# facexlib
**Repository Path**: cndavy/facexlib
## Basic Information
- **Project Name**: facexlib
- **Description**: No description available
- **Primary Language**: Python
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-06-29
- **Last Updated**: 2024-06-29
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
#  FaceXLib
[](https://pypi.org/project/facexlib/)
[](https://github.com/xinntao/facexlib/releases)
[](https://github.com/xinntao/facexlib/issues)
[](https://github.com/xinntao/facexlib/issues)
[](https://github.com/xinntao/facexlib/blob/master/LICENSE)
[](https://github.com/xinntao/facexlib/blob/master/.github/workflows/pylint.yml)
[](https://github.com/xinntao/facexlib/blob/master/.github/workflows/publish-pip.yml)
[English](README.md) **|** [简体中文](README_CN.md)
---
**facexlib** aims at providing ready-to-use **face-related** functions based on current SOTA open-source methods.
Only PyTorch reference codes are available. For training or fine-tuning, please refer to their original repositories listed below.
Note that we just provide a collection of these algorithms. You need to refer to their original LICENCEs for your intended use.
If facexlib is helpful in your projects, please help to :star: this repo. Thanks:blush:
Other recommended projects: :arrow_forward: [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) :arrow_forward: [GFPGAN](https://github.com/TencentARC/GFPGAN) :arrow_forward: [BasicSR](https://github.com/xinntao/BasicSR)
---
## :sparkles: Functions
| Function | Sources | Original LICENSE |
| :--- | :---: | :---: |
| [Detection](facexlib/detection/README.md) | [Pytorch_Retinaface](https://github.com/biubug6/Pytorch_Retinaface) | MIT |
| [Alignment](facexlib/alignment/README.md) |[AdaptiveWingLoss](https://github.com/protossw512/AdaptiveWingLoss) | Apache 2.0 |
| [Recognition](facexlib/recognition/README.md) | [InsightFace_Pytorch](https://github.com/TreB1eN/InsightFace_Pytorch) | MIT |
| [Parsing](facexlib/parsing/README.md) | [face-parsing.PyTorch](https://github.com/zllrunning/face-parsing.PyTorch) | MIT |
| [Matting](facexlib/matting/README.md) | [MODNet](https://github.com/ZHKKKe/MODNet) | CC 4.0 |
| [Headpose](facexlib/headpose/README.md) | [deep-head-pose](https://github.com/natanielruiz/deep-head-pose) | Apache 2.0 |
| [Tracking](facexlib/tracking/README.md) | [SORT](https://github.com/abewley/sort) | GPL 3.0 |
| [Assessment](facexlib/assessment/README.md) | [hyperIQA](https://github.com/SSL92/hyperIQA) | - |
| [Utils](facexlib/utils/README.md) | Face Restoration Helper | - |
## :eyes: Demo and Tutorials
## :wrench: Dependencies and Installation
- Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html))
- [PyTorch >= 1.7](https://pytorch.org/)
- Option: NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads)
### Installation
```bash
pip install facexlib
```
### Pre-trained models
It will **automatically** download pre-trained models at the first inference.
If your network is not stable, you can download in advance (may with other download tools), and put them in the folder: `PACKAGE_ROOT_PATH/facexlib/weights`.
## :scroll: License and Acknowledgement
This project is released under the MIT license.
## :e-mail: Contact
If you have any question, open an issue or email `xintao.wang@outlook.com`.