# Recursive-Autoencoder **Repository Path**: code0_FC/Recursive-Autoencoder ## Basic Information - **Project Name**: Recursive-Autoencoder - **Description**: Consist of Recursive Autoencoder for phrase and sentence vector generation using word vectors and dependency tree - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Recursive-Autoencoder Consist of Recursive Autoencoder for phrase and sentence vector generation using word vectors and dependency tree To execute the code python 2.7 and following packages are required: > keras > numpy > practnlptools To perform paraphrasing detection test run the following: > $ python sent_test.py E.g.: > $ python sent_test.py > Enter Sentence1 : Consumers would still have to get a descrambling security card from their cable operator to plug into the set. > Enter Sentence2 : To watch pay television, consumers would insert into the set a security card provided by their cable service. > Result: Not Paraphrase > Phrase Similarity value(0=similar, above 0=dissimilarity index) > ('consumers', 'cable') : 0.824109976887 > ('still', 'set') : 0.680742255176 > ('descrambling', 'cable') : 0.944514994194 > ('security', 'security') : 0.0 > ('cable', 'cable') : 0.0 > ('set', 'set') : 0.0 > ('plug set', 'the set') : 0.800121098315 > ('cable operator', 'cable service') : 0.765510384122 > ('descrambling security card', 'television consumers') : 1.01668589084 > ('get descrambling security card cable operator plug set', 'pay television consumers') : 1.17636987178 > ('consumers still have get descrambling security card cable operator plug set', 'watch pay television consumers') : 1.1848175183 Things to Note: should provide word vector file at: >> modelFile = '/media/zero/41FF48D81730BD9B/DT_RAE/data/word_embeddings/50/wiki_word50.vector.pickle'