# feature-detection-matching-algorithm **Repository Path**: codepool_admin/feature-detection-matching-algorithm ## Basic Information - **Project Name**: feature-detection-matching-algorithm - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-06-21 - **Last Updated**: 2024-06-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # feature detection and matching algorithm models ## Introduction 🚀🚀This warehouse mainly uses C++ to compare traditional image feature detection and matching, and deep learning feature detection and matching algorithm models. Deep learning includes superpoint-superglue, and traditional algorithms include AKAZE, SURF, ORB, etc. 1. akaze feature point detection and matching display. ![akaze-image](./image/akaze_example.gif) 2. superpoint-superpoint feature point detection and matching display. ![akaze-video](./image/deep-learning_example.gif) ## Dependencies All operating environments, please strictly follow the given configuration,the configuration is as follows: OpenCV >= 3.4 CUDA >=10.2 CUDNN>=8.02 TensorRT>=7.2.3 ## How to Run 1. build. ``` cd feature-detection-matching-algorithm/ mkdir build cd build cmake .. make ``` 2. run camera. deep learning algorithms. ``` ./IR --deeplearning --camera 0 ``` traditional algorithms. ``` ./IR --traditional --camera 0 ``` 3. run image-pair. deep learning algorithms. ``` ./IR --deeplearning --image-pair xx01.jpg xx02.jpg ``` traditional algorithms. ``` ./IR --traditional --image-pair xx01.jpg xx02.jpg ``` ## Models TRT https://pan.baidu.com/s/1CoK_KuC42BFD-mtO-BBhHg Code:cb7x ## TODO - [ ] Optimizing post-processing using custom TensorRT layer or Cublass. - [ ] Model conversion script. - [ ] support for FP16/INT8. ## Discussion WeChat ID: sigma1573 Welcome to *add* WeChat(note: unit + name) and join the group discussion! For more details, please refer to zhihu: https://zhuanlan.zhihu.com/p/518877309 ## SuperPoint Superpoint pretrained models are from [magicleap/SuperPointPretrainedNetwork.](https://github.com/magicleap/SuperPointPretrainedNetwork) ## SuperGlue SuperGlue pretrained models are from [magicleap/SuperGluePretrainedNetwork.](https://github.com/magicleap/SuperGluePretrainedNetwork) ## Reference ``` @inproceedings{sarlin20superglue, author = {Paul-Edouard Sarlin and Daniel DeTone and Tomasz Malisiewicz and Andrew Rabinovich}, title = {{SuperGlue}: Learning Feature Matching with Graph Neural Networks}, booktitle = {CVPR}, year = {2020}, url = {https://arxiv.org/abs/1911.11763} } ```