diff --git a/cv/classification/resnet50/pytorch/README.md b/cv/classification/resnet50/pytorch/README.md index 5a4f9318ca88b8ad6fb6135e5a595322c691cc2d..c388ce51cec2e50c43c1404bb6d5c5ede3cbe435 100644 --- a/cv/classification/resnet50/pytorch/README.md +++ b/cv/classification/resnet50/pytorch/README.md @@ -6,6 +6,7 @@ Residual Networks, or ResNets, learn residual functions with reference to the la ```bash pip3 install torch torchvision ``` +Sign up and login in [imagenet official website](https://www.image-net.org/index.php), then choose 'Download' to download the whole imagenet dataset. Specify `/path/to/imagenet` to your imagenet path in later training process. :beers: Done! ## Step 2: Training diff --git a/cv/classification/shufflenetv2/pytorch/README.md b/cv/classification/shufflenetv2/pytorch/README.md index 6a4542cda1fe20c093ef5f2cbb6a489b07dcbfde..6c9725a500616e6621e2e71c3bf8b265fe4a9d12 100644 --- a/cv/classification/shufflenetv2/pytorch/README.md +++ b/cv/classification/shufflenetv2/pytorch/README.md @@ -5,6 +5,7 @@ ShuffleNet v2 is a convolutional neural network optimized for a direct metric (s ```bash pip3 install -r requirements.txt ``` +Sign up and login in [imagenet official website](https://www.image-net.org/index.php), then choose 'Download' to download the whole imagenet dataset. Specify `/path/to/imagenet` to your imagenet path in later training process. :beers: Done! ## Step 2: Training diff --git a/cv/classification/vgg/pytorch/README.md b/cv/classification/vgg/pytorch/README.md index f5176b322e11291f61be098411f3459814b5a018..56618b647f42fd3f8175572d8b7a9d5e519d846c 100644 --- a/cv/classification/vgg/pytorch/README.md +++ b/cv/classification/vgg/pytorch/README.md @@ -7,6 +7,7 @@ VGG is a classical convolutional neural network architecture. It was based on an ```bash pip3 install -r requirements.txt ``` +Sign up and login in [imagenet official website](https://www.image-net.org/index.php), then choose 'Download' to download the whole imagenet dataset. Specify `/path/to/imagenet` to your imagenet path in later training process. :beers: Done! ## Step 2: Training diff --git a/cv/semantic_segmentation/unet3d/pytorch/README.md b/cv/semantic_segmentation/unet3d/pytorch/README.md index da531c3f2a7fa326e305c475bce0a6626bbc384c..5ecbccff27eda4510648dee6e0337d7359c79d3a 100644 --- a/cv/semantic_segmentation/unet3d/pytorch/README.md +++ b/cv/semantic_segmentation/unet3d/pytorch/README.md @@ -31,7 +31,7 @@ else: ```shell -bash prepare.sh /url/to/kits19/ +bash prepare.sh ``` diff --git a/cv/semantic_segmentation/unet3d/pytorch/prepare.sh b/cv/semantic_segmentation/unet3d/pytorch/prepare.sh index 844fc8465efba828f527504dcc3cf75bb841e558..70c8207966ead21f6c9587d4993e2a22983772c0 100644 --- a/cv/semantic_segmentation/unet3d/pytorch/prepare.sh +++ b/cv/semantic_segmentation/unet3d/pytorch/prepare.sh @@ -1,18 +1,16 @@ #!/bin/bash echo "prepare data..." -DATA_URL=$1 -mkdir -p data/kits19/train - -data_file="data/kits19/train/kits19.tar.gz" +git clone https://github.com/neheller/kits19 +cd kits19 +pip3 install -r requirements.txt +python3 -m starter_code.get_imaging +cd .. -if [ ! -e ${data_file} ]; then - echo "ERROR: Invalid data file ${data_file}" - wget -P data/kits19/train ${DATA_URL} -fi +mkdir -p data/kits19/train -echo "Uncompressing the kits19!" -tar -xf ${data_file} -C data/kits19/train +python3 preprocess_dataset.py --data_dir kits19/data --results_dir data/kits19/train +echo "data done!"