# weatherflow
**Repository Path**: AI4EarthLab/weatherflow
## Basic Information
- **Project Name**: weatherflow
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-11-13
- **Last Updated**: 2025-12-30
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# WeatherFlow: Flow Matching for Weather Prediction
WeatherFlow is a Python library built on PyTorch that provides a flexible and extensible framework for developing weather prediction models using flow matching techniques. It integrates seamlessly with ERA5 reanalysis data and incorporates physics-guided neural network architectures.
## Key Features
* **Flow Matching Models:** Implementation of continuous normalizing flows for weather prediction, inspired by Meta AI's approach
* **Physics-Guided Architectures:** Neural networks that respect physical constraints
* **ERA5 Data Integration:** Robust loading of ERA5 reanalysis data from multiple sources
* **Spherical Geometry:** Proper handling of Earth's spherical surface for global weather modeling
* **Visualization Tools:** Comprehensive utilities for visualizing predictions and flow fields
* **Graduate Learning Studio:** Interactive, physics-rich dashboards for atmospheric dynamics education
## Installation
```bash
# Clone the repository
git clone https://github.com/monksealseal/weatherflow.git
cd weatherflow
# Install in development mode
pip install -e .
# Install extra dependencies for development
pip install -r requirements-dev.txt
```
## Quick Start
Here's a minimal example to get started:
```python
from weatherflow.data import ERA5Dataset, create_data_loaders
from weatherflow.models import WeatherFlowMatch
from weatherflow.utils import WeatherVisualizer
import torch
# Load data
train_loader, val_loader = create_data_loaders(
variables=['z', 't'], # Geopotential and temperature
pressure_levels=[500], # Single pressure level
train_slice=('2015', '2016'), # Training years
val_slice=('2017', '2017'), # Validation year
batch_size=32
)
# Create model
model = WeatherFlowMatch(
input_channels=2, # Number of variables
hidden_dim=128, # Hidden dimension
n_layers=4, # Number of layers
physics_informed=True # Use physics constraints
)
# Train model (simple example)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Train for one epoch
model.train()
for batch in train_loader:
x0, x1 = batch['input'].to(device), batch['target'].to(device)
t = torch.rand(x0.size(0), device=device)
loss = model.compute_flow_loss(x0, x1, t)['total_loss']
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Generate predictions
from weatherflow.models import WeatherFlowODE
ode_model = WeatherFlowODE(model)
x0 = next(iter(val_loader))['input'].to(device)
times = torch.linspace(0, 1, 5, device=device) # 5 time steps
with torch.no_grad():
predictions = ode_model(x0, times)
# Visualize results
visualizer = WeatherVisualizer()
vis_var = 'z' # Geopotential
var_idx = 0
visualizer.plot_comparison(
true_data={vis_var: x0[0, var_idx].cpu()},
pred_data={vis_var: predictions[-1, 0, var_idx].cpu()},
var_name=vis_var,
title="Prediction vs Truth"
)
```
## Documentation
The `docs/` directory contains an extensive MkDocs site covering installation,
data ingestion, model APIs, advanced usage patterns, and tutorials. Build it
locally with:
```bash
pip install -e .[docs]
mkdocs serve
```
Then open `http://localhost:8000` to browse the rendered documentation.
## Comprehensive Example
For a more comprehensive example, see the `examples/weather_prediction.py` script, which demonstrates:
1. Loading ERA5 data
2. Training a flow matching model with physics constraints
3. Generating predictions for different lead times
4. Visualizing results
Run the example script:
```bash
python examples/weather_prediction.py --variables z t --pressure-levels 500 \
--train-years 2015 2016 --val-years 2017 --epochs 20 \
--use-attention --physics-informed --save-model --save-results
```
## Interactive Web Dashboard
WeatherFlow now ships with a lightweight FastAPI service and React-based
dashboard that let you explore the library without writing code. The dashboard
walks you through dataset synthesis, model configuration, training, and flow
visualisation using the core `WeatherFlowMatch` and `WeatherFlowODE`
components.
### 1. Start the API service
```bash
uvicorn weatherflow.server.app:app --reload --port 8000
```
The server exposes `/api/options` for configuration metadata and
`/api/experiments` to launch a synthetic training run that exercises the
weather flow models and ODE solver.
### 2. Install and run the React app
```bash
cd frontend
npm install
npm run dev
```
Open the printed URL (typically http://localhost:5173) in your browser to
interact with the dashboard. Use the panels on the left to configure data,
model, and training parameters, then run an experiment to inspect loss curves,
channel statistics, and generated trajectories on the right-hand side.
To produce a production build and run the component tests:
```bash
npm run build
npm test
```
## Key Components
### Data Loading
```python
from weatherflow.data import ERA5Dataset
# Load data directly from WeatherBench2
dataset = ERA5Dataset(
variables=['z', 't', 'u', 'v'], # Variables to load
pressure_levels=[850, 500, 250], # Pressure levels (hPa)
time_slice=('2015', '2016'), # Time period
normalize=True # Apply normalization
)
# Load from local netCDF file
local_dataset = ERA5Dataset(
data_path='/path/to/era5_data.nc',
variables=['z', 't'],
pressure_levels=[500]
)
```
### Flow Matching Models
```python
from weatherflow.models import WeatherFlowMatch
# Simple model
model = WeatherFlowMatch(
input_channels=4, # Number of variables
hidden_dim=256, # Hidden dimension
n_layers=4 # Number of layers
)
# Advanced model with physics constraints
advanced_model = WeatherFlowMatch(
input_channels=4,
hidden_dim=256,
n_layers=6,
use_attention=True, # Use attention mechanism
physics_informed=True, # Apply physics constraints
grid_size=(32, 64) # Latitude/longitude grid size
)
```
### ODE Solver for Prediction
```python
from weatherflow.models import WeatherFlowODE
# Create ODE solver with the trained flow model
ode_model = WeatherFlowODE(
flow_model=model,
solver_method='dopri5', # ODE solver method
rtol=1e-4, # Relative tolerance
atol=1e-4 # Absolute tolerance
)
# Generate predictions
x0 = initial_weather_state # Initial state
times = torch.linspace(0, 1, 5) # 5 time steps
predictions = ode_model(x0, times) # Shape: [time, batch, channels, lat, lon]
```
### Visualization
```python
from weatherflow.utils import WeatherVisualizer
visualizer = WeatherVisualizer()
# Compare prediction with ground truth
visualizer.plot_comparison(
true_data={'temperature': true_temp},
pred_data={'temperature': pred_temp},
var_name='temperature'
)
# Visualize flow field
visualizer.plot_flow_vectors(
u=u_wind, # U-component of wind
v=v_wind, # V-component of wind
background=geopotential, # Background field
var_name='geopotential'
)
# Create animation
visualizer.create_prediction_animation(
predictions=predictions[:, 0, 0], # Time evolution of first variable
var_name='temperature',
interval=200, # Animation speed (ms)
save_path='animation.gif'
)
```
## Advanced Usage
### Custom Flow Matching Models
You can create custom flow matching models by extending the base classes:
```python
import torch.nn as nn
from weatherflow.models import WeatherFlowMatch
class MyFlowModel(WeatherFlowMatch):
def __init__(self, input_channels, hidden_dim=256):
super().__init__(input_channels, hidden_dim)
# Add custom layers
self.extra_layer = nn.Linear(hidden_dim, hidden_dim)
def forward(self, x, t):
# Override forward method
h = super().forward(x, t)
# Add custom processing
h = self.extra_layer(h)
return h
```
### Physics-Informed Constraints
You can add custom physics constraints:
```python
def custom_physics_constraint(v, x):
"""Apply custom physics constraint to velocity field."""
# Implement your physics constraint
return v_constrained
# Use in model
model = WeatherFlowMatch(physics_informed=True)
model._apply_physics_constraints = custom_physics_constraint
```
## Running Jupyter Notebooks
We provide several Jupyter notebooks to help you learn and work with WeatherFlow.
### Setup Notebook Environment
For the easiest experience running the notebooks, use our setup script:
```bash
# Create a dedicated environment and fix notebook imports
python setup_notebook_env.py
```
This script:
1. Creates a virtual environment with all required dependencies
2. Installs the WeatherFlow package in development mode
3. Registers a Jupyter kernel
4. Fixes import paths in notebooks
### Alternative Manual Setup
If you prefer to set up manually:
1. Install notebook dependencies:
```bash
pip install -r notebooks/notebook_requirements.txt
```
2. Fix notebook imports:
```bash
python notebooks/fix_notebook_imports.py
```
3. Run Jupyter Lab or Notebook:
```bash
jupyter lab
```
See [notebooks/README.md](notebooks/README.md) for more details.
## Contributing
We welcome contributions to WeatherFlow! To contribute:
1. Fork the repository
2. Create a feature branch: `git checkout -b feature/your-feature`
3. Make your changes
4. Run tests: `pytest tests/`
5. Submit a pull request
See `CONTRIBUTING.md` for more details.
## License
WeatherFlow is released under the MIT License. See `LICENSE` for details.
## Citation
If you use WeatherFlow in your research, please cite:
```
@software{weatherflow2023,
author = {Siman, Eduardo},
title = {WeatherFlow: Flow Matching for Weather Prediction},
url = {https://github.com/monksealseal/weatherflow},
year = {2023}
}
```
## Acknowledgments
This project builds upon flow matching techniques introduced by Meta AI and is inspired by approaches from the weather and climate modeling community.
## Graduate Learning Studio
WeatherFlow now ships with an advanced educational toolkit tailored for graduate-level
atmospheric dynamics and physics. The `GraduateAtmosphericDynamicsTool`
combines interactive Plotly dashboards with step-by-step problem solvers so students can
experiment with balanced flows, Rossby-wave dispersion, and potential vorticity structures.
```python
from weatherflow.education import GraduateAtmosphericDynamicsTool
import numpy as np
tool = GraduateAtmosphericDynamicsTool(reference_latitude=45.0)
# 1. Build a balanced flow visualization from a synthetic jet streak
latitudes = np.linspace(35.0, 55.0, 30)
longitudes = np.linspace(-30.0, 30.0, 40)
y_metric = tool.R_EARTH * np.deg2rad(latitudes)
x_metric = tool.R_EARTH * np.cos(np.deg2rad(latitudes.mean())) * np.deg2rad(longitudes)
height = (
5600.0
+ 5.0e-5 * (y_metric[:, None] - y_metric.mean())
+ 2.5e-5 * (x_metric[None, :] - x_metric.mean())
)
balanced_fig = tool.create_balanced_flow_dashboard(height, latitudes, longitudes)
balanced_fig.show()
# 2. Explore Rossby-wave dispersion characteristics interactively
rossby_fig = tool.create_rossby_wave_lab(mean_flow=18.0)
rossby_fig.show()
# 3. Generate curated practice problems with step-by-step solutions
for scenario in tool.generate_problem_scenarios():
print(scenario.title)
for step in scenario.solution_steps:
print(f" - {step.description}: {step.value:.3f} {step.units}")
print(scenario.answer)
```
The toolkit produces volumetric potential vorticity renderings, Rossby-wave dispersion
laboratories, and automated geostrophic/thermal-wind calculators that help students bridge
conceptual understanding with concrete numerical problem solving.