# UI-TARS **Repository Path**: BrucePan/UI-TARS ## Basic Information - **Project Name**: UI-TARS - **Description**: No description available - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: docs-readme - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-18 - **Last Updated**: 2025-05-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 
🌐 Website   | 🤗 Hugging Face Models  
|    🔧 Deployment    |    📑 Paper    |  
🖥️ UI-TARS-desktop  
🏄 Midscene (Browser Automation)    |   🫨 Discord  
## Deployment - See the deploy guide here. - For coordinates processing, refer to here. - For full action space parsing, refer to [OSWorld uitars_agent.py](https://github.com/xlang-ai/OSWorld/blob/main/mm_agents/uitars_agent.py) ## System Prompts - Refer to prompts.py ## Performance **Online Benchmark Evaluation** | Benchmark type | Benchmark | UI-TARS-1.5 | OpenAI CUA | Claude 3.7 | Previous SOTA | |----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------------| | **Computer Use** | [OSworld](https://arxiv.org/abs/2404.07972) (100 steps) | **42.5** | 36.4 | 28 | 38.1 (200 step) | | | [Windows Agent Arena](https://arxiv.org/abs/2409.08264) (50 steps) | **42.1** | - | - | 29.8 | | **Browser Use** | [WebVoyager](https://arxiv.org/abs/2401.13919) | 84.8 | **87** | 84.1 | 87 | | | [Online-Mind2web](https://arxiv.org/abs/2504.01382) | **75.8** | 71 | 62.9 | 71 | | **Phone Use** | [Android World](https://arxiv.org/abs/2405.14573) | **64.2** | - | - | 59.5 | **Grounding Capability Evaluation** | Benchmark | UI-TARS-1.5 | OpenAI CUA | Claude 3.7 | Previous SOTA | |-----------|-------------|------------|------------|----------------| | [ScreenSpot-V2](https://arxiv.org/pdf/2410.23218) | **94.2** | 87.9 | 87.6 | 91.6 | | [ScreenSpotPro](https://arxiv.org/pdf/2504.07981v1) | **61.6** | 23.4 | 27.7 | 43.6 | **Poki Game** | Model | [2048](https://poki.com/en/g/2048) | [cubinko](https://poki.com/en/g/cubinko) | [energy](https://poki.com/en/g/energy) | [free-the-key](https://poki.com/en/g/free-the-key) | [Gem-11](https://poki.com/en/g/gem-11) | [hex-frvr](https://poki.com/en/g/hex-frvr) | [Infinity-Loop](https://poki.com/en/g/infinity-loop) | [Maze:Path-of-Light](https://poki.com/en/g/maze-path-of-light) | [shapes](https://poki.com/en/g/shapes) | [snake-solver](https://poki.com/en/g/snake-solver) | [wood-blocks-3d](https://poki.com/en/g/wood-blocks-3d) | [yarn-untangle](https://poki.com/en/g/yarn-untangle) | [laser-maze-puzzle](https://poki.com/en/g/laser-maze-puzzle) | [tiles-master](https://poki.com/en/g/tiles-master) | |-------------|-----------|--------------|-------------|-------------------|-------------|---------------|---------------------|--------------------------|-------------|--------------------|----------------------|---------------------|------------------------|---------------------| | OpenAI CUA | 31.04 | 0.00 | 32.80 | 0.00 | 46.27 | 92.25 | 23.08 | 35.00 | 52.18 | 42.86 | 2.02 | 44.56 | 80.00 | 78.27 | | Claude 3.7 | 43.05 | 0.00 | 41.60 | 0.00 | 0.00 | 30.76 | 2.31 | 82.00 | 6.26 | 42.86 | 0.00 | 13.77 | 28.00 | 52.18 | | UI-TARS-1.5 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | **Minecraft** | Task Type | Task Name | [VPT](https://openai.com/index/vpt/) | [DreamerV3](https://www.nature.com/articles/s41586-025-08744-2) | Previous SOTA | UI-TARS-1.5 w/o Thought | UI-TARS-1.5 w/ Thought | |-------------|---------------------|----------|----------------|--------------------|------------------|-----------------| | Mine Blocks | (oak_log) | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 | | | (obsidian) | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | | | (white_bed) | 0.0 | 0.0 | 0.1 | 0.4 | 0.6 | | | **200 Tasks Avg.** | 0.06 | 0.03 | 0.32 | 0.35 | 0.42 | | Kill Mobs | (mooshroom) | 0.0 | 0.0 | 0.1 | 0.3 | 0.4 | | | (zombie) | 0.4 | 0.1 | 0.6 | 0.7 | 0.9 | | | (chicken) | 0.1 | 0.0 | 0.4 | 0.5 | 0.6 | | | **100 Tasks Avg.** | 0.04 | 0.03 | 0.18 | 0.25 | 0.31 | ## Model Scale Comparison Here we compare performance across different model scales of UI-TARS on the OSworld benchmark. | **Benchmark Type** | **Benchmark** | **UI-TARS-72B-DPO** | **UI-TARS-1.5-7B** | **UI-TARS-1.5** | |--------------------|------------------------------------|---------------------|--------------------|-----------------| | Computer Use | [OSWorld](https://arxiv.org/abs/2404.07972) | 24.6 | 27.5 | **42.5** | | GUI Grounding | [ScreenSpotPro](https://arxiv.org/pdf/2504.07981v1) | 38.1 | 49.6 | **61.6** | ### Limitations While UI-TARS-1.5 represents a significant advancement in multimodal agent capabilities, we acknowledge several important limitations: - **Misuse:** Given its enhanced performance in GUI tasks, including successfully navigating authentication challenges like CAPTCHA, UI-TARS-1.5 could potentially be misused for unauthorized access or automation of protected content. To mitigate this risk, extensive internal safety evaluations are underway. - **Computation:** UI-TARS-1.5 still requires substantial computational resources, particularly for large-scale tasks or extended gameplay scenarios. - **Hallucination**: UI-TARS-1.5 may occasionally generate inaccurate descriptions, misidentify GUI elements, or take suboptimal actions based on incorrect inferences—especially in ambiguous or unfamiliar environments. - **Model scale:** The released UI-TARS-1.5-7B focuses primarily on enhancing general computer use capabilities and is not specifically optimized for game-based scenarios, where the UI-TARS-1.5 still holds a significant advantage. ## What's next We are providing early research access to our top-performing UI-TARS-1.5 model to facilitate collaborative research. Interested researchers can contact us at TARS@bytedance.com. Looking ahead, we envision UI-TARS evolving into increasingly sophisticated agentic experiences capable of performing real-world actions, thereby empowering platforms such as [doubao](https://team.doubao.com/en/) to accomplish more complex tasks for you :) ## Star History [](https://www.star-history.com/#bytedance/UI-TARS&Date) ## Citation If you find our paper and model useful in your research, feel free to give us a cite. ```BibTeX @article{qin2025ui, title={UI-TARS: Pioneering Automated GUI Interaction with Native Agents}, author={Qin, Yujia and Ye, Yining and Fang, Junjie and Wang, Haoming and Liang, Shihao and Tian, Shizuo and Zhang, Junda and Li, Jiahao and Li, Yunxin and Huang, Shijue and others}, journal={arXiv preprint arXiv:2501.12326}, year={2025} } ```