnf97/Xe2b3EVw6rdH/5o95c7fUv7Iz3LfnGTve5Cb33VJ/75c414uYndtaZXXxNZ51Ekrz216dVum/doDf3ZM33ds75X5jXmav9qZU654sk+eEmnTmBO024tNJ97bad/TqSZKXfd75/1x/emyt6x61vqnQ/fPXif699kly6X2ctZpK88JTPVLoX3tDZ4+fYPTvvTk+SD7ygM4f4hat29m5Nkt2HO8+wv7xy552pl/yzN5/mrzf8uNJd4erOGpp/rtOZ15ckS+y9RaU79ZrrK90kOWFGZz3Ypu8cU+luveeplW6S7POTP1W6y3x5z0p3j/s6f+MkeeNunfvV6+b23k/0p+1PqnRfcMac/3Xec29lGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8P2Qw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNxv47//G4wZJZfslXLfaDeOrpZxd7819WXmJMpbv8qitWuoNK9X8MzxmudGeNn1TpJsnEcQsq3fHLj6t0J49fttJNkglLzqt05y/s/C1mPf2PSjdJJk2cUukOl7pJMnvOwkp37JjOv9/w2FmVbpIMzymdM6YuXckOzXqs0k2SBfPmV7pj0vlcJMkyK61Z6S4cnlvpDoY61wH/Y1GluvzEoUp33oIZlW6SjEvn7zx28G9dqv5bZj33RKU7edrzK91pE2dXukkyfV7n92/i2M6/3/CEzvkiSYbmTK50xzz3TKWbJGOnLV/pzpm+ZKU7tETvGmPC5KmV7piJnevw4RlLVbpJMnfCk5Xu8JjxlW6SZGHnenn2Pzt/i7FjOveqSTJvqHPOnzWjc404f8rMSjdJlp38vEp3zsLeNeL0uZ1z/pi5nd/recO9MZ1xc0vXn3M7vyVDq6xe6SbJYF7nnLHEpM69Q5LMm9E5L48pDb1Mf6x3vbzEmAmV7tipnevlQXGA+bm5nfiUMb1r/DljOn/nBRPmVLqLZvQ+y8882nk+MH6lzjlu8rTemMDQgs7fYsyKnXvKJJl5f+l3ddA53y+a0xk3S5JFizrHPH9B57O85LTO8f6Pzg/r+CV61xiDdK6XZz7VGWvPot6Yzryhzj325HQ+czMWds6dSTKtdI04ofeoJMPPdT5zsxd0zp8TxvcuEocndY553hOde7/B0r3xreG5nevaicXnfo/P7rQnTex8LubM6lyHJ8nY+Z3v9aTxnc/c8JgVKt0kmbngoUp3aKg3n2bZyZ2/c2ueR8b1PssZt0QlO37yxEp39rze32KJCZ3r2tmlsb4kWTC3dC886MzNHJ7bGTdLkuHBI5Xuc4s6Y+LLjOl8R5LkydLv3zITe9cY88cs/muB4fzn9ySTZy2Zl12/+WI8mv/xwPzfLfbmv5x+xScr3fWu6vzO33PaVZVukvxp1X9WujP+vmelmyQPvb3zzOnKl51R6Z7xsW0r3SRZ65TOZ+PX225Y6Z5+Q28s6IWn/LTS/f03Vql0k+T2hdtUujMnb1rpXn7drZVukuz8qgsq3Utv+Fmlu9aCrSvdJHnBPWtUute98UOVbpKc9LZNKt3XveTDle4Oz65f6SbJ1S+7ttLd8Jb9Kt21//6NSjdJvvb0Nyvd29dZp9JNkrEPde75n5u1cqU75bGdK90kGbtyZ33HP5c9sNI98oD7Kt0k2fCoz1a6U9frPe/90j++X+nOnvh4pTtm6XdUukmy29CnK93vLvXaSnfi4RdXukkydZ37K91Jz3tLpZskdwyfW+lefFXnemvixr37nYO36/yuPjx3u0p3izN3q3ST5LntOs/Vr9jswUo3SbY75+ZKd58td6x0712zN2/9d5t1xmLvXuLble4uYzvr4pLkwPe8oNI95fDO+EiSrL1+55h/ccsfK93v7dSba/iFZzv3Dtff9ItK9+FVP1jpJsm5l36v0n3x89atdJPkqTU7zzhffMqdle4Pt7yn0k2Sne7q7OVyxeyjKt3BmJdXukny3VecX+ku9dRLKt0kuX3LF1e6/3XRmyrdlZY/utJNkr027Jzz17jyS5XuzyfuUOkmyU3bdtbpznv6wko3Sfaf1tlX46FN3lXpbnFU77N897adZ83X3nVRpfvwSzv3Okmy7qBzv/r7+3q/q7dsfXulO3jyz5Xu0TedXOkmydLPbFXpPvyXhyvd2e89oNJNkjH3nVTp7nlrbz3Ytzb7YqX7sQWd8+c9q3euw5Pk6Vmde7/VHjik0l3+u517yiT52O7rVbqvv/1blW6STDmi83zuppM76xkeXae3F8EmMzpjnzv9sDO/9fRJ7690k+RFh3TGoc77xE6VbpLctsbvK911rurMb71gSmesKEm2OKzzPZnxQGee3Af3/22lmyTPvv6jle5Lb+jd70z6zeK//hw885/NfZ3/9JJ5+NwtFvPRJM//1nGLvfkvZy7f2Rdo5r6dOV+DH/buN/bav3OPNNjupZVuknxjlR9XutNP26XS/eaZnb32kuStt59d6V65f+e65IrP9cbEnv+pzjjQHue/udJNkhc90RnX/OzFnbnJwyccXukmydCrt690v31iZ6x0w117z5BvO3v/SneXozvznJLk5Bd21uBe+9nOmv3vzNy30k2S5d/+8Up38LuvVrrzZ/93pZska2/0zkr3g7/vrZNdbUpnzdY1/+zsvTR3l0cr3ST55fqd5xVLvqZzjb/P2p3nsUkyf0pnfPeBjXvzTsY8eH2le+mqP6p0P35Tb73kJWd25ol+/J7rKt3dBp1x4yT5+ws668k/cGTnniRJ/vbSF1W6k4+4rNKdvXlv7fbWTx9T6Z49e/GvYU+Sb/3oL5Vukhx+cudZ/dDHe8c86ebOddF2D72j0t3+Q517kiTZ+vrOHJw73/z6SveiuzrvOUiSiRN+UOk++Z7zKt0kuW2H1Srdt1/4jkp34UF/rXSTZId1O/eV09frfJZPv7/zm5okB4z9daV73tGdOUNJMmv/zvvobtuzcx8179qNKt0kuWKFzhzifR/oPIPceOrLKt0keebezjz7Me/vPR+4/4BPVboXH9QZR3z913rv+Vn+g5dXunut+vdK9+wje/ORjryoM097s5/dUukmyVEPH1Tp/mKrzu/1hAc7+1Mkybqf6qzLOX27znyIl/3j0Eo3STb/W+d7svYbflXpJsn+j3au5Va9/ieV7iXrdJ5nJMnsCzp7B624dWc+2RWb9N6Lec2Xzqp0f39Ob0x8+pqd9a5TvvGKSnf8SztjfUly72mdsc/lju3Mx9h/Zu/d29O+0Hme/4rH3lvpJsleS3XeBfmjF+xa6c558spKN0ne+4GbKt0H5n+u0r3jV52/cZI8vGtnT7Cb39zbn/oX3+u8v/JjS3XWjp69qPPcIUmmvKvzfOB7YzvzMQafW6bSTZJPX3Zfpbv1qq+pdJNk9e/eVip/9z/6X00eOyYbL7f4f5P3erSzrj5Jxi7VmZ/86yO/Vume/cMNKt0keeSwzt5nRy/f23swW3aupxb8snP/vO9qnfUgSfKWj3T2bl1peLlKd41f9p5XjC/taXjJ7X+odJNk4vs649JXHPqJSvev46dXuknyrk911jnn6s46l7fs1rnmSZI17nxbpXvSfb29I5ef2Nm79ZhDOuMfN262dqWbJA/96LRK910Xd/aO/EZnWWiS5EObddZPr/T2H1e6SbL6WztzOte9vnMtsOGvO3sMJMmfP9xZ3/HuSzt7qVx9TmfsP0nOPO/cSvfvL+mtoblru3dXuh/buLPObPuX/bjSTZIdXtrZY+5Pf+6sc15/1lOVbpIs8aN3VLrznj690k2Sn/+h81ty49md+6j9Nu2t2b/yDZ1rgae26zzH+tPynWcKSbLX9p3f1eNf+cJKN0l2XrUz3+KYp/eodF/9ld4c/rEXHFLprvOSpSvd1S/p3Tt88o7PV7pbbXVupZskr7q581xh+GWdtXGPfaY3v+6CMzvvyR03bXal+9FTe/tqbDz9DZXuVe/sjDUkyc9P7Myve8Uxnb2zbry4t+/1jrM78zgu/3Rnv8Stzri70k2SwcTOOqW/HNq5P0uSqR/qPIv82S2ddwlef0lv77NPTeuMfR5/QOeYN96qN6flga905i7s8vne9fL17z+x0v3uazvrUebes1KlmyTfe3tnD/fdv3ZOpXvw9u+rdJNk2XTe3fzg766odJNk2+935jEevlbn3c0Pvb30bC7J0xttU+n+6j2dcag1e8PL2ewfnXVbj37ykUo3SR7dsbNua/m9O++x3m67zvufkuTCZzrvRpn5us51+Fsnd55TJsn4JTu/UePPPLXSTZJ7bu+s+9njLZ3PxTkHdvZbSZI3vfHqSvdL/+iswXj21G0r3STZeMfOngHHvbG35nX/ac9Vusvt0zkX7fiC3jyrv07p7E/94Vd2fkuuOLa3HuWvN06rdJ85rvfv95aTO+tpN8oP/6P/3U1jV8gayy7+Z4Z3f/OIxd78lyfW6OxhsMnlnfesbn1u5/3JSXLcip35FkPv6rwLPEkeWbBqpbvVR/epdDfYt7fue/ZPN650t31/5+bug6X1rEnykS91xhLevUTvnv9993b289v49M53ZOhNvXXfb1vz2Ep3wk6dd66/aNE1lW6S3H9Bp/v6uzr7gCfJdzbpzIs49srOWN7k83rrUT72ws7anL3e0xn7P/Xz51a6SXL29p3rove+szNXLUnWObnz7odTT3680n3/+zr7qiXJRT84odJd4k2dvXcnXd57N+y8+Q9Uunue0FmnlCSPrdpZ1PCm151Z6Z78q1dVukmy5yZ/qnR33W6dSvfP1xWfV3yx87x+jed6++Hss0Jn/Hilgz5c6X51+d645kp3dNZ5/nT+9Er3M3/8QKWbJJ//TuezvNkt/9l+AP8XZ/25M3foiLU7e9mutm3vHV6XvXT9Snfr6Z3roknf7nz3kuT8z3bWvE7ZcKNKN0lOv6Tz7oCFQ53vyNHv6u2lmR90xms/sFpnj9UTr+nsV5okrzzy1ZXuoZv01m/vMbWzB9ORP+jsZ/TsDr3f1UXXHFzprnZE535nlbf2rj2vPqyzz9zsJTtzLZLk59/qXBcd8fpBpTvjtt4+V3M/2Ll+eXjDzlz7v4/prAtPkvd8c2Gle/FuiyrdJPnt4515VCuM+Xql+/J97610k+Toj3T2ORgs15krM+XWzv5aSXL2tndUuje+sjcmt/cn51a6D3xpj0r3E+f21nkudWRnTtkzD3aeO7xqTOd5VJJcvW3nfufwLXpzfb++V+d36vafXlLp/uy9vXVmn/3TmEr3t8u8vdJ9eu/LK90kuXao83znjntWq3ST5DeXd+79XrZyZz3R13/du/db88edffj33qbz2/f603vrBH9ceu73m717c8OWvavzbvab3tcZ65txX2deZpI88sbjO+Fvd475ju9Mq3ST5A0v7rzrZ/ozvf2eb35lac+cM/73831ndAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/h8zGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA3G/lv/8dhBlps2abEfxNSpyyz25r8ss8S/9f/i/9miKZMr3THzFla6STJm6YmV7pILZ1a6STJnduffb/yg033u3/tK/VvGLDu+0p08ZqjSXTBp5Uo3ScZMml/pzn+m8x1JknHjOt1Fg+FKd2hyp5skSy3V+cwtXDCj0l2wcGqlmyTz5j9T6Q6NXarSTZJxE5+rdBdMn1Dpzp7b+Vwkydhx0yvd4aEXVbqTl1r813D/8viD/6h0Jw1NqXSTZNKk5SrdGdOnV7rFS4yMHZpb6T6xoJLNuOfmdcJJllqmcy2wcPYSlW6SzH/26Up3fOlSYDCm9xs1Z/asSnfRvE538rjSlyTJ2NJ95aLh3vXy3OmPVLoTlliy0h0zKF3gJxme3/kCLrNk555y4dCg0k2SZ2Z1/hZjxvXGXpaZ0rnGmDPo/P6Nm9O5Dk+SZ2Y/0AmP64zJLT+zd+8w+7nOfdSc+b3f1aGJnc/Ggicfr3SXmNj7Xk9YtTMuMPPJzvjWYFFn3CVJJo1bVOnOm9O7xhgelMauF5au8Yd6Y+1Tly59NhZ2rgXmzxpT6SbJ3Mmda/GFD/b+/ZZcdulKd8Fzsyvd6bM6v31JMmly55w/aXLnd3XO3Mcq3SQZO7RspTthXG/sZcyczt95Uu25Q+f3OkmmlG6l5i4s3VNOLt4HD3fORWPGFJ/blq6Xs7D0dx7buY5LUrsWGDel8/1btKD3rGTmzNJ436Le2MvEsZ174XnzOuei2bN6n+VxEzvX+ONL48uLxj1V6SbJuHGdOVxjxvXu/RYNOs+6skTnvDx2YW9MbjChc8wLFnS+1+MW9s7LT855ttKdPLZ3Xp45u3NeHprceVYycVLvemvGrM5cgUVzO/c7z/aG5DJz7r2V7lKTN6x0k2R+aT7Uf2rG+An53WovWezdL7/qwcXe/JeXf7pzPnjeRp3zwQkve1+lmySbjP9JpbvNEztWuknyk3t+U+keO7tznXbCpr+odJNk+ks65/PdV7qk0t37+tUr3SS57CfbVLprr9u7tswxnd+gUz74x0r3u/dfVekmyc4LX1rpvnKTkyrdZc7bodJNkl1nnFjpPjzn85Vukqy+5g8r3a+9oPNZvmqlayrdJBn+zOK/JkqS2T+7utKd9sd3VLpJ8qofXl7pDl/RuzmY+urzKt2//HO1Sneldf9Z6SbJIa/o3Jvf/3Dn3+/zSz6/0k2SDTpTiPOjj5zbCSe55eud39U9l3lVpXv6Qw9Xukly1OzOurtlxp5f6S59y+2VbpI8sFVn/HH+sfdXukkyZ43OPMbXvO+ySvepvx9Q6SbJPsc+Wule/rf1Kt0Dzup0k+SZU+ZUuj9cszQfN8nNz72g0h2zxt8q3RXGvaLSTZJnH+qMcd3+rW0q3Xe+fbdKN0le9MnOPLhp63TOF0my5ndLn+XdN6t037Vdb07ZLm+5s9L9wJc6z9RP+a/OOpck2eWTR1W6v1lylUo3STa59pZK96I1Ot1XP3+7SjdJrj/qvkp3iw06a36e2/uuSjdJ5k6/rtK9+L9Kcy2SHPzBzvP6d+7x2Ur34Yv+VOkmybiHX1vpHrLGrpXucbd0fkeSZPXfdY75gYd7x/yzQ26udOfc0hlf/tVuh1S6SXLxtp21VSf9fK9Kd8cLOufOJHnl2p21Eqs82Zurfe9vOvdSrzy0c++36MremOrKL+4803h6+8745PEXlgaBk8x5tDO34ZlXrlTpJsnLn7u00n14/c7f4o4H1650k2TGmM5cgXtmHFLp3rRFZx+lJBm36ZmV7nNXH1HpJsnL7ryp0v3DzM73b/5avWfYWfXySvbkP5bmeWzVOV8kyennvLDSPWT+ryrdJHnk0vdWussc8MtKd/7DvTXLf7i7M95325IfrXSvvLPzPDFJXr1y57M89b7OnMEkWWrK1xd7c9bwtf/R/27BpPF5av3FP979uXcdutib/7LZ1Z3fn1U/1nmmt+/5e1a6SbLpFp1nFVdc17vG/uWmh1S6u53YmbO38BWd+W9JsvLPO3Mj99my8wz5B9seXekmyVFbfLrSXeqR3rl822c+XukeNeatle7nt+l8R5LklDGvrnR/dGTnmcJrluytRdn1hM5eHL99csVKN0lm3db5e/z5c51rtJ9s/vtKN0k2/8qHK91vvLnzvT7nqTsq3SR56bRvVLqDy86udJPk/vd01sAv+dHOWr6TTj6i0k2StS/u/Pv95sLOtectK19R6SbJL0p7cXxk4bGVbpJcffgxle7tZ/2l0t3hz9+udJPknZ/7XaV7zg8665yP26+z9iJJtvxCZ/3h1l89q9JNknXmvKHSnfXyznX4aZd35nwlyfSLf1bpTnnwvkp35tm9/ez/vnXnWmD6m/avdJNk3madz8bfvtIZh/3OYx+qdJNk78909qQcbPS9SveZFW6odJPkE/t/rtK96qe9fTS33b3z7PTMtTrPhK56rvfOsZvXPKfS/e0nbqh0l7vpbZVuklwwtfO7+rkzNq50k+TnP+vsXbLg3M5ahhtv7K3LeWL1zvPpNffpvLNj1+f/udJNkidOnVbpPrthZ85Qkvz88s4cuLP3WPzPIJPk6d/uUekmyVNf/3Kl+7MPH1jpvvDWT1S6SXLWu39U6U58vLeuau7s1Srd09b+e6X73EM7VbpJctlHO3M4xvzlyUp34vgjK90kWXR45/ncnlfsXOkmyTv+1BnXOf7YeyrdpTfpzSe7Yt/O32L7fTvPjWZc0BkPT5K77u/8rs6+7aBKN0k++9kfVLoXvuo7le5NV/xnc53+L6av1FlLtPWaF1a6P7q99zz4U5uX9sddvvM3TpI3T39npbvJ1NI8w8/27v1+vU9n/eicNU+udB/+XG+966pTOr9/O2y0QqWbJA+d2nm3zbNnd+bpvOz2j1S6SfKu33a+J59ad61K94pfd+4pk+SoLTrXGC9Y+Y2VbpI8+Z23VLr/6a5rjzy1fr7ysz8s1mNJkrN+3BkXS5LX7NTZS33hKsdXuj99pjPXKUlOvryz394BS+1b6SbJdduvW+l++MjOWPryx7250k2SiS/s/J2H3/aVSvfglXvvFt1p7ysr3Ye36u2v/7IXdr5/d+3SeaZ+/bQtKt0keeCkzr6Ge+/2hUp3zmq9vWYHK/610l1x4VaVbpJ88vMbVLpH3ve1SneVX15f6SbJPvd2xv+vXauzZ8btv+vtXfe6n3fmAVwx7fBKN0m+skdnf+M7H7mt0r3q8t48jtc93HnGcvMx3690T/ntPpVuklz7pc4x/6I4P/KYX3T25fr4ip29HK7+46mVbpK878udsdi3vbbzntWLVumtf//+iztjsce8r7MPVZKsc2BnbPPdNz5U6e445V2VbpKsss1Fle6TS3Xmih47tGmlmySbze3sFzXzxctXukmyz187e1FtcdT0Svevn+jMx02S61brXGOcdMDWle6uczvvnE2Sb296Q6W79MQ1K90k2ey2zrOsQ9/X2R/3irt6c5I2uemnle7wxqdVul/a5eeVbpKceHFnTsuJ3+mNL9//s867Kn51yWsq3R127L3b99jOlsy59YDO3JMdl+it7Th5v077wAV3V7pJsuZqm1e6b9ix87x3+y917imT5Kel9/F88bHOuOdbbunM+0qSN/61cy1+5w5vr3ST5F37dvZYPXJiZ07ZuI1614jHze+8s3HSbZ1jPvUPnTXySTLmH539Ve/asTe/db+vdt4T+rFD9650j9qzc75Pkltu6jyHOX6os2/5+EteXukmyX6f7/xGHXdiZx+XJNn/451r8dWvOL3Sveau3lj7jDs6a0jv+HTn2nPjLXpzU5a5r7Nv8k7v7+0Ded0B+1W6C0/qnOPW+lBnDmOSXLBv55nw2w7r7LX+rYN611vTt+x8lj91UW+u6B/Xv7XSfftXO/t47vds730Sm0/qzEHY5cud/Y5WX/6MSjdJ1n1n59rzbcd3rj2T5Kt7ltZ3/IfDDStM/Uc+tPMXF++xJLn2kM66xSQ54cv3Vrr37dd5JvuDF/feXz7xWxdXulu9sje/dc2xL6t0V3pTZ1/Y5T/cmQ+fJAfv3tm/Ltt0uhee3NsPYLXnplW6Z+z3sUo3STa7q7NH/OErduaAD53bmYOaJL/84xqV7nmPd9YzDK3ROd4kWe+Czp6J49d4caWbJD9+/+sr3esO6ly/73vRYZVukjx7W+fZ6XPrdd4BuvexvX1Fp1/YmWu/zjW9fX3fude0SnfpUzrvJPjp32ZUukkyWKJzn7TuPp191Z7/XG8exzlfPKLSPXRSb23Vb/bqzMn95W8658/TrvtFpZsk23+/896v1fbt3KO97d29fQ0XfKFzv/PZh3v37hdd2Xkf8dXHdfYYf+hD76h0k2Tv4c5+cB+7q7Nu5EN39uaAX7tyZy/Nzw+fUukmyXmzOmv7pxzdufZc/tDOdy9JHn2u8yxrxbGdz/Ls1XvXWz+c0dn7+n13dsb6kmSn121T6f73KZ09H+7+9PRKN0l2PbxzjX/K5zvzOFbc5apKN0lOnNQZa//cbr319+df3HkPxo+P6zw7/c3vtq10k+TgX3TmVK95yAcr3Tcs3dsnaYehGyrdN3+os84sSb5ybmefpCUv3rLSXf3Wzm9fkvxshc718keGO/soDS/dW7993hd2qXS3u663F8ELZ3busde9uPOuiu/v2hl3SZKvvaxz7/6dTT5T6T7vq0tVuknyql917t0Xfrsz7pkkr7yos2fikR/srLlbcbPOfMAkefO6nbUuv129887pWxcs/n3+/uVFJ3bej7LFKyvZJMmhD3V+V3896Dyr3OG+3h6rK07urO949gud9yy/ZLvO+SJJDh103jVy4pG99/Su9fPO/cM3dziu0t11/gWVbpL87fLOPnRzN++MCXz+n51rlyQ57O+dsbOP/L13XbTqZzvP3V97UmePmNe/fo9KN0netnHn3cI/uaTzrHncZ3p7X++x8R6V7tardtYfJskvvthbt/W/6ex6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/jxmM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDMcPDw//n/3jj5dcevmKP7y32gxgMJi325r+MX3pypTv34Wcq3aFJEyrdJJk/PLfSnThtyUo3SYbG/98/n/+ORdM73TljF1S6STL/yemV7oSpS1e6w72vdcbNXVTpjllYySZJhseMqXQXLpxf6TZNSOe8nKU7/4Azpz9X6SbJwuc6x7zkUstWukky68lHK93JUydWurNm9b7YC+bNrnQnj++cQGfNnVnpJknGds7LC4qHPH5S5+88Jp3P3LNPP1HpJsmSyz6v0h0/fqjSnf3o05VukiyxynKV7rgJ4yvdJJk9s3Mumjixc18yf+68SjdJhiZ1rjHmz+r8jRcMetdxS07o3KPNfqbzt0iSoUWd9mBi5zp8fuk6IEmGhpapdOeVrgUWze+c75NkyvKd78mc55aodJNkeN6Tle7YiStWunOfvbvSTZJFYwaV7uwZnTGdyVNL96pJJi3dud6aP7t3XTRufOdcND6d8+esZzrjnkkyaaXO2FnmzapkZ8+cU+kmydCEztjnhNJ3JEkWzRtb6c59rvOZGz/onOOS5KnWmM6EzvlzwvN6v9eZ17nGGD/UGxSfNaMz3rBwdudZ19x0rgOSZErpN2rMUp2/8ZwnewNc8+d3flenTJpS6SbJ0JKd70nrSmBs7/FA5g//s9IdmrRCpbtw9vRKN0kG4zrjGGMW9cZe5qYz3jdpWqf778wJ+XeNWdh5PpCFnWvPhQt6cxuG80ilu+C5cZVukiwsDessmNP5XIwdPFvpJsm8eZ3vyYRlOtcuC//Z+5EaLNP5niyc3fssLzGt85kbzCs90xjTmxs2PKHTXtR6cDu/Nya3YLjzWzK/+Nx9wdjOv9+4hZ3xomdm9q63hid0znPjF3TuV8eUxhqSZFZpEt6isb0x1WXGLv5xnZ3/+Onc+Mzd/9GDv5cts8nwn3a+cnEfUtZdv3c+//2E31e6F928bqU797Les9N3r9yZBzf1FZdUuknynUmdMbd3r7xTpXvFL/9Q6SbJPvM783AGH59e6f7XCbdVukny9QWdsaB/bHtUpZskx6x3baX7u6NuqHRX3nLrSjdJhvZ9T6X7up8v/nU5SbLCM70x+rO3u7TS3fnud1e6SfLrCd+pdDef94ZK95+PnVnpJsl6f3htpfuXmzvn+xd98neVbpKsPrPzmbti3b9Xuknyj1Mfr3Rf/cmfVro3/+CjlW6SrLjZJyrdeS/ep9J99afvqHST5OJXdO5HN52yV6WbJLdtfm+l+5KFMyrdGx58WaWbJCv8qTN+vMpuJ1W6vz+7MwcnSe5ervN33uKZVSrdJHl6q59Uuk/dtGWlO3mNByvdJHni3pUr3T1XuqXS/eXc3r3DX6fdWOleOaa3HuXMK1eqdO+f/KpK9x2bXFTpJsmcJTvj/4ef3hnvPvB9+1a6SXLizMcq3fUGnXvKJFl26c698Mzvd84ZM1/Vm8M/WHOXSvfpR75Z6b76xuUr3SS5dpXOM+pXbdm5P0uSJS7r/D3+ucOdle4NX+qMhyfJA8925pcfukXnfueaifdXukmy9Ys7czqXm31XpZskP1u+swZqlbMurHSXGd8Z30qSG1d4RaV7wrJTK93v3N/7jZr7vDUr3cHzv1HpJsmKp3fGMc5/xc6V7usvPKzSTZLpx3XGGx58X+e3ZOVdH6p0k+TCF3+y0t3gzt7ck6kvvqrSnTTUmdM564Le/c5T23aej195Tefe4bhdPl3pJskt/9i10t34g9+qdJPk41d2PhsHXtpZc/fzdZ+qdJNkg9911rw+t8S0Svexi3p/i/Gve7jSnbpww0o3SXaY9etKd50XvLTS3Wf73jy5pR/vzGfb8t7OMS+3c2fcLEl++f6bK901Pv2aSjdJrrmzM973yQ3XqnSfOqnz3CFJvjmv871ea/b7Kt099+r89iXJFTmm0t3lz9+vdJPk4WcW/7OHLe45O9fPfvzfnve8wQrrDp/9ltMX+/Es/c53LPbmv5x/6R6V7qG3dX7jtz14g0o3ST61zw2V7t479p5v7v3Czhy4Lx/Xuf4749LePN/bruo8Xzn/V5+rdH/xk97874M+emqlu8T39qt0k+ST7zu00t3i1M73b90H1650k+RrMzuLhtef17lHeuUr3lzpJskyH55W6V6+8cmVbpJMWKUzz3e7b76u0j122851cJK86dkDK939d+jMOzlw6bdUukkyZoXO882nbumMIyTJNie/sdL9yLI3VLqv2rY3B2DRmZ3vycKhzvPY5039YKWbJOsd2DkXXfv+znObJHnDjzvdJ57ozK370369c9HkjTpz6944/rpKd4U3ddbxJckzn+k839zyeZ3nNklyz037V7onbX5Epfv+eZ11fEly3uNnV7pHf+6ISveTbz+40k2SSU909lI5bELnPSNJ8t7H/ljpvnpsZy71Bz/Ru3c//e53Vrpfffjble7HJvX+Fpuv1Tln3PnH3nyyVz7yoUr3id067zBZdMzelW6S3PHGzpjcR5/fuS56ySWlvamTHL1HZ+/IA3/SGWtPktUnnFvpnvfhzl7ru17dm1u3/NjOXJk3vbVzH3Xrc51190ny1dv2qHTfsGJnD54kefx3u1e6M7Y8p9J9zbwfV7pJsvXJnb0vlvxOZ6/n1yzsPE9PkgmTr6l0Pz1n8T8L/petHu7Midjrqs495Z2HX17pJsmH1u2sy1npPZ1rl1V+05ubdelBb690d1ix8ww0SX77VGevsfOmdvaRuPqwTSvdJPnWvp3ntq//2imV7tXv6a2DPmzD/6p0p/6jt6fGpz/aaa+4WedZ1/pf+EGlmyRrD3Xm6ix9x2qV7kvS+72euHTn+fhDb+mNyR223/WV7kFbv7jSHfOp3tzI4bM775ba76zOXNyLj+7dB7/0iM5a2n/O6ezBkyR/XL3z3oDXPnt8pXvtzN5ewR/e61OV7o823bbSffuZD1S6SXLq7WdVuge/cLVKN0mW+sNNle4/fn/Y9cPDw//2xe3GG642fMX5i/98s913e+9eWOnXV1e6d8xZr9J94hedteRJsvDSznP151/V2ZMrSX7wqc492Apbd64Brx3bOecmyXaXdfZV++h2nfkhL9+lt4/fUm/q7JlxzSGd58hJcuS3O3v5HfXPzh5zW83uvVt03S92jvn4Vc+rdM/f54xKN0lOGr640t19cmc+bpJ8fo3OeMJdq3fuRZd4b2ef9SRZ5fgLKt3Pf/eQSvegXx9b6SbJf2/eed70tg16a6uu/U5nTucP7n9rpbvdYS+odJPk/KtPqHQnfG1apbvXnZ3nIElyxVs7azs2+lRvf9yd3tqZ43POp6+odL+xyzqVbpJcdkbnPWhf/Upn3+t7f9q5dkmSscd2/s7Tn+rtCXvTXZ09rtZZ+2uV7oYzX1jpJskWz/9YpfvopzrzcH68x8aVbpLMP6Yzljd95d41xmfTmZN02ZS/VLp/n9+bt/7SMztroJZ5y3/0Crv/X2ft1Xs3ymuX78xvffIDnf0dk+TK0ouOF366s2b57Md6+7UdMLFzXfT8Mz5S6b5lbu/dKCt+51eV7oxPd377kmTuKrtVuvfP+GWlO+NPnfk9SXLLvmtUutc/1NkT9uLzO/fXSfL53z+/0j1vw87z6SQ58OLPVLr33bJnpfvujadVuklywL2duQsr5h+V7ozje9db6x3a2ePniN9Mq3STZMyWnXUjV/2s83z1sgd6zwdOe2r7SvfEPTvXLu95U2+Pit8u6HyWd357bw/+73+us07wM298R6W7/Tad374kuX7tzrjAeTd11la9d05vPvwHnuvs7/+NB3vzI5c7qPNM/yMLOvNml1in926Uk7/VmQO04G/vqHSHxvT24L/+u8dVuie9+YBKN0k2/NR/V7qvP7qzj9IuR/X2xJw34buV7maXdfZkPvrbvb/FpGs6v9dvXaK3/n75p5aqdN+4U2ev4Bc92NnHJUluuO/lle617zq/0p334957fh55srOedp8DO5+LJJm0d+c9Wz++5Yj/aN7zSmNXGH5n4f3MG2zRe/fCs8t8pdK9ar2jK92Df92ZQ5Uk68z9eKV7wAcXVbpJ8u73dd5ne/+JR1S6Z31j80o3Sb73gc44xa4PdX6D1nxLZ91bkow9tzN379TbTqt0k+ScBzr3o49v17k33+B1vb1J/vyFzn5U23+nsx55m+HOdy9JThh3WaW7zH6d374kWeeSzrr96et25i6stFVvL8YNTuvs5bfCcp1jPuRlCyrdJJl1UOd6+Md3dfasSZK53+vMIz5nnR9Vutc/3Hveu8E1nTllD3ykszfX3y/r7Wk/7YB3Vbqvf6hz/5wkX9lmuNL90Fqd798Va3fGCJNkxdU684g///POddzw9N67RgYPdfZH2PLxzn4OSXLWdZ3fqTFndc7L/7yq996vL574gUp33Pqda5dVduit/53+ss492uN3/6bSTZITju9c4z+1xw2V7rVTf17pJslnft9Zz7BBaa7vhfd35mknybUf26zSPWbQG8d47LBzK92DL+7sRfzTk3vrPFdZYYtK9+4tOteI5+/be4fXBsd25pR9984/VbpJcvlHO/MtXrDo85Xuz2/rvSf3Tyt05uSutENnTueGf+i9H+XxI66qdPf9RW+d4Nxd7qx0n12qsy/RQQ9MqnST5EsrdvYLPvCVnf0Hv/ma6ZVuklyzd+d7MvyXztzyJNnzqM557tN/7uzXfd4ZnTlUSXLpWudWupve33lX2oRlL6l0k+TY875a6W5yWec6PEl+fVln/6DHj+7MIX5o687+TEly9hadPR8ef6Szrvjoh3pziH948+GV7ia7995P9Oz+nXlUe1zQee439NPOO2iS5P1X317p7vynzp58k27ovCctSa45vfO7etzNvec7M19zQ6W75lnrV7qv2bE3H+Pi/TtzDW/d/7ZK940HdPYkSpJZB99a6X7rpoMq3ST56hqd+YgbHNoZt16wWeedf0ly/FuPqnQv2XGtSveip3pzU44567eV7q5fOLfSTZK3zX93pfvoxw76X+c9Dyr/1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/zGDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAACA/4+9/wy2rCrY/e27V+dAzlGSSBZBJCoICAgSFFAQTKiYFQPmgKKigopZ4BEBAxgQRAlKkiwCChIEJCsg0EB3Q+fevd8Pp/x/Om+do9V37dqnruvjU/h7Zu1ea645xxxjTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDDuP/mPB2MHmbD0Ukv8IIbGjF3izX8bZEylOzxluNLNxP/on+Q/MmVoYqU7b+EzlW6STBy3fCc8aX4lO3locqWbJFNW6nw2Fk/ofC7GDg0q3SRZNKbzmRs7sfS9TjI0d1GlO27Q+VwMzev9LZ4q/S0mL3y60p06cVqlmyRDUzq/UYtmL6x0k2Txws53e/HQpEp30YJ5lW6SZLhzzh8eu7jSzZjeNcbUyZ2/xbwJz1a6STI+ne/20OLO92/i1BUq3SSZOK5zLT52Yucct8x6UyvdJBk3mFLpLlowu9JNksHMWZXu0JjSdXjn0jNJMm6oc84fO77z27dwfu96eeb06ZXu1GWGKt0kmZfxle6kQec3auHC3vXy+Imdv/OSH835X+bMn1AqJ0NPlu6jluqNQy0cWlDpDs2dU+lOXLpzHZ4kcxeUxhsWzah0Fy2cW+kmyYK5nXGMwaD1zU7GDnf+HvMXde53Jm+1bKWbJOOmd84Zs2d3rpdTuiZKknkzO7/XU1fpdJNkzlDn32+Qzt955lMPVrpJMiVLV7qLhzvf66HZvevlMcPLVLrzxnSuA5JkzpzOeMOY0vO5pTp/4iTJmIWd79/Q/M7Y2Zgpvc/y+NJN9oLSdUCSpPSZmziuc++3aOJTlW6SLB7uXAsMLe7cU44tHW+SLHi289x2eELv+7f0Sp3rl2dnzah0hxb3/hbTJnXuS+Yv7Hzmpgx3xlOTZHjsspXus3mk0k2ScYs64wKLhzrXiIsnFMehOsNQeebJGZXu5Cm9C66xrWHgsb3v3+IFnXPRYGrnXLR4qHcfvHD2zEp38aBzTzl2XG8cY25pHHHscO+5e57tPHsYM/nxSnfqlFUr3SR56pknKt1xEzuf5UVjOmP4SbL8sp37qAXze88HnimMFy3Of//9uGPsrXn+UustwaP5X24ef9MSb/7bVf/cqdJ9y/CZle7fP9D5biXJ7YturXQfmPapSjdJ1l/4cKU7PPOble76415a6SbJva/6c6W77phXVbr7Du9c6SbJ1Rt2bjo2eP69lW6SrH9057s99OEXVLrvP7N3LvrtwX+qdH9z1t8q3b+/76pKN0muHmxU6Z7zvH9Uukmy6zdfUuk+9+PbVrrT53y00k2SF+7ZuQd7cNZtle5br3lRpZskJz3nu5XuWrefXekmyRqzt6l0f/vm9Svd5+/xl0o3Sdb+5xcr3StX27DSPfklP6t0k2SbBzvXcu9d67xKN0kuOf/mSvfpmd+pdFf87G8r3SRZ4czO92+b8WtUuissfV+lmyQz7u6MBZ3/5J2VbpJs8ZLO9cs2a3Se6x13wVqVbpK85/OdBwub/GzHSnfs8+6pdJNkrwVfqXR/+JfOmECS3F+a7rTHM53v342r/aDSTZInlr6+0n3t1p+udG+9ZEalmyQ77NkZ+5x095qVbpJcdd1Wle7Vh3Sehbx02d7anFcc/8tK95/zV69079yrMwacJEOXdn5LZm++SaWbJPPuWrHSnfH0jEp3l003q3ST5PkL/lXpXnpmZ672Dh9a8s+i/j9f6YxP3rZSZ35BktyzRef+Ye1Vtqx0n3NKb97sckd3ntd/d7gz9+QPm/T21Zj2l09Uuk8/v3devvk7u1e6L/vVmyvdKUe+p9JNkjN++YdK987Pfr/S/dNenbnJSfLl319T6f5zcm9fjd9s05l7uXh651nJvFUerXST5HM3ddZg3LdV51nJtOd2fkeS5JG//qjSHf/6HSrdJLnnic6Y6mnjz690N1ql8zuSJJuv05mDcPSGG1e631+7Nwd87Xmd35IPHFGaXJ7kkee+t9I98fTOHjFvmtM53yfJfs98rNI9/srnVLo/v68zPpIk07fu/EYd+dBRlW6S/OuXr690NzmiM/9uxh87c5aS5NCf71/p/ukrq1S6N3ztM5Vukjy0d2fe81f+3lu/PXvlzy3x5lD++F/97+Yt83Du3nvJ3z9v8eg3lnjz316/0XKV7o5XXlbprvmx3pjYvNmdZ/Xbbt6530iSc7/7skp3pf1OrXRP/Wjnb5wkq8y8odL9yFc684YGf9ug0k2SP459caX7+AtfWOkmyecf7VwLb3xQZw3Zzz/dmyf6+d8uW+mu8qa7Kt3vvr8353n+zHMr3TV+88lKN0ke3vgVle5qn+7MPz32U++qdJNk9Wc7a36eu1Zn7OMXN51S6SbJ57bpzLXY4eA9Kt0kOXHHzt95490737/jN+jdI12+XmfsY9Odf1/p/vjA3rOKt2/cGWO6bMHXKt0k+cv3/6fSXW+F2yvdXe7prJFIkpV+dkSle8N2nTGxU97XW/N92uc6+8Bd9JtzK90kueqZzns77lujM2/hwDN64xhnHntgpfuFVR+odA8/f69KN0mOvq7z7OZ5G/Wej33szDdUuhc9+a1Kd/b7e+8j2PHazpqtVU7pPB87bfXOs+kkmTl+tUr3w/t01rEnyd9W6KxfO/Hwzt/5xl/+pNJNkhs/3Hm+suykzvOVMx47uNJNktsPubLSfe9+11a6SfKez3eO+Zuf63xHtl1+l0o3Sd5zamc+2SODD1a673qot9/Q+Gc648vb/LR3jX/ORZ0xuem3vrLS/cp1Z1W6SbLd9zvrXF50X2cu/P5Lf6nSTZK9vnxzpXvkhN4+BHdssHelu9mCX1W6O35lu0o3SVYYf0Gle9yFP650P3Px3ZVukvz6hsMr3RsX9Z51rblL5979zG+8ptLd57TenqJDR3Xu0W6a25kn8Lt1v1fpJsnXvr5npbve67audJPk7qmvrXS/P70zPnLS09tXukly+3M7c4C+t0xn7eEnV+rNbZjxh87+dn++unfMx8/o7H1xwqc7v1E5pbeu6i+7dtZC7/iDzrzyoy/vres49fWnV7qfvrp373ftFZ3P3Gue6ezJ8MHVOvv8JcnZu3WeVV5+0omV7qq/6u3JcOubO/MxrjvwdZVukhzz/M4Y5dn/5RSue8b8K/tMWPL77Ox+SOd3Pkl2fd46le6FFyz5+ehJsuzs3vvL3/3ZzvqYR6f0zmGHfrqzNnvVc19e6T70bG/e+qFzO3O119q0sw/cdqf1zo2/W6MzD+7bn3xTpZskd825v9I9J8dVul9/rDcWtPLqnbl7Xz+r8+93zbzO2GOS7DqrM8dgyic7z5uS5DfP6azNXun8n1a6sz7R2ZMrSfa8pnMPdv9zO/OTfzjmq5Vukpyw3bGV7oXLHFDpJsl7NunMb/3E9ztziN+7fe9502Wb/7DSPWFxZ37rT9/a21N0+8v/Xune+9neHleHfqIzZrP+GzvjKlu9urfH1ZgVjql0b/pAZ67h5Yf01uYM3ju90l1xQm9/3K/ef3yl+7cNO++D+/uZ+1S6SfKXb3eecW5w02OV7kvffFilmyRnDnf2Cv7e73rvDdjhgc78yIsf6owRXnziQ5VukozburMXwTdP7jwXuuSwz1a6SXLEwRdWuvtu3Vune9qxN1e6B17TWefy8s88v9JNkpNuubnS/eDMcyrdH79s5Uo3SaZc1Lkuuvbk3vrtC+7trJNf5fHONf6j73pupZskx236kUr3ntccWem+Ym5vftaM6zpz7Z+7bmfvpSR5+fv+u/2M/k+O3ebble7Ts3rXGPtcfWOl+0Bpe+N3br52J5zkjS/unJc3u7J3vbz5aZ17qbf+oXO9dfkbTqp0k2RoXufdfGf8vnMfvPUPb650k+Tz90ypdL/28TMq3SSZ+PD7Kt3DJvy10j3/is4zmCSZ8L3O2PV5c/5Z6b7r2511qUny0V89UuleeHZvL4m7HunMIx7aqvN8btune+tRnvll57Oxym2dd0w+teLmlW6S7HhZZz3YB3/QeXdzkpz0qc6+5Xt9tvNum9UefXelmySDCZ37ylN2PabSXWPH3l4Eb9+t877bz/16v0o3SdbZtvNZXv3ed1a6x23VG1M9ZlznvHzZtzrnuKnrd84XSXLZ0p13sp+32y6VbpLseG1pfsN/uQ3r8FJrZ/5Ll/yeRqse9qEl3vy3E3b7c6V76dc7694OXuO0SjdJvnD1mEr3vX/rzLtMkjsO7lwDXvfazvq0g1fu7LeXJBuu0VnTus77O3M6z9/n4ko3SW5a4YpK96CFnd/5JLl8m848qv1O6awnP/Vdy1a6SXL+BYdWurt/tHO+3/1Tvb3Lv/WLXSvd/a/o7ZP0yY905stMOOOiSvfWP3f2D0mSG07qjAUdsuEBle5jx/Tm8H/8e53r7F+8p7e2aoOdTq509/r95ZXuyb/uvMs2SaZcfGmlu3jvMyvdddfr/I2T5LtHdebwT9qr80w2SV77qSW/LjVJxm7WOX9e8q7ONVGS3LjM1ZXuU1t21mK+Y63O+1yS5JVjzqt09/vEdZVukozbcl6l+7aNtqh01/jsjpVuknz44mcq3fv3+XSlu9oWvTkRZwx39inbd7e1Kt0kee7O7690f/xoZx7A4p17+yQd/kBnjGSTm/9Q6W59RmdfpyT55pc696tXXdTb1/edu3T2U3l07d9Vuq/9ykqVbpL87IKbK92TP9qZg/rOWzq/qUly7Wk3V7pHbtm5p0ySj6/defbwnlU679e4YNXOWrAkWeakzr4Mv/xgZ3zrV0d17lWT5PyTO3uMrPD9znOHJJmybmfu3pYzO/MuD/vO2yvdJHl2lwMq3V8fc3Ol+8cnDql0k+TQWZ1nGm/6Y2d/8SQ56dDOup9LZ9xR6e44dpdKN0luW/qoSvepCzr7Ha3+1AmVbpLcO/HOSnfZl/T2Rdn/R529GfYa01kbcNnrVq10k+SpT3ae+939ZOd664rVZlW6SfKNzR6vdM/8bmfcOkn2WKazPuebH5tR6S6/Ym/v+U+e1NmX6JI9OvsonXBh5126SfKGP3e+fx+b29lfK0luPbmzTnD70zvn5ad/1Nsj5rAvdd5F/p3PdfY0ff9Tvd+ooz/b+Vz84A+99UQfuL6zX/f7vt1Z6Hn963vvajrg4c4z4QeP68xNefSS71e6SbLgS539ui9aoTNWmySTv7VGrf2/09n1HwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+HzMY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GIz0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDAY6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNFgMNIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjwWCkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARoPBSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwGg5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDcYMDw//X//HW6+66fC1r//pEj+IcWMnL/Hmvw3GzKl0x4xbptJdMPOZSjdJFuX//t/6P7FgztOVbpIMxk2tdMeOG1vpLprX+bwlycRM6ISXn1bJDs+fV+kmybihTnvOrImVbpIMxne6EwZDne7kuZVuksyf3fk7z5re6U5Z6rFKN0nGTV250p0/d3almyTjlu105z/d+SxnbOnLl2Tc4k573oL5le7UZSvZJMmYxWMq3fmzer+rY6YurnSnTOr8rg4Nl74jSRY/0/nMTZq8ZqU7f/H0SjdJxoydVekOhlepdJNksHTnunb2vf+sdCevtXylmyQLZ3V+/xaP71xjjF3cOQ8lyfCizr3f2DG96+WF4zvX+Atndq5rx0+qZJMkg3Gd+PihBZXuosc73SRZvMq4TndubxxqzOJnO+GJg0p23pOd67gkmTC10x5a+GSl+8zMzuctSZZZatlKd+5QbxxxyuTO32PRos5Y38TeT1SmrLxapTtnzsOV7rynOt0kmTShM44xeYW1Kt0kWTS+c100+7H7K935sxdVukmy1JQVKt2FCzvXAhOW6n2xx5V+/hYs6t27z366c42x1LTOOMbchaVroiSLh5eudJdaoXOPNn966dlOknGTOmM6Gdv7/o2f1hlTXVB6JDV5au9+Z/5TnXGMmY8+UemusOZzKt0keXZ2Z0xu0pTeZ3liaRx4eHHnnLF4ce+57YLhzg/rpEmdv8UzM3rPQCcv1TnHDc19pNJNkvlzO/doQ4s695STxnfOF0kyY97CSnfK2M4Y/nIrdZ7BJMmzczu/JYPhpSrdJJkwtjQfatA5Zwwt6P1GjR3qjH0OLS49g0ln3DNJxg53xs6eHXQ+b0kytKBzXzm0qHOPNnVqZ6whSWY93fn3mzKlc40xd17vemt4Yed7PWmpzm9UkowZXvLnjL2v/mz+OvP+/+ric/IG6w+v99XjlvQh5eTN9lzizX+bef9zK90df39GpbvhBVtVuknyw5d/rdLd/KZtK90keXrf7SvdzR46rNIdt/g7lW6S3HpU595g3G/XqXQPf+buSjdJfrB5555x2q96z1hOuPfUSvfoCW+qdA985HuVbpJcuNk2le60Rb+pdOdv/P5KN0n2/uf1le4yW9xR6SbJ6Tm40h3zQOf37yXT7ql0k2SpmZ05gQ8uvU6lO/e23nn59jU6czr/euaFlW6SrLn/hpXuXX97ZaX7pm0+XekmybUr7lrpPnen7SrdO097oNJNkiNefUWle+3vN690k+SZyzr3/Jd8bEql++I/9uZxrDGnM/749ykXVLqnPdS5JkqSn45ZvdKdt21n/W+SzL+/85v9paWvrHQ3Ht660k2SscvsXekueOKvle6Hntqo0k2SW5bufJYnnfvrSjdJ7r+h87zwpVt+vNK9/23vrnSTZIVvdX6j7jyys/5+tZlHVLpJMnO4c++w8Le95/Urf6PzjOWZL/+t0p223wsq3SRZ+LfOs5AXr/2vSvf9JzxY6SbJ7u9dp9Ldfl5vrvYv1u3M1Z5zRmeOwZp79dZgjHm6cy66Z6nOmMCY6b1n3+Mn/U+le+Gct1W6SXLQNZ1nnPe+acVKd83r/1jpJsn2m3fW094+o/P9G9ponUo3SV588+OV7uSnO/M5k+Se0tTZm2d35nGsfe8vK90k+dtzOmteXzP+6Er3c9fdVukmyboPd36j1pn28ko3SaYddn6lu+ou61e6vx7XufZMkgdO3KzSPWOX+yrd3/700ko3SVY94thKd71z31XpJslv7t2r0t31C7dWuue99dxKN0nW+ukrKt1/nbVGpfv3NTvdJNl2nc448G6zz6l0k+SBqVtWuk9e1JnP9p2VHqh0k+T4DTvrtsaMv6HSnbpC7/f6J59cu9Jdd91zK90kefnMzvPxr23TmSc3dXJvrP36tTq/fx8Z37kumnTXZZVukpw4vEGlu98jvX3obrxxyY+dvWv2kbl76K7/eN7z2LWmDk9535K/Zv3n7r1r7H9c1VlTcN/UztjVtuedXOkmyVN//GCl+4kv9J7V339L59z4sTU7v8Wrv/+QSjdJfr7J5yvdH//0gEr3jc/2nlUsc89HK901V+2MTyTJ9hd/odI94y2d59P3/Ko3h+Mjr+qsW3xm4ocr3aFzOnNOkuTLn+nMO7ntA7tUukly2wN3Vbo3T9630v3tD0+sdJPkeZeeW+lu8a0vVrqbffGNlW6SbDqj8xxrn3N2rHST5OlVn6p0D9nmzEr38jNOrHSTZOLVS35NY5Lc9vItK90t5vX2SFp1229Vuj/9+Dsr3SQ56kWdf7/t7/xApbvlGp1zXJIs/7zONf5LLvhLpXvRTx+odJPkvpdfU+l+eOcZlW6SvGrKaZXucR98VaX7vqPfW+kmyRt+3Rm7GvuNzpyvn7+odx98wLOdua2XnPfVSjdJ7h3TOeajHumsPbxl6tmVbpJs+IvO9+/UD/y90n38lM53JElevvCUSveFr++NqZ65zQsr3Y9P7Jwzrn13730gB3xoy0r3RavcXOme+I/eb9Rek5ardP+8YNlKN0k+d11njfU7xp5V6R4791OVbpI8WHp/3iUXn1bpHnxYb27Pcft39pGYeH1nfDJJXn1EZxzj9J9fXule9dHenhof+l5nbt2WP+/MubzxsWUr3SS576n3Vbov+lTvWcmG55Xm436o81ne792l/bSTXLrilyrdLd++T6V7zp86Y1BJcu3bbq903/SNzlzOJNlum855+dR9O89AH3zxdyvdJPn4iz9X6Z63bOcZ6AYf6DyzTZKFEzr7a939x9796s+e3LTSnfHIqpXuARu9odJNkrHbdL4nT+3cOd+vcnhv3+uV/vrlSnfTi3v7wxw56Owj/Y5zLq50n/NMb9+1zOqsnxk6c/9Kd80FnWc7SbLV8zrz99+w+Y2VbpJscf1Rle4fl9m50n399r1957/3yj9Xumt+vbOf/Xo/661jf2BwbaV7+gO935I9XvaiSveIK7e/aXh4+D8evJ681CrD62916BI/nqfO7o0FDW/VOZ9v/trO+tsbDu3sL5cki67orI+59hNvrnSTZNY7Ou8K/OlhP6x0v7nReZVukvx+t+9Xuq95Q2fvpfWX/kmlmyQrbNb5/r151aMq3SQ59vL1Kt3br9qv0v3gY511Xkly1Oc71/AfO6JznfbFTW+udJNk5Y++ptL968G7V7pJcvLKnd/szY7szLVf/K7evtcXHtn591v9npdWuits8+pKN0ke+lnn3uDQaz9S6SbJWttcV+mO36wzfvXEos7e1Ely6uJvV7qrXvGPSveuR3vvSrriRZ3f1SNf3Zu78NrNP1Tp/uvLnf1Vxz7Ym4dzyfM7e0dut29nP/QFPzqg0k2SS5brrNv65kYzK90kuXDekh9rSJIvfqqzl8N2F/feR7Dro51np8uu0dlUbc7nNql0k+SbRz9Z6Z5xXGesIUk+cu+vKt137/6OSnfZub09Kc8q7dOy+ecPr3QPv+r3lW6SzNxucaX7xgd774a9YVZnb5L739DZl+GWL3f+xknyzY91zvl3r/CJSvd7J/b2SLrgFZ09rk48uvO+vyQ5dK2VKt1djv1FpXvY2b3nvbsf8dNKd+/VOu9cX7x05zc1Se748UWV7uw/9z7LW4ztvE9p71t+V+k+cnFvX42/r9K5X/3Taz5Z6b5q/955+ciXdt778LId9qh0k+RP53WeD6x1d+d6+bs79eZnfWa7znO/Vb/Vmat2zy2d988kyb/e3xkTv2Srzl6zSfKyD3fejbLmQZ11uqu+pLO/VpIcsn/nHVB7HN6Zj7vJ8p1/uySZcWRn3vr9bzu90k2SVbfsvL9y3bM618tzvvm8SjdJVtq0M7/10Xs67yue+2TnXSBJcs6Knb27jhvfuSdJkn9O+Vqle+yEztyij+7eW4/ynt90nmGf/90zKt3l9nhdpZskR2x3daX7lzd11hUnycVvX1jpLjW2s9/RhVv13vPz7ZU799hvW+5jle7LXvD8SjdJvvaSzr/fyYd1xvqS5MUrdJ5hb/+qRf/VvOdxk6cOL7PBxkv8eN5U2j8kSY5eo/Nbsee+nefIJ9/YWR+TJDN263wHpu3Uu7Z891Wd8f+57+usO138184YYZLsvGfnPvcrr35Zpfvw5r35dbtf0dn/7DMPd97nlyRjT+m8s3vCTZ31Tf/63kGVbpK84ZnO3K85d+5U6Y5/dWf9TJLs8LPOWpd/nvr2SjdJNlpxi0r37p06+1Je97zeuOb1T3fmy4x7Q2cex8O3de7rkuSlm3T2MDj+B51zZ5Kce13n3++8IzvzI299uDN2nCTXvrXz7o6vf7ozD+fnXzug0k2SD7+j857cMRc+VukmySE/6cwFeMu6nfeWHr1f792wu27V2WP1+J06a372Oan3G/XAyzrzAA78YG+t+jYr3Vvp7vGrzl5+P72l8+wmSa44vLPP1R6bdfa0H//r3jvsFk3vPL+Zf+qDlW6SjDukM06/2aqdc9H5D/XW5pxzzG6V7pxPdr5/653c2bs1SV6zb2d8a+2tO+t/k2Ttnz9U6f7PLZ05Bq8c11ub87L3zqh0X3lt59nNzuv31o/+/O2deXDztu+8fzdJLtm1c15+3uOdc8bnL+zNAzjmH509S6888ueV7l3bTq10k+TzB3eeG+26sLevzT/e0HmP0AEndb7Xn9/u65Vukhy7XGfu0Fc27exrM/HWr1S6SfKJjTp7EeSi3tq4F5/Z2Zf5G3/vzM/a84AXVLpJctuCztqqg7forPmZfEZn3leSPPHlN1a6n9nqFZVuksy5v3Ne3vY3P6p0t5jQm1/30Vmd92ssfrCz5ufHx3WecyXJMldeWulucHHvPRif3K3zu7rWtp+udC99be89oWe9uTO/YcPXd/79frF0by30Ead3nhu98Eede4ckGT78wEr3NUevW+nO2Ge1SjdJfvLVztr+3c7oPENb/Se9/XKWXquzx8hlm91Z6SbJdrd11mAs/2hnru/ct3Te954kX57ZWfezzI/fU+mef8ecSjdJ3vHczrno5ev0xqEOf1dn3tktK8z73857HlT+vwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/2MGI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYNx/9F+PGZPB2MlL/CCGx49Z4s1/Wzx7QqW7aGh2pTs0ZkGlmyQTp06qdIcWL1/pJsmYBUOV7rPTZ1W6y6+6QqWbJLPnd7rjHnu60h2ePKh0k2TiUhMr3QXTH6l0k2RownKV7vBQ5+88d3bv32/ScCk8dU4lO3/xtEo3SRbMfarSHTd+caWbJHOnd35LpkzsnOQWlL4jSTI0qXMtMC1jK92pk3q/17MenlvpTlxpyV93/tukSZ327BkzK92hof/ssv0/MXF853p5zODJSnfR3N45LhOXrmTHDXd+o5Jk6OnOddGya69c6c599plKN0kmTFmq0l3Y+ueb+2wpnAyW7vyWLFgwr9JNkklDnWMet1TnWm5cOufOJMmUzt9iaFbn/nrOuM75PkkWPNH5Aq6wUuumJMnizvXy7BkzKt1xS/eul6ct0/n+zXyqc76fNm5GpZskQ3m00p08YdVKN0kWzFtU6Y5N5z5qeJllKt0kGVrYuX5ZNKPzuzpmqPcbteg/fJzwf2vsgt6YeIY7zx6GB52/xaB4u/PMrMcq3WVX6oyJLxhTGhBPMrd0W7J40LneSpIpUzrtMcOd66KlxhavtyaVnvvN7zw3mrZMb3xrXjrXW3Oe7PwtkmS5KZ3utAmd8ILFvWfYYyaMr3RXXqvzt5g1pzcmMKH0Z148v3PtmSRDUzvdxc92zp/DS/WeYY8d6oxxzZnZOd/PmdN5NpckGep8rxcv7j0fGDeYUekuXNAZX54zrvMMJkkmlu53ni7NWVo85u5KN0mmjF+n0h07sXfvt2hcZ0x17HDn32/sxM6znSSZN+uJSne4NIbfGg9PkrmzO+2J43uf5bljOhdGQ4tK48BzevfB40rzJhYs6gwKPDunN6iz1ITOmPi/nug9q1xlhcb96n//OX7u7Pm54Pr7l+Cx/C9TLv/TEm/+28MLzq50h9ftnGcuHXddpZskJzy6W6W7zc69uaIH3tZ5xnnrpn+odFf+y8sr3SSZcOkVle7Bx1xW6Z55xPaVbpIc+OCWle5f7uiNf7xtw99Wuo/99cZK94D9Dqx0k2R4/E6V7sbTP1HpXnB/bx7Aaa/uXEMs/5MXV7pJstl6nd+/2x9/oNL9xPK98Y+dVv5xpfucPx1U6U56YN1KN0lmbtG5txvaeeNKN0nGr9hZ97PTlp3z8iUrr1LpJsnld3WuMR5b4feV7q7r/q7STZL3/mHFSnfBdr1z0Rq7v7vS/fs5/1Pp7r+gs04iSS5ZtdN+9qrOM+qFU3vPvqd88hWV7vUfPLPSTZJpy3bWCeY5G1SyKz6wVqWbJOu94BeV7gu2OaDSnXb7zyrdJPnT43+rdKfveW2lmyTX/majSnfo/Z+sdLf6678q3SS5es81K93LxnfO95f97dhKN0lumtu5j/rAKZ159kmycO/nVbrH/PyVle7aD3auPZPk1vs714hn3d+Zb/HCA/9Q6SbJ9Fmbd7ozeuMYu159R6U7ftB5RnbBU73v9VZPrV/pvnbVzvye/eaUJpQl2fHFnb/zX275aaWbJB88rjN36Lwpq1e6n9ztD5Vukkw/ff9Kd+oynfVEj97YeQaTJDPHd9b9TF9pyT8L/rcntr6r0n3khkMq3e2/ckSlmySr3tVZ3zH769tVuq9arvc8+N5zv1nprvuyX1e6SXLbjM4+I9+77PuV7umr7VzpJsmH1nu40l3/2s6zyjueOrHSTZLfXtC5dx/7vM6z1ST5x3qd66LfX7NLpbv+WZ1r2iT58rGXVLqn7NwZB/7Xn3rnuM/c17n2nLVZb/32M4937v3OXqaz58NLZ3fuo5Jk/z/vUek+ueiFle72a/690k2S6e8+vtLd+tZtK90kWX2NTnuLZdapdNd46AeVbpJMOesnle4vJryo0l3tlt56hlU/0hkjuebvvd/VdV7ytSXeHH/1f3dOft7EjfLTDa5cwkeTXPz3dZZ4899es9eXKt01T+yMXb19zFsq3SQ5btd7Kt2FG99S6SbJWy/vrEc+4ZP3VbqnvOqGSjdJhs77VKV74bc6z5APXuZllW6SXPPRznjNMp/trSFb6ZudOXBr/qpz/fDpdTvz35Jk11UPqHQvmX5Tpfvca3q/8d95W2fvrHMWdj5vSfLLWzv3SMue8N1K96zTrql0k2TdY95Y6d46edlK9/R1e2tO5+zSmXdyzGrbVLpJcu4mN1e6X7y6M0/0zBffWukmyR82mV7pvvfDnd+SX5zS+73e+ozvVLpv2fh7lW6SPHpuZ57ogld0xttmz+7cnyXJZ9/fmYPz0c9fUOk++aXe3lmb7tE550/7be+8fMQynbUd/7qhs8blin3Pq3ST5Ffrd56DbLH3Nyrdm/PnSjdJVnuosyflNeOWrXSTZNrH16h0/3nTvZXu5pv8qNJNkkduOb3S3WilXSrd26d13vmQJNO+35k/vON7O/eUSZLvPlTJ/uH+cyvdo377kko3SYbPelel+62HO+td91m9t17yzZt2xj4vmtDZtyRJ1r+jMyb+89915uzdO//LlW6SfOJPe1W6v/voHyvdw/7Q2yPpqMWdNUoXfKD3nq0DnvxLpTvn953nO0tddGSlmySf/sirK90xO72n0v3B8p299pLkxtd3nqm/42e9e79t1utcf167cmcu/Fe/8e1KN0let9xXKt2vnH5OpbvLzltWuknywGVfr3RPXL+3p8bwNadVunOfvL3Snfqdzjq+JPnhtb+qdF81+FalO2aHzuctSW54xccq3Q+/rDO3IUnedl5nHPH7Uztj4u97fec6IEl+9mhnv5VfnXBcpfvPwzt7HibJznttWOkuNf2BSjdJfn5QZ0zuBYs71wI7PvjFSjdJzjyk89zv0a915pXff3jxfan3dNZYP/2rd1a6SfLrfTtrwd71ys6YzgPH9e4dDv5AZ++E52/6+Ur3z/v05ukcc39nH56N5vXe5/L8sZ29Qf9bK0yblTfssOTXN73zos65MUl+P6OzF9XzVu2cd8f+aZ1KN0kuuvofle7qb+5c8yTJWX/v7AN+44qdvc9mvqJz/5Ukp67f+W37zkc67+TY6djePccNKz1Y6T77sc7zpiS5fJ3O/czz99y10v1CaR+qJHn3mZ0xm5N3P6PS3e+BoyrdJJmw7scr3emf7cy7TJID1/9IpfuD4zv7DDy64UmVbpJc9ZOLKt37X71spbvF2r15s2/YsXNddNbuF1a6SfLIPZ33wHxnpc78kEPf25n3lSTbPHtypXvjpzu/q7/f7/WVbpJ86cjOu2F3/mPpBa5Jvv6B31S6t5zdeR/BaQ929gJIknfP7Vwvf/lznc/ckQveVukmyas36Tz7Pne73t51Ky7sjEuful1nX4R79uyt87ztHXtWup89erNKd8f39taZzb+ts6/TKcf33rs36budsZddnry+0t3y4k43SRbt+4VKd/svdX6vfzm9927YWe/tzAl8+d2d+VlJ8qE3d/b7uupvne/fTXftXekmyf/846OV7rTHOu8v/9OunfmcSbLcJ4+udHe77K+VbpJcMKGzPmD6pzr72V81tXMdkCTnrd95VvKmzx9T6W752udXukly8V8792jTi+/ZOuaJ8yvdfa/v3JccsWdnr9IkOf6BzpykQ97S2Zfos/v39oG7ct0HOt3dtqp0k2T7+zr7Up70aOeZ+pmXde6jkuS6l3bmJ2/0w8463Q/9ap1KN0nOnn1zpbvG1r3v3727dPZxf+nZnfnJB2373Eo3SXLfzZXsb6/4bKV78k97a17f8p7Ou6XO2Kr3/vmzH+185n5wZ+e69tTH3lrpJsnTHzq00n3nvzpzUFf5QOedHUky/MfO852Jk7eudJPkdzM7cy9f9L59K93HPt5ZM5Ikhxy+T6V7+AmdPcB3fMu5lW6SHH5A595933U6a6GT5KKvdcZU33TOSyvdda/u3KsmyYkLOu8pfOT3nfPnxmN778Xc7XUfqHR3OKSz73WSrP3C1r58H/6v/lcbrjicH715yR/T4JRLl3jz3w7aoDOWt+fkN1a6g116v/Pf+mjnt23LXb9a6SbJjsu+ttLd+vHOfIuzf9ub0/KN+Z3zwc33rFTpXvba3vOmby+3Q6X7l9t697m7fLuzl+2+EzvzQ743/1WVbpIctFHnHSWbH9tZa7n2+b15HO/ctTM/+aTfdPY1TJLxszvjx88e2tnXcPsNt6x0k+TGnTvr6ydeueTf9ZEkr9m2sydzkvzsis47VXa8tve7et+LOuOE89/cmWv4/qM7+80myTml89ynz9qy0l3hfZ2x4yS57tudPe13f3z7SjdJXnJMZ1/tt5zWuc+96l29PY4/emznPLf6Gzr7L920em/PoWWf7tzvDB27bKWbJD844x2V7qvf1jl/jjl0UOkmyYdu7uxrv9wJ/91Y0P/J8b97TaWbJJts1Xnv0Yte1ttzb/glp1S627yw8xzy+Vf39oxaeY/OvqKvuudzle63hzt7MifJgu91xqWvW6937z5rh844xmozO9fh11/Z24tg5TvPrXR/fMinK937D+rNIf7Q8cdUuvud05lbniSnLN05f95+Zuccd/r8zl5USbLvBzv7Xyz1UGdf5uvfNL/STZITtuns87jtvPdVukly6xs66+5OWakzjviD03vnosHYztyTXR/vPCvZ85TOeuUkeWBhZw74cj99U6WbJE+8qDMn9443d77X31m7N6flH8d03umy074nVLq3HtybE7H0W/5Q6R6y7LGVbpJc+YbOHuO3P/n2SvcnT/b2Fb1nmc7+JS/8TmdMddH0zp42SfI/t3f2pdzuis7z4CR54oHOGuAf3nBzpTvvhb39cl77/M55+ajPHl/prnhJ77nDL/7YeafSU/t01lgnyc/P6uzrdvLczvvTT3/tZyrdJNnztM517avmdN5vs8bVnb3+kuSuE3asdH+x+mmVbpKs957Ou37ec3jnufv1W6xW6SbJI0d2xlS/efOqle6nt+ocb5L8Ylzne3LzS3trMD51W+dZ1/+/lTm9p3YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P+QwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgwGOkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDRYDDSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo8FgpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaDwUgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBoORPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA0GI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaDEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiM9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgw7j/6r8ckY8YPL/GDGJq3YIk3/z8Tx1ayE8YvVenOnrGw0k2SxZP/s3/u/1sTBvMr3SQZGreo0p00cUKlu3hx728xfkanO2HFaZXu7KfnVbpJMjzU6S6z1PKdcJIFCzoHvXjWs5XuvOHFlW6STFppmUp36UlzKt05s5ardJNk3KTOOW7RcOe3L0nGjut8t+fOGVPpTpza+1u0fv7GTJlc6c6Z1fm8Jcni5TvXL+PTuy5auLhzLTBhmc5vyYJZMyvdJJk4eelK98npj1e601ZasdJNkgnPdr4ng4lL/h7q356d3TkZzZnfOS8vXji+0k2S+XM7v1ETlu+cL8aPn1LpJsmM2XMr3Um9n9WMGT+odIdnzq50x67YuaZNkpnPdM6fY4ZLYwJLda5dkmT8UOeYF8ztdJNk7jNPV7pjJ3W+I9MGK1W6STLjyc55efzk0pjO0r17v3nPPlHpjpva+bwlyYSJnWvEQTrn5cGi3md5aGHnemvRws4P69DCznckSQbjOuNbi5bq3a+Ond05f06a2/n9mzX0cKWbJNMmd+5Xh4Y75/uhOb1rjCmTJ1W605/u/ftNWbZz/TmnM7yc8RM6370kmTSmc86Y/eyMSncwqXcfPBgzsdIdN7H37/fss53xviljnql0x07uPA9OkoXjOn+LubM611vjpvY+y2MWda5fBp2vSJJk4ROzKt1x4zrXtfPn955hj53feaY4ceJjle5SS69V6SbJs093jnls6dolSZ4pPTsaO7UzvjU+K1e6SfLs7M499vJTO9fLgwlrVrpJsnCoc85YMLd377fM2M71y7yFne6Y0vEmycLFnWdSi+Z3rjGGn+nd+y0e15mPODa9Yx5a2LlJmzqlM/Y5t/R5S5JB6Wsyc3bn2mWFFXrPsAeLOmNyS48vTcBLsnBoyV8LDOe//x15aP7yefe9hy7Bo/lfbtu197zpylnXVLoLbupcTw2/rjfv8vIxnb/zzDG7VrpJMu3ACyvdhy+4qtK969lVKt0kmfSPpyrd+bt3rt+fc3fneJPk2OkPVbpXrdu7T9pylxmV7tLTOnOSdnnwO5Vukuy4XOd7fUlpfs/9v1y70k2SPZd+eaU7btXPVLpJ8pf5F1e6j018bqX74cd79/xznunc2y3coXMv88RBH650k+TKG7aodF+14daVbpKsPnXfSvf25TrzGHe59BeVbpI8tXfnmcXCb9xR6Z42+3WVbpIcdsj1le5yf+ldI155+Y6V7pfe2nle+P3be+sZ7tumc8z7bb1Tpfu7yb31v9/8n29Uug+s27neSpLdlnpppXvdOvdUuhMnXF7pJsmzz7y50n3/2VdXusNX3FrpJsnGN65b6T7yzjsr3SR5zT2bV7oX3fL9SvfAxW+sdJNkrcf3rnTvm357pfucTVavdJPkLz//U6X7nUM71+FJMuYrnWeRu77g6Er3qkcOq3ST5Iuz/6fSPfrdnXHgib/tXXtOm9O5d190eGd8JEm2+1RnHONLr3x+pbvOqr3rrUWrzqh0X1Ba27FsaZ59kmx9bmce4y+f7YzVJskjy3a+27sueLDS/dZKe1S6SfL3VTvdRy/4S6X7t+V648sr7925Xp5//xqVbpIsmvKvSnfjzTrXWzffMr3STZLxV+1T6d534t2V7tRLOtcBSbLH9zq/q8vv+bVKN0k2f7Tz93ho5eMq3WN/cHalmyQLt1un0l16k1sq3Y1X7YwVJcnE+6ZWuj9Z9+eVbpLsd3/nmP96bmes74WPvqjSTZIfb7lRpfvnv19R6V45c69KN0leN+1jle5VM99f6SbJnbd/pNLdfFJnEc02K/S+19fPeKDSfd4eN1e65z2wfaWbJAee9IJKd8zmF1S6SfLjO75d6T7zyq9Xun89/4+VbpJcPaUz1r7vvZ1n2Hc83Vtnds+sH1a6W6zd2+Pn7M2W/HjfrD//d/M9/zb+79lq1SU/P2Tiwb15Czf9/KuV7iMrPa/SXfqmIyvdJDmotIbz09f/stJNkrN26txzvHLVz1W6O+zfmYubJPe+7q+V7rkbd+a2XrL9byvdJNn27BUq3Us37Y3Dzt2+s8/Hp07pfEfe8f3eNdrL/9yZHzL9pztUuhNf8d1KN0nWG3N/pbvL2p215Ely72s79/vLbNMZn1+83ecr3SQ58R+duclv/PF5le5PLu2MLyXJLfvdWOke96lzKt0k+fil11a6L1391ZXuoat8r9JNkvteckCle9d2nWd6nz6tNw509W6dZwqbfOI9lW6SvHrVznOsp3fuPETe5+T1K90keeFvOtfLKOhc7wAAD9ZJREFUM3f+Q6X7o3N6Gyff/7lvVbpH3vTPSjdJnt2ms1753i3fV+lmr87nLUmWGtOZKzN2p8517dHHnlvpJskpCztzne6865BKN0nGf/OYSneli06tdJ/54WaVbpJst07nfufeDTrXtSd8trcO+m0/OKDSPW6Fzn1Ukqx+auca4/XnnFDp7vqFzvypJHnXs3+odMd8uPMM+aurHV/pJsnLNru50j3jD515Tkmy/yOdc/4Vu59R6e671ycr3SSZNejMpz708bdVuvNv6qxpTJJp+1xZ6d6w8SmVbpJc+8HOeN/hL+08Qz7jfZ3rgCR57Ts6c+DOnvH6Sne1SztzqZPkXyt11hVf/53efMCHxtxW6a79qc510a0H/rrSTZKfXdi5Dx7ao7O/6q9361wfJsnMt7+k0h237qsq3STZ5nede6k/PdlZi7L3ep2xoiS55NWde7RTH+vMQXj4g5376yTZe6nOHNT1Pt67xtjxJ3dVuvMXf7HS3f9Tvb26X/muzryvde7ujDcc+YrePKv5G3TOn29ZrXeN8b5VOnPDzt/i5kr3I8v33p0+7vTOeMNJ561W6b7wu50985LkSzM6e++u+6IvVLpJcv2szj4Sp1zf2ffpua/rrOtIkp9ecWale9VZnf2kbhzbmUudJPtv1DnHvfQTvXmON774mE74v5xyNmPu83L2bUt+b4Stfty5x02SD23wm0r3D3d0rofff/tplW6SjN23M7/1tN3PrXST5Mpl31npnrDfkt+zPEkuPuaDlW6SfOHt91W6123d2QN8qLTGOUl22b2zj+2kmzt7nyXJ3R/erdJd/pM/q3Tf82RnnVCS3L9jZ23azvd3xjV/9D/bVrpJ8s0zt6p0T93n5ko3SfZ/T+e+423ndMZV9rzj2Eo3Sf4x3FkPec/0zljCqw/q7X32lZM681t3/9IDlW6STL3hukr3snf/o9K9Yb3OnoZJcsulnTnVY096WaX7o7e/t9JNkk9eu3Gle/lhB1S6SfK7PTrzI1/8ss6aybdt2Hv2ffRLO3tHHrbmOpXu4hf25mfducvHK91/3b90pZskW5WmXi71ts75/jn3fqXSTZI/fr3zu/rEyztrtq65fr1KN0n+cmhnf8491uit3/7Gyzt7wl6yb2cc49CP9dbGLfOxzvfkE+t23ln1/i/25rT8z6ad/f03feullW6S/O3rnfdTvuPRj1a6H/1Nbw74Tgd39rGd+fgLK92Nf9lZF54kH7+1827tX+7Q2c8+ST7/YGeu6I37n17p/n6lP1e6STJ/885Y+7mrdK7DH7j/jZVukiz3WGf/i+9t2tn7Ikk22avzOzXuG53v368275wvkuSaDTrjfR87vvPOuPvX7V1vLfuLzrsZ3vqbzvkiSd7y5kcr3YUHddZM3n1L7xn2y47ofJY/9IrOXMOhg3r7lm+4SmcvpbV/0JknkCT7ndHZr/TSyZ090m6a1dsf99wxv6t0/3z/7pXurV/8VKWbJCtu9GSl+4anO9eeSXL8GZ1rgavf09kHa98XvbHSTZIXDTrrA143qfPc7yXb3lvpJsnww7+vdJ96+SWVbpK85rLOng8Xjt2k0j3zibdWuknymXVa79bofC7+tHRnDmqS3L1UZw3iS3fvXSNuvWnnmuvRRzu/f69/tHMdkCR3Hjen0n3RWkdVuneu1ukmySGv6LzHep2vv7vSTZLXbHJ4J/y3/+4d55OnLJPNtthvCR9MMvfSzjsBkuSRDd5U6V51Z2et5UY79p5XTDunszfXd0rX70ny5e935s6u9P3OGoszjnxOpZskHzmvs+/CUef/d+eD/5MdNp5c6SbJYXM+UOm+dYcZlW6SnP/8zvj/TsOduWpH7tDZUztJ/rj3WZXuaw/qPFM/7su95xVffeTLle6G2/Xe2X3fmzvvAH37CztzF67asbdu/wtbdvYsffgHm1a6T250bqWbJKe+qnP/vPiXnf2zkuSEOzrvp9z6npMq3eXed26lmyTT3trZP/mfe7+40l3221Mq3SQ5aG5nbdUF53XeX54kbz22s27k9Ec73f0P7a2tWvHazhrEO9abVemude2tlW6SDF3Z2cPgdad0xniTZONZnXcQ/vgdnb3L7/3NyZVuktz3aGdvmS1O6bzz+dl7z690k+SqdTv3lV/+bucdXkly7L6dMa5rfvRApXv82N67Yl5wf2e+zJzTOu/XOL2zDWqS5MS/dt6bs8mgd43x69J7qr9/2Wsq3bVf8otKN0kemNfZs+0jMztrG5/4Qm/e8+Y3dK7xj/t4Z/1okmy5YeedZuu8rbNH57XXLFvpJskzd3bWQP1uv1dUuj++7IZKN0luO66zr/b0FXt7Oy28vHP9+Yl9OvP2nliutxfBW5/s7Mvwps909sV76mtfq3ST5PpXdNamHvjKoyrdJLnrgs47zD+9dGdd+I+P7b0b81dTO8+aP/v2Yyrdw37dWeOZJD96feca/6jf9J4PnPSdyyrdTb7RWcv+4k/03nt01NhjKt2nX35zpXvChZ+tdJPkkr07430PTHplpZsk79zu4Ep3sGfnPaHTLu7tkTtrh8656NxTD6h0d35b73n+mbd15ief/87e4MvOC46odOf9sPM88cAneu9P32b5znPb77zzkUp3/vMOqnSTZJmbd650x6zVmWeVJM+/svMOy8OmdcZqv7JMb83rtyZuV+l+ecXOGP4K63TudZLklJP/Vum+4LTec9tVduhcCyRb/2//r4PS/zcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+H/KYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAaDkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNBiN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGgxG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDQYjPQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBoMBjpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0WAw0gcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPBYKQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGg8FIHwAAAAAAAAAAAAAAAAAAAAD/v3bt2AZhAAaiqOMdqNl/LGqGMAtQoEjEOem92pb+AAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAgt4OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEvR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmOmfn9+DjeVfX6Xw4AAAAAAAAAAAAAQFVVPWfmcebR7hkAAAAAAAAAAAAAuMip3bPNMwAAAAAAAAAAAABwIbtnAAAAAAAAAAAAAODu7J4BAAAAAAAAAAAAgLv7uns+ZmYjBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACi9HYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTo7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASNDbAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQoLcDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBBbwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQILeDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACABL0dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJejsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABL0dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJPgAop2Qe2uDH7UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot([get_noisy_image(x_start, Tensor([t])) for t in [0, 50, 100, 150, 199]])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "这意味着我们现在可以定义给定模型的损失函数,如下所示:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def p_losses(unet_model, x_start, t, noise=None):\n", + " if noise is None:\n", + " noise = randn_like(x_start)\n", + " x_noisy = q_sample(x_start=x_start, t=t, noise=noise)\n", + " predicted_noise = unet_model(x_noisy, t)\n", + "\n", + " loss = nn.SmoothL1Loss()(noise, predicted_noise)# todo\n", + " loss = loss.reshape(loss.shape[0], -1)\n", + " loss = loss * extract(p2_loss_weight, t, loss.shape)\n", + " return loss.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "`denoise_model`将是我们上面定义的U-Net。我们将在真实噪声和预测噪声之间使用Huber损失。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## 数据准备与处理\n", + "\n", + "在这里我们定义一个正则数据集。数据集可以来自简单的真实数据集的图像组成,如Fashion-MNIST、CIFAR-10或ImageNet,其中线性缩放为 $[−1, 1]$。\n", + "\n", + "每个图像的大小都会调整为相同的大小。有趣的是,图像也是随机水平翻转的。根据论文内容:我们在CIFAR10的训练中使用了随机水平翻转;我们尝试了有翻转和没有翻转的训练,并发现翻转可以稍微提高样本质量。\n", + "\n", + "本实验我们选用Fashion_MNIST数据集,我们使用download下载并解压Fashion_MNIST数据集到指定路径。此数据集由已经具有相同分辨率的图像组成,即28x28。" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip (29.4 MB)\n", + "\n", + "file_sizes: 100%|██████████████████████████| 30.9M/30.9M [00:00<00:00, 43.4MB/s]\n", + "Extracting zip file...\n", + "Successfully downloaded / unzipped to ./\n" + ] + } + ], + "source": [ + "# 下载MNIST数据集\n", + "url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip'\n", + "path = download(url, './', kind=\"zip\", replace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "from mindspore.dataset import FashionMnistDataset\n", + "\n", + "image_size = 28\n", + "channels = 1\n", + "batch_size = 16\n", + "\n", + "fashion_mnist_dataset_dir = \"./dataset\"\n", + "dataset = FashionMnistDataset(dataset_dir=fashion_mnist_dataset_dir, usage=\"train\", num_parallel_workers=cpu_count(), shuffle=True, num_shards=1, shard_id=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "接下来,我们定义一个transform操作,将在整个数据集上动态应用该操作。该操作应用一些基本的图像预处理:随机水平翻转、重新调整,最后使它们的值在 $[-1,1]$ 范围内。" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "transforms = [\n", + " RandomHorizontalFlip(),\n", + " ToTensor(),\n", + " lambda t: (t * 2) - 1\n", + "]\n", + "\n", + "\n", + "dataset = dataset.project('image')\n", + "dataset = dataset.shuffle(64)\n", + "dataset = dataset.map(transforms, 'image')\n", + "dataset = dataset.batch(16, drop_remainder=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['image'])\n" + ] + } + ], + "source": [ + "x = next(dataset.create_dict_iterator())\n", + "print(x.keys())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### 采样\n", + "\n", + "由于我们将在训练期间从模型中采样(以便跟踪进度),我们定义了下面的代码。采样在本文中总结为算法2:\n", + "\n", + "![Image-5](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/tutorials/source_zh_cn/generative/images/diffusion_5.png)\n", + "\n", + "从扩散模型生成新图像是通过反转扩散过程来实现的:我们从$T$开始,我们从高斯分布中采样纯噪声,然后使用我们的神经网络逐渐去噪(使用它所学习的条件概率),直到我们最终在时间步$t = 0$结束。如上图所示,我们可以通过使用我们的噪声预测器插入平均值的重新参数化,导出一个降噪程度较低的图像\n", + "$\\mathbf{x}_{t-1 }$。请注意,方差是提前知道的。\n", + "\n", + "理想情况下,我们最终会得到一个看起来像是来自真实数据分布的图像。\n", + "\n", + "下面的代码实现了这一点。" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def p_sample(model, x, t, t_index):\n", + " betas_t = extract(betas, t, x.shape)\n", + " sqrt_one_minus_alphas_cumprod_t = extract(\n", + " sqrt_one_minus_alphas_cumprod, t, x.shape\n", + " )\n", + " sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)\n", + " model_mean = sqrt_recip_alphas_t * (x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t)\n", + "\n", + " if t_index == 0:\n", + " return model_mean\n", + " posterior_variance_t = extract(posterior_variance, t, x.shape)\n", + " noise = randn_like(x)\n", + " return model_mean + ops.sqrt(posterior_variance_t) * noise\n", + "\n", + "def p_sample_loop(model, shape):\n", + " b = shape[0]\n", + " # 从纯噪声开始\n", + " img = randn(shape, dtype=None)\n", + " imgs = []\n", + "\n", + " for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step', total=timesteps):\n", + " img = p_sample(model, img, ms.numpy.full((b,), i, dtype=mstype.int32), i)\n", + " imgs.append(img.asnumpy())\n", + " return imgs\n", + "\n", + "def sample(model, image_size, batch_size=16, channels=3):\n", + " return p_sample_loop(model, shape=(batch_size, channels, image_size, image_size))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "请注意,上面的代码是原始实现的简化版本。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## 训练过程" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "下面,我们开始训练吧!" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# 定义动态学习率\n", + "lr = nn.cosine_decay_lr(min_lr=1e-7, max_lr=1e-4, total_step=10*3750, step_per_epoch=3750, decay_epoch=10)\n", + "\n", + "# 定义 Unet模型\n", + "unet_model = Unet(\n", + " dim=image_size,\n", + " channels=channels,\n", + " dim_mults=(1, 2, 4,)\n", + ")\n", + "\n", + "name_list = []\n", + "for (name, par) in list(unet_model.parameters_and_names()):\n", + " name_list.append(name)\n", + "i = 0\n", + "for item in list(unet_model.trainable_params()):\n", + " item.name = name_list[i]\n", + " i += 1\n", + "\n", + "# 定义优化器\n", + "optimizer = nn.Adam(unet_model.trainable_params(), learning_rate=lr)\n", + "loss_scaler = DynamicLossScaler(65536, 2, 1000)\n", + "\n", + "# 定义前向过程\n", + "def forward_fn(data, t, noise=None):\n", + " loss = p_losses(unet_model, data, t, noise)\n", + " return loss\n", + "\n", + "# 计算梯度\n", + "grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=False)\n", + "\n", + "# 梯度更新\n", + "def train_step(data, t, noise):\n", + " loss, grads = grad_fn(data, t, noise)\n", + " optimizer(grads)\n", + " return loss" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " epoch: 0 step: 0 Loss: 0.43375123\n", + " epoch: 0 step: 500 Loss: 0.113769315\n", + " epoch: 0 step: 1000 Loss: 0.08649178\n", + " epoch: 0 step: 1500 Loss: 0.067664884\n", + " epoch: 0 step: 2000 Loss: 0.07234038\n", + " epoch: 0 step: 2500 Loss: 0.043936778\n", + " epoch: 0 step: 3000 Loss: 0.058127824\n", + " epoch: 0 step: 3500 Loss: 0.049789283\n", + "training time: 922.3438229560852 s\n", + " epoch: 1 step: 0 Loss: 0.05088563\n", + " epoch: 1 step: 500 Loss: 0.051174678\n", + " epoch: 1 step: 1000 Loss: 0.04455947\n", + " epoch: 1 step: 1500 Loss: 0.055165425\n", + " epoch: 1 step: 2000 Loss: 0.043942295\n", + " epoch: 1 step: 2500 Loss: 0.03274461\n", + " epoch: 1 step: 3000 Loss: 0.048117325\n", + " epoch: 1 step: 3500 Loss: 0.063063145\n", + "training time: 937.5596783161163 s\n", + " epoch: 2 step: 0 Loss: 0.052893892\n", + " epoch: 2 step: 500 Loss: 0.05721748\n", + " epoch: 2 step: 1000 Loss: 0.057248186\n", + " epoch: 2 step: 1500 Loss: 0.048806388\n", + " epoch: 2 step: 2000 Loss: 0.05007638\n", + " epoch: 2 step: 2500 Loss: 0.04337231\n", + " epoch: 2 step: 3000 Loss: 0.043207955\n", + " epoch: 2 step: 3500 Loss: 0.034530163\n", + "training time: 947.6374666690826 s\n", + " epoch: 3 step: 0 Loss: 0.04867614\n", + " epoch: 3 step: 500 Loss: 0.051636297\n", + " epoch: 3 step: 1000 Loss: 0.03338969\n", + " epoch: 3 step: 1500 Loss: 0.0420174\n", + " epoch: 3 step: 2000 Loss: 0.052145053\n", + " epoch: 3 step: 2500 Loss: 0.03905913\n", + " epoch: 3 step: 3000 Loss: 0.07621498\n", + " epoch: 3 step: 3500 Loss: 0.06484105\n", + "training time: 957.7780408859253 s\n", + " epoch: 4 step: 0 Loss: 0.046281893\n", + " epoch: 4 step: 500 Loss: 0.03783619\n", + " epoch: 4 step: 1000 Loss: 0.0587488\n", + " epoch: 4 step: 1500 Loss: 0.06974746\n", + " epoch: 4 step: 2000 Loss: 0.04299112\n", + " epoch: 4 step: 2500 Loss: 0.027945498\n", + " epoch: 4 step: 3000 Loss: 0.045338146\n", + " epoch: 4 step: 3500 Loss: 0.06362417\n", + "training time: 955.6116819381714 s\n", + " epoch: 5 step: 0 Loss: 0.04781142\n", + " epoch: 5 step: 500 Loss: 0.032488734\n", + " epoch: 5 step: 1000 Loss: 0.061507083\n", + " epoch: 5 step: 1500 Loss: 0.039130375\n", + " epoch: 5 step: 2000 Loss: 0.034972396\n", + " epoch: 5 step: 2500 Loss: 0.039485026\n", + " epoch: 5 step: 3000 Loss: 0.06690869\n", + " epoch: 5 step: 3500 Loss: 0.05355365\n", + "training time: 951.7758958339691 s\n", + " epoch: 6 step: 0 Loss: 0.04807706\n", + " epoch: 6 step: 500 Loss: 0.021469856\n", + " epoch: 6 step: 1000 Loss: 0.035354104\n", + " epoch: 6 step: 1500 Loss: 0.044303045\n", + " epoch: 6 step: 2000 Loss: 0.040063944\n", + " epoch: 6 step: 2500 Loss: 0.02970439\n", + " epoch: 6 step: 3000 Loss: 0.041152682\n", + " epoch: 6 step: 3500 Loss: 0.02062454\n", + "training time: 955.2220208644867 s\n", + " epoch: 7 step: 0 Loss: 0.029668871\n", + " epoch: 7 step: 500 Loss: 0.028485576\n", + " epoch: 7 step: 1000 Loss: 0.029675964\n", + " epoch: 7 step: 1500 Loss: 0.052743085\n", + " epoch: 7 step: 2000 Loss: 0.03664278\n", + " epoch: 7 step: 2500 Loss: 0.04454907\n", + " epoch: 7 step: 3000 Loss: 0.043067697\n", + " epoch: 7 step: 3500 Loss: 0.0619511\n", + "training time: 952.6654670238495 s\n", + " epoch: 8 step: 0 Loss: 0.055328347\n", + " epoch: 8 step: 500 Loss: 0.035807922\n", + " epoch: 8 step: 1000 Loss: 0.026412832\n", + " epoch: 8 step: 1500 Loss: 0.051044375\n", + " epoch: 8 step: 2000 Loss: 0.05474911\n", + " epoch: 8 step: 2500 Loss: 0.044595096\n", + " epoch: 8 step: 3000 Loss: 0.034082986\n", + " epoch: 8 step: 3500 Loss: 0.02653109\n", + "training time: 961.9374921321869 s\n", + " epoch: 9 step: 0 Loss: 0.039675284\n", + " epoch: 9 step: 500 Loss: 0.046295933\n", + " epoch: 9 step: 1000 Loss: 0.031403508\n", + " epoch: 9 step: 1500 Loss: 0.028816734\n", + " epoch: 9 step: 2000 Loss: 0.06530296\n", + " epoch: 9 step: 2500 Loss: 0.051451046\n", + " epoch: 9 step: 3000 Loss: 0.037913296\n", + " epoch: 9 step: 3500 Loss: 0.030541396\n", + "training time: 974.643147945404 s\n", + "Training Success!\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAATgElEQVR4nO3dW2xV55UH8P+yMTebGAzGcbgMlxhFMFJo5JBIRVEiFEQhElRRovJQUSka96GVWomHiTKKyMtIUTRtpw9RFRhQ6ahDVaklQVEUlSKUqFFShUQMNzcDg3CwMXbAXIzBXMyaB286DvFey5x9ztkHr/9PQjZn+Tvn87aX9zln7fV9oqogovGvKu8JEFF5MNmJgmCyEwXBZCcKgslOFMSEcj6YiGhVVeF/X6zKgYgUfL+lVlNTY8br6uoyjZ8wIf3HWFtba469ceOGGR8cHDTj9fX1Ztz6ed+8edMcOzAwYMbPnTtnxoeGhlJj47UKdfv2bajqqMmQKdlFZA2AXwKoBvAfqvq69fVVVVWYPHlywY+XJdm9uPfDt8Z79z1nzhwz/uSTT5rxuXPnmvFZs2alxlasWGGOPXnypBk/fvy4GV+3bp0Znzp1amrs7Nmz5thPPvnEjG/fvt2MX7p0KTV2/fp1c+z9yvrjXPBpVkSqAbwJ4DsAlgLYKCJLC70/IiqtLK/ZVwA4oaonVfUGgN8BWF+caRFRsWVJ9jkATo/4f2dy29eISJuIHBCRA+P1dRLR/aDkb9Cp6lYAWwGgurqa2U6Ukyxn9i4A80b8f25yGxFVoCzJ/imAFhFZKCITAXwPwJ7iTIuIik2yvI4WkbUA/h3Dpbcdqvqv1tdXV1erVXrLUv4qNauEtWrVKnOsV4ueNGmSGbdKawBw/vz51Nj8+fPNsc3NzWZ8wYIFZtwrzTU2NqbGOjs7Cx4LAIcPHzbjb7/9dmps9+7d5ljvd7FS338aHBzE0NBQ8evsqvoegPey3AcRlQcvlyUKgslOFASTnSgIJjtREEx2oiCY7ERBZKqz3yuvzp5F1hbXDRs2mPEnnngiNeb16Ft1cMDv666uri447h1v776nT59uxleuXGnG33///dSY97t3+fJlM261zwL2NQJbtmwxx3qtv1mv+ShV3ll1dp7ZiYJgshMFwWQnCoLJThQEk50oCCY7URDjpvQ2hsc246+++qoZt1bt9JY89o6xd0y85Z6tMlBTU5M51lum2vvevOM6bdq0gu/bOy59fX1m/OrVq6kxb8XeN99804yXsjSXJSdZeiMiJjtRFEx2oiCY7ERBMNmJgmCyEwXBZCcKoqxbNufJq3t62yZbNWGvxdWrm1pbCwP+tslTpkxJjR09etQc+8wzz5jxlpYWM75r1y4z/tRTT6XGHnzwQXPsxx9/bMazbBfttc8+++yzZvytt94y45W41DTP7ERBMNmJgmCyEwXBZCcKgslOFASTnSgIJjtREGHq7LNnzzbjXq3c6in3esK9fnSr7xoALl26ZMZv376dGrt27Zo59o033jDj3pbN3pbP27ZtS4298MIL5tilS5eacU9HR0dq7OLFi+ZYb5vsSt5ePE2mZBeRUwD6AQwBuKWqrcWYFBEVXzHO7M+o6rki3A8RlRBfsxMFkTXZFcCfROQzEWkb7QtEpE1EDojIgUq8XpgoiqxP41eqapeIzAawV0T+pqofjvwCVd0KYCswvOBkxscjogJlOrOralfysRfAbgArijEpIiq+gpNdRGpFZNqdzwGsBnCkWBMjouLK8jS+CcDupJ44AcB/qWr6/rw5W7RokRn36qJWHd4bW1tba8avXLlixjs7O8249fhejd9be/3gwYNmfOPGjWbc2urae+zHHnvMjH/00Udm3FonwFrPHgAmTpxoxrOuYZCHgpNdVU8CeLSIcyGiEmLpjSgIJjtREEx2oiCY7ERBMNmJghg3La5e+ctrcfXaSCdNmnTPc7rDWyp6wgT7x3DhwgUzbi01vXDhQnOsV97yjpvVRgrYS1k///zz5tj337crudYS2gAwc+bM1JjVFgz4y3d7P7ObN2+a8TzwzE4UBJOdKAgmO1EQTHaiIJjsREEw2YmCYLITBTFu6uxeS2FjY6MZ97bwnTp1amrMa5f84osvzLi3XfT06dMLjnvts17ca/Xs7e0141Z77qFDh8yx3nHxro24detWasxbKjrLNtkA6+xElCMmO1EQTHaiIJjsREEw2YmCYLITBcFkJwpi3NTZPV692Os5t2q2Xq971u19vZ70c+fS99X0tmy2vi/Av/7A6+tevHhxasxbSrq/v9+M19fXm3Hr+oPq6mpz7MDAgBn3xlcintmJgmCyEwXBZCcKgslOFASTnSgIJjtREEx2oiDC1Nm9WrdXN7Xijz5qb2b77rvvmvF169aZ8fb2djNu1aO9WrR3fUFLS4sZ965fsHr9vV76np4eM+6Nt3rOs1xXAfhrDHjXEHjXVpSCe2YXkR0i0isiR0bc1iAie0XkePJxRmmnSURZjeVp/K8BrLnrtpcB7FPVFgD7kv8TUQVzk11VPwRw93OS9QB2Jp/vBLChuNMiomIr9DV7k6p2J5+fBdCU9oUi0gagLfm8wIcjoqwyvxuvw+98pb77papbVbVVVVuZ7ET5KTTZe0SkGQCSj/YSo0SUu0KTfQ+ATcnnmwC8U5zpEFGpuK/ZRWQXgKcBzBKRTgBbALwO4Pci8hKADgAvlnKSxeC9hPD6sq2e9fPnz5tjvTXEvfXTvb3Er1+/nhpbtmyZObahocGMP/DAA2b89OnTZtyqlXvr7Xs1/Cw95d7vg3d9gjf3SuQmu6puTAmtKvJciKiEeLksURBMdqIgmOxEQTDZiYJgshMFcV+1uFptql7prKrK/rvmlceslkZv6+DNmzeb8WPHjpnx+fPnm/E1a+7uU/p/XnustRX1WMbPmzfPjFs/lxs3bphjH3/8cTP+wQcfmPHm5ubU2KlTp8yxkydPNuP3Y+mNZ3aiIJjsREEw2YmCYLITBcFkJwqCyU4UBJOdKIiy1tlV1ayVe22HVjzrKjjessTW0sJffvmlOXb//v1m3Gsj9e7finttohcvXjTjXi3ca5G1Hn/27NnmWG+55xkz7EWNFy1alBrzavRLliwx4157bSWuysQzO1EQTHaiIJjsREEw2YmCYLITBcFkJwqCyU4URFnr7CJSsvpjTU2NGa+rqzPj165dM+PW9QHWUs6A3zPu1ZPnzJljxq06vddrb9WiAaC3197/w7t/qw7v1fC9awRWr15txq0luL0tmb06uvf7Vol4ZicKgslOFASTnSgIJjtREEx2oiCY7ERBMNmJgriv1o23NDY2mnFvHXBvW2QrPmXKFHOsF/dqvt6a+NbcvFq1V0f3rovI0tftjfVq+NZ20ADw3HPPpcZmzZpljvXmZl13UancM7uI7BCRXhE5MuK210SkS0QOJv/WlnaaRJTVWJ7G/xrAaFuO/EJVlyf/3ivutIio2NxkV9UPAfSVYS5EVEJZ3qD7sYgcSp7mpy4GJiJtInJARA7cj69ziMaLQpP9VwAWA1gOoBvAz9K+UFW3qmqrqrZW4iJ8RFEUlOyq2qOqQ6p6G8A2ACuKOy0iKraCkl1ERu6F+10AR9K+logqg1tnF5FdAJ4GMEtEOgFsAfC0iCwHoABOAfhh6aY4Nt7a614t2+tPtmrdM2fONMf29dnvb06aNMmMe/3uVj+9V2e/evWqGff2rffmbr1P483Ne4+no6PDjFt7ATzyyCOZHturw1ciN9lVdeMoN28vwVyIqIR4uSxREEx2oiCY7ERBMNmJgmCyEwUxblpc6+vrzbhXvsqydPDAwIA51mtR9R7bW3LZanEdHBw0x3rLXPf395tx73uzrpr02opra2vNeHd3txm3luD2Smve9+WVDb2rRfO4dJxndqIgmOxEQTDZiYJgshMFwWQnCoLJThQEk50oiHFTZ8/Saglkq3V79WKv5urFq6rsv8lW3Pu+vdbfrOOtY+O113o/0xMnTphx67h6NXzv2gmvpboS8cxOFASTnSgIJjtREEx2oiCY7ERBMNmJgmCyEwUxbursXl+21xPusfqbvXpx1t7pLL3RWa8v8NYByLIMtnffdXV1ZtzrZz9z5kxqzNtG+/z582Z8+vTpZpz97ESUGyY7URBMdqIgmOxEQTDZiYJgshMFwWQnCuK+qrNn6U/2es69eKnGAv41AFlq5d765l6te/LkyQU/NpBt3fisWzofPnw4NebV2bu6usy4t8aAN3dvPf9ScM/sIjJPRPaLyDEROSoiP0lubxCRvSJyPPk4o/TTJaJCjeVp/C0Am1V1KYAnAfxIRJYCeBnAPlVtAbAv+T8RVSg32VW1W1U/Tz7vB9AOYA6A9QB2Jl+2E8CGEs2RiIrgnl6zi8gCAN8C8FcATap65+LkswCaUsa0AWhLPi94okSUzZjfjReROgB/APBTVb08MqbD75SM+m6Jqm5V1VZVbWWyE+VnTMkuIjUYTvTfquofk5t7RKQ5iTcD6C3NFImoGNyn8TJ8Ot4OoF1Vfz4itAfAJgCvJx/fKckMvz6X1JjXDukteey1LFq8Ms7FixfNuFfG8dpIrePilcZu3rxZ8H0Dfnuudf9eyXHatGlmvLGx0Yxbc/PKft7PxPuZe0tN51F6G8tr9m8D+D6AwyJyMLntFQwn+e9F5CUAHQBeLMkMiago3GRX1b8ASPvzvqq40yGiUuHlskRBMNmJgmCyEwXBZCcKgslOFMR91eJq8eqi3lLT9fX1Ztyqdff19Zljvbl5siw77NWD+/v7zbhXZ/daZK3vPevPzKuznz59OjU2Y4bdpOkdN29u3nUfPT09qbFSXWnKMztREEx2oiCY7ERBMNmJgmCyEwXBZCcKgslOFERF1dlLuY2td99evfjChQupsStXrphjs/aMe6y5X7t2LdN919TUFPzYgN1T7i3/feTIETPuLXP91VdfpcYaGhrMsV4/+vXr1814JeKZnSgIJjtREEx2oiCY7ERBMNmJgmCyEwXBZCcKoqLq7Fnqzd4WuV5d1KvDW33fXi+8V2fPWrO1jpu3Xr5Xq/bm5o231ob31rT3esa9tf6tnnTv98XrZ/fWnfe+tyys31UrxjM7URBMdqIgmOxEQTDZiYJgshMFwWQnCoLJThTEWPZnnwfgNwCaACiArar6SxF5DcA/AbjTNPyKqr5XqokC9jrjS5YsMcf29vaaca8uavWsezVXj7d+ulcrt+buXbvg7ZFeyjUGvO/L28O8ubnZjJ85cyY1NnfuXHOsd1y8x/a+tyysn6kVG8tFNbcAbFbVz0VkGoDPRGRvEvuFqv7bvUyUiPIxlv3ZuwF0J5/3i0g7gDmlnhgRFdc9vWYXkQUAvgXgr8lNPxaRQyKyQ0RG3U9HRNpE5ICIHCjlU0Iiso052UWkDsAfAPxUVS8D+BWAxQCWY/jM/7PRxqnqVlVtVdXWUu1hRUS+MSW7iNRgONF/q6p/BABV7VHVIVW9DWAbgBWlmyYRZeUmuwyfjrcDaFfVn4+4feTbkd8FYC8FSkS5Gsu78d8G8H0Ah0XkYHLbKwA2ishyDJfjTgH4YQnm9zVWiaujo8Mc65VKvFZNawter4XVe6/CK/N4ZUGrHdMr63lzy9rKaR03b9tkr8V1YGDAjFutxw8//LA51loCG/BbZL0lvPN4STuWd+P/AmC0mZW0pk5ExcUr6IiCYLITBcFkJwqCyU4UBJOdKAgmO1EQUs7r1auqqtSrZ1us2qS3tbBXV122bJkZt+rJDz30kDnWq9l6NVevlm3V6b1WS68On2VLZgC4dOlSasy7PqGnp8eMW1syA0B7e7sZz8L7fbOWHgfs6xey1OAHBwcxNDQ06h3wzE4UBJOdKAgmO1EQTHaiIJjsREEw2YmCYLITBVHWOruIfAVgZOP5LADnyjaBe1Opc6vUeQGcW6GKObd/UNXG0QJlTfZvPPjwIpStuU3AUKlzq9R5AZxboco1Nz6NJwqCyU4URN7JvjXnx7dU6twqdV4A51aosswt19fsRFQ+eZ/ZiahMmOxEQeSS7CKyRkS+EJETIvJyHnNIIyKnROSwiBwUkQM5z2WHiPSKyJERtzWIyF4ROZ58tBdfL+/cXhORruTYHRSRtTnNbZ6I7BeRYyJyVER+ktye67Ez5lWW41b21+wiUg3gfwA8C6ATwKcANqrqsbJOJIWInALQqqq5X4AhIk8BuALgN6r6j8ltbwDoU9XXkz+UM1T1nytkbq8BuJL3Nt7JbkXNI7cZB7ABwA+Q47Ez5vUiynDc8jizrwBwQlVPquoNAL8DsD6HeVQ8Vf0QQN9dN68HsDP5fCeGf1nKLmVuFUFVu1X18+TzfgB3thnP9dgZ8yqLPJJ9DoDTI/7ficra710B/ElEPhORtrwnM4omVe1OPj8LoCnPyYzC3ca7nO7aZrxijl0h259nxTfovmmlqj4G4DsAfpQ8Xa1IOvwarJJqp2PaxrtcRtlm/O/yPHaFbn+eVR7J3gVg3oj/z01uqwiq2pV87AWwG5W3FXXPnR10k4+9Oc/n7yppG+/RthlHBRy7PLc/zyPZPwXQIiILRWQigO8B2JPDPL5BRGqTN04gIrUAVqPytqLeA2BT8vkmAO/kOJevqZRtvNO2GUfOxy737c9Vtez/AKzF8Dvy/wvgX/KYQ8q8FgH47+Tf0bznBmAXhp/W3cTwexsvAZgJYB+A4wD+DKChgub2nwAOAziE4cRqzmluKzH8FP0QgIPJv7V5HztjXmU5brxcligIvkFHFASTnSgIJjtREEx2oiCY7ERBMNmJgmCyEwXxf6WpwXV/0VtrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import time\n", + "\n", + "epochs = 10\n", + "\n", + "iterator = dataset.create_tuple_iterator(num_epochs=epochs)\n", + "for epoch in range(epochs):\n", + " begin_time = time.time()\n", + " for step, batch in enumerate(iterator):\n", + " unet_model.set_train()\n", + " batch_size = batch[0].shape[0]\n", + " t = randint(0, timesteps, (batch_size,), dtype=ms.int32)\n", + " noise = randn_like(batch[0])\n", + " loss = train_step(batch[0], t, noise)\n", + "\n", + " if step % 500 == 0:\n", + " print(\" epoch: \", epoch, \" step: \", step, \" Loss: \", loss)\n", + " end_time = time.time()\n", + " times = end_time - begin_time\n", + " print(\"training time:\", times, \"s\")\n", + " # 展示随机采样效果\n", + " unet_model.set_train(False)\n", + " samples = sample(unet_model, image_size=image_size, batch_size=64, channels=channels)\n", + " plt.imshow(samples[-1][5].reshape(image_size, image_size, channels), cmap=\"gray\")\n", + "print(\"Training Success!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## 推理过程(从模型中采样)\n", + "\n", + "要从模型中采样,我们可以只使用上面定义的采样函数:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4641cfe838584e8b84e3ba83a8872e2b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "sampling loop time step: 0%| | 0/200 [00:00" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVfklEQVR4nO3dbWyVVbYH8P9q5R1UypulEBEFFd9QEU3GN6JOGD+oY6IZQgZvopdJHJKZ6Idr9MOYmGvMzZ2Z64ebMQyQYZwZCeqoaMjNoJKgUdSCSIHKLVdBKKWAlFcpIKz7oYdJ0T7/Vc9zes7R/f8lpOWs7vPs87Sr5/SsZ+9l7g4R+eGrqfQERKQ8lOwiiVCyiyRCyS6SCCW7SCLOKufBzMxrarJ/v+SpDJgZjVdz1SGa25gxY2icPfYjR47QsQMGDKDxr776isa//vprGj/rrOwfsX79+tGxAwcOpPHovO3du5fG89x3X8rzs+zucPce7yBXspvZTADPAqgFsMDdn2FfX1NTQ7+BlUz2U6dOFT0+77GPHz9O43PmzKFx9gv0ww8/pGMnTpxI401NTTS+a9cuGj/vvPMyY9EvscmTJ9P4iRMnaHzBggWZMfZLqDf33Zfy/Dx1dnZmxop+GW9mtQD+G8BPAEwBMMvMphR7fyLSt/L8zT4dwBZ3/8zdjwNYAuDu0kxLREotT7I3ANje7f87CredwczmmlmjmTVW89/NIj90ff4GnbvPBzAfAGpra5XtIhWS55m9FcD4bv8fV7hNRKpQnmT/CMAkM7vAzPoD+BmAZaWZloiUmuUsd90J4L/QVXpb5O7/zr6+pqbGo9ppcLyix0aP8+qrr6bxsWPHZsYOHz5Mx1566aU0PmHCBBqPauHLly/PjEXlrbq6Ohq/4YYbaDz6nowYMSIz1trKXwgeOHCAxkeOHEnjzLZt22h85cqVNP7mm28Wfey+1NnZiVOnTpW+zu7uywFk/6SJSNXQ5bIiiVCyiyRCyS6SCCW7SCKU7CKJULKLJCJXnf27qq2tzVVnz+OJJ56g8WhdNlvXPWPGDDo2WsLa0tJC41u3bqXxoUOHZsbY9QEA0NDwreUMZzj//PNpfMmSJTQ+bdq0zFh7ezsdu3PnTho/99xzaZz9bEdr6aPrE6Kf4+bmZhp/+umnM2O1tbV0LFuOzersemYXSYSSXSQRSnaRRCjZRRKhZBdJhJJdJBFl3Uq6sM1tZjzPrpozZ86kYwcNGkTjURmoo6OjqHkBwO7du2n8xRdfpPHx48fT+JQp2ft8Rks5o+W5K1asoPGoxMR2nx09ejQdO3jwYBqPymcHDx7MjEVluw8++IDGb7vtNhq/+OKLaZyVS48ePUrHsjxhMT2ziyRCyS6SCCW7SCKU7CKJULKLJELJLpIIJbtIIspaZ8+L1bMvv/xyOpbVXIG4NTGrm0bHXrhwIY2zmisAXHPNNTR+wQUXZMaibqRLly6l8agePWvWLBpnS4ejDrCff/45jV9//fU0zr6n0bURF154IY1Hy47Z0l6A1+nfeOMNOrbYLdX1zC6SCCW7SCKU7CKJULKLJELJLpIIJbtIIpTsIokoa53dzHK1XWZbMkdrvtn2u0BcV92+fXtmbNky3pZ++PDhND579mwaj7aDbmxszIyNGjWKjo3q5MOGDaPxI0eO0PiOHTsyY9F5idpot7W1FR2PzkvUDjq6NiJqR33OOefQOHPy5MnMGLt+IFeym9lWAIcAnATwtbvzKwlEpGJK8cw+w933luB+RKQP6W92kUTkTXYH8A8zW2Nmc3v6AjOba2aNZtZYzlZTInKmvC/jb3T3VjMbDWCFmX3q7qu6f4G7zwcwH+jq9ZbzeCJSpFzP7O7eWvi4G8ArAKaXYlIiUnpFJ7uZDTGzYac/B/BjABtKNTERKa08L+PHAHilUDc/C8Df3P1/2IBo3/iaGv67h63rPnbsGB27adMmGo/Wbb/zzjuZsZtuuomOjfYQP+ss/m14++23aZyt1Y/Wsw8ZMoTGo33lo7lPnjw5Mxbtac9q9EDcVvmhhx7KjEV7+UfvL3366ac0zh43AFx11VWZsVWrVmXGAOCLL77IjLHrWIpOdnf/DED2jEWkqqj0JpIIJbtIIpTsIolQsoskQskukoiq2ko6WoZ63XXXZcb2799Px0ZlmgMHDtD4nDlzMmNffvklHXvFFVfQ+PPPP0/jbEkjAEyfnn0t0969fI3S6tWraby+vp7GJ06cSONsqWf//v3p2Ghp78aNG2mcldeicujKlStpPNree9y4cTTOSppROZOVU2lpm96riPxgKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSUTZ6+ysDhhtM81q5VHL5X79+tH4XXfdReObN2/OjP3lL3+hY19//XUaZy2XgbglNLs+Idry+L777qPxe++9l8ajZaivvvpqZoy1cwaAhoYGGo+2g2bfs+i6jNtvv53GoxbgR48epXFWS6+traVji6VndpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSUTZ6+x5WjbTdrTBGuCOjg4a37NnD41fdtllmbFobXO05nvnzp00HtWj8xw7qjcvWrSIxgcPHkzjGzZktxKI9i+IatXsewIAl1xySWasubmZjo22Ft+yZQuN19XV0fiUKVMyY9H+CMXmkJ7ZRRKhZBdJhJJdJBFKdpFEKNlFEqFkF0mEkl0kEVW1nj1q2Txo0KDMWFSTPe+882g8Wjv96KOPZsZYPReIa66sBS8Qt11m+6+///77dGy0Xp3t+w4ACxYsoHG2LrytrY2O7ezspPH169fTOKuVR2vh3333XRqP9iC46KKLaPzIkSOZsePHj9OxbG8Gdk1G+MxuZovMbLeZbeh2W52ZrTCzlsLH4dH9iEhl9eZl/J8AzPzGbY8BeMvdJwF4q/B/EaliYbK7+yoA+75x890AFhc+XwzgntJOS0RKrdi/2ce4++k/uHYByNwczszmAphb5HFEpERyv0Hn7m5mme+6uft8APMBoKamJvvdORHpU8WW3trNrB4ACh+z22WKSFUoNtmXAXig8PkDAF4rzXREpK+EL+PN7AUAtwIYaWY7APwGwDMAlprZgwC2Abi/Nwczs7CWzrB6cnS/0Xr3aP3y2rVrM2NR//VofTKrufZmPHvsAwYMoGObmpqKvm8gXs/+0ksvZcaiWjfrOw/w/usAr0dv376djp0wYQKNR/vxR9j1JtF5Yb3dmTDZ3X1WRui2oo4oIhWhy2VFEqFkF0mEkl0kEUp2kUQo2UUSUdYlru6ea4kra5MbLYesr6+n8bPPPpvG2bbHY8eOpWOjMk70uG+55RYaZ6WYqPT28ssv03i0zfXkyZNp/JFHHsmMsXbOQFxai0qex44dy4xF5/Tmm2+m8Wju7NgAL7dG57xYemYXSYSSXSQRSnaRRCjZRRKhZBdJhJJdJBFKdpFElH0raaa2tpbG2ZbKJ0+epGO/+uorGo/q9KwWHo2NtkyOWjJH1wBs3bo1MxZdXzB79mwaX758OY1H7YPXrVuXGZs0aRId297eTuPRUlDWhjta4vrxxx/T+K5du2j8yiuvpHFWS49+nhh6HUvR9yoi3ytKdpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSUVV19qhme84552TGorbGUa36wIEDNM7mNmTIEDo2qqPv37+fxqP2way2um/fN9v0nSmaW7RVdEdHR9HxaHvvaIvtqB7NxkfXdETnJWoXPW/ePBp/7733MmNRHrDvN6NndpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSURV1dnZ3uwAr41GddGoxW7UFpmJ2j1H+4CPHj2axsePH0/jrC4b1aKj8xbtaR/Vwo8ePZoZi+rF0bUTLS0tNM72MGDtnAFgxowZNL5mzRoa37x5M40fP348M1ZsHT0SPrOb2SIz221mG7rd9qSZtZrZusK/O/tkdiJSMr15Gf8nADN7uP337j618I9vZyIiFRcmu7uvAsCvuRSRqpfnDbp5Zra+8DJ/eNYXmdlcM2s0s8YcxxKRnIpN9j8AuBDAVABtAH6b9YXuPt/dp7n7tCKPJSIlUFSyu3u7u59091MA/ghgemmnJSKlVlSym1n3/Yl/CmBD1teKSHUI6+xm9gKAWwGMNLMdAH4D4FYzmwrAAWwF8IveHMzMaE04WsfLaqNRjT6qs2/cuJHGmWjNd7RuO1pLH+1hzmrl0XlhewT0RlTHZ7XuvOu2oz0K2GNramqiY6M6etSXvrGRv0XV3NycGYuubWDnhZ3TMNndfVYPNy+MxolIddHlsiKJULKLJELJLpIIJbtIIpTsIoko6xJXd+ctZYOSA1vi2r9/fzp20KBBNP7ZZ58VfeyoRBQdO2o3HZWoBg4cmBmLzmkkOvaAAQNonJ2baDvnY8eOFX3fQL5S7fvvv0/j0fbhUTmWfc+ix8XiatksIkp2kVQo2UUSoWQXSYSSXSQRSnaRRCjZRRLxvdpKmtV0o62Bhw0bRuPRtsVsmWpdXR0dy5Z5AnE9OXpsTFTjj5bfRtcARI8tqqXnEV1DwB7bnj176NiDBw/S+NSpU2k8apXd0NCQGavYVtIi8sOgZBdJhJJdJBFKdpFEKNlFEqFkF0mEkl0kEVVVZ8+zdjpqPRxhLXQBXq8eNWoUHbt//34aj2r80TUCrG1ydO1CnrXTQFxHZ7XwPNdVAPEeBmxu0fUD0bHZenSAt6oG4jbcTLHbseuZXSQRSnaRRCjZRRKhZBdJhJJdJBFKdpFEKNlFEvG9qrOzenNUD25ra6PxqF7M6qLRvKO2yNH46BqCPOvdI9F69+i8sblHte7ovqNrI1gdPqpzR/cdzS16bMOHD8+MRdcPsLnl2jfezMab2Uoz22RmG83sV4Xb68xshZm1FD5mz15EKq43L+O/BvCou08BcAOAX5rZFACPAXjL3ScBeKvwfxGpUmGyu3ubu68tfH4IQDOABgB3A1hc+LLFAO7pozmKSAl8p7/ZzWwCgKsBfABgjLuf/kN4F4AxGWPmAphb+LzoiYpIPr1+N97MhgJ4GcCv3f2M3fi8612BHt8ZcPf57j7N3aflmqmI5NKrZDezfuhK9L+6+98LN7ebWX0hXg9gd99MUURKIXwZb12vvRcCaHb333ULLQPwAIBnCh9fyzuZaMkjE5VCDhw4QOPjxo2j8cOHD2fGorJfVEqJlktGpbc8fx5F95332GyJa3Te+nKb66gcykpjQN9u0V1fX0/Hbtu2jcYz59SLr/kRgJ8DaDKzdYXbHkdXki81swcBbANwf1EzEJGyCJPd3d8FkPXr+7bSTkdE+ooulxVJhJJdJBFKdpFEKNlFEqFkF0lE2Ze4stpqVJtktdGzzz6bjo2WLJ577rk0zpbXRjX+aFviqFYdbUvMzmne5bHRY4vaTbM6e/T9jloyR9h5iR53dG1E9Lg7OztpnP28Rstvi62z65ldJBFKdpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSUdY6u5nRum1dXR0dz2qTebYVBuJ6NKt1R2ub9+zZQ+NRS+c82zXnbdkcrRmPsPHRsfft21f0fQPAtddemxmLzvnq1atpfPr06TQeXUPArr2IflaL3fdBz+wiiVCyiyRCyS6SCCW7SCKU7CKJULKLJELJLpKIqlrPnmft9aFDh+jYqHYZ1bJbWloyYy+88AIdO2PGDBpna+UB4MiRI0WPj9ZtR3vWR+uy87TKjo4drfNndXQAGDFiRGbs4YcfpmOjc/7YY7yPafTY2M9rtLcCq+GfOHEiM6ZndpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSURv+rOPB/BnAGMAOID57v6smT0J4F8BnF6s/bi7L2f35e60Lvvll1/SubBa99ixY+nYqN/2c889R+OffPJJZqy5uZmO3bt3L41H6/ijejNb193R0UHHbtmyhcajuUdYnT563NG1EQsWLKBxdl6itfLRsTdv3pxr/IQJEzJjQ4YMoWOjaxuy9Oaimq8BPOrua81sGIA1ZraiEPu9u/9nUUcWkbLqTX/2NgBthc8PmVkzgIa+npiIlNZ3+pvdzCYAuBrAB4Wb5pnZejNbZGY9vk42s7lm1mhmjfmmKiJ59DrZzWwogJcB/NrdDwL4A4ALAUxF1zP/b3sa5+7z3X2au0/LP10RKVavkt3M+qEr0f/q7n8HAHdvd/eT7n4KwB8B8B34RKSiwmS3rreCFwJodvffdbu9vtuX/RTAhtJPT0RKpTfvxv8IwM8BNJnZusJtjwOYZWZT0VWO2wrgF3knEy1xHTx4cNH3PXr0aBqP2iKz9sHRvJcsWULjUWktwrYWznvfeccz0RbbkWgrafY9i5Y0R9s1z5s3j8afeuopGmftx6PlsWxutCU6vdeuwe8C6Ok7TmvqIlJddAWdSCKU7CKJULKLJELJLpIIJbtIIpTsIoko+1bSrEYY1T6XLl2aGbvjjjvo2KFDh9J4a2srjTN9WYsG4iWNrJ7c16K5sXNT7FLN3tx33vuPxu7cuZPGn332WRpnS67b29vp2GLbaOuZXSQRSnaRRCjZRRKhZBdJhJJdJBFKdpFEKNlFEmF5a53f6WBmewBs63bTSAD59iruO9U6t2qdF6C5FauUczvf3Uf1FChrsn/r4GaN1bo3XbXOrVrnBWhuxSrX3PQyXiQRSnaRRFQ62edX+PhMtc6tWucFaG7FKsvcKvo3u4iUT6Wf2UWkTJTsIomoSLKb2Uwz22xmW8zssUrMIYuZbTWzJjNbV+n+dIUeervNbEO32+rMbIWZtRQ+8l7U5Z3bk2bWWjh368zszgrNbbyZrTSzTWa20cx+Vbi9oueOzKss563sf7ObWS2A/wVwB4AdAD4CMMvdN5V1IhnMbCuAae5e8QswzOxmAIcB/NndLy/c9h8A9rn7M4VflMPd/d+qZG5PAjhc6TbehW5F9d3bjAO4B8C/oILnjszrfpThvFXimX06gC3u/pm7HwewBMDdFZhH1XP3VQD2fePmuwEsLny+GF0/LGWXMbeq4O5t7r628PkhAKfbjFf03JF5lUUlkr0BwPZu/9+B6ur37gD+YWZrzGxupSfTgzHu3lb4fBeAMZWcTA/CNt7l9I0241Vz7oppf56X3qD7thvd/RoAPwHwy8LL1arkXX+DVVPttFdtvMulhzbj/1TJc1ds+/O8KpHsrQDGd/v/uMJtVcHdWwsfdwN4BdXXirr9dAfdwsfdFZ7PP1VTG++e2oyjCs5dJdufVyLZPwIwycwuMLP+AH4GYFkF5vEtZjak8MYJzGwIgB+j+lpRLwPwQOHzBwC8VsG5nKFa2nhntRlHhc9dxdufu3vZ/wG4E13vyP8fgCcqMYeMeU0E8Enh38ZKzw3AC+h6WXcCXe9tPAhgBIC3ALQAeBNAXRXN7XkATQDWoyux6is0txvR9RJ9PYB1hX93VvrckXmV5bzpclmRROgNOpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXScT/A8s7uYqS6ZVSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# 展示一个随机效果\n", + "random_index = 5\n", + "plt.imshow(samples[-1][random_index].reshape(image_size, image_size, channels), cmap=\"gray\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "可以看到这个模型能产生一件衣服!\n", + "\n", + "请注意,我们训练的数据集分辨率相当低(28x28)。\n", + "\n", + "我们还可以创建去噪过程的gif:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAT3ElEQVR4nO3dX4zV5ZkH8O8jDH9kZoARGYFCy78YcaMU0SzRbNw02wg30BtTLhrWkJ1etEmb1GQNe6E3m5jNtt1ebJqMqyk1XWuT1uiF2dTFqikJFRRWERREBgGHmYEBhgFFwWcv5kcz6vye73jec87vtO/3k5CZOc+85/fyO/PMOXOe3/O+5u4Qkb9+11U9ARFpDiW7SCaU7CKZULKLZELJLpKJqc08mJlV9tb/jBkzkuKjo6OlsZkzZ4Zjr7su/p06ZcqUMD5v3rya7/+TTz4Jx164cKHm+54MMyuNLViwIBz76aefJh37448/Lo2xKlQ0FuBzO3r0aBhvJHef8KQnJbuZ3QfgZwCmAPgvd3+UjYl+sNkDEMVZwixbtiyM33zzzWF8586dpbFbb701HHv99deH8c7OzjC+devWmu9/cHAwHPvyyy+HcfZLkGlrayuNbdu2LRz70UcfJR37+PHjNd93NBYALl68GMYfeOCBMB79LLM8iH6BXr16tTRW869tM5sC4D8BrAewCsBmM1tV6/2JSGOlvEa7C8C77v6eu38M4NcANtZnWiJSbynJvgjA+Nc6J4rbPsPMesxsj5ntSTiWiCRq+Bt07t4LoBeo9g06kdylPLOfBLB43NdfKW4TkRaUkuy7Aaw0s6VmNg3AtwE8V59piUi9WUrXm5ltAPAfGCu9PeHu/0q+31PqtlFt8+GHHw7HPvjgg2GcnYeoln7s2LFwLKuTszLPyMhIGI+Ov3z58nDs/Pnzw/ihQ4fCeHd3dxi//fbbS2OHDx8Ox7LrF6IyEwCcOnWqNNbR0RGOTS373XnnnWE8Kp+llt4aUmd39+cBPJ9yHyLSHLpcViQTSnaRTCjZRTKhZBfJhJJdJBNKdpFMNLWfPVXUxrp+/fpw7MmT8cV9Q0NDYby9vb00xtpAo3ovwHvOu7q6wvjKlStLY7t27QrHXr58OYyzOj3r+z5x4kRp7Pz58+HYqD0W4I9Z9PPCavTsvLDrRdasWRPG9+7dWxqL6ugAr8OX0TO7SCaU7CKZULKLZELJLpIJJbtIJpTsIpn4iyq9RSUuViJibaSsfBa1W7JSCCsxpS5bPDAwUBpjK9uyMs8777wTxtl5i+Y2dWr849ff3x/G2dyj8hgby1pcb7jhhjB+yy23hPGU0lut9Mwukgklu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZaHqdPWUJ3U2bNpXGWL337NmzYXzOnDlhPKp1s3ZJtsMsq6NH20UDwPDwcGmM1fDZcs3Tpk0L46wVNHq8WQvr9OnTw/iVK1dqHj9r1qxw7Llz58I4w5YPr4Ke2UUyoWQXyYSSXSQTSnaRTCjZRTKhZBfJhJJdJBNNr7OnbBF92223lcbYcsysR5jVbKN6MqvZXrp0KYyn1tmjvm3Wz86Ozc5rSq2bXQPAavxs7tF5YTV8tqUzw5b/TsmDWiUlu5n1AbgA4CqAK+6+th6TEpH6q8cz+9+7++k63I+INJD+ZhfJRGqyO4Dfm9lrZtYz0TeYWY+Z7TGzPYnHEpEEqS/j73H3k2Y2H8ALZva2u78y/hvcvRdALwCYWfPflRARAInP7O5+svg4COAZAHfVY1IiUn81J7uZzTKzjmufA/gmgP31mpiI1FfKy/huAM8U9eupAP7b3f+HDYrqi6wWHq3Fnbr9L6vZRvNmNVvW787WKGe17Gh99dmzZ4djWa89O2+sVh7V6dk1AB9++GEYT6nDnz4dF5DYtRFs3fjFixeH8SrUnOzu/h6A2+s4FxFpIJXeRDKhZBfJhJJdJBNKdpFMKNlFMvEXtWVzSuktVdQu2dnZGY5lZRxWYmLLGkelvZGRkXAsK62x8hhr1Yzi7P/Fjh09JgCwaNGi0li0/DbAH1NWbl22bFkYb9S2zBE9s4tkQskukgklu0gmlOwimVCyi2RCyS6SCSW7SCZaqs7Oao9RWyFrE2VbOrM20mhubLllVutmbaKsFh5tN822DmZ1cnZeGNZCG2Ftx0z0uLDWX3Ze2LURVdTRGT2zi2RCyS6SCSW7SCaU7CKZULKLZELJLpIJJbtIJppeZ4/qjynLGqfWPVk9Olquee7cueFY1mvPatmsbzuKnz17NhzLlmNm21Gn1OFZHZ31s7PH9NixY6WxdevWhWOPHz8extnco2sfgPi8s+suaqVndpFMKNlFMqFkF8mEkl0kE0p2kUwo2UUyoWQXyUTT6+xRnzCrJ0fro7Oeb7ZtMos/9thjpbGenp5wbEdHRxhnvfjs+oMonrKuO8DnNnVq/CN0+fLl0lhqDZ+tUbB79+7S2N133x2OZWsUsPPGfpajfvrBwcFwbK298vSZ3cyeMLNBM9s/7rYuM3vBzA4XH+OrSkSkcpN5Gf8LAPd97raHAOxw95UAdhRfi0gLo8nu7q8A+PxeORsBbC8+3w5gU32nJSL1Vuvf7N3ufu1i8VMAusu+0cx6AMR/1IpIwyW/Qefubmal71a4ey+AXgCIvk9EGqvW0tuAmS0AgOJj/PahiFSu1mR/DsCW4vMtAJ6tz3REpFHoy3gzewrAvQDmmdkJAA8DeBTAb8xsK4BjAO6f7AGjGiGrm0ZjWU2W1bpZPOpvjmrJANDV1RXGWV2Vic4bO6esL5vtQ86uAYjOTcrjDfDH7OjRo6WxixcvhmPZOgDd3aVvUwHge89H6yek/jyUocnu7ptLQt+o81xEpIF0uaxIJpTsIplQsotkQskukgklu0gmWqrFlS3n3Mhli6PtoAHg0KFDpbFoyWIAWLJkSRhny2Cz5Z6j8hhr3WVLHrNljVm8vb29NMYeE9Y+y0pzfX19pbEjR46EY9ljwkqObBnsqHR38ODBcGyt9Mwukgklu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZaHqdPcJql1FNly3tO3PmzDDO6qpnzpwpjV26dCnp2GzZYdZmyuIRds5Trm0A4vPKHjPWAsvG33jjjaWxAwcOJB17xYoVYZw9pkuXLi2NvfTSS+HYWumZXSQTSnaRTCjZRTKhZBfJhJJdJBNKdpFMKNlFMtH0OnvUg8y2yY1qvqzm2tnZGcajfnUgrvEPDQ2FY1k/OqvJsr7vKM6OnbIdNJC2HTVbzpld+zA6OhrGo17906dPh2PZzwt7TFivPVuKuhH0zC6SCSW7SCaU7CKZULKLZELJLpIJJbtIJpTsIploqTo7q11GfeFsbFTvBYAXX3wxjEf1ZtbPzurJDFs/nV2fEInWdQeAtra2MM763aNaOKtlR2sIALznPNp2OdqCGwDWr18fxlO36WbryjcCfWY3syfMbNDM9o+77REzO2lm+4p/Gxo7TRFJNZmX8b8AcN8Et//U3VcX/56v77REpN5osrv7KwCGmzAXEWmglDfovm9mbxQv8+eWfZOZ9ZjZHjPbk3AsEUlUa7L/HMByAKsB9AP4cdk3unuvu69197U1HktE6qCmZHf3AXe/6u6fAngMwF31nZaI1FtNyW5mC8Z9+S0A+8u+V0RaA62zm9lTAO4FMM/MTgB4GMC9ZrYagAPoA/DdyR6Q1cMjUb2Z1XtZPXnnzp1hPOqXZ+vCszo4OyesphutG8/62Vmtm+3vzuYWHT91PXx2DUC0zgDbn33dunVhnK2fwK69SF2PvxY02d198wQ3P96AuYhIA+lyWZFMKNlFMqFkF8mEkl0kE0p2kUy0VIsra/uLlhZmbaBsad+9e/fWPH7VqlXh2PPnz4dxVmKaNWtWGI/KQKxExMp+0RLaAC8hRY/LhQsXwrGsLZmVU6MWV1YaGx6O20HYY8KWwY5aYNljVis9s4tkQskukgklu0gmlOwimVCyi2RCyS6SCSW7SCaaXmePaohs+d1oa2NW1xwcHAzjbNniyE033RTG2dxYnZ3VXaM2UnbtAmu/jbY9Bvh20+fOnav52CMjI2F82bJlYTy6f3bdBTs2u0aAbXWdgs29jJ7ZRTKhZBfJhJJdJBNKdpFMKNlFMqFkF8mEkl0kE02vs0cWLlwYxqPea7bkcV9fXxhnfdlRvZrVmlnNlvXis77uqOeczS3aUhngdfqoZxyIHzM2N4bVsqM6/MDAQDj2gw8+COPsuo3u7u4wHlE/u4gkUbKLZELJLpIJJbtIJpTsIplQsotkQskukomWqrPPnTs3jEdrfbO12VlPObNmzZrSGKsXs22N2Xh2DUE0nvWMM6zPn/3fomsI2PUD7LywGv/8+fPDeOTtt98O4/39/WGc9ZxH1x+wsQ3rZzezxWb2BzM7YGZvmdkPitu7zOwFMztcfIwzVUQqNZmX8VcA/MjdVwH4WwDfM7NVAB4CsMPdVwLYUXwtIi2KJru797v768XnFwAcBLAIwEYA24tv2w5gU4PmKCJ18KX+ZjezrwH4OoA/Aeh292t/uJwCMOHFwGbWA6AnYY4iUgeTfjfezNoB/BbAD939M50dPnbl/oRX77t7r7uvdfe1STMVkSSTSnYza8NYov/K3X9X3DxgZguK+AIAcRuQiFSKvoy3sff5Hwdw0N1/Mi70HIAtAB4tPj6bOhlWiolKb6wExFpYWVvhHXfcURo7ffp0ODZ1KemUMk5q6Y21kbLyWHR89piwubPtpNnS5JGLFy+G8cOHD4dxtqVzW1tbaazW0hozmb/Z7wbwHQBvmtm+4rZtGEvy35jZVgDHANzfkBmKSF3QZHf3PwIo+1XzjfpOR0QaRZfLimRCyS6SCSW7SCaU7CKZULKLZKKltmxm9ehoSWZWZ2c1fFbbXLJkSWlseHg4HBttqQyk18KjOnvVovPKltBmjwlbzjmlxZW1FbMW2NWrV4fxU6dOfdkpJdMzu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZULKLZKLpdfaodsp6p6N6NuuN7ujoqHleQNy3zercbG4Mu/9GbfFbj/tOWTKZHZtdl3Hu3LkwHmFz27VrVxhnvfRRHZ493rVuda1ndpFMKNlFMqFkF8mEkl0kE0p2kUwo2UUyoWQXyURL1dlZf3K0ljer0bOaLYtHtU/Wl83um/VOs3h0Ttna6qlrlKfWyiOpc2fbKqfcN/P++++H8fb29tIYq6M3bMtmEfnroGQXyYSSXSQTSnaRTCjZRTKhZBfJhJJdJBOT2Z99MYBfAugG4AB63f1nZvYIgH8CMFR86zZ3f34S91caO3LkSDj2/PnzpbGFCxeGY4eGhsI4Ex17zpw54dhoX3kg3qsbSOtvTr3+gI1PqbOzsWw9fVaPTulnZ9i1D6Ojo2E8Wjee/b9q3SdgMhfVXAHwI3d/3cw6ALxmZi8UsZ+6+7/XdGQRaarJ7M/eD6C/+PyCmR0EsKjRExOR+vpSf7Ob2dcAfB3An4qbvm9mb5jZE2Y2t2RMj5ntMbM9aVMVkRSTTnYzawfwWwA/dPcRAD8HsBzAaow98/94onHu3uvua919bfp0RaRWk0p2M2vDWKL/yt1/BwDuPuDuV939UwCPAbircdMUkVQ02W3sLdPHARx095+Mu33BuG/7FoD99Z+eiNTLZN6NvxvAdwC8aWb7itu2AdhsZqsxVo7rA/DdyRwwKlmcPXs2HLtz587SWNT+CgCvvvpqGGclqGhL6KhdEeCltRkzZoRxVuaJsDJNammNqXXZY4D/v9ncU7bCTm3dPXPmTM3336ilwSfzbvwfAUw0M1pTF5HWoSvoRDKhZBfJhJJdJBNKdpFMKNlFMqFkF8lE05eSjuqurFb+5JNPlsZmz54djmXtjqwW/vTTT5fGWAvrihUrwnhnZ2cYZ6Ja+vTp02seC/Ca77Rp08J4dG7YeWNLdLNadrScM6v/s/83q8OPjIyE8ei6DfaYaClpEQkp2UUyoWQXyYSSXSQTSnaRTCjZRTKhZBfJhDWqd3bCg5kNATg27qZ5AE43bQJfTqvOrVXnBWhutarn3L7q7jdOFGhqsn/h4GZ7WnVtuladW6vOC9DcatWsuellvEgmlOwimag62XsrPn6kVefWqvMCNLdaNWVulf7NLiLNU/Uzu4g0iZJdJBOVJLuZ3Wdm75jZu2b2UBVzKGNmfWb2ppntq3p/umIPvUEz2z/uti4ze8HMDhcfJ9xjr6K5PWJmJ4tzt8/MNlQ0t8Vm9gczO2Bmb5nZD4rbKz13wbyact6a/je7mU0BcAjAPwA4AWA3gM3ufqCpEylhZn0A1rp75RdgmNnfARgF8Et3/5vitn8DMOzujxa/KOe6+z+3yNweATBa9TbexW5FC8ZvMw5gE4B/RIXnLpjX/WjCeavimf0uAO+6+3vu/jGAXwPYWME8Wp67vwJg+HM3bwSwvfh8O8Z+WJquZG4twd373f314vMLAK5tM17puQvm1RRVJPsiAMfHfX0CrbXfuwP4vZm9ZmY9VU9mAt3u3l98fgpAd5WTmQDdxruZPrfNeMucu1q2P0+lN+i+6B53XwNgPYDvFS9XW5KP/Q3WSrXTSW3j3SwTbDP+Z1Weu1q3P09VRbKfBLB43NdfKW5rCe5+svg4COAZtN5W1APXdtAtPg5WPJ8/a6VtvCfaZhwtcO6q3P68imTfDWClmS01s2kAvg3guQrm8QVmNqt44wRmNgvAN9F6W1E/B2BL8fkWAM9WOJfPaJVtvMu2GUfF567y7c/dven/AGzA2DvyRwD8SxVzKJnXMgD/V/x7q+q5AXgKYy/rPsHYextbAdwAYAeAwwD+F0BXC83tSQBvAngDY4m1oKK53YOxl+hvANhX/NtQ9bkL5tWU86bLZUUyoTfoRDKhZBfJhJJdJBNKdpFMKNlFMqFkF8mEkl0kE/8PwuOMKaOjijYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.animation as animation\n", + "\n", + "random_index = 53\n", + "\n", + "fig = plt.figure()\n", + "ims = []\n", + "for i in range(timesteps):\n", + " im = plt.imshow(samples[i][random_index].reshape(image_size, image_size, channels), cmap=\"gray\", animated=True)\n", + " ims.append([im])\n", + "\n", + "animate = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=100)\n", + "animate.save('diffusion.gif')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## 总结\n", + "\n", + "请注意,DDPM论文表明扩散模型是(非)条件图像有希望生成的方向。自那以后,diffusion得到了(极大的)改进,最明显的是文本条件图像生成。下面,我们列出了一些重要的(但远非详尽无遗的)后续工作:\n", + "\n", + "- 改进的去噪扩散概率模型([Nichol et al., 2021](https://arxiv.org/abs/2102.09672)):发现学习条件分布的方差(除平均值外)有助于提高性能\n", + "\n", + "- 用于高保真图像生成的级联扩散模型([Ho et al., 2021](https://arxiv.org/abs/2106.15282)):引入级联扩散,它包括多个扩散模型的流水线,这些模型生成分辨率提高的图像,用于高保真图像合成\n", + "\n", + "- 扩散模型在图像合成上击败了GANs([Dhariwal et al., 2021](https://arxiv.org/abs/2105.05233)):表明扩散模型通过改进U-Net体系结构以及引入分类器指导,可以获得优于当前最先进的生成模型的图像样本质量\n", + "\n", + "- 无分类器扩散指南([Ho et al., 2021](https://openreview.net/pdf?id=qw8AKxfYbI)):表明通过使用单个神经网络联合训练条件和无条件扩散模型,不需要分类器来指导扩散模型\n", + "\n", + "- 具有CLIP Latents (DALL-E 2) 的分层文本条件图像生成 ([Ramesh et al., 2022](https://cdn.openai.com/papers/dall-e-2.pdf)):在将文本标题转换为CLIP图像嵌入之前使用,然后扩散模型将其解码为图像\n", + "\n", + "- 具有深度语言理解的真实文本到图像扩散模型(ImageGen)([Saharia et al., 2022](https://arxiv.org/abs/2205.11487)):表明将大型预训练语言模型(例如T5)与级联扩散结合起来,对于文本到图像的合成很有效\n", + "\n", + "请注意,此列表仅包括在撰写本文,即2022年6月7日之前的重要作品。\n", + "\n", + "目前,扩散模型的主要(也许唯一)缺点是它们需要多次正向传递来生成图像(对于像GAN这样的生成模型来说,情况并非如此)。然而,有[正在进行中的研究](https://arxiv.org/abs/2204.13902)表明只需要10个去噪步骤就能实现高保真生成。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 参考\n", + "\n", + "1. [The Annotated Diffusion Model](https://huggingface.co/blog/annotated-diffusion)\n", + "\n", + "2. [由浅入深了解Diffusion Model](https://zhuanlan.zhihu.com/p/525106459)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "MindSpore", + "language": "python", + "name": "mindspore" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVfklEQVR4nO3dbWyVVbYH8P9q5R1UypulEBEFFd9QEU3GN6JOGD+oY6IZQgZvopdJHJKZ6Idr9MOYmGvMzZ2Z64ebMQyQYZwZCeqoaMjNoJKgUdSCSIHKLVdBKKWAlFcpIKz7oYdJ0T7/Vc9zes7R/f8lpOWs7vPs87Sr5/SsZ+9l7g4R+eGrqfQERKQ8lOwiiVCyiyRCyS6SCCW7SCLOKufBzMxrarJ/v+SpDJgZjVdz1SGa25gxY2icPfYjR47QsQMGDKDxr776isa//vprGj/rrOwfsX79+tGxAwcOpPHovO3du5fG89x3X8rzs+zucPce7yBXspvZTADPAqgFsMDdn2FfX1NTQ7+BlUz2U6dOFT0+77GPHz9O43PmzKFx9gv0ww8/pGMnTpxI401NTTS+a9cuGj/vvPMyY9EvscmTJ9P4iRMnaHzBggWZMfZLqDf33Zfy/Dx1dnZmxop+GW9mtQD+G8BPAEwBMMvMphR7fyLSt/L8zT4dwBZ3/8zdjwNYAuDu0kxLREotT7I3ANje7f87CredwczmmlmjmTVW89/NIj90ff4GnbvPBzAfAGpra5XtIhWS55m9FcD4bv8fV7hNRKpQnmT/CMAkM7vAzPoD+BmAZaWZloiUmuUsd90J4L/QVXpb5O7/zr6+pqbGo9ppcLyix0aP8+qrr6bxsWPHZsYOHz5Mx1566aU0PmHCBBqPauHLly/PjEXlrbq6Ohq/4YYbaDz6nowYMSIz1trKXwgeOHCAxkeOHEnjzLZt22h85cqVNP7mm28Wfey+1NnZiVOnTpW+zu7uywFk/6SJSNXQ5bIiiVCyiyRCyS6SCCW7SCKU7CKJULKLJCJXnf27qq2tzVVnz+OJJ56g8WhdNlvXPWPGDDo2WsLa0tJC41u3bqXxoUOHZsbY9QEA0NDwreUMZzj//PNpfMmSJTQ+bdq0zFh7ezsdu3PnTho/99xzaZz9bEdr6aPrE6Kf4+bmZhp/+umnM2O1tbV0LFuOzersemYXSYSSXSQRSnaRRCjZRRKhZBdJhJJdJBFl3Uq6sM1tZjzPrpozZ86kYwcNGkTjURmoo6OjqHkBwO7du2n8xRdfpPHx48fT+JQp2ft8Rks5o+W5K1asoPGoxMR2nx09ejQdO3jwYBqPymcHDx7MjEVluw8++IDGb7vtNhq/+OKLaZyVS48ePUrHsjxhMT2ziyRCyS6SCCW7SCKU7CKJULKLJELJLpIIJbtIIspaZ8+L1bMvv/xyOpbVXIG4NTGrm0bHXrhwIY2zmisAXHPNNTR+wQUXZMaibqRLly6l8agePWvWLBpnS4ejDrCff/45jV9//fU0zr6n0bURF154IY1Hy47Z0l6A1+nfeOMNOrbYLdX1zC6SCCW7SCKU7CKJULKLJELJLpIIJbtIIpTsIokoa53dzHK1XWZbMkdrvtn2u0BcV92+fXtmbNky3pZ++PDhND579mwaj7aDbmxszIyNGjWKjo3q5MOGDaPxI0eO0PiOHTsyY9F5idpot7W1FR2PzkvUDjq6NiJqR33OOefQOHPy5MnMGLt+IFeym9lWAIcAnATwtbvzKwlEpGJK8cw+w933luB+RKQP6W92kUTkTXYH8A8zW2Nmc3v6AjOba2aNZtZYzlZTInKmvC/jb3T3VjMbDWCFmX3q7qu6f4G7zwcwH+jq9ZbzeCJSpFzP7O7eWvi4G8ArAKaXYlIiUnpFJ7uZDTGzYac/B/BjABtKNTERKa08L+PHAHilUDc/C8Df3P1/2IBo3/iaGv67h63rPnbsGB27adMmGo/Wbb/zzjuZsZtuuomOjfYQP+ss/m14++23aZyt1Y/Wsw8ZMoTGo33lo7lPnjw5Mxbtac9q9EDcVvmhhx7KjEV7+UfvL3366ac0zh43AFx11VWZsVWrVmXGAOCLL77IjLHrWIpOdnf/DED2jEWkqqj0JpIIJbtIIpTsIolQsoskQskukoiq2ko6WoZ63XXXZcb2799Px0ZlmgMHDtD4nDlzMmNffvklHXvFFVfQ+PPPP0/jbEkjAEyfnn0t0969fI3S6tWraby+vp7GJ06cSONsqWf//v3p2Ghp78aNG2mcldeicujKlStpPNree9y4cTTOSppROZOVU2lpm96riPxgKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSUTZ6+ysDhhtM81q5VHL5X79+tH4XXfdReObN2/OjP3lL3+hY19//XUaZy2XgbglNLs+Idry+L777qPxe++9l8ajZaivvvpqZoy1cwaAhoYGGo+2g2bfs+i6jNtvv53GoxbgR48epXFWS6+traVji6VndpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSUTZ6+x5WjbTdrTBGuCOjg4a37NnD41fdtllmbFobXO05nvnzp00HtWj8xw7qjcvWrSIxgcPHkzjGzZktxKI9i+IatXsewIAl1xySWasubmZjo22Ft+yZQuN19XV0fiUKVMyY9H+CMXmkJ7ZRRKhZBdJhJJdJBFKdpFEKNlFEqFkF0mEkl0kEVW1nj1q2Txo0KDMWFSTPe+882g8Wjv96KOPZsZYPReIa66sBS8Qt11m+6+///77dGy0Xp3t+w4ACxYsoHG2LrytrY2O7ezspPH169fTOKuVR2vh3333XRqP9iC46KKLaPzIkSOZsePHj9OxbG8Gdk1G+MxuZovMbLeZbeh2W52ZrTCzlsLH4dH9iEhl9eZl/J8AzPzGbY8BeMvdJwF4q/B/EaliYbK7+yoA+75x890AFhc+XwzgntJOS0RKrdi/2ce4++k/uHYByNwczszmAphb5HFEpERyv0Hn7m5mme+6uft8APMBoKamJvvdORHpU8WW3trNrB4ACh+z22WKSFUoNtmXAXig8PkDAF4rzXREpK+EL+PN7AUAtwIYaWY7APwGwDMAlprZgwC2Abi/Nwczs7CWzrB6cnS/0Xr3aP3y2rVrM2NR//VofTKrufZmPHvsAwYMoGObmpqKvm8gXs/+0ksvZcaiWjfrOw/w/usAr0dv376djp0wYQKNR/vxR9j1JtF5Yb3dmTDZ3X1WRui2oo4oIhWhy2VFEqFkF0mEkl0kEUp2kUQo2UUSUdYlru6ea4kra5MbLYesr6+n8bPPPpvG2bbHY8eOpWOjMk70uG+55RYaZ6WYqPT28ssv03i0zfXkyZNp/JFHHsmMsXbOQFxai0qex44dy4xF5/Tmm2+m8Wju7NgAL7dG57xYemYXSYSSXSQRSnaRRCjZRRKhZBdJhJJdJBFKdpFElH0raaa2tpbG2ZbKJ0+epGO/+uorGo/q9KwWHo2NtkyOWjJH1wBs3bo1MxZdXzB79mwaX758OY1H7YPXrVuXGZs0aRId297eTuPRUlDWhjta4vrxxx/T+K5du2j8yiuvpHFWS49+nhh6HUvR9yoi3ytKdpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSUVV19qhme84552TGorbGUa36wIEDNM7mNmTIEDo2qqPv37+fxqP2way2um/fN9v0nSmaW7RVdEdHR9HxaHvvaIvtqB7NxkfXdETnJWoXPW/ePBp/7733MmNRHrDvN6NndpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSURV1dnZ3uwAr41GddGoxW7UFpmJ2j1H+4CPHj2axsePH0/jrC4b1aKj8xbtaR/Vwo8ePZoZi+rF0bUTLS0tNM72MGDtnAFgxowZNL5mzRoa37x5M40fP348M1ZsHT0SPrOb2SIz221mG7rd9qSZtZrZusK/O/tkdiJSMr15Gf8nADN7uP337j618I9vZyIiFRcmu7uvAsCvuRSRqpfnDbp5Zra+8DJ/eNYXmdlcM2s0s8YcxxKRnIpN9j8AuBDAVABtAH6b9YXuPt/dp7n7tCKPJSIlUFSyu3u7u59091MA/ghgemmnJSKlVlSym1n3/Yl/CmBD1teKSHUI6+xm9gKAWwGMNLMdAH4D4FYzmwrAAWwF8IveHMzMaE04WsfLaqNRjT6qs2/cuJHGmWjNd7RuO1pLH+1hzmrl0XlhewT0RlTHZ7XuvOu2oz0K2GNramqiY6M6etSXvrGRv0XV3NycGYuubWDnhZ3TMNndfVYPNy+MxolIddHlsiKJULKLJELJLpIIJbtIIpTsIoko6xJXd+ctZYOSA1vi2r9/fzp20KBBNP7ZZ58VfeyoRBQdO2o3HZWoBg4cmBmLzmkkOvaAAQNonJ2baDvnY8eOFX3fQL5S7fvvv0/j0fbhUTmWfc+ix8XiatksIkp2kVQo2UUSoWQXSYSSXSQRSnaRRCjZRRLxvdpKmtV0o62Bhw0bRuPRtsVsmWpdXR0dy5Z5AnE9OXpsTFTjj5bfRtcARI8tqqXnEV1DwB7bnj176NiDBw/S+NSpU2k8apXd0NCQGavYVtIi8sOgZBdJhJJdJBFKdpFEKNlFEqFkF0mEkl0kEVVVZ8+zdjpqPRxhLXQBXq8eNWoUHbt//34aj2r80TUCrG1ydO1CnrXTQFxHZ7XwPNdVAPEeBmxu0fUD0bHZenSAt6oG4jbcTLHbseuZXSQRSnaRRCjZRRKhZBdJhJJdJBFKdpFEKNlFEvG9qrOzenNUD25ra6PxqF7M6qLRvKO2yNH46BqCPOvdI9F69+i8sblHte7ovqNrI1gdPqpzR/cdzS16bMOHD8+MRdcPsLnl2jfezMab2Uoz22RmG83sV4Xb68xshZm1FD5mz15EKq43L+O/BvCou08BcAOAX5rZFACPAXjL3ScBeKvwfxGpUmGyu3ubu68tfH4IQDOABgB3A1hc+LLFAO7pozmKSAl8p7/ZzWwCgKsBfABgjLuf/kN4F4AxGWPmAphb+LzoiYpIPr1+N97MhgJ4GcCv3f2M3fi8612BHt8ZcPf57j7N3aflmqmI5NKrZDezfuhK9L+6+98LN7ebWX0hXg9gd99MUURKIXwZb12vvRcCaHb333ULLQPwAIBnCh9fyzuZaMkjE5VCDhw4QOPjxo2j8cOHD2fGorJfVEqJlktGpbc8fx5F95332GyJa3Te+nKb66gcykpjQN9u0V1fX0/Hbtu2jcYz59SLr/kRgJ8DaDKzdYXbHkdXki81swcBbANwf1EzEJGyCJPd3d8FkPXr+7bSTkdE+ooulxVJhJJdJBFKdpFEKNlFEqFkF0lE2Ze4stpqVJtktdGzzz6bjo2WLJ577rk0zpbXRjX+aFviqFYdbUvMzmne5bHRY4vaTbM6e/T9jloyR9h5iR53dG1E9Lg7OztpnP28Rstvi62z65ldJBFKdpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSUdY6u5nRum1dXR0dz2qTebYVBuJ6NKt1R2ub9+zZQ+NRS+c82zXnbdkcrRmPsPHRsfft21f0fQPAtddemxmLzvnq1atpfPr06TQeXUPArr2IflaL3fdBz+wiiVCyiyRCyS6SCCW7SCKU7CKJULKLJELJLpKIqlrPnmft9aFDh+jYqHYZ1bJbWloyYy+88AIdO2PGDBpna+UB4MiRI0WPj9ZtR3vWR+uy87TKjo4drfNndXQAGDFiRGbs4YcfpmOjc/7YY7yPafTY2M9rtLcCq+GfOHEiM6ZndpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXSURv+rOPB/BnAGMAOID57v6smT0J4F8BnF6s/bi7L2f35e60Lvvll1/SubBa99ixY+nYqN/2c889R+OffPJJZqy5uZmO3bt3L41H6/ijejNb193R0UHHbtmyhcajuUdYnT563NG1EQsWLKBxdl6itfLRsTdv3pxr/IQJEzJjQ4YMoWOjaxuy9Oaimq8BPOrua81sGIA1ZraiEPu9u/9nUUcWkbLqTX/2NgBthc8PmVkzgIa+npiIlNZ3+pvdzCYAuBrAB4Wb5pnZejNbZGY9vk42s7lm1mhmjfmmKiJ59DrZzWwogJcB/NrdDwL4A4ALAUxF1zP/b3sa5+7z3X2au0/LP10RKVavkt3M+qEr0f/q7n8HAHdvd/eT7n4KwB8B8B34RKSiwmS3rreCFwJodvffdbu9vtuX/RTAhtJPT0RKpTfvxv8IwM8BNJnZusJtjwOYZWZT0VWO2wrgF3knEy1xHTx4cNH3PXr0aBqP2iKz9sHRvJcsWULjUWktwrYWznvfeccz0RbbkWgrafY9i5Y0R9s1z5s3j8afeuopGmftx6PlsWxutCU6vdeuwe8C6Ok7TmvqIlJddAWdSCKU7CKJULKLJELJLpIIJbtIIpTsIoko+1bSrEYY1T6XLl2aGbvjjjvo2KFDh9J4a2srjTN9WYsG4iWNrJ7c16K5sXNT7FLN3tx33vuPxu7cuZPGn332WRpnS67b29vp2GLbaOuZXSQRSnaRRCjZRRKhZBdJhJJdJBFKdpFEKNlFEmF5a53f6WBmewBs63bTSAD59iruO9U6t2qdF6C5FauUczvf3Uf1FChrsn/r4GaN1bo3XbXOrVrnBWhuxSrX3PQyXiQRSnaRRFQ62edX+PhMtc6tWucFaG7FKsvcKvo3u4iUT6Wf2UWkTJTsIomoSLKb2Uwz22xmW8zssUrMIYuZbTWzJjNbV+n+dIUeervNbEO32+rMbIWZtRQ+8l7U5Z3bk2bWWjh368zszgrNbbyZrTSzTWa20cx+Vbi9oueOzKss563sf7ObWS2A/wVwB4AdAD4CMMvdN5V1IhnMbCuAae5e8QswzOxmAIcB/NndLy/c9h8A9rn7M4VflMPd/d+qZG5PAjhc6TbehW5F9d3bjAO4B8C/oILnjszrfpThvFXimX06gC3u/pm7HwewBMDdFZhH1XP3VQD2fePmuwEsLny+GF0/LGWXMbeq4O5t7r628PkhAKfbjFf03JF5lUUlkr0BwPZu/9+B6ur37gD+YWZrzGxupSfTgzHu3lb4fBeAMZWcTA/CNt7l9I0241Vz7oppf56X3qD7thvd/RoAPwHwy8LL1arkXX+DVVPttFdtvMulhzbj/1TJc1ds+/O8KpHsrQDGd/v/uMJtVcHdWwsfdwN4BdXXirr9dAfdwsfdFZ7PP1VTG++e2oyjCs5dJdufVyLZPwIwycwuMLP+AH4GYFkF5vEtZjak8MYJzGwIgB+j+lpRLwPwQOHzBwC8VsG5nKFa2nhntRlHhc9dxdufu3vZ/wG4E13vyP8fgCcqMYeMeU0E8Enh38ZKzw3AC+h6WXcCXe9tPAhgBIC3ALQAeBNAXRXN7XkATQDWoyux6is0txvR9RJ9PYB1hX93VvrckXmV5bzpclmRROgNOpFEKNlFEqFkF0mEkl0kEUp2kUQo2UUSoWQXScT/A8s7uYqS6ZVSAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# 展示一个随机效果\n", - "random_index = 5\n", - "plt.imshow(samples[-1][random_index].reshape(image_size, image_size, channels), cmap=\"gray\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "可以看到这个模型能产生一件衣服!\n", - "\n", - "请注意,我们训练的数据集分辨率相当低(28x28)。\n", - "\n", - "我们还可以创建去噪过程的gif:" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAT3ElEQVR4nO3dX4zV5ZkH8O8jDH9kZoARGYFCy78YcaMU0SzRbNw02wg30BtTLhrWkJ1etEmb1GQNe6E3m5jNtt1ebJqMqyk1XWuT1uiF2dTFqikJFRRWERREBgGHmYEBhgFFwWcv5kcz6vye73jec87vtO/3k5CZOc+85/fyO/PMOXOe3/O+5u4Qkb9+11U9ARFpDiW7SCaU7CKZULKLZELJLpKJqc08mJlV9tb/jBkzkuKjo6OlsZkzZ4Zjr7su/p06ZcqUMD5v3rya7/+TTz4Jx164cKHm+54MMyuNLViwIBz76aefJh37448/Lo2xKlQ0FuBzO3r0aBhvJHef8KQnJbuZ3QfgZwCmAPgvd3+UjYl+sNkDEMVZwixbtiyM33zzzWF8586dpbFbb701HHv99deH8c7OzjC+devWmu9/cHAwHPvyyy+HcfZLkGlrayuNbdu2LRz70UcfJR37+PHjNd93NBYALl68GMYfeOCBMB79LLM8iH6BXr16tTRW869tM5sC4D8BrAewCsBmM1tV6/2JSGOlvEa7C8C77v6eu38M4NcANtZnWiJSbynJvgjA+Nc6J4rbPsPMesxsj5ntSTiWiCRq+Bt07t4LoBeo9g06kdylPLOfBLB43NdfKW4TkRaUkuy7Aaw0s6VmNg3AtwE8V59piUi9WUrXm5ltAPAfGCu9PeHu/0q+31PqtlFt8+GHHw7HPvjgg2GcnYeoln7s2LFwLKuTszLPyMhIGI+Ov3z58nDs/Pnzw/ihQ4fCeHd3dxi//fbbS2OHDx8Ox7LrF6IyEwCcOnWqNNbR0RGOTS373XnnnWE8Kp+llt4aUmd39+cBPJ9yHyLSHLpcViQTSnaRTCjZRTKhZBfJhJJdJBNKdpFMNLWfPVXUxrp+/fpw7MmT8cV9Q0NDYby9vb00xtpAo3ovwHvOu7q6wvjKlStLY7t27QrHXr58OYyzOj3r+z5x4kRp7Pz58+HYqD0W4I9Z9PPCavTsvLDrRdasWRPG9+7dWxqL6ugAr8OX0TO7SCaU7CKZULKLZELJLpIJJbtIJpTsIpn4iyq9RSUuViJibaSsfBa1W7JSCCsxpS5bPDAwUBpjK9uyMs8777wTxtl5i+Y2dWr849ff3x/G2dyj8hgby1pcb7jhhjB+yy23hPGU0lut9Mwukgklu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZaHqdPWUJ3U2bNpXGWL337NmzYXzOnDlhPKp1s3ZJtsMsq6NH20UDwPDwcGmM1fDZcs3Tpk0L46wVNHq8WQvr9OnTw/iVK1dqHj9r1qxw7Llz58I4w5YPr4Ke2UUyoWQXyYSSXSQTSnaRTCjZRTKhZBfJhJJdJBNNr7OnbBF92223lcbYcsysR5jVbKN6MqvZXrp0KYyn1tmjvm3Wz86Ozc5rSq2bXQPAavxs7tF5YTV8tqUzw5b/TsmDWiUlu5n1AbgA4CqAK+6+th6TEpH6q8cz+9+7++k63I+INJD+ZhfJRGqyO4Dfm9lrZtYz0TeYWY+Z7TGzPYnHEpEEqS/j73H3k2Y2H8ALZva2u78y/hvcvRdALwCYWfPflRARAInP7O5+svg4COAZAHfVY1IiUn81J7uZzTKzjmufA/gmgP31mpiI1FfKy/huAM8U9eupAP7b3f+HDYrqi6wWHq3Fnbr9L6vZRvNmNVvW787WKGe17Gh99dmzZ4djWa89O2+sVh7V6dk1AB9++GEYT6nDnz4dF5DYtRFs3fjFixeH8SrUnOzu/h6A2+s4FxFpIJXeRDKhZBfJhJJdJBNKdpFMKNlFMvEXtWVzSuktVdQu2dnZGY5lZRxWYmLLGkelvZGRkXAsK62x8hhr1Yzi7P/Fjh09JgCwaNGi0li0/DbAH1NWbl22bFkYb9S2zBE9s4tkQskukgklu0gmlOwimVCyi2RCyS6SCSW7SCZaqs7Oao9RWyFrE2VbOrM20mhubLllVutmbaKsFh5tN822DmZ1cnZeGNZCG2Ftx0z0uLDWX3Ze2LURVdTRGT2zi2RCyS6SCSW7SCaU7CKZULKLZELJLpIJJbtIJppeZ4/qjynLGqfWPVk9Olquee7cueFY1mvPatmsbzuKnz17NhzLlmNm21Gn1OFZHZ31s7PH9NixY6WxdevWhWOPHz8extnco2sfgPi8s+suaqVndpFMKNlFMqFkF8mEkl0kE0p2kUwo2UUyoWQXyUTT6+xRnzCrJ0fro7Oeb7ZtMos/9thjpbGenp5wbEdHRxhnvfjs+oMonrKuO8DnNnVq/CN0+fLl0lhqDZ+tUbB79+7S2N133x2OZWsUsPPGfpajfvrBwcFwbK298vSZ3cyeMLNBM9s/7rYuM3vBzA4XH+OrSkSkcpN5Gf8LAPd97raHAOxw95UAdhRfi0gLo8nu7q8A+PxeORsBbC8+3w5gU32nJSL1Vuvf7N3ufu1i8VMAusu+0cx6AMR/1IpIwyW/Qefubmal71a4ey+AXgCIvk9EGqvW0tuAmS0AgOJj/PahiFSu1mR/DsCW4vMtAJ6tz3REpFHoy3gzewrAvQDmmdkJAA8DeBTAb8xsK4BjAO6f7AGjGiGrm0ZjWU2W1bpZPOpvjmrJANDV1RXGWV2Vic4bO6esL5vtQ86uAYjOTcrjDfDH7OjRo6WxixcvhmPZOgDd3aVvUwHge89H6yek/jyUocnu7ptLQt+o81xEpIF0uaxIJpTsIplQsotkQskukgklu0gmWqrFlS3n3Mhli6PtoAHg0KFDpbFoyWIAWLJkSRhny2Cz5Z6j8hhr3WVLHrNljVm8vb29NMYeE9Y+y0pzfX19pbEjR46EY9ljwkqObBnsqHR38ODBcGyt9Mwukgklu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZaHqdPcJql1FNly3tO3PmzDDO6qpnzpwpjV26dCnp2GzZYdZmyuIRds5Trm0A4vPKHjPWAsvG33jjjaWxAwcOJB17xYoVYZw9pkuXLi2NvfTSS+HYWumZXSQTSnaRTCjZRTKhZBfJhJJdJBNKdpFMKNlFMtH0OnvUg8y2yY1qvqzm2tnZGcajfnUgrvEPDQ2FY1k/OqvJsr7vKM6OnbIdNJC2HTVbzpld+zA6OhrGo17906dPh2PZzwt7TFivPVuKuhH0zC6SCSW7SCaU7CKZULKLZELJLpIJJbtIJpTsIploqTo7q11GfeFsbFTvBYAXX3wxjEf1ZtbPzurJDFs/nV2fEInWdQeAtra2MM763aNaOKtlR2sIALznPNp2OdqCGwDWr18fxlO36WbryjcCfWY3syfMbNDM9o+77REzO2lm+4p/Gxo7TRFJNZmX8b8AcN8Et//U3VcX/56v77REpN5osrv7KwCGmzAXEWmglDfovm9mbxQv8+eWfZOZ9ZjZHjPbk3AsEUlUa7L/HMByAKsB9AP4cdk3unuvu69197U1HktE6qCmZHf3AXe/6u6fAngMwF31nZaI1FtNyW5mC8Z9+S0A+8u+V0RaA62zm9lTAO4FMM/MTgB4GMC9ZrYagAPoA/DdyR6Q1cMjUb2Z1XtZPXnnzp1hPOqXZ+vCszo4OyesphutG8/62Vmtm+3vzuYWHT91PXx2DUC0zgDbn33dunVhnK2fwK69SF2PvxY02d198wQ3P96AuYhIA+lyWZFMKNlFMqFkF8mEkl0kE0p2kUy0VIsra/uLlhZmbaBsad+9e/fWPH7VqlXh2PPnz4dxVmKaNWtWGI/KQKxExMp+0RLaAC8hRY/LhQsXwrGsLZmVU6MWV1YaGx6O20HYY8KWwY5aYNljVis9s4tkQskukgklu0gmlOwimVCyi2RCyS6SCSW7SCaaXmePaohs+d1oa2NW1xwcHAzjbNniyE033RTG2dxYnZ3VXaM2UnbtAmu/jbY9Bvh20+fOnav52CMjI2F82bJlYTy6f3bdBTs2u0aAbXWdgs29jJ7ZRTKhZBfJhJJdJBNKdpFMKNlFMqFkF8mEkl0kE02vs0cWLlwYxqPea7bkcV9fXxhnfdlRvZrVmlnNlvXis77uqOeczS3aUhngdfqoZxyIHzM2N4bVsqM6/MDAQDj2gw8+COPsuo3u7u4wHlE/u4gkUbKLZELJLpIJJbtIJpTsIplQsotkQskukomWqrPPnTs3jEdrfbO12VlPObNmzZrSGKsXs22N2Xh2DUE0nvWMM6zPn/3fomsI2PUD7LywGv/8+fPDeOTtt98O4/39/WGc9ZxH1x+wsQ3rZzezxWb2BzM7YGZvmdkPitu7zOwFMztcfIwzVUQqNZmX8VcA/MjdVwH4WwDfM7NVAB4CsMPdVwLYUXwtIi2KJru797v768XnFwAcBLAIwEYA24tv2w5gU4PmKCJ18KX+ZjezrwH4OoA/Aeh292t/uJwCMOHFwGbWA6AnYY4iUgeTfjfezNoB/BbAD939M50dPnbl/oRX77t7r7uvdfe1STMVkSSTSnYza8NYov/K3X9X3DxgZguK+AIAcRuQiFSKvoy3sff5Hwdw0N1/Mi70HIAtAB4tPj6bOhlWiolKb6wExFpYWVvhHXfcURo7ffp0ODZ1KemUMk5q6Y21kbLyWHR89piwubPtpNnS5JGLFy+G8cOHD4dxtqVzW1tbaazW0hozmb/Z7wbwHQBvmtm+4rZtGEvy35jZVgDHANzfkBmKSF3QZHf3PwIo+1XzjfpOR0QaRZfLimRCyS6SCSW7SCaU7CKZULKLZKKltmxm9ehoSWZWZ2c1fFbbXLJkSWlseHg4HBttqQyk18KjOnvVovPKltBmjwlbzjmlxZW1FbMW2NWrV4fxU6dOfdkpJdMzu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZULKLZKLpdfaodsp6p6N6NuuN7ujoqHleQNy3zercbG4Mu/9GbfFbj/tOWTKZHZtdl3Hu3LkwHmFz27VrVxhnvfRRHZ493rVuda1ndpFMKNlFMqFkF8mEkl0kE0p2kUwo2UUyoWQXyURL1dlZf3K0ljer0bOaLYtHtU/Wl83um/VOs3h0Ttna6qlrlKfWyiOpc2fbKqfcN/P++++H8fb29tIYq6M3bMtmEfnroGQXyYSSXSQTSnaRTCjZRTKhZBfJhJJdJBOT2Z99MYBfAugG4AB63f1nZvYIgH8CMFR86zZ3f34S91caO3LkSDj2/PnzpbGFCxeGY4eGhsI4Ex17zpw54dhoX3kg3qsbSOtvTr3+gI1PqbOzsWw9fVaPTulnZ9i1D6Ojo2E8Wjee/b9q3SdgMhfVXAHwI3d/3cw6ALxmZi8UsZ+6+7/XdGQRaarJ7M/eD6C/+PyCmR0EsKjRExOR+vpSf7Ob2dcAfB3An4qbvm9mb5jZE2Y2t2RMj5ntMbM9aVMVkRSTTnYzawfwWwA/dPcRAD8HsBzAaow98/94onHu3uvua919bfp0RaRWk0p2M2vDWKL/yt1/BwDuPuDuV939UwCPAbircdMUkVQ02W3sLdPHARx095+Mu33BuG/7FoD99Z+eiNTLZN6NvxvAdwC8aWb7itu2AdhsZqsxVo7rA/DdyRwwKlmcPXs2HLtz587SWNT+CgCvvvpqGGclqGhL6KhdEeCltRkzZoRxVuaJsDJNammNqXXZY4D/v9ncU7bCTm3dPXPmTM3336ilwSfzbvwfAUw0M1pTF5HWoSvoRDKhZBfJhJJdJBNKdpFMKNlFMqFkF8lE05eSjuqurFb+5JNPlsZmz54djmXtjqwW/vTTT5fGWAvrihUrwnhnZ2cYZ6Ja+vTp02seC/Ca77Rp08J4dG7YeWNLdLNadrScM6v/s/83q8OPjIyE8ei6DfaYaClpEQkp2UUyoWQXyYSSXSQTSnaRTCjZRTKhZBfJhDWqd3bCg5kNATg27qZ5AE43bQJfTqvOrVXnBWhutarn3L7q7jdOFGhqsn/h4GZ7WnVtuladW6vOC9DcatWsuellvEgmlOwimag62XsrPn6kVefWqvMCNLdaNWVulf7NLiLNU/Uzu4g0iZJdJBOVJLuZ3Wdm75jZu2b2UBVzKGNmfWb2ppntq3p/umIPvUEz2z/uti4ze8HMDhcfJ9xjr6K5PWJmJ4tzt8/MNlQ0t8Vm9gczO2Bmb5nZD4rbKz13wbyact6a/je7mU0BcAjAPwA4AWA3gM3ufqCpEylhZn0A1rp75RdgmNnfARgF8Et3/5vitn8DMOzujxa/KOe6+z+3yNweATBa9TbexW5FC8ZvMw5gE4B/RIXnLpjX/WjCeavimf0uAO+6+3vu/jGAXwPYWME8Wp67vwJg+HM3bwSwvfh8O8Z+WJquZG4twd373f314vMLAK5tM17puQvm1RRVJPsiAMfHfX0CrbXfuwP4vZm9ZmY9VU9mAt3u3l98fgpAd5WTmQDdxruZPrfNeMucu1q2P0+lN+i+6B53XwNgPYDvFS9XW5KP/Q3WSrXTSW3j3SwTbDP+Z1Weu1q3P09VRbKfBLB43NdfKW5rCe5+svg4COAZtN5W1APXdtAtPg5WPJ8/a6VtvCfaZhwtcO6q3P68imTfDWClmS01s2kAvg3guQrm8QVmNqt44wRmNgvAN9F6W1E/B2BL8fkWAM9WOJfPaJVtvMu2GUfF567y7c/dven/AGzA2DvyRwD8SxVzKJnXMgD/V/x7q+q5AXgKYy/rPsHYextbAdwAYAeAwwD+F0BXC83tSQBvAngDY4m1oKK53YOxl+hvANhX/NtQ9bkL5tWU86bLZUUyoTfoRDKhZBfJhJJdJBNKdpFMKNlFMqFkF8mEkl0kE/8PwuOMKaOjijYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.animation as animation\n", - "\n", - "random_index = 53\n", - "\n", - "fig = plt.figure()\n", - "ims = []\n", - "for i in range(timesteps):\n", - " im = plt.imshow(samples[i][random_index].reshape(image_size, image_size, channels), cmap=\"gray\", animated=True)\n", - " ims.append([im])\n", - "\n", - "animate = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=100)\n", - "animate.save('diffusion.gif')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 总结\n", - "\n", - "请注意,DDPM论文表明扩散模型是(非)条件图像有希望生成的方向。自那以后,diffusion得到了(极大的)改进,最明显的是文本条件图像生成。下面,我们列出了一些重要的(但远非详尽无遗的)后续工作:\n", - "\n", - "- 改进的去噪扩散概率模型([Nichol et al., 2021](https://arxiv.org/abs/2102.09672)):发现学习条件分布的方差(除平均值外)有助于提高性能\n", - "\n", - "- 用于高保真图像生成的级联扩散模型([Ho et al., 2021](https://arxiv.org/abs/2106.15282)):引入级联扩散,它包括多个扩散模型的流水线,这些模型生成分辨率提高的图像,用于高保真图像合成\n", - "\n", - "- 扩散模型在图像合成上击败了GANs([Dhariwal et al., 2021](https://arxiv.org/abs/2105.05233)):表明扩散模型通过改进U-Net体系结构以及引入分类器指导,可以获得优于当前最先进的生成模型的图像样本质量\n", - "\n", - "- 无分类器扩散指南([Ho et al., 2021](https://openreview.net/pdf?id=qw8AKxfYbI)):表明通过使用单个神经网络联合训练条件和无条件扩散模型,不需要分类器来指导扩散模型\n", - "\n", - "- 具有CLIP Latents (DALL-E 2) 的分层文本条件图像生成 ([Ramesh et al., 2022](https://cdn.openai.com/papers/dall-e-2.pdf)):在将文本标题转换为CLIP图像嵌入之前使用,然后扩散模型将其解码为图像\n", - "\n", - "- 具有深度语言理解的真实文本到图像扩散模型(ImageGen)([Saharia et al., 2022](https://arxiv.org/abs/2205.11487)):表明将大型预训练语言模型(例如T5)与级联扩散结合起来,对于文本到图像的合成很有效\n", - "\n", - "请注意,此列表仅包括在撰写本文,即2022年6月7日之前的重要作品。\n", - "\n", - "目前,扩散模型的主要(也许唯一)缺点是它们需要多次正向传递来生成图像(对于像GAN这样的生成模型来说,情况并非如此)。然而,有[正在进行中的研究](https://arxiv.org/abs/2204.13902)表明只需要10个去噪步骤就能实现高保真生成。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 参考\n", - "\n", - "1. [The Annotated Diffusion Model](https://huggingface.co/blog/annotated-diffusion)\n", - "\n", - "2. [由浅入深了解Diffusion Model](https://zhuanlan.zhihu.com/p/525106459)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "MindSpore", - "language": "python", - "name": "mindspore" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 4 + } \ No newline at end of file diff --git a/tutorials/source_zh_cn/generative/gan.ipynb b/tutorials/source_zh_cn/generative/gan.ipynb index bdab6f82be16bf4ae91626611ccef6c1ce7a4dcb..ab6440169b2c0e8c0b2d250fbd3db733ec7d777d 100644 --- a/tutorials/source_zh_cn/generative/gan.ipynb +++ b/tutorials/source_zh_cn/generative/gan.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_gan.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_gan.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/gan.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_gan.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_gan.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/gan.ipynb)\n", "\n", "# GAN图像生成\n" ] diff --git a/tutorials/source_zh_cn/generative/pix2pix.ipynb b/tutorials/source_zh_cn/generative/pix2pix.ipynb index 912fb617c2ead8ad6226c458180123307f587bc1..784d2c38bd2994880837da3a8cf4f22a40c945de 100644 --- a/tutorials/source_zh_cn/generative/pix2pix.ipynb +++ b/tutorials/source_zh_cn/generative/pix2pix.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_pix2pix.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_pix2pix.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/pix2pix.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_pix2pix.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/generative/mindspore_pix2pix.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/generative/pix2pix.ipynb)\n", "\n", "# Pix2Pix实现图像转换\n", "\n", diff --git a/tutorials/source_zh_cn/model_infer/introduction.md b/tutorials/source_zh_cn/model_infer/introduction.md index 7054e35072c51990f9098c96c319ecbe11a23afe..6e7d267699c1374c57365a09df9c8d1e5b3dc4e6 100644 --- a/tutorials/source_zh_cn/model_infer/introduction.md +++ b/tutorials/source_zh_cn/model_infer/introduction.md @@ -1,6 +1,6 @@ # MindSpore推理概述 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/introduction.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/introduction.md) ## 特性背景 diff --git a/tutorials/source_zh_cn/model_infer/lite_infer/overview.md b/tutorials/source_zh_cn/model_infer/lite_infer/overview.md index c618c07df8eb2f1bb671b97f9335f3266ae8c038..09d3b029dd7bc8c9c4467e753037873b5d67e6bb 100644 --- a/tutorials/source_zh_cn/model_infer/lite_infer/overview.md +++ b/tutorials/source_zh_cn/model_infer/lite_infer/overview.md @@ -1,6 +1,6 @@ # MindSpore Lite推理概述 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/lite_infer/overview.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/lite_infer/overview.md) ## 特性背景 diff --git a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_infer.rst b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_infer.rst index 6e53a8584cc9513a3c15a2a93135069b13c96a9a..33476bf0b9577d05303ad631919884465939e200 100644 --- a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_infer.rst +++ b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_infer.rst @@ -2,7 +2,7 @@ MindSpore大语言模型带框架推理 ============================= .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_infer.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_infer.rst :alt: 查看源文件 .. toctree:: @@ -379,7 +379,7 @@ MindSpore大语言模型带框架推理主要依赖MindSpore开源软件,用 可以看到,将模型推理的token id翻译后,即是一句可以被正常人理解的语句。实际验证过程中,由于do_sample的随机性,每次推理会有一定的差异,但是结果的逻辑基本都是可以被理解的。 - 完整端到端样例可以参考 `infer.py `_ 。 + 完整端到端样例可以参考 `infer.py `_ 。 模型并行 ~~~~~~~~ diff --git a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_serving_infer.md b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_serving_infer.md index 349bf7c0440f9274a40a5b47bda19163c8aa2286..a2d47f34eaceff853b8bd3118af88499cadf45bb 100644 --- a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_serving_infer.md +++ b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_serving_infer.md @@ -1,7 +1,7 @@ # 服务化模型推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_serving_infer.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_model_serving_infer.md) ## 特性背景 diff --git a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_network_develop.md b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_network_develop.md index 13f7dd00224104439dcd116800ee58a043375a62..6dafd82f8f0d15cb8b1b6b95857ec666321d5057 100644 --- a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_network_develop.md +++ b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_network_develop.md @@ -1,6 +1,6 @@ # 从零构建大语言模型推理网络 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_network_develop.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_network_develop.md) ## 模型开发模式 @@ -26,7 +26,7 @@ MindSpore推荐用户先用动态图模式进行模型开发,然后根据需 - **RmsNorm & Linear**:输出线性归一层,在Transformer结构计算完后,将结果归一成和模型词表一样的维度,最终输出每个token的概率分布。 -使用MindSpore大语言模型推理构建网络,可以根据MindSpore提供的算子自己拼装。下面以Qwen2模型为例,简单描述构建模型的过程,完整端到端样例可以参考[qwen2.py](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/infer_code/qwen2/qwen2.py)。 +使用MindSpore大语言模型推理构建网络,可以根据MindSpore提供的算子自己拼装。下面以Qwen2模型为例,简单描述构建模型的过程,完整端到端样例可以参考[qwen2.py](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/infer_code/qwen2/qwen2.py)。 ### 基础公共网络层 diff --git a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_parallel_infer.md b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_parallel_infer.md index cfddb4729d7aecc4c1b84f6627482124a01c03d6..58144b26067c0ef6b234b367c52f53882f81dbf9 100644 --- a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_parallel_infer.md +++ b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_parallel_infer.md @@ -1,6 +1,6 @@ # 构建可并行的大语言模型网络 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_parallel_infer.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_parallel_infer.md) 随着模型规模的不断扩展,大语言模型所需的计算资源,特别是显存需求,呈指数级增长。以Qwen2-72B为例,在半精度(FP16)下,这些参数本身就需要约144GB的显存。 @@ -475,7 +475,7 @@ Linear层作为切分主要的网络层,其核心是MatMul矩阵计算,因 return hidden_state ``` -具体端到端的大语言模型代码工程可以参考[model_dev.py](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/infer_code/model_dev.py)脚本,通过运行如下命令进行验证: +具体端到端的大语言模型代码工程可以参考[model_dev.py](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/infer_code/model_dev.py)脚本,通过运行如下命令进行验证: ```shell msrun --worker_num 2 --local_worker_num 2 --master_port 8124 --log_dir msrun_log --join True --cluster_time_out 300 model_dev.py diff --git a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_quantization.md b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_quantization.md index 810904cf939ff19774c52d8f8c92d28b99738a88..52c72ac5bc779041dedd3d8e5100dfb0c2af9daa 100644 --- a/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_quantization.md +++ b/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_quantization.md @@ -1,6 +1,6 @@ # 模型量化 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_quantization.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_infer/ms_infer/ms_infer_quantization.md) ## 概述 diff --git a/tutorials/source_zh_cn/model_migration/model_migration.md b/tutorials/source_zh_cn/model_migration/model_migration.md index d536a0df67fee4a61a9502d89cf068747fd24469..9fca8bd354beca7b58f807ae8c37d107e7781b61 100644 --- a/tutorials/source_zh_cn/model_migration/model_migration.md +++ b/tutorials/source_zh_cn/model_migration/model_migration.md @@ -1,6 +1,6 @@ # 模型迁移 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_migration/model_migration.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/model_migration/model_migration.md) 本章节主要对模型迁移场景所必需的数据集、模型和训练、推理流程等在MindSpore上的构建方法做简单介绍。同时展示MindSpore和PyTorch在数据集包装、模型构建、训练流程代码上的差别。 diff --git a/tutorials/source_zh_cn/nlp/sentiment_analysis.ipynb b/tutorials/source_zh_cn/nlp/sentiment_analysis.ipynb index 9a68019d83e483f84e4ca3b5a4c00965b2e784f9..19bedaad89813d02a5ff1597554465da067f30b4 100644 --- a/tutorials/source_zh_cn/nlp/sentiment_analysis.ipynb +++ b/tutorials/source_zh_cn/nlp/sentiment_analysis.ipynb @@ -6,7 +6,7 @@ "id": "ace41c03-dfa3-4cb6-88bc-bcaa72cfdc85", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sentiment_analysis.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sentiment_analysis.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/nlp/sentiment_analysis.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sentiment_analysis.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sentiment_analysis.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/nlp/sentiment_analysis.ipynb)\n", "\n", "# RNN实现情感分类\n" ] diff --git a/tutorials/source_zh_cn/nlp/sequence_labeling.ipynb b/tutorials/source_zh_cn/nlp/sequence_labeling.ipynb index ea4212f0ea9b7d8860d0f4b23fe410bb5e6177ad..f98842ae82ef4adae634f15cb53ad1bdd5c0d5b9 100644 --- a/tutorials/source_zh_cn/nlp/sequence_labeling.ipynb +++ b/tutorials/source_zh_cn/nlp/sequence_labeling.ipynb @@ -5,7 +5,7 @@ "id": "66014f9c-60b8-4cb4-b5c0-3f387aaf01af", "metadata": {}, "source": [ - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sequence_labeling.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sequence_labeling.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/nlp/sequence_labeling.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sequence_labeling.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/nlp/mindspore_sequence_labeling.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/nlp/sequence_labeling.ipynb)\n", "\n", "# LSTM+CRF序列标注\n", "\n", diff --git a/tutorials/source_zh_cn/orange_pi/dev_start.ipynb b/tutorials/source_zh_cn/orange_pi/dev_start.ipynb index e12993b57821c750fa14bfdb1b78f3c1834aba16..a011e26a16911f9a026734a364cecfef5d567e94 100644 --- a/tutorials/source_zh_cn/orange_pi/dev_start.ipynb +++ b/tutorials/source_zh_cn/orange_pi/dev_start.ipynb @@ -6,7 +6,7 @@ "source": [ "# 开发入门\n", "\n", - "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/orange_pi/mindspore_dev_start.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/orange_pi/mindspore_dev_start.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/dev_start.ipynb)\n", + "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/orange_pi/mindspore_dev_start.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/orange_pi/mindspore_dev_start.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/dev_start.ipynb)\n", "\n", "因开发者可能会在OrangePi AIpro(下称:香橙派开发板)进行自定义模型和案例开发,本章节通过基于MindSpore的手写数字识别案例,说明香橙派开发板中的开发注意事项。" ] diff --git a/tutorials/source_zh_cn/orange_pi/environment_setup.md b/tutorials/source_zh_cn/orange_pi/environment_setup.md index 9918f1f3f36abaf2572f15846c5177470c292ee9..a9e477516c16f305a78a9341452db3a4df3351ce 100644 --- a/tutorials/source_zh_cn/orange_pi/environment_setup.md +++ b/tutorials/source_zh_cn/orange_pi/environment_setup.md @@ -1,6 +1,6 @@ # 环境搭建指南 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/environment_setup.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/environment_setup.md) 本章节将介绍如何在OrangePi AIpro上烧录镜像,自定义安装CANN和MindSpore,并配置运行环境。 diff --git a/tutorials/source_zh_cn/orange_pi/model_infer.md b/tutorials/source_zh_cn/orange_pi/model_infer.md index 6e70ca43da1d8aa20063d729082130a06e20873b..b5e7bb7be6534021cfc91349b3dd9389daa41534 100644 --- a/tutorials/source_zh_cn/orange_pi/model_infer.md +++ b/tutorials/source_zh_cn/orange_pi/model_infer.md @@ -1,6 +1,6 @@ # 模型在线推理 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/model_infer.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/model_infer.md) 本章节将介绍如何在OrangePi AIpro(下称:香橙派开发板)下载昇思MindSpore在线推理案例,并启动Jupyter Lab界面执行推理。 diff --git a/tutorials/source_zh_cn/orange_pi/overview.md b/tutorials/source_zh_cn/orange_pi/overview.md index 969240c427d8109ac564e5aeaa265c052e6235c5..bbd15efabd78be7402ba8ddd9b16574bc753cb5c 100644 --- a/tutorials/source_zh_cn/orange_pi/overview.md +++ b/tutorials/source_zh_cn/orange_pi/overview.md @@ -1,6 +1,6 @@ # 香橙派开发 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/overview.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/orange_pi/overview.md) [OrangePi AIpro(香橙派 AIpro)](http://www.orangepi.cn/index.html)采用昇腾AI技术路线,具体为4核64位处理器和AI处理器,并集成图形处理器。 diff --git a/tutorials/source_zh_cn/parallel/comm_fusion.md b/tutorials/source_zh_cn/parallel/comm_fusion.md index dca3d1344eb452f5cde67bd1ca9753dc9ecd5b8f..68b098116da1dc83d6337f23d250b286479a0a4e 100644 --- a/tutorials/source_zh_cn/parallel/comm_fusion.md +++ b/tutorials/source_zh_cn/parallel/comm_fusion.md @@ -1,6 +1,6 @@ # 分布式训练通信融合 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/comm_fusion.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/comm_fusion.md) ## 简介 @@ -60,7 +60,7 @@ MindSpore提供两种接口来使能通信融合,下面分别进行介绍: ### 样例代码说明 -> 下载完整的样例代码:[distributed_comm_fusion](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_comm_fusion)。 +> 下载完整的样例代码:[distributed_comm_fusion](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_comm_fusion)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/data_parallel.md b/tutorials/source_zh_cn/parallel/data_parallel.md index c93abf6cac89dd5a6c6549c0757dd85a83c946da..69bc57cb6cc866f05424283b24980f6a63f5000f 100644 --- a/tutorials/source_zh_cn/parallel/data_parallel.md +++ b/tutorials/source_zh_cn/parallel/data_parallel.md @@ -1,6 +1,6 @@ # 数据并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/data_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/data_parallel.md) ## 简介 @@ -10,7 +10,7 @@ ## 样例代码说明 -> 下载完整的样例代码:[distributed_data_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_data_parallel)。 +> 下载完整的样例代码:[distributed_data_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_data_parallel)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/dataset_slice.md b/tutorials/source_zh_cn/parallel/dataset_slice.md index 709c7135dd3d32135f26e3e58282fba5bb670b25..2250b0f7d3acea18e678bba257221e1c4d8e84a5 100644 --- a/tutorials/source_zh_cn/parallel/dataset_slice.md +++ b/tutorials/source_zh_cn/parallel/dataset_slice.md @@ -1,6 +1,6 @@ # 数据集切分 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/dataset_slice.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/dataset_slice.md) ## 简介 @@ -22,7 +22,7 @@ ### 样例代码说明 -> 下载完整的样例代码:[dataset_slice](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/dataset_slice)。 +> 下载完整的样例代码:[dataset_slice](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/dataset_slice)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/distributed_case.rst b/tutorials/source_zh_cn/parallel/distributed_case.rst index 42542720e251ecf4a7669bbdadc13fa99d1ab71b..9b786292e00ad4e6579e4cb2f90e97c0fa956c88 100644 --- a/tutorials/source_zh_cn/parallel/distributed_case.rst +++ b/tutorials/source_zh_cn/parallel/distributed_case.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/distributed_case.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/distributed_case.rst :alt: 查看源文件 .. toctree:: diff --git a/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md b/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md index fec5c01686a07585de4c5290ac8bf7d0c704b468..e5b18799854ab1e29886859361e001905f353bea 100644 --- a/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md +++ b/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md @@ -1,6 +1,6 @@ # 梯度累加 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md) ## 简介 @@ -32,7 +32,7 @@ ### 样例代码说明 -> 下载完整的样例代码:[distributed_gradient_accumulation](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_gradient_accumulation)。 +> 下载完整的样例代码:[distributed_gradient_accumulation](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_gradient_accumulation)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/dynamic_cluster.md b/tutorials/source_zh_cn/parallel/dynamic_cluster.md index 0179d12b7ea0e2e4c9f4269ac835c1c40c96e918..0896cedeaeea578e366988c5af5c579d964c882e 100644 --- a/tutorials/source_zh_cn/parallel/dynamic_cluster.md +++ b/tutorials/source_zh_cn/parallel/dynamic_cluster.md @@ -1,6 +1,6 @@ # 动态组网启动 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/dynamic_cluster.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/dynamic_cluster.md) ## 概述 @@ -173,7 +173,7 @@ MindSpore**动态组网**特性通过**复用Parameter Server模式训练架构* 动态组网启动脚本在各硬件平台下一致,下面以Ascend为例演示如何编写启动脚本: -> 您可以在这里下载完整的样例代码:[startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 +> 您可以在这里下载完整的样例代码:[startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 目录结构如下: @@ -276,7 +276,7 @@ for epoch in range(10): #### 单机多卡 -单机多卡启动脚本内容[run_dynamic_cluster.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster.sh)如下,以单机8卡为例: +单机多卡启动脚本内容[run_dynamic_cluster.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster.sh)如下,以单机8卡为例: ```bash EXEC_PATH=$(pwd) @@ -333,7 +333,7 @@ epoch: 0, step: 30, loss is 1.0437132 多机训练场景下,需拆分启动脚本。下面以执行双机8卡训练为例,每台机器执行启动4个Worker: -脚本[run_dynamic_cluster_1.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_1.sh)在节点1上启动1个`Scheduler`进程以及4个`Worker`进程: +脚本[run_dynamic_cluster_1.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_1.sh)在节点1上启动1个`Scheduler`进程以及4个`Worker`进程: ```bash EXEC_PATH=$(pwd) @@ -368,7 +368,7 @@ export MS_ROLE=MS_SCHED # 设置启动的进程为MS_SCHED角 python ./net.py > device/scheduler.log 2>&1 & # 启动训练脚本 ``` -脚本[run_dynamic_cluster_2.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_2.sh)在节点2上启动`Worker5`到`Worker8`(无需执行Scheduler): +脚本[run_dynamic_cluster_2.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/run_dynamic_cluster_2.sh)在节点2上启动`Worker5`到`Worker8`(无需执行Scheduler): ```bash EXEC_PATH=$(pwd) diff --git a/tutorials/source_zh_cn/parallel/high_dimension_tensor_parallel.md b/tutorials/source_zh_cn/parallel/high_dimension_tensor_parallel.md index 3781617b1ddd6b3eb5a4281d8b2670a5350b1f69..35b9fc4138c4728fcb2d33123a8007cbebb2c16c 100644 --- a/tutorials/source_zh_cn/parallel/high_dimension_tensor_parallel.md +++ b/tutorials/source_zh_cn/parallel/high_dimension_tensor_parallel.md @@ -1,6 +1,6 @@ # 高维张量并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/high_dimension_tensor_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/high_dimension_tensor_parallel.md) ## 简介 @@ -69,7 +69,7 @@ ### 样例代码说明 -> 下载完整的样例代码:[high_dimension_tensor_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/high_dimension_tensor_parallel)。 +> 下载完整的样例代码:[high_dimension_tensor_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/high_dimension_tensor_parallel)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/host_device_training.md b/tutorials/source_zh_cn/parallel/host_device_training.md index 96207571219cd7771f9b5dcec357eafe745bab43..7c38022ad5d3922c6b4b82b2f1da46308c3a1a1a 100644 --- a/tutorials/source_zh_cn/parallel/host_device_training.md +++ b/tutorials/source_zh_cn/parallel/host_device_training.md @@ -1,6 +1,6 @@ # Host&Device异构 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/host_device_training.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/host_device_training.md) ## 概述 @@ -34,7 +34,7 @@ ### 样例代码说明 -> 下载完整的样例代码:[host_device](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/host_device)。 +> 下载完整的样例代码:[host_device](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/host_device)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/mpirun.md b/tutorials/source_zh_cn/parallel/mpirun.md index 428396e11e792088019c983a2d81c69722ed4742..f08e1c512f3203460f7decf0726da4d975e1de17 100644 --- a/tutorials/source_zh_cn/parallel/mpirun.md +++ b/tutorials/source_zh_cn/parallel/mpirun.md @@ -1,6 +1,6 @@ # mpirun启动 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/mpirun.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/mpirun.md) ## 概述 @@ -31,7 +31,7 @@ OpenMPI(Open Message Passing Interface)是一个开源的、高性能的消 `mpirun`启动脚本在Ascend和GPU硬件平台下一致,下面以Ascend为例演示如何编写启动脚本: -> 您可以在这里下载完整的样例代码:[startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 +> 您可以在这里下载完整的样例代码:[startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/msrun_launcher.md b/tutorials/source_zh_cn/parallel/msrun_launcher.md index e8ccb59959a057c316e703d9f3202cfa32e73547..1ddaecea25b8eb7dde1aac288a81fcecc4132fdc 100644 --- a/tutorials/source_zh_cn/parallel/msrun_launcher.md +++ b/tutorials/source_zh_cn/parallel/msrun_launcher.md @@ -1,6 +1,6 @@ # msrun启动 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/msrun_launcher.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/msrun_launcher.md) ## 概述 @@ -192,7 +192,7 @@ msrun作为动态组网启动方式的封装,所有用户可自定义配置的 启动脚本在各硬件平台下一致,下面以Ascend为例演示如何编写启动脚本: -> 您可以在这里下载完整的样例代码:[startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 +> 您可以在这里下载完整的样例代码:[startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 目录结构如下: @@ -299,7 +299,7 @@ for epoch in range(10): 下面以执行单机8卡训练为例: -脚本[msrun_single.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_single.sh)使用msrun指令在当前节点拉起1个`Scheduler`进程以及8个`Worker`进程(无需设置`master_addr`,默认为`127.0.0.1`;单机无需设置`node_rank`): +脚本[msrun_single.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_single.sh)使用msrun指令在当前节点拉起1个`Scheduler`进程以及8个`Worker`进程(无需设置`master_addr`,默认为`127.0.0.1`;单机无需设置`node_rank`): ```bash EXEC_PATH=$(pwd) @@ -338,7 +338,7 @@ epoch: 0, step: 30, loss is 1.0437132 下面以执行2机8卡训练,每台机器执行启动4个Worker为例: -脚本[msrun_1.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_1.sh)在节点1上执行,使用msrun指令拉起1个`Scheduler`进程以及4个`Worker`进程,配置`master_addr`为节点1的IP地址(msrun会自动检测到当前节点IP与`master_addr`匹配而拉起`Scheduler`进程),通过`node_rank`设置当前节点为0号节点: +脚本[msrun_1.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_1.sh)在节点1上执行,使用msrun指令拉起1个`Scheduler`进程以及4个`Worker`进程,配置`master_addr`为节点1的IP地址(msrun会自动检测到当前节点IP与`master_addr`匹配而拉起`Scheduler`进程),通过`node_rank`设置当前节点为0号节点: ```bash EXEC_PATH=$(pwd) @@ -357,7 +357,7 @@ echo "start training" msrun --worker_num=8 --local_worker_num=4 --master_addr= --master_port=8118 --node_rank=0 --log_dir=msrun_log --join=True --cluster_time_out=300 net.py ``` -脚本[msrun_2.sh](https://gitee.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_2.sh)在节点2上执行,使用msrun指令拉起4个`Worker`进程,配置`master_addr`为节点1的IP地址,通过`node_rank`设置当前节点为1号节点: +脚本[msrun_2.sh](https://atomgit.com/mindspore/docs/blob/master/docs/sample_code/startup_method/msrun_2.sh)在节点2上执行,使用msrun指令拉起4个`Worker`进程,配置`master_addr`为节点1的IP地址,通过`node_rank`设置当前节点为1号节点: ```bash EXEC_PATH=$(pwd) diff --git a/tutorials/source_zh_cn/parallel/multiple_copy.md b/tutorials/source_zh_cn/parallel/multiple_copy.md index a9b72b35227aee10a4b20a3e941f897ea36c5b7f..e52276c3526dd0a22ac0a5e23224a531bc119d4c 100644 --- a/tutorials/source_zh_cn/parallel/multiple_copy.md +++ b/tutorials/source_zh_cn/parallel/multiple_copy.md @@ -1,6 +1,6 @@ # 多副本并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/multiple_copy.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/multiple_copy.md) ## 简介 @@ -24,7 +24,7 @@ ### 样例代码说明 -> 下载完整的样例代码:[multiple_copy](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/multiple_copy)。 +> 下载完整的样例代码:[multiple_copy](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/multiple_copy)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/multiple_mixed.md b/tutorials/source_zh_cn/parallel/multiple_mixed.md index 7a9752b2b9edc79a39ff04e53ca12aa0b729363c..20e17f62b0c37032b65a246dbc01f7e6d29e12bc 100644 --- a/tutorials/source_zh_cn/parallel/multiple_mixed.md +++ b/tutorials/source_zh_cn/parallel/multiple_mixed.md @@ -1,6 +1,6 @@ # 基于双递归搜索的多维混合并行案例 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/multiple_mixed.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/multiple_mixed.md) ## 概述 @@ -12,7 +12,7 @@ ### 样例代码说明 -> 下载完整的样例代码:[multiple_mix](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/multiple_mix)。 +> 下载完整的样例代码:[multiple_mix](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/multiple_mix)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/operator_parallel.md b/tutorials/source_zh_cn/parallel/operator_parallel.md index 783970e7ae1c3af8da1f4be4270a1107aac1c635..5b7a8967b4933645dc5fed0540d54a0d1ddb3c1f 100644 --- a/tutorials/source_zh_cn/parallel/operator_parallel.md +++ b/tutorials/source_zh_cn/parallel/operator_parallel.md @@ -1,6 +1,6 @@ # 算子级并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/operator_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/operator_parallel.md) ## 简介 @@ -16,7 +16,7 @@ MindSpore提供两种粒度的算子级并行能力:算子级并行和高阶 #### 样例代码说明 -> 下载完整的样例代码:[distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 +> 下载完整的样例代码:[distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 目录结构如下: @@ -194,7 +194,7 @@ epoch: 0 step: 50, loss is 1.8051043 #### 样例代码说明 -> 下载完整的样例代码:[distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 +> 下载完整的样例代码:[distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 目录结构如下: @@ -348,7 +348,7 @@ epoch: 0 step: 50, forward_sum is 0.96655 #### 样例代码说明 -> 下载完整的样例代码:[distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 +> 下载完整的样例代码:[distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 目录结构如下: @@ -470,7 +470,7 @@ epoch: 0 step: 50, loss is 1.8051043 #### 样例代码说明 -> 下载完整的样例代码:[distributed_operator_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 +> 下载完整的样例代码:[distributed_operator_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_operator_parallel)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/optimize_technique.rst b/tutorials/source_zh_cn/parallel/optimize_technique.rst index 2a1bfe268eab6dfcf457612ea346e4136e2a91c5..2e088402b3035172e7aae4ad3c397ac41aa2e556 100644 --- a/tutorials/source_zh_cn/parallel/optimize_technique.rst +++ b/tutorials/source_zh_cn/parallel/optimize_technique.rst @@ -2,7 +2,7 @@ ======================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/optimize_technique.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/optimize_technique.rst :alt: 查看源文件 .. toctree:: diff --git a/tutorials/source_zh_cn/parallel/optimizer_parallel.md b/tutorials/source_zh_cn/parallel/optimizer_parallel.md index c04d4ae854f40a5db7e9580fe775cb40a057e6b5..f10c5cbf2ba69af1068bec33b6c2f003acd86401 100644 --- a/tutorials/source_zh_cn/parallel/optimizer_parallel.md +++ b/tutorials/source_zh_cn/parallel/optimizer_parallel.md @@ -1,6 +1,6 @@ # 优化器并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/optimizer_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/optimizer_parallel.md) ## 简介 @@ -10,7 +10,7 @@ ## 样例代码说明 -> 下载完整的样例代码:[distributed_optimizer_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_optimizer_parallel)。 +> 下载完整的样例代码:[distributed_optimizer_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_optimizer_parallel)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/overview.md b/tutorials/source_zh_cn/parallel/overview.md index b5a157c5814ae8706ccca7f7306f75e6771dab02..52d8050f608fab772d4d0628160435a4447e173d 100644 --- a/tutorials/source_zh_cn/parallel/overview.md +++ b/tutorials/source_zh_cn/parallel/overview.md @@ -1,6 +1,6 @@ # 分布式并行概述 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/overview.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/overview.md) 在深度学习中,当数据集和参数量的规模越来越大,训练所需的时间和硬件资源会随之增加,最后会变成制约训练的瓶颈。分布式并行训练,可以降低对内存、计算性能等硬件的需求,是进行训练的重要优化手段。此外,分布式并行对大模型训练和推理有着重要的意义,它为处理大规模数据和复杂模型提供了强大的计算能力和性能优势。 diff --git a/tutorials/source_zh_cn/parallel/pipeline_parallel.md b/tutorials/source_zh_cn/parallel/pipeline_parallel.md index 3a8eaa4165b3d6fb8165419489eef6c4860e7ae3..58839addc5251b921ef19a1563a57a6b1711fcc1 100644 --- a/tutorials/source_zh_cn/parallel/pipeline_parallel.md +++ b/tutorials/source_zh_cn/parallel/pipeline_parallel.md @@ -1,6 +1,6 @@ # 流水线并行 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/pipeline_parallel.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/pipeline_parallel.md) ## 简介 @@ -12,7 +12,7 @@ ### 样例代码说明 -> 下载完整的样例代码:[distributed_pipeline_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel)。 +> 下载完整的样例代码:[distributed_pipeline_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel)。 目录结构如下: @@ -256,7 +256,7 @@ Tensor(shape=[8, 512], dtype=Float32, value= ### 样例代码说明 -> 下载完整的样例代码:[distributed_pipeline_parallel](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel)。 +> 下载完整的样例代码:[distributed_pipeline_parallel](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/distributed_pipeline_parallel)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/rank_table.md b/tutorials/source_zh_cn/parallel/rank_table.md index 44e1ee19906309d2723fe05916dbd712e5fd77e0..aee62dc17fc469e98c2ff9359cb0a985e8eaf956 100644 --- a/tutorials/source_zh_cn/parallel/rank_table.md +++ b/tutorials/source_zh_cn/parallel/rank_table.md @@ -1,6 +1,6 @@ # rank table启动 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/rank_table.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/rank_table.md) ## 概述 @@ -37,7 +37,7 @@ ## 操作实践 -> 您可以在这里下载完整的样例代码:[startup_method](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 +> 您可以在这里下载完整的样例代码:[startup_method](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/startup_method)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/recompute.md b/tutorials/source_zh_cn/parallel/recompute.md index e0aca6900c729edde8d37b8b8700b7674ec72bb3..79bc865e51db365caaef7bd730151c83c2c48047 100644 --- a/tutorials/source_zh_cn/parallel/recompute.md +++ b/tutorials/source_zh_cn/parallel/recompute.md @@ -1,6 +1,6 @@ # 重计算 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/recompute.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/recompute.md) ## 简介 @@ -40,7 +40,7 @@ MindSpore采用反向模式的自动微分,根据正向图计算流程来自 ### 样例代码说明 -> 下载完整的样例代码:[recompute](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/recompute)。 +> 下载完整的样例代码:[recompute](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/recompute)。 目录结构如下: diff --git a/tutorials/source_zh_cn/parallel/split_technique.md b/tutorials/source_zh_cn/parallel/split_technique.md index 9a23e6a058ef4a40a32b2e557dc27118921853cd..dadcf5a47d111b6c85a69fe1f178f2dc177206e0 100644 --- a/tutorials/source_zh_cn/parallel/split_technique.md +++ b/tutorials/source_zh_cn/parallel/split_technique.md @@ -1,6 +1,6 @@ # 切分技巧 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/split_technique.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/split_technique.md) ## 概述 diff --git a/tutorials/source_zh_cn/parallel/startup_method.rst b/tutorials/source_zh_cn/parallel/startup_method.rst index 2ca0780e7ded231f4a4516d58d325e8c47badef0..3175830b72c1a90f41ab610ba920d62af5c89983 100644 --- a/tutorials/source_zh_cn/parallel/startup_method.rst +++ b/tutorials/source_zh_cn/parallel/startup_method.rst @@ -2,7 +2,7 @@ ============================ .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg - :target: https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/startup_method.rst + :target: https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/startup_method.rst :alt: 查看源文件 .. toctree:: diff --git a/tutorials/source_zh_cn/parallel/strategy_select.md b/tutorials/source_zh_cn/parallel/strategy_select.md index 10dc2f9091e318f0eac71ec5a62acdf8cdc3ff54..f47547e06c04501ad224c5ff58d92c7ed744f9bf 100644 --- a/tutorials/source_zh_cn/parallel/strategy_select.md +++ b/tutorials/source_zh_cn/parallel/strategy_select.md @@ -1,6 +1,6 @@ # 策略选择 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/strategy_select.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/parallel/strategy_select.md) ## 概述 diff --git a/tutorials/source_zh_cn/train_availability/fault_recover.md b/tutorials/source_zh_cn/train_availability/fault_recover.md index 1eac5544936f1d2ae8449c7ac6ea86544d410377..5220e8674eac59d3e03798cfa1fceaa9c7dd6465 100644 --- a/tutorials/source_zh_cn/train_availability/fault_recover.md +++ b/tutorials/source_zh_cn/train_availability/fault_recover.md @@ -1,6 +1,6 @@ # 故障恢复 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/train_availability/fault_recover.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/train_availability/fault_recover.md) ## 概述 diff --git a/tutorials/source_zh_cn/train_availability/graceful_exit.md b/tutorials/source_zh_cn/train_availability/graceful_exit.md index 191ba1f09640fcec1d8478f6d73d3e50212fbdfe..e3c0a568741383cc5e6da761ad4b823c39949cc6 100644 --- a/tutorials/source_zh_cn/train_availability/graceful_exit.md +++ b/tutorials/source_zh_cn/train_availability/graceful_exit.md @@ -1,12 +1,12 @@ # 进程优雅退出 -[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/train_availability/graceful_exit.md) +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://atomgit.com/mindspore/docs/blob/master/tutorials/source_zh_cn/train_availability/graceful_exit.md) ## 概述 当训练集群中存在亚健康设备时,如果能在亚健康设备发生故障之前完成 checkpoint 保存并结束集群训练进程,可以有效避免集群损坏时的权重数据丢失问题。同时,这也可以避免训练恢复时的数据回滚和 checkpoint 加载回滚等问题,从而减少训练资源的浪费。 -> 本文档介绍进程优雅退出功能的使用方法。为了说明具体使用方式,以在第一个训练step时检测到退出配置信息并提前结束训练进程为例。您可以在这里下载完整代码:[process_graceful_exit](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/graceful_exit/)。 +> 本文档介绍进程优雅退出功能的使用方法。为了说明具体使用方式,以在第一个训练step时检测到退出配置信息并提前结束训练进程为例。您可以在这里下载完整代码:[process_graceful_exit](https://atomgit.com/mindspore/docs/tree/master/docs/sample_code/graceful_exit/)。 其中,`graceful_exit.py` 为训练脚本,`train.sh` 为 `msrun` 启动脚本,`graceful_exit.json` 为优雅退出配置文件。