# SCURM_SentryNavigation **Repository Path**: libaos/SCURM_SentryNavigation ## Basic Information - **Project Name**: SCURM_SentryNavigation - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-10 - **Last Updated**: 2025-07-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SCURM火锅战队 24赛季哨兵导航 开源的初衷是想把自己的一些好的想法和大家一起分享,所以欢迎各位联系我和我讨论,欢迎PR,提issue🫠~ 主要的创新: 1. 实现FAST-LIO2的重定位模式,不需要另外运行重定位算法。算力需求小,使得整个框架在NUC12上的资源占用在30%左右;精度高,定位误差小;内存占用不会随着时间增长。 2. 改进navigation2的故障恢复行为,卡住时机器人会向无碰撞的方向运动。 算法框架和思路详见技术报告 Gazebo仿真指路👉[SCURM_Nav_Tutorial](https://github.com/PolarisXQ/SCURM_Nav_Tutorial.git) Docker镜像使用方法参阅[DevcontainterGuide](./DevcontainterGuide.md) ## 包说明 | Package Name | Description | |--------------|-------------| | ✅auto_aim_interfaces | 自瞄接口 | | ✅[autonomous_exploration_development_environment](https://github.com/HongbiaoZ/autonomous_exploration_development_environment) | 地形分析包terrain_analysis和terrain_analysis_ext,其他的是小工具无关紧要 | | ✅[BehaviourTree.CPP](https://github.com/BehaviorTree/BehaviorTree.CPP) | **MODIFIED** BehaviourTree lib | | ✅cmd_chassis | twist2chassis_cmd:将twist加上底盘的控制方式(如是否小陀螺),发出到串口接收的话题;
twist_transformer, fake_joint用于实现底盘到云台的速度解算 | | ✅control_panel | 模仿裁判系统发消息 | | ✅FAST_LIO | 修改版fastlio,具备建图和重定位功能(须配合icp_relocalizatiion使用) | | ✅icp_relocalization | 基于icp实现的重定位,须配合修改版FAST_LIO使用 | | ✅livox_ros_driver2 | livox雷达驱动 | | ✅nav2_plugins
- behavior_ext_plugins
- costmap_intensity | Costume nav2 plugins
- an enhenced back_up action that move toward free space
- 2 costmap_2d layer that use intensity filed of pointcloud msg rather than height (use with terrain analysis in autonomous_exploration_development_environment) | | ✅rm_decision_cpp | 烧饼决策系统 | | ✅rm_interfaces | 通讯协议 | | ✅sentry_bringup | 哨兵启动文件 | | ✅sentry_description | 烧饼urdf | ## LAUNCH ### MAPPING - launch mapping node ```bash ros2 launch sentry_bringup mapping.launch.py ``` - save map ```bash # occupancy grid map ros2 run nav2_map_server map_saver_cli -t /projected_map -f test_map --fmt png # save pcd ros2 service call /map_save std_srvs/srv/Trigger ``` - then terminate all nodes, pcd file will be saved in /PCD/scans.pcd ### MAP PROCESSING(使用CloudCompare删除建图中的人物残影, 如不处理可以跳过,但记得按照最后一步的提示替换掉pcd文件) process pcd file - drag the pcd file to CloudCompare(globalmap or scans.pcd), select the pointcloud in the left panel, then tools->clean->SOR filter, set the parameters (25,1 is a baseline) and apply - select the processed pointcloud from last step, then tools->segmentation->Label Connected Components, set the parameters and apply - pick out the CC#0(ususally this one), then tools->Other->Remove duplicate points, keep 1 point per 0.01-0.1m to reduce the size of the pointcloud - select the processed pointcloud, then file->save as, select .pcd format - replace the original pcd file with the processed one. Globally seach and replace '/home/sentry_ws/src/sentry_bringup/maps/GlobalMap.pcd' with '/path/to/your/map' ### LAUNCH ALL ```bash ros2 launch sentry_bringup bringup_all_in_one.launch.py ```