# simtrack **Repository Path**: bigabcd_0/simtrack ## Basic Information - **Project Name**: simtrack - **Description**: simtrack - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-02-14 - **Last Updated**: 2024-10-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Exploring Simple 3D Multi-Object Tracking for Autonomous Driving

[Chenxu Luo](https://chenxuluo.github.io/), [Xiaodong Yang](https://xiaodongyang.org/), [Alan Yuille](https://www.cs.jhu.edu/~ayuille/)
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving, ICCV 2021
[[Paper]](https://arxiv.org/pdf/2108.10312.pdf) [[Poster]](poster.pdf) [[YouTube]](https://www.youtube.com/watch?v=awK1O-wf_74) ## Getting Started ### Installation Please refer to [INSTALL](INSTALL.md) for the detail. ### Data Preparation * [nuScenes](https://www.nuscenes.org) ``` python ./tools/create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10 ``` * [Waymo Open Dataset](https://waymo.com/open/) (TODO) ### Training ``` python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/point_pillars/configs/nusc_all_pp_centernet_tracking.py --work_dir SAVE_DIR ``` ### Test In `./model_zoo` we provide our trained (pillar based) model on nuScenes. Note: We currently only support inference with a single GPU. ``` python ./tools/val_nusc_tracking.py examples/point_pillars/configs/nusc_all_pp_centernet_tracking.py --checkpoint CHECKPOINTFILE --work_dir SAVE_DIR ``` ## Citation Please cite the following paper if this repo helps your research: ```bibtex @InProceedings{Luo_2021_ICCV, author = {Luo, Chenxu and Yang, Xiaodong and Yuille, Alan}, title = {Exploring Simple 3D Multi-Object Tracking for Autonomous Driving}, booktitle = {International Conference on Computer Vision (ICCV)}, year = {2021} } ``` ## License Copyright (C) 2021 QCraft. All rights reserved. Licensed under the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) (Attribution-NonCommercial-ShareAlike 4.0 International). The code is released for academic research use only. For commercial use, please contact [business@qcraft.ai](business@qcraft.ai).