# manning **Repository Path**: firstuc/manning ## Basic Information - **Project Name**: manning - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-02 - **Last Updated**: 2023-12-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Grokking Machine Learning Book Repository This is the repo for the book "Grokking Machine Learning", available [here](https://www.manning.com/books/grokking-machine-learning). Get it with a 40% discount code: **serranopc** ![image](GML.jpeg) ### Chapters: 1. What is machine learning? 2. Types of machine learning 3. Drawing a line close to our points: **Linear regression** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_3_Linear_Regression) 4. Optimizing the training process: **Underfitting**, **overfitting**, **testing**, and **regularization** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting) 5. Using lines to split our points: **The perceptron algorithm** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_5_Perceptron_Algorithm) 6. A continuous approach to splitting points: **Logistic classifiers** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_6_Logistic_Regression) 7. How do you measure classification models?: **Accuracy** and its friends 8. Using probability to its maximum: The **Naive Bayes** model [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_8_Naive_Bayes) 9. Splitting data by asking questions: **Decision trees** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_9_Decision_Trees) 10. Combining building blocks to gain more power: **Neural networks** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks) 11. Finding boundaries with style: **Support vector machines** and the **kernel method** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines) 12. Combining models to maximize results: **Ensemble learning** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods) 13. Putting it all in practice: A real life example of **data engineering** and **machine learning** [(code)](https://github.com/luisguiserrano/manning/tree/master/Chapter_13_End_to_end_example)