# pixel_sampling **Repository Path**: chaucerg/pixel_sampling ## Basic Information - **Project Name**: pixel_sampling - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-13 - **Last Updated**: 2021-11-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Semantic-guided Pixel Sampling for Cloth-Changing Person Re-identification In our paper [IEEE](https://ieeexplore.ieee.org/abstract/document/9463711/), we propose a semantic-guided pixel sampling approach for the cloth-changing person re-ID task. This repo contains the training and testing codes. ## Prepare Dataset 1. Download the PRCC dataset: [PRCC](http://isee-ai.cn/~yangqize/clothing.html) 2. Obtain the human body parts: [SCHP](https://github.com/PeikeLi/Self-Correction-Human-Parsing) ## Trained Models The trained models can be downloaded in BaiduPan: [models](https://pan.baidu.com/s/1JOOJp_NPbsU19DdBr7ze9g) password: 6ulj ``` Put the trained models to corresponding directories: >pixel_sampling/imagenet/resnet50-19c8e357.pth >pixel_sampling/logs/prcc_base/checkpoint_best.pth >pixel_sampling/logs/prcc_hpm/checkpoint_best.pth >...... ``` ## Training and Testing Models Only need to modify several parameters: ``` >parser.add_argument('--train', type=str, default='train', help='train, test') >parser.add_argument('--data_dir', type=str, default='/data/prcc/') ``` then ``` >python train_prcc_base.py ``` ## Citations ```bibtex @article{shu2021semantic, title={Semantic-guided Pixel Sampling for Cloth-Changing Person Re-identification}, author={Shu, Xiujun and Li, Ge and Wang, Xiao and Ruan, Weijian and Tian, Qi}, journal={IEEE Signal Processing Letters}, volume={28}, pages={1365-1369}, year={2021}, } ```