# TransFBP **Repository Path**: linkchainiii/TransFBP ## Basic Information - **Project Name**: TransFBP - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-28 - **Last Updated**: 2021-03-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Transferring Rich Deep Features for Facial Beauty Prediction ## Introduction This repo provides the source code for our paper [Transferring Rich Deep Features for Facial Beauty Prediction](https://arxiv.org/pdf/1803.07253.pdf). This code has been tested on Ubuntu16 .04 with TensorFlow0.12.0, a newer version may bring you some trouble since TensorFlow's APIs always change after releasing a new version. ## Proposed Method ![pipeline](./architecture.png) ## Experiments Our proposed two-stage method achieves state-of-the-art performance on [SCUT-FBP](http://www.hcii-lab.net/data/scut-fbp/en/introduce.html) and [Female Facial Beauty Dataset (ECCV2010) v1.0](https://www.researchgate.net/publication/261595808_Female_Facial_Beauty_Dataset_ECCV2010_v10) dataset. TransFBP also achieves very competitive performance on [SCUT-FBP5500](https://arxiv.org/pdf/1801.06345.pdf) dataset. * Evaluation with the SCUT-FBP Dataset | Methods | PC | | :---: |:---: | | Combined Features+Gaussian Reg | 0.6482 | | CNN-based | 0.8187 | | Liu et al. | 0.6938 | | KFME | 0.7988 | | RegionScatNet | 0.83 | | PI-CNN | 0.87 | | **TransFBP (Ours)** | **0.8742** | * Evaluation with the HotOrNot Dataset | Methods | PC | | :---: |:---: | | Eigenface | 0.180 | | Multiscale Model | 0.458 | | Auto Encoder | 0.437 | | **TransFBP (Ours)** | **0.468** | * Evaluation with the SCUT-FBP5500 Dataset | Methods | PC | | :---: |:---: | | Geometric features + Gaussian Regression | 0.6738 | | Geometric features + SVR | 0.6668 | | 64UniSample + SVR | 0.8065 | | AlexNet | 0.8298 | | ResNet18 | 0.8513 | | ResNeXt50 | 0.8777 | | **TransFBP (Ours)** | 0.8519 | ## Examples ![eccv_pred](./eccv_pred.png) ## Resources * [Pretrained Model on SCUT-FBP5500](https://drive.google.com/file/d/1iPr3zLbWvKlYco988Xis4IerkeSaNk5j/view?usp=sharing) * [Pretrained VGG-Face Weights](https://drive.google.com/file/d/1Iy2MclKGL2uIlfUttHl0tT_M8SJ8wpI8/view?usp=sharing) ## Citation If you find the code or the experimental results useful in your research, please consider citing our paper as: ``` @article{xu2018transferring, title={Transferring Rich Deep Features for Facial Beauty Prediction}, author={Xu, Lu and Xiang, Jinhai and Yuan, Xiaohui}, journal={arXiv preprint arXiv:1803.07253}, year={2018} } ```