# labelme2coco **Repository Path**: javaovo/labelme2coco ## Basic Information - **Project Name**: labelme2coco - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-04 - **Last Updated**: 2025-03-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

labelme2coco

downloads pypi version ci fcakyon twitter

A lightweight package for converting your labelme annotations into COCO object detection format.

teaser

## Convert LabelMe annotations to COCO format in one step [labelme](https://github.com/wkentaro/labelme) is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats. However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations. You can use this package to convert labelme annotations to COCO format. ## Getting started ### Installation ``` pip install -U labelme2coco ``` ### Basic Usage ```python labelme2coco path/to/labelme/dir ``` ```python labelme2coco path/to/labelme/dir --train_split_rate 0.85 ``` ```python labelme2coco path/to/labelme/dir --category_id_start 1 ``` ### Advanced Usage ```python # import package import labelme2coco # set directory that contains labelme annotations and image files labelme_folder = "tests/data/labelme_annot" # set export dir export_dir = "tests/data/" # set train split rate train_split_rate = 0.85 # set category ID start value category_id_start = 1 # convert labelme annotations to coco labelme2coco.convert(labelme_folder, export_dir, train_split_rate, category_id_start=category_id_start) ``` ```python # import functions from labelme2coco import get_coco_from_labelme_folder, save_json # set labelme training data directory labelme_train_folder = "tests/data/labelme_annot" # set labelme validation data directory labelme_val_folder = "tests/data/labelme_annot" # set path for coco json to be saved export_dir = "tests/data/" # set category ID start value category_id_start = 1 # create train coco object train_coco = get_coco_from_labelme_folder(labelme_train_folder, category_id_start=category_id_start) # export train coco json save_json(train_coco.json, export_dir+"train.json") # create val coco object val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories, category_id_start=category_id_start) # export val coco json save_json(val_coco.json, export_dir+"val.json") ```