# powerful-numpy **Repository Path**: Jacoob/powerful-numpy ## Basic Information - **Project Name**: powerful-numpy - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-06-29 - **Last Updated**: 2024-06-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 巨硬的NumPy `巨硬的NumPy` 教程包括两部分:《从小白到入门》和《从入门到熟练》。 - 《从小白到入门》旨在帮助没有基础的同学快速掌握 `numpy` 的常用功能,保证日常绝大多数场景的使用。 - 《从入门到熟练》目的是帮助有进一步需要的同学对 `numpy` 进行更深入地了解,主要包括基本概念、操作,原理分析和例子。 设计思想: - 两部分侧重点不同的教程 - 章节互相独立可单独学习 ## 从小白到入门 B站配套视频:[巨硬的Numpy:从小白到入门_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1Ym4y1U7at/?share_source=copy_web&vd_source=cea86f777e9ba73f1a486c90773fcb03) ### 原则 - 偏实用高频 API - 展示实际用法 - 简单直接 ### 大纲 >已列出重要接口。 - [创建和生成](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#创建和生成) - [从 python 列表或元组创建](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#从-python-列表或元组创建) - [使用 arange 生成](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#使用-arange-生成) - [使用 linspace/logspace 生成](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#使用-linspace/logspace-生成) - [`np.linspace`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.linspace) - [使用 ones/zeros 创建](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#使用-ones/zeros-创建) - [使用 random 生成](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#使用-random-生成) - [从文件读取](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#从文件读取) - [统计和属性](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#统计和属性) - [尺寸相关](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#尺寸相关) - [`np.shape`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.shape) - [最值分位](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#最值分位) - [`np.max/min`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.max/min) - [平均求和标准差](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#平均求和标准差) - [`np.average`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.average) - [`np.sum`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.sum) - [形状和转换](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#形状和转换) - [改变形状](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#改变形状) - [`np.expand_dims`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.expand_dims) - [`np.squeeze`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.squeeze) - [`np.reshape/arr.reshape`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.reshape/arr.reshape) - [反序](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#反序) - [转置](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#转置) - [`arr.T`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#arr.T) - [`np.transpose`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.transpose) - [分解和组合](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#分解和组合) - [切片和索引](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#切片和索引) - [`index/slice`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#index/slice) - [拼接](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#拼接) - [`np.concatenate`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.concatenate) - [`np.stack`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.stack) - [重复](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#重复) - [分拆](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#分拆) - [`np.split`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.split) - [筛选和过滤](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#筛选和过滤) - [条件筛选](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#条件筛选) - [提取](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#提取) - [抽样](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#抽样) - [最值 Index](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#最值-Index) - [`np.argmax/argmin`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.argmax/argmin) - [`np.argsort`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.argsort) - [矩阵和运算](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#矩阵和运算) - [算术](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#算术) - [矩阵](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#矩阵) - [`arr.dot`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#arr.dot) - [`np.matmul`](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#np.matmul) - [小结和心得](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#小结和心得) - [内容小结](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#内容小结) - [心得技巧](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#心得技巧) - [巩固和练习](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#巩固和练习) - [基础题目 1](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#基础题目1) - [基础题目 2](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#基础题目2) - [进阶题目](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#进阶题目) - [解答和参考](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#解答和参考) - [基础题目 1](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#基础题目1) - [基础题目 2](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#基础题目2) - [进阶题目](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#进阶题目) - [文献和资料](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/introduction/ch-all.ipynb#文献和资料) ## 从入门到熟练 智海课程链接:[巨硬的 NumPy - 课程 - Mo](https://aiplusx.momodel.cn/classroom/class/658d2c90891ad518e0274bba?activeKey=section) ### 原则 - 系统全面 - 原理介绍 - 例子辅助理解 ### 大纲 - [核心概念](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb) - [常量](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb#常量) - [数据类型](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb#数据类型) - [结构化数组](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb#结构化数组) - [时间数组](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb#时间数组) - [数组对象](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb#数组对象) - [自定义数组容器](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb#自定义数组容器) - [子类化与标准子类](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch01-core_concepts.ipynb#子类化与标准子类) - [操作变换](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb) - [广播](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb#广播) - [通函数](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb#通函数) - [基本操作](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb#基本操作) - [排序搜索](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb#排序搜索) - [集合操作](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb#集合操作) - [函数式编程](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb#函数式编程) - [测试](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch02-manipulation.ipynb#测试) - [数值计算](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb) - [数学函数](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb#数学函数) - [数值分析](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb#数值分析) - [导数和微积分](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb#导数和微积分) - [多项式](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb#多项式) - [逻辑运算](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb#逻辑运算) - [二进制运算](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb#二进制运算) - [字符串](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch03-numeric_calculation.ipynb#字符串) - [线性代数](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb) - [数组乘法](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb#数组乘法) - [基础概念](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb#基础概念) - [矩阵运算](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb#矩阵运算) - [Einsum](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb#Einsum) - [Padding](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb#Padding) - [卷积](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb#卷积) - [掩码运算](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch04-linear_algebra.ipynb#掩码运算) - [概率统计](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb) - [基本指标](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb#基本指标) - [相关性](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb#相关性) - [柱状图](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb#柱状图) - [计数](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb#计数) - [随机生成器](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb#随机生成器) - [随机排列](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb#随机排列) - [随机分布](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch05-probability_statistics.ipynb#随机分布) - [不止NumPy](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb) - [Numba](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb#Numba) - [JAX](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb#JAX) - [Cython](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb#Cython) - [CuPy](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb#CuPy) - [Sparse](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb#Sparse) - [Dask](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb#Dask) - [Xarray](https://nbviewer.org/github/datawhalechina/powerful-numpy/blob/main/src/skilled/ch06-morethan_numpy.ipynb#Xarray) ## 社区反馈 反馈来自社区。格式:`微信昵称:意见`。谢谢诸位反馈。 - 潭:语速有点快;切片和索引希望详细点。 - 我的名字:重点部分放慢速度,非重点也许可以跳过。 - Channer:常用的、不容易理解的参数可以重点讲一下,举一些简单的例子。