# DGMM **Repository Path**: HavenKey/DGMM ## Basic Information - **Project Name**: DGMM - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-26 - **Last Updated**: 2021-11-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Code for paper “Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multi-view Learning” > - Authors: Changde Du, Changying Du, Lijie Huang, Huiguang He This repository contains the implementation of the Deep Generative Multi-view Model (DGMM) described in [Sharing deep generative representation for perceived image reconstruction from human brain activity](https://ieeexplore.ieee.org/document/7965968) and [Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multi-view Learning](https://ieeexplore.ieee.org/document/8574054). ![Graphical models](Pro.png) ![Illustration of the proposed DGMM framework](framework.png) ![Resluts](69results.png) ## Dependencies - Keras - numpy - scipy - matlab ## Usage - run the file DGMM_Keras.py directly. ## Cite Please cite our paper if you use this code in your own work: ``` @article{du2018reconstructing, title={Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multi-view Learning}, author={Du, Changde and Du, Changying and Huang, Lijie and He, Huiguang}, journal={IEEE Transactions on Neural Networks and Learning Systems}, year={2018} } ``` ``` @inproceedings{du2017sharing, title={Sharing deep generative representation for perceived image reconstruction from human brain activity}, author={Du, Changde and Du, Changying and He, Huiguang}, booktitle={IJCNN}, year={2017} } ```