diff --git a/cv/ocr/sar/pytorch/README.md b/cv/ocr/sar/pytorch/README.md index c36e6d3c7e3e321e8b158ece89952315875447de..1d792b27b92e049f8c1b386fda3a48b46be841ea 100755 --- a/cv/ocr/sar/pytorch/README.md +++ b/cv/ocr/sar/pytorch/README.md @@ -6,26 +6,25 @@ Recognizing irregular text in natural scene images is challenging due to the lar ## Step 1: Installing packages -``` -$ cd /sar/pytorch/csrc -$ bash clean.sh -$ bash build.sh -$ bash install.sh -$ cd .. -$ pip3 install -r requirements.txt +```shell +cd csrc/ +bash clean.sh +bash build.sh +bash install.sh +cd .. +pip3 install -r requirements.txt ``` ## Step 2: Preparing datasets ```shell -$ mkdir data -$ cd data +mkdir data/ +cd data/ ``` -https://mmocr.readthedocs.io/zh_CN/latest/datasets/recog.html - +Download datasets from this [page](https://mmocr.readthedocs.io/zh_CN/latest/datasets/recog.html), +data folder would be like below: -- when done data folder looks like ``` ├── mixture │ ├── coco_text @@ -101,12 +100,12 @@ https://mmocr.readthedocs.io/zh_CN/latest/datasets/recog.html ### Training on single card ```shell -$ python3 train.py configs/sar_r31_parallel_decoder_academic.py +python3 train.py configs/sar_r31_parallel_decoder_academic.py ``` ### Training on mutil-cards ```shell -$ bash dist_train.sh configs/sar_r31_parallel_decoder_academic.py 8 +bash dist_train.sh configs/sar_r31_parallel_decoder_academic.py 8 ``` ## Reference