# pytorchOCR
**Repository Path**: liuzhiwen123/pytorchOCR
## Basic Information
- **Project Name**: pytorchOCR
- **Description**: No description available
- **Primary Language**: Python
- **License**: Not specified
- **Default Branch**: version2
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2022-09-06
- **Last Updated**: 2022-09-06
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## 基于pytorch的OCR库
这里会有这个项目的代码详解和我的一些ocr经验和心得,我会慢慢更新,有兴趣可以看看,希望可以帮到新接触ocr的童鞋[CSDN博客](https://blog.csdn.net/fxwfxw7037681/category_10419715.html)
***
最近跟新:
- 2021.05.19 更新基于DBnet的多语种文本检测。
- 2021.05.01 更新CRNN 训练,解决了多gpu训练问题,更换成lmdb训练,需要将图片先转成lmdb(在script文件夹中有多进程将图片转成lmdb的代码),做了一些训练优化,模型结构更改(训练时使用名字中带lmdb的yaml文件),实际训练效果如下表。
- 2021.03.26 更新CRNN 训练效果,代码整理后上传
- 2021.03.06 更新CRNN backbone resnet 和 mobilev3 以及配置文件
- 2020.12.22 更新CRNN+CTCLoss+CenterLoss训练
- 2020.09.18 更新文本检测说明文档
- 2020.09.12 更新DB,pse,pan,sast,crnn训练测试代码和预训练模型
***
目前已完成:
- [x] DBnet [论文链接](https://arxiv.org/abs/1911.08947)
- [x] PSEnet [论文链接](https://arxiv.org/abs/1903.12473)
- [x] PANnet [论文链接](https://arxiv.org/pdf/1908.05900.pdf)
- [x] SASTnet [论文链接](https://arxiv.org/abs/1908.05498)
- [x] CRNN [论文链接](https://arxiv.org/abs/1507.05717)
***
接下来计划:
- [x] 模型转onnx及调用测试
- [x] 模型压缩(剪枝)
- [ ] 模型压缩(量化)
- [x] 模型蒸馏
- [x] tensorrt部署
- [ ] 训练通用化ocr模型
- [ ] 结合chinese_lite进行部署
- [ ] 手机端部署
***
### crnn模型效果(实验中)
使用 MJSynth(MJ) 和 SynthText(ST) 训练,以batchsize=512训练,在以下数据集上测试:
| 模型 |迭代次数| CUTE80 | IC03_867 |IC13_1015|IC13_857|IC15_1811|IC15_2077|IIIT5k_3000|SVT|SVTP|mean|
|-|-|-|-|-|-|-|-|-|-|-|-|
| resnet34+lstm+ctc |120000| 82.98| 91.92|90.93|91.59|73.10|67.98|90.16|85.16|78.29|83.56|
| mobilev3_large+lstm+ctc | 210000| 73.61| 92.50|90.34|91.59|74.82|68.89|87.56|83.46|77.20|82.21|
| mobilev3_small+lstm+ctc | 210000| 66.31| 90.77|88.76|91.13|73.66|69.52|88.80|84.54|72.24|80.64|
***
### 检测模型效果(实验中)
训练只在ICDAR2015文本检测公开数据集上,算法效果如下:
|模型|骨干网络|precision|recall|Hmean|下载链接|
|-|-|-|-|-|-|
|DB|ResNet50_7*7|85.88%|79.10%|82.35%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|DB|ResNet50_3*3|86.51%|80.59%|83.44%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|DB|MobileNetV3|82.89%|75.83%|79.20%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|SAST|ResNet50_7*7|85.72%|78.38%|81.89%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|SAST|ResNet50_3*3|86.67%|76.74%|81.40%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|PSE|ResNet50_7*7|84.10%|80.01%|82.01%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|PSE|ResNet50_3*3|82.56%|78.91%|80.69%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|PAN|ResNet18_7*7|81.80%|77.08%|79.37%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
|PAN|ResNet18_3*3|83.78%|75.15%|79.23%|[下载链接](https://pan.baidu.com/s/1zONYFPsS3szaf5BHeQh5ZA)(code:fxw6)|
***
### 模型压缩剪枝效果
这里使用mobilev3作为backbone,在icdar2015上测试结果,未压缩模型初始大小为2.4M.
1. 对backbone进行压缩
|模型|pruned method|ratio|model size(M)|precision|recall|Hmean
|-|-|-|-|-|-|-|
|DB|no|0|2.4|84.04%|75.34%|79.46%|
|DB|backbone|0.5|1.9|83.74%|73.18%|78.10%|
|DB|backbone|0.6|1.58|84.46%|69.90%|76.50%|
2. 对整个模型进行压缩
|模型|pruned method|ratio|model size(M)|precision|recall|Hmean|
|-|-|-|-|-|-|-|
|DB|no|0|2.4|85.70%|74.77%|79.86%|
|DB|total|0.6|1.42|82.97%|75.10%|78.84%|
|DB|total|0.65|1.15|85.14%|72.84%|78.51%|
***
### 模型蒸馏
|模型|teacher|student|model size(M)|precision|recall|Hmean|improve(%)|
|-|-|-|-|-|-|-|-|
|DB|no|mobilev3|2.4|85.70%|74.77%|79.86%|-|
|DB|resnet50|mobilev3|2.4|86.37%|77.22%|81.54%|1.68|
|DB|no|mobilev3|1.42|82.97%|75.10%|78.84%|-|
|DB|resnet50|mobilev3|1.42|85.88%|76.16%|80.73%|1.89|
|DB|no|mobilev3|1.15|85.14%|72.84%|78.51%|-|
|DB|resnet50|mobilev3|1.15|85.60%|74.72%|79.79%|1.28|
***
### 文档教程
- [文本检测](./doc/md/文本检测训练文档.md)
- [文本识别](./doc/md/文本识别训练文档.md)
- [pytorch转onnx](./doc/md/pytorch_to_onnx.md)
- [onnx转tensorrt](./doc/md/onnx_to_tensorrt.md)
- [模型剪枝](./doc/md/模型剪枝.md)
- [模型蒸馏](./doc/md/模型蒸馏.md)
***
### 文本检测效果
***
### Dbnet多语种文本检测效果
#### 生成数据集:
#### 公开数据集:
***
### 有问题及交流加微信
微信号:-fxwispig-
***
### 参考
- https://github.com/PaddlePaddle/PaddleOCR
- https://github.com/whai362/PSENet
- https://github.com/whai362/pan_pp.pytorch
- https://github.com/WenmuZhou/PAN.pytorch
- https://github.com/xiaolai-sqlai/mobilenetv3
- https://github.com/BADBADBADBOY/DBnet-lite.pytorch
- https://github.com/BADBADBADBOY/Psenet_v2
- https://github.com/BADBADBADBOY/pse-lite.pytorch