# LDA_1.41 **Repository Path**: AI4EarthLab/LDA_1.41 ## Basic Information - **Project Name**: LDA_1.41 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-25 - **Last Updated**: 2026-01-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Latent Data Assimilation for Global Atmosphere (1.41° resolution) This repository contains the implementation of latent data assimilation (LDA) methods for the global atmosphere at a horizontal resolution of 1.41 degrees. ## Contents - ✅ Autoencoder (AE) architecture 📄 [`AutoEncoder.py`](./networks/AutoEncoder.py) - ✅ AI forecast model to realize 4D DA method 📄 [`forecast_net.py`](./networks/forecast_net.py) - ✅ Utils for LDA experiments 📄 [`exp_utils.py`](./LDA_Methods/exp_utils.py) - ✅ A unified code for Latent 3D-Var (L3DVar) and Latent 4D-Var (L4DVar). 📄 [`Latent_Var.py`](./LDA_Methods/Latent_Var.py) - ✅ An Observing System Simulation Experiment (OSSE) example to apply LDA. 📄 Example notebook: [`LDA_OSSEs.ipynb`](./DA_exps/LDA_OSSEs.ipynb) The checkpoints for models are provided in https://zenodo.org/records/17210930.